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Abstract

This thesis proposes a mnovel framework connecting Pierre Schaeffer’s acousmatic
philosophy of sound with modern machine learning concepts. It critiques the prevailing
trend in neural audio synthesis, which often confines neural audio frameworks to the
modeling of preexisting musical forms, and argues for a reinterpretation that embraces
Schaeffer’s concept of the ‘sound itself! By establishing parallels between acousmatic music
and neural audio synthesis—both operating within 'black box" environments that
emphasize the invariant properties of sound—our approach formalizes these connections
through the lens of group representation theory by arguing that the concept of the
Schaefferian sound object is best modeled as a latent differentiable manifold whose
underlying structure forms a Lie group. We then explore existing geometric representations
of deep learning architectures such as the Scattering Transform, and introduce new
geometric interpretations of canonical neural audio models, such as Differentiable Digital
Signal Processing (DDSP). Using these geometric deep learning frameworks, we then
introduce a new method for analyzing and synthesizing acousmatic sound in a way that
aligns with Schaeffer’s notions of typomorphology. This method disentangles a set of
spectrotemporal audio descriptors in order to find the most characteristic control
parameters with respect to the given dataset of sounds. We find that this method allows
one to condition a DDSP model in a way that uniquely resembles the nature of the dataset
while yielding a more timbrally expressive output than preexisting DDSP models. The
effectiveness of this method is demonstrated through applications on synthetic and
percussion sound datasets, and in a typomorphological neural audio synthesizer that
morphs sounds across latent space based on their spectrotemporal control parameters. This
work marks a significant advancement in merging philosophical concepts with modern

audio technology, enhancing artistic engagement and creativity.
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Résumé

Cette these propose un cadre novateur reliant la philosophie acousmatique du son de Pierre
Schaeffer aux concepts modernes d’apprentissage automatique. Elle questionne la tendance
dominante en synthese audio neuronale, qui restreint souvent l’approche neuronale a la
modélisation de formes musicales préexistantes, et plaide pour une réinterprétation qui
englobe le concept Schaefferien du son lui-méme. En établissant des paralleles entre la
musique acousmatique et la synthese audio neuronale—toutes deux opérant dans des
environnements de type ‘boite noire’ qui mettent en avant les propriétés invariantes du
son—notre approche formalise ces connexions a travers la théorie de la représentation des
groupes en soutenant que le concept de l'objet sonore Schaefferien est mieux modélisé
comme une variété différentielle latente dont la structure sous-jacente forme un groupe de
Lie. Nous explorons ensuite les représentations géométriques existantes des architectures
d’apprentissage profond telles que le Scattering Transform, et introduisons de nouvelles
interprétations géométriques des modeles neuronaux audio canoniques, tels que le
Differentiable Digital Signal Processing (DDSP). Cette méthode désenchevétre un ensemble
de descripteurs spectro-temporels audio afin de trouver les parametres de controle les plus
caractéristiques d'un ensemble de sons donné. Nous constatons que cette méthode permet
de conditionner un modele DDSP qui caractérise de maniere unique la nature de 1’ensemble
de données tout en produisant un résultat plus expressif en termes de timbre que les
modeles DDSP préexistants. L’efficacité de cette méthode est démontrée a travers des
applications sur des ensembles de sons synthétiques et de percussions, et pour un
synthétiseur audio neuronal typomorphologique qui transforme les sons a travers l'espace
latent en fonction de leurs parametres de contrdle spectrotemporels. Ce travail représente
une avancée significative dans la fusion du certains concepts philosophiques avec des

technologies audio récentes, tout en renforcant ’engagement artistique et la créativité.
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Glossary

Acousmatic Listening A mode of listening where attention is directed solely at the
auditory characteristics of the sound, disregarding its origin or the physical processes
that produce it, in line with Pierre Schaeffer’s philosophy of ['objet sonore (the sound
object).

Acousmatic Music A form of electroacoustic music where the source of the sound is
intentionally hidden from the listener, allowing them to focus purely on the listening

experience without associating the sound with its source.

Affine Structure A mathematical structure that preserves Euclidean geometric forms
such as points, lines, and planes. In machine learning and signal processing, affine
transformations include linear mappings followed by translations, which are useful in

modeling data transformations that maintain Euclidean structural integrity.

Contraction A process in signal processing and machine learning where information is
compressed or simplified while retaining its essential features, such as through the

pooling layers of a CNN or the scaling transformations in a scattering network.

Convolutional Neural Network (CNN) A type of neural network specifically designed
to process data with a grid-like topology, such as images. CNNs use convolutional
layers to detect local patterns that are invariant to translation, making them highly

effective for tasks like image and sound recognition.

Deep Neural Network (DNN) A type of machine learning model consisting of multiple
layers of neurons, where each layer learns abstract representations of the input data.
These models have been particularly successful in tasks such as image recognition,

natural language processing, and audio synthesis.

Differentiable Digital Signal Processing (DDSP) A framework that utilizes deep
neural networks for synthesizing audio signals through learned mappings between

control parameters and synthesizer parameters.

Disentanglement The process of separating and isolating different factors of variation in

data into linearly independent spaces to produce representations where each dimension
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corresponds to a distinct, interpretable property of the input.

Erlangen Programme A framework introduced by mathematician Felix Klein, which

classifies geometric structures according to their group of transformations.

Geometric Deep Learning A branch of machine learning that interprets deep learning
with respect to assumed geometric structures underlying the data domain, allowing
deep learning models to capture and respect symmetric and invariant properties of the
data.

Geometric Group Theory A field of mathematics studying groups by interpreting them
as geometric objects. These geometric interpretations often form group representations
(see Section A.3).

Invariance (Informal) Characteristics of an object or signal that remain unchanged under
certain transformations. In the context of both acousmatic listening and deep learning,
these refer to features of sound that remain stable despite changes in the way that they
are either presented to the listener or represented by a neural audio model. For a formal

mathematical definition of invariance, see Section A.2.2.

Latent Space In machine learning, a latent space is a lower-dimensional space in which
high-dimensional signals are represented. From a computational point of view, the
latent representation typically captures essential features or patterns in the data,

making it easier to manipulate, analyze, or generate new data.

Machine Learning A subset of artificial intelligence in which algorithms learn patterns
from data and use these patterns to make predictions or decisions without being

explicitly programmed for specific tasks.

Mesoscale Structure The intermediate scale of sound organization, between micro (fine
detail) and macro (large-scale structure). Scattering networks are particularly well-

suited to analyze and synthesize audio at this scale.

Microscale Structure The fine-grained, detailed components of a sound or signal, which
are often represented using a windowed Fourier transform. DDSP networks are well-
suited for learning the timbral properties of audio by utilizing a collection of sounds

captured at the microscale.



Contents xiv

Morphology (of Sound) In Schaeffer’s theory, morphology refers to the detailed,
microstructural characteristics of sound, including texture and timbral qualities. This
thesis models morphology using Differentiable Digital Signal Processing (DDSP),

which represents the microstructure of sound.

Musique Concrete A musical practice developed by Pierre Schaeffer that uses recorded
sounds as raw material. It contrasts with traditional music composition by focusing
on manipulating recorded sounds rather than creating music through notated

performance.

Neural Audio Synthesis The use of neural networks to generate or transform audio
signals, allowing for new forms of sound synthesis that mimic or create non-linear

auditory structures through machine learning models.

Perceptual Parameters Features of sound that directly correspond to human perception,

such as pitch, loudness, and centroid.

Scattering Network A generalization of the Convolutional Neural Network (CNN) that
uses wavelet transforms to create a multiscale representation of sound, capturing

structural invariants.

Sound Object (l’objet sonore) A central concept in Schaeffer’s writings, referring to the
phenomenological object of listening. It is considered independently from its source,

focusing purely on its auditory characteristics.

"Sound Itself" A Schaefferian notion that refers to the experience of sound as an
autonomous entity, independent of its source or meaning. It emphasizes the

phenomenological properties of sound that are directly perceived by the listener.

Spectrotemporal Audio Descriptors Features that describe both the spectral and
temporal aspects of an audio signal, such as spectral centroid, spread, and harmonic
energy. These descriptors are used to control DDSP models, capturing perceptually

relevant sound characteristics.

Typology (of Sound) Schaeffer’s concept of typology relates to the classification and
understanding of sound objects based on invariant properties. In the thesis, this is

modeled using scattering networks that capture mesostructural features of sound.
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Wavelets Mathematical functions used in signal processing to decompose signals into
components that vary by scale and location. Wavelets are integral to scattering
networks, providing a time-frequency analysis that is invariant to time shifts and

frequency transpositions.



Chapter 1
Introduction

Historically speaking, there have been two distinct perspectives on the development of
contemporary music technologies.  The first and more common perspective views
technology as a fundamentally positivist medium for composers and musicians, where the
inner workings of the tool remain opaque to its users. While this approach may lighten the
intellectual burden on the artist caused by the complexity of the tool, it reinforces a
separation between the artist and the tool’s inner modalities, limiting deeper engagement
and creativity. This division of intellectual labor arguably alienates the artist from the
creative process by distancing them from the representational and epistemological
frameworks embedded within the technology—frameworks that could be crucial to artistic
expression. !

In contrast to this perspective, an alternative approach sees music technology itself not
merely as a means to present the composer’s work, but rather as a unique lens through
which the work is revealed [Kanl4] [Pal98]. Unlike the former, this latter approach has
resulted in a number of radical and unprecedented formal shifts in both contemporary art
music and contemporary popular music. In this work, we situatate our research around the
philosophy of acousmatic music—a practice of electronic music composition that arose in
France during the mid-20th century where sound is experienced without a visible source
through the utilization of spatialized loudspeakers, manipulation of recorded sound, and

implementation of audio synthesis and signal processing techniques.  Likewise, the

I This type of critique stems heavily from Marx’s notion of alienation and critique of commodity. See the
Economic and Philosophic Manuscripts of 1844 [Mar78].
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development of this musical practice was deeply intertwined with parallel advancements in
engineering and signal theory, enabling the composer to imagine unforseen ways to
manipulate and present sound to a listener. These new frameworks in both composing and
listening were thus the result of close collaborations between engineers and
composers—particularly at institutions like the Groupe de recherches musicales
(GRM)—which led to the reformalization of not only compositional techniques, but also
the philosophical notions surrounding sound itself [Sch66].

Compared to these radical mid-century developments, it would appear as though many
areas of music technology research in the 21st century are lacking such a level of
transparent collaboration between engineers and composers. Contemporary collaborations
between engineers and composers—more often than not—serve to imbibe modes of thought
implicit in the intended use case of the technology, instead of imagining complete
reformalizations of sound as a result of the technology. This phenomenon is especially
resonant within the area of Machine Learning (ML), which has greatly influenced
contemporary music technology research and has led to the development of the emerging
field of Neural Audio Synthesis. Neural audio synthesis leverages the use of Deep Neural
Networks (DNNs), which serve as universal function approximators [HSW89] able to
generate and manipulate audio signals by learning patterns directly from audio data.
However, due to the complexity of domain specific knowledge needed in order to
understand various DNN models, a majority of neural audio research limits the artist’s
engagement with the distinctive modes of thought that the neural network presents,
reducing these new frameworks to mechanisms for modeling preexisting musical forms
rather than exploring entirely new dimensions of sound.

In this thesis, we take a different approach by reformalizing neural audio synthesis as a
framework prefaced on the philosophy of acousmatic sound, which originated in the
research and music of Pierre Schaeffer [Sch66]. We justify this approach by observing three
fundamental similarities between acousmatic music and neural audio synthesis. The first
similarity is that a piece of acousmatic music, much like a neural audio model, exists in an
uninterpretable “black box” environment in which the listener is barred from the tangeable
sources of sound. The second similarity is that acousmatic music is fundamentally
concerned with a listening practice that emphasizes the audition of invariant properties of

sound in order to better understand what Schaeffer famously denotes as the sound object
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(l'objet sonore) [Sch66]. Recent literature on neural networks interprets the layers of a
DNN as functional components that perform a strikingly similar task: operators that
enforce structural priors which preserve geometric invariance [FWW21], [MFSL19],
[BSL13], [Rav20]. This novel interpretation of the neural network reinforces one final
connection to acousmatic music:  that Schaeffer’s philosophy of sound can be
epistemologically linked to the mathematical philosophy surrounding the study of invariant
geometric forms, more specifically the study of geometric group theory and representation
theory pursued by mathematician Felix Klein’s Erlangen Programme [Kle72].

After formalizing these geometric frameworks, we propose an approach that models the
Schaefferian sound object as a continuous manifold with Lie group structure. We then
argue in this thesis that Schaeffer’s notion of the sound object’s typology is well described
by a generalization of the Convolutional Neural Network (CNN) called the Scattering
Network [Mall2b], which yields a representation of sound that captures musical structure
on the mesoscale [CHC'23]. A scattering network uses wavelets to iteratively separate and
contract audio signals such that they form a multiresolution affine representation that is
time-translation invariant, frequency-transposition invariant, and geometrically stable to
time and frequency-warping [ALM19]. Likewise, we propose an interpretation of Schaeffer’s
notion of the sound object’s morphology as a concept best represented using Differentiable
Digital Signal Processing (DDSP) [EHGR20] models, which use neural networks to map
from audio control parameters to the parameters of a synthesizer [VNWDI14] while
remaining equivariant to affine and time-warping transformations at the microstructural
level.

Finally, we propose a practical method for analyzing and synthesizing sound objects
using neural audio synthesis. This method reinforce’s Schaeffer’s notion of sound itself by
disentangling the most perceptually independent parameters within a dataset of sounds such
that morphological control at the microscale does not compromise typological strucure at the
mesoscale [LYY23]. The resulting parameters form a subset of time-varying spectral audio
descriptors [PGST11] that can be used as a set of control parameters for a DDSP model. We
furthermore demonstrate this method on a dataset of recordings of synthetic sounds and a
dataset of friction-based percussion sounds. We also implement a neural audio synthesizer
that morphs sounds in latent space based on their spectrotemporal control parameters. This

method serves as the first instance, to our knowledge, that a DDSP model has utilized an
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augmented control space of spectrotemporal audio descriptors, as well as the first time that
a method has been proposed for finding control parameters most suitable for an arbitrary
DDSP dataset.

In the remainder of this introduction, we first present some brief but necessary
background concerning acousmatic music and neural audio synthesis, and then present a

broad outline of the work.

1.1 What is Acousmatic Music

During the mid-20th Century, massive technological developments in 1940s post-war
Europe allowed for the emergence of early tape recording, filtering, signal processing, and
synthesis technologies that catalyzed developments and experiments in musique
concréete—a term coined by Pierre Schaeffer, the first director of the GRM. Schaeffer’s
development of a musique concréte came as a result of consistent experimentation with the
use of recorded and electronically processed sound as compositional material. In doing so,
Schaeffer additionally played the role of both composer and music technologist, as he
collaborated directly with psychologists, sociologists, technicians, and engineers in his
musical endeavors [Terl5]. Furthermore, as a result of his work with early recording and
signal processing technologies, he began to lay the groundwork for novel listening practices.
Schaeffer produced formalized philosophical writings such as the Traité des objets musicaux
(Treatise on Musical Objects) which reckoned specifically with how these emerging audio
technologies could aid in revealing unique modalities of sound itself rather than how they
might translate historical assumptions about sound still lingering from past formats like
acoustic instruments and musical scores. Schaeffer even argued that these emerging
technologies for working with audio required an entirely new taxonomy for the
compositional analysis of sound in a way that—according to Michel Chion, a former
assistant of Schaeffer’s at the GRM—“broadenled]| the descriptive range of sounds and
instruments which might be limited to the identification of physical parameters (frequency,
amplitude, duration)” [Chi83|. This taxonomy came to be known as typomorphology, a sort
of music theory of Schaeffer’s so-called ‘sound itself.

What then resulted from these early experiments was acousmatic music, which evolved

subsequently out of the GRM [Bat07]. Building off of the musique concrete developed by
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Schaeffer, acousmatic music presented an entirely new framework for composition in which
the composer writes works for spatialized loudspeakers, consisting of recorded and
synthesized sounds that are to be diffused live. Along with this new compositional practice
came the listening practice of acousmatic listening which involves—for the listener—the
mental process of hearing and reconstructing the unseen sources of sound, hidden by the
technology of the acousmonium? [Terl5]. Gaining significant attention across broader
contemporary music communities, the acousmatic format attracted many pioneers of 20th
century composition to write works at the GRM including Iannis Xenakis and Bernard
Parmegiani [Gay09].

The musical practice of acousmatic music still continues, as organizations like the GRM
still remain active in both comissioning acousmatic music and releasing records of
electronic music of a derivative vein. Portraits GRM—a relatively new record label run out
of the GRM by current director Francgois J. Bonnet—features a number of 21st century
composers reinventing and continuing the cannon of acousmatic music including Florian
Hecker, Okkyung Lee, Felicia Atkinson, Laurel Halo, and Jim O’Rourke [Por].
Furthermore, aspects of acousmatic music such as the spatialization [Bro21],
granularization [Dav16], and sampling [Rey21] of electronic sound have influenced club
music, techno, rock, hip-hop, and studio music at large. Indeed, the survival of both
acousmatic composing and acousmatic listening is a testement to the unconscious influence
that the field of engineering exhibits over electronic music, as paradigms in sound

technology and audio signal processing slowly change.

1.2 What is Neural Audio Synthesis

Over the past decade, composers and music technologists alike have seen yet another influx
of emerging technological developments, originating first in the late 1980s as a result of the
introduction of the DNN as a universal function approximator [HSW89]. In the domain of
audio, this development has resulted in the birth of Neural Audio Synthesis. Neural audio
synthesis leverages the use of DNNs equipt with structural priors such as convolution

[LBBH98] and recurrence [Wer90] to learn invariant properties of audio signal

2 A word referring to the spatialized loudspeaker arrays used in acousmatic music, which can be interpreted
as analogous to the ‘orchestra’ in orchestral music.



1. Introduction 6

representations. Trained neural networks can be used to parametrically control audio
synthesizers and effects processing for the purpose of electronic music performance and
composition. Perhaps the most notable model for this new paradigm in audio synthesis is
Differentiable Digital Signal Processing (DDSP) [EHGR20] which combines the continuous
differentiability of trained DNNs with classical signal processing techniques such as additive
synthesis [BSAL11], phase-vocoder [AKZB11], and source-filter [AKZV11] modeling.

Despite the popularity of such audio models for control, synthesis, and composition,
the use of DNNs has received notable criticism in the field of engineering. This criticism
comes from the fact that DNNs are notoriously hard to interpret, and sometimes entirely
uninterpretable [SZS*14]. The statistical distribution that a DNN learns, which greatly
depends on a training dataset that is unknown to the user at inference time, has led many
to describe the DNN as a “black box” [Lipl6]. For instance, a neural audio model that
generates sound given a set of input parameters might learn to generate two very different
types of output during inference time, given its prior training on one set of audio signals
versus another.

This lack of interpretability is seen by many engineers as a major flaw. [Mall2b]
contextualizes this problem in a 2017 lecture at UCLA on the use of DNNs for
classification: audio signals live on a highly irregular domain whose dimensionality is huge
(N > 10°) and our task is to approximate this domain with very few samples (D < N). In
order for a DNN to generalize the variance in the domain without biasing towards the
distribution formed by the D samples, error is simply unavoidable [GBC16]. A
hypothetical example of this might involve an instance of sound matching [HLL23| in
which a listener expects to hear a particular class of sound from the output of a neural
audio model but instead hears a different class of sound. This error is a testement to the
complexity of the problem at hand and the difficulty faced when interpreting the DNN as a

means through which sound is represented to both the composer and the listener.

1.3 Motivation: Who is This Thesis For

The ideas presented in this thesis are highly specialized yet also highly interdisciplinary
making the motivation and intended readers hard to decipher. This thesis is intended

primarily for music technology researchers to present a reformalization of neural audio
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synthesis through a higher level of mathematics that we hope will also reflect a
philosophical mode of thinking about sound that has been forgotten in the majority of
neural audio literature. As a result, we put these topics in dialogue with Schaeffer’s
philosophy of sound to introduce a wider breadth of creative output in composition, theory,
and sound studies. We hope also that this thesis will be appreciated for the
mathematically inclined electronic composer, sound studies theorist, or experimental music

appreciator in broadening their understanding of what acousmatic sound might be.

