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Abstract

Though 20th century has seen life expectancy largely lengthened worldwide, aging

population, chronic diseases, worsening food supply with deficit nutrition and envi-

ronmental problems add to the burden of healthcare systems all around the world.

Data analytics, which has been seen as a significant power in other industries, is ex-

pected to contribute to the improvement of efficiency and effectiveness in healthcare.

This thesis aims to identify and promote more effective and efficient strategic, oper-

ations and clinical policies in healthcare systems through descriptive, predictive and

prescriptive analytics. To this end, this thesis focuses on three essays, i.e. three data-

driven problems based on medium to large size of real life datasets, on: i) design of

financial incentive systems for maternity care; ii) design of specialist response policies

and modified triage coding to reduce waiting times in emergency departments (EDs),

and iii) design of observation units for hearth failure patients.

The first essay focuses on strategic level and aims to design a two-level finan-

cial incentive mechanisms to reimburse physicians, in order to reduce unnecessary

C-sections while retain it for those who need it, resulting in enhanced birth qual-

ity with alleviated economic burden for overall health care system. Contributing to

clinical decision-making, we first cluster the patients according to their pregnancy

complexities, and characterize a threshold between spontaneous birth and medically

necessary planned C-section by analyzing 12.7 million annual birth records from Na-

tional Bureau of Economics Research through statistical learning methods. Then we

compare payment systems analytically vis-á-vis a variety of performance measures

within two-level hierarchy, (i) mainstream payment models and (ii) compensation on

the top of mainstream payment, and provide insights about the effectiveness of alter-
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native payment models in the context of maternity care. Finally, we propose optimal

payment for physicians to maximize the value for patients under the principal and

agent framework, from the strategic perspective.

The second paper focuses on operational level and targets to reduce the length

of stay in EDs by designing a systematic response policy for various specialists de-

pending on ED clinical demands. This work is motivated by and verified with 40,000

ED visits to a local community hospital in Montreal. We first identify a class of

patients who are more likely to require specialist consultation based on their clinical

information available at the triage stage through statistical analysis. Then we ana-

lyze several alternative policies for specialists’ response to consultation requests using

queuing models with non-homogeneous Poisson arrival rates. Moreover, we examine

an integrated ED decision-making by incorporating specialist consultation requests

in the triage system. Finally, our proposed optimal specialist response policy and

associated modified triage coding are verified through a comprehensive simulation

model. We provide a feasible guideline of integrated patient streamlining to shorten

length of stay and alleviate overcrowding in ED.

The third paper focuses on clinical level and propose a framework to design a

dedicated observation unit for acute decomposition heart failure patients, in order to

provide proper treatment and reduce unnecessary hospitalization and chance of post-

discharge events. To this end, we, first, use multiple analytical models to figure out the

proper number of bed for this observation unit based on historical patient arrival data

from a local community hospital. Based on the confined range of analytical capacity,

we use simulation models to analyze different discharge and admission policies. We

propose an optimal discharge-admission criteria for this dedicated observation unit

to realize cost-saving and quality enhancement of treating acute decomposition heart

failure patients.
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Abrégé

Bien que le 20ème siècle ait vu l’espérance de vie en grande partie allongée dans le

monde entier, le vieillissement de la population, les maladies chroniques, l’aggravation

de l’approvisionnement en nourriture avec une nutrition déficitaire et des problèmes

environnementaux augmentent le fardeau des systèmes de santé partout dans le

monde. L’analyse des données, qui a été considérée comme un pouvoir important dans

d’autres industries, devrait contribuer à l’amélioration de l’efficacité et de l’efficience

des soins de santé. Cette thèse contribue à la gestion des opérations de soins de santé

à partir des perspectives de décision stratégique, opérationnelle et clinique. Spéciale-

ment, il résout trois différents problèmes liés aux données réelles de moyenne à grande

taille , ainsi que la modélisation mathématique.

Le premier vise à améliorer la qualité des soins maternels sans augmenter les

dépenses liées à la naissance en concevant des incitations financières optimales pour

les soins maternels des médecins. Contribuant à la prise de décision clinique, nous

avons d’abord déterminé le seuil optimal de complications de la grossesse entre la

césarienne prévue et la naissance vaginale avec des méthodes d’apprentissage statis-

tique et 4 millions de naissances annuelles du National Bureau of Economics Research

(NBER). En suite, nous analysons les mécanismes de paiement existants et proposer

un paiement optimal pour les médecins pour maximiser la valeur des patients dans le

cadre principal et agent, du point de vue stratégique.

Le deuxième document vise à réduire la durée de séjour dans les départements

émergents en concevant une politique d’intervention systématique pour divers spé-

cialistes en fonction des demandes cliniques. Nous définissons d’abord une classe de

patients qui sont plus susceptibles d’avoir besoin d’un conseil spécialisé sur la base
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d’informations sur les triages avec 40 000 visites ED annuelles dans un hôpital com-

munautaire local de Montréal. Ensuite, nous analysons l’heure d’arrivée optimale

pour les spécialistes en fonction des taux d’arrivée dépendant du temps des patients

avec la modélisation des files d’attente, et nous recommandons enfin les différentes

politiques d’arrivée spécialisées pour différents spécialistes en fonction des volumes

de la demande. Nous menons également une simulation complète pour comparer la

politique de triage fondée sur les ressources et la politique de triage traditionnelle

avec des politiques d’arrivée spécialisées spécialisées.

Le troisième document tente de concevoir une unité d’observation dédiée pour

les patients atteints d’insuffisance cardiaque décomposée en phase aiguë (ADHF),

afin de fournir un traitement adéquat et suffisant, et de réduire les événements post-

décharge tout en allégeant la surdité, et économiser les ressources limitées dans les

salles d’hospitalisation. Tout d’abord, nous décrivons la quantité appropriée de lit

pour cette OU en fonction des demandes historiques de patients atteints d’une hos-

pitalisation communautaire locale, en utilisant plusieurs modèles. Ensuite, nous con-

cevons un critère optimal d’admission et de sortie pour l’unité d’organisation dans

le cas où de nouveaux patients arrivent á une entière OU. Les critères peuvent être

équilibrés si l’on admet de nouveaux patients et un patient précoce dépendant du

patient en fonction des progrès de l’ADHF, qui provient de la littérature clinique.
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Chapter 1

Introduction

Thanks to the achievements on life science and technology advancement that lead to

a large decrease of infant mortality and death from diseases, the 20th century has

seen life expectancy largely lengthened worldwide. Global life expectancy grows to

71.4 years old in 2015, with an average annual growth rate of 5 years old from 2000

(World Health Organization, 2016). In Canada, life expectancy increases to almost

82 years old in 2011 compared with 70 years old in the 1950s (Decady and Greenberg,

2014). This brings new challenges for healthcare systems, which have already been

a challenging issue worldwide, especially in high-income industrial countries. Indeed,

World Health Organization (WHO) projected that almost 25 % of population would

be over 65 years old in 2030 in OECD (Organisation for Economic Co-operation and

Development) countries, of which the percentage is around 15 % in 2015; whereas in

BRICS countries (Brazil, Russian Federation, India, China, South Africa) only 5 %

of population would be over 65 years old by 2030 (World Bank, 2014; Pruss-Ustun

et al., 2016). Increasing life expectancy does not necessarily increases quality of life,

or health span, which is defined as the duration of healthy life without debilitating

disease (EBioMedicine, 2015; Sagner et al., 2017).

Actually, aging population tends to have prevalent chronic conditions requiring

more extensive and intensive healthcare service. The leading factors of morbidity

and mortality, such as cardiovascular and pulmonary diseases, diabetes and certain

types of cancers, have exposed the largest threaten to human life worldwide (Wagner
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and Brath, 2012; Arena et al., 2015). Mental illnesses have also been one of the most

important factors threatening health, productivity and wellbeing (Birnhaum et al.,

2010; Kessler et al., 2006). Worsening food supply with deficit nutrition, due to early

picking, pesticide and chemical abuse and deplete soil, has also been contributing to

the burden of healthcare (Helweil, 2007; Davis, 2009). Moreover, pollution and other

environmental problems expose threaten to health. In fact, currently environment

factors account for 23 % global burden of disease (in DALY disability-adjusted life

year), without significant decrease from 24 % in 2002 (Pruss-Ustun et al., 2016).

Healthcare resources are limited, as a result of constantly growing demand. Ac-

tually, it is challenging for almost all countries to raise sufficient funds to finance

healthcare services for all citizens (World Health Organization 2010, OECD2014).

Indeed, the proportion of rising healthcare costs, which now constitute over 10% of

the GDP in most large OECD economies, continues to outpace growth of both infla-

tion and national GDP (Canadian Institute for Health Information, 2012). However,

increasing healthcare expenses do not lead to better quality of care. For instance, in

the case of maternal care, as an expensive operation, Caesarean section can expose

potential harms on both the mother and the newborn(s) (e.g. Knight et al., 2008;

Goer et al., 2012). Efficiency and effectiveness of healthcare have remained the biggest

concerns of governments, policy makers and societies all over the world (Peacock and

Segal, 2000; Biorn et al., 2009; Health Canada, 2012).

Operations Management (OM) has been contributing to the enhancement of effec-

tiveness and efficiency in healthcare system from mainly three perspectives (Brandeau

et al., 2004):

Strategic level. It is a high-level policy making on planning, structure and eco-

nomics of healthcare system.

Operational level. It focuses on the optimization of process, prioritization and sys-

tem of healthcare delivery.

Clinical level. It refers to the decision-making regarding selection of technologies

and procedures based on medical information and clinical research.
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Interested readers can refer to Brandeau et al. (2004) and more recent Zaric (2013)

for an introduction and overview of existing OM research on health care system in

breath. Here we highlight some of the most recent and noticeable contributions for

the illustrative purpose. From strategic perspective, the study of Levi et al. (2016)

contributed to improving effectiveness of uniform subsidies regarding maximization

of market consumption of malaria drugs. Adida et al. (2017) studied the advantages

and disadvantages of different payment schemes in the general context of healthcare

systems with mathematical models. Hua et al. (2016) evaluated the co-existence

of private and public hospitals regarding government fiscal policies and quality of

healthcare services. On the operational level, besides extensions and further works

of traditional scheduling and streaming on patient flows (e.g. Kocaga et al., 2015;

Defraeye and Van Nieuwenhuyse, 2016), recent works of Chan et al. (2016) and Dai

and Shi (2017) studied the more realistic scenarios in the hospital setting of a queue

system with time-varying periodic Poisson arrival process. While Chan et al. (2016)

figured out the optimal frequency of discharge inspection in an inpatient ward, Dai

and Shi (2017) found that to advance the discharge time can alleviate the over-

crowding of peak arrivals. OM researchers have also made significant contribution to

clinical decision-making. For instance, recent work of Ibrahim et al. (2016) designed a

two-stage personalized treatment for anticoagulation therapy with (partially observ-

able) Markov decision process, which offered clinical insights of great value regarding

efficiency and effectiveness of the treatment.

1.1 Health Analytics

Data-driven studies, or analytics, an emerging area in OM, has been proven impor-

tant and becomes more and more attractive in healthcare OM field; as the value of

data analysis lays on real-life problem solving and real improvement in healthcare

systems (Staheli, 2014). Healthcare analytics is at the core of healthcare transforma-

tion and with great potential contributions to clinical decision-making, cost savings

and improvement of quality, efficiency and effectiveness, though research in this field
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is still in a nascent stage (Raghupathi and Raghupathi, 2014). A recent survey con-

ducted by Health Catalyst among members of the College of Healthcare Information

Management Executives (CHIME) showed that healthcare analytics is the highest

priority among IT relevant initiatives (Haughom et al., 2014). The promotion and

more extensive application of Electronic Health Records (EHRs) will lead to effec-

tive information sharing, improved efficiency and efficient integration of healthcare

information system (Kwapien, 2016). Besides, from the clinical perspective, data an-

alytics can also be applied to decision-making on personalized treatment, drug design

and medicine research (Marr, 2015). Health analytics involves three main categories

(Health Analytics, 2015):

Descriptive analysis focuses on what has already happened. Although it seems

straightforward to report descriptive statistics from existing data, it can be dif-

ficult to derive valuable insights to explain the rationales behind those statistics.

Predictive analysis tends to provide prediction of more likely consequences from

symptoms or clinical procedures, based on historical patient information and

controlled experiments. It shows a more promising way to help decision-making

in healthcare, though it is still an emerging field in health analytics.

Prescriptive analysis works on the solutions to those problems that are likely to

happen. This requires integration with other categories of analysis and more

advanced tools, and is expected to be the real valuable future of health analytics.

1.2 Content of Thesis

This thesis focuses on three different data-driven problems, in order to demonstrate

the contribution of data-driven research to all three crucial perspectives - strategic,

operational and clinical decision-making. These studies feature in combining mathe-

matical modelling with all three categories of health analytics - description, prediction

and prescription. All the analytical models are verified with medium to large size of

real life datasets.
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The first essay focues on strategic level and aims to improve the quality of ma-

ternal care without increasing birth-relevant expenses by designing optimal financial

incentives for physicians. From the perspective of clinical decision-making, this chap-

ter first proposes a clustering approach for the patients according to their pregnancy

complexities, and a method to characterize a threshold between spontaneous birth

and medically necessary planned C-section with statistical learning methods based on

over 12.7 million annual birth records from National Bureau of Economics Research

(NBER). From the strategic perspective, this work then analyzes the advantages and

drawbacks of existing payment mechanisms and potential bonus schemes through an-

alytical models under the principal-agent framework. Sequentially, we propose an

optimal payment for physicians to align their goals with healthcare payers to maxi-

mize the value for patients.

The second essay focuses on operational level and targets to reduce the length of

stay (LOS) in emergency departments (ED) by designing a systematic response policy

for various specialists who are not based in ED all the time. This work is motivated by

the prolonged consultation delays in EDs and based on the dataset of forty thousand

annual ED visits to a local community hospital in Montreal. To this end, we, first,

investigate the optimal timing of a specialist’s consultation session analytically in a

queue with time-dependent customer arrivals. Then, we analyze and compare two

potential response policies and determine the optimal ones for different specialists

based on the patient volume and arrival patterns. We also explore the impact of a

possible integration of ED decision-making by examining resource-based triage given

the optimal specialist response policies through a comprehensive simulation model.

The last essay focuses on clinical level and attempts to design a dedicated obser-

vation unit (OU) for acute decomposition heart failure (ADHF) patients, in order to

provide proper treatment, as well as reduce unnecessary hospitalization and chance

of post-discharge events. Our ultimate goals are to alleviate overcrowding in ED, and

provide effective use of scarce resources in inpatient wards without sacrificing qual-

ity of care or increasing relevant healthcare expenses. First, we use several featured

analytical models to determine the capacity of this OU based on historical data of
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patient flows and aggregated process of ADHF. Within the confined range of capacity,

we use simulation models to examine alternative admission and discharge policies for

this potential OU. Finally, we propose an iterative admission-discharge strategy for

this potential OU in order to realize minimal total relevant costs and best possible

quality of care.

1.3 Thesis Contributions

In this section we discuss the potential contributions of this thesis.

Our first essay on the design of financial incentives for maternity care makes the

following contributions to the literature:

1. In this essay, we propose a reliable cut-off point between two typical procedures

in the setting of maternity care (Section 3.3), through a detailed statistical analysis on

the patients’ complexity based on a large dataset of 12.7 million individual records.

Compared to existing literature with a small dataset of hundreds of patients, our

census data set is huge and reliable. Moreover, this compliments literature with

a reliable and feasible method to predict whether a planned caesarean section is

medically necessary or not according to the given clinical information before the onset

of labor; whereas existing medical literature focuses on varied indicators of caesarean

section during labor.

2. As a modeling approach, we propose a modified gatekeeper model in principle-

agent modeling framework. In contrast to the traditional gatekeeping models where

gatekeepers refer those clients beyond their capacities, our modified model considers

the fact that consulting physicians have a typical dual role of both consulting and

delivery, and thus they do not necessarily refer patients to their colleagues. With

the framework of games and contract theory, we provide analytical analysis to this

innovative model in the setting of maternity care.

3. In our modeling framework, quality of care and physicians’ behaviors are ex-

plicitly incorporated into objective functions (Section 3.5). This fills in the gap in the

OM literature given that in the existing literature the decision makers consider only
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expenditures of healthcare services.

4. In our model, we incorporate physicians’ efforts and patients’ benefits explicitly

in the physician’s utility function, in contrast to the simplified utility functions in

existing literature. Although in our approach the physician’s utility function is more

complex and intractable, we are able to provide analytical analysis to explain the

rationales of physician’s behaviours and decision-making.

5. In the setting of maternity care, we analytically model different mainstream

payment mechanisms, namely fee-for-service, bundled and blended payments (Section

3.6). Moreover, our analytical results verify the existing empirical studies of those

payment mechanisms. Therefore, our analytical model can be applied to those settings

where new payment mechanisms need to be tested.

6. We propose several feasible outcome or process-oriented metrics for the pay-for-

performance bonus. These performance measures are easy to observe and measure,

resulting in a feasible incentive-based payment mechanism that can increase quality

of maternity care without increasing the relevant expenses (Section 3.8).

Our second essay on the design of specialist response polices in ED makes the

following contributions to the literature:

7. In the queueing models with time-varying arrival rates, we show the closed

form of optimal response times for a specialist’s one daily visit to ED, based on the

pattern and volumes of the consultation demands (Section 4.3.2 and 4.5.3). This fills

in the gap of queueing literature by providing the characteristics of average waiting

time in a non-homogenous queue.

8. We provide valuable insights to healthcare practitioners and managers by

proposing a feasible systematic guideline of determining the best specialist response

rules (Section 4.3.4). This guideline can largely reduce the delay of specialist consul-

tation in ED, and it is also easy to implement.

9. We contribute to the medical literature by designing a reliable statistical

method of predicting whether the patient will require specialist consultation or not,

based on limited clinical information at the triage stage (Section 4.5.2). This method

can be of value for other studies, which will benefit from the accurate estimation of
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likelihoods of specialist consultation demands.

Our third essay on the design of observation units makes the following contribu-

tions to the literature:

10. We design a systematic guideline of designing an ADHF dedicated OU (Chap-

ter 5). This guideline provides valuable insights in determining the capacity as well

as admission-discharge strategies for such an OU. Moreover, this guideline is verified

to ensure an enhanced quality of care and reduced overall expenses of care, through

comprehensive simulation models.

1.4 Thesis Organization

The rest of the thesis is organized as follows. The following chapter is a comprehensive

literature review on financial incentives and payment schemes in Healthcare OM. The

third chapter presents the first essay on the design of financial incentive systems for

maternity care. The forth chapter focuses on the second essay: design of specialist

response policies and modified triage coding to reduce waiting times in emergency

departments. The fifth chapter presents the third essay on design of observation

units for hearth failure patients. Finally, chapter six discusses conclusion and future

research of this thesis. Detailed proofs to all the theorems of these chapters are in

the Appendix.
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Chapter 2

Literature Review on Design of

Financial Incentives and Payment

Schemes in Healthcare Systems
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2.1 Introduction

Health systems aim at providing high quality care by the right providers at the right

time and place to all citizens. Using resources efficiently is essential for such systems

to remain sustainable. However, every county has encountered problems in financing

healthcare services for all (World Health Report 2010). Indeed, the specter of rising

healthcare costs, which now constitute over 10% of the GDP in most large OECD

economies, continues to loom large over governments wanting to meet wide-ranging

healthcare needs (OECD Health Statistics (Database) 2014). The rate of cost increase

has outpaced both inflation and national GDP growth (CIHI 2012), making control of

healthcare costs a priority of policymakers and academics alike. In response, financial

incentives have been introduced by policymakers to steer healthcare providers toward

intended and desirable outcomes that also curtail costs and increase efficiency. Popu-

lar financial incentive schemes around the globe typically aim to improve healthcare

services in four key areas.

(i) Access

Healthcare system should provide timely and proper diagnosis, treatment or other

services to anyone who need them when necessary. The barriers of demographic and

socioeconomic factors, such as geography, sex, race, and socioeconomic status must

be overcome, in order to extend access to healthcare services including hospices, home

care, primary care, and mental care (Biorn, Hagen et al. 2009).

(ii) Quality

Quality of healthcare may include but not limit to accurate test results and diagnosis,

effective treatment as well as other necessary services. To assess the effectiveness of

treatment, the measurement of healthcare quality must be perfected. Reaching this

goal is challenging. Furthermore, a strictly positive correlation between healthcare

expenses and outcomes has not been achieved. Nevertheless, the ultimate goal of

healthcare services has always been to provide safe and effective treatment (Peacock

and Segal 2000).

(iii) Efficiency
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Healthcare systems aim to provide greater quantity of qualified services within the

constraint of limited healthcare resources.The discrepancy between actual and opti-

mal productivity can be calculated in different ways, for example by using technology

to assess the ability to decrease inputs while keeping output constant (Biorn, Hagen

et al. 2009).

(iv) Integration and cooperation

Healthcare services, namely diagnosis, tests, treatment and recovery care, are impos-

sible to segment with others. Similarly, healthcare providers, including physicians,

nurses as well as clinics and hospitals, should cooperate towards achieving common

goals in an integrated system. Several integrated healthcare delivery models have been

successfully pioneered in recent decades, such as Kaiser Permanente, the Geisinger

Health System. However, implementing an associated integral payment mechanism

has remained an unsolved problem, which demands further investigation (Sutherland

and Crump 2011). Due to the complexity of intended and unintended (but unavoid-

able) consequences, achieving a perfect remuneration mechanism is not easy.

The last few decades have seen continuing critical reviews and corresponding re-

forms, and governments currently use a wide range of methods to fund their healthcare

services and design their financial incentives. These methods, geared to accomplish

several health system objectives, range from global budgeting to payment mecha-

nisms based on the volume and characteristics of patients. Several funding mech-

anisms are common to different countries, and each mechanism demonstrates both

strengths and weaknesses. Certain mechanisms have proven sufficiently successful

to be widely adopted. They include the Diagnosis Related Group (DRG) system,

used for in-patient payment settings, that effectively shortens hospital bed-days and

reduces inpatient costs. The fee-for-service (FFS) approach has always been popu-

lar, while activity-based funding, capitated managed care, shared savings, bundled

payments, and pay-for-performance (P4P) have been more recently developed to over-

come the low efficiencies and potential abuses resulting from FFS. In addition to these

methods, many public and private healthcare insurers provide other financial incen-

tives for specific goals. In the USA, the Center for Medicare & Medicaid Services

11



(CMS) introduced Electronic Health Records Incentive Programs, which pay bonus

funds to participating healthcare professionals, hospitals, and critical access hospitals.

The programs provide financial motivation to install and improve electronic health

records technology (Center for Medicare & Medicaid Services 2014). According to the

Quality Incentive Programs report by the American Academy of Physician Assistants

(2008), the Leapfrog Group, comprising some large employers aiming to assess their

healthcare purchases for employees, developed its Incentive and Reward Compendium

to reward contracted providers for improving quality and efficiency. Moreover, the

Government of Canada announced an investment in March 2007 of approximately

$30 million over three years in the Patient Wait Times Guarantee (PWTG) Pilot

Project Fund, aiming to establish guaranteed clinical treatment timeframes and offer

incentives for care providers to shorten wait times (Health Canada 2012).

Healthcare service providers, namely physicians, hospitals, and pharmaceutical

companies (pharmaceuticals), are pivotal in controlling costs; as nearly all health-

care expenses are directly or indirectly reflected in their profits or gross incomes. In

turn, their service to patients has an overwhelming authority to determine health-

care quality. It is therefore reasonable to increase efforts to improve the design and

operation of payment systems for these crucial players, worldwide. Recent studies

on financial incentives in healthcare confirm that implementing them could lead to

the intended behavioral or cost changes. However, due to the limited number of ran-

domized trials in the available empirical research relative to the complexity among

healthcare systems, it would be difficult to explore those possible cost changes further

and draw generalized conclusions (Chaix-Couturier, Durand-Zaleski et al. 2000). To

Design a proper remuneration scheme can be a laborious and expensive process, which

is subsequently heavily scrutinized. Thus, though substantial empirical evidence is

needed to affirm scheme design and choices, comprehensive analytic research is also

necessary to study financial incentive designs, their desired outcomes, and unintended

consequences.

Aware of the significance of payment schemes for healthcare providers and ne-

cessity of decision tools to assist policy makers and hospital administrators while
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designing financial incentives, Operations Research and Management Science (OR &

MS) researchers have made noteworthy contributions to the improvement of financial

incentives and payment schemes for hospitals and physicians. In this review, we sum-

marize OR & MS studies on financial incentives for particular healthcare systems.

The main problems within each geographic setting are illustrated, and also the OR &

MS research methods. According to the types of healthcare providers, the rest of this

paper is organized as follows. Section 2 describes major payment schemes for physi-

cians with detailed analysis of their strengths and weaknesses; Section 3 focuses on

hospital funding systems, including retrospective and prospective financial schemes

covering for external sources as well as internal allocation of budget within hospitals

(Section 3); and Section 4 covers pharmaceuticals, and mainly focuses on risk-sharing

financing for drug manufactures, sales or purchasing to improve drug access. Limita-

tions of existing literature, potential challenges and directions for future research are

discussed in the final section.

2.2 Payment Schemes for Physicians

The design of financial incentives for physicians is critical for controlling costs and

improving efficiencies in healthcare, because physicians generally have the greatest

control in deciding the type, quantity, and quality of treatment services (Leger 2008,

Institute of Health Economics 2009), and hence directly influence expenses. Recent

empirical studies show that physician payment mechanisms not only influence how

physicians determine the volume of health services, but can also provide incentives for

efficient and effective preventive care, and chronic disease management. Hence, physi-

cian reimbursement schemes are of great interest to health policy makers (Institute

of Health Economics 2009).

Payment mechanisms vary geographically. A significant majority of physicians in

Canada and the United States bill directly to public or private healthcare insurers,

under different payment schemes. In contrast, their colleagues in Europe are mostly

salaried employees, contracted to clinics, hospitals, or health institutes. Variations in
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population demographics around the world are reflected in local healthcare systems,

and the specific nature of their incentives and payment mechanisms.

Broadly, five main payment schemes occur worldwide. They include FFS, capi-

tation, salary/contract, P4P, and blended payment schemes. Studies in OR & MS

analyze the strengths and weaknesses of different payment mechanisms, not only iden-

tifying optimal reimbursement mechanisms for various geographic regions, settings,

and disease types, but also describing the impact of these mechanisms on healthcare

service efficiency, quality, and resource allocation.

2.2.1 Fee-for-service (FFS)

Under FFS, physicians are reimbursed at a pre-determined rate for each service they

provide. It has been used almost exclusively in Canada and the United States since

the 1980s (Cutler 2002, Institute of Health Economics 2009). This scheme is intended

to motivate physicians to provide the necessary healthcare services and proper treat-

ments relative to the health status of individual patients. In practice, however, FFS

provides financial incentives for physicians to prescribe a greater volume of services,

i.e. increase the number of prescriptions and treatments, some of them being un-

necessary. In other words, this scheme encourages physicians to over-produce care

because it raises their incomes. For instance, The recent work of Adida and his col-

leagues (Adida et al 2016) adopted a model-based approach and their analytic results

confirmed the presence of overtreatment under FFS, whereas it does not result in any

patient selection nor expose any financial risks on physicians.The result is a waste of

scarce healthcare resources. To avoid these unintended outcomes of FFS, alternative

mechanisms have been developed (Leger, 2011, Adida et al 2016).

2.2.2 Capitation

Here, physicians are reimbursed at a fixed rate per patient. This system provides

financial incentives to control costs by minimizing unnecessary services, thereby max-

imizing physician incomes (Tor and Hilde 2000). However, the fixed rate applies
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regardless of the character of patients, or of differences in the enrolled population.

This may be detrimental to proper treatment for patients with severe conditions.

Another negative consequence of capitation is that it stimulates physicians to recruit

a bigger patient panel than they can handle, or to select "the healthiest patients and

avoid admitting more complicated cases in order to save effort under the universal

visit fee" (Ellis 1998). The latter phenomenon is typical of "cream skimming" in the

economic domain, and has become the most significant negative side effect of this

reimbursement mechanism.

Therefore it is argued in the empirical work of (Hutchison, Hurley et al. 2000)

that greater adjustments for patient factors should be included when setting up the

rate of capitation. Using Canadian data, these researchers developed alternative cap-

itation formulas to replace FFS for primary care physicians based on the population’s

relative needs, and demonstrated that the formulas would be both valid and admin-

istratively feasible under the current healthcare scheme. This study was motivated

by the method implemented in the United Kingdom, which adjusts capitation for

general practitioners based on age and sex of patients.

2.2.3 Bundle

This relatively new reimbursement refers to a fix payment for healthcare providers to

cover relevant services to treat a specific medical condition per episode. Though this

mechanism tends to reduce overtreatment and lower healthcare expenses, it can lead

to negative patient selection. The analytic results of Adida et al. (2016) found that

this negative patient selection under bundle payment could incur especially when the

payment rate is lower or physicians are more risk averse. The higher financial risks

born by physicians under bundle payment would potentially lead to the bankruptcy

of physicians and consequentially reduce the quantity of healthcare providers, thus

could generate detrimental problem for healthcare system in the long term (Adida et

al. 2016).

In order to deal with physicians’ financial risks exposed under bundle payment,

Adida et al. (2016) further proposed a stop-loss mechanism, a modified improvement
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of bundle payment aiming to enhance physicians’ performance by spreading risks

among both payers and providers.

Moreover, due to the newly evolved payment mechanisms, there might exist cer-

tain unkown but possible unconscious consequences. Therefore this mechanism should

be cautiously implemented (Adida et al. 2016). In order to explore this payment

mechanism, Center for Medicare and Medicaid initiated "bundle payments for care

improvement" (BPCI) mechanism that selects and funds proposed bundle. Each

propose defines the amount of bundle payment, services and treatment, as well as

target care quality score. Though proposes with higher expected quality scores and

lower costs should be selected, proposers tend to provide minimal discounts to gain

more incomes. The work of Gupta and Mehrotra (2015) analyzed and confirmed that

an uncertain mechanism of proposal selection is optimal, rather than a fixed selec-

tion mechanism, in dealing with the uncertain number of submitted proposes. They

employed a normative model, and further incorporate different types of proposers’

private information and multiple proposers with competition. Moreover they figured

out the current selection mechanism may not be optimal, leading to a lower quality

score, and potentially impeding the original motivation of better service coordination.

2.2.4 Contract mechanism

Physician pay is based on a pre-negotiated amount over a certain period regardless of

the number of services provided and the complexity of patients. In this contract sys-

tem, physicians are employed by hospitals or clinics and paid a salary for all services.

Unlike FFS, there are no financial incentives in this scheme to provide additional un-

necessary services. The similarly fixed amount of income paid under capitation may

actually reduce physician productivity and cultivate bureaucracy. This may lead to

inadequate access to healthcare services, and potentially reduce healthcare quality

(Robinson 2001, CIHI 2012).
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2.2.5 Pay-for-Performance (P4P) and Outcome-Adjusted Pay-

ment (OAP)

Using various criteria such as health outcomes, access to care and patient satisfactions,

a framework is developed to incentivize appropriate levels of high quality care. This

approach has frequently been paired with an existing payment mechanism; physicians

are also rewarded bonuses (OAP) for achieving certain quality benchmarks, such as

meeting quotas or target levels for specific procedures or programs. This encourages

physicians to commit their time and effort to particular activities. Essentially, P4P

is the same as OAP, but the latter focuses on issues of quality that have plagued

healthcare systems (Institute of Medicine 2001).

The payment schemes above (FFS, capitation, and contract) differ most from

P4P and OAP regarding uncertainty about physician total income, because P4P and

OAP link reward to measures of treatment outcomes, and so can be categorized as

"prospective". Difficulties in designing and implementing this scheme have drawn

much attention in OR & MS domains.

The most important advantage of a properly designed P4P is that it incentivizes

a high quality of care in many health specializations as well as geographic areas

(Institute of Medicine 2007, Leger 2011). Fuloria and Zenios (2001) proposed an OAP

system using a dynamic principal-agent model, which is originating from economic

studies. Principal-agent models focus on situations where a principal ("she" hereafter)

delegates her task to an agent ("he" hereafter) she pays, rather than do it herself.

The principal wants both a task in good quality and to minimize the fee paid to

the agent; the agent, however, wants to maximize his own earnings. Therefore, the

interests of the players conflict, causing many researchers to focus on the problem of

aligning their goals. Both economic and non-economic strategies have been designed,

which motivate an agent to prioritize the principal’s goals rather than merely his own.

Moreover, it is common for the principal to possess only partial information, such as

the final output but not the agent’s effort, and thus the principal may fail to gain

complete information for reimbursing the agent. This asymmetry of information is
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the source of the problem.

In the model of Fuloria and Zenios (2001) a prospective payment per patient is

combined with a retrospective payment adjustment that is based on adverse short-

term patient outcomes. The model’s aim is to determine an optimal payment system

that reimburses a physician according to observed patient outcomes while also in-

ducing physician choices that maximize total social welfare. Using the context of

end-stage renal disease, this research compares the OAP system with the most com-

mon scheme of payment-per-treatment and capitation systems. The OAP outper-

forms the other two models, and indicates that this system would improve patient

life expectancy without incurring higher costs.

However, choosing the best criteria to measure performance is among the biggest

obstacles to effective implementation of this payment scheme. The case-by-case crite-

ria used to measure the performance of certain treatments are difficult to identify, and

improper proxies may directly reduce the effectiveness of this mechanism. The USA’s

first P4P system, Medicare’s End-Stage Renal Disease Quality Incentive Program,

was developed in 2010, and pays providers for compliance with measures of specific

care processes (intermediate outcomes). Two researchers, Lee and Zenios (2012),

found that Medicare’s limited set of intermediate measures was insufficient to sup-

port payment schemes dependent on them. Their work also incorporated interaction

between Medicare (the principal) and diagnosis providers (the agents). Because the

sole objective of providers is profit maximization, they control the effort they invest

in treatment. By contrast, Medicare aims at better outcomes. However, both the

final and intermediate outcomes are uncertain, and depend partly on patient char-

acter and provider efforts. Medicare cannot observe patient conditions or physician

effort. Insights from this study enabled Medicare to design reimbursement contracts

based on a desired set of outcomes, and thereby successfully induced physicians to

spend more effort on treatment. Specifically, they investigated the merits of Medicare

switching from a per-treatment system to a pay-for-compliance system based on the

intermediate measures of dialysis adequacy and anemia control. Moreover, despite

these improvements of OAP by Fuloria and Zenios (2001), they recommended a capi-
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tation system due to its robustness. They advised against implementation of an OAP

system due to its heavy reliance on information that may not be practically available.

The work of Shwartz et al (2016) compared different ways to measure healthcare

performance and studied their impact of those methods on the P4P scheme. The

authors incorporated Data Envelopment Analysis (DEA) in composite measures, and

then compare the results with other composite measures, namely opportunity-based

weights and a Bayesian latent variable model. They found that DEA led P4P tend

to identify the fewest top performers but with higher rewards, among P4P contracts

results from these three methods.

Jiang, Pang et al. (2012) endeavoring to align the goals of healthcare purchasers

and providers, proposed an optimal "threshold penalty performance-based contract".

A national healthcare payer acting as the principal, aims both to shorten the waiting

time in the system and to minimize total service funding costs. Providers allocate

capacity based on appointment requests from a national online booking system (CaB)

that allows patients to make same-day and advance service appointments. Patients

are modeled in two categories:"dedicated", who insist on having their service provided

by a particular hospital, regardless of whether CaB shows any appointments avail-

able in that hospital; and "flexible", who will select any available service provider.

Based on an M/D/1 queue model, the authors endeavor to determine the payment

contract terms that would incentivize providers to act optimally to achieve a first-best

solution in different settings: with complete information, with asymmetric informa-

tion, or with private agents. They compare capitation, FFS, and payment-by-results

(PbR). The PbR contract incorporates service quality measures (maximum wait time

for outpatients to see a specialist, in this case) and is able to achieve first-best re-

sults. Moreover, in order to attain second-best results for dedicated patients as well,

PbR was modified into a threshold-penalty contract, where providers receive a fixed

payment (like a contract salary) and are penalized by a fixed amount if the target

waiting time is not achieved.

Finally, P4P and OAP may cause providers to concentrate on activities that

achieve merit in performance measurement and to skim other services that do not
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(Feasby and Gerdes 2006, Leger 2011).

2.2.6 Blended Payment Schemes

Blended payment systems combine multiple mechanisms in practice, using the ro-

bustness of one to offset the weakness of another, to provide the intended incentives

for physicians. For example, the FFS scheme discussed earlier may incentivize the

overconsumption of care, while its alternatives, like capitation, may encourage under-

consumption. One potential solution to these distortions is a blend of FFS and capi-

tation, which aims to incentivize physicians to consider proper amounts of treatment

in relation to their own incomes. A typical example of blended payment proposed

in Adida et al. (2016) is called "hybrid" scheme, which is essentially a combination

of FFS and bundle payment, therefore inherent the benefit of both while balance off

their drawbacks as well.

The advantages of blended payment schemes were demonstrated by Chu and his

colleagues (Chu, Liu et al. 2003). They examined the immediate impacts of Taiwan’s

Physician Compensation Program, where physicians were paid a base salary plus

incentives, rather than a salary based on seniority and rank. They concluded that

this blended mechanism could not only induce physicians to enhance efficiency and

team cooperation, but also increase overall hospital revenue.

However, the obvious concern for blended schemes lies in properly mixing multiple

schemes within a specific environment of healthcare services. Using a method similar

to that of Hutchinson and Hurley (Hutchison, Hurley et al. 2000), an empirical

study of several Norwegian municipalities (Sorensen and Grytten 2000) called for

implementing several blended schemes. Using a mixed scheme of FFS and per capita

subsidies, the authors recommended a relatively low basic grant with a higher per

capita subsidy, FFS payments for municipalities with low physician coverage. For

municipalities with high physician coverage, the authors recommended a higher basic

grant and lower per capita subsidy plus FFS payments. In other countries too, this

formula may adequately distinguish physician coverage levels between rural and urban

areas.
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2.3 Financial Incentives for Hospitals

Hospitals can be defined as healthcare organizations that provide nursing, diagno-

sis, and therapy for patients as required by physicians, and certain hotel and social

services (Fetter 1991). Hospitals should provide care of high quality that is widely

accessible and cost-effective. Achieving this goal has increasingly challenged hos-

pitals because their rate of cost increase has outpaced GDP growth and inflation.

Even though their share of total healthcare spending has fallen noticeably over the

last several decades, hospitals still account for the largest single percentage of health

expenditures in most OECD countries (Sutherland 2011). Although most public

hospitals are classified as nonprofit organizations (or not revenue-driven), they are

cost centers that remain exposed to financial pressure and must at least break even.

That is, income from all sources must cover their expenses, in order to maintain

normal business (Verheyen 1998). Under certain reimbursement policies, hospitals

usually receive funding to cover operating costs from the public sector, from for-profit

or nonprofit organizations, health insurance companies, or charities including direct

charitable donations. Ownership may impact hospital funding and further influence

performance. Private hospitals may behave differently from their public peers, even

in the same geographic and payment-policy setting. Private hospitals from Wash-

ington, USA, used so-called "cost shifting" across inpatient and outpatient services,

which means that they raised prices for one type of service if the government lowered

fees for other types. But Friesner and Rosenman (2004) could not find any evidence

that this occurred in government-owned hospitals. An empirical study by Czypionka

and his colleagues (Czypionka et al. 2014) investigated the impact of ownership,

financing system and financial incentives on the efficiency of acute care sector and

inpatient section of Austrian hospitals with an extensive dataset covering 128 public

and private hospitals. Using DEA framework, they confirmed that private hospitals

tend to be more efficient than their public peers in Australia. They also found the

impact of financial incentives on hospital efficiency by comparing their study with

a similar study on German hospitals. Because funding resources depend largely on
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ownership, financial incentives ultimately become the main reason that hospitals or

clinics perform differently.

Healthcare systems with both public and private hospitals co-existing tend to be

very complicated. Hua and his colleagues (Hua et al. 2016) investigated such two-tier

service system with two types of service providers offering similar service and targeting

the same group of clients - public providers who offers free of charge service, and

private providers charge clients for a possible higher service quality. In the context of

healthcare providers, the public hospitals are generally funded by government but may

incur longer waiting time; while patients can pay out-of-pocket and seek treatment

from those private hospitals, where overcrowding is less severe. Their work first

figured out the conditions under which both providers are able to exist in the same

system, and they found a unique Nash equilibrium in the competition process for the

common client in such a system. Moreover, they found that neither type of providers

were able to achieve the social welfare goal. Public hospitals aim to maximize total

customer utility under capacity constraints, and private peers attempt to maximize

their profits. They proposed government intervention via tax, budget subsidy to align

both types of providers to coordinate and hence increase social welfare.

Both public and private payers know that different funding methods may signifi-

cantly impact hospital performance. For instance, Rosenman and Li (2002) find that

grants and contracts have different effects than donations. More specifically, they

observe that grants and contracts received by health clinics in California affect per-

formance differently from donations received, with respect to quality enhancement.

Donations may not trigger average expenses, in contrast to grants and contracts. Af-

ter further empirical investigation, they conclude that grants and contracts were used

as seed money to create quality. Therefore, they recommend rewarding those clinics

that have already achieved high quality of care, rather than investing in new qual-

ity initiatives. This example indicates that wiser financial reimbursement strategies

could improve the effect of limited healthcare funds.

In general, hospital reimbursements can be classified as retrospective or prospec-

tive payment systems. The main question is how these two main types of payments
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impact hospital efforts to achieve crucial targets of healthcare. Subsidiary questions

concern the popularity, complexity, and controversy of prospective payment mecha-

nisms. The next section examines these issues.

2.3.1 Retrospective payment system

Hospitals and clinics are reimbursed for each service they provide, i.e. the allowable

cost based on an agreed schedule of fees. Thus, almost all operational costs can be

reimbursed without any uncertainty. Typically, FFS is the payment scheme for this

system.

In most countries, retrospective payment has been gradually phased out in hos-

pitals and replaced by prospective payment, due to its major disadvantage: reduc-

ing efficiency. This reimbursement system discourages optimal utilization of health-

care resources, leading to impairment of access to healthcare. This happens because

hospitals have no financial motivation to increase the volume of admitted patients

(Sutherland, 2011). Using outpatient data from hospitals in North Carolina, Morey

and Dittman (1996) demonstrated empirically that lower efficiency was seen in hos-

pitals where a higher percentage of costs had guaranteed reimbursement, compared

with their peers that had a larger percentage of costs with unsecured reimbursement.

Their work adopted the DEA that can simultaneously consider multiple inputs and

outputs.

On the other hand, the advantage of this system is that hospitals or clinics are

financially riskless, since the reimbursed amount covers almost all the service and

treatment costs, and thus guarantees the essential operations of certain hospitals.

This is the main reason FFS still exists in some specific situations. By studying the

impacts of environmental factors, including Medicare and Medicaid reimbursement,

hospital ownership, and market competition on the efficiency of critical access hos-

pitals in rural areas of the USA, and further proposing a two-stage procedure using

semi-parametric approach and bootstrapping, Nedelea and Fannin (2013) examined

the case of the Critical Access Hospital (CAH) Program, where cost-based reimburse-

ment, i.e. FFS, was adopted by Medicare to fund rural hospitals with small patient
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volume. The CAH program was introduced to address the difficulties faced by these

hospitals in covering their costs under a prospective payment system. The authors

provided no conclusive evidence that the CAH program negatively impacted technical

efficiency in these hospitals.

2.3.2 Prospective payment systems

Funding and capital for a hospital are not completely linked to the amount of ser-

vices provided or actual direct cost of treatments. The amount of funds is usually

negotiated and agreed upon by hospitals and payers before services and treatment

take place. Various payment schemes use this system, including fixed price per DRG,

activity-based financing, capitation, and fixed global budget.

In contrast to the retrospective payment system (in 3.1), the prospective payment

system has shown a powerful stimulus on efficiency, by shifting the financial risk from

healthcare payers to hospitals. Ankjær-Jensen, Rosling et al. (2006) concluded from

their review of cost accounting used in Danish hospitals that a prospective case-mix

payment system is able to stimulate higher productivity. Empirical work by Clement,

Grosskopt et al. (1996) showed that hospitals engaged in selective contracting for pa-

tients under California’s Medicaid program (Medi-Cal) are relatively more efficient

than non-contracting hospitals. Such contracting hospitals were financed under a

prospective payment mechanism, since they were reimbursed by a fixed unit reim-

bursement rate per Medicaid patient. The authors found closer agreement between

relative shadow prices and relative reimbursement rates for the contacting hospitals,

after calculating the shadow prices of contracting and non-contracting hospitals, and

then comparing to actual relative reimbursement rates. Puenpatom and Rosenman

(2008) studied the effect of a capitation-based payment mechanism in large public

hospitals in Thailand and found that transition to a capitation scheme allowed im-

mediate improvements in efficiency. More interestingly, their results showed that the

hospitals in wealthy regions become more efficient than those in poorer areas, after

both groups made this transition. They combine the method with a bootstrapping

procedure to correct DEA efficiency scores.
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When hospitals and clinics encounter financial risk, they may have to take im-

moral action for the sake of survival. The prospective payment mechanism thus also

involves access problems including cream skimming and dumping. In hospice settings

where healthcare providers serve patients near the end of their lives and offer pallia-

tive rather than curative care, Ata, Killaly et al. (2013) pointed out some unintended

consequences of Medicare’s prospective funding. These included the tendency for

hospices to admit patients with relatively shorter remaining lifespans, and not admit-

ting new patients near the end of payment cycles. They further studied Medicare’s

current funding policy of annual caps on total reimbursement based on the number

of patients, as well as a daily cap for each patient treated. To overcome the nega-

tive consequences of this existing policy, the authors proposed a legacy policy with a

fluid model of patient arrivals, and adjusted the accounting time benchmark of the

accumulated cap. Their results were based on hospice research and could valuably be

applied to outpatient settings, because a majority of hospices provided routine home

care to patients.

The most popular prospective payment mechanism across the world is DRG, and

the next subsection examines its advantages and limitations. Studies on other popular

hospital-funding approaches, including global budgeting and activity-based funding

(McKillop, Pink et al. 2001) are reviewed thereafter.

Diagnosis-related-groups (DRG)

A system to classify and quantify hospital outputs was developed in the USA in the

early 1980s (Goldfield 2010). DRG quickly became one of the most popular case mix

methods. It assigns individual patients to case mix groups by similarity of clinical

features, and a given group has a cost-weight index determined by the mean relative

cost. Using DRG, all hospitals get the same funding for treating patients in a specific

DRG.

Over the past two decades, more than 20 countries have implemented variants of

hospital payment strategies based on DRG and their national settings. Extending

the DRG framework, several countries developed comorbidity (multiple illness) ad-
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justments that assign patients to subgroups based on secondary diagnoses. Examples

of subgroups defined by national clinical practice are the Medicare Severity DRG

(MS-DRG) in the U.S., Germany’s Diagnosis Related Groups (G-DRG), Case Mix

Groups (CMG+) in Canada, Healthcare Resource Groups (HRG) in England, and

Australia’s Refined DRG (AR-DRG). Sutherland, Hamm et al. (2009) proposed an

empirical Bayesian framework to adjust DRG reimbursement amounts for incomplete

and inaccurate comorbidity information in the USA.

The popularity of DRG may be largely due to its positive impact on cost control,

and enhancement of efficiency in hospital services. In his study on examining the

process of developing DRGs, Fetter ( 1991) points out that, the tricky part of hospi-

tal management lies in isolation of providing service and treatments efficiently from

effectively taking advantage of those service and treatments.

The effective utilization of a hospital’s resources is primarily a function

of its ability to treat specific kinds of illnesses.

Indeed, Dismuke and Sena (1999) confirmed the positive impact of DRG on Por-

tuguese hospital service productivity, particularly the efficient use of some diagnostic

technologies. They proposed a two-stage procedure using both parametric and non-

parametric frontier models. After German hospitals introduced a DRG payment

system, Herwartz and Strumann (2012) confirmed the expected rise in competition

for low-cost patients, a trend indicated by a significant increase of negative spatial

spillovers, or equivalently, hospital efficiency, by incorporating comparative applica-

tions of DEA and SFA. DEA users often assume a deterministic production frontier.

That is, all deviations from the frontier are regarded as technical inefficiencies. This is

unrealistic. Those deviations may be caused by measurement errors or other stochas-

tic impacts. On the other hand, stochastic frontier analysis (SFA) can distinguish

between inefficiency and noise components, but at the cost of a more restrictive para-

metric approach. while studying prospective hospital reimbursement methods based

on DRG.

Moreover, DRGs can monitor the quality of hospital services and operations, be-
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cause it was originally developed to provide structured definitions for hospital outputs

(Fetter 1991). Sharma (2008) concluded that the hospital sector modifies its case-mix

in response to changes in relative cost weights, and further confirmed an improvement

in the quality of care under the DRG system. The study adopted a stochastic kernel

approach to analyze the distribution of declines in length of stay after elective surg-

eries in an Australian hospital, where DRG-based funding is adjusted for patients

with unusual lengths of stay (whether over or under the average).

In addition, DRGs can serve as fundamentals for hospital budgeting (Fetter 1991).

Woodbury and his colleagues (1993) propose a quadratic programming model to allo-

cate a national budget to different hospitals, by calculating specific DRG cost weights.

The resulting weights prohibit hospitals from operating at either a loss or a profit,

and thus minimize the deviation of each predicted budget item from observed expen-

ditures. To estimate DRG marginal costs, they use the model to predict the hospital’s

budget based on its patient volume, case-mix structure, and the function of the hospi-

tal. The DRG methods used to set and update prices for inpatient services in Hungary

are discussed by Gaal, Stefka et al (2006), while Epstein and Mason (2006) examine

another extension of DRG, in the structure of the UK National Health Service’s HRG

tariff. They describe how costs are determined, analyze the extent to which prices

reflect costs, and review the results of an early evaluation of the system. In Italy,

Fattore and Torbica (2006) compared the DRG tariff systems applied to inpatient

services at the regional and national level. Bellanger and Tardif (2006) reviewed the

changes made to the French reimbursement system for acute care, which was tran-

sitioned to DRG for public and private hospitals, as well as the price setting mech-

anisms and methods assisting this transition. DRGs have played an important role

in deriving hospital-funding data from clinic-featured costs. A close link with clinical

factors enables hospitals and clinics to hedge unnecessary financial risks. Therefore,

DRGs and their derivative mechanisms are attractive to hospital and clinic managers.

However, determining proper rates for each group is not an easy task. For instance,

Sánchez-Martínez, Abellàn-Perpiñàn et al. (2006) analyzed the DRG related reim-

bursement system for hospitals in the Spanish National Health System, and found
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that price setting does not reflect actual costs of providers that are reimbursed by

public funders based on historical tariffs. Thus, this pricing mechanism has no in-

centive to implement cost control accounting systems. For the German DRG system,

Schreyögg, Tiemann et al. (2006) found that data samples used in determining rates

did not have qualified repetitiveness, and pointed out major challenges to improving

the DRG system, particularly in data accuracy.

To overcome these obstacles, a lot of research has focused on designing and improv-

ing DRG mechanisms. In New Zealand, the difficulties surrounding the methodical

development and implementation of a national pricing framework for hospitals us-

ing Data Envelopment Analysis were chronicled by Rouse and Swales (2006). After

Medicare instated a prospective payment system in the USA, Shwartz and Lenard

(1994) attempted to ascertain whether an alternative method of price setting would

provide better financial incentives than the average cost calculation under this sys-

tem. They propose two linear programming models that use the number of patients

in a patient-type ("groups of patients resulting from the aggregation of DRGs about

which management decisions might reasonably be made" (p.782) being treated at

each hospital as the decision variable, resulting in a price for each patient. The first

model, assuming hospitals operate in an environment of pure competition, gives the

competitive equilibrium allocation, i.e. the reallocation of patients in order to min-

imize costs. The second model is run under the constraint of market boundaries,

which assumes that competition from other hospitals is limited to an area of reason-

able travel distance for patients, and therefore determines what mix of patients would

maximize profit, given set prices. Using data from hospitals in eastern Massachusetts,

the equilibrium prices derived from the two models are then empirically compared to

an estimation of the average cost pricing. This is used to treat patient types in an

"all-payer" system that includes all patients regardless of their third-party payer. To

assess the performance of the pricing systems, the authors define a disincentive index,

which is aimed to be reduced to zero for pursuing efficient behavior. The results indi-

cate that equilibrium prices occurring in a single market model are also the optimal

prices under the constraint of market boundaries, and that this pricing is superior to
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the average cost pricing in use.

Global budget funding

This model has been predominant in Canada and public hospitals in the United States

(Sutherland 2011). Under this system, a fixed amount of funding is allocated among

hospitals based on various criteria, including previous budgets, inflation rate, and

major investments in the upcoming years. Allocation is independent of the volume

and intensity (the amount of care required) of patients in a hospital. This mechanism

functions primarily to control costs, and does not provide any financial incentives

to shorten wait times or length of stays, nor to increase quality of care or volume

of patients. Peacock and Segal (2000) discuss with the help of economic analysis

the feasibility of implementing a weighted capitation (global budget) formula in the

Australian health system at the hospital level as a way to enhance efficiency, equity

and accountability.

Activity based funding (ABF)

This recently-developed hospital funding model is based on both the type and volume

of the services (hospital outputs), and also on the intensity of the patients (Moreno-

Serra and Wagstaff, 2009). For the Norwegian hospital sector, Biorn et al. (2003)

showed that the introduction of ABF has improved technical efficiency, which is de-

fined as an increase in output requiring a corresponding decrease in another output

or an increase in input. Inpatient and outpatient care are defined as the outputs

of physician and labor full-time equivalents, plus the hospital inputs of medical ex-

penses and total running expenses. Later, Bi, Hagen et al. (2009) confirmed ABF’s

positive impacts on hospital efficiency even when taking into account hospital hetero-

geneity regarding the disutility of effort, with the help of a new DEA frontier from

pseudo observation on top of bootstrapping and kernel density estimates. In con-

trast, Sommersguter-Reichmann (2000) showed that even though significant changes

in healthcare performance are observed, such as improvements in technology, a new

activity-based scheme in Austria had little immediate impact on technical efficiency.
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They used Malmquist indexes, defined as ratios of distance function, to measure

technical efficiency over time. Using these indexes, DEA can obtain a simple effi-

ciency score representing the ability of units to maximize outputs while keeping the

input fixed, or to minimize inputs given constrained outputs. However, the general

applications of DEA include a two-stage approach. The first uses DEA to estimate

efficiency, and the second features a regression equation using the estimated efficiency

as a dependent variable.

