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This thesis is dedicated to all patients who have
fought, are fighting, or will fight cancer. I am with
you, and every research action I take is focused on

how to better help you.

“N’est-ce pas dans le rêve
cependant que naissent la
plupart des projets qui en

valent la peine?”

– René Lévesque
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Abstract

Most tumours do not represent a homogeneous entity, but rather are com-

posed of multiple clonal sub-populations of cancer cells forming complex

dynamical systems that can exhibit rapid evolution as a result of different

therapy perturbations. Tumours exhibiting higher heterogeneous character-

istics are typically associated with higher risk of resistance to treatment, pro-

gression, metastasis or recurrence, which can lead to patients’ death. The

quantification of intratumoural heterogeneity for decoding tumour pheno-

types is thus an active area of research in oncology. Being acquired at multi-

ple time points of treatment management for almost every patient with can-

cer, medical images would in fact carry an immense source of potential data

for decoding tumour phenotypes. This hypothesis is at the core of the new

emerging field of “Radiomics”, a field which refers to the characterization

of tumour phenotypes via the extraction of high-dimensional mineable data

from all types of medical images, and whose subsequent analysis aims at

supporting clinical decision-making. More specifically, texture analysis – a

sub-branch of radiomics – is one the most promising methods for the char-

acterization of intratumoural heterogeneity, as it involves the quantitative

description of the spatial distribution of different gray-levels within a given

region of interest. Ultimately, improved characterization of tumour aggres-

siveness and prediction of tumour outcomes (e.g., metastases, local recur-

rences, etc.) at diagnosis via quantitative imaging biomarkers would allow

physicians to better personalize treatments for each patient, and hopefully,

save more lives.

In this thesis, the major aim is to develop radiomic-based models for the

accurate prediction of tumour outcomes via advanced machine learning. We

first showed that the optimization of how texture features are extracted from

medical images (different isotropic voxel sizes, image quantization schemes,

etc.) is fundamental for best tumour outcome prediction. We then inte-

grated the texture optimization process into a robust multivariable modeling

methodology developed for the construction of radiomic-based prediction
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models. This multivariable modeling methodology employs logistic regres-

sion to linearly combine radiomic features. Using this methodology, we were

able to develop a model that can predict the development of lung metastases

in soft-tissue sarcomas with high accuracy. This model combines texture fea-

tures extracted from functional FDG-PET and anatomical MRI pre-treatment

images. Following this initial work, we demonstrated how the predictive

properties of imaging textures composing such prediction models could be

further enhanced by optimizing the way images are acquired. The proof of

concept for the enhancement of the prediction of lung metastases in soft-

tissue sarcomas was carried out using computerized simulations of FDG-

PET and MR image acquisitions with tumour and clinical scanner models, by

varying different physical parameters employed during image acquisitions.

Next, in another study, we developed a strategy for personalizing treatments

for soft-tissue sarcoma patients identified at diagnosis to be at higher risks

of developing lung metastases (using radiomic-based prediction models);

specifically, we verified the feasibility of applying double nested radiation

dose boosting to the hypermetabolic and hypoxic soft-tissue sarcoma sub-

regions to counteract the progression of more aggressive parts of tumours.

For the purpose of radiation treatment planning, contours defining the hy-

permetabolic and hypoxic tumour sub-regions were obtained from FDG-PET

and low-perfusion DCE-MRI functional images. Finally, in our last study, we

developed a methodology allowing to integrate radiomic imaging data with

clinical prognostic factors into comprehensive prediction models using a ran-

dom forest algorithm. We tested our methodology in head-and-neck cancer

to better assess the risk of locoregional recurrences and distant metastases,

this time using functional FDG-PET and anatomical CT pre-treatment images

in conjunction to clinical data. The clinically-integrated radiomic models that

we developed possess high prognostic power, leading to patient stratification

into two sub-groups for the risk assessment of locoregional recurrences (low,

high) in head-and-neck cancer, and into three groups for distant metastases

(low, medium, high).

Overall, in this thesis, we demonstrated that radiomics analysis is an en-

abling method towards precision medicine. The different radiomic tech-

niques and models developed in this work could have a major impact on

the design of new clinical trials aiming at a better personalization of cancer

treatments. One can envision different treatment regimens being delivered
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to patients based on different radiomic-based risk assessments of specific tu-

mour outcomes.
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Abrégé

La plupart des tumeurs ne représentent pas une entité homogène mais sont

plutôt composées de multiples sous-populations clonales de cellules can-

céreuses formant des systèmes dynamiques complexes qui peuvent présen-

ter une évolution rapide en raison de différentes perturbations thérapeu-

tiques. Les tumeurs présentant des caractéristiques hétérogènes plus élevées

sont typiquement associées à un risque plus élevé de résistance au traite-

ment, à la progression, aux métastases ou à la récidive, ce qui peut entraîner

la mort des patients. La quantification de l’hétérogénéité intratumorale pour

le décodage des phénotypes tumoraux est donc un domaine actif de recherche

en oncologie. Étant acquises à divers moments lors de la gestion du traite-

ment pour presque tous les patients atteints du cancer, les images médi-

cales seraient en fait une source immense de données potentielles pour le dé-

codage des phénotypes tumoraux. Cette hypothèse est au coeur du nouveau

domaine émergent de la “Radiomique”, domaine qui se réfère à la caractéri-

sation des phénotypes tumoraux grâce à l’extraction de données à grande

dimension à partir de tous les types d’imagerie médicale et dont l’analyse

subséquente vise à soutenir la prise de décision clinique. Plus précisément,

l’analyse texturale – une sous-branche de la radiomique – est l’une des méth-

odes les plus prometteuses pour la caractérisation de l’hétérogénéité intra-

tumorale, car elle implique la description quantitative de la répartition spa-

tiale des différents niveaux de gris dans une région d’intérêt donnée. Ul-

timement, une caractérisation améliorée de l’agressivité et du devenir des

tumeurs (par exemple, métastases, récidives locales, etc.) au moment du

diagnostic à l’aide de biomarqueurs d’imagerie quantitatifs permettraient

aux médecins de mieux personnaliser les traitements pour chaque patient

et ainsi, espérons-le, sauver plus de vies.

Dans cette thèse, l’objectif principal est de développer des modèles basés

sur la radiomique pour la prédiction du devenir des tumeurs grâce à l’apprentissage

machine avancé. Nous avons d’abord démontré que l’optimisation de la

façon dont les caractéristiques texturales sont extraites des images médicales

est fondamentale pour une meilleure prédiction du devenir des tumeurs.
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Nous avons ensuite intégré le processus d’optimisation des textures dans

une méthodologie de modélisation multivariable robuste développée pour

la construction de modèles de prédiction basés sur la radiomique. Cette

méthodologie de modélisation multivariable utilise la régression logistique

afin de combiner linéairement les données radiomiques. À l’aide de cette

méthodologie, nous avons pu développer un modèle permettant de prédire

avec une grande précision le développement des métastases pulmonaires

pour les patients atteints de sarcomes des tissus mous. Ce modèle combine

les valeurs de caractéristiques texturales extraites des images FDG-TEP fonc-

tionnelles et IRM anatomiques acquises avant le traitement des tumeurs. À

la suite de ce travail initial, nous avons démontré comment les propriétés

prédictives des textures d’imagerie composant de tels modèles de prédic-

tion pourraient être améliorées en optimisant la façon dont les images sont

acquises. Une preuve de concept pour l’amélioration de la prédiction des

métastases pulmonaires dans les sarcomes des tissus mous a été réalisée

à l’aide de simulations informatisées d’acquisitions d’images FDG-PET et

IRM, en variant les différents paramètres physiques utilisés pendant les ac-

quisitions d’images. Ensuite, dans une autre étude, nous avons développé

une stratégie permettant de mieux personnaliser les traitements pour les pa-

tients atteints de sarcomes des tissus mous identifiés comme étant à plus haut

risque de développer des métastases pulmonaires (à l’aide de modèles de

prédiction basés sur la radiomique); plus précisément, nous avons vérifié

la faisabilité d’appliquer une double augmentation de la dose de radiation

aux sous-régions tumorales hypermétaboliques et hypoxiques des sarcomes

des tissus mous afin de contrecarrer la progression des parties plus agres-

sives des tumeurs. Aux fins de la planification du traitement par radiations,

les contours définissant les sous-régions tumorales hypermétaboliques et hy-

poxiques ont été obtenus à partir d’images fonctionnelles FDG-TEP et IRM.

Enfin, dans notre dernière étude, nous avons développé une méthodologie

permettant d’intégrer des données d’imagerie radiomique avec des facteurs

pronostiques cliniques dans des modèles de prédiction, en utilisant cette fois

un algorithme informatique dit à “forêt aléatoire”. Nous avons testé notre

méthodologie dans le cancer de la tête et du cou afin de mieux évaluer le

risque de récidives locorégionales et de métastases distantes, cette fois en

utilisant des images fonctionnelles FDG-TEP et des images anatomiques CT

acquises avant le traitement en conjonction avec les données cliniques. Les

modèles radiomiques cliniquement intégrés que nous avons développés pos-

sèdent une forte puissance de prédiction, conduisant à une stratification des
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patients en deux sous-groupes pour l’évaluation du risque de récidive lo-

corégionale (faible, élevé) dans le cancer de la tête et du cou, et en trois sous-

groupes pour les métastases distantes (faible, moyen, élevé).

Dans l’ensemble, nous avons demontré dans cette thèse que l’analyse ra-

diomique est une méthode propice à la médecine de précision. Les dif-

férentes techniques et modèles radiomiques développés dans ce travail pour-

raient avoir un impact majeur sur la conception de nouveaux essais cliniques

visant à une meilleure personnalisation des traitements contre le cancer. On

peut imaginer que dans un avenir rapproché, des régimes de traitement dif-

férents seront administrés aux patients en fonction de différentes évaluations

du risque d’un devenir tumoral spécifique par l’analyse radiomique.
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1.1 The era of precision medicine

In its simplest definition, “cancer is a group of diseases characterized by the

uncontrolled growth and spread of abnormal cells. If the spread is not con-

trolled, it can result in death” [1]. One in seven deaths worldwide is caused

by cancer. It is the second leading cause of death in high-income countries

(being next to cardiovascular diseases) and the third leading cause of death

in low- and middle-income countries (being next to cardiovascular and in-

fectious/parasitic diseases) [2]. Cancer is caused by external as well as in-

ternal factors, and these factors may act together or in sequence. External

factors include tobacco, infectious organisms and unhealthy diet, wherehas

internal factors include inherited genetic mutations, hormones and immune

conditions. Cancerous mass (i.e., tumour) development is accompanied with

hallmark deviations from normal cellular functions such as sustained pro-

liferative signaling, evasion for growth suppressors, activation of invasion

and metastasis, replicative immortality, induction of angiogenesis, resistance
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to cell death, deregulation of cellular energetics and evasion of immune de-

struction [3].

Cancer diagnosis involves a careful clinical and pathological assessment

of the tumour histology and phenotype (i.e., of the ensemble of observable

and behavioral characteristics of a tumour), and is the first step to cancer

management. Once cancer diagnosis is confirmed, usually via histological

examination of biopsies, staging is performed to determine the extent and

spread of cancer. Staging is an essential procedure in determining treatment

choice and in providing a first assessment of prognosis (i.e., course of the

disease and patients’ chance of survival). “TNM staging” is the most widely

used system in cancer management, and it classifies the extent of the primary

tumour (T), the absence of presence of regional lymph node invasion (N) and

the absence or presence of distant metastases (M) [4].

The prevalent modalities of cancer treatment presently can be divided

into four main categories, and these may be used alone or in combination at

different time points in the course of cancer management: I) Surgery, which

refers to the removal of the tumour and affected surrounding tissues during

a surgical operation. In many cases, stage and location of tumours may pre-

vent surgery; II) Chemotherapy, which refers to the administration of one or

more cytotoxic drugs to destroy or inhibit the growth and division of malig-

nant cells. The high sensitivity but low degree of specificity of chemother-

apeutic agents often results in good therapeutic response at the expense of

high toxicity levels in the body of patients; III) Radiotherapy, which refers to

the use of ionizing radiation to kill malignant cells via the damaging of the

DNA. More than 50 % of cancer patients receive radiotherapy over the course

of treatment management; and IV) Hormone therapy, which refers to the ad-

ministration of synthetic hormones to block the body’s natural hormones.

This treatment option is at the moment limited to a few types of hormone

receptor-positive tumours (e.g., androgen and estrogen suppression therapy

for prostate and breast cancers, respectively).

Traditionally, tumour site and stage have been used to define patient pop-

ulations, and medical diagnostics and treatments have been mainly focused

on the general principles that work for the majority of patients. Although

all cancer types involve uncontrolled cell division, each cancer patient is in

reality unique owing to the heterogeneity at inter- and intra-tumour levels.

Tumours of the same histopathological type may have different cancer driver

mutations and/or proteomic profiles, which would lead to diverse treat-

ment responses and prognosis. In the past decade, the prevention, diagnosis
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and treatment of cancer (i.e., oncology) has become increasingly understood

at the cellular and molecular levels with the advent of next generation se-

quencing, as many cancer sub-types are now characterized as functions of

biomarkers (i.e., measurable indicators of a particular disease state or some

other physiological state of an organism) and tumour genetic mutations [5–

7]. Worldwide initiatives such as The Cancer Genome Atlas (TCGA) [8] and

the International Cancer Genome Consortium (ICGC) [9] have pioneered the

characterization of the genome variant landscape of cancers [10]. Simplified

frameworks of the cancer hallmark network are also being developed to fa-

cilitate the modeling of genome sequencing data for the prediction of cancer

clonal evolution and associated clinical phenotypes [11]. In fact, the recent

progress in “omics” technology has created unprecedented opportunities for

characterizing the biological processes correlated with clinical phenotypes

of tumours, notably in terms of understanding the structure of the genome

(“genomics”), of DNA methylation landscapes (“epigenomics”), of gene ex-

pression (“transcriptomics”) and of protein expression (“proteomics”) [12].

Overall, the integration of all levels of biological function probing of cancer

has now been recently coined with the term “panomics”.

With the advent of “Big Data” analytics, we can now envision that pa-

nomics will leverage our capacity to make accurate clinical and tumour phe-

notypic predictions. Although the proper integration of panomics data into

comprehensive models will remain a statistically and computationally chal-

lenging task [13, 14], the hope of revolutionizing how we improve health and

treat disease, with the goal to “deliver the right treatment at the right time,

every time, to the right person” – a concept known as “Precision Medicine”

– has been embraced by political leaders and many scientists [15, 16], includ-

ing the author of these lines. Overall, panomics tumour phenotype profiling

offers the promise of guiding more personalized cancer treatments – here

specifically defined as “Precision Oncology”. The more we know about tu-

mour phenotypes at the moment of diagnosis, the better we could potentially

tailor, monitor, and adapt treatments to each individual patient. In this con-

text, it has also been demonstrated that observational epidemiology studies

could also provide advancements in the applications of precision oncology

[17]. Figure 1.1 hereby depicts in more details the personalized cancer care

continuum.

Given the immense dimensionality of the cancer problem, precision on-

cology relies heavily on the power of big data results to harness its full po-

tential. The conventional path for the translation of new anticancer strategies
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Figure 1.1 : Personalized cancer care continuum. Reprinted with permission from [18].

© 2013 American Society of Clinical Oncology. All rights reserved.

from the lab to the clinic has been via clinical trials, but these may some-

times extend over years and would provide new data at a rather slow pace.

To accelerate knowledge acquisition and reduce delays in getting promis-

ing treatments into the clinic, the Institute of Medicine (IOM) proposed a

framework designed to use the data routinely acquired in the clinic. This

framework is meant to drive scientific discovery at a faster pace and is called

“Rapid-Learning Health Care” [19, 20]. Figure 1.2 presents the cycle of evi-

dence in rapid-learning health care, which essentially consists of four phases

that are continously iterated: I) the data phase, in which panomics data on

past patients is collected; II) the knowledge phase, in which new knowledge

is acquired from the panomics data; III) the application phase, in which the

acquired knowledge is applied into clinical practice; and IV) the evaluation

phase, in which the efficacy of the acquired knowledge applied on patients

(i.e., improvements in tumour outcomes) is evaluated and after which the

cycle starts again. Of important note, external knowledge coming, for exam-

ple, from clinical trials is used to optimize every phase. The rapid-learning

paradigm is thus really a complementary approach to evidence-based medicine,

yielding different insights from the less controlled settings of routine clinical

practice. Hence, rapid learning for precision oncology essentially consists of

re-using routine clinical data in order to accelerate knowledge acquisition to
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form models that can predict cancer treatment outcomes, with the hypothesis

being that the results of the treatment outcomes obtained in the past could

be used to predict future ones [21]. Already, several researchers have pro-

posed and piloted a “ Global Cumulative Treatment Analysis” rapid-learning

framework, in which treatment choice is continously revised based on up-

dated performance statistics [22]. Overall, the increasing use of routinely ac-

quired and retrospectively analyzed clinical data could be very effective for

generating new hypotheses in the form of anticancer strategies that would be

in-line with the precision oncology paradigm. At the same time, for best com-

plementarity with evidence-based traditional oncology research and the sake

of cancer patients, meaningful improvements in clinical outcomes obtained

via rapid-learning healthcare ought also to be tested in rigorous randomized

clinial trials [23].

Figure 1.2 : Cycle of evidence in rapid-learning health care. In a patient-
centered system of rapid-learning health care, patient-level data are aggregated to
achieve population-based change, and results are applied to care of individual pa-
tients to achieve meaningful patient-level practice change. Reprinted with permission from

[20]. © 2010 American Society of Clinical Oncology. All rights reserved.
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1.2 Decoding tumour phenotype via quantitative

imaging

Medical imaging of the anatomy and/or physio-pathology is acquired for al-

most every patient with cancer. From tumour diagnosis to tumour staging,

treatment planning, treatment delivery, treatment response monitoring and

patient follow-up, almost every step of clinical cancer management involves

imaging. It was recently proposed that medical images would in fact carry

an immense source of potential data for decoding tumour phenotypes [24].

Medical images routinely aquired in the clinic could therefore be closely tied

to the rapid-learning paradigm. As depicted in Figure 1.3, imaging of cancer

processes can be performed at the molecular, functional and anatomical lev-

els in order to characterize the genome, proteome, metabolome, physiome

and anatome.

In this thesis, the imaging types being investigated are focused on func-

tional and anatomical cancer processes. For one, the combination of func-

tional imaging in positron emission tomography (PET) (more details in sec-

tion 2.1.1) with the anatomical information in computed tomography (CT)

(more details in section 2.1.2) scans provides an efficient tool to accurately

localize metabolic abnormalities in the human body. The injection of a ra-

diopharmaceutical tracer in the body such as fluorodeoxyglucose (FDG) al-

lows to reveal regions of significantly increased glucose uptake, a dominant

characteristic of tumour cells over normal tissues due to their high metabolic

activity in support for rapid growth. FDG-PET/CT imaging thus facilitates

detection of primary and metastatic cancers that may not be apparent by rou-

tine staging procedures, and has profound impact on clinical management

and therapy decision-making [25]. On the other hand, the importance of

magnetic resonance imaging (MRI) (more details in section 2.1.3) in the clin-

ical environment has exceeded most hopes of researchers due to its ability

to manipulate and adjust tissue contrast with increasingly complex pulse se-

quences [26]. MR imaging is without a doubt one of the wonders of modern

medicine and a beautiful example of how physics and mathematics can be ex-

ploited in the medical field, as one can generate contrast images that report a

very large number of physical (e.g., proton density, T1- or T2-based contrast,

etc.) and physiological phenomena (e.g., water diffusion, tissue perfusion,

oxygen levels, susceptibility variations, etc.) based on the rich physics of

nuclear magnetic resonance [27]. In this section, the importance of medical
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imaging for decoding tumour phenotypes via the quantification of intratu-

moural heterogeneity will be explained, a characteristic which has directly

contributed to the emergence of the new field of “Radiomics”.

Figure 1.3 : Molecular, functional and anatomical imaging of cancer pro-

cesses. Reprinted with permission from [28]. © 2012 Elsevier. All rights reserved.

1.2.1 Quantification of intratumoural heterogenity

Most tumours do not represent a homogeneous entity, but rather are com-

posed of multiple clonal sub-populations of cancer cells forming complex

dynamical systems that exhibit rapid evolution as a result of different ther-

apy perturbations. Differing properties can be attributed to the different

sub-populations in terms of growth rate, expression of biomarkers, ability to

metastasize, and immunological characteristics [29]. These properties could

be explained by the differences in metabolic activity, cell proliferation, oxy-

genation levels, pH, blood vasculature and necrotic areas observed in the

different cell sub-populations within a tumour. These intratumoural varia-

tions then in turn create different spatial intensity patterns in different types
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of medical images. For example, intratumoural variations in soft-tissue sar-

coma tumours can be observed from diagnostic images such as MRI T2-

weighted fat-saturated scans as shown in Figure 1.4. For FDG-PET, different

tumour sub-regions with different metabolic levels caused by inherent bio-

logical differences at the cellular level would also exhibit intratumoural vari-

ations in the associated images as we will see later in this thesis. Overall, such

intratumoural differences are related to the concept of tumour heterogeneity

(i.e., intratumoural heterogeneity), a characteristic that can be observed with

substantial differences even amongst tumours of the same histopathological

type. In solid cancers, the tremendous extent of heterogeneous character-

istics is in fact expressed at multiple scales, as genes, proteins, cellular mi-

croenvironments, tissues and anatomical landmarks within tumours exhibit

considerable spatial and temporal variations.

Figure 1.4 : Example of intratumoural heterogeneity at the anatomical scale.
The image represents a soft-tissue sarcoma of the leg from a MRI T2-weighted fat-
saturated scan.

It is now recognized that tumours exhibiting heterogeneous character-

istics are associated with high risk of resistance to treatment, progression,

metastasis or recurrence, leading to poor patient outcomes [30–32]. Ideally,

the study of tumour heterogeneity should thus provide molecular signatures

specific to the patient to be treated such that tumour aggressiveness and sen-

sitivity to therapeutic response can be assessed prior to treatments. However,
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studying tumour heterogeneity using histopathological samples from inva-

sive tumour biopsies (i.e., the removal of a piece of tissue from a tumour)

is difficult, as the information obtained may vary depending on which part

of the tumour is sampled, and the knowledge of the characteristics of indi-

vidual components of a tumour may also not be sufficient to predict the be-

haviour of the whole [33]. The quantification of intratumoural heterogeneity

using imaging biomarkers (i.e., biomarkers measured from medical images)

extracted from the entire tumour region would provide a global assessment

of intratumoural heterogeneity, and is thus an area of active research in on-

cology. Specifically, morphological/shape (e.g., volume, eccentricity, com-

pactness, etc.), histogram-based/intensity (e.g., variance, skewness, kurto-

sis, etc.) and texture features are examples of imaging biomarkers that could

be extracted from the region-of-interest (ROI) defining the tumour region in

medical images (Appendix A provides the complete description of imaging

features used in this work). Texture analysis is probably the most promising

method for the characterization of intratumoural heterogeneity, as it involves

the quantitative description of the spatial distribution of different gray-levels

within a given ROI. As an example, Figure 1.5 shows an image with three dif-

ferent Brodatz textures [34], each represented by different textural properties.

It can clearly be seen that the three different regions of that image have dif-

ferent spatial arrangements of gray levels (e.g., some are more heterogeneous

than others → texture analysis can quantify this effect). Presently, the most

commonly used textural metrics by the medical imaging community are the

Gray-Level Co-occurence Matrix (GLCM) features [35], the Gray-Level Run-

Length Matrix (GLRLM) features [36–38], the Gray-Level Size Zone Matrix

(GLSZM) features [39] and the Neighborhood Gray-Tone Difference Matrix

(NGTDM) features [40]. The methodology used to extract these textural met-

rics is presented in section 2.3.

Overall, different imaging biomarkers could act as surrogates of intratu-

moural heterogeneity, which in turn could provide a quantitative assesse-

ment of the aggressiveness of tumours. As illustrated in Figure 1.6, one of

the overall goals that could be pursued in the context of the precision on-

cology paradigm would be to find the set of imaging biomarkers extracted

from pre-treatment medical images that best discriminate between patients

responding well to treatment from those who do not. This imaging infor-

mation could in turn assist physicians in tailoring therapy choices for each

patient. In a proof-of-concept retrospective study, El Naqa et al. [41] were the

first to present a robust methodology dedicated to the prediction of tumour
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Figure 1.5 : Image texture example. The image contains three different Brodatz tex-
tures, each with different textural properties. Reprinted from [34]. © 1966 Dover Publications. All

rights reserved.

outcomes using texture-based multivariable models. Using logistic regres-

sion, the authors combined different image-based features including GLCM

textures to predict disease persistence in cervix cancer and overall survival in

head-and-neck cancer from pre-chemoradiotherapy FGD-PET scans. Shortly

after this baseline study, the first use of the word “radiomics” was reported

in the literature, as it will be described in the next section. In the past few

years, the use of radiomic analysis – particularly texture analysis – for the

assessment of tumour aggressiveness via the quantification of intratumoural

heterogeneity has gained a lot of interest in the medical imaging commu-

nity due to its great potential in extensively characterizing the complexity of

spatial variations of gray-level distributions (i.e., spatial intensity patterns)

within tumours.
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Figure 1.6 : Principle of treatment response prediction via extraction of imag-
ing biomarkers. Different types of features can be extracted from the tumour region
of pre-treatment medical images to discriminate between patients likely to respond well
to treatment from those who are not. The pictures on the left represent pre-treatment
FDG-PET and CT images of head-and-neck cancer patients, with the primary tumour
and lymph nodes contoured in green.
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1.2.2 Definition and hypothesis of radiomics

In 2007 and 2008, respectively, Segal et al. [42] and Diehn et al. [43] showed

that gene-expression signatures and clinical phenotypes could be inferred

from tumour imaging features. This concept constitutes the central hypothe-

sis of the field of “radiomics”:

The genomic heterogeneity of aggressive tumours could translate into

heterogeneous tumour metabolism and anatomy, which in turn could

be captured using advanced quantitative analysis of medical images.

Shortly following the study of El Naqa et al. [41] in 2009, Gillies et al. [44]

employed in 2010 the first use of the word “radiomics” (to the best of our

knowledge) to describe how imaging features can reflect gene expression.

Afterwards, in 2012, Lambin et al. [28] and Kumar et al. [45] put the grounds

on the field with two comprehensive descriptions of the processes and chal-

lenges of radiomics. No consensus definition of radiomics exists yet, and the

following is an attempted definition of our own:

“Radiomics” refers to the characterization of tumour phenotypes via the

extraction of high-dimensional mineable data from all types of medi-

cal images and whose subsequent analysis aims at supporting clini-

cal decision-making.

Similarly to computer-aided diagnosis (CAD) systems [46], radiomics con-

sists of a top-to-bottom approach to better understand the underlying biol-

ogy of tumours. A large number of features are extracted from medical im-

ages, and subsequent data mining attempts to identify the features that are

associated to different tumour phenotypes. In the last years, this new emerg-

ing field of radiomics experienced an exponential growth as detailed in the

excellent reviews of Hatt et al. [47] and Yip & Aerts [48]. Many researchers

now advocates for the integration of radiomics into the panomics framework.

Despite being in its early development stage with yet much standardization

and validation work to perform, the use of high-order imaging biomarkers

dedicated to the quantification of intratumoural heterogeneity holds great

promise for better tumour aggressiveness assessment and subsequent treat-

ment personalization.

1.2.3 Major objective of radiomics

In this section, the major objective of radiomics is described in more details.

Figure 1.7 illustrates the conceptual objective.
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Figure 1.7 : Major objective of radiomics. The major goal of radiomics analysis
is to construct highly generalizable and predictive tumour outcome prediction models.
The ultimate objective is to use these models in day-to-day clinical practice to assist
physicians in tailoring cancer treatments to each individual patient, and hopefully im-
prove survival. Parts of the figure are reprinted with permission from [28]. © 2012 Elsevier. All rights

reserved.

Radiomics analysis starts with the acquisition of medical images. A region-

of-interest (ROI) defining the tumour region is thereafter delineated, either

via manual segmentation from an expert physician or semi-automatic meth-

ods. A large number of radiomics features are then extracted from the ROI

(Appendix A provides the complete description of radiomic features used

in this work). In the subsequent analysis part, models combining relevant

prognostic factors via machine learning may be constructed to improve out-

come prediction performance, as multivariable models are expected to more

comprehensively characterize intratumoural heterogeneity than single fea-

tures. The framework of multivariable model construction usually starts

with the identification of imaging biomarkers that are significantly associated

to a given tumour clinical phenotype or outcome (e.g., likelihood of devel-

opment of distant metastases). Some of these features are then selected via a

feature selection process and combined using a machine learning algorithm

(e.g., logistic regression, random forests, etc.) to form a multivariable model,

and its predictive properties are estimated. The search for the best parsimo-

nious model (the simplest model with the best prediction performance) is

the crucial step of any multivariable approach. Enough variables need to be

selected in the model in order to reach maximum predictive power, but the
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number of variables must also be kept low such that the model can subse-

quently be generalized to, ideally, the whole patient population. With small

sample size and without the presence of an independent dataset, the estima-

tion of the prediction performance to unseen data can be internally simulated

on the local patient population using different resampling techniques such as

cross-validation or bootstrapping (more details in section 2.4.3). Once a final

model is constructed (e.g., function of texture 1, texture 2, etc.), its predictive

properties needs to be further validated onto independent external datasets.

Overall, the major objective of radiomics analysis is to be able to construct

a robust prediction model for a given tumour outcome from retrospective

medical imaging datasets, and to show that it is highly generalizable and

predictive when applied to different independent datasets. If the application

of the model is therafter demonstrated to improve patients’ survival via the

conduction of clinical trials, it could ultimately be used in day-to-day clini-

cal practice to assist physicians from different hospitals in the world in their

future choice of precise/personalized treatments for patients afflicted by can-

cer.

1.2.4 Overview of the role of radiomics in oncology

The workflow of radiomics analysis leading to the extraction of clinically rel-

evant information involves many steps such as medical imaging acquisition,

image processing, tumour segmentation, feature extraction, statistical anal-

ysis, and development and validation of multivariable models for tumour

outcome prediction via statistical or machine learning techniques. The com-

plexity of such workflow opens the door to many interesting development

possibilities in the field. Medical physicists could play an important role in

the research and development leading to the translation of radiomics anaysis

in the clinical environment, for every of the steps mentioned above. Fig-

ure 1.8 roughly generalizes the radiomics analysis workflow into four major

steps: I) Medical imaging acquisition; II) Radiomics modeling; III) Tumour aggres-

siveness assessment; and IV) Personalization of treatments. In this section, some

of the works that have been performed in the field (non-exhaustive list), po-

tential applications as well as possible developments in each of these four

general steps will be briefly mentioned.
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Figure 1.8 : Overview of the role of radiomics in oncology. In every step of the
general workflow pictured above, medical physicists could play an important role in
the research and development leading to the translation of radiomics analysis in the
clinical environment.

Medical imaging acquisition

At the very start of radiomics analysis lies the medical images acquired to

probe the anatomy and metabolism of tumours. Many studies have inves-

tigated the reproducibility of various texture features under test-retest scans

(i.e., two scans of the same patient repeated after a short period of time) [49–

52]. Others also studied the impact of different image reconstruction param-

eter variations on texture features [51–55]. Furthermore, some works exam-

ined the influence of varying image acquisition protocols on the resulting

textures [53, 56–59]. The common denominator of all the studies enumerated

here is their main working objective: they aim at identifying the texture fea-

tures that could be stable and that are presumably able to conserve predictive

properties under varying imaging conditions. While the identification of sta-

ble features is valuable to build robust and reproducible texture-based pre-

dictive models, we hypothesize in this thesis that it is also essential to identify

the acquisition settings that would yield optimal use of texture features for a

given clinical problem, an exercise which is currently not performed in the ra-

diomics community. This hypothesis is addressed in Chapter 5 of this thesis.

Moreover, post-processing methods were also developed by some groups in

order to improve the quality of medical images after scanning acquisitions,

such as intensity non-uniformity corrections in MRI [60] and partial-volume

effect (PVE) corrections in PET [61]. Overall, the optimization of medical

imaging acquisition protocols and subsequent image post-processing is an
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interesting avenue to explore in order to enhance the predictive properties of

texture features.

Radiomics modeling

The core of radiomics analysis lies in the extraction of features relevant to

tumour aggressiveness assessment, and the subsequent statistical or learn-

ing analysis to relate these features (or combination of features) to tumour

outcomes. Radiomic feature extraction involves many image pre-processing

steps such as tumour segmentation, image interpolation, spatial filtering and

image quantization. These steps are described in more details in section 2.2

of this thesis.

Many studies have investigated the impact of contouring variations on

texture features [50, 52, 62–64]. The use of semi-automatic segmentation

methods such as those described in the works of Hatt et al. [65] and Parmar et

al. [63] would be a good way to improve the stability of radiomic feature ex-

traction. Some studies have also examined the impact of variations in voxel

size and image quantization on texture features [64, 66–68]. Most studies no-

tably report the high impact of voxel size on texture measurements. Again,

the investigational objective of all similar studies in the literature lies solely

in the identification of stable texture features under different extraction pa-

rameters. In this thesis, we hypothesize that different texture features better

represent the underlying biology of tumours when computed using different

extraction parameters (isotropic voxel size, quantization algorithm, number

of gray levels)1, and that is it essential to optimize the set of extraction pa-

rameters of different texture features for a given application. We hereby de-

note this process as “texture optimization”. We also hypothesize that the

image fusion of different modalities (e.g., FDG-PET and MRI) could create

composite textures with better predictive properties. These hypotheses are

addressed in Chapter 3 of this thesis. Furthermore, the standardization and

development of texture features and image pre-processing methods such as

in the colossal work of Zwanenburg et al. [69] constitute fundamental pre-

requisites for the translation of radiomics analysis to the clinic.

1An isotropic voxel size refers to voxels of a 3D imaging volume with the same dimension
in the three directions of space, (i.e., cubic voxels). Textures can be extracted from imaging
volumes with different isotropic voxel sizes. The quantization of an imaging volume is a
process used prior to texture computation for reducing the intensity range of the ROI of
an imaging volume into a discretised number of gray-level bins (Ng). Different algorithms
exist for that purpose. The final number of gray levels Ng in a quantized imaging volume is
another parameter influencing the absolute value of texture features.
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Moreover, continuous improvements in machine learning techniques for

optimal modeling of tumour outcomes via radomics analysis also constitute

an area of active research. For example, Parmar et al. [70] investigated the

prognostic values of radiomic features when combined with different popu-

lar choices of feature selection and machine learning algorithms. However,

advancements in multivariable modeling processes are required in order to

reduce the number of false-positive results [71], as well as to take into account

the imbalance in the proportion of positive/negative outcomes (e.g., distant

metastases occur in ∼15 % of head-and-neck cancers) and the extraction of

texture features using multiple parameters. These topics are addressed in

Chapter 3 and Chapter 6 of this thesis.

Tumour aggressiveness assessment

The potential ability of radiomic analysis to decode tumour phenotypes and

to subsequently assess tumour aggressiveness brings about many potential

applications in the structure of precision oncology [47, 48]. Just to name a

few, many works have now used radiomics analysis for the prediction of

tumour outcomes (e.g., treatment response, distant metastases, local recur-

rences, survival, etc.) [72–74], tumour staging [75–77], tissue identification

[78–80], and assessment of cancer genetics (a.k.a. radiogeneomics) [73, 81,

82]. The exact processes about how physiological processes translate into

imaging phenotypes remain however unclear, and future investigations to

elucidate the biological meaning of radiomic features is required [48].

Overall, one of the major challenges in the upcoming years in precision

oncology will be to construct models that can comprehensively integrate pa-

nomics and clinical information (e.g., tumour stage, grade, sub-type, etc.)

with radiomics data. No consensus methodology exists yet, and in Chap-

ter 6 of this thesis, we hypothesize that a random forest algorithm would be

very well suited to construct prediction models integrating input prognostic

factors of different types such as radiomics (continuous inputs) and clinical

information (categorical inputs).



Chapter 1. Introduction 17

Personalization of treatments

Ultimately, the underlying major goal of radiomics analysis is to provide

physicians with additional information that may allow to better personal-

ize cancer treatments. The exact manner in which treatments would be tai-

lored to each patient following cancer risk assessment via radiomics analy-

sis, however, remains to be defined, but possible scenarios could be elabo-

rated. If, for example, a patient would be identified via radiomics analysis

of pre-treatment medical images to be at higher risk (than standard levels) of

developing distant metastases, the chemotherapy doses could be strength-

ened. Inversely, for lower risk patients, diminishing or completely remov-

ing chemotherapy doses would increase the quality of life of patients, not to

mention that it would also reduce the cost of the overall treatment. Another

example would be for patients identified to be at higher risks of developing

a local recurrence (or metastasis, as we will see in Chapter 4) of their primary

tumour. In this case, it could be envisioned to carry out radiotherapy differ-

ently by boosting the sub-regions of the tumour that are more radioresistant

due to low oxygenation levels, for example. Overall, the dose delivery could

be “painted” and modulated accordingly to the different biological processes

inherent to the different tumour sub-regions as identified via functional med-

ical imaging, a procedure known as “dose painting” [83]. However, much

research efforts are still required before this paradigm is used in routine ra-

diotherapy treatment planning [84]. A more detailed discussion of this topic

is provided in section 1.3, and Chapter 4 of this thesis presents a dose paint-

ing feasibility study performed in the context of radiomics analysis.

1.3 Paradigm of radiation dose painting

As previously mentioned, the underlying major goal of radiomics analysis is

to provide physicians with additional risk assessment information that may

allow to better personalize cancer treatments. Radiotherapy may provide an

ideal setting to apply the principles of rapid learning in a precision oncology

context given the field’s high degree of computerisation and long use of pre-

dictive models [14, 21, 85]. In this section, a brief introduction to radiation

therapy will be presented, followed by a short discussion about how differ-

ent biological target volumes could be used in the context of dose painting.
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1.3.1 Radiation therapy

Radiation therapy involves the use of ionizing radiation to kill malignant

cells via the damaging of deoxyribonucleic acid (DNA) strands. The source

of the radiation can either be external (and thus penetrates through the body

before reaching the tumour) or internal via the insertion of a radiation source

inside the tumour (brachytherapy). The overall goal of radotherapy is to

provide the maximum radiation dose to cancerous cells to control the tu-

mour while minimizing the dose imparted to normal tissues. External beam

radiation therapy (EBRT) is more common due to its non-invasiveness pro-

cedure, but the inherent drawback is additional damage to healthy tissues.

The absorbed dose is defined as the average energy deposited per unit mass,

and is measured in units of Gray (Gy), with 1 Gy = 1 J/kg. Two forms of ac-

tion of the absorbed dose cause damage to the DNA: I) Direct action, where

charged particle tracks directly deposit energy to the DNA and cause strand

breaks; and II) Indirect action, where the deposition of energy to the DNA is

caused by water radiolysis and the production of free radicals such as hy-

droxyl (OH−) via the ionization of water particles. Due to the latter process,

tumour microenvironments with low oxygen levels are more resistant to ra-

diation.

Once it is determined that a patient diagnosed with cancer is to undergo

radiation therapy, a first set of CT images around the treatment site is ac-

quired. This set of CT images is denoted as the planning or simulation CT

(“CTsim”). The positioning of the patient during this scan is set up to be

the same as during the radiation treatment. Targeted tumour volumes and

organs at risks are then contoured on the planning CT. In order to achieve

maximal dose conformity, careful tumour volume definition is a prerequisite

to meaningful 3D treatment planning, and is usually performed by expert

radiation oncologists. For treatment planning purposes, four main types of

target tumour volumes are contoured as illustrated in Figure 1.9. The Inter-

national Commission on Radiation Units and Measurements (ICRU) defines

these target volumes as:

• Gross Tumour Volume (GTV): “The Gross Tumour Volume (GTV) is

the gross palpable or visible/demonstrable extent and location of ma-

lignant growth” [86].

• Clinical target volume (CTV): “The clinical target volume (CTV) is the

tissue volume that contains a demonstrable GTV and/or sub-clinical
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microscopic malignant disease, which has to be eliminated. This vol-

ume thus has to be treated adequately in order to achieve the aim of

therapy, cure or palliation” [86].

• Internal target volume (ITV): Consists of the CTV plus an internal mar-

gin designed to take into account variations in position and size of the

CTV due to organ motions such as breathing and bladder or rectal con-

tents [87, 88].

• Planning target volume (PTV): “The planning target volume (PTV) is

a geometrical concept, and it is defined to select appropriate beam ar-

rangements, taking into consideration the net effect of all possible geo-

metrical variations, in order to ensure that the prescribed dose is actu-

ally absorbed in the CTV” [86].

Figure 1.9 : Graphical representation of the target contours in radiation ther-

apy. Reprinted with permission from [88]. © 2005 IAEA. All rights reserved.

The contoured CT images are thereafter imported into a treatment plan-

ning system to undergo (using dose calculation engines) optimization of a

number of one or more beam types of different energies (typically in the

range of 4-25 MV for photons, 4-25 MeV for electrons) to be directed at the

tumour from one or more directions. Depending on the specific contoured

structure (e.g., target volumes, organs at risk, etc.), the associated objective

function of the optimization process is usually cast in terms of dose-volume

constraints summarized using the Dx and Vx metrics. The Dx metric is the

dose in Gy received by at least x % of the volume of the region-of-interest,
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whereas the Vx metric is the percentage volume of the region-of-interest re-

ceiving at least x Gy. For an example prescription dose of 50 Gy to the tu-

mour, example dose-volume constraints to ensure homogeneous coverage at

the desired prescription dose could require that a minimum of 50 Gy covers

at least 95 % of the PTV, that > 99 % of the PTV receives at least 97 % of the

prescribed dose and that < 2 % of the PTV receives at least 110 % of the pre-

scribed dose. These constraints to the PTV structure would be represented

by D95% ≥ 50 Gy, V48.5Gy > 99 % and V55Gy < 2 %, respectively.

For EBRT, the finalized treatment plan is sent as a set of electron or high-

energy X-ray beam delivery instructions to a linear accelerator (LINAC) on

which the patient to be treated is positioned. Modern treatment planning sys-

tems and LINACs can provide radiation treatments in the form of Volumetric

Arc Therapy (VMAT), an advanced form of Intensity Modulated Radiation

Therapy (IMRT) with a single or multi-arc treatment. In this process, the pho-

ton fluence is dynamically modulated by the multi-leaf collimators (MLC) of

the LINAC using multiple small and irregular field sizes in order to maxi-

mize the conformity of the dose distribution to the target. More details about

the whole radiotherapy process can be found in the excellent textbook by

Podgorsak [89].

1.3.2 The Biological Target Volume (BTV)

In an important seminal paper in 2000, Ling et al. [83] proposed the concept

of the “biological target volume” (BTV). The authors hypothesized that the

“BTV can be derived from biological images . . . [and that its use] may provide

the pertinent information to guide the painting or sculpting of the optimal

dose distribution [in radiotherapy]” [83]. Biological images would broadly

include the metabolic, biochemical, physiological and functional types of

noninvasive images. In the context of radiation therapy, the images provid-

ing information about the radiosensitivity of tumours would be regarded as

radiobiological images. The concept of the BTV as originally depicted in the

work of Ling et al. [83] is illustrated in Figure 1.10.

The central “dogma” in radiation therapy has been to strive for a homo-

geneous dose to the target volume as defined by the GTV, CTV and PTV

volumes. Many researchers now challenge this approach and advocate for a

inhomogeneous dose distribution inside the GTV to better take into account

the underlying biological processes within tumours [90, 91]. As depicted

in Figure 1.10, low oxygenation levels (i.e., hypoxia), high tumour burden
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Figure 1.10 : Schematic illustration of the concept of biological target vol-
ume. Whereas at present the radiotherapy target volume is still characterized by the
concepts of GTV, CTV and PTV, biological images may provide information for defin-
ing the biological target volume (BTV) to improve dose targeting to certain GTV sub-
regions. For example, regions of low pO2 levels may be derived from FMISO-PET im-
ages, high tumor burden from MRI data of choline/citrate ratio, and high proliferation
from 124IUDR-PET measurements. Reprinted with permission from [83]. © 2000 Elsevier. All rights

reserved.
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and high cellular proliferation could be considered to form a single BTV on

which a dose boosting strategy would be applied. Nowadays, dose boosting

to hypoxic volumes to counteract radioresistance within tumours is consid-

ered one of the major aim of dose painting [92]. The dose painting hypoth-

esis in terms of therapeutic gain is such that [91]: I) local recurrences take

place in radioresistant microenvironmental tumour niches; II) molecular and

functional imaging allows spatiotemporal mapping of these radioresistant

regions; and III) progress in radiation therapy planning and delivery tech-

nologies can facilitate dose boosting to such regions, which in turn should

lead to improved local tumour control with acceptable side effects. Exam-

ples of partial verifications of the dose painting hypothesis include a phase

I clinical trial where it was shown that dose escalation guided by FDG-PET

sub-volumes appears to be well-tolerated in head-and-neck cancer [93]. In

soft-tissue sarcomas (STSs), it was shown that a boost dose to the margin at

risk is also well-tolerated by patients [94].

Although improvements in tumour outcomes remains to be verified, the

hypothesis that dose painting could be carried out on the basis of biologi-

cal images is supported by a large body of experimental and clinical data.

Briefly, in the case of PET imaging, it has been demonstrated that FDG uptake

is dependent on the tumour microenvironment such that different regions

of low oxygenation levels (hypoxia), cellular proliferation, blood flow and

necrosis correlates either positively or negatively with FDG uptake [95, 96].

Also, fluoromisonidazole (FMISO) continues to be the main radiopharma-

ceutical used in PET imaging for the evaluation, prognostication and quan-

tification of tumor hypoxia [97]. In the case of MRI, the vast variety of con-

trasts allowed by the numerous possible acquisition sequences can definitely

play a role in the assessment of tumour physiology and the identification

of cell sub-populations [98]. In addition to anatomical imaging, MR allows

functional imaging of biological processes in the human body. For exam-

ple, diffusion-weighted magnetic resonance imaging (DW-MRI) quantifies

the degree of isotropic water diffusion in extracellular space as affected by

the size and the distribution of cellular populations. It has been shown that

DW-MRI can be used to assess regional cellularity and the aggressiveness of

tumours [99, 100]. On the other hand, dynamic contrast-enhanced magnetic

resonance imaging (DCE-MRI) can provide information about vascular char-

acteristics such as tissue perfusion, plasma volume, and mean transit time. It

was recently shown that low-perfusion DCE-MRI information could also be

used as a surrogate of tumour hypoxia [101, 102].
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Moreover, Bentzen [103] suggested that dose painting should also be per-

formed during the course of radiotherapy, such that adaptative treatments

would take into account the temporal response of cancer to radiation. Ideally,

the full four-dimensional dose distribution would be constrained, a concept

referred to as “theragnostic imaging for radiation therapy”. The authors also

went further by proposing that biological imaging could one day allow dose

painting to be carried out on a voxel-by-voxel basis (in contrast to providing

homogeneous boost doses to well-defined sub-regions of the GTV), a concept

they denoted as “dose painting by numbers” [91, 103]. Although most likely

feasible with current LINAC technology [104], the clinical evidence for this

technique belongs to the future. Validation of the biological imaging targets

are still under investigations, and the spatial resolution of biological images

needs to be improved to accurately probe the sub-millimeter microenviron-

ments within tumours. Also, as tumours significantly evolve in metabolic

activity and distribution of well-oxygenated and hypoxic regions during ra-

diotherapy as defined by the 5 R’s of radiobiology (repair, redistribution, re-

oxygenation, repopulation, radiosensitivity) [105], such changes would need

to be monitored frequently during radiotherapy. At the moment, our ability

to deliver precise and ultra-conformal radiation treatments may have sur-

passed our ability to efficiently image the tumour microenvironment with

both high sensitivity and specificity, and more efforts in biological imaging

research is still vital.

In Chapter 4 of this thesis, we consider a hybrid solution between a sin-

gle boost to a discrete tumour sub-region and a complete dose painting by

numbers approach. Our treatment planning feasibility study is carried out

with STS patients, a heterogeneous group of malignant neoplasms of mes-

enchymal cell origin with a metastatic rate of ∼50 % in the case of high-grade

tumours [106]. We hypothesize that double nested dose boosting to hyper-

metabolic and hypoxic tumour sub-regions of STS patients would be an im-

provement as compared to current clinical practice, where a homogeneous

dose of 50 Gy to the PTV is prescribed as standard of care. In this study, a

first level of boost is planned to the FDG-PET hypermetabolic and potentially

more aggressive tumour sub-regions. Then, a second level of boost with

higher dose is planned to the hypoxic sub-regions contained only within the

hypermetabolic ones, as increasing evidence suggests that FDG accumulates

preferentially in hypoxic cancer cells [95, 107–109]. Moreover, given addi-

tional evidence that intratumoural hypoxia can drive the metastatic pheno-

type [110, 111], including in STSs [112], we further hypothesize that higher
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radiotherapy doses to radioresistant components of the tumour might be a

useful strategy to reduce the risk of developing distant metastases in STS

cancer. Hence, if we identify, at the time of diagnosis, the STS patients that

are at higher risk of developing distant metastases using radiomics analysis,

a valuable treatment personalization strategy for these patients could be to

incorporate a dose boost to the hypoxic tumour sub-regions (as defined via

biological images) into radiotherapy planning.

1.4 Thesis hypotheses, objectives and organization

The focus of this work is on the development of radiomic-based models for

the prediction of tumour outcomes. Our main working hypotheses are as

follows:

• Hypothesis 1: Radiomics features such as textural metrics can assess

tumour aggressiveness via the quantification of intratumoural hetero-

geneity. This information obtained prior to treatments could assist physi-

cians in improving the personalization of cancer therapy.

• Hypothesis 2: Different texture features better quantify intratumoural

heterogeneity when computed using different extraction parameters

such as voxel size, quantization algorithm and number of gray levels.

The optimization of texture feature extraction is essential to enhance the

predictive properties of image textures for a given clinical endpoint.

• Hypothesis 3: The image fusion of different modalities such as FDG-PET

and MRI can create composite textures with better predictive proper-

ties.

• Hypothesis 4: The optimization of medical imaging acquisition protocols

can enhance the predictive properties of texture features extracted from

the resulting acquired images.

• Hypothesis 5: The integration of radiomics data with other panomics

and clinical information can enhance the performance of tumour out-

come prediction models.

• Hypothesis 6: Radiation dose boosting to hypermetabolic and hypoxic

tumour sub-regions can improve post-radiotherapy tumour outcomes.
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Cancer risk assessment via radiomics analysis provides a valuable ra-

tionale for integrating or not dose painting in its general form into ra-

diotherapy delivery for a given patient.

There are five main objectives in this work, all of which fall within the aim

of using radiomics analysis to assist physicians in tailoring cancer therapy to

each patient:

• Objective 1: Develop a robust methodology for the construction of radiomic-

based prediction models that takes into account texture optimization

and the imbalance between the proportion of patients with positive and

negative events for a given tumour outcome (Chapter 3 and Chapter 6).

• Objective 2: Create fused FDG-PET/MR images with better textural pre-

dictive properties than the separate FDG-PET and MR images (Chap-

ter 3).

• Objective 3: Verify the feasibility of double nested dose boosting to hy-

permetabolic and hypoxic tumour sub-regions inside the GTV in radio-

therapy planning, and investigate the practical feasibility and clinical

utility of acquiring four different types of biological images (FDG-PET,

FMISO-PET, DW-MRI, DCE-MRI) at different time points in the course

of radiotherapy management (Chapter 4).

• Objective 4: Enhance the predictive properties of a texture-based model

by optimizing FDG-PET and MR image acquisition protocols (Chap-

ter 5).

• Objective 5: Validate the methodology developed in Objective 1 using

independent external datasets, and develop a complementary method-

ology for integrating radiomics data with clinical information for better

tumour outcome prediction performance (Chapter 6).

Overall, this thesis is organized in seven chapters and one appendix. Be-

ing a manuscript-based thesis, each chapter is written in a self-contained

manner, and some concepts and references overlap between the different

chapters. In more details, the organization of this thesis is as follows:

• Chapter 1: Introduction to the concepts of “Precision Medicine”, “Rapid-

learning”, “Radiomics” and “Biological Target Volume”, from a clinical

perspective.
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• Chapter 2: Mathematical and computational background on radiomics

modeling, notably in terms of image pre-processing, texture feature

computation and machine learning algorithms employed in this work.

• Chapter 3: Description of the first manuscript. This retrospective study

is about the development of texture feature computation and machine

learning methods for the construction of radiomic-based prediction mod-

els taking into account texture optimization and data imbalance. Ulti-

mately, an optimal radiomic-based model was constructed for the pre-

diction of lung metastases in soft-tissue sarcomas using pre-treatment

fused FDG-PET/MR images.

• Chapter 4: Description of the second manuscript. In this study, FDG-

PET, FMISO-PET, DW-MRI and DCE-MRI images were prospectively

acquired at pre-, mid- and post-radiotherapy timepoints for 18 patients

at our institution between August 2013 and February 2016. The radiomic-

based model developed in Chapter 3 was validated and the technical

feasibility of dose painting was investigated onto these prospective pa-

tients.

• Chapter 5: Description of the third manuscript. In this study, the possi-

bility of enhancing texture-based models (constructed using the meth-

ods developed in Chapter 3) via the optimization of PET and MR im-

age acquisition protocols was investigated using computerized simula-

tions.

• Chapter 6: Description of the fourth manuscript. In this study, radiomic-

based models were constructed (using the methods developed in Chap-

ter 3) for the prediction of locoregional recurrences and distant metas-

tases in head-and-neck cancer. Two different patient cohorts were used

for training the models using a new imbalance-adjustment strategy, and

two other patient cohorts were used for independent testing. Further-

more, we used a random forest algorithm to combine radiomics data

with patient clinical information.

• Chapter 7: Summary highlighting the scientific novelty in each manuscript,

how the objectives of the research were met, the implications of our

findings, as well as related future work that we intend to perform. Fi-

nally, a strong call is made for the standardization of radiomics meth-

ods, better transparency of radiomics studies, and full radiomics pro-

gramming code and data sharing.
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• Appendix A: Mathematical description of all radiomic features employed

in this work.
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2.1 Medical imaging in cancer management

This section provides a brief introduction to the theoretical backgrounds of

PET, CT and MR imaging.
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2.1.1 Positron Emission Tomography

Fundamentally, positron emission tomography (PET) imaging starts with the

injection of a radiopharmaceutical in the body. The radiopharmaceutical is

comprised of a radionuclide that is attached to a chemical compound, which

acts like a physiological analog known as the “tracer”. The tracer is chosen

in order to target the metabolic function of interest of tumours undergoing a

certain biological process such as, for instance, glucose uptake. On the other

hand, the radionuclide is used in the imaging acquisition process and acts as

a source of radiation emission captured by the imaging scanner. Radionu-

clides are unstable isotopes undergoing transient radioactive decay. Proton-

rich isotopes with a low atomic mass number are used in PET imaging as

they undergo the following positron decay process:

p → n + e+ + ν (2.1)

In the decay process of Equation 2.1, one proton (p) of the unstable nucleus

of the radionuclide gets converted into a neutron (n). The energy liberated

in the conversion process is transferred to a positron (e+) and a neutrino (ν),

which are ejected from the nucleus with a continuous kinetic energy spec-

trum. Figure 2.1 depicts the physical principles of PET imaging, starting from

the emission of the positron.

Once the positron is emitted at a specific location in the body, it travels

a few millimeters in tissues depending on its energy and undergoes several

scattering events. At the end of its track, the positron annihilates with an elec-

tron (e−) and the rest mass energy of the two particles is converted into two

photons each of energy of 511 keV and nearly anti-parallel to each other. The

detection of these two coincident photons along different lines of response

(LORs) allows inference about the location of the radiopharmaceutical in the

body. The detection of annihilating photons is recorded in time coincidence

by several rings of radiation detectors that are placed around the outside of

the patient in the PET scanner (and therefore it detects photons escaping from

the inside of patients). A cylindrical PET scanner essentially consists of mul-

tiple rings of dectectors (Figure 2.1) stacked in the axial direction, with a pa-

tient in its center. A single detector on a ring is made of a scintillating crystal

that converts the high-energy photons into brief pulses of visible light every

time it is struck by an annihilation photon. The crystal is optically coupled

to a photomultiplier tube (PMT) that converts and amplifies the scintillation

light into an electrical signal.
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Figure 2.1 : Physical principles of PET imaging. An unstable isotope attached to
a physiological analog tracer (e.g., FDG for glucose uptake) first emits a positron in a
decay process. The positron travels in the body for a few millimiters before annihilating
with an electron. The annihilation process in turn creates two anti-parallel photons
each of energy of 511 keV that are thereafter recorded in time coincidence by opposing
radiation detectors in the cylindrical PET scanner. Reprinted with permission from [1]. © 2006

Springer. All rights reserved.
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Coincident annihilating photons along many LORs are thus captured by

the dectectors of the whole scanner. The extent of axial coincidence data

combined per slice when detectors are allowed to be in coincidence with de-

tectors in neighboring rings is an effect denoted as “span”. Higher numbers

of span increase slice sensitivity at the expense of a loss of resolution. If we

now consider a single ring of detectors as a 2D example: each time a co-

incidence is recorded between two detectors of the ring, a matrix sinogram

MMM is incremented at position (i, j), where i is the relative distance between

two detectors and j the azimutal angle between two detectors with respect

to the horizontal. From MMM, it is possible to reconstruct a spatial map of the

radioactivity concentration [Bq/kg] of the radiopharmaceutical in the body

using the “Maximum-Likelihood Expectation Maximization” (ML-EM) iter-

ative (k) algorithm:

nnnk+1 =
nnnk

AAAT III
AAAT

[ mmm

AAAnnnk

]
, (2.2)

where nnn is the stacked column vector of all the different column vectors of a

matrix imageNNN to be reconstructed, mmm is the stacked column vector of all the

different column vectors of MMM, AAA is the system matrix of the scanner simu-

lating the noise-free transformation of an image to a sinogram space, and III is

the identity matrix. The ML-EM is usually initialized with an image matrix

full of 1’s. A faster variant of the ML-EM algorithm is called the “Ordered

Subsets Expectation Maximisation” (OSEM) algorithm, in which only a sub-

set of the measured data mmm is used in a given update of nnn. Typically, the

subsets are chosen so as to select only a limited number of azimuthal angles

in the sinogram data for each update. During the reconstruction, diverse cor-

rections are applied, taking notably into account the attenuation and scatter

of the annihilating photons traveling in the body, as well as random coin-

cidences. For a more detailed description of the underlying physics of PET

imaging, of the generalization of the image reconstruction in 3D and of PET

imaging corrections, the reader is referred to references [2–5].

