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Abstract

The advent of genome-wide association studies (GWASs) has significantly advanced

our understanding of complex traits—traits influenced by multiple genes and

environmental factors—by analyzing the frequency of genetic variants across the

genome in thousands of individuals with different health statuses. To date, GWASs have

identified over 434,000 significant genetic associations for more than 3,300 complex

traits such as obesity, autoimmune diseases, and cancer, influencing a broad range of

fields from understanding disease mechanisms to guiding drug development and risk

assessment.

Initially, GWASs focused on individual diseases or traits, but it soon became evident that

many genetic variants and genes are associated with multiple traits, a phenomenon

known as pleiotropy. The emergence of global population-based biobanks like UK

Biobank and FinnGen, which compile extensive genetic and phenotypic data on

hundreds of thousands of individuals and across hundreds of phenotypic measures, has

enabled researchers to examine the impact of a single genetic variant across a plethora

of diseases and traits through phenome-wide association studies (PheWAS). This

approach not only broadens our understanding of disease mechanisms by revealing

shared genetic influences but also aids in identifying targets for new treatments and

drug repurposing. The advantages of GWAS and PheWAS highlight the importance of

widely sharing summary statistics of genetic variant-trait associations for downstream

analyses and applications. This has led to the development of tools like PheWeb, which

is an open-source web-based tool used for sharing GWAS and PheWAS summary

statistics, enabling researchers worldwide to easily access, visualize, explore, and build

upon this wealth of information.

This project aims to perform systematic GWAS and PheWAS scans using all genetic

data and binary phenotypes available in the Canadian Longitudinal Study on Aging

(CLSA), one of Canada's largest genetic studies, and share results with the broad

scientific community using the PheWeb platform. The CLSA PheWeb is built upon 350

binary phenotypes, with over 308 million genetic variants present in approximately

25,000 individuals of European genetic ancestry, providing an invaluable resource for

researchers. CLSA PheWeb may foster interdisciplinary research and global
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collaboration, including facilitating meta-analysis studies, by providing an accessible

platform for the scientific community to explore, validate and compare genetic

associations across various datasets. This collaborative potential may accelerate the

discovery of novel genetic insights and strengthen the validation of existing

associations, enriching our understanding of human genetics.
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Résumé

L'avènement des études d'association pangénomique (GWAS) a considérablement

avancé notre compréhension des traits complexes—traits influencés par plusieurs

gènes et facteurs environnementaux—en analysant la fréquence des variants à travers

le génome chez des milliers d'individus avec différents statuts de santé. À ce jour, les

GWAS ont identifié plus de 434,000 associations génétiques significatives pour plus de

3,300 traits complexes. Parmi ces traits, on compte l'obésité, les maladies

auto-immunes et le cancer. De plus, ces observations ont influencé un large éventail de

domaines tels que le mécanisme des maladies, le développement de médicaments et

de la médecine personnalisée.

Initialement, les GWAS se concentraient sur des maladies ou des traits individuels,

mais il est rapidement devenu évident que de nombreux variants et gènes sont

associés à plusieurs traits. Ce phénomène est connu sous le nom de pléiotropie. Des

biobanques, comme UK Biobank et FinnGen, compilent les données génétiques et les

mesures phénotypiques provenant de centaines de milliers d'individus à l’échelle

mondiale. L'émergence de ces biobanques a permis aux chercheurs d'examiner

l'impact de chacun des variants à travers une multitude de maladies et de traits grâce

aux études d'association phénomiques (PheWAS). Non seulement cette approche

élargit notre compréhension des mécanismes de diverses maladies en révélant des

influences génétiques partagées, elle aide également à identifier des cibles pour de

nouveaux traitements et la reposition de médicaments. Les avantages des GWAS et

des PheWAS soulignent l'importance de partager mondialement les statistiques

sommaires des associations trait-variant à des fins d’analyses et d’applications dérivées

C’est dans cette optique que l’outil de visualisation de données PheWeb a été

développé. PheWeb est un logiciel open-source, en ligne, utilisé pour partager des

résultats selon les approches GWAS et PheWAS. Il permet ainsi aux chercheurs du

monde entier de facilement accéder, visualiser et explorer les données de diverses

sources d'informations reconnues.
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Ce projet vise à effectuer des analyses systématiques de GWAS et PheWAS en

utilisant toutes les données génétiques et les phénotypes binaires disponibles dans

l'étude longitudinale canadienne sur le vieillissement (CLSA ÉLCV), l'une des plus

grandes études génétiques du Canada, et à partager les résultats avec la communauté

scientifique en utilisant la plateforme PheWeb. Le CLSA PheWeb est construit à partir

de 348 phénotypes binaires, avec plus de 308 millions de variants présents chez

environ 25,000 individus d'ascendance génétique européenne, fournissant une

ressource inestimable pour les chercheurs. Le CLSA PheWeb peut favoriser la

recherche interdisciplinaire et la collaboration mondiale, incluant les études de

méta-analyse, en fournissant une plateforme accessible pour la communauté

scientifique afin d'explorer, valider et comparer les associations génétiques à travers

divers ensembles de données. Ce potentiel collaboratif peut accélérer la découverte de

nouvelles perspectives génétiques et renforcer la validation des associations existantes,

enrichissant notre compréhension de la génétique humaine.
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Chapter 1: Introduction

The advent of genome-wide association studies (GWASs) marked a paradigm shift in

our approach to understanding the genetic underpinnings of complex traits, which are

traits influenced by multiple genes and their interactions with the environment. GWAS

operates on a hypothesis-free basis and systematically examines the frequency of

genetic variants across the entire genome in thousands of individuals to identify those

that are associated with a trait. This process results in the identification of statistically

significant associations when a genetic variant occurs more frequently in individuals

with a particular trait than in those without, indicating a potential genetic influence on the

trait. More than 6,000 GWASs have now been conducted for more than 3,300 complex

traits resulting in more than 434,000 statistically significant associations across a variety

of diseases and disease-related1 traits such as obesity, autoimmune diseases, Type 2

Diabetes, Schizophrenia, Osteoporosis, Breast Cancer, Asthma and Alzheimer's

Disease1–3. GWAS findings are instrumental across various domains, including

unravelling the biological basis of a trait, advancing clinical risk assessments through

polygenic risk scores (PRS), guiding drug development efforts, and exploring potential

causal links between risk factors and health outcomes through Mendelian

randomization (MR)1,2.

Typically, early GWASs investigated only one or very few diseases or traits at a time,

addressing a specific research question4. By 2011, it became clear that some of the

genetic variants and genes reported by hundreds of these independent disease or

trait-specific GWASs overlap, i.e. are associated with multiple traits, also referred to as

pleiotropy5. However, the at-scale identification of all pleiotropic effects requires access

to thousands of traits, also known as phenotypes, measured in thousands of individuals

with genetic data available, which became possible with the development of

population-based biobanks worldwide. The UK Biobank6 (500,000 participants,

~800,000 variants, >4,200 phenotypes), All of Us Research Program7 (USA) (>1 million

participants), China Kadoorie Biobank8,9 (512,000 participants, 700,701 variants,

hundreds of phenotypes), KoGES10 (72,298 participants, 8,056,211 variants, 136

phenotypes), FinnGen11 (500,000 Finnish participants, 16,962,023 SNPs and INDELS,
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1,932 phenotypes), and BioBank Japan12 (200,000 participants, up to 964,193

variants13, 280 phenotypes) illustrate the global scale and diversity of biobank efforts to

compile extensive genetic and phenotypic data for research.

The wealth of data provided by these biobanks has enabled researchers to analyze the

impact of a genetic variant across a wide array of diseases and traits, using

Phenome-Wide Association Studies (PheWAS)14–16. PheWAS examines the impact of a

known genetic variant across numerous traits, representing a complementary approach

to GWAS. This methodology allows for the identification of the pleiotropic effects of a

variant, offering insights into shared pathophysiological pathways. This broad approach

not only enhances our understanding of disease mechanisms but also identifies

potential targets for therapeutic intervention and drug repurposing by shedding light on

possible adverse effects14,15,17.

The numerous benefits of GWAS and PheWAS mentioned earlier, underscore the

necessity of sharing summary statistics of genetic variant-trait associations widely within

the scientific community. This need is met by PheWeb18, an open-source web-based

tool used for sharing GWAS and PheWAS summary statistics, enabling researchers

worldwide to easily access, visualize, explore, and build upon this wealth of genetic

information. By providing a user-friendly web-based platform for these findings, PheWeb

ensures that the groundbreaking insights from GWAS and PheWAS are fully leveraged,

fostering further discoveries and innovations in genomic research. Examples of

PheWeb platforms tailored for biobanks around the world include UK Biobank6 PheWeb,

TCGA19 PheWeb, FinnGen11 PheWeb, BioBank Japan12 PheWeb, CARTaGENE20

PheWeb, COLCORONA21 PheWeb, COLCOT22 PheWeb, CHARM23 PheWeb,

SardiNIA24 PheWeb, KoGES10 PheWeb and The Qatar Genome Program (QGP)25

PheWeb. While PheWeb is renowned for its comprehensive approach to displaying

PheWAS and GWAS results, other tools such as Genebass26, GWAS Catalog3,

PhenoScanner27 and AstraZeneca PheWAS Portal28, offer similar features that support

genetic research.

13



This project aims to perform systematic GWAS and PheWAS scans using all genotype

data and binary phenotypes available in the Canadian Longitudinal Study on Aging

(CLSA)29, one of Canada's largest genetic studies, and share results with the broad

scientific community using the PheWeb platform. CLSA represents a significant

longitudinal effort, gathering data from over 50,000 individuals aged between 45 and 85

at recruitment29. The CLSA's extensive collection of health-related measurements offers

a unique lens through which the interplay of genetic and environmental factors on

human health can be studied.

The CLSA PheWeb is built upon 350 binary phenotypes, with over 308 million variants

and approximately 25,000 individuals of European like genetic ancestry providing an

invaluable resource for researchers. CLSA PheWeb fosters interdisciplinary research

and global collaboration, including facilitating meta-analysis studies, by providing an

accessible platform for the scientific community to explore, validate and compare

genetic associations across various datasets. This collaborative potential accelerates

the discovery of novel genetic insights and strengthens the validation of existing

associations, enriching our understanding of human genetics.

1.1 Genome-wide association study (GWAS)

Genome-wide association study (GWAS) is a hypothesis-free approach for identifying

associations between genetic variants and both diseases and traits related to health.

For both binary and continuous traits, this approach involves collecting data from

thousands of individuals, categorized into cases and controls for binary traits (those

affected by the disease versus those unaffected), or measured across a spectrum for

continuous traits. Each genetic variant is systematically evaluated for associations,

generating millions of association statistics across different phenotypic expressions.

Since the first successful GWAS in 200230, the number of studies employing this method

has grown rapidly. At the time of writing, the GWAS Catalog contains more than 6,000

publications and 415,784 statistically significant gene-disease associations31. The

14



success of GWAS is attributable to several key developments in the field of genomics:

the compilation of comprehensive catalogs of human genetic variation, the advent of

cost-effective genotyping methods, such as SNP arrays, the availability of large sample

sizes that enhance the power of these studies, and the implementation of sophisticated

statistical methodologies for data analysis1,32. A conventional GWAS workflow includes

several critical steps1:

● Data Collection: Gathering phenotypic and genetic data from a broad cohort of

individuals.

● Genotyping: Determining the genetic variants present in the collected samples

using high-throughput sequencing or array-based technologies.

● Quality Control: Filtering the data to remove poor quality or unreliable genetic

markers and samples.

● Imputation: Estimating unobserved genotypes to enhance the density of genetic

data and facilitate comparisons across studies.

● Statistical Tests: Employing statistical models to identify associations between

genetic variants and the traits or diseases of interest.

● Meta-analysis: Combining data from multiple GWAS to increase statistical power

and validate findings.

● Replication: Validating significant associations in independent cohorts to confirm

findings.

● Post-GWAS Analyses: Conducting further analyses to explore the biological

implications of identified associations, including functional studies,

gene-environment interactions, and pathway analyses.

The subsequent sections will delve into each of these steps, providing a comprehensive

overview of the GWAS process and its implications for understanding the genetic basis

of complex diseases and traits.

1.1.1 Data collection

To find replicable genome-wide significant associations, GWAS frequently need very

high sample sizes. The needed sample size can be calculated using power estimates in
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software tools like CaTS33 or GPC34. When the characteristic of interest is dichotomous,

research designs can include cases and controls; otherwise, when the trait is

quantitative, the entire study sample can be subjected to quantitative measures.

Additionally, there are population-based and family-based design options available. The

desired sample size, the experimental question, the availability of pre-existing data, or

the ease with which new data may be acquired all influence the choice of data resource

and study design for a GWAS1. Since Individual cohorts with detailed clinical measures

may not be able to meet the necessary sample size, in some cases, "proxy" phenotypes

that are simpler to measure and for which there is more data can be used. For instance,

educational attainment can be used as a proxy for intelligence or depressive symptoms

as a proxy for a clinical diagnosis of depression1.

Direct-to-consumer studies or data from resources like biobanks or cohorts with

disease- or population-based enrollment can be used to conduct GWAS. For a complex

trait, a well-powered GWAS needs significant time and financial commitments that are

beyond the capabilities of the majority of individual laboratories. As a result, the majority

of GWAS are carried out using a number of great public resources that already exist

and offer access to large cohorts with both genotypic and phenotypic data. Even when

new data are gathered internally, they are frequently co-analyzed with data from

pre-existing sources; additional data collection is typically necessary when more

accurate phenotyping is wanted1.

Recruitment tactics must be carefully evaluated for all study designs since they can

introduce bias in the collected data. GWAS commonly use genetic and phenotypic data

from cohorts based on population surveys, where participants are believed to be

randomly selected from the population. As long as the population substructure is taken

into account to prevent producing false positive results, several ethnic groups might be

included in the same study. Associations between genetic variants, whether genotyped

or imputed, can be analyzed for traits that are either continuous or binary. In a typical

case-control GWAS design, participants are classified as cases or controls based on

whether they exhibit a specific trait. Active recruitment of cases and controls is typically

favoured when there are limited financial resources and a need to increase statistical

power1. A greater effort must be made during quality control and subsequent analysis to
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eliminate artifacts if cases and controls are not genotyped together on the same chip.

This could mean including the genotyping batches as a covariate in the analyses. It

should be highlighted that although samples are thought to be drawn at random from

the population, participation bias and asymmetrical socio-demographic features make

this assumption untenable1.

Conducting GWAS in communities that have limited gene exchange with neighbouring

populations because of a founder event, such as geographical or cultural barriers, has

considerable benefits. One key benefit is that isolated populations may have functional

variants that are normally rare in other populations. Therefore, studying such isolated

populations can boost the power of association studies for those variants. If even a

relatively small number of individuals from the isolated population are included in the

reference panel, the long-range linkage disequilibrium expected for isolated populations

enhances imputation accuracy and power over similarly sized non-isolated cohorts.

Because isolated populations have high levels of relatedness, GWAS frequently adopt a

linear mixed model-based approach. Due to the extinction of alleles caused by genetic

bottlenecks, isolated populations have a tendency to have high genetic homogeneity.

This can boost the power of burden tests by lowering the number of neutral variants. If a

variant is too rare, it may be challenging to replicate the discovery in other populations,

but other variants implicating the same gene may provide additional evidence.

