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Abstract

This thesis gives an overview of an approach originally described by Arbenz et al. (2012)

and expanded upon in Côté & Genest (2015) to model high-dimensional data using low-

dimensional copulas. This modeling approach, which is based on aggregation trees, relies

on a conditional independence assumption. An alternative assumption of similar nature

is suggested, which is equivalent but simpler to verify than those used by Arbenz et

al. (2012) and Côté & Genest (2015). A framework is also suggested to use these models

for extreme-value analysis. The framework is illustrated using a hydrometric dataset col-

lected from various monitoring stations scattered in the province of Québec. The neces-

sary conditions and assumptions for an aggregation-tree model to generate multivariate

extreme-value distributions are also explored.
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Résumé

Ce mémoire donne une vue d’ensemble d’une approche préconisée par Arbenz, Hum-

mel & Mainik (2012) et développée par Côté & Genest (2015) aux fins de modélisation

de données de grande dimension au moyen de copules de basse dimension. Cette ap-

proche, qui s’appuie sur des structures d’agrégation arborescentes, repose sur un pos-

tulat d’indépendance conditionnelle. Un nouveau postulat de nature semblable est pro-

posé qui s’avère équivalent mais plus simple à vérifier que ceux employés par Arbenz et

al. (2012) et Côté & Genest (2015). Un cadre est en outre suggéré pour l’utilisation de tels

modèles pour l’analyse des valeurs extrêmes. Son emploi est illustré à l’aide d’un jeu de

données hydrométriques recueillies par diverses stations de surveillance réparties sur le

territoire du Québec. Les conditions et postulats requis pour qu’un modèle d’agrégation

arborescent génère des lois multivariées de valeurs extrêmes sont aussi explorés.
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Chapter 1

Introduction

This chapter is meant to present the prerequisite theory to understand the concept of cop-

ula as a tool for modeling dependence among continuous random variables. A seminal

result by Sklar (1959) is the theoretical basis for this approach. Indeed, Abe Sklar (1925–

2020) showed how copulas can be used to uniquely characterize the dependence structure

between sets of continuous random variables, regardless of their marginal distributions.

For simplicity, we shall focus throughout this thesis on continuous random variables,

though similar results exist for collections of discrete random variables or combinations

of continuous and discrete random variables; see, e.g., Genest & Nešlehová (2007).

We will also introduce a class of models due to Arbenz et al. (2012) for the purpose

of constructing copula models for large numbers of variables. We intend to examine the

necessary conditional independence assumptions that these models rely on to obtain a

unique and well-defined joint distribution. We will also provide a simpler formulation of

this assumption which is equivalent to, but simpler to check than, those used by Arbenz et

al. (2012) and by Côté & Genest (2015). Moreover, we will examine some of the properties

of these models in the context of extreme-value theory.



1.1 Copulas and copula models

Many of the results and definitions presented here are outlined, e.g., in the books by

Nelsen (2006) and McNeil et al. (2015). We begin with the standard definition of a copula

and an overview of the properties of these functions.

Definition (copula). Given a d-dimensional random vectorU = (U1, . . . , Ud) with uniform

marginal distributions on [0, 1], we call the distribution function C of U a copula and, for

convenience, we restrict its domain to the set [0, 1]d.

By definition, if C is a copula, then it satisfies the following conditions:

(i) For arbitrary i ∈ {1, . . . , d} and u1, . . . , ui−1, ui+1, . . . , ud ∈ (0, 1), the map ui 7→

C(u1, . . . , ui, . . . , ud) is non-decreasing.

(ii) The margins of C are all uniform on [0, 1], i.e., for any i ∈ {1, . . . , d}, C(u1, . . . , ud) =

ui if uj = 1 for all j ̸= i and ui ∈ [0, 1].

(iii) C(u1, . . . , ud) = 0 for all (u1, . . . , ud) ∈ [0, 1]d with ui = 0 for some i.

(iv) Given a1, . . . , ad ∈ [0, 1] and b1, . . . , bd ∈ [0, 1] such that ai ≤ bi for all i ∈ {1, . . ., d},

we have

P(U1 ∈ [a1, b1], . . . , Ud ∈ [ad, bd]) =
2∑

i1=1

· · ·
2∑

id=1

(−1)i1+···+idC(u1,i1 , . . . , ud,id) ≥ 0,

where uj,1 = aj and uj,2 = bj for all j ∈ {1, . . . , d}.

Furthermore, any copula C is Lipschitz-continuous and uniformly equicontinuous on

its domain as shown in Theorem 3.2.4 from Nelsen (2006). Thus the class of copulas is

compact in Rd.

Another important fact about copulas is a set of bounds due to Maurice Fréchet (1878–

1973) and Wassily Hoeffding (1914–91). These bounds serve to represent the most extreme

types of dependence, namely comonotonicity and countermonotonicty.
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Theorem 1.1.1 (Fréchet–Hoeffding bounds). Let C : [0, 1]d → [0, 1] be a copula. Then for all

u1, . . . , ud ∈ [0, 1], we have the following bounds:

max

(
1− d+

d∑
i=1

ui, 0

)
≤ C(u1, . . . , ud) ≤ min(u1, . . . , ud).

Proof. Let U = (U1, . . . , Ud) be a random variable with standard uniform margins and

copula C. Then, for any u1, . . . , ud ∈ [0, 1],

C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud) = 1− P

(
d⋃

i=1

{Ui > ui}

)
≥ 1−

d∑
i=1

P(Ui > ui).

Given that P(Ui > ui) = 1− ui for each i ∈ {1, . . . , d}, we get

C(u1, . . . , ud) ≥ 1− d+
d∑

i=1

ui.

Moreover, for each i ∈ {1, . . . , d}, one has

P(U1 ≤ u1, . . . , Ud ≤ ud) ≤ P(Ui ≤ ui) = ui,

and hence

C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud) ≤ min(u1, . . . , xd).

This completes the argument.

As previously mentioned, a seminal result by Sklar (1959) explains why copulas play a

key role in dependence modeling and how they can be used to characterize and describe

the dependence relation between a collection of continuous random variables.

Theorem 1.1.2 (Sklar). Let X = (X1, . . . , Xd) be a continuous d-dimensional random vector

and let F1, . . . , Fd be the marginal cumulative distribution functions of X1, . . . , Xd, respectively.

Then there exists a unique copula C : [0, 1]d → [0, 1] such that, for all x = (x1, . . . , xd) ∈ Rd, we

3



have

P(X1 ≤ x1, . . . , Xd ≤ xd) = F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}. (1.1)

Conversely, if C is a d-dimensional copula and F1, . . . , Fd are univariate distribution functions,

then F as defined above is a joint distribution function with marginal distributions F1, . . . , Fd.

A similar result also exists for survival functions. Namely if F̄ is a d-variate continuous

survival function with marginal survival functions F̄1, . . . , F̄d, then there exists a unique

copula C̄, termed the survival copula, such that, for all x1, . . . , xd ∈ R,

F̄ (x1, . . . , xd) = C̄{F̄1(x1), . . . , F̄d(xd)}.

In the case in which the random variables X1, . . . , Xd are discontinuous, a similar decom-

position holds, but the copula in (1.1) is not unique; see Genest & Nešlehová (2007).

Thanks to Sklar’s decomposition theorem, when working with a continuous random

vector X = (X1, . . . , Xd), the copula of X characterizes the dependence relation between

the margins of X . This theorem also has important implications for modeling: given a

collection of variables X1, . . . , Xd, one can model the dependence between these variables

by specifying their marginal distributions and a copula C to define the joint distribution

F of (X1, . . . , Xd) with formula (1.1) from Sklar’s theorem.

The copula of a random vector, as specified by Sklar’s theorem, is invariant under

strictly monotonic transformations of the margins of the vector. Indeed, for any strictly

increasing transformations T1, . . . , Td, the copulas of (X1, . . . , Xd) and (T1(X1), . . . , Td(Xd))

are the same. For a proof of the bivariate case of this result, which is identical to the proof

for d-variate vectors, see Theorem 2.4.3 from Nelsen (2006). This property is particularly

useful to sample from multivariate random variables with a particular copula, as it allows

us to sample from a joint distribution with the desired copula and with standard uniform

margins and then transform the margins using probability integral transformations to

assign the desired marginal distributions to the sample. Since cumulative distribution
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functions (cdfs) are non-decreasing, this transformation of the margins of the standard

uniform vector does not affect the dependence structure.

1.2 Examples of copulas

There is a wide variety of copulas which represent different types of dependence re-

lations. For instance, the simplest copula is the independence copula, defined for all

u1, . . . , ud ∈ [0, 1], by

CI(u1, . . . , ud) =
d∏

i=1

ui.

It characterizes the mutual independence within a collection X1, . . . , Xd of continuous

variables. That is, the components of the vector (X1, . . . , Xd) are mutually independent if

and only if the copula of (X1, . . . , Xd) is the independence copula.

In the light of Theorem 1.1.1, another pair of important functions are the upper and

lower Fréchet–Hoeffding bounds, respectively defined, for all u1, . . . , ud ∈ [0, 1], by

Md(u1, . . . , ud) = min(u1, . . . , ud)

and

Wd(u1, . . . , ud) = max{1− d+ u1 + · · ·+ ud, 0}.

Note thatMd is always a copula but thatWd is only a copula in dimension d = 2. These

bounds are meant to represent two “extreme” dependence relations, comonotonicity and

countermonotonicity. More specifically, continuous random variables X1, . . . , Xd with

distribution functions F1, . . . , Fd are said to be comonotonic if and only if Md is the copula

of the vector (X1, . . . , Xd), in which case F1(X1) = · · · = Fd(Xd) almost surely. Similarly,

the variables X1 and X2 are countermonotonic if and only if W2 is the copula of the pair

(X1, X2), whence F2(X2) = 1− F1(X1) almost surely.
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Copulas are often also classified into families that share similar construction and prop-

erties. Some of the most widely used copulas belong to the elliptical, Archimedean, and

extreme-value copula families, which are briefly reviewed next.

1.2.1 Elliptical copulas

Elliptical copulas are referred to as such because they are derived from elliptical distri-

butions. The two most common examples of elliptical distributions are the multivariate

Gaussian N (µ,Σ) and the multivariate Student t distribution tv(µ,Σ), both of which de-

pend on a mean vector µ and a dispersion matrix Σ. However, all choices of µ lead to

the same copula, so one can take µ = 0 without loss of generality. Furthermore, owing

to the invariance of copulas to monotone increasing transformations, the matrix Σ, which

is symmetric and positive semi-definite by construction, can be taken to be a correlation

matrix R without loss of generality.

Gaussian copulas: Let ΦR : Rd → [0, 1] be the joint distribution function of the multi-

variate Gaussian distribution with correlation matrix R and mean vector 0. Let Φ← be

the quantile function of the univariate standard Gaussian distribution. Then the copula

CR : [0, 1]d → [0, 1] defined, for all u1, . . . , ud ∈ (0, 1), by

CR(u1, . . . , ud) = ΦR{Φ←(u1), . . . ,Φ←(ud)}

is called the Gaussian copula with correlation matrix R.

Student-t copulas: Let Tv,R : Rd → [0, 1] be the joint distribution function of the centered

multivariate Student t distribution with correlation matrix R and v degrees of freedom.

Let t←v be the quantile function of the univariate Student t distribution, tv, with ν degrees

of freedom. Then the copula Cv,R : [0, 1]d → [0, 1] defined, for all u1, . . . , ud ∈ (0, 1), by

Cv,R(u1, . . . , ud) = Tv,R{t←v (u1), . . . , t
←
v (ud)}

6



is called the Student t copula with correlation matrix R and v degrees of freedom.

Every multivariate random vector X = (X1, . . . , Xd) with tv distribution and correla-

tion matrix R has a tv,R copula, and every X = (X1, . . . , Xd) with Gaussian distribution

and correlation matrix R has a Gaussian copula with the corresponding correlation ma-

trix. As the Normal and Student t distributions have appealing properties and are widely

used in modeling, the corresponding elliptical copulas are also some of the most com-

monly used in practice.

1.2.2 Archimedean copulas

Another class of copulas with widespread use in dependence modeling are Archimedean

copulas. These copulas are characterized by a map ψ : [0, 1] → [0,∞), called the generator

function. A generator ψ must be continuous, convex, strictly decreasing and such that

ψ(1) = 0. Moreover, let ψ[−1] be the pseudo-inverse of ψ, where

ψ[−1](x) =

 ψ−1(x) if 0 ≤ x ≤ ψ(0),

0 if ψ(0) ≤ x ≤ ∞.

A copulaC : [0, 1]d → [0, 1] is said to be Archimedean if there exists a generator ψ : [0, 1] →

R such that, for all u1, . . . , ud ∈ (0, 1),

C(u1, . . . , ud) = ψ[−1]{ψ(u1) + · · ·+ ψ(ud)}. (1.2)

The above conditions on the generator are necessary and sufficient to ensure that C is a

copula in dimension d = 2. In higher dimensions, however, more conditions are needed,

which were characterized by McNeil & Nešlehová (2009).

Examples of Archimedean copulas are the Gumbel copula with parameter θ ∈ [1,∞),

whose generator is defined, for all x ∈ (0, 1), by ψ(x) = | ln(x)|θ. Upon substituting this

7



choice of ψ into Equation (1.2), one finds that, for all u1, . . . , ud ∈ (0, 1),

CGu(θ)(u1, . . . , ud) = exp

−{ d∑
i=1

| ln(ui)|θ
}1/θ

 .
Another example is the Clayton copula with parameter θ ∈ (0,∞), whose generator is

given, for all x ∈ (0, 1), by ψ(x) = (x−θ − 1)/θ. Upon substituting this choice of ψ into

Equation (1.2), one finds that, for all u1, . . . , ud ∈ (0, 1),

CCl(θ)(u1, . . . , ud) =

{
d∑

i=1

(u−θi − 1) + 1

}−1/θ
.

In addition to Archimedean copulas, extreme-value copulas are a frequently used class

of copulas that are of great interest in the field of extreme-value theory. We expand on

extreme-value copulas in Chapter 5.

1.3 Copula-based dependence measures

As copulas can be used to characterize the dependence structure of collections of ran-

dom variables, various measures of dependence between pairs of random variables can

be expressed in terms of their underlying copula. In particular, two of the most popu-

lar measures of rank correlation, Kendall’s τ and Spearman’s ρ, depend entirely on the

copula of the pair of continuous random variables being examined.

Given a pair (X, Y ) of continuous random variables, Kendall’s τ is defined as

τ(X, Y ) = P{(X −X∗)(Y − Y ∗) > 0} − P{(X −X∗)(Y − Y ∗) < 0},

where (X∗, Y ∗) is an independent copy of the pair (X, Y ). Kendall’s τ is a measure of ordi-

nal association. It compares the probability that two random pairs will be concordant vs.

the probability that they are discordant. In the case where both X and Y are continuous,

8



as shown in Theorem 5.1.1 of Nelsen (2006), Kendall’s τ can be written as

τ(X, Y ) = −1 + 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v),

in terms of the unique copula C of the pair (X, Y ).

Another commonly used rank correlation measure is Spearman’s ρ. Given continuous

random variables X and Y with cumulative distribution functions FX and FY , respec-

tively, Spearman’s ρ is defined as

ρ(X, Y ) = ρp{FX(X), FY (Y )},

where ρp stands for the standard Pearson correlation measure. In other words, Spear-

man’s ρ is the regular Pearson correlation of the probability integral transform of the

pairs of variables. Thus, letting UX = FX(X) and UY = FY (Y ), which are both uniformly

distributed on the interval (0, 1), one has

ρ(X, Y ) = cor(UX , UY ) =
cov(UX , UY )√

var(UX)var(UY )
,

where

cov(UX , UY ) = E[{UX − E(UX)}{UY − E(UY )}] = E(UXUY )−
1

4

while

var(UX) = var(UY ) =
1

12
,

which gives the following formula for Spearman’s ρ provided by Theorem 5.1.6 of Nelsen

(2006):

ρ(X, Y ) = −3 + 12

∫ 1

0

∫ 1

0

C(u, v)dvdu.

Thus both τ and ρ are entirely defined by the unique copula of the pair (X, Y ).
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Similarly as Pearson’s correlation measure, both τ and ρ take values in [−1, 1]. If X

and Y are independent, then τ(X, Y ) = ρ(X, Y ) = 0; however, the reverse implication

does not hold.

These measures are also invariant to monotonic transformations. Indeed, for any

monotonic transformation T : R −→ R, the copulas of (X, Y ) and (T (X), T (Y )) are the

same. Then τ{T (X), T (Y )} = τ(X, Y ) and ρ{T (X), T (Y )} = ρ(X, Y ) because τ and ρ are

entirely determined by the common, unique copula of (X, Y ) and (T (X), T (Y )).

