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Abstract

This thesis provides new examples of compact irreducible complete square complexes. This
is done by providing an elegant new recipe for producing an anti-torus in the universal cover
X̃ ∼= TV × TH of a complete square complex X. Additionally, we consider the action of a
subgroup π1H ⊂ π1X on the projection X̃ → Tv and characterize when the elements have
finite order. We also present some evidence that generic complete square complexes contain
an anti-torus.
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Résumé

Dans cette thèse, nous produisons de nouveaux exemples de complexes complets carrés ir-
reductibles. Ceci est accompli par l’entremise d’une nouvelle recette élégante pour produire
des anti-torus dans le couvert universel X̃ ∼= TV × TH d’un complexe complet carré X. De
plus, nous considérons l’action d’un sous-groupe π1H ⊂ π1X sur la projection X̃ → Tv et
charactérisons lorsque les éléments ont un ordre fini. Nous présentons aussi des résultats
qui supportent l’idée que les complexes complets carrés contiennent génériquement des anti-
torus.
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Chapter 1

Introduction

1.1 Context

Since Gromov’s geometric revolution of the study of infinite groups, a number of classes
of groups have risen to prominence. One class are the “word-hyperbolic groups”, which
generalize free groups and fundamental groups of negatively curved manifolds. Another class
are the groups that act properly and cocompactly on CAT(0) spaces, which also generalize
the fundamental groups of compact manifolds with nonpositive curvature. During the past
10 years, nonpositively curved spaces arising from cube complexes have become increasingly
central, and have led to the solutions of many interesting open problems in geometric group
theory and topology. The nonpositively curved spaces that are arguably most remote from
hyperbolicity are the products of two or more trees.

A Complete Square Complex X is a complex whose universal cover X̃ is isomorphic to
the product of two trees. The simplest example of such a complex X is where X = A × B
where A and B are graphs, so X̃ = Ã × B̃ is the product of two trees. However, it turns
out that there are much more exotic examples of Complete Square Complexes, and recently
there has been a surge of activity in this area.[2, 8, 3, 5, 10, 1, 4, 12]

There are examples of complete square complexes X with the property that X itself
is not isomorphic to a produt of two graphs, but X has a finite cover X̂ such that X̂ is
isomorphic to the product of two graphs. A complete square complex X is irreducible if it
does not have a finite cover X̂ that is isomorphic to a product.

There are a number of ways of showing that a complete square complex is irreducible.
One comes from arithmetic considerations [10, 9]. A much simpler way comes from Wise

[11, 8] who introduced the notion of an “anti-torus”, which is a plane Ẽ ⊂ X̃ with the

property that Ẽ is not periodic, but each vertical and horizontal line of Ẽ is periodic from
the viewpoint of the map Ẽ → X. Note that a product A × B cannot contain an anti-
torus, since the periodicity of Ẽ in both the vertical and horizontal directions implies its
double-periodicity. Hence if X contains an immersed anti-torus, we see that X must be
irreducible. Wise, and later, Janzen-Wise produced complete square complexes that contain
an anti-torus. However, their arguments are ad hoc.

The main new contribution of this thesis is a new, more systematic and understandable
way of producing an anti-torus. We use this to produce new and transparent examples of
irreducible complete square complexes, and moreover, our proofs are much more satisfying
than the previous ad hoc constructions in the literature. Our main example can be seen in
Figures 1.1, 1.2 and 1.3. We explain this example, and a generalization in Chapter 3.

A second contribution of this thesis is a characterization of torsion of a certain element
h in a group that is closely related to a Complete Square Complex. As a complete square
complex X has the property that X̃ ∼= TV × TH where TV and TH are trees, there is an
action of π1X on this product that projects to an action of π1(X) on TV . We examine the
action of an element stabilizing TH on TV and characterize when its action has finite order
in Aut(TV ). This is described in Chapter 4. The relationship between this idea and the

anti-torus, is that whereas an anti-torus is about periodicity of a plane Ẽ = R × R, the
torsion of our element is instead related to periodicity of TV × R ⊂ X̃.

We also undertook some computer-aided investigations that lend credence to the belief
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Figure 1.1: The main example: An irreducible complete square complex X.

Figure 1.2: The squares of the main example X.

Figure 1.3: Part of the anti-torus in the main example X.
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that a random Complete Square Complex always contains an anti-torus. Our results are
described briefly in Section 5.
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Chapter 2

Definitions

2.1 Standard Definitions

We assume the reader has an understanding of covering spaces and fundamental groups, we
use [7] as a reference for the most standard concepts we will be using here.

Definition 2.1 (n-cube). An n-cube is a topological space homeomorphic to [−1, 1]n equipped
with the standard metric topology.

Definition 2.2 (face). A face of a n-cube is the subspace formed by restricting some of the
coordinates to ±1. Observe that using these definitions, faces of cubes can be considered as
cubes in their own right.