Internal cost allocation

After receiving external funds, hospitals must decide allocation between salaried

physicians and internal departments. In this context, Verheyen and Nederstigt (1992)

developed an integrated cost-information system for both inpatient and outpatient

hospital internal budgeting, aiming to synthesize the Dutch external model of lump-

sum capitation with internal DRG based budgeting. Later, Verheyen (1998) examined

a system for internal fund allocation in nonprofit Dutch hospitals that eases the po-

tential internal financial tension between physicians and hospitals. Using Verheyen’s

proposal, hospitals maintain a high level of autonomy regarding budget allocation,

and get external funding as a lump-sum payment based on the size of population

being serviced, hospital capacity, and production indicators (such as the number of

admissions). Internally, the hospital then allocates budgets to departments providing

direct care to patients. DRG prices are used to assess the direct care tasks. Based on

the DRGs, the direct care departments pay those departments that provide indirect

care. This "budget/price" method ensured that both administrators and physicians

work towards the same goals in providing patient care.

It is both obvious and logical to distribute funds internally according to the actual

costs of different departments. Taking advantage of dual mathematical programming

and shadow prices, several studies estimated the marginal costs by computing dual

multipliers as shadow prices. For instance, by using the perspective of a hospital

planner, Morey and Dittman (1984) constructed mathematical models to analyze the

impacts of Medicare reimbursement, imposing total revenue ceilings and allocating
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costs between departments under the assumption that all patients, under Medicare or

not, would be treated at the facility. The shadow prices derived from nonlinear and

linear programming models can usefully distinguish the costs of different departments.

The objective function of this model, however, is only to maximize profit, and this

may no longer be the sole aim of hospitals.

2.4 Funding Pharmaceuticals

Although non-medical costs funded by the prospective payment system have recently

decreased, due to the continuing transition in healthcare services from inpatient care

to outpatient care, drug prices over almost the same period have risen, and accord-

ingly have contributed to the overall growth of healthcare expenses (Health Care

Financial Review 1996, Kolassa 1997). The rising drug prices also leads to the acces-

sibility problems in certain poor countries, where patients cannot afford basic drugs.

Studies in the OR &MS literature attempt to reduce this social problem by proposing

economic incentives for drug usage and supply streamlining.

The case of influenza vaccinations illustrates the need to understand how finan-

cial incentives affect pharmaceutical fund allocation. To fight influenza, vaccinations

are considered the primary weapon, and therefore are widely produced around the

world. However, this is constrained by transportation problems, limited raw materi-

als, and the costs of production, research, and storage. Originally, the manufacturers

bore all production risks, which they were forced to mitigate by producing smaller

amounts. This caused insufficient vaccine supply. In this context, Chick, Mamani

et al. (2008) endeavored to align the coordination of vaccine manufacturers and

buyers operating in the setting of government health services. This study proposed

to optimize the vaccine supply chain using cost-sharing contracts that made buyers

share some risks. This would create greater available quantities. Sun, Yang et al.

(2009) adopted a game theory framework to analyze country heterogeneity. Simply

put, countries are either have or have-not in terms of vaccination stocks. Some have

higher vaccination production and stocks, others have little or none. Since influenza
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is epidemic, countries with vaccination production may donate some stocks to those

with insufficient supply. This indirectly protects their own populations while helping

to reduce global losses. The paper showed that the decisions made by individual

countries would be different from the optimal allocation by a centralized resource

decision-maker. Centralization could reduce infections. Similarly, Mamani, Chick

et al. (2013) proposed a contract to allocate limited amounts of influenza vaccina-

tions among countries in order to maximize influenza prevention with optimal cost

savings. Based on a model of the transmission of disease between countries, the con-

tract results in better prevention with fewer expenses. A game model is applied to

reach the equilibrium where governments minimize their perceived total cost of an

outbreak. From the perspective of coordinated decision makers, however, a system

model would minimize the overall financial and health costs of all nations. Finally,

the study proposed a coordinating contract to resolve the "misaligned incentives" by

incorporating the differences between the game and system models. The goal of the

research above is finding the global equilibrium that is a proxy for optimal allocation

of healthcare resources, increased service accessibility, and maximum social welfare.

However, designing a financial contract that is both rational and practical is the key

to motivating coordination of different players.

Another study, by Malvankar-Mehta and Xie (2012) considered prevention re-

source allocation for HIV/AIDS by multi-level decision makers. They investigate the

optimal way of allocating budgets to regional governments to maximize the number

of infections avoided. There are three levels of players in this specific model, incor-

porating two fund allocations; first, the upper-level decision-maker (UD) allocates to

its lower-level decision-makers (LD); then the LDs distribute further into end users.

The UD seeks to maximize its utility function by choosing its level of incentive (i.e.

number of infections avoided), and the LDs then maximize their own utility functions

based on that decision. The UD has to incorporate equity in order to encourage

effective utilization of limited resources.

Besides literature on preventive drugs, there has also been MS & OR studies dedi-

cating to solve the accessibility problem of responsive drugs. In the perspective of fund
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donors, Taylor and Xiao (2014) attempted to seek for the optimal way to improve the

accessibility of malaria drugs in the regions where patients cannot afford those drugs.

Fund donors may face options to fund the drug sales, or to subsidize purchases. With

the framework of game theory, they concluded that it is always optimal to subsidize

drug purchases only in order to increase the numbers of patients who actually take

the drugs, especially the long shelf life drugs. Besides, they argued that funding both

drug sales and purchases can be optimal under certain conditions. Another study

by Levi and his colleagues (Levi et al. 2016) aimed to maximize the consumption

of malaria drugs from the perspective of a central planner, who currently adopts a

simple and perceived fair uniform subsidy to drug producers. Using mathematic pro-

gramming with equilibrium constrains, the authors confirmed the effectiveness of this

subsidy policy, that is, subsidize the same unit rate to every producer regardless of

different producers’ cost efficiency. They found that this uniform subsidy is effective

with the presence of producers with varied efficiencies, and even when the planner

has no idea about market conditions. Moreover, they figure out that this uniform

subsidy can achieve maximal social welfare under certain circumstances. However,

this uniform subsidy may not work if producers face a fixed market entry cost.

Due to uncertainty of drug sales, cost-effectiveness and risks in their manufacturing

and storage, financial incentives in pharmaceuticals have attempted to spread all sorts

of risks among healthcare players, including drug manufacturers, payers and clinics,

and thus ensure certain supply and accessibility of drugs. Zhang et al. (2011) studied

price-volume contracts between drug manufacturers and third-party payers. These

types of contracts come up for negotiation when a payer decides to add a new drug

to their list of those eligible for reimbursement. While drug manufacturers must

often submit a budget impact analysis, which estimates the total cost for the payer

if they approve the drug, the manufacturer has access to more information, and

the cost is difficult to verify until the contract has been implemented. Therefore

different mechanisms for risk mitigation have been developed. One is the price-

volume agreement, where the payer receives a rebate after a certain number of sales. A

principal-agent model is applied to determine the optimal conditions, including rebate
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rate, price, and profit of these contracts for payers and manufacturers respectively.

In certain cases a rebate was sub-optimal, while in other scenarios the payer incurred

heavy costs when the rebate was either 0 or 100% of excessive sales beyond threshold.

The benefits of this type of contract include risk sharing between manufacturer and

payer, as well as providing patients with access to new drugs that may otherwise be

prohibitively expensive.

Mahjoub et al. (2014) analyzed a P4P contract between drug manufacturers and

healthcare payer, and this specific contract with a pre-determined rebate rate and unit

price has a risk-sharing feature. This contract is expected to mitigate drug manufac-

turers’ risks of the effectiveness of the drug. Due to the fact that performance of the

drug is mainly measured by the patients’ response, manufacturers’ profits depend on

drugs’ realized effectiveness, patients’ response rate and the rebate rate. The uncer-

tainty of oncology progression is studied using a Markov model. They found out the

relationship of those parameters so that drug manufactures would make profits under

this contract. So and Tang (2000) modeled a reimbursement scheme for the prescrip-

tion drug Epogen under a proposed policy by the USA’s federal Health Care Finance

Administration. Clinics purchase the drug from a pharmaceutical company, prescribe

it to patients, and then file for reimbursement from the healthcare insurer. However,

the insurer pays only if the health of the drug recipient is below a certain threshold.

The clinic therefore takes all the financial risk up-front. The simple dynamic model

developed by the authors to determine a patient health ("well-being") score, before

and after drug treatment, examines how an outcome-oriented reimbursement affects

a clinic’s prescription policy, profitability, patient health outcomes, and the pharma-

ceutical company’s revenue. Interested readers could refer to book chapter of Zaric

et al. (2013) for review of risk sharing contracts in healthcare literature.

2.5 Conclusions and Future Research

We have discussed pros and cons of each existing financial or payment mechanism by

reviewing relevant literature in OR & MS domain. Existing studies are categorized
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according to different types of healthcare provides who receive those funds. First we

analyzed different payment mechanism for physicians, including both positive and

negative consequences of each mechanism. Second we considered two categories of

external funding methods for hospitals or clinicals - retrospective and prospective fi-

nancial incentives - and demonstrated their envolvement, conscious and unconscious

impacts with existing studies. Internal allocation of budget within hospitals or clinics

and relevant literature have been discussed at the end of Section 3. Third we demon-

strated contributions of OR & MS literature to increase availability and access of

both preventive and responsive drugs. Popular methods (e.g. game theory, principal

and agent framework, DEA etc. ) have been highlighted throughout the review, and

we also analyzed critically the limitations of literature.

OR & MS literature has profoundly impacted the design of contracts throughout

the supply chain in areas including wholesale pricing, cost-sharing or revenue-sharing

contracts and variants of newsvendor models. The optimal contracts proposed in

the domain of healthcare are similar with respect to risk-sharing and motivating

coordination. For example, Chick, Mamani et al. (2008) developed a variant of a

cost-sharing contract for government (payers) to share yield risk with manufacturers

in order to align the goals of both parties to achieve global cost effectiveness. Zhang, et

al. (2011) designed an incentive compatible contract called price-volume agreement

to share risks among drug purchasers and manufacturers. Mamani et al. (2013)

proposed a coordinating contract for multiple countries to fight pandemic influenza

more efficiently. The P4P contract proposed in Mahjoub et al. (2014) features risk-

sharing between drug manufacturers and healthcare payers. However, due to unique

circumstances in healthcare, the proposed contracts are different from those applied in

traditional supply chains. First, in contrast to the linear cost and profit (or revenue)

functions in general contracts of supply chain, the costs and benefits in healthcare

settings are not limited to the monetary investments and profits of services and drugs.

Social costs of producing drugs and infection of pandemic diseases have also been

considered as costs in the literature (Chick et al. 2008, Mamani et al. 2013). Measures

of benefits, a corresponding concept of profit or revenue in traditional supply chain,
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would be even more comprehensive. The improvement of efficiency, effectiveness and

quality all fall into measures of benefits. Hence the resulting cost and benefit function

in healthcare ends up showing a more complicated and non-linear formula, leading to

more complicated contracts for healthcare providers and drug manufacturers. In fact,

Chick et al. (2008) detailed the differences of modeling with comparisons of linear

and non-linear values of sale. Although non-linear penalty contracts are expected to

correct the asymmetry of information in Principal-Agent contract designs, simplified

linear penalties have been adopted, as in Jiang et al. (2012). Investigating more

complex contract structures would be the next step. Moreover, the measures of

quality for the effectiveness of a drug or a treatment tend to be very complicated and

multi-dimensional, which are large obstacles for OR & MS studies.

Second, drug producers and healthcare providers are exposed to more rigorous reg-

ulations than other industries. As So and Tang (2012) pointed out the conventional

risk-sharing scheme with its price rebate property was not perceived to be legal by

certain health insurance agents, therefore they proposed an alternative outcome ori-

ented reimbursement policy to replace the newsvendor model and general risk-sharing

contract.

Finally, the impact of payment schemes in healthcare can be profound and exten-

sive, ranging beyond the borders of countries and bounds of industries. As Zhang

et al. (2011) mentioned, lowering official prices in a country could influence the fu-

ture profitability of similar drug manufacturers worldwide, due to the international

reference pricing adopted in many jurisdictions.

There are numerous opportunities for future OR & MS research on the design of

financial incentives in healthcare, particularly on filling the gaps between expected

or theoretical outcomes and observable results. First, all the challenges faced due to

the special settings of healthcare in the design of contracts are important issues that

OR & MS researchers must address as future research. Selecting proper contracts

in different scenarios has been a challenging task and worth exploring (Gupta and

Mehrotra 2015). Additionally, more work is needed to identify reliable outcomes for

payment schemes. Fuloria and Zenios (2001) pointed out that designs for a more
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effective fund allocation should be based on observed patient outcomes. Difficulties

arise from contracts based on downstream outcome, and more effective incentives may

instead result from measuring payment based on intermediate results, particularly

when they can easily be obtained.

Another important research area that must be addressed is the design of contracts

for integrated healthcare systems. Recently, integrated healthcare delivery systems

have been seen as a promising solution for significantly improving quality and ef-

ficiency. However the design of incentive contracts and payment schemes remain

one of the most critical problems; particularly cost, revenue and risk sharing among

healthcare providers and payers as well as internal budget allocation, i.e. allocating

resources within a team to incentivize better cooperation.

So far, we have seen most works in static settings, i.e. they are limited to a one-

period time horizon (e.g. Lee and Zenios 2012, Gupta and Mehrotra 2015). Although

Sun et al. (2009) considered two periods of the initial onset of pandemic influenza, the

design of financial contracts would be more difficult but more promising if considering

further spreads of a longer time horizon. The outcome-oriented reimbursement policy

developed in Fuloria and Zenios (2001) showed a good example of an optimal contract

that penalized short-term adverse results while encouraging long-term benefits. A

dynamic model would also be of interest when incorporating the learning curve of

healthcare providers. For instance, agent learning may be worth incorporating into

the Principal-Agent model, because the immediate response to a payment scheme

can trigger dynamic incentive decisions, leading to a different optimal decision policy.

A dynamic model extension would be particularly interesting in this case, because a

data-driven reimbursement system depends on previous provider responses.

For simplicity, most articles treat the risk attitudes of hospitals and physicians

homogenously, which is not the case in reality. Progress by Shumsky and Pinker

(2003) in studying two types of agents could be extended to heterogeneous physicians.

Single-dimension models are widely used to measure patient health (So and Tang

2000), as are two-dimensional models in the case of Jiang, Pang et al. (2012). In

reality, however, a patient’s health measure would be affected by multiple factors
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such as diet, drug usage, and stress, with a good deal of fluctuation. To reflect these

factors better, a multiple score with a multidimensional model is needed.

Existing studies consider healthcare providers as profit maximizers (e.g. Fuloria

and Zenios 2001, Lee and Zenios 2012), i.e., the ultimate goal of a hospital or a physi-

cian is to maximize his/her monetary income. This is not completely realistic, since

hospitals do consider multiple objectives, such as quality, access, efficiency, effective-

ness and several specific goals in operations, like shortening length of stays or waiting

time. Similarly, physicians consider patients’ benefits from certain treatment, liabil-

ity issues, and efforts invested in treatments and their reputations, in combination

with monetary incentives. Utility functions of healthcare providers would definitely

be more promising but complicated when accommodating multiple objectives.

The patient-mix is considered homogenous in most studies. Although several

works incorporated varied types of patients, the number of patient classes was limited

to two (e.g. Morey and Dittman (1984)) or three (e.g. Jiang et al. (2012)). Single-

dimension models are widely used to measure patient health (So and Tang 2000), or

two-dimensional models in the case of Jiang, Pang et al. (2012). In reality however,

a patient’s health measure would be affected by multiple factors such as diet, drug

usage, and stress, with a good deal of fluctuation. Future studies are expected to

incorporate more patient groups, because the characteristics of patients are apparently

multi-dimensional. Moreover, varied levels of healthcare services or treatments may be

necessary for different clusters of patients. Therefore, the design of financial incentives

should take that into account for such cases.

Finally, existing research has considered passive patients while modeling the be-

haviors of health care providers in the design of payment incentive schemes, Fuloria

and Zenios (2001); however, in reality patients are actually active. They would like

to select physicians and hospitals they prefer or leave a physician if they are not

satisfied with the care received. Moreover, they may not perfectly conform to the de-

cision made by their physicians. All those behaviors can create an indirect impact on

implementing payment schemes. We believe that future works incorporating active

patients would be more promising among OR & MS researchers, and welcomed by
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healthcare managers and professionals.

After this comprehensive literature review of financial incentives in healthcare,

the following chapter focuses on designing an incentive based reimbursement policy

for physicians in the setting of maternity care.
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Chapter 3

On Reducing Medically Unnecessary

Cesarian Deliveries: The Design of

Payment Models for Maternity Care
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3.1 Introduction

Cesarean section (CS) is one of the most frequently performed types of major surgery

in both developed and developing countries (Spong et al., 2012; World Health Organi-

zation, 2015). Although it is a proven surgical procedure, with significantly improved

maternal and neonatal outcomes for high-risk pregnancies, there is no evidence that

either mothers or newborns benefit from this practice in low-risk cases. Moreover,

CS is associated with short- and long-term risks, including a higher likelihood for the

mother of requiring further surgery, a hysterectomy, of experiencing infection or deep

vein thrombosis haemorrhage, and for the newborn, of having respiratory distress

syndrome, pulmonary hypertension, or refusing to breastfeeding (Knight et al., 2008;

Goer et al., 2012). In addition to the potential negative clinical effects, CS places a

heavy economic burden on the health care system. According to a 2013 report by

Truven Health Analytics (2013), the gross hospitalization costs for CS were almost

50% higher than for natural births (NBs), for both public and private payers. This

disparity would be even more significant if the costs of hospital readmissions and

post-discharge follow-up care were taken into account.

Nevertheless, CS rates have been increasing constantly for both high- and low-

risk pregnancies around the world. Approximately one-third of births in the US are

delivered by CS, accounting for more than 1.3 million surgeries each year (Center

of Disease Control, 2014). Moreover, despite the fact that the low-risk cases do

not benefit from CS, the rates for this group have risen progressively, reaching a

high of 28% in 2013. In Canada, the overall rates have also grown steadily, from

5.7% in 1970 to 28% in 2014, while the rate for low-risk births is now almost 15%

(Canadian Institute for Health Information, 2016). Due to the dramatic increase in

CS rates, the "Healthy People 2020" initiative launched by the Centers for Disease

Control and Prevention set the explicit goal of reducing the cesarean birth rate and

identified 23.5% as the United States’ target for cesarean deliveries (U.S. Department

of Health and Human Services, 2015). The existing literature strongly suggests that

the physicians have other motives besides the patient’s clinical characteristics while

41



medical decision-making during childbirth and economic incentives is seen as one of

the most important factors (Taljaard et al., 2009; Johnson et al., 2016 ). Likewise,

in the comprehensive report on evidence-based maternity care by Sakala and Corry

(2008), the misaligned or perverse incentives of payment system have been described

as one of the pervasive barriers to reducing the cesarean rate. Given the role of

economic incentives in the decision process of physicians, this paper focuses on the

design of financial incentives in order to reduce unnecessary C-sections, resulting in

enhanced birth quality with alleviated economic burden for overall health care system.

Maternity care typically comprises three stages: prenatal, delivery, and postpar-

tum, all of which are under the financial responsibility of the health care payer. The

payment model most commonly used by public and private payers is fee-for-service

(FFS), where physicians receive a fixed rate for each service they provide. A signif-

icant portion of the obstetrics fee under the FFS model is associated with delivery;

hence, physicians providing prenatal care are incentivized to deliver their own pa-

tients. This is unlikely to occur with natural deliveries, since care in hospitals is often

provided by a team of physicians working on a rotation basis. Furthermore, the fees

for cesarean delivery are almost 50% higher than those for natural delivery (Thomson

Healthcare, 2007; BC Health Authority, 2016), which further encourages physicians

to perform planned CS. In addition to offering physicians a higher payment, CS also

has a lower opportunity cost. Since NBs often involve a long labor (i.e., requiring

an average of twenty hours of medical attention, as compared to two hours at most

for a CS) and a great deal of uncertainty, they may impede the physicians’ ability to

perform their other duties (Sakala and Corry, 2008). This can lead to physicians not

investing their full effort and attention in monitoring labor until a NB occurs, which

in turn may result in unnecessary CSs being performed. Indeed, recent studies have

shown that limited resources, a high workload and inadequate financial incentives

increase the pressure to move patients through the system faster, which may lead to

increased CS rates (?Ariadne Lab, 2017). For example, Spong et al. (2012) find that

"If labor occurs during night or weekends, physicians are more likely to decide on

emergency CS rather than waiting for completion of the labor due to an appetite for
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convenience".

Drawing on the realization that better-aligned financial incentives could help drive

down the increase in cesarean deliveries, an array of local, state, and federal initiatives

are underway to improve maternity outcomes through payment reform (CPR, 2012).

The core of these reforms is offering alternative payment models to FFS, including

blended and bundled systems.

Under the blended systems, rather than having different delivery fees for CS and

NB, physicians receive a single rate per delivery, regardless of delivery mode (Main

et al., 2011). In theory, a blended payment system removes the financial incentive

for CS by providing one rate for all types of delivery. However, in practice, an equal

payment for all deliveries might not fully compensate for the increased opportunity

cost of natural deliveries.

The Health Care Incentives Improvement Institute has proposed a different model

based a bundled payment for maternity care. This restructured payment method

bundles the payment for the full extent of care for women and newborns (Child

Birth Connection, 2011). Under this system, a set payment is received for each

registered pregnancy, including all prenatal consultations, lab tests, and ultrasounds,

the actual delivery, as well as the post-delivery hospital stay for both the mother

and newborn, regardless of delivery mode, and regardless of the resources expended

(CPR, 2012). A bundled payment structure shifts the financial responsibility for care

management to the providers and creates financial incentives to reduce resource costs.

In addition to its potential benefits, the bundled payment structure also introduces

several new challenges. For instance, providers may struggle to predict the complexity

of a pregnancy, and that complexity may change throughout an episode of care.

Therefore, the actual cost at the end of an episode of care could be much higher

than the price of bundled care, which places a high financial risk on the shoulders

of physicians. Another issue pertains to the choice of necessary care. Given that

natural delivery is less costly than CS (leaving more of the bundled payment available

as profit), under the bundled payment structure, physicians are incentivized to delay

making a CS decision. (Warrington and Brunkow, 2011)
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These payment mechanisms can be paired with other incentives, i.e.complementary

payments. Specifically, pay for performance (P4P) bonuses further motivate cer-

tain physician behaviors in order to offset some the disadvantages of the alternative

schemes mentioned above. Therefore, the P4P design is also seen important element

of payment reform initiatives for maternity care. P4P refers to “compensating physi-

cians according to an evaluation of their performance on defined metrics, typically a

potential bonus on top of other payment schemes" (American Medical Association,

2015). These performance metrics can be based on process quality and efficiency,

outcome, or cost. Although P4P programs have been in force in developed countries

since late 1990s, they were rarely applied to maternity care until recently. One of the

current initiatives involves a bonus offered to a group of physicians in the event that

their overall CS rate is below a certain level (Das et al., 2016). A comprehensive re-

view of a number of P4P implementations in practice concludes that P4P effectiveness

depends greatly on the program’s design (Eijkenaar, 2013). In this context, policy

designers face two critical questions: (a) what to incentivize: which performance

metrics should be chosen? (b) whom to incentivize: individuals or groups?

Although payment mechanisms and incentives have been studied in the literature

mainly in the context of primary care, chronic care and several surgical procedures, the

relevant literature in the area of maternity care is still in an early stage of development.

In practice, there are only a small number of payment reform programs across the US

and Canada. Policy makers all agree that developing the best model for maternity care

is a complex process that requires detailed analyses of each model’s outcomes before it

can be implemented widely. In this paper, we fill this gap by proposing an analytical

framework to study the impact of alternative payment systems in maternity care and

compare their performance under different criteria. This enables us to determine the

payment scheme that induces physicians to deliver the most appropriate maternity

care.

We compare payment systems in relation to a variety of performance metrics,

within a two-level hierarchy: (i) payment models that define a base fee payment and

(ii) bonuses complementary to base payment. Using this hierarchy, we answer the
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following research questions:

1. Does the payment scheme under consideration provide incentives for improved

quality of care and lead to cost reductions, as compared to FFS?

2. Does the addition of the P4P model (i.e., metric and payee) under consideration

have the desired impact on cost and quality of care?

Our modeling framework focuses on a group of physicians and a single health-

care payer. We base the payer-physician system on the principal-agent model. The

payer, as the principle ("she" hereafter) delegates the task of maternity care to the

physician. She aims for both a good quality of care and the minimization of overall

maternity care expenses, including physician reimbursements. The physician (“he”

hereafter) however, maximizes his own utility, including his own earnings. Moreover,

the payer possesses only partial information (the delivery mode), not complete infor-

mation about the pregnancy’s complexity, the labor complications, or the physician’s

effort. In accordance with the medical literature, we represent the physician’s utility

via three components: benefits accrued by the patient, expected effort, and income

as a function of the delivery mode (Eggleston, 2005). Through our analytical frame-

work, we analyze the impact of hidden efforts and estimate their consequences on

unnecessary planned and emergency CS rates. The payer’s problem is to design a

payment system that links the physician’s observable actions with her objective of

maximizing the value of care for patients, that is, to achieve the best health outcomes

at the lowest cost (Porter and Lee, 2013).

Our data-driven research is based on approximately 16.2 million individual birth

records from 2011 to 2015. The source of our data is the “Natality” database pub-

lished by the National Bureau of Economic Research (NBER) http://www.nber.

org/data/vital-statistics-natality-data.html. This database from the Na-

tional Vital Statistics System of the National Center for Health Statistics provides

demographic and health data for births occurring during the calendar year, i.e., ap-

proximately 4 million births each year. It is based on information abstracted from

birth certificates filed in the vital statistics offices of every state across the US. In
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analyzing the alternative payment mechanisms one of the key challenges is defining

the pregnancy complexities via a quantitative metric and identifying the group of

patients for whom CS is medically appropriate based on this metric. Although there

are several clinical guidelines on defining the set of patients that CS is medically indi-

cated, there is no such quantitative framework in the literature. This very large data

set enables us first, to measure patient’s complexity, then to rank patients according

to their pregnancy complexities, and finally to characterize a threshold between a

spontaneous birth (i.e., NB and emergency CS) and a medically appropriate, planned

CS. Furthermore, we estimate the probabilities for a set of post-delivery complica-

tions under planned and emergency CSs as well as natural deliveries for patients

with a given complexity level; therefore, we are able to accurately estimate the cost

of delivery and postpartum care for alternative delivery modes for a given patient

complexity.

The proposed analytical framework enables us to show that none of the base pay-

ment mechanisms is not sufficient to perform at the desirable levels in both quality

and cost simultaneously. We also propose a set of complementary incentives based

on reliable and tractable metrics of quality of maternity care. Acting as an add-on to

the payment mechanism, these incentives are capable of discouraging hidden efforts

in both prenatal and delivery stages of maternity care. Furthermore, we propose an

easily implementable and robust two-level payment model, i.e. blended payment and

a process-oriented bonus, that results in risk sharing between payer and physicians,

and coordination among the group of physicians. We empirically verify our analytic

results in the numerical study based on our data set, and demonstrate that the en-

suing quality and expense of our proposed two-level payment mechanism outperform

traditional mechanisms. Specifically, our analysis shows that this recommended pol-

icy proposes 3% reduction in average birth related costs and 27% decrease in overall

CS rate compared to those under FFS system.

The rest of the essay is organized following: the related literature is discussed

in Section 3.2. We outline our data-driven approach for modeling pregnancy com-

plexity in Section 3. The models regarding physician’s decision making in childbirth
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Table 3.1: Descriptive Statistics

Calendar year 2011 20l2 20l3 2014 2015

Total live births excluding
in territories 3,961,220 3,960,796 3,940,764 3,998,175 3,988,733

% Births in hospital 98.70 98.61 98.54 98.47 98.42
% of overall CS 34.75 34.92 34.85 34.23 32.87

≥ 37 gestational weeks 3,029,917 3,098,879 3,162,890 3,421,630 3,479,307
Full records of labor and delivery 3,008,781 3,079,833 3,146,062 3,406,120 3,479,307

and healthcare payer’s problem are presented in Sections 4 and 5, respectively. Sec-

tion 6 and 7 discuss our analytical results on base payment schemes and proposed

complementary incentives, respectively. Our proposed two-level payment model is

demonstrated in Section 8. Numerical results are presented in Section 9, followed

by conclusions and limitations in Section 10. Supplementary statistical results, pa-

rameter estimation for numerical analyses and sensitivity analyses are provided in

Appendix.

3.2 Literature Review

This work falls in two main research streams: financial incentives in the area of

health care, and game and contract theory in operations management. Given that the

payment reforms in maternity care by introducing alternative base and complimentary

payment models are currently tested, the literature addressing the financial incentives

directly in this domain is really limited. However, the subject of financial incentives

applied to various settings in the health care system has been studied extensively in

health economics, health policy and operations management literatures. Interested

readers can refer to the comprehensive review paper by Kucukyazici and Zhu (2017)

for the relevant works in operations management. We mention the most relevant

research in operations management hereafter.

Our work relates to research on base payment policies for health care providers
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as well as the performance-based reimbursement mechanisms. In the context of base

models, the analytical models developed by Adida et al. (2017) compare a traditional

payment scheme FFS and the more recently designed bundled payment regarding

varied performance measures, including patient selection, treatment levels selected

by the physicians, financial risk born by the healthcare providers, and overall payoff

for the healthcare system. Their analytical results also reveal the impact of providers’

risk aversion. The authors provide two possible ways of improvement - a stop-loss

mechanism to offset the drawbacks of the bundled payment, and a hybrid scheme com-

bining both payment systems in order to coordinate health care payers and providers

to a system optimum. ? also study the models of FFS and bundled payment by using

a three-stage Stackelberg game. Through this modeling framework, they investigate

the possible impacts of these reimbursement schemes on patients’ welfare, readmis-

sion rate and waiting time in a public healthcare system. Compared to these papers

focused on general healthcare settings, this work aims to provide analytical analyses

as well as managerial insights on three base payment mechanisms - FFS, blended and

bundled payments in the specific circumstances of the maternity care.

Besides the studies on base payment schemes, there have been evolving initiatives

of performance-based reimbursement mechanisms aimed at improving the quality of

health care: performance- or outcome-based incentives. P4P and outcome-adjusted

payment (OAP) have been popular in practical and theoretical works, after the unin-

tended but disappointing impacts of commonly used base reimbursement mechanisms,

including FFS, capitation, and fixed salary policies. These models are outcome or

process oriented and only reward the successful achievement of certain quality bench-

marks; hence, their intent is to encourage physicians for their commitment to care

quality. As one of the early works, So and Tang (2000) model an outcome-oriented

reimbursement program for the drug industry. Fuloria and Zenios (2001) introduce

an OAP as an add-on of existing retrospective payment adjustments, based on the

adverse short-term outcomes of patients with end-stage renal disease. Moreover, in

the setting of Medicare’s End-Stage Renal Disease Quality Incentive Program, Lee

and Zenios (2012) design a pay-for-compliance system based on the intermediate mea-
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sures of dialysis adequacy and anemia control. Jiang et al. (2012) propose an optimal

"threshold penalty performance-based contract", derived from a payment-by-result

contract, to motivate health care providers to shorten waiting time. More recently,

? analyze the performance-based reimbursement in the context of cancer treatment.

Jiang et al. (2017) study the joint impact of performance-based incentives and compe-

tition on the healthcare service providers. In our study, we particularly propose four

types of process- or outcome-oriented incentives to act as add-ons to base payment

schemes. These are selected based on opinions of those physicians we approached as

well as a literature review, including the clinical guidelines, on targeted performance

metrics for maternity care. Moreover, we examine the effects of different possible

recipients for these complementary incentives in the context of maternity care.

Our work is also closely related to principal-agent framework in contract theory.

Typically in healthcare systems, the payer or the principal, i.e. public or private

insurer, fails to fully observe patients’ true health conditions, which are detected by

the healthcare providers (commonly the physicians), or the agents. As the principal

cannot provide professional health care herself, she delegates these services to physi-

cians, which might lead to a misalignment of priorities between the principal and the

agents. Therefore, the payer has to rely on reimbursement contracts to align her goals

with the physicians’ aims, as presented by So and Tang (2000), Fuloria and Zenios

(2001), Lee and Zenios (2012), and Jiang et al. (2012). The most recent application of

this framework in health care domain is presented by Zorc and his colleagues (2017)

in chronic care setting. Their work focuses on comparing different contracts with

individual or group physicians, and proposing a payment policy that minimizes the

chance of adverse effects. In contrast to those papers where the moral hazard (i.e.

hidden effort) problem occurs in a single epoch, our analytical framework considers

moral hazard problems in two stages of maternity care. First in the prenatal care

stage, the physicians tend to prescribe planned CS for the sake of earning a guaran-

teed income at regular business hours. Second in the delivery stage, there is a hidden

effort problem, since the physicians may not spend their full efforts for monitoring

the ongoing labor, especially during non-business hours, resulting in the unnecessary
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emergency CS cases, which can be avoided with full monitoring efforts.

Our framework also falls under gatekeeping problems, wherein gatekeepers have

the option to either keep serving clients or refer them to specialist colleagues. Gate-

keepers are common in call centers, while in a health care system, family physicians

or primary care providers are considered as the "gatekeepers". Gatekeepers can serve

those relatively easy or low-risk patients themselves, whereas need to refer those more

complicated or high-risk cases to specialists. The efficiency of generalist physicians’

compulsory referral mechanism has been an area of concern in health economics, es-

pecially in a system where physicians can have a dual role, in other words, physicians

can be both gatekeepers and specialists, and therefore they can refer their own pa-

tients to other services provided by themselves (e.g., Gonzalez, 2004; Biglaiser and

Ma, 2007). Such case is also called physicians’ self-referral, and is considered as one

of six conflicts of interest in medicine, according to Rodwin (1993). In operations

management, ? conducts an empirical study to show the impact of workload on the

gatekeepers’ decision making in a maternity unit. As a more relevant study to ours,

Shumsky and Pinker (2003) study a gatekeeper model without self-referral; the gate-

keeper’s chance of successfully solving a problem decreases as the problem becomes

more complicated. Thought gatekeepers try to solve as many problems as possible,

this may detriment clients’ satisfaction in a service system. This work evaluates the

performance of contracts, and provides managerial insights in contract design for het-

erogeneous gatekeepers. In contrast to this paper, our model of gatekeepers comprises

the physicians’ self-referrals or dual roles as well, that is, the physicians might serve

their own patients in the delivery stage.

3.3 A Data-Driven Approach for Representing the

Level of Pregnancy Complexity

Prenatal care is provided by a consulting physician who, through a number of visits,

monitors the pregnancy and assesses its level of complexity and the associated risks.
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By the end of prenatal care, the consulting physician decides on the delivery mode:

spontaneous birth (SB) or planned CS. For a planned CS, the consulting physician

schedules the operation and performs it, thereby becoming the delivery physician as

well. However, in the case of an SB, the patient goes to the hospital’s birthing center

once labor begins. Consulting physicians and their colleagues serve at the birthing

center on a rotational basis. Therefore, the on-call physician, who can be anyone

within the group, is responsible for the delivery. During labor, the on-call physician

can also order a CS (emergency CS) for various reasons, including problems with the

umbilical cord, sudden changes in the baby’s heart rate, and prolonged labor.

The patient’s pregnancy complexity level, which we denote by 𝑥, plays a key role

in the physician’s ultimate choice between an SB and a planned CS. In the context

of this research, we use the likelihood of a CS as a proxy for pregnancy complexity.

In this section, we describe how we estimate 𝑥 and its distribution using our dataset,

and define a pregnancy complexity threshold (i.e. 𝑥*) for a medically necessary,

planned CS, such that, if the complexity level is higher than this threshold, having

a planned CS is clinically appropriate, through our large data set. Our data set

includes the birth records of all live births with full-term deliveries, meaning births

with 37 or more gestational weeks, and served by physicians in hospitals of U.S. during

each calendar year from 2011 to 2015. It consists of detailed individual-level records

of approximately 16.2 million births, which contain i) the mother’s demographic

information, ii) pregnancy history, iii) clinical risk factors of the current pregnancy,

iv) delivery information, including birth date and time and method of delivery, and

v) postpartum information including post-delivery complications.

Using this data set, we first estimate the probability of having a planned CS

through a logit model, given medical risks and patient characteristics observed in

prenatal care. In our statistical model, we use births occurring over a whole calendar

year for in-sample modeling, and the births in the following year as out-of-sample.

That is, we run our logistic regression model for births in the years of 2011, 2012,

2013, and 2014; and demonstrate the forecasting power for deliveries in 2012, 2013,

2014, and 2015, respectively. Our results show that the model predicts well, and that
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the area under the ROC curve for out-of-samples are quite similar across four different

years, ranging between 83.29% and 83.76%. Therefore, our explanatory variables have

high discriminatory power. The results of logit models are presented in Table EC.1

in Electronic Company. There are other non-clinical factors that may be associated

with the decision to have a planned CS, such as differences in physicians’ diagnostic

skills and practice styles. However, as was argued by Currie and MacLeod (2013),

the pooled birth records, with decisions by thousands of physicians, offset the impact

of these non-clinical factors.

Next, we rank women according their probability of CS estimated in the logit

models, and then normalize them into the standard values of zero and one [0, 1]. By

this approach, pregnancy complexity 𝑥 represents the percentile of CS likelihood. For

example, for a pregnant woman with a complexity level of 0.4, there are 40% of women

in this population with a lower risk than her and 60% with a higher chance of having

a CS (see Figure 3-1a). In Figure 3-1a, we observe that, as expected, the probability

of having an NB decreases as x increases, and that this decrease is quite sharp at the

complexity level of 0.85, suggesting that the ordered ranking of pregnant complexity

shows two different regions as regards the medical appropriateness of planned C-

sections. Although the rate of SB decisions during prenatal care is almost 90% for

patients with a complexity level lower than 0.85 (i.e., low-risk group), it is only 17%

for those with 𝑥 > 0.85 (i.e., high-risk group). Likewise, the chance of having an

emergency CS under the decision of SB is three times higher for the high-risk group.

We also run sensitivity analyses around the complexity level of 0.85, (i.e., testing 0.75,

0.8, and 0.9 as cut-off points) and conclude that, in terms of differences between two

groups, the most distinct categorization is provided by 𝑥 of 0.85.

Moreover, birth outcomes present different patterns for these two groups. We use

post-delivery (i.e., postpartum) complications as a proxy for birth quality. The birth

records contain over 20 variables relating to the existence of major severe post-delivery

complications, including maternal complications (such as excessive bleeding and hys-

terectomy) and abnormal conditions in the baby (such as brachoplexis, fractures,

meconium, birth injuries). We define an undesirable health outcome as involving at
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least one maternal or neonatal complication, and the incidence of post-delivery com-

plications as the percentage of deliveries with undesirable outcomes. Our empirical

analysis shows that the incidence of post-delivery complications following a planned

CS is independent from 𝑥, the complexity level of the patient diagnosed in prenatal

care; however it has a significant positive correlation with 𝑥 under SB, with a pseudo

R-squared statistics of 90% or higher for in-sample study of all four years’. Further

analysis on complication incidences shows that, for 𝑥 < 0.85 the average risk of a

postpartum complication under planned CS is higher than that of SB. After this

point, however, the risk of a complication following a SB is higher. Therefore, it is

essential to perform a planned CS for cases with 𝑥 > 0.85 and decide on a SB for

the ones with 𝑥 <= 0.85 in order to minimize the incidence of post-delivery compli-

cations (See Figure 3-1b). Based on the observed differences regarding the rate of

SB decisions, emergency CS rates, and complication incidences, we propose that 𝑥*

represents the cut-off point, above which a planned CS is medically more appropriate.

Alternatively, an unnecessary C-section refers to the prescription of a planned CS for

a woman with a complexity level of less than 𝑥*.

(a) (b)

Figure 3-1:

53



Table 3.2: Logistic Regression Results

Variables Coefficients
(Intercept) -5.4857 ***

age 0.04263 ***
prior other termination 0.29614 ***

live birth order -0.6599 ***
previous CS 2.21392 ***
eclampsia 0.52242 ***

month of prenatal care began 0.03094 ***
infertility treatment 0.25569 ***
total birth order -0.2557 ***
weight gain 0.01789 ***

cigarette record 0.21428 ***
diabetes 0.73514 ***

gestational diabetes 0.32568 ***
previous preterm birth -0.0271

chlamydia 0.16002 ***
hepatitis B 0.31533 ***
hepatitis C 0.08287

BMI 0.06996 ***
plurality 1.08439 ***

Notes
1. *** denotes for the significance level less than 0.001;
2. This table summarizes the logistic regressions results of in-sample for the year of
2013.
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3.4 The Physician’s Decision: The Mode of Delivery

In this section, we start developing the modeling framework by focusing on the physi-

cian’s decisions. We will represent them as a set of constrains in the payer’s decision

model in Section 5. We start by discussing the modeling framework, and then present

our formulation concerning the physician’s best response strategy. The notation is

summarized in Table 3.3.

We consider a population with a finite number of pregnant women, a single group

of 𝐽 physicians and a single health care payer. We assume that each physician has the

same diagnostic skills, the same preferences over delivery procedures, evenly shares

on-call time in hospital, and an equal number of pregnant women (at similar levels

of complexity) registered to his panel. Note that we relax this homogeneity assump-

tion in Model Extension (Section 3.9) without loss of generality. Empirical studies

show that the physicians tend to be influential on their patients with regards to the

decisions concerning delivery mode; consequently, it is assumed that the patients are

in compliance with the consulting physician’s decision (Fabbri and Monfardini, 2008;

Grytten et al., 2013). In our framework, the physician’s utility consists of three com-

ponents: a patient’s benefits, effort spent and income gained by the physician as a

function of the realized delivery mode. Patients’ benefits and physicians’ effort are

exogenous factors in reimbursement policies.

We consider a population with a finite number of pregnant women, a single group

of 𝐽 physicians, and a single health care payer. We assume that each physician has

the similar diagnostic and procedural skills, similar preferences regarding delivery

procedures, the same share of on-call time in the hospital, and an equal number of

pregnant women at similar levels of complexity registered to his panel. Note that we

relax this homogeneity assumption in Section 8.2 without loss of generality. Empirical

studies show that physicians tend to hold influence with their patients as regards

decisions about delivery mode; consequently, it is assumed that the patients comply

with the consulting physician’s decision (Fabbri and Monfardini, 2008; Grytten et al.,

2013). We also assume that the physicians are rational decision-makers, i.e., they

55



Table 3.3: Summary of Notations
Decision Variables

𝑠 Threshold of pregnancy complexity between spontaneous birth and planned CS;
𝜆 Physicians’ effort level of serving a delivery on their shift;
𝑃𝑁 FFS rate per each NB;
𝑃𝐸𝐶 FFS rate per each emergency CS;
𝑃 𝑃𝐶 FFS rate per each planned CS;
𝑃𝐵𝑃 Payment rate under blended payment;
𝑃𝐵𝐿 Payment rate under bundled payment;
𝑚𝐷 Physician’s income under decision 𝐷;
𝐵𝑃𝑂 Postpartum outcome-oriented bonus;
𝐵𝐶𝑂 Complexity add-on;
𝐵𝑁𝐵 NB rate bonus ;
𝐵𝑇𝐻 CS threshold bonus;

Other Parameters
𝑟 overall CS rate;
𝐽 the number of physicians in a group, i.e. the group size;
𝑥 ∈ [0, 1] ranked complexity of pregnancy;
𝑓(𝜆, 𝑥) expected successful rate of a NB for complexity of 𝑥 and physicians’ delivery effort

level 𝜆;
𝑥* clinically optimal threshold of complexity for planned CS;
𝛼 a physician’s benevolence level;
Π𝐸(·) payers’ total birth related economic costs;
Π𝑄(·) payers’ quality objective function;

Prenatal Stage
𝐷 physicians’ decision in the consulting process, 𝐷 ∈ {𝑆𝐵,𝐶𝑆};
𝑆𝐵 physicians’ decision of spontaneous birth;
𝐶𝑆 physicians’ decision of planned CS;
𝑏𝐷(𝑥) benefit of decision 𝐷 for a patient with complexity of 𝑥;
𝑢𝐼
𝐷(𝜆, 𝑥) physician’s expected utility under decision 𝐷 by the end of prenatal care;

𝑈𝐷(𝜆, 𝑥) overall utility of physicians if decision 𝐷 is made for a patient with complexity of 𝑥
and their agreed effort 𝜆;

𝐼𝐷(𝜆, 𝑥) incidence of postpartum maternal and neonatal complications for pregnancy comple-
xity level 𝑥 and effort level 𝜆;
Delivery Stage

𝑒𝐶 effort of serving a C-section;
𝑒𝑁 effort of serving a NB;
𝑒𝑀𝑁 effort or inconvenience factor for monitor labor in spontaneous birth;

Payers
𝑐𝐶𝐻 facility fee for a CS;
𝑐𝑁𝐻 facility fee for a NB;
𝐶 average unit cost of treating postpartum complications;
𝐶𝐻(𝜆, 𝑠) total facility fee depending on threshold 𝑠 and effort level 𝜆;
𝐶𝐼(𝜆, 𝑠) total postpartum treatment costs dependent on threshold 𝑠 and effort level 𝜆;
𝑔(·) Intensity of actual population in terms of pregnant complexity.
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choose the best action possible given the clinical information concerning the patient

as well as their own utilities.

3.4.1 Physician’s Utility

In our framework, the physician’s utility is made up of three components: (i) the

patient’s benefits, (ii) the effort expended by the physician, and (iii) the physician’s

income as a function of the realized delivery mode. Note that the patients’ benefits

and the physicians’ effort are exogenous factors in reimbursement policies.

Patient’s Benefits

From a quality-of-care standpoint, 𝑥* can be seen as an important marker. Avoiding

a planned CS for patients with pregnancy complexity below 𝑥* enhances the quality

of care by reducing the risks of post-delivery complications. The decision of an SB

for women with a pregnancy complexity higher than 𝑥*, however, leads to potential

under-treatment and jeopardizes the well-being of both mother and child. As dis-

cussed in Section 3, the existence of a threshold 𝑥* in our empirical study allows us

to evaluate decisions made about the method of delivery during prenatal care. To

this end, we use the choice distance model, i.e., we capture the benefits (costs) of

a pregnant woman with pregnancy complexity 𝑥 with the distance between 𝑥 and

𝑥*. For instance, in light of the 𝑥* = 0.85 identified in our empirical study, where

a planned CS is performed for a woman with 𝑥 = 0.7, the benefit of this decision is

𝑏𝐶𝑆(𝑥), is -0.15, whereas the opportunity benefit of an SB, 𝑏𝑆𝐵(𝑥), for the same case

is 0.15. That is,

𝑏𝑆𝐵(𝑥) = 𝑥* − 𝑥, 𝑏𝐶𝑆(𝑥) = 𝑥− 𝑥*. (3.1)

In the decision on a delivery mode, we assume that each physician is fully able to

diagnose the patient’s complexity level 𝑥, and is informed about the clinical cut-off

point 𝑥*.

Physician’s Efforts

We model the physician’s efforts in terms of the monetary value of the time he would

spend performing the tasks in two stages: monitoring the labor and delivering the
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baby. Since labor monitoring is only required for SBs, it is not included in the utility

of planned CSs. We denote the efforts expended by physicians while performing an

NB and a CS by 𝑒𝑁 , 𝑒𝐶 , respectively. Furthermore, we define 𝑒𝑀𝑁 to represent

the effort of fully monitoring labor from onset to an NB or a medically necessary

emergency CS.

Let 𝜆, (𝜆 ∈ [𝜆, 1]) be the proportion of the full effort that a physician has spent

from the onset of labor to the delivery. Therefore, the actual effort of monitoring

labor, 𝑒𝑀𝑁 , 𝜆𝑒𝑀𝑁 , is non-decreasing with respect to the effort level 𝜆. We assume

that physicians are aware of their effort level. Note that 𝜆 = 1 indicates the full labor

monitoring. Let 𝜆 > 0 denote the lower bound of the efforts.

Given that the average NB requires about twenty hours of medical monitoring,

which can take place anytime, including nights and weekends that elevates the level

of inconvenience and, as a result, the amount of effort required by physicians. It

is assumed that the cumulative effort to serve an SB (either NB or emergency CS)

are higher than for a planned CS; whereas, we assume 𝑒𝐶 > 𝑒𝑁 , since CSs involve a

surgical procedure. Specifically,

𝑒𝑁 < 𝑒𝐶 ≤ 𝑒𝑁 + 𝜆𝑒𝑀𝑁 . (3.2)

We define 𝑓(𝜆, 𝑥) as the chance of having an NB for a given prenatal complexity

level of 𝑥 ∈ [0, 1] and an effort level 𝜆, following the SB decision. By definition,

𝑓(𝜆, 𝑥) is monotonously increasing with respect to 𝜆. As verified by the empirical

analysis on our data set, this function is monotonously decreasing with a pregnancy’s

complexity 𝑥: those with a lower complexity level are more likely to have an NB.

The physician’s expected effort following an SB decision for a patient with a

complexity level of 𝑥 can be written as 𝑓(𝜆, 𝑥)𝑒𝑁 + (1− 𝑓(𝜆, 𝑥))𝑒𝐶 + 𝑒𝑀𝑁 .

Finally, we assume that the amount of effort saved in labor monitoring dominates

the difference between the two procedures. Specifically,
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(𝑒𝐶 − 𝑒𝑁)
𝜕𝑓(𝜆, 𝑥)

𝜕𝜆
≤ 𝑒𝑀𝑁 . (3.3)

Physician’s Income

As discussed before, the consulting physician makes a decision 𝐷 on the delivery

mode by the end of prenatal care. When the recommendation is a planned CS, he

performs the delivery himself and receives a reimbursement of𝑚𝐶𝑆. SB cases however

are taken on by the on-call physician (among the group of 𝐽 physicians), who claims

the reimbursement of 𝑚𝑆𝐵. As discussed, the on-call physician can also order an

emergency CS during labor, and therefore, the attempted NB may be followed by

an emergency CS. Without abuse of notation, we denote the reimbursement 𝑚𝐷 ,

𝑚𝐷(𝜆, 𝑥) where ∀𝐷 ∈ {𝑆𝐵,𝐶𝑆}, that is, the physician’s income is a function of his

actual effort and the patient’s level of pregnancy complexity. Its exact formulation

depends on the reimbursement policy: we will specify the exact policy-dependent

form of 𝑚𝐷 in Section 6.

Physician’s Utility Function

Let 𝑢𝐼
𝐷(𝜆, 𝑥) be the expected utility of any physician by the end of prenatal care, solely

from the point of view of his own benefit (i.e., monetary income and the dis-utility

of efforts), under his decision 𝐷 ∈ {𝐶𝑆, 𝑆𝐵} and for a patient with a complexity 𝑥.

Accordingly, the physician’s utility is estimated as follows:

𝑢𝐼
𝐶𝑆(𝜆, 𝑥) = 𝑚𝐶𝑆(𝜆, 𝑥)− 𝑒𝐶

𝑢𝐼
𝑆𝐵(𝜆, 𝑥) = 𝑚𝑆𝐵(𝜆, 𝑥)− [𝑓(𝜆, 𝑥)𝑒𝑉 + (1− 𝑓(𝜆, 𝑥))𝑒𝐶 + 𝑒𝑀𝑁 ].

Once we incorporate the benefits of a patient with a pregnancy complexity 𝑥 into

the physician’s decision-making process, his expected utility under the decision of a

planned CS can be written as

𝑈𝐶𝑆(𝑥) = 𝛼𝑏𝐶𝑆(𝑥) + 𝑢𝐼
𝐶𝑆(𝜆, 𝑥),
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where 𝛼 refers to a physician’s benevolence level, that is, the weight given to the

patients’ benefit in a physician’s mind. The more benevolent the physician, the more

he values the quality of care and the benefit of his patients, and the higher will 𝛼 be.

Note that 𝛼 → ∞ indicates that a physician values only quality of care and completely

ignores his own utility: he makes his decisions from a purely clinical perspective, at

the cost of his own benefit, which would eliminate unnecessary planned as well as

unnecessary emergency CSs. In our framework, we assume that, while physicians are

not perfectly altruistic, they all have the same considerably high level of benevolence.

On the other hand, a decision for an SB factors in that each physician has a

hospital rotation dedicated to deliveries and is on call for an equal amount of time,

and therefore, all physicians in the group have an equal chance of performing this

delivery. Hence, they have a 1/𝐽 chance of gaining the expected utility for an SB,

such that

𝑈𝑆𝐵(𝜆, 𝑥) = 𝛼𝑏𝑆𝐵(𝑥) +
𝑢𝐼
𝑆𝐵(𝜆, 𝑥)

𝐽
.

Therefore, for an individual patient with a pregnancy complexity 𝑥, a rational physi-

cian would decide on an SB if 𝑈𝑆𝐵(𝜆, 𝑥) ≥ 𝑈𝐶𝑆(𝑥), and on CS otherwise.

3.4.2 Physician’s Best Response Strategy

We start the analysis by defining a pregnancy complexity threshold 𝑠 that maximizes

the consulting physician’s overall utility over a population of patients. Assuming that

the physician behaves according to the utility described in the previous subsection

for the population of all patients registered to his panel, this decision is equivalent to

setting up an optimal threshold 𝑠 in order to maximize his total utility. Note that

the population density is uniform across the spectrum of complexity levels due to the

way 𝑥 is estimated from our dataset, as explained in Section 3. Therefore, we also

normalize the total population to 1. More specifically:

Lemma 3.1 If a physician aims to maximize his own overall utility, i.e., 𝑈 , he should

decide on a planned C-section by setting an optimal level of 𝑠 in the prenatal stage,
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i.e.,

𝑠 = arg max
[0,1]

∫︁ 𝑠

0

𝑈𝑆𝐵(𝜆, 𝑥)d𝑥+

∫︁ 1

𝑠

𝑈𝐶𝑆(𝑥)d𝑥,

which is equivalent to setting 𝑠 as

𝑈𝑆𝐵(𝜆, 𝑥) ≥ 𝑈𝐶𝑆(𝑥), ∀𝑥 ≤ 𝑠,

𝑈𝐶𝑆(𝑥) ≥ 𝑈𝑆𝐵(𝜆, 𝑥), ∀𝑥 ≥ 𝑠.

