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Fault Tolerance and Yield Improvement of Embedded Memories

Abstract

Recent advances in microelectronics industry allow us to create a System-On-Chip. The

embedded memory is one of the vital parts of any system-on-chip. Today it is not enough

just to design and fabricate the embedded memory. In order to put the System-On-Chip in

mass production, the designer has to be concerned about yield and reliability of the

embedded memory. This thesis provides background on fauIt tolerance improvement

theory, and gives several new solutions on how to improve reliability and enhance yield of

the embedded memory in efficient ways.

A complete fast embedded SRAM and Control Block for Programmable Clock Manager

have been designed, implemented, integrated into a System-On-Chip and tested. The

thesis incorporates two novel circuits that significantly improve embedded memory yield

and reliability.

This thesis describes new embedded memory architecture for enhanced yield,

performance and power consumption. The architecture is able to tolerate major defects

including memory kill defects. The mathematical model of the new architecture is

presented as weIl and shows the advantages of new architecture. The new induced Error­

Correcting Code (ECC) for MuItilevel Dynamic Random Access Memory (MLDRAM) is

introduced. The ECC is able to correct 2-bit error and detect 4-bit error. The new ECC also

improves reliability and power consumption of the embedded MLDRAM.
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Résumé

Les avancées récentes dans le domaine de la microélectronique permettent maintenant

de créer un système-sur-puce. La mémoire intégrée est une partie essentielle de n'importe

quel système-sur-puce. Aujourd'hui, il ne suffit plus simplement de concevoir et de

fabriquer cette mémoire. Afin de produire en série un système-sur-puce le concepteur doit

tenir compte du rendement et de la fiabilité de cette mémoire. Cette thèse présente les

bases de la théorie d'amélioration de la tolérance des fautes. De plus, elle décrit de façon

efficace de nouvelles solutions pour améliorer la fiabilité et mettre en valeur le rendement

de la mémoire intégrée.

Une mémoire intégrée de type SRAM ainsi qu'un bloc de commande pour le

Gestionnaire de Fréquence Programmable ont été conçus, mis en application, intégrés

dans un système-sur-puce et testés. La thèse inclut aussi deux nouveaux circuits qui

améliorent de manière significative le rendement et la fiabilité de la mémoire intégrée.

Cette thèse décrit une nouvelle architecture de mémoire intégrée pour mettre en valeur

le rendement, la performance et la consommation de puissance. L'architecture de la

mémoire peut tolérer des problèmes tel que le défaut de destruction. Le modèle

mathématique de la nouvelle architecture présente et montre les avantages de

l'architecture. Le nouveau Code de Correction des Erreurs (CCE) induit pour la mémoire

dynamique à accès sélectif à multi-niveaux (MLDRAM) est présenté. Le nouveau CCE

peut corriger une erreur de 2-bit et détecter une erreur de 4-bit. Le nouveau CCE améliore

également la fiabilité et la consommation de puissance de la MLDRAM intégrée.
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Contributions of Authors

The core of this manuscript is dedicated to investigation of new methods of fault­

tolerance of embedded memories. Chapter 1 presents brief overview of industrial trends in

embedded memory domain and shows motivations to future work in fault-tolerant

memories field.

Chapter 2 describes main topics that are necessary to understand in fault-tolerant

memories domain. This chapter briefly overviews basic memory types widely employed in

mass production. It also analyzes novel memory types such as Multilevel Dynamic

Random Access Memory (MLDRAM) and Ferroelectric Random Access Memory

(FRAM).

The project described in Chapter 3 is a collaboration of 5 people. Head manager of the

designed project was prof. Zeljko Zilic and the different parts of the project were

implemented by four students: Ian Brynjolfson, Henry Chan and the author of this thesis

Boris Polianskikh. The project describes novel System-On-Chip (SOC). The the presented

SOC consists of Programmable Clock Manager, Noise Modeling Circuitry, Processor and

Embedded Fast Static Random Access Memory (FSRAM). Chapter 3 precisely describes

the implementation of Fast SRAM. The results obtained from practical design of this

chapter were used for further investigations in embedded memory domain.

Chapter 4 introduces new concept of Induced Error-Correcting Code (ECC) for 2-bit­

per-cell MUlti-Level DRAM. The ECC is able to correct 2-bit error and detect 4-bit error.

The ideas outlined in this chapter were coauthored with professor Zeljko Zilic and

published in [1].

Chapter 5 describes new model of Embedded Memory Architecture for Enhanced Yield,

Performance and Power Consumption. The model protects the embedded memory from
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major types of faults, such as row, column damage, chip-kill defects and cluster defects.

The ideas of this chapter were published in [2] and were also coauthored with supervising

professor Zeljko Zilic.
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Chapter 1 - Introduction and

motivation

The eentury of the System-On-a-Chip is approaehing quiekly and it is the moment for

the semieonduetor industry to analyze the reality. Generally, the SOCs have been defined

as the mieroeleetronie systems with embedded memories, proeessors, analog parts and

other specifie funetions organized on the same ehip. A typieal System-on-Chip is shown in

Figure 1.1

Analog part
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Digital part

1

1 Analog part

c-. _ e ri DIA ~
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Figure 1.1: Typical structure of a System-On-Chip
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The presence of digital and analog components on the same die makes them much more

complex than the basic semiconductor blocks. Statistical data says that the System-On­

Chip production increased in 1999 up to 345 million units, compared to 160 million units

in 1998, which makes it 116% increase over one year. Economic experts predict the

number of manufactured SOCs will be as many as 1.3 billion units in year 2004. Recently,

the SoC technology has been mostly employed for communications system applications.

