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Abstract

A curious divide characterizes the usage of audio descriptors for timbre research in music

information research (MIR) and music psychology. While MIR uses a multitude of audio

descriptors for tasks such as automatic instrument classification, only a highly constrained

set is used to describe the physical correlates of timbre perception in parts of music

psychology. We argue that this gap is not coincidental and results from the di�erences in

the two fields’ methodologies, their epistemic groundwork, and research goals. This paper

lays out perspectives on the emergence of the divide and reviews studies in both fields with

regards to divergences in research methods and goals. We discuss new representations for

spectro-temporal modulations in MIR and psychology, and compare approaches to spectral

envelope description in depth. Finally, we will propose that the interdisciplinary discourse

on the computational modelling of music requires negotiations about the roles of scientific

evaluation criteria.

Keywords: audio analysis, information retrieval, timbre perception, instrument

classification, evaluation
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A Comparison of Approaches to Timbre Descriptors in Music Information Retrieval and

Music Psychology

1 Introduction

‘Mel Cepstrum: You’re killing me. Are you seriously rejecting 10 years’ worth of results as

mere coincidences? Our findings that, say, taking the derivative of MFCCs improve genre

classification by 10%, or that periodicities in the range 1–10 seconds (the rhythm

fluctuation patterns [...]) are enough to account for timbre similarity, shouldn’t that, at

least, give you some sort of intuition about how these behaviours are cognitively produced?

Ann Ova: In the MIR bestiary, we find, first, features deriving from traditional

psychoacoustics [...], then, your field o�ers quite a lot of mathematical variants of these

same characteristics, [...] which seem to be justified only by the fact that they are

conceptually close [...] or even that they are easy enough to compute [...]; other features

seem to start their career as intermediary steps in the processing chain of another feature,

gain special status and then a name of their own [...]. And the list goes on, growing every

year: the sole MIRtoolbox library o�ers more than 300 features, very few of which having a

clear epistemological status. Now, I do not doubt they serve your purpose well, but I hope

you see it is unclear whether they can serve ours.’ (Aucouturier & Bigand, 2012, p. 2-3).

In a fictive dialogue entitled ‘Mel Cepstrum & Ann Ova: The Di�cult Dialog

Between MIR and Music Cognition’ (Aucouturier & Bigand, 2012) and a subsequent

journal publication (Aucouturier & Bigand, 2013), computer scientist Jean-Julien

Aucouturier and psychologist Emmanuel Bigand identified a set of problems that hinders

the academic disciplines of music information retrieval (MIR) and music cognition from

productive collaboration. Today, the rhetorics of interdisciplinary collaboration have long

become fashionable, yet still hard to set into practice. Position papers such as these are

crucial because they clarify potential misunderstandings between researchers coming from

di�erent backgrounds and eventually guide collaborative research towards a fertile future.
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Aucouturier and Bigand cover a variety of important aspects, including the usage of

descriptors and algorithms and methods for scientific validation, as well as the status of

limit cases in both fields. Their most fundamental claim is that parts of MIR are

methodologically misguided because they do not respect the ways in which auditory

information processing takes place in humans, but rather employ heuristics that have

proven to be successful when evaluated algorithmically over large corpora of music. In the

case of successful evaluation, these heuristics are then falsely interpreted as evidence of

mechanisms of human auditory information processing. In their critique of facets of the

MIR approach, Aucouturier and Bigand are not alone (cf., Wiggins, 2009; Marsden, 2012;

Sturm, 2013, 2014). Bob Sturm, for instance, argued that relying on classification accuracy

alone can be a misleading criterion in tasks such as musical genre classification, in some

cases giving rise to operationalizations of musical genre that are implausible to any human

listener.

In this review, we attempt to analyse the first aspect discussed by Aucouturier and

Bigand (2012), namely the apparent divergence in the usage of audio descriptors in MIR

and music psychology that quantify musical timbre. Timbre denotes the bundle of auditory

attributes that endows musical sounds with their particular ‘colour’, ‘shape’ or ‘texture’

(which may covary with pitch, loudness, and duration) and that enables listeners to

identify sound sources (McAdams, 2013). It thus comprises at least two partially separate

perceptual facets: sound quality (e.g., ‘colour’) and sound source identity. Whereas the

former can only be studied with subjective experimental tasks (such as dissimilarity

rating), there is an objective ‘ground truth’ to the latter, in that the inference of a sounds’

source-cause may be correct or incorrect. This distinction bears importance, because we

will argue in Section 3 that one of the ways in which MIR and psychology diverge in their

usage of descriptors may be related to exactly such task di�erences. The basic question

underlying this paper then becomes ‘How do MIR and psychology approach the

quantitative modelling of musical timbre?’ More particularly along the lines of Aucouturier
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and Bigand (2012), ‘Why does MIR use a multitude of timbre descriptors (Ø 20) when

psychological research usually only identifies a few (Æ 5) to be relevant for the perception

of a given set of timbres?’

For the purpose of disambiguation, we here we use the notion of audio descriptors to

refer to those (usually continuously-valued) measures of audio signals that are more

commonly referred to as audio features in MIR. In contrast, features in psychology

generally denote stimulus characteristics, or, in a stricter sense, binary-valued properties

that stimuli either do or do not possess. Although this usage may be unusual for some

readers, distinguishing the stimulus (and its features) from the measurement (by means of

descriptors) will become useful.

In what follows, we will portray the commonalities and di�erences of the two fields’

approaches towards timbre description in terms of their scientific techniques, underlying

experimental tasks, epistemic frameworks, and evaluation criteria. We begin by reviewing

the techniques used for instrument classification in MIR and timbre similarity perception

in psychology. The role of spectrotemporal fluctuations will be discussed in detail, as well

as questions around spectral envelope description. Section 3 analyses implications of the

prevalent task di�erences in the two fields, before we propose in Section 4 that the two

fields do not necessarily share the same scientific objectives and epistemic framework.

Along the way, we will discuss the ways in which Aucouturier and Bigand’s critique may

have neglected parts of the epistemic and methodological intricacies inherent to studies

that appear under the umbrella of psychology or computational neuroscience. We will

highlight the fact that contemporary models of complex auditory cognition, such as timbre

perception, remain coarse approximations of the underlying psychological processes; such

models can be evaluated according to multiple evaluation criteria that including goodness

of fit, simplicity, physiological adequacy, or computational parsimony. Our point of arrival

is that the computational modelling of music requires researchers—and in particular those

involved in interdisciplinary research—to more explicitly negotiate the criteria according to
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which scientific success should be evaluated.

2 Techniques and Results

This section reviews the scientific techniques that are used in MIR and music

psychology for dealing with the parameter of timbre. For MIR, research on timbre mostly

revolves around instrument classification, where computational systems represent audio

signals via an ensemble of descriptors and use this representation to assign class

(instrument category) memberships to instrument sounds. Music psychology has most

often studied timbre perception by relying on dissimilarity ratings, that are correlated with

descriptors in order to reveal the most salient physical parameters underlying subjective

timbre perception. The two approaches have indeed led to substantial disagreement on the

most suited set of audio descriptors.

