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Abstract

In this thesis, a controller synthesis method is presented for a gain-scheduled controller com-

posed of a number of positive real controllers that contain internal models of reference command

signals. Using the internal model principle as inspiration, and the Passivity Theorem to assure

input-output stability, the proposed controller is designed to achieve excellent steady-state track-

ing of a reference command while maintaining input-output stability of the closed-loop system.

The gain-scheduled nature of the internal models allows for a number of internal models to be

simultaneously implemented. In particular, the first few terms of a Fourier series can be used as

internal models to realize tracking of complicated reference commands. Two practical examples,

one involving the tracking control of the modified tip velocity of a flexible-link manipulator,

and the other involving the tracking control of the outlet temperature of a heat exchanger are

presented.
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Sommaire

Dans cette thèse, une méthode de synthèse de contrôleur est présentée pour un contrôleur

de gain programmé, composé de plusiers contrôleurs réel positifs qui contiennent des modèles

internes des signaux de commande de référence. S’inspirant du principe du modèle interne et

du Théorème de la Passivité pour assurer la stabilité d’entrée-sortie, le contrôleur proposé est

conçu pour obtenir un excellent suivi d’état d’équilibre d’une commande de référence tout en

maintenant la stabilité entrée-sortie du système en boucle fermée. La nature de gain programmé

des modèles internes permet plusieurs modeles internes d’être appliqué simultanément. En par-

ticulier, les premières termes d’une série Fourier peuvent être utilisés comme modèles internes

pour réalizer le suivi de commandes de référence complexes. Deux exemples pratiques, l’un con-

cernant le contrôle de suivi de la vitesse de pointe modifié d’un manipulateur de chaı̂ne flexible,

et l’autre visant le contrôle de suivi de la température de sortie d’une échangeur de chaleur sont

présentés.
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Chapter 1

Introduction

1.1 Thesis Motivation, Objectives and Outline

The title of this thesis is Gain-Scheduled Passivity-Based Tracking Control. In this thesis we

present a novel controller design method inspired by the Passivity Theorem and the internal model

principle. These results are then used to control systems with passive input-output mappings. In

particular, we control a flexible robotic manipulator and a heat exchanger.

1.1.1 Motivation and Objectives

Feedback control is able to realize many remarkable closed-loop properties such as distur-

bance rejection, noise mitigation, and command following. Moreover, these closed-loop traits

can be realized even when the open-loop system dynamics are uncertain. Model uncertainty can

never be reduced to zero and, as such, feedback control architectures that offer guarantees of

closed-loop asymptotic stability (in, for example, an input-output or Lyapunov sense) are not
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only desired, but required if they are to have any real-world relevance.

The passive-systems framework is often employed to assure closed-loop input-output stability

in the presence of model uncertainty. The strong form of the Passivity Theorem states that the

negative feedback interconnection of a passive system and very strictly passive (VSP) system is

input-output stable [1]. This result is robust to model uncertainty that does not violate the passive

or VSP properties of the two systems in question. The Passivity Theorem has been employed in

many engineering disciplines, including mechanical, aerospace, and electrical engineering.

Feedback control is often used to realize command following. One way to realize exact

command following when the plant and controller are linear time-invariant (LTI) is through the

internal model principle [2]. Neglecting disturbances, the internal model principle states that

if either the LTI plant or the LTI controller has an internal model of the command, and the

closed-loop system is asymptotically stable, then the error between the plant output and command

asymptotically goes to zero as time goes to infinity. The internal model principle can also be used

to reject disturbances when the disturbance’s frequencies are known.

Although some controller synthesis methods currently exist that are inspired by either the in-

ternal model principle [3] or the Passivity Theorem [4], currently there are no controller synthesis

methods that incorporate both ideas into one controller synthesis process to control systems with

a passive input-output mapping.

This thesis brings together passive systems theory and the internal model principle. The first

contribution of this thesis is a means to synthesize positive real (PR) controllers that contain an

internal model of the designers choice. The second contribution of this thesis is using a previously

presented passivity-based gain-scheduling architecture [5, 6] to gain schedule the PR controllers

with internal models to, in effect, switch from one internal model to another, or use many internal
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models in a “Fourier series” to realize more command following. Moreover, by relying on passive

systems theory, input-output stability results are robust to a large class of model uncertainty.

