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Abstract

There is a need for two dimensional parallel optical interconnects for large bandwidth
transfer of data over a distance ranging from tens of centimeters to a few meters. Optical
transmission of data through “free-space” using imaging or diffractive elements would
fulfil this need for very large bandwidth and high throughput density, but is not yet a prac-
tical approach. A commercially viable approach in the shorter term is to use optical fiber
technologies as the communication medium. Fiber image-guides can be mass produced
and are easy to align with the source but have insertion losses of the order of -3 dB.
Ordered fiber arrays can be constructed using the same technology as fiber image-guides,

and can have lower insertion losses but at the cost of reduced alignment tolerances.

We present a model for the numerical calculation of the insertion loss in ordered fiber
arrays when coupling light from an array of VCSELSs of equal dimensions. We then apply
this model to study the impact of alignment on insertion losses as a function of the
different fiber array parameters: core radius and of the individual fiber elements, and the
dimensions of the array. We conclude that the alignment tolerances for multimode ordered

fiber arrays should be compatibie with present-day connector technology.



Sommaire

[l existe un besoin de communiquer optiquement d’énormes quantités d’information
de maniére paralléle en deux dimensions, et cela sur des distances de quelques dizaines de
centimeétres a quelques métres. L’approche qui est de transmettre optiquement 1'informa-
tion dans I’espace par le seul bias de lentilles et d’éléments diffractifs peut satisfaire ce
besoin, mais est en ce moment difficilement réalisable. Une approche plus facilement
réalisable commercialement serait d’utiliser une technologie basée sur les fibres optiques
comme moyen de communication. Les guides d’image peuvent étre construits en grandes
quantités, sont faciles a aligner avec la source, mais dont I’utilisation occasionne une perte
de puissance de I'ordre de -3 dB. Un étalage ordonné de fibres optiques peut étre construit
par la méme méthode qu’un guide d’image et offre la possibilit€ d’avoir un perte moins
importante de puissance, mais dont le coiit est une augmentation de la précision nécessaire

pour aligner la source.

Nous présentons un modéle qui nous permet de calculer numériquement la perte de
puissance induite lors du couplage entre un étalage ordonné de fibres optiques et un
étalage de VCSELs aux mémes dimensions. Nous employons ce modéle pour érudier
I'impact de l'alignement sur cette perte de puissance, et ce en fonction des divers
paramétres de I'étalage ordonné de fibres optiques: le rayon du coeur des fibres

individuelles, et les dimensions de I’étalage. Lorsque notre analyse est menée a bien, nous



' pouvons conclure que les conditions nécessaires pour aligner adéquatement ces étalages

sont compatibles avec les technologies déja en place pour la production de connecteurs.
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Chapter 1

Introduction

In the last decade, tremendous effort has been expended by the industrial and
research community in order to interconnect the world and to find better ways to do it. The
role of optics to communicate information is becoming increasingly important and optical
fiber is already the mainstay of long-distance telecommunications. The ability to use light
to interconnect electronic devices in other types of applications is presently under intense

scrutiny.

But what advantages do optical interconnects have over their electrical counterparts?
From a purely physical standpoint, both types of interconnect carry signals in the form of
electromagnetic waves. The real difference between electrical and optical physics stems
from the higher carrier frequency (500 THz for light versus 0.001-10 GHz for electronics)
for radiation in the optical range (Miller 1997). This single fact has several far reaching

consequences.

One consequence is that since the carrier frequency of light is much greater than
practical modulation frequencies, high speed modulation creates no frequency-dependent

losses or signal distortion. Dispersive effects resulting from high-speed modulation are



usually only present over large distances in optical fiber, and losses are typicailly 0.2
dB/km. In electrical interconnections, the skin effect and/or filtering effects resulting from
the equivalent RC circuit of the line create large signal distortions at high speeds. Distor-
tion leads to intersymbol interference and create many challenges in system design, such
as the reliable extraction of timing information (Miller 1997). Also, electrical wires are
good antennas at high frequencies, leading to frequency-dependent crosstalk, an effect that
is essentially absent in optical interconnects because light waves do not interact in a linear
medium. Other benefits of optical transmission over electronic transmission include:
ability to create very short femtosecond puises, wavelength-division multiplexing, ability
to use low-loss dielectric materials, voltage isolation, lower power consumption and the
possibility to use free-space propagation of the signal (Tooley 1996; Miller 1997). Last but
not least, optics offers the opportunity to arrange channels in two dimensions to increase

interconnection density.

Despite the possible advantages, from an engineering point of view, optical intercon-
nects will only be viable aiternatives if they can deliver increased performance and solve
design problems at a reasonable cost. An important challenge is the identification of appli-
cations which can best take advantage of the benefits of optical interconnects (Tooley
1996). Many interconnection levels exits: chip-to-chip, board-to-board, box-to-box, etc.
Because the power consumed to transfer data electrically increases with distance for a
given level of performance, while optical transmission is independant of it, some studies
have argued that an appropriate application for optical interconnects is one which needs to
communicate large bandwith over an estimated distances no shorter than tens of millime-

ters. Since the most serious interconnection bottleneck occurs at the board to board level,



which transfers data over a lenght of approximately 30 cm, and where physical constraints
(such as the number of connections that can fit on the edge of a board) limit the perfor-
mance of electronic data transmission in electrical backplanes (Plant 1997), an optical
backplane would represent an attractive solution because of its high interconnection

density. How can such a link be implemented at low cost?

Vertical-cavity surface-emitting lasers (VCSELs; Iga et al. 1988), are very promising
candidates among emitter technologies for interconnect design. They are amenable to
on-wafer processing, testing and screening. This saves on handling and labor time, and is
conducive to high vields (Morgan et al. 1991; Lebby et al. 1996). VCSELs can be easily
fabricated in two-dimensional arrays, are compatible with flip-chip bonding techniques,
and do not require any cleaving or individual anti-reflection coatings. Furthermore, only
simple drive circuits are required because of the low threshold currents (<100 pA; Hayashi
et al. 1996), low operating voltage (< 2V; Choquette et al. 1994) and low power consump-
tion which characterizes these devices. All these factors contribute in achieving low cost.
In addition, high wall-plug efficiencies(57%; Jiger et al. 1997) and high-speeds, with

modulation bandwidths of 16.3 GHz (Lebby et al. 1996), have been reported.

Another desirable feature of VCSELSs is superior beam characteristics compared to
the older edge-emitting semiconductor laser structures. Indeed, the beam from an edge-
emitter is highly elliptical, with a divergence as large as 50 degrees, which presents a
challenge when coupling to optical elements is necessary. By contrast, VCSELSs can be

fabricated to exhibit a stable, circular symmetric TEMy, (Gaussian) transverse mode

(Morgan et al. 1993 &1995; Sandusky & Brueck 1996) with low divergence (~12 degrees

WFHM). Also, because the basic structure of a VCSEL consists of a thin (~ 1 A) active



region surrounded by two stacks of alternating quarter-wavelength thick semiconductor
layers, both of which are acting as distributed Bragg reflectors, a single well-defined
longitudinal mode can be produced. Finally, polarization control can be achieved in
VCSELs over a wide temperature range (Takahashi et al. 1997), which is important in
low-noise applications where polarization fluctuations can cause excessive intensity noise

even in single transverse mode operations (Mukaihara et al. 1995).

After choosing an appropriate emitter technology, an important step in the design
process is the choice of a suitable medium for optical power propagation. One method of
implementing an optical backplane is by using the “free-space” approach. A plane of emit-
ters can be imaged onto a plane of receivers using simple optical elements: lens, lenslet
arrays, beamsplitters, etc. In this way, thousands of beams can be routed, to obtain
extremely high interconnection densities. Working optical systems with more than 60 000
beams have been demonstrated under laboratory conditions (Hinton et al. 1994). Beams
can cross through one another without interference, and with the ability of free-space
optics to provide large power fan out per node and spatial-angular multiplexing, it
becomes possible to implement giobal topologies such as perfect shuffies (Brenner and
Huang 1988) and crossover networks (Jahns and Murdocca 1988). The high connectivity
of these types of networks makes them amenable for massively parallel computer applica-

tions.

At present, many technological hurdles have to be overcome to make free-space
commercially viable. The most pressing concerns involve the initial precision to which it
is possible to align the system and the precision required to maintain this alignment during

operation on the field (Tooley 1996). Directly related to these issues are the high cost and



. difficulty of manufacturing the optics and optomechanics involved, and the cost,

frequency and difficulty of system maintenance (or repair).
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Free-space optics based backplane

3

Guided-wave optics based interconnect
(ordered fiber array or fiber image guide)

FIGURE 1.1 Free-space approach to optical backplanes versus guided-wave approach
Until the low-cost practical packaging of free-space interconnections can be
demonstrated, a waveguide based approach could provide a cheaper and more practical

alternative. Because the channels can no longer cross or fan out, such an approach would

‘ be suitable for point-to-point applications, where the high connectivity of global



topologies possible with free-space optics are not required. Because of the suppleness of
optical fiber, there is built-in flexibility against motion during operation, and greater
freedom in board positioning. By contrast, board connected by free-space optics must be

kept rigid and interboard spacing cannot be changed for a given optical design (figure 1.1).

Two promising fiber technologies have been marked for use in 2D short-distance
(<100m) applications: fiber image-guides (Kosaka et al.1997; Kawai 1997) and ordered
multimode fiber arrays (Kirk et al. 1997). The difference between both technologies is

basically one of fiber pitch.

A fiber image-guide, well-known for its applications in medical endoscopes, consists
typically of around 10 000-20 000 fibers in a closely-packed, hexagonal lattice. The indi-
vidual fibers will have diameters of up to approximately 8 pm. High bit-rate parallel
transmission using a two-dimensional VCSEL array through a fiber-image guide was
demonstrated (Kosaka et al.1997). Because of the tight pitch, each beam couples to a
cluster of neighboring fibers, thus creating at the output “exact” copies of the pattern of
spots at the input. Because of the large transmission surface available and the absence of
any significant dependence on lateral displacement, alignment at the input end is very

easy. In this way, | Gb/s per channel data transmission at a distance of 1| m was shown,

with a bit-error rate of 10 and an average received power of -27.7 dBm. With a 6x6

VCSEL array, the total throughput was 36 Gb/s.

Despite the relaxed alignment tolerances of fiber image-guides, coupling efficiency
at the input plane is limited by the ratio of the core area to total fiber cross-section

(~50-60 %: Cryan 1998). Because the bit-error rate (BER) of an interconnect and optical



power are directly related, where increased optical power translates to a lowering of the
BER, the limited efficiency of the fiber-image guides could have a negative impact in
applications such as optical backplanes, which requires very reliable data transmission.
Increasing the core size ratio can be done but at the expense of increasing background

optical crosstalk.

Results for fiber image-guides are in sharp contrast with those for multimode fiber

arrays. With multimode fiber, a BER at 1 Gb/s of less than 10"!! was measured for an

average received power of -26 dBm and a link distance of 5 m (Kosaka et al.1997). With

graded-index fibers, even better performance can be achieved (BER<107!! at -28 dBm
for a | Gb/s 100 m link; Schnitzer et al. 1996). Arrayed multimode fibers thus become an
attractive solution when high transmission efficiency of optical power and low bit-error
rates are required. For ordered fiber arrays, each beam couples to a single fiber, in which

case stricter initial alignment at the input is required.

Several methods of fabrication to create a generic two dimensional interconnect
technology with fiber arrays have been previously been presented in the literature. Many
of these techniques involve fitting commercially available optical fiber into a lattice of
precision holes on a substrate and then held in place with UV cured epoxy (Koepf and
Marley1984; Sasian et al. 1994; Proudley, Stace and White 1994). By referencing light
exiting the core of each individual fiber to a second, lithographically made, arriy of annu-
luses, and subsequently gluing the fibers into place inside the oversized holes, a 4x8 array

was constructed (Sasian et al. 1994) ,with fiber ends deviating no more than 1.5 um from



their ideal location and accurately pointed to within 30 arc-minutes from the ideal exit

angle (90 degrees with respect to the output surface).

These techniques have a few disadvantages. The precise placement of each fiber is
time consuming (~10 min/fiber) and becomes exceedingly difficult for larger amrays. A
single mishap in the placement of a fiber ruins the array. Also, using epoxy for assembly

lacks the stability available with an all-glass construction.
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FIGURE 1.2 Fused glass fiber arrays. Ordered fiber array (left) and fiber image-guide (right). Note the
difference in the spacing between individual fibers.