2.1 Instrument Classification in MIR

For most tasks of audio-based MIR and instrument classification1 in particular,

algorithm design consists of two parts. The first concerns the representation of audio

signals for which audio descriptors are chosen or are newly created, usually by mapping the

signal’s short-term Fourier transform (STFT) magnitude into a lower-dimensional domain

that more clearly reveals the relevant signal characteristics. Oftentimes, this

dimension-reduction phase is followed by a feature selection step that removes the least

important descriptors from the model in order to reduce computational load, redundancy,

and tendencies for overfitting. The second stage concerns the selection of the classification
1We use the term classification for what is often also called recognition, because the aim of the discussed

tasks is to attach a class label (e.g., ‘string instrument’) to a given sound, and not to assess whether a sound

has been encountered in the past. The latter is the central meaning of recognition in the psychology literature

and does not require classification or identification (cf., McAdams, 1993; Berry, Shanks, Speekenbrink, &

Henson, 2012). Accordingly, recognition is a necessary condition of classification, but not the other way

around.
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model. Popular supervised classifiers include k-nearest neighbours (k-NN), Gaussian

mixture models (GMM), hidden Markov models (HMM), support vector machines (SVM)

or neural networks (cf. Herrera-Boyer, Klapuri, & Davy, 2006; Fu, Lu, Ting, & Zhang,

2011). The resulting systems are then trained and evaluated, usually by employing

cross-validation with regards to a ‘ground-truth’ defined a priori on annotated sets of audio

data. Cross-validation denotes the partitioning of available data into training and test sets,

which is repeated multiple times for di�erent partitions (‘k-fold’). The researcher then

selects the model with the lowest average error on the test sets. This approach reduces the

danger of classical overfitting, that is, the incorporation of too many predictors, which fit to

the noise in the training data (alternative forms of overfitting may still exist, cf., Ng, 1997).

Instrument classification has been an important task since the beginnings of MIR.

Fujinaga (1998) and Fujinaga and MacMillan (2000) classified steady-state portions of

musical instrument tones in an exemplar-learning-based approach. Their system relied on

spectral descriptors such as higher-order moments and amplitudes of spectral peaks.

Classification was realized using the non-parametric k-NN scheme, which assigns an item

to a class based on the majority vote of the item’s k nearest neighbours. Classification

performance was around 50% with more than 60 spectral descriptors and dropped to 42%

using only four descriptors (fundamental frequency and the first three spectral moments).

Impulsively excited sounds were classified considerably worse, which seems natural because

only manually selected steady-state portions of the sounds were considered in the analysis.

Martin (1999) modelled perceptual sound source recognition inspired by the hierarchy

of perceptual processing proposed by McAdams (1993). The idea was to model source

recognition as a process that incrementally accumulates information at multiple,

increasingly fine-grained levels of abstraction. Using a three-dimensional audio

representation based on auditory-filterbank autocorrelation (Ellis, 1999), a large number of

descriptors were computed relating to spectral, attack, pitch, vibrato, and tremolo

characteristics. Instrument prototypes were accumulated over several instances of the same
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instrument. The classification scheme comprised a hierarchical Bayesian decision tree with

three levels: all instruments, instrumental families, and specific instruments. Classification

was realized via a log-likelihood decision that ruled out alternative categories at every level

of the tree. Interestingly, a context-dependent descriptor weighting was implemented,

selecting those descriptors that best separated the remaining categories at each level. With

around 75% classification accuracy for instruments, the system performed better than

human subjects for specific instruments, whereas humans performed better at the family

level.

Eronen (2001) used the nowadays ubiquitous mel-frequency cepstral coe�cients

(MFCC), which originated from speech processing. They are obtained by computing the

logarithm of the power of a Mel-scale-warped STFT before applying a discrete cosine

transform (DCT), which yields a representation of the spectral shape (i.e., lower order

coe�cients represent coarse spectral variability, higher order coe�cients represent

increasingly finer spectral detail). For capturing spectral envelope information (and not

pitch), only the first few (e.g., 13) coe�cients are used. As the DCT has a de-correlating

e�ect, it also helps to remove the redundancy that plagues the first moments of the

spectral envelope, thus facilitating classification.

Using a collection of 160 descriptors including MFCCs and newly proposed

octave-band signal intensities and octave-band signal-intensity ratios, Essid, Richard, and

David (2006) evaluated di�erent descriptor-selection and classification strategies for

solo-instrument signals of 0.5 s duration. Their first experiment compared feature-selection

strategies based on so-called ‘genetic algorithms’ and ‘inertia ratio maximization’. Genetic

algorithms implement a randomly initialized, iterative search process in which subsets of

features are encoded as ‘chromosomes’ and evaluated according to their ‘fitness’ (Siedlecki

& Sklansky, 1989). The fitness function was implemented by Essid et al. (2006) as the

mutual separability of class probability densities for a given chromosome. Even higher

classification accuracy was achieved by using intertia ratio maximation (Peeters, 2003),
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which iteratively adds descriptors with a maximal ratio of between-class variance to the

overall variance (Fisher discriminant), followed by a descriptor orthogonalization step for

the removal of descriptor redundancies. A second experiment compared di�erent kernel

functions for an SVM classifier (which, in the case of two-classes and a linear kernel, yields

a hyperplane that maximally separates the feature values of both classes’ items as a

decision boundary). Using a radial basis function kernel instead (thus non-linearly

transforming the descriptor-space) improved classification accuracy from 81% to 87%. The

last experiment tested the influence of the signal duration on accuracy where the increase

from 0.5 to 3 s yielded an increase to 93% classification accuracy.

Joder, Essid, and Richard (2009) considered temporal integration in the descriptor

and classification stage. Temporal integration involves the combination of descriptor

observations over successive time frames. The list of low-level descriptors that was

suggested by descriptor selection included the first three spectral moments, two sets of 13

MFCCs with 11 or 30 Mel subbands, 6 octave-band spectral intensities and 5 ratios of such

coe�cients, 5 wavelet transform coe�cients, 3 spectral irregularity descriptors, spectral

roll-o�, spectral flatness, 2 zero-crossing rates over di�erent time windows, and amplitude

modulation strength between 10 Hz and 40Hz. These descriptors underwent early and late

temporal integration. In early integration, new descriptor vectors are computed that

characterize the signal at a higher time scale by summing local descriptors extracted from

a sequence of analysis frames. Late integration does not attempt to extract descriptor

dynamics, but either combines successive primary decisions of the classifier or uses a

classifier that can deal with sequences. Suited classifiers include HMMs (which track

transition probabilities between a system’s states) or SVMs with alignment kernels (which

dynamically align sequences). These authors showed that including both early and late

temporal integration yielded small improvements of classification accuracy compared to

static reference systems, i.e., GMM and SVM (with Gaussian kernels) in conjunction with

non-integrated features.
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An important insight on the interrelation of descriptors was provided by Peeters,

Giordano, Susini, Misdariis, and McAdams (2011). Based on an analysis of a large corpus

(> 6000) of instrument sounds, they found that their initial 164 audio descriptors from the

Timbre Toolbox fell into 10 fairly independent classes, but descriptors within each class

were highly collinear. Classes included the same descriptors computed on the basis of

di�erent time-frequency representations (e.g., linear STFT vs. Gammatone-filterbank), but

also di�erent types of descriptors (such as the ratio of levels of od and even harmonics,

noisiness, inharmonicity) regardless of their initial audio representation. This implies that

in many situations there may indeed be a much smaller number of substantially

independent variables present than raw numbers of descriptors suggest.

