
1+1 National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographie Services Branch des services bibliographiques

395 Wellinglon Street 395. rue Wenington
':.::~awa. Ontario Ottawa (Ontario)
K1AON4 K,AON4

NOTICE AVIS

"

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

La qualité de cette microforme
dépend grandement de la qualité
de la thèse soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser à .
désirer, surtout si les pages
originales ont été
dactylographiées à l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférÏl:lurë.

La reproduction, même partielle,
de cette microforme est soumise
à la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

•

•

•

Upgrading Liquid Metal Cleanliness Analyzer
(LiMCA) with Digital Signal Processing (DSP)

Technology

by

Xiaodong Shi

A thesis submitted to the Faculty of Graduate Studies
and Research in partial fulfillment of the

requirements for the Degree of
Master of Engineering

Department of Mining and Metallurgical Engineering
McGill University
Montreal, Canada

Il) October 1994

••• National Ubrary
of Canada

Bibliothèque nationale
ou Canada

Acquisitions and Direction des acquisitions et
Bibliographie SelVices Branch des selVices bibliographiques

395 Wellington Streel 395. rue Wellington
Dnawa. Onlario Onawa (Onlario)
K1A0N4 K1AON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LmRARY OF CANADA TO
REPRODUCE. LOAN, DISTRmUTE OR
SELL COPIES OF mSIHER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING TmS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN mSIHER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HISIHER
PERMISSION.

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRmUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE­
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-612-05476-4

Canad~

•

•

RÉSUMÉ

RÉsUMÉ

Le développement de produits métalliques de haute qualité requière~ à la base~

des métaux liquides propres. Pour de plus en plus d'app1ications~ la propreté du métal

liquide doit être évaluée et le nombre et la taille des inclusions doivent être contrôlés en

deça de valeurs acceptables. Ces besoins ont motivé le développement de techniques de

mesure du nombre et de la taille des inclusions. L'appareil LiMCA (Liquid Metal

Cleanliness Analyzer), développé à l'Université McGiU et utilisé avec succès dans

l'industrie de l'aluminium, est une de ces méthodes. Elle permet de mesurer la

distribution de taille des inclusions dans les métaux liquides.

Le fonctionnement du LiMCA est basé sur le principe de la Zone Électrique

Sensible. Un courant électrique est maintenu à travers un orifice au bas d'un tube

submergé dans un bain de métal liquide. Le métal liquide est aspiré à l'intérieur du tube

et lorsqu'une inclusion non conductrice passe à travers l'orifice, elle augmente, pour

un bref instant, la résistance électrique de l'orifice. Un s}'stème de traitement de signal

détecte et mesure les transients, les converti en taille de particule, et les compte en

fonction de ieur taille ou, accumule les comptes par intervalle de temps.

Le système de traitement de signal du LiMCA actuel est constitué de modules

d'électronique analogue. Il ne peut décrire les transients que par leur amplitude et par

le temps auquel ils surviennent. Cette restriction freine le développement de

l'appareillage LiMCA pour des applications où différents types de transients existent et

doivent être classifié avant d'être traité. Le système actuel ne peut non plus être utilisé

pour des applications qui requièrent un comptage simultané de la distribution de taille

des particules et leur distribution dans le temps. Ces limitations retardent la transition

du LiMCA à devenir un appareil de contrôle de la qualité des métaux liquid.es.

Un nouveau système de traitement numérique des signaux a été conçu et mis en

marche avec succès. Avec cette technologie, chaque transient est décrit par un groupe

de sept paramètres. L'analyse de ces paramètres permet de classifier le transient. De

plus, les distributions temporelles et de taille des transients classifiés peuvent être

obtenu simultanément.

•
ABSTRACT

AB8TRACT

ii

•

•

The development of advanced metal products requires "clean" liquid metals as

their basic materials. There are more and more applications for which the cleanliness of

the liquid metals has to be qualified that the number and size of inclusions must be

controlled below sorne acceptable limits. Such demand~ for quality have resulted in the

development of measuring systems that can count the number and size distribution of

inclusions. One such device, the so-called LiMCA (I,iquid Metal ,Çleanliness

Analyzer), which was developed at McGill University, measures inclusions in liquid

metals and has becn successfully used in the aluminum industry for years.

LiMCA is based on an Electric Sensing Zone principle. By maintaining a

constant current through a small orifice through which liquid metal passes, non­

conductive particles passing through the orifice temporarily increase the electrical

resistance of the orifice, which therefore result in transient changes in the electric

potential. The signal processing component of the LiMCA system detects the voltage

transients, translates them into particle sizes, and COUlits them based on their sizes, or

accumulates the transients in certain time increments.

The current LiMCA system uses analog electronic components to implement the

signal processing part. It can only describe a transilmt by its height or its time of

occurrence. This implementation has limited the further development of the system for

applications wllere different types of transients occur and where these transients have to

be classified before further processing. The system also limits the applications where

the particle size distribution and particle occurrence 1must be counted concurrently.

These limitations have hindered the development of the LiMCA system from an

inclusion measuring device into an on-Hne quality conuiol apparatus.

Digital Signal Processing (DSP) technology h~s becn successfully applied to
,

upgrade the LiMCA system. With this technology, the DSP-based LiMCA system is

able to describe each LiMCA transient by a group of'seven parameters, and vvith the

help of them, classify it into a certain category. Moreo&er, it simultaneously counts the

classified peaksbased on their height and their time of lX:currence.

ACKNOWLBDGMENTS

ACKNOWLEDGMENTS

iii

•

•

This work was carried out under the supervision of Prof. G. Carayannis and

Prof. RJ.L. Guthrie. The author is greatly indebted to them for their encouragement,

academic and financial support during the course of study.

Special thanks to Prof. G. Carayannis again for his valuable knowledge of DSP

and computer technology that the author learnt from him and applied to the work.

The author would also like to convey his sincere gratitude to Mr. F. Dallaire,

the MMPC lab manager, for his willingness to share his valuable experience in LiMCA

experimenting and data processing, and for his comments on the thesis.

The author would like to thank Mr. T. Draganovici, a good friend and a

valuable colleague of mine, for his daily collaboration and discussions throughout the

progress of the work.

Finally, 1 owe a great deal of debt of gratitude to my wife for her unwavering

support and her devotion in raising our lovely daughter.

• TABLE OF CONTENTS

TABLE OF CONTENTS

IV

•

•

1. INTRODUCTION 1

1.1. Preview 1

1.2. Principle of Operation 2

1.2.1. Electric Sensing Zone (ESZ) Principle 2

1.2.2. LiMCA Sensor and Signal 4

1.2.3. LiMCA System and Signal Processing 7

1.3. Classes of Real LiMCA Voltage Transients 9

1.3.1. Modeling of Real Transient. 10

1.3.2. Real Transients 11

lA. Motivations, Methods and Context of This Work 13

2. DSP-BASED LiMCA SYSTEM 16

2.1. Digital versus Analog Signal Processing 16

2.2. System Overview 18

2.3. DSP Specifications for LiMCA Application 18

2.3.1. Analyses of LiMCA Signal 19

2.3.2. Key DSP Specifications for LiMCA Signal Processing 21

2.3.2.1. Resolution of Analog-to-Digital Conversion

(ADC) 22

2.3.2.2. Sampling Frequency 22

2.3.2.3. Input Channels 24

2.3.2.4. Computational speed 24

2.3.2.5. Summary 27

2.4. Choice of Hardware Environment 27

3. SYSTEM CONFIGURATION AND INlTIALlZATION 29

3.1. The Configuration of the DSP Board for LiMCA 29

3.1.1. Header and Jumper Settings of the DSP-56 Board 31

3.1.2. The Configuration of Port A of the DSP56001 32

3.1.3. The Configuration of Port B (Host Interface) of the

DSPS6001 33
3.1.3.1. Data Transfer between the Host and DSP in

Polling Mode 36

3.1.3.2. Host Command Interrupts 37

•

•

•

TABLE OF CONTENTS v

3.1.4. The Configuration of Port C of the DSP56001 40

3.1.5. Selecting Sampling Frequency of the Analog Interface and

Using the DSP Auxiliary IIO Port 45

3.2. Hardware Initialization and Program Loading 46

3.2.1. DSP56001 Booting Process 47

3.2.2. Program Loading through the DEGMON Monitor 49

4. LiMCA SOF1WARE DESIGN AND IMPLEMENTATION 53

4.1. Software Overview 53

4.2. DSP Software 53

4.3. DSP Real-time Software 55

4.3.1. Task Distribution between the Host and DSP 56

4.3.2. Memory Allocation at the DSP Level 56

4.3.3. Real-time Control Executive 59

4.3.4. ADC Process 62

4.3.5. Peak Sampling Process 65

4.3.6. Peak Description Process 68

4.3.7. Pulse Height Analysis (PHA) Process 71

4.3.8. Real-time Data Transfer Process 73

4.4. Host-DSP Interface for Real-time Data Transfer 75

4.4.1. General Views 75

4.4.2. Interrupt Installation and Control 76

4.4.3. Interrupt Service Routine (lSR) for Real-time Data

Transfer•.........•..•.................... 78

4.4.4. EMS (Expanded Memory Specification) Memory Pools

for Real-time Peak Parameters 78

4.5. Software Performance 81

5. CONCLUSIONS AND FUTURE DEVELOPMENTS 83

5.1. Conclusions to the Thesis 83

5.2. Suggestions for Future Work 83

REFERENCES ..•.............................•................•.............•.•...•.•.......... 85

APPENDIX A: SPECIFICATIONS OF THE DSP-56 CO-PROCESSOR

BOARD 88

APPENDIX B: THE PROTOTYPES OF THE DSP-56 INTERFACE

FUNCTIONS 90
APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 94

•
LIST OF FIGURES

LIST OF FIGURES

vi

•

1.1 Voltage Change due to a Non-conductive Particle 3

1.2 LiMCA Sensor 4

1.3 A Close-up Longitudinal Cross-section View of a Real LiMCA Orilicc 5

1.4 Resistive Pulse of Two Equal Volume Inclusions 6

1.5 Schematic of the First Generation LiMCA System 7

1.6 LiMCA Data Analysis 8

1.7 Mathematically Modeled LiMCA Transient 9

1.8 A typical Normal ~ulse (NP) 10

1.9 A typical ,!laseline lump (BJ) 11

LlO A typical Negative ~aselinc lump (NBJ) II

1.11 A Multiple ~ulse (MP) 12

1.12 Intelligent Signal Analysis '" 14

2.1 Two Signal Processing Approaches: (a) Analog Signal Processing, (b)

Digital Signal Processing 17

2.2 DSP-based LiMCA System 19

2.3 Frequency Spectra of the Modeled NP in Figure 1.7 20

2.4 Frequency Spectra of the Modeled NP in Figure 2.3 (Iow frequency

part) 21

•

2.5

2.6

2.7

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

Frequency Spectra of a Real NP and an MP 22

Frequency Spectra of a BJ and an NBJ 23

Digital Signal Processing Hardware 27

DSP-56 Block Diagram [Ariel 89] 29

Functional Signal Groups of DSP56001 [Motorola 92] 30

DSP-S6 Header and Jumper Locations 31

Default 110 Address Selection Settings 32

Bus Control Register and Memory Spaces 33

Registers of the Host Interface 34

HI Registers on the DSP Side 35

HI Registers on the Host Side 36

Interrupt Priority Register and Mode Register 39

Port C Control Register (pCC) and Configuration 40

SSI Control and Status Registers 41

•

•

•

LIST OF FIGURES vii

3.12 Timing Diagram and Data Flow of the Simultaneous Uses of ADC and

DAC of Both Channels Using SSI Receive Data Inlerrupts 43

3.13 Operating Mode Register Forma!. 47

3.14 Block Diagrams of the DEGMON Monitor 50

4.1 Format of the Command Word and Logic of the Command Interpreter 54

4.2 The Structure of the DSP Real-lime Software 55

4.3 Real-time Control Executive and ils Communication Links 60

4.4 Registers of the ReaHim~ MCA Process 61

4.5 The Timing Diagram and Data Plow of the ADC Process 63

4.6 Circular Buffers for ADC 64

4.7 A Typical Section of LiMCA Signal Extracted from the Eastalco

Aluminum Test 66

4.8 The Peak Sampled from the Signal in Figure 4.7 66

4.9 Peak Parameters: (a) Positive Peak, (b) Negative Peak 69

4.10 Parameter Seqnence in the Peak Buffers 70

4.11 Schematic Diagram of the PHA process 72

4.12 Real-time Data Transfer Between the Host and DSP 73

4.13 Cable Conneclion between DSP's Auxiliary Port and PC's Parallel Port 76

4.14 EMS Pool for DSP Real-time Peak Parameters of Channel A 79

4.15 Usage of the DSP CPU 81

•
LIST OF TABLES

LIST OF TABLES

"iii

•

•

3.1 Interrupt Sources 38

3.2 Sampling Frequency Selections [Ariel, 89] 45

3.3 Initial DSP56001 Operating Mode Summary [Motorola 89] 48

4.1 The Usage of the Program Memory 57

4.2 The Allocations of X and Y-data Memories 58

4.3 Characteristics of LiMCA Peaks 82

•
CHAPTER 1: INTRODUCTION

1. INTRODUCTION

1

•

•

1.1. Preview

The presence of inclusions (i.e. foreign, undesirable particles, such as oxides,

intermetallics, etc.) in metals can be detrimental to the properties of the final products.

The continuously increasing demand for high quality requires that metal cleanliness be

monitored and described quantitatively. For sorne products (such as beverage cans,

turbine blades, aerospace parts, etc.), both the number and the size distribution of

inclusions present in the metal have to be controlled and kept below certain acceptable

limits. Several inclusion measuring methods have been proposed [pitcher and Young

69, Bauxman et al. 76, Siemensen 81, Levy 81, Bates and Hutter 81, Mansfield 82] but

most of them are off-line techniques that require considerable amount of labour and

time. A novel on-line method, known with the acronym LiMCA (Liquid Metal

!:;Ieanliness Analyzer) was developed at McGill University by researchers Doutre and

Guthrie [Doutre 84]. The principle of operation of the LiMCA system is based on the

Electric Sensing Zone (ESZ) Principle (Section 1.2.1), which was first developed and

applied by Coulter [Coulter 56] to aqueous and organic suspensions at, or near, room

temperature.

The LiMCA technique has been successfully used for quality control in the

aluminum industry by Alcan, and, being an on-line method, LiMCA has the potential

to be used for the development of a process control system. At McGill, a significant

amount of research has been carried out for the application of LiMCA to other metals

and alloys, such as zinc, magnesium, copper, steel, etc. [Nakajima 86, Kuyucak 89,

Kuyucak and Guthrie 89, Lee 91].

In addition to the applications of LiMCA to liquid-metal quality monitoring and

control, there were severa! practices and there are strong desires to use it as a research

tool in the studies of metallurgica1 processes. For example, in the study of ceramic

foam filters for liquid aluminum, measurements were done to determine the

concentration of inclusions upstream and downstrearn with LiMCA [Tian et al 92].

LiMCA was also used in the research on the kinetics of removal of Ca and Na from AI

and AI-Iwt%Mg alloys by chlorination [Kulunk 92]. In the investigation of powder

injection processes, an Aqueous Particle Sensor, which is a water version of the

LiMCA system based on the same operating principle, was used [Yamanoglu 92].

1.2. Principle of Operation

Severa! researchers and industrial engineers have expressed strong expectations

on the future applications of LiMCA in the studies of metallurgical processes and in

particular in understanding and optimizing such processes. In general, a typical

metallurgical process involves the interactions and reactions among liquid melal, solid

inclusions and injection agents of different types, gas bubbles, and liquid inclusions. To

lmow the size distributions and frequencies of occurrence of different types of

inclusions at a certain location and a certain time would be of great help to

metallurgists studying the processes.

The demand for such a tool for use both in the process study and control

motivated our LiMCA research project, which is currently sponsored by FCAR and on

NSERC strategie grant. Our final goal is to develop a system that can tell the opcralor,

to sorne extent, what happened and what is taking place inside liquid melal in variolls

processes. The work described in this thesis involves mainly the work related to the

signal processing system of LiMCA. Upon completion, a flexible working platform is

provided for further study and development. In the subsequent sections of this chapter,

an introduction to the LiMCA system and its operational principle, and the motivations

for our work are presented.

•

•

CHAPTER 1: INTRODUCTION 2

•

1.2.1. Electric S,ensing Zone (ESZ) Principle

As mentioned earlier, the theoretical basis of the LiMCA technique is the

Electric Sensing Zone Principle (Figure 1.1). A conductive liquid medium is separated

by an electrically insulated wall. A small opening in the wall submerged in the liquid

connects the two parts of the medium. A constant DC voltage is applied across the

orifice, while the liquid is forced to flow through il. In Figure 1.1, a cross-section

view of a cylindrical orifice with length L and diameter D is illllstrated. Conductive

fluid is flowing through the orifice with constant flow rate Q and electric current 1.

Because of the geometrical confinement of the orifice, the electric field is intensified

inside the orifice and thus becomes very sensitive to the change of the electrical

property of the conductive fluid flowing through the orifice. The volume inside the

orifice is called the Electric S,ensing Zone, ESZ for short. When a non-conductive

particle passes through the orifice with the fluid flow, the overall resistance of the

orifice is increased momentarily and cao be detected as a voltage pulse. A non­

conductive particle with diameter d suspended in the fluid is shown in Figure 1.1 as it

•
CHAPTER 1: INTRODUCTION

I....---L ---~~I

V2

3

VI-V2= baselille

• tO t1 t2
Time

t3 t4

'."':':'·U·~

Figure 1.1 Voltage Change due to a Non-conductive Particle

passes through the orifice. The position of the particle is labeled with time Il, 12, •••.
Under the following assumptions:

1. Inclusions are spherical
2. Inclusions are non-conductive
3. The orifice is cylindrical with diameter D and length L(» D)

4. Only one inclusion passes through the orifice at a given time
5. The current density within the ESZ is constant

The voltage change AV is related to the volume of the particle by Equation 1.1
[DeBlois and Bean 70]. This equation is used as a basic relation to predict the size of
particle from the voltage change A~ A detailed discussion of the ESZ principle can he
found in [Doutre 84].

AV =1~P$f(dID) (1.1)

where

•
CHAPTER 1: INTRODUCTION

f(dID) = 1-0.8~dID)3 (1.2)

4

•

•

1.2.2. LiMCA Sensor and Signal
The LiMCA sensor is designed to have an ESZ of a certain shape and to catch

and monitor the voltage change due to a particle passing through the ESZ. The design

of the probe and the materials used to construct it depend on the metal or alloy to be

evaluated and analyzed.

Figure 1.2 shows a typical LiMCA sensor for use in molten aluminum and its

alloys. It consists of an electrically-insulated tube with a small orifice at the side wall

near the bottom and two electrodes, one inside, the other outside the tube facing the

orifice. The tube is made of Kimax. glass, and the electrodes are made of steel. A

smoothly-curved orifice is desirable for a stable metal flow through the orifice. This is

essential for stable signal. A glass-blowing technique is applied hl make the orifice. A

insulating vessel (\ .!!JU's;ent

+) "- -

electrodes

Figure 1.2 LiMCA Sensor

5

outside

·600

600
~

!400
~

~200.s inside
~ 0
1:
:~-200

l
~.400

CHAPTER 1: INTRODUCTION

cross-section view of a reaI LiMCA orifice is shown in Figure 1.3. Detailed design

parameters can be found both in [Doutre 84] and [Dallaire 90].

In practice, the shape of the orifice clearly violates assumption 3 (cylindrical

orifice assumption) that must hold for Equation 1.1 to be true. Furthermore, in real

processes, the shape of particles may not be spherical. Assumption 1 (spherical particle

assumption) may aIso be violated. The work of [Carayannis et al, 92] showed that the

cylindrical assumption can be relaxed in that the significant sensitive region of the ESZ

of the real orifice is much longer than the size of the inclusions. Although the electric

current !ine distributions throughout the real orifice are quite different from the case of

the idea1 cylindrical orifice, the streamlines of electric current in the vicinity of the

neck of the real orifice are still parallel. Thus it is concluded that the peak values of the

resistive pulses (or equivalently voltage pulses) generated from a real orifice and an

ideal cylindrical one are equal.

800 ,....-_"""'""-lI""7""'.,.,..,.".-:..,.,..,..,..,.,.~.--- __

•

•

.800L.....J,.j~:at.~~~~!i(Lja..L.--.J

·800 ·600 ·400 -200 0 200 400 600 800

Longitudinal distance (pm)

Figure 1.3 A Close-up Longitudinal Cross-sectlon Vlew of a Real LiMCA

Orifice

•
As for the spherical particle assumption, the theoretical modeled resistive pulses

of two equal-volume particles of different shapes are shown in Figure 1.4. [Carayannis

et al, 92]. The peaks of the two cases are quite different while the areas below the two

curve~; are equal. From this modeling work, one can conclude that the transient
generated by a cylindrical inclusion cannot be easily distinguished from that generated
by a smaller spherical inclusion, detected and described only by its magnitude.

•
CHAPTER 1: INTRODUCTION 6

2.5r----------------,

~1000 -500 0 500 1000

Position along the ESZ (pm)

R--
"'J 42Pm diameter spltere
-S 2
~=:
l:::t

"'5 1.5
~ 10}Jm dia. 50 'J.lm IOllg cylinder
=:
S 1
.~

~....
N
~ 0.5

•
Figure 1.4 Resistive Pulse of Two Equal Volume Inclusions

However, the encouraging fact from this preliminary research is that the shapes
of the resistive curves are shown, under certain conditions, to be sensitive to the shapes

of the inclusions. The shape information, if extracted, could be used to correct the

particle size error due to irregular shape and to identify different types of inclusions.
To decode the shape information, further theoretical and experimental studies have to

be conducted for a better understanding of the ESZ phenomena. To facilitate the
researches, a working platform which can describe the shape of the transient is

required. Developing such a platform is the object of this work. In the subsequent
sections, the first generation LiMCA system is introduced, its limitations are discusscd,

and the direction that we take to upgrade it is also presented.

•

-~

Semor

Figure 1.S Schematic of the First Generation LiMCA System

S

Power Supply

V.

CHAPTER 1: INTRODUCTION 7

1.2.3. LiMCA System and Signal Processing

The architecture of the first generation LiMCA system~ which was designed in
the early 80'S~ is schematica1ly shown in Figure 1.5. The system consists of four parts:
a sensor (Section 1.2.2), a power supply system~ a pressure and vacuum system and an
analog signal processing system.

A battery is used as a power supply and provides the required constant current.
A vacuum cylinder connected to a vacuum pump~ and a cylinder containing argon gas
under pressure~ are used to build the vacuum/pressure system. The signal processing
system has two parts, a signal conditioning part and an analog signal processing part.
The magnitudes of the voltage transients that the system must detect are in the micro~

volt. (IlV) range and are superimposed on a DC offset which, for a Kimax probe with
300 J..l m orifice used in molten aluminum, is about 0.1 volts. This DC component

corresponds to the constant voltage drop across the orifice when no inclusion is present.
The signal conditioning stage eliminates this De offset, filters out high frequency
noise, performs bandwidth reduction, and amplifies the signal to milivolt level for

further processing. To increase the sensitivity to small pulses, the signal is also passed
through a logarithmic amplifier.

Further processing is carried out by an analog signal processing system, built

•

•

•

CHAPTER 1: INTRODUCTION 8

•

from commercially available units. Here, a Pulse Sampler (model TN-1246, from

Tracor Nortem) is used to detect and measure the height of the transients and feed their

magnitudes to a Multi-Channel Analyzer (model TN-7200, also from Tracor Nortern).

The latter has two modes of operation, fulse Height Amùysis (PHA) mode and Multi­

~hannel Scan (MeS) mode, generating a size or a time distribution of the transients

(Figure 1.6).

In the PHA mode, the detected transients are classified according ta their

magnitudes. Using Equation 1.1, this voltage distribution i5 converted to an inclusion

size distribution, which can then be used to calculate measures directly linked to metal

cleanliness, such as the number of inclusions per kilogram of metal, the number of

inclusions of certain size ranges per kilogram of metal, th,~ volume ratio of inclusions

to metal, etc. Among them, one parameter in particular N20 is widely used in

aluminum industry. It is define as the number of inclusions whose diameter 1S greater

than 20 Ilm per unit mass of liquid metal. N20 is the main output parameter of the

industrial LiMCA system. It i5 obtained assuming that ail the detected transients are

related to particles and that there is a constant rate of fluid flow through the orifice

[Dallaire 90].

In the second mode of operation, the Multi-Channel Analyzer counts the

transients that are detected within a certain time increment, treating equatly the

'" --e3 d.tO)

tlme

tlme

tlme Increment

MCS~
....
§
Q
w

PHA

<=a
peak helght

~~

partlele slze

Figure 1.6 LiMCA Data Analysis•

transients with different heights. This mode is known as Multi-Channel Scan, or MCS

for short. MCS gives the time distribution of inclusions at the location of the LiMCA

sensor. Such information becomes more and more interesting to metallurgists for the

study and control of severa! metallurgica1 processes, such as, for example, the

chlorination and the alloying process of aluminum. These data analysis procedures are

illustrated in Figure 1.6.

The Multi-Channel Analyzer has an integrated display where these distributions

are shown. Il is also connected to an IBM-PC through an RS-232 port, and data can be

downloaded for future reference and analysis.

•
CHAPTER 1: INTRODUCTION 9

•

1.3. Classes of Real LiMCA Voltage Transients
The reliability of the results from PRA and MCS depends on the accurate peak

counts and amplitude measurements of the LiMCA transients. In the LiMCA

operations, severa! types of transients with different characteristics have been observed

[Dallaire 90]. They are generated duc to different ESZ disturbing factors, and they are

not necessarily all caused by inclusions passing through the ESZ. Il is obvious that

counting and measuring all transients without analysis, introduces errors. Therefore,

the types of transients that are caused by inclusions must be tirst identified and then

differentiated from the other types.

In this section, some of the results from our ESZ modeling work will be

presented and then the different types of transients that are observed using the LiMCA

system will be examined and compared.

250

200 1-
Original signal- -

~ 150 1-
High pass filtered signal

-! -
~ 100 1-
,s...
~ 50

~ \
0

-50 '-
0 0.5 1 1.5 2 2.5 3 3.5 4

lime (ms)

• Figure 1.7 MathematicaUy Modeled LiMCA Transient

•

•

CHAPTER 1: INTRODUCTION 10

1.3.1. Modeling of Real Transient

As mentioned earlier, the first generation LiMCA system uses the relationship

developed by [DeBiois and Bean 70] (Equation 1.1) to convert the height of the

detected transient to the size of the particle that caused il. We also mentioned that this

relationship is based on a number of assumptions. In an effort to determine the

aceuraey of the results generated by the system, We have investigated the sensitivity of

the shape and magnitude of the LiMCA transients to these assumptions [Carayannis et

al. 92]. In this theoretical study, the behaviour of the ESZ in the presence of a non­

conductive particle is mathematically modeled.

Figure 1.7 shows such a modeled transienl. The dashed !ine is the modeled

transient generated by the temporary change in the resistance of the ESZ as a spherical,

non-conductive particle passes through the orifice. The melt flow is assumed to be

laminar and the flow rate constanl. This is a reasonable assumption and gives rise to a

ehanging velocity profile across the orifice. Recall that the first signal processing stage

is a high pass filter that e!iminates the DC component of the signal. The so!id !ine in

Figure 1.7, shows the effects of this filter with a cutoff frequency of 1 KHz. These

include an undershoot following the falling edge of the peak and a magnitude

attenuation, which is a function of its frequency components and is usually less then

10% of the magnitude of the peak. The most common observed peaks in typical

LiMCA applications are of this type.

1.3.2. Real Transients

~

f-

f-

f-

.
~

"• • • • •

Figure 1.8 A typical ~onnallulse(NP)•

600

500

~ 400

-! 300
~
~ 200
i

100

o
-100o 0.5 1 1.5 2 2.5

time (ms)
3 3.5 4

11

43.531.5 2 2.5
tinte (ms)

10.5

200

1000------------------.

800

s:-
-! 600
lU

~
~ 400i

CHAPTER 1: INTRODUCTION

•

Figure 1.9 A typical Baseline Jump (BJ)

•
Figure 1.8 shows a transient measured in liquid Aluminum. One can see that

the measured transient has similar characteristics with the modeled one, shown in
Figure 1.7. We caU such a signal a Normal :eulse (NP), and argue that it was generated
due to the passage of an inclusion through the ESZ.

However, other types of transients having different characteristics than normal
pulses, have been encountered in aluminum tests, although not as often, under typical
operating conditions [Dallaire 90]. Such transients are shown in Figure 1.9 and Figure

100,...---------------.

ot----.~-----~=_----_I

~ -100
-!.
~ -200
S
l -300

•
-500--.....--....._-....._-......_--'o 2 4 6 8 10

lime (ms)

Figure 1.10 A typical Negative Daseline .lump (NBJ)

•
CHAPTER 1: INTRODUCTION

600 r------------------,
500 ­

""" 400 :-
'"-! 300 1-
~

.-l!! 200 1­
~

100 1-

J

.10: t=:=:'\S;;~::2===~~.::~.=Jo 0.5 1 1.5 2 2.5 3 3.S 4
lime (ms)

Figure 1.11 A Multiple ~Ise (MP)

12

•

•

1.10 and are called Baseline .lump (BJ) and Negative Ilaseline .lump (NBJ)

respectively. Their characteristics include a steep starting edge and an exponential
trailing edge, restoring the baseline. The width (i.e. the time duration) of a BJ or a
NBJ is usually severa! times larger than that of an NP having the same magnitude.

The most prominent physica1 explanation for the appearance of such peaks, is
that they represent the response of the high pass filter to step changes in the resistance
of the FSZ. Severa! physica1 phenomena at the FSZ can result in such a step change in
resistance: partial blocking or unblocking of the orifice, expansion or shrinkage of the
orifice. Furthermore, a long cylindrical inclusion, passing through the orifice in its
longitudinal direction, would also give rise to this type of transient.

In rare occasions, when more than one particie pass though the orifice at the
same time, transients having more than one peak are detected (Figure 1.11). Here two
inclusions were present in the FSZ at the same time. Such a signal is called Multiple
~Ise (MP).

