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Abstract	
	

Wearable	 sensors	 can	detect	 potential	 respiratory	 infections	 before	 or	 absent	 symptoms	

through	continuous,	passive	monitoring	of	pathogen-elicited	physiological	changes.	While	

numerous	 efforts	 have	 been	made	 to	 develop	wearable	 sensor-based	 infection	 detection	

algorithms,	the	population-level	impact	of	deploying	such	technology	during	a	pandemic	has	

not	been	explored.	In	this	thesis,	we	used	mathematical	modelling	to	study	wearable	sensor-

based	 pandemic	 mitigation	 strategies.	 Using	 SARS-CoV-2	 as	 an	 illustrative	 example,	 we	

constructed	 a	 compartmental	 model	 of	 Canada’s	 second	 COVID-19	 wave,	 simulated	

counterfactual	wearable	sensor	deployment	scenarios,	and	systematically	investigated	the	

role	 of	 detection	 algorithm	 accuracy,	 uptake,	 and	 adherence.	 With	 currently	 available	

detection	 algorithms	 and	 4%	 uptake,	we	 observed	 a	 16%	 reduction	 in	 the	 second	wave	

burden	 of	 infection;	 however,	 22%	 of	 this	 reduction	 was	 attributed	 to	 incorrectly	

quarantining	 uninfected	 device	 users.	 Improving	 detection	 specificity	 and	 offering	

confirmatory	rapid	tests	each	minimised	unnecessary	quarantines	and	lab-based	tests.	With	

a	 sufficiently	 low	 false	 positive	 rate,	 increasing	 uptake	 and	 adherence	 became	 effective	

strategies	 for	 scaling	 averted	 infections.	We	 concluded	 that	wearable	 sensors	 capable	 of	

detecting	 presymptomatic	 or	 asymptomatic	 infections	 have	 potential	 to	 help	 reduce	 the	

burden	of	infection	during	pandemics.	In	the	case	of	COVID-19,	technology	improvements	or	

supporting	measures	are	required	to	keep	social	and	resource	costs	sustainable.	
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Résumé	Scientifique	
	

Les	capteurs	portables	peuvent	détecter	les	infections	respiratoires	potentielles	avant	ou	en	

l’absence	 de	 symptômes	 grâce	 à	 une	 surveillance	 passive	 et	 continue	 des	 changements	

physiologiques	provoqués	par	les	agents	pathogènes.	Bien	que	de	nombreux	efforts	aient	été	

déployés	pour	développer	des	algorithmes	de	détection	d’infections	basés	sur	des	capteurs	

portables,	 l’impact	 du	 déploiement	 d’une	 telle	 technologie	 au	 niveau	 de	 la	 population	

pendant	 une	 pandémie	 n’a	 pas	 été	 exploré.	 Dans	 cette	 thèse,	 nous	 avons	 utilisé	 la	

modélisation	mathématique	pour	étudier	les	stratégies	d’atténuation	des	pandémies	basées	

sur	des	capteurs	portables.	En	utilisant	le	SRAS-CoV-2	comme	exemple,	nous	avons	construit	

un	modèle	compartimental	de	la	deuxième	vague	de	COVID-19	au	Canada.	Nous	avons	simulé	

des	 scénarios	 contrefactuels	 de	 déploiement	 de	 capteurs	 portables	 et	 étudié	

systématiquement	le	rôle	de	la	précision	des	algorithmes	de	détection,	de	leur	adoption,	et	

de	leur	adhésion.	Avec	les	algorithmes	de	détection	disponibles	et	un	taux	d’adoption	de	4%,	

nous	avons	observé	une	réduction	de	16%	de	la	charge	d’infection	de	la	deuxième	vague	de	

COVID-19.	 Toutefois,	 22%	 de	 cette	 réduction	 a	 été	 attribuée	 à	 la	 mise	 en	 quarantaine	

incorrecte	 d’utilisateurs	 de	 dispositifs	 non	 infectés.	 L’amélioration	 de	 la	 spécificité	 de	 la	

détection	et	l’offre	de	tests	rapides	de	confirmation	ont	permis	de	réduire	les	quarantaines	

et	 les	 tests	 de	 laboratoire	 inutiles.	 Avec	 un	 taux	 de	 faux	 positifs	 suffisamment	 faible,	

l’augmentation	de	l’adoption	et	de	l’adhésion	est	devenue	une	stratégie	efficace	pour	éviter	

les	 infections.	 Nous	 avons	 conclu	 que	 les	 capteurs	 portables	 capables	 de	 détecter	 les	

infections	présymptomatiques	ou	asymptomatiques	peuvent	contribuer	à	réduire	la	charge	

d’infection	 pendant	 les	 pandémies.	 Dans	 le	 cas	 de	 COVID-19,	 des	 améliorations	

technologiques	 ou	 des	 mesures	 de	 soutien	 sont	 nécessaires	 pour	 assurer	 que	 les	 coûts	

sociaux	et	les	coûts	des	ressources	restent	viables.	 	
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1 	
Introduction	
	

The	uncontrolled	transmission	of	infectious	pathogens	can	have	catastrophic	public	health	

and	 socioeconomic	 consequences	 [1].	 The	 recent	 COVID-19	 (coronavirus	 disease	 2019)	

pandemic,	caused	by	the	rapid	spread	of	SARS-CoV-2	(severe	acute	respiratory	syndrome	

coronavirus	2),	sheds	light	on	the	potential	for	harm:	over	630	million	confirmed	cases	and	

6.6	million	deaths	were	reported	as	of	November	29,	2022	[2,	3].	 Importantly,	pathogens	

with	pandemic	potential	have	regularly	appeared	throughout	history,	and	will	continue	to	

do	so	with	an	accelerating	pace	driven	by	climate	change,	biosecurity	threats,	and	other	such	

factors	 [4–6].	 Minimising	 the	 damage	 these	 infectious	 diseases	 could	 cause	 will	 require	

robust	public	health	responses	that	optimally	deploy	tools	and	resources	available.	

	

There	are	a	variety	of	public	health	interventions	one	can	implement	to	mitigate	viral	spread	

[7].	 Identifying	 the	 best	 intervention	 (or	 set	 of	 interventions)	 for	 a	 particular	 scenario	

requires	decision-makers	to	balance	multiple	factors	including	the	projected	effectiveness,	

costs,	feasibility,	social	acceptability,	and	higher-order	consequences	of	different	options.	A	

lockdown,	for	example,	might	be	a	useful	policy	to	reduce	short-term	transmission;	however,	

it	would	also	 constrain	economic	activity	and	harm	mental	health,	 among	other	negative	

ramifications	[8,	9].	

	

Mathematical	models	of	infectious	disease	spread	are	critical	tools	that	help	public	health	

officials	understand	trade-offs	associated	with	different	interventions	and	make	decisions	

[10].	The	use	of	 infectious	disease	models	 is	essential	 for	 three	reasons.	First,	emergency	

scenarios	 at	 hand	 have	 likely	 never	 been	 faced	 before,	 demanding	 a	 systematic	 and	

principled	 approach	 to	 applying	 established	 epidemiological	 frameworks	 to	 an	 often-

evolving	understanding	of	the	present	situation.	Second,	the	spread	of	infectious	pathogens	

is	an	exponential	and	nonlinear	process,	and	how	different	 interventions	might	steer	this	
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process	 can	 be	 non-intuitive	 [11].	 Finally,	 public	 health	 officials	 are	 often	 interested	 in	

considering	 multiple	 possible	 epidemic	 trajectories,	 each	 the	 result	 of	 a	 different	 set	 of	

assumptions	 or	 interventions.	 In	 reality,	 however,	 only	 one	 trajectory	 can	 be	 realised.	

Models	 can	 be	 used	 to	 simulate	 a	 range	 of	 counterfactual	 and	 hypothetical	 scenarios,	

enabling	decision-makers	to	assess	each	anticipated	outcome	before	coming	to	a	conclusion	

[12].	In	this	M.Sc.	thesis,	we	construct	a	mathematical	model	to	explore	the	potential	impact	

of	 deploying	 wearable	 sensors	 to	 detect	 infections,	 strengthen	 Find-Test-Trace-Isolate	

(FTTI)	systems,	and	improve	pandemic	mitigation	[13].	

	

FTTI	systems	are	a	central	element	of	pandemic	mitigation,	especially	in	scenarios	where	it	

is	important	to	reduce	the	number	of	infections	(e.g.,	during	the	acute	phase	of	a	pandemic,	

prior	to	vaccine	availability)	[14,	15].	These	systems	aim	to	identify	and	isolate	infectious	

individuals,	however,	the	COVID-19	pandemic	highlighted	two	limitations	in	how	they	are	

commonly	implemented.	First,	hidden	infection	chains	resulting	from	presymptomatic	and	

asymptomatic	transmission	were	often	missed	because	symptoms	are	what	usually	prompt	

individuals	to	seek	a	test	[16].	Second,	slow	test	result	turnaround	times—caused	by	reliance	

on	lab-based	polymerase	chain	reaction	(PCR)	testing	infrastructure—meant	that	infectious	

individuals	could	unknowingly	spread	the	virus	for	a	longer	period	of	time	[17,	18].	

	

Digital	 contact	 tracing	 apps	 were	 promising	 tools	 to	 detect	 potential	 transmissions	 that	

resulted	from	contact	with	an	infectious	individual,	irrespective	of	whether	they	presented	

with	symptoms.	However,	the	impact	of	these	apps	was	limited	by	inadequate	participation	

and	 concerns	 around	 privacy	 [19,	 20].	 Separately,	 rapid	 testing	 programs—in	 which	

individuals	are	supplied	with	a	rapid	antigen	test	(RAT),	self-administer	the	test,	receive	the	

result	 almost	 immediately,	 and	 then	 self-isolate	 in	 the	 case	 of	 a	 positive	 result—showed	

promise	 in	addressing	the	 issue	of	slow	turnaround	of	 lab-based	test	results.	While	rapid	

testing	programs	eventually	supplanted	lab-based	testing	infrastructure—particularly	due	

to	the	failure	of	such	infrastructure	during	the	Omicron	wave	of	the	COVID-19	pandemic—

they	have	been	limited	by	high	costs,	occasionally	sparse	supply,	and	concerns	around	the	

accuracy	of	the	RATs	themselves	[21–23].	
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Wearable	sensors	have	already	been	established	as	 tools	 to	detect	deviations	 from	users’	

physiological	 baselines,	 and	 could	 serve	 as	 a	 novel	 platform	 for	 infection	 detection	with	

potential	 to	strengthen	FTTI	systems	[24].	Recent	 findings	suggest	 that	wearable	sensors	

may	be	able	to	detect	infections	caused	by	respiratory	pathogens	such	as	SARS-CoV-2,	before	

or	 absent	 symptoms	 [25,	 26].	 As	 one	 example,	 Alavi	 et	 al.	 developed	 an	 algorithm	 that	

analyses	patterns	in	smartwatch-captured	overnight	resting	heart	rate	and	can	provide	real-

time	 alerts	 of	 potential	 presymptomatic	 or	 asymptomatic	 SARS-CoV-2	 infection	 [27].	 If	

algorithms	like	this	were	widely	deployed,	wearable	sensors	could	help	FTTI	systems	more	

rapidly	 identify	(and	subsequently	 isolate)	 infectious	 individuals,	 including	those	without	

symptoms.	 As	 well,	 wearable	 sensor-based	 detection	 would	 offer	 the	 unique	 benefit	 of	

passive	monitoring,	which	minimises	required	user	engagement;	could	operate	in	privacy-

preserving	 fashion	 because	 sensor	 data	would	 not	 need	 to	 be	 shared	with	 a	 centralised	

database;	and	could	leverage	the	fact	that	22–25%	of	the	Canadian	population	already	owns	

a	wearable	device,	reducing	the	infrastructure	costs	of	the	intervention	[28,	29].	

	

With	these	potential	benefits	in	mind,	many	efforts—in	addition	to	those	of	Alavi	et	al.—have	

been	made	to	develop	algorithms	to	detect	SARS-CoV-2	infections	from	wearable	sensor	data	

[30,	31].	We	enumerate	and	discuss	these	research	thrusts	in	Chapter	2.	However,	in	spite	of	

this	host	of	efforts,	the	potential	population-level	impact	of	deploying	wearable	sensors	to	

strengthen	FTTI	systems	and	improve	pandemic	mitigation	has	yet	to	be	assessed.	To	the	

best	of	our	knowledge,	no	studies	have	characterised	how	the	technological	and	behavioural	

parameters	of	a	wearable	sensor-based	intervention	might	influence	its	effectiveness,	social	

burden,	and	resource	costs.	Moreover,	practical	policies	that	could	complement	and	augment	

a	wearable	sensor-based	intervention	remain	to	be	explored.	The	unfortunate	result	of	this	

knowledge	gap	is	that	decision-makers	are	left	with	access	to	potentially	impactful	public	

health	tools	but	without	the	information	needed	to	optimally	deploy	them.	

	

In	 this	M.Sc.	 thesis,	we	construct	and	employ	a	mathematical	model	of	 infectious	disease	

spread	 to	address	 this	knowledge	gap.	After	reviewing	necessary	background	material	 in	

Chapter	2,	we	present	 the	 approach	and	 findings	of	 the	modelling	 exercise	 in	Chapter	3,	
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drawing	from	the	published	version	of	this	work	[13].	We	discuss	the	implications	of	these	

findings	and	opportunities	for	future	study	in	Chapter	4.	Our	contributions	are	as	follows:	

	

1. We	 demonstrate	 that	 deploying	 wearable	 sensors	 capable	 of	 detecting	 infections	

before	 or	 absent	 symptoms	 can	 help	 reduce	 the	 burden	 of	 infection	 during	 a	

pandemic.	We	do	so	by	estimating	 the	number	of	 infections	 that	would	have	been	

averted	had	this	technology	been	deployed	during	Canada’s	second	COVID-19	wave.	

	

2. We	 show	 that	 currently	 available	 detection	 algorithms	 would	 likely	 prompt	 a	

prohibitive	 volume	 of	 unnecessary	 quarantines	 and	 lab-based	 tests,	 but	 that	

improving	 detection	 specificity	 and	 offering	 confirmatory	 RATs	 were	 each	 useful	

strategies	for	bringing	these	social	and	resource	costs	to	more	feasible	levels.	

	

3. We	establish	that	once	false	positive	notifications	are	minimized,	increasing	uptake	

and	adherence	become	effective	strategies	to	scale	the	number	of	averted	infections.	

	

We	use	the	example	of	SARS-CoV-2	throughout	this	modelling	exercise	to	obtain	concrete	

estimates	of	impact	that	are	relevant	to	the	current	public	health	context.	However,	as	we	

later	detail	in	Chapter	3,	we	construct	the	mathematical	model	in	such	a	way	that	we	capture	

uncertainties	 around	 the	 wearable	 sensor-based	 detection	 technology	 (as	 opposed	 to	

uncertainties	around	SARS-CoV-2	epidemiology).	Consequently,	 the	 intuition	we	generate	

around	the	trade-offs	of	this	intervention	can	be	applied	to	the	acute	phase	of	any	pandemic	

caused	by	a	respiratory	pathogen,	enabling	public	health	decision-makers	to	better	address	

infectious	threats.	
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2 	
Background	
	

In	this	thesis,	we	construct	a	mathematical	model	to	explore	how	wearable	sensors	capable	

of	detecting	infections	can	augment	Find-Test-Trace-Isolate	(FTTI)	systems	and	contribute	

to	pandemic	mitigation.	This	chapter	presents	the	context	and	background	material	needed	

to	follow	this	modelling	effort.	We	segment	this	chapter	into	four	components:	(1)	an	outline	

of	current	pandemic	mitigation	strategies;	(2)	an	introduction	to	techniques	used	to	design	

mathematical	models	of	pandemics;	 (3)	 an	overview	of	physiological	 responses	 to	SARS-

CoV-2	 infection;	 and	 (4)	 a	 discussion	of	 recent	 efforts	 to	develop	wearable	 sensor-based	

public	 health	 tools.	 As	 mentioned	 in	 Chapter	 1,	 we	 use	 the	 example	 of	 SARS-CoV-2	

throughout	this	thesis—including	while	presenting	background	material	in	this	chapter—to	

generate	insights	that	are	topical.	Later,	in	Chapter	3,	we	discuss	how	we	construct	the	model	

to	derive	takeaways	that	are	generalizable	beyond	the	COVID-19	pandemic.	

