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Résumé 

Nous présentons une approche décrivant la formation et l'évolution d'une 
surface comportant une structure hexagonale, grâce à l'utilisation d'un 
champ de phase. Nous avons étudié une énergie libre et une équation 
dépendante en temps de Ginzburg-Landau, pour laquelle le paramètre 
d'ordre est non-conservé. Nous passons en revue le phénomène des lois 
d'échelle en général, suivi d'une revue des systèmes hexagonaux en 
particulier, tant aux points du vue expérimental que théorique. Nous avons 
utilisé, pour les simulations, une grille carrée comportant des conditions 
aux frontières périodiques. Nous avons débuté notre étude par l'évolution 
des surfaces comme telles. Puis, nous avons étudié l'évolution de 
l'amplitude maximale du facteur de structure, suivie de l'évolution de sa 
largeur à mi-hauteur. Nous avons également déduit des lois d'échelle pour 
ces variables. Nous avons aussi étudié les énergies de surface. Nous avons, 
en effet, regardé l'évolution des énergies de surface en fonction du temps et 
en avons déduit une loi d'échelle pour les énergies. Finalement, nous avons 
étudié l'évolution des functions de corrélations temporelles. Nous proposons 
également une loi d'échelle pour ces dernières . 
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Abstract 

A phase-field approach describing the formation and evolution of an 
hexagonally patterned surface is presented. We studied a free-energy and a 
time-dependent Ginzburg-Landau equation for which the order parameter 
is non-conserved. We give a review of the scaling phenomena in general and 
of hexagonal systems in particular, both from theoretical and experimental 
points of views. A squared shaped grid of varied sizes, with periodical 
boundary conditions, was used for the simulations. First, we studied the 
evolution of surfaces themselves. Then, we considered the evolution of the 
structure factor's maximum amplitude, and full width at half maximum. 
Scaling laws as a function of system size were found for these variables. We 
also made a study of surface energies. We monitored the evolution of the 
surface energies with time, and propose a scaling law for the energies. 
Finally, we studied the evolution of temporal correlation functions. We 
propose a further scaling law for the temporal correlation functions. 
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Chapter 1 

Introduction 

The number and diversity of systems in an unstable or metastable state, 
which have been studied either experimentally or theoretically, is enormous. 
For example, simple fiuids, binary fiuids[23), gels, lasers, polymer blends, 
and even astrophysics are aU related in one way or another to the time 
evolution of unstable systems. Many experimental measurements have been 
conducted concerning the formation and growth of regular domains 
evolving from an irrel)iular pattern. Studies on electroconvection[37) or 
cliblock copolymers[4 ), to only name two, are good examples. This work 
ai ms at describing the behaviour of a particular system in an unstable or 
metastable state, the formation of hexagonal patterns on a surface. For a 
proper understanding of metastability, a dynamical description is required. 
Therefore, a theory of the time evolution of phase separation in a system is 
needed. 

Unclerstanding metastable and unstable states involves systems which are 
far from equilibrium. With this in mind, the pro cesses of random interface 
formation, motion and transformation also represents an interesting topic to 
stucly. Furthermore, when considering the evolution of systems with time, 
one often sees self-similarity. Thus dynamical scaling is often involved in the 
evolution of phase separating systems. Systems which are different can be 
related by their scaling behaviour, which determines their universality class. 
lndeed, if we consider the order parameter, whether the latter is locally 
conservecl or not will leacl to different models such as Model A and Model 
B, belonging to different universality classes, as will be discussed.[8)[29)[24) 
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A wide variety of nonequilibrium systems form cellular hexagonal patterns. 
For example, volcanic basaIt columns and nanometer-scale anodization 
pores. Other examples are common in nonlinear optics, chemistry, and 
biology.l17] In fact, many articles written on experiments or theoretical 
simulations presently conducted, either on Rayleigh-Bénard convection in 
non-Boussinesq fiuids[15][16][6], Bénard-Marangoni convection [43][13][5], 
<111tocatalytic reactions[35] or block co-polymers[3] mention the appearance 
of hexagonal or striped patterns. The focus of these works considers the 
dynamics of dislocations[38], the dynamics of penta-hepta defects[43][44][45], 
wavelength selection mechanisms, coarsening, the motion of grain 
boundaries[7] or the formation of the hexagonal paterns themselves[35]. 

Here we present a model of hexagonal pattern formation, and investigate its 
properties. Our model simulates phase separation and can be applied to 
realistic materials. The model is not restricted by common problems of 
molecular dynamics simulations, such as atomic sizes and phonon time 
scales, or by continuum field theories for which it is difficuIt to incorporate 
the appropriate physics. Our model aims at describing phenomena on 
mesoscopic length and time scales, including the essential physics, not 
limited by atomic time scales. 

A brief outline of the thesis follows. Chapter 2 explains the qualitative 
features of first-order phase transitions. Order parameters, the Landau 
free-energy equations, scaling theory, and stochastic dynamical models such 
as model A and model B are described. Concluding this chapter is a brief 
introduction to the equations used in the present simulation, i.e. the 
specifie Landau free-energy and the stochastic model used. Chapter 3 
reviews the experimental and theoretical studies relating to systems similar 
to the one presented here. Chapter 4 gives a description of the simulations 
performed and the results obtained. It is subdivided into three independent 
sections, one concerning the structure factor, one concerning surface energy, 
and the last one concerning temporal correlations. A conclusion follows, 
summarizing the major results of the thesis and outlining future directions 
for research on similar systems. 
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Chapter 2 

Phase Transitions, Scaling and 
Dynamical Models 

2.1 General Features 

To illustrate the concept of a phase transition, consider a magnet.[22] At 
high temperature T, and when no external field is present, the system is in 
the paramagnetic phase. This means that spins point randomly in aIl 
directions. Thus, there is no net magnetic moment, M = O. However, below 
a critical temperature Tc, and even without an external field applied, the 
spins tend to align along a particular direction. In this case, there is a 
non-zero net magnetization M (T), and the system is in the ferromagnetic 
state. AlI directions are equivalent, but only one will be selected. This 
corresponds to the symmetry breaking process. The ons et of this behaviour 
is a continuous phase transition, i.e. the magnetization rises continuously 
from zero as the temperature is reduced below Tc. There is no discontinuity 
and this phase transition is therefore a continuous or second-order 
transition: there is no generation of latent heat. 

Systems quenched from a disordered phase, into a thermodynamicaIly 
metastable or uns table state, ultimately reach an ordered phase, after 
evolving over a certain period of time. In fact, we usuaIly witness a 
competition taking place between the different broken-symmetry phases to 
select the equilibrium state. A network of domains of the different 
competing equilibrium phases develops, for which the length scale increases 
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with time. Also it is important to note that, in the thermodynamic limit, 
final equilibrium is never achieved. In fact, in the ordered phase, the 
longest relaxation time diverges with the system size. AIso, it is generally 
the initial fluctuations in the system which induce the appearance and the 
development of the network of domains. These fluctuations are amplified 
during competitive growth. The amount of time taken by a system to 
approach final equilibrium will thus be affected by these fluctuations 
present in the system, as weIl as by the existence of many different nearly 
stationary configurations, in which the system can settle.[l] 

The order parameter of a system, <jJ, determines the amount of local order 
in this system. For example, a convenient order parameter for the Ising 
model is magnetization. The models we shall study are closely related to 
the "Ising universality class", meaning the order parameters considered are 
simple one-component quantities, as opposed to vectors, tensors, complex 
numbers, or the like. Therefore, it is convenient to set up a continuum 
description in terms of a coarse-grained order parameter scalar field <jJ(x, t) 
as a function of position x and time t. Such a description is straightforward 
to solve numerically. A suit able Landau free-energy functional to describe 
the ordered phase is 

(2.1) 

where the potential V(<jJ) has a double-weIl structure[29][8], (see fig. (2.1)) 

(2.2) 

and K and A are constants. 
The terms have the foIlowing origins: the potential V ( <jJ) ensures there are 
two coexisting thermodynamic phases, and the gradient-squared term 
associates an energy cost with inhomogeneity in spaceJ26] Indeed, since 
grain boundaries are in general non-equilibrium features, they have a 
positive excess free energy. In sorne systems, the gradient is negative, in 
which case we need to consider higher order terms in the expansion because 
we still need an energy cost associated with the presence of an interface. 
We thus arrive at a free-energy functional of this type: 

(2.3) 
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Figure 2.1: Example of double-well structure 

where qo sets the scale for internaI structure such as stripes or circles, and 
the potential V(c/J) still has a double-well structure. 