In summary, instrument classification has reached an impressive accuracy during a

relatively short period of research. However, the psychoacoustic meaning of many of the

descriptors used in these systems, as exemplified by the aforementioned list that is

representative of many studies in the field, is hard to decipher and expresses a considerable

level of eclecticism. Zero-crossing rates per se (a waveform’s number of sign-shifts in a

given duration), for instance, do not relate to perceptual processing in a straight-forward

fashion, but they somehow contribute to computational classification accuracy.

An alternative example of a high-dimensional representation derived from a formal

standpoint (thus perhaps less idiosyncratic than some of the collections of descriptors

mentioned above) was presented by Mallat (2012). His nonlinear scattering transform, if

applied to sound, provides a mathematical representation tailored towards spectrotemporal

modulation analysis. The formal requirement imposed on the representation is invariance

to operations such as small time-shifts and log-frequency shifts, a useful property (shared

by MFCCs) for classification tasks, and it is also of potential perceptual relevance. The

resulting transform iteratively decomposes a signal into layers of coe�cients by cascading

wavelet transforms on the low-pass filtered modulus (i.e., envelope) of the previous layer.

Its first layer of coe�cients encodes a signal’s frequency content, whereas the second and
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further layers mainly capture the temporal evolution. The approach thereby generalizes

MFCCs in that the first layer of scattering coe�cients is comparable to MFCCs, but the

further layers yield temporal details that are not considered in MFCCs. Andén and Mallat

(2014) showed that using this representation improves genre classification over a set of

MFCCs and their first order di�erences (deltas). Note that in contrast to the

aforementioned audio analysis features, this method can also be used for signal

reconstruction. Bruna and Mallat (2013) applied the method to an analysis-resynthesis of

environmental sound textures and found that the scattering transform requires around half

the number of coe�cients compared to the results by McDermott and Simoncelli (2011)

who had used a modulation representation similar to the one proposed by Dau, Kollmeier,

and Kohlrausch (1997b). Although the scattering representation has not been used for

instrument recognition specifically, it seems to be well suited for this task.

Similar examples of high-dimensional signal representations that encode

spectrotemporal modulations have been used for tasks such as genre classification (Sturm

& Noorzad, 2012). Interestingly, the authors also observed that representations that

mimicked basic aspects of cochlear processing did not necessarily improve classification

results, potentially due to the nature of the genre classification task. The importance of

considering perceptual and computational tasks in detail will be further discussed in

Section 4.

2.2 Timbre Similarity in Music Psychology

Timbre similarity and multidimensional scaling. A shared point of

departure for most psychological studies of timbre that make use of audio descriptors is to

circumvent verbal description and semantics by probing timbral similarity, assumed not to

require language. Note that this approach probes the qualitative facet of timbre; audio

features for perceptual instrument identification, on the contrary, are only beginning to be

studied empirically (see e.g., Agus, Suied, Thorpe, & Pressnitzer, 2012; Patil, Pressnitzer,
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Shamma, & Elhilali, 2012). Multidimensional scaling (MDS) (R. Shepard, 1962; Kruskal,

1964) has been a pivotal tool for the study of timbre dissimilarity. MDS generates a spatial

configuration of points whose pairwise distances approximate the original perceptual

dissimilarity data. An important variant of the algorithm is CLASCAL (Winsberg &

De Soete, 1993), which includes latent classes of subjects weighting the obtained

dimensions di�erently, as well as so-called specificities, which provide additional distance

values to account for perceptual features that are specific to individual items. The

specificities take up as much unexplained variance as possible but do not make any

assumptions about the relationships among timbres and turn the model indeed into a

compromise between strictly spatial models (R. N. Shepard, 1987) of similarity and

non-spatial tree-based approaches to similarity (Sattath & Tversky, 1977). It is common

practice to select the scaling model that minimizes possibly both (or either of) the Bayesian

(BIC) (Schwarz et al., 1978) and Akaike (AIC) (Bozdogan, 1987) information criteria in

order to avoid overfitting by adding too many dimensions (Winsberg & De Soete, 1993).

For applying MDS to timbre similarity perception, first conducted by Plomp (1970),

interference from other perceptual parameters must be avoided. Stimuli are thus

subjectively equalized in pitch, loudness, and duration before participants are asked to

judge dissimilarity of subsequently presented pairs of timbres. It is then up to the

researcher to search for physical correlates of the obtained spatial dimensions. Due to the

constrained duration of experiments and the fact that an increase in the number of items

results in a quadratic increase in the number of pairs to be compared, experiments

commonly use small sets of timbres, usually in the range of 10–20. A recent exception is

Elliott, Hamilton, and Theunissen (2013) who used 42 tones by allocating di�erent sparse

subgroups of sounds, tested by di�erent groups of subjects. The full dissimilarity matrix

was obtained by averaging across groups. This small number of distinct sounds used in

perceptual dissimilarity studies therefore stands in sharp contrast to the hundreds of

samples used in MIR studies.
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Acoustic Interpretation of Timbre Spaces. In his seminal work on timbre

(Grey, 1975, 1977; Grey & Gordon, 1978), John Grey used emulations of orchestral tones,

generated by line-segment-approximated amplitude and frequency trajectories of partials.

He settled on a three-dimensional MDS solution (dimensions are referred to as D1/D2/D3

in the following). The physical correlates were interpreted in terms of properties of the

spectral energy distribution for D1. D2 was related to the attack synchronicity of partials,

but he also noticed that this dimension was related to the amount of spectral fluctuation.

D3 was related to spectral balance during the attack portion of tones. Using a set of

FM-synthesized sounds from Wessel, Bristow, and Settel (1987, August), Krumhansl

(1989) was the first to present a timbre space including specificities using CLASCAL

(Winsberg & De Soete, 1993). MDS dimension D1 was interpreted qualitatively as

corresponding to rapidity of attack, D2 to centre of gravity of the spectrum, D3 to spectral

fluctuations over time. Iverson and Krumhansl (1993) used recorded instrumental sounds

and studied the influence of attack portions on similarity judgements. For all three sets of

stimuli (full tones, transients only, sustained parts only), similarity judgements correlated

with spectral centroid frequency (first moment of the spectral distribution and the centre

of gravity of the spectrum, correlates with subjective brightness, cf., Schubert & Wolfe,

2006) and amplitude envelope shape.

McAdams, Winsberg, Donnadieu, De Soete, and Krimpho� (1995) synthesized many

of the previously mentioned possibilities of MDS, including specificities plus latent classes

of subjects using CLASCAL, as well as rigorous quantification of physical correlates of

MDS dimensions, and used a subset of 18 tones from Krumhansl (1989). The audio

descriptors log-rise time (logarithm of duration from start of tone to amplitude maximum),

spectral centroid, spectral flux (average of correlations between adjacent short-time

amplitude spectra), and spectral irregularity (log of the standard deviation of component

amplitudes of a tone’s spectral envelope, derived from a running average of the amplitudes

of three adjacent harmonics) were considered for an interpretation of a CLASCAL-based
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MDS model. The best model fit was obtained by a six-dimensional solution without

specificities that yielded an ambiguous acoustic interpretation, however. The authors thus

settled on a three-dimensional solution that was easier to interpret psychophysically. Here,

D1 and rise time and D2 and spectral centroid both had correlations of .94. D3 had a

correlation of .54 with spectral flux. The three stimuli with highest specificity values were

the harpsichord, clarinet and vibrone (vibraphone/trombone hybrid). This study confirmed

the salience of the spectral centroid and amplitude envelope properties, but it also

highlighted the interpretative role of the researcher using MDS. The relevance of spectral

flux remained somewhat more vague due to its relatively low correlation with D3, and

non-correspondence with earlier findings. For example Krimpho�, McAdams, and

Winsberg (1994) found that the third dimension of the Krumhansl (1989) space correlated

strongly with spectral deviation (the irregularity or jaggedness of the spectral envelope).