As GWAS calls for large-scale genotypic and phenotypic data, many national

population-based biobanks have been developed worldwide. Researchers have access

to various sizable, publicly accessible population biobanks. Data from thousands of

genotyped individuals who have undergone extensive phenotyping—either by

questionnaires, laboratory tests or linking to electronic health records—and who were

not chosen for specific disease traits—can be found in biobanks. A prominent example

is the UK Biobank6, which contains information on roughly 500,000 people and has

increased sample sizes for GWAS of common diseases while also enabling

well-powered GWAS of hundreds of quantitative traits, including anthropometric traits,

blood cell traits, metabolites, cognitive traits, brain imaging traits, and depressive

symptoms. Large biobanks of data from people with non-European ancestries are being

developed, and many new studies are based on ethnically diverse communities,
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motivated by the fact that biobanks have been typically focused on populations with

European genetic ancestry. The majority of biobanks have employed imputed genotype

data for common variants. However, as the cost of whole-exome sequencing (WES)

and whole-genome sequencing (WGS) continues to drop, the field is quickly moving

towards WES- and WGS-based GWAS1.

The table below outlines key details of major biobanks utilized for GWAS, including

ancestries, sample sizes, and URLs.

Data set Ancestry Sample size URL

UK Biobank6 Predominantly
white British

~500,000 https://www.ukbiob
ank.ac.uk/

BioBank Japan41 Japanese ~200,000 https://biobankjp.or
g/en/

China Kadoorie
Biobank8

Chinese ~512,000 https://www.ckbioba
nk.org/

H3Africa42 Various African
ancestries

~118,000 https://h3africa.org/

TOPMed43 Multiple ancestries
(USA)

~180,000 https://topmed.nhlbi
.nih.gov/

FinnGen11 Finnish 260,405 https://www.finngen.fi
/en

CARTaGENE20 European ancestry
and French Canadian
heritage

~43,000 https://cartagene.qc.c
a/en/index.html

Table 1.
Major Biobanks around the world

1.1.2 Genotyping

Genotyping, the process of determining the genetic variants an individual carries, is a

foundational step in GWAS. Genetic variants, also known as alleles, are differences in

the DNA sequence among individuals. A "common variant" is identified as a genetic
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variation that occurs frequently within a population, with a minor allele frequency often

exceeding 5%. This frequency threshold may be adjusted to as low as 1% in studies

with larger populations, with the standard being the presence of the minor allele in at

least 100 carriers within the study group. These common variants are often implicated in

various traits and conditions, making their identification crucial for GWAS32.

For genotyping in GWAS, two main techniques are predominantly used:

microarray-based genotyping for common variants and next-generation sequencing

(NGS) methods, such as WES or WGS, for a comprehensive assessment that includes

both common and rare variants1. Microarray-based genotyping is a cost-effective

approach that focuses on known variants across the genome, making it the preferred

method for many studies due to its efficiency and lower cost compared to NGS. This

method involves the use of chips pre-designed to detect specific variants and is

particularly useful for examining genetic variations associated with common diseases or

traits1.

Next-generation sequencing, encompassing WES and WGS, offers a more detailed

view by sequencing either the coding regions of the genome (WES) or the entire

genome (WGS). While WES focuses on the approximately 1% of the genome that

codes for proteins, WGS provides a comprehensive overview, capturing nearly every

genomic variation, including rare variants which might have significant effects on

phenotype but are missed by microarray-based methods. Although NGS offers deeper

insights into the genetic blueprint, its higher costs have traditionally limited its use

primarily to studies where the detailed genetic information it provides can justify the

expense1.

The choice of genotyping platform in GWAS often hinges on the study's specific goals,

the types of variants of interest, and budgetary considerations. In consortium-led

GWAS, for instance, uniformity in genotyping platforms across individual cohorts is

usually advised to ensure data comparability and integrity. With the anticipated

decrease in the cost of WGS technologies and the increasing recognition of the value of

rare variant information, it is expected that WGS will become the predominant choice for

genotyping in the coming years, offering unprecedented detail and accuracy in genetic

studies1,44,45.
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1.1.3 Quality Control

Anonymized individual ID numbers, coded familial relationships between individuals,

sex, phenotype information, covariates, genotype calls for all called variants, and

information on the genotyping batch are all included in the input files for a GWAS.

Following the data entry, extensive quality control is necessary to produce reliable

results from GWAS. The elimination of variants that are not in Hardy-Weinberg

equilibrium, the filtering of SNPs that are missing from a portion of the cohort, the

identification and removal of genotyping errors, and the assurance that phenotypes are

properly matched with genetic data—often by comparing self-reported sex to sex based

on the X and Y chromosomes—are some examples of steps1.

Many of these quality control procedures can be carried out using software tools like

PLINK38, which was created particularly to analyze genetic data. Once GWAS array

data has undergone sample and variant quality control, variants are typically phased

and imputed. GWAS consortia regularly adhere to pipelines for carrying out quality

control stages and imputation, utilizing software like RICOPILI46 or a similar programme,

or they submit their data to imputation servers, where these standardized procedures

have been set in place. The utilization of computer clusters or cloud settings that can

spread tasks to numerous machines is commonplace since analysis processes can be

executed in parallel for genetic data sets which are frequently large1. The

aforementioned stages are typically carried out independently for numerous different

cohorts with varied sample sizes in order to obtain the huge sample sizes characteristic

in genetic studies in a logistically practical manner while adhering to data privacy laws1.

1.1.4 Genotype Imputation

The method of predicting or imputing genotypes that are not directly assayed is known

as genotype imputation. This is done by leveraging information from reference panels of

individuals with densely genotyped data. Imputation can increase the power and

resolution of GWAS by allowing for the testing of a larger set of genetic variants. It also

enables meta-analysis of GWAS results from different studies that use different

genotyping platforms. Imputed genotypes are typically used to conduct association tests

with phenotypes of interest. The accuracy of imputation depends on several factors,
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including the density and quality of the genotyping data, the size and

representativeness of the reference panel, and the degree of linkage disequilibrium (LD)

across the genomic regions of interest. High-quality genotyping results, a large

reference panel with diverse ancestries that captures a broad spectrum of genetic

variation, and strong LD between known and unknown variants can significantly

enhance the precision of imputed genotypes50,51.

The enhancement of genetic imputation methods is a pivotal aspect of contemporary

GWAS, as they facilitate the prediction of ungenotyped variants in a study sample

based on a set of reference haplotypes. The most prominent reference panels in the

field are the 1000 Genomes Project52, the Haplotype Reference Consortium (HRC)53,

and the Trans-Omics for Precision Medicine (TOPMed) program43. The 1000 Genomes

Project provides a comprehensive resource on human genetic variation, which includes

data from diverse populations, aiding in the broad representation of global genetic

diversity. The HRC compiles high-quality, whole-genome sequencing data, which

enhances the imputation of European ancestries. TOPMed, on the other hand,

contributes extensive whole-genome sequencing data that supports the precise

imputation of rare variants across diverse populations.

For the practical application of imputation, various software tools are utilized, with

IMPUTE v254, Minimac455, and Beagle 5.456 being among the most utilized due to their

efficiency and accuracy in handling large-scale genomic data. IMPUTE v2 is

well-regarded for its robust performance with large reference panels, while Minimac4

offers speedy imputation with minimal computational resources. Beagle 5.4 is

commended for its accuracy and speed, as well as its ability to handle both small and

large datasets effectively50,55,57.

Each software has distinct computational requisites and algorithms, which may affect

the choice of tool based on the specific needs of the study. For instance, researchers

may select a program that is best aligned with the structure of their data or the specific

variants of interest. However, the end goal remains the same: to maximize the

informativeness of the genetic data, thereby enabling more comprehensive association

tests for complex traits. It's important to note that the choice of reference panel and

imputation server may depend on the specific population under study, as the accuracy
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of imputation can be influenced by the ancestry composition and sample size of the

reference panel50.

Genotype imputation can be done in a more focused region in the context of a

fine-mapping study or across the entire genome as part of GWAS. The number of SNPs

that can be tested for association can then be increased using these "in silico"

genotypes. As a result, the study's power is increased, the causal variant can be settled

or fine-mapped, and meta-analysis is made easier50.

After the completion of genotype imputation, evaluating the quality of the imputed

genotypes is crucial, particularly in scenarios where a true genotype dataset for

comparison is unavailable. To address this, researchers have developed various

post-imputation information measures to gauge the reliability of imputed SNPs, aiming

to eliminate low-quality SNPs prior to association testing. These measures, designed to

range between 0 and 1, help quantify the certainty of imputed genotypes: a measure of

1 indicates absolute confidence in the imputed genotypes, while a measure of 0

signifies complete uncertainty. The interpretation of these metrics suggests that an

information measure value of across a sample of individuals approximates the valueα 𝑁
of having a perfectly observed genotype dataset in a sample size of 50.α𝑁
Among the measures introduced, the MACH metric evaluates the imputed genotype𝑟2
quality by comparing the observed variance of allele dosage against the expected

variance under the Hardy-Weinberg equilibrium. BEAGLE recommends utilizing the 𝑅2
between the best-guess genotype and the allele dosage as a proxy for the between𝑅2
the best-guess genotype and the actual genotype. IMPUTE calculates a measure

reflecting the relative statistical information about the SNP allele frequency derived from

the imputed data50.

Marchini and Howie (2010)50 performed comparative analyses of these metrics, applied

to a simulated dataset across a 7 Mb interval on chromosome 22, revealing a high

correlation among the MACH, BEAGLE, and IMPUTE measures. However, it's noted

that the MACH measure occasionally exceeds 1, and the BEAGLE measure is

undefined for nearly 3% of SNPs. This underscores the necessity of choosing

appropriate post-imputation quality metrics tailored to the specifics of each study, to
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ensure that subsequent analyses are based on reliable and accurate imputed genotype

data50.

1.1.5 Statistical approaches for genetic association testing

The biometrical model, which quantifies the contributions of genetic and environmental

factors to phenotypic traits, serves as the foundation for the theory of genetic

association1. Depending on whether the phenotype is continuous (like height, blood

pressure, or body mass index) or binary (like the presence or absence of disease), often

in GWAS, linear or logistic regression models are utilized to investigate associations. To

account for stratification and prevent confounding effects from demographic

characteristics, covariates such as age, sex, and ancestry are added; however, this may

reduce the statistical power for binary traits in ascertained samples. It is possible to

strengthen control for stratification and enhance statistical power for genome discovery

by using an additional random effect term, which is individual-specific in linear or logistic

mixed models and accounts for genetic relatedness among individuals. The genotypes

of genetic variants that are physically close to one another are not independent since

they frequently exhibit linkage disequilibrium; this test dependency should also be taken

into account when conducting a GWAS.

The typical linear regression models for GWAS can be written as follows:𝑌 ~ 𝑊α + 𝑋𝑠β𝑠 + 𝑔 + 𝑒 𝑔 ~ 𝑁(0,  σ𝐴2ψ)𝑒 ~ 𝑁(0,  σ𝑒2𝐼)
Where the phenotype vector is noted by for each individual, which is estimated using𝑌
a set of covariates with their respective effect sizes , and the genotype values at𝑊 α 𝑋𝑠
a specific SNP with a fixed effect size . Additionally, the model incorporates a𝑠 β𝑠
random polygenic effect , distributed normally with mean and variance , where𝑔 0 σ𝐴2ψ
the additive genetic variation of the phenotype is measured by and is the geneticσ𝐴2 ψ
relationship matrix. The model also includes an error term , representing random𝑒
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residual errors with a normal distribution with mean and variance , where is the0 σ𝑒2𝐼 𝐼
identity matrix and measures residual variance1. The model outlined above isσ𝑒2
unsuitable for case-control studies, where the outcome is categorical and not normally

distributed. Predicted probabilities in such studies can erroneously fall outside the 0-1

range. Logistic regression rectifies this by employing a logit link function58.

A strict multiple-testing threshold is needed to examine millions of associations between

individual genetic variants and a phenotype without producing any false positives.

According to research from the International HapMap Project59, the average number of

independent common genetic variants in the human genome is around 1 million, which

results in a Bonferroni testing threshold of (indicating a false discovery𝑃 <  5 × 10−8
rate of ). In GWAS, the significance threshold to declare genetic associations0. 05/106
may need adjustment according to population specifics. For example, populations with

larger effective sizes, or studies incorporating rarer alleles due to increased sample

sizes, might necessitate more stringent thresholds. This is because rarer variants often

do not exhibit linkage disequilibrium with common variants, heightening the challenge of

multiple testing. Complex traits such as height, schizophrenia, or blood pressure are

typically polygenic, with numerous variants each contributing modestly. Here, the

Winner's Curse can be common, leading to inflated effect size estimates for variants at

the margin of discovery. This refers to the tendency for the effect sizes of genetic

variants to appear larger than they truly are due to the statistical bias toward significant

findings60. A robust approach to calibrate for false positives and the Winner's Curse

involves comparing effect sizes between discovery and independent replication cohorts.

While effect sizes cannot be anticipated prior to GWAS, planning for replication at the

outset is crucial for sufficient power to address statistical distortions and multiple testing

effects. It's essential to compare the effect statistics and their error metrics, like

regression coefficients or odds ratios, across cohorts, particularly if different software

was utilized for analysis. Moreover, replication cohorts must be strictly independent from

the discovery cohort, ensuring no overlap or genetic relationships among participants, to

prevent biases in validation efforts.
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Manhattan plots and quantile-quantile (QQ) plots are fundamental visualization tools for

GWAS result, each serving distinct purposes in the analysis of genetic data. A

Manhattan plot displays the -log10 p-values of association tests across the genome,

with chromosomes typically delineated by alternating colors, helping researchers quickly

identify genomic regions with significant associations.

Fig.1

Manhattan plot for GWAS on under-active thyroid gland taken from the CLSA

PheWeb

In contrast, QQ plots compare the observed distribution of p-values against the

expected distribution under the null hypothesis of no association. Deviations from the

expected line in a QQ plot indicate potential issues such as population stratification or

inflation of test statistics. Genomic inflation factor lambda (λ), often derived from QQ

plots, quantifies the extent of this inflation; a λ close to 1 suggests that the p-values are

not excessively inflated, while values significantly greater than 1 may indicate

underlying problems in the GWAS analysis or true polygenicity of the trait.
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Fig.2

QQ plot for GWAS on under-active thyroid gland taken from the CLSA PheWeb

Together, these plots provide crucial insights into the data quality and the presence of

true genetic signals versus artifacts, facilitating more accurate interpretations of GWAS

results.

In order to prevent false positives or false negatives and biased test statistics due to

population stratification, ancestry and relatedness must be carefully considered and

accounted for in GWAS and, indeed, in all genetic studies. This is especially the case in

data sets from participants of diverse backgrounds. These signals can result in GWAS

with biassed PRSs and inflated SNP-based heritability. The outcomes of Mendelian

randomization studies may also be distorted by them.

To prevent confounding, cases and controls should be matched by ancestry. For

instance, if cases are defined as "using chopsticks regularly" and controls are defined

as "not using chopsticks," cases in a GWAS for chopstick use would likely be drawn

more frequently from an East Asian population than controls. In this example, not taking
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ancestry into account would simply lead to the identification of associations between

chopstick use and certain variants that are more prevalent in East Asian populations

than in other populations.