A novel approach to array construction is the use of fiber image-guide marufacturing
technology. Instead of the usual closely-packed hexagonal structure. a regular square
lattice (figure 1.2) is made (Kirk et al. 1997; Cryan 1998). Each individual fiber that makes
up the array is fabricated using the rod in tube method. The fiber preform consists of three
concentric glass layers. The central layer is a high-index core, the intermediate layer a low
index cladding, and the outer layer a acid soluble glass. The optical properties of the array

is determined primarily by the choice of core materials. Attenuation coefficients of 0.2



dB/km and numerical apertures between 0.1 and 1.25 can be achieved with commercially

available glasses.

The size of each core and separation between cores is determined by selecting appro-
priate glass rods and tubes. The fiber preforms are drawn into fused fiber rods approxi-
mately | m long and 4 mm in diameter. The draw is carried out with standard production
equipment, and carefully monitored in order to control the diameter and cross-section of
each rod. These fiber rods are then individually located in a square lattice configuration.
Accurate alignment at this stage is possible because of the large diameter and flexural
rigidity of the rods. In addition, location errors occurring at the assembly stage will be
reduced in proportion to the draw down ratio. The array of rods is drawn to a length of I m
and a diameter of Imm. During the draw. the individual fiber elements fuse together.
filling any interstitial gaps in the array. A typical preform array will yield approximately
eighty 1 m interconnects. Each face can then be polished perpendicular to the fiber axis. In
this way, an 8x8 array was constructed. with a core diameter of 50 tm and a pitch of 125
um. The location of center of each core was measured to be within 5 um of their ideal
position. No fiber deviated by more than 0.3 milliradians from the ideal exit angle (Cryan
1998). Armays with core diameters of 100 um and a pitch of 250 |im were also drawn

(Kirk et al.1997).

A flexible array can be fabricated by removing the acid soluble glass along the center
of the array while preserving the fused sections at both ends. Selective removal of the
glass can be achieved by protecting the ends with an acid resistant coating. The array can

then be inserted into a flexible outer jacket for better mechanical stability.
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In order to justify the use of this novel fiber array technology for parallel optical
interconnects, ease of fabrication cannot be the sole determinant of its merit. The optical
properties of an array and their influence on packaging strategies must also be determined.
From these, the alignment requirements of the array and of each fiber element in the array
is of great consequence, since alignment has a direct impact on such things as coupling
efficiency, power uniformity across the array and optical crosstalk. These alignment
tolerances in turn determine the precision of the optomechanics necessary to build the

package.

What are the alignment requirements for a fused glass ordered fiber array? How does
core radius, pitch between fiber, array size and numerical aperture influence these toler-
ances? The objective of this thesis is to provide a theoretical answer to these questions
using the optical power coupling efficiency between the VCSEL array and fiber array as a
figure of merit. n chapter 2, we present the mathematical framework necessary to obtain
an expression for the coupling efficiency. The model assumes a single-clad fiber configu-
ration of the modes (Appendix A) and a Gaussian beam (Appendix B) for each VCSEL'’s
output. In chapter 3, we proceed to the numerical evaluation of the expressions found in
chapter 2 as a function of the parameters of interest. From these results, a conclusion about
the feasibility of using fused glass ordered fiber arrays for optical interconnects, on the

basis of its alignment requirements alone, will be presented in chapter 4.



Chapter 2

Launching of Gaussian beams into multimode optical fiber

2.1 Mode excitation by plane waves

Snyder (1969b) developed a model by which he obtained an expression for the
launching efficiency of plane waves into a dielectric rod. It is useful to follow this method

since it can be adapted readily to optical fiber and to other types of beams.

Figure 2.1 illustrates the geometry to consider. A semi-infinite optical fiber, with core
refractive index n; and cladding refractive index nj, is excited by a plane wave
propagating at oblique incidence 8 over an aperture d. The aperture can represent the finite

radius of the waveguide or an otherwise truncated incident field. The core radius is a.

An exact analysis of the aperture fields at the fiber face is extremely complicated, and
requires knowledge of the dyadic Green’s functions and the evaluation of a complex
integral equation (Morse and Feshbach1953; Smith 1997). But the analysis simplifies
considerably by assuming that the complex amplitudes of the electric and magnetic fields
in the aperture (E', H') is produced by a plane wave (E,H) from a uniform dielectric inter-

face; that is, the presence of an aperture or a change in the refractive index across the fiber
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face has little effect on the field. Inasmuch as the incident field is also a plane wave, the
problem can be thus be approximately solved by considering it equivalent to the transmis-
sion of plane waves across a semi-infinite and uniform dielectric interface. The above
assumption, similar to that of Born’s or Kirchhoff’s (Morse and Feshbach1953; Smith
1997), is reasonable only if the core radius a is much larger than the wavelength, or if the
difference between n; and n, is small (in which case the aperture, d, itself must be much

larger compared to the wavelength).

@
Ve
3

FIGURE 2.1 Optical fiber excited a by plane wave field over an aperture d2a.

The Born-Kirchhoff approximation leads to the following expressions for the field

components in the x-y plane:

E =E =1E™

X . @1
H'=H=(zxE)Y
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where Y is the z-directed admittance, and ¢ is the appropriate Fresnel transmission coeffi-
cient. Precise techniques have shown that equation (2.1) gives excellent accuracy in cases
of practical importance (El-Mikati and Davies 1985). The Fresnel reflection coefficient for
the glass-air interface is typically around 4% for normal incidence and is consistent with
results which show that the reflected power is less than 4% of the incident power for

single-clad fibers (Mostafavi et al. 1975)

The transverse fields at the fiber aperture (z=0+) can be represented as an expansion
of appropriate orthonormal eigenfunctions; i.c. the modal solutions of the electric and

magnetic fields, e, and k, respectively, for single-clad cylindrical dielectric waveguides

t
E = Zapep(.r, y)
4 . 22)
t
H = Zaphp(x, y)
p

The radiation field, the portion of the power not guided by the optical fiber. is also

included in the notation. Expressions for the modes are derived in appendix A.

The exact mathematical expressions for the modes in a cylindrical dielectric
waveguide, although well known, are generally unwieldy and not transparent to physical
interpretation. The expressions for the modes can be greatly simplified by making the
assumption that the difference in dielectric constants between the cladding and the core of
the fiber is very small. Since this assumption is implicit to our Born-Kirchhoff approxima-
tion, manipulating the exact formulas for the modes would not convey any additional
information and are thus unnecessary. Also, most optical fibers used by the telecommuni-

cations industry have indeed very small dielectric constant differences between the core
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and cladding. We are thus justified in using the approximate mode solutions (A-44),
appropriate for weakly-guiding cylindrical waveguides, in our analysis. Also, since the
modes are orthogonal to the = axis in this approximation, only the transverse components

of the aperture field will be guided.

The amplitude coefficients a, are found via the orthogonality relations (Collin 1960)

_[(ep x hq*)-idA =0 P=q 2.3)
1 p=q

where the integration is performed over the entire cross-section (dd=pdpdep). With (2.2

and (2.3) a, is

a, = j‘(B‘xh;).idA. @24
or
a, = [(e,* x H')-2dA. 23
[n the context of the weakly-guided approximation, the magnetic field of the mode is
related to the electric field by

— l‘. -
hp = J;zx e,. (A-34)

We now have all the ingredients necessary to estimate the launching efficiency in
each mode by an incident plane wave. Using (A-34) into (2.4) and (2.1) into (2.5), the

amplitude coefficient becomes



IS

'. a, = ngoj[Ex(:zxep)]»:sz=Ji:;f[(Ewp):z—(E.:z)ep].EdA

(2.6)
€
= J;oj(lz -e,)dA
or
a, = Y[le,x(zxE)]-2dA = Y[[(E-e,)z~ (e, 2)E] - zdA .
= Yj(E-ep)dA

where we have used the identity

ax(bxc) =(a-c)b-(a-b)c . (2.8)

and the orthogonality of the fields to the z axis. In order for (2.6) and (2.7) to be

. compatible, the condition ¥ =,/g,/|1, must be satisfied. Generally, this can only be the

case when the angle of incidence is small.

The modal power or launching efficiency is defined as

i %(LST:)JU(E "P’dAlz‘ @9

The plane wave is taken as propagating in the fiber at angle a with the 7 axis in the x-
z plane. This angle is related to the propagation angle of the plane wave outside the fiber,

0, via the paraxial Snell’s Law; i.e. 8=n, 0. The tranverse field, at =0+, associated with the

linearly polarized plane wave is given by



16

E = Eye 'jmma(icosacos§+9sinC) . (2.10)

where £ is a normalization constant given by

l
Ey = — |—. 2.11)

and { is the angle the polarization makes with the x axis (see fig. 2.1). Since we are

concerned only with smail angles of incidence, the polarization of the incident field is, to

first order of ¢, in the x-y plane. With the transformation x = pcos®, and for o «1, the inci-

dent field becomes
E =Epe 'jRAcos'p(icosC + ¥sinl) . (2.12)
where
A =aka = aky, (2.13)
and R=p/a.

From (2.12), it can be seen that the amplitude of the incident field has even (cosine)
symmetry about the @ = 0 axis. The excited modes must then alsc have even symmetry,
otherwise Pp will be zero (which follows from the orthogonality of the sine functions).
From inspection of equations (A-44), it can be seen that all the hybrid modes will be
excited independent of the polarization of the incident beam, since cosine modes exists for

both the x and the y polarizations. However, when the incident field is polarized in the x
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. direction, there are no TE modes and when it is polarized in the y direction, there is no TM

field.
For hybrid modes, after substituting (A-44) and (2.12) into (2.9), and removing terms

that are not cosine symmetric, the launching effciency becomes

cos B
.14

_ -(_)_l [7iR)e “F 205 (1 7 1)pdd]’

P2\
smB

From this last equation, we can see that power is launched in both possible modes of

the degenerate set. The total power launched is
o P, = -( V) [ fiRye R cos(t Dodd’  hybrid @.15)

For TM and TE modes, the launching efficiency is expressed by

_ HENLEg - jR Acosg 2 2
p,= ,,kuu)—”fo(R)e cosq:dAI cos B ™ (2.16)
and
178 E, - /R 2.2
Pp = E(p_:,)w_zl I fo(R)e s ‘\msq’cosq)dA sin B TE. (2.17

respectively. The total power launched in these modes is given by

P, = '(“)"I [foRre R *®cospdd’  TM+TE. @18



'. which is identical to (2.15) with /=0.

The phase term in (2.15) is expanded as a sum of Bessel functions,

¢ -JjR Acoso _ -’o(R A) +22(_J’)ijl.(R A)cosi ¢.

i=l

We then integrate over @ and use the orthogonality property of the cosines,

o nz0

mn

r“cosmx cosnx dx = R
0 21, n=0

where

5 _{0 m#n‘

I m=n

which leads to
P, =(2n Z)Zl(ﬁ)ﬂ 2 l(Z_U.L’)Z
P 2 p'() ‘Vp g VD
{ is the integral
I:fl(R)J, +1(R A)RdR hybrid
I = .
[, folRM\(R )RaR TM +TE

18

(2.19)

(2.20)

(2.21)

(2.22)

(223

D=d/a is the normalized aperture radius, and the appropriate expressions for £q and ),

‘ (2.11) and (A-42), have been used. The definition of f; is given by (A-40).
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Since we used the expression for a normalized field in the fiber., we need only
multiply (2.2) by the appropriate Fresnel power transmittance to obtain the coupling effi-

ciency of the incident field outside the fiber; that is, for near normal incidence,

T=1 Lomy?
= 1= 2 24
(l +nl) . .

Equation (2.22) is plotted for a beam with a diameter equal to the core’s (D=t), that
strikes the fiber at normal incidence ( A=0), for some of the lower order modes (fig.2.2).
As shown by Snyder (1969b), only the HE,, modes are excited in the case of normal inci-
dence. since J, ,(0)=0 for all n=1, with the HE,, mode being the dominant mode for all

values of ¥ (the normalized frequency: see equation (A-4)).

HE,
[ 1 | .
o
(T8
=
O
o
[,V { .
|
<
QO
g“‘ HE
| HES
L /'Ar —— |

V. NORMALIZED FREQUENCY

FIGURE 2.2 Modal launching efficiency at normal incidence and D = | (Snyder 1969b).