Nowadays, the most widely used radiopharmaceutical in the clinic for

cancer detection and staging is 18F-Fluorodeoxyglucose (FDG). The FDG tracer

is a glucose analog in which the positron-emitting radionuclide fluorine-18

(18F) with half-life of 110 minutes substitutes a normal hydroxyl group in the

glucose molecule. Another type of pharmaceutical used in nuclear medicine

is the hypoxia tracer 18F-Fluoromisonidazole (FMISO), created from the chem-

ical synthesis of 18F with 2-nitroimidazole. Once the PET scan is performed,

the images defining the radioactivity concentration map of the human body
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are converted into a semi-quantitative measure known as the standard up-

take value (SUV) in order to account for injection and body weight variability

as defined in Equation 2.3:

SUV =
radioactivity concentration [Bq/kg]

injected dose [Bq]
× body weight [kg] (2.3)

2.1.2 Computed Tomography

Compute tomography (CT) imaging has proven to be a most useful tool in

medical imaging to provide anatomical information of the human body. It is

notably used in conjunction to PET scans in dedicated PET/CT scanners (no-

tably for attenuation correction purposes), as well as for radiotherapy treat-

ment planning. In contrast to PET imaging which relies on the emission of

photons inside the human body to determine the concentration of a radio-

pharmaceutical, CT imaging relies on the transmission of photons through a

patient to predominantly determine anatomical information by measuring

the linear attenuation coefficient µ along a range of transmission lines. Simi-

larly to PET, a CT scanner is formed of a cylinder bore, as depicted in Figure

2.2.

In CT imaging acquisitions, a source of X-ray radiation, usually in the en-

ergy range of 80-140 kVp, is rotated along the exterior of the detector rings to

collect a large number of attenuation readings. As the radiation goes through

patients, the beam is attenuated and the transmitted radiation is converted

by the detectors into an electrical signal. Modern CT scanners use multi-

ple rows of detectors in order to acquire multiple slices at once. In terms of

physics, the intensity of radiation I at a point x within a “1D medium” of

linear attenuation coefficient µ(x) is governed by the Beer-Lamber law:

I(x) = I(0)e−
∫ x

0
µ(x′) dx′

, (2.4)

where I(0) is the intensity of the radiation entering the body found by cali-

brating the scanner with measurements taken without a patient present (µ =

0). The objective of the CT reconstruction is thereafter to determine how

much attenuation of the X-ray beam occured in each voxel. This process is

performed using a filtered backprojection algorithm [7], which essentially

consists of dividing evenly the attenuation measurements along the path of

the ray with a filter function convolved to each view before backprokjection.



Chapter 2. Background on radiomics modeling 40

Figure 2.2 : Physical principles of CT imaging. In CT imaging acquisitions, a
source of X-ray radiation is rotated along the exterior of the detector rings. As the ra-
diation goes through patients, the beam is attenuated and the transmitted radiation is
converted by the detectors into an electrical signal. Reprinted with permission from [6]. © 2007

Society of Nuclear Medicine and Molecular Imaging, Inc. All rights reserved.
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Once the attenuation map of the patient is reconstructed, the image inten-

sities are converted to Hounsfield units (HU), which yields the attenuation

coefficient relative to that of water, normalised according to:

HU = 1000× µ− µWATER

µWATER − µAIR
. (2.5)

HU values for typical materials include air at -1000, water at 0, soft-tissue

in the range [100, 300], and bone in the range [700, 3000].

2.1.3 Magnetic Resonance Imaging

From an anatomical point of view, MR imaging provides a much superior

soft-tissue contrast than CT images without loss of spatial resolution. MR

scans are also non-invasive, as they do not expose patients to X-ray radiation

as in the case of CT imaging. In this section, the underlying physical and

imaging principles of MRI are presented.

Physical principles

The nuclear magnetic resonance (NMR) phenomenon occurs in atoms pos-

sessing a non-zero nuclear spin angular momentum. Due to its abundance in

the human body, the NMR of the hydrogen atom (1H) is most often exploited

in MR imaging. In the presence of a large external and constant magnetic

field B0, a net ensemble of proton spins (1H) align in the B0 direction such

that a net magnetization vector M0 is created in tissues, as depicted in Figure

2.3.

The coupling of the magnetic moment of nuclear spins with the angu-

lar momentum of nucleons causes the magnetization vector M0 to precess

around B0 with an angular frequency known as the Larmor frequency and

defined as ω0 = γB0, where γ is the gyromagnetic ratio and is nuclei-specific

(1H: γ = 42.58 MHz/Tesla). Now, let B0 lie in the z-direction, with M0 pre-

cessing around it in its equilibrium position. By using a radiofrequency coil,

a radiofrequency pulse (RF) with time-varying (general case) magnetic field

B1(t) tuned to Larmor frequency ω0 can be applied in the transverse plane

(xy-plane). As a result, M0 is excited into the transverse plane as depicted in

Figure 2.4. As a result of the RF pulse, M0 precesses towards the transverse

plane for a duration τ by which B1(t) is applied. The resulting angular dis-

placement θ by which M0 is rotated away from the longitudinal axis (z-axis)

is given by θ =
∫ τ

0
γ B1(t) dt. A 90◦ RF pulse is such that the combination of



Chapter 2. Background on radiomics modeling 42

Figure 2.3 : Alignment of nuclear spins in the presence of an external field.
Without the presence of an external magnetic field B0, no net magnetization exists in
tissues. In the presence of an external field, a net magnetization vector M0 is created.
Reprinted with permission from [8]. © 2011 Eva Alonso Ortiz. All rights reserved.

τ and B1(t) generates θ = 90◦ for a given γ. After the RF pulse is completed,

the transverse magnetization (Mxy) decays with characteristic relaxation time

T2 (spin-spin relaxation time, caused by a loss of phase coherence across a

population of spins), and the longitudinal magnetization (Mz) recovers with

characteristic time T1 (spin-lattice relaxation time, a process whereby spins

exchange energy with their surroundings) to its previous equilibrium state

M0 in the z-direction as governed by B0. The spin-spin and spin-lattice relax-

ation times are physical quantities characteristics of each tissue in the human

body. The rotating magnetization in the transverse plane then induces an

oscillating electrical signal that can be captured and demodulated by two

amplified radiofrequency coils placed at right angles in the transverse plane.

Imaging principles

In order to generate a MR image, spatial localization is necessary. This is

achieved by applying different gradients of magnetic fields in the x-y-z di-

rections in addition to the main field B0, such that the total field strength

varies in space. In this manner, the frequency of precession of spins varies

with location since it is proportional to the magnetic field strength (ω = γB).

A general formalism known as the Bloch equations [10] describes both the

precession of the magnetization vector in different locations of the 3D space
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Figure 2.4 : Principles of magnetization excitation and signal acquisition. The
black arrow represents the net magnetization vector M0. A constant magnetic field B0

applied in the z-direction has for effect to have M0 precessing/rotating around B0. If
another field B1 tuned to the Larmor frequency is applied in the x-direction via a 90◦

radiofrequency pulse, this will cause M0 to be excited and to be completely brought
down along the y-axis. The subsequent precession/rotation of M0 in the xy-plane then
induces an oscillating electrical signal that can be captured by radiofrequency coils.
Reprinted with permission from [9]. © 2012 John Wiley and Sons. All rights reserved.

due to arbitrary applied magnetic fields as well as the transverse and longi-

tudinal relaxations, such that:

d
−→
M(t)

dt
=

−→
M(t)× γ

−→
B(t)− Mx(t) x̂−My(t) ŷ

T2
−

(
Mz(t)−M0

)
ẑ

T1
, (2.6)

where
−→
M(t) = Mx(t) x̂ + My(t) ŷ + Mz(t) ẑ and

−→
B(t) = Bx(t) x̂ + By(t) ŷ +

Bz(t) ẑ. We now start with the following initial conditions: at t = 0, the 90◦ RF

pulse has just been applied inside a MRI scanner with a permanent magnetic

field
−→
B = B0 ẑ. At that particular moment, the magnetization vector M0 (ini-

tially in the z-direction before the RF pulse due to B0) is now completely de-

fined in the xy-plane such that
∥∥∥−→Mxy(t = 0)

∥∥∥ = M0, with Mxy , Mx+iMy de-

fined as a complex quantity and
∥∥∥−→Mxy(t)

∥∥∥ =
√

Mx(t)2 +My(t)2. From these

initial conditions, we can now solve Equation 2.6 for Mz(t) and
∥∥∥−→Mxy(t)

∥∥∥,

such that:

Mz(t) = M0 (1− et/T1), (2.7)

∥∥∥−→Mxy(t)
∥∥∥ = M0 e

−t/T2 . (2.8)

Equation 2.7 thus governs the recovery of the longitudinal magnetization to

its equilibrium state over time after applying a 90◦ RF pulse as illustrated in

Figure 2.5a, and Equation 2.8 the decay of the transverse magnetization as
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illustrated in Figure 2.5b. Furthermore, the T1 and T2 relaxation times are

physical characteristics varying for every voxel of an imaging volume due to

different tissue compositions with different molecular microenvironments,

such that T1 and T2 are functions of the spatial location −→
r . Variations over

space of T1(
−→r ) and T2(

−→r ) relaxation times form the fundamental basis of

the contrast in MR images, since different tissues with different relaxation

times in the body produce different MR signals depending on the time after

which the signal is acquired following an excitation pulse. Another source of

contrast in MR images comes from the variations in proton (i.e., 1H) density

of different tissues over space, which inherently affects the magnitude of the

magnetization vector in every voxel.

(a) (b)

Figure 2.5 : Principles of MR image contrast. (a) Recovery of the longitudinal
magnetization to its equilibrium state after a 90◦ excitation pulse as governed by the T1

relaxation time in Equation 2.7. Depending on the repetition time (TR) of a spin-echo
sequence, for example, different tissues will produce different MRI signals, leading to
different contrasts in the resulting images. (b) Decay of the transverse magnetization
after a 90◦ excitation pulse as governed by the T2 relaxation time in Equation 2.8. De-
pending on the echo time (TE) of a spin-echo sequence, for example, different tissues
will produce different MRI signals, leading to different contrasts in the resulting im-
ages. Overall, a T1-weighted image is created with a short TR and a short TE, and a
T2-weighted image is created with a long TR and a long TE. Reprinted with permission from

[11]. © 2013 BMJ Publishing Group Ltd. All rights reserved.

Fundamentally, the signal acquired at a given time from the receiving

coils contains the contributions of all excited spins of a given imaging vol-

ume that are spatially oscillating with different frequencies as governed by

the tissue composition and gradient fields applied at that particular time. In

other words, the intensity of the MR signal at a given time represents one

point of the Fourier space of the MR image, known as the k-space. Taking

the inverse Fourier transform of the time signal in turn linearly maps the

contribution of each frequency component to its corresponding spatial loca-

tion. This is the central concept allowing the formation of MR images. For

example, a spin-echo sequence can be used to form an image where the con-

trast is based on the differences in T1 or T2 relaxation times of the different

tissues of the human body. Figure 2.6 illustrates the formation of a typical
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spin-echo sequence. A 90◦ RF pulse is first employed at the beginning of

the sequence. Simultaneously, a slice selection gradient (Gss) is applied such

that only spins within a slice of interest are excited. At time TE/2, spins have

started to dephase by a certain amount and a 180◦ RF pulse is applied to in-

vert the phase of the spins. The spins then start to rephase such that at the

echo time (TE), they are refocused and a high intensity spin-echo (SE) sig-

nal is created from the constructive interference of the spins. At time TE, the

readout is performed by the frequency-encoding gradient (Gfe) in order to

fill one line of the k-space. The process is repeated at the repetition time (TR)

for another line of the k-space by using a different phase-encoding gradient

(Gpe) strength. The process goes on for many TRs until the whole k-space

is sampled. For more details about MRI physics, image formation and pulse

sequences, the reader is referred to references [9, 11–13].

Figure 2.6 : Schematic representation of a typical MRI spin-echo sequence.
RF: Radiofrequency pulses, Gss: slice selecting gradient, Gpe: phase-encoding gradient,
Gfe: frequency encoding gradient, SE: spin-echo, TE: echo time, TR: repetition time.
Reprinted with permission from “e-Anatomy, Micheau A, Hoa D, www.imaios.com”. © 2008-2017 IMAIOS

SAS. All rights reserved.

Anatomical imaging

The vast variety of contrasts offered in MR imaging depends on the timing

of data acquisition and strength of the different gradients used in the MRI se-

quences. Essentially, the repetition time TR of the sequence acquisition gov-

erns the time by which the longitudinal magnetization can recover, whereas

the echo time TE governs the time by which the transverse magnetization

can decay and be reverted back with a 180◦ RF pulse. Hence, if we go back

www.imaios.com
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to Figure 2.5, T1-weighted images (i.e., emphasis on the contrast in the T1 re-

laxation time of different tissue) are formed with a short TR ∼ T1 and a short

TE. On the other hand, T2-weighted images (i.e., emphasis on the contrast

in the T2 relaxation time of different tissue) are formed with a long TR and

a long TE ∼ T2. Inherently, different choices of TE and TR in the spin-echo

sequence will affect image contrast. In order to form images with different

flavors of contrasts, many different kinds of MRI sequences exist. One class is

defined as fat-suppression sequences and its main purpose is to enhance tu-

mour visualization from its surrounding. T2-weighted fat-saturation (T2FS)

and short tau inversion recovery (STIR) sequences are part of this class, and

are described in more details below:

• T2FS: This form of fat suppression technique exploits the small differ-

ence in resonant frequency between fat and water protons, which is

related to their different electronic environments (chemical-shift effect).

The sequence starts with a spectrally selective 90◦ pulse that ideally tips

only the fat spins into the transverse plane. Only fat spins would con-

tribute to the signal at this point. However, a spoiling gradient is ap-

plied immediately after the 90◦ pulse in order to dephase the fat spins

in the transverse plane. As a result, fat signal decays to zero without af-

fecting the water spins in their equilibrium state. The fat signal is then

said to be “saturated” such that its contribution is suppressed in the

subsequent standard MR sequence. The fat saturation step must then

be repeated for every repetition of the MR sequence.

• STIR: Inversion-recovery methods exploit the fact that the characteris-

tic time T1 of fat is shorter than that of water. The sequence first starts

with a 180◦ RF pulse such that the spins become anti-parallel to the

main magnetic field. Subsequently to the pulse, the longitudinal mag-

netization of fat will return to equilibrium faster than the longitudinal

magnetization of water. At one point in time, the longitudinal mag-

netization of fat will be null as it crosses the xy-plane. If a 90◦ pulse is

applied at that time, only the magnetization of water will be transferred

to the xy-plane to produce the signal of interest. Hence, for the rest of

any subsequent standard MR sequence, the fat spins will not contribute

to the signal. The sequence has to be repeated with a long enough TR

such that all spins have time to recover.
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Diffusion-weighted magnetic resonance imaging

In tissues, the water movement is not entirely random, as it can be influ-

enced or hindered by flow within conduits and interactions with cellular

membranes, vascular structures or macromolecules. Using a dedicated MRI

sequence, diffusion-weighted magnetic resonance imaging (DW-MRI) quan-

tifies the degree of isotropic water diffusion in extracellular space as affected

by the size and the distribution of cellular populations via the apparent diffu-

sion coefficient (ADC) metric, expressed in units of [mm2/s]. The measured

ADC is, therefore, inversely related to the cellularity of tumours.

DW-MRI essentially consists of a T2-weighted sequence in which two ad-

ditional and identical diffusion gradients are applied (Figure 2.7). The time

between the first gradient and the 180◦ RF pulse is the same as the time be-

tween the pulse and the second gradient. At the start of the sequence, the

90◦ RF excitation pulse first brings the net magnetization into the transverse

plane. The first diffusion gradient is then applied right after this pulse and

causes a phase shift (i.e., dephasing) on the spins. Then follows the usual

180◦ RF pulse causing a phase flip, such that after it is being applied the

spins would eventually rephase to create an echo signal. For the static water

molecules, the use of the second diffusion gradient (identical to the first one)

has for effect to restore the phase shift caused by the first gradient, and thus

to restore phase coherence. For the moving water molecules, the acquired

phase shift during the first gradient is not completely restored by the second

gradient, resulting in residual phase incoherence. As a result, the acquired

signal from the moving spins is lower than the one from the static spins.

The signal loss for moving spins is a function of the gyromagnetic ratio γ,

the diffusion gradients intensity G, the time of application of each diffusion

gradient δ, and the time separation between the two diffusion gradients ∆.

All those gradient-dependent terms are gathered into a single factor called

the “b-value” expressed in units of [s/mm2] , such that:

b = γ2G2 δ2
(
∆− δ

3

)
. (2.9)

The signal reduction S(b) relative to a signal acquired with b = 0 can then be

expressed as:

S(b) = S(b0) e
−b ·ADC. (2.10)

By acquiring two imaging sets, one with b = 0 and the other with a non-

zero b-value, the ADC of each voxel of an imaging volume can be separately
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Figure 2.7 : Schematic illustration of a DW-MRI sequence. The DW-MRI se-
quence is acquired using a T2-weighted sequence, in which two identical diffusion
gradients are additionally applied before and after the 180◦ RF pulse. The dephasing
caused by the first gradient will be cancelled by the second gradient for static water
molecules, but not for moving ones. As a result, the acquired signal from the moving
water molecules is lower than the one from the static water molecules. Higher diffu-
sion weighting (i.e., larger b-values) is usually achieved by increasing the amplitude of
the diffusion gradients. Reprinted with permission from Macmillan Publishers Ltd [14]. © 2008 Nature

Publishing Group. All rights reserved.

extracted by solving for ADC in Equation 2.10, such that:

ADC = − 1

b− b0
ln
( S(b)

S(b0)

)
. (2.11)

For more information about DW-MRI, the reader is referred to references

[14, 15].

Dynamic contrast-enhanced magnetic resonance imaging

One of the hallmarks of cancer is angiogenesis – the creation of new blood

vessels. In fact, the growth of malignant cancer depends upon its ability

to initiate the formation of new blood vessels to allow the tumour to grow

and to supply it with oxygen and nutrients [16]. Dynamic contrast-enhanced

magnetic resonance imaging (DCE-MRI) can provide information about vas-

cular characteristics such as tissue perfusion, plasma volume and mean tran-

sit time. It thus provides valuable knowledge in oncology to characterize

tumour phenotypes.

In DCE-MRI acquisition, a region-of-interest surrounding the tumour is

first selected, and sets of 3D MR images are acquired before, during, and

after the injection of a contrast agent (e.g., paramagnetic species such as

gadolinium-based molecules) into the vein of a patient (Figure 2.8a). DCE-

MRI is thus a 4D imaging technique aiming at quantifying the passage over
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time of the contrast agent from the vascular space of blood vessels to the

interstitial space (or extravascular-extracellular space: EES) consisting of tu-

mour cells and extracellular matrix components, thus providing information

about tumour microvascular permeability. The passage of the contrast agent

in the the interstitial space has for effect to decrease the T1 relaxation time

of its surrounding, leading to an enhanced MR signal proportional to the

contrast agent concentration in a given voxel. Eventually, a wash-out effect

can be observed if the vascular permeability is high and if there is reflux of

contrast agent back to the vascular space. Typically, the signal acquisition

is performed with 3D fast gradient-echo sequences acquired every 5-30 s for

approximately 3-7 min [17]. Each set of acquired 3D images corresponds to

one time point, and each voxel in the 4D set of images then gives rise to

its own time-signal intensity-curve, which can thereafter be analyzed with

different mathematical models to characterize the perfusion properties of tu-

mour tissues. Different types of time-signal intensity-curves with different

enhancement and wash-out characteristics are created depending on the low

or high permeability of microvessels of each tissue. A study by van Rijswijk

et al. [18] proposed a classification of time-signal intensity-curves of tissues

into five different types as illustrated in Figure 2.8b.

Once the time-signal intensity-curves are acquired for each voxel of each

time point, a generalized kinetic model [20] is used to relate the change in

signal intensity to the contrast agent concentration in the tissue over time de

noted as Ct(t), such that:

dCt(t)

dt
= KTrans (Cp(t)− Ct(t)/νe) = KTrans Cp(t)− κepCt(t), (2.12)

where Cp(t) is the arterial blood plasma concentration as a function of time,

which needs to be measured for each patient by including, for example, a

large vessel in the imaging field of view. Furthermore, KTrans is the vol-

ume transfer constant between the blood plasma and the interstitial space

per unit volume of tissue (min−1), νe is the volume of interstitial space per

unit volume of tissue, and κep is the rate constant between the insterstitial

space and blood plasma (min−1) [21]. By solving Equation 2.12 for the time-

signal intensity-curve of each voxel using numerical methods [22], quan-

titative parametric maps of KTrans, νe and κep can be obtained for the im-

aged tumour volume. Finally, maps of the initial area under the time-signal

intensity-curves (IAUCx) from the start of injection to a number x of seconds
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(a)

(b)

Figure 2.8 : Principles of DCE-MRI.
(a) Malignant cancers initiate the formation of new blood vessels that can grow into
the tumour to supply it with oxygen an nutrients – a process called angiogenesis. In
DCE-MRI acquisitions, multiple 3D sets of images are acquired over time after the in-
jection of a paramagnetic contrast agent (e.g., gaolinium-based molecules) into the vein
of a patient. The passage of the contrast agent (small grey circles in the figure) from the
vascular space to the interstitial space of tumours (or extravascular-extracellular space:
EES) has for effect to decrease the T1 relaxation time of its surrounding, leading to an
enhanced MR signal proportional to the contrast agent concentration in a given voxel.
At first, the contrast agent accumulates in the interstitial space of tissues before it dif-
fuses back into the vasculature from which it is excreted. The kinetics of such process
gives rise to different time-signal intensity-curves for each voxel depending on the per-
meability of microvessels of each tissue. Reprinted with permission from [19]. © 2005 Springer. All

rights reserved.

(b) Classification of DCE-MRI time-signal intensity-curves into 5 different tissue types
as defined by van Rijswijk et al. [18]. I) no enhancement; II) gradual increase of en-
hancement; III) rapid initial enhancement followed by a plateau phase; IV) rapid initial
enhancement followed by a washout phase; and V) rapid initial enhancement followed
by sustained late enhancement. Reprinted with permission from [18]. © 2004 RSNA. All rights re-

served.
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post-injection can also be extracted from the DCE-MRI data [23]. For more

information about DCE-MRI acquisition and parametric analysis, the reader

is referred to references [16, 24, 25].

2.2 Image processing

Zwanenburg et al. [26] have very recently proposed a detailed sequence of

image processing steps required prior to the extraction of radiomic features

from medical images. Prior to this work, no clear consensus on the exact se-

quence of processing steps existed. The work of Zwanenburg et al. [26] could

standardize and bring to consensus the manner in which radiomics features

are extracted, and the reader is invited to consult the document currently

published on arXiv. Nonetheless, it is pointed out in the document that the

order of the sequence of operations could be interchanged for some process-

ing steps. In this section, we briefly describe the major image processing

steps that were used in this thesis in the context of the work of Zwanenburg

et al. [26]: I) Spatial filtering; II) Tumour segmentation; II) Image interpola-

tion; and IV) Image quantization. Our starting point is the stack of medical

images acquired from a dedicated scanner, from which data conversion (e.g.,

SUV conversion in PET), imaging corrections (e.g., PVE corrections in PET

[27], metal artifact suppresion in CT [28], non-uniformity corrections in MRI

[29], etc.) and denoising operations may have been a priori applied.

2.2.1 Spatial filtering and image fusion

In radiomics analysis, image filters can be used to enhance different aspects

of the image (e.g., edges, specific range of image frequencies, etc.) and reduce

noise prior to radiomic feature computation. Laplacian, Gaussian, wavelet,

Law’s and Gabor filters are commonly used in the medical imaging commu-

nity. The description of various spatial filters is however outside the scope of

this work. In this section, we describe the theory behind the wavelet trans-

form filter, since this filter is at the core of the methodology developed in

Chapter 3 to enhance texture features via wavelet band-pass filtering, and

to perform FDG-PET and MR image fusion. Due to space constraints, only

a brief overview of the theory is provided, and the reader is referred to the

comprehensive reviews by Strang & Nguyen [30] and Burrus et al. [31] for

further details.
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General theory of wavelet decomposition

The goal of wavelet analysis is to decompose a signal over a family of wavelets

generated from a mother wavelet. Let the signal of interest be in space x and

the mother wavelet of interest be ψ(x). The mother wavelet is a squared-

integrable function over all space with zero average. The class of expansion

functions generated from the mother wavelet are defined as:

ψj
k(x) = 2j/2 ψ(2jx− k). (2.13)

This implies that all wavelets ψj
k(x) are dilated (or scaled) and translated ver-

sions of ψ(x) as defined by the integers j and k, respectively. The goal of

wavelet expansion is to generate a set of functions ψj
k(x) such that any signal

in the space of squared-integrable functions L2(R) can be represented by the

series:

f(x) =
∑

k

∑

j

wk
j 2

j/2 ψ(2jx− k). (2.14)

In Equation 2.14, the set of expansion coefficients wk
j is called the discrete

wavelet transform (DWT) of f(x). If the expansion is unique, the set of func-

tions ψj
k(x) is called a basis for the class of functions that can be so described.

The power of such a basis is that it can simultaneously express a signal at

different scales and spatial locations. However, in wavelet theory, the formu-

lation of such multiresolution analysis is made in terms of two closely related

basis functions. In addition to the mother wavelet, we introduce the scaling

function φ(x) that can be expressed in terms of a weighted sum of translated

versions of φ(2x) such that:

φ(x) =
√
2
∑

n∈Z

l(n)φ(2x− n). (2.15)

Likewise, the mother wavelet ψ(x) is expressed as:

ψ(x) =
√
2
∑

n∈Z

h(n)ψ(2x− n). (2.16)

Equation 2.15 is governed by “low-pass” coefficients l(n) of the wavelet ex-

pansion and Equation 2.16 is governed by “high-pass” coefficients h(n), and

the relation between these coefficients is h(n) = (−1)n l(1 − n). Figure 2.9

displays an example of the scaling and wavelet functions of a specific class

of wavelets known as “sym8”.
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Figure 2.9 : Example of a wavelet basis function. The scaling and wavelet func-
tions sym8 are illustrated.

With such double-basis representation, the decomposition of a signal into

a finite number of levels J becomes:

f(x) =
∑

k

ajk 2
J/2 φ(2Jx− k) +

∑

k

J∑

j=1

d j
k 2

j/2 ψ(2jx− k) (2.17)

Equation 2.17 implies that the aJk coefficients are used to represent the ap-

proximation of signal at the lowest level (or scale) J with the scaling function

φ(x). As such, φ(x) is used to represent the coarse details of the signal, or

its low-frequency components. The rest of the decomposition coefficients

d j
k are used to represent the fine details of the signal, or its high-frequency

components. These coefficients are obtained at all scales using the family of

functions ψj
k(x). Finally, all coefficients at scale j can be expressed in terms of

the coefficients of the previous scale using the following recursive equations:

ajk =
∑

n∈Z

aj−1
k l(n− 2k)

d j
k =

∑

n∈Z

aj−1
k h(n− 2k), for j = 1, 2, . . . , J (2.18)

2D and 3D discrete wavelet transform

Essentially, the DWT up to level (or scale) J is performed through a cascade-

tree of low-pass and high-pass filters followed by downsampling by a factor

of 2. The wavelet coefficients ajk and d j
k are obtained by the convolution over

space of the proper scaling and wavelet functions defined at each level j.

Practically speaking, for a 2D image, performing one level of a 2D wavelet

decomposition consists of filtering and downsampling an image I(x, y) both
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horizontally and vertically with the 1D low-pass filter (L) φ and the 1D high-

pass filter (H) ψ. As a result, the wavelet coefficients of four different sub-

bands are produced: LL, LH, HL, HH (Figure 2.10a). Every subband now

has half the initial size of I in both the x and y directions. In order to ob-

tain the 2D discrete wavelet decomposition at higher levels (level 2 shown

in Figure 2.10c), the same process is performed on the LL subband generated

from the previous decomposition level (level 1 shown in Figure 2.10b) and is

repeated up to the desired level of decomposition. The generalization of the

wavelet theory to 3 dimensions is straightforward: 3D wavelet decomposi-

tion consists of filtering and downsampling an imaging volume V (x, y, z) in

the x, y and z directions with the 1D low-pass filter (L) φ and the 1D high-

pass filter (H) ψ. The wavelet coefficients of eight different subbands are then

produced: LLL, LHL, LHH, HLL, HHL, HLH and HHH. In radiomics analysis,

different research groups now compute complete sets of features from the

wavelet coefficient intensities of all the different subbands; an example is the

work of Aerts et al. [32]. In this thesis, new sets of radiomic features were

not computed from the different subbands. Instead, as described in Chapter

3, we notably applied different weights to the wavelet coefficients of differ-

ent subbands before wavelet reconstruction in order to obtain a new “filtered

volume” (wavelet band-pass filtering).

Figure 2.10 : Principles of 2D discrete wavelet decomposition. (a) Wavelet de-
composition process. For a 2D image, low-pass (L) and high-pass (H) filters are applied
in both the x and y directions, thereby creating 4 wavelet subbands: LL, LH, HL and HH.
(b) Level 1 of a 2D wavelet decomposition. (c) Level 2 of a 2D wavelet decomposition.
Reprinted with permission from [33]. © 2004 Pattern Recognition Society. All rights reserved.

Finally, the procedure used to reconstruct the original signal from the

wavelet coefficients is known as the inverse discrete wavelet transform (IDWT),

which is simply the reverse process of the DWT. In practice, each subbband is
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first upsampled by a factor of 2 by inserting zeros in-between the wavelet co-

efficients. Next, each sub-band is convolved with the appropriate reconstruc-

tion filters. For example, the HL sub-band is first upsampled and convolved

horizontally with the 1D high-pass (wavelet) reconstruction filter. Then, it is

upsampled and convolved vertically with the 1D low-pass (scaling) recon-

struction filter. The reconstruction filters are the original scaling and wavelet

filters flipped from left to right about their central position. Once this process

has been applied to the four subbands (in 2D analyses), the results are added

together to obtain a reconstructed image.

Principles of wavelet image fusion

For the purpose of this thesis (Chapter 3), image fusion can be described

as the process of combining information from two different images into a

single composite image that is more informative for texture analysis. The

concept of image fusion using the DWT was proposed by Li et al. [34] and

is described in details in the work of Pajares & Manuel de la Cruz [33]. The

general framework of wavelet image fusion is depicted in Figure 2.11.

Figure 2.11 : Principles of wavelet image fusion. The corresponding wavelet co-
efficients of two different images are first obtained using the discrete wavelet transform
(DWT) and are thereafter merged in a way as to obtain the image characteristics sought.
The inverse discrete wavelet transform (IDWT) is then applied on the set of merged
coefficients to obtain a new fused image. Reprinted with permission from [33]. © 2004 Pattern

Recognition Society. All rights reserved.

Let us assume that the two images to be fused are co-registered (if mis-

registration occurs, artefacts will be present in the fused image) and have the

same resolution. For the fusion scheme presented in Figure 2.11, it means
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that resampling and registration strategies have to be applied prior to fu-

sion. Then, the fusion process starts with the application of the DWT to both

images with a given scaling function of choice. The decomposition can go

up to an arbitrary number of levels (2 decomposition levels are shown in

Figure 2.11). Afterwards, the respective wavelet coefficients of the two im-

ages are merged together. In other words, the LL coefficients of image 1 are

merged with the LL coefficients of image 2, the HL coefficients of image 1 are

merged with the HL coefficients of image 2, and this process is repeated for

all subbands. Subsequently to the latter step, only one set of fused wavelet

coefficients exists. Finally, the IDWT is applied to the fused wavelet coeffi-

cients in order to reconstruct the fused image. Fundamentally, the key step in

DWT image fusion is based on how the wavelet coefficients of the two differ-

ent images are combined. The goal is to merge the wavelet coefficients in an

appropriate way in order to obtain the image characteristics sought. Finally,

the whole wavelet fusion process described in this section for 2D images can

easily be generalized to the fusion of 3D volumes.

2.2.2 Tumour segmentation

The computation of radiomic (including texture) features currently relies on

the accurate definition of a region-of-interest (ROI), i.e., segmentation, from

which the features are extracted. In the context of this thesis, the ROI repre-

sents the gross tumour volume (GTV) used for radiotherapy treatment plan-

ning as manually defined on a slice-by-slice basis by expert radiation oncol-

ogists using dedicated contouring software.

From a given imaging volume V (x, y, z), tumour segmentation leads to

the creation of a “ROI map” (or mask) denoted as R(x, y, z), for which every

voxel at position (x, y, z) in R is defined as:

R(x, y, z) =

{
1 if V (x, y, z) in ROI,

0 otherwise.

An example of the process of image segmentation is depicted in Figure

2.12. Note that the schematic image slices in that figure are not composed of

isotropic voxels, i.e., they are not composed of voxels with the same dimen-

sions in the three directions of space. This is generally the case for out-of-

scanner images in PET, CT and MR imaging.

In radiotherapy, different ROI structures representing target contours and

organs at risks are saved in “DICOM RTstruct” format. After segmentation,
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image registration [35] may occur in order to propagate tumour contours to

different imaging frame of references.

Segmentation

Imaging volume (V) ROI map (R)

Figure 2.12 : Schematic illustration of the image segmentation process. The
segmentation of an imaging volume leads to the creation of a “ROI map”. In this ar-
bitrary example, the segmentation of the imaging volume on the left is performed by
excluding voxels with > 50 % grey, thereby leading to orange voxels included and black
voxels excluded from the ROI map on the right. Reprinted from [26]. © 2016-2017 IBSI. Creative

Commons Attribution 4.0 International License.

2.2.3 Image interpolation

In order to obtain rotationally invariant texture features, interpolation to isotropic

voxel size (i.e., same voxel dimension in three directions of space) is im-

perative. Maintaining isotropic voxel dimensions across different patients

and institutions is important for reproducibility of radiomics analyses. Fur-

thermore, the optimization of such extraction parameter can significantly

enhance the predictive properties of textures. Generally, voxel size is not

isotropic for medical images. The radiomics user may then decide to set the

isotropic voxel size to a desired “scale” such as the in-plane resolution. In that

case, an example imaging volume V (x, y, z) (spatially filtered or not) with

voxel size of 2× 2× 3 mm3 would be isotropically resampled to a voxel size

of 2×2×2 mm3. Likewise, the ROI map R(x, y, z) would also be interpolated

to the dimensions of the resampled imaging volume. Here, the interpolated

volume is denoted as VI(x, y, z) and the interpolated ROI map as RI(x, y, z).

Figure 2.13 illustrates this process.

A number of algorithms are available in most software for interpolation,

such as, for example, nearest neighbour and cubic interpolation. One strategy

among others could be to interpolate the ROI map using the nearest neigh-

bour algorithm to conserve 0’s and 1’s in the interpolated ROI, and the imag-

ing volume using cubic interpolation to produce smooth interpolated images.
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Interpolation

Imaging volume (V) ROI map (R)

     Interpolated 

     ROI map (RI)

     Interpolated 

imaging volume (VI)

Figure 2.13 : Schematic illustration of the image interpolation process. The
example imaging volume with voxel size of 2 × 2 × 3 mm3 and associated ROI map
are isotropically resampled to a voxel size of 2 × 2× 2 mm3, leading to an interpolated
imaging volume and an interpolated ROI map. In the process, an extra image slice is
created. Reprinted from [26]. © 2016-2017 IBSI. Creative Commons Attribution 4.0 International License.
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Following interpolation, different outlier correction methods could subse-

quently be used to improve the quality of the images prior to texture analy-

sis. One such method was proposed by Collewet et al. [36] for making MRI

texture measurements more reliable. The method consists of excluding vox-

els within the tumour region (i.e., the ROI map) with intensities outside the

range µ ± 3σ, where µ and σ are the mean and the standard deviation of the

imaging voxels part of the tumour region, respectively.

2.2.4 Image quantization

Image quantization is a process used prior to texture computation for reduc-

ing the intensity range of the ROI of a medical imaging volume into a discre-

tised number of gray-level bins (Ng). Notably, image quantization helps in

reducing the noise dependence in the calculation of textures. In this section,

the ROI extraction and quantization processes are detailed.

ROI extraction process

The computation of texture features is performed for the voxels included in a

given ROI of the imaging volume, and so does the preliminary quantization

step. Prior to image quantization, the ROI of the imaging volume is thus first

isolated from the surrounding voxels. The ROI map is used to keep only the

voxels of the imaging volume contained within the ROI, and the rest of the

voxels are excluded from texture analysis. Excluded voxels are commonly

replaced by a placeholder value such as a NaN, leading to the creation of

a “ROI imaging volume” denoted as VR(x, y, z). Figure 2.14 illustrates the

ROI extraction process. The ROI imaging volume VR(x, y, z) is also defined

in terms of the interpolated volume VI(x, y, z) and the interpolated ROI map

RI(x, y, z) from the current image processing workflow such that:

VR(x, y, z) =

{
VI(x, y, z) if RI(x, y, z) = 1

NaN otherwise.

Quantization process

Following ROI extraction, image quantization (or discretisation) can proceed.

Let vvvR be the column vector of all imaging intensity values VR(x, y, z) for

which VR(x, y, z) 6= NaN ∀ (x, y, z); i.e., all the imaging intensity values from

VR that are not set to NaN . The quantization process maps vvvR to a finite set
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ROI map    ROI

extraction

     Interpolated 

imaging volume (VI)

     Interpolated 

     ROI map (RI)

ROI imaging

volume (VR)

Figure 2.14 : Schematic illustration of the image ROI extraction process. The
interpolated ROI map is used to keep only the voxels of the interpolated imaging vol-
ume contained within the interpolated ROI, and the rest of the voxels are excluded. Ex-
cluded voxels are represented by empty voxels in the figure and are commonly replaced
by a placeholder value such a NaN, leading the creation of a “ROI imaging volume”.
Reprinted from [26]. © 2016-2017 IBSI. Creative Commons Attribution 4.0 International License.
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of reconstruction levels rrrNg
= {rg ∈ [min(vvvR),max(vvvR)] : g = 1, 2, . . . , Ng}

by defining a set of decision levels tttNg
= {tg ∈ [min(vvvR),max(vvvR)] : g =

1, 2, . . . , Ng+1}, with t1 = min(vvvR) and tNg+1 = max(vvvR). The imaging inten-

sity values of the “quantized ROI imaging volume” VQ(x, y, z) are thereafter

set to g = {1, 2, . . . , Ng}, such that VQ(x, y, z) = g ∀ VR(x, y, z) ∈ [tg, tg+1). This

process is illustrated in Figure 2.15. All quantization algorithms attempt to

resolve, for a given number of gray levels Ng, the reconstruction and decision

levels of an input vector. Three different types of quantization algorithms are

described below.

Quantization

ROI imaging

volume (VR)

    Quan�zed ROI

imaging volume (VQ)

Figure 2.15 : Schematic illustration of the image quantization process. In this
example figure, the gray levels from the ROI imaging volume were quantized into Ng =
3 bins to create a “quantized ROI imaging volume”. Reprinted from [26]. © 2016-2017 IBSI.

Creative Commons Attribution 4.0 International License.

Uniform quantization. The simplest and most commonly used quantization

scheme in current radiomic studies in the literature is called the “uniform

quantizer”. It uniformly divides the range of intensities of vvvR into Ng gray

levels such that the transition and reconstruction levels become:

tg = min(vvvR) +
max(vvvR)− min(vvvR)

Ng

, for g = 1, 2, . . . , Ng + 1

rg =
tg + tg+1

2
, for g = 1, 2, . . . , Ng (2.19)

Equal-probability quantization. In their original work on GLCM-based texture

features, Haralick et al. [37] proposed that the quantization of images prior to
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computation of the GLCM should be done using an equal-probability quanti-

zation scheme in order for the extracted textures to be invariant under mono-

tonic gray-tone transformations. This quantization scheme attempts to de-

fine decision thresholds in an imaging volume with the goal that the num-

ber of voxels with reconstruction level rg be the same for all gray levels g

(i.e., for all quantized bins). Hence, each gray level approximately has an

equal probabilty of occurrence in the quantized imaging volume. Similarly

to the uniform quantizer, the reconstruction levels are taken as the average

of two consecutive decision levels. In this thesis, an equal-probability quan-

tization algorithm similar to the one described by Haralick et al. [37] was im-

plemented in an in-house MATLAB® algorithm using the function histeq.m to

ensure a monotonic transformation of the intensity histograms.

Lloyd-Max quantization. In 1982, Lloyd [38] formulated the concept of Max

[39] (of quantizing an input signal to achieve minimal distortion) into a co-

herent quantization theory now known as the “Lloyd-Max” quantization al-

gorithm. Lloyd enounced his optimization criterion as the minimization of

“average quantization noise power”. Essentially, this scheme optimally min-

imizes the mean square quantization error of the output. By taking the for-

mulation of Jain [40], let X be the input data and Q(X) the output of quanti-

zation. For Ng gray levels, the mean-squared error ǫ is:

ǫ = E
[(
X −Q(X)

)2]
=

∫ tNg+1

t1

(
X −Q(X)

)2
pX(X) dX, (2.20)

where pX(X) is the amplitude probability density of the input volume data

X . The necessary conditions for minimizing ǫ are obtained by differentiating

Equation 2.20 with respect to the decision levels tg and the reconstruction

levels rg. By equating to 0 and from the fact that tg−1 ≤ tg, we obtain:

tg =
rg + rg−1

2
, for g = 1, 2, . . . , Ng + 1

rg = E
[
X|X ∈ [tg, tg+1)

]
=

∫ tg+1

tg
X pX(X) dX

∫ tg+1

tg
pX(X) dX

, for g = 1, 2, . . . , Ng (2.21)

Practically speaking, the two parts of Equation 2.21 have to be solved si-

multaneously (given boundary conditions t1 and tNg+1) using an iterative

scheme. In this work, this procedure was performed using the function

lloyds.m of MATLAB®.



Chapter 2. Background on radiomics modeling 63

2.2.5 Texture extraction parameters

There are multiple image processing steps leading to texture analysis:

• Medical images can be spatially filtered using, for example, wavelet

analysis in order to enhance different image frequency components.

Furthermore, different imaging modalities (e.g., FDG-PET and MRI)

can be fused into a single set of images to create composite textures

with better predictive properties.

• Different tumour volumes encompassing or not different anatomical or

biological targets can be segmented in order to verify their benefit for

tumour aggressiveness assessment via texture analysis.

• Images can be interpolated to different isotropic voxel sizes.

• Different quantization algorithms using different numbers of gray lev-

els can be used prior to texture analysis.

Overall, all these different steps open the door to the optimization of dif-

ferent texture extraction parameters for each different textures depending on

the subsequent clinical endgoal, a process we name “texture optimization”.

An example of how different extraction parameters affect the resulting pro-

cessed images prior to texture analysis is shown in Figure 2.16. It can clearly

be seen that a single FDG-PET image processed with different extraction

parameters yields processed images with clear differences in textural char-

acteristics. In this thesis, it will be shown that the optimization of texture

extraction parameters for a given clinical task can significantly increase the

predictive properties of textures.

2.3 Texture analysis

In radiomics analysis, textures are a central type of features that can be ex-

tracted from a tumour ROI. Other types of features include morphologi-

cal and histogram-based features (Appendix A.1 and Appendix A.2, respec-

tively). However, textures remain the core of radiomic feature computa-

tion given their higher-order characterization of spatial patterns in imaging

volumes. In this thesis, texture features from four major categories were

extracted: I) Gray-Level Co-occurence Matrix (GLCM) features; II) Gray-

Level Run-Length Matrix (GLRLM) features; II) Gray-Level Size Zone Ma-

trix (GLSZM) features; and IV) Neighborhood Gray-Tone Difference Matrix
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Figure 2.16 : Impact of different texture extraction parameters on processed
images. The example image on the left is a FDG-PET image of a soft-tissue sar-
coma with voxel size of 5.47 × 5.47 × 3.27 mm3. This image was then interpolated to
isotropic voxel sizes of 1 mm and 5 mm using cubic interpolation. Finally, the resulting
interpolated images were quantized using uniform (“Uniform”) and equal-probabilty
(“Equal”) quantization algorithms with 8 and 64 numbers of gray levels (Ng). All the
different processed images on the right can subsequently be used for texture analysis.



Chapter 2. Background on radiomics modeling 65

(NGTDM) features. The first and crucial step towards the computation of

the different texture features from these four categories is to calculate a ma-

trix PPP summarizing the neighborhood properties of interest (differently for

each category). Thereafter, different mathematical operations can be applied

to the different matrices to obtain the final texture features f .

Texture features were originally designed to assess surface texture in 2D

images. One strategy to obtain a global assessment of a 3D tumour ROI using

2D texture analysis could be to average the texture features obtained in each

slice of an imaging volume stack. However, a better strategy (as performed

in this thesis) would be to generalize the original 2D computation of texture

matrices [37, 41–45] to 3D. Another major difference point in this thesis com-

pared to the original definitions of some textures is the concept of direction-

ality. Originally, some textures were defined to be computed in a specific di-

rection of the image space (e.g., the horizontal direction). Features for a given

direction could then be used on their own for a given application, or corre-

sponding features computed for all directions could be averaged together to

globally characterize an image or imaging volume. In the context of intratu-

moural heterogeneity quantification, the averaging of texture features from

different directions however consists of taking an average of limited texture

measurements as we have previously shown [46]. Therefore, in order to ob-

tain the best global assessment of 3D tumour regions, all texture matrices in

this thesis were computed only once per quantized ROI imaging volume VQ

for the whole 3D space as illustrated in Figure 2.17, by considering that the

direct neighborhood of each imaging volume voxel consists of its 26 directly

connected neighbors. Hence, the following 13 directions of 3D space were

simultaneously considered in the computation of textures matrices: (0,0,1),

(0,1,0), (1,0,0), (0,1,1), (0,1,-1), (1,0,1), (1,0,-1), (1,1,0), (1,-1,0), (1,1,1), (1,1,-1),

(1,-1,1) and (1,-1,-1). Novel discretization length difference corrections were

also defined in this work. In this section, theoretical examples of the cal-

culation of texture matrices (GLCM, GLRLM, GLSZM, NGTDM) using dis-

cretization length difference corrections will be provided in 2D for the sake

of simplicity. The subsequent 3D generalization and mathematical opera-

tions for texture feature computations are provided in the list of 3D radiomic

features in Appendix A.
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Figure 2.17 : Full 3D approach to calculate texture matrices. From a quantized
ROI imaging volume VQ, only one texture matrix PPP is calculated per texture category
(GLCM, GLRLM, GLSZM, NGTDM) by simultaneously taking into account the 26-
connected neighbors of each voxel from the 13 directions of 3D space. Placeholder
values such as NaN (represented by empty voxels in the figure) are always excluded
from texture analysis. Single sets of features f are therafter calculated from the texture
matrices of each category. Reprinted from [26]. © 2016-2017 IBSI. Creative Commons Attribution 4.0

International License.

2.3.1 Gray-Level Co-occurence Matrix

In 1973, Haralick et al. [37] proposed the concept of texture analysis from the

GLCM. In their original pioneering work, the investigators took into account

the statistical nature of textures, which is based on the assumption that tex-

ture information is contained in the overall spatial relationship that the gray

levels have to one another.

Let PPP define the GLCM of a quantized ROI imaging volume VQ(x, y, z)

with isotropic voxel size. Each entry P (i, j) of PPP represents the number of

times voxels of gray level i are neighbours with voxels of gray level j in V .

The GLCM is thus a symmetric matrix of size Ng × Ng, where Ng represents

the pre-defined number of quantized gray levels set in VQ(x, y, z). Now, let

us consider the 2D test image in Table 2.1a. The resulting GLCM of that im-

age is filled in by examining the neighborhood of every pixel in the image,

to then increment the GLCM accordingly. For example, the center pixel with

gray level 2 is five times neighbor with gray level 1, one time with gray level

2 and two times with gray level 3. Traditionally in the radiomics community,

this would lead to the incrementation of P (2, 1) by 5, of P (2, 2) by 1 and of

P (2, 3) by 2, respectively. However, this latter incrementation scheme does

not take into account the discretization length differences between the differ-

ent pixels. In our work, we apply corrections for these differences that are

valid for both 2D or 3D cases as follows: neighbours at a distance of
√
3 vox-

els around a center voxel increment the GLCM by a value of
√
3, neighbours

at a distance of
√
2 voxels around a center voxel increment the GLCM by a

value of
√
2, and neighbours at a distance of 1 voxel around a center voxel
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increment the GLCM by a value of 1. As shown in Table 2.1b-e, this dis-

cretization length difference correction scheme is best viewed when different

GLCMs are separately computed in the (1,0), (1,1), (0,1) and (-1,1) directions,

respectively. These directions correspond to the 0◦, 45◦, 90◦ and 135◦ direc-

tions, respectively. The final step for this example test image is to sum up

(or merge) all the GLCMs obtained from all directions (Table 2.1b-e) into the

final GLCM of Table 2.1f, the one and only GLCM from which the features

described in Appendix A.3 would be computed. In 3D, the 13 directions of

3D space is examined with 26-voxel connectivity.

Table 2.1 : GLCM computation example.

1 1 1
1 2 2
3 3 1

(a) 2D image

4 1 1
1× 1 2 0

1 0 2

(b) GLCM – 0◦

2 1 0√
2× 1 0 2

0 2 0

(c) GLCM – 45◦

2 3 1
1× 3 0 1

1 1 0

(d) GLCM – 90◦

0 3 1√
2× 3 0 0

1 0 0

(e) GLCM – 135◦

Ng ×Ng → i →
↓ 8.83 9.66 3.41
j 9.66 2.00 3.83
↓ 3.41 3.83 2.00

(f) GLCM – Merged

2.3.2 Gray-Level Run-Length Matrix

In 1975, Galloway [41] proposed the concept of texture analysis from the

GLRLM. The author defined 5 features that could be extracted from a GLRLM.

Then, two other features were later defined by Chu et al. [43] in 1990, four

by Dasarathy & Holder [44] in 1991, and two by Thibault et al. [45] in 2009.

Essentially, the GLRLM quantifies the frequency of 1D runs of voxels with

identical gray levels in a given imaging volume.

Let PPP define the GLRLM of a quantized ROI imaging volume VQ(x, y, z)

with isotropic voxel size. Each entry P (i, j) of PPP represents the number of

runs of gray level i and of length j in VQ(x, y, z). A run is a 1D line of con-

nected voxels with an identical gray level. The GLRLM is a matrix of size
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Ng × Lr, where Ng represents the pre-defined number of quantized gray lev-

els set in VQ(x, y, z), and Lr the length of the longest run (of any gray level).

Now, let us consider the 2D test image in Table 2.2a. The resulting GLRLM

of that image is filled in by counting all the possible runs of connnected pix-

els with identical gray levels for a given direction. The particular directional

GLRLM of interest is then incremented accordingly. For example, let us con-

sider runs with a gray level of 1 in the (1,1) – i.e., 45◦ – direction in the test

image. It can be seen that there exists three runs of gray level 1 with length 1,

and one run of gray level 1 with length 2. Traditionally in the radiomics com-

munity, this would lead to the incrementation of P (1, 1) by 3 and of P (1, 2)

by 1, respectively. However, this latter incrementation scheme does not take

into account the discretization length differences between the different pix-

els. In our work, we apply corrections for these differences that are valid for

both 2D or 3D cases as follows: runs constructed from voxels separated by a

distance of
√
3 increment the GLRLM by a value of

√
3, runs constructed from

voxels separated by a distance of
√
2 increment the GLRLM by a value of

√
2,

and runs constructed from voxels separated by a distance of 1 increment the

GLRLM by a value of 1. Table 2.2b-e presents the resulting GLRLMs of the

test image using discretization length corrections for the 0◦, 45◦, 90◦ and 135◦

directions, respectively. The final step for this example test image is to sum

up (or merge) all the GLRLMs obtained from all directions (Table 2.2b-e) into

the final GLRLM of Table 2.2f, the one and only GLRLM from which the fea-

tures described in Appendix A.4 would be computed. In 3D, the 13 directions

of 3D space is examined with 26-voxel connectivity.

2.3.3 Gray-Level Size Zone Matrix

In 2009, [45] generalized the 1D GLRLM concept to 2D and 3D to thereby

create the GLSZM texture analysis method. In addition, the authors created

two new texture features from the original set defined by Galloway [41], Chu

et al. [43], and Dasarathy & Holder [44]. Essentially, the GLRLM quantifies

the frequency of 2D or 3D zones of voxels with identical gray levels in a given

image or imaging volume.

Let PPP define the GLSZM of a quantized ROI imaging volume VQ(x, y, z)

with isotropic voxel size. Each entry P (i, j) of PPP represents the number of

zones of gray level i and of size j in VQ(x, y, z). A zone is a 2D or 3D region

of connected voxels with an identical gray level. The GLSZM is a matrix

of size Ng × Lz, where Ng represents the pre-defined number of quantized



Chapter 2. Background on radiomics modeling 69

Table 2.2 : GLRLM computation example.

1 1 1
1 2 2
3 3 1

(a) 2D image

2 0 1
1× 0 1 0

0 1 0

(b) GLRLM – 0◦

3 1 0√
2× 2 0 0

2 0 0

(c) GLRLM – 45◦

3 1 0
1× 2 0 0

2 0 0

(d) GLRLM – 90◦

5 0 0√
2× 2 0 0

2 0 0

(e) GLRLM – 135◦

Ng × Lr → j →
↓ 16.3 2.41 1.00
i 7.66 1.00 0.00
↓ 7.66 1.00 0.00

(f) GLRLM – Merged

gray levels set in VQ(x, y, z), and Lz the size of the largest zone (of any gray

level). Connected zones of identical gray levels in a 2D image are identified

with 8-voxel connectivity, and with 26-voxel connectivity for a 3D imaging

volume. Now, let us consider the 2D test image in Table 2.3a. The resulting

GLSZM of that image is filled in by counting all the possible zones of con-

nected voxels with identical gray levels. The GLSZM is then incremented

accordingly. For example, let us consider zones of connected voxels with a

gray level of 1 in the test image. It can be seen that there exists one zone of

gray level 1 with size 1, and one zone of gray level 1 with size 4. This leads to

the incrementation of P (1, 1) by 1 and of P (1, 4) by 1, respectively. Table 2.3b

shows the final GLSZM for all the possible connected zones of different gray

levels in the test image. The features described in Appendix A.5 would then

be computed from this final GLSZM. In 3D, 26-voxel connectivity is used to

determine connected zones.

Table 2.3 : GLSZM computation example.

1 1 1
1 2 2
3 3 1

(a) 2D image

Ng × Lz → j →
↓ 1 0 0 1
i 0 1 0 0
↓ 0 1 0 0

(b) GLSZM
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2.3.4 Neighborhood Gray-Tone Difference Matrix

In 1989, Amadasun & King [42] proposed the concept of texture analysis from

the NGTDM. The authors defined 5 features that could be extracted from a

NGTDM. Essentially, the NGTDM quantifies the spatial differences between

neighboring voxels.

Let PPP define the NGTDM of a quantized ROI imaging volume VQ(x, y, z)

with isotropic voxel size. Each entry P (i) of PPP represents the summation

of the gray-level differences between all center voxels with gray level i and

the average gray level of their 8-connected neighbors in 2D space and 26-

connected neighbors in 3D space. The NGTDM is a matrix of size Ng × 1,

where Ng represents the the pre-defined number of quantized gray levels set

in VQ(x, y, z). Now, let us consider the 2D test image in Table 2.4a. The re-

sulting NGTDM of that image is filled in by examining the absolute intensity

difference of each center voxel with its corresponding average neighborhood

(thus excluding the center voxel in the average calculation). P (i) is therafter

incremented at the corresponding position of the examined gray level i. For

example, let us consider gray level 2 in the test image. There are two pixels

assigned to a gray level of 2, one at the center and another at the right border

of the image. Hence, two incrementations of P (2) will be required to obtain

the corresponding NGTDM for gray level 2. Traditionally in the radiomics

community, the calculation of P (2) is performed as follows:

P (2) =
∣∣2− (1 + 1 + 1 + 1 + 2 + 3 + 3 + 1)/8

∣∣

+
∣∣2− (1 + 1 + 2 + 3 + 1)/5

∣∣

= 0.78 (2.22)

However, this latter incrementation scheme does not take into account the

discretization length differences between the different pixels. In our work,

we apply corrections for these differences that are valid for both 2D or 3D

cases as follows: all averages around a center pixel/voxel are performed such

that the neighbours at a distance of
√
3 voxels are given a weight of 1/

√
3, the

neighbours at a distance of
√
2 voxels are given a weight of 1/

√
2, and the

neighbours at a distance of 1 voxel are given a weight of 1. Using corrections

for discretization length differences, the calculation of P (2) thus becomes:
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P (2) =
∣∣∣2−

( 3√
2
× 1 + 2× 1 + 1× 2 + 1√

2
× 3 + 1× 3)

3√
2
+ 2 + 1 + 1√

2
+ 1

∣∣∣

+
∣∣∣2−

( 1√
2
× 1 + 2× 1 + 1× 2 + 1√

2
× 3)

1√
2
+ 2 + 1 + 1√

2

∣∣∣

= 0.81 (2.23)

Table 2.4b shows the final NGTDM calculated using the scheme of Equation

2.23 for all gray levels. The features described in Appendix A.6 would then

be computed from this final NGTDM. In 3D, 26-voxel connectivity is used to

determine the average neighborhood of each voxel.

Table 2.4 : NGTDM computation example.

1 1 1
1 2 2
3 3 1

(a) 2D image

Ng × 1
↓ 3.65
i 0.81
↓ 2.16

(b) NGTDM

2.4 Machine learning

One of the overall goal in this thesis is to construct radiomic-based multi-

variable models that can predict different tumour outcomes. Different types

of models can be constructed using different machine learning algorithms

such as logistic regression and random forests, for example. A multivariable

model is usually composed of few predictive features. The number of fea-

tures is usually kept low in order for the model to be generalizable to patient

cohorts other than the one(s) from which it is trained. The search for the

best parsimonious model (the simplest model with best predictive proper-

ties) is the crucial step in all machine learning approaches, and it may involve

the estimation of prediction performance using different resampling tech-

niques (e.g., cross-validation or bootstrapping) and performance measures

(e.g., AUC). In this section, a brief theoretical overview of these concepts is

provided. Only the methods used in this work were considered.
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2.4.1 Mathematical notations and concepts

In this section, we detail the mathematical notation used throughout this the-

sis to define input data matrices, input row or column vectors of features, as

well as input feature values. Overall in this work, data matrices are denoted

with capital letters in bold font, column or row vectors with small letters in

bold font, and single variable values with small letters in italic font.

Let XXX be the following matrix of input data composed of N rows and M

columns, with i = 1, 2, . . . , N and j = 1, 2, . . . ,M :

XXX =




x1,1 x1,2 · · · x1,M

x2,1 x2,2 · · · x2,M

...
... . . . ...

xN,1 xN,2 · · · xN,M




The matrixXXX could represent, for example, a matrix of data to use as an input

to a given machine learning algorithm, with N being the number of patients,

and M the number of imaging features. Each entry xi,j in the matrix would

represent the numerical value of a given imaging feature (i.e., variable) j

extracted for patient (i.e., instance) i.

A row vector of input variables from XXX representing the set of M imag-

ing feature values over all the different features for a given patient i is then

defined as xxxi = {xi,j ∈ R : j = 1, 2, . . . ,M}, such that:

xxxi =
(
xi,1 xi,2 · · · xi,M

)
.

Similarly, a column vector of input variables from XXX representing the set

of N imaging feature values over all the different patients for a given feature

j is then defined as xxxj = {xi,j ∈ R : i = 1, 2, . . . , N}, such that:

xxxj =




x1,j

x2,j

...

xN,j




.

A label yi ∈ {0, 1} is also defined for each patient i, and it could repre-

sent the tumour outcome of a given patient. For example, the class of pa-

tients that developed lung metastases would be defined with yi = 1 and

denoted as “positive instances”, and the class of patients that did not de-

velop lung metastases would be defined with yi = 0 and denoted as “nega-

tive instances”. The column vector of input labels representing the set of all
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outcome values yi for all patients is then defined as yyy = {yi ∈ {0, 1} : i =

1, 2, . . . , N}, such that:

yyy =




y1

y2
...

yN




.