Principal component analysis is typically used in GWAS to examine ancestry; clusters of

individuals with related genotypes are generated using data from all individuals'

genotypes. This method helps in identifying and adjusting for population stratification,

which can confound the association results if not properly accounted for. By projecting

the genetic data into a space defined by the principal components, researchers can

visualize and correct for the ancestry-related variance in the genetic data. PCA also

assists in the identification of outliers who may significantly differ genetically from the

rest of the cohort, potentially due to different ancestry backgrounds. Additionally, the

principal components can be included as covariates in the association analysis to

reduce false-positive findings attributed to population structure differences. The

effectiveness of PCA in controlling for population stratification in GWAS has been

validated in numerous studies and is considered a standard practice in the field47–49.

1.1.6 Meta-analysis

Meta-analysis is a robust statistical technique used to integrate results from multiple

GWAS datasets, often conducted within the framework of large consortia like the

Psychiatric Genomics Consortium (PGC)61, the Genetic Investigation of Anthropometric

Traits (GIANT) consortium62, or the Global Lipids Genetics Consortium63. This approach

increases the sample size and enhances the ability to detect genetic associations with

traits, thus improving the statistical power of the analyses. Researchers pool data from

various studies, applying tools such as METAL64, N-GWAMA or MA-GWAMA65, as well

as quality control pipelines like those implemented in RICOPILI46 or EasyQC66 to ensure

consistency in allele frequencies, effect sizes, and study designs.

During meta-analysis, genetic markers are aligned across studies, and models

accounting for between-study heterogeneity, such as fixed-effect and random-effects

models, are employed. The latter is particularly useful when there is significant variation

across studies which might be due to differences in population genetics, phenotype
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definitions, or study protocols. A crucial aspect of meta-analysis is the curation and

standardization of data, including scaling effect sizes to a typical normal distribution and

ensuring that each cohort adheres to a predetermined data analysis plan with

standardized phenotypes. One of the major advantages of meta-analysis in GWAS is its

capacity to detect genetic variants with small effect sizes that might not be identifiable in

individual studies, and to validate previously identified genetic associations with more

precise effect size estimates. Overall, meta-analysis serves as a collaborative effort that

leverages the collective data of the scientific community, providing insights that would

not be achievable through isolated studies alone67.

1.1.7 Replication

Replication is a cornerstone of GWAS that bolsters the credibility of genetic associations

discovered in initial studies32. Replication involves conducting an independent study to

confirm whether the genetic variants identified as associated with a trait or disease in

one population also show similar associations in another, ideally diverse, population68.

This step is critical for several reasons: it helps to differentiate true genetic associations

from those that might have arisen due to chance, population stratification, or technical

artifacts69. Moreover, replication in diverse populations can provide insights into the

generalizability of the findings across different genetic backgrounds and environments,

highlighting the robustness and relevance of the genetic markers identified2. Successful

replication adds a layer of confidence to GWAS findings, paving the way for further

biological validation, functional studies, and, ultimately, translational research aimed at

developing personalized medicine and interventions32. Thus, replication not only serves

as a filter for the vast number of potential associations generated in GWAS but also as a

fundamental step toward understanding the complex genetics underpinning human

traits and diseases2.

1.1.8 Post-GWAS Analyses

Post-GWAS analysis integrates various computational and experimental methods to

clarify the functional effects of genetic findings and their contribution to disease

mechanisms. Using in silico approaches, researchers utilize databases and
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bioinformatics tools to enhance SNP mapping precision, associate SNPs with specific

genes, anticipate gene functions, and investigate involved biological pathways31. These

efforts often expand to include analyses of genetic correlations, the use of Mendelian

randomization to determine causal relationships, and the generation of polygenic risk

scores that combine SNP effects to estimate an individual's risk of disease2.

Subsequent experimental validation steps, such as utilizing CRISPR-Cas9 for genome

editing or conducting massively parallel reporter assays, are vital for confirming the

biological significance of these findings70, extending beyond the initial genetic

discoveries. Furthermore, correlating GWAS results with data from relevant disease

models in humans can shed light on the physiological effects of these genetic

variations71. Such thorough post-GWAS evaluations are crucial for moving from mere

statistical associations to a profound understanding of the genetics behind complex

traits and diseases, thereby informing the development of targeted therapies and

precision medicine initiatives.

1.2 Phenome-wide association studies (PheWAS)

Pleiotropy is a fundamental concept in genetics and evolutionary biology, describing the

phenomenon where a single gene exerts a multifaceted influence on various phenotypic

traits. This complex relationship between genes and phenotypes underscores the

intricate nature of genetic architecture, with significant implications for understanding

disease mechanisms, trait interrelations, and evolutionary processes.

A seminal work by Solovieff et al. (2013)72 offers a comprehensive examination of

pleiotropy in the context of human complex traits and diseases. The authors emphasize

the crucial role of pleiotropy in genetic studies, highlighting its potential to reveal the

biological pathways that contribute to diverse phenotypes. By considering pleiotropic

effects in the design and interpretation of genetic association studies, researchers can

gain a deeper understanding of the genetic basis of complex traits and diseases,

ultimately informing the development of effective therapeutic strategies72.

Recent advances in genomic technologies and large-scale GWAS have revealed that

pleiotropy is a common feature of the human genome73. The study by Watanabe et al.

(2019)73 presents a comprehensive analysis of the genetic architecture of human
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complex traits through an extensive compilation of 4,155 GWAS. Focusing on 558

well-powered GWASs, the authors delved into the extent of pleiotropy, which is the

influence of single genetic loci, genes, Single Nucleotide Polymorphisms (SNPs), and

gene sets on multiple traits. This exploration sheds light on the characteristics of

trait-associated variants and the polygenic nature of traits73.

A striking finding from their analysis is that the total summed length of trait-associated

loci for the studied traits encompasses over half of the human genome (60.1%). This

revelation underscores the extensive genomic regions implicated in complex trait

variation. Even more remarkably, 90% of these loci were found to be associated with

multiple traits across different domains, highlighting the pervasive nature of pleiotropy

within the genome73.

Watanabe et al. (2019)73 identify two distinct scenarios of high locus pleiotropy: one

where the same gene within a locus is associated with various traits, and another where

different genes or SNPs within the same locus are tied to multiple traits. This

differentiation is crucial as it indicates that the same genomic region can influence

diverse traits through different genetic mechanisms, either by affecting the same gene in

multiple ways or by influencing different genes within a locus. The study found that while

locus pleiotropy is widespread (90%), pleiotropy at the gene level (63%) and SNP level

(31%) is less common. This suggests that although a gene might be involved in multiple

traits, the specific causal SNPs impacting that gene could vary across traits, affecting

either its function through coding SNPs or its expression through regulatory SNPs73.

The concept of pleiotropy holds profound implications for genomic medicine, especially

as we advance into the realms of personalized medicine and genome editing. The

pervasive nature of pleiotropy underscores the complexity of genetic contributions to

diseases and traits, challenging simplistic models of gene-disease associations. This

complexity is particularly evident when considering the effects of mutations or genetic

polymorphisms, which may exhibit associations with multiple traits in varying directions.

Such findings highlight the necessity of a holistic view of genetic variants, considering

their multifaceted roles across different physiological contexts74.

The implications of pleiotropy extend to drug development and the emerging field of

genome editing74. Identifying molecular targets for therapeutic intervention requires an
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understanding of the broader genetic landscape, acknowledging that targeting a specific

gene may have unintended consequences due to its pleiotropic effects – adverse

effects. This consideration is crucial in the era of CRISPR-Cas systems and other

genome editing technologies, where altering a gene to mitigate one condition could

inadvertently impact other traits or diseases associated with that gene74.

The example of diacylglycerol acyltransferase 1 (DGAT1) inhibition highlights the critical

role of understanding pleiotropy in drug development, particularly in the context of

pharmacogenomics. DGAT1, targeted as a potential treatment for type 2 diabetes

mellitus and obesity, came under scrutiny during a phase I trial75. The trial revealed that

AZD7687, a reversible and selective DGAT1 inhibitor, caused severe diarrhoea in more

than half of the participants, necessitating drug discontinuation and casting doubt on the

drug's viability for further development. This adverse effect aligns with subsequent

genetic findings where DGAT1 mutations were identified as a cause of severe diarrhoea

in a family of Ashkenazi Jewish descent76.

This scenario underscores the importance of genetic insights in predicting drug toxicity

and efficacy. Had the pleiotropic effects of DGAT1 been known earlier, the development

strategy for DGAT1 inhibitors might have been significantly altered, potentially saving

considerable time and resources75.

Beyond its relevance to treatment and intervention strategies, pleiotropy offers valuable

insights into the molecular functions of genes and the causal relationships between

traits. The case of cystic fibrosis illustrates how a gene known primarily for its role in

lung disease also influences reproductive organ development, revealing the CFTR

protein's shared role in both functions77. Similarly, the association between congenital

hypercholesterolemia and increased heart disease risk exemplifies how pleiotropy can

illuminate causal pathways, in this instance suggesting that lipid levels directly influence

heart disease risk77.

These examples highlight the critical role of pleiotropy in genomic medicine by

deepening our understanding of gene functions and disease mechanisms, influencing

therapeutic development, and evaluating the extensive effects of genome editing. As

genomic medicine progresses, acknowledging and incorporating the pleiotropic

characteristics of genes is vital for fully leveraging genetic research to enhance health
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outcomes. Utilizing tools such as phenome-wide association studies (PheWAS) is

essential for realizing the full potential of pleiotropy, as these studies provide

comprehensive insights into the wide-ranging impacts of genetic variants across the

phenome, shedding light on the complex roles genes play in health and disease.

PheWAS represents a crucial development in the field of genomic medicine, designed

to systematically investigate the association between genetic variants and a wide array

of phenotypes. This approach essentially reverses the direction of inquiry typical of

GWAS, which traditionally focuses on identifying genetic variants associated with a

single disease or trait. PheWAS, in contrast, starts with a known genetic variant and

explores its effects across multiple traits or diseases within the phenome—the complete

set of phenotypes expressed by an organism. The critical role of PheWAS in genomic

medicine cannot be overstated. By elucidating the pleiotropic effects of genetic variants,

PheWAS enables a comprehensive understanding of how a single gene can influence

multiple biological pathways and clinical outcomes. This holistic view is instrumental in

unraveling the complex genetic architecture underlying multifaceted diseases and traits,

providing insights that are pivotal for the development of targeted therapeutic

interventions and personalized medicine strategies14,78.

PheWAS also plays a vital role in identifying potential adverse effects of drug targets

early in the drug development process. By uncovering the full spectrum of phenotypic

expressions associated with genetic variants, PheWAS can help predict the likelihood of

off-target effects, thereby informing safer and more effective therapeutic approaches.

For instance, a study utilizing the FinnGen biobank identified a missense variant in the

TM6SF2 gene (p.Leu156Pro, rs187429064) that is inversely associated with statin

prescription rates, suggesting a protective effect against high cholesterol or

cardiovascular diseases. Conversely, the same variant showed a positive association

with insulin medication for diabetes and Type 2 Diabetes (T2D) diagnosis, highlighting a

complex risk profile that may influence therapeutic decisions and risk assessments in

the clinical setting11. This exemplifies how PheWAS can delineate the multifaceted

influence of genetic variants, potentially preempting the potential adverse effects of drug

targets. Moreover, PheWAS contributes to the refinement of disease classifications and
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diagnoses by revealing genetic links between seemingly unrelated conditions, fostering

a more integrated understanding of human health and disease15,16.

The advent of large-scale biobanks has enabled PheWAS to be conducted on an

unprecedented scale79. Biobanks such as the UK Biobank6 and FinnGen80 have

amassed comprehensive genetic and health-related datasets from vast numbers of

individuals, thereby providing the extensive data required for such wide-ranging

analyses. These resources have made it possible to explore the effects of genetic

variants across numerous phenotypes simultaneously, bringing to light intricate genetic

networks and their influence on health and disease. As genomic medicine continues to

evolve, the integration of PheWAS into research and clinical practice promises to

significantly enhance our ability to interpret the genetic determinants of health and

disease comprehensively. In doing so, PheWAS stands as a testament to the

importance of recognizing and accounting for the pleiotropic nature of genes,

harnessing the full potential of genetic research to improve human health outcomes.

Through the systematic exploration of gene-trait associations across the phenome,

PheWAS paves the way for novel discoveries and innovations in genomic medicine,

emphasizing the critical need to consider the multifaceted roles of genetic variants in

shaping human biology15,16.

1.3 PheWeb

The extensive benefits of GWAS and PheWAS, including the facilitation of

meta-analyses, replication studies, Mendelian Randomization (MR), Polygenic Risk

Scores (PRS), and the identification of pleiotropic effects, hinge on the efficient sharing

and analysis of vast arrays of summary statistics. Manual examination of thousands of

studies is impractical; therefore, there is a pressing need for a platform like PheWeb.

PheWeb18 is an easy-to-use web-based platform specifically designed to visualize,

navigate, and share the results of PheWAS alongside GWAS. By aggregating and

organizing vast amounts of genetic and phenotypic data, PheWeb enables researchers

to systematically explore the relationships between genetic variants and a wide range of

diseases and traits. Through an automated data processing pipeline, PheWeb

harmonizes association summary statistics, establishes trait relationships using genetic
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correlations, and annotates variants. Its interactive web interface offers detailed

visualizations, including genome-wide trait summaries, localized regional insights

(LocusZoom81), and comprehensive phenome-wide variant summaries. PheWeb

seamlessly connects with The NHGRI-EBI GWAS Catalog82, enhancing its informational

scope. By enabling URL-based sharing and potential collaborative annotation, PheWeb

facilitates accessibility, knowledge dissemination, and collaborative research in the

realm of genetic association studies. It emerges as a valuable tool for unravelling the

intricacies of human genetics, traits, and biology.

For biobanks, the absence of a tool like PheWeb represents a significant missed

opportunity. Without such a platform, the rich datasets housed within biobanks may

remain underutilized, as the complexity of navigating and analyzing this information can

be prohibitive for many researchers. This limitation can slow the pace of discovery and

hinder the translation of genetic research into clinical and therapeutic advancements.

Furthermore, the lack of an accessible, user-friendly platform for sharing genetic

findings may impede collaboration and the replication of results, critical components of

scientific progress. As a result, many biobanks around the world have developed a

PheWeb instance. Examples of PheWeb platforms tailored for biobanks around the

world include UK Biobank PheWeb83–85, TCGA PheWeb86, FinnGen PheWeb87, BioBank

Japan PheWeb88, CARTaGENE PheWeb89, COLCORONA PheWeb90, COLCOT

PheWeb91, CHARM PheWeb92, SardiNIA PheWeb93, KoGES PheWeb94 and The Qatar

Genome Program (QGP) PheWeb95.

PheWeb stands out for its unique ability to display both GWAS and PheWAS results

within a single, cohesive interface, making it distinct from other platforms like

Genebass96, GWAS Catalog82, PhenoScanner27, and AstraZeneca PheWAS Portal97.

This integration allows researchers to seamlessly explore and compare comprehensive

genetic analyses, providing a more holistic view of the data and enhancing the utility of

genomic research. Its user-friendly design ensures that even those without specialized

technical knowledge can easily navigate and interpret complex datasets, highlighting its

role as a superior tool in the genomic research community. Additionally, PheWeb's

open-source nature encourages ongoing development and customization, adapting to

the evolving needs of the genomic research community. Below is a walk-through
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demonstration of a PheWeb instance (UKBiobank PheWeb based on the Neale lab's

GWAS85):

To initiate a search on the PheWeb homepage, utilize the search function to explore

specific genes (such as APOB, FTO, TCF7L2), variants (via rsID or

chromosome:position based on the genome build), or traits/phenotypes. You can

access a comprehensive list of traits through the Phenotypes page.