1.1.2 Outline

This thesis is structured as follows. Chapter 2 reviews the definition of a passive system,

the Passivity Theorem, and other well-known results that are necessary for both the controller

synthesis and numerical examples. Chapter 3 presents the proposed control architecture, inspired

by the Passivity Theorem and Internal Model Principle. In Chapter 4, the proposed controller is

tested in two numerical examples. First, a single controller is used to control the µ-tip velocity of

a flexible-link manipulator, then a set of gain-scheduled controllers are implemented to control

the output temperature of a single tube-in-shell heat exchanger. Finally, concluding remarks and

suggestions for future work are presented in Chapter 5.
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Chapter 2

Preliminaries

2.1 Notation

A an n×m matrix,

1 an identity matrix of appropriate dimension,

G : L2e → L2e an operator that maps L2e signals to L2e signals,

A = AT > 0 a symmetric positive definite matrix,

A = AT ≥ 0 a symmetric positive semidefinite matrix,

A = AT < 0 a symmetric negative definite matrix,

A = AT ≤ 0 a symmetric negative semidefinite matrix,

In the first numerical example provided in Chapter 4, we will use Vectrix notation, as de-

scribed in [7, 8]. Briefly,
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v−→ a physical vector, independent of reference frame,

Fa reference frame defined by orthonormal basis

vectors a−→1, a−→2, and a−→3,

F−→a =
[
a−→1 a−→2 a−→3

]T a vectrix of orthonormal basis vectors forming a

reference frame,

vT
a =

[
v1
a v2

a v3
a

]
a column matrix representing the physical

vector v−→ expressed in Fa,

v−→
·a time derivative of v−→ with respect to Fa.

2.2 Passive Systems Theory

In this section passive systems theory is briefly reviewed. See [1] or [9] for details. To begin,

a function u ∈ L2 if

‖u‖2 =

√∫ ∞
0

uT(t)u(t)dt <∞, (2.1)

and u ∈ L2e if

‖u‖2T =

√∫ T

0

uT(t)u(t)dt <∞, ∀T ∈ R+. (2.2)

A function u ∈ L∞ if

‖u‖∞ = sup
t∈R+

[
max
i=1···n

|ui(t)|
]
<∞. (2.3)

A general square system with inputs u ∈ L2e and outputs y ∈ L2e mapped through the operator

G : L2e → L2e is very strictly passive (VSP) if there exists a constants 0 < δ <∞, 0 < ε <∞,

and β such that [9]

∫ T

0

yT(t)u(t)dt ≥ δ

∫ T

0

uT(t)u(t)dt+ ε

∫ T

0

yT(t)y(t)dt+ β, ∀u ∈ L2e, ∀T ∈ R+. (2.4)
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When ε = δ = 0 the system is passive, when δ = 0 the system is output strictly passive (OSP),

and when ε = 0 the system is input strictly passive (ISP). The scalar β is related to the initial

conditions of the system.

Consider the negative feedback interconnection of G1 : L2e → L2e and G2 : L2e → L2e, as

shown in Fig. 2.1. The weak version of the Passivity Theorem states that the negative feedback

interconnection of a passive system and an ISP system is input-output stable [9], while the strong

form of the Passivity Theorem states that the negative feedback interconnection of a passive

system and a VSP system is input-output stable [1]. In terms of Fig. 2.1, it matters not which of

the systems, G1 : L2e → L2e or G2 : L2e → L2e, is the passive one.

A passive system will have a PR transfer matrix function or a PR state-space realization that

is minimal. An OSP system will have a strictly positive real (SPR) transfer matrix function or

a SPR state-space realization that is minimal. A VSP system will have a SPR transfer matrix

function or SPR state-space realization that is minimal with a feedthrough term. The definition

of PR and SPR (for the case of no feedthrough) are as follows.

G1

r1 y
1

r2
G2

y
2

Fig. 2.1: Negative feedback interconnection of two systems.
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Lemma 2.2.1. (Kalman-Yakubovic-Popov (KYP) Lemma [1, 10]). Consider the LTI system

ẋ = Ax + Bu, x(0) = x0,

y = Cx,

where x ∈ Rn,u, y ∈ Rm, A ∈ Rn×n,B ∈ Rn×m, and C ∈ Rm×n, and (A,B,C) is a minimal

state-space realization. The system is PR if and only if there exist P ∈ Rn×n and Q ∈ Rn×n

where P = PT > 0 and Q = QT ≥ 0 such that

PA + ATP = −Q, (2.5)

PB = CT.

If Q = QT > 0 satisfies the Lyapunov equation (2.5), the system is SPR.

When considering the negative feedback interconnection of the PR system and the SPR sys-

tem without a feedthrough matrix, using Lyapunov stability theory, it can be shown that the origin

of the closed-loop system is globally asymptotically stable. See [11] for details.

