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Abstract

Though 20th century has seen life expectancy largely lengthened worldwide, aging
population, chronic diseases, worsening food supply with deficit nutrition and envi-
ronmental problems add to the burden of healthcare systems all around the world.
Data analytics, which has been seen as a significant power in other industries, is ex-
pected to contribute to the improvement of efficiency and effectiveness in healthcare.
This thesis aims to identify and promote more effective and efficient strategic, oper-
ations and clinical policies in healthcare systems through descriptive, predictive and
prescriptive analytics. To this end, this thesis focuses on three essays, i.e. three data-
driven problems based on medium to large size of real life datasets, on: i) design of
financial incentive systems for maternity care; ii) design of specialist response policies
and modified triage coding to reduce waiting times in emergency departments (EDs),
and iii) design of observation units for hearth failure patients.

The first essay focuses on strategic level and aims to design a two-level finan-
cial incentive mechanisms to reimburse physicians, in order to reduce unnecessary
C-sections while retain it for those who need it, resulting in enhanced birth qual-
ity with alleviated economic burden for overall health care system. Contributing to
clinical decision-making, we first cluster the patients according to their pregnancy
complexities, and characterize a threshold between spontaneous birth and medically
necessary planned C-section by analyzing 12.7 million annual birth records from Na-
tional Bureau of Economics Research through statistical learning methods. Then we
compare payment systems analytically vis-4-vis a variety of performance measures
within two-level hierarchy, (i) mainstream payment models and (ii) compensation on

the top of mainstream payment, and provide insights about the effectiveness of alter-
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native payment models in the context of maternity care. Finally, we propose optimal
payment for physicians to maximize the value for patients under the principal and
agent framework, from the strategic perspective.

The second paper focuses on operational level and targets to reduce the length
of stay in EDs by designing a systematic response policy for various specialists de-
pending on ED clinical demands. This work is motivated by and verified with 40,000
ED visits to a local community hospital in Montreal. We first identify a class of
patients who are more likely to require specialist consultation based on their clinical
information available at the triage stage through statistical analysis. Then we ana-
lyze several alternative policies for specialists’ response to consultation requests using
queuing models with non-homogeneous Poisson arrival rates. Moreover, we examine
an integrated ED decision-making by incorporating specialist consultation requests
in the triage system. Finally, our proposed optimal specialist response policy and
associated modified triage coding are verified through a comprehensive simulation
model. We provide a feasible guideline of integrated patient streamlining to shorten
length of stay and alleviate overcrowding in ED.

The third paper focuses on clinical level and propose a framework to design a
dedicated observation unit for acute decomposition heart failure patients, in order to
provide proper treatment and reduce unnecessary hospitalization and chance of post-
discharge events. To this end, we, first, use multiple analytical models to figure out the
proper number of bed for this observation unit based on historical patient arrival data
from a local community hospital. Based on the confined range of analytical capacity,
we use simulation models to analyze different discharge and admission policies. We
propose an optimal discharge-admission criteria for this dedicated observation unit
to realize cost-saving and quality enhancement of treating acute decomposition heart

failure patients.

il



Abrégé

Bien que le 20éme siécle ait vu 'espérance de vie en grande partie allongée dans le
monde entier, le vieillissement de la population, les maladies chroniques, 'aggravation
de I'approvisionnement en nourriture avec une nutrition déficitaire et des problémes
environnementaux augmentent le fardeau des systémes de santé partout dans le
monde. L’analyse des données, qui a été considérée comme un pouvoir important dans
d’autres industries, devrait contribuer a I’amélioration de l'efficacité et de I'efficience
des soins de santé. Cette thése contribue a la gestion des opérations de soins de santé
a partir des perspectives de décision stratégique, opérationnelle et clinique. Spéciale-
ment, il résout trois différents problémes liés aux données réelles de moyenne a grande
taille , ainsi que la modélisation mathématique.

Le premier vise a améliorer la qualité des soins maternels sans augmenter les
dépenses liées a la naissance en concevant des incitations financiéres optimales pour
les soins maternels des médecins. Contribuant a la prise de décision clinique, nous
avons d’abord déterminé le seuil optimal de complications de la grossesse entre la
césarienne prévue et la naissance vaginale avec des méthodes d’apprentissage statis-
tique et 4 millions de naissances annuelles du National Bureau of Economics Research
(NBER). En suite, nous analysons les mécanismes de paiement existants et proposer
un paiement optimal pour les médecins pour maximiser la valeur des patients dans le
cadre principal et agent, du point de vue stratégique.

Le deuxiéme document vise & réduire la durée de séjour dans les départements
émergents en concevant une politique d’intervention systématique pour divers spé-
cialistes en fonction des demandes cliniques. Nous définissons d’abord une classe de

patients qui sont plus susceptibles d’avoir besoin d’un conseil spécialisé sur la base
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d’informations sur les triages avec 40 000 visites ED annuelles dans un hopital com-
munautaire local de Montréal. Ensuite, nous analysons I'heure d’arrivée optimale
pour les spécialistes en fonction des taux d’arrivée dépendant du temps des patients
avec la modélisation des files d’attente, et nous recommandons enfin les différentes
politiques d’arrivée spécialisées pour différents spécialistes en fonction des volumes
de la demande. Nous menons également une simulation compléte pour comparer la
politique de triage fondée sur les ressources et la politique de triage traditionnelle
avec des politiques d’arrivée spécialisées spécialisées.

Le troisiéme document tente de concevoir une unité d’observation dédiée pour
les patients atteints d’insuffisance cardiaque décomposée en phase aigué (ADHF),
afin de fournir un traitement adéquat et suffisant, et de réduire les événements post-
décharge tout en allégeant la surdité, et économiser les ressources limitées dans les
salles d’hospitalisation. Tout d’abord, nous décrivons la quantité appropriée de lit
pour cette OU en fonction des demandes historiques de patients atteints d’une hos-
pitalisation communautaire locale, en utilisant plusieurs modéles. Ensuite, nous con-
cevons un critére optimal d’admission et de sortie pour l'unité d’organisation dans
le cas o de nouveaux patients arrivent & une entiére OU. Les critéres peuvent étre
équilibrés si 'on admet de nouveaux patients et un patient précoce dépendant du

patient en fonction des progrés de 'ADHF, qui provient de la littérature clinique.
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Acronyms and Abbreviations

ADHF
BNP
CS
ED
FCFES
FFS
F'T
HF
ICU
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PDE
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SC
R2R
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TTET

Acute Decompensated Heart Failure
B-type Natriuretic Peptide
Cesarean Section
Emergency Department
First Come First Serve
Fee-for-Service

Fixed Time Policy

Heart Failure

Intensive Care Unit
Length of Stay

Natural Birth
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Pay-for-Performance
Post-discharge FEvent
Spontaneous Birth
Specialist Consultation
Request to Realization
Timeline Policy

Time To the First Treatment in ED
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Chapter 1

Introduction

Thanks to the achievements on life science and technology advancement that lead to
a large decrease of infant mortality and death from diseases, the 20th century has
seen life expectancy largely lengthened worldwide. Global life expectancy grows to
71.4 years old in 2015, with an average annual growth rate of 5 years old from 2000
(World Health Organization, 2016). In Canada, life expectancy increases to almost
82 years old in 2011 compared with 70 years old in the 1950s (Decady and Greenberg,
2014). This brings new challenges for healthcare systems, which have already been
a challenging issue worldwide, especially in high-income industrial countries. Indeed,
World Health Organization (WHO) projected that almost 25 % of population would
be over 65 years old in 2030 in OECD (Organisation for Economic Co-operation and
Development) countries, of which the percentage is around 15 % in 2015; whereas in
BRICS countries (Brazil, Russian Federation, India, China, South Africa) only 5 %
of population would be over 65 years old by 2030 (World Bank, 2014; Pruss-Ustun
et al., 2016). Increasing life expectancy does not necessarily increases quality of life,
or health span, which is defined as the duration of healthy life without debilitating
disease (EBioMedicine, 2015; Sagner et al., 2017).

Actually, aging population tends to have prevalent chronic conditions requiring
more extensive and intensive healthcare service. The leading factors of morbidity
and mortality, such as cardiovascular and pulmonary diseases, diabetes and certain

types of cancers, have exposed the largest threaten to human life worldwide (Wagner



and Brath, 2012; Arena et al., 2015). Mental illnesses have also been one of the most
important factors threatening health, productivity and wellbeing (Birnhaum et al.,
2010; Kessler et al., 2006). Worsening food supply with deficit nutrition, due to early
picking, pesticide and chemical abuse and deplete soil, has also been contributing to
the burden of healthcare (Helweil, 2007; Davis, 2009). Moreover, pollution and other
environmental problems expose threaten to health. In fact, currently environment
factors account for 23 % global burden of disease (in DALY disability-adjusted life
year), without significant decrease from 24 % in 2002 (Pruss-Ustun et al., 2016).

Healthcare resources are limited, as a result of constantly growing demand. Ac-
tually, it is challenging for almost all countries to raise sufficient funds to finance
healthcare services for all citizens (World Health Organization 2010, OECD2014).
Indeed, the proportion of rising healthcare costs, which now constitute over 10% of
the GDP in most large OECD economies, continues to outpace growth of both infla-
tion and national GDP (Canadian Institute for Health Information, 2012). However,
increasing healthcare expenses do not lead to better quality of care. For instance, in
the case of maternal care, as an expensive operation, Caesarean section can expose
potential harms on both the mother and the newborn(s) (e.g. Knight et al., 2008;
Goer et al., 2012). Efficiency and effectiveness of healthcare have remained the biggest
concerns of governments, policy makers and societies all over the world (Peacock and
Segal, 2000; Biorn et al., 2009; Health Canada, 2012).

Operations Management (OM) has been contributing to the enhancement of effec-
tiveness and efficiency in healthcare system from mainly three perspectives (Brandeau

et al., 2004):

Strategic level. Tt is a high-level policy making on planning, structure and eco-

nomics of healthcare system.

Operational level. It focuses on the optimization of process, prioritization and sys-

tem of healthcare delivery.

Clinical level. It refers to the decision-making regarding selection of technologies

and procedures based on medical information and clinical research.
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Interested readers can refer to Brandeau et al. (2004) and more recent Zaric (2013)
for an introduction and overview of existing OM research on health care system in
breath. Here we highlight some of the most recent and noticeable contributions for
the illustrative purpose. From strategic perspective, the study of Levi et al. (2016)
contributed to improving effectiveness of uniform subsidies regarding maximization
of market consumption of malaria drugs. Adida et al. (2017) studied the advantages
and disadvantages of different payment schemes in the general context of healthcare
systems with mathematical models. Hua et al. (2016) evaluated the co-existence
of private and public hospitals regarding government fiscal policies and quality of
healthcare services. On the operational level, besides extensions and further works
of traditional scheduling and streaming on patient flows (e.g. Kocaga et al., 2015;
Defraeye and Van Nieuwenhuyse, 2016), recent works of Chan et al. (2016) and Dai
and Shi (2017) studied the more realistic scenarios in the hospital setting of a queue
system with time-varying periodic Poisson arrival process. While Chan et al. (2016)
figured out the optimal frequency of discharge inspection in an inpatient ward, Dai
and Shi (2017) found that to advance the discharge time can alleviate the over-
crowding of peak arrivals. OM researchers have also made significant contribution to
clinical decision-making. For instance, recent work of Ibrahim et al. (2016) designed a
two-stage personalized treatment for anticoagulation therapy with (partially observ-
able) Markov decision process, which offered clinical insights of great value regarding

efficiency and effectiveness of the treatment.

1.1 Health Analytics

Data-driven studies, or analytics, an emerging area in OM, has been proven impor-
tant and becomes more and more attractive in healthcare OM field; as the value of
data analysis lays on real-life problem solving and real improvement in healthcare
systems (Staheli, 2014). Healthcare analytics is at the core of healthcare transforma-
tion and with great potential contributions to clinical decision-making, cost savings

and improvement of quality, efficiency and effectiveness, though research in this field



is still in a nascent stage (Raghupathi and Raghupathi, 2014). A recent survey con-
ducted by Health Catalyst among members of the College of Healthcare Information
Management Executives (CHIME) showed that healthcare analytics is the highest
priority among IT relevant initiatives (Haughom et al., 2014). The promotion and
more extensive application of Electronic Health Records (EHRs) will lead to effec-
tive information sharing, improved efficiency and efficient integration of healthcare
information system (Kwapien, 2016). Besides, from the clinical perspective, data an-
alytics can also be applied to decision-making on personalized treatment, drug design
and medicine research (Marr, 2015). Health analytics involves three main categories

(Health Analytics, 2015):

Descriptive analysis focuses on what has already happened. Although it seems
straightforward to report descriptive statistics from existing data, it can be dif-

ficult to derive valuable insights to explain the rationales behind those statistics.

Predictive analysis tends to provide prediction of more likely consequences from
symptoms or clinical procedures, based on historical patient information and
controlled experiments. It shows a more promising way to help decision-making

in healthcare, though it is still an emerging field in health analytics.

Prescriptive analysis works on the solutions to those problems that are likely to
happen. This requires integration with other categories of analysis and more

advanced tools, and is expected to be the real valuable future of health analytics.

1.2 Content of Thesis

This thesis focuses on three different data-driven problems, in order to demonstrate
the contribution of data-driven research to all three crucial perspectives - strategic,
operational and clinical decision-making. These studies feature in combining mathe-
matical modelling with all three categories of health analytics - description, prediction
and prescription. All the analytical models are verified with medium to large size of

real life datasets.



The first essay focues on strategic level and aims to improve the quality of ma-
ternal care without increasing birth-relevant expenses by designing optimal financial
incentives for physicians. From the perspective of clinical decision-making, this chap-
ter first proposes a clustering approach for the patients according to their pregnancy
complexities, and a method to characterize a threshold between spontaneous birth
and medically necessary planned C-section with statistical learning methods based on
over 12.7 million annual birth records from National Bureau of Economics Research
(NBER). From the strategic perspective, this work then analyzes the advantages and
drawbacks of existing payment mechanisms and potential bonus schemes through an-
alytical models under the principal-agent framework. Sequentially, we propose an
optimal payment for physicians to align their goals with healthcare payers to maxi-
mize the value for patients.

The second essay focuses on operational level and targets to reduce the length of
stay (LOS) in emergency departments (ED) by designing a systematic response policy
for various specialists who are not based in ED all the time. This work is motivated by
the prolonged consultation delays in EDs and based on the dataset of forty thousand
annual ED visits to a local community hospital in Montreal. To this end, we, first,
investigate the optimal timing of a specialist’s consultation session analytically in a
queue with time-dependent customer arrivals. Then, we analyze and compare two
potential response policies and determine the optimal ones for different specialists
based on the patient volume and arrival patterns. We also explore the impact of a
possible integration of ED decision-making by examining resource-based triage given
the optimal specialist response policies through a comprehensive simulation model.

The last essay focuses on clinical level and attempts to design a dedicated obser-
vation unit (OU) for acute decomposition heart failure (ADHEF) patients, in order to
provide proper treatment, as well as reduce unnecessary hospitalization and chance
of post-discharge events. Our ultimate goals are to alleviate overcrowding in ED, and
provide effective use of scarce resources in inpatient wards without sacrificing qual-
ity of care or increasing relevant healthcare expenses. First, we use several featured

analytical models to determine the capacity of this OU based on historical data of



patient flows and aggregated process of ADHF. Within the confined range of capacity,
we use simulation models to examine alternative admission and discharge policies for
this potential OU. Finally, we propose an iterative admission-discharge strategy for
this potential OU in order to realize minimal total relevant costs and best possible

quality of care.

1.3 Thesis Contributions

In this section we discuss the potential contributions of this thesis.

Our first essay on the design of financial incentives for maternity care makes the
following contributions to the literature:

1. In this essay, we propose a reliable cut-off point between two typical procedures
in the setting of maternity care (Section 3.3), through a detailed statistical analysis on
the patients’ complexity based on a large dataset of 12.7 million individual records.
Compared to existing literature with a small dataset of hundreds of patients, our
census data set is huge and reliable. Moreover, this compliments literature with
a reliable and feasible method to predict whether a planned caesarean section is
medically necessary or not according to the given clinical information before the onset
of labor; whereas existing medical literature focuses on varied indicators of caesarean
section during labor.

2. As a modeling approach, we propose a modified gatekeeper model in principle-
agent modeling framework. In contrast to the traditional gatekeeping models where
gatekeepers refer those clients beyond their capacities, our modified model considers
the fact that consulting physicians have a typical dual role of both consulting and
delivery, and thus they do not necessarily refer patients to their colleagues. With
the framework of games and contract theory, we provide analytical analysis to this
innovative model in the setting of maternity care.

3. In our modeling framework, quality of care and physicians’ behaviors are ex-
plicitly incorporated into objective functions (Section 3.5). This fills in the gap in the

OM literature given that in the existing literature the decision makers consider only



expenditures of healthcare services.

4. In our model, we incorporate physicians’ efforts and patients’ benefits explicitly
in the physician’s utility function, in contrast to the simplified utility functions in
existing literature. Although in our approach the physician’s utility function is more
complex and intractable, we are able to provide analytical analysis to explain the
rationales of physician’s behaviours and decision-making.

5. In the setting of maternity care, we analytically model different mainstream
payment mechanisms, namely fee-for-service, bundled and blended payments (Section
3.6). Moreover, our analytical results verify the existing empirical studies of those
payment mechanisms. Therefore, our analytical model can be applied to those settings
where new payment mechanisms need to be tested.

6. We propose several feasible outcome or process-oriented metrics for the pay-for-
performance bonus. These performance measures are easy to observe and measure,
resulting in a feasible incentive-based payment mechanism that can increase quality
of maternity care without increasing the relevant expenses (Section 3.8).

Our second essay on the design of specialist response polices in ED makes the
following contributions to the literature:

7. In the queueing models with time-varying arrival rates, we show the closed
form of optimal response times for a specialist’s one daily visit to ED, based on the
pattern and volumes of the consultation demands (Section 4.3.2 and 4.5.3). This fills
in the gap of queueing literature by providing the characteristics of average waiting
time in a non-homogenous queue.

8. We provide valuable insights to healthcare practitioners and managers by
proposing a feasible systematic guideline of determining the best specialist response
rules (Section 4.3.4). This guideline can largely reduce the delay of specialist consul-
tation in ED, and it is also easy to implement.

9. We contribute to the medical literature by designing a reliable statistical
method of predicting whether the patient will require specialist consultation or not,
based on limited clinical information at the triage stage (Section 4.5.2). This method

can be of value for other studies, which will benefit from the accurate estimation of



likelihoods of specialist consultation demands.

Our third essay on the design of observation units makes the following contribu-
tions to the literature:

10. We design a systematic guideline of designing an ADHF dedicated OU (Chap-
ter 5). This guideline provides valuable insights in determining the capacity as well
as admission-discharge strategies for such an OU. Moreover, this guideline is verified
to ensure an enhanced quality of care and reduced overall expenses of care, through

comprehensive simulation models.

1.4 Thesis Organization

The rest of the thesis is organized as follows. The following chapter is a comprehensive
literature review on financial incentives and payment schemes in Healthcare OM. The
third chapter presents the first essay on the design of financial incentive systems for
maternity care. The forth chapter focuses on the second essay: design of specialist
response policies and modified triage coding to reduce waiting times in emergency
departments. The fifth chapter presents the third essay on design of observation
units for hearth failure patients. Finally, chapter six discusses conclusion and future
research of this thesis. Detailed proofs to all the theorems of these chapters are in

the Appendix.



Chapter 2

Literature Review on Design of
Financial Incentives and Payment

Schemes in Healthcare Systems



2.1 Introduction

Health systems aim at providing high quality care by the right providers at the right
time and place to all citizens. Using resources efficiently is essential for such systems
to remain sustainable. However, every county has encountered problems in financing
healthcare services for all (World Health Report 2010). Indeed, the specter of rising
healthcare costs, which now constitute over 10% of the GDP in most large OECD
economies, continues to loom large over governments wanting to meet wide-ranging
healthcare needs (OECD Health Statistics (Database) 2014). The rate of cost increase
has outpaced both inflation and national GDP growth (CIHI 2012), making control of
healthcare costs a priority of policymakers and academics alike. In response, financial
incentives have been introduced by policymakers to steer healthcare providers toward
intended and desirable outcomes that also curtail costs and increase efficiency. Popu-
lar financial incentive schemes around the globe typically aim to improve healthcare
services in four key areas.

(i) Access

Healthcare system should provide timely and proper diagnosis, treatment or other
services to anyone who need them when necessary. The barriers of demographic and
socioeconomic factors, such as geography, sex, race, and socioeconomic status must
be overcome, in order to extend access to healthcare services including hospices, home
care, primary care, and mental care (Biorn, Hagen et al. 2009).

(i) Quality

Quality of healthcare may include but not limit to accurate test results and diagnosis,
effective treatment as well as other necessary services. To assess the effectiveness of
treatment, the measurement of healthcare quality must be perfected. Reaching this
goal is challenging. Furthermore, a strictly positive correlation between healthcare
expenses and outcomes has not been achieved. Nevertheless, the ultimate goal of
healthcare services has always been to provide safe and effective treatment (Peacock
and Segal 2000).

(iii) Effictency
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Healthcare systems aim to provide greater quantity of qualified services within the
constraint of limited healthcare resources.The discrepancy between actual and opti-
mal productivity can be calculated in different ways, for example by using technology
to assess the ability to decrease inputs while keeping output constant (Biorn, Hagen
et al. 2009).

(iv) Integration and cooperation

Healthcare services, namely diagnosis, tests, treatment and recovery care, are impos-
sible to segment with others. Similarly, healthcare providers, including physicians,
nurses as well as clinics and hospitals, should cooperate towards achieving common
goals in an integrated system. Several integrated healthcare delivery models have been
successfully pioneered in recent decades, such as Kaiser Permanente, the Geisinger
Health System. However, implementing an associated integral payment mechanism
has remained an unsolved problem, which demands further investigation (Sutherland
and Crump 2011). Due to the complexity of intended and unintended (but unavoid-
able) consequences, achieving a perfect remuneration mechanism is not easy.

The last few decades have seen continuing critical reviews and corresponding re-
forms, and governments currently use a wide range of methods to fund their healthcare
services and design their financial incentives. These methods, geared to accomplish
several health system objectives, range from global budgeting to payment mecha-
nisms based on the volume and characteristics of patients. Several funding mech-
anisms are common to different countries, and each mechanism demonstrates both
strengths and weaknesses. Certain mechanisms have proven sufficiently successful
to be widely adopted. They include the Diagnosis Related Group (DRG) system,
used for in-patient payment settings, that effectively shortens hospital bed-days and
reduces inpatient costs. The fee-for-service (FFS) approach has always been popu-
lar, while activity-based funding, capitated managed care, shared savings, bundled
payments, and pay-for-performance (P4P) have been more recently developed to over-
come the low efficiencies and potential abuses resulting from FF'S. In addition to these
methods, many public and private healthcare insurers provide other financial incen-

tives for specific goals. In the USA, the Center for Medicare & Medicaid Services
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(CMS) introduced Electronic Health Records Incentive Programs, which pay bonus
funds to participating healthcare professionals, hospitals, and critical access hospitals.
The programs provide financial motivation to install and improve electronic health
records technology (Center for Medicare & Medicaid Services 2014). According to the
Quality Incentive Programs report by the American Academy of Physician Assistants
(2008), the Leapfrog Group, comprising some large employers aiming to assess their
healthcare purchases for employees, developed its Incentive and Reward Compendium
to reward contracted providers for improving quality and efficiency. Moreover, the
Government of Canada announced an investment in March 2007 of approximately
$30 million over three years in the Patient Wait Times Guarantee (PWTG) Pilot
Project Fund, aiming to establish guaranteed clinical treatment timeframes and offer
incentives for care providers to shorten wait times (Health Canada 2012).

Healthcare service providers, namely physicians, hospitals, and pharmaceutical
companies (pharmaceuticals), are pivotal in controlling costs; as nearly all health-
care expenses are directly or indirectly reflected in their profits or gross incomes. In
turn, their service to patients has an overwhelming authority to determine health-
care quality. It is therefore reasonable to increase efforts to improve the design and
operation of payment systems for these crucial players, worldwide. Recent studies
on financial incentives in healthcare confirm that implementing them could lead to
the intended behavioral or cost changes. However, due to the limited number of ran-
domized trials in the available empirical research relative to the complexity among
healthcare systems, it would be difficult to explore those possible cost changes further
and draw generalized conclusions (Chaix-Couturier, Durand-Zaleski et al. 2000). To
Design a proper remuneration scheme can be a laborious and expensive process, which
is subsequently heavily scrutinized. Thus, though substantial empirical evidence is
needed to affirm scheme design and choices, comprehensive analytic research is also
necessary to study financial incentive designs, their desired outcomes, and unintended
consequences.

Aware of the significance of payment schemes for healthcare providers and ne-

cessity of decision tools to assist policy makers and hospital administrators while
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designing financial incentives, Operations Research and Management Science (OR &
MS) researchers have made noteworthy contributions to the improvement of financial
incentives and payment schemes for hospitals and physicians. In this review, we sum-
marize OR & MS studies on financial incentives for particular healthcare systems.
The main problems within each geographic setting are illustrated, and also the OR &
MS research methods. According to the types of healthcare providers, the rest of this
paper is organized as follows. Section 2 describes major payment schemes for physi-
cians with detailed analysis of their strengths and weaknesses; Section 3 focuses on
hospital funding systems, including retrospective and prospective financial schemes
covering for external sources as well as internal allocation of budget within hospitals
(Section 3); and Section 4 covers pharmaceuticals, and mainly focuses on risk-sharing
financing for drug manufactures, sales or purchasing to improve drug access. Limita-
tions of existing literature, potential challenges and directions for future research are

discussed in the final section.

2.2 Payment Schemes for Physicians

The design of financial incentives for physicians is critical for controlling costs and
improving efficiencies in healthcare, because physicians generally have the greatest
control in deciding the type, quantity, and quality of treatment services (Leger 2008,
Institute of Health Economics 2009), and hence directly influence expenses. Recent
empirical studies show that physician payment mechanisms not only influence how
physicians determine the volume of health services, but can also provide incentives for
efficient and effective preventive care, and chronic disease management. Hence, physi-
cian reimbursement schemes are of great interest to health policy makers (Institute
of Health Economics 2009).

Payment mechanisms vary geographically. A significant majority of physicians in
Canada and the United States bill directly to public or private healthcare insurers,
under different payment schemes. In contrast, their colleagues in Europe are mostly

salaried employees, contracted to clinics, hospitals, or health institutes. Variations in
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population demographics around the world are reflected in local healthcare systems,
and the specific nature of their incentives and payment mechanisms.

Broadly, five main payment schemes occur worldwide. They include FFS, capi-
tation, salary/contract, P4P, and blended payment schemes. Studies in OR & MS
analyze the strengths and weaknesses of different payment mechanisms, not only iden-
tifying optimal reimbursement mechanisms for various geographic regions, settings,
and disease types, but also describing the impact of these mechanisms on healthcare

service efficiency, quality, and resource allocation.

2.2.1 Fee-for-service (FFS)

Under FFS, physicians are reimbursed at a pre-determined rate for each service they
provide. It has been used almost exclusively in Canada and the United States since
the 1980s (Cutler 2002, Institute of Health Economics 2009). This scheme is intended
to motivate physicians to provide the necessary healthcare services and proper treat-
ments relative to the health status of individual patients. In practice, however, FFS
provides financial incentives for physicians to prescribe a greater volume of services,
i.e. increase the number of prescriptions and treatments, some of them being un-
necessary. In other words, this scheme encourages physicians to over-produce care
because it raises their incomes. For instance, The recent work of Adida and his col-
leagues (Adida et al 2016) adopted a model-based approach and their analytic results
confirmed the presence of overtreatment under FF'S, whereas it does not result in any
patient selection nor expose any financial risks on physicians.The result is a waste of
scarce healthcare resources. To avoid these unintended outcomes of FFS, alternative

mechanisms have been developed (Leger, 2011, Adida et al 2016).

2.2.2 Capitation

Here, physicians are reimbursed at a fixed rate per patient. This system provides
financial incentives to control costs by minimizing unnecessary services, thereby max-

imizing physician incomes (Tor and Hilde 2000). However, the fixed rate applies
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regardless of the character of patients, or of differences in the enrolled population.
This may be detrimental to proper treatment for patients with severe conditions.
Another negative consequence of capitation is that it stimulates physicians to recruit
a bigger patient panel than they can handle, or to select "the healthiest patients and
avoid admitting more complicated cases in order to save effort under the universal
visit fee" (Ellis 1998). The latter phenomenon is typical of "cream skimming" in the
economic domain, and has become the most significant negative side effect of this
reimbursement mechanism.

Therefore it is argued in the empirical work of (Hutchison, Hurley et al. 2000)
that greater adjustments for patient factors should be included when setting up the
rate of capitation. Using Canadian data, these researchers developed alternative cap-
itation formulas to replace FF'S for primary care physicians based on the population’s
relative needs, and demonstrated that the formulas would be both valid and admin-
istratively feasible under the current healthcare scheme. This study was motivated
by the method implemented in the United Kingdom, which adjusts capitation for

general practitioners based on age and sex of patients.

2.2.3 Bundle

This relatively new reimbursement refers to a fix payment for healthcare providers to
cover relevant services to treat a specific medical condition per episode. Though this
mechanism tends to reduce overtreatment and lower healthcare expenses, it can lead
to negative patient selection. The analytic results of Adida et al. (2016) found that
this negative patient selection under bundle payment could incur especially when the
payment rate is lower or physicians are more risk averse. The higher financial risks
born by physicians under bundle payment would potentially lead to the bankruptcy
of physicians and consequentially reduce the quantity of healthcare providers, thus
could generate detrimental problem for healthcare system in the long term (Adida et
al. 2016).

In order to deal with physicians’ financial risks exposed under bundle payment,

Adida et al. (2016) further proposed a stop-loss mechanism, a modified improvement
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of bundle payment aiming to enhance physicians’ performance by spreading risks
among both payers and providers.

Moreover, due to the newly evolved payment mechanisms, there might exist cer-
tain unkown but possible unconscious consequences. Therefore this mechanism should
be cautiously implemented (Adida et al. 2016). In order to explore this payment
mechanism, Center for Medicare and Medicaid initiated "bundle payments for care
improvement" (BPCI) mechanism that selects and funds proposed bundle. Each
propose defines the amount of bundle payment, services and treatment, as well as
target care quality score. Though proposes with higher expected quality scores and
lower costs should be selected, proposers tend to provide minimal discounts to gain
more incomes. The work of Gupta and Mehrotra (2015) analyzed and confirmed that
an uncertain mechanism of proposal selection is optimal, rather than a fixed selec-
tion mechanism, in dealing with the uncertain number of submitted proposes. They
employed a normative model, and further incorporate different types of proposers’
private information and multiple proposers with competition. Moreover they figured
out the current selection mechanism may not be optimal, leading to a lower quality

score, and potentially impeding the original motivation of better service coordination.

2.2.4 Contract mechanism

Physician pay is based on a pre-negotiated amount over a certain period regardless of
the number of services provided and the complexity of patients. In this contract sys-
tem, physicians are employed by hospitals or clinics and paid a salary for all services.
Unlike FF'S, there are no financial incentives in this scheme to provide additional un-
necessary services. The similarly fixed amount of income paid under capitation may
actually reduce physician productivity and cultivate bureaucracy. This may lead to
inadequate access to healthcare services, and potentially reduce healthcare quality

(Robinson 2001, CIHI 2012).
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2.2.5 Pay-for-Performance (P4P) and Outcome-Adjusted Pay-
ment (OAP)

Using various criteria such as health outcomes, access to care and patient satisfactions,
a framework is developed to incentivize appropriate levels of high quality care. This
approach has frequently been paired with an existing payment mechanism; physicians
are also rewarded bonuses (OAP) for achieving certain quality benchmarks, such as
meeting quotas or target levels for specific procedures or programs. This encourages
physicians to commit their time and effort to particular activities. Essentially, P4P
is the same as OAP, but the latter focuses on issues of quality that have plagued
healthcare systems (Institute of Medicine 2001).

The payment schemes above (FFS, capitation, and contract) differ most from
P4P and OAP regarding uncertainty about physician total income, because P4P and
OAP link reward to measures of treatment outcomes, and so can be categorized as
"prospective". Difficulties in designing and implementing this scheme have drawn
much attention in OR & MS domains.

The most important advantage of a properly designed P4P is that it incentivizes
a high quality of care in many health specializations as well as geographic areas
(Institute of Medicine 2007, Leger 2011). Fuloria and Zenios (2001) proposed an OAP
system using a dynamic principal-agent model, which is originating from economic
studies. Principal-agent models focus on situations where a principal ("she" hereafter)
delegates her task to an agent ("he" hereafter) she pays, rather than do it herself.
The principal wants both a task in good quality and to minimize the fee paid to
the agent; the agent, however, wants to maximize his own earnings. Therefore, the
interests of the players conflict, causing many researchers to focus on the problem of
aligning their goals. Both economic and non-economic strategies have been designed,
which motivate an agent to prioritize the principal’s goals rather than merely his own.
Moreover, it is common for the principal to possess only partial information, such as
the final output but not the agent’s effort, and thus the principal may fail to gain

complete information for reimbursing the agent. This asymmetry of information is
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the source of the problem.

In the model of Fuloria and Zenios (2001) a prospective payment per patient is
combined with a retrospective payment adjustment that is based on adverse short-
term patient outcomes. The model’s aim is to determine an optimal payment system
that reimburses a physician according to observed patient outcomes while also in-
ducing physician choices that maximize total social welfare. Using the context of
end-stage renal disease, this research compares the OAP system with the most com-
mon scheme of payment-per-treatment and capitation systems. The OAP outper-
forms the other two models, and indicates that this system would improve patient
life expectancy without incurring higher costs.

However, choosing the best criteria to measure performance is among the biggest
obstacles to effective implementation of this payment scheme. The case-by-case crite-
ria used to measure the performance of certain treatments are difficult to identify, and
improper proxies may directly reduce the effectiveness of this mechanism. The USA’s
first P4P system, Medicare’s End-Stage Renal Disease Quality Incentive Program,
was developed in 2010, and pays providers for compliance with measures of specific
care processes (intermediate outcomes). Two researchers, Lee and Zenios (2012),
found that Medicare’s limited set of intermediate measures was insufficient to sup-
port payment schemes dependent on them. Their work also incorporated interaction
between Medicare (the principal) and diagnosis providers (the agents). Because the
sole objective of providers is profit maximization, they control the effort they invest
in treatment. By contrast, Medicare aims at better outcomes. However, both the
final and intermediate outcomes are uncertain, and depend partly on patient char-
acter and provider efforts. Medicare cannot observe patient conditions or physician
effort. Insights from this study enabled Medicare to design reimbursement contracts
based on a desired set of outcomes, and thereby successfully induced physicians to
spend more effort on treatment. Specifically, they investigated the merits of Medicare
switching from a per-treatment system to a pay-for-compliance system based on the
intermediate measures of dialysis adequacy and anemia control. Moreover, despite

these improvements of OAP by Fuloria and Zenios (2001), they recommended a capi-
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tation system due to its robustness. They advised against implementation of an OAP
system due to its heavy reliance on information that may not be practically available.
The work of Shwartz et al (2016) compared different ways to measure healthcare
performance and studied their impact of those methods on the P4P scheme. The
authors incorporated Data Envelopment Analysis (DEA) in composite measures, and
then compare the results with other composite measures, namely opportunity-based
weights and a Bayesian latent variable model. They found that DEA led P4P tend
to identify the fewest top performers but with higher rewards, among P4P contracts
results from these three methods.

Jiang, Pang et al. (2012) endeavoring to align the goals of healthcare purchasers
and providers, proposed an optimal "threshold penalty performance-based contract".
A national healthcare payer acting as the principal, aims both to shorten the waiting
time in the system and to minimize total service funding costs. Providers allocate
capacity based on appointment requests from a national online booking system (CaB)
that allows patients to make same-day and advance service appointments. Patients
are modeled in two categories:"dedicated", who insist on having their service provided
by a particular hospital, regardless of whether CaB shows any appointments avail-
able in that hospital; and "flexible", who will select any available service provider.
Based on an M/D/1 queue model, the authors endeavor to determine the payment
contract terms that would incentivize providers to act optimally to achieve a first-best
solution in different settings: with complete information, with asymmetric informa-
tion, or with private agents. They compare capitation, FFS, and payment-by-results
(PbR). The PbR contract incorporates service quality measures (maximum wait time
for outpatients to see a specialist, in this case) and is able to achieve first-best re-
sults. Moreover, in order to attain second-best results for dedicated patients as well,
PbR was modified into a threshold-penalty contract, where providers receive a fixed
payment (like a contract salary) and are penalized by a fixed amount if the target
waiting time is not achieved.

Finally, PAP and OAP may cause providers to concentrate on activities that

achieve merit in performance measurement and to skim other services that do not
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(Feasby and Gerdes 2006, Leger 2011).

2.2.6 Blended Payment Schemes

Blended payment systems combine multiple mechanisms in practice, using the ro-
bustness of one to offset the weakness of another, to provide the intended incentives
for physicians. For example, the FFS scheme discussed earlier may incentivize the
overconsumption of care, while its alternatives, like capitation, may encourage under-
consumption. One potential solution to these distortions is a blend of FFS and capi-
tation, which aims to incentivize physicians to consider proper amounts of treatment
in relation to their own incomes. A typical example of blended payment proposed
in Adida et al. (2016) is called "hybrid" scheme, which is essentially a combination
of FF'S and bundle payment, therefore inherent the benefit of both while balance off
their drawbacks as well.

The advantages of blended payment schemes were demonstrated by Chu and his
colleagues (Chu, Liu et al. 2003). They examined the immediate impacts of Taiwan’s
Physician Compensation Program, where physicians were paid a base salary plus
incentives, rather than a salary based on seniority and rank. They concluded that
this blended mechanism could not only induce physicians to enhance efficiency and
team cooperation, but also increase overall hospital revenue.

However, the obvious concern for blended schemes lies in properly mixing multiple
schemes within a specific environment of healthcare services. Using a method similar
to that of Hutchinson and Hurley (Hutchison, Hurley et al. 2000), an empirical
study of several Norwegian municipalities (Sorensen and Grytten 2000) called for
implementing several blended schemes. Using a mixed scheme of FFS and per capita
subsidies, the authors recommended a relatively low basic grant with a higher per
capita subsidy, FFS payments for municipalities with low physician coverage. For
municipalities with high physician coverage, the authors recommended a higher basic
grant and lower per capita subsidy plus FFS payments. In other countries too, this
formula may adequately distinguish physician coverage levels between rural and urban

areas.
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2.3 Financial Incentives for Hospitals

Hospitals can be defined as healthcare organizations that provide nursing, diagno-
sis, and therapy for patients as required by physicians, and certain hotel and social
services (Fetter 1991). Hospitals should provide care of high quality that is widely
accessible and cost-effective. Achieving this goal has increasingly challenged hos-
pitals because their rate of cost increase has outpaced GDP growth and inflation.
Even though their share of total healthcare spending has fallen noticeably over the
last several decades, hospitals still account for the largest single percentage of health
expenditures in most OECD countries (Sutherland 2011). Although most public
hospitals are classified as nonprofit organizations (or not revenue-driven), they are
cost centers that remain exposed to financial pressure and must at least break even.
That is, income from all sources must cover their expenses, in order to maintain
normal business (Verheyen 1998). Under certain reimbursement policies, hospitals
usually receive funding to cover operating costs from the public sector, from for-profit
or nonprofit organizations, health insurance companies, or charities including direct
charitable donations. Ownership may impact hospital funding and further influence
performance. Private hospitals may behave differently from their public peers, even
in the same geographic and payment-policy setting. Private hospitals from Wash-
ington, USA, used so-called "cost shifting" across inpatient and outpatient services,
which means that they raised prices for one type of service if the government lowered
fees for other types. But Friesner and Rosenman (2004) could not find any evidence
that this occurred in government-owned hospitals. An empirical study by Czypionka
and his colleagues (Czypionka et al. 2014) investigated the impact of ownership,
financing system and financial incentives on the efficiency of acute care sector and
inpatient section of Austrian hospitals with an extensive dataset covering 128 public
and private hospitals. Using DEA framework, they confirmed that private hospitals
tend to be more efficient than their public peers in Australia. They also found the
impact of financial incentives on hospital efficiency by comparing their study with

a similar study on German hospitals. Because funding resources depend largely on
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ownership, financial incentives ultimately become the main reason that hospitals or
clinics perform differently.

Healthcare systems with both public and private hospitals co-existing tend to be
very complicated. Hua and his colleagues (Hua et al. 2016) investigated such two-tier
service system with two types of service providers offering similar service and targeting
the same group of clients - public providers who offers free of charge service, and
private providers charge clients for a possible higher service quality. In the context of
healthcare providers, the public hospitals are generally funded by government but may
incur longer waiting time; while patients can pay out-of-pocket and seek treatment
from those private hospitals, where overcrowding is less severe. Their work first
figured out the conditions under which both providers are able to exist in the same
system, and they found a unique Nash equilibrium in the competition process for the
common client in such a system. Moreover, they found that neither type of providers
were able to achieve the social welfare goal. Public hospitals aim to maximize total
customer utility under capacity constraints, and private peers attempt to maximize
their profits. They proposed government intervention via tax, budget subsidy to align
both types of providers to coordinate and hence increase social welfare.

Both public and private payers know that different funding methods may signifi-
cantly impact hospital performance. For instance, Rosenman and Li (2002) find that
grants and contracts have different effects than donations. More specifically, they
observe that grants and contracts received by health clinics in California affect per-
formance differently from donations received, with respect to quality enhancement.
Donations may not trigger average expenses, in contrast to grants and contracts. Af-
ter further empirical investigation, they conclude that grants and contracts were used
as seed money to create quality. Therefore, they recommend rewarding those clinics
that have already achieved high quality of care, rather than investing in new qual-
ity initiatives. This example indicates that wiser financial reimbursement strategies
could improve the effect of limited healthcare funds.

In general, hospital reimbursements can be classified as retrospective or prospec-

tive payment systems. The main question is how these two main types of payments
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impact hospital efforts to achieve crucial targets of healthcare. Subsidiary questions
concern the popularity, complexity, and controversy of prospective payment mecha-

nisms. The next section examines these issues.

2.3.1 Retrospective payment system

Hospitals and clinics are reimbursed for each service they provide, i.e. the allowable
cost based on an agreed schedule of fees. Thus, almost all operational costs can be
reimbursed without any uncertainty. Typically, FFS is the payment scheme for this
system.

In most countries, retrospective payment has been gradually phased out in hos-
pitals and replaced by prospective payment, due to its major disadvantage: reduc-
ing efficiency. This reimbursement system discourages optimal utilization of health-
care resources, leading to impairment of access to healthcare. This happens because
hospitals have no financial motivation to increase the volume of admitted patients
(Sutherland, 2011). Using outpatient data from hospitals in North Carolina, Morey
and Dittman (1996) demonstrated empirically that lower efficiency was seen in hos-
pitals where a higher percentage of costs had guaranteed reimbursement, compared
with their peers that had a larger percentage of costs with unsecured reimbursement.
Their work adopted the DEA that can simultaneously consider multiple inputs and
outputs.

On the other hand, the advantage of this system is that hospitals or clinics are
financially riskless, since the reimbursed amount covers almost all the service and
treatment costs, and thus guarantees the essential operations of certain hospitals.
This is the main reason FF'S still exists in some specific situations. By studying the
impacts of environmental factors, including Medicare and Medicaid reimbursement,
hospital ownership, and market competition on the efficiency of critical access hos-
pitals in rural areas of the USA, and further proposing a two-stage procedure using
semi-parametric approach and bootstrapping, Nedelea and Fannin (2013) examined
the case of the Critical Access Hospital (CAH) Program, where cost-based reimburse-

ment, i.e. FFS, was adopted by Medicare to fund rural hospitals with small patient
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volume. The CAH program was introduced to address the difficulties faced by these
hospitals in covering their costs under a prospective payment system. The authors
provided no conclusive evidence that the CAH program negatively impacted technical

efficiency in these hospitals.

2.3.2 Prospective payment systems

Funding and capital for a hospital are not completely linked to the amount of ser-
vices provided or actual direct cost of treatments. The amount of funds is usually
negotiated and agreed upon by hospitals and payers before services and treatment
take place. Various payment schemes use this system, including fixed price per DRG,
activity-based financing, capitation, and fixed global budget.

In contrast to the retrospective payment system (in 3.1), the prospective payment
system has shown a powerful stimulus on efficiency, by shifting the financial risk from
healthcare payers to hospitals. Ankjeer-Jensen, Rosling et al. (2006) concluded from
their review of cost accounting used in Danish hospitals that a prospective case-mix
payment system is able to stimulate higher productivity. Empirical work by Clement,
Grosskopt et al. (1996) showed that hospitals engaged in selective contracting for pa-
tients under California’s Medicaid program (Medi-Cal) are relatively more efficient
than non-contracting hospitals. Such contracting hospitals were financed under a
prospective payment mechanism, since they were reimbursed by a fixed unit reim-
bursement rate per Medicaid patient. The authors found closer agreement between
relative shadow prices and relative reimbursement rates for the contacting hospitals,
after calculating the shadow prices of contracting and non-contracting hospitals, and
then comparing to actual relative reimbursement rates. Puenpatom and Rosenman
(2008) studied the effect of a capitation-based payment mechanism in large public
hospitals in Thailand and found that transition to a capitation scheme allowed im-
mediate improvements in efficiency. More interestingly, their results showed that the
hospitals in wealthy regions become more efficient than those in poorer areas, after
both groups made this transition. They combine the method with a bootstrapping

procedure to correct DEA efficiency scores.
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When hospitals and clinics encounter financial risk, they may have to take im-
moral action for the sake of survival. The prospective payment mechanism thus also
involves access problems including cream skimming and dumping. In hospice settings
where healthcare providers serve patients near the end of their lives and offer pallia-
tive rather than curative care, Ata, Killaly et al. (2013) pointed out some unintended
consequences of Medicare’s prospective funding. These included the tendency for
hospices to admit patients with relatively shorter remaining lifespans, and not admit-
ting new patients near the end of payment cycles. They further studied Medicare’s
current funding policy of annual caps on total reimbursement based on the number
of patients, as well as a daily cap for each patient treated. To overcome the nega-
tive consequences of this existing policy, the authors proposed a legacy policy with a
fluid model of patient arrivals, and adjusted the accounting time benchmark of the
accumulated cap. Their results were based on hospice research and could valuably be
applied to outpatient settings, because a majority of hospices provided routine home
care to patients.

The most popular prospective payment mechanism across the world is DRG, and
the next subsection examines its advantages and limitations. Studies on other popular
hospital-funding approaches, including global budgeting and activity-based funding
(McKillop, Pink et al. 2001) are reviewed thereafter.

Diagnosis-related-groups (DRG)

A system to classify and quantify hospital outputs was developed in the USA in the
early 1980s (Goldfield 2010). DRG quickly became one of the most popular case mix
methods. It assigns individual patients to case mix groups by similarity of clinical
features, and a given group has a cost-weight index determined by the mean relative
cost. Using DRG, all hospitals get the same funding for treating patients in a specific
DRG.