The modal launching efficiency is very sensitive to any deviation of the angle from

normal incidence. From fig.(2.3), we can see that as the angle deviates from normal inci-
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dence, the HE,, mode declines sharply and modes not present at normal incidence, are
excited. Results from Snyder (1969b) shows that, far from cutoff, a mode reaches

maximum launching efficiency when

U,=A. (2.25)

except HE,; which dominates at normal incidence. Also, since the efficiency curves for the

modes overlap greatly, it is very difficult to stimulate a mode without exciting another.
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FIGURE 2.3 Modal [aunching efficiency of a tiited beam, far from cutoff, and D = 1 (Soyder 1969b).



2.2 Mode excitation by a Gaussian beam

Snyder’s method can be readily adapted to incident Gaussian beams by simply
assuming that the aperture field is now also Gaussian (a Born-Kirchhoff approximation).
Under this assumption, equation (2.9) for the modal power remains valid. The earliest
work investigated the launching efficiency into the HE,;; mode as a function of V (Stern et
al.1970), lateral offset (Stern & Dyott 1971), tilt and beam radius (Marcuses 1970), but
was limited to a fiber face positioned at the beam waist, in which case the effects of the
wavefront curvature could be neglected. Further work aimed to include the effects of beam
curvature, and to determine the launching efficiencies into higher order modes (Imai &
Hara 1974; idem 1975; Miyagi et al.1975). The technique was also adapted to doubly clad
waveguide structures (Cartledge 1978:; Chandra 1979). None of these papers consider any

changes to the Gaussian beam as it crosses the dielectric interface.

2.2.1 Tilted beams

Let us consider replacing the previous plane wave by a Gaussian beam. We define the
coordinate system x'y’z’ whose origin is located at the beam waist, where the 7’ axis
coincides with the center of the beam, and y'=y. The z’ axis crosses the center of the fiber
face, at an oblique angle 8 with the z axis in the x-z plane. The origins of the coordinate

system are separated by a distance b (figure 2.4).
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n;

FIGURE 2.4 Considered geometry for tilted Gaussian beams

Our assumption that the field remains Gaussian once it crosses the fiber face deserves
further comment. What is the actual form of the reflected and transmitted field? To answer
this question, the problem of Gaussian beam interaction with a planar dielectric interface,
as a function of arbitrary values of 9, was investigated by several authors (Horowitz &
Tamir 1971; Raetal. 1973; Antar & Boermer 1973; White et al. 1977; Kozaki and Sakurai
1977). Most work involve the use of Fourier optics where the incident beam is expanded
as a function of an infinite set of plane waves of varying spatial frequency, to which the
well known Fresnel coefficients are applied. Results show that the transmitted and

reflected beam is distorted from its Gaussian shape. Among well established effects are a
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lateral and angular shift of the path of the beam “center” away from the path described by

geometrical optics.

For well collimated beams (kwy>>1) or, equivalently, for small far-field divergence,
analytical expressions for the reflected and transmitted beam can be obtained. These
expressions show that the fields are composed of a “fundamental mode” which is
Gaussian in shape and whose amplitude is corrected by the appropriate Fresnel coefficient,
and to which are added higher order terms which take into account the distorsions present.
A careful review of these expressions suggests to us that the higher order terms can be
neglected for small deviations from normal incidence. Thus our basic assumption that the
aperture field is Gaussian is valid for small values of 0, and for beams that are paraxial.
Also it can be assumed that the beam axis follow the path described by geometrical optics

(Snell’s law).

Thus. the normalized field just inside the fiber aperture is obtained from (B-16),

24/2 j‘b"(:*)e'(#":")) ‘j(":"*z_lk*%)(

E(<, y"', " = ———¢ e X'cos{ + ¥
( y )|:=0 w"(z") C -

sin() .
z=0

(2.26)

The coordinate system of the transmitted Gaussian beam, x"y"z" (not shown in figure
2.4), is defined such that its origin is at the center of the beam waist which is located at a
distance 5" from the center of the fiber face, y"=y, and z" is the direction of propagation.

The 7" axis makes an angle o with the z axis, and by Snell’s law, 8=n;c. As in the previous

case for plane waves, for small angles the polarization is approximately in the xy plane and
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makes an angle { with the x axis. Using the well known formulas for transforming coordi-
nates under translation and rotation,
" = (2-zg)cos@ + (x - xp)sina = (z—z) + (x — xp)

X' = (x-xg5)cost - (z-zg)sina = (x - xy) — (- zp)a

Zg = —b"cosa=-b" , 2mn

Xy, = —=b"sina=-b"o

5

w2 nl w2 2
P =X +yT = X" +y

(2.26) becomes, to first order of c,

E(x"' ", z")‘? - 0
2 ﬁ P Y . kp’ (228)
T jO(b" +xa) '(w“(b"uai) JIkLE™+ xal+ 3= e .
= Vb +xq) e 4 (kcos{ + ysinl)

In practical cases, 1/w” and I/T™ are generally slowly varying functions of their argu-

ment. The function 1/w" varies most far from the beam waist (b" >>z;), where it is given

approximately by

gy

I/w(b” + xat) = m.

(2:29)

where z; is the Rayleigh range. The function 1/T" varies most near the beam waist (b"~ 0)

and

1/T(b" + xar) ==(b+—2xa)==¥. (230
%y 2y
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Furthermore, because the field rapidly decays in the transverse direction, it is generally not
necessary to integrate equation (2.9) over the whole aperture. It is sufficient to consider
the circle with a radius of [.5w", into which about 99% of the total power is concentrated.

In which case, from the above expressions, we have

Zy %o 1 )}

l/(Wb"+xa) wo'b” = wpn = "L wa" = ubn ("’31)
TR Wi+ 152—a) (1+1.57°-a)
0 0
and
2
kp/ )] 5, (15w0) = L12s( 0) ket « kxer, @)

since the beam waist will be smaller than the Rayleigh range at optical frequencies for

paraxial fields. We will thus treat the beam radius and curvature in (2.28) as constants.

Similar arguments are used to neglect the influence across the aperture of the Guoy

effect (which varies most near the beam waist), because

®"(xat) -l-'—sﬂa 1 2.33)
IxSl.Sw z, “«h- (

We can also relate the beam parameters of the transmitted beam to the those of the
incident beam by applying the boundary condition which states that the phase must be

continuous across the whole interface; that is

Op - g WAl kp
3T(5) k(" + ox] -®"(D") + —=——— 234)

ko[b + 9x] Q(b) + 2r10(bn)
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from which the following expressions are obtained:

b = nlb"

. (239)
(b") = n,[(b)

It also follows that, because the amplitudes of the beams are related to each other by
a constant Fresnel transmission coefficient across the interface, their exponential decay

rate must match; i.e

w'(b") = w(b). (2.36)

We now have a simple expression for the tilted beam to use in (2.9):

o) -y kop’
E(x.y" & Jrat L) —(W(NJ ~ilkolb + 81+ 375 .
XYL = (b) e e (Xcos{ + ysinl).

237

Again, since the field is cosine symmetric about the ¢ = 0 axis, then all hybrid modes
will be excited and only the TM and TE modes are polarization sensitive. Thus, the

launching efficiency for Gaussian beams is given by the expression

-ale —l-+£ﬁ') 2
2 2r _;
f T fRe M T e SROSO00s(l £ 1)pRARdY| -

A ]
ol

i (f_l) 4na’
“\H n:wzqu
hybrid

(2.38)

and
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* 2 ] 2
-a’R (Lz + {‘LI_") AR
" e’ 2" SPcosoRARA ,

p - 1(3) 4rla"

PN ™y, J';uf:“ fo(R)e

TM +TE
(2.39)

where we have omitted the argument of the beam parameters, b. Equation (2.39) is iden-
tical to (2.38) with [=0. The expansion in terms of Bessel function and the orthogonality

property, given by equation (2.19) and (2.20) respectively, is then used to obtain

8lalU G2
P, =2}, (2.40)
PElTwY
where
--a:R2 %4—%‘.’
G = f:f,(R)e ¥ 70 (R A)RAR. (2.41)

2.2.2 Modeling offset Gaussian beams

Generally, the incident beam will not be exactly concentric with axis of the optical
fiber (fig.2.5) and thus the effect of an offset beam on the modal launching efficiency
needs to be evaluated. Consider a Gaussian beam whose propagation axis is parallel to the

z axis, but crosses the fiber face at a point (pg,y) in cylindrical coordinates:

) ﬁ_ N k,,p':
- w(b —jlkgh + ——]
E(x, y,, z,)l _ TIIe;!D(b)e_( ( )) e 2[(b)

220 = Ww(b) (ZcosC+ysinl). (242

where p' relates to p by the Law of Cosines



p”* = p’+py —2pPocos(®- 9p). @43

Equation (2.42) is cosine symmetric relative to the @=@q axis.

A
y
*N

ny

FIGURE 2.5 Geometric configuration for an offset Gaussian beam

The launching efficiency of the Gaussian beam into the hybrid modes becomes

4
2a ng,
2

W LV,

~a’[R’ + Ry~ 2RRycos(@ - g J{1/w” + jky/ 2T']

['[ Rardesi(Rye Z(9.7) .

P =
P 0 %0

(244)

where Ry=p¢/a, and Z(,{) is given by



+sin({F 1)pcos{ + cos({ F 1)@sin{
(e, 0) = or . (2.45)
* cos(!F L)@cos - sin(I F 1)@sin{

Using the well known addition formulas for trigonometric functions, we find

Z(9,Q) = sin(Cx(UF o) = sin[E2UF )@ (I F 1)(9-9)] 246)
= sin(C£ (I F1)@g)cos( F 1)(@ - @p) £ cos(CE(IF 1)@g)sin([F IN9-9p)

or

Z(9,C) = xcos(Cx(IF 1)) = cos[CEUF 1)@ £UF 1)@ - ¢p)] ren
. 2
= 2cos(Cx (/7 1)@g)cos(! F 1)(@~-@g) - sin(E £ (IF 1)@g)sin(IF 1)(9 - @)

Inserting (2.46) and (2.47) into (2.44), and using the orthogonality properties of

trigonometric functions, we find

£ 4
PP = (_l)_._za’n X
Ho Wy,

n -a:Rl R - 2RR,cos(@ - W+ jko/2 2
J'; j': RdRdof (R)e ™ ¥ + o7 2R (@ 0ol ¢ /2T e 12 1)(0 - 09 )| X(G0g)
(2.48)
where
sin’({+ (1 F 1)g,)
X(C oy = or . 249

cosz(C (¥ 1)gy)
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Since both representations of the degenerate hybrid modes are equivalent, both

contribute to the launching efficiency and

€} 2a4ﬂ
P, == X '
P (l-lo) T’ e
AR Rﬁ—l _ w4 kS A ’
JTJ.:R dof (R)e (R + RR,cos( - @g) 1[I/ +Jko/’rlcos(1;1)(¢_%)

(2.50)

which is, as in the case of tilted beams, independant of polarization. Similarly, one finds

for the TM and TE modes,
€ 2a4r1
P, = (-'l')—,"x
7 o/ ™
-a : 2 2 - wh + jko/2 2 )
Jf,ff RdRdo fo(Rye ™ " * Ko~ RRacos@ =00l /20 o0 - 9g)| co5(99 )
(2.51)
and
- (=1
P o/ w2 TE
e pt 5 _ Wit ks 2
IJEKJ-: RdRdg fy(R)e™ ¥ * - 2RRecos@-aluw’ s io/2M 0 o )220 iy

(2.52)

The TM mode can only be excited if the direction of the offset is parallel to the

polarization of the beam, while for TE modes the offset must be perpendicular. However,
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the sum of their respective launching efficiency is independant of polarization, and is

given by
& \2a*
P, = (u—)—" x TE+TM
0/ Ttw
|2 PR+ R -2 - W'+ jko/2 2
DKI:Rde(Pfo(R)e [R™ + Ry - 2RRycos(@ — @q)1[1/ ”k"/’ncos(cp-(pu)
(2.53)
which is identical to (2.50) with /=0.
Using a integral representation of the modified Bessel function of the first kind,
I(z) = I-ItJ: ¢ c""cos(n:)d:. (2.54)
(2.50) becomes
P, = E“U;H E @.55)
w
where
aRy)’ (L I .
H = e—(T) fo (R)e v 2r)[ 2a°RR| L +j—k° RdR. (2.56)
o { iri 0 WZ r

In chapter 3, we will need to consider the case where there is also a small tilt, 9, in the
same plane as the offset. In this case, the expression for the launching efficiencies retain

their symmetry relative to the ¢=qq axis and it can be shown that
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aUpL2'

wV

=3

P E (257

where,

3% 3T " 7aR,

aRO : _azR' iq.l_ko) . .
{’w‘) W I 2 1 Jky Jke®
L=e¢e J:Jf,(R)e I,-,|2a"RRy s=-5— ||[RAR. (258)
w

2.3 General comments

Equations (2.23), (2.41), (2.56) and (2.58) share some common properties. For
normal incidence and no offset, the Bessel and modified Bessel function of the first kind in
the integrand is null unless /¥ 1 = 0. Thus, for normal incidence and no offset, only
HE,, modes can be stimulated in both the plane wave and the Gaussian beam case. Other

modes are excited when the incident beam is offset or inclined.

