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ABSTRACT

We compute the integrated Sachs—Wolfe type contribution to the CMB polar-
ization power spectrum from cosmic string wakes. An introduction to topo-
logical defects, cosmic strings, CMB polarization, and spin—s fields is given.
We then use these tools to compute the angular power spectrum of E— and
B-mode polarization due to cosmic string wakes, in the flat sky limit. We find
that cross—correlation terms (i.e., EB, ET, BT) vanish, while the EE and BB
power spectra are equal in shape and magnitude. This result is in stark con-
trast with B—mode polarization from Gaussian fluctuations, which vanishes
identically. However, we find that the shape of the power spectrum from cos-
mic string wakes is very similar to the predicted B-mode power spectrum from
gravitational lensing, but with a small overall amplitude. As such, the cosmic
string wake signal is too small to be picked out from lensing, and background
subtraction techniques would be very difficult. We find that the peak ampli-
tude in the dimensionless power spectrum (1/I(1 4+ 1)C;/27) is about 1074 at
a peak value of [ ~ 400.

We briefly study the asymptotic version of the power spectrum and find
that Cj is approximately constant until a turn around point set by the angular
size of the dominant wakes. We then determine which cosmic string wakes give
rise to the dominant contribution to the full, integrated power spectrum and
find that the dominant wakes are those which were formed at the time of equal
matter and radiation, and which intersect our past light cone at recombination.
We conclude that the Fourier space signal (power spectrum) is too weak to
detect cosmic string wakes in existing data, and future searches should focus
on distinct position space features.



ABREGE

Nous calculons la contribution intégrée au spectre de puissance de la polarisa-
tion du fond diffus cosmique (CMB) grace aux sillages des cordes cosmiques.
Une introduction aux défauts topologique, cordes cosmiques, de polarisation
du CMB, et aux champs spin—s est donnée. Nous utilisons ensuite ces outils
pour calculer le spectre de puissance angulaire de la polarisation des modes
E et B grace aux des sillages des cordes cosmiques, dans la limite du ciel
plat. Nous trouvons que les termes de corrélation croisée (EB, ET, BT) sont
zero, tandis que les spectres de puissance pour EE et BB ont la méme forme et
grandeur. Ce résultat contraste le polarisation du mode B causée par les fluctu-
ations Gaussiennes, qui disparaissent. Cependant, nous trouvons que la forme
du spectre de puissance causée par les sillages de cordes cosmiques est tres sim-
ilaire au spectre en mode B prédite par lentille gravitationnelle, mais avec une
amplitude globale trés faible. Donc, le signal du sillage de corde cosmique est
trop faible pour étre measuré au-dessus l'indicatif du lentille. Aussi, les méth-
odes de soustraction du fond serait tres difficile. Nous trouvons que 'amplitude
maximum dans le spectre de puissance (y/I(I + 1)C;/27) est d’environ 10~
pour [ ~ 400.

Nous étudions brievement le forme asymptotique du spectre de puissance,
et nous trouvons que (] est quasi-constant en [ jusqu’a un tournant corre-
spondant a la taille angulaire du sillage le plus important. Nous déterminons
alors quel sillage donne la contribution dominante au spectre de puissance com-
plet. Nous trouvons que les sillages dominants sont ceux qui ont été formés a
I’epoque de I’égalité de matiere et de rayonnement, et qui croisent notre cone
de lumiere passé a 1’époque de recombinaison. Nous concluons que l'indicatif
dans l'espace Fourier est trop faible pour étre détecté. Donc, les recherches
futures devraient se concentrer sur les caractéristiques I’espace spatial.
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INTRODUCTION

Topological defects are decidedly underrepresented in physics. They arise when-
ever a system undergoes a phase of symmetry breaking and are natural and
robust phenomena. Most physicists first gain familiarity with topological de-
fects in the context of domain walls separating two regions with oppositely
aligned spins in magnets, yet few realize their importance in other areas of
physics. Topological defects form during symmetry breaking phase transitions.
Perhaps the best known example of spontaneous symmetry breaking is the
process which gives rise to the recently discovered Higgs boson [1]. Other well
known examples (relating to superconductivity and superfluidity) arise in con-
densed matter systems and have been well studied [2]. We will discuss this
type of symmetry breaking in section 1.1, with a cosmological application in
mind. Note that, although topological defects have been seen in a number of
systems, we have not yet observed them in field theory models. While one can
consider cosmological domain walls, they would tend to dominate the energy
density of the universe, and are therefore problematic and have been ruled
out by observation [3]. Instead, we will consider one dimensional, filamentary
defects known as cosmic strings. Cosmic strings are topological defects formed
during the symmetry breaking (e.g., electroweak symmetry breaking) phases of

our universe through finite temperature effects. Physically, they are regions of
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trapped potential energy which interact gravitationally with observable matter.
Since they form in the early universe and interact with their surroundings, they
could give rise to observable signatures (see [4, 5] for a review). Many of these
signatures have been studied in a great deal of detail, which has allowed us to
place upper bounds on the physical parameters characterizing cosmic strings
6, 7,8,9, 10, 11, 12, 13, 14]. An example of an emerging observational win-
dow with no shortage of cosmic string literature is 21cm radiation [15, 16, 17].
However, a particularly promising observational window in which to look for
cosmic strings is that of cosmic microwave background (CMB) polarization.
In particular, we will focus our efforts on B—mode polarization, which is a
particular pattern in the CMB polarization vector field. B-mode polarization
is suggested to be the cleanest detection mode for cosmic-strings, rather than
the related E—mode polarization or standard temperature anisotropies. Re-
cent advancements in polarization telescopes are pushing observations closer
to the precision measurement of B-mode polarization (e.g., [18, 19]). In fact,
the South Pole Telescope recently announced the first detection of B-mode
polarization [20]. When a cosmic string moves through spacetime, it leaves
behind it a wake of overdensity in the background matter field. As such these
wakes would produce cold spots in the CMB with characteristic position space
features. Danos et al. [21] found that the signature of cosmic string wakes
corresponds to a roughly rectangular patch on the sky with a linear fade in
the polarization strength along one axis of the rectangle. Our aim is to study
the overall effect of a network of cosmic string wakes on the observed CMB

polarization.



1.1 TOPOLOGICAL DEFECTS AND COSMIC STRINGS

1.1 TOPOLOGICAL DEFECTS AND COSMIC STRINGS

This section is based on the book by Vilenkin and Shellard [22] and serves as a
lightning introduction to cosmic strings. Topological defects are an extremely
rich and fruitful subject, and an in depth analysis is not necessary for our
purposes. Instead, we will focus on a specific class of topological defects known
as strings, and in particular those formed by second—order phase transitions.
For those familiar with the subject, we will not concern ourselves with the
vacuum manifold, homotopy groups, or any other such beasts. Rather, we
will employ an intuitive picture and refer interested readers to Vilenkin and
Shellard [22] for details. Furthermore, it will prove useful to begin our study
of topological defects with domain walls, as they are easier to conceptualize,
they form from a simpler Lagrangian, and they help build intuition.

The starting point for domain walls of the kind we want is a ¢* scalar field
with a temperature dependent mass. In particular, we have a temperature

dependent Lagrangian of the form

£ =20,50"9 ~ Via(|9)) (1)

Vaa([6) =m* ()62 + 2ol (1.2

where m is the mass of the scalar field, A is a coupling constant, 7T is the
temperature of the field, and we can assume ¢ € R WLOG. In order to get
a spontaneous symmetry breaking potential, the temperature dependent mass
takes the form

A
T2 _6772)7 (13)

m*(T) = E(

where 7 is the vev (vacuum expectation value) of the field after symmetry

breaking. It is clear from the form of m?(T) that there is a critical tempera-
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ture, Tc = /67, at which m = 0. This effective potential has the property

V(¢,T)-V(1,0)

¢

Figure 1: A spontaneous symmetry breaking potential. For large T', the field is in
a stable configuration around ¢ = 0. However, as the temperature de-
creases beyond the stable, critical temperature Tz, the potential takes on
the familiar double well (Mexican hat) shape. When this occurs, the field
acquires a vev, and different regions of space will have the field break to
one of the two degenerate vacua (¢ = +£n)

that it gives rise to a stable minimum at ¢ = 0 for temperatures greater than
Tc, and corresponds to an unstable vacuum at ¢ = 0 for T < T¢. Figure 1
shows the shape of Vg for different values of T'. For large temperatures, this
corresponds to a homogeneous field in the ground state ¢ = 0 (up to local
quantum fluctuations) everywhere in space. As the universe cools, the tem-
perature eventually dips below the critical temperature, causing ¢ to attain a
non-zero vev. Since local quantum fluctuations tend to bias the field to one
side of the unstable point at ¢ = 0, different regions in space will have the
field transition to different minima (¢ = £n). When this happens, spatial con-
tinuity of the quantum field requires that there be a region in space in which
the value of the field changes from ¢ = —n to ¢ = +n. The halfway point
of this region would therefore have ¢ = 0, as illustrated in fig. 2. However,
Veig(¢ = 0,T < Te) does not correspond to the ground state, and it is in this

sense that we say the topological defect (domain wall) corresponds to a region
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of trapped potential energy. Extending this argument into additional spatial
dimensions leaves us with a two—dimensional planar topological defect — the

domain wall.