In addition to the signal types mentioned above, two more have been identified.
They are known as the laseline fluctuation (BF) and the Negative laseline fluctuation
(NBF). The actual time domain shapes of these two types of signais vary, however
their starting slope is quite flat. The presence of such transients indicates oscillations of
the baseline (i.e. the magnitude of the DC component) of the signal, and therefore fiags
improper system operation.

We presented here a summary of the major classes of LiMCA transients. For a

comprehensive analysis of the transient classes and related ESZ phenomena, see

[Dallaire 90).
•

CHAPTER 1: INTRODUCTION 13

•

•

1.4. Motivations, Methods and Context of This Work
In the first generation LiMCA system, all transients having magnitudes higher

than a given noise thrcshold are detected, their heights are measured and converted to

the sizes of the corresponding inclusion particles. However, from our previous

discussion it is obvious that only NP type transients correspond to particles. BJ type

transients may be related to particles but in most cases, they are indicative of other

ESZ phenomena, such as reduced metal flow, partial blockage, orifice size change, etc.

It is therefore desirable to develop a LiMCA system that cao discriminate and classify

the different types of transients. For this purpose, the upgrade of the first generation

LiMCA that different types of transients cao be differentiated and processed differently

became our first objective. The new LiMCA system must also facilitate the research

efforts directed to explore the limits of the ESZ technique. It must be designed to

provide extensive information, such as the shape and type of the inclusion, the

condition of the orifice and the signal etc.

We believe that in order to extract both shape and size information of inclusions

from a LiMCA signal, a better understanding of the different ESZ phenomena is

required. Mathematical modeling, combined with weil controlled experiments, cao help

achieve this. Knowledge of the metallurgical process must be combined with the

information obtained from LiMCA in order to identify the possible inclusions (i.e.

differentiate expected inclusion particles based on their shape or state, i.e. gaseous,,
5Olid, liquid).

The first generation LiMCA system (Figure 1.S) uses general purpose analog

signal processing equipment (e.g. Pulse Sampler, Multi-Channel Analyzer,

Oscilloscope). It detects only positive peaks and uses only one peak description

parameter -- the peak height. This hardware architecture does not provide the flexibility

required to achieve the objective set above. As a result we considered the design of a

5Oftware-based LiMCA system using DSP technology.

To ensure compatibility and al50 facilitate the validation of the new system, our

first stage of development is to use DSP technology to develop a new generation,

5Oftware-based, LiMCA system, functionally equivalent to the first generation one. The

second stage is to develop the required code 50 that the new system cao automatically

identify the different types of transients. Our final goal is to integrate into the system a

higher level of reasoning, that can process the classified transients and, using

knowledge about the metallurgical process, categorize each inclusion into one of a

number of expected classes (e.g. based on composition, shape, state, etc.), and to

develop a sensor that can be used, not only for quality, but also for process control.

To accomplish our objective, the development of the OSP-based LiMCA can be

divided into the following five signal processing tasks. The first task involves sampling

the signal and detecting a positive or a negative peak. This is called the peak salllp/illg

process. The second task generates a description of the peak using a number of critical

parameters. This is the peak description process. These parameters are chosen to reneet

the characteristics of the different types of transients and the shapcs of the inclusions.

The peak classification process is the third task. Here each peak is classified into one

of the possible types, on the basis of the parameters used to describe il. In the past,

[Thibault et al. 89] investigated the off-line classification of LiMCA signais in the

frequency and auto-correlation domains. Although good classification results wcre

achieved, real-time constraints forced us to consider time domain classitication

algorithms. It was shown that a set of carefully selected measures can enable the design

of a fast time-domain classification algorithm [Carayannis and Shi 93].

The forth task extracts the size, shape and volume information of inclusion

particles from the peaks classified as NPs in the previous stages. The last task is the

development of an intelligent system, which uses the information extracted from the

•

•

CRAPTER 1: INTRODUCTION 14

FROM LiMC4 SIGNAL TO PROCESS PARAMETERS

Figure 1.12 InteDigent Signai Analysis

rs
process

dpI pommele

dp2
LiMC4 Signal Signal• •
Signal Analysis • Perception •• •

tt··· t
KnlMtledge of

Metllliurgiclll process

•

NPs and the frequency of occurrence of other types of transients together with the

knowledge about the specific metallurgical processes involved and makes intelligent

suggestions to the process operator. Figure 1.12 schematically shows this process,

which is conceptually divided into the signal analysis stage, that generates descriptions

of the detected transients and labels them into associated types, and the signal
perception stage, which identifies the detected particles. The signal analysis stage

involves the first three tasles mentioned above and falls into the scope of this thesis. The

signal perception stage involves the two last tasles and is beyond the scope of this

thesis.

•
CHAPTER 1: INTRODUCTION 15

•

•

In the subsequent chapters, the hardware and the software of the DSP-based

LiMCA will be discussed. Finally conclusions of this work and discussions of future

developments will be given.

•
CHAPTER 2: DSP-BASED LiMCA SYSTEM

2. DSP-BASED LiMCA SYSTEM

16

•

•

In this chapter, a brief introduction to DSP and a comparison between the

digital and the analog signal processing approaches are presented followed by

discussions on the particular DSP application for the LiMCA system. An overview of

the DSP-based LiMCA is then presented. Finally the hardware environment of the

system is presented.

2.1. Digital versus Analog Signal Processing
Before computer technology produced fast and cheap specialized processors,

signal processing could only be done by analog circuits. Now more and more

applications are implemented digitally. Signal processing generally involves the

transformation of signals from one domain to another in real-time (Figure 2.1). The

purposes of the transformation are to eliminate sorne unwanted components of the

signal (e.g. noise) and to highlight sorne interesting characteristics that are buried in

one domain and can be revealed in other domains.

The differences between analog (Figure 2.1 (a» and digital signal processing

(Figure 2.1 (b» lie in that the former processes signal transformation electronically

through an analog electric circuit while the latter carries out the transformation

mathematically through a programmable digital circuit (DSP). In the analog signal

processing approach, the original signal is processed by dedicated circuits. Then the

output of the analog signal process module is either displayed using analog gauges,

plotted on paper by an X-y piotter or more often, nowadays, displayed digitally on a

screen and saved on magnetic media. In the case presented in Figure 2.1 (a) the result

of signal processing is digitized and fed into a computer for display and storage. This

methodology was used in the design of the first generation LiMCA system shown in

Figure 1.5, in which commercial analog devices (i.e. Pulse Sampler, Multi-Channel

Analyzer) were used.

In the DSP approach in Figure 2.1 (b) the original signal is first digitized by

an analog to digital converter (ADC). Then the signal processing tasks are carried out

in a DSP 1Klard controlled by software. The software is developed and updated in

accord with the signal processing tasks. The DSP board is controlled and monitored by

•
CHAPTER 2: DSP-BASED LiMCA SYSTEM

~firstdomain

Ana/og Signal

A l Processing
na og ~1-----e~ADC1-__....

Input ~

ra)

17

Figure 2.1 Two Signal Processing Approaches:
(a) Analog Signal Processing, (h) Digital Signal Processing

signal in ftrst domain signal in second domain

u:~

(b)

Digita/ Signal
-.-. Processing

Ana/og

Input

•

•

a host computer. The results of the digital signal processing are directly uploaded to
the host computer througb an efficient bi-directional communication channel.

The major advantages of DSP over analog signal processing lie in its flexibility
and cost-effectiveness. Digital signal processing is software-based. Thus, it is mucb
easier to be nH:onfigured to accommodate new conditions and parameters.
Complicated and newly-developed algorithms can be integrated into the DSP software
to improve the overall performance of the signal processing. Sucb on~going

improvements are bard to evaluate and implement witb a dedicated analog signal
processing circuit. On the contrary, new tasks can be easily added on by modifying the
current code and writing more code in the DSP approacb. Furthermore, due to its
generality, a DSP module is cheaper than an analog signal processing module
performing the same tasks.

However, the major concern in the design of a DSP applications is
computational power of the selected DSP board, evaluated by computational speed
(MIPS, MFLOPS), dynamic range and width of data and address buses. The

computational power has always been the limiting factor of the DSP applications with

a given hardware. If the speed of calculation is not enough, it will introduce an

unacceptable delay for real-time processing. The dynamic range of data buses is

critical to the accuracy of the signal processing, and the dynamic range of address

buses limits the complexity of the signal processing tasks. In recent years, tremendous

efforts have been put into increasing computational power of digital signal processors.

As a result, a wide collection of DSP products of different grades are avai!able.

The complexity of the proposed signal processing tasks for the new generation

LiMCA clearly suggests that the use of DSP technology is appropriate. The signal

processing can be briefly summarize as follows: (see Section 1.4 for detai!s)

• sample and measure LiMCA peaks by severa! parameters;

• classify the peaks based on their multi-parameter descriptions.

The real-time peak classification algorithm was not available and is one of the major

part of this research. The multi-parameter peak description and the uncertainty of the

method used for peak classification contribute to the complexity of the signal

processing. Therefore, it is impractical to design and implement an analog signal

processing system for the LiMCA signal analysis (including peak sampling, peak

description and peak classification) (Figure 1.12). Implementing a DSP-based LiMCA

system provides a more powerful, flexible and cost-effective solution.

•

•

CHAPTER 2: DSP-BASED LiMCA SYSTEM 18

•

2.2. System Overview
The structure of the DSP-based LiMCA system is illustrated in Figure 2.2.

Comparing it to the first generation LiMCA system shown in Figure 1.5, one can see

that the analog components (Log Amplifier, Pulse Sampler, Multi-Channel Analyzer)

are replaced by a Digital Signal Processor. This processor is plugged into the bus of a

host computer, which is used to interface down to the DSP processor and up to the

operator through a newly-developed Graphie User Interface (GUI). The DSP

parameters and hardware environment of the system will he discussed in detai! in

subsequent sections of this ehapter. The initialization of the system and the software

developed for the system will he discussed in Chapter 3 and 4.

2.3. DSP Specifications for LiMCA Application
In order ta take full advantage of the DSP technology at minimum cost, the

hardware specifications of the selected DSP system should satisfy the requirements of

the specifie application. Specifically, such specifications as speed, bus dynamic range,

CHAPTER 2: nSp-BASED LiMCA SYSTEM 19

PoWer Supply

Figure 2.2 DSP-based LiMCA System

Signai Condllionlng

~
t

~~
voilage

~~
slze

"=.

Sensor

PRESSURE
{VACUUM

melt

s

• ADC sampling frequency and memory size are dependent on the characteristics of the
signal to be processed and the required signal processing tasks. Therefore t sorne
preliminary analyses of the LiMCA signal and processing have to be done to set
adequate specifications of the DSP processor to be used for LiMCA.

•

2.3.1. Analyses of LiMCA Signal
Among different types of LiMCA peaks (Section 1.3), normal pulses (NP)

directly relate to inclusions and construct the main stream of the signal. Therefore, the
characteristics of nonnal pulses were taken as the basic feature of the LiMCA signal.
The shape of an NP is shown in Figure 1.7 and Figure 1.8. In the lime domain, the
detectable height of an NP ranges from 10 f.lV to 640 f.lV t in the case of molten
aluminum. Considering a noise level of 10 f.lV under good operating conditions, the
Signal~t~Noise ratio is about 36 dB. The duration (width) of an NP is around 0.5 ms.
Normal pulses have the smallest width among all types of LiMCA peaks. Thus, we
define the busiest (worst case) operating condition for the system when the LiMCA
signal is purely composed of NPs and that they are "chained" together. Under this

•
CHAPTER 2: DSP-BASED LiMCA SYSTEM

Ol'Jl'll:'------------------.
NP befiITe HPF

"'."" .."
NP alter HPF with undershoot

NP after HPF without undershoot

20

504010
-100 '"----'-_--1.-_""'""----'-_......... --'-_-'-'-........

o 20 30
Frequency (kHz)

Figure 2.3 Frequency Spectra of the Modeled NP in Figure 1.7

•
operating condition, the occurrence rate of NPs is approximately 2000 per second.
Consequently, in the worst case, 2000 peaks per second need to be processed in real­
time. This is clearly an extreme situation which, in real operation, can be observed
only for sorne very short time periods. However this worst case scenario is used as
one of the criteria for the design and implementation of the DSP-based LiMCA
system.

In the frequency domain, the spectra of the modeled NP (Figure 1.7) are
illustrated in Figure 2.3. The low frequency part of Figure 2.3 is shown in Figure

2.4.

•

The frequency spectrum labeled with NP be/ore HPF is the 1024 point radix-2
FFf of the modeled normal pulse taken before the high pass flUer. The spectra labeled
with NP qfter HPF with undershoot and NP qfter HPF without undershoot are the
FFI' of the modeled pulse taken after the high pass fllter. However, the way of
chopping the pulse in time domain is different in the two cases. The former is chopped
at the end of the undershoot when its voltage level restores to zero, white the latter is
chopped before its undershoot, when the voltage level reaches zero after its positive
peak. The chopping of the positive part of the high pass tiltered signal resembles the

peak sampling process that we used later to sample both positive and negative peaks.
In all three cases, the lime demain vectors are expanded to 1024 points by padding the

CHAPTER 2: DSP-BASED LiMCA SYSTEM 21

......

NP hefore HPF

NP after HPF without undershoot

NP after HPF w;th undershoot

o,..,.~~---------------,

•

-50------......--......--------"""""----'o 2 4 6 8 10 12 14
Frequency (kHT)

Figure 2.4 Frequency Spectra of the Modeled NP in Figure 2.3 (low

frequency part)

chopped signaIs with trailing zeros for FFr. The spectra are normalized before
plotting and their amplitudes are measured in decibel (dB).

The frequency spectra of the signal before and after the high pass tiller with
undershoot are quite close, except for the frequency components below 1 KHz (1 KHz
is the cutoff frequency of the high pass tilter). White the spectrum of the high pass
filtered signal without undershoot is slightly different than those of the other two
cases, ils shape and tendency are still a1ike in lower frequency region, up to 25 KHz.
The width of the mainlobes of the spectra, in all the three cases, is approximately 14
KHz. Therefore, it is fairly accurate ta conclude that the major frequency components
of an NP are in the range from 0 to 14 KHz. Other types of LiMCA peaks have
narrower frequency spectra than those of NPs [Thibault et al. 89]. Therefore, the
bandwidth for NPs automatica1ly satisties the bandwidth of the other LiMCA signals.

•

2.3.2. Key DSP Specifications for LiMCA Signal Processlng
Based on the analysis of the LiMCA signal presented in the previous section

and on the signal processing tasks discussed in Section 1.2.3 and in Section 1.4, sorne
key DSP parameters can he decided.

e

•

CHAPTER 2: DSP-BASED LiMCA SYSTEM 22

2.3.2.1. Resolution of Analog-to-Digital Conversion (ADC)

The number of bits used to represent an analog value after the analog-to-digital

conversion determines the resolution of the digital representation of the analog signal.

Presently, 16-bit analog-to-digital converters are very common and suitable for most

applications requiring high precision.

Assuming that the range of the analog signal maps the full range of the ADC

input, the absolute quantization error is less or equal to Xm /2B, where Xm is the full

analog input range and B is the number of bits of the analog-to-digital converter

[Oppenheim and Schafer, 89]. The relative quantization error is thus within 1128 • For

a 16-bit ADC, the maximum relative quantization error is 0.00153%. Neglecting other

distortions during ADC, the quantization error gives rise to a Signal-to-Noise ratio of

96 dB, which is much higher than that of the LiMCA signal of 36 dB (Section 2.3.1).

2.3.2.2. Sampling Frequency

The ADe sampling frequency is determined from the bandwidth of the analog

signal. In the case of the modeled NP, the frequency range is from 0 to 14 KHz

(Figure 2.4). According the Nyquist's Sampling Theorem [Oppenheim and Sehafer,

89], the sampling frequency must be equal to or higher than two times the maximum

frequency of the analog signal, to avoid aliasing of the high frequeneies into the low

frequencies, causing distortions. Sinee the NPs have the widest bandwidth among ail

, .,
1 , •,. \

• •, .
• •,.
",.
•

Normal Pulse

Multiple Pul.fie

, ., . , .
~, -

10 20 30 40 50
Frequency (/cHr)

Frequency Spectra of a Real NP and an MP

CHAPTER 2: DSP-BASED LiMCA SYSTEM

0...--------------------,
Baseline Jump

Negative Baseline Jump

'1.­

".,
tiItr •• 1\+40,. \,., .,

\ .: t.).' ,,," ~. tt

23

•

•

o 10 20 30 40 50
Frequency (kHr)

Figure 2.6 Frequency Spectra of a BJ and an NBJ

LiMCA pulses, their maximum frequency is used to ca1culate the sampling frequency,
Considering the Nyquist's Sampling Theorem, the minimum sampling frequency must
be equai ta or higher than 28 KHz,

Figure 2.5 and Figure 2.6 show the frequency spectra of rea1 LiMCA
transients sampled at 50 KHz. In Figure 2.5, the frequency spectra were obtained
using a radix-2 FFf of the NP and the MPs shown in Figure 1.8 and Figure 1.11
respectively, The spectra in Figure 2.6 were obtained from the BI and NBJ signais
shown in Figure 1.8 and Figure 1.10 respectively. The frequency spectrum of the rea1

NP has the same pattern as those of the mathematica1 modeled one shown in Figure
1.7 (lime domain) and Figure 2.3 (frequency domain). The frequency spectrum of the
MPs (Figure 1.11 in the time domain and Figure 2.5 in the frequency domain) have a
"tooth" pattern under the envelope of the frequency curve of the NP. Periodic
frequency attenuations occur on the frequency spectrum of the MPs as compared to
that of the NP.

The frequency spectra of the BI and the NID are very similar but are evidently
different from those of the NP and MPs. Considering the frequency components with
normalized amplitudes larger than -30 dB, NPs and MPs have bandwidths about 18
KHz (Figure 2.5), which are wider than those of IDs. The minimum sampling

frequency to avoid aIiasing for normaI and multiple pulses must be equal to or higher

than 36 KHz (two times their bandwidth according to the Nyquist's Sampling

Theorem). To guarantee the accuracy of the signaI processing in case the operational

conditions change, for example a higher flow rate through the ESZ generates narrower

peaks that have wider bandwidth and require higher sampling frequency, sorne over­

sampling is desirable. As a result, the sampling frequency was set to 50 KHz.

•
CHAPTER 2: DSP-BASED LiMCA SYSTEM 24

•

•

2.3.2.3. Input Channels

Sorne LiMCA applications require real-time measurements at two locations,

and the results need t? be compared. One example is the evaIuation of the filtration of

liquid aluminum using a ceramic filter. In this application, two LiMCA sensors are

used. One is positioned upstream from the filter and the other downstream from the

filter rrian et aI 92]. The results from the two sensors are being compared to calculale

the filtration efficiency. To handle this type of applications, the upgraded LiMCA

signaI processing system must be designed with two parallel processing units, which

must operate simultaneously. Therefore, the DSP hardware unit must have two analog

input channels, and the processor must be able to process the signais from the two

channels in paraIlel.

2.3.2.4. Computational speed

The Speed of a DSP depends upon several characteristics such as clock

frequency, instruction set, the length of address and data bus, etc. The required

computational Speed is considered according to the overall real-time signal processing

task and the parameters discussed before. As discussed in Section 1.4, the overall task

for LiMCA signaI processing includes peak sampUng, peak description and peak
classification processes. Moreover, referring to Figure 2.1, one can notice that a

generic process is aIways needed for digital signaI processing. It is the analog-to­
digilal conversion (ADe) process. Considering the sampling frequency of 50 KHz,

there are only 20 IJS available for aIl the LiMCA DSP processes between two data

samples. Therefore, in order to process LiMCA signaIs in real-time, the DSP board

must he fast enough to guarantee that the processing can he completed within this time

constraint.

The clock frequency of the DSP processor can he caIculated from the

maximum numher of clock cycles needed for the execution of the real-time task and

the required ADC sampling frequency. However, it is impossible to know the clock

cycles needed for the execution of each process before the actual code is written.
Nonetheless, a qualitative estimation is still helpful. Assuming that two c10ck cycles
are needed for each instruction, the analysis starts with the number of instructions
required. The following discussions are the analysis of each process involved, and the
total number of instructions needed for our application are summed up through all the

processes.
The ADC process can be implemented as an interrupt service routine (ISR)

triggered by a programmable c10ck divider at the required sampling frequency. Here,
exact timing of the complete DSP application is not necessary. The time difference
between the ADC process and other signal processing processes can be handled using a
circular buffer. This design is ideal for complex DSP applications for which manually
timing the ADC process is impossible, as required for sorne types of DSP systems that
ADC process has to be coded mixed with other processes as a foreground process.

For the interrupt-driven ADC process, the digitized data are available in a
buffer (ADC buffer) when the interrupt occurs. The process moves the data from the
ADC buffer to a circular buffer and monitors the buffer status. The instructions that
implement the process are:
• 1jump to subroUline instruction to enter the ADC ISR. Program counter (PC) and

system status register (SR) are pushed into the system stack;
• 1 move instruction to move the digitized data from the ADC buffer to the circular

buffer;

• 1 retum instruction to exit this routine. PC and SR are popped from the system
stack;

To manage the circular buffer, the following instructions are needed:
• 1 move instruction to fetch the circular buffer write pointer;
• 1 increment instruction to increment the pointer one position forward;
• 1 move instruction to save the pointer back to memory;

• 1 move instruction to fetch the circular buffer read pointer;
• 1 comparison instruction to compare the write pointer with the read pointer;
• 1 conditional jump instruction following the pointer comparison. The result of the

comparison indicates the status of the circular buffer. If it is not overfiow, the
process returns. Otherwise, it needs extra instructions to flag the buffer overfiow
error. This is a fatal error that terminates the real-time process. When this occurs,
the timing looses its importance. Thus, these extra instructions under this condition
are not considered in the real-time timing•

•

•

•

CHAPTER 2: DSP-BASED LiMCA SYSTEM 25

Therefore 6 instructions are needed for managing the circular buffer. For sorne

processors, two registers are needed for comparison instructions, and these have to be

saved in the system stack before executing the ISR. 4 pllsh-pop instructions are needed

for this purpose. In total, 13 instructions are required for each ADC channel, about 26

instructions for two ADC channels. Note that for many DSP processors with parallel

architecture, parallel data move are allowed. For these, the total number of

instructions for two channels cao be decreased dramatically. However for a rough

estimation, the above analysis is sufficient.

In the peak sampUng process, the same amount of data have to be moved and

the circular buffer has to be maintained as for ADe process. In addition, sorne

comparison and conditional jump instructions are needed to compare the data fetched

from the circular buffer with certain thresholds to find the start or end of a peak.

Therefore, for the data movements and buffer maintenance, the same 26 instructions

are required. Estimating another 26 instructions for the comparisons, total of 52

instructions are caiculated for this process. Therefore, a total of 78 instructions are

required for the ADe and peak sampling processes together. Note that, these

instructions are executed per ADC data sample, Le., they are executed 50,000 times

per second with the sampling frequency set to 50 KHz, resulting in 3,900,000

instructions per second.

For the peak description and peak classification processes, due to the

complexity of the algorithms used, many more instructions are needed. As a

qualitative approximation, the code for the first two processes is estimated as 2% of

the total DSP software. This gives rise to about 4000 lines of instructions for the

overall DSP task, making it a medium size DSP application. Note that the code

written for the peak description and peak classification processes is executed per

LiMCA peak rather than per ADC data sample as in the cases of ADe and peak
sampUng processes. Considering the worst case operation (2000 peaks per second)

(Section 2.3.1), 7,844,000 instructions are to he executed in one second for the peak
description and peak classification processes. In total, 11,744,000 instructions needed

to he executed in one second for the overall LiMCA DSP task.

In conclusion, hased on the above caiculation, the DSP processor must he

faster than 12 MIPS (Million Instructions fer S.econd). Normally two c10ck cycles are

needed for each instruction. Therefore, the c10ck frequency of the processor to he

selected for the LiMCA DSP task must exceed 24 MHz.

•

•

•

CHAPTER 2: DSP-BASED LiMCA SYSTEM 26

•
CHAPTER 2: DSP-BASED LiMCA SYSTEM 27

2.3.2.5. Summary
In summary, the basic requirement for the DSP board used for LiMCA signal

processing includes two in}lut ADC channels with 16-bit resolution, up to 50 KHz

AOC sampling frequency, and a DSP with a system clock faster than 24 MHz. As for

further enhancement, a DSP processor with parallel architecture is desirable.

2.4. Choice of Hardware Environment
Considering the basic specifications discussed in the previous sections, a DSP­

56 co-processor board for IBM PC type computers from Ariel corporation, was

selected as the real-time DSP engine. A 50 MHz 80486-based computer is used as the

host. The signal processing hardware part of the DSP-LiMCA is schematically shown

in Figure 2.7. The specifications of the DSP-S6 board are summarized in Appendix A

[Ariel 89].

The DSP-S6 is based on the Motorola DSPS6001 CPU running at 27 MHz

with an instruction cycle time equal to 74.1 nanoseconds. The memory of the

processor is arranged in three 64Kx24-bit sections, each with separate address and data

...

.......=
SCSI

Hard Drive

u DSP-56
~ Co-processor

Digital Recorder

ADe ses~_.-!_ J. 1

IBM-PC 486

Host Computer

~=CIoc=_..

Host bus

Signal from

Condltionlng

Flgure 2.7 Digital Signal Processing Hardware

•

•

buses. One section is used for program memory and the other two for data (X and Y

data memory). The DSP-56 board has two l6-bit ADC and two 16-bit DAC channels.

The sampling rate of the ADC can be selected from 16 choices ranging from 2 KHz to

100 KHz in the so-cal!ed l6-bit stereo mode. In this mode, signais from two LiMCA

sensors can be acquired and processed concurrently. A high speed mono ADC mode

with sampling rates up to 400 KHz is also availab!e. An on-board SCSI (Small

Computer Standard Interface) interface will be used in the future to save the acquired

signal on a hard disk for off-line reference. The DSP-56 also has one input/output bit

which we used to interrupt the host computer (using the paralle! port interrupt)

whenever the real-lime DSP process requires attention. The analog signal from the

signal condilioning stage is connected to the ADC and to a digital tape recorder

(Mode! RD-101T, from TEAC).

•

•

•

CHAPTER 2: DSP-BASED LiMCA SYSTEM 28

•
CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 29

3. SYSTEM CONFIGURATION AND INITIALIZATION

Due to the sophisticated architecture and the required flexibility in the use of the

DSP-56 board, its configuration and initialization are not a simple automatic process.

Lengthy information and instructions are found scattering in different references [Ariel

89, Motorola 92, Motorola 89]. Therefore, the author found that it is helpful to re­

organize and combine information from these references to achieve correct LiMCA

operation. For adapting the DSP-56 to other applications, readers must refer to the

above mentioned references.

This chapter explains how we customize the DSP configuration settings and

parameters that best suit our application. The DSP initialization process and the

necessary host function prototypes used to control it are also described.