1.4 Contributions

This thesis contains the following main contributions

1. Experimentation with spectrotemporal audio descriptors as control parameters for
various DDSP models, resulting in more expressive control of output sound (Chapter
6)

2. A method for finding a subset of DDSP control parameters most reflective of a given

dataset that utilizes the dataset’s scattering representation (Chapter 6)

3. A framework for a typmorphological neural audio synthesizer, as well as a basic

implementation (Chapter 6)

4. An acousmatic approach to the analysis of neural audio models that utilizes geometric
group representation theory [BBCV21] and topology [VNWD14] (Chapter 3, 4, and
5).

Other contributions include:

o A historical link between Schaeffer’s musical ideas and the geometric ideas of Felix

Klein’s Erlangen programme (Chapter 2)

» Practical experimentation with relatively new DDSP networks such as NoiseBandNet
[BRC24] for sound synthesis, and scattering networks such as the Joint Time-Frequency

Scattering transform [LEHR™21] for the purpose of sound classification (Chapter 6).

e An overview of basic group representation theory and topology that includes examples

relating to music and sound synthesis (Chapter 3 and Appendix A).
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1.5 Structure of Thesis

In Chapter 2, we make the connection between Schaeffer’s philosophy of sound and the
study of geometric invariance using ideas from Brian Kane’s book on acousmatic music
Sound Unseen (2014). We then shift towards a more mathematically inclined discourse in
Chapter 3 and lay out the fundamentals of group representation theory needed to discuss
groups in the context of neural audio synthesis, and propose that the Lie group is a
suitable representation for the problem of measuring and mapping the acousmatic sound
object. This group theoretical foundation allows us to argue in Chapter 4 that Schaeffer’s
concept of typology is effectively represented by the Scattering Network, which provides a
representation of sound that captures musical structure on the mesoscale. Likewise, in
Chapter 5 we argue that Schaeffer’s concept of morphology is most effectively represented
through Differentiable Digital Signal Processing (DDSP) models. These models employ
neural networks to translate audio control parameters into synthesizer parameters, while
maintaining equivariance to affine and time-warping transformations at the microstructural
level. These reformalizations culminate in Chapter 6, where we introduce a practical
method for analyzing and synthesizing sound objects using neural audio synthesis. This
approach enhances Schaeffer’s notion of the sound object by disentangling perceptually
independent parameters within a sound dataset, ensuring that morphological control at the
microscale does not interfere with typological structure at the mesoscale. The resulting
parameters—a subset of time-varying spectral audio descriptors—serve as conditional
parameters for a DDSP model. Chapter 7 summarizes and concludes the work, providing

some considerations for future research.



Chapter 2

The Sound Object and its Geometric

Invariance

In this chapter, we introduce the notion of the sound object as it pertains to the musical
philosophy of Pierre Schaeffer. We show how the sound object is a theoretical unit of sound
that reveals itself to the listener through its musical invariance in the acousmatic setting—
a presentation of recorded or processed sound decontextualized from its source. We then
show that the idea of musical invariance used by Schaeffer is epistemologically linked to a
mathematical notion of invariance by way of the influence that Husserlian phenomenology
had on Schaeffer, and transitively by Husserl’s influence from the mathematical philosophy
of the Erlangen Programme. Given Schaeffer’s place in history, epistemological context, and
philosophical influence, we thus present the argument that the sound object is a musical
construct best suited to be analyzed using the mathematics of the Erlangen programme and
geometric group theory. We conclude by showing that implementations of the Schaefferian
sound object as data are best fit to be interpreted using geometric approaches to machine

learning.

2.1 Philosophy of The Sound Object

For many composers and practitioners of computer music, the term musique concréte is
often synonymous with the act of composing music using recorded sound, harkening back

to the practice’s historical genesis at Radio France and the GRM. But while the audio
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signal processing and recording technologies of late 1940s post-war Europe may have aided
Pierre Schaeffer in conceiving of musique concrete, Schaeffer’s intentions in conceiving new
musical practices were rooted less so in these new technologies themselves and more so in a
philosophical inquiry surrounding these technologies. [Kanl4] unravels the philosophical
tradition from which Schaeffer takes influence using an early 1948 journal entry by
Schaeffer titled A la recherche d’une musique concréte (In Search of a Concrete Music)

formally published four years later.

I have coined the term Musique Concrete for this commitment to compose
with materials taken from “given” experimental sound in order to emphasize
our dependence, no longer on preconceived sound abstractions, but on sound
fragments that exist in reality, and that are considered as discrete and complete
sound objects, even if and above all when they do not fit in with the elementary

definitions of music theory.

Schaeffer was not simply a composer nor was he simply a researcher, but rather a
philosopher of sound who produced extensive writings in tandem with his music. One such
work titled the Traité des objets musicaux (Treatise on Musical Objects) reckons with how
emerging audio technologies might reveal these unique modalities of sound that, as stated
above, do not conform to historical assumptions about sound still lingering from traditional
music theory [Sch66]. Schaeffer thus introduces a fundamental concept in the above quote
aiding both the composer and listener: sound object. For Schaeffer, the sound object is a
proposed theoretical unit of sound that is not defined by any prior construct in western
music theory. Instead, the sound object is a notion of sound itself; a unit of sound that the
listener recognizes as an objective entity through a myriad of variations generated by the
manipulation or processing provided by a given piece of audio technologies [Kan14].

In order to fully understand the sound object as a philosophical construct, a number of
Schaefferian concepts must be thoroughly introduced. In this section we will look at these
concepts using [Kanl4|, namely those of the Acousmatic Reduction and Invariance. These
concepts will later be contextualized within the broader historical context of the scientific

and mathematical literature that influenced Schaeffer.
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2.1.1 The Acousmatic Reduction

While it might be second nature today given the proliferation and availability of digital audio,
the possibilities that the tape machine provided for the composer of the mid-20th century had
grand philosophical implications. Arguably the most fundamental of these implications was
the possibility of sound production without the original sound source physically present. For
Schaeffer and many of composers of electronic music who followed, the reorientation of sound
as raw musical material that could be recorded, manipulated, and played back warranted
a totally novel compositional practice. What was originally called musique concréte soon
became acousmatic music, reorienting Schaeffer’s philosophy of the sound object towards a
compositional unit of sound within the context of spatialized electronic music diffused via
loudspeakers [CG19].

[Bat07] points out that it was the poet Jérome Peignot who first suggested to Pierre
Schaeffer the alternative name ‘acousmatic music. Peignot’s claim was that the notion of
the ‘acousmate’ gave a mystical dimension to the phenomenon of hidden sound. In the words
of Peignot: “with sound technology one can transport or reproduce sound without its being
associated with the material that produced it.” This idea was then revitalized by Francois
Bayle fifteen years later, when he applied it to the music of the GRM.

Despite the budding musical etymolygy of the term ‘acousmatic’ arising later in the
century, it is crucial to recognize that the word’s original meaning describes not so much a
musical situation as it does a philosophical one. While acousmatic music itself might refer to
a compositional practice, the acousmatic as phenomenological situation spans all forseeable
interactions a listener might have with a sound divorced from its original physical context.
This might indeed take place at a concert of acousmatic music, but also perhaps while
listening to audio with headphones, or hearing a voice in a public space over a loudspeaker.
Whether realized as music or not, Schaeffer argued that these acousmatic situations are the
only instances in which the sound object can reveal itself clearly. [Kanl4] reinforces this

with another quote from Schaeffer from Traité des objets musicauz:

In acoustics, we started with the physical signal and studied its
transformations via electro-acoustic processes, in tacit reference to [...|] a
listening that grasps frequencies, durations, etc. By contrast, the acousmatic

situation, in a general fashion, symbolically precludes any relation with what is
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visible, touchable, measurable [Sch66].

[Kan14] interprets this quote by explaining that even though one can speculate about the
causes of a sound source in the acousmatic situation, the acousmatic situation must always
bar direct access to the visible, tactile, and physically quantifiable assessments in order to
maintain this auditory speculation. It is therefore only in this acousmatic context in which a
listener can understand the sound object, since they are unable to infer anything about the
physical causes of the sound. The sound object is thus, Schaeffer claims, not the instrument
that was played, nor is it the piece of music technology through which it is represented—e.g.
a splice of magnetic tape. Instead, [Kanl4] emphasizes that the sound object for Schaeffer
exists solely in the act of listening: the ear must train itself to hear new musical values and

formal devices that are always unique to the encountered sonic materials.

2.1.2 Variance and Invariance

Following this distinction, the new musical values and formal devices that help reinforce
the sound object’s identity are, from the composer’s perspective, implemented using the
parameters of a given piece of music technology. In Schaeffer’s case, these technologies
consisted of the tape player and early audio signal processing techniques. Much like the
acousmatic situation, the piece of music technology that the composer works with is
crucially noted by Schaeffer to be strictly pedagogical. In other words, there is nothing
specifically technological about the “objectivity” of the sound object. A sound object could
be demonstrated any number of ways within an acousmatic setting—mnot only using audio
technology but also through the listener’s own imagination [Kan14].

It then becomes innevitable that if the listener is barred from all tangeable physical
cues which might aid in understanding the sound source, the sound object must reveal
itself through its multiplicity of parametric variations, often organized formally by the
composer in a piece of acousmatic music. The compositional organization of sonic material
in acousmatic music thus becomes philosophically oriented—as Kane argues—around the

concept of variation:

By taking a sound and using electronic means to alter its qualities, Schaeffer

pedagogically produces a set of variations with the aim of disclosing the sound
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object’s invariant and essential features. The sound of a gong gently rolled with
soft mallets is played twice, followed by variants: by adjusting the potentiometers,
the envelope of the object is varied; by using low and high pass filters, the mass
and grain of the object are varied; subtle shifts in volume create an object with
more allure, or internal beating; and finally, a combination of techniques produces
another variant. As a listener, not only do we recognize the different variations as
variations, we also hear them as one and the same sound object. The objectivity

of the sound object is intended to emerge across its various instances [Kan14].

For Schaeffer, the ability of a listener to recognize the sound object through its parametric
manipulation is precisely what is made possible by the acousmatic situation. The music
technology—whether it be a tape player or a computer—thus becomes the primary tool
for this process, revealing the sound object’s invariant properties to the listener through
the expressive variance of its parametric span. The piece of technology aids the composer
in presenting the listener with pedagogical variants of the sound object, and beyond these
parametric variants of sonic material, it is the sound object that is thus identified as invariant

to the listener.

2.2 The Influence of Philosophy and Mathematics

It is precisely this idea of the sound object’s invariance that allows us to partake in a more
detailed reading of Schaeffer’s philosophy on sound, a philosophy rooted just as much in
science and mathematics as in music itself. This section examines the link between the
acousmatic invariance of the sound object and the idea of phenomenological invariance
presented by philosopher Edmond Husserl. We then show that Husserlian invariance is a
notion that exists in direct response to contemporaneous ideas concerning geometric
invariance and group theory introduced by Felix Klein’s Erlangen Programme. This
epistemological link is crucial, as it provides a justification for the methodologies used to

model the sound object in subsequent chapters.
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2.2.1 Phenomenology of The Sound Object

The Schaefferian invariance of the sound object, Kane argues, stems from a Husserlian
concept called adumbration. Like the listener’s interaction with the sound object in an
acousmatic setting, the concept of adumbration denotes the subject’s reckoning with objects
that are identified as the same across a variety of acts of consciousness. Schaeffer cites a
specific example from Husserl in Traité des objets musicaux involving a table. The table, like
any arbitrary object, can be perceived in the physical world but it can also be imagined. The
subject can “narrate a story about [the table, and| hold various beliefs about its provenance”
[Kan14]. Kane summarizes further by concluding that the subject thus reckons with the
perceived qualities of the table in a physical setting, but only through the synthesis of these
qualities are they able to posit the identity of the object as something that innevitably
transcends the stream of adumbrations. This “identity” of the object’s essence thus denotes
its invariance learned through a multiplicity of imagined variations, which is precisely what
the listener comes to terms with in the practice of acousmatic music .

Furthermore, the Husserlian connection to adumbration tells us something else about the
subject’s actual encounter with the object. The imagined variations of the object—or in the
case of acousmatic music, the listener’s encounter with parametrically manipulated variations
of the sound object—innevitably warrants an argument for the object in question to be freed
from its bonds to the physical world [Kanl4|. It is thus only in this reduced acousmatic
situation that the object decontextualized from the physical world can be perceived as having

a transcendental and invariant identity.

2.2.2 The Influence of The Erlangen Programme

Husserl’s method for examining the essence of objects by way of learning their imagined
invariant properties reveals an important influence from similarly shifting ideas in the domain
of mathematics. Indeed, Husserl’s use of the term invariance was not arbitrary, but rather
came from a decision to orient mathematics as his basis for formal ontology. [Mor91] points
out that among Husserl’s influences were Hilbert’s axiomatization of Euclidean Geometry,

Cantor’s Set Theory, and—perhaps most importantly—the concept of geometric invariance

!Formally speaking, Husserl calls this the Fidetic Reduction. For clarity, we will simply use the term
tnvariance.
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from Felix Klein’s Erlangen Programme.

The Erlangen Programme represented a departure from thinking about geometry as a
field concerned with the structure of physical space towards thinking about geometry as a
field concerned with abstract notions of structure, primarily centered around the concept of
the mathematical group [Tie05] 2. This reorientation of geometry around the notion of the
group enabled geometry to “no longer [...] be considered as the theory of the structure of
physical space but rather as the science of possible space forms” [Mor91]. Geometry thus
came to be the investigation of everything that is invariant under the transformations of the
given group, expressed by “the axioms, definitions and theorems that are or could be set up
for each particular geometry” [Tie05]. [Tie05] traces the lineage of this shift in mathematics,
remarking that the prioritization of invariant structure was made possible by a body of work
in mathematics that has its historical origins in the theory of algebraic invariants of Cayley
and Sylvester, as well as earlier work centering on the concept of invariance, along with
the subsequent developments in geometry due to Grassmann, Riemann, Lie, Helmholtz, and
others.

Husserl himself refers to these figures throughout his works, primarily in relation to his
own notion of phenomenological invariance [Tie05], as they had a profound influence on
him. [Rou23| suggests two ways in which these geometric concepts influenced Husserl’s
phenomenology. The first way considers an epistemic transition from the experienced shape
to the geometric shape. In other words, there is “a gap between the imprecise shapes we
experience and the geometrical shapes, [however| this gap does not entail that there is total
separation between geometrical shapes and concrete sensuous intuitions”. The second way
considers how the relating of geometry to the physical experience of space invokes the act of
learning invariance through interacting with the parametric variation of forms. For instance,
we “arrive at geometrical notions, such as the notion of the circle, through both bodily
movement and acts of imagining”. Finally, [Rou23] notes that this process—one that reveals
invariant geometries through our experiences in the physical world—is similar to the idea
that geometries can be characterized in terms of their invariant properties under different
transformations, as proposed by Felix Klein’s Erlangen Program.

By proxy, this mode of thought undoubtably influenced the way Schaeffer writes about

the invariance of the sound object. Indeed, we can understand a sort of “geometry of the

2See Appendix A. for a formal definition of the group.
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sound object” similar to the way Klein attempts to understand the geometry of shapes
through their invariant transformational properties, and likewise the way Husserl attempts
to understand the essence of objects through their invariant imagined forms. These three
interdisciplinary methodologies are epistemologically analogous, stemming from the very

same historical and philosophical context.

2.3 Modeling Acousmatic Sound

Taking this mathematical influence into account, we return to the acousmatic sound object
in a more practical context. Beyond the purely theoretical notions of invariance, Schaeffer
laid the groundwork for what he called a typomorphology of the sound object. This
taxonomical framework involved the analysis of synthesized and recorded sounds by their
typology (identification and classification), and subsequently their morphology (description
and characterization) [Chi83] for the purpose of acousmatic music composition. The
project of typomorphology was notably continued extensively by Michel Chion, who
described the typomorphological analysis of sound as “a broadening of the descriptive
range of sounds and instruments which might be limited to the identification of physical
parameters (frequency, amplitude, duration)” [Chi83].

Having previously drawn parallels between neural audio synthesis and the acousmatic
situation, we finish this chapter by laying out a number of issues and strategies for modeling
the Schaefferian sound object in the context of contemporary neural audio synthesis while
following the most general guidelines of typomorphology laid out by Schaeffer and Chion.
We first look at some first-hand descriptions of typomorphology from the Traité, and then
propose situating a contemporary typomorphology within a group theoretical interpretation
of neural audio synthesis. We use a body of literature that includes [BBCV21], [BSL13], and
[Mall2a], all of which leverages the use of geometric priors and group symmetries to more

clearly interpret the field of machine learning.

2.3.1 Typomorphology

Typomorphology consists of both a typology and a morphology of sound, each of which are

concepts that are argued to be deeply intertwined. For instance, in the Traité des objets
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musicaur, Schaeffer gives a definition of morphology:

[H]aving abandoned any reference either to instruments or to accepted values,
all we have is collections of disparate sound objects. All we can do is compare
them with each other, in all sorts of ways, in their contexture or their texture.

This activity is sound morphology [Sch66].

We can gather from this passage that Schaeffer’s interpretation of typomorphological
analysis is itself rooted in the acousmatic situation, given an implicit disregard for the sound’s
original source. The morphological analysis thus entails a comparison of disparate sound
objects within an isolated environment, infering similarity and difference in both their texture
and contexture. The use of the term ‘contexture’ here is particularly crucial, hinting to the
fact that Schaeffer conceptualizes morphology as a weaving together of disparate sound
objects into an interconnected structure.

All of these notions point towards strikingly analogous notions in neural audio
synthesis. A neural audio model also deals with disparate sounds within an isolated
environment, implemented as a dataset of sound. The neural audio model then infers
similarity and difference in sound objects through a training procedure. This training
procedure furthermore involves a weaving together of disparate sounds into a structure
that one might call a ‘sound object’ by projecting data onto a space that is continuous and
differentiable. This space is often called a latent space [GBC16], however we interpret the
space in this work as a manifold (Section 3.1.1). The composer leveraging the acousmatic
situation of neural audio generation thus abandons reference to prior causality of sound,
subsequently guiding the structure of listening via the learned topology on which these
sound representations exist.

In dialogue with this definition of morphology, we also come to a description of typology

by Schaeffer in the same section of the Traité:

[The musician’s] invention has provided a good number of disparate objects
in the material sense, [but] we still had to separate them from the continuums
where they occurred and also classify them in relation to each other. If we took
isolated objects, it comes down to the same thing: we are implicitly obeying rules

of sound identification. What are they? They, too, can only be in response to an
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initial morphological approach. Typology, or the art of separating sound objects,
identifying them, and if possible carrying out an initial crude screening, can only

be based on morphological features [Sch66].

Typology of the sound object is thus directly informed by the contexture of morphology.
In neural audio synthesis, we call this initial crude screening a contraction (Section 3.3.2),
in which representations of sound in a dataset are projected to a lower dimensional space
before training. A contraction thus facilitates the possibility for the classification of sounds

based on some categorical taxonomy.

2.3.2 Geometric Invariance and Neural Networks

It is then key to figure out how, in a practical sense, a typomorphological analysis of sound
could be executed given the advent of neural audio synthesis. The use of the Schaefferian
analogy here is not coincidental. Much like Pierre Schaeffer’s writings about sound, the field
of machine learning owes much of its mode of thinking to the mathematics and philosophy of
the Erlangen Programme that preceded it. While a large percentage of research in machine
learning turns a blind eye to this epistemological connection [OC17], a few notable exceptions
exist [BBCV21], [IL20], [Mall6], some of which have recently coined the term Geometric Deep
Learning [BBCV21]. This alternative approach to writing about machine learning affords
one the ability to more fluently interpret concepts in machine learning by relating them
to ideas stemming from the Erlangen Programme. This approach also stands in constrast
to approaches that are reliant on material concepts such as datasets, loss functions, and
evaluation metrics, all of which might impose unforseen assumptions onto the domain in
question.

A geometric approach proposes that the fundamental concern of machine learning is an
analysis of groups, group transformations, and group invariance between various geometric
domains of signal representation [BBCV21|. This approach benefits our analysis of
Schaefferian sound as it provides us a link between the acousmatic situation of the neural
audio model and the practice of typomorphology, and furthermore reinforces the
connection between Schaeffer’s sound philosophy to the Erlangen programme’s philosophy
of geometry. We can therefore propose that a typological interpretation of neural audio

synthesis stands as a classification problem that reckons with the group invariance of the
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sound object, and that a morphological interpretation of neural audio synthesis represents
an optimization problem that learns a mapping between disparate geometric
representations by way of an underlying group equivarance (see Appendix A: A.2.2).