	

2.1 Pandemic	mitigation	strategies	
The	term	epidemic—which	means	“on	the	people”	in	Greek—was	first	used	by	Hippocrates	

to	refer	to	the	spread	of	disease	within	a	population	[32].	Today,	the	US	Centers	for	Disease	

Control	and	Prevention	defines	an	“epidemic”	as	“an	increase,	often	sudden,	in	the	number	

of	cases	of	a	disease	above	what	is	normally	expected	in	that	population	in	that	area”	[33].	

An	“outbreak”	is	defined	similarly,	though	in	application	to	a	more	restricted	geographical	

area,	and	a	“pandemic”	is	defined	as	“an	epidemic	that	has	spread	over	several	countries	or	

continents,	usually	affecting	a	large	number	of	people”	[33].	In	this	section	we	discuss	how	

public	 health	 decision-makers	 design	 interventions	 to	 address	 pandemics	 of	 infectious	

pathogens.	We	also	formally	introduce	the	concept	of	FTTI	systems—pandemic	mitigation	

interventions	that	are	relevant	to	this	thesis.	
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There	are	several	approaches	to	reducing	the	public	health	impact	of	a	pandemic.	Which	set	

of	strategies	decision-makers	choose	to	deploy,	and	how	they	construct	policies	to	support	

this	 deployment,	 shapes	 an	 epidemic’s	 trajectory.	 In	 Table	 1,	 we	 present	 a	 taxonomy	 of	

mitigation	 strategies,	 drawing	 from	 World	 Health	 Organization	 guidance	 on	 mitigating	

pandemic	influenza	[7].	Each	class	of	interventions	has	its	own	benefits	and	drawbacks,	and,	

further,	 these	 trade-offs	 can	 evolve	 over	 time	 and	 vary	 depending	 on	 the	 specific	 public	

health	objective	being	pursued.	For	instance,	border	closures	can	reduce	imported	infections	

and	contain	transmission	but	cause	economic	and	humanitarian	harm,	and	strain	diplomatic	

relations;	 they	 represent	 extreme	 but	 sometimes-warranted	 interventions	 [34].	 In	 most	

scenarios,	deploying	a	carefully	selected	subset	of	interventions	will	be	more	effective	than	

deploying	any	single	intervention	on	its	own.	Importantly,	effectiveness	in	achieving	a	public	

health	objective	 is	not	the	only	 factor	that	governs	which	interventions	are	deployed	and	

how.	Other	key	factors	include	the	costs	of	different	strategies	[35,	36];	the	need	to	optimise	

for	multiple	 public	 health	 objectives	 at	 once	 [37];	 concerns	 around	 privacy,	 particularly	

when	data	are	collected	and	deployed	on	digital	platforms	[38];	public	attitudes,	awareness,	

and	cultural	norms	[39–41];	and	the	impact	of	different	strategies	on	health	equity	[42].	

	
Table	1:	Taxonomy	of	pandemic	mitigation	strategies.	We	draw	the	segmentation	of	non-pharmaceutical	interventions	

and	some	examples	of	these	interventions	from	World	Health	Organisation	guidance	on	mitigating	pandemic	influenza	[7].		

Intervention	Type	 Description	 Examples	
Pharmaceutical	Interventions	

	 Therapeutics	 Drugs	designed	to	reduce	the	severity	of	disease	
within	an	infected	individual.	

Antiviral	medications,	monoclonal	
antibodies	

	 Vaccines	

Drugs	designed	to	reduce	the	risk	of	one	or	more	
outcomes	including	infection,	symptomatic	
disease,	severe	disease	(e.g.,	hospitalisation,	
intensive	care),	and	death.	

Several	types	including	mRNA,	viral	
vector,	and	live	attenuated	viruses		

Non-Pharmaceutical	Interventions	

	 Personal	Protective	
Measures	

Individual-level	action	to	reduce	the	risk	of	
transmission,	without	modification	of	movement	
or	social	engagement	patterns.	

Wearing	masks,	hand	and	face	
hygiene	

	 Environmental	
Measures	

Modification	of	properties	of	a	physical	location	
to	reduce	the	risk	of	transmission	in	that	
location.	

Air	filtration,	ventilation,	surface	
cleaning,	UV	light	

	 Social	Distancing	
Measures	

Modification	of	movement	and/or	social	
engagement	patterns,	driven	by	individual-level	
action	or	broader	policies,	to	reduce	the	risk	of	
transmission.	

Contact	tracing,	isolation	of	
individuals	with	confirmed	infection,	
school	closures,	social	distancing	

	 Travel-Related	
Measures	

Restriction	of	movement	between	larger	
geographical	regions	(e.g.,	provinces,	states,	
countries)	to	contain	pathogen	circulation.	

Travel	screening,	border	closures,	
travel	restrictions	
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FTTI	systems	were	important	public	health	tools	during	the	COVID-19	pandemic	[15].	These	

systems	combine	multiple	Social	Distancing	Measures	into	a	cohesive	strategy	for	identifying	

infected	or	potentially	infected	individuals	and	isolating	or	quarantining	them,	respectively,	

to	reduce	the	likelihood	that	they	infect	others.	“Find”	refers	to	the	process	of	 identifying	

potentially	infected	individuals,	for	example,	by	screening	them	for	relevant	symptoms	or	

determining	if	they	were	in	contact	with	others	who	were	known	to	be	infected.	The	status	

of	 these	 potentially	 infected	 individuals	 is	 then	 confirmed	 (“Test”).	 If	 they	 are	 indeed	

infected,	 effort	 is	 made	 to	 identify	 who	 they	 may	 have	 contacted	 (“Trace”)	 and	 they	

themselves	are	asked	to	“Isolate”	until	recovery.	FTTI	systems	are	particularly	useful	when	

there	is	a	public	health	imperative	to	reduce	the	number	of	infections	(e.g.,	as	opposed	to	the	

number	of	hospitalisations	or	the	number	of	deaths).	Certainly,	the	availability	of	vaccines	

or	therapeutics	that	reduce	the	severity	of	disease	might	decrease	the	marginal	impact	of	an	

averted	infection	because	the	consequences	of	being	infected	become	less	severe.	However,	

FTTI	systems	remain	particularly	useful	prior	to	the	development,	approval,	and	distribution	

of	 such	 pharmaceuticals;	 in	 scenarios	 where	 the	 longer-term	 consequences	 of	 infection	

remain	unclear	(e.g.,	with	“long	COVID-19”)	[43];	and	in	instances	where	the	reduction	in	

risk	of	hospitalisation	is	outweighed	by	the	sheer	volume	of	infections	(e.g.,	if	the	pathogen	

spreads	rapidly)	and	health	system	infrastructure	becomes	at	risk	of	being	overwhelmed.	

	

During	the	COVID-19	pandemic,	there	were	myriad	approaches	to	designing	FTTI	systems	

[15].	 Yet,	 even	 with	 this	 heterogeneity,	 two	 challenges	 were	 pervasive.	 First,	 the	 “Find”	

component	of	these	systems	was	often	limited	in	its	ability	to	identify	hidden	infection	chains	

resulting	from	presymptomatic	or	asymptomatic	transmission	of	SARS-CoV-2	[16].	Second,	

the	“Test”	component	of	these	systems	was	often	reliant	on	lab-based	testing,	but	slow	test	

result	 turnaround	 times	 increased	 the	 window	 in	 which	 infected	 individuals	 could	

unknowingly	transmit	the	virus	to	their	contacts	[17,	18].	While	these	two	bottlenecks	are	

specific	 nodes	 in	 a	 larger	 system	 that	 represents	 just	 one	 of	many	 pandemic	mitigation	

strategies,	 the	 outcome	 is	 that	 society’s	 ability	 to	 limit	 the	 number	 of	 infections	 is	

compromised.	 Innovative	 fixes—whether	 enabled	 by	 advances	 in	 technology,	 improved	

logistics,	or	other	solutions—are	needed	to	strengthen	FTTI	systems	and	thereby	enhance	

our	broader	pandemic	mitigation	toolkit.	
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2.2 Mathematical	models	of	pandemics	
Mathematical	models	of	infectious	disease	transmission	are	critical	tools	for	public	health	

decision-making	 during	 pandemics	 [10].	 Well-designed	 models	 can	 help	 officials	 apply	

established	epidemiological	frameworks	to	a	dynamic	emergency	scenario,	develop	intuition	

around	 the	nonlinear	effects	an	 intervention	might	have,	 and	consider	multiple	plausible	

epidemic	trajectories	before	coming	to	a	decision.	In	this	section,	we	introduce	and	compare	

two	infectious	disease	modelling	frameworks:	compartmental	models,	which	are	the	focus	

of	 this	 thesis,	and	agent-based	models	(ABMs).	We	discuss	two	approaches	to	addressing	

uncertainty	in	modelling	results	and	elaborate	on	the	utility	of	counterfactual	models.	

	

The	process	of	engineering	a	useful	model	involves	weighing	trade-offs	between	a	model’s	

complexity,	 its	 accuracy,	 the	 computational	 resources	 it	 requires,	 and	 the	 extent	 of	 the	

assumptions	 it	 makes.	 In	 the	 context	 of	 infectious	 disease	 control,	 these	 considerations	

govern	whether	one	might	choose	to	construct	a	compartmental	model	or	an	ABM	to	answer	

a	particular	public	health	question.	

	

Compartmental	 models—in	 systems	 engineering	 terminology,	 “state	 space	 models”—

segment	 the	 population	 into	 groups	 and	 describe	 flows	 between	 groups	 using	 a	 set	 of	

differential	 equations	 [44].	 To	 illustrate	 this	 concept,	 we	 can	 consider	 a	 Susceptible,	

Infectious,	Removed	 (SIR)	model	 (Figure	1)	 that	 splits	 the	population	 into	 three	mutually	

exclusive	compartments	on	the	basis	of	health	status.	Susceptible,	healthy	individuals	can	get	

infected;	Infectious	individuals	recover	or	die	after	a	period	of	being	able	to	infect	others;	and	

Removed	individuals	have	either	gained	immunity	(i.e.,	cannot	become	infectious	again)	or	

died.	Equations	1–3	below	govern	the	flow	of	individuals	between	compartments.	S(t),	I(t),	

and	R(t)	represent	the	time-varying	number	of	individuals	in	the	Susceptible,	Infectious,	and	

Recovered	 groups,	 respectively.	 As	 well,	 N	 represents	 the	 number	 of	 individuals	 in	 the	

population;	β	represents	the	transmission	rate	in	units	of	the	number	of	transmissions	per	

infected	individual	per	unit	of	time;	and	γ	represents	the	recovery	rate,	calculated	as	one	

divided	by	the	number	of	units	of	time	that	an	individual	remains	Infectious.	
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Figure	1:	 Schematic	of	 a	Susceptible,	 Infectious,	Removed	 (SIR)	 compartmental	model.	Susceptible	 individuals	 are	

healthy	and	can	get	infected.	Infectious	individuals	can	infect	others	for	a	period	of	time,	after	which	they	recover	or	die.	

Removed	individuals	have	either	died	or	gained	immunity	(i.e.,	cannot	become	infectious	again).	
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Compartmental	models	are	not	typically	computationally	intensive,	making	them	accessible	

and	relatively	easy	 to	 iteratively	prototype	 [44].	They	can	be	mathematically	probed	and	

characterised	with	the	same	established	analytical	toolkit	that	is	commonly	applied	to	other	

state-space	models.	These	models	are	typically	more	straightforward	to	parameterise	due	to	

their	 small	 set	 of	 variables,	 and	 this	 simplicity	 enables	model	users	 to	 easily	understand	

underlying	 assumptions	 in	 turn.	 Altogether,	 these	 features	make	 compartmental	models	

highly	attractive	for	generating	principled	initial	estimates	to	answer	questions	about	public	

health	interventions,	however,	limitations	of	these	models	must	also	be	acknowledged	[10].	

The	 downside	 of	 being	 parameterised	 by	 a	 small	 set	 of	 variables	 is	 that	 compartmental	

models	may	not	be	able	to	capture	the	complicated	realities	of	viral	transmission,	which	can	

be	 influenced	by	policies,	human	behaviour,	climate,	and	myriad	other	 factors.	Moreover,	

these	models	are	often	parameterized	by	mean	values	of	variables	(though	it	is	possible	to	

parametrise	 them	 with	 statistical	 distributions)	 and	 they	 assume	 that	 the	 population	 is	

homogenous	and	well-mixed.	At	baseline,	these	models	cannot	capture	key	individual-level	
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heterogeneities.	Take	the	SIR	model	above	applied	to	influenza	as	one	example:	children	are	

known	 to	 be	 more	 susceptible	 to	 this	 virus	 than	 adults,	 and	 the	 transmission	 rate	 may	

therefore	 vary	 by	 age	 [45].	 Indeed,	 it	 is	 possible	 to	 add	 compartments	 beyond	 the	 SIR	

structure,	whether	to	capture	such	heterogeneities	(e.g.,	compartments	for	different	age	or	

symptom	groups	to	reflect	differential	susceptibility	or	infectiousness)	or	to	capture	other	

complexities	 of	 the	 situation	 at	 hand	 (e.g.,	 compartments	 representing	 individuals	 in	

quarantine).	However,	each	additional	compartment	contributes	to	the	number	of	equations	

and	parameters,	making	the	model	increasingly	difficult	to	implement	and	analyse.	

	

ABMs	 leverage	 computational	 capabilities	 to	 simulate	 each	 person	 in	 a	 population	 as	 an	

“agent”	and	thereby	account	for	individual-level	heterogeneities	[10,	44].	More	specifically,	

ABMs	capture	the	status	of	each	agent	(e.g.,	susceptible,	infectious,	in	quarantine)	and	track	

their	contact	networks	(i.e.,	the	list	of	people	they	interact	with).	Viral	transmission	can	occur	

when	a	susceptible	agent	and	an	infectious	agent	encounter	each	other.	Heterogeneities	can	

be	incorporated	in	a	variety	of	ways,	for	example,	by	specifying	contact	networks	on	the	basis	

of	age	or	contact	setting	(e.g.,	home,	school,	workplace),	by	drawing	an	individual’s	duration	

of	infectiousness	from	a	probability	distribution	instead	of	using	a	consistent	value	across	

the	population,	or	by	varying	the	probability	of	transmission	based	on	the	contact	setting.	

	

The	 ability	 to	 capture	 individual-level	 heterogeneities	 is	 the	 preeminent	 advantage	 that	

ABMs	have	over	compartmental	models	[10,	44].	These	heterogeneities	can	lead	to	emergent	

behaviour	on	a	population	level	and	enable	modellers	to	explore	hypotheses	with	greater	

precision.	The	trade-off	is	that	far	more	data	are	required—or	far	more	assumptions	must	

be	 made—to	 parameterise	 ABMs.	 ABMs	 are	 also	 more	 challenging	 to	 implement	 than	

compartmental	models	and	typically	require	dedicated	software	tools	and	packages,	making	

them	less	accessible	and	flexible	to	answer	custom	questions.	Moreover,	the	computational	

resources	ABMs	require	rapidly	grow	with	the	number	of	agents	and	calculations	performed	

per	time	step;	in	many	instances	virtual	servers	and	computational	platforms	are	required	

to	run	simulations.	In	general,	ABMs	are	useful	when	individual-level	heterogeneity	must	be	

accounted	for,	and	when	sufficient	data	and	computational	resources	are	available.	
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Regardless	of	the	modelling	framework	one	adopts,	uncertainty	must	be	incorporated	into	

modelling	 exercises	 to	 appropriately	 enable	 public	 health	 decisions	 [10].	 The	 level	 of	

confidence	in	the	anticipated	outcome	of	each	possible	decision	dictates	which	decisions	are	

ultimately	taken.	Various	factors	can	contribute	to	the	uncertainty	one	might	have	about	a	

modelled	epidemic,	 for	example,	a	 limited	understanding	of	viral	 characteristics	 (e.g.,	 the	

duration	of	infectiousness),	or	an	inability	to	anticipate	the	effect	of	an	intervention	(e.g.,	the	

extent	to	which	mandating	face	masks	might	reduce	the	transmission	rate).	

	

There	are	two	common	approaches	to	capturing	uncertainty	in	infectious	disease	models.	