Over the past two decades, more than 20 countries have implemented variants of
hospital payment strategies based on DRG and their national settings. Extending

the DRG framework, several countries developed comorbidity (multiple illness) ad-
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justments that assign patients to subgroups based on secondary diagnoses. Examples
of subgroups defined by national clinical practice are the Medicare Severity DRG
(MS-DRG) in the U.S., Germany’s Diagnosis Related Groups (G-DRG), Case Mix
Groups (CMG+) in Canada, Healthcare Resource Groups (HRG) in England, and
Australia’s Refined DRG (AR-DRG). Sutherland, Hamm et al. (2009) proposed an
empirical Bayesian framework to adjust DRG reimbursement amounts for incomplete
and inaccurate comorbidity information in the USA.

The popularity of DRG may be largely due to its positive impact on cost control,
and enhancement of efficiency in hospital services. In his study on examining the
process of developing DRGs, Fetter ( 1991) points out that, the tricky part of hospi-
tal management lies in isolation of providing service and treatments efficiently from

effectively taking advantage of those service and treatments.

The effective utilization of a hospital’s resources is primarily a function

of its ability to treat specific kinds of illnesses.

Indeed, Dismuke and Sena (1999) confirmed the positive impact of DRG on Por-
tuguese hospital service productivity, particularly the efficient use of some diagnostic
technologies. They proposed a two-stage procedure using both parametric and non-
parametric frontier models. After German hospitals introduced a DRG payment
system, Herwartz and Strumann (2012) confirmed the expected rise in competition
for low-cost patients, a trend indicated by a significant increase of negative spatial
spillovers, or equivalently, hospital efficiency, by incorporating comparative applica-
tions of DEA and SFA. DEA users often assume a deterministic production frontier.
That is, all deviations from the frontier are regarded as technical inefficiencies. This is
unrealistic. Those deviations may be caused by measurement errors or other stochas-
tic impacts. On the other hand, stochastic frontier analysis (SFA) can distinguish
between inefficiency and noise components, but at the cost of a more restrictive para-
metric approach. while studying prospective hospital reimbursement methods based
on DRG.

Moreover, DRGs can monitor the quality of hospital services and operations, be-
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cause it was originally developed to provide structured definitions for hospital outputs
(Fetter 1991). Sharma (2008) concluded that the hospital sector modifies its case-mix
in response to changes in relative cost weights, and further confirmed an improvement
in the quality of care under the DRG system. The study adopted a stochastic kernel
approach to analyze the distribution of declines in length of stay after elective surg-
eries in an Australian hospital, where DRG-based funding is adjusted for patients
with unusual lengths of stay (whether over or under the average).

In addition, DRGs can serve as fundamentals for hospital budgeting (Fetter 1991).
Woodbury and his colleagues (1993) propose a quadratic programming model to allo-
cate a national budget to different hospitals, by calculating specific DRG cost weights.
The resulting weights prohibit hospitals from operating at either a loss or a profit,
and thus minimize the deviation of each predicted budget item from observed expen-
ditures. To estimate DRG marginal costs, they use the model to predict the hospital’s
budget based on its patient volume, case-mix structure, and the function of the hospi-
tal. The DRG methods used to set and update prices for inpatient services in Hungary
are discussed by Gaal, Stefka et al (2006), while Epstein and Mason (2006) examine
another extension of DRG, in the structure of the UK National Health Service’s HRG
tariff. They describe how costs are determined, analyze the extent to which prices
reflect costs, and review the results of an early evaluation of the system. In Italy,
Fattore and Torbica (2006) compared the DRG tariff systems applied to inpatient
services at the regional and national level. Bellanger and Tardif (2006) reviewed the
changes made to the French reimbursement system for acute care, which was tran-
sitioned to DRG for public and private hospitals, as well as the price setting mech-
anisms and methods assisting this transition. DRGs have played an important role
in deriving hospital-funding data from clinic-featured costs. A close link with clinical
factors enables hospitals and clinics to hedge unnecessary financial risks. Therefore,
DRGs and their derivative mechanisms are attractive to hospital and clinic managers.
However, determining proper rates for each group is not an easy task. For instance,
Sanchez-Martinez, Abellan-Perpinan et al. (2006) analyzed the DRG related reim-

bursement system for hospitals in the Spanish National Health System, and found
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that price setting does not reflect actual costs of providers that are reimbursed by
public funders based on historical tariffs. Thus, this pricing mechanism has no in-
centive to implement cost control accounting systems. For the German DRG system,
Schreyogg, Tiemann et al. (2006) found that data samples used in determining rates
did not have qualified repetitiveness, and pointed out major challenges to improving
the DRG system, particularly in data accuracy.

To overcome these obstacles, a lot of research has focused on designing and improv-
ing DRG mechanisms. In New Zealand, the difficulties surrounding the methodical
development and implementation of a national pricing framework for hospitals us-
ing Data Envelopment Analysis were chronicled by Rouse and Swales (2006). After
Medicare instated a prospective payment system in the USA, Shwartz and Lenard
(1994) attempted to ascertain whether an alternative method of price setting would
provide better financial incentives than the average cost calculation under this sys-
tem. They propose two linear programming models that use the number of patients
in a patient-type ("groups of patients resulting from the aggregation of DRGs about
which management decisions might reasonably be made" (p.782) being treated at
each hospital as the decision variable, resulting in a price for each patient. The first
model, assuming hospitals operate in an environment of pure competition, gives the
competitive equilibrium allocation, i.e. the reallocation of patients in order to min-
imize costs. The second model is run under the constraint of market boundaries,
which assumes that competition from other hospitals is limited to an area of reason-
able travel distance for patients, and therefore determines what mix of patients would
maximize profit, given set prices. Using data from hospitals in eastern Massachusetts,
the equilibrium prices derived from the two models are then empirically compared to
an estimation of the average cost pricing. This is used to treat patient types in an
"all-payer" system that includes all patients regardless of their third-party payer. To
assess the performance of the pricing systems, the authors define a disincentive index,
which is aimed to be reduced to zero for pursuing efficient behavior. The results indi-
cate that equilibrium prices occurring in a single market model are also the optimal

prices under the constraint of market boundaries, and that this pricing is superior to
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the average cost pricing in use.

Global budget funding

This model has been predominant in Canada and public hospitals in the United States
(Sutherland 2011). Under this system, a fixed amount of funding is allocated among
hospitals based on various criteria, including previous budgets, inflation rate, and
major investments in the upcoming years. Allocation is independent of the volume
and intensity (the amount of care required) of patients in a hospital. This mechanism
functions primarily to control costs, and does not provide any financial incentives
to shorten wait times or length of stays, nor to increase quality of care or volume
of patients. Peacock and Segal (2000) discuss with the help of economic analysis
the feasibility of implementing a weighted capitation (global budget) formula in the
Australian health system at the hospital level as a way to enhance efficiency, equity

and accountability.

Activity based funding (ABF)

This recently-developed hospital funding model is based on both the type and volume
of the services (hospital outputs), and also on the intensity of the patients (Moreno-
Serra and Wagstaff, 2009). For the Norwegian hospital sector, Biorn et al. (2003)
showed that the introduction of ABF has improved technical efficiency, which is de-
fined as an increase in output requiring a corresponding decrease in another output
or an increase in input. Inpatient and outpatient care are defined as the outputs
of physician and labor full-time equivalents, plus the hospital inputs of medical ex-
penses and total running expenses. Later, Bi, Hagen et al. (2009) confirmed ABF’s
positive impacts on hospital efficiency even when taking into account hospital hetero-
geneity regarding the disutility of effort, with the help of a new DEA frontier from
pseudo observation on top of bootstrapping and kernel density estimates. In con-
trast, Sommersguter-Reichmann (2000) showed that even though significant changes
in healthcare performance are observed, such as improvements in technology, a new

activity-based scheme in Austria had little immediate impact on technical efficiency.
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They used Malmquist indexes, defined as ratios of distance function, to measure
technical efficiency over time. Using these indexes, DEA can obtain a simple effi-
ciency score representing the ability of units to maximize outputs while keeping the
input fixed, or to minimize inputs given constrained outputs. However, the general
applications of DEA include a two-stage approach. The first uses DEA to estimate
efficiency, and the second features a regression equation using the estimated efficiency

as a dependent variable.

Internal cost allocation

After receiving external funds, hospitals must decide allocation between salaried
physicians and internal departments. In this context, Verheyen and Nederstigt (1992)
developed an integrated cost-information system for both inpatient and outpatient
hospital internal budgeting, aiming to synthesize the Dutch external model of lump-
sum capitation with internal DRG based budgeting. Later, Verheyen (1998) examined
a system for internal fund allocation in nonprofit Dutch hospitals that eases the po-
tential internal financial tension between physicians and hospitals. Using Verheyen’s
proposal, hospitals maintain a high level of autonomy regarding budget allocation,
and get external funding as a lump-sum payment based on the size of population
being serviced, hospital capacity, and production indicators (such as the number of
admissions). Internally, the hospital then allocates budgets to departments providing
direct care to patients. DRG prices are used to assess the direct care tasks. Based on
the DRGs, the direct care departments pay those departments that provide indirect
care. This "budget/price" method ensured that both administrators and physicians
work towards the same goals in providing patient care.

It is both obvious and logical to distribute funds internally according to the actual
costs of different departments. Taking advantage of dual mathematical programming
and shadow prices, several studies estimated the marginal costs by computing dual
multipliers as shadow prices. For instance, by using the perspective of a hospital
planner, Morey and Dittman (1984) constructed mathematical models to analyze the

impacts of Medicare reimbursement, imposing total revenue ceilings and allocating
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costs between departments under the assumption that all patients, under Medicare or
not, would be treated at the facility. The shadow prices derived from nonlinear and
linear programming models can usefully distinguish the costs of different departments.
The objective function of this model, however, is only to maximize profit, and this

may no longer be the sole aim of hospitals.

2.4 Funding Pharmaceuticals

Although non-medical costs funded by the prospective payment system have recently
decreased, due to the continuing transition in healthcare services from inpatient care
to outpatient care, drug prices over almost the same period have risen, and accord-
ingly have contributed to the overall growth of healthcare expenses (Health Care
Financial Review 1996, Kolassa 1997). The rising drug prices also leads to the acces-
sibility problems in certain poor countries, where patients cannot afford basic drugs.
Studies in the OR & MS literature attempt to reduce this social problem by proposing
economic incentives for drug usage and supply streamlining.

The case of influenza vaccinations illustrates the need to understand how finan-
cial incentives affect pharmaceutical fund allocation. To fight influenza, vaccinations
are considered the primary weapon, and therefore are widely produced around the
world. However, this is constrained by transportation problems, limited raw materi-
als, and the costs of production, research, and storage. Originally, the manufacturers
bore all production risks, which they were forced to mitigate by producing smaller
amounts. This caused insufficient vaccine supply. In this context, Chick, Mamani
et al. (2008) endeavored to align the coordination of vaccine manufacturers and
buyers operating in the setting of government health services. This study proposed
to optimize the vaccine supply chain using cost-sharing contracts that made buyers
share some risks. This would create greater available quantities. Sun, Yang et al.
(2009) adopted a game theory framework to analyze country heterogeneity. Simply
put, countries are either have or have-not in terms of vaccination stocks. Some have

higher vaccination production and stocks, others have little or none. Since influenza
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is epidemic, countries with vaccination production may donate some stocks to those
with insufficient supply. This indirectly protects their own populations while helping
to reduce global losses. The paper showed that the decisions made by individual
countries would be different from the optimal allocation by a centralized resource
decision-maker. Centralization could reduce infections. Similarly, Mamani, Chick
et al. (2013) proposed a contract to allocate limited amounts of influenza vaccina-
tions among countries in order to maximize influenza prevention with optimal cost
savings. Based on a model of the transmission of disease between countries, the con-
tract results in better prevention with fewer expenses. A game model is applied to
reach the equilibrium where governments minimize their perceived total cost of an
outbreak. From the perspective of coordinated decision makers, however, a system
model would minimize the overall financial and health costs of all nations. Finally,
the study proposed a coordinating contract to resolve the "misaligned incentives" by
incorporating the differences between the game and system models. The goal of the
research above is finding the global equilibrium that is a proxy for optimal allocation
of healthcare resources, increased service accessibility, and maximum social welfare.
However, designing a financial contract that is both rational and practical is the key
to motivating coordination of different players.

Another study, by Malvankar-Mehta and Xie (2012) considered prevention re-
source allocation for HIV/AIDS by multi-level decision makers. They investigate the
optimal way of allocating budgets to regional governments to maximize the number
of infections avoided. There are three levels of players in this specific model, incor-
porating two fund allocations; first, the upper-level decision-maker (UD) allocates to
its lower-level decision-makers (LD); then the LDs distribute further into end users.
The UD seeks to maximize its utility function by choosing its level of incentive (i.e.
number of infections avoided), and the LDs then maximize their own utility functions
based on that decision. The UD has to incorporate equity in order to encourage
effective utilization of limited resources.

Besides literature on preventive drugs, there has also been MS & OR studies dedi-

cating to solve the accessibility problem of responsive drugs. In the perspective of fund
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donors, Taylor and Xiao (2014) attempted to seek for the optimal way to improve the
accessibility of malaria drugs in the regions where patients cannot afford those drugs.
Fund donors may face options to fund the drug sales, or to subsidize purchases. With
the framework of game theory, they concluded that it is always optimal to subsidize
drug purchases only in order to increase the numbers of patients who actually take
the drugs, especially the long shelf life drugs. Besides, they argued that funding both
drug sales and purchases can be optimal under certain conditions. Another study
by Levi and his colleagues (Levi et al. 2016) aimed to maximize the consumption
of malaria drugs from the perspective of a central planner, who currently adopts a
simple and perceived fair uniform subsidy to drug producers. Using mathematic pro-
gramming with equilibrium constrains, the authors confirmed the effectiveness of this
subsidy policy, that is, subsidize the same unit rate to every producer regardless of
different producers’ cost efficiency. They found that this uniform subsidy is effective
with the presence of producers with varied efficiencies, and even when the planner
has no idea about market conditions. Moreover, they figure out that this uniform
subsidy can achieve maximal social welfare under certain circumstances. However,
this uniform subsidy may not work if producers face a fixed market entry cost.

Due to uncertainty of drug sales, cost-effectiveness and risks in their manufacturing
and storage, financial incentives in pharmaceuticals have attempted to spread all sorts
of risks among healthcare players, including drug manufacturers, payers and clinics,
and thus ensure certain supply and accessibility of drugs. Zhang et al. (2011) studied
price-volume contracts between drug manufacturers and third-party payers. These
types of contracts come up for negotiation when a payer decides to add a new drug
to their list of those eligible for reimbursement. While drug manufacturers must
often submit a budget impact analysis, which estimates the total cost for the payer
if they approve the drug, the manufacturer has access to more information, and
the cost is difficult to verify until the contract has been implemented. Therefore
different mechanisms for risk mitigation have been developed. One is the price-
volume agreement, where the payer receives a rebate after a certain number of sales. A

principal-agent model is applied to determine the optimal conditions, including rebate
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rate, price, and profit of these contracts for payers and manufacturers respectively.
In certain cases a rebate was sub-optimal, while in other scenarios the payer incurred
heavy costs when the rebate was either 0 or 100% of excessive sales beyond threshold.
The benefits of this type of contract include risk sharing between manufacturer and
payer, as well as providing patients with access to new drugs that may otherwise be
prohibitively expensive.

Mahjoub et al. (2014) analyzed a P4P contract between drug manufacturers and
healthcare payer, and this specific contract with a pre-determined rebate rate and unit
price has a risk-sharing feature. This contract is expected to mitigate drug manufac-
turers’ risks of the effectiveness of the drug. Due to the fact that performance of the
drug is mainly measured by the patients’ response, manufacturers’ profits depend on
drugs’ realized effectiveness, patients’ response rate and the rebate rate. The uncer-
tainty of oncology progression is studied using a Markov model. They found out the
relationship of those parameters so that drug manufactures would make profits under
this contract. So and Tang (2000) modeled a reimbursement scheme for the prescrip-
tion drug Epogen under a proposed policy by the USA’s federal Health Care Finance
Administration. Clinics purchase the drug from a pharmaceutical company, prescribe
it to patients, and then file for reimbursement from the healthcare insurer. However,
the insurer pays only if the health of the drug recipient is below a certain threshold.
The clinic therefore takes all the financial risk up-front. The simple dynamic model
developed by the authors to determine a patient health ("well-being") score, before
and after drug treatment, examines how an outcome-oriented reimbursement affects
a clinic’s prescription policy, profitability, patient health outcomes, and the pharma-
ceutical company’s revenue. Interested readers could refer to book chapter of Zaric

et al. (2013) for review of risk sharing contracts in healthcare literature.

2.5 Conclusions and Future Research

We have discussed pros and cons of each existing financial or payment mechanism by

reviewing relevant literature in OR & MS domain. Existing studies are categorized
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according to different types of healthcare provides who receive those funds. First we
analyzed different payment mechanism for physicians, including both positive and
negative consequences of each mechanism. Second we considered two categories of
external funding methods for hospitals or clinicals - retrospective and prospective fi-
nancial incentives - and demonstrated their envolvement, conscious and unconscious
impacts with existing studies. Internal allocation of budget within hospitals or clinics
and relevant literature have been discussed at the end of Section 3. Third we demon-
strated contributions of OR & MS literature to increase availability and access of
both preventive and responsive drugs. Popular methods (e.g. game theory, principal
and agent framework, DEA etc. ) have been highlighted throughout the review, and
we also analyzed critically the limitations of literature.

OR & MS literature has profoundly impacted the design of contracts throughout
the supply chain in areas including wholesale pricing, cost-sharing or revenue-sharing
contracts and variants of newsvendor models. The optimal contracts proposed in
the domain of healthcare are similar with respect to risk-sharing and motivating
coordination. For example, Chick, Mamani et al. (2008) developed a variant of a
cost-sharing contract for government (payers) to share yield risk with manufacturers
in order to align the goals of both parties to achieve global cost effectiveness. Zhang, et
al. (2011) designed an incentive compatible contract called price-volume agreement
to share risks among drug purchasers and manufacturers. Mamani et al. (2013)
proposed a coordinating contract for multiple countries to fight pandemic influenza
more efficiently. The P4P contract proposed in Mahjoub et al. (2014) features risk-
sharing between drug manufacturers and healthcare payers. However, due to unique
circumstances in healthcare, the proposed contracts are different from those applied in
traditional supply chains. First, in contrast to the linear cost and profit (or revenue)
functions in general contracts of supply chain, the costs and benefits in healthcare
settings are not limited to the monetary investments and profits of services and drugs.
Social costs of producing drugs and infection of pandemic diseases have also been
considered as costs in the literature (Chick et al. 2008, Mamani et al. 2013). Measures

of benefits, a corresponding concept of profit or revenue in traditional supply chain,
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would be even more comprehensive. The improvement of efficiency, effectiveness and
quality all fall into measures of benefits. Hence the resulting cost and benefit function
in healthcare ends up showing a more complicated and non-linear formula, leading to
more complicated contracts for healthcare providers and drug manufacturers. In fact,
Chick et al. (2008) detailed the differences of modeling with comparisons of linear
and non-linear values of sale. Although non-linear penalty contracts are expected to
correct the asymmetry of information in Principal-Agent contract designs, simplified
linear penalties have been adopted, as in Jiang et al. (2012). Investigating more
complex contract structures would be the next step. Moreover, the measures of
quality for the effectiveness of a drug or a treatment tend to be very complicated and
multi-dimensional, which are large obstacles for OR & MS studies.

Second, drug producers and healthcare providers are exposed to more rigorous reg-
ulations than other industries. As So and Tang (2012) pointed out the conventional
risk-sharing scheme with its price rebate property was not perceived to be legal by
certain health insurance agents, therefore they proposed an alternative outcome ori-
ented reimbursement policy to replace the newsvendor model and general risk-sharing
contract.

Finally, the impact of payment schemes in healthcare can be profound and exten-
sive, ranging beyond the borders of countries and bounds of industries. As Zhang
et al. (2011) mentioned, lowering official prices in a country could influence the fu-
ture profitability of similar drug manufacturers worldwide, due to the international
reference pricing adopted in many jurisdictions.

There are numerous opportunities for future OR & MS research on the design of
financial incentives in healthcare, particularly on filling the gaps between expected
or theoretical outcomes and observable results. First, all the challenges faced due to
the special settings of healthcare in the design of contracts are important issues that
OR & MS researchers must address as future research. Selecting proper contracts
in different scenarios has been a challenging task and worth exploring (Gupta and
Mehrotra 2015). Additionally, more work is needed to identify reliable outcomes for

payment schemes. Fuloria and Zenios (2001) pointed out that designs for a more
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effective fund allocation should be based on observed patient outcomes. Difficulties
arise from contracts based on downstream outcome, and more effective incentives may
instead result from measuring payment based on intermediate results, particularly
when they can easily be obtained.

Another important research area that must be addressed is the design of contracts
for integrated healthcare systems. Recently, integrated healthcare delivery systems
have been seen as a promising solution for significantly improving quality and ef-
ficiency. However the design of incentive contracts and payment schemes remain
one of the most critical problems; particularly cost, revenue and risk sharing among
healthcare providers and payers as well as internal budget allocation, i.e. allocating
resources within a team to incentivize better cooperation.

So far, we have seen most works in static settings, i.e. they are limited to a one-
period time horizon (e.g. Lee and Zenios 2012, Gupta and Mehrotra 2015). Although
Sun et al. (2009) considered two periods of the initial onset of pandemic influenza, the
design of financial contracts would be more difficult but more promising if considering
further spreads of a longer time horizon. The outcome-oriented reimbursement policy
developed in Fuloria and Zenios (2001) showed a good example of an optimal contract
that penalized short-term adverse results while encouraging long-term benefits. A
dynamic model would also be of interest when incorporating the learning curve of
healthcare providers. For instance, agent learning may be worth incorporating into
the Principal-Agent model, because the immediate response to a payment scheme
can trigger dynamic incentive decisions, leading to a different optimal decision policy.
A dynamic model extension would be particularly interesting in this case, because a
data-driven reimbursement system depends on previous provider responses.

For simplicity, most articles treat the risk attitudes of hospitals and physicians
homogenously, which is not the case in reality. Progress by Shumsky and Pinker
(2003) in studying two types of agents could be extended to heterogeneous physicians.
Single-dimension models are widely used to measure patient health (So and Tang
2000), as are two-dimensional models in the case of Jiang, Pang et al. (2012). In

reality, however, a patient’s health measure would be affected by multiple factors
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such as diet, drug usage, and stress, with a good deal of fluctuation. To reflect these
factors better, a multiple score with a multidimensional model is needed.

Existing studies consider healthcare providers as profit maximizers (e.g. Fuloria
and Zenios 2001, Lee and Zenios 2012), i.e., the ultimate goal of a hospital or a physi-
cian is to maximize his/her monetary income. This is not completely realistic, since
hospitals do consider multiple objectives, such as quality, access, efficiency, effective-
ness and several specific goals in operations, like shortening length of stays or waiting
time. Similarly, physicians consider patients’ benefits from certain treatment, liabil-
ity issues, and efforts invested in treatments and their reputations, in combination
with monetary incentives. Utility functions of healthcare providers would definitely
be more promising but complicated when accommodating multiple objectives.

The patient-mix is considered homogenous in most studies. Although several
works incorporated varied types of patients, the number of patient classes was limited
to two (e.g. Morey and Dittman (1984)) or three (e.g. Jiang et al. (2012)). Single-
dimension models are widely used to measure patient health (So and Tang 2000), or
two-dimensional models in the case of Jiang, Pang et al. (2012). In reality however,
a patient’s health measure would be affected by multiple factors such as diet, drug
usage, and stress, with a good deal of fluctuation. Future studies are expected to
incorporate more patient groups, because the characteristics of patients are apparently
multi-dimensional. Moreover, varied levels of healthcare services or treatments may be
necessary for different clusters of patients. Therefore, the design of financial incentives
should take that into account for such cases.

Finally, existing research has considered passive patients while modeling the be-
haviors of health care providers in the design of payment incentive schemes, Fuloria
and Zenios (2001); however, in reality patients are actually active. They would like
to select physicians and hospitals they prefer or leave a physician if they are not
satisfied with the care received. Moreover, they may not perfectly conform to the de-
cision made by their physicians. All those behaviors can create an indirect impact on
implementing payment schemes. We believe that future works incorporating active

patients would be more promising among OR & MS researchers, and welcomed by
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healthcare managers and professionals.
After this comprehensive literature review of financial incentives in healthcare,
the following chapter focuses on designing an incentive based reimbursement policy

for physicians in the setting of maternity care.
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Chapter 3

On Reducing Medically Unnecessary
Cesarian Deliveries: The Design of

Payment Models for Maternity Care
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3.1 Introduction

Cesarean section (CS) is one of the most frequently performed types of major surgery
in both developed and developing countries (Spong et al., 2012; World Health Organi-
zation, 2015). Although it is a proven surgical procedure, with significantly improved
maternal and neonatal outcomes for high-risk pregnancies, there is no evidence that
either mothers or newborns benefit from this practice in low-risk cases. Moreover,
CS is associated with short- and long-term risks, including a higher likelihood for the
mother of requiring further surgery, a hysterectomy, of experiencing infection or deep
vein thrombosis haemorrhage, and for the newborn, of having respiratory distress
syndrome, pulmonary hypertension, or refusing to breastfeeding (Knight et al., 2008;
Goer et al., 2012). In addition to the potential negative clinical effects, CS places a
heavy economic burden on the health care system. According to a 2013 report by
Truven Health Analytics (2013), the gross hospitalization costs for CS were almost
50% higher than for natural births (NBs), for both public and private payers. This
disparity would be even more significant if the costs of hospital readmissions and
post-discharge follow-up care were taken into account.

Nevertheless, CS rates have been increasing constantly for both high- and low-
risk pregnancies around the world. Approximately one-third of births in the US are
delivered by CS, accounting for more than 1.3 million surgeries each year (Center
of Disease Control, 2014). Moreover, despite the fact that the low-risk cases do
not benefit from CS, the rates for this group have risen progressively, reaching a
high of 28% in 2013. In Canada, the overall rates have also grown steadily, from
5.7% in 1970 to 28% in 2014, while the rate for low-risk births is now almost 15%
(Canadian Institute for Health Information, 2016). Due to the dramatic increase in
CS rates, the "Healthy People 2020" initiative launched by the Centers for Disease
Control and Prevention set the explicit goal of reducing the cesarean birth rate and
identified 23.5% as the United States’ target for cesarean deliveries (U.S. Department
of Health and Human Services, 2015). The existing literature strongly suggests that

the physicians have other motives besides the patient’s clinical characteristics while
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medical decision-making during childbirth and economic incentives is seen as one of
the most important factors (Taljaard et al., 2009; Johnson et al., 2016 ). Likewise,
in the comprehensive report on evidence-based maternity care by Sakala and Corry
(2008), the misaligned or perverse incentives of payment system have been described
as one of the pervasive barriers to reducing the cesarean rate. Given the role of
economic incentives in the decision process of physicians, this paper focuses on the
design of financial incentives in order to reduce unnecessary C-sections, resulting in
enhanced birth quality with alleviated economic burden for overall health care system.

Maternity care typically comprises three stages: prenatal, delivery, and postpar-
tum, all of which are under the financial responsibility of the health care payer. The
payment model most commonly used by public and private payers is fee-for-service
(FFS), where physicians receive a fixed rate for each service they provide. A signif-
icant portion of the obstetrics fee under the FFS model is associated with delivery;
hence, physicians providing prenatal care are incentivized to deliver their own pa-
tients. This is unlikely to occur with natural deliveries, since care in hospitals is often
provided by a team of physicians working on a rotation basis. Furthermore, the fees
for cesarean delivery are almost 50% higher than those for natural delivery (Thomson
Healthcare, 2007; BC Health Authority, 2016), which further encourages physicians
to perform planned CS. In addition to offering physicians a higher payment, CS also
has a lower opportunity cost. Since NBs often involve a long labor (i.e., requiring
an average of twenty hours of medical attention, as compared to two hours at most
for a CS) and a great deal of uncertainty, they may impede the physicians’ ability to
perform their other duties (Sakala and Corry, 2008). This can lead to physicians not
investing their full effort and attention in monitoring labor until a NB occurs, which
in turn may result in unnecessary CSs being performed. Indeed, recent studies have
shown that limited resources, a high workload and inadequate financial incentives
increase the pressure to move patients through the system faster, which may lead to
increased CS rates (?Ariadne Lab, 2017). For example, Spong et al. (2012) find that
"If labor occurs during night or weekends, physicians are more likely to decide on

emergency CS rather than waiting for completion of the labor due to an appetite for
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convenience'".

Drawing on the realization that better-aligned financial incentives could help drive
down the increase in cesarean deliveries, an array of local, state, and federal initiatives
are underway to improve maternity outcomes through payment reform (CPR, 2012).
The core of these reforms is offering alternative payment models to FFS, including
blended and bundled systems.

Under the blended systems, rather than having different delivery fees for CS and
NB, physicians receive a single rate per delivery, regardless of delivery mode (Main
et al.,, 2011). In theory, a blended payment system removes the financial incentive
for CS by providing one rate for all types of delivery. However, in practice, an equal
payment for all deliveries might not fully compensate for the increased opportunity
cost of natural deliveries.

The Health Care Incentives Improvement Institute has proposed a different model
based a bundled payment for maternity care. This restructured payment method
bundles the payment for the full extent of care for women and newborns (Child
Birth Connection, 2011). Under this system, a set payment is received for each
registered pregnancy, including all prenatal consultations, lab tests, and ultrasounds,
the actual delivery, as well as the post-delivery hospital stay for both the mother
and newborn, regardless of delivery mode, and regardless of the resources expended
(CPR, 2012). A bundled payment structure shifts the financial responsibility for care
management to the providers and creates financial incentives to reduce resource costs.
In addition to its potential benefits, the bundled payment structure also introduces
several new challenges. For instance, providers may struggle to predict the complexity
of a pregnancy, and that complexity may change throughout an episode of care.
Therefore, the actual cost at the end of an episode of care could be much higher
than the price of bundled care, which places a high financial risk on the shoulders
of physicians. Another issue pertains to the choice of necessary care. Given that
natural delivery is less costly than CS (leaving more of the bundled payment available
as profit), under the bundled payment structure, physicians are incentivized to delay

making a CS decision. (Warrington and Brunkow, 2011)
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These payment mechanisms can be paired with other incentives, i.e.complementary
payments. Specifically, pay for performance (P4P) bonuses further motivate cer-
tain physician behaviors in order to offset some the disadvantages of the alternative
schemes mentioned above. Therefore, the P4P design is also seen important element
of payment reform initiatives for maternity care. P4P refers to “compensating physi-
cians according to an evaluation of their performance on defined metrics, typically a
potential bonus on top of other payment schemes" (American Medical Association,
2015). These performance metrics can be based on process quality and efficiency,
outcome, or cost. Although P4P programs have been in force in developed countries
since late 1990s, they were rarely applied to maternity care until recently. One of the
current initiatives involves a bonus offered to a group of physicians in the event that
their overall CS rate is below a certain level (Das et al., 2016). A comprehensive re-
view of a number of P4P implementations in practice concludes that P4P effectiveness
depends greatly on the program’s design (Eijkenaar, 2013). In this context, policy
designers face two critical questions: (a) what to incentivize: which performance
metrics should be chosen? (b) whom to incentivize: individuals or groups?

Although payment mechanisms and incentives have been studied in the literature
mainly in the context of primary care, chronic care and several surgical procedures, the
relevant literature in the area of maternity care is still in an early stage of development.
In practice, there are only a small number of payment reform programs across the US
and Canada. Policy makers all agree that developing the best model for maternity care
is a complex process that requires detailed analyses of each model’s outcomes before it
can be implemented widely. In this paper, we fill this gap by proposing an analytical
framework to study the impact of alternative payment systems in maternity care and
compare their performance under different criteria. This enables us to determine the
payment scheme that induces physicians to deliver the most appropriate maternity
care.

We compare payment systems in relation to a variety of performance metrics,
within a two-level hierarchy: (i) payment models that define a base fee payment and

(ii) bonuses complementary to base payment. Using this hierarchy, we answer the

44



following research questions:

1. Does the payment scheme under consideration provide incentives for improved

quality of care and lead to cost reductions, as compared to FFS?

2. Does the addition of the P4P model (i.e., metric and payee) under consideration

have the desired impact on cost and quality of care?

Our modeling framework focuses on a group of physicians and a single health-
care payer. We base the payer-physician system on the principal-agent model. The
payer, as the principle ("she" hereafter) delegates the task of maternity care to the
physician. She aims for both a good quality of care and the minimization of overall
maternity care expenses, including physician reimbursements. The physician (“he”
hereafter) however, maximizes his own utility, including his own earnings. Moreover,
the payer possesses only partial information (the delivery mode), not complete infor-
mation about the pregnancy’s complexity, the labor complications, or the physician’s
effort. In accordance with the medical literature, we represent the physician’s utility
via three components: benefits accrued by the patient, expected effort, and income
as a function of the delivery mode (Eggleston, 2005). Through our analytical frame-
work, we analyze the impact of hidden efforts and estimate their consequences on
unnecessary planned and emergency CS rates. The payer’s problem is to design a
payment system that links the physician’s observable actions with her objective of
maximizing the value of care for patients, that is, to achieve the best health outcomes
at the lowest cost (Porter and Lee, 2013).

Our data-driven research is based on approximately 16.2 million individual birth
records from 2011 to 2015. The source of our data is the “Natality” database pub-
lished by the National Bureau of Economic Research (NBER) http://www.nber.
org/data/vital-statistics-natality-data.html. This database from the Na-
tional Vital Statistics System of the National Center for Health Statistics provides
demographic and health data for births occurring during the calendar year, i.e., ap-
proximately 4 million births each year. It is based on information abstracted from

birth certificates filed in the vital statistics offices of every state across the US. In
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analyzing the alternative payment mechanisms one of the key challenges is defining
the pregnancy complexities via a quantitative metric and identifying the group of
patients for whom CS is medically appropriate based on this metric. Although there
are several clinical guidelines on defining the set of patients that CS is medically indi-
cated, there is no such quantitative framework in the literature. This very large data
set enables us first, to measure patient’s complexity, then to rank patients according
to their pregnancy complexities, and finally to characterize a threshold between a
spontaneous birth (i.e., NB and emergency CS) and a medically appropriate, planned
CS. Furthermore, we estimate the probabilities for a set of post-delivery complica-
tions under planned and emergency CSs as well as natural deliveries for patients
with a given complexity level; therefore, we are able to accurately estimate the cost
of delivery and postpartum care for alternative delivery modes for a given patient
complexity.

The proposed analytical framework enables us to show that none of the base pay-
ment mechanisms is not sufficient to perform at the desirable levels in both quality
and cost simultaneously. We also propose a set of complementary incentives based
on reliable and tractable metrics of quality of maternity care. Acting as an add-on to
the payment mechanism, these incentives are capable of discouraging hidden efforts
in both prenatal and delivery stages of maternity care. Furthermore, we propose an
easily implementable and robust two-level payment model, i.e. blended payment and
a process-oriented bonus, that results in risk sharing between payer and physicians,
and coordination among the group of physicians. We empirically verify our analytic
results in the numerical study based on our data set, and demonstrate that the en-
suing quality and expense of our proposed two-level payment mechanism outperform
traditional mechanisms. Specifically, our analysis shows that this recommended pol-
icy proposes 3% reduction in average birth related costs and 27% decrease in overall
CS rate compared to those under FF'S system.

The rest of the essay is organized following: the related literature is discussed
in Section 3.2. We outline our data-driven approach for modeling pregnancy com-

plexity in Section 3. The models regarding physician’s decision making in childbirth
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Table 3.1: Descriptive Statistics

Calendar year 2011 2012 2013 2014 2015
Total live births excluding
in territories 3,961,220 3,960,796 3,940,764 3,998,175 3,988,733
% Births in hospital 98.70 98.61 98.54 98.47 98.42
% of overall CS 34.75 34.92 34.85 34.23 32.87
> 37 gestational weeks 3,029,917 3,098,879 3,162,890 3,421,630 3,479,307

Full records of labor and delivery 3,008,781 3,079,833 3,146,062 3,406,120 3,479,307

and healthcare payer’s problem are presented in Sections 4 and 5, respectively. Sec-
tion 6 and 7 discuss our analytical results on base payment schemes and proposed
complementary incentives, respectively. Our proposed two-level payment model is
demonstrated in Section 8. Numerical results are presented in Section 9, followed
by conclusions and limitations in Section 10. Supplementary statistical results, pa-
rameter estimation for numerical analyses and sensitivity analyses are provided in

Appendix.

3.2 Literature Review

This work falls in two main research streams: financial incentives in the area of
health care, and game and contract theory in operations management. Given that the
payment reforms in maternity care by introducing alternative base and complimentary
payment models are currently tested, the literature addressing the financial incentives
directly in this domain is really limited. However, the subject of financial incentives
applied to various settings in the health care system has been studied extensively in
health economics, health policy and operations management literatures. Interested
readers can refer to the comprehensive review paper by Kucukyazici and Zhu (2017)
for the relevant works in operations management. We mention the most relevant
research in operations management hereafter.

Our work relates to research on base payment policies for health care providers
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as well as the performance-based reimbursement mechanisms. In the context of base
models, the analytical models developed by Adida et al. (2017) compare a traditional
payment scheme FFS and the more recently designed bundled payment regarding
varied performance measures, including patient selection, treatment levels selected
by the physicians, financial risk born by the healthcare providers, and overall payoff
for the healthcare system. Their analytical results also reveal the impact of providers’
risk aversion. The authors provide two possible ways of improvement - a stop-loss
mechanism to offset the drawbacks of the bundled payment, and a hybrid scheme com-
bining both payment systems in order to coordinate health care payers and providers
to a system optimum. 7 also study the models of FF'S and bundled payment by using
a three-stage Stackelberg game. Through this modeling framework, they investigate
the possible impacts of these reimbursement schemes on patients’ welfare, readmis-
sion rate and waiting time in a public healthcare system. Compared to these papers
focused on general healthcare settings, this work aims to provide analytical analyses
as well as managerial insights on three base payment mechanisms - FFS, blended and
bundled payments in the specific circumstances of the maternity care.

Besides the studies on base payment schemes, there have been evolving initiatives
of performance-based reimbursement mechanisms aimed at improving the quality of
health care: performance- or outcome-based incentives. P4P and outcome-adjusted
payment (OAP) have been popular in practical and theoretical works, after the unin-
tended but disappointing impacts of commonly used base reimbursement mechanisms,
including FFS, capitation, and fixed salary policies. These models are outcome or
process oriented and only reward the successful achievement of certain quality bench-
marks; hence, their intent is to encourage physicians for their commitment to care
quality. As one of the early works, So and Tang (2000) model an outcome-oriented
reimbursement program for the drug industry. Fuloria and Zenios (2001) introduce
an OAP as an add-on of existing retrospective payment adjustments, based on the
adverse short-term outcomes of patients with end-stage renal disease. Moreover, in
the setting of Medicare’s End-Stage Renal Disease Quality Incentive Program, Lee

and Zenios (2012) design a pay-for-compliance system based on the intermediate mea-
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sures of dialysis adequacy and anemia control. Jiang et al. (2012) propose an optimal
"threshold penalty performance-based contract", derived from a payment-by-result
contract, to motivate health care providers to shorten waiting time. More recently,
? analyze the performance-based reimbursement in the context of cancer treatment.
Jiang et al. (2017) study the joint impact of performance-based incentives and compe-
tition on the healthcare service providers. In our study, we particularly propose four
types of process- or outcome-oriented incentives to act as add-ons to base payment
schemes. These are selected based on opinions of those physicians we approached as
well as a literature review, including the clinical guidelines, on targeted performance
metrics for maternity care. Moreover, we examine the effects of different possible
recipients for these complementary incentives in the context of maternity care.

Our work is also closely related to principal-agent framework in contract theory.
Typically in healthcare systems, the payer or the principal, i.e. public or private
insurer, fails to fully observe patients’ true health conditions, which are detected by
the healthcare providers (commonly the physicians), or the agents. As the principal
cannot provide professional health care herself, she delegates these services to physi-
cians, which might lead to a misalignment of priorities between the principal and the
agents. Therefore, the payer has to rely on reimbursement contracts to align her goals
with the physicians’ aims, as presented by So and Tang (2000), Fuloria and Zenios
(2001), Lee and Zenios (2012), and Jiang et al. (2012). The most recent application of
this framework in health care domain is presented by Zorc and his colleagues (2017)
in chronic care setting. Their work focuses on comparing different contracts with
individual or group physicians, and proposing a payment policy that minimizes the
chance of adverse effects. In contrast to those papers where the moral hazard (i.e.
hidden effort) problem occurs in a single epoch, our analytical framework considers
moral hazard problems in two stages of maternity care. First in the prenatal care
stage, the physicians tend to prescribe planned CS for the sake of earning a guaran-
teed income at regular business hours. Second in the delivery stage, there is a hidden
effort problem, since the physicians may not spend their full efforts for monitoring

the ongoing labor, especially during non-business hours, resulting in the unnecessary
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emergency CS cases, which can be avoided with full monitoring efforts.

Our framework also falls under gatekeeping problems, wherein gatekeepers have
the option to either keep serving clients or refer them to specialist colleagues. Gate-
keepers are common in call centers, while in a health care system, family physicians
or primary care providers are considered as the "gatekeepers". Gatekeepers can serve
those relatively easy or low-risk patients themselves, whereas need to refer those more
complicated or high-risk cases to specialists. The efficiency of generalist physicians’
compulsory referral mechanism has been an area of concern in health economics, es-
pecially in a system where physicians can have a dual role, in other words, physicians
can be both gatekeepers and specialists, and therefore they can refer their own pa-
tients to other services provided by themselves (e.g., Gonzalez, 2004; Biglaiser and
Ma, 2007). Such case is also called physicians’ self-referral, and is considered as one
of six conflicts of interest in medicine, according to Rodwin (1993). In operations
management, 7 conducts an empirical study to show the impact of workload on the
gatekeepers’ decision making in a maternity unit. As a more relevant study to ours,
Shumsky and Pinker (2003) study a gatekeeper model without self-referral; the gate-
keeper’s chance of successfully solving a problem decreases as the problem becomes
more complicated. Thought gatekeepers try to solve as many problems as possible,
this may detriment clients’ satisfaction in a service system. This work evaluates the
performance of contracts, and provides managerial insights in contract design for het-
erogeneous gatekeepers. In contrast to this paper, our model of gatekeepers comprises
the physicians’ self-referrals or dual roles as well, that is, the physicians might serve

their own patients in the delivery stage.

3.3 A Data-Driven Approach for Representing the
Level of Pregnancy Complexity

Prenatal care is provided by a consulting physician who, through a number of visits,

monitors the pregnancy and assesses its level of complexity and the associated risks.

20



By the end of prenatal care, the consulting physician decides on the delivery mode:
spontaneous birth (SB) or planned CS. For a planned CS, the consulting physician
schedules the operation and performs it, thereby becoming the delivery physician as
well. However, in the case of an SB, the patient goes to the hospital’s birthing center
once labor begins. Consulting physicians and their colleagues serve at the birthing
center on a rotational basis. Therefore, the on-call physician, who can be anyone
within the group, is responsible for the delivery. During labor, the on-call physician
can also order a CS (emergency CS) for various reasons, including problems with the
umbilical cord, sudden changes in the baby’s heart rate, and prolonged labor.

The patient’s pregnancy complexity level, which we denote by x, plays a key role
in the physician’s ultimate choice between an SB and a planned CS. In the context
of this research, we use the likelihood of a CS as a proxy for pregnancy complexity.
In this section, we describe how we estimate x and its distribution using our dataset,
and define a pregnancy complexity threshold (i.e. z*) for a medically necessary,
planned CS, such that, if the complexity level is higher than this threshold, having
a planned CS is clinically appropriate, through our large data set. Our data set
includes the birth records of all live births with full-term deliveries, meaning births
with 37 or more gestational weeks, and served by physicians in hospitals of U.S. during
each calendar year from 2011 to 2015. It consists of detailed individual-level records
of approximately 16.2 million births, which contain i) the mother’s demographic
information, ii) pregnancy history, iii) clinical risk factors of the current pregnancy,
iv) delivery information, including birth date and time and method of delivery, and
v) postpartum information including post-delivery complications.

Using this data set, we first estimate the probability of having a planned CS
through a logit model, given medical risks and patient characteristics observed in
prenatal care. In our statistical model, we use births occurring over a whole calendar
year for in-sample modeling, and the births in the following year as out-of-sample.
That is, we run our logistic regression model for births in the years of 2011, 2012,
2013, and 2014; and demonstrate the forecasting power for deliveries in 2012, 2013,
2014, and 2015, respectively. Our results show that the model predicts well, and that
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the area under the ROC curve for out-of-samples are quite similar across four different
years, ranging between 83.29% and 83.76%. Therefore, our explanatory variables have
high discriminatory power. The results of logit models are presented in Table EC.1
in Electronic Company. There are other non-clinical factors that may be associated
with the decision to have a planned CS, such as differences in physicians’ diagnostic
skills and practice styles. However, as was argued by Currie and MacLeod (2013),
the pooled birth records, with decisions by thousands of physicians, offset the impact
of these non-clinical factors.

Next, we rank women according their probability of CS estimated in the logit
models, and then normalize them into the standard values of zero and one [0, 1]. By
this approach, pregnancy complexity x represents the percentile of CS likelihood. For
example, for a pregnant woman with a complexity level of 0.4, there are 40% of women
in this population with a lower risk than her and 60% with a higher chance of having
a CS (see Figure 3-1a). In Figure 3-1a, we observe that, as expected, the probability
of having an NB decreases as x increases, and that this decrease is quite sharp at the
complexity level of 0.85, suggesting that the ordered ranking of pregnant complexity
shows two different regions as regards the medical appropriateness of planned C-
sections. Although the rate of SB decisions during prenatal care is almost 90% for
patients with a complexity level lower than 0.85 (i.e., low-risk group), it is only 17%
for those with = > 0.85 (i.e., high-risk group). Likewise, the chance of having an
emergency CS under the decision of SB is three times higher for the high-risk group.
We also run sensitivity analyses around the complexity level of 0.85, (i.e., testing 0.75,
0.8, and 0.9 as cut-off points) and conclude that, in terms of differences between two
groups, the most distinct categorization is provided by x of 0.85.