In order to facilitate this study of the sound object, we review a number of concepts from
topology and analysis to reinforce an intuition for geometrically informed sound processing in
the following chapter. We also provide a procedural overview of group representation theory
in Appendix A, which uses various examples from classical audio synthesis as conceptual
aid. These two chapters provide all the necessary material for a typomorphological analysis

of neural audio synthesis, which we return to in Chapter 4 and 5 in great detail.
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Chapter 3

Geometrically Informed Sound

Processing

In this chapter, we first introduce and define the topological group &, and argue that the
topological group is a fitting mathematical construct for modeling the Schaefferian sound
object. We then focus on &.’s representation in LP spaces and more specifically its
measurability in L2, introducing concepts such as separability, contraction, and
deformation. Finally we introduce the Peter-Weyl theorem which elegantly links the
subspace decomposition of L*(&,) to a direct sum of irreducible representations, which
allows us to interpret neural networks as layers of invariant and equivarant maps with

respect to their linearly independent subspaces.

3.1 A Topological Domain for Sound

Groups are often constructed by starting with an unordered set, which we denote €2. While
making no assumptions about the structure of €2 might be desirable in the general study of
group theory, we might consider adding some constraints to €2 in order to make its domain
more suitable for the purpose of modeling sound.

[VNWD14] propose that a suitable domain for digital sound processing is that of the
topological space. The justification for this can be seen in the need for a set that generalizes
well to the task of mapping, which is a task fundamental to practially all computer music

systems. Mapping is defined by the association of two parametric spaces for sound control.
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The mapping of these two parametric spaces is often also linked to perception, associating
the sensation of human intention or expectation with the sonic result of the mapping
[VNWD14]. The proposed domain of a topological space thus allows for the constraint of
continuous deformation between the control spaces—in other words, the topology implies
an assumption of continuity, connectedness, and boundary in mapping associations
between control parameters.

We start by laying out the basic properties of topological spaces using [Rud87] as our
reference. By adding a few subsequent preliminary constraints, we arrive at the definition

of a manifold which is needed for relating group theory and topology.

3.1.1 Topological Spaces and Manifolds

Definition: (Topological Space) A collection 7 of subsets of a set €2 is said to be a topology

on () if 7 satisfies the following three properties:
1. Trivial Elements: ) € 7 and Q € 7.
2. Finite Intersections: If V; € 7 for i =1,..., N, then ﬂf\il Vier.

3. Arbitrary Unions: If V,, is an arbitrary collection of members of 7 (finite, countable,

or uncountable), then U, V, € 7.

If 7 is a topology on €2, then we call the set a topological space (denoted €2, ), and the members

of 7 are called the open sets in €)..

Definition (Continuous Mapping) If 2, and €2 are topological spaces and if f is a mapping
from Q, into O, then f is said to be continuous provided that f~'(V') is an open set in Q,

for every open set V € (2.

Definitions: (Compactness) A set K C €, is compact if every open cover of K contains a
finite subcover. More explicitly, the requirement is that if {V,,} is a collection of open sets
whose union contains K, then the union of some finite subcollection of {V,} also contains

K. In particular, if €2, is itself compact, then €2, is called a compact space.

Definition: (Neighborhood) A neighborhood of a point u € €2, is any open subset of €2,

which contains u.
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Definition: (Haussdorf Space) We say that €2, is a Hausdorff space if the following is true:
Ifue Q. ueQ, and u # v, then u has a neighborhood U, and «' has a neighborhood U’
such that U, N U = 0.

Corollary: (Local Compactness) 2. is locally compact if every point of ). has a

neighborhood whose closure is compact. Every space that is compact is locally compact.

Definition: (Manifold) A manifold M, is a locally compact Haussdorf space where each
point of €, has a neighborhood that is homeomorphic to an open subset of R™ (it is locally
Euclidean).

Example: Fig. 3.1 demonstrates how a mapping between two manifolds can be used to
model control parameter mappings, following [VNWDI14]. The presented topological
mapping f models a simple granular synthesizer. The domain M, denotes a parameter
space consisting of fundamental frequency (fy), amplitude (A), and spectral centroid (c)
values extracted from the audio signal x at windows of varying length. We can model a
granular synthesizer as the topological mapping f : R* — R? where M/ C R? denotes the

start (s) and end (e) indices of audio signal x.

3.1.2 Topological Groups and Lie Groups

While a topological space might be suitable for general computer music systems, we might
begin to think about how this domain differs when attempting to describe neural audio
systems. We’ve previously argued that much like the acousmatic sound object, sound
generated from a generative model can be best analyzed using the language of group
representation theory. Invariance and equivariance can be analyzed within a topological
space by introducing the notion of the topological group. Many topological groups thus aid
the interpretation of sound synthesis from a Schaefferian perspective. We will introduce a

couple of topological groups in this section, and borrow some definitions once again from

[Wei22] and [GQ20].

Definition (Topological Group) A topological group &, is a group which is also a topological
space, and for which the group operations are continuous. A representation of a topological

group &, on a finite-dimensional vector space V' is a continuous group homomorphism p :
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Xe

X

Figure 3.1: A visualization of a continuous mapping between two manifolds representing

control parameters. Every point u € R3 is associated with a point v’ € R

&, — GL(V), with the topology of GL(V') inherited from the space Hom(V,V’) of linear
self-maps (Appendix A: A.2.1).

Definition (Lie Group) A Lie group is a topological group &, whose topology is a

differentiable manifold.

Remark Lie groups are named after Sophus Lie who was closely affiliated with the Erlangen
Programme. They are an integral part of representation theory, since the general linear group
GL(n, V) forms a Lie group when the vector space has a common basis such as V =R or
V =7.

Remark (Lie Algebra) While we choose to skip its formal definition, the Lie algebra is a
useful concept to observe simply by example, since it acts as the Lie group’s generator. For
instance, we can look at SO(2)’s Lie algebra so(2), which consists of the following matrix

representing infinitesimal rotation.
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s0(2) = [0 _5] (3.1)

This infinitesimal rotation thus generates the entire group in the same manner that a finite
discrete group can be generated from its actions. For an example of group generation in
the context of a discrete group, we analyze the dihedral group ®3 and its group generators
(t,5)®® in Appendix A (section A.1.2).

Example (Affine Group) We now introduce two Lie groups fundamental to audio signal
representations. The first group is the affine group 2, = {a,t, e}, whose transformations

adhere to the group axioms of associativity, identity, inverse, and composition respectively:

((a1,%) o (ag,t2)) o (as, t3) = (a1,t1) o ((az,t2) o (as, t3))
(a,8) o (e,¢) = (a, )

(a, )7 = (a7, —a7't)

(

ar,ty) o (ag, ta) = (ayag, a1t + t;)

This group’s transformations consist of scaling a and translation t defined as such:

acx =ax
(3.3)
tbr=x—1t

When dealing with the affine group’s representation in GL(V'), we can conveniently
apply these group transformations to a matrix X € R"™*? by interpreting a and t as linear
transformations [GQ20].

o, )X =aX +t

e)=eX =X

p(
(

3.4
( (3.4)
(

)

pla, ) ' X =a'X —alt
pla, fl) (Clg, fQ)X = Cl1CI2X + Clltz -+ fl
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where a € R"*™ and t € R™*P. Other common linear transformations such as rotation
and shearing are also invariant to functions over representations of the affine group. The
affine group’s transformations are explored at length in the first chapter of Marcel Berger’s
Geometry Revealed [Ber10]. Berger commences the book in precise recognition of Klein: "If
we want to characterize affine geometry according to the philosophy of Klein at the turn of
the twentieth century, it is necessary to study its automorphisms, by which we mean the

bijections that map the affine plane onto itself and preserve its structure.”

Example (Heisenberg Group) Another Lie group at the center of sound processing is the

Heisenberg group £, = {m, p, t, ¢}, which can be similarly defined by way of its group axioms

((tr, m1,p1) 0 (t2, ma, p2)) © (t3, m3, p3) = (t1, My, p1) o ((t2, M2, p2) 0 (t3, m3, p3))
(t,m,p)o(eee)=(t,m,p)

(t,m,p)~t = (—t, —m, tm — p)

(t, my, p1) o (t2, ma, p2) = (t1 + to, my +mg, py + po + tymy)

A group representation of §), can be defined over the set of 3 x3 upper triangular matrices,

representing the Heisenberg group’s Lie algebra h [Tel05].

=
I

o o o

o O -

p
m (3.6)
0

An interesting representation can then be derived with an exponential map that utilizes the

Lie algebra, using the Taylor series expansion of a matrix exponential

b 00 n 62 h3

n=1

which yields the following matrix

Sl

Ny
I
o O O
S O e+
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The Lie algebra then describes the group’s representation p(t, m, p) which can yield rather

interesting actions on a vector z € R by setting €’ = p(t,m, p)

p(t.m, p)o =™ Pa(t —t) (3.9)

This representation is an irreducible representation in which t corresponds to the action
of translation, m corresponds to the action of frequency modulation, and p corresponds
to the action of phase shifting. This group has implications in audio synthesis given its
association of group actions with the parametric properties of elementary sinusoids. Since
each transformation maps to these sinusoidal parameters, we might correctly predict that
), is at work in the analysis and synthesis of sound. We will see in Chapter 5 how the
Short-Time Fourier Transform (STFT) is itself a representation of a subgroup of £, called

the Weyl-Heisenberg group.

Corollary (Continuous Action) Let &, be a topological group and let {2 be a topological
space. An action grq_ : &, X 0, — Q. is continuous (and &, acts continuously on Q) if the

map gbq_ is continuous.

Corollary (Continuous Orbit) If a topological group action is continuous, then its orbit is

also continuous.

Example The span of orbits can be interpreted as what is often called a latent space.
[KPB*23] gives a number of examples of this in the context of different neural network

architectures.

3.2 Measuring The Sound Object

In most areas of machine learning, an elementary geometric notion of distance is required.
Distance is necessary to infer similarity and dissimilarity between representations of samples,
and furthermore necessary in order to calculate loss. In the context of machine learning, loss
can be interpreted as a rough evaluation regarding how well a certain model preserves the
invariant symmetries of the underlying group [BBCV21]. In order to accommodate this, we

must introduce the notion of measurability into our topological group.
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In this section, we first introduce the idea of a measure and then introduce a translation
invariant measure called the Haar Measure over &,, allowing us to then define a norm
within possible function spaces over .. We then introduce a ‘sound object’
space—denoted X (&,)—in which we will work exclusively for the remainder of the work,
constraining our function space to the space of square-integrable functions L*(&,) over an

underlying topological group.

3.2.1 Haar Measure

In the previous section, we observed that constraining our sound representations to a
topological group &, ensures that the orbits of our group actions are continuous. In other
words, we can span the orbit of a given topological group’s actions without having to worry
about any non-linearities. This property results in the ability to define a notion of size or
volume that is translation invariant, insofar as the underlying topology is continuous and
locally compact. This construct is known as the Haar measure. We first present a definition

of a measure from [Rud87] and then a definition of the Haar measure derived from [Bou60)].

Preliminaries (Measure) A measure is a function p that takes a set Q' and returns a value

denoting size. The measure p adheres to the following properties, such that VU, C 2,
1. Non-Negativity: p(U,) > 0
2. Null Measure: u() =0

3. Countable Additivity: For any collection of disjoint subsets {U?}
o Our) =S (3.10)
i=1 i=1

Definition (Haar Measure) Let 1 be a measure on the topological space Q.. p is said to be

invariant under g € &, if gopu=p Vge &,

Example (Left Translation) Often the Haar measure is applied to the situation of a left

translation invariant measure. To visualize this, we can begin to think of a common temporal

ITechnically, a measure is defined over a o-algebra, but treating the domain as a topological space €, is
sufficient for our purposes
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representation of a sound—=x(t) where ¢t € R—as a representation of the translation group,

a topological group we denote ¥, whose sole transformation is translation p(t)x = z(t — t).

top

Figure 3.2: Left-translation Haar measure on a temporal representation of sound.

Fig. 3.2 denotes a measure p on x that remains invariant to the action of left translation.
The plot represents a causal real-time audio stream on which a Haar measure p can be
defined, so long as the stream is continuous and differentiable. The left shift of y via an
action t> pu is represented with the arrows, showing that the measure y remains invariant
regardless of the value t € .. More casually speaking, if the Haar measure exists, then

there is no neighborhood within the domain that will affect the measurement or volume of

L.

3.2.2 The Sound Object Space X (&)

While the temporal representation is commonly used in many practical settings, it neglects
the reinforcement of geometric priors that might hint towards a sound’s invariant symmetries,
useful for a more acousmatic investigation of sound. Taking inspiration from a proposed space
of signals in [BBCV21], in this section we propose the Hilbert space as being a suitable space
over which we might represent the sound object. We notate this space X(®.,), accentuating
a geometrically agnostic representation that invokes only the constraints of an underlying
topological group and an L? function space. We furthermore use [BBCV21]’s notion of a
hypothesis space to describe neural audio models as functions over the ‘sound object’ space.

We start by defining some basic properties of LP spaces.
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Definition (L? Space) If 0 < p < oo and if f is a measurable function over a locally compact
topological group &, (i.e. a topological space €2, equipt with the Haar measure p), then the
LP space consists of all measurable functions f : &, — LP(&,) where the integral of the pth

norm || f[|, is finite

111, = ([, 1rPan) <oc (31)

Definition (Hilbert Space) Let &, be a locally compact topological group over the set €.

A Hilbert space is a space of functions:

X(6,)={r:6, - L*6,)} (3.12)

where, given two real scalars a and 3 and any arbitrary point u € &, the space L*(®,)

exhibits addition and scalar multiplication for all u € &, and for all 21,2, € X(8.)

(axy + Bz2)(u) = axy(u) + Bra(u) (3.13)

and given an inner product (v, w), (implicit by association from the codomain L*(&.)) and

a measure £ on {2, we define an inner product on X(®,)

(r,a2) = [ {(w), () g, dia(w) (314

Remark We propose that this slightly unconventional method for defining a Hilbert
space is rather suitable for representing a ‘sound object’ space. This is in part due to the
invariant symmetries of the sound being unknown in the acousmatic setting—in other words,
the topology of &, is most likely nonlinear. In the presentation of such a space, we must then
linearize &, while still attempting to preserve these invariant symmetries. In other words,
the justification for a representation of a sound x € X(®.) versus something more canonical
like a continuous temporal representation = € R or a Fourier representation z € C is based
on the need to not only emphasize Schaeffer’s acousmatic situation but also to emphasize
the geometric priors intended to be represented. Representations of sound in this format
reinforce a sound’s invariant geometric transformations, and precisely their preservation of

geometric invariance by functions that map z onto their group representation in L? space.
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We will subsequently see later how we can define the Schaefferian ‘sound object’ as a low-
dimensional manifolds in the space X(®,) allowing us to model the geometric invariance of

acousmatic sound, given an underlying Lie group structure.

3.2.3 The Neural Audio Space F(X)

Definition (Neural Audio Space) The neural audio space consists of functions f € F where
F:X(6,) = X(&)).

Remark In a geometric interpretation of neural audio synthesis, a neural audio model can
be thought of as a function f belonging to a ‘hypothesis’ space [BBCV21], denoted F. The
model treats sounds x € X(&,) and T € X (&) as its training data, such that a dataset
D = {z,, xn}gzl can be constructed and a mapping & = f(x) can be learned. Note that the
dataset D does not itself form a continuous manifold, rather a continuous manifold is learned
with the optimization of a neural audio model f resulting in a latent space that resembles

the acousmatic sound object.

Remark The underlying groups representing the domain and the codomain are not
necessarily the same. We elaborate this claim in Appendix A (A.2.2), but emphasize that
this distinction affects our understanding of which geometric priors g € &, should be
retained when selecting f € F. The interpretation of these geometric priors motivates the

subject of the next section.

3.3 Group Symmetries Over F

In an ideal situation, the space X (8. ) is constructed in such a way that it causes a (Lipschitz)
separation of functions f € F, thus allowing for the possibility of invariant and equivariant
mappings between representations of topological groups. A more practical interpretation of
this property is that f successfully learns the transformational symmetries g € &, as a result
of their group representations X (&, ). Further reducing the complexity of this problem can be
achieved by introducing a contractive operator that acts on our sound object representations
x € X(&,) by ensuring a space that is Lipschtiz Continuous. We define and formalize these

aforementioned concepts borrowing terminology from [Mall6].
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3.3.1 Separability

Definition (Lipschitz Separation) The ‘sound object’ space X separates functions f € F
by imposing structure from &, onto the functions in F. We say that this separation is a

Lipschitz Separation if

V(z,2') € X(&,) Je>0 s.t.

3.15
lz = 2’| > €| f(z) = f'(2)] 1)

Corollary This can be seen as the margin condition for specifying minimum distance across

sounds, shown in Eq. 3.16 where € is reworked to denote the minimum distance across sounds

r e X(®,).

V(z,2') € X(&,) Je>0 s.t.

(3.16)
|z =2 = e if f(z) # f(a)

Remark The Lipschitz separation of f is a necessary precursor to dimensionality reduction
techniques for x € X(&,). We might reiterate here the high dimensional and irregular nature
of the domain at hand. It is in most cases desirable to introduce a contractive operator
® : X — X that reduces the range of variability in x with respect to the group actions
g € &,.. We can then rely on ® to separate functions f € F, where a lower dimensional

vector ®(x) will locally linearize the actions g € &,.

3.3.2 Contraction

Definition (Lipschitz Continuity) The contractive operator ® is Lipschitz Continuous if

V(z,g) € X(®,) x &, IC >0 s.t.

(3.17)
1@ (p(g)z) — @(2)|| < Clglll=|

where |g| denotes the magnitude of the group element g (i.e. measure of the group action),

and C is some constant.
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Corollary The Lipschitz continuity of ® reflects a property known as geometric stability
[BSL13], which can be visualized in Fig. 3.3. Sounds in the inner space X (®,) are linearized
and contracted in ®(X(®,)). Distances between sounds in the space are thus predictably

bounded to the contracted ®-space.

g/)r

\GIII%II Clglllw\l

<I>

Figure 3.3: Boundary conditions for geometric stability in measures of distance between

sounds z and 2’ both in their representational space X' (&) and their ®-space.

Example We might say that the operator ® yields what is commonly known as the feature
vector. For instance, an example of a contractive operator might be the calculation of Mel-
Frequency Cepstral Coefficients (MFCCs), which are coefficients derived from the STFT that
generalize the energy distribution of the magnitude spectrum. Training a neural audio model
PMFCC (7))

f on MFCC representations is one of many common approaches to contracting

the ‘sound object’ space.

3.3.3 Deformation

The formal properties of invariance and equivariance are used to describe group
transformations under abstract mathematical settings (see Appendix A: A.2.2). When
applied to real world phenomena such as sounds, we’ve seen that these ideal properties
become difficult to analyze due to the complexity of the underlying domain. Because of

this complexity, a notion of deformation stability—often called approximate invariance—is



3. Geometrically Informed Sound Processing 33

thus introduced to account for the type of invariance and equivariance we might be
referring to in a practical settings [BBCV21]. This notion of an approximate invariance
stems from the fact that the constant C' can stand as a threshold for invariance with
respect to the actions of the group. The Lipschitz Continuity property defined in Eq. 3.17
alludes to the fact that f is locally invariant to the actions of &, if |g| < C' [Mall6].

Definition (Approximate Invariance) A function f € F is approximately invariant if

1f(p(g)x) — f(z)|| < Ce(@)llz]| Yz e X(&) (3.18)

where g is a small perturbation of z that may or may not be an element of &, and ¢ is a
“complexity measure” where c¢(g) = 0 if g € &,. The complexity measure generalizes
invariance in &, by defining a domain specific function. One such function is the elasticity
function (Eq. 3.19), introduced in [BBCV21] alongside their definition of approximate

invariance.

