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Careful. We don’t want to learn from this.
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ABSTRACT

We compute the integrated Sachs–Wolfe type contribution to the CMB polar-
ization power spectrum from cosmic string wakes. An introduction to topo-
logical defects, cosmic strings, CMB polarization, and spin–s fields is given.
We then use these tools to compute the angular power spectrum of E– and
B–mode polarization due to cosmic string wakes, in the flat sky limit. We find
that cross–correlation terms (i.e., EB, ET, BT) vanish, while the EE and BB
power spectra are equal in shape and magnitude. This result is in stark con-
trast with B–mode polarization from Gaussian fluctuations, which vanishes
identically. However, we find that the shape of the power spectrum from cos-
mic string wakes is very similar to the predicted B–mode power spectrum from
gravitational lensing, but with a small overall amplitude. As such, the cosmic
string wake signal is too small to be picked out from lensing, and background
subtraction techniques would be very difficult. We find that the peak ampli-
tude in the dimensionless power spectrum (

√
l(l+ 1)Cl/2π) is about 10−4 at

a peak value of l ∼ 400.
We briefly study the asymptotic version of the power spectrum and find

that Cl is approximately constant until a turn around point set by the angular
size of the dominant wakes. We then determine which cosmic string wakes give
rise to the dominant contribution to the full, integrated power spectrum and
find that the dominant wakes are those which were formed at the time of equal
matter and radiation, and which intersect our past light cone at recombination.
We conclude that the Fourier space signal (power spectrum) is too weak to
detect cosmic string wakes in existing data, and future searches should focus
on distinct position space features.
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ABRÉGÉ

Nous calculons la contribution intégrée au spectre de puissance de la polarisa-
tion du fond diffus cosmique (CMB) grâce aux sillages des cordes cosmiques.
Une introduction aux défauts topologique, cordes cosmiques, de polarisation
du CMB, et aux champs spin–s est donnée. Nous utilisons ensuite ces outils
pour calculer le spectre de puissance angulaire de la polarisation des modes
E et B grâce aux des sillages des cordes cosmiques, dans la limite du ciel
plat. Nous trouvons que les termes de corrélation croisée (EB, ET, BT) sont
zero, tandis que les spectres de puissance pour EE et BB ont la même forme et
grandeur. Ce résultat contraste le polarisation du mode B causée par les fluctu-
ations Gaussiennes, qui disparaîssent. Cependant, nous trouvons que la forme
du spectre de puissance causée par les sillages de cordes cosmiques est très sim-
ilaire au spectre en mode B prédite par lentille gravitationnelle, mais avec une
amplitude globale trés faible. Donc, le signal du sillage de corde cosmique est
trop faible pour être measuré au-dessus l’indicatif du lentille. Aussi, les méth-
odes de soustraction du fond serait très difficile. Nous trouvons que l’amplitude
maximum dans le spectre de puissance (

√
l(l+ 1)Cl/2π) est d’environ 10−4

pour l ∼ 400.
Nous étudions brièvement le forme asymptotique du spectre de puissance,

et nous trouvons que Cl est quasi–constant en l jusqu’à un tournant corre-
spondant à la taille angulaire du sillage le plus important. Nous déterminons
alors quel sillage donne la contribution dominante au spectre de puissance com-
plet. Nous trouvons que les sillages dominants sont ceux qui ont été formés à
l’epoque de l’égalité de matière et de rayonnement, et qui croisent notre cône
de lumière passé à l’époque de recombinaison. Nous concluons que l’indicatif
dans l’espace Fourier est trop faible pour être détecté. Donc, les recherches
futures devraient se concentrer sur les caractéristiques l’espace spatial.
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1
INTRODUCTION

Topological defects are decidedly underrepresented in physics. They arise when-

ever a system undergoes a phase of symmetry breaking and are natural and

robust phenomena. Most physicists first gain familiarity with topological de-

fects in the context of domain walls separating two regions with oppositely

aligned spins in magnets, yet few realize their importance in other areas of

physics. Topological defects form during symmetry breaking phase transitions.

Perhaps the best known example of spontaneous symmetry breaking is the

process which gives rise to the recently discovered Higgs boson [1]. Other well

known examples (relating to superconductivity and superfluidity) arise in con-

densed matter systems and have been well studied [2]. We will discuss this

type of symmetry breaking in section 1.1, with a cosmological application in

mind. Note that, although topological defects have been seen in a number of

systems, we have not yet observed them in field theory models. While one can

consider cosmological domain walls, they would tend to dominate the energy

density of the universe, and are therefore problematic and have been ruled

out by observation [3]. Instead, we will consider one dimensional, filamentary

defects known as cosmic strings. Cosmic strings are topological defects formed

during the symmetry breaking (e.g., electroweak symmetry breaking) phases of

our universe through finite temperature effects. Physically, they are regions of

11



12 introduction

trapped potential energy which interact gravitationally with observable matter.

Since they form in the early universe and interact with their surroundings, they

could give rise to observable signatures (see [4, 5] for a review). Many of these

signatures have been studied in a great deal of detail, which has allowed us to

place upper bounds on the physical parameters characterizing cosmic strings

[6, 7, 8, 9, 10, 11, 12, 13, 14]. An example of an emerging observational win-

dow with no shortage of cosmic string literature is 21cm radiation [15, 16, 17].

However, a particularly promising observational window in which to look for

cosmic strings is that of cosmic microwave background (CMB) polarization.

In particular, we will focus our efforts on B–mode polarization, which is a

particular pattern in the CMB polarization vector field. B–mode polarization

is suggested to be the cleanest detection mode for cosmic-strings, rather than

the related E–mode polarization or standard temperature anisotropies. Re-

cent advancements in polarization telescopes are pushing observations closer

to the precision measurement of B–mode polarization (e.g., [18, 19]). In fact,

the South Pole Telescope recently announced the first detection of B–mode

polarization [20]. When a cosmic string moves through spacetime, it leaves

behind it a wake of overdensity in the background matter field. As such these

wakes would produce cold spots in the CMB with characteristic position space

features. Danos et al. [21] found that the signature of cosmic string wakes

corresponds to a roughly rectangular patch on the sky with a linear fade in

the polarization strength along one axis of the rectangle. Our aim is to study

the overall effect of a network of cosmic string wakes on the observed CMB

polarization.
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1.1 topological defects and cosmic strings

This section is based on the book by Vilenkin and Shellard [22] and serves as a

lightning introduction to cosmic strings. Topological defects are an extremely

rich and fruitful subject, and an in depth analysis is not necessary for our

purposes. Instead, we will focus on a specific class of topological defects known

as strings, and in particular those formed by second–order phase transitions.

For those familiar with the subject, we will not concern ourselves with the

vacuum manifold, homotopy groups, or any other such beasts. Rather, we

will employ an intuitive picture and refer interested readers to Vilenkin and

Shellard [22] for details. Furthermore, it will prove useful to begin our study

of topological defects with domain walls, as they are easier to conceptualize,

they form from a simpler Lagrangian, and they help build intuition.