Moreover, birth outcomes present different patterns for these two groups. We use
post-delivery (i.e., postpartum) complications as a proxy for birth quality. The birth
records contain over 20 variables relating to the existence of major severe post-delivery
complications, including maternal complications (such as excessive bleeding and hys-
terectomy) and abnormal conditions in the baby (such as brachoplexis, fractures,

meconium, birth injuries). We define an undesirable health outcome as involving at
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least one maternal or neonatal complication, and the incidence of post-delivery com-
plications as the percentage of deliveries with undesirable outcomes. Our empirical
analysis shows that the incidence of post-delivery complications following a planned
CS is independent from z, the complexity level of the patient diagnosed in prenatal
care; however it has a significant positive correlation with  under SB, with a pseudo
R-squared statistics of 90% or higher for in-sample study of all four years’. Further
analysis on complication incidences shows that, for x < 0.85 the average risk of a
postpartum complication under planned CS is higher than that of SB. After this
point, however, the risk of a complication following a SB is higher. Therefore, it is
essential to perform a planned CS for cases with x > 0.85 and decide on a SB for
the ones with <= 0.85 in order to minimize the incidence of post-delivery compli-
cations (See Figure 3-1b). Based on the observed differences regarding the rate of
SB decisions, emergency CS rates, and complication incidences, we propose that x*
represents the cut-off point, above which a planned CS is medically more appropriate.
Alternatively, an unnecessary C-section refers to the prescription of a planned CS for

a woman with a complexity level of less than x*.
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Table 3.2: Logistic Regression Results

Variables Coefficients
(Intercept) -5.4857  FHX
age 0.04263  ***
prior other termination 0.29614 ok
live birth order -0.6599 ok
previous CS 2.21392 orok
eclampsia 0.52242 kK
month of prenatal care began | 0.03094  ***
infertility treatment 0.25569  ***
total birth order -0.2557 ok
weight gain 0.01789  ***
cigarette record 0.21428 kK
diabetes 0.73514  ***
gestational diabetes 0.32568  ***

previous preterm birth -0.0271
chlamydia 0.16002 orok
hepatitis B 0.31533 orok
hepatitis C 0.08287

BMI 0.06996 ok
plurality 1.08439 <k

Notes
1. *** denotes for the significance level less than 0.001;

2. This table summarizes the logistic regressions results of in-sample for the year of
2013.

o4



3.4 The Physician’s Decision: The Mode of Delivery

In this section, we start developing the modeling framework by focusing on the physi-
cian’s decisions. We will represent them as a set of constrains in the payer’s decision
model in Section 5. We start by discussing the modeling framework, and then present
our formulation concerning the physician’s best response strategy. The notation is
summarized in Table 3.3.

We consider a population with a finite number of pregnant women, a single group
of J physicians and a single health care payer. We assume that each physician has the
same diagnostic skills, the same preferences over delivery procedures, evenly shares
on-call time in hospital, and an equal number of pregnant women (at similar levels
of complexity) registered to his panel. Note that we relax this homogeneity assump-
tion in Model Extension (Section 3.9) without loss of generality. Empirical studies
show that the physicians tend to be influential on their patients with regards to the
decisions concerning delivery mode; consequently, it is assumed that the patients are
in compliance with the consulting physician’s decision (Fabbri and Monfardini, 2008;
Grytten et al., 2013). In our framework, the physician’s utility consists of three com-
ponents: a patient’s benefits, effort spent and income gained by the physician as a
function of the realized delivery mode. Patients’ benefits and physicians’ effort are
exogenous factors in reimbursement policies.

We consider a population with a finite number of pregnant women, a single group
of J physicians, and a single health care payer. We assume that each physician has
the similar diagnostic and procedural skills, similar preferences regarding delivery
procedures, the same share of on-call time in the hospital, and an equal number of
pregnant women at similar levels of complexity registered to his panel. Note that we
relax this homogeneity assumption in Section 8.2 without loss of generality. Empirical
studies show that physicians tend to hold influence with their patients as regards
decisions about delivery mode; consequently, it is assumed that the patients comply
with the consulting physician’s decision (Fabbri and Monfardini, 2008; Grytten et al.,

2013). We also assume that the physicians are rational decision-makers, i.e., they
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Table 3.3: Summary of Notations

Decision Variables

S Threshold of pregnancy complexity between spontaneous birth and planned CS;
A Physicians’ effort level of serving a delivery on their shift;
PN FFS rate per each NB;
PEC FF'S rate per each emergency CS;
pre FFS rate per each planned CS;
pBP Payment rate under blended payment;
PBL Payment rate under bundled payment;
mp Physician’s income under decision D;
BPO Postpartum outcome-oriented bonus;
BC© Complexity add-on;
BNB NB rate bonus ;
BTH CS threshold bonus;
Other Parameters
r overall CS rate;
J the number of physicians in a group, i.e. the group size;
x € [0, 1] ranked complexity of pregnancy;
f(\ ) expected successful rate of a NB for complexity of x and physicians’ delivery effort
level \;
x* clinically optimal threshold of complexity for planned CS;
Q a physician’s benevolence level;
I payers’ total birth related economic costs;

payers’ quality objective function;

Prenatal Stage

D physicians’ decision in the consulting process, D € {SB,CS};
SB physicians’ decision of spontaneous birth;
cSs physicians’ decision of planned CS;
bp(x) benefit of decision D for a patient with complexity of x;
uh(\, )  physician’s expected utility under decision D by the end of prenatal care;
Up(A,z)  overall utility of physicians if decision D is made for a patient with complexity of x
and their agreed effort \;
Ip(A,x)  incidence of postpartum maternal and neonatal complications for pregnancy comple-
xity level x and effort level A;
Delivery Stage
et effort of serving a C-section;
N effort of serving a NB;
MN effort or inconvenience factor for monitor labor in spontaneous birth;
Payers
% facility fee for a CS;
ey facility fee for a NB;
C average unit cost of treating postpartum complications;
CH(A,s) total facility fee depending on threshold s and effort level A;
CI(),s) total postpartum treatment costs dependent on threshold s and effort level \;

Intensity of actual population in terms of pregnant complexity.
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choose the best action possible given the clinical information concerning the patient

as well as their own utilities.

3.4.1 Physician’s Utility

In our framework, the physician’s utility is made up of three components: (i) the
patient’s benefits, (ii) the effort expended by the physician, and (iii) the physician’s
income as a function of the realized delivery mode. Note that the patients’ benefits
and the physicians’ effort are exogenous factors in reimbursement policies.
Patient’s Benefits

From a quality-of-care standpoint, * can be seen as an important marker. Avoiding
a planned CS for patients with pregnancy complexity below z* enhances the quality
of care by reducing the risks of post-delivery complications. The decision of an SB
for women with a pregnancy complexity higher than z*, however, leads to potential
under-treatment and jeopardizes the well-being of both mother and child. As dis-
cussed in Section 3, the existence of a threshold z* in our empirical study allows us
to evaluate decisions made about the method of delivery during prenatal care. To
this end, we use the choice distance model, i.e., we capture the benefits (costs) of
a pregnant woman with pregnancy complexity x with the distance between z and
x*. For instance, in light of the x* = 0.85 identified in our empirical study, where
a planned CS is performed for a woman with x = 0.7, the benefit of this decision is
bes(x), is -0.15, whereas the opportunity benefit of an SB, bgp(x), for the same case
is 0.15. That is,

bSB(JJ) =a — xZ, bcs(SL’) =x—a". (31)

In the decision on a delivery mode, we assume that each physician is fully able to
diagnose the patient’s complexity level x, and is informed about the clinical cut-off
point x*.

Physician’s Efforts
We model the physician’s efforts in terms of the monetary value of the time he would

spend performing the tasks in two stages: monitoring the labor and delivering the
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baby. Since labor monitoring is only required for SBs, it is not included in the utility
of planned CSs. We denote the efforts expended by physicians while performing an
NB and a CS by eV, €, respectively. Furthermore, we define é”V to represent
the effort of fully monitoring labor from onset to an NB or a medically necessary
emergency CS.

Let A, (A € [A,1]) be the proportion of the full effort that a physician has spent
from the onset of labor to the delivery. Therefore, the actual effort of monitoring

N A s
labor, eMN £ \eMN

, is non-decreasing with respect to the effort level \. We assume
that physicians are aware of their effort level. Note that A = 1 indicates the full labor
monitoring. Let A > 0 denote the lower bound of the efforts.

Given that the average NB requires about twenty hours of medical monitoring,
which can take place anytime, including nights and weekends that elevates the level
of inconvenience and, as a result, the amount of effort required by physicians. It
is assumed that the cumulative effort to serve an SB (either NB or emergency CS)

are higher than for a planned CS; whereas, we assume e© > e, since CSs involve a

surgical procedure. Specifically,

eV < e < el 4 AeMY. (3.2)

We define f(A,x) as the chance of having an NB for a given prenatal complexity
level of z € [0,1] and an effort level A, following the SB decision. By definition,
f(A, z) is monotonously increasing with respect to A. As verified by the empirical
analysis on our data set, this function is monotonously decreasing with a pregnancy’s
complexity x: those with a lower complexity level are more likely to have an NB.

The physician’s expected effort following an SB decision for a patient with a
complexity level of x can be written as f(\, z)e™ + (1 — f(\, x))e® + MV,

Finally, we assume that the amount of effort saved in labor monitoring dominates

the difference between the two procedures. Specifically,
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(ec N)af(/\>$) < ¢MN

o~

— €

Physician’s Income
As discussed before, the consulting physician makes a decision D on the delivery
mode by the end of prenatal care. When the recommendation is a planned CS, he
performs the delivery himself and receives a reimbursement of mgg. SB cases however
are taken on by the on-call physician (among the group of J physicians), who claims
the reimbursement of mgg. As discussed, the on-call physician can also order an
emergency CS during labor, and therefore, the attempted NB may be followed by
an emergency CS. Without abuse of notation, we denote the reimbursement mp 2
mp(A, ) where VD € {SB,CS}, that is, the physician’s income is a function of his
actual effort and the patient’s level of pregnancy complexity. Its exact formulation
depends on the reimbursement policy: we will specify the exact policy-dependent
form of mp in Section 6.

Physician’s Utility Function
Let ul,(\, z) be the expected utility of any physician by the end of prenatal care, solely
from the point of view of his own benefit (i.e., monetary income and the dis-utility
of efforts), under his decision D € {CS, SB} and for a patient with a complexity .

Accordingly, the physician’s utility is estimated as follows:

uICS()\, z) =mes(A x) — e

ubz (N ) = mgp(\, z) — [f(\ 2)e” + (1 — f(\ 2))e” + MV

Once we incorporate the benefits of a patient with a pregnancy complexity z into
the physician’s decision-making process, his expected utility under the decision of a

planned CS can be written as

Ucs(x) = abes(x) + uICS()\, x),
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where « refers to a physician’s benevolence level, that is, the weight given to the
patients’ benefit in a physician’s mind. The more benevolent the physician, the more
he values the quality of care and the benefit of his patients, and the higher will « be.
Note that & — oo indicates that a physician values only quality of care and completely
ignores his own utility: he makes his decisions from a purely clinical perspective, at
the cost of his own benefit, which would eliminate unnecessary planned as well as
unnecessary emergency CSs. In our framework, we assume that, while physicians are
not perfectly altruistic, they all have the same considerably high level of benevolence.

On the other hand, a decision for an SB factors in that each physician has a
hospital rotation dedicated to deliveries and is on call for an equal amount of time,
and therefore, all physicians in the group have an equal chance of performing this
delivery. Hence, they have a 1/J chance of gaining the expected utility for an SB,
such that

U{S'B()V I) )

USB(A,m) = OdbSB($) + 7

Therefore, for an individual patient with a pregnancy complexity x, a rational physi-

cian would decide on an SB if Ugg(\, x) > Ucs(z), and on CS otherwise.

3.4.2 Physician’s Best Response Strategy

We start the analysis by defining a pregnancy complexity threshold s that maximizes
the consulting physician’s overall utility over a population of patients. Assuming that
the physician behaves according to the utility described in the previous subsection
for the population of all patients registered to his panel, this decision is equivalent to
setting up an optimal threshold s in order to maximize his total utility. Note that
the population density is uniform across the spectrum of complexity levels due to the
way x is estimated from our dataset, as explained in Section 3. Therefore, we also

normalize the total population to 1. More specifically:

Lemma 3.1 If a physician aims to mazximize his own overall utility, i.e., U, he should

decide on a planned C-section by setting an optimal level of s in the prenatal stage,
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1.€.,

s 1
s = arg maaz/ Usp(\, x)dx +/ Ucs(x)dx,
0 s

[0,1]

which is equivalent to setling s as

Usp(\,x) > Upg(x), Vr <s,
Ucs(z) > Usp(A,x), Vr>s.

This lemma shows that in order to maximize his overall utility, the physician will set
a threshold s in such a way that he will recommend an SB for patients with a clinical
complexity = lower than s and will prefer a planned CS for the rest. However, the
threshold s set by the physician is influenced by the reimbursement policies and may
not necessarily be equal or close to z*.

Next, we focus on a group of physicians: There are J physicians in the group,
and each physician j selects a decision from a set of strategies D; = {C'S, SB} and
a payoff function U;(Dy, Ds,---,Dy) Vj € {1,2,---,J}, in the prenatal care stage.
They all agree on the same A under a given reimbursement mechanism mp. This
is a finite symmetric game < J, D,U > given D = Dy = Dy = --- = Dy, and
Vi,je{1,2,---,J}

U;(CS,d_;) = Uy(CS,d_,), for d_; = d_;,
Uj(SB,d_j) = Uz(SB,d_Z), for d_i = d_j,

where d_; refers to the decisions of all physicians other than physician . We present

existence and uniqueness of the equilibrium for this game below.

Lemma 3.2 Fach physician should make the same decision for a patient with a com-

plezity level of x,¥x € [0,1] at the Nash equilibrium.

Finally, we present a closed form to calculate the overall CS rate (i.e., planned

and emergency CSs). For simplicity, we assume that the physicians are aware of the
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function f(A,z) while making a decision D on the delivery mode during prenatal
care (D € {CS,SB}). The physician’s expected effort for all his patients becomes a

function of his threshold s and effort level A and can be written as

E(\s) = /0 [fON ) + (1 — f(A2)e +eMV] da + /1 e“da.

Let r be the resulting overall CS rate of a given population. We then set up a

one-to-one mapping relationship between s and r by the following lemma.

Lemma 3.3 Given that f(\, x) is a decreasing function of the pregnancy complezity

x, the overall CS rate r can be expressed by the planned CS threshold s

r=1 —/Sf()\,x)dx.
0

Clearly, the overall CS rate » monotonously decreases as the planned CS threshold s

increases.

3.5 Health care Payers’ Problem

In the context of our work, the term “payer” refers to a private or a public insurer
who reimburses the maternity care expenses. In general, the payer aims to maximize
the value of care for the patients by achieving the best health outcomes at the lowest
cost. This amounts to a two-dimensional objective: maximization of quality and
minimization of costs. We start the section by focusing on the payer’s goals, and
then we study the problem under a perfect information setting, assuming that the
payer can fully observe the patient’s pregnancy complexity level by the end of prenatal
care, as well as the physician’s efforts during the labor. This sets a benchmark for
our analysis. We end this section by examining the payers’ objectives in the more

realistic asymmetric information setting within a principal-agent framework.
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3.5.1 Payer’s Objectives: Maximization of Value for the Pa-

tient

Here we introduce a two-dimensional objective function, a weighted sum of economic
and quality goals, which is aligned with the models presented by Hua et al. (2016)
and Levi et al. (2016).

MM = BII%(s) + 1% (s, A, mp), (3.4)

where [ is the weight of the quality objective, with a monetary unit. A higher
amount of [ indicates that a greater importance is given to quality in the payers’
policy design. Specifically, in the event that 3 = 0, IIV™ becomes the sole economic
objective; and if B — oo, then IIVM is equal to the quality objective. The physician’s
optimal threshold is denoted by s¥ and s9 in these two special cases, respectively.
Quality Perspective: Maximization of Care Quality

Birth quality is the most important objective from the perspective of social welfare
and is accordingly an essential concern for the payers. Recall that the cut-off point
x* represents a clinically appropriate threshold for a planned C-section. We consider
the distance s — x* a measure of quality of care. More specifically, in the event of
s > x* under-treatment occurs for complex pregnancies that should have been planned
CSs. By contrast, s < z* indicates overtreatment, or the inappropriate selection of
a planned CS for low-risk pregnancies that should have been SBs. Therefore, the

payer’s goal in the context of care quality can be expressed to minimize
[1°(s) = |s — 2*| (3.5)

which is independent of any reimbursement mechanism for physicians. Evidently, x*

is the resulting optimal quality threshold satisfying unconstrained Eq.3.5.
Economic Perspective: Minimization of Costs

The cost of maternity care includes all expenditures involved in the prenatal, delivery

and postpartum stages of care. Given that prenatal care costs (consultation provider
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fees plus the cost of imaging and laboratory tests) are independent of the decision
about a delivery mode, they are outside the scope of this work. Therefore, in the
context of our study, maternal expenditures consist of all payments for delivery and
postpartum care.

Cost of delivery care captures all the expenses of the delivery and post-delivery
hospital stay, for both mother and newborn, and we categorize them into two groups:
facility fees and physician charges. The former includes payments for the physical fa-
cility (e.g. delivery room, operating theater, post-surgery recovery room, etc.) as well
as for nursing, anesthesiology, radiology /imaging, laboratory, and pharmacy services.
Let ¢§ and c¥ represent the facility fees for a CS and an NB, respectively. Because
of the surgical nature of the CS, and the longer in-hospital stay that follows this
operation, its associated facility, hospitalization and nursing costs are significantly
higher than those for an NB, i.e., ¢§ > cl¥. ¢§ is considered to be the same for both
planned and emergency CSs, because of the similar resource requirements.

For a given population of patients, the expected facility fees CH (A, s) depend on

the threshold s determined by the physicians, and can be written as

CH(\, s) = /08 [f(N 2)ey + (1= f(\ 2))cf] do +/ cGd.

The expected total physicians’ fee is also dependent on the threshold s, and can

be expressed as follows:

s 1
M\, s,mp) :/ mSB()\,x)dx—i-/ mes(A, z)dz.
0 s

The cost of postpartum care takes into account expenses resulting from the treat-
ment of post-delivery complications, including re-admissions, as well as follow-up care
provided in the three months after childbirth. Both the medical literature (e.g. Knight
et al., 2008; Goer et al., 2012; Villar et al., 2007) and our empirical study confirm that
the risk for mother and baby of having post-delivery complications varies significantly
with the pregnancy’s complexity and the mode of delivery. We use Ip (A, z) to denote

the incidence of post-delivery complications under decision D for a pregnancy com-
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plexity level of x with an effort level of A in the delivery stage. Our empirical analysis
reveals that, for a given complexity level of x, I(CS,z) £ Icg, as it is independent
of z, and I(SB,x) is an increasing linear function of z. In light of this information,
we further assume that incidence decreases as effort increases in the delivery stage,
since a higher effort will lead to lower rates of unnecessary emergency CSs and of

complication risks. Specifically,

GISB(A,x) <0 8153()\,x)

o : S >, (3.6)

Let C be the average treatment and re-admission costs for post-delivery compli-
cations per case, for the mother and baby. Then, the postpartum expenses for the

overall population can be expressed as
s 1
CI(\ s) = C’/ ]SB()\,x)dx+C'/ Icgda.
0 s

This portion of the expenses can be incurred as extra charges to payers during the
original hospitalization or over the short term after discharge. It is an essential com-
ponent of birth-related expenses for payers, but has been consistently underestimated
by both payers and policy makers (Truven Health Analytics, 2013).

From an economic perspective, the payer aims to minimize her total maternity

care costs by minimizing the following objective function
[P\, s,mp) = M(\,s,mp) + CH(\, s) + CI(),s). (3.7)

Lemma 3.4 If M()\,s,mp) is a convex function of s, II¥ is conver with respect to

S.

Through this lemma, we show that this objective function is convex in terms of
physicians’ threshold, determined in the consulting stage, under any reimbursement

mechanism.
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3.5.2 Benchmark: Payer’s Objectives under Perfect Informa-
tion

Before beginning our analysis of how the physicians’ actions to maximize their own
utilities affect the cost and quality of care, we first present the benchmark, in which
the payer can fully observe the patients’ health conditions or pregnancy complexity, as
well as the physicians’ efforts. This allows the payer to set a threshold for physicians
for ordering a CS during the stage and enables her to require that physicians expend
a full effort during the delivery stage. Specifically, under a setting of full information

transparency, the payer’s problem can be written as follows:

Zgy = min  1IVM
s;mp
subject to uLz(A\,x) >0, Vo<s (PCN)
ubg(\, 1) >0, Vo >s (PCC)
A=1.

The first two constraints, PCN and PCC, are motivated by Lemma 3.1 and ensure
that the compensation for the NB and CS is sufficient for the physicians’ efforts, so
that they engage in both forms of delivery. Only under these constraints the payer
is free to set any threshold s and mp to achieve her objective. The third constraint
requires that the physician monitor the full labor unless an emergency CS is medically
necessary.

Similarly to the unconstrained representation of I19(s) in Section 5.1.1, the opti-
mal s? is equal to x* for the constrained problem under a full information setting.
However, as Proposition 3.1 indicates below, the optimal s needed to minimize costs

is not necessarily equal to x*.

Proposition 3.1 If the payer observes a certain effort level X achieved in the delivery

stage under a reimbursement mechanism mp, and both Ucs(\, z) > 0, Vo > s¥ and
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Usp(\, ) >0, Vo < s¥, s can be calculated as solution of equation
F ) (e + e = ey =€) + CIsp(A, x) = Ies) + e =0, (3.8)

if and only if s¥ is in [0,1]; Otherwise, s¥ = 1.

Note that the optimal values of s¢ and s” represent the boundaries of the region
of the optimal physician threshold s. Depending on the reimbursement mechanism in
effect, s could be on either side of s?. Increasing the weight of care quality (i.e., 3 in
Eq. 3.4) would move s towards s? and away from s”. That is, a quality improvement
would come at an increased maternity care cost. Considering the many instances
in which increased health care expenses do not necessarily improve quality of care,
this is presumably more palatable for the payer. Proposition 3.2 presents a formal
statement of this window of opportunity, where there is a clear trade-off between the

quality and cost of maternity care.

Proposition 3.2 The optimal value of s for the payer is between s® and x* under

perfect information.

For any s outside this region, the additional expenditures for maternity care may
not lead to an increase in quality of care, and hence, this region constitutes a bench-

mark for us.

3.5.3 Payer’s Objectives under Asymmetric Information

Let us now enhance the model to represent the asymmetric information setting, where
only physicians are able to observe the patient’s level of complexity at the prenatal
stage, and the progress of labor during the delivery stage. Therefore A and s are in fact
decided by the physician, whereas the payer’s only lever to incentivize the physicians
to achieve the desired threshold s is mp. Under this framework, we formulate the

payer’s optimal problem as follows:
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Zp =min II"M

subject to  ugz(A\, ) >0, Vo<s (PCN)
ubg(\, 1) >0, Vo >s (PCC)
A = argmaxubp(\, 7), Vo <s (ICE)
A1
Usp(A\,z) > Ucs(A\ x), Vr<s (ICN)
USB()\,ZL’) S UCS(A,I>, YV 2 S (ICC),

where the first two constraints, PCN and PCC, are exactly the same as those in
Problem Zpg);. In the third constraint, however, the materialized effort A\ is deter-
mined by the physician, according to his own utility ulz(\, ) rather than being set
by the payer to 1. The constraints of ICC and ICN refer to the physician’s decision
of a delivery mode by the end of prenatal care and ensure the maximization of the
physicians’ utility, as presented in Lemma 3.1, in Section 4.2.

By incorporating the ICN and ICC constraints into this asymmetric setting, we
first examine the impact of the physicians’ benevolence o and the group size J on
the physician’s threshold s and on the quality of care. As expected, the deviation
from the threshold for a planned C-section s under a given reimbursement mechanism
mp and x* is non-increasing as « increases. We present our findings analytically in

Section 9. Moreover, s is sensitive to the group size J in the asymmetric setting.

Lemma 3.5 If Usg(z) > 0 Vo € [0,1] under given reimbursement mechanism mp,

5 18 mon-increasing as J increases.

For a reimbursement mechanism that leads to a threshold of s less than x*, a smaller
group may be preferable, as it increases the threshold closer to z*, given that the
physicians are more likely to serve their own patients in cases where a decision for an
SB is made within a smaller group. Under a reimbursement mechanism that moti-

vates a preference for SBs (even where a planned C-section could be more medically
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appropriate, i.e., s > x*), a larger group has the advantage of lowering the threshold,
that is, of avoiding the SB for high-risk patients. This finding could provide impor-
tant managerial insights for a payer dealing with physician groups of different sizes
and different contract types.

Next, we study the characteristics of a feasible solution to Problem Zp.

Corollary 3.1 Suppose the range for the set of feasible solutions of threshold s to
Problem Zp is [s, 5]. If this range is completely exclusive of the interval between s¥ and
x*, then, under the asymmetric information setting, the optimal cost-minimization

threshold is equal to the optimal quality threshold, which is equal to
o 5, if 5 < min{s x*};
o s, if s > maz{s” z*}.

This result implies that there is an equivalent optimal solution for the payer’s eco-
nomic and quality objectives under the asymmetric information setting. However, the
reimbursement policy that results from this situation is suboptimal from the point
of view of value maximization and should definitely be avoided, since such policies
erode the quality of care while also increasing the related expenses. Consequently, the
payer is disadvantaged by a double-layered “information rent” in the form of reduced

quality and expanded costs.

3.5.4 Payer’s Objectives Under Asymmetric Information

In reality, though the payer reimburses physicians for the sequential procedures in
the delivery stage, he has no direct access to patients’ health condition or pregnancy
complexity; and only physicians can actually observe the progress of patients’ preg-
nancy. This is a typical setting of asymmetric information with moral hazard (or
hidden actions), where a physician can take advantage of all the information he ob-
serves, and decide his threshold for planned CS in consulting stage, and effort level
during delivery stage. Therefore, the payer (the principal) relies on the payment to

incentive the physicians (the agent) to achieve the desired threshold s in his economic
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or quality objective ; since the payer cannot control the threshold directly and explic-
itly. Under this typical principal-agent framework, we formulate the payers’ optimal
problem under this setting by incorporating three incentive constraints to physicians,
in additional to participating constraints.

minllp(s, A\, mp)
mp

(N z) > Uegs(z), Vor<s (ICN)

Usp(\,x) < Ugs(x), Vx>s (ICC)
A E argAIrllaxung(/\, z), Vx<s (ICE),

where IIp can be any objective Hg, L, %M as we mentioned in section 3.5. The
first two constraints (PCN and PCC) are exactly the same as those in Problem ?7?.
The last three constraints (ICN, ICC and ICE) are the incentive constraints typically
in the setting of asymmetric information. Lemma 3.1 implies that the combination
of ICC and ICN ensures the maximization of physicians’ utility. Furthermore, the
incentive constraints ICC and ICN are typical in consulting stage with a twofold
impact: (i) physicians eliminate unnecessary CS for patients with lower risks; (ii) the
planned CS should be retained for those with higher complexities. ICE is typically
set up for the delivery stage, where physicians select the most desirable effort level
of providing a care during delivery through their shift in hospital - the one that
maximizes their expected utility ulz(\, x).

With ICN and ICC in this asymmetric setting, we first examine the impact of
physicians’ benevolence o on defining their threshold s, and consequential impact on

quality of care.

Lemma 3.6 If a reimbursement mechanism mp(x) VD € {SB,CS} leads to a con-
sequent threshold of planned CS s, quality of care increases with respect to his benewv-

olence. That is, the deviation from the clinical cutoff of planned CS |s — z*| is non-
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INCTeasing as o iNcreases.

Consider the worst scenario where physicians fully ignore patients’ benefits, or the
most selfish physicians, i.e. o = 0, a certain reimbursement policy leads physicians
to determine the threshold of s. The deviation from the clinically optimal rate of
planned CS is no larger than |s — z*| for physicians with o > 0. However, the
clinically optimal threshold can be gained under any reimbursement,i.e.s = z* if and
only if a — oo.

Moreover, the following result states that the quality objective is sensitive to the
group size J in the asymmetric setting, given the fact of sharing the tasks to serve

SB in hospital.

Lemma 3.7 If a reimbursement mechanism mp(z) VD € {SB,CS}, satisfying ukz(x) >
0 Vz € [0,1), it leads to a consequent threshold of planned CS s, which is non-

increasing as J increases.

Lemma 3.7 demonstrates a two-fold impact of group size. For a reimbursement mech-
anism that leads to a threshold lower than z*, a smaller group may be preferable as
it increases threshold closer to s. Intuitively, physicians are more likely to serve their
own patients in the case of deciding a SB, in a smaller group. Under a reimbursement
mechanism that motivates insufficient planned CS, i.e. s > z*, a larger group has the
advantage of lowering the threshold, reducing the mis-application of SB for highly
risky patients. The extreme example is when J — oo, the group is very large, and
hence physicians have little chance to serve any NB during their shifts in hospital.
Consequently, they have no chance to increase their utility from delivery stage, lead-
ing them to an induction of gaining the certain overall utility by deciding on planned
CS.

Recall s” is the resulting economically optimal threshold that satisfies the cost
minimization objective function in Eq.3.7 in the setting of perfect information (with
constraints in Problem ?7), and then we have the following corollary, interpreting

characteristics of feasible solution to Problem 3.9.
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Corollary 3.2 Suppose the feasible solution of threshold to Problem 3.9 is [s, §|. If it
falls outside of the interval between s¥ and x*, the optimal cost-minimization threshold

15 equal to the quality optimal threshold. That is, both optimal thresholds become
o 3, if 5 < min{s¥ x*};
o s, if s > maz{s” z*}.

Which leads to the fact that payers’ economic objective to minimize 115 is equivalent

to maximize their quality objective HjQD i this case.

It implies an equivalent optimal solution for both economic and quality objectives
of payers in the asymmetric information setting. However, the reimbursement policy
that results in this situation is sub-optimal and should be definitely avoided, from the
perspective of value maximization, according to Proposition 7?7, and hence detriments
the quality and increases related expenses. Consequently, payers suffer from double

layered "information rent" in the form of reduced quality and additional costs.

3.6 Payment Models - Level 1: Mainstream Pay-
ment Schemes

In this section, we study payment schemes, namely FFS, blended and bundled pay-
ments, in the context of maternity care through our modeling framework and we

discuss our findings.

3.6.1 Payment Scheme Descriptions

Given that each payment model may have different interpretations for different spe-
cialties, we first would like to provide the description of the payment schemes in a
maternity care setting. The specific formula under each model is summarized in Table

3.4.
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Fee-for-Service (FFS): A physician gets a payment of a fixed rate of PP for
performing a planned CS delivery, and PV for an NB or P¥¢ for performing
an emergency CS. In practice, the rates for emergency and planned CSs vary,
yet both are higher than the rate for an NB, due to the surgical nature of a CS
(Faloon, 2012; Optum, 2013). That is, PE¢ > PN PP¢ > PN, Moreover, the
rate for an emergency CS may be a little higher than for a planned CS; however,
the difference is not significant (MSC Payment Schedule, 2016; AHCIP, 2016;
Ontario Health Insurance Plan, 2016). Specifically, we assume that PF¢ <

PEC < MN 4 pPC,
Blended Payment: A single rate P2” is paid for a delivery, regardless of mode.

Bundled Payment: A fixed amount PP% is paid for each registered pregnancy,
including prenatal care (i.e., consultations and ultrasounds), delivery, and the
post-delivery hospital stay, regardless of the delivery mode (CPR, 2012). The
portion to be paid for prenatal care is not included in our current analysis
in order to keep expenses comparable with those of other payment methods.
There are alternative approaches for sharing the risks and gains between hospi-
tal and the physician group under this program. In the context of this research,
we propose a full gain/risk sharing for the physicians. This maximizes the
accountability of the physicians regarding to care they provide and the coordi-
nation among the physicians. Under this model, since the delivery cost for a
CS is higher than for an NB, the physicians’ marginal income following a CS is

lower than with an NB.

For the FFS and blended methods, the amount of the fee and the payee are
determined retrospectively, after the delivery of the baby. This is in contrast to
the bundled payment scheme, which pays a pre-established amount, i.e. prospective

reimbursement.
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Table 3.4: Specific Notations of Different Payment Policies

POhCy mSB(Avx) mcg()\,l’)
FFS | PNf(na2) + PPC(1— f(na)) | PPC
Blended pBF pBP

bundled pBL _ CHf()\ﬂS)—i-c?(l—f()\,I)) PBL _ %

Table 3.5: Impacts of Payment Methods on Cost, Quality of Care, Financial Risks
and Accessibility

FFS | Blended Bundled
Incentive for Quality of Care | None (Proposition 3.3, Lemma 3.8) | None (Proposition 3.4)
Incentive for Cost Control None (Corollary 3.3) High (Corollary 3.4)
Physician’s Financial Risks | None None High (Corollary 3.4)
Potential Accessibility Problem | None None High (Proposition 3.5)

3.6.2 Analytical Analysis on Payment Schemes

Next, we investigate the impact of payment schemes on quality of care and on the
overall maternity cost. We also study potential problems, such as the financial risks
taken on by physicians and the accessibility to physicians under these models. A brief
summary of our analytical findings is given in Table 3.5.
FFS and Blended Models

Since they use a retrospective payment approach, the FSS and blended payment
schemes share similar characteristics. First, we investigate the threshold under these
payment schemes between an SB and a CS, as determined by the physicians by the
end of prenatal care, and next we study their impact on the physicians’ efforts while

monitoring labor under SB decisions.

Proposition 3.3 Under the FFS and blended payment models, the optimal threshold
s determined by the physicians in Problem Zp satisfies s < x*. Moreover, under the

blended payment model, s is monotonically decreasing with respect to PBF.

Lemma 3.8 Under the FFS and blended payment models, A is optimal for physicians

at the delivery stage, following an SB decision.

74



Proposition 3.3 implies that both payment schemes lead physicians to choose CS
over SB, although it may not be medically necessary for some patient groups. More-
over, it shows that offering too low of a blended rate would continue to encourage
cesarean deliveries. Likewise, as presented in Lemma 3.8, even under an SB deci-
sion, these payment mechanisms motivates the physicians not to give their full effort
in the delivery stage. Hence, the desired rate of NBs may not be realized under
these payment mechanisms. Our finding that FFS incentivizes physicians in favor of
overtreatment through CSs is consistent with existing empirical studies in the liter-
ature (Gruber et al., 1998). Additionally, we conclude that equalizing the fees for
NBs and CSs through a blended model has a limited impact on controlling CS rates.
The blended model eliminates the direct financial incentives for preferring CS as a
procedure but does not provide any incentives regarding the physician’s desire to get
the delivery fee for his own patients or avoid the inconveniences of NBs.

From an economic perspective, we first show that the function representing the
total amount of reimbursement transferred from the payer to the physicians under

these two mechanisms is non-concave with the following lemma.

Lemma 3.9 Under the FFS and blended payment systems, M (X, s,mp) is non-

concave with respect to s.

By using this property, we next show the following:

Corollary 3.3 Under the FFS and blended payment systems, s© presented in Corol-

lary 3.2 1s an infeasible solution for Problem Zp.

This result implies that the feasible solutions to Problem Zp under these two mech-
anisms are outside the interval between s and z* (or z* and s ), as presented in
Corollary 3.2. In other words, under these payments schemes, the physicians are over-
paid for the level of effort they invest and for the quality of care resulting from their
effort. Intuitively, physicians can always save a certain amount of effort in the deliv-
ery stage by performing an emergency CS while receiving at least the same payment.

Therefore, physicians get a higher margin—the difference in income and effort—from
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planned or emergency CSs under these models, which may result in a higher number
of unnecessary CS cases.
Bundled Payment Model

As we discussed before, the bundled payment approach is a prospective reimbursement
model, in which a fixed up-front payment is received for each patient, regardless of
the actual delivery mode used for that patient. Therefore, under this payment model,
the net transfer of funds from the payer to the physicians has a concavity feature with
respect to the threshold decided upon by the physicians by the end of the prenatal

stage.

Lemma 3.10 M (A, s,mp) is concave with respect to s under the bundled payment

model.

We first consider the impact of bundled payments on the physicians’ decision to
plan a CS. This payment scheme’s structure aims to provide incentives for better out-
comes, specifically by avoiding over-treatment by shifting the financial responsibility
to the providers. On the other hand, since this payment model reimburses regardless
of the resources used, it may jeopardize the quality of care by increasing the desire
to keep costs low, which may lead to physicians not prescribing a planned CS where
medically required (i.e., undertreatment) (Feder, 2013; Adida et al., 2017). Proposi-
tion 3.4 confirms undertreatment under the bundled payment scheme, as compared

to the retrospective payment mechanisms discussed above.

Proposition 3.4 Under the bundled payment model where a physician’s facility costs

dominate the monetary value of the physicians’ effort invested in servicing a delivery,

specifically,
chy N i c My _ Co c
f\x) (7 +e ) + (1= f(\x)) (7 +e ) +eM N < 7+e VA e (A 1),V € (0,1),

the physician’s threshold s > x* in the prenatal care stage.

Our findings are consistent with the existing literature, which has demonstrated

that this payment model discourages physicians from overusing surgical procedures
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(Ransom et al., 1996; Lally, 2013).

Corollary 3.4 Under a bundled payment model where a physician’s facility costs
dominate the monetary value of the physicians’ effort invested in servicing a deliv-
ery, increasing bundled rate can motive consulting physicians to set up the quality-

mazimized threshold x*.

This result highlights the fact that the bundled payment approach result in higher
expenses due to the required risk premium for physicians, to motivate the adoption
of this payment scheme and to guarantee a certain care quality level. Otherwise, the
high level of financial risk may lead to a great deal of resistance to adopting this model
(Adida et al., 2017). Or, in order to reduce their costs significantly, and thus alleviate
the financial risks they face, physicians may be inclined to under-treat a significant
number of cases by preferring NB even where a CS is more medically appropriate.
Moreover, it may also result in patient selection, also known as “cherry picking”.
Physicians may refuse to serve high-risk women, since this group is potentially more
costly due to the higher chance of a planned or emergency CS. We highlight the
link between the potential for patient selection and the bundled payment rate in the

following proposition.

Proposition 3.5 Under the bundled payment model, the lower bound of the bundled
rate PBL is e“ +c%/J. Moreover, if PPL < e©+¢% /J, physicians may refuse patients

with complexity x as long as

e J(e 4 eMN — pBLY 4 &
J(e€ —eN)+ ¢ —

where f~1(x) is the inverse function of f(1,z).

This implies that there is a higher chance of cherry picking, that is, of physicians
choosing low-risk patients over high-risk ones, under a lower bundled rate. Moreover,
we have several interesting observations about the formula on the likelihood of refusal.
Given a fixed e, the effort for performing a CS, a lower effort in attending to a NB, i.e.

eV, leads to higher number of patients being refused; similarly, increasing difference
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between facility fees of the two procedures, i.e. c§ and ¢}, results in more patient
selection.

In practice, there might be a higher bundled rate for high-risk patients. However,
this does not alleviate the moral-hazard problem for the following two reasons: First,
physicians will still recommend an SB for some high-risk patients, since this is the
“optimal” way for them to minimize their expenses, and hence, maximize their utility.
This again reflects the typical dilemma of a moral-hazard problem. Second, a higher
bundled rate for high-risk patients does not eliminate the “cherry picking” of patients.
Indeed, certain intermediate-risk patients may be discriminated against, since they
are more likely to have a CS than low-risk patients but physicians will not receive a
higher payment for treating them. Therefore, this group of patients offers the least
utility to physicians, as compared to low- or high-risk patients. In our numerical
analyses, we allow for the definition of two separate rates, for high-risk and low-risk

pregnancies, presented in Section 3.9.

3.7 Payment Models - Level 2: Complementary Bonuses

In the payment reform of maternity care, complementary payments play an important
role since they may offset some of the disadvantages of the payment schemes discussed
above. The effectiveness of these add-on bonuses depends greatly on their design:
(i) the performance measure that will be incentivized, and (ii) the person(s) to be
incentivized. Therefore, in this section, we first present our proposed add-on bonuses,
i.e., performance metrics and distribution mechanisms for maternity care. Then, we

discuss the analytical properties for these bonuses.

3.7.1 Proposed Add-on Bonuses for maternity care

In terms of the performance measures to be incentivized, we propose four types of
process- or outcome-oriented bonuses to act as add-ons to payment schemes at level
1. These are chosen based on our conversations with physicians and hospital ad-

ministrators, and on a detailed literature review on targeted performance metrics for
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maternity care. They are all based on simple metrics that are easy to observe, and
thus, are easy to implement in practice. We specify the formula of this set of bonuses

as one of multiple components in mp, D € {CS,SB} and M(\, s, mp) in Table 3.6.

Complexity bonus. Bonus B®C is paid if the physician prescribes a planned C-
section for those with = > x*, and an SB to patients with x < x* by the end of
prenatal care. This bonus policy would be implemented under the assumption
that the clinically optimal cut-off point z* is determined and set by the payer

for use as the patient pregnancy complexity threshold.

Postpartum outcome bonus. Bonus BF? is paid in the case that neither the pa-

tient nor the baby has any post-delivery complications.
NB bonus. Bonus BV? is paid so long as the patient has a NB.

CS threshold bonus. Bonus B is paid to every physician in the group when the

overall CS rate for their patients is below a threshold.

In terms of the person(s) to be incentivized, to parallel the two stages in which
physicians are involved in deciding on delivery modes, we provide possible compen-
satory methods that cover both the prenatal and delivery stages. Specifically, we

recommend four alternative recipients for the proposed bonuses.

Consulting only: The physician responsible for prenatal care;
Delivery only: The physician responsible at the delivery stage;

Relevant parties: The responsible physicians at both the prenatal and delivery

stages;

Group: All physicians in the group when a single birth meets a certain criteria of

outcome metric.

Although the Complexity Bonus and the CS Threshold Bonus are only applicable

to consulting physicians and to the group of physicians, respectively, the rest can be
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Table 3.6: Specific Components of Different Bonus Policies

Policy msp(x) mes(x) M\, s,mp)

BC© B, Bll,> - B(1 —|s —x*|)

B9 | B(1-I(SB,x)) | B(1—-I(CS,z)) | B(1 —fOS](SB,x)dx—fsl I(CS, z)dx)
BNB Bf(x) Bf(x) B[] f(\ x)dx

Table 3.7: Distribution Mechanisms for Proposed Complimentary Payments and the

Relevant Analytical F

indings

Policy Consulting only | Delivery only ‘ Relevant Parties ‘ Group
Complexity B¢ | Proposition 3.7 Not Applicable
Postpartum BTY Proposi- Proposi- Proposition Proposi-
NB BYVB tion 3.6 tion 3.8 3.6 and 3.8 tion 3.11
CS threshold BT# Not Applicable Proposition 3.12

provided through all four distribution mechanisms. The associated expressions for

the proposed bonuses under different distribution mechanisms are specified in Table

3.9.

Table 3.8: Applicability of Distribution Mechanisms for Outcome oriented Bonuses

Policy Consulting only | Delivery only | Relevant Group
Parties
Complication B¢C | Proposition 3.7 Not Applicable
Postpartum B¢ Proposi- Proposi- Yes Proposi-
NB BVB tion 3.6 tion 3.8 tion 3.11
CS threshold B Not Applicable Proposition
3.12
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3.7.2 Analytical Properties of Proposed Bonuses

We demonstrate the analytical properties of these bonuses, for which our findings
are summarized in Table 3.8. These analytic properties provide crucial managerial
insights, given that most of these bonuses have not yet been implemented in the
health care system. We verify our analytical findings with numerical experiments,
which are presented in Section 3.9.

First, we show the impact of alternative bonus types on physicians’ decisions to
perform a planned CS in the prenatal stage. By design, these would be the NB,
Postpartum Outcome and Complexity Bonuses that are provided to the consulting
physicians.

Proposition 3.6 If 5 < x* under the original payment mechanism, an NB Bonus
BNB increases 5 in the prenatal stage. If 5 is smaller than the intersection of Ics) and
Isp(\ ), the incidence of complications under CS and SB respectively, a Postpartum

Bonus BFYC also increases 5 in the consulting stage.

This result implies that the NB and Postpartum Outcome Bonuses simply reduce the
chance of a planned CS decided on in the prenatal stage. For the former one, this may
lead to under-treatment, i.e., not prescribing a CS although it is medically appropri-
ate, in some cases depending on the monetary value of the bonus and base payment
model. On the other hand, a Complexity add-on may be more effective in discourag-
ing either over- or undertreatment. Intuitively, it provides motivations to prescribe
both SBs for patients with low risk and planned CSs for medically appropriate cases.

This is formulized in the result below.

Proposition 3.7 A Complexity add-on reduces deviation from the clinical cut-off

point, as compared to the same reimbursement mechanism without the add-on.

This proposition shows that complexity-related add-on motivates physicians to align
with the payer’s quality objective in Eq.3.5.

Second, we show the advantage of proper add-on to motivate the physician’s full
effort when performing a delivery under an SB decision. These would be the NB and

Postpartum Outcome Bonuses to be paid to the delivering physicians.
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Proposition 3.8 Providing an NB rate or a Postpartum QOutcome Bonus to on-call
physicians can increase their effort level A. Specifically, the lower bound of the NB

rate add-on or Postpartum QOutcome Bonus is

1_ _Of(\ )
N = € (e” —eV), where v min—"o =
1 -0l
Bpp = ;éMN _ g(ec — VY, where 7 — T{\”xn 0 saB)f)\,l')’U _ T{\L%lﬂf(a);\, x>;

Proposition 3.8 implies that the NB and Postpartum Outcome Bonuses may lead to a
reduction in the number of unnecessary emergency CSs. These two types of bonuses
would motivate physicians to choose the most appropriate and efficient procedure at
the delivery stage by giving their best effort. The Postpartum Outcome Bonus can
also be interpreted as the combination of an upfront payment with a penalty for post-
delivery complications, where the penalty would discourage improper procedures and
underutilization of efforts at the delivery stage, resulting in an improved quality of
care.

Next, we study the alternative bonuses from the cost-effectiveness perspective.
The following proposition reveals the difference of Complexity bonus and NB bonus

regarding to their costs.

Proposition 3.9 Given the same effort level in the delivery stage, regarding consult-
ing only bonuses to achieve the same feasible level of quality, Complexity Bonus costs

less than NB Bonus.

Although Complexity Bonus performs better in reducing costs with the similar level of
care quality, it has its own drawbacks. Note that, it is very challenging to ascertain
the true complexity level of a patient, because this is an assessment done by the
physician. Some physicians may overestimate x that would result in an increase in
the bonus payments. Therefore, the implementation of a complexity bonus involves
a potentially expensive monitoring and auditing mechanism.

Similarly, the following proposition shows the advantage of postpartum bonus in

terms of cost savings.
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Proposition 3.10 Given the same effort level in the delivery stage, regarding con-
sulting only bonuses to achieve the same feasible level of quality, Postpartum QOutcome

Bonus costs less than Complexity Bonus.

There are also several obstacles in implementing Postpartum Outcome Bonus. First,
it is effort intensive in the selection of an appropriate set of postpartum metrics, and
then in follow-up and reporting. Our analysis shows that the quality of care resulting
from this bonus type is quite sensitive to the list of postpartum complications included
in the scope of the bonus. The monetary value of this bonus is a function of the
frequency of different complication types. Therefore it can vary significantly with the
complications included, as presented in Proposition 3.8. Moreover, there could be a
significant time lag between childbirth and potentially experiencing at least one of
these postpartum complications. Theoretically, the longer the period after childbirth,
the more metrics can be included, which increases the policy’s efficacy. However, an
extended post-childbirth period adds more difficulties to monitor.