Lakatos (2000) confirmed the relevance of spectral centroid and rise time for a large set of

recorded timbres comprising both harmonic and nonharmonic percussive timbres, but did

not further report investigations of the role of spectral flux and irregularity.

Choosing a somewhat di�erent focus, there is also research that considers the

acoustical features underlying timbral di�erences within instruments, such as the distinct

sound qualities of sounds played in di�erent pitch registers (Marozeau, de Cheveigné,

McAdams, & Winsberg, 2003), produced with di�erent playing e�orts or dynamics

(Gadermaier & Reuter, 2014), coming from natural acoustic sources or their synthetic

emulations (Kendall, Carterette, & Hajda, 1999), or di�erences resulting from expressive

intent (Barthet, Depalle, Kronland-Martinet, & Ystad, 2010). Zooming into the sound of

one instrument, Barthet, Guillemain, Kronland-Martinet, and Ystad (2010) studied

perceptual dissimilarity between clarinet tones synthesized from a physical model that

varied in bowing pressure and lip pressure on the reed. They obtained a three-dimensional

MDS solution with dimensions that correlated with attack time and spectral centroid (D1),

the ratio of the energy of the partials no. 2, 3, and 4 compared to the overall harmonic
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energy (i.e., the ‘tri-stimulus’ coe�cient no. 2; D2), and the odd-even ratio of harmonics

(D3). Barthet, Depalle, et al. (2010) further found systematic e�ects of expressive clarinet

performance on timbre descriptors such as the spectral centroid or the odd-even ratio.

Considering even more homogeneous sets of sounds by holding playing-related

aspects constant, there may still remain timbral di�erences between exemplars of the same

instrument or object type, di�erences that underly the general question of instrument

sound quality. Although we do not attempt to review this large field here, su�ce it to state

that research on this issue has mostly sought to correlate verbal descriptors of quality with

timbre descriptors. For instance, C. Fritz, Blackwell, Cross, Woodhouse, and Moore (2012)

found correlations between verbal descriptors of violin sounds and sound energy in di�erent

octave bands (also cf., Saitis, Scavone, Fritz, & Giordano, 2015; ät�pánek, Syrov˝,

Ot�enáöek, Taesch, & Angster, 2005; ät�pánek & Ot�enáöek, 2004).

The prevalent di�erences in stimulus heterogeneity raise the question whether there is

an upper limit in heterogeneity beyond which single audio descriptors may loose their

usefulness. One could suppose, for instance, that ratings between very di�erent types of

sounds may be driven by cognitive factors instead of low-level acoustic features (Susini,

Lemaitre, & McAdams, 2012). Misdariis et al. (2010) therefore proposed a two-layered

quantitative description for various sets of environmental sounds. It included a broad

categorization step into sounds stemming from similar sound sources, followed by a

subordinate model of within-category dissimilarity based on continuous dimensions.

Compared to this variety of environmental sounds, however, the subsets of orchestral

instrumental timbres used in the dissimilarity studies reviewed above were rather

homogeneous. Moreover, similarity studies that used categorically di�erent subsets of

sounds, such as harmonic and percussive timbres (Lakatos, 2000) or acoustic and synthetic

timbres (Kendall et al., 1999), did not yield a categorical separation of ratings between

subsets. Regarding the similarity structures in sets of musical instruments, it is important

to note that the particularly salient dimensions, such as attack time and spectral centroid,



TIMBRE DESCRIPTORS IN MIR AND PSYCHOLOGY 16

traverse instrument categories (McAdams et al., 1995; Kendall et al., 1999; Lakatos, 2000;

Elliott et al., 2013). This does not, however, exclude the possibility that there may be

acoustic dimensions that only become prevalent for within-category comparisons, and that

are therefore not revealed as (global) latent dimensions by the MDS approach.

Spectro-Temporal Cues. Coming back to the parameter of spectral flux, Caclin,

McAdams, Smith, and Winsberg (2005) addressed the issue of correlation vs. causation in

timbre-space studies. Tones varying along the parameters spectral centroid, rise time and

spectral flux were synthesized. The latter was operationalized as variation of spectral

centroid within the first 100 ms of the tone. Contrary to spectral deviation, which was

confirmed to be perceptually salient in another experiment in that paper, the obtained

timbre spaces suggested that spectral flux is unlikely to serve as a salient perceptual

dimension of timbre, at least in the parameterization used for the experiment. This

parametrization—well suited to describe an instrument’s ‘brassiness’ and coherent with the

interpretation of D2 in Grey (1977)—nonetheless diverged from what had been measured

as spectral flux in McAdams et al. (1995), namely the average correlation of adjacent

short-time spectral magnitudes over the full signal. A parameterization that may better fit

this latter measure of flux was used by Golubock and Janata (2013). Here, flux was

parameterized as joint AM and FM variation of individual partials, thus leading to a

sensation of roughness rather than tremolo or vibrato. Measuring discriminability of timbre

dimensions, they found that thresholds for this kind of flux were stable over time. Studying

various simplifications of time-varying parameters of re-synthesized instrument tones,

McAdams, Beauchamp, and Meneguzzi (1999) also observed that spectral flux was among

the most salient parameters which allowed listeners to discriminate between the full and

the simplified re-synthesis.

This question is closely related to the latest published timbre space study (Elliott et

al., 2013), which explicitly used modulation power spectra (MS) to quantify timbre

dimensions, potentially suited to better capture spectral fluctuations. They obtained a
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five-dimensional MDS space for dissimilarity judgements of 42 timbres. Dimensions were

then quantified by projecting the MSs into a 20-dimensional vector space with Principal

Components Analysis (PCA; 20 dimensions were optimal in cross-validation), and then

using the corresponding scores of these first 20 principle components as independent

variables in regularized regression. Explained variance was 0.73 for D1; 0.59 for D2; 0.60

for D4; and 0.10 for D5. D3 did not correlate significantly with any of the given principle

components. However, the areas within the MS that corresponded to the correlation with

the five MDS dimensions seemed not as straight-forward as for speech signals (Elliott &

Theunissen, 2009). For comparison with previous research (which the authors incorrectly

characterize as exclusively focused on spectral or temporal measures), moment statistics

and entropies of the spectral and temporal envelopes were computed. Regression of MDS

dimensions yielded explained variances that had surprisingly similar magnitudes compared

to those reported for the MS approach beforehand. In sum, although certainly a valuable

way of representing the information content of audio signals, the novel MS approach did

not yield substantial improvements in the fit of acoustic features to MDS dimensions when

compared to the classical, audio-descriptor-based approach.