The starting point for domain walls of the kind we want is a φ4 scalar field

with a temperature dependent mass. In particular, we have a temperature

dependent Lagrangian of the form

L =
1
2∂µφ̄∂

µφ− Veff(|φ|) (1.1)

Veff(|φ|) =m2(T )|φ|2 + λ

4 |φ|
4, (1.2)

where m is the mass of the scalar field, λ is a coupling constant, T is the

temperature of the field, and we can assume φ ∈ R WLOG. In order to get

a spontaneous symmetry breaking potential, the temperature dependent mass

takes the form

m2(T ) =
λ

12(T
2 − 6η2), (1.3)

where η is the vev (vacuum expectation value) of the field after symmetry

breaking. It is clear from the form of m2(T ) that there is a critical tempera-
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ture, TC =
√

6η, at which m = 0. This effective potential has the property

-Η Η

Φ

V
HΦ

,T
L-

V
HΗ

,0
L

T>TC

T=TC

T<TC

T=0

Figure 1: A spontaneous symmetry breaking potential. For large T , the field is in
a stable configuration around φ = 0. However, as the temperature de-
creases beyond the stable, critical temperature TC , the potential takes on
the familiar double well (Mexican hat) shape. When this occurs, the field
acquires a vev, and different regions of space will have the field break to
one of the two degenerate vacua (φ = ±η)

that it gives rise to a stable minimum at φ = 0 for temperatures greater than

TC , and corresponds to an unstable vacuum at φ = 0 for T < TC . Figure 1

shows the shape of Veff for different values of T . For large temperatures, this

corresponds to a homogeneous field in the ground state φ = 0 (up to local

quantum fluctuations) everywhere in space. As the universe cools, the tem-

perature eventually dips below the critical temperature, causing φ to attain a

non–zero vev. Since local quantum fluctuations tend to bias the field to one

side of the unstable point at φ = 0, different regions in space will have the

field transition to different minima (φ = ±η). When this happens, spatial con-

tinuity of the quantum field requires that there be a region in space in which

the value of the field changes from φ = −η to φ = +η. The halfway point

of this region would therefore have φ = 0, as illustrated in fig. 2. However,

Veff(φ = 0,T < TC) does not correspond to the ground state, and it is in this

sense that we say the topological defect (domain wall) corresponds to a region
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of trapped potential energy. Extending this argument into additional spatial

dimensions leaves us with a two–dimensional planar topological defect – the

domain wall.
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Figure 2: Formation of topological defects as a consequence of spatial continuity of
quantum fields. During the second order phase transition shown in fig. 1,
regions of space may break to different values of the new degenerate ground
state. However, continuity of the field in space demands a region between
two different vacua in which φ(x) is not in the ground state. In this figure,
the horizontal direction is space, and we are illustrating the field configu-
ration as a function of position.

We now build on the intuition gained from domain walls to study the for-

mation of cosmic strings. Consider the simple gauge theory describing scalar

electrodynamics (also known as the abelian–Higgs model), which consists of a

complex (or otherwise multi-component) scalar field φ and a gauge field Aµ.

The Lagrangian density for this theory is given by

L =
1
2Dµφ̄D

µφ− V (φ)− 1
4FµνF

µν , (1.4)

whereDµ = ∂µ− ieAµ is the gauge covariant derivative, e is the gauge coupling,

and Fµν = ∂µAν − ∂νAµ is the field strength tensor. The potential, V (φ) is

similar to eq. (1.2) for low temperatures, and is given by

V (φ) =
1
4λ(φ̄φ− η

2)2, (1.5)

where λ is a coupling constant, and η corresponds to the vev as before. The

potential is shown in fig. 3. Note that this theory admits a local U(1) symmetry,

which is spontaneously broken when φ attains a vev (|φ| = η).
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Varying the action and solving for the equations of motion, one finds that

there exist solitonic solutions, which are translationally invariant along one

direction of space. Choosing this invariant direction to be z and constructing

cylindrical coordinates for the global space, we can fix a slice in z and work

in polar coordinates (r, θ) for the other two directions. These translationally

invariant string configurations are given by

φ(r, θ) = ηeiθ (1.6)

for large r. This field configuration has the curious property that there must

exist a point at which φ = 0 to avoid an undefined phase (see fig. 4a). The

presence of this non–vacuum point is a consequence of continuity: since the

phase in eq. (1.6) at some radius r changes from 0 to 2π as we traverse a circle

in position space, the phase of φ at the center of this circle must change from

0 through 2π at a single point. The only way to resolve this ill–defined field

value is if φ = 0 at this point. Since V (φ = 0) 6= 0, we say that the cosmic

string is a region of trapped potential energy.

Recall that the field configuration in eq. (1.6) is translationally invariant

along the z direction. As such, we can freely extend the above analysis along

Figure 3: The symmetry breaking potential for the abelian–Higgs model. The po-
tential has the familiar “Mexican hat” shape, with an unstable local max-
imum at φ = 0. The field undergoes spontaneous symmetry breaking and
φ obtains a vev at V = 0 with |φ| = η.
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z to finally arrive at a long, filamentary topological defect – the cosmic string.

This spatial extension is shown in fig. 4b.

x

y

(a) Winding in the field configuration
causes an ill–defined phase at the
origin.

(b) Translation invariance along
one direction forms the one–
dimensional string structure.

Figure 4: Formation of a cosmic string due to non–trivial winding in the field con-
figuration. The cosmic string field configuration given in eq. (1.6) has the
property that the phase of φ is undefined at r = 0. In order to reconcile
this fact, continuity of the quantum field dictates that φ must be zero at
this point. Since the field configuration is translationally invariant along
the z direction, we extend the analysis along z and find that there must
be a one dimensional line of trapped potential energy.

One possible argument against the field configuration in eq. (1.6) is that

it may not be physically realizable. There are many valid field configurations

which solve the equations of motion, but they may not be relevant for any phys-

ical theory. However, a very simple argument due to Kibble [23] shows that

these cosmic string configurations are not only physically relevant, but are ro-

bust and arise naturally. The argument is based on causality and proceeds as

follows. Suppose we have a theory which admits topological defect solutions,

say eq. (1.4) with eq. (1.6). Since correlations in the state of the field can-

not persist over length scales larger than the horizon length, the phase of φ

should appear randomly distributed on super–horizon scales. As such, we will

inevitably form cosmic string states with a non–trivial winding in the phase of
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φ, which gives rise to topological defects. In the context of domain walls, the

Kibble mechanism says that the field φ should break to different degenerate

vacua on scales larger than the horizon scale. As such, topological defect solu-

tions should arise on physical grounds, and we expect cosmic strings to form

during any symmetry breaking transition in our universe. It is important to

note, however, that many observational searches for cosmic strings have been

conducted, without providing evidence for their existence.

In addition to (infinitely) long strings, another stable topological defect is a

loop. Imagine joining two ends of a long string together to form a loop such

that the interior and exterior have different ground states. Such an object

constitutes a valid field configuration and provides additional features one can

study. However, cosmic string loops will tend to oscillate and wiggle due to

their string tension. This motion induces fluctuations in the gravitational field

and the loop radiates gravitational waves. As such, the energy in the loop

decreases and the loops eventually decay [5]. Thus, we will henceforth focus

our efforts on long strings, rather than cosmic string loops.

1.2 cosmic string wakes

When cosmic strings move in a direction normal to their length with relativistic

speeds, they create a wake in their path. The requirement that strings move at

relativistic speeds comes from the nature of the dynamical equations. Since the

wake equation we will solve below is relativistic, the only characteristic velocity

in the problem is the speed of light. Wake creation is a relativistic effect and

corresponds to the formation of a deficit angle in the geometry behind the

wake. To see how this comes about, we consider a long, straight string lying

static along the z–axis and calculate the metric. Since we wish to find the small
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geometric effect of a cosmic string on the background spacetime, we work in

the weak–field limit and let the metric gµν take the form

gµν = ηµν + hµν , (1.7)

where ηµν is the Minkowskian metric and hµν is the metric perturbation, sub-

ject to |hµν | � 1. One can then show [22] (by fixing the harmonic gauge

∂ν(hνµ− 1
2δ
ν
µh

σ
σ) = 0) that the equations of motion for the metric perturbation

are given by

�hµν = −16πG
(
Tµν −

1
2ηµνT

σ
σ

)
. (1.8)

For a stationary object lying along the z–direction, the mass–energy is localized

in z and the energy–momentum tensor takes the form

T νµ = µδ(x)δ(y)diag(1, 0, 0, 1), (1.9)

where µ is the mass per unit length of the string. With this simplified energy–

momentum tensor one can then rewrite the metric in spherical coordinates

as

ds2 = dt2 − dz2 − (1− h)(dr2 + r2dθ2), (1.10)

where r =
√
x2 + y2, θ is the angular coordinate, and h = 8Gµ ln(r)−h0 with

h0 being a constant of integration. Defining new variables r′ and θ′ via

(1− 8Gµ)r′2 = (1− h)r2 (1.11)