First,	one	can	define	selected	parameters	as	random	variables	instead	of	constants.	In	the	

context	 of	 compartmental	 models,	 values	 for	 these	 parameters	 can	 be	 drawn	 at	 the	

beginning	of	each	simulation	or	values	can	be	drawn	each	day,	resulting	in	the	differential	

equations	 that	 describe	 flows	 between	 compartments	 becoming	 stochastic	 differential	

equations.	Then,	confidence	intervals	can	be	generated	with	Monte	Carlo	simulations:	the	

model	can	be	run	thousands	of	times	and	the	range	of	epidemic	trajectories	that	could	result	

can	 be	 captured	 [46].	 In	 the	 context	 of	 ABMs,	many	parameters	 are	 already	 specified	 as	

probability	 distributions	 to	 enable	 individual-level	 heterogeneity.	 With	 these	 models,	

uncertainty	 would	 be	 reflected	 in	 the	 level	 of	 confidence	 one	 has	 in	 the	 probability	

distributions	being	used:	the	parameters	of	these	distributions	could	themselves	be	treated	

as	random	variables	(e.g.,	as	 is	typically	the	case	with	Bayesian	statistical	models),	or	the	

distributions	 could	 be	wider	 than	 they	would	 be	 if	 they	were	well-characterised.	 In	 any	

instance,	Monte	Carlo	simulations	can	again	be	conducted	to	generate	confidence	intervals	

from	ABM	simulations.	In	a	general	sense,	it	is	important	to	carefully	define	which	sources	

of	uncertainty	are	important	to	consider—and	in	turn,	which	parameters	should	be	treated	

as	random	variables—to	avoid	the	uninformative	finding	that	any	outcome	could	occur.	

	

The	second	approach	to	capturing	uncertainty	involves	performing	sensitivity	analyses	on	

key	parameters	or,	similarly,	reporting	multiple	simulated	outcomes,	each	obtained	with	a	

different	 set	 of	 assumptions	 [10].	As	 an	 example	of	when	 this	 approach	might	be	useful,	

consider	 the	 case	 in	 which	 a	 policymaker	 is	 evaluating	 the	 possibility	 of	 imposing	 a	

lockdown.	One	could	certainly	model	the	reduction	in	the	number	of	contacts	per	day	that	
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results	as	a	random	variable	with	a	wide	distribution	to	reflect	uncertainty	in	the	effect	of	

the	 intervention.	However,	doing	 so	would	 likely	 lead	 to	 the	 finding	 that	 “most	epidemic	

trajectories	 are	 possible”.	 Instead,	 a	 more	 informed	 decision	 could	 be	 made	 if	 a	 few	

illustrative	scenarios	(e.g.,	a	10%,	25%,	50%,	and	80%	reduction)	were	defined	and	their	

outcomes	presented	side-by-side.	In	this	case,	the	policymaker	could	more	easily	grasp	what	

conditions	would	need	to	be	true	for	an	intervention	to	have	the	desired	effect.	

	

A	 final	concept	related	to	 the	construction	and	use	of	 infectious	disease	models	 is	 that	of	

counterfactual	analysis.	A	counterfactual	scenario	is	defined	in	relation	to	a	scenario	realised	

in	 the	 real	 world	 such	 that	 the	 only	 difference	 between	 the	 two	 is	 the	 presence	 of	 an	

intervention	[12].	As	such,	any	differences	in	outcome	can	be	attributed	to	the	intervention.	

Since	both	scenarios	cannot	occur	simultaneously,	decision-makers	must	use	mathematical	

models	to	make	these	comparisons.	It	is	important	to	carefully	construct	these	scenarios	to	

ensure	that	any	side-by-side	comparisons	are	fair	and	that	the	impact	of	the	intervention	is	

accurately	 estimated.	 Ideally,	 models	 should	 be	 designed	 so	 that	 their	 users	 can	 easily	

replicate	both	realized	and	counterfactual	epidemic	trajectories	by	including	or	excluding	

the	intervention	in	question.	

	

2.3 Physiological	responses	to	SARS-CoV-2	infection	
Viruses	are	molecular	entities	that	leverage	a	host’s	biological	machinery	to	replicate	but	can	

damage	 the	 host	 in	 the	 process,	 sometimes	 critically	 [47].	 In	 response,	many	 hosts	 have	

evolved	to	develop	dedicated	biological	mechanisms—immune	systems—to	protect	against	

such	threats.	In	this	section,	we	provide	a	conceptual	overview	of	how	human	hosts	respond	

to	viral	infections	and	we	elaborate	on	the	physiological	responses	elicited	by	SARS-CoV-2.	

	

The	 interplay	 between	 the	 viral	 replication	 process	 and	 the	 host’s	 immune	 response	 is	

mediated	by	complicated	cellular	pathways	[47].	The	viral	replication	process	begins	with	a	

latent	period	during	which	the	virus	enters	host	cells	and	initiates	replication.	Once	the	virus	

has	begun	to	replicate	at	sufficient	levels,	the	host	becomes	infectious	and	can	transmit	the	

virus	 to	 others.	 Importantly,	 the	 host	 is	 not	 equally	 infectious	 throughout	 the	 infectious	
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period:	viral	replication	accelerates	past	the	threshold	for	being	infectious,	peaks	at	some	

point	during	the	infectious	window,	and	then	begins	to	fall	as	the	host’s	immune	response	

begins	addressing	the	infection	(Figure	2).	

	

	
Figure	2:	Schematic	of	the	time	course	of	infection	for	an	individual.	After	exposure,	viral	replication	accelerates,	and	

at	a	certain	point,	the	host	is	able	to	infect	others.	Viral	replication	peaks	and	then	begins	to	fall	as	the	host’s	immune	system	

begins	to	address	the	viral	assault.	Here,	we	represent	the	latent	period	as	one	in	which	viral	replication	has	not	yet	reached	

the	infectious	threshold	and	the	infectious	period	as	one	in	which	viral	replication	is	above	this	threshold.	Importantly,	

various	factors	such	as	the	duration	and	proximity	of	contact,	the	wearing	of	masks,	and	vaccination	history	can	influence	

whether	transmission	actually	occurs	upon	contact.	As	such,	the	concept	of	an	infectious	threshold	is	merely	illustrative.	In	

this	schematic	we	also	depict	the	progression	of	symptoms,	which	typically	begin	following	an	incubation	period,	at	a	time	

point	close	to	peak	viral	replication.	The	duration	of	symptoms	is	highly	variable.	

	

Symptoms	 and	 physiological	 manifestations	 of	 disease	 are	 the	 result	 of	 both	 the	 virus’	

assault	 on	 host	 biology	 and	 the	 host’s	 immune	 response	 [48].	 For	 example,	 in	 scenarios	

where	a	host	does	not	have	existing	immunity	to	a	pathogen,	symptoms	can	begin	after	viral	

replication	(and	 infectiousness)	has	peaked	and	reflect	a	naive	 immune	response	[49].	 In	
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such	 instances,	 symptom	 severity	 could	 be	 correlated	 to	 the	 level	 of	 infectiousness	 and	

mediated	by	damage	caused	by	viral	replication	[49,	50].	Conversely,	in	scenarios	where	the	

host	 does	 have	 existing	 immunity,	 symptoms	 could	 begin	 much	 sooner,	 prior	 to	 the	

infectious	 period,	 and	 reflect	 a	 robust	 host	 response	 that	 is	 rapidly	 addressing	 the	 viral	

assault	 [51].	 The	window	between	when	one	 is	 exposed	 to	 the	pathogen	 and	when	 they	

present	 with	 symptoms	 is	 called	 the	 incubation	 period	 (Figure	 2).	 Importantly,	 not	 all	

infected	individuals	go	on	to	present	with	symptoms;	the	fraction	that	remain	asymptomatic	

depends	on	specific	virus	characteristics	and	pre-existing	host	immunity	[52].	

	

Host	responses	to	SARS-CoV-2	are	complicated	and	heterogenous.	SARS-CoV-2	enters	the	

host’s	lungs	through	the	respiratory	tract	and	attacks	the	alveoli,	impairing	gas	exchange	and	

triggering	the	release	of	immune	cells	[49,	53].	These	cells	release	signalling	molecules	into	

the	bloodstream,	which	in	turn	cause	vasodilation	(loosening	of	the	blood	vessels),	increase	

capillary	permeability,	and	prompt	the	hypothalamus	to	increase	body	temperature.	Each	of	

these	initial	effects	can	trigger	further	follow-on	effects.	Damage	to	the	alveoli	can	induce	

coughing	or	difficulty	breathing	and	result	in	hypoxemia	(low	blood	oxygen	concentration)	

which,	 in	 turn,	 could	 cause	 tachycardia	 (elevated	 heart	 rate).	 Vasodilation	 can	 decrease	

blood	volume	and	peripheral	resistance,	which	reduces	blood	pressure	and	circulation,	and	

could	cause	different	organs	to	fail.	

	

The	way	 in	which	SARS-CoV-2	 infection	modulates	physiological	parameters,	particularly	

during	its	acute	phases,	has	been	well-studied	over	the	course	of	the	COVID-19	pandemic.	

First,	temperature,	heart	rate,	resting	heart	rate,	and	heart	rate	variability	are	all	modulated	

as	the	hypothalamus	mediates	the	host’s	inflammatory	immune	response.	Changes	in	heart	

rate	and	resting	heart	rate	are	coupled	with	changes	in	temperature:	on	average	a	1	degree	

Celsius	increase	in	temperature	is	associated	with	an	8.5	beat	per	minute	increase	in	heart	

rate	[54].	Heart	rate	variability	is	influenced	by	autonomous	nervous	system	activity	and	its	

modulation	can	reflect	an	ongoing	immune	response	[55,	56].	Second,	the	viral	replication	

process,	 in	 damaging	 the	 alveoli	 and	 respiratory	 tract,	 can	 increase	 respiratory	 rate	 and	

decrease	oxygen	saturation	[57,	58].	Many	of	these	physiological	indicators	are	consistently	

modulated	prior	to	the	onset	of	symptoms,	but	the	magnitude	of	physiological	changes	is	not	
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necessarily	associated	with	the	severity	of	symptoms	[26,	55,	59,	60].	As	we	discuss	in	the	

following	 section,	 continuous	 monitoring	 of	 these	 physiological	 markers—as	 well	 as	

behavioural	markers	such	as	sleep	duration	and	step	counts	[59,	61]—could	enable	novel	

infection	detection	platforms.	

	

2.4 Wearable	sensor-based	detection	of	SARS-CoV-2	infections	
Wearable	 devices	 fitted	 with	 sensors	 that	 can	 monitor	 physiological	 signals	 are	 rapidly	

growing	in	interest	and	adoption	[62].	Currently,	22–25%	of	the	Canadian	population	owns	

a	wearable	device,	examples	of	which	include	smartwatches	and	fitness	trackers	[28,	29].	

The	 breadth	 and	 fidelity	 of	 wearable	 sensor-captured	 physiological	 signals	 are	 also	

increasing,	driven	by	scientific	advances	and	technology	maturation.	Wearable	sensors	could	

be	 attractive	 tools	 for	 detecting	 infections	 given	 that	 infectious	 pathogens	 can	 elicit	

physiological	changes	before	or	absent	symptoms	[25,	26].	Wearable	sensor-based	infection	

detection	 tools	 would	 also	 be	 capable	 of	 passive	 detection,	 minimising	 necessary	 user	

engagement;	 could	 operate	 in	 a	 privacy-preserving	 fashion;	 and	 could	 leverage	 existing	

trends	in	device	uptake	to	minimise	infrastructure	costs	[28,	29].	In	this	section,	we	review	

efforts	to	develop	wearable	sensor-based	algorithms	to	detect	SARS-CoV-2	infections.	

	

Over	 the	course	of	 the	COVID-19	pandemic,	 there	have	been	several	attempts	 to	develop	

algorithms	 capable	 of	 detecting	 SARS-CoV-2	 infections	 from	 wearable	 sensor-captured	

physiological	signals.	We	enumerate	such	attempts	in	Table	2,	restricting	our	focus	to	studies	

that	 present	 a	 specific	 detection	 algorithm,	 as	 opposed	 to	 ones	 that	 only	 use	 wearable	

sensors	to	capture	and	describe	physiological	responses	to	SARS-CoV-2	infection.	We	note	

that	other	groups	have	generated	similar	 lists,	albeit	with	slightly	different	objectives,	 for	

example,	to	describe	the	performance	of	the	algorithms	or	the	types	of	sensors	and	devices	

used	[30,	31].	Here,	in	addition	to	restricting	the	scope	of	the	studies	we	include,	we	focus	on	

insights	relevant	to	the	translation	of	these	algorithms	into	public	health	tools	to	minimise	

overlap	with	existing	summaries	as	best	as	possible.	

	
Table	2:	Efforts	to	develop	wearable	sensor-based	algorithms	to	detect	SARS-CoV-2	infections.	In	the	Detection	Type	

column,	“Retrospective”	detection	refers	to	the	use	of	a	complete	time	window	of	data,	defined	in	relation	to	symptom	onset,	
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as	an	algorithm	input;	 the	user	would	need	to	progress	 through	this	 time	period,	 input	 their	data,	and	only	 then	 learn	

whether	they	were	infected.	Conversely,	an	“Alerting	System”	is	designed	to	perform	detection	every	day,	using	the	last	few	

days	of	data	as	algorithm	inputs;	this	recurring	detection	can	occur	passively	and	in	real	time.	

Authors	 Date	 Detection	Type	 Population	 Physiological	Biomarkers	
Abir	et	al.	[63]	 2022-05-30	 Retrospective	 Symptomatic	 Resting	Heart	Rate	

Alavi	et	al.	[27]	 2021-11-29	 Alerting	System	 Asymptomatic,	
Symptomatic	 Resting	Heart	Rate	

Bogu	et	al.	[64]	 2021-01-09	 Retrospective	 Symptomatic	 Resting	Heart	Rate	
Cleary	et	al.	[65]	 2021-04-22	 Retrospective	 Symptomatic	 Resting	Heart	Rate,	Steps,	Sleep	Duration	

Conroy	et	al.	[66]	 2022-03-08	 Alerting	System	 Symptomatic	

Heart	Rate,	Heart	Rate	Variability,	
Respiratory	Rate,	Temperature,	Oxygen	
Saturation,	Other	Activity	Metrics,	Other	
Sleep	Metrics,	Symptoms	

D’Haese	et	al.	[67]	 2021-10-14	 Retrospective	 Symptomatic	

Heart	Rate,	Heart	Rate	Variability,	
Respiratory	Rate,	Other	Activity	Metrics,	
Other	Sleep	Metrics,	Temperature,	Sleep	
Duration	

Gadaleta	et	al.	[68]	 2021-12-08	 Alerting	System	 Symptomatic	
Symptoms,	Steps,	Calories,	Other	Activity	
Metrics,	Heart	Rate	Variability,	Sleep	
Duration,	Other	Sleep	Metrics	

Hassantabar	et	al.	
[69]	 2021-11-24	 Retrospective	 Asymptomatic,	

Symptomatic	

Galvanic	Skin	Response,	Heart	Rate,	
Temperature,	Oxygen	Saturation,	Blood	
Pressure	

Mason	et	al.	[70]	 2022-03-02	 Retrospective	 Symptomatic	
Heart	Rate,	Heart	Rate	Variability,	
Respiratory	Rate,	Other	Activity	Metrics,	
Temperature	

Mayer	et	al.	[71]	 2022-04-19	 Alerting	System	 Asymptomatic,	
Symptomatic	 Heart	Rate,	Steps	

Miller	et	al.	[72]	 2020-12-10	 Alerting	System	 Symptomatic	 Respiratory	Rate,	Resting	Heart	Rate,	
Heart	Rate	Variability	

Mishra	et	al.	[26]	 2020-11-18	 Alerting	System	 Asymptomatic,	
Symptomatic	 Resting	Heart	Rate,	Steps	

Natarajan	et	al.	[55]	 2020-11-30	 Alerting	System	 Asymptomatic,	
Symptomatic	

Respiratory	Rate,	Heart	Rate,	Heart	Rate	
Variability	

Nestor	et	al.	[73]	 2021-05-17	 Alerting	System	 Symptomatic	 Heart	Rate,	Steps,	Sleep	Duration	

Ni	et	al.	[74]	 2021-04-23	 Retrospective	 Symptomatic,	
Hospitalised	

Heart	Rate,	Respiratory	Rate,	
Temperature,	Cough	Audio	

Quer	et	al.	[61]	 2020-10-29	 Retrospective	 Symptomatic	 Symptoms,	Resting	Heart	Rate,	Steps,	
Sleep	Duration	

Risch	et	al.	[75]	 2022-04-04	 Retrospective	 Symptomatic	 Temperature,	Respiratory	Rate	
Sarwar	et	al.	[76]	 2021-09-10	 Retrospective	 Symptomatic	 Heart	Rate,	Steps,	Sleep	Duration	
Skibinska	et	al.	[77]	 2021-08-18	 Retrospective	 Symptomatic	 Heart	Rate,	Steps	

Smarr	et	al.	[78]	 2021-02-11	 Retrospective	 Symptomatic	
Heart	Rate,	Heart	Rate	Variability,	
Respiratory	Rate,	Other	Activity	Metrics,	
Cough	Audio	

	

Nine	(45%)	of	the	studies	in	Table	2	developed	detection	algorithms	that	rely	on	heart	rate,	

step	counts,	and	sleep	tracking—physiological	parameters	that	are	capturable	by	the	most	

commonly	 used	 consumer-grade	 wearable	 devices	 [31].	 In	 many	 instances,	 studies	

calculated	derivative	measures	of	these	basic	parameters	to	arrive	at	biomarkers	that	reflect	

more	specific	physiological	processes	or	to	avoid	capturing	fluctuations	caused	by	quotidian	

activities	such	as	exercise.	Mayer	et	al.,	for	example,	calculated	six	derivatives	of	heart	rate	
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that	 each	 reflect	 a	 distinct	 physiological	 process,	 while	 Alavi	 et	 al.	 calculated	 overnight	

resting	heart	rate,	which	they	posited	to	be	more	stable	than	heart	rate	throughout	the	day	

[27,	71].	The	use	of	commonly	captured	parameters	and	their	derivatives	as	algorithm	inputs	

means	that	a	larger	fraction	of	wearable	device	users	would	be	able	to	participate	in	public	

health	interventions	that	leverage	wearable	sensor-based	infection	detection.	