This lemma shows that in order to maximize his overall utility, the physician will set

a threshold 𝑠 in such a way that he will recommend an SB for patients with a clinical

complexity 𝑥 lower than 𝑠 and will prefer a planned CS for the rest. However, the

threshold 𝑠 set by the physician is influenced by the reimbursement policies and may

not necessarily be equal or close to 𝑥*.

Next, we focus on a group of physicians: There are 𝐽 physicians in the group,

and each physician 𝑗 selects a decision from a set of strategies 𝐷𝑗 = {𝐶𝑆, 𝑆𝐵} and

a payoff function 𝑈𝑗(𝐷1, 𝐷2, · · · , 𝐷𝐽) ∀𝑗 ∈ {1, 2, · · · , 𝐽}, in the prenatal care stage.

They all agree on the same 𝜆 under a given reimbursement mechanism 𝑚𝐷. This

is a finite symmetric game < 𝐽,𝐷,𝑈 > given 𝐷 = 𝐷1 = 𝐷2 = · · · = 𝐷𝐽 , and

∀𝑖, 𝑗 ∈ {1, 2, · · · , 𝐽}

𝑈𝑗(𝐶𝑆, 𝑑−𝑗) = 𝑈𝑖(𝐶𝑆, 𝑑−𝑖), for 𝑑−𝑖 = 𝑑−𝑗,

𝑈𝑗(𝑆𝐵, 𝑑−𝑗) = 𝑈𝑖(𝑆𝐵, 𝑑−𝑖), for 𝑑−𝑖 = 𝑑−𝑗,

where 𝑑−𝑖 refers to the decisions of all physicians other than physician 𝑖. We present

existence and uniqueness of the equilibrium for this game below.

Lemma 3.2 Each physician should make the same decision for a patient with a com-

plexity level of 𝑥,∀𝑥 ∈ [0, 1] at the Nash equilibrium.

Finally, we present a closed form to calculate the overall CS rate (i.e., planned

and emergency CSs). For simplicity, we assume that the physicians are aware of the
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function 𝑓(𝜆, 𝑥) while making a decision 𝐷 on the delivery mode during prenatal

care (𝐷 ∈ {𝐶𝑆, 𝑆𝐵}). The physician’s expected effort for all his patients becomes a

function of his threshold 𝑠 and effort level 𝜆 and can be written as

𝐸(𝜆, 𝑠) =

∫︁ 𝑠

0

[︀
𝑓(𝜆, 𝑥)𝑒𝑁 + (1− 𝑓(𝜆, 𝑥))𝑒𝐶 + 𝑒𝑀𝑁

]︀
d𝑥+

∫︁ 1

𝑠

𝑒𝐶d𝑥.

Let 𝑟 be the resulting overall CS rate of a given population. We then set up a

one-to-one mapping relationship between 𝑠 and 𝑟 by the following lemma.

Lemma 3.3 Given that 𝑓(𝜆, 𝑥) is a decreasing function of the pregnancy complexity

𝑥, the overall CS rate 𝑟 can be expressed by the planned CS threshold 𝑠

𝑟 = 1−
∫︁ 𝑠

0

𝑓(𝜆, 𝑥)d𝑥.

Clearly, the overall CS rate 𝑟 monotonously decreases as the planned CS threshold 𝑠

increases.

3.5 Health care Payers’ Problem

In the context of our work, the term “payer” refers to a private or a public insurer

who reimburses the maternity care expenses. In general, the payer aims to maximize

the value of care for the patients by achieving the best health outcomes at the lowest

cost. This amounts to a two-dimensional objective: maximization of quality and

minimization of costs. We start the section by focusing on the payer’s goals, and

then we study the problem under a perfect information setting, assuming that the

payer can fully observe the patient’s pregnancy complexity level by the end of prenatal

care, as well as the physician’s efforts during the labor. This sets a benchmark for

our analysis. We end this section by examining the payers’ objectives in the more

realistic asymmetric information setting within a principal-agent framework.
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3.5.1 Payer’s Objectives: Maximization of Value for the Pa-

tient

Here we introduce a two-dimensional objective function, a weighted sum of economic

and quality goals, which is aligned with the models presented by Hua et al. (2016)

and Levi et al. (2016).

Π𝑉𝑀 = 𝛽Π𝑄(𝑠) + Π𝐸(𝑠, 𝜆,𝑚𝐷), (3.4)

where 𝛽 is the weight of the quality objective, with a monetary unit. A higher

amount of 𝛽 indicates that a greater importance is given to quality in the payers’

policy design. Specifically, in the event that 𝛽 = 0, Π𝑉𝑀 becomes the sole economic

objective; and if 𝛽 → ∞, then Π𝑉𝑀 is equal to the quality objective. The physician’s

optimal threshold is denoted by 𝑠𝐸 and 𝑠𝑄 in these two special cases, respectively.

Quality Perspective: Maximization of Care Quality

Birth quality is the most important objective from the perspective of social welfare

and is accordingly an essential concern for the payers. Recall that the cut-off point

𝑥* represents a clinically appropriate threshold for a planned C-section. We consider

the distance 𝑠 − 𝑥* a measure of quality of care. More specifically, in the event of

𝑠 > 𝑥* under-treatment occurs for complex pregnancies that should have been planned

CSs. By contrast, 𝑠 < 𝑥* indicates overtreatment, or the inappropriate selection of

a planned CS for low-risk pregnancies that should have been SBs. Therefore, the

payer’s goal in the context of care quality can be expressed to minimize

Π𝑄(𝑠) = |𝑠− 𝑥*| (3.5)

which is independent of any reimbursement mechanism for physicians. Evidently, 𝑥*

is the resulting optimal quality threshold satisfying unconstrained Eq.3.5.

Economic Perspective: Minimization of Costs

The cost of maternity care includes all expenditures involved in the prenatal, delivery

and postpartum stages of care. Given that prenatal care costs (consultation provider

63



fees plus the cost of imaging and laboratory tests) are independent of the decision

about a delivery mode, they are outside the scope of this work. Therefore, in the

context of our study, maternal expenditures consist of all payments for delivery and

postpartum care.

Cost of delivery care captures all the expenses of the delivery and post-delivery

hospital stay, for both mother and newborn, and we categorize them into two groups:

facility fees and physician charges. The former includes payments for the physical fa-

cility (e.g. delivery room, operating theater, post-surgery recovery room, etc.) as well

as for nursing, anesthesiology, radiology/imaging, laboratory, and pharmacy services.

Let 𝑐𝐶𝐻 and 𝑐𝑁𝐻 represent the facility fees for a CS and an NB, respectively. Because

of the surgical nature of the CS, and the longer in-hospital stay that follows this

operation, its associated facility, hospitalization and nursing costs are significantly

higher than those for an NB, i.e., 𝑐𝐶𝐻 > 𝑐𝑁𝐻 . 𝑐
𝐶
𝐻 is considered to be the same for both

planned and emergency CSs, because of the similar resource requirements.

For a given population of patients, the expected facility fees 𝐶𝐻(𝜆, 𝑠) depend on

the threshold 𝑠 determined by the physicians, and can be written as

𝐶𝐻(𝜆, 𝑠) =

∫︁ 𝑠

0

[︀
𝑓(𝜆, 𝑥)𝑐𝑁𝐻 + (1− 𝑓(𝜆, 𝑥))𝑐𝐶𝐻

]︀
d𝑥+

∫︁ 1

𝑠

𝑐𝐶𝐻d𝑥.

The expected total physicians’ fee is also dependent on the threshold 𝑠, and can

be expressed as follows:

𝑀(𝜆, 𝑠,𝑚𝐷) =

∫︁ 𝑠

0

𝑚𝑆𝐵(𝜆, 𝑥)d𝑥+

∫︁ 1

𝑠

𝑚𝐶𝑆(𝜆, 𝑥)d𝑥.

The cost of postpartum care takes into account expenses resulting from the treat-

ment of post-delivery complications, including re-admissions, as well as follow-up care

provided in the three months after childbirth. Both the medical literature (e.g. Knight

et al., 2008; Goer et al., 2012; Villar et al., 2007) and our empirical study confirm that

the risk for mother and baby of having post-delivery complications varies significantly

with the pregnancy’s complexity and the mode of delivery. We use 𝐼𝐷(𝜆, 𝑥) to denote

the incidence of post-delivery complications under decision 𝐷 for a pregnancy com-
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plexity level of 𝑥 with an effort level of 𝜆 in the delivery stage. Our empirical analysis

reveals that, for a given complexity level of 𝑥, 𝐼(𝐶𝑆, 𝑥) , 𝐼𝐶𝑆, as it is independent

of 𝑥, and 𝐼(𝑆𝐵, 𝑥) is an increasing linear function of 𝑥. In light of this information,

we further assume that incidence decreases as effort increases in the delivery stage,

since a higher effort will lead to lower rates of unnecessary emergency CSs and of

complication risks. Specifically,

𝜕𝐼𝑆𝐵(𝜆, 𝑥)

𝜕𝑥
> 0,

𝜕𝐼𝑆𝐵(𝜆, 𝑥)

𝜕𝜆
> 0. (3.6)

Let 𝐶 be the average treatment and re-admission costs for post-delivery compli-

cations per case, for the mother and baby. Then, the postpartum expenses for the

overall population can be expressed as

𝐶𝐼(𝜆, 𝑠) = 𝐶

∫︁ 𝑠

0

𝐼𝑆𝐵(𝜆, 𝑥)d𝑥+ 𝐶

∫︁ 1

𝑠

𝐼𝐶𝑆d𝑥.

This portion of the expenses can be incurred as extra charges to payers during the

original hospitalization or over the short term after discharge. It is an essential com-

ponent of birth-related expenses for payers, but has been consistently underestimated

by both payers and policy makers (Truven Health Analytics, 2013).

From an economic perspective, the payer aims to minimize her total maternity

care costs by minimizing the following objective function

Π𝐸(𝜆, 𝑠,𝑚𝐷) = 𝑀(𝜆, 𝑠,𝑚𝐷) + 𝐶𝐻(𝜆, 𝑠) + 𝐶𝐼(𝜆, 𝑠). (3.7)

Lemma 3.4 If 𝑀(𝜆, 𝑠,𝑚𝐷) is a convex function of 𝑠, Π𝐸 is convex with respect to

𝑠.

Through this lemma, we show that this objective function is convex in terms of

physicians’ threshold, determined in the consulting stage, under any reimbursement

mechanism.
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3.5.2 Benchmark: Payer’s Objectives under Perfect Informa-

tion

Before beginning our analysis of how the physicians’ actions to maximize their own

utilities affect the cost and quality of care, we first present the benchmark, in which

the payer can fully observe the patients’ health conditions or pregnancy complexity, as

well as the physicians’ efforts. This allows the payer to set a threshold for physicians

for ordering a CS during the stage and enables her to require that physicians expend

a full effort during the delivery stage. Specifically, under a setting of full information

transparency, the payer’s problem can be written as follows:

𝑍𝐵𝑀 = min
𝑠,𝑚𝐷

Π𝑉𝑀

subject to 𝑢𝐼
𝑆𝐵(𝜆, 𝑥) ≥ 0, ∀𝑥 ≤ 𝑠 (PCN)

𝑢𝐼
𝐶𝑆(𝜆, 𝑥) ≥ 0, ∀𝑥 ≥ 𝑠 (PCC)

𝜆 = 1.

The first two constraints, PCN and PCC, are motivated by Lemma 3.1 and ensure

that the compensation for the NB and CS is sufficient for the physicians’ efforts, so

that they engage in both forms of delivery. Only under these constraints the payer

is free to set any threshold 𝑠 and 𝑚𝐷 to achieve her objective. The third constraint

requires that the physician monitor the full labor unless an emergency CS is medically

necessary.

Similarly to the unconstrained representation of Π𝑄(𝑠) in Section 5.1.1, the opti-

mal 𝑠𝑄 is equal to 𝑥* for the constrained problem under a full information setting.

However, as Proposition 3.1 indicates below, the optimal 𝑠𝐸 needed to minimize costs

is not necessarily equal to 𝑥*.

Proposition 3.1 If the payer observes a certain effort level 𝜆 achieved in the delivery

stage under a reimbursement mechanism 𝑚𝐷, and both 𝑈𝐶𝑆(𝜆, 𝑥) ≥ 0, ∀𝑥 > 𝑠𝐸 and
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𝑈𝑆𝐵(𝜆, 𝑥) > 0, ∀𝑥 < 𝑠𝐸, 𝑠𝐸 can be calculated as solution of equation

𝑓(𝜆, 𝑥)(𝑐𝑁𝐻 + 𝑒𝑁 − 𝑐𝐶𝐻 − 𝑒𝐶) + 𝐶(𝐼𝑆𝐵(𝜆, 𝑥)− 𝐼𝐶𝑆) + 𝑒𝑀𝑁 = 0, (3.8)

if and only if 𝑠𝐸 is in [0, 1]; Otherwise, 𝑠𝐸 = 1.

Note that the optimal values of 𝑠𝑄 and 𝑠𝐸 represent the boundaries of the region

of the optimal physician threshold 𝑠. Depending on the reimbursement mechanism in

effect, 𝑠𝐸 could be on either side of 𝑠𝑄. Increasing the weight of care quality (i.e., 𝛽 in

Eq. 3.4) would move 𝑠 towards 𝑠𝑄 and away from 𝑠𝐸. That is, a quality improvement

would come at an increased maternity care cost. Considering the many instances

in which increased health care expenses do not necessarily improve quality of care,

this is presumably more palatable for the payer. Proposition 3.2 presents a formal

statement of this window of opportunity, where there is a clear trade-off between the

quality and cost of maternity care.

Proposition 3.2 The optimal value of 𝑠 for the payer is between 𝑠𝐸 and 𝑥* under

perfect information.

For any 𝑠 outside this region, the additional expenditures for maternity care may

not lead to an increase in quality of care, and hence, this region constitutes a bench-

mark for us.

3.5.3 Payer’s Objectives under Asymmetric Information

Let us now enhance the model to represent the asymmetric information setting, where

only physicians are able to observe the patient’s level of complexity at the prenatal

stage, and the progress of labor during the delivery stage. Therefore 𝜆 and 𝑠 are in fact

decided by the physician, whereas the payer’s only lever to incentivize the physicians

to achieve the desired threshold 𝑠 is 𝑚𝐷. Under this framework, we formulate the

payer’s optimal problem as follows:
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𝑍𝑃 = min
𝑚𝐷

Π𝑉𝑀

subject to 𝑢𝐼
𝑆𝐵(𝜆, 𝑥) ≥ 0, ∀𝑥 ≤ 𝑠 (PCN)

𝑢𝐼
𝐶𝑆(𝜆, 𝑥) ≥ 0, ∀𝑥 ≥ 𝑠 (PCC)

𝜆 = argmax
𝜆,1

𝑢𝐼
𝑆𝐵(𝜆, 𝑥), ∀𝑥 ≤ 𝑠 (ICE)

𝑈𝑆𝐵(𝜆, 𝑥) ≥ 𝑈𝐶𝑆(𝜆, 𝑥), ∀𝑥 ≤ 𝑠 (ICN)

𝑈𝑆𝐵(𝜆, 𝑥) ≤ 𝑈𝐶𝑆(𝜆, 𝑥), ∀𝑥 ≥ 𝑠 (ICC),

where the first two constraints, PCN and PCC, are exactly the same as those in

Problem 𝑍𝐵𝑀 . In the third constraint, however, the materialized effort 𝜆 is deter-

mined by the physician, according to his own utility 𝑢𝐼
𝑆𝐵(𝜆, 𝑥) rather than being set

by the payer to 1. The constraints of ICC and ICN refer to the physician’s decision

of a delivery mode by the end of prenatal care and ensure the maximization of the

physicians’ utility, as presented in Lemma 3.1, in Section 4.2.

By incorporating the ICN and ICC constraints into this asymmetric setting, we

first examine the impact of the physicians’ benevolence 𝛼 and the group size 𝐽 on

the physician’s threshold 𝑠 and on the quality of care. As expected, the deviation

from the threshold for a planned C-section 𝑠 under a given reimbursement mechanism

𝑚𝐷 and 𝑥* is non-increasing as 𝛼 increases. We present our findings analytically in

Section 9. Moreover, 𝑠 is sensitive to the group size 𝐽 in the asymmetric setting.

Lemma 3.5 If 𝑈𝑆𝐵(𝑥) ≥ 0 ∀𝑥 ∈ [0, 1] under given reimbursement mechanism 𝑚𝐷,

𝑠 is non-increasing as 𝐽 increases.

For a reimbursement mechanism that leads to a threshold of 𝑠 less than 𝑥*, a smaller

group may be preferable, as it increases the threshold closer to 𝑥*, given that the

physicians are more likely to serve their own patients in cases where a decision for an

SB is made within a smaller group. Under a reimbursement mechanism that moti-

vates a preference for SBs (even where a planned C-section could be more medically
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appropriate, i.e., 𝑠 > 𝑥*), a larger group has the advantage of lowering the threshold,

that is, of avoiding the SB for high-risk patients. This finding could provide impor-

tant managerial insights for a payer dealing with physician groups of different sizes

and different contract types.

Next, we study the characteristics of a feasible solution to Problem 𝑍𝑃 .

Corollary 3.1 Suppose the range for the set of feasible solutions of threshold 𝑠 to

Problem 𝑍𝑃 is [𝑠, 𝑠]. If this range is completely exclusive of the interval between 𝑠𝐸 and

𝑥*, then, under the asymmetric information setting, the optimal cost-minimization

threshold is equal to the optimal quality threshold, which is equal to

∙ 𝑠, if 𝑠 < min{𝑠𝐸, 𝑥*};

∙ 𝑠, if 𝑠 > max{𝑠𝐸, 𝑥*}.

This result implies that there is an equivalent optimal solution for the payer’s eco-

nomic and quality objectives under the asymmetric information setting. However, the

reimbursement policy that results from this situation is suboptimal from the point

of view of value maximization and should definitely be avoided, since such policies

erode the quality of care while also increasing the related expenses. Consequently, the

payer is disadvantaged by a double-layered “information rent” in the form of reduced

quality and expanded costs.

3.5.4 Payer’s Objectives Under Asymmetric Information

In reality, though the payer reimburses physicians for the sequential procedures in

the delivery stage, he has no direct access to patients’ health condition or pregnancy

complexity; and only physicians can actually observe the progress of patients’ preg-

nancy. This is a typical setting of asymmetric information with moral hazard (or

hidden actions), where a physician can take advantage of all the information he ob-

serves, and decide his threshold for planned CS in consulting stage, and effort level

during delivery stage. Therefore, the payer (the principal) relies on the payment to

incentive the physicians (the agent) to achieve the desired threshold 𝑠 in his economic
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or quality objective ; since the payer cannot control the threshold directly and explic-

itly. Under this typical principal-agent framework, we formulate the payers’ optimal

problem under this setting by incorporating three incentive constraints to physicians,

in additional to participating constraints.

min
𝑚𝐷

Π𝑃 (𝑠, 𝜆,𝑚𝐷)

subject to 𝑢𝐼
𝑆𝐵(𝜆, 𝑥) ≥ 0, ∀𝑥 ≤ 𝑠 (PCN)

𝑢𝐼
𝐶𝑆(𝑥) ≥ 0, ∀𝑥 ≥ 𝑠 (PCC)

𝑈𝑆𝐵(𝜆, 𝑥) ≥ 𝑈𝐶𝑆(𝑥), ∀𝑥 ≤ 𝑠 (ICN)

𝑈𝑆𝐵(𝜆, 𝑥) ≤ 𝑈𝐶𝑆(𝑥), ∀𝑥 ≥ 𝑠 (ICC)

𝜆 ∈ argmax
𝜆,1

𝑢𝐼
𝑆𝐵(𝜆, 𝑥), ∀𝑥 ≤ 𝑠 (ICE),

(3.9)

where Π𝑃 can be any objective Π𝑄
𝑃 , Π

𝐸
𝑃 , Π

𝑉𝑀
𝑃 as we mentioned in section 3.5. The

first two constraints (PCN and PCC) are exactly the same as those in Problem ??.

The last three constraints (ICN, ICC and ICE) are the incentive constraints typically

in the setting of asymmetric information. Lemma 3.1 implies that the combination

of ICC and ICN ensures the maximization of physicians’ utility. Furthermore, the

incentive constraints ICC and ICN are typical in consulting stage with a twofold

impact: (i) physicians eliminate unnecessary CS for patients with lower risks; (ii) the

planned CS should be retained for those with higher complexities. ICE is typically

set up for the delivery stage, where physicians select the most desirable effort level

of providing a care during delivery through their shift in hospital - the one that

maximizes their expected utility 𝑢𝐼
𝑆𝐵(𝜆, 𝑥).

With ICN and ICC in this asymmetric setting, we first examine the impact of

physicians’ benevolence 𝛼 on defining their threshold 𝑠, and consequential impact on

quality of care.

Lemma 3.6 If a reimbursement mechanism 𝑚𝐷(𝑥) ∀𝐷 ∈ {𝑆𝐵,𝐶𝑆} leads to a con-

sequent threshold of planned CS 𝑠, quality of care increases with respect to his benev-

olence. That is, the deviation from the clinical cutoff of planned CS |𝑠 − 𝑥*| is non-
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increasing as 𝛼 increases.

Consider the worst scenario where physicians fully ignore patients’ benefits, or the

most selfish physicians, i.e. 𝛼 = 0, a certain reimbursement policy leads physicians

to determine the threshold of 𝑠. The deviation from the clinically optimal rate of

planned CS is no larger than |𝑠 − 𝑥*| for physicians with 𝛼 > 0. However, the

clinically optimal threshold can be gained under any reimbursement,i.e.𝑠 = 𝑥* if and

only if 𝛼 → ∞.

Moreover, the following result states that the quality objective is sensitive to the

group size 𝐽 in the asymmetric setting, given the fact of sharing the tasks to serve

SB in hospital.

Lemma 3.7 If a reimbursement mechanism𝑚𝐷(𝑥) ∀𝐷 ∈ {𝑆𝐵,𝐶𝑆}, satisfying 𝑢𝐼
𝑆𝐵(𝑥) ≥

0 ∀𝑥 ∈ [0, 1], it leads to a consequent threshold of planned CS 𝑠, which is non-

increasing as 𝐽 increases.

Lemma 3.7 demonstrates a two-fold impact of group size. For a reimbursement mech-

anism that leads to a threshold lower than 𝑥*, a smaller group may be preferable as

it increases threshold closer to 𝑠. Intuitively, physicians are more likely to serve their

own patients in the case of deciding a SB, in a smaller group. Under a reimbursement

mechanism that motivates insufficient planned CS, i.e. 𝑠 > 𝑥*, a larger group has the

advantage of lowering the threshold, reducing the mis-application of SB for highly

risky patients. The extreme example is when 𝐽 → ∞, the group is very large, and

hence physicians have little chance to serve any NB during their shifts in hospital.

Consequently, they have no chance to increase their utility from delivery stage, lead-

ing them to an induction of gaining the certain overall utility by deciding on planned

CS.

Recall 𝑠𝐸 is the resulting economically optimal threshold that satisfies the cost

minimization objective function in Eq.3.7 in the setting of perfect information (with

constraints in Problem ??), and then we have the following corollary, interpreting

characteristics of feasible solution to Problem 3.9.

71



Corollary 3.2 Suppose the feasible solution of threshold to Problem 3.9 is [𝑠, 𝑠]. If it

falls outside of the interval between 𝑠𝐸 and 𝑥*, the optimal cost-minimization threshold

is equal to the quality optimal threshold. That is, both optimal thresholds become

∙ 𝑠, if 𝑠 < min{𝑠𝐸, 𝑥*};

∙ 𝑠, if 𝑠 > max{𝑠𝐸, 𝑥*}.

Which leads to the fact that payers’ economic objective to minimize Π𝐸
𝑃 is equivalent

to maximize their quality objective Π𝑄
𝑃 in this case.

It implies an equivalent optimal solution for both economic and quality objectives

of payers in the asymmetric information setting. However, the reimbursement policy

that results in this situation is sub-optimal and should be definitely avoided, from the

perspective of value maximization, according to Proposition ??, and hence detriments

the quality and increases related expenses. Consequently, payers suffer from double

layered "information rent" in the form of reduced quality and additional costs.

3.6 Payment Models - Level 1: Mainstream Pay-

ment Schemes

In this section, we study payment schemes, namely FFS, blended and bundled pay-

ments, in the context of maternity care through our modeling framework and we

discuss our findings.

3.6.1 Payment Scheme Descriptions

Given that each payment model may have different interpretations for different spe-

cialties, we first would like to provide the description of the payment schemes in a

maternity care setting. The specific formula under each model is summarized in Table

3.4.
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Fee-for-Service (FFS): A physician gets a payment of a fixed rate of 𝑃 𝑃𝐶 for

performing a planned CS delivery, and 𝑃𝑁 for an NB or 𝑃𝐸𝐶 for performing

an emergency CS. In practice, the rates for emergency and planned CSs vary,

yet both are higher than the rate for an NB, due to the surgical nature of a CS

(Faloon, 2012; Optum, 2013). That is, 𝑃𝐸𝐶 > 𝑃𝑁 , 𝑃 𝑃𝐶 > 𝑃𝑁 . Moreover, the

rate for an emergency CS may be a little higher than for a planned CS; however,

the difference is not significant (MSC Payment Schedule, 2016; AHCIP, 2016;

Ontario Health Insurance Plan, 2016). Specifically, we assume that 𝑃 𝑃𝐶 ≤

𝑃𝐸𝐶 < 𝑒𝑀𝑁 + 𝑃 𝑃𝐶 .

Blended Payment: A single rate 𝑃𝐵𝑃 is paid for a delivery, regardless of mode.

Bundled Payment: A fixed amount 𝑃𝐵𝐿 is paid for each registered pregnancy,

including prenatal care (i.e., consultations and ultrasounds), delivery, and the

post-delivery hospital stay, regardless of the delivery mode (CPR, 2012). The

portion to be paid for prenatal care is not included in our current analysis

in order to keep expenses comparable with those of other payment methods.

There are alternative approaches for sharing the risks and gains between hospi-

tal and the physician group under this program. In the context of this research,

we propose a full gain/risk sharing for the physicians. This maximizes the

accountability of the physicians regarding to care they provide and the coordi-

nation among the physicians. Under this model, since the delivery cost for a

CS is higher than for an NB, the physicians’ marginal income following a CS is

lower than with an NB.

For the FFS and blended methods, the amount of the fee and the payee are

determined retrospectively, after the delivery of the baby. This is in contrast to

the bundled payment scheme, which pays a pre-established amount, i.e. prospective

reimbursement.

73



Table 3.4: Specific Notations of Different Payment Policies

Policy 𝑚𝑆𝐵(𝜆, 𝑥) 𝑚𝐶𝑆(𝜆, 𝑥)
FFS 𝑃𝑁𝑓(𝜆, 𝑥) + 𝑃𝐸𝐶(1− 𝑓(𝜆, 𝑥)) 𝑃 𝑃𝐶

Blended 𝑃𝐵𝑃 𝑃𝐵𝑃

bundled 𝑃𝐵𝐿 − 𝑐𝑁𝐻𝑓(𝜆,𝑥)+𝑐𝐶𝐻(1−𝑓(𝜆,𝑥))

𝐽
𝑃𝐵𝐿 − 𝑐𝐶𝐻

𝐽

Table 3.5: Impacts of Payment Methods on Cost, Quality of Care, Financial Risks
and Accessibility

FFS Blended Bundled
Incentive for Quality of Care None (Proposition 3.3, Lemma 3.8) None (Proposition 3.4)
Incentive for Cost Control None (Corollary 3.3) High (Corollary 3.4)
Physician’s Financial Risks None None High (Corollary 3.4)

Potential Accessibility Problem None None High (Proposition 3.5)

3.6.2 Analytical Analysis on Payment Schemes

Next, we investigate the impact of payment schemes on quality of care and on the

overall maternity cost. We also study potential problems, such as the financial risks

taken on by physicians and the accessibility to physicians under these models. A brief

summary of our analytical findings is given in Table 3.5.

FFS and Blended Models

Since they use a retrospective payment approach, the FSS and blended payment

schemes share similar characteristics. First, we investigate the threshold under these

payment schemes between an SB and a CS, as determined by the physicians by the

end of prenatal care, and next we study their impact on the physicians’ efforts while

monitoring labor under SB decisions.

Proposition 3.3 Under the FFS and blended payment models, the optimal threshold

𝑠 determined by the physicians in Problem 𝑍𝑃 satisfies 𝑠 < 𝑥*. Moreover, under the

blended payment model, 𝑠 is monotonically decreasing with respect to 𝑃𝐵𝑃 .

Lemma 3.8 Under the FFS and blended payment models, 𝜆 is optimal for physicians

at the delivery stage, following an SB decision.

74



Proposition 3.3 implies that both payment schemes lead physicians to choose CS

over SB, although it may not be medically necessary for some patient groups. More-

over, it shows that offering too low of a blended rate would continue to encourage

cesarean deliveries. Likewise, as presented in Lemma 3.8, even under an SB deci-

sion, these payment mechanisms motivates the physicians not to give their full effort

in the delivery stage. Hence, the desired rate of NBs may not be realized under

these payment mechanisms. Our finding that FFS incentivizes physicians in favor of

overtreatment through CSs is consistent with existing empirical studies in the liter-

ature (Gruber et al., 1998). Additionally, we conclude that equalizing the fees for

NBs and CSs through a blended model has a limited impact on controlling CS rates.

The blended model eliminates the direct financial incentives for preferring CS as a

procedure but does not provide any incentives regarding the physician’s desire to get

the delivery fee for his own patients or avoid the inconveniences of NBs.

From an economic perspective, we first show that the function representing the

total amount of reimbursement transferred from the payer to the physicians under

these two mechanisms is non-concave with the following lemma.

Lemma 3.9 Under the FFS and blended payment systems, 𝑀(𝜆, 𝑠,𝑚𝐷) is non-

concave with respect to 𝑠.

By using this property, we next show the following:

Corollary 3.3 Under the FFS and blended payment systems, 𝑠𝐸 presented in Corol-

lary 3.2 is an infeasible solution for Problem 𝑍𝑃 .

This result implies that the feasible solutions to Problem 𝑍𝑃 under these two mech-

anisms are outside the interval between 𝑠𝐸 and 𝑥* (or 𝑥* and 𝑠𝐸 ), as presented in

Corollary 3.2. In other words, under these payments schemes, the physicians are over-

paid for the level of effort they invest and for the quality of care resulting from their

effort. Intuitively, physicians can always save a certain amount of effort in the deliv-

ery stage by performing an emergency CS while receiving at least the same payment.

Therefore, physicians get a higher margin—the difference in income and effort—from
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planned or emergency CSs under these models, which may result in a higher number

of unnecessary CS cases.

Bundled Payment Model

As we discussed before, the bundled payment approach is a prospective reimbursement

model, in which a fixed up-front payment is received for each patient, regardless of

the actual delivery mode used for that patient. Therefore, under this payment model,

the net transfer of funds from the payer to the physicians has a concavity feature with

respect to the threshold decided upon by the physicians by the end of the prenatal

stage.

Lemma 3.10 𝑀(𝜆, 𝑠,𝑚𝐷) is concave with respect to 𝑠 under the bundled payment

model.

We first consider the impact of bundled payments on the physicians’ decision to

plan a CS. This payment scheme’s structure aims to provide incentives for better out-

comes, specifically by avoiding over-treatment by shifting the financial responsibility

to the providers. On the other hand, since this payment model reimburses regardless

of the resources used, it may jeopardize the quality of care by increasing the desire

to keep costs low, which may lead to physicians not prescribing a planned CS where

medically required (i.e., undertreatment) (Feder, 2013; Adida et al., 2017). Proposi-

tion 3.4 confirms undertreatment under the bundled payment scheme, as compared

to the retrospective payment mechanisms discussed above.

Proposition 3.4 Under the bundled payment model where a physician’s facility costs

dominate the monetary value of the physicians’ effort invested in servicing a delivery,

specifically,

𝑓(𝜆, 𝑥)

(︂
𝑐𝑁𝐻
𝐽

+ 𝑒𝑁
)︂
+ (1− 𝑓(𝜆, 𝑥))

(︂
𝑐𝐶𝐻
𝐽

+ 𝑒𝐶
)︂
+ 𝑒𝑀𝑁 ≤ 𝑐𝐶𝐻

𝐽
+ 𝑒𝐶 ,∀𝜆 ∈ (𝜆, 1), ∀𝑥 ∈ (0, 1),

the physician’s threshold 𝑠 > 𝑥* in the prenatal care stage.

Our findings are consistent with the existing literature, which has demonstrated

that this payment model discourages physicians from overusing surgical procedures
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(Ransom et al., 1996; Lally, 2013).

Corollary 3.4 Under a bundled payment model where a physician’s facility costs

dominate the monetary value of the physicians’ effort invested in servicing a deliv-

ery, increasing bundled rate can motive consulting physicians to set up the quality-

maximized threshold 𝑥*.

This result highlights the fact that the bundled payment approach result in higher

expenses due to the required risk premium for physicians, to motivate the adoption

of this payment scheme and to guarantee a certain care quality level. Otherwise, the

high level of financial risk may lead to a great deal of resistance to adopting this model

(Adida et al., 2017). Or, in order to reduce their costs significantly, and thus alleviate

the financial risks they face, physicians may be inclined to under-treat a significant

number of cases by preferring NB even where a CS is more medically appropriate.

Moreover, it may also result in patient selection, also known as “cherry picking”.

Physicians may refuse to serve high-risk women, since this group is potentially more

costly due to the higher chance of a planned or emergency CS. We highlight the

link between the potential for patient selection and the bundled payment rate in the

following proposition.

Proposition 3.5 Under the bundled payment model, the lower bound of the bundled

rate 𝑃𝐵𝐿 is 𝑒𝐶+𝑐𝐶𝐻/𝐽 . Moreover, if 𝑃𝐵𝐿 < 𝑒𝐶+𝑐𝐶𝐻/𝐽 , physicians may refuse patients

with complexity 𝑥 as long as

𝑥 > 𝑓−1

(︂
𝐽(𝑒𝐶 + 𝑒𝑀𝑁 − 𝑃𝐵𝐿) + 𝑐𝐶𝐻
𝐽(𝑒𝐶 − 𝑒𝑁) + 𝑐𝐶𝐻 − 𝑐𝑁𝐻

)︂

where 𝑓−1(𝑥) is the inverse function of 𝑓(1, 𝑥).

This implies that there is a higher chance of cherry picking, that is, of physicians

choosing low-risk patients over high-risk ones, under a lower bundled rate. Moreover,

we have several interesting observations about the formula on the likelihood of refusal.

Given a fixed 𝑒𝐶 , the effort for performing a CS, a lower effort in attending to a NB, i.e.

𝑒𝑁 , leads to higher number of patients being refused; similarly, increasing difference
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between facility fees of the two procedures, i.e. 𝑐𝐶𝐻 and 𝑐𝑁𝐻 , results in more patient

selection.

In practice, there might be a higher bundled rate for high-risk patients. However,

this does not alleviate the moral-hazard problem for the following two reasons: First,

physicians will still recommend an SB for some high-risk patients, since this is the

“optimal” way for them to minimize their expenses, and hence, maximize their utility.

This again reflects the typical dilemma of a moral-hazard problem. Second, a higher

bundled rate for high-risk patients does not eliminate the “cherry picking” of patients.

Indeed, certain intermediate-risk patients may be discriminated against, since they

are more likely to have a CS than low-risk patients but physicians will not receive a

higher payment for treating them. Therefore, this group of patients offers the least

utility to physicians, as compared to low- or high-risk patients. In our numerical

analyses, we allow for the definition of two separate rates, for high-risk and low-risk

pregnancies, presented in Section 3.9.

3.7 Payment Models - Level 2: Complementary Bonuses

In the payment reform of maternity care, complementary payments play an important

role since they may offset some of the disadvantages of the payment schemes discussed

above. The effectiveness of these add-on bonuses depends greatly on their design:

(i) the performance measure that will be incentivized, and (ii) the person(s) to be

incentivized. Therefore, in this section, we first present our proposed add-on bonuses,

i.e., performance metrics and distribution mechanisms for maternity care. Then, we

discuss the analytical properties for these bonuses.

3.7.1 Proposed Add-on Bonuses for maternity care

In terms of the performance measures to be incentivized, we propose four types of

process- or outcome-oriented bonuses to act as add-ons to payment schemes at level

1. These are chosen based on our conversations with physicians and hospital ad-

ministrators, and on a detailed literature review on targeted performance metrics for
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maternity care. They are all based on simple metrics that are easy to observe, and

thus, are easy to implement in practice. We specify the formula of this set of bonuses

as one of multiple components in 𝑚𝐷, 𝐷 ∈ {𝐶𝑆, 𝑆𝐵} and 𝑀(𝜆, 𝑠,𝑚𝐷) in Table 3.6.

Complexity bonus. Bonus 𝐵𝐶𝑂 is paid if the physician prescribes a planned C-

section for those with 𝑥 > 𝑥*, and an SB to patients with 𝑥 < 𝑥* by the end of

prenatal care. This bonus policy would be implemented under the assumption

that the clinically optimal cut-off point 𝑥* is determined and set by the payer

for use as the patient pregnancy complexity threshold.

Postpartum outcome bonus. Bonus 𝐵𝑃𝑂 is paid in the case that neither the pa-

tient nor the baby has any post-delivery complications.

NB bonus. Bonus 𝐵𝑁𝐵 is paid so long as the patient has a NB.

CS threshold bonus. Bonus 𝐵𝑇𝐻 is paid to every physician in the group when the

overall CS rate for their patients is below a threshold.

In terms of the person(s) to be incentivized, to parallel the two stages in which

physicians are involved in deciding on delivery modes, we provide possible compen-

satory methods that cover both the prenatal and delivery stages. Specifically, we

recommend four alternative recipients for the proposed bonuses.

Consulting only: The physician responsible for prenatal care;

Delivery only: The physician responsible at the delivery stage;

Relevant parties: The responsible physicians at both the prenatal and delivery

stages;

Group: All physicians in the group when a single birth meets a certain criteria of

outcome metric.

Although the Complexity Bonus and the CS Threshold Bonus are only applicable

to consulting physicians and to the group of physicians, respectively, the rest can be
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Table 3.6: Specific Components of Different Bonus Policies

Policy 𝑚𝑆𝐵(𝑥) 𝑚𝐶𝑆(𝑥) 𝑀(𝜆, 𝑠,𝑚𝐷)
𝐵𝐶𝑂 𝐵I𝑥<𝑥* 𝐵I𝑥≥𝑥* 𝐵(1− |𝑠− 𝑥*|)
𝐵𝑃𝑂 𝐵(1− 𝐼(𝑆𝐵, 𝑥)) 𝐵(1− 𝐼(𝐶𝑆, 𝑥)) 𝐵(1−

∫︀ 𝑠

0
𝐼(𝑆𝐵, 𝑥)d𝑥−

∫︀ 1

𝑠
𝐼(𝐶𝑆, 𝑥)d𝑥)

𝐵𝑁𝐵 𝐵𝑓(𝑥) 𝐵𝑓(𝑥) 𝐵
∫︀ 𝑠

0
𝑓(𝜆, 𝑥)d𝑥

Table 3.7: Distribution Mechanisms for Proposed Complimentary Payments and the
Relevant Analytical Findings

Policy Consulting only Delivery only Relevant Parties Group
Complexity 𝐵𝐶𝑂 Proposition 3.7 Not Applicable
Postpartum 𝐵𝑃𝑂 Proposi- Proposi- Proposition Proposi-

NB 𝐵𝑁𝐵 tion 3.6 tion 3.8 3.6 and 3.8 tion 3.11
CS threshold 𝐵𝑇𝐻 Not Applicable Proposition 3.12

provided through all four distribution mechanisms. The associated expressions for

the proposed bonuses under different distribution mechanisms are specified in Table

3.9.

Table 3.8: Applicability of Distribution Mechanisms for Outcome oriented Bonuses

Policy Consulting only Delivery only Relevant Group
Parties

Complication 𝐵𝐶𝑂 Proposition 3.7 Not Applicable
Postpartum 𝐵𝑃𝑂 Proposi- Proposi- Yes Proposi-

NB 𝐵𝑁𝐵 tion 3.6 tion 3.8 tion 3.11
CS threshold 𝐵𝑇𝐻 Not Applicable Proposition

3.12

80



T
ab
le
3.
9:

M
od
el
of

D
iff
er
en
t
B
on
us

D
is
tr
ib
ut
io
n
M
ec
ha
ni
sm

s

P
ol
ic
y

𝑚
𝐼 𝑆
𝐵
(𝜆
,𝑥
)

𝑚
𝐼 𝐶
𝑆
(𝑥
)

𝑚
𝑆
𝐵
(𝜆
,𝑥
)

𝑚
𝐶
𝑆

𝑀
(𝜆
,𝑠
)

C
om

pl
ic
at
io
n
B
on
us

C
on
su
lt
in
g
O
nl
y

𝑃
𝑃

𝑃 𝐽
+
𝐵
I 𝑥

<
𝑥
*

𝑃
+
𝐵
I 𝑥

≥
𝑥
*

𝑃
+
𝐵
(1

−
|𝑠
−
𝑥
* |)

N
B
B
on
us

C
on
su
lt
in
g
O
nl
y

𝑃
𝑃

𝑃 𝐽
+
𝐵
𝑓
(𝑥
)

𝑃
𝑃
+
𝐵
∫︀ 𝑠 0

𝑓
(𝜆
,𝑥
)d
𝑥

D
el
iv
er
y
O
nl
y

𝑃
+
𝐵
𝑓
(𝑥
)

𝑃
𝑃
+
𝐵
𝑓
(𝑥

)
𝐽

𝑃
𝑃
+
𝐵
∫︀ 𝑠 0

𝑓
(𝜆
,𝑥
)d
𝑥

R
el
ev
an
t
P
ar
ty

𝑃
+
𝐵
𝑓
(𝑥
)

𝑃
𝑃
+
(𝐽

+
1
)𝐵

𝑓
(𝑥

)
𝐽

𝑃
𝑃
+
2𝐵
∫︀ 𝑠 0

𝑓
(𝜆
,𝑥
)d
𝑥

G
ro
up

𝑃
+
𝐵
𝑓
(𝑥
)

𝑃
𝑃 𝐽
+
𝐵
𝑓
(𝑥
)

𝑃
𝑃
+
𝐽
𝐵
∫︀ 𝑠 0

𝑓
(𝜆
,𝑥
)d
𝑥

P
os
tp
ar
tu
m

O
ut
co
m
e
B
on
us

C
on
su
lt
in
g
O
nl
y

𝑃
𝑃

𝑃 𝐽
+
𝐵
(1

−
𝐼
(𝑆

𝐵
,𝑥
))

𝑃
+
𝐵
(1
−

𝑃
+
𝐵
(1
−

𝐼
(𝐶

𝑆
,𝑥
))

∫︀ 𝑠 0
𝐼
(𝑆

𝐵
,𝑥
)d
𝑥
−
∫︀ 1 𝑠

𝐼
(𝐶

𝑆
,𝑥
)d
𝑥
)

D
el
iv
er
y
O
nl
y

𝑃
+
𝐵
(1
−

𝑃
+
𝐵
(1
−

𝑃
+
𝐵
(1
−
𝐼
(𝑆

𝐵
,𝑥
))

𝐽
𝑃
+
𝐵
(1
−

𝑃
+
𝐵
(1
−

𝐼
(𝑆

𝐵
,𝑥
))

𝐼
(𝐶

𝑆
,𝑥
))

𝐼
(𝐶

𝑆
,𝑥
))

∫︀ 𝑠 0
𝐼
(𝑆

𝐵
,𝑥
)d
𝑥
−
∫︀ 1 𝑠

𝐼
(𝐶

𝑆
,𝑥
)d
𝑥
)

R
el
ev
an
t
P
ar
ty

𝑃
+
𝐵
(1
−

𝑃
+
𝐵
(1
−

𝑃
+
(𝑖
+
𝐽
)𝐵

(1
−
𝐼
(𝑆

𝐵
,𝑥
))

𝐽
𝑃
+
𝐵
(1
−

𝑃
+
2𝐵

(1
−

𝐼
(𝑆

𝐵
,𝑥
))

𝐼
(𝐶

𝑆
,𝑥
))

𝐼
(𝐶

𝑆
,𝑥
))

∫︀ 𝑠 0
𝐼
(𝑆

𝐵
,𝑥
)d
𝑥
−
∫︀ 1 𝑠

𝐼
(𝐶

𝑆
,𝑥
)d
𝑥
)

G
ro
up

𝑃
+
𝐵
(1
−

𝑃
+
𝐵
(1
−

𝑃 𝐽
+
𝐵
(1

−
𝐼
(𝑆

𝐵
,𝑥
))

𝑃
+
𝐵
(1
−

𝑃
+
𝐽
𝐵
(1
−

𝐼
(𝑆

𝐵
,𝑥
))

𝐼
(𝐶

𝑆
,𝑥
))

𝐼
(𝐶

𝑆
,𝑥
))

∫︀ 𝑠 0
𝐼
(𝑆

𝐵
,𝑥
)d
𝑥
−
∫︀ 1 𝑠

𝐼
(𝐶

𝑆
,𝑥
)d
𝑥
)

C
S
T
hr
es
ho
ld

B
on
us

G
ro
up

*
𝑃
+

𝑃
𝑃
+
𝐵
I∫︀ 𝑠 0

𝑓
(𝜆

,𝑢
)d

𝑢
≥
1
−
𝑟
*

𝐽
𝑃

𝑃
+

𝐵
I∫︀ 𝑠 0

𝑓
(𝜆

,𝑢
)d

𝑢
<
𝑟
*

𝐵
I∫︀ 𝑠 0

𝑓
(𝜆

,𝑢
)d

𝑢
≥
1
−
𝑟
*

81



3.7.2 Analytical Properties of Proposed Bonuses

We demonstrate the analytical properties of these bonuses, for which our findings

are summarized in Table 3.8. These analytic properties provide crucial managerial

insights, given that most of these bonuses have not yet been implemented in the

health care system. We verify our analytical findings with numerical experiments,

which are presented in Section 3.9.

First, we show the impact of alternative bonus types on physicians’ decisions to

perform a planned CS in the prenatal stage. By design, these would be the NB,

Postpartum Outcome and Complexity Bonuses that are provided to the consulting

physicians.

Proposition 3.6 If 𝑠 < 𝑥* under the original payment mechanism, an NB Bonus

𝐵𝑁𝐵 increases 𝑠 in the prenatal stage. If 𝑠 is smaller than the intersection of 𝐼𝐶𝑆) and

𝐼𝑆𝐵(𝜆, 𝑥), the incidence of complications under CS and SB respectively, a Postpartum

Bonus 𝐵𝑃𝑂 also increases 𝑠 in the consulting stage.

This result implies that the NB and Postpartum Outcome Bonuses simply reduce the

chance of a planned CS decided on in the prenatal stage. For the former one, this may

lead to under-treatment, i.e., not prescribing a CS although it is medically appropri-

ate, in some cases depending on the monetary value of the bonus and base payment

model. On the other hand, a Complexity add-on may be more effective in discourag-

ing either over- or undertreatment. Intuitively, it provides motivations to prescribe

both SBs for patients with low risk and planned CSs for medically appropriate cases.

This is formulized in the result below.

Proposition 3.7 A Complexity add-on reduces deviation from the clinical cut-off

point, as compared to the same reimbursement mechanism without the add-on.

This proposition shows that complexity-related add-on motivates physicians to align

with the payer’s quality objective in Eq.3.5.

Second, we show the advantage of proper add-on to motivate the physician’s full

effort when performing a delivery under an SB decision. These would be the NB and

Postpartum Outcome Bonuses to be paid to the delivering physicians.
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Proposition 3.8 Providing an NB rate or a Postpartum Outcome Bonus to on-call

physicians can increase their effort level 𝜆. Specifically, the lower bound of the NB

rate add-on or Postpartum Outcome Bonus is

𝐵𝑁𝐵 =
1

𝜈
𝑒𝑀𝑁 − (𝑒𝐶 − 𝑒𝑁),where 𝜈 = min

𝜆,𝑥

𝜕𝑓(𝜆, 𝑥)

𝜕𝜆
;

𝐵𝑃𝑂 =
1

𝜏
𝑒𝑀𝑁 − 𝜐

𝜏
(𝑒𝐶 − 𝑒𝑁),where 𝜏 = min

𝜆,𝑥

−𝜕𝐼𝑆𝐵(𝜆, 𝑥)

𝜕𝜆
, 𝜐 = max

𝜆,𝑥

𝜕𝑓(𝜆, 𝑥)

𝜕𝜆
;

Proposition 3.8 implies that the NB and Postpartum Outcome Bonuses may lead to a

reduction in the number of unnecessary emergency CSs. These two types of bonuses

would motivate physicians to choose the most appropriate and efficient procedure at

the delivery stage by giving their best effort. The Postpartum Outcome Bonus can

also be interpreted as the combination of an upfront payment with a penalty for post-

delivery complications, where the penalty would discourage improper procedures and

underutilization of efforts at the delivery stage, resulting in an improved quality of

care.

Next, we study the alternative bonuses from the cost-effectiveness perspective.

The following proposition reveals the difference of Complexity bonus and NB bonus

regarding to their costs.

Proposition 3.9 Given the same effort level in the delivery stage, regarding consult-

ing only bonuses to achieve the same feasible level of quality, Complexity Bonus costs

less than NB Bonus.

Although Complexity Bonus performs better in reducing costs with the similar level of

care quality, it has its own drawbacks. Note that, it is very challenging to ascertain

the true complexity level of a patient, because this is an assessment done by the

physician. Some physicians may overestimate 𝑥 that would result in an increase in

the bonus payments. Therefore, the implementation of a complexity bonus involves

a potentially expensive monitoring and auditing mechanism.

Similarly, the following proposition shows the advantage of postpartum bonus in

terms of cost savings.
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Proposition 3.10 Given the same effort level in the delivery stage, regarding con-

sulting only bonuses to achieve the same feasible level of quality, Postpartum Outcome

Bonus costs less than Complexity Bonus.

There are also several obstacles in implementing Postpartum Outcome Bonus. First,

it is effort intensive in the selection of an appropriate set of postpartum metrics, and

then in follow-up and reporting. Our analysis shows that the quality of care resulting

from this bonus type is quite sensitive to the list of postpartum complications included

in the scope of the bonus. The monetary value of this bonus is a function of the

frequency of different complication types. Therefore it can vary significantly with the

complications included, as presented in Proposition 3.8. Moreover, there could be a

significant time lag between childbirth and potentially experiencing at least one of

these postpartum complications. Theoretically, the longer the period after childbirth,

the more metrics can be included, which increases the policy’s efficacy. However, an

extended post-childbirth period adds more difficulties to monitor.

Providing bonuses to both relevant parties reinforces the impact of bonuses on

both the prenatal and delivery stages, resulting in reductions in emergency and

planned CSs. The Group mechanism not only has the same advantage as the Rele-

vant Party one, but also involves “peer pressure”, which offers a further motivation in

addition to financial incentives. Specifically, physicians who do not practice properly

are very likely to be pressured by their colleagues because their decision or effort

level negatively impacts on their colleagues’ incomes, in addition to their own. How-

ever, a bonus to the whole group may not be an economical option from the payer’s

perspective, i.e., the marginal benefit may not be as high as the increased expenses.

Proposition 3.11 A Group bonus leads to higher expenses for the payer, as compared

with a Relevant Party bonus with the same impact.

This result implies that a Relevant Party mechanism is preferable to a Group mecha-

nism from a cost-saving perspective. Moreover, a CS Threshold add-on based on the

delivery mode of the pooled patients for the group of physicians may be problematic

from the perspective of quality of care as Proposition 3.12 specifies.
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Proposition 3.12 Suppose that any group of physicians is eligible for the bonus 𝐵𝑇𝐻

if the overall CS rate for their patients does not exceed 𝑟*, which is associated with

a desired cut-off of 𝑠* derived from Lemma 3.3. Let 𝑔(·) be the intensity distribution

of a certain population in terms of pregnancy complexity. The impact of 𝐵𝑇𝐻 on the

physicians’ actual decision 𝑠 at the prenatal stage can be

∙ 𝑠 > 𝑠* if high risk population
∫︀ 𝑥

0
𝑔(𝑢)d𝑢 ≤ 𝑥;

∙ 𝑠 < 𝑠* if low risk population
∫︀ 𝑥

0
𝑔(𝑢)d𝑢 ≥ 𝑥.

Proposition 3.12 demonstrates the existence of under- (𝑠 > 𝑠*)or overtreatment

(𝑠 < 𝑠*) with the CS Threshold bonus. After all, it is impossible for the universal

threshold rate to work appropriately for all physicians with different patient case-

mixes. Indeed, some physicians may have more high-risk patients than others. Physi-

cians with relatively more high-risk patients would have to avoid using clinically nec-

essary CSs in order to achieve the desired CS rate, and hence, avoid financial losses.

By contrast, physicians with fewer high-risk patients would enjoy those bonuses but

still implement unnecessary CSs. In addition, the demographic characteristics of a

population may vary over time, but this static threshold cannot adapt to dynamic

demographic shifts. Therefore, this bonus can place quality of care at risk. However,

this sort of bonus has been considered the most popular mechanism in recent P4P

initiatives in maternity care, due to the fact that it is easier to monitor and record the

aggregated results of a group of physicians than the separate records of individuals.

3.8 Proposed Reimbursement Policies

In this section, we propose a two-level payment model for maternity care. First, we

present our proposed policy and then discuss its performance when we incorporate

the physicians’ heterogeneity in the medical decision making process of childbirth.
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3.8.1 Proposed Model

We propose a simple reimbursement policy for maternity care: a blended model as

base payment and an NB add-on as a complementary incentive, which is effective

at improving the quality of maternity care and reducing overall expenses. While

proposing a reimbursement policy among several alternatives, we take into account

the factors of (i) being easily implementable in practice, (ii) being robust to the

different parameters of maternity care, and (ii) still perform good once we incorporate

the physicians’ heterogeneity in the medical decision making process of childbirth

Definition 3.1 The proposed reimbursement policy involves a blended rate 𝑃𝐵𝑃 as

a base payment plus an NB bonus rate 𝐵𝑁𝐵 for physicians who serve the delivery.