θ′ = (1− 4Gµ)θ (1.12)
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and expanding the metric to leading order in Gµ, one obtains the result

ds2 = dt2 − dz2 − dr′2 − r′2dθ′2. (1.13)

Thus, we see that the space near the cosmic string looks locally flat. This

result is surprising at first because we expect the trapped potential energy

in the string to have gravitational effects. So how, then, do cosmic strings

interact and what are these all important wakes? Notice that the definition of

θ′ shifts the allowed range of the angular coordinate away from [0, 2π). Instead,

θ′ ∈ [0, 2π(1− 4Gµ)) and we see that the space behind the string has a deficit

angle compared to the space in front of the string. So while the space near a

cosmic string appears locally flat, it is not globally flat. There is an azimuthal

deficit angle

∆ = 8πGµ (1.14)

corresponding to a wedge of spacetime which has been effectively carved out

by the string with the exposed ends being glued together. Figure 5 shows a top

8πGμ

z

Figure 5: The formation of a cosmic string wake. In the rest frame of the cosmic
string (here shown oriented along the z–axis), the region to the left of
the string has a deficit angle and an associated conical geometry. Matter
moving past the string appears deflected inward as it passes the cosmic
string leaving a local overdensity.
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down view of the formation of a deficit angle in the region behind the string.

The figure is drawn in the rest frame of the cosmic string, and the exposed

edges of the wedge behind the string have been identified. In the string frame,

matter moving past the string appears to be deflected toward the plane behind

the cosmic string as it enters the region with conical geometry. Since, at a given

distance away from the string, there are two streams of matter particles (one

on each side) which appear to be bent toward one another, it appears as though

the area behind the string has an overdensity of matter relative to regions far

away. In the rest frame of the matter the string passes by at relativistic speeds

and the matter field experiences a kick toward the plane swept out by the

string. This kick is felt by particles on the other side of the string, and the

particles are perturbed toward one another into a region of local overdensity.

The net result is a region of overdensity caused by the formation of a deficit

angle in the spacetime geometry by cosmic strings moving at relativistic speeds,

and is referred to as a cosmic string wake.

Once formed, wakes grow via gravitational accretion of additional matter.

Since they correspond to regions of local overdensity containing free electrons,

and because they have a distinct position space signal, cosmic string wakes

present themselves as candidate sources for observable CMB polarization sig-

nals.

1.3 cmb polarization

Photon scattering from charged particles is a well studied phenomenon and

has been thoroughly characterized in both the low and high energy regimes.

For high energies, the scattering is inelastic and the process is known as Comp-

ton scattering. For lower energies, the scattering is well approximated as an
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inelastic process and is known as Thomson scattering after J.J. Thomson. Po-

larization of photons in the CMB takes place at energies corresponding to

Thomson scattering. For an excellent introduction to CMB polarization, the

reader is referred to Hu and White [24].

It can be shown that the differential cross section for Thomson scattering is

given by
dσ

dΩ
=

3σT
8π |ε̂ · ε̂

′|2, (1.15)

where ε̂ and ε̂′ are the incident and scattered photon polarization directions,

respectively [25, 26]. We see from eq. (1.15) that the cross section is maxi-

mized when the incident and scattered radiation are parallel. Since we want

the radiation to be scattered toward the observer (so that it can be observed!),

and since Maxwell’s equations require polarization to be perpendicular to the

direction of travel, Thomson scattering provides a means for polarization. If

the incident radiation field has an overall quadrupole moment, the resulting

scattered photons will be polarized. Figure 6 shows an example of polarization

due to Thomson scattering. If the CMB has an overall quadrupole moment rel-

ative to a free electron, radiation from Thomson scattering off this free electron

will be polarized. Schematically, this appears to the observer as polarized light

coming from a region in the CMB centered between two antipodal hot spots

and two antipodal cold spots. This hot–cold pattern constitutes the required

quadrupole and the observed light has been scattered by free electrons.

When presented with a polarization map or light intensity field, it is often

convenient to use the Stokes parameters, Q, U , V , and I to describe polarized

light (see [27] for a review.) The Stokes parameters are defined in terms of the

x and y components of the electric field and relate to the intensity of light in

different directions. To avoid unnecessary detail, we will paint a naive picture

by aligning a compass rose with the page such that north points toward the
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Electron

Scattered photon

Incident photon

Incident photon

z

y

x

Figure 6: Polarization due to Thomson scattering. Light incident along the x (red)
and y (blue) directions is polarized along the (y, z) and (x, z) directions,
respectively. Thomson scattering off the electron produces scattered light
which travels along the z direction and has polarizations aligned with the x
and y axes. The component of the scattered light which is polarized along
the x direction (blue) originated from the (blue) incident photon which was
travelling along the y direction. Similarly the (red) polarization component
of the scattered light originated from the (red) photon incident along the x
direction. If the incident radiation field has an overall quadrupole moment
(i.e., if the magnitude of the red and blue intensities are not equal) then
the scattered radiation will be polarized. For example, if the y–incident
photon has a larger amplitude than the x–incident photon, we represent
this graphically with longer blue lines than red lines. Then the scattered
light also has longer blue lines than red and would be polarized along the
x direction.

top of the page, and by imagining a photon propagating out of the page. If

the photon has polarization along the N–S (E–W) direction we say that Q > 0

(Q < 0). On the other hand, if the photon is polarized along the NE–SW (NW–

SE) direction, we say U > 0 (U < 0). The polarization can then be described

in terms of a magnitude (P ) and direction (α), which are given by

P =
√
Q2 + U2 α =

1
2 arctan

(
U

Q

)
. (1.16)
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One can also describe circular polarization in terms of the Stokes parameters,

but we shall assume that circular polarization from cosmological sources is

negligible.

The remainder of this thesis will focus on calculating the contribution to

the CMB polarization power spectrum from cosmic string wakes. Chapter 2

will provide an introduction to spin–s fields and their importance for CMB

polarization. We then introduce the flat sky approximation and simplify the

spin–s equations greatly. In chapter 3, we begin calculating the contribution to

the polarization power spectrum from cosmic string wakes, and we show that

the total contribution can be given by a sum of contributions from individual

wakes. We will derive an expression for the power spectrum contribution a

single cosmic string wake. We then calculate the statistics from a network of

cosmic string wakes in chapter 4. We outline the cosmic string scaling solution

and use it to derive the statistics of the network for the purpose of calculating

the full power spectrum contribution. We present the results of the calculation

in chapter 5 and draw conclusions in chapter 6.



2
SP IN– s F IELDS

In this chapter we will discover that polarization fields transform non-trivially

under a change of coordinates, and we will inroduce the technology of spin–s

fields to correctly handle this behaviour. We will then make use of the flat sky

approximation to simplify the resulting expressions.

In the context of the CMB, polarization is generated by Thomson scattering

of photons originating from regions in the CMB with an overall temperature

quadrupole. In order to succinctly describe the observed polarization map,

we have at our disposal a number of representations from which to choose.

In particular, we can choose between a complex scalar, a vector, or a tensor

representation of the polarization1. Regardless of the representation, the inter-

esting CMB polarization physics is captured entirely in only two of the Stokes

parameters: Q and U 2.

1 It is interesting to contrast the approaches used in [28, 29, 30, 31]. However, it is important
to keep track of the notation and conventions used by the different authors, as new students
can easily become confused!

2 The V Stokes parameter corresponds to the intensity of circularly polarized light, which can-
not be generated through Thompson scattering. Therefore, it is not particularly interesting
for CMB polarization physics.
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The Stokes parameters are not invariant under a change of coordinates and

a rotation by an angle α transforms them via

Q′ = Q cos(2α) + U sin(2α)

U ′ = U cos(2α)−Q sin(2α).
(2.1)

As such, the polarization field is referred to as a spin–2 quantity, and we

must maintain the correct transformation laws in whichever representation we

choose. Since we are interested in a spin–2 field, it will prove useful to review

some basic properties and simplifications for generic spin–s fields.