Providing bonuses to both relevant parties reinforces the impact of bonuses on
both the prenatal and delivery stages, resulting in reductions in emergency and
planned CSs. The Group mechanism not only has the same advantage as the Rele-
vant Party one, but also involves “peer pressure”, which offers a further motivation in
addition to financial incentives. Specifically, physicians who do not practice properly
are very likely to be pressured by their colleagues because their decision or effort
level negatively impacts on their colleagues’ incomes, in addition to their own. How-
ever, a bonus to the whole group may not be an economical option from the payer’s

perspective, i.e., the marginal benefit may not be as high as the increased expenses.

Proposition 3.11 A Group bonus leads to higher expenses for the payer, as compared

with a Relevant Party bonus with the same impact.

This result implies that a Relevant Party mechanism is preferable to a Group mecha-
nism from a cost-saving perspective. Moreover, a CS Threshold add-on based on the
delivery mode of the pooled patients for the group of physicians may be problematic

from the perspective of quality of care as Proposition 3.12 specifies.
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Proposition 3.12 Suppose that any group of physicians is eligible for the bonus BT

if the overall CS rate for their patients does not exceed r*, which is associated with
a desired cul-off of s* derived from Lemma 3.3. Let g(-) be the intensity distribution

BTH

of a certain population in terms of pregnancy complexity. The impact of on the

physicians’ actual decision s at the prenatal stage can be
e s > s* if high risk population foxg(u)du <z
o s < s* if low risk population fox g(u)du > x.

Proposition 3.12 demonstrates the existence of under- (s > s*)or overtreatment
(s < s*) with the CS Threshold bonus. After all, it is impossible for the universal
threshold rate to work appropriately for all physicians with different patient case-
mixes. Indeed, some physicians may have more high-risk patients than others. Physi-
cians with relatively more high-risk patients would have to avoid using clinically nec-
essary CSs in order to achieve the desired CS rate, and hence, avoid financial losses.
By contrast, physicians with fewer high-risk patients would enjoy those bonuses but
still implement unnecessary CSs. In addition, the demographic characteristics of a
population may vary over time, but this static threshold cannot adapt to dynamic
demographic shifts. Therefore, this bonus can place quality of care at risk. However,
this sort of bonus has been considered the most popular mechanism in recent P4P
initiatives in maternity care, due to the fact that it is easier to monitor and record the

aggregated results of a group of physicians than the separate records of individuals.

3.8 Proposed Reimbursement Policies

In this section, we propose a two-level payment model for maternity care. First, we
present our proposed policy and then discuss its performance when we incorporate

the physicians’ heterogeneity in the medical decision making process of childbirth.
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3.8.1 Proposed Model

We propose a simple reimbursement policy for maternity care: a blended model as
base payment and an NB add-on as a complementary incentive, which is effective
at improving the quality of maternity care and reducing overall expenses. While
proposing a reimbursement policy among several alternatives, we take into account
the factors of (i) being easily implementable in practice, (ii) being robust to the
different parameters of maternity care, and (ii) still perform good once we incorporate

the physicians’ heterogeneity in the medical decision making process of childbirth

Definition 3.1 The proposed reimbursement policy involves a blended rate PBPT as

a base payment plus an NB bonus rate BNP for physicians who serve the delivery.

In terms of the recipient of the bonus part, although it could be paid to either
consulting or delivery physicians or both of them we propose to be paid to the delivery
physician. Although we do not capture it explicitly in our model, the literature
suggests that proving a bonus of NB during SB will create "peer pressure", which
offers a further motivation in addition to financial incentives. Specifically, physicians
who have a tendency to perform planned CSs for the cases that NB will be medically
more appropriate are very likely to be pressured by their colleagues because their
decision negatively impacts on their colleagues’ incomes as well. Therefore, an NB
bonus paid to delivery physicians serves as a dual incentive for physicians: it works
indirectly toward having them prescribe an SB during the prenatal care, and directly
to promote a full effort during the delivery stage. With the effect of peer pressure,
this alternative could result in similar level of care quality with less maternity costs
(77).

As discussed before, bundled model performs best regarding to minimizing the
deviation from a clinical cut-off point. By the following lemma, we first show that

our proposed payment policy is a special case of bundled payment.

Lemma 3.11 A bundled payment PBL is equivalent to the combination of a blended

c c_,
payment with a blended rate (PP* — =) and a NB bonus of #
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Recall that the bundled payment model also motivates physicians to give their best
effort during deliveries occurring in their shifts. The NB bonus works in a similar
way to a bundled payment. The blended rate and the NB add-on are equivalent to a
linear combination of blended and bundled payments. We show the equivalence when

both are combined in a blended payment in Proposition 3.13 below.

Proposition 3.13 A blended payment with an NB bonus (PBY BNP) is equivalent
to the linear combination of a blended payment with a blended rate (1 — 0)PPY and
a bundled payment with rate PP, V0 € [0,1], where BNP = £(c§; — clY), and

poL_ iy poe

The linear combination of blended and bundled payments shows the cost-sharing fea-
ture of the optimal reimbursement scheme, where physicians share part of the delivery
cost with the payer. When 8 = 0, both are pure blended payment schemes. While
0 = 1, they both become bundled system. The lower bound of BV in Proposition 3.8
indicates a lower bound of 6, the minimum effective portion of the delivery cost that
a physician should bear in order to motivate a full effort during the delivery stage.
Physicians do not bear all the financial risks in this proposed scheme, unlike they do
in a bundled payment model; therefore, the payer provides a lower risk premium than
in a bundled payment, leading to a lower maternity care cost.

The blended rate acts as a base amount that physicians receive regardless of the
delivery mode. This base rate is supposed to be high enough to cover the efforts of
the least effort-intensive mode, i.e., a planned CS. Thus, it guarantees that certain
planned CSs will be used for high-risk patients. The second bonus encourages NBs
at both the prenatal and delivery stages. We further examine the features of this
model below, by breaking down the physicians’ average rates into different delivery

procedures.

PN(\x) = PPF 4+ BNPf(\ x);

P¥¢(z) = PP%(z) = PP”.
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This implies a modified outcome-dependent FFS mechanism. The CS and NB rates
vary with the actual delivery procedures. Clearly, a successful NB for a low-risk
patient leads to the highest marginal income, which is different from the traditional
static FF'S. Moreover, payers can flexibly adjust the overall CS rates by setting up
proper rates in Def. 3.1.

Lemma 3.12 Under the reimbursement scheme expressed in Def. 3.1, the overall
CS rate increases as BNB decreases, or as PBY increases. Moreover, M (), s,mp) is

concave with respect to s.

The following proposition states that a global optimal solution exists to Problem Zp

with the specific rates outlined in Definition 3.1.

Proposition 3.14 There exists at least one global optimal solution to the optimiza-

tion problem Zp under the proposed policy in Definition 3.1.

The desired maternity care outcome therefore exists under this two-level payment
mechanism. Moreover, the value maximization solution in Proposition 3.2 is achiev-

able, though the total expenses would be higher than those in the benchmark.

Corollary 3.5 The value mazimization solution to Problem Zpy; is a subset of fea-
sible solutions to the optimization problem Zp under the payment scheme in Def.

3.1.

We show our numerical analysis on the optimal threshold and the associated expenses
in Section 3.9. The robustness of this scheme is examined and verified through a
sensitivity analysis over various parameters including group size, altruism level of
physicians, clinical threshold of x* and effort levels for alternative delivery modes,

presented in ECH in Electronic Company.

3.8.2 Incorporating Physician Heterogeneity

This section relaxes the typical assumption of physician homogeneity in the basic

model and study the proposed reimbursement policy in physician heterogeneity con-
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text. In reality, physicians tend to have different patient mixes (i.e., different distribu-
tions of patient complexity), and they themselves vary according to their preferences,
experience and skills. For example, O’Neill and Kuder (2005) finds that physicians’
personal characteristics, practice settings and patient populations contribute to vari-
ations in the likelihood of prescribing a service in three specified clinical scenarios.
Feinstein et al. (2013) studies the impacts of patient and physician factors, apart from
regional variations, on the utility of radiation therapy with a retrospective cohort de-
sign. Nevertheless, the features of optimal reimbursement mechanisms may not be
mitigated by physician heterogeneity. Moreover, when properly designed, reimburse-
ment mechanisms are able to motivate physicians to enhance their professional skills,
in addition to achieving the main goal of reducing unnecessary CSs.
Heterogeneous Patient Mix

First we study physicians with a heterogeneous patient mix. Typically, we consider a
group of two physicians: one with riskier patients and the other with fewer high-risk

patients.

Proposition 3.15 The proposed reimbursement mechanism is independent of differ-
ent complexity distributions. Specifically, each physician’s total income s independent

of his patient miz.

This proposition implies another advantage of the proposed policy. It creates a mech-
anism for physicians to share patients - to "exchange" patients between them - to
support NB at the actual delivery stage. Physicians may therefore be indifferent to
the possibility of having a different patient mix than their colleagues.
Heterogeneous Diagnosis Skills

The study by Ghaffarzadegan et al. (2013) finds that physicians who have been prac-
ticing longer are more likely to decide on an arranged CS, based on their system
dynamics simulation model of physicians focusing on experiential learning. Suppose
a given original existing reimbursement mechanism induces physicians to set up an
optimal threshold as sg. Denote the actual pregnancy complexity as . Then, physi-

cians with higher-qualified diagnosis skills may have a x; very close to x. However,
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diagnosis skills make a difference only if x4 and x fall onto different sides of sg. More
specifically, if x < sg and the woman should be prescribed an SB, but a physician
diagnoses the pregnant woman and assesses a x4 > Sg, and accordingly prescribes an
arranged CS, then the patient will suffer more damage than benefit, impairing the
quality of care; and eventually, the physician would suffer a loss of his total utility.
However, so long as the physician can diagnose a x4 < so and prescribe an SB, the di-
agnosis can be considered proper. Therefore, we model the physicians’ diagnosis skills
as the probability of x5 and z falling onto the same side of sg. In other words, the
chance of correctly prescribing an arranged CS C'S for higher-risk pregnant women
H with x > sy, due to the diagnosed x4 > sq is assumed the same as the probability
of prescribing an SB SB for low-risk patients L with x < sg and x4 < sg. Suppose
that the probability of a correct diagnosis is a, following the framework of Allard et

al. (2011).

Pr(CS|H) =a, Pr(CS|[L)=1-a
Pr(SB|L) =a, Pr(SB|H)=1-a

Assume that physicians differ only in terms of diagnosis skills, and that the other
facets remain the same for all physicians. The following proposition shows the rela-

tionship between diagnosis skills and the likelihood of an improper decision.

Proposition 3.16 Physicians may lose Pr(L|CS) of their incomes from decision of
a planned CS, and lose Pr(H|SB) of their income from a decision of an SB. The

losses are non-increasing with respect to a.

Proposition 3.16 indicates that there is less chance of a loss of utility if diagnosis skills
have been enhanced or a becomes larger. Therefore, this proposed reimbursement
mechanism contributes to motivating physicians to improve their diagnosis skills since
this can lead to a larger total utility.

Heterogeneous Procedural Preferences
Physicians may have different preferences or treatment styles (Epstein and Nicholson,

2009); for instance, some may be more confident with a natural birth, while others
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may be better at CS surgery. Goyert et al. (1989) finds that physicians’ practice styles
are more likely to contribute to large variations in the CS rate than other physician
factors like medical and legal experience.

We would like to depict these types of preferences or procedural skills by adding
a preference factor pf > 0, such that the physicians who prefer CSs consider their
CS effort as e“ — pf. On the other hand, those with a preference for natural births
will view the effort of natural birth as e¥ — pf. We study the impact of heterogenous
procedural preferences on proposed scheme through the change of physicians’ effort
in the sensitivity analysis, and show that our proposed scheme is relatively the most
robust regarding this issue; although financial incentives tend to be very weak to

impact physicians’ preferences.

3.9 Numerical Analysis

We verify our major analytical results, undertake a comparative study of the base and
complementary payment schemes and assess the performance of the proposed policy
on the same data set described in Section 3. Our methodology to develop a quan-
titative metric for measuring the pregnancy complexity and identifying a threshold
x* is described in Section 3. For our numerical analyses, we estimate the probability
of having a NB under SB decisions for given x as well as the probability of having a
postpartum complication for given x and the delivery mode by analyzing the same
data set. The related cost figures are calculated by using detailed published reports
on the cost of childbirth. Further details on the parameter estimation methods are
provided in Electronic Companion. The main results of our numerical analyses are
given in in Table 3.10 and 3.11.

In this section, we highlight the major findings of the numerical study. Table
3.10 and Table 3.11 illustrate the resulting CS rates and the average cost per delivery
under different reimbursement mechanisms.We assess the performance of an incentive
mechanism in terms of three factors: (i) deviation between clinical cut-off point and

s, (ii) overall CS rate r and (iii) the expected cost.
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Table 3.10: Compare Optimal Rates

Policy Cost Quality
Threshold s AIT (%)* 1 (%) ‘ Threshold s AIl (%)* r (%)
Benchmark 0.98 - 21.87 ‘ 0.85 - 24.91
FEFS 0.72 4.87 34.22 0.72 3.99 34.22
Blended 0.76 3.78 31.01 0.76 2.90 31.01
Bundled 0.99 1.97 19.89 0.85 3.57 23.51
Bundled* 0.83 2.96 25.90 0.85 3.75 24.91
Proposed ‘ 0.83 2.07 25.90 0.85 2.18 24.91

Notes

1. AIIl (%) are the percentage change from benchmark;
2. Bundled* refers to the bundled payment with different rates for low and high risk
patients.

Observation 1: Under FFS, the ideal clinical cut-off point is not achievable and
the average birth-related costs are approximately 5% higher than the benchmark.
We estimate the average overall CS rate under this payment mechanism as 34%,
which is really close the current CS rates in US. The blended model provides certain
improvements in average cost and CS rate over FFS L.e., 1.09% and 9.40% respectively.
However, we also numerically confirm that Corollary 3.2 holds both for FFS and
blended models, such that the set of feasible solutions for s under these models is
outside theare region defined by x* and sg. Therefore, although blended model might
offer some improvements in the system, it would be still suboptimal with a chance
that increasing cost would not necessarily improve the quality of care.

Observation 2: On the other hand, under the bundled system, the average costs
can be reduced by 3%, a significant improvement over FFS under cost minimization
objective. However, the deviation between the threshold for medically appropriate
planned CS and the physicians’ threshold s is pronounced, indicating the tendency
of physicians to under-treat patients under bundled payment. We numerically verify
Corollary 3.4 that increasing bundled rate can motivate physicians to set up the
quality-maximizing threshold x*; however in this case, the estimated improvement

in the average cost is only 0.4% over FFS. Our experiments show that although it
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Table 3.11: Compare Different Bonus Mechanisms

Policy

Cost

Quality

Threshold s AIT (%)* r (%) ‘ Threshold s AIl (%)* r (%)

Complexity Bonus

Consulting Only 0.84 2.74 25.27 ‘ 0.85 1.93 24.91
NB Bonus
Consulting Only 0.82 2.85 26.57 0.85 3.30 24.91
Delivery Only 0.83 2.07 25.90 0.85 2.18 24.91
Relevant Party 0.82 3.63 26.57 0.85 7.54 24.91
Group 0.76 3.78 31.01 0.85 20.91 24.91
Postpartum Bonus
Consulting Only 0.76 3.78 31.01 0.77 4.22 30.23
Delivery Only 0.91 0.30 23.13 0.85 0.49 24.91
Relevant Party 0.83 3.50 25.90 0.85 2.67 24.91
Group 0.76 3.78 31.01 0.85 13.95 24.91
CS Threshold Bonus
Group 0.85 13.82 24.91 0.85 12.86 24.91
High risk population 0.87 13.77 24.22 0.85 13.19 24.91
Low risk population 0.83 14.20 25.90 0.83 13.24 25.90
Complexity Bonus for Consulting + NB Bonus for delivery only
Combined 0.83 2.07 25.90 0.85 1.93 24.91

AII (%) are the percentage change from the corresponding cost-minimum or quality
maximum benchmark. All bonuses are complimentary to blended payment. For CS
Threshold Bonus, the threshold is 25 % overall CS rate.

93



is possible to further improve quality of care by offering different bundled rates for
low and high risk patients, this offsets 1.9% of the cost advantages of using a single
bundled rate. We also observe that smaller physician groups are more likely to under
treat patients, whereas larger physician groups tend to be less sensitive about the
resource utilization.

Observation 3: Complementary payments are quite effective to offset some of
the disadvantages of the base payment models, if properly designed. For almost all
alternative combinations (i.e. bonus type plus recipient) of complimentary payments,
the feasible solution for s includes at least one of the x* and sg values. That is a
preferred solution as discussed in Corollary 3.2. The only exceptions are postpartum
bonus for consulting physicians and group threshold bonus for low risk population.

Observation 4: Regarding the complimentary payments offered for the consulting
physicians, a Complexity add-on is a more effective way to motivate physicians to
make the proper decisions compared to other alternatives, with estimated improve-
ments of 2.1% and 26% for average cost and CS rates respectively, over FFS. It is
followed by the NB bonus, with 2% decrease in average cost and 22% decrease in CS
rates when compared to those for FFS. Under care quality maximization objective,
Complexity and NB bonuses reported the same planned and overall CS rates, where
the former imposes the same impact with less average costs, approximately 1.4% less,
which confirms our analytical finding presented in Proposition 3.9.

Observation 5: Our results suggest that Postpartum Outcome Bonus offered to
consulting physicians is not really efficient in providing necessary incentives. This
complementary payment model, however, is quite effective if it is offered to delivery
physicians. It deviates only 0.3% and 0.49% from the cost minimization and the
quality of care maximization objectives of benchmark problem, respectively. On the
other hand, NB bonus is more effective if it is offered to delivery physician compared
to being offered to consulting physicians (at least the same s and r with lower cost).

Observation 6: For the add-ons that can be paid to either of the relevant parties or
offered as group bonus, the former outperforms the latter. The numerical experiments

confirm our analytical findings that complementary payments offered to all physicians
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in the group is less cost-effective compared to other alternative recipients.

Observation 7: In parallel to our findings discussed above, CS Threshold policy is
quite expensive compared to other alternatives. For instance, the average maternity
cost under IT% with CS Threshold bonus is 8% higher than that with NB bonus offered
to delivery physician, whereas they result in the same s and 7.

Observation 8: Our recommended policy proposes 3% reduction in average birth
related costs and 27% decrease in overall CS rate compared to those under the FFS
system. Please note that regarding the performance of alternative complimentary
payment model, under both objective functions, Postpartum Outcome Bonus given
to delivery physicians performs best based on the deviation from the benchmark for
the related objective. However, among all these incentive models with similar impacts
on overall CS rates, our recommended policy is the most robust with regard to the
important parameters of the maternity care including the group size, the physicians’
altruism levels, a possibly varied clinical cut-off point, and the physicians’ heteroge-
neous procedural preferences. Moreover, the impact of Postpartum Outcome as well
as Complexity bonuses depend on the intensity distribution of a certain population in
terms of pregnancy complexities. However, it is not the case for our proposed policy.

Detailed graphs and results of the sensitivity analysis are presented in the Appendix.

3.10 Limitations and Conclusion

This work focuses on the design of financial incentives in order to reduce unnecessary
C-sections. Through our modeling framework, we first analyze different base pay-
ment mechanisms, and then alternative complementary incentives comprehensively.
In the context of basic payment mechanisms, both FFS and blended payment schemes
lead to increased CS rates. Although blended model does not give direct economic
benefits to perform CS, it fails to provide incentives to physicians in order to give
full effort while monitoring the prolonged labor or eliminate the tendency to deliver
their own physicians. While bundled system provides the best solution for minimizing

the maternity care cost from payer’s perspective, in this model the physicians face a
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high financial risk, which leads to under-treatment and patient selection. Likewise,
assuring certain level of care quality might require a high-risk premium for physi-
cians to take on all associated financial risks. Among alternative add-ons, we show
that the Group Bonus mechanism, and therefore the CS Threshold Bonus, is quite
costly compared to the other options. Although a Complexity Bonus seems to be the
best alternative for avoiding unnecessary planned CSs, it fails to motivate best prac-
tices during the delivery stage. The bonuses for Postpartum Outcome and NB have
similar impacts on CS rates; however, the former has major drawbacks from an im-
plementation perspective, including, first, selection of the proper set of post-delivery
complications and then monitoring.

As a conclusion of our analyses, we propose a two-level payment scheme for ma-
ternity care. This policy involves a blended base payment and a bonus for NB. This
typical contract inherits the feature of risk-sharing, or cost-sharing, from the tra-
ditional pricing contracts of supply chains. This proposed mechanism succeeds in
aligning the physicians’ priority of maximizing utility with the payer’s value max-
imization objectives. Moreover, the proposed bonus linked with the incidence of
successful NBs, contributes to the coordination among physicians in the same group.
With the potential to motivate peer oversight, this policy tends to incentivize proper
birth plan decisions and best practices at the delivery stage. Furthermore, it does
not require any advanced information collection and monitoring, therefore it is really
practical to implement and the administrative cost of our proposed measurement is
expected to be low (Cachon and Lariviere., 2001).

Our study has several limitations. First, a number of existing empirical works
have found that hospitals’ guidelines and capacity issues might have an impact on
the abuse of CSs (Smith et al., 1992; Font, 2009; Brick and Layte, 2011). Our study fo-
cuses on the decision making in childbirth from the physician’s perspective; however,
extending our model by incorporating hospital-physician interactions could provide
important managerial insights as well. Second, our model is in a static setting. The
decision-maker decides on a financial mechanism and then the physicians determine

the delivery procedures in the same period. Though we do consider the impacts of a
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well-designed reimbursement policy on constantly motivating enhancement of physi-
cians’ professional skills, as a reaction from contract takers, it would be valuable to
find a way to study the physicians’ dynamic reaction. Finally, for reasons of simplic-
ity, our work makes the assumption of passive patients, i.e., who comply perfectly
with the physicians’ decisions. However, this might not be the case in reality. Pa-
tients tend to have various levels of reaction to their own treatment. They can shift
to alternative care providers or follow their own preferences in choosing hospitals or
physicians (e.g. Fabbri and Monfardini (2008)). One of the possible extensions of

this study could be studying the interactions between patients and physicians.
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Chapter 4

Design of Specialist Responsible
Policies to Reduce Waiting Times in

Emergency Departments
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4.1 Introduction

Emergency department (ED) overcrowding is a widely used term referring to a sit-
uation where the demand for ED services exceeds the ability to provide care in a
reasonable amount of time (Ospina et al., 2006). ED overcrowding has been a key
issue in Quebec for more than 40 years. Despite increased political, administrative,
and public awareness, ED overcrowding continues to rise in frequency and severity
(Bond et al., 2007; Roberge et al., 2010). International comparative studies have
found that the Quebec population had not only the highest rate of ED visits but also
the longest waiting times to receive care in ED (Roberge et al., 2010). In Quebec,
despite the established targeted ED average length of stay (LOS) being 12 hours,
the average stay for stretcher patients reached 17.6 hours in 2011. Moreover, around
25% of those patients have had to stay more than 24 hours, exceeding the 10% tar-
get set by the ministry (MSSS, 2011). In addition, the LOS has been more than
48 hours for up to 10% of the stretcher patients (MSSS, 2011, 2010). Furthermore,
a substantial body of the literature has linked the increased ED overcrowding, and
ED LOS accordingly, with adverse patient outcomes (Sun et al., 2013; Carter et al.,
2014). For instance, increased stretcher occupancy is associated with increased inci-
dence of 30-day adverse patient outcomes (i.e. mortality and a return ED visit with
hospitalization) (McCusker et al., 2014).

ED overcrowding is a complex, multi-dimensional health services problem, whose
root causes extend beyond the walls of EDs. Using the well-established paradigm
of Operations Management, this problem has been conceptualized using the input-
throughput-output model (Schull et al., 2002; Asplin et al., 2003). Input factors reflect
to any condition or characteristic that contributes to the demand for ED services, such
as non-urgent visits and "frequent flyers", which, in general, refer to patients who have
4 or more annual visits to ED (Holt and Aronsky, 2008). In the context of throughput,
there are two phases. The first phase focuses on ED care processes including triage,
stretcher placement, and ED physician evaluation. The second phase includes use

of hospital resources: diagnostic testing and specialist consultation. Output factors
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reflect to efficient disposition of admitted and discharged patients out of ED. Figure
4-1 shows the typical patient flows in ED.

Figure 4-1: Patient Flow in ED
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Contrary to popular perceptions and media attention, which have highlighted
input factors such as inappropriate use of the EDs by high numbers of lower acuity
patients, the vast majority of the delays occur in the second phase of the throughput
(i.e. lab testing, diagnostic imaging, specialist consultation), as well as the output
side of patient flow (i.e. admitting to hospital, discharge to home). Therefore these
are the most significant factors causing ED overcrowding, and consequently longer ED
LOS (Affleck et al., 2013; Canadian Institute for Health Information, 2014). Among
all these "second phase of the throughput and output" related factors delays for
specialist consultation (SC), i.e. the time between sending out an SC request and the
arrival of the specialist, plays a key role.

Approximately 20% ED visits requires at least one SC. Moreover only specialists,
not the ED physician, have the authority to admit patients into hospital wards.
Moreover, for patients who need an SC, the discharge decision also has to be consulted
to the specialist. In other words, the patients cannot be discharged home or admitted

to hospital wards before seeing a specialist. Furthermore, a significant portion of
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the blood and imaging tests are asked by the specialist. Thus, the specialists have
a fundamental position in ED processes since they have direct influence on imaging,
lab, discharge as well as admission delays.

In a descriptive study, Lee and her colleagues (Lee et al., 2013) show that con-
sultation process time, including waiting for the consultation, is highly variable even
in the same institution, and has an important impact on ED LOS. Our empirical
analysis on all ED visits to one of the medium sized community hospitals in Mon-
treal in one calendar year also shows an average of seven hours waiting for SC, from
sending out a consultation request to arrival of the specialist; and this delay can be
over 2 days. It is mainly because the specialists are generally busy with patients in
hospital wards, walk-in clinics and operating rooms during weekdays and may not be
on-call after business hours and over weekends. This contributes to longer LOS, and
an overcrowding, accordingly, in EDs. Unfortunately, as far as we know there have
been no systematic and practical rules for specialists to follow in ED. Our empirical
study also shows that specialists can arrive at the ED at anytime, although they ar-
rive more frequently in business hours. Motivated by this prolonged SC delays in ED,
our study aims to reduce the average LLOS in ED by designing optimal schemes for
specialists’ response to SC requests. We would like to address the following research

questions:

1. What are the characters of potential rules to regulate specialists’ response to

ED requests?
2. Which rule is optimal for a certain specialist to follow?

3. How can those optimal rules for SC be best integrated into current triage in

ED?

As an inevitable and critical part of ED flow streaming, specialist scheduling
can benefit significantly from coordination with other processes in ED. To be more
specific, patient prioritization based on the joint consideration of critical conditions

and potential resources requirements (e.g. specialist, lab, etc.) can improve the overall
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performance of EDs significantly. For example, under such a coordinated system, a
patient with higher chance of SC will have a higher priority over a patient with
same level of critical conditions, i.e. triage code, but with much lower chance of SC.
Accordingly, the former type of patients will have access to ED physician assessment
earlier, so the SC request for these patients will be sent sooner , resulting in reduced
SC waiting time. Hence, through the policies we propose in this study, the delay for
SC will be shorter. Thus patients will have a much shorter LOS, which will alleviate
the overcrowding significantly.

Recently, a resource-based triage Emergency Severity Index (ESI) has been pro-
posed by Gilboy et al. (2011), which recommends that non-crucial or life-threatening
patients should be prioritized with their triage codes, as well as the predicted re-
source requirements of these patients in ED. As "resource" they refer to tests, SCs
and hospital beds.

By analyzing the same data set mentioned above, we demonstrate that a patient’s
probability of requesting an SC can be predicted at the triage with high accuracy. ED
triage can be more accurate and effective by considering both the patient’s medical
conditions and potential demand of SC. Thus, revised patient prioritization policy in
triage, which incorporates the probability of SC request, can lead to improvements
in ED overcrowding compared to current triage policies. In this study, by designing
such a modified triage policy involving the prediction of a patient’s SC request, we
propose to streamline the ED patient flow from triage to SC. Our aim is to facilitate
both specialists’ schedules and ED administrators’ management of patient flow with
a systematically optimal strategy.

Although scheduling for ED operations, i.e. scheduling of ED physicians and
nurses, has been studied extensively in literature, none of them has considered the
impact of SC delay on LOS in ED. Most studies in healthcare literature assume that
the patients get consultation without any delay. Chan et al. (2016) consider a similar
problem in the setting of patient’s discharge from hospital wards. Although patient
discharge is normally delayed by the physician’s inspection time and frequency, they

focus on the optimal inspection frequency during a day. However, there are significant
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differences between this paper and ours in the context of the problem setting. For
instance, our empirical study shows that patients have requested over ten different
types of SCs in ED, and the delay of specialist arrivals has a larger scale of impacts in
ED context. It is due to the fact that the LOS in ED is normally measured by hours,
whereas LOS in hospital wards by days. In this chapter, we consider the impact of
different policies for specialists’ arrival according to the patterns and volume of each
SC demand, and examine the potential reduction in expected LOS when implementing
resource-based triage in the end.

In order to capture the dynamics of ED patient arrivals, we study a time-varying
queueing model, unlike most of literature that considers 3 types of regimes (namely
overload or heavy traffic, critically loaded and under-loaded regime) separately, due
to the fact that each regime features distinctive methods. Actually, according to the
data set of ED visit records we analyze, patient flows in ED experience all three
regimes during a typical day. The detailed analysis of our proposed model provides
several guidelines of setting up optimal policies for specialist’s response to SC request
based on the volume and patterns of ED patients. Besides, we consider uncertain
service time as well as the inaccuracies in prioritization at the triage in our modeling
framework (Li and Glazebrook, 2010). Therefore, our analytical model incorporates
inaccurate estimation of classification at triage where forecast of SC request with
incomplete information (signals) is not perfectly precise (Argon and Ziya, 2009).

This chapter consists of three main parts. The first part focuses on analyzing
alternative policies for specialist’s arrival to ED for SCs, i.e. fixed time (FT) and
timeline (TL) policies, and studying the proper application of each policy for varied
SC demand, through queueing models with time-dependent arrivals. The second
part focuses on the integration of the modified resource-based triage with the optimal
specialists’ arrival strategies. Then we use an empirical model for predicting the
probability of each patient’s consultation requests, according to patients’ information
collected at triage, through statistical learning methods. Finally, based on the forecast
of consultation requests for each patient, we conduct a comprehensive simulation

model to evaluate potential scenarios of optimal specialist arrival policies with and
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without the modified triage policy.

4.2 Literature Review

In this study, as discussed before we consider a queueing model with time-varying
arrival rates. Current literature tends to focus on different regimes of a time-varying
queueing model, and develop typical methods to deal with each regime. Overload or
heavy traffic regime, where customers congesting the queue wait to be served, has
been prevalent in literature; since it is the most suitable approach to model systems
with overcrowding. It is also the most difficult to solve. Fluid model is applied for this
regime, and (generalized) Gcp rule is proposed as an optimal, i.e. prioritize the class
with the largest holding cost and service rate studied by (Huang et al., 2015), where
this rule can incorporate the arrival rate and abandonment rate (Atar et al., 2010).
Under due-date constraints, G'ep is equivalent to prioritize generalized longest queue
(GLQ) and generalized largest delay (GLD) rules (Van Mieghem, 2003). Critically
load regime refers to a queueing system with moderate amounts of customers, and
servers are occupied most of the time. Diffusion modeling approach or dynamic
control is applied for this regime (Down et al., 2011). Under-loaded regime, where a
queueing system has overstaffed servers, is very rare in reality. However it is important
to balance the issue of server idleness and cost reduction. Dynamic control is applied
(Down et al., 2011). In the setting of ED, eliminating the time-variation or focusing
on certain regime may be unable to capture the time-varying performance, because
all above regimes exist, link and impact each other, which leads to the failure of
steady-state distribution in a time-homogeneous queue.

Our study falls into the field of patients’ streaming and prioritization in ED. Tra-
ditional triage determines the prioritization of patients according to their medical
conditions from clinical perspective. Those patients who are considered in critical or
life-threatening conditions cannot wait long in ED, so they are treated before those
who are in less critical conditions. Literature in operations research and management

science tends to tackle this problem from the perspective of efficiency. Assuming the
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homogeneous clinical conditions for all patients, index policies aim to minimize the av-
erage waiting time by prioritizing patients in the longest queue (Van Mieghem, 2003;
Atar et al., 2010; Huang et al., 2015). Besides, classifying of patients and scheduling
different groups are popular among literature. For example, Hu and Benjaafar (2009)
showed that partitioning can be significantly beneficial to the queue system via ap-
proximation with fluid model and simulation. However, this work demonstrated that
the benefit is realized at the expense of other customer classes, that is, it is impossible
to have improvement for all customer classes in such a system. Joustra et al. (2009)
examined whether or not pool urgent and regular patients waiting for consultation in
the context of a radiotherapy outpatient department. They used queueing theory and
discrete event simulation, and concluded that pooling does not always provide benefit
to urgent patients. They also found that separation of those queues could reduce the
capacity requirement while meeting the waiting time criteria for all patients.

More recently, it is proposed that A/D streaming is another way to reduce LOS
in ED (Saghafian et al., 2012, 2014). A/D refers to a system where ED patients and
resources are divided into two streams: one for those who are likely to be discharge
home (D) and the other for those who are likely to be admitted to hospital (A).
In their papers, Saghafian and his colleagues compared A /D streaming with pooling
and incorporated sequence with feedback (i.e. prioritize new patients or old ones).
They also proposed a virtual streaming, that is, switching the resources of one type
to the other if they are idle. Omar and Okundan Kremer (2016) introduced a new
dynamic patient grouping and prioritization algorithm based on patients’ dissimilarity
that are resulted from detailed triage raw information (age, gender, pain level, vital
signs, temperature etc). In a general setting, Afeche (2013) differentiated among
customer types, and implemented a strategic allocation based on revenue. (Baron et
al., 2014) studied a set of threshold-based policies that strategically idle first station
in a tandem queue. However, all those works are based on queueing system with time
homogenous arrivals. Our work considers time varying arrivals and heterogeneous
patients with different types of specialist requirements, thus we figure out the best

specialist response policy for each type of specialist, and then test their scheduling
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among all ED patients with their triage information.

Time-dependent queueing models have been studied in data fitting, staffing and
capacity management policies. Interested readers can refer to Whitt (2016) for a
detailed bibliography on existing work of queue systems with time-varying arrival
rates. Chan et al. (2016) considers the frequency of inspection in hospital wards
and its impact on the number of customers waiting in the system. They focused
on the number of customer in system, the probability of waiting under time-varying
arrival rates impacted by inspection time in hospital wards. Though expected waiting
time is not as critical as the former two performance measures in their study, they
found numerically that the careful choice of one inspection time per day depends on
the magnitude of arrival rate variation. Similarly focusing on the discharge delay in
hospital wards, another recent work of Dai and Shi (2017) studied a time-varying
queue system with periodic Poisson arrival process. The processing time consists of
two components: 1) length of stay; 2) departure time, referring to the discharge hour
on the discharge day. They developed a novel midnight customer count process and
further analyze its stationary distribution in order to approximate time-dependent
customer count process and calculate multiple performance measures. They proposed
to advance the discharge time to alleviate the overcrowding of peak arrivals. Our work
is different from those studies. We focus in the setting of ED. In the queueing model
with time-varying arrival rates with a daily cycle, we analytically prove the optimal
fixed arrival time if specialists come to ED once a day, leading to the minimal average
per-patient waiting time for SC delay.

This study is also relevant with the literature of batch scheduling, to be more
specific with the integrated scheduling models of production and transportation. In-
terested readers can refer to Chen (2010) for models explicitly considering both pro-
duction and distribution time or cost. Our work is specifically relevant with those
deterministic scheduling problems, in which a series of delivery dates are fixed before
those jobs are processed. Hall et al. (2001) provided an efficient algorithm for such
models, and showed that the algorithm may not work for certain types of problems.

Cheng and Kovalyov (2001) considered the batch scheduling of jobs with fixed due
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dates or processing times. They presented dynamic programming algorithms to min-
imize lateness, the number of late jobs, the total delays and so on for both bounded
and unbounded batches. They also developed more efficient algorithms for several
special cases. In order to schedule a series of non-preemptive jobs with varied delivery
dates on a single machine and a non-stepwise payoff function based on cumulative
number of jobs processed before each job-independent delivery date,Seddik et al.
(2013) found the complexity of this problem and provided a pseudo-polynomial time
algorithm for the problem with two delivery dates based on dynamic programming.
Seddik et al. (2015) further proposed a polynomial time approximation algorithm to
meet both absolute and relative performance guarantees for this problem. Although
the work of Janiak and Krysiak (2007) did not explicitly consider fixed due dates,
the value of a job follows a stepwise non-increasing function in their model. Hence,
the scheduling has a big impact on the total values of all jobs completed. They
proved that such a problem could be equivalent to the NP-hard problem of minimiz-
ing weighted number of late jobs. They further designed a dynamic programming
based pseudo-polynomial algorithm for jobs with common moments of value changes,
and several heuristic algorithms to solve specially extended cases. Several papers
have studied the typical scheduling problems with fixed-interval due dates. Chha-
jed (1995) considered jobs assigned to two due-dates with constant intervals. They
found that the problem of minimizing a linear due-date penalty is NP-hard. Lee
and Li (1996) developed a pseudo-polynomial dynamic programming algorithm for
such a problem with a bounded amount of due-dates. Liu and Hsu (2015) analyzes
three types of dispatching rules in a system with fixed interval delivery dates based
on simulation. The finished jobs can be only delivered on the earliest delivery date,
incurring both earliness and due-date costs for the producer. The study proposes a
simple and feasible dispatching policy without parameter estimation to minimize the
total earliness and due-date cost for this dynamic system. The Fixed Time (FT) pol-
icy, one of the proposed specialist policies, can possibly be modeled as a scheduling
problem with fixed due-dates. However, our problem is more complicated, due to

the fact that different specialist policies mix in ED. Hence we need to consider the
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more comprehensive scheduling problem with both fixed due-dates and other types

of constrains.

4.3 Optimal Specialist Response Policy

Current ED triage has become a mature system , due to the fact that it provides a
rule for prioritization of patients and a limit for the acceptable delay between triage
and ED physician assessment for each triage code. In contrast, there are no specific
policies or rules for specialists to respond to SC . As a result, specialists themselves
decide whether and when to provide consultation to ED patients upon receiving a
request. Currently hospital administrations are considering to set up certain polices
for specialists in order to reduce extended SC delays. Assuming specialists will com-
ply with the rules, this section focuses on alternative policies for specialists from the
perspective of efficiency and feasibility. Although financial incentives meant to mo-
tivate specialists to comply with these policies are an important component for the
implementation of such policies, they are out of scope of this study. We would like
to propose the optimal rules that are most convenient for specialists to follow, specif-
ically the rules that require the least frequency of specialist visits and the maximal
certainty, facilitating their scheduling on other tasks.

We consider the potential specialist response policies, and their impact on the

LOS in ED. Each type of specialist response policies are explained as below:

Benchmark. Specialists arrive within 2 hours after request, 24/7. This is the ideal
scenario, yet is impossible to launch unless the ED has a very strong bargaining
power with its high volume of patients. Moreover, with the large scale of con-
sultation demands, ED may have the capacity to hire its own specialists who

are present all the time.

Fixed Time (FT). Specialists arrive at certain time every day. Specialists may
have to make multiple short visits every day, depending on the corresponding

demand flows. Multiple F'T policies are preferred if the resulting performance
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measure is similar with those under TL policies, because F'T policies are certain,
more feasible and convenient for specialists. -The specialists are aware of their
visit times and of their expected length of visit in advance, so they are able to

schedule other tasks accordingly.

Timeline (TL). Specialists arrive within 4 hours after request during certain pe-
riods,and arrive within 6 hours at rest periods. TL policies are preferred if
their performance measures significantly outperform FT policies, for example

frequency of visits are low, though uncertain.

For proposing the optimal specialist response policy, we compare the alternative

policies by using the performance measure of average waiting time per patient.

4.3.1 Performance Measures

In this subsection, we first set up the model of SC demand arrivals, and then describe
the performance measure within the modeling framework. We consider the flow of
SC requests for a certain specialist. Let 7} be the arrival time of the jth patient who
requires an SC. N(t) denotes the number of arrivals in (0,¢], V¢ > 0. A(¢) is the arrival

rate at time ¢. The properties of the time-dependent arrivals are highlighted below.

Property 4.1 (Time-dependent arrivals) In an overtake-free system (FIFO) with

no group/batch arrivals, time-dependent arrivals have the following properties:

o Tiv1 —T; is independent of T — T;,Vj < i given T;. i.e. old arrivals have no

impact on future arrivals;
e N(t) is a renewal function dependent on t;
e N(t) is right-continuous, differentiable;
o limpy o E[N(t) — N(t — At)] exists, and is equal to \(t);
o \(t) is the derivative of N(t);
o lima; 0 A(t)At is the probability of one arrival in (t — At,t].
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Let L(t) be the number of patients waiting in the system, S;(¢) jth patient’s
system time, and W (t) total waiting time at time ¢ of all patients arriving by ¢.

Note. In contrast to M/G/c system, L(t) and W (t) depend on the initial
conditions at time 0; and the mean value in a stationary system does not work in the
time-varying case.

We consider the transient laws of L(t) and W (t) in the time-varying case, since
the stationary system is not representative. The policy with the minimal average
waiting time for a certain arrival pattern is the optimal for that specific cluster of

patients.

i Wi(t)
W) = — 41
0= Tg (4.1)
where L(t) is the number of patients waiting in the system, and W (t) total waiting
time at time t of all patients arriving by ¢.

By the end of time ¢, L(t) has the exact formula according to Bertsimas and

Mourtzinou (1997).

Lemma 4.1 (Total Queue Length) The expected total queue length (i.e. the num-

ber of patients waiting in the queue) until epoch t is
t
EL(t) = / A7) dr. (4.2)
0

4.3.2 FT Specialist Response Policy

In this subsection, we aim to find the optimal time for a specialist to arrive under
FT policy, so that the average per person waiting time is minimized. Given the time
dependent arrival of specialists’ demand, the timing of a specialist’s arrival can have
a significant impact on patients’ waiting time as shown in the left of Fig. 4-2. The
red areas represent the sum of total waiting time for the same amount of patients
who arrive in the two time windows of an equal length. Specifically, the vertical axis
is the total number of patients’ arrivals, and the horizontal line is the time. For the

same length of two cyclical time patterns, the total amount of arrivals are the same
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in both cycles. However, due to the different start time, the areas showing the total
waiting time are different; the latter cycle (the right upper area) has a longer average
waiting time per patient than the earlier one (the right below area). Therefore, the
time of the specialists’ arrival , that is exactly the start time of an SC session under
the F'T policy, determines the average waiting time per person in ED.

Consider the pure jump process N (t), and {F(t),t > 0} is a filtration to which N

is adapted. Let M (t) be the compensated poisson process, specifically

M(t) 2 N(t) — /0 Ar)dr (4.3)

Because M (t) is a F martingale (Watanabe, 1964), the following is also a F martingale
(Bremaud, 1981).

I(t) = /0 H(r)dM(7), (4.4)

where H(7) is any stochastic process depending on the past information, that is, it
is a left continuous function. Hence, we have the following theorem regarding the

expected total waiting time.
Theorem 4.1 (Total Waiting Time) The expected total waiting time until epoch
t s

EW (1) /0 MF)(E = 7)dr (4.5)

With the help of the martingale property, we first figure out the best timing when a

specialist finishes his or her consultation session in ED.

Corollary 4.1 (Daily Optimal Time of Specialist Departure) If hourly arrival
rate N(t) is periodic with a cycle of 24 hours, that is, A(t) = A(t + 24), the optimal
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time of specialist departure (completeness of all service) T satisfies

UN(T) = / T (4.6)
N(T) > 0. (4.7)

Then we can find the best arrival time for a specialist given any general distribution

of SC duration with a finite mean.

Proposition 4.1 (Determine Daily Optimal Fixed Time) Suppose hourly ar-
rival rate A(t) is periodic with only a peak in each cycle of 24 hours, the optimal fized

time of specialist arrival T should be determined as
T =T —E(ST)E[L(24)]; (4.8)

where T' is determined in Corollary 4.1. The corresponding minimal average waiting

time per person 1S

W (T + 24) — W(T)
L(24)

- %E(ST)E[L(M]. (4.9)

The proof of the above theorems is illustrated in the right of Figure 4-2. First we
find the optimal 7" in the cycle of 24 hours for a specialist to finish his/her session.
Then the waiting for the sequential specialist starts from 7' to T' 4 24, because we
consider only one specialist arrival per day. Therefore, we first find the optimal T
that minimize the total waiting time of all patients arriving this day in Corollary 4.1,
and then figure out the optimal specialist’s arrival time T'x in Proposition 4.1.
Proposition 4.1 demonstrates that three factors actually determine the arrival time

of specialists under an FT policy:
e the volume of demands;
e the distribution of the demand arrival process;

o the mean of the duration of an SC.
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Different types of specialists can have the same optimal timing for their SC, if the

above factors are the same.

Figure 4-2: Decide Optimal Time

o

Accumulative Arrivals

'l\‘\

The left figure compares total waiting time under different timing; the right shows
the stretch of proof.

The following corollary comes naturally after Proposition 4.1.

Corollary 4.2 (Sensitivity of Optimal Fixed Time) With the same arrival pat-

tern of SC demand, specialists should arrive earlier if
e the patient volume is higher;
e the specialist’s consultation last longer.

Moreover, average waiting time is shorter with a higher patient volume or longer

consultation duration.

Because the departure time of specialist is determined by the arrival pattern, with
the same arrival pattern, specialists stay in ED longer if more demands are present.
This leads to an earlier arrival of specialists. Moreover, the average waiting time per
person is shorter as specialists stay in ED for a longer period.

Although we do not take the crowding issue into account explicitly, the issue of
ED crowding is still the concern of ED managers, and impacts the care quality in ED.
The following corollary confirms that the peak of patients present in ED is irrelevant

with the timing of SC sessions.
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Corollary 4.3 (Maximal Amount of Patients) Under daily periodic arrival rates,
the mazimal of total patient waiting for specialists increases with respect to \(t), de-
creases with ST. If ST = 0, the mazimal of total patient waiting is L(24) and is
windifferent from T.

That is, the ED overcrowding can possibly be eased by speeding up these SC sessions
only. Normally shortening an SC can negatively impact the quality of care. So, the
only way to ease ED overcrowding is to improve capacity of specialists if necessary,
which will leads to the decrease of an SC duration.

Before the end of this session, we demonstrate the impacts of SC timing on waiting
time per patient via two numerical examples. In order to verify our analytical results,
we present numerical results with the time-varying arrival rates in the following ex-
amples in Table 4.1 and Figure 4-3.