Finally, the overall goal of the machine learning approaches used in this

thesis is to find a function f in the form of a multivariable model that best

maps the set of input data XXX to the set of labels yyy, such that f :XXX ⇒ yyy.

2.4.2 Logistic regression

In logistic regression modeling, we are interested in finding a linear combi-

nation of p variables from an input data matrix XXX such that the multivariable

model of interest takes the form:

g(xxxi) = β0 +

p∑

j=1

βj xij , for i = 1, 2, . . . , N. (2.24)

In Equation 2.24, the set β = {βj ∈ R : j = 0, 1, . . . , p} is the set of logistic re-

gression coefficients of the model to be determined such that the conditional

probability of yi given the input xxxi is maximized for i = 1, 2, . . . , N . This op-

eration is carried out using a logistic regression model (logit transformation)

of the form:

π(xxxi) = P (yi = 1 |xxxi) =
exp [g(xxxi)]

1 + exp [g(xxxi)]
. (2.25)

The form of the logistic regression model shown in Equation 2.25 is com-

monly used in oncology since it models a sigmoidal relationship between the

input variables and the response endpoint within the range [0,1] as shown in

Figure 2.18, lending itself to a clinically meaningful probability interpretation

of observed responses. To be more specific, π(xxxi) expresses the conditional

probability that the outcome yi equals 1 given the input xxxi. Consequently,

the conditional probability that the outcome yi equals 0 given the input xxxi is

P (yi = 0 |xxxi) = 1 − π(xxxi). If we assume the N observations to be indepen-

dent, it follows that a convenient way to express the conditional probability

of a set of dichotomous outcome states given the set of input data is by using

the “log-likelihood” function:
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L(β) =

N∑

i=1

[
yi ln

(
π(xxxi)

)
+ (1− yi) ln

(
1− π(xxxi)

)]
. (2.26)

The set of logistic regression coefficients that maximizes the log-likelihood

function of Equation 2.26 is found by separately differentiating L(β) with

respect to all βj coefficients embedded in π(xxxi) and then equating to zero.

This yields a set of p + 1 non-linear equations to be solved simultaneously

using an iterative weighted least-square method. The presentation of this

methodology goes beyond the scope of this text, but the interested reader is

referred to reference [47] for a general description of the methods used by

most software.
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Figure 2.18 : Sigmoidal curve of logistic regression models.

2.4.3 Bootstrapping

Bootstrapping is a statistical resampling method introduced by Efron [48] in

1979. The motivation of his pioneering work was to develop a more general

yet simple alternative to cross-validation techniques for the estimation of un-

known probability distributions of random variables based on the observed
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data. Bootstrapping is in fact less prone to overestimation of statistical signif-

icance as compared to cross-validation techniques, one of the major pitfalls

of data mining. Bootstrap tutorials, reviews and applications in medicine can

be readily found in the literature [49–51]. In this thesis, bootstrapping is used

as the resampling method of choice to estimate the prediction performance of

radiomic models constructed using logistic regression as described in section

2.4.6. In this section, we demonstrate how bootstrap resampling leads to the

creation of two disjoint training and testing sets from a sample data matrix.

Let a data matrix XXX of N instances (e.g., patients) and M variables (e.g.,

imaging features). A bootstrap sample XXX∗ is a sample of N randomly drawn

instances with replacement from the available sample XXX (some of the xxxi may

appear 0, 1, 2, 3 . . . times in XXX∗). The bootstrap sample can be thought of

as a new training sample different from the observed sample. The set of all

original vectors xxxi that do not appear in XXX∗ is considered as a testing sample

and is denoted as XXX∗(0). As an example, consider the following situation:

• Let a set of data of 10 instances beXXX = {xxx1,xxx2,xxx3,xxx4,xxx5,xxx6,xxx7,xxx8,xxx9,xxx10}.

• 10 instances are randomly drawn from XXX with replacement. For exam-

ple, let the selected instances be {xxx3,xxx4,xxx1,xxx2,xxx2,xxx1,xxx5,xxx9,xxx3,xxx5}.

• Instances drawn from XXX constitute a bootstrap training sample: XXX∗ =

{xxx3,xxx4,xxx1,xxx2,xxx2,xxx1,xxx5,xxx9,xxx3,xxx5}.

• Instances not drawn fromXXX constitute a bootstrap testing sample: XXX∗(0) =

{xxx6,xxx7,xxx8,xxx10}.

The bootstrap resampling process is usually repeated for many bootstrap

samples b = 1, 2, . . . , B. Each different bootstrap training and testing sets

created from the different bootstrap samples b are denoted XXX∗b and XXX∗b(0),

respectively.

2.4.4 Random forests

The random forest algorithm was introduced by Breiman [52] in 2001. A

random forest consists of an ensemble of fully-grown decision-trees, where

two levels of randomness are introduced: I) Creation of each tree using a

different bootstrap sample; and II) Creation of each branching step of each

tree with randomly chosen variables available from the input data. These

two points will be discussed below.
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Although decision-trees could also be used for regression, our utilization

in this thesis is limited to classifications problems. A decision-tree essentially

divides an input space into several branching nodes. As described in Figure

2.19 with an example decision-tree, a testing instance would eventually fall

at the end of one of the different branching nodes (i.e., a leaf node). The

classification result (e.g., 0 or 1) for that instance in this decision-tree would

be the one assigned at the end of that particular leaf node.

0 1

0 1 0

1

1 0

CT_LRHGE<75.419   

CT_ZSN<0.245378   Age<69   

CT_ZSV<0.00828291   CT_ZSN<0.179226   

CT_ZSV<0.0026194   

CT_ZSV<0.00210613   

   CT_LRHGE>=75.419

   CT_ZSN>=0.245378    Age>=69

   CT_ZSV>=0.00828291    CT_ZSN>=0.179226

   CT_ZSV>=0.0026194

   CT_ZSV>=0.00210613

x
i

Figure 2.19 : Example classification using a decision-tree. Consider a testing
patient instance xxxi with the following variable values: {CT_LRHGE = 80.21,Age =
75,CT_LRHGE = 0.178}. The classification result for this patient from the example
decision-tree goes as follows: I) From the first branching node on top, CT_LRHGE =
80.21 ≥ 75.419 results in going to the right branch of the node; II) At the next branch-
ing node, Age = 75 ≥ 69 results in going to the right branch of the node; III) At the
next branching node, CT_LRHGE = 0.178 < 0.179226 results in going to the left of the
node; and IV) Having reached one of the end of the decision-tree (i.e., a leaf node), the
instance is classified as the value assigned to that leaf node: 1.

In a random forest, decision-trees are grown until all leaf nodes are pure

to only one class (i.e., fully-grown trees), thus until the probability of clas-

sification of one class is 100 %. This is in contrast to conventional decision-

trees where the classification probability of one of the leaf node could be, for

example, 70 % to class “0” and 30 % to class “1”. In the context of decision-

tree learning, a variable “A” is used to split each node into two daughter

branches. The variable choice among other variables is based on how well it

can predict a target class “C” based on its information gain defined as [53]:

gain(A) = H(A)−H(A |C), (2.27)
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where H is the entropy, a classical measure of information in information the-

ory that is conveyed by the probability distributions of the variables and the

target class. The threshold at each node is also set as to maximize the gain of

the tested variables. A particularity of random forests is that the tested vari-

ables are potentially different at every node of every decision-tree: a set of

m =
√
p variables are randomly chosen for each test node from an available

set of p variables, representing the lower level of randomness introduced in

random forests.

The most important concept of a random forest is, again, that it consists of

an ensemble of fully-grown decision-trees. Being fully-grown, each decision-

tree has no bias with generally a high variance. The power of random forests

resides in taking an average of multiple unbiased decision-trees to reduce

the variance of classification. The higher level of randomness introduced in

random forests results from the training of different decision-trees: from an

input data matrix XXX, each decision-tree is trained with a different bootstrap

sample XXX∗b. The number of trees T in the forest is thus conventionally equal

to the number of bootstrap samples B that are drawn from XXX. For binary

classification problems such as in this thesis, the final classification of a ran-

dom forest consists in taking the average of the classification results of all

decision-trees in the forest. For example, let a random forest be composed of

100 decision-trees. If 64 decision-trees provide a classification result of “1”

and 36 a classification result of “0”, the probability of classification of class

“1” is 64 %, wherehas it is 36 % for class “0”. The overall prediction of the

random forest classifier would thus be class “1” since P (yi = 1 |xxxi) > 0.5.

This process is illustrated in Figure 2.20.

We can now formally define the multivariable model response pRF(xxxi) of

a random forest composed of T decision-trees. Let ht(xxxi) ∈ {0, 1} be the clas-

sification result of the decision-tree t in the random forest. The probability of

observing outcome yi = 1 given an input xxxi is hereby defined as:

pRF(xxxi) = P (yi = 1 |xxxi) =

∑T
t=1 ht(xxxi)

T
. (2.28)

For more information about random forests, the reader is referred to ref-

erences [54, 55].
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Figure 2.20 : Schematic representation of a random forest prediction. A ran-
dom forest consists of T fully-grown decision-trees. The prediction result of the random
forest consists of the average classification result obtained from each decision-tree in the
forest, and it is thus expressed as a probability of observing an outcome yi given a set
of input data xxxi

2.4.5 Performance measures

In this section, two categories of performance measures are defined: I) Spear-

man’s rank correlation coefficient used in univariate analyses; and II) Re-

ceiver operating characteristic (ROC) metrics used in multivariable analyses.

Spearman’s rank correlation (univariate anaysis)

In this thesis, the Spearman’s rank correlation coefficient rs is used in univari-

ate analyses to quantify the association of single feature variables xxxj with an

outcome vector of interest yyy. First, the individual values xij of xxxj and yi of yyy

are converted to the set of ranks rrrxj and rrr
y
j with individual values rxij and ryij

that they take in their data vector, respectively. Ties in yyy and potential ties in

xxxj are assigned a rank equal to the average of their positions in the ascending

order of the values. Then rs(xxxj ,yyy) is defined as:

rs(xxxj ,yyy) =

∑N
i=1

(
rxij − rrrxj

) (
ryij − rrr

y
j

)
√∑N

i=1

(
rxij − rrrxj

)2 ∑N
i=1

(
ryij − rrr

y
j

)2 , (2.29)

where rrrxj and rrr
y
j are the average of rrrxj and rrr

y
j , respectively. Spearman’s rank

correlation describes how well two variables are monotonically related, inde-

pendently of their linear association as it is the case with Pearson’s coefficient.

A result of +1 implies perfect positive correlation, a result of -1 implies per-

fect negative correlation and a result of 0 implies no correlation between the

variables. The statistical significance of the correlation (p-value) is thereafter
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determined using a Student’s t-test. When summarizing correlation results

for multiple feature vectorsxxxj with a given outcome vectoryyy, Bonferonni [56]

or Benjamini-Hochberg [57] corrections for multiple testing comparisons can

be applied to reduce the false discovery rate (i.e., Type I errors).

ROC metrics (multivariable analysis)

In this thesis, ROC metrics are used in multivariable analyses to assess the

prediction performance of radiomic-based models in different types of test-

ing sets (bootstrap testing sets in Chapter 3 and Chapter 5, independent test-

ing sets in Chapter 4 and Chapter 6). Here, the “assessment of prediction per-

formance” refers to the overall efficiency of a classifier in correctly predicting

positive instances (i.e., yi = 1) as being of class “1” and negative instances

(i.e., yi = 0) as being of class “0”.

In binary classification theory, four quantities of interest are first calcu-

lated: I) TP: number of true positive instances; II) FP: number of false positive

instances; III) TN: number of true negative instances; and IV) FN: number of

false negative instances. Table 2.5 summarizes how a testing patient i is to be

classified as a TPi, FPi, TNi or FNi instance in the context of the multivariable

model responses of logisitic regression (g(xxxi) and π(xxxi) in Equation 2.24 and

Equation 2.25) and random forests (pRF(xxxi) in Equation 2.28).

Table 2.5 : Classification of testing instances i: TP, FP, TN and FN.

Multivariable model response
True outcome value Classification

Logisitic regression Random forests

g(xxxi) ≥ 0 ⇒ π(xxxi) ≥ 0.5 pRF(xxxi) ≥ 0.5 yi = 1 TPi

g(xxxi) ≥ 0 ⇒ π(xxxi) ≥ 0.5 pRF(xxxi) ≥ 0.5 yi = 0 FPi

g(xxxi) < 0 ⇒ π(xxxi) < 0.5 pRF(xxxi) < 0.5 yi = 0 TNi

g(xxxi) < 0 ⇒ π(xxxi) < 0.5 pRF(xxxi) < 0.5 yi = 1 FNi

Given that TP =
∑

i TPi, FP =
∑

i FPi, TN =
∑

i TNi and FN =
∑

i FNi, the

“sensitivity”, “specificity” and “accuracy” of classification is calculated as:

sensitivity =
TP

TP + FN
,

specificity =
TN

TN + FP
,

accruracy =
TP + TN

TP + FP + TN + FN
. (2.30)
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For the majority of tumour outcomes, the proportion of positive and negative

instances is not the same due to a low occurrence rate of events (e.g., devel-

opment of distant metastases). When working with unbalanced datasets, it is

crucial to perform model training by using imbalance adjustments in order

to obtain a performance of classification balanced between sensitivity and

specificity. Different methods for that purpose are developed in Chapter 3

and Chapter 6.

Finally, another metric summarizing prediction performance can be ex-

tracted from the ROC curve of a binary classifier. The ROC curve is a plot of

the true positive rate (i.e., the sensitivity) against the false positive rate (i.e.,

1− specificity) when new subsets of {TP, FP,TN, FN} are obtained for vary-

ing decision thresholds DT (e.g., classification to class “1” with g(xxxi) ≥ DT ).

The metric of interest enabling the assessment of the quality of the classifier

is then:

AUC = Area under the ROC curve (2.31)

Figure 2.21 displays an example ROC curve for two classifiers f1 and f2. Since

the area under the curve of f1 is higher than f2, its AUC metric is also higher.

An AUC of 0.5 corresponds to a random classifier whereas an AUC of 1 cor-

responds to a perfect classifier. One way of interpreting this metric is that the

greater is the AUC, the better is the separation rank between the positive and

negative instances.

2.4.6 Estimation of prediction performance

The estimation of prediction performance is a process occuring during model

training. The main goal is to estimate, from a training patient dataset SSStrain =

{XXXtrain,yyytrain}, the set of model parameters (e.g., features, logistic regression

coefficients, random forest architecture, etc.) that would allow for optimal

prediction performance of the complete model on the whole patient popu-

lation. The set SSStrain could be, for example, one or combined sample patient

cohort(s) coming from one or more cancer centers. The proof of concept to

validate that a complete model generalizes well to the whole patient popu-

lation involves to test the model, at a later stage, onto independent patient

cohorts coming from external cancer centers.

The prediction performance estimation process must thus take place en-

tirely in the available training dataset SSStrain. The usual process is to sub-

divide this set into two disjoint sets that we define asSSSsubTrain = {XXXsubTrain,yyysubTrain}
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Figure 2.21 : Concept of the AUC metric. This figure displays an example of a
receiver operating characteristic (ROC) curve. The ROC curve is obtained by comput-
ing the true and false positive rates of a classifier under varying decision thresholds.
The area under the ROC curve (AUC) is a measure of the prediction performance of a
classifier. An AUC of 0.5 corresponds to a random classifier whereas an AUC of 1 cor-
responds to a perfect classifier. In the example above, the classifer f1 has a higher AUC
than f2. Reprinted with permission from [58]. © 2015 Springer. All rights reserved.
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and SSSsubTest = {XXXsubTest,yyysubTest}, such that SSStrain = {SSSsubTrain ∪SSSsubTest}.1 Let us

then define the estimated AUC that we obtain when a model is trained in

SSSsubTrain and thereafter tested in SSSsubTest as:

ÂUC = AUC(SSSsubTrain,SSSsubTest). (2.32)

In this section, we describe below the methods used in this thesis when: I)

estimating the prediction performance of logistic regression models in terms

of the AUC using bootstrap resampling; and II) estimating the prediction

performance of random forests in terms of the AUC using stratified random

sub-sampling.

Bootstrap resampling

Let us recall that a sample data matrix XXX can be sub-divided into B boot-

strap training samples XXX∗b and bootstrap testing samples XXX∗b(0), with b =

1, 2, . . . , B. Here, XXX∗b is to equivalent to SSSsubTrain, and XXX∗b(0) to SSSsubTest.2 Three

AUC estimation methods are described here: I) the ordinary bootstrap method;

II) the 0.632 bootstrap method; and III) the 0.632+ boostrap method.

The estimation of the AUC using the ordinary bootstrap method (ÂUC)

goes as follows:

ÂUC =
1

B

B∑

b=1

AUC(XXX∗b,XXX∗b(0)). (2.33)

However, Efron [59] demonstrated in 1983 that the estimation of the AUC

using the ordinary bootstrap method (Equation 2.33) is pessimistically biased

(i.e., it underestimates the true AUC) becauseXXX∗b(0) is farther away from the

sample cohort XXX than a typical test sample randomly drawn from the true

population XXXtrue. On average over an infinite number of bootstrap samples,

the ratio of the distance between XXXtrue and XXX to the distance between XXX∗b(0)

1Formally in machine learning theory, SSStrain should be denoted as the “teaching set”,
SSSsubTrain as the “training set”, SSSsubTest as the “validation set”, and external and independent
sample patient cohorts as “testing sets”. Therefore, what we denote in this thesis as a “boot-
strap training sample” is formally a training set, and what we denote as a “bootstrap testing
sample” is formally a validation set. However, for the sake of consistency with previously
published material contained in this thesis, we will carry on with our current definitions in
the text that follows.

2This is not strictly true, as SSSsubTrain and SSSsubTest include the definition of the labels yyy.
However, in the text that follows and for the sake of consistency with already published
material contained in this thesis and from other research groups, AUC(SSS1,SSS2) is assumed
to always contain the definition of the labels in SSS1 and SSS2, even when AUC(XXX∗b,XXX∗b(0)) is
used (computing the AUC always requires a set of labels).
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and XXX is 1 − 1/e ≈ 0.632. To correct for that bias, the estimation of the AUC

using the 0.632 bootstrap method is defined by Efron [59] as:

ÂUC0.632 = (1−0.632)×AUC(XXX,XXX)−0.632× 1

B

B∑

b=1

AUC(XXX∗b,XXX∗b(0)), (2.34)

where the AUC calculated on the whole training cohort AUC(XXX,XXX) (i.e, the

model is both trained and tested on SSStrain) provoks an optimistic bias (i.e., it

overestimates the true AUC) on the estimated AUC to correct for the pes-

simistic bias of the ordinary bootstrap method.

Then, in 1997, Efron & Tibshirani [60] designed a method to balance the

pessimistic and optimistic bias of the ordinary and 0.632 bootstrap methods,

respectively: the 0.632+ method. Sahiner et al. [61] slightly modified that

method to obtain an estimated AUC under the 0.632+ method defined as:

ÂUC0.632+ =
1

B

B∑

b=1

[
(1− α(b)) ·AUC

(
XXX,XXX

)
+ α(b) · AUC′(XXX∗b,XXX∗b(0)

)]
,

AUC′(XXX∗b,XXX∗b(0)
)
= max

{
0.5,AUC

(
XXX∗b,XXX∗b(0)

)}
,

α(b) =
0.632

1− 0.368 · R(b)
,

R(b) =





1 if AUC
(
XXX∗b,XXX∗b(0)

)
≤ 0.5,

AUC (XXX,XXX)− AUC
(
XXX∗b,XXX∗b(0)

)

AUC (XXX,XXX)− 0.5
if 2 >

AUC
(
XXX,XXX

)

AUC
(
XXX∗b,XXX∗b(0)

) > 1,

0 otherwise.

(2.35)

In this work, the ÂUC0.632+ is the main metric used for the estimation

of the prediction performance of radiomics-based models constructed using

logistic regression.

Stratified random sub-sampling

In Chapter 6, prediction performance estimation for random forests is per-

formed using stratified random sub-sampling – this method is preferred to

bootstrapping for random forests since this machine learning algorithm in-

herently uses bootstrap resampling to train different decision-trees. The strat-

egy employed here essentially consists of sub-dividing SSStrain into S different
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splits. Each split s = 1, 2, . . . , S contains two disjoint sets that are randomly

sampled fromSSStrain without replacement such thatSSStrain = {SSSs
subTrain∪SSSs

subTest},

where SSSs
subTrain is chosen to be twice the size of SSSs

subTest. The “stratification”

part of the process implies that the random sub-sampling is such that SSStrain,

SSSs
subTrain and SSSs

subTest all contain the same proportion of positive and negative

instances. For example, consider the following situation:

• A example training set is defined as:

– SSStrain = {xxx−
1 ,xxx

−
2 ,xxx

−
3 ,xxx

−
4 ,xxx

−
5 ,xxx

+
6 ,xxx

−
7 ,xxx

−
8 ,xxx

+
9 ,xxx

−
10,xxx

−
11,xxx

+
12}

– Instances i = {1, 2, 3, 4, 5, 7, 8, 10, 11} are negative

– Instances i = {6, 9, 12} are positive

• Stratified random sub-sampling creates one split s with:

– SSSs
subTrain = {xxx−

1 ,xxx
−
3 ,xxx

+
6 ,xxx

−
7 ,xxx

−
8 ,xxx

−
10,xxx

−
11,xxx

+
12}

– SSSs
subTest = {xxx−

2 ,xxx
−
4 ,xxx

−
5 ,xxx

+
9 }

Finally, after randomly producing S splits, the estimation of the AUC is per-

formed such that:

ÂUC =
1

S

S∑

s=1

AUC(SSSs
subTrain,SSS

s
subTest). (2.36)
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3.1 Foreword

This Chapter presents a study published as the following paper: Martin Val-

lières, Carolyn R. Freeman, Sonia Skamene & Issam El Naqa. “A radiomics

model from joint FDG-PET and MRI texture features for the prediction of

lung metastases in soft-tissue sarcomas of the extremities”. Phys. Med. Biol.

60, 5471–5496 (2015).

In this study, the groundwork for the construction of radiomic-based pre-

diction models via logistic regression is presented. This process notably in-

volves texture optimization, feature set reduction, feature selection, predic-

tion performance estimation via bootstrapping, and imbalance-adjusted learn-

ing. Furthermore, we also explored a novel approach based on the fusion of

FDG-PET and MR imaging volumes to better quantify intratumoural hetero-

geneity using texture analysis. Ultimately, as single and complete multivari-

able model composed of four features was constructed for the prediction of

lung metastases in soft-tissue sarcomas.

3.2 Abstract

This study aims at developing a joint FDG-PET and MRI texture-based model

for the early evaluation of lung metastasis risk in soft-tissue sarcomas (STSs).

We investigate if the creation of new composite textures from the combina-

tion of FDG-PET and MR imaging information could better identify aggres-

sive tumours. Towards this goal, a cohort of 51 patients with histologically

proven STSs of the extremities was retrospectively evaluated. All patients

had pre-treatment FDG-PET and MRI scans comprised of T1-weighted and

T2-weighted fat-suppression sequences (T2FS). Nine non-texture features (SUV

metrics and shape features) and forty-one texture features were extracted

from the tumour region of separate (FDG-PET, T1 and T2FS) and fused (FDG-

PET/T1 and FDG-PET/T2FS) scans. Volume fusion of the FDG-PET and

MRI scans was implemented using the wavelet transform. The influence of

six different extraction parameters on the predictive value of textures was

investigated. The incorporation of features into multivariable models was

performed using logistic regression. The multivariable modeling strategy in-

volved imbalance-adjusted bootstrap resampling in the following four steps

leading to final prediction model construction: 1) feature set reduction; 2)

feature selection; 3) prediction performance estimation; and 4) computation
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of model coefficients. Univariate analysis showed that the isotropic voxel

size at which texture features were extracted had the most impact on predic-

tive value. In multivariable analysis, texture features extracted from fused

scans significantly outperformed those from separate scans in terms of lung

metastases prediction estimates. The best performance was obtained using a

combination of four texture features extracted from FDG-PET/T1 and FDG-

PET/T2FS scans. This model reached an area under the receiver-operating

characteristic curve (AUC) of 0.984 ± 0.002, a sensitivity of 0.955 ± 0.006,

and a specificity of 0.926 ± 0.004 in bootstrapping evaluations. Ultimately,

lung metastasis risk assessment at diagnosis of STSs could improve patient

outcomes by allowing better treatment adaptation.

3.3 Introduction

Soft-tissue sarcomas (STSs) constitute a heterogeneous group of malignant

neoplasms of mesenchymal cell origin. More than 50 sub-types are recog-

nized by the World Health Organization (WHO). STSs are relatively uncom-

mon, representing approximately 0.7 % of new adult malignancies in the

United States [1]. The majority of new cases are either intermediate or high-

grade tumours and may arise in virtually all sites, with the extremities as the

most common site of origin [2]. In general, the different forms of therapy lead

to excellent local control of STSs of the extremities. However, approximately

25 % of all patients with STSs develop distant metastases [3]. In the case of

high-grade tumours specifically, the metastatic rate goes up to approximately

50 % [2]. The lungs are the main site of metastases with approximately 80 %

of metastatic cases in STSs of the extremities [4]. The prognosis of patients

who develop lung metastases is generally poor, with a 3-year survival rate of

46 % for patients who have undergone surgical resection of lung metastases,

and 17 % for patients who did not [5]. Better systemic therapies at earlier

stages are thus needed for the management of STSs of the extremities with

risk for lung metastases [2]. In this situation, more aggressive chemother-

apy regimens or targeted cancer therapy adapted to the histopathology of

the tumour could be considered [6]. The specific and early evaluation of

lung metastasis risk (or prediction of lung metastases) in the course of STS

management is therefore of great interest since it could potentially allow for

better adapted treatments and consequently, improve overall survival.
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Most tumours do not represent a homogeneous entity, but rather are com-

posed of multiple clonal sub-populations of cancer cells forming complex dy-

namical systems that exhibit rapid evolution as a result of different therapy

perturbations. In solid cancers such as STSs, the tremendous extent of hetero-

geneous characteristics is expressed at multiple levels. Genes, proteins, cel-

lular microenvironments, tissues and anatomical landmarks within tumours

exhibit considerable spatial and temporal variations that could potentially

yield valuable information about tumour aggressiveness. However, study-

ing tumour heterogeneity using histopathological samples from biopsies is

very difficult since the procedure is invasive and the information obtained

may vary depending on which part of the tumour is sampled [7]. This is-

sue is addressed by the new emerging field of “radiomics”, which refers to

the extraction and analysis of large amounts of information from medical

images using advanced quantitative feature analysis [8, 9]. The central hy-

pothesis of radiomics is that the genomic heterogeneity of aggressive tumours

could translate into heterogeneous tumour metabolism and anatomy, a con-

cept demonstrated by Segal et al. [10] and Diehn et al. [11], and recently veri-

fied by Aerts et al. [12]. Diagnostic images could thus reveal important prog-

nostic information about disease risk. In this work, we attempt to quantify

intratumoural heterogeneity in STSs using texture analysis performed on 2-

deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission tomography (PET)

and magnetic resonance imaging (MRI). Figure 3.1 depicts how functional

FDG-PET and anatomical MR imaging information together reflect the het-

erogeneous sub-region characteristics of aggressive STSs.

The texture of an image could be globally defined as the spatial arrange-

ment of pixels of different intensities (i.e., gray levels). Texture analysis is

concerned with the quantitative description of the spatial distributions of

different gray levels within a region of interest from the extraction of dif-

ferent imaging features. The interest for this method by the radiomics com-

munity has grown up rapidly in the last few years, as it is considered to have

the potential to extensively characterize the complexity of imaging intensity

patterns within tumours (i.e., intratumoural heterogeneity). The association

of different texture features with different clinical endpoints (i.e., predictive

value) have been previously reported in different cancer sites on single pa-

tient cohorts: El Naqa et al. [13], Tixier et al. [14] and Cook et al. [15] using

texture features extracted from FDG-PET scans, and Vaidya et al. [16] using

texture features separately extracted from FDG-PET and CT scans. More re-

cently, Aerts et al. [12] assessed the prediction performance of a prognostic
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Figure 3.1 : FDG-PET and MRI diagnostic images of two patients with soft-
tissue sarcomas of the extremities. Top row: patient that did not develop lung
metastases. Bottom row: patient that eventually developed lung metastases. 1st col-
umn: FDG-PET images, axial plane. 2nd column: T1-weighted images, axial plane. 3rd

column: T2-weighted fat-saturated images, axial plane. 4th column: short tau inversion
recovery images, sagittal plane. The green lines in the two images of the 4th column
correspond to the plane shown in the three other respective images.

radiomics signature extracted from CT scans on multiple patient cohorts of

different cancer types, whereas Hatt et al. [17] evaluated the complementar-

ity of a few texture features with the metabolically active tumour volume

extracted from FDG-PET scans.

With the emergence of individualized medicine, a growing need exists

for the development of clinically-integrated prediction models that support

treatment decision-making [18]. Once useful imaging biomarkers (e.g., tex-

ture features) are identified to be relevant prognostic factors of a given tu-

mour outcome, models combining those factors may be constructed to im-

prove outcome prediction performance. Although studies based on single

feature response (univariate analysis) can be informative, multivariable mod-

els are expected to more comprehensively characterize intratumoural hetero-

geneity. Considering the high risk of lung metastases in STSs of the extrem-

ities and the resulting poor prognosis, the main objective of this work is to

develop a joint texture-based multivariable model from pre-treatment FDG-

PET and MRI scans for the evaluation of lung metastasis risk at the time of

diagnosis of primary STSs of the extremities. This information could even-

tually assist physicians in their choice of treatment and potentially improve
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patient survival. Towards this goal, we first investigate if the creation of

new composite textures from the combination of FDG-PET and MR imag-

ing information via volume fusion could better identify aggressive tumours.

We then develop multivariable modeling strategies for the construction of

texture-based models with optimal predictive and generalizability proper-

ties from a large number of radiomics features. To our knowledge, this is the

first study that explores the potential of texture features for the prediction of

lung metastases in STS cancer, and the first study that explores the potential

of joint FDG-PET and MRI texture features for the assessment of biological

properties of any type of cancer.

3.4 Materials and Methods

To ease reading, some acronyms and definitions frequently used in the text

are described in Table 3.1.

Table 3.1 : Acronyms/definitions used in this study.

Acronym/Definition Description

STS Soft-tissue sarcoma
T1 T1-weighted
T2FS T2-weighted fat-supression
LungMets Patients that developed lung metastases
NoLungMets Patients that did not develop lung metastases
Separate scans FDG-PET, T1 and T2FS scans
Fused scans FDG-PET/T1 and FDG-PET/T2FS scans
SUV Standard uptake value
Global First-order histogram
GLCM Gray-level co-occurence matrix
GLRLM Gray-level run-length matrix
GLSZM Gray-level size zone matrix
NGTDM Neighbourhood gray-tone difference matrix
MRI Inv. Inversion of MRI intensities
MRI weight Weight given to MRI sub-bands in the fusion process
WBPF Wavelet band-pass filtering
Scale Isotropic voxel size
Quant. algo. Quantization algorithm
Ng Number of gray levels
Predictive value Degree to which a feature is associated to tumour outcome
Degree of freedom Combination of texture extraction parameter types allowed to vary
rs Spearman’s rank correlation coefficient
AUC Area under the receiver operating characteristic curve
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3.4.1 Data

Patient cohort

Subsequent to research ethics board (REB) approval, a database of 51 pa-

tients with histologically proven primary STSs of the extremities (denoted as

“STSs” only for the rest of the text) was retrospectively retrieved. Patients

with metastatic and/or recurrent STSs at presentation were excluded from

the study. The patient cohort was divided into two groups: i) 32 patients

that did not develop lung metastases (denoted as “NoLungMets”; median

follow-up time of 33 months, range 12-70 months); and ii) 19 patients that

developed lung metastases (denoted as “LungMets”; median follow-up time

of 20 months, range 4-31 months) during the follow-up period. Patients from

the NoLungMets group with a follow-up time smaller than 12 months were

excluded from the study. Lung metastases were either proven by biopsy or

diagnosed by an expert physician from the appearance of typical pulmonary

lesions on CT and/or FDG-PET images. Table 3.2 provides summary charac-

teristics of the patient cohort.

Table 3.2 : Characteristics of STS patient cohort.

Characteristic Type No. of patients (%), n = 51

Sex Male 24 (47)
Female 27 (53)

Age (y) Range 16–83
Mean ± STD 55 ± 17

Histology Liposarcoma 11 (21)
Malignant fibrous histiocytomas 17 (33)
Leiomyosarcoma 10 (20)
Synovial sarcoma 5 (10)
Fibrosarcoma 1 (2)
Extraskeletal bone sarcoma 4 (8)
Other 3 (6)

Extremity site Lower 47 (92)
Upper 4 (8)

Grade High 28 (55)
Intermediate 15 (29)
Low 5 (10)
Ungraded 3 (6)

Recurrence/Spread Distant – Lungs 19 (37)
Distant – Other than Lungs 6 (12)
Locoregional 4 (8)
None 24 (47)

Treatment Radiotherapy + Surgery 30 (59)
Surgery + Chemotherapy 7 (14)
Radiotherapy + Surgery + Chemotherapy 14 (27)
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Imaging data

All 51 eligible patients had pre-treatment FDG-PET/CT and MRI scans be-

tween November 2004 and November 2011. All FDG-PET/CT scans were

performed on a PET/CT scanner (Discovery ST, GE Healthcare, Waukesha,

WI) at the McGill University Health Centre (MUHC). For the PET portion of

the scans, a median of 420 MBq (range: 210-620 MBq) of FDG was injected in-

travenously. Approximately 60 min following the injection, whole-body 2D

imaging acquisition was performed using multiple bed positions, with a me-

dian of 180 s (range: 160-300 s) per bed position. PET attenuation corrected

images were reconstructed (axial plane) using an ordered subset expectation

maximization (OSEM) iterative algorithm. The FDG-PET slice thickness res-

olution was 3.27 mm for all patients and the median in-plane resolution was

5.47× 5.47 mm2 (range: 3.91-5.47 mm).

The MRI scans resulted from clinical acquisitions with non-uniform pro-

tocols across patients. Twelve patients had their images acquired at the MUHC,

and 39 in an outside institution. Three types of MRI sequences routinely used

in clinical protocols were selected for the study, namely T1-weighted (T1), T2-

weighted fat-saturated and short tau inversion recovery (STIR) sequences.

Overall, the median in-plane resolution was 0.74×0.74 mm2, 0.63×0.63 mm2

and 0.86 × 0.86 mm2 (range: 0.23-1.64 mm, 0.23-1.64 mm and 0.23-1.72 mm

pixel width), and the median slice thickness was 5.5 mm, 5.0 mm and 5.0 mm

(range: 3.0-10.0 mm, 3.0-8.0 mm and 3.0-10.0 mm) for T1-weighted, T2-weighted

fat-saturated and STIR scans, respectively. T1-weighted sequences were ac-

quired in the axial plane for all patients. On the other hand, patients were

scanned in different planes with either or both T2-weighted fat-saturated

and STIR sequences, which macroscopically are both T2-weighted sequences

aiming to supress the fat signal in the body. From a texture point of view,

T2-weighted fat-saturated and STIR images are considered similar, and they

were thus combined in the same scan category with only one of the two se-

quences used per patient. T2-weighted fat-saturated scans were selected by

default due to their higher axial scan availability (n = 26). When T2-weighted

fat-saturated scans were not available, STIR scans were used (n = 25). For

the rest of the text, this category of scans is referred to as T2FS (T2-weighted

fat-suppression) scans
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3.4.2 Tumour volume definition

Contours defining the 3D tumour region for each patient were manually

drawn slice-by-slice on T2FS scans by an expert radiation oncologist. For

patients with visible edema in the vicinity of the tumours (n = 32), two con-

tours were drawn: one incorporating the visible edema and one excluding it,

as shown in Figure 3.2. Contours were propagated to FDG-PET and T1 scans

using rigid registration with the commercial software MIM® (MIM software

Inc., Cleveland, OH). The results presented in this work were obtained from

texture analysis performed on the volume of interest of each patient as de-

fined by the contour containing no edema.

Figure 3.2 : Example of soft-tissue sarcoma tumour volume definition per-
formed on the T2-weighted fat-saturated scan of a patient of the LungMets
group. The inner contour exclude visible edema in the vicinity of the tumour.

3.4.3 Imaging data pre-processing

Prior to texture analysis, FDG-PET and MRI DICOM data were transferred

into MATLAB® (The MathWorks Inc., Natick, MA) format using the soft-

ware CERR [19]. All subsequent analyses were performed in MATLAB®.

FDG-PET scans were first converted to standard uptake value (SUV) maps,

followed by the application of a square-root transform to help in the stabi-

lization of the PET noise in the images. MRI scans were kept in raw data

form, and voxels within the tumour region with intensities outside the range

µ±3σ were rejected and not considered in subsequent texture computations,

as suggested by Collewet et al. [20] for making MRI texture measurements

more reliable.
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3.4.4 FDG-PET/MRI volume fusion

The fusion of FDG-PET and MRI volumes first starts with the registration of

the scans as described in section 3.4.2. The 3D discrete wavelet transform

(DWT) is then used to combine the spatial and frequency characteristics of

the two modalities as follows:

1. Downsample the MRI volume (raw data, no pre-processing) to the res-

olution of the FDG-PET volume (pre-processed, see section 3.4.3) us-

ing cubic interpolation. Normalize the intensity range of FDG-PET

and MRI tumour regions between 0 and 255. Invert MRI intensities

if needed.

2. Apply the 3D DWT to the FDG-PET and MRI volumes up to one de-

composition level using the wavelet basis function symlet8.

3. Apply the µ ± 3σ normalization scheme (see section 3.4.3) respectively

to the wavelet coefficients of the tumour region of the different MRI

sub-bands. The rejected MRI wavelet coefficients are then replaced by

the spatially corresponding coefficients of the FDG-PET sub-bands.

4. Perform a weighted average of the spatially corresponding wavelet co-

efficients of all PET and MRI sub-bands to obtain a single set of fused

wavelet coefficients. If the weight given to MRI wavelet coefficients is

denoted as “MRI weight” and the weight given to PET wavelet coeffi-

cents is denoted as “PET weight”, MRI weight ranges from 0 to 1 and

PET weight = 1− MRI weight.

5. Apply the 3D inverse DWT to the set of fused wavelet coefficients us-

ing the reconstruction wavelet basis function symlet8 to obtain a fused

FDG-PET/MRI tumour volume.

The choice of the wavelet basis function symlet8 is based on our previous

work [21], in which that basis function was shown to produce fused textures

with best predictive value. This could be explained from the fact that symlets

is a family of orthogonal and compactly supported wavelets with the least

asymmetry and highest number of vanishing moments for a given support

width, which would help in the local preservation of spatial characteristics

of images.

The fusion process yields two new types of scans: FDG-PET/T1 and FDG-

PET/T2FS. We also tested if the inversion of MRI intensities prior to fusion
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with FDG-PET could enhance texture characteristics in the fused volumes.

Figure 3.3 shows an example of the fusion of FDG-PET and T2FS scans for a

patient of the LungMets group.

Figure 3.3 : Example fusion of PET and MR images. Fusion (middle) of a T2-
weighted fat-saturated scan (left) and a FDG-PET scan (right) with a MRI weight value
of 0.5, for a patient of the LungMets group. The T2-weighted fat-saturated scan was reg-
istered and downsampled to the FDG-PET scan resolution and is presented in raw data
format (no pre-processing). The FDG-PET scan is presented in pre-processed format.
The intensity range of the 3D tumour region of the three scans was normalized between
0 and 255.

3.4.5 Feature extraction

The methodology used to extract the imaging features from the tumour re-

gion of the pre-treatment FDG-PET and MRI scans is described below.

Non-texture features

In total, nine non-texture features were extracted for completeness.

SUV metrics (5). Five non-texture features were extracted from the tumour

region of the FDG-PET scans.

1. SUVmax: Maximum SUV of the tumour region.

2. SUVpeak: Average of the voxel with maximum SUV within the tumour

region and its 26 connected neighbours.

3. SUVmean: Average SUV value of the tumour region.

4. AUC-CSH: Area under the curve of the cumulative SUV-volume his-

togram describing the percentage of total tumour volume above a per-

centage threshold of maximum SUV [22].
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5. Percent Inactive: Percentage of the tumour region that is inactive. A

threshold of 0.005× (SUVmax)2 followed by closing and opening mor-

phological operations were used to differentiate active and inactive re-

gions on FDG-PET scans.

Volume. Number of voxels in the tumour region extracted from T2FS scans

multiplied by the dimension of voxels.

Size. Longest diameter of the tumour region extracted from T2FS scans.

Solidity. Ratio of the number of voxels in the tumour region to the number

of voxels in the 3D convex hull of the tumour region (smallest polyhedron

containing the tumour region). This metric is extracted from T2FS scans.

Eccentricity. The ellipsoid that best fits the tumour region is first computed

using the framework of Li & Griffiths [23]. The eccentricity is then given by

[1− a× b/c2]
1/2, where c is the longest semi-principal axes of the ellipsoid,

and a and b are the second and third longest semi-principal axes of the ellip-

soid.

Texture features

In total, 41 texture features were extracted from of the tumour regions of 5

different types of scans: FDG-PET, T1 and T2FS scans (“separate scans”), and

FDG-PET/T1 and FDG-PET/T2FS scans (“fused scans”). Table 3.3 presents

the list of texture features used in this study. Global features are extracted

from the intensity histogram of the tumour region, whereas GLCM, GLRLM,

GLSZM and NGTDM textures are matrix-based features. In this work, his-

tograms with 100 bins were used for the computation of Global features.

GLCMs, GLRLMs, GLSZMs and NGTDMs were constructed using 3D analy-

sis of the tumour region with 26-voxel connectivity. Only one GLCM, GLRLM,

GLSZM and NGTDM was computed per scan by simultaneously taking into

account the neighbouring properties of voxels in the 13 directions of 3D

space. However, the 6 voxels at a distance of 1 voxel, the 12 voxels at a

distance of
√
2 voxels, and the 8 voxels at a distance of

√
3 voxels around

center voxels were treated differently in the calculations of the GLCMs, the

GLRLMs and the NGTDMs in order to take into account discretization length
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differences (assuming that resampling to isotropic voxel size is applied be-

forehand, see next sub-section). Detailed description and methodology em-

ployed to extract the 41 texture features is available in Supplementary Mate-

rial 3.10.1.

Texture extraction parameters

The influence of the following six extraction parameters on the predictive

value of textures was investigated.

Fusion parameters (2). The following two parameters apply only to fused

scans (FDG-PET/T1 and FDG-PET/T2FS scans):

1. Inversion of MR imaging intensities in the FDG-PET/MRI fusion pro-

cess (see section 3.4.4). This parameter is denoted as "“MRI Inv.” MRI

Inv. of 0 and 1 (no inversion/inversion) were tested.

2. Weight applied to MRI wavelet sub-bands in the FDG-PET/MRI fusion

process (see section 3.4.4). This parameter is denoted as “MRI weight”.

MRI weight values of 1
4
, 1
3
, 1
2
, 2
3

and 3
4

were tested in this work.

Wavelet band-pass filtering (1). This parameter is denoted as “WBPF”. This op-

eration is carried out by applying a different weight to band-pass sub-bands

(LHL, LHH , LLH ,HLL, HHL and HLH) of the tumour region as compared

to low- and high-frequency sub-bands (LLL and HHH) in the wavelet do-

main. The ratio of the weight applied to band-pass sub-bands to the weight

applied to the other sub-bands is defined by R. Ratios of 1
2
, 2
3
, 1, 3

2
and 2 were

tested.

Isotropic voxel size (1). This parameter is denoted as “Scale”. Prior to the

computation of texture features, all volumes were resampled to an isotropic

voxel size set to a desired resolution using cubic interpolation. Scale values of

1 mm, 2 mm, 3 mm, 4 mm, 5 mm and initial in-plane resolution (denoted “in-

pR”) were tested. For example, if the desired Scale was set to 5 mm, a FDG-

PET volume with voxel size of 5.47× 5.47× 3.27 mm3 would be isotropically

resampled to a voxel size of 5×5×5mm3. If the desired Scale was set to in-pR,

a MRI volume with voxel size of 0.86× 0.86× 5 mm3 would be isotropically

resampled to a voxel size of 0.86× 0.86× 0.86 mm3. Note that Global texture

features are extracted after isotropically resampling to the in-plane resolution

without further processing.
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Table 3.3 : Texture features used in this study.

Texture type Reference(s) Texture name

Global –
Variance
Skewness
Kurtosis

GLCMa Haralick et al. [24]

Energy
Contrast
Correlation
Homogeneity
Variance
Sum Average
Entropy

GLRLMb

Galloway [25]

Short Run Emphasis (SRE)
Long Run Emphasis (LRE)
Gray-Level Non-uniformity (GLN)
Run-Length Non-uniformity (RLN)
Run Percentage (RP)

Chu et al. [26]
Low Gray-Level Run Emphasis (LGRE)
High Gray-Level Run Emphasis (HGRE)

Dasarathy & Holder [27]

Short Run Low Gray-Level Emphasis (SRLGE)
Short Run High Gray-Level Emphasis (SRHGE)
Long Run Low Gray-Level Emphasis (LRLGE)
Long Run High Gray-Level Emphasis (LRHGE)

Thibault et al. [28]
Gray-Level Variance (GLV)
Run-Length Variance (RLV)

GLSZMc

Small Zone Emphasis (SZE)

Galloway [25] Large Zone Emphasis (LZE)

Thibault et al. [28]
Gray-Level Non-uniformity (GLN)
Zone-Size Non-uniformity (ZSN)
Zone Percentage (ZP)

Chu et al. [26] Low Gray-Level Zone Emphasis (LGZE)
Thibault et al. [28] High Gray-Level Zone Emphasis (HGZE)

Small Zone Low Gray-Level Emphasis (SZLGE)
Dasarathy & Holder [27] Small Zone High Gray-Level Emphasis (SZHGE)
Thibault et al. [28] Large Zone Low Gray-Level Emphasis (LZLGE)

Large Zone High Gray-Level Emphasis (LZHGE)

Thibault et al. [28] Gray-Level Variance (GLV)
Zone-Size Variance (ZSV)

NGTDMd Amadasun & King [29]

Coarseness
Contrast
Busyness
Complexity
Strength

a GLCM: Gray-level co-occurence matrix.
b GLRLM: Gray-level run-length matrix.
c GLSZM: Gray-level size zone matrix.
d NGTDM: Neighbourhood gray-tone difference matrix.
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Quantization of gray levels (2). Prior to the computation of texture features, the

full intensity range of the tumour region was quantized to a smaller number

of gray levels Ng. The quantization process maps the voxel values of a vol-

ume to a finite set rrr = {rk ∈ R : k = 1, 2, . . . , Ng} of reconstruction levels

by defining a set ttt = {tk ∈ R : k = 1, 2, . . . , Ng + 1} of decision levels. Two

extraction parameters are related to the quantization of gray levels in the vol-

umes:

1. Quantization algorithm. This parameter is denoted as “Quant. algo.”

Equal-probability and Lloyd-Max quantization algorithms were imple-

mented in this work using the functions histeq and lloyds of MATLAB,

respectively. Equal-probability quantization attempts to define deci-

sion thresholds in the volume such that the number of voxels with re-

constructed level rk is the same in the quantized volume for all k (i.e.,

for all gray levels), whereas Lloyd-Max quantization attempts to mini-

mize the mean-squared quantization error of the output [30, 31].

2. Number of gray levels (Ng) in the quantized volume. Ng of 8, 16, 32 and

64 were tested.

Texture extraction summary. Considering the full set of texture extraction pa-

rameters of Global features and higher-order texture features (GLCM, GLRLM,

GLSZM and NGTDM), a total of 27 405 and 182 700 scan-texture-parameter

combinations were computed in this work for separate and fused scans, re-

spectively. Figure 3.4 presents a summary of the workflow of extraction of

texture features.

3.4.6 Univariate analysis

Univariate association between the whole set of features (9 non-texture fea-

tures and 210 105 scan-texture-parameter features) and lung metastases de-

velopment in STSs was investigated using Spearman’s rank correlation (rs).

To correct for multiple test comparisons, the Bonferroni correction method

was applied: the significance level was lowered to a value p < α/K, where

K is the number of comparisons and α the significance level set to 0.05.
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Figure 3.4 : Workflow of extraction of texture features.
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3.4.7 Multivariable analysis

The process of combining features into a multivariable model was achieved

using the logistic regression utilities of the software DREES [32]. We are in-

terested in finding a linear combination of p variables such that the multi-

variable model of interest takes the form:

g(xxxi) = β0 +

p∑

j=1

βjxij , for i = 1, 2, . . . , N, (3.1)

where the vector of input variables (imaging data) of the ith patient is xxxi =

{xij ∈ R : j = 1, 2, . . . , p}, for a number N of patients. The set β = {βj ∈
R : j = 0, 1, . . . , p} is the set of regression coefficients of the model to be

determined such that the conditional probability of the set of outcome states

{0,1} given the input data xxxi is maximized for i = 1, 2, . . . , N . This operation

is carried out using a logistic regression model (logit transformation) of the

form:

π(xxxi) = P (yi = 1|xxxi) =
exp [g(xxxi)]

1 + exp [g(xxxi)]
, for i = 1, 2, . . . , N. (3.2)

Following the work by [33], we adopted the 0.632+ bootstrap method and

the area under the receiver operating characteristic curve (AUC) metric to es-

timate which models learned from our patient cohort would best predict lung

metastases on new prospective data from the whole (or true) STS population.

Let AUC(SSStrain,SSStest) denote the value of the test AUC obtained when the clas-

sifier is trained on set SSStrain (computing logistic regression coefficients) and

tested in set SSStest (testing g(xxxi)). Also, let the observed sample (imaging data

of our patient cohort) be denoted as the matrix XXX = {xxxi : i = 1, 2, . . . , N}.

A bootstrap sample denoted as XXX∗ = {xxx∗
i : i = 1, 2, . . . , N} is a sample of

input variables xxxi of N patients randomly drawn with replacement from the

available sample XXX. The set of original data vectors that do not appear in XXX∗

is denoted as XXX∗(0). The generation of a large number B of randomly drawn

bootstrap samplesXXX∗b for b = 1, 2, . . . , B is used to estimate a statistical quan-

tity of interest on the unknown true population distribution. With the 0.632+

bootstrap method, the estimated AUC is then calculated as:
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ÂUC0.632+ =
1

B

B∑

b=1

[
(1− α(b)) ·AUC

(
XXX,XXX

)
+ α(b) · AUC′(XXX∗b,XXX∗b(0)

)]
,

AUC′(XXX∗b,XXX∗b(0)
)
= max

{
0.5,AUC

(
XXX∗b,XXX∗b(0)

)}
,

α(b) =
0.632

1− 0.368 · R(b)
,

R(b) =





1 if AUC
(
XXX∗b,XXX∗b(0)

)
≤ 0.5,

AUC (XXX,XXX)− AUC
(
XXX∗b,XXX∗b(0)

)

AUC (XXX,XXX)− 0.5
if 2 >

AUC
(
XXX,XXX

)

AUC
(
XXX∗b,XXX∗b(0)

) > 1,

0 otherwise.

(3.3)

In this work, each time a bootstrap sample XXX∗b was drawn from XXX in the

multivariable analysis, the probability of choosing a negative instance (NoL-

ungMets patient group class) was made equal to the probability of choosing a

positive instance (LungMets patient group class), a procedure hereby denoted

as “imbalance-adjusted bootstrap resampling”.

Prediction models were constructed for three different types of initial fea-

ture sets: i) 9 non-texture features + 9 135 FDG-PET scan-texture-parameter

features; ii) 9 non-texture features + 27 405 separate FDG-PET and MRI scan-

texture-parameter features; and iii) 9 non-texture features + 182 700 fused

FDG-PET/MRI scan-texture-parameter features. First, feature set reduction

was performed through a stepwise forward feature selection scheme in order

to create reduced feature sets containing 25 different scan-texture features

from larger initial sets, a procedure carried out using the Gain equation:

Ĝainj = γ · |r̂s(xxxj ,yyy)|

+ δa ·
[

f∑

k=1

(
2(f − k + 1)

f(f + 1)

)
P̂IC(xxxk,xxxj)

]

+ δb ·
[
1

F

F∑

l=1

P̂IC(xxxl,xxxj)

]
,

where r̂s(xxxj ,yyy) =
1

B

B∑

b=1

rs(xxx
∗b
j ,yyy),

and P̂IC(xxxk,xxxj) =
1

B

B∑

b=1

PIC(xxx∗b
k ,xxx

∗b
j ). (3.4)
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In Equation 3.4, rs(xxxj,yyy) is the Spearman’s rank correlation computed be-

tween feature j defined as xxxj = {xij ∈ R : i = 1, 2, . . . , N} and the out-

come vector yyy = {yi ∈ {0 : NoLungMets, 1 : LungMets} : i = 1, 2, . . . , N}.

PIC(xxxk,xxxj) is the potential information coefficient defined as PIC(xxxk,xxxj) =

1−MIC(xxxk,xxxj), where MIC(xxxk,xxxj) is the maximal information coefficient be-

tween feature j and k as defined by Reshef et al. [34]. The sum over k is a sum

over all f features that have already been chosen to be part of the reduced fea-

ture set (employed in forward selection schemes), whereas the sum over l is

a sum over all F features that have not yet been removed from a larger initial

set (employed in backward selection schemes). The sum over the k features

is always done in order of appearance of the different features in the reduced

set in order to favour the features from the larger initial set with the least

dependence with the features chosen first in the reduced set. In this work,

γ was set to 0.5, δa to 0.5 and δb to 0. Every time a new feature had to be

chosen in the reduced set from a larger initial set, a new Gain was calculated

for all remaining features in the larger initial set using imbalance-adjusted

bootstrap resampling (1000 samples). Note that Equation 3.4 allows to rank

specific scan-texture-parameter features, as part 1 of the Gain equation uses

Spearman’s rank correlations varying over the whole set of texture extrac-

tion parameters. However, to speed up calculations, average scan-texture

features over all texture extraction parameters were used in part 2 (and 3 if

needed) of the Gain equation.

From the reduced feature sets, stepwise forward feature selection was

then carried out by maximizing the 0.632+ bootstrap AUC. For a given model

order and a given reduced feature set, the feature selection step was divided

into 25 experiments. In each of these experiments, a different feature from

the reduced set was used as a different “starter”. For a given starter, 1000 lo-

gistic regression models g(xxxi) or order 2 were first created using imbalance-

adjusted bootstrap resampling (1000 samples) for each of the remaining fea-

tures in the reduced feature set. Then, the single remaining feature that max-

imized the 0.632+ bootstrap AUC of the models was chosen, and the process

was repeated up to model order 10. Finally, for each model order, the ex-

periment that yielded the highest 0.632+ bootstrap AUC was identified, and

combination of features were chosen for model orders of 1 to 10 (only fea-

tures of the models were selected, but logistic regression coefficients were

not yet computed).

The feature reduction and feature selection processes were repeated for all

possible combinations of texture extraction parameter types being allowed to
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vary or not (i.e., degrees of freedom): 24 combinations in the case of the initial

feature set containing textures extracted from FDG-PET scans and the initial

feature set containing textures extracted from separate scans, and 26 com-

binations in the case of the initial feature set containing textures extracted

from fused scans. For example, in an experiment where only MRI weight and

Quant. algo. texture extraction parameters were allowed to vary, the FDG-

PET initial feature set contained 9 non-texture features + 79 scan-texture-

parameter features, the separate scan initial feature set contained 9 non-texture

features + 237 scan-texture-parameter features, and the fused scan initial fea-

ture set contained 9 non-texture features + 790 scan-texture-parameter fea-

tures. Then, separately for each model order of 1 to 10 for the three fea-

ture sets, the degree of freedom on texture extraction parameters yielding the

multivariable models with the highest 0.632+ bootstrap AUC was found. For

the experiments in which specific extraction parameters were not allowed to

vary, baseline parameters had to be defined. Table 3.4 presents the baseline

texture extraction parameters used for the five different types of scans.

Table 3.4 : Baseline texture extraction parameters.

MRI Inv. MRI weight WBPF Scale Quant. algo. Ng

No 1
2 R = 1 in-pR Lloyd-Max 32

MRI Inv.: MRI Inversion, MRI weight: weight in FDG-PET/MR fusion process, WBPF: wavelet band-pass filtering,
Scale: isotropic voxel size, Quant. algo.: quantization algorithm, Ng : Number of gray-levels, R: ratio of the weight
applied to band-pass sub-bands to the weight applied to low- and high-frequency sub-bands. in-pR: in-plane
resolution.

Once optimal combination of features were identified for model orders of

1 to 10 for the three different types of feature sets, imbalance-adjusted boot-

strap resampling (1000 samples) was again performed for all models. Pre-

diction performance was then estimated using the 0.632+ bootstrap method

in terms of AUC as defined in Equation 3.3, and in terms of sensitivity and

specificity metrics as defined in Equation 3.5. Using the prediction estimates

for the three initial feature sets, a single combination of features possessing

the best parsimonious properties was then determined.
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Ŝ0.632+ =
1

B

B∑

b=1

[
(1− α(b)) · S

(
XXX,XXX

)
+ α(b) · S

(
XXX∗b,XXX∗b(0)

)]
,

α(b) =
0.632

1− 0.368 ·R(b)
,

R(b) =





S (XXX,XXX)− S
(
XXX∗b,XXX∗b(0)

)

S (XXX,XXX)
if

S
(
XXX,XXX

)

S
(
XXX∗b,XXX∗b(0)

) > 1,

0 otherwise,

for S : Sensitivity, Specificity. (3.5)

The last step in the construction of the final prediction model was to com-

pute the coefficients of the optimal combination of features using imbalance-

adjusted bootstrap resampling (1000 samples). Let the logistic regression co-

efficient of feature j computed in a bootstrap sample XXX∗b and modeling an

outcome vector yyy be denoted as βj(XXX
∗b,yyy) for j = 0, 1, . . . , p, where p is the

multivariable model order and j = 0 refers to the offset of the model g(xxxi).

The computation of the different coefficient estimates of the final prediction

model was then performed as follows:

β̂j =
1

B

B∑

b=1

βj(X
∗b,y), for j = 0, 1, . . . , p. (3.6)

Figure 3.5 summarizes the workflow of multivariable analysis.

3.5 Results

3.5.1 Univariate analysis

Table 3.5 presents the Spearman’s rank correlation (rs) between the nine non-

texture features and lung metastases development in STSs. Table 3.6 presents

the Spearman’s rank correlation between the 205 different scan-texture fea-

tures and lung metastases development in STSs. For each entry in Table 3.6,

two values appear: the rs in the case of texture features extracted using base-

line parameters as defined in Table 3.4 (left), and the maximal rs in the case

of texture features extracted using the optimal set of extraction parameters

when all parameters are allowed to vary, i.e., with full degrees of freedom

(right). In Table 3.5 and Table 3.6, the values in italic font indicate features for
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Figure 3.5 : Workflow of multivariable analysis.
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which p < α/K < 0.05/(9 non-texture features + 5 scans × 41 textures × 2 ex-

traction parameter degrees of freedom) ≈ 0.00012 according to the correction

for multiple testing comparisons.

