A SECOND ORDER ISOPARAMETRIC
FINITE ELEMENT ANALYSIS OF -
DIELBCTRIC WAVBGUIDES WITH

.  CURVED BOUNDARIES

[

Daniel WELT ) ~

Department of Electrical Engineering

McGill University, Montreal °

APRIL , 1984 ¢

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of M.ENG.

\

@ Daniel Welt 1984

N




s %

o
’ v

+ \ !
Je tiens 3 remercier les persomnes suivantes pour leur assistance :H%

¢
it ]
§

- 4

1

John Webb, pour le support technique au niveau de la formulation

mathématique et de la programmation.

Suzanne Lactoix et Jacaques Bures pour leurs contributions 3 la

|
compréhension du coupleur optique monomode. .

A. Raab, pour l'équipement mis 3 ma disposition. . te

o

Viviane Leaune pour sa collaboration.

| 3

<

Y




ABSTRACT : :
fro=Etae X
7
;

. An analysis of the arbitrarily shaped and infinitely long dielectric

waveguide is carried out using the Finite Element Method (FEM) in
2~-dimensions. Bmphasis is put on structures having curvilinear boun-'
daries such as those asso_ciated with optical fibers, )

The efficiency of the numerical process is greatly improved by using
quédx;:atic and isgparametric élements for the discretisation, -

The analysis of known models shows the accuracy and the limits of
the method, Propagation curvés and the equipotential contour plots
of all field oanpbnents are available through a series of programs,

The special case of the monomode fiber—to-fiber tapered optical
coupler is also considered, requi'ring an extremely high accuracy,
This example introduces some new ideas concerning the concept of
mode degeneracy ard raises new questions about the power distribu-
tion between ;on degenerate modes of different polarizations in non-

Ve

symme tric structures. ‘
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" Abstract

" Une analyse détaillée du guide d'onde diélectrique de forme arbitraire

et infiniment long est prégentée en utilisant la méthode dite des Elé-
ments Finis dans un espabe bi~dimensionnel.
On s'est particuliéremenf intéressé aux structures de forme curviligne

comme celles que l'on reétrouve dans les composantes construites avec
b

.des fibres optiques. Pour améligrer de fagon considérable le processus

nunérique, des é&léments quadratiqueé\eg isoparamétriques sont utilisés

pour la discrétisation.

Des exemples connus faisant appel 3 des modéles de fibres existants
mettent en évidence la précision des résultats et les limites de 1la

méthode. Les courbes représentant la constante de propagation des pre—

. miers modes en fonction de la fréquence, ainsi que les tracés des con-

/
tours équipotentiels de toutes les composantes du champ électromagné-

tique sont disponibles par 1'intermé&diaire d'une série de programmes.

On s'intéresse en particulier au cas du coupleur optique monomode
fibre-fibre, dont l'analyse met 3 rude épreuve le processus numérique
et exige une grande précision. Cet exemple apporte de nouvelles idées
en ce qui concerne la notion de dégénérescence des modes de propagation
et la question de la répartition énergétique entre les différentes

polarisations dans des structures non symétriques.




1.

2,

2.1
2.2
2.3

3.1
3.2

3.3
3.4

3.5
3.6

3.7
3.8

4.1

4.3

INTRODUCTION

THE OPTICAL GUIDING STRUCTURE
Introduction 2
Theory

%umnary of same Analytical Methods of Solutions

THE FINITE ELEMENT METHOD
Detailed Formulation

3.1.1 Literature Review

3.1.2 Mathematical Formulation
3.1.3 Continuity Condition and Boundary Conditions
Interpolation Functions and Discretisation

Mapping and Change of Coordinates

Evaluation of the Discretised Integral Equation
3.4.1 Scale change

3.4.2 Maf)ping

3.4.3 Numerical integration

Camputation of the Tranverse Field Camponents

The Global Matrix Formulation

3.6.1 The local matrix formulation

3.6.2 The local to global matrix transformation
3.6.3 Effect of the boundary conditions '
3.6.4 Final answer

The Virtual Boundary

Symmetry and Boundary Conditions

ANALYSIS OF KNOWN EXAMPLES WITH THE FEM Pmb
The Dielectric Rod Analysis.
4.1.1 Analytical solution

* 4,1.2 FEM solution .

4.1.3 Higher order modes

The Inhcamogeneous waveguide

4.2.]1 Runge-Kutta dlfferentlal analysis .
4.2.2 FEM solution

The Elliptical Fiber

4.3.1 Description

4.3.2 The 4Y characteristics

4.3.3 Error Analysis



&

o

g

5.

6.

4.4

4.5

5.1
5.2

5.3

5.4

6.3

6.4

The F1n1(z}€ladd1ng Fiber and the Cutoff Problem

4.4.1 Description

4.4.2 Example’

Spurious Mode Detection and Analysis ?

ANALYSIS OF A BI(I)NICAL—TAPERED-MONOMODE OPTICAL COUPLER

Description

Mode Superposition and coupling effect in 2-D

5.2.1 Introduction

5.2.2 Theoretical model

Mode Superposition and coupling effect in 3-D

5.3.1 A Three Dimensional Approximate Analysis’

5.3.2 Simplifying assumptions

5.3.3 Coupling Mechanism

5.3.4 Coupler Geametry

5.3.5 Computation of the Coupling Coefficient for 2 modes
interaction

5.3.6 Computatlon of the Coupling Coefficient for 4 modes
interaction

Examples

5.4.1 Example 1 ;
5.4.2 Example 2 ' )

5.4.3 Comparison with experimental data
5.4.4 Accuracy of numerical results

5.4.5 Equivalence with Snyder coupled- //'gcne theory

PROGRAMS
Structure
The Pre-processors
6.2.1 fnput program ':[MIN"
6.2.2 The autamatic mesh generator "ELF"
The Solvers
6.3.1 The Global matrices generator "DW1P"
6.3.2 The eigenvalue solvers "DW2PX", "DW2PXX"
The Post Processors
6.4.1 Computation of the transverse field components with
"DWSP* program
6.4.2 The graphic program "DW6P"'
6.4. 2 1 Theory
6.4. 2 Implementation




l
a

i 6.4.3 The coupler analyser "DWBP(2)"
6.4.3.1 The Ay characteristics and Error Analysis
6.4.3.2 Canputation of the coupling coefficients

! 1. CONCLUSION

5

Appendix 1 : The continuity conditions on the radial field

camponents, -
' Appendix 2 : Details of the discretisation process.
Appendix 3 : Analytical soluti”on of the dieJ:ectric rod problem,
Ai)pendix 4 : A simple method to find the extemum insidevt_he .

reference element.
Appendix 5 : A variational formulation which removes ‘the discon-
tinuity at T

o



1.
2.

3.

10.
11.
12,
13.
14.
15.
16,
17.

18.

19,
20.

21,
22,

LIST OF FIGURES -

1

The geammetric transfomation Tj - -
Determination of the virtual boundary with the equivalent model ’
of the dielectric rod. )

Variation of the fundamental mode frequency at_ vy = 1.45 with

respect to the location of the virtual boundary Ry,

_ Propagation characteristics for the first modes of a dielectric

rod. .
Dielectric rod example, discretisation with 62 elements and 159
nodes.

Fundamental mode of a dielectric rod : field plots.( HEy; )

Propagation constant = 1,450, boundary conditions code = 2. .
Dielectric rod, Hx field, linear scale, ¥ = 1.45, fundamental

mode ( HEj; ). ( Ey and Sz are similar ). y

Dielectric rod, Ex field, linear scale, Y =1. 4b fundamental .

mode ( HE; ). ( Hy is similar ). s

Dielectric rod, Hz field, higher order mode, Y = 1.45, linear

scale, boundary conditions code = 2. ( HE), )

Dielectric rod , Sz camponent, linear scale ( x2 ), higher order

mode, Y = 1.4515, boundary conditions code = 2. ( HEj, )

Discretisation of a circtilar waveguide for the camputation of

higher order ,modes propagation characteristics ( typical examples).

The inhomogeneous optical fiber.

Step' index model of the parabolic proflle.

Elliptical waveguide,difcretisation. ,

46 elements, 119 nodes. . : -
Elliptical v;aveguide example. )

Propagation characteristics of the two fundamental, modes.
Elliptical waveguide example,

Difference between the propagation characteristics of the first
two modes ( KBC 2 & 3 ). '

Finite cladding fiber, discretisation. ,

Finite cladding fiber, Hz field, linear scale, vy = 1.450. ! )
( HEyp ) ‘ -
Finite cladding optical fiber.

Propagation characteristics of the fundamental mode near the

cladding cutoff,

Dielectric rod example, first mode (spurious), linear scale,

y = 1.450.

Finite cladding fiber, high order mode, linear scale, v = 1.51, s
boundary ¢onditions code 2. ( HE3) )

Symmetry of modes and superposition,

Geametry of the coupler.




23.
24.

25.
26.

27.
28,

29.
30.

31.
32.
33.
34.
35.

36‘.
37.

i

Coupler discretisation.

Coupler Example 1 . - i Co
Propagation chdracteristice of the first 4 modes, camputer
interpolation. >
A&B : same as 24, but with a differept scale., .
Coupler éxample 1.

Propagation characteristics of the first 4 modes.

Coupled power versus coupler length L ( example 1 ).

Coupler, Ez field, linear scale, 'boundary conditions code = 2,
fundamental mode,

same as 28, but with different values of v.

Coupler, Hz field, linear scale, boundary conditions code = 2.

fundamental mode,

Coupler, Ez f£ield, log. scale, y

code = 2, fundamental mode. . .

Coupler, Ez field, linear scale, y = 1.463, boundary conditions
code = 4, fundamental mode.

Coupler, Ez field, linear scale, boundary conditions code = 4.
fundamental mode. '

Coupler example 2.

Propagation characteristics of the first 4 mxies.-

Flow chart (1) , ' ‘ \
" "(2) -

Other progr:':lms. ' '

Il

1.490, boundary conditions

a

e




e

2.
3.
4.
5.

7.
8.

9.
10.

11,

12,

13.

14.
15.
16'

17.
18,

LIST OF TABLES .

The interpolation functions for isoparametric and quadratic
elements.,

Local ([A;] matrix.

Local [B;] matrix.

The local to global matrix transformation.
Effect of the virtual boundary,

Definition of the "KBC boundary conditions code"
The dielectric rod example with mode number (n) = 0.

The dielectric rod example with mode number (n) = 1.

The dielectric rod example with mode number (n) = 2.
Numerical results for the inhamogeneous optical fiber,

The elliptical fiber pfopagation characteristics for the two
quasi—degenerate dominant modes.

Ay characteristics of the elliptical fiber.

Near cutoff propagation characteristics of a finite-cladding
fiber.

Example 1. FEM solution for the first modes.

Exanple 2. FEM solution for the first modes.

Examples 1 and 2.

[}

Difference between the normalised frequency versus Y .

List of programs.

Dimension of the discretised problem vs the radial and angular

N
division,



.-

1. INTRODUCTION i

The analysis of electramagnetic wave propagation in optical guiding
structures may be a very camplicated task when the geametry involved
is not simple (e.g. a circle, an ellipse or a rectangle),

When such a situation may not be avoided, an answer 1s the use of
the Finite Element Method, widely used 1n many different fields :
structural analysis, fluid mechanics, heat transfer, magnetostatics,
etc.

The present work was undertaken primarly for the analysis of an
optical fiber-to-fiber monomode coupler., However, the programs
written for this purpose may be easily used for the analysis of
other waveguiding structures at optical or microwave fregquencles,
They have been designed for problems having curvilinear boundaries
such as those encountered in devices built with optical fibers. A
very direct approach has been chosen to obtain the accuracy and
generality at the price of camplexity, large camputer programs and
execution time.

Chapter 2 gives a camplete theoretical analysis of the problem in
terms of variational calculus, which 1s not the standard form of
Maxwell's equations, but the necessary step for the application of
the Finite Element Method. Careful attention has been paid to the
exactness of the matr]emat:lcs. Then, chapter 3 describes the relati-
vely standard discretisation procedure of the 2-D area of interest
and writes the equations derived in chapter 2 as a large eigenvalue
problem. These first two chapters contain most of the theoretical
background, Chapter 4 contains the results fram the numerical analy-
sis of four different problems with known solutions, which show the
accuracy and the limits of the methods.

A separate section, Chapter 5, has been reserved for the analysis of
the fiber-to-fiber single mode tapered optical coupler, which 1s one
of the goals of this work.

Finally, the last chapter summarizes the software developed or



i adapted for this thesis., Its detailed desc'riptipn would have taken
too much space to be included here; but the flow charts included
there indicate the process followed from the initiaE. data to the
final output. ’
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2, THE OPTICAL GUIDING STRUCTURE . -

2.1 Introduction

An optical waveguide is a structure in which light travels with very
low loss. It is usually made with two Qr more materials havind a
slightly different index of refraction. An a?ﬂalysis done with a
simple geometry such as the dielectric rod shows a theoretically
lossless propagation of electramagnetic fields in different "modes”.
These are the various solutions of the Maxwell's equations [see
appendix 3]. The applications of optical waveguides ?nay be arbitra-
rily divided in three parts :

- Image transmissiorn : in this case, the fiber transmits incoming
light from one location to another without any sort of signal
processing. Hundreds of fibers may be put in bundles to carry a
canplete picture.

- Telecammunications : because of the very high bit rate capacity of
optical links, their major application in the near future will be as
point-to-point information carriers. On a long term basis, they will
probably replace to a certain extent the usual copper telebhone
wires 1n each house. They will carry most of the traftic on high
density long distance routes (like intercontinental links), the
satellite becoming a more specialised tool for wireless needs such
as mobile telecammunications and teledetection.

- Sensors : their very small size and high noise immunity, make them

ideal for acoustic sensing [1], temperature sensing [2], etc.
o -



2.2 Theory

v

As we have mentioned previously, an optical waveguide is made of
several materials each having a different index of refraction.

The laws needed for the analysis are the classical Maxwell's equa-
tions, Because of their guiding purpose, the structures involved are
usually very long campared to their other dimensions. The wavelength
of the carrier is usually between 0.5 micron and 1.5 micron, This
allows a first samplification, by assuming a quasi two-dimensional
problem in which the waveguide 1s infinitely long.

The second important simplification comes fram the type of solution
we expect to get, which is a wave-like solution, with a given angu-
lar frequency (the operating frequency of the laser or the LED
exciting the guide) and with a purely sinusoidal behavior along the
direction of propayation,

Finally, we assume that the propagating media are isotropic,
lossless and may be divided into hamogeneous areas in which the Max-
well's equations in hamogeneous media are verified. This last sim-
plification 1s necessary for the type of formulation we use. Each
element of the discretised area will be hamogeneous.

Wwith these assumptions, any vector field F of the electramagnetic
field may be written :

-P:(x.y.z,ti = Re { £ ( x,v) QI wt = Bz ) } (2.1)

%,

-

Where : X,y and z are Cartesian space coordinates,
z 1is the direction of propagation,

B is the constant of propagation (unknown),
w 1s the angular frequency of the wave,
t is time,

is /-1,

My -

'is a camplex vector.



These are the usual assumptions in all waveguide problems. They lead”

a

to the simplified Maxwell's equations :
> aﬁ -
VXE=—-— =- 3 wuH

at

-
D
ot

-+ -
VxH=+ = + j weE

<

o4
'

o

v.D= 0

-
D = gE .

The usual mathematical manipulations (3] give the well known

Helmholtz equations :

] 3 2 Ez
( o u D R S I

where : E, isttnz-cauponentofthei‘:’vector
H, is the z-camponent of the H vector

2 w 2 € 2
k (c).(eO.Y)
vy = £
- W

1
¢ = gpeed of light in vacuum =

- VuoEO

8 and whave been previously defined.
€ is the pemittivity of the medium,
€9 is the pemittivity in vacuum.
ug is the permeability in vacuum,

]

Note : The Helmholtz equations cannot be written in inhomogeneous

(2.2)

(2.3)

(2.4)

- (2.5)

(2.6)

(2.7

(2.8)

(2.9)

(2.10)

(2.11)

media, where a term involving Ve (grade ) cannot be eliminated,

R T TN



e

K ¥

The knowledge of the z-components of E and ﬁ vectors is enough to

* solve canpletely any problem of that kind because the other campo-

nents can be derived fram them,

We have :
WHy 1
. oHz dEz
= ——— ——— 2.12
Ex j kz ( 3y o 3% ) ( $ )
Who dHz ' 3E2
Ey = j —_kz ( - x +Y —f\o _ay ) (2.13)
w€0 '
. € 0JEz dHz
Bx = 3 (- gy YY) (2.14)
weo
. € 9dEz oHz
Hy = 3 kz ( ‘;0- ax +Y Ny 3y ) (2.15)
as.
ng = ;:—0' (2.16)

3

The transverse components above are in quadrature with ‘the z=-compo-
nents. Therefore, the Poynting vector has only one real camponent
(Sz), which indicates a real power flow in the z-d\irectlon only and
no propagation in the transverse directions.