As discussed in appendix A. all the modes are degenerate, each sharing the same
eigenvalue U, with one or more modes: TM,,, and TE,, are degenerate with HE,,,, and
the same is true between EH,, and HE,,,,, modes. Furthermore, inspection of (2.23),
(2.41) , (2.56) and (2.58) reveals that degenerate modes also share the same expressions
(the order of the Bessel functions are the same) for the launching efficiency. Thus, both
facts imply that the sum of the launching efficiencies into the TM and TE modes is equal
to that of the HE,,, mode. The same is true between EH,, and HE,,,,, modes. Of course,

this means that the launching efficiency into modes other than HE,,, can never exceed

50% (Miyagi et al. 1975), and that only the HE modes need be calculated.
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2.4 Higher order beams

The Gaussian beam is only the lowest-order solution of a family of solutions satis-
fying the free space paraxial equation. These higher-order solutions can take the form of
Hermite-Gaussian functions in cartesian coordinates or Laguerre-Gaussian functions in
cylindrical coordinates. Both set of solutions are equally general and form a complete
basis for the expansion of arbitrary optical beams (Siegman 1986). The Laguerre-Gaussian
expansion is convenient for problems with a high degree of cylindrical symmetry and
would be adequate to model the output of VCSELSs. In recent work, the modes of a cylin-
drical optical fiber were expanded in terms of the Laguerre-Gaussian functions to calcu-

late the near-field and far-field output from the fiber (Sutherland 1997).

The Laguerre-Gaussian family of solutions are given explicitly by

2

r

[‘ Jthkz - slg~(I+2m + 1)®) - F’:[iz * ]‘5)]
]e w (2.59)

_ A,m(p_J_i)‘L, [292

Ay is a normalization constant determined by the condition that the power propa-

gated is unity. L’,,, is the generalized Laguerre polynomial and the indices /, m and s are

positive integers. The parameters w, I" and ® are identical to those given by (B-13). The

Gaussian beam can be retrieved by inserting =m=0.

Assuming the same approximations as for the zero order Gaussian beam, each source
mode given by (2.57) can be substituted into equation (2.9) to obtain the coupling effi-

ciency to each receiving mode. Thus if the source has ¢ modes and the receiving fiber has

r modes, then there are ¢ X r coupling coefficients to compute.



Chapter 3

Alignment requirements for optimal coupling between an

8x8 VCSEL array and an 8x8 fiber array

3.1 An interconnect without optical elements

The simplest form of 2-dimensional interconnect between a set of optical sources and
a set of identical receiving fibers is portrayed by figure 3.1. Consider a square array of
VCSELSs, each emitting a beam to a single corresponding fiber without the presence of any
optical element to steer or focus the beams. The electrical contacts to the VCSEL array are
not included in the illustration. Both the vertical and horizontal spacing between channels

are assumed to be 250 um unless stated otherwise.

In the analysis which follows, we will consider beam characteristics appropriate for
typical VCSEL structures. Namely, we assume the driving current is sufficient to induce
lasing, but low enough not to stimulate Laguerre-Gaussian modes beyond the funda-
mental. In which case, the resulting Gaussian beam typically has a far-field divergence
angle, 28g9¢, of approximately 14°, defining a cone into which is propagating 99% of the

total power. This angle is directly related to the beam waist by
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LS
89, = 'E‘% 3.

We will assume a wavelength of 0.845 um, which gives a beam waist of approximately

wg= 3.3 um.

VCSEL array

wr oG2

ik

'eeooeoeo
0000000

k—!  fiber array
250 um

FIGURE 3.1 Simple 2-dimensional interconnect.



—>»| m=1

Find the mth root, the cutoff :
value of the HEj,, mode USjy,, of =m+|

=i+ 1 Ji(U).Ueq 1=0.

Is the root < V? yes HEj;,, mode is allowed.

Solve the characteristic equation,

UID . ((=WK(W)/K|_|(W),

Save root.

between the interval (USjm, USjm+1], m=m+1

to find the eigenvalue Ulm of mode HE /|

A
Uim+ 1=V

36

no
The cutoff values of all
no yes | the allowed HE;,; modes
Is m=1? have been found.

m=1 =1

The eigenvalues
of all allowed HE;;, modes

have been found.
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3.2 Numerical analysis

All calculations have been done using Mathematica, a trademark of Wolfram

Research, on a G3 Power Macintosh.

3.2.1 Optical fiber mode solutions

A variety of different fiber parameters will be used in order to investigate their effect
on launching efficiency. Specifically, we shall study single mode fiber and multimode fiber
with a core radius of up to 50 um. In each case, we need to determine the allowed HE
modes and solve the characteristic equation (A-27) to find the eigenvalue U for each of
these modes. Using equation (A.31), an approximate solution to the eigenvalues, is not
adequate for the needs of the present analysis. To obtain the total launching efficiency, we
must sum the contributions of all modes including higher order modes that have eigen-
values progressively closer to cutoff.Because (A.31) is not a good approximation of the
eigenvalues near cutoff, the launching efficiency of the beam into these higher order
modes becomes inaccurate and may create a significant error in the sum. A flow chart of
the proposed algorithm is illustrated in figure 3.2, and an outline of its implementation

using Mathematica will now be described.

First, which modes are guided must be determined. As discussed in appendix A, a
mode can exist for every root of J,5(U), Uy, smaller than V. For each /, there are ¢ roots

(m =1, 2, ..., 1) which satisfy this condition, where ¢ is a decreasing function of /. The
maximum value of / corresponds to that beyond which no more roots can satisfy this

condition. A list of these roots can be generated with the function BesselJZeros included
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in the NumericalMath‘BesselZeros’ package included with Mathematica and a simple
algorithm can extract the roots that are smaller than V. The resulting list is composed of a
set of sublists, one sublist for each allowed value of /, each of which is composed of the set
of ¢ eigenvalues. This procedure was implemented by the function CutOff[V], defined in

our package HEmodesolver.m, listed in appendix C.

Once determined. the characteristic equation is solved using the function FindRoot
for each allowed mode. A starting value is needed to initiate the algorithm and FindRoot
uses Newton’s Method to find one possible solution to the equation. Thus for a given [,
FindRoot must be used  times to obtain a complete set of solutions to the characteristic
equation. Since FindRoot will output the first solution it finds, one must be careful to

correctly partition the problem. Since it is known that for a fixed /. there exists one and
only one solution of the characteristic equation within the interval (U<, U}, /] (as can

be seen from figure A.1), FindRoot can be constrained to find a solution within such an
interval, using the list of cutoff values obtained previously, and stopping the algorithm
when the solution is found (or until it reaches a point outside the defined interval). To
make sure that the algorithm stays within the required interval, the option DampingFactor,
which specifies the size of the steps used in Newton’s method, can be set. The option
Maxlterations can also be set to allow the algorithm to converge for larger values of
DampingFactor. The procedure is then repeated for each interval. The procedure is imple-

mented by the function HeModeSolve[V], again defined in HEmodesolver.m.

Table I summarizes the fiber parameters that will be used in the following analysis

and specifies the number of HE modes in each case. The chosen value of the numerical
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‘ aperture, NA=0.2, corresponds to an acceptance angle of 8, = sin"'NA =11.54 degrees,

which is more than sufficiently large considering the divergence of the beam (8ggq,=7

degrees).

TABLE L. Optical fiber HE modes solutions as a function of core radius a (lo=0.845 Jm).

NA=0.2
a (um) 14 # modes

1.6 2.380

5 7.440

10 14.87 32

15 231 68

20 29.74 118

25 37.18 182

50 74.36 707

. 3.2.2 Launching efficiency

Once the eigenvalue of allowed HE mode has been obtained for a given V, it is substi-

tuted (along with all the other appropriate parameters, such as the cormrect beam waist,

wavelength,etc.)into one of the equations derived in chapter 2. which is then numerically

integrated to obtain the launching efficiency of the beam into that mode. Numerical solu-

tions to the modal launching efficiencies were obtained with the function NIntegrate,

leaving the algorithm to the Gauss-Kronrod method of integration. Most the options for

this function were left at the default settingwith a few exceptions. MaxRecursion needed

to be increased to allow the algorithm to converge for high order modes. Furthemore, since

total efficiency cannot be higher than | and since there will be at most about 707 excited
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HE modes, AccuracyGoal and PrecisionGoal was set to at most 6 digits to increase the

speed of the algorithm, and is more than sufficient to get a good estimate of the efficiency.

To determine the total efficiency we must sum the contribution of all modes present.
But, as explained in chapter 2, only the contributions of the HE,, modes are needed For
each HE,, mode with [ > 2, there is a EH mode which has the same launching efficiency.
For each excited HE,,, mode there is an equal contribution from TE and TM modes. Thus,
simply doubling the contributions from all HE,, modes with [ > | will produce the correct
value of the total launching efficiency. We will also include a 4% loss due to Fresnel

reflection in the plots presented in this chapter.

FIGURE 3.3 Spacing between the arrays.

3.3 Effects of misalignment on insertion losses

Misalignment can occur in all six degrees of freedom. Because of the symmetrical
nature of the interconnect, we only need to study the effect of four: distance between the
arrays along the axis, offset, roll, and tilt. The geometric configuration associated with

each type of misalignment is respectively illustrated in figure 3.3 to 3.6.



41

oW
¥
U
I
U

i
N
N
AN

AN

NI
{?&0

-
®

I\

A
I
AN

I

UL

X
\J\J

*
)
) Ou
O
Qu |
G0
®

3 )

offset
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FIGURE 3.5 Misalignment due to roll.
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FIGURE 3.6 Misalignment due to tilt.

3.3.1 Spacing between source array and fiber array

The equations derived depend explicitely on the precise value of the beam width and
radius of curvature, which in tum are functions of the distance from the beam waist
(located at the source when no other optical elements are involved). Both parameters, as
functions of distance, are shown respectively in figure 3.7 and 3.8, for the values of wave-

length and beam waist chosen for this analysis.

25

20%

15¢
W (um)
10¢

0 50 100 150 200 250
distance (um)

FIGURE 3.7 Beam width versus distance (A(=0.845 jm.w=3.3 Jm).
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FIGURE 3.8 Wavefront radius of curvature versus distance (Ag=0.845 ltm,wg=3.3 [m).

Let us first consider arrays which are separated in space but are otherwise perfectly
aligned, without tilt, roll, or offset. Shown in figure 3.9, is the insertion loss as a function
of this distance for each core radius considered.The insertion loss is obtained by
converting the total launching efficiency, which has a value between 0 and 1, into decibel
units (dB). From figure 3.3, it is clear that in this case the resuits presented here apply
equally for all channels across the array, since the fibers all have identical positions rela-

tive to their respective VCSEL.

The total launching efficiency is maximal when the fiber face is located very near the
source, and then decreases with distance. For single-mode fiber (@ =1.6 pm), the
maximum launching efficiency is ~ 71 % (-1.48 dB loss). As the core radius increases, this
maximum rapidly reaches ~96 % (- 0.18 dB loss) , which represents a coupling efficiency

of 100% minus the 4% Fresnel reflection.
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Also shown, in dashed lines, are the -1 dB (~78 %) and -3 dB (50 %) levels. In this
analysis, we consider insertion losses of greater magnitude than -3 dB as unacceptable,
and corresponds roughly to the loss which occurs when coupling with fiber image guides
(as discussed in chapter 1). Because image guides compete with and are easier to align
than the fiber arrays considered here, we must demonstate the conditions in which fiber
arrays can not only match but even exceed image guides in performance. To fufill this

objective, we determine the tolerances necessary for -1 dB insertion loss due to alignment.

loss (dB)

0 100 200 300 400 500
distance (um)

FIGURE 3.9 Insertion loss as a function of distance and core radius, without misalignment.
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For single-mode fiber, -1 dB performance is not possible because the radius of the
beam is simply too large, even at its narrowest point, and much of the power enters the
cladding instead of the core. Beyond a distance of ~30 um, the efficiency of the connec-
tion falls below -3 dB point. But as the core radius increases, so do the -3dB and -1 dB
alignment tolerances (figure 3.10). When a = 25 pm, these alignment requirements are
510 pm and 320 pm, respectively. If the core radius is instead 50 um, the launching effi-

ciency remains above -1 dB over the range of 500 jim considered here.