In particular, it Y and X are comonotonic, i.e., Y = T (X) for some strictly monotonic

function T , then T is strictly increasing if and only if τ(X, Y ) = ρ(X, Y ) = 1 and T is

strictly decreasing if and only if τ(X, Y ) = ρ(X, Y ) = −1.

1.3.1 Tail dependence measures

In certain applications involving extreme values, it is relevant to study the degree of as-

sociation between simultaneously large, or low, values of two dependent random vari-

ables. These coefficients describe the amount of dependence in the upper-right-quadrant

or lower-left-quadrant of a bivariate distribution. There are two kinds of tail dependence

measures, which are defined as follows, given two continuous random variables X and

Y with cumulative distribution functions FX and FY , respectively.

(i) Upper tail dependence: The coefficient of upper tail dependence for the pair (X, Y )

is given by the following limit, provided it exists:

λU(X, Y ) = lim
x↗1

P{X > F←X (x) | Y > F←Y (x)} = lim
u↗1

C(u, u)− 1 + 2u

1− u
,

where C is the unique copula of the pair (X, Y ).
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(ii) Lower tail dependence: Similarly, the coefficient of lower tail dependence for the

pair (X, Y ) is given by the following limit, provided it exists:

λL(X, Y ) = lim
x↘0

P(X ≤ F←X (x) | Y ≤ F←Y (x)} = lim
u↘0

C(u, u)

u
,

where C is the unique copula of the pair (X, Y ). It is clear once again that the copula of

(X, Y ) entirely determines its lower and upper tail dependence coefficients.

1.4 Copula estimators

Suppose that a random sample of size n from X = (X1, . . . , Xd) is available. For each

i ∈ {1, . . . , n}, let X i = (Xi1, . . . , Xid) be the ith observation in this sample. Assum-

ing that the margins F1, . . . , Fd of X1, . . . , Xd are absolutely continuous with densities

f1, . . . , fd, respectively, there are various methods to estimate the copula associated with

X . We present three such approaches using parametric, semi-parametric, and nonpara-

metric rank-based methods.

1.4.1 Parametric approach

Assume that there exists a copula Cθ for X which belongs to a parametric family of copu-

las indexed by a parameter θ which could be real-valued, vector-valued, or even matrix-

valued as in the case of Gaussian copulas. Assume that the copula Cθ is absolutely con-

tinuous and let cθ be the corresponding density. Given estimates for the parameters of the

marginal distributions θ1, . . . , θd, the dependence parameter θ can be estimated using the

method of maximum likelihood. By Sklar’s theorem and the chain rule, upon differenti-

ating the distribution function F of X , we obtain a formula for the corresponding density

f given, for all x1, . . . , xd ∈ R, by

f(x1, . . . , xd) = cθ{F1(x1), . . . , Fd(xd)}
d∏

j=1

fj(xj).
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Therefore, given observations x1, . . . ,xn with xi = (xi1, . . . , xid) for each i ∈ {1, . . . , n},

we may use this expression to obtain a formula for the log-likelihoodL for θ and θ1, . . . , θd,

viz.

L(θ, θ1, . . . , θd) =
n∑

i=1

[
ln[cθ{F1(xi1 | θ1), . . . , Fd(xid | θd)}] +

d∑
j=1

ln{f(xij | θj)}

]
. (1.3)

Estimators for θ, θ1, . . . , θd can be obtained by maximizing expression (1.3). This ap-

proach has the main disadvantage that the process can be computationally expensive

when d is large, and that the estimate of θ can be biased if the marginal distributions are

misspecified.

1.4.2 Semi-parametric approach

The semi-parametric approach is an adaptation of the MLE method to account for some

of its drawbacks. Instead of using parametric models for F1, . . . , Fd, the marginal distri-

butions of X1, . . . , Xd are estimated using empirical distributions.

Let (X11, . . . , X1d), . . . , (Xn1, . . . , Xnd) be a random sample of size n from the distribu-

tion of the random vector X = (X1, . . . , Xd). Then for each j ∈ {1, . . . , d}, we use empir-

ical cumulative distribution functions to estimate the marginal distributions of each Xj .

The latter is given, for each x ∈ R, by

F̂j(x) =
1

n

n∑
i=1

I(Xij ≤ x),

where I(Xij ≤ x) is an indicator function for the event {Xij ≤ x}. Note that for any

i ∈ {1, . . . , d} and ℓ ∈ {1, . . . , n}, one has

F̂j

(
Xℓj

)
=

1

n

n∑
i=1

I
(
Xij ≤ Xℓj

)
=

1

n
Rℓj,
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where Rℓj is the rank of Xℓj among X1j, . . . , Xnj . Next, we replace

n∑
i=1

ln
[
cθ{F1(xi1 | θ1), . . . , Fd(xid | θd)}

]
by

n∑
j=1

ln
[
cθ{F̂1(xi1), . . . , F̂d(xid)}

]
in (1.3). The replacement of parametric models by empirical estimators allows us to avoid

the bias caused by the misspecification of the marginal distributions.

1.4.3 Nonparametric approach

Given a random sample from a continuous random vector X = (X1, . . . , Xd), its un-

known but unique copula C can be approximated using a rank-based estimator called

the empirical copula. Given that C is the distribution function of (F1(X1), . . . , Fd(Xd)),

we may estimate C using empirical probability measures.

We use the following estimator for C, known as the empirical copula. It is defined, at

any u1, . . . , ud ∈ (0, 1), by

Ĉn(u1, . . . , ud) =
1

n

n∑
i=1

I
{
F̂1

(
Xi1

)
≤ u1, . . . , F̂d

(
Xid

)
≤ ud

}
.

Note that the empirical copula estimator assigns a weight of 1/n to each atom of the

form (R1j/n, . . . , Rdj/n), where for each i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, Rij is the rank

of Xij among X1j, . . . , Xnj . Thus, the empirical copula estimator is entirely defined by the

component-wise ranks of the points in the sample.

Note that given that Ĉn is discontinuous, it is not a copula per se. Nevertheless, em-

pirical copulas possess various interesting asymptotic properties and can be used to de-

velop inference procedures, e.g., to compare copulas via the test underlined in Rémillard

& Scaillet (2007) or to test certain properties of the underlying copula of a random vector

such as the test of asymmetry presented in Genest & Nešlehová (2013).

13



Definition (Empirical copula process). For a continuous random vector X = (X1, . . . , Xd)

with unique underlying copula C, let (X11, . . . , X1d), . . . , (Xn1, . . . , Xnd) be a random sam-

ple from X and let Cn be the empirical copula estimator for C based on this sample. Then

the stochastic process Cn defined, for all u1, . . . , ud ∈ [0, 1], by

Cn(u1, . . . , ud) =
√
n {Cn(u1, . . . , ud)− C(u1, . . . , ud)}

is called the empirical copula process for X .

Similarly to empirical distribution functions, the empirical copula process has very

useful asymptotic properties. Under the regularity conditions for the underlying copula

C from Proposition 3.1 in Segers (2012), the empirical copula process Cn converges weakly

to a centered Gaussian process.

For each i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, let Uij = Fj(Xij). Further, let Gn denote the

empirical distribution function of the unobserved random sample

U1 = (U11, . . . , U1d), . . . , Un = (Un1, . . . , Und). (1.4)

Next, consider the process defined for, all u1, . . . , ud ∈ [0, 1], by

αn(u1, . . . , ud) =
√
n {Gn(u1, . . . , ud)− C(u1, . . . , ud)}.

Then, there exists a centered, tight, Gaussian process α on [0, 1]d such that αn ⇝ α as n→

∞ on L∞[0, 1]d, where L∞[0, 1]d is the space of bounded functions on [0, 1]d equipped with

the supremum norm. Moreover, the covariance function of α is given, for all u1, . . . , ud,

v1, . . . , vd ∈ [0, 1], by

cov{α(u1, . . . , ud), α(v1, . . . , vd)}

= C{min(u1, v1), . . . ,min(ud, vd)} − C(u1, . . . , ud)C(v1, . . . , vd).
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The stochastic process α so defined is called a C-Brownian sheet.

For each j ∈ {1, . . . , d}, let Ċj be the partial derivative of C with respect to its jth com-

ponent. Under the assumption that, for each j ∈ {1, . . . , d}, Ċj exists and is continuous

on the set Vd,j = {(u1, . . . , ud) ∈ [0, 1]d : 0 < uj < 1}, this weak convergence result can be

generalized as follows to distributions with arbitrary continuous margins.

Theorem 1.4.1. Let Cn =
√
n (Cn − C) be the empirical copula process on [0, 1]d. Under the

above assumptions about the continuity of the partial derivatives of C, Cn converges weakly, as

n→ ∞, to a centered Gaussian process C on [0, 1]d given, for all u1, . . . , ud ∈ [0, 1], by

C(u1, . . . , ud) = α(u1, . . . , ud)−
d∑

j=1

Ċj(uj)α(1, . . . , uj, . . . , 1),

where α is a C-Brownian sheet.

The asymptotic properties of empirical copula processes are used for a variety of in-

ference procedures about the copula of a random sample.

One intriguing fact about the empirical copula process is that under certain conditions,

it can have a smaller asymptotic covariance function than the standard empirical process

based on observations (1.4) from the copula, thereby leading to more precise inference.

This phenomenon was studied by Genest & Segers (2010) in the bivariate case, and by

Genest et al. (2019) in higher dimensions.
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Chapter 2

Aggregation-tree copula models and

conditional independence assumptions

Copula models are challenging in the high-dimensional setting. Indeed, in high dimen-

sions, copulas tend to have complicated densities, traditional models such as elliptical

and Archimedean copulas lack flexibility, and the inference procedures to validate these

models can also be quite complex. Several approaches have been proposed to remedy the

limitations of such models in high dimensions. Most notably, vine copula constructions

are discussed in the books by Kurowicka & Joe (2011) and Czado (2019); see also the book

by Joe (2014) and the review paper by Czado & Nagler (2021).

In this chapter, we present an alternative approach, which we refer to as aggregation-

tree copula models, originally proposed by Arbenz et al. (2012) and expanded upon by

Côté & Genest (2015). We examine the necessary conditional independence assumptions

which ensure that an aggregation-tree model generates a unique and well-defined multi-

variate distribution.
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2.1 Aggregation-tree copula models

Aggregation-tree copula models are a simple and attractive alternative to other solutions

to the challenge of copula models for high-dimensional data. Indeed, the previously men-

tioned approaches suffer from either being limited to a restrictive range of dependence

structures which they can model, or they require complex inference procedures. As will

be seen, aggregation-tree models are more flexible than traditional multivariate copula

families. They can accommodate a much larger range of dependence structures and they

are quite simple to implement even in high-dimensional settings.

Aggregation-tree models revolve around the use of low-dimensional copulas to define

recursively the dependence structure of aggregated versions of the original variables until

the dependence structure of the entire collection of variables has been specified. We will

focus on the version of these models that relies on bivariate copulas exclusively, similar

to what was presented by Côté & Genest (2015).

Given a collection X1, . . . , Xd of continuous random variables, the construction of an

aggregation-tree copula model for the random vector (X1, . . . , Xd) requires four elements:

(i) an aggregation function a;

(ii) a tree structure T for the model;

(iii) a collection of marginal distributions F1, . . . , Fd, and

(iv) a collection C1, . . . , Cd−1 of bivariate copulas.

These are described in turn.

Aggregation functions

The choice of aggregation function is a crucial part of the model construction process. An

aggregation function is a map a : R2 → R that allows us to combine multiple random

variables into one. This choice should be ideally determined by the context of the data
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and what suits the researcher. However, there are certain properties that are required for

an aggregation function to be suitable for these types of models:

(i) Commutativity: a(x, y) = a(y, x) for all x, y ∈ R.

(ii) Transitivity: a{a(x, y), z} = a{x, a(y, z)} for all z ∈ R.

(iii) Homogeneity: a(cx, cy) = ca(x, y) for any c ∈ R.

Another desirable property is that a(x, x) = x. These properties ensure that the order

in which the variables are aggregated does not matter. In particular, therefore, a unique

meaning is ascribed to the overall aggregate a(x1, . . . , xk), as any successive pair-wise

aggregation of x1, . . . , xk will lead to the same result. Examples of aggregation functions

that satisfy these properties are a(x, y) = x+ y, a(x, y) = xy, a(X, Y ) = min(x, y), a(x, y) =

max(x, y), as well as means and quasi-arithmetic means.

Ideally, the aggregation function should be chosen such that the combinations of vari-

ables created from the aggregation process have a meaningful interpretation in the con-

text of the analysis. For instance, Arbenz et al. (2012) and Côté & Genest (2015) used

a(x, y) = x + y as the aggregation function in their papers. Both articles were presented

in the context of risk modeling, where the random variables X1, . . . , Xd represented indi-

vidual risks. Accordingly,

a(Xi1 , . . . , Xik) = Xi1 + · · ·+Xik

was a combined risk. In the context of climatology, however, if we were working with

variables that represent the level of precipitation at a hydrological station across a certain

time-frame, for example, then using a(x, y) = max(x, y) might be a more sensible choice

given that the aggregated variables have a useful interpretation as the maximum level of

precipitation in a specific region.
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Tree structure

The tree structure is the other element of these models that describes the aggregation

process. The tree structure T represents the way in which the variables X1, . . . , Xd are

aggregated. It consists of a sequence of collections of index sets T1, . . . , Td, which represent

the order in which the variables are aggregated at each step of the aggregation process.

We always have T1 = {A11, . . . , Ad1} with Aj1 = {j} for all j ∈ {1, . . . , d}, and Td =

{{1, . . . , d}}. The construction of an aggregation-tree model which uses bivariate copulas

exclusively proceeds as follows:

For each i ∈ {1, . . . , d− 1}:

(1) Select a pair of indices ℓi ̸= ki ∈ {1, . . . , d+ 1− i}.

(2) The index sets Aℓii and Akii are combined, as we set A1(i+1) = Aℓii

⋃
Akii.

(3) The remaining index setsAji, where j /∈ {ℓi, ki} are relabeled asA2(i+1), . . . , A(d−i)(i+1)

and we set Ti+1 = {A1(i+1), . . . , A(d−i)(i+1)}.

(4) Choose a copula CAjii
Akii

to model (MAji
,MAki

), where MA = a(Xℓ : ℓ ∈ A).

This process can be modified by combining a different number of index sets in Step (2)

and using copulas of the corresponding dimension of the aggregated variables in Step (4).

We refer to these models as aggregation-tree models given that the tree structure can be

represented as a tree with a single root, d leaf nodes, and d− 1 branching nodes with ex-

actly two children nodes. In this tree representation, the leaf nodes represent the marginal

random variables and the branching nodes represent the aggregated random variables.

The copulas characterize the dependence structure of each of the aggregated variables

associated with the children nodes which are combined to create a branching node.

The following example serves to illustrate how the tree structure defines the depen-

dence structure in the model.

Example 2.1.1. Consider an aggregation-tree model for a 4-dimensional random vector

(X1, X2, X3, X4) with aggregation function a(x, y) = x+y and tree structure given by T1 =
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Figure 2.1: Example of a tree structure for four variables using partial sums as the aggre-

gation function in Example 2.1.1.

{{1}, {2}, {3}, {4}}, T2 = {{1, 2}, {3}, {4}}, T3 = {{1, 2}, {3, 4}} and T4 = {{1, 2, 3, 4}}. To

fit an aggregation-tree model with this tree structure and aggregation function, we require

a copula C{1}{2} and marginal distributions F1 and F2 to model (X1, X2), a copula C{3}{4}

and marginal distributions F3 and F4 to model (X3, X4) and finally, a copula C{1,2}{3,4} to

model (X1 +X2, X3 +X4).

As argued by Arbenz et al. (2012) and Côté & Genest (2015), aggregation-tree models

require a crucial assumption about the conditional independence of the node variables in

the tree structure. Such an assumption is needed to ensure that we obtain a unique and

well-defined joint distribution from the model. In the following sections, we explore dif-

ferent formulations of the conditional independence assumption and provide proofs that

they are sufficient to obtain a unique and well-defined distribution. Before we proceed,

we introduce some notation.

Notation

To facilitate our discussion of properties and proofs related to aggregation-tree copula

models, we introduce some notation. For each A ⊆ D = {1, . . . , d}, let FA denote the joint

distribution function of the vector XA = (Xi : i ∈ A) and let FA denote the distribution

function of MA = a(Xi : i ∈ A). Moreover, for any A ⊂ D, let Ā = D \ A.
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We use A ∈ T to denote A ∈
⋃d

i=1 Ti. We denote the index sets for the branching nodes

of the tree structure (aggregated variables) by B(T ) = {A ∈ T : |A| > 1}, and for the leaf

nodes (marginal variables) by L(T ) = {A ∈ T : |A| = 1}.