This again highlights the di�culties of developing physical interpretations of MDS

spaces for recorded instrumental timbres. Moreover, the MS might not be the most

suitable tool for modelling timbre space dimensions from MDS in the first place. MDS

assumes the existence of a few latent, perceptually orthogonal dimensions. The MS is

high-dimensional and redundant, without having explicit ‘regions’ that represent spectral

centroid or rise time. But in 40 years of MDS of orchestral instrument timbres, the latter

two descriptors have usually been represented as two separate MDS dimensions. If it is

impossible to construct single audio descriptors accounting for the multifaceted

manifestations of spectrotemporal modulations, as is assumed by the MS approach, one

alternative would be to perhaps construct a hybrid framework, in which traditional audio

descriptors would account for a low-dimensional MDS space, whereas MS could be used to
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represent potential specificities in a CLASCAL model.

A more radical alternative would be to discard MDS all together and model

dissimilarity judgements directly, a pathway that is taken by Patil et al. (2012).

Dissimilarities were modelled by fitting a Gaussian kernel distance on a high-dimensional

time◊frequency◊modulation-rate◊modulation-scale representation based on estimates of

spectrotemporal receptive fields (STRF) modelled on auditory cortical neurons. They

obtained impressive correlations of r = .94 with human perceptual judgements after a

complex kernel optimization was performed. Using simple Euclidean norms instead (i.e.,

the equivalent of the simple geometric distance for spaces of arbitrary dimension),

correlation with dissimilarity judgements reduced to r = .61. At the same time, instrument

classification accuracies using SVM were above 95% (however, see also Patil & Elhilali,

2013; Giannoulis et al., 2013, a classification challenge for environmental acoustic scenes

and events where the same model did not yield convincing results). This demonstrates that

there is enough information in STRFs to accomplish the tasks of timbre classification and

dissimilarity prediction.

2.3 The example of spectral envelopes

Spectral envelope descriptors may serve as a particularly good example of the

disparities between MIR and perception research. The relative amplitudes of a tone’s

partials have long been considered as the primary determinants of tone colour (von

Helmholtz, 1875). A modern version of this ‘spectral view’ on timbre is to consider the

spectral envelope (i.e., the smoothed spectral distribution) which is to some extent

invariant across pitch for many musical instruments (Reuter, 2002; Patterson, Gaudrain, &

Walters, 2010; Lembke, 2014). Spectral envelopes are most often described with a set of

13–24 MFCCs in MIR (with increasing number describing increasingly fine-grained spectral

detail), but in psychology, often only a small number of descriptors are used (e.g., the

spectral centroid and the even-odd ratio). One should note that the centroid is usually
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highly correlated with the first MFCC which captures the coarsest portion of spectral

variability by definition. For that reason, a core question regarding the value of MFCCs for

psychological purposes thus concerns the amount of spectral detail that listeners rely on.

MFCCs were designed for speech classification, where the cepstral analysis is assumed

to deconvolve information from vocal source and filter into additive components; it is

interesting to note that this assumption would not hold for musical tones which encompass

an extended pitch range (Richard, Sundaram, & Narayanan, 2013). A formal

interpretation of MFCCs states that they yield invariance to small signal perturbations

such as small translations in time or transpositions in frequency (Andén & Mallat, 2014);

this is one reason why they are valuable in classification. Yet another view assumes that

they model aspects of perceptual processing such as compression and non-linear frequency

resolution in the cochlea, because they are derived from the logarithm of the instantaneous

energy of a Mel-scale filterbank. Therefore, it is sometimes assumed that ‘a small (resp.

large) numerical change in the MFCC coe�cients corresponds to a small (resp. large)

perceptual change’(Müller, Ellis, Klapuri, & Richard, 2011, pp. 1097–1098).

However, only a few studies have actually tested how well MFCCs are suited for the

prediction of perceptual data. Terasawa, Berger, and Makino (2012) had subjects rate the

pairwise dissimilarity of synthesized timbres whose MFCCs were precisely varied. The

design of their first experiment implied that MFCCs perfectly correlated with spectral

centroids, unfortunately prohibiting a comparison of their predictive powers (i.e.,

prediction from centroids were identical to MFCCs). In Exp. 2, two MFCCs were varied at

the same time. Notably, for one out of their five experimental conditions, the centroid

predicted perceived dissimilarity significantly better than MFCCs, whereas no other

significant di�erences between descriptors were observed. A parsimonious interpretation of

these results would suggest to reject MFCCs as descriptions of spectral envelope perception

in dissimilarity judgements. Nevertheless, the opposite direction is preferred by the

authors: ‘Experiments [...] suggest that an MFCC-based description holds a similar degree

Ichiro Fujinaga
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“their second experiment,”
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of linearity in predicting spectral envelope perception to a spectral centroid-based

description. Yet the spectral centroid is essentially a single-dimensional descriptor and does

not describe the complex shapes of the spectral envelope itself.’ (Terasawa et al., 2012, p.

682) Even more surprising, the lack of gain in predictive power of MFCC coe�cients

compared to the spectral centroid seems to go unnoticed in MIR. Supposedly reflecting the

MIR position on the issue, Aucouturier and Bigand (2012) note: ‘How about that study by

Terasawa, Slaney and their colleagues at Stanford: they resynthesized sounds from MFCCs

and showed that human timbre dissimilarity ratings between sounds correlated exactly with

the MFCCs. Doesn’t that prove something?’

Horner, Beauchamp, and So (2011) compared di�erent error metrics to predict

listeners’ spectral discrimination performance. Tones were additively re-synthesized such

that the amplitudes of selected time-varying partial trajectories could be altered.

Otherwise, the stimuli were matched with regard to subjective loudness and spectral

centroid (F0 = 311 Hz). Predicting discrimination data with a fit of R2 = .85 required to

include the relative amplitude error of the first five harmonics in the regression model (the

full comparison that took into account all 30 partials obtained a fit of R2 = .91). A metric

that measured Mel-band errors required ten bands to achieve the same fit of R2 = .85.

Similarly, ten MFCC coe�cients were required. This suggests that for centroid-matched

tones, subjects focus on the first few harmonics in discrimination, and these are only

resolved with a higher number of Mel bands or MFCC coe�cients. In a similar study,

McAdams et al. (1999) had shown that listeners can discriminate well relatively

fine-grained modifications of spectral envelope fine structure and spectral flux. Di�erences

of the partials’ amplitude envelope values and di�erences in spectral centroids both

predicted well discrimination performance across instruments and the di�erent re-synthesis

manipulations (but sounds were not matched in centroid). Leaving the realm of controlled

synthesized tones in a study of timbral features in polyphonic Indian popular music, Alluri

and Toiviainen (2009), however, found only one MFCC (no. 13) to correlate weakly

Ichiro Fujinaga
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(r = ≠.32) with one of the extracted semantic factors (‘fullness’).