V(¢)
V(¢)
V(¢)
V(¢)
V(¢)

WANVI VANV VAN VAN VA,

-n n -n n -n n -n n -n n
2 4 ¢ ¢ ¢ X

o

Figure 2: Formation of topological defects as a consequence of spatial continuity of
quantum fields. During the second order phase transition shown in fig. 1,
regions of space may break to different values of the new degenerate ground
state. However, continuity of the field in space demands a region between
two different vacua in which ¢(z) is not in the ground state. In this figure,
the horizontal direction is space, and we are illustrating the field configu-
ration as a function of position.

We now build on the intuition gained from domain walls to study the for-
mation of cosmic strings. Consider the simple gauge theory describing scalar
electrodynamics (also known as the abelian—Higgs model), which consists of a
complez (or otherwise multi-component) scalar field ¢ and a gauge field A,,.

The Lagrangian density for this theory is given by
| 1 w
L= §DM¢D o—V(p)— ZFM,,F , (1.4)

where D,, = 9, —ieA,, is the gauge covariant derivative, e is the gauge coupling,
and Fy,, = 0,A, — 0,A, is the field strength tensor. The potential, V(¢) is

similar to eq. (1.2) for low temperatures, and is given by
NG 242
V(6) = 1A6 7). (1.5

where A is a coupling constant, and 7 corresponds to the vev as before. The
potential is shown in fig. 3. Note that this theory admits a local U (1) symmetry,

which is spontaneously broken when ¢ attains a vev (|¢| = n).
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Varying the action and solving for the equations of motion, one finds that
there exist solitonic solutions, which are translationally invariant along one
direction of space. Choosing this invariant direction to be z and constructing
cylindrical coordinates for the global space, we can fix a slice in z and work
in polar coordinates (r,6) for the other two directions. These translationally

invariant string configurations are given by

o(r,0) = ne' (1.6)

for large r. This field configuration has the curious property that there must
exist a point at which ¢ = 0 to avoid an undefined phase (see fig. 4a). The
presence of this non—vacuum point is a consequence of continuity: since the
phase in eq. (1.6) at some radius r changes from 0 to 27 as we traverse a circle
in position space, the phase of ¢ at the center of this circle must change from
0 through 27 at a single point. The only way to resolve this ill-defined field
value is if ¢ = 0 at this point. Since V(¢ = 0) # 0, we say that the cosmic
string is a region of trapped potential energy.

Recall that the field configuration in eq. (1.6) is translationally invariant

along the z direction. As such, we can freely extend the above analysis along

Figure 3: The symmetry breaking potential for the abelian-Higgs model. The po-
tential has the familiar “Mexican hat” shape, with an unstable local max-
imum at ¢ = 0. The field undergoes spontaneous symmetry breaking and
¢ obtains a vev at V = 0 with |¢| = 7.
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z to finally arrive at a long, filamentary topological defect — the cosmic string.

This spatial extension is shown in fig. 4b.

(a) Winding in the field configuration (b) Translation invariance  along
causes an ill-defined phase at the one direction forms the one-
origin. dimensional string structure.

Figure 4: Formation of a cosmic string due to non—trivial winding in the field con-
figuration. The cosmic string field configuration given in eq. (1.6) has the
property that the phase of ¢ is undefined at » = 0. In order to reconcile
this fact, continuity of the quantum field dictates that ¢ must be zero at
this point. Since the field configuration is translationally invariant along
the z direction, we extend the analysis along z and find that there must
be a one dimensional line of trapped potential energy.

One possible argument against the field configuration in eq. (1.6) is that
it may not be physically realizable. There are many valid field configurations
which solve the equations of motion, but they may not be relevant for any phys-
ical theory. However, a very simple argument due to Kibble [23] shows that
these cosmic string configurations are not only physically relevant, but are ro-
bust and arise naturally. The argument is based on causality and proceeds as
follows. Suppose we have a theory which admits topological defect solutions,
say eq. (1.4) with eq. (1.6). Since correlations in the state of the field can-
not persist over length scales larger than the horizon length, the phase of ¢
should appear randomly distributed on super—horizon scales. As such, we will

inevitably form cosmic string states with a non—trivial winding in the phase of
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¢, which gives rise to topological defects. In the context of domain walls, the
Kibble mechanism says that the field ¢ should break to different degenerate
vacua on scales larger than the horizon scale. As such, topological defect solu-
tions should arise on physical grounds, and we expect cosmic strings to form
during any symmetry breaking transition in our universe. It is important to
note, however, that many observational searches for cosmic strings have been
conducted, without providing evidence for their existence.

In addition to (infinitely) long strings, another stable topological defect is a
loop. Imagine joining two ends of a long string together to form a loop such
that the interior and exterior have different ground states. Such an object
constitutes a valid field configuration and provides additional features one can
study. However, cosmic string loops will tend to oscillate and wiggle due to
their string tension. This motion induces fluctuations in the gravitational field
and the loop radiates gravitational waves. As such, the energy in the loop
decreases and the loops eventually decay [5]. Thus, we will henceforth focus

our efforts on long strings, rather than cosmic string loops.

1.2 COSMIC STRING WAKES

When cosmic strings move in a direction normal to their length with relativistic
speeds, they create a wake in their path. The requirement that strings move at
relativistic speeds comes from the nature of the dynamical equations. Since the
wake equation we will solve below is relativistic, the only characteristic velocity
in the problem is the speed of light. Wake creation is a relativistic effect and
corresponds to the formation of a deficit angle in the geometry behind the
wake. To see how this comes about, we consider a long, straight string lying

static along the z—axis and calculate the metric. Since we wish to find the small
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geometric effect of a cosmic string on the background spacetime, we work in

the weak—field limit and let the metric g, take the form

G = M + Py, (1.7)

where 7, is the Minkowskian metric and hy,, is the metric perturbation, sub-
ject to |hu| < 1. One can then show [22] (by fixing the harmonic gauge
Ay (hy, — %cﬁjhg) = 0) that the equations of motion for the metric perturbation
are given by

1

Oy = —167G (TW - 27;,“,Tg) . (1.8)

For a stationary object lying along the z—direction, the mass—energy is localized

in z and the energy-momentum tensor takes the form
Ty, = po(z)d(y)diag(1,0,0,1), (1.9)

where 4 is the mass per unit length of the string. With this simplified energy—
momentum tensor one can then rewrite the metric in spherical coordinates
as

ds? = dt* — dz* — (1 — h)(dr® + r?db?), (1.10)
where r = /22 + 42, 6 is the angular coordinate, and h = 8GuIn(r) — hg with

ho being a constant of integration. Defining new variables r’ and 0’ via

(1—8Gu)r'* = (1 —h)r? (1.11)

0" = (1—4Gpu)o (1.12)
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and expanding the metric to leading order in G, one obtains the result
ds? = dt? — dz* — dr'"* —r"?df". (1.13)

Thus, we see that the space near the cosmic string looks locally flat. This
result is surprising at first because we expect the trapped potential energy
in the string to have gravitational effects. So how, then, do cosmic strings
interact and what are these all important wakes? Notice that the definition of
¢ shifts the allowed range of the angular coordinate away from [0, 27). Instead,
0" € [0,2m(1 —4Gpu)) and we see that the space behind the string has a deficit
angle compared to the space in front of the string. So while the space near a
cosmic string appears locally flat, it is not globally flat. There is an azimuthal
deficit angle

A = 8rGp (1.14)

corresponding to a wedge of spacetime which has been effectively carved out

by the string with the exposed ends being glued together. Figure 5 shows a top

(0)-

o

—

Figure 5: The formation of a cosmic string wake. In the rest frame of the cosmic
string (here shown oriented along the z—axis), the region to the left of
the string has a deficit angle and an associated conical geometry. Matter
moving past the string appears deflected inward as it passes the cosmic
string leaving a local overdensity.



1.3 CMB POLARIZATION

down view of the formation of a deficit angle in the region behind the string.
The figure is drawn in the rest frame of the cosmic string, and the exposed
edges of the wedge behind the string have been identified. In the string frame,
matter moving past the string appears to be deflected toward the plane behind
the cosmic string as it enters the region with conical geometry. Since, at a given
distance away from the string, there are two streams of matter particles (one
on each side) which appear to be bent toward one another, it appears as though
the area behind the string has an overdensity of matter relative to regions far
away. In the rest frame of the matter the string passes by at relativistic speeds
and the matter field experiences a kick toward the plane swept out by the
string. This kick is felt by particles on the other side of the string, and the
particles are perturbed toward one another into a region of local overdensity.
The net result is a region of overdensity caused by the formation of a deficit
angle in the spacetime geometry by cosmic strings moving at relativistic speeds,
and is referred to as a cosmic string wake.