	

The	remaining	11	(55%)	studies	incorporate	other	data	including	less	commonly	captured	

physiological	 signals	 (e.g.,	 temperature,	 oxygen	 saturation,	 respiratory	 rate)	 or	manually	

entered	data	 (e.g.,	user-reported	symptoms).	 In	 theory,	 these	physiological	 signals	would	

provide	 complementary	 information	 about	 potential	 infection	 and	 improve	 detection	

accuracy.	Some	groups	attempted	 to	explore	 this	hypothesis.	Gadaleta	et	al.,	 for	example,	

found	self-reported	symptoms	to	be	the	most	important	feature	when	available,	and	activity	

metrics	otherwise	 [68].	Mason	et	 al.	 considered	a	broader	host	of	biomarkers	 and	 found	

temperature	and	activity	metrics	to	have	the	most	impact	on	detection	accuracy	[70].	More	

systematic	 comparisons	 beyond	 these	within-study	 efforts	 are	 difficult,	 however,	 due	 to	

differences	 in	 participant	 cohort	 composition	 and	 size;	 in	 the	 data	 processing	 steps	 and	

detection	algorithms	used;	and	in	the	decision	thresholds	selected,	which	result	in	the	final	

algorithms	 falling	 at	 different	 points	 on	 receiver-operator	 curves	 based	 on	 the	 authors’	

choice	to	prioritise	detection	sensitivity	or	specificity.	Importantly,	while	algorithms	that	use	

biomarkers	that	are	not	yet	commonly	captured	are	unquestionably	valuable,	over-reliance	

on	these	algorithms	could	constrain	the	pool	of	wearable	device	users	able	to	participate	in	

wearable	sensor-based	public	health	interventions.	

	

Confirmed	cases	of	SARS-CoV-2	infection	who	also	developed	symptoms	were	the	focus	of	

15	 (75%)	 of	 the	 studies	 in	 Table	 2.	 Many	 of	 these	 studies	 segmented	 their	 analysis	 of	

physiological	signals	into	two	time	windows	(or	a	closely	related	variant	of	this	concept).	

One	window	was	 typically	defined	 in	 relation	 to	 symptom	onset	 (e.g.,	 from	 i	 days	before	

symptom	onset	 to	 j	 days	after	 symptom	onset)	 to	 reflect	an	 infected	state,	 and	 the	other	

window	encompassed	the	remaining	period	of	available	data	to	reflect	a	healthy	state.	Then,	

biomarkers	were	extracted,	labelled	as	“healthy”	or	“infected”	data	points,	and	used	to	train	

detection	algorithms.	This	common	conceptual	approach	led	to	two	important	trends.	First,	
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12	 (60%)	 of	 the	 presented	 algorithms	 could	 be	 classified	 as	 “retrospective”	 algorithms	

insofar	as	 the	user	would	need	to	progress	through	the	 i	+	 j	day	time	window	relative	to	

symptom	 onset	 before	 they	 could	 then	 input	 those	 data	 into	 a	 classifier	 and	 determine	

whether	they	were	infected.	In	theory,	any	i	+	j	day	time	window	could	be	passed	into	these	

algorithms,	but	detection	accuracy	would	likely	deteriorate	because	the	algorithms	were	not	

trained	 in	 this	way.	 Conversely,	 the	 remaining	 seven	 (35%)	 algorithms	 could	be	used	 as	

“alerting	systems”	capable	of	passive	detection	because	they	can	classify	users	on	a	day-to-

day	basis,	notifying	users	as	soon	as	a	potential	infection	is	detected.	

	

The	second	consequence	of	the	disproportionate	focus	on	symptoms	is	that	only	five	(25%)	

algorithms	were	developed	to	detect	asymptomatic	infections	despite	physiological	changes	

occurring	before	or	absent	symptoms	and	despite	40–45%	of	SARS-CoV-2	infections	being	

asymptomatic	 [52,	 55].	 Mason	 et	 al.	 explored	 detection	 of	 asymptomatic	 infections	 by	

identifying	 individuals	 who	 were	 potentially	 asymptomatic	 on	 the	 basis	 of	 a	 positive	

antibody	 test	 [70].	 However,	 antibody	 tests	 do	 not	 provide	 insight	 as	 to	 when	 the	

asymptomatic	 infection	might	have	occurred,	and	the	authors	also	note	that	the	antibody	

tests	used	had	low	sensitivity.	Other	studies	that	considered	asymptomatic	detection—for	

example,	 that	by	Mishra	et	al.—oriented	analysis	around	the	date	on	which	an	 individual	

who	did	not	experience	symptoms	received	a	positive	PCR	test	[26].	

	

The	focus	on	symptomatic	individuals	and	on	retrospective	detection	limits	the	public	health	

utility	of	some	algorithms	in	Table	2.	As	discussed,	much	of	the	value	that	wearable	sensors	

could	contribute	to	FTTI	systems	stems	from	their	potential	to	identify	presymptomatic	or	

asymptomatic	individuals	without	delays.	However,	a	more	pervasive	limitation	applicable	

to	all	of	these	detection	algorithms	is	that	none	have	been	tested	at	a	population	level:	there	

is	no	data	on	how	these	algorithms	would	perform	if	they	were	deployed	as	a	public	health	

intervention.	Such	a	study	would	be	difficult	to	conduct	as	it	would	need	a	large	sample	size	

to	observe	an	effect	directly	attributable	to	wearable	sensor-based	infection	detection.	Yet,	

understanding	how	detection	accuracy,	behavioral	parameters,	and	policies	can	affect	the	

utility	of	these	tools	is	still	important	for	policymakers	and	algorithm	developers.	Infectious	

disease	models	can	help	answer	these	questions,	and	this	thesis	presents	such	a	model.	 	
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3 	
Methods	and	Findings	
	

In	this	chapter,	we	present	the	core	modelling	exercise	that	is	the	focus	of	this	thesis,	drawing	

from	 the	 published	 version	 of	 this	 work	 [13].	 We	 situate	 the	 study	 and	 describe	 our	

modelling	approach	in	the	first	two	sections	and	present	our	findings	in	the	remaining	five.	

We	discuss	and	interpret	these	findings	in	Chapter	4.	

	

3.1 Study	Design	
3.1.1 Objectives	
In	 this	modelling	 exercise,	we	 investigated	 the	potential	 for	wearable	 sensors	 capable	 of	

detecting	 presymptomatic	 and	 asymptomatic	 infections	 to	 help	 reduce	 the	 burden	 of	

infection	during	the	acute	phase	of	a	pandemic.	To	do	so,	we	used	SARS-CoV-2	as	an	example	

and	 explored	 counterfactual	 scenarios	 in	 which	 these	 devices	 were	 deployed	 to	 combat	

Canada’s	 second	 COVID-19	 wave	 (September	 1,	 2020	 to	 February	 20,	 2021).	 This	 time	

window	allowed	us	to	capture	the	dynamics	of	wearable	sensor	deployment	during	an	acute	

phase	 of	 the	 pandemic	 and	 at	 a	 time	 when	 the	 technology	 would	 have	 been	 ready	 and	

deployable.	Further,	it	allowed	us	to	consider	scenarios	prior	to	broad	vaccine	availability	

and	before	 then-emerging	variants	of	concern	were	dominant	 [79].	Potential	 reinfections	

were	also	likely	to	be	negligible	in	this	timeframe	[80].	

	

In	the	context	of	this	pandemic	scenario,	we	aimed	to	develop	an	infectious	disease	model	in	

which	 wearable	 devices	 notify	 users	 of	 potential	 infection	 and	 prompt	 them	 to	 seek	 a	

confirmatory	lab-based	test,	quarantining	while	waiting	for	the	result.	We	aimed	to	use	this	

model	to	answer	the	following	questions:	

	

1. What	 is	 the	 baseline	 impact	 of	 deploying	 currently	 available	 detection	 algorithms	

during	Canada's	second	COVID-19	wave?	In	this	baseline	scenario,	wearable	device	
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users	would	be	able	to	download	an	application	that	runs	these	detection	algorithms	

and	provides	notifications	of	potential	infection.	

	

2. How	do	 detection	 sensitivity	 and	 specificity,	 uptake,	 and	 adherence	 influence	 this	

impact?	 Uptake	 is	 the	 proportion	 of	 the	 population	 that	 has	 downloaded	 the	

detection/notification	 application	 and	 uses	 their	 wearable	 device	 often	 enough.	

Adherence	is	the	proportion	of	users	who	comply	with	all	recommended	next	steps	

after	a	positive	notification.	

	

3. Would	providing	 confirmatory	 rapid	 antigen	 tests	 (RATs)	 to	users	with	 a	positive	

notification	 be	 a	 useful	 complementary	 strategy?	 In	 this	 scenario,	 a	 positive	 RAT	

result	 would	 confirm	 that	 the	 user	 should	 proceed	 to	 seek	 a	 lab-based	 test	 and	

quarantine	while	waiting	for	the	result.	

	

3.1.2 Outcome	measures	
Reducing	viral	transmission	is	an	important	public	health	objective	in	a	number	of	scenarios:	

some	 examples	 include	 instances	 when	 vaccines	 are	 not	 available,	 when	 vaccines	 are	

available	 but	 immune-evasive	 variants	 are	 circulating,	 and	 when	 the	 long-term	 health	

implications	 of	 infection	 are	 not	 well	 understood.	 We	 quantified	 the	 health	 impact	 of	

wearable	sensor	deployment	by	calculating	the	number	of	averted	infections	and	the	percent	

reduction	 in	 the	burden	of	 infection,	both	over	 the	simulation	timeframe.	We	defined	the	

number	of	averted	infections	as	the	difference	between	the	historical	number	of	infections	

and	 the	 number	 of	 infections	 in	 counterfactual	 scenarios.	 We	 calculated	 the	 percent	

reduction	 in	 the	burden	of	 infection	by	dividing	 the	number	of	 averted	 infections	by	 the	

historical	number	of	infections.	

	

We	 also	 measured	 the	 number	 of	 days	 incorrectly	 spent	 in	 quarantine	 per	 month	 per	

wearable	device	user	(a	consequence	of	false	positive	notifications)	as	the	primary	indicator	

of	the	strategy’s	social	burden	[81].	Finally,	to	assess	resource	consumption,	we	quantified	
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the	 average	number	of	 additional	 lab-based	 tests	 (and	RATs,	where	 applicable)	 required	

each	day	as	a	result	of	the	intervention.	

	

3.2 Modelling	Approach	
3.2.1 Modelling	framework	
We	chose	to	use	a	compartmental	modelling	framework	over	an	agent-based	one.	Because	

this	modelling	 exercise	 is	 only	 an	 initial	 assessment	 of	wearable	 sensor-based	pandemic	

mitigation,	we	prioritised	generating	estimates	that	provide	a	sense	of	the	potential	scale	of	

impact	over	estimates	that	were	unnecessarily	precise.	A	compartmental	model	can	capture	

key	 parameters	 and	 dynamics	 of	 wearable	 sensor-based	 interventions	 while	 retaining	

parsimony	 and	 operating	with	 small,	 clearly	 defined	 set	 of	 assumptions.	 Conversely,	 the	

heterogeneity	and	complexity	afforded	by	agent-based	models	are	less	valuable	at	this	stage	

of	 analysis.	 Using	 a	 compartmental	 modelling	 framework	 also	 allowed	 us	 to	 avoid	 the	

infrastructural	 burden	 of	 writing	 software	 on	 top	 of	 an	 existing	 agent-based	 modeling	

platform	or	setting	up	dedicated	a	computational	environment	for	simulations.	

	

3.2.2 Model	structure	
We	structured	the	compartmental	model—mathematically	specified	by	Equations	4–17	in	

the	following	section—using	a	Susceptible,	Exposed,	Infectious,	Removed	(SEIR)	framework	

(Figure	3).	In	this	framework,	the	Susceptible,	Infectious,	and	Removed	compartments	reflect	

the	same	stages	of	infection	that	they	do	in	an	SIR	model,	however,	it	was	also	necessary	to	

incorporate	an	Exposed	compartment	to	capture	the	latent	period	of	SARS-CoV-2	infection	

[82].	 Exposed	 individuals	 are	 infected	 but	 cannot	 yet	 infect	 others;	 for	 them,	 the	 viral	

replication	 process	 has	 begun	 but	 has	 not	 reached	 a	 level	 sufficient	 to	 be	 considered	

Infectious.	 We	 also	 split	 the	 Infectious	 state	 into	 three	 sub-states:	 Presymptomatic,	

Asymptomatic,	 and	 Symptomatic.	 All	 infected	 individuals	 enter	 the	 Presymptomatic	

infectious	state	after	a	latent	period	following	exposure;	some	go	on	to	develop	symptoms	

(Symptomatic)	 while	 others	 do	 not	 (Asymptomatic).	 It	 was	 important	 to	 distinguish	

individuals	based	on	symptoms	to	allow	exploration	of	the	capacity	for	wearable	sensors	to	

identify	signs	of	infection	before	or	absent	symptoms	[26].	
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Figure	3:	Compartmental	model	structure.	Subscript	“W”	denotes	a	wearable	device	user	and	“NW”	denotes	otherwise.	

Model	equations,	parameters,	and	assumptions	are	described	across	Sections	3.2.2,	3.2.3,	and	3.2.4.	

	

To	 incorporate	 a	 counterfactual	 wearable	 sensor-based	 intervention,	 we	 stratified	 all	

Susceptible,	Exposed,	and	Infectious	states	by	whether	individuals	are	participating	wearable	

device	users	or	not.	Participating	users	can	enter	Quarantined	states	if	they	are	notified	of	

potential	infection,	and	if	they	adhere	to	this	notification	by	seeking	a	confirmatory	lab-based	

test	and	quarantining	while	awaiting	the	result.	We	modelled	adherence	as	the	fraction	of	

notified	 users	 who	 comply	 with	 all	 recommended	 next	 steps;	 accordingly	 non-adherent	

users	 ignore	 the	 notification	 entirely	 in	 this	 framework.	We	 captured	 adherence	 in	 one	

parameter	to	preserve	model	parsimony	and	considered	all	values	of	this	parameter	(i.e.,	

from	0%	to	100%)	recognizing	the	reality	there	will	be	great	variation	in	the	extent	to	which	

notified	 users	 are	 adherent.	 Susceptible	 wearable	 device	 users	 could	 be	 Incorrectly	

Quarantined	due	to	a	false	positive	notification	and	would	re-enter	the	Susceptible	state	after	

receiving	their	lab-based	test	result.	Exposed	and	Infectious	device	users	would	be	Correctly	

Quarantined	and	would	enter	the	Removed	state	(a	longer	period	of	isolation	until	recovery)	

after	their	lab-based	test	confirms	infection.	
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Even	though	wearable	sensors	are	capable	of	detecting	presymptomatic,	asymptomatic,	and	

symptomatic	SARS-CoV-2	infections,	we	did	not	include	a	pathway	for	Symptomatic	device	

users	to	enter	a	Quarantined	state	[26,	61].	Historically,	a	meaningful	yet	unknown	fraction	

of	Symptomatic	individuals	would	have	already	undergone	some	degree	of	quarantining,	and	

this	behaviour	would	already	be	accounted	for	in	the	historical	transmission	rate,	as	we	later	

discuss.	As	such,	preventing	Symptomatic	users	from	quarantining	based	on	wearable	sensor	

notifications	enables	a	fairer	counterfactual	comparison.	