Definition 2.3 (combinatorial cube complex). A combinatorial cube complex is the quotient
space obtained by gluing cubes along faces by isometries. Formally, we take a set C of cubes
of various dimensions and a collection F of isometries and we obtain the cube complex
X = C/F .

Since the identification is done by isometries, we observe that the cube complex can
be defined purely combinatorially. The collection of maps F is therefore more naturally
specified by labellings of faces, as can be seen in Figure 2.1.

Definition 2.4 (link of a 0-cube). The link of a 0-cube v, denoted Link(v) is the topological
space homeomorphic to the intersection of X with an ε-sphere about v. More formally,
Link(v) it is the simplicial complex with vertices corresponding to 1-cubes attached to v and
an n− 1 simplex for every n-cube with a corner at v. (Refer to Figure 2.2)

Definition 2.5 (graph). A graph is a cube complex X consisting of cubes of dimension ≤ 1.
This agrees with the usual notion of a graph X = (X0, X1), consisting of vertices X0 and
edges X1. We assume all edges are directed with the convention e = (i, j) ⇐⇒ e = (j, i).
Also for e = (i, j), we let o(e) = i and t(e) = j.(for origin and target.) Naturally this gives
us o(e) = j and t(e) = i.

Definition 2.6 (square complex). A square complex is a cube complex consisting of cubes
of dimension ≤ 2.

Figure 2.1: A cube complex: a collection of cubes C and isometries F indicated by labellings.
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Figure 2.2: On the left we have a cube complex with a marked vertex x0. On the right we
have the link at x0.

Figure 2.3: A square s and its boundary ∂ps. We give two examples of boundary represen-
tatives.

Definition 2.7 (VH-complex). A VH-complex is a square complex X with subgraphs
V,H ⊂ X1 such that X1 = V ∪ H and X0 = V ∩ H such that the bipartition V,H, of
its 1-cells induces a bipartition on Link(v), for every v ∈ X0

Example 2.8. On the left we have an example of a VH-complex with an obvious bipartition
of the edges: V and H are both bouquets of two circles intersecting at one point. On the
right, the square has an attaching map with two consecutive edges mapping to the same
edge, so there is no way to partition the edges to make it a VH-complex.

Definition 2.9 (boundary). Given a square complex X and a square s ⊂ X, we denote the
boundary of s by ∂ps = e1e2e3e4. This is just the attaching map of s, where ei ⊂ X1. Note
the boundary is not unique, as it depends on the choice of basepoint and orientation, but
nothing we do is sensitive to this. (Formally, we quotient ∂ps by D4.) (Refer to Figure 2.3)

2.2 Complete Square Complexes

The objects we want to work with have more structure than VH-complexes, so we introduce
a few more definitions.

Definition 2.10 (Complete Square Complex). A square complex is a complete square
complex (CSC) if Link(v) is a complete bipartite graph for every v ∈ X0.

The constraint on Link(v) is quite stringent, which makes building a CSC by hand a
little tricky, in particular when the CSC has a large number of squares. We work towards
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Figure 2.4: The complex square complex W.

outlining an easily understandable and verifiable method of building a CSC. We focus on
the case where X has a single 0-cell, but the ideas described here apply more generally.

Construction 2.11. We fix two n-coverings ρM : M → Ck, ρN : N → Ck where Ck is a
bouquet of k circles, and we assume M,N are isomorphic as unlabelled graphs. Fix a graph
isomorphism φ : M → N (note that φ is not in general a covering space isomorphism). We
read off the structure of the CSC X = (M,N, φ) with a VH structure as follows:

1. X0 consists of one 0-cube x0.

2. The subgraph V ⊂ X1 is a bouquet of k circles and corresponds to Ck.

3. The subgraph H ⊂ X1 is a bouquet of n circles and corresponds to the vertices of M .

4. We add a square s with labels (ρ1(e), t(e), ρ2(φ(e)), o(e)) for every edge e ∈M .

The attaching map of every square alternates between edges in V and edges in H, so
X is indeed VH. That X is a CSC follows from the fact that we chose M and N to be
covers of Ck, so that there will be a unique square with corner (v, h), for every pair of edges
v ∈ V, h ∈ H.

Remark 2.12. More generally, we can construct a CSC as a graph of spaces where all edge
spaces and vertex spaces are graphs and all attaching maps are covering maps. See [12].

We illustrate the construction through an example that will be of use later.

Example 2.13. Let ρ1 : M → C3 and ρ2 : N → C3 be the two degree 2 covers of a bouquet
of 3 circles as shown in Figure 2.4. Let φ be the obvious graph isomorphism. We obtain the
complete square complex W = (M,N, φ).

The edges in Figure 2.4 are numbered. We can see the corresponding labelled squares in
Figure 2.5 obtained by applying Construction 2.11.

