Nationa! Lib
ﬂ*i ofaég?mgda: ran

Acquisilions and

Bibliothéque naticnale
du Canada

Direclion des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellinglon Streel
£ ::awa, Onlano
K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
- subsequent amendments.

Canada

395, rue Wellington
QOttawa (Ontano)
K1AON4

Your fig Volre rdlaconee

Ouwr bt Notre idlérmace

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité dimpression de
certaines pages peut laisser a.
désirer, surtout si les pages
originales ont été
dactylographiées a Paide d'un
ruban usé ou si Puniversité nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Upgrading Liquid Metal Cleanliness Analyzer
(LiMCA) with Digital Signal Processing (DSP)
Technology

by

Xiaodong Shi

A thesis submitted to the Faculty of Graduate Studies
and Research in partial fulfillment of the
requirements for the Degree of
Master of Engineering

Department of Mining and Metallurgical Engineering
MecGill University
Montreal, Canada
® October 1994

B * I National Library Bibliotheque nationale
of Canada au Canada

A_cquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques
395 Wellington Street 385, rue Wallington

Cttawa, Ontario QOttawa (Ontario)

K1A ON4 K1A ONd

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

Your fie Voire réldrence

Out hie Nowe rdldrence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-612-05476-4

Canadi

@

RESUME i

RESUME

Le développement de produits métalliques de haute qualité requitre, a la base,
des métaux liquides propres. Pour de plus en plus d'applications, la proprzté du métal
liquide doit étre évaluée et le nombre et la taille des inclusions doivent étre controlés en
dega de valeurs acceptables. Ces besoins ont motivé le développement de techniques de
mesure du nombre et de la taille des inclusions. L'appareil LIMCA (Liquid Metal
Cleanliness Analyzer), développé a 1'Université McGill et utilisé avec succes dans
I'industrie de 1'aluminium, est une de ces méthodes. Elle permet de mesurer la
distribution de taille des inclusions dans les métaux liquides.

Le fonctionnement du LIMCA est basé sur le principe de la Zone Electrique
Sensible. Un courant électrique est maintenu & travers un orifice au bas d'un tube
submergé dans un bain de métal liquide. Le métal liquide est aspiré a 1'intérieur du tube
et lorsqu'une inclusion non conductrice passe a travers 1'orifice, elle augmente, pour
un bref instant, la résistance électrique de 1'orifice. Un systeme de traitement de signal
détecte et mesure les transients, les converti en taille de particule, et les compte en
fonction de leur taille ou, accumule les comptes par intervalle de temps.

Le systémé de traitement de signal du LiMCA actuel est constitué de modules
d'électronique analogue. Il ne peut décrire les transients que par leur amplitude et par
le temps auquel ils surviennent. Cette restriction freine le développement de
1'appareillage LIMCA pour des applications ol différents types de transients existent et
doivent étre classifi€ avant d'étre traité€, Le systéme actuel ne peut non plus étre utilisé
pour des applications qui requitrent un comptage simultané de la distribution de taille
des particules et leur distribution dans le temps. Ces limitations retardent la transition
du LiMCA a devenir un appareil de controle de la qualité des métaux liquides.

Un nouveau systtme de traitement numérique des signaux a été€ congu et mis en
marche avec succes. Avec cette technologie, chaque transient est décrit par un groupe
de sept parametres. L'analyse de ces parametres permet de classifier le transient. De
plus, les distributions temporelles et de taille des transients classifiés peuvent étre
obtenu simultanément.

ABSTRACT i

ABSTRACT

The development of advanced metal products requires ‘*clean’’ liquid metals as
their basic materials. There are more and more applications for which the cleanliness of
the liquid metals has to be qualified that the number and size of inclusions musl be
controlled below some acceptable limits. Such demands for quality have resulted in the
development of measuring systems that can count the number and size distribution of
inclusions. One such device, the so-called LiMCA (Liquid Metal Cleanliness
Analyzer), which was developed at McGill University, measures inclusions in liquid
metals and has been successfully used in the aluminum industry for years.

LiMCA is based on an Electric Sensing Zone principle. By maintaining a
constant current through a small orifice through which liquid metal passes, non-
conductive particles passing through the orifice temporarily increase the electrical
resistance of the orifice, which therefore result in transient changes in the electric
potential. The signal processing component of the LiMCA system detects the vollage
transients, translates them into particle sizes, and counts them based on their sizes, or
accumulates the transients in certain time increments.

The current LIMCA system uses analog electronic components to implement the
signal processing part. It can only describe a transient by its height or its time of
occurrence. This implementation has limited the further development of the system for
applications where different types of transients occur and where these transients have to
be classified before further processing. The system also limits the applications where
the particle size distribution and particle occurrence!must be counted concurrently.
These limitations have hindered the development of the LiIMCA system from an
inclusion measuring device into an on-line quality contr‘ol apparatus.

Digital Signal Processing (DSP) technology hgs been successfully applied to
upgrade the LIMCA system. With this technology, the DSP-based LIMCA system is
able to describe each LiIMCA transient by a group of seven parameters, and with the
help of them, classify it into a certain category. ‘Moreol/er, it simultaneously counts the
classified peaks based on their height and their time of accurrence.

ACKNOWLEDGMENTS iii

ACKNOWLEDGMENTS

This work was carried out under the supervision of Prof. G. Carayannis and
Prof. R.I.L. Guthrie. The author is greatly indebted to them for their encouragement,
academic and financial support during the course of study.

Special thanks to Prof. G. Carayannis again for his valuable knowledge of DSP
and computer technology that the author learnt from him and applied to the work.

The author would also like to convey his sincere gratitude to Mr. F, Dallaire,
the MMPC lab manager, for his willingness to share his valuable experience in LIMCA
experimenting and data processing, and for his comments on the thesis.

The author would like to thank Mr. T. Draganovici, a good friend and a
valuable colleague of mine, for his daily collaboration and discussions throughout the
progress of the work.

Finally, I owe a great deal of debt of gratitude to my wife for her unwavering
support and her devotion in raising our lovely daughter.

TABLE OF CONTENTS

iv
TABLE OF CONTENTS
1. INTRODUCTION. ..cttttniiiiinierstantotsisrsrsintesssnrossssacsstsniorsressssasssaeons 1
Ll PIeVIEW iieiniesiininiireiniieiersnssiierairrasiersisuannsrsssianssrsssasnennses !
1.2, Principle of Operationc.cviiiiiiiiiiniiiiiiiiiicr e 2
1.2.1. Electric Sensing Zone (ESZ) Principle.........ocvvivnennvininens 2
1.2.2. LiMCA Sensor and Signalcceceernimiiernienenssnenerecennss 4
1.2.3. LiMCA System and Signal Processing.........cceeveveniacennnnes 7
1.3. Classes of Real LIMCA Voltage Transients......ccceveveieirnieierananannnns 9
1.3.1. Modeling of Real Transient........ccoeeieerenrnrinracsensnrasnnnes 10
1.3.2. Real Transients ...ccevuiuivecencnsisruneranternrasaonsencrianrnerarans 11
1.4, Motivations, Methods and Context of This Workcocieriniiicinnnns 13
2. DSP-BASED LIMCA SYSTEM ..iiuiiiiiiiiiiiiiiiinnisiessiiiee s eisinenenns 16
2.1. Digital versus Analog Signal Processing........c.ccoiviviviinininianiannns 16
2.2, System OVEIVIEW ...covuininiiiriiiieriiiiirierireiisiersisecassssiseesannes I8
2.3. DSP Specifications for LIMCA Application.......cc.ccooeuiieiiiiniinninnn, 18
2.3.1. Analyses of LIMCA Signalc.cooovvimniieniininiencnninciien. 19
2.3.2. Key DSP Specifications for LIMCA Signal Processing......... 21
2.3.2.1. Resolution of Analog-to-Digital Conversion
(ADC) uivieiiiiiiiiiiiiinisniiiesisssssnanestssaseasnnses 22
2.3.2.2, Sampling Frequencycoueeuvvivmviacininniniinenens 22
2.3.2.3. Input ChannelS.....coeeriereerrsreresiorcercacienaveieceen. 24
2.3.2.4. Computational speed.........ccovieririniiinennrenininnes 24
2.3.2.5. SUMMATY .ioviriiiiniiinsnmninissrisniersinisnreriiiinns 27
2.4. Choice of Hardware Environmentcoceviveieieneniinniininineninnen, 27
3. SYSTEM CONFIGURATION AND INITIALIZATION.....ccoovuctieciiririnnanes 29
3.1. The Configuration of the DSP Board for LIMCAcoviiviiiinnnns 29
3.1.1. Header and Jumper Settings of the DSP-56 Board 31
3.1.2, The Configuration of Port A of the DSP56001 32
3.1.3. The Configuration of Port B (Host Interface) of the
| DAY 171 1) TR 33
3.1.3.1, Data Transfer between the Host and DSP in
Polling Mode.....cccoeveiimeiniiinieniiiiiieniniinieneen 36

3.1.3.2. Host Command Interrupts.......cccouvevneniiinrennininnes 37

TABLE OF CONTENTS v

3.1.4. The Configuration of Port C of the DSP56001 40
3.1.5. Selecting Sampling Frequency of the Analog Interface and
Using the DSP Auxiliary /O Port.....ccocvivinininiininincnnnan. 45
3.2. Hardware Initialization and Program Loadingccccoeivviiioninnnn.. 46
3.2.1. DSPS6001 BOOtNE PrOCESS ..o.vvivuiiavsorsneressninerarsasseonanns 47
3.2.2. Program Loading through the DEGMON Moanitor.............. 49
4, LiMCA SOFTWARE DESIGN AND IMPLEMENTATIONcccoiiiiiinninen. 53
4.1, Software OVEIVIEW . .cvviiivieiiinieiinirsiartassnserctsnionisesessaciesnacasss 53
4.2, DSP SOftWareccceveeiterecerissieiaraisiisarssiistsecsiasressiorssnasssnes 53
4.3. DSP Real-time Softwar€.......ccoiveerinriinicicrsisasninicninerinecicescans 55
4.3.1, Task Distribution between the Host and DSP.................... 56
4.3.2. Memory Allocation at the DSP Levelc..covviniiinininines 56
4.3.3. Real-time Control EXeCUtiVe.......vvvrieniieiniiniieesscnsencenees 59
4.3.4. ADC PrOCESS..cuiertiiatiansnioncsnreasansrassscestensassisnsssssenses 62
4.3.5. Peak Sampling Processccccevuiiiiiiniaciiiininiiinciniensniian. 65
4.3.6. Peak Description ProCesS.....uieerecnciccisrrenniascescassressnnens 68
4.3.7. Pulse Height Analysis (PHA) Process......ccccceervrcnieninncnnns 71
4.3.8. Real-time Data Transfer Process.......ocvieericiniiicineiainnncens 73
4.4. Host-DSP Interface for Real-time Data Transferc.cocviviiinneinans 75
4.4.1. General VIEWS ..cciviiiininrisinenccoisnsririssiisseissssassranensnes 75
4.4.2, Interrupt Installation and Controlcvcveveeniavnrneninrneninn 76
4.4.3. Interrupt Service Routine (ISR) for Real-time Data
8 2L =) O S TP 78
4.4.4. EMS (Expanded Memory Specification) Memory Pools
for Real-time Peak Parameterscccvciievnannencesarnrinanensas 78
4.5. Software PerfOormancecoveiiiiiiniuerienteisisniineneesereensecenrnennns 81
5. CONCLUSIONS AND FUTURE DEVELOPMENTS....cccocciiiiiiiiiciinecnnnee. 83
5.1. Conclusions to the THesiScceeiiiiiiiiiiienciiiiiiiineneeciensencnranenns 83
5.2. Suggestions for Future Workccoeeiieieniniiociniecnnirerocnsrescennns 83
REFERENCES......citiiiiuiiiiiiiiiiiiiinnnrirnsisiiisisnsmnrestsstssssnsssesstssrssssasannses 85
APPENDIX A: SPECIFICATIONS OF THE DSP-56 CO-PROCESSOR
BOARD L.iiiiiiiininiiiiiiiciceteriotniiieiisisssssinicesesssnaesissessnanans 88
APPENDIX B: THE PROTOTYPES OF THE DSP-56 INTERFACE
FUNCTIONS....coivtiiiiimniiierinsnniniiessassssstsnsirassisssrrssasesnes 90

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LIMCA.............. 94

LIST OF FIGURES

vi
LIST CF FIGURES

1.1 Voltage Change due to a Non-conductive Particlec.coevvereiniinnnnnnss 3
1.2 LIMOCA SeRSOT tuevinininiiiniiiinitiereenrasaenssrsscnseseastessanssresssnsessessns 4
1.3 A Close-up Longitudinal Cross-section View of a Real LIMCA Orifice 5
1.4 Resistive Pulse of Two Equal Volume Inclusions.......cocvvvvivvirniiininennens 6
1.5 Schematic of the First Generation LIMCA Systemccocooiiviiiiinvnnnnnnens 7
1.6 LiMCA Data AnalysiS...civeersriinininiieieiieesasssisrsstioioreerorimmenensrnenens 8
1.7 Mathematically Modeled LiMCA Transientcvvveerriiviieninneniniinsnenns ¢
1.8 A typical Normal Pulse (NP)...coiiiiiimiiiiiiiiiiiiii e nn e 10
1.9 A typical Baseline Jump (B}cooiiiiniiiiiiiiiiiiiiiiiiin e B
1.10 A typical Negative Baseline Jump (NBJ)covvviiiiiiiiiiiiiiiiiiiiinnnen, 11
1.11 A Multiple Pulse (MP) ..uiiuiiiiiiiiiiiiririinrsrasrratieisiaerstsseesscensenreenses 12
1.12 Intelligent Signal Analysis...c.cceveieririieiieiiiriiariieieieneraerssenseeraensenss 14
2.1 Two Signal Processing Approaches: (a) Analog Signal Processing, (b)

Digital Signal ProCeSSINE ...cvvvviriviesinrarsrasesssesessssssnersssrsssrssssannsenns 17
2.2 DSP-based LIMCA SysteM...uviuiinivssiisinenieiiisiiiiiniinisineiinremaenn. 19
2.3 Frequency Spectra of the Modeled NP in Figure 1.7......cccoiiiiiiiiiniininnn. 20
2.4 Frequency Spectra of the Modeled NP in Figure 2.3 (low frequency

PAIL) ceverururneerereisirerastisesssenssssssseesssoesssnrasesessosssesesisissesesssmnnns 21
2.5 Frequency Spectra of a Real NP and an MP.......coovvvviinininininiiineenennns 22
2.6 Frequency Spectraof a Bl and an NBJccvvviiviniiniiiiinininienienee, 23
2.7 Digital Signal Processing Hardware........cccvvvrriicvniininiiniiinnnenenn 27
3.1 DSP-56 Block Diagram [Ariel 89] ..ccoiiiiiiniiiiiiiiiiniiiiinic e, 29
3.2 Functional Signal Groups of DSP56001 [Motorola 92]ccvenivinninnnne 30
3.3 DSP-56 Header and Jumper LoCatiONS.....vuivireiersnsenearnreanssssnsnssssersenss 31
3.4 Default I/O Address Selection Settingsccevivrsrirverniesniieisinrieionnens 32
3.5 Bus Control Register and Memory Spacesccevviieniiiinininniiiiiniinnne 33
3.6 Registers of the Host Interface.......cceviiieninnsnnnienrnninniniceisiacenn peaenes 34
3.7 HI Registers on the DSP Side....c.cccivuiieiiiiieninicinisinsiscaciieerccensnas 35
3.8 HI Registers on the HOSt Side.....cccevnireiieriinciiiiiiiiniisiiictninieeseeenn. 36
3.9 Interrupt Priority Register and Mode Register.......cocovvviivininniicnninnienn. 39
3.10 Port C Control Register (PCC) and Configuration.........cccccenvrnenvnninennnn. 40

3.11 SSI Control and Status RegiSters..cuesiiiiirivmrararseraiervnserniitieesersnesenes 4]

LIST OF FIGURES vii
3.12 Timing Diagram and Data Flow of the Simultaneous Uses of ADC and

DAC of Both Channels Using SSI Receive Data Interrupts 43
3.13 Operating Mode Register FOrmMat........cocovviiiveieniiciininineenrnscssnennenns 47
3.14 Block Diagrams of the DEGMON MORItOTveeirreeeierinnienieaneeeennaenenes 50
4,1 Format of the Command Word and Logic of the Command Interpreter....... 54
4.2 The Structure of the DSP Real-time Softwarecocovivrvrrreccenrnnnen, 55
4.3 Real-time Control Executive and its Communication Linkscceeuvninnann. 60
4.4 Registers of the Real-time MCA Process....c.cceevveeierrciirneciieniececenninnes 61
4.5 The Timing Diagram and Data Flow of the ADC Process........ccccceecunnnans 63
4.6 Circular Buffers for ADC.....oeiiiiiiiiiiiiiiiiiiieiictentieeienisentosesseenss 64
4.7 A Typical Section of LIMCA Signal Extracted from the Eastalco

ALUMIAU TSt et teitiiiiiiirrrririeetietretierrrraeeasesssssrassersasnrassenarnsnrnsane 66
4,8 The Peak Sampled from the Signal in Figure 4.7 ..eecvivriniirirnninecnceinninns 66
4.9 Peak Parameters: (a) Positive Peak, (b) Negative PeaK........cccvvvvvenvninnnns 69
4,10 Parameter Sequence in the Peak Buffers........cccciiiiiiiiinaiiciiiiiciciecnnnnns, 70
4.11 Schematic Diagram of the PHA ProCESS....cciuitieeesrrrecirieeniiiaseraeinanens 72
4.12 Real-time Data Transfer Between the Host and DSPc..cccceiiiieveneninnnns, 73
4.13 Cable Connection between DSP's Auxiliary Port and PC's Parallel Port 76
4.14 EMS Pool for DSP Real-time Peak Parameters of Channel A 79

4.15 Usage of the DSP CPUcciiiiiiiiiniimmrtiiiiiiiiiiessiosimmenasnnssssiasaassens 81

LIST OF TABLES viil

LIST OF TABLES
3.1 INEITUPE SOUTCES 1uvniniiiiinirieeiieniesteieeiiiinoriaeiatiieoansoernenreenenensennes 38
3.2 Sampling Frequency Selections [Ariel, 89] ...cvveiiiiiiiiiiiiiiiiiiniieieens 45
3.3 Initial DSP56001 Operating Mode Summary [Motorola 89] 48
4.1 The Usage of the Program Memory.....v.cvivuiirerinieriieiiiieeioieiinanen. 57
4.2 The Allocations of X and Y-data Memoriescocoiiiiiiiiiininiiiinennnnn. 58

4.3 Characteristics Of LIMCA Peaks...vvuvriiieeieerrasnieseosstsciensseestseceessenes 32

CHAPTER 1: INTRODUCTION 1

1. INTRODUCTION

1.1. Preview

The presence of inclusions (i.e. foreign, undesirable particles, such as oxides,
intermetallics, etc.) in metals can be detrimental to the properties of the final products.
The continuously increasing demand for high quality requires that metal cleanliness be
monitored and described quantitatively, For some products (such as beverage cans,
turbine blades, aerospace parts, etc.), both the number and the size distribution of
inclusions present in the metal have to be controlled and kept below certain acceptable
limits. Several inclusion measuring methods have been proposed [Pitcher and Young
69, Bauxman et al. 76, Siemensen 81, Levy 81, Bates and Hutter 81, Mansfield 82] but
most of them are off-line techniques that require considerable amount of labour and
time. A novel on-line method, known with the acronym LiMCA (Liquid Metal
Cleanliness Analyzer) was developed at McGill University by researchers Doutre and
Guthrie [Doutre 84]. The principle of operation of the LIMCA system is based on the
Electric Sensing Zone (ESZ) Principle (Section 1,2,1), which was first developed and
applied by Coulter [Coulter 56] to aqueous and organic suspensions at, or near, room
temperature.

The LiMCA technique has been successfully used for quality control in the
aluminum industry by Alcan, and, being an on-line method, LiMCA has the potential
to be used for the development of a process control system. At McGill, a significant
amount of research has been carried out for the application of LIMCA to other metals
and alloys, such as zinc, magnesium, copper, steel, etc, [Nakajima 86, Kuyucak 89,
Kuyucak and Guthrie 89, Lee 91]. '

In addition to the applications of LiMCA to liquid-metal quality monitoring and
control, there were several practices and there are strong desires to use it as a research
tool in the studies of metallurgical processes. For example, in the study of ceramic
foam filters for liquid aluminum, measurements were done to determine the
concentration of inclusions upstream and downstream with LiMCA [Tian et al 92].
LiMCA was also used in the research on the kinetics of removal of Ca and Na from Al
and Al-Iwt%Mg alloys by chlorination [Kulunk 92]. In the investigation of powder
injection processes, an Aqueous Particle Sensor, which is a water version of the
LiMCA system based on the same operating principle, was used [Yamanoglu 92].

CHAPTER 1: INTRODUCTION 2

Several researchers and industrial engineers have expressed strong expectations
on the future applications of LIMCA in the studies of metaliurgical processes and in
particular in understanding and optimizing such processes. In general, a typical
metallurgical process involves the interactions and reactions among liquid metal, solid
inclusions and injection agents of different types, gas bubbles, and liquid inclusions. To
know the size distributions and frequencies of occurrence of different types of
inclusions at a certain location and a certain time would be of great help to
metallurgists studying the processes.

The demand for such a tool for use both in the process study and control
motivated our LiMCA research project, which is currently sponsored by FCAR and on
NSERC strategic grant. Our final goal is to develop a system that can tell the operator,
to some extent, what happened and what is taking place inside liquid metal in various
processes. The work described in this thesis involves mainly the work related to the
signal processing system of LIMCA, Upon completion, a flexible working platform is
provided for further study and development. In the subsequent sections of this chapter,

an introduction to the LIMCA system and its operational principle, and the motivations
for our work are presented.

1.2. Principle of Operation

1.2.1. Electric Sensing Zone (ESZ) Principle

As mentioned earlier, the theoretical basis of the LIMCA technique is the
Electric Sensing Zone Principle (Figure 1.1). A conductive liquid medium is separated
by an electrically insulated wall. A small opening in the wall submerged in the liquid
connects the two parts of the medium. A constant DC voltage is applied across the
orifice, while the liquid is forced to flow through it. In Figure 1.1, a cross-section
view of a cylindrical orifice with length L and diameter D is illustrated. Conductive
fluid is flowing through the orifice with constant flow rate @ and electric current /.
Because of the geometrical confinement of the orifice, the electric field is intensified
inside the orifice and thus becomes very sensitive to the change of the electrical
property of the conductive fluid flowing through the orifice. The volume inside the
orifice is called the Electric Sensing Zone, ESZ for short. When a non-conductive
particle passes through the orifice with the fluid flow, the overall resistance of the
orifice is increased momentarily and can be detected as a voltage pulse. A non-
conductive particle with diameter d suspended in the fluid is shown in Figure 1.1 as it

CHAPTER 1: INTRODUCTION 3

Vi

o n
| L

>
&

Sl
A

V1-V2= baseline

Voltage

L

0 tl 2 t3
Time

Figure 1.1 Voltage Change due to a Non-conductive Particle

passes through the orifice. The position of the particle is labeled with time ¢, £2,....
Under the following assumptions:

1. Inclusions are spherical

2. Inclusions are non-conductive

3. The orifice is cylindrical with diameter D and length L(>> D)
4, Only one inclusion passes through the orifice at a given time
5. The current density within the ESZ is constant

The voltage change AV is related to the volume of the particle by Equation 1.1
[DeBlois and Bean 70]. This equation is used as a basic relation to predict the size of
particle from the voltage change AV. A detailed discussion of the ESZ principle can be
found in [Doutre 84].

_ydod
AV =155 f @/D) (1.1)

where

CHAPTER 1: INTRODUCTION 4

1
1-0.8(d/D)?

Sf@/m) = (1.2)

1.2.2. LiMCA Sensor and Signal

The LiMCA sensor is designed to have an ESZ of a certain shape and to catch
and monitor the voltage change due to a particle passing through the ESZ. The design
of the probe and the materials used to construct it depend on the metal or alloy to be
evaluated and analyzed.

Figure 1.2 shows a typical LIMCA sensor for use in molten aluminum and its
alloys. It consists of an electrically-insulated tube with a small orifice at the side wall
near the bottom and two electrodes, one inside, the other outside the tube facing the
orifice. The tube is made of Kimax glass, and the electrodes are made of steel. A
smoothly-curved orifice is desirable for a stable metal flow through the orifice. This is
essential for stable signal. A glass-blowing technique is applied to make the orifice. A

insulating vessel]\t/mnsient

Figure 1.2 LiMCA Sensor

CHAPTER 1: INTRODUCTION]

cross-section view of a real LIMCA orifice is shown in Figure 1.3. Detailed design
parameters can be found both in [Doutre 84] and [Dallaire 90].

In practice, the shape of the orifice clearly violates assumption 3 (cylindrical
orifice assumption) that must hold for Equation 1.1 to be true, Furthermore, in real
processes, the shape of particles may not be spherical. Assumption 1 (spherical particle
assumption) may also be violated, The work of [Carayannis et al, 92] showed that the
cylindrical assumption can be relaxed in that the significant sensitive region of the ESZ
of the real orifice is much longer than the size of the inclusions. Although the electric
current line distributions throughout the real orifice are quite different from the case of
the ideal cylindrical orifice, the streamlines of electric current in the vicinity of the
neck of the real orifice are still parallel. Thus it is concluded that the peak values of the
resistive pulses (or equivalently voltage pulses) generated from a real orifice and an
ideal cylindrical one are equal.

800

tance (Km)

-200

Radical dis

-400

-660

-800!
-800 -600 -400 -200 0 200 400 600 800
Longitudinal distance (lm)

Figure 1.3 A Close-up Longitudinal Cross-section View of a Real LiMCA
Orifice

As for the spherical particle assumption, the theoretical modeled resistive pulses
of two equal-volume particles of different shapes are shown in Figure 1.4 [Carayannis
etal, 92]. The peaks of the two cases are quite different while the areas below the two

CHAPTER 1: INTRODUCTION 6

curves are equal. From this modeling work, one can conclude that the transient
generated by a cylindrical inclusion cannot be easily distinguished from that generated
by a smaller spherical inclusion, detected and described only by its magnitude.

2.5
Q; 42m diameter sphere
= 2 F
)
&
S
S L5
§ | 108m dia. 50 long cylinder
E1}
b
o !
N
Y 0.5
3 0.5

0 2 2 2 I
-1000 -500 0 500 1000
Position along the ESZ (um)

Figure 1.4 Resistive Pulse of Two Equal Volume Inclusions

However, the encouraging fact from this preliminary research is that the shapes
of the resistive curves are shown, under certain conditions, to be sensitive to the shapes
of the inclusions. The shape information, if extracted, could be used to correct the
particle size error due to irregular shape and to identify different types of inclusions.
To decode the shape information, further theoretical and experimental studies have to
be conducted for a better understanding of the ESZ phenomena. To facilitate the
researches, a working platform which can describe the shape of the transient is
required. Developing such a platform is the object of this work. In the subsequent
sections, the first generation LIMCA system is introduced, its limitations are discussed,
and the direction that we take to upgrade it is also presented.

CHAPTER i: INTRODUCTION 7
1.2.3. LiMCA System and Signal Processing

The architecture of the first generation LIMCA system, which was designed in
the early 80's, is schematically shown in Figure 1.5. The system consists of four parts:
a sensor (Section 1.2.2), a power supply system, a pressure and vacuum system and an
analog signal processing system.

A battery is used as a power supply and provides the required constant current.
A vacuum cylinder connected to a vacuum pump, and a cylinder containing argon gas
under pressure, are used to build the vacuum/pressure system. The signal processing
system has two parts, a signal conditioning part and an analog signal processing part.
The magnitudes of the voltage transients that the system must detect are in the micro-

volt (uV) range and are superimposed on a DC offset which, for a Kimax probe with
300 um orifice used in molten aluminum, is about 0.1 volts. This DC component

corresponds to the constant voltage drop across the orifice when no inclusion is present.
The signal conditioning stage eliminates this DC offset, filters out high frequency
noise, performs bandwidth reduction, and amplifies the signal to milivolt level for
further processing. To increase the sensitivity to small pulses, the signal is also passed
through a logarithmic amplifier.

Further processing is carried out by an analog signal processing system, built

Power Supply

Signal Conditloning

Band Pass Filter
%“‘ s
\ Amplifier

)
Logimplmer
+
%‘ Pulse Sampler
2
&

Multi-Channel
Analyzer

3

Host
Computer

Figure 1.5 Schematic of the First Generation LIMCA System

Analog Signal

count

voltage

melt

CEAPTER 1: INTRODUCTION 8

from commercially available units. Here, a Pulse Sampler (model TN-1246, from
Tracor Nortern) is used to detect and measure the height of the transients and feed their
magnitudes to a Multi-Channel Analyzer (model TN-7200, also from Tracor Nortern).
The latter has two modes of operation, Pulse Height Analysis (PHA) mode and Multi-
Channel Scan (MCS) mode, generating a size or a time distribution of the transients
(Figure 1.6).

In the PHA mode, the detected transients are classified according to their
magnitudes. Using Equation 1.1, this voltage distribution is converted to an inclusion
size distribution, which can then be used to calculate measures directly linked to metal
cleanliness, such as the number of inclusions per kilogram of metal, the number of
inclusions of certain size ranges per kilogram of metal, the volume ratio of inclusions
to metal, etc. Among them, one parameter in particular N2p is widely used in
aluminum industry. It is define as the number of inclusions whose diameter is greater
than 20 um per unit mass of liquid metal. Nzg is the main output parameter of the
industrial LIMCA system. It is obtained assuming that all the detected transients are
related to particles and that there is a constant rate of fluid flow through the orifice
{Dallaire 90]. |

In the second mode of operation, the Multi-Channel Analyzer counts the
transients that are detected within a certain time increment, treating equally the

(=%

g

<
voltage

time

count
voltage

peak height time
< ﬂ MCS ﬂ,

L] > b
particle size time increment

Figure 1.6 LiMCA Data Analysis

CHAPTER 1: INTRODUCTION 9
transients with different heights. This mode is known as Multi-Channe] Scan, or MCS
for short. MCS gives the time distribution of inclusions at the location of the LIMCA
sensor. Such information becomes more and more interesting to metallurgists for the
study and control of several metaliurgical processes, such as, for example, the
chlorination and the alloying process of aluminum. These data analysis procedures are
illustrated in Figure 1.6.