For any aggregated variable MA, A ∈ B(T ), we denote the index sets of the descen-

dants of MA by D(A) = {B ∈ T : B ⊂ A} and the index sets of the leaf descendants of

MA by L(A) = {B ∈ L(T ) : B ⊂ A}. If a branching node MA is obtained by combining

the nodes MB1 and MB2 , we call MB1 and MB2 children nodes of MA and we use C(A) to

denote the index sets of the children of MA.

2.2 Conditional expectation: Preliminaries

Before presenting the conditional independence assumption for aggregation-tree models,

we introduce some preliminary results about conditional expectation and conditional in-

dependence which are used in proofs. First, we define conditional expectations in terms

of σ-fields on the underlying probability space.

Definition 2.2.1 (Conditional expectation). Let (Ω,S,P) be a probability space and let

m(S) be the collection of real-valued random variables on this probability space. Let

X ∈ L1(P) = {X ∈ m(S) : E(|X|) < ∞} and let A be a sub-field of S. There exists

an almost surely unique linear operator E(· | A) : L1(P) → L1(P) called the conditional

expectation (conditioning on A) such that, for all A ∈ A,

∫
A

E(X | A)dP =

∫
A

XdP.

Similarly, given Y ∈ L1(P), let σ(Y ) denotes the σ-field generated by Y , i.e., the small-

est σ-field containing Σ = {Y −1(B) : B ∈ B(R)}, where B(R) denotes the Borel σ-field on

R. We define E(· | Y ) : L1(P) → L1(P) by E(X | Y ) = E{X | σ(Y )}. For Y1, . . . , Yn ∈ L1(P),

we define E(· | Y1, . . . , Yn) : L1(P) → L1(P) with E(X | Y1, . . . , Yn) = E{X |
∨n

i=1 σ(Yi)},

21



where
n∨

i=1

σ(Yi) = σ

{
n⋃

i=1

σ(Yi)

}
= σ(Y1, . . . , Yn).

With this definition of conditional expectations in terms of σ-fields, conditional expec-

tation possesses many important properties similar to those of regular expectation that

we will make use of.

Properties of conditional expectation

The following facts are listed on p. 88 of the book by Williams (1991).

(i) Positivity: if X ≥ 0, then E(X | A) ≥ 0 almost surely.

(ii) Lp-contractivity: ∥E(X | A)∥p ≤ ∥X∥p for any real p ∈ [1,∞), where ∥·∥p = E(|·|p)1/p

is the standard Lp(P) norm.

(iii) Monotone convergence: Let {Xi : i ∈ N} be any sequence of non-negative random

variables such that Xn converges monotonically to X as n → ∞ almost surely, i.e.,

Xn ≤ Xn+1 for all n ∈ N and Xn → X as n → ∞ (denoted as Xn ↗ X). Then

E(Xn | A) converges monotonically to E(X | A) almost surely as n→ ∞.

(iv) Dominated convergence: Let {Xi : i ∈ N} be any sequence of random variables

such that |Xn| ≤ Z almost surely for all n ∈ N and for some Z ∈ L1(P). If Xn → X

almost surely as n→ ∞, then E(Xn | A) → E(X | A) almost surely as n→ ∞.

Well-known inequalities for expected values of random variables such as Jensen’s and

Markov’s inequality also have equivalent versions for conditional expectations. There

are other important properties for conditional expectation relating to the σ-field used for

conditioning, as listed below:

(v) If Y is measurable with respect to a σ-field A, which we denote as Y ∈ m(A), then

E(Y X | A) = Y E(X | A) for any X . More generally, for any measurable function

g with respect to S, E{g(Y )X | Y } = g(Y )E(X | Y ). Moreover, if X ∈ m(A), then

E(X | A) = X almost surely.
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(vi) Tower property: Given any σ-fields G and H such that G ⊂ H ⊂ S, one has

E
{
E(X | H) | G

}
= E(X | G) = E

{
E(X | G) | H

}
almost surely.

The tower property is particularly useful and intuitive. It asserts that conditioning on

a larger σ-field does not affect the expected value of a conditional expectation.

Definition 2.2.2 (Conditional probability). Let F be a sub-field of S. Then the conditional

probability P(A | F) is given, for any A ∈ S, by

P(A | F) = E(IA | F).

In particular, for any collection X, Y1, . . . , Yn of random variables in (Ω,S,P), and for any

A ∈ B(Rd), one has

P(X ∈ A | Y1, . . . , Yn) = E{IA(X) | Y1, . . . , Yn}.

Using this definition for conditional probabilities, we define conditional independence

among random variables.

Definition 2.2.3 (Conditional independence). Let F , H and G be sub-fields of S. Then F

and H are conditionally independent given G, denoted F ⊥⊥G H, if for any A ∈ F and

B ∈ H, the identity

P(A ∩B | G) = P(A | G)P(B | G)

holds almost surely.

Additionally, let X and Y be random variables on (Ω,S,P). Then X and Y are con-

ditionally independent given G, denoted X ⊥⊥G Y , if the σ-fields σ(X) and σ(Y ) are

conditionally independent given G. Similarly, for any collection of random variables

Z1, . . . , Zn on (Ω,S,P), the random variables X and Y are conditionally independent
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given Z1, . . . , Zn, denoted X ⊥⊥Z1,...,Zn Y , if the σ-fields σ(X) and σ(Y ) are conditionally

independent given
∨n

i=1 σ(Zi) .

From this definition, it follows directly that for any σ-fields F , G, H, and W such that

G ⊂ F , if we have F ⊥⊥W H, then it follows that G ⊥⊥W H. In particular, for a measurable

function of random variables X1, . . . , Xn, let W = g(X1, . . . , Xn). If X1, . . . , Xn ⊥⊥G Y ,

then we get W ⊥⊥G Y because σ(W ) ⊂
∨n

i=1 σ(Xi).

However, verifying the conditional independence between σ-fields or variables may

be difficult from the definition alone. Theorem 8.9 of Kallenberg (2022), which is due to

Joseph Doob (1910–2004), provides a very useful alternative characterization of condi-

tional independence in terms of the ability to “drop” certain σ-fields from the condition-

ing. This result is stated and proved below for completeness, following the arguments

from Kallenberg (2022) since similar techniques will be used in other proofs.

Theorem 2.2.1 (Doob). For any σ-fields F , G and H, the following statements are equivalent:

(i) F ⊥⊥G H;

(ii) P(· | F ∨ G) = P(· | G) almost surely on H.

Proof. First, we prove that (ii) implies (i). Assume P(H | F ∨ G) = P(H | G) almost surely

for all H ∈ H. Let F ∈ F and H ∈ H. Then, by the tower property, one finds

P (H ∩ F | G) = E (IH∩F | G) = E {E (IH∩F | G ∨ F) | G} = E {IFE (IH | G ∨ F) | G} ,

given that IF ∈ m(G ∨ F). Moreover, using (ii), E (IH | G ∨ F) = E (IH | G) almost surely.

Hence, we have almost surely that

E {IFE (IH | G ∨ F) | G} = E(IF | G)E (IH | G) .

Thus, P (H ∩ F | G) = P (H | G)P (F | G) almost surely for all F ∈ F and H ∈ H, which

allows us to conclude that indeed, F ⊥⊥G H.
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To prove the reverse implication, we must check that if F ⊥⊥G H, then for any H ∈ H,

∫
A

P(H | G)dP =

∫
A

P(H | F ∨ G)dP = P(A ∩H) (2.1)

holds for all A ∈ F ∨G. First, we show that this holds for all A = F ∩G, where G ∈ G and

F ∈ F . Note that if A = F ∩G with G ∈ G and F ∈ F , then we have

∫
A

P(H | G)dP =

∫
IAE (IH | G) dP =

∫
IGIFE (IH | G) dP = E [E {IGIFE (IH | G) | G}] .

The right-hand term can be rewritten as

E {IGE (IF | G) E (IH | G)} = E {IGE (IF∩H | G)} =

∫
G

P (F ∩H | G) dP,

where the first inequality holds because F ⊥⊥G H. The integral in this last expression

satisfies

∫
G

P (F ∩H | G) dP =

∫
G

IF∩HdP = P {G ∩ (F ∩H)} = P (A ∩H) .

Note that C = {F ∩ G : F ∈ F and G ∈ G} generates F ∨ G. Thus, it suffices to show

that M = {A ∈ F ∨ G : (2.1) holds for A} is a monotone class to show that M = F ∨ G

since C ⊂ M.

Let A1 ⊂ A2 ⊂ · · · be an increasing sequence of sets in M converging to A =
∞⋃
i=1

Ai.

Then IAi
↗ IA as i→ ∞, so by monotone convergence, one gets

∫
A

P (H | G) dP = lim
i→∞

∫
Ai

P (H | G) dP

(2.1)
= lim

i→∞

∫
Ai

P (H | F ∨ G) dP =

∫
A

P (H | F ∨ G) dP.

Therefore, A ∈ M. Alternatively, let A1 ⊃ A2 ⊃ · · · be a decreasing sequence of sets in

M converging to A =
∞⋂
i=1

Ai. Then, IAi
→ IA as i → ∞ and because |IAi

| ≤ IA1 for every
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integer i ∈ N, it also follows by dominated convergence that

∫
A

P(H | G)dP =

∫
A

P(H | F ∨ G)dP

using the same argument as for increasing sequences. Therefore, A ∈ M and so, M is a

monotone class.

The characterization of conditional independence from Theorem 2.2.1 is much simpler

to work with than the original definition. Another important result due to Doob is the

chain rule for conditional expectation; see Theorem 8.12 in Kallenberg (2022). This result

pertains to the manipulation of conditional independence statements that involve more

than three σ-fields. Thus, we introduce conditional independence statements that relate

to larger numbers of σ-fields.

For a sequence F1,F2, . . . of σ-fields, let

∞∨
n=1

Fn = σ

(
∞⋃
n=1

Fn

)
.

Then, for any σ-fields G and H, the conditional independence statement H ⊥⊥G F1,F2, . . .

is denoted H ⊥⊥G
∨∞

n=1Fn and H ⊥⊥F1,...,Fn Fn+1 denotes H ⊥⊥∨n
i=1 Fi

Fn+1. With this, we

proceed with Doob’s chain rule. This proof also follows the arguments from Kallenberg

(2022).

Theorem 2.2.2 (Doob). For any σ-fields G , H and F1,F2, . . ., the following are equivalent:

(i) H ⊥⊥G F1,F2, . . .;

(ii) H ⊥⊥G,F1,...,Fn Fn+1 for every n ≥ 0.

Proof. First, we show that (i) implies (ii). If (i) holds, then, for every integer n ∈ N, H ⊥⊥G

F1, . . . ,Fn and H ⊥⊥G F1, . . . ,Fn+1. Given that

P (· | G,F1, . . . ,Fn) = P

{
· | G ∨

(
n∨

i=1

Fi

)}
,
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Theorem 2.2.1 implies that, for all H ∈ H, one has

P(H | G,F1, . . . ,Fn) = P(H | G) = P(H | G,F1, . . . ,Fn+1)

almost surely. Therefore, from the opposite equivalence from Theorem 2.2.1, it follows

that H ⊥⊥G,F1,...,Fn Fn+1.

Next, we show that (ii) implies (i). If (ii) holds, then by Theorem 2.2.1, one has that,

for every integer n ≥ 0 and every set H ∈ H,

P (H | G,F1, . . . ,Fn) = P (H | G,F1, . . . ,Fn+1)

almost surely. Thus, for any integer m > 1, we get

P (H | G) = P (H | G,F1, . . . ,Fm) (2.2)

So, using the inverse equivalence from Theorem 2.2.1, we get H ⊥⊥G,F1, . . . ,Fm for

every integerm ≥ 1. We will show that this implies H ⊥⊥G F1,F2, . . . through a monotone-

class argument. Consider

A = {F : ∃N∈N ∀i∈{1,...,N} ∃Fi∈Fi
F = F1 ∩ · · · ∩ Fn}

and

M =

{
F ∈

∞∨
i=1

Fi : ∀H∈H P(F ∩H | G) = P(F | G)P(H | G) a.s.

}
.

Note that A generates
∨∞

i=1Fi. By (2.2), one has

P(H ∩ A | G) = P(H | G)P(A | G)

for any A ∈ A almost surely, so A ⊂ M. Thus, it suffices to show that M is a σ-field to

show that
∨∞

i=1Fi = M.
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Clearly, Ω ∈ M. Moreover, let A ∈ M. Then, almost surely,

P(H ∩ A∁ | G) = P (H | G)− P (H ∩ A | G) = P (H | G)− P (H | G)P (A | G)

= P (H | G) {1− P (A | G)} = P (H | G)P(A∁ | G).

Therefore, A∁ ∈ M. Finally, let A1 ⊂ A2 ⊂ · · · be an increasing sequence in M

converging to A =
∞⋃
i=1

Ai. Then, almost surely,

P (H ∩ A | G) = lim
i→∞

P (H ∩ Ai | G)

= lim
i→∞

P (H | G)P (Ai | G) = P (H | G)P (A | G) .

Accordingly, A ∈ M and so M is a σ-field.

An important consequence of the chain rule is that H ⊥⊥F1,...,Fn Fn+1 for every integer

n ≥ 1 if and only if H ⊥⊥ F1,F2, . . . This proof also implies that for every integer n ≥ 2,

H ⊥⊥G F1 . . . ,Fn if and only if H ⊥⊥G,F1,...,Fm Fm+1 for all m ∈ {0, . . . , n− 1}.

2.3 Conditional independence assumptions

Aggregation-tree models always provide a unique distribution for all the node variables

in the tree structure. However, as previously mentioned, it is possible to obtain a unique

and well-defined joint distribution for the leaves of the tree structure if certain assump-

tions about the conditional independence of the nodes are satisfied. We will present a

more general version of these assumptions that apply to tree structures where more than

two variables can be aggregated at each step, as some of these proofs are significantly

different when nodes are allowed to have multiple sibling nodes in the tree structure.

Originally, Arbenz et al. (2012) used the following conditional independence assumption.

Conditional Independence Assumption (A): For any branching nodeMI , I ∈ B(T ), with

descendants {MJ : J ∈ D(I)}, one has {MJ : J ∈ D(I)} ⊥⊥MI
{MJ : J ∈ T \ D(I)}.
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Côté & Genest (2015) provided a similar conditional independence assumption for the

models they presented. Their condition is stated next.

Conditional Independence Assumption (B): For any branching node MI , I ∈ B(T ), with

leaf descendants {MJ : J ∈ L(I)} = {Xi : i ∈ I}, one has {Xi : i ∈ I} ⊥⊥MI
{Xi : i ∈ Ī}.

However, we will show in the sequel that a weaker form of conditional independence

assumption suffices.

Local Conditional Independence Assumption (C): For any branching node MI , I ∈

B(T ), with children nodes MI1 , . . . ,MIn , we assume that for each k ∈ {1, . . . , n}, the leaf

descendants of each MIk are conditionally independent of the leaf descendants of all its

sibling nodes conditioning on MIk , i.e., {Xj : j ∈ Ik} ⊥⊥MIk
{Xj : j ∈

⋃
i ̸=k Ii}.

We will prove below that all of these conditional independence assumptions are equiv-

alent. If (MI)I∈T satisfies any of the assumptions (A), (B) or (C), then it must satisfy the

other two. This result is formally stated and proved below. First, we proceed by proving

the equivalence of (A) and (B).

Theorem 2.3.1. Given an aggregation-tree model for a random vector (X1, . . . , Xd) with a tree

structure T and aggregation function a, then (MI)I∈T satisfies the conditional independence as-

sumption (A) if and only if it satisfies the conditional independence assumption (B).

Proof. It is clear that if (MI)I∈T satisfies the conditional independence assumption (A),

then it satisfies the conditional independence assumption (B) because {Xi : i ∈ I} ⊂

{MJ : J ∈ D(I)} and {Xi : i ∈ Ī} ⊂ {MJ : J ∈ T \ D(I)}. Hence, it remains to show that

(B) implies (A).