Example Suppose

A(t) = asin (%t + c) +b, b>|al (4.10)

and E(ST) = p, where 24ub < 1 for the sake of stability. Then the optimal specialist

arrival time is
12
T =12 — —c — 24bp. (4.11)
T
And the minimal average waiting time per person is
- 12a

W=12—- =22 _ 12 4.12
—3 1 (4.12)

Actually the daily specialist departure time is 7' = 12 — 1?20, which is also the optimal
boarding time. Daily total patient amount is E[L(24)] = 24b.

Example Suppose

1
A(t) = bmin(max(1, 3mod(z,24) — 11), —gmod(x, 24) +9), (4.13)
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that is, arrival rates follows a linear function

1, te(0,4];
At) =14 3t—11, te (4,6 (4.14)
—3t+9, te(6,24].

and E(ST) = p, where 84ub < 1 for the sake of stability. Then the optimal specialist

arrival time is
T =16.5 — 84bpu. (4.15)

And the mimimal average waiting time per person is

893
W = — — 42byu. 4.16
ol 0 (4.16)

Actually the daily specialist departure time is 7' = 16.5, which is also the optimal
boarding time. Daily total patient amount is E[L(24)] = 84b.

We compare the analytical optimal timing from our theories with numerical results
in Table 4.1. There are two parts in this table, and one for each example above.
Each row shows the different values of patient volume, indicated by the parameter
b. The first two columns show the optimal arrival time and corresponding average
waiting time per patient resulted from our analytical models. The middle two columns
show the numerical results of optimal arrival time and corresponding average wait
per person, when the SC session lasts for a deterministic duration. The last two
columns are the paralleled numerical results when the SC session follows a stochastic
distribution. We can see that our analytical results are fairly close to the numerical
ones with both deterministic and stochastic service time.

We further show the impact of optimal timing on the waiting time per person in
the left two plots of Figure 4-3. Specifically, for each of the above examples, different
lines with color represent varied values of b, i.e. the parameter representing patient

volumes. The horizontal axis is the specialist’s arrival hour, and the vertical axis is
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the average waiting time per patient. We can see that the minimal average waiting
time per person tends to be 50% of the longest wait period regardless of the patient
volumes b in both examples. Therefore, the decision of an optimal specialist arrival
time is crucial to shorten waiting time for SCs under F'T' policies.

The right two graphs in Figure 4-3 exhibit the impact of different timing on
the average waiting time per person, when there are two specialist arrivals per day.
Two axes on the plane represent possible combinations of the specialists’ two arrival
times, and the third axis shows the average waiting time per person. There can be big
differences on the average waiting time per person between the optimal specialists’
arrival times and those sub-optimal timings.

Furthermore, we compare numerically the impacts of frequency under FT policies
regarding the average waiting time per person summarized in Table 4.2. In each
section associated with the specific example following the arrival function, the two
columns under Once per Day show the optimal arrival time of specialists and corre-
sponding average waiting time per patient; The rest columns show the optimal time
of arrival and resulting average waiting time per person if there are two specialist ar-
rivals per day. Although the extra arrival can largely reduce average waiting time per
person, the marginal reduction will decrease as the frequency of specialists’ arrivals
increases.

Observation. The marginal benefits of arranging extra fixed time for SC decline
as the frequency of consultation increases. Moreover, the marginal benefits decline
as the volume of patients becomes higher. We observe the same numerical results in
terms of the frequency of the SCs in each periodic cycle as Chan et al. (2016).

With the real data of ED visits, we first estimate the time-dependent arrival
pattern A(t) for in-sample SC demand of each specialist type, and then decide the best
optimal time for SC sessions. We will compare the analytical results and numerical

ones later in Section 4.5.3.
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Table 4.2: Compare Optimal F'T Policy with varied Frequencies

A(t) = b [sin (5t) + 1]

b Once per Day Twice per Day
Hour Average waiting time (h) | 1st Arrival 2nd Arrival Average waiting time (h)
1 11 7.5082 9 14 4.7817
2 9 6.7965 9 14 5.3937
3 8 6.1824 8 14 5.4060
4 6 5.5289 5 12 5.0364
D D 4.9680 5 12 4.4502
A(t) = bmin(max(1, 3mod(z,24) — 11), —gmod(z, 24) + 9)
b Once per Day Twice per Day
Hour Average waiting time (h) | 1st Arrival 2nd Arrival Average waiting time (h)
0.2 15 9.2265 13 20 5.8105
04| 14 8.7279 14 19 7.0911
0.6 | 13 8.2906 13 19 7.1909
0.8 | 12.5 7.8501 11 18 7.0816
1.0 | 11.5 7.3529 10 17 6.6573

Specialist treatment time follows A(0.06,0.0064).

4.3.3 TL Specialist Response Policy

Under TL policies, specialists have to arrive within a certain time window after any
consultation request. Therefore, their arrival time is uncertain. However, this stochas-
tic feature of a TL policy results in the fact that specialists’ arrival time may not
impact on performance measure significantly. This is because the patient waits at
most the length of the time window.

In fact, we conduct numerical experiments to show the features of this policy as
in Figure 4-4. Each column shows the results for the example of arrival patterns
specified on the top row. Different line colours represent different patient volumes.
The first two plots in each column are for TL policies with the same "deadline". That
is, the time window within which a specialist has to arrive is constant throughout a
day. The first plot shows the average per patient waiting time versus different lengths

of time window. And the following plots shows the frequency of specialists’ arrivals
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Figure 4-3: Optimal Timing under F'T Policies

A(t) = b [sin (5t) + 1]
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Specialist treatment time follows A(0.06,0.0064). In the left two plots, different
lines with color represent varied values of b, i.e. the parameter representing patient
volumes. The horizontal axis is the specialist’s arrival hour, and the vertical axis is

the average waiting time per patient. The right two graphs exhibit the impact of
different timing on the average waiting time per person, when there are two arrivals

per day.

119



during a day. The last plot in the column shows the average waiting time per patient
versus two different time windows. Typically, specialists have a longer time window
for their response to ED requests during non-business hours. From this figure, we
observe longer delay of SC when specialists are allowed to arrive within a longer time
window. Indeed, we have the following observation.

Observation. The average waiting time of specialists following a TL policy

increases as
e the expected arrival windows become longer;
e the volume of patients decrease.

Intuitively, if the volume of demand is large, the on-call specialists can have the
"economy of scale" and multiple patients are able to share the same specialist visiting
the ED, leading to a significant reduction of waiting time. We illustrate this with the
example of homogeneous case in the following.

Example: The Time-Independent Case M/G/1

Here we consider the corresponding canonical model with generally distributed
specialist’s treatment times and constant Poisson arrivals with rate A\(¢) = A. The
first and second moments of the specialist’s treatment time are denoted by EST and
E(ST?), respectively. Because the specialists’ arrival is uncertain, we denote E(B)
and E(B?) the first and second moments of the time until the arrival of the next
specialist, where the time until the next specialist’s arrival B is generally distributed.

In the time-independent case of M/G/1, mean value technique and Poisson Ar-
rivals See Time Averages (PASTA) proper can be used to calculate the mean waiting

time of all patients in the system Adan and Resing (2015).

B — 2 E(ST?) 1/ E(B) E(B?)

= T-p2E(sT) T A E®B) D T 1T B(B) 2E(B) @1

where p = AE(ST') < 1 due to the stability of the system. Therefore, we can tell the

monotonicity property from the closed form formula as below.
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Figure 4-4: TL Policy
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Specialist treatment time follows A(0.06,0.0064). Specialist arrivals follow the
pearson system distribution with variance 1, skewness -1 and kurtosis 4.
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Lemma 4.2 (Monotonicity of Average Time) Given \, E(ST) and E(ST?), av-

erage waiting time E(W) increases monotonically as

o czpected time until next specialist’s arrival E(B) increases;

o second moment of time until next specialist’s arrival E(B?) increases.

4.3.4 Determination of the Optimal Specialist Response Pol-
icy
Potential specialist response policies, namely F'T and TL policies, have distinct char-
acteristics. Table 4.3 summarizes the features of different specialist response policies
for comparison purposes. Specifically, an F'T' policy specifies the certain time when
specialists should show up in ED, therefore, it is more feasible for specialists to im-
plement and easier to arrange their schedules. However, the arrival time needs to be
fixed carefully, and there may be potentially long waits for patients under this policy.
Actually the marginal reduction of patients’ waiting time can become less significant
if the specialist arrivals are more frequent. In contrast, a TL policy ensures that
the maximal wait for patients is controlled. Yet the drawbacks of this policy lie on
the fact that it exposes specialists to uncertain requests, and consequently uncertain
schedules. Moreover, if there is a high volume of patients, specialists have to visit
ED very frequently. This policy can be very inconvenient for specialists to follow in

reality.

Table 4.3: Comparison of Specialists’ Response Policies

FT TL
Specialist More feasible On call
Specialist arrivals Fixed can be many as
amount of patient 1
Waiting time Marginal saving | Controlled
as daily arrivals 1

In this subsection, we figure out the optimal strategy for specialists’ arrivals re-

garding the following criteria:
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e Average per person waiting time;
e Frequency of specialist visits.

To be more specific, if both are similar under FT and TL policies, an FT policy
is preferred as it is more practical and convenient for specialists to comply with.
Otherwise, the policy resulting in shorter average waiting time per person and low
frequency of specialists” arrivals is considered optimal. In general, the determination

of the specialists’ response policy depends on the volume of demands.

High Volume of Demand. Stay-in specialists should be hired to serve a high vol-
ume of patients’ SCs. Because specialists may receive multiple requests before
they finish a consultation in ED, therefore they tend to stay there for more SCs

rather than leave for other tasks and come back to the same ED later.

Medium Volume of Demand. FT policies are proper in this case. Twice a day
FT policy is optimal for a volume level of 9000, and Three times a day FT is

preferred for a volume level of approximately 2000.

Low Volume of Demand. A TL policy is recommended in this case. Typically,
if the demand for a certain specialist is less frequent than once a day, it is
unnecessary to fix a time for that specialist to visit the ED every day. In the
case of genitourinary consultation, specialists should adopt TL policies because
an FT policy leads to either a long waiting time for patients or more frequent

visits for specialists.

In Table 4.4, we showcase several scenarios with varied scales of patient volumes,
and compare the performance of different policies in each scenario. Specifically, we
consider three different scenarios: 1) A high volume of demand with 8,904 specialist
requests annually. This includes all patients who are in demand of specialists in our
ED records, regardless of the type of specialists. 2) A medium volume of demand with
an annual amount of 2,190 specialists requests. This refers to the specialist requests
in the category "other" in our ED dataset. 3) A low volume of demand with the

number of 622 specialist requests in one year. This is typically the type of request for
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genitourinary specialists in our dataset. In each scenario, we consider both F'T and TL
policies, and the expected length of each SC lasts either 30 or 20 minutes. The column
Request2Realisation records the average waiting time per patient between sending out
specialists’ requests and the arrival of the specialist(s). The column LOS represents
the average LOS in ED resulted from this policy. Under the TL policy, we record the
total arrivals of specialists per year in the column Notes. Whereas under FT policies,
we record the optimal arrival time(s) when specialists should arrive at the ED in
the column Notes, it is because the specialists’ optimal arrival time(s) are so crucial
that they determine the average waiting time per patient under this policy. Moreover
FT1,FT2 and FT3 refer to one, two and three arrivals for specialists to respond to
ED SC requests per day, respectively. We can see that for a high volume of specialist
demands, an FT policy with two visits a day can achieve a similar specialist delay
(less than 6 hours on average) as the TL policy, which leads to almost two specialist
visits per day to ED as well, if the expected specialist’s treatment session lasts half
an hour. In the case where expected specialist’s session lasts 20 minutes, we need to
set three visits per day for specialists under FT policies, in order to match the similar
delay for patients under the TL policy. Furthermore, the total specialists’ visits are
similar under both policies as well. Similarly, an F'T policy with three times per day
for specialists to visit ED is optimal in the medium volume scenario. In contrast, a
TL policy should be set for the low demand scenario. It is because patients’ waiting
time is much shorter under a TL policy than under an F'T policy, and specialists visit

the ED only once per day.
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4.4 Prioritize Patients with Time-dependent Modi-
fied Triage Rule

In this section, we study the revised triage policy with the optimal specialists’ response
strategies. Hereafter, we use "patient" interchangeably with "job" or "customer", and
"physician" with "server". Moreover, we only consider the case of no preemptions, i.e.
servers cannot be interrupted once the service begins. In other words, the physician
will not treat another patient before completing the treatment for the current one.
In reality, the ED physicians may have to stop serving non-critical patients when a
critical patient arrives, which only accounts for less than 10 % of all ED visits. ED
physicians treat critically life-threatening patients whose triage codes are either 1 or 2
with highest priority. They even use preemptive policy if any of those critical patients
arrives; that is, they have to start treating those critical patients immediately, and
their current treatment is interrupted. However, we do not consider those critical

patients here, as they are very few in ED.

Assumption 4.1 (Non-critical patients only) We consider non-preemptive pol-
icy here, because an ED physician does not treat other non-critical patients before

finishing one treatment.

We will release this assumption and incorporate critical patients in the comprehensive
simulation later.

In practice, patients in ED can have very complicated symptoms, and they may
need multiple SCs. Moreover, ED physicians may not be able to figure out the proper
specialist whom a patient needs to consult. However, the portion of complicated
patients is not large, therefore we simplify the model and consider at most one round

of SC and perfect judgement of consultation type at triage.
Assumption 4.2 Fach patient needs at most one round of SC.

Assumption 4.3 At triage, the nurse is able to match patients with the type of
specialist perfectly. But the likelihood of actual request is not 100 %.
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4.4.1 Set up - Dynamic Programming

Suppose the ED physicians’ treatment time is independent of patient’s type and

generally distributed with first and second moments m; and o;.

Assumption 4.4 ED physicians treat patients with a service time that follows the

same distribution, reqardless of the patient class.

We consider an ED with a single physician. In the conventional heavy traffic
framework, a multiple server system with N servers is asymptotically equivalent to
the single-server system with a service rate NV times faster than that of a single server.
Hereafter we assume a single server system, yet we use time-varying service rate
u(t) with cumulative distribution function G(t) to incorporate the possible different
amount of physicians. In our modeling framework,

Decision epoch: t when any ED physician completes the service.

Observation Set: S = {Sy(¢), S1(t), Sa(t), -+, Sn(t)} is the set the amount of
patients in class n, n € A47{0,1,2,---, N} at decision point t. Suppose there are
N different classes ( {1,2,---,N}) of patients; and each class of patients requires
different SCs. Let class 0 be the one of patients who are not predicted to have an
SC in triage. Denote I the amount of classes with the optimal F'T policies, and J
the amount of classes with the optimal TL policies, and N = I + J. For the purpose
of convenience, let the classes .# = {0,1,2,--- I} represent the classes of which FT
is the optimal specialist response rule, and # ={/+1,1+2,--- ,N =1+ J} the
classes of patients whose specialists should follow the TL policy.

The predicted probability of patient x in class ¢ who is going to require an SC
is pix where Vi € {1,2,---S;(t)} and Vi € {1,2,--- ,N}. Vi € {1,2,---,50},
the predicted probability of patient x who does not require an SC is py.. To avoid

repetitiveness of classification, we set up a threshold of probability P such that

mePa \V/I{E{172,"',Si(t)},\V/Z.G{].,Q,'-',N}, VtZO (418)
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Therefore, those patients who are more likely to require an SC are classified into
corresponding class 7, and ¢ # 0, matching their symptoms with the type of specialist
who is able to treat them; otherwise they are categorized into class 0 as ones who are
unlikely to require an SC. In the case of P = 0.5, p;,; > 0.5, Vk € {1,2,--- | S;},Vi €
N VL.

Set of Admissible Actions: A(S(¢)) under statues S(¢), choose a patient from

any non-empty class.
A(S(t)) = {n,k|S.(t) > 1,k € [1,S,(t)],n € N }. (4.19)

Patients arrive at ED following a time-varying Poisson process withl rate A, (¢),

Vn € A . Let

A, (t) = /Ut An(uw)du (4.20)

Transition Probability: Let ¢ be a decision epoch. Consider after action state
S(t) after a service with length of v, then the system at the next decision epoch ¢+ v

will be S(t 4+ v) with probability P(S(t + v)|S(t))

P(S(t +v)[S(t) = [] Pulv, S(t + v) = Su(t)) (4.21)
neN
where
An() An(v))*
PTL<U, X) =€ ( )T (422)

the probability that there are X arrivals in a time interval with length v for class n.
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Value function minimize the total waiting time of existing patients from state

S(t)

V(S(1)) = ming reagso) { / TWi) + S PS(+ o) S VS( + v))dG<s>} ,

(4.23)
S(t) # 0; (4.24)
V(X(0)) = 0. (4.25)

where W, (v) is the total known waiting time of all patients in the system at time

t +v. Suppose the expected arrival time of next specialist is T,

V(X e Sn) +T — (t+v), with probability pj;
Wi(t) =

V(D e Sn); with probability 1 — pj,.

4.4.2 Stability Condition

The arrival rate function has a periodic pattern in the ED setting. Specifically, it
follows the same intraday pattern, that is, \,(t + 7.) = \,(t), where T, denotes the
cycle depending on the unit of time. Naturally, the scheduling of ED physicians
should follow this periodic pattern, and service rate u(t) is periodic as well.

We consider the condition of stability for this time-dependent system. In order
to keep the system stable, the capacity of ED physicians should be larger than the
demand of all visits. Specifically, this holds in each cycle of T.. Let

At) =" Ay(u) (4.26)

neN

be the cumulative arrival rate function of all ED patients during a day, where A,
is calculated with Eq.4.20. Without loss of generality, we assume time zero as the

beginning of each cycle, then A(T.) becomes the total arrival rate of a whole cycle.
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Lemma 4.3 (Stability Condition) The time-dependent system is stable if

/ Cut)dt > A, (4.27)

Therefore, all arrivals during one periodic cycle can be dealt with, and the waiting

queues do not grow into infinity.

4.4.3 Structural Properties

Suppose Vt,Vi € {1,2,--- I}, the upcoming due time when the specialist arrives is
T;, where T; > t, and interval between the upcoming due time and the following one
is At;.

First, we show that non-idle policy is optimal. That is, the optimal scheduling
policy should always assign an existing patient to the ED physician who completes a

treatment, rather than let the physician be idle.

Proposition 4.2 (Existence of Optimal Policy) There exists an optimal policy

that does not allow servers to be idle excepl when the system is empty.

Patients who are likely to require SCs following the F'T rules actually have a de-
terministic due time for their service. If the due time is missed, they will have to
wait for the next arrival of the type of specialist(s) they need. The following propo-
sition describes the optimal scheduling for those patients whose required specialists

following F'T policies.

Proposition 4.3 (Optimal Scheduling for Patients under FT policies) IfT; =
Ty =---Tr =T, let t be a decision point for the state S, then

1. There exists a threshold AT H such that it is optimal to assign non-FT patients

between time inter [, 5], where a < T < 3.

2. Within each class of patients, it is optimal to prioritize the one with largest

probability;
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For those patients whose specialists on demand follow a TL rule, they are actually
facing a stochastic due time, because the delay of the specialists’ arrival is uncertain,
and independent of the time when they send of request. Therefore, the scheduling

policy below is different for these classes of patients.

Proposition 4.4 (Optimal Scheduling for Patients under the TL Policy) Let
t be a decision point for the state {So(t), S1(t), So(t), -, Sn(t)}, then

1. It is optimal to prioritize the class of patients who require specialist under the

TL policy according to their arrival time.

2. Within each class of patients, it s optimal to prioritize the one with largest

probability;

4.5 Numerical Results

We use a database of all ED visits in the year of 2015 in St Mary’s hospital, Montreal.
There are 36,324 ED visits in total, among which 32,825 or (90.37 %) fall in to clinical
non-critical categories (Triage Codes 3, 4 and 5). According to the expert opinions,
duration of an SC session is 30 minutes on average, and can be as long as one hour.
Thus we use triangle distribution T'R(0.25,0.5,1) (in the unit of hour) to simulate
the length of an SC session. We consider other distributions for the duration of SC
sessions in sensitivity analysis.

Our ED data shows that a certain amount of patients need more than one spe-
cialist, and there exists multiple rounds of specialist requests in ED for an individual
patient. In our simulation model, we only consider the first specialist request for the
sake of simplicity. We leave the streamlining multiple specialist requests to future

research.

4.5.1 Patient Clusters and Their Clinical Trajectories

In the hospital where our data come from, the types of specialists are: 1) internal

medicine; 2) oncology; 3) mental; 4) gynecology; 5) blood & immune; 6) heart disease;
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7) digestion, tissue & skin; 8) genitourinary; 9) injury; 10) other. The trajectories
from diagnosis code to the type of SC are summarized in Table C.2. Statistics of
current LOS with specialist delays are summarized in Table 4.5, where the number of
consultation sessions per year is recorded for each specialist type. While the numbers
in the last three columns are the expected amount of hours, the standard deviations
are reported in the bracket. The column TTFT refers to the Time To the First
Treatment in ED, and it is similar among all the patients who are in demand of
different SCs. The delay of SC is recorded in the column R2R. The delays between
sending out a specialist request and the specialist’s arrival are over five hours, except
for the gynecology specialists, who arrive in about three hours on average. The longest
average delay is for the mental specialists, with an average waiting time of over nine
hours. The last column showcases the time from a patient’s arrival to the time he
or she sees the first specialist. This is due to the scope of our study, which focuses
on the delay of the first specialist for each patient. So we present the status quo in

Table 4.5 as the base case scenario for our simulation models.

4.5.2 Empirical Model on Estimation for the Probability of
SC Request

To predict each patient’s probability of SC request with available information in
triage, we use logistic regression and regression tree (CART) for in-sample data first
(first 2/3 of ED visits in 2015), and then compare Area under Curve (AUC) and
Mean Squared Error (MSE) with out-of-sample data (the last 1/3 ED visits in 2015)
in Table 4.6. Our prediction of SC requests is accurate with over 80 % AUC and
less than 18 % MES for out-of-sample verification. Sensitivity and specificity are two
important measures for prediction. We summarize sensitivity and specificity in Table
4.7 for each triage code. Because less critical patients tend not to need a specialist,
the sensitivity is lower for patients with triage code 4 and 5, whereas their specificity
is very high.

We also try other statistical supervised learning methods, such as a neural network
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with different amounts of hidden levels, nearest neighbor with Gaussian kernel, kernel
epsilon and support vector machine (SVM), to classify patients into categories with
different likelihoods of SC demand. However, due to the limited amount of variables
collected in triage, those methods do not improve the power prediction significantly
(Table C.3 ) shown in the Appendix.

Moreover, our data shows the existence of an unbalance between patients who
require consultation and those who do not, specifically, the ration is approximate
1 : 3 (Table C.4). Therefore, we also try the method of balance. In fact, balance does
not improve the power prediction in terms of AUC and MRE (Table C.5), rather it

improves the sensitivity and specificity (Table C.6) as shown in the Appendix.

4.5.3 Optimal Specialist Arrival Time under FT Policy

Our empirical study shows that the patient arrivals to ED follows a non-homogeneous
Poisson process. We show the time-varying arrival patterns of ED patients in Section
C.2 in the Appendix. In order to verify the optimal arrival time for specialists under
FT policies resulted from our analytical model, we use two types of functions to fit
patients’ arrival patterns - 1) piecewise linear function; 2) submodial sin function.
In Figure 4-5, we show the function fitting of SC demand patterns. The left is for
the specialist demand of non-mental consultation and the right is for those patients
who need to consult internal medicine specialists. The first row shows the sin function
fitting, and the second row of graphs shows the linear function fitting. Apparently,
linear functions tend to fit the actual arrival rates better than sin function. Actually
R? of sin fit is 70.06 % for Internal Medicine, and 76.12 % for non-mental. Whereas
R? of linear function fit is over 85 % for both specialist demands. The last row of plots
show the numerical results of optimal arrival times for specialists. We calibrate the
numerical results by enumeration and search for the optimal hour that can lead to the
shortest average waiting time. The numerical results also indicate that the specialists’
optimal arrival times vary during a week, resulted from the daily variation of patients’

arrival flow during a week.
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Table 4.6: Results of Statistical Learning

Estimated probability of ‘ AUC MSE

CART (%) 81.60 17.67
Logit (%) 83.29 17.49

Table 4.7: Sensitivity and Specificity

Triage ‘ 3 4 5
Sensitivity (%) 79.34 67.88 42.18
(P(Pred = 1|Act = 1))
Specificity (%) 73.06 89.48 975
(P(Pred = 0|Act = 0))

Although, the arrival patterns of different patient types are similar under the F'T
policy, the optimal arrival time for the corresponding specialists are not the same due
to the difference in patient volumes.

In Table 4.8 and 4.9, we present both analytical and numerical results under F'T
policies, and consider two values of expected duration of each SC session, namely
20 and 30 minutes. For each value of SC durations, we report the optimal hour
when specialists should arrive at the ED, and the associated average per patient
waiting. In the first section, we show numerically the optimal time when specialists
should arrive once for consultation in the ED each day of a week. Because of the
daily variation of demand volumes and patterns, the numerical results imply that
specialists should visit ED at different times during a week. The second section of
the table compares the optimal times of FT policies with one specialist visit per
day, calculated from numerical and analytical models. The row Daily presents the
optimal specialist response time calibrated by enumeration, regardless of the daily
variation. The rows sin and linear present the optimal specialist response time under
FT policies with one daily specialist visit, calculated from analytical models with sin
and linear function fitting, respectively. Although analytical result with sin function

has a smaller error of optimal timing, linear function fit tends to estimate the average
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waiting time better, i.e. very close to the numerical results. However, the errors
of analytical models come from 1) carryover errors from function fitting for actual
demand patterns; and 2) daily variation of demand patterns, that is, the specialist
demand patterns are not exactly cyclical on a daily basis. Moreover, we also consider
a constrained scenario where specialists work only during business hours, so their
consultation sessions in the ED take place only from 8 am to 6 pm every day. The
last two sections of the table show the results under this scenario. The row Constraint
Actual shows the optimal solution if the specialist has to finish the consultation session
at 6 pm, and the row Constraint linear shows the analytical results with the same
constraint. The last section is about the F'T policy with two specialist visits per day,
and it numerically compares the optimal timing for specialists to arrive at the ED
with and without the constraint. Compared with the scenarios without the constraint,
specialist are more convenient and avoid irregular working hours; yet patients who
are in demand of SCs have to wait longer in the scenarios with the constraint.
Moreover, we illustrate the optimal arrival times for internal medicine, injury and
non-mental specialists in Table 4.8, 4.9 and 4.10, respectively. We choose these three
types of patients, because they represent medium, low and high volumes of associated
specialist demands respectively. Under the F'T policy with one daily specialist visit,
the optimal arrival time for non-mental specialists is the earliest among the three
types, and injury specialists should arrive at the ED in the evening. For the same
type of specialists, they should start the SCs earlier if the SCs last longer. The three
tables together show that specialists should arrive at the ED earlier if the patient
volume is higher or the consultation session lasts longer, keeping the same demand

patterns, according to Corollary 4.2.
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Figure 4-5: Numerical Results of Optimal Specialist Arrival under F'T Policy
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4.5.4 Comprehensive Simulation

In reality, there are at least ten different types of SC demands, and each requires a
consultation with the corresponding specialists, as we explained in subsection 4.5.1.
This makes the integrated scheduling problems from triage to SC very complicated
and analytically intractable. However, recently, simulation models have been popular
to tackle these sort of complicated systematic scheduling problems. Therefore, we
conduct a comprehensive simulation based on all out-of-sample ED visits (the last
1/3 of ED visits in 2015) with ARENA (Blackrock) software. We use the out-of-
sample data to avoid the data overfitting, as we use the first 2/3 of data to predict
probability of consultation demand.

We describe the scenarios to be tested with our simulation models below.

e Base case. It is the status quo where traditional triage rule is applied and yet

no specialist arrival policies are applied.

e Modified triage. This scenario combines both modified triage rule and opti-
mal specialist arrival policy. Per multiple patients with the same non-critical
triage code (3, 4 and 5), the patient with a higher predicted probability of SCs
get the priority.

e Optimal specialist policy. This scenario adopts the optimal specialist re-

sponse policies for all types of specialists.

e Combined. This scenario combines both modified triage rule and optimal
specialist arrival policy. In this scenario, urgent or life threatening patients
(triage code of 1 or 2) always have the highest priority among the rest of the
patients. Per multiple patients with the same non-critical triage code (3, 4
and 5), the patient with a higher predicted probability of SCs get the prior-
ity. Patients who are predicted to require a specialist whose arrival follows F'T
policies are prioritized within a certain period before the associated specialist’s
arrival time. The rest of the time, patients who are likely to require a specialist

following a TL arrival rule are prioritized.
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In all above scenarios, we use the actual scheduling of ED physicians: there are
two ED physicians from 8am to 4pm on Monday to Friday, and one ED physician for
the rest of time. Other assumptions in our simulation models include: ED physicians’
service time of urgent patients, which follows triangular distribution T'R(0.1,0.3,0.8)
in the unit of hours; ED physicians’ service time of the other patients following
TR(0.05,0.2,0.4) in the unit of hours; and triage nurses’ service time for all patients
following T'R(0.05,0.1,0.2) with the unit in hours.

In the base case model, we use the true-to-life delay between sending out consul-
tation requests and the arrival of the associated specialist, based on our dataset. Our
empirical study shows that there is no statistically significant difference in the delay
patterns between business and non-business hours. Both patterns are compared in
Figure C-3 in the Appendix. In the base case, the LOS of patients who require SCs is
calculated as the sum of the period from arrival time until the specialist’s arrival and
a specialist’s service time. The LOS of patients who do not require SCs is calibrated
as the sum of TTFT plus an ED physicians’ service time. With these measures, we
avoid the impact of multiple rounds of consultations and delay of admission. Table
4.11 reports the consequential waiting times under different policies.

In Table 4.11, we present the results of our simulation models. The results of
base case model are presented in the unit of hour. We present the results of other
scenarios with the percentage of changes from the corresponding base case results.
For instance, the scenario of modified triage results in a 0.07 % shorter LOS but
7.05% longer R2R, no change on the amount of patients present in the ED compared
with the base case model. R2R, or Request 2 Realization, refers to the delay be-
tween sending out specialist requests and the arrival of the associated specialist(s).
In contrast to R2R, which is only among patients who require SCs, LOS is the av-
erage amount for all patients. Although modified triage incorporating the predicted
demand of specialists slightly shortens overall LOS in ED, it increases the delay of
specialists’ response to SC requests. Optimal SC policies can shorten both LOS and
R2R significantly. It dominates the performance of modified triage when combined

together in the combined scenario. Moreover, Figure 4-6 shows the histogram of the
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number of patients present in ED under the Optimal Specialist Policy. It shows a

positive skewness of the distribution of the amount of patients present in the ED.

Table 4.11: Simulation Results

Scenario LOS (%) R2R (%) Amount of Patients Present (%)
Base case 45374 h 7.1048 h 21.0611(8.9284) h
Modified Triage -0.07 7.05 -
Optimal Specialist Policy — -16.81 -42.60 -16.77(-4.77)
Combined -16.95 -42.04 -18.21(-6.12)

The standard deviations are in the bracket.

4.5.5 Sensitivity Analysis

In this subsection, we conduct several scenarios for sensitivity analysis to examine
the impact of several factors on the modified triage policy. We take the traditional
triage with optimal specialist policy as the benchmark. We test the following factors

in sensitivity analysis.

e Impact of prediction accuracy. Predicting each patient’s probability of re-
quiring specialists is not perfectly accurate due to limited information available
in triage. The accuracy of the prediction can impact the performance of the

modified triage rule.

e Skewed distribution of SC duration. We model the duration of an SC
session with a triangle distribution, which features positive skewness. We use a
normal distribution with the same first two moments to examine the impact of

the skewness in this distribution.

e Threshold of FT advancement. We use a static threshold to switch priority
between patients who are likely to require a specialist following an F'T policy
and those whose specialists follow a TL policy. The length of the period before

the arrival time of a specialist is referred as F'T' advancement. For example, if
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Figure 4-6: Histogram of Number of Patients in ED under Optimal Specialist Policy

0 10 20 30 40 50 60
Number of Patients in ED

144



a certain specialist is set to arrive at the ED at 11 am, an F'T advancement of

2 hours means that starting from 9 am, the patients who are likely to require

consultation from the specialist are prioritised among others.

We present the results from sensitivity analysis in Table 4.12. The first row is the

benchmark with values of LOS and R2R in the unit of hours. For the following sce-

narios, we show the percentage of change compared to the benchmark. Although the

accurate prediction and properly set static advancement can possibly contribute to

the improved performance of modified triage rule, we see more significant improve-

ments in the performance of modified triage rules with a symmetric distribution for

the duration of SC sessions.

Table 4.12: Sensitivity Analysis

FT Advancement (h) Actual Delay TR(0.5,1,11.5) N(4.4,2) |
LOS (%) R2R (%) | LOS (%) R2R (%) | LOS (%) R2R (%)
Benchmark 3.7748 4.5785 3.87 4.5974 3.9861 4.7052
1 -0.62 -0.13 -2.19 -1.25
1.5 -0.15 0.08 -1.80 1.03
2 -1.76 0.98 -2.34 -1.08
2.5 -1.62 0.30 -0.48 0.91 -3.73 -0.73
3 -2.13 -0.86 -0.13 -0.94 -2.07 -1.72
3.5 -2.20 0.14 -0.72 0.80 -3.20 -0.12
4 -0.32 1.11 -0.67 0.10 -2.49 -0.23
4.5 0.18 0.02 -3.10 -0.22

The first row is the benchmark with actual length of LOS and R2R in the unit of
hours. For the following scenarios, we show the percentage of change compared with
the benchmark.

4.6 Conclusion and future research

This study is motivated by the prolonged delay of specialists’ arrivals after the request

of SC in a local community hospital in the city of Montreal. The limited amount of

specialist demand makes it impossible to hire on-site specialists in the ED. The lack

of systematic rules of specialists responses lead to the fact that patients can wait
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for average 7 hours for one round of SC, and the total delay of several rounds of
consultations can add up to multiple days. We study this problem based on the real
data of all ED visits in the year of 2015.

First, we set up queueing models with non-homogeneous arrival rates to model
the demand of SCs in the ED. Through our analytical model, we figure out the closed
form of the expected average per person waiting time and optimal arrival time for a
specialist based on demand patterns, volumes and duration of a consultation session,
for an FT policy with one visit per periodic cycle of demand arrival flow.

Second, we provide a systematic method to determine the best response rule for
different sort of specialists, based on the volume of demand, and features of varied
proposed specialist response rule. These optimal policies can significantly shorten
waiting time for patients; and moreover, they are convenient for specialists to im-
plement in their busy schedules, thus are easy to implement and enforce. Hence the
proposed guideline of determining an optimal arrival rules for specialists provides
valuable managerial insights.

Then, we conduct patient classification in terms of their likelihood of requesting a
certain SC with the information available at triage. Using multiple statistical learning
methods, we are able to provide a moderately accurate prediction at triage. Balanced
method is also used, and it may not improve prediction accuracy in terms of MSE,
but can improve the performance of specificity and sensitivity.

Finally, we analytically measure the potential improvement on efficiency of the
resource-based triage with the dynamic programming framework. The actual realized
benefits may be offset by uncertainties and other delays in ED, as a result of our
comprehensive simulation models.

The most straightforward future work should lay on a dynamic threshold to switch
the prioritization among patients who are in demand of different specialists. Algo-
rithms proposed for those fixed interval due-dates problems can be helpful. Other
future research can focus on the following possible directions of time-varying queues.
First, delay of test results should be studied as this is another factor that lead to the

prolonged LOS in ED. A queue system or network with several tandem queues can be
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applied in this case combining specialist and test delay together. Second, this study
only considers at most one round of SC. Future work can extend to multiple rounds
incorporating feedbacks in queueing system. Last, our analytical work on determining
the optimal FT specialist arrival time can be easily extended to the case of optimal
boarding time. The interface of ED and inpatient wards can be considered together
in order to reduce LOS in ED. Due to the possible variation of specialists’ flexibility
and availability, we can also incorporate the capacity and workload of the specialist
into our model in the future work.

This work attempts to shorten LOS in ED via improving an internal process (delay
of SC). The following chapter also aims to reduce waits in ED, however, via designing

an interface between ED and inpatient wards.
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Chapter 5

Design of Observation Units (OU) for
Acute Decompensated Heart Failure

(ADHF) Patients
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5.1 Introduction

Heart failure (HF) has been one of the growing epidemics in North America. Over
10 % of people suffer from HF in the U.S. (ACC, 2017), and currently around 20
% of Canadian population live with HF, and 50 thousand Canadians are diagnosed
with HF each year (Heart & Stroke Foundation, 2017). With over 1 million HF
patients hospitalized each year, HF is the single leading factor of hospitalization in
U.S. (Nieminen and Harjola, 2005; Ross et al., 2006). Given the ongoing trend, by
2030 over 10 thousand more Canadians are projected to live with HF compared with
2013 (Tran et al., 2016), and 25% more HF patients in the U.S. (Heidenreich et
al., 2011; Roger et al., 2011). HF has also exposed a heavy economic burden on
healthcare system. Indeed, Heart & Stroke Foundation (2017) estimated that direct
costs relevant with HF are over $2.8 billion annually in Canada, whereas in the U.S.
the direct costs of treating HF are $34 billion per year, most of which is due to
expensive hospitalization (Feng et al., 2008). Moreover, HF is expected to cost the
U.S. health system $70 billion by 2030 (Collines et al., 2015).

Acute Decompensated Heart Failure (ADHF) is defined as "the sudden or gradual
onset of the signs or symptoms of heart failure requiring unplanned office visits, emer-
gency room visits, or hospitalization" (Joseph et al., 2009). It is among one of major
factors of Emergency Department (ED) visits. According to clinical guidelines, ADHF
patients with worsening clinical conditions are recommended to hospitalization. Cur-
rently, most of these patients are admitted due to the uncertainty of post-discharge
events, including morbidity, mortality and re-admission (Collins et al., 2013). It is
because early discharge of HF patients can result in a high chance of mortality and/or
re-admission. In fact, 33% of these patients were dead or re-hospitalized within 60-90
days after early discharge from ED (Gheorghiade et al., 2006; Setoguchi et al., 2007).
According to Weintraub et al. (2010) 10% to 20% of ED visits are discharged home
directly, while they have 20% to 30% higher chance of post-discharge events. Ironi-
cally, hospitalization of HF patients is not proven to be the better way to reduce the

likelihood of post-discharge events (Gheorghiade et al., 2005; Setoguchi et al., 2007).
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A prospective cohort study by Smith et al. (2002) demonstrated that ED physicians
tend to overestimate significantly the severe complication incident of ADHF patients,
resulting in over-utilization of scarce healthcare resources. Although most patients
have complex medical comorbidities, they do not demand an acute intervention be-
yond decongestion or intense monitoring as in hospital wards or ICU Collins et al.

(2013). There are typically three types of ADHF patients.

e Low risk patients who respond to the initial therapy, and return to baseline.

They can be discharged after a brief period of observation;

e Intermediate-risk patients who are partially responsive to the treatment
with no high-risk features developed. They require continuous treatment and
observation, consisting of inexpensive tests, acute therapy and an effective care

transition; rather than inpatient admission(Peacock et al., 2010);

e High-risk patients who develop a worsening clinical feature, including contin-
uous symptoms, worsening renal function, hypotension or an elevated troponin.

They require prompt inpatient admission and/or further intensive care.

The purpose of this paper is to design an Observation Unit (OU) for ADHF
patients in order to improve the quality of care without increasing relevant costs.
OU, also called Short Stay Unit, Clinical Decision Unit, Chest Pain Unit, Rapid
Diagnosis and Treatment Unit (Ross et al., 2012), was originated in 1960 (Gururaj
et al., 1972). A dedicated OU has the following features.

e A typical stay lasts less than 24 hours, no longer than 48 hours;

e A discharge rate is generally around 70-80 % (Hostetler et al., 2002; Mace et
al., 2003; Ross et al., 2003);

e A better utilization of healthcare resources (McDermott et al., 1997; Mace,

2001; Goodacre et al., 2004).

Due to the direct access to proper treatment, clinical tests and education in an

OU for ADHF patients, this dedicated OU is considered optimal (Ross et al., 2012),
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without a doubt very promising. Indeed, a typical stay of less than 24 hours is
sufficient to identify and treat low risk and intermediate risk patients with HF. They
can be discharged home without being exposed to increasing post-discharge events.
A preliminary study by Kosowsky et al. (2000) showed that most low-risk ADHF
patients could see clinical improvements within 6 to 12 hours after their arrivals to
ED. On the other hand, high-risk HF patients should be hospitalized. Moreover,
75% of OU admitted profiles can have response to treatment without development
of worsening high-risk features, and can be discharged with a satisfactory follow-up
plan (Collins et al., 2013).

In an ED without OU, low-risk patients are discharged early without sufficient
observation; which leads to a high chance of post-discharge events. Due to the con-
servative perspective, intermediate-risk patients are admitted to hospital, similarly as
high-risk profiles, resulting in a waste of inpatient wards, because these intermediate-
risk patients do not need intensive inpatient care. If an OU is installed, all ADHF
patients are observed in OU after initial treatment. Low and intermediate-risk pa-
tients can be discharged after all conditions become stable, reducing the incidence
of possible post-discharge events. High-risk patients can be identified and admitted
sequentially. Figure 5-1 compares ADHF patient flow between an ED without OU
versus an ED with OU.

Figure 5-1: ADHF Patient Flow in ED
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Collins et al. (2013) estimated that 50% of HF patients can be discharged after
a short period in OU, which leads to decreased unnecessary admissions and reduced
post-discharge events, and potentially leads to 1.2 million inpatient days and over $1.2
billion savings in U.S. per year. Controlled experiments conducted by Peacock et al.
(2002) demonstrated that an effective OU management protocol of ADHF patients
can reduce emergency department visits and re-admission rates in a 90 days post-
discharge horizon. A sequential group design study conducted by Storrow et al. (2005)
found out that ADHF patients in OU showed a decreased re-admission, fewer repeated
ED visits and lower total costs compared with their peers admitted to hospital in a
30-day study window. Collins et al. (2009) conducted a cost-effective study of non-
high-risk HF patients, and concluded that OU is more cost-effective than ED discharge
regarding those with low or intermediate HF patients, taking into account the post-
discharge events. Therefore OU of ADHF can be seen as the "safety net" of ED (Ross
et al., 2012).

The goal of ADHF-dedicated OU is to combine treatment and risk-stratification
simultaneously, after the initial evaluation and therapy in ED, which is the typical
entry point for OU admission. From clinical or medicine perspective, an OU for
ADHF patients is required to fulfill the following tasks summarized in Collins et al.
(2013).

1. complete initial therapy or treatment for every patient, and allow them to have

access to complete resolution within 24 hours;

2. facilitate monitoring of blood pressure, heart rate, urine output, body weight

and other bio-chemical index;

3. provide patients with access to simple diagnostic testing, such as electrolyte
testing, echocardiography, B-type natriuretic peptide (BNP) or N-terminal pro-

B-type natriuretic peptide, and serial troponin measurement;

4. enable patient education and scheduling outpatient follow-up, which is believed
crucial in avoiding re-admission by American College of Cardiology and Amer-

ican Heart Association.
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All the above can be achieved with relatively less complex and more economic
OU rather than resource intensive inpatient wards. However, in Canada, an ADHF
dedicated OU has not been widely set up. The present work examines the optimal op-
erational design of an ADHF dedicated OU, incorporating both quality and economic
objectives.

Given a certain patient volumes and arrival patterns from a historical dataset,
we provide theoretical quantitative decision support for the capacity of an ADHF
dedicated OU. That is, we consider several stylized models to figure out the optimal
amount of beds to install in a certain OU, satisfying a certain level of utilization rate
(the fraction of time a bed is occupied) and loss rate (the proportion of patients being
lost due to the full capacity of the OU).

Beyond the capacity design stage, we further consider possible admission and
discharge policies for the OU with fixed capacity. We expect that the interactive
admission and discharge policies could lead to both better healthcare outcomes of
ADHF patients and simultaneously increase efficiencies and cost-effectiveness in the
use of the limited OU resources. More formally, supported by a reliable clinical
indicator, our goal is to admit patients with the highest uncertainties of risk levels
to the OU, so that the limited resources can be optimally used for the purpose of
risk stratification. Indeed, the relatively more apparent low-risk patients can be
discharged from ED directly, and the more certain high-risk ones should be admitted
to hospital wards without occupying OU beds. In the situation that a new patient
requires admission to a fully occupied OU, we consider different sorts of possible early
discharge criteria, and eventually figure out the optimal alternatives that results in
possibly least likelihood of post-discharge events among those ADHF patients. ADHF
patients arrive at the OU at random times; and each patient is assigned a risky score
given all their physiological characteristics and demographic information. We assume
the risky score of the patient population is uniformly distributed between 0 and 1.
The patients with higher risky scores may need to stay longer in OU, and top 25%
of higher risky patients need to be hospitalized, even after OU discharge; while 25 %

lowest risky patients can possibly be discharged home directly or after a short stay in
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OU. The length of stay (LOS) in OU may follow a general probability distribution.
Our data implies that the arrival distribution of ADHF may not follow a homogenous
Poisson distribution. Thus our analysis will consider several stylized models to fix
the possible range of the OU capacity given the over-dispersed arrivals of patients.
This over-dispersion of patient arrivals and generosity of LOS also contribute to the
infeasibility of analytically analysis of several admission and discharge policies. Thus
we use simulation models to test different admission and discharge alternatives and
verify the impacts of combined admission and discharges policies. Our goal is to
design a comprehensive quality-guaranteed admission-discharge policy to minimize
the chance of post-discharge events among all ADHF patients.

As such, this work provides a systematic framework for the operational design of a
prospective ADHF dedicated OU. Specifically, we would like to address the following
research questions (1) What is the optimal number of beds in the OU to balance the
utilization and loss rate; (2) What is the optimal admission policy of the OU to take
more effective use of the limited resources; (3) What is the optimal discharge policies
in order to minimize the probability of post-discharge events; (4) What interactive
admission-discharge policies work best to enhance the quality of care of HF patients
and reduce the economic burden on the healthcare system. This is a data-driven work
with the annual ADHF patients who visited the ED of St Mary’s Hospital, a local
community hospital in Montreal, Quebec. Although this work is designed for the
case of ADHF, this systematic framework can be generalized to other applications in
healthcare, such as the design of another specific OU or hospital ward.

As shown in Figure 5-2, there are two stages in this work.

The rest of the paper proceeds as follows. Section 2 conducts a literature review of
relevant existing works in both clinical and operations management fields. In Section
3, we decide the capacity (i.e. the number of beds) of the specific OU based on
historical patient arrival flows. We consider different stylized models and calibrate
the possible rank for different levels of patient volumes. We explore various admission
and discharge policies in Section 4. Section 5 compares the outcomes of different

admission-discharge alternatives using simulation models. We further show that our
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Figure 5-2: Road Map of the Proposed Study
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proposed interactive admission-discharge policy outperforms a number of alternatives

of interest. We conclude and show possible future research in Section 6.