Non-texture features

Table 3.5 : Spearman’s rank correlation (rs) between non-texture features and
lung metastases development in STSs. The values in italic font indicate features

for which p < 0.05/419 ≈ 0.00012.

Feature rs p-value

SUVmax 0.52 0.0001
Percent Inactive 0.51 0.0001
SUVpeak 0.5 0.0002
AUC-CSH −0.29 0.04
Volume 0.28 0.04
SUVmean 0.28 0.04
Solidity 0.24 0.09
Size 0.18 0.19
Eccentricity −0.17 0.25

AUC-CSH: Area under the curve of the cumulative SUV-volume histogram.

In Table 3.5, it can be seen that the non-textural features that are highly cor-

related with lung metastases are SUVmax and Percent Inactive. Note the pos-

itive signs of rs for these two features.

Texture features

In Table 3.6, it can be seen that texture features extracted from FDG-PET scans

generally have a higher predictive value than the texture features extracted

from MRI scans. The results in Table 3.6 also reveal that textures extracted

from fused scans generally have a higher predictive value than those ex-

tracted from separate scans. Moreover, it can be seen that different extrac-

tion parameters significantly impact the predictive value of the resulting tex-

tures. The extraction parameters used to produce the texture features with

the highest predictive value for the five different types of scans are presented

in Supplementary Material 3.10.2.

Texture extraction parameter effect

The Wilcoxon rank sum test was performed between the set of absolute Spear-

man’s rank correlation coefficients obtained from each of the 41 different tex-

ture features extracted using baseline extraction parameters, and the sets of
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Table 3.6 : Spearman’s rank correlation between texture features and lung
metastases development in STSs using baseline | optimal texture extraction
parameters. The values in italic font indicate features for which p < 0.05/419 ≈

0.00012.

Type Texture FDG-PET T1 T2FS FDG-PET/T1 FDG-PET/T2FS

Global Variance 0.12 | 0.13 0.21 | 0.21 0.03 | 0.05 −0.06 | −0.31 −0.44 | −0.49
Skewness 0.23 | 0.25 −0.36 | −0.36 0.16 | 0.17 0.13 | 0.28 0.28 | 0.39
Kurtosis −0.02 | 0.06 −0.28 | −0.31 −0.15 | −0.15 −0.11 | −0.24 0.33 | 0.42

GLCM Energy −0.01 | 0.49 −0.22 | −0.44 0.14 | 0.23 −0.04 | −0.51 0.37 | 0.53
Contrast −0.14 | −0.44 −0.08 | −0.33 −0.15 | 0.33 −0.19 | −0.52 −0.36 | −0.51
Entropy 0.01 | −0.43 0.12 | 0.41 −0.15 | 0.22 −0.02 | −0.46 −0.38 | −0.55
Homogeneity 0.28 | 0.49 0.04 | 0.26 0.18 | 0.26 0.23 | 0.53 0.42 | 0.51
Correlation 0.28 | 0.42 0.18 | 0.32 0.15 | 0.25 0.26 | 0.42 0.10 | 0.38
Sum Average−0.35 | −0.52 0.28 | 0.51 −0.11 | −0.29 −0.18 | −0.52 −0.27 | −0.52
Variance 0.31 | −0.43 0.32 | 0.49 −0.07 | −0.26 −0.20 | −0.50 −0.32 | −0.59

GLRLM SRE −0.33 | −0.53 −0.04 | −0.31 −0.18 | −0.34 −0.25 | −0.54 −0.41 | −0.53
LRE 0.34 | 0.53 0.02 | 0.34 0.20 | 0.33 0.25 | 0.53 0.36 | 0.53
GLN 0.15 | 0.32 0.25 | 0.29 0.25 | 0.30 0.12 | 0.33 0.18 | 0.33
RLN 0.13 | 0.32 0.26 | 0.30 0.22 | 0.30 0.14 | 0.33 0.14 | 0.33
RP −0.34 | −0.54 −0.02 | −0.33 −0.19 | −0.34 −0.25 | −0.54 −0.39 | −0.52
LGRE 0.29 | −0.48 0.06 | −0.37 −0.08 | −0.33 0.11 | −0.50 −0.16 | −0.58
HGRE −0.23 | −0.32 0.23 | −0.47 −0.12 | −0.28 −0.12 | 0.48 −0.21 | 0.43
SRLGE 0.26 | −0.49 0.08 | −0.44 −0.10 | −0.38 0.09 | −0.48 −0.17 | −0.58
SRHGE −0.25 | −0.35 0.10 | −0.44 −0.17 | −0.31 −0.14 | −0.40 −0.25 | −0.44
LRLGE 0.34 | 0.51 0.09 | 0.37 0.08 | 0.40 0.10 | 0.50 −0.11 | 0.54
LRHGE −0.21 | 0.55 0.27 | 0.50 0.16 | 0.36 −0.11 | 0.52 −0.12 | 0.55
GLV −0.33 | −0.52 −0.10 | −0.41 −0.28 | −0.39 −0.25 | −0.53 0.26 | −0.55
RLV −0.31 | −0.57 −0.18 | −0.38 −0.27 | −0.40 −0.27 | −0.56 −0.35 | −0.55

GLSZM SZE −0.18 | −0.42 −0.05 | −0.51 −0.05 | −0.35 −0.41 | −0.63 −0.41 | −0.60
LZE 0.19 | 0.50 0.23 | 0.33 0.21 | 0.36 0.19 | 0.53 0.30 | 0.52
GLN 0.15 | 0.33 0.20 | 0.31 0.21 | 0.29 0.10 | 0.32 0.13 | 0.33
ZSN 0.15 | 0.32 0.22 | 0.31 0.18 | 0.29 0.06 | 0.31 0.04 | 0.34
ZP −0.20 | −0.51 −0.17 | −0.41 −0.15 | −0.34 −0.25 | −0.58 −0.40 | −0.56
LGZE −0.09 | −0.48 0.31 | 0.36 −0.01 | 0.36 0.12 | −0.46 −0.16 | −0.55
HGZE −0.12 | 0.38 −0.19 | −0.40 −0.04 | −0.29 −0.17 | 0.50 −0.06 | 0.52
SZLGE −0.22 | −0.46 0.28 | −0.39 −0.01 | 0.34 0.10 | −0.47 −0.19 | −0.58
SZHGE −0.07 | 0.27 −0.17 | 0.47 −0.04 | 0.29 −0.31 | 0.52 −0.21 | 0.50
LZLGE 0.32 | 0.52 0.20 | 0.34 0.21 | 0.35 0.25 | 0.55 0.35 | 0.55
LZHGE 0.01 | 0.47 0.27 | 0.44 0.20 | 0.34 0.12 | 0.47 0.22 | 0.46
GLV −0.18 | −0.45 −0.25 | −0.34 −0.26 | −0.33 −0.21 | −0.53 −0.24 | −0.53
ZSV −0.21 | −0.48 −0.07 | −0.43 −0.05 | −0.33 −0.09 | 0.53 −0.01 | −0.48

NGTDM Coarseness −0.06 | −0.26 −0.22 | −0.28 −0.21 | −0.30 −0.08 | −0.29 −0.13 | −0.34
Contrast −0.14 | −0.39 0.16 | 0.36 0.02 | 0.33 −0.11 | −0.46 −0.33 | −0.51
Busyness 0.23 | 0.39 0.22 | 0.28 0.22 | 0.30 0.20 | 0.39 0.17 | 0.39
Complexity 0.21 | −0.55 −0.16 | 0.39 −0.13 | 0.40 0.14 | 0.52 0.22 | −0.48
Strength 0.04 | −0.25 −0.24 | −0.29 −0.21 | −0.29 −0.09 | −0.37 −0.07 | −0.33

Average absolute values 0.20 | 0.42 0.18 | 0.37 0.15 | 0.31 0.16 | 0.46 0.24 | 0.49
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maximal absolute Spearman’s rank correlation coefficients obtained from op-

timal texture-parameters for each of the 41 different textures when one ex-

traction parameter was allowed to vary, and the others set to baseline. The

same process was repeated for all parameters of all scans, and also for a

Wilcoxon rank sum test comparing baseline extraction parameters to full de-

grees of freedom on extraction parameters (ALL PARAMs). Table 3.7 presents

the p-value of the Wilcoxon rank sum tests, with multiple testing corrections

(α = 0.05, K = 29). The results point out that the optimization of the Scale

texture extraction parameter has the highest impact on the predictive value

for lung metastases development in STSs. In general, each extraction param-

eter seems to positively impact the predictive value of textures.

Table 3.7 : p-value of the Wilcoxon rank sum tests asserting the significance
of the effects of texture extraction parameters on the correlation of texture
features with lung metastases development in STSs. The values in italic font

indicate features for which p < 0.05/29 ≈ 0.0017.

Scan MRI Inv. MRI weight WBPF Scale Quant. algo Ng ALL PARAMs

FDG-PET – – 0.0727 < 0.0010 0.0017 0.0260 < 0.0010
T1 – – 0.2406 < 0.0010 0.1159 0.0369 < 0.0010
T2FS – – 0.2105 0.0013 0.0066 0.0352 < 0.0010
FDG-PET/T1 0.1085 0.0019 0.0034 < 0.0010 0.0024 0.0143 < 0.0010
FDG-PET/T2FS 0.5937 0.1259 0.3076 0.0024 0.4143 0.3909 < 0.0010

MRI Inv.: MRI Inversion, MRI weight: weight in FDG-PET/MRI fusion process, WBPF: wavelet band-pass filtering,
Scale: isotropic voxel size, Quant. algo.: quantization algorithm, Ng : Number of gray-levels, ALL PARAMs: all
texture extraction parameters allowed to vary.

3.5.2 Multivariable analysis

We compared the prediction performance estimation of multivariable mod-

els constructed using three different types of initial feature sets: i) FDG-PET

textures + non-texture features; ii) separate FDG-PET and MRI textures +

non-texture features; and iii) fused FDG-PET/MRI textures + non-texture

features. We performed experiments for all degrees of freedom on texture ex-

traction parameters. Figure 3.6 presents the prediction performance estima-

tion of multivariable models with optimal degrees of freedom on texture ex-

traction parameters, obtained separately for each model order of each initial

feature set. Supplementary Material 3.10.3 also provides detailed compar-

ison between prediction estimates obtained in the experiments using base-

line, full and optimal degrees of freedom on texture extraction parameters.

Results show that multivariable models constructed with texture features ex-

tracted from separate scans provide no significant prediction estimation im-

provements as compared to multivariables models constructed with texture
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features extracted from FDG-PET scans only. On the other hand, multivari-

able models constructed from fused scans significantly improve the predic-

tion performance estimation compared to FDG-PET scans alone.
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Figure 3.6 : Estimation of prediction performance of multivariable models
constructed from FDG-PET scans, SEPARATE scans, and FUSED scans us-
ing optimal degrees of freedom on texture extraction parameters, for model
orders of 1 to 10. The optimal degrees of freedom were found in terms of maximum
0.632+ bootstrap AUC, separately for each model order. Error bars represent the stan-
dard error of the mean on a 95 % confidence interval.

By inspecting the curves in Figure 3.6, we determined that the simplest

multivariable model with best predictive properties (best parsimonious model)

is obtained by linearly combining 4 texture features extracted from fused

FDG-PET/MRI scans. The associated prediction performance estimation of

this optimal combination of features using 1000 bootstrap samples yielded an

AUC of 0.984±0.002, a sensitivity of 0.955±0.006 and a specificity of 0.926±
0.004. These last results were obtained using the 0.632+ bootstrap method,

and as a comparison, the same model reached an AUC of 0.976±0.002, a sen-

sitivity of 0.938 ± 0.008 and a specificity of 0.892 ± 0.006 using the ordinary

bootstrap method (ÂUC = 1
B

∑B
b=1AUC

(
XXX∗b,XXX∗b(0)

)
). Next, the logistic re-

gression coefficients of the final prediction model were computed using 1000

bootstrap samples. We hence propose the following complete multivariable

model response g(xxxi) to be computed from fused FDG-PET/MRI scans at the

time of diagnosis of STSs for the prediction of future lung metastases devel-

opment:
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g(xxxi) =

−256× FDG-PET/T2FS(MRI Inv. = No Inv., MRI weight = 1/2, R = 3/2, Scale = 3 mm, Quant. algo. = Lloyd-Max, Ng = 64) - - GLSZM/SZE

+

5360× FDG-PET/T1(MRI Inv. = Inv., MRI weight = 1/2, R = 1/2, Scale = in-pR, Quant. algo. = Lloyd-Max, Ng = 16) - - GLSZM/ZSV

+

1.75× FDG-PET/T1(MRI Inv. = Inv., MRI weight = 3/4, R = 1, Scale = 2 mm, Quant. algo. = Lloyd-Max, Ng = 8) - - GLSZM/HGZE

+

3.16× FDG-PET/T2FS(MRI Inv. = Inv., MRI weight = 3/4, R = 2, Scale = 1 mm, Quant. algo. = Equal, Ng = 8) - - GLRLM/HGRE

+ 26.7 (3.7)

In order to evaluate the precision of the proposed model, we calculated

how its response changes using texture features extracted from tumour con-

tours that include surrounding edema. Supplementary Material 3.10.4 de-

tails the calculations. Overall, an absolute value of ±4.89 was estimated as

the uncertainty of the model due to contouring variations. This uncertainty

is constant across all values of g(xxxi). Then, to summarize how the model can

separate the instances of the two patient classes (LungMets versus NoLung-

Mets), the vector ggg = {g(xxxi) ∈ R : i = 1, 2, . . . , N} was computed for all pa-

tients using the multivariable model response of Equation 3.7 and was trans-

formed into the posterior probability π(xxxi) of observing outcome yi = 1 (i.e.,

developing lung metastases) given the input xxxi by using the logit transform

of Equation 3.2. Figure 3.7 displays the plot of π(xxxi) versus g(xxxi), along with

the associated 95 % confidence intervals (CIs) on g(xxxi) for i = 1, 2, . . . , N . For

each bootstrap sample b used to calculate the final logistic regression coeffi-

cients of Equation 3.7, a new value of g(xxx∗b
i ) was calculated for i = 1, 2, . . . , N

from the new coefficients computed on xxx∗b
i . Then, the lower and upper CI

bounds were estimated for each point i by calculating the 2.5 and 97.5 per-

centiles from the bootstrap distribution of g(xxx∗b
i ) for b = 1, 2, . . . , B. In Figure

3.7, the dots represent patients who eventually developed lung metastases,

and the crosses those who did not develop lung metastases. The uncertainty

due to contouring variations around the classification threshold g(xxxi) = 0 is

also shown, and Supplementary Material 3.10.4 provides the data (lung mets

status, g(xxxi) and CIs) used to construct the figure. It can be seen that the mul-

tivariable model of Equation 3.7 can clearly separate the patients of the two

risk groups. Note that the Spearman’s rank correlation between the model
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response vector ggg and the outcome vector yyy reached rs = 0.84, p < 0.001.
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Figure 3.7 : Probability of developing lung metastases as a function of the

response of the multivariable model proposed in this work, for all patients of

the cohort.

Finally, further validation of the proposed model was performed using

permutation tests [35]. This operation was carried out by randomly shuffling

the real outcome vector yyy of our patient cohort (i.e., keeping the same pro-

portion of 0’s and 1’s). In order to have a direct comparison with the model

of Equation 3.7, only the prediction performance of multivariable models of

order 4 for the feature set comprised of textures extracted from fused scans

were analyzed. For each of the 1000 permutation tests, a different multivari-

able model was constructed and its prediction performance was assessed.

Table 3.8 presents a summary of the results of the permutation tests, where

the p-values were estimated using the Monte Carlo sampling approach de-

scribed by Ernst [36]. Supplementary Material 3.10.5 also provides a display

of the permutation distributions. Overall, results in Table 3.8 show that the

null hypothesis can be rejected. Very few tests yielded prediction estimates

higher than the true observed values. The results give strong evidence that

the effect observed on the sample data is most likely present in the general

STS population.

3.6 Discussion

In this work, an imaging model was identified for the prediction of future

lung metastases development at the time of diagnosis of STSs. This mul-

tivariable model is composed of four texture features extracted from fused
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Table 3.8 : Summary of permutation tests. Comparison between the single value
of the performance metrics estimates of the multivariable model proposed in this work
found using the real outcome vector (T̂RUE), and the distribution of the performance
metrics estimates of models of order 4 from fused scans found in 1000 permutation tests

using shuffled outcome vectors (P̂ERM). SD: Standard deviation.

Metric Value
T̂RUE

Mean
P̂ERM

SD
P̂ERM

Range
P̂ERM

P̂ERM > Value
T̂RUE

p̂

AUC 0.984 0.895 0.04 [0.745, 0.988] 3 out of 1000 0.004
Sensitivity 0.955 0.798 0.05 [0.634, 0.938] 0 out of 1000 0.001
Specificity 0.926 0.812 0.05 [0.666, 0.948] 6 out of 1000 0.007

FDG-PET/MRI scans. The use of texture features extracted from fused FDG-

PET/MRI scans constitutes a new technique proposed in this work that re-

vealed to be promising for tumour heterogeneity quantification. Our ap-

proach focused on standard-of-care medical images in order to strengthen

its clinical impact. We believe that the methodology developed in this work

could be generalized to other types of cancer and tumour outcomes.

First, the association of nine non-texture features with lung metastases

development in STSs was presented in Table 3.5. As expected, SUVmax

was significantly associated with lung metastasis risk in STS cancer, a result

in agreement with other studies [37–39]. A significant positive association

was also found between Percent Inactive and lung metastases development,

meaning that the larger the volume of inactive FDG-PET regions in reference

to patient-specific SUVmax values, the higher the risk of developing lung

metastases in STS cancer. In Table 3.6, the strong and positive associations

of Homogeneity and LZE, and the strong and negative association of Com-

plexity, for example, corroborate this last assertion. This could be explained

from the fact that patients from the LungMets group often possess large and

uniform low-uptake regions (as compared to maximum SUV) in the inner

portion of their tumour on FDG-PET scans, most likely representing necrotic

areas. The presence of these inner, low-uptake uniform regions suggests that

the tumour is rapidly increasing in size and might be more at risk to metas-

tasize. As demonstrated, texture analysis can however reveal more infor-

mation about the tumour underlying biology than simple imaging metrics:

for example, the strong and positive association of the LZLGE metric with

lung metastases confirms that large low-uptake regions in FDG-PET have

significant predictive value, but the positive association of the LZHGE metric

(although to a lesser extent) suggest that large high-uptake regions may also

play an important role in the characterization of aggressive tumours. Note

that this last information would not have been captured by textures extracted

with standard baseline parameters (defined in Table 3.4) only. This suggests
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that texture optimization is a desirable property to enhance the predictive

value of textures, and Table 3.7 revealed that Scale is the extraction parame-

ter that has the most influence on texture definition. An image with a given

intrinsic resolution but resampled to different resolutions will produce dif-

ferent texture measurements, as imaging patterns are better captured for a

certain range of resolutions. In this sense, an optimal scale at which textures

offer best discrimination between the two classes of STS patients likely ex-

ists. In general, different texture features will better represent the underlying

tumour biology using different extraction parameters, and the optimal set of

parameters to use is application-specific and will depend on many factors

such as the clinical endpoint studied and the imaging modalities employed.

Furthermore, the results presented in Figure 3.6 showed that MRI textures

alone are generally not useful in comparison to FDG-PET textures. How-

ever, the addition of the MR imaging information to FDG-PET in the fusion

process seems to significantly improve and even stabilize the prediction per-

formance estimation of FDG-PET textures. Although some information may

be lost in the fusion process, the fusion of FDG-PET and MRI scans may

create new textural properties that can better characterize intratumoural het-

erogeneity than what separate FDG-PET and MRI scans can provide. Figure

3.7 then illustrated how the prediction model proposed in this work could

be clinically used for the evaluation of the risk of future lung metastases de-

velopment in STSs. A patient diagnosed with STS cancer would present in a

hospital and undergo FDG-PET and MRI scans (with both T1 and T2FS se-

quences). A single value of the form of Equation 3.7 could then be obtained

by extracting specific textures features from fused FDG-PET/MRI scans. Us-

ing the logit transform of Equation 3.2, this value could be transformed into

the probability of developing lung metastases. This probability could then

provide useful insights to physicians into risk assessment and treatment per-

sonalization. Ultimately, provided a given decision threshold and confidence

interval, standard treatments could be strengthened for high risk patients

and lessened for low risk patients. However, it can be seen from Figure 3.7

that the statistical uncertainty on g(xxxi) measurements (bootstrap CIs) inher-

ent to logistic regression coefficient estimates is significant and constitutes

the principal limiting factor of the proposed model. A larger patient cohort

is first needed to improve its precision. Moreover, a constant uncertainty of

±4.89 on g(xxxi) measurements due to contouring variations was found. This

uncertainty on g(xxxi) = 0 incorporates 19 patients of our cohort (9 from the
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LungMets group, 10 from the NoLungMets group), and no definitive conclu-

sion could be drawn for these patients in a clinical decision-support system.

This emphasizes the need to identify a model that can yet better separate

the two patient classes, but also to construct texture-based prediction models

from tumours delineated using automatic segmentation methods.

Overall, the multivariable model proposed in this work was found to pos-

sess high predictive potential for lung metastases in STS cancer. However, a

larger patient cohort is needed to create a more robust model, and indepen-

dent testing on external datasets is required to confirm its predictive proper-

ties. Once this step is cleared, we should investigate how this texture-based

model could complement clinical prognostic factors for optimal prediction.

The extraction of texture features from medical images and the construction

of prediction models are complex processes that need proper validation, and

much effort is still required in order to achieve clinical implementation of

a texture-based decision-support system. First, a consensus on techniques

used for imaging acquisition, data pre-processing, tumour delineation, tex-

ture analysis and multivariable modeling is needed in the radiomics commu-

nity. Assuredly, standardization and full transparency on data and methods

is the key for the progression of the field [18].

3.7 Conclusion

Textural biomarkers as an intratumoural heterogeneity quantification tool

hold great promise for the early prediction of tumour outcomes. In this work,

we explored a novel approach based on the fusion of FDG-PET and MRI vol-

umes to better quantify intratumoural heterogeneity using texture analysis.

Innovative texture extraction techniques and multivariable modeling strate-

gies were also developed for the construction of tumour outcome prediction

models from a large number of radiomics features. The results showed that

FDG-PET and MRI texture features could act as strong prognostic factors of

STSs and could provide insights about their underlying biology. FDG-PET

texture features were shown to generally possess a higher predictive value

than MRI texture features for lung metastases in STS cancer, but their pre-

dictive value was significantly enhanced by the addition of the MR imaging

information to FDG-PET via the fusion process. The results also pointed out

the importance of the optimization of texture extraction parameters to en-

hance their predictive value and to better understand the relation between
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textures and biology. Ultimately, we identified a model combining four tex-

ture features extracted from fused FDG-PET/MRI pre-treatment scans to pre-

dict future lung metastases development in STSs. This model reached high

prediction performance estimates in bootstrapping evaluations and was val-

idated using permutation tests. However, further validation on independent

datasets is required to confirm its predictive properties. We believe that the

methodology presented in this work could be generalized to other types of

cancers and that it could eventually lead to improvements in treatment per-

sonalization and patient survival.

3.8 Online resources

Clinical information and imaging data analyzed in this work are available

on The Cancer Imaging Archive (TCIA) website under the following DOI:

http://dx.doi.org/10.7937/K9/TCIA.2015.7GO2GSKS. All software

code implemented in this work is freely shared under the GNU General Pub-

lic License at: https://github.com/mvallieres/radiomics.
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3.10 Supplementary Material

3.10.1 Definition of texture features

In this thesis, please see Appendix A.
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https://github.com/mvallieres/radiomics
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3.10.2 Texture features with highest predictive value

Table 3.9 : Texture features with the highest Spearman’s rank correlation (rs)
with lung metastases in STS cancer and their associated extraction parame-
ters, for the five types of scans investigated in this study. The values in italic font

indicate features for which p < 0.05/419 ≈ 0.00012.

SCAN TEXTURE rs MRI Inv. MRI weight. WPBF Scale Quant. algo. Ng

FDG-PET RLV −0.57 – – R = 2/3 1 mm Lloyd-Max 16
T1 SZE −0.51 – – R = 2/3 5 mm Lloyd-Max 64
T2FS LRLGE 0.40 – – R = 2/3 2 mm Equal 64
FDG-PET/T1 SZE −0.63 Inv. 3/4 R = 2/3 5 mm Lloyd-Max 64
FDG-PET/T2FS SZE −0.60 No Inv. 1/2 R = 3/2 3 mm Lloyd-Max 64

MRI Inv.: MRI Inversion, MRI weight: weight in FDG-PET/MRI fusion process, WBPF: wavelet band-pass filtering,
Scale: isotropic voxel size, Quant. algo.: quantization algorithm, Ng : Number of gray-levels, R: ratio of weight
given to band-pass sub-bands to weight given to low- and high-frequency sub-bands.

3.10.3 Degrees of freedom on texture extraction parameters
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Figure 3.8 : Estimation of prediction performance as a function of model or-
der for multivariable models constructed from the FDG-PET, SEPARATE, and
FUSED scans for three types of experiment: i) experiments in which no texture ex-
traction parameter was allowed to vary (baseline parameters); ii) experiments in which
all texture extraction parameters were allowed to vary (full degree of freedom); and iii)
experiments using the particular set of texture extraction parameters allowed to vary
yielding the highest 0.632+ bootstrap AUC, separately for each model order of each ini-
tial feature set (optimal degree of freedom). Error bars represent the standard error of
the mean on a 95 % confidence interval.

There exists a certain degree of model complexity for which prediction

models have optimal parsimonious properties. An additional factor to model

order that increases model complexity comes from the whole range of texture
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extraction parameters used in this work, as too specific extraction parameters

may reduce the generalizability of prediction models. One way of reducing

model complexity is to fix specific extraction parameters by preventing them

to fully vary, or in other words, to restrict the degree of freedom on texture

extraction parameters. In principle, higher-order models should be coupled

to more restricted extraction parameter degrees of freedom in order to reach

optimal parsimonious properties, and vice-versa. The results presented in

Figure 3.8 confirm that there exists an optimal combination of model order

and texture extraction parameter degree of freedom in terms of predictive

properties. It can be seen that the higher the model order, the more distance

there is between the curves obtained using full and optimal degree of free-

dom on texture extraction parameters, especially in the case of the FDG-PET

feature set. On the other hand, for lower model orders, the curves obtained

using full and optimal degree of freedom on texture extraction parameters

are generally identical. Table 3.10 shows which extraction parameters were

allowed to vary in the experiments yielding the optimal prediction perfor-

mance estimation in Figure 3.8, for model orders of 1 to 10 and for the three

different types of initial feature sets.

Table 3.10 : Texture extraction parameters allowed to vary in the experiments
yielding optimal prediction performance estimation.

It can now be directly seen from Table 3.10 that an optimal degree of free-

dom on texture extraction parameters generally allows less parameters to

vary for higher model orders, except in the case of the feature set using sep-

arate scans. However, in light of the results we obtained, it is not possible to

identify a trend about which texture extraction parameters should be used as

a function of model order to obtain optimal prediction performance estima-

tion.
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3.10.4 Uncertainty analysis

Contouring variations

In this section, an estimation of the uncertainty of the multivariable model

proposed in this work g(xxxi) due to contouring variations is evaluated. Thirty-

two patients of the cohort had visible edema that could be clearly identified

in the vicinity of their tumours. For these patients, two types of contours

were drawn: one incorporating the visible edema (denoted as Edema), and

one excluding it (denoted as Mass). The proposed model and its associated

logistic regression coefficients were obtained using textures computed with

the Mass contours, and we now evaluate how its response changes using tex-

tures computed with the Edema contours (but with the same logistic regres-

sion coefficients). Table 3.11 first presents the volumes of the tumours and

the textures features differences of the four features of the proposed model

extracted with the two contours, for all patients of the cohort.

In table D.1, the average ∆xj of the absolute difference between the values

xij of the four features j = 1, 2, 3, 4 of the proposed model extracted from the

Mass and Edema contours over all patients i = 1, 2, . . . , N was computed such

that:

∆xij = |∆xij [Edema]−∆xij [Mass]| , for j = 1, 2, 3, 4

∆xj =
1

N

N∑

i=1

∆xij , for j = 1, 2, 3, 4

For the 19 patients without the Edema contour, ∆xj was considered to be

0 and was still incorporated in the calculation of ∆xj . Then, the global contri-

bution of contouring variations on the uncertainty of g(xxxi) was obtained by

adding in quadrature the contribution of each average texture variation ∆xj

such that (recalling that g(xxxi) = −256× xi1 + 5360× xi2 + 1.75× xi3 + 3.16×
xi4 + 26.7):

ǫcontour =

√√√√
p∑

j=1

[(
∂g(xi)

∂xij

)2

·
(
∆xj

)2
]

ǫcontour =
√
(−256)2 · (0.0065)2 + (5360)2 · (0.000675)2 + (1.75)2 · (1.46)2 + (3.16)2 · (0.39)2

ǫcontour ≈ 4.89
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Table 3.11 : Volumes, texture features and texture features differences of the

four features forming the multivariable model proposed in this work in the

case where the tumour region was outlined with the contour excluding sur-
rounding edema (Mass), and the case where the tumour was outlined with the

contour including the surrounding edema (Edema).

Patient Volume Volume ∆Volume Feature Feature
∆xi1

Feature Feature
∆xi2

Feature Feature
∆xi3

Feature Feature
∆xi4number (cm3) (cm3) (cm3) xi1 xi1 xi2 xi2 xi3 xi3 xi4 xi4

(i) Mass Edema Mass Edema Mass Edema Mass Edema Mass Edema

1 281 446 165 0.6459 0.6370 0.0089 0.000963 0.000473 0.000490 27.06 24.45 2.61 24.94 25.09 0.15
2 48 55 7 0.6374 0.6174 0.0200 0.003078 0.002921 0.000157 20.64 20.81 0.17 25.37 25.46 0.09
3 69 136 67 0.6708 0.6499 0.0209 0.001563 0.001054 0.000509 21.79 14.85 6.94 22.99 25.21 2.22
4 247 – 0 0.6723 – 0 0.001068 – 0 22.68 – 0 25.42 – 0
5 480 521 41 0.6234 0.5915 0.0319 0.002408 0.001814 0.000594 23.46 24.81 1.35 24.37 24.46 0.09
6 186 – 0 0.6184 – 0 0.003741 – 0 24.35 – 0 27.30 – 0
7 544 – 0 0.6199 – 0 0.001342 – 0 19.83 – 0 24.12 – 0
8 22 – 0 0.7411 – 0 0.001408 – 0 19.67 – 0 24.46 – 0
9 1905 1980 75 0.5866 0.5945 0.0079 0.001618 0.001814 0.000196 22.98 22.35 0.63 24.72 25.07 0.35
10 149 301 152 0.6417 0.6337 0.0080 0.001941 0.002530 0.000589 25.73 24.20 1.53 25.55 25.89 0.34
11 609 752 143 0.5990 0.5987 0.0003 0.001812 0.002577 0.000765 22.02 23.12 1.10 24.94 24.87 0.07
12 67 95 28 0.6702 0.6656 0.0046 0.002115 0.001755 0.000360 20.55 20.25 0.30 23.66 24.28 0.62
13 1378 – 0 0.6312 – 0 0.000839 – 0 30.79 – 0 24.32 – 0
14 362 459 97 0.5984 0.6066 0.0082 0.002784 0.003122 0.000338 22.71 23.36 0.65 25.10 24.81 0.29
15 70 73 3 0.6959 0.6903 0.0056 0.002368 0.001876 0.000492 21.55 21.72 0.17 24.31 24.29 0.02
16 406 623 217 0.6182 0.6203 0.0021 0.002081 0.004367 0.002286 21.44 22.26 0.82 24.90 25.35 0.45
17 438 – 0 0.6139 – 0 0.001980 – 0 25.03 – 0 26.16 – 0
18 117 – 0 0.6367 – 0 0.003734 – 0 24.25 – 0 24.62 – 0
19 13 – 0 0.7545 – 0 0.001689 – 0 21.30 – 0 24.86 – 0
20 2024 3371 1347 0.6478 0.6608 0.0130 0.001151 0.000678 0.000473 25.15 21.31 3.84 27.72 28.81 1.09
21 530 588 58 0.6000 0.5969 0.0031 0.002035 0.001945 0.000090 26.90 34.27 7.37 24.95 25.51 0.56
22 789 1078 289 0.6159 0.6320 0.0161 0.006121 0.002721 0.003400 29.51 24.00 5.51 24.97 25.86 0.89
23 153 265 112 0.6151 0.6152 0.0001 0.002104 0.001664 0.000440 24.47 22.42 2.05 24.97 25.37 0.40
24 65 99 34 0.6222 0.6106 0.0116 0.001204 0.002488 0.001284 22.87 24.85 1.98 21.87 23.22 1.35
25 25 – 0 0.7225 – 0 0.001456 – 0 21.08 – 0 23.27 – 0
26 326 – 0 0.6369 – 0 0.000835 – 0 23.20 – 0 24.17 – 0
27 751 860 109 0.5950 0.5872 0.0078 0.000434 0.002055 0.001621 27.45 29.88 2.43 25.74 25.54 0.20
28 176 – 0 0.5977 – 0 0.001983 – 0 25.51 – 0 26.42 – 0
29 240 458 218 0.6394 0.6194 0.0200 0.001673 0.001755 0.000082 25.71 25.95 0.24 25.05 25.79 0.74
30 300 2618 2318 0.6107 0.6054 0.0053 0.000912 0.001460 0.000548 18.48 25.14 6.66 24.38 26.58 2.20
31 389 433 44 0.6127 0.6069 0.0058 0.002153 0.005309 0.003156 22.99 27.32 4.33 25.22 24.82 0.40
32 89 127 38 0.6463 0.6349 0.0114 0.004610 0.004613 0.000003 26.85 22.99 3.86 24.52 24.13 0.39
33 340 599 259 0.6091 0.6106 0.0015 0.001997 0.000894 0.001103 22.96 20.18 2.78 25.17 25.73 0.56
34 538 652 114 0.6107 0.6020 0.0087 0.001638 0.001438 0.000200 23.95 23.84 0.11 25.23 25.27 0.04
35 27 – 0 0.7080 – 0 0.001360 – 0 15.09 – 0 21.60 – 0
36 287 503 216 0.6365 0.6029 0.0336 0.001849 0.000916 0.000933 22.31 24.06 1.75 25.41 25.59 0.18
37 593 772 179 0.5901 0.5982 0.0081 0.010574 0.004361 0.006213 24.20 18.45 5.75 26.69 27.77 1.08
38 365 467 102 0.5974 0.5922 0.0052 0.002043 0.002079 0.000036 27.25 27.97 0.72 24.93 25.65 0.72
39 567 713 146 0.6131 0.6027 0.0104 0.002710 0.001349 0.001361 29.93 28.39 1.54 24.52 24.64 0.12
40 299 – 0 0.6262 – 0 0.008294 – 0 23.82 – 0 24.72 – 0
41 50 58 8 0.6929 0.7041 0.0112 0.000420 0.000414 0.000006 20.01 21.65 1.64 23.89 23.18 0.71
42 31 33 2 0.6916 0.7160 0.0244 0.003538 0.005487 0.001949 17.42 17.05 0.37 23.05 23.67 0.62
43 143 – 0 0.6997 – 0 0.001437 – 0 29.47 – 0 24.90 – 0
44 583 – 0 0.6382 – 0 0.000879 – 0 23.29 – 0 24.77 – 0
45 348 – 0 0.6546 – 0 0.000982 – 0 23.82 – 0 24.81 – 0
46 563 653 90 0.6511 0.6493 0.0018 0.002120 0.000682 0.001438 28.20 26.89 1.31 26.00 25.87 0.13
47 179 – 0 0.6979 – 0 0.000721 – 0 21.56 21.56 0 24.26 – 0
48 293 337 44 0.6596 0.6509 0.0087 0.001632 0.003431 0.001799 29.05 29.35 0.30 24.75 24.92 0.17
49 1065 – 0 0.6033 – 0 0.000694 – 0 22.91 – 0 24.35 – 0
50 122 307 185 0.6296 0.6226 0.0070 0.001886 0.000358 0.001528 27.30 23.64 3.66 25.07 27.61 2.54
51 146 – 0 0.6851 – 0 0.003453 – 0 20.67 – 0 25.45 – 0

xi1 : FDG-PET/T2FS - - GLSZM/SZE
xi2 : FDG-PET/T1 - - GLSZM/ZSV
xi3 : FDG-PET/T1 - - GLSZM/HGZE
xi4 : FDG-PET/T2FS - - GLRLM/HGRE
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Overall in our patient cohort, an absolute value of ±4.89 was calculated

for ǫcontour. This uncertainty is constant across all values of g(xxxi).

Bootstrap confidence intervals

Table 3.12 : Response of the multivariable model proposed in this work on

the entire patient cohort, and its associated 95 % confidence interval (CI)

bounds.

Patient number Outcome Model response CI CI
∆CI(i) g(xxxi) Lower bound Upper bound

35 0 -51.7 -91.8 -30.9 60.9
8 0 -42.9 -74.7 -25.7 49.0
19 0 -40.7 -71.9 -23.8 48.1
25 0 -39.1 -69.4 -23.9 45.5
41 0 -37.0 -65.8 -23.4 42.4
47 0 -32.8 -58.3 -20.6 37.7
42 0 -27.2 -51.2 -14.7 36.6
3 0 -25.0 -46.2 -14.9 31.3
15 0 -23.3 -42.3 -13.7 28.5
12 0 -21.9 -39.7 -13.1 26.6
4 0 -18.8 -34.5 -11.0 23.5
24 0 -16.1 -36.3 -5.74 30.6
45 0 -14.6 -28.0 -9.47 18.6
30 0 -14.5 -28.8 -7.75 21.1
26 0 -14.0 -28.0 -8.96 19.0
43 0 -13.6 -27.7 -6.69 21.0
7 0 -13.0 -25.7 -7.36 18.3
51 0 -12.7 -28.7 -5.12 23.6
44 0 -12.0 -24.1 -7.86 16.2
1 0 -6.42 -15.4 -2.90 12.5
49 0 -6.10 -16.2 -1.43 14.7
36 0 -6.09 -13.0 -2.91 10.1
48 0 -3.46 -10.7 1.07 11.8
16 0 -3.30 -8.65 -1.19 7.46
29 0 -2.97 -8.02 -1.31 6.71
2 0 -2.79 -11.8 0.522 12.3
5 0 -1.02 -5.58 0.926 6.51
10 0 -0.506 -4.12 2.07 6.19
20 0 -0.460 -10.7 12.0 22.7
13 0 1.24 -5.63 10.7 16.3
11 0 1.31 -2.16 4.44 6.60
34 0 1.68 -1.24 4.30 5.54
33 1 2.09 -0.913 4.31 5.22
31 1 2.22 -0.915 4.08 4.99
23 1 3.14 0.517 5.05 4.53
50 1 3.53 0.110 6.63 6.52
46 1 3.79 -1.67 8.86 10.5
9 1 4.43 0.333 9.91 9.58
18 1 4.86 -1.35 11.0 12.4
27 1 6.98 1.08 16.9 15.9
17 1 7.52 2.73 13.7 11.0
14 1 8.39 4.00 14.1 10.1
21 1 10.8 5.31 18.0 12.7
32 1 11.3 3.00 23.4 20.4
38 1 12.1 6.01 20.2 14.2
28 1 13.3 6.64 23.1 16.5
39 1 15.0 7.15 25.8 18.7
6 1 18.2 8.13 35.2 27.1
40 1 31.5 15.1 64.8 49.7
22 1 33.3 19.1 61.0 41.9
37 1 59.9 37.5 115 77.8
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3.10.5 Permutation tests
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Figure 3.9 : Distributions of performance metrics estimates of multivariable
models of order 4 found in 1000 permutation tests using shuffled outcome
vectors. All histograms were constructed with 100 bins.
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4.1 Foreword

This Chapter presents a study submitted as the following paper: Martin Val-

lières, Monica Serban, Ibtissam Benzyane, Zaki Ahmed, Shu Xing, Issam El

Naqa, Ives R. Levesque, Jan Seuntjens & Carolyn R. Freeman. “The role

of FDG-PET, FMISO-PET, DW-MRI and DCE-MRI in the management of
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soft-tissue sarcomas of the extremities with pre-operative radiotherapy and

surgery: a feasibility study”. Radiother. Oncol. [submitted March 16, 2017].

In this work, the overall results obtained from a prospective study proto-

col initiated at the McGill University Health Centre are presented. Eighteen

soft-tissue sarcoma patients were recruited at our institution between Au-

gust 2013 and February 2016. Under the study protocol, patients were to re-

ceive FDG-PET, FMISO-PET, DW-MRI and DCE-MRI scans at pre-, mid- and

post-radiotherapy. Following study termination, different characteristics of

images at all time points were analyzed. Furthermore, the radiomic-based

model developed in Chapter 3 was validated and the technical feasibility of

dose painting was investigated onto these prospective patients, which con-

stitutes a treatment personalization strategy for patients identified to be at

higher risk of developing lung metastases. Finally, please note that this pa-

per was submitted to a journal considered as “clinical” (Radiotherapy and On-

cology) with a short number of words allowed to convey our message, hence

explaining the different tone in the writing as compared to the other papers

in this thesis.

4.2 Abstract

Background and Purposes: Management of extremity soft-tissue sarcomas

(STS) is complex due to the heterogeneity of histologies occurring at differ-

ent sites in the body. In this work, we validate a previously described FDG-

PET/MRI texture-based model for the prediction of lung metastases in STS.

We use anatomical and functional imaging at different treatment time points

and explore the feasibility of dose painting as a treatment strategy.

Material and Methods: We acquired FDG-PET, FMISO-PET, DW-MRI and

DCE-MRI data for 18 patients with extremity STS before, during, and after

pre-operative radiotherapy. We tested our lung metastases prediction model

using pre-treatment images. We evaluated the feasibility of dose painting us-

ing a prescription of 50 Gy to the PTV (PTV50 Gy) along with boost doses of

60 Gy to the FDG hypermetabolic GTV (GTV60 Gy) and of 65 Gy to the low-

perfusion DCE-MRI hypoxic GTV contained within the GTV60 Gy (GTV65 Gy)

using volumetric arc therapy (VMAT).

Results: The texture-based model for lung metastases prediction reached an
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AUC of 0.71, a sensitivity of 0.75, a specificity of 0.85 and an accuracy of 0.82.

Descriptive imaging analysis suggested that DW-MRI and DCE-MRI provide

complementary information to FDG-PET in STS; however, FMISO-PET did

not bring substantial additional value. Dose painting resulted in adequate

coverage and homogeneity within the different tumour sub-volumes: i) D95%

to the PTV50 Gy, GTV60 Gy and GTV65 Gy were 50.0 Gy, 60.3 Gy and 65.4 Gy, re-

spectively; ii) the homogeneity index (HI) (calculated as the ratio of the D5%

to D95%) for the difference volume of GTV60 Gy and GTV65 Gy, and for GTV65 Gy,

were 1.09 and 1.06, respectively.

Conclusions: Textural biomarkers extracted from pre-treatment images could

be used to identify patients that might benefit from dose escalation. The feasi-

bility of this was shown in this patient population, with dose levels of 60 Gy

and 65 Gy to intratumoural GTV functional sub-volumes. Moreover, DW-

MRI and DCE-MRI techniques are a practical and reliable way to monitor

the changing microenvironment of STS during radiotherapy.

4.3 Introduction

Soft tissue sarcomas (STS) comprise a heterogeneous group of tumours aris-

ing from mesenchymal tissues. They occur at all ages and in all sites, most

commonly the lower extremities. Treatment of STS in adult patients often

consists of wide local resection and radiotherapy. Increasingly, pre-operative

radiotherapy is favored because of the smaller treated volume and lower

dose used in this setting that results in better long-term function compared

with postoperative radiotherapy (RT) [1, 2]. With such treatment, local con-

trol is over 85 %. However, about 50 % of patients with high grade tumours

will develop metastatic disease and require additional treatment, typically

chemotherapy or now, for some tumour types, targeted agents [3].

Several studies, including some from our institution, have demonstrated

that positron emission tomography (PET) could be used in STS for predict-

ing prognosis, staging the disease and assessing response to therapy [4–7].
18F-Fluorodeoxyglucose (FDG) PET may be of interest for dose escalation in

radiotherapy of STS by targeting the most hypermetabolic and/or regions at

high risk for positive margins. STS are heterogeneous tumours that may con-

tain hypoxic regions, and 18F-Fluoromisonidazole (FMISO) uptake could be

a useful tool to identify these potential radioresistant regions that could also

benefit from a dose boost.
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The imaging modality of choice for STS is, however, magnetic resonance

imaging (MRI): MRI provides information about the size and location of

the tumour as well as its relationship to other structures such as the neu-

rovascular bundle which is important for planning for both surgery and

radiotherapy. More complex MRI techniques as compared to standard-of-

care sequences may provide valuable information regarding tumour biol-

ogy: diffusion-weighted magnetic resonance imaging (DW-MRI), for exam-

ple, could provide information about cellular density, and dynamic contrast-

enhanced magnetic resonance imaging (DCE-MRI) about vascular character-

istics such as blood flow, plasma volume, and mean transit time [8]. In the

case of STS, it has been shown that an increase in apparent diffusion coeffi-

cients (ADC) obtained from DW-MRI scans is positively correlated with re-

sponse to therapy [9] and with a decrease in tumour cellularity [10]. Further-

more, it has been suggested that heterogeneity in DCE-MRI pharmacokinetic

maps holds potential as a biomarker for STS response to therapy [11, 12].

We have previously developed a retrospective model combining textures

from FDG-PET and MRI pre-treatment images to assess tumor aggressive-

ness in newly diagnosed STS of the extremities using a retrospective cohort of

51 patients [7]. This model was found to possess high potential in predicting

the future development of lung metastases, with an area under the receiver

operating characteristic curve (AUC) of 0.98 in bootstrapping evaluations. In

this work, we tested these findings on a prospective cohort of patients with

STS. We then explored the feasibility of using PET and MR imaging informa-

tion for dose painting as a strategy to improve local control and reduce the

risk of developing metastatic disease.

4.4 Materials and Methods

Our primary objective was to collect both anatomic and functional imaging

information before, during, and after pre-operative radiotherapy in patients

with extremity STS to better understand the underlying biology of STS and

predict outcome in terms of distant metastases. Secondary objectives were

to evaluate the spatial overlap between tumour sub-regions of FDG-PET,

FMISO-PET, DW-MRI and DCE-MRI that could provide a biological ratio-

nale for dose painting and to test the feasibility of dose escalation in this

patient population.
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4.4.1 Patients

Eligible patients were those age ≥ 18 years with histologically confirmed

primary STS of the extremities without lymph node or distant metastases

who were deemed suitable for limb preservation surgery. Patients with rhab-

domyosarcoma, Ewing sarcoma/PNET, osteosarcoma or Kaposi sarcoma, or

those with contraindications for MRI (e.g., MR unsafe metallic foreign body

in the brain or eye, cochlear implant, some types of pacemakers) were not el-

igible. The study was approved by the Research Ethics Board of the Research

Institute of the McGill University Health Centre and all patients provided

signed informed consent prior to study entry.

4.4.2 Standard-of-care radiotherapy planning and treatment

Image-guided intensity modulated radiotherapy was applied per our stan-

dard practice. The GTV MRI was delineated on the MRI co-registered to

the planning CT scan. The CTV margin was +3 cm proximal and distal and

+1.5 cm radially, anatomically confined, i.e., not extending into bone or be-

yond an intact facial barrier or the skin surface. The PTV margin was +5 mm,

cropped at 5 mm from the skin. Dose prescription was as follows: minimum

50 Gy in 25 fractions to cover 95 % of the PTV, > 99 % of the PTV to receive >

97 % of the prescribed dose, and < 2 % of the PTV to receive > 110 % of the

prescribed dose

4.4.3 Study design

FDG-PET, FMISO-PET, DW-MRI and DCE-MRI images were to be collected

pre-radiotherapy (“pre-RT”), mid-radiotherapy (“mid-RT”) and post-radiotherapy

(“post-RT”) (Figure 4.1). Image acquisition and registration protocols are

provided in Supplementary Material 4.8.2 and 4.8.3, respectively. Standard-

of-care MR images acquired for anatomical tumor definition were also col-

lected including T1-weighted (“T1w”), T2-weighted fat-saturated (“T2FS”)

and T1-weighted post-injection of a gadolinium contrast agent (“T1w post-

gado”) images. We planned a maximum accrual of 20 patients with the ex-

pectation that at least 15 would complete all required studies as planned.
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Figure 4.1 : Timeline of the study protocol. Imaging studies scheduled at three
time-points were performed over two days to accommodate the use of the two PET
tracers. Standard-of-care exams included MRI and FDG-PET scans before and after
radiation therapy (RT). The mid-RT MRI and FDG-PET scans as well as all DCE-MRI,
DWI-MRI and FMISO-PET scans were additional exams.
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4.4.4 Image analysis

Validation of texture model

We applied the prediction model developed in our previous work [7] to the

patient cohort of this work by extracting and linearly combining texture fea-

tures from the FDG-PET and MR (T1w and T2FS) images. The performance

of the multivariable model response for predicting the future development of

lung metastases was assessed using receiver-operating characteristic curve

metrics.

Descriptive statistics

FDG-PET and FMISO-PET data were converted into standard SUV maps us-

ing injected tracer dose and patient body weight. Apparent diffusion coeffi-

cient (ADC) maps were calculated from three DW-MRI sequences acquired

with b-values of 100, 500 and 800 s/mm2 assuming a standard mono-exponential

signal decay model and using a linear fit to the natural logarithm of the

pixel data. DCE-MRI data were processed using the Tofts model [13] with a

population-based model for the arterial input function [14] to produce maps

of the permeability constant KTrans and interstitial volume ve. Maps of the

initial area under the signal enhancement curve (IAUC) from the injection to

60 seconds post-injection were also extracted from the DCE-MRI data [15].

Descriptive statistics (mean, 25th and 75th percentile) were extracted for each

tumour from all images at all available time-points.

Tumour sub-region analysis

Thresholds of the percentage of maximum intensity on imaging scans were

manually defined to create discrete high-intensity sub-region contours for

each patient. For FDG-PET, FMISO-PET, ADC maps from DW-MRI, and

IAUC maps from DCE-MRI, the average thresholds used were (44 ± 8) %,

(45 ± 7) %, (47 ± 7) % and (38 ± 8) %, respectively. All images were brought

to a common space (MRI) using rigid registration. To analyze the overlap

or complementarity of high intensities on the different pre-RT imaging stud-

ies, Dice coefficients [16] were calculated between the high-intensity tumour

sub-region masks of the different modalities. For longitudinal analysis, high-

intensity tumour sub-region contours were created for the mid-RT and post-

RT time points using the same thresholds and methods as for the pre-RT time

point. This means that the contours could evolve between different imaging



Chapter 4. A strategy for treatment personalization 137

time-points and potentially act as markers of tumour response to RT. The per-

centage volume of high-intensity tumour sub-regions relative to the whole

tumour volume was calculated for each imaging modality and for each time

point, and results over all patients were summarized using box plots.

4.4.5 Dose painting feasibility study

T1w post-gado, T2FS, DCE-MRI, and FDG-PET/CT were registered to the

planning CT scan. The anatomical MRI GTV was contoured on a T1w post-

gado and/or T2FS axial MRI. In addition to the standard anatomical GTV, we

defined a metabolic FDG GTV and a hypoxic low perfusion DCE-MRI GTV

using threshold percentages of maximum values of SUV maps (30 %) and

low-perfusion DCE-MRI maps [17] (50 %), respectively. The cumulative mar-

gin on the MRI GTV for CTV and PTV expansion (PTV50 Gy) was planned

to receive the standard prescription dose of D95% = 50 Gy with a maxi-

mum dose of 53.5 Gy. The MRI GTV (GTV53.5 Gy) was prescribed to a dose

of D95% ≥ 53.5 Gy. The FDG GTV and low-perfusion DCE-MRI GTV sub-

volumes of the MRI GTV53.5 Gy were used for dose boosting as follows: i)

the FDG GTV (GTV60 Gy) was to receive a boost dose of D95% ≥ 60 Gy with a

maximum dose of 65 Gy; and ii) the low-perfusion DCE-MRI GTV (GTV65 Gy)

contained within the FDG GTV was to receive a boost dose of D95% ≥ 65 Gy

with a maximum dose of 70 Gy.

Fourteen patients of the cohort were re-planned with the two levels of

dose boosting (60 Gy and 65 Gy) using volumetric arc therapy (VMAT) using

an Eclipse treatment planning system (V11.0). The treatment technique con-

sisted of three 6 MV arcs, of which two arcs were designed to cover the entire

PTV50 Gy whereas the third arc was designed to cover the boosted volumes

only, specifically, the GTV60 Gy and the GTV65 Gy volumes.

4.5 Results

Clinical characteristics of the 18 patients accrued to the study between 2013

and 2016 are given in Supplementary Table 4.2. There were 10 males and 8

females with a median age of 57.5 years (range: 27-80 years). Nine of the 18

patients had tumors in the thigh, four in the shoulder girdle, three in the arm,

and two in the leg. Eleven tumors were > 10 cm in size, six were 5-10 cm,

and one was < 5 cm. Thirteen of the 18 patients had high-grade tumors. One

patient developed local recurrence and this patient and 6 others developed
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metastatic disease (lung: 5, lymph nodes: 2, bone: 3, liver: one, soft tissue:

one, adrenal: one). One patient has died of disease. Twelve remain free of

disease at a median of 15 months (range 7-37 months).

Complete imaging data comprising FDG-PET, FMISO-PET, DW-MRI and

DCE-MRI were obtained pre-RT in only 14 of the 18 patients. This was due

to technical issues with DW-MRI in 3 patients, and with FMISO-PET in one

of these and one additional patient. Only 7 of the 18 patients completed

all planned imaging studies, mainly due to patient-related factors (practical

difficulties with scheduling, claustrophobia, refusal for other reasons).

4.5.1 Prediction of lung metastases development

Our texture-based model performed well when applied to the current patient

cohort of this work: the AUC was 0.71, the sensitivity 0.75, the specificity 0.85

and the accuracy 0.82 (Figure 4.2). Development of lung metastases (positive

and negative) was correctly predicted for 14 out of 17 patients. Supplemen-

tary Figure 4.7 shows FDG-PET imaging examples over the three time points

of 4 patients; in two of these the model correctly predicted lung metastases

(one positive, one negative) and in two it did not (one positive, one nega-

tive). These imaging examples suggest that different tumour sub-regions as

defined by the FDG uptake considerably influence the response of the FDG-

PET/MRI texture-based model.

4.5.2 General imaging findings

Tumour imaging data generally demonstrated elevated ADC, heterogeneous

tumor perfusion elevated in comparison to nearby tissues, and elevated FDG

uptake. Qualitatively, FMISO-PET images generally provided little supple-

mentary information as compared to FDG-PET. The progression of relevant

prognostic imaging metrics for FDG-PET (75th percentile of SUV distribu-

tion), FMISO-PET (75th percentile of SUV distribution), DW-MRI (25th per-

centile of ADC distribution) and DCE-MRI (mean of KTrans distribution) over

the course of RT is shown in Figure 4.3. The progression of these metrics

over the course of RT allowed separation of the patients into three groups

(increasing, stable, decreasing). For FDG-PET and FMISO-PET (Figure 4.3a

and Figure 4.3b) the patient groups are largely overlapping, indicating that

FMISO-PET provides only modest supplementary information as compared

to FDG-PET. By contrast, for ADC (Figure 4.3c) and KTrans (Figure 4.3d) the

patient groups are considerably different from the patient groups observed
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Figure 4.2 : Response of the FDG-PET/MRI texture-based model developed
in a previous work on a different retrospective cohort of patients [7] when di-
rectly applied on the patient cohort of this study. The blue dots represent patients
who eventually developed lung metastases and the red crosses those who did not. Lung
metastasis development was correctly predicted for all patients except patients 10-MF,
13-MF and 15-FM. The abbreviations MF and FM stand for myxofibrosarcoma and fi-
bromyxoid sarcoma, respectively.

on PET imaging. Also, patients with an overall decrease in mean KTrans dis-

tribution after RT seem to first experience an increase in perfusion character-

istics at mid-RT, possibly due acute hyperemic response [18]. Furthermore,

the radiation response for patients of the same STS subtype (e.g., myxofi-

brosarcoma) is not always similar (Figure 4.3e). Example images are shown

for DW-MRI and DCE-MRI in Supplementary Figure 4.6, and for FDG-PET

and FMISO-PET in Supplementary Figure 4.7.

4.5.3 Tumour sub-region analysis

High-intensity tumour sub-region contours for the FDG-PET, FMISO-PET,

DW-MRI (ADC map) and DCE-MRI (IAUC map) pre-RT scans of patient 15

are shown in Figure 4.4 (left). Images in Figure 4.4a and Figure 4.4b sug-

gest that FMISO-PET sub-regions do not bring supplementary information

as compared to FDG-PET. On the other hand, as expected, ADC and IAUC

sub-regions (Figure 4.4c and Figure 4.4d) differ considerably from FDG-PET

for that patient. Of note, we observe that the FDG-PET high-intensity sub-

region seems to be distinctly separated into high- and low-perfusion regions
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Figure 4.3 : Changes in relevant prognostic metrics of FDG-PET, FMISO-PET,
DW-MRI and DCE-MRI intratumoural data at 3 time points during radiother-
apy (PRE-RT, MID-RT, POST-RT) for patients with available images. (a) 75th

percentile of FDG-PET SUV; (b) 75th percentile of FMISO-PET SUV; (c) 25th percentile
of apparent diffusion coefficients (ADC); (d) Average of volume transfer coefficients
(KTrans); (e) Patient grouping per imaging modality with respect to metric changes from
PRE-RT to POST-RT as seen in panels a-b-c-d. The size of the markers is proportional
to the relative change. The abbreviations UPS, ML, LM, MF, RCML, PL, SS, FM, PS and
MIF stand for undifferentiated pleomorphic spindle cell sarcoma, myxoid liposarcoma,
leiomyosarcoma, myxofibrosarcoma, round cell/myxoid liposarcoma, pleomorphic li-
posarcoma, synovial sarcoma, fibromyxoid sarcoma, pleomorphic spindle cell sarcoma
and myxoinflammatory fibroblastic sarcoma, respectively.
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obtained from IAUC maps, the latter indicated by the yellow arrows in Fig-

ure 4.4d. Using Dice coefficient (s) analysis, we then determined that: i)

there is high overlap or low potential of complementarity between high-

intensity regions of FDG-PET and FMISO-PET (s = 0.76 ± 0.13); ii) there

is medium overlap or medium potential of complementarity between high-

intensity regions of FDG-PET and ADC (s = 0.52±0.23), FDG-PET and IAUC

(s = 0.51 ± 0.15), FMISO-PET and ADC (s = 0.58 ± 0.20), and FMISO-PET

and IAUC (s = 0.55 ± 0.15); and iii) there is low overlap or high poten-

tial of complementarity between high-intensity regions of ADC and IAUC

(s = 0.39± 0.17). In Figure 4.4 (right), the box plots show that the percentage

of high-intensity sub-regions generally decreases for all imaging studies as

RT progresses, except for ADC for which the trend is unclear.