Finally, note that the two Helmholtz equations (2.8) are coupled by
the continuity of tangential field at the interface between any
region, and cannot be written and solved separately when an exact
solution is required, Details are given in section 3.1 and in the
references [10,11,12].

2.3 Ssumary of same analytical methods of Solutions

\

When the geometry is simple, the Helmholtz equations .(2.8) are
solvable directly using the separation of variables technique. For
example, the exact analysis of propagation inside a dielectr‘ic rod
is given in appendix 3. But when the shape of the guide becames more
canplicated and/or when the medium is not hamogeneous, it is neces-
sary to find other methods. '
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If the problem has one axis of symmetry, it re‘%uces to a single
dimension and may be solved with differential techniques such as the

_ Runge Kutta method (4], or the Predictor-Corrector method [5].In
these approaches, the radial variations of the field camponents are
canputed step by step from the center and the tangential solutions
are matched at every boundary. Complete descripf;ions ‘'of these
methods are given in the references.




3. THE FINITE ELEMENT METHOD

The Finite Element Method (FEM) is very well documented., sfeps
missing in the formulation presented here may be easily | found in

one of these references : {6,7,8]. ®

3.1 Detailed formulation

3.1.1 Literature Review

The9 Finite Element method in electromagnetics has mainly two appli-
cation areas : (i) magnetostatic problems for machines and high
power devices ; (ii) wave propagation problems,

The first category does not fall directly in ocur field of interest,
but we can mention the use of curvilinear elements in reference (9],
because these are not common in electrical engineering field
analysis. ‘

In the propagation category, the first finite element analyses were
of waveguides, using 2-dimensional triangular elements well adapted
for the usual rectangular components and geometries. The basic
formulation for inhamogenecus waveguides may be found in reference
(10), by S.Ahmed and P.Daly, who used first order interpolation
functions in 1969. One year later, high order polynomials were
implemented by Silvester and Csendes (ll] to solve essentially the
same problem,

The application of FEM to optical fiber or integrated optics
problems may be found in reference [(12]. In that analysis, C.Yeh,
S.B. Dong, and W, Oliver used triangular elements and linear
interpolation to solve various dielectric waveguide problems. The

~discretisation of circular structures (e.d. a quarter section of a

fiber) requires a large number of elements. In order to keep the
non—zero field area finite for computational feasibility, they use a
virtual boundary on which true zero field values were enforced far
enough from the high permittivity guiding region.

Later, on 1979 the same authors implement infinite elements [13]

-



with special decayiny interpolation functions to model the truly
infinite damain of integration required by the method. They repiace
the problem of locatiny the virtual boundary by the search for an
appropr:iate decay factor.

*
All the papers previocusly mentioned were based on the lonygitucdinal
tield camponents fommulation for isotropic materials.
This constraint was removed by Mabaya, Layasse and Venaenbulcke who
extena the formulation to allow anisotropic materials [14]. They use

triangular elements with interpolation polynamials of order 1 to 4,

In order to obtain dlreétly the transverse field camponents which
are useful tor computing the transmitted power flow, JJ katz (1H
proposed a difterent variational approach in terms ot E, and Ly In
the same paper, he proposed a model for the transition between
layers of different permittivity by assuming a linear change over a
short distance instead of a step transition.

Mention the recent paper by Rahman and Davies [16], who used a H-vector

field formulation to solve anisotropic problems with triangular elements,

and finally, Hano's solution [26] which suppresses spurious modes wWith

rectangular elements ( not very useful to model optical fibres ).

3.1.2 Mathematical Formulation

In our analysis, the variational expression given in references (10,
11, 12 and 13] 1is chosen for the following reasons :

- The waveguides to be analysed are assumed 1sotropic.

- The tormulation is well established.

The use ﬂf curvilinear elements is the original teature of that

work.

If we split the x-y plane containing a cross section ot,a given
dielectric waveguide in bounded areas called elements, and if we

define the following quantities :




s S ————
'

S: = area of element "i" (3.1)

i
le = z~-camponent of B in element "i" (3.2)
£, = z-component of E in element "i" (3.3)
€, = Permittivity in element "i" (3.4)
¢ 2 .
e y -1 (3.5)
bS

Y -(ei/eo) )

k)

N = Number of elements ( 1 < i < N )

2
kg= (297 (v -1 - (3.6)

The solution to the following variational equation :
N
§ I

S

, €,
{rs T, |96, |2 + y21, (=) |y, |2
i=1 g 1 l .il i ‘gp | ll

et

€,
- 1
+ ZYZTL ez.( Ty, x Vo ) + k8|¢i[2 + kSYZ‘(—EO) Ni‘zdsl } =0 (3.7)

Where :
= i 'Y R .
¢ Hz (3.8)
1 i
f,wi Yno E. (3.9)

e, = unit vector in the direction of propagation (z)

is the solution to the Maxwell's equations with the proper boundary
conditions when the sum of all the elements fills the entire x-y

plane.

Proof : It is now important to prove that the integral
formulation given  above leads to the Maxwell's equations together
with the usual boundary conditions. From equation (3.7), we can
write the first variation of the functional with 'respect toy or

with respect to o -

10 ™ .
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In the first .ase we obtain :

N £, :
2; (=x 2. @
; { Fgy 2V Ti(eo ) vwi.vawi + 2y%t, e . vawi x ¢, )
i*l 3 (3.10)

E, N
22X =
+2k§ Y ol IR 8, as. } 0

From vectorial calculus we have [17]

> - > + (3.11)
V.(UA) = (YU ).A+U ( V.a) /
Where U is a scalar function, A a vector function.
"Then : X
(3.12)
VW .V = V.(yVd ) - y( V.96 )
And we can write :
9y, . ¥ = V. - 2
wi 6wi V. ( Gwivwi ) Gwi vtwi (3.13)

Fram vectorial calculus [17] we also have :
Vo x Yy = Vx( ¢Vy ) Dbecause VxVy =0 by theorem. (3.14)

The equation (3.10) becames :

N € k%
T 2 - vl —
I Isi YT, (Eo Yy « Vtwi + - wi ) éwi dsi {(3.15)

i
2 fi -
+ — =
I YT, {(Eo )v.<awi vwi) *e . anwiv¢i)} ds, )

The second part of the integral can be transformed in a line
integral using the Divergence theorem and the Stokes theorem, both

in 2 dimensions. We obtain :

s
N € k%
z ! v, (=) ¢ -2y, + — vy ) &y, dS
i=1 S; i ‘gp i T i i i (3.16)

2 _j_,. ES -
+ f Y Ti{ (Eo YV, n + Ve, 1, }6¢i a.

11




> a -+ s
Where n 1s the unit vector normal to the contour Ci’ and 1i satis- .

e -> -
fies the relation : ; X Ii = e(2 { n = outward normal ). !
-> i >
Therefore, li = ez x n and the line integral becomes : (3.17) .,
Ei - 4 ,-»
2 — .. -e . (V dl
fci Y Ti{ (eo ) ( wi n ) e ({ ¢i xn)} Swi i » q

We can also make the same development for the first variation of . \

- * > -

equation (3.7) with respect to ¢i: - ‘ N
n . X ., ;

g IS. T { -Vt¢i + ;T'¢i )5¢i dSi (3.18)

i=] i )

\ e 2 > -+ ; . -
+ fci T { V¢i. n+ vy ez.( vwi xn) % 6¢i dli 0

The two line integrals can be related to the transverse field com- S
ponents using the equations (2.12) to (2.16) or reference 12. q\
We have :

'd 2 -—> - . ~ . .

= v - A N . 9
wt AT, (v twi e, X Vt"i ) ' (3.1 .)
€,
-1 1 -> Y
v + (= V. V. 3.2
o, = YA T, { 4 (Eo ) e, x Yy, } (3.20)
J " :
A = a . (3.21)
YD (Y2 - 1) 4
C
The gradients in equations (3.15) to (3.18) are in two dimensions 5.

{ the subscript "t" was omitted for simplicity ), and we can
compare the line integrals with the tancential part of the trans-

verse field components.

We have :
1 .
|
+i -+ - 2 > - -+ ->
by xn=ArT { fxvtwi xn-(e x7¢ )xn } (3.22) 3
=AT (YW y xn+e (Vo .n) } (3.23)
?\\h i t'1 z t’i° e
=AT, e {Y2(Vy xn)e +94¢..0 }
‘ 1% Y i X n .ez t¢i' n (3.24)

12
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The previous transformations are allowed because w and n are both
in the.x-y plane Therefore, the llne 1ntegral in equatlon (3.18)

can be written : N

-

AN
>
- . (1/3) fci e R w xn) 6¢i dli (3.25)

L3

»

Using the same arguments, we'obtain :

-

13 a LY v - -

i + - -> " . ej_ > ->
$t‘x n=ayr, { (Vs xn) - (o) e, (T ) ) (3.26)
b 3 > s € *
1 _ + _ -j.- R " _>° - .
| = AYTi e, { ez.( Vt¢i xn) \(30 ) E Vtwi. n) } (3.27)
and (3.17) becomes : .
. \
: > >i -+ .
Y’ \ | (y/n) fci e, - ( ¢t.x n ’) §wi dli (3.28)

Equations (3.16) ang (3.18) must be zero fq; any arbitfa}y func=~

tion Gwi and 6¢i . Therefore, the surface integral and the line "

_ integral must vanish and we obtain : o S

- The Helmholtz equations (2.8),

-

- The continulty condltlon or the boundary conditions discussed

~

o

in the following sectlon.
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3.1.3 Continuity condition and Boundary conditions

The vanishing of the line integrals in (3.16) and (3.18) for any
variation dwi or 5¢i gan only be obtained when the tangential part
of the transverse field satisfies one of the following boundary

itions :

- If the integration path 1s an interelement boundary, the
tangential field must be continuous, even if the two elements have a
different index of refraction. With this condition, any line 1integ-
ral camputed along one path is cancelled by the same 1integral done
in the reverse direction. This is one of the required conditions
which gu:arantees the equivalence between Maxwell's equations and the
varlatlona.;L formulation (3.7).

- If the problem has natural geometrical axes of symmetry, 1t 1s
very efficient for the computational point of view to split the
domain in smaller parts. Therefore, this operation requires the
definition of modes which use the symmetry and are still solutions

‘of the variational equation. If we enforce y =0 on the axis of

symetry, we obtain V¢ x n = 0, where h 1s the unit vector nommal to
that axis on the i1ntegration contour. In order to keep the line
integgal zerp, the other field ¢ must satisfy V¢ .n = 0. This
condition is called the natural boundary condition (The gradient of
thé non—zero field z-camponent on the axis of symmetry is parallel
to that axis).

-~ Similarly, we can define on the same axis of symmetry another mode
which satisfies the constraint ¢ = 0, and the natural boundary
condition becames V¢ . n = 0,

/

i

The last two conditions do not involve the Maxwell's equations
directly, but allow considerable reduction in the size of the
nurerical problem which will be solved later on.

14



PRCENY

- As it 1s shown in the references (sect}on 3.1.1), in a dielectric
waveguide problem with no metallic boundary, the field extends in
the whole plane, but with a fast decaying rate outside the guiding
medium. Therefore, it is easy and efficient to create a virtual
boundary on which all the fields are zero. This operation satisfies
also the variaticnal equation (3.7), but not Maxwell's equations and

must be considered as a numerical approximation.

The other conditions on the nomal field camponents are derived in

Appendix 1. .
Thus we have proved the validity of the variational expression and
we can start the following step toward the numerical solution.

3.24Ilnterpolation functions and Discretisation

The mechanism involved in the Finite Element formulation is simple :
the region studied 1s split into elements small enough to allow an
approximation of the unknown field with interpolation polynomials
and a set of nodal values (see references [6,7,8]).

Let ¢ be unknown inside the element "i". Let <1>lj be the unknown
nodal values with : 1 <3 < Ly (1); (LN(i) is the "local number of

nodes in element "i"). Let N.. be a set of interpolation functions

1]
having the required characteristics [6]. Then, we can approximate
the unknown function ¢ by :

LN (i)

¢ = L N, . ¢
5=1 i3 ¢1] (3.29)

¢ and the N;.'s are.functions of the system of coordinates. If

i
the variation gf ¢ inside each element "i" is small, smooth and
camparable with the variations of the/ljl/ij's, a very good accuracy
may be obtained. /

This step leads to the discretisation process in which the search
for a continuous function is replaced by the sedrch for discrete
values. "3" is a local index, and the double index "ij" (local node

J in element i) will be replaced by a global i’ndex\“n" later on,

15
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3.3 Mapping and Change of Coordinates

It is more practical and efficient to have only one set of interpo—
lation functions Ny for all the elements of the problem. Then, each
real element "i" 1s mapped into a reference element with a change of
coordinates. This geometrical transformation, shown in Fig. 1l is
denoted T;.
There 1s a one-to-one equivalence between any point of the element
"1" and a point of the reference element. The boundaries and the
nodes are mapped exactly. The choice of the T,'s determines what
type of boundaries in the real device will be perfectly matched.
Let X and Y be the coordinates in the real space, and &, n, the
coordinates 1in the reference space,

T, 1s detined such that :

LN(1)
X = I N ( &n) X (3.30)
J=l J 1]
LN(1)
j=1 ] 1)
The N_J's are the geometric transformation functions and are not
necessarily equal to the interpolation functions NJ's. In fact the

above equations (3.30 and 3,31) represent the inverse transformation
which maps each point (£ ,n) of the reference element onto a point
( X,Y ) in the element "i". Xi, and Y;, are the coordinatés of the
node "j" of the element "i", )

It 1s then possible to map the nodal values of the unknown field
function ¢ to the nodes of the referencé element and a single set
of 1interpolation functions (the NJ's) is needed (if all the elements
"i" are of the same kind).

We can write :

LN
¢ (Egm) = L Nj¢

)=l 1) (3.32)
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The evaluation of the integral (3.7) will be done through the trans-—
formations T; equivalent to a discretised change of coordinates.

In this work, the transformations T; correspond to the choice of so-
called quadratic-isoparametric elements. The boundaries of all the

elements are quadratic, and the interpolation functions NJ are
identical to the geametrical transformmation functions NJ. The main
advantage of this type of element is the fact that it fits more
accurately than straight edges in circular or elliptical geametries
encountered in the optical waveguide analysis.

The N.'s are shown below, on table 1 [ref 6]

J

j Nj='ﬁ]

1 - (1~-&-n)(1~-2(1-¢-n))}
2 4 (1 -¢-n)

3 -£ (1-2¢)

4 4€&n

5 -n (1=-2n)

6 4n (1~ & -n)

Fach element has six (6) nodes.

TABLE 1
The interpolation functions for isoparametric and quadratic elements




Element i
(quadratic)

6 ¢

- 3 .
Reference element

Fig. 1 The geometric transformation "T[
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3.4 Evaluation of the Discretised Integral Equation

»

The variational equation (3.7) may be written :

N
5 f=1 fg, F o, ) as, =0 (3.33)

Two changes of coordinates are done :

- A scale change

~ The mapping Tj

3.4,1 Scale change

If x and y are the coordinates in the r.:eal world, and if we use MKSA
system, x and y are in metef:(s) and this unit is not practical at
optical wavelengths. In addition, it is always necessary to norma-
lise the results as muchas possible. Then, the integral (3.7) is
computed with X = x/a and Y = y/a , where "a" is a normalisation
constant (for example the radius of the fiber). It i1s easily found
that equations (3.7) remains unchanged except for "ko" which be-

canes:
(3.34)
(=)« y2-1 )"

and ds; becames dXdY instead of dxdy.

3.4.2 Mapping

- Fram standard calculus theorems, we can write :

Flo,CX¥) , p ¢ X,Y)} Fooo{g, (X(E,m),Y(6,m), ¥, (X(E,m),¥(g,n)}

(3.35)

F (g9, ) dxay F-C ¢,09, ) IJl( dg dn

N

Where [Ji] is the Jacobian matrix corresponding to the transforma-
tion T . From equations (3.30) and (3.31), we can write:

. LN aN
g = T« 5 %y (3.36)
j=1 >




LN N \ (3.35)
L

1=1 9 ij
. LN N
Ja1 =0 L a—-l) X, (3.38)
)=1 n ij . .
J = I :
22 i1 ( an ) Yij - {3.39)

where aﬁj / 3§ and Bﬁj / dn are the partial derivatives of

the functions t:fj in the reference element and Xjqr Yy,

coordinates of,the nodes of the element "i". "LN" is the Local

are the x-y

number of nodes, i.e. the number of nodes in the element "i",

Using the interpolation functions N, on the reference element, we

]
have : . ?
LN
¢ = z N ¢. . (3.40)
1 j=1 3 13
- (3.41)
p, = I N_Y. . .
i j=1 31D
q’ij and wlj are the nodal values of the field at the nodes of the
element "i", For an isoparametric and quadratic element, N_. = N..