2.3 Internal Model Principle

Consider the negative feedback interconnection shown in Fig. 2.2 once more, and assume

that both G1 and G2 are single-input single-output (SISO) systems with transfer function rep-

resentations g1(s) and g2(s), respectively. Additionally, assume that the closed-loop system is

asymptotically stable. The internal model principal states that if either g1(s) and g2(s) has an

internal model of the reference command r(s), then the output y(s) will track the reference com-



2 Preliminaries 8

mand with zero steady-state tracking error as t→∞ when there are no disturbances [2].

g1(s)
r(s) y(s)

g2(s)
e(s)

Fig. 2.2: Negative feedback interconnection of two systems.

2.4 Passivity-Based Gain-Scheduled Control

Consider the negative feedback interconnection of a gain-scheduled controller and plant shown

in Fig. 2.3. This gain-scheduled control architecture is a SISO specialization of the architecture

presented in [5, 6]. The scheduling signals, which may be a function of time or some other vari-

able such as the plant output, are assumed to satisfy si(t) ∈ L2 ∩ L∞ and
∑N

i=1 s
2
i (t) ≥ α > 0,

but are otherwise arbitrary. As discussed in [12], a straightforward modification of the proof

presented in [5, 6] shows that if each hi(s) i = 1, 2, . . . , N is PR (i.e., the input-output mappings

of each yi(s) = hi(s)ui(s) are passive), then the input-output map of the overall gain-scheduled

controller is passive. From the Passivity Theorem, provided the plant is VSP, then the negative

feedback interconnection of the VSP plant and passive gain-scheduled controller is input-output

stable.

2.5 Fourier Convergence Theorem

Theorem 2.5.1. Let f(x) be a piecewise regular function on x ∈ [−L,L] with a finite number of

discontinuities and a finite number of discontinuities, maxima and minima over the interval, and
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Plant
r(s) y(s)

h1(s)

hN(s)

.

.

.

s1

sN

s1

sN

Fig. 2.3: Gain-scheduled controller and plant in a negative feedback interconnection.

let f be periodic with period 2L, then f can be described by a Fourier series

f(x) =
a0

2
+
∞∑
n=1

an cos
(nπx
L

)
+ bn sin

(nπx
L

)
,

where n ∈ N. The constant Fourier coefficients a0, an and bn can be calculated from f(x) [13].

2.6 The Rayleigh-Ritz Method

The Rayleigh-Ritz method can be used to convert the partial differential differential equations

associated with the elastic mechanics of a system to a reasonable system of ordinary differential

equations. The elastic deformation of a system, ue, is expressed as a sum of a set of independent

basis function. Written explicitly, this is given by

ue(x, t) =
N∑
i=1

Ψi(x)qei(t),
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where N is the number of basis functions, Ψi(x) spatially-dependent basis functions and qei are

time-dependent elastic coordinates. The basis functions must be carefully selected to satisfy all

appropriate forced boundary conditions, and be differentiable to the same degree as the strain

energy.
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Chapter 3

Controller Synthesis Method

The controller synthesis method presented in this thesis is inspired by the Passivity Theorem

and the internal model principle. The proposed controller synthesis method is introduced in two

parts. First, the design of a PR controller with an internal model is presented, followed by the

design of a gain-scheduled controller composed of multiple PR controllers with internal models.

3.1 PR Controller Synthesis with Internal Model

Consider an LTI plant Gp : L2e → L2e expressed in terms of a minimal state-space as

ẋp = Apxp + Bpu, xp(0) = xp,0,

y = Cpxp,

where xp ∈ Rn is the system state, u ∈ R is the control input, and y ∈ R is the system output.

The constant state-space matrices are defined as Ap ∈ Rn×n,Bp ∈ Rn×m, and Cp ∈ Rm×n, where
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m = 1.

The internal model of the reference signal is written in state-space form as

ẋi = Aixi + Biui, xi(0) = xi,0,

yi = Cixi,

where xi ∈ Rni is the internal model state, ui ∈ R is the internal model input, and yi ∈ R is

the internal model output. The state-space matrices of the internal model are defined as Ai ∈

Rni×ni ,Bi ∈ Rni×mi , and Ci ∈ Rmi×ni , where mi = 1, and together form a minimal state-space

realization.

The synthesis of the PR controller with internal model is described in the following steps.

1. Design a linear quadratic Gaussian (LQG) controller for the plant Gp. This controller has

state-space realization (A
LQG

,B
LQG

,C
LQG

,D
LQG

), where

A
LQG

= Ap − BpKLQG
− L

LQG
Cp,

B
LQG

= L
LQG

= P2CT
pW−1,

C
LQG

= K
LQG

= R−1BT
pP1,

D
LQG

= 0,

R = RT > 0, and W = WT > 0. The matrices P1 = PT
1 > 0 and P2 = PT

2 > 0 are



3 Controller Synthesis Method 13

solutions to the algebraic Riccati equations

AT
pP1 + P1Ap − P1BpR−1BT

pP1 + Q = 0,

ApP2 + P2AT
p − P2CT

pW−1CpP2 + V = 0,

where Q = QT ≥ 0 and V = VT ≥ 0. See Fig. 3.1 for a block diagram representation of

Step 1.