For example, in 1999, the communication systems were approximately 39% of the whole

SOC market. In-Stat foresees [3] that consumer products will jump up to 43% in year

2004, reaching the 310 million units. However, the communication systems still will be

the biggest consuming client of the SOCs with approximate gross consumption about 576

million units.

Despite the fact that the SOCs are weIl defined and managed process, the SOC

designers still face a lot of challenges during their design and implementation. The

International Technology Roadmap for Semiconductors (ITRS) announced in 1999 that

one of the most important SOC design challenges is the creation of the unique process

design that allows using only standard CMOS flow for SOC implementation. The ITRS

introduces the new definition of circuit "fabrics". The circuit "fabrics" denotes the

microelectronics designs that demand different processes for its manufacturing and have

particular yield and functional density. For example, radio frequency design and

embedded memory design are two separate "fabrics", because embedded memory can be

implemented using simple CMOS process and radio frequency design demands BiCMOS

technology. There are approximately nine different design styles that can be used in

today's SOCs designs. These are custom static CMOS logic, embedded SRAM, embedded

DRAM, custom dynamic CMOS logic, analog circuits, radio frequency circuits, processor

core, standard-cell auto place-and-route logic, and regular logic structures (data path). The

goal of the modern SOC designer is to be able to combine aIl these different design styles

on the same chip using the same standard CMOS technology.

Another challenge is how to estimate the SOC fabrication cost. Previously, the chip cost

was defined only by wafer cost. The wafer cost, in turn, was dependent only on a

2
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particular process technology of a particular design style. Meanwhile, recently the SOC

fabrication cost depends on much more components as in Equation (1.1)

Total cost =RF cost + Analog cost + Digital cost + Packaging cost + Cost of testing (1.1)

which includes cost of each design style plus the combined testing and packaging cost.

If a designer wants to integrate additional design style or "fabrics" on the SOC, it is

necessary to think about how to make it without overall impact on the power consumption,

reliability, yield, performance and cost of the whole SOC. Additional integration of the

new styles may require additional processing steps, such as special wiring and

metallization for high-performance analog and radio-frequency circuits, as well as trench

capacitor with 3D structure for embedded DRAMs. For example, International

Technology Roadmap for Semiconductors estimates that the addition of the embedded

flash memory or ferroelectric RAM to already existing embedded SRAM will increase the

mask Ievels by four additional Ievels, and that addition of the embedded flash memory to

standard CMOS Iogic requires 4 extra masking Iayers. Each additional masking layer

creates additional threat to yield and reliability of the whole SOC.

One might ask, if there are so many differences between implementations of the

embedded memory and standard logic components that create difficulties, why not retain

the old method of fabricating the memory and the Iogic on different chips?

Routing delays between components are becoming the major factors affecting the speed

of the SOC components. Even though these delays play significant role in SOC

performance, they are still much shorter than delays that occur if a designer tries to drive

signaIs off-chip to a separate memory bank. Driving signaIs off-chip also reduces

flexibility of the design. For exampIe, widening off-chip bus to increase buswidth

negatively impacts the number of 1/0 pins. The off-chip interconnections require area

hungry 1/0 buffers, in order to be able to overcome package and board-trace impedances.

The consequences of addition of 1/0 buffers are increased power consumption, limited

battery life, and reduced reliability.

3
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Embedded memory represents perhaps one of the most important components of the

SOC, without which digital part and consecutively the whole SOC will be paralyzed.

Sometimes, depending on the embedded memory roles within the SOC, they can occupy

approximately 90% of its real estate. EventuaIly, embedded memories are going to occupy

most of the area of the SOc. Today's SOCs characteristics include the following: usually

there are more than 30 embedded memories within the SOC, many of which are of

different types and sizes. Normally, embedded memories are located aIl over the SOC, and

embedded memory testing is available only from a few lia pins.

Embedded memory density normally increases as many as four times from one

technology generation to another. The change of technology has both positive and

negative impacts on the SOc. The main positive impact is the reduction of the occupied

area. The main negative impact is the impact on yield. As shown in Figure 1.2, one of the

designs is implemented in 0.35 ~m technology and another one in 0.18 ~m technology.

The defect cluster of the same size destroys as many as four times more components in

0.18 ~m technology than in 0.35 ~m technology.

0.35 ~m TSMC technology 0.18 ~m TSMC technology

Figure 1.2: Technology shrinkage affects yield of the embedded memory

4
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Embedded memories are the most dense components of the SOc. Modern

semiconductor industry makes fast advances towards even more sophisticated and finer

embedded memory designs. New generation of multilevel DRAMs enables the designer to

get even more dense embedded memory. Multilevel DRAM stores 2-bit-per-celI as a

different voltage levels on a storage capacitor. At the same time, moving from one

technology to another creates a lot of side effects that the designers never encountered

before. DRAMs, and even more multilevel DRAMs, are much more sensitive to process

variations and manufacturing defects than logic components. Their sensitivity can be

compared to the sensitivity of extremely sensitive analog components. It is becoming

impossible to design large embedded memory banks without solving the yield problem.

Embedded memory bigger than 2-Mbit can not be designed without yield protection

circuitry [4].

UsualIy, the embedded memory without any protection can be only up to 10% of yield

or even less. Today, the embedded memory designer has two major methods to increase

memory yield and reliability: redundancy protection and error-correcting codes. With fast

advances of microelectronics industry towards MLDRAMs and trench three-dimensional

capacitor, embedded memory designers have to invent new methods of protection for

embedded memory, for example, something like three-dimensional error-correcting codes

or three-dimensional redundancy.