2.1 definitions and preliminaries

The concepts, conventions, and notations in this section are based on the excel-

lent reference by Zaldarriaga and Seljak [28]. The curious reader is referred to

Goldberg et al. [32] for more detail. A great deal of machinery exists for spin

weighted fields in all three of the scalar, vector, and tensor representations.

Since we are using the complex scalar representation, we will restrict our at-

tention to spin–s functions and briefly review the spin raising and lowering

differential operators, as well as small scale approximations.

Consider a unit sphere centered on the origin. Any point on the sphere can be

parametrized using spherical coordinates in terms of (φ, θ). For a given point on

the sphere, construct a tangent plane at that point and define two orthonormal

unit vectors on the plane, (e1, e2). Define as well a third orthonormal vector

to be the unit normal vector to the tangent plane, denoted by n. Notice that

e1 and e2 are only defined up to a rotation about n.
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Definition: A spin–s function sf(φ, θ) is one that, under a rotation of

(e1, e2) by an angle ψ about n, transforms via

sf → e−isψsf . (2.2)

Borrowing an example from [28], the quantities a · e1 + ia · e2, a ·n, and

a · e1 − ia · e2 for any a on the sphere have spin 1, 0, and −1 respectively.

We pause briefly to recall that the stokes parameters Q and U rotate into one

another twice when rotating a polarization map by an angle of 2π. Using the

definition above, we conclude that the quantities Q± iU are thus spin–±2.

2.2 spin raising and lowering operators

Just as we have raising and lowering operators in the quantized treatment

of angular momentum, we have spin raising and lowering operators in this

complex scalar representation. Given a spin–s function, one can construct a

spin–(s+ 1) or spin–(s− 1) function via the action of differential operators.

We define the spin raising and spin lowering operators, ′∂ and ′∂, such that

( ′∂sf)
′ = e−i(s+1)ψ( ′∂sf) (2.3)

( ′∂sf)
′ = e−i(s−1)ψ( ′∂sf) (2.4)

under the same rotation of (e1, e2) by an angle ψ, where prime represents the

rotated function. The intuition behind ′∂ and ′∂ is really as operators which raise

or lower the spin of the function they take as argument. While this intuition
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is crucial for solving problems, it is not so useful for performing computations,

and we often rely on the explicit form:

′∂sf(φ, θ) = − sins(θ)
[
∂

∂θ
+ i csc(θ) ∂

∂φ

]
sin−s(θ)sf(φ, θ) (2.5)

′∂sf(φ, θ) = − sin−s(θ)
[
∂

∂θ
− i csc(θ) ∂

∂φ

]
sins(θ)sf(φ, θ). (2.6)

As is common with spin–0 fields, we can decompose our functions into a

series solution (e.g., Taylor series, Fourier series, Laurent series, etc.). One

convenient basis with which to decompose functions on a sphere is the spherical

harmonics. A general function can be decomposed using the orthonormality of

the spherical harmonics, Ylm as

g(φ, θ) =
∑
l,m

almYlm(φ, θ), (2.7)

where g(φ, θ) is an arbitrary function over a region Ω of the sphere, and

alm =
∫

Ω g(φ, θ)Y ∗lm(φ, θ)dΩ. For spin–s fields, generalizations of the spherical

harmonics exist and provide natural bases with which to decompose higher

spin weighted functions. Thus, the spin–s spherical harmonics, sYlm form a

complete basis for spin–s functions on the sphere.

As one would expect, we can construct spin–s spherical harmonics via the

application of the spin raising and lowering operators to the regular scalar

spherical harmonics. In particular,

sYlm =
[
(l−s)!
(l+s)!)

] 1
2 ′∂sYlm , (0 ≤ s ≤ l)

sYlm =
[
(l+s)!
(l−s)!)

] 1
2
(−1)s ′∂

−s
Ylm , (−l ≤ s ≤ 0).

(2.8)
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2.3 the small angle or “flat sky” approximation

Having gone to great lengths to define the spin–s spherical harmonics, we will,

with great pleasure, dispense with them as soon as possible. The reason for

this is two–fold: observational cosmologists will agree that taking derivatives

of data is ill–advised, while theorists appreciate the simplicity of scalar (spin–

0) fields. Furthermore, when integrating over a small region of the sphere,

orthogonality of spherical harmonics may not hold and the spin–0 spherical

harmonics are much easier to work with. Fortunately, certain approximations

allow us to convert a spherical harmonic expansion to an expansion in Fourier

modes – a far tamer beast. The most appropriate simplification we can make

stems from a physically relevant approximation. We assume that we are only

interested in a very small region on the unit sphere (or sky), which allows us

to use the small angle approximation. In terms of the celestial sphere, this

is known as the “flat sky approximation”, so–called because we neglect the

curvature of the sphere in a small region and restrict our attention to the

tangent plane.

Since we are interested in polarization – a spin–2 quantity – we shall focus

on the spin–2 spherical harmonics. Applying the flat sky approximation gives

2Ylm ' (2π)−2 1
l2
′∂2eil·θ

−2Ylm ' (2π)−2 1
l2
′∂
2
eil·θ,

(2.9)

where l = (lx, ly)>, and θ = (φ, θ)>. We further our approximation using the

relations

1
l2
′∂2eil·θ ' −e−2i(φ−φl)eil·θ

1
l2
′∂
2
eil·θ ' −e2i(φ−φl)eil·θ,

(2.10)
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where now (lx + ily) = leiφl .

Since the Stokes parameters Q and U rotate into one another under a ro-

tation of coordinates (c.f. eq. (2.1)), we must take into account a desirable

change of coordinates so that the flat sky approximation is applied to the

“north pole” of the sphere and we work on the tangent plane perpendicular to

the ẑ direction. In particular, our new Stokes parameters satisfy

(Q± iU)′ = e∓2iφ(Q± iU). (2.11)

Having properly accounted for the spin–weighting of polarization, we are

well poised to set in on a computation of the polarization power spectrum.



3
THE POWER SPECTRUM

In this section, we describe the decomposition of polarization from a single

wake into spin–2 spherical harmonics and apply the flat sky approximation.

3.1 e and b modes

In spherical coordinates (i.e., a metric gab = diag(1, sin2 θ)), the (spin–2) po-

larization tensor can be written as

Pab =
1
2

 Q(n̂) −U(n̂) sin θ

−U(n̂) sin θ −Q(n̂) sin2 θ

 , (3.1)

while the polarization vector can be written as

P =

 Q(n̂)

U(n̂)

 , (3.2)

and the (spin–2) complex scalar quantities of interest are Q+ iU and Q− iU .

We will focus mainly on the scalar representation, making reference to the

vector representation whenever helpful.

31
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Referring to eq. (2.1), we see that for each cosmic string wake there exist

coordinates in which U = 0. In other words, there exists a choice of α relating

our chosen global coordinates to the convenient choice coordinates (in which

U = 0) for each cosmic string wake. In particular,

Q′ = Q cos(2α)

U ′ = −Q sin(2α)
(3.3)

and we subsequently drop the primes.