5.2 Literature Review

Our study closely relates to literature on capacity and staff planning in operations
management. Recently, more works have been focused on time-dependent arrival
distribution, or non-homogenous Poisson arrivals, as homogenous Poisson arrivals
rarely exist in reality. Interested readers can refer to Defraeye and Van Nieuwen-
huyse (2016) for a literature review on staffing and scheduling problems under non-
stationary demand over the period of 1991-2013. The main methods to determine
capacity for time-dependent arrivals are Pointwise stationary approximation (PSA),
effective arrival rate approximation (EAR), simple peak-hour approximation (SPHA),
modified offered load (MOL), infinite server (IS), numerically integrate ODE, sta-
tionary backlog-carryover (SBC). One stream of studies propose efficient algorithms
to calculate optimal dynamic staffing levels for time-varying arrivals of customers.
For instance He et al. (2016) designed an innovative algorithm of staffing for non-

Poisson non-stationary arrival process. They detailed the methods via composition
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and then extend the algorithms to models with non-exponential service and abandon-
ment where patience time follows non-exponential distribution. Liu and Whitt (2012)
developed an algorithm to determine staffing level for time-dependent queues with
nonhomogeneous Poisson arrival process and time-varying abandonment probability.
Cheng and Huo (2013) conducted a numerical experiment of a time-varying staffing
algorithm based on stationary independent period by period (SIPP) approach to set
staffing requirement for time-varying cyclic queue M,;/M/s; + M with abandonment.
Originally proposed in Stolletz (2008), and similarly as PSA and its extension like
lag PSA, SBC requires to divide long time horizon into small time intervals in the
first step, and then incorporates the carryover into the modified arrival rate (MAR)
with Erlang-loss models. SBC outperformed PSA regarding the approximation of
time-varying queue system. Furthermore, Stolletz and Lagershausen (2013) showed
numerically the extension of SBC into more general arrival and processing distribu-
tion.

Our work is most relevant with the queueing models involving parameter uncer-
tainty, where the mean and variance of arrival distributions are non-equal, and it
can be considered as a special case of time-varying arrival rates. in the following we
highlight most recent studies that are most relevant with our work. Bassamboo et
al. (2010) found that uncertain parameters such as arrival rates leads to the invalid
capacity forecast of traditional square-root safety staffing principle, while an adapted
newsvendor model is proven accurate. Kocaga et al. (2015) studied staffing problem
with uncertain arrival rates and outsourcing option.

Regarding the application of operations management concepts in the design of OU,
the amount of existing study is scarce. Lovejoy and Desmond (2011) used Little’s Law
and average amount of patients in the system and average length of stay to estimate
the capacity of an OU, providing a preliminary and pedagogic example in this con-
text. However, operations management studies on admission and discharge policies
in healthcare systems have provided significantly valuable insights. We highlight the
most relevant work here. Shmueli et al. (2003) has been one of the most influential

papers in terms of admission strategies in the healthcare domain. They proposed
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to admit patients whose benefits from being admitted to Intensive Care Unit (ICU)
exceed from a certain hurdle, in order to take better advantage of scarce health care
resources. From the perspective of discharge policies, Chan et al. (2012) compared
several major discharge strategies in the setting of ICU, and proposed a ratio-like
discharge policy to minimize the readmission risk involved in early-discharging ICU
patients. More recently, Mallor et al. (2015) studied comprehensively potential dis-
charge strategies of ICU, aiming to minimize the rate of patient rejection, and thus
improving the accessibility of ICU resources.

We derive the aggregated progress of ADHF from clinic and medical literature. It
is feasible to identify high risk HF patients in OU (Collines et al., 2015). Actually,
a study of Diercks et al. (2006) investigated the potential indicators that can help
to define low-risk ADHF patients in OU. Moreover, evidence and consensus-based
OU guidelines have been published by the Society for Cardiovascular Patient Care
Peacock et al. (2009). ADHF patients require in-time assessment and proper therapy.
Feasible and practical guidelines are discussed in Michota and Amin (2008). However,
the OU management of ADHF patients largely depend on the development of newer
treatment, innovative drugs and devices (Qureshi et al., 2015). Graff et al. (1999)
studied the selective admission criteria for HE patients regarding mortality rate via
a retrospective observational cohort study. Later on, Auble et al. (2004) conducted
classification trees to identify low-risk patients with HF. The used variables include
patients’ demographic information, medical history, the most abnormal examination
or diagnostic test values. The last two are measured either in ED (vital signs only)
or on the first day of hospitalization. They also examined the death rates and re-
admission rates within 30 days of hospitalization for low-risk patients. The study
of Fonarow et al. (2005) showed that routinely available vital signs and laboratory
data obtained upon hospitalization can be reliable to identify low-, intermediate-
and high-risk of ADHF patients in terms of mortality. Recently, Schrager et al.
(2013) demonstrated that ADHF dedicated OU is favorable and proposed accelerated
treatment protocols (ATP) driven guidelines. We derive the aggregated progress of

ADHF with micro clinical indicators based on Young et al. (2002). Our admission and
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discharge criteria largely base on Logeart et al. (2002), who use B-Type Natriuretic
Peptide (BNP) as proxy of post discharge events, namely death and re-admission,
and they show the association between serial BNP, BNP at discharge and the risk of

death or re-admission via univariate Cox Analysis.

5.3 Capacity Design - Analytical Models

In this study, we refer capacity specifically to the number of beds in the prospective
OU. We calibrate the possible range of the capacity given a certain level of patient
flow in an OU, with various approaches in operations management. We first calculate
the number of beds with the most common Square Root Principle. Then we consider
Erlang loss model which captures the no-waiting feature of OU. Moreover, we estimate

capacity with models incorporating overdispersion features of arrival patterns.

5.3.1 Square Root Principle

We use square root principle, the most common way of capacity decision in operations
management, as a benchmark. For a queue with Poisson arrivals, traditional square

root principle says that capacity C' can be determined by

0=5+5\ﬁ 6.0
It It

where A and p are the average arrival rate and average service rate, respectively.
Without a loss of generalization, Fq.5.1 can be written as Eq.5.2 below when service

rate is set to unity.

C=p+Byp (5.2)

where p = ﬁ is also called load rate in queueing theory.
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5.3.2 Erlang-B type loss model

The Erlang-B type model allows a finite waiting cushion in the queue. Denoted by
M/G /n/n, Erlang-B type model that depicts an OU in this context, provides a closed
formula of resource utilization for a queueing model with Poisson arrivals, a general
distribution for service time, a finite amount n of servers and no queue. That is, the
amount of customers in the queue cannot exceed the number of servers. Indeed, if an
OU is full and a new patient arrives, he or she gets diverted either home or hospital
wards as a loss of customers. Later in the paper, we will discuss some alternatives
where existing OU patients may possibly be discharged early to make room for new
patients. In the context of OU, new patients do not wait in a queue for an available
bed.
Bed utilization can be estimated by Eq.5.3.

U(”» p) = [1 - B(n,p)]

SRS

, (5.3)

where B(n, p) is called Erlang loss function (Erlang B function or blocking probabil-
ity), is defined as

p"/n!

L (5.4)
Ylino

B(n, p) =

The Erlang-B model features an insensitivity property, which says that the blocking
probability is independent of the service-time distribution. It is applicable to the
general service time distribution as long as it has a finite mean.

First we show the monotonicity of Erlang-loss function.

Lemma 5.1 (Monotonicity of Erlang-loss function) FErlang loss function B(n, p)
e is decreasing in n, Vn € ZF;
® 5 increasing in p.

Erlang-loss models explain that the blocking rate increases with smaller capacity,
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and larger patient volumes. We then explain the monotonicity of utilization in Erlang

loss cases.

Proposition 5.1 (Blocking Rate Determined Capacity) Vp, and a certain block
rate b, the capacity n should be determined to satisfy

B(n,p) <b. (5.5)

In the instance we can set up a capacity for the OU to satisfy a certain threshold
for patient loss, so that the accessibility of the OU resources can be ensured with a
certain amount of OU beds.

Rather than the criteria of accessibility, health care providers also need to consider
the expenses of healthcare service. Thus we next discuss Cost-effective Capacity
from economic perspective, under the framework of Erlang loss models. Let A be the
dollar amount health quality gain from OU, h dollar amount of losing a patient in
the OU, ¢ relevant expenses of an OU bed per unit of time, including nursing and
facility costs.

To maximize the total economic gain with a certain capacity m
max{A\[1 — B(m, p)] — hAB(m, p) — cm} (5.6)
which is equivalent to the minimal of total dollar amount expenses

min{AAB(m, p) + hAB(m, p) + cm} (5.7)

m

The following property ensures the existence and uniqueness of the decision on ca-

pacity n in the optimization problem 5.7.

Proposition 5.2 (Cost-effective Capacity) In an Erlang loss model, with A dol-
lar amount health quality gain from OU, h dollar amount loss a patient for the OU,

¢ relevant expenses of an OU bed per unit of time, the capacity m should be set to
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satisfy

(A + h)AN(B(m,p) — B(m+1,p)) =c. (5.8)

Bassamboo et al. (2010) similarly proposed a newsvender form of an approximate
capacity solution for an M /M /b+ M queueing model for a doubly stochastic Poisson
process with an infinite capacity buffer and customer abandonment. Their proposed
approximation is proven to outperform the standard square-root in the queueing
model with customer abandonment. Collins et al. (2009) OU admission with a cost-
effectiveness ratio of § 44,249 per quality adjusted life year (QALY) versus $ 684,101
per QALY for hospitalization of non-high-risk HF patients. They consider a time
horizon of 30 days. Though in the context of chest pain, Abbass et al. (2015) provided
a more rational cost-ratio between hospitalization and OU. It shows that OU is 1.4
to 2 times less costly than inpatient care. The capacity decision based on ratios of
OU and hospitalization and corresponding post-discharge event rates are reported in

the numerical section 5.5.4.

5.3.3 Overdispersion of Arrival Distribution

Healthcare providers target both economic and quality of healthcare services. This
requires the OU to display a Quality-and-Efficiency Driven (QED)regime. This means
the queueing system has a large demand and a capacity with controllable idle rate
between 0 and 1, and finally a negligible expected delay. Moreover, our empirical
analysis on the arrival patterns of ADHF patients show that homogeneous Poisson
distribution fails to fit the arrival distribution. Indeed, our patient arrival process
incorporates overdispersion. This implies a significant larger variance than the mean
of arrival rates.

The arrival process with overdispersion has been commonly treated as a doubly
stochastic Poisson process (e.g. Maman, 2009; Mathijsen et al., 2017), which says
that the arrival rate is non-homogeneous but follows a certain distribution. And the

most popular parametric family of the Poisson rate is the Gamma distribution, re-
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sulting in a mixed Poisson-Gamma distribution. Mixed Poisson-Gamma distribution
is equivalent to a negative binomial distribution. The following algorithm explains
the generation of a random variable of mixed Poisson-Gamma distribution.

Generating Mixed Poisson-Gamma variables
1. Normalized service rate as 1 via scaling arrival time points;
2. Discrete the whole arrival period into equal distance;

3. Estimate the rate A from gamma distribution with probability density function

G(a,b), where

Gla,b) = ——a"'e b,V € (0, 50): (5.9)

4. Generate a Poisson variable with the rate A.

In terms of capacity decisions with overdispersed arrival distribution, Whitt (2006)
is among the first one to propose a capacity decision to deal with overdispersion. Tt

recommended that the capacity should incorporate variance
C =EA+ BVVA + EA. (5.10)

Due to the fact that if a random variable X follows a mixed Poisson-Gamma distri-

bution, its mean and variance are
E(X)=EA, V(X)=VA+EA. (5.11)

Later on Maman (2009) proposed that under the assumption of a mixed Poisson-
Gamma distributed arrival rate A with a mean \ and a standard deviation \°, where

0 < ¢ < 1, the capacity should be determined as

C = A+ BA. (5.12)
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Noted that when ¢ = %, the arrival rates are not overdispersed, then Eq.5.12 becomes
the same form as the conventional square-root in Eq.5.2.

More recently, Mathijsen et al. (2017) proposed a capacity decision based on the
Gamma distribution. Suppose the arrival rate follows a Gamma distribution with

probability density function G(a,b) as Eq.5.9, the capacity should become

C = ab+ By/ab(b + 1). (5.13)

We compare numerically the capacity decisions under all above different methods
in Section 5.5.4. The above analytical models act as valuable starting point for our OU
design, providing more specific ranges of capacity given a certain level of patient flow.
Thus these analytical frameworks largely reduce the amount of simulation scenarios

that we should conduct for this study.

5.4 Admission and Discharge Policies

After addressing the capacity decision, in this section, we discuss several potential
admission and discharge strategies for the prospective OU. First we state the perfor-

mance measures and specific proxies applied in this work.

5.4.1 Performance Measures

The goal of performance measures is to explicitly quantify the outcomes of different
policies. For each policy we construct, we are typically interested in the following two

characteristics in healthcare system.

o Measures of Quality includes mortality during and after treatment, readmission,

and access to healthcare service.

o Measures of Cost includes all relevant expenses of treating ADHF patients.

Next, we describe proxies for each performance measure below.
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e Post-Discharge Event (PDE) Rate. Though there are several possible
clinical indicators implying chance of PDEs and risky level of ADHF patients, in
terms of complication, re-admission or mortality (e.g.Graff et al., 1999; Auble et
al., 2004). In this study, we choose BNP as the proxy of the likelihood of PDEs,
including both mortality and re-admission rate. Indeed, Logeart et al. (2002)
demonstrate the close correlation of BNP and the chance of PDEs. Specifically,
higher BNP levels indicate a riskier case where the likelihood of mortality or
re-admission can be higher than an individual with a lower BNP level. It also
provides the aggregate time-dependent progress of ADHF patients’ BNP levels
in OU. So we choose BNP as a proxy due to its feasibility. However, as the

clinical research goes on, there might be other indicators to apply in the future.

e Block or Loss rate. It measures accessibility of health care service, which
aligns with the quality goal of health care service Chan et al. (2012). It is
essential for an OU service to ensure equitable and maximal access for ADHF

patients.

e Hospitalization rate. The economic feature of OU requires it to contribute
to the reduction of overall ADHF patients’ hospitalization rate given its diag-
nosis, treatment and risk-stratification features, resulting in the a lower cost for

healthcare system.

e Cost-Gain Ratio. It measures the cost-effectiveness - the dollar amount of
clinical benefits that one extra bed makes, while of course ensuring no sacrifice

in terms of quality of care.

5.4.2 Admission Policies

It is possible to distinguish high-risk ADHF patients in ED from several clinical
features, such as positive cardiac biomarkers, new ischemic electrocardiogram changes
and certain ranges of systolic blood pressure, serum sodium, blood urea nitrogen

(BUN) and creatinine (Collins et al., 2009). Those patients are required to have
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inpatient care from clinically perspective, no matter through an OU or not. In the
meanwhile, those low-risk patients can also be distinguished and may be discharged
home without an OU admission as well. We investigate the possibility of setting a
hurdle for OU admission so that only patients whose risk level is difficult to identify
can be admitted to OU. We compare this hurdle strategy (FCFS-H) with the general
admission strategy where every ADHF patient is admitted to OU as long as there
is an available bed, similarly as in the ICU setting (Shmueli et al., 2003). These

strategies are described below.

e First Come First Serve (FCFS). Under this policy, all ADHF patients are
admitted to OU as long as a bed is available. New patients are rejected if all

OU beds are occupied.

e First Come First Serve with a Hurdle (FCFS-H). Under this policy, only
patients with moderate risks are admitted to OU if there is a bed available in
OU. New patients are rejected if all OU beds are occupied. Low risk patients
are discharged home directly without being admitted to OU, and patients with
highest risk are admitted to inpatient ward directly without going through OU

either.

5.4.3 Discharge Policies

When a new patient arrives at the OU with all beds occupied, discharge strategies
provide guidelines to either early discharge an existing patient or reject the new
patient. We consider the following potential discharge policies in the setting of an

ADHF-dedicated OU.

¢ Discharge before access. New patients are always rejected if all OU beds

are occupied under this policy.

e At random. Anyone of the new and all existing patients is selected at random
to be discharged from the OU. This discharge rule has been considered as a
benchmark in the setting of ICU (Mallor et al., 2015).
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e Longest time in service. Existing patient who stays in the OU the longest

will be discharged if a new patient arrives.

e Shortest service time remaining. FExisting patient with the shortest re-

maining time in the OU will be discharged once a new patient arrives.

e Likelihood of PDEs. Existing patient whose chance of post-discharge events
will be discharged once a new patient arrives. Similarly as Chan et al. (2012)
who considers readmission risk with a crude metric of the likelihood of read-
mission, we measure the chance of post-discharge event with the BNP level,
and discharge the existing patient with the lowest BNP level at the time when
a new patient arrives. With the medical findings in Logeart et al. (2002), we
linearly interpolate 30-day PDE chance between 10 % and 25 % to the BNP
level between 350 to 700 ng/1.

Longest time in service and shortest service time remaining are both service time
related metrics, similarly as Mallor et al. (2015) which considered the various form of

service time related discharge rule in ICU setting.

5.5 Data Analysis and Parameter Estimation

We compare the chance of post discharge events for existing patients and the proba-
bility of post discharge events for new patients if they are discharged early. All the
probability can be estimated with sequential BNP and basic demographic information

as in Logeart et al. (2002).

5.5.1 Cost Data

A recent research of Abbass et al. (2015) uses the claims data and shows that the in-
patient admissions were between 1.4 to 2.2 times more costly than OU after adjusting
for baseline characteristics, risk scores and diagnosis at discharge.

In order to compare the cost of OU and inpatient wards, we use the costs in Collins

et al. (2009), where the hospital cost is $5,712 per patient whereas the cost per PDE
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Figure 5-3: Proportion of Patients who Response to Treatment Overtime
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is $ 4,588 as the weighted average of death and hospitalization cost. And the cost
per OU bed is $ 381 per patient in the base case.The higher cost of hospitalization
incorporate both longer length of stay and the higher intensity of care than an OU
stay. All dollar amount were adjusted for inflation using the Medical Services Price

Index for 2012 Abbass et al. (2015).

5.5.2 Service time or Length of Stay (LOS)

The average LOS is 29.8813 hours derived from Logeart et al. (2002). We randomly
assign LOS of OU for each ADHF patient, without loss of generosity.

Logeart et al. (2002) provided an aggregate progress of BNP among OU patients.
That is, in general, after ¢ hours in OU, the BNP level of an OU patient becomes

BNP(t) = BNP, — 12t, (5.14)

where BN P, is the individual’s initial BNP level upon arrival in ED.
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5.5.3 Arrival rate

Our data includes 1645 ADHF patients who visit ED of St Mary’s Hospital from
April 4, 2011 to December 16, 2015. 74.47% of these ADHF patients are admitted to
hospital due to the absence of an OU in the hospital.

Having normalized average service rate into 1, the arrival rates have a mean
EA = 1.1920 and variance VA = 1.4141. Arrival rates are estimated under different
distributions in Table 5.1.

The estimation on varied distributions of arrival patterns confirms the existence
of overdispersion, where the ratio of variance and expectation is no longer equal to 1.

Thus the statistical significance of Poisson parameter is not as high as the Gamma

parameters.
Table 5.1: Arrival Rates Parameters
Distribution ‘ Parameter(s) Estimation Significance
Poisson Poisson(\) A 1.1920 .
Gamma G(a,b) (a,b) (6.2770, 0.1899) ok
Mixed Poisson ¢ ¢ 0.9864 ook

where . < 1 and *** < (0.001

5.5.4 Capacity Evaluation from Analytical Models

The number of OU beds under different analytical models are presented and compared
in Table 5.2. Though the capacity decision does not vary much when the patient
flow is low among different analytical models, Square Root approach (Eq. 5.2) and
method of Maman (2009) (Eq.5.12) tend to conservatively estimate the amount of
beds, resulting in more than 13 beds for a hospital with 5 times our original dataset.
Erlang-loss model (Eq. 5.3) confirms that as 13 beds can possibly lead to 0 % blocking,
which creates full access of OU for all the patients. While the method of Whitt
(2006) (Eq. 5.11) and approach in Mathijsen et al. (2017) (Eq. 5.13) give a moderate

estimation of around 10 beds, Erlang loss model (Eq. 5.3) provides a lower bound of 8
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beds with a block rate not exceeding 10 % . However, the actual block rate should be
higher with 10 beds due to the over-dispersion feature of the actual arrival patterns.

Given our analytical results, the last row of Table 5.2 shows the OU bed ranges to
be tested in our simulation models . Our analytical models minimize the amount of
simulation scenarios by providing the test range for each hospital scale. This largely

improves the efficiency of the subsequent simulation.

Table 5.2: Numerical Results: Number of OU Beds

Patient Flow p \ 025 0.5 0.75 \ 1 \ 2 3 4

Square Root (Eq. 5.2) 0.68 1.36 2.04 | 2.72 | 5.44 8.15 10.87 13.59

10 % Block Rate 2 2 2 3 4 5 7 8
Exact block rate (%) 1.27 436 843 |3.716.78 9.02 6.00 7.36

No Block 3 3 4 5 7 9 11 13

Cost Ratio 1.4 2 3 3 4 6 8 10 12

Cost Ratio 2 2 3 4 4 7 9 11 13
Maman (2009) (Eq. 5.12) 0.69 1.36 2.04 | 271|540 8.07 10.74 13.41
Whitt (2006) (Eq. 5.11) 1.33 2.06 268 326|531 716 890 10.58
Mathijsen et al. (2017) (Eq. 5.13) | 1.01 1.63 2.19 | 2.72 | 4.71 6.61 8.48 10.32
Test Range 0-1 12 23|23 ] 46 68 811 813

Service level § = 1.28. For a given patient flow p, the capacity can be calculated by
plugging it into the equation of each analytical approach.

5.6 Simulation Models for Admission-Discharge Rules

In order to evaluate the performance of the proposed OU and compare the different
admission-discharge policies, we develop different simulation models using ARENA
software (Rockwell). Recently, simulation has been extensively used to understand
complex systems and predict their behaviors. Furthermore, it is often used to provide
decision support when designing new systems Sokolowski and Banks (2009).

In this study, we consider different models. First, a base case model that replicates
the current ED without an OU in terms of patient handling policies and patient

volumes. Second, we develop a core model for the ED with a proposed OU using
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the original patient flow. Next, we extend the core model to incorporate several
discharge policies. We test individual admission and discharge policies one-by-one in
the different scenarios of varied OU capacity, i.e. the amount of beds. Finally, we
test the combination of different admission-discharge policies. We test the interactive
performance of combined admission and discharge policies. Detailed explanation will
be given in the subsections 5.6.2, 5.6.3 and 5.6.4.

Moreover, we also consider other cases where patient volumes are different from
our core model. Specifically, we test smaller scale hospitals where patient volumes
are 25 %, 50 % or 75 % of the core model; and larger scale hospitals where patient
volumes are two, three, four and five times the original database. In this model, in
order to incorporate the overdispersion feature of arrival patterns, the ratio of mean

and variance of arrival rates is kept constant. That is,

EA

VA S Constant (5.15)

where the ratio in Eq.5.15 is 1.1863 in the case of normalized arrival rate taking
average service rate as unity.

We generate the equal amount of overdispersed arrival rates in all those cases
with the Mixed Poisson-Gamma algorithm described in subsection 5.3.3 , and keep
the risk score, service time and initial BNP levels the same for all patients as in the
core model.

For our base and core model, we consider the following set up: a time horizon
ranging from April 4, 2011 to December 16, 2015. In our base case, the average cost
is $§ 4456.08 per ADHF patient given 75 % of them are hospitalized from the ED
without OU. In the core model, admission policy is used once a new patient arrives.
Whereas discharge decisions are made once a new patient arrives at the OU if all
beds are occupied. Table 5.3 summarizes different simulation models and scenarios.

Figure 5-4 shows the screen shot of one of our simulating models.
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Table 5.3: Summary of Simulation Models and Scenarios

Model Patient Flow | Structure Results

Base case | Current p =1 | without OU
Core Current p =1 | with OU

Scenarios:
- Capacity design validation Table 5.4
- Discharge policies Table 5.6
- Admission-Discharge Policies | Table 5.7
Smaller p<l1 with OU
Hospital Scenarios:

- Capacity design validation Table 5.4
Larger p=2,3,45 | with OU
Hospital Scenarios:
- Capacity design validation Table 5.5
- Admission-Discharge Policies | Table 5.9

5.6.1 Capacity Design Validation

In Table 5.4, we present the impacts of different capacity decisions on small hospitals,
whose patient flows are lower than the hospital under analysis in the core model.
Considering the results of our analysis, small hospitals may not need an OU. Because,
in this case, more beds result in unnecessarily low utilization, while small amount of
beds fail to accommodate majority of patients due to the highly dispersed arrival
patterns. Moreover, from the cost perspective, the total cost in the small hospitals
including hospitalization, treatment of PDEs and OU beds can be even more than
the average per patient cost ($4456.08)in the base case.

In Table 5.5, we present the results of various capacity decisions on larger hospitals.
The number of beds is positively associated with the accessibility; specifically an OU
with more beds has a lower block rates, and consequently a higher proportion of
patients are able to access the OU resources. As the accessibility is closely linked to
quality of care; in the case of ADHF-dedicated OU, the hospitalization rates decrease
as the accessibility of OU improves. This is because larger proportion of patients are
able to be treated in OU and thus identified for hospitalization demand if needed.

Only those high-risk patients who truly require further inpatient care are admitted.
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Figure 5-4: Screen Shot of the Admission-Discharge Model
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Whereas, those who are blocked from OU are more likely to be admitted even if they
are not that risky enough to require hospitalization; because those patients fail to
be discharged home directly for the purpose of high chance of post-discharge events.
Given a full OU, they have to be hospitalized directly. Therefore, the high block rates
result in high hospitalization rate. However, the utilization of each bed is negatively
correlated with the amount of beds. Actually more beds may lead to lower mean
utilization of each individual bed.

From conducted analysis, we observe that larger hospitals with higher patient
volumes tend to have a higher accessibility than their smaller peers, with the same
utilization rates. Table 5.5 summarizes the results from the larger hospital models.
For example, this table shows that 2 beds for a hospital with patient volume of 2A
leads to a utilization of over 58 % but more than 40 % patients are non-served; while
in the case of a hospital with a 3A patient volume, it needs 4 beds to keep the same
utilization rate. Only around one quarter of patients fail to access OU service. In a
larger hospital of 4A patient volume, 7 beds result in less than 10 % of non-served
patients and a slightly lower utilization rate of 56 %. When it comes to the case of

5A, the accessibility is around 94 % with 9 beds and similar utilization rates. This
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is because of the "economy of scale" in the larger hospitals. Even with the presence

of overdispersion in patients’ arrival pattern, the larger amount of OU beds, i.e. the

larger OU capacity, provides more flexibility to accommodate the highly uncertain

patient arrivals. When the smaller amount of beds suffer from fully occupation in the

smaller hospital, several extra beds in larger hospitals tend to be available upon the

over-dispersed arrival of demand.

Table 5.4: Efficiency Comparison for Small Hospitals

Capacity of 1 OU bed

Patient Flow | Utilization | Nonserved Served Nonserved | Hospitalized | Total
Proportion PDE Rate PDE Rate | Proportion | Cost ($)
0.25 20.75% 23.83% 17.73% 19.38% 34.89% 4348.86
0.5 32.51% 39.39% 17.84% 19.34% 43.77% 4107.86
0.75 40.73% 49.79% 17.711% 19.51% 48.69% 4143.01
1 53.77% 57.26% 17.86% 19.36% 51.85% 4201.83
Capacity of 2 OU beds
Patient Flow | Utilization | Nonserved Served Nonserved | Hospitalized | Total
Proportion PDE Rate PDE Rate | Proportion | Cost ($)
0.25 13.21% 3.22% 17.73% 20.14% 24.62% 5271.61
0.5 23.68% 11.06% 17.75% 19.68% 28.94% 4000.95
0.75 32.76% 20.36% 17.88% 19.21% 32.95% 3731.05
1 44.66% 28.51% 17.56% 19.39% 37.51% 3734.33
Capacity of 3 OU beds
Patient Flow | Utilization | Nonserved Served Nonserved | Hospitalized | Total
Proportion PDE Rate PDE Rate | Proportion | Cost ($)
0.25 9.07% 0.24% 17.75% 2.50% 23.10% 6704.11
0.5 17.34% 2.13% 17.70% 19.91% 24.26% 4485.89
0.75 25.65% 6.75% 17.80% 18.40% 25.78% 3814.96
1 36.61% 12.46% 17.63% 18.68% 29.36% 3635.19

Original dataset. PDE stands for Post-Discharge Event, including complication,

death and readmission.

5.6.2 Discharge Policies

Based on the original patient arrival data, we run several scenarios that incorporate

different discharge policies as described in Table 5.3. Table 5.6 displays the outcomes
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Table 5.5: Upper Bound Capacity Calibration

Patient Flow 2 A

Number | Utilization | Nonserved Served Nonserved | Hospitalized | Total
of Beds Proportion PDE Rate PDE Rate | Proportion | Cost ($)
2 58.26% 43.83% 17.87% 19.41% 44.98% 3801.58
3 52.07% 24.86% 17.87% 19.66% 35.08% 3415.57
4 45.23% 12.77% 17.81% 19.11% 29.24% 3257.06
5 39.15% 5.47% 17.75% 18.92% 25.78% 3242.35
Patient Flow 3 A
Number | Utilization | Nonserved Served Nonserved | Hospitalized | Total
of Beds Proportion PDE Rate PDE Rate | Proportion | Cost ($)
4 58.70% 26.69% 17.68% 18.72% 36.60% 3422.33
5 53.30% 16.78% 17.68% 18.42% 31.55% 3254.30
6 48.11% 9.73% 17.74% 18.56% 27.72% 3163.15
7 43.14% 5.29% 17.73% 18.56% 25.41% 3156.09
8 38.81% 2.37% 17.73% 20.12% 24.07% 3207.25
Patient Flow 4 A
Number | Utilization | Nonserved Served Nonserved | Hospitalized | Total
of Beds Proportion PDE Rate PDE Rate | Proportion | Cost ($)
6 60.49% 15.50% 17.84% 19.16% 30.58% 3145.94
7 55.70% 9.24% 17.80% 19.06% 27.42% 3054.80
8 50.98% 4.92% 17.711% 19.30% 25.59% 3040.30
9 46.45% 2.55% 17.72% 19.93% 24.38% 3065.14
10 42.41% 1.16% 17.74% 22.51% 23.53% 3112.79
Patient Flow 5 A
Number | Utilization | Nonserved Served Nonserved | Hospitalized | Total
of Beds Proportion PDE Rate PDE Rate | Proportion | Cost ($)
9 53.33% 5.90% 17.77% 19.35% 25.90% 2984.57
10 49.45% 2.92% 17.74% 19.02% 24.44% 2973.80
11 45.62% 1.40% 17.74% 18.70% 23.53% 2996.83
12 42.25% 0.36% 17.75% 18.94% 23.10% 3048.63
13 39.07% 0.12% 16.07% 2.50% 22.98% 3039.86

PDE stands for Post-Discharge Event, including complication, death and

readmission.
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of these scenarios and compares them.

The random policy acts as the benchmark in comparison, due to the non-existence
of this type of OU yet. Basically, outputs under the Random policy provide the worst
possible results, because patients are randomly picked to be prompted out without
any clinical reason.

Compared to Random policy, while the minimized PDE policy increases the uti-
lization rate of each OU bed, it does not significantly reduce hospitalization rate.
Moreover, it has the highest proportion of non-served patients, i.e. the worst accessi-
bility. As the accessibility is largely linked to the quality of care, the amount of PDE
actually is high under this policy despite its name and original intention. The overall
cost, including treatment of PDEs and hospitalization is highest under this policy.

Both policies based on service time outperform the other two in terms of high
utilization of OU beds and low hospitalization rate. Yet these two policies feature
differently. The strategy of discharging patients with shortest remaining service time
results in highest utilization among all the policies. However, this policy results in
a significantly higher chance of preempting patients compared with minimized PDE
and Random policy. The high frequency of interrupting OU treatment can lead
to potential hazard of patients’ recovery, and it contributes to the relatively higher
hospitalization rate than the longest service time policy. Another drawback of this
policy lies on its feasibility. Because the OU operator makes the decision of selecting
the patient with shortest remaining service time. The accuracy of this remaining
service time forecast depends completely on clinical judgement of OU physicians and
nurses. Therefore, the implementation may be difficult because the prediction of the
patients’ response and service time is still challenging so far.

The strategy of discharging patients who have already been treated in OU for the
longest time is very straightforward to implement. Moreover, it results in the lowest
hospitalization rate among all the policies, indicating the quality of care is ensured
in this perspective, and largely alleviate the burden of hospital wards. Despite the
fact that it can potentially save more expenses from hospitalization, it results in a

moderately high utilization of OU resources. This policy features 100 % accessibility,
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in the sense that all new patients are admitted to the OU, since obviously they have
the shortest service time compared to any existing patient. In this strategy, the only
chance that new patients are rejected occurs when more than one patients arrive
at the same time and all OU beds are occupied, which is very rare - less than 6
% in the one-bed scenario, and almost none in the scenario of two and three beds.
However, it expose the highest preempting chance for existing patients, specifically
it preempts almost twice of patients in the 1 bed scenario, and 1.6 times in the
scenarios of 2 and 3 beds, compared with the Random policy. Although this policy
generates the highly frequent preempting events, the amount of patients who complete
OU treatment is higher than shortest remaining service time, and still moderately
comparative with minimized PDE and Random policies. Given the lowest overall
expenses, this discharge policy is considered the optimal among all the discharge

strategies.

5.6.3 Admission Policies

Based on the original patient arrival patterns in the core model, we test two alternative
admission policies in separate scenarios. These policies are tested in four different
configurations of discharge policies, leading to a total of 20 scenarios. Table 5.7
summarizes the results of these scenarios. For each couple of (admission, discharge)
policy, we use a hurdle rate that indicates the percentage of lowest risk cohorts who
are directly discharged home from ED, and the same percentage is used for highest
risk patients who are admitted to hospital from ED. Take the first row in Table 5.7
for instance, under the Discharge before access policy, given a hurdle rate of 5 %,
corresponding to 5 % highest risk patients that are directly admitted to hospital and
5 % lowest risk patients that are discharged home. In this case, the utilization rate is
51.75 %, the percentage of non-served patients is 50.21 % with an average PDE rate
of 20.50 %. One can note that this policy does not preempt patients. The percentage
of patients who complete their OU treatment is 40.73 % with an average PDE rate
of 18.06 %. The overall hospitalization rate is 51.06 %. The total cost is 4142.09

dollars, including hospitalization and treatment of PDEs.
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For the illustrative purpose, we show different scenarios setting the same hurdle
rate for both home discharge and hospitalization. In reality, we can definitely imple-
ment different hurdle rates according to clinical guidelines and economic constrains.

Opposed to the discharge before access policy where every ADHF patient is ad-
mitted in OU, FCFS-H strategy admits only those intermediate patients whose risk
level are not that apparent to stratify based on the short period in ED. Assuming it
is possible to identify those high risk patients who need to be hospitalized with their
clinical information in ED, this cohort will be admitted to inpatient wards in ED
without going through OU under FCFS-H admission strategy. The batch of patients
with lowest risk are discharged home directly from ED assuming their conditions are
already stable and PDEs are under control. More specifically, direct home discharge
will not expose a higher chance of PDE than discharge after admitting in OU. There-
fore, given a fixed amount of patient volume, the demand of OU beds decreases as
the amount of patients admitted in OU is less. Moreover, as the hurdle increases, the
amount of patients gets smaller. It is because a higher hurdle rate screens out higher
percentage of lowest risky patients and the same amount of highest risk ones. As its
original desire in Shmueli et al. (2003), this policy makes room of scarce resources for
those who benefit most; specifically in the context of ADHF, patients with interme-
diate complications can have access to OU and one can identify their true risk level,
which is impossible with the short stay in ED. As a result, those with identified need
for hospitalization get admitted to inpatient wards after OU, and those with positive
response to OU treatment are discharged home.

Consequently, the increasing hurdle rate reduces the utilization of the same amount
of OU beds, resulting from the reduced demand of OU beds. Although the propor-
tion of preempting and nonserved patients decreases, implying a higher accessibility,
there is a higher chance of PDEs for those nonserved and preempted patients. This
is because the nonserved and preempted patients tend to be more complicated as
hurdle rate increases - the lowest risky patients are no longer included, and mitigate
the risk-pooling effects, so the complications of OU patients are higher, resulting in

higher PDE rates for both non-served and preempted patients.
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The quality of health care is not compromised as the hurdle rates increase, because
the overall costs are decreasing with the increase of hurdle rates. This ia an indication
of the overall lower hospitalization and PDEs under FCFS-H strategy. We showcase
the advantages of the FCFS-H admission policy from the perspective of streamlining
and operations. However, the determination of the exact hurdle rate and hence the
ultimate implementation of FCFS-H strategy should largely depend on the advance-
ment of ADHF diagnosis and development of proper clinical guidelines, which ensure

a highly accurate risk identification of ADHF patients in ED.

5.6.4 Interaction of Admission-Discharge Policies

We also compare possible combinations of varied discharge policies and different hur-
dle rates in Table 5.7. Performance of hurdle rates and discharge policies are in-
dependent of each other. Higher hurdle rates lead to more accessibility and fewer
preempting, and consequently lower overall costs when combined with each discharge
policy. Longest service time discharge policy outperforms the rest discharge policies
with a higher utilization, higher access rate and lower overall costs in each level of
hurdle rates.

With the optimal discharge policy, longest service time strategy, we apply different
admission policies for larger hospitals with a patient volume of five times the original
data set. The simulation results are presented in Table 5.9. The features of individual
hurdle rates keep the same in this case. We can observe that higher hurdle rates enjoy
higher accessibility and relatively higher quality of care indicated in the lower overall
costs. We also see a much lower preempt rate and significant proportion of patients
who complete their OU service in this large OU. Moreover, with the help of optimal
discharge policy and the hurdle rates with its consequent lower demand, we figure
out the capacity of OU can be smaller than the range calibrated from our analytical
models in Table 5.2. In this case, we test the OU with 7 beds, one fewer than the
lower bound in Table 5.2. This capacity results in lower overall costs than the ones

with larger capacities.
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Table 5.9: OU Admission-Discharge Policies Comparison

Number | Hurdle Utili- | Preempt PDE | Normal PDE | Hospi- Cost

of beds | rate (%) | zation Rate Rate | talized (5)
8 0 60.48% | 16.53% 25.83% | 83.47% 17.15% | 22.92% | 2771.57
9 0 55.16% | 9.06%  27.13% | 90.94% 17.41% | 22.92% | 2833.97
7 0 66.13% | 26.08% 26.25% | 73.92% 16.71% | 22.92% | 2723.38
7 5 62.74% | 19.70%  26.23% | 71.25% 17.39% | 22.92% | 2682.38
7 10 58.01% | 13.13%  26.32% | 67.29% 18.28% | 22.92% | 2634.35
7 15 52.54% | T17%  27.27% | 63.59% 19.15% | 22.92% | 2594.14
7 20 46.44% | 3.40%  27.72% | 58.05% 20.21% | 22.92% | 2561.86
7 25 38.61% | 1.03%  28.16% | 49.91% 21.00% | 22.92% | 2508.82

Patient flow is 5 times of original dataset.

5.6.5 Sensitivity Analysis

We have already conducted sensitivity analysis on patient volume in the previous
subsection. Here we conduct sensitivity analysis on the cost data. The core models is
presented in section 5.5.1. Keeping the other costs constant, the long term PDE cost
can increase by 19 times the core model without changing any capacity, discharge or
admission suggestions. If the long term cost of treating PDE goes beyond further,
FCFS discharge policy becomes the most cost-effectiveness among all discharge poli-
cies. With the rest costs fixed, the unit bed cost per patient can increase by 3 times
without changing the advantage of OU in all sort of patient volume scenarios. If the
OU bed cost increases further, an OU fails to save costs for the health care system by
reducing the hospitalization rate. Due to the "economy of scale" in the larger hospital
with 5 times of base-case patient volume, the OU cost can increase by 6 times to keep

the cost-saving advantage.

5.7 Conclusion and Future Research

This study provides a comprehensive operational framework to install an ADHF ded-
icated OU, that reduces unnecessary inpatient admission and ensures low cost of ED

patient triaging. As the current conservative norm, around 75 % of ADHF patients
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are admitted to hospital due to the potentially high risk of complication, death and
readmission of early discharge home after a short stay in ED. However, the propor-
tion of ADHF patients who truly demand inpatient care is only 25 %, one third of
current hospitalization rate. Therefore, the proposed OU is designed, so that ADHF
patients can be treated for no longer than 48 hours in OU, and consequently the like-
lihood of post-discharge events is largely mitigated. Moreover, their hospitalization
needs are identified in OU, ruling out the unnecessary inpatient admission afterwards.
Given the fact that the treatment and nursing service are less intense in OU than
those in hospital wards, the potential ADHF-dedicated OU features lower economic
burden and higher quality of care, and thus is attractive for the care providers. We
provide managerial insights of deciding capacity, specifying an optimal discharge pol-
icy and interpreting the features of a hurdle involved admission strategy. This is a
data-driven work, as the motivation and simulation are rooted in over 1,500 ADHF
patients’ arrivals to a local community hospital in Montreal.

First, we use multiple models to facilitate capacity decision, trying to accommo-
date the overdispersed demand arrival pattern, and the type of service system with
no waiting space. Although, arrival rates are overdispersed, traditional square-root
principle can still be applicable for capacity sizing. However, the service level is no
long guaranteed. Erlang-loss model with generalized service rate is still appealing,
because it provides a lower bound with a given loss rate in the case of over-dispersed
arrival pattern. Erlang-loss model provides an accurate capacity estimation for a
larger hospital which has a higher patient volume. It is because larger hospitals with
a larger OU capacity provides more flexibility, as more beds can accommodate more
patients simultaneously, offsetting the negative impact of arrival over-dispersion. We
also consider three innovative methods to handle specifically the over-dispersion of
arrival rates, namely Whitt, 2006; Maman, 2009; Mathijsen et al., 2017 where the
arrival pattern is modelled as a mixed Poisson process, and the Poisson arrival rate
follows a Gamma distribution. These specific methods confirm the feasible range of
the amount of beds that should be installed in varied OUs with different demand

volumes. These analytical results provide a diminished possibility of capacity , sig-
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nificantly enhancing the efficiency of sequential simulation.

Then we investigate the possible discharge policies to decide if and which patients
to discharge and make room for new patients when all OU beds are occupied. We
evaluate each capacity decision and discharge policy with ARENA simulation software
from the perspectives of quality of care and economic burden. We figure out that the
accessibility largely impacts the quality of care as even partial OU treatment can
possibly reduce the chance of PDEs. While more beds in larger hospitals can provide
more leeway to ease the negative impacts on accessibility of overdispersed demand
arrivals, OU is not recommended to smaller hospitals as the uncertain patients may
not get sufficient OU service and make the utilization of OU resources very limited.
The simulation results demonstrate that the policy used to discharge an existing
patient who has stayed in the OU for the longest time outperforms the other three
discharge alternatives from the perspectives of feasibility, accessibility, quality of care
and overall costs. Moreover, this strategy is proven robust in different scenarios
with various patient volumes. Therefore it provides a valuable insight to operate the
potential OU.

Moreover, we think one more step further ahead and ensure to accommodate the
potential emergence of new medical technology. In fact, Abbass et al. (2015) cast
doubt about the current appealing of OU to hospitals for reducing unnecessary ad-
mission and lowering cost of risk stratifying patients in ED. Indeed, in the future,
new imaging tests or chemical indicators may distinguish low and high patients in
early stages. We test the FCFS-H admission policy for this ADHF dedicated OU, and
demonstrate that a slight downsized OU according to the specific hurdle rate deter-
mined by the future diagnosis capability is still appealing to the health care service
providers, as FCFS-H strategy is flexible and feasible to accommodate technology
advancement in the long run, without any compromise of quality standard or loss of
initial investment. This systematic framework can be definitely generalized to other
applications.

This work has several limitations. First, we make several assumptions of clinical

measures and diagnosis due to the lack of reliable medical contribution. For instance,
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we make linear interpolation on the chance of post-discharge events versus the BNP
levels, and interpolate the progress of OU patients’ average hourly BNP levels. Sec-
ond, there is few economic data on the costs of ADHF-dedicated OU except Collins
et al. (2009). We run sensitivity analysis to demonstrate the robust advantage of
designing an OU. Yet a more accurate estimate of ADHF-dedicated OU cost is defi-
nitely helpful to gauge the benefits more precisely. Third, we have no individual level
information on the progress of ADHF patients’ response to treatment, or the individ-
ual PDE rate of different risk levels. This preliminary work relies on the aggregate
behavior of ADHF patients. However, once those clinical and medical inputs become
available, we can incorporate them in our framework and generate more realistic

suggestions at ease.
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Chapter 6

Conclusion and Future Research
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In this dissertation, I conduct data-driven research to address problems in health-
care operations management from the strategic, operational and clinical perspectives
and provide valuable managerial insights.

On the strategic level, we propose an incentive based payment scheme to encour-
age physicians to make decision for the maximal value of patients in Chapter 3. This
study demonstrates that proper financial incentives in healthcare system are essential
to ensure quality of care and control of expenses. Chapter 4 and 5 mainly contribute
to the healthcare decision-making on the operational and clinical levels. In Chapter
4, we analyze and propose a systematic guideline for specialists’ response to ED con-
sulting requests with non-homogeneous queueing models; and propose an integrated
decision-making linking triage to specialist consulting demands. Our empirical work
contributes to clinical decision-making by identifying potential specialist consulting
demands with limited information available at the triage stage. In Chapter 5, we
propose to set up an ADHF dedicated OU in order to avoid unnecessary hospitaliza-
tion and post-discharge events for ADHF patients. This potential OU, operated with
our proposed capacity and admission-discharge policy, ensures the quality of ADHF
treatment in ED without incurring extra costs for healthcare payers.

All these chapters are motived by empirical studies based on medium to large size
datasets. Specifically, Chapter 3 is based on over 12 million U.S. individual live birth
records from National Bureau of Economic Research; and Chapter 4 and Chapter
5 are based on 40 thousand individual patient visits to the Emergent Department
of St Mary’s Hospital in Montreal. We use extensive statistical methods to conduct
patient clustering from the clinical perspective. Moreover, all our analytical models
and proposed strategies are verified with these data sets, which include patient-level
information.

There are numerous fields worthwhile for further investigation and exploration in
the future. First, it would be of great value to study physicians’ behavior, although
we assume physicians’ diverse behaviours and preferences offset each other with our
census data in Chapter 3. However, future research should explore the impact of

physicians’ behavior on their clinical decision-making. It is also worthwhile to identify
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certain measures to quantify their effort. This would contribute significantly to the
design of accurate financial incentives to manage physicians’ clinical decision-making.
We expect that this stream of study largely relies on the decent data source and
advanced analytical methods.

Second, to integrate healthcare system is promising in the future. As we demon-
strated in Chapter 4, the problem of ED overcrowding actually involves multiple pro-
cesses in a hospital, for instance, tests, specialists, interface with hospital wards and
even community nursing houses. An integrated decision-making can help to improve
efficiency in the entire healthcare system. Analytical models like a queue network
consisting of multiple tandem queues are potential tools to effectively solve this type
of problems. Moreover, advanced queue network models can deal with problems of
complicated patient flows, which can involve abandonment, several rounds of tests or
specialist requests and re-admission to inpatient wards.