AlI previously described, the modern semiconductor industry is in high demand for welI

protected, fault-tolerant soc. The embedded memory is an increasingly important

component of any SOC, whose yield and reliability dramaticalIy affect SOC performance.

Recently, many companies continue to perform a research in order to create welI­

protected, reliable embedded memories for specifie application. For example, the

company Virage Logic fabricated and put in mass production the STAR Memory System

(SMS), which contains one or more memory blocks, processor, and a fuse box. The

system alIows cost-effective embedding, testing and repairing of multi-megabit memories

on any SOC (www.viragelogic.com). That is why the goal of this thesis is to investigate

new methods of embedded memory protection.

5
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1.1 - Thesis outline

A brief introduction to embedded memory types and the methods of embedded memory

fault-tolerance and yield improvement are provided by Chapter 2. This includes a

discussion on main embedded memory types employed in industry, such as SRAM and

DRAM memories. Chapter 2 also describes novel Multi-Level Techniques that enable

memory to store two bits per cell. The main multi-Ievel memory types are ferroelectric,

Flash and multi-Ievel DRAM. Main principle, on the basis of which each multi-Ievel

memory type is functioning, was reviewed. Detailed comparison was performed and aIl

pros and cons were summarized. There are two main methods of embedded memory

protection: redundancy and error-correcting code. Both methods are described and

benefits, drawbacks, and technical challenges are summarized.

The practical exploration of the embedded memory designs begins with Chapter 3. The

chapter explains the design and implementation of System-On-Chip. There were several

implementations of the System-on-Chip. Each implementation is called pilot chip. The

Control-Block was designed for the first pilot chip. The Control Block serves to adjust a

Programmable Clock Manager (PCM), which is also implemented on this chip. The

second pilot chip is more sophisticated and includes an embedded memory core, a

processor, external communication subsystems, an internaI asynchronous bus and the

PCM. The fast Static Random Access Memory is designed and embedded on the second

chip. The embedded memory consists of the memory core, row and column decoders,

precharge circuitry, sense amplifiers and peripheral circuitry. After fabrication, we

developed a research platform, and the embedded memory was tested on the basis of the

developed platform.

The research performed in Chapter 3 leads to the new ideas. One of the ideas is how to

improve reliability and performance of the Multi-Level DRAMs. Although sorne designs

of the MLDRAM exist they still can not be fabricated for mass production. The

improvement of the reliability of the MLDRAM is one step further towards mass

production. Thanks to designed Error-Correcting Code (ECC), Multi-Level DRAM is able

to tolerate two-bit errors and detect four-bit errors. The proposed ECC is implemented on

6
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the basis of the popular Hamming ECC. Practical implementation is described in

Chapter4.

The problem of yield improvement has been known to memory designer for years. One

solution on how to improve yield of the embedded memory is given in Chapter 5. New

memory architecture significantly increases embedded memory yield. The architecture

enables memory to tolerate not only common types of faults, such as row/column failure

and sense amplifier failure, but also such types as chip kill defects. Performed research

resulted in mathematical mode! designed for the new embedded memory architecture. The

model shows that skillful redundancy allocation improves yield much better than just

increasing the number of redundant rows or columns.

7
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Chapter 2 - Fault-tolerant embedded
•memorles

2.1 - Types of embedded memories

There are two types of CMOS memories that are mostly employed in modem industry.

Static RAM (SRAM) uses a latch configuration to store data and Dynamic RAM (DRAM)

stores binary data as a charge on a capacitor.

2.1.1 - Static Random Access Memory

b
Z
...1

in --

WORD

...
0... z

in ...'- in -- -

WORD

--
...
in

a b
Figure 2.1 : Static RAM memory cells,

(a) six-transistor cell, (b) four-transistor cell

8



Fault-tolerant embedded memories

Figure 2.1 Ca) shows the generic SRAM cell which consists of six transistors. This cell is

actually two cross-coupled inverters and two pass transistors. In order to write data to a

cell, the information bit and its complement must be put on bit lines. The complementary

value is not really necessary, but doing so improves noise margins and makes memory

more reliable.

Another type of basic SRAM cell, very often employed by memory designers, is that of

the four-transistor cell. The architecture of this cell is similar to the previously explained

cell with the only difference that PMOS transistors are replaced with two resistors. In

comparison to the six-transistor cell, the four transistor cell occupies less space, but its

access time is longer and is more susceptible to various damaging effects due to lower

noise margins.

2.1.2 • Dynamic Random Access Memory

Another type of conventional memories is the Dynamic Random Access Memory. The

two main configurations are shown in Figure 2.2.

bz
!:::'
al

-- a

l­m

w
z
::::i
!:::
al

WORD UNE

T--
b

Figure 2.2: Dynamic RAM memory cells,
(a) three-transistor cell, (b) one-transistor cell

DRAM configurations are especially attractive to the industry because of their high

densities and easy implementation in CMOS technology.

9
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Three-transistors DRAM cell (Figure 2.2(a)) is employed in circuits which usually

contain logic and the memory to support the logic. They are very rarely used for the

memory-only chips. They can be easily implemented with simple CMOS technology and

have faster read and write operation times than those of one-transistor DRAM. As usual,

there are the pros and cons. Since the storage capacitance in a three-transistor cell is much

smaller than the storage capacitance in a one-transistor ceIl, the three-transistor DRAMs

have lower noise margins in comparison to one-transistor implementations.

The densest memories that are employed by semiconductor industry are the memories

implemented on the basis of the one-transistor cell. As shown in Figure 2.2 (b) the cell

consists only of one pass transistor, which serves as a switch for data access, and one

capacitor, which serves as a data storage device. The main features that attract embedded

memory designers to one-transistor DRAM are:

• Small area occupied on a silicon surface.