The Multi-Channel Analyzer has an integrated display where these distributions
are shown. It is also connected to an IBM-PC through an RS-232 port, and data can be
downloaded for future reference and analysis.

1.3. Classes of Real LIMCA Voltage Transients

The reliability of the results from PHA and MCS depends on the accurate peak
counts and amplitude measurements of the LiMCA transients. In the LiMCA
operations, several types of transients with different characteristics have been observed
[Dallaire 90]. They are generated due to different ESZ disturbing factors, and they are
not necessarily all caused by inclusions passing through the ESZ. It is obvious that
counting and measuring all transients without analysis, introduces errors. Therefore,
the types of transients that are caused by inclusions must be first identified and then
differentiated from the other types.

In this section, some of the results from our ESZ modeling work will be
presented and then the different types of transients that are observed using the LIMCA
system will be examined and compared.

250
Original signal

200
i High pass filtered signal

voltage (mV)
" g by
2 8 B

|
|

time (ms)

Figure 1.7 Mathematically Modeled LiIMCA Transient

CHAPTER 1: INTRODUCTION 10
1.3.1. Modeling of Real Transient

As mentioned earlier, the first generation LIMCA system uses the relationship
developed by [DeBlois and Bean 70] (Equation 1.1) to convert the height of the
detected transient to the size of the particle that caused it. We also mentioned that this
relationship is based on a number of assumptions. In an effort to determine the
accuracy of the results generated by the system, We have investigated the sensitivity of
the shape and magnitude of the LIMCA transients to these assumptions [Carayannis et
al. 92]. In this theoretical study, the behaviour of the ESZ in the presence of a non-
conductive particle is mathematically modeled.

Figure 1.7 shows such a modeled transient. The dashed line is the modeled
transient generated by the temporary change in the resistance of the ESZ as a spherical,
non-conductive particle passes through the orifice. The melt flow is assumed to be
laminar and the flow rate constant. This is a reasonable assumption and gives rise to a
changing velocity profile across the orifice. Recall that the first signal processing stage
is a high pass filter that eliminates the DC component of the signal. The solid line in
Figure 1.7, shows the effects of this filter with a cutoff frequency of 1 KHz, These
include an undershoot following the falling edge of the peak and a magnitude
attenuation, which is a function of its frequency components and is usually less then
10% of the magnitude of the peak. The most common observed peaks in typical
LiMCA applications are of this type.

1.3.2. Real Transients

voltag,
b
8
¥

0 05 1 15 2 25 3 35 4
time (ms)

Figure 1.8 A typical Normal Pulse (NP)

CHAPTER 1: INTRODUCTION

il

1600

800

=)
<
)

voltage (mV)
T
D
=

200

Figure 1.9 A typical Baseline Jump (BJ)

0.5

L5 2 2.5

time (ms)

Figure 1.8 shows a transient measured in liquid Aluminum. One can see that
the measured transient has similar characteristics with the modeled one, shown in
Figure 1.7. We call such a signal a Normal Pulse (NP), and argue that it was generated
due to the passage of an inclusion through the ESZ,

However, other types of transients having different characteristics than normal
pulses, have been encountered in aluminum tests, although not as often, under typical
operating conditions [Dallaire 90]. Such transients are shown in Figure 1.9 and Figure

160

0

voltage (mV)

-300

=500

Figure 1.10

-100
-200

-400

3

time (ms)

A typical Negative Baseline Jump (NBJ)

10

CHAPTER 1: INTRODUCTION 12

600
500
wb)

S 8
S S
L I |

voltage (mv)

00 s 1 15 2 25 3 35 4

time (ms)

Figure 1.11 A Multiple Pulse (MP)

1.10 and are called Baseline Jump (BJ) and Negative Baseline Jump (NBJ)
respectively. Their characteristics include a stegp starting edge and an exponential
trailing edge, restoring the baseline. The width (i.e. the time duration) of a BJ or a
NB] is usually several times larger than that of an NP having the same magnitude.

The most prominent physical explanation for the appearance of such peaks, is
that they represent the response of the high pass filter to step changes in the resistance
of the ESZ, Several physical phenomena at the ESZ can result in such a step change in
resistance: partial blocking or unblocking of the orifice, expansion or shrinkage of the
orifice. Furthermore, a long cylindrical inclusion, passing through the orifice in its
longitudinal direction, would also give rise to this type of transient.

In rare occasions, when more than one particle pass though the orifice at the
same time, transients having more than one peak are detected (Figure 1.11). Here two
inclusions were present in the ESZ at the same time. Such a signal is called Multiple
Pulse (MP).

In addition to the signal types mentioned above, two more have been identified.
They are known as the Baseline Fluctuation (BF) and the Negative Baseline Fluctuation
(NBF). The actual time domain shapes of these two types of signals vary, however
their starting slope is quite flat. The presence of such transients indicates oscillations of
the baseline (i.e. the magnitude of the DC component) of the signal, and therefore flags
improper system operation.

CHAPTER 1: INTRODUCTION 13

We presented here a summary of the major classes of LiMCA transients. For a
comprehensive analysis of the transient classes and related ESZ phenomena, see
[Dallaire 90].

1.4. Motivations, Methods and Context of This Work

In the first generation LIMCA system, all transients having magnitudes higher
than a given noise threshold are detected, their heights are measured and converted to
the sizes of the corresponding inclusion particles, However, from our previous
discussion it is obvious that only NP type transients correspond to particles. BJ type
transients may be related to particles but in most cases, they are indicative of other
ESZ phenomena, such as reduced metal flow, partial blockage, orifice size change, etc.
It is therefore desirable to develop a LIMCA system that can discriminate and classify
the different types of transients. For this purpose, the upgrade of the first generation
LiMCA that different types of transients can be differentiated and processed differently
became our first objective. The new LIMCA system must also facilitate the research
efforts directed to explore the limits of the ESZ technique. It must be designed to
provide extensive information, such as the shape and type of the inclusion, the
condition of the orifice and the signal etc.

We believe that in order to extract both shape and size information of inclusions
from a LiIMCA signal, a better understanding of the different ESZ phenomena is
required. Mathematical modeling, combined with well controlled experiments, can help
achieve this. Knowledge of the metallurgical process must be combined with the
information obtained from LiMCA in order to identify the possible inclusions (i.e.
differentiate expected inclusion particles based on their shape or state, i.e. gaseous,
solid, liquid). '

The first generation LIMCA system (Figure 1.5) uses general purpose analog
signal processing equipment (e.g. Pulse Sampler, Muiti-Channel Analyzer,
Oscilloscope). It detects only positive peaks and uses only one peak description
parameter -- the peak height. This hardware architecture does not provide the flexibility
required to achieve the objective set above. As a result we considered the design of a
software-based LIMCA system using DSP technology.

To ensure compatibility and also facilitate the validation of the new system, our
first stage of development is to use DSP technology to develop a new generation,
software-based, LIMCA system, functionally equivalent to the first generation one. The
second stage is to develop the required code so that the new system can automaticaily

CHAPTER 1: INTRODUCTION 14

identify the different types of transients. Our final goal is to integrate into the system a
higher level of reasoning, that can process the classified transients and, using
knowledge about the metallurgical process, categorize each inclusion into one of a
number of expected classes (e.g. based on composition, shape, state, etc.), and to
develop a sensor that can be used, not only for quality, but also for process control.

To accomplish our objective, the development of the DSP-based LIMCA can be
divided into the following five signal processing tasks. The first task involves sampling
the signal and detecting a positive or a negative peak. This is called the peak sampling
process. The second task generates a description of the peak using a number of critical
parameters. This is the peak description process. These parameters are chosen to reflect
the characteristics of the different types of transients and the shapes of the inclusions.
The peak classification process is the third task. Here each peak is classified into one
of the possible types, on the basis of the parameters used to describe it. In the past,
[Thibault et al. 89] investigated the off-line classification of LIMCA signals in the
frequency and auto-correlation domains. Although good classification results were
achieved, real-time constraints forced us to consider time domain -classification
algorithms. It was shown that a set of carefully selected measures can enable the design
of a fast time-domain classification algorithm [Carayannis and Shi 93].

The forth task extracts the size, shape and volume information of inclusion
particles from the peaks classified as NPs in the previous stages. The last task is the
development of an intelligent system, which uses the information extracted from the

FROM LiMCA SIGNAL TO PROCESS PARAMETERS

process
parameters

LiMc4 Signal
i

p——
I

L

Signal Analysis :
fr—

Knowledge of
Metallurgical process

Figure 1.12 Intelligent Signal Analysis

CHAPTER 1: INTRODUCTION 15

NPs and the frequency of occurrence of other types of transients together with the
knowledge about the specific metallurgical processes involved and makes intelligent
suggestions to the process operator. Figure 1.12 schematically shows this process,
which is conceptually divided into the signal analysis stage, that generates descriptions
of the detected transients and labels them into associated types, and the signal
perception stage, which identifies the detected particles. The signal analysis stage
involves the first three tasks mentioned above and falls into the scope of this thesis. The
signal perception stage involves the two last tasks and is beyond the scope of this
thesis.

In the subsequent chapters, the hardware and the software of the DSP-based
LiMCA will be discussed. Finally conclusions of this work and discussions of future
developments will be given,

CHAPTER 2: DSP-BASED LiMCA SYSTEM 16

2. DSP-BASED LiMCA SYSTEM

In this chapter, a brief introduction to DSP and a comparison between the
digital and the analog signal processing approaches are presented followed by
discussions on the particular DSP application for the LIMCA system. An overview of
the DSP-based LiMCA is then presented. Finally the hardware environment of the
system is presented.

2.1. Digital versus Analog Signal Processing

Before computer technology produced fast and cheap specialized processors,
signal processing could only be done by analog circuits. Now more and more
applications are implemented digitally, Signal processing generally involves the
transformation of signals from one domain to another in real-time (Figure 2.1). The
purposes of the transformation are to eliminate some unwanted components of the
signal (e.g. noise) and to highlight some interesting characteristics that are buried in
one domain and can be revealed in other domains.

The differences between analog (Figure 2.1 (a)) and digital signal processing
(Figure 2.1 (b)) lie in that the former processes signal transformation electronically
through an analog electric circuit while the latter carries out the transformation
mathematically through a programmable digital circuit (DSP). In the analog signal
processing approach, the original signal is processed by dedicated circuits. Then the
output of the analog signal process module is either displayed using analog gauges,
plotted on paper by an X-Y plotter or more often, nowadays, displayed digitally on a
screen and saved on magnetic media. In the case presented in Figure 2.1 (a) the result
of signal processing is digitized and fed into a computer for display and storage. This
methodology was used in the design of the first generation LIMCA system shown in
Figure 1.5, in which commercial analog devices (i.e. Pulse Sampler, Multi-Channel
Analyzer) were used.

In the DSP approach in Figure 2.1 (b) the original signal is first digitized by
an analog to digital converter (ADC). Then the signal processing tasks are carried out
in a DSP bLoard controlled by software. The software is developed and updated in
accord with the signal processing tasks. The DSP board is controlled and monitored by

CHAPTER 2: DSP-BASED LiMCA SYSTEM 17

signal in first domain signal in second domain
g ' il

Analog Signal e m—
Processing

Anal

Input -
(@)
signal in first domain

Digital Signal
Processi

Figure 2.1 Two Signal Processing Approaches:
(a) Analog Signal Processing, (b) Digital Signal Processing

a host computer. The results of the digital signal processing are directly uploaded to
the host computer through an efficient bi-directional communication channel.

The major advantages of DSP over analog signal processing lie in its flexibility
and cost-effectiveness. Digital signal processing is software-based. Thus, it is much
easier to be re-configured to accommodate new conditions and parameters.
Complicated and newly-developed algorithms can be integrated into the DSP software
to improve the overall performance of the signal processing. Such on-going
improvements are hard to evaluate and implement with a dedicated analog signal
processing circuit. On the contrary, new tasks can be easily added on by modifying the
current code and writing more code in the DSP approach. Furthermore, due to its
generality, a DSP module is cheaper than an analog signal processing module
performing the same tasks.

However, the major concern in the design of a DSP applications is
computational power of the selected DSP board, evaluated by computational speed
(MIPS, MFLOPS), dynamic range and width of data and address buses. The

CHAPTER 2: DSP-BASED LiMCA SYSTEM 18

computational power has always been the limiting factor of the DSP applications with
a given hardware. If the speed of calculation is not enough, it will introduce an
unacceptable delay for real-time processing. The dynamic range of data buses is
critical to the accuracy of the signal processing, and the dynamic range of address
buses limits the complexity of the signal processing tasks. In recent years, tremendous
efforts have been put into increasing computational power of digital signal processors.
As a resuit, a wide collection of DSP products of different grades are available.

The complexity of the proposed signal processing tasks for the new generation
LiMCA clearly suggests that the use of DSP technology is appropriate. The signal
processing can be briefly summarize as follows: (see Section 1.4 for details)

» sample and measure LIMCA peaks by several parameters;

» classify the peaks based on their multi-parameter descriptions.
The real-time peak classification algorithm was not available and is one of the major
part of this research. The multi-parameter peak description and the uncertainty of the
method used for peak classification contribute to the complexity of the signal
processing. Therefore, it is impractical to design and implement an analog signal
processing system for the LIMCA signal analysis (including peak sampling, peak
description and peak classification) (Figure 1.12). Implementing a DSP-based LiMCA
system provides a more powerful, flexible and cost-effective solution.

2.2, System Overview

The structure of the DSP-based LiMCA system is illustrated in Figure 2.2,
Comparing it to the first generation LIMCA system shown in Figure 1.5, one can see
that the analog components (Log Amplifier, Pulse Sampler, Multi-Channel Analyzer)
are replaced by a Digital Signal Processor. This processor is plugged into the bus of a
host computer, which is used to interface down to the DSP processor and up to the
operator through a newly-developed Graphic User Interface (GUI). The DSP
parameters and hardware environment of the system will be discussed in detail in
subsequent sections of this chapter. The initialization of the system and the software
developed for the system will be discussed in Chapter 3 and 4.

2.3. DSP Specifications for LIMCA Application

In order to take full advantage of the DSP technology at minimum cost, the
hardware specifications of the selected DSP system should satisfy the requirements of
the specific application. Specifically, such specifications as speed, bus dynamic range,

CHAPTER 2: DSP-BASED LiMCA SYSTEM 19

Power Supply

v,
—

S\'_ %

Signal Conditioning

JAN

IE

&
=
t
L4
VE Band Pass\(ltcr
\
-y
o> Amplifier
E :
| — t
= Digital Signal
- Processor
\JESZ 8
melt voitage Host
Sensor

count

Computer

Figure 2.2 DSP-based LiMCA System

ADC sampling frequency and memory size are dependent on the characteristics of the
signal to be processed and the required signal processing tasks. Therefore, some
preliminary analyses of the LiMCA signal and processing have to be done to set
adequate specifications of the DSP processor to be used for LIMCA.

2.3.1. Analyses of LIMCA Signal

Among different types of LiIMCA peaks (Section 1.3), normal pulses (NP)
directly relate to inclusions and construct the main stream of the signal. Therefore, the
characteristics of normal pulses were taken as the basic feature of the LIMCA signal.
The shape of an NP is shown in Figure 1,7 and Figure 1.8. In the time domain, the
detectable height of an NP ranges from 10 uV to 640 uV, in the case of molten
aluminum. Considering a noise level of 10 uV under good operating conditions, the
Signal-to-Noise ratio is about 36 dB. The duration (width) of an NP is around 0.5 ms.
Normal pulses have the smallest width among all types of LIMCA peaks. Thus, we
define the busiest (worst case) operating condition for the system when the LiMCA
signal is purely composed of NPs and that they are “chained” together. Under this

CHAPTER 2: DSP-BASED LiMCA SYSTEM 20

0
2 I ‘. NP before HPF
3 -20 s e
3
S
= 40r
3
N
S 60
'g L NP after HPF with undershoot
> 80
| NP after HPF without undershoot
-100 i] " 1 N] 1 "
0 10 20 30 40 50

Frequency (kHg)
Figure 2.3 Frequency Spectra of the Modeled NP in Figure 1.7

operating condition, the occurrence rate of NPs is approximately 2000 per second.
Consequently, in the worst case, 2000 peaks per second need to be processed in real-
time. This is clearly an extreme situation which, in real operation, can be observed
only for some very short time periods. However this worst case scenario is used as
one of the criteria for the design and implementation of the DSP-based LiMCA
system.

In the frequency domain, the spectra of the modeled NP (Figure 1.7) are
illustrated in Figure 2.3. The low frequency part of Figure 2.3 is shown in Figure
24,

The frequency spectrum labeled with NP before HPF is the 1024 point radix-2
FFT of the modeled normal pulse taken before the high pass filter. The spectra labeled
with NP gfter HPF with undershoot and NP gfter HPF without undershoot are the
FFT of the modeled pulse taken after the high pass filter. However, the way of
chopping the pulse in time domain is different in the two cases. The former is chopped
at the end of the undershoot when its voltage level restores to zero, while the latter is
chopped before its undershoot, when the voltage level reaches zero after its positive
peak. The chopping of the positive part of the high pass filtered signal resembles the
peak sampling process that we used later to sample both positive and negative peaks.
In all three cases, the time domain vectors are expanded to 1024 points by padding the

CHAPTER 2: DSP-BASED LIMCA SYSTEM 21

0
a8 NP before HPF
§-10 o
3
5 -20
E
<
N -30
E M
|
2 40

NP after HPF without undershoot v
-50] } []] |]
0 2 4 6 8 10 12 14
Frequency (kHg)
Figure 2.4 Frequency Spectra of the Modeled NP in Figure 2.3 (low
frequency part)

chopped signals with trailing zeros for FFT. The spectra are normalized before
plotting and their amplitudes are measured in decibel (dB).

The frequency spectra of the signal before and after the high pass filter with
undershoot are quite close, except for the frequency components below 1 KHz (1 KHz
is the cutoff frequency of the high pass filter). While the spectrum of the high pass
filtered signal without undershoot is slightly different than those of the other two
cases, its shape and tendency are still alike in lower frequency region, up to 25 KHz.
The width of the mainlobes of the spectra, in all the three cases, is approximately 14
KHz. Therefore, it is fairly accurate to conclude that the major frequency components
of an NP are in the range from 0 to 14 KHz. Other types of LIMCA peaks have
narrower frequency spectra than those of NPs [Thibault et al. 89]. Therefore, the
bandwidth for NPs automatically satisfies the bandwidth of the other LIMCA signals.

2.3.2, Key DSP Specifications for LIMCA Signal Processing
Based on the analysis of the LIMCA signal presented in the previous section
and on the signal processing tasks discussed in Section 1.2.3 and in Section 1.4, some
key DSP parameters can be decided.

CHAPTER 2: DSP-BASED LIMCA SYSTEM 22
2,3.2.1. Resolution of Analog-to-Digital Conversion (ADC)

The number of bits used to represent an analog value after the analog-to-digital
conversion determines the resolution of the digital representation of the analog signal.
Presently, 16-bit analog-to-digital converters are very common and suitable for most
applications requiring high precision.

Assuming that the range of the analog signal maps the full range of the ADC
input, the absolute quantization error is less or equal to X,y / 2B, where Xyp is the full
analog input range and B is the number of bits of the analog-to-digital converter
[Oppenheim and Schafer, 89). The relative quantization error is thus within 1/2B, For
a 16-bit ADC, the maximum relative quantization error is 0.00153%. Neglecting other
distortions during ADC, the quantization error gives rise to a Signal-to-Noise ratio of
96 dB, which is much higher than that of the LIMCA signal of 36 dB (Section 2.3.1).

2.3.2.2, Sampling Frequency
The ADC sampling frequency is determined from the bandwidth of the analog
signal. In the case of the modeled NP, the frequency range is from 0 to 14 KHz
(Figure 2.4). According the Nyquist's Sampling Theorem [Oppenheim and Schafer,
89], the sampling frequency must be equal to or higher than two times the maximum
frequency of the analog signal, to avoid aliasing of the high frequencies into the low
frequencies, causing distortions. Since the NPs have the widest bandwidth among all

or
5 -10 | SR Normal Pulse
s ' .)
g0 § LS\, Multile Pulse
%-30 - "
‘]
'§ 40\
E-50f
§ . ..; "'n\...'-...\...‘.‘
-60[
-70 . : : -
10 20 30 40 50
Frequency (kH7)

~Figure 2.5 Frequency Spectra of a Real NP and an MP

CHAPTER 2: DSP-BASED LiMCA SYSTEM 23

0

Baseline Jump

s
g
>

T

Negative Baseline Jump

Normalized Amplitude (dB)
N &
> S

S
S
T

0 10 20 30 40 50

Frequency (kH7)
Figure 2.6 Frequency Spectra of a BJ and an NBJ

LiMCA pulses, their maximum frequency is used to calculate the sampling frequency.
Considering the Nyquist's Sampling Theorem, the minimum sampling frequency must
be equal to or higher than 28 KHz.

Figure 2.5 and Figure 2.6 show the frequency spectra of real LiMCA
transients sampled at 50 KHz. In Figure 2.5, the frequency spectra were obtained
using a radix-2 FFT of the NP and the MPs shown in Figure 1.8 and Figure 1.11
respectively. The spectra in Figure 2.6 were obtained from the BJ and NBJ signals
shown in Figure 1.8 and Figure 1,10 respectively. The frequency spectrum of the real
NP has the same pattern as those of the mathematical modeled one shown in Figure
1.7 (time domain) and Figure 2.3 (frequency domain). The frequency spectrum of the
MPs (Figure 1.11 in the time domain and Figure 2.5 in the frequency domain) have a
‘““tooth’’ pattern under the envelope of the frequency curve of the NP. Periodic
frequency attenuations occur on the frequency spectrum of the MPs as compared to
that of the NP.

The frequency spectra of the B and the NBJ are very similar but are evidently
different from those of the NP and MPs. Considering the frequency components with
normalized amplitudes larger than -30 dB, NPs and MPs have bandwidths about 18
KHz (Figure 2.5), which are wider than those of BJs. The minimum sampling

CHAPTER 2. DSP-BASED LiMCA SYSTEM 24

e

frequency to avoid aliasing for normal and multiple pulses must be equal to or higher
than 36 KHz (two times their bandwidth according to the Nyquist's Sampling
Theorem). To guarantee the accuracy of the signal processing in case the operational
conditions change, for example a higher flow rate through the ESZ generates narrower
peaks that have wider bandwidth and require higher sampling frequency, some over-
sampling is desirable. As a result, the sampling frequency was set to 50 KHz.

2.3.2.3. Input Channels

Some LiIMCA applications require real-time measurements at two locations,
and the results need to be compared. One example is the evaluation of the filtration of
liquid aluminum using a ceramic filter. In this application, two LiMCA sensors are
used. One is positioned upstream from the filter and the other downstream from the
filter [Tian et al 92]. The results from the two sensors are being compared to calculate
the filtration efficiency. To handle this type of applications, the upgraded LiMCA
signal processing system must be designed with two parallel processing units, which
must operate simultaneously, Therefore, the DSP hardware unit must have two analog

input channels, and the processor must be able to process the signals from the two
channels in parailel.

2.3.2.4. Computational speed

The speed of a DSP depends upon several characteristics such as clock
frequency, instruction set, the length of address and data bus, etc. The required
computational speed is considered according to the overall real-time signal processing
task and the parameters discussed before. As discussed in Section 1.4, the overall task
for LIMCA signal processing includes peak sampling, peak description and peak
classification processes. Moreover, referring to Figure 2.1, one can notice that a
generic process is always needed for digital signal processing. It is the analog-to-
digital conversion (ADC) process. Considering the sampling frequency of 50 KHz,
there are only 20 ps available for all the LIMCA DSP processes between two data
samples. Therefore, in order to process LIMCA signals in real-time, the DSP board
must be fast enough to guarantee that the processing can be completed within this time
constraint.

The clock frequency of the DSP processor can be calculated from the
maximum number of clock cycles needed for the execution of the real-time task and
the required ADC sampling frequency. However, it is impossible to know the clock

CHAPTER 2: DSP-BASED LiMCA SYSTEM 25

cycles needed for the execution of each process before the actual code is written.
Nonetheless, a qualitative estimation is still helpful. Assuming that two clock cycles
are needed for each instruction, the analysis starts with the number of instructions
required. The following discussions are the analysis of each process involived, and the
total number of instructions needed for our application are summed up through all the
processes.

The ADC process can be implemented as an interrupt service routine (ISR)
triggered by a programmable clock divider at the required sampling frequency. Here,
exact timing of the complete DSP application is not necessary. The time difference
between the ADC process and other signal processing processes can be handled using a
circular buffer. This design is ideal for complex DSP applications for which manually
timing the ADC process is impossible, as required for some types of DSP systems that
ADC process has to be coded mixed with other processes as a foreground process.

For the interrupt-driven ADC process, the digitized data are available in a
buffer (ADC buffer) when the interrupt occurs. The process moves the data from the
ADC buffer to a circular buffer and monitors the buffer status. The instructions that
implement the process are:

o 1 jump to subroutine instruction to enter the ADC ISR. Program counter (PC) and
system status register (SR) are pushed into the system stack;

o 1 move instruction to move the digitized data from the ADC buffer to the circular
buffer;

e 1 return instruction to exit this routine. PC and SR are popped from the system
stack;

To manage the circular buffer, the following instructions are needed:

» 1 move instruction to fetch the circular buffer write pointer;

1 increment instruction to increment the pointer one position forward;

1 move instruction to save the pointer back to memory;

1 move instruction to fetch the circular buffer read pointer;

1 comparison instruction to compare the write pointer with the read pointer;

1 conditional jump instruction following the pointer comparison. The result of the

comparison indicates the status of the circular buffer. If it is not overflow, the

process returns. Otherwise, it needs extra instructions to flag the buffer overflow

error. This is a fatal error that terminates the real-time process. When this occurs,

the timing looses its importance, Thus, these extra instructions under this condition

are not considered in the real-time timing.

CHAPTER 2: DSP-BASED LiMCA SYSTEM 26

e

Therefore 6 instructions are needed for managing the circular buffer. For some
processors, two registers are needed for comparison instructions, and these have to be
saved in the system stack before executing the ISR. 4 push-pop instructions are needed

for this purpose. In total, 13 instructions are required for each ADC channel, about 26
instructions for two ADC channels. Note that for many DSP processors with parallel
architecture, parallel data move are allowed. For these, the total number of
instructions for two channels can be decreased dramatically. However for a rough
estimation, the above analysis is sufficient.

In the peak sampling process, the same amount of data have to be moved and
the circular buffer has to be maintained as for ADC process. In addition, some
comparison and conditional jump instructions are needed to compare the data fetched
from the circular buffer with certain thresholds to find the start or end of a peak.
Therefore, for the data movements and buffer maintenance, the same 26 instructions
are required. Estimating another 26 instructions for the comparisons, total of 52
instructions are calculated for this process. Therefore, a total of 78 instructions are
required for the ADC and peak sampling processes together. Note that, these
instructions are executed per ADC data sample, i.e., they are executed 50,000 times
per second with the sampling frequency set to 50 KHz, resulting in 3,900,000
instructions per second.

For the peak description and peak classification processes, due to the
complexity of the algorithms used, many more instructions are needed. As a
qualitative approximation, the code for the first two processes is estimated as 2% of
the total DSP software. This gives rise to about 4000 lines of instructions for the
overall DSP task, making it a medium size DSP application. Noie that the code
written for the peak description and peak classification processes is executed per
LiMCA peak rather than per ADC data sample as in the cases of ADC and peak
sampling processes. Considering the worst case operation (2000 peaks per second)
(Section 2.3.1), 7,844,000 instructions are to be executed in one second for the peak
description and peak classification processes. In total, 11,744,000 instructions needed
to be executed in one second for the overall LIMCA DSP task.

In conclusion, based on the above calculation, the DSP processor must be
faster than 12 MIPS (Million Instructions Per Second). Normally two clock cycles are
needed for each instruction. Therefore, the clock frequency of the processor to be
selected for the LIMCA DSP task must exceed 24 MHz,

CHAPTER 2: DSP-BASED LiMCA SYSTEM 27
2.3.2.5. Summary
In summary, the basic requirement for the DSP board used for LIMCA signal
processing includes two input ADC channels with 16-bit resolution, up to 50 KHz
ADC sampling frequency, and a DSP with a system clock faster than 24 MHz. As for
further enhancement, a DSP processor with parallel architecture is desirable.

2.4. Choice of Hardware Environment

Considering the basic specifications discussed in the previous sections, a DSP-
56 co-processor board for IBM PC type computers from Ariel corporation, was
selected as the real-time DSP engine. A 50 MHz 80486-based computer is used as the
host. The signal processing hardware part of the DSP-LiMCA is schematically shown
in Figure 2.7. The specifications of the DSP-56 board are summarized in Appendix A
[Ariel 89].

The DSP-56 is based on the Motorola DSP56001 CPU running at 27 MHz
with an instruction cycle time equal to 74.1 nanoseconds. The memory of the
processor is arranged in three 64Kx24-bit sections, each with separate address and data

Digital Recorder Hard Drive

ADC SCSI gy
| e | | — |
3 !)
=]
eE J_,
Conditioning a Co-processor = f
TIIIHOmmT
to Host Bus

%

IBM-PC 486
Host Computer

3

<ﬂmands & data
r—/
parallel’port interrupt

Host bus

Figure 2.7 Digital Signal Processing Hardware

CHAPTER 2: DSP-BASED LiMCA SYSTEM 28

buses. One section is used for program memory and the other two for data (X and Y
data memory). The DSP-56 board has two 16-bit ADC and two 16-bit DAC channels,
The sampling rate of the ADC can be selected from 16 choices ranging from 2 KHz to
100 KBz in the so-called 16-bit stereo mode. In this mode, signals from two LiIMCA
sensors can be acquired and processed concurrently. A high speed mono ADC mode
with sampling rates up to 400 KHz is also available. An on-board SCSI (Small
Computer Standard Interface) interface will be used in the future to save the acquired
signal on a hard disk for off-line reference. The DSP-56 also has one input/output bit
which we used to interrupt the host computer (using the parallel port interrupt)
whenever the real-time DSP process requires attention. The analog signal from the
signal conditioning stage is connected to the ADC and to a digital tape recorder
(Model RD-101T, from TEAC).