T

1 1
1 IlAddress 1

Decoding
~

External DSPnet

~
RAM Port

oS! ~ 1 W°rt A ~I '- IIDATABUS 1

L ==Di ~ 1~SS~ it"~ 56ADC16 ADC SCSI
~ ~ li SC PCM56 DAC Port

== 0.1" 2XAnaiogIN
JPortB - Header

Host Port
2XAnaiogOU

Il 1 Aux =,1 Buffer 1 UO Digital
1 To /From Host PC

UO

Figure 3.1 DSP-56 Black Diagram [Ariel 89]

uni-directional
bi-directional

3.1. The Configuration of the DSP Board for LiMCA
The configuration of the DSP-56 board includes non-programmable

•

•

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 30

SSI

R."\D}
TXD SCI
SCLK
sco
SCI
SC2

SCK
SRD
STD

HOST CONTROL
~__...,A........__.....

r - "

~~~~~m~~
AO-AlS
DO-D23

PS
DS

RD

WH

xJY
BR!WT
FG18S

HOST DATA
BUS

ADDRESS
DATA

BUS
CONTROL

•

•
Figure 3.2 Functional Signal Groups of DSP56001 [Motorola 92]

configuration done by setting-up several headers and jumpers on the board, and
programmable configuration done by writing appropriate parameters into the dedicated
registers. The non-programmable configuration detennines the host pe's port addresses
for the DSP-S6 board, the DSP's memory size, the host pe's DMA (Direct Memory
,Access) channel, the analog output and the DAC migital to Analog !;,onverter)
Reconstruction Filter. The programmable configuration sets up the communication
parameters of the Port A, Port B and Port C of the Motorola DSP56001 processor, as
weil as the sampling frequency of the analog interface, the Auxiliary 110 port, the SCSI
port and the DSP net port of the DSP-56 board (Figure 3.1 and Figure 3.2).

In the subsequent sections, the non-programmable configuration will be
discussed briefly. The programmable configuration of Port At Port B and Port C, the
sampling frequency of the Analog Interface and the Auxiliary 110 port will be
discussed in depth. The SCSI port and the DSP net Port will not be considered here,
since they are not currently used in our system•

•



•

•

•

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 31

3.1.1. Header and Jumper Settings of the DSP-56 Board

There are several headers and jumpers on the DSP-56 board providing different

specifications and usage of the board. Their locations are shown in Figure 3.3.

As mentioned earlier, there are five hardware set-ups that need to be configured

by setting these headers and jumpers. These are the host PC port adèresses, DSP's

memory size, the host PC's DMA channel, the analog output and the DAC

Reconstruction Filter of the DSP board.

The DSP-56 board is designed as an 110 mapped peripheral that occupies eight

lia port addresses of the host PC, set by means of the jumpers on Header 2. Al! data

transferred to and from the DSP-56 use these lia port.

The default settings of the jumpers on this header is shown in Figure 3.4. The

bits are read from the jumper as 1101000 considering the jumpered pairs of pins as 0

and the pairs without a jumper as 1. Adding three trailing zeros to the reading to make

it a lO-bit word as 1101000ooo. This setting corresponds the port addresses $340

through $347. Note that the three trailing zeroes to the reading from header 2 imply

that the different selections of the starting addresses of the 110 port are always in

multiples of eight. The left most pair of pins is not used and should be left open. At

present, the base address of the DSP-56 used for LiMCA is chosen at $340. This is one

of the parameters that the host-DSP interface software must \mow.

DDDD DD 1 DSPnet Il SCSI 1

Pl P2P3P4 P5P6 H11::::::::1

DSPnet ADDRESS

P-RAM

~[;]:r116KI
Y-RAM X-RAM

lüiI lüiI
JP9

JP8~ ~ JP2 SERIAL VO

mJP6

11~······:IH3••••••••
~ ~ Ir······~11I2••••••••mm lU JP5JP4 VOADDRESS1::::::::1

mmDM\

1
Hu - Header JPn - Jumper Pn - Trimpot

Figure 3.3 DSP-S6 Huder and Jumper Locations



CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION

- jumper link not installed

bits:

• 00 - j.mp~ O.k l"taO,' ~
jumper bits

'1 1 -.

1
9876543

lmplied bits
1

32

• • 1• 111N
1

• • • A
H2

readings:

address
in hex:

traillng

;:t;
1 JI 0 1 0 0 1 0 0 0 0

1
3 '--- 4 __...1. O----l

•

•

Figure 3.4 Default 1/0 Address Selection Settings

The memory configuration of the DSP-56 is done by jumpers 2, 8 and 9. The

Program memory, and the X and Y data memory cao be set for 16K or 64K operation.

The jumper locations for the setting of the three memory banks are also shown in

Figure 3.3. Presentty, the size of all three banks are 64K.

Other features of the DSP-56 such as Direct Memory Access (DMA), analog

output and the DAC reconstruction filter are not used and are disabled. Besides, the

analog input range cao be adjusted by two trimpots labeled with ..A and B gain" and

located near the upper left corner of the board. They provide input gain adjustments

over a 17 dB range.

3.1.2. The Connguratlon of Port A of the DSPS6001

As one cao see from Figure 3.1, the Motorola DSP56001 processor accesses

the externat memory through its communication port A. This port has 24 data Iines, 16

address Iines and 7 control Iines (Figure 3.2). Through this port, the processor can

address three blocks of memory, namely program RAM, X and Y data RAM. The size

of each memory block, including the processor's internal RAM, cao be up to 64K 24­

bit words. The external bus timing is controlled by the Bus ~ontrol R,egister (BCR),

which is mapped ioto the X data RAM at X:$FFFE. To synchronize with slower

external RAM, zero ta 15 wait states cao be inserted when the processor accesses the

external memory. The number of wait states must be written into the corresponding



CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION

• bltl: IS 12 11 8 7

BCR EXTERNAL EXTERNAL
X:SFFFE X MEMORY y MEMORY

4 3 0

EXTERNAL EXTERNAL
P MEMORY 1/0 MEMORY

33

P:SFFFF

P:S200

Figure 3.! Bus Control Register and Memory Spaces

nibble of the BCR (Figure 3.!). One wait state is equal to 37 nano seconds for a 27

MHz processor. Note in Figure 3.!, that the ROM cao be disabled and shadowed by
internai RAM.

Following a resel, the DSP56001 processor accesses each of the external
memory bank using 15 wait states by default. Since the DSP-56 board uses zero wait
statie RAM for its external memory. The BeR has to be written with zeroes. The
syntax to set zero wait states is "HOVEP '0, x: $FFn:" •

P:so L...- .......J

•

INTERNAL
PROGRAM
MEMORY

PROGRAM
MEMORY

SPACE

ll\'TERNAL
X:Sl00!--.-;,;;X~R;.;,O,;;,;M,--· --l

lNTERNAL
X:SO'--_X_RA_M_.....

X DATA
MEMORY

SPACE

INTERNAL
Y:Sl00 !--.....;;.Y.;;.;R;.;;.O;.;.;;M~--i

INTERNAL
Y:so ,--_Y_RAM__....l

Y DATA
MEMORY

SPACE

•

3.1.3. The Configuration of Port B (Host Interface) of the DSP!6001

Port B is a dual-purpose 1/0 port that cao be used as (a) 15 general-purpose pins
individually eonfigurable as either input or output pins or as (b) an 8-bit bi-directional
host interface (Hl) (FIgure 3.2). For the LiMCA application, this port is configured as
a host interface. The selection of HI is done by writing 1 to the Port B Control Register
(PBC) at X:$FFEO. This is done by a ROM bootstrap program at booting stage
(Section 3.2.2).

The HI allows the communication between the host PC and the DSP-S6
processor. The communication tasks such as the downloading of DSP programs and



CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 34

Figure 3.6 Registers of the Host Interface

HOST SlDE REGISTERS:

r------,WRlTE
ONLY

::=~READ
ONLY

1CONTROL 1
LOGIC

J-.....,.... X:$FFEB ........~
HRX

ICR: Intcrrupt Control Rcglstcr
CYR: Comnllmd Vcctor Rclllslcr
ISR: Intcrrupt Status Rcllistcr

CI.l IVR: Inlcrrupt Vcctor RClllster
~

: RXH: Recch'c High Byte Rcgistcr
!:li RXM: Rccchoe Middle Bytc Registcr
~ RXL: Rcccl\'cr Low Bytc Reglstcr

~ TXH: Transmit Hlgh Bytc Reglstcr
X:$FFEB 9 TXM: Transmit Middle Bytc Reglstcr

14-~"r...t HTX ~~-t ~ TXL: Transmit Low Byte Reglstcr
~

f;j
~ DSP SlDE REGISTERS:
Cl

HCR: Host Control Registcr
HSR: Host Status Registcr
HTX: Host Transmit Data Registcr
HRX: Host Rl:cclve Data Registcr

•

•

hast control commands from the hast PC ta the DSP processor and the uploading of
real-time data from the DSP board to the hast PC, are extensively using the HI during
the real-lime processing. Therefore, efficient programming of the HI is one of the key

factors affecting the overall performance of the DSP-LiMCA System.
The HI is asynchronous and consists of two banks of registers -- one accessible

ta the host PC and the other accessible to the DSP CPU (Figure 3.6, 3.7 and 3.8). The
registers on the hast side occupy, in the present configuration, eight 8-bit port locations
from $340 through $347 (Section 3.1.1) while the registers at the DSP's side are
mapped into X memory space occupying 3 memory locations. Note that the port

addresses of the registers on the host side, shawn in Figure 3.8, are the offsets from
the base address $347. The BFO and HFI bits in the HSR on the DSP side and the ICR
on the hast side are two general purpose flags for the hast ta flag the DSP, while the
HF2 and HF3 bits in the BCR on the DSP side and the ISR on the host side are similar
flags used by the DSP to flag the host PC. The HCP bit in the HSR on the DSP side
reflects the status of the He bit in the CVR on the hast side. Data are flowing through
the HRX or HTX on the DSP side and the RXH:RXM:RXL or TXH:TXM:TXL triple



•
CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION

HCR
X:SFFE8 L...-_.L-_...L..._...I.--~...L.."':"':".....L...~-.I..."':"::~~;...,.j(READ/WRITE)

HSR
~':":'-.L-_...L..._...I.--~...L.."':"':".....L...~-.L.~~~;...,.j (READ ONLY)

35

23 161S 8 7 o
X:SFFEB

X:SFFEB

RECEIVE RECEIVE RECEIVE
mGHBYTE MIDDLE BYTE LOW BYTE
TRANSMIT TRANSMIT TRANSMIT
HlGHBYTE MIDDLE BYTE LOWBYrE

HRX
(READONLY)

HTX
(WRlTE ONLY)

BITS IN HCR: BITS IN HSR:

•

•

HRIF: Host Receive Interrupt Enable BRDF: Host Rcccive Data Full
HTIE: Bost Transmit Interrupt Enable HTDE: Hart Transmit Data Empty
BOE: Hait Command Interrupt Enablc HCP: Host Command Pcnding
HF2: Host Flac 2 HFI: Host Flag 1
HF3: Host Flag 3 HF2: Host Flag 2

NOTE: The numbers ln parcnthcsls arc l'eS4:t values.

Figure 3.7 HI Registers on the DSP Side

registers on the host side when data transfers are taking place between the host and the
DSP-56 board. The HTX and HRX are 24 bit registers located at the same memory
location al X:$FFEB and the three register pairs RXH/TXH, RXM/TXM and
RXUTXL are the corresponding three 8~bit registers on the host side. Each pair of the
registers share one PC's port address.

The TREQ and RREQ bits in the ISR on the host side are used to determine the
DMA mode data transfer direction. The DMA interrupt signal Unes DRQ (Data

Request) and DACK (Data Ackriowledge) are selected via Jumpers 4 and 5 (Figure

3.3) [Ariel 89].

Since the DSP-S6 board does not have general purpose interrupt sources to the
host PC, the interrupt vector number register IVR is never used.

The HI serves as a data transfer passage between the host PC and the DSP and
also as a source of interrupt from the host PC to the DSP CPU. It can be programmed

to perform data transfer in three modes, namely polling, interrupt and DMA. Only the
polling mode of data transfer and the host command interrupt will be discussed in the

following sections, since the interrupt and DMA are not used in our present
implementation.



CHAPTER 3: SYSTEM CONFIGURATION AND INITIALlZATION

$0

SI

ISR
L.......;'-'--.&......;'-'--'""'-_-'--...;..;...-'--...:....:.-L-....:...;...-I-.....:....;......L.....:..:~ (READ ONL\')

LVfERRUPT VEcrOR NUMBER
(SOF)

7 55 07 56 07 57

36

RECEIVE RECEIVE RECEIVE
IUCHBYTE MIDDLEBYrE LOWB~

TRANSMIT TRANSMIT TRANSMl!'
IUCHBYTE MIDDLE BYTE LOWBYTI:.

RXH:R.XM:RXL
(READONLV)

TXH:TXM:TXL
(WRlTE ONLV)

BITS IN ICR: BITS IN CVR: BITS IN ISR:

Figure 3.8 HI Registers on the Host Side•
RREQ: Recelvc Request Eoable HC: Host Command
TREQ: Transmit Request Eoable
IIFO, 1IF1: Boit Flag 0 and 1
HM), 11M2: HOIt Mode Control Bits

NOTE: Tbo numben ln parenthesll are resct values

RXDF: Recchoc Data R~lltcr Full
TXDE: Transmit Dilta RcWlter Empty
TRDY: TraRlmlUer Rcady
HF2, HF3: Hllit FlaK 2 and 3
HREQ: Hllst RequClt

•

3.1.3.1. Data Transfer between the Host and DSP in Polling Mode

In the polling mode, both the host and the DSP processors have to poli certain
handshaking flags that regulate the flow of data through the HI. For transfers from the
host to the DSP, the host processor poils the TXDE bit in the ISR and the DSP
processor polis the HRDF bit in the HSR (Figure 3.7 and 3.8). If TXDE is set,
indicating that the TXH:TXM:TXL registers are empty, the host processor writes the
next data bytes into these data registers. Writing to the TXL results in the TXDE bit in
the ISR being cleared. Thus the TXL should always be the last one to write. If TXDE

in the ISR is 0, and HRDF in the HSR is 0, data in the TXH:TXM:TXL registers are
transferred to the HRX on the DSP side. This data transfer from the hosl lo the DSP
sets the HRDF flag in the HSR and thus, it signals that the HRX is full. When the DSP
reads the HRX, it clears the HRDF, and this may again initiale a data transfer from the
TXH:TXM:TXL triple registers to the HRX (if the TXDE is cleared). In this way, the
data transfer continues.

Transferring data from the DSP to the host cao he implemented in a similar

fashion. Here, the host processor polls the RXDF flag in the ISR and the DSP polis the



•
CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 37

HTDE in the HSR (Figure 3.7 and 3.8). Writing to the HTX c\ears the HTDE flag.

When the HTDE and the RXDF flags are cleared, data in the HTX is automatically

transferred to the RXH:RXM:RXL triple registers and the RXDF flag is set. Reading

RXL on the host side clears the RXDF flag. This may again cause another data transfer

From the HTX to the RXH:RXM:RXL, and the data flow continues. The following are

sorne sections of programs that implement the host-DSP data transfer.

;Hoat to DSP d.>.b. tranafer by polling at DSP aide
DRdy JCLR 'HRDF, x: Hsa, DRdy ;po~~ HRDF f~ag in HSa, if not aet,

;d.>.ta ia not ready, po~~ it again
MOVEP X:«HRX,A iif HRDF 1a aet, read HRX

Ilpoll TlCDE f~ag in J:sa at host side
Ilif it is aet break the ~oop and write d.>.ta to
11=!:TllH:TXL trip~e d.>.ta registers
Iisend the !DOst aignificant byte first
IIthen the mi~e byte
Iithe ~east aignificant byte aho~d he the ~ast

outp (=! ,
outp(TllH,
outp(TXL,

I*Hoat to DSP d.>.ta tranafer by po~~ing at hoat aide, send a ~ong int to Dsp*1
unaigned ~ong d.>.ta;
regia ter unsigned char *P;
1'"' tunaigned char *' 'd.>.ta;
whi~e(l' (

if (inp (J:sa) 'TlCDE)
break;
1

* (P+21) ;
* (p+lll ;
*PI;•

•

3.1.3.2. Host Command Intermpts
In sorne cases, the host processor needs to interrupt the DSP process to request

immediate service. This can be implemented using the host command interrupt scheme

of the DSP56001 processor through the host interface.

As all interrupts of the DSP5600l, the host command interrupts are controlled

by two registers. One is the Interrupt Priority Register (lPR) at X:$FFFF, the other is

the Mode Register (MR) in the Program Controller of the DSP56001.

Ali the interrupts are associated with an Interrupt Priority Level (lPL). For

sorne of the interrupls, the IPLs are fixed. For the others, the IPLs are programmable

and are kept in the IPR. Ali the interrupt sources and their IPLs are listed in Table 3.1.

The bit definitions of the IPR and MR are shown in Figure 3.9. Two interrupt mask

bits in the MR reflect the current processor's IPL and indicate the level needed for an

interrupt source to interrupt the processor. Interrupts are inhibited for all IPLs whose

value is smaller than the current value of the processor's IPL. Level 3 interrupts always

interrupt the processor.



Table 3.1 Interru Dt Sources

Interrunt Startine Addrese IPL Interrunt Source

P:$OOOO 3 Hardware RESET ŒxternaJ)

P:$OOO2 3 Staek Error
P:$OOO4 3 Traee
P:$OOO6 3 SWI (Software Interrunt)

P:$OOO8 0-2 IRQA (External)

P:$OOOA 0-2 IRQB (External)

P:$OOOC 0-2 SSI Receive Data

P:$OOOE 0-2 SSI Receive Data with Exeeotion Status

P:$OOlO 0-2 SSI Transmit Data

P:$OO12 0-2 SSI Transmit Data with Excention Status

P:$OO14 0-2 SCI Receive Data

P:$OO16 0-2 SCI Receive Data with Exceotion Status

P:$OO18 0-2 SCI Transmit Data

P:$OOlA 0-2 SCI Idle Line

P:$OOlC 0-2 SCI Timer

P:$OOlE 3 NMI -- Reserved for Hardware Develoomcnt

P:$OO20 0-2 Host Receive Data

P:$OO22 0-2 Host Transmit Data

P:$OO24 0-2 Host Command lDefau\t)

P:$OO26 0-2 Available for Host Command

P:$OO28 0-2 Available for Host Command

P:$OO2A 0-2 Available for Host Command

P:$OO2C 0-2 Available for Host Command

P:$OO2E 0-2 Available for Host Command

P:$OO30 0-2 Available for Host Command

P:$OO32 0-2 Available for Host Command

P:$OO34 0-2 Available for Host Command

P:$OO36 0-2 Available for Host Command

P:$OO38 0-2 Available for Host Command

P:$OO3A 0-2 Available for Host Command

P:$OO3C 0-2 Available for Host Command

P:$OO3E 0-2 IIIel!a1 Instruction

•

•

•

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 38



•
CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION

Interrupt Prlorlty Regl.ter (lPR) at X:SFFFF

39

SClIPL SSI IPL !I0ST IfL RESERVED IRQB MODE IRQAMODE

;dafault hoat interrupt VIIctOZ:
;jUllllF to the inteJ:rupt .ervic. zoutine
;uae a do-nothinq operation
;to eliminate pipeline effect

•

•

Mode Reglster (MR) ln Program ControUer

SCALING INTERRVPT
MODE MASK

Figure 3.9 Internapt Priority Register and Mode Register

From Table 3.1, one can see that each interrupt source is vectored (one of 32

vectors) to a separate, fixed, two-word service routine located in the lowest 64 words
of the program memory. The host interrupt vectors are from P:$OO24 through
P:$OO3C.

The programming procedures of the host command interrupt and sample
programs can be summarized as follows:

• Shut off all interrupts but level 3 interrupts by setting the LO and LI bits in the
MR (Figure 3.9);

ORI '$l1,HR

• Set the IPL for the HI by choosing a combination of the HPLO and HPLI bits in
the IPR (Figure 3.9);

B8E!r 'DPLO, X:«IPl\
B8B!r 'HPLO, X:<<IPR ; ••t hoat IPL to 2

• Set up the pointer for the corresponding interrupt service routine. This is done
by writing 'J8R 8~_HOST_:i:5Rt fol1owed by a 'HOP' command into the

two-word interrupt vector sp.:è\;:s. 8~_H08'JLI8R is the starting address of the
interrupt service routine residing in the low program memory for the fastest
servicing.

ORG P:$OOU
JSR S'D.M!_HOtT_I8R
HOP

• Set the HCIE bit in the HCR (Figure 3.7) ta enable host command interrupt.
BSE!r 'HCD, x: «HCR



• Start host interrupts by manipulating Lü and LI bits in the MR to lower the

processor's IPL (Figure 3.9).
ANDJ: $FC, MR ;c:l.ear LO and LI bita in MR to enabJ.e

iinterrupts
•

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 40

•

The host cau then write the host vector in the CYR of the HI and set the He bit

of the register (Figure 3.8). Note that the actual value of the host vector should he one

half of the corresponding interrupt vector in Table 3.1. For example, the hust vector

should he $12 for host command interrupt $24. Setting the HC tlag in the CYR causes

the HCP hit in the HSR to be set and starts the Interrupt Service Routine From the

location in the Interrupt Vector Table, corresponding to the host vector in the CYR.

3.1.4. The Configuration of Port C of the DSPS6001
The Port C interface of the DSP5600I is a triple-function 1/0 port with nine

pins (Figure 3.2). Three of the nine pins can he configured as general~purpose 1/0 or

as the seriai communications interface (SCI) pins, and the other six pins can be

configured as genera.lwpurpose 1/0 or as synchronous seriaI interface (SSI) pins.

However, in the implementation of the DSP-56 co-processor board, this interface is

used as the SS! to interface to the ADC and DAC circuitry (Figure 3.1). Therefore,

this port should only he configured as the S5!.

The ssr of the DSP56001 has three dedicated 1/0 pins (Figure 3.2), which are

used for transmit data (STD), receive data (SRD) and seriaI c10ck (SCK). Three other

pins may aIso be used, depending on the mode selected; they are seriai control pins

seo, sel and SC2.

The configuration of Port C is controlled by the Port C Control Register (PCC)

al X:$FFEI (Figure 3.10). Writing $lF8 tl' the PCC configures Port C as an 551 and

the remaining 3 pins as general purpose 1/0, as requircd by the DSP-56 co-proccssor

board.

The SSI can he viewed as two control registers (CRA and CRB), one status

Port C Control Rcglstcr (PCC) at X:$FFEI

Figure 3.10 Port C Control Register (PCC) and Configuration•

23 21 11

~ .
CCI Fu.cUo.

t PInUtIIfO

1 sertal I.tertace

3

seo SCLK TX() RXD
-_/'-- --./"'-./' ------y-

SSI SCI



register (SSISR), a transmit register (TX), a receive register (RX) and a special­

purpose time slot register (fSR). Among them, the RX and TX share one memory

location at X:$FFEF, while the SSISR and TSR share another location at X:$FFEE

(Figure 3.11).

The CRA and CRB control the SS!. The flags in the SSISR can be used for

polling purposes. The RX and TX are 24-bit data registers for data transfer from the

ADC to the RX or from the TX to the DAC. The most significant 16 bits of the two

registers are used for 16-bit ADC and DAC. The least significant 8 bits of the two

registers are not used and are automatically filled with zeroes during the data

transmission.

Since a dedicated ADe and DAC circuit is connected to the 58I, sorne of the

bits in the CRA and CRB are fixed in accordance with the requirement of the circuit.

These bits should be initiali7.ed accordingly and not be modified in any circumstances.

In the CRA, bits DC4 to DCa must be set to 2, Le. 00010 in binary, for two

words ;~r dock frame in network mode. This setting is essential for two ADC and/or

DAC channels working simultaneously (see the timing diagram in Figure 3.12). Bits

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION

•

•
~ ~WORJ).LENGfIi FRAME RATE DMDER
~ iii CONTROL CONTROL

•
PRESCALE MODULUS SELEer

41

SERlAL CONTROL OUTPUT FLAGS
DlREcrION

CLOCK POLAIU'IY
FRAME SYNC LENGI'H 0 (MIXED BIT/WORD)

"----FRAME SYNC LENGTII (BIT/WORD)

7 6 S 4 3 2 1 0

MODESELECf
(NETWORKINORMAL)

GATED a..ocK CONTROL -_-1
SYNCIASYNC CONTROL -1

X:SFFEE

X:SFFEE

NPUTFLAGS
RANSMJT FRAME SYNC

IŒCEIVE FRAME SYNC

• • • • • • • •
RDE TDE ROE TUE RFS TFS ln IPO

~~ 1
1 1 1

T

UN

Figure 3.11 SSI Control and Status Registers

SSI TIME SlOf REGISTER (l'SR)
(WHITE)

SSI STATVS RECISTER (SSISR)
(READ)

RECEIVE DATA REGISTER FUL
TRANSMlT MTA REGISTER EMPI'Y
REŒIVER OVERRVN ERROR FLA.G

TRANSMrrTER VNDERR
ERRORFLA.G

•



WU and WLO must be aIso set to 10 (in binary), to select a 16-bit word length for the

16-bit ADC and DAC. The other bits in CRA should be set to zero. In summary,

OOסס,OOסס,0100,0010 in binary format or $4100 in hexauecimal format should be

written into the CRA for the simultaneous use of the ADC and DAC sections.

In the CRB, bits OFI and OFO are output flags. At the initialization stage, they

have no effects. The seriai control direction bits, SCDO, SCD\, SCD2 and SCKD are

fixed for the ADC and DAC circuitry, with SCDO equal to 1 and the rest equal to 0, to

configure SCO as an output pin. Bits FSU and FSLO must be cleared to select a word­

length frame clock synchronization for the word length specified by the WU and WLO

bits in the CRA. The SYN bit should be set, to select synchronous mode, and the GCK

bit cleared, to select a continuous clock. The MOD bit must be set, to configure the

SSI in network mode. This mode enables the DSP56001 to receive two 16-bit word

frames from the ADCs and send the same number frames to the DACs (see the timing

diagram in Figure 3.12). Therefore, both channels of the ADC and DAC can be

acliv'ated at the same lime. As a result, the lower 12 bits of the CRB should be

configured as OO,0100סס,1010 in binary or $A04 in hexadecimai. Bit 12 to bit 15 of

the CRB are enable bits. The TE bit enables the transfer of data from the TX to the

transmit shift register and the RE bit enables the transfer of data from the receive shift

register to the RX. The TIE bit enables the transmit interrupt at P:$oolO (SSI Transmit

Data) and P:$0012 (SSI Transmit Data with Exception Status) on the condition that the

TX is empty and the transmit shift register is not empty for the P:$0012 interrupt, or

on the condition that the TX is empty and the transmit shift register is empty for the

P:$oolO interrupt (Table 3.1). The RIE bit enables the receive interrupt at P:$OOOC

(SSI Receive Data) and P:$OOOE (SSI Receive Data with Exception Status) on the

condition that the RX is full and the receive shift register is empty for the P:$OOOC

interrupt, or on the condition that the RX is full and the receive shift register is also

full, for the P:$OOOC interrupt. These bits can be toggled to enable or disable the

associated interrupts. However, the TE and TIE, and the RE and RIE should be set or

c1eared in pairs. If bath the DAC and ADC channels are used, ail these bits have to be

set to 1 ta enable al1 the SSI interrupts. In summary, $FA04 should be written into the

CRB when ail the DAC and ADC channels are being used.

The data transfer from or ta the SSI are carried out by interrupt service

routines. The interrupt vectors for the SSI start from P:$OOOC ta P:$0012 (Table 3.1).

One sample of the SSI interrupt service routine from Ariel, shawn below, demonstrates

•

•

•

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 42



43

X: <<M_RX, bl
10, X:<<M_Clœ
bl, X:<<M_TX

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION

a simple way to service the SS! data transfer (fhe timing diagram and data flow of this

sample program are illustrated in Figure 3.12):
datain jcJ.r 13, X: <<M_SR, ~_B

movep X: <<M_RX, al.

bcJ.r 410, X:<<M_CRB
movep al, X:<<M_TX
rU

movep
baet
movep
rU

•

•

where K_SR stands for the address of the SSISR, K_roc for the address of the RX, lU=lU3

for the address of the CRB and K_TX for the address of the TX.

This routine services both the ADCs and the DACs using only the SSI Receive

Data Interrupt and the SSI Receive Data Interrupt with Exception Status. The entry

point of the routine P: <datain should be insta1led at both P:$OOOC for S8I Receive

Data and P:$OOOE for S5I Receive Data with Exception Status, if there is no separate

error handling interrupt service routine used for the P:$OOOE interrupt.

The active ADe channel is determined by polling bit 3, the RFS bit, of the

Timing of Two Channel ADC and DAC

OockFrame

RFSFlag RX Sioi B

i4----T·----1~ liT = sam IIng raie

RX Sioi A t---~

----11 TX Sloi A )-----1
OFO Flac or P----+'
seo Pin

RX Inlerrupts

Data Flow during RX Siot A Intcrrupt Data Flow during RX Siot B lotcrrupt

General RX Sblrt Clannel A General RX Shift Cbannel B
Purpowe RXData RXData

Regllter Register ADe Purpose
Regllier Register ADe

Regisler A Register B

1 Il 1
1 1

TXData TX Shlft a..annelA TXData TXSblR Channel BRegistcr Iœgisler DAC Regisler Reglster DAC

SSI SSI

•
Figure 3.12 Timing Diagram and Data Flow of the Simultaneous Uses of

ADe and DAC of Both Cbannels Using SSI Receive Data
Internapts



SSISR. As we discussed NU"Iier, the SSI is configured in synchronous network mode

and Iwo time slots per one cIock frame (DC4, DC3, DC2, DCI and DCO in Ihe CRA

are 00010). This configuration indicates that at each time slot, a word is transmitted

into the RX. Thus, Iwo words are received in one cIock frame. The data from channel

A of the ADC are gated into the RX at the time slots when the cIock frames occur and

the data for channel B of the ADC are gated into the RX at the time slots when the

clock frames do not occur. The status of the cIock frame is ref1ecled by the RFS bit in

the SSISR. Therefore, this flag is pol1ed to determine the active ADC channel in the

above sarnple program.

The SCO pin is used to select the DAC channel. SCO low selected DAC channel

A and SCO high selects DAC channel B. The status of Bit 0 or the OFO bit of Ihe CRB

controls the status of the SCO pin. Therefore, this bit is used to toggle between the Iwo

DAC channels. Writing a word to the TX services the DAC on channel A when OFO

bit is c1eared, or channel B when OFO bit is set.

In summary, similar procedures, as with the HI (Section 3.1.3.2), should be

undertaken for the use of SSI. They are Iisted below with sample assembly instructions:

• Shut off all interrupts but level 3 interrupts by setting the LO and LI bits in Ihe

MR (Figure 3.9);
OIU: '$11, MR

• Write a number to the TX register to turn on the SS!:
CLR A

HOVEP A, X: «1'X

• Initialize the SSI as needed by writing to the CRA and the CRB accordingly;
HOVBP '$4100, X:«CRA
HOVEP '$FA04, X:«CRB

• Set up Port C Control Register (PCC) to enable the SS!;
HOVBP '$1F8, X:<<pcC

• Set the IPL for the SSI by choosing a combination of the SSLO and SSLI bits in

the IPR (Figure 3.9);
BCLR 'SSLO, x: «J:PR
BSE~ 'SSL1, X:«J:PR ;aet ssJ: J:PL to 1

•

•