We now decompose the spin–2 quantities Q± iU using the spin–2 spherical

harmonics. In particular, we have

(Q+ iU)(n̂) =
∞∑
l=2

l∑
m=−l

2alm 2Ylm(n̂)

(Q− iU)(n̂) =
∞∑
l=2

l∑
m=−l

−2alm −2Ylm(n̂).
(3.4)

Note that we include contributions from l ≥ 2 since any l = 1 dipole terms

would be indistinguishable from the observed kinematic dipole. The coefficients,

±2alm, are obtained by integrating against the spin–2 spherical harmonics as

usual. It is common to define two new coefficients,

aE,lm = −1
2(2alm + −2alm)

aB,lm =
i

2(2alm − −2alm),
(3.5)

where the E and B represent “electric–type” and ”magnetic–type” components

of the polarization. These coefficients are used to define rotationally invariant

(spin–0) fields which completely characterize the polarization field. Thus, the E
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and B fields have expansions in terms of the spin–0 spherical harmonics given

by

E(n̂) =
∞∑
l=2

l∑
m=−l

aE,lmYlm(n̂) (3.6)

B(n̂) =
∞∑
l=2

l∑
m=−l

aB,lmYlm(n̂). (3.7)

Note that E and B are related to Q and U, but differ by derivatives. Nonethe-

less, E and B completely characterize the polarization field by breaking it into

curl– and divergence–free components.

Our primary goal is to calculate the power spectrum in the CMB polarization

due to cosmic string wakes. Since our principal observational target is the

South Pole Telescope, we restrict our view to a small patch on the sky (e.g.,

10◦× 10◦) corresponding to a single observational run. We therefore make the

flat sky approximation and greatly simplify our calculations.

Combining eqs. (2.9) and (2.10) with eq. (3.4) and making the replacement∑∞
l=2

∑l
m=−l →

∫
d2l we have

(Q+ iU) ' − 1
(2π)2

∫
2 alme

−2i(φ−φl)eil·θd2l

(Q− iU) ' − 1
(2π)2

∫
−2 alme

2i(φ−φl)eil·θd2l,
(3.8)

where again l = (lx, ly)> and (lx + ily) = leiφl

Using the definition of E and B, and taking eq. (2.11) into account, we finally

arrive at

Q(θ) ' 1
(2π)2

∫
[E(l) cos(2φl)−B(l) sin(2φl)]eil·θd2l

U(θ) ' 1
(2π)2

∫
[E(l) sin(2φl) +B(l) cos(2φl)]eil·θd2l.

(3.9)



34 the power spectrum

Equation (3.9) illustrates the power of the flat sky approximation; not only

have we shed the excess weight of spin–weighted functions and spherical har-

monics, but we have also converted computationally difficult discrete sums to

easy Fourier integrals.

Since we are interested in the E– and B–mode power spectra, we Fourier

transform eq. (3.9) to get Q̃ and Ũ and undo the rotation to give

E(l) = Q̃(l) cos(2φl) + Ũ(l) sin(2φl)

B(l) = −Q̃(l) sin(2φl) + Ũ(l) cos(2φl).
(3.10)

3.2 polarization from cosmic strings

By linearity, we have that the overall polarization field decomposes into a

contribution from Gaussian fluctuations, and the sum of all contributions from

individual string wakes. That is,

P = PGaussian +
∑
i

P cs,i, (3.11)

where the sum is taken over all cosmic string wakes, labeled by i.

The magnitude of polarization, P i, was found by Danos et al. [21], but can be

understood heuristically as follows. The strength of polarization coming from

a cosmic string wake will depend on the number of free electrons in the wake

that give rise to Thomson scattering. As such, we expect the magnitude of

polarization to depend on the Thomson cross–section, σT , the number density

of free electrons, the size of the wake, and the CMB temperature quadrupole,

Qquad.
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The number density of free electrons in the wake at the time it was formed

is given by

ne(ti) = f(ti)ρB(ti)m
−1
p , (3.12)

where ne is the number density of free electrons, f is the ionization fraction,

ρB is the energy density in baryons, and mp is the proton mass. Since the

number density of free electrons redshifts as the universe expands, at the time

the wake crosses our past light cone, the number density will be

ne(t, ti) = f(t)ρB(ti)m
−1
p

(
z(t) + 1
z(ti) + 1

)3
. (3.13)

We can express ρB in terms of the critical density ρc(t0) at the current time

(t0), the baryon fraction ΩB, and appropriate redshift factors. The thickness

of the wake is more complicated to compute, but Danos et al. [21] found that it

is proportional to the speed of the cosmic string, vs, the associated relativistic

factor γs, the dimensionless quantity Gµ, and additional redshift factors.

Combining everything, the resulting magnitude of polarization is then found

to be

P i = 24π
25

( 3
4π

)1/2

σT fGµvsγsΩBρc(t0)m
−1
p t0(z(t) + 1)2(z(ti) + 1)1/2Qquad,

(3.14)

where we have linearized in Gµ and used the fact that the wake is thin with

respect to the proper distance to the wake. Here, Qquad is the CMB quadrupole

today, and the redshift dependence of the quadrupole is already built into the

expression.
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In a frame with U = 0, we must have that |P | = Q, and thus

Qi =P i cos(2α)

U i =−P i sin(2α).
(3.15)

From eq. (2.1) we know that we can orient the wake such that Q and U are

given by eq. (3.15). Thus, eq. (3.10) gives

E(l) = P̃(l) (cos(2φl) cos(2α)− sin(2φl) sin(2α))

B(l) = −P̃(l) (cos(2φl) sin(2α) + sin(2φl) cos(2α)) .
(3.16)

Since we will eventually have to contend with a network of cosmic string

wakes, we will inevitably have to deal with wakes oriented at different angles,

αi, with respect to the coordinate system chosen above. However, the power

spectrum contains an ensemble average over all realizations of the wakes. As

such, we will eventually integrate over the angles α and φl.

The reionization history of the universe is a tricky thing to nail down. Al-

though a rough estimate of f(t) would suffice for our purposes, we approximate

the ionization history with the function shown in fig. 7. This function is an

approximation to the ionization history given by Kaplinghat et al. [33].

The position space signature of polarization due to cosmic string wakes was

determined by Danos et al. [21]. The effect of the cosmic string wake on the

background matter is to cause an overdensity which accretes gravitationally,

as was described in section 1.2. As such, we expect a rectangular patch with

a linear fade in the polarization magnitude along the direction of travel of the

string. We describe the angular size of the cosmic string wake in terms of two

angles, d and w, corresponding to the angular length and width of the string.

We let d describe the length of the wake so that the linear fade lies along

this direction, while w describes the other wake dimension along which the



3.2 polarization from cosmic strings 37

1 5 10 50 100 500 1000

0.001

0.01

0.1

1

Redshift

Io
ni

za
tio

n
fr

ac
tio

n
f

Figure 7: Reionization history of the universe up to the epoch of last scattering
as a function of redshift. This function is an approximate version of the
ionization history obtained in [33].

polarization is constant. In terms of these dimensions, the functional form of

the polarization magnitude is given in the small–angle approximation by

P(x) = PΘ(|x| < d

2 )Θ(|y| < w

2 )
(2
d
x+ 1

)
, (3.17)

where Θ is the heaviside step function. An example of the polarization signal

from a wake is shown in fig. 8 for particular values of the wake geometry. In

general, our wakes will have a fixed aspect ratio (set by the scaling solution

and numerical simulations), and will be rectangular. In Fourier space, the

polarization magnitude is given by

P̃(l) =
∫∫
PΘ(|x| < d

2 )Θ(|y| < w

2 )
(2
d
x+ 1

)
e−ilxxe−ilyydxdy

= P
∫ d

2

−d
2

∫ w
2

−w
2

(2
d
x+ 1

)
e−i(lxx+lyy)dxdy

=
4 sin

(
lyw
2

) {
ilxd cos

(
lxd
2

)
+ (−2i+ lxd) sin

(
lxd
2

)}
l2xlyd

. (3.18)
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Figure 8: An example of a cosmic string wake for chosen values of the offset angle,
position, orientation, etc.