Plant
LQG

Controller

r(s) y(s)

Fig. 3.1: Step 1 of the PR controller synthesis method with internal model in Section 3.1.

2. Cascade the LQG controller with the internal model, giving a controller of the form

Ac =

 A
LQG

0

BiCLQG
Ai

 , Bc =

B
LQG

0

 ,
Cc =

[
0 Ci

]
, Dc = 0.

See Fig. 3.2 for a block diagram representation of Step 1.

3. Solve for P = PT > 0 that minimizes the objective function

J (P) = tr
((

Cc − BTP
)T (Cc − BTP

))
,
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Plant
LQG

Controller
Internal
Model

r(s) y(s)

Fig. 3.2: Step 2 of the PR controller synthesis method with internal model in Section 3.1.

while satisfying the Lyapunov equation

PAc + AT
c P ≤ 0.

4. The solution P is used to solve for the new controller output matrix Cc2 , given by

Cc2 = BTP.

The new controller, with state-space realization (Ac,Bc,Cc2 ,Dc) now contains an internal

model of the reference signal and is PR. Note that although not necessary in ensuring

positive realness, the objective function J (P) is chosen in Step 3 so that Cc2 is as close to

Cc as possible, while ensuring the new controller is PR.

3.2 Gain-Scheduled Controller Synthesis

The controller synthesis method of Section 3.1 is used to design N PR controllers, each

with an internal model of a reference signal. The N controllers are gain-scheduled using the

architecture presented in [5, 6] and shown in Fig. 2.3, which yields an overall gain-scheduled

controller that is passive. The overall controller output is a weighted sum of the outputs of each
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individual controller, given by

yc(t) =
N∑
j=1

sj(t)yj(t),

where yj(t) is the output of the jth PR controller, and the scheduling signals sj(t), j = 1, . . . , N

satisfy sj(t) ∈ L2 ∩ L∞ and
∑N

j=1 s
2
j(t) ≥ α > 0. Following the gain-scheduling architec-

ture of [5, 6], the input to each individual controller is also scheduled as uj(t) = sj(t)e(t) =

sj(t)(r(t) − y(t)), where uj is the input to the jth PR controller, and e(t) = r(t) − y(t) is the

tracking error.

3.3 Analysis and Discussion

The gain-scheduled controller obtained following the synthesis method presented in Sec-

tions 3.1 and 3.2 is passive. Assuming that the plant is VSP, the strong form of the Passivity

Theorem guarantees that the closed-loop system is input-output stable, and e(t) ∈ L2 if r ∈ L2.

It should be noted that this result also holds if the plant is uncertain or nonlinear, as long as it is

VSP. In practice, it is quite possible that the plant will be OSP, but it is unlikely that it will be

VSP, meaning the Passivity Theorem would technically not be satisfied.

Although the internal model principle is used as inspiration in this thesis, it cannot be directly

shown that e → 0 as t → ∞ as the traditional internal model principle does. However, if it can

be shown that e(t) ∈ L2 and ė(t) ∈ L2, then e(t) → 0 as t → ∞; this will be the subject of

future work.

In general, the reference command signal may not be inL2. For instance, r(t) = sin(ωt) is not

in L2. In the case of a periodic signal that is not in L2, a work-around to the issue of it not being

in L2 is to multiply the periodic signal by a slowly decaying exponential. For example, if the
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reference command r(t) = sin(ωt) is to be tracked, the modified command r(t) = e−λt sin(ωt)

can be used, where 0 < λ < ∞ is extremely small, with a time constant that is possibly on the

order of years or decades. The resulting signal will be in L2, which leads to a guarantee that the

tracking error will be in L2. Note, such a modification would not be needed in practice, but is

technically needed to assure input-output stability via the Passivity Theorem.

An alternative to gain-scheduling many controllers that each include internal models is to

design a single controller that contains one large internal model. In this method, a single internal

model that includes the first few Fourier series modes of the reference command signal could

be chosen. The controller synthesis proposed in this thesis is more flexible than this method,

since the influence of each internal model can be adjusted to track a large range of signals. The

scheduling signals can even be dynamically adjusted to track a time-varying reference command

signal.



17

Chapter 4

Numerical Examples

4.1 Flexible-Link Manipulator

Consider a flexible-link manipulator with a tip mass, with parameters from Table 4.1 shown

in Fig. 4.1. In this system, a torque is applied at the hub, in order to control the tip position and

velocity. Using the proposed controller synthesis method in Section 3, a single passive controller

is designed to track a given reference command signal.