Initially, different domains are formed, separated by well defined interfaces. 
At later times, phase ordering takes place through the motion of these 
interfaces. General theories of domain coarsening have been developed 
based on the idea that, although the domain structure is evolving, it 
remains statistically self-similar at all-times (see figure (2.2)). This leads to 
the concept of dynamic scaling which assumes the existence of a unique 
characteristic length L(t) for which, when lengths are scaled by L(t) and we 
are at late times, the domain structure is independent of time. In the 
dynamic scaling regime, L is found to grow as a power law in time, with an 
exponent n which depends on dimensionality and the character of the order 
parameter. This scaling hypothesis has been found to apply to a diversity 
of systems, and to be unaffected by many of the microscopie details of 
specifie materials. That is, the scaling function and the growth exponent 
are two features which are common to a large number of systems belonging 
to the same "universality class". To characterize the dynamical statistical 
properties of the system, we generally use the equal-time pair correlation 
function 

C(i, t) =< c/J(x + P, t) c/J (x, t) >, 

and its Fourier transform, the equal-time structure factor 
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to probe the domain structure. The angular brackets used here indicate an 
average over initial conditions. If we assume a single characteristic length 
scale L( t) following the scaling theory, we end up with these scaling forms 
for the correlation function and the structure factor: 

C(f,t) = !(r/L) 

and 

S(k, t) = Ldg(kL), 

where d is the spatial dimensionality, and g(y) is the Fourier transform of 
.f (x). The scaling limit is defined by r ~ ç and L ~ ç, with r / L arbitrary, 
where ç represents the equilibrium correlation length.[8] For more general 
scaling laws, it can also be interesting to consider the two-time correlation 
function 

Experimentally, the growing domain structure is often studied by means of 
the transmission electron microscopy (TEM), or neutron or x-ray SAS 
experiments. In the latter case, it is the scattering intensity which is more 
particularly studied, since, for example, its width is proportional to the 
inverse of the domain size. When the average scattering intensity is scaled 
in units of this time-dependent length, one obtains the scattering function 
for late times in the form of a time-independent scaling function.r9] The 
scattering of a conventional incoherent x-ray beam from a random 
arrangement of domains can only measure the average structure factor 
< l > (q, t). In order to measure the exact structure factor I(q, t), a 
coherent incident beam must be employed. With the very high brillance 
now available from third generation synchrotron sources, we now have 
access to sufficiently intense coherent x-ray beams to perform such 
experiments. [31] 
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2.2 Characteristics of Stochastic Dynamical 
Models 

The dynamics of a system with a very large number of degrees of freedom 
cannot easily be described by deterministic equations of motion. However, 
we can proceed as follows. We identify a small number of variables called 
macrovariables Ai which describe correctly the macroscopic properties of 
the system. We then write down a set of phenomenological equations of 
motion for the Ai's, the other degrees of freedom being simulated by adding 
random noise terms to the equations of motion. We therefore have 
8tAi(t) = GdAj, tl + Çi(t), where the Gi's are generally non linear functions 
of all the macrovariables of the form 8Fj8Ai, with F the energy of the 
configuration. The functions Çi(t) are random noise terms which are 
characterized by probability distribution function. Furthermore, we can add 
that if the noise terms have the following properties: 

and 

(where the Di are independent of the macrovariables Aj), the probability 
distribution P(Ai, t) satisfies the following Fokker-Planck equation[231: 

8t P[Ai, tl = - ~j 8!j [G[AilPl + ~j Dj"ÊqP. 

The equilibrium solution of this is evidently a Maxwell-Boltzmann 
distribution, P rv exp(-F[A]/D), which therefore determines 
Gi = -8Fj8A. These phenomenological equations can be divided into 

different models, such as Model A for a non-conserved order parameter and 
Model B, for a conserved order parameter. It must be stressed from the 
out set that both Model A and Model B are too simple to pro duce 
quantitatively accurate descriptions of most realistic experimental solutions 
on alllength and time scales. Even considering the simplest Ising-like 
transitions, the details of the atomic and molecular structures, the specifie 
ways in which these atoms or molecules interact with each other, the way 
they couple to other degrees of freedom, all will have extensive and 
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complicated effects. For instance, in solids, lattice vibrations and spin 
waves are transport mechanisms which may crucially affect the the way the 
system will react but they are not contained in any of our over simplified 
pictures. Instead, these models describe mesoscopic to long length and time 
scales. 

Figure 2.2: Example of symmetry-breaking and phase transition for Model 
A. These surfaces represent instants after 90 iterations, 350 iterations and 
1400 iterations respectively. 
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2.3 Model A 

Model A is the simplest of the stochastic dynamical models. It is concerned 
with the description of a non-conserved order parameter <fy, in contact with 
a constant temperature heat bath. Systems included in this class are the 
Ising model with spin-flip dynamics, binary alloys undergoing an 
order-disorder transition, and sorne magnetic materials with uniaxial 
anisotropy. To introduce this model, it is most appropriate and easiest to 
use the Ising model.[22][14] Very briefly, the discretized Ising model is a 
model of a ferromagnet or antiferromagnet on a lattice of d dimensions. 
The degrees of freedom, residing on the lattice points are the classical spin 
variables Si which can only take two values: up or down (Si = ±1). AIso, 
the spins interact with an external magnetic field H, varying from 
site-to-site. 

We can state that such a system is non-conserved since the energy of the 
spins is transferred quickly to the lattice, and the magnetization appears 
spontaneously. Therefore, the only slow variable is <fy(x, t). As stated 
earlier, the order parameter of the Ising model is magnetization. Wh en the 
order parameter is non-conserved, an appropriate equation, using equation 
(2.1), for the time evolution of the field <fy is 

o<fy = _M OF = M(V'2<fy _ V'(<fy) + H) 
ot o<fy , (2.4) 

where M is the mobility and V'(<fy) = !~ (V is defined at equation (2.2)). 
This equation, generally called the time-dependent Ginzburg-Landau 
equation, only states that the rate of change in <fy is proportion al to the 
distance, in function space, of the free energy from equilibrium. When we 
want to speak of the model A per se, we add a Langevin noise term on the 
right-hand side. Evidently, as mentioned earlier, the noise term must follow 
the fluctuation-dissipation theorem: 

< ((x, t) >= 0, 

and 

< ((x, t)((Xi, t') >= 2kBTMo(x - Xi)o(t - t'). 
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where kB is Boltzmann's constant. 

Model A is a purely relaxational model. The magnetization evolves towards 
the equilibrium value obtained by extremalizing the free energy F. The 
associated Fokker-Planck equation is simply[23]: 

8tP[cjJ(x, t)] = M J ddx8<P(~,t) [8<P~:,t) + P 8<P~~,t)]· 

Let us now take a closer look at the scaling theory relevant to Model A. [8] 
If we start from equation (2.4) but consider a single spherical domain of 
cjJ = -1 immersed in a sea of cjJ = + 1, and express \72 in spherical 
coordinates, we end up with (setting M = 1 for convenience, and 
considering H = 0) 

8cjJ = 8
2

cjJ + d - 18cjJ _ V'(cjJ). (2.5) 
ai 8r2 r 8r 

If the droplet radius R is mu ch larger than the interface ç, we expect 
cjJ(r, t) = J[r - R(t)]. Reinserting this equation in the previous, we find 

0= 1" + (d - 1 + dR) l' - V'(J). (2.6) 
r dt 

The function f (x) changes from -1 to 1 in a small region of width ç near 
:r: = o. Its derivative will be sharply peaked near x = o. If we multiply 
equation (2.6) by f' and integrate through the interface, considering f' = 0 
far from the interface and V (J) has the same value on both sides of the 
interface, we get 

d-1 dR 
0=--+-. 