3.3 the power spectrum

The definition of the full sky angular power spectrum is

Cl =
1

2l+ 1

l∑
m=−l

〈alma∗lm〉, (3.19)

where alm is the coefficient in front of the spherical harmonic Ylm in the de-

composition for any field of interest (E, B, T), while 〈· · · 〉 means ensemble

average of the input. For us, the averaging is done over the polarization angle

α, positions of the wakes on the sky, and any other parameters. Rather than

computing the full angular power spectrum, we will instead compute the flat

sky analog, which agrees to a good approximation over the small flat sky patch

[34, Appendix C]. In the flat sky approximation, the power spectrum is given

by

CXXl = 〈X(l)X(l)∗〉, (3.20)

where X ∈ {E,B,Q,U , . . . }.
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We are interested in an integrated effect of many wakes within a single

observational patch. Thus, by linearity,

P̃(l) =
N∑
i=1
P̃(l)i, (3.21)

where N is the total number of wakes. We use the ensemble averaging to

enforce statistical independence of the cosmic string wakes. In other words,

the total power spectrum is a sum over the individual power spectra for single

wakes. While it arises naturally, this independence can be achieved artificially

by inserting into the polarization magnitude a variable ξi with the property

that 〈ξiξj〉 = δij . Then

〈
P̃ iξi P̃j,∗ξj

〉
=
〈
P̃ iP̃j∗

〉
〈ξiξj〉 =

〈∣∣∣P̃ i∣∣∣2〉 . (3.22)

More concretely, the same statistical independence arises when performing the

ensemble average over α. For example,

CEEl =

〈 N∑
i=1

Ei

 N∑
j=1

Ej

∗〉 . (3.23)

Inserting the form of E from eq. (3.16) and expanding the sums leaves us with

terms of the form


cos(2αi) cos(2αj) cos(2φil) cos(2φjl )

sin(2αi) sin(2αj) sin(2φil) sin(2φjl )

sin(2αi) cos(2αj) cos(2φil) sin(2φjl )
...


. (3.24)
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When taking the ensemble average over α, we note that

( 1
2π

)2 ∫ 2π

0

∫ 2π

0
cos(2αi) cos(2αj)dαidαj = 1

2δ(α
i − αj)( 1

2π

)2 ∫ 2π

0

∫ 2π

0
sin(2αi) sin(2αj)dαidαj = 1

2δ(α
i − αj)( 1

2π

)2 ∫ 2π

0

∫ 2π

0
sin(2αi) cos(2αj)dαidαj = 0

(3.25)

so that cross–terms corresponding to two different wakes with αi 6= αj and

cross–terms of the form cos(2αi) sin(2αj) vanish. Once the dust settles, the

averaging leaves us with

CEEl =

〈∑
i

1
2
∣∣∣P̃ i∣∣∣2 (cos2(2φil) + sin2(2φil)

)〉

=

〈∑
i

1
2
∣∣∣P̃ i∣∣∣2〉

CEEl =
∑
i

( 1
4π

) ∫ 2π

0

∣∣∣P̃ i∣∣∣2 dφil, (3.26)

where φil is the angle containing the spin–2 information about the orientation of

wake i with respect to our chosen coordinates, and P̃ is given by eq. (3.18). Note

that rotating the wakes to coincide with one another affects the phase of the

Fourier transforms of each wake and hence the associated m–modes. However,

summing over m removes this orientation dependence. Since the positions of

the wakes are uncorrelated, the full power spectrum really is the sum of the

contributions from each wake. Furthermore, the position dependence of Qquad

from wake to wake washes out when taking the average, allowing us to use the

average quadrupole value today for all wakes (since the redshift dependence is

already built into P).
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Similarly, for the B field we have

CBBl =
∑
i

( 1
4π

) ∫ 2π

0

∣∣∣P̃ i∣∣∣2 dφil. (3.27)

It is also straightforward to check that CEBl = 0 by exact cancellation after

averaging over α. Finally, CETl = 0 = CBTl because the temperature map is a

spin–0 quantity and is thus independent of α. As such, averaging the ET and

BT terms over α gives zero. Therefore, we arrive at our first non–trivial result:

the E–mode and B–mode power spectra from cosmic string wakes

are equal, while all cross–correlations vanish:

CEEl = CBBl (3.28)

CEBl = CETl = CBTl = 0. (3.29)

Intuitively, the cross-correlation terms are non–zero in position space. However,

these correlations arise with different signs for different wakes. As such, when

computing a correlation function that is linear in E or B (ET or BT ), these

correlations average to zero and the correlation function vanishes.

We can estimate the amplitude of the power spectrum from a rough ap-

proximation of eq. (3.14). Using numerical values for ρc, σT , mp, and t0, and

normalizing the redshift terms to values of 103, we have

P
Qquad

' fGµvsγsΩB

(
z(t) + 1

103

)2 (
z(ti) + 1

103

)1/2
107. (3.30)

To get an order of magnitude estimate, we set vsγs ∼ 1 and approximate

f(t) = f(tls) ∼ 1 while the redshift terms are both of order unity for early

times. Thus, PQ ∼ ΩB for Gµ ∼ 10−7.





4
A COSMIC STR ING NETWORK

In chapter 3 we found that we can break the full power spectrum into a sum

over power spectra from individual wakes. We would now like to use the statis-

tics of the scaling solution for a network of cosmic strings to assign a weight to

the power spectra of individual wakes as a function of t and ti. In particular,

Cl =
∑
t

∑
ti

Nw(t, ti)Cl(t, ti), (4.1)

where Nw(t, ti) is the number of wakes laid down at time ti that intersect our

past light cone at time t, and the sums are taken over discrete Hubble time

steps. In order to calculate Nw, we must first review some basics of the scaling

solution for cosmic strings.

4.1 the scaling solution

A detailed analysis of the evolution of a network of cosmic strings gives rise

to a simple, yet powerful result: the network of cosmic strings approaches a

scaling solution [35]. This means that all statistical properties of the network

become time independent when all lengths are scaled by the Hubble length. In

other words, if we know the distribution of cosmic strings at some time t1, we
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can find the distribution and properties of the network at another time t2 by

converting all distances with the appropriate factors of the Hubble length. As

such, the number of cosmic strings per Hubble volume, nw, remains constant

in time when all lengths are appropriately scaled.

In a network of cosmic strings, one can define a correlation length ζ charac-

terizing the rough length scale over which long strings are correlated. ζ also

tends to correspond roughly to the radius of cosmic string loops at formation.

In the scaling solution, one finds that ζ ∼ t, so that it remains constant when

scaled by the Hubble length. Thus, the rough length of a long cosmic string in

the scaling solution is about one Hubble volume.

Since all statistics of the cosmic string network are constant in time when

lengths are scaled to the Hubble length, we can greatly simplify numerical

simulations of the evolution of a cosmic string network by discretizing time into

Hubble time steps. In other words, we can run simulations for one Hubble time,

reset all parameters according to the scaling solution, then run the simulation

for another Hubble time. This is tantamount to initializing a network of cosmic

strings with lengths on the order of the Hubble length, running a simulation for

one Hubble time step, then re–initializing the simulation with a new network

of cosmic strings according to the scaling solution. Since all statistics are time

independent, we can rest assured that any statistical properties we calculate

will remain invariant when re–initializing.

As mentioned in earlier sections there are two types of strings in a cosmic

string network: long strings and loops. Wakes generated by long strings have

more distinct position space features than loops, and it is these signatures that

we have chosen to study. However, it should be noted that loops will decay via

gravitational radiation and other effects [5], which can give rise to polarization
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from gravitational waves. Nonetheless, we will focus on the contribution from

long strings alone.

4.2 string statistics

Armed with the scaling solution, we convert the physical parameters in the

problem to functions of ti and t.