From any section of the site, you can easily return to the homepage by clicking the

PheWeb icon located in the upper left corner. For a more dynamic exploration, select

the Random icon in the top menu to view a randomly chosen page, or choose Top Hits

to display a table of the most significant findings hosted on the PheWeb instance. The

About section provides detailed insights into the dataset and how the data was prepared

and analyzed. PheWeb presents data through three primary visual formats: Manhattan

plots, quantile-quantile (QQ) plots, and LocusZoom plots, alongside PheWAS plots.

Below, I illustrate the process by searching for the gene TCF7L2:

Fig.3

Homepage of PheWeb displaying the search function. The interface shows an

example search for the TCF7L2 gene,

Searching by gene highlights key associations related to the gene in tabular form,

accompanied by a LocusZoom plot that visualizes linkage disequilibrium across the

surrounding variant region. Selecting different table entries will adjust the LocusZoom

plot to reflect the chosen data.
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In my exploration of TCF7L2, the page displayed the selected table row, "Diabetes

diagnosed by doctor" with the corresponding LocusZoom plot depicted below:

Fig.4
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Detailed view of the PheWeb platform showcasing the search results for TCF7L2.

This page lists the phenotypes with the most significant associations for this locus,

with “Diabetes diagnosed by doctor” showing the top p-value.

Interactive elements are integrated into all plots. Hovering over variants within the

LocusZoom plot provides additional details about them. Clicking on a variant in the

LocusZoom plot will trigger a PheWAS view, demonstrating the variant's association

p-value across different phenotypes. In the PheWAS plot, upward-facing triangles

indicate a positive variant effect, downward-facing triangles a negative effect, and

circles denote variants with imprecise beta estimates (e.g., standard error includes

zero). Variants are colored based on biological grouping specified by the host.

After selecting a TCF7L2 variant (rs35198068) from the previously mentioned

screenshot, the following PheWAS view and a summary table were generated:
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Fig.5

PheWAS plot for variant rs35198068 shows its association with several phenotypes.

Upward triangles indicate a positive association between the variant and the

phenotype, while downward triangles denote a negative association. The table below

summarizes the statistical outcomes for each phenotype, including p-values.
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In the PheWAS plot, selecting a specific trait takes you to a Manhattan plot of the

selected trait. Below the plot, a table lists the most significant associations, and a QQ

plot is stratified by minor allele frequency bins and genomic control lambda, calculated

from various percentiles of the variants. From the PheWAS view, selecting

"Treatment/medication code: gliclazide" directs us to the trait’s Manhattan plot where

hovering over it provided more details. Selecting this variant from the Manhattan plot will

direct me to its regional LocusZoom plot. Scrolling further reveals the QQ plot

positioned beneath the table of prominent associations.
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Fig.6

40



Manhattan and QQ plots for “Treatment/medication code: gliclazide”. The top loci

table lists significant associations and their statistics.

Chapter 2: Materials and Methods

2.1 CLSA

For the purpose of this project, we will use the dataset provided by the Canadian

Longitudinal Study on Aging (CLSA)29. The Comprehensive Cohort of CLSA was

created to offer an opportunity to study the impact of genetic and environmental factors

on human disease as well as the aging process. Genome-wide genotyping was

performed on a total of 26,622 individuals from the CLSA Comprehensive cohort, which

included males and females aged 45 to 85 who were recruited between 2010 and 2015.

Genomic information from the CLSA Comprehensive cohort includes whole-genome

genotyping data for 794,409 markers and whole-genome imputed data for almost 308

million genetic variants. The TOPMed reference panel was utilized for genotype

imputation. Both genetic markers and samples were subjected to extensive quality

control metrics. Also, Copy number profiling was used to find sex chromosomal

abnormalities. 24,655 (92.6%) of the 26,622 genotyped participants were found to be of

European ancestry based on the analysis done by the CLSA team. These genomic data

are connected to the CLSA's longitudinally collected physical, lifestyle, medical,

economic, environmental, and psychosocial aspects. Potential drawbacks could be the

relatively poor genotyping coverage in individuals with non-European ancestry, which

can be significantly improved by employing an imputation reference panel with high

diversity. The CLSA is still ongoing overall. Participants in the present genomic

subcohort will continue to provide follow-up information, such as DNA methylation and

metabolomic data. Through the CLSA data access application process, this genetic

data resource is accessible upon request.

41



2.1.1 Phenotype data

CLSA represents a comprehensive initiative aimed at understanding the complex

factors underpinning aging through the collection of data from over 51,000 participants.

This longitudinal study has a dual approach to data collection, encompassing both the

Tracking and Comprehensive assessments, which are instrumental in capturing a wide

array of data points from a diverse participant pool at baseline. Our project is specifically

focused on analyzing the baseline data, which serves as the foundation for our GWAS

within the CLSA biobank PheWeb platform. Below is an overview of the data collection

process implemented by the CLSA team.

Tracking Assessment: This component of the CLSA involves data collection from more

than 21,000 participants via telephone interviews. These interviews are designed to

gather a broad spectrum of information, offering insights into various aspects of health,

lifestyle, and aging. The Tracking assessment facilitates the inclusion of participants

who may not be able to partake in more extensive in-person evaluations, thereby

ensuring a wider representation of the Canadian aging population.

Comprehensive Assessment: The remaining 30,000+ participants contribute data

through a more in-depth process that includes in-home interviews and visits to data

collection sites. This approach allows for the gathering of detailed information through a

combination of interviews, physical assessments, and neuropsychological tests. The

Comprehensive assessment is instrumental in collecting rich, multifaceted data that

spans biological, medical, psychological, social, lifestyle, and economic domains.

The baseline data collection for the CLSA, conducted between 2011 and 2015,

employed a variety of tools to ensure a comprehensive capture of participant

information:

Telephone Interviews: Conducted in two sessions, the initial 60-minute interview

covered a wide range of topics and was carried out from September 2011 to May 2014.
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A subsequent 30-minute follow-up interview was conducted from September 2013 to

December 2015 to update and expand on the initial data set.

In-Home, Face-to-Face Interviews: These 90-minute interviews were conducted from

May 2012 to May 2015, offering a personal approach to data collection. This method

enabled the collection of detailed information directly from participants in the comfort of

their homes.

Data Collection Site Visit Interviews: Participants also attended site visits that lasted

approximately 2.5 hours, conducted from May 2012 to May 2015. These visits included

comprehensive evaluations such as Contraindications, Neuropsychological Battery, and

Disease Symptoms assessments, providing a depth of data that complements the

information gathered through interviews.

In addition to these primary data collection methods, all participants were contacted by

telephone 18 months after their initial interview to complete the Maintaining Contact

Questionnaire (MCQ). This questionnaire included additional data collection to maintain

engagement with participants and update key information between the major

assessment waves.

2.1.2 Genotype data

The genotype data for CLSA participants was carefully collected and processed by the

CLSA team to ensure high-quality genetic information for subsequent analyses. The

DNA extraction and genotyping procedures were centralized at the McGill and Genome

Quebec Innovation Centre, located in Montreal, Canada. Participants' genotypes were

determined using the Affymetrix UK Biobank Axiom array, a high-density genotyping

platform.

The choice of the Affymetrix UK Biobank Axiom array for genotyping is noteworthy, as

this array was specifically crafted for the genotyping of approximately 450,000

individuals within the UK Biobank cohort. The array is well-regarded for its targeted

coverage of disease-associated variants, coding variants, and a robust selection of

43



single nucleotide polymorphisms (SNPs) for imputation, particularly in populations of

European descent. The latter is especially relevant given that over 90% of the

genotyped participants in the CLSA are of European ancestry. This targeted design

enables effective downstream imputation and increases the likelihood of discovering

meaningful genetic associations within this population.

The current data release from the CLSA encompasses genotype information for 26,622

participants, featuring 794,409 genetic markers directly genotyped from the array. In

addition to these genotyped markers, the dataset was enriched with approximately 308

million genetic variants through imputation using the TOPMed reference panel, further

enhancing the breadth of genetic data available for analysis. The TOPMed program,

known for its large and diverse reference panels, provides a valuable resource for

imputation, potentially improving the fine-mapping of genetic associations and

identification of causal variants.

The quality control (QC) measures applied to the genotype data were largely reflective

of the rigorous protocols established by the UK Biobank, ensuring consistency and

reliability in the dataset. These QC procedures included checks for marker and sample

quality, adherence to Hardy-Weinberg equilibrium, call rates, and other standard metrics

vital for the integrity of genetic studies. It is important to note that all genomic positions

reported in the data align with the GRCh37/hg19 human genome build. Furthermore,

the genotype dataset includes data for control samples that were used during the array

genotyping process. The inclusion of these controls is a standard practice that aids in

the calibration of the genotyping process and serves as an internal check to validate the

genotyping results. In summary, the genotype data for CLSA participants is carefully

curated and quality-controlled to serve as a solid foundation for uncovering genetic

underpinnings of health-related traits.

2.2 Ancestry Inference

2.2.1 PCA analysis

Principal Component Analysis (PCA) is a prevalent statistical technique in GWAS,

employed to manage the challenges posed by population stratification, which can
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substantially skew study outcomes. Population stratification involves variations in allele

frequencies across subpopulations within a broader group, typically arising from diverse

genetic backgrounds. Without adequate adjustment for these differences, erroneous

correlations may arise between genetic markers and the traits or diseases under

investigation, falsely suggesting genetic influences when they may merely reflect

underlying population differences47.

The process of ancestry inference within our GWAS for the CLSA biobank PheWeb

platform was executed through a series of computational steps, utilizing the in-house

HGDP_1KG Ancestry Inference pipeline98. This pipeline leverages the Human Genome

Diversity Project (HGDP)99 along with the 1000 Genomes project52 to infer the ancestry

of individuals. This methodological framework was designed to intersect variant call

format (VCF) files of the study data with the reference data, convert genotype data,

perform PCA, and ultimately, project study samples onto reference principal

components (PCs) before applying a Random Forest model for ancestry classification.

Initially, the pipeline intersects reference and study VCF files for each chromosome

using bcftools100 isec, ensuring that only common variants between the datasets were

retained for analysis. The bcftools100 concat command merged VCFs across all

chromosomes, creating comprehensive reference and study VCF files. These files were

then converted into genotype and site files using a custom vcf2geno101 tool, which

prepared the data for PCA.

PCA was conducted on the reference dataset using the LASER102,103 tool, with

parameters set to derive 20 principal components, capturing the major axes of genetic

variation across the human genome. This step is pivotal for ancestry inference, as it

establishes a multidimensional space in which the genetic diversity of the study samples

can be compared to known reference populations.

Study samples were then projected onto the reference principal component space. The

use of principal components to represent genetic variation allows for a nuanced analysis

that accounts for the complex structure of human genetic diversity.

The final step involved the application of a Random Forest model, trained on the

reference data, to predict the genetic ancestry of our study samples. We used the

train_test_split function from the sklearn library which allows for a random yet
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reproducible division of the reference data into test data and training data. We achieved

the test data prediction accuracy of 0.997 using 25% of our reference data as test data.

By setting the number of principal components to use, a minimum probability threshold

for assigning population labels, and a seed for reproducibility, the model classified each

study sample into a genetic ancestry group based on its genetic makeup. The Random

Forest approach was selected for its efficacy in handling high-dimensional data and its

ability to provide an estimate of classification uncertainty, which is crucial for accurate

ancestry inference.

The process of determining the optimal minimum probability threshold for assigning

population labels was methodically approached by testing various thresholds and

assessing the outliers compared to the reference clusters on the PC plots as well as

the concordance between our predicted European (EUR) ancestry assignments and

those classified as European (EUR) ancestry according to analysis done by the CLSA

team. We initiated a series of tests where different threshold values were incrementally

tested, ranging from 0.5 to 0.9 in steps of 0.1. For each threshold value tested, the

overlap was quantified by calculating the proportion of samples we classified as EUR

that were also classified as EUR by the CLSA team. This comparison provided a direct

measure of agreement between the two classification approaches, allowing us to

assess the sensitivity and specificity of our ancestry predictions in relation to an external

standard. The optimal balance between sensitivity and specificity was achieved at a

minimum probability threshold of 0.78 which happens to be the same threshold used by

the Genome Aggregation Database (gnomAD)104. This threshold demonstrated the

highest overlap with the CLSA team's EUR predictions. This threshold was therefore

selected as the standard for assigning population labels in our ancestry inference

analysis, ensuring that our EUR ancestry classifications are both accurate and

consistent with established classifications.

Lastly, to ensure the quality and accuracy of our results from the pipeline, we employed

a quality control approach focusing on three key measures: the count of nonmissing loci

utilized in the analysis, the Procrustes similarity score reflecting the   accuracy of the

placement of each study individual into the reference ancestry space, and the Z score

for each individual. The Z score is particularly crucial as it indicates whether an
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individual's ancestry is adequately represented in the reference panel, ensuring the

reliability of our ancestry inference102. Z score could be especially helpful when a

European reference panel is wrongly used for samples of non-European descendant102.

The Procrustes similarity scores showed an exceptionally high level of agreement

between individual PCA maps and the reference panel, with a minimum score of

0.999933. For the nonmissing loci used in the analysis, the count was substantial

across all individuals. The minimum number of loci used was 131,639, the maximum

was 138,994. The distribution of Z scores, which measure how well each individual's

ancestry is represented in the reference panel, indicated some issues. While the mean

Z score was 0.1101, the range from -17.7813 to 23.9493 was concerning, as it suggests

some individuals' ancestries may not be well-represented by the reference panel used.

We then proceeded to exclude samples with an absolute Z score greater than 5. This

filtering step led to the removal of 186 samples. With the minimum probability threshold

of 0.78, we have:

Ancestry Label Count

EUR 24,505

AFR 146

AMR 98

CSA 267

EAS 296

MID 65

Undefined 1,235

Total 26,622

Table 2.
CLSA inferred genetic ancestry count

The pie chart below depicts that the majority of our dataset is labeled as EUR.
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Fig.7

Pie chart depicting the ancestry distribution within the CLSA dataset post-application

of the ancestry inference pipeline. The majority, 93%, is classified as having European

genetic ancestry (EUR).

Detailed PC plots and analyses for the output of the ancestry inference pipeline can be

found in the Supplementary Figures document. Below, we show the tri-panel scatter

plots representing principal component analysis (PCA) of individuals from the CLSA

labeled as having European genetic ancestry (EUR) with a minimum probability of 0.78,

overlaid on a reference panel consisting of the Human Genome Diversity Project

(HGDP) and 1000 Genomes (1KG).
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Fig.8

Tri-panel scatter plots representing principal component analysis (PCA) of individuals

from the CLSA labeled as having European genetic ancestry (EUR) with a minimum

probability of 0.78. These CLSA samples are overlaid on a reference panel consisting

of Human Genome Diversity Project (HGDP) and 1000 Genomes (1KG). Each

colored cluster represents a distinct ancestry group from the reference panel, while

the black cluster highlights the CLSA samples labeled as European, providing insight
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into their genetic positioning relative to global genetic diversity.