R dt 
(2.7) 

This equation can also be considered from the point of view of velocity and 
curvature. lndeed, for a spherical domain, the curvature K is equivalent to 
(d - l)/R, so that v = -\7. fi = -K corresponds to equation (2.7), where fi 
is a unit vector normal to the wall (in the direction of increasing cjJ). 
lntegrating this latter equation gives R2(t) = R2(0) - 2(d - l)t, that is the 
collapse time scales with the initial radius at t t'V R2 (0) or R t'V t1

/
2

. Model 
A is indeed known to scale as 

This scaling law has been verified experimentally. Recent experiments 
probing scaling further are underway.[20] 

10 
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2.4 Model B 

An extra complication is present in a system where the order parameter cp 
is conserved. Flipping a spin up to a down spin does not cause any problem 
in the Ising model but it is not the same story if this fiipping has to be 
accompanied by the inverse fiipping of the neighbor atom's spin.[28] To take 
an easier example, consider a binary alloy composed of atoms A and B. For 
order to take place, atoms A and B have to simultaneously exchange 
position. Evidently, the total number of atoms A, and atoms B, have to be 
conserved independently. If there are nA atoms A and nB atoms B, then 
nB - nA is equivalent to the magnetization in the Ising model. We can thus 
choose the concentration of B atoms as an appropriate order parameter. 
Also, because E - P,AnA - P,BnB = E - ~M(p,B - P,A) - ~N(p,A + P,B), 
where M = nB - nA and N = nB + nA. The difference in chemical 
potentials ~(P,B - P,A) plays the same role as the field H in the Ising model. 
This is also true for Model A.l29] 

We should also bear in mind that atoms A and B can generally only 
exchange positions locally. This willlead to slower growth than for a 
non-conserved order parameter. In fact, we insist on diffus ive transport of 
the order parameter, and on an equation of motion of the form: 

(2.9) 

where !vI stands for the mobility. One can easily verify that J dicp(x) is 
constant because it is of the form 

(2.10) 

where ; is a current. This equation is generally called the Cahn-Hilliard 
equation.[12] Again, if we want to consider Model B per se, we have to add 
a Langevin noise term on the right-hand side of the equation. And here 
also, the noise term must obey: 

< ((x, t) >= 0, 

and 
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The associated Fokker-Planck equation is: 

8tP[1>(x,t)] = -M JddX8:~t)[84>~;,t) +P84>~~,t)]· 

The initial order parameter relaxation time depends on the wave vector k: 
T(k) rv k-2 from \72J23] 

If we now wish to present the scaling theory relevant to Model B, we can 
start by rewriting equation (2.9) in terms of the chemical potential IL,[8] 

j = - \7 IL, 

and 

5F 
IL = 51>· 

(2.11) 

(2.12) 

We wish to consider surfaces of constant 1> near the interface and introduce 
a Cartesian coordinate system at each point, with a coordinate 9 normal to 
the surface (and increasing with increasing 1». N ear the interface, the latter 
equation then becomes 

IL = V'(1)) - (81)) I{ _ (82~) 
8g t 8g t 

(2.13) 

where I{ = \7 . fi is the curvature like in the previous section. The value of 
IL at the interface can be obtained by multiplying through by (81)/8g)t, 
which is sharply peaked at the interface, and integrating over 9 through the 
interface. We obtain 

ILI:::..1> = 1:::.. V - aI{ (2.14) 

at the interface, where 1:::..1> is the change in 1> across the interface, 1:::.. V is the 
difference in the minima of the potential for the two bulk phases, and a is 
the surface tension. Now we wish to simplify this equation considering only 
the case where the minima have equal depth and taking the minima to be 
at 1> = ±1 as usual gives 1:::.. V = 0 and 1:::..1> = 2, 

aI{ 
/1---,- 2· 

12 
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Now, to determine the motion of the interfaces, we use the known fact that 
j = - \7 fL and that a velocity is given by the imbalance between the current 
flowing into and out of an interface, 

(2.16) 

where v is the speed of the interface in the direction of increasing qy. 
Equation (2.12) tells us that fL-t 0 at infinity. If oqylat ~ 0, that is that 
the system is locally near equilibrium, clearly equations (2.10) and (2.11) 
imply that fL obeys Laplace's equation. This gives IL = -a Ir for r 2: R, and 
IL = -aiR for r:::; R. Using equation (2.16) then gives 

dR = v = _~ [OfL] R+E 

dt 2 or R-E 

a 
2R2' 

and thus Model B sc ales differently than Model A, 

L(t) "" t l
/

3 

(2.17) 

(2.18) 

This law has also been experimentally verified.l21] A recent experiment is 
due to Malik et al.. [31] They studied the coarsening of phase domains in a 
sodium borosilicate glass undergoing phase separation, using scattering 
with coherent x-rays. To analyze the fluctuations in the exact structure 
factor, they used a two-time correlation function defined by 

c < I(h)I(t2) > - < I(t l ) >< I(t2) > 
(q, h, t2) = [< J2(td > _ < I(tl) >2]1/2[< 12(t2) > - < I(t2) >2]1/2 

(2.19) 
Here I(t) is the intensity in the pixel corresponding to the wave vector il at 
time t normalized to the total intensity. Simulations of domain coarsening 
using a Langevin model have found that 7", the correlation time (the time 
required for the scaled intensity covariance to decay to half its maximum 
value), follows this scaling law 

(2.20) 

where tmax , ta, and x = btll (bt = It2 - tll and l = (t2 + td/2) are 
determined by the scaling behavior of the average structure factor < 1 >. 
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In the limit of large x, the scaling function W2 is found to have a power-law 
form W2 = axP where p = 1 - n and n was found to be worth 1/3. 
Theoretically, the two-time intensity covariance is found to depend on 5t 
only through 5t/t in the small-t limit and 5t/p-n in the large-t limit, based 
on simulations of Model B.[10] 
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2.5 Free-energy and Model Used in the 
Present Simulation 

Many studies of convective fiow of fiuids, copolymers or other topics, 
mention the ~pearance of hexagonal or striped patterns on their 
samples.l25][4 ] To model the physical characteristics of these various 
experiments, we have chosen to use a free-energy described by equation 
(2.3) and model A. More precisely, our free-energy can be written as: 

(2.21 ) 

where cP is a phase field that describes the crystal lattice, qo is a measure of 
the initiallattice spacing, E is related to temperature, and B is equivalent 
to the magnetic field in Model A.[18] 

Three lattice structures can be described by this free-energy: 
hexagonal phase: cP = a[cos(qx)cos(~) + ~cos(~)] + b 
striped phase: cP = asin(qx) + b 
constant phase: cP = a, 

where x and y are the spatial coordinates and a and b are constants 
determined by minimizing the free-energy. A measure of a variable lattice 
spacing, q, can also be determined by minimizing the free-energy. For the 
hexagonal phase, F is found to be 0 minimum for three different values of 
q: 0, "1QO , and -v;Qo. The former value is uninteresting and the latter 

unphysical, leaving q = "1Qo . For the striped phase, the free-energy is 
minimized for q = 1. Throughout this entire work, qo is chosen to be unity. 

We consider a non-conserved order parameter, a variant of Model A, and 
hence time evolution obeys (see equation (2.4)) 

(2.22) 

Note that if we perform a transformation of the type cP -+ 'ljJ + C, C being a 
constant, we can eliminate the constant B in the previous expression, but 
introduce a term in cP2 . Boyer and VinaIs have used this equivalent 
expression to simulate hexagonal patternsF] Both equations (2.21) and 
(2.22) have (cP, B) < - > (-cP, -B) symmetry. 
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Below we illustrate the minimum free-energy as a function of B for a 
specifie value of 1: = 0.8, and the regions of stability for the stripe, 
hexagonal and constant phases, as a function of 1: and B. The minimum 
free-energy, in the first graph is obtained by minimizing the expression of 
the free-energy as a function of a and b for the hexagonal and stripe phases 
and as a function of a for the constant phase. The values for 1: and B used 
in aU the simulations of this thesis were respectively l~ and -0.2. 

.~ 
l.J.. 

0.1 

o 

-0.1 

-0.2 

-0.3 

-- hexagonal 
stripe 
constant 

-0.4 '--__ ~ ___ '--__ ~ __ ____.J ___ ~ __ ____.J 

o 0.2 0.4 0.6 
B 

Figure 2.3: Minimum free-energy as a function of B (1: = 0.8). 
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B 

Figure 2.4: Regions of stability for the stripe, hexagonal and constant phases, 
as a function of E and B. The point (E, B) = (4/15,0.2) corresponds to a 
hexagonal phase ground state. 