(@) = [, 1V8(u) dp(u) (3.19)

3.4 Mapping The Sound Object

Our approaches for mapping representations of sound thus far have involved linearizing
X (®,) through contractive dimensionality reduction. While this accounts for capturing
local group symmetries, it does not take into account symmetries at different scales [Mal89]
[BBCV21]. To mitigate this issue, we might imagine a compositional chain of linear
projections f(1) o f2) o ... o f(n) where each layer f;) € F accounts for the preservation of
different group symmetries. This compositional chain describes the construct of the
FEquivariant Neural Network, notably studied by [FWW21], [BSL13], [Rav20], [MFSL19]
and others.

In this section, we introduce the equivariant neural network by first discussing its
relationship to representational disentanglement via the Peter-Weyl Theorem, and then

analyze invariant and equivariant networks using commutative diagrams.



3. Geometrically Informed Sound Processing 34

3.4.1 The Peter-Weyl Theorem

The selection of an L? function space as our representational space for sound objects follows
[BBCV21] and their application of L? space to a proposed space of signals. L? space is
a suitable function space for many reason, but can perhaps be best described using the
Peter-Weyl Theorem.

Theorem (Peter-Weyl) The space of square-integrable functions on & is the direct sum over
finite-dimensional irreducible representations V', denoted as a direct sum of endomorphisms
(see Appendix A: A.2.1) of V:

LA, = é End(V) (3.20)
=1

Remark What the Peter-Weyl theroem implies is that the compact topological group &.;
allows us to compose functions f € F where each function corresponds to a subspace W C V
responsible for representing a certain group symmetry p(g)|lw < p(g)|v. In the language of
[HAPT18] we fully disentangle the vector space V' (Appendix A: A.4.2) which we use to

represent our topological group &, using a direct sum of irreducible components.

3.4.2 Equivariant and Invariant Networks

The result of the Peter-Weyl Theorem gives way to the notion of the equivariant neural
network. Equivariant neural networks are neural networks constructed through crafting a
complete disentanglement of a representation into its irreducible components, and can be
interpreted as a chain of linear projections f € F in which a group symmetry is preserved
in each layer of the chain. We introduce the equivariant architecture first, followed by the

invariant architecture [Wei22].

Definition (Equivariant Network) An equivariant neural network is a sequence of equivariant

layers each preserving a different linear group action (group representation) p(g)*
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) e fe fw
X(B) — K(B) —— X(e) —— X)) g

Definition (Invariant Network) An invariant neural network is a sequence of equivariant

layers followed by an invariant mapping

foy fw

(3.4.2)

Remark These interpretations of the neural network treat each layer as a mapping f

between function spaces X' (&) whose underlying groups may differ. Group transformations
p(g) act as a function from a given space to itself that can traverse the geometric orbit of

each space, once again reflecting [KPB'23]’s interpretation of a latent space.
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Chapter 4
Neural Audio Typology

This section explores neural audio synthesis from the perspective of Schaeffer’s concept of
typology. We've observed thus far that a typology of sound must entail a classification
based on a broad range of parameters that deviate from traditional musical parameters.
With a continued emphasis on the sound object’s geometry, we show in this section that
time-frequency analysis can provide a group representation that parameterizes the sound
object based on invariant group transformations. We first look at the Weyl-Heisenberg
group and its representation using the windowed Fourier dictionary, and then observe its
affinized representation using the wavelet dictionary. We show that the wavelet dictionary
can be parameterized in such a way that produces a locally stable representation of the sound
object, as well as a representation that is invariant to time-translation and time-warping.
This invariant representation is known as the Scattering Transform [Mall2al, a
representation proven to be geometrically analogous to the convolutional neural network
[Mall6]. We subsequently show how the scattering transform can be further extended to
produce a frequency-transposition invariant representation using Joint Time-Frequency
Scattering (JTES), and look at examples of how the JTFS representation can be used for a

typological analysis of mesostructures.

4.1 Typological Sound Representations

Parametric estimation is at the crux of a wide variety of problems in the domain of audio

signal processing. Certain analyses of audio might represent perceptually relevant features
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as well-localized points in Euclidean space [PGS*11]. In a group theoretical context, one
can interpret these as representations of the affine group (see 3.1.2) due to their
preservation of affine transformations across functions defined over the space. Other
parametric analyses might yield representations that describe low-level sinusoidal
interaction in a signal, which might be less perceptually descriptive when dealing with
non-stationary signals but more practical for the reconstruction or “resynthesis” of signals
over time [AKZB11]. These analyses serve to represent the Weyl-Heisenberg group, a
subgroup of the Heisenberg group from section 3.5 that is invariant to time-translation and
frequency modulation.

In this section, we use the group representational language established in the previous
chapter to describe the typology of the sound object. We introduce the Weyl-Heisenberg
group 20, whose group representation X' (20,) forms a set of elementary functions called
a dictionary [Mal09]. We show how the Short-Time Fourier Transform is derived from a
dictionary that serves as one of many possible representations of sounds = € X(20,). We
then show that by using an alternate dictionary such as the wavelet dictionary, an affine
multiresolution representation of sounds x € X (2;) can be derived, contracting the ‘sound
object’ space into a domain that is well-localized in both space and frequency [Mal89]. We
later review Schaeffer’s writings on typology and argue that these multiresolution approaches

model a typology of the sound object.

4.1.1 Fourier Representations and The Weyl-Heisenberg Group

Dennis Gabor showed that the problem of time-frequency localization is closely related to
our perception of sound [Gab46]. Since the work of Gabor, the parameterization of the
time-frequency plane has remained integral to tasks such as sound reconstruction and
sound matching [AKZB11] [HLL23]. Following our group theoretical treatment of the
neural network in Chapter 3, a group theoretical interpretation of time-frequency analysis
further augments our understanding of how the Schaefferian sound object can be
represented using neural audio models. [Cell7] shows that in the context of sound
synthesis, time-frequency representations often entail the use of high-dimensional group
representations that usually relate to geometric transformations of fairly low abstraction
(e.g. translation) that can be defined over Lie groups. We therefore start by showing how

time-frequency representations can be thought of as group representations.
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In time-frequency analysis, it is common to introduce the construct of a dictionary, which
is a set of functions X' = {xue}, ey, that acts as the group representation X'(&.) for z. We
can thus project a sound z onto the set of functions in the dictionary by defining an operator

®,., shown below in Eq. 4.1:

() = [ oOxue@dt = (@, xue) (4.1)

teR

where each function x,e € X is called a time-frequency atom, an elementary function
indexed by u,{ € A [Mal09] onto which we decompose the sound. [Fla99] shows that
energy conservation resulting from the signal’s projection can be directly related to the
Haar measure on the group &.. Let ug. denote the Haar measure on &, and let the set of
atoms X act as the group generator for &.. The conservation of energy E, of the sound x

can then be derived from the Haar measure as such.

B = [ ) dpe, (u.6) (42)

As a measure on the group &., FE, is directly related to the underlying group
transformations g € ®, [Fla99], which are furthermore informed by the uncertainty
principle in time-frequency localization shown in [LCO04]. As a continuous signal, this
makes the possible representations of &, extremely redundant. A fundamental example of
this can be shown in the relationship between the windowed Fourier atom and the
windowed Fourier Transform [Mal09]. The windowed Fourier Transform is a collection of

atoms that yield the following projection, which we denote ®7.

Xue(t) = eiz’rétw(t —u)
O (u,€) = / 2(Bw(t — u)e 2y

teR

(4.3)

where w is a window function of arbitrary size. Here, the operator ®, fully defines the Short-
Time Fourier Transform (STFT). Following the energy conservation established by Eq. 4.2,
an energy spectral density can also be derived by squaring the magnitude. We might define

a more specific operator E7 that operates on a sound z to derive its energy density.
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EZ (u,€) = /t  a(blt = u)e s ’ (4.4)

Previously we introduced the Heisenberg group $), in Example 3.5—a subgroup of

GL(3,R) that can be conveniently represented as a complex exponential (Eq. 3.9). The
Weyl-Heisenberg group is a subgroup of the Heisenberg group that only includes the
transformations of translation t and modulation m. This modification allows us to interpret
the windowed Fourier transform as a representation of 20,. This can be shown by
interpreting the set of atoms in X as group generators belonging to 20,.. This also implies
that all functions f € F are invariant to the Weyl-Heisenberg group’s transformations of
translation and modulation, which we continue to denote p(t)z(t) = z(t — t) and
p(m)z(t) = x(t)e*™ following Eq. 3.9. The Weyl-Heisenberg representation of a sound
x € X(20,) ensures that for any window function w € L?(R) and any shift factor 7 € R:

(@t =7), p(Hw) = (z, p(t = T)w)

. (4.5)
(@(t)e™™™, p(m)w) = (z, p(m — T)w)

We redirect readers to texts such as [Won02] and [Jan98] for more formal derivations of

the Weyl-Heisenberg group’s transformations.

4.1.2 Wavelet Representations and the Affine Group

While the Weyl-Heisenberg group might suitably characterize the low-level structures of a
sound through its group transformations, its energy distribution is proven to be unstable
under small deformations. [BBCV21] shows this by evaluating affine translations on the
spectrogram. Working from our spectrogram E7 (u,£), we now define an affine coordinate
system u,v € A where v represents affine coordinates over the frequency axis such that
the spectrogram is now indexed as E7 (u,v). Working from these new coordinates, let the
actions (tp,trp) € A, be the actions of translation on both axes of the plane, such that
p(tr, tr)El = EF (u —tp,v — tp).

To evaluate the geometric stability of the spectrogram, [BBCV21] then introduces the
notion of approzimate translation. Approximate translation is a function of both time t7(u)

and frequency tz(v) that measures the difference between any ‘approximate’ translation t
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and true translation t by subtracting the approximate translation from its orginal coordinate.
For instance, true translation over time can be put in terms of approximate translation by
declaring tr(u) = u — tp(u). The same definition can be derived for frequency, such that
tr(v) = v — tp(v). Looking at the maximum value of the gradient of each action can then
be put in terms of its approximate action such that |Vir|. = sup,cqltr(u)| < er and
|Vtr|l, = sup,eqlltr(v)|| < €r, where er and ep each represent an upper bound on each
gradient’s maximum value.

Importantly, this relationship states that the closer t; or tg is to a shift in time or
frequency, the smaller the upper bounds ey and er become, therefore making implicit a
notion of geometric stability for the joint action p(tr,tr). [BBCV21] then use this to show
that the application of p(tr, tr) onto a spectrogram E7 (u,v) yields an unstable result—i.e.

a result that is not bound by €7 and ep:

loltr, )BT — EF||
&l

o(1) (4.6)

where O represents magnitude of the deformation at point w,v, which in this case is a
constant value instead of a value proportional to the upper bounds of t7 and tg. In other
words the Weyl-Heisenberg group yields an energy distribution that causes non-rigid
transformations by functions f € F [BBCV2l1], resulting in a lack of stability and
localization of energy in both time and frequency.

A remedy for this issue is to use a different time-frequency dictionary, since not all
dictionaries are representations of the Weyl-Heisenberg group. For instance, the wavelet
dictionary bridges this geometric gap by defining a representation that is localized in both

time and frequency [Mal89]. Wavelets are defined by the following dictionary:

e

where now instead of time and frequency coordinates u,v € A we use coordinates denoting

scale a and shift b. The wavelet representation can be derived similarly to the Fourier

representation in Eq. 4.3:

W (a,b) = —— /tERx(t)w* (t - b) dt (4.8)
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This representation similarly yields an energy distribution called the wavelet scalogram,
which we denote EW(a,b) = [®%¥(a,b)|>. [BBCV21] notes that this allows for a
decomposition that is approzimately equivariant to deformations, as shown in [Mall2a]. In
this case, we can measure approximate translations once again and show the following:

tr, tp)EY — E)V
lp(tr, tr) I _ Oler, er) (4.9)

]

where the magnitude of deformation of €7 and e is in proportion to the joint action p(tr, tr),
unlike the scenario in Eq. 4.6. Importantly, this implies that EY” is a contractive linear
operator that is also Lipschitz continuous (Eq. 3.17) [Mall6], yielding a representation of x
that contains a family of locally stable features. These locally stable features are the result of
dialating and translating the atoms ¢» € X'. Such affine modifications to the Weyl-Heisenberg

group representation can also be demonstrated visually in the resulting scalograms (Fig. 4.1).

F 2 w 2
p(toa)
p(tom)
u b
(a) 20, group transformations of (b) 24, group transformations of
translation and modulation on its translation and scaling on its Mel-
STFT representation Scalogram representation

Figure 4.1: Group actions over two contrasting time-frequency representations.

With the introduction of an additional scaling function acting as a low-pass filter, we
can further augment this affinized representation of the Weyl-Heisenberg group to form an
orthonormal basis in L? space. Importantly, this means that the resulting representation of

x can also act as a disentangled representation (Eq. A.15), which we have seen in Section 3.4
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is desirable for neural audio synthesis due to its inherent association of group actions with
representational subspaces. [Mal89] describes the orthonormality conditions for the wavelet
basis functions parameterized in terms of translation and dilation. This is best shown by
discretizing the parameters of the wavelet function 1 such that j,k € 7Z now represent

discrete dilation and translation respectively:

Ui pen(t) = 25(2t — k) (4.10)

We once more introduce the additional a scaling function ¢ that similarly abides by the

same translation and dilation properties as the wavelet atom 1

Grren(t) = 259(27t — k) (4.11)

The function ¢ is associated with nested subspaces ---V;_; C V; C Vjy;--- for each scale

factor j. Translations k then span each subspace such that the space is dense and complete:

U v=r®

j==o0

N v=

j==o0

(4.12)

At each scale j, the wavelet function 1 is responsible for capturing the local details
of the space. Furthermore, each subspace V; € L*(R) can be interpreted as a direct sum
V; = V;_1 ® W,_1, meaning that W; contains complementary information to analyze x at
different resolutions. Assuming that V[ captures the coarsest detail of x, we can see that

these functions provide the following disentangled representation of L*(R):

L*R) =V, ® é W; (4.13)

§=0

As a correlary, this also shows that ¢;; and 1);; form an orthonormal basis, meaning
that (¢jk, @y k) = 0550k and (Y g, Yy ) = 6550k . In practice, this means that a temporal
representation of a sound x € X(T,) can be decomposed onto this subspace and—through

application of this additional scaling function ¢—yield a time-frequency representation of
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x that is not only translation invariant like the Fourier transform, but also geometrically

stable and separable.

4.2 Wavelet Scattering

The multiresolution properties of the wavelet basis allow for the derivation of many
possible affine representations of x, ideal for a geometric analysis of the Schaefferian sound
object. In this section, we introduce one notably flexible representation derived using
Wavelet Scattering [Mall2b] [AM14]. The scattering transform yields a representation of z
that is not only time-translation invariant but also stable to time-warping deformations—a
property that allows the transform to capture structural properties such as amplitude
modulation (AM). The scattering transform can also be interpreted as an invariant neural
network, where the weights are fixed instead of learned [AM14], making it functionally
analogous to the convolutional neural network [Mall6]. We elaborate by also introducing
the Joint Time-Frequency Scattering (JTFS) transform [ALMI19], which extends the
scattering transform to the frequency axis to produce a representation that is additionally
frequency-translation invariant and stable to frequency-warping, allowing the transform to
capture structural properties such as frequency modulation (FM). We finish by reviewing
[CHC*23] which introduces a loss function that measures the square of the Euclidean
distance between JTFS representations of sounds, an inference framework that we argue is

fundamentally typological.

4.2.1 Scattering Networks

A scattering transform of z first involves a projection onto the wavelet basis parameterized
by time ¢ € R and log-frequency A € R. Using a complex Morlet wavelet 1y = 2*(2)t), we

similarly decompose x by convolving across time and taking the modulus of the result.

Equation 4.14 defines a wavelet scalogram, similar to EY except derived in this instance
from a complex wavelet and adjusted to log-frequency scale. As seen in the previous section,

utilizing a lowpass filter ¢ can provide a representation that is invariant to time-translation:
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Sp(t,A) = [z x a(t)] * or(t) (4.15)

In this case, ¢ is scaled by some constant duration T" where ¢7(u) = T d(T1p(u)).
This representation is analogous to the mel-spectrogram—a variation on the spectrogram
that maps frequencies to the mel-scale to reflecting our non-linear perception of
pitch—however, we follow [AM14] by instead calling this equation a ‘first-order’ scattering
transform.  The first-order scattering transform is invariant to time-translation and
approximately invariant to time-warping deformations, by way of adjusting the duration
parameter 7. [AM14] additionally shows that convolving by another wavelet and low-pass
filter can further represent variability in the signal by capturing amplitude modulations.

This augmentation is then referred to as the ‘second-order’ scattering transform:

S2(t, A1, A2) = ||z % b, (8)] % Uhng| % 1 (t) (4.16)

The process of wavelet scattering has been shown in many works to be a functional
analogue to the CNN [Mall6] [BSL13]. Using the invariant network diagram from Chapter
4, we can interpret the scattering transform as a series of equivariant layers followed by an
invariant contraction. In order to do this, we first construct the following operators for both

the wavelet and low-pass filter operations:

Wi, {x} = [z %Py, ()]

4.17
iz} = [z + or(t)] e

where W, represents an equivariant layer of order m and ®; represents an invariant
contraction. A scattering transform of arbitrary order can then be written as a

commutative diagram:
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VV,\1 WAQ W)‘s
X(T,) X () N X () .
p(a) D \ p(a)® \
p(t)| | X'(2L,) Ay
: e q/
H(T,) g X ) o X(2)

=

(4.2.1)

In diagram 4.2.1, translation equivariance p(t) between the original sound z € X (%) and
the resulting scalogram are captured by the first-order operator W,,. Affine transformations
on the time axis denoted p(a*)(n) are subsequently made invariant by the contractive operator
&, resulting in sounds x € X”(2l;). The process is repeated at the second-order to capture
AM, resulting in a second space € X" (). While the commutative diagram above shows
that the process could be repeated for higher-order scattering transforms (W,,), it has been
shown that these are negligible in the context of sound classification [Wall7]. Therefore, a
suitable scattering representation for sound is commonly defined simply as a concatenation

of the first-order and second order scattering coefficients.

ES(t, A1, M) = SH(t, \) @ S2(t, A1, Ao) (4.18)

The complete scattering representation (Eq. 4.18) can thus capture time-warping
invariance through its ability to capture AM via affine scaling along the time axis. Fig. 4.2
shows an example of the energy distribution derived from the first-order scattering
transform computed using the Kymatio library for Python [AAET22]. The scattering
transform was performed on a recording of a large aluminium triangle approximately 50cm
in length on each side. The triangle was struck once while suspended in air with fishing

wire, naturally decaying until fully damped, thus creating low-frequency amplitude
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modulations as a result of its rotations in space!.

1 1
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Figure 4.2: First-order scattering transform of a large aluminum triangle at two different
resolutions. Increasing T' produces a representation that is more geometrically stable to

translation.

In practice, the scattering transform is calculated using different wavelet resolutions with
the coefficients J and @), from which we derive the wavelet scale factor A. In this case, J
dictates the number of octaves in our wavelet filter bank, while ) dictates the number of
filters per octave. Comparing the left and right columns in Fig. 4.2, the resulting scalograms
on the left contain much finer details due to the greater numbers for J and ). We also
observe that increasing the duration parameter T° augments the scale of time-invariance.
AM thus becomes globally clearer in the scalograms when increasing the duration parameter

from 28 to 21,

While a geometrically stable representation of the triangle can be captured with the first-

IThis recording is presented as the first preliminary example on the companion site for this thesis:
https://acousmatic-ddsp.netlify.app/


https://acousmatic-ddsp.netlify.app/
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Figure 4.3: Second-order scattering transform of a large aluminum triangle at three
different resolutions. AM caused by the rotation of the triangle is captured when centering

the second-order filters around different frequencies.

order scattering transform, greater structural details such as the triangle’s low-frequency
amplitude modulations can be captured using a second-order scattering transform?. In this
example, we derive three different second-order energy distribution where the second-order
filters are centered around three different frequencies from the first-order transform. At
each of these first-order frequency values, we are able to derive a corresponding second-
order energy distribution in which we can observe a better representation of the amplitude
modulations active around that given frequency region. Fig 4.3 shows this process and
how it captures amplitude modulations ranging from approximately O0Hz — 1024Hz. Most
importantly, the second-order transform captures low-frequency AM patterns resulting from
the suspended triangle’s rotations in space at a better resolution. This can be seen most

clearly in the distribution where Ay = 509.51Hz, where low-frequency oscillations occur

2Technically these rotations are identical to t, the same as those of the group @3 from Section A.1.2.
While we won’t formally prove it, one could infer that the time-warping invariance described in second-order
scattering is related to the transformations p(t), p(s) € X(Dn).
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periodically around OHz — 8Hz. Finally, the distribution where Ay = 4076.07Hz provides an

informative representation of the signal’s transient.