Table 4.1: Numerical parameters describing the reference signal used in the numerical example.

Parameters Variable Value Units
Tip Mass mtip 100 kg
Beam Length l 1 m
Beam Linear Density σ 0.2332 kg

m
Beam Flexible Rigidity EI 5.41 N m2

Hub Radius r 0.3 m
Hub Second Moment of Inertia Ihub 6.6× 10−3 kg m2
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θ(t)

FaFb ue
�!

(x; t)

τ

Fig. 4.1: Flexible-link manipulator with tip mass.

4.1.1 Dynamic Modelling

An inertial reference frame Fa, defined by orthonormal basis vectors a−→1, a−→2, and a−→3, is

chosen as a datum. The reference frame Fb, defined by orthonormal basis vectors b−→1, b−→2, and

b−→3, rotates with the rigid hub of the manipulator. The angle of rotation between Fb and Fa is θ.

The spatial coordinate x is used to describe the position along b−→1 relative to the centre of the hub.

In this example, the elastic deformation uT
e =

[
0 ue(x, t) 0

]
of the link is the representation

of ue in Fb. This deflection is approximated using the Rayleigh-Ritz method. In this case, the

geometric boundary conditions are

ue(0, t) = 0,
∂ue
∂x

∣∣∣∣
x=0

= 0,
∂

∂x

(
EI

∂2ue
∂x2

)∣∣∣∣
x=L

= 0 and EI
∂2ue
∂x2

∣∣∣∣
x=L

= 0.

One set of basis functions which satisfy these geometric boundary conditions are

ψi(x) = xi+1, i = 1, ...N.
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For this numerical example, the first three basis functions are used to approximate the link’s

deflection. These basis functions satisfy the first two boundary conditions. Therefore, in vectrix

notation, the elastic deflection of any point in the beam is

u−→e = F−→a
Tue = F−→a

T


0 0 0

x2 x3 x4

0 0 0



qe1(t)

qe2(t)

qe3(t)

 = F−→a
TΨ(x)qe(t).

When the beam is rigid, the position of any point along the beam can be described by

ρ−→(x) = F−→b
T


x+ r

0

0

 ,

and ρb represents the physical vector ρ−→ in F b. The kinetic and potential energies of the system

can be described by

T = 1
2
q̇TMq̇,

V = 1
2
qTKq.

The system can be described by its equation of motion

Mq̈ + Kq = b̂τ, (4.1)
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where qT =
[
θ qT

e

]
, b̂ =

[
1 0

]T,

K =

0 0

0 Kee

 ,
and

M =

bT
3 (J + Jtip) b3 + Ihub bT

3 (H + Htip)(
HT + HT

tip

)
b3 Mbeam + Mtip

 .
The contents of the mass and stiffness matrices are further described as

Kee = EI

∫ L

0

Ψ′′
T
Ψ′′dx,

where Ψ′′ is the second partial derivative of Ψ with respect to x, and

J = σ

∫ L

0

ρ×
T

b ρ×b dx

is the second moment of inertia of the flexible appendage about the centre of the hub,

H = σ

∫ L

0

ρ×b Ψdx

is the matrix of modal angular momentum coefficients, and

Mbeam = σ

∫ L

0

ΨTΨdx.

Additionally,

Jtip = mtip

(
ρ×

T

b ρ×b

)
x=L



4 Numerical Examples 21

is the second moment of inertia of the tip mass about the centre of the hub,

Htip = mtip

(
ρ×b Ψ

)
x=L

is the matrix of modal angular momentum coefficients of the tip, and

Mtip = mtip

(
ΨTΨ

)
x=L

.

4.1.2 Passivity Analysis

In this example, a passive mapping exists from a modified torque τ̂c = J−1
θ τ to the µ-tip

velocity ρ̇µ. This is shown in the following analysis.

Assuming the tip mass is massive relative to the link’s mass, the kinetic energy of the system

can be decoupled as T ≈ Tρ + Te, where Tρ is the kinetic energy of the rigid hub and tip mass

and Te is the kinetic energy of the flexible appendage, given by

Tρ =
1

2
Mρρθ

2

Te =
1

2
qT
e Meeqe,

where

Mρρ = bT
3 (J + Jtip) b3 + Ihub,

and

Mee = Mbeam + Mtip.

This approximation is based on the fact that the kinetic energy of the system is dominated by the
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kinetic energy of the rigid hub and tip mass when the tip is moving, and by the elastic kinetic

energy when the tip is still [14].

The Hamiltonian of the decoupled system is

H = Tρ + Te + V,

and the Lagrangian of the decoupled system is

L = Tρ + Te − V.