2.5.1 Elastic Energy 

As mentioned in the introduction, the model defined above can deseribe a 
Holid with a hexagonal atomistic lattice. The elastic energy for a solid is 

(2.23) 

where /{ijkl is a constant tensor which simplifies depending on symmetry. 
For an isotropie of hexagonal solid, we have: 
/{ijkl = /{klij = /{jikl = /{ijlk = /{jilk and /{ijkl = À6ij6kl + p,(6ik 6jl + 6il 6 jk) , 

À and p, being the Lamé coefficients. As for Uij, it is the linearized strain 
tensor and is defined as Uij = HV'iUj + V'jUi) , the Ui'S being the 

displacements from the equilibrium position.l14] 
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We can now introduce definitions for the elastic moduli of a solid. Elastic 
moduli are defined as Cik(q) = Kijkzqjqz, where we have used the fact that 
'U,'ij(q) = (iqiUj + iqjUi)/2. Elastic moduli were calculated for the present 
model to be[18] 

C12 = C44 = Cu /3, 

where C12 = [(3~ + V15E - 36~2)q5]2 /75, which are consistent with an 
isotropie solid. Let us recall that Cu = Cxxxx = Cyyyy , C12 = Cxxyy and 
C44 = Cxyxy .[2] For these coefficients, the Poisson ratio is v = 1/3 and the 
shear modulus is f.1 = C44 . The change in energy for bulk, shear, and 
dilational deformations for an isotropie solid are, respectively, 
(Cn + C12 )e, (C44 /2)e, and (Cu - C12 )e, where ç is the relative 
displacement for the different deformations . 
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Chapter 3 

Review of Experimental and 
Theoretical Studies of Similar 
Systems 

Two-dimensional hexagonal patterns have historically been studied in fiuid 
systems. In fact, since the experimental work of Bénard on thermal 
convection in fiuids at the beginning of the century[4J, spatial and temporal 
pattern formation in the field of hydrodynamic instabilities has attracted 
great experimental and theoretical interest. In particular, in 
Rayleigh-Bénard and Bénard-Marangoni experiments, we witness the 
appearance of rolls and hexagonal patterns. 

The Rayleigh-Bénard problem deals with the confinement of a liquid 
between the rigid boundaries of a shallow horizontal pool, while it is heated 
from below. When slightly heated, the fiuid remains at rest, but wh en a 
critical heating is reached, buoyancy forces create convective motions. In 
most cases, a pattern of rolls parallel to the shorter si de of the vessel will be 
induced by these motions. We witness a slightly different behaviour of the 
fiuid when the upper surface of the liquid pool is free. lndeed, 
surface-tension variations with temperature will also act as a destabilizing 
mechanism. Then, as shown theoretically by Nield[34J, convective motions 
occur bccausc of buoyancy and surface-tension forces, leading to the 
appearance of hexagonal patterns. This particular case is known as the 
Bénard-Marangoni instability. 
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Other hexagonal patterns have been witnessed in different experiments. For 
example, 1\lring patterns[35], which have a possible relationship to 
biological phenomena, can also exhibit hexagonal or striped patterns. 
These special patterns are defined as stationary patterns localized along a 
band in a gel reactor containing a concentration gradient in reagents. They 
are similar to hydrodynamic patterns but of particular interest because 
they possess an intrinsic wavelength. 

Theoreticians are evidently very interested in finding ways of simulating 
these different situations, they were in fact originally more particularly 
interested by the wavelength selection problem. As a means to do so, the 
Swift-Hohenberg equation was introduced. It was originally developed to 
model the onset of a convective instability in simple fluids (Rayleigh-Bénard 
instability). The initial idea was to consider the set of equations for a 
simple fluid in the Boussinesq approximation (incompressible fluid with 
density p = po[l - a6T]) , bounded by two infinite horizontal plates 
separated by a distance d, at temperatures T and T + 6T, respectively. In 
dimensionless units, the Swift-Hohenberg equation is 

(3.1) 

where cP is a scalar two-dimensional field related to the amplitude of the 
eigenfunction corresponding to the unstable mode and is commensurate 
with the convective rolls. The quantity ç is a random field that follows a 
Gaussian distribution, with zero mean and correlations corresponding to 
2knTb(i! - Xi)b(t - t') and E = (R - Re)/ Re acts as a control parameter. R 
is the Rayleigh number defined as 

R = ag6Td3 

, 
/'w 

(3.2) 

where a is the thermal expansion coefficient, 9 is the acceleration of gravit y, 
l/ the kinetic viscosity, K, the thermal diffusivity and d the plate separation 
or the depth of the vessel. Re (~ 1708) is the critical Rayleigh number at 
which an instability leading to convective rolls occur.l17] 

Note that even if we have not identified them as Swift-Hohenberg related, 
equations already introduced in the first section indeed exhibit a strong 
resemblance to this equation. AIso, equation (3.1) do es not form hexagons 
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but rather stripes. Only when non-Oberbeck-Boussinesq convection takes 
place (general properties of the fiuid all depend on temperature), can we 
witness the appearance of hexagons, described by equation (2.22). 

To introduce the topic of defects, let us mention that in hexagonal patterns, 
the most common defect is the penta-hepta defect (PHD), in which a 
pentagonal cell and a neighboring heptagonal cell are paired together and 
embedded in a lattice of otherwise hexagonal cells.l45] PHDs are bound 
states in which two of the three modes have dislocations with opposite 
winding numbers. The formation of PHDs will be discussed in greated 
detaillater.[38] 

Figure 3.1: An example of a 128x128 surface we simulated, after 1000000 
iterations 

Figure 3.2: Small region of the previous graph showing a penta-hepta defect 
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3.1 Studies Related to the 
Bénard-Marangoni Convection and 
Penta-Hepta Defects Motion 

An experimental study aimed at understanding the wavelength selection 
mechanism in Bénard-Marangoni convection was conducted by Cerisier et 
al. in 1987.l13J They mainly studied the influence of the vessel form, the 
aspect ratio (the ratio between the radius of the vessel and its height) and 
the heating gradient on the wavelength selection mechanism in an 
hexagonal pattern. They observed that À, the wavelength, fluctuates 
randomly around a fixed value in a11 considered cases. They also noticed 
that for two different liquid depths, À increases linearly with E where 
E = (R - Rc)IRc. 

Four years later, Bodenschatz et al. published an experimental study, in a 
cylindrical ce11 of aspect ratio 86, of the transition between conduction, 
hexagons, and ro11s in non-Boussinesq convection of gaseous CO2 ,[6J Near 
onset (E < < 1), they measured the size of the sma11 hysteresis loop between 
conduction and hexagons. Above onset, they observed a perfect hexagonal 
pattern containing approximately 5000 convective cells. Hexagonal patterns 
in nonequilibrium extended systems are formed as a result of the 
superposition of three plane waves oriented at 1200 with respect to each 
other and the flow can be described by three cou pIed amplitude equations 
where Ak' Al and Am describe slow variations of modulus and phase of 
periodic roll solutions with wave vectors qk, ql and qm, where 2:= qi = a 
(i = k, l, m) and Iqil = qe. Considering 

3 

cp ex L Ajexp(iqjr) + c.e., 
j=l 

for a homogeneous pattern the simplest phenomenological amplitude 
equations read as 

where the other two equations are obtained by circular permutation of 
k, l, m. E = RI Re - 1 and expressions for Œ and ry are functions of the 
cri tic al Rayleigh number, the Prandtl number and the 
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non-Oberbeck-Boussinesq parameter. (This equation was discussed in more 
detail by Rabinovich, whose study is presented later in this section.) 
Bodenschatz et al. found that the transition from perfect hexagons to ro11s 
and vice versa was only very weakly hysteretic. It occurred wh en the two 
states had nearly the same value of generalized potential 1> defined as 
8t Ai = -81>j8Ai derived from amplitude equations, instead of being 
triggered by instabilities.lll] 

In 1993, Bestehorn published a paper[5] aimed at computing an evolution in 
space and time of patterns in Bénard-Marangoni convection. He 
furthermore explored the region of stability of hexagons and ro11s with 
respect to spatia11y homogeneous amplitude instabilities and spatially 
nonuniform phase instabilities. We have already mentioned that in the case 
of Bénard-Marangoni convection, there are additional instabilities present 
compared to the case of convection between two rigid plates. In fact, the 
transition from ro11s to hexagons, and vice versa as amplitude instabilities, 
are then seen. We also notice the appearance of sideband instabilities which 
restrict the variation of the size of stable hexagons drastica11y to a sma11 
band close to the critical wavelength. Using two particular solutions of the 
amplitude equations, namely ro11s and hexagons, Bestehorn computed 
stability boundaries depending on the wavelength of these patterns and the 
distance from threshold (see figure 3.3). 