We highlight an equivalent way of understanding Construction 2.11. Let ρM : M → Ck
and ρN : N → Ck be covering maps. Assume M,N are isomorphic as unlabelled graphs.
Let Γ correspond to the unlabelled graph associated with M and N . Let

X = (Γ× [0, 1]) / {(x, 0) ∼ ρM (x), (x, 1) ∼ ρN (x) | ∀x ∈ Γ})

We henceforth omit the intermediate explanation and denote the CSCs we work with as
triples (M,N, φ). When it is not specified, we assume that M and N are equipped with
covering maps ρM : M → Ck, ρN : N → Ck. An attractive property of CSCs is:
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Figure 2.5: The squares in W.

Theorem 2.14. (X is CSC ⇐⇒ X̃ ∼= Tree × Tree )

Proof. Refer to [11] for a proof.

For a CSC X = (M,N, φ) with M an n-cover of a bouquet of k circles, we have X̃ ∼=
TV × TH , where TV ∼= Ṽ and TH ∼= H̃ are n-regular and k-regular trees respectively.

In the case a CSC X = (M,N, φ) has a single 0-cell (X0 = {x0}), π1(X,x0) is equipped
with a canonical cocompact and properly discontinuous action on a product of trees, acting
via deck transformations. We can understand the group as having the presentation:

π1(X,x0) = 〈v ∈ Edges(V), h ∈ Edges(H) | ∂ps ∀s ∈ S〉

That is, the generators correspond to the vertical and horizontal edges and the relations
correspond to the attaching maps of the squares.

Definition 2.15 (path). A path w in a cube complex is a map ϕ : I → X, with I an
interval. We assume paths are combinatorial so I → X1 and ϕ(I) is the concatenation of
edges e1...en in X1. If there is ambiguity we will denote a path with initial point x by
wx. Similar to Definition 2.5, we denote o(w) to be the starting vertex and t(w) to be the
endpoint vertex of a path w. When a path is a sequence of edges in X1 that are directed
and labelled, each edge corresponds to an element of π1X and a path corresponds to a word
in π1X so we make use the two terms interchangeably.

From hereon, we assume CSCs have a single 0-cell (X0 = {x0}) and we write π1X =
π1(X,x0), taking the basepoint to be the single 0-cell in X0. (Similarly for π1V = π1(V, x0)
and π1H = π1(H,x0)).

Lemma 2.16. Let X̃ → X be the universal cover of X. Let a, b ∈ ρ−1(x0) be two points in
the universal cover of X, where x0 ∈ X0. There is a unique embedded path from a to b of
the form hv where h ⊂ ρ−1(H) and v ⊂ ρ−1(V ).

Proof. Refer to [11] for a proof.

By symmetry, any two points are joined by a unique path of the form vh where h ⊂
ρ−1(H) and v ⊂ ρ−1(V ). (Note the only difference between this statement and Lemma 2.16
is the order in which the horizontal and vertical paths appear)

We also note that the subgroup π1H < π1X is equipped with a right action on π1V . We
now describe the action from the viewpoint of Lemma 2.16. We remark that the action is
not by homomorphisms.

Let a ∈ X̃ be the endpoint of the path vx → ρ−1(V ) and let b be the endpoint of the
path hx → ρ−1(H) both with start point x. By Lemma 2.16, there is a unique path of the
form h′v′ joining a to b with h′ → ρ−1(H) and v′ → ρ−1(V ). Thinking of h as an element
of π1H as described in Definition 2.15, we define the action by:

h(v) = v′

The action is easily understood via the following observation: the paths v and h determine
a unique tiling of their convex hull (the tiling is uniquely determined because of the complex
is CSC, every corner uniquely determines a square). The image of v under the action is just
the label of paths opposite to them in this rectangle, as can be seen in Figure 2.6.

This is indeed a right action: h1h2(v) = h2(h1(v)), as this corresponds to the tiling
generated by h1 and v concatenated with the tiling generated by h2 and h1(v). We naturally
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Figure 2.6: The tiling of the convex hull of paths v and h in the CSC W.

extend this to an action of π1H on rays in TV . We also have that the action is prefix-
preserving, so an element h ∈ π1H determines a rooted automorphism of TV (see Figure
4.1).

Another way to interpret the action of an element of π1H on TV is through the following:
Given a CSC X = (M,N, φ), a path v ∈ TV and an element h ∈ Edges(H), we can

interpret h(v) = v′ as being the path obtained by tracing the path v inside of M starting at
vertex h and looking at its image through φ.

The motivation for this paper is that the fundamental groups of these complexes is sur-
prisingly interesting. We introduce some notions we will use to investigate the fundamental
groups of CSCs.

Definition 2.17. (Reducible) We say a CSC X is reducible if there exists a finite degree
cover X̂ → X such that X̂ ∼= A×B where A,B are graphs.