4.2.2 Joint Time-Frequency Scattering

With a slight modification of the second-order transform S? we can augment the
structural properties captured by the scattering transform simply by extending its
second-order translations and dilations into the frequency dimension [ALM19] [MVW*22],
thus yielding the Joint Time-Frequency Scattering (JTFS) transform.

Taking a JTFS transform involves defining a two-dimensional wavelet, commonly
denoted W. The two-dimensional wavelet is parameterized by the tensor product of two
one-dimensional wavelets, one parameterized by a temporal scale parameter—now denoted
A —and one parameterized by an additional frequency scale parameter A as well as a spin

parameter # + 1 that represents the slope of oscillation.

Uyraro(t A1) = (22 9(2 1) © (222 (2% A1) (4.19)
We thus modify the second-order scattering transform to derive the JTFS transform:

S2(t My AT NS 0) = [|2 %, ()] %' Uygar gl % re(t, ) (4.20)

The introduction of translations and dilations in the frequency axis thus requires an
additional constant F' to be defined for our contractive operator ®, corresponding to the
constant 7' on the time axis. This also results in a two dimensional convolution, denoted
t’>|)<\1, allowing for an invariance to translation along the frequency axis, as well as for an
additional stability to frequency-warping. It’s noted in [MVW™22] that omitting the
frequency axis convolution 3 might also be desirable in order to preserve equivariance to
frequency-transposition. Deriving the full tensor of scattering coefficients now becomes a
concatenation of the output of both the first-order scattering transform and the second

order JTFS transform, shown below:

BT (8, Mg, AT, AE L 0) = SL(t, A1) @ S2(E, M, AL AL 0) (4.21)

With the introduction of frequency-translation and frequency-warping invariance, the
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JTFS representation is now beneficial for modeling higher-order structures in the sound
object given its ability to not only capture amplitude modulation in sound, but also capture
frequency modulation. Fig. 4.4 shows a selection of scalograms derived from the JTFS
transform performed using a recording of two strikes of a large suspended spring coil. Each
strike was passed through a frequency shifting effect, the first one ascending in frequency and
the second one descending in frequency. The selected scalograms represent subspaces of the
JTFS transform where A\ is tuned to different center frequencies, enabling the scalograms
to represent the effects of FM at different frequency bandwidths. At Al = 16.4Hz and \!' =
16.8kHz, frequency shifting is somewhat visible in the lower bandwidth of the scalogram.
Higher tunings allow us to visualize the resonating frequencies of the strike, and slight
differences in the magnitude of ascending versus descending energy. These slight differences

are circled in Fig. 4.4, demonstrating the effect of setting 6 = 4+1 and § = —1.

4.2.3 Mesostructural Distance

‘Mesostructure’ is a term coined by lannis Xenakis used to describe mid-level structural
elements of music, in contrast to micro and macro structures [Xen92]. [Roald] further
elaborates on mesostructures as the structures that emerge from the grouping of sounds and
their complex spectrotemporal evolution. This evolution can be dictated by a myriad of
structural elements, spanning from traditional pitch and rhythmic sequences to parametric
features of the frequency spectrum such as centroid, loudness, and harmonic energy.

The JTFS transform’s ability to capture higher-order frequency and amplitude patterns
has notably deemed it a mesostructural representation of sound by [CHC'23]. This
interpretation further fits into our group theoretical framework of the sound object, in that
the JTFS transform contracts and linearizes sounds by projecting them into an affine space
in which Euclidean distance between different sounds z € X(2l;) denotes mesostructural
similarity. More formally, we might develop a distance metric to compare the Euclidean
distance between mesostructural representations of two different sounds. This can be

derived simply by taking the magnitude difference between two JTFS tensors:

| ELTFS — pITES| 2 (4.22)

We can interpret Equation 4.22 in two different ways. The first way follows our group
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theoretical approach, where it represents the Euclidean distance d(-, -) between sounds. This
relates to our predefined notion of geometric stability (Eq. 3.17), in that the contractive
nature of the JTFS transform in both time and frequency (®1 ) yields a domain that follows
the boundary condition C|a|||z| Yz € X' (2;) and Ya € ;. Assuming such a condition for
geometric stability allows us to compare sounds based solely on affine geometry. Another
interpretation of 4.22, however, relates directly to neural audio synthesis, in that this distance
can serve as a metric or loss function that evaluates how well a neural audio model has
‘learned’ the mesostructures of a collection of sounds as a unified continuous sound object.
This interpretation allows one to put the notion of mesostructural geometric stability into

practice, given a collection of sounds.

4.2.4 JTFS as Schaefferian Typology

The JTFS representation has demonstrated its effectiveness across several practical
applications, where the Euclidean distances derived from different JTFS representations
suggest its potential as an implementation of Schaefferian typology. For instance, in
[LEHR*21], short recordings of orchestral extended techniques were clustered based on
distances between their JTFS representations.  These clusters aligned closely with
perceptual studies in which participants grouped the recordings according to perceived
timbral similarity. Additionally, [LYY23] provides compelling evidence for the stability of
the JTFES representation at the mesoscale. In this sound matching experiment, recordings
from a ‘chirplet’ synthesizer were compared against their ground-truth parameters,
demonstrating the JTFS transform’s ability to capture mesostructural similarities between
sounds and their generative models.

These examples underline the JTFS transform’s capability to generalize the structure
of acousmatic sound—sonic material without an identifiable source—thereby providing a
concrete foundation for Schaeffer’s concept of the sound object and its perceived invariance.
In the following chapter, we will further develop the notion of the sound object by exploring
morphology, which similarly involves the geometric localization of sonic similarities, except at
scale of the microstructure, allowing for the possibility of a continuous control of acousmatic

sound.
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Figure 4.4: Selections of the JTFS transform performed on a recording of a large suspended

spring coil with added ascending and descending frequency shifts.

The frequency scale

parameter Al is tuned to various different center frequencies while the spin parameter

captures minor differences in ascending and descending frequency.
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Chapter 5
Neural Audio Morphology

This section explores the Schaefferian concept of morphology in the context of neural audio
synthesis.  Following the previous section on typology, we shift our focus from the
mesostructural to the microstructural by constructing representations that enable disparate
sounds to seamlessly ‘morph’ into one another. This approach reinforces our claim that the
Schaefferian ‘sound object’ should be represented as a continuous and differentiable
manifold with the underlying structure of a Lie group. We thus introduce another affinized
representation of the Weyl-Heisenberg group called the Multiscale Spectrogram (MSS)
[EHGR20] [SM23], which adequately represents sound on the microscale while still acting
as a contractive operator. When used in tandem with the parameters of a synthesizer, the
MSS can serve as a distance metric or ‘loss function’ for optimizing a neural audio model
[ X)) — X(;), learning a continuous differentiable mapping between control
parameters. The learned mapping is equivariant to affine transformations, as well as
approximately equivariant to small time-warping transformations.

This morphological paradigm is more commoly known as Differentiable Digital Signal
Processing (DDSP). We argue in this section that DDSP can be interpreted from the
perspective of group representation theory as a mapping whose codomain approximately
spans the orbit of the latent space ®(X(&,)). Ideally this span can be reached by choosing
a set of control parameters that disentangles the latent space through an estimate of

approximate perceptual independence [PGST11].
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5.1 Morphological Sound Representations

As stated in the Traité, Schaeffer proposes that a typology of the sound object is inherently
linked to its own morphological features. This means that a morphology of sound object—
i.e. an interpolation over the features of various sonic material—must be based off of a set of
parameters resulting from typological analysis. More technically speaking, any contractive
operator ® used to project a set of sounds into an affine space will yield a parametric space
that also reflects the conditions for a subsequent ‘morphology’ of those given sounds. In
this section, we show that the typological distribution of sounds resulting from ® can also
be used to form a morphological representation of the Schaefferian ‘sound object’ simply by

switching time-scale from the mesostructural level to the microstructural level [CHC*23].

5.1.1 Parametric Extractors

Microstructures can be thought of as structural elements of sound at a time-scale somewhere
between a few samples and a few milliseconds [CHC*23]. These structures are inherently
linked to computer music processes such as granular synthesis and wavetable synthesis,
both of which deal with sonic material on the microscale [Roa0l]. Due to their incredibly
short-term nature, sounds on the microscale are often represented using only the Weyl-
Heisenberg STFT representation. Given a windowing function wy, where T is the length of
a chosen microscale, we can reparameterize the STFT representation from Eq. 4.3 based on

our microscale T

O7 (u,&,T) = / o(t + wH)wr(t)e 2™ dt (5.1)

teR

The reparameterization in Eq. 5.1 allows us to analyze z as a representation of the
translation group X(T,) iteratively over time, where wr slides across time via some
translation factor H, often called a hop size. As noted in the previous chapter, the STFT is
not a geometrically stable representation of sound. However, much like the wavelet
scalogram, one can apply a contractive operator on the STFT representation such that a
well-localized statistical representation can be extracted at the microscale, ideally reflecting
the spectrotemporal evolution of x over time in a low-dimensional space when

concatenated across the time axis.
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Treating the window function wy as a sort of microstructural analogue to the low-pass
filter ¢ from the scattering transform (Eq. 4.15), we begin by assuming for the remainder
of the chapter that the Weyl-Heisenberg representation of a sound = € X'(20,) is implicitly
constrained to a given window x - wp where T' < 8192. From this assumption, a more
stable representation of x can be derived by constructing a vector of low-dimensional
parameters, each of which relate to the microsound’s perceptual features such as harmonic
and noise content (e.g. harmonic energy, noisiness), or to the statistical distribution of its
frequency spectrum (e.g. centroid, kurtosis). A formalized list of such parameters can be
found in [PGS*T11], who compile a set of time-varying audio descriptors that describe the
spectrotemporal evolution of sound (see Appendix B). This set of audio descriptors
contains a list of parameters shown to be least correlated with one another, a result derived
from various perceptual studies. The proposed perceptual independence of these
spectrotemporal descriptors allows us to make the assumption that they might represent x
from approximately independent subspaces. We can convey both their independence and
their stability through the definition of an operator I' that takes a microsound z - wy and

extracts a vector containing a subset of the time-varying audio descriptors.

P ) - @) (5.2)

The assumed perceptual disentanglement of the space @pcz. Wi(U;) allows for a
maximally expressive representation of the microsound x - wr through the disentanglement
of group actions p|w, (a) associated with each subspace Wy. The resulting codomain of T’
thus ideally yields a K-dimensional disentangled parametric space. Figure 5.1 represents
this parametric extraction visually using an example in which the codomain contains a
subspace of three parameters. We denote a point in this disentangled control space as
V € @rezr Wi(;). The manifold V, shown within the control space furthermore
represents a situation in which a collection of microsounds = € X' (20,) forms a set of points
Uner Vi that resembles a locally compact Hausdorft space.

Note that V, resembles an abstract model of the Schaefferian sound object proposed in
Chapter 3 as a manifold that forms a Lie group. In this regard, we now interpret the notion
of the sound object as a sort of topology for sound control [VNWD14] in which a function

v(t) might define the reconstruction of microsounds morphologically by traversing the surface
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Figure 5.1: Parametric extraction at the microscale resulting in points on a manifold of

possible microsounds.

of the manifold over time. This puts emphasis on the notion that the sound object is not
any one ‘concrete’ piece of sonic material, but rather an abstract acousmatic phenomenon

that resembles the full span of parametric variations [Kanl14].

5.1.2 Parametric Synthesizers

Taking this into acount, we now invite the reader to imagine that this manifold resembles a
latent space, denoting the set of all possible inputs values to a neural audio model f. While
we formalize the intuition behind this in the following section (5.2), it will be sufficient
to simply imagine this space as a continuous and differentiable representation of control
parameters, where the representation has been interpolated to ‘span’ the orbit of each group
action p|w,(a) (see Section 3.1.2). Taking into account these newly generated points that
make our representation continuous, we must now define a method to resynthesize latent
control parameters back into microsounds.

In order to facilitate such a resynthesis of latent microsounds, we define another
operator I which takes a set of synthesizer parametres v and plugs them into a pre-existing
synthesizer suitable for reconstructing each original microsound x with adequate resolution.
Some examples of these resynthesis parameters might be the set of amplitude values over a
noise-driven filter bank [AKZV11] (Fig. 5.2), or the set of amplitude values over a
harmonic plus noise synthesizer [SS90], both of which can resynthesize a given microsound

x € X(20,) with higher precision depending on the harmonic nature of the microsound.
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I GL}WL@(T) — X(20,) (5.3)

The operator I' thus represents a synthesizer which takes L parameters—denoted as
another point of parameters v € @z, Wi(A;)—and resynthesizes them back into a
microsound. Much like each disentangled control space Wj, the resynthesis parameters

represented in each space W, are assumed to be geometrically affine, facilitating a similarly

JW

Figure 5.2: Parametric resynthesis at the microscale. An L dimensional space represents

stable low-dimensional representation of x.

i

wr

leZ+

the amplitude values of L noise-driven bandpass filters.

5.2 Differentiable Digital Signal Processing

In this section, we argue that with the addition of two components, namely a neural audio
mapping f € F, and an affinized representation of the STF'T spectrogram, the morphological
model constructed thus far forms the fundamental building blocks of what’s commonly known
as Differentiable Digital Signal Processing (DDSP) [EHGR20]. DDSP is a framework that
uses a neural network to learn a mapping f from spectrotemporal parameters to resynthesis
parameters by using an affinized representation of the Weyl-Heisenberg group called the
Multiscale Spectrogram (MSS) [SM23] as a distance metric to ensure stability in the network.
These components are often introduced using terminology oriented around computational
implementation, where f is called an ‘autoencoder” and the MSS distance metric is called a

‘loss function.” We furthermore show that the DDSP network allows one to morphologically
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control the space X(20,) through various audio effects such as extrapolation and timbre
transfer, which leverage group equivariant relationships between different representations of

sound.

5.2.1 The Multiscale Spectrogram

Initially proposed by [EHGR20| and expanded upon by [HSET24], DDSP is a proposed
methodology in which classical signal processing techniques such as additive synthesis
[BSAL11], phase-vocoder [AKZB11], and source-filter modeling [AKZV11] can be utilized
by neural networks in order to learn a differentiable synthesizer for the purposes of
parametric estimation and generative audio modeling. Perhaps the most straightforward
use case for a DDSP model is the task of sound matching, which is described at length in
[HLL23|. Sound matching consists of finding an ideal parameter set such that a sound
object x can be adequately reconstructed. The task can be described in even greater detail
using the aforementioned operators I' and T, slightly augmenting the framework described
in [HLL23].

Given a sound x € X (%), the task of sound matching involves finding a set of parameters
v such that # = ['{¥}, where # ~ x. The way in which we might find such a set of parameters
is through the training of a neural audio model f € F. While [HLL23] describe an approach
in which the parameters v are learned directly from the original sound z, it is more common
in neural audio effects such as those described in [EHGR20] and [BRC24] to instead learn an
intermediary mapping from control parameters to resynthesis parameters. We can visualize

this more clearly using a commutative diagram.

F K
X(W,) ———— SWi(2)
7 f
@) SMm()

(5.2.1)
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In diagram 5.2.1, we represent the sound matching operation as # = J{z} = (I o
foDl){z}. In order to properly evaluate how closely Z resembles x, we must use another
affinized time-frequency representation, similar to those used in the previous chapter. One
way to achieve this is by extracting the STF'T representation at multiple timescales, which
effectively performs multiresolution analysis on the microscale. This modification is known
as the Multiscale Spectrogram (MSS) [EHGR20] [SM23], shown below in Eq. 5.4 as an energy

distrubution.

2

N
/ o(t 4 wH)wp(t)e = dt (5.4)
teR

EIQZ/ISS(U757T7 H) = @

TeT

The MSS representation yields a representation that concatenates STFT
representations at multiple time-scales T" € 7. This provides a representation that
circumvents the time-frequency resolution tradeoff implicit in the STFT representation
[LCO4]. For this reasons, the MSS representation has been noted to be approximately

~

equivalent to the wavelet scalogram ®M%5 ~ S, [CHC*23]. This equivalence furthermore

makes ®MSS

another affinized representation of the Weyl-Heisenberg group acting at the
microscale, contracting sound into a space that is better localized than ®7. The similarities
between this contraction at the microscale and the JTFS transform’s contraction at the
mesoscale can be observed in Figure 5.3, where 71" represents the largest window of a MSS
analysis and 7" represents the larger time-scale from a JTFS analysis. Likewise, H and H'
denote the respective hop sizes from a micro and mesostructural analysis.

Given a sound = € X (%), we can declare an equivariant relationship between the action
of time-translation p(t) and affine deformation p(a) of microsounds. Let H be the translation
factor (hop size) and N be the number of resulting of multiscale spectrograms derived from
the smallest window size T' € T. Since ®M5° ~ &, it also follows that ®M55 is approximately
equivariant to time-translation deformations, as is the case for S, (Eq. 4.9). In diagram
5.2.2 below, p(Ht) acts on a window wr(t) such that p(Ht)wy(t) = wr(t — Ht) VT € T.
The equivariant nature of this operation can be shown by the fact that time-translations
in X(%,) yield affine transformations in the MSS domain X (2,), i.e. ®MS(p(Ht)™Wz) =
p(a) @M (z).
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(a) Affine representation at the microscale using the multiscale

spectrogram.

(b) Affine representation at the mesoscale using the JTFS representation.

Figure 5.3: Contractive spaces ®(X') at both the microscale and the mesoscale.

PO o PO PO

;) ——— ;) — X(W,) —— X(W,) —— X(2,)

MSS MSS MSS . MSS
o o o : l@x

X(Ar) 2, X(2Ar) L X(RA) ——— X(A) 2O, X(Ar)

(5.2.2)
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The equivariant relationship observed between time-translations and affine
deformations on the microscale thus crucially hints at the fact that the MSS representation
has the potential to facilitate a continuous morphology of sound. Consider two sounds x
and x, whose mesostructural distance might be substantially large. Despite a large distance
on the mesoscale, the same two sounds analyzed on the microscale might exhibit windows
of negligible distance that hint at near-identical microstructures. The microstructural

distance after applying a window wy onto x and Z is given by:

LYz x) = S| EYSS(u, &, T, H) — ENSS(u, ¢, T, H)||2 (5.5)
TeT

In the context of DDSP, this is called the MSS loss, which appropriately describes the
MSS representation’s use case in our original task of sound matching. For a sound z € X (%),
we can form a commutative diagram that evaluates the geometric stablity of a reconstruction

of a microsound. This can be shown as an extension of diagram 5.2.1.

(I)MSS I K
X(,) e X(W,) —— s B W)
k=1

p(a) T

P
=

X(A,) (W)

QYIS P g

1

(5.2.3)

In the modification above (5.2.3), two additional nodes represent the MSS spaces for
both x and Z. An affine group action p(a) can be used to denote an operation which maps

points in the original space to the reconstruction space via a linear transformation, where

la| = £VS5(i, 2).
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5.2.2 The Differentiable Synthesizer

In practice, the model f learns a continuous differentiable mapping based on the
reconstruction loss between & and z. This differentiability is a result of ‘training’ the
neural network model f using backpropagation and stochastic gradient descent (SGD)
[GBC16]. These are two common methods used in neural network training that iteratively
update the parameters of the network f such that they are optimized to minimize the loss
function. SGD is performed iteratively, and in the context of DDSP involves minimizing
the perceptual distance between ¥ and x using MSS representations such that an adequate
mapping is learned from time-varying control parameters v to resynthesis parameters v.
By slightly updating our notation, we now represent the neural audio model as fy where
6 denotes the parameters associated with the network, following [HLL23]. SGD thus entails

the following iterative process:

91'+1 < 91 — VVE%ASS(i', 33) (56)

in which ¢ is the current iteration of training, v is a variable learning rate, and VL3S
represents the gradient of the loss function with respect to . Computation of the gradient
involves backpropagation, in which the partial derivative 376 is calculated for each j, often
implementing the chain rule iteratively due to the compositional nature of the neural network.
In practical implementations of DDSP networks such as [EHGR20] and [BRC24],
networks are often composed of three sections. First, a short time-series of control
parameters belonging to each space G]Bszl Wi (2(,) are passed through K separate networks
in parallel, each of which learn an embedded representation equivariant to affine
transformations. These networks are implemented as fully-connected Multi-Layer
Perceptrons (MLP) [GBC16], which are known to be universal function approximators
[HSWS89]. Next, the network learns a single representation by concatenating the outputs of
each MLP and passing the concatenated tensor through a Gated Recurrent Unit (GRU), a
type of network that learns sequential structure shown to be invariant to time-warping by
[BBCV21]. Finally, the resulting representation is passed through a final MLP plus a
time-interpolation function to yield the synthesizer parameters v over each time-step.
Combined all together, the DDSP network learns an equivariant mapping from the space

of spectrotemporal control parameters to the space of resynthesis parameters. Let p(a*) €
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D, Wi(,) denote the group actions that control spectrotemporal parameters in each
disentangled representational space W, and p(a!) € @r, Wi(2,) be the same group actions

that denote resynthesis parameters in each space W;. The DDSP neural audio model fy is

equivariant to the group actions, such that f(p(a*)v) = p(a!)f(v) VEVI.

f

Figure 5.4: A topological interpretation of the DDSP harmonic autoencoder from
[EHGR20] as a mapping f : RY — T3 from a N-dimensional parameter space to a torus
representing the phase space of an additive synthesizer. See [ABH'24] for a more detailed

interpretations of tori in time-frequency analysis.