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 29

3. SYSTEM CONFIGURATION AND INITIALIZATION

Due to the sophisticated architecture and the required flexibility in the use of the
DSP-56 board, its configuration and initialization are not a simple automatic process.
Lengthy information and instructions are found scattering in different references [Ariel
89, Motorola 92, Motorola 89]. Therefore, the author found that it is helpful to re-
organize and combine information from these references to achieve correct LIMCA
operation. For adapting the DSP-56 to other applications, readers must refer to the
above mentioned references.

This chapter explains how we customize the DSP configuration settings and
parameters that best suit our application. The DSP initialization process and the
necessary host function prototypes used to control it are also described.

3.1. The Configuration of the DSP Board for LiMCA

The configuration of the DSP-56 board includes non-programmable

']
Address ‘ |
Decoding & External DSPnet
g RAM Port
<
A DATA BUS
» = | [Pertd
3 § | == D .
3 ssilta= ssapcis apc | || sesi]
S E et S ser PCMS56 DAC Port
3 : 01" I :l 2X Analog IN
|Port B Header
Host Port [I
i | . 2X Analog OUT
Buffer o Digital
e To /From Host PC vo
uni-directional
bi-directional

Figure 3.1 DSP-56 Block Diagram [Ariel 89]

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 30

HOST CONTROL
rd e N
2
HOSTDATA § E 3 E E E
BUS 3 3
} | 1 L l
ADDRESS A0-AIS et)
DATA D0-D23 <a=itv PORT B ' ff\‘_g scl
7 == — = L
P§ - e—a SCLK
DS =-— <« QO je—e SCO
M b | s o
CONTROL R - © o M SS1
_yi—]| & DSP56001 2l ok
BRWT —» -— SRD
LE‘ BS — ST
-
SR
- N E ==gls

Figure 3.2 Functional Signal Groups of DSP56001 [Motorola 92]

configuration done by setting-up several headers and jumpers on the board, and
programmable configuration done by writing appropriate parameters into the dedicated
registers. The non-programmable configuration determines the host PC’s port addresses
for the DSP-56 board, the DSP’s memory size, the host PC’s DMA (Direct Memory
Access) channel, the analog output and the DAC (Digital to Analog Converter)
Reconstruction Filter. The programmable configuration sets up the communication
parameters of the Port A, Port B and Port C of the Motorola DSP56001 processor, as
well as the sampling frequency of the analog interface, the Auxiliary I/O port, the SCSI
port and the DSP net port of the DSP-56 board (Figure 3.1 and Figure 3.2).

In the subsequent sections, the non-programmable configuration will be
discussed briefly. The programmable configuration of Port A, Port B and Port C, the
sampling frequency of the Analog Interface and the Auxiliary I/O port will be
discussed in depth. The SCSI port and the DSP net Port will not be considered here,
since they are not currently used in our system.

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 31
3.1.1. Header and Jumper Settings of the DSP-56 Board

There are several headers and jumpers on the DSP-56 board providing different
specifications and usage of the board. Their locations are shown in Figure 3.3.

As mentioned earlier, there are five hardware set-ups that need to be configured
by setting these headers and jumpers, These are the host PC port addresses, DSP’s
memory size, the host PC’s DMA channel, the analog output and the DAC
Reconstruction Filter of the DSP board.

The DSP-56 board is designed as an I/O mapped peripheral that occupies eight
/0 port addresses of the host PC, set by means of the jumpers on Header 2. All data
transferred to and from the DSP-56 use these I/0 port.

The defauit settings of the jumpers on this header is shown in Figure 3.4. The
bits are read from the jumper as 1101000 considering the jumpered pairs of pins as 0
and the pairs without a jumper as 1. Adding three trailing zeros to the reading to make
it a 10-bit word as 1101000000. This setting corresponds the port addresses $340
through $347. Note that the three trailing zeroes to the reading from header 2 imply
that the different selections of the starting addresses of the I/O port are always in
multiples of eight. The left most pair of pins is not used and should be left open. At
present, the base address of the DSP-56 used for LIMCA is chosen at $340. This is one
of the parameters that the host-DSP interface software must know.

DDDD D[I | psenet || scst |
P1P2P3P4 P5P6 H1[s5eeaasy]
DSPnet ADDRESS
-'::! A Y-RAM X-RAM
[1sxlf (5] [6K]
JP9

P8 JP2] SERIAL /O

E| L B
Te6 = — H2
EI . E_l i /O ADDRESS

l [

Hn — Header JPn — Jumper Pn — Trimpot

Figure 3.3 DSP-56 Header and Jumper Locations

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION

LS
| 5]

I — jumper link instailed — jumper link not installed
jumpler bits implied bits
I I
bits: 9 8 7 6 5 4 3 2 1 0
Hnn | N trailing
H2 / Zeroes
am | A
readings: 1 1,0 1 0 0,0 0o 0 0
address l
in hex: 3 4 0

Figure 3.4 Default I/O Address Selection Settings

The memory configuration of the DSP-56 is done by jumpers 2, 8 and 9. The
Program memory, and the X and Y data memory can be set for 16K or 64K operation.
The jumper locations for the setting of the three memory banks are also shown in
Figure 3.3. Presently, the size of all three banks are 64K.

Other features of the DSP-56 such as Direct Memory Access (DMA), analog
output and the DAC reconstruction filter are not used and are disabled. Besides, the
analog input range can be adjusted by two trimpots labeled with ‘‘A and B gain™ and

located near the upper left corner of the board. They provide input gain adjustments
over a 17 dB range.

3.1.2, The Configuration of Port A of the DSP56001

As one can see from Figure 3.1, the Motorola DSP56001 processor accesses
the external memory through its communication port A. This port has 24 data lines, 16
address lines and 7 control lines (Figure 3.2). Through this port, the processor can
address three blocks of memory, namely program RAM, X and Y data RAM. The size
of each memory block, including the processor’s internal RAM, can be up to 64K 24-
bit words. The external bus timing is controlled by the Bus Control Register (BCR),
which is mapped into the X data RAM at X:$FFFE. To synchronize with slower
external RAM, zero to 15 wait states can be inserted when the processor accesses the
external memory. The number of wait states must be written into the corresponding

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 33

bits: 15 12 11 8 7 4 3]
BCR EXTERNAL EXTERNAL EXTERNAL EXTERNAL
X:SFFFE X MEMORY Y MEMORY P MEMORY 'O MEMORY

"

X:SFFFF
X:SFFFE BCR

P:SFFFF K

EXTERNAL &
PERIPHERALS

EXTERNAL |
Y DATA
MEMORY

P:$5200 Y:$200 N
INTERN INTERNAL
PROGRAM X:5100}— X ROM v:s100| Y ROM
MEMORY INTERNAL INTERNAL

P:$0 X:$0 X RAM Y:$50 Y RAM
PROGRAM X DATA Y DATA
MEMORY MEMORY MEMORY

SPACE SPACE SPACE

Figure 3.5 Bus Control Register and Memory Spaces

nibble of the BCR (Figure 3.5). One wait state is equal to 37 nano seconds for a 27
MHz processor, Note in Figure 3.5, that the ROM can be disabled and shadowed by
internal RAM,

Following a reset, the DSP56001 processor accesses each of the external
memory bank using 15 wait states by default. Since the DSP-56 board uses zero wait
static RAM for its external memory. The BCR has to be written with zeroes. The
syntax to set zero wait states is ‘‘MOVEP #0, X:$FFFE'’.

3.1.3. The Configuration of Port B (Host Interface) of the DSP56001

Port B is a dual-purpose 1/0 port that can be used as (a) 15 general-purpose pins
individually configurable as either input or output pins or as (b) an 8-bit bi-directional
host interface (HI) (Figure 3.2). For the LIMCA application, this port is configured as
a host interface. The selection of HI is done by writing 1 to the Port B Control Register
(PBC) at X:$FFE0. This is done by a ROM bootstrap program at booting stage
(Section 3.2.2).

The HI allows the communication between the host PC and the DSP-56
processor. The communication tasks such as the downloading of DSP programs and

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 34

READ/
READ/ A
<l 50 [wriTE | X:SFFES |WRITE
“"lcr~ 1 HeR [™
READ/ 2 READ HOST SIDE REGISTERS:
_) §1 {WRITE X:SFFE9 | ONLY
T OICVRI T 7T T > HSR ™ ICR: Interrupt Control Register

ly CVR: Command Vector Register
ISR: Interrupt Status Register
CONTROL IVR: Interrupt Yector Register

2

'

F
|§sl
o ~
1

N o

§ DSP SIDE REGISTERS:

ONLY ONLY HCR: Host Control Register

HSR: Host Status Register

24 ra X:SFFEB HTX: Host Transmit Data Register
7 HRX - HRX: Host Receive Data Register

)
LOGIC =]
- $3 |READ/ a RXH: Recelv
< ¢ Receive High Byte Register
“ IVR |WRITE = RXM: Reccive Middle Byte Register
« READ WRITE g RXL: Receiver Low Byte Register
< 8 ONLY ONLY
= - S ie
b RXH TXH: Transmit High Byte Reglster
B B 24, | X:SFFEB Q TXM: Transmit Middle Byte Register
- 56 | L] <] N :
;?: é RXM =~ HTX [o TXL: Transmit Low Bytc Register
&
- 87 Q
RXL
$5
TXH
$6

"X Y

Figure 3.6 Registers of the Host Interface

host control commands from the host PC to the DSP processor and the uploading of
real-time data from the DSP board to the host PC, are extensively using the HI during
the real-time processing. Therefore, efficient programming of the HI is one of the key
factors affecting the overall performance of the DSP-LIMCA System.

The HI is asynchronous and consists of two banks of registers -- one accessible
to the host PC and the other accessible to the DSP CPU (Figure 3.6, 3.7 and 3.8). The
registers on the host side occupy, in the present configuration, eight 8-bit port locations
from $340 through $347 (Section 3.1.1) while the registers at the DSP’s side are
mapped into X memory space occupying 3 memory locations, Note that the port
addresses of the registers on the host side, shown in Figure 3.8, are the offsets from
the base address $347. The HF0 and HF1 bits in the HSR on the DSP side and the ICR
on the host side are two general purpose flags for the host to flag the DSP, while the
HF2 and HF3 bits in the HCR on the DSP side and the ISR on the host side are similar
flags used by the DSP to flag the host PC. The HCP bit in the HSR on the DSP side
reflects the status of the HC bit in the CVR on the host side. Data are flowing through
the HRX or HTX on the DSP side and the RXH:RXM:RXL or TXH:TXM:TXL triple

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 35

i 0
HF3 | HF2 | HCIE| HTIE | HRIF HCR
X:SFFE8| 0 Y1 @ | ® | ® |READ/WRITE)
7 0
y DMA HF1 | HF0 | HCP | HTDE| HRDF HSR
XSFFES | "y | 9 | * | ;| @] | ® | @ | meaponLy
23 16 15 8 7 0
x:sFFEg| RECEIVE RECEIVE RECEIVE HRX
* __MTEL MIDDLE BYTE LOW BYTE (READ ONLY)
X:SFFEB TRANSMIT TRANSMIT TRANSMIT HTX
. HIGH BYTE MIDDLE BYTE LOW BYTE (WRITE ONLY)
BITS IN HCR: BITS IN HSR:
HRIF: Host Recelve Interrupt Enable HRDF: Host Recelve Data Full

HTIE: Host Transmit Interrupt Enable HTDE: Host Transmit Data Empty
HCIE: Host Command Interrupt Enable HCP: Host Command Pending
HF2: Host Flag 2 HF1: Host Flag 1

HF3: Host Flag 3 HF2: Host Flag 2

NOTE: The numbers in parenthesis arc resct values,

Figure 3.7 HI Registers on the DSP Side

registers on the host side when data transfers are taking place between the host and the
DSP-56 board. The HTX and HRX are 24 bit registers located at the same memory
location at X:$3FFEB and the three register pairs RXH/TXH, RXM/TXM and
RXL/TXL are the corresponding three 8-bit registers on the host side. Each pair of the
registers share one PC’s port address.

The TREQ and RREQ bits in the ISR on the host side are used to determine the
DMA mode data transfer direction. The DMA interrupt signal lines DRQ (Data
Request) and DACK (Data Acknowledge) are selected via Jumpers 4 and 5 (Figure
3.3) [Ariel 89].

Since the DSP-56 board does not have general purpose interrupt sources to the
host PC, the interrupt vector number register IVR is never used.

The HI serves as a data transfer passage between the host PC and the DSP and
also as a source of interrupt from the host PC to the DSP CPU. It can be programmed
to perform data transfer in three modes, namely polling, interrupt and DMA. Only the
polling mode of data transfer and the host command interrupt will be discussed in the
following sections, since the interrupt and DMA are not used in our present
implementation.

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 36

7 0
$0 INIT | HM1 | HMO0 | HF1 { HF0 0 TREQ| RREQ ICR
0 | O 0) 0]) {0 (® | (READ/WRITE)
7]
s1 HC 0 0 HOST VECTOR CVR
©) ($12) (READ/WRITE)
7 0
2 HREQ| DMA 0 HF3 | HF2 |[TRDY | TXDE| RXDF ISR
0 | O ©] O | @ | @ | O [(READ ONLY)
7 0
5 INTERRUPT VECTOR NUMBER IVR
(S0F) (READ/WRITE)
7 35 07 $6 07 7 0
RECEIVE RECEIVE RECEIVE RXH:RXM:RXL
HIGH BYTE MIDDLE BYTE LOW BVTE (READ ONLY)
TRANSMIT TRANSMIT TRANSMIL ™ TXH:TXM:TXL,
HIGH BYTE MIDDLE BYTE LOW BYT¢k (WRITE ONLY)
BITS IN ICR: BITS IN CVR: BITS IN ISR:
RREQ: Receive Request Enable HC: Host Command RXDF: Recelve Data Register Full
TREQ: Transmit Request Enable TXDE: Transmit Data Register Empty
HF0, HF1: Host Flag 0 and 1 TRDY: Transmitter Ready
HMI1, HM2: Host Mode Control Bits HF2, HF3: Host Flag 2 and 3

NOTE: The numbers in parenthesls are resct values ~ HREQ: Host Request

Figure 3.8 HI Registers on the Host Side

3.1.3.1. Data Transfer between the Host and DSP in Polling Mode

In the polling mode, both the host and the DSP processors have to poll certain
handshaking flags that regulate the flow of data through the HI. For transfers from the
host to the DSP, the host processor polls the TXDE bit in the ISR and the DSP
processor polls the HRDF bit in the HSR (Figure 3.7 and 3.8). If TXDE is set,
indicating that the TXH:TXM:TXL registers are empty, the host processor writes the
next data bytes into these data registers. Writing to the TXL results in the TXDE bit in
the ISR being cleared. Thus the TXL should always be the last one to write. If TXDE
in the ISR is 0, and HRDF in the HSR is O, data in the TXH:TXM:TXL registers are
transferred to the HRX on the DSP side. This data transfer from the host to the DSP
sets the HRDF flag in the HSR and thus, it signals that the HRX is fuli. When the DSP
reads the HRX, it clears the HRDF, and this may again initiate a data transfer from the
TXH: TXM:TXL triple registers to the HRX (if the TXDE is cleared). In this way, the
data transfer continues.

Transferring data from the DSP to the host can be implemented in a similar
fashion. Here, the host processor polls the RXDF flag in the ISR and the DSP polls the

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 37
HTDE in the HSR (Figure 3.7 and 3.8). Writing to the HTX clears the HTDE flag.
When the HTDE and the RXDF flags are cleared, data in the HTX is automatically
transferred to the RXH:RXM:RXL triple registers and the RXDF flag is set. Reading
RXL on the host side clears the RXDF flag. This may again cause another data transfer
from the HTX to the RXH:RXM:RXL, and the data flow continues. The following are
some sections of programs that implement the host-DSP data transfer.

:Hoat to DSP data transfer by polling at DSP side
DRdy JCLR #HRDF, X:HSR, DRdy ;poll HRDF flag in HSR, 1f not set,
;jdata is not ready, pell it again
MOVEP X:<<HRX,A ;if HRDF is set, read HRX

/*Host to DSP data transfer by polling at host side, send a long int to DSp*/
unsigned long data;

regiater unsigned char *p;

p~(unsigned char *) &data;

while{l) {
if(inp(ISR) &TXDE) //poll TXDE flag in ISR at host side
break; //if it is set break the loop and write data to
} //TXH: TXM: TXL triple data registers
outp(TXH, *(p+2)); //send the most significant byte first
outp (TXM, *(p+l)); //then the middle byte
outp (TXL, *p); //the leaat significant byte should be the last

3.1.3.2. Host Command Interrupts

In some cases, the host processor needs to interrupt the DSP process to request
immediate service. This can be implemented using the host command interrupt scheme
of the DSP56001 processor through the host interface.

As all interrupts of the DSP56001, the host command interrupts are controlled
by two registers. One is the Interrupt Priority Register (IPR) at X:$FFFF, the other is
the Mode Register (MR) in the Program Controller of the DSP56001.

All the interrupts are associated with an Interrupt Priority Level (IPL). For
some of the interrupts, the IPLs are fixed. For the others, the IPLs are programmable
and are kept in the IPR. All the interrupt sources and their IPLs are listed in Table 3.1.
The bit definitions of the IPR and MR are shown in Figure 3.9. Two interrupt mask
bits in the MR reflect the current processor’s IPL and indicate the level needed for an
interrupt source to interrupt the processor. Interrupts are inhibited for all IPLs whose
value is smaller than the current value of the processor’s TPL, Level 3 interrupts always
interrupt the processor.

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 38
Table 3.1 Interrupt Sources
Interrupt Starting Addrese | IPL Interrupt Source

P:$0000 3 | Hardware RESET (External)
P:$0002 3 | Stack Error |I
P:30004 3 | Trace
P:$0006 3 | SWI (Software Interrupt)
P:$0008 0-2 @ (External) |
P:$000A 0-2 | IRQB (External)
P:$000C 0-2 | SSI Receive Data
P:$000E 0-2 | SSI Receive Data with Exception Status “
P:$0010 0-2 | SSI Transmit Data
P:$0012 0-2 | SSI Transmit Data with Exception Status
P:$0014 0-2 | SCI Receive Data
P:$0016 0-2] SCI Receive Data with Exception Status
P:$0018 0-2 | SCI Transmit Data
P:$001A (-2 | SCI Idle Line
P:3001C 0-2] SCI Timer
P:$001E 3 | NMI -- Reserved for Hardware Development
P:30020 0-2 | Host Receive Data
P:$0022 0-2 | Host Transmit Data
P:$0024 0-2 | Host Command (Default)
P:30026 0-2 | Available for Host Command
P:$0028 0-2 | Available for Host Command
P:5002A 0-2 | Available for Host Command
P:$002C 0-2 | Available for Host Command
P:3002E 0-2 | Available for Host Command
P:$0030 0-2 | Available for Host Command
P:$0032 0-2 | Available for Host Command
P:$0034 0-2 | Available for Host Command
P:$0036 0-2 | Available for Host Command
P:$0038 0-2] Available for Host Command
P:$003A 0-2 | Available for Host Command
P:$003C 0-2 | Available for Host Command
P:$003E 0-2 | Tilegal Instruction |

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 39

Interrupt Priority Register (IPR) at X:SFFFF

15 14 13 12 11 10 9 8 ¥i [5 4 3 2 1 0
scL1|scro| ssut|sstofueLifnrLe] o | o | o | o [mL2]|mBrLI{1BLe|1AL2| 1AL |1ALD
S—— 7
~ N N
SCIIPL SSITPL HOSTIPL RESERVED 1RQB MODE IRQA MODE

Mode Register (MR) in Program Controller

7 6 8 4 3 2 1 0
Lt)T | *|s1|sofr|ure
T~

W &/ E & SCALING INTERRUPT
§ E E a MODE MASK

Figure 3.9 Interrupt Priority Register and Mode Register

From Table 3.1, one can see that each interrupt source is vectored (one of 32
vectors) to a separate, fixed, two-word service routine located in the lowest 64 words
of the program memory. The host interrupt vectors are from P:$0024 through
P:$003C.

The programming procedures of the host command interrupt and sample
programs can be summarized as follows:

» Shut off all interrupts but level 3 interrupts by setting the LO and L1 bits in the

MR (Figure 3.9);
ORI #$11 , MR

o Set the IPL for the HI by choosing a combination of the HPLO and HPL1 bits in

the IPR (Figure 3.9);
BSET #HPLO, X:<<IFR
BSET #HPLO, X:<<IPR ;set hoat IPL to 2

e Set up the pointer for the corresponding interrupt service routine. This is done
by writing ‘Fsr SsTART HosT_isr’ followed by a ‘Nor’ command into the
two-word interrupt vector spaé‘{:s. START HOST ISR is the starting address of the
interrupt service routine residing in the low program memory for the fastest

servicing.
ORG P:350024 ;dafault hest interrupt vector
JSR START HOELT X8R ;Jump to the interrupt service routine
NoOP ;use a do-nothing operation

;to eliminate pipeline effact

» Set the HCIE bit in the HCR (Figure 3.7) to enable host command interrupt.
BSET #HCIE, X:<<HCR

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 40

« Start host interrupts by manipulating LO and L1 bits in the MR to lower the

processor’s IPL (Figure 3.9).
ANDI $FC, MR jclear L0 and Ll bits in MR to enable
;interrupts

The host can then write the host vector in the CVR of the HI and set the HC bit
of the register (Figure 3.8). Note that the actual value of the host vector should be one
half of the corresponding interrupt vector in Table 3.1. For example, the hust vector
should be $12 for host command interrupt $24. Setting the HC flag in the CVR causes
the HCP bit in the HSR to be set and starts the Interrupt Service Routine from the
location in the Interrupt Vector Table, corresponding to the host vector in the CVR.

3.14, The Configuration of Port C of the DSP56001

The Port C interface of the DSP56001 is a triple-function I/O port with nine
pins (Figure 3.2). Three of the nine pins can be configured as general-purpose 1/0 or
as the serial communications interface (SCI) pins, and the other six pins can be
configured as general-purpose I/O or as synchronous serial interface (SSI) pins.
However, in the implementation of the DSP-56 co-processor board, this interface is
used as the SSI to interface to the ADC and DAC circuitry (Figure 3.1). Therefore,
this port should only be configured as the SSI.

The SSI of the DSP56001 has three dedicated 1/0 pins (Figure 3.2), which are
used for transmit data (STD), receive data (SRD) and serial clock (SCK). Three other
pins may also be used, depending on the mode selected; they are serial control pins
SCO, SC1 and SC2.

The configuration of Port C is controlled by the Port C Control Register (PCC)
at X:$FFE1 (Figure 3.10). Writing $1F8 to the PCC configures Port C as an SSI and
the remaining 3 pins as general purpose 1/0, as required by the DSP-56 co-processor
board.

The SSI can be viewed as two control registers (CRA and CRB), one status

Port C Control Register (PCC) at X:SFFE1

23 22 21 109 B 7 6 5 4 3 2 1 0

ooo......ooCCCCCCCCCCCCCCCCCC
i jJ1j]t111rj1ji1jotojo

STD SRD SCK SC2 SC1 SCO SCLX TXD RXD
CCx Function ~ "
0 Parallel 1O Y
| Serial Interface SSI SCl

Figure 3.10 Port C Control Register (PCC) and Configuration

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 41
register (SSISR), a transmit register (TX), a receive register (RX) and a special-
purpose time slot register (TSR). Among them, the RX and TX share one memory
location at X:$FFEF, while the SSISR and TSR share another location at X:$FFEE
(Figure 3.11).

The CRA and CRB control the SSI. The flags in the SSISR can be used for
polling purposes. The RX and TX are 24-bit data registers for data transfer from the
ADC to the RX or from the TX to the DAC. The most significant 16 bits of the two
registers are used for 16-bit ADC and DAC. The least significant 8 bits of the two
registers are not used and are automaticaily filled with zeroes during the data
transmission.

Since a dedicated ADC and DAC circuit is connected to the SSI, some of the
bits in the CRA and CRB are fixed in accordance with the requirement of the circuit.
These bits should be initialized accordingly and not be modified in any circumstances.

In the CRA, bits DC4 to DCO must be set to 2, i.e. 00010 in binary, for two
words per clock frame in network mode. This setting is essential for two ADC and/or
DAC channels working simultaneously (see the timing diagram in Figure 3.12). Bits

SSI Control Register A (CRA) at X:SFFEC
15 14 13 12 11 1 ¢ 8 T 6 5 4 3 2 1 D

psk | wL1| wio | pce | e | pc2 | pet | poo | em7] eMe | pavs | envea | eaas | ez | e [pmo
gWORD- v v
LENGTH FRAME RATE DIVIDER
CONTROL CONTROL PRESCALE MODULUS SELECT
[]

SSI Control Register B (CRB) at X:SFFED
15 M 13 12 1u_1 9 8§ 17 3 2 1 0

6 8 4
RIE | TIE | RE | TE |MOD] GCK| SYN | FSL1 | FSLO SIIFDISG(DISCDZ SCD1|SCD0| OF1 | OF1

~,
~
MODE SELECT SERIAL CONTROL OUT?UT FLAGS
(SBI'\\DRWNORMAL) DIRECTION
GATED CLOCK CONTROL '
ASYN —t——— CLOCK POLARITY
SYNC/ C CONTROL s FRAME SYNC LENGTH 0 (MIXED BIT/WORD)

FRAME SYNC LENGTH (BIT/WORD)
5 4 3 2 1 0

$S1 TIME SLOT REGISTER (TSR
(wgsm))° ojo|eo]o|e| o] o xsrmE
SSI STATUS REGISTER (&sg‘g RDE | TDE | ROE | TUE | RFS | TFs | 1/ | 190 | X:SFFEE
RECEIVE DATA REGISTER FULL"' I——mer FLAGS
TRANSMIT DATA REGISTER EMPTY b TRANSMIT FRAME SYNC
RECEIVER OVERRUN ERROR FLAG =] RECEIVE FRAME SYNC
TRANSMITTER UNDERRUN
ERROR FLAG

Figure 3.11 SSI Control and Status Registers

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 42

e

WL1 and WLO must be also set to 10 (in binary), to select a 16-bit word length for the
16-bit ADC and DAC. The other bits in CRA should be set to zero. In summary,
0100,0010,0000,0000 in binary format or $4100 in hexadecimal format should be
written into the CRA for the simultaneous use of the ADC and DAC sections.

In the CRB, bits OF1 and OFQ are output flags. At the initialization stage, they
have no effects. The serial control direction bits, SCD0, SCD1, SCD2 and SCKD are
fixed for the ADC and DAC circuitry, with SCDO equal to ! and the rest equal to 0, to
configure SCO as an output pin. Bits FSL1 and FSLO must be cleared to select a word-
length frame clock synchronization for the word length specified by the WL1 and WLO
bits in the CRA. The SYN bit should be set, to select synchronous mode, and the GCK
bit cleared, to select a continuous clock. The MOD bit must be set, to configure the
SSI in network mode. This mode enables the DSP56001 to receive two 16-bit word
frames from the ADCs and send the same number frames to the DACs (see the timing
diagram in Figure 3.12). Therefore, both channels of the ADC and DAC can be
activated at the same time. As a result, the lower 12 bits of the CRB should be
configured as 1010,0000,0100 in binary or $A04 in hexadecimal. Bit 12 to bit 15 of
the CRB are enable bits. The TE bit enables the transfer of data from the TX to the
transmit shift register and the RE bit enables the transfer of data from the receive shift
register to the RX. The TIE bit enables the transmit interrupt at P:$0010 (SSI Transmit
Data) and P:$0012 (SSI Transmit Data with Exception Status) on the condition that the
TX is empty and the transmit shift register is not empty for the P:$0012 interrupt, or
on the condition that the TX is empty and the transmit shift register is empty for the
P:$0010 interrupt (Table 3.1). The RIE bit enables the receive interrupt at P:$000C
(SSI Receive Data) and P:3000E (SSI Receive Data with Exception Status) on the
condition that the RX is full and the receive shift register is empty for the P:$000C
interrupt, or on the condition that the RX is full and the receive shift register is also
full, for the P:$000C interrupt. These bits can be toggled to enable or disable the
associated interrupts. However, the TE and TIE, and the RE and RIE should be set or
cleared in pairs. If both the DAC and ADC channels are used, all these bits have to be
set to 1 to enable all the SSI interrupts. In summary, $FA04 should be written into the
CRB when all the DAC and ADC channels are being used.

The data transfer from or to the SSI are carried out by interrupt service
routines. The interrupt vectors for the SSI start from P:$000C to P:$0012 (Table 3.1).
One sample of the SSI interrupt service routine from Ariel, shown below, demonstrates

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 43

a simple way to service the SSI data transfer (The timing diagram and data flow of this
sample program are illustrated in Figure 3.12):

datain jelr #3, X:<<{ SR, chan B
movep X:<<M RX, al
belr #0, X:<<4 CRE
movep al, X:<<d TX
el
Chan B movep X:<< BX, bl
bset #0, X:<<M CRB
movep bl, X:<<M TX
rti

where ¥_sr stands for the address of the SSISR, M rx for the address of the RX, cre
for the address of the CRB and #_tx for the address of the TX.

This routine services both the ADCs and the DACs using only the SSI Receive
Data Interrupt and the SSI Receive Data Interrupt with Exception Status. The entry
point of the routine P: <datain should be installed at both P:$000C for SSI Receive
Data and P:$000E for SSI Receive Data with Exception Status, if there is no separate
error handling interrupt service routine used for the P:$000E interrupt.