Once formed, wakes grow via gravitational accretion of additional matter.
Since they correspond to regions of local overdensity containing free electrons,
and because they have a distinct position space signal, cosmic string wakes
present themselves as candidate sources for observable CMB polarization sig-

nals.

1.3 CMB POLARIZATION

Photon scattering from charged particles is a well studied phenomenon and
has been thoroughly characterized in both the low and high energy regimes.
For high energies, the scattering is inelastic and the process is known as Comp-

ton scattering. For lower energies, the scattering is well approximated as an
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inelastic process and is known as Thomson scattering after J.J. Thomson. Po-
larization of photons in the CMB takes place at energies corresponding to
Thomson scattering. For an excellent introduction to CMB polarization, the
reader is referred to Hu and White [24].

It can be shown that the differential cross section for Thomson scattering is

given by
:;g = ?’;Z’ e &, (1.15)
where € and € are the incident and scattered photon polarization directions,
respectively [25, 26]. We see from eq. (1.15) that the cross section is maxi-
mized when the incident and scattered radiation are parallel. Since we want
the radiation to be scattered toward the observer (so that it can be observed!),
and since Maxwell’s equations require polarization to be perpendicular to the
direction of travel, Thomson scattering provides a means for polarization. If
the incident radiation field has an overall quadrupole moment, the resulting
scattered photons will be polarized. Figure 6 shows an example of polarization
due to Thomson scattering. If the CMB has an overall quadrupole moment rel-
ative to a free electron, radiation from Thomson scattering off this free electron
will be polarized. Schematically, this appears to the observer as polarized light
coming from a region in the CMB centered between two antipodal hot spots
and two antipodal cold spots. This hot—cold pattern constitutes the required
quadrupole and the observed light has been scattered by free electrons.
When presented with a polarization map or light intensity field, it is often
convenient to use the Stokes parameters, (), U, V', and I to describe polarized
light (see [27] for a review.) The Stokes parameters are defined in terms of the
x and y components of the electric field and relate to the intensity of light in
different directions. To avoid unnecessary detail, we will paint a naive picture

by aligning a compass rose with the page such that north points toward the
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: Incident photon

Incident photon

"l

! Electron
--------------- >-----@

~

Scattered photon

Figure 6: Polarization due to Thomson scattering. Light incident along the x (red)
and y (blue) directions is polarized along the (y,2) and (z,2) directions,
respectively. Thomson scattering off the electron produces scattered light
which travels along the z direction and has polarizations aligned with the x
and y axes. The component of the scattered light which is polarized along
the x direction (blue) originated from the (blue) incident photon which was
travelling along the y direction. Similarly the (red) polarization component
of the scattered light originated from the (red) photon incident along the x
direction. If the incident radiation field has an overall quadrupole moment
(i.e., if the magnitude of the red and blue intensities are not equal) then
the scattered radiation will be polarized. For example, if the y—incident
photon has a larger amplitude than the z—incident photon, we represent
this graphically with longer blue lines than red lines. Then the scattered
light also has longer blue lines than red and would be polarized along the
x direction.

top of the page, and by imagining a photon propagating out of the page. If
the photon has polarization along the N-S (E-W) direction we say that @ > 0
(@ < 0). On the other hand, if the photon is polarized along the NE-SW (NW—

SE) direction, we say U > 0 (U < 0). The polarization can then be described

in terms of a magnitude (P) and direction (a), which are given by

P= \/w o= ;arctan (g) ) (1.16)
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One can also describe circular polarization in terms of the Stokes parameters,
but we shall assume that circular polarization from cosmological sources is
negligible.

The remainder of this thesis will focus on calculating the contribution to
the CMB polarization power spectrum from cosmic string wakes. Chapter 2
will provide an introduction to spin—s fields and their importance for CMB
polarization. We then introduce the flat sky approximation and simplify the
spin—s equations greatly. In chapter 3, we begin calculating the contribution to
the polarization power spectrum from cosmic string wakes, and we show that
the total contribution can be given by a sum of contributions from individual
wakes. We will derive an expression for the power spectrum contribution a
single cosmic string wake. We then calculate the statistics from a network of
cosmic string wakes in chapter 4. We outline the cosmic string scaling solution
and use it to derive the statistics of the network for the purpose of calculating
the full power spectrum contribution. We present the results of the calculation

in chapter 5 and draw conclusions in chapter 6.



SPIN-s FIELDS

In this chapter we will discover that polarization fields transform non-trivially
under a change of coordinates, and we will inroduce the technology of spin—s
fields to correctly handle this behaviour. We will then make use of the flat sky
approximation to simplify the resulting expressions.

In the context of the CMB, polarization is generated by Thomson scattering
of photons originating from regions in the CMB with an overall temperature
quadrupole. In order to succinctly describe the observed polarization map,
we have at our disposal a number of representations from which to choose.
In particular, we can choose between a complex scalar, a vector, or a tensor
representation of the polarization'. Regardless of the representation, the inter-
esting CMB polarization physics is captured entirely in only two of the Stokes

parameters: Q and U?2.

It is interesting to contrast the approaches used in [28, 29, 30, 31]. However, it is important
to keep track of the notation and conventions used by the different authors, as new students
can easily become confused!

The V' Stokes parameter corresponds to the intensity of circularly polarized light, which can-
not be generated through Thompson scattering. Therefore, it is not particularly interesting
for CMB polarization physics.
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The Stokes parameters are not invariant under a change of coordinates and
a rotation by an angle a transforms them via

Q" = Qcos(2a) + Usin(2a)
(2.1)

U' = U cos(2a) — @ sin(2a).
As such, the polarization field is referred to as a spin—2 quantity, and we
must maintain the correct transformation laws in whichever representation we
choose. Since we are interested in a spin—2 field, it will prove useful to review

some basic properties and simplifications for generic spin—s fields.

2.1 DEFINITIONS AND PRELIMINARIES

The concepts, conventions, and notations in this section are based on the excel-
lent reference by Zaldarriaga and Seljak [28]. The curious reader is referred to
Goldberg et al. [32] for more detail. A great deal of machinery exists for spin
weighted fields in all three of the scalar, vector, and tensor representations.
Since we are using the complex scalar representation, we will restrict our at-
tention to spin—s functions and briefly review the spin raising and lowering
differential operators, as well as small scale approximations.

Consider a unit sphere centered on the origin. Any point on the sphere can be
parametrized using spherical coordinates in terms of (¢, 8). For a given point on
the sphere, construct a tangent plane at that point and define two orthonormal
unit vectors on the plane, (e1,ez2). Define as well a third orthonormal vector
to be the unit normal vector to the tangent plane, denoted by m. Notice that

e1 and eg are only defined up to a rotation about n.



2.2 SPIN RAISING AND LOWERING OPERATORS

Definition: A spin—s function f(¢,0) is one that, under a rotation of

(e1, ez2) by an angle ¢ about n, transforms via

sf — e Y f (2.2)

Borrowing an example from [28], the quantities a - e1 + ia - e3, a - n, and

a-ey —ia- ey for any a on the sphere have spin 1, 0, and —1 respectively.

We pause briefly to recall that the stokes parameters () and U rotate into one
another twice when rotating a polarization map by an angle of 2. Using the

definition above, we conclude that the quantities ) 4+ iU are thus spin—42.

2.2 SPIN RAISING AND LOWERING OPERATORS

Just as we have raising and lowering operators in the quantized treatment
of angular momentum, we have spin raising and lowering operators in this

complex scalar representation. Given a spin—s function, one can construct a

spin—(s 4+ 1) or spin—(s — 1) function via the action of differential operators.

We define the spin raising and spin lowering operators, d and 5, such that

Bsf) = e TV, 1) (2.3)
Bsf) = eV (@, f) (2.4)

under the same rotation of (e1, ez) by an angle v, where prime represents the
rotated function. The intuition behind & and d is really as operators which raise

or lower the spin of the function they take as argument. While this intuition
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is crucial for solving problems, it is not so useful for performing computations,

and we often rely on the explicit form:

B.F(6,60) = —sin—*(6) L% i ese()

As is common with spin—0 fields, we can decompose our functions into a
series solution (e.g., Taylor series, Fourier series, Laurent series, etc.). One
convenient basis with which to decompose functions on a sphere is the spherical
harmonics. A general function can be decomposed using the orthonormality of

the spherical harmonics, Y}, as

9(6.0) =D amYim(9.9), (2.7)

Il,m

where g(¢,0) is an arbitrary function over a region ) of the sphere, and
aim = Ja 9(0,0)Y (¢,0)dQ). For spin-s fields, generalizations of the spherical
harmonics exist and provide natural bases with which to decompose higher
spin weighted functions. Thus, the spin—s spherical harmonics, Y}, form a
complete basis for spin—s functions on the sphere.