Let I ∈ B(T ). For any J ∈ D(I), one has σ(MJ) ⊂ σ(Xi : i ∈ I). Thus, σ(MJ : J ∈

D(I)) is a sub-field of σ(Xi : i ∈ I). As for σ{MJ : J ∈ T \ D(I)}, we may rewrite this

σ-field as XI ∨ YI , where

XI = σ(MJ : J ∈ T and I ⊊ J), YI = σ(MJ : J ∈ T and I ∩ J = ∅).
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Given that if I ∩ J = ∅, then J ⊂ Ī , one has YI ⊂ σ(Xi : i ∈ Ī). When I ⊊ J ,

MJ is a measurable function of MI and {Xi : i ∈ J \ I} ⊂ {Xi : i ∈ Ī}. Thus, XI is a

sub-field of σ(MI) ∨ σ(Xi : i ∈ Ī). Rewriting the conditional independence statement

{MJ : J ∈ D(I)} ⊥⊥MI
{MJ : J ∈ T \ D(I)} in terms of σ-fields, we get

σ{MJ : J ∈ D(I)} ⊥⊥σ(MI) σ{MJ : J ∈ T \ D(I)}.

Given that σ{MJ : J ∈ D(I)} ⊂ σ{Xi : i ∈ I} and σ{MJ : J ∈ T \ D(I)} ⊂ {σ(Xi :

i ∈ Ī) ∨ σ(MI)}, we know that the previous statement is a consequence of the following

conditional independence statement:

σ(Xi : i ∈ I) ⊥⊥σ(MI) {σ(Xi : i ∈ Ī) ∨ σ(MI)}.

By Doob’s chain rule (Theorem 2.2.2), this statement is equivalent to

σ(Xi : i ∈ I) ⊥⊥σ(MI) σ(Xi : i ∈ Ī),

which is exactly the σ-field form of {Xi : i ∈ I} ⊥⊥MI
{Xi : i ∈ Ī} from (B). Therefore,

{Xi : i ∈ I} ⊥⊥MI
{Xi : i ∈ Ī} implies {MJ : J ∈ D(I)} ⊥⊥MI

{MJ : J ∈ T \ D(I)}. As a

consequence, if (MI)I∈T satisfies (B) then it satisfies (A).

Now that the equivalence of (A) and (B) has been established, we prove the equiva-

lence of (B) and (C) to show that all the conditional independence assumptions are equiv-

alent.

Theorem 2.3.2. Given an aggregation-tree model for random vector (X1, . . . , Xd) with a tree

structure T and aggregation function a, then (MI)I∈T satisfies the local conditional independence

assumption (C) if and only if it satisfies the conditional independence assumption (B).

Before we prove this result, we require an important lemma.

Lemma 2.3.3. For any σ-fields A, G ,F , H such that G ⊂ F ⊂ H, if A ⊥⊥G H, then A ⊥⊥F H.
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Proof. To prove this result, it is sufficient to show that P(A | G) = P(A | F) almost surely

for any A ∈ A. This is because if A ⊥⊥G H, then P(A | H ∨ G) = P(A | G) almost surely by

Theorem 2.2.1. However, given that G ⊂ F ⊂ H, one has

P(A | H ∨ G) = P(A | H) and P(A | H ∨ F) = P(A | H)

almost surely. Thus, if P(A | G) = P(A | F) almost surely, we have

P(A | H ∨ F) = P(A | H) = P(A | H ∨ G) = P(A | G) = P(A | F)

almost surely, which implies A ⊥⊥F H by Theorem 2.2.1.

Let F ∈ F , then P(A ∩ F ) = E{P(A | F)IF}. By the tower property,

E{P(A | F)IF} = E
[
E{E (IA | H) | F}IF

]
.

Given that E(IA | H) = E(IA | G) almost surely and E(IA | G) is F-measurable because

G ⊂ F , we get

E{P(A | F)IF} = E[E{E(IA | G) | F}IF ] = E{E(IA | G)IF} = E{P(A | G)IF}.

Thus, P(A ∩ F ) = E{P(A | G)IF} for all F ∈ F . By the almost-sure uniqueness of condi-

tional probability, this implies that P(A | G) = P(A | F) almost surely.

Intuitively, this result asserts that incorporating more information in the conditioning

does not affect the conditional independence. We now proceed with the proof of Theo-

rem 2.3.1.

Proof. Clearly, conditional independence assumption (B) implies conditional indepen-

dence assumption (C), so we will show that (C) implies (B). Suppose that (MI)I∈T sat-
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isfies (C). We will prove inductively that for every branching node MI , I ∈ B(I), we have

{Xℓ : ℓ ∈ I} ⊥⊥MI
{Xℓ : ℓ ∈ Ī}.

Base case (XI is a child of the root node): Let |B(T )| > 1 and let MI1 , . . . ,MIn be the

children nodes of the root of the tree MD = a(Xi : i ∈ {1, . . . , d}). By (C), for any MIj , we

have {Xℓ : ℓ ∈ Ij} ⊥⊥MIj
{Xℓ : ℓ ∈

⋃
k ̸=j Ik}. However, given that MIj is a child of the root

node, {Xℓ : ℓ ∈
⋃

k ̸=j Ik} = {Xℓ : ℓ ∈ Īj}. Therefore, {Xℓ : ℓ ∈ Ij} ⊥⊥MIj
{Xℓ : ℓ ∈ Īj}.

Induction step: Let MI1 , . . . ,MIn be the children nodes of a branching node MI ̸= MD

and assume that {Xℓ : ℓ ∈ I} ⊥⊥MI
{Xℓ : ℓ ∈ Ī}. Rewriting this conditional independence

statement in terms of σ-fields, we get σ(Xi : i ∈ I) ⊥⊥σ(MI) σ(Xi : i ∈ Ī), where σ(MJ : J ∈

A) =
∨

J∈A σ(MJ). Given that MI is a measurable function of its children nodes, we have

σ (MI) ⊂
n∨

k=1

σ(MIk) ⊂ σ(MIj)
∨{∨

k ̸=j

σ(Xi : i ∈ Ik)

}
⊂ σ(Xi : i ∈ I).

Fix an arbitrary j ∈ {1, . . . , n}. By Lemma 2.3.3, σ(Xi : i ∈ I) ⊥⊥σ(MI) σ(Xi : i ∈ Ī) implies

σ(Xi : i ∈ I) ⊥⊥σ(MIj
)∨(

∨
k ̸=j σ(Xi:i∈Ik)) σ(Xi : i ∈ Ī).

In particular,

σ(Xi : i ∈ Ij) ⊥⊥σ(MIj
)∨(

∨
k ̸=j σ(Xi:i∈Ik)) σ(Xi : i ∈ Ī).

Moreover, σ(Xi : i ∈ Ij) ⊥⊥σ(MIj
)

∨
k ̸=j σ(Xi : i ∈ Ik) by (C). Thus, by Doob’s chain rule

Theorem 2.2.2, we deduce that

σ(Xi : i ∈ Ij) ⊥⊥σ(MIj
) σ(Xi : i ∈ Ī)

∨{∨
k ̸=j

σ(Xi : i ∈ Ik)

}
.

Rewriting this conditional independence statement in terms of random variables gives

{Xℓ : ℓ ∈ Ij} ⊥⊥MIj
{Xℓ : ℓ ∈ Īj}, as desired. This argument can be repeated for every

I ∈ B(T ) by going lower down the hierarchy of the tree structure.
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Finally, we may show that under any of these conditional independence assumptions,

the model construction provides a unique and well-defined joint distribution for the leaf

nodes of the tree. We choose to work with (C) for this proof.

Theorem 2.3.4. Given an aggregation-tree model for random vector (X1, . . . , Xd) with a tree

structure T , aggregation function a, and marginal distributions F1, . . . , Fd. If (MI)I∈T satisfies

the conditional independence assumption (C), a unique and well-defined joint distribution for

(X1, . . . , Xd) exists.

Proof. By construction X1, . . . , Xd are the leaf nodes of the tree structure. It suffices to

prove that a joint cumulative distribution function on Rd with x 7→ P(Xj ≤ xj : j ∈

{1, . . . , d}) exists and is unique. To do this, we will inductively prove that for every

branching node MI , P(Xj ≤ xj : j ∈ I) is well -defined and unique.

Base case (I ∈ L(T )): If I ∈ L(T ), then MI = Xi for some i ∈ {1, . . . , d}, therefore

L(I) = {{i}}. By the model assumptions, we have that, for all x1, . . . , xd ∈ R,

P(Xj ≤ xj : j ∈ I) = P(Xi ≤ xi) = Fi(xi).

Induction step: Let I ∈ B(T ) and let MI1 , . . . ,MIn be the children nodes of MI . We

assume that P{Xj ≤ xj : j ∈ Ik} is unique and well-defined for each xj ∈ R, j ∈ Ik and

each of the children nodes of MI . To this end, fix an arbitrary xi ∈ R, i ∈
⋃n

k=1 Ik. We

rewrite the joint distribution using iterated conditioning on MI1 , . . . ,MIn , viz.

P (Xj ≤ xj : j ∈ I) = E
{
P(Xj ≤ xj : j ∈ I |MI1 , . . . ,MIn)

}
.

We claim that

P(Xj ≤ xj : j ∈ I |MI1 , . . . ,MIn) =
n∏

k=1

P(Xj ≤ xj : j ∈ Ik |MI1 , . . . ,MIn).
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To establish this claim, we prove that Bk ⊥⊥A B(k), where for each k ∈ {1, . . . , n},

Bk =
∨
j∈Ik

σ(Xj), B(k) =
∨
j ̸=k

Bj, Ak = σ(MIk), A =
n∨

j=1

Aj, A(k) =
∨
j ̸=k

Aj.

For any k ∈ {1, . . . , n}, let Bk ∈ Bk. We know that Bk ⊥⊥Ak
B(k) by (C). Also, for

each j ̸= k, Aj ⊂ B(k) because each MIj is a measurable function of its leaf descendants.

Therefore, Bk ⊥⊥Ak
B(k)

∨
A(k). Thus, we have

P
(
Bk | B(k) ∨ A

)
= P

(
Bk | B(k) ∨ Ak ∨ A(k)

)
= P (Bk | Ak)

almost surely by the (i) =⇒ (ii) implication from Theorem 2.2.1. Moreover, given that

A(k) is a sub-field of B(k)

∨
A(k), Bk ⊥⊥Ak

B(k)

∨
A(k) also implies Bk ⊥⊥Ak

A(k).

By the (i) =⇒ (ii) implication from Theorem 2.2.1 once again, we get P (Bk | Ak) =

P
(
Bk | Ak ∨ A(k)

)
= P (Bk | A). This implies that P

(
Bk | B(k) ∨ A

)
= P (Bk | A) for all

Bk ∈ Bk. Consequently, by the (ii) =⇒ (i) implication from Theorem 2.2.1, Bk ⊥⊥A B(k)

and given that this holds for all k ∈ {1, . . . , n}, one finds

P (Xj ≤ xj : j ∈ I |MI1 , . . . ,MIn) =
n∏

k=1

P (Xj ≤ xj : j ∈ Ik |MI1 , . . . ,MIn) .

Moreover, for every k ∈ {1, . . . , n},

P(Xj ≤ xj : j ∈ Ik |MI1 , . . . ,MIn) = P(Xj ≤ xj : j ∈ Ik |MIk),

once again by Theorem 2.2.1, because (Xj : j ∈ Ik) ⊥⊥MIk
(MIj : j ̸= k) by conditional

independence assumption (C). Combining this with the previous result, we have

P (Xj ≤ xj : j ∈ I) = E

{
n∏

k=1

P (Xj ≤ xj : j ∈ Ik |MIk)

}
.
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By the induction hypothesis, then each P(Xj ≤ xj : j ∈ Ik | MIk) is unique and well-

defined. Under the model construction, the joint distribution of the vector (MI1 , . . . ,MIn)

is given by the copula CI1,...,In = C and the marginal distributions FI1 , . . . , FIn . By Sklar’s

theorem, the random vector (MI1 , . . . ,MIn) has the same distribution as (F−1I1
(U1), . . .,

F−1In
(Un)), where the vector (U1, . . ., Un) has distribution C. Thus,

P (Xj ≤ xj : j ∈ I) =

∫
[0,1]n

n∏
k=1

P
{
Xj ≤ xj : j ∈ Ik |MIk = F−1Ik

(uk)
}
dC(u).

This gives a unique and well-defined formula for P(Xj ≤ xj : j ∈ I). Similarly to the

previous proof, this argument can be repeated for every branching node MI , I ∈ B(T ),

to show that the joint distribution of (Xj : j ∈ I) is uniquely defined by going up on the

hierarchy of the tree structure.

However, we shall soon illustrate that, in general, there is no closed form for the joint

pdf of aggregation-tree models. Thus, to gain further insight into the properties of these

models, we examine sampling techniques for aggregation-tree models.
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Chapter 3

Sampling from aggregation-tree models

In this chapter, we present two approaches to sample from an aggregation-tree model

which uses aggregation function a, copulasC1, . . . , Cd−1, and marginal distributionsF1, . . . , Fd.

One of these approaches, the direct simulation approach, is based on simulating directly

from the joint distribution, provided that the conditional independence assumption (C)

holds, using conditional copulas. The second approach, the sample reordering approach,

consists of reordering independent samples drawn from the marginal distributionsF1, . . . , Fd

to introduce the dependence structures specified by the aggregation-tree model with cop-

ulas C1, . . . , Cd−1. These sampling techniques are required for the application of certain

model validation techniques which we will introduce later on.

3.1 Direct simulation approach

Under the conditional independence assumption (C), the model will provide a unique

joint distribution for the random vector (X1, . . . , Xd). If we are able to sample from this

joint distribution, we can compute any remaining branching nodes in the tree. We can

obtain a recursive formula for the joint density of all the leaf nodes of the tree. The fol-

lowing proof follows the same approach as that which was presented in Côté & Genest
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(2015), where partial sums were used as the aggregation function. However, ours is valid

for an arbitrary aggregation function.

Theorem 3.1.1. Suppose that an aggregation-tree model is given for the variables X1, . . . , Xd

with tree structure T , where for each i ∈ {1, . . . , d− 1}, the variables MB1i
=MAℓii

and MB2i
=

MAkii
are joined at the ith aggregation step. If (MI)I∈T satisfies the conditional independence

assumption, then the joint density for XD = (X1, . . . , Xd) is given by

fD(x1, . . . , xd) =
d−1∏
i=1

cB1iB2i
[FB1i

{a(xj : j ∈ B1i)}, FB2i
{a(xj : j ∈ B2i)}]

d∏
i=1

fi(xi), (3.1)

where each cB1iB2i
is the density of the copula CB1iB2i

that joins MB1i
and MB2i

, and each fi is the

density function of Fi.

Proof. We will proceed by induction on d ∈ N.

Base case (d = 2): The only possible tree structure for d = 2 variables has A11 = {1},

A21 = {2}. Assume that F{1,2} = C1(F1, F2). It follows that one has, for all x1, x2 ∈ R,

f{1,2}(x1, x2) = c1{F1(x1), F2(x2)}f1(x1)f2(x2),

which is of the form (3.1).

Induction step (d > 2): Suppose that the statement of the theorem is true for any aggrega-

tion-tree model of dimension k < d+1. We will show that Eq. (3.1) also holds for any tree

structure for d+1 variables. Consider a tree structure T for d+1 variables where we have

Td = {A1d, A2d}. First, we consider the case where |A1d| > 1 and |A2d| > 1. The sub-tree

obtained from the nodes descendants of MA1d
with it as the root node represents a tree

structure with |A1d| = d1 ≤ d leaf nodes. By the conditional independence assumption

(C), if xA = (xℓ : ℓ ∈ A) and mA = a(xA), then

fD(x1, . . . , xd+1) = fA1d
(xA1d

|MA1d
= mA1d

)fA2d
(xA2d

|MA1d
= mA1d

)fMA1d
(mA1d

),
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where fMA1d
is the density for MA1d

. Given that d1 ≤ d, one can invoke the induction

hypothesis to get

fA1d
(xA1d

|MA1d
= mA1d

)fMA1d
(mA1d

) = fA1d
(xA1d

)

=
∏

i∈D̃1d

cB1iB2i
{FB1i

(mB1i
), FB2i

(mB2i
)}
∏

j∈A1d

fj(xj), (3.2)

where D̃1d is the set of indices for the copulas among CB11B21 , . . . , CB1(d−1)B2(d−1)
that were

used to join the descendants of MA1d
in the tree structure. Moreover, given that the model

specifies that CA1dA2d
is the copula of (MA1d

,MA2d
) with density cA1dA2d

, we have

fMA2d
(mA2d

|MA1d
= mA1d

) = cA1dA2d
{FA1d

(mA1d
), FA2d

(mA2d
)}fMA2d

(mA2d
). (3.3)

We may also apply the induction hypothesis for the joint distribution of (Xi : i ∈ A2d).

By the conditional independence assumption (C), we deduce that

fA2d
(xA2d

|MA1d
= mA1d

)

= fA2d
(xA2d

|MA1d
= mA1d

,MA2d
= mA2d

)fMA2d
(mA2d

|MA1d
= mA1d

)

= fA2d
(xA2d

|MA2d
= mA2d

)fMA2d
(mA2d

|MA1d
= mA1d

).