4.5.4 Dose painting

An example image of low-perfusion DCE-MRI blended with CT of patient 5

is shown in Figure 4.5a, with contours extracted from T1w post-gado (GTV53.5 Gy),

SUV maps (GTV60 Gy) and low-perfusion DCE-MRI (GTV65 Gy). An example

image of the different boost levels of the dose painting distribution on an

axial view of the planning CT of patient 5 is shown in Figure 4.5b. The dose-

volume parameters in Table 4.1 demonstrate that adequate coverage and ho-

mogeneity can be achieved within the individual tumour sub-volumes. The

D95% to the PTV50 Gy, GTV60 Gy and GTV65 Gy were 50.0 Gy, 60.3 Gy and 65.4 Gy,

respectively. The homogeneity index HI (calculated as the ratio of the D5% to

D95%) for the difference volume of GTV60 Gy minus GTV65 Gy, and for GTV65 Gy,

were 1.09 and 1.06, respectively.

Table 4.1 : Dose-volume parameters for the different dose painting boost
levels averaged over 14 patients. The homogeneity index (HI) was calculated
as the ratio of D5% to D95% for differential volumes (i) PTV50 Gy − GTV53.5 Gy, (ii)

GTV53.5 Gy − GTV60 Gy, (iii) GTV60 Gy − GTV65 Gy; and volume (iv) GTV65 Gy.

Region of interest D95% (Gy) DMean (Gy) HI
PTV50 Gy 49.99± 0.03 52.05± 0.45 1.09± 0.02(i)

GTV53.5Gy 54.44± 2.50 56.70± 1.49 1.17± 0.03(ii)

GTV60 Gy 60.29± 0.20 62.65± 0.52 1.09± 0.02(iii)

GTV65 Gy 65.44± 0.41 67.59± 0.29 1.06± 0.01(iv)
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Figure 4.4 : Analysis of high-intensity tumour sub-regions over time. (a) FDG-
PET scans; (b) FMISO-PET scans; (c) Apparent diffusion coefficient (ADC) maps com-
puted from DW-MRI scans; (d) Maps of the initial area under the signal enhancement
curve (IAUC) from the injection to 60 seconds post-injection computed from DCE-MRI
scans, with example low perfusion areas identified by yellow arrows. The left column
shows example images and high-intensity tumour sub-region contours for the same
slice of patient 15 (fibromyxoid sarcoma). The high-intensity tumour sub-region con-
tour is shown in blue, red, green and magenta for FDG-PET, FMISO-PET, ADC and
IAUC, respectively. The contour of the whole tumour is shown in cyan in all images.
The right column shows notched box plots summarizing the distribution of volume
percentages of high-intensity tumour sub-regions over all patients of the cohort, for the
three radiotherapy (RT) treatment time points: pre-, mid and post-RT. For each box
plot, the median is represented by the red line, the blue box specifies the 25th and 75th

percentiles and the whiskers specify the range of the distribution.
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Figure 4.5 : Dose painting example. (a) Low-perfusion DCE-MRI and CT blended
images of patient 5; (b) Dose painting dose distribution with different levels of dose
boosting of patient 5.

4.6 Discussion

Treatment of soft tissue sarcoma has become increasingly standardized over

the past two decades, with most patients now being treated at diagnosis with

a combination of limb-preserving surgery and radiotherapy. While outcomes

in terms of local tumor control and function are generally better than in the

past, systemic control has not improved significantly and remains an obsta-

cle to cure, particularly for patients with large, high-grade tumors [3]. This

prospective study was thus designed with the objective of using multimodal-

ity imaging to improve treatment personalization from the outset. Higher

radiotherapy doses to radioresistant components of the tumor might be a

useful strategy to reduce the risk of developing metastatic disease, given ev-

idence that intratumoural hypoxia can drive the metastatic phenotype [19,

20]. With this in mind, the goal of this work was to investigate the feasibility

of dose escalation to tumour sub-regions inside the GTV based on functional

information obtained from PET and MR imaging.

The texture-based model using FDG-PET and MRI that we previously de-

veloped [7] performed well in predicting lung metastases development prior

to radiotherapy in the new cohort of this study. This information could be

useful to identify patients that would benefit the most from dose escalation

to different sub-volumes within the GTV.

Changes in anatomical and functional imaging data over the course of

radiotherapy were also analyzed. FMISO uptake within the tumours was

overall not substantially different from the FDG uptake and generally on the
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same level as the FMISO uptake within muscles. FDG-PET, DW-MRI and

DCE-MRI data displayed considerable inter-patient variability over time, in-

dicating potential for treatment adaptation and personalization. We also ob-

served that progression of simple prognostic metrics from pre- to mid- to

post-RT is not consistent between the different imaging modalities. No clear

patient grouping using a single or combination of imaging modalities could

be defined to predict response to radiotherapy or other outcomes. Excep-

tions could be myxofibrosarcomas, for which 3 out of 5 patients experienced

an overall increase in FDG and FMISO uptake over the course of radiother-

apy. This attests to the complexity of STS treatment response management

and suggests investigating the use of more complex imaging metrics such as

texture features to characterize STS phenotypes.

With regards to dose painting, our goal had first been to achieve an ini-

tial level of dose boost to the hypermetabolic and potentially more aggres-

sive tumour sub-regions as seen on the FDG-PET scans. We then attempted

to achieve a second level boost with higher dose to the hypoxic volume

contained within the hypermetabolic tumour sub-regions, as increasing ev-

idence suggests that glucose demands in hypoxic portions of large tumours

are significantly higher than in normoxic cancer cells [21] and that the degree

of FDG uptake may indirectly reflect the level of hypoxia [22]. Since in our

experience FMISO-PET proved not useful in defining the level of hypoxia

in STS as compared to nearby muscles, one approach was to investigate in-

stead, as a surrogate for hypoxia, the use of a low-perfusion DCE volume [17,

23] contained within the high-activity FDG volume, as we observed that in

most patients high-activity FDG tumour regions (i.e., excluding the inactive

or necrotic part of the tumour) could be distinctly separated into high- and

low-perfusion sub-volumes.

An important finding from this work is that dose escalation with VMAT

boosting to multiple GTV sub-volumes is technically feasible. It was previ-

ously shown that higher radiotherapy doses lead to better local control in

retroperitoneal sarcomas [24, 25], and that a boost dose of 57.5 Gy to the mar-

gin at risk is well-tolerated in STS patients [26]. In this work, despite the

complexity of the multiple targets, it was possible to achieve two levels of

dose boost of 60 Gy and 65 Gy within the planning GTV using state-of-the-

art radiotherapy systems. However, even if shown feasible from a planning

perspective, the question remains as to whether it is desirable to deliver an

inhomogeneous dose across the tumour, knowing that most STS change in
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size during treatment and likely also change significantly in metabolic activ-

ity and distribution of well-oxygenated and hypoxic regions. Such changes

would need to be monitored frequently, even daily, during radiotherapy, and

the treatment to be adapted in real time. In this context, MRI techniques

such as DCE-MRI would be preferable to PET, particularly with the advent

of novel MR-linac based technologies and knowledge-based planning.

This work represents a unique experience but there are several caveats.

First, our cohort was small and heterogeneous with respect to tumour loca-

tion, size and pathological type. Secondly, uncertainties in PET and MR im-

age registration may have impacted the analysis of the complementarity of

the different tumour sub-regions defined from the different imaging modal-

ities. Finally, in our experience, we found that it was not feasible to acquire

three imaging scans (FDG-PET, FMISO-PET, MRI) at three different time-

points of radiotherapy (pre-RT, mid-RT, post-RT), primarily for practical rea-

sons (mostly patient acceptance). Therefore, our plan going forward will be

to focus on the use of longitudinal DW- and DCE-MRI (potentially combined

with a pre-treatment FDG-PET) to develop prognostic imaging biomarkers

for extremity STS and correlate these studies with genomic biomarkers [27].

In conclusion, FDG-PET and MRI texture features as routinely obtained

in our centre prior to radiotherapy could predict development of lung metas-

tases in STS. We plan to test our model in a larger cohort of patients in

a prospective multicentre study that will include radio-genomic biomarker

analysis and test the hypothesis that DW-MRI and DCE-MRI techniques will

prove useful to replace FDG-PET in the model. Finally, despite the com-

plexity of the multiple targets, dose escalation with two levels of boost dose

within the planning GTV using a combination of FDG-PET and DCE-MRI

is technically feasible. We will continue to explore this interesting approach

that could lead to new strategies to improve tumour control.

4.7 Acknowledgments

This work was supported by the Canadian Institutes of Health Research

(CIHR) under grants MOP-114910 and MOP-136774. We would also like

to thank Asha K. Jeyaseelan and Seema Ambereen for help with patient re-

cruitment and study management, Dr. Lara Hathout for help in writing the

initial proposal, Ralf Schirrmacher for supplying the FDG and FMISO, and

Drs. Marc Hickeson, Tom Powell and Robert Turcotte for providing expert



Chapter 4. A strategy for treatment personalization 146

knowledge. Special thanks to all the PET and MRI technicians for making

this study possible.

4.8 Supplementary Material

4.8.1 Supplementary results

Clinical characteristics of the 18 patients accrued to the study between 2013

and 2016 are given in Supplementary Table 4.2. Example images are shown

for DW-MRI and DCE-MRI in Supplementary Figure 4.6, and for FDG-PET

and FMISO-PET in Supplementary Figure 4.7.

4.8.2 Image acquisition protocols

18F-Fluorodeoxyglucose PET/CT scan

FDG-PET studies are performed on a hybrid PET/CT scanner (Discovery ST,

General Electric Medical Systems, Waukesha, WI, USA), which combines a

dedicated, full-ring PET scanner with a 16-slice spiral CT scanner. Patients

are required to fast for at least 6 h before the time of their appointment. Blood

glucose levels are recorded immediately prior to FDG administration. If the

serum glucose level is greater than 11.1 mmol/l (200 mg/dl) the study is

rescheduled. A volume of 400 ml of barium sulfate oral contrast is admin-

istered and between 370 and 500 MBq (10 and 13.5 mCi) of FDG is injected

intravenously. Sixty minutes following FDG injection, CT and PET images

are consecutively acquired from the base of the skull to the upper thighs,

with additional images acquired as needed according to the STS location.

For the CT scan portion of the study, the settings are the following: 120-

140 kVp, 90-110 mA (depending on the body weight), a rotation time of

0.8 s, a table speed of 17 mm per gantry rotation, a pitch of 1.75:1, and

a 6 × 0.625 mm detector row configuration. For the PET portion of the

study, 2-D acquisition is performed and images are acquired using 4-5 min

per bed position (depending on the body weight) and 5 to 6 bed positions

(depending on the patient’s height). PET attenuation-corrected, PET non-

attenuation-corrected, CT, and fused images are reconstructed in the transax-

ial plane with an ordered subset expectation maximization (OSEM) iterative

algorithm.
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Table 4.2 : Clinical characteristics of patients.

Patient # Gender Age Location Size Type RT dose Local failure Lung mets Other mets Follow-up
(depth) (cm) (grade) (Gy/#Fx) (time-to-event) (time-to-event) (time-to-event) (status)

S001 M 69 Shoulder
> 10 UPS 14/7 No Yes No 10 months

(superficial) (high) (8 months) (PD)

S002 F 76 Arm 5 to 10 UPS 50/25 Yes Yes LN/Bone 12 months
(deep) (high) (12 months) (2 months) (PD)

S003 M 46 Leg
> 10 ML 50/25 No No Bone 37 months

(deep) (low) (36 months) (AWD)

S004 M 55 Thigh
> 10 LM 50/25 No No No 29 months

(superficial) (intermediate) (NED)

S005 F 61 Thigh
< 5 MF 50/25 No No No 25 months

(deep) (high) (NED)

S006 F 28 Thigh
> 10 RCML 50/25 No No AW/PV 29 months

(deep) (high) (11/23 months) (NED)

S007 M 73
Thigh

> 10
ML

50/25 No No No
26 months

(deep) (low) (NED)

S008 M 80
Shoulder

> 10
PL

50/25 No
Yes Bone/Liver 10 months

(superficial) (intermediate) (9 months) (2/9 months) (AWD)

S009 F 58
Arm

5 to 10
SS

50/25 No No No
23 months

(deep) (NA) (NED)

S010 M 73
Chest wall

> 10
MF

50/25 No No No
21 months

(deep) (high) (NED)

S011 F 73
Thigh

> 10
MF

50/25 No
Yes

No
17 months

(deep) (high) (9 months) (AWD)

S012 F 62
Thigh

> 10
MF

50/25 No No No
15 months

(deep) (high) (NED)

S013 M 57
Thigh

5 to 10
MF

50/25 No
Yes Reg. LN 9 months

(superficial) (high) (6 months) (5 months) (DOD)

S014 M 56 Thigh 5 to 10 MF 50/25 No No No 11 months
(deep) (high) (NED)

S015 M 52 Thigh
> 10 FM 50/25 No No No 14 months

(deep) (low) (NED)

S016 M 29 Shoulder
> 10 PS 50/25 No No No 7 months

(deep) (high) (NED)

S017 F 34 Leg 5 to 10 ML 0 No No No 9 months
(deep) (low) (NED)

S018 F 27 Arm 5 to 10 MIF 50/25 No No No 7 months
(superficial) (NA) (NED)

* The tumour type abbreviations UPS, ML, LM, MF, RCML, PL, SS, FM, PS and MIF stands
for undifferentiated pleomorphic spindle cell sarcoma, myxoid liposarcoma,
leiomyosarcoma, myxofibrosarcoma, round cell/myxoid liposarcoma, pleomorphic
liposarcoma, synovial sarcoma, fibromyxoid sarcoma, pleomorphic spindle cell sarcoma
and myxoinflammatory fibroblastic sarcoma, respectively.

* AWD: Alive with Disease, DOD: Dead of Disease, PD = Patient Deceased, NED: Alive
with No Evidence of Disease.

* AW: Abdominal Wall, PV: Paravertebral, LN: Lymph Nodes, NA: Non-Available
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Figure 4.6 : General observations from MRI.
(a) The ADC (mean ± standard deviation) for each tumour. The pink box represents the
ADC range (one standard deviation) of muscle, computed from muscle regions across
all patients. Patient numbers and tumour type abbreviations are given in Table 4.2.
(b) Top, L to R: Example ADC maps (tumour only, colour overlay on axial DW-MRI)
from a patient with myxofibrosarcoma (patient 5) show the increase in ADC from pre-
to post-radiotherapy.
(c) The therapy-induced increase in ADC in patient 5 is highlighted in the ADC distri-
bution at pre-, mid- and post-treatment exams.
(d) Example KTrans maps in two patients, showing a central slice of the tumour at pre-,
mid-, and post-treatment. Top row: patient 4 (leiomyosarcoma in the groin) showing
little or no KTrans changes during treatment. Bottom row: patient 9 (synovial sarcoma
in the arm), showing evolution of tumour KTrans during treatment.
(e) The histograms show the evolution of KTrans distributions over the treatment course
for each of the two patients (left: patient 9, right: patient 4).
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Figure 4.7 : Evolution of FDG-PET and FMISO-PET intratumoural uptake
of the central slice of the tumour of four example patients over the 3 time
points during radiotherapy treatment management (PRE-RT, MID-RT, POST-
RT). Note that different colorbars are used for FDG-PET and FMISO-PET. Two patients
eventually developed lung metastases (Mets Y: 2-UPS, 13-MF) and two patients did
not develop lung metastases (Mets N: 12-MF, 15-FM). The previously developed FDG-
PET/MRI texture-based model [7] correctly predicted the lung metastases development
status for two patients shown here (2-UPS, 12-MF) and was incorrect for the other two
(13-MF, 15-FM). The tumour type abbreviations UPS, MF and FM stands for undifferen-
tiated pleomorphic spindle cell sarcoma, myxofibrosarcoma and fibromyxoid sarcoma,
respectively.

18F-Fluoromisonidazole PET/CT scan

FMISO-PET studies are performed on a hybrid PET/CT scanner (Discovery

ST, General Electric Medical Systems, Waukesha, WI, USA), which combines

a dedicated, full-ring PET scanner with a 16-slice spiral CT scanner. Patients

are required to fast for at least 2 hours. Oral contrast (400 ml of barium sul-

fate) is administered and between 370 and 500 MBq (10 and 13.5 mCi) of

FMISO is injected intravenously. One hundred and twenty minutes follow-

ing FMISO injection, CT and PET images are consecutively acquired from

the base of the skull to the upper thighs, with additional images acquired

as needed according to the STS location. A period of one day separates the

administration of FDG and FMISO. For the CT scan portion of the study, the

settings are as for the FDG-PET studies.

Diffusion-weighted MRI

In order to obtain ADC maps, standard echo-planar imaging MRI sequences

are acquired using three different diffusion b-values of 0, 100 and 800 s/mm2.

DWI is obtained using the following parameters: FOV of 26 cm, matrix size

of 160-256, TR > 3500, TE – minimum, NSA (number of signal averages) of

6, section thickness of 5 mm/1 mm gap with fat suppression.
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Dynamic contrast-enhanced MRI

MRI perfusion images are obtained after administration of Gadolinium con-

trast using 3D FSPGR sequence with the following parameters: TE and TR

minimum, Flip angle 25, Bandwidth 42, Matrix size 256 x 128, single excita-

tion and FOV of 24-28 cm.

4.8.3 Image registration

In order to investigate the spatial overlap of PET and MR imaging find-

ings, rigid registration (rotations and translations) is used to spatially trans-

form the MR scans into the reference frame of the PET scans. To perform

co-registration, we use the commercial software MIM® (MIM software Inc.,

Cleveland, OH). MIM® provides an assisted alignment tool that uses normal-

ized mutual information (NMI) as the similarity measure. Practically speak-

ing, to achieve co-registration of MR scans onto PET scans, we first rigidly

register the MR images onto the CT images of the combined PET/CT scans.

Subsequently to this spatial transformation, we can directly overlay the MR

images onto the PET images since the PET and CT images come from the

same combined PET/CT scans and are thus in the same reference frame.
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5.1 Foreword

This Chapter presents a study submitted as the following paper: Martin Val-

lières, Sébastien Laberge, André Diamant & Issam El Naqa. “Enhancement

of multimodality texture-based prediction models via optimization of PET

and MR image acquisition protocols: a proof of concept”. Phys. Med. Biol.

[submitted May 15, 2017].

In this study, a new texture-based model for the prediction of lung metas-

tases in soft-tissue sarcomas was constructed using the methods developed

in Chapter 3, this time using a subset of the initial patient cohort. The pos-

sibility of enhancing that texture-based model via the optimization of PET

and MR image acquisition protocols was investigated using computerized

simulations.

5.2 Abstract

Texture-based radiomic models constructed from medical images have the

potential to support cancer treatment management via personalized assess-

ment of tumour aggressiveness. While the identification of stable texture

features under varying imaging settings is crucial for the translation of ra-

diomics analysis into routine clinical practice, we hypothesize in this work

that a complementary optimization of image acquisition parameters prior

to texture feature extraction could enhance the predictive performance of

texture-based radiomic models. As a proof of concept, we evaluated the

possibility of enhancing a model constructed for the early prediction of lung

metastases in soft-tissue sarcomas by optimizing PET and MR image acquisi-

tion protocols via computerized simulations of image acquisitions with vary-

ing parameters. Simulated PET images from 30 STS patients were acquired

by varying the extent of axial data combined per slice (“span”). Simulated

T1-weighted and T2-weighted MR images were acquired by varying the rep-

etition time (TR) and echo time (TE) in a spin-echo pulse sequence, respec-

tively. We analyzed the impact of the variations of PET and MR image ac-

quisition parameters on individual textures, and we also investigated how

these variations can enhance the global response and the predictive proper-

ties of a texture-based model. Our results suggest that it is feasible to identify
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an optimal set of image acquisition parameters to improve prediction perfor-

mance. The model constructed with textures extracted from simulated im-

ages acquired with a standard clinical set of acquisition parameters reached

an average AUC of 0.84 ± 0.01 in bootstrap testing experiments. In compar-

ison, the model performance significantly increased using an optimal set of

image acquisition parameters (p = 0.04), with an average AUC of 0.89± 0.01.

Ultimately, specific acquisition protocols optimized to generate superior ra-

diomics measurements for a given clinical problem could be developed and

standardized via dedicated computer simulations and thereafter validated

using clinical scanners.

5.3 Introduction

Medical imaging is foreseen to play a central role in the near future to bet-

ter assess tumour aggressiveness in the context of cancer treatment manage-

ment, as radiological images are routinely acquired for almost every patient

with cancer [1]. Medical image acquisitions such as 2-deoxy-2-[18F]fluoro-

D-glucose (FDG) positron emission tomography (PET), computed tomog-

raphy (CT) or magnetic resonance imaging (MRI) are minimally invasive

and they would carry an immense source of data that could serve as use-

ful complementary tools to histopathological information for decoding tu-

mour phenotypes [2]. The demonstration that gene-expression signatures

could be inferred from tumour imaging features [3, 4] has led to an expo-

nential growth of the new emerging field of “radiomics” in the past few

years [5–8]. The fundamental hypothesis of radiomics is that the micro-

scopic genomic heterogeneity of aggressive tumours would translate into

macroscopic heterogeneous tumour metabolism and anatomy. In essence,

radiomics thus refers to the extraction of high-dimensional mineable data

(morphological and histogram-based features, textures, etc.) from all types

of medical images, whose subsequent analysis aims at supporting clinical

decision-making. In particular, textural metrics such as Gray-Level Co-Occurrence

Matrix (GLCM) features [9], Gray-Level Run-Length Matrix (GLRLM) fea-

tures [10–12], Gray-Level Size Zone (GLSZM) features [13] and Neighbor-

hood Gray-Tone Difference Matrix (NGTDM) features [14], could extensively

characterize the complexity of imaging intensities within tumours. Tumours

exhibiting heterogeneous characteristics are thought to be associated with

high risk of resistance to treatment, progression, metastasis or recurrence
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[15–17], and these textural metrics are thus considered to have great poten-

tial for the assessment of tumour aggressiveness via the quantification of in-

tratumoural heterogeneity. In the era of personalized medicine, the trans-

lation of radiomics analysis into standard cancer care involves the develop-

ment of multivariable prediction models that can assess the risk of specific

tumour outcomes [18]. Once useful imaging biomarkers are identified to

be relevant prognostic factors of a given tumour outcome, models combin-

ing these factors may be constructed to improve outcome prediction perfor-

mance, as multivariable models are expected to more comprehensively char-

acterize intratumoural heterogeneity than single features. Overall, radiomics

or texture-based models could soon complement other prognostic models

currently used in routine clinical practice only if they are trusted to be highly

robust, reproducible, generalizable and yet also highly predictive.

The workflow of radiomics analysis leading to the extraction of clinically

relevant information involves many steps such as medical imaging acqui-

sition, image processing, tumour segmentation, feature extraction, statisti-

cal analysis, and development and validation of multivariable models for

tumour outcome prediction via statistical or machine learning techniques.

The complexity of such workflow opens the door to many interesting de-

velopment possibilities in the field, but it can also considerably affect the

reproducibility potential of different radiomics studies and the possible use

of radiomics in routine clinical settings [19, 20]. Many studies have investi-

gated how procedural variations in single of multiple steps of this workflow

may impact texture measurements for different imaging modalities (PET, CT,

MRI). For example, Bogowicz et al. [21] and Molina et al. [22] studied the im-

pact of variations in voxel size and image quantization on texture features ex-

tracted from patient images. Hatt et al. [23], Leijenaar et al. [24], Parmar et al.

[25] and Van Velden et al. [26] studied the impact of contouring variations on

texture features extracted from patient images, and Hatt et al. [23] also stud-

ied the impact of partial volume effect (PVE) corrections in PET. Orlhac et al.

[27] performed a comprehensive analysis of the relationships of texture mea-

surements with commonly extracted metrics in PET and of the robustness of

textures with different quantization schemes and contouring variations us-

ing patient images of three different cancer types. Tixier et al. [28], Leijenaar

et al. [24], Zhao et al. [29] and Van Velden et al. [26] performed test-retest scans

(e.g., two scans of the same patient repeated after a short period of time) on

patient images to study the reproducibility of texture measurements. Galavis

et al. [30], Nyflot et al. [31], Yan et al. [32], Zhao et al. [29] and Van Velden et
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al. [26] studied the impact of variations in different image reconstruction pa-

rameters on texture features extracted from patient images. Mayerhoefer et

al. [33], Waugh et al. [34], Zhao et al. [35] and Mackin et al. [36] performed

phantom studies to explore the variability of textures under different scan-

ning conditions. The greater flexibility in image acquisition settings by using

phantoms instead of real patient scans allowed Mackin et al. [36] to further

evaluate variations in textures from images acquired on different CT scan-

ners (inter-scanner dependence), whereas Mayerhoefer et al. [33] and Waugh

et al. [34] were able to investigate the influence of different MR image acquisi-

tion protocols (e.g., echo time, repetition time, etc.) on textures. Galavis et al.

[30] were also able to investigate the influence of different PET image acqui-

sition protocols (2D versus 3D acquisitions) using a group of patients with

solid tumours. Last but not least, Nyflot et al. [31] performed an interesting

Monte-Carlo simulation analysis using the NEMA image quality phantom

to study (among other parameters) the impact of stochastic effects on textu-

ral features in PET. While all the studies enumerated above are informative

in terms of how texture measurements vary in different settings, the inher-

ent disadvantage of test-retest scans, for instance, is that the reproducibility

effect could be confounded with setup errors and/or organ deformations.

Phantom studies allow for much greater flexibility in understanding scan-

ning conditions and for negligible positioning differences, but the drawback

is that tumour phantoms may not realistically reflect the intratumoural het-

erogeneity seen in patients. On the other hand, computerized simulations

of medical image acquisitions using realistic tumour models would offer a

fully controlled environment to study the effects of different acquisition pa-

rameters on textural measurements of intratumoural heterogeneity, but the

resulting simulated images are only an estimated representation of images

acquired using clinical scanners.

Overall, most reproducibility studies in the literature report the high im-

pact of voxel size on texture measurements. However, the common denomi-

nator of all those studies is their main working objective: they aim at identi-

fying the texture features that could be stable and that are presumably able to

conserve predictive properties under varying imaging conditions. While the

identification of stable features is valuable to build robust and reproducible

texture-based predictive models, it is also important to identify the settings

that would yield optimal use of texture features for a given clinical problem,

an exercise which is currently under-reported in the literature. In our pre-

vious study, we hypothesized and thereafter verified that the optimization
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of voxel size and image quantization parameters could enhance the predic-

tive properties of the resulting texture-based models [37]. In this work, we

hypothesize that the optimization of image acquisition parameters prior to

texture feature extraction could not only assess robustness of texture features

but also enhance the performance of multivariable prediction models. As a

proof of concept, we evaluate the possibility of enhancing a combined PET

and MRI texture-based model constructed for the early prediction of lung

metastases in soft-tissue sarcomas (STSs) by optimizing PET and MR image

acquisition protocols via computerized simulations of clinical image acqui-

sitions with varying parameters. Realistic digital tumour models are first

constructed from clinical images for both PET and MRI simulations with

the intent of conserving intratumoural heterogeneity in simulated images.

Simulated PET images are then acquired by varying the extent of axial data

combined per slice when detectors are allowed to be in coincidence with de-

tectors in neighboring rings (Figure 5.1a), an effect denoted as “span” and

that has for consequence to increase slice sensitivity at the expense of a loss

of resolution. Simulated T1-weighted and T2-weighted MR images are ac-

quired using a spin-echo sequence with standard clinical parameters as typi-

cally used at our institution. The repetition time (TR) and the echo time (TE)

are then varied in the acquisition of T1-weighted and T2-weighted images

(Figure 5.1b), respectively, a procedure that would change the contrast in the

resulting images. We then analyze the impact of the variations of these PET

and MR image acquisition parameters on single textures, and we also inves-

tigate how these variations can enhance the global response and the predic-

tive properties of the texture-based model. Our results suggest that different

sets of PET and MR image acquisition parameters can substantially affect the

resulting extracted textures, and that it could be possible to identify an opti-

mal set of acquisition parameters yielding best prediction performance for a

texture-based model. To our knowledge, this is the first study that would ex-

plore the potential of varying image acquisition parameters to optimize the

performance of texture features and enhance texture-based predictive mod-

els. Overall, the simulations of medical imaging acquisitions using realistic

digital tumour models would provide a useful and effective framework to

study how texture measurements may vary in different acquisition settings

and how they could be optimized for a particular application.
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Figure 5.1 : Imaging acquisition parameters varied in this study. (a) Simulated
PET images are acquired by varying the extent of axial data combined per slice when
detectors are allowed to be in “direct” or “cross” coincidence with detectors in neigh-
boring rings, an effect denoted as “span”. For example, a span of 3 has the effect to
combine 1 plane of direct coincidences and 2 planes of cross coincidences, whereas a
span of 7 has the effect to combine 3 planes of direct coincidences and 4 planes of cross
coincidences. Spans of 3, 5, 7, 9, 11, 13, 15 and 17 are tested in this study. This image
is adapted from Fahey [38]. (b) Simulated T1-weighted and T2-weighted MR images
are acquired using a spin-echo sequence with standard clinical parameters (schematic
view of the 90◦ excitation pulse, the 180◦ refocusing pulse and the signal echo used for
data acquisition shown here), by varying the repetition time (TR) of the T1-weighted
sequence and the echo time (TE) of the T2-weighted sequence. Repetition and echo
times of 1

3
, 1
2

, 1, 2 and 3 times the values used in the original clinical sequences of each
corresponding patient are tested in this study.
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5.4 Methods

5.4.1 Imaging dataset

An imaging dataset with histologically proven STSs of the extremities was

downloaded from The Cancer Imaging Archive (TCIA) [39]: LINK. This 51

patients dataset has been described in details in our previous work [37].

Briefly, all patients received: 1) pre-treatment FDG-PET/CT scans; and 2)

pre-treatment MRI scans consisting of T1-weighted clinical sequences (hereby

denoted as “T1”), and either T2-weighted fat-saturated clinical sequences

(hereby denoted as “T2FS”) or short tau inversion recovery (STIR) sequences.

In this study, only the subset of 30 patients for whom both the T1 and T2FS

MRI sequences were acquired were retained.

From the 30 STS patients used in this study, 11 patients developed lung

metastases (hereby denoted as “Lung Mets” patients) during the follow-up

period (median: 25 months, range: 4–70 months). Patients that did not

develop lung metastases (hereby denoted as “No Lung Mets” patients) and

that had a follow-up period smaller than 12 months were excluded from the

study, as well as patients with metastatic and/or recurrent STS at presen-

tation. Lung metastases were either proven by biopsy or diagnosed by an

expert physician from the appearance of typical pulmonary lesions on CT

and/or FDG-PET images.

All FDG-PET/CT scans were performed on a PET/CT scanner (Discov-

ery ST, GE Healthcare, Waukesha, WI) at the McGill University Health Cen-

tre (MUHC). For the PET portion of the scans, a median of 420 MBq (range:

210–620 MBq) of FDG was injected intravenously. Approximately 60 min fol-

lowing the injection, whole-body imaging acquisition was performed using

multiple bed positions, with a median of 180 s (range: 160–300 s) per bed po-

sition. PET attenuation corrected images were reconstructed (axial plane) us-

ing an ordered subset expectation maximization (OSEM) iterative algorithm.

The FDG-PET slice thickness resolution was 3.27 mm for all patients and the

median in-plane resolution was 5.47 × 5.47 mm2 (range: 3.91–5.47 mm).

The MRI scans resulted from clinical acquisitions with non-uniform pro-

tocols across patients. Twelve patients had their images acquired at the MUHC,

and 18 in outside institutions. All images were acquired on a scanner with

a 1.5 Tesla (T) magnet. Overall, the median in-plane resolution was 0.74

× 0.74 mm2 and 0.63 × 0.63 mm2 (range: 0.23–1.64 mm and 0.23–1.64 mm

pixel width), and the median slice thickness was 5.5 mm and 5.0 mm (range:

http://doi.org/10.7937/K9/TCIA.2015.7GO2GSKS
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3.0–10.0 mm and 3.0–8.0 mm) for T1 and T2FS scans, respectively. T1 se-

quences were acquired in the axial plane for all patients. T2FS sequences

were acquired in the axial plane for 25 patients, and in the sagittal plane for

5 patients.

Contours defining the 3D tumour region for each patient were manu-

ally drawn slice-by-slice on T2FS scans by an expert radiation oncologist.

Contours were propagated to FDG-PET and T1 scans using rigid registration

with the software MIM® (MIM software Inc., Cleveland, OH).

5.4.2 Construction of a radiomic prediction model

The process of constructing a radiomic model for the prediction of lung metas-

tases in STSs from the set of PET and MR images of the 30 patients of this

cohort closely follows the work of Vallières et al. [37] and is depicted in Fig-

ure 5.2a. First, radiomic features were extracted from the tumour region of

PET, T1 and T2FS images. These features can be divided into three differ-

ent groups: I) 10 first-order statistics features (intensity); II) 5 morphological

features (shape); and III) 40 texture features each computed using 40 differ-

ent combinations of extraction parameters. The 40 texture features were ex-

tracted for each scan using all 40 possible combinations of 5 isotropic voxel

sizes (“scale”), 2 quantization algorithms (“algo”) and 4 number of gray-

levels (“Ng”). Then, feature set reduction was performed from the total set of

radiomic features in order to create a reduced feature set balanced between

predictive power and non-redundancy. From the reduced feature set, step-

wise forward feature selection was carried out to automatically select combi-

nations of 1 to 10 features (i.e., model orders of 1 to 10). The process of com-

bining p radiomic features was achieved using the logistic regression utilities

of the software DREES [40] such that the multivariable model investigated in

this work takes the following form:

g(xxxi) = β0 +

p∑

j=1

βjxij , for i = 1, 2, . . . , N. (5.1)

In Equation 5.1 the vector of input variables j (imaging data) of the ith patient

is xxxi = {xij ∈ R : j = 1, 2, . . . , p}, and the set β = {βj ∈ R : j = 0, 1, . . . , p}
is the set of regression coefficients of the model to be determined such that

the conditional probability of the set of outcome states {0,1} given the input

data xxxi is maximized for i = 1, 2, . . . , N . The model response g(xxxi) can be

transformed into the posterior probability π(xxxi) of observing outcome yi = 1
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(i.e., developing lung metastases) given the input xxxi by using the following

logit transform:

π(xxxi) = P (yi = 1|xxxi) =
exp [g(xxxi)]

1 + exp [g(xxxi)]
. (5.2)

Then, prediction performance was estimated for the 10 combinations of fea-

tures using the 0.632+ bootstrap AUC metric [41, 42] with 1000 bootstrap

samples. By inspecting the prediction estimates, the simplest model with

best predictive properties was chosen, yielding the following four features:

I) SUVpeak extracted from PET (SUVpeak); II) High Gray-Level Zone Empha-

sis (HGZE) extracted from PET (PET – HGZEGLSZM); III) Zone Size Variance

(ZSV) extracted from T1 (T1 – ZSVGLSZM); and IV) Long Run Low Gray-level

Emphasis (LRLGE) extracted from T2FS (T2FS – LRLGEGLRLM). The final logis-

tic regression coefficients of this radiomic prediction model were found by

averaging all coefficients computed from another set of 1000 bootstrap sam-

ples. Throughout the whole model building process, bootstrap resampling

was performed using imbalance-adjustments in order to construct a model

with equivalent sensitivity and specificity properties. Detailed descriptions

and methods used for radiomic feature extraction, feature set reduction and

feature selection are provided in sections 5.9.1, 5.9.2 and 5.9.2 of Supplemen-

tary Material, respectively.

The complete model g(xxxi) obtained in this work from clinical scans for the

prediction of lung metastases in STSs is detailed in Equation 5.3 with regres-

sion coefficients and texture extraction parameters. The model responses for

each of the 30 patients of the cohort along with associated bootstrap confi-

dence intervals (95 %) are shown in Figure 5.2b. In this figure, the blue dots

represent patients who eventually developed lung metastases, and the red

crosses those who did not develop lung metastases. It can be seen that the

multivariable model of Equation 5.3 can appreciably separate the patients

of the two risk groups, as the average AUC obtained in 1000 bootstrap test-

ing samples after training the model in the corresponding bootstrap training

samples (“bootstrap AUC” or ordinary AUC) is 0.85. The significance of each

variable in the model was also assessed using the Wald’s test implemented

in DREES, and a p-value of 0.048, 0.088, 0.16 and 0.28 was obtained for the

SUVpeak, PET – HGZEGLSZM, T1 – ZSVGLSZM and T2FS – LRLGEGLRLM features,

respectively.
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g(xxxi) =

+ 1.312× SUVpeak

+ 0.0193× PET(scale=5mm,algo=Equal,Ng=64) – HGZEGLSZM

− 357600× T1(scale=4mm,algo=Uniform,Ng=64) – ZSVGLSZM

+ 117.3× T2FS(scale=2mm,algo=Equal,Ng=64) – LRLGEGLRLM

− 40.34 (5.3)

5.4.3 Simulations of PET imaging acquisitions

PET tumour models

Papadimitroulas et al. [43] recently showed that partial volume effect (PVE)

corrections of intratumoural activity of FDG-PET clinical scans as input to

GATE simulations is necessary to conserve intratumoural heterogeneity in

simulated images as quantified via imaging profiles and textural features.

Overall, PVE corrections reduce the effect of 3D blurring in PET images caused

by the convolution of the source and the PSF of the imaging system. In this

work, the method used for the creation of realistic FDG-PET tumour models

is based on the work of Boussion et al. [44], where wavelet-based denoising is

incorporated into an iterative deconvolution algorithm for PVE correction of

the activity data of FDG-PET clinical images. Figure 5.3a shows and example

of the creation of a FDG-PET tumour model from a clinical image via PVE

correction and wavelet-based denoising.

The general approach involves an iterative deconvolution process aided

by a wavelet-based threshold procedure in order to reduce noise and obtain

a better representation of the underlying activity distribution of a given PET

clinical image. First, the general deconvolution framework is based on the

following equation:

I(~r) = O(~r)
⊗

PSF (~r) +N(~r), (5.4)

where I is here defined as the observed “out of the scanner” activity distri-

bution calculated from whole-body PET clinical images, O is the “real” or

corrected activity distribution (that we attempt to retrieve using PVE correc-

tions), PSF is the degrading PSF of the scanner and N is an additive noise
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Figure 5.2 : Construction of a radiomic model from pre-treatment clinical im-
ages for the prediction of lung metastases in soft-tissue sarcomas. (a) Ra-
diomic features (intensity, shape, textures) are first extracted from PET, T1-weighted
(T1) and T2-weighted fat-saturated (T2FS) clinical images. Feature set reduction is
then performed to obtain a reduced feature set balanced between predictive power and
non-redundancy. Feature selection and prediction performance processes are then per-
formed using imbalance-adjusted bootstrap resampling in order to estimate the gen-
eralizability properties of tested models constructed with equivalent sensitivity and
specificity properties. The single combination of variables with best parsimonious prop-
erties is then chosen based on prediction performance estimations evaluated with the
AUC632+ metric, yielding the following final radiomic model investigated in this work:
I) SUVpeak extracted from PET; II) High Gray-Level Zone Emphasis (HGZE) extracted from
PET; III) Zone Size Variance (ZSV) extracted from T1; and IV) Long Run Low Gray-level Em-
phasis (LRLGE) extracted from T2FS. Variables are combined using logistic regression.
(b) Probability of developing lung metastases as a function of the response of the final
radiomic model constructed using PET, T1 and T2FS clinical images, for all patients of
the cohort. The blue dots represent patients who eventually developed lung metastases,
and the red crosses those who did not develop lung metastases. Confidence intervals
(95 %) on the model response for each patient were calculated using bootstrapping.
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term. In this work, the Lucy-Richardson algorithm [45, 46] was used to iter-

atively retrieve the object O from the observed data I using a multiplicative

regularization step instead of additive [44]:

On+1(~r) = On(~r)

[
In(~r) +Resn(~r)

In(~r)

⊗
PSF (−~r)

]
, (5.5)

where In(~r) = PSF (~r)
⊗

On(~r) and Resn(~r) = I(~r) − PSF (~r)
⊗

On(~r) is

the residual term that converges towards noise. A number of four iterations

and an isotropic 5-mm PSF were used in this work. In order to further re-

duce noise propagation, the residual term is modified before each iteration

of the Lucy-Richardson algorithm. For this process, a soft threshold was

applied in each subband of the wavelet domain using the biorthogonal 3.5

basis function and a 3-level decomposition of the residual, and the inverse

wavelet transform was applied to obtain the denoised residual. To ensure

translation-invariance, a 2D undecimated wavelet transform was applied on

the three planes of the space (axial, coronal, sagittal) and the final thresh-

olded residual image was obtained by averaging the three sets of data on

a voxel-by-voxel basis. The threshold used was the data-driven, subband

(b) dependent “BayesShrink” threshold defined as Tb = σ2/σX [47]. Here,

σ2 denotes the noise variance estimated using the median operator in the

first subband of a given decomposition level, such that σ =
Median(|w1,l|)

0.6745
with

wavelet coefficients w1,l in the first subband of decomposition level l. Then,

σX is subband dependent and is defined as σX =
√

max(σ2
w − σ2, 0), where

σ2
w = 1

n2

∑n2

i=1w
2
i,l with wavelet coefficients wi,l in the ith subband of decom-

position level l and n×n is the size of the subband under consideration. This

whole procedure ultimately results in PVE-corrected and wavelet-denoised

heterogeneous activity distributions to be used in subsequent simulations of

PET image acquisitions.

Monte-Carlo simulations

In this study, the general framework for the simulations of PET image acqui-

sitions involved the Geant4 applications for tomography emission (GATE)

Monte Carlo toolkit [48, 49]. This software can be used to simulate the trans-

port of radiation from an emitting source (e.g., FDG intratumoural activity)

inside human tissues and PET scanner models using Monte Carlo methods.

It is optimized for nuclear medicine applications and offers large flexibility in

using voxelized phantoms, voxelized sources, and different scanner geome-

tries. We used GATE v7.1 along with Geant4.10.01 code, and all the physical
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Figure 5.3 : Example of the creation of PET and MRI digital tumour models
used for image acquisition simulations. (a) Partial-volume effect (PVE) corrections
combined with wavelet denoising are applied to the activity maps of PET clinical im-
ages to obtain tumor models for PET simulations. (b) The imaging intensities of the T1-
weighted (T1) and T2-weighted fat-saturated (T2FS) clinical images are first separately
discretized into 5 distinct regions per scan using Lloyd-Max quantization. This creates a
combined set of 5× 5 = 25 regions used as a map index for MRI simulations. Typical T1

and T2 relaxation times for soft-tissue sarcomas at 1.5 T are then distributed throughout
the different regions, thereby creating T1 and T2 maps used for MRI simulations.
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processes appropriate for realistic simulations were modeled using the “stan-

dard model”.

The simulations were carried out using an approximation of the GE Dis-

covery ST scanner [50] that we designed for GATE simulations in order to

match as closely as possible the clinical acquisitions. This scanner consists of

280 detector blocks arranged in 35 modules of 2 × 4 blocks. Each block con-

tains 6× 6 detector BGO crystals of 6.3× 6.3× 30 mm3. The scanner contains

24 detector rings with a total of 420 crystals per ring. The scanner has an

axial field of view of 15.7 cm and a radial FOV of 70 cm (detector ring diam-

eter of 88.6 cm). In this work, the distance between crystal edges was filled

with teflon material and was defined as the average distance left to fill the

axial field of view after subtracting the distance filled by all detector rings,

i.e., (157/24− 6.3) mm = 0.2417 mm. The digitizer was modeled using an en-

ergy window between 375 and 650 keV, with an energy blurring set to 15 %

of 511 keV and a coincidence time window width of 11.7 ns. The different

materials in the scanner were simulated with the materials provided by the

GATE Materials Database (GateMaterials.db).

We used the PVE-corrected/wavelet-denoised heterogeneous activity dis-

tributions constructed from the PET clinical images as input voxelized sources

in the GATE software. The axial extent of the input activity source of each pa-

tient was set to the axial extent of the scanner (15.7 cm), and the radial extent

of the activity source was defined as a circle of 25 cm diameter, all centered

on the geometrical center of mass of the tumour. A cylinder of input activity

source centered on the tumour of each patient was thus inserted in the geom-

etry of the scanner in GATE, by making sure that the extent of that cylinder

fully encompassed the actual extent of all tumours in this study. The dimen-

sions of the voxels of that cylinder were set to the dimensions of the voxels

of the original PET clinical images of each patient. The axial center of the

activity cylinder was positioned at the axial center of the geometry of the

scanner in GATE, but a radial offset was applied to the center of the cylinder

accordingly to the original position of the tumours in the clinical scans (i.e.,

the position in the body of the patient being scanned).

The anatomy of the patients in the simulations was modeled using a vox-

elized phantom geometry corresponding to the Hounsfield Units (HU) of

the CT volumes of the FDG-PET/CT clinical scans. A 3D Gaussian filter was

first applied to the whole-body CT volumes with a FWHM of 2.5 mm. The

voxel dimensions of the CT volumes were then downsampled to the voxel

dimensions of the activity sources of each patient (i.e., of the PET clinical
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scans) using cubic interpolation. The HU of the CT scans were translated

to GATE materials indexes using translator files provided by the GATE Ma-

terials Database (patient-HUmaterials.db and patient-HU2mat.txt). Finally, a

CT phantom geometry covering the full axial and radial FOV of the scanner

was inserted in the GATE simulations according to original positions in the

clinical scans, with the axial center of the CT phantom centered on the axial

center of the tumour for each patient (i.e., positioned at the axial center of the

geometry of the scanner in GATE).

Finally, 3D PET acquisitions were simulated in GATE using one bed po-

sition per study case. Acquisition times were set according to the procedure

of each clinical scan of each patient (median of 180 s, range of 160–300 s).

PET imaging reconstruction

The simulated images were reconstructed using the Software for Tomographic

Image Reconstruction (STIR) release 2 [51]. The OSMAPOSL 3D iterative al-

gorithm was used with four iterations and 13 subsets, a maximum ring dif-

ference of 23, and varying numbers of span (3,5,7,9,11,13,15,17). Similarly to

the original GE Discovery ST scanner, 47 image planes were reconstructed

per acquisition with an axial sampling interval of 3.27 mm, and an in-plane

resolution set to the one observed in each clinical scan of each patient (me-

dian of 5.47 × 5.47 mm2, range of 3.91–5.47 mm). Random and scatter coinci-

dences as well as attenuation corrections were applied as in-loop corrections

in the reconstruction algorithm. For attenuation correction purposes, the HU

maps of the CT scans were converted to linear attenuation coefficient maps

using bilinear-scaling: I) -1000 < HU ≤ 0 were linearly converted from 0 to

0.096 cm−1; and 2) HU > 0 were linearly converted from 0.096 to 0.15 cm−1.

Finally, reconstructed images were post-processed using an isotropic Gaus-

sian filter with a FWHM of 5 mm.

5.4.4 Simulations of MR imaging acquisitions

MRI tumour models

In this work, we designed an empirical method for the creation of MRI tu-

mour models as inputs to MRI simulation experiments, with the overall goal

of preserving intratumoural heterogeneity. Figure 5.3b shows and example

of the creation of a MRI tumour model constructed from T1 and T2FS clinical

images. Three main inputs are required to proceed with MRI simulations:
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maps of the physical T1 and T2 relaxation times (“T1 map”, “T2 map”) of the

simulated tissues and a map of the proton density.

From the T1 and T2FS clinical scans of each patient, voxels within the tu-

mour region with intensities outside the range µ± 3σ were excluded, as sug-

gested by Collewet et al. [52] for making MRI texture measurements more

reliable. Then, the imaging intensities of the T1 and T2FS clinical images

were separately discretized into 5 distinct regions per scan using “Lloyd-Max

quantization” [53, 54]. The quantization process maps the voxel values of a

volume to a finite set rrr = {rk ∈ R : k = 1, 2, . . . , Ng} of Ng reconstruction lev-

els by defining a set ttt = {tk ∈ R : k = 1, 2, . . . , Ng + 1} of decision levels, and

Lloyd-Max quantization specifically attempts to choose the decision levels

in order to minimize the mean-squared quantization error of the output via

a clustering method. The separate discretization of the T1 and T2FS clinical

scans into 5 regions in turn created a combined set of 25 distinct regions used

as a map index for MRI simulations (index 1: T1 region 1 and T2FS regions

1, index 2: T1 region 1 and T2FS region 2, . . . , index 25: T1 region 5 and T2FS

region 5).

We used typical T1 and T2 relaxation times as reported in the literature

for for soft-tissue tumours at 1.5 T in order to obtain a distribution of re-

laxation times throughout all regions of the map index: central values of

1054 and 62 ms were used for the T1 and T2 relaxation times of STSs, respec-

tively [55]. Then, the coefficient of variations of the imaging intensities in

the tumour regions of the T1 (2σ) and T2FS (1σ) clinical images were found,

and these factors were used to defined the range of T1 and T2 relaxation

times to be assigned to the different map indexes: [1054− 2σ/µ, 1054+ 2σ/µ]

with increments of 4σ/5µ for the five regions with different T1 values, and

[62− σ/µ, 62+ σ/µ] with increments of 2σ/5µ for the five regions with differ-

ent T2 values. Lower imaging intensities in T1 scans were assigned to higher

T1 relaxation times, and higher imaging intensities in T2FS scans were as-

signed to higher T2 relaxation times [56]. Finally, a constant proton density

percentage value of 0.82 relative to water [57] was assumed throughout the

tumor region of all patients.

Numerical simulations

In this study, the general framework for the simulations of MR image ac-

quisitions involved the use of the Jülich Extensible MRI Simulator (JEMRIS)

[58], version 2.8.1. This open-source software numerically solves the Bloch
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equations to a series of spin models arranged in 2D or 3D grids. Paralleliza-

tion of the execution is done using the MPI library and the output consists of

the complete MRI signal acquired over the course of a given MRI sequence.

This software is written in the C++ language and offers a series of graphical

user interface in MATLAB to help in defining the various parameters of the

simulations.

MRI simulations were carried out using the T1 and T2 maps constructed

from the T1 and T2FS clinical images, and by assuming a constant proton

density percentage value of 0.82 relative to water. Chemical shifts and T ∗
2

effects were not modeled in this work. A standard fast spin-echo (FSE) 2D

sequence was constructed to simulate the acquisition of T1-weighted and T2-

weighted images by using the tse.xml sequence template of JEMRIS. With

this sequence, all 2D images of the 3D tumour regions were acquired and

reconstructed separately. The number of averages was set to 1 for all imaging

acquisition simulations. A fat saturation spoiling gradient used to dephase

the lipid signal as in typical T2-weighted fat-saturated sequences was not

modeled in this work.

In order to match as closely as possible the clinical MR image acquisi-

tions, several parameters from the original clinical sequences were used to

define our simulated FSE sequence in JEMRIS. These parameters were re-

trieved from the DICOM headers of both the T1 and T2FS clinical images

and are defined as follows:

• nPoints(dicom): Number of rows and columns in the final image. Re-

trieved from the “Rows” or “Columns” DICOM fields.

• matrixSize(dicom): Dimensions of the acquired k-space frequency/phase

data before reconstruction. Retrieved from the “AcquisitionMatrix” DI-

COM field.

• FOV(dicom): Diameter in mm of the region from within which data were

used in creating the reconstruction of the image. Retrieved from the

“ReconstructionDiameter” DICOM field.

• phaseFOV(dicom): Ratio of field of view dimension in the phase encoding

direction to field of view dimension in the frequency encoding direc-

tion. Retrieved from the “PercentPhaseFieldOfView” DICOM field.

• pSampling(dicom): Fraction of acquisition matrix lines acquired. Retrieved

from the “PercentSampling” DICOM field.
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• echoTrain(dicom): Number of lines in k-space acquired per excitation per

image. Retrieved from the “EchoTrainLength” DICOM field.

• flipAngle(dicom): Steady state angle in degrees to which the magnetic vec-

tor is flipped from the magnetic vector of the primary field. Retrieved

from the “FlipAngle” DICOM field.

• pixelBW(dicom): Reciprocal of the total sampling period, in hertz per

pixel. Retrieved from the “PixelBandwidth” DICOM field.

• TEc: Time in ms between the middle of the excitation pulse and the

peak of the echo produced (kx = 0) in the clinical acquisition (“c”).

Retrieved from the “EchoTime” DICOM field.

• TRc: The period of time in ms between the beginning of a pulse se-

quence and the beginning of the succeeding (essentially identical) pulse

sequence in the clinical acquisition (“c”). Retrieved from the “Repeti-

tionTime” DICOM field.

The parameters above were used to set the following parameters in the tse.xml

JEMRIS sequence module:

• FOVx(jemris): Field of view in the frequency encoding direction. Set to

FOV(dicom).

• FOVy(jemris): Field of view in the phase encoding direction. Set to FOV(dicom)

× phaseFOV(dicom).

• Nx(jemris): Number of points acquired in the k-space in the frequency

encoding direction. Set to matrixSize(dicom).

• Ny(jemris): Number of points acquired in the k-space in the phase encod-

ing direction. Set to matrixSize(dicom) × phaseFOV(dicom) × pSampling(dicom).

• Repetitions(jemris): Number of lines in k-space acquired per excitation per

image. Set to echoTrain(dicom).

• FlipAngle(jemris): Flip angle used for the “90◦” pulse. Set to flipAngle(dicom).

• FlatTopTim(jemris): Reciprocal of the readout bandwidth. Set to 1/pixelBW(dicom)

× 1000.

• TE(jemris): Echo time in the FSE sequence. Set to TEc for the simulation

of T1-weighted images. Values of {1
3
, 1
2
, 1, 2, 3}×TEc were tested for the

simulation of T2-weighted images.
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• TR(jemris): Repetition time in the FSE sequence. Set to TRc for the simu-

lation of T2-weighted images. Values of {1
3
, 1
2
, 1, 2, 3}×TRc were tested

for the simulation of T1-weighted images.

In this study, the average repetition time used in clinical acquisitions (TRc)

was (492 ± 81) ms over the 30 patients of the cohort. The average echo time

used in clinical acquisitions (TEc) was (77± 12) ms.

MR imaging reconstruction

From the acquired MRI signal in simulations, k-space data was generated

using the JEMRIS utilities in MATLAB. Prior to image reconstruction, zero

padding of the k-space data was performed to obtain the right number of

points in the final image (if necessary, as it depends on nPoints(dicom), matrixSize(dicom),

FOV(dicom) and phaseFOV(dicom) values for each patient), followed by the ap-

plication of a fermi filter to prevent sharp transitions in the k-space. The total

number of zeros to add in the frequency (nPadFR) and phase (nPadPE) encod-

ing directions in the k-space is governed by Equations (5.6) and (5.7), respec-

tively. Finally, the final simulated images were separately reconstructed by

taking the inverse 2D Fourier transform of the k-space data.

nPadFR = 2×
π×nPoints(dicom)

FOV(dicom)
− π×Nx(jemris)

FOV(dicom)

2π/FOV(dicom)

= nPoints(dicom) −Nx(jemris) (5.6)

nPadPE = 2×
π×nPoints(dicom)

FOV(dicom)
− π×Ny(jemris)

FOV(dicom)×phaseFOV(dicom)

2π/(FOV(dicom) × phaseFOV(dicom))

= nPoints(dicom) × phaseFOV(dicom) −Ny(jemris) (5.7)

5.4.5 STAMP: a software tool for texture optimization

To support optimization of image acquisition parameters for texture analy-

ses, a software solution was developed in MATLAB with three main objec-

tives:

1. Integrate programming tools for Monte-Carlo simulations of PET im-

age acquisitions with different acquisition and reconstruction parame-

ters.
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2. Integrate programming tools for numerical simulations of MR image

acquisitions with different acquisition and reconstruction parameters.

3. Integrate programming tools for textural analysis of clinical and simu-

lated PET and MR images.

The integrated software has been called STAMP, which stands for Simulator

for Texture Analysis in MRI and PET. As described below, this platform could

facilitate the investigation of PET and MR image acquisition protocol varia-

tions on the texture features of simulated images. Example pictures of the

three main graphical user interfaces (GUIs) of STAMP with real sample cases

are shown in Supplementary Material section 5.9.3.

The simulations of PET image acquisitions in STAMP are achieved using

an integrated version of the GATE simulator. The STAMP platform provides

a PET simulation GUI that allows the user to specify the geometry of a cylin-

drical PET scanner from a small set of structural requirements, as well as dig-

itizer parameters and the physical processes used in the simulations. An ar-

bitrary voxelized activity source (e.g., FDG-PET tumour model) can then be

imported and visualized into the simulation platform. The GUI also allows

the user to choose between adding a water cylinder of a selected radius on

top of the voxelized source or adding an arbitrary voxelized phantom with

specific chemical composition for each voxels in the overall simulation geom-

etry. The GUI then generates a sample file and a macro file that can be sent to

a computer cluster (using the GUI) or simulated locally. Several GATE pro-

cesses are then started in parallel. Coincidences, scatter and random events

occurring within the scanner’s detectors in each process are stored into a

common sinogram file that can be subsequently used to reconstruct an im-

age of the voxelized source via the GUI.

The simulations of MR image acquisitions in STAMP are achieved us-

ing an integrated version of the JEMRIS simulator. MRI sequences are pro-

grammed using a GUI already provided by the JEMRIS software developers

and integrated to STAMP, and the specifications of the sequences are saved

in a XML file. The STAMP platform provides a MRI simulation GUI that

allows the user to select a given MRI simulation model (M0, T1, T2, T ∗
2 and

chemical shift maps), a sequence with specific MRI parameters, as well as

imaging coils specifications used in the simulations. The GUI then generates

a set of simulation files that can be sent to a computer cluster or simulated

locally. Parallelization of the execution is done using the MPI library. The
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MRI signal is read by the GUI to generate a k-space and reconstruct an image

of the MRI simulation model.

A third GUI has also been implemented in STAMP in order to visual-

ize PET and MRI simulation results, specify reconstruction algorithms and

compute textural features. In order to facilitate data storage for each study

case, a dedicated data structure format has been designed to keep track of

the original PET and MRI scans in DICOM format, the simulation models

developed from these scans, as well as the data obtained from all simula-

tions. From clinical and simulated PET and MR images, GLCM, GLRLM,

GLSZM and NGTDM 3D texture features can be computed using STAMP.

Additional software features also exist to perform optimal texture extraction

via the optimization of intensity quantization, spatial resolution and wavelet

filtering. The STAMP platform also provides tools to perform fast texture

computations in batch mode using our data structure.

5.4.6 Optimization of a texture-based model

Figure 5.4 presents an overview of the study workflow. In this work, PET

simulated images (hereby denoted as “PETsim”) were acquired for all pa-

tients using the following numbers of span: 3, 5, 7, 9, 11, 13, 15 and 17. A span

of 3 was considered as the parameter used for clinical acquisitions. For MRI,

T1-weighted simulated images (hereby denoted as “T1sim”) were acquired

using repetition times equal to {1
3
, 1
2
, 1, 2, 3} × the different repetition times

set in the FSE sequence of the clinical acquisitions of T1 scans of each patient

(TRc), and T2-weighted simulated images (hereby denoted as “T2sim”) were

acquired using echo times equal to {1
3
, 1
2
, 1, 2, 3} × the different echo times

set in the FSE sequence of the clinical acquisitions of T2FS scans of each pa-

tient (TEc). All other possible user-defined simulation parameters were set

to parameters used in clinical imaging acquisitions.