• A lot of cells can be tied to the same bit line.

• Large noise margins.

• Long time between refresh cycles.

• Low power dissipation.

2.1.3 - Multi-Level Dynamic Random Access Memory

Another very interesting type of embedded memory is the MuZti-LeveZ DRAM

(MLDRAM). MLDRAM differs from conventional DRAM by storing more than one bit

per storage cell. The main idea behind the MLDRAM principle is that the binary data is

stored on the capacitor as different voltage levels. For example, the two bit data is stored

by using four different voltage levels GND, one third of VDD, two third of VDD and

VDD. MLDRAM can be implemented on the basis of the same technology as usual

DRAM. As a trade-off for higher density, the read and write times are much higher for

MLDRAM than for conventional DRAMs. Another drawback is that due to even more
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reduced noise margins, MLDRAM is very susceptible to fauIts. MLDRAM has very good

outlook, since the only way to increase density of the memory right now is to reduce

transistor size. Recently it has become possible to implement transistor with the size of ten

atomic layers. Eventually, it is reasonable to assume that transistor size might be reduced

up to one atomic layer. The only way to increase density will be using MLDRAM

principle. Although MLDRAM is not in a mass production due to reliability concerns, the

full scale research is performed in order to be able to implement MLDRAM for mass

production in industry.

2.1.4 - Ferroelectric Random Access Memory

Ferroelectric memories (FERAM or FRAM) can also store several bits in one cell. Basic

architecture (Figure 2.3) of the FRAM resembles one-transistor DRAM structure and

consists of a ferroelectric capacitor and a pass transistor. The information is stored as a

direction of the ferroelectric polarization. The polarization P versus electric field E shows

hysteresis behavior, with P having two stable values (plus and minus) at Ü field conditions.

The (reverse) electrical field that must be applied to annihilate the existing polarization

(P=Ü) are termed the coercive fields.

wz
:J
....
iii

Remanent
WORD UNE polarization

11"
10

FerroCAP

DRIVE UNE

a

p

E

Coercive
field

Figure 2.3: Ferroelectric memory structure and operation,
(a) basic cell structure, (b) polarization vs. electric field.
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Ferroelectric memory seems to be a good alternative to CMOS MLDRAMs to store

several bits in one cell. However, the main reason that prevents designers from using

ferroelectric memories on a wide scale is a fatigue problem. Electrical fatigue is defined as

the reduction of the switchable polarization with increasing the number of switching

cycles. This fatigue limits the endurance of the memory, i.e. the maximum number of

read/write cycles that can be applied to a memory element still allowing discrimination

between the four memory states (i.e. polarization "up" or "down"), as shown in Figure 2.3.

2.1.5 - Flash memory

Multi-Ievel Flash memory is based on the ETOX™ process. The simplified diagram of

the ETOX ceIl, that stores multiple bits in floating gate, is shown in Figure 2.4. Data is

written into the memory with programming operation, by exposing the floating gate to

sufficiently high voltage. The different levels of voltage are stored as the number of elec­

trons on the floating polysilicon level or storage poly. As soon as data is written, it will be

stored in the ceIl, with or without power supply. The only way the data can be removed

from the cell is with erase operation, by applying high voltage to the gate and discharging

the floating gate. Data is stored on the separate mask layer called storage polysilicon.

Access poly

Storage poly

ale
eeeee

Substrate p.

Figure 2.4: Multilevel Flash memory

The advantages of the Flash technology are the direct access to the ceIl, and reliable

charge placement. Although the Flash memory is now widely employed in industry, prob­

lems still exist.

One of the major problems occurs when data in Flash memory needs to be changed dur-
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ing its operation; memory can not be read out until the write cycle finishes. The micro­

processor can not read the data from the flash memory while a word was programmed or

one of its blocks was erased. Thus the processor that uses the flash memory needs addi­

tional SRAM block in order to operate during flash memory update. There are also other

issues such as high susceptibility to noise, because the flash memory cell in its concept is

mainly an analog device.

Table 1: MultI-level memory characterlstIcs

Memory types Flash memory Ferroelectric memory MLDRAM

Storing device Floating gate Ferroelectric capacitor CMOS capacitor

Methods of Varying threshold Varying polarization
data storing voltages directions Different level voltages

Volatility Nonvolatile Nonvolatile Volatile

Commercial Standard CMOS DRAM
Technology ETOX™ ferroelectric process process

Commercializa
tion Yes Yes No

Additional
high voltage

needed Yes Yes No

Typical
capacity 8-256 Mbit -256 kBit -4 Gbit

Typical 100.000 write/read
lifetime 100.000 erase cycles cycles 00

. . .

The summary of main characteristics of multilevel memories are presented in Table 1.

The table shows that multilevel DRAM is the largest of aIl the multilevel memories. It also

has the longest lifetime, and it does not require additional processing steps to implement

in CMOS process.

2.2 - Common embedded memory architectures

Basic memory architecture generally contains memory core and peripheral circuitry. As

shown in Figure 2.5, memory core is organized as a matrix of rows and columns.

Depending on the memory type, peripheral circuitry contains amplifying buffers, row and

column decoders, sense amplifiers, precharge circuitry, memory controller and refresh

13
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circuitry. For example, if sense amplifiers and precharge circuitry are used for SRAM

memory only to improve the speed of the read operation, for DRAM they are the essential

blocks, without which the read operation is impossible. Also, refresh circuitry is necessary

only for DRAM types of embedded memories, due to capacitor leakage. As shown in

Figure 2.5, sometimes the destruction of one of the vital peripheral blocks means the

destruction of the whole memory. For example, if amplifying buffers are damaged, the

signaIs from row decoder can not propagate to the memory core and the data stored in

memory core cells can not be accessed. As a result, the memory is completely

dysfunctional.