2.2.2 How CLSA handled population structure

In refining our approach to ancestry inference within the GWAS framework for the CLSA

biobank PheWeb platform, we aimed to improve the differentiation of subpopulations by

utilizing larger and more diverse reference panels. The CLSA team's methodology, as

detailed in their Genome-wide Genetic Data Release (version 3), primarily relied on

PCA analysis and self-reported ancestry using the 1000 Genomes Project data. This

section will compare our approach with the CLSA's strategy to highlight the differences.

The CLSA team started their population structure analysis by extracting Affymetrix UK

Biobank Axiom array markers present within the 1000 Genomes dataset, adhering to

stringent criteria including a minor allele frequency (MAF) greater than 0.05,

Hardy-Weinberg equilibrium (HWE) p-value exceeding 10-6, and the exclusion of

ambiguous strand markers (such as A/T or C/G), among others. Following these

criteria, they performed linkage disequilibrium pruning to retain markers that ensured

genetic independence and clarity. This process culminated in a set of 87,848 markers,

which were then used to compute principal component loadings on the 2504 individuals

from the 1000 Genomes Phase 3, subsequently projecting the CLSA cohort onto these

principal components.

The CLSA team then utilized PCA analysis to cluster the top four principal components

into six distinct clusters. They identified a predominant cluster, referred to as "cluster 4",

which closely aligned with European ancestry populations from the 1000 Genomes

project and contained the majority of individuals who self-reported European ancestry.

While this methodological approach provided a baseline for understanding population

structure within the CLSA cohort, it presented limitations by relying on a single

reference dataset and quasi-subjective cluster-based analysis for ancestry inference.

Our methodology addresses these limitations by incorporating both the 1000 Genomes

Project and the Human Genome Diversity Project (HGDP) data for reference,

expanding the genetic diversity scope accessible for comparison. By using two

reference panels, we achieved better differentiation of subpopulations. Furthermore,

50



instead of quasi-subjective clustering, we employed a Random Forest model for

ancestry classification, leveraging the principal component coordinates of study

samples alongside pre-defined models of reference population ancestries. This model

was trained and validated using the combined reference datasets.

We used the CLSA ancestry labels as a sanity check for our Random Forest approach,

ensuring reliability. By comparing our EUR predictions with CLSA classifications and

testing various thresholds, we found that a 0.78 threshold provided the best accuracy.

Additionally, CLSA labels were not used to create the plot; we only used reference

panel labels. Our analysis did not incorporate the CLSA ancestry analysis directly. Our

method offered some advantages in certain aspects, particularly in differentiating

subpopulations due to the larger and more diverse reference panels.

2.3 Phenotype data analysis

In this project, we focused solely on binary phenotypes to ensure the feasibility of

completion within the MSc timeframe, as analyzing continuous traits would have

required significantly more time. Our collaborators at Université de Montréal (UdeM) in

the Gagliano Taliun Lab handled the analysis of continuous traits, ensuring that the final

version of PheWeb contains both binary and continuous traits.

We identified 350 binary phenotypes for our study, with the primary aim of selecting

binary phenotypes that not only possess intrinsic relevance for GWAS but also exhibit a

potential for yielding statistically powerful results. Given the inherently subjective nature

of determining "GWAS relevance" this criterion was deferred to the concluding stage of

our analysis, thereby allowing for a more systematic and inclusive preliminary screening

of potential binary phenotypes.

We initially categorized the variables into distinct domains: Identity, Socioeconomic,

Behavioral, Health, Measurements, Medications, and Diet. These labels are used in the

PheWAS plots available in the first version of the CLSA PheWeb.
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Fig.9

Pie chart showing the distribution of all variable categories in the dataset, with the

largest segment representing health-related variables, followed by behavioral factors.

Fig.10

Pie chart showing the distribution of variable categories within binary phenotypes, with

the largest segment representing health-related variables, followed by behavioral

factors.
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We followed the steps below to systematically select our binary phenotypes for running

GWAS.

Fig.11

Flowchart depicting the steps implemented to select phenotypes for conducting

GWAS. numbers in the clouds represent the number of phenotypes at that stage.

From 3,839 baseline variables, we isolated 1,155 binary variables which includes

variables that solely contained values of 0 and 1 (along with "Don't Know" (DK) and

"Refused" (RF) responses or missing values) and variables exclusively comprising

values of 1 and 2 (along with "Don't Know" (DK) and "Refused" (RF) responses or

missing values).

Building upon the initial step of identifying binary variables within the baseline data of

CLSA, the second step in our phenotype data analysis focused on selecting those

binary variables that also met a minimum case count of 1,000. This threshold was

established based on power calculations derived from the University of Michigan

Genetic Association Study (GAS) Power Calculator105, ensuring that our selected
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phenotypes would yield studies with sufficient statistical power to detect true genetic

associations.

In the context of GWAS, statistical power refers to the likelihood of correctly identifying a

significant association between a genetic variant and a phenotypic trait. This concept is

crucial for planning and interpreting GWAS because it influences the certainty of genetic

association discoveries. Factors affecting statistical power include the size of the

sample, the impact magnitude of the genetic variant, its allele frequency, and the

chosen significance level for testing hypotheses. The significance level, usually set at

0.05 or lower, manages the Type I error risk— the chance of incorrectly reporting a

positive association—considering the extensive number of tests performed in

GWAS2,106.

Increasing the sample size enhances the ability to detect smaller genetic effects, and

greater allele frequencies improve the likelihood of identifying genetic influences due to

greater variation within the population107. Additionally, the effect size, indicating the

extent a variant impacts a trait, is positively correlated with statistical power; thus, larger

effect sizes allow for the achievement of equivalent power with fewer subjects108,109.
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Fig.12

This figure illustrates the relationship between the number of cases and statistical

power in genome-wide association studies, highlighting the significant increase in

power with a minimum of 1,000 cases. The inputs on the left detail the parameters

used in the University of Michigan's Genetic Association Study (GAS) Power

Calculator, while the graph on the right shows the power as case numbers rise, with

the arrow indicating the power of 0.56 with 1000 cases.

Considering these principles, our selection of binary variables with at least 1,000 cases

is designed to optimize the statistical power within the practical constraints of the CLSA

dataset. The post-GWAS quality control processes are similarly informed by these

concepts, ensuring that our findings are reliable. To inform our decision for the case

count threshold, we considered two scenarios using the GAS Power Calculator, varying

parameters such as genotype relative risk and disease allele frequency.

From the screenshots provided, which illustrate the inputs and results from the GAS

Power Calculator, we can observe that with a sample size of 12,500 cases (the total

sample size is about 25,000 people) and an equal number of controls, under the

conditions specified, the statistical power of our GWAS ranged from approximately 0.56

to 0.96. This wide range of power underscores the importance of selecting phenotypes

with a sufficient number of cases, as achieving high statistical power is essential for the

reliability of GWAS findings. By setting the minimum case count at 1,000, we aimed to

strike a balance between inclusivity of various phenotypes and the assurance of robust

statistical power.
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Fig.13

This figure illustrates the relationship between the number of cases and statistical

power in genome-wide association studies, highlighting the significant increase in

power with a minimum of 1,000 cases. The inputs on the left detail the parameters

used in the University of Michigan's Genetic Association Study (GAS) Power

Calculator, while the graph on the right shows the power as case numbers rise, with

the arrow indicating the power of 0.96 with 1000 cases.

Following the identification of binary variables with at least 1,000 cases, we

encountered a significant challenge: a substantial number of these variables were

marred by a high incidence of missing data, denoted as 'NA' (not available). This

observation prompted a thorough investigation into the structure of the questionnaire

from which the data originated, revealing that many of the variables with excessive

missing data were, in fact, nested questions contingent on the response to a preceding

parent question.

Nested questions are follow-up items presented to participants only if they provide a

specific response to an earlier, related question. In the context of the CLSA

questionnaire, for example, all participants were required to answer general questions
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such as their sex and age. However, more specific queries such as detailed questions

about cancer diagnoses, were conditioned upon a participant affirmatively

acknowledging a history of cancer. Those who reported not having cancer would not

see or respond to the subsequent cancer-specific questions, thereby resulting in 'NA'

entries in the dataset for these individuals.

Recognizing the need for accuracy and completeness in our GWAS dataset, we

embarked on a labor-intensive task: manually reviewing each variable to discern its

relationship with its parent question. By examining the CLSA questionnaire, we

determined the context in which 'NA' responses were actually indicative of a participant

being a control for the nested question. This meticulous process allowed us to recode

'NA' values to control status where appropriate, thereby significantly reducing the

number of missing values and improving the dataset's integrity.

An illustrative example of this process can be seen in the variable

"SMK_TYPEOT_PI_COM", which represents whether an individual has ever used

tobacco pipes. Originally, this variable had 22,966 'NA' responses. However, upon

manual recoding—whereby we identified individuals who should be classified as

controls based on their answers to the parent smoking question—the number of missing

values was reduced to just 3. The enormity of this undertaking cannot be overstated.

Each variable required individual attention, as the conditions underpinning the

parent-nested question relationship varied widely, precluding the possibility of a

one-size-fits-all automation solution. The commitment to this process was significant,

demanding considerable time to ensure that each variable was accurately recoded.

In the final step, we excluded variables irrelevant to genetic association studies. GWAS

relevance, though subjective, required each phenotype to have a plausible link to

genetic variation. We removed non-informative variables, such as procedural consents

and administrative data unrelated to genetics. Additionally, we excluded indecisive or

refusing response options like 'Don't know' or 'Refused to answer' because they do not

contribute to meaningful genetic data. After this final review, we distilled the list to 350

binary phenotypes as we added two phenotypes for type 1 and type 2 diabetes based

on responses to the diabetes question.
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2.4 Liftover

The CLSA genotype array data was originally generated in GRCh37. Although the

CLSA team used TOPMed for imputation, which automatically performs liftover to

GRCh38, we conducted the liftover ourselves to ensure compatibility between the steps

of the Regenie algorithm. Specifically, the first step of Regenie relies on common

independent variants selected from the genotyping array data. Since all the imputed

variants used in the second step of the algorithm are in GRCh38, it was necessary to

have our genotyping array data in GRCh38 as well. Therefore, we used the UCSC

Genome Browser's LiftOver tool to convert the genomic coordinates of the CLSA

genotype array data from GRCh37/hg19 to GRCh38/hg38. It is important to note that

the final dataset used for the PheWeb platform is based on the TOPMed imputation and

is in the GRCh38 reference genome build.

Liftover is a computational process used to translate genomic coordinates from one

human reference genome build to another. Human genome builds are essentially

different versions of the human genome sequence. Genome builds differ due to

advancements in sequencing technologies, deeper insights into genomic variations, and

more precise mapping of genetic loci, leading to updates in nucleotide numbering, new

sequence inclusions, and gene placements. Liftover procedures ensure continuity and

comparability across different builds, crucial as newer assemblies become standard.

Before initiating the liftover process, we performed stringent QC checks at both the

marker and sample levels. These steps are crucial to ensure the integrity of the genetic

data before and after the liftover, as the coordinate transformation could potentially

exacerbate any pre-existing errors or quality issues. Our marker-based QC involved the

exclusion of genetic variants that exhibited discrepancies or failed quality tests in at

least one batch of data. This included markers that showed frequency discordance

across five genotyping batches, those that failed Hardy-Weinberg equilibrium tests,

those with control genotype discordance, and markers that failed sex genotype

frequency discordance tests. In addition, we filtered out insertion or deletion

polymorphisms (indel), as these variants are not supported by liftover tools. These filters

resulted in the removal of 131,892 variants, substantially reducing the potential for data

inconsistencies post-liftover. For sample-based QC, we identified and excluded samples
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with discrepancies between self-reported sex and chromosomal sex, as well as samples

with missing sex data. We also excluded samples flagged for extreme heterozygosity or

genotype missingness, which could indicate sample contamination or poor data quality.

Following these criteria, we excluded a total of 63 samples.

Subsequently, the filtered dataset was confirmed to contain 667,335 variants and

26,563 individuals, all of which passed our stringent QC filters. This dataset was then

poised for the liftover to hg38, which is the latest human reference genome assembly

offering the most up-to-date and precise genomic coordinate system. This step is

critical, especially considering that the CLSA imputation files were in hg38, and

consistency in genomic builds is essential for accurate genomic analyses and

subsequent interpretation of GWAS results.

2.5 Testing for associations

Linear mixed models (LMMs) have become a cornerstone in the analysis of complex

traits within GWAS, primarily due to their ability to effectively control for population

stratification and relatedness among samples110. LMMs introduce both fixed and random

effects to account for the genetic relationships between individuals, allowing for the

accurate identification of genetic variants associated with traits while minimizing false

positives.

The application of LMMs in GWAS is particularly advantageous because it enables

researchers to correct for the subtle genetic structure within populations that can

confound association signals. By incorporating random effects, LMMs can adjust for the

kinship matrix, which represents the genetic similarity between pairs of individuals, thus

controlling for both known and cryptic relatedness110. This aspect is crucial for studies

involving samples from diverse backgrounds or family-based cohorts where relatedness

can introduce bias.

Moreover, LMMs are utilized in GWAS to enhance the power of detecting true genetic

associations under a variety of genetic architectures. They are especially beneficial for

traits influenced by many small-effect loci distributed across the genome. The flexibility

of LMMs to model multiple layers of random effects makes them suitable for dissecting
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the genetic variance attributed to both polygenic effects and specific genetic

markers110,111.

The mathematical framework of LMMs can be described as follows (the model below

has the same covariates as the ones that were used in this study):𝑦 ∼ β0 + β1𝑥 + β2𝑧𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑛𝑔 𝑏𝑎𝑡𝑐ℎ + β3𝑧𝑠𝑒𝑥 + β4𝑧𝑎𝑔𝑒 + β5𝑧𝑎𝑔𝑒2 + β6𝑧𝑃𝐶1 +  ...  + β25𝑧𝑃𝐶20 + 𝑔 + ε  (1)
The continuous phenotype (𝑦) is modeled as a combination of several components: the

fixed effects of genetic variants and covariates, the random polygenic effects from the

entire genome, and random non-genetic residual effects. The fixed effects typically

include the intercept ( , the effect of the genetic variant ( under investigation, andβ0) β1)
other known covariates ( such as age, sex, and principal components thatβ2, β3,  ...  ,  β25)
account for population structure. The polygenic effect ( ) captures the random effect of𝑔
the entire genome, reflecting the contribution of multiple genetic factors to the

phenotype. The residual effect ( ) includes random environmental and otherε
non-genetic factors. Note that, as mentioned earlier in the background section, logistic

regression is used for binary phenotypes by employing a logit link function. So the left

hand side of equation (1) becomes rather than .𝑙𝑜𝑔𝑖𝑡(𝑦) 𝑦
The regression framework employed in GWAS is predicated on modeling the phenotype

as a function of individual genotypes across a multitude of genetic markers. In its

essence, the linear regression model applied in GWAS can be delineated as follows112:𝑦𝑖 = β0 + 𝑘=1
𝑀∑ β𝑘𝑥𝑖𝑘 + ε𝑖 (2)

In this model, which can be expanded to account for additional confounding factors like

in equation (1) by replacing with a matrix that includes columns for each confoundingβ0
variable, signifies the observed phenotype for the individual, represents the𝑦𝑖 𝑖𝑡ℎ β0
intercept across the population , embodies the effect size of the genetic marker,β𝑘 𝑘𝑡ℎ 𝑥𝑖𝑘
denotes the minor allele count at the locus for individual and is the residual error𝑘𝑡ℎ 𝑖 ε𝑖
term, which is assumed to follow a normal distribution with a mean of zero and a

variance . The goal within this framework is to identify the genetic markers for whichσ𝑒2 𝑘
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the effect size significantly deviates from zero, indicating an association with theβ𝑘
phenotype in question.