From the whole set of PETsim, T1sim and T2sim images, the HGZEGLSZM

(PETsim – HGZEGLSZM), ZSVGLSZM (T1sim – ZSVGLSZM) and LRLGEGLRLM (T2sim

– LRLGEGLRLM) texture features, respectively, were computed from the tu-

mour region using the same extraction parameters (scale, algo, Ng) as detailed

in Equation 5.3. As the quantization process of these three texture features in-

volves a fixed number of bins per ROI, their computation is not dependent on

the absolute imaging intensity values of the simulated images. These features

were thus calculated from the raw intensity output of simulated images.
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Using the texture data from the simulated images acquired using vari-

ous parameters, the possibility of enhancing the predictive properties of the

model of Equation 5.3 was estimated using bootstrapping experiments. The

SUVpeak feature was considered as acquired from a “clinical” PET acquisi-

tion protocol and was thus obtained from PET clinical images for all exper-

iments in the subsequent optimization analysis. For every combination of

different PET, T1-weighted and T2-weighted acquisition parameters enumer-

ated above, new logistic regression model responses (i.e., coefficients) were

trained in 1000 bootstrap training samples for the following set of four fea-

tures {SUVpeak, PETsim – HGZEGLSZM , T1sim – ZSVGLSZM , T2sim – LRLGEGLRLM},

and these model responses were thereafter directly tested in the correspond-

ing bootstrap testing samples. Re-training of logistic regression coefficients

for every different situation mimics how a predictive model would be trained

in reality using clinical images acquired with a single set of parameters. The

predictive performance of the models trained for every combination of acqui-

sition parameters was then assessed by taking the mean AUC computed in

the 1000 bootstrap testing samples (“bootstrap AUC”, or ordinary bootstrap).

Standard error of the mean was also calculated using a 95 % confidence in-

terval.

5.5 Results

5.5.1 Texture variations with acquisition parameters

Qualitative image analysis

Figure 5.5 first presents example PET and MR simulated images (PETsim,

T1sim, T2sim) acquired using different parameters: I) span 3, 9 and 17 for

PETsim; II) TR of {1
3
, 1, 3} × TRc for T1sim; and III) TE of {1

3
, 1, 3} × TEc for

T2sim.

For PET image acquisitions, it can be observed that an increasing span

has the effect to increase image smoothing. Increasing the extent of axial data

combined per slice with multiple neighboring detector coincidences has the

benefit to augment slice sensitivity, however at the expense of a loss of reso-

lution. In terms of image characteristics, high-intensity and low-intensity re-

gions appear to be better defined, an effect which could be beneficial in terms

of textural analysis for a better assessment of zone characteristics within the

tumour (e.g., HGZEGLSZM).
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CLINICAL RETROSPECTIVE COHORT
30 STS patients

PET
clinical scans

TEXTURE-BASED
PREDICTION

MODEL

PET
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MRI
tumor models

MONTE-
CARLO

SIMULATION
GATE

NUMERICAL
SIMULATION

JEMRIS

SPAN
{3*, 5, 7 9, 11,

13, 15, 17}

TE, TR
{1/3, 1/2, 1*, 2, 3}

× clinical value

PET and MR
SIMULATED

IMAGES

T1 and T2FS

 clinical scans

Figure 5.4 : Workflow of this study. Digital tumour models were created from the
PET, T1-weighted (T1) and T2-weighted fat-saturated (T2FS) clinical images of a ret-
rospective cohort of 30 soft-tissue sarcoma patients. These tumour models were used
as inputs for the simulations of PET, T1-weighted and T2-weighted image acquisitions
using the GATE and JEMRIS software. The simulated PET images (PETsim) were ac-
quired with different numbers of span, the simulated T1-weighted images (T1sim) with
different multiples of the repetition times (TR) used in clinical acquisitions for each pa-
tient, and the simulated T2-weighted images (T2sim) with different multiples of the
echo times used in clinical acquisitions for each patient. Asterisks (*) in the figure rep-
resents parameters used in clinical acquisitions (span3, TRc, TEc). Texture features pre-
viously selected in a multivariable model constructed from clinical scans for the pre-
diction of lung metastases in soft-tissue sarcomas were extracted for the whole set of
simulated images. The possibility of enhancing the predictive properties of the texture-
based model by optimizing PET and MR acquisition protocols was then estimated using
bootstrapping experiments with textures extracted from simulated images.
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→ SPAN 3
→ 1/3 × TRc
→ 1/3 × TEc

→ SPAN 9
→ 1 × TRc
→ 1 × TEc

→ SPAN 17
→ 3 × TRc
→ 3 × TEc

Clinical param.

Clinical param.

Clinical param.

PETsim

T1sim

T2sim

Figure 5.5 : Example PET and MR simulated images acquired using different
parameters. Top row: PET simulated images (PETsim) acquired with a span of 3 (left),
9 (middle) and 17 (right). Middle row: T1-weighted simulated images (T1sim) acquired
with a repetition time (TR) of 1

3
(left), 1 (middle) and 3 (right) times the repetition time

used in clinical acquisitions for each patient (TRc). Bottom row: T2-weighted simulated
images (T2sim) acquired with an echo time (TE) of 1

3
(left), 1 (middle) and 3 (right) times

the echo time used in clinical acquisitions for each patient (TEc). Simulated images
acquired using clinical parameters are identified by “Clinical param.” (span 3, 1×TRc,
1× TEc).
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For T1-weighted simulated image acquisitions, changes in TR in the range

tested in this work do not appear to considerably affect the images. Small

contrast increase and better definition of small tumour sub-regions can be

observed with increasing TR, but the effect is not conclusive.

For T2-weighted simulated image acquisitions, it can be observed that in-

creasing TE has for effect to considerably increase the contrast between the

different tumour sub-regions in the image. High-intensity and low-intensity

regions are better defined and may thus improve intratumoural heterogene-

ity characterization (e.g., LRLGEGLRLM).

Texture measurements

We investigated the overall changes in the PETsim – HGZEGLSZM , T1sim –

ZSVGLSZM and T2sim – LRLGEGLRLM features when extracted from simulated

images acquired with different acquisition parameters. The different features

extracted for each patient from simulated images acquired using the whole

set of acquisition parameters were compared against the features extracted

from simulated images acquired using the following clinical parameters: a

span of 3 for PETsim, a repetition time equal to the one used in clinical ac-

quisitions (TRc) for T1sim, and an echo time equal to the one used in clinical

acquisitions (TEc) for T2sim. Percentage differences of each feature relative

to textures extracted from simulated images acquired using clinical param-

eters were computed for all patients. As the overall goal of this study is to

find a set of acquisition parameters from which extracted textures best dis-

criminate between aggressive and non-aggressive tumours, we performed

our analysis for two separate groups of patients: I) patients that developed

lung metastases (“Lung Mets” patients); and II) patients that did not develop

lung metastases (“No Lung Mets” patients). Results are summarized in Fig-

ure 5.6a using box plots.

For PET acquisitions, the general trend observed is that an increasing

number of span increases the value of the PETsim – HGZEGLSZM feature. This

is consistent with the assessment made in the previous sub-section, where

we observed that a higher span increases image smoothing and results in

better defined tumour sub-regions. Also, it can be seen that the overall vari-

ations with different numbers of span seem to be more pronounced for No

Lung Mets patients (higher interquartile range), but that Lung Mets patients

experience a strict higher increase in the PETsim – HGZEGLSZM feature with in-

creasing span (median of % difference). Overall, the mean percentage change
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over all numbers of span as compared to span 3 is 0.3[-7,10] % and the abso-

lute mean percentage change is 1 % for Lung Mets patients, whereas the mean

percentage change is -0.2[-11,13] % and the absolute mean percentage change

is 3 % for No Lung Mets patients.

For T1-weighted MRI acquisitions, the general trend observed is that an

increasing TR leads to an increase in the value of the T1sim – ZSVGLSZM fea-

ture. This trend seems more pronounced for Lung Mets patients than for No

Lung Mets patients. Overall, the mean percentage change over all different

repetition times as compared to TRc is 2[-47,78] % and the absolute mean per-

centage change is 16 % for Lung Mets patients, whereas the mean percentage

change is 2[-99,190] % and the absolute mean percentage change is 24 % for

No Lung Mets patients. The ZSVGLSZM feature thus experiences high varia-

tions when T1-weighted images are acquired with different repetition times,

an effect which could be beneficial for MRI sequence optimization.

For T2-weighted MRI acquisitions, the general trend observed is that an

increasing TE leads to an increase in the value of the T2sim – LRLGEGLRLM fea-

ture. This trend seems again more pronounced for Lung Mets patients than

for No Lung Mets patients. Overall, the mean percentage change over all dif-

ferent echo times as compared to TEc is -0.5[-25,25] % and the absolute mean

percentage change is 9 % for Lung Mets patients, whereas the mean percent-

age change is 21[-38,1343] % and the absolute mean percentage change is 27 %

for No Lung Mets patients. The LRLGEGLRLM feature thus experiences high

variations when T2-weighted images are acquired with different echo times,

another effect which could be beneficial for MRI sequence optimization.

Associations with clinical endpoint

In terms of texture optimization for the enhancement of a texture-based pre-

diction model using a specific set of image acquisition parameters as com-

pared to clinical ones, an ideal situation would entail that a given texture

feature varies in one direction (e.g., increase) for all patients of a given group

(e.g., Lung Mets) at the same time as the same feature varies in the opposite

direction (e.g., decrease) for the other group (e.g., No Lung Mets). In reality,

it is more likely that the textures of the majority of patients will vary in one

direction, regardless of the patient group. In that case, it could be possible

to enhance a given texture-based model if the absolute change in one overall

group of patients is higher as compared to the other group. In this section,

we verified if this effect can be observed in the current patient cohort us-

ing univariate analysis. We investigated the associations of the textures with



Chapter 5. Enhancement of radiomic-based prediction models via the
optimization of imaging acquisition protocols

180

(s
p3

)
sp

5
sp

7
sp

9
sp

11
sp

13
sp

15
sp

17
-15

-10

-5

0

5

10

15
%

 D
if
fe

re
n

c
e

 w
it
h

 (
s
p

a
n

3
)

SPAN - Lung Mets

PETsim -- HGZE
GLSZM

1/
3*

TR
c

1/
2*

TR
c

(T
R
c)

2*
TR

c

3*
TR

c

-100

-50

0

50

100

%
 D

if
fe

re
n

c
e

 w
it
h

 (
T

R
c
)

REPETITION TIME - Lung Mets

T1sim -- ZSV
GLSZM

1/
3*

TEc

1/
2*

TEc

(T
Ec)

2*
TEc

3*
TEc

-60

-40

-20

0

20

40

60

%
 D

if
fe

re
n

c
e

 w
it
h

 (
T

E
c
)

ECHO TIME - Lung Mets

T2sim -- LRLGE
GLRLM

(s
p3

)
sp

5
sp

7
sp

9
sp

11
sp

13
sp

15
sp

17
-15

-10

-5

0

5

10

15

%
 D

if
fe

re
n

c
e

 w
it
h

 (
s
p

a
n

3
)

SPAN - No Lung Mets

PETsim -- HGZE
GLSZM

1/
3*

TR
c

1/
2*

TR
c

(T
R
c)

2*
TR

c

3*
TR

c

-100

-50

0

50

100

%
 D

if
fe

re
n

c
e

 w
it
h

 (
T

R
c
)

REPETITION TIME - No Lung Mets

T1sim -- ZSV
GLSZM

1/
3*

TEc

1/
2*

TEc

(T
Ec)

2*
TEc

3*
TEc

-60

-40

-20

0

20

40

60

%
 D

if
fe

re
n

c
e

 w
it
h

 (
T

E
c
)

ECHO TIME - No Lung Mets

T2sim -- LRLGE
GLRLM

(s
p3

)
sp

5
sp

7
sp

9
sp

11
sp

13
sp

15
sp

17
0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
b

s
o

lu
te

 S
p

e
a

rm
a

n
's

 r
a

n
k
 c

o
rr

e
la

ti
o

n
 (

rs
)

SPAN

PETsim -- HGZE
GLSZM

1/
3*

TR
c

1/
2*

TR
c

(T
R
c)

2*
TR

c

3*
TR

c
0.1

0.15

0.2

0.25

0.3

0.35

0.4
REPETITION TIME

T1sim -- ZSV
GLSZM

1/
3*

TEc

1/
2*

TEc

(T
Ec)

2*
TEc

3*
TEc

0.1

0.15

0.2

0.25

0.3

0.35

0.4
ECHO TIME

T2sim -- LRLGE
GLRLM

Figure 5.6 : Texture variations with different acquisition parameters and re-
sulting effects on associations with lung metastases in soft-tissue sarcomas.
(a) Left: The HGZEGLSZM feature extracted from PET simulated images (PETsim) ac-
quired with different numbers of span (sp) was compared against the HGZEGLSZM fea-
ture extracted from PET simulated images acquired with the span used in clinical ac-
quisitions (sp3); Middle: The ZSVGLSZM feature extracted from T1-weighted simulated
images (T1sim) acquired with different repetition times (TR) was compared against
the ZSVGLSZM feature extracted from T1-weighted simulated images acquired with
the repetition time used in clinical acquisitions for each patient (TRc); and Right: The
LRLGEGLRLM feature extracted from T2-weighted simulated images (T2sim) acquired
with different echo times (TE) was compared against the LRLGEGLRLM feature extracted
from T2-weighted simulated images acquired with the echo time used in clinical acqui-
sitions for each patient (TEc). Percentage differences relative to textures extracted from
simulated images acquired with clinical parameters were computed for all patients, and
results are summarized using box plots. The group of patients that developed lung
metastases is denoted as “Lung Mets” and the group of patients that did not develop
lung metastases is denoted as “No Lung Mets”. (b). Associations of textures extracted
from simulated images with lung metastases in soft-tissue sarcomas. A higher absolute
Spearman’s rank correlation is indicative of a stronger association.
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the clinical endpoint of interest in this study, i.e., the development of lung

metastases. Spearman’s rank correlation coefficients (rs) were calculated be-

tween imaging feature (j) vectors xxxj = {xij ∈ R : i = 1, 2, . . . , N} extracted

from simulated images acquired using the whole set of different parameters,

and the outcome vector yyy = {yi ∈ {0 : No Lung Mets, 1 : Lung Mets} :

i = 1, 2, . . . , N}. Results are summarized in Figure 5.6b. In part due to the

small number of patients used in this study (30), only one significant associ-

ation was found and was obtained for T1-weighted MRI acquisitions using a

TR equal to 1
2
× TRc. Nonetheless, the results obtained here are informative

about the possible optimization extent of each feature.

For PET acquisitions, the general trend observed is that an increasing

span as compared to a number of span used in clinical acquisitions (span 3)

has for effect to increase the predictive power of the HGZEGLSZM texture. The

highest absolute correlation between PETsim – HGZEGLSZM and lung metas-

tases was found at span 13, with rs = 0.28, p = 0.13. In comparison, the corre-

lation found using PET simulated images acquired with span 3 was rs = 0.21,

p = 0.26.

For T1-weighted MRI acquisitions, the general trend observed is that a

TR lower than TRc increases the predictive power of the ZSVGLSZM texture,

and a TR higher than TRc decreases the predictive power of the ZSVGLSZM

texture. The highest absolute correlation between T1sim – ZSVGLSZM and lung

metastases was found for a TR equal to 1
2
× TRc, with rs = −0.36, p = 0.05.

In comparison, the correlation found using T1-weighted simulated images

acquired with TRc was rs = −0.28, p = 0.14.

For T2-weighted MRI acquisitions, no general trend is observed. The

highest absolute correlation between T2sim – LRLGEGLRLM and lung metas-

tases was found for a TE equal to TEc, with rs = 0.32, p = 0.08. The only

comparable correlation was obtained for a TE equal to 3×TEc, with rs = 0.30,

p = 0.11.

5.5.2 Evaluation on a texture-based model

Bootstrapping optimization

The results for the optimization of the texture-based prediction model as de-

scribed in section 5.4.6 are presented in Figure 5.7. In both Figure 5.7a and

Figure 5.7b, the average AUC values obtained in bootstrap testing samples

for each of the 200 experiments performed in this work are shown. The total

of 200 bootstrapping experiments results from all possible combinations of



Chapter 5. Enhancement of radiomic-based prediction models via the
optimization of imaging acquisition protocols

182

different PET, T1-weighted and T2-weighted acquisition parameters tested in

this work: 8 numbers of span × 5 repetition times × 5 echo times. In Fig-

ure 5.7a, results are presented for varying numbers of span and echo times

with fixed repetition times, whereas in Figure 5.7b results are presented for

fixed echo times.

Similarly to the assessment made in section 5.5.1, it can be seen that an in-

creasing span generally improves the prediction performance of the texture-

based model as compared to span 3 used in clinical acquisitions. In terms of

T2-weighted MRI acquisitions, the prediction performance seems to be con-

siderably higher when the texture-based model is constructed using 1
2
×TEc

as seen by the green line in Figure 5.7a. In terms of T1-weighted MRI acqui-

sitions, the prediction performance seems to be slightly higher for 1
3
× TRc

and 3 × TRc as seen by the blue and black lines in Figure 5.7b, respectively.

Other types of trends are difficult to infer, as the overall response of the model

seems to be significantly influenced by small perturbations with varying ac-

quisition parameters.

Overall, the highest estimation of the prediction performance of the texture-

based model under varying PET and MR image acquisition parameters was

reached with: I) PETsim – HGZEGLSZM feature obtained with a span of 15; II)

T1sim – ZSVGLSZM feature obtained with a TR equal to 1
3
×TRc; and III) T2sim

– LRLGEGLRLM feature obtained with a TE equal to 1
2
× TEc. This particu-

lar model constructed by combining SUVpeak with textures extracted from

simulated images acquired with optimal acquisition parameters reached an

average AUC of 0.89 ± 0.01 in bootstrap testing experiments. In compari-

son, the model constructed with textures extracted from simulated images

acquired with clinical acquisition parameters (span3, TRc, TEc) reached an

average AUC of 0.84± 0.01 in bootstrap testing experiments.

Model response improvement

From the whole set of bootstrapping optimization experiments performed in

the last sub-section for varying PET and MR image acquisition parameters, a

single multivariable model combining the {SUVpeak,PETsim – HGZEGLSZM ,T1sim

– ZSVGLSZM ,T2sim – LRLGEGLRLM} features was estimated to possess the high-

est predictive properties for lung metastases in STSs (span 15, 1
3
× TRc, 1

2
×

TEc). From this model, final logistic regression coefficients and bootstrap

confidence intervals (95 %) were computed in the same manner as described

in section 5.4.2 (1000 bootstrap samples), and the final model response for

each patient of this cohort was subsequently calculated. The same process
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Figure 5.7 : Optimization of a texture-based prediction model with respect to
PET and MR simulated image acquisition parameters using bootstrapping ex-
periments. In this work, the HGZEGLSZM texture feature was extracted from PET simu-
lated images (PETsim) acquired with different numbers of span (sp). The ZSVGLSZM tex-
ture feature was extracted from T1-weighted simulated images (T1sim) acquired with
different multiples of the repetition time (TR) used in clinical acquisitions for each pa-
tient (TRc). The LRLGEGLRLM texture feature was extracted from T2-weighted simu-
lated images (T2sim) acquired with different multiples of the echo time (TE) used in
clinical acquisitions for each patient (TEc). The multivariable model combines the SU-

Vpeak feature extracted from clinical images (sp3) with the three texture features ex-
tracted from simulated images using logistic regression. Different models were trained
in 1000 bootstrap training samples for all possible combinations of the tested acquisition
parameters of simulated images, and the trained models were tested in the correspond-
ing 1000 bootstrap testing samples. The average AUC computed over all bootstrap
testing samples was then calculated (“bootstrap AUC”). “SIM OPTIMAL” and “SIM
CLINICAL” point to the results of the models constructed using the optimal (span 15,
1
3
×TRc, 1

2
×TEc) and clinical (span3, TRc, TEc) sets of PET and MR image acquisition

parameters, respectively. (a) Plots of bootstrap AUC as a function of varying numbers
of span and TE, with TR fixed. (b) Plots of bootstrap AUC as a function of varying
numbers of span and TR, with TE fixed.
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was also repeated for the multivariable model combining SUVpeak and the

texture features extracted from simulated images acquired using the set of

clinical acquisition parameters (span 3, TRc, TEc). In this section, we evalu-

ate how the response of these two models vary, and how the response of the

model constructed using optimal PET/MR acquisition parameters improves

in comparison to the response of the model constructed using standard clini-

cal acquisition parameters. The responses of these two models for each of the

30 patients of the cohort along with associated bootstrap confidence intervals

are presented in Figure 5.8.
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Figure 5.8 : Texture-based prediction model response enhancement using an
optimal set of PET and MR image acquisition parameters. Final model responses
for the prediction of lung metastases in soft-tissue sarcomas and associated confidence
intervals (95 %) are constructed using bootstrapping. Left: Probability of developing
lung metastases as a function of the response of the final model constructed by com-
bining SUVpeak with textures (PETsim – HGZEGLSZM , T1sim – ZSVGLSZM , T2sim –

LRLGEGLRLM ) extracted from simulated images acquired with clinical acquisition pa-
rameters (span 3, TRc, TEc). Right: Probability of developing lung metastases as a
function of the response of the final model constructed by combining SUVpeak with
textures (PETsim – HGZEGLSZM , T1sim – ZSVGLSZM , T2sim – LRLGEGLRLM ) extracted
from simulated images acquired with optimal acquisition parameters (span 15, 1

3
×TRc,

1
2
× TEc). The increase in AUC of the model responses is significant, with p = 0.04.

Overall, results presented in Figure 5.8 demonstrate the possibility of en-

hancing a texture-based predictive model by optimizing PET and MR image

acquisition parameters. It was verified that the increase in AUC of the model

responses obtained from simulated images acquired with clinical parameters

to simulated images acquired with optimal parameters is significant under

the Delong test [59], with p = 0.04. In Figure 5.8, two false negatives (Lung

Mets patients with a probability < 50 %) using clinical parameters become

true positives (Lung Mets patients with a probability > 50 %) using optimal
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parameters, as it was verified by inspecting model response values of each

patient. On the other hand, some true negatives (No Lung Mets patients with

a probability < 50 %) also become false positives (No Lung Mets patients with

a probability > 50 %). Nonetheless, the significant AUC increase implies that

the overall separation between Lung Mets and No Lung Mets patients under

optimal image acquisition parameters is better than under clinical parame-

ters, and thus that the predictive properties of the final model response are

enhanced.

5.6 Discussion

Radiomics analysis is envisioned to make a significant impact in current rou-

tine clinical practice supporting more personalized cancer treatment man-

agement. In particular, the analysis of PET, CT and MR images with textu-

ral metrics have the potential to comprehensively characterize intratumoural

heterogeneity and to provide crucial information about tumour aggressive-

ness. Tumour outcome prediction models combining textural metrics would

be in turn constructed to improve prognostic assessment. However, it is rec-

ognized that routine clinical use would demand such radiomics models to

be highly robust and predictive. Therefore, in the past few years, many stud-

ies have investigated the stability of textural features under varying imag-

ing conditions in attempt to identify the most robust features, but not ar-

guably the most optimal ones. In this work, we pursued an alternative but

complementary approach that aims to identify the conditions and acquisi-

tion settings for these features to provide optimal predictive value. A proof

of concept was carried out using computerized simulations of PET and MR

image acquisitions, a type of framework which would provide an effective

and controlled environment to study the effects of different acquisition pa-

rameters on many different types of textural measurements of intratumoural

heterogeneity. We demonstrated the feasibility of enhancing a texture-based

predictive model by optimizing targeted image acquisition parameters. Such

identified parameters could thereafter be standardized and possibly become

part of new protocols in future prospective studies designed to use radiomic

models for tumour response assessment.

A multivariable model for the prediction of lung metastases in soft-tissue

sarcomas (STSs) was first constructed from PET and MR clinical images. This

model is composed of four features: 1) the SUVpeak value extracted from
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PET; II) the HGZEGLSZM texture extracted from PET; III) the ZSVGLSZM tex-

ture extracted from T1-weighted images; and IV) the LRLGEGLRLM texture

extracted from T2-weighted fat-saturated images. In our work, we attempted

to optimize the computation of these three texture features that are part of

the model by varying different image acquisition parameters, but the SUV-

peak feature was not optimized and was only extracted from clinical images.

While the actual value of the SUVpeak feature would also change with vary-

ing PET acquisition parameters, the potential extent of optimization for that

feature is likely less than for textures. Also, for practicality reasons in real

life situations, it is possible that only a single additional set of images meet-

ing the optimization requirements of textures would be acquired, whereas

other more conventional prognostic factors would be extracted from images

acquired using standard clinical acquisition protocols meeting the demands

and requirements of radiologists.

In this work, simulated PET images were acquired by varying the number

of span, or the number of neighboring ring detectors that are allowed to be in

coincidence in the image acquisition, a procedure that increases slice sensitiv-

ity at the expense of resolution loss. Overall, we observed that an increasing

number of span generally resulted in an increase of the HGZEGLSZM texture,

a metric that quantifies the dominance or the emphasis of high-intensity sub-

regions within the analyzed ROI. We also noted that this effect seemed to

be more pronounced for Lung Mets patients than for No Lung Mets patients.

In principle, increasing the number of span increases the image smoothing

in the whole image and would thus result in a better definition of both the

high- and low-intensity tumour sub-regions. However, as high-intensity tu-

mour sub-regions in PET are likely more dominant for aggressive tumours

with high metabolism, a higher increase of the HGZEGLSZM texture is more

likely for metastatic STSs. To our knowledge, no other work has investi-

gated the effect of the number of span on textures. Galavis et al. [30] studied

the effect of different acquisition modes and reconstruction parameters on

GLRLM textures (1D run length counterpart of the 2D or 3D GLSZM zone

size computations), and concluded that those textures display intermediate

variability. In this study, the variability of the HGZEGLSZM texture with vary-

ing numbers of span allowed for intermediate variations in the association of

this metric with lung metastases in STSs.

In terms of MRI acquisitions, T1-weighted simulated images were ac-

quired with a standard spin-echo sequence using different repetition times

(TR), and T2-weighted simulated images were acquired using different echo



Chapter 5. Enhancement of radiomic-based prediction models via the
optimization of imaging acquisition protocols

187

times (TE). Overall, we observed that an increasing TR generally resulted

in an increase of the ZSVGLSZM texture, a metric quantifying the variance in

the size of the different sub-regions within the tumour. An increasing TE

also resulted in an increase of the LRLGEGLRLM texture, a metric quantify-

ing the dominance or emphasis of continuous long runs of low-intensities.

These effects could be explained by the increased contrast resulting between

low- and high-intensity tumour sub-regions in simulated images with in-

creasing TR and TE, although the effect is less conclusive for T1-weighted

images. However, we also observed that small perturbations in T1-weighted

and T2-weighted simulated images with different TR and TE could provok

considerably high variations in the ZSVGLSZM and the LRLGEGLRLM metrics,

respectively. Mayerhoefer et al. [33] and Waugh et al. [34] suggested that spa-

tial resolution (i.e., voxel size) would nonetheless have higher impact than

varying imaging sequence parameters on the outcome of texture analysis,

but here our results obtained on realistic and heterogeneous tumour models

advise about the need to find an effective trade-off between optimization and

robustness of features in such experiments.

We demonstrated in this work that the enhancement of a multivariable

texture-based predictive model via the optimization of PET and MR image

acquisition protocols is feasible, as the increase in the estimation of the pre-

diction performance by extracting texture features from images acquired us-

ing an optimal set of acquisition parameters was significant. Specifically, the

optimization process led to a direct increase in the prediction of true posi-

tives (i.e., higher sensitivity) as seen in Figure 5.8. As the most important

variable in the model (SUVpeak) was not optimized, we believe that degrees

of enhancement higher than those observed in this work may be achievable

if a given multivariable prediction model is texture-based only. However,

we also observed a lot of statistical fluctuations in bootstrap AUC results in

the optimization process of Figure 5.7, which limits our ability to decipher

optimization patterns. Features weigh differently in different multivariable

experiments, and as a consequence, it may be difficult to predict the global

response pattern of a model under different acquisition parameters. Further-

more, it is important to recognize that the optimal set of PET and MR image

acquisition parameters identified in multivariable analysis (span 15, 1
3
×TRc

and 1
2
×TEc in Figure 5.7) is not exactly the same as the one identified in uni-

variate analysis (span 13, 1
2
× TRc and 1× TEc in figure 5.6b). This attests to

the complexity of machine learning problems where variables that are con-

sidered “less informative” by themselves can generate valuable predictions
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when combined together [60].

Despite the promising demonstration of our investigation, there are sev-

eral limitations in this proof-of-concept study that we want to point out. First,

in order to draw valid interpretations about texture variations in clinical set-

tings from simulations, it is necessary to establish similarities between tex-

tures extracted from clinical and simulated images. Investigations on this is-

sue were also performed and are presented Supplementary Material section

5.9.4. Our results show that the HGZEGLSZM texture values are similar be-

tween clinical and simulated image acquisitions, but that the ZSVGLSZM and

LRLGEGLRLM textures can considerably differ for some patients. For MRI, this

effect may be explained by the high sensitivity of those textures to varying

TR and TE as seen in Figure 5.6a. Although the differences between the indi-

vidual textures of the clinical images and of the simulated images acquired

using clinical parameters are not significantly different under the two-sided

Wilcoxon signed rank sum test (PET: p = 0.12, T1-weighted: p = 0.17, T2-

weighted: p = 0.08), our MRI simulation framework could be further re-

fined in future work to achieve better results. The validity of tumour models

prior to simulations is fundamental, and wrong assumptions in the creation

of those models could have affected our results, especially in the case of MR

image acquisitions. Furthermore, full construction of prediction models in-

cluding feature selection should ideally be performed for every set of simu-

lated images acquired with different parameters. For example, as increasing

the number of span affects the intrinsic resolution of the image, optimal tex-

tures for the prediction of lung metastases in STSs may be found at differ-

ent resolutions than the one identified for the HGZEGLSZM texture extracted

from clinical images in Equation 5.3 (scale of 5 mm). Finally, bootstrapping

experiments only provides an estimation of the predictive properties of our

texture-based model, and further validation of the results obtained in this

study on independent external datasets is needed.

Overall, our work is only a first step towards the enhancement of texture-

based prediction models via the optimization of image acquisition parame-

ters. The type of simulation framework developed here could be useful to

investigate how a wider range of radiomic features vary in different acqui-

sition settings, to then identify which features are stable enough to further

undergo imaging acquisition optimization. Furthermore, this type of simu-

lation framework could also be effective to assess inter-scanner texture vari-

ability, and consequently to examine how texture-based prediction models
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may need to be optimized differently for different scanners. Ultimately, spe-

cific “radiomics” acquisition protocols optimized to generate superior tex-

ture measurements for a given clinical problem would be proposed and there-

after validated in prospective studies using clinical scanners.

5.7 Conclusion

In the past few years, many studies have examined the impact of different

imaging settings on textural measurements, with the aim of identifying the

most stable features under varying conditions. In this work, we pursued

an alternative but complementary study paradigm by evaluating the feasi-

bility of optimizing textures extracted from images acquired using different

acquisition protocols for better prediction of a given clinical endpoint. As a

proof of concept, we developed a workflow based on computerized simula-

tions of PET and MR image acquisitions to test if a texture-based model con-

structed for the prediction of lung metastases in soft-tissue sarcomas could

be enhanced by optimizing targeted image acquisition parameters. Results

obtained in bootstrapping experiments suggest that it is possible to enhance

texture-based prediction models by extracting features from images acquired

using an optimal set of acquisition parameters. However, further validation

on independent datasets is required, and optimal trade-offs should be at-

tained between stability and optimization of texture features when different

image acquisition parameters are varied. In this context, simulations of im-

age acquisitions using realistic digital tumour models would constitute and

effective framework to evaluate the extent of texture variations under differ-

ent acquisition settings and the resulting impact on tumour outcome predic-

tion models for prospective radiomics studies.
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5.9 Supplementary Material

5.9.1 Description of 3D radiomic features

In this thesis, please see Appendix A.

5.9.2 Construction of radiomic models

Feature set reduction

From the initial whole set of radiomic features (5 shape and 10 intensity fea-

tures, 40 textures × 40 extraction parameters) extracted for each of the scans

used in this work (PET, T1, T2FS), feature set reduction was performed via

a stepwise forward feature selection scheme. This process aims to create a

reduced feature set containing a total of 25 features balanced between pre-

dictive power and non-redundancy. This procedure is carried out using the

following Gain equation [37]:

Ĝainj = γ · |r̂s(xxxj ,yyy)|

+ δa ·
[

f∑

k=1

(
2(f − k + 1)

f(f + 1)

)
P̂IC(xxxk,xxxj)

]

+ δb ·
[
1

F

F∑

l=1

P̂IC(xxxl,xxxj)

]
,

where r̂s(xxxj ,yyy) =
1

B

B∑

b=1

rs(xxx
∗b
j ,yyy),

and P̂IC(xxxk,xxxj) =
1

B

B∑

b=1

PIC(xxx∗b
k ,xxx

∗b
j ). (5.8)

In Equation 5.8, rs(xxxj,yyy) is the Spearman’s rank correlation computed be-

tween a given feature vector xxxj and an outcome vector yyy. PIC(xxxk,xxxj) is the

potential information coefficient defined as PIC(xxxk,xxxj) = 1−MIC(xxxk,xxxj), where

MIC(xxxk,xxxj) is the maximal information coefficient [61] between feature k and j.

The sum over k is a sum over all f features that have already been chosen to

be part of the reduced feature set (employed in forward selection schemes),

whereas the sum over l is a sum over all F features that have not yet been

removed from a larger initial set (employed in backward selection schemes).

The sum over the k features is always done in order of appearance of the

different features in the reduced set in order to favour the features from the
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larger initial set with the least dependence with the features chosen first in

the reduced set. In this work, γ was set to 0.5, δa to 0.5 and δb to 0. Every

time a new feature was chosen in the reduced set, a new Gain was calcu-

lated for all remaining features in the larger initial set using a different set

of 100 bootstrap samples (∗b, with b = 1, . . . , B). Also, once a given texture

extracted from a given scan with specific extraction parameters was chosen

(scale, algo, Ng), all the other variants of that texture feature for that scan

using other extraction parameters were deleted from the initial larger set

of radiomic features. Note that Equation 5.8 allows to rank specific scan-

texture-parameter features, as part 1 of the Gain equation uses Spearman’s

rank correlations varying over all variants of texture extraction parameters.

However, to speed up calculations, average scan-texture features over all tex-

ture extraction parameters were used in part 2 (and 3 if needed) of the Gain

equation.

Feature selection

The feature selection step was first divided into 25 experiments. In each of

these experiments, a different feature from the reduced set was used as a

different “starting feature”. For a given starting feature, all possible logis-

tic regression models of order 2 (i.e., combination of 2 variables) were cre-

ated by combining that feature with each of the remaining features in the

reduced feature set still available for that particular experiment. Bootstrap

resampling (100 samples) was performed for each of these models in order

to calculate the 0.632+ bootstrap AUC [41, 42], a process in which logistic

regression models are trained in bootstrap training samples and tested in

corresponding bootstrap testing samples. Then, the single remaining feature

that maximized the 0.632+ bootstrap AUC when combined with the starting

feature was selected, and the process was repeated up to model order 10 for

each experiment. Finally, for each model order, the experiment that yielded

the highest 0.632+ bootstrap AUC was identified, and combinations of fea-

tures were thereby chosen for model orders of 1 to 10. Figure 5.9 illustrates

the feature selection process.

5.9.3 Software integration for texture analysis of PET and MR

simulated images

Figure 5.10, Figure 5.11 and Figure 5.12 present screenshots of the three main

GUIs used in STAMP. The first complete version of STAMP is currently a



Chapter 5. Enhancement of radiomic-based prediction models via the
optimization of imaging acquisition protocols

192

Figure 5.9 : Radiomic feature selection.

work-in-progress, and our plan for the future is to provide a public release

of the software to the radiomics community. All researchers interested in the

software or interested in joining our development team are most welcome,

and may contact Martin Vallières at mart.vallieres@gmail.com.

Figure 5.10 : Example image of the PET simulation GUI of STAMP.

mailto:mart.vallieres@gmail.com
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Figure 5.11 : Example image of the MRI simulation GUI of STAMP.

Figure 5.12 : Example image of the image analysis GUI of STAMP.
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5.9.4 Comparison of clinical and simulated textures
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Figure 5.13 : Comparison between textures extracted from clinical and simu-
lated images. Left: The PETsim – HGZEGLSZM feature extracted from PET simulated
images (PETsim) acquired with different numbers of span (sp) was compared against
the PET – HGZEGLSZM feature extracted from PET clinical images acquired with span 3;
Middle: The T1sim – ZSVGLSZM feature extracted from T1-weighted simulated images
(T1sim) with different repetition times (TR) was compared against the T1 – ZSVGLSZM

feature extracted from T1-weighted clinical images (T1) acquired with clinical repetition
time TRc; and Right: The T2sim – LRLGEGLRLM feature extracted from T2-weighted sim-
ulated images (T2sim) with different echo times (TE) was compared against the T2FS

– LRLGEGLRLM feature extracted from T2-weighted fat-saturated clinical images (T2FS)
acquired with clinical echo time TEc. Percentage differences relative to textures ex-
tracted from clinical scans were computed for all patients, and results are summarized
using box plots.

Overall, it can be seen that the HGZEGLSZM texture extracted from PET

simulated scans is similar to the same texture extracted from PET clinical

scans. This suggests that our PET simulation framework could be sufficiently

accurate to approximate textures computed from images acquired on clinical

scanners. Also, the smallest percentage differences between clinical and sim-

ulated textures seem to be obtained for span 3. This is consistent with the

number of span used in PET clinical acquisitions.

For MR comparisons, differences between simulated and clinical textures

are much larger than for PET. Furthermore, the percentage differences be-

tween clinical and simulated textures for the LRLGEGLRLM feature seem to

increase with increasing TE, with the smallest difference (median of distribu-

tion) obtained at 3 × TEc. This suggests that our MRI simulation framework
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may require further refinement, from MRI tumour modeling to MRI simula-

tions. In future work, we will perform a comprehensive assessement of the

origins of the differences between clinical and simulated images.

5.10 References

1. El Naqa, I., Li, R. & Murphy, M. J. Machine Learning in Radiation On-
cology: Theory and Applications 1st ed. 336 pp. (Springer International
Publishing, Cham, Switzerland, 2015).

2. Gillies, R. J., Kinahan, P. E. & Hricak, H. Radiomics: images are more
than pictures, they are data. Radiology 278, 563–577 (2016).

3. Segal, E. et al. Decoding global gene expression programs in liver can-
cer by noninvasive imaging. Nat. Biotechnol. 25, 675–680 (2007).

4. Diehn, M. et al. Identification of noninvasive imaging surrogates for
brain tumor gene-expression modules. Proc. Natl. Acad. Sci. USA 105,
5213–5218 (2008).

5. El Naqa, I. et al. Exploring feature-based approaches in PET images for
predicting cancer treatment outcomes. Pattern Recognit. 42, 1162–1171
(2009).

6. Gillies, R. J., Anderson, A. R., Gatenby, R. A. & Morse, D. L. The biol-
ogy underlying molecular imaging in oncology: from genome to anatome
and back again. Clin. Radiol. 65, 517–521 (2010).

7. Kumar, V. et al. Radiomics: the process and the challenges. Magn. Reson.
Imaging 30, 1234–1248 (2012).

8. Lambin, P. et al. Radiomics: extracting more information from medi-
cal images using advanced feature analysis. Eur. J. Cancer 48, 441–446
(2012).

9. Haralick, R. M., Shanmugam, K. & Dinstein, I. Textural features for
image classification. IEEE Transactions on Systems, Man, and Cybernetics
SMC-3, 610–621 (1973).

10. Galloway, M. M. Texture analysis using gray level run lengths. Com-
puter Graphics and Image Processing 4, 172–179 (1975).

11. Dasarathy, B. V. & Holder, E. B. Image characterizations based on joint
gray level–run length distributions. Pattern Recognition Letters 12, 497–
502 (1991).

12. Chu, A., Sehgal, C. M. & Greenleaf, J. F. Use of gray value distribution
of run lengths for texture analysis. Pattern Recognition Letters 11, 415–
419 (1990).



Chapter 5. Enhancement of radiomic-based prediction models via the
optimization of imaging acquisition protocols

196

13. Thibault, G. et al. Texture indexes and gray level size zone matrix: applica-
tion to cell nuclei classification. Proceedings of the Pattern Recognition and
Information Processing 2009. International Conference on Pattern Recog-
nition and Information Processing (PRIP ’09) (Minsk, Belarus, 2009),
140–145.

14. Amadasun, M. & King, R. Textural features corresponding to textural
properties. IEEE Transactions on Systems, Man, and Cybernetics 19, 1264–
1274 (1989).

15. Fidler, I. J. Critical factors in the biology of human cancer metastasis:
twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res. 50,
6130–6138 (1990).

16. Yokota, J. Tumor progression and metastasis. Carcinogenesis 21, 497–503
(2000).

17. Campbell, P. J. et al. The patterns and dynamics of genomic instability
in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

18. Lambin, P. et al. Predicting outcomes in radiation oncology–multifactorial
decision support systems. Nat. Rev. Clin. Oncol. 10, 27–40 (2013).

19. Hatt, M. et al. Characterization of PET/CT images using texture analy-
sis: the past, the present. . . any future? Eur. J. Nucl. Med. Mol. Imaging,
1–15 (2016).

20. Yip, S. S. F. & Aerts, H. J. W. L. Applications and limitations of ra-
diomics. Phys. Med. Biol. 61, R150–R166 (2016).

21. Bogowicz, M. et al. Stability of radiomic features in CT perfusion maps.
Phys. Med. Biol. 61, 8736 (2016).

22. Molina, D. et al. Influence of gray level and space discretization on
brain tumor heterogeneity measures obtained from magnetic resonance
images. Computers in Biology and Medicine 78, 49–57 (2016).

23. Hatt, M., Tixier, F., Rest, C. C. L., Pradier, O. & Visvikis, D. Robust-
ness of intratumour 18F-FDG PET uptake heterogeneity quantification
for therapy response prediction in oesophageal carcinoma. Eur. J. Nucl.
Med. Mol. Imaging 40, 1662–1671 (2013).

24. Leijenaar, R. T. H. et al. Stability of FDG-PET radiomics features: an in-
tegrated analysis of test-retest and inter-observer variability. Acta On-
cologica 52, 1391–1397 (2013).

25. Parmar, C. et al. Robust radiomics feature quantification using semiau-
tomatic volumetric segmentation. PLoS One 9, e102107 (2014).

26. Van Velden, F. H. P. et al. Repeatability of radiomic features in non-
small-cell lung cancer [(18)F]FDG-PET/CT studies: impact of recon-
struction and delineation. Mol. Imaging Biol. 18, 788–795 (2016).

27. Orlhac, F. et al. Tumor texture analysis in 18F-FDG PET: relationships
between texture parameters, histogram indices, standardized uptake
values, metabolic volumes, and total lesion glycolysis. J. Nucl. Med. 55,
414–422 (2014).



Chapter 5. Enhancement of radiomic-based prediction models via the
optimization of imaging acquisition protocols

197

28. Tixier, F. et al. Reproducibility of tumor uptake heterogeneity charac-
terization through textural feature analysis in 18F-FDG PET. J. Nucl.
Med. 53, 693–700 (2012).

29. Zhao, B. et al. Reproducibility of radiomics for deciphering tumor phe-
notype with imaging. Sci. Rep. 6, 23428 (2016).

30. Galavis, P. E., Hollensen, C., Jallow, N., Paliwal, B. & Jeraj, R. Variabil-
ity of textural features in FDG PET images due to different acquisi-
tion modes and reconstruction parameters. Acta Oncol. 49, 1012–1016
(2010).

31. Nyflot, M. J. et al. Quantitative radiomics: impact of stochastic effects
on textural feature analysis implies the need for standards. J. Med.
Imaging 2, 041002 (2015).

32. Yan, J. et al. Impact of Image Reconstruction Settings on Texture Fea-
tures in 18F-FDG PET. J. Nucl. Med. 56, 1667–1673 (2015).

33. Mayerhoefer, M. E., Szomolanyi, P., Jirak, D., Materka, A. & Trattnig,
S. Effects of MRI acquisition parameter variations and protocol hetero-
geneity on the results of texture analysis and pattern discrimination:
an application-oriented study. Med. Phys. 36, 1236–1243 (2009).

34. Waugh, S. A., Lerski, R. A., Bidaut, L. & Thompson, A. M. The influ-
ence of field strength and different clinical breast MRI protocols on the
outcome of texture analysis using foam phantoms. Med. Phys. 38, 5058–
5066 (2011).

35. Zhao, B., Tan, Y., Tsai, W. Y., Schwartz, L. H. & Lu, L. Exploring vari-
ability in CT characterization of tumors: a preliminary phantom study.
Translational Oncology 7, 88–93 (2014).

36. Mackin, D. et al. Measuring computed tomography scanner variability
of radiomics features: Investigative Radiology 50, 757–765 (2015).

37. Vallières, M., Freeman, C. R., Skamene, S. R. & El Naqa, I. A radiomics
model from joint FDG-PET and MRI texture features for the prediction
of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med.
Biol. 60, 5471–5496 (2015).

38. Fahey, F. H. Data acquisition in PET imaging. J. Nucl. Med. Technol. 30,
39–49 (2002).

39. Clark, K. et al. The Cancer Imaging Archive (TCIA): maintaining and
operating a public information repository. J. Digit. Imaging 26, 1045–
1057 (2013).

40. El Naqa, I. et al. Dose response explorer: an integrated open-source
tool for exploring and modelling radiotherapy dose-volume outcome
relationships. Phys. Med. Biol. 51, 5719–5735 (2006).

41. Efron, B. & Tibshirani, R. Improvements on cross-validation: the 632+
bootstrap method. Journal of the American Statistical Association 92, 548–
560 (1997).



Chapter 5. Enhancement of radiomic-based prediction models via the
optimization of imaging acquisition protocols

198

42. Sahiner, B., Chan, H.-P. & Hadjiiski, L. Classifier performance predic-
tion for computer-aided diagnosis using a limited dataset. Med. Phys.
35, 1559–1570 (2008).

43. Papadimitroulas, P. et al. Investigation of realistic PET simulations in-
corporating tumor patient’s specificity using anthropomorphic mod-
els: Creation of an oncology database. Med. Phys. 40, 112506 (2013).

44. Boussion, N., Rest, C. C. L., Hatt, M. & Visvikis, D. Incorporation of
wavelet-based denoising in iterative deconvolution for partial volume
correction in whole-body PET imaging. Eur. J. Nucl. Med. Mol. Imaging
36, 1064–1075 (2009).

45. Richardson, W. H. Bayesian-based iterative method of image restora-
tion. J. Opt. Soc. Am. 62, 55–59 (1972).

46. Lucy, L. B. An iterative technique for the rectification of observed dis-
tributions. The Astronomical Journal 79, 745 (1974).

47. Chang, S. G., Yu, B. & Vetterli, M. Adaptive wavelet thresholding for
image denoising and compression. IEEE Trans. Image Process. 9, 1532–
1546 (2000).

48. Jan, S. et al. GATE: a simulation toolkit for PET and SPECT. Phys. Med.
Biol. 49, 4543–4561 (2004).

49. Jan, S. et al. GATE V6: a major enhancement of the GATE simulation
platform enabling modelling of CT and radiotherapy. Phys. Med. Biol.
56, 881–901 (2011).

50. Bettinardi, V. et al. Performance evaluation of the new whole-body
PET/CT scanner: Discovery ST. Eur. J. Nucl. Med. Mol. Imaging 31, 867–
881 (2004).

51. Thielemans, K. et al. STIR: software for tomographic image reconstruc-
tion release 2. Phys. Med. Biol. 57, 867 (2012).

52. Collewet, G., Strzelecki, M. & Mariette, F. Influence of MRI acquisition
protocols and image intensity normalization methods on texture clas-
sification. Magn. Reson. Imaging 22, 81–91 (2004).

53. Lloyd, S. Least squares quantization in PCM. IEEE Transactions on In-
formation Theory 28, 129–137 (1982).

54. Max, J. Quantizing for minimum distortion. IRE Transactions on Infor-
mation Theory 6, 7–12 (1960).

55. Aisen, A. M. et al. MRI and CT evaluation of primary bone and soft-
tissue tumors. Am. J. Roentgenol. 146, 749–756 (1986).

56. Kroeker, R. M., Mcveigh, E. R., Hardy, P., Bronskill, M. J. & Henkelman,
R. M. In vivo measurements of NMR relaxation times. Magn. Reson.
Med. 2, 1–13 (1985).

57. Ling, G. N. & Tucker, M. Nuclear magnetic resonance relaxation and
water contents in normal mouse and rat tissues and in cancer cells. J.
Natl. Cancer Inst. 64, 1199–1207 (1980).



Chapter 5. Enhancement of radiomic-based prediction models via the
optimization of imaging acquisition protocols

199

58. Stöcker, T., Vahedipour, K., Pflugfelder, D. & Shah, N. J. High-performance
computing MRI simulations. Magn. Reson. Med. 64, 186–193 (2010).

59. DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the
areas under two or more correlated receiver operating characteristic
curves: a nonparametric approach. Biometrics 44, 837–845 (1988).

60. Guyon, I. & Elisseeff, A. An introduction to variable and feature selec-
tion. J. Mach. Learn. Res. 3, 1157–1182 (2003).

61. Reshef, D. N. et al. Detecting novel associations in large data sets. Sci-
ence 334, 1518–1524 (2011).



200

Chapter 6

Integration of radiomic-based

prediction models with clinical

prognostic factors

6.1 Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.4.1 Summary of presentation of results . . . . . . . . . . . . 204
6.4.2 Association of variables with tumour outcomes . . . . 204
6.4.3 Construction of prediction models . . . . . . . . . . . . 207
6.4.4 Performance of prediction models . . . . . . . . . . . . 208
6.4.5 Comparison with other prognostic factors . . . . . . . . 209
6.4.6 Risk assessment of tumour outcomes . . . . . . . . . . . 213

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

6.6.1 Data sets availability . . . . . . . . . . . . . . . . . . . . 220
6.6.2 Sample size and division of cohorts . . . . . . . . . . . 222
6.6.3 Extraction of radiomic features . . . . . . . . . . . . . . 222
6.6.4 Construction of radiomic models . . . . . . . . . . . . . 224
6.6.5 Combination of radiomic and clinical variables . . . . . 225
6.6.6 Imbalance-adjustment strategy . . . . . . . . . . . . . . 225
6.6.7 Random forest training . . . . . . . . . . . . . . . . . . . 226
6.6.8 Calculation of performance metrics . . . . . . . . . . . . 227
6.6.9 Code and models availability . . . . . . . . . . . . . . . 228

6.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 228
6.8 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . 229

6.8.1 Supplementary results . . . . . . . . . . . . . . . . . . . 229
6.8.2 Supplementary methods . . . . . . . . . . . . . . . . . . 235

6.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252



Chapter 6. Integration of radiomic-based prediction models with clinical
prognostic factors

201

6.1 Foreword

This Chapter presents a study submitted as the following paper: Martin Val-

lières, Emily Kay-Rivest, Léo Jean Perrin, Xavier Liem, Christophe Furstoss,

Hugo J. W. L. Aerts, Nader Khaouam, Phuc Felix Nguyen-Tan, Chang-Shu

Wang, Khalil Sultanem, Jan Seuntjens & Issam El Naqa. “Radiomics strate-

gies for risk assessment of tumour failure in head-and-neck cancer”. Sci. Rep.

[submitted March 16, 2017].

In this study, radiomic-based models for the prediction of locoregional re-

currences and distant metastases in head-and-neck cancer were constructed

using the methods developed in Chapter 3 and a novel imbalance-adjustment

strategy. The models were tested onto independent patient cohorts. Further-

more, we used a random forest algorithm to combine radiomics data with

patient clinical information. Finally, please note that a particularity of the

Scientific Reports journal is that the Results section comes before Methods.

6.2 Abstract

Quantitative extraction of high-dimensional mineable data from medical im-

ages is a process known as radiomics. Radiomics is foreseen as an essential

prognostic tool for cancer risk assessment and the quantification of intra-

tumoural heterogeneity. In this work, 1615 radiomic features (quantifying

tumour image intensity, shape, texture) extracted from pre-treatment FDG-

PET and CT images of 300 patients from four different cohorts were analyzed

for the risk assessment of locoregional recurrences (LR) and distant metas-

tases (DM) in head-and-neck cancer. Prediction models combining radiomic

and clinical variables were constructed via random forests and imbalance-

adjustment strategies using two of the four cohorts. Independent validation

of the prediction and prognostic performance of the models was carried out

on the other two cohorts (LR: AUC = 0.69 and CI = 0.67; DM: AUC = 0.86

and CI = 0.88). Furthermore, the results obtained via Kaplan-Meier analy-

sis demonstrated the potential of radiomics for assessing the risk of specific

tumour outcomes using multiple stratification groups. This could have im-

portant clinical impact, notably by allowing for a better personalization of

chemo-radiation treatments for head-and-neck cancer patients from differ-

ent risk groups.
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6.3 Introduction

Precision oncology promises to tailor the full spectrum of cancer care to an

individual patient, notably in terms of personalization of cancer prevention,

screening, risk stratification, therapy and response assessment. With suffi-

cient infrastructure support and concerted efforts from the different stake-

holders, it is possible to foresee that personalized therapy would become the

standard of care in oncology [1]. Cancer mechanisms are increasingly elu-

cidated as functions of different biomarkers or tumour genetic mutations,

thereby changing the way we design clinical trials to achieve better cancer

management efficacy in specific patient sub-populations [2]. On the other

hand, “rapid learning paradigms” (i.e., knowledge-driven healthcare) con-

sisting of reusing routine clinical data to develop knowledge in the form of

models that can predict treatment outcomes for a larger portion of the pop-

ulation have also gained popularity in the oncology community [3, 4]. Al-

though most research approaches to precision oncology are centered on ge-

nomics technologies [5, 6], it is thought that only the integration of multiple-

omics, i.e., panomics data (genomics, transcriptomics, proteomics, metabolomics,

etc.) could efficiently unravel biological mechanisms [7, 8].

The importance of panomics integration for cancer risk assessment emerges

from the tremendous extent of heterogeneous characteristics expressed at

multiple levels of tumours. Genes, proteins, cellular microenvironments,

tissues and anatomical landmarks within tumours exhibit considerable spa-

tial and temporal variations that could potentially yield valuable informa-

tion about tumour aggressiveness. Tumours are generally composed of mul-

tiple clonal sub-populations of cancer cells forming complex dynamic sys-

tems that exhibit rapid evolution as a result of their interaction with their

microenvironment and therapy perturbations [9]. Differing properties can

be attributed to the different sub-populations in terms of growth rate, ex-

pression of biomarkers, ability to metastasize, and immunological character-

istics [10]. These properties could be described by differences in metabolic

activity, cell proliferation, oxygenation levels, pH, blood vasculature and

necrotic areas observed within tumours. Such intratumoural differences are

related to the concept of tumour heterogeneity, a characteristic that can be ob-

served with significantly different extents even amongst tumours of the same

histopathological type. Tumours exhibiting such heterogeneous characteris-

tics are thought to be associated with high risk of resistance to treatment,

progression, metastasis or recurrence [11–13].
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Nowadays, medical imaging plays a central role in the investigation of

intratumoural heterogeneity, as radiological images are acquired as routine

practice for almost every patient with cancer. Medical images such as 2-

deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission tomography (PET)

and X-ray computed tomograph (CT) are minimally invasive and they carry

an immense source of potential data for decoding the tumour phenotype [14].

The quantitative extraction of high-dimensional mineable data from all types

of medical images and whose subsequent analysis aims at supporting clin-

ical decision-making is a process coined with the term “radiomics” [15–18].

The demonstration that gene-expression signatures and clinical phenotypes

could be inferred from tumour imaging features [19–21] has led to an expo-

nential growth of this field in the past few years [22, 23]. The underlying

hypothesis of radiomics is that the genomic heterogeneity of aggressive tu-

mours could translate into heterogeneous tumour metabolism and anatomy,

thereby envisioning the quantitative analysis of diagnostic medical images

as an essential prognostic tool for cancer risk assessment and as an integral

part of panomic tumour signature profiling.

The translation of radiomics analysis into standard cancer care to support

treatment decision-making involves the development of prediction models

integrating clinical information that can assess the risk of specific tumour

outcomes [24] (Figure 6.1). In this work, our main objective is to construct

prediction models using advanced machine learning to evaluate the risk of

locoregional recurrences and distant metastases prior to chemo-radiation of

head-and-neck (H&N) cancer, a group of biologically similar neoplasms orig-

inating from the squamous cells that line the mucosal surfaces in the oral cav-

ity, paranasal sinuses, pharynx or larynx. The locoregional control of H&N

cancer is usually good, but this is, however, not matched by improvements in

survival, as the development of distant metastases and second primary can-

cers are the leading causes of treatment failure and death [25, 26]. In order

to improve patient survival and outcomes, the importance of identifying rel-

evant prognostic factors that can better assess the aggressiveness of tumours

at the moment of diagnosis is crucial.

We hypothesize that radiomic features are important prognostic factors

for the risk assessment of specific H&N cancer outcomes [27]. The machine

learning strategy employed in this work involves the extraction of 1615 dif-

ferent radiomic features from a total of 300 patients from four different insti-

tutions. Two cohorts are used to construct the prediction models by combin-

ing radiomics (intensity, shape, textures) and clinical attributes (patient age,
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H&N type, tumour stage) via random forests classifiers and imbalance ad-

justments of training samples, and the remaining two cohorts are reserved to

evaluate the prediction (binary assessment of outcome) and prognostic (time-

to-event assessment) performance of the corresponding models (Figure 6.2).

Throughout this study, results obtained for locoregional recurrences and dis-

tant metastases are also compared against prediction models constructed for

the general risk assessment of overall survival in H&N cancer. A compre-

hensive comparison of the prediction/prognostic performance of radiomics

versus clinical models and volumetric variables is also performed. Our re-

sults suggest that the integration of radiomic features into clinical prediction

models has considerable potential for assessing the risk of specific outcomes

prior to treatment of H&N cancer. Accurate stratification of locoregional re-

currence and distant metastasis risks could eventually provide a rationale for

adapting the radiation doses and chemotherapy regimens that the patients

receive. Overall, combining quantitative imaging information with other

categories of prognostic factors via advanced machine learning could have

a profound impact on the characterization of tumour phenotypes and would

increase the possibility of translation of outcome prediction models into the

clinical environment as a means to personalize treatments.

6.4 Results

6.4.1 Summary of presentation of results

To ease reading and the understanding of this study, a summary of how re-

sults are presented in the text is provided in Supplementary Figure 6.5.