	

In	some	scenarios,	we	also	included	a	step	where	compliant	wearable	device	users	perform	

a	confirmatory	RAT	after	receiving	a	positive	notification.	If	the	RAT	result	is	positive,	we	

assumed	they	then	take	a	lab-based	test,	quarantining	while	awaiting	the	result;	if	the	RAT	

result	is	negative,	we	assumed	they	return	to	historical	behaviour.	

	

3.2.3 Model	equations	and	parameterisation	
We	mathematically	defined	the	compartmental	model	with	Equations	4–17.	We	omit	explicit	

specification	of	each	compartment	as	a	time-varying	value—for	example,	by	representing	

the	number	of	Susceptible	individuals	as	S	instead	of	S(t)—to	maximise	equation	readability.	

We	enumerate	model	parameters,	their	values,	and	associated	assumptions	in	Tables	3	and	

4.	Finally,	for	the	remainder	of	this	sub-section,	we	elaborate	on	how	we	estimated	values	of	

certain	parameters	and	how	we	accounted	for	parameter	uncertainty.	
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𝐸0) = (1 − 𝜃)𝜋 − 𝛼𝐸0) 		 (10)	

!
!"
𝐼-,0) = 𝛼𝐸0) − 𝜏𝐼-,0) 		 (11)	

!
!"
𝐼*,0) = 𝜌𝜏𝐼-,0) − 𝛾𝐼*,0) 		 (12)	

!
!"
𝐼/,0) = (1 − 𝜌)𝜏𝐼-,0) − 𝛾𝐼/,0) 		 (13)	

!
!"
𝑅 = 𝛾7𝐼*,) + 𝐼/,) + 𝐼*,0) + 𝐼/,0)8 +

+"
,
		 (14)	

!
!"
𝑄1 = 𝜓𝜒(1 − 𝜈))(1 − 𝜈*)𝑆) −

+!
,
		 (15)	

!
!"
𝑄2 = 𝜓𝜅𝜎)𝜎*7𝐸) + 𝐼-,) + 𝐼*,)8 −

+"
,
		 (16)	

𝜋 = ##
(
:𝜆7𝑎𝐼-,) + 𝐼-,0) + 𝑎𝐼*,) + 𝐼*,0)8 + 7𝐼/,) + 𝐼/,0)8=[𝑎𝑆) + 𝑆0)]		 (17)	

	
Table	 3:	 SARS-CoV-2	 characteristics.	We	 assumed	 a	mean	 generation	 time	 of	 7	 days	 [83–85].	We	 assumed	 a	mean	

incubation	period	of	5	days	[83–86].	We	applied	the	fact	that	the	mean	generation	time	is	equal	to	the	sum	of	the	mean	

latent	period	and	the	mean	infectious	period	[87].	We	subtracted	the	mean	latent	period	from	the	mean	incubation	period	

to	obtain	the	presymptomatic	infectious	period.	We	subtracted	the	incubation	period	from	the	mean	generation	time	to	

obtain	 the	 mean	 asymptomatic	 and	 symptomatic	 infectious	 period.	We	modelled	 asymptomatic	 prevalence	 as	 a	 beta	

random	variable	with	 a	mean	of	 0.4	 and	 a	 sample	 size	 of	 200;	 a	 sample	 size	 of	 200	 is	 greater	 than	75%	of	 the	 study	

populations	examined	by	Oran	et	al.	in	their	analysis	of	the	asymptomatic	prevalence	[52].	

Parameter	 Symbol	 Value	
Latent	period	 α-1	 3	days	[83,	88,	89]	
PR	symptomatic	infectious	period	 τ-1	 2	days	[83–86,	88,	89]	
Asymptomatic	and	symptomatic	infectious	period	 γ-1	 2	days	[83–86]	
Asymptomatic	prevalence	 ρ	 40%	[52]	
Transmission	potential	without	symptoms	relative	to	with	symptoms	 λ	 50%	[90–92]	

Historical	incidence	of	infection	(i.e.,	number	of	new	infections	per	day)	 πh	 varies;	obtained	from	
IHME	[93]	

Counterfactual	incidence	of	infection	(i.e.,	number	of	new	infections	per	day)	 π	 varies;	calculated	using	
Equation	17	

Historical	average	number	of	transmissions	per	infectious	person	per	day	 βh	 varies;	calculated	using	
Equations	18–24	below	

	
Table	4:	Technology,	behavioural,	and	policy	parameters	and	associated	assumptions.	

Parameter	 Symbol	 Nominal	Value	 Notes	

Uptake	 θ	 4%	

We	defined	uptake	as	the	percent	of	the	population	that	owns	a	
wearable	device,	has	downloaded	the	detection/notification	
application,	and	uses	the	device	enough	to	collect	sufficient	data	
for	detection.	We	estimated	uptake	would	range	from	0.5%	to	
7.5%	at	baseline.	We	elaborate	on	how	this	estimate	was	
generated	below	(Tables	5	and	6).	
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Adherence	to	
wearable	device	
notification	

ψ	 50%	

We	defined	adherence	as	the	proportion	of	wearable	device	
users	that	comply	with	recommended	next	steps	upon	
notification	of	potential	infection.	At	baseline,	next	steps	include	
seeking	a	confirmatory	lab-based	test,	quarantining	while	
awaiting	a	result,	and	self-isolating	until	recovery	if	the	result	is	
positive.	With	antigen	tests,	compliant	users	also	take	a	
confirmatory	RAT	prior	to	seeking	a	lab-based	test.	
	
In	Israel,	at	least	~53%	of	antigen	test	kit	results	were	reported	
(~613,000	reports	out	of	~1,150,000	kits	taken	home)	[94,	95].	
In	the	UK,	duration-adjusted	adherence	to	self-isolation	was	
42.5%	[96].	In	Norway,	up	to	70%	of	those	with	a	suspected	
diagnosis	and	up	to	86%	with	a	positive	diagnostic	test	adhered	
to	self-isolation	[97].	However,	adherence	could	be	as	low	as	
~14%	if	one	considers	Canada’s	COVID	Alert	contact	tracing	
app’s	reporting	rate	in	light	of	the	number	of	confirmed	cases	as	
of	July	27,	2021	[98].	
	
We	modeled	adherence	as	a	beta	random	variable	with	a	mean	of	
0.5	and	a	sample	size	of	1723;	1723	was	the	sample	size	for	the	
relevant	experiment	in	the	Norway	study.	

Detection	algorithm	
sensitivity	 σw	 80%	

We	defined	detection	sensitivity	as	the	proportion	of	infected	yet	
asymptomatic	device	users	(i.e.,	Exposed,	Presymptomatic,	and	
Asymptomatic)	who	receive	a	notification	of	potential	infection	
prior	to	recovering	and	entering	the	Removed	compartment.	
	
Alavi	and	et	al.’s	NightSignal	algorithm	achieved	a	sensitivity	of	
~80%,	which	is	a	plausible	value	based	on	other	efforts	to	
develop	similar	algorithms	[27,	68,	70].	
	
We	modeled	sensitivity	as	a	beta	random	variable	with	a	mean	of	
0.80	and	a	sample	size	of	84;	84	was	the	size	of	the	sample	used	
to	calculate	NightSignal	algorithm	sensitivity.	

Detection	algorithm	
specificity	 νw	 92%	

We	defined	specificity	as	the	probability	that,	on	a	given	day,	a	
healthy	(i.e.,	Susceptible)	wearable	device	user	does	not	receive	a	
notification	of	potential	infection.	Alavi	et	al.’s	NightSignal	
algorithm	gave	potentially	healthy	users	0.0819	false	positive	
notifications	(“red	alerts”)	per	day	on	average,	corresponding	to	
a	specificity	of	~92%	[27].	
	
We	modeled	specificity	as	a	beta	random	variable	with	a	mean	of	
0.92	and	a	sample	size	of	818;	alarm	data	from	818	potentially	
healthy	users	in	Alavi	et	al.’s	dataset	were	used	to	calculate	the	
false	positive	rate.	

Detection	algorithm	
sensitivity	
adjustment	factor	

κ	 (α-1	+	τ-1	+	λ-1)-1	
days-1	

We	assumed	that	σw	is	applied	uniformly	across	Exposed,	
Presymptomatic,	and	Asymptomatic	states	such	that	by	the	time	
infectiousness	ends,	σw	of	infected	users	without	symptoms	have	
been	notified.	

Detection	algorithm	
specificity	
adjustment	factor	

χ	 (1)-1	days-1	
We	assumed	that	νw	is	applied	over	one	day	such	that	on	a	given	
day,	Susceptible	users	receive	an	incorrect	(i.e.,	false	positive)	
notification	of	potential	infection	with	probability	(1–νw).	

Rapid	antigen	test	
sensitivity	 σa	 91.1%	

We	used	the	worst	performance	reported	for	Abbot’s	Panbio	RAT	
[99].	Independent	evaluations	of	this	test	suggest	lower	
sensitivity	in	presymptomatic	and	asymptomatic	individuals	
[100,	101].	However,	we	reasoned	that	the	receipt	of	a	wearable	
sensor-based	notification	of	potential	infection	raised	the	pretest	
probability	of	infection,	thereby	improving	the	negative	
predictive	value	(NPV)	of	the	RATs	[102].	

Rapid	antigen	test	
specificity	 νa	 99.7%	

We	used	the	lowest	performance	reported	for	Abbot’s	Panbio	
RAT	[99].	Independent	evaluations	suggest	that	this	test’s	
specificity	is	even	higher	[100,	101].	
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Lab-based	test	
result	turnaround	
time	

ε	 2	days	 ε	generally	ranges	between	1–3	days	based	on	Health	Canada	
reporting	[103].	We	assumed	perfect	lab-based	test	accuracy.	

Relative	
contribution	to	
transmission	

a	 1	

a	is	used	to	study	scenarios	in	which	wearable	device	users	who	
do	not	receive	a	positive	notification	or	who	ignore	a	positive	
notification	act	in	a	riskier	or	more	cautious	fashion,	respectively	
[65].	See	Equation	17	above.	

	

During	 the	 COVID-19	 pandemic,	 low	 adoption	 of	 digital	 tools	 for	 pandemic	 mitigation	

resulted	in	these	tools	delivering	less	impact	than	had	been	hoped	for	[19,	20].	To	obtain	a	

realistic	 estimate	 of	 uptake	 of	 wearable	 sensor-based	 infection	 detection	 tools,	 we	

considered	device	ownership,	 the	anticipated	application	download	 rate,	 and	 the	 level	of	

utilisation	 of	 the	wearable	 devices	 themselves.	We	 first	multiplied	 the	 proportion	 of	 the	

population	 that	 owns	 a	 wearable	 device	 by	 the	 anticipated	 download	 rate	 to	 obtain	 a	

plausible	 range	 for	 the	 proportion	 of	 the	 population	 that	 would	 own	 the	

detection/notification	application	(Table	5).	Estimates	 from	2018	placed	wearable	device	

ownership	 in	 Canada	 between	 22%	 and	 25%	 [28,	 29].	 Separate,	 a	 study	 found	 that	 the	

baseline	download	rate	of	Germany’s	national	contact	tracing	application	was	between	~8%	

and	~11%,	and	that	incentives	could	increase	this	rate	[104].	Paré	et	al.	also	found	that	57%	

of	 owners	 regularly	 track	 their	 health	 with	 their	 wearable	 device	 [28].	 We	 ultimately	

considered	download	rates	ranging	from	10%	to	60%.	

	
Table	5:	Estimating	detection/notification	application	ownership.	

Application	Ownership	 Device	Ownership	
Download	Rate	 22.0%	 23.5%	 25.0%	
10.0%	 2.2%	 2.4%	 2.5%	
35.0%	 7.7%	 8.2%	 8.8%	
60.0%	 13.2%	 14.1%	 15.0%	
	

We	then	calculated	a	range	for	uptake	by	multiplying	the	proportion	of	individuals	that	own	

the	detection/notification	application	by	expected	levels	of	utilization	(Table	6).	Accounting	

for	utilization	was	a	necessary	step	because	not	all	individuals	who	download	the	application	

to	 their	device	will	 use	 it	 enough	 to	provide	 sufficient	data	 for	 the	 algorithm	 to	 function	

correctly.	In	research	studies	where	wearable	devices	were	used	to	track	health,	usage	rates	

ranged	from	as	low	as	24%,	to	50%	in	the	long	run	[105,	106].	We	ultimately	concluded	that	

in	a	baseline	scenario,	uptake	would	likely	range	from	0.5%	to	7.5%.	



	 27	

	

We	used	the	performance	of	Alavi	et	al.’s	NightSignal	algorithm	to	obtain	nominal	values	for	

the	 sensitivity	and	 specificity	of	wearable	 sensor-based	detection	 [27].	NightSignal	 is	 the	

second	iteration	of	detection	algorithms	published	by	Mishra	et	al.	[26].	Together,	this	team’s	

algorithm	development	 efforts	 represent	 two	of	 the	 seven	 algorithms	 in	 Section	2.4	 that	

were	“alerting	systems”	capable	of	passive	infection	detection,	as	well	as	and	two	of	the	five	

algorithms	 developed	 to	 detect	 asymptomatic	 SARS-CoV-2	 infections.	 Beyond	 possessing	

these	important	attributes,	the	NightSignal	algorithm	was	also	amenable	to	being	modelled	

because	 its	 developers	 were	 receptive	 and	 enthusiastic	 to	 collaborate	 on	 appropriately	

capturing	its	performance	in	this	exercise.	

	
Table	6:	Estimating	uptake.	Uptake	is	the	proportion	of	individuals	who	own	the	detection/notification	application	and	

use	their	wearable	device	enough	to	collect	sufficient	data.	

Uptake	 Application	Ownership	
Utilisation	 2.2%	 8.6%	 15.0%	
24.0%	 0.5%	 2.1%	 3.6%	
37.0%	 0.8%	 3.2%	 5.6%	
50.0%	 1.1%	 4.3%	 7.5%	
	

Detection	algorithm	sensitivity	(σw)	and	specificity	(νw),	the	asymptomatic	prevalence	(ρ),	

and	adherence	(ψ)	were	 important	sources	of	uncertainty	 in	our	assessment	of	wearable	

sensors	as	pandemic	mitigation	tools.	To	account	for	uncertainty	stemming	from	how	values	

for	these	parameters	were	measured	(e.g.,	with	a	small	sample	size),	we	modelled	them	as	

beta-distributed	random	variables,	as	specified	in	Table	4.	We	sampled	these	variables	at	the	

start	of	each	simulation,	using	the	resulting	values	to	generate	an	epidemic	trajectory,	and	

ran	5,000	Monte	Carlo	simulations	to	obtain	confidence	intervals	[46].	

	

We	also	conducted	various	sensitivity	analyses	to	isolate	the	influence	of	parameters	beyond	

detection	accuracy,	uptake,	and	adherence.	To	explore	the	notion	that	adherence	may	not	be	

“all	or	nothing”	in	practice,	we	considered	the	possibility	that	non-adherent	users	who	do	

not	 take	 any	 recommended	 next	 steps	 still	 act	 more	 cautiously	 (e.g.,	 limiting	 contacts,	

wearing	a	more	protective	mask)	due	to	the	notification.	We	also	considered	the	possibility	

that	device	users	who	are	not	notified	of	 potential	 infection	 act	 in	 a	 riskier	 fashion	 (e.g.,	
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increasing	contacts)	relative	to	historical	behaviour	[65].	We	modulated	a	in	Equation	17—

a	parameter	nominally	set	to	1	(Table	4)—to	explore	these	possibilities.	When	a	is	above	1,	

the	 average	 device	 user	 in	 the	 Susceptible,	Presymptomatic	 Infectious,	 and	Asymptomatic	

Infectious	compartments	acts	in	a	riskier	fashion	relative	to	historical	behaviour;	when	a	is	

below	1,	the	average	user	in	these	groups	acts	more	cautiously.	Finally,	we	explored	a	range	

of	values	for	the	prevalence	of	infected	individuals	that	remain	asymptomatic,	lab-based	test	

turnaround	time,	and	RAT	sensitivity.	

	

3.2.4 Simulation	approach	
To	 perform	 counterfactual	 simulations,	 we	 needed	 to	 obtain	 the	 historical	 time-varying	

transmission	rate	(βh)	and	apply	it	in	the	context	of	Equations	4–17	specified	above.	We	first	

extracted	βh	 from	the	historical	 incidence	of	 infection	 (πh)	using	Equations	18–24	below.	