However, the classic linear model proves insufficient for GWAS due to the inherent

polygenic nature of complex traits, which entails a multitude of genetic markers exerting

small, cumulative effects. Consequently, an error term is incorporated to reflect theseη𝑘
polygenic effects:

→η𝑘 =  𝑠≠𝑘∑ β𝑠𝑘𝑠 + ε  (3) 𝑦 = β0 + β𝑘𝑥𝑘 + η𝑘 (4)
In this improved model, the error term for each marker aggregates the effects of allη𝑘 𝑘
other markers and the residual error , thereby encapsulating the collective influence𝑠 ε
of the polygenic structure.

In practice, the estimation of assumes a level of independence and identicalη𝑘
distribution (i.i.d) that may not hold due to linkage disequilibrium—correlations between

genetic markers—and potential stratification within the population. To mitigate this, the

kinship matrix is estimated from genome-wide genotype data, allowing for the use of𝐾
variance component techniques in LMMs to partition the phenotypic variance into

genetic and environmental components effectively.

With dense genome-wide genotype data, the relatedness among individuals can be

estimated without detailed genealogical information using which is the genetic𝐾
relatedness matrix (GRM). This allows for a variance decomposition approach like:

→𝑉𝑎𝑟(𝑦) = σ𝑔2𝐾 + σ𝑒2𝐼  (5) 𝑉𝑎𝑟(η𝑘) = σ𝑔−𝑘2 𝐾 + σ𝑒2𝐼  (6)
Where is the genetic variance, is the environmental variance and is theσ𝑔2 σ𝑒2 σ𝑔−𝑘2
genetic variance without SNV . To use equation (4) to model the effect of individual𝑘
SNPs, the genetic variance and environmental variance must be estimated forσ𝑔−𝑘2 σ𝑒2
each SNV which can be computationally demanding. However, under the assumption

that the contribution of each SNV to the total phenotypic variance is negligible i.e.

, we can simplify the model by estimating these variances only once, therebyσ𝑔−𝑘2 = σ𝑔2
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computing the GRM from genetic data and using it to account for the random effects𝐾
in the mixed model112.

Efficient Mixed-Model Association eXpedited (EMMAX)112 streamlines this process by

first calculating GRM from the genotype data, then estimating and from equation𝐾 σ𝑔2 σ𝑒2
(5) using Efficient Mixed-Model Association (EMMA)113. Lastly, it uses a generalized

linear model to test the hypothesis for each SNV individually.𝐻0: β𝑘 = 0 𝑘
To avoid proximal contamination, which arises when the variant under test is also

factored into the calculation of the polygenic effect i.e. SNV in , we can carry𝑘 σ𝑔−𝑘2 = σ𝑔2
out the calculations using the leave-one-chromosome-out (LOCO) approach110,114.

LOCO approach excludes the chromosome containing the test variant during the

estimation of the genetic effect to mitigate proximal contamination. Consequently, for

each phenotype assessed, 24 separate genetic effect estimations are produced, each

corresponding to an analysis where a specific chromosome has been excluded. This

ensures that the integrity of the association results is maintained as proximal

contamination can lead to false negatives, where true associations are overlooked.

As a way to speed up the process, parallelization is often implemented to increase

computational efficiency. However, the initial step of the LMM-based methods, which

involves fitting the equation (7) below, presents a computational bottleneck. This step is

crucial as it sets the foundation for subsequent analyses and must be executed with the

entire dataset to maintain accuracy.𝑦 ∼ β0 + β2𝑧𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑛𝑔 𝑏𝑎𝑡𝑐ℎ + β3𝑧𝑠𝑒𝑥 + β4𝑧𝑎𝑔𝑒 + β5𝑧𝑎𝑔𝑒2 + β6𝑧𝑃𝐶1 +  ...  + β25𝑧𝑃𝐶20 + 𝑔 + ε (7)
Once equation (7) is fitted, the subsequent step involves testing individual genetic

variants across the genome for association with the phenotype. This step can be

parallelized effectively across multiple processing units. For instance, the genetic data

on a single chromosome can be divided into sections and distributed across different

CPUs, enabling simultaneous computation. Each section tests the effect of variants

within its range where is the residual error term from equation (7), reducingε ∼ β1𝑥 ε
the overall time required for this phase of GWAS. Despite this, the inherent complexities

of step 1 mean that it remains a limiting factor in the overall speed of the LMM-based
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GWAS analysis pipeline. Fortunately, a new machine-learning method called Regenie115

was recently proposed that allows distributed computing in step 1 enabling large scale

GWAS and PheWAS across many phenotypes simultaneously.

2.5.1 Regenie

Regenie is a software designed for large-scale GWAS and quantitative trait analysis. It

is particularly optimized for the analysis of large datasets, such as those generated by

biobank-scale cohorts, which can contain hundreds of thousands of individuals. The

core strength of Regenie lies in its ability to efficiently handle such massive datasets

while minimizing memory usage and computational time without sacrificing accuracy115.

Regenie uses a stepwise fitting approach that consists of two main stages. Here's an

overview of its underlying algorithm and how it works:

The first step of Regenie's algorithm , as illustrated in figure below, involves partitioning

the total number of markers (M) into blocks containing B consecutive markers each. For

each block, a ridge regression analysis is conducted using J shrinkage parameters,

effectively selecting markers across all blocks. Subsequently, these selected𝐽 × (𝑀/𝐵)
markers undergo another round of ridge regression, this time incorporating all

markers together. To optimize the selection of predictive markers,𝐽 × (𝑀/𝐵)
cross-validation (specifically, 5-fold CV) is employed, determining the optimal subset of

markers to be utilized. This step is crucial for enhancing the predictive accuracy of the

model. Additionally, the algorithm performs Leave-One-Chromosome-Out (LOCO)

predictions for each phenotype across 23 chromosome sets (chromosomes 1-22 and

X), excluding one chromosome at a time to account for proximal contamination in the

phenotype predictions.
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Fig.14

Schematic representation of the two-step Regenie algorithm used in genome-wide

association studies.

In the second step, Regenie focuses on the association testing between phenotypes

and genetic markers. Initially, covariates are regressed out of both the phenotypes and

the genetic markers to control for potential confounding variables. The phenotypes are

then adjusted by removing the LOCO predictions derived from the first step, ensuring

that the true associations are not overlooked. Linear regression is applied to assess the

association between the residualized phenotypes and each genetic marker, allowing for

the precise evaluation of a variant's effect on the phenotype.𝑦 −  𝐿𝑂𝐶𝑂 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =  β0 + β2𝑧𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑛𝑔 𝑏𝑎𝑡𝑐ℎ +  ...  + β5𝑧𝑎𝑔𝑒2 + β6𝑧𝑃𝐶1 +  ...  + β25𝑧𝑃𝐶20 + 𝑅  (8)𝑅 =  β 1𝑥 + ϵ  (9)
What sets Regenie apart from other GWAS software tools, such as fastGWA or

BOLT-LMM, is its incorporation of ridge regression to estimate the genetic component

This approach is particularly effective for fitting the null model, which includes the𝑔.
polygenic background effect on a phenotype, thus allowing for a robust control of

confounding factors like population stratification and relatedness. Unlike traditional LMM

methods, which can become computationally infeasible with large datasets, Regenie is

64



optimized for efficiency, handling both step 1 and step 2 with scalability in mind. This

two-step procedure dramatically reduces computation time without compromising

accuracy, especially beneficial when analyzing biobank-scale datasets that contain

hundreds of thousands of individuals. Regenie's application of ridge regression also

aids in reducing the winner's curse—a common problem in GWAS where effect sizes

are often overestimated due to the statistical noise of small sample sizes. As of the

writing of this thesis, Regenie has been cited over 500 times and utilized by prominent

biobanks, including FinnGen80, for conducting GWAS.

2.5.1.1 Covariates

To construct the covariates file necessary for our GWAS, we assembled key

demographic and technical variables likely to influence the genetic association

results116. The covariate file included the following elements:

Sex: A binary indicator variable representing the biological sex of each participant,

crucial for adjusting the analysis due to potential sex-specific genetic effects.

Age: This continuous variable reflects the age of participants at the time of the genetic

data collection. Age is a significant factor in many genetic studies, as the expression of

genetic traits can vary with age.

Age Squared: To capture the non-linear effects of age, we included the squared term of

the age variable. This allows for the adjustment of the model for the curvature effect that

age might have on the phenotype expression.

Genotyping Batch Number: Since the genotyping was conducted in five separate

batches, each containing approximately 5,000 samples, a categorical variable indicating

the batch number was included to adjust for potential batch effects. Batch effects can

arise due to technical variability and can confound the association results if not properly

accounted for.

Principal Components (PC) 1-20: The first 20 principal components were included to

adjust for population stratification. These principal components are derived from the

genetic data and represent major axes of genetic variation across the sampled

individuals. Adjusting for these components helps to control for the confounding effects

of ancestry, reducing the likelihood of spurious associations due to population structure.
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By incorporating these covariates into our analysis, we aim to control for various

confounding factors that could otherwise bias our results.

2.5.1.2 Step 1 of Regenie

To prepare our genotype data for the Regenie step 1 analysis, a thorough QC and

preparation pipeline was implemented. The initial step involved lifting over our genotype

data to the latest human reference genome build (GRCh38/hg38). We then selected

individuals of European geneitc ancestry based on our ancestry inference pipeline

results to avoid biases due to population stratification for our GWAS.

The QC pipeline was orchestrated to handle VCF files by chromosome, applying

rigorous filters. The steps included merging regions of low complexity117 with those

exhibiting high linkage disequilibrium118, to generate a comprehensive list of variants to

be excluded from the analysis. In parallel, the hapmap resource was employed to

identify a subset of markers for inclusion, utilizing bedtools to refine our selection.

The key parameters for variant filtering were set as follows: a minor allele frequency

(MAF) threshold of 1%, a genotype missingness threshold per variant of 1%, and a strict

Hardy-Weinberg equilibrium (HWE) p-value threshold of Additionally, an10−15.
independent set of SNPs was determined using a window size of 1,000 kilobases, a

step size of 100, and an threshold of 0.9 to ensure linkage equilibrium. Upon𝑟2
completing the filtering steps, we merged the chromosome-specific files into a single

dataset. This dataset was converted into a PGEN file format, which is optimal for

processing with Regenie. This rigorous QC procedure ensured that only high-quality,

common, independent SNPs were carried forward into the step 1 of Regenie.

2.5.1.3 Step 2 of Regenie

For the second step of Regenie, our GWAS analysis employed the imputed variant data

provided by the CLSA team. This dataset includes approximately 308 million genetic

variants that were fed to Regenie without further quality control to facilitate the

comprehensive exploration of genetic associations across a wide array of traits.

The imputation process, detailed by the CLSA team in their Genome-wide Genetic Data

Release (version 3), began with 26,622 participants who had passed rigorous quality

control measures, using 716,347 markers that met stringent criteria, including SNP-wise
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missingness below 5% and a minor allele frequency greater than 0.0001. These

markers were adjusted to ensure alignment with the human genome GRCh37 reference

sequence using the bcftools100 +fixref plugin, which ultimately pared down the markers

to 653,729 for imputation.

The phasing and imputation were performed at the University of Michigan Imputation

Service119 using the TOPMed reference panel version r2, which includes 97,256

reference samples covering 308,107,085 genetic markers. Both autosomal and X

chromosome variants were included, with the imputation executed in two separate

batches of CLSA samples. The phased and imputed data from these batches were then

merged into a unified dataset. In this context, Step 2 of Regenie in our project leveraged

this extensively imputed dataset, allowing for a broad and inclusive analysis of potential

genetic associations within one of Canada's largest genetic studies. This approach

facilitates a deep exploration of the genetic architecture of numerous traits, enhancing

our ability to identify genetic associations across a diverse range of phenotypes.

2.5.1.3.1 Chromosome X Imputation

We noticed that the initial imputation done by the CLSA team covered all chromosomes

but omitted variants in the pseudoautosomal regions (PAR1 and PAR2) of chromosome

X. To address this gap, we proceeded to re-impute chromosome X, using the TOPMed

Imputation Server43,55,120, which is based on the Minimac4 algorithm121, with the

reference panel TOPMed Freeze 2 on the hg38 build. We selected "all" for the

population parameter to capture a broad genetic diversity and employed Eagle122 for

phasing, enhancing the accuracy of our imputation in light of chromosome X's unique

challenges, including male hemizygosity50. This targeted re-imputation effort ensures

our dataset now includes comprehensive genetic information for chromosome X,

enriching our analysis with the inclusion of the significant PAR1 and PAR2 regions.

Due to the TOPMed Imputation Server's sample size limit of 25,000, we split our CLSA

dataset into two batches of 13,313 individuals each for imputation. To consolidate the

results, we used an algorithm designed to accurately merge the two output files. This

algorithm calculated the combined allele frequency (p) by averaging the haploid dosage

scores (HDS) across all samples for each variant. It then recomputed the imputation
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quality score (Rsq) using the formula ensuring a precise measure of𝑅𝑠𝑞 =  𝑉𝑎𝑟(𝐻𝐷𝑆)𝑝(1−𝑝)
imputation accuracy for the merged dataset.

The final imputation output included:

● 375,907 variants in PAR1

● 15,331,044 non-PAR variants

● 39,630 variants in PAR2

Let’s use the example below to illustrate how the algorithm works.

Suppose we have two batches of imputed data for a single variant on chromosome X,

with the following HDS for a set of individuals with no overlap between the two batches

(as was the case with our analysis):

Batch 1 (4 individuals): HDS = [0, 0.2, 0.8, 1]

Batch 2 (4 individuals): HDS = [0.1, 0.9, 1, 0]

First, we calculate the combined allele frequency (p) as the average HDS across both

batches:

𝑝 =  0 + 0.2 + 0.8 + 1 + 0.1 + 0.9 + 1 + 08 =  0. 5
To recompute Rsq we first need the variance of the HDS values. Given our HDS:𝐻𝐷𝑆 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = [0, 0. 2, 0. 8, 1, 0. 1, 0. 9, 1, 0]
The variance of these values can be calculated as:

𝑉𝑎𝑟(𝐻𝐷𝑆) =  σ2 = Σ(𝑥𝑖−µ)2𝑁
Where are the HDS values, is the mean (p=0.5) and N is the number of𝑥𝑖 µ
observations (8). Hence, 𝑉𝑎𝑟(𝐻𝐷𝑆) =  0. 1875
Then, recomputing Rsq using the formula:
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𝑅𝑠𝑞 = 𝑉𝑎𝑟(𝐻𝐷𝑆)𝑝(1−𝑝) = 0.18750.5(1−0.5) =  0. 75
Chapter 3: Results

3.1 GWAS

Our GWAS examined 350 binary phenotypes, resulting in 7,612 significant associations

across 490 genetic loci. The genomic inflation factor (GC lambda) averaged 0.987025,

with a range from 0.95 to 1.09, indicating well-calibrated test statistics overall. Among

these findings, the top 10 hits span a variety of health-related phenotypes, highlighting

key genetic variants linked to specific conditions:

1. Macular degeneration was most strongly associated with a variant at

1:196,697,663 A / C (rs1089033), near the CFH gene, showing a P-value of

1.1⨉10-23 and a minor allele frequency (MAF) of 0.38.