300+

distance (um)

200+

100+

o] 5 10 15 20 25
core radius (um)

FIGURE 3.10 Tolerated distance between source array and fiber array as a function of the core radius
and. power requirements.

Clearly, the spacing between the source array and the fiber array is an important
design parameter which will determine the choice of an appropriate core size. If, for
example and for various reasons, the array can be positioned no closer than 100 um from
the VCSELSs, but no further than 250 um, then the interconnect designer should consider

fibers of 20 pLm radius or more.
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3.3.2 Offset

Let us now consider misalignment in the form of a lateral displacement (figure 3.4).
As in the case of an axial displacement, the launching efficiency is identical in all

channels.

Figures 3.11 to 3.17 show the increase of loss with offset for each core radius
considered. We include in these plots data taken at different values of VCSEL-fiber
spacing to observe its effects on the lateral alignment tolerances. In general, a small
VCSEL-fiber distance is more tolerant to offset. When the array is located very near the
source, the curves generally form a plateau, followed by an abrupt drop in efficiency for
values of the offset which are near the core radius. The single-mode fiber case is an excep-
tion to this general rule and has no plateau. At larger distances, the plateau region are
reduced in range (or disappears completely) and the drop becomes more gradual, the

curves intersecting at the low decibel range.

loss

0 1 2 3 4 5
offset (um)

FIGURE 3.11 Insertion loss as a function of offset and distance. The core radius is 1.6 lm.
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FIGURE 3.12 Insertion loss as a function of offset and distance. The core radius is 5 lLm.

iloss
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offset (um)

FIGURE 3.13 Insertion loss as a function of offset and distance. The core radius is 10 jLm.
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loss (dB)

0 5 10 15 20
offset (um)

FIGURE 3.14 Insertion loss as a function of offset and distance. The core radius is 15 j{lm.

loss (dB)

0 5 10 15 20 25 30
offset (um)

FIGURE 3.15 Insertion loss as a function of offset and distance. The core radius is 20 {lm.
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FIGURE 3.16 Insertion loss as a function of offset and distance. The core radius is 25 jtm.

loss

0 10 20 34 40 50
offset (um)

FIGURE 3.17 Insertion loss as a function of offset and distance. The core radius is 50 j{tm.
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‘ Conceptually, we can understand these facts on the basis that as long as the beam
enters the fiber through the core, the efficiency remains high with little variation. As the
beam begins to enter the cladding due to offset, the efficiency experiences a drop, and
becomes low when the beam completely exits the core. At larger distances, the beam has a
larger spread, thus less offset is needed for the efficiency to drop, but more offset is needed
for the beam to exit the core completely. Since the beam waist is twice as large as the
radius of single-mode fiber, significant loss occurs immediately wita offset and thus there

is no plateau.

40t

30t

offset (um)

20t

10t

0 10 20 30 40 50
core radius {um)

FIGURE 3.18 Offset alignment tolerances (-3 dB) as a fuaction of offset and distance.
Figure 3.18 and 3.19 show respectively the -3 dB and -1 dB alignment tolerances to
offset. The alignment tolerances are in both cases generally linear with core radius. In

these plots we also see quite clearly the loss of tolerance that occurs with VCSEL-fiber

distance. For example, if @ = 25 um then the -1 dB lateral alignment requirements are
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respectively 24 um, 21 um, and 13 pm at a distance of Opm, 100 pm, and 250 um (-1 dB
performance is not possible at SO0 um for this core size). As discussed in chapter 1, it is at
present possible to construct with the rod in tube method an array that have individual 25
um cores that deviate no more than 5 pm from their ideal position. This leaves respec-

tively a tolerance budget for packaging of 19 um, 16 pum, and 7 um.

40+

30+

offset {um)
20

0 10 20 30 40 S0
core radius (um)

FIGURE 3.19 Offset alignment tolerances (-1 dB) as a function of offset and distance.

3.3.3 Roll

We have so far considered translational degrees of freedom. We will now consider
rotations. Under their influence, the launching efficiency is no longer uniform across the
array. When roll misalignment is present, it creates an offset in each fiber which increases
with the distance S from the center of rotation (figure 3.5). To obtain an alignment
tolerance to roll for the array, we must study its effects on the furthest channels relative to

the rotation axis, in other words, the channels at the comers of the square array.
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From the Cosine Law of trigonometry, the following expression relating channel

offset and roll, as a function of §, is derived,

0 = SJ2(1 - cos®), (3.2)

where O is the value of the offset induced by the roll angle ©. This expression is very
useful since it provides a means by which we can scale our previous results for lateral

(uniform) misalignment into results for roll.

When considering an 8x8 250 pm pitch array with the rotation axis located at the
center, then § = 1237 pum for the comer channels. In that case, figures 3.11 to 3.17 are
changed in scale to produces figures 3.20 and 3.26, respectively, which thus show the
same basic patterns for lateral displacements: plateaus of increasing length with core size,

and and a loss of tolerance at larger spacings.

-7.5
loss (dB)
-10¢ —- 0 um
- 100 um
-12.5¢ . 3dm
_1st -1 dB
) 0.1 0.2 0.3 0.4

roll (degree)

FIGURE 3.20 Insertion loss as a function of roll and distance. The core radius is 1.6 {lm.
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FIGURE 3.21nsertion loss as a function of roll and distance. The core radius is 5 {m.
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FIGURE 3.22 Insertion loss as a function of roll and distance. The core radius is 10 {m.
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FIGURE 3.23 Insertion loss as a function of roll and distance. The core radius is L5 lm.

3
[« Y
g e g~ v T —

]
[s o]

P i

3 0.5 1 1.5 2
roll (degree}

FIGURE 3.24 Insertion loss as a function of roll and distance. The core radius is 20 fm.
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FIGURE 3.25 Insertion loss as a function of roll and distance. The core radius is 25 [m.
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FIGURE 3.26 Insertion loss as a function of roll and distance. The core radius is 50 im.
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For systems using fibers with a =5 pm, the -1 dB tolerance to roll is 0.2 degrees ata
distance of 0 um . For systems using larger core sizes, the tolerances are more relaxed,
ranging from half a degree to 2.4 degrees depending on the value of g and the distance.
When a = 25 pum, the -1 dB alignment requirements are respectively 1.1 degrees , 0.95

degrees, and 0.55 degrees, at distances of 0 im, 100 wm, and 250 pum.

Though achievable, these tolerances are unnecessarely strict for an 8x8 array of chan-
nels. Certainly in the case of the smaller fibers, and even for 50 pm core fiber, a 250 um
pitch creates an enormous waste of available space, with tens of micrometers of cladding
unnecessary to efficiently guide the light. By reducing the pitch and maintaining the
number of channels, we linearly reduce §, which translates directly to an inverse linear
increase (for small angles) in alignment tolerances to roll. Conversely, one can accept the
previous alignment tolerances. reduce the pitch and increase the number of channels (half
the pitch to obtain 4 times the number of channels). Figures 3.27 to 3.30 show the changes
in roll tolerances which occurs with a change of pitch in our 8x8 array, for the different

distances between source array and fiber array considered so far.

In many cases, depending on the core radius and the distance, it is possible to obtain
alignment requirements ranging of 2 to 5 degrees with an appropriate selection of the
pitch. The choice is not arbitrary and there are some fundamental limits to consider. An
obvious limit is that the pitch should not reach the point where the cores begin to touch, in
which case they can no longer be considered waveguides. But before such a limit is
attained, unacceptable levels of crosstalk usually occur. If the cores of two waveguides are

sufficiently close such that the fields of their modes overlap, light can be coupled from one
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. into the other as it propagates. Signals from one channel can leak to and mix with those of

other channels.

1.6um -3dB
5 um -3dB
10 um -3dB
15 um -3dB
20 um -3dB
um -3dB
50 um -3dB
S um -1dB
10 um -1dB
um -1dB
um -1dB
um -1dB
um -1dB

bbby ed bt et

. roll (degree)
pas

a 30 100 150 200 250
pitch (um)

FIGURE 3.27 Roll alignment tolerances as a function of pitch, core radius, and minimum power
requirements. The distance is 0 jlm.
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FIGURE 3.28 Roll alignment tolerances as a function of pitch, core radius, and minimum power

requirements. The distance is 100 jlm.
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FIGURE 3.29 Roil alignment tolerances as a function of pitch, core radius, and minimum power
requirements. The distance is 250 fm.



—— 25 um -3dB

roll (degree)

[ 8]

-
-y e o

75 100 125 150 175 200 225 250
pitch (um)

FIGURE 3.30 Roll alignment tolerances as a function of pitch. core radius. and minimum power
requirements. The distance is 500 um.

A formal approach to estimating optical crosstalk, by solving Maxwell’s equations in
the different regions of the array and using boundary conditions to determine the modes
of the overall structure (which are different from those of the fibers taken in isolation), or
by solving the equations of coupled-mode theory, is beyond the scope of this thesis. What
we can do is estimate the optical crosstalk that occurs through the mechanism of direct
launching of a beam’s power into fibers adjacent to its appropriate channel. In the discus-
sion that follows, any mention of optical crosstalk is assumed to refer to that which occurs
through this process. A value for the crosstalk is obtained by calculating the launching
efficiency for a fiber with an offset equal to the pitch. This approach assumes, as has been
implicitely assumed so far, that the modes are those of the fibers taken in isolation (which
becomes more inexact as the pitch becomes smaller and/or the core radius becomes

larger). Results for different distances are show in figures 3.31 to 3.33, respectively. We
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assume that aside from the axial separation the arrays are otherwise perfectly aligned. We
included in the plots, in dashed lines, the -28 dB and -50 dB levels which corresponds to
the total optical crosstalk between nearest neighbor and third-nearest neighbor channels,

respectively, as measured in fiber image guides by Kosaka et al. 1997 for a 46 um spacing

between beams.
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FIGURE 3.31 Crosstalk as a function of pitch and core radius. The distance is 100 pim.
Optical crosstalk increases with distance since the beam has a larger cross-section
which penetrates a larger portion of the cladding and, in extreme cases, even the core of
adjacent fibers. At a distance of 100 um, the beams do not have enough spread to induce
significant crosstalk in any of the fibers with @ > 10 pm for any reasonable value of the

pitch (no less than 10 um of cladding between cores).

At a distance of 250 um., significant amounts of crosstaik can occur in the smaller core
fibers depending on the exact value of the pitch. For a given pitch, crosstalk increases with

core radius, which is reasonable considering that the modes also increase in spread, thus



penetrating the cladding to a greater extent and making it easier for the power from
adjacent beams to couple into them. In a 50 um pitch array, the optical crosstalk is
approximately -48 dB, -38 dB, and -30 dB for a core radius of 10 um, 15 pum, and 20 pm,
respectively. We must modify these values to account for the fact that most of the fibers
have 4 nearest neighbors, in which case we must add +6 dB (10log;¢4) to the results. The
first two cases compare favorably with image guides while we must consider an increase
of pitch to 60 um in the third case. If we increase the distance further, to 500 um, only a

pitch equal to or greater than 100 um should be considered.
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FIGURE 3.32 Crosstalk as a function of pitch and core radius. The distance is 250 um.

For 25 pum core radius fibers, a 75 um pitch array seems to be a suitable and even
conservative choice (assuming no transfer between channels during propagation as
discussed earlier), with an estimated value of optical crosstalk of less -70 dB for distances
less than 250 um, caused by direct launching at the input plane. To conclude this section,

the -1 dB tolerances to roll for this array are 3.8 degrees, 3.4 degrees, and 2.1 degrees, ata
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. distance of 0 wm, 100 pm, and 250 pm, respectively. These results can easily be reduced
to account for the 5 um uncertainty in fiber position: 2.9 degrees, 2.5 degrees, and 1.1
degrees, respectively.
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. FIGURE 3.33 Crosstalk as a function of pitch and core radius. The distance is 500 pim.

3.3.4 Tiit

Finally, we consider tilt (figure 3.6). In this configuration, the channels in the bottom row
(designated row 1) have a uniform launching efficiency which is only influenced by the
oblique incidence of the beam. The top row (designated row 8) has additional offset and

axial separation. This additional offset, o, and distance, s, is related to the tilt angle, o, by

o = S(l -cosa)
. 3.3)
s = Ssina

where § is the distance between row I and 8.