In terms of fundamental groups we have

Theorem 2.18. Let X be a CSC. Then X is reducible if and only if π(X,x0) contains a
finite index subgroup isomorphic to Fn × Fm for some m,n ∈ N

Proof. Refer to [11] for a proof.

If there does not exist a such a finite cover X̂ ∼= A×B, we say X is irreducible.
A priori, it is not clear whether there exist any irreducible CSCs. It turns out that they

do and we suspect (more on this later) that in fact irreducible CSCs are generic. That some
CSCs are irreducible is what makes them alluring. A good portion of this paper is dedicated
to detecting and constructing irreducible CSCs. Irreducibility of CSC is being studied by
many, refer to [3] for a comprehensive survey. In general it is not known whether there is an
algorithm that can decide whether a CSC is irreducible or not. Our main tool for detecting
irreducibility of a CSC is through what is called an anti-torus:

Definition 2.19. (Anti-Torus and Tiling) Let X be a CSC with a VH-structure. Let h→ H
and v → V be immersed circles based at x0. The tiling generated by h and v is the convex
hull of h̃ ∪ ṽ, where h̃ ⊂ X̃ and ṽ ⊂ X̃ are lifts of h and v respectively that intersect at a
point h̃ ∩ ṽ = x. It is the product subspace h̃× ṽ. The plane h̃× ṽ ⊂ X̃ is an anti-torus if
is not tiled periodically by preimages of squares of X. In other words, it is an anti-torus if
the map h̃× ṽ 7→ Y does not factor through a torus T 2 7→ Y .

We know the presence of an anti-torus in a CSC X implies X is irreducible because of
the following theorem:

Theorem 2.20. (anti-torus ⇒ irreducible) Let X be a CSC containing an immersed anti-
torus. Then X is irreducible.

Proof. Refer to [11] for a proof.

It is not known whether the reverse implication is true.

11



Chapter 3

Main Example

3.1 Explicit construction of an Anti-Torus

We have outlined in Chapter 2 for a CSC X, how π1H < π1(X,x0) acts on the factor tree

TV ∼= Ṽ . We consider here the same action, but focus on the action of π1H on infinite
periodic paths PV instead of finite paths. Formally, we have

PV = {w | w ∈ π1V,w freely and cyclically reduced}/{u ∼ v if ∃i, j ∈ N s.t. ui = vj}

A word w is simple if (w = ui) ⇒ (w = u). (i.e. w is not a power of a smaller word.)
From this we can assign a length function on PV .

‖[w]‖ := length of u, where [u] = [w] and u is simple

We can think of [w] as being the infinite periodic ray www · · · lying in TV . As in Section
2.2, π1H acts on TV and in particular on infinite rays www · · · . We will verify π1H sends
periodic words to periodic words under this action, but we note that the length of the period
might change. We introduce more notation before showing this.

Definition 3.1. Let M be a degree n cover of a bouquet of k circles. Define σM : π1V →
Aut(M0), by the action of σM (w) on the vertices of M , where w ∈ π1V :

σM (w)(x) = t(wx)

Where we can also think of wx as a path in M based at x.

We point out that this is equivalent to the action of π1V on the cosets π1M/π1V . We
conclude (w`)x (` repetitions of the path w based at x) is a closed path in M for some
positive integer `, so h([w]) (i.e. the action of h on www · · · ) is a periodic word with period
h((w)`). We summarize this in the following lemma:

Lemma 3.2. Let [v] ∈ PV and let h ∈ π1H. Then h([v]) = [w] for some [w] ∈ PV .

For any h ∈ π(H) and periodic word [v] ∈ Pv we can associate a sequence of rational
numbers, (αi)i∈Z , where we define

αi =
‖hi([v])‖
‖hi−1([v])‖

We hope to reach some conclusions about the presence of anti-tori in CSCs by studying
these sequences. We follow with a step in this direction:

Lemma 3.3. Let (αi)i∈Z be the sequence of rational numbers associated to the tiling of the
plane generated by v ∈ π1V and h ∈ π1H in some CSC X. If the tiling factors through a
torus, then for an integer ` and any j ∈ Z we have:

j+∏̀
i=j+1

αi = 1
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Proof. If the tiling factors through a torus, then h acts periodically on [v] with some period
`. The equality follows immediately from the definition of (αi)i∈Z .

A consequence of Lemma 3.3 is that if we can show
∏j+`
i=j+1 αi is unbounded in ` for

some choice of j we can conclude that the tiling is an anti-torus. This is how an anti-torus
was found in [11]. In particular, it was proven that the sequence (αi)i∈Z associated to a
particular tiling had αi = 2 for i ≥ 1.

We tried showing the presence of unbounded growth by examining the average behaviour
of (αi)i∈Z , but this proved unsuccessful.

However, we were able to detect the presence of an anti-torus through a divisibility
argument, the remainder of this section is dedicated to this.