6.4.2 Association of variables with tumour outcomes

In order to assess the value of quantitative pre-treatment imaging to pre-

dict specific cancer outcomes in H&N cancer, we performed a comprehensive

univariate analysis of the association of radiomic features with locoregional

recurrences (“LR” or “Locoregional”), distant metastases development (“DM”

or “Distant”) and overall survival (“OS” or “Survival” or “Death”). A total of

1615 radiomic features (Figure 6.1b and Supplementary Material section 6.8.2

under “Description of 3D radiomic features” for complete description) were

first extracted from the gross tumour volume (GTVprimary + GTVlymph nodes) of

the FDG-PET and CT images (Figure 6.1a), for all 300 patients from the four
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Figure 6.1 : From radiomics analysis to treatment personalization. (a) Example
of diagnostic FDG-PET and CT images of two head-and-neck cancer patients with tu-
mour contours. The patient that did not respond well to treatment (right) has a more
heterogeneous intratumoural intensity distribution in both FDG-PET and CT images
than the patient that responded well to treatment (left). (b) The radiomics analysis strat-
egy involves the extraction of features differentiating responders from non-responders
to treatment. Features are extracted from the FDG-PET and CT tumour contours and
quantify tumour shape, intensity, and texture. (c) Advanced machine learning combines
radiomics features and patient clinical information via a random forest algorithm. The
classifier is trained to differentiate between responders and non-responders to treatment
(prediction model). (d) The output probability of the random forest classifier computed
on new patients can be used to assess the risk of non-response to treatment via prob-
abilities of occurrence of outcome events and time estimates. Eventually, accurate risk
assessment of specific tumour outcomes via radiomics analysis could help to better per-
sonalize cancer treatments.
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Figure 6.2 : Models construction strategy and analysis workflow. Four different
cohorts were used to demonstrate the utility of radiomics analysis for the pre-treatment
assessment of the risk of locoregional recurrence and distant metastases in head-and-
neck cancer. The H&N1 and H&N2 cohorts were combined and used as a single training
set (n = 194), whereas the H&N3 and H&N4 cohorts were combined and used as a sin-
gle testing set (n = 106). The best combinations of radiomics features were selected in
the training set using imbalance-adjusted logistic regression learning and bootstrapping
validations. These radiomics features were combined with selected clinical variables in
the training set using imbalance-adjusted random forest learning and stratified random
sub-sampling validations. Independent prediction analysis was performed in the test-
ing set for all classifiers fully constructed in the training set. Independent prognosis
analysis and Kaplan-Meier risk stratification was carried out in the testing set using the
output probability of occurrence of events of random forests fully constructed in the
training set.
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H&N cancer cohorts (Figure 6.2): I) 10 first-order statistics features (inten-

sity); II) 5 morphological features (shape); and III) 40 texture features each

extracted using 40 different combinations of parameters. We also compared

these results to the predictive power of the tumour volume (“Volume”) and of

the following clinical variables: Age, T-Stage, N-Stage, TNM-Stage and human

papillomavirus status (HPV status), where HPV status was available for 120

of the 300 patients (Supplementary Tables 6.6, 6.7, 6.8 and 6.9). The associ-

ation of the different variables with the different H&N cancer outcomes (bi-

nary endpoints) was then analyzed using Spearman’s rank correlations (rs)

computed on all patients, and significance was assessed by applying multi-

ple testing corrections using the Benjamini-Hochberg procedure [28] with a

false discovery rate of 10 %.

Overall, we found that 0 %, 63 % and 12 % of the total radiomic features

extracted from PET scans, and that 0 %, 61 % and 34 % of the total radiomic

features extracted from CT scans were significantly associated with LR, DM

and OS, respectively (after multiple testing corrections). The radiomic fea-

tures (PET or CT) with the highest associations with LR, DM and OS were

LZHGEGLSZM from CT scans (rs = −0.15, p = 0.007), ZSNGLSZM from CT

scans (rs = −0.29, p = 2 × 10−7) and GLVGLRLM from CT scans (rs = 0.24,

p = 4 × 10−5), respectively (Supplementary Table 6.2). Tumour volume was

not found to be significantly associated with LR (rs = −0.04, p = 0.48),

but was significantly associated with DM (rs = 0.24, p = 3 × 10−5) and OS

(rs = −0.18, p = 2× 10−3). Finally, we found that {Age, T-Stage, N-Stage, HPV

status}, {N-Stage} and {Age, T-Stage, HPV status} were significantly associated

with LR, DM and OS, respectively. The clinical variables with the highest as-

sociations with LR, DM and OS were HPV− (rs = 0.39, p = 8 × 10−6), higher

N-Stage (rs = 0.18, p = 1 × 10−3) and higher T-Stage (rs = 0.21, p = 3 × 10−4),

respectively (Supplementary Table 6.3).

6.4.3 Construction of prediction models

The construction of prediction models for LR, DM and OS was carried out

using a training set consisting of the combination of 194 patients from the

H&N1 and H&N2 cohorts (Figure 6.2). Three initial radiomic feature sets

were considered: I) the 1615 radiomic features extracted from PET scans

(“PET” feature set); II) the 1615 radiomic features extracted from CT scans

(“CT” feature set); and III) a combined set containing all PET and CT ra-

diomic features used in feature sets I and II (“PETCT” feature set).
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Prediction models consisting of radiomic information only were first con-

structed for each of the three H&N outcomes and the three initial radiomic

feature sets. Feature set reduction, feature selection, prediction performance estima-

tion, choice of model complexity (Supplementary Figure 6.6) and final model com-

putation processes were carried out using logistic regression and bootstrap

resampling, similarly to the methodology developed in the study of Vallières

et al. [29]. To account for the disproportion of occurrence of events and non-

occurrence of events in the training set (15 % LR, 13 % DM, 16 % deaths), an

imbalance-adjustment strategy adapted from the study of Schiller et al. [30]

was also applied during the training process. Overall for the PET, CT and

PETCT feature sets, the number of variables forming the final radiomic mod-

els for each outcome were, respectively: I) 8, 3 and 3 radiomic variables for

the LR outcome; II) 6, 3 and 3 radiomic variables for the DM outcome; and

III) 4, 3 and 6 radiomic variables for the OS outcome.

The construction of prediction models combining radiomic and clinical

variables was then carried out for the nine identified radiomic models (3 fea-

ture sets × 3 outcomes). By estimating prediction performance via strati-

fied random sub-sampling in the training set, the following group of clinical

variables were first selected for each outcome: I) {Age, H&N type, T-Stage,

N-Stage} for LR prediction; II) {Age, H&N type, N-Stage} for DM prediction;

and III) {Age, H&N type, T-Stage, N-Stage} for OS prediction. Final predic-

tion models were ultimately constructed for each radiomic feature set and

H&N outcome by combining the selected radiomic and clinical variables via

random forests and imbalance adjustments.

6.4.4 Performance of prediction models

The performance of the radiomic prediction models constructed using lo-

gistic regression and of the prediction models constructed by combining ra-

diomic and clinical variables via random forests was validated in a testing

set consisting of the combination of 106 patients from the H&N3 and H&N4

cohorts (Figure 6.2) using receiver operating characteristic (ROC) metrics (bi-

nary endpoints).

Figure 6.3 presents the performance results (AUC: area under the ROC

curve) obtained in the testing set for the radiomics and radiomics + clinical

models, where the significance of the increase in AUC when combining clin-

ical to radiomic variables is assessed using the method of DeLong et al. [31].
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Sensitivity, specificity and accuracy of predictions are also presented in Sup-

plementary Figure 6.7. Overall, it can be observed that there is a general

increase in prediction performance for most of the different categories of

models that we constructed in this work. For LR prediction, the increase

in AUC is significant for prediction models from the PET (p = 0.03) and the

CT (p = 0.01) radiomic feature sets. For DM prediction, none of the radiomic

models show a significant AUC increase when combined with clinical vari-

ables. For OS (death) prediction, the increase in AUC is significant for pre-

diction models from the PET (p = 0.01) and the PETCT (p = 0.006) radiomic

feature sets. Furthermore, we verified that the increase in performance is

not explained by the use of a more complex and potentially more predic-

tive learning algorithm: random forests classifiers constructed with radiomic

variables alone preserved the predictive properties obtained by logistic re-

gression models constructed with the same variables, but without improving

them (Supplementary Table 6.4). These results point to the potential of ran-

dom forests in successfully combining the complementary value of different

categories of prognostic factors such as radiomic and clinical variables.

In Figure 6.3, the highest performance for LR prediction was obtained us-

ing the model combining the PETCT radiomic and clinical variables, with an

AUC of 0.69. For DM prediction, the highest performance was obtained us-

ing the CT radiomic model, with an AUC of 0.86. These results demonstrate

that different radiomic-based models could successfully be used to predict

specific outcomes such as locoregional recurrences and distant metastases in

H&N cancer. Finally, the highest performance for OS (death) prediction was

obtained using the model combining the PET radiomic and clinical variables,

with an AUC of 0.74. For subsequent analysis in the next section, only the

prediction models (radiomics and radiomics + clinical) constructed from these

radiomic features sets (PETCT for LR, CT for DM, PET for OS) are used. The

complete description of these identified radiomic models (specific features,

texture extraction parameters, logistic regression coefficients) is given in Sup-

plementary Material section 6.8.1 under “Complete description of radiomic

models”.

6.4.5 Comparison with other prognostic factors

The performance of the best radiomic prediction models and the best pre-

diction models combining radiomic and clinical variables identified in this

study (shown with arrows in Figure 6.3) were further compared against other
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Figure 6.3 : Prediction performance of selected models. All prediction models
were selected and built using the training set (H&N1 and H&N2; n = 194) for three ini-
tial radiomic feature sets: I) PET radiomic features (PET); II) CT radiomic features (CT);
and III) PET and CT radiomic features (PETCT). The prediction performance is evalu-
ated here in terms of the area under the receiver operating characteristic curve (AUC)
for patients of the testing set (H&N3 and H&N4; n = 106), for two types of predic-
tion models: I) Radiomic models constructed using logistic regression (Radiomics); and
II) Radiomic models combined with clinical variables via random forests (Radiomics +
clinical). Significant increase in AUC from Radiomics to Radiomics + clinical models is
identified with an asterisk (*), and non-significant increase is identified by “n.s.”. The
radiomic feature sets providing the prediction models with highest performance in this
study are identified with an arrow for each outcome.
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prognostic factors: I) Volume; II) “clinical-only” models; III) combination of

Volume and clinical variables; and IV) a validated radiomic signature devel-

oped for the prognosis assessment of overall survival [21, 32]. In addition

to the prediction performance evaluated using ROC metrics, the prognostic

performance of the models was also assessed using: I) the concordance index

(CI) [33] between the output probability of occurrence of an event (LR, DM,

death) of prediction models and the time elapsed before an event occurred

(“time-to-event”); and II) the p-value obtained from Kaplan-Meier analysis

using the log-rank test between two risk groups. The models consisting of

only radiomic or the Volume variables were optimized using logistic or cox

regression, and all models involving clinical variables were optimized us-

ing random forest classifiers, still using the defined training set of this work

(H&N1 and H&N2 cohorts; n = 194). Fully independent results are then pre-

sented in Table 6.1 for models evaluated in the testing set (H&N3 and H&N4

cohorts; n = 106).

For locoregional recurrences, we found that the model combining the

PETCT radiomic and clinical variables provided the best performance in terms

of predictive/prognostic power and balance of classification of occurrence of

events and non-occurrence of events, notably with an AUC of 0.69, a sen-

sitivity of 0.63, a specificity of 0.68, an accuracy of 0.67, a CI of 0.67 and a

Kaplan-Meier p-value of 0.03. Using random permutation tests, each vari-

able was calculated to be approximately of equal importance in the random

forest model (Supplementary Table 6.5). Similarly to univariate analysis, Vol-

ume was not found to be a significant prognostic factor for LR. On the other

hand, clinical variables alone had high performance with an AUC of 0.72 and

a CI of 0.69, but this type of modeling did not provide sufficient balance be-

tween the prediction of occurrence and non-occurrence of events (sensitivity

of 0.50, specificity of 0.76).

For distant metastases, we found that the model combining the CT ra-

diomic and clinical variables provided the best overall performance, notably

with an AUC of 0.86, a sensitivity of 0.86, a specificity of 0.76, an accuracy

of 0.77, a CI of 0.88 and a Kaplan-Meier p-value of 3 × 10−6. However, ra-

diomic variables were found to be of much higher importance than the clin-

ical variables in the random forest model (Supplementary Table 6.5). In fact,

the model composed of clinical variables alone did not perform well. Volume

was again found to be a significant prognostic factor for DM, but radiomic

variables outperformed it.
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Table 6.1 : Comparison of prediction/prognostic performance of models con-
structed in this work with other variable combinations. Performance is shown
for models constructed in the training set (H&N1 and H&N2; n = 194) and indepen-

dently evaluated in the testing set (H&N3 and H&N4; n = 106).

Outcome Variables Prediction Prognosis
AUCa Sensitivitya Specificitya Accuracya CIb p-valuec

Locoregional

RadiomicsPETCT 0.64 0.56 0.67 0.65 0.63 0.28
Volume 0.43 0.31 0.58 0.54 0.40 0.80
Clinical 0.72 0.50 0.76 0.72 0.69 0.05

RadiomicsPETCT + Clinical 0.69 0.63 0.68 0.67 0.67 0.03
Volume + Clinical 0.71 0.50 0.76 0.72 0.68 0.06

Distant

RadiomicsCT 0.86 0.79 0.77 0.77 0.88 0.0001
Volume 0.80 0.86 0.65 0.68 0.83 0.10
Clinical 0.55 0.64 0.46 0.48 0.60 0.61

RadiomicsCT + Clinical 0.86 0.86 0.76 0.77 0.88 0.000003
Volume + Clinical 0.78 1 0.50 0.57 0.80 0.0004

Survival

RadiomicsPET 0.62 0.58 0.66 0.64 0.60 0.03
Volume 0.68 0.67 0.57 0.59 0.67 0.29
Clinical 0.78 0.92 0.57 0.65 0.76 0.00003

RadiomicsPET +Clinical 0.74 0.79 0.57 0.62 0.71 0.002
Volume + Clinical 0.79 0.88 0.52 0.60 0.76 0.0006

Survivald
RadiomicsCTcompleteSign

e – – – – 0.66 0.70
RadiomicsCTsign

f 0.68 0.71 0.50 0.55 0.66 0.05
RadiomicsCTsign

g +Clinical 0.80 0.96 0.38 0.51 0.75 0.001

→ Models involving Radiomic variables only or the Volume variable only were optimized using logistic/cox
regression. All models involving Clinical variables were optimized using random forests.

→ The best predictive/prognostic and balanced models for each outcome (final models) are identified in italic and
are fully described in Supplementary Table 6.5.
a Binary prediction of outcome using logistic regression/random forest output responses.
b Concordance-index between cox regression/random forest output responses and time to events.
c Log-rank test from Kaplan-Meier curves with a risk stratification into two groups (thresholds: median hazard
ratio for cox regression, output probability of 0.5 for random forests).
d Radiomic signature variables as defined in Aerts et al. [21].
e Using the original definition of the radiomic signature variables, and the original cox regression coefficients and
median hazard ratio trained from the Lung1 cohort in the study of Aerts et al. [21].
f Using a revised version of the radiomic signature variables (Supplementary Material section 6.8.2 under
“Revised version of the radiomic signature”) and new cox/logistic regression coefficients trained using the current
training set of this work.
g Using a revised version of the radiomic signature variables (Supplementary Material section 6.8.2 under
“Revised version of the radiomic signature”) and a random forest classifer trained using the current training set of
this work.
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For overall survival, we found that the model composed of clinical vari-

ables alone provided the best overall performance, notably with an AUC of

0.78, a sensitivity of 0.92, a specificity of 0.57, an accuracy of 0.65, a CI of 0.76

and a Kaplan-Meier p-value of 3× 10−5. Furthermore, the H&N type variable

had the highest and N-Stage the lowest importance in the model (Supple-

mentary Table 6.5). Another important finding was that Volume alone pro-

vided similar or better prognosis assessment of OS than any of the following

radiomic-based models: I) the best radiomic model for OS constructed in this

work; II) the original radiomic signature using the cox regression coefficients

employed in the work of Aerts et al. [21]; and III) a revised version of the ra-

diomic signature computation (Supplementary Material section 6.8.2 under

“Revised version of the radiomic signature”) using new sets of regression

coefficients trained with the current training set of this work.

6.4.6 Risk assessment of tumour outcomes

The work performed in this study leads to the identification of three predic-

tion models based on three final random forest classifiers, one for each of

the outcome studied here (identified with italic fonts in Table 6.1): I) {PET-

GLNGLSZM, CT-CorrelationGLCM, CT-LGZEGLSZM, age, H&N type, T-Stage, N-

Stage} for LR; II) {CT-LRHGEGLRLM, CT-ZSVGLSZM, CT-ZSNGLSZM, age, H&N

type, N-Stage} for DM; and III) {age, H&N type, T-Stage, N-Stage} for OS. A

property of a random forest is that the binary prediction of each of its deci-

sion tree can be averaged to serve as an output probability of occurrence of

a given event (probRF). This output probability, similarly to other machine

learning algorithms, can constitute one of the tools to be used for the risk as-

sessment of specific tumour outcomes. For example, the final random forest

classifiers constructed in the training set (H&N1 and H&N2 cohorts; n = 194)

can be used to stratify the risk of occurrence of the outcome events for each

patient of the testing set (H&N3 and H&N4 cohorts; n = 106) into three

groups (Figure 6.4a): I) low-risk group → 0 ≤ probRF < 1
3
; II) medium-risk

group → 1
3
≤ probRF < 2

3
; and III) high-risk group → 2

3
≤ probRF < 1.

Thereafter, this stratification scheme can be used to evaluate the probability

of non-occurrence of the events after a given time for the different risk groups

via Kaplan-Meier analysis. Standard Kaplan-Meier analysis using two risk

groups (probRF ≤ 0.5, probRF > 0.5) is first shown in Figure 6.4b for all pa-

tients of the testing set. These curves demonstrate the possibility of prognos-

tic risk assessment of specific outcomes in H&N cancer such as locoregional
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recurrences (p = 0.03) and distant metastases (p = 3 × 10−6) using specific

prediction models combining different radiomic and clinical variables, but

also of the general outcome of overall survival (p = 3 × 10−5) using a pre-

diction model composed of clinical variables only. More accurate prognostic

risk assessment can then be further performed using Kaplan-Meier analy-

sis with three risk groups (as defined above: low-risk, medium-risk, high-

risk) as shown in Figure 6.4c for all patients of the testing set. For the risk

assessment of LR, the developed prediction model is, however, not power-

ful enough to significantly separate the patients between the high/medium

(p = 0.62) and medium/low (p = 0.10) risk groups. In the case of DM, the

developed prediction model allows to significantly separate the patients be-

tween the high/medium (p = 0.05) and medium/low (p = 0.03) risk groups.

For OS, the developed prediction model does not significantly separate the

patients between the high/medium risk groups (p = 0.07), but it does signifi-

cantly separate the patients between the medium/low risk groups (p = 0.02).

6.5 Discussion

Increasing evidence suggests that the genomic heterogeneity of aggressive

tumours could translate into intratumoural spatial heterogeneity exhibited

at the anatomical and functional scales [19–21]. This constitutes the central

idea of the emerging field of “radiomics”, in which large amounts of infor-

mation via advanced quantitative analysis of medical images are used as

non-invasive means to characterize intratumoural heterogeneity and to re-

veal important prognostic information about the cancer [15–18]. Ultimately,

the objective is to narrow down this extensive quantity of information into

simple prediction models that can aid in the identification of specific tumour

phenotypes for improved treatment management. In this study, we were

able via advanced machine learning to develop two prediction models com-

bining PET/CT radiomics and clinical information for the early assessment

of the risk of locoregional recurrences and distant metastases in head-and-

neck cancers.

First, we extracted a total of 1615 radiomic features from PET and CT pre-

treatment images of 300 patients with head-and-neck cancer from four dif-

ferent cohorts. These features are composed of 10 intensity features, 5 shape

features and 40 textures computed using 40 different combinations of extrac-

tion parameters (five isotropic voxel sizes, two quantization algorithms and

four numbers of gray levels). In general, different texture features will better
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Figure 6.4 : Risk assessment of tumour outcomes. (a) Probability of occurrence of
events (locoregional recurrence, distant metastases, death) for each patient of the test-
ing set (H&N3 and H&N4; n = 106) as determined by the random forest classifiers
built using the training set (H&N1 and H&N2; n = 194). The output probability of
occurrence of events of random forests allows for risk stratification; for example, three
risk groups can be defined (low, medium, high) using probability thresholds of 1

3
and

2
3

. (b) Kaplan-Meier curves of the testing set using a risk stratification into two groups
as defined by a random forest output probability threshold of 0.5. All curves have sig-
nificant prognostic performance, thus demonstrating the possibility of outcome-specific
risk assessment in head-and-neck cancer. (c) Kaplan-Meier curves of the testing set us-
ing a risk stratification in three groups as defined by random forest output probability
thresholds of 1

3
and 2

3
. Some pair of curves have significant prognostic performance,

thus demonstrating the possibility of risk stratification into multiple groups for treat-
ment escalation/personalization in head- and-neck cancer.
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represent the underlying tumour biology using different extraction param-

eters, and the optimal set of parameters to use is application-specific and

depends on many factors such as the clinical endpoint studied and the imag-

ing modalities employed. Texture optimization has the potential to enhance

the predictive value of the extracted features as Vallières et al. [29] have previ-

ously shown, and we suggest to incorporate this step in the texture extraction

workflow of future similar studies.

Univariate analysis showed that the majority of the features extracted

from both PET and CT images are significantly associated with the devel-

opment of distant metastases, suggesting that the metastatic phenotype of

tumours can be captured via quantitative image analysis. On the other hand,

none of the radiomic features were significantly associated with locoregional

recurrences after multiple testing corrections with a FDR of 10 %. Although

combinations of these metrics still proved useful for prognostic risk assess-

ment, it does reveal the need of using other types of metrics such as radiation

dose characteristics to enhance the predictive properties of the models con-

structed for locoregional recurrences. In addition to radiomic features, we

also investigated the association of clinical variables with the different head-

and-neck cancer outcomes studied in this work. The most significant associa-

tion was found between HPV status and locoregional recurrences, a currently

known result that agrees with other studies [34, 35]. However, this result was

obtained with only 120 of the 300 patients with available HPV status, and this

variable could not be used in the subsequent multivariable analysis.

Next, we constructed multivariable prediction models from radiomic in-

formation alone by using the methodology developed by Vallières et al. [29].

All models were entirely produced from the defined training set of this work

combining two head-and-neck cancer cohorts (H&N1 and H&N2; n = 194).

The best radiomic model for locoregional recurrences (Table 6.1) was found

to possess good predictive properties in the defined testing set of this work

combining two head-and-neck cancer cohorts (H&N3 and H&N4; n = 106).

This model is composed of one metric extracted from PET images (GLNGLSZM:

gray-level nonuniformityGLSZM) and two metrics extracted from CT images (cor-

relationGLCM and LGZEGLSZM: low gray-level zone emphasisGLSZM). The best ra-

diomic model for distant metastases (Table 6.1) was found to possess high

predictive properties in the testing set, and is composed of three metrics ex-

tracted from CT images (LRHGEGLRLM: long run high gray level emphasisGLRLM,

ZSVGLSZM: zone size varianceGLSZM and ZSNGLSZM: zone size nonuifomityGLSZM).

These results suggest that radiomic models can be specific enough to assess
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the risk of different outcomes in head-and-neck cancer. The models we devel-

oped for locoregional recurrences and distant metastases are in fact overall

different and they capture specific tumour phenotypes. It is also notewor-

thy that all the selected radiomic features of these two models are textural,

attesting to the high potential of textures to characterize the complexity of

spatial patterns within tumours. As mentioned earlier, aggressive tumours

tend to show increased intratumoural heterogeneity [11–13], notably in terms

of the heterogeneity in size and intensity characteristics of the different tu-

mour sub-regions in PET and CT images. This effect may be captured by

the PET-GLNGLSZM, CT-LRHGEGLRLM, CT-ZSVGLSZM and CT-ZSNGLSZM tex-

ture features in our radiomic models, a result in agreement with a previous

study describing the importance of zone-size nonuniformities for the prog-

nostic assessment of head-and-neck tumours [36]. From our experience, we

have observed that aggressive tumours also frequently contain large inac-

tive or necrotic regions of uniform intensities, suggesting that these tumours

could be rapidly increasing in size and that they could be more at risk to

metastasize, for example [37–39]. Here, this effect may be captured by the

CT-CorrelationGLCM and CT-LGZEGLSZM texture features. Overall, these re-

sults suggest that radiomic features could be useful to improve our under-

standing of the underlying biology of tumours.

We also attempted in this study to improve the predictive power of our

prediction models by combining radiomic variables with clinical data. The

first step of our method is based on a fast mining of radiomic variables using

logistic regression. Then, random forests [40] are used as a means to com-

bine radiomic and clinical information into a single classifier. It would also

be feasible to only use random forests to mine the radiomic variables, but our

method is advantageous in terms of computation speed. Our results showed

that the combination of clinical variables with the optimal radiomic variables

via random forests had a positive impact on the prediction and prognostic as-

sessment of locoregional recurrences and distant metastases, although with

minimal impact in the latter case (Figure 6.3, Table 6.1). As seen in Sup-

plementary Table 6.5, this can be explained from the fact that the identified

radiomic features are the strong and dominant variables in the model for dis-

tant metastases predictions. Nonetheless, we believe that random forests is

one effective algorithm well-suited to combine variables of different types

(categorical and continuous inputs) such as clinical and panomic tumour

profile information. In general, the ongoing optimization of machine learn-

ing techniques in radiomic applications [41–43] is a step forward to improve
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clinical predictions.

In this work, we also performed a comprehensive comparison of the pre-

diction/prognostic performance of radiomics versus clinical models and vol-

umetric variables (Table 6.1). Metabolic tumour volume has already been

shown to be an independent predictor of outcomes in head-and-neck cancer

[44], but it was also suggested by Hatt et al. [45] that heterogeneity quantifica-

tion via texture analysis may provide valuable complementary information

to the tumour volume variable for volumes above 10 cm3. In this study, 85 %

of the patients had a gross tumour volume greater than 10 cm3 and we conse-

quently found that radiomic models performed considerably better than tu-

mour volume alone for the prediction of locoregional recurrences and distant

metastases. On the other hand, clinical variables alone did not perform well

on their own for distant metastases, but they had good performance for lo-

coregional recurrences by outperforming radiomic models, thus suggesting

that our radiomic models need to be improved to better model locoregional

recurrences.

In terms of overall survival assessment, our results indicate that the tu-

mour volume variable matched or outperformed all radiomic models thus

far we developed or tested in this work, including a previously validated

radiomic signature [21, 32]. For one, it is unsurprising that the original ra-

diomic signature [21] did not perform better than tumour volume, as it can

be verified that all its feature components are very strongly correlated with

tumour volume: the Pearson linear coefficients between tumour volume and

the four features of the signature [21] were calculated to be 0.62 (Energy),

0.80 (Compactness), 0.99 (GLNGLRLM) and 0.94 (GLNGLRLM_HLH) using the

whole set of 300 patients of this study, all with p ≪ 0.001. On the other

hand, all the features forming the other radiomic models developed in this

work showed potential complementarity value to tumour volume (but the

models still did not perform better than tumour volume alone for overall

survival assessment): all the features of the revised version of the radiomic

signature (Supplementary Material section 6.8.2 under “Revised version of

the radiomic signature”) had a Pearson linear coefficient lower than 0.5 ex-

cept one (Energy), and all the variables forming the final radiomic models

constructed in this work (italic fonts in Table 6.1, including those for locore-

gional recurrences and distant metastases) had linear coefficients lower than

0.40. This suggests that overall survival may be harder to model than spe-

cific tumour outcomes due to a larger number of confounding factors being

involved, and it may thus be more prone to overfitting during training. As
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a consequence, tumour volume may currently be a more robust and repro-

ducible metric than imaging features for modeling this outcome. In the end,

the best global performance for overall survival was however obtained with

clinical variables alone. This would emphasize that clinical data remains the

important source of information to consider for the evaluation of the like-

lihood of occurrence of a general outcome with many confounding factors

such as overall survival, and that more work is required to understand how

to adequately model overall survival using radiomic features.

The optimal results in terms of predictive/prognostic performance and

balance of prediction between the occurrence and non-occurrence of locore-

gional recurrences and distant metastases were found in this work by con-

structing models combining radiomic and clinical variables via random forests

(full description of the models in Supplementary Material section 6.8.1 un-

der “Final random forest models and variable importance”). Compared to

the general assessment of overall survival as in previous studies [21, 32], our

results demonstrate the possibility of decoding specific tumour phenotypes

for the risk assessment of specific outcomes in head-and-neck cancer. The

final results obtained for distant metastases were considerably higher than

those obtained for overall survival, but those obtained for locoregional re-

currences were lower albeit clinically significant (Table 6.1). Also, as seen

in Figure 6.4 with patients of the testing set, the output probability of oc-

currence of events of our prediction models allow to significantly separate

patients into two locoregional recurrence risk groups and into three distant

metastases risk groups. The clinical impact of our results and of the risk as-

sessment of specific outcomes in head-and-neck cancer could be substantial,

as it could allow for a better personalization of treatments. For example,

higher radiation doses could be considered for patients at higher risks of lo-

coregional recurrences. For distant metastases, the chemotherapy regimens

could be strengthened for patients in the high risk group to reduce potential

metastatic invasion, and lessened for patients in the low risk group to im-

prove quality of life. These are hypothetical scenarios that, at the moment,

are not ready to be implemented in the clinical environment, as our models

first need to be constructed and validated on larger patient cohorts, and ro-

bust clinical trials are required to validate their benefits on patient survival.

Furthermore, the heterogeneity of the patient cohorts used in this work in-

cluding varying image acquisition parameters may undermine the power of

the developed models. However, it may also improve their generalizability,

and the results presented in this study could now be useful for the generation
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of new hypotheses driving future prospective studies.

Overall, we showed in this study that radiomics provide important prog-

nostic information for the risk assessment of locoregional recurrences and

distant metastases in head-and-neck cancer. In general, the combination of

panomics data into clinically-integrated prediction models should allow to

more comprehensively assess cancer risks and could improve how we adapt

treatments for each patient. As the standardization efforts of radiomics anal-

ysis continue to rapidly progress [46, 47], we can envision the clinical im-

plementation of radiomic-based decision-support systems in the future. Full

transparency on data and methods is the key for the progression of the field,

and our research efforts needs to include large-scale collaborations and re-

producibility practices to increase the possibility of translation of radiomics

into the clinical environment [48].

6.6 Methods

6.6.1 Data sets availability

Our analysis was conducted on imaging and clinical data of a total of 300

H&N cancer patients from four different institutions who received radiation

alone (n = 48, 16 %) or chemo-radiation (n = 252, 84 %) with curative intent

as part of treatment management. The median follow-up period of all pa-

tients was 43 months (range: 6-112). The Institutional Review Boards of all

participating institutions approved the study. Retrospective analyses were

performed in accordance with the relevant guidelines and regulations as ap-

proved by the Research Ethics Committee of McGill University Health Cen-

ter (Protocol Number: MM-JGH-CR15-50).

• The H&N1 data set consists of 92 head-and-neck squamous cell carci-

noma (HNSCC) patients treated at Hôpital général juif (HGJ) de Mon-

tréal, QC, Canada. During the follow-up period, 12 patients developed

a locoregional recurrence (13 %), 16 patients developed distant metas-

tases (17 %) and 14 patients died (15 %). This data set was used as part

of the training set of this work.

• The H&N2 data set consists of 102 head-and-neck squamous cell carci-

noma (HNSCC) patients treated at Centre hospitalier universitaire de
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Sherbrooke (CHUS), QC, Canada. During the follow-up period, 17 pa-

tients developed a locoregional recurrence (17 %), 10 patients devel-

oped distant metastases (10 %) and 18 patients died (18 %). This data

set was used as part of the training set of this work.

• The H&N3 data set consists of 41 head-and-neck squamous cell car-

cinoma (HNSCC) patients treated at Hôpital Maisonneuve-Rosemont

(HMR) de Montréal, QC, Canada. During the follow-up period, 9 pa-

tients developed a locoregional recurrence (22 %), 11 patients devel-

oped distant metastases (27 %) and 19 patients died (46 %). This data

set was used as part of the testing set of this work.

• The H&N4 data set consists of 65 head-and-neck squamous cell carci-

noma (HNSCC) patients treated at Centre hospitalier de l’Université

de Montréal (CHUM), QC, Canada. During the follow-up period, 7 pa-

tients developed a locoregional recurrence (11 %), 3 patients developed

distant metastases (5 %) and 5 patients died (8 %). This data set was

used as part of the testing set of this work.

All patients underwent FDG-PET/CT imaging scans within a median of

18 days (range: 6-66) before treatment. For 93 of the 300 patients (31 %), the

radiotherapy contours were directly drawn on the CT of the PET/CT scan

by expert radiation oncologists and thereafter used for treatment planning.

For 207 of the 300 patients (69 %), the radiotherapy contours were drawn

on a different CT scan dedicated to treatment planning and were propa-

gated/resampled to the FDG-PET/CT scan reference frame using intensity-

based free-form deformable registration with the software MIM® (MIM soft-

ware Inc., Cleveland, OH).

Further information specific to each patient cohort (e.g., treatment de-

tails) is presented in Supplementary Material section 6.8.2 under “Patient

datasets” and Supplementary Tables 6.6, 6.7, 6.8 and 6.9. Pre-treatment FDG-

PET/CT imaging data, clinical data, radiotherapy contours (RTstruct) and

MATLAB®routines allowing to read imaging data and their associated region-

of-interest (ROI) are made available for all patients on The Cancer Imaging

Archive (TCIA) [49]: http://doi.org/10.7937/K9/TCIA.2017.8oje5q00.

The Research Ethics Committee of McGill University Health Center approved

online publishing of clinical and imaging data following patient anonymisa-

tion.

http://doi.org/10.7937/K9/TCIA.2017.8oje5q00
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6.6.2 Sample size and division of cohorts

Patients with recurrent H&N cancer or with metastases at presentation, and

patients receiving palliative treatment were excluded from the study. Pa-

tients that did not develop a locoregional recurrence or distant metastases

during the follow-up period and that had a follow-up time smaller than 24

months were also excluded from the study. The four patient cohorts were

then divided into two groups to create one combined training set (H&N1

and H&N2; n = 194) and one combined testing set (H&N3 and H&N4;

n = 106). Bootstrap resampling and stratified random sub-sampling were

always performed with patients from the training set to estimate the relevant

performance metrics of interest and to construct the final prediction models,

and fully independent validation results were computed with patients from

the testing set. This precise type of division of patient cohorts allowed to:

I) Train on a combined set of different cohorts to allow the models to take

into account some institutional variability; II) Reduce the number of test-

ing results reported; III) Create a training set size to testing set size ratio of

approximately 2:1; and IV) Conduct partition sampling such that the propor-

tion of occurrence of events (locoregional recurrences, distant metastases) are

approximately the same in the training and testing sets.

6.6.3 Extraction of radiomic features

Starting from the original FDG-PET/CT imaging data and associated radio-

therapy contours in DICOM format, the complete set of data was read and

transferred into MATLAB® (MathWorks, Natick, MA) format using in-house

routines. PET images were converted to standard uptake value (SUV) maps

and CT images were kept in raw Hounsfield Unit (HU) format. In this work,

we then extracted a total of 1615 radiomic features for both the PET and CT

images from the tumour region defined by the “GTVprimary + GTVlymph nodes”

contours as delineated by the radiation oncologists of each institution. These

features can be divided into three different groups: I) 10 first-order statistics

features (intensity); II) 5 morphological features (shape); and III) 40 texture

features each computed using 40 different combinations of extraction param-

eters.

Intensity features are computed from histograms (nbins = 100) of the in-

tensity distribution of the ROI. The features extracted in this work were the
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variance, the skewness, the kurtosis, SUVmax, SUVpeak, SUVmean, the area un-

der the curve of the cumulative SUV-volume histogram [50], the total lesion gly-

colysis, the percentage of inactive volume and the generalized effective total uptake

[51]. Shape feature describe geometrical aspects of the ROI. The features ex-

tracted in this work were the volume, the size (maximum tumour diameter),

the solidity, the eccentricity and the compactness.

Texture features measure intratumoural heterogeneity by quantitatively

describing the spatial distributions of the different intensities within the ROI.

In this work, 9 features from the Gray-Level Co-occurrence Matrix (GLCM)

[52], 13 features from the Gray-Level Run-Length Matrix (GLRLM) [53–55],

13 features from the Gray-Level Size Zone Matrix (GLSZM) [53–56] and 5 fea-

tures from the Neighbourhood Gray-Tone Difference Matrix (NGTDM) [57]

were computed. All texture matrices were constructed using 3D analysis/26-

voxel connectivity of the tumour region resampled to a defined isotropic

voxel size. For each of the four texture types, only one matrix was computed

per scan by simultaneously taking into account the neighbouring properties

of voxels in the 13 directions of 3D space. However, the 6 voxels at a dis-

tance of 1 voxel, the 12 voxels at a distance of
√
2 voxels, and the 8 voxels at

a distance of
√
3 voxels around center voxels were treated differently in the

calculation of the matrices to take into account discretization length differ-

ences.

All 40 texture features from the ROI of both PET and CT volumes were

extracted using all possible combinations (40) of the following parameters:

• Isotropic voxel size (5): Voxel sizes of 1 mm, 2 mm, 3 mm, 4 mm and

5 mm.

• Quantization algorithm (2): Equal-probability (equalization of intensity

histogram) and Uniform (uniform division of intensity range) quantiza-

tion algorithms with fixed number of gray levels.

• Number of gray levels (4): Fixed number of gray levels of 8, 16, 32 and

64 in the quantized ROI.

Detailed description with supplementary references and methodology used

to extract all radiomic features is further provided in Supplementary Mate-

rial section 6.8.2 under “Description of 3D radiomic features”.
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6.6.4 Construction of radiomic models

The construction of prediction models from the total set of radiomic features

for each of the three initial feature sets (I: PET features; II: CT features; and III:

PET and CT features) and three H&N cancer outcomes was performed from

the defined training set of this work (H&N1 and H&N2 cohorts; n = 194)

using the methodology developed in the work of Vallières et al. [29] The pro-

cess of combining radiomic features into a multivariable model was achieved

using the logistic regression utilities of the software DREES [58]. The general

workflow is presented in Supplementary Figure 6.9.

First, feature set reduction was performed for each of the initial feature

sets via a stepwise forward feature selection scheme in order to create re-

duced feature sets containing 25 different features balanced between predic-

tive power (Spearman’s rank correlation) and non-redundancy (maximal in-

formation coefficient[59]). This procedure was carried out using the Gain

equation [29], which is detailed in Supplementary Material section 6.8.2 un-

der “Feature set reduction”.

From the reduced feature sets, stepwise forward feature selection was

then carried out by maximizing the 0.632+ bootstrap AUC [60, 61]. For a

given model order (number of combined variables) and a given reduced fea-

ture set, the feature selection step was divided into 25 experiments. In each of

these experiments, all the different features from the reduced set were used

as different “starters”. For a given starting feature, 100 logistic regression

models or order 2 were first created using bootstrap resampling (100 sam-

ples) for each of the remaining features in the reduced feature set. Then, the

single remaining feature that maximized the 0.632+ bootstrap AUC of the

100 models was chosen, and the process was repeated up to model order 10.

Finally, for each model order of each feature set, the experiment that yielded

the highest 0.632+ bootstrap AUC was identified, and combinations of fea-

tures were chosen for model orders of 1 to 10. The whole feature selection

process is pictured in Supplementary Material section 6.8.2 under “Feature

selection”.

Once optimal combinations of features were identified for model orders

of 1 to 10 for all feature sets, prediction performance was estimated using

the 0.632+ bootstrap AUC (100 samples). By inspecting the prediction esti-

mates shown in Supplementary Figure 6.6, a single combination of features

(i.e., model order) potentially possessing the best parsimonious properties

was then chosen for each feature set and each outcome (identified as circles

in Supplementary Fig. S2). The final logistic regression coefficients of these
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selected radiomic prediction models (3 feature sets × 3 outcomes) were then

found by averaging all coefficients computed from another set of 100 boot-

strap samples. These prediction models in their final form were thereafter

directly tested in the defined testing set of this work (H&N3 and H&N4 co-

horts; n = 106).

6.6.5 Combination of radiomic and clinical variables

The construction of prediction models combining radiomic and clinical vari-

ables was also carried out using the training set consisting of the combina-

tion of 194 patients from the H&N1 and H&N2 cohorts (Figure 6.2). First,

random forest classifiers [40] containing only the following clinical variables

were constructed for the LR, DM and OS outcomes: I) Age; II) H&N type

(oropharynx, hypopharynx, nasopharynx or larynx); and III) Tumour stage.

The selection of the following best groups of tumour stage variables to be in-

corporated into the “clinical-only” random forest classifiers was performed:

I) T-Stage; II) N-Stage; III) T-Stage and N-Stage; and IV) TNM-Stage. Estima-

tion of prediction performance for feature selection and subsequent random

forest training was performed in the training set using stratified random sub-

sampling and imbalance adjustments to account for the disproportion be-

tween the occurrence and non-occurrence of events. Overall, the following

staging variables were estimated to possess the highest prediction perfor-

mance in the training set when combined into random forest classifiers with

Age and H&N type, and were thereafter used for the rest of the work accord-

ingly for each outcome: I) T-Stage and N-Stage for LR prediction; II) N-Stage

for DM prediction; and III) T-Stage and N-Stage for OS prediction. Finally,

the variables of the previously identified radiomic prediction models (3 fea-

ture sets × 3 outcomes) were incorporated with the corresponding clinical

variables identified for each outcome via the separate construction of final

random forests classifiers.

6.6.6 Imbalance-adjustment strategy

To obtain models with predictive power equally balanced between the pre-

diction of occurrence of events and non-occurrence of events, an imbalance-

adjustment strategy adapted from the work of Schiller et al. [30] was used

in this work (Supplementary Figure 6.8). Imbalance adjustments become

an essential part of the training process when the proportion of instances

(e.g., patients) of a given class (e.g., occurrence of an event) is much lower
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than the proportion of instances of the other class (e.g., non-occurrence of an

event). This is the case in this work for the proportion of locoregional recur-

rences, distant metastases and death events in the training and testing sets

(Figure 6.2).

In this work, every time a different bootstrap sample was drawn from the

training set to construct a logistic regression or a random forest classifier, a

different ensemble of multiple balanced classifiers was used in the training

process instead of using only one unbalanced classifier. The ensemble clas-

sifier is composed of a number of P = [N−/N+] partitions, where N− is the

number of instances from the majority class and N+ the number of instances

from the minority class in a particular bootstrap sample. The N+ instances

are copied and used in every partition, and the N− instances are randomly

sampled without replacement in the P partitions such that the number of in-

stances of the majority class is either ⌊N−/P ⌋ or ⌈N−/P ⌉ in each partition.

For example, for N− = 168 and N+ = 32, five partitions would be created:

two would contain 33 instances from the majority class, three would contain

34 instances from the majority class, and all would contain the 32 instances

from the minority class.

For the logistic regression training process, a different classifier (i.e., dif-

ferent coefficients) is then trained for each of the created partitions, and the

final ensemble classifier consists in the average of the corresponding coeffi-

cients from each partition. For random forest training, each partition is used

to create a decision tree to be appended to a final forest instead of creating

only one tree per bootstrap sample.

6.6.7 Random forest training

The process of random forest training inherently uses bootstrapping in order

to train the multiple decision trees of the forest. Conventionally, one different

decision tree is trained for each bootstrap sample. In this work, we used 100

bootstrap samples to train each random forest constructed from the train-

ing set (H&N1 and H&N2 cohorts; n = 194). For each bootstrap sample,

the imbalance-adjustment strategy detailed above was used such that each

bootstrap sample produced multiple decision trees (one per partition) to be

appended to a random forest. Therefore, the final number of decision trees

per random forest was dependent on the actual proportion of events in each

bootstrap sample for each outcome studied. The three final random forest
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models developed in this work (italic fonts in Table 6.1, Supplementary Ta-

ble 6.5) were constructed using 582, 661 and 518 decision trees for LR, DM

and OS, respectively.

In addition to the imbalance-adjustment strategy adopted in this work,

under/oversampling of the instances in each partition of an ensemble was

used to further correct for data imbalance in the random forest training pro-

cess. Under/oversampling weights of the minority class of 0.5 to 2 with in-

crements of 0.1 were tested in this work. Stratified random sub-sampling

was used to estimate the optimal weight for a given training process (and

also to estimate the optimal clinical staging variables to be used) in terms of

the maximal average AUC, a process randomly separating the training set of

this work into multiple sub-training and sub-testing sets (n = 10) with 2:1

size ratio and equal proportion of events. The final random forest models

developed in this work (italic fonts in Table 6.1, Supplementary Table 6.5)

used oversampling weights of 1.4, 1.6 and 1.7 (in conjunction with the pre-

viously described imbalance-adjustment strategy) to train the decision trees

of the forests for LR, DM and OS, respectively. The overall random forest

training process is pictured in Supplementary Figure 6.10.

6.6.8 Calculation of performance metrics

In this work, all prediction models were fully trained in the defined training

set of this work (H&N1 and H&N2 cohorts; n = 194). Models were then inde-

pendently tested in the defined testing set of this work (H&N3 and H&N4 co-

horts; n = 106). Prediction performance was assessed using ROC metrics in

terms of the AUC, sensitivity, specificity and accuracy of classification of bi-

nary clinical endpoints (locoregional recurrences, distant metastases, deaths).

Prognostic performance in terms of time estimates of clinical endpoints was

assessed using the concordance-index (CI) [33] and the p-value obtained from

Kaplan-Meier analysis using the log-rank test between risk groups.

For prediction performance, the output of the linear combination of fea-

tures of logistic regression models was directly used to calculate the AUC

with binary outcome data. The multivariable response was then transformed

into the posterior probability of occurrence of an event using a logit trans-

form to calculate the sensitivity, specificity and accuracy of prediction using

a probability threshold of 0.5. Similarly, the output probability of occurrence

of an event of random forest models was directly used to calculate the AUC
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with binary outcome data, and an output probability of 0.5 was also used to

calculate the remaining metrics.

For prognostic performance, the output of the linear combination of fea-

tures of cox proportional hazard regression models was directly used to cal-

culate the CI with time-to-event data (time elapsed between the date the

treatment ended and the date when an event occurred or the date of last-

follow-up). The median of the output of the cox regression models found in

the training set was used to separate the patients of the testing set into two

risk groups for Kaplan-Meier analysis. For random forests, the output prob-

ability of occurrence of an event was directly used to calculate the CI with

time-to-event data, and a probability threshold of 0.5 was used to separate

the patients of the testing set into two risk groups (or 1
3

and 2
3

for three risk

groups) for Kaplan-Meier analysis.

6.6.9 Code and models availability

All software code used to produce the results presented in this work is freely

shared under the GNU General Public License on the GitHub website at:

https://github.com/mvallieres/radiomics. Notably, a single or-

ganized script allowing to run all the experiments performed in this work is

available.
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6.8 Supplementary Material

6.8.1 Supplementary results

Summary of presentation of results

To ease reading and the understanding of this study, a summary of how re-

sults are presented in the main text is provided in Supplementary Figure 6.5.

Choice of complexity of radiomic models

From the defined training set of this work (H&N1 and H&N2; n = 194) and

similarly to the methodology developed in the study of Vallières et al. [29], all

initial radiomic feature sets (PET, CT and PETCT) first underwent: I) feature

set reduction; and II) feature selection of models combining 1 to 10 variables

via logistic regression. Prediction performance was then estimated in the

training set in terms of the AUC632+ metric using the 0.632+ bootstrap re-

sampling technique [60, 61], for all the 10 different logistic regression models

computed on each of the initial feature sets (Supplementary Figure 6.6).

One radiomic model was then chosen for each outcome and feature set,

by identifying the lowest number of variables in each model before the pre-

diction performance started reaching a plateau or decreasing (i.e., best par-

simonious models). These choices of radiomic model complexity are shown

as circles in Supplementary Figure 6.6. The logistic regression coefficients

forming the final prediction models for these 9 different choices of radiomic

models (3 feature sets × 3 outcomes) were ultimately fitted using the whole

training set.

Univariate analysis

Supplementary Table 6.2 shows the Spearman’s rank correlation coefficients

(rs) between the best PET/CT radiomics variables and the binary outcome

vectors for all patients of the four cohorts (H&N1, H&N2, H&N3 and H&N4;

n = 300). Supplementary Table 6.3 shows the Spearman’s rank correlation

coefficients (rs) between the clinical variables and the binary outcome vectors

for all patients of the four cohorts.
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Figure 6.5 : Summary of presentation of results. The boxes identified by aster-
isks represent study checkpoints where only a subset of variables are retained for the
remainder of the study. (a) Univariate analysis results are computed using the four
patient cohorts (H&N1, H&N2, H&N3 and H&N4; n = 300) and are presented in the
Results section of the main text. (b) Clinical staging and radiomic feature selection pro-
cesses are performed using the patient cohorts forming the training set (H&N1 and
H&N2; n = 194). The clinical staging variables selected for the construction of pre-
diction models are shown in box (1) for each tumour outcome. Radiomic prediction
models were selected and built for three initial feature sets: I) PET radiomic features
(PET); II) CT radiomic features (CT); and III) PET and CT radiomic features (PETCT).
Box (2) shows the radiomic models orders (number of combined variables) chosen in
Supplementary Figure 6.6 for each feature set and outcome. (c) Performance of predic-
tion models, comparison with other prognostic factors and risk assessment processes
are carried out using the patient cohorts forming the testing set (H&N3 and H&N4;
n = 106). Prediction performance of all models selected and constructed in the training
stage is displayed in Figure 6.3 of the main text, and the radiomic feature sets with best
prediction performance when combined with clinical variables are shown in box (3) for
each outcome. These radiomic + clinical models are further compared against other
prognostic factors (e.g. tumour volume, clinical variables alone, etc.) in Table 6.1. The
final three models with best overall prediction/prognostic performance for each out-
come are shown in box (4), and only these three models are used to perform outcome
risk assessment in Figure 6.4 of the main text.
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Figure 6.6 : Choice of complexity of radiomic models. Choice of the lowest
model order (number of combined variables) providing the combination of radiomic
variables with the best predictive properties (shown as circles) for each tumour out-
come and each of the three initial radiomic feature sets: I) PET radiomic features (PET);
II) CT radiomic features (CT); and III) PET and CT radiomic features (PETCT). Predic-
tion performance is estimated in the training set (H&N1 and H&N2; n = 194) in terms
of the AUC632+ metric using bootstrap resampling. Error bars represent the standard
error of the mean over 100 bootstrap samples.

Table 6.2 : Univariate analysis of radiomics variables.

Metric Locoregional Distant Survival
Best PET (a) rs = −0.14, p = 0.02 (c) rs = 0.28, p = 5.8e− 07* (e) rs = 0.20, p = 3.6e − 04*
Best CT (b) rs = −0.15, p = 7.3e − 03 (d) rs = −0.29, p = 2.4e− 07* (f) rs = 0.24, p = 3.7e− 05*

* Significant associations after multiple testing corrections with a FDR of 10 %.

(a) PET-GLNGLSZM : Scale = 2 mm, Quant. algo = Uniform, Ng = 16.

(b) CT-LZHGEGLSZM : Scale = 5 mm, Quant. algo = Equal, Ng = 64.

(c) PET-BusynessNGTDM : Scale = 3 mm, Quant. algo = Uniform, Ng = 64.

(d) CT-ZSNGLSZM : Scale = 1 mm, Quant. algo = Uniform, Ng = 16.

(e) PET-CoarsenessNGTDM : Scale = 5 mm, Quant. algo = Uniform, Ng = 16.

(f) CT-GLVGLRLM : Scale = 1 mm, Quant. algo = Uniform, Ng = 16.

Table 6.3 : Univariate analysis of clinical variables.

Metric Locoregional Distant Survival
Age rs = 0.15, p = 7.5e − 03* rs = −0.03, p = 0.59 rs = −0.14, p = 0.01*
T-Stage rs = 0.11, p = 0.07* rs = 0.10, p = 0.09 rs = −0.21, p = 3.0e − 04*
N-Stage rs = −0.10, p = 0.08* rs = 0.18, p = 1.4e − 03* rs = −0.07, p = 0.20
TNM-Stage rs = −0.09, p = 0.13 rs = 0.09, p = 0.14 rs = −0.08, p = 0.15
HPV status rs = −0.39, p = 8.0e− 06* rs = −0.12, p = 0.19 rs = 0.23, p = 0.01*

* Significant associations after multiple testing corrections with a FDR of 10 %.
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Performance of prediction models

Complete results: AUC, sensitivity, specificity, accuracy. Supplementary Fig-

ure 6.7a presents the prediction results obtained in the testing set (H&N3 and

H&N4; n = 106) using the radiomics models, and Supplementary Figure 6.7b

presents the prediction results obtained in the testing set using the models

formed from the combination of radiomic and clinical variables (radiomics +

clinical).
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Figure 6.7 : Prediction performance of selected models – complete results. All
prediction models were selected and built using the training set (H&N1 and H&N2;
n = 194) for three initial radiomic feature sets: I) PET radiomic features (PET); II) CT
radiomic features (CT); and III) PET and CT radiomic features (PETCT). The predic-
tion performance is evaluated here for patients of the testing set (H&N3 and H&N4;
n = 106). (a) Prediction performance of radiomic models constructed using logis-
tic regression. (b) Prediction performance of radiomic models combined with clinical
variables via random forests. The models providing the best overall performance in
terms of predictive power and balance of classification of occurence of events and non-
occurrence of events are identified with stars.

For locoregional prediction, the model composed of three variables from

the PETCT radiomic feature set obtained the best overall performance in

terms of predictive power and balance of classification of occurrence of events

and non-occurrence of events, with an AUC of 0.64, a sensitivity of 0.56, a
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specificity of 0.67 and an accuracy of 0.65. The addition of the clinical vari-

ables {Age, H&N type, T-Stage, N-Stage} to this radiomic model via random

forests reached an AUC of 0.69, a sensitivity of 0.63, a specificity of 0.68 and

an accuracy of 0.67.

For distant metastases prediction, the best overall performance was ob-

tained with the model composed of three variables from the CT radiomic

feature set, with an AUC of 0.86, a sensitivity of 0.79, a specificity of 0.77 and

an accuracy of 0.77. The addition of the clinical variables {Age, H&N type, N-

Stage} to this radiomic model reached and AUC of 0.86, a sensitivity of 0.86,

a specificity of 0.76 and an accuracy of 0.77.

For overall survival prediction (death), the best overall performance was

obtained with the model composed of four variables from the PET radiomic

feature set, with an AUC of 0.62, a sensitivity of 0.58, a specificity of 0.66 and

an accuracy of 0.64. The addition of the clinical variables {Age, H&N type, T-

Stage, N-Stage} to this radiomic model reached and AUC of 0.74, a sensitivity

of 0.79, a specificity of 0.57 and an accuracy of 0.62.

Complete description of radiomic models. This section provides the com-

plete description (specific features, texture extraction parameters, logistic re-

gression coefficients) of the three best radiomics models of this work, one for

each outcome. Significance of the variables in the logistic regression models

constructed from the training set (H&N1 and H&N2; n = 194) was assessed

using the Wald’s test implemented in the software DREES [58].

→ Locoregional recurrence

• PET-GLNGLSZM : Scale = 2 mm, Quant. algo = Uniform, Ng = 64

• CT-CorrelationGLCM : Scale = 1 mm, Quant. algo = Uniform, Ng = 16

• CT-LGZEGLSZM : Scale = 1 mm, Quant. algo = Equal, Ng = 8

• Significance of variables: p = 0.04, p = 0.004, p = 0.02

• Complete multivariable model response:

g(xxxi) = −350.1×PET-GLNGLSZM +7.42×CT-CorrelationGLCM +21.14×CT-LGZEGLSZM −0.635

→ Distant metastases

• CT-LRHGEGLRLM : Scale = 1 mm, Quant. algo = Equal, Ng = 8
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• CT-ZSVGLSZM : Scale = 5 mm, Quant. algo = Equal, Ng = 8

• CT-ZSNGLSZM : Scale = 1 mm, Quant. algo = Uniform, Ng = 16

• Significance of variables: p = 0.03, p = 0.03, p = 0.03

• Complete multivariable model response:

g(xxxi) = 0.0233 × CT-LRHGEGLRLM − 226.7 ×CT-ZSVGLSZM − 14.9× CT-ZSNGLSZM + 1.21

→ Overall survival (death)

• PET-LGREGLRLM : Scale = 4 mm, Quant. algo = Equal, Ng = 64

• PET-SZEGLSZM : Scale = 3 mm, Quant. algo = Uniform, Ng = 16

• PET-HGZEGLSZM : Scale = 1 mm, Quant. algo = Uniform, Ng = 64

• PET-ZSNGLSZM : Scale = 1 mm, Quant. algo = Equal, Ng = 8

• Significance of variables: p = 0.2, p = 0.009, p = 0.04, p = 0.2

• Complete multivariable model response:

g(xxxi) = −136.8×PET-LGREGLRLM+11.49×PET-SZEGLSZM−0.0035×PET-HGZEGLSZM−25.91×PET-ZSNGLSZM+3.921

Random forests: radiomic variables only

Results for random forests constructed using radiomic variables only are pre-

sented in Supplementary Table 6.4.

Final random forest models and variable importance

In Supplementary Table 6.5, the features of the three final random forest mod-

els developed in this work are listed by order of importance in the models.

To assess the importance of each feature in each model, an approach com-

bining random permutations and bootstrap resampling was used. First, 100

bootstrap samples were drawn from the testing set (H&N3 and H&N4 co-

horts; n = 106). For each bootstrap sample, the feature values of all patients

of the testing set were permuted once (same permutation for all features).

The average percent AUC change over all permutations was then calculated

by comparing random permutation AUCs of each variable separately to the

true bootstrap AUCs. Significance of each variable in the model (p-value)

was calculated by comparing the distribution of true bootstrap AUCs to the



Chapter 6. Integration of radiomic-based prediction models with clinical
prognostic factors

235

Table 6.4 : Performance of random forest classifiers constructed using ra-
diomic variables only.

Outcome Selected featuresa
Prediction Prognosis

AUCb Sensitivityb Specificityb Accuracyb CIc p-valued

Locoregional
PET-GLNGLSZM

0.61 0.56 0.68 0.66 0.60 0.16CT-CorrelationGLCM

CT-LGZEGLSZM

Distant
CT-LRHGEGLRLM

0.86 0.79 0.77 0.77 0.88 0.000007CT-ZSVGLSZM

CT-ZSNGLSZM

Survival

PET-LGREGLRLM

0.60 0.71 0.45 0.51 0.58 0.28
PET-SZEGLSZM

PET-HGZEGLSZM

PET-ZSNGLSZM

a See Supplementary Material section 6.8.1 under “Complete description of radiomic
models” for the list of extraction parameters of texture features.
b Binary prediction of outcome using random forest probability output.
c Concordance-index between random forest probability output and time to event.
d Log-rank test from Kaplan-Meier curves with a risk stratification into two groups
(probability threshold of 0.5).

distribution of permuted AUCs via the Wilcoxon right-sided test. The more

the AUC decreases as a result of random permutations, the more important

the variable is to the model.

6.8.2 Supplementary methods

Imbalance-adjustment strategy

In Supplementary Figure 6.8, the imbalance-adjustment strategy used in this

work is detailed. In our work, this strategy is combined to uniform bootstrap

resampling: every time a boostrap sample is created for prediction estima-

tion using logistic regression or for random forest construction, an ensemble

of multiple balanced classifiers is used (in contrast to using only one unbal-

anced classifier).

In Supplementary Figure 6.8, please note that “[x]” refers to a rounding

operation, “⌈x⌉” refers to a ceiling operation, and “⌊x⌋” refers to a floor oper-

ation. For example, for N− = 56 and N+ = 11, 5 partitions would be created.

All partitions would contain the initial 11 positive instances. The 56 negative

instances would be distributed between the 5 partitions such that the first 4
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Table 6.5 : Best predictive/prognostic and balanced random forest models

found in this work.