] J
Using same straight forward algebraic manipulatior}’s, we can evaluate

the integral (3.7) in terms of the nodal values of the field ¢i]

R

and wij [see Appendix 2].
We obtain : ; .

O
Ll 2 I

S S l
. Corag £ an tico, o[ ]Me, 0 . (3.42)

€
2. (X 2 .
vir oo vy (o Tt 2vEe e, oy ey ) o+

£,

%
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< ¢, > = row matrix < .., ¢, ,-en.. ¢, >
i i1l® iz i,IN (3.43)
]
{ bk } = vector { Siqr yprenes ¢i,LN } (3.44)
< wij > = row matrix < y. .. 11112, .o wi,LN > (3.45)
- (3.46)
{ wlk } = vector { Vg “‘12”“' wl,LN }

'

I:Ul_] ' [viJ and [wi] are three matrices defined by

' .2 .2 aN 9N
Element (3,k), of [Ui] = X Typ+ J51 ) 5z _a_g_lg . (3.47)
g, |
1
2,2 AN 0N N_ N IN_ 9N
(T2+ 911 3o 5et - (I1292p+ 92190 ) (2 58 + 5 52))
n 3n 3¢ an 3 an
N, BNk ank 9N (3.48)
Element (j,k) of [vl] = EIW -5 ;]_l)
Element (3,k) of [wl] = Nij | J |

1 (3.49)

>

Where the NJ -and N, are the 1nterpoliation functions in the reference
element..

(J;] is the Jacobian matrix associated with the element "i" (see
equations 3.36 to 3.39 ).

11’ Jiz, J;l , and J; are

IJi| is the determinant of [J;] and J 5

the elements of [J;].
we can easlly verify that all three matrices are symmetric and (V]
is independent of the element. - '

3.4.3 Numerical integration

Integral (3.7) may be evaluated in terms of the unknown field values ¢ij

and wij when the constants T Y and €, are known, and when the

_have been defined by the type of element
; ot e

interpolation functions NJ

€
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seleGgted, In our case, quadratic and isoparametric elements are used
and the corresponding "NJ" functions have been given in table 1. The
analytical cdetermination of the integral 1s not practical because of

the presence of polynamials in the denaminator 1/]Jl
Instead we use the common Gausslan method on the reference triangle.

The integral :

tae M an re e Lu ) |g.| d& dn becomes

0 0 1 1 1

NI (3.50)
) Wo P {0, CEone ) o v CEing ) ) | 9 Egeng ) (

R=1

where :

NI 1is the number of intergration points. ER and N, are the coordi-

nates of the integration points . Wy are the weights of the integra-
tion points. In our case, the value NI=6 have been chosen atter
several trials at the early stage of program development with 3 and
4 1ntedration points. No numerical integration problems have been

detected during the project and the accuracy was very satisfactory.

3.5 Computation of the transverse field camponents

‘We have seen in section 2.2 that every transverse rield camponent
can be found trom the knowledge of the z-camponents and thelr par—
tial derivatives. But the electramagnetic fielda is discretised, ard
the above quantities must be computed 1n the discretised space,

using the Jacobian matrix of each element.

v

If H =¢ ,H = , — E = d =
X X Y ¢y Yng X LUX an YNy EY wY (3.51)

Then, the equations (2.12 to 2,16) may be written in each element

" ill
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L 1 a¢i Zawl (3.52)
i = 3 { + Y }
x 22 vy Y 9%
Y c i
3 v,
T _ 1 - _f_ 2L (3.53)
¥ = 3 ( Y )
(22) z —y2) 9% oy
Y C L
Y 3¢
1 Y - 1 1
b =3 (= €, + == (3.54)
x (22) (g —y2) ST
C pR
%,
¢l = Y ( E ﬂ_l_ .;, 3&. )
C b
\\ \
Where : N

¢1 and wi are the usual z-camponents,

El is the relative pemittivity of the element ,

a 1s the usual normalising dimension.

The other variables are defined 1n section 2,2.

Then, we need to compute each partial derivative in each element
with the Jacobian matrix,

We have :
%, 1 , 9% %y
T W ( Jap a—é"‘-Jm'a—n—) (3.56)
9, 1 AT
———— ..J —e. ——
dy lai (=921 2 T Il 5y ) - (3.57)

The same relations hold for .

I S i
N | = 311 32, = 912 97,

. (3.58)
Using the expression for the [J;] matrix camponents given in equa-
tions (3.36 to03.39), we easily find :

99 dN, 3N oON_. ON

i _ 1 3 __k__ 3k (3.59)
ax T ¢ § i Can 3 "% a0 Yag !
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Bcbl 1 9N BNk a_Nl aNk
= = T —J _X _ —_— . .
3y TJ—J_T{ i i { Y 5n 3F ) le ¢ik } (3.60)
"3" and "K" are the local index numbers inside each element.
These equations are similar tor v -
9N 9N dN 9N
Let v.oo= (=L E_ X, (3.61)
- Jk an 9¢ HE  9n

Vik is i1ndependent ot the element and may be camputed at the begin-
ningy of the program and stored for the necessary points. Finally, we

dbtain : - _
39, 1
— = rz \Y Y 9
X I ]k Jk 13 "1k (3.62)
awl i 1 . v (3.63)
3x IJl K k13 "1k
3¢
. lots v K X0 % {3.64)
Iy Jl ;) k ] 1] 1
AT T (3.65)
3y lJll Kk k1) ik
(3.66)
g | = £ L -V. X ¥
1 ]k jk i3 1k

xi] and Yy (YiJ) are the coordinates of the nodes of the element
nin,

¢ x and V., are the nodal values of the field. VJk is a function of
({ £, n) in the reference element, The partial derivatives at every
point ( X,Y ) 1n the real element may be found with the preceding
relations when the corresponding coordinates ( £,n ) are known. In
our case, we only look for the partial derivatives at the nodes.
Therefore, the corresponding points in the retference element are the
nodes of the triangle,

In our Finite Element approximation, the continuity of the
derivatives is not mathematically exact at the boundaries between

the homogeneous elements, but if these are small enough, the discomn—
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tinuity should be very small.

The problem of the non-uniqueness of the partial derivatives at the
nodes may be solvea by averaging them in the elements of same
pehnittivity only. At the boundaries between regions with different
index of refraction, two derivatives are camputed and the transverse
camnponents will be discontinuous. c

The discontinulties left in homoyeneous reygions are due to the
discretisation process and occur in the low field intensity regions

or for hiyh order modes.

3.6 The Global Matrix Formulation

So far, we have written our integral equation in terms of the ¢
and wlj nodal values, This double index 1s not practical and is
confusing. When a node 1s shared between several elements, different
combinations of the 1-) indices represent the same physical node
called "n". By construction of the mesh, there exists a transforma—
tion which gives to any node labelled "13" a 51nglé label "n". We
Wwlll express the integral 1in terms of this unigque node numbering

system.

3.6.1 The local matrix formulation

Let < el > =< ¢ll:¢ll:¢'i2r‘biz. ----- > (3067)

We want to write the integral (3,7) as :

N
) 2 - (3.68)
<0.> [Ai]{@l} + k§ <0 > [Bl] <0,> =0
1=1

To determine each element A;q (or B;q) of the matrix [Ai] (or

(B;]), we must find the coefficient of Gpeq from the equations (3.42

to 349). We obtain the tables below :
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L% 4

A p (odd) = 2j-1 p (even) = 23 v

i 2
= - W LW Vv ’
g {odd) 2k-1 T pX R Ujk(ER,nR) Yoty R jk(gR nR)
R R
£, )
(even) = 2k symmetric Yz(—l-) Al i
4 eo  plodd)q(odd

2

TABLE 2 : Local [Ai] matrix.

1
B p (odd) = 29-1 (even} = 2
pq J P ]
(=3
1
= 2k~ W_ W ,
q (odd) 2k=1 g R jk(ER T]R) 0
€
(even) =. 2k 0 Y2 (=) Bt
4 : €0’ plodd)g(odd)

TABLE 3 : Local (B;] matrix.
- [(A{] and [B;] are symmetric.

i 1 . . .
W . 49).
K ka and X are given in equations (3.47 to 3.49)

- The summation in "R" represents the numerical integration using
the Gaussian method.

- U

3.6.2- The Local to Global Matrix Transformation

Each term ut or Wl. represents the contribution to the global

Jk . Jk
matrix of the pajir of nodes j~k in the element 1. If "n" is the
global node number of the local node j of the element "i", and "m"
the global node number of the local node "k" of the element "i",
then it is possible to find a correspondance between the local
1 1
A B . i
pq( pq) of the LOCAL matrix and

the global position "gh" of the same element in the global matrix

(Ag) ( (Bgl ).

position "pg" of each element
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Let n(i,;) and m(i,j) be the global node numbers as defined

préviously. Then, we obtain thé following table :°

4

plodd) = 23~-1 | p(even) = 23

g=2n(i,j))-11| ¢g= 2n(i,3)
gfodd) = 2k-1

h=2m(i,k)-1 | h= 2m(i,k)=-1
Jd=2n(1,))-1| g= 2rji,3)
gleven) = 2k \
[
: h = 2m(ik) h = 2m(i,k)

n(i,3) and m(1,k) are defined by the numbering system chosen'by the
user.
TABLE 4 : The local to global matrix transformation.,

3.6.3 Effect of the boundary conditions

The enforcing of essential boundary conditions ( ¢ = 0 or ¥ =9
for same nodes) will slightly modify the global matrices and reduce
their size. .

If we Have the 1nitial matrix equation ':

3.
<o >[]e) +x§ <o >[b]0) -0 (3.69)

-

and if 6L= 0, then the column "L" and the row "L" of both matrices

‘[AG] 'anﬁ [Bgl] may be removed. The size of the system is reduced by

one, and the process repeated for every node subject to an explicit
boundary condition.
3.6.4 Final answer . ' /

Py

The final result of this complex process is a very large matrix

equation of the form :




S ey
[~

' N
» el

1]
o

8{ <®>[AG]{G} +k§ <0 >[BG]{®} ; (3.70)
Fram reference [1l2], 1t has been proved that the stationary point ot

“this expression 1s the solution ot the tol lowiny €%genvalue problem:
[AGMe} + k§ [Bcl{e} =0 (3.71)

(with [Aq], (Bg) large, sparse, symmetric matrices; [A;] 1s
Indefinite and [B;] 1s positive definite).

where :

-[AG] and [BG] are the two global matrices assembled from the lotal
matrices defined 1n table 2 and 3.

- {8} 1s the vector of all the nodal values of ¢ and ¥, the expli-
cit boundary conditions being included.

ko 1s an 1independent parameter .which does not appear 1n any
coefficient of the matrices [A;] and [BG].

For a yiven geametry and a given value of vy (the normalised propaya-
tion constant), we can solve the problem for the eigenvalues ko
corresponding to ditferent modes ot the structure, Frbm these va-
lues, dispersion curves may be plotted. By convention, we call

S = wa/c , the normalised trequency. "a" 1s a normalilsing dimension

and “c" 1s the speed of light in vacuum (c = 299800 km/sec).

Q
3.7 The Virtual Boundary

outside the dielectric waveyuide, and 1f there 1s no opaque coatiny,
the electramagnetic field decays exponentially for a theoretically
infinite distance. But 1t 1s obviously not possible to discretise
this 1ntinitely large area-with a finite number of elements ot
finite size. ‘

Some authors [13,16] have used special elements in the unbounaed
region with intrinsically decaying interpolation functions. In this

approach, the user has to guess’ the decaylﬁg factor with some
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accuracy to keep the results in acceptable ranyge. In our case, we
use the same type of element everywhere in a finite region, and set
both the electric and magnetic fields to a true zero at a certain

distance from the guide, on the so—called virtual boundary (see

references [13,15]).

The determination of this boundary could be done 1iteratively, with
step by step moves, expecting a convergence of the eigenvalues for
sufficiently laryge values ot the boundary distance. But thls process
would be very costly 1in term of camputer time, ‘
A better approach is to consider an eguivalent simple model (the
dielectric rod) for the arbitrarily shaped guide when 1t 1s seen
from a relatively larye distance (see fiy, 2). It 1s then possible
to campute an approximate field decay rate to obtain the location
ot the virtual boundary (see fig. 2). A separate program (Dw3)
analyses the dlelectnc“rod wlth great accuracy. This method has
been used successfully 1in the ditferent cases studied in section 4,
The effect of the virtual boundary location on the accuracy ot the
answer has been numerically studied 1in one example. It shows an
optimum range of values between which the results are very close to
each other, within a so-called "numerical noise level" (see fig. 2).
'i“hls expression refers to apparent random variliation of the
elgenvalues with small variations of relatively irrelevant parame-—
R}ers.

When the boundary 1s too close, the approximation of zero tiela
leads to a fast-growing error. When the boundary 1s too far, the
elements outside the wavegulide Become too large and the interpola-
tion functions do not follow the fast cecay rate.

Table 5 and Fig. 3 show an example ot the virtual boundary location
effect. The case studied 1s a dielectric rod with an internal 1ndaex
of 1,5, embedded 1in air. The parameter Rnax = 1 corresponds to thé
wavegulde 1interface. The propagation constant 1s 1.45. The number of

elements 1s constant.



A

Dielectric Arbitrarily shaped
rod \y waveguide

3
l
]
1 virtual boundary
Normalizq$hti?ld‘

0 dB— "~
Field decay

’
rod radius r
Normalized A
frequency "S"
' "Noise"™
I
- ////1 .
-} {
| i
| |
| |
| |
' :
|
l |
' |
0 T

<E"Dyna.mzlc range" for the
choice of the virtual
boundary position.

Fig. 2 1 Determination of the virtual boundary with the
equivalent model of the dielectric rod.
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Virtual boundary

First real mode

First spurious mode

location % %

(1 = rod radius) 5 Change S Change
1.15 5.34032 - none -
1.21 5.51138 (+3.20) | 1.44239 ( - )
1.36 5.61845 (+1.94) | 3.01922 (+109)
1.50 5.63368 (+8.27) | 3.21124 (+6.4)
1.71 5.63676 (+@.05) | 3.25987 (+1.5)
1.86 5.63710 (+0.01) | 3.26134 (+0.05)
2.00 5.63705 (+0.00) | 3.25728 (~8.12)
2.50 5.63682 (-@.01) | 3.23414 (-8.71)
3.00 5.63640 (~@.01) | 3.20989 (~8.75)
4.00 5.63588 (-@.01) | 3.16335 (~1.45)
5. 00 5.63508 (-@.01) | 3.12113 (~1.33)
6.0 5.63446 (~0.01) | 3.08247 (-1.24)
7.00 5.63377 (~0.01) | 3.04762 (~1.13)
8.00 5.63308 (-@.01) | 3.81551 (-1.05)

19.00 5.63171 (~@.62) [ 2.95873 (-1.88)

S 1is the nommalised frequency

TABLE 5 : Effect of the virtual boundary
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5. 70 3 + + 4 + —+ +— — +
5.60 1 . 4
S.50 4 4
. 5.40 | 1
9. 30 + + +— +— + —+ — + max
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Fig. 3 : Variation of the fundamental mode frequency at y = 1.45 with respect to

the location of the virtual boundary Rmax.
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3.8 symmetry and Boundary Conditions

The use of symmetry in the analysis may greatly reduce the size of
the discretised problems and must be included. When an axis of
symmetry exists, only one half of the problem needs to be modelled,
providing the correct boundary condition is imposed on the axis. The
conditions £ =0 (f being one of the z-components) on one axis
indicates that f is odd with respect to this axis. When no explicit
boundary condition 1s set, the natural boundary conditions induced
by the variational formulation holds and f£ is even with respect to
the axis (see section 3.1). The electramagnetic field is different
in each case, but 'not necessarily the characteristic curves of the
propagation constant. When two axes of symmetry exist (Ox ard Qy), a
set of four boundary conditions may be defined which are :

(Ox axis) (Ox axis)
"KBC" code Ez=y =0 Hz=¢ =0
Ez =y =20 4 3
(Oy axis)
Hz = ¢ = @ 2 1
(Oy axis)

TABLE 6 : Definition of the "KBC boundary conditions code”

)

When two sets of boundary conditions lead to the same propagation

constant (at any frequency), the two corresponding modes are said

"degenerate"., This degeneracy is the key phenamenon for the analysis
of the ocoupler and will be discussed later.
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4. ANALYSIS OF KNOWN EXAMPLES WITH THE FEM PROGRAMS

1

A set of camputer programs described in section 6 has been written
for the FEM analysis of dielectric wavegUdides. Four examples have °
been chosen to demonstrate the most wmportant characteristics of the

method. The results are given in this chapter.

4.1 The Dielectric rod analysis

The dielecric rod 1s the simplest, dielectric waveguide. A cylinder
with an i1ndex of refraction nl is embedded in a region of index n2,
and nl > n2. The fol lowing proof 1ndiCates that guided waves will

propagate inside this guide. .

4.1.1 Analytical solution

The amalytical solution of this problem is well known and is
obtained 1n appendix 3. It is easily found in many Electramagnetic
books [e.g. ret 18].