In terms of the recipient of the bonus part, although it could be paid to either

consulting or delivery physicians or both of them we propose to be paid to the delivery

physician. Although we do not capture it explicitly in our model, the literature

suggests that proving a bonus of NB during SB will create "peer pressure", which

offers a further motivation in addition to financial incentives. Specifically, physicians

who have a tendency to perform planned CSs for the cases that NB will be medically

more appropriate are very likely to be pressured by their colleagues because their

decision negatively impacts on their colleagues’ incomes as well. Therefore, an NB

bonus paid to delivery physicians serves as a dual incentive for physicians: it works

indirectly toward having them prescribe an SB during the prenatal care, and directly

to promote a full effort during the delivery stage. With the effect of peer pressure,

this alternative could result in similar level of care quality with less maternity costs

(??).

As discussed before, bundled model performs best regarding to minimizing the

deviation from a clinical cut-off point. By the following lemma, we first show that

our proposed payment policy is a special case of bundled payment.

Lemma 3.11 A bundled payment 𝑃𝐵𝐿 is equivalent to the combination of a blended

payment with a blended rate (𝑃𝐵𝐿 − 𝑐𝐶𝐻
𝐽
) and a NB bonus of

𝑐𝐶𝐻−𝑐𝑁𝐻
𝐽

.
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Recall that the bundled payment model also motivates physicians to give their best

effort during deliveries occurring in their shifts. The NB bonus works in a similar

way to a bundled payment. The blended rate and the NB add-on are equivalent to a

linear combination of blended and bundled payments. We show the equivalence when

both are combined in a blended payment in Proposition 3.13 below.

Proposition 3.13 A blended payment with an NB bonus (𝑃𝐵𝑃 , 𝐵𝑁𝐵) is equivalent

to the linear combination of a blended payment with a blended rate (1 − 𝜃)𝑃𝐵𝑃 and

a bundled payment with rate 𝜃𝑃𝐵𝐿, ∀𝜃 ∈ [0, 1], where 𝐵𝑁𝐵 = 𝜃
𝐽
(𝑐𝐶𝐻 − 𝑐𝑁𝐻), and

𝑃𝐵𝐿 =
𝑐𝐶𝐻
𝐽
+ 𝑃𝐵𝑃 .

The linear combination of blended and bundled payments shows the cost-sharing fea-

ture of the optimal reimbursement scheme, where physicians share part of the delivery

cost with the payer. When 𝜃 = 0, both are pure blended payment schemes. While

𝜃 = 1, they both become bundled system. The lower bound of 𝐵𝑁𝐵 in Proposition 3.8

indicates a lower bound of 𝜃, the minimum effective portion of the delivery cost that

a physician should bear in order to motivate a full effort during the delivery stage.

Physicians do not bear all the financial risks in this proposed scheme, unlike they do

in a bundled payment model; therefore, the payer provides a lower risk premium than

in a bundled payment, leading to a lower maternity care cost.

The blended rate acts as a base amount that physicians receive regardless of the

delivery mode. This base rate is supposed to be high enough to cover the efforts of

the least effort-intensive mode, i.e., a planned CS. Thus, it guarantees that certain

planned CSs will be used for high-risk patients. The second bonus encourages NBs

at both the prenatal and delivery stages. We further examine the features of this

model below, by breaking down the physicians’ average rates into different delivery

procedures.

𝑃𝑁(𝜆, 𝑥) = 𝑃𝐵𝑃 +𝐵𝑁𝐵𝑓(𝜆, 𝑥);

𝑃𝐸𝐶(𝑥) = 𝑃 𝑃𝐶(𝑥) = 𝑃𝐵𝑃 .
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This implies a modified outcome-dependent FFS mechanism. The CS and NB rates

vary with the actual delivery procedures. Clearly, a successful NB for a low-risk

patient leads to the highest marginal income, which is different from the traditional

static FFS. Moreover, payers can flexibly adjust the overall CS rates by setting up

proper rates in Def. 3.1.

Lemma 3.12 Under the reimbursement scheme expressed in Def. 3.1, the overall

CS rate increases as 𝐵𝑁𝐵 decreases, or as 𝑃𝐵𝑃 increases. Moreover, 𝑀(𝜆, 𝑠,𝑚𝐷) is

concave with respect to 𝑠.

The following proposition states that a global optimal solution exists to Problem 𝑍𝑃

with the specific rates outlined in Definition 3.1.

Proposition 3.14 There exists at least one global optimal solution to the optimiza-

tion problem 𝑍𝑃 under the proposed policy in Definition 3.1.

The desired maternity care outcome therefore exists under this two-level payment

mechanism. Moreover, the value maximization solution in Proposition 3.2 is achiev-

able, though the total expenses would be higher than those in the benchmark.

Corollary 3.5 The value maximization solution to Problem 𝑍𝐵𝑀 is a subset of fea-

sible solutions to the optimization problem 𝑍𝑃 under the payment scheme in Def.

3.1.

We show our numerical analysis on the optimal threshold and the associated expenses

in Section 3.9. The robustness of this scheme is examined and verified through a

sensitivity analysis over various parameters including group size, altruism level of

physicians, clinical threshold of 𝑥* and effort levels for alternative delivery modes,

presented in EC5 in Electronic Company.

3.8.2 Incorporating Physician Heterogeneity

This section relaxes the typical assumption of physician homogeneity in the basic

model and study the proposed reimbursement policy in physician heterogeneity con-
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text. In reality, physicians tend to have different patient mixes (i.e., different distribu-

tions of patient complexity), and they themselves vary according to their preferences,

experience and skills. For example, O’Neill and Kuder (2005) finds that physicians’

personal characteristics, practice settings and patient populations contribute to vari-

ations in the likelihood of prescribing a service in three specified clinical scenarios.

Feinstein et al. (2013) studies the impacts of patient and physician factors, apart from

regional variations, on the utility of radiation therapy with a retrospective cohort de-

sign. Nevertheless, the features of optimal reimbursement mechanisms may not be

mitigated by physician heterogeneity. Moreover, when properly designed, reimburse-

ment mechanisms are able to motivate physicians to enhance their professional skills,

in addition to achieving the main goal of reducing unnecessary CSs.

Heterogeneous Patient Mix

First we study physicians with a heterogeneous patient mix. Typically, we consider a

group of two physicians: one with riskier patients and the other with fewer high-risk

patients.

Proposition 3.15 The proposed reimbursement mechanism is independent of differ-

ent complexity distributions. Specifically, each physician’s total income is independent

of his patient mix.

This proposition implies another advantage of the proposed policy. It creates a mech-

anism for physicians to share patients - to "exchange" patients between them - to

support NB at the actual delivery stage. Physicians may therefore be indifferent to

the possibility of having a different patient mix than their colleagues.

Heterogeneous Diagnosis Skills

The study by Ghaffarzadegan et al. (2013) finds that physicians who have been prac-

ticing longer are more likely to decide on an arranged CS, based on their system

dynamics simulation model of physicians focusing on experiential learning. Suppose

a given original existing reimbursement mechanism induces physicians to set up an

optimal threshold as 𝑠0. Denote the actual pregnancy complexity as 𝑥. Then, physi-

cians with higher-qualified diagnosis skills may have a 𝑥𝑑 very close to 𝑥. However,
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diagnosis skills make a difference only if 𝑥𝑑 and 𝑥 fall onto different sides of 𝑠0. More

specifically, if 𝑥 < 𝑠0 and the woman should be prescribed an SB, but a physician

diagnoses the pregnant woman and assesses a 𝑥𝑑 ≥ 𝑠0, and accordingly prescribes an

arranged CS, then the patient will suffer more damage than benefit, impairing the

quality of care; and eventually, the physician would suffer a loss of his total utility.

However, so long as the physician can diagnose a 𝑥𝑑 < 𝑠0 and prescribe an SB, the di-

agnosis can be considered proper. Therefore, we model the physicians’ diagnosis skills

as the probability of 𝑥𝑑 and 𝑥 falling onto the same side of 𝑠0. In other words, the

chance of correctly prescribing an arranged CS 𝐶𝑆 for higher-risk pregnant women

𝐻 with 𝑥 ≥ 𝑠0, due to the diagnosed 𝑥𝑑 ≥ 𝑠0 is assumed the same as the probability

of prescribing an SB 𝑆𝐵 for low-risk patients 𝐿 with 𝑥 < 𝑠0 and 𝑥𝑑 < 𝑠0. Suppose

that the probability of a correct diagnosis is 𝑎, following the framework of Allard et

al. (2011).

Pr(𝐶𝑆|𝐻) = 𝑎, Pr(𝐶𝑆|𝐿) = 1− 𝑎

Pr(𝑆𝐵|𝐿) = 𝑎, Pr(𝑆𝐵|𝐻) = 1− 𝑎

Assume that physicians differ only in terms of diagnosis skills, and that the other

facets remain the same for all physicians. The following proposition shows the rela-

tionship between diagnosis skills and the likelihood of an improper decision.

Proposition 3.16 Physicians may lose Pr(𝐿|𝐶𝑆) of their incomes from decision of

a planned CS, and lose Pr(𝐻|𝑆𝐵) of their income from a decision of an SB. The

losses are non-increasing with respect to 𝑎.

Proposition 3.16 indicates that there is less chance of a loss of utility if diagnosis skills

have been enhanced or 𝑎 becomes larger. Therefore, this proposed reimbursement

mechanism contributes to motivating physicians to improve their diagnosis skills since

this can lead to a larger total utility.

Heterogeneous Procedural Preferences

Physicians may have different preferences or treatment styles (Epstein and Nicholson,

2009); for instance, some may be more confident with a natural birth, while others
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may be better at CS surgery. Goyert et al. (1989) finds that physicians’ practice styles

are more likely to contribute to large variations in the CS rate than other physician

factors like medical and legal experience.

We would like to depict these types of preferences or procedural skills by adding

a preference factor 𝑝𝑓 > 0, such that the physicians who prefer CSs consider their

CS effort as 𝑒𝐸𝐶 − 𝑝𝑓 . On the other hand, those with a preference for natural births

will view the effort of natural birth as 𝑒𝑁 − 𝑝𝑓 . We study the impact of heterogenous

procedural preferences on proposed scheme through the change of physicians’ effort

in the sensitivity analysis, and show that our proposed scheme is relatively the most

robust regarding this issue; although financial incentives tend to be very weak to

impact physicians’ preferences.

3.9 Numerical Analysis

We verify our major analytical results, undertake a comparative study of the base and

complementary payment schemes and assess the performance of the proposed policy

on the same data set described in Section 3. Our methodology to develop a quan-

titative metric for measuring the pregnancy complexity and identifying a threshold

𝑥* is described in Section 3. For our numerical analyses, we estimate the probability

of having a NB under SB decisions for given 𝑥 as well as the probability of having a

postpartum complication for given 𝑥 and the delivery mode by analyzing the same

data set. The related cost figures are calculated by using detailed published reports

on the cost of childbirth. Further details on the parameter estimation methods are

provided in Electronic Companion. The main results of our numerical analyses are

given in in Table 3.10 and 3.11.

In this section, we highlight the major findings of the numerical study. Table

3.10 and Table 3.11 illustrate the resulting CS rates and the average cost per delivery

under different reimbursement mechanisms.We assess the performance of an incentive

mechanism in terms of three factors: (i) deviation between clinical cut-off point and

𝑠, (ii) overall CS rate 𝑟 and (iii) the expected cost.
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Table 3.10: Compare Optimal Rates

Policy Cost Quality
Threshold 𝑠 ΔΠ (%)* r (%) Threshold 𝑠 ΔΠ (%)* r (%)

Benchmark 0.98 - 21.87 0.85 - 24.91

FFS 0.72 4.87 34.22 0.72 3.99 34.22
Blended 0.76 3.78 31.01 0.76 2.90 31.01
Bundled 0.99 1.97 19.89 0.85 3.57 23.51
Bundled* 0.83 2.96 25.90 0.85 3.75 24.91

Proposed 0.83 2.07 25.90 0.85 2.18 24.91

Notes
1. ΔΠ (%) are the percentage change from benchmark;
2. Bundled* refers to the bundled payment with different rates for low and high risk
patients.

Observation 1: Under FFS, the ideal clinical cut-off point is not achievable and

the average birth-related costs are approximately 5% higher than the benchmark.

We estimate the average overall CS rate under this payment mechanism as 34%,

which is really close the current CS rates in US. The blended model provides certain

improvements in average cost and CS rate over FFS i.e., 1.09% and 9.40% respectively.

However, we also numerically confirm that Corollary 3.2 holds both for FFS and

blended models, such that the set of feasible solutions for 𝑠 under these models is

outside theare region defined by 𝑥* and 𝑠𝐸. Therefore, although blended model might

offer some improvements in the system, it would be still suboptimal with a chance

that increasing cost would not necessarily improve the quality of care.

Observation 2: On the other hand, under the bundled system, the average costs

can be reduced by 3%, a significant improvement over FFS under cost minimization

objective. However, the deviation between the threshold for medically appropriate

planned CS and the physicians’ threshold 𝑠 is pronounced, indicating the tendency

of physicians to under-treat patients under bundled payment. We numerically verify

Corollary 3.4 that increasing bundled rate can motivate physicians to set up the

quality-maximizing threshold 𝑥*; however in this case, the estimated improvement

in the average cost is only 0.4% over FFS. Our experiments show that although it
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Table 3.11: Compare Different Bonus Mechanisms

Policy Cost Quality
Threshold 𝑠 ΔΠ (%)* r (%) Threshold 𝑠 ΔΠ (%)* r (%)

Complexity Bonus
Consulting Only 0.84 2.74 25.27 0.85 1.93 24.91

NB Bonus
Consulting Only 0.82 2.85 26.57 0.85 3.30 24.91
Delivery Only 0.83 2.07 25.90 0.85 2.18 24.91
Relevant Party 0.82 3.63 26.57 0.85 7.54 24.91

Group 0.76 3.78 31.01 0.85 20.91 24.91

Postpartum Bonus
Consulting Only 0.76 3.78 31.01 0.77 4.22 30.23
Delivery Only 0.91 0.30 23.13 0.85 0.49 24.91
Relevant Party 0.83 3.50 25.90 0.85 2.67 24.91

Group 0.76 3.78 31.01 0.85 13.95 24.91

CS Threshold Bonus
Group 0.85 13.82 24.91 0.85 12.86 24.91

High risk population 0.87 13.77 24.22 0.85 13.19 24.91
Low risk population 0.83 14.20 25.90 0.83 13.24 25.90

Complexity Bonus for Consulting + NB Bonus for delivery only
Combined 0.83 2.07 25.90 0.85 1.93 24.91

ΔΠ (%) are the percentage change from the corresponding cost-minimum or quality
maximum benchmark. All bonuses are complimentary to blended payment. For CS
Threshold Bonus, the threshold is 25 % overall CS rate.
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is possible to further improve quality of care by offering different bundled rates for

low and high risk patients, this offsets 1.9% of the cost advantages of using a single

bundled rate. We also observe that smaller physician groups are more likely to under

treat patients, whereas larger physician groups tend to be less sensitive about the

resource utilization.

Observation 3: Complementary payments are quite effective to offset some of

the disadvantages of the base payment models, if properly designed. For almost all

alternative combinations (i.e. bonus type plus recipient) of complimentary payments,

the feasible solution for 𝑠 includes at least one of the 𝑥* and 𝑠𝐸 values. That is a

preferred solution as discussed in Corollary 3.2. The only exceptions are postpartum

bonus for consulting physicians and group threshold bonus for low risk population.

Observation 4: Regarding the complimentary payments offered for the consulting

physicians, a Complexity add-on is a more effective way to motivate physicians to

make the proper decisions compared to other alternatives, with estimated improve-

ments of 2.1% and 26% for average cost and CS rates respectively, over FFS. It is

followed by the NB bonus, with 2% decrease in average cost and 22% decrease in CS

rates when compared to those for FFS. Under care quality maximization objective,

Complexity and NB bonuses reported the same planned and overall CS rates, where

the former imposes the same impact with less average costs, approximately 1.4% less,

which confirms our analytical finding presented in Proposition 3.9.

Observation 5: Our results suggest that Postpartum Outcome Bonus offered to

consulting physicians is not really efficient in providing necessary incentives. This

complementary payment model, however, is quite effective if it is offered to delivery

physicians. It deviates only 0.3% and 0.49% from the cost minimization and the

quality of care maximization objectives of benchmark problem, respectively. On the

other hand, NB bonus is more effective if it is offered to delivery physician compared

to being offered to consulting physicians (at least the same 𝑠 and 𝑟 with lower cost).

Observation 6: For the add-ons that can be paid to either of the relevant parties or

offered as group bonus, the former outperforms the latter. The numerical experiments

confirm our analytical findings that complementary payments offered to all physicians
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in the group is less cost-effective compared to other alternative recipients.

Observation 7: In parallel to our findings discussed above, CS Threshold policy is

quite expensive compared to other alternatives. For instance, the average maternity

cost under Π𝑄 with CS Threshold bonus is 8% higher than that with NB bonus offered

to delivery physician, whereas they result in the same 𝑠 and 𝑟.

Observation 8: Our recommended policy proposes 3% reduction in average birth

related costs and 27% decrease in overall CS rate compared to those under the FFS

system. Please note that regarding the performance of alternative complimentary

payment model, under both objective functions, Postpartum Outcome Bonus given

to delivery physicians performs best based on the deviation from the benchmark for

the related objective. However, among all these incentive models with similar impacts

on overall CS rates, our recommended policy is the most robust with regard to the

important parameters of the maternity care including the group size, the physicians’

altruism levels, a possibly varied clinical cut-off point, and the physicians’ heteroge-

neous procedural preferences. Moreover, the impact of Postpartum Outcome as well

as Complexity bonuses depend on the intensity distribution of a certain population in

terms of pregnancy complexities. However, it is not the case for our proposed policy.

Detailed graphs and results of the sensitivity analysis are presented in the Appendix.

3.10 Limitations and Conclusion

This work focuses on the design of financial incentives in order to reduce unnecessary

C-sections. Through our modeling framework, we first analyze different base pay-

ment mechanisms, and then alternative complementary incentives comprehensively.

In the context of basic payment mechanisms, both FFS and blended payment schemes

lead to increased CS rates. Although blended model does not give direct economic

benefits to perform CS, it fails to provide incentives to physicians in order to give

full effort while monitoring the prolonged labor or eliminate the tendency to deliver

their own physicians. While bundled system provides the best solution for minimizing

the maternity care cost from payer’s perspective, in this model the physicians face a
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high financial risk, which leads to under-treatment and patient selection. Likewise,

assuring certain level of care quality might require a high-risk premium for physi-

cians to take on all associated financial risks. Among alternative add-ons, we show

that the Group Bonus mechanism, and therefore the CS Threshold Bonus, is quite

costly compared to the other options. Although a Complexity Bonus seems to be the

best alternative for avoiding unnecessary planned CSs, it fails to motivate best prac-

tices during the delivery stage. The bonuses for Postpartum Outcome and NB have

similar impacts on CS rates; however, the former has major drawbacks from an im-

plementation perspective, including, first, selection of the proper set of post-delivery

complications and then monitoring.

As a conclusion of our analyses, we propose a two-level payment scheme for ma-

ternity care. This policy involves a blended base payment and a bonus for NB. This

typical contract inherits the feature of risk-sharing, or cost-sharing, from the tra-

ditional pricing contracts of supply chains. This proposed mechanism succeeds in

aligning the physicians’ priority of maximizing utility with the payer’s value max-

imization objectives. Moreover, the proposed bonus linked with the incidence of

successful NBs, contributes to the coordination among physicians in the same group.

With the potential to motivate peer oversight, this policy tends to incentivize proper

birth plan decisions and best practices at the delivery stage. Furthermore, it does

not require any advanced information collection and monitoring, therefore it is really

practical to implement and the administrative cost of our proposed measurement is

expected to be low (Cachon and Lariviere., 2001).

Our study has several limitations. First, a number of existing empirical works

have found that hospitals’ guidelines and capacity issues might have an impact on

the abuse of CSs (Smith et al., 1992; Font, 2009; Brick and Layte, 2011). Our study fo-

cuses on the decision making in childbirth from the physician’s perspective; however,

extending our model by incorporating hospital-physician interactions could provide

important managerial insights as well. Second, our model is in a static setting. The

decision-maker decides on a financial mechanism and then the physicians determine

the delivery procedures in the same period. Though we do consider the impacts of a
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well-designed reimbursement policy on constantly motivating enhancement of physi-

cians’ professional skills, as a reaction from contract takers, it would be valuable to

find a way to study the physicians’ dynamic reaction. Finally, for reasons of simplic-

ity, our work makes the assumption of passive patients, i.e., who comply perfectly

with the physicians’ decisions. However, this might not be the case in reality. Pa-

tients tend to have various levels of reaction to their own treatment. They can shift

to alternative care providers or follow their own preferences in choosing hospitals or

physicians (e.g. Fabbri and Monfardini (2008)). One of the possible extensions of

this study could be studying the interactions between patients and physicians.
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Chapter 4

Design of Specialist Responsible

Policies to Reduce Waiting Times in

Emergency Departments
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4.1 Introduction

Emergency department (ED) overcrowding is a widely used term referring to a sit-

uation where the demand for ED services exceeds the ability to provide care in a

reasonable amount of time (Ospina et al., 2006). ED overcrowding has been a key

issue in Quebec for more than 40 years. Despite increased political, administrative,

and public awareness, ED overcrowding continues to rise in frequency and severity

(Bond et al., 2007; Roberge et al., 2010). International comparative studies have

found that the Quebec population had not only the highest rate of ED visits but also

the longest waiting times to receive care in ED (Roberge et al., 2010). In Quebec,

despite the established targeted ED average length of stay (LOS) being 12 hours,

the average stay for stretcher patients reached 17.6 hours in 2011. Moreover, around

25% of those patients have had to stay more than 24 hours, exceeding the 10% tar-

get set by the ministry (MSSS, 2011). In addition, the LOS has been more than

48 hours for up to 10% of the stretcher patients (MSSS, 2011, 2010). Furthermore,

a substantial body of the literature has linked the increased ED overcrowding, and

ED LOS accordingly, with adverse patient outcomes (Sun et al., 2013; Carter et al.,

2014). For instance, increased stretcher occupancy is associated with increased inci-

dence of 30-day adverse patient outcomes (i.e. mortality and a return ED visit with

hospitalization)(McCusker et al., 2014).

ED overcrowding is a complex, multi-dimensional health services problem, whose

root causes extend beyond the walls of EDs. Using the well-established paradigm

of Operations Management, this problem has been conceptualized using the input-

throughput-output model (Schull et al., 2002; Asplin et al., 2003). Input factors reflect

to any condition or characteristic that contributes to the demand for ED services, such

as non-urgent visits and "frequent flyers", which, in general, refer to patients who have

4 or more annual visits to ED (Holt and Aronsky, 2008). In the context of throughput,

there are two phases. The first phase focuses on ED care processes including triage,

stretcher placement, and ED physician evaluation. The second phase includes use

of hospital resources: diagnostic testing and specialist consultation. Output factors
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reflect to efficient disposition of admitted and discharged patients out of ED. Figure

4-1 shows the typical patient flows in ED.

Figure 4-1: Patient Flow in ED

Contrary to popular perceptions and media attention, which have highlighted

input factors such as inappropriate use of the EDs by high numbers of lower acuity

patients, the vast majority of the delays occur in the second phase of the throughput

(i.e. lab testing, diagnostic imaging, specialist consultation), as well as the output

side of patient flow (i.e. admitting to hospital, discharge to home). Therefore these

are the most significant factors causing ED overcrowding, and consequently longer ED

LOS (Affleck et al., 2013; Canadian Institute for Health Information, 2014). Among

all these "second phase of the throughput and output" related factors delays for

specialist consultation (SC), i.e. the time between sending out an SC request and the

arrival of the specialist, plays a key role.

Approximately 20% ED visits requires at least one SC. Moreover only specialists,

not the ED physician, have the authority to admit patients into hospital wards.

Moreover, for patients who need an SC, the discharge decision also has to be consulted

to the specialist. In other words, the patients cannot be discharged home or admitted

to hospital wards before seeing a specialist. Furthermore, a significant portion of
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the blood and imaging tests are asked by the specialist. Thus, the specialists have

a fundamental position in ED processes since they have direct influence on imaging,

lab, discharge as well as admission delays.

In a descriptive study, Lee and her colleagues (Lee et al., 2013) show that con-

sultation process time, including waiting for the consultation, is highly variable even

in the same institution, and has an important impact on ED LOS. Our empirical

analysis on all ED visits to one of the medium sized community hospitals in Mon-

treal in one calendar year also shows an average of seven hours waiting for SC, from

sending out a consultation request to arrival of the specialist; and this delay can be

over 2 days. It is mainly because the specialists are generally busy with patients in

hospital wards, walk-in clinics and operating rooms during weekdays and may not be

on-call after business hours and over weekends. This contributes to longer LOS, and

an overcrowding, accordingly, in EDs. Unfortunately, as far as we know there have

been no systematic and practical rules for specialists to follow in ED. Our empirical

study also shows that specialists can arrive at the ED at anytime, although they ar-

rive more frequently in business hours. Motivated by this prolonged SC delays in ED,

our study aims to reduce the average LOS in ED by designing optimal schemes for

specialists’ response to SC requests. We would like to address the following research

questions:

1. What are the characters of potential rules to regulate specialists’ response to

ED requests?

2. Which rule is optimal for a certain specialist to follow?

3. How can those optimal rules for SC be best integrated into current triage in

ED?

As an inevitable and critical part of ED flow streaming, specialist scheduling

can benefit significantly from coordination with other processes in ED. To be more

specific, patient prioritization based on the joint consideration of critical conditions

and potential resources requirements (e.g. specialist, lab, etc.) can improve the overall
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performance of EDs significantly. For example, under such a coordinated system, a

patient with higher chance of SC will have a higher priority over a patient with

same level of critical conditions, i.e. triage code, but with much lower chance of SC.

Accordingly, the former type of patients will have access to ED physician assessment

earlier, so the SC request for these patients will be sent sooner , resulting in reduced

SC waiting time. Hence, through the policies we propose in this study, the delay for

SC will be shorter. Thus patients will have a much shorter LOS, which will alleviate

the overcrowding significantly.

Recently, a resource-based triage Emergency Severity Index (ESI) has been pro-

posed by Gilboy et al. (2011), which recommends that non-crucial or life-threatening

patients should be prioritized with their triage codes, as well as the predicted re-

source requirements of these patients in ED. As "resource" they refer to tests, SCs

and hospital beds.

By analyzing the same data set mentioned above, we demonstrate that a patient’s

probability of requesting an SC can be predicted at the triage with high accuracy. ED

triage can be more accurate and effective by considering both the patient’s medical

conditions and potential demand of SC. Thus, revised patient prioritization policy in

triage, which incorporates the probability of SC request, can lead to improvements

in ED overcrowding compared to current triage policies. In this study, by designing

such a modified triage policy involving the prediction of a patient’s SC request, we

propose to streamline the ED patient flow from triage to SC. Our aim is to facilitate

both specialists’ schedules and ED administrators’ management of patient flow with

a systematically optimal strategy.

Although scheduling for ED operations, i.e. scheduling of ED physicians and

nurses, has been studied extensively in literature, none of them has considered the

impact of SC delay on LOS in ED. Most studies in healthcare literature assume that

the patients get consultation without any delay. Chan et al. (2016) consider a similar

problem in the setting of patient’s discharge from hospital wards. Although patient

discharge is normally delayed by the physician’s inspection time and frequency, they

focus on the optimal inspection frequency during a day. However, there are significant
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differences between this paper and ours in the context of the problem setting. For

instance, our empirical study shows that patients have requested over ten different

types of SCs in ED, and the delay of specialist arrivals has a larger scale of impacts in

ED context. It is due to the fact that the LOS in ED is normally measured by hours,

whereas LOS in hospital wards by days. In this chapter, we consider the impact of

different policies for specialists’ arrival according to the patterns and volume of each

SC demand, and examine the potential reduction in expected LOS when implementing

resource-based triage in the end.

In order to capture the dynamics of ED patient arrivals, we study a time-varying

queueing model, unlike most of literature that considers 3 types of regimes (namely

overload or heavy traffic, critically loaded and under-loaded regime) separately, due

to the fact that each regime features distinctive methods. Actually, according to the

data set of ED visit records we analyze, patient flows in ED experience all three

regimes during a typical day. The detailed analysis of our proposed model provides

several guidelines of setting up optimal policies for specialist’s response to SC request

based on the volume and patterns of ED patients. Besides, we consider uncertain

service time as well as the inaccuracies in prioritization at the triage in our modeling

framework (Li and Glazebrook, 2010). Therefore, our analytical model incorporates

inaccurate estimation of classification at triage where forecast of SC request with

incomplete information (signals) is not perfectly precise (Argon and Ziya, 2009).

This chapter consists of three main parts. The first part focuses on analyzing

alternative policies for specialist’s arrival to ED for SCs, i.e. fixed time (FT) and

timeline (TL) policies, and studying the proper application of each policy for varied

SC demand, through queueing models with time-dependent arrivals. The second

part focuses on the integration of the modified resource-based triage with the optimal

specialists’ arrival strategies. Then we use an empirical model for predicting the

probability of each patient’s consultation requests, according to patients’ information

collected at triage, through statistical learning methods. Finally, based on the forecast

of consultation requests for each patient, we conduct a comprehensive simulation

model to evaluate potential scenarios of optimal specialist arrival policies with and
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without the modified triage policy.

4.2 Literature Review

In this study, as discussed before we consider a queueing model with time-varying

arrival rates. Current literature tends to focus on different regimes of a time-varying

queueing model, and develop typical methods to deal with each regime. Overload or

heavy traffic regime, where customers congesting the queue wait to be served, has

been prevalent in literature; since it is the most suitable approach to model systems

with overcrowding. It is also the most difficult to solve. Fluid model is applied for this

regime, and (generalized) 𝐺𝑐𝜇 rule is proposed as an optimal, i.e. prioritize the class

with the largest holding cost and service rate studied by (Huang et al., 2015), where

this rule can incorporate the arrival rate and abandonment rate (Atar et al., 2010).

Under due-date constraints, 𝐺𝑐𝜇 is equivalent to prioritize generalized longest queue

(GLQ) and generalized largest delay (GLD) rules (Van Mieghem, 2003). Critically

load regime refers to a queueing system with moderate amounts of customers, and

servers are occupied most of the time. Diffusion modeling approach or dynamic

control is applied for this regime (Down et al., 2011). Under-loaded regime, where a

queueing system has overstaffed servers, is very rare in reality. However it is important

to balance the issue of server idleness and cost reduction. Dynamic control is applied

(Down et al., 2011). In the setting of ED, eliminating the time-variation or focusing

on certain regime may be unable to capture the time-varying performance, because

all above regimes exist, link and impact each other, which leads to the failure of

steady-state distribution in a time-homogeneous queue.

Our study falls into the field of patients’ streaming and prioritization in ED. Tra-

ditional triage determines the prioritization of patients according to their medical

conditions from clinical perspective. Those patients who are considered in critical or

life-threatening conditions cannot wait long in ED, so they are treated before those

who are in less critical conditions. Literature in operations research and management

science tends to tackle this problem from the perspective of efficiency. Assuming the
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homogeneous clinical conditions for all patients, index policies aim to minimize the av-

erage waiting time by prioritizing patients in the longest queue (Van Mieghem, 2003;

Atar et al., 2010; Huang et al., 2015). Besides, classifying of patients and scheduling

different groups are popular among literature. For example, Hu and Benjaafar (2009)

showed that partitioning can be significantly beneficial to the queue system via ap-

proximation with fluid model and simulation. However, this work demonstrated that

the benefit is realized at the expense of other customer classes, that is, it is impossible

to have improvement for all customer classes in such a system. Joustra et al. (2009)

examined whether or not pool urgent and regular patients waiting for consultation in

the context of a radiotherapy outpatient department. They used queueing theory and

discrete event simulation, and concluded that pooling does not always provide benefit

to urgent patients. They also found that separation of those queues could reduce the

capacity requirement while meeting the waiting time criteria for all patients.

More recently, it is proposed that A/D streaming is another way to reduce LOS

in ED (Saghafian et al., 2012, 2014). A/D refers to a system where ED patients and

resources are divided into two streams: one for those who are likely to be discharge

home (D) and the other for those who are likely to be admitted to hospital (A).

In their papers, Saghafian and his colleagues compared A/D streaming with pooling

and incorporated sequence with feedback (i.e. prioritize new patients or old ones).

They also proposed a virtual streaming, that is, switching the resources of one type

to the other if they are idle. Omar and Okundan Kremer (2016) introduced a new

dynamic patient grouping and prioritization algorithm based on patients’ dissimilarity

that are resulted from detailed triage raw information (age, gender, pain level, vital

signs, temperature etc). In a general setting, Afeche (2013) differentiated among

customer types, and implemented a strategic allocation based on revenue. (Baron et

al., 2014) studied a set of threshold-based policies that strategically idle first station

in a tandem queue. However, all those works are based on queueing system with time

homogenous arrivals. Our work considers time varying arrivals and heterogeneous

patients with different types of specialist requirements, thus we figure out the best

specialist response policy for each type of specialist, and then test their scheduling
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among all ED patients with their triage information.

Time-dependent queueing models have been studied in data fitting, staffing and

capacity management policies. Interested readers can refer to Whitt (2016) for a

detailed bibliography on existing work of queue systems with time-varying arrival

rates. Chan et al. (2016) considers the frequency of inspection in hospital wards

and its impact on the number of customers waiting in the system. They focused

on the number of customer in system, the probability of waiting under time-varying

arrival rates impacted by inspection time in hospital wards. Though expected waiting

time is not as critical as the former two performance measures in their study, they

found numerically that the careful choice of one inspection time per day depends on

the magnitude of arrival rate variation. Similarly focusing on the discharge delay in

hospital wards, another recent work of Dai and Shi (2017) studied a time-varying

queue system with periodic Poisson arrival process. The processing time consists of

two components: 1) length of stay; 2) departure time, referring to the discharge hour

on the discharge day. They developed a novel midnight customer count process and

further analyze its stationary distribution in order to approximate time-dependent

customer count process and calculate multiple performance measures. They proposed

to advance the discharge time to alleviate the overcrowding of peak arrivals. Our work

is different from those studies. We focus in the setting of ED. In the queueing model

with time-varying arrival rates with a daily cycle, we analytically prove the optimal

fixed arrival time if specialists come to ED once a day, leading to the minimal average

per-patient waiting time for SC delay.

This study is also relevant with the literature of batch scheduling, to be more

specific with the integrated scheduling models of production and transportation. In-

terested readers can refer to Chen (2010) for models explicitly considering both pro-

duction and distribution time or cost. Our work is specifically relevant with those

deterministic scheduling problems, in which a series of delivery dates are fixed before

those jobs are processed. Hall et al. (2001) provided an efficient algorithm for such

models, and showed that the algorithm may not work for certain types of problems.

Cheng and Kovalyov (2001) considered the batch scheduling of jobs with fixed due
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dates or processing times. They presented dynamic programming algorithms to min-

imize lateness, the number of late jobs, the total delays and so on for both bounded

and unbounded batches. They also developed more efficient algorithms for several

special cases. In order to schedule a series of non-preemptive jobs with varied delivery

dates on a single machine and a non-stepwise payoff function based on cumulative

number of jobs processed before each job-independent delivery date,Seddik et al.

(2013) found the complexity of this problem and provided a pseudo-polynomial time

algorithm for the problem with two delivery dates based on dynamic programming.

Seddik et al. (2015) further proposed a polynomial time approximation algorithm to

meet both absolute and relative performance guarantees for this problem. Although

the work of Janiak and Krysiak (2007) did not explicitly consider fixed due dates,

the value of a job follows a stepwise non-increasing function in their model. Hence,

the scheduling has a big impact on the total values of all jobs completed. They

proved that such a problem could be equivalent to the NP-hard problem of minimiz-

ing weighted number of late jobs. They further designed a dynamic programming

based pseudo-polynomial algorithm for jobs with common moments of value changes,

and several heuristic algorithms to solve specially extended cases. Several papers

have studied the typical scheduling problems with fixed-interval due dates. Chha-

jed (1995) considered jobs assigned to two due-dates with constant intervals. They

found that the problem of minimizing a linear due-date penalty is NP-hard. Lee

and Li (1996) developed a pseudo-polynomial dynamic programming algorithm for

such a problem with a bounded amount of due-dates. Liu and Hsu (2015) analyzes

three types of dispatching rules in a system with fixed interval delivery dates based

on simulation. The finished jobs can be only delivered on the earliest delivery date,

incurring both earliness and due-date costs for the producer. The study proposes a

simple and feasible dispatching policy without parameter estimation to minimize the

total earliness and due-date cost for this dynamic system. The Fixed Time (FT) pol-

icy, one of the proposed specialist policies, can possibly be modeled as a scheduling

problem with fixed due-dates. However, our problem is more complicated, due to

the fact that different specialist policies mix in ED. Hence we need to consider the
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more comprehensive scheduling problem with both fixed due-dates and other types

of constrains.

4.3 Optimal Specialist Response Policy

Current ED triage has become a mature system , due to the fact that it provides a

rule for prioritization of patients and a limit for the acceptable delay between triage

and ED physician assessment for each triage code. In contrast, there are no specific

policies or rules for specialists to respond to SC . As a result, specialists themselves

decide whether and when to provide consultation to ED patients upon receiving a

request. Currently hospital administrations are considering to set up certain polices

for specialists in order to reduce extended SC delays. Assuming specialists will com-

ply with the rules, this section focuses on alternative policies for specialists from the

perspective of efficiency and feasibility. Although financial incentives meant to mo-

tivate specialists to comply with these policies are an important component for the

implementation of such policies, they are out of scope of this study. We would like

to propose the optimal rules that are most convenient for specialists to follow, specif-

ically the rules that require the least frequency of specialist visits and the maximal

certainty, facilitating their scheduling on other tasks.

We consider the potential specialist response policies, and their impact on the

LOS in ED. Each type of specialist response policies are explained as below:

Benchmark. Specialists arrive within 2 hours after request, 24/7. This is the ideal

scenario, yet is impossible to launch unless the ED has a very strong bargaining

power with its high volume of patients. Moreover, with the large scale of con-

sultation demands, ED may have the capacity to hire its own specialists who

are present all the time.

Fixed Time (FT). Specialists arrive at certain time every day. Specialists may

have to make multiple short visits every day, depending on the corresponding

demand flows. Multiple FT policies are preferred if the resulting performance
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measure is similar with those under TL policies, because FT policies are certain,

more feasible and convenient for specialists. -The specialists are aware of their

visit times and of their expected length of visit in advance, so they are able to

schedule other tasks accordingly.

Timeline (TL). Specialists arrive within 4 hours after request during certain pe-

riods,and arrive within 6 hours at rest periods. TL policies are preferred if

their performance measures significantly outperform FT policies, for example

frequency of visits are low, though uncertain.

For proposing the optimal specialist response policy, we compare the alternative

policies by using the performance measure of average waiting time per patient.

4.3.1 Performance Measures

In this subsection, we first set up the model of SC demand arrivals, and then describe

the performance measure within the modeling framework. We consider the flow of

SC requests for a certain specialist. Let 𝑇𝑗 be the arrival time of the 𝑗th patient who

requires an SC. 𝑁(𝑡) denotes the number of arrivals in (0, 𝑡],∀𝑡 > 0. 𝜆(𝑡) is the arrival

rate at time 𝑡. The properties of the time-dependent arrivals are highlighted below.

Property 4.1 (Time-dependent arrivals) In an overtake-free system (FIFO) with

no group/batch arrivals, time-dependent arrivals have the following properties:

∙ 𝑇𝑖+1 − 𝑇𝑖 is independent of 𝑇𝑗+1 − 𝑇𝐽 , ∀𝑗 < 𝑖 given 𝑇𝑖. i.e. old arrivals have no

impact on future arrivals;

∙ 𝑁(𝑡) is a renewal function dependent on 𝑡;

∙ 𝑁(𝑡) is right-continuous, differentiable;

∙ limΔ𝑡→0 E[𝑁(𝑡)−𝑁(𝑡−Δ𝑡)] exists, and is equal to 𝜆(𝑡);

∙ 𝜆(𝑡) is the derivative of 𝑁(𝑡);

∙ limΔ𝑡→0 𝜆(𝑡)Δ𝑡 is the probability of one arrival in (𝑡−Δ𝑡, 𝑡].
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Let 𝐿(𝑡) be the number of patients waiting in the system, 𝑆𝑗(𝑡) 𝑗th patient’s

system time, and 𝑊 (𝑡) total waiting time at time 𝑡 of all patients arriving by 𝑡.

Note. In contrast to 𝑀/𝐺/𝑐 system, 𝐿(𝑡) and 𝑊 (𝑡) depend on the initial

conditions at time 0; and the mean value in a stationary system does not work in the

time-varying case.

We consider the transient laws of 𝐿(𝑡) and 𝑊 (𝑡) in the time-varying case, since

the stationary system is not representative. The policy with the minimal average

waiting time for a certain arrival pattern is the optimal for that specific cluster of

patients.

�̄� (𝑡) =
𝑊 (𝑡)

𝐿(𝑡)
, (4.1)

where 𝐿(𝑡) is the number of patients waiting in the system, and 𝑊 (𝑡) total waiting

time at time 𝑡 of all patients arriving by 𝑡.

By the end of time 𝑡, 𝐿(𝑡) has the exact formula according to Bertsimas and

Mourtzinou (1997).

Lemma 4.1 (Total Queue Length) The expected total queue length (i.e. the num-

ber of patients waiting in the queue) until epoch 𝑡 is

E𝐿(𝑡) =
∫︁ 𝑡

0

𝜆(𝜏)d𝜏. (4.2)

4.3.2 FT Specialist Response Policy

In this subsection, we aim to find the optimal time for a specialist to arrive under

FT policy, so that the average per person waiting time is minimized. Given the time

dependent arrival of specialists’ demand, the timing of a specialist’s arrival can have

a significant impact on patients’ waiting time as shown in the left of Fig. 4-2. The

red areas represent the sum of total waiting time for the same amount of patients

who arrive in the two time windows of an equal length. Specifically, the vertical axis

is the total number of patients’ arrivals, and the horizontal line is the time. For the

same length of two cyclical time patterns, the total amount of arrivals are the same
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in both cycles. However, due to the different start time, the areas showing the total

waiting time are different; the latter cycle (the right upper area) has a longer average

waiting time per patient than the earlier one (the right below area). Therefore, the

time of the specialists’ arrival , that is exactly the start time of an SC session under

the FT policy, determines the average waiting time per person in ED.

Consider the pure jump process 𝑁(𝑡), and {ℱ(𝑡), 𝑡 ≥ 0} is a filtration to which 𝑁

is adapted. Let 𝑀(𝑡) be the compensated poisson process, specifically

𝑀(𝑡) , 𝑁(𝑡)−
∫︁ 𝑡

0

𝜆(𝜏)d𝜏. (4.3)

Because𝑀(𝑡) is a ℱ martingale (Watanabe, 1964), the following is also a ℱ martingale

(Bremaud, 1981).

𝐼(𝑡) =

∫︁ 𝑡

0

𝐻(𝜏)d𝑀(𝜏), (4.4)

where 𝐻(𝜏) is any stochastic process depending on the past information, that is, it

is a left continuous function. Hence, we have the following theorem regarding the

expected total waiting time.

Theorem 4.1 (Total Waiting Time) The expected total waiting time until epoch

𝑡 is

E𝑊 (𝑡) =

∫︁ 𝑡

0

𝜆(𝜏)(𝑡− 𝜏)d𝜏 (4.5)

With the help of the martingale property, we first figure out the best timing when a

specialist finishes his or her consultation session in ED.

Corollary 4.1 (Daily Optimal Time of Specialist Departure) If hourly arrival

rate 𝜆(𝑡) is periodic with a cycle of 24 hours, that is, 𝜆(𝑡) = 𝜆(𝑡 + 24), the optimal
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time of specialist departure (completeness of all service) 𝑇 satisfies

24𝜆(𝑇 ) =

∫︁ 24

0

𝜆(𝑡)d𝑡, (4.6)

𝜆′(𝑇 ) ≥ 0. (4.7)

Then we can find the best arrival time for a specialist given any general distribution

of SC duration with a finite mean.

Proposition 4.1 (Determine Daily Optimal Fixed Time) Suppose hourly ar-

rival rate 𝜆(𝑡) is periodic with only a peak in each cycle of 24 hours, the optimal fixed

time of specialist arrival 𝑇 * should be determined as

𝑇 * = 𝑇 − E(𝑆𝑇 )E[𝐿(24)]; (4.8)

where 𝑇 is determined in Corollary 4.1. The corresponding minimal average waiting

time per person is

𝑊 (𝑇 + 24)−𝑊 (𝑇 )

𝐿(24)
− 1

2
E(𝑆𝑇 )E[𝐿(24]. (4.9)

The proof of the above theorems is illustrated in the right of Figure 4-2. First we

find the optimal 𝑇 in the cycle of 24 hours for a specialist to finish his/her session.

Then the waiting for the sequential specialist starts from 𝑇 to 𝑇 + 24, because we

consider only one specialist arrival per day. Therefore, we first find the optimal 𝑇

that minimize the total waiting time of all patients arriving this day in Corollary 4.1,

and then figure out the optimal specialist’s arrival time 𝑇* in Proposition 4.1.

Proposition 4.1 demonstrates that three factors actually determine the arrival time

of specialists under an FT policy:

∙ the volume of demands;

∙ the distribution of the demand arrival process;

∙ the mean of the duration of an SC.
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Different types of specialists can have the same optimal timing for their SC, if the

above factors are the same.

Figure 4-2: Decide Optimal Time

The left figure compares total waiting time under different timing; the right shows
the stretch of proof.

The following corollary comes naturally after Proposition 4.1.

Corollary 4.2 (Sensitivity of Optimal Fixed Time) With the same arrival pat-

tern of SC demand, specialists should arrive earlier if

∙ the patient volume is higher;

∙ the specialist’s consultation last longer.

Moreover, average waiting time is shorter with a higher patient volume or longer

consultation duration.

Because the departure time of specialist is determined by the arrival pattern, with

the same arrival pattern, specialists stay in ED longer if more demands are present.

This leads to an earlier arrival of specialists. Moreover, the average waiting time per

person is shorter as specialists stay in ED for a longer period.

Although we do not take the crowding issue into account explicitly, the issue of

ED crowding is still the concern of ED managers, and impacts the care quality in ED.

The following corollary confirms that the peak of patients present in ED is irrelevant

with the timing of SC sessions.
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Corollary 4.3 (Maximal Amount of Patients) Under daily periodic arrival rates,

the maximal of total patient waiting for specialists increases with respect to 𝜆(𝑡), de-

creases with 𝑆𝑇 . If 𝑆𝑇 = 0, the maximal of total patient waiting is 𝐿(24) and is

indifferent from 𝑇 .

That is, the ED overcrowding can possibly be eased by speeding up these SC sessions

only. Normally shortening an SC can negatively impact the quality of care. So, the

only way to ease ED overcrowding is to improve capacity of specialists if necessary,

which will leads to the decrease of an SC duration.

Before the end of this session, we demonstrate the impacts of SC timing on waiting

time per patient via two numerical examples. In order to verify our analytical results,

we present numerical results with the time-varying arrival rates in the following ex-

amples in Table 4.1 and Figure 4-3.

Example Suppose

𝜆(𝑡) = 𝑎 sin
(︁ 𝜋

12
𝑡+ 𝑐

)︁
+ 𝑏, 𝑏 ≥ |𝑎|. (4.10)

and E(𝑆𝑇 ) = 𝜇, where 24𝜇𝑏 < 1 for the sake of stability. Then the optimal specialist

arrival time is

𝑇 * = 12− 12

𝜋
𝑐− 24𝑏𝜇. (4.11)

And the minimal average waiting time per person is

�̄� = 12− 12

𝜋

𝑎

𝑏
− 12𝑏𝜇. (4.12)

Actually the daily specialist departure time is 𝑇 = 12− 12
𝜋
𝑐, which is also the optimal

boarding time. Daily total patient amount is E[𝐿(24)] = 24𝑏.

Example Suppose

𝜆(𝑡) = 𝑏min(max(1, 3𝑚𝑜𝑑(𝑥, 24)− 11),−1

3
𝑚𝑜𝑑(𝑥, 24) + 9), (4.13)
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that is, arrival rates follows a linear function

𝜆(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 𝑡 ∈ (0, 4];

3𝑡− 11, 𝑡 ∈ (4, 6]

−1
3
𝑡+ 9, 𝑡 ∈ (6, 24].

(4.14)

and E(𝑆𝑇 ) = 𝜇, where 84𝜇𝑏 < 1 for the sake of stability. Then the optimal specialist

arrival time is

𝑇 * = 16.5− 84𝑏𝜇. (4.15)

And the mimimal average waiting time per person is

�̄� =
823

84
− 42𝑏𝜇. (4.16)

Actually the daily specialist departure time is 𝑇 = 16.5, which is also the optimal

boarding time. Daily total patient amount is E[𝐿(24)] = 84𝑏.

We compare the analytical optimal timing from our theories with numerical results

in Table 4.1. There are two parts in this table, and one for each example above.

Each row shows the different values of patient volume, indicated by the parameter

𝑏. The first two columns show the optimal arrival time and corresponding average

waiting time per patient resulted from our analytical models. The middle two columns

show the numerical results of optimal arrival time and corresponding average wait

per person, when the SC session lasts for a deterministic duration. The last two

columns are the paralleled numerical results when the SC session follows a stochastic

distribution. We can see that our analytical results are fairly close to the numerical

ones with both deterministic and stochastic service time.

We further show the impact of optimal timing on the waiting time per person in

the left two plots of Figure 4-3. Specifically, for each of the above examples, different

lines with color represent varied values of 𝑏, i.e. the parameter representing patient

volumes. The horizontal axis is the specialist’s arrival hour, and the vertical axis is
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the average waiting time per patient. We can see that the minimal average waiting

time per person tends to be 50% of the longest wait period regardless of the patient

volumes 𝑏 in both examples. Therefore, the decision of an optimal specialist arrival

time is crucial to shorten waiting time for SCs under FT policies.

The right two graphs in Figure 4-3 exhibit the impact of different timing on

the average waiting time per person, when there are two specialist arrivals per day.

Two axes on the plane represent possible combinations of the specialists’ two arrival

times, and the third axis shows the average waiting time per person. There can be big

differences on the average waiting time per person between the optimal specialists’

arrival times and those sub-optimal timings.

Furthermore, we compare numerically the impacts of frequency under FT policies

regarding the average waiting time per person summarized in Table 4.2. In each

section associated with the specific example following the arrival function, the two

columns under Once per Day show the optimal arrival time of specialists and corre-

sponding average waiting time per patient; The rest columns show the optimal time

of arrival and resulting average waiting time per person if there are two specialist ar-

rivals per day. Although the extra arrival can largely reduce average waiting time per

person, the marginal reduction will decrease as the frequency of specialists’ arrivals

increases.

Observation. The marginal benefits of arranging extra fixed time for SC decline

as the frequency of consultation increases. Moreover, the marginal benefits decline

as the volume of patients becomes higher. We observe the same numerical results in

terms of the frequency of the SCs in each periodic cycle as Chan et al. (2016).

With the real data of ED visits, we first estimate the time-dependent arrival

pattern 𝜆(𝑡) for in-sample SC demand of each specialist type, and then decide the best

optimal time for SC sessions. We will compare the analytical results and numerical

ones later in Section 4.5.3.
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Table 4.2: Compare Optimal FT Policy with varied Frequencies

𝜆(𝑡) = 𝑏
[︀
sin
(︀

𝜋
12
𝑡
)︀
+ 1
]︀

𝑏 Once per Day Twice per Day
Hour Average waiting time (h) 1st Arrival 2nd Arrival Average waiting time (h)

1 11 7.5082 9 14 4.7817
2 9 6.7965 9 14 5.3937
3 8 6.1824 8 14 5.4060
4 6 5.5289 5 12 5.0364
5 5 4.9680 5 12 4.4502

𝜆(𝑡) = 𝑏min(max(1, 3𝑚𝑜𝑑(𝑥, 24)− 11),−1
3
𝑚𝑜𝑑(𝑥, 24) + 9)

𝑏 Once per Day Twice per Day
Hour Average waiting time (h) 1st Arrival 2nd Arrival Average waiting time (h)

0.2 15 9.2265 13 20 5.8105
0.4 14 8.7279 14 19 7.0911
0.6 13 8.2906 13 19 7.1909
0.8 12.5 7.8501 11 18 7.0816
1.0 11.5 7.3529 10 17 6.6573

Specialist treatment time follows 𝒩 (0.06, 0.0064).

4.3.3 TL Specialist Response Policy

Under TL policies, specialists have to arrive within a certain time window after any

consultation request. Therefore, their arrival time is uncertain. However, this stochas-

tic feature of a TL policy results in the fact that specialists’ arrival time may not

impact on performance measure significantly. This is because the patient waits at

most the length of the time window.

In fact, we conduct numerical experiments to show the features of this policy as

in Figure 4-4. Each column shows the results for the example of arrival patterns

specified on the top row. Different line colours represent different patient volumes.

The first two plots in each column are for TL policies with the same "deadline". That

is, the time window within which a specialist has to arrive is constant throughout a

day. The first plot shows the average per patient waiting time versus different lengths

of time window. And the following plots shows the frequency of specialists’ arrivals
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Figure 4-3: Optimal Timing under FT Policies

𝜆(𝑡) = 𝑏
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Specialist treatment time follows 𝒩 (0.06, 0.0064). In the left two plots, different
lines with color represent varied values of 𝑏, i.e. the parameter representing patient
volumes. The horizontal axis is the specialist’s arrival hour, and the vertical axis is
the average waiting time per patient. The right two graphs exhibit the impact of

different timing on the average waiting time per person, when there are two arrivals
per day.
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during a day. The last plot in the column shows the average waiting time per patient

versus two different time windows. Typically, specialists have a longer time window

for their response to ED requests during non-business hours. From this figure, we

observe longer delay of SC when specialists are allowed to arrive within a longer time

window. Indeed, we have the following observation.

Observation. The average waiting time of specialists following a TL policy

increases as

∙ the expected arrival windows become longer;

∙ the volume of patients decrease.

Intuitively, if the volume of demand is large, the on-call specialists can have the

"economy of scale" and multiple patients are able to share the same specialist visiting

the ED, leading to a significant reduction of waiting time. We illustrate this with the

example of homogeneous case in the following.