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 44

;881 Receive Data interrupt vector
;jump to the interrupt a.rvice routine
;uae a da-notbinq operation•

• Set up the pointer for the corresponding interrupt service routine. This is donc

by writing 'JSR s=_SSJ:_J:SR' fol1owed by a 'NOP' command into the

!wo-word interrupt vector spaces for the SS! interrupts. Si'AR~_SSJ:_J:SR is the

starting address of the interrupt service routine residing in the low program

memory for the fastest servicing.
ORG P:$OOOC
JSR S=_SSJ:_J:SR
NOP



CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION

• ORG P:$OOOE

JSR S!mRT_SS:I_:ISR

NOP

45
ito e 1 i minate pipeline effect
iSS:I Reoe;lve Data interrupt with
;Exception Statua
ijump to the interrupt service routine
;uee a do-nothing operation
;to eljminate pipeline affect

•

•

• Set up sampling frequency for the ADC (see next section);
MOVEP '$ 900000. lI:: <<MeR

• Start the SSI interrupts by manipulating LO and LI bits in the MR to lower the

processor's IPL (Figure 3.9).
AND:I $FC. MR ; cJ.ear LO and Ll bits in MR to

;enable interrupts

3.1.5. Selecting Sampling Frequency of the Analog Interface and Using the

DSP Auxiliary 1/0 Port

The sampling frequency of the ADC and the use of the Auxiliary port are

controlled by the Mode Control Register (MCR) at Y:$FFFO. The frequency is selected

through bits 23 to 20 of the MCR. The combinations of these bits and the associated

sampling frequencies are listed in Table 3.2. Bit 19 of the same register controls the

auxiliary 1/0 output line and bit 18 toggles the ADC mode between the Normal 16-bit

mode and the High Speed 12-bit mode. The remaining bits of the register should

always be written with zerees.

Table 3.2 SamoUn!! Fr !Ouencv Selections rAriel. 891

Bits in MeR Sample Rate (KHz) in Sample Rate (KHz) in

23 22 21 20 Normal Mode Hi!!h Sneed Mode

0 0 0 0 32 128

0 0 0 1 16 64

0 0 1 0 8 32

0 0 1 1 4 16

0 1 0 0 2 8

1 0 0 0 100 400

1 0 0 1 50 200

1 0 1 0 25 100

1 0 1 1 12.5 50

1 1 0 0 6.25 25

0 1 0 1 22.05 88.2

0 1 1 0 44.1 176.4



•

•

•

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 46

Writing 1 to bit 19 outputs a TIL high level to the auxiliary port and writing 0

outputs a low TIL level. Bit manipulation commands should not be used here. The

execution of such command at bit 19 unpredictably disturbs the sampling frequency.

Therefore, the MOVEP command should aIways be used to update the content of the

MCR. For example, to set the sampling frequency to 50 KHz and output a TIL high at

the auxiliary 1/0 port, one should write:
HOVEP '$980000, Y:<<HCR

to output a TIL low at the auxiliary 1/0 port without changing the sampling frequency,

one should refresh the MCR using the following line:
HOVEP '$900000,Y:<<HCR

In conclusion, one cao see that most of the configuration tasks of the DSP56001

processor and the DSP-56 are left to the user of the board, since it is application

dependent. Proper configuration is based on a thorough understanding of the hardware

and results in a stable and efficient performance of the hardware and software.

However, the above discussed configuration tasks are completed at different

initialization stages ~uch as booting the system, monitoring and executing user's

programs (see the next section for details).

3.2. Hardware Initialization and Program Loading
In the present LiMCA operation, ail the three communication ports (Port A,

Port B and Port C) of the DSP56001 processor, the 56ADC16 ADC port, which is

routed to Port C SSI (Synchronous Seriai Interface) for anaIog input, and the Auxiliary

1/0 port of DSP-56 board are being used (Figure 2.7, Figure 3.1 and Figure 3.2). The

configuration of these ports are software controlled and are done by downloading the

configuration parameters from the host PC. Thus before ail, the Host Port (Port B) of

the DSP56001 processor should first be activated in order to set up the communication

between the host and the DSP. Then the rest of the DSP ports are configured by the

program loaded on the DSP-56.

Before being ready to run user programs, the DSP system first boots itself,

establishes the communication to the host processor, and then loads a software monitor.

This monitor is controUed by the host and is used to load, monitor and start a user

application. The configuration of the system is partiaIly done by the booting process

and tlle monitor software, which includes mainly the configuration of the external

memory (port A) and the host interface (port B). Ali the other initiaIization tasks must

be included in the user program.



•

•

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 47

3.2.1. DSPS6001 Booting Proc;)SS

The booting process is organized in two steps. The tirst activates the ROM boot

strap in the DSP56001 processor. The second loads the DEGMON monitor, which

stands for ~enerated MQ!litor, from the Host PC to the DSP processor.

The DSP56001 processor has four modes of operation controlled intemally by

bit 0 (MA) and bit 1 (MB) of the Operating Mode Register (OMR) in its program

controlIer, or extemally by pin MODA and pin MODB of the processor (Figure 3.2).

The OMR is a read/write register, thus the mode of the processor is program­

controlled. The bit detinitions of the register are shown in Figure 3.13. The operating

modes of the DSP56001 processor are summarized in Table 3.3. The DSP-56 board

uses mode 1 to boot the processor and mode 2 for user application programs.

After powering on or executing a RESET command, the DSP56001 processor is

in the reset state. In this state, the MODA pin and MODB pin are active (Figure 3.2).

To leave the reset state and start booting, one must apply a high level on the MODA

pin and a low level on the MODB pin. When the processor exils the reset state, the two
Mode control pins become general purpose interrupt source pins, IRQA and IRQB.

In Mode 1 (Special Bootstrap Mode), A short program saved in ROM (Read

Only Memory) is activated. It loads up to 512 24-bit words user's program from the

host port (Port B) and save them in the program memory. After the program is loaded,

it switches to Mode 2 and transfers control to the user program starting at P:$OOOO. At

this moment, the bootstrap ROM is disabled and shadowed by the program RAM. For

details about the other functions and the program listing of the bootstrap ROM see the

appendix E of the reference [Motorola 92].

Since in operation mode 1 the bootstrap program can only load a program

23 876543210

Figure 3.13 Operatlng Mode Reg~erFonnat

'ERATING MODE
TA ROM ENABLE

RESERVED
STOP DELAY

MEMORY ACCESS

'ERVED

1 * IEAlsDI * 1 * 1* IDEIMBIMAI

~p
DA

EXTERNAL
RES

•



Table 3.3 Initial DSPS6001 Ooeratinl! Mode Summary lMotorola 891

Ooeratinl! Mode MODB MODA Descriotion

0 0 0 Sinl!le-Chio Mode

1 0 1 Special Bootstrap Mode

2 1 0 Nonnal Expanded Mode

3 1 1 Develooment Mode

•
CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 48

•

•

smaller than 512 words, most user applications cau not be handled at this stage. A

monitor, which is less than 512 words, is needed to handle bigger application programs

in operation mode 2. This monitor is first loaded to the processor's program memory

by the bootstrap program in operation mode 1. Then it takes control of the processor

and communicates with the host in Mode 2. Ariel Corp. provided a small monitor

program called DEGMON with the DSP-56 hardware. It occupies 64 words of program

memory and uses no data memory. Despite its Iimited number of functions, it is found

useful to download a lengthy user application program and then to pass the control of

the DSP processor to il. Details about the DEGMON monitor are given in the ncxl

section. The source code of the DEGMON.ASM is supplied by Ariel.

The booting process is controlled by the host computer, and three PC's port

addresses are used for this. They are:

base + $COOO RESET ON,

base + $8000 RESET OFF,

base + $Aooo START BOOTING.

Writing to these ports sequentially invokes the functions Iisted above. Note that 'base'

stands for the base address of the DSP-56 co-processor board. By default, the base

address is set to $340, as discussed in Section 3.1.1. To change the base address, one

must consult the installation procedures in reference [Ariel 89].

The host process downloads the DEGMON monitor through the host port of the

DSP processor, while the processor's ROM bootstrap program is running. The monitor

must be compiled using the Motorola DSP56000 Macro Assembler and be saved in a

file named DEGMON.DAT. The corresponding host protocol, written in Turbo C, is

used to carry out the above procedures. During the program downloading in the boot

strap mode, polling is used on the DSP side to transfer the program through the host

interface. Therefore, the hast protocols for program loading is programmed using

polling data transfer (Section 3.1.3.1). The function prototypes of these protocols can

be found in Appendix A.



•

•

•

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 49

The protocol at the top of the hierarchical structure of the group of the functions

is LoadFile(char *fname, char ·*resu1t, UDsi.gned int *words, UDsigned int

*a tartAddr , .int uae_mon, .int PKemEnable). Il is a utility to load a DSP process to the

DSP processor either in the Special Bootstrap Mode or in the Normal Expanded Mode.

To load the DEGMON monitor, LoadF:l.le should be called in the Special

Bootstrap Mode by setting the input parameters, uae_mon and PKemEnable to be TRUE,

for example LoadF.ile("DEGHON.DAT", me..age, nworda, atart_addresa, TRUE, TRUEl.

In this case, it invokes the function reaetJ>oard(PHemEnable) to reset the DSP

processor and start the booting process.

After successful loading of the monitor, the booting process is completed and a

long user DSP application program is ready to be handled by the monitor.

3.2.2. Program Loading through the DEGMON Monitor

On the host side, to load an application program through the DEGMON

monitor, the host protocol, LoadFU. is also used. For example, to load a compiled

DSP application named 'LMCDSP.LOD', the following syntax and arguments are

used: LoadFile ("LHCDSP. LOD" , meaaagt" nworda, atart_addre•• , FALSE, FALSE).

However, in this case, instead of communicating with the ROM boot strap process, the

host interfaces with the DEGMON monitor.

The DEGMON monitor has severa! sub processes, including an infinite main

monitor loop and severa! host interrupt services. One of them is used to pass the

control to a user process (FIgure 3.14).

After the DEGMON is loaded by the LoadFlle function, the boot strap process

passes control to it, starting at P:$()()()(), where there is a pointer to jump to the section

before entering the main monitor loop. Here, it sets up the external memory (port A),

the host interface (port B) and the program controller. Then it enters an infinite loop,

where it sets up and enables the host interrupts and waits to receive one periphera! data

move command opcode followed by an operand from the host and save them at

P:$DE_IO and P:$DE_Il. Finâliy, DEGMON jumps to the two memory locations

starting at P:$DE_IO, executes the opcode, and continues looping.



The opcode and operand are fully controlled by the host. In this way, the host

can write to, or read from, the DSP memories, if the opcode and the operand,

transmitted from the host, do the data transfer through the HI.
•

CHAPI'ER 3: SYSTEM CONFIGURATION AND INITIALIZATION 50

Figure3.14 Block Diagrams of the DEGMON Monitor

Start an ApplicationMain Monitor Proecss
P:soooo by Host Interrullt
Slart from bere afler boollng

,--~JumD 10 P:SDE_RESET P:SOO24, Hosi Inlerrupl slarl~ bere

P:SDE_RESET - Jump 10 P:SDE RUN
Resel processor ~
- Send base address and lenglb P:SDE_RUN

of Ibe monllor 10 Ibe bosl Pass conlrollo user' 5 proRram
- Resel memory - Pop syslem slack 10 dlscard
- Resel bosl conlrol reglsler currenl proRram conlrol
- Resel DEGMON re.lslers - Pusb Ibe slarllnR address "f Ibe-, user's program Inlo Ibe slack

P:SDE_RSI'C - Pusb new slalus Inlo slack
Resel Ibe monllor - Relurn from bosllnlerrupllon
- Sel up bosllnlerrupl prlorlly and Upon relurn, Ibe syslem slack pops

dllable ail olber Inlerrupls Ibe s~rllng address of Ibe user's

- Enable hosl Inlerrupl program 10 Ibe Program Counler and
Ihe slalus 10 Siaius Reglsler. Tbus Ibe

- Flag hosl for readlness user's appllcallon program slarls•

•
P:SDE_WR
Felcb hosllnstrucllon words from 11051 Pori

DEGMON Rcglstcrs- Felch Ihe firsl command word and
save Il at P:SDE_IO DE_IIPD: possible bosl-porl

- Fetcb tbe second command word and dala
save It at P:SDE_1l DE_FLAG: boU pori Dac byle

- cbeck host fiAI! IIF! DE_IIPD2: 2nd level bosl-porl

......-L-
dala

YES NO DE_FLAG2: 2nd level bosl-posl

~ """,,,1 s~ & Dacs
DE_SR: slacked Slalus

P:SDE_WR P:SDE_RD Reglsler when RUN
Tbe bosl wanls 10 wrlte Tbe bosl wanls 10 read command used
to tbe DSP memory from Ibe DSP memory DE_PC: slacked Procram
- Walt unlll Read Buffer - Wall until Transmll Counler wben RUN

Is full Buffer II emply command used
DE_IPR: saved Inlerrupl

• Prlorlly Reglsler

from P:SDEJO to P:SDE_1l
nE_SR2: Slalus Reglsler

tbat alwaya hu
Execute tbe bost command saved bere before trace bit deared

1

•

•



On the DSP side, the opcode needOO can be HOVEP of both data move directions

and of ail memory types. For every memory type and data transfer direction, different

opcode should be passOO to location P:$DE_IO. For instance, to write a word to X

memory at X:$looo, the assembly line 'MOVEP X:<<RX,X:$1000' should be placOO at

P:$DE_IO and P:$DE_Il. The corresponding opcode is $0870AB followOO by the

operand $001000 for the destination address. Therefore, the host must transmit these

two words to the DSP process, which saves them at P:$DE_IO and P:$DE_Il, and then

execute them to transmit from the HI to X:$looo. Similarly, to read data from

X:$2000, the opcode is $08FOAB, and the operand $2000. There are six different

opcodes for bi-directionaI data transfer for the three types of DSP memories. It is the

host' s responsibility to choose the right op<:ode and operand for the data transfer action

it wants tO, Nevertheless, this is the only way that can guarantee the host to fully

control the DSP's data transfer operation.

Furthermore, as discussed in Section 3.1.3.1, for different data transfer

directions through the host interface, different flags must be poi/OO before the data

mo"!':. The general purpose host flag HF1 is used by the host to inform the DSP which

flag should be pollOO. If HFl is set, the host wants to write to the DSP memories, and

the HRDF flag in the HSR should be pollOO by the DSP process. Otherwise, if HFl is

cleared, the HTDE flag should be pollOO. This indicates that the host wants to read

from the DSP memories (Figure 3.7). All the above different considerations are

implementOO by six protocols as:

readp(unaignlld !nt addr, unaignlld long *where):

reach< (unaignlld int addr, unaignlld long *where);

ready (unaignlld !nt addr, unaignlld long *where);

writep (unai\l1l11d !nt addr, unaignlld long dataI;

writu:(unaignlld !nt addr, unaignlld long data) and

writey(unaignlld !nt addr, unai\l1l11d long data) (Appendlx B).

These functions are programmOO to communicate with the DEGMON monitor, while it

is in the main monitor loop.

On the host side, the program loading process consists of a number of function

caIls to writep to download ail the opcodes and operands of the user application

program to the DSP program memory, and function caIls to writ... and writey for any

constant variables to he loaded into DSP X and Y data memory.

When program loading completes, the DSP process must he interrupted by the

host to break the infinite main monitor loop and to start user application. The host

•

•

•

CHAPTER 3: SYSTEM CONFIGURATION AND INiTIALIZATION 51



interrupt $24 is used for this purpose. On the DSP side, when the interrupt occurs, the

DSP's program controller pushes the present status register and program counter into

the system stack and jumps to the interrupt service routine. Upon returning from the

interrupt routine, the controller pops up the system stack to restore the statns and

program counter. To prevent the control from returning to the main monitor loop, in

the host interrupt service routine, the system stack is first popped twice to discard the

program counter and status before the interruption. Then the starting address and status

of the user application program are pushed into the stack. These two pieces of

information of the user application were sent to the DSP by the host and saved in the

DEGMON registers by the DEGMON monitor through its main monitor loop before

the host interruption. As a result, when the interrupt process terminates, the control of

the DSP process will be passed to the user application.

A host protocol, execute_in.tr tunaigned .hort atartAddr), is developed to

send the entry data of an application program to DSP and then it invokes

do_ho.t_co...·nd tint hc_addr), which sends a host interrupt request to the DSP at

P:$24 and therefore starts a user application. For details of the host interrupt, see

Section 3.1.3.2.

As one can conclude, the configuration and initialization of the DSP processor

provide a hardware and software platform to run a user application. Most of the

configuration and initialization is software controlled. Host protocols have to be

developed to customized the hardware and software environment for a specific

application. The development and usage of these host utilities are based on a thorough

understanding of the DSP hardware and software, which is also essential for the

development of the application. The customization of the hardware and software

discussed in this chapter is based on the requirement for our LiMCA DSP process,

which is detailed in the next chapter.

•

•

•

CHAPTER 3: SYSTEM CONFIGURATION AND INITIALIZATION 52



•

•

•

CHAPTER 4: LiMCA SOFfWARE DESIGN AND IMPLEMENTATION 53

4. LiMCA SOFTWARE DESIGN AND IMPLEMENTATION

4.1. Software Overview
The software for thc DSP LiMCA has been developed based on the hardware

described in the previous chapters. It includes the software for the DSP, a host-DSP

interface and a Graphical !.!ser Interface (GUI). The DSP software performs ail the

real-time and off-Iine signal processing tasks. Il has been implemented using the

Motorola DSP56001 assembly language and runs on the DSP-56 co-processor. The

host-DSP interface provides the communication between the host and the DSP board. It

downloads the DSP code and configuration parameters to the DSP-56 and starts the

DSP processes. During the execution, real-time data are being uploaded from the DSP

board to the host through the host interface. The Graphie User Interface eases the job

of the LiMCA operators. It provides an "easy-to-navigate" environment with very

weil organized windows containing input fields, dialog boxes and graphical displays.

Furthermore, it performs ail the host level computational tasks and controls the DSP

processes through the host-DSP interface. The host-DSP interface and the GUI were

written in Borland C++. Two commercial software packages, ObjectMenu from

Island System and MetaWindow from Metagraphics Software Corporation were used to

implement the two interfaces.

In this chapter, the implementation of the DSP software and host-DSP interface

will be discussed. Special attentions are paid to the real-time DSP processes. The GUI

is not in the scope of this thesis. For details, see [Draganovici 94].

4.2. DSP Software
The DSP software was designed as a group of real-time and off-line tasks. The

selection and execution of any one of them is controlled by the host computer through

the host interface. A command interpreter has been developed to monitor the host

interface and to pass the control of the processor to the appropriate task. The logical

structure of the command interpreter is ilIustrated in Figure 4.1. Its source code is

found in Appendix C, starting under the label 'CHDLUP' on page 112. The function

pointer table in Figure 4.1 is located in internai X RAM (see the code under the

variable '~ll.t· on page 96 in Appendix C).



CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 54

23
Other info (optiunal)

Cummand Code __...I.-.....L._..L....---I

To/frum
hust

computer

Function Pointer TRhle

.-..... Record ------,

.......~ On-line MC\.

-~ Report Stalus

~~SampleRate

--~ _ .... Upload Mem

~~ ZCro Mem-~

~~NULL -----1

•

•

relurn control to the cummand inter reler

Figure 4.1 Fonnat of the Command Word and Logic of thr. Commund
Interpreter

The cntry point of the DSP software is at the label ':nn:T_PGH~ (sec page III of
Appendix C). After being downloaded by DEGMON monitor and taking over the
control of the DSP processor. the DSP software first initia1izes the 5SI interface for
ADC and sets up ADe sampling frequency (for DEGMON monitor and program
loading, see Section 3.2, and for SSI and sampling frequency setup, see Section 3.1.4

and 3.1.5). Then it enters the command interpreter, waiting for a command word from
the host computer. The format of the command word is a1so shown in Figure 4.1. The
least significant nibble is used to carry the command code, that tells the interpreter to
which task to pass the control. For the four-bit command code used~ a maximum of 16
tasks can he managed. PresenUy 7 SlOls are used~ and the rest provide space for further
development. The other bits of the command word are optiona11y used for additional
information needed by certain processes. For example~ to start the real-time multi­
channel ana1ysis (MCA), the host uses bit 4 and bit 3 to inform the DSP which analog
channel should be used or if both are to be used. Bit 4 is for channel A and bit 3 for
channel B. Toggling any one of the two bits enables, if it is set, or disable, if it is
cleared, the channel which it represents.



•

CHAPTER 4: LiMCA SOFI'WARE DESIGN AND IMPLEMENTATION 55

4.3. DSP Real-time Software
Among the selections listed in Figure 4.1, the real-time LiMCA process is

carried out by the On-line MCA. This is organized as a number of independent tasks,

each designed as a filter, reading data from an input buffer and writing new data into

an output buffeT. Figure 4.2 shows these tasks together with the corresponding data

flow paths. A small real~time control executive, which is not shown in this figure, was

developed to manage their execution. It receives a number of parameters from the host,

and the starts the execution of the different DSP tasks according to the status of the

buffers and processes involved. Note that Figure 4.2 shows a one channel system.

The analog signal from the signal conditioning stage is digitized by the ADC.

An Interrupt Service Routine (lSR) is invoked which reads the output of the ADe and

writes the data into a circular buffer (one per channel). The circular buffer is processed

by the peak sampling process that detects the presence of peaks and transfers peak data

to the tsampled peak buffers'. A digital filter can be invoked before the peak sampling
process to eliminate noise (say, from an induction furnace near by). The 'sampled peak

buffers' are processed by the peak description process which stores its output into the

'peak buffers'. The pulse height analysis process processes and modifies this

information which is then passed to the host through the 24-bit host port. At the host

Figure 4.2 The Stnlcture of the DSP Real-time Software

realtime ­
da'lI transfer

peak
lSR dassijication

p- process
18R - mterrup' service routine
- real-lime dlltll path
•••••• t:fI-line diIla path

1do'. boffer

lIiIADe buffer slUtfpledpeak
1 buffer.t petJk slUtfpling

f

•



•

•

•

CHAPTER 4: LiMCA SOFIWARE DESIGN AND IMPLEMENTATION 56

level, an ISR is invoked to read the data from the host port and pass them to the peak

classification task.

4.3.1. Task Distribution between the Host and DSP

The real-time processes shown in Figure 4.2 were first distributed between the

DSP-56 co-processor board and the host computer, and then coded separately. The

scope of this task allocation is to take full advantage of the DSP pipeline architecture

and to maximize its utilization. Time is 'wasted' when the DSP co-processor board

communicates with the hosto Due to the pipeline architecture of the Motorola

DSP56001 processor, Iwo types of operations are most time consuming, control

transfer instructions and instructions that perform data transfers between the DSP-56

and the hosto Along the data path illustrated in Figure 4.2, the whole process can be

viewed as a data reduction process in terms of the amount of data processed in each sub

process from ADC to peak classification. To minimize the data nceded to be transferred

through HI, the processes that do major data reductions are required to be programmed

at the DSP level. Such processes include ADe, peak samp/ing and peak description
processes. As a result, the bulk of the data transferred between the DSP processor and

the host consist of the peak description parameters.

Il was also intended to code the peak classification process al the DSP level,

thus the host can be freed from low-Ievel data-intensive processing and ultimately be

used for high-Ievel operation such as GUI and calculations with sophisticated

algorithms. However, in the initial prototype of the DSP-based LiMCA system, we

decided to implement a prototype of the peak classification process at the host computer

level. This decision was influenced by the fact that the system is being developed for a

research environment and will be used in different melts and under different conditions.

By coding the peak classification at the host level we increase the ease with which the

code can be enhanced to accommodate different situations. In addition, we plan 10

investigate the use of fuzzy logic and artificial neuraI nelworks for this task, and this is

casier at the host level.

4.3.2. Memory AUocatlon at the DSP Level
Due to the hardware architecture of the DSP56001 processor, the allocation of

the DSP memory greatiy affects the efficiency of the DSP performance. Such memory

distribution includes the allocation of the DSP program memory to the DSP processes



•

•

CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 57

and the DSP X and Y data memories to the buffers, variables, stacks, status and control

registers.

As one can see in Figure 3.5, the DSP56001 has 512 Kwords of internal

program RAM and the same number of RAM words for the X and Y data memories.

Each bank of the internal RAM is accessed through its own data and address buses,

thus severa! banks can be accessed in parallel in one instruction cycle. However, the

majority of the RAM used for program and data is external memory, physica1ly

implemented on the DSP-56 board. All of the external RAM is accessed via the

communication Port A of the DSP56001 processor, Le. the external program RAM, X

and Y data RAM share the same data and address buses (Figure 3.1). As a result,

parallel data move is not applied to the external memories. Bit operation instructions

and jump instructions on bit status are also nOI applicable. Furthermore, instructions

saved in the external program RAM space may break the instruction pipe line, thus

introduce extra delays.

The DSP56001 instructions are so pipelined during execution that the DSP CPU

fetches an instruction from the program memory, decodes the instruction previously

fetched and executes the instruction previously decoded, all in one instruction cycle. If

the execution of the instruction involves a data move to or from any of the external

RAM locations and the instruction to be fetched resides in the external P RAM, both

actions require the use of the external data and address buses, therefore they can not be

MProrT bl 41a e . The Usaee 0 the ~eram emol'Y

Startïne Address Process Leneth (words)

P:$()()()() Interrunt Vector Snace 64

P:$0040 Del!mon Monitor 80

P:$0090 ADC Interrunt Service Routine 20

P:$OOA4 Host StOD InterruDt Service Routine 5

P:$OOA9 Peak SamDline Process 223

P:$0188 Peak Descrintion Process 137

P:$0211 Pulse Hil!h Analvsis Process 28

P:$022D DSP to Host Data Transfer for Channel A 19

P:$0240 DSP to Host Data Transfer for Channel B 20

P:$0254 Control Executive Process 106

P:$02BE System Initiation 34

P:$02EO Utilities 209•



CHAPTER 4: LiMCA SOFfWARE DESIGN AND IMPLEMENTATION 58

Table 4.2 The Allocations of X and Y-data Memories

X-RAM Y-RAM

Address Ran~e Purpose Address Ran~e Purpose

X:$COOO-$OOOI ~Iobai re~isters Y:$OOOQ-$OOOI ~Iobal variable
X:$OOO2-$0009 variables & registers Y:$OOOl-$OOO9 variables & registers

for Channel A for Channel B

X:$OOOA-$OOII ~lobai variables Y:$OOOA-$OOOB stacks

X:$OO12-$OO19 pointer table to
functions