Definition 3.4. Let X = (M,N, φ) be a CSC. We define a useful subset of the rationals:

RX =

{
‖h([v])‖
‖[v]‖

: v ∈ PV , h ∈ H
}

We can restrict RX as follows:

Lemma 3.5. Let X = (M,N, φ) be a CSC, with M a degree n cover of a bouquet of circles.
Then RX ⊂ Qn = {ab : 1 ≤ a, b ≤ n}.

Proof. As noted above, any path v ⊂M corresponds to a permutation of the vertices of M .
It will take at most n iterations of a permutation before any vertex cycles back to its original
position (the largest orbit of a vertex under the action of an element in Aut(M0) is n). Let
a be the smallest positive integer such that x = t(vax). Hence a ≤ n and [h(va)] = h[v]. It
is however possible that ‖[h(va)]‖ < a‖v‖ as h(va) might not be a simple word. We write
h(va) = wb for some simple word w ∈ π1V , which implies:

b‖w‖ = a‖v‖

Since w also defines a permutation in N , we also note that o(wb) = t(wb) must be true for
some b ≤ n. Thus, ab ∈ Qn and we have:

‖w‖ =
a

b
‖v‖

Lemma 3.5 restricts the amount by which the length of periodic words can vary under
the action of H. We aim to restrict this further. We introduce a bit more notation.

Definition 3.6. Let X = (M,N, φ) be a CSC. Let GM = σM (π1V ) < Aut(M0) and
GN = σN (π1V ) < Aut(N0) be as in Definition 3.1.

Definition 3.7. For a subgroup K < Sn, define the set of integers associated to cycle
lengths of its elements as follows:

L(K) = {` : ` is the length of a cycle of an element of K}

Using Definition 3.7 and the same argument as in Lemma 3.5, we obtain:

Lemma 3.8. Let X = (M,N, φ) be a CSC and let RX be as in Definition 3.4. We have:

RX ⊂
{
i

j
: i ∈ L(GM ) and j ∈ L(GN )

}
We now construct an explicit example of an anti-torus using Lemma 3.8.

Example 3.9. Consider the CSC X = (M,N, φ) depicted in Figure 3.1.
Let GM and GN be as in Definition 3.6. We have that GM = 〈(1, 2, 3, 4), (1, 3)〉 ∼= D4,

the dihedral group of order 8. In particular, we note that L(M) = {1, 2, 4}. Consider the
periodic path [aba]. By observation, aba is a simple word and we have ‖aba‖ = 3. Letting
h ∈ π1H from Figure 3.1 act on [aba], we get h([aba]) = [a]. Clearly, [a] is a simple word
and we have ‖a‖ = 1. Refer to Figure 3.2 for an illustration of this process.
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Figure 3.1: The main example: the CSC X. Note the vertex h in the top left part of cover
M .

Figure 3.2: Tiling generator by [h] and [aba].
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Consider the tiling of the plane generated by aba and by h. If the plane is not an
anti-torus then there must be an integer ` for which

h`([aba]) = [aba].

Again, having observed the action of h on [aba], we must have for that same integer `:

h`−1([a]) = [aba]

In particular, we have:

`−1∏
i=1

‖hi([a])‖
‖hi−1([a])‖

=
‖[aba]‖
‖[a]‖

= 3

We define αi = ‖hi([a])‖
‖hi−1([a])‖ , where αi ∈ RX and observe that this implies:

`−1∏
i=1

αi = 3

Observe this is impossible, as it would imply 3 ∈ L(M).

The following condition guaranteeing an anti-torus is sufficient but not necessary:

Theorem 3.10. Let X = (M,N, φ) be a CSC. Let RX be as in Definition 3.4. Let 〈RX〉 ⊂ Q
be the multiplicative semigroup generated by RX . If 〈RX〉 is not a group, then X contains
an anti-torus.

Proof. If each r ∈ RX has r−1 ∈ 〈RX〉, then each element q = r1 · · · rk of 〈RX〉 (with
ri ∈ RX) has an inverse q−1 = r−1

1 · · · r
−1
k (with r−1

i ∈ 〈RX〉). Hence, if 〈RX〉 fails to be a
group, it is because ∃ r ∈ RX with no inverse in 〈RX〉.

Now suppose 〈RX〉 fails to be a group. Let r be such that r−1 /∈ 〈RX〉. By Definition

3.4, this implies ∃v ∈ PV and h ∈ π1H such that r = ‖h([v])‖
‖[v]‖ . By Lemma 3.3, if the tiling

generated by v and h factors through a torus then we must have for some integer `:

∏̀
i=1

‖hi([v])‖
‖hi−1([v])‖

= 1 ⇒
∏̀
i=2

‖hi([v])‖
‖hi−1([v])‖

= r−1

Hence r−1 ∈ 〈RX〉, being a finite product of elements in RX , a contradiction.
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Chapter 4

Characterizing finite order
elements in the group of finite
synchronous automata

In Section 2.2, we described how the horizontal subgroup π1H < π1X of a CSC X, acts
on the factor tree TV , of the universal cover X̃ ∼= TV × TH of X. In Chapter 3 we found
a recipe to certify the presence of an anti-torus. Observe that having an anti-torus in the
direction of h ensures that h has infinite order in its action on TV . In this chapter, we focus
on the order of the elements h on TV and characterize when h has finite order.