As one would expect, we can construct spin—s spherical harmonics via the
application of the spin raising and lowering operators to the regular scalar

spherical harmonics. In particular,

1
_ (l—s)' 2 S
Yim = |:(l+8)!):| Vi (0=s<1) (2.8)

5 —5
sYim = |:((l+8)!}2 (_1)86 Yim (—l <s< 0)
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2.3 THE SMALL ANGLE OR “FLAT SKY” APPROXIMATION

Having gone to great lengths to define the spin—s spherical harmonics, we will,
with great pleasure, dispense with them as soon as possible. The reason for
this is two—fold: observational cosmologists will agree that taking derivatives
of data is ill-advised, while theorists appreciate the simplicity of scalar (spin—
0) fields. Furthermore, when integrating over a small region of the sphere,
orthogonality of spherical harmonics may not hold and the spin—0 spherical
harmonics are much easier to work with. Fortunately, certain approximations
allow us to convert a spherical harmonic expansion to an expansion in Fourier
modes — a far tamer beast. The most appropriate simplification we can make
stems from a physically relevant approximation. We assume that we are only
interested in a very small region on the unit sphere (or sky), which allows us
to use the small angle approximation. In terms of the celestial sphere, this
is known as the “flat sky approximation”, so—called because we neglect the
curvature of the sphere in a small region and restrict our attention to the
tangent plane.

Since we are interested in polarization — a spin—2 quantity — we shall focus

on the spin—2 spherical harmonics. Applying the flat sky approximation gives

1 .
5 Y ~ (QW)—2ﬁ62ezl-0
, (2.9)

1.2 .
—276 ezlﬂ

—2Ylm = (27T) l2 ;

where I = (I, 1,) ", and @ = (¢,0) . We further our approximation using the

relations

%32621.0 ~ o 2i(0—1) il-b
! (2.10)

%gzeu.e o _2i(0— 1) il0
l )
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where now (I, + il,) = le'¥.

Since the Stokes parameters Q and U rotate into one another under a ro-
tation of coordinates (c.f. eq. (2.1)), we must take into account a desirable
change of coordinates so that the flat sky approximation is applied to the
“north pole” of the sphere and we work on the tangent plane perpendicular to

the 2 direction. In particular, our new Stokes parameters satisfy
(Q+4U) = T2(Q +4U). (2.11)

Having properly accounted for the spin—weighting of polarization, we are

well poised to set in on a computation of the polarization power spectrum.



THE POWER SPECTRUM

In this section, we describe the decomposition of polarization from a single

wake into spin—2 spherical harmonics and apply the flat sky approximation.

3.1 E AND B MODES

In spherical coordinates (i.e., a metric g, = diag(1,sin?#)), the (spin-2) po-

larization tensor can be written as

1 Q(n) —U(R)sind

~U(h)sin® —Q(#n)sin?0

while the polarization vector can be written as

P= , (3.2)

and the (spin-2) complex scalar quantities of interest are @) + iU and @ —iU.
We will focus mainly on the scalar representation, making reference to the

vector representation whenever helpful.
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Referring to eq. (2.1), we see that for each cosmic string wake there exist
coordinates in which U = 0. In other words, there exists a choice of a relating
our chosen global coordinates to the convenient choice coordinates (in which

U = 0) for each cosmic string wake. In particular,

Q' = Qcos(2a)
U' = —Qsin(2a)

(3.3)

and we subsequently drop the primes.
We now decompose the spin—2 quantities () £ iU using the spin—2 spherical

harmonics. In particular, we have

00 l
(Q+U)(R) =D > 2am2Yim(R)

[=2m=-1

00 l
(Q—dU)(R) =3 > —2aum —2Yim(R).

[=2m=-1

(3.4)

Note that we include contributions from [ > 2 since any [ = 1 dipole terms
would be indistinguishable from the observed kinematic dipole. The coefficients,
1905, are obtained by integrating against the spin—2 spherical harmonics as

usual. It is common to define two new coefficients,

1
agim = _5(2alm + _2aim) 5)
3.5

1
ap,im — 5(2alm - —2alm)7
where the E and B represent “electric—type” and "magnetic—type” components

of the polarization. These coefficients are used to define rotationally invariant

(spin—0) fields which completely characterize the polarization field. Thus, the E



3.1 E AND B MODES

and B fields have expansions in terms of the spin—0 spherical harmonics given

by

Note that E and B are related to Q and U, but differ by derivatives. Nonethe-
less, E and B completely characterize the polarization field by breaking it into
curl- and divergence—free components.

Our primary goal is to calculate the power spectrum in the CMB polarization
due to cosmic string wakes. Since our principal observational target is the
South Pole Telescope, we restrict our view to a small patch on the sky (e.g.,
10° x 10°) corresponding to a single observational run. We therefore make the
flat sky approximation and greatly simplify our calculations.

Combining egs. (2.9) and (2.10) with eq. (3.4) and making the replacement
Py Einz,l — [ d?l we have

(Q+iU) ~ — (271T)2 /2alm672i(¢f¢z)eil.ed2l

. 1 i(b— il-
(Q—iU) ~ RE /_2 a2 (=) 0 g2,

where again I = (I, 1,) " and (I, + il,) = le'
Using the definition of E and B, and taking eq. (2.11) into account, we finally

arrive at

~ ) cos(2¢) — B(1) sin(2¢;)] 0 d?l
(3.9)

| l

)sin(2¢;) 4+ B(1) cos(2¢;)] e ?d?L.
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Equation (3.9) illustrates the power of the flat sky approximation; not only
have we shed the excess weight of spin—weighted functions and spherical har-
monics, but we have also converted computationally difficult discrete sums to
easy Fourier integrals.

Since we are interested in the E- and B-mode power spectra, we Fourier

transform eq. (3.9) to get Q and U and undo the rotation to give

E(1) = Q1) cos(261) + U (1) sin(26)
B(1) = ~0(1) sin(261) + U (1) cos(261).

(3.10)

3.2 POLARIZATION FROM COSMIC STRINGS

By linearity, we have that the overall polarization field decomposes into a
contribution from Gaussian fluctuations, and the sum of all contributions from

individual string wakes. That is,

pP— PGaussian + ZPCSJ’ (3.11)

7

where the sum is taken over all cosmic string wakes, labeled by 1.

The magnitude of polarization, P?, was found by Danos et al. [21], but can be
understood heuristically as follows. The strength of polarization coming from
a cosmic string wake will depend on the number of free electrons in the wake
that give rise to Thomson scattering. As such, we expect the magnitude of
polarization to depend on the Thomson cross—section, o7, the number density

of free electrons, the size of the wake, and the CMB temperature quadrupole,

Qquad-



3.2 POLARIZATION FROM COSMIC STRINGS

The number density of free electrons in the wake at the time it was formed
is given by

ne(t;) = f(t:)pp(tm, ", (3.12)

where n, is the number density of free electrons, f is the ionization fraction,
pB is the energy density in baryons, and m, is the proton mass. Since the
number density of free electrons redshifts as the universe expands, at the time

the wake crosses our past light cone, the number density will be

3
ne(tt3) = F(O)p(tymy! ((ﬂf))jll) . (3.13)

We can express pp in terms of the critical density p.(tp) at the current time
(o), the baryon fraction Qp, and appropriate redshift factors. The thickness
of the wake is more complicated to compute, but Danos et al. [21] found that it
is proportional to the speed of the cosmic string, vs, the associated relativistic
factor ~s, the dimensionless quantity G, and additional redshift factors.
Combining everything, the resulting magnitude of polarization is then found

to be

. 247
v 2=
P 25

1
(;;) . o1 fGvsysQppe(to)my, to(z(t) + 1)*(2(ti) 4+ 1)*Qquaa.

(3.14)
where we have linearized in G and used the fact that the wake is thin with
respect to the proper distance to the wake. Here, ()quaq is the CMB quadrupole
today, and the redshift dependence of the quadrupole is already built into the

expression.
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In a frame with U = 0, we must have that |P| = @, and thus

Q" =P’ cos(2a)
(3.15)
U’ =~ P'sin(2a).

From eq. (2.1) we know that we can orient the wake such that @ and U are

given by eq. (3.15). Thus, eq. (3.10) gives

E(l) = P(1) (cos(2¢;) cos(2ar) — sin(2¢;) sin(2a) )

(3.16)

B(l) = —P(1) (cos(2¢;) sin(2a) + sin(2¢;) cos(2a)) .

Since we will eventually have to contend with a network of cosmic string
wakes, we will inevitably have to deal with wakes oriented at different angles,
o', with respect to the coordinate system chosen above. However, the power
spectrum contains an ensemble average over all realizations of the wakes. As
such, we will eventually integrate over the angles o and ¢.