From (3.3), we get

fA2d
(xA2d

|MA1d
= mA1d

) = fA2d
(xA2d

)cA1dA2d
{FA1d

(mA1d
), FA2d

(mA2d
)}.

Using the induction hypothesis, we get

fA2d
(xA2d

|MA1d
= mA1d

) =
∏

i∈D̃2d

cB1iB2i
{FB1i

(mB1i
), FB2i

(mB2i
)}
∏

j∈A2d

fj(xj).

Combining this result with (3.2), we obtain the desired formula.
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If A2d = {xj} for some j ∈ {1, . . . , d + 1}, the situation is simpler. Indeed, the model

assumes that

fj(xj |MA1d
= mA1d

) = cA1dA2d
{FA1d

(mA1d
), Fj(xj)}fj(xj).

Combining this with (3.2) yields the desired result.

This result provides a formula for the joint density for (X1, . . . , Xd) when bivariate

copulas are exclusively used. The modeler may then select their preferred method to

obtain a sample from the density. The main drawback for this approach is that the for-

mula for the density may not have a closed form. This may depend on the choice of the

aggregation function for the model.

For example, even when working with partial sums for the aggregation function, the

distribution functions of the branching nodes in the tree are given by convolutions which

may not have a closed form. Moreover, the formula for the joint density is only valid

when the conditional densities fA1i
(xA1i

|MA1i
) exist for every integer i ∈ {1, . . . , d − 1}.

Therefore, we may be unable to use these methods for models that use certain choices

of aggregation function such as a(x, y) = max(x, y), where the conditional distribution of

(Xj : j ∈ A1i) given MA1i
= max(Xj : j ∈ A1i) is not absolutely continuous.

As we are interested in using maxima for aggregation-tree models in the extreme-

value setting, we need an alternative sampling method. We suggest the alternative ap-

proach which uses sample reordering because this approach works regardless of the

choice of aggregation function, copulas or marginal distributions.

The reordering method presented by Iman & Conover (1992) can be generalized to

create dependent data with a more varied range of dependence structures. To sample

from a continuous multivariate distribution with marginal distributions F1, . . . , Fd and a

copula C, consider a sample U 1, . . . ,Un, where for each i ∈ {1, . . . , n}, the random vector

U i = (Ui1, . . . , Uid) is drawn from the copula C.
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Consider a matrix X ∈ Rd×n, where the rows X1., . . . ,Xd. of X are mutually indepen-

dent samples X i. = (Xi1, . . . , Xin) from the distribution function Fi. Let Rij be the rank of

Uij among U1j, . . . , Unj , and consider the permutations πj where πi(j) = r if Rij = r. We

reorder the rows of X and obtain X̃ such that X̃ ij = Xi(πi(j)), where Xi(1) < · · · < Xi(n).

With this permutation of the rows of the matrix X containing the independent sam-

ples, the ranks of each reordered sample X̃ i1, . . . , X̃ in matches exactly the ranks of U1i, . . .,

Uni for each i ∈ {1, . . . , d}. Consequently, given X̃ i = (X̃1i, . . . , X̃di), the empirical copula

for X̃1, . . . , X̃n will be the same as the empirical copula for U 1, . . . ,Un.

Thus, X̃1, . . . , X̃n constitutes a random sample from a joint distribution with empiri-

cal marginal distributions F̂i obtained from X̃i1, . . . , X̃in. The latter is close to Fi because

each set {Xi1, . . . , Xin} was sampled from Fi; moreover, the empirical copula is close to C

because U 1, . . . ,Un were sampled from C.

The original method presented in Iman & Conover (1992) is a special case of this ap-

proach where the independent samples were drawn from Gaussian distributions and re-

ordered to match the ranks of a sample drawn from a Gaussian copula with correlation

matrix R. Using this reordering approach, one can sample from any joint distribution

given that one can generate independent samples from the specified marginal distribu-

tions and copulas. These methods can be further adjusted to sample from an aggregation-

tree model.

3.2 The recursive Iman–Conover algorithm

Both Arbenz et al. (2012) and Côté & Genest (2015) suggest a recursive reordering method

where given a tree structure T , copulasC1, . . . , Cd−1, and marginal distributionsF1, . . . , Fd,

we obtain a multivariate sample for X = (X1, . . . , Xd), where the sample for each of the

Xi comes from the marginal distribution Fi and for all j ∈ {1, . . . , d−1}, and if the depen-

dence structure of (XB1j
, XB2j

) is modeled by the copula Cj , the empirical copula from

the sample for (XB1j
, XB2j

) is close to Cj .
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Algorithm: We may use the following algorithm to generate a sample of size n from a

specified aggregation-tree model with aggregation function a.

Step 1: Let N > n. For each i ∈ {1, . . . , d}, generate a sample x(1)i , . . . , x
(N)
i from the

distribution Fi. We store the samples along the rows of a matrix. Let X ∈ Rd×N with

X ij = x
(j)
i for all i ∈ {1, . . . , d} and j ∈ {1, . . . , N}.

Step 2: For each j ∈ {1, . . . , d}, generate a sample (U
(1)
j , V

(1)
j ), . . . , (U

(N)
j , V

(N)
j ) of size

N from the copula Cj such that U (1)
j < · · · < U

(N)
j . Moreover, define permutations

p1, . . . , pd−1 of 1, . . . , N where pj(s) = r if V (s)
j has rank r among V (1)

j , . . . , V
(N)
j .

Step 3: For each j ∈ {1, . . . , d − 1}, we compute m(s)
B1j

= a(x
(s)
i : i ∈ B1j) and m

(s)
B2j

=

a(x
(s)
i : i ∈ B2j). Define the permutations p̃1,1, . . . , p̃d−1,1, p̃1,2, . . . , p̃d−1,2 of {1, . . . , N},

where p̃j,1(s) = r if m(s)
B1j

has rank r among m(1)
B1j
, . . . ,m

(N)
B1j

and p̃j,2(s) = r if m(s)
B2j

has

rank r among m(1)
B2j
, . . . ,m

(N)
B2j

.

Step 4: We reorder the rows of X as follows. First, we reorder the rows that are the

components of mB1j
and mB2j

so that they match the ranks of m(1)
B1j
, . . . ,m

(N)
B1j

and

m
(1)
B2j
, . . . ,m

(N)
B2j

. Thus,

p̃j(X)ik =


xip̃j,1(k) if k ∈ B1j ,

xip̃j,2(k) if k ∈ B2j ,

xik otherwise.

This is so that the order of the components of mB1j
and mB2j

coincide with their

ranks. Afterwards, the rows that correspond to the components of mB1j
and mB2j

are reordered so that they have the same ranks as the sample from the copula Cj .
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That is,

pj(X)ik =


xipj(k) if k ∈ B2j ,

xik otherwise.

We recursively define X(j) by setting X(0) = X and X(j) = pj ◦ p̃j(X(j−1)) for each

j ∈ {1, . . . , d− 1}.

Finally, n columns from X(d−1) are selected at random. Let X̃ be the resulting matrix, and

let X̃ i = (X̃1i, . . . , X̃di) for every integer i ∈ {1, . . . , n}; then {X̃1, . . . , X̃n} is a sample

from the specified model.
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Chapter 4

Inference for aggregation-tree models

To build an appropriate model for (X1, . . . , Xd), one must select (i) a tree structure for

the model; (ii) a collection of marginal distributions F1, . . . , Fd for X1, . . . , Xd; and (iii) a

collection of d − 1 copulas to join these variables in the construction process. Procedures

for doing so are reviewed here in turn.

4.1 Tree structure selection

Although the number of possible tree structures for a model with d variables is finite,

the problem of choosing a tree structure for the model cannot be realistically solved by

examining all possible structures. Indeed, letNd be the number all possible tree structures

for a model with d variables. The value of Nd can be obtained as follows from a recursive

formula. First, it is clear that N1 = 1; then, for each integer k ≥ 2,

Nk =
1

2

k−1∑
i=1

(
d

i

)
Ni ×Nk−i.

The number Nd becomes unreasonably large even for relatively small values of d, e.g.,

for d = 10, Nd > 3 × 108. Thus, if an explicit aggregation order is not chosen, one re-

quires a systematic approach to select a tree structure for these models. Côté & Genest
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(2015) suggest a method to select a tree structure for the model using classical hierarchi-

cal clustering methods. Specifically, they propose using the value of a measure of the

absolute dependence between these variables as the dissimilarity metric. The indices of

the variables combined at each step of the clustering process provide the tree structure

T1, . . . , Td.

Intuitively, this provides a sequence of clusterings where, at each step, a pair of vari-

ables is combined and the variables with the highest dependence level are combined first.

It is suggested to use pseudo-metrics for the dissimilarity measures, as hierarchical clus-

tering tends to perform better with such a dissimilarity function. In particular, the mea-

sures

Dr(X, Y ) =
√

1− r2(X, Y ),

Dρ(X, Y ) =
√
1− ρ2(X, Y ) and Dτ (X, Y ) =

√
1− τ 2(X, Y ),

where r is the Pearson correlation, ρ is the Spearman rank correlation, and τ is the Kendall

rank correlation, are all pseudo-metrics.

4.2 Selection of copulas

To select the d − 1 copulas that are used to model the dependence structure between the

pairs of variables which are aggregated at each step of the construction of the model, Côté

& Genest (2015) suggest a rank-based approach to help guide the choice of copulas for the

model.

Let B1i = Aℓii and B2i = Akii be the index sets from the tree structure such that MB1i

and MB2i
are combined at the ith step of the tree construction. One can start by exam-

ining the rank plot of (MB1i
,MB2i

) visually to look for certain properties of the copula

of (MB1i
,MB2i

). This way, one can select or filter out potential choices of copula families

for CB1iB2i
, e.g., if the rank plot of (MB1i

,MB2i
) displays high levels of upper-tail depen-

dence, a copula that will reflect this feature of the dependence structure, such as a Gum-
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bel copula, may be appropriate. Inference procedures may also be used to rule out copula

families. For instance, if we obtain a significant result from a test of asymmetry, such as

the one proposed by Genest et al. (2012), this indicates that the copula of (MB1i
,MB2i

) is

asymmetric and thus we may discard symmetric copulas as suitable choices for CB1iB2i
.

Once a copula for CB1iB2i
has been selected, one can use goodness-of-fit tests for bivariate

copula models such as the one presented in Genest et al. (2011) to validate our choice.

4.3 Inference and model validation

Once a tree structure, a collection of copulas, and marginal distributions have been se-

lected, Côté & Genest (2015) suggest a recursive inference approach to validate an aggre-

gation-tree model. It consists of a recursive application of the copula comparison test

from Rémillard & Scaillet (2009). These authors present a series of inference tests based

on Cramér–von Mises type statistics to test for the equality of the copulas of two random

samples.

Let X1, . . . ,Xm ∈ Rd and Y 1, . . . ,Y n ∈ Rd be independent random samples with

distributions F1, . . . , Fd and G1, . . . , Gd and copulas C and D, respectively. The empirical

copula processes Cm =
√
m (Ĉm − C) and Dn =

√
n (D̂n − D) both converge weakly to

continuous centered Gaussian processes, i.e., Cm ⇝ C and Dn ⇝ D. Now suppose that

n/(n+m) → λ ∈ (0, 1) as min(m,n) → ∞. We get, as min(m,n) → ∞,

√
n

n+m
Cm −

√
m

n+m
Dn ⇝

√
1− λC−

√
λD.

Under the null hypothesis H0 : C = D, for

En,m =

√
nm

n+m
(Ĉm − D̂n) =

√
n

n+m
Cm −

√
m

n+m
Dn,
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we get En,m ⇝
√
1− λC−

√
λD. With this asymptotic distribution for En,m, Rémillard &

Scaillet (2009) suggest the following test statistic to test H0 : C = D vs H1 : C ̸= D:

Tm,n =
nm

n+m

∫
[0,1]d

{Ĉm(u)− D̂n(u)}2 du.

Large values of this statistic provide evidence against the null hypothesis and Rémillard

& Scaillet (2009) describe methods to compute the p-value.

Ways of computing p-values for this test have been implemented in the R TwoCop

package (Rémillard & Plante 2012). For each i ∈ {1, . . . , d − 1}, let Di be the copula that

is obtained for XA1i
= (Xj : j ∈ A1i) from the selected copulas and tree structure of the

model. Moreover, let D∗i be the true underlying copula of (Xj : j ∈ A1i).

The procedure consists of comparing each Di with the corresponding D∗i . We first

perform the comparison test on Dd−1 and if the null H0 : Dd−1 = D∗d−1 fails to be rejected,

the same test is then performed for Dd−2. The process is repeated until H0 : Di = D∗i

is rejected for some i or we don’t obtain a significant result for H0 : D1 = D∗1 (while

adjusting for multiple testing), which does not indicate that there was an error with the

tree structure or the copulas chosen for our model.

To perform these tests, one must have a sample from each copula Di and D∗i to com-

pute their empirical copula estimators for the test statistic. For the D∗i ’s, the original data

are used. For the Di copulas, one can use a sample generated with the Iman–Conover

algorithm from Chapter 3.

This inference procedure serves to indirectly verify that the conditional independence

assumption is satisfied. A significant test result indicates that there is an issue with the

model, which could be caused by the conditional independence assumptions not be-

ing satisfied, among many things. To formally verify that the conditional independence

is satisfied, one may also use multiple conditional independence tests to verify all the

conditional independence assumptions for the leaf descendants of each branching node.
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However, for large tree structures this may be unfeasible, especially when accounting for

multiple testing. Thus, one may need to resort to this indirect approach.
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Chapter 5

Aggregation-tree models in the

extreme-value setting

As we wish to explore the application of aggregation-tree models in extreme-value theory,

we are particularly interested in the properties of aggregation-tree models when we work

with maxima, i.e., where the aggregation function is a(x, y) = max(x, y), and we only use

extreme-value copulas to join the aggregated variables. Thus, we must first introduce

some preliminary results about extreme-value copulas.

5.1 Extreme-value copulas and max-stable distributions

Consider a sample (X11, . . . , X1d), . . . , (Xn1, . . . , Xnd) of size n from a continuous d-variate

distribution F with marginals F1, . . . , Fd. Let C denote the unique underlying copula.

Next, consider the vector of component-wise maxima

Mn = (Mn1, . . . ,Mnd),
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where for each j ∈ {1, . . . , d}, Mnj = max(X1j, . . . , Xnj). The distribution function of each

Mnj is given by F n
j and so the copula Cn for Mn is given, for all u1, . . . , ud ∈ (0, 1), by

Cn(u1, . . . , ud) = P{F n
1 (Mn1) ≤ u1, . . . , F

n
d (Mnd) ≤ ud}

=
[
P{F1(X1) ≤ u

1/n
1 , . . . , Fd(Xd) ≤ u

1/n
d }

]n
=
{
C(u

1/n
1 , . . . , u

1/n
d )
}n
.

Definition 5.1.1 (Extreme-value copula). A copula C : [0, 1]d → [0, 1] is called an extreme-

value copula if there exists a copula C∗ such that, for all u1, . . . , ud ∈ [0, 1],

lim
n→∞

Cn
∗ (u

1/n
1 , . . . , u

1/n
d ) = C(u1, . . . , ud).

The copula C∗ is said to be in the domain of attraction of C.

Alternatively, there is a similar property called max-stability that helps to characterize

the class of extreme-value copulas.

Definition 5.1.2 (Max-stability). A copula C : [0, 1]d → [0, 1] is called a max-stable copula

if and only if, for all u1, . . . , ud ∈ [0, 1] and for all n ∈ N,

{
C(u

1/n
1 , . . . , u

1/n
d )
}n

= C(u1, . . . , ud).

Clearly, a max-stable copula is an extreme-value copula and it belongs to its own do-

main of attraction. Interestingly, max-stability is actually also a necessary condition for a

copula to be extreme-value.

Theorem 5.1.1. A copula is an extreme-value copula if and only if it is max-stable.

Proof. Given what has already been said, it is only necessary to show that every extreme-

value copula is also max-stable. LetC be an extreme-value copula. Then there exists some

copula C∗ such that, for all u1, . . . , ud ∈ (0, 1),

lim
m→∞

Cm
∗ (u

1/m
1 , . . . , u

1/m
d ) = C(u1, . . . , ud).
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Now fix n ∈ N. Then for all u1, . . . , ud ∈ (0, 1), one has

C(u1, . . . , ud) = lim
k→∞

{
C∗(u

1/(kn)
1 , . . . , u

1/(kn)
d )

}kn
=
[
lim
k→∞

Ck
∗{(u

1/n
1 )1/k, . . . , (u

1/n
d )1/k}

]n
=
{
C(u

1/n
1 , . . . , u

1/n
d )
}n
,

where the map (u1, . . . ud) 7→ Ck
∗ (u

1/k
1 , . . . , u

1/k
d ) defines the copula of the vector of com-

ponent-wise maxima of a sample of size k from the copula C∗. Thus, C is max-stable.