The active ADC channel is determined by polling bit 3, the RFS bit, of the

Timing of Two Channel ADC and DAC

Timc Slot or
Word Frame l —l l l L I_
Clock Frame
— T = 1/T = sampling rate
RFS Flag RX Slot B
RX Slot A
OF0 Flag or | TX Slot A TX Slot B I I
SCOPin § ¢ t t ¢ ‘
RX Interrupts
Data Flow during RX Slot A Interrupt Data Flow during RX Slot B Interrupt
General RX Shi General :
Purpose | RX Data te? Channel A Purpose | RX Data %exgsshl;? Channel B
Reglster A Register |“Eg.h- 2y AI]‘ C] Register B Register ADC |
= — | —/— | e !
= ettt | = i1t |
TX Data TX Data
TX Shift | Channel A TX Shift { Channel B
Register Register DAC Register Register DAC
SSI SSI

Figure 3.12 Timing Diagram and Data Flow of the Simultancous Uses of
ADC and DAC of Both Channels Using SSI Receive Data
Interrupts

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 44

SSISR. As we discussed carlier, the SSI is configured in synchronous network mode
and two time slots per one clock frame (DC4, DC3, DC2, DCI and DCO in the CRA
are 00010). This configuration indicates that at each time slot, a word is transmitted
into the RX. Thus, two words are received in one clock frame. The data from channel
A of the ADC are gated into the RX at the time slots when the clock frames occur and
the data for channel B of the ADC are gated into the RX at the time slots when the
clock frames do not occur. The status of the clock frame is reflected by the RFS bit in
the SSISR. Therefore, this flag is polled to determine the active ADC channel in the
above sample program.
The SCO pin is used to select the DAC channel. SCO low selected DAC channel
A and SCO high selects DAC channel B. The status of Bit or the OF0 bit of the CRB
controls the status of the SCO pin. Therefore, this bit is used to toggle between the two
DAC channels. Writing a word to the TX services the DAC on channel A when OF0
bit is cleared, or channel B when OFO bit is set. '
In summary, similar procedures, as with the HI (Section 3.1.3.2), should be
undertaken for the use of SSI. They are listed below with sample assembly instructions:
« Shut off all interrupts but level 3 interrupts by setting the L0 and L1 bits in the

MR (Figure 3.9);
ORT #$11, MR

+ Write a number to the TX register to turn on the SSI:
CLR A
MOVEP A, X:<<TX

« [Initialize the SSI as needed by writing to the CRA and the CRB accordingly,
MOVEP #$4100, X:<<CRA
MOVEP #3FA04, X:<<CRB

« Set up Port C Control Register (PCC) to enable the SSI;
MOVEP #$1F8, X:<<PCC

« Set the IPL for the SSI by choosing a combination of the SSLQ and SSL1 bits in

the IPR (Figure 3.9);
BCIR #8SLO, X:<<IPR
BSET #SSLL, X:<<IPR rsat SSI IPL to 1

« Set up the pointer for the corresponding interrupt service routine. This is done
by writing ‘asr starT_ssr_isr' followed by a ‘wor’ command into the
two-word interrupt vector spaces for the SSI interrupts. sTarT ss1_zsk is the
starting address of the interrupt service routine residing in the low program

memory for the fastest servicing.
ORG P:5000C :8SI Receive Data interrupt vector
JSR START SSI_ISR ;jump to the interrupt service routine
RopP :use a do-nothing cperation

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 45
1to eliminate pipeline effact
;8SI Recelve Data interrupt with
;Exception Statua
JSR START SSI_ISR ;jump to the interrupt service routine
NOP ;use a do-nothing operation

;to eliminate pipeline effect

» Set up sampling frequency for the ADC (see next section);
MOVEP #3$900000, Y:<<MCR

« Start the SSI interrupts by manipulating LO and L1 bits in the MR to lower the

processor’s IPL (Figure 3.9).
ANDI §FC, MR

ORG P:35000E

tclear L0 and Ll bits in MR to
;enable interrupts

3.1.5. Selecting Sampling Frequency of the Analog Interface and Using the
DSP Auxiliary 1/0 Port
The sampling frequency of the ADC and the use of the Auxiliary port are
controlled by the Mode Control Register (MCR) at Y:3FFF0. The frequency is selected
through bits 23 to 20 of the MCR. The combinations of these bits and the associated
sampling frequencies are listed in Table 3.2. Bit 19 of the same register controls the
auxiliary I/0 output line and bit 18 toggles the ADC mode between the Normal 16-bit
mode and the High Speed 12-bit mode. The remaining bits of the register should
always be written with zeroes.

Table 3.2 uency Selections [Ariel, 89

Samplin

Bits in MCR Sample Rate (KHz) in Sample Rate (KHz) in

23 22 21 20 Normal Mode High Speed Mode

0 0 0 o 32 128

0O 0 0 1 16 64

0 0 1 o0 8 32

0 0 1 1 4 16

0 1 o0 o 2 8

1 0 o0 o 100 400

1 0 0 1 50 200
I 1 0 1 0 25 100 _
| 1 0 1 1 12.5 50 |

1 1 0 0 6.25 25

0 1 0 1 22.05 88.2
I 0 1 1 0 44.1 176.4

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 46

Writing 1 to bit 19 outputs a TTL high level to the auxiliary port and writing 0
outputs a low TTL level. Bit manipulation commands should not be used here. The
execution of such command at bit 19 unpredictably disturbs the sampling frequency.
Therefore, the Mover command should always be used to update the content of the
MCR. For example, to set the sampling frequency to 50 KHz and output a TTL high at

the auxiliary I/O port, one should write:
MOVEP #5980000,Y:<<Q4CR

to output a TTL low at the auxiliary ¥/O port without changing the sampling frequency,

one should refresh the MCR using the following line:
MOVEP W#$900000,Y:<<MCR

In conclusion, one can see that most of the configuration tasks of the DSP56001
processor and the DSP-56 are left to the user of the board, since it is application
dependent, Proper configuration is based on a thorough understanding of the hardware
and results in a stable and efficient performance of the hardware and software.
However, the above discussed configuration tasks are completed at different
initialization stages such as booting the system, monitoring and executing user's
programs (see the next section for details).

3.2. Hardware Initialization and Program Loading

In the present LiMCA operation, all the three communication ports (Port A,
Port B and Port C) of the DSP56001 processor, the S6ADC16 ADC port, which is
routed to Port C SSI (Synchronous Serial Interface) for analog input, and the Auxiliary
I/O port of DSP-56 board are being used (Figure 2.7, Figure 3.1 and Figure 3.2). The
configuration of these ports are software controlled and are done by downloading the
configuration parameters from the host PC. Thus before all, the Host Port (Port B) of
the DSP56001 processor should first be activated in order to set up the communication
between the host and the DSP. Then the rest of the DSP ports are configured by the
program loaded on the DSP-56.

Before being ready to run user programs, the DSP system first boots itself,
establishes the communication to the host processor, and then loads a software monitor.
This monitor is controlled by the host and is used to load, monitor and start a user
application. The configuration of the system is partially done by the booting process
and the monitor software, which includes mainly the configuration of the external
memory (Port A) and the host interface (Port B). All the other initialization tasks must
be included in the user program.

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 47
3.2.1. DSP56001 Booting Proccss

The booting process is organized in two steps. The first activates the ROM boot
strap in the DSP56001 processor. The second loads the DEGMON monitor, which
stands for Degenerated Monitor, from the Host PC to the DSP processor,

The DSP56001 processor has four modes of operation controlied internally by
bit 0 (MA) and bit 1 (MB) of the Operating Mode Register (OMR) in its program
controller, or externally by pin MODA and pin MODB of the processor (Figure 3.2).
The OMR is a read/write register, thus the mode of the processor is program-
controlled. The bit definitions of the register are shown in Figure 3.13. The operating
modes of the DSP56001 processor are summarized in Table 3.3. The DSP-56 board
uses mode 1 to boot the processor and mode 2 for user application programs.

After powering on or executing a RESET command, the DSP56001 processor is
in the reset state. In this state, the MODA pin and MODB pin are active (Figure 3.2).
To leave the reset state and start booting, one must apply a high level on the MODA
pin and a low level on the MODB pin. When the processor exits the reset state, the two
Mode control pins become general purpose interrupt source pins, IRQA and IRQB.

In Mode 1 (Special Bootstrap Mode), A short program saved in ROM (Read
Only Memory) is activated. It loads up to 512 24-bit words user’s program from the
host port (Port B) and save them in the program memory. After the program is loaded,
it switches to Mode 2 and transfers control to the user program starting at P:$0000. At
this moment, the bootstrap ROM is disabled and shadowed by the program RAM. For
details about the other functions and the program listing of the bootstrap ROM see the
appendix E of the reference [Motorola 92].

Since in operation mode 1 the bootstrap program can only load a program

23 87 6 54 3 2 10

. EA|sp| *| * | * |DE|MB{MA

-

— OPERATING MODE
DATA ROM ENABLE
RESERVED

STOP DELAY
EXTERNAL MEMORY ACCESS
RESERVED

Figure 3.13 Operating Mode Register Format

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 48

Table 3.3 Initial DSP56001 Operating Mode Summary [Motorola 89]

Operating Mode | MODB | MODA Description
0 0 0 Single-Chip Mode
1 0 1 Special Bootstrap Mode
2 1 0 Normal Expanded Mode
3 1 1 Development Mode

smaller than 512 words, most user applications can not be handled at this stage. A
monitor, which is less than 512 words, is needed to handle bigger application programs
in operation mode 2. This monitor is first loaded to the processor’s program memory
by the bootstrap program in operation mode 1. Then it takes control of the processor
and communicates with the host in Mode 2. Ariel Corp. provided a small monitor
program called DEGMON with the DSP-56 hardware. It occupies 64 words of program
memory and uses no data memory. Despite its limited number of functions, it is found
useful to download a lengthy user application program and then to pass the control of
the DSP processor to it. Details about the DEGMON monitor are given in the next
section. The source code of the DEGMON.ASM is supplied by Ariel.
The booting process is controlled by the host computer, and three PC's port

addresses are used for this. They are:

base + $C000 RESET ON,

base 4 $8000 RESET OFF,

base + $A000 START BOOTING.
Writing to these ports sequentially invokes the functions listed above, Note that ‘base’
stands for the base address of the DSP-56 co-processor board. By default, the base
address is set to $340, as discussed in Section 3.1.1. To change the base address, one
must consult the installation procedures in reference [Ariel 89).

The host process downloads the iXEGMON monitor through the host port of the

DSP processor, while the processor's ROM bootstrap program is running. The monitor
must be compiled using the Motorola DSP56000 Macro Assembler and be saved in a
file named DEGMON.DAT. The corresponding host protocol, written in Turbo C, is
used to carry out the above procedures. During the program downloading in the boot
strap mode, polling is used on the DSP side to transfer the program through the host
interface. Therefore, the host protocols for program loading is programmed using
polling data transfer (Section 3.1.3.1). The function prototypes of these protocols can
be found in Appendix A.

CHAPTER 3; SYSTEM CONFIGURATION AND INITIALIZATION 49

The protocol at the top of the hierarchical structure of the group of the functions
iS LoadFile{chax *fname, char **regult, unsigned int *woxds, unsigmed int

*starthddr, int use_mon, int PMemEnable). It is a utility to load a DSP process to the
DSP processor either in the Special Bootstrap Mode or in the Normal Expanded Mode.

To load the DEGMON monitor, Loadrile should be called in the Special
Bootstrap Mode by setting the input parameters, use_mon and PMemEnable t0 be TRUE,
for cxample LoadFile {"DEGMON.DAT", message, nwords, start address, TRUE, TRUE).
In this case, it invokes the function reset_board(rMemEnable) to reset the DSP
processor and start the booting process.

After successful loading of the monitor, the booting process is completed and a
long user DSP application program is ready to be handled by the monitor.

3.2.2, Program Loading through the DEGMON Monitor

On the host side, to load an application program through the DEGMON
monitor, the host protocol, roadrile is also used. For example, to load a compiled
DSP application named ‘LMCDSP.LOD’, the following syntax and arguments are
used: LoadFile("LMCDSP.LOD", message nwords, start address, FALSE, FALSE).
However, in this case, instead of communicating with the ROM boot strap process, the
host interfaces with the DEGMON monitor.

The DEGMON monitor has several sub processes, including an infinite main
monitor loop and several host interrupt services. One of them is used to pass the
control to a user process (Figure 3.14).

After the DEGMON is loaded by the roadrile function, the boot strap process
passes control to it, starting at P:$0000, where there is a pointer to jump to the section
before entering the main monitor loop. Here, it sets up the external memory (Port A),
the host interface (Port B) and the program controller. Then it enters an infinite loop,
where it sets up and enables the host interrupts and waits to receive one peripheral data
move command opcode followed by an operand from the host and save them at
P:$DE_I0 and P:$DE_Il. Finaliy, DEGMON jumps to the two memory locations
starting at P:$DE_I0, executes the opcode, and continues looping.

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 50

. The opcode and operand are fully controlled by the host. In this way, the host
can write to, or read from, the DSP memories, if the opcode and the operand,
transmitted from the host, do the data transfer through the HI.

Main Monitor Process Start an Application
P:50000 by Host Interrupt
Start from here after booting
— Jump to P:SDE_RESET P:50024
3 Host interrupt starts here
P:$SDE_RESET — Jump to P:SDE_RUN
Reset processor ‘
—— Send base address and length
P:SDE_RUN
of the monitor to the host Pass control to user's program
— Resct memory — Pop system stack to discard
— Reset host control register current program control
— Reset DEGMON registers =~ Push the starting address of the
% user's program into the stack
P:SDE_RSTC ~— Push ncw status into stack
Reset the monitor — Return from host interruption
~— Set up host interrupt priority and | | Upon return, the system stack pops
disable all other interrupts the starting address of the user's
— program to the Program Counter and
. Enable host Interrupt the status to Status Register. Thus the
—— Flag host for r?dlness uscr's application program starts.

P:SDE_WR
Fetch host instruction words from Host Port

~— Fetch the first command word and
save it at P:SDE_I0

DEGMON Registers
DE_HPD: possible host-port

== Fetch the second command word and data
save it at P:SDE_I DE_FLAG: host port flag byte
— check host flag HF! DE_HPD2: 2nd level host-port
data

YES NO DE_FLAG2: 2nd level host-post
@ flags

DE_SR: stacked Status

P:SDE_WR P:SDE_RD Register when RUN
The host wants to write The host wants to read command used
to the DSP memory from the DSP memory DE_PC: stacked Program
—— Wait until Read Buffer| | — Whait untit Transmit Counter when RUN
is full Buffer is empty command used
T T DE_IPR: saved Interrupt
! Priority Register

DE_SR2: Status Register
that always has
trace bit cleared

from P:SDE_I0 to P:SDE_I1
Execute the host command saved here before

. Figure3.14 Block Diagrams of the DEGMON Monitor

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 51

On the DSP side, the opcode needed can be mover of both data move directions
and of all memory types. For every memory type and data transfer direction, different
opcode should be passed to location P:$DE_I0. For instance, to write a word to X
memory at X:$1000, the assembly line ‘Mover X:<<rx,x:$1000’ Should be placed at
P:$DE 10 and P:$DE _Il. The corresponding opcode is $0870AB followed by the
operand $001000 for the destination address. Therefore, the host must transmit these
two words to the DSP process, which saves them at P:$DE_I0 and P:$DE_I1, and then
execute them to transmit from the HI to X:$1000. Similarly, to read data from
X:$2000, the opcode is $08FOAB, and the operand $2000. There are six different
opcodes for bi-directional data transfer for the three types of DSP memories. It is the
host's responsibility to choose the right opcode and operand for the data transfer action
it wants to. Nevertheless, this is the only way that can guarantee the host to fully
control the DSP's data transfer operation.

Furthermore, as discussed in Section 3.,1.3.1, for different data transfer
directions through the host interface, different flags must be poiled before the data
move. The general purpose host flag HF1 is used by the host to inform the DSP which
flag should be polled. If HF1 is set, the host wants to write to the DSP memories, and
the HRDF flag in the HSR should be polled by the DSP process. Otherwise, if HF1 is
cleared, the HTDE flag should be polled. This indicates that the host wants to read
from the DSP memories (Figure 3.7). All the above different considerations are
implemented by six protocols as:
readp{(unsigned int addr, unsigned long *where);
readx (unsigned int addr, unsigned long *where);
ready (unsigned int addr, unsigned long *vwhere);
writep (unsigned int addr, unsigned long data))
writex(unsigned int addr, unsigned long data) and
writey (unsigned int addr, unsigned long data) (Appendix B).

These functions are programmed to communicate with the DEGMON monitor, while it
is in the main monitor loop.

On the host side, the program loading process consists of a number of function
calls to writep to download all the opcodes and operands of the user application
program to the DSP program memory, and function calls t0 writex and writey for any
constant variables to be loaded into DSP X and Y data memory.

When program loading completes, the DSP process must be interrupted by the
host to break the infinite main monitor loop and to start user application. The host

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 52

interrupt $24 is used for this purpose. On the DSP side, when the interrupt occurs, the
DSP’s program controller pushes the present status register and program counter into
the system stack and jumps to the interrupt service routine. Upon returning from the
interrupt routine, the controller pops up the system stack to restore the status and
program counter. To prevent the control from returning to the main monitor loop, in
the host interrupt service routine, the system stack is first popped twice to discard the
program counter and status before the interruption. Then the starting address and status
of the user application program are pushed into the stack. These two pieces of
information of the user application were sent to the DSP by the host and saved in the
DEGMON registers by the DEGMON monitor through its main monitor loop before
the host interruption. As a result, when the interrupt process terminates, the control of
the DSP process will be passed to the user application.

A host protocol, exacute instr(unsigned short starthddr), is developed o
send the entry data of an application program to DSP and then it invokes
do_hoat_command(int ho_addr), which sends a host interrupt request to the DSP at
P:$24 and therefore starts a user application. For details of the host interrupt, see
Section 3.1.3.2.

As one can conclude, the configuration and initialization of the DSP processor
provide a hardware and software platform to run a user application. Most of the
configuration and initialization is software controlled. Host protocols have to be
developed to customized the hardware and software environment for a specific
application. The development and usage of these host utilities are based on a thorough
understanding of the DSP hardware and software, which is also essential for the
development of the application. The customization of the hardware and software
discussed in this chapter is based on the requirement for our LIMCA DSP process,
which is detailed in the next chapter.

CHAPTER 4: LIMCA SOFTWARE DESIGN AND IMPLEMENTATION 53

4, LIMCA SOFTWARE DESIGN AND IMPLEMENTATION

4.1. Software Overview

The software for thc DSP LiMCA has been developed based on the hardware
described in the previous chapters. It includes the software for the DSP, a host-DSP
interface and a Graphical User Interface (GUI). The DSP software performs all the
real-time and off-line signal processing tasks. It has been implemented using the
Motorola DSP56001 assembly language and runs on the DSP-56 co-processor. The
host-DSP interface provides the communication between the host and the DSP board. It
downloads the DSP code and configuration parameters to the DSP-56 and starts the
DSP processes. During the execution, real-time data are being uploaded from the DSP
board to the host through the host interface. The Graphic User Interface eases the job
of the LIMCA operators. It provides an ‘‘easy-to-navigate'' environment with very
well organized windows containing input fields, dialog boxes and graphical displays.
Furthermore, it performs all the host level computational tasks and controls the DSP
processes through the host-DSP interface. The host-DSP interface and the GUI were
written in Borland C++. Two commercial software packages, ObjectMenu from
Island System and MetaWindow from Metagraphics Software Corporation were used to
implement the two interfaces.

In this chapter, the implementation of the DSP software and host-DSP interface
will be discussed. Special attentions are paid to the real-time DSP processes. The GUI
is not in the scope of this thesis. For details, see [Draganovici 94].

4.2. DSP Software

The DSP software was designed as a group of real-time and off-line tasks., The
selection and execution of any one of them is controlled by the host computer through
the host interface. A command interpreter has been developed to monitor the host
interface and to pass the control of the processor to the appropriate task. The logical
structure of the command interpreter is illustrated in Figure 4.1. Its source code is
found in Appendix C, starting under the label ‘cprve’ on page 112. The function
pointer table in Figure 4.1 is located in internal X RAM (see the code under the
variable ‘£1ist’ on page 96 in Appendix C).

CHAPTER 4: LIMCA SOFTWARE DESIGN AND IMPLEMENTATION 34

Format of Command Word

1 0
Other info (optional)] ¢3 | ¢2 | cl | cO Function Pointer Table
Command Code I 1 I I @ Record
8825 | @t om Oncine MCA —
Tolfrom [, @—» Off-line MCA —
computer g @—1% Report Status —
; @— Sample Rate
= @—» Upload Memy ——
@& Zero Mcem
@ NULL
return control to the command interpyeter

Figure 4.1 Format of the Command Word and Logic of the Conunand
Interpreter

The entry point of the DSP software is at the label ‘mvrr_pad’ (see page 111 of
Appendix C). After being downloaded by DEGMON monitor and taking over the
control of the DSP processor, the DSP software first initializes the SSI interface for
ADC and sets up ADC sampling frequency (for DEGMON monitor and program
loading, see Section 3.2, and for SSI and sampling frequency setup, see Section 3.1.4
and 3.1.5). Then it enters the command interpreter, waiting for a command word from
the host computer. The format of the command word is also shown in Figure 4.1, The
least significant nibble is used to carry the command code, that tells the interpreter to
which task to pass the control. For the four-bit command code used, a maximum of 16
tasks can be managed. Presently 7 slots are used, and the rest provide space for further
development. The other bits of the command word are optionally used for additional
information needed by certain processes. For example, to start the real-time multi-
channel analysis (MCA), the host uses bit 4 and bit 3 to inform the DSP which analog
channel should be used or if both are to be used. Bit 4 is for channel A and bit 3 for
channel B. Toggling any one of the two bits enables, if it is set, or disable, if it is
cleared, the channel which it represents.

CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 55
4.3. DSP Real-time Software

Among the selections listed in Figure 4.1, the real-time LiMCA process is
carried out by the On-line MCA, This is organized as a number of independent tasks,
each designed as a filter, reading data from an input buffer and writing new data into
an output buffer. Figure 4.2 shows these tasks together with the corresponding data
flow paths. A small real-time control executive, which is not shown in this figure, was
developed to manage their execution. It receives a number of parameters from the host,
and the starts the execution of the different DSP tasks according to the status of the
buffers and processes involved. Note that Figure 4.2 shows a one channel system.

The analog signal from the signal conditioning stage is digitized by the ADC.
An Interrupt Service Routine (ISR) is invoked which reads the output of the ADC and
writes the data into a circular buffer (one per channel). The circular buffer is processed
by the peak sampling process that detects the presence of peaks and transfers peak data
to the ‘sampled peak buffers’. A digital filter can be invoked before the peak sampling
process to eliminate noise (say, from an induction furnace near by). The ‘sampled peak
buffers’ are processed by the peak description process which stores its output into the
‘peak buffers’. The pulse height analysis process processes and modifies this
information which is then passed to the host through the 24-bit host port. At the host

DSPR56 plod pesk " i HOST
Sampica pe pe real time
4pe bj]'er buffer description data transfer

peak
@ classification

peak sampling

analog signal

Sdownload &
& upload meny
]

user interface

Pe= process

ISR = interrupt service routine

e real-time data path @
ssssse off-line data path

Figure 4.2 The Structure of the DSP Real-time Software

CHAPTER 4: LIMCA SOFTWARE DESIGN AND IMPLEMENTATION 56

level, an ISR is invoked to read the data from the host port and pass them to the peak
classification task.

4.3.1. Task Distribution between the Host and DSP

The real-time processes shown in Figure 4.2 were first distributed between the
DSP-56 co-processor board and the host computer, and then coded separately. The
scope of this task allocation is to take full advantage of the DSP pipeline architecture
and to maximize its utilization. Time is ‘wasted’ when the DSP co-processor board
communicates with the host. Due to the pipeline architecture of the Motorola
DSP56001 processor, two types of operations are most time consuming, control
transfer instructions and instructions that perform data transfers between the DSP-56
and the host. Along the data path illustrated in Figure 4.2, the whole process can be
viewed as a data reduction process in terms of the amount of data processed in each sub
process from ADC to peak classification. To minimize the data needed to be transferred
through HI, the processes that do major data reductions are required to be programmed
at the DSP level. Such processes include ADC, peak sampling and peak description
processes. As a result, the bulk of the data transferred between the DSP processor and
the host consist of the peak description parameters.

It was also intended to code the peak classification process at the DSP level,
thus the host can be freed from low-level data-intensive processing and ultimately be
used for high-level operation such as GUI and calculations with sophisticated
algorithms. However, in the initial prototype of the DSP-based LIMCA system, we
decided to implement a prototype of the peak classification process at the host computer
level. This decision was influenced by the fact that the system is being developed for a
research environment and will be used in different melts and under different conditions.
By coding the peak classification at the host level we increase the ease with which the
code can be enhanced to accommodate different situations. In addition, we plan to
investigate the use of fuzzy logic and artificial neural networks for this task, and this is
easier at the host level.

4.3.2. Memory Allocation at the DSP Level
Due to the hardware architecture of the DSP56001 processor, the allocation of
the DSP memory greatly affects the efficiency of the DSP performance. Such memory.
distribution includes the allocation of the DSP program memory to the DSP processes

CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 37

and the DSP X and Y data memories to the buffers, variables, stacks, status and control
registers.

As one can see in Figure 3.5, the DSP56001 has 512 Kwords of internal
program RAM and the same number of RAM words for the X and Y data memories.
Each bank of the internal RAM is accessed through its own data and address buses,
thus several banks can be accessed in parallel in one instruction cycle. However, the
majority of the RAM used for program and data is external memory, physically
implemented on the DSP-56 board. All of the external RAM is accessed via the
communication Port A of the DSP56001 processor, i.e. the external program RAM, X
and Y data RAM share the same data and address buses (Figure 3.1). As a result,
parallel data move is not applied to the external memories. Bit operation instructions
and jump instructions on bit status are also not applicable. Furthermore, instructions
saved in the external program RAM space may break the instruction pipe line, thus
introduce extra delays.

The DSP56001 instructions are so pipelined during execution that the DSP CPU
fetches an instruction from the program memory, decodes the instruction previously
fetched and executes the instruction previously decoded, all in one instruction cycle. If
the execution of the instruction involves a data move to or from any of the external
RAM locations and the instruction to be fetched resides in the external P RAM, both
actions require the use of the external data and address buses, therefore they can not be

Table 4.1 The Usage of the Program Memory

Starting Address Process Length (words)
P:$0000 Interrupt Vector Space 64
P:$0040 Degmon Monitor 80
P:$0090 ADC Interrupt Service Routine 20
P:$00A4 Host Stop Interrupt Service Routine 5
P:$00A9 Peak Sampling Process 223
P:$0188 Peak Description Process 137
P:$0211 Pulse High Analysis Process 28
P:$022D DSP to Host Data Transfer for Channel A 19
P:$0240 DSP to Host Data Transfer for Channel B 20 |
P:$0254 Control Executive Process 106
P:$02BE System Initiation 34
P:SO2E0 | Utilities 200 |

CHAPTER 4: LiIMCA SOFTWARE DESIGN AND IMPLEMENTATION 58

Table 4.2 The Allocations of X and Y-data Memories

X-RAM Y-RAM l
Address Range Purpose Address Range Purpose

X:$0000-80001 | global registers Y:$0000-$0001 | global variable l
X:$0002-30009 | variables & registers | Y:$0001-30009 | variables & registers

for Channel A for Channel B
X:$000A-$0011 | global variables Y:$000A-$000B | stacks |
X:$0012-30019 | pointer table to

functions

X:$001A-$001E | circular buffer Il
pointers, time
counters

Y:$0100-304FF | PHA reference table
X:$6000-$65FF | peak parameter buffer | Y:$6000-$65FF | peak parameter buffer |

for channel A for channel B
X:$7000-$7FFF | sampled peak buffer | Y:$7000-$7FFF | sampled peak buffer
for channel A for channel B “

Il X:$8000-$FBFF | circular buffer for Y:$8000-$FBFF | circular buffer for

channel A channel B

completed in parallel. Thus the pipeline must be broken to avoid bus conflict.

For best efficiency, all the effects of the architecture of the DSP-56 processor
must be considered when the memory utilization is planned. In our application, the
most data-intensive DSP processes are placed in the internal program memory. From
the discussion in Section 2.3.2, the busiest processes are the ADC and the peak
sampling processes, which are loaded into the internal low program memory space.
Off-line subroutines are placed into the high external memory space. The usage of the
program RAM by the DSP processes are listed in Table 4.1. For complete DSP source
code listing of the DSP LIMCA, see Appendix C.

The X and Y data memories are used for buffers, variables, stacks, status and
control registers of various DSP processes. The internal data memories should be
reserved for variables, stacks, status and control registers. As mentioned before, bit
operation instructions and jump instructions conditioned on bit status can only apply to
the internal memories. The former type of instructions are frequently used -to

CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 59

manipulate status and control registers and the latter are used to direct the process
properly according to the status of the bit flags of the status and control registers. Thus,
these registers are required to be Jocated in the internal memories. The variables and
stacks used by data-intensive real-time processes should also be put into the internal
memory to maximize parallel data movement. Buffers, which are usually too big to be
put into the internal memories are placed into the external data memories. For the
LiMCA process, the X data memory is primarily allocated to the buffers for the
analog-channel-A DSP processes and the Y data memory to the buffers for the analog-
chanrel-B DSP processes. Table 4.2 shows the allocation of the X and Y data
memories.

Two 31-Kword circular buffers are located at the bottom of thz X and Y data
memories, for the digitized data from analog channel A and channel B respectively.
These buffers increase the time elasticity of the real-time DSP process, important
especially when the worst case of operation frequently occurs (see Section 2.3.1 for the
worst case of cperation).

4.3.3. Real-time Control Executive

The overall reai-time DSP task is being conducted by invoking, based on certain
conditions, one of the sub-processes at a time, There are severai real-time sub-
processes involved, namely ADC, Peak Sarpling, Peak Description, Real-time Data
Transfer (Figure 4.2). Each has its own entry conditions. Considering a two-channel
system, the conditions of the signals from the two analog channels are different at most
of the time. The number of the sub-processes and the complex entry conditions of these
processes complicate the program coding and maintenance. An executive process is
needed for control and has been developed to monitor and orchestrate the real-time sub-
processes, thus we can modularize the program coding and ease the program debugging
and maintenance,

The communication links between the control executive and the host computer
and the real-time sub-processes are schematically illustrated in Figure 4.3. Note that in
this figure, the process Transfer A transfers channel-A ‘peak buffer’ to the host and
Transfer B transfers channel-B ‘peak buffer’ to the host. The control executive has two
states of operation, the initializaticn state and the real-time monitoring state. Figure 4.3
depicts the communication links while the executive is in the monitoring state.

The executive is activated by the command interpreter, when it passes the
control to the function labeled with ‘ontinemca’ (Figure 4.1). After taking control, the

CHAPTER 4: LIMCA SOFTWARE DESIGN AND IMPLEMENTATION 60

S, J,

~Registers™ Front Processes
Peak
Sampling
To/from l)cspe?lk i e
o " cription .
g Variablcs
coputer \5 Transfer A o
g Buffe
; Transfer B b
% SSI Port
- Background
Process Host Port
ADC

return control

Figure 4.3 Real-time Control Executive and its Communication Links

executive first enters the initialization state to set up all the needed registers, stacks,
variables, buffers, communication ports and the pointers to the background functions
servicing the ports. In this state, it also communicates with the host computer to receive
process parameters. Such parameters include noise thresholds and processing time for
the peak sampling process (Section 4.3.5), PHA channel number, PHA checking table
and PHA quick sort cycle number for PHA process (Section 4.3.7). Then it signals the
host for the readiness of conducting real-time DSP and waits for a host response code.
The host can either send a 0, to start the real-time process or a 1, to quit. In the latter
case, the executive immediately returns control back to the command interpreter.