Furthermore, all our chapters consider passive patients who are indifferent with
their preference of physicians. However, it is worthwhile to investigate more realistic
scenarios where patients are active. Patients can select their preferred physicians
and leave the physicians they do not like. Moreover, future research should consider
the more realistic case where patients do not perfectly conform to their physicians’
decision. Advanced games and contract theory framework are expected to incorporate
the interaction between healthcare providers and patients.

In addition, advanced dynamic programming based algorithms should be further
developed in order to improve efficiency in complicated patient streaming problems.
As the case in our Chapter 4 with multiple patient classes, a dynamic streaming
policy is expected to outperform the current one.

Finally, if incorporating more developed clinical inputs, future research would
provide more feasible and valuable insights. For example, information of individual
records on the progress of ADHF treatment can contribute to the design of OU
under the framework in Chapter 5. We expect that statistical learning methods can
definitely contribute to this type of research with sufficient amount of reliable clinical

data.
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Appendix A

Literature Review on Design of

Financial Incentives and Payment

Schemes in Healthcare Systems

Settings Payment Mechanisms Literature
Physicians | Overview, Mixed (Leger 2008); (Leger 2011);
(Robinson  2001);  (Lee and
Zenios 2012)
FFS (Cutler 2002); (Adida et al. 2016)
Capitation (Ellis 1998)
Bundle (Adida et al. 2016); (Gupta and
Mehrotra 2015)
P4P and OAP (Fuloria and Zenios 2001); Lee
and Zenios (2012); (Shwartz et al.
2016)
Blended payment (Chu, Liu et al. 2003); (Sorensen
and Grytten 2000); (Adida et al.
2016)
Hospitals Overview (McKillop, Pink et al. 2001);

(Friesner and Rosenman 2004);
(Rosenman and Li  2002);
(Sutherland 2011); (Czypionka et
al. 2014); (Hua et al. 2016)

Retrospective payment

(Morey and Dittman 1996);
(Nedelea and Fannin 2013)
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Prospective payment

(Ankjeer-Jensen, Rosling et al.
2006); (Clement, Grosskopt et al.
1996); (Puenpatom and Rosen-
man 2008); (Ata, Killaly et al.
2013)

DRG

(Fetter 1991); (Goldfield 2010);
(Sutherland, Hamm et al. 2009);
(Dismuke and Sena 1999); (Her-
wartz and Strumann 2012);
(Sharma 2008);  (Woodbury,
Manton et al.  1993); (Gaal,
Stefka et al. 2006); (Epstein and
Mason 2006); (Fattore and Tor-
bica 2006); (Bellanger and Tardif
2006); (Schreyogg, Tiemann et
al.  2006); (Rouse and Swales
2006); (Shwartz and Lenard
1994)

Global budget funding

(Peacock and Segal 2000)

Activity based funding

(Biorn, Hagen et al.  2003);
(Sommersguter-Reichmann 2000)

Internal cost allocation

(Verheyen and Nederstigt 1992);
(Verheyen 1998); (Morey and
Dittman 1984)

Pharmaceu
ticals

(Kolassa 1997); (Song and Zip-
kin 2003); (Chick, Mamani et al.
2008); (Sun, Yang et al. 2009);
(Mamani, Chick et al. 2013);
(Malvankar-Mehta and Xie 2012);
(Zhang, Zaric et al. 2011); Zaric
et al. (2013); Mahjoub et al.
(2014); Taylor and Xiao (2014);
(Levi et al. 2016)

Table A.1: Literature under Category

190




“SuryedrysoAut ‘seyrdsoy JueIeyIp Sur

uom 9 WS nqg | 0} ssedoe 0} sjuoryed -ouRuy  poseq-AlIAliOR

‘9101 PoIpM)S J0U dIoM | IO] poedut oATI®R AV 103je pue JO  SSOURAIONS oY}
sreyidsoy  Jo  sio3oej | -8ou ou pey Juipunj | oIojoq AdUSDIPe SR} sy00pe sreydsoy | (600g ‘T
Ayrenb  10Uj0  pue | poseq-AjIArjoe oy | -tdsoy 09 9o0dsor yYim Jjo Ay1oue8o10101 | 10 uadey
£ymbo ‘AIRIION | poumiguod Apnys oyJ, | Ljeusdorsjey  Apnig ¥ NO[119WOU0dHq reydsoy | Ioyloym  9)eII)seAu] ‘urorg)
*JS9109UI JO ‘welsAs juewided aA1) (9002
oq Aew suorjerodo juey | -oodsord yYouel] mou yuow ‘oouRlg Jipreq,
-1odwt 197)0 pue owWI) | B UJISOP 0} Spoyloull -97e)s | Juenjedur | ur  wWRISAS  juemided pue
Suryrem uo joedwar oy T, | oy)  peonporyur I VN V NAFO[OPOIoIN rendsoy | earoadsoxd oY) ssessy | 1oSue[eg)

)1 Apowial 0} pauSlIs ‘1eak o1y} ‘sootdsoy

-op oq pnoys Aorod | 1ea0 uIejyed odreyd ur  SUIUWIYS We9Id

MOU ® pUR ‘SOSeISIp | -SIp  PUR  UOISSTWIPR 91eSIII  puR  SMO[
SNOLIRA  I0] JUAIOpIp | s.0o1dsoy  Suiziiqe)s "ONUIADI UOISSTWIPR 9y} 9ZI[IRIS (€102
9( QI sojel 9FIRYD | O} PIINLIUOd WSIUR | PIZI[eal S, Iogeurur 01 Aorjod oeaAryeurdIR | (R 10 A
-SIp pue uoisstwpe oy, | -yoowr posodord oyJ, | ootdsoy QZIWIXRN pmpg | omreufq [pueneding | rewndo ue osodoid | -1 ‘BIV)
(9002
juet) ™ °
‘oM AJjue1o ‘sTre) juewt | -edinQ) ‘sTeydsoy] ystue( Sursoy
-Igns  YIom J0U  PIP | -Op Ul WO)SAS mdu SIU} -oye)s | jueryedu] | I0J WO)SAS XIW-9SBD B ‘uosuaf
WISAS XIw-osed YT, | pojenyeao Ioded oyf, VN V NASo[opoIoI rendsoy | oyenjead pue oquSO( | -Ie[Nuy)

Juede 29
redourid

‘S)INsel [eol ‘Suruos ‘ooueuwr1ojIod I01)

-nidure Surpasdoad Yiim 8ol oroxdwr 0}  swstue

poulie s3urpuy Iy} oTuIou szopraoxd | -yoowr rewrrydo esodoi g

'sotpngs Teund | Jo 1sowr pue  ‘S[ppour ‘gofed jo Lymn | -009 10 ared | ‘yuowded o[punq pue

- 9INJNJj WOIJ UOI} | JNATeuR UM SOATIUD | SIopraold  osioae-ysil | yoeoidde -3reey | S JIepun siepraoid
-RUWLIYUOD POOU SUOTJRA | -UI [RIOURUY oY) Apnjs | pue AJ[In SI9Insul o1jATRUR I9YI0 10 | dIedyj[edy Jo oouewW | (9107 ‘B
-198q0 Iy} Jo owog | 0} Ioded 31817 oY) ST 9] | [RIIMOU-YSUI oziwixeAUOTezIWNA() | 01JseYD0)S |SURISAYJ | -10j1od oY) ozZA[RUY | 10 ®PIPY)

UOISU9}X9 I[qIS

-soJ 2y suoljejIwuI| 18uailg | uorpung aA1dxlfqQ [PPORGO[OPO 1IN snooyqg s[eox) [oJaeasdy | sIoyIny

191



[opow [endsoy 3uryoeoy
j1qod uemre], o8Ie[ ® Ul
*1S9I93UT ‘dDd Sunueow ‘sIsATeuy Aousmige saoxdwil ued
jo oq Aemr soinseowr | -o[duir 19)Je AOUSIIPO ‘Aouamdrge sreydsoy quotrdo (dDd) weiSorg uor (€002
Lyarponpoad )0 | [eypdsoy jo juowwaoxd | joeduwur jer) s1030ef oyl -oAur -esuodwio) URIOISAYJ | ‘e 10 NI
pue Supjrewyousy | -wWil oY) PowIGuUod I | oIo[dxe pue ourRXH ee(q | eoundwy | URISAUJ | ® IoYloym  ouUTWeXH ‘ny))
"00} 1S0I9UI JO
9q Aewr smorddns pue
stoseyoInd ordiynu
JO osed O], ‘SoulddeA
jo Amyuenb pue sodA£y
oyeds Jo purwop 9y} "oUIIIRA
Jseda10] 0} o[qe oq | jo A[ddns oy) odjue
jou Aewl JUOWIUISAOY) | -Iend pue uoryeziuiido ss1goad
‘oumoeA Jo Ajyunwwl | [eqO[3 aAoryde 09 siotd 10RIJU0D SIdoanjoenuenwt UYL
[enpisol oyerodiod | -dns pue siofed 1joq uretyo -DBS INOYIIM DUWOIINO (8007
-UI  J0U  PIP [oPOW | POIRAIIOW A[[MJSSODINS *S$150D 10U SZIWIUTW A1ddns OATI00[J0-1S00  TIJ[e9y | 'Te 19
omuepide  pue  uoye[ | 10RIIUOD Surreys | 0) wWIeR SaINjORJNURUI ‘A10071]) sreorynad | orqnd  oaoxdurr  wed TURUIRTA
-ndod  snoousSowoy | -9800 posodoid ILYT, | PUR JUOWUWIDAOS [l0g sowrexr) | O1seYD01g -eurIeyJ | 90rIUO0D jYeym Apnig “Pryn)
S3UI1)0S | "SOLIRUSDS POUTRIISUOD "owIooul padrojord
[enpratpur  oeo 10} | 998pnq odimw Iep | UewIsAyd woIj suory sotorj0d 3utpuny
ouo reuwrrjdo ue Jur | -un surISAYd poLIe[eS | -RIASD oY} OZIIIUTUI rendsoy JudIOPIp Yum (€002
-puOWIIIOddDI  JNOYYM | puR S[eIIdSOY uoomId( | pue  ‘S[ROZ  OIIOUODD Surw [e1 | 10RIOIUI  SWSIURYDSW wyre))
‘swistueyoow  JuowidAed | UOIORISIUT OY) Pojel | pollsop woly suorjera | -urerdord -idsoy 29 | juowded uensAyd pue
[eroads poureidxe 9] | -odiodur [epow OYJ, | -OP POIYSIEOM SZTWIUIIN TeOUTPIYSTUTIUINID(] | URDISAYJ | PoLIeA MOY 9)eJI)SoAU] oyerq)
-suerorsAyd
10} so8ueyd oonorId
“UOTINIIISUL UR | JO 19  OJRINSUSTUTUOD
10 suorjerodo [BWLIOU | @ OJUI SUOISIOP XIW
urejurewl pue s)o8pnq | oses soje[suel} I9Yj0
‘SIONRUI | POUTRIISUOD JO 9OUR[R( | oY) ‘POXY SIS0d dIIA Surm (2002
uoISIOopP 10J STeod o[dr) | oY) po[qeus pue ‘uols | -10s Juip[oy suemisAyd | -wreidoxd uerd | sye3dsoy ored 9noe ul Iogre))
-[nw d3eI0dIONUI PINOD | -OP uonedo[e joid | 10} SwWN[oA pue X [eo3 -1sAyd 23 | sedanosax ayedo[e Aedn pue
uoI10UNy 9A1399(0 Y, | -X0 POMO[[e [oPOW O], | 9SeD S10S [opPOW ou() TeOUTPIYSTUTILIOND(] Teyrdsof] | -1807eI3S 01 MO ApNIG oyerq)

192



"1$9199UT JO
oq Aewr swo)sAs juow ‘JuowIssosse A[1eo ‘puersuy
-fed JUOIOPIP JO UOSI | Popn[oul pue pue[Iuy ur srejrdsoy Suueuy (9002
-redwiod Y], -SULG | Ul WO)SAS JlIel osed Juow I0] wWo)sAs JLIe) osed UOSeTA
-psuod [rIom oIe sfel | -1d-1500  Jo  u3Isop -oye)s | quenyedur | -19d-)$00 [RUOIIRU OY) pue
-1dsoy JO sjueLIRA QUT, | oY) PO[IRISP {IOM O[T, VN V NAFO[OPOIoIN [eardsoy | ojenyess pue 9qLIISH(] ure)sdy)
sreyrdsoy
orqnd  esengdnyiog ul
‘steqidsoy] esonsniiog sordo[ouroo) J1380U
ur AOUSIIo [RITUYDID) [opowt -gerp jo Apanonpoad
‘9s010Ul JOo | pue Ayarponpord Sur A3oroutpay o13souderp I9TYUOI] pue AoueDIfe [edTU
oq Aewr s1090e] A)irenb | -aoxdwr oy Hyyqjo uory | jo Lyanonpoid oY) uo |durewrered -[29) 9y}  podULN[] (6661
1910 pue owir) Surirem | -nquuod oAnisod oYy | juemded O [enjoe | -uou pue -t quemided O | BUSG pue
‘Aeys Jo WIBUS[ OYT, | poumIguod NIoM OyJ, | Jo joeduur oy} surmrexy [ujewrere | reotndwy | jueryeduy | Ioyjeym outureXy | oynusI(])
"9INJeINI] JUl
-)STX0 JIM SI[NSOT I
Surreduod Aq SOAIIIDD
-ur [epueuy jo joed “errRI}
"dqe[rear 9q 09 poded | -wir oY) Punoj Ioylanjy S109R01P -sny ur Aouarorge [ejrd
-X0 ST jose)ep jueAs[ol | pue ‘steydsoy el[el} | -Ul UTRLIED UoAIS sTeyrd sIsATeuy -SOY UO SOATJULOUI [BID (7102
pue ‘SULIOPISUOD YoM | -sny U0 dIYSIOUMO JO | -SOT JUSIofIp I0J Xopul doreauyg -ueuy pue dIysmoumo | ‘e 19
oIe sioyedrpur Ayrend) | joeduar o) punoj Loy, | ADULIOIS oY) 9)e[NI[R)) ereq | reoundwry | gueryeduy | jo joeduut oy) outurexy feuordLz)))
"SUOIYed
-1[dde potrea oaey ued oIe soo11d MOpeys pue
“RJeD POIRGoI3TesIp | PUR ‘[eASLI}SI poMO[[R "UOTIOUNJ 9OURISIP SoJel  JUOWIOSINUIIOT
o[qerreae  uo A@P3Ie[ | pue ‘uorpouny 31805 jo | adAr-preydeyg Sut U99M )9 SOOUAIPIP oY) (9661
Ap1 9ng ‘yservur jo | uornydwinsse UWOIIRZIWI | -JRWIIISO  AQ  SOOIAIOS Surua Juor) | 81 MO pUR oI S9dIA | ‘TR 19
IR SolRI NOY([ UYoed | -umk 1800 oyj) poses| | Teydsoy jo  seoud | -wreirdoxd -edinQ 2y | -10s [eydsoy jo seoud | ydoyssorr)
jo seourd mopeys oy, | -01 UOIJOUNJ 90UR)SI(] | MOpPRYS 9JeINOTR)) | IROUIUONIISIUTILIONR( | Jueljedu] | mopeys e jeym Apnjg | ‘yuowol)))

193



189 ‘srejrdsoy
-I0JUl JO 9q Aewl SoLI} ‘sTedsoy uerred UeLIRSUN]] 10] WO)SAS
-unod 100d I9Y30 YA | -UNJ Ul SWoIsAs HYJ Juow oy © jo Surpes oouxd | (900g ‘T
uostredwod pue Aouer | Surjuewo[dwWI JO SoNssI -oye)s | queryedur | pue ASo[opoyjewn 1500 | 10 ©¥JOIS
-igo uo  joedwr QY, | Oyl POzATRUR YIOM O[T, VN V NASO[OPOIoIN [ed1dsoy | oY) Ssosse pue oqLIdSo(] ‘TeRD))
oIeJom
[emos [ej0}) Surzrul
-xew jo osodind o)
I0] JUOUI)RII) SSOOYD
‘squoryed 10] 07 s1op1Aa0ad oxedI[eay
‘SIOZIWIXRW | JJoUa( WI9I-3UO] ons ‘91e)S OrD SOJRATIOW  JRY) WSTU (1002
jgord ore siepraoxd | -ind 09 siepraord 10y | 10} poded pojunoosIp Surwa -eyoow  juowded e SOIuoy,
pue ‘oarssed powns | owoyws juowded Jew | poldodxe s Joset | -wreidoxrd udisep ued  SIOSeD pue
-se ore sjueryed oyp, | -13do ue pesodoid 3y | -ind oY) ozmuIXe]y | OMWRUA(] | O1ISeyo0)S | URDISAYJ | -ind  MO[  oulmIexsy rLIOIN)
‘s9o1a10s Juatjedino
I0j JUOWOSINUIIDT
JUOTITLIOAOS TOMO] ITM
‘suerd "SIOTARTO( poor]  uOYM  SIUST) (7002
QouRINSUl JO soSueRYD | SUIPIYS 9IS0D dARY 0} quor) | “ed  JuUOWIUIOAOS-UOU uew
Surjenfess UeUM 9s0I0) | jou  puay  s[eydsoy -edino 2 | 105  seouud  queryed -U9s0Y
-UI JO oq AW ADUSID | POUMO JTIOWUIOAOS jueryedur | -ur  estel  siepraoid pue
-ijo pue Ajrenb oy, | popnouod Iiom oY, VN VN | reounduy rendsoy | Ioyjoym  0JeS1ISOAU] | IOUSOLL])
"159199
-uI JOo oIe sZuUI}es U "Oad Juow VSN oyl ul
-Togip ur suorjedrjdde | jo suolnjoas pue AI0} -01e)s dnjes HY(J [RULILIO 87} (1661
pue uornios payepdy) | -SI oY) PoITOWNIOJ VN VNAGO[OpoOIoTy | Jusryeduy | 9)enjeAd pue dqLIdSd(] 19110)
‘sworqoid
"1S9I0UI JO oq Aewl | Terjyuenbasuod [e1o
SOLIJUNOD IB[IWIS JOYJ0 | -AdS Ino pojuiod pue
Suoure uostredwio) | ‘sojer  oyj) dn  9jes "ATe)] ur (9002
‘podofoAdsp o( PINOYS | SIUOWUIIAOS [RUOLIAI Juow $1500 uononpoid woxy RIIQIOT,
udisop  9yel  I9319q | PUR  [RUOIJRU  MOY -oye)s | queryedur | peAlep O JO sojel pue
pue Apnjs peomndwy | poure[dxe IIom Oy, VN V NASo[opoIoI reydsof | ssesse pue ozARUY 91099% )

194



‘sygoxd

‘oxe]

IOY) OZIWIXeUl SoUO -[oM TRTOOS SZIWIIXeU 09
orearrd pue  ‘urer)s s1opraoad jo sod£) yjoq
‘we)sAs | -uoo  Ajyoeded  ym 10] sowIjod JuUoWIUIY
Ior-ouo  wiIojedino | AN IO} OZIWIXEW -A03 [IIM  WSIURYDSW
owir) jrem pojoad | jou Aewr 3 y3noyy | o} j081e} siede[d off uorjeuIpIood e odea
-Xo oml) JUO[ oY) U0 | ‘WISAS  I91)-om) e | -qnd  o[ym  ‘9dIAILS yuery | -9 -smpraoid ojearrd
posnoog nq ‘uoryeurioy | jo  uonmnedwod oyl | oqqnd oyl JO oIeJOM oured -edno 29 | (01 pue siepraoid Off
-utl )8uo] onenb owir) | 10} wNLIqIINDo yYSeN | [RI00S oY) OZIWIXeW Aodonp quergedur | -qnd 9o1j usemlaq uon | (9107 ‘B
[ea1 oy} poloudl AoyJ, | onbrun ® punoj Aoy[, | 0} SWIE JUSWUISAOY) POXIIN JIIeWO IR rendsoy | -1goduion oty ozATeuy | 10 eny)
“ULI0JOI
DY I99Je PosesIour
sey Aduemipge [e)1dsoy uots
Jo s1eao[[ids  [eryeds -S01301
‘s10A0[[1ds [e1yeds AT} | oAlpedou Jo opnjrudew reryeds AuewIor) Ul UOT}
“SuryeliIseAur wyNJ | -eSou 0) onp sreydsoy | 9y) Jou IO ISYIOYM ‘VAA -1jodwod Teydsoy 1eoo[ (z102
rIom o9q Aeur A)eroods | ueurior) Juowre UOI) | ADUDIIIJO [endsoy ‘stsATeur soseoroul  A[OAI109p0 uueu
[endsoy jo joedurt pue | -odwod Juisesarour oy} | JoO oouopuodaprojur I|Tjuodg qjuowrded  oarpoedsord | -niyg pue
AOUSIIPD [0AD[-JURIIRJ | POPNPU0D Iom oy, | Terpeds oyj ourmexy | onseypolg | reoundwy | quenyedu] | Ioyjeym  01eS1ISOAU] | Z)IRMIOH)
“TSTURYOOU ST}
Surjuowoduut uayMm “wISTuRY oo U
oorpoerd ur 1ol pue ‘10i%ed o1p) rewrgdo  pourei}suod
[euy  pojerodioour o3 | 0} poypwqns siesdoad K100} ® ozATeue pue UIISep
ey AoyT, 'sgurpes | Jo  Ajyuenb  urejred oure3d ‘spopowt QATYRULIOU
IdYI0 0} ozIRISUSE | -UN Y} YIM [esap 0} S[I0M MeT) | IIM WISTURYDOUI (¢10Z
JjouuRd PUR DAIJRIIUI | WSIURYIOW  UOIJII[OS 1gouaq e -ourey -edino 23 | (IDdg) ,Iuewesorduwil | RIIOIYSIN
ogmads 8y} 0 pejwil | urelredun rewrpdo | -0s pojoadxe [R10) oz | Juade 2§ quoryedur | a1ed  10j  syuowAed pue
ST yIomewely o[ | ue pesodord AoyJ, | -Ixewr 09 suwie IoAed | [edULIRII)RTWLYIRIA reydsoy | o[punq,, oY) ojen[eAq eydny)

195



*1S9I99UI JO 9 3T
QwI} 93 I9A0 asuodsol

OTwRuAp STopraoad oIe Wo)sAs

O[IYM  ‘[opour  J1IR)S souerduod-10j-Aed

® ST 9]  SIOZIWIXEW ' pIEMO)} UOI}ISURI)

a[qesgord se siopraoid oy} pue juowgsnlpe

pownsse 3] ‘siopraoid NS Y}  SulAjoAul

JO WSTURTDOUL SATIIO[S o1ed Ajrenb woe)sAs  juowided SIS
o[qissod pue suenISAYd | aInsuo 0} 193j9q NIOM -ATetp S,0IRIIPOIN (z102
SN0OUAF0ID1OY o)epow | pinom UIedI)SUMOpP Jjo sivjourered [einy SOTuoy,
-wodoe  jou  prp 9] | pesnlpe sur 10y Aeq VN VN | [eourdwy | uewisAyd | -onas oyj jeym Apnig | pue oo7)

wo)sAs SuImpoyos

“TOTYRSFTISOAUT IO 1IN quourjurodde QuIuO

Yrom  oIe  wo)sAs ue I0J SOTWRUAD oIed

yuewnjurtodde Aep-01 ‘squatyed quaryedino xo[duwoo

-Aep Jo sotwreudp pue | A[UO-PajeIIPLp 10§ pue sjuoweImbar ared

xmu guotjed xojdwod | rewrydo sem  joeIUOD -03-ss000%  juoljed Jul

oIOW  pue  ‘)soId)ul Lyreuad-proyseay) ‘s1081R) -yerodIoour yIomourelj
Jo oq pnom joerjuod | poyrdwis e J[IyM | owI}-FUIrem  UTeLISD urjoerjuod peseq | (210g ‘T
poseq-oouemniofrod | ‘podIOoM JORIIUOD POSe(q | Jedul 0} 9509 S Jopraoxd -oouewriojrod poymun ' | 10 Jued
IeQUI[-UON | -ooueuLIOfdd IRSUI] Y | 9DIAISS QZIWIUTI\ onond) | omueudq puenedin | dn 3es 03 moy Apnig ‘Suerr)

‘suorjendod so1yoeId

pofjoiue Juowre  oIed

YI[edY I0] PodU AT}

-e[ol Ul  SUOIJRLIRA

M sI0m jou 10} sjuowided uoryR)

‘podoesadp | seop ®jep AjiejIom -ided  ored  ROTpOWI
9q pmoys uorjendod | pue OTWOUOIVOIIOS UO Arewrad  Sunsnlpe jo | (000g ‘T©
polrea  Surperodiodul | peseq oOBR[NUWLIO] UOI} Spoyjew  OAIRUIONE | 19 AdlInY
OR[NUIIO]  OATJRUIN)Y | -ejided  poseq-SpooN VN VN | eoundwy | uemisAyJ | oyenyeas pue dopad( |{UOSIYIINE])

196



Suryjes
UOI}BDO[[8-00IN0SDI
"POATOD Pad-odiynur e  ur
-oI spunj pue ‘AOULIOY SUOTIORISIUL  $OOINOSII
"007 JS9I99Ul JO 918 ‘soouatojord | -Jo ‘A3mbe jo uorjouny uonyuasexd STV /AIH
sowred 9oojrodwil [e1} | SIOYew UOISIOp [oAd] | oarjestydiynuur jo £311In JO UOIJedO[[R 2139)RI)S
-tonbog ‘SIoYeW UOIS | -IoMO[ JO UOIJRIOPISUOD | 91} OZIWIXEBUW 07 9AI300[ rewrydo o%eInoous 09 (102
-00p [eAdl-wddn o1dr) | Jurye) uWOIROIO[R 198 | -O [PAS] I9MO[ © TIM Surm IOpPIO Ul oY) SIoyew | oY  pue
-[nur 99e10dIodur 09 9$0 | -pnq [Ad[ o[dInuwu Jo | pelwAe suordoyul jo | -urerdoxd UOISIDOP PINOTYS  SOAT) RIYIIN
-10jul Jo o Aewr 9] | Teryuelod 97} POMOYS 1] | IOQqUUINU 9Y) SZIWIXRIN TRQUIPIISTUTULIOIBRIIINOORULIRY J | -UoDUl  Jeym  ApNIg -eyueA[ey)
‘porpngs [opow
9( PINOYS SSOUDATIDIPD uoISSOI3 SIoInjoRIMURI
uey) I9YIRI ST IS0 *10RINUOD -oxd SnIp oY) UO }ORIIUOD
pue {potopisuod YoM | SIY) JIopun dIuoIouOwW sjgoad oSROSIp JuowAed-10]-Aed poiny (7102
st siofed oreoy)esy | jou s1 9goid SIoIny | IOV} OZIWIXERW O} WIe ‘Topowt -e9] SULIRYS-YSII ® JO | ‘e 19
Jo oampooadsiod  oyJ, | -oejnuews punoj A9YJ, | sieanjoejnuewW  SnI(] AONIRIN | OTysepgegunooetiieyJ | oedwl oyj oyenjear | qunolyeiy)
SuTeI)s
"A19U0 10X IRW JO 3S0D ‘oM -u0d
poxy e im dnjes oY) | Se oIejom [eIOS 9zl wniqry
ur SuryedrysoAul YoM | -IXew Ued WSIURYIOW "oTeJ[oMm -mbo
st Ao10d  PATIRUINN[Y | SIY) PUNOJ OSTR ‘APISNS | [RIDOS 10 FNIP RLIR[RW qum
‘poIpnIs 9Q 0} SPodU | WLIOIUN  JO  SSOUOAT) | 9y} Jo uordwnsuod Surw “WSTURYDOW APISANS
SSOUOATIDOPe oY) uo | -ooge pue Ajewndo | oY)  oziwixew 0} | -weidoxd ULIOJTUN O]} JO SSOUOAT} (910C I®
SpUNOq [ed130I00T} oY T, | oY) pouaguod Aoy, | wire Jouue[d [eIJUS)) JJRWLYIRIA JIRWOYIFRIINOORULIRYJ | -00f0 oY) o)eSIISoAu] | 10  1a07)

197



"AOULIOIJo
[eotuyoe) uo syoeduur
9ATIRGOU Ou pey HV)D

ure13oiJ reydsoy

9y} pepnpuod Loyl §S900Y [ROTILI) Oyl JO
puy ‘s1ojowreIed sIsATeuy ADOULSIOIJo [eITUYD9) o) (€102
‘pouyep 19339q 9q ABW | SUIPRWI)SO JO ADUSIIIO quowrdo Uo oI so[qelIeA [B) uruuej
soanseowr oouewIojrod | A[[eorIsies)s 0 poInquy | SHYD JO $9100s AOUSD -leAuy -UOWUOIIAUD  JO  S309] pue
pue Irewryouoq OYJ, | -U0D  SPOYIOW O, | -IJO [RITUTD) dIRUITISH eye( | Teorndwry rendsoy | -Jo oyl 1eym oulueXy | BI[OPON)
IO WS INUIIDT
"OAT)RI)S ysnoayg-ssed 3500 S
-TIOWOP dIOW d( PINOD “£ousm *JUOUWIOS TN U JO u9IX0 9Y) pue Jul
1599 OAI100J0-1800 | -1go [euorjerado oaoid | ydnoayy-ssed 9s0d S| -pe1 Louemigoul s ejd (9661
Vv sreadsoy Suowre | -war 09 s[eItdsor 9)eAr) | pue Jurjer AouLIomjoul vad -SOY 9Y) U9OMId( POIST |  URUIII(]
SOOUDIDPIP [euordal | -ow 0} 93l [euoisiaold | s Tejidsoy usemioq diys ‘Surysay -xo dIysuorjeI osIoA pue
9} JopIsSuoo jou pIp 11 | [eo1poerd e pesodoid 37 | -uoryead oy ourwrexy [siseyjodAy | eoundwy | jueryedul | -Ul Ue Ioyjeoym Apnjig KoI0[N)
sreo8 3utfjsiyes jgoad
"SOIPISQNS SSOID e ‘spedIe) josaid pue Surzruixew 3goid (7861
‘POpueIXe 9q PInod | -uswjredop puUR SONSSI | OWOS O} SONUSADI [B}O) Surw Iy} jeowr 03 podpy | uwewyid
sosse[d quoryed (om) | Teoryor) Tereass urejdxe | Sumpuwy Aq jgoid reer | -wrerdoxd 9q URD SIOJRI}STUTIUPR pue
uey) oiow) o[dnmiy | 01 podpy [opowr oy, | S,[e11dsOy ' OZIWIXR]N | ISUIUONI]STUIULIDIOJ reyndsoy | reydsoy moy  Apnig KoI101N)
“UoryedyIrurel
[eonyjod  uwo  porEI1
JoRIUOD 9} JO UOI}
-equowo[dwit oY) puy
-9o1j0v1d Ul 9OURADR UL
UMOUNUN pUR UIRLIDD O[Oy M ' SB W)SAS o1} /SOTOULIOJO
-UN 9q UBD SOLIYUNOD JO $3S0D [3}[ROY pUR [BID -UI 9SO0T[} 9JRIAd[[R URD
90INOS 9YJ, "SOLIJUNOD "SUYRW UOISIOP | -URUY [[RISAO 9} SOZIW WSTURTOOW [BTL}ORIJUOD
JUDIDPIP UI §9S0D [RID0S | Sjuowruiorod o[dmnu | -turu ouueld [eIjusd © 1eYA\ /SIOPIO(Q SSOIOR
JUOIOPIP IOU  ‘SIdIn) | djeidojur 0 uoAoId | (Ye9IqIno ue Jo 1S0d [R) JuedIJoul ST soumoRA | (£10g ‘[
-oRJnuUR IOPISUOD | 9I0M 10BIJUOD JULIRYS | -0} PaAredIad S)1 SozIwI K1001[) BZUDNIJUI JO UONRIO[ | 10 IPIYD
jou  pIp  MIom YT, | -9500 posodoid OYJ, | -UU JUSWUISAOS YoeF owey) | o13seP0lg | AdeurreyJ | -[e oY) AUm o1eliseau] | ‘Tueure]y)

198



‘uorye

SJYSISUI [elIRURM o)

-oI0 Ayrenb jo uoryea “Ay1enb oIe JRYA\ /SISO0 o3RI

-1joW SIOJURIS O} ONP | @dUeyUO O}  posn -A® SOTUI[D OTedTI[es]]
“)se199ur JOo Aetn | sem sjueid jo Ayenb jo | Aouowr  pajeldie) ore RTWIOJI[R) 109[R S)0RI) (2002
Apnys reonrrdwro dn MO | 9SeOIOUT 9} PoIso8sns | $10vIUOD PuUR  SHURIZ -u0d pue sjueId ‘suon) | ] pue
-[0] IoY}Inj pue oI0]N | Apnjs Teourdwe oYJ, | J0U IO IoYPPYM Apnig V/N | reomndwy [juerpeding | -euop Mol oUIWIRXH [URUIUSSOY)

pourad

uonyisuer) Aorod oY)

Suump sreyrdsoy orqnd

p8re] ul  AOUSIIS
‘potrad uors [eotuy9) syoedut (8002
‘uoryednyseAur | uomnsuer) Jurmp Ayd -501301 pue[Iey ], Uul) o8RIoA0)) uewt
Ioyyanj ypom oq Aewr | -ei30e3 uo spuadep pot poted uoryIsueI} | pojesuniy [J]eoH [eSIoATU() paseq -u9soy
sornseowr A)A10npoId | -1eA ADUSIOLJO JO 9SROID | OU) JuLINp PuUR dIO0J ‘VAd -uorjejidedr  Junjuowr pue
pue NIewyouaq oOYJ, | -Ul o} PUNoj Jiom oyJ, | -oq Aouamipe aredwo)) | demsjooqg | reomndwy | jquernyedu] | -ojdunm moy oururexy wrojedusn )

‘[epout uony

‘[epowr -ej1ded [euoryeu a1y Sut

uoryeyrdes pozIuio) -pling ut pesn spoyjoul

-sno Jo Aqiqissod o) 9} $Sasse pUR (ULIOJOI
‘podofoAdp 8q p[NOYS | PuUB SWOISAS  [Ireoy Wo)SAS J[esy UeI[eI} (0002
RI[RIISNYy I0J QWIS | uR[RIISNY JO  A)Jemd SIsATeue -Sny Ul oInfrej ur Jul | [e8eg pue
juowded Tewnydo uwy | -ods oy) peorrelp I VN VN | otwouooy rendsoy | -ynsel s10)0v] ozATRUY | Y0000 ])

‘uor) pesn

-eWI)SO JSNQOI I0J [NJ ‘s@uryyes oryderd SoyeLIRA 9q Tepow posodoid e
-osn o Leur Bjep [oURJ | -003 PUR SMID)SAS 90D | -00 dY) PUR IS0D PoOZI ued MO} 9500 Tend (8002
-oouspuadopul pue UOl) | JUSISPIP M S[eIIdsol | -pIepue)S o1} Uoamloq [opout U1} | -SOT| 9[qeploARUN d)eul ueAdq
-NqLIISIP uo suorpdwns | I0J [NJosn ST [opowt [0Ad] | diysuorje[ol So[-TWeS ® | [PAS[I)NW “edinQ 3 | 1950 A[@yeindoe ued SpP pue
-SB [RIDAOS POAJOAUL 9] | -I)[NW pozi[elouod SIYT, | 10 Ieoul-30] oIo[dXH | J1)SeDO1S | 219serpol§ | Juelpedu] | -pown Jeym 0)eSIISOAU] | RIWATI())

199



WoYSAG JuowAe
aA1300dso1J Surnurjuoo
e ul ‘syuoryed A108Ins

“3ur)eSISOAUT IIOM 9ATIOOP  Jo  sdnorx)
oq Aewr swo[qoid 3Jur | ‘S (] IULIIPIp Suowe poreroy sisougder(q
-[NpaYDs pue uoIyRIO[R | Aels Jo [I3US] JOo UOI} ‘ferg oeod SSOIOR 9Ie SOIWRUAD
90INOS2I  ‘UOIJe[NO[ed | -NQLIISIP oY)} pofepow | Jo Yr3uoT jo suonnquiy | -de [ouiey UOIINQLIISTP  92INOSOI (8002
plre) pojemosse oyl | A[MIsseoons NIom oy, | -sIp [eoutidwio ojewi)sy | o1pseypolg | reotndwy | juetyedu] | oY) JeUM  OUTWRXF | RULIRYS)
“sreqid
‘oa01dwWl | -SOY UeRWLISY) Jo 3Ul}es 'soo11d oUTULIo)OP (9002
0] Ppodu ejyep 9500 | oYy ul seotrd L Jul Juow 01 posn serdojopoyeuw | ‘Te 19
9[qer1 Jo AM[IQe[IeAR | -UIULIDIOP JO SPOYIOW -97e18 oY) puR WI)SAS-HY(J | UURULLT,
pue  Adoeinode  OyJ, | oY) pozA[eue YIoMm O, VN VNEFo[opoyIe]y | ueryedu] | URULIOY) oY) O(QLISH( [330401U0g)
"(SHN)
Wo)SAG TYI[eoH [eUOI}
"s[e} BN ystuedg oyl ur (9002
-1dsoy ysmuedg Suowre srejidsoy £q pofordwe | e 19
"UOT)RJTISOAUT IIOM | SIUDD 9S00 Ojur 993 swolsAs  (yuewesing | ueurtdiod
oq Aew juouIyeal) oses | -pnq SuUNEIO[E JO SpPo Juow -wtel)  Supud  pue | -UR[PQY
-stp  oymwods Jurpred | -yjew 3UIUNOIIE }SOD -01e)s Su1)sOo0 uUTRW oY) oJe | ‘ZOUINIRIN
-1 UOTIRIO[[R 1809 JTU() | 9} pozA[eur I0M O], VN VNEGo[opoyIo]y | Jueryedu] | -nfead pue ozA[euy | -Zoyours)
*SoAT10adS
‘syued ‘pueresy -10d [eoryijod pue onje1
-orred e Surpeonpe | meN ur oorpoerd ojul -007} TJOQ WOIj ‘SO
Se [[oM Se JuouIegeurUl | WSTHRYDIDWL L)Y (] o191 -A9] HY( ur seotad dn (9002
pue oourUIOAO3 I03LI | -097) JULLIOJSURI) JO Juow 198 01 YH Jo uon soremg
uo A[o3Ie] poI[dd UOI} | SSO0ONS OAIJR[DI oY} -9)e)s -eordde  pue juewdo pue
-eotidde oAmOepe o[, | pemoys Joded oy, VN VNASo[opo1e]y | juerjedu] | -[oA9p [opowW ozZATRUY osnoy)

200



soduerd

EETS A3o1ounyoe) pue ‘AdudId
"SuryeSrisoAur | ADULIO [ROIUYD9) JO | -soduryd ADULIOJO U stsATeuy -go  ‘Aytatjonpoad ey
IoyIn} Ypom oq Aewl | juowoAoIdWI OU O[IYM | -IOQIP 09Ul posoduod quowdo query | -1dsoy syoedwll WIOJRI (0002
Aouem1ge Jo soinseaw | AZ0[ouyDe} JO YIS oY) | -op ‘Xopul jsmbuey -TeAuy -edino 2y | Supueuy [e)1dsoy URLI}) [UURTUYPDIOY
pue IIewyouoq o], | PowIguod Apnjs oyJ, | peseq-indul oje[nore)) ere | reoundwy | guenyedu] | -sny oyj) MOy APREQNGSSIOWWOS)
Aqiqent
-Joid s, Wy [ed1ned
*)S0J09UL -eurreyd pue ‘yireoy
Jo ore ojer osuodsox Smened  ‘Ayiqeigoxd
juopuodop-jusryed 10 S,01UT[d 91} 1091 p[nom
uorouny IROUI[-UOU 91 MO pue d3esn 3nip
v (Sulq-[em sjual} "SOWRYDS U Aorod uonydriosead o} uo Aorjod uornydiios
-ed 10] poyediysoaul | -Aed [eloass Jo sjgeuaq | [ewrdo Ue [YIIM OTUI uern | -oxd sOWIPD oY) 199 (0002
9Qq  pmoys  [opowr | pue §1s00 djenjess o} | doyly 10 Jgoxd poroad -18Ayg 3 | Je pmom  Adrod plo Sueq,
uotSuOwWIp-1MN | [NFA[PY sem [opowr oY, | -X0 oY)  SOZIWIXRIN VN | o1iseypolg | Aoeurreyd | -yseiyj oyl moy Apnig | pue 0g)
Surddea)s
-100q
“Su1)eG1ISOAUT 191N ‘orre)
YlOM  puR  dInjeuwt QU0
jou  oIe oouruLIonRd VA YHMm seans ‘SISATRUY QwIRYDS voueuLIOfd
-10j-fed  10]  Juew | -eowl ojIsodwWOD Fure] qyuatdo s[e} | -10j-Aed o1y uo soins (9102
-oInseow 9OURWIIO} | -NO[ED JO ABM OAIJRAOU Xop -leAuy -idsog 2 | -eew ojsodwod | ‘e 19
-1od  Jjo  sourepmy) | -ul 9y} podo[osdp A9y, | -Ul ADUSIONO QZIWIXRIN ere( Juewoyle]y |suensAyd | yAd Jo wedwt oy | ziremys)
J,SOATIUODUL
‘spoedut *sTe1dsoT SATIUOIUL OTWIOU0Dd 90URYUD
[ruonjRIOdO IOYJO puUR | puR ‘sreqrdsoy 03 0} IOpIO Ul ‘Swo)sAs
‘omir) Burjrem se yons | syuaryed 9yedo[[e 0} Jut juowided  oaryoedsoid (7661
“yser0yur  Jo oq Aewr | -inquiyuod ‘Surotid 300 soorxd wnuiqimbe Surua rendsoy ur  seoud preuo
wsiueyoaw Sumud s1y) | a8rieae pouniopadino | rewrnydo yim xepur o1y | -wrerdoxd dur)jes  I10j  spoylewt pue
jo spedwr Tenpuelog | Sumud  wnuqMby | -UedUISIP oY) SZTWIUIN IeQUIPISIUTUIINID(] | Jueljedu] | oAljeUIo)e oIt JRUA\ | ZITeMyQ)

201



‘poyjel SIY} YIIm orren) yuowAed
polepow 8q AR SHULOW SO Jo 31oMm 150D 9JUOTN rendsoy I10j ole SuUOI}
-31edop JUSIOPIp Jo Jul | oje[mored 03 juouysnl ‘[eAd[ Ayp1qIow ureyo -eoridwal oY} jeym pue
-)ORIDIU]  "1SOIOJUI JO | -pe  ANPIQqIOWod pue | -0d poliodol oY) USAIS AOYTRIN SOY (I Surudisep ur son
oq Aew sy1odor jueryed | A)110A0S oseOSIp 3UIYRl | [9A9] A}PIQIOWOD ONI) Saom -Tea qy3tem 1500 s10pe | (600¢ ‘€
OTuOI1D9[e UO spoyjeowl | -0diodul Jo eouejiodwWl | oY} JO UOTYRIISSR[ISIU -ourej juerjedur | ejep A}PIqIOWOD djel | 10 WWRH
a1} Jo uonyeordde oyJ, | oY) pemoys 1om ST, | Jo LAyiqeqoid oyewrn)sy | ueisedeq | reoundwyg reydsof | -nodeur Moy oUIMeXH‘PUe[IoYING)
“SuryediysoAut
IoYINy ylom oq Aewr
10RIUOD  FUIIRUTPIOOD
pue  s3umyes  uwoI)
-RULIOJUT 1oojTod I
‘uoryendod  JuoIBYIP
Jo  oAamd  osuodsox
orweudp oy, -Apnjs SUOT)IJUL
IoUIN} Podu UOZLIOY aanjny a[qissod jsurede
oW} JI08UO0] B  IOAO "SOLIJUNOD JUDIS] prend o3 dooy A13Unood
ezUONUI JOo peaids | -Jip Suoure juoUISISR yoro pmom 3nip oY)
Ioyang Jo epouwr otwreu | jsnqox e posodoiad 9y JO  yonwr Moy pue
-Ap sporpd-nymyy | "s8nip jo ALoeoyge pue "Suor) otwepued ®  UIRIUOD
‘porepowr ApymIidxe oq | ezuenyul Jo peards pur | -0dJul ou jo Aiqeqoid 0} dn oa18 A1junoo
PINOYS SOLIJUNOD Uoom) | J9sUO  SUIpIedol SoI} | oy} OZIWIXRW ‘SUOIII0] ' pmom Snip v Jo | (600% B
-9(| PUR UIY)IM 9SROSIP | -UTRIIOOUN ) PO[OPOW | -UI [e10) JO I9quinu K1001]) A1ddns pojyurp sy jo | 10 Suex
JO SuOnINLIISIP YT, | A[[NISSO00NS J{IOM OYJ, | oFRIoAR o) OZIWIUIN owrer) | OIISRYIPRGIINOORULIRYJ | [ONUW MOY o)eSI)SoAU] ‘ung)
‘sredorunua
TURIOPIp ul suenisAyd sonedounu Jo
‘3uryediysoAur | oIed Lrewtad 105 sod£) juereyIp ur pasn (0002
oy ylom oq Aew | pesodord oq PMOYS | oUW} SINSIO] PUR SO U99(  OARY  SOWODS U999 41x)
seanseawr yipeay peseq | Tewrpdo JueIdfIp | -ut uo spuadep eyl £ SumURUY JULIDHYIP MOY pue
-ooueIejold pue somyy | pelsedsns Niom oyJ, | -[n suemisAyd Apnig VN | eoundwy | uemisAyJ | pue  Aym  ouUIWeXH | UASUIOS)

202



“jose)ep
olqerpa e Jo  Aypqe
-[TeAR 91} UO SOI[AI UOI} ‘sTeyrdsoy
-RWI)SO 9)eINIIR DIOTN PG o)  pordde (2661
‘uoryewriojur  9je(dwod “UO1eI0] Juer) | WoISAS UOIIRUWLIOJUT 1813810
oARY JOU JUITW APNJS | -[B 9OINOSOI [RUIDIUI I0] sisAeue | -edino 23 | -1S00 poseq-juaryed | -poN pue
opun 1o0s ®Iep OYJ, | [NJOSn Sem IIOM O], VN VN | otwiouooy | juoryeduy | e ozAeue A[ng | uokoIop )
we)sAs 103pnq [euIo)
“901) ‘suotsop jndino -ut oY) ur 9oej rejdsoy
-orad ur L1007} o) Sut | -ndur Jurulie Aq Jur ® JO 9seq oY) Ie [RUOIS
-Juowdwl ueyMm jue) | -j98pnQ [eUIUI PUR A)1s | -sojoad e syse) opdiynu
-10dwWI 9 JYSTW 90URU | [RUINXD 9)RIZOIUT 0} SIsA[eue | -IOATUN 29 | JO SUOISUD) O} OA[OS (8661
-10A03 pue JumIpny | o[qe sem yoeoidde oy T, VN VN | otwouooy reydsoy | -o1 03 MOT ©)e31ISOAU] | USADYION )
‘srejrdsoy jo
SSOUBATIIRJe Uo joedul
‘pouyep 19339q 9q | oA1Isod sey UoIjezIjeA
Aewr oouewntojrod pue | -11d 9s9388ns )] -uONIRZ UO01sS013 AueurIor) ul AOUaId (102
Lyarponpoad ‘Aouemdige | -1yeatad Teidsoy jo 1093 -o1 Toured -ijo  eydsoy uo ore | 330£01ydg
[endsoy jo soanseown | -Jo o) Jurjoeduur sio) "91008 ADUDIY ‘VAA uorjyezijearrd Jo s)o9po pue
puR Nrewyousaq oUJ, | -O0] JUIYPIp punoj 1 | -Jo s[endsoy ereuwrnysy | demsjooq | reoundwy | queryedu] | oyl IJeym oIRIIISOAU] | UURWSLT,)
‘s8nap
DYJ0 0} SS9J0R IOWO)
-sno  eaoxdwi 03 [nJ
-9SN 9 Ued SYNSAI 9Y T,
‘Ap1sqns Tewrpdo oy} uo s3nap
33u9] 91 JIoys jo joed BLIR[RW JO AN[IqRPIO]
‘ureyd | -wr oy} poaiojdxe pue ygoad ozruut -Je  pue  Aj[Iqe[rese
A1ddns 3nip oy ut s10) | ‘9onpord 9fI[ JPYS SuO[ | -Xeu 0} 1031} SIS[IRISI o) oaoxdwr 01 JI9PIO (7102
-oej uorjerodo Aue 9jer | oY) UO WSIURYDOW APIS | ofiym ‘seserpind oziwa K1001[) ur  ezIsqns 0} Jeym | oery pue
-od1oour 0} [rej Loy, | -qns oY) poIpnis A°YJ, | -IXeW 03 WIe SIOUO(] | I9RIJUO)) JIIRWOYFFRPYINNOORUWLIRYJ | SIOUOP  PUSWIWOINY Jo[Ae],)

203



stodeJ oY) Jo AWOUOXR], 7'V 9[qR],

-3uryediysoaur SoATIUROUL Sq1yedwod JUOT)RULIOJUT JTIJoUI
IPYIn} YoM  oIe | JO oYes oy} IO JUOW ‘szo17d -widse Jo Jurjes oy
1ORIUOD JO SOTWRUAP | -90Ide own[oa-0011d Sur | -dns J10J JUTRIISUOD OAT} ur JueweeIde owmpoa | (110 ‘@
pue Surmnjoejnuew | -11)080U  UWOYM d)e(q | -ULOUT 0} 199(qns 3500 Juoge KL1001]) -ooud 10} wstuRyYOOWI | 19 OLIRY
JO SUOISIOOP  JOYIRJN | -9 popuowmioddl Aoy, | 109 S 10Aed ozrmrur]y | -fedoutig joeIgreonInooeuLIeyd | ewndo oy  Apnig ‘3ueyz)
-oo1yorad ‘steqid ST.LIN IoA0
ur juow[dwWI 0} MO | -SOY POUMO-IOISOAUT JO | DY (J Yoro Jo Aouonboiy
-IgIp 9q  Aewr sy | Suryies o) pun A[en | 9y} JO UOI)eLIRA 9Y) UO THOYSAS HYY( ® (€661
[e1oA0s 10}  JuySem | -ods ‘[OIJUOD TOIYRZI] | Poseq $1eSpN(Q JUSIIND Surua ur spejidsoy [enpraipur | ‘e 19
orz ‘1800 Teutdrew | -1n jo ssodand oy) 10j | pue pedpard usemilsq | -wreirdoxd 0} 108pnq [eqo[3 o%ed UOIURIA
Suryoepgel YSnoty, | [njesn sem [opow oyJ, | Iollo orenbs ozIWIUI[ | dlpeIpen{yrsturuio)e | jJuenyedu] | -o[fe 01 moy outurexy KINGPOOA )

204



Appendix B

On Reducing Medically Unnecessary
Cesarian Deliveries: The Design of

Payment Models for Maternity Care

B.1 Extra Lemmas and Propositions

Proposition B.1 All physicians will choose SB if overall utility of SB overcomes
that of C-section; and they will prefer C-section if the overall utility of C-section

overcome that of SB. That is, for a complexity level x;, all physicians will choose

e SB, if Usp(\, z) > Upss(x)

o C-section, if Usp(\, z) < Upgs(x)
Lemma B.1 If a reimbursement mechanism (m§(x), m%(x)) VS € {SB,CS} leads
to a consequent threshold of planned CS s, quality of decision increases with respect to

his benevolence. That is, the deviation from the clinical cutoff of planned CS |s — z*|

1S NON-INCTEASING AS O INCreases.