Extreme-value distributions and their properties are one of the main subjects of anal-

ysis in extreme-value theory. Extreme-value distributions represent the limiting distri-

bution of normalized sample maxima. A result by Fisher & Tippett (1928), refined by

Gnedenko (1943), shows that in dimension d = 1, there exists exactly three possible types

for such limiting distributions; see Proposition 0.3 in Resnick (1987).

Before stating this result, note that two distribution functions F andG are said to be of

the same type if there exists a ∈ (0,∞) and b ∈ R such that, for all x ∈ R, F (x) = G(ax+b).

Theorem 5.1.2 (Gnedenko). Let X1, X2, . . . be an i.i.d sequence of random variables with distri-

bution function F and let a1, a2, . . . ∈ (0,∞) and b1, b2, . . . ∈ R be sequences of scalars such that,

for Mn = max(X1, . . . , Xn) and all x ∈ R,

lim
n→∞

P
(
Mn − bn
an

≤ x

)
= lim

n→∞
F n(anx+ bn) = G(x),

where G is a non-degenerate distribution function. Then G is of one of the three following types:

Fréchet: Φα(x) = exp(−x−α) for x > 0 and Φα(x) = 0 for x ≤ 0 with α ∈ (0,∞).

Weibull: Ψα(x) = exp{−(−x)α} for x < 0 and Ψα(x) = 1 for x ≥ 0 with α ∈ (0,∞).

Gumbel: ζ(x) = exp(−e−x) for all x ∈ R.

The members of the parametric classes Φα, Ψα and ζ are called the extreme-value dis-

tributions and a random variable Y ∈ R is called extreme-value if its distribution belongs
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to one of these three families. Univariate extreme-value distributions are used in tandem

with extreme-value copulas to define multivariate extreme-value distributions.

Definition 5.1.3 (Multivariate extreme-value distributions). A continuous random vector

X = (X1, . . . , Xd) has a multivariate extreme-value distribution (MEVD) F if and only if

its underlying copula is extreme-value and the univariate margins F1, . . . , Fd of its com-

ponents X1, . . . , Xd are all extreme-value distributions.

We will work, for the most part, with multivariate extreme-value distributions with

unit Fréchet margins, i.e., with cumulative distribution function given, for all x ∈ (0,∞),

by Φ1(x) = exp(−1/x). These distributions are particularly easy to work with, and they

possess some important properties for our analysis. Proposition 5.11 from Resnick (1987)

provides a useful characterization of multivariate extreme-value distributions with unit

Fréchet margins.

Theorem 5.1.3. The following statements are equivalent:

(i) X = (X1, . . . , Xd) is a d-dimensional extreme-value random vector with unit Fréchet mar-

gins.

(ii) There exists a finite measure σ on the unit simplex

S = {a ∈ [0, 1]d : ||a||1 = a1 + · · ·+ ad = 1}

such that for all i ∈ {1, . . . , d},
∫
S
aidσ(a) = 1 and, for all x = (x1, . . . , xd) ∈ Rd,

P(X ≤ x) = exp

{
−
∫
S

max

(
a1
x1
, . . . ,

ad
xd

)
dσ(a)

}
.

The measure σ is called a spectral measure.
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(iii) There exist f1, . . . , fd non-negative Lebesgue measurable functions on [0, 1] such that for all

i ∈ {1, . . . , d},
∫ 1

0
fi(x)dx = 1 and, for all x = (x1, . . . , xd) ∈ Rd,

P(X ≤ x) = exp

[
−
∫ 1

0

max

{
f1(u)

x1
, . . . ,

fd(u)

xd

}
du

]
,

where X ≤ x denotes element-wise inequality.

As a consequence of this result, if a random vector X = (X1, . . . , Xd) has an extreme-

value distribution with unit Fréchet margins, then M = max(X1, . . . , Xd) is a scaled Fréchet

random variable. This follows as one has, for all x ∈ [0,∞),

P(M ≤ x) = exp

[
−
∫ 1

0

max

{
f1(u)

x
, . . . ,

fd(u)

x

}
du

]
= exp (−s/x) ,

where s =
∫ 1

0
max {f1(u), . . . , fd(u)} du. These characterizations will prove useful to es-

tablish some results about the joint distribution obtained from an aggregation-tree model

that uses only extreme-value copulas and unit Fréchet margins. There also exist impor-

tant characterizations for extreme-value copulas from Pickands (1981).

Theorem 5.1.4 (Pickands). Let C : [0, 1]d → [0, 1] be an extreme-value copula. Then there exists

a spectral measure σ on the unit simplex S such that, for all u = (u1, . . . , ud) ∈ (0, 1)d,

C(u1, . . . , ud) = exp

[{
d∑

i=1

ln(ui)

}
×B

{
ln(u1)∑d
i=1 ln(ui)

, . . . ,
ln(ud−1)∑d
i=1 ln(ui)

}]
,

where B : Rd−1 → [0,∞) is given by

B(u1, . . . , ud−1) =

∫
S

max

{
x1u1, . . . , xd−1ud−1, xd

(
1−

d−1∑
i=1

ui

)}
dσ(x).

The map B is called the Pickands dependence function and it possesses the following

properties:
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a) For all (u1, . . . , ud−1) ∈ {x ∈ [0, 1]d−1 : x1 + · · ·+ xd−1 ≤ 1}, one has

max

(
u1, . . . , ud−1, 1−

d−1∑
i=1

ui

)
≤ B(u1, . . . , ud−1) ≤ 1.

b) B is convex on its domain.

c) B(ei) = 1 for any i ∈ {1, . . . , d−1}, where ei is the ith vector from the standard basis

of Rd−1, i.e., eij = 1 if i = j and eij = 0 otherwise.

The bivariate version of this result is of particular interest for aggregation-tree models

since the latter rely on bivariate copulas. Consider the map A : [0, 1] → R given by

A(t) = B(1 − t) for all t ∈ [0, 1], which is also called the Pickands dependence function.

Then any bivariate extreme-value copula C can be written, for all u, v ∈ (0, 1), as

C(u, v) = exp

[
ln(uv)A

{
ln(v)

ln(uv)

}]
.

Thus, the Pickands dependence function characterizes extreme-value copulas. For in-

stance, the Pickands dependence function of the bivariate Gumbel copula with parameter

θ ∈ [1,∞) is given, for all t ∈ [0, 1], by Aθ(t) = {tθ + (1− t)θ}1/θ.

Pickands dependence functions can be used to compute various quantities associated

with the dependence of random vectors whose copula is extreme-value. Section 6.4 in

Jaworski et al. (2010) provides formulas relating the Pickands dependence function to

various dependence coefficients, such as Kendall’s τ , Spearman’s ρ, and the upper tail

dependence coefficient λU , viz.

τ(X, Y ) =

∫ 1

0

t(1− t)

A(t)
dA′(t),

ρ(X, Y ) = −3 + 12

∫ 1

0

1

(1 + A(t))2
dt,

λU(X, Y ) = 2{1− A(1/2)}.
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5.2 Tree structure selection for extreme-value models

Following the hierarchical clustering techniques to choose a tree structure for a model

suggested by Côté & Genest (2015), we want to find a pseudo-metric based on a depen-

dence measure that would be suitable in the extreme-value setting. A natural choice for

this setting is to create a dissimilarity measure based on one of the tail dependence coef-

ficients.

Murphy (2018) presents a clustering analysis of 23 rainfall gauging stations in the

province of Québec where she used a dissimilarity measure based on the upper-tail de-

pendence coefficient as defined in Section 1.3. This dissimilarity measure is theF -madogram

from Cooley et al. (2006), whose definition is recalled below.

Definition 5.2.1 (F -madogram). Let (X, Y ) be a random pair with joint distribution func-

tion F and marginal distribution functions FX and FY . The corresponding F -madogram

is defined by

M(X, Y ) =
1

2
E
{
|FX(X)− FY (Y )]|

}
.

The F -madogram possesses some desirable properties for the purpose of model selec-

tion, viz.

(a) M(X, Y ) is a pseudo-metric as it is symmetric M(Y,X) = M(X, Y ). It is also pos-

itive with M(X,X) = 0 and verifies a sort of triangle inequality given that for any

continuous random variable Z with cumulative distribution function FZ ,

E{|FX(X)− FY (Y )]|} = E[|{FX(X)− FZ(Z)} − {FZ(Z)− FY (Y ))}|]

≤ E{|FX(X)− FZ(Z)|}+ E{|FZ(Z)− FY (Y ))|},

which implies, M(X, Y ) ≤M(X,Z) +M(Z, Y ).

(b) Given that FX(X) and FY (Y ) are both standard uniform random variables,

M(Y,X) ≤ 1

2
(E{|FX(X)|}+ E{|FY (Y ))|}) = 1

2
.
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Therefore, 0 ≤M(X, Y ) ≤ 1/2.

(c) If X and Y are independent, M(Y,X) = 1/6. This follows as

M(Y,X) =
1

2

∫ 1

0

∫ 1

0

|x1 − x2|dx1dx2 =
1

2
× 1

3
=

1

6
.

However, one of the most important features of the F -madogram for selection meth-

ods in the extreme-value setting is its relation to the upper-tail dependence coefficient.

This identity is presented in Murphy (2018).

Theorem 5.2.1. Let (X, Y ) be a random pair with joint distribution function F and an extreme-

value copula, and let λU(X, Y ) be the upper tail dependence coefficient for (X, Y ). Then

M(X, Y ) =
1− λU(X, Y )

2{3− λU(X, Y )}
.

The proof for this result is presented in Murphy (2018). This result indicates why F -

madograms are appropriate for our selection method: M(X, Y ) is a decreasing function

of λU(X, Y ) and is maximized when λU(X, Y ) = 0, i.e., when X and Y are upper-tail

independent. Furthermore, M(X, Y ) = 0 when λU(X, Y ) = 1, i.e., when X and Y are

perfectly upper-tail dependent.

Using M(X, Y ) as a dissimilarity measure for hierarchical clustering will generate an

aggregation-tree where the most tail dependent random variables will be joined first. We

require a method to estimate F -madograms to be able to employ it in our tree structure

selection method. One approach is to estimate the F -madogram directly.

A rank-based estimator for the F -madogram was suggested by Naveau et al. (2009).

Given a random sample (X1, Y1) . . . , (Xn, Yn) from the pair (X, Y ), let F̂X,n and F̂Y,n denote

the empirical distribution functions ofX and Y , respectively. The suggested estimator for

the F -madogram of X and Y is given by

M̂(X, Y ) =
n∑

i=1

1

2n
|F̂X,n(Xi)− F̂Y,n(Yi)| =

n∑
i=1

1

2n2
|Ri1 −Ri2|,
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where Ri1 is the rank of Xi among X1, . . . , Xn and Ri2 is the rank of Yi among Y1, . . . , Yn.

Alternatively, under the assumption that the copula that joins the variables is extreme-

value, we may simply estimate the upper tail dependence coefficient instead and use the

previous formula to obtain an estimate for M(X, Y ).

Note that this measure is essentially the same as Spearman’s footrule, considered by

Genest et al. (2010). The latter is given by

Ŝ(X, Y ) = 1− 1

n2 − 1

n∑
i=1

|Ri1 −Ri2|,

and its asymptotic behavior was considered in that paper.
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Chapter 6

Data illustration

We proceed to illustrate the process of fitting an extreme-value aggregation-tree model

using a dataset collected from Québec hydrometric stations. For this example, we will

examine five particular stations near the island of Montréal (or Kawenote Teiontiakon)

which monitor the flow on the St. Lawrence (or Magtogoek) river and on some of its trib-

utaries. The call codes for these five stations are given in Table 6.1, and their geographical

locations are indicated on the map in Figure 6.1.

The dataset consists of mean monthly discharge (m3/s) measurements collected from

each of the stations for every month from January 2000 to December 2019, which amounts

to 240 observations. Let X1, . . . , X5 be random variables representing the readings at

each of the five stations. For each i ∈ {1, . . . , 240} and j ∈ {1, . . . , 5}, let Xij be the ith

observation from the jth station. As the models and inference techniques were designed

to work with mutually independent and identically distributed data, we must first assess

the presence of seasonality and other trends in the time series data from these stations.

The time series of collected data from each of these stations is presented in Figure 6.2.

From the context of the study, it is safe to assume that there is a seasonal effect and per-

haps a trend (possibly from the effects of climate change) in the data for all five stations,

so we use nonparametric inference tests to check for the presence of both.
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Table 6.1: Station code and river being monitored by each of the hydrometric stations

used in the dataset.

Variable River Station Code

X1 Rivière des Mille Îles 02OA003
X2 Saint-Laurent 02OA016
X3 Rouge 02LC029
X4 Rivière de l’Achigan 02OB037
X5 Châteauguay 02OA054

Using a seasonality test based on the Kruskal–Wallis test, we obtain p-values very close

to zero (p < 10−9) for the data for all five stations. Thus, we use the STL decomposition as

presented in Cleveland et al. (1990) to remove the seasonality and trend from the station

data, viz.

Xij = Sij + Tij +Rij.

For each station’s time series, the seasonal effect Sij is computed by taking the average

of all the observations of the station recorded in the month that Xij was recorded. The

trend effect Tij , if any, is estimated using a LOESS window of size 12 months, correspond-

ing to a period of one year.

We attempt to fit an aggregation-tree model for the residuals Rij of the time series

models for X1, . . . , X5 using maxima and extreme-value copulas for the aggregation. The

use of models on the residuals is justified by the fact that under certain regularity condi-

tions, the empirical copula process obtained from the model residuals behaves as if the

innovations were observed, as shown by Rémillard (2017). We will also attempt to fit a

5-dimensional extreme-value copula model to this dataset. This data analysis will serve

to illustrate the richness and flexibility of aggregation-tree models and how they compare

to classical copula models.
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Figure 6.1: Map showing the physical location of the five hydrometric stations listed in

Table 6.1.

Figure 6.2: Time series of hydrometric data recorded at each station.
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6.1 Tree structure selection

Before we select the tree structure for the model, we transform the data for each station to

ensure that the margins are unit Fréchet. If Fj is the distribution function of Xj for each

j ∈ {1, . . . , 5}, then Yj = −1/ ln{Fj(Xj)} is unit Fréchet distributed. However, because Fj

is unknown, it must be estimated. Therefore, we will proceed with the transformed data

defined, for all i ∈ {1, . . . , 240} and j ∈ {1, . . . , 5}, by

X̃ij =
−1

ln{F̂j(Xij)}
,

where for each j ∈ {1, . . . , 5}, F̂j is the empirical distribution function obtained from the

univariate sample X1j, . . . , Xnj .

Once the data have been transformed to have approximately unit Fréchet margins, we

use the hierarchical clustering approach described by Côté & Genest (2015) with the F -

madogram dissimilarity measure. Using the dissimilarity matrix Dij = M̂(Xi, Xj), where

M̂(Xi, Xj) is the rank-based estimate of the F -madogram from Naveau et al. (2009), we

perform hierarchical clustering of the stations with single linkage.

The dendrogram displayed in Figure 6.3 suggests the tree structure T with T2 =

{{1, 3}, {2}, {4}, {5}}, T3 = {{1, 2, 3}, {4}, {5}}, and T4 = {{1, 2, 3, 4}, {5}}.

6.2 Copula selection

Based on the hierarchical clustering technique, we set

MA11 = max(X1, X3), MA12 = max(X1, X2, X3), MA13 = max(X1, X2, X3, X4).

We must select four copulas, namely C{1}{3} for (X1, X3), C{1,3}{2} for (MA11 , X2), C{1,2,3}{4}

for (MA12 , X4), and C{1,2,3,4}{5} for (MA13 , X5).
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Figure 6.3: Dendrogram of the hierarchical clustering of the hydrometric station data

using the F -madogram as the dissimilarity measure.

Initially, examining the rank plots of these variables may help to spot certain features

of the copulas of these pairs. This helps to rule out certain copula families and select

which properties should be verified using statistical tests.

The rank plots, provided in Figure 6.4, seem to suggest that there is some level of

upper tail dependence in each of these pairs. In contrast, the lower tail dependence seems

to be rather weak in all cases, in particular in the rank plot of the pair (MA1 , X2). This rules

out certain copula families such as the Clayton model or any copula family without upper

tail dependence for all four cases.