Turning towards the centroid, Schubert and Wolfe (2006) addressed the question of

whether sound brightness is better predicted by the absolute spectral centroid or the

(supposedly pitch invariant) centroid rank, i.e., the centroid divided by the fundamental

frequency. The latter predictor, however, failed to correlate significantly with subjective

brightness, whereas the regular centroid did (r = .53). Explicitly varying spectral centroids

of tones additively re-synthesized from orchestral instrument samples, Wun, Horner, and

Wu (2014) found good discrimination performance for centroid deviations from ±8 to

±40%. A second experiment showed that pairs of tones were still identified as originating

from the same instruments with centroid changes within ±32%. Further, changes within

±64% were still judged to not alter instrument family identity.

This overview corroborates the idea that the centroid parameterises the most salient

perceptual feature of spectral envelopes, and does so in a way that may predict perceptual

results somewhat better than MFCCs (Terasawa et al., 2012). At the same time, the

review has shown that there are more fine-grained spectral envelope features that are easily

discriminable (Horner et al., 2011; McAdams et al., 1999) and thus part of the ‘perceptual

repertoire’. This lends empirical support to the intuition that there are many ways in

which spectral envelopes can vary that cannot be captured by the centroid. As observed by

McAdams et al. (1999), however, when multiple acoustic cues allow for discrimination,

perceptual performance may rely on the most salient cue alone. Similar processes of

perceptual ‘feature selection’ might be at play in dissimilarity ratings. Conclusively, the

reason underlying the centroid’s success in perceptual studies may be that in situations

with variability in multiple (envelope) features, variability in the coarsest spectral portion

(i.e., the centre of gravity that is measured by the centroid and the first MFCC) may be

the most salient one and therefore may override other cues.
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3 Tasks

Overall, the observed discrepancies in techniques and results seem striking. MIR

systems have been using more and more descriptors, which has improved classification

performance significantly. Yet in music psychology, only two descriptors have proven to be

robust enough to reappear across a number of di�erent studies. How can research yield

such di�erent results?

So far, the review has concentrated on instrument classification in MIR and

similarity perception in psychology. Two comments must be made on these two tasks.

First, MIR-systems for instrument classification do not necessarily model perception.

Instrument classification is a well-defined task, fairly independent of human judgement.

There are certainly many discriminating acoustic features of acoustic instruments that

perceptual systems may not take into account, and they can be e�ciently used for

automatic classification, as, for example, employed by Barbedo and Tzanetakis (2011).

Perception and computational modelling are not independent, however, as soon as

the modelled phenomena are of inherently psychological nature. This has largely been

ignored in MIR, a field as hesitant as many parts of signal processing to integrate

systematic perceptual evaluations into their methods, even though many of their systems

are targeting human users. That might be one reason why researchers have commented on

the existence of a ‘glass ceiling’ for the performance of music similarity algorithms (Pachet

& Aucouturier, 2004; Pampalk, Flexer, & Widmer, 2005): despite hard work on descriptors

and classifiers, retrieval performance as measured by precision and recall scores does not

seem to have improved significantly. This may be a natural consequence of neglecting the

inherently psychological nature of the notion of music similarity. More recently, Sturm

(2013, 2012) has demonstrated that three state-of-the-art systems for genre classification

do not recognize genre, if anything, despite yielding high classification accuracy scores. For

example, he modified the spectral weighting of songs by mere spectral filtering, with the

result that some were classified radically di�erently afterwards. Most humans would not
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agree with this notion of genre, yet the classifiers obtained high accuracy scores overall.

Sturm thus argued for a less narrow notion of evaluation in MIR, which often relies

exclusively on classification accuracy scores. A broader conception of evaluation would also

be better able to cope with data sets in which the variable of interest, genre for instance, is

confounded by other irrelevant variables, such as long-term spectral distribution or

reverberation. If a classifier distinguishes jazz from classical music because it has become

sensitive to room-acoustical cues that confound the training exemplars, it has certainly

learned a conception of genre that does not correspond with a human definition (cf.,

Sturm, 2014). With perhaps even more sobering results, Flexer (2014) reconsidered the

2006–2013 Music Information Retrieval Evaluation eXchange (MIREX) audio music

similarity and retrieval task. The task randomly drew M query songs from a database

(M=60 in 2006, M=100 in 2007–2011, M=50 in 2012–2013), selected the 5 (10 in

2012–2013) most similar candidate songs for each query as ranked by the algorithms, and

had human listeners judge the subjective similarity of each query-candidate pair. During

the years 2007–2013, the evaluation was based upon one human rating per query-candidate

pair. In 2006, when any pair was rated by three human listeners, their intercorrelation

ranged only between .37–.43. This implies that the ‘ground truth’ itself was highly

inconsistent throughout 2006–2013, questioning the very purpose of that MIREX task.

Overall, these results suggest the obvious: as soon as machine learning attempts to

model generically psychological constructs, such as similarity or genre, it would be

short-sighted not to thoroughly consider the cognitive processes involved in their formation

(also see Gri�ths, 2015, a manifesto for a new cognitive revolution in the computational

sciences). For MIR, it will not be enough to switch to physiologically inspired audio

representations, but classification and similarity modelling will need to incorporate

knowledge about processes in music perception and cognition, as well as factors of personal

experience and human memory. This does not question MIR’s achievements in tasks that

do not require a psychological foundation, automatic instrument classification is one
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example. In that case, the falling tree does make a sound, even if no human is there to

listen.

Secondly, we wish to highlight the idea that even human subjects may rely on

di�erent acoustic features in categorization and similarity judgements. As made clear by

Tversky (1977), di�erent perceptual features may contribute to di�erent tasks: ‘Our total

data base concerning a particular object (e.g., a person, a country, or a piece of furniture)

is generally rich in content and complex in form. It includes appearance, function, relation

to other objects, and any other property of the object that can be deduced from our general

knowledge of the world. When faced with a particular task (e.g., identification or similarity

assessment) we extract and compile from our data base a limited list of relevant features on

the basis of which we perform the required task.’(p. 329) Similar to furniture, musical

timbre varies along a variety of features that enable identification and discrimination. Yet,

if confronted with the task of similarity assessment, subjects could rely on the perceptually

most salient properties according to which musical tones can be most easily compared with

one another. Spectral centre of gravity and attack time may be dimensions well suited for

such comparative tasks. For absolute identification or classification, however, it would be a

non-optimal strategy to not make use of all other available features that reduce ambiguity

between stimuli. This may be particularly important for a perceptual parameter such as

timbre, for which the ‘perceptual consequences of the multiplicity of cues created by the

sound production process are varied. [...] Any single cue will provide some level of

identification performance, and combinations of cues usually will produce better

performance than a single one. Moreover, the e�ectiveness of any cue will vary across

contexts.’(Handel, 1995, p. 433) Recent empirical evidence supports the idea that cues for

identification and similarity assessment may di�er. Agus et al. (2012) demonstrated that

neither solely spectral nor solely temporal properties can account for speeded perceptual

classification of timbre, although these properties usually play a salient role in dissimilarity

judgements. Task sensitivity also seems to be an important component in reconciling
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apparent divergences between studies showing that listeners implicitly recognize the

subtlest variations in frozen noise sounds (Agus, Thorpe, & Pressnitzer, 2010), or

discriminate between subtle changes in spectrotemporal behaviour (McAdams et al., 1999),

but appear to be insensitive to such subtleties in timbre dissimilarity ratings. Or listeners

may be sensitive to certain mechanical properties of sounding objects carried by acoustic

cues when making dissimilarity ratings, but will use only a subset of those for source

material identification, i.e., the ones that are most reliable for the task according to

listeners’ past auditory experience in the world (McAdams, Roussarie, Chaigne, &

Giordano, 2010).