A zero from the host at this stage changes the executive state from the
initialization state into the real-time moritoring state. Upon entering this state, the
executive starts the background process, i.e. ADC process, enables the host interrupt so
that the host can terminate the process at any time by sending a host interrupt through
the host port. In this state, it monitors the flags in the registers which reflect the
conditions of the buffers and processes involved. Depending on the status of the flags,
it selects and activates the required process at the proper timing.

The registers used here are shown in Figure 4.4. Note that the undefined bits
are not used. The ProcStatus register reflects the status of the real-time MCA process.
Bit 0 of the register, the HOSTSTOP flag, indicates if the host has instructed the DSP
to stop the process by the host command interrupt $24 (Section 3.1.3.2). It is set when

CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 61

ProcStat Register
23 2 1 0
------ l
L HosTSTOP
L —— CHANNELA
—-——— CHANNELB
BuffStat Register ——TIMEUP
23 5 4 1 0
------ 1 ansese L
PEAKDBFAFULL— L mFoFULL
PEAKDBFBFULIL: ‘o FIFOEMPTY
PkSamplingSt Register
23 10 9 8 21 0
sueenn l (T YY Y] I
PK_SAMPLING_FIND_B - ~ PK_SAMPLING_FIND_A
PK_SAMPLING_SIGN_B —— PK_SAMPLING_SIGN_A

PK_SAMPLING_FINISH_B
PkSamplingCr Register
9 8

PK_SAMPLING_FINISH_A

23 1 0
...... | seeses l |
PK_SAMPLING_CHANNEL_B - PK_SAMPLING_CHANNEL_A
PK_SAMPLING_CONT_B —— PK_SAMPLING_CONT_A

Figure 4.4 Registers of the Real-time MCA Process

the host wants to terminate the process. Bit 1 and 2, CHANNELA and CHANNELRB,
are analog channel flags. CHANNELA is for channel A and CHANNELB for channel
B. They are set when the corresponding channels are enabled. They reflect the mode of
the ADC operation, i.e. one-channel mode or two-channel mode (stereo mode). These
two flags are initialized during the initialization stage and are not changed later. This
indicates that the ADC operating mode can not be changed during real-time processing.
Bit 3, the TIMEUP flag, is set when the processing time exceeds the time which is pre-
set by the host.

The BuffStat register flags the status of some buffers used in the real-time
processing. Bit 0, i.e. the FIFOFULL bit, is used as the buffer full flag for the two
circular buffers. It becomes set when both of the buffers are full. This indicates a
buffer overflow error, which causes the real-time process to fail. Bit 1, i.e. the
FIFOEMPTY flag, is used for the executive to monitor whether the circular buffers are
empty after the process is commanded to terminate for any reasons and the circular
buffers have to be emptied so as not to lose data after the termination. It is set when
either the HOSTSTOP flag or the TIMEUP flag in the ProcStat register is set and the

CHAPTER 4: LIMCA SOFTWARE DESIGN AND IMPLEMENTATION 62
circular buffers are empty in normal termination conditions. Such conditions occur
when the host terminates the DSP process or the processing time exceeds the pre-set
time limit. The FIFCEMPTY flag is also set after FIFOFULL is set and the circular
buffers have been flushed. This is an abnormal termination. The FIFOEMPTY flag
provides the exit condition for the control executive. In any case, when this flag is set,
the executive signals the completion of the process to the host by setting Host Flag 2
(HF2 in Figure 3.7 and Figure 3.8) and reports the exit conditions to the host by
sending both the ProcStat and BuffStat registers to the host port and returns the control
back to the command interpreter.

Bits 4 and 5 of the BuffStat register, i.e. the PEAKDBFAFULL and
PEAKDBFBFULL flags, are used to flag the status of the ‘peak buffers’ (Figure 4.2)
for channel A and channel B respectively. PEAKDBFAFULL is for channel A and
PEAKDBFBFULL is for channel B. When either of the ‘peak buffers’ is full, the
corresponding flag becomes set. This indicates that the real-time process can not
continue unless the buffer is flushed and thus available for new peak parameters. Upon
seeing the buffer full flags set, the executive immediately passes contro! to one of the
two real-time data transfer processes depending on which buffer is full and should be
transferred to the host. If PEAKDBFAFULL is set, Transfer A is called or otherwise
Transfer B is called.

The executive normally passes control to the peak sampling and peak
description processes in sequences, unless one of the flags in the BuffStat becomes
active, signaling the need for urgent attention and immediate action.

The PkSamplingSt and PkSamplingCr registers are mainly used by the peak
sampling and peak description processes. Their explanations are included in the
descriptions of the two processes in later sections. The source code of the real-time
control executive is listed in Appendix C starting at ‘onlinemca’ on page 109.

4.3.4. ADC Process

The Analog-to-Digital (ADC) conversion process has been implemented as a
background interrupt-driven process. It uses the SSI Receive Data Interrupts, which are
located at P:$000C and P:$000E of the Interrupt Vector Table in the program RAM
space (Table 3.1). To start the process, Port C and the interrupt priority level have to
be configured properly. The entry pointer to the ADC interrupt service routine must
also be installed at the two vector spaces mentioned above. If the sampling rate
required is different from the default SO0 KHz, it should be set using the Sample Rate

CHAPTER 4: LIMCA SOFTWARE DESIGN AND IMPLEMENTATION 63

: Timing of the ADC Process
Time Slot or
Word Frame | l { | l L
Clock Frame
el T = 1/T = sampling rate

RFS Flag RX Slot B

1 RX Slot A '

JP) 4 } {} J}

RX Interrupts
Data Flow during RX Slot A Interrupt Data Flow during RX Slot B Interrupt
General Genernl
Purpose RX Data RX Shtgt Channel A Purpose Rxn‘.: RX Sht:fr‘ Channel B
Register A | Reglster 5 E“: — chisterB‘ Regts | g:‘l =
. Ce 11 e] 2 Le Ji[e]
TX Data TX Data
TX Shift | Chznnel A TX Shift | Channel B
Register pooister | DAC Register peoistor | DAC
SSI SSI
Circular Buffer A Circular Buffer B
in X-RAM in Y-RAM

Figure 4.5 The Timing Diagram and Data Flow of the ADC Process

function through the host interface and the DSP command interpreter (Figure 4.1).
Details about the setups and configurations are given in Section 3.1.4 and 3.1.5. The
source code listing can be found in Appendix C starting at ‘ssIpatatnPtr’ on page 97.
Note that a different approach was used to install the entry pointer of the ADC process
into the SSI Interrupt Vector spaces from the one using ORG directive, explained in
Section 3.1.4. Here a utility function, ‘InstallssIints’ is used to install the interrupt
service routine (see page 114 in Appendix C).

The ADC process is invoked by the real-time control executive when it enters
the real-time monitoring state. The process reads data from the ADC buffer at
X:$FFEF and saves them into the circular buffers for both channel A and B. Since the
data for both channels are from the same register in SSI, they are differentiated by
different timing, and there is a delay of one time slot between the two channels, see the
timing diagram in Figure 4.5.

Compared with the timing diagram in Figure 3.12, The ADC process, that we
used here for the LIMCA application, only services the ADC part of the SSI interrupts.
Nevertheless, it manages two circular buffers, shown in Figure 4.6. Note that the two
circular buffers are managed by one set of pointers. This indicates that the ADC process

CHAPTER 4: LIMCA SOFTWARE DESIGN AND IMPLEMENTATION &4

Generzl Purpose Register A General Purpose Register B

"er Paf

Q"'J-{.

Count
g T,

Buffer A In X-RAM Bulfer B in Y-RAM

Figure 4.6 Circular Buffers for ADC

does not know which analog channel is in use. It is always working in stereo mode.
The buffer read pointer is saved in the address register r0, which is one of the eight
address registers from (r0 to r7). This register is not stacked when the processor
switches between the background and foreground processes. Thus it should not be used
by the foreground processes. Address register 17 is used as a counter, counting the
distance between the write pointer and the read pointer. It is transparent between the
background and foreground processes. When data are written to the circular buffers,
the ADC process increments r7. When data are read from the buffers, the peak
sampling process decrements 17, The BUFFER FULL condition is checked by the ADC
process. If r7 equals the size of the circular buffers, the buffers are full and
FIFOFULL flag in BuffStat register is set and the process is terminated by disabling
the SSI interrupts. The BUFFER EMPTY condition, i.e. 17 equals 0, is monitored by
the foreground process, the peak sampling process, which reads data from the circular
buffers.

All the measures discussed above simplified the programming of the ADC
process and therefore increased the efficiency of the real-time process.

CHAPTER 4: LIMCA SOFTWARE DESIGN AND IMPLEMENTATION 65
4.3.5. Peak Sampling Process

As discussed in the previous section, the digitized LiIMCA signal is saved in two
31-Kword circular buffers, one per channel. The real-time analysis of the signal is
further carried out by several foreground processes under the control of the real-time
control executive. The analysis task is decomposed into peak sampling, peak
description and peak classification processes, Section 1.4,

Here the peak sampling process finds and chops the peaks in the circular buffers
based on two noise thresholds, which mark the margins of the noise band of the signal
(Figure 4.7 and Figure 4.8). The noise band refiects the on-spot operational conditions
and determines the minimum size of the particles that the system can detect under such
conditions. The process also manages the read pointer of the two circular buffers,
monitors the buffer empty condition and updates the processing time when it reads the
circular buffers.

The LiIMCA signal, as shown in Figure 4.7, has two states: State 1 (no peak
state) indicates that the digitized data are within the noise band and State 2 (peak state)
indicates that the data points are beyond the noise thresholds.

The flags in PkSamplingSt register mark the state of the signal, sign of the peak
being sampled and the completion of the peak sampling for both analog channels
(Figure 4.4). The PK_SAMPLING_FIND_A or PK_SAMPLING_FIND B flags are
used to reflect the state of the signal from channel A or channel B, zero for State 1 and
one for State 2. In State 2, a peak is being sampled and the sign of the peak is marked
by PK_SAMPLING_SIGN_A or PK_SAMPLING_SIGN_B, 1 for positive peak and 0
for negative peak. The PK_SAMPLING_FINISH_A and PK_SAMPLING_FINISH_B
flags are used to mark the completion the peak sampling. Upon completing the
sampling of a peak for one channel, the completion flag for that channel becomes set.

As shown in Figure 4.8, a peak is sampled started at the point right before the
one that crosses one of the noise threshold and ended at the first point restoring back
into the noise band. Positive and negative peaks are sampled in the same way. The
sampled peak is saved in the ‘sampled peak buffers’ (Figure 4.2).

Accompanying with the sampled peak, the width of the peak is saved at
X:PkWidthA if the peak is from channel A or at Y:PkWidthB if the peak is from
channel B,

CHAPTER 4: LIMCA SOFTWARE DESIGN AND IMPLEMENTATION 66

140
120
100

State 2
State 1 State 1

M @
o o
7T 7

Noise Band

| NOISEHI

o oty ot e

. NOISELO

Voltage (mV)

0 5 10 15 20
Time {ms)

Figure 4,7 A Typical Section of LIMCA Signal Extracted from the

Eastalco Alaminum Test

The time label of the first data of the peak is also saved. It is used later to
compute the time when the peak starts, Two variables are used to form a 32 bit counter
for the time label. Therefore only the lower 16 bits of the two variables are used.
X:PkStartLol6A keeps the low 16 bits of the counter and X:PkStartHil6A keeps the

140
120 |
100 |
80
80

40)
20 | NOISEHT) l

1] 1
>

I
Noise Band

Voitage (mV)

o I
20 |
-40

NOISELO

8 9 10 11 12
Time (ms)

Fa—]

Figure 4.8 The Peak Sampled from the Signal in Figure 4.7

CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 67
high 16 bits of the counter for the peak from channel A. Similarly, Y:PkStartLol6B
and Y:PkStartHi16B keep the low and high 16 bits of the counter respectively for the
peak from channel B.

Depending on the state of the signal at the time that the process starts or
terminates, there are two entry or exit conditions. They are the ‘COMPLETE’ and
‘CONTINUE’ conditions, which are represented by the FK_SAMPLING_CONT_A
flag for channel A and the PK_SAMPLING_CONT_B flag for channel B in the
PkSamplingCr register (Figure 4.4). The flags are set to 1 for ‘CONTINUE’ condition
and 0 for the ‘COMPLETE’ condition. The states of the two flags are validated before
the process exits, If the process returns when the signal in one channel is in state 1, the
corresponding flag is cleared to indicate the ‘COMPLETE’ condition. Otherwise, the
flag is set to indicate the ‘CONTINUE’ condition. This condition indicates that the
sampling of the current peak has been interrupted and must be resumed later.

The next time the process is invoked, it decides either to continue sampling the
peak that was not finished before it exited or to find a new peak according to the
conditions of these two flags.

In order to sample the peaks in the circular buffers in real-time, the peak
sampling process must run at the same pace as the ADC process, which is writing the
data into the circular buffers. The speed of the peak sampling process is controiled by
monitoring the circular buffer empty condition. As shown in Figure 4.6, the read
pointer managed by the peak sampling process is always “chasing” the write pointer
managed by the ADC process. The distance between the two pointers is monitored by
the r7 address register. Each time the peak sampling process fetches data from the two
circular buffers, it checks if 17 is zero (BUFFER EMPTY). If it does turn out to be
zero, the buffers are empty, there are two possible cases: the buffers are temporary
empty, which frequently occurs since generally the peak sampling process is faster than
the ADC process (by the design of the software to avoid the buffer overflow condition).
In this case, the peak sampling process introduces idle cycles to wait for the ADC
process to fill the circular buffers and then resumes processing when the buffers are not
empty. In this way, the read pointer is prevented from outpacing the write pointer, and
thus the background process and foreground process are kept at the same pace.

The second possible case is when the ADC process has been terminated and thus
stopped filling the circular buffers. In this case, the HOSTSTOP flag in the ProcStat
register became active for the peak sampling process to poll. Under this condition, the
process sets the FIFOEMPTY flag in the BuffStat repister and returns. As discussed in

CHAPTER 4. LIMCA SOFTWARE DESIGN AND IMPLEMENTATION 68

Section 4.3.3, this flag will cause the control executive to do the necessary clean-up
and terminate the real-time MCA process.

The processing time is recorded and updated each time when the process reads a
new set of data from the two circular buffers. The time is counted in a 32-bit counter
formed by two variables at X:Countl.ol6 and X:CountHil6 for the low and high 16
bits of the counter respectively. This counter is compared, each time it is incremented,
with the pre-set maximum processing time saved at X:CountLol6Max and
X:CountHil6Max. If the two 32 bit values are equal, the process sets the TIMEUP flag
in the ProcStat register, stops the SS! interrupts and sets r7 to zero, making the circular
buffers empty. These actions cause the control executive to ignore the digitized data in
the circular buffers that came later than the data currently processed by the peak
sampling process, and therefore to terminate the real-time process immediately at the
time that the host has expected. The default time counts at X:CountLoléMax and
X:CountHil6Max are $00FFFF, or otherwise specified by the host computer and
downloaded to the DSP process. The default values of the time counts represent a time
span of about 23.86 hours at the sampling frequency of 50 KHz. This is clearly an
unrealistic processing duration. However this situation is frequently used to allow the
user to monitor the progress of the processing and to terminate the process at any time
using the host command interrupt.

In conclusion, the peak sampling process samples the peaks from the circular
buffers and detects the exit conditions for the real-time control executive. The source
code for this process can be found in Appendix C starting at ‘Pksampling’ on page 98.

4.3.6. Peak Description Process

After a peak from either channel A or channel B is sampled by the peak
sampling process, the peak description process is invoked by the real-time control
executive. The entry condition for the process is defined in the PkSamplingSt register.
The PK_SAMPLING_FINISH_A and PK_SAMPLING_FINISH_B flags are checked
in order to decide which input buffer (‘sampled peak buffer A’ or ‘sampled peak buffer
B’), and which output buffer (‘peak buffer A’ or ‘peak buffer B') to be used.

This process analyzes data from the ‘sampled peak buffer’ and generates a six
parameter description of each peak. These include four shape and two time parameters
(Figure 4.9). The shape parameters are the peak height, the width, the start slope and
the end slope, and the time parameters are the start time and the peak time.

CHAPTER 4: LIMCA SOFTWARE DESIGN AND IMPLEMENTATION 69

4

peak heipht

Voltage

peak time noise band

NOISEHIF ~f =~~~ === m e e mm il = mmmmme
start tim end time
0

NOISELO

peak height

(a) (b)

Figure 4.9 Peak Parameters: (a) Positive Peak, (b) Negative Peak

The start time has been already counted by the peak sampling process and saved
in the variable pairs, X:PkStartHil6A and X:PkStartLol6A for channel A or
Y:PkStartHi16B and Y:PkStartLol6B for channel B, which represent the absolute time
in the format discussed in the previous section. The width of the peak has also been
computed by the peak sampling process. It is saved in X:PkWidthA for channel A or
Y:PkWidthB for channel B.

Other parameters are to be calculated by this process. The starr slope and end
slope are the derivatives of the peak at the srar time and end time respectively. The
start slope is calculated by subtracting the second data point from the first data point of
the *sampled peak bufier’ and the end slope by subtracting the last data point from the
second-to-last data point in the same buffer. The peak time is defined as the time when
the data point reaches the positive or negative maximum point for a positive or negative
peak respectively. It is computed as the data count from the start time to the peak time.
Thus it is a relative time label. The peak height is found by comparison and is
represented by 16-bit signed integer number corresponding to the 16 bit ADC interface.

After the computation of the above parameters, the process calls the PHA
process to find the PHA channel number associated with the height of the current peak.
If the peak is negative, a zero is returned, otherwise the related PHA channel number is
returned (see next section). This and the six peak parameters form a group of seven
parameters in total, characterizing a peak in the time domain. They are transferred into

CHAPTER 4: LIMCA SOFTWARE DESIGN AND IMPLEMENTATION

70
Peak Buffer A Peak Buffer B
Starting At X:$6000 Starting At Y:$6000
3)
pr;:::::;gz::cs previous peaks’
ceecee parameters
/| start time (high 16 bits) e
® start time (low 16 bits) /| start time (high 16 bits)
§ start slope @ start time (low 16 bits)
;‘< peak time '?; start slope
o peak height oy < peak time
5 width E peak height
end slope E width
K_LH,A channel number end slope
ceveee k PHA channel number
. sessse
bottom of the buffer bottom of the buffer

Figure 4.10 Parameter Sequence in the Peak Buffers

the ‘peak buffer’ (Figure 4.2) before the process returns. They occupy eight memory
locations (the start time takes two locations). The sequence of the parameters in the
‘peak buffer’ is shown in Figure 4.10.

The conditions of the two ‘peak buffers’ are checked by this process. If any of
them is full, the related buffer full flag in the BuffStat is set to signal the control
executive to transfer the buffer to the host and empty the buffer by calling a data
transfer utility, see Section 4.3.8.

In brief, the peak description process describes the peaks saved in the ‘sampled
peak buffers’, saves the peak parameters in the ‘peak buffers’ and manages the ‘peak

buffers’. Its source code is listed in Appendix C under the label ‘Pkbaescription’ on
page 103,

4.3.7. Pulse Height Analysis (PHA) Process
The PHA process takes the height of a positive peak, calculates and returns the
PHA channel number that corresponds to the peak height. To emulate the operation of
the analog LIMCA system shown in Figure 1.5, a digital logarithmic amplifier must be

CHAPTER 4: LIMCA SOFTWARE DESIGN AND MPLEMENTATION 71
implemented. Since the Motorola DSP55001 processor, a fixed point processor, is
being used, to avoid floating point calculations, a table-driven algorithm is used.
Suppose the height of a peak is y, which is in the range of

Imin <Y <Ymax »
here ymin can be the height of the smallest peak that can be detected and yp, 4y is the
up limit of the ADC. In our case, a 16-bit ADC is used and the digitized number is
represented in 2 signed binary format. The number range is from -32768 to +32767.
Thus here ypyay = 32767.

To emulatad the log amplifier, take
Yinin = LOG(ymin), Y = LOG(y) and Yopay = LOG(¥mqy,) (4.1)

then

Yimin <Y < Ypmax.
To find the PHA channel number, Y is compared with the series:

Y; =1i-A4Y, 0<i<N-1 4.2)
where N is the total number of the PHA channels and

AY = (Ymax - Ymin) / N.
For a certain integer k, if

Y SY<Ypyp 4.3)
then k is the channel number that corresponds the peak of height y before the
logarithmic amplification.

To avoid using Equation (4.1) in processing, we transform the series (4.2) into

y;i = EXP(Y;) 4.4)
Considering (4.1) and (4.4), Equation (4.3) is equivalent to
Yk SY <Yk+1 4.5)

Equation (4.5) is used in real-time processing. A exponential PHA checking
table is constructed using Equation (4.4) and is located in Y data memory space starting
at Y:$0100. The length of the checking table N, being 256, 512 or 1024, equals the
total number of the PHA channels. The contents of the exponential checking table are
computed by the host and then downloaded to the DSP, The following piece of code on
the host side is used:

{float) ChannelInc=log{32767) /ChannelNum
for(im0; i<ChannelNum; i++) {
(int) PHATable' ..}=pow(10.0,i*ChannelInc)
}

CHAPTER 4; LIMCA SOFTWARE DESIGN AND IMPLEMENTATION T
The variables are:

ChannelInc: logarithmic increment between two adjacent channels;

ChannelWum total number of PHA channels;

PHATable[1: an array to keep the contents of the PHA checking table.

Note that in this sample program y,;p, is assumed to be 1 and y;4y to be 32767. Here
only positive peaks are concerned. However, negative peaks can be handled in the same
manner after being negated.

A quick sort routine compares the peak height with the contents of the table to
find the two consecutive values, which satisfy equation 4.5 (Figure 4.11). The address
of the memory location which keeps the lower value of the two is used as an index to
the PHA channel number. The channel number is later computed by subtracting the
base address of the table from the index. The number of the comparisons of the
process, also called the number of sorting cycles, is a constant related only to the total
number of the PHA channels. This number and the maximum PHA channel number are
downloaded from the host and saved at X:QsortCyc and X:ChannelNum respectively.
The height of a peak should passed on to the PHA process via register X1 and the PHA
channel number is returned via register A. Address register r3 is used to index thc PHA
checking table. If a negative value in X1 is inputted, a zero will be returned. The
source code of the PHA process is listed in Appendix C starting at ‘PHA’ on page 107.

The algorithm and implementation of this process reflected the concerns and

PHA checking table
32767
32108
Peak height | ...
in X1 .
[s000_] . ad el
address of the lower
‘513:?] is indexed by 3
The number goes -
in between these E
two ce“s (X1 L2]
. r3 - base address
. = channel number
base address 1
at Y:$0100
return with a result in A

Figure 4,11 Schematic Diagram of the PHA process

CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 73
emphases on the speed and efficiency of the process at the expense of some data
memory space for the checking table. However, for real-time processing, this is an
acceptable trade-off.

4.3.8. Real-time Data Transfer Process

The real-time data transfer process establishes an on-line data link between the
host and the DSP-56. It was implemented as two general DSP to host data transfer
utilities, which are referred to later in this section as Transfer A and Transfer B.

In general, Transfer A and Transfer B transmit a block of contiguous X or Y
data memory to the host respectively. The starting address and the length of the
memory block to be transferred are passed through the address register r4 and its offset
register n4.

Both utilities are used by the control executive (Figure 4.3) to transfer ‘peak
buffers’ to the host computer. In our application, the ‘peak buffer A’ is located in the
X memory and the ‘peak buffer B' in the Y memory (Figure 4.10). Therefore,
Transfer A should be invoked when ‘peak buffer A’ is full and Transfer B when ‘peak
buffer B’ is full. The decision which utility should be called is made by the control
executive according to the status of the peak buffer full flags in the BuffStat register
(Figure 4.4).

To fulfill the real-time data transfer, a parallel host process must be developed.
Proper handshaking between the host and the DSP processes (Figure 4.12) is vital for
real-time processing. In order not to delay the DSP process, the host processor must
respond the DSP transfer request immediately, and thus an interrupt-driven process on

1. Set LPT1 interrupt request

2, Set HF1 flag

3. Clear LPT1 Interrupt request

4. Send transfer code

Transfer A
or
Transfer B

Host
Processor

. Host acknowledge

Transfer
Process

6. Send the number of words

7. Host acknowledpe

ISR: Interrupt Service

8. Start bulk data transmission Routine

Figure 4.12 Real-time Data Transfer Between the Host and DSP

CHAPTER 4; LIMCA SOFTWARE DESIGN AND IMPLEMENTATION 74

the host side is required. However there is no interrupt from the DSP-56 to the host
processor in the implementation of the DSP-56 co-processor board currently in use. To
overcome this, we used additional line to connect the DSP's auxiliary port to the PC's
LPT1 parallel port. This connection allowed a TTL output from the auxiliary port to
trigger the LPT1 interrupt on the PC. A host ISR was implemented to communicate
with DSP.

As mentioned in Section 3.1.5, bit 19 of the Mode Control Register (MCR)
controls the output of the TTL output. However bit manipulation instructions cannot be
used here to control this bit. Data move instructions are applied to update the content of
the MCR and thus control the TTL bit. Two words at X:TTL_Set and X:TTL_Clear,
which have different status of the TTL control bit and keep the copies of the other bits
of the MCR, are used as the sources of the MCR. Copying X:TTL_Set to MCR sets
the TTL output high, sending the data transfer interrupt request to the host, and
copying X:TTL_Clear to the MCR sets the TTL output low, clearing the interrupt
request.

When either Transfer A or Transfer B is called, it first sends the data transfer
interrupt request via the LPT1 inteirupt. This immediately interrupts the host processor
and activates the host data transfer process, which acknowledges the request by setting
the host flag HF1 to the DSP processor. Then the DSP process clears the interrupt
request and sends the host a transfer code, which tells the host the channel of the data
and the transfer direction, 1 for channel A DSP to host data transfer, 2 for channel B
DSP to host data transfer and 3 for host to DSP data transfer. After receiving the host
acknowledgment, the DSP process sends the total number of 16-bit words to be
transferred. And finally, after the host acknowledges for readiness, the DSP process
starts bulk data transmission using the polling method (Section 3.1.3.1).

After the data transfer process successfully terminates, the control executive
clears the corresponding peak BUFFER FULL flag and resets the write pointer of the
‘peak buffer’ and thus makes it empty and ready for further processing.

Because the polling technique is used in the bulk data transmission, the speed
of the data transfer process on the host side is the governing factor of the overall data
transfer rate. Special considerations have been taken into account on the host side, as
discussed in the next section.

CHAPTER 4: LiIMCA SOFTWARE DESIGN AND IMPLEMENTATION 75
4.4. Host-DSP Interface for Real-time Data Transfer

As mentioned at the beginning of this chapter, the LIMCA software consists of
three parts, viz, the DSP software, the host-DSP interface and the Graphical User
Interface (GUI). Among them, the host-DSP interface directly communicates to the
DSP processor and the GUI, providing a real-time data link between them. Its
performance has a direct impact on the DSP process as well as the GUIL. Speed and
efficiency are the major concerns in the design and implementation of the interface.

4.4.1. General Views

The data processing on the host side includes (1) receiving the peak data from
the DSP, (2) decoding the data, which are still in the DSP format, into proper C data
type, for further host processing, (3) classifying the type of the peak using the decoded
data, (4) analyzing the data statistically, (5) displaying the results graphically and
interactively, and (5) saving the results for later references. These general tasks are
decomposed into small functions. Most of them are foreground functions for most of
the data processing tasks. Others are background functions controlled by the DSP
interrupt requests and a few foreground functions used to install, enable and disable the
interrupt-driven background functions. The background functions and the associated
foreground functions were grouped together as the host-DSP interface. The rest formed
the GUI and were programmed as foreground functions. As the speed of the host-DSP
interface was the dominant concern, the number of tasks allocated to the interface was
minimized. As a result, only task 1 was implemented in the interface, and the rest were
left to the GUI. The host-DSP interface and the GUI are related implicitly. The main
data communication between them is established through common memory blocks,
managed by the GUIL.

The interrupt related foreground functions of the interface are discussed in the
next section. The background functions of the interface, dealing with the real-time data
transfer, are described in Section 4.4.3. The common memory management between
the interface and the GUI is detailed in Section 4.4.4.

4.4.2. Interrupt Installation and Control
As discussed in Section 4.3.8, an additional cable links the DSP's auxiliary port
to the parallel port of the host PC, providing a physical interrupt source from the DSP
board to the host, The cable and connectors are schematically shown in Figure 4,13,
The connection as described in this figure connects the TTL output of the DSP

CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 76

sleeve
tip

ring 13(3 s

10 : »

—sleeve E .
—ring . é—i »

mini-phone jack to 25 pin male connector
DSP's auxiliary port to PC's parallel adapter

Figure 4.13 Cable Connection between DSP's Auxiliary Port and PC's
Parallel Port

auxiliary port to the ~ACK pin (pin 10) of the LPT1. This pin is routed to the hardware
interrupt request 7 of the PC's programmable interrupt controller (PIC).

Two functions (startints() and StopInta()) have been implemented to install
a new interrupt handler, enable the interrupt, disable the interrupt and restore the old
interrupt handler, The first two tasks were integrated in function startines(). The
other two were left to the function stopints(void). These futctions replace an old
interrupt handler with a new one and program the programmable interrupt controller
(8259A PIC) and the first parallel printer interface (LPT1).

Installing the handler of the data transfer ISR is the first task of startints, The
data transfer process, which is invoked at the time of interrupt, was implemented as a
group of functions with a tree type hierarchical structure, At the top of the tree was a
function defined as interrupt type. A interrupt type pointer to this function was also
defined to provide the entry address. This pointer is installed at a certain memory
location in the PC's interrupt vector memory space. The locations where the pointer
goes depend on the type of the interrupt. All the interrupt sources in PC have been
enumerated by their interrupt numbers. In our case, hardware interrupt request line 7 is
used. This interrupt has been assigned as interrupt 15. Consequently, the pointer to the
function that services this interrupt must be installed at 003CH through 003FH, as each
interrupt vector takes four memory slots starting from 0000H. In actual programming,
placing the ISR handler is carried out by library functions provided by the compiler we

CHAPTER 4: LIMCA SOFTWARE DESIGN AND IMPLEMENTATION 77
are using, provided that the interrupt number is specified correctly. Note that the
original handler must be saved before it is replaced with the new one.