The rank plots of the pairs (X1, X3) and (MA12 , X4) suggest that the copulas for these

pairs are symmetric. The symmetry for the copulas for the other pairs is less obvious from

the rank plots. We use tests for independence, extremeness, and symmetry to guide our

choice for the copulas as well.
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Figure 6.4: Rank plots of the modified sample used to guide the choice of copulas.

We begin by testing the independence for all four pairs using the method implemented

in the R package copula (Hofert et al. 2023). These tests are based on the work of Genest

& Rémillard (2004). For each of the four pairs, the p-values for the test is near zero, which

indicates that the independence copula is inadequate in all cases.

Moreover, as we want to use extreme-value copulas for this model, we use a test of ex-

tremeness for bivariate copulas from Ghoudi et al. (1998), further refined by Ben Ghorbal

et al. (2009). The null hypothesis of this test is that the copula of the pair is extreme-value;

therefore, large p-values (say, greater than 0.05) indicate that there is no evidence that the

copula is not extreme-value.

The p-values for these statistical tests can be found in Table 6.3. For three of these

pairs, the p-values for all the extreme-value tests are relatively high, the lowest p-value

being 0.1994. So there is little evidence to suggest that an extreme-value copula is an
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inadequate choice for any of these pairs. For the pair (MA12 , X4), the p-value is 0.0519,

which is close to, but still larger than, 0.05. For this reason, one can safely assume an

extreme-value copula for the pair (MA12 , X4) as well.

Proceeding under the assumption that the underlying copulas of all pairs are extreme-

value, we then resort to a test of exchangeability for extreme-value copulas from Kojadi-

novic & Yan (2012) to determine whether we should choose symmetric copulas. We also

apply an omnibus exchangeability test from Genest et al. (2012), which applies to any

bivariate copula, whether it is extreme-value of not. As with the test for extremeness,

large p-values are indicative of lack of evidence against the copula being exchangeable.

The p-values for both these statistical tests are reported in Table 6.4. We see that with

two pairs, (X1, X3) and (MA13 , X4), the p-values for the two exchangeability tests are high.

The p-value for the EV-exchangeability test for the pair (MA12 , X4), p = 0.08242, is small

but still larger than 0.05. The p-value for the other exchangeability test for the copula of

(MA12 , X4) is larger (p = 0.1344). This suggests that we may use symmetric copulas for

these pairs.

The p-value for the EV-exchangeability test for the pair (MA11 , X2) was quite small

(p = 0.0085). However, the p-value for the other exchangeability test is much larger, p =

0.2493. Upon visual examination of the rank plot for this pair, we notice that the copula

of this sample is slightly left skewed, so this result is not unexpected. However, given

that this skewness appears very slight in the rank plot, it is possible that a symmetric

copula could still be adequate for this pair. We proceed to fit symmetric extreme-value

copulas for C{1}{3}, C{1,2,3}{4} and C{1,2,3,4}{5}, and we will attempt to fit both a symmetric

extreme-value copula C(1)
{1,3}{2} and an asymmetric extreme-value copula C(2)

{1,3}{2} for the

pair (MA11 , X2).

As we require symmetric extreme-value copulas with non-zero upper-tail dependence

coefficient, a natural choice is copulas from the Gumbel family. For the asymmetric copula

C
(2)
{1,3}{2}, an asymmetric Gumbel copula obtained using Khoudraji’s device would be a

good option; see Khoudraji (1995) and Genest et al. (1998) for a description of this device.
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We will use Gumbel copulas exclusively for the symmetric copulas C{1}{3}, C
(1)
{1,3}{2},

C{1,2,3}{4}, and C{1,2,3,4}{5} for the model and an additional asymmetric Gumbel copula

C
(2)
{1,3}{2} to model the dependence between MA11 and X2. To select an adequate parameter

θ value for each of the Gumbel copulas, we use three approaches.

For the first technique, we estimate θ based on an estimator for the Pickands depen-

dence function of the Gumbel copula. The Pickands dependence function of a Gum-

bel copula is given by Aθ(t) = {tθ + (1 − t)θ}1/θ for all t ∈ [0, 1], and in particular

Aθ(1/2) = 21/θ−1. Thus, we may use the following, moment-type, estimator for the pa-

rameter

θ̂ =
ln(2)

ln{2Â(1/2)}
,

where Â is an estimator for the Pickands dependence function of the copula for the

sample. We use the rank-based estimator from Genest & Segers (2009) to estimate the

Pickands dependence function for the copula of each pair.

For the second approach, we may obtain an estimate of the θ parameter by inverting

Kendall’s τ . For a Gumbel copula with parameter θ, Kendall’s τ is given by τ = 1 − 1/θ.

Given the standard estimator τ̂ for Kendall’s τ , we may thus use the following estimator

for the parameter of a Gumbel copula:

θ̃ =
1

1− τ̂
,

For the third approach, we use the maximum pseudo-likelihood method due to Genest

et al. (1995) and presented in Section 1.4.2. The fitCopula function from the R package

copula provides the estimates and corresponding confidence intervals for second and

third approaches.

The three sets of parameter estimates for the Gumbel copulas are provided in Table 6.2,

along with asymptotic 95% confidence intervals. Note that the parameter values across

all estimation methods become smaller as one ascends the tree structure, a reflection of

the fact that dependence is weaker higher up in the tree structure. This is in accordance
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Table 6.2: Parameter estimates for the Gumbel copulas generated by each method with

95% asymptotic confidence intervals.

Pair Inverse Pickands Inverse τ Pseudo-likelihood

(X1, X3) 2.209 2.264 (1.933, 2.596) 2.234 (1.954, 2.514)
(MA11 , X2) 1.809 1.843 (1.606, 2.080) 1.842 (1.587, 2.0968)
(MA12 , X4) 1.624 1.664 (1.444, 1.884) 1.664 (1.459, 1.827)
(MA13 , X5) 1.340 1.329 (1.145, 1.513) 1.325 (1.196, 1.462)

with the selection method for the tree structure, as it was designed to join variables with

higher levels of upper-tail dependence early on.

We proceed with the parameter estimates from the inversion of Kendall’s τ approach

for the Gumbel copulas. For comparison purposes, we also chose to estimate the pa-

rameters of a Khoudraji–Gumbel copula by the method of maximum pseudo-likelihood.

The pseudo-likelihood is maximized using a Nelder–Mead approach. The asymmetric

Gumbel copula is obtained from Khoudraji’s device combining an independence copula

and a Gumbel copula with parameter θ. This copula also possesses two additional shape

parameters, α1 and α2.

The Khoudraji–Gumbel copula is defined, for all (u, v) ∈ (0, 1)2, by

CKG(u, v) = u(1−α1)v(1−α2) exp
[
−
{
| ln(uα1)|θ + | ln(vα2)|θ

}1/θ]
.

The estimated parameters for the methods are θ = 1.933 ± 0.470, α1 = 0.900 ± 0.263, and

α2 = 1.000 ± 0.318.

6.3 Model validation

Once the copulas C{1}{3}, C
(1)
{1,3}{2}, C{1,2,3}{4}, C{1,2,3,4}{5} for the aggregation have been se-

lected, we proceed with the inference procedure discussed in Chapter 4 to validate our

choice of copulas.
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Table 6.3: Observed p-values for comparison test and distance metric to select a Gumbel

or asymmetric Gumbel copula for C{1,3}{2}.

Copula Model Goodness-of-fit Test Cross-Validation CIC

Khoudraji–Gumbel 0.3731 70.09
Gumbel 0.0285 72.19

First, we must determine whether C(1)
{1,3}{2} or C(2)

{1,3}{2} is more suitable for (MA11 , X2).

To this end, we use both a goodness-of-fit test and model selection criteria for copula

models. We use the goodness-of-fit test for extreme-value bivariate copulas from Ge-

nest et al. (2011), which is based on a Cramér–von Mises statistic to check whether the

Khoudraji–Gumbel copula or Gumbel copula model fits the transformed residuals for

the pair (MA11 , X2).

Moreover, we use an AIC-like model selection criterion for copula models called the

cross-validation copula information criterion (CIC) from Grønneberg & Hjort (2014), as

implemented in the R package copula. This criterion is based on cross-validated log

(pseudo) likelihood for the copula model. The model with the lowest CIC value should

be selected.

The p-value for the goodness-of-fit test and CIC values for both these copula models

can be found in Table 6.3. The goodness-of-fit test suggests that there is a lack of fit with

the Gumbel copula C(1)
{1,3}{2} (p-value p = 0.0285). We also see that the CIC value for the

Khoudraji–Gumbel copula model is smaller than the CIC for the regular Gumbel model.

Therefore, the asymmetric Gumbel copula C(2)
{1,3}{2} appears to be a more suitable choice

for C{1,3}{2}.

We also applied the goodness-of-fit test from Genest at al. (2011) for the selected Gum-

bel copulas for C{1}{3}, C{1,2,3}{4}, and C{1,2,3,4}{5}. The p-values for these goodness-of-fit

tests are presented in Table 6.4. We see that all the p-values for these tests are larger than

0.05; thus there is no evidence that the copula models that we selected for the copulas of

these pairs fit the data poorly.

66



Table 6.4: Observed p-values for extreme-value and exchangeability tests and for the

goodness-of-fit of each of the selected copulas for the model.

Pair EV test Exch test EV Exch test G.O.F test

(X1, X3) 0.1994 0.6109 0.9266 0.455
(MA11 , X2) 0.4719 0.2493 0.0085 0.373
(MA12 , X4) 0.0516 0.1344 0.0824 0.178
(MA13 , X5) 0.9283 0.0495 0.1743 0.247

Having decided to use an asymmetric Gumbel copula for C{1,3}{2}, we generate a sam-

ple of the same size as the Québec hydrometric dataset from a joint distribution with

unit Fréchet margins and the same tree structure and copulas that were selected with

the Iman–Conover algorithm from Chapter 3. We use this generated sample to vali-

date the model by comparing the copula of each of the vectors (X1, . . . , X5), (X1, . . . , X4),

(X1, X2, X3), and (X1, X3) from the original sample with the copula from the correspond-

ing subvector from the generated sample with the comparison test from Rémillard &

Scaillet (2009).

The tests must be applied recursively: the copula for (X1, . . . , X5) is compared and

then if the p-value for the test is larger than 0.05, the test is applied to the copula of

(X1, . . . , X4), and so on. The p-values for the validation tests are also presented in Ta-

ble 6.5. We find that the p-values for the four comparison tests are larger than 0.05. This

indicates that none of the copulas which we chose stray far from the real underlying cop-

ula of each of the modeled vectors.

Remark. Note that these applications of the copula comparison tests are ad hoc. The pa-

rameters which were chosen for each of the copulas used depend on the data. Therefore,

the sample generated by the Iman–Conover algorithm is not independent of the hydro-

metric data, which is required to use the copula comparison test. Moreover, although

p-values for the copula comparison tests are larger than 0.05, the comparison test for the
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copula of (X1, . . . , X5) is still quite close to 0.05, so it is doubtful that one would still fail

to reject the null if some adjustment to account for multiple testing had been used.

Table 6.5: p-values for the recursive validation approach.

Vector (X1, . . . , X5) (X1, . . . , X4) (X1, X2, X3) (X1, X3)

p-value 0.08 0.27 0.24 0.89

Thus, we obtain a multivariate model for the joint transformed data of five hydromet-

ric stations in the province where we used symmetric and asymmetric Gumbel copulas

to model the dependence between the aggregated margins.

a) We transformed the original hydrometric data into pseudo-Fréchet data using prob-

ability integral transform. A tree structure was then selected for the aggregation-tree

model using a hierarchical clustering technique based on the F -madogram for the

transformed data of each station.

b) Gumbel copulas were used to model the dependence structure between (X1, X3),

(MA12 , X4) and (MA13 , X5) with parameters θ1 = 2.264, θ2 = 1.664 and θ3 = 1.329,

respectively. Additionally, we used an asymmetric Gumbel copula for (MA11 , X2)

with parameters θ = 1.933, α1 = 0.900 and α2 = 1.000. The p-values for the goodness

of fit tests used for each copula were all larger than 0.17.

c) The p-values from the comparison tests in the recursive validation also indicate that

the copulas of the vectors from the original data seem to adequately match those of

the sample generated with the Iman–Conover algorithm from the model.

Although the validation technique used on the aggregation-tree model is ad-hoc, its

results illustrate the versatility of aggregation-tree models and their benefits over tradi-

tional copula models. With classical extreme-value copula models, we fail to obtain an

adequate fit for this dataset. Since Gumbel copulas were mostly used for the aggregation-

tree model, we attempted to fit a 5-dimensional Gumbel copula model to the transformed
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Fréchet data. Using the inverse τ methods, we obtain the parameter estimate θ̂ = 1.916

for the 5-dimensional copula. However, the p-value for a goodness-of-fit test for this 5-

dimensional model was quite small (p = 0.0305). This poor fit may be due in part to

the inability of this model to account for certain aspects of the dependence structure of

the data, such as the asymmetric dependence structure of the pair (MA11 , X2). Indeed,

as will be shown in Chapter 7, the Gumbel model enforces that any such pair has a bi-

variate Gumbel copula with the same parameter. By modelling the dependence structure

between of each of these aggregated pairs directly, the aggregation-tree model allows us

to capture the deeper intricacies of the dependence structure of the data.

Figure 6.5: Rank plots of the sample generated using the Iman–Conover algorithm.
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Chapter 7

Max-scale invariant aggregation-tree

models

In this chapter, our purpose is to study the dependence structure of a random vector

(X1, . . . , Xd) derived from an aggregation-tree model in which only extreme-value cop-

ulas are used, and in which a(x, y) = max(x, y) serves as the aggregation function. At

the outset, it is clear that it is possible to generate a multivariate extreme-value distri-

bution using this approach. A trivial example would be an aggregation-tree model that

uses bivariate extreme-value copulas to join distinct pairs of leaf nodes and independence

copulas for all the other branching nodes.

However, one may suspect that other options exist, based on the data illustration

in Chapter 6, where only extreme-value copulas were used in the construction of the

aggregation-tree model. Indeed, when we applied a test for max-stability from Kojadi-

novic et al. (2011) for the copula of the sample generated from the model defined in

Chapter 6, we obtained a very large p-value (p = 0.9585), which suggests that the overall

copula may be extreme-value. In what follows, we present partial results relating to the

conditions to ensure that the resulting joint distribution from an aggregation-tree model

is multivariate extreme-value.
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7.1 Max-scale invariance assumption

To simplify our investigation, we will limit ourselves herein to the case where the margins

are unit Fréchet. Our motivation for doing so is that there is a particularly useful charac-

terization for multivariate extreme-value vectors with unit Fréchet margins that we can

exploit. This characterization, which is described below, is analogous to a characteriza-

tion for min-stable random vectors from Weintraub (1991).

Theorem 7.1.1. The joint distribution of a random vector (X1, . . . , Xd) is extreme-value with

Fréchet margins with shape parameter α = 1 and location parameter β = 0 if and only if for

any a1, . . . , ad ∈ [0,∞) such that aj ̸= 0 for at least one j ∈ {1, . . . , d}, the random variable

Y = max(a1X1, . . . , adXd) has a Fréchet distribution with shape parameter α = 1 and location

parameter β = 0. The random variable Y is called a max-linear transformation of (X1, . . . , Xd).

Proof. First suppose that X = (X1, . . . , Xd) is extreme-value and suppose that for each

j ∈ {1, . . . , d}, Xj is Fréchet with shape parameter α = 1, location β = 0 and some

scaling parameter sj ∈ (0,∞). This means that the random vector (X1/s1, . . . , Xd/sd) is

then multivariate extreme-value with unit Fréchet margins. By characterization (iii) of

Theorem 5.1.3, there exist non-negative functions f1, . . . , fd integrating to 1 such that, for

all x = (x1, . . . , xd) ∈ Rd,

P(X ≤ x) = P(X1/s1 ≤ x1/s1, . . . , Xd/sd ≤ xd/sd) = exp

{
−
∫ 1

0

d∨
i=1

sifi(u)

xi
du

}
.

Given that every subvector of (X1, . . . , Xd) is also extreme-value, we need only con-

sider the case where a1, . . . , ad ∈ (0,∞). Let Y = max(a1X1, . . . , adXd). For all x ∈ (0,∞),

one then has

P(Y ≤ x) = P(a1X1 ≤ x, . . . , adXd ≤ x)

= P
(
X1 ≤

x

a1
, . . . , Xd ≤

x

ad

)
= exp

{
−1

x

∫ 1

0

d∨
i=1

siaifi(u)du

}
.
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Therefore, Y is a Fréchet random variable with shape parameter α = 1, location parameter

β = 0, and scale parameter s =
∫ 1

0

∨d
i=1 siaifi(u)du.