By the principle of Virtual Work,

ρ̇ = Jθθ̇ + Jeq̇e

δρ = Jθδθ + Jeδqe

δθ = J−1
θ δρ− J−1

θ Jeδqe,

where Jθ = r+ l is the rigid Jacobian and Je = Ψ(l) is the elastic Jacobian. It can also be shown

that

δW = δθτ

=
(
J−1
θ δρ− J−1

θ Jeδqe
)
τ

= δρ
(
J−1
θ τ
)
− δqe

(
J−1
θ Jeτ

)
.
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Therefore, from the approximately decoupled system,

Mρρρ̈ = J−1
θ τ (4.2)

Meeq̈e + Keeqe = −J−1
θ Jeτ. (4.3)

Next, consider the tip velocity, ρ̇, where

ρ̇ = (r + l) θ̇ + u̇e

= Jθθ̇ + Jeq̇e

=
[
Jθ Je

]
q̇.

The µ-tip velocity of the tip mass,

ρ̇µ =
[
Jθ µJe

]
q̇,

is an approximation of the real tip velocity, where 0 ≤ µ < 1 [14]. When µ = 0, the µ-tip

velocity is the rigid tip velocity, and as µ approaches 1, the µ-tip velocity approaches the real tip

velocity. Next, consider the nonnegative function [14]

Hµ = H − µ(Te + Ve)

= Tρ + Te + V − µ (Te + Ve)

= Tρ + (1− µ) (Te + Ve) , 0 ≤ µ < 1.
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Taking the time derivative of Hµ and using (4.1)−(4.3) gives

Ḣµ = Ḣ − µ(Ṫe + V̇ )

= q̇TMq̈ + q̇TKq− µ
(
q̇T
e Meeq̈e + q̇T

e Keeqe
)

= q̇T (Mq̈ + Kq)− µ
(
q̇T
e (Meeq̈e + Keeqe)

)
= q̇T

(
b̂τ
)
− µq̇T

e

(
−J−1

θ Jeτ
)

= θ̇τ + µq̇T
e

(
J−1
θ Jeτ

)
= JθJ

−1
θ θ̇τ + µq̇T

e

(
J−1
θ Jeτ

)
=

(
Jθθ̇ + µq̇T

e Je
)
J−1
θ τ

= ρ̇µτ̂c. (4.4)

Integrating (4.4) gives

∫ T

0

ρ̇µτ̂cdt = H(T )−H(0)

≥ −H(0),

which proves that the map τ̂c 7→ ρ̇µ is passive.

4.1.3 Numerical Example

In this numerical example, the µ-tip rate is set to track the reference command

r(t) = 0.2 sin(πt).
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This reference is a basic sinusoidal reference command. As a result, only one controller is nec-

essary, and there is no gain-scheduling of controllers. When selecting an appropriate value of µ,

a tradeoff must be made between performance and robustness. A low value of µ will lead to a

more robust controller, while a larger value of µ will better represent the true payload velocity.

For the purpose of this example, we will choose µ = 0.5.

The tuning weights used to the design the LQG controller for the controller in Step 1 are

Q = diag{1, 1}, R = 1, V = diag{1, 1}, and W = 1. The KYP lemma in Step 3 of the controller

synthesis method is solved using YALMIP [15] and MOSEK [16] within MATLAB. The response

of ρ̇µ and the tracking error in ρ̇µ are plotted in Figs. 4.2 and 4.3.
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-0.1
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µ
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/s
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ref

Fig. 4.2: Desired and actual µ-tip rate versus time.
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Fig. 4.3: µ-tip rate error versus time.

4.1.4 Discussion of Results

From Figs. 4.2 and 4.3, it is clear that the output tracks the reference command well and the

tracking error quickly becomes very small. Fig. 4.4 displays the importance of Step 4 of the

controller synthesis method proposed in Chapter 3, as the controller’s phase changes from being

unconstrained, to being constrained within [−90, 90] degrees, confirming that the controller is

PR.
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Fig. 4.4: Bode diagram of controller before (orange) and after (blue) Step 4 of the controller
synthesis process.

4.2 Heat Exchanger

Consider a single tube-in-shell heat exchanger, shown in Fig. 4.5, involving hot and cold

streams of benzine and aniline, respectively, with parameters from [17], listed in Table 4.2. Using

the proposed controller synthesis method in Section 3, a gain-scheduled passive controller is

designed to track a given reference command signal.
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Fig. 4.5: Schematic of the single tube-in-shell heat exchanger used in the numerical example in
Section 4.2.