For an 8x8 250 wm pitch array, S = 1750 um. For this array, insertion loss curves as a

. function of tilt are shown in figure 3.34 to 4.40, respectively for each core size considered
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here. In each these plots, we include data for both row | and row 8, for two values of the

distance between the row | and the VCSEL array, Oum, and 100 pm.

The launching efficiency in row 1 (the triangles) follow a definite pattern. For single-
mode fiber, the -3 dB tilt tolerance for row 1, at a distance of O tm, is ~3.7 degrees. As the
core radius increases, the -3 dB tolerances at 0 pm and 100 pm converge rapidly to a
value quite close to that of the acceptance angle of the individual fibers (as determined by
numerical aperture; ~11 degrees). In contrast, the launching efficiency of row 8 (the
diamonds) drops much more quickly for fibers that have a small core radius. As the core
radius increases, the fiber becomes less influenced by offset and distance, and tilt
tolerances for row 8 improves. For 50 um fiber, there is no significant difference between
the tolerances of row | and row 8 up to the considered distance of 100 yum and none is
expected up to SO0 m on the basis of the previous results for offset and VCSEL-fiber

spacing.

As in the case of roll, alignment requirements for tilt can be improved by reducing
the pitch of the array, in which case the tolerances of smaller core fibers should have
values nearer to the acceptance angle, and this at larger distances. In our previous
example, an 8x8 75 um pitch array of 25 um fibers, we find -1 dB alignment tolerances to

tilt of 9 degrees at a distance of 0 um and 100 wm, and 7 degrees at 250 pm.

We have investigated the effect of alignment on the insertion losses between an array
of VCSELs and an ordered array of fibers. We will discuss the impact our results have on

system design in the following chapter.
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FIGURE 3.34 Insertion loss as a function of tilt, distance, and row number. The core radius is 1.6 [Lm.
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FIGURE 3.35 Insertion loss as a function of tilt, distance, and row number. The core radius is 5§ lm.
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FIGURE 3.36 Insertion loss as a function of tilt, distance, and row number. The core radius is 10 [tm.
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FIGURE 3.37 Insertion loss as a function of tilt, distance, and row number. The core radius is 15 [m.
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FIGURE 3.38 Insertion loss as a function of tilt, distance, and row number. The core radius is 20 Lm.
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FIGURE 3.39 Insertion loss as a function of tilt, distance, and row number. The core radius is 25 jlm.
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FIGURE 3.40 Insertion loss as a function of tlt, distance, and row number. The core radius is 50 im.



Chapter 4

Conclusion

In the previous chapter, we presented results on the total launching efficiency under
several alignment conditions between a fiber array and a typical VCSEL array, based on
the numerical solutions to the equations derived in chapter 2. From these results, we were
able to obtain -3 dB and -1 dB alignment requirements for distance, offset, roll, and tilt, as

a function of the various choices of the array parameters: core size and array dimensions.

The launching efficiency coefficients were expressed by a normalized overlap inte-
gral between the aperture field and the individual fiber modes. The analysis involved
several approximations of the underlying physics. The Born-Kirchhoff approximation
simplifies the problem considerably by describing the aperture field in terms of plane
waves from a uniform semi-infinite dielectric interface. We then assumed that the output
from each VCSEL can be adequately modeled by a Gaussian beam. Based on previous
research done by others, we then argue that the aperture field can also be described by a
Gaussian beam whose parameters can be derived from the incident field. A small angle of
incidence and the Fresnel approximation was frequently invoked to simplify our mathe-
matical treatment. Finally, we assumed expressions for the optical modes which have

been derived for an isolated, semi-infinite, single-clad, weakly-guiding, cylindrical
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waveguide structure. The approximations described here are extensively used in research

to model fiber coupling. We now offer a summary of our results.

As expected, alignment tolerances are strictest for single-mode fiber and become
more relaxed with increasing core radius. Our results show that -1 dB performance is not
possible for single-mode fiber without the use of some sort of focusing optical element,
and the -3 dB tolerance to offset is ~1 um. Since the issue of modal dispersion is not as
critical for the transmission distances of data which characterizes optical backplane
applications, the poorer insertion loss and stricter alignment conditions of single-mode

fibers compared to multimode fiber does not justify their use at this interconnection level.

We have shown that the spacing between the source array and fiber array is a critical
design parameter to minimize since not ornly does it set the baseline minimum insertion
loss when no other forms of misalignment is present, its increase also reduces alignment
tolerances to offset, roll, and tilt. Beyond a certain distance, high power transmission can
no longer be supported by smaller core fibers. This distance will usually be restricted by
the specifics of the packaging design, and will in turn determine the minimum value of the
core radius of the fiber array elements (or vice-versa). Any design that can constrain the
spacing between VCSELs and fibers to under 100 um can support ordered arrays with

individual core radii of 10 um or more.

The lateral alignment of each individual fiber element to its beam is an equally
important consideration for system design. Alignment tolerances to offset are approxi-
mately equal to the core radius for a VCSEL-fiber spacing of 0 um and, though reduced,

continue to increase linearly with it at larger spacings.
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Roll misalignment can be treated as a special case of offset for the purpose of doing
calculations, where the lateral displacement produced in individual fiber elements
increases further away from the rotation axis. The roll tolerances are thus sensitive to the
dimensions of the array, increasing with decreasing pitch or increasing for a smaller
number of channels. In many cases, tolerances to roll of 2 to 4 degrees can be achieved for

a suitable choice of pitch.

We base this choice of pitch on the premise of a preliminary study of optical
crosstalk, involving the direct coupling of a beam into adjacent fibers. As expected, we
find that arrays made of large core radius fiber cannot support pitches as low as those made
of smaller core radius fiber. Nevertheless, we should note that arrays made of larger core
fibers usually remain somewhat more tolerant to roll than smaller ones. The main impact
on system design is that there is a trade-off between relaxed alignment tolerances and

throughput density (bandwidth per unit area).

When tilt is considered, we have shown that high numerical aperture fiber elements
are unnecessary. When the core radius is small, the alignment tolerance is determined by
the axial and lateral shift in the row furthest to the tilt axis rather than by the acceptance
angle of the individual fiber elements. For larger core radii, the alignment tolerances
rapidly converges to a value equal to or slightly lower than the acceptance angle. The
acceptance angle in this case is 11.54 degrees for N4 = 0.2, which is more than sufficient

for alignment purposes when larger core fibers are involved.

As a design example, we have also underlined the -1 dB alignment tolerances for an

8x8 75 um pitch array, with individual cores of 25 pum radius located within 5 pum of their
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ideal lateral position (the square lattice). With these parameters, we concluded that the
remaining tolerance budgets for packaging are, at a distance of 0 um, 100 pm, and 250 um
respectively: 19 um, 16 um, and 7 um for offset, 2.9 degrees, 2.5 degrees, and 1.1 degrees

for roll, and finally, 9 degrees of tilt in the first and second case and 7 degrees in the third.

Of course, these numbers are suitably reduced when more than one form of
misalignment is present. Nevertheiess, connectors are routinely being made to position a
single single-mode fiber to micrometer accuracy for long-distance telecommunications
and it should not be difficult to design, manufacture and maintain one to position the above
fiber array to within the above specifications for interboard data transmission. With each

channel operating at 1 Gb/s, the total throughput for the above interconnect would be 64

Gb/s, with a throughput density of 17.8 Tb s™' cm™>. Interestingly, extremely large core
radius fiber elements are not necessary to obtain adequate positioning requirements. Given
the recent popularity of large core (@ > 250 um) plastic optical fiber, interconnects made of
these fibers would be bulky and have lower throughput densities then those made of fiber

elements with ¢ < 50 um.

We have thus demonstrated that multimode ordered fiber arrays fabricated with the
rod in tube method can be attractive candidates for high-speed parallel optical
short-distance communications. These arrays can be easily mass-produced and have the
advantage of more efficient power transmission over traditional, closely packed, image
guide technologies. Furthermore, we argue that their reduced alignment tolerances,
compared to image guides, should be compatible with present-day packaging capabilities.

That is the main conclusion of this thesis.
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Finally, we offer several directions for additional research. Do the actual numbers
presented here reflect the true performance of a device? Certainly, experimental
measurements should be attempted. Rigorous ab initio methods can also be of use to
verify our results. For instance, it may be possible in certain cases to solve Maxwell’s
equations numerically by using a finite element or a finite-difference time-domain
approach. A mare thorough study of optical crosstalk inside the fiber array, using realistic
models, can provide a better measure of the lower limit of the pitch for a given core radius.
From these results, a clearer understanding can be obtained of the trade-offs between the
alignment tolerances, total throughput and throughput density of interconnects using these
arrays. A dispersion analysis can be performed to determine the maximum modulation for
each channel. If needed, arrays of graded-index fibers could conceivably be constructed,
and the model presented in chapter 2 can be adapted to estimate the launching efficiency.
Cross-coupling between modes during propagation can be investigated. Other refine-
ments, such as realistic beam models, are also possible. Finally, a more exhaustive search
of parameter space can be attempted to constrain the optimal interconnect design. The

only limit is time and effort.



Appendix A

Optical fiber modes

A.1 Exact Expressions
An outline of how the exact forms for the modes are obtained is instructive and will
help understand the approximations that will follow. Formally, the modes can be found by

solving Maxwell’s equations for a charge-free dielectric medium,

VxH = Ea—E
at

oH ° (A-1)
VXE = —u.;
Ve(¢E) =0

where € and P are the electric and magnetic permeabilities of the medium. Since most
fibers are cylindrically symmetric, the use of the cylindrical coordinate system is conve-
nient. But because the unit vectors ap and a¢ are vectors which change direction relative to
a cartesian coordinate system, the wave equations involving the transverse components,
derived from equations (A-1), are quite complicated. However, the wave equations for the

longitudinal components, the z direction, remains simple as shown below:
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2
22 | Y R<1 .
aVi“+ ) {Epzoerz} = R>1" (A-2)

where R =p/a is the normalized radius, V,? = V>-9%92* is the transverse Laplacian and u,
and w, are the normalized transverse propagation and attenuation constants, respectively.

Furthermore, U, and w, are interrelated because

2. wi= Y2 .
up+wp—V, (A-3)

where V is the normalized frequency given by
2
V=-'k3‘-’/nf-n§, (A
0

where Ay is the wavelength in free space.

Due to cylindrical symmetry, the p ® mode propagating along the fiber has vector

fields given by

E (x,v,2) = {e(x,y)+E,_(x,y)}e
14 14 P2 (A=)

H,(x,y,z) = {h,(x,y) + H, (x,y)}e

where the fields have been separated in transverse and longitudinal components. f, is the

normalized modal propagation constant given by

2 2 )
B, = £7(1-8,). {A-6)
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where

8, =-L2=/-2 (A-T)

k' = = _'_’nl . (A'S)

When the dielectric and magnetic permeabilities are functions of the transverse
coordinates only, the transverse components of the modal fields are derivable from the

longitudinal components (Stratton 1941):

(2

u, _ K JE_‘ L\, R<1

k= jaB |V.H ,+(—) —( ) x V,E

w2l f aBy ViHpe B,/N 1 18/ e R>1
. P (A-9)
(u '

P _ k u; R<l
\_Wp]ep = jaBp[V,E ""+(B—p) A/;;..XV,H P{' R> 1

where 8 is given by

e n,\2
= 1-(—2) = I—(—g) } (A-10)
& ny

From equations (A-2) and (A-9), we can obtain expressions for the modes,



L1, R) + 1, (R}
ep =jB n gl((p)
(11K (WR)-1K,, (wR))

b =
vV A
Sy

pi{YzJu ((UR)~YoJ;  (uR)}
eq; = JB T\ gz((p)
(1K, WR) + 1K, (WR))

5=
vV A
— g

rl
ho =fk'& 82(9)

dow
.-G?){YSK‘-'(WR)+76Kl+{(WR)} 7 @b

£1(9) U:j :]

B!
RLEEICORS Z/NICO)
hy=jk /-‘

n
|2 (¥sKy (R =YK, (WR))

J(uR) R<l'[
.= 81(9) L
N,K,(WR) > 1
€(Fy\[8,(9)
H-:A/Z(__z.\ L_ E_
Np\B Nley )]t
where
W A1
3 KI(W)‘
The y’s are given by
2y, =F,+1
2y.=F, -
B=F-1 , (A-13)
2y, =F +1

2, =2y,-90
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v\ l
Fa = (H_W) [ﬂ[ 'H\g]'

-][ "(u) _

nlzm_

and

_ K[ "(w) _
L wK (w) -

The g tunctions are given by

g(9) =

8:(9) =

+

K
[ ‘“(W)]*—li-

wK(w)

w

sin(l@)
or
cos (1)

cos(lp)
or

-sin(lg)

78

(A-14)

(A-19)

{A-16)

(A-1T

(A-18)

The two possible choices for each function g corresponds to the two possible states of

polarization.Whenever the double sign notation is used, upper sign corresponds to the

hybrid HE,,, modes while the lower sign is for the EH,,, modes. The subscript / corresponds

to azimuthal variations and m corresponds to radial variations. The J, and K| are the Bessel
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. function of order / and modified Hankel function of order /, respectively. When { = 0, the

fields degenerate to the TM,,, and TE,, modes:

Jo(uR) R<1
E.= [R ]
- n3K0(WR) > 1.4
JuR
=ip u R< l]
€ =J 15K (wR) £R> t ™,,. (A-19)
W

and

J(uR)
H-_g R ] [ﬁqJ
: k n3K (WR) >1

J (uR)
e =B E:ﬂ} TE,,,. (A-20)
. n3K (wR) > 1
€| ~ R<l
h=§, dixe [R< ]
k u >1

The subscript p has been dropped for convenience.