The second task of the function is to enable the interrupt., This is done by
enabling the LPT1 -ACK pin (pin 10) and enabling IRQ7 of the 8259A PIC. The port
addresses of LPTI start at 0378H through 037FH. The printer control register is
located at 037AH, which is used to control the status of LPT1. Setting bit 4 of this
register turns on the -ACK pin, thus the interrupt request can get through and reach the
8259A PIC. Other bits of the control register are irrelevant to our application and are
ignored.

Before the interrupt can reach the PC's CPU, it must go through the 8259A
PIC. Programming this controller for our application involves the manipulation of two
8-bit port registers at 0020H and 0021H. The second one is interrupt mask register,
whose nth bit masks the interrupt request from line IRQn. To enable IRQ7, which is
used in our application, bit 7 should be cleared. Once an interrupt happens further
interrupts are disabled automatically until the controlier receives EOI (end of interrupt)
code written to the first register at 0020H. This code itself is 0020H. However this
must be sent by the background ISR, each time when it exits rather than this
foreground function, to enable the following interrupts.

In summary, this function
o saves the old LPT1 ISR handler;

» installs the new LPT1 ISR handler, which services the host-DSP data transfer;
» enables the -ACK pin (pin 10) of LPT1 by setting bit 4 at 037AH;
» enables IRQ7 of the 8259A PIC by clearing bit 7 at 0021H.

The function stopInts does the opposite tasks as startInts, Briefly, it
+ disables IRQ7 of the 8259A PIC by setting bit 7 at 0021H;
 disables the -ACK pin of LPT1 by clearing bit 4 at 037AH;

o discards the current LPT1 ISR handler and restores the old handler saved by

StartInts;

» sends EOI to 0020H to make the 8259A PIC available for other interrupts.

4.4.3. Interrupt Service Routine (ISR) for Real-time Data Transfer
As mentioned in the previous section, the handler of the ISR is installed and
enabled by the utility startints. The ISR is activated when the DSP data transfer
request occur through the LPT1 interrupt, and the foreground functions of the GUI are
suspended until it completes the data transfer requested by the DSP process.

CHAPTER 4: LIMCA SOFTWARE DESIGN AND IMPLEMENTATION 78

The ISR mainly deals with the host-DSP handshaking and data transfer. The
handshaking sequence has already been discussed in Section 4.3.8 and is shown in
Figure 4.12. The data transfer process on the host side is undertaken in the polling
mode. Before reading the port, it checks the RXDF bit of the Interrupt Status Register
of the host port (Figure 3.8). If the flag is set, the routine reads the RXM and RXL in
sequence and ignores the RXH, since the data transferred here are only 16-bit wide and
take only two data ports. For details about data transfer between the host and the DSP
in the polling mode, see Section 3.1.3.1. The data read from the RXM and RXL ports
are being saved in the EMS memory space in the original DSP format for the GUI to
process further. For the RXM and RXL ports, see Section 3.1.3, and the DSP data
format, see Figure 4.10.

4.4.4. EMS (Expanded Memory Specification) Memory Pools for Real-time
Peak Parameters

The real-time peak parameters from the host port are saved in two memory

pools in the same format as in the DSP memory buffers. Each pool is for one channel

(Figure 4.14). Note that only one of the pools is shown in this figure. These pools are

accessible to the GUI. These memory pools are created in the EMS. The decision to set

up the pools in the EMS was made based on the following considerations:

o The peak parameters have to be written to a storage media as fast as possible in
order to catch up the fast DSP process. Thus RAM spaces were chosen for this
purpose; .

¢ Most of the PC's conventional memory space is occupied by system and application
programs and data, and there is little room for massive data storage;

¢ The EMS is not being used in real-time data acquisition mode according to the GUI
design of the LiMCA software, and it is much bigger than the conventional
memory.

In each data acquisition, all the peak parameters are saved in the EMS pools. They are

decoded for further analysis in real-time, and the results are displayed graphically and

interactively. However the decoded data are not saved in real-time because the time
constraints do not allow the access to a hard drive in real-time. The original data in the

EMS pools are re-decoded and saved in a hard drive after the real-time data acquisition-

is completed. In this design, the size of the EMS pools are required to be big enough o

accommodate all the peak parameters throughout from a whole acquisition.

CHAPTER 4: LIMCA SOFTWARE DESIGN AND IMPLEMENTATION 79

Compared to the conventional memory, additional procedures are needed for the
access of the EMS because of its structure. The whole EMS is divided into frames,
which are further divided into pages. Each frame contains four consecutive pages, and
each page has a memory space of 16 Kbytes. The PC's CPU can only access one EMS
frame at a time. The frame that is currently addressed by the CPU is called the ‘active
frame’.

To access the EMS, the following generic procedures should be programmed in

an application. They are:

(1) to get the total EMS pages and available pages of the current system;

(2) to get the EMS frame segment;

(3) to allocate the number of EMS pages needed to an EMS handler;

(4) to initialize a far pointer to the EMS frame segment;

(5) to map 4 consecutive EMS pages into the active frame;

(6) to access the active frame by pointers which are initialize by referencing the frame
segment pointer set up in step (4);

(7) to map another 4 consecutive EMS pages into the active frame if the EMS pages in
the current active frame is full, and to repeat step (6);

(8) to release the EMS before program exits.

These tasks have been implemented into utility functions in our application using MS-

DOS interrupt 67H.

The EMS pool for channel A is shown in Figure 4.14. The EMS pool for
channel B has the same structure. As one can see, 152 EMS pages, 2,490,368 bytes in

EMS Pool
for Channel A
page 151 y
page 150 , ’ s
. , ’, Active Frame EMS write pointer
¢ s & e
. ’ ‘&f\ EMS read pointer
- O
page i+ 3 Q’QQ P H EMS frame
page i+2 ’ s E scgment pointer
page i+ 1 ’ ’ g
. P
pige? Emergency
. Buffer in -
. Conventional | buffer write pointer
page I Memory
page 0 buffer base pointer

Figure 4.14 EMS Pool for DSP Real-time Peak Parameters of Channel A

CHAPTER 4: LIMCA SOFTWARE DESIGN AND IMPLEMENTATION 80

total, are allocated to the EMS pool for channel A peak parameters. Noting that 16
bytes are used to describe a peak (Figure 4.10), each pool can save peak descriptions
of up to 155,648 peak. Considering that it only takes several minutes to fill the sensing
tube for the aluminum application, the size of the memory pools are more than enough
for a data acquisition in this time range.

During the real-time data acquisition, the real-time data are written to the active
frame by the background data transfer ISR via the EMS write pointer. The GUI reads
the peak data from the active frame via the EMS read pointer. When the frame has
been filled up by the data transfer ISR and has not yet been fully processed by the GUI,
the data transfer ISR switches to a 16-Kbyte emergency buffer in conventional
memory, so as not to stop the real-time data transfer process. After the GUI has
processed the active frame, it maps another 4 pages into the active frame, moves the
data from the emergency buffer, if there are any in the buffer, to the new pages in the
active frame, and resets the EMS write and read pointers accordingly. In this way, the
maximum delay of 1024 peaks is aliowed between the DSP process and the host
process. This time constraint should be considered in the implementation of the GUL.

As one can conclude that it is important that on the host side, the real-time data
transfer process is not delayed in any circumstances, in order not to delay the DSP
process. Between the real-time data transfer process and the data processing involved in
the GUI, a buffer of adequate size in addition to the main storage media (the EMS
pools in our case), for the real-time data is equally essential to allow some delay of the
host process. Such time freedom is necessary for the complex data processing tasks
assigned to the GUI.

CHAPTER 4: LiIMCA SOFTWARE DESIGN AND IMPLEMENTATION 81
4.5. Software Performance

Figure 4.15 shows the degree of utilization of the DSP co-processor board. The
data were obtained by counting the total number of instructions along the longest
branch in the final program,. The calculation of the usage by all the processes in this
Figure were based on the worst case data (see Section 2.3.1 for the worst case
operation). The DSP real-time software is assumed to be working in the stereo (two
channel) mode. The ADC sampling rate is set to 50 KHz, which is adequate to avoid
aliasing of the input analog signal. Based on the worst case operating conditions, i.e.
2000 peaks per second, the DSP processor is busy 48% of the total time.

In this calculation, two factors were not taken into account. The first is the
length of the FIR (Finite Impulse Response) filter in the filter process (Figure 4.2) and
the second is the number of cycles that are required to synchronize the DSP-host data
transfer process. An increase in the length of the filter dramatically increases the time
required by the filter process. In some cases, a sharp notch filter is needed to eliminate
a narrow range of frequencies. Such a filter cannot be implemented in this software,
because of the big number of taps required. A piece of high speed FIR filter hardware
may be needed. With respect to the synchronization cycles, the data shown in Figure
4.15 were calculated for a host computer with a 50 MHz system clock and a 100
nanosecond bus cycle. In this case, 3 waiting cycles are needed at the DSP level for
each data transfer.

Up till now only about 50% of the DSP computational capacity is used. This

idle (51%)
data transter (1%)
w
&
(>4
2
= peak description (9%)
peak sampling (24%)

ADC (11%)

0 10 20 30 40 g) 60 70 80 90 100
0

Figure 4.15 Usage of the DSP CPU

CHAPTER 4: LIMCA SOFTWARE DESIGN AND IMPLEMENTATION 82

Table 4.3 Characteristics of LIMCA. Peaks

" start stope end slope
peak type sign value sign value width/height

NP + high - high small

BJ + high - low large “

BF + low - uncertain large

NBJ - high + low large

NBF - low + uncertain large

US - high + low large ||
NP --Normal Pulse NBJ --Negative Baseline Jump
BJ --Baseline Jump NBF --Negative Baseline Fluctuation
BF --Baseline Fluctuation US --Undershoot

gives us the potential for future development, such as implementing the peak
classification task at the DSP level and developing code to use the DAC channels for
process control.

As for the host-DSP interface, many test runs for both water and molten
aluminum showed that there were no detrimental delays introduced down to the DSP
process from it, For the amount of the data to be transferred from the DSP to the host,
the interface has not reached its full capacity. The high efficiency of the interface is
attributed to the successful memory management and synchronization between the
background and foreground functions.

The peak description parameters, obtained by the DSP process and transferred
to the host, can be used to characterize the different types of LiMCA peaks using Table
4.3. From this table, one can see that a simple peak classification algorithm can be
used. It involves checking the sign of the peak and determining the relative magnitudes
of the slopes at peak start and at peak end, and the peak width to height ratio,
Successful classification depends upon using proper thresholds, which are currently
determined experimentally.

In conclusion, in the implementation of the real-time software of our multi-
processor system for LiMCA application, timing and communication are crucial
factors. These concerns have been reflected in every phase of the software design and
development. Proper measures used to tackle these concerns led to the successful
completion of the real-time software including the DSP software and the host-DSP
interface.

CHAPTER 5: CONCLUSIONS AND FUTURE DEVELOPMENTS 83

5. CONCLUSIONS AND FUTURE DEVELOPMENTS

5.1. Conclusions to the Thesis

A DSP-based LIMCA system has been implemented to replace the first generation
LiMCA system, which is based on the analog signal processing.

The DSP real-time software and the host-DSP interface have been implemented and
tested. They are sufficient to carry on the real-time LiIMCA operation in the worst
case.

Enough computing capability of the DSP hardware and software are reserved for
the future development, e.g. the implementation of the peak classification process at
the DSP level.

The EMS memory management has been implemented in the host-DSP interface.
The use of the EMS in the communication with the DSP is crucial for the host
computer to catch up the speed of the DSP process,

A group of time domain peak description parameters are found to be useful and
efficient for peak classification. A time domain real-time algorithm has been
implemented in the DSP software to extract these parameters.

A simple table-driven peak classification algorithm can be implemented according
to the characteristics of the peaks described by the peak description parameters.

5.2. Suggestions for Future Work

To further enhance the perforniance the DSP LiMCA system, the following

improvements are projected.

A fast low-price DSP board is needed for the implementation of a sharp notch
filter. Such filter is needed to filter out known frequency components that interfere
with the LiMCA signal, in an industrial environment filled with electric noises from
highly powered electric equipment. This filter could communicate with the DSP-56
board via its network port.

For research purposes, it is required that the LiMCA peaks be sampled and saved
along with their peak description parameters. However, the host-DSP interface can
only handle the peak description parameters. The sampled peak must be transferred
through other interface and be saved into the media control by the interface. A DSP

CHAPTER 5: CONCLUSIONS AND FUTURE DEVELOPMENTS 84
process can be implemented for the DSP-56 hardware to use its SCSI to save the
peaks into a fast hard drive.

« Considering the number of peaks to be transferred and saved, a good compression
algorithm and its implementation should be considered.

» Further studies on the peak classification algorithm must be conducted, especially
on the classification of the Multiple Pulses.

s The classification algorithm should finally be implemented at the DSP level.

« To study the high pass filter effect and to compensate the magnitude attenuation of
the LIMCA peaks, a software LiMCA signal simulator is needed.

REFERENCES 85

REFERENCES

[Ariel 89] Ariel Corporation, User's Manual for the DSP-56 DSP Coprocessor Board
Jor PC Compatibles, Ariel Corporation, 1989

[Bates and Hutter 81] D.A. Bates and L.C. Hutter, *‘An Evaluation of Aluminum
Filtering Systems using a Vacuum Filtration Sampling Device'’, Light Metals,
The Metallurgical Society of AIME, pp. 707-721, 1981

[Bauxman et al. 76] K. Bauxman, J.D. Bornand, G.B. Leconte, ‘‘Impact of
Purification Methods on Inclusions and Melt Loss’’, Light Metals, The
Metallurgical Society of AIME, pp. 191-207,1976.

[Carayannis et al. 92] G. Carayannis, F. Dallaire, X. Shi, R.I.L. Guthrie, **Towards
Intelligent Detection of Inclusions in Liquid Metals’, Proc. Int. Symposium on
Artificial Intelligence in Materials Processing Operations, 31st CIM Conf. of
Metallurgists, Edmonton (Alberta), pp. 227-244, Aug. 1992,

fCarayannis and Shi 93] G. Carayannis and X. Shi, ‘‘Evaluating Metal Cleanliness
Using DSP Technology’’, Proc. of The International Conference on Signal
Processing Applications & Technology, ICSPAT’93, Santa Clara (California),
pp. 895-904, Sept. 1993.

[Coulter 56] W.H. Coulter, ‘‘High speed automatic blood cell counter and cell size
analyzer’’, Proc. of the National Electronic Conf., pp. 1034 - 1042, Chicago
(IL), 1956.

[Dallaire 90] F. Dallaire, ‘‘Electric Sensing Zone Signal Behaviour in Liquid
Aluminum”’, Master’s Thesis, Dept. of Mining & Metallurgical Eng., McGill
University, 1990.

[DeBlois and Bean 70] R.W. DeBlois, C.P. Bean, ‘‘Counting and Sizing Submicron
Particles by the Resistive Pulse Technique’’, The Review of Scientific
Instruments, Vol. 41, No. 7, pp. 909 - 915, 1970.

[Doutre 84] D.A. Doutre, ‘‘The development and application of a rapid method of

. evaluating molten metal cleanliness’, Ph.D. Thesis, Dept. of Mining &
Metallurgical Eng., McGill University, 1984.

[Kuiunk 92] B. Kulunk, *‘Kinetics of Removal of Calcium and Sodium by Chlorination
from Aluminum and Aluminum-IWT% Magnesium Alloys’, Ph.D. Thesis,
Dept. of Mining & Metallurgical Eng., McGill University, 1992,

REFERENCES 86

[Kuyucak 89] S. Kuyucak, ‘“‘On the Direct Measurement of Inclusions in Molten
Metals'*, Ph.D. Thesis, Dept. of Mining and Metallurgical Eng., McGill
University, 1989.

[Kuyucak and Guthrie 89 S. Kuyucak, R.LLL. Guthrie, ‘‘On the Measurement of
Inclusions in Copper-Based Melts’’, Can. Met. Quart., Vol. 27, pp. 41-48,
1989.

[Lee 91] H.C. Lee, ‘‘On the Development of a Batch Type Inclusion Sensor in Liquid
Steel”’, Ph.D Thesis, Dept. of Mining and Metallurgical Eng., McGill
University, 1991.

[Levy 81] S.A. Levy, ‘‘Applications of the Union Carbide Particulate Tester’’, Light
Metals, The Metallurgical Society of AIME, pp. 723-733, 1981.

[Mansfield 82] T.L. Mansfield, ‘‘Ultrasonic Technology for Measuring Molten
Aluminum Quality’’, Light Metals, The Metallurgical Society of AIME, pp.
969-980, 1982,

[Motorola 89] Motorola, DSP56000/DSP5600! Digital Signal Processor User's
Manual, 1989

[Motorola 92] Motorola, ‘‘24-Bit General Purpose Digital Signal Processor’’, Motorola
Semiconductor Technical Data, Rev.3, 1992

[Nakajima 86] H. Nakajima, ‘‘On the Detection and Behaviour of Second Phase
Particles in Steel Melts’’, Ph.D Thesis, Dept. of Mining and Metallurgical Eng.,
McGill University, 1986.

[Oppenheim and Schafer, 89] A.V. Oppenheim, R.W. Schafer, Discrete-time Signal
Processing, Prentice-Hall, Englewood Cliffs, NJ, pp118, 1989.

[Pitcher and Young 69] D.E. Pitcher, ‘‘Methods of an Apparatus for Testing Molten
Metal”’, U.S. Patent, 3,444,726, May 20,1969.

[Siemensen 81] C.J. Siemensen, ‘‘Sedimentation Analysis of Inclusions in Aluminum
and Magnesium’’, Met. Trans. B. Vol 12B, pp. 733-743, 1981,

(Thibault et al. 89] J.-F. Thibault, A. Boisset, F. Dallaire, G. Carayannis, ‘‘Pattern
Recognition Techniques for Metal Quality Control”, Canadian Conf. on
Electrical and Computer Engineering, Montréal (Québec), pp. 771 - 774,
September 1989.

[Tian et al 92] C. Tian, F. Dallaire, R.I.L. Guthrie, ‘‘Inclusion Removal from
Aluminum Melts through Filtration”’, Proc. Advances in Production and
Fabrication of Light Metals and Metal Matrix Composites, 31st CIM Conf, of
Metallurgists, Edmonton (Alberta), pp. 153-161, Aug. 1992,

REFERENCES 87

[Yamanoglu 92] G. Yamanoglu, ‘‘Characterization of Submerged Powder Injection
into Water Using an In-line Particle Detection System'*, Masrer's Thesis, Dept.
of Mining & Metallurgical Eng., McGill University, 1992,

APPENDIX A: SPECIFICATIONS OF THE DSP-56 CO-PROCESSOR BOARD 88

APPENDIX A: SPECIFICATIONS OF THE DSP-56 CO-

instruction cycle

PROCESSOR BOARD
“ CPU Type Motorola DSP56001 Processor
system clock 27 MHz
frequeacy
minimum 74 nano seconds

CPU architecture

parallel architecture, separate logic units, two Data Arithmetic
Logic Units (ALU) for data manipulation, two Address
Generation Units (AGU) for address generation and ¢ne program
controller, multiple data and address buses, partition of data
memory

)i data bus dynamic
range

24 bit word width, 144 dB dynamic range

“ bus architecture

seven internal separate data and address buses supporting parallel
data/address movement during execution of ALU/multiplier
instructions

accumulator
dynamic range

2 accumulators with 56 bit word width, 336 dB dynamic range

addressing

8 addressing pointers; Programmable auto-indexing supported
with 8 offset registers; Modulo and reverse-carry addressing
supported with 8 modulo registers

instructions

62 basic instructions; no-overhead DO-loops and repeated
instructions are directly supported in the hardware.

memory

up to 64 Kwords (x24 bits) of storage for each of the X, Y and
Program memory spaces

PC interface

The DSP-56 occupies seven 8-bit I/O ports whose base address is
mapped by a header that accepts shorting plugs. It supports
DMA using the DSP56001’s built-in DMA facilities.

SCSI interface up to 2 Mbytes/sec of 8-bit parallel I/O to external mass storage
devices
DSP net interface | up to 2 Mbytes/sec of 24-bit parallel I/O to other DSP cards

APPENDIX A: SPECIFICATIONS OF THE DSP-56 CO-PROCESSOR BOARD 8%
. Analog I/O two channels of 16-bit analog to digital conversion, input [
sensitivity adjustable from 100 mV RMS to 776 mV RMS (280
mV to 2 volts peak-to-peak), sampling frequency software-
controlled, 16 selections from 2 KHz to 100 KHz. A single
channel, 12-bit, 400 KHz sample rate mode is also provided.
Two channels of simultaneously sampled 16-bit digital-to-analog d
conversion with fixed (f; = 20 KHz) oth_grder elliptic
reconstruction filters and sin(x)/x compensation are provided.

Auxiliary I/0 A three-conductor mini-phone jack mounted on the rear panel
provides one-bit TTL level 1/0 interface to the DSP56001 chip.

APPENDIX B: THE PROTOTYPES OF THE DSP-56 INTERFACE FUNCTIONS 90

APPENDIX B: THE PROTOTYPES OF THE DSP-56
INTERFACE FUNCTIONS

extern void far configure port addresses(int baseaddr}:;
Set port addresses of the DSP-56 processor.
baseaddr: input variable, the base port address of the processor.
extern void far degmonParams (unsigned short *monStart, unsigned short
*firstFree) ;
Get parameters of the DEGMON monitor.
monStart; output variable, start address of the monitor;
firatFree: first address available after the monitor.
extern int far do_host command(int hc addr);
Execute host command.
hc_addrx: input variable, the start address of the host command in DSP.
extern void far DSP_Status{ void);
Get the status of the LIMCA process.
extern void far empty hp(veoid);
Clear the host port.
extern int far execute_instr(unsigned short starthddr);
Start a DSP process through DEGMON monitor.
startaddr: input variable, start address of the DSP process.
extern int far get hp(unsigmed long *data);
Get a long data from the host port.
data! output variable, the data received.
extern void far get hpl (unsigned long *data):
Get a long data from the host port without time-out.
data: output variable, the daia received.
axtern void far get hps(unsigned long *data);
Get an int data from the host port. ‘
data: output variable, the data received.
extern void far get port addresses(unsigned *icr,unsigned *cvr,unsigned *isr,
unsigned *hi, unsigned *mid, unsigned *lo) ;
Get the port addresses of the DSP-56 processor

APPENDIX B: THE PROTOTYPES OF THE DSP-56 INTERFACE FUNCTIONS 91

iex: output variable, the address of the Interrupt Control Register;
cvr; cutput variable, the address of the Command Vector Register;
isx; output variable, the address of the Interrupt Status Register;
hi: output variable, the address of the Recetve/Transmit Register
(high byte);
mid; output variable, the address of the Receive/Transmit Register
(middie byte);
lo! output variable, the address of the Receive/Transmit Register
(low byte).
externvoid far hf0_off (void);
Clear Host Flag 0.
extern void far hf0 on({void);
Set Host Flag 0.

extern void far hf0_state(int *ret);
Get the status of Host Flag 0.
rat; output variable, the status of Host Flag 0.
extern void far hfl off(veid);
Clear Host Flag 1.
extern void far hfl on(void });
Set Host Flag 1.
extern void far hfl state(int *ret);
Get Host Flag 1 status,
ret: output variable, the status of Host Flag 1.
extern vold faxr HostStop(void);
Signal the DSP to stop the LIMCA process.
extern int far if hf2(void);
Get the status of Host Flag 2.
extern int far if hf3(void);
Get the status of Host Flag 3.
extern int far LoadFile{char *fname, char **result, unsigned int *words,
unsigned int *startiddr, int use mon, int PMemEnable) ;
Load a DSP program down to DSP-56 processor.
fname: input variable, file name of the compiled DSP process;
result: output variable, error message;
words: output variable, lengths of the DSP program;

starthddr;

APPENDIX B: THE PROTOTYPES OF THE DSP-56 INTERFACE FUNCTIONS 92

output variable, start address of the DSP program;

use_mon: input variable, YES if it is a boot load program, NO if not;
PMemEnable: input variable, YES to enable program memory, choose YES if it

is a boot load program, NO if not.
extern void far xead hp{ int channel);

Read peak parameters from the host port.

channel;

output variable, channel of the DSP process.
Note:

the peak parameters are saved in EMS.

aextern int far read memory(int space, unsigned short address, unsigned long
*data) ;

Read the content of DSP memory.
apace: input variable, which memory to read from, choices are
P_SPACE, X_SPACE orY_SPACE;

input variable, address of the memory;

output variable, content of the memory.
extern int far readp(unsigned int addr, unsigned long *where) ;

Read the content of the DSP program memory.
addr,

addreas:

data:

input variable, address of the memory;
output variable, content of the memory,
extern int far readx(unsigned int addr, unsigned long *where);

Read the content of the DSP X data memory.
addr:

where;

input variable, address of the memory;
output variable, content of the memory.
extern int far ready(unaigned int addr, unsigned long *where);
Read the content of the DSP Y data memory.

addr;

where:

input variable, address of the memory;

output variable, content of the memory.
axtern void far raset board{int EnableMemAfterReset);

Reset and start booting of the DSP processor.

where;

EnableMemAfterReset! input variable, must always be TRUE for DSP-56
extern int far send hp(unsigned long data);

Send a long data to host port.

data!

input variable, the data to be sent.
extern int far send hpl6{int data);

Send an int data to the host port without sign extension.

APPENDIX B: THE PROTOTYPES OF THE DSP-56 INTERFACE FUNCTIONS 93
data: input variable, the data to be sent.
extern int far send bps(int data);

Send an int data to the host port, the upper 8 bits are 0 extended if data > =
or 1 extended if data <0.
data; input variable, the data to be sent.
extern void far terminate({void):
Stop booting the DSP processor.

extern void far write hp(void):
Write bulk data to the host port (to be developed).

extern int far write memory(int space, unsigned short addresa, unsigned long

data) ;

Write to DSP memory from the host port.

space! input variable, which memory to write to, choices are P_SPACE,
X_SPACE or Y_SPACE;

address; input variable, address of the memory;

data: input variable, value to be written.

extern int far writep(unsigned int addr, unsigned long data);
Write to DSP program memory from the host port.
addr: input variable, address of the memory;
data; input variable, value to be written.

extarn int far writex(unsigmed int addr, unsigned long data):;
Write to DSP X data memory from the host port.
addr; input variable, address of the memory;
data: input variable, value to be written,

extern int far writey(unsigned int addr, unsigned long data);
Write to DSP Y data memory from the host port.
addr: input variable, address of the memory,
data; input variable, value to be written,

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 04

APPENDIX C: DSP SOURCE CODE LISTING OF THE
DSP LiMCA

Motorela DSP56000 Macro Cross Assembler Version 3.02 93-11-23 22:06:55
lmcdsp. asm
;FILE: LMCDSP.ASM
COMMENT @

I 2 2222 Y2 R XSRS RS RS S SRR AR RSS2 R XS 2l R LTRSS LR L)
MMPC
Dept. of Mining and Metullurgica Eng.
McGill University
{(C) Copyright 1993
drdkddhdddrkbdd bbbk kbbb bbbk hhdddb etk dhddrdbhrhbbrhrdrddhid
DSP-56 Processor card
DSP driver for LIMCA real-time data processing
Version 3.00 April, 1993
L2 X 2T 22 R R F RN S RS R RS SR SRS AR R R A SR s AR SRR SR RS2SRRSR S R R
{C) 1990 MMPC, McGill University
hssemble with Motorola assembler:
asm56000 -A -B lmcdsp.lod -1 lmedsp

Two Circular Buffers of length BUFSIZ are used to store the data for
ADC, one is in X_mem for channel A, the other one is in Y mem for channel B.

After initialization, this program waits in a command loop, where it
monitors the host port for a command data word. No action is taken until one
of the following commands appears. All other values are ignored.