4.2.1 System Modelling

A linear model approximating the dynamics of the heat exchanger temperature T ic is given in

state-space form as [18]

Ṫ(t) = AT(t) + Bu(t),

where

A =

− vc
Vc
− UA

cpcρcVc
UA

cpcρcVc

UA
cphρhVh

− vh
Vh
− UA

cphρhVh

 ,
B =

 vc
Vc

0

0 vh
Vh

 , T(t) =

T oc (t)

T oh(t)

 , u(t) =

T ic(t)
T ih(t)

 .
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The variable T kj (t), j = c, h and k = i, o, represents the temperature of the fluid, T̄ oj , j = c, h,

represents the equilibrium outlet temperature of the fluid, vj represents the volume flow rate, ρj is

the fluid density, cpj is the fluid specific heat, and Vj is the volume of each fluid. The variable U

represents the heat transfer coefficient and A represents the area. Subscripts c and h indicate the

cold or hot stream, while superscripts i and o indicate properties at the inlet or outlet of a stream.

Flow rates and physico-chemical properties are assumed constant throughout the exchanger.

If the cold inlet temperature is chosen to be some fixed value, the model can be simplified to

a SISO model, described by

δṪ(t) = ApδT(t) + Bpu(t),

where

Ap = A =

− vc
Vc
− UA

cpcρcVc
UA

cpcρcVc

UA
cphρhVh

− vh
Vh
− UA

cphρhVh

 , Bp =

 0

vh
Vh

 ,
δT(t) = T(t) − T̄ =

[
T oc (t) T oh(t)

]T − [T̄ oc T̄ oh
]T,u(t) = T ih(t), T̄ oc is the equilibrium cold

outlet temperature, and T̄ oh is the equilibrium hot outlet temperature.. A measurement of y =

CpδT =
[
1 0

]
δT(t) = T oc (t)− T̄ oc is assumed to be available.

4.2.2 Numerical Example

In this numerical example, the cold stream input is set to a constant temperature of T ic = 30◦C,

which leads to equilibrium output temperatures of T̄ oc = 23.0◦C and T̄ oh = 16.8◦C. In simulation,

the initial conditions are set as T oc (0) = 30◦C and T oh(0) = 30◦C. A triangular wave with an

offset is chosen as the reference command for the hot stream outlet, given by

Tref (t) = a0 + 4
a

p

(∣∣∣(t modulo p)− p

2

∣∣∣− p

4

)
, (4.5)
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where a0 is the offset, a is the amplitude of the triangle wave and p is its period. The numer-

ical parameters used to describe the reference signal are listed in Table 4.3. Alternatively, the

reference signal in (4.5) can be described by the Fourier series

Tref (t) = a0 +
∞∑
k=0

ak(−1)k
sin(2π(2k + 1)ft)

(2k + 1)2
,

where the frequency f is the inverse of the period p.

Table 4.2: Numerical parameters describing the heat exchanger in the numerical example.

Parameters Units Benzene Aniline
(Hot) (Cold)

U J
s·m2·◦C 391 –

A m2 7.57 –
v m3

s × 10−4 7.17 12.0
ρ kg

m3 879 1022
cp

J
kg·◦C × 103 1.76 2.18

V m3 × 10−2 3.75 9.41

Table 4.3: Numerical parameters describing the reference signal used in the heat exchanger
numerical example.

Parameters Variable Value Units
Offset a0 40 ◦C

Amplitude a 5 ◦C
Period p 120 s

Frequency f 1
120

s−1

In order to track the reference signal, the controller is designed to contain internal models

of the sinusoidal modes in the Fourier series that make up the reference signal. In particular,

the controller must contain at least one pole at s = 0 to track the step input, as well as poles

at s = ±(2n + 1)2πfj, n ∈ N to track each mode of the reference signal. In practice, only a
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Table 4.4: Numerical parameters of the scheduling signal used in the numerical example.

Variable Value Variable Value
a0 1 s0,0 0.0001
a1 7 s1,0 0.2
a2 7/3 s2,0 0.2/3
a3 7/5 s3,0 0.2/5
a4 7/7 s4,0 0.2/7
a5 7/9 s5,0 0.2/9
a6 7/11 s6,0 0.2/11
a7 7/13 s7,0 0.2/13
a8 7/15 s8,0 0.2/15
a9 7/17 s9,0 0.2/17

finite number of reference signal modes can be implemented, and in this particular example the

controller includes an integrator and the first nine modes of the Fourier series. The tuning weights

used to the design the LQG controller for each individual controller in Step 1 are Q = diag{1, 1},

R = 1, V = diag{1, 1}, and W = 1. The KYP lemma in Step 3 of the controller synthesis method

is solved using YALMIP [15] and MOSEK [16] within MATLAB.