The reionization history of the universe is a tricky thing to nail down. Al-
though a rough estimate of f(¢) would suffice for our purposes, we approximate
the ionization history with the function shown in fig. 7. This function is an
approximation to the ionization history given by Kaplinghat et al. [33].

The position space signature of polarization due to cosmic string wakes was
determined by Danos et al. [21]. The effect of the cosmic string wake on the
background matter is to cause an overdensity which accretes gravitationally,
as was described in section 1.2. As such, we expect a rectangular patch with
a linear fade in the polarization magnitude along the direction of travel of the
string. We describe the angular size of the cosmic string wake in terms of two
angles, d and w, corresponding to the angular length and width of the string.
We let d describe the length of the wake so that the linear fade lies along

this direction, while w describes the other wake dimension along which the
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Figure 7: Reionization history of the universe up to the epoch of last scattering
as a function of redshift. This function is an approximate version of the
ionization history obtained in [33].

polarization is constant. In terms of these dimensions, the functional form of

the polarization magnitude is given in the small-angle approximation by

P(@) = PO(la| < 5Oyl < ) (3 +1). (3.17)

where © is the heaviside step function. An example of the polarization signal
from a wake is shown in fig. 8 for particular values of the wake geometry. In
general, our wakes will have a fixed aspect ratio (set by the scaling solution
and numerical simulations), and will be rectangular. In Fourier space, the
polarization magnitude is given by

- d 2 ; ;
P() = // PO(|z] < 5)O(Jyl < %) <d:v+ 1) e et e Y dady

d w
= —= 2 )

= P/Qd /2w (dx + 1) e~ e HyY) o dy
2772

_ 4 sin (l-”Tw {@'lxd cos (%) + (=2i + lpd) sin (%” (3.18)
12l,d
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6 J4 2 0 2 y 6
Figure 8: An example of a cosmic string wake for chosen values of the offset angle,

position, orientation, etc.

3.3 THE POWER SPECTRUM

The definition of the full sky angular power spectrum is

1 ! §
DTS > {amaly), (3.19)

m=—I

Ci

where a;,, is the coefficient in front of the spherical harmonic Y}, in the de-
composition for any field of interest (E, B, T), while (---) means ensemble
average of the input. For us, the averaging is done over the polarization angle
«, positions of the wakes on the sky, and any other parameters. Rather than
computing the full angular power spectrum, we will instead compute the flat
sky analog, which agrees to a good approximation over the small flat sky patch
[34, Appendix C]. In the flat sky approximation, the power spectrum is given
by

CEY = (X ()X ()", (3.20)

where X € {E,B,Q,U,...}.
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We are interested in an integrated effect of many wakes within a single

observational patch. Thus, by linearity,

N
P) =Y P, (3.21)

=1

where N is the total number of wakes. We use the ensemble averaging to
enforce statistical independence of the cosmic string wakes. In other words,
the total power spectrum is a sum over the individual power spectra for single
wakes. While it arises naturally, this independence can be achieved artificially
by inserting into the polarization magnitude a variable & with the property

that <€ij> = 51] Then

(Pl Pingl) = (BB} (cied) = ([P

2> . (3.22)

More concretely, the same statistical independence arises when performing the

ensemble average over «. For example,

CFE = <(§:1 E’) (é EJ)> (3.23)

Inserting the form of E from eq. (3.16) and expanding the sums leaves us with

terms of the form

cos(2at) cos(2a7) cos(2¢}) cos(2¢{)

sin(2a¢) sin(207) sin (26} sin (267 (3.24)

sin(2a?) cos(2a7) cos(2¢}) sin(2¢{)
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When taking the ensemble average over o, we note that

(5) [ [ cos(2a) cos(20)da‘dad = Lo(a’ — o)
s

1 2 27 eom . AR j i1 16 . ; (3 25)
(277> /0 /0 sin(2a") sin(20/ )da'do? = b} (o — ) .

1 2 2T 2 ) . . .
(2> /0 /0 sin(2a’) cos(2a” )da'da’ = 0
m

so that cross—terms corresponding to two different wakes with o’ # o/ and
cross—terms of the form cos(2a*) sin(2a7) vanish. Once the dust settles, the

averaging leaves us with

CFF _ <Z ; i ? (cos?(20f) + sin2(2¢§))>
-(z3p)

=) )

where gbf' is the angle containing the spin—2 information about the orientation of

75i

P do, (3.26)

wake i with respect to our chosen coordinates, and P is given by eq. (3.18). Note
that rotating the wakes to coincide with one another affects the phase of the
Fourier transforms of each wake and hence the associated m—modes. However,
summing over m removes this orientation dependence. Since the positions of
the wakes are uncorrelated, the full power spectrum really is the sum of the
contributions from each wake. Furthermore, the position dependence of Q)qyad
from wake to wake washes out when taking the average, allowing us to use the
average quadrupole value today for all wakes (since the redshift dependence is

already built into P).
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Similarly, for the B field we have

o= ()

It is also straightforward to check that C’lEB = 0 by exact cancellation after

Pl dgi. (3.27)

averaging over «. Finally, C’ZET =0= CIBT because the temperature map is a
spin—0 quantity and is thus independent of .. As such, averaging the ET and
BT terms over « gives zero. Therefore, we arrive at our first non—trivial result:
the E-mode and B—mode power spectra from cosmic string wakes

are equal, while all cross—correlations vanish:

CEF = cPB (3.28)

CEB = cfT =Pt =o. (3.29)

Intuitively, the cross-correlation terms are non—zero in position space. However,
these correlations arise with different signs for different wakes. As such, when
computing a correlation function that is linear in F or B (ET or BT, these
correlations average to zero and the correlation function vanishes.

We can estimate the amplitude of the power spectrum from a rough ap-
proximation of eq. (3.14). Using numerical values for p., o, m,, and to, and

normalizing the redshift terms to values of 103, we have

P 2() + 1\ (2(t) +1\"2
Qquadszuvs%QB< TE ) ( 103 10°. (3.30)

To get an order of magnitude estimate, we set vsys ~ 1 and approximate
f(t) = f(t;s) ~ 1 while the redshift terms are both of order unity for early

times. Thus, g ~ Qp for Gu ~ 1077,
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A COSMIC STRING NETWORK

In chapter 3 we found that we can break the full power spectrum into a sum
over power spectra from individual wakes. We would now like to use the statis-
tics of the scaling solution for a network of cosmic strings to assign a weight to

the power spectra of individual wakes as a function of ¢ and ¢;. In particular,

C) = ZZNw(t,ti)Cl(t,ti), (4.1)

where Ny, (t,t;) is the number of wakes laid down at time ¢; that intersect our
past light cone at time ¢, and the sums are taken over discrete Hubble time
steps. In order to calculate N,,, we must first review some basics of the scaling

solution for cosmic strings.

4.1 THE SCALING SOLUTION

A detailed analysis of the evolution of a network of cosmic strings gives rise
to a simple, yet powerful result: the network of cosmic strings approaches a
scaling solution [35]. This means that all statistical properties of the network
become time independent when all lengths are scaled by the Hubble length. In

other words, if we know the distribution of cosmic strings at some time ¢;, we
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can find the distribution and properties of the network at another time to by
converting all distances with the appropriate factors of the Hubble length. As
such, the number of cosmic strings per Hubble volume, n,,, remains constant
in time when all lengths are appropriately scaled.

In a network of cosmic strings, one can define a correlation length { charac-
terizing the rough length scale over which long strings are correlated. ¢ also
tends to correspond roughly to the radius of cosmic string loops at formation.
In the scaling solution, one finds that ( ~ ¢, so that it remains constant when
scaled by the Hubble length. Thus, the rough length of a long cosmic string in
the scaling solution is about one Hubble volume.

Since all statistics of the cosmic string network are constant in time when
lengths are scaled to the Hubble length, we can greatly simplify numerical
simulations of the evolution of a cosmic string network by discretizing time into
Hubble time steps. In other words, we can run simulations for one Hubble time,
reset all parameters according to the scaling solution, then run the simulation
for another Hubble time. This is tantamount to initializing a network of cosmic
strings with lengths on the order of the Hubble length, running a simulation for
one Hubble time step, then re—initializing the simulation with a new network
of cosmic strings according to the scaling solution. Since all statistics are time
independent, we can rest assured that any statistical properties we calculate
will remain invariant when re-initializing.

As mentioned in earlier sections there are two types of strings in a cosmic
string network: long strings and loops. Wakes generated by long strings have
more distinct position space features than loops, and it is these signatures that
we have chosen to study. However, it should be noted that loops will decay via

gravitational radiation and other effects [5], which can give rise to polarization
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from gravitational waves. Nonetheless, we will focus on the contribution from

long strings alone.