Example: The Time-Independent Case 𝑀/𝐺/1

Here we consider the corresponding canonical model with generally distributed

specialist’s treatment times and constant Poisson arrivals with rate 𝜆(𝑡) = 𝜆. The

first and second moments of the specialist’s treatment time are denoted by E𝑆𝑇 and

E(𝑆𝑇 2), respectively. Because the specialists’ arrival is uncertain, we denote E(𝐵)

and E(𝐵2) the first and second moments of the time until the arrival of the next

specialist, where the time until the next specialist’s arrival 𝐵 is generally distributed.

In the time-independent case of 𝑀/𝐺/1, mean value technique and Poisson Ar-

rivals See Time Averages (PASTA) proper can be used to calculate the mean waiting

time of all patients in the system Adan and Resing (2015).

E(𝑊 ) =
𝜌

1− 𝜌

E(𝑆𝑇 2)

2E(𝑆𝑇 )
+

1/𝜆

1/𝜆+ E(𝐵)
E(𝐵) +

E(𝐵)

1/𝜆+ E(𝐵)

E(𝐵2)

2E(𝐵)
, (4.17)

where 𝜌 = 𝜆E(𝑆𝑇 ) < 1 due to the stability of the system. Therefore, we can tell the

monotonicity property from the closed form formula as below.
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Figure 4-4: TL Policy

𝜆(𝑡) = 𝑏
[︀
sin
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12
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𝜆(𝑡) = 𝑏min(max(1, 3𝑚𝑜𝑑(𝑥, 24)− 11),
−1

3
𝑚𝑜𝑑(𝑥, 24) + 9)
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Lemma 4.2 (Monotonicity of Average Time) Given 𝜆, E(𝑆𝑇 ) and E(𝑆𝑇 2), av-

erage waiting time E(𝑊 ) increases monotonically as

∙ expected time until next specialist’s arrival E(𝐵) increases;

∙ second moment of time until next specialist’s arrival E(𝐵2) increases.

4.3.4 Determination of the Optimal Specialist Response Pol-

icy

Potential specialist response policies, namely FT and TL policies, have distinct char-

acteristics. Table 4.3 summarizes the features of different specialist response policies

for comparison purposes. Specifically, an FT policy specifies the certain time when

specialists should show up in ED, therefore, it is more feasible for specialists to im-

plement and easier to arrange their schedules. However, the arrival time needs to be

fixed carefully, and there may be potentially long waits for patients under this policy.

Actually the marginal reduction of patients’ waiting time can become less significant

if the specialist arrivals are more frequent. In contrast, a TL policy ensures that

the maximal wait for patients is controlled. Yet the drawbacks of this policy lie on

the fact that it exposes specialists to uncertain requests, and consequently uncertain

schedules. Moreover, if there is a high volume of patients, specialists have to visit

ED very frequently. This policy can be very inconvenient for specialists to follow in

reality.

Table 4.3: Comparison of Specialists’ Response Policies

FT TL
Specialist More feasible On call

Specialist arrivals Fixed can be many as
amount of patient ↑

Waiting time Marginal saving ↓ Controlled
as daily arrivals ↑

In this subsection, we figure out the optimal strategy for specialists’ arrivals re-

garding the following criteria:
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∙ Average per person waiting time;

∙ Frequency of specialist visits.

To be more specific, if both are similar under FT and TL policies, an FT policy

is preferred as it is more practical and convenient for specialists to comply with.

Otherwise, the policy resulting in shorter average waiting time per person and low

frequency of specialists’ arrivals is considered optimal. In general, the determination

of the specialists’ response policy depends on the volume of demands.

High Volume of Demand. Stay-in specialists should be hired to serve a high vol-

ume of patients’ SCs. Because specialists may receive multiple requests before

they finish a consultation in ED, therefore they tend to stay there for more SCs

rather than leave for other tasks and come back to the same ED later.

Medium Volume of Demand. FT policies are proper in this case. Twice a day

FT policy is optimal for a volume level of 9000, and Three times a day FT is

preferred for a volume level of approximately 2000.

Low Volume of Demand. A TL policy is recommended in this case. Typically,

if the demand for a certain specialist is less frequent than once a day, it is

unnecessary to fix a time for that specialist to visit the ED every day. In the

case of genitourinary consultation, specialists should adopt TL policies because

an FT policy leads to either a long waiting time for patients or more frequent

visits for specialists.

In Table 4.4, we showcase several scenarios with varied scales of patient volumes,

and compare the performance of different policies in each scenario. Specifically, we

consider three different scenarios: 1) A high volume of demand with 8,904 specialist

requests annually. This includes all patients who are in demand of specialists in our

ED records, regardless of the type of specialists. 2) A medium volume of demand with

an annual amount of 2,190 specialists requests. This refers to the specialist requests

in the category "other" in our ED dataset. 3) A low volume of demand with the

number of 622 specialist requests in one year. This is typically the type of request for
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genitourinary specialists in our dataset. In each scenario, we consider both FT and TL

policies, and the expected length of each SC lasts either 30 or 20 minutes. The column

Request2Realisation records the average waiting time per patient between sending out

specialists’ requests and the arrival of the specialist(s). The column LOS represents

the average LOS in ED resulted from this policy. Under the TL policy, we record the

total arrivals of specialists per year in the column Notes. Whereas under FT policies,

we record the optimal arrival time(s) when specialists should arrive at the ED in

the column Notes, it is because the specialists’ optimal arrival time(s) are so crucial

that they determine the average waiting time per patient under this policy. Moreover

FT1,FT2 and FT3 refer to one, two and three arrivals for specialists to respond to

ED SC requests per day, respectively. We can see that for a high volume of specialist

demands, an FT policy with two visits a day can achieve a similar specialist delay

(less than 6 hours on average) as the TL policy, which leads to almost two specialist

visits per day to ED as well, if the expected specialist’s treatment session lasts half

an hour. In the case where expected specialist’s session lasts 20 minutes, we need to

set three visits per day for specialists under FT policies, in order to match the similar

delay for patients under the TL policy. Furthermore, the total specialists’ visits are

similar under both policies as well. Similarly, an FT policy with three times per day

for specialists to visit ED is optimal in the medium volume scenario. In contrast, a

TL policy should be set for the low demand scenario. It is because patients’ waiting

time is much shorter under a TL policy than under an FT policy, and specialists visit

the ED only once per day.
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4.4 Prioritize Patients with Time-dependent Modi-

fied Triage Rule

In this section, we study the revised triage policy with the optimal specialists’ response

strategies. Hereafter, we use "patient" interchangeably with "job" or "customer", and

"physician" with "server". Moreover, we only consider the case of no preemptions, i.e.

servers cannot be interrupted once the service begins. In other words, the physician

will not treat another patient before completing the treatment for the current one.

In reality, the ED physicians may have to stop serving non-critical patients when a

critical patient arrives, which only accounts for less than 10 % of all ED visits. ED

physicians treat critically life-threatening patients whose triage codes are either 1 or 2

with highest priority. They even use preemptive policy if any of those critical patients

arrives; that is, they have to start treating those critical patients immediately, and

their current treatment is interrupted. However, we do not consider those critical

patients here, as they are very few in ED.

Assumption 4.1 (Non-critical patients only) We consider non-preemptive pol-

icy here, because an ED physician does not treat other non-critical patients before

finishing one treatment.

We will release this assumption and incorporate critical patients in the comprehensive

simulation later.

In practice, patients in ED can have very complicated symptoms, and they may

need multiple SCs. Moreover, ED physicians may not be able to figure out the proper

specialist whom a patient needs to consult. However, the portion of complicated

patients is not large, therefore we simplify the model and consider at most one round

of SC and perfect judgement of consultation type at triage.

Assumption 4.2 Each patient needs at most one round of SC.

Assumption 4.3 At triage, the nurse is able to match patients with the type of

specialist perfectly. But the likelihood of actual request is not 100 %.

126



4.4.1 Set up - Dynamic Programming

Suppose the ED physicians’ treatment time is independent of patient’s type and

generally distributed with first and second moments 𝑚𝑗 and 𝜎𝑗.

Assumption 4.4 ED physicians treat patients with a service time that follows the

same distribution, regardless of the patient class.

We consider an ED with a single physician. In the conventional heavy traffic

framework, a multiple server system with 𝑁 servers is asymptotically equivalent to

the single-server system with a service rate 𝑁 times faster than that of a single server.

Hereafter we assume a single server system, yet we use time-varying service rate

𝑢(𝑡) with cumulative distribution function 𝐺(𝑡) to incorporate the possible different

amount of physicians. In our modeling framework,

Decision epoch: 𝑡 when any ED physician completes the service.

Observation Set: S = {𝑆0(𝑡), 𝑆1(𝑡), 𝑆2(𝑡), · · · , 𝑆𝑁(𝑡)} is the set the amount of

patients in class 𝑛, 𝑛 ∈ N {0, 1, 2, · · · , 𝑁} at decision point 𝑡. Suppose there are

𝑁 different classes ( {1, 2, · · · , 𝑁}) of patients; and each class of patients requires

different SCs. Let class 0 be the one of patients who are not predicted to have an

SC in triage. Denote 𝐼 the amount of classes with the optimal FT policies, and 𝐽

the amount of classes with the optimal TL policies, and 𝑁 = 𝐼 + 𝐽 . For the purpose

of convenience, let the classes I = {0, 1, 2, · · · , 𝐼} represent the classes of which FT

is the optimal specialist response rule, and J = {𝐼 + 1, 𝐼 + 2, · · · , 𝑁 = 𝐼 + 𝐽} the

classes of patients whose specialists should follow the TL policy.

The predicted probability of patient 𝜅 in class 𝑖 who is going to require an SC

is 𝑝𝑖𝜅 where ∀𝜅 ∈ {1, 2, · · · , 𝑆𝑖(𝑡)} and ∀𝑖 ∈ {1, 2, · · · , 𝑁}. ∀𝜅 ∈ {1, 2, · · · , 𝑆0},

the predicted probability of patient 𝜅 who does not require an SC is 𝑝0𝜅. To avoid

repetitiveness of classification, we set up a threshold of probability 𝑃 such that

𝑝𝑖𝜅 ≥ 𝑃, ∀𝜅 ∈ {1, 2, · · · , 𝑆𝑖(𝑡)},∀𝑖 ∈ {1, 2, · · · , 𝑁}, ∀𝑡 ≥ 0. (4.18)
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Therefore, those patients who are more likely to require an SC are classified into

corresponding class 𝑖, and 𝑖 ̸= 0, matching their symptoms with the type of specialist

who is able to treat them; otherwise they are categorized into class 0 as ones who are

unlikely to require an SC. In the case of 𝑃 = 0.5, 𝑝𝑖𝜅 ≥ 0.5, ∀𝜅 ∈ {1, 2, · · · , 𝑆𝑖},∀𝑖 ∈

N ,∀𝑡.

Set of Admissible Actions: 𝐴(S(𝑡)) under statues S(𝑡), choose a patient from

any non-empty class.

𝐴(S(𝑡)) = {𝑛, 𝜅|𝑆𝑛(𝑡) ≥ 1, 𝜅 ∈ [1, 𝑆𝑛(𝑡)], 𝑛 ∈ N }. (4.19)

Patients arrive at ED following a time-varying Poisson process withl rate 𝜆𝑛(𝑡),

∀𝑛 ∈ N . Let

Λ𝑛(𝑡) =

∫︁ 𝑡

0

𝜆𝑛(𝑢)d𝑢 (4.20)

Transition Probability: Let 𝑡 be a decision epoch. Consider after action state

S(𝑡) after a service with length of 𝑣, then the system at the next decision epoch 𝑡+ 𝑣

will be S(𝑡+ 𝑣) with probability P(S(𝑡+ 𝑣)|S(𝑡))

P(S(t+ v)|S(𝑡)) =
∏︁
𝑛∈N

P𝑛(𝑣, 𝑆𝑚(𝑡+ 𝑣)− 𝑆𝑚(𝑡)) (4.21)

where

P𝑛(𝑣,𝑋) = 𝑒Λ𝑛(𝑣)
(Λ𝑛(𝑣))

𝑋

𝑋!
(4.22)

the probability that there are 𝑋 arrivals in a time interval with length 𝑣 for class 𝑛.
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Value function minimize the total waiting time of existing patients from state

S(𝑡)

𝑉 (S(𝑡)) = min𝑗,𝜅∈𝐴((𝑆)(𝑡))

{︃∫︁ ∞

0

𝒲𝑗(𝑣) +
∑︁
S′

P(S(𝑡+ 𝑣)|S(𝑡))𝑉 (S(𝑡+ 𝑣))d𝐺(𝑠)

}︃
,

(4.23)

S(𝑡) ̸= 0; (4.24)

𝑉 (X(0)) = 0. (4.25)

where 𝒲𝑗𝜅(𝑣) is the total known waiting time of all patients in the system at time

𝑡+ 𝑣. Suppose the expected arrival time of next specialist is 𝑇 ,

𝒲𝑗𝜅(𝑡) =

⎧⎪⎨⎪⎩𝑣(
∑︀

𝑛∈N 𝑆𝑛) + 𝑇 − (𝑡+ 𝑣), with probability 𝑝𝑗𝜅;

𝑣(
∑︀

𝑛∈N 𝑆𝑛), with probability 1− 𝑝𝑗𝜅.

4.4.2 Stability Condition

The arrival rate function has a periodic pattern in the ED setting. Specifically, it

follows the same intraday pattern, that is, 𝜆𝑛(𝑡 + 𝑇𝑐) = 𝜆𝑛(𝑡), where 𝑇𝑐 denotes the

cycle depending on the unit of time. Naturally, the scheduling of ED physicians

should follow this periodic pattern, and service rate 𝑢(𝑡) is periodic as well.

We consider the condition of stability for this time-dependent system. In order

to keep the system stable, the capacity of ED physicians should be larger than the

demand of all visits. Specifically, this holds in each cycle of 𝑇𝑐. Let

Λ(𝑡) =
∑︁
𝑛∈N

Λ𝑛(𝑢) (4.26)

be the cumulative arrival rate function of all ED patients during a day, where Λ𝑛

is calculated with Eq.4.20. Without loss of generality, we assume time zero as the

beginning of each cycle, then Λ(𝑇𝑐) becomes the total arrival rate of a whole cycle.
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Lemma 4.3 (Stability Condition) The time-dependent system is stable if

∫︁ 𝑇𝑐

0

𝑢(𝑡)d𝑡 ≥ Λ(𝑡). (4.27)

Therefore, all arrivals during one periodic cycle can be dealt with, and the waiting

queues do not grow into infinity.

4.4.3 Structural Properties

Suppose ∀𝑡, ∀𝑖 ∈ {1, 2, · · · , 𝐼}, the upcoming due time when the specialist arrives is

𝑇𝑖, where 𝑇𝑖 ≥ 𝑡, and interval between the upcoming due time and the following one

is Δ𝑡𝑖.

First, we show that non-idle policy is optimal. That is, the optimal scheduling

policy should always assign an existing patient to the ED physician who completes a

treatment, rather than let the physician be idle.

Proposition 4.2 (Existence of Optimal Policy) There exists an optimal policy

that does not allow servers to be idle except when the system is empty.

Patients who are likely to require SCs following the FT rules actually have a de-

terministic due time for their service. If the due time is missed, they will have to

wait for the next arrival of the type of specialist(s) they need. The following propo-

sition describes the optimal scheduling for those patients whose required specialists

following FT policies.

Proposition 4.3 (Optimal Scheduling for Patients under FT policies) If 𝑇1 =

𝑇2 = · · ·𝑇𝐼 = 𝑇 , let 𝑡 be a decision point for the state S, then

1. There exists a threshold Δ𝑇𝐻 such that it is optimal to assign non-FT patients

between time inter [𝛼, 𝛽], where 𝛼 < 𝑇 < 𝛽.

2. Within each class of patients, it is optimal to prioritize the one with largest

probability;
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For those patients whose specialists on demand follow a TL rule, they are actually

facing a stochastic due time, because the delay of the specialists’ arrival is uncertain,

and independent of the time when they send of request. Therefore, the scheduling

policy below is different for these classes of patients.

Proposition 4.4 (Optimal Scheduling for Patients under the TL Policy) Let

𝑡 be a decision point for the state {𝑆0(𝑡), 𝑆1(𝑡), 𝑆2(𝑡), · · · , 𝑆𝑁(𝑡)}, then

1. It is optimal to prioritize the class of patients who require specialist under the

TL policy according to their arrival time.

2. Within each class of patients, it is optimal to prioritize the one with largest

probability;

4.5 Numerical Results

We use a database of all ED visits in the year of 2015 in St Mary’s hospital, Montreal.

There are 36,324 ED visits in total, among which 32,825 or (90.37 %) fall in to clinical

non-critical categories (Triage Codes 3, 4 and 5). According to the expert opinions,

duration of an SC session is 30 minutes on average, and can be as long as one hour.

Thus we use triangle distribution 𝑇𝑅(0.25, 0.5, 1) (in the unit of hour) to simulate

the length of an SC session. We consider other distributions for the duration of SC

sessions in sensitivity analysis.

Our ED data shows that a certain amount of patients need more than one spe-

cialist, and there exists multiple rounds of specialist requests in ED for an individual

patient. In our simulation model, we only consider the first specialist request for the

sake of simplicity. We leave the streamlining multiple specialist requests to future

research.

4.5.1 Patient Clusters and Their Clinical Trajectories

In the hospital where our data come from, the types of specialists are: 1) internal

medicine; 2) oncology; 3) mental; 4) gynecology; 5) blood & immune; 6) heart disease;
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7) digestion, tissue & skin; 8) genitourinary; 9) injury; 10) other. The trajectories

from diagnosis code to the type of SC are summarized in Table C.2. Statistics of

current LOS with specialist delays are summarized in Table 4.5, where the number of

consultation sessions per year is recorded for each specialist type. While the numbers

in the last three columns are the expected amount of hours, the standard deviations

are reported in the bracket. The column TTFT refers to the Time To the First

Treatment in ED, and it is similar among all the patients who are in demand of

different SCs. The delay of SC is recorded in the column R2R. The delays between

sending out a specialist request and the specialist’s arrival are over five hours, except

for the gynecology specialists, who arrive in about three hours on average. The longest

average delay is for the mental specialists, with an average waiting time of over nine

hours. The last column showcases the time from a patient’s arrival to the time he

or she sees the first specialist. This is due to the scope of our study, which focuses

on the delay of the first specialist for each patient. So we present the status quo in

Table 4.5 as the base case scenario for our simulation models.

4.5.2 Empirical Model on Estimation for the Probability of

SC Request

To predict each patient’s probability of SC request with available information in

triage, we use logistic regression and regression tree (CART) for in-sample data first

(first 2/3 of ED visits in 2015), and then compare Area under Curve (AUC) and

Mean Squared Error (MSE) with out-of-sample data (the last 1/3 ED visits in 2015)

in Table 4.6. Our prediction of SC requests is accurate with over 80 % AUC and

less than 18 % MES for out-of-sample verification. Sensitivity and specificity are two

important measures for prediction. We summarize sensitivity and specificity in Table

4.7 for each triage code. Because less critical patients tend not to need a specialist,

the sensitivity is lower for patients with triage code 4 and 5, whereas their specificity

is very high.

We also try other statistical supervised learning methods, such as a neural network
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with different amounts of hidden levels, nearest neighbor with Gaussian kernel, kernel

epsilon and support vector machine (SVM), to classify patients into categories with

different likelihoods of SC demand. However, due to the limited amount of variables

collected in triage, those methods do not improve the power prediction significantly

(Table C.3 ) shown in the Appendix.

Moreover, our data shows the existence of an unbalance between patients who

require consultation and those who do not, specifically, the ration is approximate

1 : 3 (Table C.4). Therefore, we also try the method of balance. In fact, balance does

not improve the power prediction in terms of AUC and MRE (Table C.5), rather it

improves the sensitivity and specificity (Table C.6) as shown in the Appendix.

4.5.3 Optimal Specialist Arrival Time under FT Policy

Our empirical study shows that the patient arrivals to ED follows a non-homogeneous

Poisson process. We show the time-varying arrival patterns of ED patients in Section

C.2 in the Appendix. In order to verify the optimal arrival time for specialists under

FT policies resulted from our analytical model, we use two types of functions to fit

patients’ arrival patterns - 1) piecewise linear function; 2) submodial 𝑠𝑖𝑛 function.

In Figure 4-5, we show the function fitting of SC demand patterns. The left is for

the specialist demand of non-mental consultation and the right is for those patients

who need to consult internal medicine specialists. The first row shows the 𝑠𝑖𝑛 function

fitting, and the second row of graphs shows the linear function fitting. Apparently,

linear functions tend to fit the actual arrival rates better than 𝑠𝑖𝑛 function. Actually

𝑅2 of 𝑠𝑖𝑛 fit is 70.06 % for Internal Medicine, and 76.12 % for non-mental. Whereas

𝑅2 of linear function fit is over 85 % for both specialist demands. The last row of plots

show the numerical results of optimal arrival times for specialists. We calibrate the

numerical results by enumeration and search for the optimal hour that can lead to the

shortest average waiting time. The numerical results also indicate that the specialists’

optimal arrival times vary during a week, resulted from the daily variation of patients’

arrival flow during a week.
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Table 4.6: Results of Statistical Learning

Estimated probability of AUC MSE

CART (%) 81.60 17.67
Logit (%) 83.29 17.49

Table 4.7: Sensitivity and Specificity

Triage 3 4 5

Sensitivity (%) 79.34 67.88 42.18
(P(𝑃𝑟𝑒𝑑 = 1|𝐴𝑐𝑡 = 1))

Specificity (%) 78.06 89.48 97.5
(P(𝑃𝑟𝑒𝑑 = 0|𝐴𝑐𝑡 = 0))

Although, the arrival patterns of different patient types are similar under the FT

policy, the optimal arrival time for the corresponding specialists are not the same due

to the difference in patient volumes.

In Table 4.8 and 4.9, we present both analytical and numerical results under FT

policies, and consider two values of expected duration of each SC session, namely

20 and 30 minutes. For each value of SC durations, we report the optimal hour

when specialists should arrive at the ED, and the associated average per patient

waiting. In the first section, we show numerically the optimal time when specialists

should arrive once for consultation in the ED each day of a week. Because of the

daily variation of demand volumes and patterns, the numerical results imply that

specialists should visit ED at different times during a week. The second section of

the table compares the optimal times of FT policies with one specialist visit per

day, calculated from numerical and analytical models. The row Daily presents the

optimal specialist response time calibrated by enumeration, regardless of the daily

variation. The rows sin and linear present the optimal specialist response time under

FT policies with one daily specialist visit, calculated from analytical models with 𝑠𝑖𝑛

and linear function fitting, respectively. Although analytical result with 𝑠𝑖𝑛 function

has a smaller error of optimal timing, linear function fit tends to estimate the average
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waiting time better, i.e. very close to the numerical results. However, the errors

of analytical models come from 1) carryover errors from function fitting for actual

demand patterns; and 2) daily variation of demand patterns, that is, the specialist

demand patterns are not exactly cyclical on a daily basis. Moreover, we also consider

a constrained scenario where specialists work only during business hours, so their

consultation sessions in the ED take place only from 8 am to 6 pm every day. The

last two sections of the table show the results under this scenario. The row Constraint

Actual shows the optimal solution if the specialist has to finish the consultation session

at 6 pm, and the row Constraint linear shows the analytical results with the same

constraint. The last section is about the FT policy with two specialist visits per day,

and it numerically compares the optimal timing for specialists to arrive at the ED

with and without the constraint. Compared with the scenarios without the constraint,

specialist are more convenient and avoid irregular working hours; yet patients who

are in demand of SCs have to wait longer in the scenarios with the constraint.

Moreover, we illustrate the optimal arrival times for internal medicine, injury and

non-mental specialists in Table 4.8, 4.9 and 4.10, respectively. We choose these three

types of patients, because they represent medium, low and high volumes of associated

specialist demands respectively. Under the FT policy with one daily specialist visit,

the optimal arrival time for non-mental specialists is the earliest among the three

types, and injury specialists should arrive at the ED in the evening. For the same

type of specialists, they should start the SCs earlier if the SCs last longer. The three

tables together show that specialists should arrive at the ED earlier if the patient

volume is higher or the consultation session lasts longer, keeping the same demand

patterns, according to Corollary 4.2.
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Figure 4-5: Numerical Results of Optimal Specialist Arrival under FT Policy
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4.5.4 Comprehensive Simulation

In reality, there are at least ten different types of SC demands, and each requires a

consultation with the corresponding specialists, as we explained in subsection 4.5.1.

This makes the integrated scheduling problems from triage to SC very complicated

and analytically intractable. However, recently, simulation models have been popular

to tackle these sort of complicated systematic scheduling problems. Therefore, we

conduct a comprehensive simulation based on all out-of-sample ED visits (the last

1/3 of ED visits in 2015) with ARENA (Blackrock) software. We use the out-of-

sample data to avoid the data overfitting, as we use the first 2/3 of data to predict

probability of consultation demand.

We describe the scenarios to be tested with our simulation models below.

∙ Base case. It is the status quo where traditional triage rule is applied and yet

no specialist arrival policies are applied.

∙ Modified triage. This scenario combines both modified triage rule and opti-

mal specialist arrival policy. Per multiple patients with the same non-critical

triage code (3, 4 and 5), the patient with a higher predicted probability of SCs

get the priority.

∙ Optimal specialist policy. This scenario adopts the optimal specialist re-

sponse policies for all types of specialists.

∙ Combined. This scenario combines both modified triage rule and optimal

specialist arrival policy. In this scenario, urgent or life threatening patients

(triage code of 1 or 2) always have the highest priority among the rest of the

patients. Per multiple patients with the same non-critical triage code (3, 4

and 5), the patient with a higher predicted probability of SCs get the prior-

ity. Patients who are predicted to require a specialist whose arrival follows FT

policies are prioritized within a certain period before the associated specialist’s

arrival time. The rest of the time, patients who are likely to require a specialist

following a TL arrival rule are prioritized.
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In all above scenarios, we use the actual scheduling of ED physicians: there are

two ED physicians from 8am to 4pm on Monday to Friday, and one ED physician for

the rest of time. Other assumptions in our simulation models include: ED physicians’

service time of urgent patients, which follows triangular distribution 𝑇𝑅(0.1, 0.3, 0.8)

in the unit of hours; ED physicians’ service time of the other patients following

𝑇𝑅(0.05, 0.2, 0.4) in the unit of hours; and triage nurses’ service time for all patients

following 𝑇𝑅(0.05, 0.1, 0.2) with the unit in hours.

In the base case model, we use the true-to-life delay between sending out consul-

tation requests and the arrival of the associated specialist, based on our dataset. Our

empirical study shows that there is no statistically significant difference in the delay

patterns between business and non-business hours. Both patterns are compared in

Figure C-3 in the Appendix. In the base case, the LOS of patients who require SCs is

calculated as the sum of the period from arrival time until the specialist’s arrival and

a specialist’s service time. The LOS of patients who do not require SCs is calibrated

as the sum of TTFT plus an ED physicians’ service time. With these measures, we

avoid the impact of multiple rounds of consultations and delay of admission. Table

4.11 reports the consequential waiting times under different policies.

In Table 4.11, we present the results of our simulation models. The results of

base case model are presented in the unit of hour. We present the results of other

scenarios with the percentage of changes from the corresponding base case results.

For instance, the scenario of modified triage results in a 0.07 % shorter LOS but

7.05% longer R2R, no change on the amount of patients present in the ED compared

with the base case model. R2R, or Request 2 Realization, refers to the delay be-

tween sending out specialist requests and the arrival of the associated specialist(s).

In contrast to R2R, which is only among patients who require SCs, LOS is the av-

erage amount for all patients. Although modified triage incorporating the predicted

demand of specialists slightly shortens overall LOS in ED, it increases the delay of

specialists’ response to SC requests. Optimal SC policies can shorten both LOS and

R2R significantly. It dominates the performance of modified triage when combined

together in the combined scenario. Moreover, Figure 4-6 shows the histogram of the
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number of patients present in ED under the Optimal Specialist Policy. It shows a

positive skewness of the distribution of the amount of patients present in the ED.

Table 4.11: Simulation Results

Scenario LOS (%) R2R (%) Amount of Patients Present (%)

Base case 4.5374 h 7.1048 h 21.0611(8.9284) h
Modified Triage -0.07 7.05 -

Optimal Specialist Policy -16.81 -42.60 -16.77(-4.77)
Combined -16.95 -42.04 -18.21(-6.12)

The standard deviations are in the bracket.

4.5.5 Sensitivity Analysis

In this subsection, we conduct several scenarios for sensitivity analysis to examine

the impact of several factors on the modified triage policy. We take the traditional

triage with optimal specialist policy as the benchmark. We test the following factors

in sensitivity analysis.

∙ Impact of prediction accuracy. Predicting each patient’s probability of re-

quiring specialists is not perfectly accurate due to limited information available

in triage. The accuracy of the prediction can impact the performance of the

modified triage rule.

∙ Skewed distribution of SC duration. We model the duration of an SC

session with a triangle distribution, which features positive skewness. We use a

normal distribution with the same first two moments to examine the impact of

the skewness in this distribution.

∙ Threshold of FT advancement. We use a static threshold to switch priority

between patients who are likely to require a specialist following an FT policy

and those whose specialists follow a TL policy. The length of the period before

the arrival time of a specialist is referred as FT advancement. For example, if
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Figure 4-6: Histogram of Number of Patients in ED under Optimal Specialist Policy
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a certain specialist is set to arrive at the ED at 11 am, an FT advancement of

2 hours means that starting from 9 am, the patients who are likely to require

consultation from the specialist are prioritised among others.

We present the results from sensitivity analysis in Table 4.12. The first row is the

benchmark with values of LOS and R2R in the unit of hours. For the following sce-

narios, we show the percentage of change compared to the benchmark. Although the

accurate prediction and properly set static advancement can possibly contribute to

the improved performance of modified triage rule, we see more significant improve-

ments in the performance of modified triage rules with a symmetric distribution for

the duration of SC sessions.

Table 4.12: Sensitivity Analysis

FT Advancement (h) Actual Delay 𝑇𝑅(0.5, 1, 11.5) 𝑁(4.4, 2)
LOS (%) R2R (%) LOS (%) R2R (%) LOS (%) R2R (%)

Benchmark 3.7748 4.5785 3.87 4.5974 3.9861 4.7052
1 -0.62 -0.13 -2.19 -1.25
1.5 -0.15 0.08 -1.80 1.03
2 -1.76 0.98 -2.34 -1.08
2.5 -1.62 0.30 -0.48 0.91 -3.73 -0.73
3 -2.13 -0.86 -0.13 -0.94 -2.07 -1.72
3.5 -2.20 0.14 -0.72 0.80 -3.20 -0.12
4 -0.32 1.11 -0.67 0.10 -2.49 -0.23
4.5 0.18 0.02 -3.10 -0.22

The first row is the benchmark with actual length of LOS and R2R in the unit of
hours. For the following scenarios, we show the percentage of change compared with

the benchmark.

4.6 Conclusion and future research

This study is motivated by the prolonged delay of specialists’ arrivals after the request

of SC in a local community hospital in the city of Montreal. The limited amount of

specialist demand makes it impossible to hire on-site specialists in the ED. The lack

of systematic rules of specialists responses lead to the fact that patients can wait
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for average 7 hours for one round of SC, and the total delay of several rounds of

consultations can add up to multiple days. We study this problem based on the real

data of all ED visits in the year of 2015.

First, we set up queueing models with non-homogeneous arrival rates to model

the demand of SCs in the ED. Through our analytical model, we figure out the closed

form of the expected average per person waiting time and optimal arrival time for a

specialist based on demand patterns, volumes and duration of a consultation session,

for an FT policy with one visit per periodic cycle of demand arrival flow.

Second, we provide a systematic method to determine the best response rule for

different sort of specialists, based on the volume of demand, and features of varied

proposed specialist response rule. These optimal policies can significantly shorten

waiting time for patients; and moreover, they are convenient for specialists to im-

plement in their busy schedules, thus are easy to implement and enforce. Hence the

proposed guideline of determining an optimal arrival rules for specialists provides

valuable managerial insights.

Then, we conduct patient classification in terms of their likelihood of requesting a

certain SC with the information available at triage. Using multiple statistical learning

methods, we are able to provide a moderately accurate prediction at triage. Balanced

method is also used, and it may not improve prediction accuracy in terms of MSE,

but can improve the performance of specificity and sensitivity.

Finally, we analytically measure the potential improvement on efficiency of the

resource-based triage with the dynamic programming framework. The actual realized

benefits may be offset by uncertainties and other delays in ED, as a result of our

comprehensive simulation models.

The most straightforward future work should lay on a dynamic threshold to switch

the prioritization among patients who are in demand of different specialists. Algo-

rithms proposed for those fixed interval due-dates problems can be helpful. Other

future research can focus on the following possible directions of time-varying queues.

First, delay of test results should be studied as this is another factor that lead to the

prolonged LOS in ED. A queue system or network with several tandem queues can be
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applied in this case combining specialist and test delay together. Second, this study

only considers at most one round of SC. Future work can extend to multiple rounds

incorporating feedbacks in queueing system. Last, our analytical work on determining

the optimal FT specialist arrival time can be easily extended to the case of optimal

boarding time. The interface of ED and inpatient wards can be considered together

in order to reduce LOS in ED. Due to the possible variation of specialists’ flexibility

and availability, we can also incorporate the capacity and workload of the specialist

into our model in the future work.

This work attempts to shorten LOS in ED via improving an internal process (delay

of SC). The following chapter also aims to reduce waits in ED, however, via designing

an interface between ED and inpatient wards.
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Chapter 5

Design of Observation Units (OU) for

Acute Decompensated Heart Failure

(ADHF) Patients
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5.1 Introduction

Heart failure (HF) has been one of the growing epidemics in North America. Over

10 % of people suffer from HF in the U.S. (ACC, 2017), and currently around 20

% of Canadian population live with HF, and 50 thousand Canadians are diagnosed

with HF each year (Heart & Stroke Foundation, 2017). With over 1 million HF

patients hospitalized each year, HF is the single leading factor of hospitalization in

U.S. (Nieminen and Harjola, 2005; Ross et al., 2006). Given the ongoing trend, by

2030 over 10 thousand more Canadians are projected to live with HF compared with

2013 (Tran et al., 2016), and 25% more HF patients in the U.S. (Heidenreich et

al., 2011; Roger et al., 2011). HF has also exposed a heavy economic burden on

healthcare system. Indeed, Heart & Stroke Foundation (2017) estimated that direct

costs relevant with HF are over $2.8 billion annually in Canada, whereas in the U.S.

the direct costs of treating HF are $34 billion per year, most of which is due to

expensive hospitalization (Feng et al., 2008). Moreover, HF is expected to cost the

U.S. health system $70 billion by 2030 (Collines et al., 2015).

Acute Decompensated Heart Failure (ADHF) is defined as "the sudden or gradual

onset of the signs or symptoms of heart failure requiring unplanned office visits, emer-

gency room visits, or hospitalization" (Joseph et al., 2009). It is among one of major

factors of Emergency Department (ED) visits. According to clinical guidelines, ADHF

patients with worsening clinical conditions are recommended to hospitalization. Cur-

rently, most of these patients are admitted due to the uncertainty of post-discharge

events, including morbidity, mortality and re-admission (Collins et al., 2013). It is

because early discharge of HF patients can result in a high chance of mortality and/or

re-admission. In fact, 33% of these patients were dead or re-hospitalized within 60-90

days after early discharge from ED (Gheorghiade et al., 2006; Setoguchi et al., 2007).

According to Weintraub et al. (2010) 10% to 20% of ED visits are discharged home

directly, while they have 20% to 30% higher chance of post-discharge events. Ironi-

cally, hospitalization of HF patients is not proven to be the better way to reduce the

likelihood of post-discharge events (Gheorghiade et al., 2005; Setoguchi et al., 2007).
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A prospective cohort study by Smith et al. (2002) demonstrated that ED physicians

tend to overestimate significantly the severe complication incident of ADHF patients,

resulting in over-utilization of scarce healthcare resources. Although most patients

have complex medical comorbidities, they do not demand an acute intervention be-

yond decongestion or intense monitoring as in hospital wards or ICU Collins et al.

(2013). There are typically three types of ADHF patients.

∙ Low risk patients who respond to the initial therapy, and return to baseline.

They can be discharged after a brief period of observation;

∙ Intermediate-risk patients who are partially responsive to the treatment

with no high-risk features developed. They require continuous treatment and

observation, consisting of inexpensive tests, acute therapy and an effective care

transition; rather than inpatient admission(Peacock et al., 2010);

∙ High-risk patients who develop a worsening clinical feature, including contin-

uous symptoms, worsening renal function, hypotension or an elevated troponin.

They require prompt inpatient admission and/or further intensive care.

The purpose of this paper is to design an Observation Unit (OU) for ADHF

patients in order to improve the quality of care without increasing relevant costs.

OU, also called Short Stay Unit, Clinical Decision Unit, Chest Pain Unit, Rapid

Diagnosis and Treatment Unit (Ross et al., 2012), was originated in 1960 (Gururaj

et al., 1972). A dedicated OU has the following features.

∙ A typical stay lasts less than 24 hours, no longer than 48 hours;

∙ A discharge rate is generally around 70-80 % (Hostetler et al., 2002; Mace et

al., 2003; Ross et al., 2003);

∙ A better utilization of healthcare resources (McDermott et al., 1997; Mace,

2001; Goodacre et al., 2004).

Due to the direct access to proper treatment, clinical tests and education in an

OU for ADHF patients, this dedicated OU is considered optimal (Ross et al., 2012),
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without a doubt very promising. Indeed, a typical stay of less than 24 hours is

sufficient to identify and treat low risk and intermediate risk patients with HF. They

can be discharged home without being exposed to increasing post-discharge events.

A preliminary study by Kosowsky et al. (2000) showed that most low-risk ADHF

patients could see clinical improvements within 6 to 12 hours after their arrivals to

ED. On the other hand, high-risk HF patients should be hospitalized. Moreover,

75% of OU admitted profiles can have response to treatment without development

of worsening high-risk features, and can be discharged with a satisfactory follow-up

plan (Collins et al., 2013).

In an ED without OU, low-risk patients are discharged early without sufficient

observation; which leads to a high chance of post-discharge events. Due to the con-

servative perspective, intermediate-risk patients are admitted to hospital, similarly as

high-risk profiles, resulting in a waste of inpatient wards, because these intermediate-

risk patients do not need intensive inpatient care. If an OU is installed, all ADHF

patients are observed in OU after initial treatment. Low and intermediate-risk pa-

tients can be discharged after all conditions become stable, reducing the incidence

of possible post-discharge events. High-risk patients can be identified and admitted

sequentially. Figure 5-1 compares ADHF patient flow between an ED without OU

versus an ED with OU.

Figure 5-1: ADHF Patient Flow in ED

Status Quo Propose OU

151



Collins et al. (2013) estimated that 50% of HF patients can be discharged after

a short period in OU, which leads to decreased unnecessary admissions and reduced

post-discharge events, and potentially leads to 1.2 million inpatient days and over $1.2

billion savings in U.S. per year. Controlled experiments conducted by Peacock et al.

(2002) demonstrated that an effective OU management protocol of ADHF patients

can reduce emergency department visits and re-admission rates in a 90 days post-

discharge horizon. A sequential group design study conducted by Storrow et al. (2005)

found out that ADHF patients in OU showed a decreased re-admission, fewer repeated

ED visits and lower total costs compared with their peers admitted to hospital in a

30-day study window. Collins et al. (2009) conducted a cost-effective study of non-

high-risk HF patients, and concluded that OU is more cost-effective than ED discharge

regarding those with low or intermediate HF patients, taking into account the post-

discharge events. Therefore OU of ADHF can be seen as the "safety net" of ED (Ross

et al., 2012).

The goal of ADHF-dedicated OU is to combine treatment and risk-stratification

simultaneously, after the initial evaluation and therapy in ED, which is the typical

entry point for OU admission. From clinical or medicine perspective, an OU for

ADHF patients is required to fulfill the following tasks summarized in Collins et al.

(2013).

1. complete initial therapy or treatment for every patient, and allow them to have

access to complete resolution within 24 hours;

2. facilitate monitoring of blood pressure, heart rate, urine output, body weight

and other bio-chemical index;

3. provide patients with access to simple diagnostic testing, such as electrolyte

testing, echocardiography, B-type natriuretic peptide (BNP) or N-terminal pro-

B-type natriuretic peptide, and serial troponin measurement;

4. enable patient education and scheduling outpatient follow-up, which is believed

crucial in avoiding re-admission by American College of Cardiology and Amer-

ican Heart Association.
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All the above can be achieved with relatively less complex and more economic

OU rather than resource intensive inpatient wards. However, in Canada, an ADHF

dedicated OU has not been widely set up. The present work examines the optimal op-

erational design of an ADHF dedicated OU, incorporating both quality and economic

objectives.

Given a certain patient volumes and arrival patterns from a historical dataset,

we provide theoretical quantitative decision support for the capacity of an ADHF

dedicated OU. That is, we consider several stylized models to figure out the optimal

amount of beds to install in a certain OU, satisfying a certain level of utilization rate

(the fraction of time a bed is occupied) and loss rate (the proportion of patients being

lost due to the full capacity of the OU).

Beyond the capacity design stage, we further consider possible admission and

discharge policies for the OU with fixed capacity. We expect that the interactive

admission and discharge policies could lead to both better healthcare outcomes of

ADHF patients and simultaneously increase efficiencies and cost-effectiveness in the

use of the limited OU resources. More formally, supported by a reliable clinical

indicator, our goal is to admit patients with the highest uncertainties of risk levels

to the OU, so that the limited resources can be optimally used for the purpose of

risk stratification. Indeed, the relatively more apparent low-risk patients can be

discharged from ED directly, and the more certain high-risk ones should be admitted

to hospital wards without occupying OU beds. In the situation that a new patient

requires admission to a fully occupied OU, we consider different sorts of possible early

discharge criteria, and eventually figure out the optimal alternatives that results in

possibly least likelihood of post-discharge events among those ADHF patients. ADHF

patients arrive at the OU at random times; and each patient is assigned a risky score

given all their physiological characteristics and demographic information. We assume

the risky score of the patient population is uniformly distributed between 0 and 1.

The patients with higher risky scores may need to stay longer in OU, and top 25%

of higher risky patients need to be hospitalized, even after OU discharge; while 25 %

lowest risky patients can possibly be discharged home directly or after a short stay in
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OU. The length of stay (LOS) in OU may follow a general probability distribution.

Our data implies that the arrival distribution of ADHF may not follow a homogenous

Poisson distribution. Thus our analysis will consider several stylized models to fix

the possible range of the OU capacity given the over-dispersed arrivals of patients.

This over-dispersion of patient arrivals and generosity of LOS also contribute to the

infeasibility of analytically analysis of several admission and discharge policies. Thus

we use simulation models to test different admission and discharge alternatives and

verify the impacts of combined admission and discharges policies. Our goal is to

design a comprehensive quality-guaranteed admission-discharge policy to minimize

the chance of post-discharge events among all ADHF patients.

As such, this work provides a systematic framework for the operational design of a

prospective ADHF dedicated OU. Specifically, we would like to address the following

research questions (1) What is the optimal number of beds in the OU to balance the

utilization and loss rate; (2) What is the optimal admission policy of the OU to take

more effective use of the limited resources; (3) What is the optimal discharge policies

in order to minimize the probability of post-discharge events; (4) What interactive

admission-discharge policies work best to enhance the quality of care of HF patients

and reduce the economic burden on the healthcare system. This is a data-driven work

with the annual ADHF patients who visited the ED of St Mary’s Hospital, a local

community hospital in Montreal, Quebec. Although this work is designed for the

case of ADHF, this systematic framework can be generalized to other applications in

healthcare, such as the design of another specific OU or hospital ward.

As shown in Figure 5-2, there are two stages in this work.

The rest of the paper proceeds as follows. Section 2 conducts a literature review of

relevant existing works in both clinical and operations management fields. In Section

3, we decide the capacity (i.e. the number of beds) of the specific OU based on

historical patient arrival flows. We consider different stylized models and calibrate

the possible rank for different levels of patient volumes. We explore various admission

and discharge policies in Section 4. Section 5 compares the outcomes of different

admission-discharge alternatives using simulation models. We further show that our
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Figure 5-2: Road Map of the Proposed Study

proposed interactive admission-discharge policy outperforms a number of alternatives

of interest. We conclude and show possible future research in Section 6.

5.2 Literature Review

Our study closely relates to literature on capacity and staff planning in operations

management. Recently, more works have been focused on time-dependent arrival

distribution, or non-homogenous Poisson arrivals, as homogenous Poisson arrivals

rarely exist in reality. Interested readers can refer to Defraeye and Van Nieuwen-

huyse (2016) for a literature review on staffing and scheduling problems under non-

stationary demand over the period of 1991-2013. The main methods to determine

capacity for time-dependent arrivals are Pointwise stationary approximation (PSA),

effective arrival rate approximation (EAR), simple peak-hour approximation (SPHA),

modified offered load (MOL), infinite server (IS), numerically integrate ODE, sta-

tionary backlog-carryover (SBC). One stream of studies propose efficient algorithms

to calculate optimal dynamic staffing levels for time-varying arrivals of customers.

For instance He et al. (2016) designed an innovative algorithm of staffing for non-

Poisson non-stationary arrival process. They detailed the methods via composition
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and then extend the algorithms to models with non-exponential service and abandon-

ment where patience time follows non-exponential distribution. Liu and Whitt (2012)

developed an algorithm to determine staffing level for time-dependent queues with

nonhomogeneous Poisson arrival process and time-varying abandonment probability.

Cheng and Huo (2013) conducted a numerical experiment of a time-varying staffing

algorithm based on stationary independent period by period (SIPP) approach to set

staffing requirement for time-varying cyclic queue 𝑀𝑡/𝑀/𝑠𝑡 +𝑀 with abandonment.

Originally proposed in Stolletz (2008), and similarly as PSA and its extension like

lag PSA, SBC requires to divide long time horizon into small time intervals in the

first step, and then incorporates the carryover into the modified arrival rate (MAR)

with Erlang-loss models. SBC outperformed PSA regarding the approximation of

time-varying queue system. Furthermore, Stolletz and Lagershausen (2013) showed

numerically the extension of SBC into more general arrival and processing distribu-

tion.

Our work is most relevant with the queueing models involving parameter uncer-

tainty, where the mean and variance of arrival distributions are non-equal, and it

can be considered as a special case of time-varying arrival rates. in the following we

highlight most recent studies that are most relevant with our work. Bassamboo et

al. (2010) found that uncertain parameters such as arrival rates leads to the invalid

capacity forecast of traditional square-root safety staffing principle, while an adapted

newsvendor model is proven accurate. Kocaga et al. (2015) studied staffing problem

with uncertain arrival rates and outsourcing option.

Regarding the application of operations management concepts in the design of OU,

the amount of existing study is scarce. Lovejoy and Desmond (2011) used Little’s Law

and average amount of patients in the system and average length of stay to estimate

the capacity of an OU, providing a preliminary and pedagogic example in this con-

text. However, operations management studies on admission and discharge policies

in healthcare systems have provided significantly valuable insights. We highlight the

most relevant work here. Shmueli et al. (2003) has been one of the most influential

papers in terms of admission strategies in the healthcare domain. They proposed
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to admit patients whose benefits from being admitted to Intensive Care Unit (ICU)

exceed from a certain hurdle, in order to take better advantage of scarce health care

resources. From the perspective of discharge policies, Chan et al. (2012) compared

several major discharge strategies in the setting of ICU, and proposed a ratio-like

discharge policy to minimize the readmission risk involved in early-discharging ICU

patients. More recently, Mallor et al. (2015) studied comprehensively potential dis-

charge strategies of ICU, aiming to minimize the rate of patient rejection, and thus

improving the accessibility of ICU resources.

We derive the aggregated progress of ADHF from clinic and medical literature. It

is feasible to identify high risk HF patients in OU (Collines et al., 2015). Actually,

a study of Diercks et al. (2006) investigated the potential indicators that can help

to define low-risk ADHF patients in OU. Moreover, evidence and consensus-based

OU guidelines have been published by the Society for Cardiovascular Patient Care

Peacock et al. (2009). ADHF patients require in-time assessment and proper therapy.

Feasible and practical guidelines are discussed in Michota and Amin (2008). However,

the OU management of ADHF patients largely depend on the development of newer

treatment, innovative drugs and devices (Qureshi et al., 2015). Graff et al. (1999)

studied the selective admission criteria for HF patients regarding mortality rate via

a retrospective observational cohort study. Later on, Auble et al. (2004) conducted

classification trees to identify low-risk patients with HF. The used variables include

patients’ demographic information, medical history, the most abnormal examination

or diagnostic test values. The last two are measured either in ED (vital signs only)

or on the first day of hospitalization. They also examined the death rates and re-

admission rates within 30 days of hospitalization for low-risk patients. The study

of Fonarow et al. (2005) showed that routinely available vital signs and laboratory

data obtained upon hospitalization can be reliable to identify low-, intermediate-

and high-risk of ADHF patients in terms of mortality. Recently, Schrager et al.

(2013) demonstrated that ADHF dedicated OU is favorable and proposed accelerated

treatment protocols (ATP) driven guidelines. We derive the aggregated progress of

ADHF with micro clinical indicators based on Young et al. (2002). Our admission and
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discharge criteria largely base on Logeart et al. (2002), who use B-Type Natriuretic

Peptide (BNP) as proxy of post discharge events, namely death and re-admission,

and they show the association between serial BNP, BNP at discharge and the risk of

death or re-admission via univariate Cox Analysis.

5.3 Capacity Design - Analytical Models

In this study, we refer capacity specifically to the number of beds in the prospective

OU. We calibrate the possible range of the capacity given a certain level of patient

flow in an OU, with various approaches in operations management. We first calculate

the number of beds with the most common Square Root Principle. Then we consider

Erlang loss model which captures the no-waiting feature of OU. Moreover, we estimate

capacity with models incorporating overdispersion features of arrival patterns.

5.3.1 Square Root Principle

We use square root principle, the most common way of capacity decision in operations

management, as a benchmark. For a queue with Poisson arrivals, traditional square

root principle says that capacity 𝐶 can be determined by

𝐶 =
𝜆

𝜇
+ 𝛽

√︃
𝜆

𝜇
(5.1)

where 𝜆 and 𝜇 are the average arrival rate and average service rate, respectively.

Without a loss of generalization, Eq.5.1 can be written as Eq.5.2 below when service

rate is set to unity.

𝐶 = 𝜌+ 𝛽
√
𝜌 (5.2)

where 𝜌 = 𝜆
𝜇
is also called load rate in queueing theory.
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5.3.2 Erlang-B type loss model

The Erlang-B type model allows a finite waiting cushion in the queue. Denoted by

𝑀/𝐺/𝑛/𝑛, Erlang-B type model that depicts an OU in this context, provides a closed

formula of resource utilization for a queueing model with Poisson arrivals, a general

distribution for service time, a finite amount 𝑛 of servers and no queue. That is, the

amount of customers in the queue cannot exceed the number of servers. Indeed, if an

OU is full and a new patient arrives, he or she gets diverted either home or hospital

wards as a loss of customers. Later in the paper, we will discuss some alternatives

where existing OU patients may possibly be discharged early to make room for new

patients. In the context of OU, new patients do not wait in a queue for an available

bed.

Bed utilization can be estimated by Eq.5.3.

𝑈(𝑛, 𝜌) = [1−𝐵(𝑛, 𝜌)]
𝜌

𝑛
, (5.3)

where 𝐵(𝑛, 𝜌) is called Erlang loss function (Erlang B function or blocking probabil-

ity), is defined as

𝐵(𝑛, 𝜌) =
𝜌𝑛/𝑛!∑︀𝑛
𝑖=0

𝜌𝑖

𝑖!

. (5.4)

The Erlang-B model features an insensitivity property, which says that the blocking

probability is independent of the service-time distribution. It is applicable to the

general service time distribution as long as it has a finite mean.

First we show the monotonicity of Erlang-loss function.

Lemma 5.1 (Monotonicity of Erlang-loss function) Erlang loss function 𝐵(𝑛, 𝜌)

∙ is decreasing in 𝑛, ∀𝑛 ∈ Z+;

∙ is increasing in 𝜌.

Erlang-loss models explain that the blocking rate increases with smaller capacity,
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and larger patient volumes. We then explain the monotonicity of utilization in Erlang

loss cases.

Proposition 5.1 (Blocking Rate Determined Capacity) ∀𝜌, and a certain block

rate 𝑏, the capacity 𝑛 should be determined to satisfy

𝐵(𝑛, 𝜌) ≤ 𝑏. (5.5)

In the instance we can set up a capacity for the OU to satisfy a certain threshold

for patient loss, so that the accessibility of the OU resources can be ensured with a

certain amount of OU beds.

Rather than the criteria of accessibility, health care providers also need to consider

the expenses of healthcare service. Thus we next discuss Cost-effective Capacity

from economic perspective, under the framework of Erlang loss models. Let Δ be the

dollar amount health quality gain from OU, ℎ dollar amount of losing a patient in

the OU, 𝑐 relevant expenses of an OU bed per unit of time, including nursing and

facility costs.

To maximize the total economic gain with a certain capacity 𝑚

max
𝑚

{Δ𝜆[1−𝐵(𝑚, 𝜌)]− ℎ𝜆𝐵(𝑚, 𝜌)− 𝑐𝑚} (5.6)

which is equivalent to the minimal of total dollar amount expenses

min
𝑚

{Δ𝜆𝐵(𝑚, 𝜌) + ℎ𝜆𝐵(𝑚, 𝜌) + 𝑐𝑚} (5.7)

The following property ensures the existence and uniqueness of the decision on ca-

pacity 𝑛 in the optimization problem 5.7.