This equivariant mapping is augmented by the choice of both the spectrotemporal
operator I' and synthesizer I, which sometimes change the topology of the manifold. Fig.
5.4 denotes a neural audio mapping in which a two-dimensional control space is mapped to
the parameters of an additive harmonic synthesizer, following part of the approach
described in [EHGR20]. The translation of points in the control space is mapped to a
latent space that forms a three-dimensional torus, in which a cycle around the major radius
t > u represents the fundamental frequency f, of the harmonic synthesizer, and a cycle
around the minor radius a>wu represents the phase space of the waveform resulting from the
harmonic partials of the additive synthesizer at each fy value. As parameters in the space
Wi () & Wy(2A,) change from points u to ', so in turn does the fundamental frequency

value of the synthesizer f(u) to f(u'), as shown using the composition of actions p(t) and
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p(a). Translations p(t) thus represent the harmonic synthesizer’s morphing of f; values
across time, while affine actions p(a) denote the morphing amplitudes of the harmonic
oscillator’s partials—represented by amplitude scaling in the phase space. The scaling of
harmonic partials at a given f, value along the major radius are thus dependent on the
volume and contour of the torus. The torus can be imagined as a sort of geometric model

for a learned DDSP latent space, given the use of a harmonic additive synthesizer for I.

5.2.3 DDSP as Schaefferian Morphology

In this chapter, we have observed that DDSP can provide a convincing representation for
Schaefferian morphology in its ability to model the time-varying parametric control of a
collection of sounds at the microstructural level. The latent control space that DDSP
provides thus allows a composer or performer to start with ‘sound itself’ by currating
datasets of sonic material in order to construct invariant representations of acousmatic
sound. This approach reflects the nature of acousmatic composition, since the chosen sonic
material might often be agnostic to any one sound source, but rather might reflect a
myriad of different sources whose sounds contain perceptually similar features.

Finding a suitable control space for such acousmatic material then becomes a question of
constructing a latent control space which generates sounds that are typologically invariant
(i.e. perceptually similar) to the sounds in the dataset. In the following chapter, we turn our
focus towards practical implementations of typomorphology using both scattering networks
and DDSP networks. We will use both of these tools to estimate an appropriate latent control
space for a given DDSP model in a way that best reflects the mesostructural typology of the

dataset.
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Chapter 6
Typomorphology In Practice

In this chapter, we implement and evaluate different methods for the typomorphological
analysis and synthesis of acousmatic sound using neural audio synthesis to model our
proposed manifold representation of the Schaefferian sound object. In these
implementations, we utilize the scattering network defined in Chapter 4 for a ‘typological’
analysis of the acousmatic sound object and the DDSP network defined in Chapter 5 for a
‘morphological’ analysis of the acousmatic sound object. We implement a method that
disentangles a set of spectrotemporal audio descriptors in order to find the most
characteristic control parameters with respect to the chosen dataset of sounds. The
method we implement outperforms the expressivity of DDSP models that use a more
common set of conditional parameters (e.g. pitch, centroid, loudness). We also implement
a method that morphs audio between two sound types using a single DDSP model, which
more closely resembles Schaefferian typomorphology. This contribution serves as the first
time, to our knowledge, that spectral audio descriptors have been used to condition a
DDSP model, as well as the first time JTFS representations have been used to aid the
training of a DDSP model for computer music composition. It also marks the first time
that Schaefferian approaches to sound have been wused to completely guide the
implementation of a generative audio model. A companion site! available online hosts the

audio examples accompanying the experiments covered in this chapter.

'https://acousmatic-ddsp.netlify.app/
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6.1 Experiments

This section presents an overview of our ‘acousmatic’ neural audio experiments. Our initial
research question involves augmenting the available control parameters for a given DDSP
model to the time-varying spectral audio descriptors introduced in [PGS*11]. Approaching
this question with a Schaefferian philosophy in mind, we attempt to find a small subset of
these audio descriptors that suitably disentangle the latent space derived from training a
differentiable synthesizer on collection of sounds. We propose a method that involves
selecting three descriptors that are most correlated to the dataset’s scattering
representations, ensuring that the model produces sound objects that are geometrically
stable at the microscale—i.e. across each control parameter’s group orbit—while also
remaining geometrically stable at the mesoscale. This method reinforces the treatment of
‘acousmatic’ sound, seeing as control parameters are selected strictly based on the nature

of the dataset in question.

6.1.1 Disentanglement Hypothesis

Given a dataset of sounds, our goal is to extract the optimal microstructural control
parameters that are best suited to control and condition the dataset during the training of
a DDSP model. We restrict the available control parameters to the set of time-varying
spectral audio descriptors laid out in [PGS™11] (see Appendix B). Recall from the previous
chapter that this problem can be interpreted from a group theoretical perspective, such
that for a given microsound =z € X(20,), we define an operator I' that projects x into K
approximately independent subspaces EBszl Wi (). This projection disentangles the space
of control parameters [HAP18], ensuring that group actions are approximately orthogonal
such that p|w, (g) constrains g to act only on the space Wj. In terms of DDSP, this results
in the construction of a latent space in which each control parameter exhibits perceptually
independent control of the output.

At first glance, we might choose to implement I' with the help of a technique such as
Principal Component Analysis (PCA). This approach would allow us to extract the control
parameters that display the maximum amount of variance across sounds in the dataset.
While this approach would indeed disentangle parameters with respect to the control

space, this particular disentanglement only takes into account variance at the
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microstructural level. A more suitable implementation of I' might instead involve the
dataset’s mesostructural representations. This approach would maintain equivariance
between DDSP’s control parameters and resynthesis parameters at the microscale, while
still yielding an output that remains approximately invariant to larger timbral structures at
the mesoscale. In Schaefferian terms, this proposed method would ideally generate an
expressive latent morphology of sounds in the dataset, while still remaining invariant to the
typology of sounds in the dataset.

We therefore propose a method in which we find a small subset of spectrotemporal
control parameters most correlated with the features of a low-dimensional projection of the
dataset’s JTFS representation. [LY'Y23] implements a model suitable for this methodology,
using the isomap algorithm to greatly reduce the dimensionality of the JTFS
representation. The isomap algorithm is a graph-based algorithm for manifold learning
that plots high-dimensional representations onto a lower-dimensional space such that the
resulting dimensions are orthogonal without sacrificing the preservation of small Euclidean
distances in the feature space. The model proposed in [LYY23] yields a three-dimensional
feature space where points represent short sounds, distances represents an estimate of
perceived timbral similarity [LEHR*21], and the dimensions of the space correlate to the
distributions of ground-truth control parameters of the sounds. These properties are shown
using a synthetic dataset of chirps generated by spanning two different parameter spaces
consisting respectively of FM/AM control parameters and additive harmonic synthesizer
parameters.

Compositionally speaking, the isomap model proposed in [LYY23] makes a connection
between acousmatic typology and morphology, namely that microstructural control
parameters at the time-scale of an STFT window wy correlate with the distribution of
mesostructural representations at the larger time-scale of the low-pass scattering filter ¢r.
The correlation implies a perceptual disentanglement innate to the action of each control
parameter, due to the Euclidean distance of points in the JTFS domain representing a

mesostructural perceptual distance [LEHR*21].

6.1.2 Methodology

Following this logic, we might imagine a dataset of sounds for a DDSP model to act in

place of this dataset of chirps. We make the hypothesis that given a dataset of short sounds
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(200ms - 1000ms), an ideal set of control parameters v € @pcz. Wi(U,;) for a potential
DDSP model will correlate with the dataset’s JTFS isomap distribution. Our experiment
thus attempts to select the most disentangled control parameters by selecting the three
spectral audio descriptors most correlated with the three dimensions of the dataset’s JTFS
isomap representation.

DDSP’s compositional capabilities are often demonstrated using two methods of audio
generation: extrapolation and ‘timbre transfer” Extrapolation generates audio from a trained
DDSP model using direct inference from a matrix of control parameters V. € RE¥*Y where
K is the number of control parameters and N is the number of time-steps specified for
audio generation. Timbre transfer first extracts the matrix of control parameters from an
input audio signal and then passes these parameters to the DDSP model, creating a style
transfer effect [EHGR20]. We utilize both of these methods for audio generation in order to
qualitatively and quantitatively evaluate each model.

In our main experiment, we train three independent DDSP models on recordings of three
types of friction percussion techniques (see Section 6.2.1 for details). We first compute the
JTFS isomap of each dataset and plot the sounds as points in three-dimensional space,
following [LYY23]. We then extract the entire set of time-varying audio descriptors from
[PGS*11] and calculate the mean value of each descriptor with respect to each recorded
sound. We then use the Pearson correlation coefficients to find which three audio descriptors
correlate most to the distribution of sounds across each dimension of the JTFS isomap,
witholding loudness which we include as a default parameter in all three models. For each
dataset, we train a DDSP model conditioned on the three resulting parameters, as well as a
baseline DDSP models trained using the highest scoring parameter from a PCA performed
on the set of all spectrotemporal audio descriptors. This baseline model allows us to compare
the difference between the spectrotemporal parameters that exhibit the most variance on the
microscale with the set of disentangled parameters which exhibit parametric correlation over

the mesoscale.

6.1.3 Evaluation

After training, we first evaluate each model objectively using extrapolation techniques. This
is done by generating 100 new sounds—each 1 second in duration—that span the parametric

control space of each model. This generated set of sounds is projected once more using the
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JTFS isomap in order to calculate two objective metrics that measure the geometric stability
of the resulting sounds on the mesoscale. These metrics reward the adjacency of generated
sounds in the JTFS isomap’s space while penalizing stark outliers.

First, the point cluster is evaluated as a smooth and continuous manifold interpolated by
creating a tangent space using the convex hull of the JTFS isomap. Then, the volume of the
manifold is calculated. We perform this interpolation both with the disentangled parameters
and the baseline PCA parameters, estimating that the model using our disentanglement
method will yield a more compact manifold that contains less volume. Finally, we compare
the sum total of distances between sounds in the JTFS isomap by treating the point cluster
as a fully connected graph. We compute the graph for both the baseline PCA model and the
disentangled model and perform both L1 and L2 regularization on their cumulative pair-wise
distances respectively, predicting once again that the disentangled model will yield a smaller
cumulative distance between points than the baseline model.

Subjective metrics are then evaluated using the timbre transfer algorithm, in which we
evaluate the baseline model and the model trained on disentangled parameters in their
ability to reconstruct sound from the dataset. We analyze the various timbral properties of
the resulting reconstructions, which we estimate will be augmented in the disentanglement

method’s reconstructions.

6.2 Implementation Details

This section presents an overview of various implementation details concerning the
experiments performed. We give a detailed description of the friction percussion datasets,
the DDSP synthesizer, and hyperparameters used for both the DDSP model and the

scattering transform.

6.2.1 Datasets

Prior to Schaeffer’s foray into electronic sound, many early experiments in musique
concrete were performed using unconventional physical objects as compositional tools
[Kan14]. Situating our research in the spirit of acousmatic music, the sounds used for our

experiments utilize three datasets consisting of short musical gestures derived from three
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recordings of friction percussion improvisations. Friction percussion is an extended
technique that utilizes the rubbing and scraping of nontraditional objects on the surface of
a drum head, notably used in the David Tudor piece COEFFICIENT [Tud91]. We
recorded three datasets at the Centre for Interdisciplinary Research in Music Media and
Technology (CIRMMT) each consisting of around 20-30 recordings between 200ms and 1s.
Each dataset represents a different object being played on the membrane of a floor tom.
These objects consisted of a spring coil (type A), a threaded rod (type B), and a small
piece of styrofoam (type C). This particular selection of objects generated three timbrally
unique recordings that lended well to the construction of three distinct datasets of short

acousmatic sounds.

6.2.2 Scattering Model

The JTFS isomap used to plot each acousmatic sound onto a three dimensional space follows
the ISMIR 2023 tutorial on GEAR [VML23]. The isomap is learned using JTFS transforms
performed with parameters J = 13, Q = 8, and T set to the duration of the sound in the
dataset. Since the GEAR model was initially evaluated by the authors using a dataset of
generated chirps along with their corresponding parameter set, we simply replaced the set of
chirps with each friction dataset along with their corresponding set of time-varying spectral

audio descriptors.

6.2.3 DDSP Model

Our choice in DDSP model must reflect the need for a synthesizer that generalizes well to the
types of sonic material used in acousmatic music. This involves two important requirements:
the ability to flexibly add and remove conditional parameters, and the use of a synthesizer
that can model both harmonic and stochastic sounds. We thus chose to use the filterbank
model laid out in [BRC24], which learns a mapping f between control parameters and time-
varying amplitudes of a large (M =~ 2048) white-noise filterbank.

The DDSP model in [BRC24] follows the design pattern mentioned in the previous
chapter in which time-invariance is learned using a combination of MLPs and GRUs in
sequence. The model in [BRC24] also allows for the addition of custom conditional

parameters, making it perfect for experimentation with time-varying spectral audio
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descriptors. For each training session, a batch size was chosen to reflect the number of
training samples processed simultaneously during each training iteration. The batch size
parameter is often chosen for the purpose of balancing between memory limitations and
gradient stability, ensuring smoother learning that utilizes a more diverse selection of data
during each iteration. Additionally, a learning rate v was selected for the MSS loss (Eq.
5.6), in order to better stabilize large oscillations in the convergence of the loss function.
For each experiment, we trained the DDSP model for 10k epochs (full passes on each
dataset) while using a batch size of 16 and a learning rate of 0.001. Each parameter follows
the configuration of the original experiments performed in [BRC24].

Finally, time-varying conditional parameters were extracted from the datasets using an
STFT with a window size of 1024 samples, which allowed for detailed frequency resolution,
and a hop size of 128 samples, ensuring an overlap that preserves temporal continuity while

capturing subtle spectral changes.

6.3 Results

This section reviews the results from our experiments in modeling the sound object. We
start by going over some preliminary experiments which confirm that the use of
spectrotemporal parameters can aid the training of DDSP models from a
typomorphological perspective. We then review the results of the proposed
disentanglement method, which chooses spectrotemporal parameters based on the

mesostructural properties of the dataset.

6.3.1 Preliminary Experiments

Before working with disentangled parameters and friction percussion sounds, we first
attempt to demonstrate the preliminary hypothesis that the spectrotemporal parameters
from [PGST11] can aid the timbral expressivity of a DDSP model. We test this claim using
two different categories of audio descriptors: parameters related to frequency content, and
statistical ‘moments’ in the spectrogram.

To first show the effect of conditioning a DDSP model on parameters related to frequency

content, we trained a model using the recording of the suspended triangle from Fig. 4.3 as our
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training data. Using a timbre transfer procedure to reconstruct the original triangle strike,
we extract loudness, centroid, harmonic energy, and noise energy from the original signal to
be used as conditional parameters for our reconstruction. By then manually defining the
harmonic and noise energy parameters in the reconstruction, we can evaluate how well the
reconstructed audio adapts to the changes in the control parameters.

According to [PGS™11], harmonic energy is the energy of the signal over harmonic
partials, obtained by summing the energy of the partials detected in a given STFT
window. Noise energy is simply the remaining energy, extracted by subtracting the
harmonic energy from the total energy of the signal. Fig. 6.1 depicts the corresponding
spectrograms generated from setting harmonic energy and noise energy to their maximum
values of 0.0 and 1.0 in inverse relation to each other, hypothetically extracting the noisiest
and most harmonic reconstructions of the triangle strike. The results of this training are
promising, as denoted in Fig. 6.1 which shows clear and prominent partials in the
spectrogram of the harmonic reconstruction, while the noise reconstruction shows energy
spread more stochastically around the spectrogram. These differences are furthermore
apparent when listening to each recording.

A clear perceptual difference between these recordings can be heard in the fact that the
noise energy = 1 reconstruction captures much more high-frequency content when compared
to the harmonic energy = 1 reconstruction. Intuitively this can be explained by a stronger
presence of stochasticity in the high-frequency part of the spectrum. While it should be
noted that a maximum value of noise energy does not fully eliminate the harmonic partials
of the signal, it does increase the presence of stochastic components in the signal. Likewise,
a maximum value of harmonic energy does not eliminate stochastic components entirely, but

certainly increases the prominence of harmonicity in the signal.
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Figure 6.1: DDSP filterbank model reconstructions of suspended triangle recording with

hardcoded values for harmonic energy and noise energy.
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For demonstrating the effect of conditioning on statistical descriptors, we then trained
the DDSP model on a synthetic dataset of ‘noise chirps’ These signals were synthesized
using white noise passed through a bandpass filter whose center frequency sweeps the range
of the frequency spectrum from zero to the Nyquist frequency over a given time interval, in
this case 5 seconds. The dataset consists of 8 noise chirps, each of which is synthesized using
quality factors @ = [0.05,0.5,1,2.5,5,10, 25, 50].

For the noise chirp dataset, we conditioned the model on loudness, centroid, kurtosis,
and decrease. First we evaluate how well the DDSP model learns kurtosis, a metric that
measures the flatness of the spectrogram around its mean value [PGS*11]. Much like the
bell example, we reconstruct one of the noise chirps from the dataset (@ = 1) and set
the kurtosis parameter to its normalized minimum and maximum values of 0.0 and 1.0
while leaving the other parameters according to their values extracted from the audio. An
expected result from setting kurtosis to a constant value of 0.0 would be a flattening of
the spectrogram, resulting in a signal whose chirp contains a very wide bandwidth (low @
value), while setting the kurtosis parameter to 1.0 would result in a very thin bandwidth
(high @ value). The modified bandwidth can be heard in each resulting reconstruction,
especially the kurtosis = 1.0 reconstruction which has the perceptual quality of a sin wave
being stochastically modulated. These assumptions were furthermore confirmed based on

the resulting spectrograms, shown in Fig. 6.2 and 6.3.
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Figure 6.2: (Top) Original recording of noise chirp with ) = 1 and (Bottom) DDSP timbre

transfer reconstruction performed without modifying conditional parameters.

Likewise, we perform the same reconstruction experiment by manually setting the
decrease parameter, which measures the slope of energy in each STFT frame with an
emphasis on lower frequencies [PGS*11]. We set decrease to its minimum and maximum
values, while leaving the kurtosis values to automatically be extracted from the input
audio. The resulting spectrograms are shown on the right of Fig. 6.3. The spectrograms
show that when setting decrease to 0.0, the ascending noiseband of the chirp remains

almost entirely unnoticable, and even tapers out completely when the center frequency
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reaches the very high part of the spectrum (approximately above 16kHz). Setting decrease
to 1.0 results in the opposite effect, yielding a reconstruction that instead prioritizes the
higher frequencies of the chirp. Since decrease is a measure of slope that emphasizes the
lower frequencies of the signal, we estimate that this parameter acts as a filter of sorts,
prohibiting the reconstruction of spectral energy that does not adhere to the manually
configured slope of the spectrogram. In this regard, the energy completely tapering out
above 16kHz when setting decrease to 0.0 may be due to a lack of representative data for

such a specific combination of decrease, kurtosis, and loudness values.