Neurophysiological studies on the task-sensitivity of sensory representations begin to

shed light on the neural mechanisms potentially underlying these phenomena. Measuring

frequency selectivity of auditory cortical neurons in behaving ferrets, J. Fritz, Shamma,

Elhilali, and Klein (2003) found that neurons exhibited facilitated response properties in a

tone detection task compared to a passive listening condition: When ferrets had to detect

tones of a specific frequency (a task on which they were trained in advance) neurons in

primary auditory cortex adapted within seconds and showed greater sensitivity to the

target frequency. J. Fritz, David, and Shamma (2013) conclude, ‘RFs [receptive fields] of

A1 neurons in the adult are in a state of rapid flux that is modulated by continuous

“top-down” biasing as a function of changing salience and task-relevance of auditory

stimuli.’(p.83) This type of neurophysiological evidence even questions the very existence of

a task-independent, comprehensive (i.e.,‘platonic’) representation of perceptual sound

features in auditory cortex. What has been hypothetically described above as a ‘feature

selection’ process, might indeed turn out to be closer to a cortical process of task-sensitive

‘feature generation’.

This perspective also calls into question the psychological status of the ‘spatial

metaphor’ of timbre (Wessel, 1973). An ‘emphatic’ interpretation of the timbre space

studies reviewed above would assert that there are a few (say, less than or equal to five, cf.,
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Elliott et al., 2013) perceptual dimensions that constitute the timbre of musical

instruments, regardless of perceptual task or stimulus context that only need to be revealed

by an appropriate experimental methodology. Coherent with General Recognition Theory

(Ashby, 1992), this would imply that timbre categorization could be implemented via

category boundaries in timbre space (cf., Giordano & McAdams, 2010). A more ‘liberal’

interpretation would interpret the obtained MDS dimensions as the most salient

dimensions for the given stimulus set and rating task. Such a view would also acknowledge

that the resulting low-dimensional description of timbre may be incomplete in regards to

other tasks such as discrimination or identification. As should be clear by now, the above

discussion leans towards a liberal view, suggesting a view of timbre space as a powerful

exploratory tool of dissimilarity data, rather than as a ‘hard-wired’ and comprehensive,

‘perceptual coordinate system’ of timbre.

Conceptually, the hypothesis of distinct cues for timbre similarity judgements and

identification brings us back to machine learning where it is common practice to use

high-dimensional descriptor spaces in order to achieve high discriminatory power and to

facilitate classification. If similarity and classification rely on partially distinct features, it

would only be appropriate if computational models of these tasks require di�erent

compilations of descriptors. This is what was observed for modelling in MIR and

psychology.

4 Objectives and Evaluation Criteria

Yet another factor (if not a ‘meta-factor’) plays a substantial role in the divide of the

disciplines. It is related to the fact that MIR and psychoacoustics originate from disparate

scientific traditions with di�erent objectives. MIR has its roots in applied computer science

and machine learning and is therefore primarily interested in the question of how to build

robust systems. This implies that it is important whether a descriptor has predictive

power, rather than what exact acoustic properties it encodes. Aucouturier and Bigand
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(2013) polemically summarize this by stating, ‘MIR research practices are notoriously

goal-oriented.’(p. 488) Being goal-oriented enables MIR, on the other hand, to be

innovative in terms of design of descriptors, still the core of much MIR research. More

recently, researchers have nonetheless argued that heuristic descriptor design should be

replaced by deep neural network architectures that enable the fully-automated joint

optimization of the descriptor extraction and classification steps (Humphrey, Bello, &

LeCun, 2012). Following the success of deep learning algorithms in many other

applications, this would leave the classical two-level architectures (descriptors + classifiers)

behind, whose optimization might be tedious, but still easy to interpret globally. From the

machine-learning perspective, this does not seem to be unconvincing, particularly because

there are well-defined criteria of achievement, for instance by comparing systems with the

current state of the art. Characteristic of this competitive approach are the annual MIREX

competitions mentioned above, which evaluate systems on pre-specified tasks. Scholarly

achievement is evaluated in a strict manner, similar to sports, by definite rankings.

Despite the success of such systems in some applications, the machine-learning

approach has been harshly criticized. For instance, cognitive science icon Noam Chomsky

ironically envisioned what it would mean to study gravity by means of machine learning:

‘If you took tons of video tapes of what’s happening outside my o�ce window, leaves flying

and various things and if you did an extensive analysis of them, you would get some kind of

prediction of what’s likely to happen next, certainly way better than anybody in the physics

department could give.’2 Chomsky here promotes the old distinction between

knowledge-how and knowledge-that, practical and theoretical knowledge, between

engineering and science. Instead of defining scholarly success by the precision with which

an a priori defined ground-truth can be approximated, he endorses the pursuit of the

2His statement can be retrieved under http://techtv.mit.edu/videos/13200-keynote-panel-the

-golden-age-a-look-at-the-original-roots-of-artificial-intelligence-cognitive-science-and

-neuroscience-. The quote stems from the last minute of the recording.

http://techtv.mit.edu/videos/13200-keynote-panel-the-golden-age-a-look-at-the-original-roots-of-artificial-intelligence-cognitive-science-and-neuroscience-
http://techtv.mit.edu/videos/13200-keynote-panel-the-golden-age-a-look-at-the-original-roots-of-artificial-intelligence-cognitive-science-and-neuroscience-
http://techtv.mit.edu/videos/13200-keynote-panel-the-golden-age-a-look-at-the-original-roots-of-artificial-intelligence-cognitive-science-and-neuroscience-
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underlying principles. This is a research project that cannot be measured with precision

scores, because there is no ground for the ground truth.

Psychoacoustics and music psychology have traditionally attempted to position

themselves in that scientific realm. The attempt to look for the most parsimonious

explanation of a given set of phenomena—to keep things as simple as possible but not

simpler—is supposed to be at the heart of the disciplines’ methodological approach, a

principle often referred to as Ockham’s razor. This principle indeed mediates between

di�erent criteria for model selection, in particular goodness of fit on the one hand, and

simplicity on the other (cf., Myung, Tang, & Pitt, 2009). Whereas fit can be strictly

quantified, e.g., by the prediction error, the R2 coe�cient, or maximum likelihood

coe�cients that measure the probability of the data given the best fitting model

parameters, simplicity can only be assessed in a straight-forward manner for mathematical

models that possess a directly accessible number of freely varying parameters. The AIC

and BIC criteria introduced above in the context of MDS are examples that combine these

two criteria: Both consist of a negative log-likelihood term (fit) plus a measure of simplicity

(AIC: 2k, BIC: k ln(n), k being the number of parameters, n the sample size). Minimizing

AIC or BIC thus implies finding a viable compromise between goodness of fit and

simplicity, which, from a statistical standpoint, also serves to counteract overfitting

(Myung et al., 2009).