Proposition 5.2 (Cost-effective Capacity) In an Erlang loss model, with Δ dol-

lar amount health quality gain from OU, ℎ dollar amount loss a patient for the OU,

𝑐 relevant expenses of an OU bed per unit of time, the capacity 𝑚 should be set to
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satisfy

(Δ + ℎ)𝜆(𝐵(𝑚, 𝜌)−𝐵(𝑚+ 1, 𝜌)) = 𝑐. (5.8)

Bassamboo et al. (2010) similarly proposed a newsvender form of an approximate

capacity solution for an 𝑀/𝑀/𝑏+𝑀 queueing model for a doubly stochastic Poisson

process with an infinite capacity buffer and customer abandonment. Their proposed

approximation is proven to outperform the standard square-root in the queueing

model with customer abandonment. Collins et al. (2009) OU admission with a cost-

effectiveness ratio of $ 44,249 per quality adjusted life year (QALY) versus $ 684,101

per QALY for hospitalization of non-high-risk HF patients. They consider a time

horizon of 30 days. Though in the context of chest pain, Abbass et al. (2015) provided

a more rational cost-ratio between hospitalization and OU. It shows that OU is 1.4

to 2 times less costly than inpatient care. The capacity decision based on ratios of

OU and hospitalization and corresponding post-discharge event rates are reported in

the numerical section 5.5.4.

5.3.3 Overdispersion of Arrival Distribution

Healthcare providers target both economic and quality of healthcare services. This

requires the OU to display a Quality-and-Efficiency Driven (QED)regime. This means

the queueing system has a large demand and a capacity with controllable idle rate

between 0 and 1, and finally a negligible expected delay. Moreover, our empirical

analysis on the arrival patterns of ADHF patients show that homogeneous Poisson

distribution fails to fit the arrival distribution. Indeed, our patient arrival process

incorporates overdispersion. This implies a significant larger variance than the mean

of arrival rates.

The arrival process with overdispersion has been commonly treated as a doubly

stochastic Poisson process (e.g. Maman, 2009; Mathijsen et al., 2017), which says

that the arrival rate is non-homogeneous but follows a certain distribution. And the

most popular parametric family of the Poisson rate is the Gamma distribution, re-
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sulting in a mixed Poisson-Gamma distribution. Mixed Poisson-Gamma distribution

is equivalent to a negative binomial distribution. The following algorithm explains

the generation of a random variable of mixed Poisson-Gamma distribution.

Generating Mixed Poisson-Gamma variables

1. Normalized service rate as 1 via scaling arrival time points;

2. Discrete the whole arrival period into equal distance;

3. Estimate the rate Λ from gamma distribution with probability density function

𝐺(𝑎, 𝑏), where

𝐺(𝑎, 𝑏) =
1

Γ(𝑎)𝑏𝑎
𝑥𝑎−1𝑒−

𝑥
𝑏 , ∀𝑥 ∈ (0,∞); (5.9)

4. Generate a Poisson variable with the rate Λ.

In terms of capacity decisions with overdispersed arrival distribution, Whitt (2006)

is among the first one to propose a capacity decision to deal with overdispersion. It

recommended that the capacity should incorporate variance

𝐶 = EΛ + 𝛽
√
VΛ + EΛ. (5.10)

Due to the fact that if a random variable 𝑋 follows a mixed Poisson-Gamma distri-

bution, its mean and variance are

E(𝑋) = EΛ, V(𝑋) = VΛ + EΛ. (5.11)

Later on Maman (2009) proposed that under the assumption of a mixed Poisson-

Gamma distributed arrival rate Λ with a mean 𝜆 and a standard deviation 𝜆𝑐, where

0 < 𝑐 ≤ 1, the capacity should be determined as

𝐶 = 𝜆+ 𝛽𝜆𝑐. (5.12)
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Noted that when 𝑐 = 1
2
, the arrival rates are not overdispersed, then Eq.5.12 becomes

the same form as the conventional square-root in Eq.5.2.

More recently, Mathijsen et al. (2017) proposed a capacity decision based on the

Gamma distribution. Suppose the arrival rate follows a Gamma distribution with

probability density function 𝐺(𝑎, 𝑏) as Eq.5.9, the capacity should become

𝐶 = 𝑎𝑏+ 𝛽
√︀
𝑎𝑏(𝑏+ 1). (5.13)

We compare numerically the capacity decisions under all above different methods

in Section 5.5.4. The above analytical models act as valuable starting point for our OU

design, providing more specific ranges of capacity given a certain level of patient flow.

Thus these analytical frameworks largely reduce the amount of simulation scenarios

that we should conduct for this study.

5.4 Admission and Discharge Policies

After addressing the capacity decision, in this section, we discuss several potential

admission and discharge strategies for the prospective OU. First we state the perfor-

mance measures and specific proxies applied in this work.

5.4.1 Performance Measures

The goal of performance measures is to explicitly quantify the outcomes of different

policies. For each policy we construct, we are typically interested in the following two

characteristics in healthcare system.

∙ Measures of Quality includes mortality during and after treatment, readmission,

and access to healthcare service.

∙ Measures of Cost includes all relevant expenses of treating ADHF patients.

Next, we describe proxies for each performance measure below.
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∙ Post-Discharge Event (PDE) Rate. Though there are several possible

clinical indicators implying chance of PDEs and risky level of ADHF patients, in

terms of complication, re-admission or mortality (e.g.Graff et al., 1999; Auble et

al., 2004). In this study, we choose BNP as the proxy of the likelihood of PDEs,

including both mortality and re-admission rate. Indeed, Logeart et al. (2002)

demonstrate the close correlation of BNP and the chance of PDEs. Specifically,

higher BNP levels indicate a riskier case where the likelihood of mortality or

re-admission can be higher than an individual with a lower BNP level. It also

provides the aggregate time-dependent progress of ADHF patients’ BNP levels

in OU. So we choose BNP as a proxy due to its feasibility. However, as the

clinical research goes on, there might be other indicators to apply in the future.

∙ Block or Loss rate. It measures accessibility of health care service, which

aligns with the quality goal of health care service Chan et al. (2012). It is

essential for an OU service to ensure equitable and maximal access for ADHF

patients.

∙ Hospitalization rate. The economic feature of OU requires it to contribute

to the reduction of overall ADHF patients’ hospitalization rate given its diag-

nosis, treatment and risk-stratification features, resulting in the a lower cost for

healthcare system.

∙ Cost-Gain Ratio. It measures the cost-effectiveness - the dollar amount of

clinical benefits that one extra bed makes, while of course ensuring no sacrifice

in terms of quality of care.

5.4.2 Admission Policies

It is possible to distinguish high-risk ADHF patients in ED from several clinical

features, such as positive cardiac biomarkers, new ischemic electrocardiogram changes

and certain ranges of systolic blood pressure, serum sodium, blood urea nitrogen

(BUN) and creatinine (Collins et al., 2009). Those patients are required to have

164



inpatient care from clinically perspective, no matter through an OU or not. In the

meanwhile, those low-risk patients can also be distinguished and may be discharged

home without an OU admission as well. We investigate the possibility of setting a

hurdle for OU admission so that only patients whose risk level is difficult to identify

can be admitted to OU. We compare this hurdle strategy (FCFS-H) with the general

admission strategy where every ADHF patient is admitted to OU as long as there

is an available bed, similarly as in the ICU setting (Shmueli et al., 2003). These

strategies are described below.

∙ First Come First Serve (FCFS). Under this policy, all ADHF patients are

admitted to OU as long as a bed is available. New patients are rejected if all

OU beds are occupied.

∙ First Come First Serve with a Hurdle (FCFS-H). Under this policy, only

patients with moderate risks are admitted to OU if there is a bed available in

OU. New patients are rejected if all OU beds are occupied. Low risk patients

are discharged home directly without being admitted to OU, and patients with

highest risk are admitted to inpatient ward directly without going through OU

either.

5.4.3 Discharge Policies

When a new patient arrives at the OU with all beds occupied, discharge strategies

provide guidelines to either early discharge an existing patient or reject the new

patient. We consider the following potential discharge policies in the setting of an

ADHF-dedicated OU.

∙ Discharge before access. New patients are always rejected if all OU beds

are occupied under this policy.

∙ At random. Anyone of the new and all existing patients is selected at random

to be discharged from the OU. This discharge rule has been considered as a

benchmark in the setting of ICU (Mallor et al., 2015).
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∙ Longest time in service. Existing patient who stays in the OU the longest

will be discharged if a new patient arrives.

∙ Shortest service time remaining. Existing patient with the shortest re-

maining time in the OU will be discharged once a new patient arrives.

∙ Likelihood of PDEs. Existing patient whose chance of post-discharge events

will be discharged once a new patient arrives. Similarly as Chan et al. (2012)

who considers readmission risk with a crude metric of the likelihood of read-

mission, we measure the chance of post-discharge event with the BNP level,

and discharge the existing patient with the lowest BNP level at the time when

a new patient arrives. With the medical findings in Logeart et al. (2002), we

linearly interpolate 30-day PDE chance between 10 % and 25 % to the BNP

level between 350 to 700 ng/l.

Longest time in service and shortest service time remaining are both service time

related metrics, similarly as Mallor et al. (2015) which considered the various form of

service time related discharge rule in ICU setting.

5.5 Data Analysis and Parameter Estimation

We compare the chance of post discharge events for existing patients and the proba-

bility of post discharge events for new patients if they are discharged early. All the

probability can be estimated with sequential BNP and basic demographic information

as in Logeart et al. (2002).

5.5.1 Cost Data

A recent research of Abbass et al. (2015) uses the claims data and shows that the in-

patient admissions were between 1.4 to 2.2 times more costly than OU after adjusting

for baseline characteristics, risk scores and diagnosis at discharge.

In order to compare the cost of OU and inpatient wards, we use the costs in Collins

et al. (2009), where the hospital cost is $5,712 per patient whereas the cost per PDE
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Figure 5-3: Proportion of Patients who Response to Treatment Overtime

is $ 4,588 as the weighted average of death and hospitalization cost. And the cost

per OU bed is $ 381 per patient in the base case.The higher cost of hospitalization

incorporate both longer length of stay and the higher intensity of care than an OU

stay. All dollar amount were adjusted for inflation using the Medical Services Price

Index for 2012 Abbass et al. (2015).

5.5.2 Service time or Length of Stay (LOS)

The average LOS is 29.8813 hours derived from Logeart et al. (2002). We randomly

assign LOS of OU for each ADHF patient, without loss of generosity.

Logeart et al. (2002) provided an aggregate progress of BNP among OU patients.

That is, in general, after 𝑡 hours in OU, the BNP level of an OU patient becomes

𝐵𝑁𝑃 (𝑡) = 𝐵𝑁𝑃0 − 12𝑡, (5.14)

where 𝐵𝑁𝑃0 is the individual’s initial BNP level upon arrival in ED.
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5.5.3 Arrival rate

Our data includes 1645 ADHF patients who visit ED of St Mary’s Hospital from

April 4, 2011 to December 16, 2015. 74.47% of these ADHF patients are admitted to

hospital due to the absence of an OU in the hospital.

Having normalized average service rate into 1, the arrival rates have a mean

EΛ = 1.1920 and variance VΛ = 1.4141. Arrival rates are estimated under different

distributions in Table 5.1.

The estimation on varied distributions of arrival patterns confirms the existence

of overdispersion, where the ratio of variance and expectation is no longer equal to 1.

Thus the statistical significance of Poisson parameter is not as high as the Gamma

parameters.

Table 5.1: Arrival Rates Parameters

Distribution Parameter(s) Estimation Significance

Poisson 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) �̂� 1.1920 .
Gamma 𝐺(𝑎, 𝑏) (�̂�, �̂�) (6.2770, 0.1899) ***
Mixed Poisson 𝑐 𝑐 0.9864 ***

where . < 1 and *** < 0.001

5.5.4 Capacity Evaluation from Analytical Models

The number of OU beds under different analytical models are presented and compared

in Table 5.2. Though the capacity decision does not vary much when the patient

flow is low among different analytical models, Square Root approach (Eq. 5.2) and

method of Maman (2009) (Eq.5.12) tend to conservatively estimate the amount of

beds, resulting in more than 13 beds for a hospital with 5 times our original dataset.

Erlang-loss model (Eq. 5.3) confirms that as 13 beds can possibly lead to 0 % blocking,

which creates full access of OU for all the patients. While the method of Whitt

(2006) (Eq. 5.11) and approach in Mathijsen et al. (2017) (Eq. 5.13) give a moderate

estimation of around 10 beds, Erlang loss model (Eq. 5.3) provides a lower bound of 8
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beds with a block rate not exceeding 10 % . However, the actual block rate should be

higher with 10 beds due to the over-dispersion feature of the actual arrival patterns.

Given our analytical results, the last row of Table 5.2 shows the OU bed ranges to

be tested in our simulation models . Our analytical models minimize the amount of

simulation scenarios by providing the test range for each hospital scale. This largely

improves the efficiency of the subsequent simulation.

Table 5.2: Numerical Results: Number of OU Beds

Patient Flow 𝜌 0.25 0.5 0.75 1 2 3 4 5

Square Root (Eq. 5.2) 0.68 1.36 2.04 2.72 5.44 8.15 10.87 13.59
10 % Block Rate 2 2 2 3 4 5 7 8

Exact block rate (%) 1.27 4.36 8.43 3.71 6.78 9.02 6.00 7.36
No Block 3 3 4 5 7 9 11 13

Cost Ratio 1.4 2 3 3 4 6 8 10 12
Cost Ratio 2 2 3 4 4 7 9 11 13

Maman (2009) (Eq. 5.12) 0.69 1.36 2.04 2.71 5.40 8.07 10.74 13.41
Whitt (2006) (Eq. 5.11) 1.33 2.06 2.68 3.26 5.31 7.16 8.90 10.58

Mathijsen et al. (2017) (Eq. 5.13) 1.01 1.63 2.19 2.72 4.71 6.61 8.48 10.32
Test Range 0-1 1-2 2-3 2-3 4-6 6-8 8-11 8-13

Service level 𝛽 = 1.28. For a given patient flow 𝜌, the capacity can be calculated by
plugging it into the equation of each analytical approach.

5.6 Simulation Models for Admission-Discharge Rules

In order to evaluate the performance of the proposed OU and compare the different

admission-discharge policies, we develop different simulation models using ARENA

software (Rockwell). Recently, simulation has been extensively used to understand

complex systems and predict their behaviors. Furthermore, it is often used to provide

decision support when designing new systems Sokolowski and Banks (2009).

In this study, we consider different models. First, a base case model that replicates

the current ED without an OU in terms of patient handling policies and patient

volumes. Second, we develop a core model for the ED with a proposed OU using
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the original patient flow. Next, we extend the core model to incorporate several

discharge policies. We test individual admission and discharge policies one-by-one in

the different scenarios of varied OU capacity, i.e. the amount of beds. Finally, we

test the combination of different admission-discharge policies. We test the interactive

performance of combined admission and discharge policies. Detailed explanation will

be given in the subsections 5.6.2, 5.6.3 and 5.6.4.

Moreover, we also consider other cases where patient volumes are different from

our core model. Specifically, we test smaller scale hospitals where patient volumes

are 25 %, 50 % or 75 % of the core model; and larger scale hospitals where patient

volumes are two, three, four and five times the original database. In this model, in

order to incorporate the overdispersion feature of arrival patterns, the ratio of mean

and variance of arrival rates is kept constant. That is,

EΛ
VΛ

≡ Constant (5.15)

where the ratio in Eq.5.15 is 1.1863 in the case of normalized arrival rate taking

average service rate as unity.

We generate the equal amount of overdispersed arrival rates in all those cases

with the Mixed Poisson-Gamma algorithm described in subsection 5.3.3 , and keep

the risk score, service time and initial BNP levels the same for all patients as in the

core model.

For our base and core model, we consider the following set up: a time horizon

ranging from April 4, 2011 to December 16, 2015. In our base case, the average cost

is $ 4456.08 per ADHF patient given 75 % of them are hospitalized from the ED

without OU. In the core model, admission policy is used once a new patient arrives.

Whereas discharge decisions are made once a new patient arrives at the OU if all

beds are occupied. Table 5.3 summarizes different simulation models and scenarios.

Figure 5-4 shows the screen shot of one of our simulating models.
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Table 5.3: Summary of Simulation Models and Scenarios

Model Patient Flow Structure Results

Base case Current 𝜌 = 1 without OU
Core Current 𝜌 = 1 with OU

Scenarios:
- Capacity design validation Table 5.4
- Discharge policies Table 5.6
- Admission-Discharge Policies Table 5.7

Smaller 𝜌 < 1 with OU
Hospital Scenarios:

- Capacity design validation Table 5.4
Larger 𝜌 = 2, 3, 4, 5 with OU
Hospital Scenarios:

- Capacity design validation Table 5.5
- Admission-Discharge Policies Table 5.9

5.6.1 Capacity Design Validation

In Table 5.4, we present the impacts of different capacity decisions on small hospitals,

whose patient flows are lower than the hospital under analysis in the core model.

Considering the results of our analysis, small hospitals may not need an OU. Because,

in this case, more beds result in unnecessarily low utilization, while small amount of

beds fail to accommodate majority of patients due to the highly dispersed arrival

patterns. Moreover, from the cost perspective, the total cost in the small hospitals

including hospitalization, treatment of PDEs and OU beds can be even more than

the average per patient cost ($4456.08)in the base case.

In Table 5.5, we present the results of various capacity decisions on larger hospitals.

The number of beds is positively associated with the accessibility; specifically an OU

with more beds has a lower block rates, and consequently a higher proportion of

patients are able to access the OU resources. As the accessibility is closely linked to

quality of care; in the case of ADHF-dedicated OU, the hospitalization rates decrease

as the accessibility of OU improves. This is because larger proportion of patients are

able to be treated in OU and thus identified for hospitalization demand if needed.

Only those high-risk patients who truly require further inpatient care are admitted.
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Figure 5-4: Screen Shot of the Admission-Discharge Model

Whereas, those who are blocked from OU are more likely to be admitted even if they

are not that risky enough to require hospitalization; because those patients fail to

be discharged home directly for the purpose of high chance of post-discharge events.

Given a full OU, they have to be hospitalized directly. Therefore, the high block rates

result in high hospitalization rate. However, the utilization of each bed is negatively

correlated with the amount of beds. Actually more beds may lead to lower mean

utilization of each individual bed.

From conducted analysis, we observe that larger hospitals with higher patient

volumes tend to have a higher accessibility than their smaller peers, with the same

utilization rates. Table 5.5 summarizes the results from the larger hospital models.

For example, this table shows that 2 beds for a hospital with patient volume of 2Λ

leads to a utilization of over 58 % but more than 40 % patients are non-served; while

in the case of a hospital with a 3Λ patient volume, it needs 4 beds to keep the same

utilization rate. Only around one quarter of patients fail to access OU service. In a

larger hospital of 4Λ patient volume, 7 beds result in less than 10 % of non-served

patients and a slightly lower utilization rate of 56 %. When it comes to the case of

5Λ, the accessibility is around 94 % with 9 beds and similar utilization rates. This
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is because of the "economy of scale" in the larger hospitals. Even with the presence

of overdispersion in patients’ arrival pattern, the larger amount of OU beds, i.e. the

larger OU capacity, provides more flexibility to accommodate the highly uncertain

patient arrivals. When the smaller amount of beds suffer from fully occupation in the

smaller hospital, several extra beds in larger hospitals tend to be available upon the

over-dispersed arrival of demand.

Table 5.4: Efficiency Comparison for Small Hospitals

Capacity of 1 OU bed

Patient Flow Utilization Nonserved Served Nonserved Hospitalized Total
Proportion PDE Rate PDE Rate Proportion Cost ($)

0.25 20.75% 23.83% 17.73% 19.38% 34.89% 4348.86
0.5 32.51% 39.39% 17.84% 19.34% 43.77% 4107.86
0.75 40.73% 49.79% 17.71% 19.51% 48.69% 4143.01
1 53.77% 57.26% 17.86% 19.36% 51.85% 4201.83

Capacity of 2 OU beds

Patient Flow Utilization Nonserved Served Nonserved Hospitalized Total
Proportion PDE Rate PDE Rate Proportion Cost ($)

0.25 13.21% 3.22% 17.73% 20.14% 24.62% 5271.61
0.5 23.68% 11.06% 17.75% 19.68% 28.94% 4000.95
0.75 32.76% 20.36% 17.88% 19.21% 32.95% 3731.05
1 44.66% 28.51% 17.56% 19.39% 37.51% 3734.33

Capacity of 3 OU beds

Patient Flow Utilization Nonserved Served Nonserved Hospitalized Total
Proportion PDE Rate PDE Rate Proportion Cost ($)

0.25 9.07% 0.24% 17.75% 2.50% 23.10% 6704.11
0.5 17.34% 2.13% 17.70% 19.91% 24.26% 4485.89
0.75 25.65% 6.75% 17.80% 18.40% 25.78% 3814.96
1 36.61% 12.46% 17.63% 18.68% 29.36% 3635.19

Original dataset. PDE stands for Post-Discharge Event, including complication,
death and readmission.

5.6.2 Discharge Policies

Based on the original patient arrival data, we run several scenarios that incorporate

different discharge policies as described in Table 5.3. Table 5.6 displays the outcomes
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Table 5.5: Upper Bound Capacity Calibration

Patient Flow 2 Λ

Number Utilization Nonserved Served Nonserved Hospitalized Total
of Beds Proportion PDE Rate PDE Rate Proportion Cost ($)

2 58.26% 43.83% 17.87% 19.41% 44.98% 3801.58
3 52.07% 24.86% 17.87% 19.66% 35.08% 3415.57
4 45.23% 12.77% 17.81% 19.11% 29.24% 3257.06
5 39.15% 5.47% 17.75% 18.92% 25.78% 3242.35

Patient Flow 3 Λ

Number Utilization Nonserved Served Nonserved Hospitalized Total
of Beds Proportion PDE Rate PDE Rate Proportion Cost ($)

4 58.70% 26.69% 17.68% 18.72% 36.60% 3422.33
5 53.30% 16.78% 17.68% 18.42% 31.55% 3254.30
6 48.11% 9.73% 17.74% 18.56% 27.72% 3163.15
7 43.14% 5.29% 17.73% 18.56% 25.41% 3156.09
8 38.81% 2.37% 17.73% 20.12% 24.07% 3207.25

Patient Flow 4 Λ

Number Utilization Nonserved Served Nonserved Hospitalized Total
of Beds Proportion PDE Rate PDE Rate Proportion Cost ($)

6 60.49% 15.50% 17.84% 19.16% 30.58% 3145.94
7 55.70% 9.24% 17.80% 19.06% 27.42% 3054.80
8 50.98% 4.92% 17.71% 19.30% 25.59% 3040.30
9 46.45% 2.55% 17.72% 19.93% 24.38% 3065.14
10 42.41% 1.16% 17.74% 22.51% 23.53% 3112.79

Patient Flow 5 Λ

Number Utilization Nonserved Served Nonserved Hospitalized Total
of Beds Proportion PDE Rate PDE Rate Proportion Cost ($)

9 53.33% 5.90% 17.77% 19.35% 25.90% 2984.57
10 49.45% 2.92% 17.74% 19.02% 24.44% 2973.80
11 45.62% 1.40% 17.74% 18.70% 23.53% 2996.83
12 42.25% 0.36% 17.75% 18.94% 23.10% 3048.63
13 39.07% 0.12% 16.07% 2.50% 22.98% 3039.86
PDE stands for Post-Discharge Event, including complication, death and

readmission.
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of these scenarios and compares them.

The random policy acts as the benchmark in comparison, due to the non-existence

of this type of OU yet. Basically, outputs under the Random policy provide the worst

possible results, because patients are randomly picked to be prompted out without

any clinical reason.

Compared to Random policy, while the minimized PDE policy increases the uti-

lization rate of each OU bed, it does not significantly reduce hospitalization rate.

Moreover, it has the highest proportion of non-served patients, i.e. the worst accessi-

bility. As the accessibility is largely linked to the quality of care, the amount of PDE

actually is high under this policy despite its name and original intention. The overall

cost, including treatment of PDEs and hospitalization is highest under this policy.

Both policies based on service time outperform the other two in terms of high

utilization of OU beds and low hospitalization rate. Yet these two policies feature

differently. The strategy of discharging patients with shortest remaining service time

results in highest utilization among all the policies. However, this policy results in

a significantly higher chance of preempting patients compared with minimized PDE

and Random policy. The high frequency of interrupting OU treatment can lead

to potential hazard of patients’ recovery, and it contributes to the relatively higher

hospitalization rate than the longest service time policy. Another drawback of this

policy lies on its feasibility. Because the OU operator makes the decision of selecting

the patient with shortest remaining service time. The accuracy of this remaining

service time forecast depends completely on clinical judgement of OU physicians and

nurses. Therefore, the implementation may be difficult because the prediction of the

patients’ response and service time is still challenging so far.

The strategy of discharging patients who have already been treated in OU for the

longest time is very straightforward to implement. Moreover, it results in the lowest

hospitalization rate among all the policies, indicating the quality of care is ensured

in this perspective, and largely alleviate the burden of hospital wards. Despite the

fact that it can potentially save more expenses from hospitalization, it results in a

moderately high utilization of OU resources. This policy features 100 % accessibility,
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in the sense that all new patients are admitted to the OU, since obviously they have

the shortest service time compared to any existing patient. In this strategy, the only

chance that new patients are rejected occurs when more than one patients arrive

at the same time and all OU beds are occupied, which is very rare - less than 6

% in the one-bed scenario, and almost none in the scenario of two and three beds.

However, it expose the highest preempting chance for existing patients, specifically

it preempts almost twice of patients in the 1 bed scenario, and 1.6 times in the

scenarios of 2 and 3 beds, compared with the Random policy. Although this policy

generates the highly frequent preempting events, the amount of patients who complete

OU treatment is higher than shortest remaining service time, and still moderately

comparative with minimized PDE and Random policies. Given the lowest overall

expenses, this discharge policy is considered the optimal among all the discharge

strategies.

5.6.3 Admission Policies

Based on the original patient arrival patterns in the core model, we test two alternative

admission policies in separate scenarios. These policies are tested in four different

configurations of discharge policies, leading to a total of 20 scenarios. Table 5.7

summarizes the results of these scenarios. For each couple of (admission, discharge)

policy, we use a hurdle rate that indicates the percentage of lowest risk cohorts who

are directly discharged home from ED, and the same percentage is used for highest

risk patients who are admitted to hospital from ED. Take the first row in Table 5.7

for instance, under the Discharge before access policy, given a hurdle rate of 5 %,

corresponding to 5 % highest risk patients that are directly admitted to hospital and

5 % lowest risk patients that are discharged home. In this case, the utilization rate is

51.75 %, the percentage of non-served patients is 50.21 % with an average PDE rate

of 20.50 %. One can note that this policy does not preempt patients. The percentage

of patients who complete their OU treatment is 40.73 % with an average PDE rate

of 18.06 %. The overall hospitalization rate is 51.06 %. The total cost is 4142.09

dollars, including hospitalization and treatment of PDEs.
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For the illustrative purpose, we show different scenarios setting the same hurdle

rate for both home discharge and hospitalization. In reality, we can definitely imple-

ment different hurdle rates according to clinical guidelines and economic constrains.

Opposed to the discharge before access policy where every ADHF patient is ad-

mitted in OU, FCFS-H strategy admits only those intermediate patients whose risk

level are not that apparent to stratify based on the short period in ED. Assuming it

is possible to identify those high risk patients who need to be hospitalized with their

clinical information in ED, this cohort will be admitted to inpatient wards in ED

without going through OU under FCFS-H admission strategy. The batch of patients

with lowest risk are discharged home directly from ED assuming their conditions are

already stable and PDEs are under control. More specifically, direct home discharge

will not expose a higher chance of PDE than discharge after admitting in OU. There-

fore, given a fixed amount of patient volume, the demand of OU beds decreases as

the amount of patients admitted in OU is less. Moreover, as the hurdle increases, the

amount of patients gets smaller. It is because a higher hurdle rate screens out higher

percentage of lowest risky patients and the same amount of highest risk ones. As its

original desire in Shmueli et al. (2003), this policy makes room of scarce resources for

those who benefit most; specifically in the context of ADHF, patients with interme-

diate complications can have access to OU and one can identify their true risk level,

which is impossible with the short stay in ED. As a result, those with identified need

for hospitalization get admitted to inpatient wards after OU, and those with positive

response to OU treatment are discharged home.

Consequently, the increasing hurdle rate reduces the utilization of the same amount

of OU beds, resulting from the reduced demand of OU beds. Although the propor-

tion of preempting and nonserved patients decreases, implying a higher accessibility,

there is a higher chance of PDEs for those nonserved and preempted patients. This

is because the nonserved and preempted patients tend to be more complicated as

hurdle rate increases - the lowest risky patients are no longer included, and mitigate

the risk-pooling effects, so the complications of OU patients are higher, resulting in

higher PDE rates for both non-served and preempted patients.
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The quality of health care is not compromised as the hurdle rates increase, because

the overall costs are decreasing with the increase of hurdle rates. This ia an indication

of the overall lower hospitalization and PDEs under FCFS-H strategy. We showcase

the advantages of the FCFS-H admission policy from the perspective of streamlining

and operations. However, the determination of the exact hurdle rate and hence the

ultimate implementation of FCFS-H strategy should largely depend on the advance-

ment of ADHF diagnosis and development of proper clinical guidelines, which ensure

a highly accurate risk identification of ADHF patients in ED.

5.6.4 Interaction of Admission-Discharge Policies

We also compare possible combinations of varied discharge policies and different hur-

dle rates in Table 5.7. Performance of hurdle rates and discharge policies are in-

dependent of each other. Higher hurdle rates lead to more accessibility and fewer

preempting, and consequently lower overall costs when combined with each discharge

policy. Longest service time discharge policy outperforms the rest discharge policies

with a higher utilization, higher access rate and lower overall costs in each level of

hurdle rates.

With the optimal discharge policy, longest service time strategy, we apply different

admission policies for larger hospitals with a patient volume of five times the original

data set. The simulation results are presented in Table 5.9. The features of individual

hurdle rates keep the same in this case. We can observe that higher hurdle rates enjoy

higher accessibility and relatively higher quality of care indicated in the lower overall

costs. We also see a much lower preempt rate and significant proportion of patients

who complete their OU service in this large OU. Moreover, with the help of optimal

discharge policy and the hurdle rates with its consequent lower demand, we figure

out the capacity of OU can be smaller than the range calibrated from our analytical

models in Table 5.2. In this case, we test the OU with 7 beds, one fewer than the

lower bound in Table 5.2. This capacity results in lower overall costs than the ones

with larger capacities.
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Table 5.9: OU Admission-Discharge Policies Comparison

Number Hurdle Utili- Preempt PDE Normal PDE Hospi- Cost
of beds rate (%) zation Rate Rate talized ($)

8 0 60.48% 16.53% 25.83% 83.47% 17.15% 22.92% 2771.57
9 0 55.16% 9.06% 27.13% 90.94% 17.41% 22.92% 2833.97
7 0 66.13% 26.08% 26.25% 73.92% 16.71% 22.92% 2723.38
7 5 62.74% 19.70% 26.23% 71.25% 17.39% 22.92% 2682.38
7 10 58.01% 13.13% 26.32% 67.29% 18.28% 22.92% 2634.35
7 15 52.54% 7.17% 27.27% 63.59% 19.15% 22.92% 2594.14
7 20 46.44% 3.40% 27.72% 58.05% 20.21% 22.92% 2561.86
7 25 38.61% 1.03% 28.16% 49.91% 21.00% 22.92% 2508.82

Patient flow is 5 times of original dataset.

5.6.5 Sensitivity Analysis

We have already conducted sensitivity analysis on patient volume in the previous

subsection. Here we conduct sensitivity analysis on the cost data. The core models is

presented in section 5.5.1. Keeping the other costs constant, the long term PDE cost

can increase by 19 times the core model without changing any capacity, discharge or

admission suggestions. If the long term cost of treating PDE goes beyond further,

FCFS discharge policy becomes the most cost-effectiveness among all discharge poli-

cies. With the rest costs fixed, the unit bed cost per patient can increase by 3 times

without changing the advantage of OU in all sort of patient volume scenarios. If the

OU bed cost increases further, an OU fails to save costs for the health care system by

reducing the hospitalization rate. Due to the "economy of scale" in the larger hospital

with 5 times of base-case patient volume, the OU cost can increase by 6 times to keep

the cost-saving advantage.

5.7 Conclusion and Future Research

This study provides a comprehensive operational framework to install an ADHF ded-

icated OU, that reduces unnecessary inpatient admission and ensures low cost of ED

patient triaging. As the current conservative norm, around 75 % of ADHF patients
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are admitted to hospital due to the potentially high risk of complication, death and

readmission of early discharge home after a short stay in ED. However, the propor-

tion of ADHF patients who truly demand inpatient care is only 25 %, one third of

current hospitalization rate. Therefore, the proposed OU is designed, so that ADHF

patients can be treated for no longer than 48 hours in OU, and consequently the like-

lihood of post-discharge events is largely mitigated. Moreover, their hospitalization

needs are identified in OU, ruling out the unnecessary inpatient admission afterwards.

Given the fact that the treatment and nursing service are less intense in OU than

those in hospital wards, the potential ADHF-dedicated OU features lower economic

burden and higher quality of care, and thus is attractive for the care providers. We

provide managerial insights of deciding capacity, specifying an optimal discharge pol-

icy and interpreting the features of a hurdle involved admission strategy. This is a

data-driven work, as the motivation and simulation are rooted in over 1,500 ADHF

patients’ arrivals to a local community hospital in Montreal.

First, we use multiple models to facilitate capacity decision, trying to accommo-

date the overdispersed demand arrival pattern, and the type of service system with

no waiting space. Although, arrival rates are overdispersed, traditional square-root

principle can still be applicable for capacity sizing. However, the service level is no

long guaranteed. Erlang-loss model with generalized service rate is still appealing,

because it provides a lower bound with a given loss rate in the case of over-dispersed

arrival pattern. Erlang-loss model provides an accurate capacity estimation for a

larger hospital which has a higher patient volume. It is because larger hospitals with

a larger OU capacity provides more flexibility, as more beds can accommodate more

patients simultaneously, offsetting the negative impact of arrival over-dispersion. We

also consider three innovative methods to handle specifically the over-dispersion of

arrival rates, namely Whitt, 2006; Maman, 2009; Mathijsen et al., 2017 where the

arrival pattern is modelled as a mixed Poisson process, and the Poisson arrival rate

follows a Gamma distribution. These specific methods confirm the feasible range of

the amount of beds that should be installed in varied OUs with different demand

volumes. These analytical results provide a diminished possibility of capacity , sig-
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nificantly enhancing the efficiency of sequential simulation.

Then we investigate the possible discharge policies to decide if and which patients

to discharge and make room for new patients when all OU beds are occupied. We

evaluate each capacity decision and discharge policy with ARENA simulation software

from the perspectives of quality of care and economic burden. We figure out that the

accessibility largely impacts the quality of care as even partial OU treatment can

possibly reduce the chance of PDEs. While more beds in larger hospitals can provide

more leeway to ease the negative impacts on accessibility of overdispersed demand

arrivals, OU is not recommended to smaller hospitals as the uncertain patients may

not get sufficient OU service and make the utilization of OU resources very limited.

The simulation results demonstrate that the policy used to discharge an existing

patient who has stayed in the OU for the longest time outperforms the other three

discharge alternatives from the perspectives of feasibility, accessibility, quality of care

and overall costs. Moreover, this strategy is proven robust in different scenarios

with various patient volumes. Therefore it provides a valuable insight to operate the

potential OU.

Moreover, we think one more step further ahead and ensure to accommodate the

potential emergence of new medical technology. In fact, Abbass et al. (2015) cast

doubt about the current appealing of OU to hospitals for reducing unnecessary ad-

mission and lowering cost of risk stratifying patients in ED. Indeed, in the future,

new imaging tests or chemical indicators may distinguish low and high patients in

early stages. We test the FCFS-H admission policy for this ADHF dedicated OU, and

demonstrate that a slight downsized OU according to the specific hurdle rate deter-

mined by the future diagnosis capability is still appealing to the health care service

providers, as FCFS-H strategy is flexible and feasible to accommodate technology

advancement in the long run, without any compromise of quality standard or loss of

initial investment. This systematic framework can be definitely generalized to other

applications.

This work has several limitations. First, we make several assumptions of clinical

measures and diagnosis due to the lack of reliable medical contribution. For instance,
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we make linear interpolation on the chance of post-discharge events versus the BNP

levels, and interpolate the progress of OU patients’ average hourly BNP levels. Sec-

ond, there is few economic data on the costs of ADHF-dedicated OU except Collins

et al. (2009). We run sensitivity analysis to demonstrate the robust advantage of

designing an OU. Yet a more accurate estimate of ADHF-dedicated OU cost is defi-

nitely helpful to gauge the benefits more precisely. Third, we have no individual level

information on the progress of ADHF patients’ response to treatment, or the individ-

ual PDE rate of different risk levels. This preliminary work relies on the aggregate

behavior of ADHF patients. However, once those clinical and medical inputs become

available, we can incorporate them in our framework and generate more realistic

suggestions at ease.
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Chapter 6

Conclusion and Future Research

186



In this dissertation, I conduct data-driven research to address problems in health-

care operations management from the strategic, operational and clinical perspectives

and provide valuable managerial insights.

On the strategic level, we propose an incentive based payment scheme to encour-

age physicians to make decision for the maximal value of patients in Chapter 3. This

study demonstrates that proper financial incentives in healthcare system are essential

to ensure quality of care and control of expenses. Chapter 4 and 5 mainly contribute

to the healthcare decision-making on the operational and clinical levels. In Chapter

4, we analyze and propose a systematic guideline for specialists’ response to ED con-

sulting requests with non-homogeneous queueing models; and propose an integrated

decision-making linking triage to specialist consulting demands. Our empirical work

contributes to clinical decision-making by identifying potential specialist consulting

demands with limited information available at the triage stage. In Chapter 5, we

propose to set up an ADHF dedicated OU in order to avoid unnecessary hospitaliza-

tion and post-discharge events for ADHF patients. This potential OU, operated with

our proposed capacity and admission-discharge policy, ensures the quality of ADHF

treatment in ED without incurring extra costs for healthcare payers.

All these chapters are motived by empirical studies based on medium to large size

datasets. Specifically, Chapter 3 is based on over 12 million U.S. individual live birth

records from National Bureau of Economic Research; and Chapter 4 and Chapter

5 are based on 40 thousand individual patient visits to the Emergent Department

of St Mary’s Hospital in Montreal. We use extensive statistical methods to conduct

patient clustering from the clinical perspective. Moreover, all our analytical models

and proposed strategies are verified with these data sets, which include patient-level

information.

There are numerous fields worthwhile for further investigation and exploration in

the future. First, it would be of great value to study physicians’ behavior, although

we assume physicians’ diverse behaviours and preferences offset each other with our

census data in Chapter 3. However, future research should explore the impact of

physicians’ behavior on their clinical decision-making. It is also worthwhile to identify
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certain measures to quantify their effort. This would contribute significantly to the

design of accurate financial incentives to manage physicians’ clinical decision-making.

We expect that this stream of study largely relies on the decent data source and

advanced analytical methods.

Second, to integrate healthcare system is promising in the future. As we demon-

strated in Chapter 4, the problem of ED overcrowding actually involves multiple pro-

cesses in a hospital, for instance, tests, specialists, interface with hospital wards and

even community nursing houses. An integrated decision-making can help to improve

efficiency in the entire healthcare system. Analytical models like a queue network

consisting of multiple tandem queues are potential tools to effectively solve this type

of problems. Moreover, advanced queue network models can deal with problems of

complicated patient flows, which can involve abandonment, several rounds of tests or

specialist requests and re-admission to inpatient wards.

Furthermore, all our chapters consider passive patients who are indifferent with

their preference of physicians. However, it is worthwhile to investigate more realistic

scenarios where patients are active. Patients can select their preferred physicians

and leave the physicians they do not like. Moreover, future research should consider

the more realistic case where patients do not perfectly conform to their physicians’

decision. Advanced games and contract theory framework are expected to incorporate

the interaction between healthcare providers and patients.

In addition, advanced dynamic programming based algorithms should be further

developed in order to improve efficiency in complicated patient streaming problems.

As the case in our Chapter 4 with multiple patient classes, a dynamic streaming

policy is expected to outperform the current one.

Finally, if incorporating more developed clinical inputs, future research would

provide more feasible and valuable insights. For example, information of individual

records on the progress of ADHF treatment can contribute to the design of OU

under the framework in Chapter 5. We expect that statistical learning methods can

definitely contribute to this type of research with sufficient amount of reliable clinical

data.
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Appendix A

Literature Review on Design of

Financial Incentives and Payment

Schemes in Healthcare Systems

Settings Payment Mechanisms Literature
Physicians Overview, Mixed (Leger 2008); (Leger 2011);

(Robinson 2001); (Lee and
Zenios 2012)

FFS (Cutler 2002); (Adida et al. 2016)
Capitation (Ellis 1998)
Bundle (Adida et al. 2016); (Gupta and

Mehrotra 2015)
P4P and OAP (Fuloria and Zenios 2001); Lee

and Zenios (2012); (Shwartz et al.
2016)

Blended payment (Chu, Liu et al. 2003); (Sorensen
and Grytten 2000); (Adida et al.
2016)

Hospitals Overview (McKillop, Pink et al. 2001);
(Friesner and Rosenman 2004);
(Rosenman and Li 2002);
(Sutherland 2011); (Czypionka et
al. 2014); (Hua et al. 2016)

Retrospective payment (Morey and Dittman 1996);
(Nedelea and Fannin 2013)
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Prospective payment (Ankjær-Jensen, Rosling et al.
2006); (Clement, Grosskopt et al.
1996); (Puenpatom and Rosen-
man 2008); (Ata, Killaly et al.
2013)

DRG (Fetter 1991); (Goldfield 2010);
(Sutherland, Hamm et al. 2009);
(Dismuke and Sena 1999); (Her-
wartz and Strumann 2012);
(Sharma 2008); (Woodbury,
Manton et al. 1993); (Gaal,
Stefka et al. 2006); (Epstein and
Mason 2006); (Fattore and Tor-
bica 2006); (Bellanger and Tardif
2006); (Schreyögg, Tiemann et
al. 2006); (Rouse and Swales
2006); (Shwartz and Lenard
1994)

Global budget funding (Peacock and Segal 2000)
Activity based funding (Biorn, Hagen et al. 2003);

(Sommersguter-Reichmann 2000)
Internal cost allocation (Verheyen and Nederstigt 1992);

(Verheyen 1998); (Morey and
Dittman 1984)

Pharmaceu
ticals

(Kolassa 1997); (Song and Zip-
kin 2003); (Chick, Mamani et al.
2008); (Sun, Yang et al. 2009);
(Mamani, Chick et al. 2013);
(Malvankar-Mehta and Xie 2012);
(Zhang, Zaric et al. 2011); Zaric
et al. (2013); Mahjoub et al.
(2014); Taylor and Xiao (2014);
(Levi et al. 2016)

Table A.1: Literature under Category
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o
n

d
ec
i-

si
o
n
,
a
n
d
en
a
b
le
d
th
e

b
a
la
n
ce

o
f
co
n
st
ra
in
ed

b
u
d
g
et
s
a
n
d
m
a
in
ta
in

n
o
rm

a
l
o
p
er
a
ti
o
n
s
fo
r

a
n
in
st
it
u
ti
o
n
.

T
h
e
o
b
je
ct
iv
e
fu
n
ct
io
n

co
u
ld

in
co
rp
o
ra
te

m
u
l-

ti
p
le
g
o
a
ls
fo
r
d
ec
is
io
n

m
a
ke
rs
.

(B
la
ke

a
n
d

C
a
rt
er

2
0
0
3
)

In
v
es
ti
g
a
te

h
ow

va
ri
ed

p
h
y
si
ci
a
n

p
ay
m
en
t

m
ec
h
a
n
is
m
s

in
te
ra
ct

w
it
h
d
iff
er
en
t
h
os
p
it
a
l

fu
n
d
in
g
p
o
li
ci
es

P
h
y
si
ci
a
n

&
h
o
sp
i-

ta
l

D
et
er
m
in
is
ti
cL
in
ea
r

p
ro
g
ra
m
-

m
in
g

M
in
im
iz
e
w
ei
g
h
te
d
d
e-

v
ia
ti
o
n
s
fr
o
m

d
es
ir
ed

ec
o
n
o
m
ic

g
o
a
ls
,

a
n
d

m
in
im
iz
e

th
e

d
ev
ia
-

ti
o
n
s

fr
o
m

p
h
y
si
ci
a
n

p
re
fe
rr
ed

in
co
m
e.

T
h
e

m
o
d
el

in
co
rp
o
-

ra
te
d

th
e

in
te
ra
ct
io
n

b
et
w
ee
n
h
o
sp
it
a
ls

a
n
d

sa
la
ri
ed

p
h
y
si
ci
a
n
s
u
n
-

d
er

m
u
lt
ip
le

b
u
d
g
et

co
n
st
ra
in
ed

sc
en
a
ri
o
s.

It
ex
p
la
in
ed

se
ve
ra
l

p
ay
m
en
t
m
ec
h
a
n
is
m
s,

w
it
h
o
u
t

re
co
m
m
en
d
-

in
g

a
n

o
p
ti
m
a
l

o
n
e

fo
r

ea
ch

in
d
iv
id
u
a
l

se
tt
in
g
s

(C
h
ic
k
,

M
a
m
a
n
i

et
a
l.

2
0
0
8
)

S
tu
d
y

w
h
a
t

co
n
tr
a
ct

ca
n

im
p
ro
v
e

p
u
b
li
c

h
ea
lt
h

co
st
-e
ff
ec
ti
ve

o
u
tc
o
m
e
w
it
h
o
u
t
sa
c-

ri
fi
ci
n
g
m
a
n
u
fa
ct
u
re
rs
’

p
ro
fi
ts
?

P
h
a
rm

a
-

ce
u
ti
ca
ls

S
to
ch
a
st
ic

G
a
m
es

th
eo
ry
,

su
p
p
ly

ch
a
in

co
n
tr
a
ct

B
o
th

g
ov
er
n
m
en
t
a
n
d

m
a
n
u
fa
ct
u
re
s

a
im

to
m
in
im
iz
e
n
et

co
st
s.

T
h
ei
r

p
ro
p
o
se
d

co
st
-

sh
a
ri
n
g

co
n
tr
a
ct

su
cc
es
sf
u
ll
y
m
o
ti
va
te
d

b
o
th

p
ay
er
s
a
n
d

su
p
-

p
li
er
s
to

a
ch
ie
v
e
g
lo
b
a
l

o
p
ti
m
iz
a
ti
o
n
a
n
d
g
u
a
r-

a
n
te
e

th
e

su
p
p
ly

o
f

va
cc
in
e.

H
o
m
o
g
en
eo
u
s

p
o
p
u
-

la
ti
o
n

a
n
d

ep
id
em

ic
m
o
d
el

d
id

n
o
t

in
-

co
rp
o
ra
te

re
si
d
u
a
l

im
m
u
n
it
y

o
f
va
cc
in
e.

G
ov
er
n
m
en
t
m
ay

n
o
t

b
e

a
b
le

to
fo
re
ca
st

th
e
d
em

a
n
d
o
f
sp
ec
ifi
c

ty
p
es

a
n
d
q
u
a
n
ti
ty

o
f

va
cc
in
es
.

T
h
e
ca
se

o
f

m
u
lt
ip
le

p
u
rc
h
a
se
rs

a
n
d
su
p
p
li
er
s
m
ay

b
e

o
f
in
te
re
st
to
o.

(C
h
u
,

L
iu

et
a
l.

2
0
0
3
)

E
x
a
m
in
e

w
h
et
h
er

a
P
h
y
si
ci
a
n

C
o
m
p
en
sa
-

ti
o
n

P
ro
g
ra
m

(P
C
P
)

ca
n
im
p
ro
ve

effi
ci
en
cy

in
a

la
rg
e

T
a
iw
a
n

te
a
ch
in
g
h
o
sp
it
a
l

P
h
y
si
ci
a
n

E
m
p
ir
ic
a
l

D
a
ta

E
n
v
el
-

o
p
m
en
t

A
n
a
ly
si
s,

p
o
b
it

m
o
d
el

E
x
a
m
in
e

a
n
d

ex
p
lo
re

th
e
fa
ct
o
rs
th
a
t
im
p
a
ct

h
o
sp
it
a
ls
’
effi

ci
en
cy
.

It
co
n
fi
rm

ed
th
e

im
-

p
ro
v
em

en
t
o
f
h
o
sp
it
a
l

effi
ci
en
cy

a
ft
er

im
p
le
-

m
en
ti
n
g
P
C
P
.

B
en
ch
m
a
rk
in
g

a
n
d

o
th
er

p
ro
d
u
ct
iv
it
y

m
ea
su
re
s

m
ay

b
e

o
f

in
te
re
st
.
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(C
le
m
en
t,

G
ro
ss
ko
p
t

et
a
l.

1
9
9
6
)

S
tu
d
y
w
h
a
t
a
sh
a
d
ow

p
ri
ce
s
o
f
h
o
sp
it
a
l
se
r-

v
ic
es

a
re

a
n
d
H
ow

b
ig

th
e
d
iff
er
en
ce
s
b
et
w
ee
n

re
im
b
u
rs
em

en
t

ra
te
s

a
n
d
sh
a
d
ow

p
ri
ce
s
a
re

In
p
a
ti
en
t

&
O
u
tp
a
-

ti
en
t

D
et
er
m
in
is
ti
cN
o
n
li
n
ea
r

p
ro
g
ra
m
-

m
in
g

C
a
lc
u
la
te

sh
a
d
ow

p
ri
ce
s

o
f

h
o
sp
it
a
l

se
rv
ic
es

b
y

es
ti
m
a
t-

in
g

S
h
ep
h
a
rd
-t
y
p
e

d
is
ta
n
ce

fu
n
ct
io
n
.

D
is
ta
n
ce

fu
n
ct
io
n

re
-

le
a
se
d

th
e

co
st

m
in
-

im
iz
a
ti
o
n

a
ss
u
m
p
ti
o
n

o
f
co
st

fu
n
ct
io
n
,
a
n
d

a
ll
ow

ed
re
tr
ie
va
l,

a
n
d

ca
n
h
av
e
va
ri
ed

ap
p
li
-

ca
ti
o
n
s.

T
h
e
sh
a
d
ow

p
ri
ce
s
o
f

ea
ch

D
R
G

ra
te
s

a
re

o
f
in
te
re
st
,

b
u
t

re
ly

la
rg
el
y

o
n

av
a
il
a
b
le

d
is
a
g
g
re
g
a
te
d
d
a
ta
.

(C
zy
p
io
n
ka

et
a
l.

2
0
1
4
)

E
x
a
m
in
e
th
e
im
p
a
ct

o
f

ow
n
er
sh
ip

a
n
d

fi
n
a
n
-

ci
a
l
in
ce
n
ti
v
es

o
n
h
o
s-

p
it
a
l
effi

ci
en
cy

in
A
u
s-

tr
a
li
a
.

In
p
a
ti
en
t

E
m
p
ir
ic
a
l

D
a
ta

E
n
v
el
o
p

A
n
a
ly
si
s

C
a
lc
u
la
te
th
e
effi

ci
en
cy

in
d
ex

fo
r
d
iff
er
en
t
h
o
s-

p
it
a
ls
g
iv
en

ce
rt
a
in

in
-

d
ic
a
to
rs

T
h
ey

fo
u
n
d
th
e
im
p
a
ct

o
f
ow

n
er
sh
ip

o
n
A
u
s-

tr
a
li
a

h
o
sp
it
a
ls
,

a
n
d

fu
rt
h
er

fo
u
n
d
th
e
im
-

p
a
ct

o
f
fi
n
a
n
ci
a
l
in
-

ce
n
ti
ve
s
b
y
co
m
p
a
ri
n
g

th
ei
r
re
su
lt
s
w
it
h
ex
is
t-

in
g
li
te
ra
tu
re
.

Q
u
a
li
ty

in
d
ic
a
to
rs

a
re

w
o
rt
h
co
n
si
d
er
in
g
,
a
n
d

re
le
va
n
t
d
a
ta
se
t
is

ex
-

p
ec
te
d
to

b
e
av
a
il
a
b
le
.

(D
is
m
u
k
e

a
n
d

S
en
a

1
9
9
9
)

E
x
a
m
in
e

w
h
et
h
er

D
R
G

p
ay
m
en
t

in
-

fl
u
en
ce
d

th
e

te
ch
-

n
ic
a
l

effi
ci
en
cy

a
n
d

p
ro
d
u
ct
iv
it
y

o
f
d
ia
g
-

n
o
st
ic

te
ch
n
o
lo
g
ie
s

in
P
o
rt
u
g
u
es
e

p
u
b
li
c

h
o
sp
it
a
ls

In
p
a
ti
en
t

E
m
p
ir
ic
a
l

P
a
ra
m
et
ri
c

a
n
d

n
o
n
-

p
a
ra
m
et
ri
c

fr
o
n
ti
er

m
o
d
el

E
x
a
m
in
e
th
e
im
p
a
ct

o
f

a
ct
u
a
l
D
R
G

p
ay
m
en
t

o
n
th
e
p
ro
d
u
ct
iv
it
y
o
f

d
ia
g
n
o
st
ic
te
ch
n
o
lo
g
y

T
h
e

w
o
rk

co
n
fi
rm

ed
th
e
p
o
si
ti
ve

co
n
tr
ib
u
-

ti
o
n
o
f
D
R
G
to
im
p
ro
v
-

in
g

p
ro
d
u
ct
iv
it
y

a
n
d

te
ch
n
ic
a
l
effi

ci
en
cy

in
P
o
rt
u
g
u
es
e
h
o
sp
it
a
ls
.

T
h
e

le
n
g
th

o
f

st
ay
,

w
a
it
in
g
ti
m
e
a
n
d
o
th
er

q
u
a
li
ty

fa
ct
o
rs

m
ay

b
e

o
f
in
te
re
st
.

(E
p
st
ei
n

a
n
d

M
a
so
n

2
0
0
6
)

D
es
cr
ib
e
a
n
d
ev
a
lu
a
te

th
e
n
a
ti
o
n
a
l
co
st
-p
er
-

ca
se

ta
ri
ff

sy
st
em

fo
r

fi
n
a
n
ci
n
g

h
o
sp
it
a
ls

in
E
n
g
la
n
d
.

H
o
sp
it
a
l

in
p
a
ti
en
t

M
et
h
o
d
o
lo
g
y

st
a
te
-

m
en
t

N
A

N
A

T
h
e
w
o
rk

d
et
a
il
ed

th
e

d
es
ig
n

o
f

co
st
-p
er
-

ca
se

ta
ri
ff

sy
st
em

in
E
n
g
la
n
d
a
n
d
in
cl
u
d
ed

ea
rl
y
a
ss
es
sm

en
t.