Memory Core

•• •

•• •

•• •

Sense Amplifiers

Column Decoder

Precharge
~

Q)--e...
s::
oo
~
~

o
E
Q)

:E

~
~....-

1-
Cl)

"t:S
o
CJ
Cl)

c
3=
o
0::

Figure 2.5: Basic Memory Architecture

Another example shows partial destruction of the precharge circuitry and its

interconnections. The result of this damage is the partial memory core loss. Of course, it is
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impossible ta predict where the damage cluster will occur and how big it will be. It is

evident from previous examples that during embedded memory design process it is

necessary to think not only about memory speed, area and overaU performance, but also

about memory's ability to tolerate any type of damage that is possible for given process.

2.3 - Embedded Memories and Fault-Tolerance

At this point it is reasonable to ask, why the fault-tolerance is so important for

embedded memories and consequently for System-On-Chip. Both non-fault-tolerant

design and the fault-tolerant design work properly while being designed in the computer

environment.

Failure
rate

- - - - - -~....._---~- - - - - - - --
Infant
Mortality
Phase

Usefullife period

Time

Wear out phase

Figure 2.6: Relationship between tai/ure rate and product Iitetime

After fabrication stage, the non-fault-tolerant system tends to fail due to a lot of

secondary effects; meanwhile, the fault-tolerant system is able to tolerate aU side effects
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and still perform correctly. From this point, fault-tolerance of the embedded memory can

be defined as the ability of the memory to perform correctly after the occurrence of faults.

Yield and reliability are the two main quantitative measures that describe the level of fault­

tolerance of the given system. The probability of the system failure over the system

lifetime can be described with the curve shawn in Figure 2.6.

The curve is divided in three parts. The first part shows very high probability of memory

failure at the beginning of the embedded memory performance, which is right after chip

fabrication. This part is called infant mortality phase. The high rate of the memory failures

at this stage is explained by several reasons, such as weak components, missing metal

layers and sa on.

The second part shows useful lifetime phase. At this stage, aIl possible failures that

could happen during the first stage are eliminated, and the system functioning depends

only on À. The À parameter is often referred ta as a failure rate, i. e. number of failures per

unit of time. EventuaIly, the lower À parameter is, the less probability that the memory is

going ta fail. This means that the level of fault-tolerance is inversely proportional ta the

failure rate À and the goal of any designer is ta make À as small as possible.

The third part shows wearout phase. The high rate of failures during this phase happens

due ta fatigue of electronic and mechanical components of the system. The goad example

for this phase will be the restricted number of read/write cycles for ferroelectric memory.

2.3.1 - Faults, errors and failures classification

Now is good moment ta introduce three terms that are very useful for describing fault­

tolerant system. These terms arefauit, error andfailure.

Figure 2.7 shows basic types of faults, errors and failures that occur in embedded

memories and relationships between them. Fault is a primary damage that leads ta an

error. And error, in turn, provokes failure.
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A fault is a physicai fiaw or physicai defect that occurs due to severai factors, such as

fabrication impurity, process imperfections, fatigues, deteriorations, ionizing radiations,

humidity, electromagnetic interference, internaI and externai noise and so on. Common

types of fauIts are missing Iayers, shorts, and damages of semiconductor devices.

Faults

Column decoder
lines are shorted

Defect cluster hits
memory controller

Errors

Transistors of the
_.......-":>.. affected area stuck

to unknown value

Column decoder
~:> lines are stuck to

logical one

Controlling signaIs
........., > do not propagate to

targ~ts

Failures
r

Unable to perfonn
.........,e..----> .read/write operation

Data can not
:::::::;....::: propagate to and

from the memory

Memory is
dysfunctional

Figure 2.7: Links between faults, errors and failures in embedded
memories

An error is a consequence of a fauIt. It is a deviation from a normal state. For example,

the logical state of the cell or peripheral elements is different from its intended state.

Errors are classified in two categories: hard and soft errors. A hard, or pennanent error is a

resuIt of the damage that persists through the whole life-time of the embedded memory. A

soft error is a temporary error. It does not persists after fauIt-causing phenomenon is

disappeared and needs to be repaired only for a short amount of time.

Afailure is the inability of the memory to perform required function. Failure affects the

whole system on a high level of abstraction. The failures itself can be divided in three

groups. Soft failure consequences may be negligible, for example, the memory failure of

the personal computer. Firm failure is the failure that affects the system but can be

tolerable by the system for sorne period of time needed to repair it. And finaIly, hard

failure is a failure that is not tolerable by the system at any time. A good example for hard

failure can be the total memory failure in the control block of the airplane, during flight.
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Since small fauIts can lead to catastrophic consequences, such as total system failure,

the primary goal of the modern fault-tolerant embedded memory designer narrows down

to a single goal: to make the embedded memory as tolerant as possible to any kind of

faults.

2.4 - Vield and yield modeling

The definition of the word yield came to English language from the Old High German

language word geltan which literally means to pay. This definition implies that yield is the

benefit the designer obtains after actual fabrication of the System-On-Chip. Mathematical

descriptions of the yield for embedded memories are varying in different sources, but

common idea can be expressed as follows. Yield, in our case, is the number of fabricated

embedded memories that perform correctly (fully functional memory), divided by the total

number of fabricated embedded memories. Fully functional memory means that an

memory cens and an peripheral circuitry perform correctly an operations, i.e. read, write,

access, storage, as planned by a designer before fabrication stage.