4.2 STRING STATISTICS

Armed with the scaling solution, we convert the physical parameters in the

problem to functions of ¢; and t.

Angular size

The angular size of the wake is given by the ratio of the size of the string to
its distance to us, making use of the small angle approximation. In comoving
coordinates, we denote the length of the string by /., and the distance to it by
no —n(t;) (in natural units), where 7 is conformal time and 79 is now. Since
we are only interested in times after equal matter-radiation, we approximate
the universe as matter dominated. As such, the scale factor is always

a(t) = (t>2/3. (4.2)

to

Since /. is one Hubble length in comoving coordinates, we have

3 t; 1/3
=ty () , (4.3)
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and the difference in conformal time can be calculated by integrating the defi-

nition dt = a(t)dn to get

to dt/ 2/3
o —n(ti) :/t mto

= 3t2/3(41/3 —41/3)
t 1/3

— 3t (1 - () ) . (4.4)
to

Combining the two gives us an expression for the angular size

e (ti/tg)Y3

Al = ) T 20— @) )

(4.5)

In the scaling solution, the direction parallel to the string has an average

n

Past Light Cone

Figure 9: Conformal spacetime diagram showing the angular size of cosmic string
wakes.

length on the order of one Hubble length, so we set that direction equal to
c1lc. The direction perpendicular to the string is the direction in which the
string moves. As such, wakes will have a comoving length given by vgsysle.

Therefore, we arrive at the following replacements:

d— d(t;,t) = vsysw(ts,t) w — w(t,t) = crw(ts,t). (4.6)
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Past Light Cone

[
Hubble Volumes at 7;

Figure 10: Conformal spacetime diagram showing the intersection of early wakes
with the past light cone.

We now compute Ny, (¢, t;), the number of wakes laid down at ¢; that intersect
the past light cone at time ¢t. From the scaling solution, we know that there are
nq wakes laid down per Hubble time per Hubble volume, where 0 < n,, < 10
is a fixed constant that can be obtained from numerical simulations. Thus, the
number of wakes that intersect our past light cone (PLC) at time ¢ is n,, times
the number of Hubble volumes at time ¢; that fit inside the observed volume
of our past light cone in one Hubble time around time ¢, summed over discrete

Hubble times t;. Mathematically,

Vol(PLC). ..., ()
“Vol(Hubble)., (i)

Nw(t;ti) =n (47)

Figure 10 shows the way we count the number of strings laid down at time t;

which intersect at t.
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Hubble volume

The physical Hubble volume at time ¢; is %FR?}_I where Ry is the Hubble radius.

Thus, the comoving Hubble volume is given by

4
Vol(Hubble) . = L
(2

Comoving volume of the past light cone

In order to compute the volume of the past light cone, we first note that null

geodesics satisfy

ds® = 0 = dt*> — a*(t)dz>. (4.9)

This leads to the canonical definition of comoving distance

e:/joa‘(ﬁ). (4.10)

Note that in comoving coordinates, ¢ is simply ny — n(t).
Substituting the matter dominated scale factor and integrating leads to a co-

moving distance of 3to(1 — a(t)'/2). Then the physical volume of the observed
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portion of the past light cone between time ¢ and one Hubble time after ¢ (i.e.,

time ¢ + H~1(t)) is given by

Vol(PLC)

</dQ> 63(t)—e3?()t+3t/2)‘ (411)

com ~

The solid angle contained in an observation volume parametrized by angles 6,

and 6 is easily seen to be

/ 10 = / sin 0d0d¢

01/2 w/24+602/2
= do sin 6d6
01/2 w/2—05/2

= 01(cos(m/2 —602/2) —cos(w/2+ 62/2))

= 61(2 Siﬂ(@g/?)) ~ 9192, (4.12)

where 6 and 2 are small (and are approximately 10° each for SPT). This

leaves us with
VOl(PLO) oy, = 90105t7 (1= a(t)!/?)% = (1 —a(t+3t/2)"/2)%) . (4.13)

As mentioned above, the sum over wakes is done in discrete Hubble time
steps, in accordance with the scaling solution. The Hubble time is defined to
be H(t)~!. Therefore the first Hubble time step, 7o, begins at 70 = H (tini) !,
while the second is at 7 = 279, and the third is at 71 = 27, etc. Thus, the

n—th Hubble time step is at 7,, = 279, or

2n
H (tinit)

Tn =

(4.14)
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Since we are summing from the epoch of equal matter and radiation up to the
present day for ¢;, and from the surface of last scattering up to the present day

for ¢, we need a maximum of

1 2nmaz

H(ty)  H(trm)

3
= Nmaz = _5 10g2 a(trm)J

3
= +§ logs (zrm + 1)J

~ 2 logz(BGOO)J

=17 (4.15)

time steps in the ¢; sum, and at most

1 AMis

H(to)  H(ts)

3
= Nynazr = 5 log, a(tls)J

3
= | +5 loga(z1s + 1)J

3

=15 (4.16)

time steps in the ¢ sum, where |--- | is the floor function. However, breaking
the volume into discrete chunks includes the present day in the last time step,
and we only need to sum up to nymqer — 1. Since we cannot see beyond the
surface of last scattering, nor can we see a wake before it was formed, we need
to start the sum over intersection times at ¢;; whenever t; < ¢;; and at t; when

t; > ;5. Converting the sum over ¢ to have a common denominator one easily

finds
2”1 2”1 +Nmax—"Ns
= . 4.17
Ho ~  Hiom) (4.17)




4.2 STRING STATISTICS

Defining n} = ny + npmaz — Mg, it is clear that we start the sum over nj
at max(ng, Nmaez — Ns) and end at npq.. We subsequently drop the prime.

Combining the volumes computed above, we have

Vol(PLC)
Nw i) = Ny com
(tt0) = M Erabble)
96, 023 ((1 —a(®)V2)3 — (1 —a(t+ 3t/2)1/2)3)
— Im 424
2 70%

= nw% (?) ((1 — a(t)1/2)3 _ (1 _ a(t + 375/2)1/2)3) . (4.18)

T i

We then convert to discrete Hubble time steps with the substitutions t —
2" H (tins) "' and t; — 22 H (tini) . Ny is shown in fig. 11 as a function of

nq for various choices of no. It is clear that NV, achieves a maximum as no — 0.

N
T\

. e

0.01/—_\ - n, =13
- N, =17

0.001/’_\

Figure 11: N,, as a function of n; for different values of ny. Curves with larger
amplitude correspond to smaller values of ns. As such, ng simply rescales
N, with a maximum being obtained as ng — 0. Thus, the maximum
value of NV, occurs when ny = 0.

From the form of N,,, one might naively expect the dominant wakes to be
formed at early times and intersect the past light cone at late times, since these

wakes would have had more time to accrete gravitationally and would corre-
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spond to a large angular size on the sky. However, there are other competing
effects from the magitude of polarization and from the ionization fraction. One
can see from the redshift dependence of eq. (3.14) that the largest magnitude of
polarization comes from those wakes with the earliest formation and intersec-
tion times. Furthermore, from the size of N,, it is clear that terms of the form
(z+1)% and (2 +1)'/2 will be the dominant contributions. As such, we expect
the dominant contribution to come from those wakes ny = 0 (corresponding to
wakes that were laid down at early times) and n; ~ 2 (corresponding to wakes
intersecting the past light cone at recombination). These wakes were formed
at the earliest times and become visible as early as possible around the time
of last scattering. Therefore, we expect the shape of the power spectrum to be

influenced by the angular size of Hubble length features at these times.

-17
5x1077F 5x10

N
X
=
o
L

1x107Y7¢
5x 10718}
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1x1077F

2 -
d N

5x1078F

((+1)Cr/27 Qquad M 2

o% 1x107%8F
2x1078F , O 5x107%
1x1078F
1x1070F
10 100 1000 16" 5 10 50 100 500 1000
l 4
(a) [1(1+1)C;/27] /2 vs [ for a dominant (b) C; vs [ for a dominant wake.

wake.
Figure 12: Example power spectra (log-log) showing both 4/I(I 4+ 1)C;/27 and C;

for choices of d and w corresponding to a single wake formed at equal
matter radiation and intersecting the past light cone at recombination.

Putting everything together, we arrive at the final result

=38 N wye (o 2 (119
| = Ny(nl,n2)C; < , ) , 4.19
no=0n1>n9 b H(trm) H(trm)
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with

o 16 sin? [%lw sin gbl}
tti) =
(1) 4?6 / sin? ¢; cos? ¢y

{2 — 2 cos|[ld cos ¢y]

+ ld cos ¢y (ld cos ¢; — 2sin(ld cos ¢y) ) } dgy,
(4.20)

where all other functions have been defined above. Example power spectra for
a single wake (i.e., neglecting the sum) are shown in figs. 12a and 12b where,

incidentally, we’ve chosen a dominant wake.