The next step is to apply boundary conditions to the fields at the interface between the

core and the cladding. By so doing, one obtains the eigenvalue equation of the waveguide
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2
2 . 12 2l WM,
F,-F, =0,F, or equivalently (F—,z) -1= Bp[j%——ljl. (A-21)

The cigenvalue equation can then be solved to obtain the complete set of u,’s.

A.2 Asymptotic expressions
Snyder (1969a) noted that considerable simplification results in the eigenvalue
equations when 6,«1. By representing all quantities by a power series of 6,, zero-order

expressions can be obtained. Thus, for example, we have

(D 2 () "

up(v,ep)-U-l-Bpu +9pu O (A-22)
n 2

/ = ; 2

wp(v,ep) W+6pw +9pw + ... (A-23)
(0) n 2.2

Fy@,)=F, "+0,F, " +8,F, " +.... tA-24)

Substituting the power series within the eigenvalue equation and the equation for V.
leads to simple expressions when like powers of 8, are equated. The zero-order in 6,-U,

expressions are given by

2iw?l, (A-25)

<
n
<

) 0
FO=r0 =71, (A-26)
and

uI (W) _ WK, (W)
Jiz1(U) ~ K3 (W)’

(A-2T)
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where the last equation is the asymptotic form of the eigenvalue equation.

An equivalent equation can be obtain by substituting appropriate Bessel recurrence

formulas (Snyder 1969a) into (A-27) to obtain

UJizo(U) WKz, (W)
JI:I(U) KI:I(W)

(A-27D)

The eigenvalue equation can be solved numerically or graphically (see figure A.1)

for U.

UJ (UML)

[
|
|
| WK, WYKo(W)

— — p— o ] m— e e om——

1 I 1
4 6 8 10V U

FIGURE A.1 Graphical construction for solving equation (A-27 b) for the HE, ,, modes

Each intersection in figure A.1 represents a solution, with U, = U, to the eigenvalue
equation and corresponds to a valid mode. The left-handed side of the eigenvalue equation
has multiple branches, which are independent of V, intersecting the abscissa at the roots of

J 1.{U) while the nght-handed side intersects each branch once and meets the abscissa
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when U = V. As V increases, so does the number of modes allowed. The roots of J ,,(U) are
called the cutoff values of the modes, since V must be higher than this value in order for
the appropriate mode to be excited. When V<2.405, all modes except HE,; are cut off and

operates as a single-mode waveguide. Near cutoff,

U p= 14
(A-28)
w p = 0
while far from cutoff,
U p= U p (A-29)

where Up“are the roots of J; _(U), and corresponds to the dashed line in fig.A.I: that is,

2405  HE,,

3832 TM,,, TE,,, HE,,
- | 5135  EH,,HE,,

P 1550 HE,

6370  EH,,, HE,,

| 7016  TMyy, TE, HE,,

(A-30)

From the definition of 8, (2.11), it can be seen that 8,2 «I for all & when far from
cutoff. However, at cutoff, 8,” = § which is it’s largest value. Thus, if § «! then the asymp-

totic approximation is valid for all values of V.

Although the eigenvalue equation require numerical or graphical solutions, it can be

shown (Snyder 1969a) that U, is in excellent agreement with
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w UV
U,(vy=U,e ", (A-31)

unless near cutoff.

The expressions for the fields also take simpler forms when 6, «1. Using

2

B, = £+0(8,), (A-32)

then (A-9) becomes

£ 1 - R<1 9

h =[—‘[ ]zx [ ]+0 83). A-33
P pll-8 ®p R>1 %) (A-3)

and when § «l,

~ {1

hp = A/;._xep forall R. (A-34)

Furthermore, by expanding the fields, given by (A-I1), as power series of 8, and

equating like powers we can obtain approximate forms for the fields.

From the zero-order expressions of F, and F, (2.31), the ¥’s are given by

Y(O)=Y(0)_l HE
7% Tlo EH

: (A-35)
o _ o _]0 HE
2= { EH

Using (A-27).(A-32), (A-35) and multiplying by a common factor



iU
kJp 21(U)
-ju
)

hybrid modes

[ = 0 modes

the longitudinal components become

sin(lg)
or 1 £1(R)

cos(lp)

g BP(J,J;(:?J))

JolU)

KA (J (U))f“ (")

0

cot(lg)

€
:F E or EPZ

-tan(lg)

\ J uep(JOEUDf olR)

while the transverse components are given by

\

sin(l@)
¥ oo |[fI(R)

cos({p)
~fo(R)

0

(A-36)

hybrid

™

TE

(A-37)

hybrid

™

TE

hybrid

(A-38)

TE
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cos(lg)
or [f1(R) hybrid
—sin(lp)
€y = 0 ™ . (A3
\ f(}(R) TE
where

J; - (UR
_.’_M R<l
Jl ;I(U)

fi(R) = . (A-40)
K———l z1(WR) R>1
K; (W)

The longitudinal fields are of order 8, smaller than the transverse fields and are

negligible.

We require that the modes be orthonormal. Thus we define a normalization constant

- [4 (4 5
Y, = I(epxhp)-zda = J;'—ﬂepjzda = 2na2J;J:R f1(R)dR. (A<D,

After doing the integration and applying the eigenvalue equation. we find

€ 2
v, = J—Enaz(Ul) E. (A=I2)

where
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. _ KWK, £5(W)
v K! xl(w)

{A3)

Normalizing and applying a coordinate transformation to (2.43) and (2.44) leads to

sin(/ F1)o cos({ Fl)o
X or +y or fi(R) hybrid
cos(/ F1)o —sin({ F 1)
€ - ~ .
Ve, = Jw—‘p‘/%hPXz = | ~(Xcos@ +ysin@)fy(R) ™
(-xsin@ + ycos @) fo(R) TE

(A-H)

Equation (A-44) will be the expressions used in chapter 2. Notice that the HE,,,

modes have no azimuthal dependence.

Gloge (1971) has shown that from the asymptotic expressions for the fields. it is
possible to construct modes, the LP,,, modes, whose transverse componenis are essentially
polarized in one direction. LP modes constitute a different basis which we could have used
to expand the fields at the fiber face. The LP basis was not used here in order to keep the

notation consistent with Snyder (1969b).

For weakly-guiding fiber, 8«1. most of the modes are actually degenerate meaning
that they have identical eigenvalues, U,; that is, most modes satisfy an identical eigenvalue
equation to that of other modes, (A-27) or (A-27 b), once the appropriate transformation
by Bessel function recurrence formula is performed. Thus, the TM,,, and TE,, modes are

degenerate with the HE,,, modes. The same is true between the EH,,, and HE,,,,, modes.
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Gaussian beams

The Gaussian beam is a frequently used model in optics. Its popularity stems trom
the fact that it represents a possible solution for the field inside a cavity resonator

(Kogelnik and Li 1966), and so is an adequate initial model for many lasers.

Let assume that the tangential component of the electric field on the reference plane

2'=0 (see figure 2.4) is well described by the Gaussian function exp(-pzlwoz):

'y 2
=P/ wq) y.' (B-1)

E(x,y,0) = Eye

The constant wy is called the beam waist and corresponds to the radial distance from
the origin, along the z'=0 plane, defining the circle into which 86% of the power of the
beam is concentrated. The spectral function (Smith [997) corresponding to (B-1) is given
by

Fylkyky) = Eqf

X ==t

—(x/wy)* ik, -{y/ :""k-.
e T T Ty, (B-2)
X =—on

where the superscript ' have been conveniently omitted, and &, and &, are the vector wave

number components along x and y respectively. Each of the integrals can be evaluated

using
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_ 2 / 2
J" Pl L L Y ﬁte(q 2p)

D aad

p>0, (B-3)

to obtain

2.,k +E)we/2)
F(k, k,)) = rwoEqe 7 :

(B-4)

Interestingly enough, the Fourier transform is also a Gaussian function.

The electromagnetic tield in the half space z>0 can be obtained (Smith 1997) from

the expression
k —jlkx+ky+ k.2
am@=_%rr@j@mhmﬂu Pk, @)

The integration of {B-5) for an arbitrary point in space cannot be performed in closed
form. Fortunately, the problem can be simplified considerably by applying the paraxial (or
Fresnel) approximation. In this approximation, we assume that the spectral function is of
negligible amplitude except for vector wave numbers that are nearly parallel to the z axis.

In mathematical terms, this means
Fy(kx, k_v) =0, (B-6)

unless

Jes+E; < kg, (B

where kg is the magnitude of the vector wave number in free space. The wave number £, is

then approximately given by
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2 2
3 1. (k. +k)

0

in the exponential term of (B-5), and by

k.,=k°, (8'9)

-~

elsewhere. The second order term for the wave number is kept in the exponential term to

take account of its greater sensitivity to errors.

The electric field becomes
- k.x+ ~ftk,v+
E(x,y.2) =—— ""“‘fj"(_‘-k—v)mk ]( %, ( “)da k.
(2n) e
{B-10)
which can be rewritten as
. k,.t+ /(k y+
1 -jkez(, .j O ’( ) y
E(x,y,z) =——e (_v :——) Fylk,ky)e dkxu'kv .
- e Fatkaky
(B-11)

The spectral function (B-4) satisfies the conditions (B-6) and (B-7) provided that
kgwg>>1. The beam waist must be large compared to the wavelength. After substituting

(B-4) into (B-11) and using (B-3), the electric field of the Gaussian beam becomes
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P ¥ L kep’
Egw, jtb(z)[- . .Y(Y)Woejfb(z)z]e{w(z)) e"(" ”*zr(:;)

z) = . B-12
E(x,y,2) e WD) (B-12)
where
2
Y(y) = 2y/kgwy
-1
®(z) = tan” (22/kgwe) o)

’ 2.2 '
w(z) = wg 1+ (2z/k0w6)

2 2
[(z) = z[ 1 + (kgwy/22) |

The function w(z) is called the beam radius and defines a circle into which 86% of the
total power of the beam is concentrated. When z=0, then w(z)=wj. I'(2) is the the radius of
curvature of the wavefronts for points along the axis of the beam (the z axis). Near the
beam waist, the wavefronts are planar (I'(z) becomes infinite), then their radius of curva-
ture decreases to a minimum at the Rayleigh range (z=k0w02/2), after which they begin to
propagate as spherical wavefronts with increasing I'(z). ®(z) is a phase retardation term
which corresponds to a cumulative excess delay of the wavefront, in comparison with a

plane wave or a spherical wave, as it travels along z. This phenomenon is known as the

Guoy effect.

Generally speaking, the z directed component of the field is completely negligible.
Furthermore, a paraxial electromagnetic wave behaves locally as a TEM plane wave. At

each point, the vectors E and H lie in a plane tangential to the wavefront surfaces: that is,

normal to the vector wave number k. The optical power flows along the direction E x H,
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which is parallel to k, which is approximately parallel to z. The intensity is thus approxi-

mately given by the expression appropriate for TEM plane waves; that is,
lEI (B-14)
where 1'|=([.th—:)“2 is the impedance of the medium. The total power flow is obtained by

integrating the intensity over a reference plane of constant z. Setting this power to | W, we

can constrain the value of E;. Thus, using z=0 as a reference plane,

S’Ié*L

K
=5l [
0 ‘0
. (B-15)

B2 ,:ngg

n( )—4' = an

=1

The electric field of the normalized Gaussian beam becomes

E(x,y,2) = 2“;1(1/;1t 10 _(w?,)) e At zrm) 7. (B-16)

which will be the expression used in chapter 2. Obviously, the choice of the y direction for

polarization is arbitrary, which can take any direction orthogonal to the z axis.