These	 equations	 define	 the	 same	 compartmental	 model	 presented	 above,	 absent	 the	

counterfactual	wearable	 sensor-based	 intervention.	Using	 the	 true	 incidence	of	 infection,	

rather	than	a	time	series	of	incompletely	ascertained	PCR-confirmed	COVID-19	cases,	was	

crucial	 to	 appropriately	 capture	 the	 extent	 of	 historical	 viral	 spread	 [107].	 Because	

estimating	πh	 is	challenging	and	was	not	 itself	an	objective	of	the	present	work,	we	drew	

from	the	Institute	for	Health	Metrics	and	Evaluation	(IHME)	infection	model,	a	time	series	

nowcasting	model	that	is	widely	used	to	understand	the	historical	extent	of	infection	[108–

110].	The	IHME	model	estimates	πh	from	confirmed	cases,	hospitalizations,	and	deaths,	and	

validates	 results	 against	 seroprevalence	data.	We	downloaded	 these	data	 from	 the	 IHME	

website	on	December	7,	2021.	To	ensure	our	findings	were	robust	to	the	underlying	infection	

model,	we	replicated	core	analyses	using	estimates	of	πh	from	the	Imperial	College	London	

(ICL)	infection	model	[111].	

	

𝛽3 =
4#(

$56'$76'%7'&8
		 (18)	

!
!"
𝑆 = −𝜋3		 (19)	

!
!"
𝐸 = 𝜋3 − 𝛼𝐸		 (20)	
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!
!"
𝐼- = 𝛼𝐸 − 𝜏𝐼-		 (21)	

!
!"
𝐼* = 𝜌𝜏𝐼- − 𝛾𝐼*  (22)	

!
!"
𝐼/ = (1 − 𝜌)𝜏𝐼- − 𝛾𝐼/		 (23)	

!
!"
𝑅 = 𝛾𝐼* + 𝛾𝐼/		 (24)	

	

Next,	we	 applied	βh	 according	 to	Equation	17	 in	 the	 context	 of	 the	 counterfactual	model	

defined	above.	The	time	series	for	βh	that	results	from	Equation	18	incorporates	all	historical	

policy	measures	(e.g.,	restrictions,	business	closures,	testing	availability)	and	behaviour	(e.g.,	

adherence	to	restrictions,	quarantines)	that	occurred.	However,	because	some	Susceptible,	

Exposed,	 and	 Infectious	 device	 users	 now	 quarantine	 in	 simulations,	 the	 counterfactual	

incidence	of	infection	(i.e.,	the	π	obtained	from	Equation	17)	decreases	relative	to	historical	

levels	(i.e.,	πh).	

	

3.2.5 Model	implementation	
We	 implemented	 the	compartmental	model	 in	Python	3.10	using	 the	 following	packages:	

numpy,	pandas,	and	scipy.	On	a	2019	MacBook	Pro	with	a	2.8	GHz	Quad-Core	Intel	Core	i7	

processor,	we	were	able	to	run	~35	simulations	per	second.	Our	code	is	publicly	available	at	

https://github.com/nathanduarte/wearables_for_pandemic_mitigation.git	[13].	

	

3.3 Baseline	impact	of	wearable	sensor	deployment	
We	first	investigated	the	baseline	scenario	in	which	detection	algorithms	that	currently	exist	

are	made	publicly	available	for	wearable	device	users	to	download	and	use	(Figure	4)	[27].	

Upon	 notification	 of	 potential	 presymptomatic	 or	 asymptomatic	 infection,	 users	 are	

prompted	to	seek	a	confirmatory	lab-based	test,	quarantine	while	awaiting	the	result,	and	

self-isolate	until	recovery	if	positive.	We	used	the	nominal	values	outlined	in	Table	4,	setting	

uptake,	 adherence,	 detection	 sensitivity,	 and	 detection	 specificity	 to	 4%,	 50%,	 80%,	 and	

92%,	respectively.	
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Figure	4:	Baseline	impact	of	wearable	sensor	deployment.	Time	series	depiction	of	(A)	the	incidence	of	infection,	(B)	

the	 number	 of	wearable	 device	 users	 incorrectly	 in	 quarantine,	 and	 (C)	 the	 daily	 demand	 for	 lab-based	 tests.	 Uptake,	

adherence,	detection	sensitivity,	and	detection	specificity	are	set	to	4%,	50%,	80%,	and	92%,	respectively.	

	

We	 observed	 that	 in	 a	 baseline	 scenario,	 366,143	 (95%	CI:	 333,242–396,944)	 infections	

could	have	been	averted	during	Canada’s	second	COVID-19	wave—a	15.6%	(95%	CI:	14.2–

16.9%)	reduction	in	the	burden	of	infection	(Figure	4A).	However,	the	social	costs	were	high:	

between	~75,000	and	~125,000	device	users	were	incorrectly	quarantining	on	any	given	

day	(Figure	4B).	Moreover,	between	~40,000	and	~65,000	additional	lab-based	tests	were	

required	each	day	(Figure	4C),	corresponding	to	a	51.6%	(95%	CI:	41.1–63.6%)	increase	in	

demand	 relative	 to	 historical	 volumes.	 Historically,	 ~101,000	 lab-based	 tests	 were	

performed	each	day,	on	average,	during	the	simulation	timeframe	[109,	112].	The	number	of	

individuals	incorrectly	in	quarantine	and	daily	demand	for	lab-based	tests	were	generally	

steady	over	 time	because	 they	 largely	depend	on	 the	number	of	Susceptible	device	users,	

adherence,	and	detection	specificity;	the	gradual	decrease	can	be	attributed	to	the	flow	of	

users	into	the	Removed	state.	

	

To	ensure	our	findings	were	robust	to	the	underlying	infection	model,	we	replicated	core	

analyses	using	estimates	of	πh	from	the	ICL	infection	model	(Figure	5)	[111].	ICL	and	IHME	

estimates	 of	 πh	 expectedly	 differ	 greatly,	 however,	we	 confirmed	 that	 the	 relative	 public	

health	 impact	 of	wearable	 sensor	deployment	 remained	 consistent.	 In	 the	 same	baseline	

scenario	(4%	uptake,	50%	adherence,	80%	detection	sensitivity,	92%	detection	specificity),	
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we	observed	a	15.8%	(95%	CI:	14.5–17.2%)	reduction	in	the	burden	of	infection	when	the	

ICL	infection	model	was	used.	The	number	of	device	users	incorrectly	in	quarantine	on	any	

given	 day	 and	 the	 number	 of	 additional	 lab-based	 tests	 required	 each	 day	 were	 largely	

consistent	between	the	two	infection	models	because	the	relative	change	in	the	number	of	

Susceptible	individuals	across	the	models	was	marginal.	

	

	
Figure	5:	Baseline	impact	of	wearable	sensor	deployment	using	Imperial	College	London’s	infection	model.	Time	

series	depiction	of	(A)	the	incidence	of	infection,	(B)	the	number	of	wearable	device	users	incorrectly	in	quarantine,	and	

(C)	the	daily	demand	for	lab-based	tests.	Uptake,	adherence,	detection	sensitivity,	and	detection	specificity	are	set	to	4%,	

50%,	80%,	and	92%,	respectively.	

	

3.4 Influence	of	detection	sensitivity	and	specificity	
After	 their	 initial	 release	 on	 technology	 platforms,	 health	 detection	 algorithms	 can	 be	

updated	and	improved	as	more	real-world	data	are	collected.	However,	it	is	often	challenging	

to	dramatically	raise	detection	sensitivity	and	specificity	at	the	same	time.	We	explored	the	

implications	of	this	trade-off	(Figure	6),	varying	detection	sensitivity	and	specificity	while	

keeping	uptake	and	adherence	constant	at	4%	and	50%,	respectively.	
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Figure	6:	Trade-off	between	detection	sensitivity	and	specificity.	(A)	Averted	infections,	(B)	reduction	in	the	burden	of	

infection,	(C)	days	incorrectly	spent	in	quarantine	per	month	per	user,	and	(D)	average	daily	demand	for	lab-based	tests,	

all	over	the	simulation	period,	as	a	function	of	detection	sensitivity	and	specificity.	Grey	boxes	denote	nominal	sensitivity	

(80%)	and	specificity	(92%).	

	

Increasing	detection	sensitivity	 increased	 the	number	of	averted	 infections	by	prompting	

more	 Infectious	 users	 to	 quarantine	 (Figures	 6A	 and	 6B).	 On	 the	 other	 hand,	 increasing	

specificity	had	a	two-part	effect.	First,	as	specificity	approached	100%,	the	number	of	days	

incorrectly	 spent	 in	 quarantine	 approached	 zero	 (Figure	 6C);	 sensitivity	 had	 negligible	

impact	on	 incorrect	quarantines.	Second,	by	virtue	of	decreasing	the	number	of	 incorrect	

quarantines,	increasing	specificity	resulted	in	a	larger	pool	of	Susceptible	individuals;	in	turn,	

fewer	 infections	were	averted.	Despite	 this	 second	effect,	 incorrect	quarantines	were	not	
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central	to	the	strategy’s	public	health	impact.	We	compared	the	number	of	averted	infections	

achieved	 with	 nominal	 (92%)	 and	 perfect	 (100%)	 detection	 specificity	 as	 detection	

sensitivity	increase;	we	held	uptake	and	adherence	constant	at	their	nominal	values	of	4%	

and	50%,	respectively	(Figure	7).	We	 found	that	22.7%	(95%	CI:	13.1–32.5%)	of	averted	

infections	were	driven	by	incorrect	quarantines	in	the	baseline	scenario	presented	above	in	

Section	3.3.	This	proportion	decreased	with	increasing	detection	sensitivity.	

	

	
Figure	7:	Impact	of	incorrect	quarantines	on	averted	infections.	The	percentages	in	the	plot	on	the	right	are	calculated	

by	dividing	the	difference	in	the	number	of	averted	infections	achieved	with	nominal	(92%)	and	perfect	(100%)	detection	

specificity	by	the	number	of	averted	infections	achieved	with	nominal	detection	specificity.	We	kept	uptake	and	adherence	

constant	at	4%	and	50%,	respectively.	The	vertical	dashed	grey	line	depicts	nominal	detection	algorithm	sensitivity	(80%).	

	

In	theory,	 increasing	detection	sensitivity	would	increase	demand	for	 lab-based	tests.	We	

found	that	this	effect	paled	in	comparison	to	the	number	of	lab-based	tests	prompted	by	false	

positive	notifications	(Figure	6D).	Lab-based	test	demand	expectedly	decreased	as	detection	

specificity	increased.	

	

3.5 Influence	of	uptake	and	adherence	
Ensuring	that	public	health	measures	reach	sufficient	levels	of	uptake	has	been	a	continued	

challenge	through	the	COVID-19	pandemic.	Digital	contact	 tracing	and	vaccination	efforts	

around	 the	world	 have	 shown	 that	well-constructed	 policies—for	 example,	 incentivizing	

participation—can	improve	uptake	of	measures	[104,	113].	Here,	we	explored	the	role	of	

uptake	to	provide	relevant	context	for	the	design	of	wearable	sensor	deployment	policies	

(Figure	8).	We	estimated	that	uptake	would	fall	between	0.5%	and	7.5%	(Tables	5	and	6)	at	

baseline	but	chose	 to	present	outcomes	at	all	 levels	of	uptake	(i.e.,	 from	0%	to	100%)	to	



	 34	

illustrate	 emergent	 phenomena.	We	 also	 explored	multiple	 technology	 scenarios,	 setting	

“high”	detection	sensitivity	and	specificity	at	96.0%	and	98.4%,	respectively;	we	based	these	

increases	on	the	respective	goals	of	capturing	20%	more	infections	and	reducing	the	false	

positive	rate	by	80%	relative	to	nominal	values.	We	kept	adherence	constant	at	50%.	

	

	
Figure	 8:	 Impact	 of	 increasing	 uptake.	 (A)	 Averted	 infections,	 (B)	 reduction	 in	 the	 burden	 of	 infection,	 (C)	 days	

incorrectly	 spent	 in	 quarantine	 per	 month	 per	 user,	 and	 (D)	 average	 daily	 demand	 for	 lab-based	 tests,	 all	 over	 the	

simulation	 period,	 as	 a	 function	 of	 increasing	 uptake.	 Grey	 dashed	 lines	 denote	 nominal	 uptake	 (4%).	 In	 the	 “High	

Sensitivity”	 and	 “High	 Specificity”	 scenarios,	 detection	 specificity	 and	 sensitivity	 are	 kept	 at	 their	 nominal	 values,	

respectively.	Symbol	markers	are	added	in	(C)	and	(D)	to	distinguish	overlapping	curves:	 in	these	charts,	 the	“Nominal	

Sensitivity	 and	 Specificity”	 and	 “High	 Sensitivity”	 curves	 overlap,	 and	 the	 “High	 Specificity”	 and	 “High	 Sensitivity	 and	

Specificity”	curves	overlap.	

	

In	all	technology	scenarios,	increasing	uptake	averted	more	infections,	though	with	eventual	

diminishing	returns	 (Figures	8A	and	8B).	Within	our	estimated	range	of	uptake	(0.5%	to	

7.5%),	 and	 with	 nominal	 detection	 sensitivity	 and	 specificity,	 each	 percent	 increase	 in	
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uptake	 resulted	 in	 an	 additional	 3.4%	 (95%	 CI:	 2.8–4.0%)	 reduction	 in	 the	 burden	 of	

infection	(Figure	8B).	As	expected,	improving	detection	specificity	resulted	in	fewer	averted	

infections	when	uptake	was	held	constant;	this	effect	was	most	pronounced	between	~30%	

and	~60%	uptake.	The	number	of	days	incorrectly	spent	in	quarantine	per	month	per	device	

user	remained	constant	as	a	function	of	uptake	but	decreased	from	~2.15	to	~0.45	when	

detection	specificity	increased	(Figure	8C).	This	~80%	decrease	was	consistent	with	how	we	

defined	 “high	 specificity”	 underscoring	 that	 detection	 specificity	 directly	 influences	 the	

burden	 of	 incorrect	 quarantines	 on	 users.	 The	 average	 daily	 demand	 for	 lab-based	 tests	

scaled	linearly	with	uptake,	but	at	a	slower	rate	with	higher	detection	specificity	(Figure	8D).	

	

Adherence	 to	 public	 health	 guidelines	 also	 impacts	 the	 success	 of	 pandemic	 control	

measures.	 Targeted	 policies—for	 example,	 compensating	 individuals	 in	 self-isolation—

could	 help	 improve	 compliance	 with	 public	 health	 recommendations	 [114].	 Here,	 we	

explored	 the	 role	 of	 adherence	 in	wearable	 sensor	deployment	 strategies	 (Figure	9).	We	

captured	adherence	in	one	parameter	to	preserve	model	parsimony	but	recognize	that	there	

is	likely	to	be	great	variation	in	the	extent	to	which	notified	users	adhere	to	recommended	

next	steps	in	practice,	as	outlined	in	Table	4.	For	this	reason,	we	chose	to	explore	outcomes	

at	 all	 values	 of	 adherence—from	 0%	 adherence,	 where	 no	 users	 comply	 with	 any	

recommended	next	steps,	to	100%	adherence,	where	all	users	comply	with	all	recommended	

next	steps.	We	kept	uptake	constant	at	4%	and	assessed	multiple	technology	scenarios	using	

the	same	definitions	of	“high”	detection	sensitivity	and	specificity	as	before.	

	

Adherence	 meaningfully	 impacted	 the	 achievable	 reduction	 in	 the	 burden	 of	 infection	

(Figure	9B).	With	nominal	detection	sensitivity	and	specificity,	increasing	adherence	among	

participating	wearable	device	users	from	20%	to	80%	tripled	the	achieved	reduction	in	the	

burden	of	infection,	raising	it	from	7.2%	(95%	CI:	6.3–8.1%)	to	22.1%	(95%	CI:	20.4–23.6%).	