Figure 2.8: Factors that affect yield after fabrication of the memory
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There are several factors that affect yield of embedded memory during the fabrication

stage [5]. The major factors are random photo defeets, random oxide pinholes, random

leakage defeets, gross proeessing and assembling faults, specifie processing fauIts,

misalignments, gross photolithography defeets and other minor defeets (Figure 2.8).

2.4.1 - Yield modeling

Yield of any embedded memory ean be deseribed using various mathematical models.

Eaeh model is construeted on a basis of empirical data obtained during previous

fabrications for the given process parameters. The yield model describes yield as a

probability of defeets happening. Sorne models try to describe yield assuming cluster

distribution of the defects throughout the area of the embedded memory ([6], [7], [8]).

Conventional models describe yield of a memory in whieh the defeets randomly and

uniformly distributed throughout the area of the memory.

The yield models differ in degrees of eomplexity, usually the greater the number of

factors included in a model, the better the model deseribes yield. The simplest model

describes yield of embedded memory as a probability that embedded memory will

function correetly as follows:

( k )
-Amemory . Do

P memory wor s = e (2.1)

This model takes in aecount only Amemory - the whole embedded memory area with

peripheral circuitry and Do: defeet density. Defeet density is the expected number of

defects per unit area, estimated on the basis of empirical data or previously fabrieated

chips. It is clear from Equation (2.1) that, in order to get better yield, one has to keep area

of the memory as small as possible. With the growing demands of the VLSI industry, it is

almost unreal to operate with small memories. This means that the embedded memory

designers find themselves faced with the fact that in order to inerease yield, they have to

deerease Do or to find other ways to improve yield.

The Equation (2.1) simply gives us the probability of a specifie memory with Amemory

and Do being eompletely operational. But when fabrieating several ehips with the same
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area Amemory usually they aIl have different defect densities. To account for this effect, a

new function is introduced. This function F(Do) is the distribution function of the defect

density Do. With new function F(Do) the obtained yield is going to be more precise and

can be calculated as in Equation (2.2).

y = fe-DüAmemoryF(Do)dDo
o

(2.2)

The main defect distributions used for yield description are shown in Figure 2.9.

1/Dn1-------....,

F(Do) F(DO

DO
Exponential Distribution

F(Do)

1/Dn

Dn DO

Uniform Distribution
F(D

1/Dn

Dn 2Dn Do Dn 2Dn Do

Bell-Shaped Distribution Triangular Distribution

Figure 2.9: Common defect distributions used in yield analysis

Integral of the F(Do) over aIl possible values of Do must be one. Uniform distribution

from Figure 2.9 considers F(Do) to be uniform between Do from 0 to sorne certain value

Dn. The yield for uniform distribution will be given as in Equation (2.3)
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DI!

_1 f -AmemoryDodD =
D e 0

no
(2.3)

The uniform distribution is the simplest yield mode!. If we want to get the more realistic

yield model, we should use more complex model such as triangular and bell-shaped

distributions models (Figure 2.9). Practically, these distributions are very similar to each

other. Because triangular distribution is simpler and easier to operate with, it is very often

used as a fast approximation to the bell-shaped distribution. The triangular distribution

function is given as folIowing:

Do
if 0'5, Do '5, Dn

D
Z

F(Do) n
(2.4)=

2Dn -DO if Dn '5, Do '5, 2Dn
D~

The yield for triangular distribution function is given by

Dn D ZDn (2D _ D ) (1 -AmemoryDnJ
2

y = f e-AmemoryDo_zO dD
o

+ f e-AmemoryDO n Z 0 dD
o

= -A---e---D-
o D n D D n memory n

n

(2.5)

AlI previously explained models are simplified models. In order to predict yield as

precisely as possible, a lot of factors have to be considered for these equations. As shown

in Figure 2.5, the embedded memory consists of blocks, such as embedded memory core,

refresh circuitry, row/column decoders and many additional blocks. Of course, it is

reasonable to assume that sorne blacks of the memory are more susceptible to defects and

others are less. For example, sense amplifiers are very susceptible to manufacturing

variations than other parts of the embedded memory, since aIl of the transistors inside of

the sense amplifier have to be matched precisely. Since each part has different sensibility

to the factors that affect yield after fabrication, it is reasonable to express yield of each

block independently (Ysense amlijiers' Yrefresh' ymemory controller Ycolumn decoder Yrow decoder)'

Because yield of each block is completely independent of other blocks, the total yield of
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the embedded memory must be expressed as a product of yields of aIl blacks of the

embedded memory and is going to be as follows

Ytotal = y core' ydecoder . y refresh . y precharge . Ysenseamp . y control/er (2.6)

2.5 - Reliability and reliability modeling

Reliability is another major factor that describes embedded memory fault-tolerance.

Reliability R(t) is defined as a probability that the embedded memory will function

properly throughout the interval of time [ta,t] with the condition that it was performing

correctly at time ta. Mathematically, reliability is better understood as follows. Assume

that there are M(ta) embedded memories of identical size and characteristics, aIl of them

simultaneously placed under the test at given time ta. After time t, there are N(t) embedded

memories that still perform correctly and F(t) embedded memories that failed since time ta

(M(ta)=N(t)+F(t)). The reliability of embedded memory is given by

R(t)
N(t) N(t)= -- = ---:---:--"-'=:-:-:-

M(ta) N(t) + F(t)
(2.7)

Equation (2.7) simply expresses the probability that the embedded memory performs its

designed functions under specified conditions in time interval [ta, t]. The reliability can be

characterized with À failure rate and the Mean-Time-To-Failure (MTTF). Failure rate À is

defined in the same way as in Figure 2.6. MTTF is defined as an average time to failure. If

there are M(ta) identical memories placed into functioning at time ta and we measure the

time ti each time one of the memories fails, the MTTF will be given by Equation (2.8)