The normaliised trequency S = wa/c 1is the solution of the followinyg

transcendental equation : -

K (S5) J (§1)
1 1.2 _ 1 1, _n+l _ _n+l
{ny ( §?+§g)} {n{( §?+g) S2K_(57) 5,3 (5])

n¢ n% n%Km_l(Sz) n%Jn+l(Sl)

- - = 4,1
{n s{ *s7) ;K (S2) 53 () ) 0 (4.1)
wlth Sy = ( 9—2—) nf - Y (4.2)
S, = (=2) /Y2 -n (4.3)
c e
~
and n{ = €= dielectric constant inside the rod.

€,= dielectri¢ constant outside the rod.
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The electromagnetic field z-components are “p

Ez (in51dg) = AlJn(klr) cos (n¢) ej( Bz-ut ) (4.4)
Hz (inside) = BlJn(klr) sin(n¢) eIl Bzwt ) (4.5)
Ez(outside) = A2Kn(k2r) cos (ng) e]( Bz-ut ) (4.6)
Hz(outside) = Ban(kzr) SLn(n¢? eJ( Bz-wt ) ) (4.7)
k, = (%)m : (4.8)
ky, = ( % ) Y = n | (4.9)

The results are shown for same modes on Fig. 4.

“n" 1s the number which appears 1n the previous equations and deter-

mines the order of the Bessel tunctions. .

For each "n" (U,1,2,...) there are an i1nfinite number of frequenc‘les

which satisfy (4.1) and (4.2) at a given vy (nl>y>n2). The values of .
"_a

and corresponding fields (4.4) to (4.7) are labelled with "n" and a

second index "m" (0,1,2,...).
Usually, the first mode is defined as the one with the lowest

frequency for a given value of the propagation constant, In
a dAlelectrlc rod, 1t 1s an hybrid mode and all the field components
are non—-zero, even if same are clearly much larger than other. Such
a mode is usually denoted HE_. ., where n and m have been defined

previously.

4.1.2 FEM solution N

The aielectric ,rod and the surrounding medium have been discretised
with 50 quadratic elements and 129 nodes. Some results have been
checked with 62 elements and 159 nodes and no appreciabie ditfterence
had been noticed (see Fig. 5 for the discretisataion), Tables 7, 8
and 9 give the numerical results and the corresponding errors for
the normalised frequency as a function of the normalised propagation

constant, Because of the very small error level, theoretical values
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have been computed in double precision, with accurate determination
of the Bessel functions using series expansions., The error 1s below
U.035% over the y-range (1.05-1.49) for dominant HE}, mode. Some
canponents of the electramagnetic field have been displayed with a
contour plotter program (DW6P, see section 6.4.2) for ¥ = 1.45 [see
F1g. 6 to 10]. The smoothness of the equipotential lines and the
continulty of their partial derivatives at the intersection of
elements (except at the boundary and tor E, and Hy) 1s another proot
of the quality of the FEM discretisation and interpolation process.
The poor quality of the contours of Ey and Hy can be explained by
the very low relative amplitude level of E, and Hy with respect to
Ey ana H. This 1s easlly demonstrated by comparing the maximum
field strength values of the x and y components. In fact,Ey and
H, are dominant for that set of boundary conditions (KBC=Z), and
became very small for the other set (KBC=3).

The number denoted "No" on the tables 7, 8 and Y 1ndicates the order
in which the eigenvalues are classified when starting from the
smal lest positive one. #
The poor aspect ratio of some elements exhibited in Fi1g. 5 does not

appear to cause lnaccuracy.

4.1.3 Higher order modes

The higher eigenvalues give also the normalised frequency of some ot
the high order modes, but with an accuracy which falls down very
quickly because the rate of change of the field becomes very high
and cannot be followed by the interpolation functions. For the next
mode (HElz)' the accuracy remains very good, below U.08% over the y-
range (1.05-1.49). Other modes exist between HE;; and HE), which
cannot be found with the set of boundary oconditions (KBC=2) which
has been used 1n this example.

An efficient way of computing modes such that the field periodicity
of the z-components are of the form sin(n¢) or cos{ns} with "n"
greater then one 1s to siumply put the elements in a section of disc
n/2n wide, This increases the density of eleme?xts for a better

resolution at no extra cost [see Fi1g. 1l1]. This feature is succes—
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- Each element has 6 nodes,

there are 33 radial divisions
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Dielectric rod example, discretisation with

- 62 elements and 159 nodes.



6t

\ Hz
Y \\
N\ \
A )
\\\\:‘\\-.\ \ \\‘. \
‘:‘. \ Y
\“; “: ‘ ‘.
{ / ":-:.\.‘ . ‘!‘ Vo \
] :“Nzlh [ .. _ 'J
0 1 2,5

Fig. 6 : Fundamental mode of a dielectric rod : Field plots. ( HE, ) )

Propagation constant = 1.450, boundary conditions code = 2,

Py



A\

ov

-

ey

m=1 «1 % m=2 %2 %
Y - S (Th.)> No S (FEM) Error Y S (Th.) No S (FEM) Error
1,05 2.41752 1l 2.41941 +.08 1.05 2.61070 1 2.61281 +.08
1.10 | 2.65381 2 2.65588 +.08 1.10 2.93867 2 2.94105\ +.08
1.15 2.91655 1 2.91877 +.08 1.15 3.26071 1 n3.26343 +.08
1.20 3.22905 1 3.23171 +.08 1.20 3.61461 2 3.61756 +.08
1.25 3.62159 1 3.62439 +.,08 1.25 4.03736 2 4.04073 +.08
1.30 4.14601 1l 4.14935 +.08 1.30 4.58452 2 4.58837 +.08
1.35 | 4.90871 1 4,91241 +.08 1.35 5.36480 2, 5.36932 +.08
1.40 | 6.18377 2 6.18889 +.08 1.40 6.65442 3 6.66011 +.09
1.45 | 9.06490 1 9.07118 +.07 1.45 9.54682 2 9.55472 +.08
1.46 10.2273 1 10.2338 +.06 1.46 10.7115 2 10. 7206 +.08
1.47 11.9319~ 1 11.9403 +.07 1.47 12.4184 2 12,4288 +.08
1.48 14.7940 2 14.8033. +.06 1.48 15.2829 3 15.2961 +.09
1.49 21.2615 2 21,2791 +.08 1.49 21.7531 3 21,7718 +.09
©
FEM Solution : 50 elements, 129 nodes. Note *1 : KBC =4 (m= 1)
No = Eigenvalue number. Note *2 KBC =1 (m=2)

TABLE

7 : The dielectric rod example with mode number (n)
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v

[

HEll HEl2
m=1 % m=2 %

Y S (Th.) No*2 s (}:‘1’:‘.!»1)*l Error Y S (Th.) No*2 S (FElvi)k1 Error
1.05 1.290371 1 1.290175 -.015 1,05 3.71919 2 3.72199 +.075
1.10 1.510383 1 1.510468 +.006 1.10 4.,02084 2 4.,02389 +.076
1.15 1.71591 2 1.71619 +.016 1.15 4.36556 3 4.36900 +.079
1.50 1.938383 1 1.938836 +.023 1.20 4.78074 2 4.78424 +.073
1.25 2.20246 1 2.20302 +.026 1.25 5.30594 2 5.30988 +.074
1.30 2.,54322 . 1 2.54397 +.030 | 1.30 é.OLOSS 2 6.01514 +.076
1.35 3.02859 1 3.02956 +.032 1.35 7.03786 3 7.04330 +.077
1.40 23.83111 1 3.83237 +.033 1.40 8.75663 2 8.76278 +.070
1.45 5.63521 2 5.63680 +.0287 | 1.45 12.6354 3 12.6440 +.068
1.46 6.36240 2 6.36446 +.032 1.46 14,1989 3 14.2074 +.060
1.47 7.42959 1 7.43224 +.036 1.47 16.4904 3 16.5036 +.080
1.48 9.22224 1 9.22550 +.035 1.48 20.3352 3 20.3491 +.069
1.49 13.2758 \\\I\\\\13.2804 +.035 1.49 29.0159 3 29.0342 +.Oé3

*] FEM solution with 50 elements and 129 nodes.

*2 Eigénvalue number.

TABLE 8 : The dielectric rod example with mode number (n)
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~
HE21 HE22
) =t * % %D n- * %
B Y S (Th.) No S (FEM) Error Y S (Th.) NQhw S (FEM) Error
‘i.OS 2,.78442 2 2.7533 -1.1 1.05 4,91063 4 4.9377 +0.6
1.10 3.02123 3 3.0108 -0.3 1.10 5.26356 5 5.2954 © +0.6 »
1.15 3.28023 2 3.2749 -0.2 1.15 5.67710 3 5.6962 +0.3
1.20 3.58649 2 3.58901 +0.07 1.20 6.18157 3 6.2177 +0.6
1.25 3.97093 2 3.97471 +0.1 1.25 6.82447 3 6.8582 +0.5
1.30 4.48556 2 4,49332 +0.2 1.30 7.69076 4 7+7297 +0.5
1.35 5.23657 2 5.24896 +0.2 1.35 8.95834 3 9.0030 %+015
1.40 6.49729 3 6.52200 +0.4 1.40 11.0842 4 11.139 +0.5
1.45 9.35970 2 9,35312 -0.07 1.45 15.8898 4 15.966 +0.5
1.46 10.5172 2 10.5202 +0.03 1.46 17.8287 4 17.911 +0.5
1.47 12.2163 2 12,2295 +0.1 1.47 20.6715 4 20.778 +0.5
1.48 15.0719 3 15.0915 +0.1 1.48 25.4430 5 25.567 +0.5
1.49 21.5308 3 21.5817 +0.2 1.49 36.2206 S 36.479 +0.7

*] FEM solution with 50 elements and 129 nodes.

*2 Eigenvalue number,

TABLE

9 : The dielectric rod example with mode number
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11 ¢+ Discretisation of a circular waveguide for the

computation of higher order modes propagation
characteristics ( typical examples ).



4.2 The Inhamogyeneous Waveyuide

4.2.1 Runye-Kutta differential énalysxs

Great attention has been paia to the 1inhanogeneous waveyguide in the
past due to 1ts disperslon-reductlon properties i1n multimode appli-
cations. Varilous analytical and variational methods [4,5,19,20] have
been developed tor 'the analysis. The inhomoyeneous fiber has a
slowly varying lndex of refraction in the radial direction (Fig.l2).
One of the methods used a ditferential Runge-Kutta step by step
approach which was developed and mmplemented some years ago at
McGill University. Because 1t 1s a one-diumensional problem, the 2-D
FEM method 1s obviously not needed tor routlne analysis, but the
comparison between the results trom these two metnods greatly
umproves the confidence in the FEM programs. The detaliled Runge-

Kutta analysis 1s availablie 1n reterence [1Y].

4.2.2 FEM solution

A step 1ndex modgl shown 1n Fi1g. 12 1s used to approximate the
parabolic profile of an 1nhamogeneous fiber with a finite claddiny.
62 elements and 159 nodes are generated to map the structure. Table
10 gives the results fram both methods and shows a excellent accura-
Cy, except tor the tirst value of v. The Runge-Kutta results are
camputeda 1n aouble precision. At very low freguency, the tiela
covers a large area and the number of elements required outside for
a yood accuracy should be greater. But this lower eage ot the spec—
trum 1s not usually reachea at optical wa(‘v;\e\J ength,
%

For = 1., .a/c = 2-a/ + ,a normalised trequency of one ygives a

radius "a" of .lb6 . which 1s extremely small.
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E HE
HEll H 21 31
*q *1 * *4 *2 i *4 *3 *

Y S {RK) S (FENM) Error S (RK) S (FEM) Error S (RK) S (FEM) Error
1.04 0.977610 0.976640 -.100 2.170030 2.164290 -.260 3.20710 3.19167 -.48
1.10 1.187251 1.187124 -.011 }.2.389231 2.386839 -.100 3.458954' 3.452893 -.180
1.14 1.311962 1.311868 -.007 2.545459 2.543810 -.065 3.652222 3.649044 -.087
1.20 1.510205 1.510257 +.003 2.819214 2.817969 -.044 4,003891 4.001578 -.058
1.24 1.662580 1.662602 +.001 3.043603 3.042554 -.034 4,299130 4.297761 -.032
1.30 1.949522 1.949422 -.005 3.485835 3.485218 -.018 4.891114 4.890539 -.012
1.34 2.208118 2.,208048 -.003 .| 3.898263 3.895336 -.075 - 5.447305 -
1.40 2,807512 2.807164 -.012 4.885428 - - 6.811314 6.807586 -.055
*1 Mode numbers n=1, m=1 ; computgd with 62 elements and 159 nodes in 1/4 fiber.

*2 : Mode numbers n=2, m=l ; " " " " " " " " 1/8 fiber.
*3 : Mode numbers n=3, m=1 ; " " " " " " " " 1/12 fiber.
*4 "RK" solution computed in double precision

TABLE 10 : Numerical results for the inhomogeneous optical fiber.




4.3 The Elliptical Fiber

4.3.1 Description

The elliptical fiber example chosen for this sectlon( 1S fully des-
cribed and analysed with another method 1n reference [(21]. It is
made of 3 dielectric layers, the last one being infinitely wide. The
two boundaries have a different ellipticity { The ellipticity « 1s
defined such that any point x-y of the ellipse verifies the
following relation : x= R cos{ ¢ ), y = xRsin (¢t ) and ? 1s a
parameter between 0 and 360 degrees. ].

The virtual boundary 1s given the same ellipticity as the outer edge
of the cladding. Fi1g. 13 shows one quarter of this structure.

The mmportant result in this example 1s the Ay characteristic curve
between the two quasi-deyenerate modes corresponding to the two sets
of boundary conditions KBC=2 and KBC=3, Tables 11, 12 and Fi1g. 14,
15 give the results from both methods and exhibit a good agreement
between them with only 46 elements and 119 nodes.

4.3.2 The oy characterilstics

The difterence between the propagation constants of two modes 1S not
directly available fram the output of the elgenvalue golver. This
one gives the normalised frequency as a function ot the normalised
propagation constant for only a small number of points.

The method which computes the Ay characteristics at any frequency S
1s the following :

Bach curve (v versus S) 1s approximated with a plecewise quadratic
function, For three data points, we can find three parameters A, B

and C such that :

y-as?s+Bs+c , s=92 (4.10)

If the three data points are (yl ,Sl ), (*12 ,S:2 ) and (73 ,S3 ), we
easlly find the followlng relations :
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ﬂiz—sl) (Y3-Yl) + (51-53) (Yz-yl)

A = AN — _ “ _ (4.11)
.&53 Sl) (S2 Sl) (S3 52) )

Yo-Y \

2 1
B = ——— - A(5 +S ) (4.12)

52 il 1 2

2 -

C =v, 7 AS| - BS, . ’ (4.13)

¢ -

The canplete curve y versus S 1s canpletely defined by a set of A, B
and C coefticients. Therefore, for any S within the range covered by
the data points, we first find in which segment [S;, Sj4, ] 1t
belongs and using the corresponding coefficients, we can compute the

gquadratic approximation of Y. -

4.3.3 Error analysis

AN

Consider two modes at a given freque'ncy S with propagation con—
stants y; and vy, . Let 4y = vy, = v, .

The Ay values may be relatively very small and the analysis of the
wOrst case error is very important to determine the accuracy ot the
results,

The error 1s computed wlth respect to the expected error on the S-
value (S) fram the solver, Examples previously studied in section 4
give us same upper limit for AS.

If :

BCBY ) = by +bY,, (4.14)
4( Ay ) 1s the absolute error on Ay, Ay and Ay, are the absolute

{
errors on Y| and Y, respectively.

' dy dy
th Al & = (=Ll g2
en ( 8y ) (35 481+ (3G9 8s; (4.15)
A(A
Define (4y) as the relative error on Ay , As as the relatave

Ay S

error on S, and assume A4S;= AS,
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‘ A(AY) s dy dy AS
Then —_— = —= =11 2
Ay { Ay ( 35 * 35 )} e {4.106)

The coefficient ﬁ ( %;—1- + g—;:’— ) 1s the error <:oeff1c1ent:° "EPS".
The quantitiles avy)/dS and dy,/dS are camputed using the same quad—
ratic interpolation defined previously. We obtain :

dy /dS = 2AS + B (4.17),
This is true for any mode.
The Ay analysis 1s done 1n the program called "DBETAS".
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Fig. 13 : Elliptical waveguide discretisation.