Noise Chirp (Q = 1) - Reconstruction (Kurtosis = 0) Noise Chirp (Q = 1) - Reconstruction (Decrease = 0)
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Figure 6.3: DDSP reconstructions with hardcoded values for spectral kurtosis (left) and

spectral decrease (right) with parameters set to min/max values.

6.3.2 Typomorphological Experiments

Next, we experiment with the spectrotemporal audio descriptors on real-world sounds by
implementing a method for typomorphological synthesis. The driving idea here is to ‘morph’

between two different sound types by training a single DDSP model on the union of two



6. Typomorphology In Practice 76

datasets that each reflect the sound types in question. When conditioned on a sufficient
number of spectrotemporal parameters, a sound from the initial sound type would be able
to seamlessly morph into a sound from the terminal sound type over a certain number of
iterations. This can be represented using a series of points in the scattering isomap, which
form a pathway connecting the iterated sounds extrapolated from morphing between the
initial and terminal sound types. The trajectory thus outlines a continuous affine group
action on the control parameter vector p(a)V which morphs the microstructural parameters
of the initial sound into those of the terminal sound while retaining a suitable mesostructural
topology in the scattering domain. We implement the morphology of control parameters
from the initial sound to the terminal sound using a simple linear interpolation such that
the intial sound’s control matrix V; morphs into the terminal sound’s control matrix Vs.
The typomorphological synthesizer was trained on two different dataset pairs. The first pair
consisted of environemntal sounds: field recordings of rainfall and recordings of applause.
The second pair of datasets consisted of a collection of dog barks along with a collection
of snare drum strikes. Both datasets were compiled using creative commons (CC) licensed

sounds available on https://freesound.org/.
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Figure 6.4: Typomorphological neural audio synthesis performed on two different pairs of

sound types.
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The action of the typomorphological synthesizer is represented in Fig. 6.4 which also
shows the suitability of the scattering isomap representation for contextualizing
Schaefferian typomorphology in neural audio synthesis. Points on the plots represent the
sounds found in the dataset, while sound types are denoted using contrasting red and blue
colors. Reconstructed sounds generated from the linear interpolation of control parameters
are denoted along the vector from an initial reconstruction to a terminal reconstruction
through the action p(a)V. Finally, the dashed lines represent both the initial and terminal
sound’s distance Cla| from the center of mass of each respective sound type’s cluster,
measuring the approximate perceptual deviation and geometric stability (see Eq. 3.17) of
the reconstruction from the sound type.

From the plots, we can observe how far each of the iterations of morphing sounds
deviate from each type’s cluster, thus allowing us to evaluate a DDSP model’s fidelity on
the mesoscale. This leads to important conclusions we can make about training the model
from [BRC24] on two different sound types at once—more specifically, conclusions that are
not readily availible by analyzing the MSS loss. One important observation we can make
from both these plots and from listening to the reconstructions is that the model often
leverages the timbral qualities of one sound type over another. For instance, in the dog
bark — snare drum experiment, the initial dog bark produces a reconstruction not far from
the cluster of dog barks in the dataset, however the terminal snare drum reconstruction
deviates significantly from the cluster of snare drums. Likewise, in the applause — rainfall
example, the initial applause example is perceptually far from its dataset cluster, but the
terminal rainfall reconstruction ends up just around the rainfall cluster.

Despite these metrics, the reconstructions are still somewhat perceptually convincing
even if they do produce ambiguous timbral qualities. For instance, there is a general
increase in harmonic energy in the dog bark — snare drum model, even though the dog
bark reconstruction more acurately takes after the original recording in its spectral
envelope. In the environemnental model, we hear that the rainfall resembles its original
recording much more accurately than the applause, which ends up sounding sharper. Upon
listening to the morphological trajectories and observing the scattering plots, we might
conclude that these models provide interesting situations in which the acousmatic
ambivalence between two sound types is exploited, in that the resulting models often favor

the spectral characteristics of one sound type at the expense of the other. While a more
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accurate overall reconstruction might be achieved using a more intricate DDSP synthesis
operation, this ambivalence also has the potential to be creatively exploited in an

acousmatic compositional setting.

6.3.3 Disentanglement Results

Following the preliminary experiments which confirm that conditioning DDSP on
spectrotemporal audio descriptors augments the timbral control of the resulting output, we
now turn to the evaluation of our disentanglement method which involves finding a set of
disentangled spectrotemporal parameters that are most correlated with the mesostructural
properties of the dataset. This approach defines a novel method that follows [LYY23] by
estimating the best suited spectrotemporal parameters for a dataset of sounds by
measuring parametric correlation against a low-dimensional projection of their scattering
representations. Instead of relying on prior information about the sound sources, or simply
measuring which parameters demonstrate the maximum amount of variance across the
dataset, this approach bridges a gap between parametric evolution on the
microscale—related to acousmatic morphology—and parametric evolution on the
mesoscale—emphasizing acousmatic typology. In this regard, the proposed method focuses
on reinforcing the generation of sounds that mesostructurally resemble sounds in the
dataset.

Table 6.1 show the results of our disentanglement method for type A, B, and C of
friction percussion data. We denote the three prospective conditional parameters for our
DDSP model as W;, W,, and Wj following their notation as disentangled group
representations. As noted earlier in the chapter, these selections do not always reflect the
parameters resulting from the PCA, whose values are similarly shown in Table 6.2. For
instance, the most disentangled parameters for type A are spectral slope, inharmonicity,
and noise energy, while the top three parameters that account for the most variance in the
dataset are spectral centroid, spectral slope, and spectral crest. The differences between 6.1
and 6.2 thus demonstrate how these metrics for variance differ between the microscale and

the mesoscale of the sounds.
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Type A [Spring Coil]: Top Ranked Correlated Features

Dimension 1st 2nd 3rd
Wi Slope Centroid Harmonic Spectral Deviation
Ws Inharmonicity | Harmonic Energy Noisiness
W3 Noise Energy | Decrease Crest
Type B [Threaded Rod]: Top Ranked Correlated Features

Dimension 1st 2nd 3rd
Wi Decrease Crest Noisiness
Wy Slope Centroid Flatness
W3 Inharmonicity | Odd/Even Ratio Centroid

Type C [Styrofoam|: Top Ranked Correlated Features
Dimension 1st 2nd 3rd
Wi Harmonic Spectral Deviation | Inharmonicity Decrease
Wy Flatness Noise Energy Slope
W3 Noisiness Harmonic Energy Crest

Table 6.1: Spectrotemporal parameters most correlated with isomap JTFS representations

for each friction percussion type.
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Type A [Spring Coil]: Principal | Explained
Component Variance
Centroid 0.517
Slope 0.327
Crest 0.074
Type B [Threaded Rod]: | Explained
Principal Component Variance
Centroid 0.506
Slope 0.175
Decrease 0.130
Type C [Styrofoam]: Principal | Explained
Component Variance
Slope 0.526
Decrease 0.264
Flatness 0.089

Table 6.2: Spectrotemporal parameters that account for the most variance in each friction
percussion type. Parameters in bold are also predicted in the disentanglement method’s

selection.

Qualitatively, we can analyze these results in accordance to the timbral features of each
sound type. Type A contains potentially the most diverse range of features, in which the
spring coil not only produces resonant sounds that are both low and high in frequency,
but also produces a fair amount of distinct stochastic components. The disentanglement
method’s selection of slope, inharmonicity, and noise energy seems to capture this diverse
range of features, as this collection of descriptors contains features that deal with complex
harmonic structure (inharmonicity), stochasticity (noise energy), and control of the spectrum
based on statistical distribution of energy (slope). Type B contains very sharp and noisey
transients that take up most of the frequency spectrum below 16kHz, caused by the threaded

rod scraping up against the rim of the floor tom. As a result of these sharp transients, the
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resonant modes of the tom are also apparent in the signal. For this type of playing technique,
the model’s selection of both slope and decrease may reflect the need for a refined slope metric
in both the high and low frequency range of the spectrum. This could be due to the signal’s
combination of high-frequency transients caused by the periodic scraping of the threaded
rod on the tom rim, and low-frequency resonance that results from this action in its periodic
exciting and damping of the drum membrane. Inharmonicity then allows the model to
capture the resonant components produced by the threaded rod. Finally, type C contains
potentially the most stochastic sounds, as the effect of rubbing styrofoam against the drum
membrane often produces a clear pitch while still containing a substantial amount of noise.
This is clearly reflected in the model’s choice of parameters, which include both flatness
and noisiness measures for distinguishing between harmonic peaks and noise energy, while
harmonic spectral deviation measures the deviation of amplitudes between the harmonic

peaks.

6.3.4 Extrapolation Results

We first evaluate the disentangled methods quantitatively by extrapolating over the span
of conditional parameters and measuring the mesostructural similarity between generated
sounds. This is done by first approximating each model’s latent space by generating 100
new sounds—each 1 second in duration—whose extrapolation parameters span the entire
parameter space. We then plot each sound in the isomap space using a color hue for each
sound to denote a certain spectrotemporal parameter’s value, following the same procedure
in [LYY23] in order to better visualize correlation between parameters and dimensions of
the isomap space. The hypothesis in this experiment is based off of the assumption that
the isomap space maps timbrally similar sounds closer together in distance—an effect of the
JTFS transform’s ability to model timbral similarity [LEHR*21]. We thus treat the set of
100 points in this space as a geometric object by defining a convex hull over the outer-most
points in the space. This creates a hypothetical manifold resembling the Schaefferian ‘sound
object’” containing all of the generated sounds.

The manifolds for each model are depicted in Fig. 6.5, where the color hues on each face
of the mesh represent the mean parameter value across the corresponding vertices. With this
visualization, we can confirm that the generated sounds from type A and type B strikingly

correlate with the dimensions of the isomap space. This parametric correlation hints towards
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the ability of these two models to adapt well to both the microstructural and mesostructural
properties of the sound in the dataset. Type C adheres less so to this correlation at the
generation stage, as demonstrated in the multicolor meshes produced for dimensions W5 and
W3. This is potentially due to the high-frequency and noisy nature of the styrofoam sounds.

The resulting manifold plots also depict properties concerning the geometric stability of
the model from a group theoretical perspective. We equate a smaller manifold volume with
a more timbrally homogeneous space, such that a more contained cluster of points would
resemble not only a smoother and more continuous latent space across the span of
spectrotemporal parameters, but also a more coherent and contained typology of the sound
object with less chance of generating sounds that do not adhere to the mesostructural
properties of the dataset. In order to evaluate the geometric stability of the disentangled
DDSP models, we compare these manifolds to similar manifolds generated using DDSP
models conditioned only on loudness and the top scoring parameter from the principal
component analysis in Table 6.2. We refer to these models as the ‘baseline’ models, shown
in Fig. 6.6.



6. Typomorphology In Practice 83

Slope Inharmonicity Noise Energy

Wy Wo W,

Decrease Inharmonicity

Wg W2

(b) Type B [Threaded Rod]

Harmonic Spectral Deviation Flatness Noisiness

W,

(c) Type C [Styrofoam)]

Figure 6.5: Manifolds from each disentangled model generated by applying a convex hull
to the outer-most sounds in the isomap JTFS space. Color hues depict the mean value of

the spectrotemporal parameter associated with each plot.
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Visually comparing the manifolds in Fig. 6.6 first shows that points within the
disentangled manifolds are generally much more contained around a precise center of mass
in the isomap JTFS space, with the exception of a few extreme outliers. This is in contrast
to the baseline models, where the selection of a single parameter makes the resulting
sounds more evenly distributed across the space. Likewise, this compactness can be
quantified by calculating the L1 and L2 sum of pair-wise distances between each of the
models’ generated point clusters. Table 6.3 shows that nearly all of the disentangled
models contain sets of points that are more locally compact than those of the baseline
models. Comparing the volumes of each manifold show that the disentangled manifolds are
generally smaller than the baseline manifolds, with the exception of type C which once

again could be due to its relatively more stochastic sounds.

W, Centroid W, Centroid W Slope

Figure 6.6: Type A (Left), Type B (Center), and Type C (Right) manifolds generated from
each baseline model. Baseline models were trained solely on the parameter that accounts for

the most variance in each dataset.

6.3.5 Timbre Transfer Results

We then evaluate the ability of both the disentangled models and baseline models to
reconstruct friction percussion sounds using a timbre transfer algorithm. We do this by
taking a 10 second recording from each sound type and passing it through each model,
subsequently evaluating its perceptual similarity to the original recording while also

evaluating the corresponding spectrograms to glean more information. We furthermore
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Type A [Spring Coil]: Extrapolation Metrics
Model Sum of Pairwise | Sum of Pairwise | Convex Hull
Distances (L1) Distances (L2) Volume
Baseline 0.4413 0.3286 0.0463
Disentangled 0.2525 0.1991 0.0341
Type B [Threaded Rod]: Extrapolation Metrics
Model Sum of Pairwise | Sum of Pairwise | Convex Hull
Distances (L1) Distances (L2) Volume
Baseline 0.3134 0.2568 0.0167
Disentangled 0.1245 0.0900 0.0162
Type C [Styrofoam|: Extrapolation Metrics
Model Sum of Pairwise | Sum of Pairwise | Convex Hull
Distances (L1) Distances (L2) Volume
Baseline 0.4937 0.3541 0.0675
Disentangled 0.4479 0.3170 0.0786

Table 6.3: Volume and distance metrics for each disentangled manifold and baseline

manifold.

evaluate the effect of each spectrotemporal parameter on the resulting output, taking each
parameter’s unique treatment of the spectrogram into account.

Fig. 6.7 - 6.9 show the spectrograms of the different sound excerpts for each type,
including their original 10 second recordings, their timbre transfer reconstructions using
the disentangled parameters, and their timbre transfer reconstructions using the baseline
parameters. The most notable qualitative improvements from the disentangled model can
be heard from type B, in which the resonant responses from the scraping of the threaded
rod are captured with the disentangled model but not with the baseline model. We believe
that this is due to the interaction between the inharmonicity and the slope/decrease
parameters, which create a latent control space suitable for modeling the harmonic
resonance of the tom with respect to a wide range of distributions of energy across the
frequency spectrum. Furthermore, despite the disentangled model better capturing some
harmonic partial interaction between the ranges of 2048Hz - 4096Hz, it can be seen that a

wide spread of high-frequency partials is present in the original spectrogram from
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approximately 7-10 seconds that is not accounted for in either of the reconstructions. If
parameters were instead handpicked, this issue could potentially be improved by
augmenting the parameter set with the addition of something akin to harmonic-to-noise
ratio or harmonic energy.

An improvement can also be heard from type C’s reconstruction of partials, which appear
to evolve more smoothly across time. These partials are also more present in the last few
seconds of the disentangled reconstructions, which capture the resonant responses of the
sharp transients more accurately than in the baseline model. This improvement also makes
the development of the partials much smoother in the disentangled version. Additionally,
the overall distribution of energy across the spectrogram of the disentangled reconstruction
much better resembles the magnitude of energy in the original recording, while the baseline
parameters produce a generally quieter reconstruction. This causes some discrepencies in the
baseline reconstruction, where for instance the first two prominent partials between 512Hz -
1024Hz are much better represented in the disentangled reconstruction than they are in the
baseline reconstruction.

Finally, type A contains the most subtle differences between reconstructions, slightly
improving the presence of the resonant frequency responses produced from the spring coil
on the drum. However, the differences between the baseline and disentangled recontructions
are generally very subtle and not immediately perceivable for this sound type. Furthermore,
the energy distribution in both recontructions yields a dynamic variance much greater than
that of the original, causing a number of important timbral qualities to be lost in both
reconstructions. We predict that adding a parameter such as harmonic spectral variation
might improve the general harmonic shape of the output, filling in the many gaps of energy

missing from both reconstructions.
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Figure 6.7: Type A [Spring Coil]: Ten second friction improvisation on floor tom using
a spring coil. Spectrograms of original audio (Top), reconstruction using disentangled

parameters (Middle), and reconstruction using baseline parameters (Bottom).
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Figure 6.8: Type B [Threaded Rod]: Ten second friction improvisation on floor tom using
a threaded rod. Spectrograms of original audio (Top), reconstruction using disentangled

parameters (Middle), and reconstruction using baseline parameters (Bottom).
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Figure 6.9: Type C [Styrofoam]: Ten second friction improvisation on floor tom
using styrofoam. Spectrograms of original audio (Top), reconstruction using disentangled

parameters (Middle), and reconstruction using baseline parameters (Bottom).
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Chapter 7

Conclusion

7.1 Summary and Future Work

This thesis has explored a number of theoretical and practical methods towards modeling
acousmatic sound using the framework of neural audio synthesis. Following the spirit of
Schaeffer’s philosophy of sound, our central contribution of this thesis has been the
broadening of the analysis and synthesis of sound using DDSP by augmenting its
typomorphological capabilities with the aid of spectrotemporal audio descriptors and joint
time-frequency scattering representations.

We provided a unique methodology that reinforces Schaefferian approaches by focusing
on the group invariant properties of sound and the time-frequency analysis of sound in
terms of the structure of the topological group. We exercised these methodologies in terms
of Schaefferian typology by looking at how scattering networks can be used to classify
sounds on the mesoscale strictly by comparing their affine geometries on the
time-frequency plane. We followed this by demonstrating a similar approach to
Schaefferian morphology by observing how DDSP networks can be used to learn mappings
between control parameters and synthesizer parameters that reconstruct the sounds on the
microscale by similarly comparing affine time-frequency representations derived from the
multiscale spectrogram. We then demonstrated an acousmatic approach to neural audio
synthesis that chooses a select set of control parameters that perceptually disentangle the
latent control space of time-varying spectrotemporal parameters based on information

extracted using a mesostructural analysis of sounds in the dataset. This disentanglement
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serves to represent both the typological and morphological modeling of the Schaefferian
sound object.

While we experimented with these techniques using both synthetic datasets and real-
world percussive datasets, these experiments also present the opportunity for lots of future
work. Despite the flexibility of spectrotemporal audio descriptors, as well as their close ties
to acousmatic music composition, an important question remains as to whether a suitable
method can be constructed for optimizing a completely synthetic set of control parameters
that best fit a given dataset’s mesostructural distribution. Such a method would act as a more
powerful disentanglement tool, but might risk lacking the stability of the perceptual priors
found in the spectrotemporal audio descriptors [PGST11]. Another important question is
the feasibility of real-time timbre transfers. Our method for extracting disentangled control
parameters takes place prior to audio reconstruction inference, however our choice of DDSP
model from [BRC24] does not allow for real-time inference, and many of the harmonic
spectrotemporal audio descriptors used in our experiments similarly cannot run in real-time.
We don’t find this to be an issue for the scope of our work considering that acousmatic
composition is canonically in the form of fixed media. However, it would be worthwhile to
further adapt other real-time DDSP models such as the one in [EHGR20] to be conditioned
on a subset of real-time spectrotemporal audio descriptors.

Finally, we hope that this work influences further creative research in compositional
practices involving neural audio synthesis. While we have provided some minimal examples
on the companion site for this thesis that demonstrate the use of our methods in generating
compositional material, we hope that our research inspires future exploration towards even

more imaginative methods of neural audio composition.
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Appendix A

Group Representation Theory

This appendix provides all of the prerequisites concerning group representation theory that
are needed to comprehend this thesis. We first introduce the notion of the group, which was
formulated by Galois, later to be adopted by Klein and the Erlangen Programme. Groups
are particularly well suited for the analysis of geometric invariance [Bou60]. We then review
the group representation, which can be roughly interpreted as a linearization of a group’s
actions. We then arrive at the notion of representational disentanglement which is an area
of interest in both group representation theory and deep learning [HAPT18] that attempts
to associate group actions with corresponding representational subspaces.

The preliminary concepts introduced in this Appendix will allow us to interpret neural
audio synthesis models presented in this thesis as compositional chains of operators that each
preserve different group actions. For this appendix, we assume only a prerequisite knowledge

of linear algebra and set theory.