MUa)

L t i

MTTF = i= 1
M(ta)

(2.8)

If we assume that ta=O and R(t)lt=oo=R(oo)=O (there is no system that functions forever

without failure) the relationship between MTTF and reliability will be given by Equation

(2.9)
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00

MTTF = fR(t)dt

o
(2.9)

The MTTF can be also calculated with given À failure rate. Since failure rate can also be

expressed through reliability as in Equation (2.10)

(2.10)

where to and t1 are the start and the end times of the time interval I1t=trto. R(to) and

R(t1) are reliability at these times. Since the failure rate À is the number of failures over a

time intervall1t the MTTF can be derived as following

1
MTTF = Àl1t (2.11)

Normally the time to is equal to O. Vnder this assumption the Equation (2.11) transforms

to Equation (2.12)

1
MTTF(l1t) - À(t)

2.5.1 - Reliability modeling

(2.12)

The reliability modeling can be done in two ways: either by using combinatorial model,

or by Markov mode!. The main difference between these two is that combinatorial model

describes reliability as a set of operational states such that the probabilities of each of

these states can be described with combinatorial means. Meanwhile, Markov model

describes the reliability as a probability of faulty transitions amongst all of the possible

states of the system.

A good example of using the combinatorial model is a small memory consisting of 4

cells and protected with 2 extra cells. Having 2 cells in the memory means that memory

can tolerate up-to 2 failed cells. Defining P(t) as the probability that 1 cell will perforrn
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correctly until time t, and the R(t) probability that the whole system (4 cells + 2 cells) will

function correctly will be

2

R(t) = ,L C}p(t»4 - i(1 - P(t)/ = 6p
2
(t) + 3p

4
(t) - 8p

3
(t)

1 =0

(2.13)

The Markov model is shown in Figure 2.10. The system consists of four states A, B, C

and D. The full lines show allowed transitions in the system and dashed lines show

forbidden transitions between states. Basically, model operates with the probabilities of all

possible transitions between all four states.

---------... ......- -.- -./ ........

...... /
...... /

................ ----_.--~/

Figure 2.10: The structure of a Markov model of a 4 state system

2.6 - Methods of fault-tolerance improvement in
embedded memories

Recently, fault-tolerance became a vital part of any embedded memory design. The

definition of fault-tolerance includes protection of the embedded memory from any type

of damages that may occur during normal memory performance. Before designing the

embedded memory, the designer has to create the initial plan which takes care of the fault­

tolerant side of the memory. The initial plan has to include prognosis of all the possible

faults that may occur for a specifie type of memory and how to reduce the effects that the

fault may produce. The designer has to decide what type of memory he/she is going to use,
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what types of fauIts may happen, and which types of protection circuitry he/she is going to

use. The major factors affecting yield and reliability to consider at the initial stage of the

embedded memory design are shown in Table 2.

Factors Factors affecting reliability

affecting yield

Fabrication Hard error sources Soft error sources

factors

Cleanness Hot carrier emission

Materials Electromigration

Oxides Surface charge spreading Surface charge spreading

Parameter spread Ionie contamination

Complexity Spurious currents Spurious currents

Control Time dependent breakdown

Temperature Package a radiation

Mechanicalshock Static charge and discharge

Design factors Electromechanical corrosion

Feature size Electrochemical corrosion Electrochemical corrosion

Chip size Electromagnetic interference Electromagnetic interference

Packing density Temperature Temperature

Cell type Cosmic particle impacts Cosmic particle impacts

Layout Radiation total dose Radiation total dose

Parameter Transient radiation Transient radiation

variation tolerance

Pattern sensitivity Mechanicalshock Mechanical shock

Electrical shock

Table 2: Errors, fabrication and design issues affecting yield and reliability

In the next stage, the designer has to consider is how to repair occurred damage. Basic

repair procedure consists of four steps. The first step is to detect a fauIt or damage. The
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second step is to locate it. The third step is the decision-making step, to decide which type

of protection to use according to the event. The fourth step is assigning spare elements.

And the last, fifth, step is to disconnect the faulty elements from the embedded memory.

The two main methods of protection can be used in order to insure the fault-tolerance of

embedded memories. These methods are redundancy application and Error-Correcting

Code (ECC) application.

2.6.1 - Redundancy application for embedded memories

The word redundancy in information theory was used for the first time by Nyquist

around 1920. But for Nyquist the meaning of the word was negative, since he saw

unnecessary sinusoidal component signal as a redundant one and carrying no sense for

computing theory. For us, it signifies positive effect, the protection of the memory with

spare elements. There are three types of redundancy used.

The first type is the passive redundancy. In the case of a fault, passive redundancy just

tries to hide the fault and prevent the occurrence of error. The passive redundancy is

designed in such a way that it does not require any activity on the part of the system or

interference from the side of designer.

The second type is the active redundancy. Active redundancy performs sorne actions on

the system in order to detect, locate and eliminate the fault. Active redundancy interferes

in the system and changes its characteristics in order to provide fault tolerance.

The third type is the hybrid redundancy techniques. Hybrid redundancy uses both

features of passive and active redundancies. It attempts to hide occurring faults and

prevent the errors as passive redundancy does and it eliminates faults as active redundancy

does. Hybrid redundancy is the most expensive of an of the previously described types of

redundancies, because it demands more extra space on a die compared to passive and

active redundancies. At the same time, it is the most powerful technique to provide fault­

tolerance. Hybrid technique is very widely employed in designing the fault-tolerant

embedded memories.
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There are several types of hybrid redundancies that can be used to protect embedded

memories. The one-dimensional redundancy employs only redundant columns or rows,

but not both. The two-dimensional redundancy uses both redundant columns and rows.