Conversely, suppose that any max-linear transformation of (X1, . . . , Xd) is a Fréchet

random variable with shape α = 1 and location β = 0. Fixing an arbitrary j ∈ {1, . . . , d}

and setting ai = 0 if i ̸= j and aj = 1 then implies that Xj is Fréchet with parameters

α = 1, β = 0, and some scaling sj ∈ (0,∞).

By assumption, we know that, for all x ∈ (0,∞) and (a1, . . . , ad) ∈ [0,∞)d such that

aj ̸= 0 for at least one j ∈ {1, . . . , d},

P

(
d∨

i=1

aiXi ≤ x

)
= exp{−s(a1, . . . , ad)/x}

for some scale parameter s(a1, . . . , ad) depending on a1, . . . , ad. For any x1, . . . , xd ∈ (0,∞),

we thus have in particular that

P(X1 ≤ x1, . . . , Xd ≤ xd) = P
(
X1

x1
≤ 1, . . . ,

Xd

xd
≤ 1

)
= P

(
d∨

i=1

Xi

xi
≤ 1

)
= exp{−s(1/x1, . . . , 1/xd)}.

Let n ∈ N be an integer. We can then write

Pn(X1 ≤ nx1, . . . , Xd ≤ nxd) = Pn

(
d∨

i=1

Xi

xi
≤ n

)
=
[
exp{−s(1/x1, . . . , 1/xd)/n}

]n
= exp{−s(1/x1, . . . , 1/xd)}

= P

(
d∨

i=1

Xi

xi
≤ 1

)
= P(X1 ≤ x1, . . . , Xd ≤ xd).

Let C be the unique copula of X . Given that, for each i ∈ {1, . . . , d}, Xi has a scaled

Fréchet distribution, one can write, Fi(x) = e−si/x for all x ∈ (0,∞). We have, for all
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x1, . . . , xd ∈ (0,∞),

C{F1(x1), . . . , Fd(xd)} = P(X1 ≤ x1, . . . , Xd ≤ xd)

= {P(X1 ≤ nx1, . . . , Xd ≤ nxd)}n

= Cn
{
e−s1/(nx1), . . . , e−sd/(nxd)

}
= Cn

{
F

1/n
1 (x1), . . . , F

1/n
d (xd)

}
.

This implies that the copula of X is max-stable. Therefore, X is extreme-value with

Fréchet margins.

This result is useful for the articulation of additional assumptions concerning the

aggregation-tree model which would ensure that the joint distribution is extreme-value,

as we now discuss. To fit an aggregation-tree model to X = (X1, . . . , Xd) using the maxi-

mum as the aggregation function, we make assumptions about the copula of each

(MB1i
,MB2i

) =

( ∨
j∈B1i

Xj,
∨

j∈B2i

Xj

)
.

We can extend this assumption to a scaled version of (X1, . . . , Xd) to ensure that the ran-

dom vector (X1, . . . , Xd) has an extreme-value distribution.

Theorem 7.1.2. Consider an aggregation-tree model for a random vector for (X1, . . . , Xd) with

Fréchet margins with common shape parameter α = 1 and location parameter β = 0. Suppose that

the aggregation-tree model has the property that at each aggregation step i in which the variables

MB1i
and MB2i

are being combined, the copula of (
∨

j∈B1i
ajXj,

∨
j∈B2i

ajXj) is extreme-value for

any a1, . . . , ad ∈ [0,∞) such that aj ̸= 0 for at least one j ∈ B1i and one j ∈ B2i. Then the

distribution of (X1, . . . , Xd) is multivariate extreme-value.

Proof. We proceed by induction on dimension d ∈ N.

Base case (d = 2): The only possible tree structure for d = 2 variables has B11 = {1} and

B21 = {2}. By assumption, upon setting a1 = a2 = 1, the copula of (X1, X2) is extreme-
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value. Moreover, X1 and X2 have Fréchet distributions. Therefore, the distribution of

(X1, X2) is indeed multivariate extreme-value.

Induction step: Suppose that the statement holds for every tree structure with k leaf

nodes, whatever k ∈ {2, . . . , d− 1}. Thus, for every branching node I ∈ B(T ), (Xi : i ∈ I)

has a multivariate extreme-value distribution. Let B1 and B2 be the children nodes of the

root node. Then B1 ∪ B2 = {1, . . . , d} and XB1 = (Xj : j ∈ B1) and XB2 = (Xj : j ∈

B2) are multivariate extreme-value random vectors with Fréchet margins with common

shape α = 1 and location β = 0 by the induction hypothesis. By Theorem 7.1.1, for any

a1, . . . , ad ∈ [0,∞) such that aj ̸= 0 for at least one j ∈ B1 and one j ∈ B2,
∨

j∈B1
ajXj and∨

j∈B2
ajXj are both Fréchet distributed with shape parameter α = 1, location parameter

β = 0, and scaling parameters s1 and s2, respectively, both of which depend on a1, . . . , ad.

Now observe that if (Y, Z) is a bivariate extreme-value random vector with unit Fréchet

margins and an extreme-value copula with Pickands dependence function A, then for all

a, b ∈ (0,∞), one has

P{max(aY, bZ) ≤ u} = C(e−a/u, e−b/u) = exp

{
−a+ b

u
A
(

a

a+ b

)}
. (7.1)

Now consider a1, . . . , ad ∈ [0,∞), where aj ̸= 0 for at least one j. If aj = 0 for all j ∈ B1,

then
∨d

j=1 ajXj =
∨

j∈B2
ajXj . As explained above, we already know that

∨
j∈B2

ajXj is

Fréchet with shape α = 1 and location β = 0. Similarly, if aj = 0 for all j ∈ B2,
∨d

j=1 ajXj =∨
j∈B1

ajXj , where the latter is Fréchet with shape α = 1 and β = 0. Therefore, it remains

to consider the case in which aj ̸= 0 for at least one j ∈ B1 and one j ∈ B2. By assumption,

the copula of (∨
j∈B1

ajXj,
∨
j∈B2

ajXj

)
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is extreme-value. Therefore, if Aa denotes its Pickands dependence function, we have

from (7.1) that

P

(
d∨

j=1

ajXj ≤ u

)
= P

(∨
j∈B1

ajXj ≤ u,
∨
j∈B2

ajXj ≤ u

)

= exp

{
−s1 + s2

u
Aa

(
s1

s1 + s2

)}
.

This implies that
∨d

j=1 ajXj is Fréchet with shape α = 1, location β = 0 and scaling

(s1 + s2)Aa{s1/(s1 + s2)}. In conclusion, given that
∨d

j=1 ajXj is Fréchet for all a1, . . . , ad ∈

[0,∞) such that aj ̸= 0 for some j ∈ {1, . . . , d}, (X1, . . . , Xd) is multivariate extreme-value

by Theorem 7.1.2.

Observe that in order to ensure the property of the aggregation-tree model required

in Theorem 7.1.2, it is necessary that all the copulas joining the nodes must be extreme-

value. Below, we explore the use of a more restrictive assumption that also ensures that

we obtain an extreme-value copula through the aggregation-tree model by Theorem 7.1.2.

Max-scale invariance assumption: Consider an aggregation-tree model based on the ag-

gregation function a(x, y) = max(x, y), tree structure T , and copulas C1, . . . , Cd−1 for a

random vector (X1, . . . , Xd). Let MB1i
and MB2i

be the variables aggregated at the ith ag-

gregation step. It is assumed that, for all i ∈ {1, . . . , d − 1} and for all a1, . . . , ad ∈ [0,∞)

such that aj ̸= 0 for at least one j ∈ B1i and at least one j ∈ B2i, the copula that joins

(
∨

j∈B1i
ajXj,

∨
j∈B2i

ajXj) is Ci.

Although this max-scale invariance assumption may seem unrealistic, the next result

shows that it is actually verified for multivariate extreme-value distributions with the

Gumbel copula and Fréchet margins. However, it remains unclear whether such distri-

butions are actually aggregation-tree models.

Theorem 7.1.3. Let X = (X1, . . . , Xd) be a random vector with unit Fréchet margins whose

underlying copula is Gumbel with parameter θ. Then for any setsA,B ⊂ {1, . . . , d} withA∩B ̸=
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∅ and any a1, . . . , ad, b1, . . . , bd ∈ [0,∞) such that aj ̸= 0 for at least one j ∈ A and bj ̸= 0 for at

leat one j ∈ B, the copula of (
∨

j∈A ajXj,
∨

j∈B bjXj) is bivariate Gumbel with parameter θ.

Proof. If the copula of X is a d-dimensional Gumbel with parameter θ, then the copulas

of (Xj : j ∈ A) and (Xj : j ∈ B) are both Gumbel with parameter θ. By Theorem 7.1.1, we

know that
∨

j∈A ajXj and
∨

j∈B bjXj are both Fréchet with shape α = 1, location β = 0, and

a scaling parameter dependent on the vectors (a1, . . . , ad) and (b1, . . . , bd), respectively.

First, we find these scaling parameters. To this end, fix x ∈ (0,∞). Then

P

(∨
i∈A

aiXi ≤ x

)
= P(aiXi ≤ x : i ∈ A)

= exp

−{∑
i∈A

(ai
x

)θ}1/θ
 = exp

−1

x

(∑
i∈A

aθi

)1/θ


and similarly for
∨

j∈B bjXj . Therefore, the scaling parameters are

sa =

(∑
i∈A

aθi

)1/θ

and sb =

(∑
i∈B

bθi

)1/θ

for
∨

j∈A ajXj and
∨

j∈B bjXj , respectively.

Next, we examine the joint distribution of (
∨

j∈A ajXj,
∨

j∈B bjXj). We have, for arbi-

trary x, y ∈ (0,∞),

P

(∨
i∈A

aiXi ≤ x,
∨
j∈B

bjXj ≤ y

)
= P({aiXi ≤ x : i ∈ A} ∩ {biXi ≤ y : i ∈ B})

= exp

−{∑
i∈A

(ai
x

)θ
+
∑
i∈B

(
bi
y

)θ
}1/θ


= exp

−{(sa
x

)θ
+

(
sb
y

)θ
}1/θ

 ,
which shows that the copula of (

∨
j∈A ajXj,

∨
j∈B bjXj) is bivariate Gumbel with parame-

ter θ. This concludes the argument.
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The above result shows that to obtain a multivariate extreme-value distribution with

a Gumbel copula with parameter θ from an aggregation-tree model, it is necessary to use

only bivariate Gumbel copulas with the parameter θ at each aggregation step.

Our final result, stated below, explains why using only bivariate Gumbel copulas with

the same parameter is sufficient to generate a multivariate extreme-value distribution

with a Gumbel copula from an aggregation-tree model satisfying the max-scale invariance

assumption.

Theorem 7.1.4. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) be random vectors with Fréchet

margins with shape parameter α = 1 and location parameter β = 0. Let the copulas of X and

Y be Gumbel with parameter θ. Suppose that for any a1, . . . , an, b1, . . . , bm ∈ (0,∞), the copula

of (
∨n

j=1 ajXj,
∨m

j=1 bjYj) is bivariate Gumbel with parameter θ. Then the copula of (X,Y ) =

(X1, . . . , Xn, Y1, . . . , Ym) is also Gumbel with parameter θ.

Proof. For any x = (x1, . . . , xn) ∈ (0,∞)n and y = (y1, . . . , ym) ∈ (0,∞)m, consider∨n
j=1Xj/xj and

∨m
j=1 Yj/yj , which have Fréchet distributions with shape α = 1 and lo-

cation β = 0 by Theorem 7.1.1. From the proof of Theorem 7.1.3, the scaling parameters

are (
∑n

i=1 x
−θ
i )1/θ and (

∑m
i=1 y

−θ
i )1/θ, respectively.

We examine the joint distribution of (X1, . . . , Xn, Y1, . . . , Ym). For any x1, . . . , xn ∈

(0,∞) and y1, . . . , ym ∈ (0,∞), we have

P(X1 ≤ x1, . . . , Xn ≤ xn, Y1 ≤ y1, . . . , Ym ≤ ym) = P

(
n∨

j=1

Xj

xj
≤ 1,

m∨
j=1

Yj
yj

≤ 1

)

= exp

−{ n∑
i=1

(
1

xi

)θ

+
m∑
i=1

(
1

yi

)θ
}1/θ

 .
This shows that the copula of (X,Y ) is Gumbel with parameter θ.

Applying this result recursively at every aggregation step shows that an aggregation-

tree model with aggregation function a(x, y) = max(x, y) which uses bivariate Gumbel
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copulas with parameter θ and satisfies the max-scale invariance assumption generates a

multivariate extreme-value distribution whose copula is Gumbel with parameter θ.

The main obstacle that remains at present is the fact that it is unclear how to enforce

the max-scale invariance assumption for aggregation-tree models. It also seems diffi-

cult to verify whether a multivariate extreme-value distribution can be expressed as an

aggregation-tree model.

That said, observe that the multivariate Gumbel model requires us to use only the

same copula for every pair of variables being aggregated. Under the max-scale invari-

ance assumption, other types of copulas can perhaps be obtained when using different

bivariate copulas across the aggregation process. However, it seems that this assumption

may impose restrictions on the choice of copulas that can be used to model the aggregated

pairs. For instance, consider a 4-dimensional aggregation-tree model with tree structure

T2 = {{1, 2}, 3, 4}, T3 = {{1, 2}, {3, 4}}, T4 = {{1, 2, 3, 4}}, and copulas C{1}{2}, C{3}{4} and

C{1,2}{3,4}, which are Gumbel with parameters θ1, θ2, and θ3, respectively. If the max-scale

invariance assumption holds, this model produces the 4-dimensional copula defined, for

all u1, . . . , u4 ∈ (0, 1), by

C(u1, u2, u3, u4) = exp[−
{
(uθ11 + uθ12 )θ3/θ1 + (uθ23 + uθ24 )θ3/θ2

}1/θ3 ]. (7.2)

The copula defined in (7.2) is known as a nested Gumbel copula. However, it is a valid

copula only if θ1 ≤ θ3 and θ2 ≤ θ3; see Hofert & Pham (2012). Thus, it seems that the

validity of the max-scale invariance assumption does somehow limit the choice of copulas

used in the aggregation steps.

It also remains to be seen how to develop inference procedures which could be used

to verify the validity of the max-scale invariance assumption. It would also be important

to explore other possible copulas that could be obtained under the max-scale invariance

assumption, and the limitations on the choice of copulas that the max-scale invariance

assumption imposes.
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Chapter 8

Conclusion

In this thesis, aggregation-tree models were seen to offer a simple and practical frame-

work to build dependence structures for high-dimensional data.

We examined the necessary conditional independence assumption to ensure that the

aggregation-tree model provides a unique and well-defined joint distribution, and we

presented an alternative formulation which could be simpler to verify than those given by

Arbenz et al. (2012) and Côté & Genest (2015). We also explored some of the applications

and properties of aggregation-tree models for modeling extreme values.

Furthermore, we proposed a model selection technique adapted for extreme-value

analysis using hierarchical clustering based on upper-tail dependence measures through

the F -madogram. Under strong assumptions on the model construction, we found that

aggregation-tree models based on extreme-value copulas and the maximum as the aggre-

gating function can be used to generate multivariate extreme-value distributions.

As we saw, the max-scale invariance assumption stands out as a strong but simple con-

dition which ensures that an aggregation-tree model generates a multivariate extreme-

value distribution. This assumption is necessary to obtain certain multivariate extreme-

value distributions such as those having a Gumbel copula and Fréchet margins. However,

ways to enforce this assumption for aggregation-tree models remain to be found. More-
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over, this assumption seems to place limitations on the choice of bivariate copulas that

one can use. It would be interesting to articulate these limitations in future work.
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Ben Ghorbal, N., Genest, C. & Nešlehová, J. (2009). On the test of Ghoudi, Khou-

draji, and Rivest for extreme-value dependence. The Canadian Journal of Statistics,

vol. 37, no. 4, pp. 534–552.

Cleveland, R.B., Cleveland, W.S., McRae, J.E. & Terpenning, I.J. (1990). STL: A

seasonal-trend decomposition procedure based on LOESS. Journal of Official Statis-

tics, vol. 6, no. 1, pp. 3–33.

Cooley, D., Naveau, P. & Poncet, P. (2006). Variograms for spatial max-stable ran-

dom fields. In Dependence in Probability and Statistics (Bertail, P., Soulier, P. & Dou-

khan, P., eds). Lecture Notes in Statistics, vol. 187. Springer, pp. 373–390.
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Genest, C., Kojadinovic, I., Nešlehová, J.G. & Yan, J. (2011). A goodness-of-fit test

for bivariate extreme-value copulas. Bernoulli, vol. 17, no. 1, pp. 253–275.
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