RESULTS

In this chapter, we combine the results from all previous chapters to calculate
the entire contribution to the CMB polarization power spectrum from cos-
mic string wakes. With a power spectrum in hand, we analytically verify the
asymptotic behaviour (very small and very large ¢). We further this analytic
understanding by determining which wakes in the scaling solution provide the
dominant contribution to the power spectrum.

Current observations of CMB polarization include signals from a number
of sources. Since E-mode polarization can be produced by Gaussian fluctua-
tions and B-mode polarization cannot, we will focus on B-mode polarization.
The two dominant sources of B-mode polarization are gravitational lensing
and gravitational waves. Although inflationary physics does not predict direct
B-mode polarization from Gaussian fluctuations, it does predict a stochastic
background of gravitational waves [36, 37]. This background can act to dis-
tort the CMB and can produce B-mode polarization [38] with a rough peak
amplitude in the dimensionless power spectrum which can be estimated to be
around 1072 at [ ~ 100. The second source of B-mode polarization is from
gravitational lensing [39]. As with gravitational waves, the distortion of CMB
photons by gravitational lensing can act to produce B-mode polarization with

a rough peak amplitude in the dimensionless power spectrum of about 102
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at [ ~ 1000. Having computed the power spectrum from polarization due to
cosmic string wakes, we are in a position to compare with the predicted power

spectra from gravitational waves and gravitational lensing.

5.1 COMBINED POWER SPECTRA

With all ingredients in hand we finally arrive at the CMB polarization power
spectra for a network of cosmic string wakes. The results are shown in figs. 13

and 14. One important feature of fig. 13 (for both EE and BB) is that the

1x107F

5x107°F

2x1075F
1x1075F

5x 1078

t¢+1C,/2n QquadA:Lr|w41/2

2x 1078

1 5 10 50 100 500 1000
{

Figure 13: The CMB polarization power spectrum (EE or BB) for a network of
cosmic string wakes. The EE and BB power spectra are equal in shape
and magnitude, while the cross—correlation terms vanish.

power spectrum grows linearly in [ for small [, with a turn around point at
about [ ~ 400. This corresponds to a flat curve in fig. 14 for small [. Another
feature is that the amplitude of the power is very low — too low to be detected
and well within the signals from other sources. Furthermore, the shape of
the power spectrum is very similar to that of gravitational lensing. As such,
we conclude that the Fourier space signature of cosmic string wakes in CMB
polarization is weak; we should focus our efforts on the distinct position space

signature.



5.2 ASYMPTOTICS

10—12 L

10—13 L

-2 -1
C/ Qquad Ny
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10-15 L ‘ ‘ ‘ ‘ ‘ ‘
1 5 10 50 100 500 1000
!

Figure 14: Cj vs [ including the contribution from all wakes.

5.2 ASYMPTOTICS

Having calculated the polarization power spectrum, we aim to understand the
physics governing the shape. For small [, we expand the expression for Cj in

terms of Ild < 1 ad lw < 1 giving

1 1
(dw)?, 1< Sand < (5.1)

P
C) ~ 5
for a single wake. Thus, the linear shape for small [ seems natural. The power
spectrum goes as the square of the area of the wake until we reach values
of I corresponding to scales smaller than the size of the wake. When [ ~ %,
the Riemann-Lebesgue lemma becomes applicable and the averaging over ¢;
causes the power spectrum to decrease. For very large [, we expect the rapid
oscillations to average to zero giving C; — 0 as [ — o0o. Therefore, the power
spectrum will be linear until we reach values of [ corresponding to the angular
size of the dominant wakes in the sum, at which point it will decay toward

zero. Thus, it is important to find the dominant wakes.
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Figure 15: [I(1 4+ 1)C;/27] /2 vs | for wakes laid down at the epoch of equal matter
and radiation, and intersecting the past light cone after ny Hubble time
steps. Note that n; = 2 corresponds to recombination.

5.3 DOMINANT WAKES

We expect the dominant wakes to be those which maximize the quantity

Nw(t7ti)73(tati)f(t)' (52)

As we have seen, these wakes correspond to those which were formed during
the epoch of equal matter—radiation (¢; = t,,,), and those which intersect the
past light cone earliest. Since we cannot see past the surface of last scattering,
the dominant wakes will be those which intersect at recombination. This is
evident in fig. 15 where we plot the power spectra of wakes formed at t,,,
and intersecting our past light cone at various times. Thus, the combined
power spectrum from the entire network of cosmic string wakes will be well
approximated by the contribution from a single wake that formed very early
and underwent Thomson scattering during recombination (see fig. 12). The
angular size of such wakes corresponds to a turn around point in the power

spectrum of [ ~ 400, consistent with our findings.



CONCLUSIONS

We computed the angular power spectrum of CMB polarization due to a net-
work of cosmic string wakes. Working in the flat—sky approximation, we found
an expression for the power spectrum which shows that the EE and BB power
spectra were equal in shape and magnitude. This result is consistent with
other studies [21] in which it was found that cosmic strings produce B-mode
polarization at leading order. Although this result is promising (because infla-
tionary Gaussian fluctuations cannot directly produce B-mode polarization),
the B—mode signal from gravitational lensing washes out any potential signal
from cosmic string wakes [20]. Furthermore, the cross—correlation power spec-
tra (e.g., ET, BT, and EB) vanish completely, and the shape of the BB power
spectrum matches that of lensing, rendering the cosmic string signal nearly
indistinguishable from that of gravitational lensing.

Weak signals aside, we found that the dominant contribution to the power
spectrum comes from those wakes which were formed very early and insersect
our past light cone very early as well. The earliest formation time in our model
corresponds to ¢; = t¢, (formation at the time of equal matter and radiation),
while the earliest possible intersection with our past light cone corresponds

to wakes we observe on the last scattering surface (t = t;5.) These wakes
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dominate the power spectrum and set the amplitude and scale at which the

power spectrum turns over (see fig. 13). As such

CLot = 3" Ny (t,t:)Ci(t, t;)
&z (6.1)

~ Ch(tZSateq)‘

We also found asymptotic limits of the power spectrum with the | — oo

limit sending C; — 0. The more interesting case is the small [ limit in which

2

C) — 7;(dw)2 1< (6.2)

SN

Combining this with the finding of the dominant wakes above, we finally con-

clude that the dimensionless power spectrum (C;/ quad) remains flat with an
amplitude of

1 p? t1s, 1 2 _

2(256‘1) (d(tgss teq)w(tis, teg))” =~ 2.5 x 10717 (6.3)

quad
until a maximum value of [ corresponding to
l 2 350 (6.4)
d - Y .

at which point the Riemann-Lebesgue lemma becomes applicable and we see

that C} begins to decay. In terms of the more physical quantity

AB ~ \[i(1+ 1)CPP /20Q2 4. (6.5)

we see from above that the power spectrum (i.e., 1/I(l + 1)C;/27) grows lin-

early in [ until a maximum value of about | ~ 400 and a peak amplitude of

about 104



CONCLUSIONS

In conclusion, the Fourier space power in polarization from cosmic string
wakes is too small to be detected above the background of gravitational lensing.
However, the position space signature of cosmic string wakes is highly non—
Gaussian and a more promising search for polarization from cosmic strings
would make use of position space features. The rectangular signature found by
Danos et al. [21] affords the use of edge detection algorithms (e.g., the Canny

algorithm) which may lead to detection of cosmic strings in the future.

61






REFERENCES

[1]

Georges Aad et al. Observation of a new particle in the search for the Stan-
dard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett.,
B716:1-29, 2012.

N. D. Mermin. The topological theory of defects in ordered media. Rev.
Mod. Phys., 51:591-648, Jul 1979.

Ya.B. Zeldovich, I. Yu. Kobzarev, and L.B. Okun. Cosmological
Consequences of the Spontaneous Breakdown of Discrete Symmetry.

Zh.Eksp. Teor. Fiz., 67:3-11, 1974.

R. H. Brandenberger. Searching for Cosmic Strings in New Observational

Windows. ArXiv e-prints, January 2013, 1301.2856.

Robert H Brandenberger. Topological defects and structure formation.

International Journal of Modern Physics A, 9(13):2117-2189, 1994.

Cora Dvorkin, Mark Wyman, and Wayne Hu. Cosmic string constraints
from WMAP and the South Pole Telescope data. Phys. Rev. D, 84:123519,
Dec 2011.

Planck Collaboration, P. A. R. Ade, N. Aghanim, C. Armitage-Caplan,
M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi,
A. J. Banday, and et al. Planck 2013 results. XXV. Searches for cos-
mic strings and other topological defects. ArXiv e-prints, March 2013,
1303.5085.

63



64

References

8]

[10]

[11]

[12]

[13]

[16]

Levon Pogosian, S.-H. Henry Tye, Ira Wasserman, and Mark Wyman. Ob-
servational constraints on cosmic string production during brane inflation.