The scheduling signals of the controller in this numerical example are given by

sj(t) =


(aj−sj,0

t̄

)
t+ sj,0 t ≤ t̄

aj t > t̄
, j = 0, . . . , 9,

where aj , j = 0, . . . , 9, are the Fourier coefficients of the reference signal; sj,0, j = 0, . . . , 9,

are initial values of the scheduling signals at t = 0 min; and t̄ = 10 min is the time at which

the scheduling signals switch from linear varying to constant. The numerical values of aj and

sj,0, j = 0, . . . , 9, are given in Table 4.4. The controllers are scheduled based on the Fourier

coefficients to best represent the influence of each internal model in the reference signal being
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Fig. 4.6: Plots of (a) T oc and desired output versus time, (b) tracking error versus time, (c) control
input T ih versus time, and (d) enlarged view of tracking error versus time for the numerical exam-
ple of Section 4. The simulation is performed for 50 min, but only results from the first 8 min are
presented in (a)-(c).

tracked.

Closed-loop simulation results with the controller designed to include internal models of the

first nine Fourier series modes of the reference command are presented in Fig. 4.6.
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4.2.3 Discussion of Results

From Figs. 4.6(a) and 4.6(b) it is apparent that the reference command signal is tracked well

and the tracking error becomes small quickly. In the enlarged plot of Fig. 4.6(d), sharp spikes

in the tracking error can be seen at the times where the reference command is non-smooth, but

otherwise the steady-state tracking error is tending towards zero. The sharp spikes in tracking

error are most likely due to the fact that only a finite number of Fourier series modes are being

implemented as internal models. As the number of modes used is increased, it is expected that

the magnitude of the spikes will decrease.



34

Chapter 5

Conclusion

5.1 Final Remarks

The controller design method presented in this thesis leads to a passive controller that includes

a number of internal models. Inspired by the internal model principle, the internal models of the

controller lead to a reduction in steady-state tracking error. The gain-scheduled nature of the

controller makes it very simple to tune the internal models for a variety of reference commands.

As done in the heat exchanger numerical example in Chapter 4, a Fourier series representation

of the reference command signal can be obtained and the first N modes can be used as internal

models. The scheduling signals of each individual controller can be chosen based on the Fourier

coefficients.
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5.2 Future Work

Future work on this topic will examine the effect that choosing different number of Fourier

series modes has on the tracking performance and look into applying this controller synthesis to

disturbance rejection problems.

Currently this controller has been tested on two simulated systems, a flexible-link manip-

ulator and a single tube-in-shell heat exchanger. Eventually, this controller will be validated

experimentally on test platforms, including various configurations of flexible-link manipulators.



36

References

[1] B. Brogliato, R. Lozano, B. Maschke, and O. Egeland, Dissipative Systems Analysis and

Control: Theory and Applications, 2nd ed. Springer, 2007.

[2] B. Francis and W. Wonham, “The internal model principle of control theory,” Automatica,

vol. 12, no. 5, pp. 457–465, 1976.

[3] K. C. Cheok, N. K. Loh, and J. B. Ho, “Continuous-time optimal robust servo-controller

design with internal model principle,” International Journal of Control, vol. 48, no. 5, pp.

1993–2010, 1988.

[4] R. Ortega, Passivity-based control of Euler-Lagrange systems, 1st ed. Springer, 1998.

[5] C. J. Damaren, “Gain-scheduled SPR controllers for nonlinear flexible systems,” Journal of

Dynamic Systems, Measurement, and Control, vol. 118, no. 4, pp. 698–703, 1996.

[6] J. R. Forbes and C. J. Damaren, “Design of gain-scheduled strictly positive real controllers

using numerical optimization for flexible robotic systems,” Journal of Dynamic Systems,

Measurement, and Control, vol. 132, no. 3, May 2010.

[7] P. C. Hughes, Spacecraft Attitude Dynamics, 2nd ed. Dover, 2004.



References 37

[8] A. H. de Ruiter, C. Damaren, and J. R. Forbes, Spacecraft Dynamics and Control: An

Introduction, 1st ed. Wiley, 2013.

[9] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties. New York,

NY: Academic Press., 1975, ch. 4.

[10] H. J. Marquez, Nonlinear Control Systems: Analysis and Design. Hoboken, NJ: John

Wiley, 2003.

[11] H. Sane and D. Bernstein, “Asymptotic disturbance rejection for Hammerstein positive real

systems,” IEEE Transactions on Control Systems Technology, vol. 11, no. 3, pp. 364–374,

2003.

[12] J. R. Forbes, Extensions of Input-Output Stability Theory and the Control of Aerospace

Systems. Ph.D. Thesis, University of Toronto, 2011.

[13] J. W. Nilsson and S. A. Riedel, Electric circuits. Prentice Hall, 2000.

[14] C. Damaren, “Approximate inverse dynamics and passive feedback for flexible manipulators

with large payloads,” IEEE Transactions on Robotics and Automation, vol. 12, no. 1, pp.

131–138, 1996.
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