Angular size

The angular size of the wake is given by the ratio of the size of the string to

its distance to us, making use of the small angle approximation. In comoving

coordinates, we denote the length of the string by `c, and the distance to it by

η0 − η(ti) (in natural units), where η is conformal time and η0 is now. Since

we are only interested in times after equal matter–radiation, we approximate

the universe as matter dominated. As such, the scale factor is always

a(t) =
(
t

t0

)2/3
. (4.2)

Since `c is one Hubble length in comoving coordinates, we have

`c =
1

H(ti)

1
a(ti)

=
3ti
2

(
t0
ti

)2/3

=
3
2t0

(
ti
t0

)1/3
, (4.3)
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and the difference in conformal time can be calculated by integrating the defi-

nition dt = a(t)dη to get

η0 − η(ti) =
∫ t0

t

dt′

t′2/3 t
2/3
0

= 3t2/3
0 (t1/3

0 − t1/3)

= 3t0
(

1−
(
t

t0

)1/3)
. (4.4)

Combining the two gives us an expression for the angular size

ω(ti, t) =
`c

η0 − η(ti)
=

(ti/t0)1/3

2(1− (t/t0)1/3)
. (4.5)

In the scaling solution, the direction parallel to the string has an average

xc

η

Past Light Cone

ηi

η

θ

θ = `c
c∆η

Figure 9: Conformal spacetime diagram showing the angular size of cosmic string
wakes.

length on the order of one Hubble length, so we set that direction equal to

c1`c. The direction perpendicular to the string is the direction in which the

string moves. As such, wakes will have a comoving length given by vsγs`c.

Therefore, we arrive at the following replacements:

d→ d(ti, t) = vsγsω(ti, t) w → w(ti, t) = c1ω(ti, t). (4.6)
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xc

η

Past Light Cone

ηi

η

Hubble Volumes at ηi

Hubble Volume at η

Figure 10: Conformal spacetime diagram showing the intersection of early wakes
with the past light cone.

We now computeNw(t, ti), the number of wakes laid down at ti that intersect

the past light cone at time t. From the scaling solution, we know that there are

nw wakes laid down per Hubble time per Hubble volume, where 0 < nw < 10

is a fixed constant that can be obtained from numerical simulations. Thus, the

number of wakes that intersect our past light cone (PLC) at time t is nw times

the number of Hubble volumes at time ti that fit inside the observed volume

of our past light cone in one Hubble time around time t, summed over discrete

Hubble times ti. Mathematically,

Nw(t, ti) = nw
Vol(PLC)com(t)

Vol(Hubble)com(ti)
. (4.7)

Figure 10 shows the way we count the number of strings laid down at time ti

which intersect at t.
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Hubble volume

The physical Hubble volume at time ti is 4
3πR

3
H where RH is the Hubble radius.

Thus, the comoving Hubble volume is given by

Vol(Hubble)com =
4
3πR

3
H

a(ti)3

=
4
3π

(
1

H(ti)

)3 1
a(ti)3

=
4
3πȧ(ti)

−3

=
4
3π

(3t0
2

)3 ( ti
t0

)
=

9π
2 t20ti. (4.8)

Comoving volume of the past light cone

In order to compute the volume of the past light cone, we first note that null

geodesics satisfy

ds2 = 0 = dt2 − a2(t)dx2. (4.9)

This leads to the canonical definition of comoving distance

` =
∫ t0

t

dt′

a(t′)
. (4.10)

Note that in comoving coordinates, ` is simply η0 − η(t).

Substituting the matter dominated scale factor and integrating leads to a co-

moving distance of 3t0(1− a(t)1/2). Then the physical volume of the observed
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portion of the past light cone between time t and one Hubble time after t (i.e.,

time t+H−1(t)) is given by

Vol(PLC)com =
(∫

dΩ
)
`3(t)− `3(t+ 3t/2)

3 . (4.11)

The solid angle contained in an observation volume parametrized by angles θ1

and θ2 is easily seen to be

∫
dΩ =

∫
sin θdθdφ

=
∫ θ1/2

θ1/2
dφ
∫ π/2+θ2/2

π/2−θ2/2
sin θdθ

= θ1(cos(π/2− θ2/2)− cos(π/2 + θ2/2))

= θ1(2 sin(θ2/2)) ' θ1θ2, (4.12)

where θ1 and θ2 are small (and are approximately 10◦ each for SPT). This

leaves us with

Vol(PLC)com = 9θ1θ2t
3
0
(
(1− a(t)1/2)3 − (1− a(t+ 3t/2)1/2)3

)
. (4.13)

As mentioned above, the sum over wakes is done in discrete Hubble time

steps, in accordance with the scaling solution. The Hubble time is defined to

be H(t)−1. Therefore the first Hubble time step, τ0, begins at τ0 = H(tinit)−1,

while the second is at τ1 = 2τ0, and the third is at τ1 = 2τ1, etc. Thus, the

n−th Hubble time step is at τn = 2nτ0, or

τn =
2n

H(tinit)
. (4.14)
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Since we are summing from the epoch of equal matter and radiation up to the

present day for ti, and from the surface of last scattering up to the present day

for t, we need a maximum of

1
H(t0)

=
2nmax

H(trm)

⇒ nmax =
⌊
−3

2 log2 a(trm)
⌋

=
⌊
+

3
2 log2(zrm + 1)

⌋
∼
⌊3

2 log2(3600)
⌋

= 17 (4.15)

time steps in the ti sum, and at most

1
H(t0)

=
2nls

H(tls)

⇒ nmax =
⌊
−3

2 log2 a(tls)
⌋

=
⌊
+

3
2 log2(zls + 1)

⌋
∼
⌊3

2 log2(1100)
⌋

= 15 (4.16)

time steps in the t sum, where b· · · c is the floor function. However, breaking

the volume into discrete chunks includes the present day in the last time step,

and we only need to sum up to nmax − 1. Since we cannot see beyond the

surface of last scattering, nor can we see a wake before it was formed, we need

to start the sum over intersection times at tls whenever ti < tls and at ti when

ti > tls. Converting the sum over t to have a common denominator one easily

finds
2n1

H(tls)
=

2n1+nmax−nls

H(trm)
. (4.17)
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Defining n′1 = n1 + nmax − nls, it is clear that we start the sum over n′1

at max(n2,nmax − nls) and end at nmax. We subsequently drop the prime.

Combining the volumes computed above, we have

Nw(t, ti) = nw
Vol(PLC)com

Vol(Hubble)com

= nw
9θ1θ2t30

(
(1− a(t)1/2)3 − (1− a(t+ 3t/2)1/2)3

)
9π
2 t

2
0ti

= nw
2θ1θ2
π

(
t0
ti

) (
(1− a(t)1/2)3 − (1− a(t+ 3t/2)1/2)3

)
. (4.18)

We then convert to discrete Hubble time steps with the substitutions t →

2n1H(tinit)−1 and ti → 2n2H(tinit)−1. Nw is shown in fig. 11 as a function of

n1 for various choices of n2. It is clear that Nw achieves a maximum as n2 → 0.
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n2 = 13

n2 = 17

Figure 11: Nw as a function of n1 for different values of n2. Curves with larger
amplitude correspond to smaller values of n2. As such, n2 simply rescales
Nw with a maximum being obtained as n2 → 0. Thus, the maximum
value of Nw occurs when n2 = 0.

From the form of Nw, one might naively expect the dominant wakes to be

formed at early times and intersect the past light cone at late times, since these

wakes would have had more time to accrete gravitationally and would corre-
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spond to a large angular size on the sky. However, there are other competing

effects from the magitude of polarization and from the ionization fraction. One

can see from the redshift dependence of eq. (3.14) that the largest magnitude of

polarization comes from those wakes with the earliest formation and intersec-

tion times. Furthermore, from the size of Nw it is clear that terms of the form

(z+ 1)2 and (zi+ 1)1/2 will be the dominant contributions. As such, we expect

the dominant contribution to come from those wakes n2 = 0 (corresponding to

wakes that were laid down at early times) and n1 ' 2 (corresponding to wakes

intersecting the past light cone at recombination). These wakes were formed

at the earliest times and become visible as early as possible around the time

of last scattering. Therefore, we expect the shape of the power spectrum to be

influenced by the angular size of Hubble length features at these times.
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(a) [l(l+ 1)Cl/2π] 1/2 vs l for a dominant
wake.
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Figure 12: Example power spectra (log–log) showing both
√
l(l+ 1)Cl/2π and Cl

for choices of d and w corresponding to a single wake formed at equal
matter radiation and intersecting the past light cone at recombination.