Let X be given by the data (M,N, φ). Note that π1H is generated by elements h ∈
Edges(H). We restrict our attention to the action of a single generator h on TV . Note that
h corresponds to a vertex of M . The rooted automorphism Φ of TV is determined by the

tuple (M,N, φ, h), which we hereon denote by
[
M

φ−→
h
N
]
.

The group of all automorphisms of a tree TV that can be represented in this way is
described in [6], and is called the group of finite synchronous automata FGA(V ).

Of course, it is possible for the same rooted automorphism of TV to be denoted in two
different representations in the above manner. The following lemma explains that there is
a unique minimal representation.

Main Lemma 4.1. Let Φ be a rooted automorphism of a tree T that is the universal cover

of a bouquet of k circles V . There exists a minimal representation Φ =
[
A0

φ−→
h
A1

]
in the

sense that if Φ =
[
M0

φ′−→
h′

M1

]
for any covers M0 and M1 of V , then there exist covering

maps ρ0 : M0 → A0 and ρ1 : M1 → A1 such that the following diagram commutes

M0 M1

A0 A1

φ′

ρ0 ρ1

φ

Proof. Let Ta and Tb be two universal covers of V . Observe that the rooted automorphism
of Φ can be represented by:

Φ =
[
Ta

Φ−→
r
Tb
]

Consider the complex isomorphic to T × I such that T × {0} and T × {1} are identified
with Ta and Tb.

We are interested in the group G of label-preserving automorphisms of this object that
stabilizes both T × {0} and T × {1}. Let ρa : Ta → V and ρb : Tb → V be covering maps.
We can describe G as follows:

GΦ = {g ∈ π1V | ρa ◦ g = ρa and ρb ◦ Φ(g) = ρb}
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Figure 4.1: The automorphism of TV determined by M0,M1, φ and x ∈ π1H. Quotienting
Ta by all deck transformations that permute vertices in ρ−1(x) gives A0. Similarly for A1.
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Figure 4.2: Composition of automorphisms

We obtain the minimal representation of Φ by quotienting the trees by the group action.
That is, A0 = Ta/GΦ and A1 = Tb/Φ(GΦ). This is clear, as any other representation

Φ =
[
M0

φ′−→
s′

M1

]
must be obtained as M0 = Ta/G

′ and M1 = Tb/Φ(G′) for some G′ < GΦ.

We immediately obtain that M0 → A0 is a cover of A0 and M1 → A1 is a cover of A1.
That the diagram commutes follows from the two representations inducing the same tree
automorphism Φ.

We continue with a lemma that has a similar flavor.

Lemma 4.2. Let Φ =
[
M0

φ−→
s
M1

]
be an automorphism of T . Let ρ0 : N0 → M0 be a

covering map. Then there exists a graph isomorphism φ′ and a covering map ρ1 : N1 →M1

to make the following diagram commute:

N0 N1

M0 M1

φ′

ρ0 ρ1

φ

Proof. Similarly as in Lemma 4.1, we can realize M0 as a quotient T/G. Since N0 is a cover
of M0 we have that N0 = T/G′ for some subgroup G′ < G. We let N1 = T/Φ(G′), which
makes it a cover of M1 = T/Φ(G). We define the covering map ρ1 = φ ◦ ρ0 ◦ φ′ and obtain
the commuting diagram as desired.

Remark 4.3. Let Φ =
[
M

φ−→
s
M
]

be a rooted tree automorphism. If φ is the identity

automorphism on M , Φ = 1T is the trivial automorphism of T .

We continue to develop the notation with a few more technical lemmas

Lemma 4.4. (Composition Lemma). Let Φ1 =
[
M1

φ1−−−−→
φ−1
1 (s)

M2

]
and let Φ2 =

[
M2

φ2−→
s

M3

]
. Then Φ2 ◦ Φ1 =

[
M1

φ2◦φ1−−−−→
φ−1
1 (s)

M3

]
Proof. This is immediate from the definition. Refer to Figure 4.2.

Corollary 4.5. Let Φ =
[
M0

φ−→
s
M1

]
. Then Φ−1 =

[
M1

φ−1

−−−→
φ(s)

M0

]
.