However,	increasing	the	proportion	of	users	who	comply	with	notifications	also	magnified	

the	 consequences	 of	 false	 positive	 notifications:	 the	 number	 of	 days	 incorrectly	 spent	 in	

quarantine	per	month	per	user	(Figure	9C)	and	the	demand	for	lab-based	tests	(Figure	9D)	

grew	proportionally	with	adherence.	These	social	and	resource	costs	grew	at	a	slower	rate	

with	improved	detection	specificity.	
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Figure	9:	 Impact	of	 increasing	adherence.	 (A)	Averted	 infections,	 (B)	 reduction	 in	 the	burden	of	 infection,	 (C)	days	

incorrectly	 spent	 in	 quarantine	 per	 month	 per	 user,	 and	 (D)	 average	 daily	 demand	 for	 lab-based	 tests,	 all	 over	 the	

simulation	period,	as	a	function	of	increasing	adherence.	Grey	dashed	lines	denote	nominal	adherence	(50%).	In	the	“High	

Sensitivity”	 and	 “High	 Specificity”	 scenarios,	 detection	 specificity	 and	 sensitivity	 are	 kept	 at	 their	 nominal	 values,	

respectively.	Symbol	markers	are	added	in	(C)	and	(D)	to	distinguish	overlapping	curves:	 in	these	charts,	 the	“Nominal	

Sensitivity	 and	 Specificity”	 and	 “High	 Sensitivity”	 curves	 overlap,	 and	 the	 “High	 Specificity”	 and	 “High	 Sensitivity	 and	

Specificity”	curves	overlap.	

	

We	 also	 explored	 the	 impact	 of	 behaviour-driven	 changes	 to	 users’	 contribution	 to	

transmission	as	part	of	our	analysis	of	adherence	(Figure	10).	In	particular,	we	considered	

scenarios	in	which	(1)	the	relative	contribution	to	transmission	of	users	who	do	not	receive	

a	positive	notification	increases	due	to	a	sense	of	false	confidence,	and	(2)	that	of	users	who	

ignore	a	positive	notification	decreases	due	to	a	sense	of	caution	(i.e.,	partial	adherence)	[65].	

Wearable	 device	 users	 stay	 in	 Susceptible,	 Presymptomatic	 Infectious,	 and	 Asymptomatic	

Infectious	compartments	either	because	they	do	not	receive	a	positive	notification	or	because	
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they	ignore	a	positive	notification.	By	modulating	a	in	Equation	17,	we	captured	the	weighted	

average	 change	 in	 the	 relative	 contribution	 to	 transmission	 driven	 by	 these	 two	 groups.	

Increases	in	transmission	by	users	relative	to	historical	levels	resulted	in	smaller	reductions	

in	the	burden	of	infection	while	decreases	had	the	opposite	effect.	The	number	of	incorrect	

quarantines	was	not	impacted.	

	

	
Figure	10:	 Impact	of	behaviour-driven	changes	 to	users’	contribution	to	 transmission.	When	a	 in	Equation	17	 is	

below	 1,	 the	 average	wearable	 device	 user	 in	 the	 Susceptible,	Presymptomatic	 Infectious,	 and	Asymptomatic	 Infectious	

compartments	acts	more	cautiously	relative	to	historical	behavior.	When	a	is	above	1,	the	average	user	in	these	groups	acts	

in	a	riskier	fashion.	We	set	uptake,	adherence,	detection	sensitivity,	and	detection	specificity	at	their	nominal	values	of	4%,	

50%,	80%,	and	92%,	respectively.	We	assumed	that	transmission	among	non-users	was	unchanged.	The	vertical	dashed	

grey	line	at	0%	reflects	the	change	in	contribution	when	a	is	nominally	set	to	1.	

	

3.6 Impact	of	offering	confirmatory	rapid	antigen	tests	
Our	earlier	findings	suggested	that	false	positive	notifications	of	potential	infection	were	the	

primary	 cause	 of	 unnecessary	 quarantines	 and	 lab-based	 tests.	 Improving	 detection	

specificity	 was	 one	 way	 to	 decrease	 false	 positive	 notifications.	 Here,	 we	 investigated	

whether	 offering	 confirmatory	 RATs	 to	 users	 with	 a	 positive	 notification	 could	 also	

contribute	to	reducing	unnecessary	quarantines	and	lab-based	tests	(Figure	11;	Tables	7	and	

8).	 We	 considered	 multiple	 scenarios,	 each	 with	 either	 low	 levels	 of	 uptake	 (0.5%)	 or	

adherence	 (14%),	 nominal	 levels	 of	 uptake	 (4%)	 or	 adherence	 (50%),	 or	 high	 levels	 of	

uptake	(12.5%)	or	adherence	(86%).	We	examined	these	scenarios	in	the	cases	of	nominal	

detection	sensitivity	and	specificity,	and	of	“high”	detection	sensitivity	and	specificity	(using	

the	same	definitions	of	“high”	as	above).	
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Figure	 11:	Wearable	 sensor	 deployment	with	 confirmatory	 rapid	 antigen	 tests.	 Time	 series	 depiction	 of	 (A)	 the	

incidence	of	infection,	(B)	the	number	of	wearable	device	users	incorrectly	in	quarantine,	and	(C)	the	daily	demand	for	lab-

based	tests.	Detection	sensitivity	and	specificity	are	set	to	their	nominal	values	of	80%	and	92%,	respectively.	

	
Table	7:	Impact	of	offering	confirmatory	rapid	antigen	tests.	95%	confidence	intervals	are	listed	in	parentheses.	Table	

8	below	depicts	outcomes	in	analogous	scenarios	without	rapid	antigen	tests.	

Uptake	
(%)	

Adherence	
(%)	

Averted	Infections	
(thousands)	

Reduction	in	
Burden	of	
Infection	(%)	

Days/Month	in	Qi	
per	User	
(thousands)	

Additional	Lab-
Based	Tests	
Performed	per	Day	

Additional	Rapid	
Tests	Performed	per	
Day	(thousands)	

Nominal	Detection	Sensitivity	(80%)	and	Specificity	(92%)	Scenario	
0.5	 14	 11.0	(9.4–12.6)	 0.5	(0.4–0.5)	 1.92	(1.47–2.46)	 11	(9	–	13)	 1.9	(1.5–2.5)	
0.5	 50	 34.4	(30.9–37.6)	 1.5	(1.3–1.6)	 6.85	(5.29–8.55)	 37	(32	–	43)	 6.9	(5.4–8.7)	
0.5	 86	 52.6	(47.9–56.5)	 2.2	(2.0–2.4)	 11.81	(9.23–14.68)	 60	(52	–	69)	 11.9	(9.3–14.8)	
4.0	 14	 86.5	(73.5–99.5)	 3.7	(3.1–4.2)	 1.92	(1.46–2.45)	 88	(73	–	103)	 15.5	(11.8–19.8)	
4.0	 50	 263.4	(237.1–286.6)	 11.2	(10.1–12.2)	 6.87	(5.34–8.53)	 284	(244	–	326)	 55.6	(43.2–69.0)	
4.0	 86	 393.5	(362.2–420.3)	 16.8	(15.5–17.9)	 11.84	(9.29–14.79)	 454	(391	–	527)	 95.8	(75.2–119.6)	
7.5	 14	 160.0	(136.9–183.9)	 6.8	(5.8–7.8)	 1.92	(1.46–2.46)	 162	(135	–	191)	 29.2	(22.2–37.3)	
7.5	 50	 472.4	(427.8–511.5)	 20.2	(18.3–21.8)	 6.87	(5.32–8.60)	 510	(438	–	592)	 104.1	(80.7–130.3)	
7.5	 86	 687.0	(636.8–728.4)	 29.3	(27.2–31.1)	 11.88	(9.24–14.79)	 805	(686	–	936)	 180.1	(140.2–224.2)	
High	Detection	Sensitivity	(96.0%)	and	Specificity	(98.4%)	Scenario	
0.5	 14	 13.0	(11.5–14.6)	 0.6	(0.5–0.6)	 0.38	(0.21–0.63)	 7	(6	–	9)	 0.4	(0.2–0.6)	
0.5	 50	 39.9	(37.6–41.9)	 1.7	(1.6–1.8)	 1.37	(0.73–2.18)	 23	(21	–	26)	 1.4	(0.8–2.2)	
0.5	 86	 59.9	(57.6–61.7)	 2.6	(2.5–2.6)	 2.35	(1.26–3.74)	 35	(31	–	39)	 2.4	(1.3–3.8)	
4.0	 14	 102.6	(91.1–114.6)	 4.4	(3.9–4.9)	 0.39	(0.21–0.63)	 58	(50	–	67)	 3.2	(1.7–5.2)	
4.0	 50	 303.0	(286.6–317.5)	 12.9	(12.2–13.5)	 1.37	(0.72–2.20)	 167	(149	–	188)	 11.2	(5.9–17.9)	
4.0	 86	 443.2	(426.2–455.3)	 18.9	(18.2–19.4)	 2.35	(1.26–3.73)	 241	(215	–	276)	 19.2	(10.4–30.4)	
7.5	 14	 188.8	(167.3–210.9)	 8.1	(7.1–9.0)	 0.38	(0.20–0.62)	 105	(91	–	121)	 5.9	(3.2–9.5)	
7.5	 50	 539.4	(511.4–562.9)	 23.0	(21.8–24.0)	 1.38	(0.74–2.23)	 284	(253	–	324)	 21.1	(11.5–34.0)	
7.5	 86	 767.3	(741.7–785.9)	 32.7	(31.6–33.5)	 2.37	(1.24–3.82)	 395	(343	–	461)	 36.2	(19.1–58.1)	

	



	 39	

Table	8:	Various	wearable	sensor	deployment	scenarios.	95%	confidence	intervals	are	listed	in	parentheses.	This	table	

is	a	counterpart	to	Table	7	such	that	analogous	scenarios	with	and	without	confirmatory	antigen	tests	can	be	compared.	

Uptake	
(%)	

Adherence	
(%)	

Averted	Infections	
(thousands)	

Reduction	in	Burden	
of	Infection	(%)	

Days/Month	in	Qi	per	
User	(thousands)	

Additional	Lab-Based	Tests	
Performed	per	Day	

Nominal	Detection	Sensitivity	(80%)	and	Specificity	(92%)	Scenario	
0.5	 14	 15.5	(13.3–17.8)	 0.7	(0.6–0.8)	 0.63	(0.48–0.79)	 1.9	(1.5	–	2.4)	
0.5	 50	 48.8	(44.1–53.3)	 2.1	(1.9–2.3)	 2.11	(1.66–2.60)	 6.4	(5.1	–	7.9)	
0.5	 86	 75.3	(69.2–81.1)	 3.2	(3.0–3.5)	 3.45	(2.77–4.19)	 10.5	(8.4	–	12.7)	
4.0	 14	 121.7	(104.4–139.5)	 5.2	(4.5–6.0)	 0.63	(0.48–0.80)	 15.3	(11.6	–	19.3)	
4.0	 50	 366.4	(333.9–398.7)	 15.6	(14.2–17.0)	 2.13	(1.68–2.61)	 51.6	(40.7	–	63.2)	
4.0	 86	 543.4	(503.7–579.4)	 23.2	(21.5–24.7)	 3.47	(2.78–4.22)	 84.2	(67.5	–	102.4)	
7.5	 14	 222.9	(193.3–253.4)	 9.5	(8.2–10.8)	 0.63	(0.48–0.79)	 28.5	(21.7	–	36.1)	
7.5	 50	 642.6	(589.3–694.7)	 27.4	(25.1–29.6)	 2.13	(1.68–2.62)	 96.9	(76.6	–	119.0)	
7.5	 86	 919.4	(859.9–974.4)	 39.2	(36.7–41.6)	 3.49	(2.79–4.22)	 158.8	(126.8	–	192.1)	
High	Detection	Sensitivity	(96.0%)	and	Specificity	(98.4%)	Scenario	
0.5	 14	 14.9	(13.1–16.7)	 0.6	(0.6–0.7)	 0.13	(0.07–0.21)	 0.4	(0.2	–	0.6)	
0.5	 50	 45.5	(42.7–48.1)	 1.9	(1.8–2.1)	 0.45	(0.24–0.72)	 1.4	(0.8	–	2.2)	
0.5	 86	 68.0	(65.0–71.0)	 2.9	(2.8–3.0)	 0.76	(0.42–1.19)	 2.3	(1.3	–	3.6)	
4.0	 14	 117.1	(103.9–131.1)	 5.0	(4.4–5.6)	 0.13	(0.07–0.21)	 3.1	(1.7	–	5.1)	
4.0	 50	 342.7	(323.7–361.6)	 14.6	(13.8–15.4)	 0.45	(0.25–0.72)	 11.1	(6.1	–	17.5)	
4.0	 86	 497.1	(476.6–517.3)	 21.2	(20.3–22.1)	 0.77	(0.42–1.21)	 18.8	(10.4	–	29.6)	
7.5	 14	 215.6	(191.5–240.7)	 9.2	(8.2–10.3)	 0.13	(0.07–0.21)	 5.9	(3.2	–	9.5)	
7.5	 50	 604.7	(572.4–635.0)	 25.8	(24.4–27.1)	 0.45	(0.24–0.72)	 20.8	(11.3	–	33.0)	
7.5	 86	 850.7	(818.7–881.8)	 36.3	(34.9–37.6)	 0.77	(0.43–1.21)	 35.3	(19.6	–	55.4)	

	

The	use	of	RATs	reduced	the	number	of	days	incorrectly	spent	in	quarantine	by	~300-fold	

by	increasing	the	“effective	specificity”	of	the	strategy	(Figure	11B).	That	is,	with	RATs,	the	

likelihood	of	a	Susceptible	user	being	incorrectly	prompted	to	quarantine	on	a	given	day	fell	

from	(1	–	νw)	to	the	product	of	(1	–	νw)	and	(1	–	νa),	where	νw	and	νa	are	detection	algorithm	

specificity	and	RAT	specificity,	 respectively.	 In	earlier	 scenarios	 (Figures	8A	and	9A),	 the	

number	of	averted	infections	was	decreased	by	improving	detection	specificity	more	than	it	

was	increased	by	improving	detection	sensitivity;	fewer	infections	were	averted	in	scenarios	

with	“high”	as	opposed	to	nominal	detection	sensitivity	and	specificity.	Here,	the	specificity	

contributed	by	the	RATs	diminished	the	relative	impact	of	improving	detection	specificity	

on	the	number	of	averted	infections:	the	“effective	specificity”	of	the	broader	intervention	

was	99.976%	with	nominal	detection	specificity	and	99.995%	with	high	detection	specificity	

(Table	8)	[99].	Instead,	improving	detection	sensitivity	was	what	increased	the	number	of	

averted	 infections.	 Importantly,	 offering	 confirmatory	 RATs	 had	 the	 secondary	 effect	 of	

decreasing	the	broader	intervention’s	“effective	sensitivity”—the	product	of	RAT	sensitivity	

(91.1%)	and	detection	algorithm	sensitivity	[99].	
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Offering	confirmatory	RATs	also	decreased	 the	demand	 for	 lab-based	 tests	by	~200-fold,	

alleviating	 the	 burden	 on	 testing	 infrastructure	 (Figure	 11C).	We	 earlier	 found	 that	 in	 a	

baseline	 scenario	 (4%	uptake,	 50%	adherence,	 80%	detection	 sensitivity,	 92%	detection	

specificity),	 between	~40,000	and	~65,000	additional	 lab-based	 tests	would	be	 required	

each	day	(Figure	4C;	Table	8).	Here,	in	an	analogous	scenario,	only	284	(95%	CI:	244–326)	

additional	 lab-based	 tests	would	be	 required	 each	day,	 on	 average,	 and	55,600	 (95%	CI:	

43,200–69,000)	RATs	would	be	performed	instead	(Table	7).	

	

We	 investigated	 the	 impact	 of	 lower	 RAT	 sensitivity	 (Figure	 12).	 Fewer	 infections	were	

averted	when	RATs	were	used	at	all	because	using	RATs	to	minimize	incorrect	quarantines	

increased	the	pool	of	Susceptible	individuals.	As	well,	the	reduction	in	the	burden	of	infection	

grew	linearly	with	RAT	sensitivity:	each	~10%	increase	in	RAT	sensitivity	resulted	in	a	~1%	

reduction	in	the	burden	of	infection.	These	two	effects	result	in	a	trade-off	between	missing	

more	Infectious	individuals	(due	to	imperfect	RAT	sensitivity)	and	decreasing	false	positive	

prompts	to	seek	a	lab-based	test	and	quarantine	while	waiting	for	the	results	(due	to	near	

perfect	RAT	specificity).	

	

	
Figure	 12:	 Impact	 of	 rapid	 antigen	 test	 sensitivity.	 We	 set	 uptake,	 adherence,	 detection	 sensitivity,	 and	 detection	

specificity	 at	 their	 nominal	 values	 of	 4%,	 50%,	 80%,	 and	 92%,	 respectively.	 The	 vertical	 dashed	 grey	 line	 represents	

nominal	antigen	test	sensitivity	(91.7%).	