When a direct quantification of model parameters becomes inviable and data sets are

su�ciently large, cross-validation becomes the standard evaluation method. Note that

although cross-validation delivers robust means to prevent overfitting, it does not

necessarily promote parsimonious descriptions of the data, thus allowing for accounts that

fit well and generalize, but are overly complex and might be confounded (as discussed

above). A di�erent approach thus seeks parsimony in the modelling process itself. To give

an example, Dau, Püschel, and Kohlrausch (1996) presented a quantitative model of

auditory perception. Subsequently, a modulation filterbank was added in order to account
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for experimental data on modulation detection and modulation masking (Dau, Kollmeier,

& Kohlrausch, 1997a; Dau et al., 1997b). This means, model generality was improved, i.e.,

the breadth of phenomena that the model accounted for. Later on, Jepsen, Ewert, and Dau

(2008) replaced the original linear gammatone filterbank by an outer- and middle ear

transformation plus a nonlinear cochlear filtering stage, in order to further explain

phenomena such as spectral masking. Here processing modules were not added in order to

let the model serve as an ‘archive’ of known functional principles, but on the contrary, yield

baselines for the minimal amount of information processing required to reproduce

empirical results with a desired goodness of fit and degree of generality. In other words,

‘the approach is to focus on the “e�ective” signal processing which uses as little

physiological and physical parameters as necessary, but tries to predict as many perceptual

data as possible. On the one hand, such a modelling strategy will never allow conclusions

about the details of signal processing at a neuronal or single-unit level. On the other hand,

if the e�ective model correctly describes the transformation of physical parameters in a

large variety of experimental conditions, this strongly suggests certain general processing

principles.’(Dau, 2008, p. 180)

To further complicate things, there are other, not strictly quantifiable criteria, which

are indispensable for the scientific discourse (Jacobs & Grainger, 1994; Myung et al., 2009):

Explanatory adequacy refers to whether a model minimizes the number of ad-hoc

assumptions necessary to account for sets of data by relying on widely accepted theoretical

principles and empirical observations. Interpretability denotes whether the model

components or parameters are theoretically transparent and tied to established theoretical

principles. The well-known criterion of falsifiability (Popper, 1963) denotes whether a

theory or model can be proven wrong by empirical observation.

Coming back to psychological models of timbre perception, these considerations

suggest that one remain sceptical about the utility of any additional variable that does not

add a significant amount of predictive power to a model (i.e., to respect parsimony), in
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particular if its acoustic meaning is hard to decipher (i.e., to ensure interpretability).

Correspondingly, many of the reviewed MDS studies on similarity perception achieved

impressively compact explanations, relating the acoustical basis of timbre similarity

perception to only a handful of relevant dimensions. Interestingly, more recent studies seem

not to adhere to these principles so strictly any more. Published in a classical journal of

psychoacoustics, Elliott et al. (2013) compare the predictions provided by their modulation

power spectrum (MPS) with those of traditional audio descriptors, both of which explain

similar proportions of variance in timbre dissimilarity ratings. They conclude, ‘When both

give positive correlation results, the MPS analysis has the advantage of being more

quantitative and detailed.’(p. 400) Nonetheless, from the perspective of dimensionality,

modulation spectra are a less parsimonious description compared to the few audio

descriptors that the study identified as yielding similar correlations. As mentioned above,

the very same scepticism towards low-dimensional representations of envelopes appear to

motivate Terasawa et al. (2012) in their work on MFCCs. And even if the representation

from Patil et al. (2012) is physiologically plausible (yielding explanatory adequacy), the

computations that enable classification, for example, tensor singular value decomposition

for reducing dimensionality (e.g., from 4224 to 420 per timbre), place this approach in a

di�erent league of computational complexity compared to earlier MDS models. Although

this approach shows that there is enough information provided by STRFs in order to

account for timbre classification and dissimilarity in principle, the computational opacity of

the subsequent machine-learning steps do not yield specific hypotheses on information

processing beyond the representation stage. The authors conclude, ‘Timbre percepts can be

e�ectively explained by the joint spectro-temporal analysis performed at the level of

mammalian auditory cortex. However, unlike the small number of spectral or temporal

dimensions that have been traditionally considered in the timbre literature, we cannot

highlight a simple set of neural dimensions subserving timbre perception.’(Patil et al., 2012,

p. 11). However, with this conclusion there may even be the danger of proposing a theory
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of timbre that is too unspecific to be falsifiable.

This complex interplay of di�erent modelling stages and corresponding evaluation

criteria seems to go unnoticed by Aucouturier and Bigand (2013). They note: ‘But should

one conclude that the brain implements a discrete cosine transform? Probably not. It would

be like concluding that jet planes demonstrate how birds fly just because they both move in

air. [...] When such physiologically and psychologically validated alternatives exist

[STRFs], it is [...] increasingly di�cult to justify the use of features like MFCCs in MIR

studies pretending to have any relevance for cognition.’(Aucouturier & Bigand, 2013, p.

487) They hence question the explanatory adequacy of discrete cosine transforms in the

case of MFCCs, but endorse Patil et al.’s work as a ‘valid’ alternative. This raises doubts

about whether they consider processing steps beyond the initial audio representation as

important at all (one could ask alternatively, ‘Does the brain implement tensor singular

value decomposition?’). To be clear, we do not wish to argue for or against any audio

representation in particular at this point, but rather discuss the ways in which we draw

conclusions about representations as part of cognitive models. We suspect that considering

one part of the puzzle through the lense of one evaluation criterion is not enough; a

biologically plausible audio representation is not the only valuable property of a

sensory-cognitive auditory model. To use the words of David Marr, “Trying to understand

perception by only studying neurons is like trying to understand bird flight by studying only

feathers: It just cannot be done. In order to understand bird flight, we have to understand

aerodynamics; only then do the structures of the feathers and the di�erent shapes of birds’

wings make sense.”(Marr, 2010, p. 27) It should become part of the interdisciplinary

discourse to negotiate how di�erent criteria of scientific evaluation may frame the

indispensable modelling process.
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5 Conclusion

In this article, we discussed the divide between the computational descriptions of

musical timbre in MIR and music psychology. It turned out that a seemingly narrow

question on descriptors not only raised issues around di�erences in the two fields’ technical

approaches, but also highlighted di�erences in underlying tasks and evaluation criteria.

Specifically, we discussed new approaches to represent spectro-temporal modulations, both

for MIR and psychology, and compared approaches to spectral envelope description. We

outlined task di�erences and epistemological foundations of the two fields. They mostly

deal with di�erent facets of timbre-related tasks: MIR most often considers instrument

classification, psychology has predominantly dealt with timbre dissimilarity perception (in

most studies where audio descriptors were taken into account). We argued that as

cognitive phenomena, it is by no means clear that classification (or identification) and

similarity assessment rely on the same compilation of perceptual features when dealing

with high-dimensional perceptual objects such as timbre.

In closing, we would like to suggest three basic questions whose discussion could

benefit both researchers in MIR and music psychology (in particular before embarking on

joint projects):

1. What kind of knowledge is pursued? (Computational models of) perceptual

principles or computational application?

2. What kind of task does the research focus on? Does it involve a cognitive

component? If yes, is it based on subjective judgements (e.g., similarity, a�ect, etc.) or

does it involve absolute identification or classification scores? If not, are you sure?

3. What kind of evaluation criteria apply? Biological plausibility, computational

parsimony, robustness in applications, conceptual simplicity, etc.?

Having answers to such questions would help frame the work to be done more clearly

and rigourously.
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