46 elements, 119 nodes:



Y S (KeC = 2) S (KBC = 3)
1.353 2.264655 . 2.226960
1.358 2.530127 - 2.485246
1.363 2.783134 2.731492
1.368 3.064107 3.011099
1.373 3.297490 3.23@801
1.378 | 3.579265 . 3.504433

‘ 1.383 3.886182 3.802208

1.388 4,222381 4.128036
1.393 4.603401 4.497282
1.398 5.019148 4.900267
1.403 5.453403 5.318555
1.413 6.691547 6.519348
1.418 7.4718@ 7.277@9
1.423 8.40982 8.18948
1.428 9.563@ 9.31616
1.433 11.0155 10.7412
1.438 12.9433 12.6428
1.443 15.5582 15.2284
1.448 19.6661 19.3@89

TABLE 11

The Elliptical fiber propagation characteristics for the two quasi~
degenerate daminant modes.

See TABLE 6 for the definition of "KBC".
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V(£58%) Ay (ref) Ay (FEM)
*2 (nl-n2) (nl-n2)
*1 % $ *4
error error coefficient
0.279 0.0819 - - -
0.382 0.255 0.241 -5.5 -115
0.498 0.365 0.351*3 -3.8 -100
0.616 0,398 0.386 -3.0 - 90 *
0.747 0.398 0.396 -0.5 - 85
0.900 0.380 0.362 -4.7 - 80 {
0.993 0.365 0.358 -1.9 - 80
1,105 U.346 U.338 -2.3 - 75
1.195 0.331 0.325 -1.8 - 75
1.274 0.318 0.316 -0.6 - 75
*1 Fram graphic estimation, ref [21] &

*2 With : V = 0.1561 x S, nl = 146, n2 = 1.401, n3 = 1.343

*3 Fram the average of points close to V = 0.499

*4 See section 4.3.3 : The error coefficient is defined as the
maximum relative error on Ay 1n % for 1% error on the corresponding

eigenvalue.

TABLE 12 : Ay characteristics of the elliptical fiber
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4.4 The Finite Clacainy Fiber and the cutotf problem

4.4.1 Description

This example have been chosen to show one Llimit >t the tormulation
glven 1n aetall 1in section 3. Eguation (3.7) becames unge=fined when -~
yoes to tfinity, when ‘./~ = 7 (This polnt 1s detine1 as the
claading cutotf), As 1t 15 shown 1n tnis example, values of cLOSe
to the relatlve permittivity ot one of the Adilelectric materials leac
to 1naccurate or erroneous results. This Dehav.or may bDe explainea
with a slightly aitterent formulation of the variational expression

[reft. U], which can be written

. _ (4,18}
o [ [
r - . Ta o~ N 1 -7 - - . -
. s oA T bv vDe 0 TOKE T o e 00 38 = T
1=1 1 * £o 2R 2 * S -
In the mecia ot permittivity such that . / = .-, the Hel-
molhtz's equations (Z.8) Decome the statlc eguatlons :
Te YL = 9
SR =y (4.19)

: ana - go to zero amd the pro-

+

\k

wh\& - goes to infinity,
ducts occuring 1n (4.18) are uncefinea.

One solution to eliminate this discontinuity 1s Lo use anotner integral
formulation with the transverse components ' see Appendix 5 :, but these
are discontinuous. In the special case of the finite cladding fiber, the
solution may be found using differential methods, replacing the usual

Bessel functions by the solutions of the Laplace equation i1n the regions

where ¢ /5 = (= Such a solution tor the z-components are :
E, = ar” + Br " ) cos ( n¢ ) (4,20)
Hz = (cr” o« or " ) $1n 1 no ) (4.21)

Where A, B,C and D are constants, r 1s the radius, : the anjle and n
the mode number.
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4.4.2 Example

The fiber 1s made with three materials having respectively a rela-
tive i1ndex of refraction of 1.53, 1.50 and 1.0 (air). The cladding
to core dimension ratio 1s 5. It has been discretised with 25 radial
divisions and 5 angular divisions as At 1s shown on Fig. 16. Only a
few points of the fundamental mode close to the virtual value of v =
1.50 have been studied. Numerical values have been checked with the
results given 1in reference [22]. A noticeable error 1s detected when
the absolute value of ( '-f:/_ﬁo ) 1s smaller than 0.002, and the
results when , 1s 1inside this mterva} are not valid.

Details are given on Table 13 and Fi1g. 18.

Fig. 17 represents the Hz field for v= 1.45, far fram the cutoff.

Y S(HE;;)
1.5100 29.1642
1.5050 22.5605
1.5020 18.9013
1.5010 17.6086
1.5005 16.6580
1.5002 14.9684
1.4998 18.8415
_1.4995 17. 3660
- 1.4990 16.5441
<\ 1.4980 15.5109
1.4950 13.3127
1.4900 10.7572

TABLE 13

Near cutoff propagation characteristics of a finite-cladding fiber

58



65

.

air
nl

¢ladding

n2

core
nl

Fi1g. 16 ffinite « Yadding fiber,
discretisation,

vore index nl = 1.510
Cladding 1ndex n2 = 1.9500

Outside i1ndex n3 = 1,000

b,

v ladding

tinitte « ladding
Hz tield, Thinea
\ 1.450 ¢ HE

tiber,

stale,

11

)




0%

Y
1.51 o ———t— e~ - - + +— - T
’ 1
P |
- e L
~
. J
-
/ CUTOFE  ~
1. 30 — —
e
’/
/s
S
T / +
//

|

1. 49 .{F_Z._.-....._ — e —— - = = - - — - - - - - - - -
10 15 20 25 30

Fig. 18 Finite cladding optical fiber. Propagation characteristics of the

fundamental mode near the

¢ladding cutoff,




4.5 spurious Mode Detection and Analysis

A spuriocus mode 1S an exgenvalue—elgyzrvector pair of the numericai
scheme which does not represent 4 real propagating mode 1n the
wavegulde . It has been observed by many authors working with Finite
Elements 1n that fields (ref. 14, 16 and 23}, Its detection 1s ob-
viously easy when the exact answer 1s known from another source,
but may be difficult in a real unknown problem, when many modes have
propagation characteristics close to each other,

As we show 1n F1g. 1Y to 20, an erficient way to solve this aetec-
tion problem, which jlves also a better understanding of the pheno—
menan, 1s to plot the equipotential lines of suspected modes.

A spurious mode has three main characteristics :

- The equipotential lines are not as smooth as they are for real
modes. Sharp contours are usual ly apsent trom the real low order
mode plots.

- The effect ot the discretisation 1s umportant. Many sharp edyes 1n
the contours correspond to a transition between elements with the
sane permittivity. These are usually absent in the regions of cons-
tant  pemmittivity of real modes.

- Same additional periodicity appears, ndicating an approximation
to a highly distorted high order mode.

From the analysis of many contours, 1t seems that the so called
spurious modes are usually very bad approximation of high order
modes which have extremely 1naccurate propagation constants.

Finally, note that the true modes are relatively 1insensitive to the
virtual boundary location ; this 1s not so for the spurious modes,
as 1t 1s shown 1n table 5. Thils characteristic may be also used for
detection, but the graphic solution appears to de a fasSter and more

reliable way.
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5. ANALYSIS OF A BICUNICAL-TAPERED-MONOMODE OPTICAL QUUPLER

5.1 Description

It has been experimentally proved that two monamode fibers fused and
stretched may act as a directional coupler 1if the dimensions of the
cross section of the tapered region are small enough (see ref.
{24]). An asymptotic analysis using Snyder's coupled-moae theory
{25] has been carried out. The physical interpretation of the coup-
ling effect 1s relatively simple : 1n the reduced fibers, the elec-
tromagnetic field can escape from the core and 1s spread in the
common ¢ ladding. The effect of the core becomes secondary and the
cladding becames the major guiding structure 1in which coupling 1s
allowed.

A more accurate method of anmalysis 1s to consider the complete
ocoupler region as a guiding medium Ot canplex shape ana to campute
1ts propagation characteristics with the FEM.

A longitudinal view and a sample of the discretised cross section ot

the coupler are shown 1n Fig. 22 and Fiyg. 23.

5.2 Mode Superposition and Coupling Effect in 2-D

5.2.1 Introduction

As we have seen previously, 1n any structure with two axes of symme—
try, we need only model one quarter of the structure 1f we use four
sets of boundary conditons, ‘

In that case, we analyse only one quarter of the x-y plane. The four
lowest modes of the structure turn out to be the lowest modes of
each type of symmetry. When the fibers which constitute the coupler
are separated by a large dlstaﬁce, these four lowest modes are
deyenerated and have the same propagation characteristics, even 1if
their field distributions are not similar,

If we use the definition given in table 6 1n accordance with the

"KBC" code, we obtain the following relations :
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For two separate fibers :

- Modes 2 and 3 have the same propagation characteristics and field
distributions 1identical with a 90 degrees rotation. Therefore, they
correspond to two different polarizations.

- Modes 1 and 3, or 2 and 4 are such that their sum gives the
fundamental (and degenerate) mode of one 1solated fiber, and their
difference, the fundamental mode of the other . Fig 21 1llustrates
this behavior with simplified equipotential contours . It is the
consdiguence of the fiber separation and the fast decaying rate of

the field 1n the claddinyg between them.

When the two fibers are bfought close to each other, the degeneracy
slowly disappears and each mode becomes different from the other
with distinct propaéatlm characteristics (see Fig. 26). ‘\

This behavior 1is the key to understanding the coupling effect‘: obser-
ved 1n the laboratory. Even 1n a single mode coupler (where each
fiber carries a single mode), the fundamental mode which carries all
the power is split by the loss of symmetry and a modal superposition

occurs,

5.2.2 Theoretical ‘Model

In this section, we consider a structure uniform in the z-direction
(i.e. 1gnoring the coupler taper). If we consider E (or# ), the

total field, we can write :

- - - - - (Sol
E = Ele Bz, Eze 182 2z, EBE 182 2 | E4e 18y z )

where :

E (x,y} 1s the field of one of the quasi-degenerate modes (i=1,2,3
oxl' 4) over the cross section of the coupler for a wave propagating
1n the positive direction,

81 1s the corresponding propagation constant.

-

A sumilar equation may be written for H.

In the experimental set up, only the power Pg delivered to a detector
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having a finite receiving surface S can be measured. Therefore, it
is necessary to campute this quantity in tems of the longitudinal

camponents,
The power flow is obtained from the Poynting vector :

-+ >
S = ExH (5.2)

> -

E and H represent the total complex electromagnetic field vectors.
From equations (2,12) to (2.15), we know that the transverse field
components are 1n phase quadrature with the longitudinal z-compo-

nents. Therefore, the real power flow propagating along the z-axis

1s
-> > * ->
Re (S ) = Re {-E xH ).e (5.3)
z t t z
> <> ’ -+
where Et and Ht are transverse ( in the x-y plane ), and e 1s the
z

unit vector in the direction of propagation.

If we assume that the total field is the sum of the 4 lower modal

fields obtained from the four sets of boundarv conditions, we have

4
B - @ B T8 (5.4)
t ) t
i=1
=+ 4 +i -jB. 2z -
H = I H e i (5.5)
t , t
i=1

where the Bi's are the propagation constants of each mode.

, +jwt R , ,
The time factor e is omitted for* simplicity.
-+ i e
Et and ﬁt are in phase and real.

Therefore

Re (S ) =

H) ) cos( B -8B, )z (5.6)
z t 1 3

The total power flow over an area S in the x-y plane can be written

q
P = I I P, cos( R -B )z (5.7)
3 ij iy
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where - P = i } ds (5.8)

Next, we wraite Pl in terms of the z-components % and ? previously
1 ]

defined and which are computed by the FEM proagram. From the defini-

tions given 1in section 3.5, eqguation (3.51), we can write
- 1 - e -+l
S LCE xHL) = vy e .3 x3) (5.9)
z t t 1 z t t -
Using equations (3.19) and (3.20), (5.9) becomes
1] Er
AAY Y 1.t { (7.0 .7 ¢ ) +¥2(—=)( Ty .97
1 ]Y1 jrr 0 tml t 3 Yl €9 a tvl tw] )
- Er -+
+ yile (V. y xV )+ (— V oy xY ).e ) (5.10
1%z twL tbj £q ) tvj t¢1 z ' ( )

Subscripts 1 and j refer to different modes. Subscript r refers to

elements. Therefore

Yy and vy are the propagation constants of modes 1 and 3.
1

Tl and T] are the corresponding constants defined in equation (3.5),
r r

but with the new subscripts.

€ 1s the permittivity in element "r".
r 3

\J/ A and A are the corresponding constants given 1n equation (3.21).
v 1 ]

This transformation 1s possible only because the aradients are 1n
the x~y plane. The vectorial manipulations are done with the standard

v results given in reference (17), page 118.

If we use the following 1dentities

V. {fVg) = (VE.Vg) + fV§ (5.11)
Vx ( fvg) = Vf x Vg (5.12)
we obtain
2 2
IS ( Vf.Vg ) d5 = % .rs"( Ng + QVf ) + V.( ng + gi ) das (5.13)
- -
IS { VExVg ).dS = k& IS Vx ( Vg - gVf ) .ds (5.14)
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The Divergence and the Stokes's theorems can be used only i1if the gradients

are continuous 1n each area of integration. Therefore, we write PlJ

in terms of the sum of the power flows going through each element.

We obtain

r r r r r '
P N v .V + yi(— v .V .1
19 fs { t®1 t¢1 ) Yl(EO ) ( twl tw] ) (5.15)
r r
r r “r r r -
+y2 @& (v v (v v ds
v, E, ( twl X t¢j ) + (80 ) twj X t®1 ).eZ } .
where : z Sr = S, ( "“" = proportional to )
Using equations (5.13), (5.14) and the Helmholtz equation (2.8), we
obtain
(5.16)
1 1 ¢ r
P ~nE S - k2 (=4 Jer o8 + y2 (== " T} as
1] S o D) 1 1 Eg J 1 r
r T T
r r
r Er r I r r -
+ v = v }. d
fc{altt» ®]t®l+ YT Jew Vv +y Gy ) b 1
r r r fr e r r r
2 -
+ v - v + (— v - v 1
fcr{ N t¢] ¢j i) (Eo )(w] N twj)}
The line 1integral can be written (5.17
T r (v r -+ (Er —_— } r (v - 2y oF 11
“ c ¢1 t¢j -nT ) ) twj 1+ ¢] t¢1 noy tbl ’
r r
r fr r > r > “r r r
+v2 — ) v . n+V + (— 2y + 7
viw, (Eo) g -m ®y 1} (60 A Eylvov ¢
Using the following relations :
g - > -»> - -> -+
(e xf) .n=e . (fxn) for any function f 1in x-y plane:
z z
-+ g -+
l =e xn and
z
> > - -+ -+ he - -+ - -+ -+
f.1=f.(exn)=-<ex§).n=—ez.(fxn)whenfls
z z

[

1n x-y plane, (5.17) can be written in terms of the transverse field com-

ponents computed 1in section 3.1.2

dix 1.

(equations 3.24 and 3.27)

and 1n appen-



We obtain : : (5.18)

r 7Ir > r , oir = )
i ‘fcr Al ¢l { ¢t . n) +{A2 ¢] ( wt xn ) + A3 Yiwl ( ¢t X n )}.eZ
€
r r  +ir -
‘ ea (ol BT Ay .

where Al, A2, A3 and A4 are independent of "r" and do not need to be

evaluated.

The continuity of the fields ( see section 3.1 and appendix 1 ) leads
to a concellation of the parts of the integral (5.18) along interele-

ment boundaries. ’ ‘ .

~

™~

~

A\
The contribution of the virtual boundary 1s also zero because\bﬂihfig_‘7<:;4

-

field components vanish there. —

Finally, the only path on which the field must be analysed 1s the axis

of symmetry.

b On that axis, we always have one of the following boundary con-
ditions
¢l =0 or wl =0 ( for a mode "1" )
-
Then : V.¢ xn=20 or Vy xn=20
t'1 t 1
i 4 : v n=o0 v n=0
an : . n= o . n=
. twi * t¢1
) > > o +>1 > 0
\\‘3 wt . n = or ¢t . n =
+1 -+ 0 >3 > o
¢t X n = or'wt X n =

a

1" i1n the above relations.

3" can replaj

P. becomes : (5.19)

1)

) 1 1 rr Er rr

P._=-k3(—+—=) ¥ [f_ ¢ ¢, +¥2(==) v, as

1) o S i3 1 € j 1 r

T, T r r
i
~ e
>y -+ - -1 > 2, = +y > r +>i -
. . + —_— .
+ i) Al¢1(¢t.n) + A2¢jez (wtxn) + ABYiwlez (¢txn) A4(€0)¢J(wt n) dl
Axes of
, symmetry
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According to the definition of the modes given in table 6, we also have

the following boundary conditions with respect to the x-axis :

3 - > +i -+ X . .

¢l ’ wt . n, ez.(cbt Xx n ) are antisymmetric when i = 1 or 3.
>3 -> -+ >3 > i . .

wi , ¢t . n, ez.(lbt X n ) are antisymmetric when i = 1 or 3.