	

3.7 Additional	sensitivity	analyses	
We	explored	the	impact	of	lab-based	test	turnaround	time	to	determine	whether	minimizing	

this	 variable	 should	 be	 a	 policy	 priority	 (Figure	 13).	 With	 longer	 turnaround	 times,	
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individuals	incorrectly	in	quarantine	remained	there	longer,	further	decreasing	the	pool	of	

Susceptible	individuals.	As	expected,	greater	reductions	in	the	burden	of	infection	resulted,	

but	with	substantial	growth	in	the	social	costs	of	the	intervention.	

	

	
Figure	13:	Impact	of	 lab-based	test	turnaround	time.	We	set	uptake,	adherence,	detection	sensitivity,	and	detection	

specificity	 at	 their	 nominal	 values	 of	 4%,	 50%,	 80%,	 and	 92%,	 respectively.	 The	 vertical	 dashed	 grey	 line	 represents	

nominal	lab-based	test	turnaround	time	(2	days).	

	

We	also	performed	a	sensitivity	analysis	on	the	asymptomatic	prevalence	(Figure	14).	In	our	

model,	notifications	are	sent	to	presymptomatic	and	asymptomatic	individuals,	but	there	is	

a	lack	of	consensus	on	a	specific	value	for	the	asymptomatic	prevalence	[52].	As	expected,	

with	greater	asymptomatic	prevalence,	more	individuals	could	benefit	from	wearable	device	

use	and	more	infections	were	averted.	The	number	of	incorrect	quarantines	was	unchanged.	

	

	
Figure	14:	Impact	of	asymptomatic	prevalence.	We	set	uptake,	adherence,	detection	sensitivity,	and	detection	specificity	

at	their	nominal	values	of	4%,	50%,	80%,	and	92%,	respectively.	We	continued	to	model	asymptomatic	prevalence	as	a	

beta-distributed	random	variable.	The	vertical	dashed	grey	line	represents	nominal	asymptomatic	prevalence	(40%).	
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4 	
Interpretation	of	Findings	and	Future	

Work	
	

4.1 Interpretation	of	Findings	
In	this	thesis,	we	used	a	counterfactual	model	of	Canada’s	second	COVID-19	wave	to	show	

that	 wearable	 sensors	 capable	 of	 detecting	 infections	 before	 or	 absent	 symptoms	 have	

meaningful	potential	to	help	mitigate	the	acute	phase	of	a	pandemic.	Through	continuous	

and	non-invasive	monitoring	of	physiological	parameters,	these	devices	can	help	Find-Test-

Trace-Isolate	 (FTTI)	 systems	 identify	 hidden	 infection	 chains	 with	 minimal	 delay	 and	

without	active	user	engagement	or	broad	sharing	of	user	data.	We	demonstrated	that	(1)	

deploying	currently	available	detection	algorithms	could	have	helped	reduce	the	acute	phase	

burden	of	infection,	but	with	substantial	social	and	resource	costs;	(2)	improving	detection	

algorithm	 specificity	 and	 offering	 confirmatory	 rapid	 antigen	 tests	 can	 help	 minimize	

unnecessary	quarantines	and	lab-based	tests;	and	(3)	once	false	positive	notifications	are	

minimized,	increasing	uptake	and	adherence	become	effective	strategies	to	scale	the	number	

of	averted	infections.	

	

In	theory,	wearable	sensor	deployment	reduces	the	burden	of	infection	by	decreasing	the	

pool	of	Infectious	individuals	(a	function	of	detection	algorithm	sensitivity).	Here	we	found	

that	 detection	 specificity	 played	 an	 unexpectedly	 large	 role	 as	 well,	 with	 false	 positive	

notifications	 of	 potential	 infection	 prompting	 unnecessary	 quarantines	 and	 thereby	

decreasing	 the	 pool	 of	 Susceptible	 individuals.	 Thus,	 although	 prioritizing	 uptake	 and	

adherence	as	part	of	a	wearable	sensor	deployment	strategy	could	mitigate	a	substantial	

number	 of	 infections,	 the	 unsustainable	 growth	 of	 associated	 costs	 should	 also	 be	

considered.	In	a	baseline	scenario,	without	improvements	to	detection	specificity,	every	user	

would	spend	over	two	days	a	month	on	average	incorrectly	quarantining,	and	~40,000	to	
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~65,000	additional	confirmatory	lab-based	tests	would	be	required	each	day.	The	social	and	

economic	harm	caused	by	solely	promoting	uptake	or	adherence	without	improvements	to	

detection	 specificity	would	 likely	 undermine	public	 confidence	 in	 and	 compliance	with	 a	

wearable-based	 pandemic	 mitigation	 strategy	 [115].	 Alavi	 et	 al.	 found	 that	 many	 false	

positives	were	due	to	the	detection	algorithm	identifying	lifestyle-driven	changes	in	resting	

heart	rate	(e.g.,	after	intense	exercise	or	alcohol	consumption);	accounting	for	these	factors	

using	more	advanced	algorithms	may	be	one	way	to	improve	detection	specificity	[27].	

	

We	 found	 that	 the	 inclusion	 of	 confirmatory	 antigen	 testing	was	 a	 valuable	mechanism,	

beyond	improving	detection	specificity,	to	increase	the	“effective	specificity”	of	the	strategy	

and	decrease	the	overall	false	positive	rate.	The	inclusion	of	antigen	testing	decreased	days	

incorrectly	 spent	 in	quarantine	by	~300-fold	and	brought	 the	additional	demand	on	 lab-

based	testing	infrastructure	to	justifiable	levels.	However,	even	with	the	inclusion	of	antigen	

tests,	improvements	to	detection	specificity	still	had	value.	In	scenarios	with	“high”	nominal	

detection	 specificity,	 we	 observed	 a	 ~4-fold	 reduction	 in	 days	 incorrectly	 spent	 in	

quarantine	per	month	per	user,	a	~2-fold	reduction	in	lab-based	tests	performed	each	day,	

and	 a	~5-fold	 reduction	 in	 antigen	 tests	 used	 each	day.	 Importantly,	 a	 strategy	 in	which	

antigen	 tests	 support	 the	 deployment	 of	wearable	 sensors	 is	 notably	 different	 from	 one	

involving	 frequent	use	of	 rapid	antigen	 tests	 for	surveillance	 testing	 [116].	On	 their	own,	

broad	 antigen	 test-based	 screening	 approaches	 require	 tremendous	 manufacturing	

volumes,	infrastructure,	and	funding	[117].	Conversely,	wearable	sensors	can	non-invasively	

detect	infections	without	active	user	engagement,	reducing	the	effort	required	to	participate.	

Further,	wearable	sensors	may	even	help	improve	test	allocation	by	directing	tests	toward	

individuals	with	a	higher	pre-test	probability	of	infection	[118].	

	

The	 COVID-19	 pandemic’s	 evolution	 has	 been	 shaped	 by	 the	 uptake	 of	 vaccines,	 the	

emergence	of	more	transmissible	and	immune-evasive	variants	of	concern	(VOCs),	and	the	

potential	for	breakthrough	and	repeat	infections	[119].	Although	we	did	not	consider	these	

factors	when	modelling	Canada’s	second	wave,	we	speculate	that	their	effects	on	wearable	

sensor-based	 mitigation	 strategies	 would	 be	 driven	 by	 changes	 in	 users’	 physiological	

responses	 and	 in	 SARS-CoV-2	 epidemiology.	 In	 particular,	we	 hypothesize	 that	wearable	



	 44	

sensor-based	mitigation	would	be	impacted	in	four	major	ways.	First,	vaccination	has	been	

found	to	elicit	similar	physiological	responses	to	infection	(e.g.,	elevated	resting	heart	rate)	

and	these	physiological	responses	might	be	captured	by	wearable	sensor-based	detection	

algorithms	 [27,	 120].	We	 expect	 this	 to	manifest	 as	 an	 increase	 in	 the	 incidence	 of	 false	

positive	notifications,	which	we	have	considered	in	depth	in	our	analyses	related	to	detection	

specificity.	However,	we	also	speculate	that	vaccination-driven	false	positive	notifications	

would	 likely	 be	 flagged	 as	 such	 by	 the	 user	 and	 ignored.	 Second,	 prior	 immunity	 from	

vaccination	 may	 attenuate	 physiological	 responses	 elicited	 by	 breakthrough	 infections,	

altering	detection	sensitivity	[121].	Although	it	might	generally	be	expected	that	the	degree	

of	attenuation	would	depend	on	the	VOC	causing	infection,	as	well	as	the	specific	infection	

and	 vaccination	 history	 of	 the	 individual,	 evidence	 of	 minimal	 differences	 between	

physiological	 responses	 to	breakthrough	 infections	during	Germany’s	Delta	 and	Omicron	

waves	 has	 been	 reported	 [121].	 From	 a	 modeling	 perspective,	 incorporating	 temporal	

changes	in	detection	sensitivity	may	be	an	appropriate	starting	point	for	exploring	this	effect.	

Third,	the	onset	of	symptoms	may	occur	earlier	in	the	infectious	period	in	individuals	with	

pre-existing	 immunity	 than	 in	 immunologically	 naïve	 individuals	 [51,	 122].	 In	 these	

scenarios,	 the	 early	 onset	 of	 symptoms	 would	 already	 contribute	 to	 the	 detection	 of	

infections	earlier	in	the	infectious	period.	However,	we	speculate	that	if	detection	algorithms	

retained	 their	ability	 to	 identify	presymptomatic	 infections,	wearable	 sensors	 could	even	

further	reduce	the	fraction	of	the	infectious	period	in	which	users	unknowingly	transmit	the	

virus—and	 in	 turn,	 even	 further	 decrease	 the	 burden	 of	 infection.	 Finally,	 increases	 in	

transmissibility—whether	due	to	higher	viral	loads	or	immune	evasion	in	VOCs—would	also	

influence	the	 impact	of	wearable	sensor-based	mitigation	strategies,	 likely	by	attenuating	

the	achievable	reduction	 in	the	burden	of	 infection	[17,	123–125].	Moving	forward,	more	

empirical	data	will	be	needed	in	order	to	develop	models	of	wearable	sensor	deployment	in	

the	SARS-CoV-2	vaccine	and	variant	era,	and	in	turn	explore	these	hypotheses.	

	

4.2 Future	Work	
Our	work	has	important	limitations.	First,	we	do	not	account	for	heterogeneities	in	wearable	

device	use	 that,	 in	reality,	 is	 influenced	by	age,	race,	 level	of	education,	and	 income	[126,	
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127].	Future	analyses	could	more	precisely	address	how	a	device	user	being	removed	from	

the	pool	of	Susceptible	or	Infectious	individuals	will	impact	the	epidemic	trajectory	based	on	

that	 user’s	 demographic	 and	 socioeconomic	 profile.	 Indeed,	 the	 COVID-19	 pandemic	 has	

disproportionately	 impacted	 low-income	and	minority	 groups,	while	 younger	 individuals	

are	more	likely	to	be	super-spreaders	[128–130].	It	would	be	important	for	future	studies	to	

characterise	how	the	benefits	of	wearable	sensor-based	detection	are	likely	to	be	distributed	

across	the	population,	and	whether	or	not	this	intervention	could	exacerbate	existing	health	

inequities.	 Future	 studies	 could	 also	 consider	 policies	 that	 subsidize	 wearable	 devices,	

reducing	 the	 participation	 barrier	 for	 groups	 underrepresented	 among	 current	 device	

owners.	Second,	we	made	the	simplifying	assumption	that	all	users	without	symptoms	(and	

that	 no	 users	with	 symptoms)	 could	 benefit	 from	wearable-informed	 prompts	 to	 seek	 a	

confirmatory	 test	and	 tentatively	quarantine.	Because	wearable	sensors	show	promise	 in	

detecting	 symptomatic	 SARS-CoV-2	 infection	 and	many	 symptomatic	 individuals	 did	 not	

historically	 self-isolate,	 considering	 this	 group	 in	 future	 analyses	 could	 modify	 the	

magnitude	of	our	estimates	[61,	96,	97].	Third,	we	did	not	consider	how	uptake	or	adherence	

may	vary	with	time,	detection	accuracy,	or	other	factors	[96,	104,	115,	131].	Finally,	we	did	

not	consider	how	detection	algorithm	performance	varies	over	the	course	of	infection.	

	

Some	of	these	limitations	can	be	overcome	with	an	agent-based	modelling	(ABM)	approach.	

First,	 with	 an	 ABM,	 it	 would	 be	 possible	 to	 account	 for	 heterogeneity	 in	 SARS-CoV-2	

epidemiology	and	in	wearable	device	ownership	(e.g.,	on	the	basis	of	age	or	income)	to	more	

precisely	capture	the	effect	of	removing	someone	from	the	pool	of	Susceptible	individuals.	

Second,	an	ABM	that	simulates	transmission	in	different	contact	settings	could	be	used	to	

study	 more	 specific	 wearable	 sensor-based	 interventions	 (e.g.,	 distributing	 devices	 at	

workplaces	to	detect	infectious	workers	and	better	prevent	outbreaks).	Third,	the	ability	to	

specify	interventions	at	the	individual	level	would	allow	detection	algorithm	sensitivity	to	

be	parameterised	as	a	function	of	time,	peaking	immediately	prior	to	onset	instead	of	being	

applied	uniformly	across	the	applicable	time	window	[27].	Finally,	an	ABM	would	enable	the	

study	of	other	public	health	applications	of	wearable	sensor-based	detection,	for	example,	to	

support	infectious	disease	surveillance	[106,	132].	
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Before	 wearable	 sensor-based	 mitigation	 can	 be	 implemented	 through	 policy,	 several	

dimensions	must	be	considered:	effectiveness,	unintended	effects,	equity,	acceptability,	cost,	

and	feasibility	[133].		Our	study	provides	insight	into	the	effectiveness	and	some	potential	

unintended	 effects	 (e.g.,	 incorrect	 quarantines)	 of	 this	 intervention,	 and	 we	 have	 also	

highlighted	important	concerns	relating	to	equity.	There	are	multiple	aspects	of	achieving	

sufficient	 acceptability.	 First,	 messaging	 to	 the	 public	 will	 be	 important;	 public	 health	

leaders,	 for	 example,	will	 need	 to	 communicate	 the	 limitations	 of	wearable	 sensors	with	

respect	to	detecting	infections	and	emphasize	that	a	lack	of	a	notification	does	not	rule	out	

potential	infection.	Second,	users	should	be	engaged	on	an	ongoing	basis	to	ensure	that	the	

intervention’s	implementation	adheres	to	their	expectations	(e.g.,	around	privacy,	usability,	

etc.).	 Finally,	 it	 will	 be	 crucial	 to	 provide	 appropriate	 supports	 for	 users	 prompted	 to	

quarantine	 [114].	 In	 assessing	 the	 costs	 of	 wearable	 sensor-based	 mitigation,	 health	

economists	 should	 be	 engaged	 to	 develop	 financial	 estimates	 for	 a	 range	 of	 deployment	

scenarios.	Technical	feasibility	and	related	opportunities	should	also	be	explored,	including	

issues	related	to	data	format	and	secure	storage,	as	well	as	the	potential	to	link	wearable	

sensor	data	with	other	health	data	(e.g.,	laboratory	tests)	to	yield	more	impactful	diagnoses	

[134].	Working	closely	with	communities,	particularly	in	resource-constrained	settings,	will	

be	vital	to	tailor	this	strategy	and	ensure	its	long-term	feasibility	[135].	Ultimately,	wearable	

sensor-based	mitigation	will	need	to	be	systematically	compared	to	conventional	mitigation	

strategies	along	each	of	these	dimensions	to	demonstrate	its	suitability	for	implementation.	

	

4.3 Conclusion	
Using	 the	 example	 of	 COVID-19,	 we	 demonstrated	 the	 potential	 of	 wearable	 sensors	 to	

support	 FTTI	 systems	 with	 real-time	 detection	 of	 presymptomatic	 and	 asymptomatic	

infections	 and	 thereby	 reduce	 the	 burden	 of	 infection	 during	 a	 pandemic.	 Ultimately,	 as	

sensor	technology	and	detection	algorithms	evolve—for	example,	to	potentially	distinguish	

infections	with	SARS-CoV-2	from	those	with	seasonal	influenza	[136]—there	is	clear	merit	

to	continuing	to	explore	how	wearable	sensors	can	be	 incorporated	 into	FTTI	systems	to	

improve	pandemic	mitigation.	
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