Appendix C

Mathematica programs

C.1 HeModeSolver.m

(* :Title: HeModeSolver.m *)

(* :Context: MyPackages'HeModeSolver™ *)

(* :Author: Frederick Mathieu *)

(* :Summary: Determines the set of allowed HE modes in a specified weakly-guiding
cylindrical single-clad optical fiber. Also solves the characteristic equation for the eigen-
value. U, for each of the allowed HE modes*)

(* :Copyright: © 1999 by Frederick Mathieu *)

(* :Package Version: 1.0 *)

(* :Mathematica Version: 3.0 *)

(* :Keywords: Optical fiber, caracteristic equation *)

(* :Sources: Frederick Mathieu 1999, M.Eng. thesis, McGill University*)

(* :Limitations: The function BesselJZeros[8,x] displays odd behavior when used as an
argument for other functions. To work around the problem. I simply generated a list of its
values which where assigned to grr which then was used as the argument.*)

(* :Requirements: NumericalMath/BesselZeros.m*)
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(* set up the package context, including public imports *)
BeginPackage["MyPackages” HeModeSolver™}
(* usage messages for the exported functions and the context itself *)

HeModeSolver::usage = "HeModeSolver.m is a package that determines the set of
allowed HE modes in a specified weakly-guiding cylindrical single-clad optical fiber. Also
solves the characteristic equation for the eigenvalue, U, for each of the allowed HE
modes."

CutOff::usage = "Cutofffv_] creates a list of the cutoff values of U<=v for the HEIm
modes.”

HeModeSolve::usage = "HeModeSolve[v_] creates a list of the eigenvalues of the allowed
HE modes for a given value of the normalized frequency v."

Begin[""Private™] (* begin the private context (implementation part) *)

Needs{["NumericalMath’ BesselZeros™"]

(* definition of auxiliary functions*)

CutOfflv_]:=
Module[{temp={ } result={ }.i,j=0.k=0,grr=( } },

(*Creates a list the cutoffs of HE1m. which satisfies J_-1(cutoff)=-J_I (cutoff)=0,and must
also include cutoff=0%*)

For{i=1,BesselJZeros[ 1, {i.i}]{[ 1 ]<=v.i++.j=i];

result=Append[result,Prepend[BesselJZeros{ 1,j],0]]; j++; (*to compensate for the added
0*)

(* Appends the list of the cutoffs of HEIm where I>1, which satisfie J_I-2(cutoff)=(), and
must not include cutoff=0%*)

grr=BesselJZeros[8,75];

While[If{terp!=( }Last[temp]>v,False],gm=Delete[grr,Length[grr]]]; (* For Unknown
reasons, BesselJZeros(8.j] hangs in functions*)
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While(j>0,
If[k!=8,temp=BesselJZeras[k,j],temp=gr];
While[If[temp!=( } Last[temp]>v,False],temp=Delete[temp,Length[temp]]];
j=Length{temp]; Ifftemp!=({ } ,result=Append[result,temp]]; k++];
Return[result]

] (*end of cutoff module*)

HeModeSolve[v_}:=

Module[ {c,l,m,result={ } ,temp={ } temp2={ } },

¢=CutOff[v}];

I=Length[c];

Do[m=Length(c[{j]]};

Do[

temp |=FindRoot[u*(Bessell[j,u}l/Bessel[j- | ,ul)==Sqrt[v*2-ur2]*(BesselK[j,Sqrt[ v/2-
ur2})/BesselK[j-1,Sqrt[vA2-ur2]]),{ u.c{[j,i]]+0.0001c[fj.1] ] If[m>i.c{[j,i+1]].v] }.Damp-
ingFactor->1/3, MaxIterations->200];

temp2=Append[temp2.temp1],{i,l,m }];result=Append[result,temp2];temp2=({ }.{j.1.1}];
resuit=u/.result:

Return[result]

} (*end of HeModeSolve module*)

End{ | (* end the private context *)
Protect[ CutOff, HeModeSolve ] (* protect exported symbols *)

EndPackage[ ] (* end the package context *)
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C.2 CouplingEfficiency.m

(* :Title: CouplingEfficiency.m *)
(* :Context: MyPackages CouplingEfficiency™ *)
(* :Author: Frederick Mathieu *)

(* :Summary: Finds the ratio of coupled power to input power, into a completely specified
fiber mode. Assumes a Gaussian beam input.*)

(* :Copyright: © 1999 by Frederick Mathieu *)

(* :Package Version: 1.0 *)

(* :Mathematica Version: 3.0 *)

(* :History: one line description of earlier versions and change log*)(*Optional*)

(* :Keywords:Gaussian beam, optical fiber. mode excitation, coupling efficiency *)

(* :Sources: Frederick Mathieu 1999, M.Eng. thesis, Mcgill University*)

(* :Warnings: The argument u for the eigenvalues of the modes are not independant to the
normalized frequency v. Thus, incorrect u values for a given v will give physically mean-

ingless results without generating a error message.*)

(* Limitation: Can only handle tilts and offsets in the same direction*)

(*BeginPackage["MyPackages CouplingEfficiency""]*)

CouplingEfficiency::usage = "CouplingEfficiency.m is a package that generates a list

of the launching efficiency for the given optical fiber modes excited by a Gaussian beam."
Efficiency::usage = "Efficiency is a function that returns a list

of the launching efficiency for the given optical fiber modes excited by a Gaussian beam."

Begin[" Private™"]



fAlv_,q_J1_y_V;y<=1 := BesselJ[I-1,q*y}/BesselJ{1-1.q]
fAfv_q_l_y_V/; y>1 := BesselK[I-1,Sqrt[v*2-q*2]*y}/BesselK[l-1,Sqrt[v*2-g*2]]

EfficiencyNoMisAlignment[a_,v_,u_Listd_,w0_Jlambda_,z_}:=
Module[{ w,r,G,p.ksi,result={ } },
w=w(*Sqrt[1+((z*lambda)/(Pi*w0*2))*2];

r=z*( 1 +((Pi*w0*2)/(z*lambda))*2);

Do[

ksi=BesselK[ |,Sqrt[v*2-u[[ 1,i]]*2]]*BesselK[- I,Sqrt{v*2-u[[ 1.i}]*2]}/
(BesselK[0,Sqrt[vA2-u[[ 1,i]]*21D”2 .

G=NIntegrate[x*f{v,u[[ L.i}], L.x]*Exp[-((a*x)*2)*((1/wA2)+(I*Pi)/
(lambda*r})},{x.0.d } MaxRecursion->10,AccuracyGoal->6,PrecisionGoal->6]:

p=(8/ksi)*(Abs[{a*u[[ L.i]]*G)/(w*v)"2:
Print[i," ".p," ".GL
result=Append[result,p],{i, 1 Length[u[[ 1]]}}};
Return[{result}}

| (*end of EfficiencyNoMisAlignment module*)

EfficiencyOffset{a_,v_,u_List,d_,w0_,lambda_,z_,of_J:=
Module[{w,r,G,p,ksi,sca,result={ } result2=( } },
w=w0*Sqrt[ 1 +((z*lambda)/(Pi*w("2))*2];
r=z*(1+((Pi*w(*2)/(z*lambda))*2);
sca=Exp(-(of/w)*2];

Print{sca];

Dof

96
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Do[

ksi=BesselK[j,Sqrt[v*2-u[[j,i]]*2]]*BesselK[j-2,Sqrt{v*2-u[ [j,i]]"2]}/(BesselK j-
LSqrt{vA2-uf[ji]}1*21)"2 ;

G=NIntegrate[sca*x*f{v,u{[j,i]],j.x]*Exp[-((a*x)*2)*((1/wA2)+(I*Pi)/
(lambda*r))]*Bessell[j- 1,2*a*x*of *((1/wA2)+(1*Pi)/(lambda*r))]

.{x,0,d},MaxRecursion->10,AccuracyGoal->6,PrecisionGoal->6];
p=(8/ksi)*(Abs[(a*u[[j,i]}*GY(w*v)])"2;

Print[1," ",)," ".p." ".Gl:

result=Append{result,p],{i,I,Length{u[[j]]] } };result2=Append([result2 result];result={ }.{j,
LLength{u}}];

Return{result2]

] (*end of EfficiencyOffset module*)

EfficiencyTilt[a_,v_,u_List,d_,w0_,lambda_,z_,an_]:=
Module[{ w,r,G,p ksi,result={ } resul2=( } },
w=w0*Sqrt[ | +({(z*lambda)/(Pi* w0 2))"2];
r=z*(1+((Pi*w(0*2)/(z*lambda))*2);

Dol

Do[

ksi=BesselK[j,Sqrt[vA2-u[[},i]]*2]}*BesselK[j-2,Sqrt{vA2-uf[},i]]*21)/(BesselK [j-
1.Sqrt[vA2-u[[j,i]]*21D"2 -

G=NIntegrate[x*f[v,u[[j.i]],j.x]*Exp[-((a*x)*2)*((1/w"2)+(I*Pi)/(lambda*r))}*Besseli[j-
l,a*x*an*2*Pi/lambda]

.{x,0,d}, MaxRecursion-> 10,AccuracyGoal->6,PrecisionGoal->6};
p=(8/ksi)*(Abs[(a*u[[j,{]]*GY(W*V)}D"2;

Printfi,” ",3," "p." ".G," "ksi];
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result=Append[result,p],{i,1,Length{u[[j]]] }];result2=Append[result2,result}];result={ }.{],
L,Length[u] }];

Return{result2]

1 (*end of EfficiencyTilt module*)

EfficiencyOffsetPlusTilt[a_,v_,u_List,d_,w0_,Jambda_,z_,of_,an_j:=
Module[{w.r,G,p,ksi,sca,result={ } resul2={ } },

w=w0*Sqrt[ 1 +((z*lambda)/(Pi*w0"2))"2];
r=z*(1+((Pi*w0*2)/(z*lambda))*2);

sca=Exp[-(of/w)*2];

Print[sca};

Dof

Do[

ksi=BesselK[j, Sqrt[vA2-u[[j,i]]*2]]* BesselK[j-2.Sqrt{vA2-ul[j,i]]*2]/(BesselK[j-
L,Sqrt[v*2-u[[j,i]]*2]D*2 ;

G=NIntegrate[sca*x*f[v,u[[},1]],).x]*Exp[-((a*x)A2)*(( 1/w"2)+(I*Pi)/
(lambda*r))}*Bessell[j-1,2*a*x*of*((1/w”2)+(I*Pi)/(lambda*r)-(I*Pi*an)/(lambda*of))]

.{x,0,d },MaxRecursion->10,AccuracyGoal->6,PrecisionGoal->6];
p=(8/ksi)*(Abs[(a*u[[jA]I*G)(W*V)D"2;
Printfi,” ",j," ".p." ".GI;
result=Append[result,p],{i,l,Length[u([j]]] }};result2=Append[result2 result];result=( },(j,
L.Length{u]}};
Return[result2]

] (*end of EfficiencyOffsetPlusTilt module*)



9

Efficiency[a_,v_,u_List,d_,w0_,lambda_,z_,of_.an_J/;((of==0)&&(an==0)):=Efficiency

NoMisAlignment[a,v,u,d,w0,lambda,z]

Efficiency[a_,v_,u_List,d_,w0_}lambda_,z_,of_,an_J/;((of!=0)&&(an==0)):=Efficiency

Offset[a,v,u,d,w0,Jambda,z,0f]

Efficiency{a_,v_,u_List,d_,w0_,lambda_,z_.of_,an_}/;((of==0)&&(an!=0)):=Efficien

cyTilt{a,v,u,d,w0,]Jambda,z.an]

Efficiency{a_,v_,u_List,d_,w0_,lambda_,z_,of_,an_}/;((of'=0)&&(an'=0)):=Efficiency
OffsetPlusTilt{a,v,u,d,w0,lambda,z,of,an]

End| ] (* end the private context *)
Protect[CouplingEfficiency] (* protect exported symbols *)

EndPackage|[ ]
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