When i = 2 or 4, these quantities are symmetric.
#

‘ ~7%$\Q detector 1s put at the output of one arm of the coupler, the
measured power flow is the integrated power over one half plane ( defi-

ned by the Oy-axis with our convention ).
Taking S to be this half plane ( x >‘O ), the surface integral in (5.19)
has the following properties :
- It vanishes when 1 and j are such that
{(1,3) = (L,2), (2,1), (1,4), (4,1), (2,3), (3,2), (3,4) or (4,3)
This 1s due to the difference of symmetry betwee;\the modes i and )
with resp%ct to the Ox-axis.
- It does not vanish when i = j or when
(1,3) = (1,3), (3,1), (2,4) or (4,2
The line integral in (5.19) has the following properties

- It vanishes when ¢i = ¢j =0 ( or wi = wj = 0 ) on the Oy-axis,

e.g. when 1 = j or when (i,3) = (1,4), (4,1), (2,3) or (3,2).
- It vanishes when (i,j) = (1,4), (4,1), (2,3) or (3,2) because of the
difference of symmetry between the modes i and j with respect to the

Ox=-axis.,

- It does not vanish when (i,j) = (1,3), (3,1), (2,4) or (4,2}.

Finally, the only non zero terms are

P, P p p p p P dap |
11 22 7 533 7 Taa ' 13 7 31 ' Tag AMC T4

and equation (5.7) becomes

-=P__ + + + + + -
Pg = Py * Py ¥ B33t By v ( Pry Py Joos(BBy)z (5.20)

+ { P24 + P42 ycos (B,-By)z
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5.3 Modes Superposition and Coupling Effect 1in 3-D

5.3.1 A Three Dimensional Approxunate Analysis
N

.'A.s shown on Fig. 22, the coupler is truly a 3-D structure, but with
a very slow variation of 1ts shape along the longitudinal z-direc-
tion. According to the experimental results (reference [24]), we can
assume that the taper does not create any appreciable reflection to
the source, and the 1solation 1s very good fram the adjacent input.

-

Now
E = Ex.y) e 187 (5.21A)
ﬁ = g(x,y) e_jsz (5.21B)

1S a solution %o -

-+ -+
V xH = jwe(x,y) E (5.224)
-+ -
V x E ==jwui{x,y) H, (5.22B)
then, equivalently
N Y
E(x,y), H(x,y), B 1s a solution to
A, A - !
V' x H= 3j we(x,y) E (5.23n)
N N
V' X E = -3 wu(x,y) H (5.23B)
where : V' = ( a_ v a_ ' 'JB ) (5.24)
ax y N

Now, suppose € and y vary with z.

Let
4" n
E(x,y,z), B(x,vy,z), B(z) be a solution to (5.23) at a given
z, i.e. a solution to
N \
V' xH= 73we(x,y,z) E (5.25A)
N " -
V' X E = -3 wu(x,y,2) H (5.25B)
o



S R

") N

E(x,y,z) and H(x,y,z) are exactly the modal fields computed for, a
uni form waveguide with cross section defined by e(x,v.z), wix,vy,2).
Then, 1n the tapered guide, an approximate solution to Maxwell's

equations 1S

A -
E(x,y,z) = E(x,Y,2) e j¢ (z) (S5.26A)
Y -39 (z)
;{'(x,y,z) = H(x,y,z) e ¢ lz (5.26B)
where
Z —
$(z) = s B (&) d€ 5.27) J
z
(e}

( zo cérresponds to a phase reference at the end of the coupler, s

where the z-variation of the cross section disappears. )

... providing the following 1s true

N
JE .
l e-]o(z) LI & _a_e-jcb(z)

S.
3z X dz (>.28)

at each point (x,y,z).

This relation comes from the differentiation with respect to z of
4

N N \ "
Ex. Similar relations must hold for Ey ' Hx and Hy .

But
g—z e 3002 -y 202 g—z—uz) (5.29)
z
= oy g— ;OBlLE) dE (5.30)
z Z
o]
e A (5.31)
and (5.28) becomes :
a%x . ’
| —= « |B(z) E_| (5.32)
iz X
/
A
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If we call + the free space wavelength of the beam propagatinc 1nsice

~

a\ -
the coupler and ZE the chance 1n E at (x,y) 1n a distance .z, ecua-
X X H

tion (5.32) can be written

LE
2
X <« =L o (5.33)
E
X

and similarly for E , H and H
y x Y

This last i1nequality gives the arproximate conditions which wvalidate
equations (5.26A, and (5.Z26B).
In the example . which follows 1n section 5.4.., we have
o= 0.63 .
and the coupling occurs when
y = 1.46
\ .
With the geometric model developed 1n section 5.3.4, we can also eva-
luate the maximum change 1n radius R of the coupler with respect to z.
Using equations ‘5.40) to (5.42) and the parameters given in section
5.4 and Fig. 27, we obtain a maximum rate ' AR 4z | of about 30 u

per mm with a typical coupler length of Smm.

A
Therefore, 1f 42 1s a gquide wavelength Xg = ;— = 4§ micron, the chahge

in radius of the coupler 1s only 0.015u 1in the worst case,.
With the same model and the same parameters, we can also compute the
maximum value of AR /\ R for the same Az. We obtain :
| = 1.1 4z = 0.055 % when Az = 0.5u .
max

nl%

Even 1f these numbers are only an approximation, they are small enough
to *validate equation (5.33).
Therefore, the total field at each point {x,y,z) can be written

- +>
( for E field; H is similar )
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E X, v, 2 = I L " xX.y,z | e - (>.34)
1

et
x
™~
371
T
1
it
J
{

(O |
N

Even 1f the tleld Qistribution Z varles much wlth z as shown on tne
contour plots Figy. M to 33, 1t 1S reasonable to assuine that tne
power tunctions are not very affected by the z- lependence 1n the
coupliny section and PU(XrY:Z) - plj(x,y).

Therefore, all the mathematical formulation ot the previous section
1s still valia to a first approximation by replacing all tne phase

factors ":z" with the proper lntegral
arc (5.30)

In that model, z 1s a function of the longitudinal dimension, The

lower bound - = - = corresponds to the 1nput of the coupler, Rut 1n
practice, 1t will not be necessary to know ~over such a wide inter-
val because only the ditterence between the 2's 1s needed. This
arfference 1s zero when the modes are deyenerate and this 1s true

alony the longest part of the coupler,

5.3.2 Sumplifying assumptions
4
At this point, several assumptions may be made concerming the rela-

tive power carried by each mode,

- Assumption 1
The power carried by each mode of each polarization i1s egual : Piy =

Py and p22 = Py OvVer the whole x—y plane. Hecause ot the symnetry
relations, this 1s also verified for each halt plane. This 1s
necessarily true at the input of the coupléf because at that level,
all the power is in one branch only ( ¢;+ ¢3 1s zero in one half
plane, ¢, - ¢35 is zero in the other ; the same situation 1s repeated

tor ¢, and ¢, ; see Fiy. 21). It 1s not proved at the present tune

7
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chat this situation 1s kept for any z and especlally 1in the coupliny

area of the coupler.

with this assumption, equation (5.2U) pDecames :

- Assumption 2
When the coupling begins, the cross coupling terms Py P3) (Pyg +

Pgp) 1S almost equal to the 1nitial power 2P| (JPp,) over one half
plane, This allows lUU% coupling tor both polarizations,

Justifications: The amplitude distribution ot the tiela for the

boundary conditions 1 and 3 (2 and 4) does not ditter by much except
near the y-axis (see Fig. 28, 29 32 ana 33).

Therefore, the product = 3 ( :-3-, »33: , 3,%,) 1SClOse to the

product 3 ». ( 3.3,, 3¢ , 3.0-) and the 1ntegration over one

»

half plane jives almost 1dentical results,

On the y—axis, the contribution of the line inteygrali (5.18) 1is zero

&

tor the selt coupling term ( : 3 ) and can be neglected for the
11

cross coupling term when the field 1s st1ll weak at that place, even

1f the coupllng becames strong. &

Pg becames :
(5.38)

P = 2P, f1 + cos/(By-B3)d6 + 2P { 1 + cos/(By-EL) dg

- Assumption 3

Finally, we may assume an equal distribution of power 1in each pola-
rization : Pyy = Pyy = Po/4 ( Po = total power ).
This 1s verified on an averaged basls 1n perfectly circular and well
separated waveguldes where the degeneracy 1s total and the polariza-
tion not stable, but 1t 1in not proved that this feature is kept for
any z in an highly non symmetric device like the coupler.
This last hypothesis leads to the followiny expression :

(5.39)

PS = Po { 1 + cos [h(B;-B3+B,-By) df .cos/%(B-B3-Bo+By) dE }
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5. 3.3 Coupling Mechanism

The coupling occurs when & = €3 or €-# £, |, This 1s achieved
when the normalised frequency 5 = _a/c becames sutficiently small,
~hen the nomalilsed propagation constant reaches a value cClose to
the refractive 1ndex ot the cladding., The corresponding value of 5
1s detinead as the ciaading cutotf, The only variable which can be

cnangy2d 15 the scale factor "a", the freguency . heilny set by the
Laser source, The scale reductlon 1s Jdone 1n the tapered coupling

section, which must be smooth to avold losses and retlections.

The relation between :z and z cames tram the relations between . (the
normalized propagation constant ) and 5 (the normalized freguency
. a/c). The factor "a" 1s a tunction of 2z, because the radius of the
coupler chanyes continuously along z. The mathematical model which
describes this wvariation 1s given in section 5.3.4 pelow. The power
intercepted by the detector 1s yiven by equation (5.2U) wilth the
phase factor (5.36) 1n the yeneral case, and in eqguations (5,37),
(5.38) ana (5.39), depending on the validity of the simplitications.
Because ot the very short length ot the coupler, we assume a los-
sless propagation. This may not be experimentally verified 1f the
shape of the taper is not yood and presents some discontinulty,

5.3.4 Coupler Geamnetry

The geametrical model of the coupler has been developed in reference
[24) and 1s shown on Fig. 22, Fi1g. 23 shows a sample of a discre-
tised quarter of the cross section. The snall elements are 1n the
core. The radial boundaries are perfectly circular (The picture
taken on a terminal screen shows some distortion). It 1s assumed
that the shape is simply scaled alony the z—axis. Even 1f this 1is
not true when the fibers are completely separated, this assumption
1S reasonable for the coupling section.

Ry 1s the mmtial radius of the coupler and R, the radius at the

plane of symmetry.
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Fram reference (24], we can write :

2 .
R(z) = Rt 1 + "z (5.40)
/1;“ )
L
R = R e 2z (5.41)
. in
, L 28z ‘
- -4 e - 1) (5.42)
(L + Az )¢

L + .z 1s the total length of the coupling region.
The choilce ot the normalising dimension beilnyg arbitrary, we have
chosen the @iber radius R(z) and we can write :

a(z) = R(z) (5.43)
The 3 parameters R, L and _z def1ine the coupler yeametry.

5.3.5 Camputation of the coupling coefficient for 2 modes

Lont;eract 10n,

Detine a power ratlio P].J/PO as :

v

P Po = cos" I /2 = 4 (l+cosI ) L (5.44)
1) 13 17
LiL+Az) ]
with : I = (B -8 ) 4t (5.45)
1) ~4(L+42) t )

81’83 are two propagation constants (not normalised) as a function
“of z.

L and az are defined 1in Fiy. 22.

Using the symmetry of the yeametry, we can write :

M{L+Az}

1 = 2 f (B -8 ) d& (5.46)
1] 0 1 J
; R dac
= 2 M {(B -8 )R} (ZZ) AR (5.47)
1 3 dR
R, : ,
. Using the model developed in reference [24] and equations (5.40) to
) (5.42), we can write : - . -

(Y



R -y 5.48
1 = ™ (B8 -8 )R {(I(R- Ro) Ro } dR (5.48)
) Ro 1 J
Using the following transformations : S = 5"% and
Bc 2m .
Y=o 81 - 8J = = { Y, T Y] ) , X = free space wavelength of the beanm,

We finally get : Ay =y - vy_,

1 ]
2 s 8y (S) (5.49)
IJ_J= m / sm Y ds .
/T s ~ g - g
A r SO 0 v S SO
len 2m
wlth S = = — R (5.50)
in c A 1n o
s = s el/2z (5.51)
0 in

The integration can be done analytically for each vy usuxg.pleoewme

quadrat 1Cc 1nterpcolation for y and YJ
1

k 2 k k
Let Yl - AJ.S * Bls * Cl (5.52)
Y = Ak52 + BkS + Ck
b] b ] ] (5.53)
3
on a given segment "k" , v
We can write I = 2r_ (I -1 )
ij X;FSO 1 )
2 S, Y,® ) S, YJ(S) (5.54)
A?I‘so S, Y 5-5 as - o / 5-S,, ds } ’
s; A’i€,52+31i<s+cli< ' (5.55)
Il = z / _ / S-5 ds
* k Sk 0

Where "k" is the label of one segment in the [s,,s;, | interval, S;
. + .

is the lower end of segment "k" and S, its upper end. Using standard
integration formula , we obtain :




(5.56)
+
21{( 2 2 25: K S=5y

I = L | { —= (357445 _5+85") + —— (S+25 ) + 2C_ } ¥S-§
1 15 0 0 3 0 1 0 -
K ‘ S=5,

Iy is similar for the other mode and I, can be evaluated.

This analytic result avoids other numerical errors 1n a very long
and delicate process.

When two modes are 1nvolved, and 1if assumption 1 holds (see 5.3.2),

we can use for example equation (5.37) with P55, P34 and Pgqp = O

Therefore :

Pg = 2P); + (Py3 + P3)) cos I3 (5.57)

If assumption 2 holds :

Pg = 2P)) ( 1+ cos I3 ) (5.58)
= 4p); cos? 1)3/2 (5.59) .

If we define Po = 4Py;, then

Po/Po = cos? I;3/2 (5.60)

5.3.6 Canmputation of the coupiing ccefficient for 4 modes

interaction.

The same principle using four piecewise quadratlc approximations
instead of two 1s used to obtain the results shown 1in section 5.4
and computed from the equation (5.39 i1n section 5.3.2). The geomet-
ric model and the previcusly defined transformations are unchanged.
Equation (5.39) can be written :

PS :Zpll( 1 + cos 113 +1 + oos 124 ) (5.61)
> 4Py 1 ( cos? I;3/2 + cos? 1,4/2 ) (5.62)

If we define Po = 4P, as before, then :

Pg/Po =cos? 113/2 + cos? 1,4/2 (5.63)
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5.4 Examples

5.4.1 Example 1

The quarter of the cross section ot the coupler 1s shown in Fig. 23.
The core 1index 1s 1.506 and the cladding 1ndex 1.46. The propagation
characteristics have been computed and are shown on table 14 and
Fig. 23 to 26. From these results, we obtain the tollowling conclu-
sions :

- The near degygeneracy of the modes 1, 2, 3 and 4 1s very well
observed for values of » which are above 1.462 ( The cladding cutoff
1s at y = 1.46),

Thls behavior 1s related to a change in the field solution 1nside
the cladding which becames slowly nomrdecaying. It 1s equivalent to
a change ot the Bessel's functions type 1n the analysis of a finite
cladding optical fiber (ref. [22]).

- The contours (Fig. 28, 31 and 32) assocliated with these y-values
confirm the deygeneracy. In addition, the tundamental mode field
concentrated 1nside the core 1s very similar to the field of an
1solated fiber shown 1n section 4.1, Fig. 6.

- The end of the degeneracy 1s very fast when ~ falls down below the
cladding cutoff and 1n that case the field fills the cladding alony
complicated equlpotential lines. This corresponds to the coupling
effect, when the superposition of non-degenerate modes gives a beat
effect.

The ratio of the power coupled i1nto the second arm (PS) with respect
to the 1ncaming power is camputed according to the geametric model
of the taper described in section 5.3.4, and the assumptions given
in section 5.3.2 and 1s shown on Fi1g. 27 as a function of the length
of the coupling section. The slow variation at the beginning of the
curve corresponds to the end of the degeneracy between the modes 1-3
and 2-4. Then, this variation becomes very fast, but is modulated
by the relatively small degeneracy between the modes 2 and 3. The
modes 1 and 4 are almost’ campletely degenerate for Y as low as 1.43,
Same experimental p01ntsf/r3\\ reference [24] are shown, even if the

data were taken with a fiber having a core index of 1.4687,

f,
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Corresponding results fram the same reference show the approximate

soluilon fran the Coupled Mode theory ( see section 5.4.5).

5.4.2 Example 2

This example 1s similar to the previous one, except for the index of
the core which is much smaller (1.4687). This makes the analysis
with our method slightly less accurate for y's above the cladding
cutoff.

The propagation characteristics are given on Fig. 34 and table 15,
No contour is shown because of the similarity with the previous
examle.

As it 1s expected, the degeneracy occurs at a higher frequency and
the transition is smoother than i1n the previous case. The smal ler
gap between the two i1ndices allows the field to spread sooner‘ into
the cladding.

At low v, the two examples become similar, and the importance of the
cores becomes negligible in the field distribution. Table 16 shows
how the propagation characteristics come closer to each other.