Tsimring, in a Physical Review Letter published in 1995, focused on the 
role of defects in the problem of ordering and wavelength selection.l45] He 
argues that the motion of penta-hepta defects is caused by the ambient 
strain due to the deviation of the wave numbers from the onset value (thus 
providing a wave number selection mechanism), or by defect interaction. 
Tsimring investigated the motion of penta-hepta defects in slightly 
nonoptimal hexagonal patterns and their interaction. He used an amplitude 
equation formalism similar to equation (3.3) and (3.4), supplemented with 
gradient terms. According to Tsimring, spontaneously formed hexagonal 
patterns are usua11y defect ridden. Non-PHD defects are not stable and 
either transform into basic penta-hepta defects or simply vanish quickly. 
Furthermore, when two PHDs meet, they do not necessarily anihilate 
themselves, but may induce a different topologica11y structured PHD. A 
particular penta-hepta defect was studied using a 256x256 grid with 
periodic boundary conditions. It fo11ows from these results that the 
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Figure 3.3: The band of stable wave numbers k for ideal hexagonal patterns 
(k = k1 = k2 = k3 ) is shown for a range of reduced temperatures E. The 
experimentally determined stable wave numbers lie between the low and high 
k boundaries and are compared with the theoretical predictions (solid lines) 
of Bestehorn[5l. 

movement of the PHDs depend on the relative misorientation angle e, 
between perfect hexagonal patterns. It was also shown that the relative 
velocities V between two PHDs depends on their separation r as V t"V r- 1

, 

which leads to r ex: T 1
/
2

. 

Very recently, Semwogerere and Schatz conducted a Bénard-Marangoni 
convection experiment on defect formation and motion in nonequilibrium 
hexagonal patterns. [43l Defects are presented in this paper as key elements 
in the process of pattern selection. Thermal laser writing, a new optical 
technique, was used to imprint the initial desired pattern and both the 
wave number selection and, most importantly, the defect propagation in the 
sample were subsequently studied. In fact, to determine the band of stable 
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pattern wave numbers, they imprinted an initial pattern of ideal hexagons. 
As weIl, initial patterns containing an isolated penta-hepta defect were 
imposed to study the directions and velocities of the defect propagation. 
Semwogerere and Schatz have found that the defect typically moves in a 
way that selects a wave number close to the center of the stable band. In 
particular, the direction of the propagation movement is strongly related to 
the wave numbers. Outside the band (see figure 3.3), ideal hexagons are 
unstable. PHDs and other less common point defects, consequently, 
typically form either at the lateral boundary, or in the bulk, and propagate 
rapidly throughout the pattern inducing disorder. This experiment has also 
showed that the defect motion is time dependent, but they mention their 
results cannot be explained by Tsimring's model. 

Tarn et al. have also studied the structure and propagation properties of a 
penta-hepta defect in an hexagonal pattern.l44] The latter was formed by 
inducing the formation of a layer of soap bubbles on a fiat glass plate. They 
found that it is the defect's own structure which determines its direction of 
propagation. 

Ciliberto et al. published a letter in 1990 concerned with the defects of a 
system where hexagons and rolls are both stable solutions.[16] They used 
three coupled Ginzburg-Landau equations (see equations (3.3) and (3.4)) to 
explain the competition between hexagons and roUs. These equations 
determine the behavior of the three complex amplitudes Ai of the sets of 
rolls describing the hexagonal structure. The dynamical system thus 
possesses four kinds of stationary solutions: the conductive state (cP = 0), 
roUs, hexagons, and the mixed state. They further showed that the 
unstable solution appears in the core of the defects of convective patterns, 
where the competition between the hexagonal and the roll symmetries takes 
place. Let us futhermore note that the penta-hepta defect can be seen 
locally as a roll. Following the same idea, hexagons will arise locally from a 
grain boundary between two oblique rolls. It is therefore clear that these 
defects play the role of nucleation seeds for the other phase, and thus are 
important in describing the dynamics of the transition between these two 
~ylIlrnetries. These results were also confIrmed in a convective experiment. 

In 1994, Rabinovich and Tsimring published an article which studied 
numerically the propagation behavior and interaction of dislocations of roll 
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systems forming hexagonal patterns.l38] To describe the simultaneous 
growth of three ro11s oriented at 1200 to each other, they used a set of three 
resonantly coupled Newe11-Whitehead-Segel equations (the same as eq. 
(3.4)) 

OtAi = EAi + Cl:A;A~ - (IAiI2 + 'YIAjI2 + 'YIAkI2)Ai. 

Here, {i, j, k} = {l, 2, 3}, {2, 3,1}, {3, 1, 2}, E is a small supercriticality 
parameter, Cl: = 0(E1j2) is the coefficient of quadratic nonlinearity describing 
non-Boussinesq effects, and 'Y = 0(1) is the ratio of the coefficient of cubic 
interaction of rolls of different orientation to the coefficient of cubic 
self-interaction. For Cl: = 1.0, the parameters favoring hexagons over rolls, 
the amplitudes of all three roll sets grow, and their phases get synchronized 
to form an hexagonal structure. However, the presence of the dislocation 
affects the synchronization pro cess in an uncommon mannel'. If we st art 
with two dislocations belonging to two different roll structures, the 
dislocations seem to move toward each other along a curved corridor and 
they eventually merge to form a penta-hepta defect. It was also found that 
the propagation trajectories of the dislocations and the position of the 
penta-hepta pair depend strongly on the initial phase distribution. 
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3.2 Other Related Experimental Studies 

Ouyang and Swinney published a letter in Nature on the formation of 
Turing patterns. The patterns appeared spontaneously in a thin 
disc-shaped gel in contact with a reservoir of reagents of the 
chlorite-iodide-malonic acid reaction.l35] The pattern was detected optically 
through transparent glass. Initially, there are many transient yelow circles 
growing in a blue background. Within an hour, the propagation of the 
patterns slowly stopped leaving a clear field for the appearance of a yellow 
dot pattern evolving more slowly. A nearly stationary state thus emerged, 
with domains of hexagonal patterns separated by grain boundaries which 
moved very slowly. When using different acid concentrations, stripes rather 
than hexagons were observed for different acid concentrations. They 
furthermore determined the wavelengths of the hexagonal and striped 
patterns by performing spatial fast Fourier transforms. They noticed the 
wavelengths varied continuously with changes in the control parameters. As 
mentioned earlier, the wavelength is an intrinsic property of the 
reaction-diffusion system, not a consequence of the finite size of the system. 
It thus distinguishes Turing patterns from other well known nonequilibrium 
structures such as convection rolls or Taylor vortices. 

In 2001, Purvis and Dennin reported an experimental measurement of the 
growth of regular domains evolving from an irregular pattern in 
electroconvolution.l37] They performed two types of measurements: they 
measured the full width at half maximum of the structure factor, and the 
domain walliength. They asserted the late-time growth of the domains was 
consistent with the power law t n with n dependent on the method of 
measurement. The measurements using the structure factor were consistent 
with t 1/ 5 , whereas those using the domain walliength were consistent with 
t 1/ 4 growth. The discrepancy between those results could come from the 
fact that the peak of the structure factor is itself not constant in time. 
Thus the 1/5 exponent may only be a transient. Indeed, we shall see a 
similar behavior in our data presented in the following chapter. 

Another interesting study was conducted by Christopher Harrison et al., 
aimed at understanding the ordering dynamics of the striped patterns of a 
single layer of cylindrical block copolymer microdomains in a thin film.l25] 
For a given local orientation of the stripes, e( r), we can define the following 
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orientational correlation function 

(3.5) 

from which we can extract the orientational correlation length (6) of the 
pattern. The latter was measured as a function of annealing time of 
dislocations to quantitatively characterize the degree of microdomain order, 
sllggesting a fractional kinetic exponent of 1/4. To motivate this exponent, 
they explain that if the distance between two dislocations is r, E rv 11 r 
(the strain energy) and the force F rv l/r2

• Consequently, for dissipative 
motion, v cv F rv l/r2 or in other words, dt rv r Iv rv r3 and thus, 
tf - t i cv r4 and L rv (tf - ti)1/4. 
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3.3 Other Related Theoretical studies 

Bahiana and Oono published a paper twelve years ago presenting a different 
theoretical approach to ours, but applied to solve a similar problem.l3] In 
their study of striped patterns in block co-polymers, they decided to use 
the following modified Cahn-Hilliard equation 

ocfy ( 3 ) ot = 6. -Tcfy + ucfy - D6.cfy - Bcfy, (3.6) 

to illustrate the movement of equal size polymer subchains covalently 
grafted together but with a weak repulsion between the subchains. D 
represents the lamellar thickness, T and u are positive phenomenological 
parameters, T being a measure of the quench depth, and B is a constant. 
Above Tc (T < 0), a and b subchains mix to make a uniform disordered 
phase, but below Tc, and for B =1= 0, the subchains tend to segregate and 
form a stripe pattern. Due to the covalent bonds between the subchains, 
segregation is only possible locally to form a lamellar structure. The order 
parameter cfy used in this ca1culation is defined as the local concentration 
difference of monomers a and b. The use of different values for the 
parameters a and b, the different monomer units, and the parameter D, the 
lamellar thickness, gives rise to different configurations, including hexagonal 
and striped patterns. The focus of their results is the time evolution of D 
and its scaling. After minimizing the free-energy, the lamellar thickness is 
fOllnd to be proportional to B-i for sufficiently large D, and the domain 
size scales like t 1/ 3 , consistent with Model B scaling. Bahiana and Oono 
also point out the need for a better modeling technique, even though theirs 
had a more thorough physical motivation in comparison to previous 
mesoscale models. 