T
h
e
va
ri
a
n
ts

o
f
h
o
sp
i-

ta
ls

a
re

w
o
rt
h
co
n
si
d
-

er
in
g
.

T
h
e

co
m
p
a
r-

is
o
n

o
f
d
iff
er
en
t
p
ay
-

m
en
t
sy
st
em

s
m
ay

b
e

o
f
in
te
re
st
.
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(F
a
tt
o
re

a
n
d

T
o
rb
ic
a

2
0
0
6
)

A
n
a
ly
ze

a
n
d

a
ss
es
s

ra
te
s
o
f
D
R
G

d
er
iv
ed

fr
o
m

p
ro
d
u
ct
io
n
co
st
s

in
It
a
ly
.

H
o
sp
it
a
l

in
p
a
ti
en
t

M
et
h
o
d
o
lo
g
y

st
a
te
-

m
en
t

N
A

N
A

T
h
e

w
o
rk

ex
p
la
in
ed

h
ow

n
a
ti
o
n
a
l

a
n
d

re
g
io
n
a
l

g
ov
er
n
m
en
ts

se
t

u
p

th
e

ra
te
s,

a
n
d

p
o
in
te
d

o
u
t
se
v
-

er
a
l

co
n
se
q
u
en
ti
a
l

p
ro
b
le
m
s.

E
m
p
ir
ic
a
l
st
u
d
y

a
n
d

b
et
te
r

ra
te

d
es
ig
n

sh
o
u
ld

b
e

d
ev
el
o
p
ed
.

C
o
m
p
a
ri
so
n

a
m
o
n
g

o
th
er

si
m
il
a
r
co
u
n
tr
ie
s

m
ay

b
e
o
f
in
te
re
st
.

(F
et
te
r

1
9
9
1
)

D
es
cr
ib
e
a
n
d
ev
a
lu
a
te

th
e
o
ri
g
in
a
l
D
R
G
se
tu
p

in
th
e
U
S
A
.

In
p
a
ti
en
t

M
et
h
o
d
o
lo
g
y

st
a
te
-

m
en
t

N
A

N
A

D
o
cu
m
en
te
d

th
e

h
is
-

to
ry

a
n
d
ev
o
lu
ti
o
n
s
o
f

D
R
G
.

U
p
d
a
te
d
ev
o
lu
ti
o
n
a
n
d

a
p
p
li
ca
ti
o
n
s
in

d
iff
er
-

en
t
se
tt
in
g
s
ar
e
o
f
in
-

te
re
st
.

(F
ri
es
n
er

a
n
d

R
o
se
n
-

m
a
n

2
0
0
4
)

In
v
es
ti
g
a
te

w
h
et
h
er

p
ro
v
id
er
s

ra
is
e

in
-

p
a
ti
en
t

p
ri
ce
s

fo
r

n
o
n
-g
ov
er
n
m
en
t

p
a
-

ti
en
ts

w
h
en

fa
ce
d

w
it
h
lo
w
er

g
ov
er
n
m
en
t

re
im
b
u
rs
em

en
t

fo
r

o
u
tp
a
ti
en
t
se
rv
ic
es
,

H
o
sp
it
a
l

in
p
a
ti
en
t

&
o
u
tp
a
-

ti
en
t

E
m
p
ir
ic
a
l

N
A

N
A

T
h
e

w
o
rk

co
n
cl
u
d
ed

g
ov
er
n
m
en
t

ow
n
ed

h
o
sp
it
a
ls

te
n
d

n
o
t

to
h
av
e

co
st

sh
if
ti
n
g

b
eh
av
io
rs
.

T
h
e
q
u
a
li
ty

a
n
d

effi
-

ci
en
cy

m
ay

b
e
o
f
in
-

te
re
st

w
h
en

ev
a
lu
a
ti
n
g

ch
a
n
g
es

o
f

in
su
ra
n
ce

p
la
n
s.

(F
u
lo
ri
a

a
n
d

Z
en
io
s

2
0
0
1
)

E
x
a
m
in
e

H
ow

p
u
r-

ch
a
se
rs

ca
n

d
es
ig
n

a
p
ay
m
en
t

m
ec
h
a-

n
is
m

th
a
t

m
o
ti
va
te
s

h
ea
lt
h
ca
re
p
ro
v
id
er
s
to

ch
o
o
se

tr
ea
tm

en
t

fo
r

th
e

p
u
rp
o
se

o
f
m
a
x
-

im
iz
in
g

to
ta
l

so
ci
a
l

w
el
fa
re

P
h
y
si
ci
a
n

S
to
ch
a
st
ic

D
y
n
a
m
ic

p
ro
g
ra
m
-

m
in
g

M
a
x
im
iz
e

th
e

p
u
r-

ch
a
se
r’
s

ex
p
ec
te
d

d
is
co
u
n
te
d

p
ay
o
ff

fo
r

ea
ch

st
a
te
.

It
p
ro
p
o
se
d

a
n

o
p
ti
-

m
a
l
p
ay
m
en
t

sc
h
em

e
fo
r
p
ro
v
id
er
s
to

p
u
r-

su
e

lo
n
g
-t
er
m

b
en
efi
t

fo
r
p
a
ti
en
ts
.

T
h
e

p
a
ti
en
ts

a
re

a
s-

su
m
ed

p
a
ss
iv
e,

a
n
d

p
ro
v
id
er
s

a
re

p
ro
fi
t

m
a
x
im
iz
er
s.

(G
a
a
l,

S
te
fk
a

et
a
l.
2
0
0
6
)

D
es
cr
ib
e
a
n
d
a
ss
es
s
th
e

co
st

m
et
h
o
d
o
lo
g
y
a
n
d

p
ri
ce

se
tt
in
g
o
f
a
D
R
G

sy
st
em

fo
r
H
u
n
g
a
ri
a
n

h
o
sp
it
a
ls
.

H
o
sp
it
a
l

in
p
a
ti
en
t

M
et
h
o
d
o
lo
g
y

st
a
te
-

m
en
t

N
A

N
A

T
h
e
w
o
rk

a
n
a
ly
ze
d
th
e

is
su
es

o
f
im
p
le
m
en
ti
n
g

D
R
G

sy
st
em

s
in

H
u
n
-

g
a
ri
a
n
h
o
sp
it
a
ls
.

T
h
e

im
p
a
ct

o
n

effi
-

ci
en
cy

a
n
d
co
m
p
a
ri
so
n

w
it
h
o
th
er

p
ee
r
co
u
n
-

tr
ie
s
m
ay

b
e
o
f
in
te
r-

es
t.
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(G
u
p
ta

a
n
d

M
eh
ro
tr
a

2
0
1
5
)

E
va
lu
at
e
th
e
"
b
u
n
d
le

p
ay
m
en
ts

fo
r

ca
re

im
p
ro
ve
m
en
t"

(B
P
C
I)

m
ec
h
a
n
is
m

w
it
h

n
o
rm

a
ti
ve

m
o
d
el
s;

d
es
ig
n

a
n
d

a
n
a
ly
ze

a
co
n
st
ra
in
ed

o
p
ti
m
a
l

m
ec
h
a
n
is
m
.

H
o
sp
it
a
l

in
p
a
ti
en
t

&
o
u
tp
a
-

ti
en
t

M
a
th
em

a
ti
ca
lP
ri
n
ci
p
a
l

&
a
g
en
t

fr
a
m
e-

w
o
rk
;

g
a
m
e

th
eo
ry

P
ay
er

a
im
s
to

m
a
x
i-

m
iz
e
to
ta
l
ex
p
ec
te
d
so
-

ci
a
l
b
en
efi
t

T
h
ey

p
ro
p
o
se
d

an
o
p
ti
m
a
l

u
n
ce
rt
a
in

se
le
ct
io
n

m
ec
h
a
n
is
m

to
d
ea
l
w
it
h

th
e
u
n
-

ce
rt
a
in

q
u
a
n
ti
ty

o
f

p
ro
p
se
rs

su
b
m
it
te
d
to

th
e
p
ay
er
.

T
h
e

fr
a
m
ew

o
rk

is
li
m
it
ed

to
th
e
sp
ec
ifi
c

in
it
ia
ti
ve

a
n
d

ca
n
n
o
t

g
en
er
a
li
ze

to
o
th
er

se
tt
in
g
s.

T
h
ey

fa
il

to
in
co
rp
o
ra
te
d

tr
ia
l

a
n
d

er
ro
r
in

p
ra
ct
ic
e

w
h
en

im
p
le
m
en
ti
n
g

th
is
m
ec
h
a
n
is
m
.

(H
er
w
a
rt
z

a
n
d
S
tr
u
-

m
a
n
n

2
0
1
2
)

In
v
es
ti
g
a
te

w
h
et
h
er

p
ro
sp
ec
ti
ve

p
ay
m
en
t

eff
ec
ti
ve
ly

in
cr
ea
se
s

lo
ca
l
h
o
sp
it
a
l
co
m
p
et
i-

ti
o
n
in

G
er
m
a
n
y

In
p
a
ti
en
t

E
m
p
ir
ic
a
l

S
to
ch
a
st
ic

fr
o
n
ti
er

a
n
a
ly
si
s,

D
E
A
,

sp
a
ti
a
l

re
g
re
s-

si
o
n

E
x
a
m
in
e

th
e

sp
a
ti
a
l

in
te
rd
ep
en
d
en
ce

o
f

h
o
sp
it
a
l

effi
ci
en
cy
;

w
h
et
h
er

o
r

n
o
t

th
e

m
a
g
n
it
u
d
e
o
f
n
eg
a
ti
ve

sp
a
ti
a
l

sp
il
lo
ve
rs

o
f

h
o
sp
it
a
l
effi

ci
en
cy

h
a
s

in
cr
ea
se
d

a
ft
er

D
R
G

re
fo
rm

.

T
h
e

w
o
rk

co
n
cl
u
d
ed

th
e
in
cr
ea
si
n
g
co
m
p
e-

ti
ti
o
n

a
m
o
n
g
G
er
m
a
n

h
o
sp
it
a
ls
d
u
e
to

n
eg
a
-

ti
ve

sp
at
ia
l
sp
il
lo
ve
rs
.

P
a
ti
en
t-
le
v
el

effi
ci
en
cy

a
n
d
im
p
a
ct

o
f
h
o
sp
it
a
l

sp
ec
ia
lt
y
m
ay

b
e
w
o
rt
h

fu
rt
h
er

in
ve
st
ig
a
ti
n
g
.

(H
u
a

et
a
l.
2
0
1
6
)

A
n
a
ly
ze

th
e
co
m
p
et
i-

ti
o
n
b
et
w
ee
n
fr
ee

p
u
b
-

li
c
p
ro
v
id
er
s
a
n
d

to
ll

p
ri
va
te

p
ro
v
id
er
s.

D
e-

ve
lp
e

a
co
o
rd
in
a
ti
o
n

m
ec
h
a
n
is
m

w
it
h

g
ov
-

er
n
m
en
t

p
o
li
ci
es

fo
r

b
o
th

ty
p
es
o
f
p
ro
v
id
er
s

to
m
a
x
im
iz
e
so
ci
a
l
w
el
-

fa
re
.

H
o
sp
it
a
l

in
p
a
ti
en
t

&
o
u
tp
a
-

ti
en
t

M
a
th
em

a
ti
c
M
ix
ed

d
u
o
p
o
ly

g
a
m
e

G
ov
er
n
m
en
t

a
im
s

to
m
a
x
im
iz
e

th
e

so
ci
a
l

w
el
fa
re

o
f
th
e

p
u
b
li
c

se
rv
ic
e,

w
h
il
e

p
u
b
-

li
c

p
la
ye
rs

ta
rg
et

to
m
a
x
im
iz
e
th
ei
r
u
ti
li
ty

w
it
h

ca
p
a
ci
ty

co
n
-

st
ra
in
,

a
n
d

p
ri
va
te

o
n
es

m
a
x
im
iz
e

th
ei
r

p
ro
fi
ts
.

T
h
ey

fo
u
n
d

a
u
n
iq
u
e

N
a
sh

eq
u
il
ib
ri
u
m

fo
r

th
e

co
m
p
et
it
io
n

o
f

a
tw
o
-t
ie
r

sy
st
em

,
th
o
u
g
h

it
m
ay

n
o
t

o
u
tp
er
fo
rm

o
n
e-
ti
er

sy
st
em

.

T
h
ey

ig
n
o
re
d
th
e
re
a
l

ti
m
e
q
u
eu
e
le
n
g
th

in
-

fo
rm

a
ti
o
n
,
b
u
t
fo
cu
se
d

o
n

th
e
lo
n
g
ti
m
e
ex
-

p
ec
te
d
w
a
it
ti
m
e.
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(H
u
tc
h
is
o
n
,

H
u
rl
ey

et
a
l.
2
0
0
0
)

D
ev
el
o
p

a
n
d

ev
a
lu
a
te

a
lt
er
n
a
ti
ve

m
et
h
o
d
s

o
f

a
d
ju
st
in
g

p
ri
m
a
ry

m
ed
ic
a
l

ca
re

ca
p
i-

ta
ti
o
n

p
ay
m
en
ts

fo
r

va
ri
at
io
n
s

in
re
la
-

ti
ve

n
ee
d

fo
r

h
ea
lt
h

ca
re

a
m
o
n
g

en
ro
ll
ed

p
ra
ct
ic
e
p
o
p
u
la
ti
o
n
s.

P
h
y
si
ci
a
n

E
m
p
ir
ic
a
l

N
A

N
A

N
ee
d
s-
b
a
se
d

ca
p
it
a
-

ti
o
n

fo
rm

u
la
e

b
a
se
d

o
n
so
ci
o
ec
o
n
o
m
ic

a
n
d

m
o
rt
a
li
ty

d
a
ta

d
o
es

n
o
t
w
or
k
w
el
l

A
lt
er
n
a
ti
ve

fo
rm

u
la
e

in
co
rp
o
ra
ti
n
g

va
ri
ed

p
o
p
u
la
ti
o
n

sh
o
u
ld

b
e

d
ev
el
o
p
ed
.

(J
ia
n
g
,

P
a
n
g

et
a
l.
2
0
1
2
)

S
tu
d
y

h
ow

to
se
t
u
p

a
u
n
ifi
ed

p
er
fo
rm

a
n
ce
-

b
a
se
d

co
n
tr
a
ct
in
g

fr
a
m
ew

o
rk

in
co
rp
o
ra
t-

in
g

p
a
ti
en
t
a
cc
es
s-
to
-

ca
re

re
q
u
ir
em

en
ts

a
n
d

co
m
p
le
x

o
u
tp
a
ti
en
t

ca
re

d
y
n
a
m
ic
s
fo
r
a
n

o
n
li
n
e

a
p
p
o
in
tm

en
t

sc
h
ed
u
li
n
g
sy
st
em

O
u
tp
a
ti
en
t
D
y
n
a
m
ic

Q
u
eu
e

M
in
im
iz
e

se
rv
ic
e

p
ro
v
id
er
’s
co
st
to

m
ee
t

ce
rt
a
in

w
a
it
in
g
-t
im
e

ta
rg
et
s.

A
li
n
ea
r
p
er
fo
rm

a
n
ce
-

b
a
se
d
co
n
tr
a
ct
w
o
rk
ed
,

w
h
il
e

a
si
m
p
li
fi
ed

th
re
sh
o
ld
-p
en
a
lt
y

co
n
tr
a
ct

w
as

o
p
ti
m
a
l

fo
r

d
ed
ic
a
te
d
-o
n
ly

p
a
ti
en
ts
,

N
o
n
-l
in
ea
r

p
er
fo
rm

a
n
ce
-b
a
se
d

co
n
tr
a
ct

w
o
u
ld

b
e
o
f

in
te
re
st
,

a
n
d

m
o
re

co
m
p
le
x

p
a
ti
en
t

m
ix

a
n
d
d
y
n
a
m
ic
s
o
f
d
ay
-

to
-d
ay

a
p
p
o
in
tm

en
t

sy
st
em

a
re

w
o
rt
h

fu
rt
h
er

in
ve
st
ig
a
ti
o
n
.

(L
ee

a
n
d

Z
en
io
s

2
0
1
2
)

S
tu
d
y
w
h
a
t
th
e
st
ru
c-

tu
ra
l

p
a
ra
m
et
er
s

o
f

M
ed
ic
a
re
’s

d
ia
ly
-

si
s

p
ay
m
en
t

sy
st
em

in
v
o
lv
in
g

th
e

ri
sk

a
d
ju
st
m
en
t

a
n
d

th
e

tr
a
n
si
ti
o
n

to
w
a
rd

a
p
ay
-f
o
r-
co
m
p
li
a
n
ce

sy
st
em

a
re

P
h
y
si
ci
a
n

E
m
p
ir
ic
a
l

N
A

N
A

P
ay

fo
r
ri
sk

a
d
ju
st
ed

d
ow

n
st
re
a
m

w
o
u
ld

w
o
rk

b
et
te
r
to

en
su
re

q
u
a
li
ty

ca
re
.

It
d
id

n
o
t

a
cc
o
m
-

m
o
d
a
te

h
et
er
o
g
en
eo
u
s

p
h
y
si
ci
a
n
s
a
n
d
p
o
ss
ib
le

se
le
ct
iv
e
m
ec
h
a
n
is
m

o
f

p
ro
v
id
er
s.

It
a
ss
u
m
ed

p
ro
v
id
er
s
a
s
p
ro
fi
ta
b
le

m
a
x
im
iz
er
s.

It
is

a
st
a
ti
c

m
o
d
el
,

w
h
il
e

p
ro
v
id
er
s’

d
y
n
a
m
ic

re
sp
o
n
se

ov
er

th
e
ti
m
e

m
ig
h
t
b
e
o
f
in
te
re
st
.
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(L
ev
i

et
a
l
2
0
1
6
)

In
v
es
ti
g
a
te

th
e

eff
ec
-

ti
ve
n
es
s
o
f
th
e
u
n
if
o
rm

su
b
si
d
y
m
ec
h
a
n
is
m
.

P
h
a
rm

a
ce
u
ti
ca
l

M
a
th
em

a
ti
c
M
a
th
em

a
ti
c

p
ro
g
ra
m
-

m
in
g

w
it
h

eq
u
i-

li
b
ri
u
m

co
n
-

st
ra
in
s

C
en
tr
a
l

p
la
n
n
er

a
im

to
m
a
x
im
iz
e

th
e

co
n
su
m
p
ti
o
n

o
f

th
e

m
a
la
ri
a
d
ru
g
o
r
so
ci
a
l

w
el
fa
re
.

T
h
ey

co
n
fi
rm

ed
th
e

o
p
ti
m
a
li
ty

a
n
d

eff
ec
-

ti
ve
n
es
s

o
f

u
n
if
o
rm

su
b
si
d
y,
a
ls
o
fo
u
n
d
th
is

m
ec
h
a
n
is
m

ca
n

m
a
x
i-

m
iz
e
so
ci
a
l
w
el
fa
re

a
s

w
el
l.

T
h
e
th
eo
re
ti
ca
l
b
o
u
n
d
s

o
n

th
e

eff
ec
ti
ve
n
es
s

n
ee
d
s

to
b
e

st
u
d
ie
d
.

A
lt
er
n
a
ti
ve

p
o
li
cy

is
w
o
rt
h
in
v
es
ti
g
a
ti
n
g
in

th
e
se
tu
p
w
it
h
a
fi
x
ed

co
st
o
f
m
a
rk
et

en
tr
y.

(M
a
h
jo
u
b

et
a
l.

2
0
1
4
)

E
va
lu
at
e

th
e

im
p
ac
t

o
f
a

ri
sk
-s
h
ar
in
g

fe
a
-

tu
re
d
p
ay
-f
o
r-
p
ay
m
en
t

co
n
tr
a
ct

o
n

th
e
d
ru
g

m
a
n
u
fa
ct
u
re
rs

P
h
a
rm

a
ce
u
ti
ca
l

S
to
ch
a
st
ic

M
a
rk
ov

m
o
d
el
,

d
is
ea
se

p
ro
-

g
re
ss
io
n

m
o
d
el

D
ru
g

m
a
n
u
fa
ct
u
re
rs

a
im

to
m
a
x
im
iz
e
th
ei
r

p
ro
fi
ts

T
h
ey

fo
u
n
d

m
a
n
u
fa
c-

tu
re
rs
’

p
ro
fi
t

is
n
o
t

m
o
n
o
to
n
ic

u
n
d
er

th
is

co
n
tr
a
ct
.

T
h
e

p
er
sp
ec
ti
ve

o
f

h
ea
lt
h
ca
re

p
ay
er
s

is
w
o
rt
h
co
n
si
d
er
ed
;
a
n
d

o
th
er

ri
sk

ra
th
er

th
a
n

eff
ec
ti
ve
n
es
s
sh
o
u
ld

b
e

st
u
d
ie
d
.

(M
a
lv
a
n
ka
r-

M
eh
ta

a
n
d

X
ie

2
0
1
2
)

S
tu
d
y

w
h
a
t

in
ce
n
-

ti
ve
s

sh
o
u
ld

d
ec
is
io
n

m
a
ke
rs

ta
ke

in
o
rd
er

to
en
co
u
ra
g
e

o
p
ti
m
a
l

st
ra
te
g
ic

a
ll
o
ca
ti
o
n

o
f

H
IV
/
A
ID

S
p
re
ve
n
ti
o
n

re
so
u
rc
es

in
te
ra
ct
io
n
s

in
a

m
u
lt
ip
le
-l
ev
el

re
so
u
rc
e-
a
ll
o
ca
ti
o
n

se
tt
in
g

P
h
a
rm

a
ce
u
ti
ca
l

D
et
er
m
in
is
ti
cL
in
ea
r

p
ro
g
ra
m
-

m
in
g

M
a
x
im
iz
e
th
e
n
u
m
b
er

o
f

in
fe
ct
io
n
s

av
er
te
d

w
it
h
a
lo
w
er

le
ve
l
o
b
-

je
ct
iv
e
to

m
a
x
im
iz
e
th
e

u
ti
li
ty

o
f
m
u
lt
ip
li
ca
ti
v
e

fu
n
ct
io
n
o
f
eq
u
it
y,

ef
-

fi
ci
en
cy
,
a
n
d
fu
n
d
s
re
-

ce
iv
ed
.

It
sh
ow

ed
th
e
p
o
te
n
ti
a
l

o
f
m
u
lt
ip
le

le
ve
l
b
u
d
-

g
et

a
ll
o
ca
ti
o
n

ta
k
in
g

co
n
si
d
er
a
ti
o
n
o
f
lo
w
er
-

le
ve
l
d
ec
is
io
n

m
a
k
er
s’

p
re
fe
re
n
ce
s.

It
m
ay

b
e

o
f
in
te
r-

es
t
to

in
co
rp
o
ra
te

m
u
l-

ti
p
le

u
p
p
er
-l
ev
el

d
ec
i-

si
o
n
m
a
k
er
s.

S
eq
u
en
-

ti
a
l

im
p
er
fe
ct

g
a
m
es

a
re

o
f
in
te
re
st
to
o
.
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(M
a
m
a
n
i,

C
h
ic
k

et
a
l.
2
0
1
3
)

In
v
es
ti
g
a
te

w
h
y
th
e
a
l-

lo
ca
ti
o
n

o
f

in
fl
u
en
za

va
cc
in
es

is
in
effi

ci
en
t

a
cr
o
ss

b
o
rd
er
s?

W
h
a
t

co
n
tr
a
ct
u
a
l
m
ec
h
a
n
is
m

ca
n
a
ll
ev
ia
te

th
o
se

in
-

effi
ci
en
ci
es
?

P
h
a
rm

a
cy

S
to
ch
a
st
ic

G
a
m
e

th
eo
ry

E
a
ch

g
ov
er
n
m
en
t
m
in
-

im
iz
es

it
s
p
er
ce
iv
ed

to
-

ta
l
co
st
o
f
a
n
o
u
tb
re
a
k
;

a
ce
n
tr
a
l
p
la
n
n
er

m
in
i-

m
iz
es
th
e
ov
er
a
ll
fi
n
a
n
-

ci
a
l
a
n
d
h
ea
lt
h
co
st
s
o
f

th
e
sy
st
em

a
s
a
w
h
o
le
.

T
h
e

p
ro
p
o
se
d

co
st
-

sh
a
ri
n
g
co
n
tr
a
ct

w
er
e

p
ro
v
en

to
in
te
g
ra
te

m
u
lt
ip
le

g
ov
er
n
m
en
ts
’

d
ec
is
io
n
m
a
k
in
g
.

T
h
e

w
o
rk

d
id

n
o
t

co
n
si
d
er

m
a
n
u
fa
c-

tu
re
rs
,

n
o
r

d
iff
er
en
t

so
ci
a
l
co
st
s
in

d
iff
er
en
t

co
u
n
tr
ie
s.

T
h
e
so
u
rc
e

co
u
n
tr
ie
s
ca
n

b
e

u
n
-

ce
rt
a
in

a
n
d

u
n
k
n
ow

n
in

a
d
va
n
ce

in
p
ra
ct
ic
e.

A
n
d

th
e
im
p
le
m
en
ta
-

ti
o
n

o
f

th
e

co
n
tr
a
ct

re
li
ed

o
n

p
o
li
ti
ca
l

ra
m
ifi
ca
ti
o
n
.

(M
o
re
y

a
n
d

D
it
tm

a
n

1
9
8
4
)

S
tu
d
y

h
ow

h
o
sp
it
a
l

a
d
m
in
is
tr
a
to
rs

ca
n
b
e

h
el
p
ed

to
m
ee
t
th
ei
r

p
ro
fi
t
m
a
x
im
iz
in
g
a
n
d

p
ro
fi
t
sa
ti
sf
y
in
g
g
o
a
ls

H
o
sp
it
a
l

D
et
er
m
in
is
ti
cN
o
n
li
n
ea
r

p
ro
g
ra
m
-

m
in
g

M
a
x
im
iz
e
a
h
o
sp
it
a
l’
s

re
a
l
p
ro
fi
t
b
y
li
m
it
in
g

to
ta
l
re
v
en
u
es

to
so
m
e

p
re
se
t
ta
rg
et
s.

T
h
e
m
o
d
el

h
el
p
ed

to
ex
p
la
in

se
v
er
a
l
ta
ct
ic
a
l

is
su
es

a
n
d
d
ep
a
rt
m
en
-

ta
l
cr
o
ss
su
b
si
d
ie
s.

M
u
lt
ip
le

(m
o
re

th
an

tw
o)

p
a
ti
en
t

cl
a
ss
es

co
u
ld

b
e
ex
te
n
d
ed
.

(M
o
re
y

a
n
d

D
it
tm

a
n

1
9
9
6
)

S
tu
d
y
w
h
et
h
er

a
n
in
-

ve
rs
e

re
la
ti
o
n
sh
ip

ex
-

is
te
d
b
et
w
ee
n
th
e
h
o
s-

p
it
a
l’
s
in
effi

ci
en
cy
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Appendix B

On Reducing Medically Unnecessary

Cesarian Deliveries: The Design of

Payment Models for Maternity Care

B.1 Extra Lemmas and Propositions

Proposition B.1 All physicians will choose SB if overall utility of SB overcomes

that of C-section; and they will prefer C-section if the overall utility of C-section

overcome that of SB. That is, for a complexity level 𝑥𝑖, all physicians will choose

∙ SB, if 𝑈𝑆𝐵(𝜆, 𝑥) ≥ 𝑈𝐶𝑆(𝑥)

∙ C-section, if 𝑈𝑆𝐵(𝜆, 𝑥) ≤ 𝑈𝐶𝑆(𝑥)

Lemma B.1 If a reimbursement mechanism (𝑚𝐶
𝑆 (𝑥),𝑚

𝐷
𝑆 (𝑥)) ∀𝑆 ∈ {𝑆𝐵,𝐶𝑆} leads

to a consequent threshold of planned CS 𝑠, quality of decision increases with respect to

his benevolence. That is, the deviation from the clinical cutoff of planned CS |𝑠− 𝑥*|

is non-increasing as 𝛼 increases.

Lemma B.2 Under bundled payment where a physician’s facility costs dominate the

monetary value of the physicians’ effort invested in servicing a delivery, 𝜆 = 1 is

optimal for physicians in delivery stage after the decision of spontaneous birth.
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B.2 Parameter Estimation

B.2.1 Successful rate of natural Birth 𝑓(𝑥)

We describe the approach to estimate the rate of NB for those deliveries that SB

is prescribed by the end of the prenatal care. For pregnancy complexities below

the cutoff point, we calculate the probability of NB by simply dividing the number

of NB cases to number of SBs for given pregnancy complexity level of 𝑥. Since

SB was prescribed for a significantly low number of high risk women, completely

different patterns exist for pregnant complexity below and upon the cutoff points. We

extrapolate the pattern for clusters of low risks to those of high risks. In this context,

we use a polynomial function with power 8 to fit the low risks with complexities below

the cutoff point. This function fit has a 𝑅2 of 99.87%, significantly well fitted to our

data.

B.2.2 Cost of delivery and postpartum care

We incorporate two main sources of birth delivery for a payer: hospital cost right after

birth, and quality of delivery in the long run. According to Canadian Institute for

Health Information (2006), the non-complicated delivery and postpartum costs for CS

and NB were CAD 4,200 and CAD 2,700 on average across Canada in 2002-2003, while

the costs of delivery with complications were CAD 5,200 and CAD 3,200 for CS and

NB, respectively. CS patients tend to have a longer stay after birth in hospital wards,

and also require more intensive nursing care after the operation. Canadian Institute

for Health Information (2006) tells 32% of NB were complicated and complicated CS

delivery accounted for 34% in the same period. Because the complications of delivery

is independent of pregnancy complexities, or appropriateness of planned CS, we take

the weighted average costs for both NBs and CSs as their hospital costs.

In monetary means, quality of birth reflects in long-term health care requirement,

such as re-admission, more nursing and community care, and medical and surgical de-

mands, which leads to a greater use of health care resources and consequently higher
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health care expenses. Here we use the incidence of postpartum complications as the

proxy of birth quality based on the availability of our data set. Indeed, a mother or

baby with any of those severe postpartum complications definitely requires more in-

tensive care. We use the rate of CAD 9,700 per birth with postpartum complications,

which is reported in Canadian Institute for Health Information (2006) as an average

cost per baby admitted to neonatal intensive care unit (NICU) in 2002-2003.

We use Canada’s historical annualized inflation rates of past 15 years http://www.

inflation.eu/inflation-rates/canada/historic-inflation/cpi-inflation-canada.

aspx to adjust the prices by increasing 25.13% to the consumption level in 2015 - 2016.

B.2.3 Physicians’ Effort

Our empirical study confirmed the desire of leisure and comfort as a driver of emergent

CS abuse. Due to the lack of literature on quantification of physicians’ effort, we

estimate physicians’ efforts relevant with delivery by the duration and intensity of

delivery modes.

We consider physicians’ effort spent in a planned CS as the time and energy

invested in an operation. We take the general obstetric consultation rate of CAD 100

in 2015-2016. Because the operation requires more intensive efforts, we double hourly

rate for CS as CAD 200.

However, for the births with labor, physicians first spend time monitoring the

progress of labor, and decide then a NB or an emergent CS. In general, the average

time of labor is approximate 20 hours. We assume physicians spend efforts during

certain time of this period, since the nurses and midwifes also take active roles for

monitoring the labour. Hence the efforts on monitoring the labour are counted as

CAD 400. Hence physicians’ effort of serving emergent CS consist of two parts: efforts

of monitoring labor and effort of implementing CS; the effort spent on emergent CS

should be equivalent to that for planned CS, therefore, the effort for emergent CS is

estimated as CAD 600. Similarly, their effort spent on a NB comprises of the part of

monitoring labor and the part of assisting NB. Though the intensity of assisting NB

is similar as that for CS, in general, NB takes around 0.5 hour, hence the total effort
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for NB is estimated as CAD 500.

B.3 Sensitivity Analysis

B.3.1 Alternatives for Handling Missing Data

In addition to the multiple imputation of dealing with missing data, we also consider

the following alternative methods:

Simple Delete. We simply keep the records with complete information and remove

those with at least one missing data. This way may increase incidence of those

risky factors and postpartum complications. It is because most missing data

tend to happen in the normal cases, while people will keep records more likely

when the abnormal factors or complications happens.

Replace with median. We replace the missing data with the median of existing of the

same column. This way will more likely under-estimate the incidence of the risky

factors or complications, especially in the case of binary of rare events; because

the median is zero in that case.Due to the bias of variance and covariance of

replacement with mean, we do not replaced missing data with mean; because

we need to implement regression tree and logistic regression in the next step.

We show the estimation of 𝑓(𝜆, 𝑥) under three imputation methods in Figure

B-1.The logistic regression involves dummies of different payment resources. Our

estimation is shown robust with respect to different imputation methods. However,

due to the potential over-estimated bias of simple delete and undermined bias of

median replacement, we believe multiple regression is the best alternative in handling

missing data. Moreover, we report the results of different imputation methods with

respect to clustering and corresponding incidence of postpartum complications for all

the in-sample data in table B.1, B.2 and B.3.
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Figure B-1: Successful Rates across Clusters under Different Imputation Methods in
2013
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Table B.1: Estimated Incidence of Postpartum Complications 2013

Imputation 𝐼(𝐶𝑆, 𝑥) 𝐼(𝑆𝐵, 𝑥) 𝑥* 𝑅2

Multiple 8.6288 4.3320+5.4032𝑥 79.5232 88.46
Median Replace 8.6290 4.3269+5.3507𝑥 80.4026 89.09
Simple Delete 8.4714 4.2026+5.9257𝑥 72.0387 90.60

All numbers are in percentage; 𝑅2 is the R-square statistics of linear regression for
𝐼(𝑆𝐵, 𝑥).

Table B.2: Estimated Incidence of Postpartum Complications 2012

Imputation 𝐼(𝐶𝑆, 𝑥) 𝐼(𝑆𝐵, 𝑥) 𝑥* 𝑅2

Multiple 8.3492 4.4328+5.2500𝑥 74.5980 88.89
Median Replace 8.3376 4.3289+5.1982𝑥 77.1170 89.43
Simple Delete 8.0245 3.0429+7.3957𝑥 67.3580 93.19

All numbers are in percentage; 𝑅2 is the R-square statistics of linear regression for
𝐼(𝑆𝐵, 𝑥).
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Table B.3: Estimated Incidence of Postpartum Complications 2011

Imputation 𝐼(𝐶𝑆, 𝑥) 𝐼(𝑆𝐵, 𝑥) 𝑥* 𝑅2

Multiple 8.3932 4.6497+5.0772𝑥 73.7316 87.80
Median Replace 8.3728 4.6540+4.9705𝑥 74.8174 88.91
Simple Delete 8.4253 4.6261+5.3448𝑥 71.0822 88.98

All numbers are in percentage; 𝑅2 is the R-square statistics of linear regression for
𝐼(𝑆𝐵, 𝑥).

B.3.2 Different Number of Obstetricians in a Group

When the size of obstetrical physician group is very small, a given reimbursement

policy tends to have worse outcomes, including extremely high CS rate and high

expenses for payers, compared with a larger group (Lemma 3.7). Because physicians

in a smaller group have to share more shifts and more workflows once recommending

a spontaneous birth, they would prefer planning CS more than their colleagues in a

larger group. We recommend to pool physicians into a larger group, not only can

they pool their patients and coordinate to share work flows, but also enforce peer

supervision under our proposed bonus mechanism.

B.3.3 Difference of Physicians’ Effort

Whether the effort of serving NB is relative more effort-consuming than a CS impacts

the incentive power of bonus. When NB requires more effort from physicians, the

bonus amount has to serve as compensation of extra effort paid in serving a NB, and

offset its incentive purpose. The bottom right plot of Figure B.4 shows the rate of

planned CS rate increases as more effort demanded in NB than CS.

B.3.4 Physicians’ Altruism 𝛼

Altruism implies that, as we found from our analytical models, higher value of benev-

olence determines more weight on considering patients’ benefits and relatively less

emphasis on their own net benefits. Physicians’ net benefits include efforts and finan-
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Table B.4: Sensitivity Analysis
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Table B.5: FFS

𝜆 𝑠 Π𝑃 𝑃 𝑃𝐶 𝑃𝑁 𝑃𝐸𝐶 Δ

0.5 0.84 5157.8 204 200 300 0.73%
0.75 0.72 5389.3 252 250 350 4.70%
1 0.59 5684.1 304 300 400 9.87 %
Δ refers to the change from benchmark.

cial incomes. Given a blended reimbursement mechanism, CS rate decreases as the

altruism increases, and CS rate converges to the ideal clinic cutoff point as altruism

level is sufficiently high. In the case of bundled payment policy, CS rate increases as

altruism increases, and converges to the ideal clinic cutoff point as well. As the devi-

ation from ideal clinic point gets smaller, the total birth costs decrease and become

stable at the lowest level when ideal clinic point is approached. As obstetricians’

altruism increases, C-Section converges to the ideal clinic cutoff point, according to

the top right plot of Figure B.4.

B.3.5 Clinical Optimal Threshold

The threshold between planned CS and SB considered by physicians, i.e. the value of

𝑥* is possibly different from the ideal value 0.85. Actually, physicians’ own perspective

of 𝑥* have a large impact on CS rates. The consequential CS rates increase along with

the rates believed by physicians. We consider the range of potential beliefs from 0.7

to 0.95. As shown in the bottom left plot in Figure B.4, the deviation from clinical

guide decreases as obstetricians believe higher CS threshold in their practice.

B.4 More Numerical Experiments

We present more numerical results with respect to different effort levels under FFS in

Table B.5, under blended payment in Table B.6, under bundle payment in Table B.7,

and proposed scheme in Table B.8. AUC of ROC for out-of-sample data of different

classification methods are reported in Table B.9.
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Table B.6: Blended Payment

𝜆 𝑠 Π𝑃 𝑃𝐵𝑃 Δ

0.5 0.78 5260.8 228.2 2.74%
0.75 0.68 5473.3 268.2 6.33%
1 0.57 5731.1 307.5 10.77%

Δ refers to the change from benchmark.

Table B.7: Bundle Payment

𝜆 𝑠 Π𝑃 𝑃𝐵𝐿 Δ

0.5 0.92 6729.9 5923.1 15.68%
0.5 0.85 6791.1 5986.6 16.24%
0.75 0.93 6752.6 5926.8 15.14%
0.75 0.85 6822.3 6001.6 15.75%
1 0.95 6767.1 5898.3 14.01%
1 0.85 6853.5 6016.5 15.25% %

Δ refers to the change from benchmark.

Table B.8: Proposed Mechanism

𝜆 𝑠 Π𝑃 𝑃𝐵𝑃 𝐵𝑁𝐵 Δ

0.5 0.83 5206.4 208.0 53.9 1.68%
0.5 0.85 5352.3 200.0 288.1 3.93%
0.75 0.83 5253.4 208.0 122.9 2.06%
0.75 0.85 5402.2 200.0 359.0 4.19%
1 0.83 5295.6 208.0 183.9 2.36%
1 0.85 5434.8 200.0 405.2 4.11%
Δ refers to the change from benchmark.
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Table B.9: AUC of ROC for out-of-samples across years

2011 2012 2013

Logistic1 83.60 83.89 83.83
Logistic2 83.29 83.64 83.78
CRT1 77.70 77.98 78.03
CRT2 77.70 77.99 78.03

Logistic 1 refers to logistic regression with dummy variables of Payment resources;
Logistic 2 represents logistic regression with clinical variables only. Similarly CRT 1

refers to classification and regression tree with dummy variables of Payment
resources; CRT 2 represents classification and regression tree with clinical variables

only.

B.5 Proofs

Proof of Lemma 3.1. Denote 𝐺(𝑠) =
∫︀ 𝑠

0
𝑢𝑆𝐵(𝜆, 𝑥)d𝑥+

∫︀ 1

𝑠
𝑢𝐶𝑆(𝑥)d𝑥.

Sufficiency ⇒. In order to achieve the maximum when 𝑠* ∈ (0, 1], first and second

derivatives of 𝐺(𝑠) should satisfy

𝐺′(𝑠) = 𝑢𝑆𝐵(𝜆, 𝑠)− 𝑢𝐶𝑆(𝑠) = 0

𝐺′′(𝑠) = 𝑢′(𝑆𝐵, 𝑠)− 𝑢′(𝐶𝑆, 𝑠) ≤ 0

That is, 𝐺′(𝑠) is monotonously decreasing, and there is only one zero point 𝑠* in the

interval (0, 1]. So 𝐺′(𝑠) < 0 if 𝑠 < 𝑠*, and 𝐺′(𝑠) > 0 when 𝑠 > 𝑠*. Thus leads to the

conclusion.

If the maximum is achieved when 𝑠* = 0, 𝐺′(𝑠) is unnecessarily monotonously

decreasing, yet 𝑢𝑆𝐵(𝜆, 𝑥) < 𝑢𝐶𝑆(𝑥), ∀𝑥 ∈ [0, 1], which leads to the conclusion.

Necessity ⇐. Consider ∀𝑠1 ∈ [0, 𝑠),

𝐺(𝑠1) =

∫︁ 𝑠1

0

𝑢𝑆𝐵(𝜆, 𝑥)d𝑥+

∫︁ 𝑠

𝑠1

𝑢𝐶𝑆(𝑥)d𝑥+

∫︁ 1

𝑠

𝑢𝐶𝑆(𝑥)d𝑥

≤
∫︁ 𝑠1

0

𝑢𝑆𝐵(𝜆, 𝑥)d𝑥+

∫︁ 𝑠

𝑠1

𝑢𝑆𝐵(𝜆, 𝑥)d𝑥+

∫︁ 1

𝑠

𝑢𝐶𝑆(𝑥)d𝑥 = 𝐺(𝑠)
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Similarly, ∀𝑠2 ∈ (𝑠, 1],

𝐺(𝑠2) =

∫︁ 𝑠

0

𝑢𝑆𝐵(𝜆, 𝑥)d𝑥+

∫︁ 𝑠2

𝑠

𝑢𝑆𝐵(𝜆, 𝑥)d𝑥+

∫︁ 1

𝑠2

𝑢𝐶𝑆(𝑥)d𝑥∫︁ 𝑠

0

𝑢𝑆𝐵(𝜆, 𝑥)d𝑥+

∫︁ 𝑠2

𝑠

𝑢𝐶𝑆(𝑥)d𝑥+

∫︁ 1

𝑠2

𝑢𝐶𝑆(𝑥)d𝑥 = 𝐺(𝑠)

That is, 𝐺(𝑠) achieves maximum at 𝑠.

Proof of Lemma 3.2. Because every finite symmetric game has a symmetric Nash

equilibrium, each physician has the same decision with respect to the certain com-

plexity 𝑥.

Proof of Lemma 3.3. Overall CS rate 𝑟 can be derived as

𝑟 = 1− 𝑠+

∫︁ 𝑠

0

1− 𝑓(𝜆, 𝑥)d𝑥

= 1−
∫︁ 𝑠

0

𝑓(𝜆, 𝑥)d𝑥

due to 𝑓(𝜆, 𝑥) > 0 the overall CS rate is one-to-one mapping of the threshold of

planned CS.

Proof of Lemma 3.4. First we prove 𝐶𝐻(𝜆, 𝑠) is a convex function of 𝑠, because

𝜕𝐶𝐻(𝜆, 𝑠)

𝜕𝑠
= 𝑓(𝜆, 𝑠)𝑐𝑁𝐻 + (1− 𝑓(𝜆, 𝑠)𝑐𝐶𝐻)− 𝑐𝐶𝐻

= 𝑓(𝜆, 𝑠)(𝑐𝑁𝐻 − 𝑐𝐶𝐻)

𝜕2𝐶𝐻(𝜆, 𝑠)

𝜕𝑠2
= (𝑐𝑁𝐻 − 𝑐𝐶𝐻)

𝜕𝑓(𝜆, 𝑠)

𝜕𝑠
> 0.

Next 𝐶𝐼(𝜆, 𝑠) is a convex function of 𝑠 due to

𝜕𝐶𝐼(𝜆, 𝑠)

𝜕𝑠
= 𝐶(𝐼𝑆𝐵(𝜆, 𝑠)− 𝐼𝐶𝑆)

𝜕2𝐶𝐼(𝜆, 𝑠)

𝜕𝑠2
= 𝐶

𝜕𝐼𝑆𝐵(𝜆, 𝑠)

𝜕𝑠
> 0.

Therefore, as a linear combination of three convex functions, Π𝐸 is convex with respect

to 𝑠.
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Proof of Proposition 3.1. First we show 𝜆 = 1 is optimal for payers in delivery

stage. Because 𝑢𝐷
𝐶𝑆(𝑥) ≥ 0, ∀𝑥 > 𝑠𝐸 and 𝑢𝐷

𝑆𝐵(𝜆, 𝑥) > 0, ∀𝑥 < 𝑠𝐸,

𝑚𝐶
𝑆 (𝑥) = 0, ∀𝑆 ∈ {𝐶𝑆, 𝑆𝐵}, 𝑚𝐷

𝐶𝑆 = 𝑒𝐶 ,

𝑚𝐷
𝑆𝐵 = 𝑓(𝜆, 𝑠𝐸)𝑒𝑁 + (1− 𝑓(𝜆, 𝑠𝐸))𝑒𝐶 + 𝜆𝑒𝑀𝑁

So 𝑀(𝜆, 𝑠) that minimizes total costs becomes

𝑀(𝜆, 𝑠) =

∫︁ 𝑠

0

𝑓(𝜆, 𝑠)𝑒𝑁 + (1− 𝑓(𝜆, 𝑠))𝑒𝐶 + 𝜆𝑒𝑀𝑁d𝑥+ 𝑒𝐶(1− 𝑠)

𝜕𝑀(𝜆, 𝑠)

𝜕𝑠
= 𝑓(𝜆, 𝑠)𝑒𝑁 + (1− 𝑓(𝜆, 𝑠))𝑒𝐶 + 𝜆𝑒𝑀𝑁 − 𝑒𝐶

= 𝑓(𝜆, 𝑠)(𝑒𝑁 − 𝑒𝐶) + 𝜆𝑒𝑀𝑁

𝜕2𝑀(𝜆, 𝑠)

𝜕𝑠2
= 𝑒𝑁 − 𝑒𝐶 < 0

That is, 𝑀(𝜆, 𝑠) is convex. Therefore the Π𝐸 is convex according to Lemma 3.4.

Therefore, 𝑠𝐸 should satisfy

𝜕Π𝐸(𝜆, 𝑠)

𝜕𝑠

=𝑓(𝜆, 𝑠)(𝑐𝑁𝐻 + 𝑒𝑁) + (1− 𝑓(𝜆, 𝑥)(𝑐𝐶𝐻 + 𝑐𝐶𝑒 ) + 𝜆𝑒𝑀𝑁 − (𝑐𝐶𝐻 + 𝑒𝐶) + 𝐶𝐼𝑆𝐵(𝜆, 𝑥)− 𝐶𝐼𝐶𝑆

=𝑓(𝜆, 𝑠)(𝑐𝑁𝐻 + 𝑒𝑁 − 𝑐𝐶𝐻 − 𝑐𝐶𝑒 ) + 𝜆𝑒𝑀𝑁 − (𝑐𝐶𝐻 + 𝑒𝐶) + 𝐶(𝐼𝑆𝐵(𝜆, 𝑥)− 𝐼𝐶𝑆) = 0.

Furthermore consider delivery stage and effort level 𝜆,

𝜕Π𝐸(𝜆, 𝑠)

𝜕𝜆

=

∫︁ 𝑠

0

𝜕𝑓(𝜆, 𝑠)

𝜕𝜆
(𝑒𝑁 − 𝑒𝐶 + 𝑐𝑁𝐻 − 𝑐𝐶𝐻) + 𝑒𝑀𝑁d𝑥+

∫︁ 𝑠

0

𝐶
𝜕𝐼𝑆𝐵(𝜆, 𝑠)

𝜕𝜆
d𝑥

<0,

𝜆 = 1 for the optimal threshold 𝑠𝐸.

Proof of Proposition 3.2. Suppose the optimum lies outside the interval between

𝑥* and 𝑠𝐸.
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Case (i): 𝑠𝐸 < 𝑥*.

∀𝑥 > 𝑥*, Π𝐸(𝑥) > Π𝐸(𝑥*) due to the convexity of Π𝐸()̇ according to Lemma 3.4.

Plus Π𝐸
𝑄(𝑥) > Π𝐸

𝑄(𝑥
*), Π𝑉𝑀(𝑥) > Π𝑉𝑀

𝑃 (𝑥*) .

∀𝑥 < 𝑠𝐸, Π𝐸(𝑠) > Π𝐸(𝑠𝐸), plus Π𝐸
𝑄(𝑠) > Π𝐸

𝑄(𝑠
𝐸) leads to Π𝑉𝑀(𝑥) > Π𝑉𝑀(𝑠𝐸).

This contradicts the previous argument. Case (ii): 𝑠𝐸 > 𝑥*. We have the similar

contradiction. Therefore the optimum lies in the interval between 𝑥* and 𝑠𝐸.

Proof of Lemma 3.7. Denote

△𝑢(𝑥) = 𝑢𝑆𝐵(𝜆, 𝑥)− 𝑢𝐶𝑆(𝑥)

𝛼𝑏𝑆𝐵(𝑥) +𝑚𝐷
𝑆𝐵(𝑥) +

𝑢𝐷
𝑆𝐵(𝜆, 𝑥)

𝐽
− 𝑢𝐶𝑆(𝑥)

. It is monotonic decreasing with respect to 𝐽 given

𝜕𝑢(𝑥)

𝜕𝐽
= −𝑢𝐷

𝑆𝐵

𝐽2
< 0

Suppose under a certain (𝑚𝐶
𝑆 (𝑥),𝑚

𝐷
𝑆 (𝑥)), ∃𝑠 are chosen by a group of 𝐽 physicians.

That is, △𝑢(𝑥) < 0 when 𝑥 < 𝑠, △𝑢(𝑠) = 0 and △𝑢(𝑥) > 0 when 𝑥 > 𝑠. The zero

point 𝑠 is decreasing when 𝐽 increases.

Proof of Corollary 3.2. Suppose the lower and higher bounds of the feasible

thresholds are 𝑠 and 𝑠.

Case (i) 𝑠 < min{𝑠𝐸, 𝑥*}: 𝑠 is optimal for both Π𝐸 and Π𝑄;

Case (ii) 𝑠 > max{𝑠𝐸, 𝑥*}: 𝑠 is optimal for both Π𝐸 and Π𝑄.

Proof of Proposition 3.3. In the case of blended payment

𝑢𝑆𝐵(𝜆, 𝑥) = 𝛼(𝑥* − 𝑥) +
𝑃𝐵𝑃

𝐽
− 1

𝐽
(𝑓(𝜆, 𝑥)𝑒𝑁 + (1− 𝑓(𝜆, 𝑥))𝑒𝐶 + 𝑒𝑀𝑁)

𝑢𝐶𝑆(𝑥) = 𝛼(𝑥− 𝑥*) + 𝑃𝐵𝑃 − 𝑒𝐶

Denote Δ𝑢(𝑥) = 𝑢𝑆𝐵(𝜆, 𝑥)− 𝑢𝐶𝑆(𝑥), then it is continuous. Moreover

𝜕Δ𝑢

𝜕𝑥
= −2𝛼 +

1

𝐽

𝜕𝑓(𝜆, 𝑥)

𝜕𝑥
(𝑒𝐶 − 𝑒𝑁) < 0
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hence Δ𝑢(𝑠) = 0 that is,

2𝛼(𝑥* − 𝑠) +
1− 𝐽

𝐽
𝑃𝐵𝑃 + 𝑒𝐶 − 1

𝐽
(𝑓(𝜆, 𝑠)𝑒𝑁 + (1− 𝑓(𝜆, 𝑠)𝑒𝐶 + 𝑒𝑀𝑁) = 0

𝑃𝐵𝑃 =
𝐽

𝐽 − 1
[2𝛼(𝑥* − 𝑠) + 𝑒𝐶 − 1

𝐽
(𝑓(𝜆, 𝑠)𝑒𝑁 + (1− 𝑓(𝜆, 𝑠)𝑒𝐶 + 𝑒𝑀𝑁)]

we can see 𝑃𝐵𝑃 decreases as 𝑠 increases, due to

𝜕𝑃𝐵𝑃

𝜕𝑠
=

𝐽

𝐽 − 1
(−2𝛼 +

𝑒𝐶 − 𝑒𝑁

𝐽

𝜕𝑓(𝜆, 𝑥)

𝜕𝑥
) < 0

Also due to PCC and PCN, 𝑃𝐵𝑃 ≥ max(𝑒𝐶 , 𝑒𝑁𝑓(𝜆, 𝑥) + 𝑒𝐶(1 − 𝑓(𝜆, 𝑥)) + 𝑒𝑀𝑁) =

𝑒𝐶(1− 𝑓(𝜆, 𝑥) + 𝑒𝑀𝑁), due to Assumption 3.2. So we have

𝐽

𝐽 − 1
[2𝛼(𝑥* − 𝑠) + 𝑒𝐶 − 1

𝐽
(𝑓(𝜆, 𝑥)𝑒𝑁 + (1− 𝑓(𝜆, 𝑥)𝑒𝐶 + 𝑒𝑀𝑁)] ≥ 𝑒𝐶(1− 𝑓(𝜆, 𝑥)) + 𝑒𝑀𝑁

2𝐽𝛼(𝑥* − 𝑠)− (𝑓(𝜆, 𝑥)(𝑒𝑁 − 𝑒𝐶) + 𝑒𝑀𝑁) ≥ 0

Denote 𝐺(𝑠) = 2𝐽𝛼(𝑥* − 𝑠) − (𝑓(𝜆, 𝑥)(𝑒𝑁 − 𝑒𝐶) + 𝑒𝑀𝑁), 𝐺(𝑠) is continuous and

decreases as 𝑠 increases

𝐺′(𝑠) = −2𝐽𝛼+
𝜕𝑓(𝜆, 𝑠)

𝜕𝑠
(𝑒𝐶 − 𝑒𝑁)− 𝑒𝑀𝑁 < 0

𝐺(𝑥*) = −(𝑓(𝑥*)(𝑒𝑁 − 𝑒𝐶) + 𝑒𝑀𝑁) < 0,

followed by Eq. 3.2, therefore 𝑠 < 𝑥*.

Under FFS, 𝑃𝑁 ≥ 𝑒𝑁 + 𝑒𝑀𝑁 , 𝑃𝐸𝐶 ≥ 𝑒𝐶 + 𝑒𝑀𝑁 , and 𝑃 𝑃𝐶 > 𝑃𝑁 ≥ 𝑒𝑁 + 𝑒𝑀𝑁 .