G
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KBC=1 KBC=2 =3 KBC=4

1.490 77.098 77.084 77.@97 77.084
1.489 | 62.6@5 62.768 62.605 62.768
1.48¢ 53.585 53.585 53.585 53.584
1.475 45.421 45.426 45.422 45.425
1.47¢ 37.929 37.931 37.927 37.934
1.465 36.785 36.612 30.649 30.7a7
1.463 26.896 26.593 26.580 26.901
1.462 23.959 23.402 23.379 23.962

1.458 | 22.654 20.337  20.326 22.677
1.457 | 20.418 17.574 17.446 20.360
1.455 | 17.217 14.414  14.207 17.226
1.456 | 13.385 19.617 10,354 13.422
1.445 [ 11.148 8.738 8.454 11.187

1.440 9.726 7.558 7.262 9.765
1.435 8.720 - ~ 8.759
1.43¢ 7.957 6.109 5.798 7.994

Note : The example 4.4 has demonstrated the po;:u: performance
# of the programs near the cladding cutoff. Values
close to 1.46 +/- 0.802 are ignored.

TABLE 14 : Example 1
FEM solution for the first modes.
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CCoupler, Ez field, linear scale, boundary conditions code = 2,

Fig. 29 :

fundamental mode.
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Fig. 30‘3 Coupler, Hz ttelci, linear scale,“boundazy conditions code = 2,
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: /
" .8 s s s
KBC=1 KBC=2 - KBC=3 KBC=4
' 4 .
/
1.4645 | 138.86 .138.16  138.06- -
1.4638 | 105.69 105.70  105.69 -
1.4620 89.12  89.11 89.11 -
1.4570 24.367 20.316 20,061 -
1.4550 17.598  15.768 15,471
1. 4500 14.275 11.865  16.746 -
1.4450 11,757 9.922 8.769  11.803
1. 4400 18.126 7.747 7.428  10.173
1.430 8.189 | 6.224 5.996  8i234
, TABLE 15 : Example 2
° FEM Solution for the first modes

Note : Because of the degeneracy between modes “KBC=1" and ‘”KBC-:",
‘ saome values have not been computed.
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1.430

y KBC=1  KBC=2 KBC=3  KBEC=4 '
) 3 s s ‘s
1.463 78.8 < 79.1 19,1 -
1.457 3.95 2.74 2.61 -
1.455 g.38 1.35 1.26 -
1045“ 3.3? .9.4-5 0039 -
| 1.445 9.6l @.28 . 8.26 9.62-
/ 1.448 9.40 8.19 8.17 .41
.23 L 6.1 @.10 8.24

Difference between the normalized frequency versus vy .

TABLE 16 : Examples 1 and 2
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5.4.3 Campar’ ‘ison with wrimentél data o L

«

2
Such a comparison is difficult because of the great dxfficulty in

obtain:.ng reliable, accurate and experimentally- repeatable data.
The coupler analyzed in the example 2?has been studied in Ref. [24].
Unfortunately, its real shape and the .exact index values are not
known with a great accur’ady. Even when the fiber's data are good,
the bui 1ding process which involves a‘high temperature manipulation
may change the parameters in an unpredictable way.

A better model will necegssitate detailed analysis o% the built

coupler, with acéurate measurements of the indices and the dimen-
sions. . . N

N ’ |
But the previous analysis has shown the general behavior of these -

structures and particularly the triggering effett of the cladding

cutoff. It has also glven the right order of magnitude for the

coupl ing data as is shown on Fig. 27.
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5.4.4 Accufacy_éf numerical results

4 ¢
1
| Ll

As has been shown ‘previos.lsly, the discontinuity which occurs when Y.
is equal to one of the matérial indices must be avoided, Thergfoi'e 1
the points closeé to the cladding Cutoff should be selected with ’
[care. ) ‘ / ' '

The use of double precision in that particular case would probably . .
extend the range of validity of the mqthod by an apprec1ab1e margin . .
at the additional cost of memory 51ze and double precision arithme- .
tic. The contour plots distortion is a good indication of the accu-
racy of the elgenvalues.

On both examples, we can see some deyradation close to the
dlscontlnmty which is also partially caused by the increasingly
camplicated nature of these curves. In those cases, a di‘sc;:eti.sati'on
with more elements in the angular distribution would improve the
final results. Unfortunately, such discfetisation increases
camputational expense. : | L
No attempt was made to compare isoparametric solutions with conventional

finite element solutions,

5.4,5 Equivalence with Snyder coupled-mode theory
’ - » .
. > - , I
From the reference [25], the total field (E and H) in a coupler may
be written as a combination of z-modulated modes :

B= I al(z) e (x,9) ‘ ’ o !
- .
S ¥ | (5.64)

-»> n, .
H= £ afz) h (x, ,
. p p.‘x y)

(5.65)
Where : \ . T
- E and H are the total field. o %
- a, is a modulation factor, " ‘ \ '] '
- 'é’p and hp are the modal fields of each separate f£iber, : '
- p is the mode index. . . ‘ A A
The coefficients a, satisfy the following coupled equationg 'z’ . ®-
:‘1—8—.%;—?_'_)_4.:1—.8; a; = .4 ¢ a° C;; N \ ‘ (5.66) .’ ’

, Si‘J
Whete : ‘ . . .

.
.
LY
>
(
¢
1
y
i
gﬂ‘m;@:mﬁ'@xmkn Lt b St S




oy

Cpl.pl 2

-8B ; is 'the propagation constant of mode "p", fiber "j"

- ¢J® is the coupling coefficient between the mode p of two fibers

PP
] and s.
-1is /-1,

If we restrict this analysis to two identical monomode fibers i and

J. we obtain :

. T

and
da® . (5.67)
——R+i£3lal=LajclJ
dz — p p = p PP
da’ i (5.68)
--—-2-0'163513=ialCJ:L '
dz — p p = p ppP

As it is shown in reference [25], the solution of these differential
equations leads to a ratio of transfer power 135 = Pg/Po which can be

expressed as :
2 iy

P = C )
Ps cos | oP z (5.69)
17,
when ‘cpp is constant, or :
_ i 5070
Ps = cos2 fz Clj () d& ( )
. -® pp

This expression corresponds to equation (5,63) for each polariza-
tion. If we call p, thelfirst one and p, the other, we obtain :

z 2

= 2 ij- 2 i3
P_ = cos I C ., dE + (5.71)
s L Sp1,p £ cos J sz'p2 dg

Comparing this with the results given in section 5.3.5, we obtain :

ij

81-83 Cij . Bo-By

and p2,P2 2 (5072)

Therefore, we'caLn write that the coupling coefficient defined by
Synder in his theory is an elegant approximation of the difference
between the propacjatim constants of quasi-degenerate modes.

For simple structures such as quasi-isolated optical fibers, this
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approximation is a quick method to obtain the results without sol-
ving the camplete problem as it has been shown in reference [(24], by
ignoring the oore,

But it does not show the effect of the cladding cutoff as ocur model
does, and it does not predict the difference between the coupling
ratios of the different polarizations. These two points, in addition
to the achievement of contour plots had improvéd our understanding
of the phencmenon and raised new questions which will probably find
some answers in a near future with other experimental work.
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6. PROGRAMS A
6.1 Structure N /

The solution of a problem is found by executing several programs in
a sequence. The file manipulation'is done through a procedure file
which can be adapted to particular needs or constraints. \

The detailed system flow lchart is shown in Figs. 35 to 37. There are
four major and five secondary programs for the processing of the re-

sults.
The maximum number of elements is restricted by the camputer central
memory size available for the eigenvalue solwver.

6.2 The Pre—processors

6.2.1 Input program "DWIN" -

This is an interactive input program which builds the input file
“DWIN.DAT" fram the answers to the questions asked of t:he user, This
file is read by the other programs which discretise certain geamet-
ries and give the FEM &)lutlons This method is fast, efficient and
suppresses input format errors which often occur when the user edits
his own input file directly.

6.2.2 The automatic mesﬂjgenetato‘;: "ELF"

It is fed by the input file "DWIN.DAT". For each value of v (the
normalized propagation constant), and with the information collec—
ted fram "DWIN", it generates sets of two data files : ‘
-"ELEMn.DAT" which contains the characterlistics of the elements
—-"NODEn.DAT" which contains the characteristics of the nodes.

n is a label for each y, fram 1 to 16.

The mesh generator contains two main subpoutines :

-“ELGN1F' which generates the mesh for a circular or elliptical

multilayer fiber,
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-"ELGN2r" which generates the mesh for a circular or elliptical
multilayer coupler. Fig. 5, 11, 13 and 23 show typical meshe.;.

Both subroutines use a radial and angular division of the reyion to
be discret’ised. Table 18 gives the number of elements, nodes and
free variables versus the number of angular and radial subdivisions.
An autamatlc mesh generator has been preferred to an interactive mesh
Jenerator (in \w‘hich the ‘user: sets the mesh . in a more direct ap-
proach) because of the special geasetry under study.

ELGNIF® has been used extensively to test the proyrams with known
examples (see section 4). "ELN2F" has been used for the analysis of
the coupler (see section 5). »
Any other type of mesh generator may be substituted for "DWIN" and
“ELF® as long as their output formats are compatible with the other

!

proyrams,
6.3 The Solvers

The solver is made of two distinct proyrams : the ylobal matrices
generator ("DW1P") and the eigenvalue solver (DW2PX, DW2PXX).

- ———

This program executes the coding which is mathematically describet
in chapter 3. It 1s made of 4 main and 4 secondary subroutines, 1in
addition to the main program "DWMAIP". This version keeps all the
arrays in central memory and requires more than 64 Kbytes,

These subroutines are : .

-"COPYX" : copiqs the input data files “ELEM.DAT" and "NODE.DAT" 1in
central memory arrays. These two files are chosen among the
"ELEMN.DAT" and "NODEn.DAT" files previously generated by the proy-
ram "ELF". .

-"CALPAR" : It has be shown easily in section 3 that many guantities
are independent of the eleanent and may be camputed only once, at the
beginnin.g of the program. This subroutine does these calculations
and stores the results, in an array called "XVA".

-"FPINIP" does same preliminary processing before the generation of
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the' global matrices.

-"FONPRP" executes the most important part of the proyram, Using the
"ABEL" and "JACOB" subroutines, it generates the global matrices
(Ag] and [Bg] which are stored in a compressed format in the
“DWABMX.DAT" data file. Only the non-zero temms are kept, with their
row anq column numbers.
The other subroutineg are :
=-"ABEL" which computes the contribution of each pair of nodes to
the global matrices using the results in section 3. .
-“JACOB® #hich computes the Jacobian matrix and some guantities
related to it for each element.

-"FN" camputes the interpolation functions and their partial deriva—
tives in the reference element.

-"LOCATE" returns the linear storage mode location index of one
element of a symmetric matrix. ﬂ

"FPINIP" and "FONPRP" subroutines are modified versions of two
earlier versions respectively called "FPINIT" and "FONPRE". Other
versions of this program have been developed using temporary disk
data storage, which may be run on machines with small central memory
capacity. ;

6.3.2 The Eigenvalue Solvers DW2PX, DW2PXX

These are two full matrix eigenvalue solvers.

They reduce the generalized eigenvalue problem to a ‘standard
problem, tridiagonalize the matrix and use a Sturm sequence search
to find the eigenvalues. Eigenvectors are computed by inverse
iteration. No use is made of the sparsity of the original matrices,

and little time is saved by requesting 6n1y a few eigenpairs, as -

most of the computational effort is involved in the
tridiagonalization,

Because of the central memory size limitation of the minicamputer
being used, three temporary disk files (shown on the gystem flow
' chart Fig. 36) are needed to perform the computations.

The eigenvalue solver is by far the most time-consuming and expen-
'sive part of the total process. Its large memory size requirements
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had limited our problem size to approxhnatively 62 q.uadratic ele~

ments.
An optimum discretisation had to be found to reduce costly

iterations, .

. An efficient, fast and reliable sparse matrix eigenvalue solver for

general systems (not only for positive definite matrices) will make
FEM analysis of waveguides much more attractive.

6.4 The Post Procéssors

6.4.1 Camputation of the transverse figld camponents with
"DWSP",_program,

This program carries out the camputations described in section 3.5,
using four input files and five subroutines.
The input files are :
="DWIN,DAT", “ELEM.DAT", "NODE.DAT", (The input files for the solver
"DW1P") and "DWEzHz.DAT" which is a file copied from the output of
“DW2PX" or "DW2PXX".
The subroutines are :
~"CALTAR" which camputes the "ij" functions previously defined in
section 3.5 at each node of the reference element.

~-"QOPYTR" which reads the mput files.

~"XDERIV" which camputes the transverse field camponents ¢ o ¢ "
and 'b at each node, in each element.
-“DE‘N" which contains the derivatives of the interpolation functions

_needed by "XDERIV".

The output and the averaging process are done in the main program
“TRMAIN". ,
Three output files are generated :
~"DWEXEy.DAT" contains 'b and w .

~"DWHxHY . DAT" contains ¢ and ¢ .
-"DWSz.DAT® contains the z—canponent. of the Poynting .vector 8. All
these files are campatible with the graphic program "DW6P" (see
next section) if the graphic code in "DWIN.DAT" file is on.
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6.4.2 The graphic "DWEP "

6‘4.2.1 m!!

-

This program draws the equipotential lines in a cross section of the
waveguide for any canponent of ‘the field. The plot is done point by

.point with a double sweep in each element executed from the
reference triangle using the following sequence : -

-Normalise the nodal values of the field component to be plotted,
-Campute the real size of each element to determine the number of
points in the sweep process, . !

-Plot the boundaries of the waveguide, and if wanted, the discreti-
sation, )

~Execute the sweep, element by element,

This is done knowing that the field in each element can be |written
as : ‘ '
( ’ - . :

¢, (&m) g Nj( E,nn) °1j (6.1)
Where the Ny's are the interpolation functions and the ¢, y are the
nodal values obtained fram. 'Dwﬁx" or "DW2PXX". _ ’
The equipotential line "k” will be the set of points which satisfies
the following equation :

\ .
‘ - (6.2)
¢k g Nj ¢ij

where ¢k is a value generated by the program from data entered by
the user during execution. ‘ ,
The equipotential line is computed in the reference element first
and then mapped into the real element using the transformation Tj
previously defined in section 3. Using the interpolatioh functions
from the table 1, we can write : ’
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~

b = (207 - 493 + 203162 + ( 20} + 205 - 4o )n2
(407 - 403 + a6y - a0 160 + ( -3T + aed T 4 )e

i i i i (6.3)
+ (=307 - 65 + 465 In + ¢]

The sweep process consists of finding the :set of points (§ ,n )
which satisfies the above equation for a given set of ¢k values,
One £-sweep (given g, solve for n) and one n—sweep (given n, solve
for g) are done for .an optimum coverage. Equation (6.3) is solved
using standard second order polynamial analysis.

This basic method is improved greatly usiny two subroutines "ELSIZE"
and "EXTREM" which have the fol lowiny purpose :

-"ELSIZE" computes the relative size of each element with respect
to the total area using the following relation :

Si = - .
1= Jlgy axay /I [7,] d& an
Reference triangle

(6.4)

!

In that computation, the accuracy is not critical, and we use a °

simple numerical integration with three points :
. ' 3 ‘ \
Si = I We | Ji( ER'”R ) | N (6.5)

Rel .

But we have seen previously in section (3] that :

(6.6)
|3, | = LL=-v X _ Y _
i 5 k jk i3 ij D
Then, we obtain :

Si = EZZWV. (E,n)XY
R jk R jk R R ij i3

This camputation is done for each elanent and the number of sweeps
is proportional to the asquare root of the ratio 5y/ ):si.s

The density of points in the sweep may be changed during program
executién by the user.

(6.7)

-"EXTREM" subroutine computes the extremum of the field function
inside an element "i® knowing the nodal values ¢1j. This problem is
reduced to the determination of a maximum and a minimum of a 2-
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dimensional quadratic equation with the following constraints :
0<g <1 0<n <1k (6.8)
This standard problem is sol¥ed—in appendix 4. Once the extremum of
°i in the eleament "i" are known, it is not necessary to look for the
equipotential lines ¢, such that ¢, > Max(4¢, ) or &, < Min(é, ).
This feature increases the plotting speed by a factor of 2, 3 or
even greater in same cases, when the field strength is concentrated

in small regions.

6.4.2.2 Implementation

?
This program is run with the "PLOTCAD" graphic routines implemented

on a PERQ minicamputer, but‘may be easily adapted to any fortran
canpatible graphic system.

Three input files are needed : )

"ELEM.DAT" and "NODE.DAT", the input files to the solver "DW1P", and
"DWGR.DAT" generated by "DW2PX","DW2PXX", or "“DWSP" with a campatib~
le graphic format,

" The subroutines are :

-"COPYGR" copies the input files into the corresponding arrays.

~"NORMF" normalises the field.

-"ELSIZE" camputes the reldtive size of each element.

-"XSCALE" executes any linear scale-transformation required by the
user (translation, scale change, rotation).