In 1991, further studies of pattern selection in Swift-Hohenberg equations 
was undertaken by Jorge VinaIs et al. [46] They used the following equation 
describing the temporal evolution of a dynamic variable cfy(x, t) as a 
function of a space variable x and time t, 

o cfy ( x, t) [2 0
2 

) 2] ( ) 3 ( ) ( ) ot = 1 - (1 + ox2 <p x, t - <p x, t + ç r, t , (3.7) 

where 0« x « Land ç-(x, t) is a Gaussian stochastic process. Both the 
deterministic and stochastic Swift-Hohenberg equation in one spatial 

29 



• 

• 

• 

dimension were solved, and both using periodic boundary conditions. The 
one-dimension al equation can only model the appearance of straight and 
parallel convective rolls. For the deterministic case, .6.x = ;~ and 
.6.t = 10-4 chosen for stability considerations. The initial condition was 
chosen of approximate amplitude I<p(x, 0)1 l'V 10-2

. Two regimes could be 
identified, an initiallinear regime and a nonlinear regime evolving towards 
a configuration characterized by a unique wavelength. The study of the 
stochastic Swift-Hohenberg equation is motivated in part, by the issue of 
pattern selection in the presence of random fluctuations. The latter are 
important during the early stages after the instability, for a range of time 
that depends on the relative amplitude of the fluctuations and on the 
solution itself. At intermediate times, the structure factor stays broad and 
its maximum value varies with time, reflecting the nonlinear competition 
among the configuration <Pi(t) and the various Fourier components. At late 
times, the asymptotic stationary structure factor remains wide, indicating 
that the stationary configurations cannot be characterized by a single wave 
number. The two-dimensional Swift-hohenberg equation was later studied 
by EIder et al. for which they found a scaling law proportional to t 1/ 4 .r19) 

Very recently, Denis Boyer and Jorge VinaIs published a letter concerning 
grain boundary motion in patterns with crystalline symmetryF) They 
focussed their study on a coarse grained model of a hexagonal pattern, and, 
in particular, on the motion of a grain boundary separating two domains 
with arbitrary misorientation. They used the following Swift-Hohenberg 
model of Rayleigh-Bénard convection with an addition al quadratic term to 
allow the formation of hexagonal patterns 

a<p 1 ( 2 2)2 2 3 at = E<P - k6 ka + \7 <p + g2<P - <P . (3.8) 

Again, adding a constant to <p leads to equation (2.22), as studied in this 
thesis. The order parameter <p(x, t) is related to the vertical velo city at the 
midplane of the convective ce Il , E is the reduced Rayleigh number, and g2 
can be related to deviations from Boussinesq behavior in the working fluid. 
For E > 0, the uniform solution <p = 0 becomes unstable and we witness the 
appearance of a periodic pattern characterized by a layer spacing 
>'0 = 21f/ka. Hexagonal patterns are stable for -!Em(g2)1 < E < Em (g2) 
whereas roll patterns need E > Em. Boyer and VinaIs found that defect 
motion is generically opposed by a pinning force, that is induced by 
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nonadiabatic corrections to the standard amplitude equations. It is mainly 
the misorientation angle between adjacent domains which determines the 
magnitude of this force: the most easily pinned grain boundaries are those 
with a low angle (typically 4° :::; e :::; 8°). They also found 

DXgb = -Phexsin[2koxgbSin(e /2)], (3.9) 

where Xgb(t) is the time-dependent position of the grain boundary, D is a 
friction coefficient and Phex is the amplitude of a pinning force. 

Aiso in 2002, Ken EIder et al. have introduced a model very similar to the 
one we are using but for a conserved order parameter. The free energy and 
equation of motion look like 

(3.10) 

and 

(3.11) 

where Tl is a stochastic noise with zero mean and correlations corresponding 
to 2kB T\J25(i! - Xi)5(t - t'), and the field cp represents the local mass.[18) 
This model uses the analogy between localized hexagons and atoms in an 
hexagonal lattice to simulate elastic and plastic behavior of crystals on 
atomic length scales while considerably increasing speeds of calculation. 
For example, the current model can simulate one diffusion time in 1000 
time steps, while it would require rv 109 time steps for molecular dynamics 
simulations. EIder et al. verified numerically Read and Shockley's 
predictions[39) concerning the energy pel' unit surface length, EL, between 
grains whose orientations differ by an angle e. lndeed, they also found that 
EL = EMe[l - ln(e /eM)], where EM and eM are constants. They also 
showed that nucleation of dislocations in epitaxial growth is highly 
correlated with surface buckling. Thus, it must be considered when 
calculating the critical thickness to obtain a quantitatively correct 
expression. AIso, the surface roughness decreases after dislocations appear. 
The relationship between this model and the elastic energy theory has been 
do ne in section (2.5.1). 

In 1997, an article entitled "Interfaces of Modulated Phases" was published 
by Netz, Andelman and Schick, whose purpose was to numerically study tilt 

31 



• 

• 

• 

grain boundaries within lamellar phases and interfaces between coexisting 
modulated phases of different symmetry: lamellar (L), hexagonal (H) and 
disordered (D) phases. [33] The dimensionless free-energy they used was 

F[cP] = j'{_~cP2+ 1-cPZn1-cP + 1+cP Zn 1+cP 
2 2 2 2 2 

1( 2 1 2 2 } - - \1 cP) + - (\1 cP) - McP dV 22' (3.12) 

The enthalpic term, proportional to the interaction parameter X, favors an 
ordered state in which IcPl i= O. The equation also includes an entropy of 
mixing preferring a disordered state, cP = 0, and confining IcPl to be less 
than unit y, and derivatives of the order parameter. The modulation of a 
dominant wave vector q* = 1/ Vi will also induce the ordered state because 
of the competition between the negative gradient square term and the 
positive Laplacian square. We only need to perform an expansion around 
(p = ° to relate this free-energy to the one used in this thesis. Let us now 
give results only related to the hexagonal-disordered and 
hexagonal-lamellar interface. The corresponding interfacial energy 
III D rv (X - Xc)"* (where Xc = 3/4 corresponds to the triple point of 
coexistence of aIl phases) of the former scales with M* = 2, and the 
corrugation of the lamellae near the interface of the latter resembles that 
seen in experiments on diblock copolymers blends. IHL, the interfacial free 
energy of this interface, scales with the classical critical exponent M. = 3/2. 
This illustrates that the hexagonal and lamellar phases are locked into a 
fixed relative position with respect to translations normal to the H-L 
interface (difI'erent from the case of L-D and H-D interfaces). 
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Chapter 4 

Simulation Description and 
Results 

The challenge of understanding phase-ordering dynamics is to find the 
nature of the late-time solutions of differential equations such as equation 
(2.22), subject to random initial conditions. Let us recall equation (2.22) 
goes as 

~~ = tcjJ - (qO 4cjJ + 2q021V2cjJI + IV4cjJl) - cjJ3 + B. 

lndeed, the precise form of the initial conditions should not be important as 
long as only short-range spatial correlations are present. Thus the initial 
conditions of the surfaces used in the different simulations were a set of 
random values between -1.0 and 1.0. These values, one for each lattice 
point, were generated using ranI, a well-known random number 
generator. [36] 

The grid used in the present simulation was squared shaped with periodical 
boundary conditions. Dimensions of either I28x128, 256x256 or 5I2x5I2 
lattice points were used for different types of studies. The spatial and 
temporal steps were dx = dy = 1.0 and dt = 0.04 and the incrementation 
was done using a simple Forward Euler scheme. The values for dx = dy and 
dt follow this law 