2. Type 2 diabetes showed a significant link with 10:113,022,822 G / GCT

(rs10659211) near TCF7L2, with a P-value of 4.0⨉10-18 and a MAF of 0.30.

3. Condition of borderline diabetes or high blood sugar was associated with

10:112,998,590 C / T (rs7903146) near TCF7L2, showing a P-value of 4.5⨉10-18

and a MAF of 0.29.

4. Under-active thyroid gland had a notable variant at 9:97,776,188 A / G

(rs7028661) near FOXE1, with a P-value of 6.4⨉10-18 and a MAF of 0.34.

5. Type 1 diabetes was linked to 6:32,658,661 A / T (rs9273367) near HLA-DQB1,

with a P-value of 5.6⨉10-17 and a MAF of 0.28.

6. Another locus for macular degeneration was identified at 10:122,459,759 C / G

(rs3793917) near HTRA1, with a P-value of 3.6⨉10-14 and a MAF of 0.21.

7. An additional variant for under-active thyroid gland was found at 1:113,834,946 A

/ G (rs2476601) near PTPN22, with a P-value of 3.7⨉10-13 and a MAF of 0.10.

8. High blood pressure or hypertension was associated with 4:80,243,569 C / T

(rs1458038) near FGF5, with a P-value of 7.1⨉10-13 and a MAF of 0.29.
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9. Non-melanoma skin cancer was linked to 6:396,321 C / T (rs12203592) near

IRF4, with a P-value of 1.6⨉10-12 and a MAF of 0.19.

10.Another significant variant for under-active thyroid gland was at 6:32,669,089 A /

T (rs3134996) near HLA-DQB1, with a P-value of 6.8⨉10-11 and a MAF of 0.35.

These results highlight the genetic underpinnings of various health conditions,

demonstrating the power of GWAS in uncovering associations that could potentially

guide future research, diagnosis, and treatment strategies. Below we showcase two

examples of our GWAS findings for Type 2 Diabetes (T2D) and Macular Degeneration,

which are consistent with well-known genetic associations for these conditions. The

findings corroborate well-established associations in these conditions. For T2D, a

significant association was detected at locus 10:113,022,822 with a variant in the

TCF7L2 gene, which is known for its substantial impact on insulin secretion and glucose

homeostasis.

Fig.15

Manhattan plot representing genome-wide association results for Type 2 Diabetes

(T2D).

Similarly, Macular Degeneration showed a strong association with the variant at

1:196,697,663 in the CFH gene, which plays a pivotal role in the immune response, with

dysregulation linked to retinal damage. Additionally, the HTRA1 gene, implicated in

protein degradation, showed significant association at 10:122,459,759, confirming its
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involvement in the disease's etiology. These results not only validate the robustness of

our GWAS process but also align with well-known genetic influences on these

conditions, underscoring the utility of our approach in identifying genetic factors for

complex diseases.

Fig.16

Manhattan plot representing genome-wide association results for Macular

Degeneration.

Based on the analysis, the significant findings have been categorized to provide a

clearer overview. The breakdown is as follows: medications yielded 4 statistically

significant independent (defined as being at least 500 kb apart from each other) hits

(p-value < 5⨉10-8), behavior had 79 hits, health resulted in 163 hits, and socio-economic

traits had the highest number with 180 hits. This categorization allows for a more

structured interpretation of the data, highlighting areas with the most significant genetic

associations. Please note that most of the socio-economic hits tend to be false positives

due to the complex nature of socio-economic traits, which are influenced by a myriad of

environmental factors and confounding variables, making it challenging to isolate true

genetic associations. This comprehensive summary underscores the broad impact of

genetic variations across different trait categories and emphasizes the importance of

careful interpretation in socio-economic contexts.
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To explore the potential of using PheWeb for comparing certain phenotypes across

different cohorts, I have conducted a comparative analysis of two phenotypes: macular

degeneration and type 2 diabetes. This comparison was performed across the CLSA

PheWeb, FinnGen PheWeb, and UK Biobank PheWeb. Due to the differing definitions

of phenotypes across studies (e.g., self-reported vs. diagnosed), direct comparisons

can be challenging. However, the results of this comparative analysis are presented

below, highlighting the Manhattan plots for each phenotype from the three different

PheWebs. The Manhattan plots illustrating these findings for each phenotype from the

three different PheWebs are shown below. These plots provide a visual representation

of the genetic associations and highlight the significant variants identified in each

cohort.

Macular Degeneration
The Manhattan plots and top loci for macular degeneration from the FinnGen, UK

Biobank (UKBB), and CLSA PheWebs provide insight into the distribution and

significance of genetic associations across the genome. Below is a detailed

comparative analysis.
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Fig.17
Manhattan plots for macular degeneration across different PheWebs. The plots
display the genetic associations for macular degeneration from top to bottom:

FinnGen, UK Biobank (UKBB), and CLSA. Each plot highlights the significant variants
identified in each cohort, with notable associations near the ARMS2 gene in FinnGen

and UK Biobank, and near the CFH gene in CLSA.
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PheWeb Variant
Nearest
Gene(s) MAF P-value

Effect Size
(standard error)

FinnGen 10:122452080:C ARMS2 0.243 3.90⨉10-160 0.832

1:196701709:A CFH 0.563 1.80⨉10-113 -0.577

1:196662985:T CFH 0.283 1.50⨉10-82 -0.558

19:6718376:G C3 0.182 5.50⨉10-11 0.214

7:155171928:G NA 0.000463 3.80⨉10-8 4.04

19:44908684:T APOE 0.183 6.20⨉10-8 -0.186

11:72751271:C STARD10 0.964 1.20⨉10-7 -0.366

4:109740713:T CFI 0.0114 1.80⨉10-7 0.681

UK
Biobank 10:124,215,211 T / C (rs36212733) ARMS2 0.470371 1.90⨉10-24 -

1:196,660,261 A / G (rs10801555) CFH 0.133361 1.00⨉10-18 -

4:17,388,702 C / T (rs111235347) QDPR 0.257596 2.60⨉10-9 -

11:91,963,521 G / A (rs191842278) FAT3 0.615494 6.70⨉10-9 -

3:196,236,400 C / T (rs199641376) SMCO1 0.294 7.00⨉10-9 -

11:122,705,597 C / T
(rs559456070) CRTAM 0.331776 1.20⨉10-8 -

8:34,400,330 C / T (rs545275191) UNC5D 0.810604 2.00⨉10-8 -

CLSA 1:196,697,663 A / C (rs1089033) CFH 0.38 1.10⨉10-23 -0.46 (0.045)

10:122,459,759 C / G (rs3793917) HTRA1 0.21 3.60⨉10-14 0.40 (0.051)

X:99,767,508 T / TA PCDH19 0.00031 8.90⨉10-8 2.6 (0.50)

7:23,447,655 AC / A
(rs1175748194) IGF2BP3 0.0001 9.40⨉10-8 5.5 (1.1)

4:16,435,009 G / A (rs577382363) LDB2 0.0014 1.40⨉10-7 2.0 (0.33)

16:17,794,764 G / T
(rs1360781733) XYLT1 0.0001 2.00⨉10-7 5.3 (1.1)

5:178,440,559 G / A (rs566052659) COL23A1 0.00039 2.40⨉10-7 3.3 (0.54)

Table 3.

This table summarizes the top genetic loci associated with macular degeneration

identified in FinnGen, UK Biobank, and CLSA PheWebs, including the variant, nearest

gene(s), minor allele frequency (MAF), p-value, and effect size (if available).
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All three PheWebs identify the CFH and ARMS2 loci as significant genetic associations

with macular degeneration, demonstrating consistent findings across different

populations.

FinnGen: The FinnGen PheWeb shows an extremely strong signal at the ARMS2 locus

with a P-value of 3.9⨉10-160 and several other significant loci, such as CFH, C3, and

APOE, reflecting a comprehensive detection of genetic associations.

UK Biobank: The UKBB PheWeb identifies multiple independent loci, including

ARMS2, CFH, QDPR, FAT3, SMCO1, CRTAM, and UNC5D, showing a broad range of

significant hits across the genome.

CLSA: The CLSA PheWeb confirms the significance of CFH and ARMS2 and identifies

additional loci such as HTRA1, PCDH19, IGF2BP3, LDB2, XYLT1, and COL23A1,

although with fewer significant hits compared to FinnGen and UKBB, likely due to

differences in sample size and population structure.

Type 2 Diabetes
The Manhattan plots and top loci for type 2 diabetes from the FinnGen, UK Biobank

(UKBB), and CLSA PheWebs reveal the distribution and significance of genetic

associations across the genome. Below is a detailed comparative analysis.
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Fig. 18
Manhattan plots for type 2 diabetes across different PheWebs. The plots display the
genetic associations for type 2 diabetes from top to bottom: FinnGen, UK Biobank
(UKBB), and CLSA. Each plot highlights the significant variants identified in each
cohort, with notable associations near the TCF7L2 gene across all three cohorts.
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PheWeb Variant
Nearest
Gene(s) MAF P-value

Effect Size
(standard error)

UK
Biobank 10:114,754,784 T / C (rs35198068) TCF7L2 0.19625 1.00⨉10-26 -

19:53,948,824 T / G (rs2617746) ZNF761 3.42⨉10-1 2.40⨉10-10 -

11:19,900,706 A / G (rs182859724) NAV2 2.06⨉10-1 2.60⨉10-10 -

3:157,984,305 A / G (rs577584385) RSRC1 1.07⨉10-1 2.20⨉10-9 -

6:101,736,830 C / A (rs139090836) GRIK2 1.03⨉10-1 2.90⨉10-9 -

7:49,400,754 T / C (rs558253489) VWC2 6.26⨉10-2 8.50⨉10-9 -

FinnGen 10:112994312:T TCF7L2 0.202
1.20⨉10-11

2 0.296

12:4275678:T CCND2 0.0312 2.90⨉10-50 -0.484

20:44189982:G JPH2 0.012 7.20⨉10-32 0.566

6:20680447:T CDKAL1 0.329 4.90⨉10-29 0.123

16:53784255:T FTO 0.413 2.60⨉10-28 0.116

11:92975544:C MTNR1B 0.357 8.90⨉10-28 0.118

10:69554950:G NA 0.0432 1.00⨉10-24 0.263

9:22137686:T NA 0.279 2.50⨉10-22 0.113

23:153634467:A NA 0.275 2.70⨉10-22 -0.092

20:59032308:C ATP5E 0.0499 5.50⨉10-22 -0.234

CLSA 10:113,022,822 G / GCT (rs10659211) TCF7L2 0.3 4.00⨉10-18 0.31 (0.035)

6:20,679,079 T / G (rs1569699) CDKAL1 0.31 1.20⨉10-8 0.20 (0.035)

2:145,595,872 C / T (rs10175928) ZEB2 0.4 2.60⨉10-8 -0.19 (0.033)

6:71,417,764 C / T (rs142310666) OGFRL1 0.00089 5.50⨉10-8 2.1 (0.35)

21:40,108,282 GCTT / G
(rs1182705129) DSCAM 0.00027 6.20⨉10-8 3.4 (0.69)

15:72,260,074 C / A (rs191031793) PARP6 0.0006 1.30⨉10-7 2.4 (0.41)

7:13,263,543 G / A (rs184183327) ARL4A 0.00016 1.30⨉10-7 4.4 (1.0)

Table 4.

This table summarizes the top genetic loci associated with Type 2 Diabetes identified in

FinnGen, UK Biobank, and CLSA PheWebs, including the variant, nearest gene(s),

minor allele frequency (MAF), p-value, and effect size (if available).
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All three PheWebs identify the TCF7L2 locus on chromosome 10 as a significant

genetic association with type 2 diabetes, demonstrating a consistent finding across

different populations.

FinnGen: The FinnGen PheWeb shows a very strong signal at TCF7L2 with a P-value

of 1.2⨉10-112 and several other significant loci, such as CCND2, JPH2, CDKAL1, FTO,

and MTNR1B, reflecting a comprehensive detection of genetic associations.

UK Biobank: The UKBB PheWeb identifies several independent loci, including

TCF7L2, ZNF761, NAV2, RSRC1, GRIK2, and VWC2, showing a broad range of

significant hits across the genome.

CLSA: The CLSA PheWeb confirms the significance of TCF7L2 and identifies

additional loci such as CDKAL1, ZEB2, OGFRL1, DSCAM, PARP6, and ARL4A,

although with fewer significant hits compared to FinnGen and UKBB, possibly due to

differences in sample size and population structure.

These findings underscore the value of comparing PheWeb results across different

cohorts to identify robust genetic associations and to understand the genetic

architecture of complex traits. The Manhattan plots illustrating these findings for each

phenotype from the three different PheWebs are shown above, providing a visual

representation of the genetic associations and highlighting the significant variants

identified in each cohort.

3.2 CLSA PheWeb
The CLSA PheWeb is accessible at https://clsa-pheweb.cerc-genomic-medicine.ca/.

Using the CLSA PheWeb, researchers can navigate the rich dataset through several

intuitive features. The homepage's search functionality allows for the targeted inquiry of

specific genes (e.g., APOB, FTO, TCF7L2), variants (identified by rsID or chromosomal

positioning aligned with the designated genome build), or distinct phenotypes and traits.

A comprehensive catalog of traits accessible within the PheWeb is detailed on the

‘Phenotypes’ page.
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For a broader exploration, one may utilize the 'Random' page located within the top

panel to generate a serendipitous selection from the PheWeb database. Conversely,

selecting 'Top Hits' reveals a curated table of the most significant genetic associations

discovered within the PheWeb framework. To acquire a deeper understanding of the

dataset's foundation and how the data used was prepared, the 'About' page offers

essential background information.

The PheWeb presents data in three principal visual formats: Manhattan and

quantile-quantile (QQ) plots which depict the distribution of p-values across the

genome, LocusZoom plots that offer a more granular view of specific genomic regions,

and PheWAS plots that illustrate the association of a single genetic variant with a

spectrum of traits. These visual tools facilitate a multifaceted analysis of genetic data,

enhancing the interpretative process for researchers.

An example of the search utility is demonstrated by entering FTO into the search bar,

which promptly navigates to the relevant genetic information within the PheWeb.

Fig.19

Homepage of the CLSA PheWeb displaying the search function. The interface shows

an example search for the FTO gene.

In the CLSA PheWeb, initiating a search by gene name yields a table detailing the most

significant genetic associations within that gene. Accompanying the table is a
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LocusZoom regional plot which illustrates the linkage disequilibrium patterns among

variants proximal to the gene of interest. This interactive feature allows users to

visualize the genomic context and the extent of correlation between neighboring

variants.

For instance, a query for FTO leads to a display where one can observe a LocusZoom

plot specifically configured to reflect the selected association from the table, in this case,

“High blood pressure or hypertension”. The plot dynamically updates to correspond with

the association highlighted by the user, providing a detailed visual representation of the

genetic landscape surrounding FTO and its relationship to the phenotype in question.

Fig.20

Detailed view of the PheWeb platform showcasing the search results for FTO. This

page lists the phenotypes with the most significant associations for this locus, with

“High blood pressure or hypertension” showing the top p-value.
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All visualizations on the CLSA PheWeb are designed to be interactive, enhancing user

engagement with the data. By positioning the cursor over variants within plots, such as

the LocusZoom plot, users can access detailed information about each variant's

properties and context.