X:$OOlA-$OOlE circular buffer
pointers, time
counters

Y:$OlOO-$04FF PHA reference table

X:$6000-$65FF peak parameter buffer Y:$6000-$65FF peak parameter buffer
for channel A for channel B

X:$700Q-$7FFF sampled peak buffer Y:$7000-$7FFF sampled peak buffer
for channel A fOi channel B

X:$8000-$FBFF circular buffer for Y:$8000-$FBFF circular buffer for

channel A channel B

completed in parallel. Thus the pipeline must be broken to avoid bus conflicl.
For best efficiency, ail the effects of the architecture of the DSP-56 processor

must he considered when the memory utilization is planned. In our application, the
most data-intensive DSP processes are placed in the internai program memory. From

the discussion in Section 2.3.2, the busiest processes are the ADe and the peak

sampling processes, which are 10adOO into the internai low program memory space.

Off-Iine subroutines are placed into the high external memory space. The usage of the
program RAM by the DSP processes are IistOO in Table 4.1. For complete DSP source
code listing of the DSP LiMCA, see Appendix C.

The X and Y data memories are usOO for buffers, variables, stacks, status and
control registers of various DSP processes. The internai data memories should be
reservOO for variables, stacks, status and control registers. As mentioned before, bit

operation instructions and jump instructions conditionOO on bit status can only apply to

the internai memories. The former type of instructions are frequently used to



•

•

•

CHAPTER 4: LiMCA SOFfWARE DESIGN AND IMPLEMENTATION 59

manipulate status and control registers and the latter are used to direct the process

properly according to the siatus of the bit f1ags of the status and control registers. Thus,

these registers are required to be located in the internal memories. The variables and

stacks used by data-intensive real-time processes should also be put into the internal

memory to maximize parallel data movement. Buffers, which are usually too big to be

put into the internal memories are placed into the external data memories. For the

LiMCA process, the X data memory is primarily allocated to the buffers for the

analog-channel-A DSP processes and the Y data memory to the buffers for the analog­

channel-B DSP processes. Table 4.2 shows the allocation of the X and Y data

memories.

Two 31-Kword circular buffers are located at the bottom of th,~ X and Y data

memories, for the digitized data from analog channel A and channel B respectively.

These buffers increase the time elasticity of the real-time DSP process, important

especially when the worst case of operation frequently occurs (see Section 2.3.1 for the

worst case of operation).

4.3.3. Real·time Control Executive

The overall real-time DSP task is being conducted by invoking, based on certain

conditions, one of the sub-processes at a time. There are several real-time sub­

processes involved, namely ADe. Peak Sampling, Peak Description, Real-time Data
Transfer (Figure 4.2). Each has its own entry conditions. Considering a two-channel

system, the conditions of the signals from the two analog channels are different at most

of the time. The number of the sub-processes and the complex entry conditions of these

processes complicate the program coding and maintenance. An executive process is

needed for control and has been developed to monitor and orchestrate the real-time sub­

processes, thus we can modularize the program coding and ease the program debugging

and maintenance.

The communication links between the control executive and the host computer

and the real-time sub-processes are schematically illustrated in Figure 4.3. Note that in

this figure, the process Transfer A transfers channel-A 'peak buffer' to the host and

Transfer B transfers channel-B 'peak buffer' to the host. The control executive has two

states of operation, the initializaticn state and the real-time monitoring state. Figure 4.3
depicts the communication links while the executive is in the monitoring state.

The executive is activated by the command interpreter, when it passes the

control to lite function labeled with 'OD1in&!ll:A' (Figure 4.1). After taking control, the



CHAPTER 4: LiMCA SOFI'\VARE DESIGN AND IMPLEMENTATION 60

To/from
host

computer

return control

Front Processes

Peak
Sam lin

Pcak
Dt!scri tion

Transfcr A

Transfer B

Background
Process

ADC

Stllcks

Variahles

Buffcrs

SSI Port

Hust Purt

Figure 4.3 Real~time Control E~ecutive and its Communication Links

executive first enters the initialization state to ~t up all the needed registers, stacks,
variables, buffers, communication ports and the pointers to the background functions
servicing the ports. In this state, it also communicates with the host computer to receive
process parameters. Such parameters include noise thresholds and processing time for
the peak sampling process (Section 4.3.5), PHA channel number, PHA checking table
and PHA quick sort cycle number for PRA process (Section 4.3.7). Theo it signais the
host for the readiness of conducting rea1M time DSP and waits for a host response code.
The hast can either send a 0, to start the real-time process or al, to quit. In the latter
case, the executive immediately retums control back to the command interpreter.

A zero from the host at this stage changes the executive state from the
initialization state into the rea1M time monitoring state. Upon entering this state, the
executive starts the background process, Le. ADe process, enables the host interrupt so
that the host cao terminate the process at any time by sending a host interrupt through
the host port. In this state, it monitors the flags in the registers which reflect the
conditions of the buffers and processes involved. Depending on the status of the flags,
it selects and activates the required process at the proper timing.

The registers used here are shown in Figure 4.4. Note that the undefined bits
are not used. The ProcStatus register reflects the status of the real-time MCA process.
Bit 0 of the register, the HOSTSTOP flag, indicates if the host has instructed the DSP
to stop the process by the host command interrupt $24 (Section 3.1.3.2). Jt is set when



CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 61

Figure 4.4 Registers or the Real-time MCA Process

PK..SAMPLING_FIND_A
PK..SAMPLlNG_SIGN_A

i...-__ PK..SAMPLlNG_FINISILA

23

Pl'ocStat Register
23 3 2 1 0

l'';;'~-----B-U-f-rs-ta-tR-eg-i-st-er-L1§5:1f~
23 5 4 1 0

1 "·~~BF~Jill ...... [iL] FlFOFULL

PEAKDBFBFtJLi.~ ---c==FlFOEMPTY

PkSamplingSt Register
10 9 8

......

•

•

the host wants to terminate the process. Bit 1 and 2, CHANNELA and CHANNELB,
are analog channel flags. CHANNELA is for channel A and CHANNELB for channel
B. They are set when the corresponding channels are enab1ed. They reflect the mode of
the ADC operation, Le. one-channel mode or two-channel mode (stereo mode). These
two flags are initialized during the initialization stage and are not changed 1ater. This
indicates that the ADC operating mode can not be changed during real-time processing.
Bit 3, the TlMEUP flag, is set when the processing time exceeds the lime which is pre­
set by the hosto

The BuffStat register flags the status of sorne buffers used in the real-time
processing. Bit 0, Le. the FIFOFULL bit, is used as the buffer full flag for the two
circular buffers. Il becomes set when both of the buffers are full. This indicates a
buffer overfiow errar, which causes the real-lime process ta fail. Bit 1, i.e. the
FIFOEMPTY flag, is used for the executive to monitor whether the circu1ar buffers are
empty after the process is commanded to terminate for any reasons and the circular
buffers have to be emptied sa as not to Jose data after the termination. Il is set when
either the HOSTSTOP flag or the TIMEUP flag in the ProcStat register is set and the



CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 62

circular buffers are empty in normal termination conditions. Such conditions occur

when the host terminates the DSP process or the processing time exceeds the pre-set

time Iimit. The FIFOEMPTY flag is also set after FIFOFULL is set and the circular

buffers have been flushed. This is an abnormal termination. The FIFOEMPTY flag

provides the exit condition for the control executive. In any case, whcn this flag is set,

the executive signais the completion of the process to the host by selling Host Flag 2

(HF2 in Figure 3.7 and Figure 3.8) and reports the exit conditions to the host by

sending both the ProcStat and BuffStat registers to the host port and returns the control

back to the command interpreter.

Bits 4 and 5 of the BuffStat register, i.e. the PEAKDBFAFULL and

PEAKDBFBFULL flags, are used to flag the status of the 'peak buffers' (Figure 4.2)

for channel A and channel B respectively. PEAKDBFAFULL is for channel A and

PEAKDBFBFULL is for channel B. When either of the 'peak buffers' is full, the

corresponding flag becomes set. This indicates that the real-time process can not

continue unless the buffer is flushed and thus available for new peak parameters. Upon

seeing the buffer full flags set, the executive immediately passes control to one of the

two real-time data transfer processes depending on which buffer is full and should be

transferred to the host. If PEAKDBFAFULL is set, Transfer A is called or otherwise

Transfer B is cal1ed.

The executive normally passes control to the peak sampling and peak
description processes in sequences, unless one of the flags in the BuffStat becomes

active, signaling the need for urgent attention and immediate action.

The PkSamplingSt and PkSamplingCr registers are mainly used by the peak
sampling and peak description processes. Their explanations are inc1uded in the

descriptions of the two processes in later sections. The source code of the real-time

control executive is Iisted in Appendix C starting at 'OnlineI«:A' on page 109.

~.3.4. ADC Process
The Analog-to-Digital (ADe) conversion process has been implemented as a

background interrupt-driven process. It uses the SSI Receive Data Interrupts, which are

located at P:$OOOC and P:$OOOE of the Interrupt Vector Table in the program RA\!

space (Table 3.1). To start the process, Port C and the interrupt priority level have to

he configured properly. The entry pointer te the ADC interrupt service routine must

also he insta1led at the two vector spaces mentioned above. If the sampling rate

required is different from the default 50 KHz, it should he set using the Sample Rate



CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 63

• Time Sioi or
Word_~:.:.:....1

nming of the ADe Process

Cock Frame 1----.....

RFS Flag

t4---....T---t~

RXSlot B

lIT"" sam IIng rale

RX Slol A 1-----4

RX Interrupts

Data Flow during RX Siol A Interrupt Data Flow durin~ RX SIDl B Intcrrupt

RXUata
Reglster

RX Shlft Channel A
RegJlter AOC

CD
TXSbIR
Reglster

RXData
Regllter

RX ShiR Channel B
Reg1Iter ADe

CD
Channel B

DAC

Figure 4.5 The Timing Diagram and Data Flow of tbe ADe Process

function through the host interface and the DSP command interpreter (Figure 4.1).

Details about the setups and configurations are given in Section 3.1.4 and 3.1.5. The
source code listing can be found in Appendix C starting at ·SSIDataInPtr t on page 97.

Note that a different approach was used to insta1l the entry pointer of the ADC process
into the SSllnterrupt Vector spaces from the one using ORG directive, explained in
Section 3.1.4. Here a utility function, ':rnatallSSIIntat is used to insta11 the interrupt
service routine (see page 114 in Appendix C).

The ADC process is invoked by the real-time control executive when it enters
the real-lime monitoring state. The process reads data from the ADe buffer at

X:$FFEF and saves them into the circular buffers for bath channel A and B. Since the
data for bQth channels are from the same register in S5I, they are differentiated by

different timing, and there is a delay of one time slot between the two channels, see the
timing diagram in FIgure 4.5.

Compared with the timing diagram in Figure 3.12, The ADC process, that we

used here for the LiMCA application, only services the ADe part of the 551 interrupts.
Nevertheless, it manages two circular buffers, shown in Fagure 4.6. Note that the two

circular buffers are managed by one set of pointers. This indicates that the ADC process

•

•

Orcular Buffer A
lnX-RAM

Orcular Buffer B
ln Y-RAM



CHAPTER 4: LiMCA SOFfWARE DESIGN AND IMPLEMENTATION 64

General Purpose Reguler A

Burrer A ln X-RAM

General Purpose Regl,ter B

Burrer B ln Y-MM

•

Figure 4.6 Circumr Buffers for ADC

does not know which analog channel is in use. It is always working in stereo mode.
The buffer read pointer is saved in the address register rO, which is one of the eight
address registers from (rO to r7). This· register is not stacked when the processor
switches between the background and foreground processes. Thus it should not be used
by the foreground processes. Address register r7 is used as a counter, counting the
distance between the write pointer and the read pointer. It is transparent between the
background and foreground processes. When data are written to the circular buffers,
the ADe process increments r7. When data are read from the buffers, the peak
sampling process decrements r7. The BUFFER FULL condition is checked by the ADC
process. If r7 equals the size of the circular buffers, the buffers are full and
FlFOFULL flag in BuffStat register is set and the process is terminated by disabling
the SSI interrupts. The BUFFER EMPTY condition, i.e. r7 equals 0, is monitored by
the foreground process, the peak sampling process, which reads data from the circular
buffers.

AIl the measures discussed above simplified the programming of the ADC

process and therefore increased the efficiency of the real-time process.



1

•

•

CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 65

4.3.5. Peak Sampling Process

As discussed in the previous section, the digitized LiMCA signal is saved in two

31-Kword circlJ.lar buffers, one per channel. The real-time analysis of the signal is

further carried out by severa! foreground processes under the control of the real-time

control executive. The analysis task is decomposed into peak sampling, peak
description and peak classification processes, Section 1.4.

Here the peak sampling process finds and chops the peaks in the circular buffers

based on two noise thresholds, which mark the margins of the noise band of the signal

(Figure 4.7 and Figure 4.8). The noise band reflects the on-spot operational conditions

and determines the minimum size of the particles that the system cao detect under such

conditions. The process also manages the read pointer of the two circular buffers,

monitors tha buffer empty condition and updates the processing time when it reads the

circular buffers.

The LiMCA signal, as shown in Figure 4.7, has two states: State 1 (no peak

state) indicates that the digitized data are within the noise band and State 2 (peak state)

indicates that the data points are beyond the noise thresholds.

The flags in PkSamplingSt register mark the state of the signal, sign of the peak

being sampled and the completion of the peak sampling for both analog channels

(Figure 4.4). The PK_SAMPLING_FIND_A or PK_SAMPLING_FIND_B flags are

used to reflect the state of the signal from channel A or channel B, zero for State 1 and

one for State 2. In State 2, a peak is being sampled and the sign of the peak is marked

by PK_SAMPLING_SIGN_A or PK_SAMPLING_SIGN_B, 1 for positive peak and 0

for negative peak. The PK_SAMPLING_FINISH_A and PK_SAMPLING]INISH_B

flags are used to mark the completion the peak sampling. Upon completing the

sampling of a peak for one channel, the completion flag for that channel becomes sel.

As shown in Figure 4.8, a peak is sampled started at the point right before the

one that crosses one of the noise threshold and ended at the first point restoring back

into the noise band. Positive and negative peaks are sampled in the same way. The

sampled peak is saved in the 'sampled peak buffers' (Figure 4.2).

Accompanying with the sampled peak, the width of the peak is saved at

X:PkWidthA if the peak is from channel A or at Y:PkWidthB if the peak is from

channel B•



CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 66

20155

::l1~lale 2
laIe 1 State 1

-

- '"Il
lQ
5t
Ci

NOISEill :z.

•• >, L~ A ~ .k

1"1
l "'T' PI '1 '1

~' IAlMI r. ~.ri"'i' 1 "j1lti.,. Y ''''tjy.,.,'rl

NOISELO
,

10
lime (ms)

}ligure 4.7 A Typical Section of LiMCA Signal Extracted from the
Eastalco Alaminum Test

140

120

100

[ ao
- 60
CI)

J 40
~ 20

o
-20

-40
0

The time label of the first data of the peak is also saved. Il is used later to

compute the time when the peak starts. Two variables are used to form a 32 bit counter

for the time label. Therefore only the lower 16 bits of the two variables are used.

X:PkStartLoI6A keeps the low 16 bits of the counter and X:PkStartHil6A keeps the

12119

l-

I- '"Il
lQ

l- Il
Ci

NOISEIfi :z.

NOISELO

140

120

100

>e' ao
.... 60

.i 40
~ 20

o
-20

-40
8 10

lime (ms)

Figure 4.8 The Peak Sampled from the Signai ln Figure 4.7



•

•

•

CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 67

high 16 bits of the counter for the peak from channel A. Similarly, Y:PkStartLo16B

and Y:PkStartHil6B keep the low and high 16 bits of the counter respectively for the

peak from channel B.

Depending on the state of the signal at the time that the process starts or

terminates, there are two entry or exit conditions. They are the •COMPLETE' and

'CONTINUE' conditions, which are represented by the PK_SAMPLING_CONT_A

flag for channel A and the PK_SAMPLING_CONT_B flag for channel B in the

PkSamplingCr register (Figure 4.4). The flags are set to 1 for 'CONTlNUE' condition

and 0 for the 'COMPLETE' condition. The states of the two flags are validated before

the process exits. If the process retums when the signal in one channel is in state l, the

corresponding flag is c1eared to indicate the 'COMPLETE' condition. Otherwise, the

flag is set to indicate the •CONTINUE' condition. This condition indicates that the

sampling of the current peak has been interrupted and must be resumed later.

The next time the process is invoked, it decides either to continue sampling the

peak that was not finished before it exited or to find a new peak according to the

conditions of these two flags.

In order to sample the peaks in the circular buffers in real-time, the peak
sampling process must run at the same pace as the ADC process, which is writing the

data into the circular buffers. The speed of the peak sampling process is controlled by

monitoring the circular buffer empty condition. As shown in Figure 4.6, the read

pointer managed by the peak sampling process is always "chasing" the write pointer

managed by the ADC process. The distance between the two pointers is monitored by

the r7 address register. Each time the peak sampling process fetches data from the two

circular buffers, it checks if r7 is zero (BUFFER EMPTY). If it does tum out to be

zero, the buffers are empty, there are two possible cases: the buffers are temporary

empty, which frequently occurs since generaily the peak sampling process is faster than

the ADC process (by the design of the software to avoid the buffer overflow condition).

In this case, the peak sampling process introduces idle cycles to wait for the ADC
process to fill the circular buffers and then resumes processing when the buffers are not

empty. In this way, the read pointer is prevented from outpacing the write pointer, and

thus the background process and foreground process are kept at the same pace.

The second possible case is when the ADC process has been terminated and thus

stopped filling the circular buffers. In this case, the HOSTSTOP flag in the ProcStat

register became active for the peak sampling process 10 polI. Under this condition, the

process sets the FIFOEMPTY flag in the BuffStat register and returns. As discussed in



CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 68

Section 4.3.3, this flag will cause the control executive to do the necessary clean-up

and terminale the real-time MCA process.

The processing time is recorded and updated each time when the process reads a

new set of data from the IWO circular buffers. The time is counted in a 32-bit counter

formed by IWo variables at X:CountLol6 and X:CounlHil6 for the low and high 16

bits of the counter respectively. This counter is compared, each time it is incremented,

with the pre-set maximum processing time saved at X:CountLol6Max and

X:CounlHi16Max. If the IWO 32 bit values are equal, the process sets the T1MEUP flag

in the ProcStat register, stops the SS! interrupts and sets r7 to zero, making the circular

buffers empty. These actions cause the control executive to ignore the digitized data in

the circular buffers that came later than the data currently processed by the peak
sampling process, and therefore to terminate the real-time process i.mmediately at the

time that the host has expected. The default time counts at X:CountLol6Max and

X:CounlHi16Max are $OOFFFF, or otherwise specified by the host computer and

downloaded to the DSP process. The default values of the time counts represent a time

span of about 23.86 hours at the sampling frequency of 50 KHz. This is clearly an

unrealistic processing duration. However this situation is frequently used to allow the

user to monitor the progress of the processing and to terminate the process at any time

using the host command inlerrupt.

In conclusion, the peak sampling process samples the peaks from the circular

buffers and detects the exit conditions for the real-time control executive. The source

code for this process can be found in Appendix C starting at 'Pksampling' on page 98.

4.3.6. Peak Description Process

After a peak from either channel A or channel B is sampled by the peak
sampling process, the peak description process is invoked by the real-time control

executive. The entry condition for the process is defined in the PkSamplingSt register.

The PK_SAMPLING_FINISH_A and PK_SAMPLING]INISH_B flags are checked

in order to decide which input buffer ('sampled peak buffer A' or 'sampled peak buffer

B'), and which output buffer ('peak buffer A' or 'peak buffer B') ta he used.

This process analyzes data from the 'sampled peak buffer' and generales a six

parameler description of each peak. These include four shape and two time parameters

(Figure 4.9). The shape parameters are the peak height, the width, the stan slope and

the end slope, and the time parameters are the stan time and the peak time.



•
CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 69

peak hcight1-----,_

Tirnc
- i'.-------- -
:f

~l:i
~

peak hcight1-----------...»1'

(a) (b)

•

•

Figure 4.9 Peak Parameters: (a) Positive Peak, (h) Negative Peak

The start time has been already counted by the peak sampling process and saved
in the variable pairs, X:PkStartHil6A and X:PkStartLo16A for channel A or
Y:PkStartHil6B and Y:PkStartLo16B for channel B, which represent the absolute time
in the format discussed in the previous section. The width of the peak has aIso been
computed by the peak sampling pl'ocess. It is saved in X:PkWidthA for channel A or
Y:PkWidthB for channel B.

Other parameters are ta be calculated by this process. The start slope and end
s/ope are the derivatives of the peak at the start time and end time respectively. The
start slope is calculated by subtracting the second data point from the first data point of
the lsampled peak buffer' and the end s/ope by subtracting the last data point from the
second-to-Iast data point in the same buffer. The peak rime is defined as the time when
the data point reaches the positive or negative maximum point for a positive or negative
peak respectively. It is computed as the data count from the stan rime to the peak rime.
Thus it is a relative time label. The peak height is found by comparison and is
represented by 16-bit signed integer number corresponding to the 16 bit ADC interface.

After the computation of the above parameters, the process caUs the PHA

process to find the PHA channel number associated with the height of the current peak.

If the peak is negative, a zero is retumed, otherwise the related PRA channel number is

retumed (see next section). This and the six peak parameters fonn a group of seven
parameters in total, characterizing a peak in the time domain. They are transferred inta



CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 70

1 Peak Buffer A
Starting At X:S6000

Peak Buffer B
Starting At Y:S6000

bottom of the buffer

previous pcaks'
parameters
• • • • • •

/ start time (bigh 16 bits)

tI:l start time (low 16 bits)
~ start slope
~
Co peak time....c:

peak heightGI

t::
= width(,1

end slope, PRA channel Bumber

• •••••

previous peaks'
parameters
• • • • • •

/ start time (hi~h 16 bits)

start time Oow 16 bits}

start slope

peak time

peak hei~ht

width

end slope

" PRA channel number

••••••
--.
bottom of the buffer

Figure 4.10 Parameter Sequence in the Peak Duffers

the 'peak buffer' (Figure 4.2) before the process returns. They occupy eight memory
locations (the start lime takes two locations). The sequence of the parameters in the
'peak buffer' is shown in Figure 4.10.

The conditions of the two 'peak buffers' are checked by this process. If any of
them is full, the related buffer full flag in the BuffStat is set ta signal the contrat
executive to transfer the buffer to the host and empty the buffer by calHng a data
transfer utility, see Section 4.3.8.

In brief, the peak description process describes the peaks saved in the 'sampled
peak buffers', saves the peak parameters in the 'peak buffers' and manages the 'peak
buffers'. Its source code is listed in Appendix C under the label 'PkD.acription' on
page 103.

4.3.7. Pulse Heigbt Analysis (PHA) Process
The PRA process takes the height of a positive peak, calculates and returns the

PHA channel number that corresponds to the peak height. To emulate the operation of
the analog LiMCA system shown in Figure 1.S, a digital logarithmic amplifier must be



CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 71

implemented. Since the Motorola DSP56001 processor, a fixed point processor, is

being used, to avoid floating point calculations, a table-driven algorithm is used.

Suppose the height of a peak is y, which is in the range of

Ymin $Y $Ymax.

here Ymin can be the height of the smallest peak that can be detected and Ymax is the

up limit of the AOC. In our case, a 16-bit ADC is used and the digitized number is

represented in a signed binary format. The number range is from -32768 to +32767.

Thus here Ymax = 32767.
To emulat~ the log amplifier, take

Ymin = LOG(Ymin), y = LOG(y) and Ymax = LOG(Ymax) (4.1)

then

before the

(4.3)

corresponds the peak of height Y

Ymin $Y5Ymax.
To find the PHA channel number, Y is compared with the series:

Yi = i . LlY, 0 $i $ N -1 (4.2)

where N is the total number of the PHA channels and

LlY = (Ymax - Ymin) / N.
For a certain integer k, if

Yk $Y<Yk+l
then k is the channel number that

logarithmic amplification.

To avoid using Equation (4.1) in processing, we transform the series (4.2) into

Yi = EXP( Yi ) (4.4)

Considering (4.1) and (4.4), Equation (4.3) is equivalent to

Yk $y <Yk+l (4.5)
Equation (4.5) is used in real-lime processing. A exponenlial PHA checking

table is constructed using Equation (4.4) and is located in Y data memory space starting

at Y:$OI00. The length of the checking table N, being 256, 512 or 1024, equals the

total number of the PHA channels. The contents of the exponenlial checking table are

computed by the host and then downloaded to the DSP. The following piece of code on

the host side is used:

Ifloat)ChannelXne-log(32767)/ChannelJhDo

for (i-O; i<ChannelNum; i++)

(int) PHATable' •.1-pow(10.0 .i*ChannelXnc)

)



CRAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 72

The variables are:

ChanneJ.Inc: logarithmic increment between two adjacent channels;

ChanneJ.Num: total number of PRA channels;

PllATable [ J: an array to keep the contents of the PRA checking table.

Note that in this sample program Ymin is assumed to be 1 and Ymax to be 32767. Here

only positive peaks are concerned. Rowever, negative peaks can be handled in the same

manner after being negated.

A quick sort routine compares the peak height with the contents of the table to

find the Iwo consecutive values, which satisfy equatlon 4.5 (Figure 4.11). The address

of the memory location whlch keeps the lower value of the two is used as an index to

the PRA channel number. The channel number is later computed by subtracting the

base address of the table from the index. The number of the comparisons of the