(ÔX)4 
Ôt < 16 _ 2(ÔX)2 

to assure stability)41] As already mentioned, concerning the following 
simulations, qo = 1, t = 4/15 and B = -0.2. 
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The C language was the programming language used throughout the entire 
pro cess of data collecting and analyzing. Also, the program dfourn, easily 
available in Numerical Recipes in C[36], was used, with a few modifications, 
to compute the Fourier Transforms and Inverse Fourier Transforms. Using 
Message-Passing Interface commands, the pro gram was also parallelized 
into four different squared shaped sub-grids to increase effectiveness. 
Finally, the finite difference equations used to compute equation (2.4), the 
laplacian and the biharmonic in the simulations were the following: 

dLphi[i] U] = dt * (é * <P[i][j]- (q~ * <P[i][j] + 2 * qâ * lap[i](j] + bihaT[i][j]) - <Pfi][j] + B), 
(4.2) 

l ['] [ '] - <P[i+1][j] + <P[i-l][j] - 2 * <P[i][j] + <P[i][j+1] + <P[i](j-l] - 2 * <P[i][j] (4.3) 
ap '/, J - dx2 dy2' 

and 

b
'h [:][ ']_ <P[i+2][j] + <P[i-2][j]- 4 * (<P[i+l](j] + <P[i-l][j]) + 6 * <P(i][j] + <P [i][j+ 2] + <P[i][j-2] + 

'/, .ar Z J - 4 4 
dx dy 

-4 * (<p[i][j+ 1] + <P[i][j-l]) + 6 * <P[i][j] + 2 * (<P[i+l][j+l] + <p[i+1][j-l] + <P[i-l](j+l] + <P[i-l][j-l]) + 
dy4 (dx * dy)2 

-4 * (<P[i+l][j] + <P[i-l][j]) - 4 * (<P[i][j+l] + <P[i](j-l]) + 8 * <P[i][j] 

(dx * dy)2 
(4.4) 

This chapter will now deal with simulation results and analysis. First, 
studies concerning the structure factor will be presented. This is followed 
by an analysis of results concerning surface energies. Last but not least, a 
study of temporal correlations will close the chapter. 
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4.1 Structure Factor Results and Analysis 

Let us first take a look at an example of the evolution of a surface with 
time, starting with a randomly distributed surface. From left to right and 
from top to bottom, the surfaces respectively represent instants after 50, 
200, 400, 750, 1000, 5000, 10000, 100000, 1000000 iterations. We first notice 
the appearance of bumps on the surface, followed by an organization of the 
latter into hexagonal patterns . 

Figure 4.1: Example of the evolution of a surface with time 
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One can further use these surfaces to compute structure factors 
S(k, t) =< cjJf(t)cjJ _f(t) >. In Fourier space, structure factors can be 
represented by rings in unorganized systems or by a pattern of hexagonal 
dots for perfectly hexagonally patterned surfaces. The following figures 
respectively represent structure factors of surfaces after 200 and 500000 
iterations and of a surface covered by a nearly perfect hexagonal pattern. 

1 1 

50-

1 1 

1 100 

100--
1 1 

50 

Figure 4.2: Fourier transform of a surface after 200 iterations 
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1 1 

1 100 

100-
1 1 

50 

Figure 4.3: Fourier transform of a surface after 500000 iterations 
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Figure 4.4: Fourier transform of a surface covered by a nearly perfect hexag­
onal pattern 

To consider the structure factor of the surfaces at various instants, we take 
a radial cut of the ring in Fourier space, i.e. starting at the center and 
moving outward, we consider kz as a function of only kx for example. We 
thus end up with a peak representing the structure factor at k = kx . We 
then move around the ring and add 360 of those slices together, one per 
degree, and then divide by 360 to give a circular average. The result is 
evidently a peak, the structure factor circularly averaged. This peak can 
easily be fitted with the following formula to standardize the results: a 
Lorentzian plus a Lorentzian squared, 

a(2) a(2) 2 

f = (x _ a(3))2 + a(l)2 + ((x _ a(3))2 + a(1)2) . (4.5) 

The parameters a(l), a(2) and a(3) can be varied and fitted independently 
(seefig. (4.5)). 

This fitted peak will have a smaller maximum amplitude and a Iarger full 
width at haif maximum for unorganized systems, the amplitude increasing 
and the full width half max decreasing with the appearance of hexagonal 
patterns. The two following figures represent this circular average of the 
structure factor for two distinct times, after 200 iterations and after 500000 
iterations. 
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Figure 4.5: Structure factor circularly averaged over the entire ring in Fourier 
space, after 200 iterations, fitted with equation (4.5) 
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Figure 4.6: Structure factor circularly averaged over the entire ring in Fourier 
space, after 200 iterations. Line to guide the eye. 
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Figure 4.7: Structure factor circularly averaged over the entire ring in Fourier 
space, after 500000 iterations. Line to guide the eye. 
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Now, consider a graph of the evolution of the structure factor's maximum 
amplitude with time. Each curve in the following graph is an average of ten 
idependent runs, aIl having evolved from an initially different randomly 
distributed surface. Also, each curve represents the evolution of the 
structure factor's amplitude with time, for a particular grid dimension, 
either a 128x128, a 256x256 or a 512x512 lattice point grid. We can thus 
compare how differently the evolution of the amplitude of the structure 
factor occurs for different grid dimensions. The following expression was 
used to compute the amplitude as a function of a(l), a(2) and a(3): 

o 

A = (a(2)j(a(1)2)) + ((a(2)2)j(a(1)4)). 

L: 

o 
o 

o 

â9 
o 

o 
o 
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Figure 4.8: Maximum amplitude of the structure factor as a function of 
time for three different grid dimensions. Each curve is an average of ten 
independent runs. 

39 



• 

• 

• 

The same exercise was done for the full width at half maximum of the 
structure factor. Each curve is again an average of 10 independent runs, aIl 
having evolved from an initially different randomly distributed surface. 
AIso, each curve represents the data for a particular grid dimension, either 
a 128x128, a 256x256 or a 512x512 lattice points grid. Logarithmic scales 
were again used for both the x and the y axes to permit an easier 
comparison between the three curves. The following expression was used to 
compute the full width at half maximum as a function of a(l), a(2) and a(3) 

a(l)* ±(a(1)2 +a(2) )*( -a(2)+V 2*a(2)2 +a(1 )4+2*a(2)*a(1)2) 

6k = a(1)2+a(2) 
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Figure 4.9: Full width at half maximum of the structure factor as a function 
of time for three different grid dimensions. Each curve is an average of ten 
independent runs. 
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We can furthermore investigate possible scaling laws for the maximum 
amplitude, and the full width at half maximum of the structure factor. The 
scaling laws could be deduced from trials at superposing the different 
curves on the two previous graphs. We indeed transformed graph (4.8) into 
(4.10) and graph (4.9) into (4.11) to deduce the two following laws 

A(t, L) = L2 f(t), ( 4.6) 

and 

(4.7) 

Concerning the former equation, we can clearly see it is scaling as the 
dimension of the space: the number of domains increases as L 2

. AIso, we 
notice the presence of two regimes: early time and a late time, the latter 
either following a power law or a ln t form. 

Concerning 6k, early time behaviour can be described by the expression 
t- 1/ 3 , whereas late time follows more closely t-1/ 10 . Two lines with those 
respective slopes have been added to the graph to guide the eye. A third 
graph (fig. 4.12) has been added to show how closely the late time can be 
approximated by a logarithmic form. lndeed, it is interesting to note that 
both late time behaviours for the maximum amplitude and the full width at 
half maximum could be described by logarithmic forms. This indicates that 
the system becomes trapped in metastable configurations. 
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Figure 4.10: Scaled maximum amplitude of the structure factor as a function 
of time for the three different curves represented on graph (4.8) 
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Figure 4.11: Scaled full width half max of the structure factor as a function 
of time for the three different curves represented on graph (4.9) 
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Figure 4.12: Scaied full width half max of the structure factor as a function 
of time for the three different curves represented on graph (4.9) 
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4.2 Surface Energy Results and Analysis 

In this section, we give our results of a study concerning surface energy 
measurements. We wish to start by introducing the theory related to the 
energy of topological defects.l14] The latter energy can be divided into two 
separate categories: the core energy Ec and the elastic or the strain energy 
Eel. The core energy is associated with the destruction of the order 
parameter at the core of the defect. It is difficult to define, but we can 
identify its order of magnitude by considering the condensation energy fcond 

of the ordered state. lndeed, the latter represents the increase in free 
energy per unit volume due to destruction of the order parameter. Ec is of 
order of the volume (or area) of the defect times fcond. Thus, the core 
energy of a vortex in two dimensions is 

( 4.8) 

where A is a numerical constant and a, the core radius. This is also the 
core energy per unit length of a vortex line in three dimensions. 