0: Record: recording process from SSI to HI

1: OnlineMCA: real-time MCA

2: 0fflineMCA: off-line MCA

3: ReportStatus: report process status to host
4: SampleRate: get sampling rate from host
5: UploadMem: upload DSP memory to host

6: ZerocMem: =zero X and Y data memory

USES OF MEMORY
X memory:
$0000 -- $OOFF for program varibles, size: 256 wor
$6000 -~ $65FF for channel A peak-parameter buffer, size: 1.5k words
$7000 -- $7FFF for channel A sampled peak buffer, size: 4k words
$8000 -~ SFBFF for channel A circular buffer, size: 31k words
Y memory:
$0000 -- $00FF for program varibles, size:; 256 words
$0100 -- S04FF for channel B PHA table, size: 1024 words
$6000 -- $65FF for channel B peak-parameter buffer, size: 1.5k words
$7000 -- $7FFF for channel B sampled peak buffer, size: 4k words
$8000 -~ JFBFF for channel B circular buffer, size: 31k words
P memory:
30000 -- SFFFF for program memory, size: 64k words
END OF COMMENT SECTION @

LIMCA ident 3,0 ;LIMCA DATA PRO. DRIVER DSP-56

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 95

opt mex, cex, fc, rc ;suseful when a listing is produced.

include 'Imciceq.asm’ ;include the file of IO port equates
e GG e ————— constants ———--——-reerr e —— -
007c00 FIFOSI2E EQU 31744 ;circular buffer size ,from $8000 to S$EBFF
007000 PK_SAMPLE START EQU $7000 ;start addr. of pk sampled data buffer
000100 PHATABLESTART EQU $0100 ;start addr. of PHA scaling table
000080 PEAKDBFSIZE EQU $0080 ;peak-parameter buffer size
006000 PEAKDBFSTART EQU $6000 ;start addr. of peak-parameter buffer
000000 DSPAHITX EQU $0 ;DSP -> HI data tranfer code for chanhA
C00001 DSPBHITX EBQU 31 :D5P -> HI data tranfer code for chanB
000002 DSPHIRV EQU $2 ;HI -> DSP data tranfer code

tbit 0 for tranfer channel: 0 for chanA, 1 for chanB bit 1 for tranfer
;direction: 0 for DSP =-> HI, 1 for HI -> DSP

jemmememccdm——n—— bit symbols in ProcStatus Register-—---—-—-—-—-———wcuo-u-
000000 HOSTSTOP EQU o thost PC stop flag
000001 CHANNELA EQU 1 ;channel A flag
000002 CHANNELB EQU 2 ;channel B flag
000003 TIMEUP EQU 3 ;time flag, 1: exceed the user-specified time
jmmmmm oo bit symbols in BuffsStatus Register---==-r-seccweceecea-
000000 FIFOFULL EQU 0 " ;FIFO buffer full flag
000001 FIFQEMPTY EQu 1 }FIFO buffer empty flag
000004 PEAKDBFAFULL EQU 4 :rpeak-parameter buffer A full flag
000005 PEAKDBFBFULL EQU 5 ;peak-parameter buffer B full flag
§mm——— e bit symbols in PkSamplingSt Register------———--—-——-—---——--
000000 PK_SAMPLING_FIND A EQU a
000001 PK_SAMPLING SIGN_A EQU 1
000002 PK_SAMPLING_FINISH A EQU 2
000008 PK_SAMPLING_FIND B EQU]
000009 PK_SAMPLING_SIGN B EQU 9
00000A PK_SAMPLING_FINISH B EQU 10
e bit symbols in PkSaniplingCr Register-~-~---m=r——en-——rae.
000000 PK_SAMPLING CHRNNEL_ A EQU 0
000001 PK_SAMPLING_CONT A EQU 1
000008 PK_SAMPLING_ CHANNEL B EQU 8
000009 PK_SAMPLING CONT B EQU g
et e et e s — s L ———— variableg-==~-=—-mermcm e
X:0000 ORG ®:40
e ——————— global varibles, status and control regs., ----==------
d X:0000 000000 ProcStatus DC o Jprocess status
d X:0001 000000 Buffstatus Dc 0 sbuffer status
d ¥:0002 000000 PkSamplingSt DC 0 :pk sampling status register
P —————————— parallel varibles, status and contrel regs. —--=---—-~=--
;for pk sampling process
d ¥:0003 000000 PkSampleWriteA Dc 0 ;sampled peak buffer A
;write pointer
d X:0004 000000 PkSamplePreVah DC 0 ;sprevious wvalue at the
ipoint before peak atart
d X:0005 000000 PkStartLol6A DC 0 ;pk start low 16 bits
d X:0006 000000 PkstartHileA DC 0 ;pk start high 16 bits
d X:0007 000000 PkWidthA DC c :pk width count for pk
;description process
d :0008 000000 PkBufferWritea bc 0 ;peak buffer A write ptr

d X:0009 000000 rkBuffcntaA DC ¢ :pk buffer A counter

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 96

e e other varibles -—-=-—==c;ermemmceem—e e e

;for pk sampling process

d X:000A 0000Q0 NoiseHi DC 0

d X:000B 000000 Noiselo Dc 0

:for PHA process

d X:000C 000000 QsortCyc Dc 0 snumber of sorting cycles for

;PHA

d X:000D 000000 ChannelNum DC 4] stotal number of PHA channels
;Variables of the program frame and the circular buffers

d X:000E 000000 FUNCTION nc 0 ;jcurrent function #

d X:000F 900000 MODELATCH DC 3900000

;a copy of mede latch, 50 kHz is default sampling rate
COMMENT *
details of mode latch:
bit 16 = DSPNET hus request
bit 17 = serial output line

bit 18 = srate select: 0 = normal, 1 = high speed
bit 19 = interrupt mede: 0 = SCSI, 1 = DSPNET
bits 20..23 = srate select*
d X:0010 000000 TTL_Set nc o}
d X:0011 000000 TTL_Clear DC 0
d X:0012 000253 flList De Record ;fen code 0
d X:0013 000254 DC onlineMCA
d X:0014 0002BC DC OfflineMCA
d X:0015 0002E1 Dc ReportsStatus
d ¥X:0016 0002F4 De SampleRate
d X:0017 000300 DC UpLoadMem
d X:0018 00C32A DC ZeroMem
d X:0019 0002ED DC NULL
d X:001A 00BOOO FIFORead DC $8000 ;circular buffer read pointer at
;the first addr
d X:001B 000000 CountLelé Dec 0 ilower 16 bits of the total data
scount
d X:001C 000000 CountHilé ol 0 ;upper 16 bits of the total data
icount
;These two time labels point to the data point just processed, not the the
;data point about to be processed.
d X:001D OOFFFF CountLoléMax DC $FFFF ;max. of total data count set by
thost (low)
d X:001E OOFFFF CountHiléMax DC S$FFFF :max. of total data count set by
ihost (high)
¥:0000 ORG ¥:50
e m global varibles, status and control regs. =—=—=-em—me---
d Y:0000 000000 CommandWord DC 0 shost PC command word is saved
here
d Y:0001 000000 FIFOAdvance DC o] ;circular write pointer advance
;jcounter
d Y:0002 000000 PkSamplingCr DC 0 ipk sampling control register

jommmmmm e parallel varibles, status and control regs., =-=====-=--
;for pk sampling process

d Y:0003 000000 PkSampleWriteB Dc 0 ;sampled peak buffer B
;write pointer
d Y:0004 000000 PkSamplePreVaB DC 0 sprevious value at the

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 97

:point before peak atart

d Y:0005 000000 PkStartlLoléB DC 0 :pk start low 16 bits
d Y:0006 000000 PkStartHilé6B DC 0 ;pk start high 16 bits
d Y:0007 000000 PkWidthB DC 0 pk width count
;for pk description process
d Y:0008 000000 PkBufferwriteB Dc 0 ;peak buffer B write ptr
d Y¥:0009 000000 PKBuffCntB DC 0 ;pk buffer B counter
P it L Dt b b Dl bt other varibles —ec-cmcmmmmm e e
;Stacks for SSI ISR
d Y:000A 000000 Stack_al DC 0
d Y:000B 000000 Stack_y0 DC 0
P:0090 ORG P:§80
;Real-time code in low memory for best efficiency
COMMENT *

note: it's important that all this code (at least the a ctual real-time parts
of it) reside in low memory. *

e Interrupt Service Routine {ISR) for ADC --===---==w-=-w--

:The ADC interrupt routine copies the ADC data to the Circular Buffer.
sRegister r7 is used as an advance counter for the delay between write pointer
;sand read pointer. r0 is used as the Circular Buffer write pointer. They are
thot stacked sc that They should not ;be used for other purposes,

SSIbatalinPtr

P:0030 @DOOS1 isr <SSIDataln
SsIDataln
P:0091 OARES3 jelr #M_RFS, X:<<M_SR, SSID_chanB

000085
P:0093 O0BGOAT movep X:<<M_RX, X:(x0) ;save data in X FIFO buffer
P:0094 000004 rti
SSID_chanB
P:0095 O0858EF movep X3i<<M _RX, ¥Y:(r0)})+ i:save data in Y FIFO buffer
P:003€ O045F17 lua (r?7)+, r7? jupdate write pointer advance counter
P:0097 4EOBOO move y0, Y:Stack_y0 ;push y0 register
P:0098 5CQA00 move al, Y:Stack_al :push al register
P:0098 46F400 move #>FIFOSIZE, y0

007co0
P:009B 22ECO00 move r7, al
P:005C 4EBB53 eor y0, a Y:Stack_yo0, yO0 ;pop YO
P:009D OAFOAZ jne SSID_Ret

0000A2 :if FIFO is not overflow, return, otherwise
P:009F O0A0120 bset #FIFOFULL, X:<BuffStatus ;set FIFO full flagqg.
P:00A0 OBF080 isr HostStop

00035E ;stop the process
SSID_Ret
P:00A2 5C8A00 move Y:Stack_al, al ;pop al
P:00A3 000004 reti sinterrupt process complete
HostStopPtr
P:00A4 ODOOAS jsr <HostStopInts
HoatStopints
P:00AS OBFO80 isr StopInts

00034E

P:00A7 OA0020 bset #HOSTSTOP, X:<ProcStatus

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 98

p:00AE 000004
Pksampling
P:00AS 478A00
P:00AR 468BO0O
P:00AB 45F400
008000
P:00AD 05F421
007BFF
P:00AF 619A00
P:00BG 63F400
000001
P:00B2 227513
P:00B3 540200
P:00B4 76F400
000002
_ChannelAInit
P:00BE OA02CO
0000co
P:00BB 62F400
007000
P:00BA OAD2Cl
0000co
P:00BC OAR0220
P:00BD OAO241
P:00BE 628300
P:00BF 638700
_ChannelBInit
P:00C0 OAD2CB
0000ca
P:00C2 64F400
007000
P:00C4 OAO2CH
0000CcA
P:00C6 OAO0228
P:00C7 0OAO2495
P:00C8 6CB8300
P:00Cc9 6D8700
_Loop
P:00CA 22EEQ0
P:00CB S7F400
000001
P:00CD 205705
P:00CE OAFOA7
0000D8

rti

move
move
move
move
move
move
clr

move
move

jelr
move
jclr

bset

X:NoiseHi, ¥yl
X:Noiselo, y0
#>58000, x1
;factor for shifting data right 8 bits
#>FIFOSIZE-1, ml
smake rl modulo of 31k
X:FIFORead, rl
;rl is circular buffer read pointer for channel A
#>1, r3
;r3 is channel A pk width counter

a r3, r5;r5 is channel B pk width counter
al, X:PksamplingSt ;reset peak sanpling status reg.
#>2, né :in rare cases, two peaks are close

;together, r6 and n6é are use to help retrieve
;previous value for the follewing peaks

#PK_SAMPLING_CHANNEL_A, ¥:PkSamplingCr, ChannelBInit
¢if not channelA, go check channel B
#>PK_SAMPLE_START, x2

;r2 is peak buffer A write pointer

#PK_SAMPLING CONT_A, Y:PkSamplingCr, _ChannelBInit
+If set: continue old pk, clr: start a new pk
#PK_SAMPLING_FIND_A, X:PkSamplingSt

;a2 pk is found, doesn't necessarily mean a pk is finished

bclr
move

move

jelr
move

jelr

#PK_SAMPLING CONT_A, Y:PkSamplingCr

X:PkSampleWriteA, r2 ;resume the pk sampling A
;write pointer
X:PkWidtha, r3 iload the width needed to be
;continued

#PK_SAMPLING_CHANNEL B, Y:PkSamplingCr, _Loop

#>PK_SAMPLE_START, r4
tr4 is peak buffer B write pointer
#PK_SAMPLING_CONT_B, Y:PkSamplingCr, _Loop

;1€ it is set: continue old pk, clr: start a new peak

bset

#PK_SAMPLING_FIND_B, X:PkSamplingst

:a pk is found, doesn't necessarily mean a pk is finished

beclr
move

nmove
move
move

cmp
jgt

#PK_SAMPLING_CONT B, Y:PkSamplingCr

Y:PkSampleWriteB, r4 ;resume the pk sampling B
;swrite pointer
Y:PkwidthB, r5 iload the width needed to be
;continued
r?, a
#1, b

b, a {r7)- ;test if the circular buffer is empty,
_ChannelA ;if not empty, continue
;if yes, check if host stopped the process

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 99

P:00D0 045F17 lua (xr7)+, 7 #1f not stopped by host, go back and
;continue
P:00D1 0QA0080 jclr #HOSTSTOP, X:<ProcStatus, _Loop
0000CA
P:00D3 0QAO121 bset #FIFOEMPTY, X:<BuffStatus ;do cleanups, and return
P:00D4 611A00 move rl, X:FIFORead ¢save circular buffer read
ipointerx
P:00D5 05P421 move #-1, ml
FFFFFF ;reset to linear addressing
pP:;00D7 00000C rts
_ChannelA
P:00D8 OAO2CO jelr #PK_SAMPLING_CHANNEL_A, Y:PkSamplingCr, _ChannelB
000118 ;1if not channel A, go check channel B
P:00DA 44E11l3 clr a X:(rl), x0
;fetch a data from the circular buffer, don't update theread pointer
P:00DB 2000A0 mpy xl, x0, a :;shift the data 8 bits right
P:00DC OAO2A0 iset #PK _SAMPLING FIND_A, X:PkSamplingSt, _ContPkA
0000FB
_NewPkA ;to find a new peak, save the pre-value, start-value
;and the 'start time
P:00DE 448475 cmp yl, a X:PkSamplePrevVar, x0 ;compare the data
;with NoiseHi
P:00DF OAFOAF jle _negh
O0COEB
P:00E1 445A00 move x0, X:{r2)+ ;save the value at the point before
;peak start
P:00E2 545A00 move al,X:(r2)+ ;save the value at peak start
P:00E3 559B00 move X:Countlolé, bl
P:00E4 550500 move bl, X:PkStartLol6A ;save the peak start point low
716 bits
P:00E5 559C00 move X:CountHil6, bl
P:00E6 550600 move bl, X:PkStartHiléA ;save the peak start point hight
;16 bit
P:00E7 0OA0220 bset #PK_SAMPLING_FIND_A, X:PkSamplingSt
;a positive pk is found
P:00EE OAD221 bset #PK_SAMPLING_SIGN_A, X:PkSamplingsSt
P:00ES OAF080 jmp _ChannelB
000118
_negh
P:00EBR 200055 cmp y0, a scompare the data with Noiselo
P;00EC OAFOAl jge _Efinn
0000F8
P:00EE 445A00 move x0, X:{(x2)+ ;save the value at the point before
;peak start
P:00EF 545A00 move al,X:{(r2)+ ;save the value at peak start
P:00F0 559B00 move X:Countlolé, bl
P:00F1 550500 move bl, X:PkStartLol6A ;save the peak start point low
216 bit
P:00F2 559C00 move X:CountHilé,bl
P:00F3 550600 move bl,X:PkStartHil6éA ;save the peak start point hight
716 bit
P:00F4 O0AD220 bset #PK_SAMPLING_FIND_ A, X:PkSamplingSt

sa negative pk is found

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LIMCA 100

P:00F5 OAD0201 belr #PK SAMPLING SIGN_A, X:PkSamplingst
P:00F6 OAF080 jmp _ChannelB
000118
_finn ;if neither a neg. nor a pos. pk is found
P:00F8 560400 move a, X:PkSamplePreVal ;juppdate the pre-value
P:Q0F9 OAFO080 Jmp _ChannelB
000118
_ContPkA reontinue to find pk end and pk width
P:00FB 545A00 move al, X:X:({r2) :;save pk value
P:00FC 0AQ281 jelr #PK_SAMPLING_SIGN A, X:PkSamplingSt, _neg2A
000107
P:00FE 205B75 cmp yl, a (r3}+ ;compare with NoiseHi for pos. pk
P:00FF OAFOAl jge _ChannelB
000118 :if greater than NoiseHi, it is not finished
P:0101 0A0222 bset #PK_SAMPLING_FINISH A, X:PkSamplingst
;set pk A finished flag
P:0102 560455 cmp y0, a a, X:PkSamplePrevah
;jupdate pre-value for next peak
P:0103 OAFOA9 jlt _foloA ;if the present peint is smaller than Noiselo
000110 ;it is followed immediately a negative peak
P:0105 OAF0BO jmp _ChannelB
000118
_hegZA
P:0107 205B55 cmp y0, a (r3)+ ;compare with Noiselo for neg. pk
P:0108 OAFOAF jle _ChannelB
000118 ;1if smaller than NoiselLo, it is not finished
P:010A O0A0222 bset #PK_SAMPLING_ FINISH_A, X:PkSamplingst
;set pk A finished flag
P:010B 560475 cmp yl, a a, X:PkSamplePreVaA
;update pre-value for next peak
P:010Cc OAFOA7 jgt _foloA ;if the present point is bigger than NoiseHi
000110 ;it is fellowed immediately a positive peak
P:010E OAF080 Jmp _ChannelB
000118
_foloh
P:0110 225600 move r2, ré;get a copy of sampled peak write pointer
P:0111 045F17 lua (r?)y+, r7
P:0112 044616 lua {r6)-n6, ré ;rewind this pointer to the second
;point to the last, the point will be the starting point of next peak
P:0113 045515 lua {£5)-, 5

:rewind PkWidthB point, since next time the present
spoint has to be reprocessed

P:0114 56E600 move X:(ré), a
;fetch the second to last data of present pk
P:0115 560400 move a, X:PkSamplePrevaa
P:0116 OAF080 jmp _exit
00017Aa ;exit directly
_ChannelB
P:0118 OAO2CSB jelr #PK_SAMPLING_CHANNEL B, Y:PkSamplingCr,
000158 _hdrUpdate
:if not channel B, go to update address pointers
P: 011 4CEll3 clr a Y:{rl), =0

tfetch a data from the circular buffer, don't update the read pointer

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 101

P;011B 2000A0 npy ®x1l, x0, a ;shift the data 8 bits right
P:01iC OAD2AS8 jset #PKX_SAMPLING_FIND_B, X:PkSamplingSt, _ContPkB
000138
_NewPkB ;jto find a new peak, save the pre-value, start-value
rand the start-time
P:011E 4C8475 cmp yl, a Y:PkSamplePrevaB, x0
;compare the data with NoiseHi
P:011F OAFOAF jle _negB
00012B
P:0121 4C5C00 meve x0, ¥Y:(r4)+
;save the value at the point before pk start
P:0122 545C00 move al, X:{r4)+ ;save the value at peak start
P:0123 559B0O move X:CountLolé, bl
P:0124 5D0500 move bl, Y:PkstartLoleB
:;save the pk start point low 16 bit
P:0125 S59C00 move X:CountHilé, bl
P:0126 5D0600 move bl, Y:PkStartHileB
;save the pk start point hight 16 bit
P:0127 0A0228 bset #PK SAMPLING_FIND_B, X:PkSamplingSt
;a positive pk is found
P:0128 OQRA0225 bset #PK_SAMPLING_SIGN_B, X:PkSamplingst
P:0129 OAF080 mp _AdruUpdate
000158
_hegB
P:012B 200055 cnp y0, a ;compare the data with NoiseLo
P:012C OQAFOAl jge _finB
000138
P:012E 445C00 move x0, X:(rd)+
;save the value at the point before pk start
P:012F 545C00 move al, X:(r4}+ :save the value at peak start
P:0130 559B00 move X:CountLol6, bl
P:0131 5D0S500 move bl, Y:PkStartLoléB
;save the pk start point low 16 bits
P:0132 559C00 move X:CountHilé, bil
P:0133 5D0600 move bl, Y:PkStartHiléB
;save the pk start peint hight 16 bits
P:0131 OAQ228 bset #PK_SAMPLING FIND B, X:PkSamplingSt
;a negative pk is found
P:0135 (QA0209 beclr #PK_SAMPLING SIGN_B, X:PkSamplingst
P:0136 OAF080 jmp _AdrUpdate
000158
_finB
P:0138 5SE0400 move a, Y:PkSamplePreVab
7if neither a neg. nor a pos. pk is found, uppdate the pre-value
P:013%9 OAF080 jmp _AdrUpdate
000158
_ContPkB ijcontinue to find pk end and pk width
P:013B 5C5C0Q0 move al, ¥Y:(rd4)+ ;save pk value
P:013C OAC285 jelr #PK_SAMPLING SIGN_B, X:PkSamplingSt, _neg2B
000147
P:013E 205D75 cmp yl, a (£5)+ ;compare with NoiseHi for pos. pk
P:;013F OAFCOAL jge _AdrUpdate
000158 :1f greater than NoiseHi, it is not finished

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 102

#PK_SAMPLING_FINISH_B, X:PkSamplingSt

;set pk A finished flag

y0, a a, Y:PkSamplePreVab

;update pre-value for next peak

_foloB ;if the present point is smaller than Noiselo
;it is followed immediately a negative peak
_AdrUpdate

y0, a (r5)+ ;compare with Noiselo for neg. pk

_AdrUpdate

7if smaller than NoiseLo, it is not finished

#PK_SAMPLING_FINISH_B, X:PkSamplingSt

73et pk A finished flag

yl, a a, Y:PkSamplePrevaB

;jupdate pre-value for next peak

_foloB ;if the present point is bigger than NoiseHi
:it is followed immediately a positive peak

_AdrUpdate

r4, r6;get a copy of sampled peak write pointer
(r7)y+, r7
{r6)-n6, ré ;rewind this pointer to che second

to the last, the point will be the starting pcint of next peak

{r3)-, r3 ;rewind PkWidthA one point,
next time the present point has to be reprocessed
Y:{r6), a

;fetch the second to last data of present pk

a, Y:PkSamplePreVaB

_exit

;jexit directly

X:CountHils, a
XiCountHiléMax, x0
%0, a ¥:Countlol6, b

;compare the high 16 bit data count with the max high 16 bit data count

P:0141 ORO2ZA bset

P:0142 5E0455 cmp

P:0143 ORFOAS jlt
000150

P:0145 OAF080 jmp
000158

_heg2B

P:0147 20SD55 cmp

P:0148 OAFOAF jle
000158

P:014A OA022A bset

P:014B 5E0475 cmp

P:014C OAFOAT jgt
000150

P:014E DOAF080 jmp
000158

_foloB

P:0150 229600 move

P:0151 045F17 Iua

P:0152 044616 lua
spoint

P:0153 045313 lua

;since

P:0154 BEE600 move

P:0155 SE0400 move

P:0156 ORAF080 jmp
00017A

_AdrUpdate

P:0158 569C00 move

P:0159 44SE00 move

P:015A 579B45 cmp

P:015B OAFQOA2 jne
000169

P:015D 449D00 mnove

P:015E 20004D cmp

P:015F OAFOA2 jne
000169

P:0161 OBFO080 jsr
G003SE

P:0163 0QA0Q023 baet

P:0164 370000 move

P:0165 611A00 move

P:0166 O05F421 move
FFFFFF

P:0168 00000C rts

_NotTimeUp

X:CountLoléMax, x0

x0, b

;scompare the low 16 bit data count with the max.
_NotTimeUp

HostStop
sstop SSI interrupt
#TIMEUP, X:ProcStatus ;8et the time up flag

#0, r7 ;maipulate r»7 to make the circular buffer
;jempty and to discard the data after time up

rl, X:FIFORead isave FIFO read pointer

#-1, ml

;resume linear addressing mode of rl

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 103

_NotTimeUp
P:0168 44F400 move #>1, x0
000001
P:016B 44F448 add x0, b #»5$10000, x0
010000 zincrement low 16 data count
P:016D 20594D cmp x0, b (rl)+
isee if it is overflow, and update buffer readptr
P:016E O0AFOA2 jne _MoCarry
000174
P:0170 44F400 move #>1, x0
000001
P:0172 2F0040 add %0, a #0, b ;high count plus 1, clr low count
P:0173 541c00 move al, ¥X:CountHilsé ;save high 16 data count
_NoCarry
P:0174 S51B0O move bl, X:Countlolé isave low 16 data count
P:0175 OAO2A2 jset #PK_SAMPLING_FINISH A, X:PkSamplingSt, _exit
00017Aa ;check exit conditions
P:0177 O0AO2AR jset #PK_SAMPLING_FINISH_ B, X:PkSamplingSt, _exit
Q00172
P:0179 O0COOCA jmp _Loop ;go back looping
_exit
P:017A 611A00 move rl, X:FIFORead
;save circular buffer read pointer
P:017B 0SF421 move #-1, ml
FFFFFF jresume linear addressing mode
P:017D 620300 move r2, X:PkSampleWriteA
P:017E &C0300 move rd, Y:PkSampleWriteB
;save sampled pk write ptrs
P:0Q17F 630700 move rd, X:PkWidtha
P:0180 6D0700 move r5, Y:PkwWwidthB :save pk widtha
P:0181 OAOQ2A2 jset #PK_SAMPLING FINISH_A, X:PkSamplingSt,
000184 _SetCeontB
P:0183 OAO261 bset #PK_SAMPLING_CONT A, Y:PkSamplingCr
_SetContB
P:0184 OAO2AA jset #PK _SAMPLING FINISH B, X:PkSamplingSt, _Ret
000187
P:0186 OA0269 bset #PK_SAMPLING_CONT_B, Y:PkSamplingCr
p:0187 0Q0000C Ret rts
PkDescription
P: 0188 0On0282 jelr #PK SAMPLING FINISH A, X:PkSamplingSt,
o0olcc _ChannelB
P:018A 628800 move X:PkBufferWritead, x2
;2 is pk buffer writer ptr
P:018B 63F400 move #>PK_SAMPLE_START, r3
007000 :r3 is pk sampled buffer read pointer
p:018D 227100 move r3, rl
s ¢l keeps pointing the start address of the sampled peak buffer
P:018E 668900 move X:PkBuffCntd, ré :x6 is pk buffer counter
P:018F 76F400 move #>8, né
000008 ;né is the number of parameters per pk

tcalucalate start slope

P:0191 44DBO0O

move

X:{r3)+,x0 ;first point to x0

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 104

Yi:(x3},a

;second point to a, note that r3 is not incremented
%0, a X:PkStartHileéa, yo0

y0, X:(x2)+

scalculate the start slope and save the start point high 16 bits

X:PkStartLol6a, y0

y0, %:(r2)+ ;save start point low 16 bit

a, X:(r2)+

isave start slope find peak max. time at max.
#>1, r4

;x4 here is a counter

#0, r5 ;r5 keeps the count at max.
X:PkWidthAa, y0

#PK_SAMPLING_SIGN_A, X:PkSamplingsSt, _NegMaxA

Xei{r3)y+, x1
X:(r3)+, a

X1 keeps the max. value
:a keeps the present value

xl, a X:{r3}+, a a, vyl

scompate the current to the max., keep the current in yl and update A

_PUpdateA

yl, x1
;if the new data is larger than the present max.
r4, x5 ;update the max.

{rd)+, r4
r4, b
y0, b r4, nl ;check peak end, nl keeps track of ri

;update r4 counter

;jcounter, which is used latex to offset r3 to the end of sample peak buffer

_PosMaxLoopA ;note that pk width is in y0 now
_EndslopeA

X:({r3)+, x1
X:{r3)+, a

;%1 keeps the max. value
;a Keeps the present value

xl, a ¥X:(ra)+, a a, Yyl ;compare the current to
;the max., keep the current in yl and update a
_Nupdateh

yl, x1;if the new data is smaller than the present

r4, r5 ;max., update the max. and data count at max
{rd)+, x4 ;jupdate r4 counter

r4, b

y0, b r4, nl;check end point, nl keeps track of r4

;scounter, which is used later to cffset r3 to the end of sample peak

P:0192 56E300 move
P:0193 468644 sub
P:0194 465A00 move
P:0195 468500 move
P:0196 465A00 move
P:0197 565A00 move
P:0198 64F400 move
000001
P:01%Aa 350000 move
P:019B 468700 move
P:019Cc 0a0281 jelr
0001AB
P:Q1%E 45DBOO move
P:019F 56DBOO move
_PosMaxLooph
P:01A0 199B65S cmp
P:01A1 OAFOAF jle
COO01AS
P:01A3 20E500 nove
P:01A4 229500 move
_PUpdateA
P:01AS 045C14 lua
P:0lA6 228F00 move
P:01A7 22955B eor
P:01A8 OE21A0 jne
P:01A% OAF080 jmp
000186
_NegMaxA
P:01AB 45DBOOC move
P:01AC 56DBOO move
_NegMaxLoopA
P:0lAD 199B&5 cmp
P:01AE OAFOAl jge
0001B2
P:01B0 20E500 move
P:01B1 229500 move
_NuUpdateA
P:01B2 045C1l4 lua
P:01B3 228F0C move
P:01B4 22995B eor
P:01BS OE21AD jne
_EndslopeA
P:01B6 044913 lua
P:01B7 045D15 lua

_NegMaxLoopA ;note that pk width is in y0

{rl)+nl, r3
smake r3 point to the end of the sampled peak buffer
{r5)+, r5

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 105

P:01B8 56D300 move X:(r3)-, a ;last point to A
P:01BS 44E300 move X:(r3), x0 ;second last point to x0
P:01BA 655A44 sub x0, a x5, X:{r2)+ ;save data count at max.
P:01BB 455A00 move x1, X:(r2)+ ;save max. value
P:0IBC 465A00 move y0, X:(r2)+ ;save data count at pk end
P:01BD S65A13 clr a a, X:{r2)+ ;save slope at pk end
¢elr a, if it is a neg. pk, make pha count 0
P:01BE 0A0281 jelr #PK_SAMPLING SIGN_A, X:PkSamplingSt,
0001c2 _CheckFulla s1f negative pk, skip PHA
P:01C0 OBFO80 jasr PHA ;scalculate MCA channel number, be sure the
000211 iMax. is in x1. when it returns the channel number
;in A. Other register: r3 and B.
_CheckFulla icheck pk buffer full
P:01C2 565A00 move a, X:(r2)+ ;save PHA channel number
P:01C3 044Els lua {r6)+n6, r6 ;update pk buffer counter
P:0LlC4 620800 move r2, X:PkBufferWritehA
:save pk buf. write pointer
P:01Cc5 44F400 move #>PEAKDBFSIZE, x0
000080
p:01C?7 22CE00 move r6, a
P:01C8 560945 cmp x0, a a, X:PkBuffcntA :save pk buffer counter
P:01CS OAFOA9Y jlt _ChannelB
0001cc
P:01CB OA0124 bset #PEAKDBFAFULL, X:BuffStatuas
_ChannelB
P:01CC OAO028A jelr #PK_SAMPLING_FINISH_B, X:PkSamplingsSt, _Ret
000210
P:01CE 6A8800 move Y:PkBufferWriteB, r2
:r2 is pk buffer writer pointer
P:01CF 63F400 move #>PK_SAMPLE_START, r3
007000 ;13 is pk sampled buffer read pointer
P:01DP1 6EB8S00 move Y:PkBuffcCntB, ré ;£6 is pk buffer counter
P:01D2 76F400 move #>8, né
000008
:in6 is the number of parameters per pk calucalate start slope
P:01D4 A4EDBOO move Y:({r3)+, y0 ;first point to y0
P:01DS SEE300 move Y:(r3), a
;second point to A, note that r3 is not incremented
P:01D6 4C8654 sub y0, a Y:PkStartHiléBR, x0
P:01D7 4C5A00 move x0, Y:(r2}+
;calculate the start slope and save the, start point high 16 bhits
P:01D8 4C8500 move Y:PkStartLoléB, x0
P:01D9 4CS5A00 move x0, Y:{(r2)+ ;save start point low 16 bit
P:01DA 5E5SA00 move a, Y:(r2)+
:save start slope find peak max. time at max.
P:01DB 64F400 move #>2, rd
000002 ;r4 here is a counter
P:01DbD 2295500 move r4, r5 +r5 keeps the count at max.
P:01DE 4C8700 move Y:PkWidthB, x0
P:01DF O0A0289 jelr #PK_SAMPLING_SIGN_B,X:PkSamplingSt, _NegMaxB
0001EE
P:01E1 4FDROO move Y:(r3)+, yl ;yl keeps the max. value

P:01E2 SEDBOD move Y:(r3)+, a ;ra keeps the present value

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 106

_PosMaxLoopBE
P:01E3 16DB75
P:01E4 OARFOAF
0001EB
P:01E6 20A700
P:01E7 229500
_PUpdateB
P:01E8 045C14
P:01E9 228F00
P:01EA 22994B
;counter,
P:01EB OE21E3
P:01EC OAF08C
0001F9
_NegMaxB
P:ClEE 4FDBOO
P:01EF SEDBOO
_NegMaxLoopB

P:01FQG 16DB75

P:01F1 OAFrOAl
0001F5
P:01F3 20A700
P:01F4 229500
_NupdateB
P:01F5 045C14
P:0iF6 228F00
P:01F7 22994B
;counter,
P:01F8 OE21F0
_EndSlopeB
P:01F9 044913
P:01FA 045D15
P:01FB 5ED300
P:01FC 4CE300
P:01FD 6D5A44
P:01FE 4F5A00
P:01FF 4C5A00
P:10200 SESAQ0
P:0201 20E513
P:0202 O0A0289
000206
P:0204 0BFOBO
000211
_CheckFullB

P:0206 SESA00
P:0207 044Els6
P:0208 6&A0800

cmp
jle
move
move
lua

move
eor

which

jne
jmp

move
move
cmp
ige
move
move
lua

move
eor

which

jne
lua

Jua
move
move
sub
move
move
move
clr
jclr

jsr

move
ua
move

¥l, a a, x1 Y:(r3)+, a ;compare the current to
;the max., keep the current in x1 and update a
_PUpdateB

x1l, w1l
;if the new data is larger than the present max.
r4, r$;update the max.