Proof. This follows from Lemma 4.4 and Remark 4.3
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[
M0

φ−→
s
M1

][
M1

φ−1

−−−→
φ(s)

M0

]
=
[
M0

φ−1◦φ−−−−→
s

M0

]
=
[
M0

id−→
s
M0

]
= 1T

⇒
[
M1

φ−1

−−−→
φ(s)

M0

]
=
[
M0

φ−→
s
M1

]−1

= Φ−1

Note that in the previous two examples, the composition was easily realized because the
source and target covers were the same. We want a general method of representing the

composition of two automorphisms ΦM =
[
M0

φM−−→
s

M1

]
and ΦN =

[
N0

φN−−→
r

N1

]
:

ΦN ◦ ΦM = ΦP =
[
P0

φP−−→
t

P1

]
Definition 4.6 (Fiber Product). Let Ck be a bouquet of k circles. Let ρA : A → Ck be a
degree m cover and let ρB : B → Ck be a degree n cover. The fiber product A ⊗ B is the
graph with vertices (A⊗B)0 = {(a, b) a ∈ A0, b ∈ B0} and edges:

{
(
(a, b), (a′, b′)

)
| ∃(a, a′) ∈ Edges(A) and (b, b′) ∈ Edges(B) s.t. ρA(a, a′) = ρB(b, b′)}

Note that A ⊗ B is a cover of both A and B. Moreover, A ⊗ B contains a connected
component Q that is the smallest cover of both A and B. (Q is the pullback of A and B.)

Construction 4.7. We construct a representation of ΦN ◦ΦM , where ΦM =
[
M0

φM−−→
s

M1

]
and ΦN =

[
N0

φN−−→
r

N1

]
. Let P be the connected component of A⊗B containing the vertex

(φ(s) r). From Lemma 4.2, since P covers both M1 and N0, we can find ρ0 : P0 →M0 such

that ΦM =
[
P0

φ′−−−−−−−−−→
(φ′)−1(φ(s),r)

P
]

and ρ1 : P1 → N1 such that ΦN =
[
P

φ′′−−−−−→
(φ(s),r)

P1

]
. From

Lemma 4.4, we have:

ΦN ◦ ΦM =
[
P0

φ′′◦φ′−−−−−−−−−→
(φ′)−1(φ(s),r)

P1

]
Theorem 4.8. Let Φ =

[
M0

φ−→
s
M1

]
be a tree automorphism, where M0 is a degree n cover

of a bouquet of k circles. The following are equivalent:

1. Φ =
[
M0

φ−→
s
M1

]
is a finite order automorphism

2. There exists a finite degree cover ρM ′ : M ′ → Ck and φ′ such that Φ =
[
M ′

φ′−→
s′

M ′
]

and φ′(s′) = s′

Proof. ((1)⇐ (2)) By repeated application of Lemma 4.4 we have

Φi =
[
M ′

(φ′)i−−−→
s′

M ′
]

As φ is an automorphism of a finite graph, φ must have finite order. There must be a

positive integer ` satisfying Φ` =
[
M ′

id−→
s′

M ′
]

where id is the identity automorphism. By

Remark 4.3 Φ` is the identity, so Φ is of finite order.

((1) ⇒ (2)) Let Φ =
[
M0

φ−→
s

M1

]
be an automorphism of T of finite order `. Let[

Ai0
φi−→
si

Ai1
]

be the minimal representation of Φi, for 1 ≤ i ≤ `. Let (P, s′′) be the smallest

based cover of all of the Ai0 with covering maps ρi : P → Ai0 in following sense: if (Q, q)
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is a based cover of (Ai0, si) for all 1 ≤ i ≤ ` , then Q covers P . It is immediate that

P = T/(
⋂`
i=1 π1(Ai0, si)). The notion of a smallest such cover is well defined as any other

based cover of all the (Ai0, si) must be of the form Q = T/H for some H <
⋂`
i=1 π1(Ai0, si).

We note that the based fiber product (A1
0 ⊗A2

0 ⊗ · · · ⊗A`0) is a based cover of all of the Ai0,
hence a cover of P . This shows P is a finite cover of the bouquet of k circles.

By Lemma 4.2, since P covers Ai0 for 1 ≤ i ≤ `, we can find covers Bi1 → Ai1 so that

Φi =
[
P

φ′i−→
s′i

Bi1
]
. We note that we can let s′i = s′′. Hence, we have Φi =

[
P

φ′i−→
s′′

Bi1
]

for

every 1 ≤ i ≤ `. By Corollary 4.5 we have Φ−i =
[
Bi1

(φ′i)
−1

−−−−→
φ′i(s

′′)
P
]
. By Lemma 4.4 we have:

Φj−i = ΦjΦ−i =
[
Bi1

φ′j◦(φ
′
i)
−1

−−−−−−→
φ′i(s

′′)
Bj1
]

We complete the proof by recognizing that Bi1
∼= P as covering spaces for 1 ≤ i ≤ `. From

the last equality, and Lemma 4.1, we know Bi1 must be a cover of Aj−i0 (where we consider
the indices modulo `). Fixing i and letting j vary, we observe that Bi1 is a cover of Ai0 for
1 ≤ i ≤ `. Because P is the smallest cover of {A1

0, A
2
0, · · · , A`0} it must be that Bi1 covers

P for 1 ≤ i ≤ `. But Bi1 can only be a degree one cover of P as they are homeomorphic
finite graphs. We conclude that Bi1 and P are equal as covering spaces for 1 ≤ i ≤ `. In

particular, we have Φ =
[
P

φ′′−−→
s′′

P
]

for some graph automorphism φ′′.