Suppose the threshold 𝑠 ≥ 𝑥*. Consider ∀𝑥 ∈ (𝑥*, 𝑠),

𝑢𝐶𝑆(𝑥) = 𝛼(𝑥− 𝑥*) + 𝑃 𝑃𝐶 − 𝑒𝐶

≥ 𝛼(𝑥− 𝑥*) + 𝑒𝑀𝑁
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. While,

𝑢𝑆𝐵(𝑥) = 𝛼(𝑥* − 𝑥) +
1

𝐽
[𝑓(𝜆, 𝑥)(𝑃𝑁 − 𝑒𝑁) + [(1− 𝑓(𝜆, 𝑥))(𝑃𝐸𝐶 − 𝑒𝐶) + 𝑒𝑀𝑁 ]

≤ 𝛼(𝑥* − 𝑥) +
1

𝐽
[𝑓(𝜆, 𝑥)(𝑃 𝑃𝐶 − 𝑒𝑁) + [(1− 𝑓(𝜆, 𝑥))(𝑃𝐸𝐶 − 𝑒𝐶) + 𝑒𝑀𝑁 ]

≤ 𝛼(𝑥* − 𝑥) + [𝑓(𝜆, 𝑥)(𝑃 𝑃𝐶 − 𝑒𝑁) + [(1− 𝑓(𝜆, 𝑥))(𝑃 𝑃𝐶 − 𝑒𝐶) + 𝑒𝑀𝑁 ]

≤ 𝑢𝐶𝑆(𝑥).

It leads to a contradiction. Therefore 𝑠 < 𝑥*.

Proof of Lemma 3.8. In delivery stage physicians’ utility under a spontaneous

birth is

∙ blended

𝑢𝐷
𝑆𝐵(𝜆, 𝑥) = 𝑃𝐵𝑃 − [𝑓(𝜆, 𝑥)𝑒𝑁 + (1− 𝑓(𝜆, 𝑥))𝑒𝐶 − 𝑒𝑀𝑁 ];

It is decreasing according to Eq. 3.3. Under FFS,

𝑢𝐷
𝑆𝐵(𝜆, 𝑥) = 𝑓(𝜆, 𝑥)𝑃𝑁 + (1− 𝑓(𝜆, 𝑥))𝑃𝐸𝐶 − [𝑓(𝜆, 𝑥)𝑒𝑁 + (1− 𝑓(𝜆, 𝑥))𝑒𝐶 − 𝑒𝑀𝑁 ];

𝜕𝑢𝐷
𝑆𝐵(𝜆, 𝑠)

𝜕𝜆
=

𝜕𝑓(𝜆, 𝑥)

𝜕𝜆
(𝑃𝑁 − 𝑒𝑁 − 𝑃𝐸𝐶 + 𝑒𝐶)− 𝑒𝑀𝑁

=

[︂
𝜕𝑓(𝜆, 𝑥)

𝜕𝜆
(𝑒𝐶 − 𝑒𝑁)− 𝑒𝑀𝑁

]︂
+

𝜕𝑓(𝜆, 𝑥)

𝜕𝜆
(𝑃𝑁 − 𝑃𝐸𝐶) < 0.

Therefore, 𝜆 is optimal for physicians.

Proof of Corollary 3.9. For a specific 𝜆 under each payment policy, we have

∙ FFS. 𝑀(𝜆, 𝑠) =
∫︀ 𝑠

0
𝑓(𝜆, 𝑥)𝑃𝑁 + (1− 𝑓(𝜆, 𝑥))𝑃𝐸𝐶d𝑥+ 𝑃 𝑃𝐶(1− 𝑠);

∙ Blend. 𝑀(𝜆, 𝑠) = 𝑃𝐵𝑃 ;

Apparently, 𝑀(𝜆, 𝑠) is non-concave under blend payment.
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Under FFS,

𝜕𝑀(𝜆, 𝑠)

𝜕𝑠
= 𝑓(𝜆, 𝑠)𝑃𝑁 + (1− 𝑓(𝜆, 𝑠))𝑃𝐸𝐶 − 𝑃 𝑃𝐶 ;

𝜕2𝑀(𝜆, 𝑠)

𝜕𝑠2
=

𝜕𝑓(𝜆, 𝑠)

𝜕𝑠
(𝑃𝑁 − 𝑃𝐸𝐶) > 0.

Proof of Corollary 3.3. Suppose 𝑠𝐸 is the optimum to the Problem 3.2. If 𝑠𝐸 ≥ 𝑥*,

feasible threshold is outside invertal (𝑥*, 𝑠𝐸) due to proposition 3.3. Consider 𝑠𝐸 < 𝑥*,

and it is the solution to the Eq.3.8. We consider payer’s amount of total economic

cost, denoted as Π(𝑠), depending on the threshold 𝑠.

Π(𝑠) = 𝐶𝐻(𝑠) + 𝐶𝐼(𝑠) +𝑚𝐷
𝐶𝑆(𝑠)(1− 𝑠) +𝑚𝐷

𝑆𝐵(𝑠)𝑠.

Under FFS, 𝑚𝐷
𝐶𝑆(𝑠) = 𝑒𝐶 , and 𝑚𝐷

𝑆𝐵(𝑠) = 𝑒𝑁𝑓(𝜆, 𝑠𝐸) + 𝑒𝐶(1− 𝑓(𝜆, 𝑠𝐸)) + 𝑒𝑀𝑁 .

𝜕Π(𝑠)

𝜕𝑠
= 𝑓(𝜆, 𝑠)(𝑐𝑁𝐻 − 𝑐𝐶𝐻) + 𝐶(𝐼𝑆𝐵(𝜆, 𝑥)− 𝐼𝐶𝑆) + 𝑓(𝜆, 𝑠)(𝑒𝑁 − 𝑒𝐶) + 𝑒𝑀𝑁

≥ 𝑓(1, 𝑠)(𝑐𝑁𝐻 − 𝑐𝐶𝐻) + 𝐶(𝐼𝑆𝐵(1, 𝑥)− 𝐼𝐶𝑆) + 𝑓(1, 𝑠)(𝑒𝑁 − 𝑒𝐶) + 𝑒𝑀𝑁 .

It indicates a steeper decreasing slope of Π(𝑠) than that of Π𝐸
𝑃 in Eq.3.8. Therefore

the optimum here 𝑠* ≥ 𝑠𝐸.

Under blended, 𝑚𝐷
𝐶𝑆(𝑠) = 𝑚𝐷

𝑆𝐵(𝑠) = 𝑒𝑁𝑓(𝜆, 𝑠𝐸) + 𝑒𝐶(1− 𝑓(𝜆, 𝑠𝐸)) + 𝑒𝑀𝑁 .

𝜕Π(𝑠)

𝜕𝑠
= 𝑓(𝜆, 𝑠)(𝑐𝑁𝐻 − 𝑐𝐶𝐻) + 𝐶(𝐼𝑆𝐵(𝜆, 𝑥)− 𝐼𝐶𝑆) +

𝜕𝑓(𝜆, 𝑠)

𝜕𝑠
(𝑒𝑁 − 𝑒𝐶) + 𝑒𝑀𝑁

≥ 𝑓(1, 𝑠)(𝑐𝑁𝐻 − 𝑐𝐶𝐻) + 𝐶(𝐼𝑆𝐵(1, 𝑥)− 𝐼𝐶𝑆) + 𝑓(1, 𝑠)(𝑒𝑁 − 𝑒𝐶) + 𝑒𝑀𝑁 ,

Given non-positive 𝜕𝑓(𝜆,𝑠)
𝜕𝑠

, and 𝜕𝑓(𝜆,𝑠)
𝜕𝑠

(𝑒𝑁 − 𝑒𝐶) > 𝑓(1, 𝑠)(𝑒𝑁 − 𝑒𝐶). It indicates a

steeper decreasing slope of Π(𝑠) than that of Π𝐸 in Eq.3.8. Therefore the optimum

here 𝑠* ≥ 𝑠𝐸.
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Proof of Lemma 3.10. Under bundled payment,

𝑀(𝜆, 𝑠) = 𝑃𝐵𝐿 − 1

𝐽

[︂∫︁ 𝑠

0

𝑓(𝜆, 𝑥)𝑐𝑁𝐻 + (1− 𝑓(𝜆, 𝑥))𝑐𝐶𝐻d𝑥+ 𝑐𝐶𝐻(1− 𝑠)

]︂
;

𝜕𝑀(𝜆, 𝑠)

𝜕𝑠
=

1

𝐽

[︀
−𝑓(𝜆, 𝑠)𝑐𝑁𝐻 − (1− 𝑓(𝜆, 𝑠))𝑐𝐶𝐻 + 𝑐𝐶𝐻

]︀
;

𝜕2𝑀(𝜆, 𝑠)

𝜕𝑠2
=

𝜕𝑓(𝜆, 𝑠)

𝐽𝜕𝑠
(𝑐𝐶𝐻 − 𝑐𝑁𝐻) < 0

Proof of Proposition 3.4. Under bundled payment,

𝑢𝑆𝐵(𝜆, 𝑥) = 𝛼(𝑥* − 𝑥) +
𝑃𝐵𝐿

𝐽
− 1

𝐽2
(𝑓(𝜆, 𝑥)(𝑐𝑁𝐻 + 𝑒𝑁) + (1− 𝑓(𝜆, 𝑥))(𝑐𝐶𝐻 + 𝑒𝐶) + 𝑒𝑀𝑁)

𝑢𝐶𝑆(𝑥) = 𝛼(𝑥− 𝑥*) + 𝑃𝐵𝐿 − 𝑐𝐶𝐻
𝐽

− 𝑒𝐶

Denote Δ𝑢(𝑥) = 𝑢𝑆𝐵(𝜆, 𝑥)− 𝑢𝐶𝑆(𝑥), then it is continuous. Moreover

𝜕Δ𝑢

𝜕𝑥
= −2𝛼 +

1

𝐽

𝜕𝑓(𝜆, 𝑥)

𝜕𝑥
[𝑐𝐶𝐻 − 𝑐𝑁𝐻 + 𝐽(𝑒𝐶 − 𝑒𝑁)]

< −2𝛼 +
1

𝐽

𝜕𝑓(𝜆, 𝑥)

𝜕𝑥
(
𝑐𝐶𝐻 − 𝑐𝑁𝐻

𝐽
+ 𝑒𝐶 − 𝑒𝑁) < 0

hence Δ𝑢(𝑠) = 0 that is,

2𝛼(𝑥* − 𝑠) +
1− 𝐽

𝐽
𝑃𝐵𝐿 + 𝑒𝐶 − 1

𝐽2
(𝑓(𝜆, 𝑠)(𝑒𝑁 * 𝐽 + 𝑐𝑁𝐻) + (1− 𝑓(𝜆, 𝑠))(𝑐𝐶𝐻 + 𝑒𝐶 * 𝐽) + 𝑒𝑀𝑁) = 0

𝑃𝐵𝐿 =
𝐽

𝐽 − 1
[2𝛼(𝑥* − 𝑠) + (𝑒𝐶𝐽 + 𝑐𝐶𝐻)−

1

𝐽2
(𝑓(𝜆, 𝑠)(𝑒𝑁 * 𝐽 + 𝑐𝑁𝐻) + (1− 𝑓(𝜆, 𝑠))(𝑒𝐶𝐽 + 𝑐𝐶𝐻) + 𝐽𝑒𝑀𝑁)]

we can see 𝑃𝐵𝐿 decreases as 𝑠 increases, due to

𝜕𝑃𝐵𝐿

𝜕𝑠
=

𝐽

𝐽 − 1
(−2𝛼 +

𝑐𝐶𝐻 − 𝑐𝑁𝐻 + 𝐽(𝑒𝐶 − 𝑒𝑁)

𝐽

𝜕𝑓(𝜆, 𝑥)

𝜕𝑥
) < 0

Also due to PCC and PCN, 𝑃𝐵𝐿 ≥ max( 𝑐
𝐶
𝐻

𝐽
+ 𝑒𝐶 , (𝑒𝑁 +

𝑐𝑁𝐻
𝐽
)𝑓(𝜆, 𝑥) + (

𝑐𝐶𝐻
𝐽

+ 𝑒𝐶)(1 −
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𝑓(𝜆, 𝑥)) + 𝑒𝑀𝑁) = 𝑒𝐶 +
𝑐𝐶𝐻
𝐽
. So we have

𝐽

𝐽 − 1
[2𝛼(𝑥* − 𝑠) +

𝑐𝐶𝐻
𝐽

+ 𝑒𝐶 − 1

𝐽
(𝑓(𝜆, 𝑥)(𝑒𝑁 +

𝑐𝑁𝐻
𝐽
) + (1− 𝑓(𝜆, 𝑥))(

𝑐𝐶𝐻
𝐽

+ 𝑒𝐶) + 𝑒𝑀𝑁)]

≥ 𝑒𝐶(1− 𝑓(𝜆, 𝑥)) + 𝑒𝑀𝑁

2𝐽𝛼(𝑥* − 𝑠)− (𝑓(𝜆, 𝑥)(
𝑐𝑁𝐻 − 𝑐𝐶𝐻

𝐽
+ 𝑒𝑁 − 𝑒𝐶) + 𝑒𝑀𝑁) ≥ 0

Denote 𝐺(𝑠) = 2𝐽𝛼(𝑥* − 𝑠)− (𝑓(𝜆, 𝑥)(
𝑐𝑁𝐻−𝑐𝐶𝐻

𝐽
+ 𝑒𝑁 − 𝑒𝐶) + 𝑒𝑀𝑁), 𝐺(𝑠) is continuous

and decreases as 𝑠 increases

𝐺′(𝑠) = −2𝐽𝛼− 𝜕𝑓(𝜆, 𝑠)

𝜕𝑠
(
𝑐𝑁𝐻 − 𝑐𝐶𝐻

𝐽
+ 𝑒𝑁 − 𝑒𝐶) < 0

𝐺(𝑥*) = (𝑓(𝑥*)(
𝑐𝑁𝐻 − 𝑐𝐶𝐻

𝐽
+ 𝑒𝑁 − 𝑒𝐶) + 𝑒𝑀𝑁) ≥ 0,

therefore 𝑠 ≥ 𝑥*.

Proof of Corollary 3.4. Suppose the optimum to 𝑍𝑃 is 𝑠𝐸. If 𝑠𝐸 = 𝑥*,

𝑃𝐵𝐿 =
𝐽

𝐽 − 1
[(𝑒𝐶𝐽 + 𝑐𝐶𝐻)−

1

𝐽2
(𝑓(𝜆, 𝑥*)(𝑒𝑁 * 𝐽 + 𝑐𝑁𝐻) + (1− 𝑓(𝜆, 𝑥*))(𝑒𝐶𝐽 + 𝑐𝐶𝐻) + 𝐽𝑒𝑀𝑁)]

due to

𝜕𝑃𝐵𝐿

𝜕𝑠
=

𝐽

𝐽 − 1
(−2𝛼 +

𝑐𝐶𝐻 − 𝑐𝑁𝐻 + 𝐽(𝑒𝐶 − 𝑒𝑁)

𝐽

𝜕𝑓(𝜆, 𝑥)

𝜕𝑥
) < 0

PCC and PCN hold.

Proof of Proposition 3.5. Consider physicians’ utility in delivery stage after the

decision of spontaneous birth.

𝑢𝐷
𝑆𝐵(1, 𝑥) = 𝑃𝐵𝐿 − 𝑒𝑀𝑁 − 𝑓(1, 𝑥)(𝑒𝑁 +

𝑐𝑁𝐻
𝐽
)− (1− 𝑓(1, 𝑥))(𝑒𝐶 +

𝑐𝐶𝐻
𝐽
) < 0;

𝑓(1, 𝑥)

(︂
𝑒𝐶 − 𝑒𝑁 +

𝑐𝐶𝐻 − 𝑐𝑁𝐻
𝐽

)︂
< 𝑒𝑀𝑁 + 𝑒𝐶 +

𝑐𝐶𝐻
𝐽

− 𝑃𝐵𝐿;

𝑓(1, 𝑥) <
𝐽(𝑒𝐶 + 𝑒𝑀𝑁 − 𝑃𝐵𝐿) + 𝑐𝐶𝐻
𝐽(𝑒𝐶 − 𝑒𝑁) + 𝑐𝐶𝐻 − 𝑐𝑁𝐻

.
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Proof of Proposition 3.6. Suppose 𝑃0 is the rate associated with 𝑠 under original

payment mechanism, that is, ∀𝑥 ∈ (𝑠, 𝑥*],

2𝛼(𝑥* − 𝑥)− 1

𝐽
(𝑓(𝜆, 𝑥)𝑒𝑁 + (1− 𝑓(𝜆, 𝑥))𝑒𝐶 + 𝑒𝑀𝑁) + 𝑃0 + 𝑒𝐶 ≤ 0.

If the successful NB bonus 𝐵𝑁𝐵 is set up by

𝐵𝑁𝐵 , − 1

𝑓(𝑠)
min(2𝛼(𝑥* − 𝑠)− 1

𝐽
(𝑓(𝑠)𝑒𝑁 + (1− 𝑓(𝑠))𝑒𝐶 + 𝑒𝑀𝑁)− 𝑃 + 𝑒𝐶 ,

𝛼(𝑥* − 𝑠)− 1

𝐽
(𝑓(𝑠)𝑒𝑁 + (1− 𝑓(𝑠))𝑒𝐶 + 𝑒𝑀𝑁)).

therefore ∃𝑠 > 𝑠, such that ∀𝑥 ≤ 𝑠

𝑢𝑆𝐵(𝜆, 𝑥)− 𝑢𝐶𝑆(𝑥) ≥ 0;

𝑢𝑆𝐵(𝜆, 𝑥) ≥ 0.

That is, 𝑠 can increase under NB rate.

For postpartum bonus 𝐵𝑃𝑂, suppose 𝑠𝑝 is the intersection of 𝐼(𝑆𝐵, 𝑥) and 𝐶𝑆,

i.e.

𝐼(𝑆𝐵, 𝑥) ≤ 𝐼(𝐶𝑆), ∀𝑥 ≤ 𝑠𝑝;

𝐼(𝑆𝐵, 𝑥) ≥ 𝐼(𝐶𝑆), ∀𝑥 > 𝑠𝑝.

If 𝑠 < 𝑠𝑝, then ∀𝑥 ∈ (𝑠, 𝑠𝑝],

𝐵𝑃𝑂(1− 𝐼(𝑆𝐵, 𝑥)) > 𝐵𝑃𝑂(1− 𝐼(𝐶𝑆)).

therefore ∃𝑠 > 𝑠, such that ∀𝑥 ≤ 𝑠

𝑢𝑆𝐵(𝜆, 𝑥)− 𝑢𝐶𝑆(𝑥) ≥ 0;

𝑢𝑆𝐵(𝜆, 𝑥) ≥ 0.
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That is, 𝑠 can increase under postpartum outcome rate.

Proof of Proposition 3.7. (i) When 𝑠 < 𝑥*. Suppose 𝑃0 is the rate associated with

𝑠 under original payment mechanism, that is, ∀𝑥 ∈ (𝑠, 𝑥*],

2𝛼(𝑥* − 𝑥)− 1

𝐽
(𝑓(𝜆, 𝑥)𝑒𝑁 + (1− 𝑓(𝜆, 𝑥))𝑒𝐶 + 𝑒𝑀𝑁) + 𝑃0 + 𝑒𝐶 ≤ 0.

For complexity premium 𝐵, if it is set up as

𝐵 , −min(2𝛼(𝑥* − 𝑠)− 1

𝐽
(𝑓(𝑠)𝑒𝑁 + (1− 𝑓(𝑠))𝑒𝐶 + 𝑒𝑀𝑁) + 𝑃0 + 𝑒𝐶 ,

𝛼(𝑥* − 𝑠)− 1

𝐽
(𝑓(𝑠)𝑒𝑁 + (1− 𝑓(𝑠))𝑒𝐶 + 𝑒𝑀𝑁)),

therefore ∃𝑠 > 𝑠, such that ∀𝑥 ≤ 𝑠.

𝑢𝑆𝐵(𝜆, 𝑥)− 𝑢𝐶𝑆(𝑥) ≥ 0;

𝑢𝑆𝐵(𝜆, 𝑥) ≥ 0.

That is, 𝑠 can increase under overall rate.

(ii) When 𝑠 > 𝑥*, we can conclude that 𝑠 can be reduced with similar way.

Proof of Proposition 3.8. Overall rate add-on 𝐵 with an original payment 𝑃0 lead

to a physician’s utility function in serving a delivery in his hospital shift

𝑢𝐷
𝑆𝐵 = 𝑃0 +𝐵𝑓(𝜆, 𝑥)− 𝑓(𝜆, 𝑥)𝑒𝑁 − (1− 𝑓(𝜆, 𝑥))𝑒𝐶 − 𝜆𝑒𝑀𝑁 ;

𝜕𝑢𝐷
𝑆𝐵

𝜕𝜆
=

𝜕𝑓(𝜆, 𝑥)

𝜕𝜆
(𝑒𝐶 − 𝑒𝑁 +𝐵)− 𝑒𝑀𝑁 ;

𝐵
𝜕𝑓(𝜆, 𝑥)

𝜕𝜆
≥ 𝑒𝑀𝑁 − 𝜕𝑓(𝜆, 𝑥)

𝜕𝜆
(𝑒𝐶 − 𝑒𝑁),

which gives the lower bound of 𝐵 leads to an increasing 𝑢𝐷
𝑆𝐵.

Per postpartum outcome-oriented bonus 𝐵, Postpartum outcome-oriented add-on 𝐵

with an original payment 𝑃0 lead to a physician’s utility function in serving a delivery
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in his hospital shift

𝑢𝐷
𝑆𝐵 = 𝑃0 +𝐵(1− 𝐼𝑆𝐵(𝜆, 𝑥))− 𝑓(𝜆, 𝑥)𝑒𝑁 − (1− 𝑓(𝜆, 𝑥))𝑒𝐶 − 𝜆𝑒𝑀𝑁 ;

𝜕𝑢𝐷
𝑆𝐵

𝜕𝜆
=

𝜕𝑓(𝜆, 𝑥)

𝜕𝜆
(𝑒𝐶 − 𝑒𝑁)− 𝑒𝑀𝑁 −𝐵

𝜕𝐼𝑆𝐵(𝜆, 𝑥)

𝜕𝜆
;

𝐵
𝜕𝐼𝑆𝐵(𝜆, 𝑥)

𝜕𝜆
≤ 𝜕𝑓(𝜆, 𝑥)

𝜕𝜆
(𝑒𝐶 − 𝑒𝑁)− 𝑒𝑀𝑁 ;

𝐵
−𝜕𝐼𝑆𝐵(𝜆, 𝑥)

𝜕𝜆
≥ 𝑒𝑀𝑁 − 𝜕𝑓(𝜆, 𝑥)

𝜕𝜆
(𝑒𝐶 − 𝑒𝑁)

≥ 𝑒𝑀𝑁 − 𝜐(𝑒𝐶 − 𝑒𝑁), 𝜐 = max
𝜆,𝑥

𝜕𝑓(𝜆, 𝑥)

𝜕𝜆

which gives the lower bound of 𝐵 leads to an increasing 𝑢𝐷
𝑆𝐵.

Proof of Proposition 3.9. Suppose 𝐸(𝜆, 𝑥) = 𝑒𝐶𝑓(𝜆, 𝑥) + 𝑒𝑁(1 − 𝑓(𝜆, 𝑥)) + 𝑒𝑀𝑁 ,

under Complexity bonus scheme:

𝑈𝐶𝑂
𝐶𝑆 (𝑥) = 𝛼(𝑥− 𝑥*) + 𝑃 +𝐵𝐶𝑂1𝑥>𝑥* − 𝑒𝐶 ;

𝑈𝐶𝑂
𝑆𝐵 (𝑥) = 𝛼(𝑥* − 𝑥) +

𝑃

𝐽
+𝐵𝐶𝑂I𝑥≤𝑥* − 𝐸(𝜆, 𝑥)

𝐽
.

Δ𝑈𝐶𝑂(𝑥) = 𝑈𝐶𝑂
𝑆𝐵 − 𝑈𝐶𝑂

𝐶𝑆

= 2𝛼(𝑥* − 𝑥) +
𝑃 (1− 𝐽)

𝐽
+𝐵𝐶𝑂(I𝑥≤𝑥* − I𝑥>𝑥*)I𝑥≤𝑥* − 𝐸(𝜆, 𝑥)

𝐽
+ 𝑒𝐶 .

Whereas under NB bonus scheme,

𝑈𝑁𝐵
𝐶𝑆 (𝑥) = 𝛼(𝑥− 𝑥*) + 𝑃 − 𝑒𝐶 ;

𝑈𝑁𝐵
𝑆𝐵 (𝑥) = 𝛼(𝑥* − 𝑥) +

𝑃

𝐽
+𝐵𝑁𝐵𝑓(𝜆, 𝑥)− 𝐸(𝜆, 𝑥)

𝐽
.

Δ𝑈𝑁𝐵(𝑥) = 𝑈𝑁𝐵
𝑆𝐵 − 𝑈𝑁𝐵

𝐶𝑆

= 2𝛼(𝑥* − 𝑥) +
𝑃 (1− 𝐽)

𝐽
+𝐵𝑁𝐵𝑓(𝜆, 𝑥)− 𝐸(𝜆, 𝑥)

𝐽
+ 𝑒𝐶 .
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Let Γ = 2𝛼(𝑥− 𝑥*) + 𝑃 (𝐽−1)
𝐽

+ 𝐸(𝜆,𝑥)
𝐽

− 𝑒𝐶 , then ∀𝑠 and the same 𝑃 ,

𝐵𝐶𝑂 = Γ;

𝐵𝑁𝐵 =
Γ

𝑓(𝜆, 𝑠)
.

Therefore the average bonus per cost is

Complexity bonus = Γ(1− |𝑠− 𝑥*|) ≤ 𝐵𝐶𝑂

≤
Γ
∫︀ 𝑠

0
𝑓(𝜆, 𝑥)d𝑥
𝑓(𝜆, 𝑠)

= NB bonus.

Proof of Proposition 3.10. Let (𝑃 𝑃𝑂, 𝐵𝑃𝑂) and (𝑃𝐶𝑂, 𝐵𝐶𝑂) be the rates under

Postpartum Outcome Bonus and Complexity bonus, resparately, to achieve the same

𝑠.

From PCC,

𝑃𝐶𝑂 = 𝑒𝐶 ;

𝑃 𝑃𝑂 +𝐵𝑃𝑂(1− 𝐼𝐶𝑆) = 𝑒𝐶 .

Postpartum Outcome bonus ≤ 𝑃 𝑃𝑂 +𝐵𝑃𝑂(1− 𝐼𝐶𝑆)

≤ 𝑃𝐶𝑂 ≤ Complexity bonus.

Therefore the average cost under Postpartum Outcome is less than that under Com-

plexity bonus.

Proof of Proposition 3.11. Suppose the same amount of 𝑃 and 𝐵 are reimbursed

to each physician under Relevaant party and Group mechanism, they should lead to

the same threshold of planned CS 𝑠 by the end of antepartum stage, and same level

of effort 𝜆 during intrapartum stage. According to expression of 𝑀(𝜆, 𝑠) in Table 3.9,

Group leads to higher 𝑀(𝜆, 𝑠) than Relevaant party, due to 𝐽 ≥ 2.
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Proof of Proposition 3.12. In the case of high risk population,
∫︀ 𝑥

0
𝑔(𝑢)d𝑢 ≤ 𝑥,

even all physicians are supposed to use full effort 𝜆 = 1, aiming to reduce CS rates

for the group of physicians during antepartum stage. Suppose 𝑠𝑙𝑒𝑞𝑠*, the resulting

overall CS rate 𝑟′ becomes

𝑟′ = 1−
∫︁ 𝑠

0

𝑔(𝑢)𝑓(1, 𝑢)d𝑢

> 1−
∫︁ 𝑠

0

𝑔(𝑢)𝑓(1, 𝑢)d𝑢, (*)

= 𝑟;

Therefore, 𝑠 should be 𝑠 > 𝑠* for the high risk population in order to get bonus 𝐵𝑇𝐻 .

Denote 𝐺(𝑥) =
∫︀ 𝑠

0
𝑔(𝑢)d𝑢, then 𝐺(0) = 0 and 𝐺(1) = 1. Eq.(*) is due to

∫︁ 𝑠

0

𝑔(𝑢)𝑓(1, 𝑢)d𝑢

=

∫︁ 𝑠

0

𝑓(1, 𝑢)d𝐺(𝑢)

=𝑓(1, 𝑥)𝐺(𝑥)−
∫︁ 𝑠

0

𝐺(𝑢)
𝜕𝑓(1, 𝑢)

𝜕𝑢
d𝑢

<𝑓(1, 𝑥)𝑥−
∫︁ 𝑠

0

𝑢
𝜕𝑓(1, 𝑢)

𝜕𝑢
d𝑢

=𝑓(1, 𝑥)𝑥− 𝑓(1, 𝑥)𝑥+

∫︁ 𝑥

0

𝑓(1, 𝑢)u
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Similarly, if 𝐺(𝑢) > 𝑢 for the case of low risk population,

∫︁ 𝑠

0

𝑔(𝑢)𝑓(1, 𝑢)d𝑢

=

∫︁ 𝑠

0

𝑓(1, 𝑢)d𝐺(𝑢)

=𝑓(1, 𝑥)𝐺(𝑥)−
∫︁ 𝑠

0

𝐺(𝑢)
𝜕𝑓(1, 𝑢)

𝜕𝑢
d𝑢

>𝑓(1, 𝑥)𝑥−
∫︁ 𝑠

0

𝑢
𝜕𝑓(1, 𝑢)

𝜕𝑢
d𝑢

=𝑓(1, 𝑥)𝑥− 𝑓(1, 𝑥)𝑥+

∫︁ 𝑥

0

𝑓(1, 𝑢)u

>

∫︁ 𝑥

0

𝑓(𝜆, 𝑢)u,

Therefore suppose 𝑠 ≥ 𝑠*, the resulting overall CS rate 𝑟′

𝑟′ = 1−
∫︁ 𝑠

0

𝑔(𝑢)𝑓(1, 𝑢)d𝑢

< 1−
∫︁ 𝑠

0

𝑔(𝑢)𝑓(𝜆, 𝑢)d𝑢,

= 𝑟;

Therefore 𝑠 < 𝑠* even not all physicians use full effort on their shifts.

Proof of Lemma 3.11. Under the bundled payment with a rate add-on 𝑃𝐵𝐿, a

physician’s expected compensation amount is

Π1 = 𝑃𝐵𝐿 − 1

𝐽

[︂∫︁ 𝑠

0

𝑓(𝜆, 𝑥)𝑐𝑁𝐻 + (1− 𝑓(𝜆, 𝑥))𝑐𝐶𝐻d𝑥+ 𝑐𝐶𝐻(1− 𝑠)

]︂
= 𝑃𝐵𝐿 − 𝑐𝐶𝐻

𝐽
+

𝑐𝐶𝐻 − 𝑐𝑁𝐻
𝐽

∫︁ 𝑠

0

𝑓(𝜆, 𝑥)d𝑥,

which is the combination of blend payment with blend rate 𝑃𝐵𝐿− 𝑐𝐶𝐻
𝐽
and a NB bonus

of 𝑐𝐶𝐻−𝑐𝑁𝐻
𝐽

.

Proof of Proposition 3.13. Under the blended payment with an NB rate add-on

(𝑃𝐵𝑃 , 𝐵𝑁𝐵),physicians’ expected compensation amount is Π1 = 𝑃𝐵𝑃 +𝐵𝑓(𝜆, 𝑥) per

delivery during their shift, ∀𝜆 and ∀𝑥. Under the linear combination of blend payment
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with blend rate (1 − 𝜃)𝑃𝐵𝑃 and a bundled payment with rate 𝜃𝑃𝐵𝐿, physicians

expected income is

Π2 = (1− 𝜃)𝑃𝐵𝑃 + 𝜃

[︂
𝑃𝐵𝐿 − 1

𝐽

(︀
𝑓(𝜆, 𝑥)𝑐𝑁𝐻 + (1− 𝑓(𝜆, 𝑥))𝑐𝐶𝐻

)︀]︂
= (1− 𝜃)𝑃𝐵𝑃 + 𝜃(𝑃𝐵𝐿 − 𝑐𝐶𝐻

𝐽
) +

𝜃

𝐽
𝑓(𝜆, 𝑥)(𝑐𝐶𝐻 − 𝑐𝑁𝐻)

= (1− 𝜃)𝑃𝐵𝑃 + 𝜃𝑃𝐵𝑃 +𝐵𝑓(𝜆, 𝑥)

= Π1, ∀𝑥, ∀𝜆.

Proof of Lemma 3.12. Under NB bonus scheme,

𝑈𝐶𝑆 = 𝛼(𝑥− 𝑥*) + 𝑃 − 𝑒𝐶 ;

𝑈𝑆𝐵 = 𝛼(𝑥* − 𝑥) +
𝑃

𝐽
+𝐵𝑁𝐵𝑓(𝜆, 𝑥)− 𝐸(𝜆, 𝑥)

𝐽
.

Δ𝑈 = 𝑈𝑁𝐵
𝑆𝐵 − 𝑈𝑁𝐵

𝐶𝑆

= 2𝛼(𝑥* − 𝑥) +
𝑃 (1− 𝐽)

𝐽
+𝐵𝑁𝐵𝑓(𝜆, 𝑥)− 𝐸(𝜆, 𝑥)

𝐽
+ 𝑒𝐶 .

Therefore

𝜕Δ𝑈

𝜕𝑃
=

1

𝐽
− 1 < 0;

𝜕Δ𝑈

𝜕𝐵
=

𝑓

(
𝜆, 𝑥) > 0;

Therefore, the overall CS rate increases as 𝐵𝑁𝐵 decreases, or as 𝑃𝐵𝑃 increases.

Because 𝑀(𝑠) = 𝑃 +𝐵
∫︀ 𝑠

0
𝑓(𝜆, 𝑥)d𝑥,

𝜕𝑀(𝑠)

𝜕𝑠
= 𝑓(𝜆, 𝑠);

𝜕2𝑀(𝑠)

𝜕𝑠2
=

𝜕𝑓(𝜆, 𝑠)

𝜕𝑠
< 0.

Hence, 𝑀(𝜆, 𝑠,𝑚𝐷) is concave with respect to 𝑠.
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Proof of Proposition 3.14. Define Π(𝑠, 𝑃,𝐵) = 𝑠Π(1, 𝑃, 𝐵)∀𝑠 ≥ 1 and 𝐵,𝑃 ≥ 0;

define Π(𝑠, 𝑃,𝐵) = 𝑠Π(|𝑠|, |𝑃 |, |𝐵|)∀𝑠, 𝐵, 𝑃 ≤ 0. Therefore 𝑃𝑖𝑃 (𝑠, 𝐵, 𝑃 ) is coersive.

Because feasible domain is close, there exist at least a global minimizer for the objec-

tive function.

Proof of Corollary 3.5. From Lemma 3.12, we can find the proper 𝑃 and 𝐵 for any

threshold 𝑠 for the problem 𝑍𝑃 , therefore the value maximization solution to 𝑍𝐵𝑀 is

feasible.

Proof of Proposition 3.15. Delivery physicians get the same amount of money

regardless of his own patient mix. The realized amount of successful NB is shared

evenly by all. Therefore, they each should get the amount of money as long as they

follow clinical guideline.

Proof of Proposition 3.16. For those prescribed planned C-section, the probability

of actually high risk pregnant women is

Pr(𝐻|𝐶𝑆) =
Pr(𝐶𝑆|𝐻) Pr(𝐻)

Pr(𝐶𝑆|𝐻) Pr(𝐻) + Pr(𝐶𝑆|𝐿) Pr(𝐿)
=

𝑎(1− 𝑠0)

𝑎(1− 𝑠0) + (1− 𝑎)𝑠0

due to Bayes’ rule, and the assumption of uniformly distributed patients with respect

to the complexity, indicating the fraction of 𝐿 type pregnant women is 𝑠0. Similarly,

the fraction of actual low risk patient among those having planned C-section becomes

Pr(𝐿|𝐶𝑆) =
Pr(𝐶𝑆|𝐿) Pr(𝐿)

Pr(𝐶𝑆|𝐿) Pr(𝐿) + Pr(𝐶𝑆|𝐻) Pr(𝐻)
=

(1− 𝑎)𝑠0
𝑎(1− 𝑠0) + (1− 𝑎)𝑠0

For all planned C-sections, a fraction Pr(𝐻|𝐶𝑆) has actual complexity 𝑥 > 𝑠0, and

the physician can gain marginal utility 𝑢𝐶𝑆(𝜆, 𝑥) which is greater than 𝑢𝑆𝐵(𝜆, 𝑥) as

𝑥 > 𝑠0; whereas the rest Pr(𝐿|𝐶𝑆) has actual complexity 𝑥 ≤ 𝑠0, therefore the physi-

cian’s gain of marginal utility 𝑢𝐶𝑆(𝜆, 𝑥) is less than 𝑢𝑆𝐵(𝜆, 𝑥, suffering a loss of utility

eventually. Similarly, the fraction of actual low risk cases among prescription of spon-

taneous birth Pr(𝐿|𝑆𝐵) and the part of actual high risk but prescribed spontaneous
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birth Pr(𝐻|𝑆𝐵) can be expressed as

Pr(𝐻|𝑆𝐵) =
(1− 𝑎)(1− 𝑠0)

(1− 𝑎)(1− 𝑠0) + 𝑎𝑠0
, Pr(𝐿|𝑆𝐵) =

𝑎𝑠0
(1− 𝑎)(1− 𝑠0) + 𝑎𝑠0

Noted that the percentage Pr(𝐿|𝐶𝑆) of planned C-section and the percent Pr(𝐻|𝑆𝐵)

of prescription of spontaneous birth lead to loss of total utility.

Proof of Proposition B.1. Let 𝑈𝑘
𝑗 (𝑆, 𝑥) be the total expected payoff / utility for

physician 𝑗 if he chooses a procedure 𝑆, when there are 𝑘 physicians determine SB

∀𝑥 ∈ [0, 1] and 𝑘 ∈ {0, 1, 2, · · · , 𝐽 − 1}, then

𝑈𝑘
𝑗 (𝑆, 𝑥) = 𝑢(𝑆, 𝑥) +

𝑘

𝐽
(𝑢𝐷

𝑆𝐵(𝜆, 𝑥))

Because the best strategy for physician 𝑗 is to maximize the total payoff with respect

to each complexity 𝑥 no matter what the other colleagues choose, and then he will

prefer SB as long as

𝑈𝑘
𝑗 (𝑆𝐵, 𝑥) ≥ 𝑈𝑘

𝑗 (𝐶𝑆, 𝑥), ∀𝑘 ∈ {0, 1, 2, · · · , 𝐽 − 1}

which is equivalent to

𝑢𝑆𝐵(𝜆, 𝑥) ≥ 𝑢𝐶𝑆(𝑥)

The similar rational is for the preference of C-section.

Proof of Lemma B.1. Suppose under a certain (𝑚𝐶
𝑆 (𝑥),𝑚

𝐷
𝑆 (𝑥)), and 𝛼, ∃𝑠0 such

that

𝑢0
𝐶𝑆(𝑥) ≥ 𝑢0

𝑆𝐵(𝜆, 𝑥), ∀𝑥 > 𝑠0

𝑢0
𝐶𝑆(𝑥) ≤ 𝑢0

𝑆𝐵(𝜆, 𝑥), ∀𝑥 ≤ 𝑠0
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. Consider ∀𝜆′ = 𝜆+△, where △ > 0, physicians’ modified utilities become

𝑢𝐶𝑆(𝑥) = △(𝑥− 𝑥*) + 𝑢0
𝐶𝑆(𝑥),

𝑢𝑆𝐵(𝑥) = △(𝑥* − 𝑥) + 𝑢0
𝑆𝐵(𝑥), ∀𝑥 ∈ [0, 1].

Case (i): 𝑠0 < 𝑥*. Apparently ∀𝑥 ∈ [0, 𝑠0], 𝑥 < 𝑥*, 𝑢𝐶𝑆(𝑥) ≤ 𝑢𝑆𝐵(𝜆, 𝑥); ∀𝑥 ∈

[𝑥*, 1], 𝑢𝐶𝑆(𝑥) ≥ 𝑢𝑆𝐵(𝜆, 𝑥). If 𝑥 ∈ (𝑠0, 𝑥
*), denote △𝑢(𝑥) = 𝑢𝑆𝐵(𝜆, 𝑥) − 𝑢𝐶𝑆(𝑥),

we have △𝑢(𝑠0) > 0 and △𝑢(𝑥*) < 0, so there must ∃𝑠 ∈ (𝑠0, 𝑥
*) that satisfies

△𝑢(𝑠) = 0, and 𝑠 is the new threshold, that leads to smaller deviation from 𝑥*.

Case (ii): 𝑠0 > 𝑥* is similar. ∀𝑥 ∈ [0, 𝑥*] still leads to 𝑢𝐶𝑆(𝑥) ≤ 𝑢𝑆𝐵(𝜆, 𝑥);

∀𝑥 ∈ [𝑠0, 1] leads to 𝑢𝐶𝑆(𝑥) ≥ 𝑢𝑆𝐵(𝜆, 𝑥). And there a new threshold 𝑠 ∈ (𝑥*, 𝑠0)

determined by physicians with 𝜆′.

Proof of Lemma B.2. In delivery stage, any patient with complexity 𝑥 leads to an

expected utility

𝑢𝐷
𝑆𝐵(𝜆, 𝑥) = 𝑃𝐵𝐿 − 𝑓(𝜆, 𝑥)

𝑐𝑁𝐻
𝐽

+ (1− 𝑓(𝜆, 𝑥))
𝑐𝐶𝐻
𝐽

− [𝑓(𝜆, 𝑥)𝑒𝑁 + (1− 𝑓(𝜆, 𝑥))𝑒𝐶 + 𝑒𝑀𝑁 ];

𝜕𝑢𝐷
𝑆𝐵(𝜆, 𝑠)

𝜕𝜆
=

𝜕𝑓(𝜆, 𝑥)

𝜕𝜆
(
𝑐𝐶𝐻 − 𝑐𝑁𝐻

𝐽
+ 𝑒𝐶 − 𝑒𝑁)− 𝑒𝑀𝑁

> 0.
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Appendix C

Design of Specialist Responsible

Policies to Reduce Waiting Times in

Emergency Departments

C.1 Notation

Table C.1: Notation

Specialist Response Policy

𝑇𝑗 the arrival time of the 𝑗th patient who requires a specialist consultation;
𝑁(𝑡) the number of arrivals in (0, 𝑡],∀𝑡 > 0;
𝜆(𝑡) the arrival rate at time 𝑡;
𝐿(𝑡) the number of patients waiting in the system;
𝑊 (𝑡) total waiting time at time 𝑡 of all patients arriving by 𝑡;
𝑆𝑇 generally distributed specialist’s treatment time;
𝐵 generally distributed the specialists’ arrival time from now;
𝐹𝑇 a determinist period after which next specialist arrives.

Modified Triage

S(𝑡) Obsevable set, the number of patients of each class at time 𝑡;
𝑆𝑛(𝑡) the number of patients of cluster 𝑛, ∀𝑛 ∈ N ;
I index of classes where specialists follow FT response rules;
J index of classes where specialists follow TL response rules;
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C.2 Non-homogeneous Poisson Arrivals

We simulate two periodic functions

𝜆(𝑡) = max(1, 1 + 𝑏 sin
(︁ 𝜋

12
𝑡
)︁
);

𝜆(𝑡) = 𝑏
[︁
sin
(︁ 𝜋

12
𝑡
)︁
+ 1
]︁
,

where 𝑏 determines the magnitude of the peak arrivals.

Table C.2: Trajectory from diagnosis code to specialist type

Specialist Type Possible Inpatient Ward
Internal Medicine 1, 5, 7, 8, 9, 11, 14, 22;

Oncology 2;
Mental Health 6;

Gynecology & Obstetrics 16.

C.3 Alternative results of Statistical Learning

Table C.3: Results of ALternative Statistical Learning

Estimated probability of AUC MSE

neural net hidden 1 (%) 50.00 25.14
neural net hidden 2 (%) 82.34 18.76
neural net hidden 3 (%) 82.29 18.78
nearest neighbor (%) 80.16 18.98
kernel epilson (%) 78.58 18.62

SVM (%) 79.23 18.67
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Figure C-1: Simulation of Arrivals with 𝜆(𝑡) = 5
[︀
sin
(︀

𝜋
12
𝑡
)︀
+ 1
]︀

Table C.4: Unbalance between request or non-request of specialist consultation

Consulting 3 4 5 Total

No 26.44 36.93 11.95 75.31
Yes 14.24 9.31 1.14 24.69
Total 40.68 46.24 13.08 100.00

All numbers are in %
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Figure C-2: Daily Variations of Arrivals during a Week
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Figure C-3: Compare Delay of Sending out Consulting Request
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Table C.5: Results of Statistical Learning with Balance

Estimated probability of AUC MSE

CART (%) 80.49 17.36
Logit (%) 83.68 17.35

Table C.6: Sensitivity and Specificity with Balance

Triage 3 4 5

Sensitivity (%) 79.34 73.13 59.18
(P(𝑃𝑟𝑒𝑑 = 1|𝐴𝑐𝑡 = 1))

Specificity (%) 78.03 89.21 94.56
(P(𝑃𝑟𝑒𝑑 = 0|𝐴𝑐𝑡 = 0))

C.4 Delay of Specialist Requests

C.5 Proofs

Proof of Corollary 4.1.

d
d𝑡

(︃∫︁ 𝑏(𝑡)

𝑎(𝑡)

𝑓(𝑥, 𝑡)d𝑥

)︃

=

∫︁ 𝑏(𝑡)

𝑎(𝑡)

𝜕𝑓(𝑥, 𝑡)

𝜕𝑡
d𝑥+ 𝑓(𝑏(𝑡), 𝑡)𝑏′(𝑡)− 𝑓(𝑎(𝑡), 𝑡)𝑎′(𝑡).

Proof of Theorem 4.1. From the perspective of Lebesgue integral, the total

waiting time is

𝑊 (𝑡) =

∫︁ 𝑡

0

(𝑡− 𝜏)d𝑁(𝜏).

Because 𝑀(𝑡) is a martingale,

E
[︂∫︁ 𝑡

0

(𝑡− 𝜏)d𝑀(𝜏)

]︂
= 0.
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That is,

E
[︂∫︁ 𝑡

0

(𝑡− 𝜏)(d𝑁(𝜏)− 𝜆(𝜏)d𝜏
]︂
= 0,

𝑊 (𝑡) =

∫︁ 𝑡

0

(𝑡− 𝜏)𝜆(𝜏)d𝜏.

Proof of Proposition 4.1.

E(𝐿(24)) = Λ(24), 𝒱𝑎𝑟(𝐿(24)) = Λ(24);

E(𝐿2(24)) = 𝒱𝑎𝑟(𝐿(24)) + [E(𝐿(24))]2 .

Proof of Proposition 4.2 We show the result with a sample path argument. Let 𝜋

be the optimal policy that always assign a customer if there exists to the server as

long as the server completes a service; let 𝜋′ be the alternative policy that does not

assign a patient to an idle server. Obviously, 𝜋 dominates 𝜋′, because

𝒲𝜋
𝑖 (𝑡) ≤ 𝒲𝜋′

𝑖 (𝑡), ∀𝑡, ∀𝑖 ∈ {0, 1, 2, · · · , 𝑁}

Therefore, 𝑉 𝜋 ≤ 𝑉 𝜋′
.

Proof of Proposition 4.3 Suppose all patients are ranked according to their prob-

ability such that 𝑝𝑖1 ≥ 𝑝𝑖2 ≥ · · · 𝑝𝑖𝑆𝑖(𝑡), ∀𝑖 ∈ {0, 1, 2, · · · , 𝑁}. Consider a policy 𝜋

that always assign the patient in class 𝑖 with highest probability, and 𝜋 assigns pa-

tients with due date 𝑇 as a priority after threshold 𝛼 and switch to prioritize the rest

patients after 𝛽. Suppose other policies

∙ 𝜋1 is the same with 𝜋 except it priority random patients with each class;

∙ 𝜋2 always prioritize non-FT patients, and prioritize patients with highest prob-

ability in each class;

∙ 𝜋3 always prioritize FT patients, and prioritize patients with highest probability
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in each class.

Denote [𝑣𝑠, 𝑣𝑓 ] is the duration of a service, such that 𝛼 ≤ 𝑣𝑠 ≤ 𝑇 ≤ 𝑣𝑓 ≤ 𝛽 that is

𝑇 happens during this service. Denote 𝑣 , 𝑣𝑓 − 𝑣𝑠, then

𝑉 𝜋({𝑆0(𝑣𝑠), 𝑆1(𝑣𝑠), 𝑆2(𝑣𝑠), · · · , 𝑆𝑁(𝑣𝑠)}) = 𝑣(
𝑁∑︁

𝑛=1

𝑆𝑛(𝑣𝑠)) + 𝑝𝑖1(𝑇 − 𝑣𝑠)

+
∑︁
S(𝑣𝑓)

P(S(𝑣𝑓)|S(𝑣𝑠))𝑉 ({𝑆0(𝑣𝑓), 𝑆1(𝑣𝑓), 𝑆2(𝑣𝑓), · · · , 𝑆𝑖(𝑣𝑓)− 1, · · · , 𝑆𝑁(𝑣𝑓)})

𝑉 𝜋1({𝑆0(𝑣𝑠), 𝑆1(𝑣𝑠), 𝑆2(𝑣𝑠), · · · , 𝑆𝑁(𝑣𝑠)}) = 𝑣(
𝑁∑︁

𝑛=1

𝑆𝑛(𝑣𝑠)) + 𝑝𝑖1(𝑇 − 𝑣𝑠)

+
∑︁
S(𝑣𝑓)

P(S(𝑣𝑓)|S(𝑣𝑠))𝑉 ({𝑆0(𝑣𝑓), 𝑆1(𝑣𝑓), 𝑆2(𝑣𝑓), · · · , 𝑆𝑖(𝑣𝑓)− 1, · · · , 𝑆𝑁(𝑣𝑓)})

+(Δ𝑇 − 𝑣𝑓 + 𝑣𝑠)(𝑝𝑖1 − 𝑝𝑖2)

So 𝑉 𝜋1 ≥ 𝑉 𝜋.

𝑉 𝜋3({𝑆0(𝑣𝑠), 𝑆1(𝑣𝑠), 𝑆2(𝑣𝑠), · · · , 𝑆𝑁(𝑣𝑠)}) = 𝑣(
𝑁∑︁

𝑛=1

𝑆𝑛(𝑣𝑠)) + 𝑝𝑖1(𝑇 +Δ𝑇 − 𝑣𝑓)

+
∑︁
S(𝑣𝑓)

P(S(𝑣𝑓)|S(𝑣𝑠))𝑉 ({𝑆0(𝑣𝑓)− 1, 𝑆1(𝑣𝑓), 𝑆2(𝑣𝑓), · · · , 𝑆𝑖(𝑣𝑓), · · · , 𝑆𝑁(𝑣𝑓)})

So 𝑉 𝜋3 ≥ 𝑉 𝜋.

𝑉 𝜋2 ≥ 𝑉 𝜋 because the extra waiting time incur for non-FT patient when prioritizing

FT patients who still wait in the system after the ED physician’s treatment.
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Appendix D

Design of Observation Units (OU) for

Acute Decompensated Heart Failure

(ADHF) Patients

D.1 Proofs

Proof of Lemma 5.1. Denote the reciprocal

𝑅(𝑛, 𝜌) ,
1

𝐵(𝑛, 𝜌)
.

Let 𝑆(𝑛) =
∑︀𝑛

𝑖=0 𝜌
𝑖/𝑖!, then

𝑅(𝑛, 𝜌) =
𝑆(𝑛)

𝜌𝑛/𝑛!
=

𝑆(𝑛− 1) + 𝜌𝑛/𝑛!

𝜌𝑛/𝑛!

=
𝑛𝑅(𝑛− 1, 𝜌)

𝜌
+ 1.

Because

𝐵(𝑛, 𝜌) =
𝜌𝐵(𝑛− 1, 𝜌)

1 + 𝜌𝐵(𝑛− 1, 𝜌)
, (D.1)
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where 𝐵(0, 𝜌) = 1.

Using mathematical induction on 𝑛, because 𝐵(0, 𝜌) is increasing in 𝜌, if 𝐵(𝑛, 𝜌) is

also increasing in 𝜌, from Eq.D.1, 𝐵(𝑛+ 1, 𝜌) is increasing in 𝜌 as well.

Moreover,

𝐵(𝑛− 1, 𝜌)−𝐵(𝑛, 𝜌) = 𝐵(𝑛− 1, 𝜌)

(︂
1− 𝜌

1 + 𝜌𝐵(𝑛− 1, 𝜌)

)︂
> 0,

this is because 𝐵(𝑛, 𝜌) ≤ max{0, 1 − 𝜌−1}, which can be proved with Little’s law as

following.

Let 𝑁 be the number of customers served in the system. The fraction of customers

who are served is 𝜆(1−𝐵(𝑛, 𝜌)), that is, the arrival rate excluding blocked customers.

The expected waiting time is the mean service time in the loss model. So due to

Little’s Law 𝐿 = 𝜆𝑊 ,

E𝑁 =
𝜆(1−𝐵(𝑛, 𝜌))

𝜇
= 𝜌(1−𝐵(𝑛, 𝜌)) < 𝑛,

Therefore 𝐵(𝑛, 𝜌) ≤ max{0, 1− 𝜌−1}.

Proof of Proposition 5.1. The existence is trivial due to the monotonicity of

𝐵(𝑛, 𝜌) in 𝑛 in Lemma 5.1.

Proof of Proposition 5.2. With the monotonicity of 𝐵(𝑛, 𝜌) in 𝑛 given a certain 𝜌

in Lemma 5.1, we only need to prove the discrete convexity of 𝐵(𝑚, 𝜌) as a function

of 𝑚, that is, 𝐵(𝑚, 𝜌) − 𝐵(𝑚 + 1, 𝜌) is decreasing in 𝑚. The discrete convexity of

𝐵(𝑚, 𝜌) has first been proved in Messerli, 1972; Jagers and van Doorn, 1986 , and

then (Wolff and Wang, 2002) extended the property to 𝐺/𝐺𝐼/𝑛/𝑛 models.
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