Lemma B.2 Under bundled payment where a physician’s facility costs dominate the
monetary value of the physicians’ effort invested in servicing a delivery, X = 1 is

optimal for physicians in delivery stage after the decision of spontaneous birth.

205



B.2 Parameter Estimation

B.2.1 Successful rate of natural Birth f(z)

We describe the approach to estimate the rate of NB for those deliveries that SB
is prescribed by the end of the prenatal care. For pregnancy complexities below
the cutoff point, we calculate the probability of NB by simply dividing the number
of NB cases to number of SBs for given pregnancy complexity level of z. Since
SB was prescribed for a significantly low number of high risk women, completely
different patterns exist for pregnant complexity below and upon the cutoff points. We
extrapolate the pattern for clusters of low risks to those of high risks. In this context,
we use a polynomial function with power 8 to fit the low risks with complexities below
the cutoff point. This function fit has a R? of 99.87%, significantly well fitted to our
data.

B.2.2 Cost of delivery and postpartum care

We incorporate two main sources of birth delivery for a payer: hospital cost right after
birth, and quality of delivery in the long run. According to Canadian Institute for
Health Information (2006), the non-complicated delivery and postpartum costs for CS
and NB were CAD 4,200 and CAD 2,700 on average across Canada in 2002-2003, while
the costs of delivery with complications were CAD 5,200 and CAD 3,200 for CS and
NB, respectively. CS patients tend to have a longer stay after birth in hospital wards,
and also require more intensive nursing care after the operation. Canadian Institute
for Health Information (2006) tells 32% of NB were complicated and complicated CS
delivery accounted for 34% in the same period. Because the complications of delivery
is independent of pregnancy complexities, or appropriateness of planned CS, we take
the weighted average costs for both NBs and CSs as their hospital costs.

In monetary means, quality of birth reflects in long-term health care requirement,
such as re-admission, more nursing and community care, and medical and surgical de-

mands, which leads to a greater use of health care resources and consequently higher
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health care expenses. Here we use the incidence of postpartum complications as the
proxy of birth quality based on the availability of our data set. Indeed, a mother or
baby with any of those severe postpartum complications definitely requires more in-
tensive care. We use the rate of CAD 9,700 per birth with postpartum complications,
which is reported in Canadian Institute for Health Information (2006) as an average
cost per baby admitted to neonatal intensive care unit (NICU) in 2002-2003.
We use Canada’s historical annualized inflation rates of past 15 years http://www.
inflation.eu/inflation-rates/canada/historic-inflation/cpi-inflation-canada.

aspx to adjust the prices by increasing 25.13% to the consumption level in 2015 - 2016.

B.2.3 Physicians’ Effort

Our empirical study confirmed the desire of leisure and comfort as a driver of emergent
CS abuse. Due to the lack of literature on quantification of physicians’ effort, we
estimate physicians’ efforts relevant with delivery by the duration and intensity of
delivery modes.

We consider physicians’ effort spent in a planned CS as the time and energy
invested in an operation. We take the general obstetric consultation rate of CAD 100
in 2015-2016. Because the operation requires more intensive efforts, we double hourly
rate for CS as CAD 200.

However, for the births with labor, physicians first spend time monitoring the
progress of labor, and decide then a NB or an emergent CS. In general, the average
time of labor is approximate 20 hours. We assume physicians spend efforts during
certain time of this period, since the nurses and midwifes also take active roles for
monitoring the labour. Hence the efforts on monitoring the labour are counted as
CAD 400. Hence physicians’ effort of serving emergent CS consist of two parts: efforts
of monitoring labor and effort of implementing CS; the effort spent on emergent CS
should be equivalent to that for planned CS, therefore, the effort for emergent CS is
estimated as CAD 600. Similarly, their effort spent on a NB comprises of the part of
monitoring labor and the part of assisting NB. Though the intensity of assisting NB

is similar as that for CS, in general, NB takes around 0.5 hour, hence the total effort
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for NB is estimated as CAD 500.

B.3 Sensitivity Analysis

B.3.1 Alternatives for Handling Missing Data

In addition to the multiple imputation of dealing with missing data, we also consider

the following alternative methods:

Simple Delete. We simply keep the records with complete information and remove
those with at least one missing data. This way may increase incidence of those
risky factors and postpartum complications. It is because most missing data
tend to happen in the normal cases, while people will keep records more likely

when the abnormal factors or complications happens.

Replace with median. We replace the missing data with the median of existing of the
same column. This way will more likely under-estimate the incidence of the risky
factors or complications, especially in the case of binary of rare events; because
the median is zero in that case.Due to the bias of variance and covariance of
replacement with mean, we do not replaced missing data with mean; because

we need to implement regression tree and logistic regression in the next step.

We show the estimation of f(A,z) under three imputation methods in Figure
B-1.The logistic regression involves dummies of different payment resources. Our
estimation is shown robust with respect to different imputation methods. However,
due to the potential over-estimated bias of simple delete and undermined bias of
median replacement, we believe multiple regression is the best alternative in handling
missing data. Moreover, we report the results of different imputation methods with
respect to clustering and corresponding incidence of postpartum complications for all

the in-sample data in table B.1, B.2 and B.3.
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Figure B-1: Successful Rates across Clusters under Different Imputation Methods in
2013
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Table B.1: Estimated Incidence of Postpartum Complications 2013

Imputation — I(C'S, ) I(SB,x) x* R?

Multiple 8.6288  4.3320+5.4032x 79.5232 88.46
Median Replace  8.6290  4.3269+5.3507x 80.4026 89.09
Simple Delete 8.4714  4.2026-+5.9257x 72.0387 90.60

All numbers are in percentage; R? is the R-square statistics of linear regression for
I(SB,x).

Table B.2: Estimated Incidence of Postpartum Complications 2012

Imputation I(CS,x) I(SB,x) x* R?

Multiple 8.3492  4.4328+5.2500x 74.5980 88.89
Median Replace  8.3376  4.3289+5.1982x 77.1170 89.43
Simple Delete 8.0245  3.0429+7.3957x 67.3580 93.19

All numbers are in percentage; R? is the R-square statistics of linear regression for
I(SB,x).
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Table B.3: Estimated Incidence of Postpartum Complications 2011

Imputation  I(CS,z) I(SB,x) x* R?

Multiple 8.3932  4.6497+5.0772x 73.7316 87.80
Median Replace  8.3728  4.6540+4.9705x 74.8174 88.91
Simple Delete 8.4253  4.6261-+5.3448x 71.0822 88.98

All numbers are in percentage; R? is the R-square statistics of linear regression for
I(SB,x).

B.3.2 Different Number of Obstetricians in a Group

When the size of obstetrical physician group is very small, a given reimbursement
policy tends to have worse outcomes, including extremely high CS rate and high
expenses for payers, compared with a larger group (Lemma 3.7). Because physicians
in a smaller group have to share more shifts and more workflows once recommending
a spontaneous birth, they would prefer planning CS more than their colleagues in a
larger group. We recommend to pool physicians into a larger group, not only can
they pool their patients and coordinate to share work flows, but also enforce peer

supervision under our proposed bonus mechanism.

B.3.3 Difference of Physicians’ Effort

Whether the effort of serving NB is relative more effort-consuming than a CS impacts
the incentive power of bonus. When NB requires more effort from physicians, the
bonus amount has to serve as compensation of extra effort paid in serving a NB, and
offset its incentive purpose. The bottom right plot of Figure B.4 shows the rate of

planned CS rate increases as more effort demanded in NB than CS.

B.3.4 Physicians’ Altruism «

Altruism implies that, as we found from our analytical models, higher value of benev-
olence determines more weight on considering patients’ benefits and relatively less

emphasis on their own net benefits. Physicians’ net benefits include efforts and finan-
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Optimal threshold

Table B.4: Sensitivity Analysis
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Table B.5: FFS

A s I PFY py¥ pEC A
0.5 0.84 5157.8 204 200 300 0.73%
0.75 0.72 5389.3 252 250 350 4.70%

1 059 5684.1 304 300 400 9.87%
A refers to the change from benchmark.

cial incomes. Given a blended reimbursement mechanism, CS rate decreases as the
altruism increases, and CS rate converges to the ideal clinic cutoff point as altruism
level is sufficiently high. In the case of bundled payment policy, CS rate increases as
altruism increases, and converges to the ideal clinic cutoff point as well. As the devi-
ation from ideal clinic point gets smaller, the total birth costs decrease and become
stable at the lowest level when ideal clinic point is approached. As obstetricians’
altruism increases, C-Section converges to the ideal clinic cutoff point, according to

the top right plot of Figure B.4.

B.3.5 Clinical Optimal Threshold

The threshold between planned CS and SB considered by physicians, i.e. the value of
x* is possibly different from the ideal value 0.85. Actually, physicians’ own perspective
of z* have a large impact on CS rates. The consequential CS rates increase along with
the rates believed by physicians. We consider the range of potential beliefs from 0.7
to 0.95. As shown in the bottom left plot in Figure B.4, the deviation from clinical

guide decreases as obstetricians believe higher CS threshold in their practice.

B.4 More Numerical Experiments

We present more numerical results with respect to different effort levels under FFS in
Table B.5, under blended payment in Table B.6, under bundle payment in Table B.7,
and proposed scheme in Table B.8. AUC of ROC for out-of-sample data of different

classification methods are reported in Table B.9.
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Table B.6: Blended Payment

A s

I,

PBP

A

0.5 0.78 5260.8
0.75 0.68 5473.3
1 057 5731.1

228.2
268.2

2.74%
6.33%
307.5 10.77%

A refers to the change from benchmark.

Table B.7: Bundle Payment

A S Hp PBL A
0.5 092 67299 5923.1 15.68%
0.5 0.85 6791.1 5986.6 16.24%
0.75 0.93 6752.6 5926.8 15.14%
0.75 0.85 6822.3 6001.6 15.75%
1 095 6767.1 5898.3 14.01%
1 0.85 6853.5 6016.5 15.25% %

A refers to the change from benchmark.

Table B.8: Proposed Mechanism

A s

My

PBP

BNB A

0.5 0.83
0.5 0.85
0.75 0.83
0.75 0.85
1 0.83
1 0.85

5206.4
5352.3
5253.4
5402.2
9295.6
0434.8

208.0
200.0
208.0
200.0
208.0
200.0

53.9  1.68%
288.1 3.93%
122.9 2.06%
359.0 4.19%
183.9 2.36%
405.2 4.11%

A refers to the change from benchmark.
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Table B.9: AUC of ROC for out-of-samples across years

2011 2012 2013
Logisticl 83.60 83.89 83.83
Logistic2 83.29 83.64 83.78
CRT1 77.70 77.98 78.03
CRT2 77.70 77.99 78.03

Logistic 1 refers to logistic regression with dummy variables of Payment resources;
Logistic 2 represents logistic regression with clinical variables only. Similarly CRT 1
refers to classification and regression tree with dummy variables of Payment
resources; CRT 2 represents classification and regression tree with clinical variables
only.

B.5 Proofs

Proof of Lemma 3.1. Denote G(s) = [ ugp(A, 2)dz + fsl ucs(z)d.
Sufficiency =. In order to achieve the maximum when s* € (0, 1], first and second

derivatives of G(s) should satisfy

G'(s) = usp(\, 8) —ucs(s) =0
G"(s) =u'(SB,s) —u'(CS,s) <0

That is, G'(s) is monotonously decreasing, and there is only one zero point s* in the
interval (0,1]. So G'(s) < 0if s < s*, and G'(s) > 0 when s > s*. Thus leads to the
conclusion.

If the maximum is achieved when s* = 0, G’'(s) is unnecessarily monotonously
decreasing, yet usp(, ) < ucs(x), Vo € [0,1], which leads to the conclusion.

Necessity <. Consider Vs; € [0, s),

G(s1) = /O " usp(\ 2)de + / Cwos(z)dz + / lucg(x)dx

S1 s

S1 S 1
§/ ZLSB()\,$)dl'+/ uSB()\,x)dx—ir/ ucs(z)dx = G(s)
0

S1 s
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Similarly, Vss € (s,1],

G(sq) = /05 usg(\, r)dz + /:2 usg(\, r)dz + /s: ucs(z)dz
/08 usp(\, x)dzr + /:2 ucs(x)dzr + /1 ucs(r)de = G(s)

52

That is, G(s) achieves maximum at s.

Proof of Lemma 3.2. Because every finite symmetric game has a symmetric Nash
equilibrium, each physician has the same decision with respect to the certain com-
plexity .5

Proof of Lemma 3.3. Overall CS rate r can be derived as

r:1—5+/ 1—f(\z)de
0
= 1—/ f(A z)dx
0
due to f(A,x) > 0 the overall CS rate is one-to-one mapping of the threshold of

planned CS.

Proof of Lemma 3.4. First we prove CH (), s) is a convex function of s, because

PR — 090 + (1= FO 1) - 6
= O\ $)(elf — )

O?CH(M af(A

—832 .5) = (N —c%) f<83’ s) > 0.

Next CI(A,s) is a convex function of s due to

OCT (),
% = C(ISB()\, 8) — [CS)
6201()\,5> . 8[53()\,5)

0s? = 0s > 0.

Therefore, as a linear combination of three convex functions, IT” is convex with respect

to s.g
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Proof of Proposition 3.1. First we show A = 1 is optimal for payers in delivery

stage. Because uZq(x) > 0, Vo > s¥ and ubz(\, z) > 0, Vo < s&,

m$(z) =0, VS e€{CS SB}, mig=-e°,

m&p = FO\,s)eN + (1= F(A,s7))e€ + reMN
So M (A, s) that minimizes total costs becomes

M(A, s) = /OS fONs)eN 4+ (1= f(\, 8))e® + xeMVda 4 e“(1 — )

% = f()\,s)eN—i- (1-— f(/\,s))ec—i-)\éMN — ¢
s
= f(\, s)(eN — %) + xeMV
O?M (N, s) N ¢
T—e —e” <0

That is, M(\,s) is convex. Therefore the IT¥ is convex according to Lemma 3.4.

Therefore, s¥ should satisfy

OTIE(), s)
0s
=f(\s) (el +eN) + (1= fN ) (5 +c5) + XeMN — (5 + e) + Clsg(\, z) — CleS

=f(\ 8)(ey + eV — G — &) + XM — (5 +e9) + C(Isp(\, x) — IeS) =

Furthermore consider delivery stage and effort level A,

OITF (A, s)

O\
C[POfNS) N ¢ N v omN / OIsp(), s)
—/0 Y (e —e" +ey—cpy)+eNda + OC o dz
<0,

A =1 for the optimal threshold s¥.

Proof of Proposition 3.2. Suppose the optimum lies outside the interval between

x* and sP.
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Case (i): s¥ < z*.

Vo > z*, 11¥(x) > 1€ (2*) due to the convexity of I1Z() according to Lemma 3.4.
Plus I1§(z) > II5(x*), IVM (z) > TIpM (2*) .

Vo < sP, I17(s) > 117 (s"), plus II5(s) > 5 (s”) leads to ITVY (z) > TIVM(s").

This contradicts the previous argument. Case (ii): s” > z*. We have the similar

contradiction. Therefore the optimum lies in the interval between x* and s¥.

Proof of Lemma 3.7. Denote

Au(z) = usp(\, x) — ucs ()

absp(x) +mgp(r) +

Suppose under a certain (m$(x), m% (z)), Is are chosen by a group of J physicians.

That is, Au(z) < 0 when =z < s, Au(s) = 0 and Au(z) > 0 when z > s. The zero
point s is decreasing when .J increases.

Proof of Corollary 3.2. Suppose the lower and higher bounds of the feasible
thresholds are s and 3.
Case (i) 5§ < min{s” z*}: 5 is optimal for both IT¥ and I19;
Case (ii) s > max{s” z*}: s is optimal for both I1¥ and I1%.

Proof of Proposition 3.3. In the case of blended payment

pBF 1

usp(\, z) = a(z* — ) + - j(f()\,x)eN + (1 — f(\ x))e’ 4 M)

ucs(r) = a(r — %) + PP — e©
Denote Au(z) = ugsp(\, x) — ucs(z), then it is continuous. Moreover

—e) <0

AN 9a 4 l@f()\w)(ec

=" N)
ox J Oz
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hence Au(s) = 0 that is,

1— 1
20(x" = 5) + —— Tpor o (PO 8)e™ + (1= f(A, 5)e + €M) =0

2a(z" — )+ € — %(f(A, 9N 4 (1= FO\, )€€ + €M)

PBP —_

J—1
we can see PBY decreases as s increases, due to

oPBr e —eNaf(\ )

= -2
0s J—l( @t J ox

) <0
Also due to PCC and PCN, PBP > max(e®, eNf(\, ) + (1 — f(\, z)) + eMVN) =
eC(1 — f(\, x) + eMN), due to Assumption 3.2. So we have

J
J—1

2a(e” — 5) + €€ = ()N + (1= ) + M) > (1 - f(A, ) + MY

2Ja(z* —s5) — (f(\ z)(e™ —ef) + M) >0

Denote G(s) = 2Ja(z* — s5) — (f(\, z)(eN — %) + eMN), G(s) is continuous and

decreases as s increases

G'(s) = —2Ja + 8f((9>;, ) (e — ey —eMN <0

followed by Eq. 3.2, therefore s < x*.

Under FFS, PN > eV 4 eMN pEC > o0 4 eMN and PPC > PN > N 4 MV,

Suppose the threshold s > z*. Consider Vz € (z*, s),

ucs(z) = afx — %) + PPC — ¢

> a(r —z*) + MV
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. While,

usp(r) = a(z” —x) + %[f(h 2)(PY =) + (1= f(X2)) (PP =€) + 7]

<a(r” —2)+ %[f(kﬂ?)(PPC —eV) (1= f\ @) (PP =) + M)
< a(e” =)+ [f(2) (P = &) + (1= fF(X 2) (P77 = ) + 7]

< ucs(x).

It leads to a contradiction. Therefore s < 2*.

Proof of Lemma 3.8. In delivery stage physicians’ utility under a spontaneous

birth is

e blended

ugp(X, @) = PP7 = [f(A,2)e™ + (1 = f(A,2))e” — 7];

It is decreasing according to Eq. 3.3. Under FFS,

ubD“B<)‘? x) = f()‘a x)PN + (1 - f()‘7$))PEC - [f()\,x)eN + (1 - f()‘am))ec B eMN];

ugp(A, s) _ af(A’x)(PN _ N _ pEC | ec> _gMN

O\ )
_ afgkx)(ec_em_ézwv —l—af(@);:x)(PN—PEC)

Therefore, A is optimal for physicians. o

Proof of Corollary 3.9. For a specific A under each payment policy, we have

o FFS. M(X,s) = [J f(\, a)PYN + (1 — f(A x))PECdx + PPY(1 — s);
e Blend. M (), s) = PPP;

Apparently, M (), s) is non-concave under blend payment.
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Under FFS,
3]\/[8()\78) _ f()\,S)PN + (1 o f()\’ S))PEC . PPC;
S

PM(N,s)  Of(N,s)
ds2  Os

(PN — P > 0.

Proof of Corollary 3.3. Suppose s is the optimum to the Problem 3.2. If s > z*,
feasible threshold is outside invertal (x*, s¥) due to proposition 3.3. Consider s¥ < x*,
and it is the solution to the Eq.3.8. We consider payer’s amount of total economic

cost, denoted as II(s), depending on the threshold s.
II(s) = CH(s) + CI(s) + mEg(s)(1 — s5) + mEg(s)s.

Under FFS, mB4(s) = e, and mEB5(s) = e f(\, s5) + (1 — f(A, sE)) + MV,

Oll(s)
0s

= f(\s)(er — ¢i) + Clsp(N\, @) = Ies) + f(A, s)(e" — ) + M

> f(L5)(c} — &) + ClIsp(L,2) — Tos) + F(L,s)(eY — ) 4 &MV,

It indicates a steeper decreasing slope of II(s) than that of TIZ in Eq.3.8. Therefore
the optimum here s* > s¥.

Under blended, mZg(s) = mE5(s) = eV f(A, sP) +e“(1 — f(N, sP)) + MV,

A1 (s)

Ds = f()\, S)(Cg - Cg) + C(ISB()\, JJ) - Ics) + af(A? 8) (GN — GC) + éMN

0s
> f(1,5)(chy — ) + C(Isp(1,2) — Ies) + f(1,5)(e — %) + &P,

Given non-positive 229 " and HA (N o€y 5 £(1,5)(eN — e©). Tt indicates a

steeper decreasing slope of II(s) than that of II¥ in Eq.3.8. Therefore the optimum

here s* > s¥.

O
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Proof of Lemma 3.10. Under bundled payment,

M(As) = PPE -2 [ | sovac+ - sovandide + G- )
OM(\,s) 1

0s - 7 [_f()‘a S)Cg — (1= f(A, 3))@% + cg} :
PM(Ns)  Of(\,
822 ) f}ass) (¢ —cy) <0

Proof of Proposition 3.4. Under bundled payment,

pPBL 1 N N MN
LUl + )+ (- ) e+ )

c
ucs(r) = a(r — %) + PPE — 67H —ev

usp(\,x) = a(z* —x) +

Denote Au(z) = ugp(A, ) — ucs(z), then it is continuous. Moreover

0Au 10f(\z
a—x:—Qa 3 (833 )[cg—cﬁ—irj(ec—e]v)]
¢ _ N
<—2a+%afg);x)(chcH+eC—eN)<O
hence Au(s) = 0 that is,
« I =Jopr, ¢ 1 N N c ., .C MN
20(x —S)+TP +e —ﬁ(f(k,s)(e xJ+cg)+(1—f(\s)(chg+e" xJ)+e"7)=0

PBL _

71 [2a(x* — s) + (9T + ¢§) — %(f()\,s)(e]v x J )+ (1= fFON ) (ST +c5) + JeMM)]

we can see PBL decreases as s increases, due to

opBL J G — N+ J(e —eN)of(\ )
0s _J—l(_2a+ J ox )

<0

Also due to PCC and PCN, PBL > max(% + €%, (el + #)f(/\,x) + (% +e9)(1 —
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fOL ) +eMN)y =@ + % So we have

J * C?[ c 1 N c% C% c MN
J_l[Qoz(x —3)+7—|—6 —j(f()\,x)(e +7)+(1—f()\,x))(7—|—6 )+ )]
> (1 - f(\2)) + e
2Ja(z* — s) — (f(A,x)(Cﬁ . v € + M) > 0

Denote G(s) = 2Ja(x* — s) — (f(A, x)(@ + e —e%) + eMN) G(s) is continuous

and decreases as s increases

N __ C
G(s) = —2Ja — afgg’s)("’ﬂ BN ) <0
CN — CC
Gla") = (Fa)( B 4o ) 1Y) 5

therefore s > x*.

Ul
Proof of Corollary 3.4. Suppose the optimum to Zp is s¥. If s¥ = a*,

PBL —

1 N (LN N x MN
7o 1[(ecJ—|—cg) — ﬁ(f()\,:c YN« T+ )+ (1= fO ) (T +¢5) + JeMN)]

due to

opPBL J G —cy 4+ Jef —eN)of(\x
A R B /LA TTR

PCC and PCN hold.
Proof of Proposition 3.5. Consider physicians’ utility in delivery stage after the

decision of spontaneous birth.

N c
ufp(L) = PP — MV — f(12)(eV + ) — (1= f(1,0))(e" + ) <0
c _ N i — iy MN | C ﬁ_ BL.
f(l,z) e —e —l——J <e”V +e —|—J Poh:
C 4 JMN _ pBL c
f(17$)<J(e +e )+0H'

J(e€ —eN)y+ & — N
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Proof of Proposition 3.6. Suppose F, is the rate associated with § under original

payment mechanism, that is, Vx € (s, z*],

2a(x* —x) — %(f()\,a:)eN + (1= f(\a))e + My 1 Py +ef <0.

If the successful NB bonus BV? is set up by

BNB & min(20(z* — 5) — =(f(s)e™ + (1 — f(5))e” + MN) — P 4 ¢,

1
f(s)
therefore ds > s, such that Vo < s

usp(\, ) — ucs(r) > 0;

usp(A, ) > 0.

That is, 5 can increase under NB rate.
For postpartum bonus BFC suppose sp is the intersection of I(SB,x) and CS,

l.e.

I(SB,z) < I(CS), Vx < sp;
I(SB,z) > I(CS), Yz > sp.

If 5 < sp, then Vx € (8, sp],
BP°(1 - I(SB,x)) > B™°(1 - I(CS)).
therefore ds > s, such that Vo <'s

usp(\, ) — ucs(r) > 0;

usp(A, ) > 0.
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That is, 5 can increase under postpartum outcome rate. 5
Proof of Proposition 3.7. (i) When § < x*. Suppose B is the rate associated with

§ under original payment mechanism, that is, Va € (s, 2*],

2a(x* —x) — %(f()\,:z:)eN + (1= f(\a))e + My 1 Py +ef <0.

For complexity premium B, if it is set up as

B2 _min(2a(z" — ) — %(f(s)eN F (1= ()€ + MV 1 Py 4 ¢,
ol = ) = S(F() + (L= [(5))eC + M),

therefore ds > s, such that Vo < s.

usp(A, x) —ucs(x) > 0;

USB(/\, I) > 0.

That is, 5 can increase under overall rate.
(ii) When s > z*, we can conclude that s can be reduced with similar way.
Proof of Proposition 3.8. Overall rate add-on B with an original payment P, lead

to a physician’s utility function in serving a delivery in his hospital shift

ugp = Po+ Bf (M z) — f(A z)e™ — (1= f(Ax))e —re™;
ugp  Of(\ )

(e — eV 4 B) — MV,

o\ O\
of (A, x) un  Of(\ ) c N
ALV _ZI\hE) _
B 2 e 23 (e e),

which gives the lower bound of B leads to an increasing uZp.
Per postpartum outcome-oriented bonus B, Postpartum outcome-oriented add-on B

with an original payment F lead to a physician’s utility function in serving a delivery
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in his hospital shift

uty = Py+ B(1 — Isg(\, ) — f(\ 2)e” — (1 — f(\ z))e” — xeMP;

8ugB _ 8f()\,:c) (BC N) _ éMN . Ba[SB(AVCC)

— €

O\ oA aN
Balsg(;’ o) < af(ai’ 7 (€ _ Ny MY,
B—a]sa;w > gMN _ 8f(a);\v$)(€c _eN)
2 (e ), o= max O

which gives the lower bound of B leads to an increasing u5p.
Proof of Proposition 3.9. Suppose E(\,z) = e f(\, ) + eN(1 — f(\, z)) + MV,

under Complexity bonus scheme:

Ugg(x) =a(r—a")+ P+ BEYOW o — €Y
E(\x)

P
USE () = ale” = a) + 5 + B Ly — =

J

AU(a) = UGG - U

P(1— E(\
= 20(x* — ) + # + B9 (Tpcar — Lysge \pcar — A2) + .
Whereas under NB bonus scheme,
Ubs (w) = a(e —a") + P — €
P E(\
USP(r) = a(z® — ) + 7 + BYBf(\ x) — (J,x)'
AUV () = UF - U
P(1—J E(\
=2a(z" —x)+ Pa-J 7 ) + BNBf(\, 1) — —(J,:r;) + €%,
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Let I' = 2a(x — 2*) + @ + w — ¢%, then Vs and the same P,

Therefore the average bonus per cost is

Complexity bonus = I'(1 — |s — 2*|) < B©

- L[5 f\ z)d
B f(Ass)

= NB bonus.

Proof of Proposition 3.10. Let (PP9, BP9) and (P, B¢©) be the rates under
Postpartum Outcome Bonus and Complexity bonus, resparately, to achieve the same

S.

From PCC,

pCo _ C.

Y

PPO 4 BPO(1 — Iog) = e©.

Postpartum Outcome bonus < P9 + BP(1 — Ig)

< PP < Complexity bonus.

Therefore the average cost under Postpartum Outcome is less than that under Com-
plexity bonus.

Proof of Proposition 3.11. Suppose the same amount of P and B are reimbursed
to each physician under Relevaant party and Group mechanism, they should lead to
the same threshold of planned CS s by the end of antepartum stage, and same level
of effort A during intrapartum stage. According to expression of M (A, s) in Table 3.9,
Group leads to higher M (), s) than Relevaant party, due to J > 2.
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Proof of Proposition 3.12. In the case of high risk population, fo w)du < z,
even all physicians are supposed to use full effort A = 1, aiming to reduce CS rates
for the group of physicians during antepartum stage. Suppose slegs*, the resulting

overall CS rate r’ becomes

r'=1-— /Osg(u)f(l,u)du
> 1= [Catwstude, ()

Therefore, s should be s > s* for the high risk population in order to get honus B7H.

Denote G(z) = [ g(u)du, then G(0) =0 and G(1) = 1. Eq.(*) is due to

—£(1,2)G /G

<f(1, 33)3:—/05 8faluu)du

:ﬂwa—ﬂme+Afﬂqu
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Similarly, if G(u) > u for the case of low risk population,

/0 " g(u) f(1, u)du
:/Os F(1Lw)dG ()
1, u)

/1,06 - [ G5

>f(l,x)r — /05 uafé]; u) du

=f(1,z)r — f(l,x)x—i—/ox f(1,u)u
>/:f(A,u)u,

du

Therefore suppose s > s*, the resulting overall CS rate r’

r'=1- /Osg(u)f(l,u)du
<1- / 9w O wdu,

Therefore s < s* even not all physicians use full effort on their shifts.
Proof of Lemma 3.11. Under the bundled payment with a rate add-on PPl a

physician’s expected compensation amount is

I, = PBL — 1 {/ FOz)ely 4+ (1 — f(A 2))cGde + 5 (1 — 5)
J Lo

C C N s
:PBL—C—H+—CH_CH/ f\ z)de,
J J 0

which is the combination of blend payment with blend rate PPX — % and a NB bonus

oG —eN
of el

Proof of Proposition 3.15. Under the blended payment with an NB rate add-on
(PBP . BNB) physicians’ expected compensation amount is IT; = PBY + Bf(\, x) per

delivery during their shift, VA and Vx. Under the linear combination of blend payment
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with blend rate (1 — §)PBF and a bundled payment with rate §PBL, physicians
expected income is
1
I, = (1-9)PPF +6 | PPF — 5 (fO\z)ey + (1= (A 2)ch)
o7 0

= (1= 0)PPP 4 0(PPE — By 4 (0, 0)(e — e

= (1 - 0)PPP + PP + Bf(\ )

=1II;, Vz, VA

|
Proof of Lemma 3.12. Under NB bonus scheme,
Ucs = afz — a*) + P — e“;
P E(\
Usp = ala* —2) + = + BV f(r.2) - ZO0.
J J
AU = U - U
P(1—J E(X
= 2a(z* —z) + Pa-J + BYBf(\ x) — () + €“.
J J
Therefore
OAU 1
= _ - :
op — g 'Y
OAU  f
8—B = z)\,l’) > 0;

Therefore, the overall CS rate increases as BVP decreases, or as PPP increases.

Because M(s) = P+ B[] f(A, z)du,

OM(s) _ .

T - f()‘7 S)a

PM(s) _ Of(\s)
02 0s 0

Hence, M (A, s,mp) is concave with respect to s.
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Proof of Proposition 3.14. Define Il(s, P, B) = sII(1, P, B)Vs > 1 and B, P > 0;
define I1(s, P, B) = sli(]s|, | P|,|B|)Vs, B, P < 0. Therefore Pip(s, B, P) is coersive.
Because feasible domain is close, there exist at least a global minimizer for the objec-
tive function.

Proof of Corollary 3.5. From Lemma 3.12, we can find the proper P and B for any
threshold s for the problem Zp, therefore the value maximization solution to Zg,, is
feasible.

Proof of Proposition 3.15. Delivery physicians get the same amount of money
regardless of his own patient mix. The realized amount of successful NB is shared
evenly by all. Therefore, they each should get the amount of money as long as they
follow clinical guideline.

Proof of Proposition 3.16. For those prescribed planned C-section, the probability

of actually high risk pregnant women is

Pr(CS|H) Pr(H) B a(l — sp)

PrUICS) = B (@S H) Pr(H) + PHOSTD PHD)  a(l = s0) + (1 — @)

due to Bayes’ rule, and the assumption of uniformly distributed patients with respect
to the complexity, indicating the fraction of L type pregnant women is so. Similarly,

the fraction of actual low risk patient among those having planned C-section becomes

Pr(CS|L)Pr(L) B (1 —a)so

PrEICS) = B GHIL) Pr(L) + Pr(CSH) Pr(H) — a(l —so) + (1~ a)so

For all planned C-sections, a fraction Pr(H|CS) has actual complexity x > sg, and
the physician can gain marginal utility ucg(A, z) which is greater than ugg(\, x) as
x > Sp; whereas the rest Pr(L|C'S) has actual complexity = < s, therefore the physi-
cian’s gain of marginal utility ucg (A, x) is less than ugg(A, z, suffering a loss of utility
eventually. Similarly, the fraction of actual low risk cases among prescription of spon-

taneous birth Pr(L|SB) and the part of actual high risk but prescribed spontaneous
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birth Pr(H|SB) can be expressed as

(1 —a)(1—sp)
(1—a)(1—s0)+ aso’

asy

Pr(H|SB) = (1—a)(1—so) + aso

Pr(L|SB) =

Noted that the percentage Pr(L|C'S) of planned C-section and the percent Pr(H|SB)
of prescription of spontaneous birth lead to loss of total utility.

Proof of Proposition B.1. Let Uf(S, x) be the total expected payoff / utility for
physician j if he chooses a procedure S, when there are k£ physicians determine SB

Vx €[0,1] and k € {0,1,2,--- ,J — 1}, then
k k. b
Uj (S, 2) = u(S,2) + —(ugp(}, )

Because the best strategy for physician j is to maximize the total payoff with respect
to each complexity  no matter what the other colleagues choose, and then he will

prefer SB as long as
k k
U;j(SB,x) > U;(CS,x),Vk € {0,1,2,--- ,J — 1}
which is equivalent to
usp(A, ) > ucs(v)

The similar rational is for the preference of C-section.

Proof of Lemma B.1. Suppose under a certain (m§(z), mZ(x)), and «, sy such

that

uls(z) > udz(\,x), Vo > s

U’%S(x) S UOSB()‘vx)v Vo S S0
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. Consider VN = XA + A, where A > 0, physicians’ modified utilities become

ucs(z) = Nz — %) + ulg(z),

usp(z) = AN* —x) +ulg(z), Vo €l0,1].

Case (i): so < x*. Apparently Vo € [0,s0], = < 2%, uCS(z) < usp(\,x); Vo €
[2*,1], uCS(z) > usp(A\,z). If x € (so,2%), denote Au(z) = usp(\, ) — ucs(z),
we have Au(sg) > 0 and Au(xz*) < 0, so there must Js € (sg,2*) that satisfies
Au(s) =0, and s is the new threshold, that leads to smaller deviation from x*.

Case (ii): sp > z* is similar. Vo € [0,2%] still leads to uCS(z) < ugp(\, z);
Vo € [sg,1] leads to uCS(x) > ugp(A, ). And there a new threshold s € (z*,s¢)
determined by physicians with \'.

Proof of Lemma B.2. In delivery stage, any patient with complexity x leads to an

expected utility

WBy(0) = PP ) (1 ) D~ [ e + (1= F())eC + e
&ngg\)\’ s) _ afg;: 37)(01(51 ; Chy 4 eC Ny — gMN
> 0.
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Appendix C

Design of Specialist Responsible
Policies to Reduce Waiting Times in

Emergency Departments

C.1 Notation

Table C.1: Notation

Specialist Response Policy

T;  the arrival time of the jth patient who requires a specialist consultation;
N(t) the number of arrivals in (0, ¢],Vt > 0;
A(t)  the arrival rate at time ¢;
L(t) the number of patients waiting in the system;
W(t) total waiting time at time ¢ of all patients arriving by ¢;
ST  generally distributed specialist’s treatment time;
B generally distributed the specialists’ arrival time from now;
FT  a determinist period after which next specialist arrives.

Modified Triage

S(t)  Obsevable set, the number of patients of each class at time t;
Sy(t) the number of patients of cluster n, Vn € A" ;
#  index of classes where specialists follow FT response rules;
#  index of classes where specialists follow TL response rules;
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C.2 Non-homogeneous Poisson Arrivals
We simulate two periodic functions

A(t) = max(1,1+ bsin (%t)),

A(t)=1b [sin (f—Qt) + 1} :

where b determines the magnitude of the peak arrivals.

Table C.2: Trajectory from diagnosis code to specialist type

Specialist Type Possible Inpatient Ward
Internal Medicine 1,5,7,8,9, 11, 14, 22;
Oncology 2;
Mental Health 6;
Gynecology & Obstetrics 16.

C.3 Alternative results of Statistical Learning

Table C.3: Results of ALternative Statistical Learning

Estimated probability of ‘ AUC MSE

neural net hidden 1 (%) | 50.00 25.14
neural net hidden 2 (%) | 82.34 18.76
neural net hidden 3 (%) | 82.29 18.78
nearest neighbor (%) | 80.16 18.98
kernel epilson (%) 78.58 18.62
SVM (%) 7923 18.67
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Table C.4: Unbalance between request or non-request of specialist consultation

Consulting | 3 4 5 | Total
No 26.44 36.93 11.95 | 75.31
Yes 14.24 9.31 1.14 | 24.69

Total 40.68 46.24 13.08 | 100.00
All numbers are in %
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Figure C-2: Daily Variations of Arrivals during a Week
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Figure C-3: Compare Delay of Sending out Consulting Request
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Table C.5: Results of Statistical Learning with Balance

Estimated probability of \ AUC MSE

CART (%) 80.49 17.36
Logit (%) 83.68 17.35

Table C.6: Sensitivity and Specificity with Balance

Triage ‘ 3 4 )
Sensitivity (%) 7934 73.13 59.18
(P(Pred = 1|Act = 1))
Specificity (%) 78.03 89.21 94.56
(P(Pred = 0|Act = 0))

C.4 Delay of Specialist Requests

C.5 Proofs

Proof of Corollary 4.1.

d( " >d)
— z,t)dx

:/b(t) af(‘%’t)dx_{_f(b(t),t)b,(t) _ f(a(t),t)a/(t).
a(t) ot

Proof of Theorem 4.1. From the perspective of Lebesgue integral, the total

waiting time is
t
W(t) = / (t —7)dN (7).
0

Because M () is a martingale,

E M(t _ T)dM(T)} 0,
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That is,

Proof of Proposition 4.1.

E(L(24)) = A(24), Var(L(24)) = A(24);
E(L?*(24)) = Var(L(24)) + [E(L(24))]°.

Proof of Proposition 4.2 We show the result with a sample path argument. Let 7
be the optimal policy that always assign a customer if there exists to the server as
long as the server completes a service; let 7’ be the alternative policy that does not
assign a patient to an idle server. Obviously, 7 dominates 7/, because

WE(t) < WF(t), Vt,Vie{0,1,2,---,N}

1

Therefore, V™ < V™. 0

Proof of Proposition 4.3 Suppose all patients are ranked according to their prob-
ability such that pi > pio > - pig,), Vi € {0,1,2,---,N}. Consider a policy 7
that always assign the patient in class ¢ with highest probability, and 7 assigns pa-
tients with due date T as a priority after threshold o and switch to prioritize the rest

patients after 5. Suppose other policies
e 71, is the same with 7 except it priority random patients with each class;

e T, always prioritize non-F'T patients, and prioritize patients with highest prob-

ability in each class;

e 73 always prioritize F'T patients, and prioritize patients with highest probability
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in each class.

Denote [vs, v f] is the duration of a service, such that o < vs <T < ovf < [ that is

T happens during this service. Denote v £ v f — vs, then

N

V™ ({So(vs), S1(vs), Sa(vs), -+, Sn(vs)}) = U(Z Sn(vs)) + pin (T — vs)

n=1

+ Z P Uf ’S vs ) <{SO(Uf)>Sl<Uf)7SQ<Uf>>'" 7Sl(vf) -1, 7SN(Uf)}>

N

V™ ({So(vs), S1(vs), Sa(vs), -+, Sn(vs)}) = U(Z Sp(vs)) + pa (T — vs)

n=1

+ Z P 'Uf |S vs ) ({SO(Uf)vsl(Uf)’SQ(Uf)7'" ,SZ(Uf) -1, 7SN(Uf)})

S(vf)
+(AT — Uf + US) (pzl — pZQ)

So V™ > V™,
V™ ({So(vs), Su(vs), Sa(vs), -+, Sn(vs)}) = v(D _ Su(vs)) + pu(T + AT — vf)

+ Z S(uf)|S(ws)V({So(vf) — 1,1 (vf), Sa(vf), -+, Si(vf), -+, Sn(vf)})
So V™ > V™,

V7™ > V7™ because the extra waiting time incur for non-FT patient when prioritizing

FT patients who still wait in the system after the ED physician’s treatment.
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Appendix D

Design of Observation Units (OU) for
Acute Decompensated Heart Failure

(ADHF) Patients

D.1 Proofs

Proof of Lemma 5.1. Denote the reciprocal

Let S(n) =", p'/i!, then

S(n Sn—1)+ p"/n!
R(n, p) = p"(/n)! - ( p”>/n!p /

Because
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where B(0,p) = 1.
Using mathematical induction on n, because B(0, p) is increasing in p, if B(n,p) is
also increasing in p, from Eq.D.1, B(n + 1, p) is increasing in p as well.

Moreover,

B(n—1,p) — B(n,p) = B(n—1,p) (1— 1—1—,03(2—1 ,0)) > 0,

this is because B(n,p) < max{0,1 — p~'}, which can be proved with Little’s law as
following.

Let N be the number of customers served in the system. The fraction of customers
who are served is A(1— B(n, p)), that is, the arrival rate excluding blocked customers.
The expected waiting time is the mean service time in the loss model. So due to

Little’s Law L = AW,

A1 = B(n, p))
1

EN =

= p(l - B(”?ﬂ)) <n,

Therefore B(n, p) < max{0,1—p~'}. o

Proof of Proposition 5.1. The existence is trivial due to the monotonicity of
B(n,p) in n in Lemma 5.1. o

Proof of Proposition 5.2. With the monotonicity of B(n, p) in n given a certain p
in Lemma 5.1, we only need to prove the discrete convexity of B(m, p) as a function
of m, that is, B(m,p) — B(m + 1, p) is decreasing in m. The discrete convexity of
B(m, p) has first been proved in Messerli, 1972; Jagers and van Doorn, 1986 , and
then (Wolff and Wang, 2002) extended the property to G/GI/n/n models. o
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