Putting everything together, we arrive at the final result

Cl =
nmax∑
n2=0

nmax∑
n1>n2

Nw(n1,n2)Cl
(

2n1

H(trm)
, 2n2

H(trm)

)
, (4.19)
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with

Cl(t, ti) =
16

4πd2l6

∫ sin2
[

1
2 lw sinφl

]
sin2 φl cos4 φl

{2− 2 cos[ld cosφl]

+ ld cosφl(ld cosφl − 2 sin(ld cosφl))} dφl,

(4.20)

where all other functions have been defined above. Example power spectra for

a single wake (i.e., neglecting the sum) are shown in figs. 12a and 12b where,

incidentally, we’ve chosen a dominant wake.





5
RESULTS

In this chapter, we combine the results from all previous chapters to calculate

the entire contribution to the CMB polarization power spectrum from cos-

mic string wakes. With a power spectrum in hand, we analytically verify the

asymptotic behaviour (very small and very large `). We further this analytic

understanding by determining which wakes in the scaling solution provide the

dominant contribution to the power spectrum.

Current observations of CMB polarization include signals from a number

of sources. Since E–mode polarization can be produced by Gaussian fluctua-

tions and B–mode polarization cannot, we will focus on B–mode polarization.

The two dominant sources of B–mode polarization are gravitational lensing

and gravitational waves. Although inflationary physics does not predict direct

B–mode polarization from Gaussian fluctuations, it does predict a stochastic

background of gravitational waves [36, 37]. This background can act to dis-

tort the CMB and can produce B–mode polarization [38] with a rough peak

amplitude in the dimensionless power spectrum which can be estimated to be

around 10−3 at l ∼ 100. The second source of B–mode polarization is from

gravitational lensing [39]. As with gravitational waves, the distortion of CMB

photons by gravitational lensing can act to produce B–mode polarization with

a rough peak amplitude in the dimensionless power spectrum of about 10−2
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at l ∼ 1000. Having computed the power spectrum from polarization due to

cosmic string wakes, we are in a position to compare with the predicted power

spectra from gravitational waves and gravitational lensing.

5.1 combined power spectra

With all ingredients in hand we finally arrive at the CMB polarization power

spectra for a network of cosmic string wakes. The results are shown in figs. 13

and 14. One important feature of fig. 13 (for both EE and BB) is that the
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Figure 13: The CMB polarization power spectrum (EE or BB) for a network of
cosmic string wakes. The EE and BB power spectra are equal in shape
and magnitude, while the cross–correlation terms vanish.

power spectrum grows linearly in l for small l, with a turn around point at

about l ' 400. This corresponds to a flat curve in fig. 14 for small l. Another

feature is that the amplitude of the power is very low – too low to be detected

and well within the signals from other sources. Furthermore, the shape of

the power spectrum is very similar to that of gravitational lensing. As such,

we conclude that the Fourier space signature of cosmic string wakes in CMB

polarization is weak; we should focus our efforts on the distinct position space

signature.
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Figure 14: Cl vs l including the contribution from all wakes.

5.2 asymptotics

Having calculated the polarization power spectrum, we aim to understand the

physics governing the shape. For small l, we expand the expression for Cl in

terms of ld� 1 ad lw � 1 giving

Cl '
P
2 (dw)2, l <

1
d
and l < 1

w
(5.1)

for a single wake. Thus, the linear shape for small l seems natural. The power

spectrum goes as the square of the area of the wake until we reach values

of l corresponding to scales smaller than the size of the wake. When l ∼ 1
d ,

the Riemann–Lebesgue lemma becomes applicable and the averaging over φl

causes the power spectrum to decrease. For very large l, we expect the rapid

oscillations to average to zero giving Cl → 0 as l → ∞. Therefore, the power

spectrum will be linear until we reach values of l corresponding to the angular

size of the dominant wakes in the sum, at which point it will decay toward

zero. Thus, it is important to find the dominant wakes.
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Figure 15: [l(l+ 1)Cl/2π] 1/2 vs l for wakes laid down at the epoch of equal matter
and radiation, and intersecting the past light cone after n1 Hubble time
steps. Note that n1 = 2 corresponds to recombination.

5.3 dominant wakes

We expect the dominant wakes to be those which maximize the quantity

Nw(t, ti)P(t, ti)f(t). (5.2)

As we have seen, these wakes correspond to those which were formed during

the epoch of equal matter–radiation (ti = trm), and those which intersect the

past light cone earliest. Since we cannot see past the surface of last scattering,

the dominant wakes will be those which intersect at recombination. This is

evident in fig. 15 where we plot the power spectra of wakes formed at trm

and intersecting our past light cone at various times. Thus, the combined

power spectrum from the entire network of cosmic string wakes will be well

approximated by the contribution from a single wake that formed very early

and underwent Thomson scattering during recombination (see fig. 12). The

angular size of such wakes corresponds to a turn around point in the power

spectrum of l ∼ 400, consistent with our findings.
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CONCLUS IONS

We computed the angular power spectrum of CMB polarization due to a net-

work of cosmic string wakes. Working in the flat–sky approximation, we found

an expression for the power spectrum which shows that the EE and BB power

spectra were equal in shape and magnitude. This result is consistent with

other studies [21] in which it was found that cosmic strings produce B–mode

polarization at leading order. Although this result is promising (because infla-

tionary Gaussian fluctuations cannot directly produce B–mode polarization),

the B–mode signal from gravitational lensing washes out any potential signal

from cosmic string wakes [20]. Furthermore, the cross–correlation power spec-

tra (e.g., ET, BT, and EB) vanish completely, and the shape of the BB power

spectrum matches that of lensing, rendering the cosmic string signal nearly

indistinguishable from that of gravitational lensing.

Weak signals aside, we found that the dominant contribution to the power

spectrum comes from those wakes which were formed very early and insersect

our past light cone very early as well. The earliest formation time in our model

corresponds to ti = teq (formation at the time of equal matter and radiation),

while the earliest possible intersection with our past light cone corresponds

to wakes we observe on the last scattering surface (t = tls.) These wakes
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dominate the power spectrum and set the amplitude and scale at which the

power spectrum turns over (see fig. 13). As such

CTotl =
∑
t,tt

Nw(t, ti)Cl(t, ti)

∼ Cl(tls, teq).
(6.1)

We also found asymptotic limits of the power spectrum with the l → ∞

limit sending Cl → 0. The more interesting case is the small l limit in which

Cl −→
P2

2 (dw)2 l .
1
d

. (6.2)

Combining this with the finding of the dominant wakes above, we finally con-

clude that the dimensionless power spectrum (Cl/Q2
quad) remains flat with an

amplitude of

1
2
P2(tls, teq)
Q2
quad

(d(tls, teq)w(tls, teq))2 ' 2.5× 10−17 (6.3)

until a maximum value of l corresponding to

l ∼ 2
d
' 350, (6.4)

at which point the Riemann–Lebesgue lemma becomes applicable and we see

that Cl begins to decay. In terms of the more physical quantity

∆B '
√
l(l+ 1)CBBl /2πQ2

quad, (6.5)

we see from above that the power spectrum (i.e.,
√
l(l+ 1)Cl/2π) grows lin-

early in l until a maximum value of about l ∼ 400 and a peak amplitude of

about 10−4.
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In conclusion, the Fourier space power in polarization from cosmic string

wakes is too small to be detected above the background of gravitational lensing.

However, the position space signature of cosmic string wakes is highly non–

Gaussian and a more promising search for polarization from cosmic strings

would make use of position space features. The rectangular signature found by

Danos et al. [21] affords the use of edge detection algorithms (e.g., the Canny

algorithm) which may lead to detection of cosmic strings in the future.
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