-"ELSHOW" shows the detail of the discretisation and plots the axes

through "POINT" and "LINE" subroutines.

-"ELEHJi" solves the quadratic equations and plots the equipotential

lines through "POINT" subroutine.

-"EXTREM" computes the local extremum of the field in each element.

-"REFXY" maps any point from the reference triangle to the real
element using T; transformation (see section (3]).

-"DFN" computes the partial derivatives of the Nj interpolation
functions

The subroutines fram "PLOTCAD" library are :
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-"MOVABS" which moves the cursor on the screen.

~"DRWABS" which draws one line on the sceen.

-"ERASE" which erases the screen. i

-"INITT" which initialises the graphic system at the beginning.

"GRMAIN" is the main program which requires same additional interac-
tive input data. A log or linear scale may be selected, with up to
50 equipotential lines to be drawn. The output goes on a screen with
512 x S12 addressable points. All the contours shown in this theésis
have been plotted with this program on a "PERQ” mincamputer high
resolution black and white screen,

The point-by-point process-is of course slower than a line-by-line

process, but it gives smooth contours and a simple fault-free alter-
native for quadratic problems.

6.4.3 The coupler analyser “DwBP(2)"

This program does sevei-al important computations for the analysis of
quasi-degenerate modes,

6.4.3.1 TheAy Characteristics and Error Analysis

The main program "DBETAS" implements the method described in sec-
tions 4.3.2 and 4.3.3.

1
6.4.3.2 Camputation of the Coupling Coefficients

The camputation process deacribed in section 5.3.5 is carried out in
subroutine “CPL", and the process described in section 5.3.6 in

subroutine "CPL2".
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PROGRAM

DESCRIPTION

DWSP

DvwéeP

pwex

Dw8P

DwP2

Input program (Implemented on the PERQ minicamputer).

Autamatic mesh generator for a circular or elliptic
fiber or coupler (Implemented-Qn the PERQ). )

Global matrices yenerator (Implemented on the PERQ).

Full matrix eigenvalue solver.
Identical to "DW2PX", but using unformatted temporary
disc files (Implemented on the PERQ).

Dielectric rod double-precision analytica? solver
(Implemented on the PDP 11/23 minicamputer).

Transverse components program (Implemented on the
PERQ) .

Graphic program (Implemented on the PERQ).
Identical to "DW6P", but implemented on the PDP 11/23.

Cmpute§ the Ay characteristics, the ocoupling coeffi-
cients and the coupled power for two modes inter-
action (Implemented on the PERQ).

Identical to "DW8P”, but can solve 4 modes interaction
problems,

o

TABLE 17 : List of programs




At

N 17 19, 21 23 25 27 29 31 33
M ,
NEL 30 "34 38 42 46 50 54 58 62
5 NN 79 89 99 109 119 129 139 149 159
N | 117 133 149 165 181 197 213 229 245
NEL 45 51 57 63| 69 75
7 NN 110 124 138 152 166 180
Noax | 175 199 223 247|271 295
NEL 60| 68 76
9 N 141| 159 177
N o | 233|265 297
255 298
Limit Limit

NEL = Number of elements.
NN = Number of nodes,

M = Number of angular divisions.
N

= Number of radial divisions.

"N = Maximum dimensfon of the e;,genvalue problem.

TABLE 18: Dimension of the discretised Aproblem vs

the radial and angular division.
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USER » DWIN

DWIN.
DAT

mesh generator

ELF

.
%,

AN

Fig.ﬁ35s Flow gmm ‘( 1)

» -
EIN
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Mass .
Storage

Temporary
data files

DWa2Px
or DW2PXX

s

ZIGOUT.
DAT

Eigenvalue solver
STORE

DWEzHz. SELECT__ _/bwoznn.

DA?T

DW5P

— :‘ " Dwép

Computes the
transverse
componentsa

graphics program

SCREEN
(PJHO‘I.'OS)
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USER

DW8P or . DBETA.
Dw8Pp2 DAT

1
1
12

Computes the differenge
between the propagatiqn
constants, and the
coupling ratio. SCREEN

Solves the problem of
the dielectric rod.

USER ——% DW3 D¥ROD.

Fig. 37 : Other programs

b
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7. CONCLUSION

We have demonstrated the ability of a general 2-dimensional Finite
Element software package to analyse dielectric waveguides using
guadratic, isoparametric elements, -

Future developments of this method would include the use of a more

efficient eigenvalue solver.

The coupler analysis had shown the mechanism involved 1in the eneryy
transter process with more details than ever before, even with the

discontinulty due to the cladding cutoff,

The method 1s not limited by the shape of the yulde and shows the
real camplexity of the modes interaction in general non sywanetric
structures. -

The discretisation 1s made with a relatively small number of ele—

ments and presents a very small level of contour distortion.
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Appendix 1 : The continuity conditions of the radial field components.

From the equations (3.19) and (3.20), we can write :

+3 -+ > - + >
wt . n Ati { v Vtwi.n ( e x vt¢i ) .n}

€
+i -> + i + -
= .n + (— v .
¢t . n AriY { Vt¢i n (E0 ) ( ezx wi ) n}

Equations (3.23) and (3.26) give :

= > _ 1o 2 *>
ez<vt¢i.n)-(M $t Y2V, 4, ) x n

A S
(EO )ez twi.n N

-3 v ) -+
¢t + t¢i X n

hd -+ - <> -+ -
Using the relation ( ezx f).n=e .( £f xn ) for any vector field f

in x-y plane, we obtain

€ €
i +1 > -+ >i -+ 2 i -
— . = A= D+ - — vV ¢,
(EO)(th) Yez{( ¢txn) Ari(Y ec)( t:¢lxn)}
+>i -+ > {(+->j_ +)+A (ei 2)(VW -»)}
. = e . - -
¢tn Ye, wtxn T €0 Y tlxn
Y2 -1
But Ti =0 and the constant A is independent of "i".
Y2 b _i
€o
Therefore

£
_i +i -+ e _o -+ 2 . R -+
(EO ) ( wt.n) e, . { (¢t x,n) + A(y® =1 )¢ vtq>i xn )}
(3 )= ye.{+@  x® -atyZ-1)cv LY
% .n Yez. wt X n Y twi X n

i -+ +1 -
$t x n and q)t x n are continuous ( see section 3.1.2 ).

- -+
th;i Xx n and Vtwi X n are also continuous because cbi and wi are conti-

nuous. .
ei +>i -+ +i -+ \
Therefore, (E—- )wt . n and ¢t . n are continuous.
0 .

r
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The integral formulation of the continuity can be written

o3 iy a = 1 . (v xn) d
)_:C. ¢t.n) R Yez. wtxn) N
1 1 1 1
+ -+
- T f Ye . A( ¥2-1 )( Yy xn ) 41,
iC1 4 t 1 i

where "i" 1s the element number, Cl its contour and dll an infinitely

small part of C:.'

Using the result (3.25), the divergence theorem and the relation
-+ -
e x V¢, . ) . n , this integral becomes

e (v n) o= (
- X =
ez twl n z t 1

-
L fs Vt.(ezxvtxyl)dsl

But we know from vector calculus that

>
. . Vv =V . v - v v =0
Vt ( ez twl ) twl (e tx ez ) ez ( X twl )
]
There fore
IS, (4 .n) a = 0 (
c ¢t . n) ll =
1 1

Using the same arguments, we find :
7

C

T/ i YR Lay a1l = o
. (EO ) wt - n) i N
1 1
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Appendix 2 : Details of the discretisation process.

[ ax 3Y, ]
By definition, we have : i i
13 13
(s ]~
'clxi ayi
an BnJ
6 _ 6 _
with : ‘Xi =1 N,Xi, and Yi =¥ N Y, . ,
: je1 4 43 jm1 713

where -ﬁj is one of the geometrical transformation‘functions,
xij and Yij are the coordinates of the nodes "3j" of the-

element "i".

Then, we can write

P 6 aN . -
Jn=—57 =1 —2 x
3E . 3E 715
j=1
ay, 6 aN
J12= — = Z Y .
(13 je1 26 13
P 6 3N,
321= —_— = I —d X
an . ain "ij
j=1
A 6 3N,
J228 -——an - ;:-l "-lan Yij

Now, we compute chi in terms of the known parameters (Vzpi is

equivalent ). We obtain :

ve, = [a.0 ]t } o= . { }
R R B N -
an , an
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—5-5— and -3% can be written in terms of the nodal values ¢i.“:
6 Mi 6 N, -

¢, =1L N. ¢ - — =1 —1 . . and

S A E € " 5. 6 Yid

3, 6 9N
—a"i' > an %45
N yap M i3

Putting these results back in the expression of %i' we can write all

the quantities needed in the variational form. We obtain

L 6 6 2 42 N, AN
|ve, |2 = T L I { (Jgp+32)) % —=

t Iy j=l k=l SR

.2 .2 9N, AN . aN_ oN N 3N, ,

i i i i i i Tk k 3,
(leﬂll)'?g“—a';' = (J12J294321711) ( 3E an + 3 an’ } ¢ij¢ik

2 . . . :
|Vwi| is similar, replacing ¢ij¢ik by ‘pijwik' The coupling term

-
ez.( -vai x V¢i ) becomes :

6 6 oN . BNk N 9N,

TJ—::T{ ’j:_li_l T n T a: TRATRR
and the other terms are :
6 6
lo |2 = ;:-1 Do oy 0y
6 6
lwy 12 = NI O
Finally, the total integral may be written :
N , ., 6 & €, .
I, Lokl el ket ORI A L AN
2.y . 2 i 2 54 4
EASURIE R SAMUNPER. LFULNES . Jal ea LU
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i i , .
where Ujk’ ij and wjk are defined in page 2).
. %
Using numerical integration on the triangle, we obtain :

N 6 6 NI .
§ I T, L I {  wU, (.} ¢,.¢ +
=1 1 5ag k=1 gy R 3k RUR 1371k

€ 6 6 NI

2. L L
Yet., (=) £ I { 20 wUu, (E_,m)} ¥, 0 +
0 jmlkel pey %K CRORC CATHK

-

v21 2 g { ;‘I w_V n)} ¥, .0

1 alke1  gel R g ErR) Wit
v21 g-g { ?va (6.} ¢ +

i j=1 k=1 R=1 R jk "R R ik i3

6 6 NI i
k§ 2-1 ))isl { i lew k(sR,nR)} %350 F
e, 6 6 NI )

Kgy2 (D L I (1wl k(aR.nR)} Vi =0 -

j=1 k=1 R=1

The decomposition :

2y4T It wV v, .6, in :
i jk R R ik "ij"ik
2. - 2 *
YT zzz -oow ¢. +YT zzz °“¢¢0
i jk R 137ik iij' ik"ij

is necessary to obtain a matrix forinulation which 1is fully SYMMETRIC.
We can easily prove from matrix algebra that the above formulation in

terms of double summations is exactly equivalent to the matrix equa-

N

tions given in page 20.
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! Appendix 3 : Analytical solution of the dielectric rod problem.
{ —_— R
) &

The dielectric rod is an infinitely long circular dielectric wave-

guide ( see Fig. 5 ) such that €, is greater then €ye
L)D wWe have, by definition :
2 €1 . €2
n, = 2o an n, = o

€Ep is the free, space permittivity.

Solving the Helmholtz equation with the separation of variables
method ¢ ref. 3 ), we obtalin the z-components of the field in the
‘inner and outer media.

The interior solution ( r < a ) is :

J(k,r ) cos( n¢ ) eJ.( wt=6z )

Ezl-A n 1

J (k,r) sin( n¢ ) eJ(mt-BZ)

H n 1

=B

B oo

zl

. 2 w2, 2 2.
w:.thkl (c)(nlY).

The exterior solution ( r > a ) is :

* )
- a2 J ( wt-Bz )
‘Ezz An Kn( kzr ) cos( np ) e
o a2 3 ( wt-Bz )
sz Bn,xn( kzr) sin( n¢ ) e
2 L w2 2.2
withkz '(c) (v nz) ;
: and : n = label of the mode,
: of
y =&
- ‘
' ° The ¢-components and’r—components may be deduced from the z-compo-
{": nents usihg equations (25.12-2.15) and the usual rectangular to cy-
: lindrical coordinates transformations.
I
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Only the ¢-components are needed to match the tangential field compo-

=~
hents at the interface between the two media, when r = a.

We have :

Ezl(a) - Ezz(a) H E“(a) = E¢2(a) and

- = H '
Hzl(a) sz(a) 3 H“(a) ¢2(a)
whexe ;. @
j wy |1 BEzm BHm
Eom ™ kZ LS 39 940 57 ]
j - E_ wy 1 M __
H¢m = ~km2 { mEm or + ( c ); dr }
with : m = ] for the interior solution, 2 for the exterior solution.

up is the free space permeability.

Em is the relative permittivity of the medium "m".

The above equations lead to a matrix qequation.

Using some straight forward algebraic manipulations, we obtain :

1 1 Kr'l(Sz) J;)(Sl)
ny {57+ 757! ’ 52K (55) * 513_(5p
n&K"\(Sz) ni:r-‘(sl) 1 1
S2K_(52) * 519_(51) ny ( =57 * 757

with : s-(i"-';-).

A
s,-snﬁ-y? and S5, =§ Y- -n .

=ng = /0
2o = M0 = Vg,

-

-

al
n

248!

JI; and Kx" .are the derivative of the Bessel functions Jn and Kn.
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This system has a solution only if its determinant is zero, which leads
to the following equation in y and S :

K .(S) J (81)
1 1 2 _ 1 1, _ _n+l _ _ntl
{ nY(-g? + S—{) } ; { n(g? + 's'g') Szxn(sz) SERSY } .

~

n% nf naxm_l(S;) ann+l(Sl)
{ nizg * 7 - 5K (S3) - 513 (S1)

The solutions of this transcendental equation give the propagation chara-

\
cteristics of the rod. For a giveh value of Ai ( or Bi ), the other three

coefficients Ai . Bi , Bi ( or Ai ) can be computed.
The arbitrary coefficient simply describes the power ( or the field
strength ) which travels inside the waveguide. .

A}
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Appendix 4 : A simple method to find the extremum inside the reference

element. \

As we have seen in section 6.4.2, the field in the reference element can

always be written :

6(E,n) = BAE2Z + Bnf + cn? + DE + En + F

where A,B,c,D,E and F are computed from the nodal values of ¢.

Because V¢ is linear in £ and n , the extremum of ¢ over the element

must be located at one of the following points:
1) The stationary point of the quadratic IF IT BELONGS, to the reference

element. In that case, we have

n 2CD - BE

Vé (Egung) =0 §0 = 37— anc
- 2AE -~ BD

"o = BT - 4ac

»

and:BZ-4AC#0,\0_<_Eoi1:0i“0 < 1&g

2) The stationary point of the quadratic on the boundary n = 0.
1 N

In that case, we obtain :

3) The stationary point of the quadratic on the boundary £ = 0.

3
In that case, we obtain :
g =-—2s ,0<n <l and C#0

~

4) The stationary point of the quadratic on the boundary £+n,= 1.

In that case, we obtain :

= CLTa-Br O BRIt and :
A-B+C#0 , O0<Ey<1.
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5) A vertex of the reference element.

The maximun (mirimum) of the function (field) is the maximum (minimum)

of the field values at these 7 points.
The subroutine “"EXTREM" ( see section 6.4.2) simply computes the field

intensity at these points and returns to the main program the maximium

(minimum) of these.

122

P Lot T —_—




-

Appendix 5 : A variational formulation which removes the discontinuity

at 1, .
1 LY
From ref. 3 , We can writg :
o =3 (L) (v +Zexg )
¥z =3 U g We T 85
7 -+
. W - e ->
= - — + e
Vtcpz j ( . ) « Wt €Y zxtpt)
where : . y:z P tbz = z=components of the field
> -»>
xpt ’ tbt = transverse field,
Ei = relative permittivity in the region of interest.
&

In cartesian coordinates, we have :

-‘5 _ = +-> and -+ _; +.->
N xwx Y‘le fbt ¢x Y¢Y .

Therefore, we can write :

. w e
v 3 (CH x( Y .

1 -+ 1
t'z -Y-¢Y)+Y( YwY+;¢X)}

-~

- -> -
Eqve, ) + y( Y¢y o, ) }

W >
th’z =- 3 (c) { x( Y¢x

With some mathematical manipulations, we easily find

2z 2 2 22 -
T, v ei|vth| + |vt¢z| + 2y%e_.( W, x4, )} =
= o2y 812042 4 = 4292 2 . = 242 2 -
T, 08 Y YOS relel + €y b * ooyt ESYRL 4+ 2y4{ ¢ywx oy )}

. 2
But T, = 12-1 ’ . (
i Y- EJ}' .

and this expression becomes :

)}

-4

x - 2 £2+2++2,,_2+ 22 &
(1 -9y2)0C 2| [, |285¥2 + 2v%e,. G x

The discontinuity at T is suppressed.

N
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