Fig.21

Interactive interface of CLSA PheWeb for the gene FTO, presenting a table of

phenotypes with significant associations at this locus. Highlighted is “High blood

pressure or hypertension” with the most significant p-value. Hovering over a variant in

the LocusZoom plot below reveals detailed genetic information, and selecting a

variant provides access to its PheWAS view, allowing for a comprehensive analysis of

its impact across various phenotypes.

Selecting a variant from the LocusZoom plot in CLSA PheWeb will transition the user to

a PheWAS visualization. This displays the variant's association p-values across the
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breadth of phenotypes included in the PheWeb. Triangles pointing upwards indicate a

variant's positive influence on the phenotype, while those pointing downwards indicate a

negative influence. Circles represent variants with less precise beta estimates, such as

those with a standard error that includes zero. The coloring of the triangles corresponds

to specified categorizations (in the first first version of CLSA PheWeb, we used labels

Identity, Socioeconomic, Behavioral, Health, Measurements, Medications, and Diet as

outlined in the Phenotype data analysis section). For example, choosing the variant

16:53794154_C/T from the LocusZoom display brings up its PheWAS view, which is

accompanied by a summary table detailing its associations.

Fig.22

PheWAS plot for variant rs17817964 shows its association with several phenotypes.

Upward triangles indicate a positive association between the variant and the

phenotype, while downward triangles denote a negative association. The table below

summarizes the statistical outcomes for each phenotype, including p-values and effect
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sizes.

Choosing a trait from the PheWAS plot directs you to its corresponding Manhattan plot,

displaying a comprehensive visual of significant genetic associations. Beneath this plot

lies a table detailing these key associations, followed by a quantile-quantile (QQ) plot,

which is stratified by minor allele frequency bins and features the genomic control

lambda derived from a range of variant percentiles. For instance, after selecting the trait

"High blood pressure or hypertension" from the PheWAS view above, a user can hover

over any variant on the ensuing Manhattan plot to see a detailed LocusZoom regional

plot for that variant. Further down the page, below the summary table, lies the QQ plot,

providing additional statistical context for the associations displayed above.
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Fig.23
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Manhattan and QQ plots for “High blood pressure or hypertension”. The top loci table

lists significant associations and their statistics.

The CLSA PheWeb offers a comprehensive platform to explore genetic associations
across various phenotypes using PheWAS. To demonstrate the utility and depth of the
CLSA PheWeb, we showcase four examples of variants with strong associations across
multiple phenotypes. To provide a clear visual representation of the genetic
associations, LocusZoom plots have been included for the selected variants. These
plots help illustrate the association signals within the genomic context and show the
relationships between the primary variant and nearby variants in linkage disequilibrium.
By comparing the PheWAS results with the LocusZoom plots, we can visually estimate
the relationships between the genetic variants and multiple phenotypes, offering insights
into potential pleiotropy and colocalization. These examples highlight the capability of
PheWeb to uncover pleiotropic effects and provide insights into the genetic
underpinnings of diverse traits:

rs2476601

The variant rs2476601, located in the PTPN22 gene, shows significant associations
with several health-related phenotypes. It is associated with an under-active thyroid
gland, with a P-value of 3.7⨉10-13 and an effect size of -0.32, with a standard error of
0.043. This association supports the role of PTPN22 in autoimmune thyroid disease.
The variant is also linked to white blood cell count, with a P-value of 1.7⨉10-5 and an
effect size of 0.065, with a standard error of 0.015, suggesting involvement in immune
system regulation. Additionally, rs2476601 has a notable association with type 1
diabetes, with a P-value of 4.3⨉10-3 and an effect size of -0.51, with a standard error of
0.17, aligning with its known role in autoimmune disorders. The association with
enlargement in the base of the thumbs has a P-value of 5.2⨉10-3 and an effect size of
-0.15, with a standard error of 0.054, potentially indicating broader implications for joint
health or inflammatory conditions.
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Fig.24

PheWAS plot for the variant rs2476601 taken from the CLSA PheWeb.

These associations highlight the variant’s pleiotropic effects, impacting both
autoimmune conditions and other health traits, suggesting a broad role for PTPN22 in
immune regulation and inflammatory processes.

Fig.25

The LocusZoom plot highlights the association signal of rs2476601 with the
Under-active thyroid gland, including nearby variants in LD.

rs10774625

The variant rs10774625, located in the FTO locus, is associated with several
phenotypes beyond its well-known link to obesity. It shows a significant association with
platelet count, with a P-value of 5.3⨉10-19 and an effect size of -0.078, with a standard
error of 0.0087. This suggests a role in hematological traits. The variant is also linked to
TNF-alpha levels, with a P-value of 1.8⨉10-17 and an effect size of -0.12, with a standard
error of 0.014, indicating its influence on inflammatory processes. Additionally,
rs10774625 is associated with lymphocyte count, with a P-value of 1.1⨉10-14 and an
effect size of -0.070, with a standard error of 0.0090, further supporting its role in
immune regulation. The association with smoking behavior, specifically having ever
smoked 100 cigarettes, has a P-value of 2.2⨉10-6 and an effect size of -0.089, with a
standard error of 0.019, pointing to its impact on lifestyle factors.
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Fig.26

PheWAS plot for the variant rs10774625 taken from the CLSA PheWeb.

These pleiotropic associations highlight the variant's broader influence on
immune-related and lifestyle traits, extending its significance beyond obesity to other
aspects of health and behavior.

Fig.27

The LocusZoom plot highlights the association signal of rs10774625 with
Lymphocytes, including nearby variants in LD.

rs10455872

The variant rs10455872, located in the LPA locus, shows significant associations with
several phenotypes related to lipid metabolism and cardiovascular health. It is
associated with LDL cholesterol, with a P-value of 4.1⨉10-11 and an effect size of 0.11,
with a standard error of 0.017. This indicates a notable impact on LDL cholesterol
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levels. The variant is also linked to total cholesterol, with a P-value of 1.1⨉10-9 and an
effect size of 0.10, with a standard error of 0.016, further supporting its role in lipid
metabolism. Additionally, rs10455872 is associated with coronary artery bypass surgery,
with a P-value of 2.1⨉10-7 and an effect size of 0.37, with a standard error of 0.069,
indicating a significant relationship with severe cardiovascular conditions. The
association with heart disease has a P-value of 8.8⨉10-5 and an effect size of 0.22, with
a standard error of 0.054, highlighting its broader impact on cardiovascular health.

Fig.28

PheWAS plot for the variant rs10455872 taken from the CLSA PheWeb.

These pleiotropic effects underscore the variant's significant role in lipid metabolism and
cardiovascular health, contributing to various related disorders.

Fig.29

The LocusZoom plot highlights the association signal of rs10455872 with Cholesterol,
including nearby variants in LD.
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rs1421085

The variant rs1421085, located in the FTO locus, shows significant associations with
several obesity-related traits and measures of body composition. It is strongly
associated with body mass index (BMI), with a P-value of 1.2⨉10-22 and an effect size of
0.088, with a standard error of 0.0090. This variant is also linked to average weight, with
a P-value of 9.2⨉10-19 and an effect size of 0.071, with a standard error of 0.0080,
further supporting its role in body weight regulation. Additionally, rs1421085 is
associated with waist circumference, with a P-value of 1.2⨉10-17 and an effect size of
0.070, with a standard error of 0.0082, highlighting its impact on fat distribution. The
variant also shows a significant association with fat tissue in the android region, with a
P-value of 1.7⨉10-15 and an effect size of 0.073, with a standard error of 0.0092.

Fig.30

PheWAS plot for the variant rs1421085 taken from the CLSA PheWeb.

These pleiotropic effects demonstrate the variant's strong influence on obesity-related
traits and overall body composition.
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Fig.31

The LocusZoom plot highlights the association signal of rs1421085 with Body mass
index , including nearby variants in LD.

These selected variants illustrate the power of the CLSA PheWeb to uncover significant
genetic associations across a wide range of phenotypes. The detailed exploration of
pleiotropy provided by PheWeb enhances our understanding of the multifaceted roles
that specific genetic variants play in health and disease. This comprehensive approach
allows researchers to generate new hypotheses and potentially identify novel
therapeutic targets, fostering a deeper understanding of the genetic basis of complex
traits.

Chapter 4: Discussion

The development and implementation of the CLSA PheWeb platform represented a

significant advancement in the sharing and dissemination of GWAS and PheWAS

results for the CLSA biobank. Initially, we conducted a thorough data curation process,

which included extensive phenotypic and genotypic data from the CLSA biobank. This

was followed by quality control procedures to filter out unreliable genetic markers and

samples, ensuring the integrity of the dataset. Covariates such as age, age squared,

genotyping batch number, sex, and principal components of ancestry were included in

the analysis to account for potential confounding factors, and special attention was

given to the imputation and analysis of chromosome X. The results from these analyses

were then integrated into the PheWeb platform, allowing researchers worldwide to
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access, visualize, and explore these findings in depth. This capability not only enhances

the reproducibility of genetic research but also facilitates ongoing collaborative efforts,

potentially accelerating the discovery of novel genetic insights and their applications in

medical research.

The CLSA PheWeb, as a unique platform for the Canadian population, represents a

significant contribution to the global landscape of genetic research tools. By offering

detailed insights into the genetic determinants of health and disease in a Canadian

context, it complements other PheWeb platforms such as those for UK Biobank, TCGA,

FinnGen, BioBank Japan, CARTaGENE, COLCORONA, COLCOT, CHARM, SardiNIA,

KoGES, and The Qatar Genome Program. While PheWeb is renowned for its

comprehensive approach to displaying PheWAS and GWAS results, other tools such as

Genebass, GWAS Catalog, PhenoScanner, and AstraZeneca PheWAS Portal, offer

similar features that support genetic research. However, the specificity and depth

provided by the CLSA PheWeb for the Canadian population underscore its importance

and potential impact on both national and international genetic research efforts.

In terms of limitations, by concentrating solely on individuals of European like genetic

ancestry, the study might not identify key variants that are particularly significant in other

ethnic groups. In the construction of our PheWeb for the CLSA biobank, a pivotal

decision was made to subset individuals of European ancestry for downstream

analyses, a group constituting more than 90% of our dataset. This decision, while

seemingly at odds with the imperative to embrace genetic diversity in genomic studies,

was driven by specific analytical necessities and the demographic characteristics of our

cohort. It's crucial to underscore that this approach does not undermine the importance

of including and analyzing data from minority populations, a concern highlighted by

recent discourse in the scientific community advocating for the inclusion of diverse

genetic backgrounds to avoid biases and improve the applicability of genomic research

across all populations123.
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The rationale behind focusing on the European subset stems from the aim to minimize

confounding due to population stratification in GWAS. Population stratification can

significantly impact the validity of GWAS findings by introducing spurious associations if

not properly controlled. Given that the majority of our dataset comprises individuals of

European descent, subsetting this group allows for a more similar genetic background,

thereby reducing such confounding and enhancing the reliability of our association

analyses. This step is particularly crucial for initial analyses aimed at identifying robust

genetic associations that could be obscured by the complexity of analyzing a genetically

heterogeneous population.

It's also important to recognize that the demographic makeup of our dataset, with a

predominance of individuals of European ancestry, does not fully reflect the genetic

diversity of the Canadian population. According to the National Household Survey of

2011, which coincides with the period when the CLSA recruited participants,

approximately 20% of Canadians identified as visible minorities meaning persons, other

than Aboriginal peoples, who are non-Caucasian in race or non-white in colour124. While

our cohort's composition aligns to some extent with this demographic distribution, it

nevertheless underscores the challenge of achieving representative genetic diversity in

biomedical research.

Setting a minimum threshold of 1,000 cases for inclusion in the study helps ensure

sufficient statistical power to detect associations. However, this criteria may exclude

important insights from less common phenotypes where significant but rare genetic

associations might exist, albeit with less detectable power in smaller sample sizes. This

approach prioritizes robust statistical outcomes but at the potential cost of broader

discovery across rarer conditions. Moreover, the use of solely an additive genetic model

may not adequately represent the complex interplay of genetic factors that contribute to

many traits and diseases. This simplification might lead to an incomplete understanding

of the genetic architecture underlying various phenotypes. Finally, the absence of

sex-specific analyses could miss critical differences in genetic associations between
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males and females. Such differences could be key to developing more personalized and

effective interventions based on sex-specific genetic insights.

In the context of the larger scientific knowledge, our project contributes significantly to

the ongoing efforts in genetic epidemiology. The CLSA PheWeb platform not only

enhances the transparency and reproducibility of genetic association studies but also

provides a valuable resource for meta-analyses and cross-population comparisons. This

is particularly relevant in the current era of precision medicine, where understanding the

genetic basis of complex traits across diverse populations is paramount. The insights

gained from our GWAS and PheWAS can inform public health strategies and healthcare

policies, particularly those aimed at aging populations, as the CLSA cohort represents a

crucial demographic in understanding age-related diseases and health conditions.

Future directions for this work involve addressing the limitations outlined above. Firstly,

we will include individuals from diverse ethnic backgrounds in our analyses to uncover

genetic variants that are significant across different populations. This will involve

leveraging additional data from biobanks and other genetic studies that focus on

underrepresented groups. By doing so, we aim to enhance the applicability and

relevance of our findings to a broader range of populations.

Secondly, we plan to lower the threshold for phenotype inclusion to capture associations

with less common traits. This will require the development of more sophisticated

statistical models and the integration of larger datasets to maintain sufficient power. We

will also explore non-additive genetic models to better capture the complexity of genetic

influences on traits and diseases. This approach will involve using advanced machine

learning techniques and interaction models to identify gene-gene and gene-environment

interactions.

Lastly, we will conduct sex-specific analyses to identify genetic associations that differ

between males and females. This will help us understand the sex-specific genetic

architecture of various traits and diseases, leading to more personalized and effective
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healthcare interventions. By integrating these future directions, we aim to provide a

more comprehensive understanding of the genetic basis of complex traits and diseases,

ultimately contributing to the advancement of precision medicine.

Chapter 5: Conclusions and Future Directions
In conclusion, the project adeptly performed 350 GWASs on binary traits from the CLSA

dataset, leading to the inaugural CLSA PheWeb—an accessible platform for

disseminating GWAS findings. This resource empowers the broader scientific

community, paving the way for advancements in personalized medicine through

applications such as Polygenic Risk Scores, Mendelian Randomization, and further

replication studies. Looking ahead, recognizing the importance of genetic diversity,

future efforts will include a broader range of genetic backgrounds beyond individuals of

European descent. This expansion is essential for uncovering significant genetic

variants relevant to diverse populations, thereby improving the generalizability and

applicability of our research across different ethnic groups. In addition, we aim to

broaden our analysis to encompass phenotypes with fewer than 1,000 cases, which

were previously excluded due to power constraints. By employing more sensitive

statistical methods or innovative data integration techniques, we can explore significant

associations in rarer conditions that are less represented in large datasets. This

approach will allow for a more comprehensive understanding of genetic influences

across a wider array of traits. Further, to capture the complex interplay of genetic

factors, future studies will integrate more sophisticated genetic models that consider

gene-gene and gene-environment interactions. Such models will better reflect the

complexity of genetic architecture, providing deeper insights into how different factors

contribute to disease and health outcomes. Lastly, we plan to conduct sex-specific
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analyses to uncover potentially crucial differences in genetic associations between

males and females. Understanding these differences is vital for developing personalized

medical interventions based on genetic insights.
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