A.1 Group Theory

We start by introducing the notion of the group, which lends itself to the study of invariant
geometric forms across a wide range of mathematical domains. We present some simple
examples of groups borrowed from [Loh17] and focus our attention primarily towards the
actions and orbits of a group. We then finish the section by introducing a formal definition

of group invariance and equivariance.
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A.1.1 Groups

Definition (Group) A group is a set & along with a binary operation o : & x & — & called

composition (sometimes simply denoted g o h = gh) satisfying the following axioms

o Associativity: (gh)i = g(hi) for all g,h,i € &

Identity: There exists a unique ¢ € @& such that eg =ge =g for all g € &

o Inverse: For each g € & there is a unique inverse g=! € & such that gg=! =g !lg=c¢

Closure: The group is closed under composition (for all g, ) € & there exists a gh € &)

Example (Algebraic Groups) Groups are commonly introduced in the context of abstract
algebra (see introductory texts such as [Art11l]). For instance, the set of integers Z along
with the operation of addition + : Z x Z — Z form a group called the additive group of
integers (Z,+). Likewise, the real numbers R along with the operation of multiplication

- R x R — R form the multiplicative group (R, -).

Example (Symmetric Groups) Some groups denote the collection of all symmetries within
a set. These groups are called symmetric groups, and contain a set of transformations along
with the operation of composition o : & x & — &. A symmetry can be thought of as a

transformation that leaves a property of a certain mathematical object unchanged [BBCV21].

Definition (Subgroup) A subset $) C & of a group & forms a subgroup if it is closed under
composition and is able to take inverses. We denote the group $ as a subgroup of the group
® by writing ) < &.

Remark [BBCV21] points out that subgroups often corelate to rather intuitive subsets.
For instance, the additive group of integer vectors (ZY,+) is a subgroup of the additive
group of real vectors (RY,+), each of dimension N. The 2-dimensional special orthogonal
group SO(2)—to be defined in the next section—is a subgroup of the 3-dimensional special
orthogonal group SO(3). Finally, each group has a subgroup that contains only the identity
¢ < & and a subgroup that contains only itself & < &. These are known as the trivial
subgroups. Often the symmetric groups are subgroups of larger groups, and we say that

they are generated from small subsets of these larger groups.
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A.1.2 Generators

Definition (Generators) A group generator is a set of group elements (g, h...>® that can

derive all elements of & using only the elements of the set and the group operation o.

Example (Dihedral Group) Let’s borrow an example from [L6h17] which looks at the
dihedral groups ® . A dihedral group consists of a set ®y that we say is generated using
the set (v, s)°" whose elements consist of the transformations of reflection (t) and rotation
(s) along with the operation of composition o : Dy x Dy — Dy. Consider the equilateral
triangle in Fig. A.1 (a), which we might informally say represents ©3. Rotation and
reflection of the triangle provide an intuitive geometric interpretation of the group ®3 since

these transformations along with their composition abide by all of the group axioms.

Proof More rigorously, we can check each of the group axioms by constructing what’s called
a Cayley table [Fig. A.1 (b)]. This table provides information that pertains to every possible
permutation of the group elements. For the dihedral groups, this would contain one identity
¢ (which does nothing), one reflection t, and NN rotations—in this case, 3. We then check for

the existence of each axiom.
o Associativity: Any symmetrical shape’s transformations are inherently associative

o Identity: We denote ¢ as the identity, which is a transformation that does nothing on

the triangle

o Inverse: An inverse can always be reached with the following composition of

transformations: tosotr =1t}

o Closure: The table contains transformations and group elements that are exclusive to

the group D3
O

Remark In the Husserlian or perhaps Schaefferian sense, we can better understand the
essence of the triangle since we see that the object is the same, or invariant throughout the
span of its transformations shown in the Cayley table. We will thus primarily be working with
symmetric groups, since they focus on this very notion of invariance through a formalization

of geometric symmetry.
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(a) Cayley table

(b) D3 transformations

Figure A.1: (a) Cayley table consisting of the @3 group generated by rotations v and

reflections s. (b) @3 transformations represented on an equilateral triangle.

A.1.3 Actions

Definition (Action) A group action of & on a set 2 is defined as a mapping

>:® xQ—Q (A1)

associating a group element g € & and a point u € ) with some other point v’ € Q such
that v’ = g>u (where g >u denotes the group action) in a way that is compatible with the

group axioms.

Example We turn our attention to the special orthogonal group, one of many groups defined
over a set that forms a field {0 = F. Informally speaking, a field is a set equipt with an
addition and multiplication operation, and common examples of fields include the set of real
numbers R, the set of rational numbers Q, and the set of complex numbers C. We denote
the special orthogonal group SO(2,F) defined over some field F. This group consists of the

set of all 2 x 2 invertible matrices with det = 1 of the form

|:COS((9) - sin(&)] (A2)

sin(d)  cos(0)
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equipt with the binary operation of matrix multiplication - : F? x F? — [F2?. Like the
equilateral triangle in the previous example, the operation of rotation s is represented through
2 x 2 matrices. We can thus use the matrix defined in Eq. A.2 to demonstrate the group
SO(2)’s action on a set.

An example of this can be shown by applying SO(2)’s action of rotation onto the set of
complex numbers C. Consider a complex exponential phasor, commonly used to represent
a sinusoid with frequency w, amplitude A, and phase ¢.

2(t) = Ae'@te) (A.3)

The group SO(2)’s action over the complex numbers results in a phase-shift to the output

5> Aei(wt+¢) — Aei(wt+¢+9) (A4)

Proof The matrix in Eq. A.2 can alternatively be defined as an exponential map, as

demonstrated in [GQ20].

[C?S(Q) —sin(@)] — i (A.5)
sin(6)  cos(f)

When multiplied, this yields a phase-shift in the exponent:

eie . Z(t) _ Aeieei(wt+¢) — Aei(wt+¢+9) (A6)

Replacing multiplication with the group action operation for clarity, we come back to a

phase-shift that performs the action of rotation s.

s> 2(t) = Ael@iHot) (A7)

O

A.1.4 Orbits

Definition (Orbit) Let g>u be an action of & on a set 2 and consider any element u € €.
The subset
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Gru:={gru|ge B} (A.8)
of 0 is then denoted as the orbit of w.

Corollary Given a constant amplitude A, the set of all points of a sinusoid can be thought
of as SO(2)’s orbit on a complex exponential phasor. Fig. A.2 demonstrates the orbits of
three complex exponential phasors 21, 2o, and z3, with respective constant amplitudes A;, A,,
and Ag. The orbits can be visualized as rotations around the circle (a) or as sinusoids in the

temporal domain (b).
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(b) Temporal representation

(a) Phase representation

Figure A.2: Rotations s acting on three different complex exponential z, phasors of
increasing amplitude. Orbits of each z, trace out circles in C (a), and temporal sinusoids in
R (b).

In this sense, the group’s orbit can be interpreted as a parametric space for sound with
respect to its actions. It defines certain geometric boundaries given a fixed set of parameters,
such as the case with amplitude above. In this case, the set could be interpreted as an additive

synthesizer constrained by a parameterization of phase interaction (s) between z1, zo and z3.
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A.2 Functions Over Groups

We now define some basic functional terminology in group theory, including homomorphisms
and endomorphisms [Loh17]. We then formally define the properties of group invariance
and equivariance, which deal with the preservation of group actions over functions. These
properties have previously been observed as fundamental to Schaeffer’s philosophy of sound

and the Erlangen Programme’s philosophy of geometry.

A.2.1 Group Homomorphisms and Endomorphisms

Definition (Homomorphism) A map n : & — ) is a group homomorphism if 1 is compatible

with the composition of each group respectively, i.e. if

n(g1 - 92) = n(g1) - 7(g2) (A.9)

holds V(g1, g2) € &. We denote Hom(®, §)) as the set of all group homomorphisms from &
to 9.

Definition (Endomorphism) If a similar map 1 : & — & follows the same properties as A.9,
the map is a group endomorphism. We denote End(®) as the set of all group endomorphisms
from & to itself.

A.2.2 Group Invariance and Equivariance

Definition (Invariance) Let >q be a group action on the set 2. A function f: Q — ' is
G-invariant if it satisfies f(grou) = f(u) Vg€ &, Vu € Q.

Example The area S of an N-gon with vertices (x1,41), (22,y2),...,(zn,yy) can be

calculated using the Shoelace theorem:

N
Y (@1 — Yitita) (A.10)

=1

where the input u is a vector of pairs representing our vertices
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(z1,1)
u= (xQ’:yQ) (A.11)

(TN, yn)

Now let’s introduce some non-linearity to our function f that only returns an output if our

intput is above a certain threshold

fay =" fff ()= ¢ (A.12)
0 if f(u)y<C

where C' is some constant representing an area threshold. Let’s once again introduce the
transformations of the group @y as group actions on the plane R?%. The actions {r,s} € Dy
leave the resulting area unchanged, such that f(vge u) = f(u) and f(s>ge u) = f(u). The

function f is thus invariant to rotation and reflection.

Remark (Classification) Not only is f invariant to these actions, but so is the original
Shoelace function f. The function f , however, allows us to informally relate this notion of
invariance to the task of classification [Wei22], in which a machine learning model is asked
to specify to which k categories some input belongs [GBC16]. In the case of f , k=2. The
need for f over f is necessary since in classification situations, the domain €2 is often much
larger than the codomain €. €' is usually a finite set representing different classes, derived
as a result of a nonlinearity similar to that of f . We relate invariance and classification to

Schaeffer’s notion of typology in Chapter 4.

Definition (Equivariance) Let >q and >q be group actions on the sets © and ', A function
f:Q — Q is G-equivariant if it commutes with the actions f(g>qu) = gbo f(u) Vg €
&, Vu € Q.

Example Using the vector u, we can define a function h that shifts and scales all of the

vertices that produce our N-gon

h(u)=C-u+b (A.13)
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where C' is a scalar and b is the shift factor. This function is equivariant to the actions of
Dy since f(rbgzu) = tige f(u) and f(s>ge u) = s>z f(u). In other words, applying these
group actions before the function is calculated will yield the same output as applying them

after the function is calculated.

Remark Whereas we related invariance to classification, equivariance can be also related
to regression [Wei22]. Regression is a task in which a machine learning model is asked to
predict a numerical value given some input. Indeed, this reflects the case above since the
output domain () produces a linear numerical result. Similarly, we relate equivariance to

Schaeffer’s concept of morphology in Chapter 5.
Proposition &-invariance can be interpreted as a special case of &-equivariance.

Proof This is quite eloquently shown visually in [Wei22| using commutative diagrams. If we
interpret the codomain of an invariant map as a trivial action idgq/, then the two diagrams

become isomorphic.

f
Q Q—
f .
g>0 g0 idg = goor
idQ/
(2
Q—— Q—
groof groof (A.2.1)

For this reason, we will sometimes simply refer to invariance when talking about both

invariance and equivariance.

O
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A.3 Group Representations

While studying arbitrary group actions can be a promising way to learn more about a
certain mathematical object, we can obtain more pertinent information by studying group
representations. A group representation can be described as a linearization of a set €2 via
the group action g [Mall6]. This linear representation allows the group and its actions to
easily be analyzed within the context of vector spaces and tensor algebras. In this section,
we formally define the group representation and subrepresentation, while also reviewing two

common vector space operations.

Definition (Representation) Consider GL(n,F) the general linear group of vector spaces over
some field F. This group consists of n x n invertible matrices with non-zero determinant
(sometimes denoted GL(V)). An n-dimensional real representation of a group & is a map

to the general linear group

p:® — GL(n,V) (A.14)

assigning to each g € & a representation p(g), and satisfying the condition p(gh) = p(g)p(h)
for all g,h € &.

A.3.1 Subrepresentations

Definition (Subrepresentation) Given a representation p : & — GL(V), a subrepresentation
is any vector subspace W < V' that is invariant under the action of &. That is, p|lw(g) €
W Vge & VweW.

Remark Because subrepresentations are closely tied to their corresponding group actions,
we will often denote a subrepresentation as a pair of both the representation and the vector
space ply following notation used in [Wei22] of a restricted representation. This notation
means that the subspace W is invariant and closed under the action of &. Using a slight
notational leap, this might also refer to the original representation p|y since trivially every

representation is also a subrepresentation p|y C ply
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A.3.2 Direct Sum and Tensor Product

Definition (Direct Sum) The direct sum of vector spaces V and W over an arbitrary field
F, denoted V' @ W, is the set of all ordered pairs (v, w), where v € V and w € W, equipped

with component-wise addition and scalar multiplication:
VeW={(vw)|veV,weW}

with addition defined as

(vl,wl) —+ (UQ,U)Q) = (Ul + Vg, W1 + ’U)Q)

and scalar multiplication defined as

a-(v,w) =(a-v,a- w)
where « is a scalar.

Corollary We can incorporate the direct sum into our group representation notation by

constructing, for instance, the sum of two group representations (p; @ ps) : & — GL(VOW).

Definition (Tensor Product) The tensor product V' ® W of two vector spaces is the space
based on elements v ® w, labelled by pairs of vectors v € V and w € W with the following

distributive relations:
o Addition: (vi +v2) @ W = v @ W + vy ® w;
o Multiplication: v ® (w1 + wy) = v @ w1 + v ® Wy
o Scalar Multiplication: (k-v)Qw=v® (k-w)=Fk-(v®w).

In other words, V ® W is the quotient of the vector space with basis {v ® w} by the subspace
spanned by the differences of left- and right-hand sides in each identity above.

Corollary Similarly, we can incorporate the tensor product into our group representation
notation by introducing the product of two group representations (p;®ps) : & — GL(V@W)
[Tel05].
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A.4 Representational Disentanglement

Finally, we turn to [HAP*18] for definitions concerning irreducible representations and
representational disentanglement, which are integral to the study of invariance and
equivariance in neural audio synthesis. Texts such as [HAP*18], [KPB*23], and [FWW21]
are prefaced on the idea that the most desirable neural network architectures for
representation learning are ones in which the layers disentangle input representations, since

this allows for interpretability.

A.4.1 Irreducibility

So far we’ve examined group representations whose group transformations g € & act on an
arbitrary vector spaces V. In this section, we consider vector spaces that decompose into
some direct sum of the form plw, ® plw, @ ... B plw,. We continue to denote the composition

of these subspaces as p|y such that:

p:6 — GL(V)

L (A.15)
p|V = @ p|Wz

=1

Definition (Irreducible Representations) A representation p|y is said to be irreducible if its

only subrepresentations ply C p|y are the two trivial subrepresentations ply = {0} and

plw = {plv}.

Corollary As a visual aid, the decomposition into irreducible representations can be shown

as a block-diagonal matrix:

e 0 0
0 2
plv =] plw (A.16)
: 0
0 0 plw, |

Under most conditions, the decomposition of p|y will always yield the same set of irreducible

representations ply, up to isomorphism, order, and change of basis [HAP*18].
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A.4.2 Disentanglement

Definition (Disentanglement) A group representation p|y : & — GL(V) is disentangled if

there exists a decomposition of the following form:

L M
plv =D & r"™|w, (A.17)

=1 m=1
where each factor p(™ is an irreducible representation of some &; with respect to the group

decomposition & = &, x B,...8 and there is at most one non-trivial representation in each
(m)
P\,

Example Following [HAP'18], we can analyze a simpler example of a disentangled
representation of the group & = &; x &, where the representation contains two linearly
independent vector spaces V. = W; & Wy that each contain two irreducible factors
oD @ p®.

plv = (pVlw, @ pPlwy) & 0V, @ pP ) (A.18)

Because we know that each subspace W, is the minimal invariant subspace under the group
actions of &, we can infer that at the very most only one p(™ is non-trivial, which allows

each W, to respectively represent only one &;, hence the term disentanglement.

Caveat (Linear Disentanglement) It is worth mentioning that if we are dealing with linear
group representations, our problem simplifies drastically. Namely, the factors of the tensor
product @_, p™) disappear and we only have to deal with the linear group actions that
decompose into a direct sum, such as those outlined previously in Eq. A.15. The problem
of disentanglement then simply becomes a problem of associating linear subspaces W; with

their corresponding groups and group actions &;.
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Appendix B

Spectrotemporal Audio Descriptors

This appendix covers a number of spectrotemporal audio descriptors discussed in The Timbre
Toolbox: Extracting Audio Descriptors from Musical Signals [PGST11]. We review a selection
of audio descriptors chosen as parameters for our disentanglement experiments in Chapter

6, providing short descriptions and equations.

B.1 Statistical Descriptors

This section reviews the statistical audio descriptors used for our experiments. These include
spectral centroid, spread, skewness, kurtosis, flatness, slope, decrease, roll-off, and crest. We
denote the magnitude of the STFT in this section as X (t, f), where fy is the kth spectral

bin of K bins and fj is the fundamental frequency.

Spectral Centroid: The "center of mass" of the spectrum, representing the perceived

brightness of the sound.

o) = S fuX(t, fr)
>k X (2t fr)

Spectral Spread: The dispersion of the spectral energy around the spectral centroid,
indicating the bandwidth.

2 (fe — c(t))? X (¢, fr)
Zk X<t7 fk>

Spread(t) = $
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Spectral Skewness: The asymmetry of the spectral shape, providing information about

whether the direction energy favors lower or higher frequencies.

Sk (fi — b))’ X (¢, fi)
>k X<t7 fk)

Skew(t) = ( ) /Spread(t)3

Spectral Kurtosis: The peakedness of the spectral shape, representing how flat or peaked

the spectrum is.

S (fe — () X (L, fi 1
Kurt(t) = ( ( ijg(zf)’ fk:)( )> /Spread(t)

Spectral Flatness: Measures how flat or noise-like the spectrum is, calculated as the ratio

of the geometric mean to the arithmetic mean of the power spectrum.

1

(s X (2, fr))*

Flatness(t) =

Spectral Slope: The slope of the spectral envelope, computed using a linear regression over

the spectral amplitude values. Here, X (¢, f;) denotes the mean amplitude of the STFT.

Celfe — @)X, fi) = X(E, i)
2r(fe —c(t))?

Spectral Decrease: Describes the rate of amplitude decrease, emphasizing the slopes of

Slope(t) =

the lowest frequencies.

> X(tvfk—&-lf?k_X(tva)

Decrease(t) =

Spectral Roll-off: The frequency below which a certain percentage (usually 95%) of the
spectral energy is contained. Here, the denominator sum denotes the sum of frequencies up

to the Nyquist limit 2Z.

ngfc X(ta f)g
Srep. X002 2 0%

2R
2

Roll(t) = fo(t) s.t.
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Spectral Crest: Measures the peakiness of the spectrum, calculated as the ratio of the

maximum spectral value to the average spectral value.

maxy X (¢, fx)

Cr = g——"x
est(t) %EkX(t,fk)

B.2 Harmonic Descriptors

This section reviews the harmonic audio descriptors used for our experiments. These include
harmonic energy, noise energy, harmonic-to-noise ratio, inharmonicity, harmonic spectral
variation, noisiness, and odd-to-even ratio. Here we denote harmonic partial frequencies as

frn in order to differentiate from spectral bins.

Harmonic Energy: The total energy of the harmonic components in the audio signal.
HarmEn(t) = > X(¢, f)’
f€harm
Noise Energy: The total energy of the noise components in the audio signal.
NoiseEn(t) = Y X(t, f)?
f€Enoise

Harmonic-to-Noise Ratio: The ratio of the energy of the harmonic components to the

energy of the noise components, representing the degree of noisiness in the sound.

Eharm (t)
Enoise (t)

Inharmonicity: Measures the deviation of the partials from the harmonic series, indicating

HarmToNoise(t) =

the presence of inharmonic partials in the sound.

Inharm(t) = Sn (fa = hfo)* X (¢, fr) 2

ZhX<t7fh> ‘fO

Harmonic Spectral Deviation: Measures the deviation of the harmonic amplitudes

from a smooth spectral envelope (denoted X(t,f,)), indicating irregularities in the

harmonic structure. Often X (t, fr) is estimated by averaging the values of three adjacent



B. Spectrotemporal Audio Descriptors 108

partials: X (¢, f) = $[X (¢, fao1) + X(&, fu) + X (t, fri1)] [PGST11]. We denote H as the

maximum number of harmonics in the analysis.

1 Shen |X (8 J) = X0, f)
H ZhEH X(t> fh)

Odd-to-Even Harmonic Ratio: The ratio of the energy of the odd harmonics to the even

HarmDev(t) =

harmonics, often related to the timbral characteristics of the sound.

ZhEodd harmonics X(t7 fh>2
h€even harmonics X(t, fh)2

OddEven(t) =

Noisiness: Quantifies the amount of noise present in the audio signal, often derived from

the energy of non-harmonic components.

Enoise t
Noisiness(t) = E((t;
total
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