Outcome Selected featuresa AUC changeb p-valuec

Locoregional

Age −22.8% ≪ 0.001
CT-LGZEGLSZM −16.3% ≪ 0.001
PET-GLNGLSZM −16.1% ≪ 0.001
CT-CorrelationGLCM −14.6% ≪ 0.001
H&N type −14.2% ≪ 0.001
N-Stage −13.4% ≪ 0.001
T-Stage −12.3% ≪ 0.001

Distant

CT-ZSNGLSZM −15.9% ≪ 0.001
CT-ZSVGLSZM −7.7% ≪ 0.001
CT-LRHGEGLRLM −3.1% 0.00002
H&N type +0.2% 0.40
N-Stage +2.7% 1
Age +3.5% 1

Survival

H&N type −13.8% ≪ 0.001
T-Stage −9.9% ≪ 0.001
Age −9.6% ≪ 0.001
N-Stage −1.2% 0.30

a See Supplementary Material section 6.8.1 under “Complete description of radiomic
models” for the list of extraction parameters of texture features.
b Average of (AUCperm - AUCtrue)/AUCtrue over all permutations. The more negative, the
more important the variable is in the model.
c Significance in the model via the Wilcoxon right-sided test.
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Figure 6.9 : Workflow of construction of radiomic models.

Random forest training

Supplementary Figure 6.10 presents the methodology used in this work for

random forest training. Stratified random sub-sampling is used to estimate

the predictive properties of the random forests (e.g., estimating the best tu-

mour staging metric addition and positive instances weight in the forests

by maximizing ÂUC). For each training sub-sample, boostrap resampling is

used to grow a single random forest to be tested in the corresponding test-

ing sub-sample. Through the imbalance-adjustment strategy, each bootstrap

sample produces multiple decision trees (one decision tree per partition) to

be appended to the random forest of the corresponding training sub-sample

(in contrast to conventionally producing a single decision tree per bootstrap

sample).
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Figure 6.10 : Random forest training.

Patient datasets

Head and Neck 1 → Hôpital général juif, Montréal, QC

PATIENT POPULATION. This cohort is composed of 92 patients with pri-

mary squamous cell carcinoma of the head-and-neck (stage I-IVb) treated

between 2006 and 2014 at Hôpital général juif, Montréal, QC. Included pa-

tients were treated with curative intent with radiation alone or with chemo-

radiation. Patients with recurrent head-and-neck cancer or with metastases

at presentation, and patients receiving palliative treatment were excluded

from the study. The median follow-up period of the cohort was 46 months

(range: 11-112). Patients that did not develop a locoregional recurrence or

distant metastases during the follow-up period and that had a follow-up

time smaller than 24 months were also excluded from the study. The study

has been approved by the institutional review board of Hôpital général juif.

Detailed information about this patient cohort is provided in Supplementary

Table 6.6.

TREATMENT DETAILS. Patients with stage I-II disease were treated with

definitive radiotherapy alone while patients with stage III-IV disease were

treated using concurrent chemo-radiation. The radiotherapy regimen was
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Table 6.6 : Characteristics of H&N1 cohort – HGJ.

Characteristic Type No. of patients

Gender
Male 75 (82 %)
Female 17 (18 %)

Age
Range 18-84
Mean ± STD 61 ± 11

Tumour type

Oropharynx 56 (61 %)
Hypopharynx 4 (4 %)
Nasopharynx 14 (15 %)
Larynx 14 (15 %)
Unknown 4 (4 %)

T-Stage

T1 20 (22 %)
T2 20 (22 %)
T3 35 (38 %)
T4 13 (14 %)
Tx 4 (4 %)

N-Stage

N0 13 (14 %)
N1 18 (20 %)
N2 58 (63 %)
N3 3 (3 %)

TNM-Stage

Stage I 1 (1 %)
Stage II 5 (5 %)
Stage III 28 (30 %)
Stage IV 58 (63 %)

HPV status
Positive 30 (33 %)
Negative 25 (27 %)
N/A 37 (40 %)

Treatment
Radiation only 4 (4 %)
Chemo-radiation 88 (96 %)

Outcome
Locoregional recurrence 12 (13 %)
Distant metastases 16 (17 %)
Death 14 (15 %)
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planned using Volumetric Arc Modulated Radiotherapy – Rapidarc plan-

ning system (Varian Medical Systems). The radiotherapy regime consisted

of hypofractionated fractionated radiotherapy with simultaneous integrated

boost where the GTV was planned to receive a total of 67.5 Gy in fractions of

2.25 Gy over 6 weeks, while CTV received a total of 54-60 Gy in fractions of

1.8-2 Gy over 30 fractions. The treatment was delivered on a Linac equipped

with HD120 Multileaf Collimator, with Image Guided Radiotherapy using

daily kv-kv imaging and weekly Cone beam CT-scan (CBCT). Concomitant

chemotherapy was given via weekly administration of Carboplatin at AUC

2-3 and Paclitaxel at dose of 40 mg/m2.

FDG-PET/CT SCANS. All 92 eligible patients had FDG-PET and CT scans

done on a hybrid PET/CT scanner (Discovery ST, GE Healthcare) within

37 days before treatment (median: 14 days). For the PET portion of the

FDG-PET/CT scan, a median of 584 MBq (range: 368-715) was injected in-

travenously. Imaging acquisition of the head and neck was performed using

multiple bed positions with a median of 300 s (range: 180-420) per bed po-

sition. Attenuation corrected images were reconstructed using an ordered

subset expectation maximization (OSEM) iterative algorithm and a span (ax-

ial mash) of 5. The FDG-PET slice thickness resolution was 3.27 mm for all

patients and the median in-plane resolution was 3.52×3.52 mm2 (range: 3.52-

4.69). For the CT portion of the FDG-PET/CT scan, an energy of 140 kVp

with an exposure of 12 mAs was used. The CT slice thickness resolution was

3.75 mm and the median in-plane resolution was 0.98 × 0.98 mm2 for all pa-

tients. Contours defining the gross tumour volume (GTV) and lymph nodes

were drawn by an expert radiation oncologist in a radiotherapy treatment

planning system. For 2 of the 92 patients, the radiotherapy contours were

directly drawn on the CT scan of the FDG-PET/CT scan. For 90 of the 92

patients, the radiotherapy contours were drawn on a different CT scan dedi-

cated to treatment planning. In the latter case, the contours were propagated

to the FDG-PET/CT scan reference frame using deformable registration with

the software MIM® (MIM software Inc., Cleveland, OH).

Head and Neck 2 → Centre hospitalier universitaire de Sherbooke, Sherbrooke, QC
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Table 6.7 : Characteristics of H&N2 cohort – CHUS.

Characteristic Type No. of patients

Gender
Male 74 (73 %)
Female 28 (27 %)

Age
Range 34-88
Mean ± STD 64 ± 10

Tumour type

Oropharynx 73 (72 %)
Hypopharynx 1 (1 %)
Nasopharynx 6 (6 %)
Larynx 22 (22 %)

T-Stage

T1 9 (9 %)
T2 45 (44 %)
T3 31 (30 %)
T4 17 (17 %)

N-Stage

N0 38 (37 %)
N1 11 (11 %)
N2 50 (49 %)
N3 3 (3 %)

TNM-Stage

Stage I 3 (3 %)
Stage II 17 (17 %)
Stage III 22 (22 %)
Stage IV 60 (59 %)

HPV status
Positive 26 (25 %)
Negative 13 (13 %)
N/A 63 (62 %)

Treatment
Radiation only 33 (32 %)
Chemo-radiation 69 (68 %)

Outcome
Locoregional recurrence 17 (17 %)
Distant metastases 10 (10 %)
Death 18 (18 %)



Chapter 6. Integration of radiomic-based prediction models with clinical
prognostic factors

243

PATIENT POPULATION. This cohort is composed of 102 patients with pri-

mary squamous cell carcinoma of the head-and-neck (stage I-IVb) treated be-

tween 2007 and 2014 at Centre hospitalier universitaire de Sherbooke, Sher-

brooke, QC. Included patients were treated with curative intent with radia-

tion alone or with chemo-radiation. Patients with recurrent head-and-neck

cancer or with metastases at presentation, and patients receiving palliative

treatment were excluded from the study. The median follow-up period of

the cohort was 44 months (range: 8-93). Patients that did not develop a lo-

coregional recurrence or distant metastases during the follow-up period and

that had a follow-up time smaller than 24 months were also excluded from

the study. The study has been approved by the institutional review board

of Centre hospitalier universitaire de Sherbooke. Detailed information about

this patient cohort is provided in Supplementary Table 6.7.

TREATMENT DETAILS. All patients have had a pathological confirmation

of squamous cell carcinoma and imaging examination for tumor staging be-

fore all treatments. All those patients have had a treatment position PET

imaging in our center. The PET images have been merged with dosimetry CT

imaging, and the dosimetry plan has been performed with teraplan for 3D-

conformal technique and pinnacle system for IMRT. The 3D-conformal tech-

nique has been used for all patients before 2008, and since 2008, all patients

have been treated by IMRT. The treatment approaches consisted of either ra-

diotherapy alone or radiotherapy with concurrent chemotherapy or concur-

rent Cetuximab. The treatment dose varied according to the tumor staging.

The patients with T1 glottic laryngeal cancer have been treated mostly by

2.5 Gy daily for total dose of 50Gy, some patients have been treated with

daily dose of 2.25 Gy for 63 Gy totally. All other patients with T1, T2, N0

cancers have been treated with standard fractionated radiation schedules of

60-66 Gy; for the patients with T3-4, or N+, the treatment dose varied from

68.8 Gy in 32 fractions to 70 Gy in 33 fractions. All treatments have been

performed by 6 MV linear accelerator. The concurrent chemotherapy was ei-

ther cisplatin 100 mg/m2 at D1, D22 & D43, or cisplatin 40 mg/m2, weekly.

According to the consideration of the oncologist, some patients have been

treated by radiotherapy associated with Cetuximab, due to the problems of

kidney function, audition, elder or weak general performance status. The

treatment schedule of concurrent Cetuximab was administrated according to

the study of Bonner et al. [62].
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FDG-PET/CT SCANS. All 102 eligible patients had FDG-PET and CT scans

done on a hybrid PET/CT scanner (GeminiGXL 16, Philips) within 54 days

before treatment (median: 19 days). For the PET portion of the FDG-PET/CT

scan, a median of 325 MBq (range: 165-517) was injected intravenously. Imag-

ing acquisition of the head and neck was performed using multiple bed po-

sitions with a median of 150 s (range: 120-151) per bed position. Attenua-

tion corrected images were reconstructed using a LOR-RAMLA iterative al-

gorithm. The FDG-PET slice thickness resolution was 4 mm and the median

in-plane resolution was 4 × 4 mm2 for all patients. For the CT portion of the

FDG-PET/CT scan, a median energy of 140 kVp (range: 12-140) with a me-

dian exposure of 210 mAs (range: 43-250) was used. The median CT slice

thickness resolution was 3 mm (range: 2-5) and the median in-plane reso-

lution was 1.17 × 1.17 mm2 (range: 0.68-1.17). Contours defining the gross

tumour volume (GTV) and lymph nodes were drawn by an expert radiation

oncologist in a radiotherapy treatment planning system. For 91 of the 102

patients, the radiotherapy contours were directly drawn on the CT scan of

the FDG-PET/CT scan. For 11 of the 102 patients, the radiotherapy contours

were drawn on a different CT scan dedicated to treatment planning. In the

latter case, the contours were propagated to the FDG-PET/CT scan reference

frame using deformable registration with the software MIM® (MIM software

Inc., Cleveland, OH).

Head and Neck 3 → Hôpital Maisonneuve-Rosemont, Montréal, QC

PATIENT POPULATION. This cohort is composed of 41 patients with pri-

mary squamous cell carcinoma of the head-and-neck (stage II-IVb) treated

between 2008 and 2014 at Hôpital Maisonneuve-Rosemont, Montréal, QC.

Included patients were treated with curative intent with radiation alone or

with chemo-radiation. Patients with recurrent head-and-neck cancer or with

metastases at presentation, and patients receiving palliative treatment were

excluded from the study. The median follow-up period of the cohort was

38 months (range: 6-70). Patients that did not develop a locoregional re-

currence or distant metastases during the follow-up period and that had a

follow-up time smaller than 24 months were also excluded from the study.

The study has been approved by the institutional review board of Hôpital

Maisonneuve-Rosemont. Detailed information about this patient cohort is

provided in Supplementary Table 6.8.
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Table 6.8 : Characteristics of H&N3 cohort – HMR.

Characteristic Type No. of patients

Gender
Male 31 (76 %)
Female 10 (24 %)

Age
Range 49-85
Mean ± STD 67 ± 9

Tumour type

Oropharynx 19 (46 %)
Hypopharynx 7 (17 %)
Nasopharynx 6 (15 %)
Larynx 9 (22 %)

T-Stage

T1 2 (5 %)
T2 17 (41 %)
T3 9 (22 %)
T4 12 (29 %)
Tx 1 (2 %)

N-Stage

N0 5 (12 %)
N1 4 (10 %)
N2 27 (66 %)
N3 5 (12 %)

TNM-Stage

Stage I 0 (0 %)
Stage II 3 (7 %)
Stage III 5 (12 %)
Stage IV 33 (80 %)

HPV status
Positive 2 (5 %)
Negative 0 (0 %)
N/A 39 (95 %)

Treatment
Radiation only 7 (17 %)
Chemo-radiation 34 (83 %)

Outcome
Locoregional recurrence 9 (22 %)
Distant metastases 11 (27 %)
Death 19 (46 %)
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TREATMENT DETAILS. The treatment options consisted of either defini-

tive radiotherapy alone or concurrent chemo-radiation. All patients received

continuous course of radiotherapy delivered by a 6 MV linear accelerator us-

ing 7 to 9 fields inverse planning IMRT. Only one patient was planned with

5 fields and another was treated using 6 fields forward planning IMRT to the

upper neck and direct anterior field with a spinal cord block to the lower

neck. For the patients receiving radiotherapy alone, 4 patients had stage II

disease including a T1N1 nasopharyngeal cancer and received a dose 69.96

Gy in 33 fractions, 2 oropharyngeal and 1 hypopharyngeal cancer receiving

altered fractionation with a dose of 66 to 67.5 Gy in 30 fractions. The 3 pa-

tients were offered but declined the chemotherapy and received 69.36 Gy in

33 fractions. Among patients receiving chemo-radiation, the radiation frac-

tionation mostly used was 69.96 Gy in 33 fractions (n = 31) and the remaining

received 70 Gy in 35 fractions (n = 2). The concurrent chemotherapy was in

most cases cisplatin 100 mg/m2 i.v. every 3 weeks.

FDG-PET/CT SCANS. All 41 eligible patients had FDG-PET and CT scans

done on a hybrid PET/CT scanner (Discovery STE, GE Healthcare) within

60 days before treatment (median: 34 days). For the PET portion of the

FDG-PET/CT scan, a median of 475 MBq (range: 227-859) was injected in-

travenously. Imaging acquisition of the head and neck was performed using

multiple bed positions with a median of 360 s (range: 120-360) per bed po-

sition. Attenuation corrected images were reconstructed using an ordered

subset expectation maximization (OSEM) iterative algorithm and a median

span (axial mash) of 5 (range: 3-5). The FDG-PET slice thickness resolu-

tion was 3.27 mm for all patients and the median in-plane resolution was

3.52 × 3.52 mm2 (range: 3.52-5.47). For the CT portion of the FDG-PET/CT

scan, a median energy of 140 kVp (range: 120-140) with a median expo-

sure of 11 mAs (range: 5-16) was used. The CT slice thickness resolution

was 3.75 mm for all patients and the median in-plane resolution was 0.98 ×
0.98 mm2 (range: 0.98-1.37). For all 41 patients, the radiotherapy contours

defining the gross tumour volume (GTV) and lymph nodes were drawn by

an expert radiation oncologist on a different CT scan dedicated to treatment

planning. The contours were then propagated to the FDG-PET/CT scan ref-

erence frame using deformable registration with the software MIM® (MIM

software Inc., Cleveland, OH).

Head and Neck 4 → Centre hospitalier de l’Université de Montréal, Montréal, QC
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Table 6.9 : Characteristics of H&N4 cohort – CHUM.

Characteristic Type No. of patients

Gender
Male 49 (75 %)
Female 16 (25 %)

Age
Range 44-90
Mean ± STD 63 ± 9

Tumour type

Oropharynx 58 (89 %)
Hypopharynx 0 (0 %)
Nasopharynx 2 (3 %)
Larynx 0 (0 %)
Unknown 5 (8 %)

T-Stage

T1 8 (12 %)
T2 28 (43 %)
T3 19 (29 %)
T4 5 (8 %)
Tx 5 (8 %)

N-Stage

N0 4 (6 %)
N1 8 (12 %)
N2 45 (69 %)
N3 8 (12 %)

TNM-Stage

Stage I 0 (0 %)
Stage II 2 (3 %)
Stage III 7 (11 %)
Stage IV 54 (83 %)
N/A 2 (3 %)

HPV status
Positive 21 (32 %)
Negative 3 (5 %)
N/A 41 (63 %)

Treatment
Radiation only 4 (6 %)
Chemo-radiation 61 (94 %)

Outcome
Locoregional recurrence 7 (11 %)
Distant metastases 3 (5 %)
Death 5 (8 %)
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PATIENT POPULATION. This cohort is composed of 65 patients with pri-

mary squamous cell carcinoma of the head-and-neck (stage II-IVb) treated

between 2009 and 2013 at Centre hospitalier de l’Université de Montréal,

Montréal, QC. Included patients were treated with curative intent with radi-

ation alone or with chemo-radiation. Patients with recurrent head-and-neck

cancer or with metastases at presentation, and patients receiving palliative

treatment were excluded from the study. The median follow-up period of

the cohort was 40 months (range: 11-66). Patients that did not develop a lo-

coregional recurrence or distant metastases during the follow-up period and

that had a follow-up time smaller than 24 months were also excluded from

the study. The study has been approved by the institutional review board of

Centre hospitalier de l’Université de Montréal. Detailed information about

this patient cohort is provided in Supplementary Table 6.9.

TREATMENT DETAILS. Most patients (94 %) underwent concurrent plat-

inum based chemotherapy and radiotherapy. All patients received an IMRT

type radiation (sliding window IMRT or tomotherapy) consisting of 70 Gy

of radiation in 33 fractions. Immobilisation device included a thermoplastic

mask of the head and shoulder fixed to the treatment table.

FDG-PET/CT SCANS. All 65 eligible patients had FDG-PET and CT scans

done on a hybrid PET/CT scanner (Discovery STE, GE Healthcare) within 66

days before treatment (median: 12 days). For the PET portion of the FDG-

PET/CT scan, a median of 315 MBq (range: 199-3182) was injected intra-

venously. Imaging acquisition of the head and neck was performed using

multiple bed positions with a median of 300 s (range: 120-420) per bed po-

sition. Attenuation corrected images were reconstructed using an ordered

subset expectation maximization (OSEM) iterative algorithm and a medi-

anspan (axial mash) of 3 (range: 3-5). The median FDG-PET slice thickness

resolution was 4 mm (range: 3.27-4) and the median in-plane resolution was

4 × 4 mm2 (range: 3.52-5.47). For the CT portion of the FDG-PET/CT scan,

a median energy of 120 kVp (range: 120-140) with a median exposure of

350 mAs (range: 5-350) was used. The median CT slice thickness resolu-

tion was 1.5 mm (range: 1.5-3.75) and the median in-plane resolution was

0.98 × 0.98 mm2 (range: 0.98-1.37). All patients received their FDG-PET/CT

scan dedicated to the head and neck area right before their planning CT scan,

in the same position with the immobilisation device. Contours defining the
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gross tumour volume (GTV) and lymph nodes were drawn by an expert ra-

diation oncologist on the planning CT scan. The contours were then prop-

agated to the FDG-PET/CT scan reference frame using deformable registra-

tion with the software MIM® (MIM software Inc., Cleveland, OH) to ensure

proper coverage.

Description of 3D radiomic features

In this thesis, please see Appendix A.

Computation of the radiomic signature

Original radiomic signature This section details how the original radiomic

signature proposed by Aerts et al. [21] was computed from CT scans in the

current work. In their original work, Aerts et al. [21] extracted the four fea-

tures of the radiomic signature on CT images with voxels of size 1×1×3 mm3.

In the current work, the CT images were thus first resampled to the same

voxel size of 1 × 1 × 3 mm3 using cubic interpolation. The four features of

the radiomic signature were then computed from the region of interest of the

tumour as defined by the “GTVprimary + GTVlymph nodes” contours (ROI) as

follows:

1. Energy

Let X define the vector of Hounsfield Units (HUs) from CT scans for

the N voxels of the ROI. The feature energy is then defined as:

energy =
N∑

i=1

X(i)2

2. Compactness

Let V be the volume in mm3 and A be the surface area in mm2 of the

ROI. The feature compactness is then defined as:

compactness =
V√
πA2/3

3. GLN

To compute the Gray-Level Nonuniformity (GLN) texture feature sim-

ilarly to the work of Aerts et al. [21], the ROI was first quantized to a

number of gray levels Np
g different for each patient p. For CT scans,
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bins of 25 HUs were created using a lower limit of 0 HU to the inten-

sity range of the bins such that all voxels within the ROI with −1000 ≤
HU < 25 were assigned to gray-level 1, all voxels within the ROI with

25 ≤ HU < 50 were assigned to gray-level 2, etc.

Then, letPδ(i, j) define the directional GLRLM of the quantized ROI,

where δ denotes one of the 13 directions around a center voxel in 3D

space. Similarly to what is described in the previous section, Pδ(i, j)

represents the number of runs of gray-level i and of length j, and Lr

represents the length of the longest run (of any gray-level) in the quan-

tized ROI for direction δ. The GLNδ for direction δ is then defined as:

GLNδ =

∑Np
g

i=1

(∑Lr

j=1 Pδ(i, j)
)2

∑Np
g

i=1

∑Lr

j=1 Pδ(i, j)

Finally, the GLN texture feature is calculated as:

GLN =
1

13

13∑

δ=1

GLNδ

4. GLN_HLH

This texture feature is obtained by computing the GLN texture feature

described above (feature 3) in the HLH sub-band of the first decomposi-

tion level of the 3D undecimated discrete wavelet transform performed

using the wavelet basis function “Coiflet 1”.

The HLH wavelet decomposition is traditionally obtained by ap-

plying a high-pass filter in the x-direction, a low-pass filter in the y-

direction and a high-pass filter in the z-direction. For medical images,

standard practice is to consider the reference coordinate system (RCS)

of the DICOM protocol in order to unambiguously define the filter di-

rections. Hence, for an axial CT volume of a patient in the DICOM

RCS, the HLH wavelet decomposition would be obtained by applying a

high-pass filter in the lef-right direction, a low-pass filter in the anterior-

posterior direction and a high-pass filter in the inferior-superior direc-

tion.

However, in their original work, Aerts et al. [21] considered the
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MATLAB® conventions to define the directions of the filters. As a re-

sult, the HLH wavelet decomposition was obtained by applying a high-

pass filter in the anterior-posterior direction, a low-pass filter in the left-

right direction and a high-pass filter in the inferior-superior direction

of axial CT images. The same filter directions as defined by MATLAB®

conventions were thus also used for CT images in the current work.

Practically speaking, in this work, the undecimated wavelet trans-

form was applied on the original ROI using the function swt2 and the

wavelet basis function “Coiflet 1” of MATLAB® . To achieve a 3D de-

composition, the 2D undecimated discrete wavelet transform obtained

with the swt2 function was successively applied for all image planes

of the ROI in the x-, y- and z-directions of the RCS, and the corre-

sponding wavelet coefficients of all image planes were averaged. The

resulting wavelet coefficients of the ROI corresponding to the HLH sub-

band were then uniformly quantized to the same number of gray lev-

els Np
g (for a given patient p) as obtained with the computation of the

standard GLN texture feature described above (feature 3). Finally, the

GLN_HLH texture feature was obtained by computing the same GLN

texture feature described above (feature 3) to the quantized ROI of the

HLH wavelet sub-band.

COMPLETE MODEL. In one instance in our work, we directly tested in the

testing set (H&N3 and H&N4; n = 106) a Cox regression model constructed

using the original coefficients and median hazard ratio trained in the Lung1

cohort of the original work of Aerts et al. [21]. This complete Cox regression

model λ(xxxi) was applied as follows in our work:

λ(xxxi) =

− 2.42e-11× CT-Energy

+ 5.38e-03× CT-Compactness

+ 1.47e-04× CT-GLNGLRLM

− 9.39e-06× CT-GLN_HLHGLRLM

with a median hazard ratio of 0.1191567. The greater λ(xxxi), the worst the

chanches of survival are.

Revised version of the radiomic signature This section details three modifi-

cations applied to the original radiomic signature in order to obtain a revised
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version (other than the following modifications, the computation remained

the same as described in the previous section):

1. CT resampling

In order to obtain isotropic voxel size, the CT images were resampled

to a voxel size of 1× 1× 1 mm3 using cubic interpolation.

2. Compactness

The definition of compactness in the original radiomic signature uses

A2/3 in the denominator. This is most likely an error in the original

paper of Aerts et al. [21], as A3/2 is required to create a dimensionless

feature. The feature compactness is thus hereby defined as:

compactness =
V√
πA3/2

3. Computation of GLN and GLN_HLH

• Only one GLRLM is computed per CT volume by simultaneously

adding up the 13 GLRLMs of all 3D directions. The GLRLM aver-

aging technique used for the original radiomic signature basically

results in an average of limited run-length measurements.

• A normalized version of the GLN feature is used in this work.

This feature is defined in Appendix A.4 of this document under

the “GLRLM” heading. The original GLN feature as defined by

Galloway [53] is not properly normalized and is thus dependent

on the total number of runs in a given volume.
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7.1 Summary and novelty of work

“Radiomics” refers to the characterization of tumour phenotypes via the ex-

traction of high-dimensional mineable data from all types of medical images

and whose subsequent analysis aims at supporting clinical decision-making.

A major aim of this work has been to develop new analysis methods in

the field of radiomics, with the ultimate goal of creating highly predictive

and generalizable radiomic-based multivariable models to be used in routine

clinical practice to assist physicians in providing treatments more personal-

ized to each patient. Overall, we have showed in this thesis that radiomics

analyses are enabling factors towards precision medicine. As described in

section 1.2.4, the field of radiomics opens the door to many interesting devel-

opment possibilities in oncology research, notably in terms of medical imag-

ing acquisition optimization, of radiomics modeling via improved feature

extraction and machine learning, of the evaluation of tumour aggressiveness

and underlying tumour biology, and of the personalization of cancer treat-

ments via radiomic-based prognosis assessments. The work presented in

this thesis provided strong progress in every of these different aspects of the

field. We hope the methods developed here could one day be implemented

in the clinical environment to better help patients afflicted by cancer to over-

come this deadly disease. In this section, we provide a summary of the final
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results obtained in this work, as well as an highlight of the scientific novelty

of each of the four manuscripts.

1. Development of a radiomic model for the early prediction of lung metas-

tases

In this study, the main objectives were: I) Develop a robust methodology

for the construction of multivariable radiomic-based prediction models that

takes into account texture optimization; and II) Create fused FDG-PET/MR

images with better textural predictive properties than the separate FDG-PET

and MR images.

First, one of the main findings of this study is that the computation of tex-

tures with different extraction parameters (e.g., scale, quantization schemes,

etc.) has a significant impact on prediction performance, an effect demon-

strated here in the specific case of the prediction of lung metastases in soft-

tissue sarcomas. The isotropic resolution at which textures are extracted is

the parameter that has the most influence on texture definition. In general,

different texture features will better represent the underlying tumour biol-

ogy using different extraction parameters, and the optimal set of parameters

to use is application-specific and will depend on many factors such as the

clinical endpoint studied and the imaging modalities employed. To the best

of our knowledge, no study in the literature has yet employed different tex-

ture extraction parameters to enhance the predictive properties of textures.

Currently, the power of texture analysis for tumour outcome prediction may

thus not be fully exploited by the radiomics community, and we recommend

to always perform a similar texture optimization process for a given clinical

application. From our experience, it seems clear for example that a lower

number of gray-levels helps in better characterizing tumour sub-regions us-

ing GLSZM features (e.g., 8 or 16), whereas GLCM feature may be better

modeled with a higher number of gray-levels (e.g., 32 or 64). In general, a

radiomic user has to be careful of not using a too high number of gray-levels,

as this could result in a higher influence of noise on the extracted textures.

The drawback of texture optimization is the exponential increase in size

of the initial radiomic feature sets used in the subsequent machine learning

processes. To overcome this issue, a novel feature set reduction method was

developed in order to create reduced feature sets with only one variant of a

given texture (i.e., computed using one specific set of extraction parameters).
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The data mining process in this multivariable modeling step essentially al-

lows to find the different texture variants that have the best predictive prop-

erties and the less redundancy with the other textures chosen to be part of

the reduced feature set, thus also taking into account the intercorrelation be-

tween the different features.

Following feature set reduction, the selection and estimation of the pre-

diction performance of different multivariable radiomic-based models using

imbalance-adjusted bootstrapping accomplish two goals: I) Finding the set

of features with potentially the highest predictive performance and general-

izability to unseen data; and II) Construct models with a multivariable model

response balanced between the sensitivity and specificity of predictions. For

example, the final radiomic model identified in this study would not only

have high predictive properties as estimated in bootstrapping evaluations

with an AUC of 0.984 ± 0.002, but the model would also provide a balance

between the prediction of true positive instances and true negative instances

despite the data imbalance, with a sensitivity of prediction of 0.955 ± 0.006

and a specificity of 0.926± 0.004. Moreover, permutation tests demonstrated

that the effect of the model that we observed in this patient cohort is es-

timated to be highly significant (AUC: p̂ = 0.004) and is thus most likely

present in the general soft-tissue sarcoma population. We also estimated the

variation of the model response when the edema present in the vicinity of

soft-tissue sarcomas is included in the definition of the region-of-interest.

In this work, we also developed a methodology for the fusion of FDG-

PET and MR images that proved useful in creating new composite textures

with valuable predictive properties. The final multivariable model identi-

fied in this study was created from fused FDG-PET/MR images, and it was

estimated that this model possesses superior predictive properties than the

models constructed from the separate imaging modalities. This type of im-

age processing step (i.e., the fusion of different image modalities) prior to

texture analysis is one of the many extraction parameters that could lead to a

better characterization of intratumoural heterogeneity, and it could become

an integral part of texture optimization in future studies.

Overall, the multivariable modeling steps leading to the identification of

the optimal combination of radiomic features is far from being trivial and

should be continuously improved. In future work, we intend to integrate

a false-positive avoidance methodology recently developed by our group to

our multivariable modeling workflow. The application of this methodology

would help to reduce overfitting and would allow to improve the consistency
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in model performance obtained across the training, validation and testing

sets. Other types of features will also be implemented to obtain different in-

sights about the underlying tumour biology, including wavelet and texture

map features. Furthermore, features highly correlated with tumour volume

and clinical information will be discarded at the start of radiomics analy-

ses. Finally, we will develop methods to estimate the robustness of features

against different contouring and noise perturbations.

2. A strategy for treatment personalization

In this study, the main objectives were: I) Investigate the practical feasibil-

ity and clinical utility of acquiring four different types of biological images

(FDG-PET, FMISO-PET, DW-MRI, DCE-MRI) at three different time points

(pre-, mid-, post-radiotherapy) in the course of treatment management; II)

Validate the predictive properties of the radiomic model developed in Chap-

ter 3 (manuscript 1); and II) Verify the feasibility of double nested dose boost-

ing to hypermetabolic and hypoxic tumour sub-regions inside the GTV in

radiotherapy planning.

First, we experienced a difficulty in acquiring the number of imaging

scans specified in our prospective protocol for all patients enrolled in the

study. Many patients could not tolerate, for example, experiencing addi-

tional scanning visits and longer MRI anatomical scans. With the advent

of MRI-linac technologies, we now hypothesize that the power of biological

images for treatment response monitoring will be better exploited in the fu-

ture if imaging acquisition is an integral part of the radiotherapy treatment.

Notably, we observed that FMISO-PET did not bring sufficient complemen-

tarity value in comparison to FDG-PET to justify its use in soft-tissue sar-

coma treatment managment. On the other hand, DCE-MRI methods have

more potential to provide useful information about intratumoural evolution.

However, the progression of simple percentile-based metrics could not yield

a clear assessment of radiation treatment response. In future work, we will

explore how more complex imaging metrics such as textures could better

monitor the evolution of the microenvironment of soft-tissue sarcomas dur-

ing radiotherapy.

Furthermore, we were able to validate the predictive properties of the

radiomic model developed in Chapter 3. This model reached an AUC of

0.71, a sensitivity of 0.75, a specificity of 0.85 and an accuracy of 0.82 for the

prediction of lung metastases in this independent patient cohort. The mul-

tivariable modeling methodology developed in Chapter 3 thus has certain
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potential, but further improvements are still needed to improve the predic-

tion performance to clinical requirements. False-positive avoidance methods

and the use of a standardized and exhaustive list of features developed in

current ongoing work [1] should improve the prediction performance. Over-

all, the accurate prediction at the time of diagnosis of soft-tissue sarcoma

patients more likely to develop lung metastases could allow to identify the

subset of patients that would benefit the most from personalized radiother-

apy with dose escalation to different GTV sub-volumes including hypoxic

tumour sub-regions.

Finally, we verified the feasibility of dose painting using a prescription

of 50 Gy to the PTV (PTV50 Gy) along with boost doses of 60 Gy to the FDG

hypermetabolic GTV (GTV60 Gy) and of 65 Gy to the low-perfusion DCE-MRI

hypoxic GTV contained within the GTV60 Gy (GTV65 Gy) using volumetric arc

therapy (VMAT). Despite the complexity of the multiple targets, adequate

tumour coverage was achieved, with a homogeneity index of 1.09 for the

difference volume of GTV60 Gy minus GTV65 Gy, and 1.06 for GTV65 Gy. In fu-

ture work, we intend to perform a multi-centric prospective study in order

to validate these findings prior to the conduction of a formal clinical trial.

We envision the use of dose painting as a useful strategy to improve tumour

outcomes in soft-tissue sarcomas.

3. Enhancement of radiomic models via the optimization of imaging ac-

quisition protocols

In this study, the main objective was to enhance the predictive properties of

a texture-based model by optimizing FDG-PET and MR image acquisition

protocols. A proof of concept for the prediction of lung metastases in soft-

tissue sarcomas was carried out using computerized simulations of PET and

MR image acquisitions.

First, we investigated how three different textures extracted from FDG-

PET (HGZEGLSZM), T1-weighted (ZSVGLSZM) and T2-weighted (LRLGEGLRLM)

simulated images varied using different numbers of span, repetition times

(TR) and echo times (TE) in the image acquisition processes, respectively.

Overall, we observed that an increasing number of span generally resulted

in an increase of the HGZEGLSZM texture due to an increase in image smooth-

ing, and that an increasing TR and TE generally resulted in an increase of the

ZSVGLSZM and the LRLGEGLRLM textures due to changing image contrasts,

respectively. In comparison to textures extracted from simulated images ac-

quired with standard clinical parameters, we observed percentage variations
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for some patients as high as 15 %, 100 % and 50 % for different sets of acqui-

sition parameters used to obtain the HGZEGLSZM, ZSVGLSZM and LRLGEGLRLM

textures, respectively. These results confirm various assessments in the lit-

erature stating that different textures may vary when extracted from images

acquired with different sets of acquisition parameters.

However, all studies investigating texture variations under different imag-

ing settings have a common denominator: they aim at identifying the texture

features that could be stable and that are presumably able to conserve predic-

tive properties under varying imaging conditions. In this study, we hypoth-

esized that it is also fundamental to identify the settings that would yield

optimal use of texture features for a given clinical problem (similarly to tex-

ture extraction parameters in manuscript 1 → Chapter 3). To the best of our

knowledge, our study was the first to explore the potential of varying im-

age acquisition parameters to optimize the performance of texture features

and consequently enhance texture-based predictive models. By combining

the textures enumerated above into a multivariable model (constructed us-

ing the methods developed in Chapter 3), we demonstrated the feasibility

of enhancing a texture-based predictive model by optimizing targeted image

acquisition parameters. The model constructed with textures extracted from

simulated images acquired with a standard clinical set of acquisition param-

eters reached an average AUC of 0.84±0.01 in bootstrap testing experiments.

In comparison, the model performance significantly increased using an opti-

mal set of image acquisition parameters (p = 0.04), with an average AUC of

0.89± 0.01.

Overall, our work was only a first step towards the enhancement of texture-

based prediction models via the optimization of image acquisition parame-

ters. This part of the radiomics analysis workflow could become a sub-field

in itself, as there are multiple avenues to explore. In future work, we notably

intend to improve the realism of heterogeneous tumor models and image

simulations in order to improve the similarities between textures extracted

from clinical and simulated images. We will also increase patient dataset

size, test the proof of concept in other cancer types (e.g., head-and-neck) and

imaging modalities (e.g., CT) with other cancer-specific prediction models,

investigate how a wider range of radiomic features vary in different acqui-

sition settings, perform full construction of prediction models for every set

of simulated image acquired with different parameters, investigate how the

optimization of texture-based predictive models may vary on different scan-

ners from different vendors (e.g., GE, Siemens, Phillips, etc.), and include
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independent testing cohorts in the analysis. In fact, the simulation meth-

ods developed in this work could provide an optimal framework to address

such research questions, as clinical scanner settings with real patients do not

provide enough flexibility. Ultimately, we envision that specific “radiomics

acquisition protocols” optimized to generate superior texture measurements

for a given clinical problem will be developed as complementary protocols

to the clinical ones currently used.

4. Integration of radiomic models with clinical prognostic factors

In this study, the main objectives were: I) Validate the multivariable model-

ing methodology developed in Chapter 3 using independent external datasets;

and II) Develop a complementary methodology for integrating radiomics

data with clinical information for better prediction performance.

Overall in this work, we provided a rigorous methodology for integrating

prognostic factors of different categories into risk-assessment models – in this

case radiomics (continuous inputs) and clinical data (categorical inputs). Our

methodology is first based on a fast mining of radiomic variables (including

textures extracted with multiple parameters) using logistic regression and the

multivariable methods developed in Chapter 3. As a second step, we inte-

grate clinical information with radiomic variables into a random forest algo-

rithm. The models we developed with this strategy overall performed better

than when using radiomics or clinical information alone. We believe this

strategy could be generalized to integrate multiple other types of panomics

data: different -omics information could be mined separately with other ex-

isting tools [2–4] to then be combined altogether with random forests. In

fact, one major advantage of this machine learning algorithm is its higher tol-

erance to overfitting compared to other more conventional algorithms such

as logistic regression [5]; as long as the decision-trees of the random forest

undergo a “decorrelation” process, a high number of input variables can be

used. In future work, we intend to integrate a larger number of patient data

information into random forests composed of uncorrelated decision-trees.

The final prediction models developed in this work reached a concordance-

index (CI) of 0.67 and 0.88 in independent testing sets for the risk assess-

ment of locoregional recurrences and distant metastases, respectively. These

models were also constructed using robust imbalance-adjustment methods

to take into account the high imbalance in the proportion of occurrence and

non-occurence of outcome events in head-and-neck cancer. In comparison to

our results, the popular study of Aerts et al. [6] reported a highest CI of 0.69
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for the risk assessment of overall survival in head-and-neck cancer (although

these results are more likely due to the high correlation of the radiomic sig-

nature with tumour volume), and a study by Coroller et al. [7] reported a

different radiomic signature possessing a “strong” power for predicting dis-

tant metastases in lung cancer with a CI of 0.61. In our work, the prognostic

power of the distant metastasis model is not just an improvement over other

radiomics studies, but it practically enables prognostic capability in a clinical

environment. For the locoregional recurrence model, the prognostic power

is comparable to other studies and still shows that radiomics analysis has a

role to play to decode that specific tumour phenotype. However, improve-

ments are necessary, and we intend in future work to integrate dose metrics

into random forests in order to increase prognostic power for that tumour

outcome. Furthermore, to the best of our knowledge, no other radiomics

studies in the literature present full prediction models able to stratify patients

into multiple risks-groups and for multiple specific outcomes. Our models

can stratify patients into two groups for the risk assessment of locoregional

recurrences (low, high) in head-and-neck cancer, and into three groups for

distant metastases (low, medium, high). This could have a major impact on

the design of new clinical trials aiming at a better personalization of chemo-

radiation treatments in head-and-neck cancer, and one can envision different

radiation and chemotherapy regimens being delivered to patients based on

different assessments of risk for a particular tumour outcome.

Overall, we have showed with this last study that radiomics are enabling

factors towards precision medicine. In the future, the integration of radiomics

with other panomics data into comprehensive multivariable models should

leverage the prognostic assessment of cancer risks.

7.2 The fundamental necessity of standardization,

transparency and online sharing in radiomics

As previoulsy mentioned, the workflow of radiomics analysis is complex and

involves many different computational parameters. For as faster translation

of knowledge to the scientific community, for a faster translation of radiomics

into the clinical environment, but above all for the sake of cancer patients, it is

crucial that radiomics studies be as transparent as possible. Furthermore, the

sharing of imaging data and programming code in online repositories such
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as GitHub and The Cancer Imaging Archive (TCIA) [8] unquestionably fa-

cilitates the reproducibility of radiomics studies. Assuredly, standardization

and full transparency on data and methods is the key for the progression of

the radiomics field [9].

Unfortunately, it frequently occurs in the current literature that crucial

information about radiomic analyses is missing. Examples include model

coefficients, tuning parameters of machine learning algorithms, image pre-

processing operations, or radiomic computation details such as texture ma-

trix construction and quantization range when using a fixed bin width algo-

rithm. This adversly affects the reproducibility of radiomic studies and the

transfer of scientific knowledge. I take advantage of this tribune to make

a strong case for better transparency and sharing practices in the radiomics

community, notably in terms of imaging data and programming code. The

time we sometimes loose in chasing data and complete methodological de-

tails directly affects cancer patients and the rapidity with which we could

provide anticancer strategies for them. Although this is not the case for the

majority, there still exists too many researchers that unfortunately appear to

value their work and their monopole of expertise more than the support it

could bring to patients afflicted by cancer. Let us all remember why we are

doing oncology research every time we take a research action.

7.3 Other contributions

The methods developed in this thesis were applied in other published works

in which I am a co-author. Furthermore, I always strive to share imaging

data and programming code online for other scientists to be able to easily

reproduce my work, as I strongly believe that full transparency in scientific

publications allows for a faster transfer of knowledge. This section briefly

describe these other contributions to science.

Scientific publications

• I am a third author (equal contribution with the second author) on a

study by Hatt et al. [10]. Various texture analysis methods developed in

Chapter 3 were further investigated in this study to show that textures

provide complementary information to tumour volumes above 10 cm3

if proper textural analysis is carried out (e.g., full 3D extraction, lower

number of gray-levels, etc.).
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• I am a third author in this important and vast consortium work by Zwa-

nenburg et al. [1] dedicated to the standardization of radiomics meth-

ods (notably the texture analysis methods developed in Chapter 3). To

this date, about 50 researchers from 25 cancer institutions in the world

participate to this consortium.

• I am a second author (equal contribution with the first author) on a

study by Zhou et al. [11]. The methods developed in Chapter 3 and

Chapter 6 were notably used to show how textural analyses of MR

imaging data can be used to predict molecular profiles and tumour pro-

gression in lower-grade gliomas with high accuracy.

Online sharing

• Imaging data for the studies performed in Chapter 3 and Chapter 5 can

be found here: LINK.

• Imaging data for the study performed in Chapter 6 can be found here:

LINK.

• Programming code used in this work, including single organized scripts

allowing to run all the experiments of the studies performed in Chapter

3 and Chapter 6, can be found here: LINK.

• Imaging data for the study of Zhou et al. [11] can be found here: LINK.
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Appendix A

List of 3D radiomic features

A.1 Morphological (shape) features

The morphological features (5) computed from a ROI map RRR are defined as:

• Volume: Number of voxels in the tumour region multiplied by the di-
mension of voxels.

• Size: Maximum diameter of the tumour region.

• Solidity: Ratio of the number of voxels in the tumour region to the
number of voxels in the 3D convex hull of the tumour region (smallest
polyhedron containing the tumour region).

• Eccentricity: The ellipsoid that best fits the tumour region is first com-
puted using the framework of Li & Griffiths [1]. The eccentricity is
then given by [1− a× b/c2]

1/2, where c is the longest semi-principal
axes of the ellipsoid, and a and b are the second and third longest semi-
principal axes of the ellipsoid.

• Compactness:

compactness =
V√
πA3/2

Where V denotes the volume and A the surface area of the ROI map.

Morphological features were extracted from T1 scans in Chapter 3 and Chap-
ter 5. In Chapter 6, these features were extracted from CT scans. Morpholog-
ical features are used in all the different feature sets.

A.2 Histogram-based (intensity) features

Let PPP define the first-order histogram of a ROI imaging volume VR with
isotropic voxel size. Each entry P (i) of PPP represents the number of voxels
with gray level i or within a pre-defined bin width, and Ng represents the
number of gray-level bins set for PPP. The ith entry of the normalized his-
togram is then defined as:
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p(i) =
P (i)

∑Ng

i=1 P (i)
.

The first-order statistics features (10) are then defined as:

• Variance:

σ2 =

Ng∑

i=1

(i− µ)2 p(i)

• Skewness:

s = σ−3

Ng∑

i=1

(i− µ)3 p(i)

• Kurtosis:

k = σ−4

Ng∑

i=1

[
(i− µ)4 p(i)

]
− 3

• SUVmax: Maximum SUV of the tumour region. Extracted from FDG-
PET scans only.

• SUVpeak: Average of the voxel with maximum SUV within the tumour
region and its 26 connected neighbours. Extracted from FDG-PET scans
only.

• SUVmean: Average SUV value of the tumour region. Extracted from
FDG-PET scans only.

• AUC-CSH: Area under the curve of the cumulative SUV-volume his-
togram describing the percentage of total tumour volume above a per-
centage threshold of maximum SUV, as defined by van Velden et al. [2].
Extracted from FDG-PET scans only.

• TLG: Total lesion glycolysis. Defined as SUVmean × total volume of
the tumour region. Extracted from FDG-PET scans only.

• Percent Inactive: Percentage of the tumour region that is inactive. A
threshold of 0.05 × (SUVmax)2 was used in Chapter 3 and Chapter 5,
and a threshold of 0.01×(SUVmax)2 was used in Chapter 6. The thresh-
olding process was then followed by closing and opening morpholog-
ical operations to differentiate active and inactive tumour regions on
FDG-PET scans. Extracted from FDG-PET scans only.

• gETU: Generalized effective total uptake, with parameter a = 0.25 as
defined by Rahmim et al. [3]. Extracted from FDG-PET scans only.
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A.3 GLCM features

LetPPP define the GLCM of a quantized ROI imaging volume VQ with isotropic
voxel size. Each entry P (i, j) of PPP represents the number of times voxels of
gray level i are neighbours with voxels of gray level j in VQ. Also, Ng rep-
resents the pre-defined number of quantized gray levels set in VQ. Only one
GLCM of size Ng×Ng is computed per volume VQ by simultaneously adding
up the frequency of co-occurences of all voxels with their 26-connected neigh-
bours in 3D space, with all voxels (including the peripheral region) considered
once as a center voxel (as defined by Haralick et al. [4], thus always using
d = 1). To account for discretization length differences, neighbours at a dis-
tance of

√
3 voxels around a center voxel increment the GLCM by a value of√

3, neighbours at a distance of
√
2 voxels around a center voxel increment

the GLCM by a value of
√
2, and neighbours at a distance of 1 voxel around

a center voxel increment the GLCM by a value of 1. The entry (i, j) of the
normalized GLCM is then defined as:

p(i, j) =
P (i, j)

∑Ng

i=1

∑Ng

j=1 P (i, j)
.

The following quantities are also defined:

µi =

Ng∑

i=1

i

Ng∑

j=1

p(i, j), µj =

Ng∑

j=1

j

Ng∑

i=1

p(i, j),

σi =

Ng∑

i=1

(i− µi)
2

Ng∑

j=1

p(i, j), σj =

Ng∑

j=1

(j − µj)
2

Ng∑

i=1

p(i, j).

The GLCM texture features (9) are then defined as:

• Energy [4]:

energy =

Ng∑

i=1

Ng∑

j=1

[p(i, j)]2

• Contrast [4]:

contrast =

Ng∑

i=1

Ng∑

j=1

(i− j)2 p(i, j)

• Correlation (adapted from [4]):

correlation =

Ng∑

i=1

Ng∑

j=1

(i− µi) (j − µj) p(i, j)

σi σj
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• Homogeneity (adapted from [4]):

homogeneity =

Ng∑

i=1

Ng∑

j=1

p(i, j)

1 + |i− j|

• Variance (adapted from [4]):

variance =
1

Ng ×Ng

Ng∑

i=1

Ng∑

j=1

[
(i− µi)

2 p(i, j) + (j − µj)
2 p(i, j)

]

• Sum Average (adapted from [4]):

sum average =
1

Ng ×Ng

Ng∑

i=1

Ng∑

j=1

[i p(i, j) + j p(i, j)]

• Entropy [4]:

entropy = −
Ng∑

i=1

Ng∑

j=1

p(i, j) log2

(
p(i, j)

)

• Dissimilarity [5]:

dissimilarity =

Ng∑

i=1

Ng∑

j=1

|i− j| p(i, j)

• Autocorrelation [6]:

autocorrelation =

Ng∑

i=1

Ng∑

j=1

ij p(i, j)

A.4 GLRLM features

LetPPP define the GLRLM of a quantized ROI imaging volume VQ with isotropic
voxel size. Each entry P (i, j) ofPPP represents the number of runs of gray level
i and of length j in VQ. Also, Ng represents the pre-defined number of quan-
tized gray levels set in VQ, and Lr represents the length of the longest run
(of any gray level) in VQ. Only one GLRLM of size Ng × Lr is computed per
volume VQ by simultaneously adding up all possible longest run-lengths in
the 13 directions of 3D space (one voxel can be part of multiple runs in dif-
ferent directions, but can be part of only one run in a given direction). A
MATLAB® toolbox created by Wei [7] computes GLRLMs from 2D images,
and it can be used to facilitate the computation of GLRLMs from 3D imaging
volumes. To account for discretization length differences, runs constructed
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from voxels separated by a distance of
√
3 increment the GLRLM by a value

of
√
3, runs constructed from voxels separated by a distance of

√
2 increment

the GLRLM by a value of
√
2, and runs constructed from voxels separated by

a distance of 1 increment the GLRLM by a value of 1. The entry (i, j) of the
of the normalized GLRLM is then defined as:

p(i, j) =
P (i, j)

∑Ng

i=1

∑Lr

j=1 P (i, j)
.

The following quantities are also defined:

µi =

Ng∑

i=1

i
Lr∑

j=1

p(i, j), µj =
Lr∑

j=1

j

Ng∑

i=1

p(i, j).

The GLRLM texture features (13) are then defined as:

• Short Run Emphasis (SRE) [8]:

SRE =

Ng∑

i=1

Lr∑

j=1

p(i, j)

j2

• Long Run Emphasis (LRE) [8]:

LRE =

Ng∑

i=1

Lr∑

j=1

j2 p(i, j)

• Gray-Level Nonuniformity (GLN) (adapted from [8]):

GLN =

Ng∑

i=1

(
Lr∑

j=1

p(i, j)

)2

• Run-Length Nonuniformity (RLN) (adapted from [8]):

RLN =

Lr∑

j=1

(
Ng∑

i=1

p(i, j)

)2

• Run Percentage (RP) (adapted from [8]):

RP =

∑Ng

i=1

∑Lr

j=1 p(i, j)∑Lr

j=1 j
∑Ng

i=1 p(i, j)
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• Low Gray-Level Run Emphasis (LGRE) [9]:

LGRE =

Ng∑

i=1

Lr∑

j=1

p(i, j)

i2

• High Gray-Level Run Emphasis (HGRE) [9]:

HGRE =

Ng∑

i=1

Lr∑

j=1

i2 p(i, j)

• Short Run Low Gray-Level Emphasis (SRLGE) [10]:

SRLGE =

Ng∑

i=1

Lr∑

j=1

p(i, j)

i2j2

• Short Run High Gray-Level Emphasis (SRHGE) [10]:

SRHGE =

Ng∑

i=1

Lr∑

j=1

i2 p(i, j)

j2

• Long Run Low Gray-Level Emphasis (LRLGE) [10]:

LRLGE =

Ng∑

i=1

Lr∑

j=1

j2 p(i, j)

i2

• Long Run High Gray-Level Emphasis (LRHGE) [10]:

LRHGE =

Ng∑

i=1

Lr∑

j=1

i2j2 p(i, j)

• Gray-Level Variance (GLV) (adapted from [11]):

GLV =
1

Ng × Lr

Ng∑

i=1

Lr∑

j=1

(i p(i, j)− µi)
2

• Run-Length Variance (RLV) (adapted from [11]):

RLV =
1

Ng × Lr

Ng∑

i=1

Lr∑

j=1

(j p(i, j)− µj)
2
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A.5 GLSZM features

LetPPP define the GLSZM of a quantized ROI imaging volume VQ with isotropic
voxel size. Each entry P (i, j) of PPP represents the number of 3D zones of gray
levels i and of size j in VQ. Also, Ng represents the pre-defined number of
quantized gray levels set in VQ, and Lz represents the size of the largest zone
(of any gray level) in VQ. One GLSZM of size Ng×Lz is computed per volume
VQ by adding up all possible largest zone sizes, with zones constructed from
26-connected neighbours of the same gray level in 3D space (one voxel can
be part of only one zone). The entry (i, j) of the normalized GLSZM is then
defined as:

p(i, j) =
P (i, j)

∑Ng

i=1

∑Lz

j=1 P (i, j)
.

The following quantities are also defined:

µi =

Ng∑

i=1

i

Lz∑

j=1

p(i, j), µj =

Lz∑

j=1

j

Ng∑

i=1

p(i, j).

The GLSZM texture features (13) are then defined as:

• Small Zone Emphasis (SZE) [8, 11]:

SZE =

Ng∑

i=1

Lz∑

j=1

p(i, j)

j2

• Large Zone Emphasis (LZE) [8, 11]:

LZE =

Ng∑

i=1

Lz∑

j=1

j2 p(i, j)

• Gray-Level Nonuniformity (GLN) (adapted from [8, 11]):

GLN =

Ng∑

i=1

(
Lz∑

j=1

p(i, j)

)2

• Zone-Size Nonuniformity (ZSN) (adapted from [8, 11]):

ZSN =
Lz∑

j=1

(
Ng∑

i=1

p(i, j)

)2
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• Zone Percentage (RP) (adapted from [8, 11]):

ZP =

∑Ng

i=1

∑Lz

j=1 p(i, j)∑Lz

j=1 j
∑Ng

i=1 p(i, j)

• Low Gray-Level Zone Emphasis (LGZE) [9, 11]:

LGZE =

Ng∑

i=1

Lz∑

j=1

p(i, j)

i2

• High Gray-Level Zone Emphasis (HGZE) [9, 11]:

HGZE =

Ng∑

i=1

Lz∑

j=1

i2 p(i, j)

• Small Zone Low Gray-Level Emphasis (SZLGE) [10, 11]:

SZLGE =

Ng∑

i=1

Lz∑

j=1

p(i, j)

i2j2

• Small Zone High Gray-Level Emphasis (SZHGE) [10, 11]:

SZHGE =

Ng∑

i=1

Lz∑

j=1

i2 p(i, j)

j2

• Large Zone Low Gray-Level Emphasis (LZLGE) [10, 11]:

LZLGE =

Ng∑

i=1

Lz∑

j=1

j2 p(i, j)

i2

• Large Zone High Gray-Level Emphasis (LZHGE) [10, 11]:

LZHGE =

Ng∑

i=1

Lz∑

j=1

i2j2 p(i, j)

• Gray-Level Variance (GLV) (adapted from [11]):

GLV =
1

Ng × Lz

Ng∑

i=1

Lz∑

j=1

(i p(i, j)− µi)
2
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• Zone-Size Variance (ZSV) (adapted from [11]):

ZSV =
1

Ng × Lz

Ng∑

i=1

Lz∑

j=1

(j p(i, j)− µj)
2

A.6 NGTDM features

LetPPP define the NGTDM of a quantized volume VQ with isotropic voxel size.
Each entry P (i, j) of PPP represents the summation of the gray-level differ-
ences between all voxels with gray level i and the average gray level of their
26-connected neighbours in 3D space. Ng represents the pre-defined num-
ber of quantized gray levels set in VQ, and (Ng)eff is the effective number of
gray levels in VQ, with (Ng)eff < Ng (let the vector of gray level values in
VQ be denoted as g = g(1), g(2), . . . , g(Ng); some gray levels excluding g(1)
and g(Ng) may not appear in VQ due to different quantization schemes). One
NGTDM of size Ng×1 is computed per volume VQ. To account for discretiza-
tion length differences, all averages around a center voxel located at position
(j, k, l) in VQ are performed such that the neighbours at a distance of

√
3 vox-

els are given a weight of 1/
√
3, the neighbours at a distance of

√
2 voxels are

given a weight of 1/
√
2, and the neighbours at a distance of 1 voxel are given

a weight of 1. The ith entry of the NGTDM is then defined as:

P (i) =

{∑
all voxels∈{Ni} |i− Ai| if Ni > 0,

0 if Ni = 0.

where {Ni} is the set of all voxels with gray level i in VQ (including the pe-
ripheral region), Ni is the number of voxels with gray level i in VQ, and Ai is
the average gray level of the 26-connected neighbours around a center voxel
with gray level i and located at position (j, k, l) in VQ such that:

Ai = A(j, k, l) =

∑m=1
m=−1

∑n=1
n=−1

∑o=1
o=−1wm,n,o · VQ(j +m, k + n, l + o)

∑m=1
m=−1

∑n=1
n=−1

∑o=1
o=−1wm,n,o

,

where wm,n,o =





1 if |j −m|+ |k − n| + |l − o| = 1,
1√
2

if |j −m|+ |k − n| + |l − o| = 2,
1√
3

if |j −m|+ |k − n| + |l − o| = 3,

0 if V (j +m, k + n, l + o) is undefined.

The following quantity is also defined:

ni =
Ni

N
.
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where N is the total number of voxels in VQ.

The NGTDM texture features (5) are then defined as:

• Coarseness [12]:

coarseness =

[
ǫ+

Ng∑

i=1

ni P (i)

]−1

where ǫ is a small number to prevent coarseness becoming infinite.

• Contrast [12]:

contrast =

[
1

(Ng)eff
[
(Ng)eff − 1

]
Ng∑

i=1

Ng∑

j=1

ni nj (i− j)2

][
1

N

Ng∑

i=1

P (i)

]

• Busyness [12]:

busyness =

∑Ng

i=1 ni P (i)
∑Ng

i=1

∑Ng

j=1(i ni − j nj)
, ni 6= 0, nj 6= 0

• Complexity [12]:

complexity =

Ng∑

i=1

Ng∑

j=1

|i− j|
[
ni P (i) + nj P (j)

]

N (ni + nj)
, ni 6= 0, nj 6= 0

• Strength [12]:

strength =

∑Ng

i=1

∑Ng

j=1(ni + nj) (i− j)2[
ǫ+

∑Ng

i=1 P (i)
] , ni 6= 0, nj 6= 0

where ǫ is a small number to prevent strength becoming infinite.
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