(rd}+, r4
rd4, b
%0, b r4, nl ;check peak end, nl keeps track of rd

supdate r4 counter

is used later to offset r3 to the end of sample peak

_PosMaxLoopB ;note that pk width is in x0.
_EndsSlopeB

¥:({r3)+, vyl
Y:i{r3)+, a

¥yl keeps the max. value
;a keeps the present value

yl, a a, x1 Y:{r3)+, a ;compare the current to
;the max., keep the current in x1 and update a
_NupdateB

x1, yl
;1f the new data is smaller than the present max.
rd, r5 ;jupdate the max. and data count at max

{r4)+, rd
r4, b
®¢, b r4, nl ;check end point, nl keeps track of r4

;update rd4 counter

is used later to offset r3 to the end of sample peak

_NegMaxLoopB :note that pk width is in x0

(xl)+nl, r3

smake r3 point to the end of the sampled peak buffer
{rS)+, 5

Y: ({rd)-, a rlast point to A

¥Y:(x3), %0 :second last point to x0

x0, a r5, Y:{x2)+ ;save data count at max.

yl, Y:(r2)+ ;save max. value

X0, Y:(r2)+ ;save data count at pk end
a, Yi{r2)+ ;save slope at pk end
a yl, =1 /save the pk max. in X1

#PK_SAMPLING SIGN_B, X:PksamplingSt, _CheckFullB
sif negative pk, skip PHA

PHA ;calculate MCA channel number, be sure the

iMax., is in x1. when it returns the channel number

:in A. Other registers: r3 and B.

;check pk buffer full

a, Y:(r2)+ ;save PHA channel number

{ré}+n6, ré ;update pk buffer counter

r2, Y:PkBufferWriteB

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 107

;save pk buf. write pointer

P:0209 44F400 move #>PEAKDBFSIZE, x0
000080
P:020B 22CE00 move ré, a
P:020C 5E0545 cmp %0, a a, Y:PkBuffCntB ;save pk buffer counter
P:020D OAFOQAS jlt _Ret
000210
P:020F OA0125 bset $PEAKDBFBFULL, X:BuffStatus
P:0210 00000C _Ret rts
PHA ;jcalculate MCA channel number, be sure the Max. is in =1, when
;itreturns the channel number in A. Other register: r3 and B. PHA
;scaling table is in Y _mem starting from #PHATABLESTART
P:0211 578D00 move X:ChannelNum, b ;scopy total PHA channel number
;to b. Remember the PHA channel number must be 2 to the
spower of n for proper sorting.
P:0212 63F42B lar b #>PHATABLESTART, r3 ;half the channel
000100 ynumber, r3 now is pointer to PHA scaling table
P:0214 21BB0O0O meve bl, ni
copy the half of the PHA channel number to n3 to offset r3
P:0215 000000 nop
P:0216 204B2B lsr b (r3)+n3 ;half the channel number offset
P:0217 5EE300 move ¥Y:{r3), a
;fetch a data from PHA scaling table and update the table pointer.
P:0218 060C00 do X:QsortCyc, _PHAEnd
000223
P:021A 21BB6S cmp xl, a bl, n3 ;compare the peak value in x1
swith the data from PHA scaling table, update PHA table pointer offset
P:021B OAFDAl jge _HalfLeft ;if the data in a is bigger than peak
000221 ivalue, the table point is to offset to the left.
P:021D 204B2B lsr b {r3}+n3
P:021E 5EE300 move ¥:(r3), a
;Otherwise offset it to the right and half the offset in b
P:021F OAFO080 Jmp _SortAgain
000223
_HalflLeft
P:0221 20432B lar b {r3)}-n3
P:0222 SEE300 move Y:(r3), a
_SortAgain
p:0223 000000 nop
_PHAENd
P:0224 200065 cmp X1, a
tlast comparasion for normalizing the channel to the lefx
P:0225 OAFOAF jle _Savelt
000228
P:0227 045313 lua (x3)-, r3
:}1f a»xl, the channel decrease by 1 to make it left
_Savelt
P:0228 226E00 move r3, a ;save the PHA channel number in A
P:0229 57400 move #>PHATABLESTART, b
000100
P:022B 200014 sub b, a
p:022Cc 00000C rts

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 108

TXADBFtoHI

P:022D O9FOBO
000010

_TX1

P:022F OAA984
00022F

P:0231 0Q9FOBO
000011

_TX2

P:0233 OAR981
000233

P:0235 OBF4AB
000000

_TX3

P:0237 OAAR981
000237

P:0239 08DC2B

P:023A 06DCO0
00023E

_TX4

P:023C OAA981
00023cC

P:023E 0BDCAB

_TXEnd

P:023F 00000C

’

TXBDBFtoHI

P:0240 O09FOBO
000010

_TX1

P:0242 OAA984
000242

P:0244 O9FOBD
000011

_TX2

P:0246 OAA9B1
000246

P:0248 08F4AB
000001

_TX3

P:024A OAR981
000242

P:024C 08DC2B

P:024D 06DCO0
000251

_TX4

P:024F ORRS81
00024F

P:0251 OSDCEB

_TXEnd

P:0252 00000C

T T HAJOR COWDS

7 e e 0 e ke e ot e kA e

stransmit channel A data-buffer to HI
movep X:TTL Set, Y:$FFF0 /request host ints for data
stranfer note that 'bset and bclr should not be used here
;they change sampling rate unexpectedly
jclr #M_HF1, X:<<M_HSR, _TX1
;wait for host acknowledge
movep X:TTL_Clear, Y:$FFFO
fclr host ints request

jelr #M_HTDE, X:<<M_HSR, _TX2

movep #>DSPAHITX, X:<<M_HTX
;send tranfer code to host

jelr #M_HTDE, X:<<M_HSR,_TX3

movep nd, X:<<M_HTX ssend number of words to host
do n4, _TXEnd

jelr #M_HTDE, X:<<M_HSR, _TX4

movep X:{r4})+, X:<<M_HTX ;data tranfer from raw DBA to HI

jtransmit channel B data buffer to HI
movep X:TTL Set, Y:3FFF0 ;reguest host ints for data
;tranfer note that 'bset and bclr should not be used here
s they change sampling rate unexpectedly
jclr #M HF1, X:i<<M HSR, _TX1l
;wait for host acknowledge
movep X:TTL_Clear, Y:$FFFO
;clr host ints request

jelr #M_HTDE, X:<<M_HSR, _TX2

movep #>DSPBHITX, X:<<M_HTX
;send tranfer code to host

jelxr #M_HTDE, X:<<M_HSR, _TX3

movep nd4, X:<<M_HTX ;send number of words to host
do nd, _TXEnd

jelr #M_HTDE, X:<<M HSR, _TX4

movep Y:(r4)+, X:<<M HTX ;data tranfer from raw DBA to HI

rts

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 109

R ittt e ol 0: Record —---————-cmmmmm e

Record ;recording process from SSI to HI
comment @ Not yet finished e
P:0253 00000C rts
jmesmmmememn—— e —————— 1: On-line MCA —---———-cecmmm e
OnlineMCA
P:0254 OARB23 bset #M HF2, X:<<M HCR ;tell host: not ready to atart
_Meal
P:0255 O0AR980 jelr #M_HRDF, X:<<M_HSR, Mcal
000255
P:0257 0870AB movep X:<<M_HRX, X:CountLoléMax
00001D :max data count low 16 bit
_Mca2
P:0259 OAARSS0 jelr #M_HRDF, X:<<M_HSR, _Mca2
000289
P:025B 0870AB movep X:<<M_HRX, X:CountHiléMax
00001E smax data count hi 16 bit
P:025D OBF080 jsrc InstallssIints
00033cC ;install SSI ISR
P:025F OBF080 jar InstallHostStopInts
000354 sinstall host stop ISR, very important that the two ISR

;install utils before InitFIFO otherwise it would not work
;correctly, since they use r7 as address pointer.

P:0261 44F400 move #>58001, =0
sthe circular buffer starts at $8000, here initiate

008001 ;its read pointer to $8000+1 to get rid of the first data.

P:0263 441A00 move x0, X:FIFORead
jinitiate the buffer read pointer

P:0264 OBF080 jsr INnitFIFO

000361 :set up the circular buffer
P:0266 0BFO080 isx InitProcsStatus

00036F ;initiate ProcStatus reg.
P:0268 OBFO080 jsr InitBuffStatus

000378 ;initiate BuffStatus regq.
P:026A OBF080 jsr McaConst

¢003A5 ;get MCA parameters
P:026C OBF080 jsr LoadPHATable

000398 :get PHA table
P:026E 44F413 clr a ¥>PEAKDBFSTART, x0

006000
P:0270 440800 move X0, X:PKkBufferWriteA
P:0271 4C0800 move x0, Y:PkBufferWriteB

;initiate pk buffer write pointers

P:0272 540500 meve al, X:PkBuffCntA
P:0273 5C0900 move al, Y:PkBuffcnth iinitiate pk buffer counter
P:0274 5E0200 move a, Y:PkSamplingCr
P:0275 560200 move a, X:PkSamplingSt
P:0276 O0A0081 jeclr #CHANNELA, X:ProcStatus, _ChanB

000279
P:0278 OA0260 bset #PK_SAMPLING CHANNEL A, Y:PkSamplingCr
_ChanB
P:0279 OAD0CB2 jelr #CHANNELB, X:ProcStatus, _ChanBSkip

00027C

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 110

P:0278B OAD2e68 bset #PK_SAMPLING CHANNEL B, Y:PkSamplingCr
. _ChanBskip
P:027C OARB03 becir #M_HF2, X:<<M _HCR ;tell host: ready to start
_WaitLoop
P:027D OAA980 jclr #M_HRDF, X:<<M_HSR, _WaitLoop
00027D
P:027F O0B4F2B movep X:!<<M_HRX, b
P:0280 20000B tat b
P:0281 OAFOAR jeq _Mcastart
000284
P:0283 00000C rts
_McaStart
P:0284 OBF0B0 jsr StartsSSIInts
000348 sstart up SSI interrupt
_McaLoop
P:0286 0QAO1Al jset #FIFOEMPTY, X:BuffStatus, _McaExit
0002a1 t1f the circular buffer is empty, exit
P:0288 OQA0184 jelr #PERKDBFAFULL, X:Buffstatus, _PKBuffB
000293 ;1f pk buffer is full
P:028A 64F413 clr a #>PEAKDBFSTART, r4
006000 stranfer it to host and reset
P:028C 748900 move X:PkBuffCnta, n4 ithe buffer pointer and count
P:028D 0D022D jar TXADBFtoHI
P:028E 540900 move al, X:PKkBuffCntA
P:028F 47F400 move #>PBAKDBFSTART, yl
006000
P:0291 470800 move yl, X:PkBufferWriteA
. P:0292 OA0104 beclr §PEAKDBFAFULL,X:Buffstatus
_PkBuffBs
P:0293 O0OA0ls5 jclr #PEAKDBFBFULL, X:Buffstatus, _PkBuffFin
00029E
P:0295 64F413 clr a #>PEAKDBFSTART, r4
006000
P:0297 °7C8300 move Y:PkBuffCntB, n4
P:0298 0D0240 jsr TXBDBFtoHI
P:0299 5C05900 move al, Y:PkBuffcnth
P:029A 47F4100 move §>PEAKDBFSTART, yi
006000
P:029C 4F0800 move yl, Y:PkBufferWriteB
P:029D OAQ1Q5 belr #PEAKDBFBFULL, X:BuffStatus
_PkBuffFin
P:029E O0DOOA9 isr PkSampling
P:029F 0D0188 isr PkDescription
P:02A0 0CO0286 jmp _McaLoop
_McaExit
P:02A1 OAOD2CO jclr #PK_SAMPLING_CHANNEL A, Y:PkSamplingCr,
0002A8 _McaFlushB
P:02A3 568500 move X:PkBuffCnta, a scheck if the buffer count is 0
P:02A4 200003 tst a
P:02A5 OAFOAR jeq _McaFlushB
0002a8

P:02A7 64F400 move #>PEAKDBFSTART, r4
. 006000 sempty the pk data buffers

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 111

P:02A9 21DCO0O move a, nd
P:02AA O0DO22D jsr TXADBFtoHI
_McaFlushB
P:02AB 0Aa02CBH jelr #PK_SAMPLING CHANNEL_B, Y:PkSamplingCr, _McaRet
0002B5
P:02AD 588900 move Y:PkBuffcCnthb, a ;scheck if the buffer count is 0
P:02AE 200003 tst a
P:02AF OAFOAA jeq _McaRet
000285
P:02B1 64F400 move #>PERKDBFSTART, r4
006000
Ps02B3 21DCO0 move a, nd
P:02B4 0D0240 jsr TXBDEFtoHI
_McaRet
P:02B5 OAA823 bset #M _HF2,X:<<M_HCR :signal host for completion
_McaWt
P:02B6 OARDSS3 jelr #M_HFO,X:<<M_HSR, _McaWt
000286
P:02B8 OBF080 jsx ReportStatus
0002E1
P:02BA O0AAB03 belr #M _HF2, X:<<M_HCR
P:02BE 00000C rts
g S
CfflineMCA
P:02BC 000000 nep
P:02BD 00000C rts

; ==INIT= =

:Entry point for the driver. Initializes the driver, sets up the DSP, then
swaits in a "command-interpreter" loop.
I

NIT_PGM
P:02BE O05F438 movec #$300, sr

000300 ;iclear SR, none but 1lvl 3 ints
P:02C0 OBF4BE movep #0, x:<<M_BCR

000000 ;set the BCR to zero

;init S5I interface
;1) send a zero to TX so that SS1 is initialized.
P:02c2 20001B clr b
P:02C3 08CO2F movep b0, X:<<M TX ;write 0 to SSI output reg
;2¥init the 5SI interface as needed.
JCRA is set for 16-bit word length, 2-frame network mode
JCRB is set for xmit/rcv enabled w/ rcv interrupts ONLY, network mode,
:synchronous mode, SCO0 as output.

P:02C4 (0BF4AC movep #$4100, x:<<M CRA
004100 ;normal
P:02C6 O8F4AD movep #$BA04, x:<<M CRB
O0BAO4
:Set up PCC to enable the interface
P:02C8 O08F4Al movep #$1£8, x:<<M_PCC
0001F8 ;enable SSI
;set sample rate
P:02CA S548F00 move X:<MODELATCH, al
P:02CB 09CC30 movep al, y:<<$FFF0 ;jwrite mode latch

H o command loop e L L

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 112

CMDLUP
P:02CC 05F439 movec #$300, sr
000300 ;clear SR, none but lvl 3 ints
P:02CE OARB03 bclr #M_HF2, X:<<M_HCR
P:02CF OARABO4 bclr #M_HF3, X:<<M_HCR ‘clear polling flags for host PBC
CMDwait
P:02D0 OAA980 jelr #M_HRDF, X:M_HSR, CMDwait
0002D0 ;wait for data at host port
P:02D2 084C2B movep X:<<M HRX, Al ;get HRX data
P:02D3 218400 move Al, X0 ;save a copy in X0
P:02D4 4C0000 move x0, Y:CommandWord
;save a copy of command in Y:CommandWord
P:02D5 A45F400 move #>SF, x1 ;mask the fcn number
00000F /mask for 4 lsbits
P:02D7 200066 and X1, a
P;:02D8 540EQ0 move al, X:<FUNCTION
isave the fen #. Note the copy in X0
P:02D9 219100 move al, rl iset up pointer to fcn liat entry
P:02DA 391200 move #fList, nl ;set up base of fcn list array
P:02DB 000000 nep
P:02DC 67ES00 move X:(rl+nl), r7
71load the address of the subroutine
P:02DD OARB03 belr #M_Hr2, X:M_HCR ;clr HF2, used as completion
iflag to Host {(PC) execute the routine, note fcn
scode is in X0 for commands that need it.
P:02DE OBE780 jsr {r7} ;call the specific command
P:02DF 0cC02p0 jmp CMDwait ;start again!
H = SIMPLE COMMANDS stmsm==s=====
NULL ;do nothing subr
P:02E0 00000C rts
ReportStatus ;report status to host
_RSE
P:02E1 OAA9A3 jset #M HFO, X:<<M HSR, _RSE
0C02E1 * swait host to signal start
_RSA
P:02E3 O0AA981 jeclr #M_HTDE, X:<<M_HSR, _RSA
0002E3
P:02E5 O08FOAB movep X:ProcStatus, X:<<M_HTX
000000 ;jprocess status register
_RSB
P:02E7 OAR981 jelr #M_HTDE, X:<<M_HSR, _RSB
0002E7
P:02ES 08FOAB movep X:BuffsStatus, X:<<M_HTX
000001 ;buffer status register
_RsC
P:02EB OAR981 jelr #M_HTDE, X:<<M HSR, _RSC
0002EB
P:02ED O08FOAB movep X:CountHilé, X:<<M_HTX
00001c ;data count high 16 bit
_RsSD
P:02EF OAR981 jclr #M_HTDE, X:<<M_HSR, _RSD

0002EF

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LIMCA 113

P:02F1 (0BFOAB movep X:CountLolf, X:<<M_HTX
00001B
P:02F3 00000C rts

SampleRate ;get sample rate from command word and set the sample rate

P:02F4 S54F400 move #$F00000, al

F00000 ;mask for sample rate data
P:02F6 200046 and x0, a ;keep only bits 23..20 of command data
P:02F7 S40F00 move al, X:MODELATCH ;save it
P:02F8 09FO0BO movep X:MODELATCH, y:SFFFO

00000F ;write mode latch
P:02FA 541100 move al, X:TTL_Clear
P:02FB OAOF33 bset #M_HIRQ, X:MODELATCH
P:02FC 568F00 move X:MODELATCH, a
P:02FD 561000 move a, X:TTL_Set
P:02FF OAOF13 belr #M_HIRQ, X:MODELATCH
P:02FF 00000C rts
UpLoadMein ;jupload the contents of memory from DSP to host
_ULMH
P:0300 OAA9A3 jset #M_HFO, X:<<M_HSR, _ULMH

000300 ;wait host to signal start
_ULMA
P:0302 OAAS80 jelr #M_HRDF, X:<<M_HSR, _ULMA

go0302
P:0304 08452B movep X:<<M HRX, x1

smem. type; 0:X_mem,1:Y mem, 2:P_mem

_UMB
P:0305 O0AAS80 jelr #M_HRDF, X:<<M HSR, _ULMB

000305
P:0307 08462B movep X:<<M_HRX, y0 ;start addr
p:0308 20D60O0 move y0, ré
_umMc
P:0309 OAAS80 jeclr #M_HRDF, X:<<M_HSR, _ULMB

000305
P:030B 08462B movep X:<<M HRX, y0 ;size of mem to be uploaded
_ULMD
P:030C OAR9YAI jset #M_HFO, X:<<M HSR, _ULMD

00030C :wait host to signal start
P:030E 20AE00 move x1, a
P:030F 200003 tst a
P:0310 OAFOAA jeq _X_mem

00031E ;case of X memory
P:0312 47F400 move #>1, yl

000001
P:0314 200074 sub vl, a
P:031S OAFOAA jeq _Y mem

000324 ;case of Y memory
_P_mem
P:0317 06C600 do y0, _P_memEnd

00031C ;case of P memory
P:0319 O7DES? movem P:(ré)+, yl

ULME

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA

114

P:031A OAAS81 jelr #M_HTDE, X:<<M HSR, _ULME
00031An
P:031C 08C72B movep ¥l, X:<<M _HTX
_P_memEnd
pP:031p 00000C rts
_X_mem
P:031E 06C600 do y0, _X memEnd
000322
_ULMF
P:0320 O0AA9S81 jeclr #M_HTDE, X:<<M_HSR, _ULMF
000320
P:0322 OBDERB movep X:({r6)+, X:<<M_HTX
_¥_memEnd
P:0323 00000C rts
_Y_mem
P:0324 06C600 do y0, _Y_memEnd
000328
_uLM
P:0326 O0AA981 jclr #M_HTDE, X:<<M_HSR, _UIMG
000326
P:0328 OBDEEBR movep Y:({ré)+, X:<<M HTX
_Y_memEnd
P:0329 00000C rts
B e 1 e
2exroMem
P:032A 44F413 clr a #>SFBFF, x0
O0FBFF
P:032C 66F400 move #>3$100, ré
000100
P:032E 06C400 do x0, _exit
000331
P:0330 546600 move al, ¥X: (re6)
P:0331 SCSE00 move al, Y:(re}+
_exit
P:0332 66F400 move #>$1000, ré
001000
P:0334 57F400 move #>$FFFF, b
OOFFFF
_Loop
P:0336 075EBC movem al, P:(ré)+
P:0337 000000 nop
P:0338 22C400 move r6, x0
P:0339 20004D cmp X0, b
P:033R 0E2336 jne _Loop
P:033B 00000C rts
H UTILITIES
InstallsSIInts ;install SSI rcv data handler at 3000C and $000E and HC at
$30026 for upldm isr, pointer to instruction to poke is passed in x0
P:033C 05F439 movec #$300, sr
000300
;sbe sure that ints are shut off, clear SR, none but lvl 3 ints
P:033E 44F400 move #>SSIDataInPtr, x0

000090

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 115

P:0340 209700 move X0, r7 ;set up pointer
P:0341 240000 move #0, x0 ;need a zero to make a NOP
P:0342 Q7E78C movem P:(r7), al
P:0343 070coC movem al, P:$000C ;install ISR pointer
P:0344 070D04 movem x0, P:5000D ;add NOP after it
P:0345 070EOC movem al, P:$000F
;install ISR pointer in 'exception' ints
P:0346 O070F04 movem x0, P:$000F ;add NOP after it
P:0347 00000C rts
StartssIints iatarts up ISRs
P:0348 200013 clr a
;send a Zero to TX so that SSI is initialized.
P:0349 OBCE2F movep a, X:<<M TX ;write 0 to SSI output reg
:init interrupt priority levels, enable interrupts
P:034A 0BF4BF movep #53800, x:<<M_IPR
003800 ;83et SSI IPL to 1 in the IPR, set hostIPL at 2 for
fupload data and disable DEGMON monitor.
P:034Cc OO0FCES andi #$FC, MR ;clear bits 0 & 1 of MR to enable ints
P:034D 00000C rta
StopInts 73tops SSI ISRs but dosen't stop HC ISRs for upload isr
P:034E O05F439 movec #5300, sr
000300 ;clear SR, none but 1lvl 3 ints
P:0350 O0B8FP4BF movep #$0C00, x:<<M_IPR
000Ca0 ;reset SSI IPL in IPR to O
P:0352 OOFEEBS andi #SFE, MR ;clear bit 0 of MR to enabkle HI ints
P:0353 (0000C rts
o o e e e mem e
InstallHoatStopInts
P:0354 05F439 movec #3300, ar
000300
:be sure that ints are shut off, clear SR, none but lvl 3 ints
P;0356 44F400 move #>HostStopPtr, x0
0D00A4
P:0358 299700 move X0, r7 ;set up pointer
P:0359 240000 move #0, %0 ;need a zero to make a NOP
P:035A 07E78C movem P:(r?7)}, al
P:0358 07240C movem al, P:$0024 ;install ISR peinter
P:035C 072504 movem X0, P:50025 ;add NOP after it
P:035p 00000C rts
’. ——
HostStop
P:035E ODO34E isr StopInts
P:035F OA0020 bset #HOSTSTOP, X:<ProcStatus
P:0360 00000C rts
e, —————— e m e m e m e m e mm e m e e e e m e ———me———
InitFIFQ sinitialize FIFO pointers and M-regs
P:0361 60F400 move #>$8000, r0
008000 ;init the circular buffer write pointer
P:0363 370000 move #0, r7 ;init write advance counter
P:0364 05F420 move #>FIFOSIZE-1, mO
007BFF ;make r0 modulo of FIFOSIZE

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 116

P:0366 00000C

rts

B o AR e E P o vt . T VY = T ot S o e A D e e e e Ak T e e e et ek S e e s (o Ak Ll W S By oy e ke b A

ZeroXYMem
P:0367 66F400
000100
P:0369 20001B
P:036n 060084
00036D
P:036C 576600
P:036D SFSEQO
_2XYMEnd
P:036E 00000C

InitProcStatus
P:036F 200013
P:0370 540000
P:0371 OAQOCS
000374
P:0373 O0A0021
_IPSA
P: 0374 O0AOOC4
000377
P:0376 OA0022
_IPSB
P:0377 00000C

clr
do

move
move

;sclear X and Y memory for PHA
#>PHATABLESTART, r6

b
#1024, _2ZXYMEnd

b, x:(x6)
b, y:(re)+

;init process status register

al, X:<ProcStatus
#5, Y:<CommandWord, _IPSA

#CHANNELA, X:<ProcStatus :;set input channel A bit
#4, Y:<CommandWord, _IPSB

#CHANNELB, X:<ProcStatus ;set input channel B bit

B o et et T A L AR A Yy e T B s A R T e S B o P . . e i G D G B . S Skt e S R D P P e .t b e S P

InjtBuffStatus
P:0378 200013
P:0379 540100
P:037A 00000C

RV romH1

P:0378 O09FOBO
000010

_RV1

P:037D OAR984
00037D

P:037F O9FOBO
000011

_RV2

P:0381 OAR981
000381

P:0383 O0BF4AB
000002

_RV3

P:0385 OAA981
000385

P:0387 08D82B
P:0368 OAO081
000391
P:038A 06DCOO
00038E

jelr

movep

jelr

movep

jelxr

movep
jelx

do

rinit buffer status register

al, X:<Buffstatus

;receive data from HI to the circular buffer
X:TTL_Set, Y:$FFF0 ;request host ints for data
rtranfernote that 'bset and bcly should not be used
shere they change sampling rate unexpectedly

#M_HF1l, X:<<M_HSR, _RV1

;swait for host acknowledeg
X:TTL_Clear, Y:$FFF0

sclr host ints request
#M_HTDE, X:<<M_HSR, _RV2

#>DSPHIRV, X:<<M_HTX
;send tranfer code to host

#M_HTDE, X:<<M _HSR, _RV3

n0, X:<<M_HTX {3end number of words to host
#CHANNELA, X:<ProcStatus, _ChanB

nd4, _RvChanA

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 117
RVD

P:038C OAA980 jclr #M HRDF, X:<<M_HSR, _RVD
00038C
P:038E 085CAB movep X:<<M_HRX, X:(r4)+
;data tranfer from HI to the circular buffer, for cha
_RvChanh
P:038F 0A0101 bclr H#FIFOEMPTY, X:<BuffStatus
P:0390 00000C rts
_ChanB
P:0391 06D80O0O do n0G, _RVChanB
000385
_RVE
P:0393 OAA980 jelr #M_HRDF, X:<<M _HSR, _RVE
000393
P:0395 08S5CEB movep X:<<M HRX, Y:({r4)+
;data tranfer from HI to the circular buffer, for chB
_RvChanB
P;0396 O0AQl01 bclr #FIFOEMPTY, X:<BuffsStatus
P:0397 00000C rts
LoadPHATable
P:0398 64F400 move #>PHATABLESTART, ri4
000100
_PTabl
P:039A OAAS8B0 jclr #M_HRDF, X:<<M_HSR, _PTabl
00039A
P:039C 0870AB movep X:<<M _HRX, X:ChannelNum
00000D ;ChannelNum must be 2 to the power
P:039E 060D00 do X:ChannelNum, _PTab2
0003A3 ;of N, for proper PHA sorting
_PTab3
P:03A0 OAAYS0 jclr #M_HRDF, X:<<M_HSR, _PTab3
0003A0
P:03A2 08452B movep X:<<M_HRX, x1
P:03A3 4D5C00 move x1, ¥Y:{rd)+
_PTab2
P:03A4 00000C rts
" ———
McaConst
_MConl
P:03A5 OAA980 jclr #M_HRDF, X:<<M_HSR, _MConl
0003A5
P:03A7 0870AB movep X:<<M HRX, X:NoiseHi
00000A
_Mcon2
P:03A9 OAAR98B0 jclr #M_HRDF, X:<<M HSR, _MCon2
00039
P:03AB 0B70AB movep X:<<M_HRX, X:Noiselo
00000B
_MCon3
P:03AD OAAS80 jeclr #M_HRDF, X:<<M HSR, _MCon3
0003AD

P:03AF 0870AB movep X:<<M_HRX, X:QsortCyc

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiIMCA 118

:03B1 00000C rts
:PHA, it is equal to base 2 logorithm of ChannelNum minus 1.

END INIT_PGM

. 00000C iThe max number of sorting cycles for

4] Errors
0 Warnings