Phys. Rev. D, 68:023506, Jul 2003.

Mark Wyman, Levon Pogosian, and Ira Wasserman. Bounds on cosmic

strings from WMAP and SDSS. Phys. Rev. D, 72:023513, Jul 2005.

Aurélien A Fraisse. Limits on defects formation and hybrid inflationary
models with three-year WMAP observations. Journal of Cosmology and
Astroparticle Physics, 2007(03):008.

Richard A Battye, Bjorn Garbrecht, Adam Moss, and Horace Stoica. Con-
straints on brane inflation and cosmic strings. Journal of Cosmology and

Astroparticle Physics, 2008(01):020.

Neil Bevis, Mark Hindmarsh, Martin Kunz, and Jon Urrestilla. CMB
power spectrum contribution from cosmic strings using field-evolution
simulations of the abelian Higgs model. Phys. Rev. D, 75:065015, Mar
2007.

Neil Bevis, Mark Hindmarsh, Martin Kunz, and Jon Urrestilla. Fitting cos-
mic microwave background data with cosmic strings and inflation. Phys.

Rev. Lett., 100:021301, Jan 2008.

Richard Battye and Adam Moss. Updated constraints on the cosmic string
tension. Phys. Rev. D, 82:023521, Jul 2010.

Robert H. Brandenberger, Rebecca J. Danos, Oscar F. Hernandez, and
Gilbert P. Holder. The 21 cm signature of cosmic string wakes. Journal

of Cosmology and Astroparticle Physics, 2010(12):028.

Rishi Khatri and Benjamin D. Wandelt. Cosmic (super)string constraints

from 21 cm radiation. Phys. Rev. Lett., 100:091302, Mar 2008.



[17]

[18]

References

Aaron Berndsen, Levon Pogosian, and Mark Wyman. Correlations be-
tween 21-cm radiation and the cosmic microwave background from active
sources. Monthly Notices of the Royal Astronomical Society, 407(2). ISSN

1365-2966.

J. J. McMahon, K. A. Aird, B. A. Benson, L. E. Bleem, J. Britton, J. E.
Carlstrom, C. L. Chang, H. S. Cho, T. de Haan, T. M. Crawford, A. T.
Crites, A. Datesman, M. A. Dobbs, W. Everett, N. W. Halverson, G. P.
Holder, W. L. Holzapfel, D. Hrubes, K. D. Irwin, M. Joy, R. Keisler,
T. M. Lanting, A. T. Lee, E. M. Leitch, A. Loehr, M. Lueker, J. Mehl,
S. S. Meyer, J. J. Mohr, T. E. Montroy, M. D. Niemack, C. C. Ngeow,
V. Novosad, S. Padin, T. Plagge, C. Pryke, C. Reichardt, J. E. Ruhl, K. K.
Schaffer, L. Shaw, E. Shirokoff, H. G. Spieler, B. Stadler, A. A. Stark,
Z. Staniszewski, K. Vanderlinde, J. D. Vieira, G. Wang, R. Williamson,
V. Yefremenko, K. W. Yoon, O. Zhan, and A. Zenteno. SPTpol: an in-
strument for CMB polarization. AIP Conference Proceedings, 1185(1):

511-514, 2009.

D. Baumann, M. G. Jackson, P. Adshead, A. Amblard, A. Ashoorioon,
N. Bartolo, R. Bean, M. Beltran, F. de Bernardis, S. Bird, X. Chen,
D. J. H. Chung, L. Colombo, A. Cooray, P. Creminelli, S. Dodel-
son, J. Dunkley, C. Dvorkin, R. Easther, F. Finelli, R. Flauger, M. P.
Hertzberg, K. Jones-Smith, S. Kachru, K. Kadota, J. Khoury, W. H. Kin-
ney, E. Komatsu, L. M. Krauss, J. Lesgourgues, A. Liddle, M. Liguori,
E. Lim, A. Linde, S. Matarrese, H. Mathur, L. McAllister, A. Melchiorri,
A. Nicolis, L. Pagano, H. V. Peiris, M. Peloso, L. Pogosian, E. Pierpaoli,
A. Riotto, U. Seljak, L. Senatore, S. Shandera, E. Silverstein, T. Smith,
P. Vaudrevange, L. Verde, B. Wandelt, D. Wands, S. Watson, M. Wyman,

A. Yadav, W. Valkenburg, and M. Zaldarriaga. Probing inflation with

65



66

References

[20]

[21]

[22]

CMB polarization. In American Institute of Physics Conference Series,

volume 1141 of American Institute of Physics Conference Series, 2009.

D. Hanson, S. Hoover, A. Crites, P.A.R. Ade, K.A. Aird, et al. Detection
of B-mode Polarization in the Cosmic Microwave Background with Data

from the South Pole Telescope. ArXiv e-prints, 2013, 1307.5830.

Rebecca J. Danos, Robert H. Brandenberger, and Gil Holder. A Signature
of Cosmic Strings Wakes in the CMB Polarization. Phys.Rev.D, D82:
023513, 2010.

A. Vilenkin and E.P.S. Shellard. Cosmic Strings and Other Topological
Defects. Cambridge Monographs on Mathematical Physics. Cambridge
University Press, 2000. ISBN 9780521654760.

T.W.B. Kibble. Topology of cosmic domains and strings. Journal of
Physics A: Mathematical and General, 9(8):1387.

Wayne Hu and Martin White. A CMB polarization primer. New Astron-

omy, 2(4):323 — 344, 1997. ISSN 1384-1076.

S. Chandrasekhar. Radiative Transfer. Dover Books on Intermediate
and Advanced Mathematics. DOVER PUBN Incorporated, 1960. ISBN
9780486605906.

Paolo Cabella and Marc Kamionkowski. Theory of cosmic microwave

background polarization. ArXiv e-prints, 2004, astro-ph/0403392.
J.D. Jackson. Classical Electrodynamics. ISBN 9780471309321.

Matias Zaldarriaga and Uros Seljak. An all sky analysis of polarization

in the microwave background. Phys. Rev.D, D55:1830-1840, 1997.



[29]

[32]

References

Marc Kamionkowski, Arthur Kosowsky, and Albert Stebbins. Statistics of
cosmic microwave background polarization. Phys. Rev.D; D55:7368-7388,
1997.

Kendrick M. Smith and Matias Zaldarriaga. General solution to the E-B

mixing problem. Phys. Rev. D, 76:043001, Aug 2007.

Emory F. Bunn, Matias Zaldarriaga, Max Tegmark, and Angelica
de Oliveira-Costa. FE/B decomposition of finite pixelized CMB maps.
Phys. Rev. D, 67:023501, Jan 2003.

J. N. Goldberg, A. J. Macfarlane, E. T. Newman, F. Rohrlich, and E. C. G.
Sudarshan. Spin-s spherical harmonics and 0. Journal of Mathematical

Physics, 8(11):2155-2161, 1967.

Manoj Kaplinghat, Mike Chu, Zoltan Haiman, Gilbert P. Holder, Lloyd
Knox, and Constantinos Skordis. Probing the reionization history of the
universe using the cosmic microwave background polarization. The Astro-

physical Journal, 583(1):24.

Wayne Hu. Weak lensing of the CMB: A harmonic approach. Phys. Rewv.
D, 62:043007, Jul 2000.

T.W.B. Kibble. Evolution of a system of cosmic strings. Nuclear Physics
B, 252(0):227 — 244, 1985. ISSN 0550-3213.

Alexei A. Starobinsky. Relict Gravitation Radiation Spectrum and Initial
State of the Universe. (In Russian). JETP Lett., 30:682-685, 1979.

B. Allen. Stochastic gravity-wave background in inflationary-universe

models. Phys. Rev. D, 37:2078-2085, Apr 1988.

67



68 References

[38] A. G. Polnarev. Polarization and Anisotropy Induced in the Microwave
Background by Cosmological Gravitational Waves. Soviet Astronomy, 29:

607-613, December 1985.

[39] Matias Zaldarriaga and Uros Seljak. Gravitational lensing effect on cosmic

microwave background polarization. Phys. Rev. D, 58:023003, Jun 1998.



	Dedication
	Acknowledgments
	Abstract
	Abrege
	Contents
	List of Figures
	1 Introduction
	1.1 Topological defects and cosmic strings
	1.2 Cosmic string wakes
	1.3 CMB polarization

	2 Spin–s fields
	2.1 Definitions and preliminaries
	2.2 Spin raising and lowering operators
	2.3 The small angle or ``flat sky'' approximation

	3 The power spectrum
	3.1 E and B modes
	3.2 Polarization from cosmic strings
	3.3 The power spectrum

	4 A cosmic string network
	4.1 The scaling solution
	4.2 String statistics

	5 Results
	5.1 Combined power spectra
	5.2 Asymptotics
	5.3 Dominant wakes

	6 Conclusions