process, also called the number of sorting cycles, is a constant related only to the total

number of the PRA channels. This number and the maximum PRA channel number are

downloaded from the host and saved at X:QsortCyc and X:ChannelNum respectively.

The height of a peak should passed on to the PHA process via register X1 and the PHA

channel number is returned via register A. Address register r3 is used to index the PHA

checking table. If a negative value in Xl is ioputted, a zero will be returned. The

source code of the PRA process is listed in Appendix C starting at 'PHA' on page 107.

The algorithm and Implementation of this process reflected the concerns and

PHA checklng table

ss
ber

r

at Y~$0100
return with a result ln A"--LjA~J

32767
32108

eak helght ......
ln XI ·

1 5000 1 ··
1 5059

address of the lowe

4957
ls lndexed by r3

The number goes r3 1
ln between these

two ceUs
......

• r3 - base addre·· = channel num

base address 1.

P

Figure 4.11 Schematlc Diagram of the PHA process



CHAPTER 4: LiMCA SOFfWARE DESIGN AND IMPLEMENTATION 73

emphases on the speed and efficiency of the process at the expense of sorne data

memory space for the checking table. However, for real-tinte processing, this is an

acceptable trade-off.

4.3.8. Real-time Data Transfer Process

The real-time data transfer process establishes an on-line data link between the

host and the DSP-56. It was implemented as two general DSP to host data transfer

utilities, which are referred to later in this section as Transjer A and Transfer B.
ln general, Transfer A and Transfer B transmit a block of contiguous X or Y

data memory to the host respectively. The starting address and the length of the

memory block to be transferred are passed through the address register r4 and its offset

register n4.

Bath utilities are used by the control executive (Figure 4.3) to transfer 'peak

buffers' to the host computer. In our application, the 'peak buffer A' is located in the

X memory and the 'peak buffer B' in the Y memory (Figure 4.10). Therefore,

Transfer A should be invoked when 'peak buffer A' is full and Transfer B when 'peak

buffer B' is full. The decision which utility should be called is made by the control

executive according to the status of the peak buffer full flags in the BuffStat register

(Figure 4.4).

To fulfill the real-time data transfer, a parallel host process must be developed.

Proper handshaking between the host and the DSP processes (Figure 4.12) is vital for

real-time processing. In order not ta delay the DSP process, the hast processor must

respond the DSP transfer request immediately, and thus an interrupt-driven process on

1. Set l.PT! inlerru t re uest

2. Set HFI n

7. Hosi acknowlcd e

8. Start bulk data transmission
ISR: Interrupt Service

Rouline

Figure 4.12 Real-time Data TransCer Between the Host and DSP



CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 74

the host side is required. However there is no interrupt from the DSP-56 to the host

proeessor in Ihe implementation of the DSP-56 co-proeessor board currently in use. To

overcome this, we used additionalline to connect the DSP's auxiliary port to the PC's

LPT1 parallel port. This connection allowed a TIL output from the auxiliary port to

trigger the LPT1 interrupt on the PC. A host ISR was implemented to communicate

with DSP.

As mentioned in Section 3.1.5, bit 19 of the Mode Control Register (MCR)

controls the output of the TIL output. However bit manipulation instructions cannot be

used here to control this bit. Data move instructions are applied to update the content of

the MCR and thus control the TIL bit. Two words at X:TTL_Set and X:TIL_Clear,

which have different status of the TIL control bit and keep the copies of the other bits

of the MCR, are used as the sources of the MCR. Copying X:TIL_Set to MCR sets

the TTL output high, sending the data transfer interrupt request to the host, and

copying X:TIL_Clear to the MCR sets the TIL output low, clearing the interrupt

request.

When either Transfer A or Transfer B is called, it first sends the data transfer

interrupt request via the LPT1 inteirupt. This immediately interrupts the host proeessor

and activates the host data transfer proeess, which acknowledges the request by selling

the hostflag HF1 to the DSP proeessor. Then the DSP proeess clears the interrupt

request and sends the host a transfer code, which tells the host the channel of the data

and the transfer direction, 1 for channel A DSP to host data transfer, 2 for channel B

DSP to host data transfer and 3 for host to DSP data transfer. After receiving the host

acknowledgment, the DSP proeess sends the total number of 16-bit words to be

transferred. And finally, after the host acknowledges for readiness, the DSP proeess

starts bu1k data transmission using the polling method (Section 3.1.3.1).

After the data transfer process successfully terminates, the control executive

clears the corresponding peak BUFFER FULL flag and resets the write pointer of the

'peak buffer' and thus makes it empty and ready for further proeessing.

Because the polling technique is used in the bulk data transmission, the speed

of the data transfer process on the host side is the governing factor of the overall data

transfer rate. Special considerations have been taken into account on the host side, as

discussed in the next section.



CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 75

4.4. Host-DSP Interface for Real-time Data Transfer
As mentioned at the beginning of this chapter, the LiMCA software consists of

three parts, viz. the DSP software, the host-DSP interface and the Graphical User

Interface (GUI). Among them, the host-DSP interface directly communicates to the

DSP processor and the GUI, providing a real-time data link between them. Its

performance has a direct impact on the DSP process as well as the GUI. Speed and

efficiency are the major concems in the design and implementation of the interface.

4.4.1. General Views

The data processing on the host side includes (1) receiving the peak data from

the DSP, (2) decoding the data, which are still in the DSP format, into proper C data

type, for further host processing, (3) cIassifying the type of the peak using the decoded

data, (4) analyzing the data statistically, (5) displaying the results graphically and

interactively, and (5) saving the results for later references. These general tasks are

decomposed into small funetions. Most of them are foreground funetions for most of

the data processing tasks. Others are background funetions eontrolled by the DSP

interrupt requests and a few foreground funetions used to install, enable and disable the

interrupt-driven background funetions. The background funetions and the associated

foreground funetions were grouped together as the host-DSP interface. The rest formed

the GUI and were programmed as foreground funetions. As the speed of the host-DSP

intetface was the dominant eoncem, the number of tasks a1lacated to the interface was

minimized. As a resuIt, only task 1 was implemented in the interface, and the rest were

left to the GUI. The host-DSP interface and the GUI are related implieitly. The main

data communication between them is established through eommon memory blocks,

managed by the GUI.

The interrupt related foreground funetions of the interface are diseussed in the

next section. The background funetions of the interface, dealing with the real-time data

transfer, are described in Section 4.4.3. The common memory management between

the interface and the GUI is detailed in Section 4.4.4.

4.4.2. Interropt installation and Control

As discussed in Section 4.3.8, an additional cable links the DSP's auxiliary port
to the parallel port of the host PC, providing a physical interrupt source from the DSP

board to the hosto The cable and connectors are schematically shown in Flgure 4.13.

The connection as described in this figure connects the TTL output of the DSP



CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 76

sleeve
tip

r:=
ring ur;- l'--.

• •ln • •
• ••• •• ••-sleeve • •
• •• • •

-ring • •
~

1 •·--tip -
'"'"

25

14

mini-phone jack to
DSP's auxiliary port

25 pin male connector
to PCts parallel adapter

Figure 4.13 Cable Connection between DSP's Auxiliary Port and Pets

Parallel Port

auxiliary port to the -ACK pin (pin 10) of the LPTI. This pin is routed to the hardware
interrupt request 7 of the PCts programmable interrupt controller (PIC).

Two funetions (startJ:ntll () and Stoplntll () have becn implemented lo install

a new interrupt handler, enable the interrupt. disable the interrupt and restore the old
interrupt handler. The first two tasks were integrated in funetion StartInta n. The
other two were left to the function Stoplnta (void). These fu,.~~tions replace an old

interrupt handler with a new one and program the programmable interrupt controller

(8259A PIC) and the first parallel printer interface (LPTl).
Installing the handler of the data transfer ISR is the first task of startlnta. The

data transfer process, which is invoked at the time of interrupt. was implemented as a

group of functions with a tree type hierarchical structure. At the top of the tree was a
function defined as interrupt type. A interrupt type pointer to this function was also

defined to provide the entry address. This pointer is installed at a certain memory
location in the pets interrupt vector memory space. The locations where the pointer

goes depend on the type of the interrupt. An the interrupt sources in PC have been

enumerated by their interrupt numbers. In our case, hardware interrupt request line 7 is
used. This interrupt has been assigned as interrupt 15. Consequently, the pointer to the

function that services this interrupt must be installed at 003CH through 003FH. as each
;gterrupt vector takes four memory slols starting from OOOOH. In actual programming,

placing the ISR handler is carried out by library functions provided by the compiler we



•

•

CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 77

are using, provided that the interrupt number is specified correctly. Note that the

original handIer must be saved before it is replaced with the new one.

The second task of the function is to enable the interrupt. This is done by

enabling the LPTI -ACK pin (pin 10) and enabling IRQ7 of the 8259A PIC. The port

addresses of LPT1 start at 0378H through 037FH. The printer control register is

Iocated at 037AH, which is used to control the status of LPTl. Setting bit 4 of this

register tums on the -ACK pin, thus the interrupt request can get through and reach the

8259A PIC. Other bits of the control register are irrelevant to our application and are

ignored.

Before the interrupt can reach the PC's CPU, it must go through the 8259A

PIC. Programming this controller for our application inv01ves the manipulation of two

8-bit port registers at 0020H and 0021H. The second one is interrupt mask register,

whose nth bit masks the interrupt request from line IRQn. To enable IRQ7, which is

used in our application, bit 7 should be cleared. Once an interrupt happens further

interrupts are disabled automatically until the controller receives EOI (end of interrupt)

code written to the first register at 0020H. This code itself is 0020H. However this

must be sent by the background ISR, each time when it exits rather than this

foreground function, to enable the following interrupts.

In summary, this function

• saves the old LPT1 ISR handler;

• installs the new LPT1 ISR handler, which services the host-DSP data transfer;

• enables the -ACK pin (pin 10) of LPT1 by setting bit 4 at 037AH;

• enables IRQ7 of the 8259A PIC by clearing bit 7 at 002lH.

The function StopJ:nta does the opposite tasks as StartJ:nta. Briefly, it

• disables IRQ7 of the 8259A PIC by setting bit 7 at 0021H;

• disables the -ACK pin of LPT1 by clearing bit 4 at 037AH;

• discards the current LPT1 ISR handler and restores the old handler saved by
StarUnta;

• sends EOI to 0020H to make the 8259A PIC available for other interrupts.

4.4.3. Interrnpt Service Routine (ISR) Cor Real-tlme Data TransCer

As mentioned in the previous section, the handler of the ISR is installed and

enabled by the utility StartJ:nta. The ISR is activated when the DSP data transfer

request occur through the LPT1 interrupt, and the foreground functions of the GUI are

suspended until it completes the data transfer requested by the DSP process.



CHAPTER 4: LiMCA SOFrWARE DESIGN AND IMPLEMENTATION 78

The ISR mainly deals with the host-DSP handshaking and data transfer. The

handshaking sequence has already becn discussed in Section 4.3.8 and is shawn in

Figure 4.12. The data transfer process on the hast side is undertaken in the polling

mode. Before reading the port, it checks the RXDF bit of the Interrupt Status Registcr

of the hast port (Figure 3.8). If the flag is set, the routine reads the RXM and RXL in

sequence and ignores the RXH, since the data transferred here are only 16-bit wide and

take only !wo data ports. For details about data transfer between the host and the DSP

in the polling mode, sec Section 3.1.3.1. The data read from the RXM and RXL ports

are being saved in the EMS memory space in the original DSP format for the GU1 to

process further. For the RXM and RXL ports, see Section 3.1.3, and the DSP data

format, sec Figure 4.10.

4.4.4. EMS Œxpanded Memory Specilication) Memory Pools for Rcnl-timc

Peak Parameters

The real-time peak parameters from the host port are saved in two memory

pools in the same format as in the DSP memory buffers. Each pool is for one channel

(Figure 4.14). Note that only one of the pools is shawn in this figure. These pools are

accessible to the GUI. These memory pools are created in the EMS. The decision to set

up the pools in the EMS was made based on the following considerations:

• The peak parameters have to be written to a storage media as fast as possible in

order to catch up the fast DSP process. Thus RAM spaces were chosen for this

purpose;

• Most of the PC's conventional memory space is occupied by system and application

programs and data, and there is \ittle room for massive data storage;

• The EMS is not being used in real-time data acquisition mode according to the GUI

design of the LiMC1\ software, and it is much bigger than the conventional

memory.

In each data acquisition, ail the peak parameters are saved in the EMS pools. They are

decoded for further analysis in real-time, and the results are displayed graphical1y and

interactively. However the decoded data are not saved in real-time because the time

constraints do not allow the access to a hard drive in real-time. The original data in the

EMS pools are re-decoded and saved in a hard drive after the real-time data acquisition

is completed. In this design, the size of the EMS pools are required to be big enough 10

accommodate ail the peak parameters throughout from a whole acquisition.



1
CHAPTER 4: LiMCA SOFfWARE DESIGN AND IMPLEMENTATION 79

Compared to the conventional memory, additional procedures are needed for the
access of the EMS because of its structure. The whole EMS is divided into frames,
which are further divided into pages. Each frame contains four consecutive pages, and
each page has a memory space of 16 Kbytes. The PCts CPU cao only access one EMS

frame at a time. The frame that is currently addressed by the CPU is called the 'active

frame' .

1

To access the EMS, the following generic procedures should be programmed in

an application. They are:
(1) to get the total EMS pages and available pages of the current system;

(2) to get the EMS frame segment;
(3) to allocate the number of EMS pages needed to an EMS handler;

(4) to initialize a far pointer to the EMS frame segment;
(5) to map 4 consecutive EMS pages into the active frame;
(6) to access the active frame by pointers which are initialize by referencing the frame

segment pointer set up in step (4);

(7) to map another 4 consecutive EMS pages into the active frame if the EMS pages in

the current active frame is full, and to repeat step (6);

(8) to release the EMS before program exits.
These tasks have been implemented into utility functions in our application using MS­
DOS interrupt 67H.

The EMS pool for channel A is shown in Figure 4.14. The EMS pool for

channel B has the same structure. As one can see, 152 EMS pages, 2,490,368 bytes in

EMS Pool
for Channel A

pointer

pointer

e pointer

rame
pointer

buffer base pointer

,
-

Active Frame EMSwrlte-
-EMSread-~

~ EMS fi
e regment
.:!
~

Emergency
Buffer in -

Conventional -hufferwrlt

Memory -

pagelSI
pagelSO

•••
page i+ 3
pa~i+2

page i+ 1

page i

•
•
•

pagel
page 0

Figure 4.14 EMS Pool for DSP Realwtime Peak Parameters of Cbannel A



CHAPTER 4: LiMCA SOFrWARE DESIGN AND IMPLEMENTATION 80

total, are aliocated to the EMS pool for channel A peak parameters. Noting that 16

bytes are used to describe a peak (Figure 4.10), each pool can save peak descriptions

of up to 155,648 peak. Considering that it only takes several minutes to fill the sensing

tube for the aluminum application, the size of the memory pools are more than enough

for a data acquisition in this time range.

During the real-time data acquisition, the real-time data are written to the active

frame by the background data transfer ISR via the EMS write pointer. The GUI reads

the peak data from the active frame via the EMS read pointer. When the frame has

becn filled up by the data transfer ISR and has not yet becn fully processed by the GUI,

the data transfer ISR switches to a 16-Kbyte emergency buffer in conventional

memory, 50 as not to stop the real-time data transfer process. After the GUI has

processed the active frame, it maps another 4 pages into the active frame, moves the

data from the emergency buffer, if there are any in the buffer, to the new pages in the

active frame, and resets the EMS write and read pointers accordingly. In this way, the

maximum delay of 1024 peaks is allowed between the DSP process and the host

process. This time constraint should be considered in the implementation of the GUI.

As one can conclude that it is important that on the host side, the real-time data

transfer process is not delayed in any circumstances, in order not to delay the nsp
process. Betwecn the real-time data transfer process and the data processing involved in

the GUI, a buffer of adequate size in addition to the main storage media (the EMS

pools in our case), for the real-time data is equally essential to allow sorne delay of the

host process. Such time freedom is necessary for the complex data processing tasks

assigned to the GUI.



CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 81

4.5. Software Performance
Figure 4.15 shows the degree of utilization of the DSP co-processor board. The

data were obtained by counting the total number of instructions along the longest

branch in the final program. The caIculation of the usage by all the processes in this

Figure were based on the worst case data (see Section 2.3.1 for the worst case

operation). The DSP real-time software is assumed to be working in the stereo (two

channel) mode. The ADe sampling rate is set to 50 KHz, which is adequate to avoid

aliasing of the input analog signal. Based on the worst case operating conditions, Le.

2000 peaks per second, the DSP processor is busy 49% of the total time.

In this calculation, two factors were not taken into account. The first is the

length of the FIR (Einite Impulse Response) filter in the filter process (Figure 4.2) and

the second is the number of cycles that are required to synchronize the DSP-host data

transfer process. An increase in the length of the filter dramatica1ly increases the time

required by the filter process. In sorne cases, a sharp notch filter is needed to eliminate

a narrow range of frequencies. 8uch a flUer cannot be implemented in this software,

because of the big number of taps required. A piece of high speed FIR filter hardware

may he needed. With respect to the synchronization cycles, the data shown in Figure

4.15 were calculated for a host computer with a 50 MHz system c10ck and a 100

nanosecond bus cycle. In this case, 3 waiting cycles are needed at the DSP level for

cach data transfer.

Up till OOW ooly about 50% of the DSP computational capacity is used. This

hile (51%)

data transter (1%)

peak description (q%)

peak sampllng (24%)

'.10 20 30 40 50 60 70 80 90 100
%

Figure 4.15 Usage of the DSP CPU



CHAPTER 4: LiMCA SOFTWARE DESIGN AND IMPLEMENTATION 82

Table 4.3 Characteristics of LiMCA Peaks

start s!ope end slope

peak type si!!:n value si!!:n value width/height

NP + high - hi!!:h small

BI + high - low lar!!:e

BF + low - uncertain large

NBJ - hi!!:h + low large

NBF - low + unccrtain large

US - hi!!:h + low large

NP--Normal Pulse NBJ --Negative Baseline Jump

BJ --Baseline Jump NBF --Negative Baseline Fluctuation

BF --Baseline Fluctuation US --Undershoot

gives us the potential for future development, such as implementing the peak

classification task at the DSP level and developing code to use the DAC channels for

process control.

As for the host-DSP interface, manY test runs for both water and molten

aluminum showOO that there were no detrimental delays introducOO down to the DSP

process from il. For the amount of the data to be transferred from the DSP to the host,

the interface has not reachOO its full capacity. The high efficiency of the interface is

attributOO to the successful memory management and synchronization betwcen the

background and foreground functions.

The peak description parameters, obtainOO by the OSP process and transferrcd

to the host, can be usoo to characterize the different types of LiMCA peaks using Table

4.3. From this table, one can sec that a simple peak classification algorithm can be

used. It involves checking the sign of the peak and determining the relative magnitudes

of the slopes at peak start and at peak end, and the peak width to height ratio.

Succcssful classification depends upon using proper thresholds, which are currently

determinOO experimentally.

In conclusion, in the implementation of the real-lime software of our multi­

processor system for LiMCA application, timing and communication are crucial

factors. These concems have becn reflectOO in every phase of the software design and

development. Proper measures used to tackle these concems 100 to the successful

completion of the real-time software including the OSP software and the host-OSP

interface.



CHAPTER 5: CONCLUSIONS AND FUTURE DEVELOPMENTS

5. CONCLUSIONS AND FUTURE DEVELOPMENTS

83

5.1. Conclusions to the Thesis
o A DSP-based LiMCA system has been implemented to replace the first generation

LiMCA system, which is based on the analog signal processing.
oThe DSP real-time software and the host-DSP interface have been implemented and

tested. They are sufficient to carry on the real-time LiMCA operation in the worst

case.
o Enough computing capability of the DSP hardware and software are reserved for

the future development, e.g. the implementation of the peak classification process at

the DSP leveI.
o The EMS memory management has been implemented in the host-DSP interface.

The use of the EMS in the communication with the DSP is crucial for the host
computer to catch up the speed of the DSP process.

o A group of time domain peak description parameters are found to be useful and
efficient for peak classification. A time domain real-time algorithm has been
implemented in the DSP software to extract these pararneters.

o A simple table-driven peak classification algorithm can be implemented according
to the characteristics of the peaks described by the peak description parameters.

5.2. Suggestions for Future Work
To further enhance the performance the DSP LiMCA system, the foUowing

improvements are projected.
o A fast low-price DSP board is needed for the implementation of a sharp notch

filter. Such fiIter is needed to filter out known frequency components that interfere
with the LiMCA signal, in an industrial environment fiUed with electric noises from
highly powered electric equipment. This fiIter could communicate with the DSP-56
board via its network port.

o For research purposes, it is required that the LiMCA peaks be sampled and saved

along with their peak description parameters. However, the host-DSP interface can
only handle the peak description parameters. The sampled peak must be transferred
through other interface and be saved into the media control by the interface. A DSP



CHAPTER 5: CONCLUSIONS AND FUTURE DEVELOPMENTS 84

process can be implemented for the DSP-56 hardware to use its SCSI to save the

peaks into a fast hard drive.

• Considering the number of peaks to be transferred and saved, a good compression
algorithm and ils implementation should be considered.

• Further studies on the peak classification algorithm must be conducted, especially

on the classification of the Multiple Pulses.

• The classification algorithm should finally be implemented at the DSP level.

• To study the high pass filter effect and to compensate the magnitude attenuation of

the LiMCA peaks, a software LiMCA signal simulator is needed.



•
REFERENCES

REFERENCES

85

•

•

[Ariel 89] Ariel Corporation, User's Manual for the DSP-56 DSP Coprocessor Board
for PC Compatibles, Ariel Corporation, 1989

[Bates and Hutter 81] D.A. Bates and L.C. Hutter, "An Evaluation of Aluminum

Filtering Systems using a Vacuum Filtration Sampling Deviee", Light Ml'W/S,
The Metallurgica\ Society of AIME, pp. 707-721, 1981

[Bauxman et al. 76] K. Bauxman, J.D. Bornand, G.B. Leconte, "Impact of

Purification Methods on Inclusions and Melt Loss", Light Meta/s, The

Metallurgica\ Society of AIME, pp. 191-207,1976.

[Carayannis et al. 92] G. Carayannis, F. Dallaire, X. Shi, R.LL. Guthrie, "Towards

Intelligent Detection of Inclusions in Liquid Metals", Proc. lnt. Symposium III/

Anificial Intelligence in Marerials Processing Operations, 31st CIM Conf. of

Metallurgists, Edmonton (Alberta), pp. 227-244, Aug. 1992.

[Carayannis and Shi 93] G. Carayannis and X. Shi, "Evaluating Metal Cleanliness

Using DSP Technology", Proc. of The Intematiol/al C01iferel/ce 01/ Sigl/al
Processing Applications & Technology, ICSPAT'93, Santa Clara (California),

pp. 895-904, Sept. 1993.

[Coulter 56] W.H. Coulter, "High speed automatic blood cell counter and cell size

analyzer", Proe. of the National Electronic Conf, pp. 1034 - 1042, Chicago

(IL), 1956.

[Dallaire 90] F. Dallaire, "Electric Sensing Zone Signal Behaviour in Liquid

Aluminum", Master's Thesis, Dept. of Mining & Metallurgical Eng., McGiIl

University, 1990.

[DeBlois and Bean 70] R.W. DeBlois, C.P. Bean, "Counting and Sizing Submicron

Particles by the Resistive Pulse Technique", The Review of Scientijic
Instruments, Vol. 41, No. 7, pp. 909 - 915, 1970.

[Doutre 84] D.A. Doutre, "The development and application of a rapid method of

evaluating molten metal cleanliness", Ph.D. Thesis, Dept. of Mining &

Metallurgi~l Eng., McGiIl University, 1984.

[Kulunk 92] B. Kulunk, "Kinetics of Removal of Calcium and Sodium by Chlorination

from Aluminum and Aluminum-IWT% Magnesium Alloys", Ph.D. Thesis,

Dept. of Mining & Metallurgica\ Eng., McGiIl University, 1992.



•

•

•

REFERENCES 86

[Kuyucak 89] S. Kuyucak, "On the Direct Measurement of Inclusions in Molten

Metals", Ph.D. Thesis, Dept. of Mining and Metallurgical Eng., McGiII

University, 1989.

[Kuyucak and Guthrie 89] S. Kuyucak, R.LL. Guthrie, "On the Measurement of

Inclusions in Copper-Based Melts", Cano Met. Quan., Vol. 27, pp. 41-48,

1989.

[Lee 91] H.C. Lee, "On the Development of a Batch Type Inclusion Sensor in Liquid

Steel", Ph.D Thesis, Dept. of Mining and Metallurgical Eng., McGiII

University, 1991.

[Levy 81] S.A. Levy, "Applications of the Union Carbide Particu1ate Tester", Light
Metals, The Metallurgical Society of AIME, pp. 723-733, 1981.

[Mansfield 82] T.L. Mansfield, "U1trasonic Techno1ogy for Measuring Molten

Aluminum Quality", Light Metals, The Metal1urgical Society of AIME, pp.

969-980, 1982.

[Motorola 89] Motorola, DSP56000/DSP5600] Digital Signal Processor User's
Manual, 1989

[Motorola 92] Motorola, "24-Bit General Purpose Digital Signal Processor", Motorola
Semiconductor Technical Data, Rev.3, 1992

[Nakajima 86] H. Nakajima, "On the Detection and Behaviour of Second Phase

Particles in Steel Melts", Ph.D Thesis, Dept. of Mining and Metal1urgical Eng.,

McGiII University, 1986.

[Oppenheim and Schafer, 89] A.V. Oppenheim, R.W. Schafer, Discrete-time Signal
Processing, Prentice-Hall, Eng1ewood Cliffs, NI, pp118, 1989.

[Pitcher and Young 69] D.E. Pitcher, "Methods of an Apparatus for Testing Molten

Metal", U.S. Patent, 3,444,726, May 20,1969.

[Siemensen 81] C.I. Siemensen, "Sedimentation Analysis of Inclusions in A1uminum