The elastic energy is that associated with the slow variation of the elastic 
variable far from the core. It is defined as 

(4.9) 

where k is the winding number and R is the linear dimension of the sample. 
The total energy of the vortex is th en 

(4.10) 

We can use both the equation for the core energy and the equation for the 
elastic energy, minimizing with respect to a to find 

a2 = 7rk
2 

Ps r-..J k2e. 
2 Afcond 

Thus, as expected, the core radius a is proportional to the correlation 
length ç. The latter is defined as the distance over which cp changes. 
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The following equation, the discretized form of the local energy given by 
equation (2.21), was used to compute the energy at each lattice point of the 
surface 

[ '] [ '] cp[i][j] ( ) 2 4 ( ) E 2 J = -E * -2- + 0.5 * CP[i][j] + lap[i][j] + 0.25 * CP[i][j]- B * CP[i][j]. 4.11 

To calculate the energy of the entire surface, we used the following equation 

~i,j E[i][j] * (dx * dy) 
Esurface = L2 

where L is the size of the system. E sur face is the global energy of the 
system per unit area. 

(4.12) 

We can first take a look at the representation of the energy of a surface for 
a 256x256 lattice point system, after 150, 1000 and 500000 iterations. 

Figure 4.13: Representation of the energy of a 256x256 lattice point surface, 
afler 150 iterations 
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Figure 4.14: Representation of the energy of a 256x256 lattice point surface, 
after 1000 iterations 

Figure 4.15: Representation of the energy of a 256x256 lattice point surface, 
after 500000 iterations 
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Now we can consider the surface energy (for each curve, divided by the area 
of the surface) as a function of time for different grid dimensions, 128x128, 
256x256 and 512x512. Each curve on the following graph is an average of 
tell independent runs, aIl having evolved from an initiaIly different 
randomly distributed. The black curve corresponds to the 128x128 system, 
the red curve to the 256X256 system and the green curve to the 512X512 
system. Evidently, the actual energy values on the y axis are arbitrary. 
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Figure 4.16: Surface energy as a fUllction of time for three different grid 
dimensions. Each curve is an average of ten independent rullS. 
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Af'ter having added a certain energy Eoo = 0.00784 to aU three curves in 
order to have only positive energies, we can look at the previous graph 
using a log-log scale. We can clearly see that the curves scale according to 

( 4.13) 

where A is a constant. A line of slope 1/2 has been added to the graph to 
guide the eye. The 1/2 exponent cornes from the fact that we have a 
system where the order parameter is not conserved. 
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Figure 4.17: Scaled surface energy as a function of time for three different 
grid dimensions. Each curve is an average of ten independent runs. 
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4.3 Temporal Correlations Results and 
Analysis 

In the present section, we consider at temporal correlations to extract 
information on the structure and movement of dislocations. To do so, we 
use a method already described in [27], that is, we consider two order 
parameter surfaces, 500 iterations apart, starting with surfaces after 5000 
and 5500 iterations (fig. (4.18)). We then "substract" the two surfaces one 
from the other fig. (4.19) and perform a Fourier transform on this 
substraction. We then add the real part squared and the imaginary part 
squared of this Fourier transform and perform an inverse Fourier transform 
to end up with fig. (4.20), the correlation function in two-dimensions. If we 
now take a look at a slice of this previous graph, starting at the central 
peak and moving outward, we can compute a circular average of this slice, 
taking one slice every degree, moving around the circular peak. We end up 
with a circulaI' average of the sideview of the correlation function, C(r, t), 
fig. (4.21). 

Figure 4.18: Example of surfaces after 5000 and 5500 iterations for a 512x512 
size grid 
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Figure 4.19: Difference between two images of surfaces, taken respectively 
after 5000 and 5500 iterations 

Figure 4.20: Fourier transform of the difference between two images of sur­
faces, taken respectively after 5000 and 5500 iterations 

50 



• 

• 

• 

U sually, one would use the orientational correlation function to study the 
growth of do mains caused by the motion of dislocations. As mentioned 
earlier, the orientational correlation fun ct ion can be defined as 

( 4.14) 

for a given local orientation of the stripes, O(r) (n = 2 for stripes, n = 6 for 
hexagons).[25)[37l On the other hand, this method is very complicated and 
has not been proven to give better results than the study of temporal 
correlation functions. We have thus decided to use the latter to track 
dislocations and their correlation in space and time. This method also had 
the advantage of focussing solely on dislocations. 
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Figure 4.21: Circular average of the correlation function between two sur­
faces, taken respectively after 5000 and 5500 iterations 
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The following graph, fig. 4.22, is a linear-log graph of a collection of those 
circular averages of correlation functions. Each curve represents the 
correlation function of a different set of surfaces, i.e. the first curve 
represents the correlation function of surfaces after 5000 and 5500 
iterations, the second curve, of surfaces after 5500 and 6000 iterations, and 
so on until the last curve, which is the correlation function of surfaces after 
19500 and 20000 iterations. Also, each curve is an average of seventeen 
runs. We can give the following equations to help clarify the explanation 

Bk(t) =< CPk(to + t)CP-k(to + t) > - < CPk(tO)CP-k(tO) >, 

C(r, t) = J dke-27rikt Bk. 
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Figure 4.22: Collection of circular averages of correlation functions between 
two surfaces, each taken 500 iterations apart 
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We can now take a look at the scaled temporal correlation functions. The 
latter are represented on the following graph where we can easily see the 
three first curves, the correlation functions between surfaces after 5000 and 
5500, 5500 and 6000, and 6000 and 6500, do not scale as well as the 26 
other curves. We can thus separate the formation of the hexagons into two 
regimes. For earlier times (t ~ 6000), there is only a local reorganization of 
the field cp which is not necessarily related to the movement of dislocations, 
defaults and grain boundaries. 

The later regime scales according to the following equation 

where a = 1.0 and f3 = 0.25. We have also added a line of equation 
y = 5000 exp( -0.25r) to the graph to guide the eye. 

( 4.17) 

We can start by mentioning we cannot collapse completely the early time 
data. lndeed, the three or four curves which don't fall on the others, 
correspond to the earliest times considered (5500-5000 iterations, 6000-5500 
iterations and 6500-6000 iterations). If we look at the full width at half 
maximum of the structure graph, we see that late time behaviour really 
starts around 6000 or 7000 iterations. Another explanation could be the 
finite interfacial width of the grain boundaries. The exponential behaviour 
of the scaling law means we have weIl defined structures, clearly shown on 
fig. (4.18), as opposed to fractal structures which would have power law 
correlations. As for the value of 1.0 found for a, we could explain it by 
imagining the structures moving around according to a random walk. We 
know that, in this case, the correlation function in real space is directly 
proportional to time. 
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Figure 4.23: Scaled collection of circular averages of correlation functions 
between two surfaces, each taken 500 iterations apart. Aline described by 
the equation y = 5000 exp( -0.25x) was added to lead the eye. 
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Chapter 5 

Conclusion 

To conclude this work, let us review the main results we have obtained. We 
have found there is a scaling law for the structure factor as a function of L, 
the system size, but there is no clear power law regime in time. As well, the 
amplitude depends on time in a complicated manner. 

A(t, L) = L2 f(t), 

and 

For both the maximum amplitude and full width at half maximum scaling 
laws, there are two regimes present: early time and late time. And in both 
cases, late time behaviours could be described by logarithmic forms. This 
indicates that the system becomes trapped in metastable configurations. 

As for the total energy of the system per unit area, it was found to be 
independent of the size of the system. It also follows a power law in time. 

The 1/2 exponent cornes from the fact that we have a system where the 
order parameter is not conserved. 

Concerning the last section, a technique performing a substraction between 
two surfaces taken at different times, was used to further study the 
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temporal correlation functions, focussing on the movement and structure of 
dislocations. The amplitude follows a power law in time but the spatial 
dependence is exponential. 

The exponential behaviour of the scaling law means we have well defined 
structures. And concerning Œ = 1, we explained it by suggesting the 
structures moving around according to a random walk. 

With regards to further work, we note the following. This model is 
sufficient for fluid sustems (a Model A-like, non-conserved model) but to 
better simulate real solids, the use of a conserved order parameter should 
be considered. As well, further connection between the grain boundary 
motion and domain growth remains to be explored. Finally, it would be 
straightforward to extend this work to the study of three dimensional 
systems . 
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