All that is left to verify is that φ′′ can be chosen so that φ′′(s′′) = s′′. Because P is the
smallest based cover of all the Ai0, we have that s′′ is the unique vertex that maps to each

of the si in the covers ρi : P → Ai0. The equality Φj−i =
[
Bi1

φ′j◦(φ
′
i)
−1

−−−−−−→
φ′i(s

′′)
Bj1
]

together with

Lemma 4.1 gives us covering maps τ0
j−i : Bi1 → Aj−i0 and τ1

j−i : Bj1 → Aj−i1 as well as the
following commuting diagram:

Bi1 Bj1

Aj−i0 Aj−i1

φ′j◦(φ
′
i)
−1

τ0
j−i τ1

j−i

φj−i

By minimality of Aj−i0 , the vertex sj−i is the unique vertex v ∈ Aj−i0 such that Φj−i =[
Aj−i0

φj−i−−−→
v

Aj−i1

]
. Because the diagram commutes, we have τ0

j−i(φ
′
i(s
′′)) = sj−i. Fixing

i and letting j vary, we observe that φ′i(s
′′) also maps to sk for 1 ≤ k ≤ ` in the covers

τ0
j−i : Bi1 → Aj−i0 . By uniqueness, we have s′′ = φ′i(s

′′), in particular φ′′(s′′) = s′′.
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Chapter 5

Computer Experiments

We believe that generic CSCs should have irreducible fundamental groups. To this aim we
wrote a program in JAVA to produce generic oriented CSC and examined the behaviour of
tiling generated by randomly chosen elements in φ1H and π1V . As explained in Chapter 3,
we obtain a sequence (αi)i∈Z associated to the tiling of the plane generated by any choice
of h ∈ π1H and v ∈ π1V where we defined:

αi =
‖hi([v])‖
‖hi−1([v])‖

As explained in Lemma 3.3, anti-tori have unbounded products:

j∏
i=j

αi

Hence if the typical behaviour of these products
∏
i=j αi grows with j, then this lends

credence to the belief that these sequences are unbounded.

Experiment 5.1. We describe the experiment in detail:

1. Fix integers k, i, j, `.

2. Let n vary from 3 to 8.

3. Produce a complete square complex X where V is a bouquet of k circles and H is a
bouquet of n circles.

4. We choose a word h ∈ π1H of length i and a word [v] ∈ π1V of length j.

5. We let h act on [v] as described in Section 3.

6. We observe the average period variation over ` iterations of the action of h on [v].
That is we compute the value: (

‖h`([v])‖
‖[v]‖

)1/`

7. We repeat this for 10 paths v, h, chosen uniformly at random in each of every 50 com-
plete square complexes X also chosen uniformly at random and compute the geometric
mean of every iteration of the experiment and report the value A(k, n, i, j, `).

For the first iteration of the experiment, we let k = 3, i = 1, j = 1, ` = 10. The results
can be seen in Table 5.1.

For the second iteration of the experiment, we let k = 5, i = 1, j = 1, ` = 10. The
results can be seen in Table 5.2.

For the third iteration of the experiment, we let k = 3, i = 4, j = 4, ` = 10. The results
can be seen in Table 5.3.

We see from the results reported in the tables that the average period increaseA(k, n, i, j, `)
increases with n and k. This supports the hypothesis that generic complete square complexes
(in particular in CSCs with higher n and k) contain anti-tori and hence have irreducible fun-
damental groups.
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n A(k, n, i, j, `)
3 1.2371048971298813
4 1.4917452856997475
5 1.7520564802582541
6 2.2051153986908756
7 2.4203332111562417
8 3.0230867656859135

Table 5.1: Experiment Results for k = 3, i = 1, j = 1, ` = 10

n A(k, n, i, j, `)
3 1.4953526307299496
4 1.9554697386058972
5 2.341162457888909
6 2.6738257337574542
7 3.037080366243933
8 3.5494533674642295

Table 5.2: Experiment Results for k = 5, i = 1, j = 1, ` = 10

n A(k, n, i, j, `)
3 1.342611144322982
4 1.7012106864430632
5 2.2948440979244156
6 2.6253155577091296
7 3.1986077142821525
8 timed out

Table 5.3: Experiment Results for k = 3, i = 4, j = 4, ` = 10
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