and Magnesium", Met. Trans. B. Vol12B, pp. 733-743, 1981.

[Thibault et al. 89] I.-F. Thibault, A. Boisset, F. Dallaire, G. Carayannis, "Pattern

Recognition Techniques for Metal Quality Control", Canadian Corif. on
Electrical and Computer Engineering, Montréal (Québec), pp. 771 - 774,

September 1989.

[Tian et al 92] C. Tian, F. Dal1aire, R.I.L. Guthrie, "Inclusion Removal from

A1uminum Me1ts through Filtration", Proc. Advances in Production and
Fabrication of Light Metals and Metal Matrix Composites, 31st CIM Conf. of

Metal1urgists, Edmonton (Alberta), pp. 153-161, Aug. 1992.



•

•

•

REFERENCES 87

[Yarnanoglu 92] G. Yamanoglu, "Characterization of Submerged Powder Injection

into Water Using an In-line Particle Detection System", Master's 17lesis. Dept.

of Mining & Metallurgical Eng., McGilI University, 1992.



•

•

•

APPENDIX A: SPECIFICATIONS OF THE DSP-56 CO-PROCESSOR BOARD 88

APPENDIX A: SPECIFICATIONS OF THE DSP-56 CO­
PROCESSOR BOARD

CPUTvoe Motorola DSP56001 Processor

system clock 27 MHz
freQueilcv

minimum 74 nano seconds
instruction cycle

CPU architecture parallei architecture, separate logic units, two Data Arithmetic
Logic Units (ALU) for data manipulation, two Address
Generation Units (AGU) for address generation and cne program
controller, multiple data and address buses, partition of data
memorv

data bus dynamic 24 bit word width, 144 dB dynamic range
range

bus architecture seven internai separate data and address buses supporting parallel
dataladdress movement during execution of ALU/multiplier
instructions

accumulator 2 accumulators with 56 bit word width, 336 dB dynamic range
dynamic range

addressing 8 addressing pointers; Programmable auto-indexing supported
with 8 offset registers; Modulo and reverse-carry addressing

sUDoorted with 8 modulo rel!isters

instructions 62 basic instructions; no-overhead DO-loops and repeated

instructions are directlv sUDOOrted in the hardware.

memory up to 64 Kwords (x24 bits) of storage for each of the X, Y and
Prol!ram memorv SDaces

PC interface The DSP-56 occupies seven 8-bit 1/0 ports whose base address is

mapped by a header that accepts shorting plugs. It supports
DMA using the DSP56001 's built-in DMA facilities.

SCSI interface up to 2 Mbytes/sec of 8-bit parallel 1/0 to external mass storage

devices

DSP net interface UD to 2 Mbytes/sec of 24-bit oarallel 1/0 to other DSP cards



•

•

•

APPENDIX A: SPECIFICATIONS OF THE DSP-56 CO-PROCESSOR BOARD 89

Analog If0 two channels of 16-bit analog to digital conversion, input

sensitivity adjustable from 100 mV RMS to 776 mV RMS (280

mV to 2 volts peak-to-peak), sampling frequency software-

controlled, 16 selections from 2 KHz to 100 KHz. A single

channel, 12-bit, 400 KHz sample rate mode is also provided.

Two channels of simultaneously sampled 16-bit digital-to-analog

conversion with fixed (fc = 20 KHz) 9th-order elliptic

reconstruction filters and sin(x)/x compensation are provided.

Auxiliary 1/0 A three-conductor mini-phone jack mounted on the rear panel

Drovides one-bit TIL level If0 interface to the DSP56001 chiD.



•

•

•

APPENDIX B: THE PROTOTYPES OF THE DSP-56 INTERFACE FUNCTIONS 90

APPENDIX B: THE PROTOTYPES OF THE DSP-56
INTERFACE FUNCTIONS

ez.tern void far configure""port_addresses (int baseAddr) ;

Set port addresses of the DSP-56 processor.

baseAddr: input variable, the base port address of the processor.

extern void far degmonParams (unaigned short *monStart, unsigned short

*firstFree) ;

Get parameters of the DEGMON monitor.

manS tart: output variable, stan address of the monitor;

firstFree: first address available after the monitor.

externint far do_host_command(int hc_addr);

Execute host commando

hc_addr: input variable, the stan address of the host command in DSP.

extem void far OSP_Status ( void) ;

Get the status of the LiMCA process.

extemvoid far empty_hp(void);

Clear the host port.

extemint far executo_instr(unsigned short startAddr);

Stan a DSP process through DEGMON monitor.

startAddr: input variable, stan address of the DSP process.

""'tom int far get_hp (unsigned 1.on'1 .data) ;

Get a long data from the hast port.

data: output variable, the data received.

extern void faJ: get_hp1. (unsigned 1.on'1 .data) ;

Get a long data from the hast port without time-out.

data: output variable, the data received.

_t.m void far get_hps (unsigned 1.on'1 .data) ;

Get an int data from the hast port.

data: output variable, the data received.

_t.mvoid far get...l'0rt_addresses(unsigned .icr,unsigned .cvr,unsigned .br,

unsi\lUed .hi, unsigned *mid, unsigned .1.0) ;

Get the port addresses of the DSP-56 processor



• .ior:

CYr:
.î.!lr:

hi:

m:l.d:

~o:

•

•

APPENDIX B: THE PROTOTYPES OF THE DSP-56 INTERFACE FUNCTIONS 91

output variable, the address of the Interrupt Control Register;

output variable, the address of the Command Vector Register;

output variable, the address of the Interrupt Status Register;

output variable, the address of the Receive/Transmit Registcr

(high byte);

output variable, the address of the ReceivelTransmit Register

(middle byte);

output variable, the address of the Receive/Transmit Register

(Iow byte).

e.>:tern void far hfO_off (void ) ;

Clear Host Flag O.
e.>:tern void far hfO_ on (void ) ;

Set Host Flag O.
externvoid far bfO_state(int *ret);

Get the status of Host Flag O.

ret: output variable, the status of Host Flag O.

e.>:tern void far hfl_off (void ) ;

Clear Host Flag 1.
e.>:tern void far hfl_on(void ) ;

Set Host Flag 1.
e.>:tern void far hfl_atate (int *ret) ;

Get Host Flag 1 status.

ret: output variable, the status of Host Flag 1.

e.>:tern void far Hoatstop(void);

Signal the DSP to stop the LiMCA process.

e.>:tern int far if_hf2 (void) ;

Get the status of Host Flag 2.

e.>:tern int far if_hf3 (void) ;

Get the status of Host Flag 3.

extern:Lnt t'a: LoadFil.e(char *fname, chAr .*,reault, unaigned int *worda,

unaigned int *atartllddr, int uae_mon, int PKemEnable) ;

Load a DSP program down to DSP-56 processor.

f..-: input variable, file name of the compiled DSP process;

rea~t: output variable, error message;

worda: output variable, lengths of the DSP program;



•

•

•

APPENDIX B: THE PROTOTYPES OF THE DSP-56 INTERFACE FUNCTIONS 92

s tartAddr: output variable, start address of the DSP program;
use_mon: input variable, YES if it is a boct load program, NO if not;
PHemE=b~e: input variable, YES to enable program memory, choose YES if il

is a boct load program, NO if not.
mr::tern void far reacLbp ( i.nt channeJ. ) ;

Read peak parameters from the host port.
ch;mne~: output variable, channel of the DSP process.
Nole: the peak paramelers are saved in EMS.

extern.int far rea~memory(i.nt space, unsigned short address, unsigned long

*data) ;

Read the content ofDSP memory.
space: input variable, which memory to read from, choices are

P_SPACE, X_SPACE orY_SPACE;
addresa: input variable, address of the memory;
cLata: output variable, content of the memory.

"",tern int far reaclp (unaigned int addr, unaigned ~ong *where) ;

Read the content of the DSP program memory.
addr: input variable, address of the memory;
where: output variable, content of the memory.

"",ternint far readx(unaigned int addr, unaigned ~ong *where);

Read the content of the DSP X data memory.
addr: input variable, address of the memory;
where: output variable, content of the memory.

"",tern int far ready (unaigned int addr, unaigned ~ong *where) ;

Read the content of the DSP y data memory.
addr: input variable, address of the memory;
wh.re: output variable, content of the memory.

_tern void far reaetj>oard(int Enab~_terl\Baet);

Reset and start booting of the DSP processor.
Ilnahl Ir IfterRea.t: input variable, must always be TRUE for DSP-56

_ternint far aend_hP(unaigned long cLau);

Send a long data to host port.
cLau: input variable, the data to he sent.

extern int far aend_hP16(int data);

Send an int data to the host port without sign extension.



APPENDIX B: THE PROTOTYPES OF THE DSP-56 INTERFACE FUNCTIONS 93

eztern:i.nt far send_hps (int data) ;

Send an int data to the host port, the upper 8 bits are 0 extended if data > = 0
or 1 extended if data <O.
data: input variable, the data to be sent.

""tem void far te=inate (void ) ;

Stop booting the DSP processor.

• data: input variable, the data to be sent.

•

•

extem void far write_hp(void);

Write bulk data to the host port (to be developed).
extern:Lnt far wr.ite_memo~(int space, unsigned short address, unsigned ~onq

data) ;

Write to DSP memory from the host port.
Bpace: input variable, which memory to write to, choices are P_SPACE.

X_SPACE or Y_SPACE;
addreu: input variable, address of the memory;
data: input variable, value to be written.

""tem int far writep (unBigned int addr, unBigned long data) ;

Write to DSP program memory from the host port.
addr: input variable, address of the memory;
data: input variable, value to be written.

externint far writex(unBigned int addr, unBigned long data);

Write to DSP X data memory from the host port.

addr: input variable, address· of the memory;
data: input variable, value to be written.

u:temint far writey(unBigned int addr, unBigned long data);

Write to DSP y data memory from the host port.
addr: input variable, address of the memory;
data: input variable, value to be written.



•
APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA

APPENDIX C: DSP SOURCE CODE LISTING OF THE
DSPLiMCA

Motorola DSP56000 Macro Cross Assembler Version 3.02 93-11-23 22:06:55
lrncdsp.a:!Jm

;FILE: LMCDSP.ASM
COMMENT @* •• * ••••• _••••• _._ ••••••• _••_** __ •• *_._. w*ww_w_w_*_* _

MMPC
Dept.. of Mininq and Metullurgica Eng.
McGill University
(C) Copyright 1993_w. __ • ._•• * * * wwwwww****_***_* __

05P-5G Processor card
DSP driver for LIMCA real-time data processing
Ver.ion 3.00 April, 1993wwwwwwwww. * * * *_ww**wwwww_* _

94

(C) 1990 MMPC, McGi11 Univer.ity
Assemble with Motorola assembler:
a.m56000 -A -B 1mcd.p.1od -L 1mcd.p

Two Circular Buffers of length BUFSIZ are used te store the data for
ADe, one i5 in X_mem for channel A, the other one is in Y_mem for channel B.

After ini tialization, this program waits in a command Ioop, where i t
monitors the host port for a command data word. No action is taken until one
of the following commands appears. AlI other values are ignored.

0: Record: recording process from 551 to HI
1: OnIineMCA: real-time MCA
2: Off1ineMCA: off-line MCA
3: Report5tatus: report process status to host
4: SampleRate: get .ampling rate from ho.t
5: UpLoadMem: up10ad DSP memory to ho.t
6: ZeroMem: zero X and Y data memory

USES OF MEMORY
X memory:
$0000 $OOFF for proqram varib1e., .ize: 256 wor
$6000 $65FF for channel A peak-parameter buffer, .ize: 1.5k word.
$7000 $7FFF for channel A .ampled peak buffer, .ize: 4k word.
$8000 $FBFF for channel A circular buffer, .ize: 31k word.
y memory:
$0000 $OOFF for proqram varible., .ize: 256 word.
$0100 $04FF for channel B PRA table, .ize: 1024 word.
$6000 $65FF for channel B peak-parameter buffer, .ize: 1.5k worct.
$7000 $7FFF for channel B .amp1ed peak buffer, .ize: 4k word.
$8000 $FBFF for channel B circu1ar buffer, .ize: 31k word.
P memory:
$0000 -- $FFFF for program memory, .ize: 64k word.
END OF COMMENT SECTION @

•

• LIMCA ident 3,0 ;LIMCA DATA PRO. DRIVER DSP-56



95

isampled peak buffer A
iwrite pointer
iprevious value at the
ipoint before peak stact

;pk start low 16 bits
;pk start high 16 bits
ipk width count for pk
idescription proce~s

a ipeak buffer A write ptr
ipk buffer A counter

o

o

and control regs. -----------­
iprocess status
ibuffer status
ipk sampling status register

and control regs. -----------

DC

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA
opt rnex,cex,fc,rc :useful when a listing is produced.
include 'lmcioeq.asm' :include the file of 10 port equates

;--------------------------- constants --------------------------------
007cOO FIFOSIZE EQU 31744 ;circular buffer size ,from $8000 to $FBFF
007000 PK_SAMPLE_5TART EQU $7000 ;start addr. of pk sampled data buffer
000100 PHATABLESTART EQU $0100 ;start addr. of PHA scaling table
000080 PEAKOBFSIZE EQU $0080 ;peak-parameter buffer size
006000 PEAKOBFSTART EQU $6000 ;start addr. of peak-paramet~r buffer
000000 DSPJUlITX EQU $0 ;DSP -> HI data tranfer code for chanA

000001 DSPBHITX EQU $1 ;DSP -> HI data tranfer code for chanB
000002 DSPHIRV EQU $2 ;HI -> DSP data tranfer code
:bit 0 for tranfer channel: 0 for chanA, 1 for chanB bit 1 for tranfcr
;direction: 0 for DSP -> HI, 1 for HI -> DSP
;----------------bit symbols in ProcStatus Register--------------------
000000 HOST5TOP EQU 0 ;host PC stop flag
000001 CHlINNELA EQU 1 ; channel A flag
000002 CIIl\NNELB EQU 2 ;channel B flag
000003 TlMEUP EQU 3 :time flag, 1: exceed the user-specified time
:----------------bit symbols in BuffStatus Register--------------------
000000 FIFOFULL EQU 0 ;FIFO buffer full flag
000001 FIFOEMPTY EQU 1 ; FIFO buffer empty flag
000004 PEAKOBFAFULL EQU 4 :peak-parameter buffer A full flag
000005 PEAKOBFBFULL EQU 5 ;peak-parameter buffer B full flag
;----------------bit symbols in Pk5amplingSt Register--------------------
000000 PK_SAMPLING_FIND_A EQU 0
000001 PK_SAMPLING_SIGN_A EQU 1
000002 PK_SAMPLING_FINISH_A EQU 2
000008 PK_SAMPLING]IND_B EQU 8
000009 PK_SAMPLING_SIGN_B EQU 9
OOOOOA PK_SAMPLING_FINI5H_B EQU 10
;----------------bit symbols in Pk5a'~lingCr Register--------------------
000000 PK_SAMPLING_CHlINNEL_A EQU 0
000001 PK_SAMPLING_CONT_A EQU 1
000008 PK_SAMPLING_CHlINNEL_B EQU 8
000009 PK_SAMPLING_CONT_B EQU 9
;-------------------------variables------------------------------------
X:OOOO ORG X:$O
i--------------- global varibles, status

d X: 0000 000000 Proc5tatus DC 0
d X:OOOl 000000 Buff5tatus DC 0
d X:0002 000000 PkSampling5t DC 0
i-------------- parallel varibles, status
;for pk sampling process
d X:0003 000000 PkSampleWriteA

d X:0004 000000 PkSamplePreVaA DC

d X:0005 000000 Pk5tartLo16A DC 0

d X:0006 000000 PkStartHil6A DC 0

d X,0007 000000 PkWidthA DC 0

d X:0008 000000 PkBufferWriteA De• d X,0009 000000 PkBuffCntA DC 0

•

•



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 96

a :number of sortinq cycles for
;PHA

o ; total number of PHA channels
prograrn frame and the circular buffera

o ;current function #
$900000

latch, 50 kHz is default sarnpling rate

oc a
oc a

oc

varibles --------------------------------

OC
of the

DC
OC

mode

QsortCyc

ChannelNwn
:Variables
FUNCTION
MOOELATCH
:a copy of

d X:OOOO 000000

d X:OOOE 000000
d X:OOOF 900000

;----------------------- other
:for pk samplinq proces9
d X:OOOA 000000 NoiseHi
d X:0005 000000 NoiseLo
:for PHA process
d X:OOOC 000000

•

imaX. of total data count set by
ihost (low)
irnax. of total data count set by
ihost (high)

$FFFF

$FFFF

d X:0015 000000 CountLo16 OC

d X:001C 000000 CountHi16 OC

:These two time labels point te the
:data point about ta be processed.

d X:0010 OOFFFF CountLo16Max OC

d X: 001E OOFFFF CountHi16Max OC

COMMENT *
details of mode latch:

bit 16 = DSPNET bus request
bit 17 = seriaI output line
bit 18 srate select: 0 = normal, l high speed
bit 19 = interrupt mode: 0 = SCSI, l DSPNET
bits 20 .. 23 = srate select*

d X: 0010 000000 TTL_Set OC a
d X:0011 000000 TTL_C1ear OC a
d X:0012 000253 fList OC Record ;fcn code a
d X:0013 000254 OC On1ineMCA
d X: 0014 00025C OC OfflineMCA
d X: 0015 0002E1 OC ReportStatus
d X: 0016 0002F4 OC samp1eRate
d X: 0017 000300 OC UpLoadMern
d X: 0018 ooonA OC ZeroMern
d X: 0019 0002EO OC NULL
d X:001A 008000 FIFORead OC $8000 ;circu1ar buffer read pointer at

ithe first addr
a ;lower 16 bits of the total data

;count
a ;upper 16 bits of the total data

icount
data point just processed, not the the

•

'{: 0000 ORG '{: $0
i--------------- global varibles, status
d '{: 0000 000000 CornrnandWord OC a

d '{:0002 000000 PkSarnp1ingcr OC
i-------------- parailei varibles,
;for pk sarnp1ing process
d '{:0003 000000 PkSarnp1eWriteB

PkSarnp1ePreVaB

and control regs. -----------­
ihost PC command word is saved
ihere
icircular write pointer advance
icounter
ipk sampling control register

and control regs. -----------

;sarnpled peak buffer 5
iwrite pointer
iprevious value at theo

o

OC

a

OC

a
status

OCFIFOAdvance

'{:0004 000000

'{:0001 000000

d

d

•



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 97
=,tnrt;point before peak

start low 16 bit~

start high 16 bits
width count

o
o

;pk
;pk
;pk

DC
DC

o
o
o

d y:ooos 000000 PkStartLo16B oc
d Y:0006 000000 PkStartHilGB oc
d Y:0007 000000 PkWidthB oc
;for pk description process
d Y:oooe 000000 PkBufferWriteB oc 0 ;peak buffer B write ptr
d Y: 0009 000000 PkBuffCntB DC 0 ;pk buffer B counter
;----------------------- other varibles --------------------------------­
;Stacks for SSI ISR
d Y:OOOA 000000 stack_al
d Y:OOOB 000000 Stack_yO

;stop the proceS5

;pop yO

return, otherwise
;set FIFO full flag.

;pop al
;interrupt process complete

;save data in X FIFO buffer

r7, al
yO, a Y:Stack_yO, yO
SSID_Ret
;if FIFO i5 not overflow,
iFIFOFULL, X:<BuffStatus
HostStop

X: «M_RX, Y: (rO)+ ;save data in Y FIFO buffer
(r71+, r7 ;update write pointer advance counter
yO, Y:Stack_yO ;push yO register
al, Y:Stack_al ;push al register
bFIFOSIZE, yO

<S5IDataIn

move
rti

bset
jsr

jne

move
eor

move
move

move

movep
lua

movep X: «M_RX, X: (rO)
rti

jclr

jsr

P:009B
p:00ge
P:009D

P:0090 ORG P:$90
;Real-time code in low memory for best efficiency

COMMENT *
note: it's important that aIl this code (at least the a ctual real-time part~

of it) reside in low memory. *
;--------------- Interrupt Service Routine (I5R) for ADC ---------------
;The ADe interrupt routine copies the ADC data to the circular Buffer.
;Register r7 is used as an advance counter for the delay between write pointer
land read pointer. rO is used as the circular Buffer write pointer. They are
;not stacked so that They should not ;be used for other purposes.
SSIDatalnPtr
P:0090 OD0091
SSIDataln
P:0091 OAAE83

000095
P:0093 0860AF
P: 0094 000004
SSID_chanB
P: 0095 0858EF
P:0096 04SF17
P:0097 4EOBOO
P:0098 SCOAOO
P:0099 46F400

o07eOO
22EeOO
4E8B53
OAFOA2
0000A2

P: 009F OA0120
P: OOAO OBF080

00035E
SSID Ret
P: OOA2 Se8AOO
P: OOAJ 000004

•

;----------------------------------------------------------------------------
HostStopPtr
P:OOM ODOOAS jsr <Host5toplnt5
H05tStoplnts
P:OOAS OBFOeO jsr Stoplnts

• 00034E
P:OOA7 OAOO20 bset IHOSTSTOP, X: <Proc5tatus



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 98

X:NoiseHi, y1
X:NoiseLo, yO
#>$8000, xl
;factor for shifting data right 8 bits
#>FIFOSIZE-l, ml
;make rl modulo of 31k
X:FIFORead, rl
;rl is circular buffer read pointer for channel A

#>1, r3
;r3 is channel A pk width counter
a r3, rS i rS is channel B pk width counter
al, X:PkSamplingSt ireset peak sarnpling status reg.
i>2, n6 lin rare cases, two peaks are close
;together, r6 and n6 are use to help retrieve
iprevious value for the following peaks

move

move
move

move

move

P:OOBO 63F400 move
000001

P:00B2 227513 c1r
P:00B3 540200 move
P: 0084 76F400 move

000002

P:00A8 000004 rti
;----------------------REAL TlME SUBROUTINES---------------------------­
PkSampling
P:00A9 478AQO
P:OOAA 468BOO
P:OOAB 45F400

008000
P:OOAD 05F42l

007BFF
P:OOAF 619AOO

_ChannelAlnit
P:00B6 OM2cO jclr

OOOOCO
P:00B8 62F400 move

007000
P:OOBA OA02Cl jclr

OOOOCO
P:OOBC OM220 bset

• ;a pk
P:OOBD OM241 bclr
P:OOBE 628300 move

P: OOBF 638700 move

#PK_SAMPLING_Ca~EL_A,Y:PkSarnplingCr,_channelBlnit

;if not channelA, go check channel B
t>PK_SAMPLE_START, r2
ir2 is peak buffer A write pointer
iPK_SAMPLING_CONT_A, Y:PkSarnplingcr, ChannelBlnit
;If set: continue old pk, clr: start a new pk
iPK_SAMPLING_FINO_A, X:PkSamplingSt
is found, doesn't necessarily mean a pk is fi nished
iPK_SAMPLING_CONT_A, Y:Pksamplingcr
X:PkSampleWriteA, r2 iresume the pk sampling A

;write pointer
X:PkWidthA, r3 iload the width needed to be

icontinued
_channelBlnit
P: OOCO OM2C8

OOOOCA
P:00C2 64F400

007000
P:00C4 OM2C9

OOOOCA
P:00C6 OM22B

P:00c7 OM249
P:00c8 6C8300

P:00c9 608700

_Loop
P:OOCA 22EEOO
P:OOCB 57F400

000001
P:OOCD :20570S

• P:OOCE OAFOA7
000008

move i>PK_SAMPLE_START, r4
;r4 is peak buffer B write pointer

jclr tPK_SAMPLING_CONT_B, Y:PkSarnplingCr, _Loop
ilf it is set: continue old pk, clr: start a new peak
bset tPK_SAMPLING_FIND_B, X:PkSarnplingst
;a pk is found, doesn't necessarily mean a pk is finished
bclr tPK_SAMPLING_CONT_B, Y:PkSarnplingcr
move Y:PkSarnpleWriteB, r4 iresurne the pk sarnpling B

iwrite pointer
move Y:PkWidthB, rS iload the width needel'l to be

;continued

move r7, a
move '>1, b

cmp b, a (r7)- ;test if the circular buffer is empty,
jgt _ChannelA ;if not ernpty, continue

;if yes, check if host stopped the process



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA

P:00D5 Q5F421
FFFFFF

P: 0007 OOOOOC
ChannelA

P:00D8 OA02CO
000118

P:OODA 44E1l3
;fetch a

P:00D6 2000AO
P: OODC OA02AO

OOOOFS

rts

move #-1, ml

99

#FIFOEMPTY, X:<SuffStatus ;do cleanups, and return
r1, X:FIFORead ;save circular buffer read

;pointer

(r7)+, r7 ;if not stopped by host, go back and
; continue

#HOSTSTOP, X:<ProcStatus, _Loop

;reset to linear addressing

bset
move

jclr

lua

jclr #PK_SAMPLING_CHANNEL_A, Y:PkSamplingCr, ChannelB
;if not channel A, go check channel B

clr a X: (rl), xO
data from the circular buffer, don't update theread pointer

mpy xl, xO, a ;shift the data 8 bits right
jset #PK_SAMPLING_FIND_A, X:PkSamplingSt, _ContPkA

OAC080
OOOOCA
OA0121
G1lAOO

045Fl7

P:OOD3
P:OOD4

P:OOD1

P:OODO•

P:OODE 448475 cmp

;to find a new peak, save the pre-value, start-value
land the 'start time
y1, a X:pkSamplepreVaA, xO ;compare the data

;with NoiseHi

•
P:OODF

P:00E1

P:OOE2
P:00E3
P:00E4

P:OOE5
P:OOEG

P:OOE7

P:OOEB
P:OOE9

OAFOAF
OOOOEB
445AOO

545AOO
559600
550500

559COO
550GOO

OA0220

OA0221
OAFOBO
OOOllB

jle

move

move
move
move

move
move

bset

bset
jmp

xO, X: (r2)+ ;save the value at the point before
;peak start

al,X: (r2)+ ;save the value at peak start
X:CountLolG, bl
bl; X:PkStartLol6A ;save the peak start point low

; 16 bits
X:CountHil6; bl
bl, X:PkStartHi16A ;save the peak start point hight

;16 bit
iPK_SAMPLING_FIND_A, X:PkSamplinqSt
;a positive pk is found
iPK_SAMPLING_Sl GN_A, x:PkSamplingSt
_ChannelB

•

_neqA
P:OOEB
P:OOEC

P:OOEE

P:OOEF
P:OOFO
P:OOFl

P:00F2
P:OOF3

P:00F4

200055
OAFOA1
OOOOFB
44SAOO

545AOO
559600
550500

559COO
550GOO

OA022a

cmp
jqe

move

move
move
!nove

!nove
move

bset

ya, a ;compare the data with NoiseLo
finA

xO, X: (r2)+ ;save the value at the point before
;peak start

al;x:(r2)+ ;save the value at peak start
X:CountLol6, b1
bl, X:PkStartLo16A ;save the peak start point low

;16 bit
X:CountHi16;b1
bl;X:PkStartHi16A ;save the peak start point hight

;16 bit
'PK_SAMPLING_FI ND_A, X:PkSamplinqSt
;a neqative pk is found



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA

P:Ol02 560455

P:OI03 OAFOA9
000110

P: 0105 OAF080
000118

100

a pOSe pk i5 found
iuppdate the pre-value

#PK_5AMPLING_5IGN_A, X:Pk5arnpling5t
_ChannelB

iif neither a neg. nor
a, X:PkSamplePreVaA
_ChannelB

icontinue te find pk end and pk width
al, X:X: (r2) isave pk value
#PK_5AMPLING_5IGN_A, X:Pk5arnpling5t, _neg2A

yl, a (r3)+ icornpare with NoiseHi for pOSe pk
_ChannelB
iif greater than NoiseHi, it i5 nct fini shed
#PK_5AMPLING_FINI5H_A, X:Pk5arnpling5t
;.et pk A fini.hed flag
ya, a a, X:PkSamplePreVaA
iupdate pre-value for next peak
_foloAiif the present point i5 smaller than NoiseLo

iit i5 followed immediately a negative peak
_ChannelB

bclr
jmp

jlt

cmp
jge

cmp

move
jmp

bset

move
jclr

jmp

OA0201
OAF080
000118

P:00F5
P:00F6

P:OOFE
P:OOFF

_finA
P:00F8
P:00F9

560400
OAF080
000118

_ContPkA
P:OOFB 545AOO
P:OOFC OA0281

000107
205B75
OAFOAI
000118

P:OlOl OA0222

•

•
_neg2A
P:OI07
P:OI08

P:OIOA

P:OlOB

P:OIOC

P:OIOE

205B55
OAFOAF
000118
OA0222

560475

OAFOA7
000110
OAF080
000118

cmp
jle

bset

cmp

jgt

jmp

yO, a (r3)+ icompare with NoiseLo for neg. pk
_channelB
iif smaller than NoiseLo, it i5 nct finished
#PK_SAMPLING_FINISH_A, X:Pk5amplingSt
;.et pk A fini.hed flag
yI, a a, X: PkSarnplePreVaA
;update pre-value for next peak
_foloAiif the present point i5 bigger than NoiseHi

iit is followed immediately a positive peak
_ChannelB

P: 011A 4CE113
;fetch a

move r2, r6; get a copy of .ampled peak write pointer
lua (r7) +, r7
lua (rG)-n6, r6 ;rewind thi. pointer to the .econd

the la.t, the point will be the .tarting point of next peak
lua (r5)-, r5

;rewind PkWidthB point, since next time the present
ipoint has ta be reproce~sed

move X: (r6), a
;fetch the .econd to la.t data of pre.ent pk

move a, X:PkSarnplePreVaA
jmp _exit

;exit directly

jclr iPK_SAMPLING_CHANNEL_B, Y:PkSamplingCr,
_AdrUpdate
iif not channel B, go to update address pointers

clr a Y: (rI), xO
data from the circular buffer, don't update the read pointer

56E600

225600
045Fl7
044616
ipoint to
045515

P:0115
P: 0116

P: 0113

P:0114

560400
OAF080
00017A

_ChannelB
P:0118 OA02C8

000158

_foloA
P:0110
P:Ol11
P:0112

•



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA

•

•

P:OllB
P: OllC

_NewPkB

P: OllE

P:OllF

P:0121

P:0122
P:0123
P:0124

P:0125
P: 0126

P:0127

P:0128
P:0129

_negB
P:012B
P:012c

P:012E

p:012F
P:0130
P:0131

p:0132
P:0133

p:013~

P:0135
P:0136

2000AO
OA02A8
00013B

4C8475

OAFOAF
00012B
4c5cOO

545COO
559BOO
500500

559COO
500600

OA0228

OA0229
OAF080
000158

200055
OAFOA1
000138
445COO

545COO
559BOO
500500

559COO
500600

OA0228

OA0209
OAF080
000158

mpy
jset

cmp

j1e

move

rnove
move
move

move
move

bset

bset
jmp

cmp
jge

move

move
move
move

move
move

bset

bclr
jmp

101
xl, xO, a ;~hift the data 8 bits right

#PK_SAMPLING_FINO_B, X:PkSamplingSt, _ContPkB

ito find a new peak, save the pre-value, start-value
iand the start-time
yI, a Y: PkSamplePreVaB, xO
icompare the data with NoiseHi
_negB

xO, Y: (r4) +
isave the value at the point before pk start
al, X:{r4)+ ;save the value at peak start
X:CountLo16, b1
b1, Y:PkStartLo16B
isave the pk start point low 16 bit
X:CountHi16, b1
b1, Y:PkStartHi16B
;save the pk start point hight 16 bit
#PK_SAMPLING_FINO_B, X:PkSamplingSt
;a positive pk is found
#PK_SAMPLING_SIGN_B, X:PksamplingSt

_AdrUpdate

yO, a icompare the data with NoiseLo
_finB

xO, X: (r4)+
isave the value at the point befere pk start
al, X:(r4}+ ;save the value at peak start
X:CountLo16, b1
bl, Y:PkStartLo16B
isave the pk start point low 16 bits
X:Count.Hi16, b1
bl, Y:PkStartHi16B

;save the pk start point hight 16 bits
#PK_SAMPLING_FINO_B, X:pkSamplingSt
ia negative pk i5 found
#PK_SAMPLING_SIGN_B, X:PkSamplingSt
_AdrUpdate

_finB
P:0138

p:013E
P:013F•

5E0400
;if

P:0139 OAF080
000158

_ContPkB
P:013B 5C5COO
P:013C OA0289

000147
205D75
OAFOA1
000158

move
neither

jmp

move
jclr

cmp
jge

a, Y:PkSamplePreVaB
a neg. nor a pos. pk 1s found, uppdate the pre-value

_AdrUpdate

;continue to find pk end and pk width
al, Y: (r4)+ ;save pk value
#PK_SAMPLING_SIGN_B, X:PkSamplingSt, _neg2B

y1, a (r5)+ ;compare with NoiseHi for po•. pk
_AdrUpdate

;if greater than NoiseHi, it 1s not finished



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA

• P:OHI OA022A

P:0142 5E0455

P: 0143 OAFOA9
000150

P: 0145 OAF080
000158

102
b.et #PK_SAMPLING_FINISH_B, X:PksamplingSt

;set pk A finished flag
cmp yO, a a, Y: PkSarnplePreVaB

iupdate pre-value for next peak
j 1 t _folcB : if the present point i.9 smaller than NoiseLo

:it i5 followed immediately a negative peak
jmp _AdrUpdate

_neg2B
P:0147
P:OH8

P:OHA

P:OHB

P:OHC

P:OHE

205D55
OAFOAF
000158
OA022A

5E0475

OAFOA7
000150
OAF080
000158

cmp
jle

bset

cmp

jgt

jmp

yO, a (rS)+ icornpare with NoiseLo for neg. pk
_AdrUpdate
:if smaller than NoiseLo, it i5 net fini shed
IPK_SAMPLING_FINISH_B, X:PkSamplingSt
;.et pk A fini.hed flag
yI, a a, Y:PkSarnplePreVaB
;update pre-value for next peak
_folcB:i! the present point i5 bigger than NoiseHi

:it is fol1owed immediately a positive peak
_AdrUpdate

Ho.tStop
;stop 55I interrupt
ITIMEUP, X:ProcStatu. ;.et the time up flag
*0, r7 ;maipulate r7 to make the circular buffer

;empty and to di.card the data after time up
ri, X:FIFORead ;.ave FIFO read pointer
*-1, ml
;resume linear addressing mode of r1

X:CountLoI6Max, xO
xO, b
;compare the low 16 bit data count with the max.
_NotTimeUp

X:CountHi16, a
X:CountHi16Max, xO
xO, a X:CountLo16, b

data count with the max high 16 bit data count
_NotTimeUp

bset
move

rt.

move
move

move
cmp

jne

move r4, rG; qet a copy of sampled peak wri te pointer
lua (r7)+, r7
lua (r6)-n6, rG :rewind this pointer t~ the second

the last, the point will be the starting peint of next peak
lua (r3)-, r3 ;rewind PkWidthi\ one point,
;since next time the present point has to be reprocessed
move Y: (r6), a

;fetch the .econd to la.t data of pre.ent pk
move a, Y:Pk5amplePreVaB
jmp _exit

;exit directly

move
move
cmp

16 bit
jne

611MO
05F421
FFFFFF
OOOOOC

229600
045F17
044616
ipoint te
045313

OAFOA2
000169
OBF080
00035E
OA0023
370000

5EE600

P:0153

P:0154

P: 0165
P:0166

P:016l

P:015D
P:015E

P:0155
P:0156

P:0163
P:0164

_foloB
P:0150
P:015l
P:0152

P:0168

P:015F

5E0400
OAF080
00017A

_AdrUpdate
P:0158 569COO
P: 0159 449EOO
P: 015A 579B45
:compare the high
P:015B OAFOA2

000169
449DOO
20004D

•

•



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA
_NotTirneUp
P:0169 44F400

000001
P: 016B 44F448

010000
P:016D 20594D

103

rl, X:FIFORead
;save circular buffer read pointer
*-1, ml
;resurne linear addressing mode
r2, X:PkSampleWriteA
r4, Y:PkSampleWriteB
;save sampled pk write ptrs
r3, X:PkWidthA
r5, Y:PkWidthB ;save pk widths
iPK_SAMPLING_FINISH_A, X:PkSamplingst,
_SetContB

tPK_SAMPLING_CONT_A, Y:Pksamplingcr

iPK_SAMPLING_CONT_B, Y:PkSamplingCr
rts

:go back looping

b1, X:CountLo16 ;save low 16 data count
fPK_SAMPLING_FINISH_A, X:PkSamplingSt, _exit

;check exit conditions
tPK_SAMPLING_FINISH_B, X:PkSarnplingSt, _exit

xO, a 110, b ;high count plus 1, clr low count
al, X:CountHi16 ;save high 16 data count

Il>1, xO

#>1, xO

xO, b #>$10000, xO
:increment low 16 data count
xO, b (r1)+
;see if it is overflow, and update buffer readptr
_NoCarry

move
mOVe

bset
_Ret

move
move
jset

bset

move

jset

move

jmp

jset

move
jset

add
move

move

cmp

jne

add

move

61lAOO

05F421
FFFFFF
620300
6C0300

OAFOA2
000174
44F400
000001
2F0040
541COO

630700
6D0700
OA02A2
000184

P:0183 OA0261
_SetContB
P:0184 OA02AA

000187
P:0186 OA0269
P: 0187 OOOOOC

P:017F
P:0180
P:0181

P: 017B

P:017D
P:017E

P:0179
_exit
P:017A

P:0172
P:0173

P:0170

_NoCarry
P:0174 551BOO
P: 0175 OA02A2

00017A
P:Ol77 OA02AA

00017A
OCOOCA

P:016E

•

•

;-----------------------------------------------------------------------

jclr IIPK_SAMPLING_FINISH_A, X:PkSamplingSt,
_ChannelB

move X:PkBufferWriteA, r2
;r2 i5 pk buffer writer ptr

maye i>PK_SAMPLE_START, r3
;r3 is pk sampled buffer read pointer

move r3, rl
keeps painting the start addre5s of the sampled peak buffer

move X: PkBuffCntA, rG ; rG i5 pk buffer counter
move *>8, n6

;n6 is the number of parameters per pk

•

PkDescription
P: 0188 OAQ282

0001ce
P: 019A 629800

P: 018B 63F400
007000

P:018D 227100
;d

P:018E 668900
P:018F 76F400

000008
;calucalate start
P:0191 44DBOO

510pe
move X: (r3l+,xO ;first point to xO



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 104

of r4
peak

in yl and update A

than the present max.

iupdate r4 counter

to the end of the .ampled peak buffer

lx1 keeps the max. value
ia keeps the present value

;xl keep. the maX. value
ia keeps the present value

;update r4 counter

(r4)+, r4

xl
the new data i. larqer
rS iupdate the max.

(rl)+nl, r3
;make r3 point
(r5)+, r5

yl, xl ;if the new data i ••maller than the pre.ent
r4, rS imax., update the max. and data count at max

X: (r3) +, xl
X: (r3) +, a

xl, a X: (r3) +, a a, yI icompare the current to
ithe max., keep the current in y1 and update a
_NUpdateA

yl,
:if
r4,

X: (r3)+, xl
X: (r3)+, a

r4, b
yO, b r4, nl ;check end point, nl keep. track

i. u.ed later to off.et r3 to the end of .ample
_NeqMaxLoopA ;note that pk width i. in yO

(r4)+, r4
r4, b
'JO, b r~, nI icheck peak end, :n1 keeps track of r4

later to off.et r3 to the end of .ample peak buffer
_Po.MaxLoopA ;note that pk width i. in yO now
_End5lopeA

lua

lua

jqe

move
move

cmp

move
move

move
rnove

move

rnove

lua
move
eor

used
jne
jmp

lua
move
eor

which
jne

cmp xl, a X: (r3)+, a a, yI
the current te the max., keep the current

jle _PUpdateA

045015

56E300 move X:(r3},a
;~econd point te a, note that r3 is not incremented

468644 .ub xO, a X:Pk5tartHi16A, yO
465AOO move yO, X: (r2)+

;calculate the start slope and save the start point high 16 bits
468500 move X:Pk5tartLo16A, yO
465AOO move yO, X: (r2)+ isave start point low 16 bit
565AOO move a, X: (r2)+

isave start slope find peak max. time at max.
move 1>1, r4

;r4 here is a counter
rnove HO, rS :rS keeps the count at max.
move X: PkWidthA, yO
jclr 'PK_5.1IMPLING_5IGN_A, X: Pk5amplinq5t, _NeqMaxA

;comp~re

OAFOAF
0001A5
20E500

P:0167

P:0192

P: alAE OAFOAl
0001B2

P:0160 20E500
P:01Bl 229500
_NUpdateA
P: 01B2 045C14
P:01B3 228FOO
P:01B4 22995B

:counter,
P:0165 OE21AD
_End5lopeA
P:0166 044913

P:01Al

P:019A
P:0196
P:019C

P: 0198 64F400
000001
350000
468700
OA0281
OOOlAB

P:019E 450600
P:019F 560600
_PosMaxLoopA
P: OlAO 199665

P:0195
P:Ol96
P:0197

P:0193
P:0194

P:01AJ

P: 01A4 229500
_PUpdateA
P: 01A5 045c14
P:01A6 228FOO
P:01A7 22995B
;counter, which is
P: 01A8 OE21AO
P:01A9 OAF080

000166
_NeqMaxA
P:01AB 450600
P: OlAC 560600
_NeqMaxLoopA
P:01AD 199B65

•

•

•



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA

_checkFullA
P:OIc2 565AOO
P: OIC3 044El6
P: 0 lC4 620800

105

;save pk buffer counter
r6, a
xa, a a, X:PkBuffCntA

ChannelB

Y:PkBufferwriteB, r2
;r2 is pk buffer writer pointer
i>PK_SAMPLE_START, r3
ir3 1s pk sampled buffer read pointer
Y:PkBuffCntB, r6 ;r6 is pk buffer counter
*>B, n6

#PEAKOBFAFULL, X:BuffStatus

X: (r3)-, a ;last point to A
X: (r3), xO ;second last point to xO
xO, a r5, X: (r2)+ ;save data count at max.
xl, X: (r2)+ ;save max. value
yO, X: (r2)+ ;save data count at pk end
a a, X: (r2)+ ;save slope at pk end
;clr a, if it i5 a neg. pk, make pha count 0
#PK_SAMPLlNG_Sl GN_A, X:PkSamplingSt,
_CheckFullA ;if negative pk, skip PHA

PRA ;calculate MCA channel nurnber, be sure the
;Max. is in xl. when it returns the channel number
lin A. Other register: r3 and B.
;check pk buffer full
a, X: (r2)+ ;save PRA channel number
(r6)+n6, r6 ;update pk buffer counter
r2, X:PkBufferWriteA
;save pk buf. write pointer
#>PEAKOBFSIZE, xO

move
move

jclr

move
cmp
jlt

move
lua
move

move

move

move

jsr

jclr

move
move
sub
move
move
clr

63F400
007000
6ES900
"16F400
OOOOOS

OA02Bl
0001C2
OBFOBO
000211

560300
44E300
655A44
455AOO
465AOO
565A13

P:OIDI
P:OlD2

P:OICF

P:01c7
P:OICS
P:OIC9

P:Olc5 44F400
OOOOBO
22CEOO
560945
OAFOA9
OOOICC

P:OICB OA0124
_ChannelB
P:QIcc OA028A

000210
P:OICE GASSOO

P:OIcO

P:OIBE

P:OIBB
P:OIB9
P:01BA
P:OIBB
P:OIBC
P:OIBO

•

•

;yl keeps the max. value
;a keeps the present value

Y: (r3)+, yl
Y: (r3)+, a

mOve
move

mOve
move
jclr

641!'400
000002
229500
4C8700
OA0289
OOOlEE
4FDBOO
SEDBOO

in6 is the number of pararneters per pk calucalate start slope
move Y: (r3)+, yO ;first point to yO
move Y: (r3), a

isecond point to A, note that r3 i5 not incremented
4C86S4 sub yO, a Y:PkStartHi16B, xO
4CSAOO move xO, Y: (r2)+

icalculate the start slope and save the, start point high 16 bits
4CBSOO move Y:PkStartLo16B, xO
4CSAOO move xa, Y: (r2)+ ;save start point low 16 bit
5ESAOO move a, Y: (r2)+

isave start slope find peak max. time at max.
move 1>2, r4

;r4 here is a counter
r4, rS ir5 keeps the COllOt at max.
Y:PkWidthB, xO
IPK_SAHPLING_SIGN_B,X: PkSamplingSt, _NegMaxB

4EDBOO
5EE300

P:OIEl
P:OIE2

P:OIDD
P:OlDE
P:01DF

P:OIDB

P:OlDS
P:OID9
P:OIDA

P:OID4
P:OlD5

P:OID6
P:OID7

•



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA
_Po9MaxLoopB
P:01E3 16DB75

P: 01E4 OAFOAF
0001E8

P:01E6 20A700

P:01Fl OAFOAl
0001F5

P: 01F3 20A700

106

;yl keeps the max. value
;a keeps the present value

'il (r3) +, yl
'i: (r3)+, a

yI, a a, xl Y: (r3)+, a ;compare the current te
;the max., keep the current in xl and update a
_PUpdateB

xl, yl
;if the new data i9 larger than the present max.
r4, rS iupdate the max.

yI, a a, xl Y: (r3)+, a ;compare the current te
ithe max., keep the current in xl and update a
_NUpdateB

xl, yl
iif the new data 1s smaller than the present max.
r4, r5 iupdate the max. and data count at max

(rl)+nl, r3
;make r3 point to the end of the sampled peak buffer
(r5)+, rS
'i: (r3)-, a ;last point to li
'il (r3), xo ;second last point to xO
xC, a r5, Y: (r2)+ isave data count at max.
yl, 'il (r2)+ ;save max. value
xO, 'i: (r2)+ ;save data count at pk end
a, 'il (r2)+ ;save slope at pk end
a yl, xl isave the pk max. in xl
fPK_SAMPLING_SIGN_B, X:PkSamplingst, _CheckFullB

;if negative pk, skip PRA
PRA icalculate MCA channel number, be sure the
iMax., is in xl. when it returns the channel number
lin A. Other registers: r3 and B.
;check pk buffer full
a, 'i: (r2)+ ;save PRA channel number
(r6)+n6, r6 ;update pk buffer counter
r2, 'i:PkBufferWriteB

(r4)+, r4 iupdate r4 counter
r4, b
xO, b r4, nI; check peak end, nI keeps trClck of r4

i5 used later te offset r3 te the end of "ample peak
_Po9MaxLoopB ;note that pk width i5 in xO.
_EndSlopeB

(r4)+, r4 ;update r4 counter
r4, b
xC, b r4, nl i check end point, nl keeps track of r4

i. used later to offset r3 to the end of .ample peak
_NegMaxLoopB ;note that pk w!dth is in xO

lua

move
lua
move

rnove

lua
move
move
sub
move
move
move
clr
jclr

move

cmp

move
move

jge

move

move

cmp

jle

lua
move
eor

which
jne
jmp

lua
move
eor

which
jne

045D15
5ED300
4CE300
6D5A44
4F5AOO
4CSAOO
5E5AOO
20E513
OA0289
000206
OBF080
000211

P:01EB
P:01EC

icounter,
OE21E3
OAF080
0001F9

_NegMaxB
P:01EE 4FDBOO
P:01EF 5EDBOO
_NegMaxLoopB
P:01FO 16DB75

P: 01E7 229500
_PUpdateB
P:01E8 045C14
P: 01E9 228FOO
P:01EA 22994B

_CheckFu11B
P:0206 5ESAOO
P:0207 044E16
P:0208 GA0800

P:01FA
P:01FB
P:01FC
P:01FD
P:01FE
P:01FF
P:0200
P:0201
P:0202

P: OlN 229500
_NUpdateB
P: 01F5 045C14
P:01F6 228FOO
P: 01F7 22994B

;counter,
P:01F8 OE21FO
_EndSlopeB
P:01F9 044913

P:0204

•

•

•



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 107

• ;:save pk buf. write pointer
P:0209 44F400 move i>PEAKDBFSIZE, xO

000080
P:020B 22CEOO move r6, a
P:020c 5E0945 cmp xO, a a, Y:PkBuffCntB ;save pk buffer counter
P:020D OAFOA9 jlt _Ret

000210
P:020F OA0125 bset iPEAKDBFBFULL, X:BuffStatus
P:0210 OOOOOC _Ret rt.
i-----------------------------------------------------------------------

the table pointer.

;half the channel number off.et

for normalizinq the channel to the left

b (r3)-n3
Y: (r3), a

xl, a
comparasion
_SavaIt

.ub b, a
rt.

move r3, a ; save the PRA channel number in A
move i>PHATABLESTART, b

lua (r3)-, r3
;if a>xl, the channel decrea.e by 1 to make it left

cmp
;la.t
jle

nop

l.r
move

cmp xl, a bl, n3 ;compare the peak value in xl
data from PHA .calinq table, update PHA table pointer off.et

jqe _HalfLeft ;if the data in a i. biqqer than peak
;value, the table point i. to off.et to the left.

br b (r3)+n3
move Y: (r3), a
;Otherwi.e off.et it to the riqht and half the off.et in b
jmp _SortAqain

nop
l.r b (r3) +n3
move Y: (r3), a

a data from PHA .calinq table and update
do X:Q.ortCyc, _PHAEnd

iCOPY
000000
204B2B
5EE300
;fetch
060COO
000223
21BB65
;with the
OAFOAI
000221
204B2B
5EE300

63F42B
000100
21BBOO

;calculate MCA channel number, be sure the Max. is in xl. when
iitreturns the channel number in A. Other register: r3 and B. PHA
;.calinq table i. in Y_mem .tartinq from iPHATABLESTART
578DOO move X:ChannelNum, b ;copy total PHA channel number

ite b. Remember the PRA channel number must be 2 ta the
;power of n for proper sorting.
l.r b i>PHATABLESTART, r3 ;half the channel

;number, r3 now i5 pointer te PRA scaling table
move bl, n3
the half of the PHA channel number to n3 to off.et r3

P:021F OAF080
000223

_HalfLeft
P:0221 20432B
P: 0222 5EE300
_SortAqain
P: 0223 000000
_PHAEnd
P:0224 200065

P:0225 OAFOAF
000228

P:0227 045313

_saveIt
P:0228 226EOO
P:0229 57F400

000100
P:022B 200014• P:022C OOOOOC

PHA

P: 0211

P:0212

P:0214

P: 0215
P:0216
P:0217

P:0218

• P:02lA

P:021B

P:021D
P:021E



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 108
;-----------------------------------------------------------------------

;send number of words to host

;send number of words to host

movep n4, X:«M_HTX
do n4, _TXEnd

movep n4, X:<<:M_HTX
do n4, _TXEnd

jc1r

movep Y: (r4) +, X: «M_HTX ;data tranfer from raw DM to HI

movep X: (r4)+, X:«M_HTX ;data tranfer from raw DM to HI

rts

movep Il>DSPAHITX, X:«M_HTX
;send tranfer code to host

movep I>DSPBHITX, X:«M_HTX
;send tranfer code to host

;transmit channel A data-buifer to HI
movep X:TTL_Set, Y: $FFFO ; request host ints for data
;tranfer note that 'bset and bc1r shou1d not be used here

ithey change samp1inq rate unexpected1y
j olr !lM_HF1, X: «M_HSR, _TX1

iwait for host acknow1edqe
movep X:TTL_Clear, Y:$FFFO

;c1r host ints request

rts

;transmit channel B data buffer to HI
movep X:TTL_Set, Y:$FFFO ;request host ints for data
itranfer note that 'bset and bc1r should not be used here

;they change samplinq rate unexpectedly
jc1r IM_HF1, X: «M_HSR, _TXl

;wait for host acknow1edqe
movep X:TTL_C1ear, Y:$FFFO

;c1r host ints request

TXADBFtoHI
P:022D 09FOBO

000010
_TX1
P:022F OAA984

00022F
P:0231 09FOBO

000011
_TX2
P:0233 OAA981

000233
P:0235 08F4AB

000000
_TX3
P:0237 OAA981

000237
P:0239 oeOC2B
P:023A OGDCOO

00023E
_TX4
P:023C 0AA.9B1

00023c
P:023E OBOCAB
_TXEnd
P:023F OOOOOC

TXBDBFtoHI
P:0240 09FOBO

000010
_TX1
P:0242 OAA984

000242
P:0244 09FOBO

000011
_TX2
P:0246 0AA.9B1

000246
P:0248 08F4AB

000001
_TX3
P:024A OAA981

00024A
P:024c 08DC2B
P:024D OGDCOO

000251
_TX4

P:024F OAA981
00024F

P:0251 OSDCEB
_TXEnd
P:0252 OOOODC
;••-----•••••• MAJOR COMMANDS am============

;-----------------------------------------------------------------------•

•



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 109

Meal

;te11 host: not ready to start

movep X: «M_HRX, X:CountLo16Max
;max data count low 16 bit

jclr

bset

OAA98 0
000255
OS70AB
OOOOlD

P:0257

;--------------------------- 0: Record ---------------------------------
Record ; recording process from 55I to HI
comment @ Not yet fini shed @

P:0253 oooooe rts

;--------------------- 1: On-1ine MCA ----------------------------------
On1ineMCA
P:0254 OAA823
_Meal
P:0255

•

movep X:«M_HRX, X:CountHi16Max
;max data count hi 16 bit

jsr Instal155lInts
;install 55I I5R

jsr Instal1Host5toplnts
;install host stop 15R, very important that the two ISR
;insta11 uti1s before InitFIFo otherwise it would not work
;correet1y, sinee they use r7 as address pointer.
move *>$8001, xO
;the circular buffer starts at $8000, here initiate
;its read pointer to $SOOO+l to get rid of the first data.
move xO, X: FIFORead

iinitiate the buffer read pointer
jsr InitFIFO

iset up the circu1ar buffer
jsr InitProcStatus

iinitiate ProcStatus reg.
jsr InitBuffStatus

iinitiate BuffStatus reg.
jsr McaConst

iget MCA parameters
j sr LoadPHATab1e

iget PliA. table
clr a *>PEAKDBFSTART, xO

•

•

_Mca2
P:0259

P:025B

P:025D

P:025F

P:026l

P:0263

P:0264

P:0266

JJ:026S

JJ:026A

P:026C

P:026E

P:0270
P:0271

P:0272
P:0273
P:0274
P:0275
P:0276

P:0278
_ChanB
P:0279

OAA9S0
000259
0870AB
000018
OBFOSO
00033C
OBFOSO
000354

44F400

008001
441AOO

OBF080
000361
OBF080
00036F
OBFOSO
000378
OBFOSO
0003A5
OBFOSO
000398
44F413
006000
440S00
4CoeoO

540900
5C0900
580200
560200
OAOOSl
000279
OA0260

OAOOS2
00027c

move
move

move
move
move
move
jclr

bset

jclr

xO, X:PkBufferWriteA
xe, Y:PkBufferWriteB
;initiate pk buffer write pointers
al, X:PkBuffCntA
al, Y:PkBuffCntB iinitiate pk buffer counter
a, Y:PkSamp1ingCr
a, X:Pk5amplingSt
iCHANNELA, X:ProcStatus, _chanB

tCHANNELB, X:ProcStatu5, _chanBskip



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA

P: 027F
P:0280
P:0281

P:02A3
P:02A4
P:02A5

110

#>PEAKDBF5TART, r4a

move .>PEAKDBFSTART, r4
;empty the pk data buffers

jclr IPK_5J\MPLING_CHANNBL_A, Y:PkSamplingCr,
_McaFlushB

move X:PkBuffCntA, a ;check if the buffer count i5 0
tst a
jeq McaFlushB

j sr Pk5ampling
j sr PkDescription
jmp _McaLoop

move yl, Y:PkBufferWriteB
bclr 'PEAKDBFBFULL, X:Buff5tatus

move Y: PkBuffCntB, n4
j sr TXBDBFtoHI
move al, Y:PkBuffCntB
move #>PEAKDBFSTART, yl

move y1, X:PkBufferWriteA
bclr #PE1\KDBFAFULL, X: BuffStatus

jsr Start55IInts
;start up S5I interrupt

clr

jclr #PEAKDBFBFULL, X: BuffStatus, _PkBuffFin

bclr #M_HF2, X:«M_HCR ;tell host: ready to start

rts

jset iFIFOEMPTY, X:BuffStatus, _McaExit
;if the circular buffer i5 empty, exit

jclr #PEAKDBFAFULL, X:BuffStatus, _PkBuffB
;if pk buffer i5 full

clr a #>PEAKDBFSTART, r4
;tranfer it to host and reset

move X:PkBuffCntA, n4 ;the buffer pointer and count
jsr TXADBFtoHI
move al, X:PkBuffCntA
move #>PEAKDBF5TART, yl

jcb: #M_HRDF, X: «l-LH5R, _WaitLoop

movep X: «M_HRX, b
tst b
jeq _McaStart

P:028C
P:0280
P:0288
P:028F

P:029?
P:0298
P:0299
P:029A

P: 027B OA0268
_ChanBSkip
P:027c OM803
_WaitLoop
P: 0270 OM98 0

000270
084F2B
20000B
OAFOM
000284

P:0283 DOOOOC
_Mca5tart
P:0284 OBFOBO

00034B
_McaLoop
P:0266 OA01Al

0002Al
P:026B OA01B4

000293
P: 026A 64F413

006000
748900
000220
540900
47F400
006000

P:0291 470800
P:0292 OA0104
_PkBUffB
P:0293 OA016S

000298
P:029S 64F413

006000
7c8900
000240
SC0900
47F400
006000

P:029C 4F0800
P:0290 OA010S
_PkBuffFin
P:0298 ODOOA9
P:029F OD0188
P:02AO OC0286
_McaExit
P: 02A1 OA02cO

0002AB
568900
200003
OAFOAA
0002AB

P:02A? 64F400
006000

•

•

•



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LîMCA 111
P:02A9 21DCOO rnove a, n4
P:02AA 000220 jsr TXADBFtoH1
McaFlushB

P: 02AB OA02cB jcIr #PK_5AMPL1NG_CHANNEL_B, Y: Pk5amplingCr, HcaRet
0002B5

P:02AD 5EB900 rnove Y:PkBuffCntB, a ;check if the buffer count is 0
P:02AE 200003 tst a
P:02AF OAFOAA jeq _McaRet

0002B5
P:02Bl 64F400 rnove #>PEAKDBF5TART, r4

006000
P:02B3 21DCOO rnove a, n4
P:02B4 OD0240 jsr TXBDBFtoH1
_McaRet
P: 02B5 OAAB23 bset iM_HF2,X:«M_HCR ;signal host for cornpletion

McaWt
P:02B6 OAA9B3 jclr #M_HFO,X:«M_H5R, _McaWt

0002BG
P:02BS OBFOSO jsr Report5tatus

0002E1
P:02BA OAAS03 bclr IfM_HF2, X: <<M_HCR
P:02BB aaaooc rts
;-----------------------------------------------------------------------

;write mode latch

the driver, sets up the 05P, then

#$300, sr

move X: <MODELATCH, al
movep al, y~«$FFFO

movee

enable the interface
movep t$lfB, X:«M_PCC

tenable 551

20001B
08c92F

;clear SR, none but Ivl 3 ints
movep iO, X:«M_BCR

;set the BeR ta zero
;in1t 551 interface

;1) send a zero to TX so that 551 is initialized.
clr b
mavep bO, X:«M_TX ;write 0 to 551 output reg
;2)init the 551 interface as needed.
;CRA 15 set for 1G-bit word length, 2-frarne network mode

;CRB is set for xmit/rev enabled w/ rev interrupts ONLY, network mode,
;synchronous mode, 5CO as output.

P: 02c4 08F4AC movep 1$4100, X:«M_CRA
004100 ; normal

P: 02CG OSF4AD movep '$5A04, X:«M_CRB
00BA04

;5et up PCC to
P:02C8 08F4Al

0001FS
;set sample rate
P:02CA 548FOO
P:02CB 09CC30

P:02C2
P:02C3

;Entry point for the driver. 1nitializes
;waits in a "cornrnand-interpreter" Ioop.
1N1T_PGM
p:02BE OSF439

000300
P:02CO OSF4BE

000000

OfflineMCA
P:02BC 000000 nop
P:02BO OOOOOC rts
:====================INIT==================

•

•



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA

NULL
P:02EO OOOOOC

•

•

CMDLUP
P:02cC

P:02CE
P:02CF
CMDwait
P:02DO

P:0202
P: 0203
P: 0204

P: 0205

P:02D7
P:02DB

P:02D9
P:02DA
P:020B
P:02DC

P:02DD

P:020E
P:02DF

OSF439
000300
OAA803
OAAB04

OAA98 0
000200
084C2B
21B400
4COOOO

45F400
OOOOOF
200066
540EOO

219100
391200
000000
67E900

OAAB03

OBE7BO
oe02Do

movec

bclr
bclr

jclr

movep
move
move

move

and
move

move
move
nop
move

bclr

jsr
jmp

SIMPLE

rts

112

#$300, sr
iclear SR, none but lvl 3 ints

#M_HF2, X:«M_HCR
#M_HF3, X:«M HeR ;clear polling flags for host PC

#M_HROF, X:M_HSR, eMDwait
;wait for data at host port

X: «M_HRX, Al iget HRX data
Al, XC isave a copy in XO
xO, Y:CommandWord
;save a copy of command in Y:CommandWord
#>$F, xl ;rnask the fcn number

;rnask for 4 lsbits
xl, a
al, X:<FUNCTION
isave the fcn #. Note the copy in XO
al, r1 iset up pointer to fcn list entry
#fList, nl iset up base of fcn list array

X: (r1+nl), r:7
iload the address of the subroutine
#M_HF2, X:M HeR iclr HF2, used as completion
iflag to Host (PC) execute the routine, note fcn
icode is in XO for commands that need it.
(r7) icall the specific command
CMDwait istart again!

COMMANOS a===========
ido nothing subr

;----------------------------------------------------------------------------
ReportStatus
_RSE
P: 02E1 OAA9A3

0002E1

movep X:ProcStatus, X:«M_HTX
iprocess status register

movep X:eountHi16, X:«M_HTX
idata count high 16 bit

jclr

movep X:Buffstatus, X:«M_HTX
ibuffer status register

ireport status to host

jset #M_HFO, X:«M HSR, RSE
iwait host to signal start

OAA981
0002EF

OAA981
0002E7
08rOAS
000001

OAA981
0002E3
OaFOAS
000000

OAA981
0002EB
08FOAS
00001e

p:02ES

P:02EO

P:02E9

_RSB
p:02E7

_RSD
P:02EF

_RSC
p:02EB

_RSA
p:02E3

•



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA

• P:02Fl 08FOAB
OOOOlB

P: 02F3 OOOOOC

movep X:CountLo16, X:«M_HTX

rts

113

;----------------------------------------------------------------------------

P: 02F6
P:02F7
P:02F8

P:02FA
P:02FB
P:02FC
P:02FD
P:02FF.
P:02FF

SampleRate ;get
P:02F4 54F400

FOOOOO
200046
540FOO
09FOBO
OOOOOF
541100
OAOF33
568FOO
561000
OAOF13
OOOOOC

sample
move

and
move
movep

move
bset
move
move
bclr
rts

rate from command word and set the sample rate
#$FOOOOO, al

;mask for sample rate data
xO, a ; keep only bits 23 .. 20 of command data
al, X:MODELATCH ;save it
X:MODELATCH, y:$FFFO

;write mode latch
al, X:TTL Clear
tM_HIRO, X:MODELATCH
X: MODELATCH, a
a, X:TTL_Set
#M_HIRO, X:MODELATCH

;----------------------------------------------------------------------------
UpLoadMem

ULMH

P:0300 OAA9A3
000300

;upload the contents of memory from DSP to host

jset fM_HFO, X:«M HSR, _ULMH

;wait host to signal start

;size of rnern ta be uploaded

;start addr

move 1>1, yl
;case of X mernory

;case of Y memory

jset tM_HFO, X: «M_HSR, _ULMO
;wait host ta signal start

rnove xl, a
tst a
jeq _X_mem

movep X: «M_HRX, yO
move yO, r6

rnovep X:«M_HRX. yO

movep X: «M_HRX, xl
;mem. type; O:X_mem,l:Y_mem, 2:P mern

OAA9A3
00030C
20AEOO
200003
OMOAA
00031E
47F400
000001
200074
OMOAA
000324

OAA98 0
000305
084628

OAA98 0
000305
08462B
20D600

OAA98 0
000302
08452B

P:0314
P:0315

P:0312

P:030E
P:030F
P:0310

P:030B
ULMO

P:030C

P:0307
P:0308
_ULMC
P:0309

P:0304

_ULMB
P:0305

ULMA

P:0302

•

• P:0319
_ULME

06C600
00031c
07DE87

;case of P rnernory
movern P: (r6) +, yl



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 114

• P:031A OAA98I jcIr OM_HTDE, X: «M_HSR, _ULME
0003IA

P:031C 08c72B movep yI, X: «M_HTX
_P_memEnd
P:031D OOOOOC rts
_X_mem
P:031E 06c600 do yO, _X_mernEnd

000322
_ULMF

P:0320 OAA98 l jcIr OM_HTDE, X: «M_HSR, _ULMF
000320

P:0322 08DEAB movep X:(r6)+, X: «M_HTX
_X_memEnd
p:On3 OOOOOC rts
_Y_mem
P:0324 06c600 do yO, _Y_rnemEnd

000328
_ULMG
P:0326 OAA98 l jclr *M_HTDE, X: «M_HSR, _ULMG

000326
p:on8 08DEEB movep Y:(r6)+, X: <<M_HTX
_Y_rnemEnd
P:0329 OOOOOC rts
;----------------------------------------------------------------------------
ZeroMem
P:032A HN13 clr a *>$FBFF, xO

• OOFBFF
P:032C 66NOO move *>$100, r6

000100
P:032E 06c400 do xO, _exit

000331
P:0330 546600 move al, X: (r6)
P:0331 5C5EOO move al, Y: (r6) +
_exit
P:0332 66NOO move *>$1000, r6

001000
P:0334 57F400 maye *>$FFFF, b

OOFFFF
_Loop

P:0336 075E8C rnavem al, P: (r6) +
P:0337 000000 nop
P:0338 22C400 move r6, xO
P:0339 20004D cmp xO, b
P:033A OE2336 jne _Loop
P:033B oooooc rts
;•••••••••••••==== UTILITIES aza===========_==

sure that ints are shut off, clear SR, none but 1v1 3 ints
rnove *>SSIDataInPtr, xO

;insta11 SSI rev data hand1er at $OOOC and $OOOE and HC at
for upldm isr, pointer to instruction to poke is passed in xO

rnovec 1$300, sr

P:033E

InstallSSIInts
;$0026

P: 033c 05F439
000300

;be
HNOO
000090•



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA

• P:0340 209700 move xO, r7 ; set up pointer
P:0341 240000 move #0, xO :need a zero to make a NOP
P:0342 07E78e movem P: Ir7) , al
P:0343 070eOe movem al, p:$OOOe :install 15R pointer
P:0344 070004 movem xO, P:$OOOO :add NOP after it
P:0345 070EOe movem al, P:$OOOE

:install ISR pointer in 'exception' ints
P:0346 070F04 movem xO, P:$OOOF ;add NOP after it
P:0347 oooooe rts

115

:----------------------------------------------------------------------------
5tart55IInts
P:0348 200013

P:0349

P:034A

p:034e
P:0340

08eE2F

08F4BF
003800

00FeB8
oooooe

clr

movep

movep

andi
rts

; starts up ISr..s
a
isend a zero to TX 50 that 55I i5 initialized.
a, X:«M_TX iwrite 0 to 551 output reg
:init interrupt priority leveIs, enable interrupts
#$3800, x:«M_IPR
iset 55I IPL to 1 in the IPR, set hostIPL at 2 for
iupload data and disable DEGMON monitor.
#$Fe, MR ;clear bits 0 & 1 of MR to enable ints

:----------------------------------------------------------------------------
5toplnts ;stops 5SI ISRs but dosen't stop He ISRs
P:034E 05F439 movec #$300, sr

000300 iclear SR, none but lvl 3 ints
P:0350 08F4BF movep #$oeOO, x: «M_IPR

oooeoo ireset 551 IPL in IPR

• P:0352 00FEB8 andi I$FE, MR iclear bit o of MR to
P:0353 oooooe rts

for upload isr

to 0
enable HI int:s

i----------------------------------------------------------------------------
InstallHost5toplnts
P:0354 05F439 movec #$300, sr

000300
ibe sure that ints are shut off, clear SR, none but lvl 3 int:s

P:0356 44F400 move #>Host5topPtr, xO
OOOOM

P:0358 209700 move xO, r7 iset up pointer
P:0359 240000 move 10, xO ineed a zero to make a NOP
P:035A 07E78e movem P: Ir7), al
P:035B 07240e movem al, P:$0024 iinstall 15R pointer
p:035e 072504 movem xO, P:$0025 ;add NOP after it
P:0350 oooooe rts
i----------------------------------------------------------------------------
Host5top
P: 035E 00034E
P:035F OA0020
P:0360 OOOOOC

jsr
bset
rts

5toplnts
IH05T5TOP, X:<Proc5tatus

i------------------------------------------------------------------------

P:0363
P:0364•
InitFIFO
P: 0361 60F400

008000
370000
05F420
007BFF

move

move
move

;initialize FIFO pointers and M-regs
1>$8000, rO
;init the circular buffer write pointer
'0, r7 i ini t write advance counter
I>FIF05IZE-1, mO

;make rO modulo of FIF05IZE



;----------------------------------------------------------------------------•
APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA
P: 0366 OOOOOC rt~

ZeroX'iMem ;clear X and Y memory for PliA
P:0367 66F400 move #>PHATABLESTART, r6

000100
P:0369 200016 clr b
P:036A 060084 do 1H024, _ZX'iMEnd

00036D
P:036C 576600 move b, x: (r6)
P:036D 5F5EOO move b, y: (r6) +
_ZXYMEnd
P:036E OOOOOC rt~

116

;----------------------------------------------------------------------------

;----------------------------------------------------------------------------
InitBuffStatus
P:0378 200013
P:0379 540100
P:037A OOOOOC

bset iCHANNELA, X:<ProcStatus ;set input channel A bit

;init process ~tatus register
clr a
move al, X:<ProcStatus
jclr *5, Y: <CommandWord, _IPSA

rts

bset iCHANNELB, X:<ProcStatus ;set input channel B bit

jclr 14, Y: <CommandWord, _IPSB

;init buffer status register
clr a
rnove al, X:<BuffStatus
rts

OOOOOC

OAOOC4
000377
OA0022

InitProcStatus
P:036F 200013
P:0370 540000
P:0371 OAOOCS

000374
OAO021

P:0376
_IPSB

P:0377

P:0373
_IPSA
P:0374

•
1----------------------------------------------------------------------------
RVfromHI
P:037B 09FOBO

000010

_RVl
P:0370

P:037F

_RV2
P:0381

P:0383

OAA984
000370
09FOBO
000011

OAA981
000381
08F4AB
000002

;receive data from HI to the circular buffer
rnovep X:TTL_Set, Y: $FFFO ; request host ints for data

;tranfernote that tbset and bclr should not be used
;here they change sampling rate unexpectedly

jclr IM_HF1, K:«M_HSR, _RVl
;wait for host acknowledeg

movep K:TTL_Clear, Y:$FFFO
;clr host ints request

movep f>OSPHIRV, X~«M_HTX

isend tranfer code to host

•

_RV3
P:0385

P:0387
P:0388

P:038A

OAA981
000385
08082B
OA0081
000391
060COO
00038E

movep nO, X:«M RTX ;:send number of words to host
jclr ICHANNELA, X: <ProcStatus, _ChanB

do n4, _RVChanA



APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 117

_RVehanA
P:03BF OAOiOi
P:0390 oooooe
_ChanB
P:039i 060800

000395

_RVD
p:038e

P:03BE

_RVE
P:0393

P:0395

OAA98 0
00038e
085CAB

OAA9BO
000393
085eEB

movep X: «M_HRX, X: (r4)+
;data tranfer from HI to the circular buffer, for chA

bclr !#FIFOEMPTY, X:<BuffStatus
rts

do nO, RVChanB

movep X: «M_HRX, Y: (r4) +
;data tranfer trom HI to the circular bufter, for chB

_RVChanB
P:0396 OMiOl
P: 0397 ooooac

bclr il FI FOEMPTY, X:<BuffStatus
rts

;-----------------------------------------------------------------------
LoadPHATable
P:0398 64F400 move il>PHATABLESTART, r4

000100
_PTah1

P:039A OAA98 0 jclr ilM_HRDF, X: «M_HSR, _PTab1
00039A

• p;03ge 0870AB movep X: «M_HRX, X;ChannelNum
OOOOOD ;ehannelNum must be 2 to the power

P:039E 060000 do X:ehannelNurn, _PTab2
0003A3 lof N, for proper PRA sorting

_PTab3
P:03AO OAA98 a jclr ilM_HROF, X: «M_HSR, _PTab3

0OO3AO
P:03A2 08452B movep X: «M_HRX, xl
p:03A3 4DSeOO move xl, Y:(r4)+
_PTab2
P:03A4 OOOooe rts
;-----------------------------------------------------------------------
McaConst
_Meon1
P:03AS OAA98a jclr tM_HRDF, X: «M_HSR, MConl

0OO3A5
P:03A7 0870AB movep X: «M_HRX, X: NoiseHi

OOOOOA
_HCon2
P:03A9 0AA980 jclr IM_HRDF, X:«H_HSR, Meon2

0003A9
P:03AB 08701\8 movep X: «M_HRX, X:NoiseLo

OOOOOB
_Meon3
P:03Nl 0AA980 jclr 'M_HRDF, X: <<M_HSR, Meon3

• 0003Nl
P:03AF 0870AB movep X: <<M_HRX, X:Qsorteyc



•

•

•

APPENDIX C: DSP SOURCE CODE LISTING OF THE DSP LiMCA 118
oaooac iThe max number of sorting cycles for

: 03B1 oooooe rt.
;PHA, it 15 equal te base 2 logorithm of ChannelNurn minus 1.

:-----------------------------------------------------------------------

o Errors
o Warninq.