There is also the periphery redundancy to protect embedded memory from so called

memory-kill defects. An extra memory controller, or refresh circuitry may be considered

as a periphery redundancy.

Depending on the specifie goals, such as yield, space availability, and guarding against

possible defects, the designer has to choose appropriate type of redundancy.
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Figure 2.11 : Two dimensional redundancy to support 4-by-4 memory core

Normally, the two dimensional redundancy is very popular, because it offers protection

for rows and columns at the same time. Figure 2.11 shows a 16-bit memory core free of
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any defects and added two dimensional redundancy, consisting of one column and one

row.

During normal functioning of the embedded memory an cens are connected directly and

no reconfiguration is applied.

One option of repairing the memory core is the fault stealing replacement algorithm.

The algorithm allows to repair more than one faulty e1ement in the same row or column

[9]. The fault stealing algorithm is explained in Figure 2.11 and Figure 2.12.
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Figure 2.12: Fault-stealing algorithm ta repair 4-by-4 memory core
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Assume that C is the total number of columns or number of cells in a row and R is the

total number of rows or number of cells in a column. For Figure 2.12 C=4 and R=4. The

algorithm starts at cell (1, 1) and gradually checks all the cells in the core from top to

bottom.

In case if there are no any faulty elements in the core it returns noreconfiguration signal

and the cells are connected the way they are connected in Figure 2.11.

If there is one faulty element in a row, the algorithm replaces it with the cell that is

located to the right from the damaged element. Otherwise saying, cell (m, n) will be

replaced with the cell (r, c+1), cell (r, c+1) will be replaced with the cell (r, c+2) and so on

until the last (r, R+1) spare element. Consider Figure 2.12, the element (1, 1) is damaged

and must be replaced with cell (1, 2). The cell (1, 2), in turn, must be replaced with the cell

(1,3). And so on until the last cell (1,4) is replaced with the element (1,5).

Consider the case when there are two damaged cells in the same row (r, c) and (r, c+1).

The rightmost cell (r, c+1) will be replaced as was explained in the previous case, with the

element which is located to the right from the damaged cell (r, c+2). And the leftmost

element (r, c) will be replaced with the cell "stolen" from the row which is below the

damaged one (r+1, c). The cell (3, 3) in Figure 2.12 is replaced with the cell (3,4) and the

cell (3, 2) is replaced with the cell (4, 2).

Unfortunately, this algorithm fails to work if the element that has to be "stolen" is faulty

itself. For example, one of the fail-to-work scenarios is when row r contains faulty

elements in columns c and c+1. And row r+1 contains faulty element in column c. For

this case the cell (r, c+1) must be replaced with the cell (r, c+2) and the cell (r, c) must be

replaced with the cell (r+1, c). But the cell (r+1, c) is faulty itself and the replacement

strategy does not work already.

Another algorithm which is very popular and widely applied in industry is Repair-Most

Replacement Strategy. The main idea behind this algorithm is that it looks for the most

damaged rows or columns and replaces them in a very efficient way. The difference

between Repair-Most Replacement Strategy and Fault-Stealing Replacement algorithm is
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that repair-most strategy operates and replaces whole row (column) and fault-stealing

algorithm operates and replaces individual cens. The repair-most algorithm uses the

minimum number of redundant rows and columns.

--t(1,4)1---

----~(2,1)~--+ ----t(2,3)~--+

--t(3,2)~--+

----~(4,1)~--+

--t(3,4)1---

-~(4,4)~-

Figure 2.13: Memory core 4-by-4 with damaged cells and its bipartite graph

The principle of repair-most strategy is explained in Figure 2.13. Before replacing faulty

cens, algorithm creates a bipartite graph representing the incidence of faulty cens. The

number of rows is placed on the left part of the graph and the number of columns is placed

30



Fault-tolerant embedded memories

on the right part of the graph. The algorithm connects aIl the faulty cell row locations with

the faulty cell column locations.

~.•'.••.•.• '.'." ...'•.•....'.•.•" ·.:.:1•.:.·••.· ;.•~...•.:...•.•.~.;..:.....•.. D D D Du ~ ;<y: %&'~Jj
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5

6

7

Figure 2.14: Real solution and faulty bipartite graph for damaged memory core
7-by-7
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After fully completing the graph, it looks for the node with the biggest number of

connections to it. For example in Figure 2.13 node C3 has the biggest number of

connections and therefore column 3 contains the biggest number of faulty elements and

has to be replaced at first place. When the column 3 is eliminated, the algorithm searches

for next node with the biggest number of connections and so on, until all faulty nodes are

eliminated completely.

Although the repair-most strategy is very straightforward, it also has sorne

disadvantages. The simple scenario when the repair-most algorithm does not work is

shown in Figure 2.14. There are only 3 redundant rows and 3 redundant columns available

to protect memory. According to created bipartite graph, row 1 and column 7 have the

largest number of faulty elements, and they have to be replaced first. The problem is that it

is impossible to coyer the rest of the damaged core with the remaining redundancy, and at

least two cells will remain uncovered. Meanwhile, the solution exists and is shown

graphically in Figure 2.14. Replacing rows 5, 6, 7 and columns 1, 2, 3 it is possible to

coyer all damaged cells and obtain fullYrepaired memory core.

Unfortunately, there is no perfect strategy or algorithm to repair all situations that may

occur in an embedded memory core. Any algorithm has its weak points where it fails to

repair the damage efficiently. The problem of allocating the redundancy for efficient repair

of the embedded memory core is known to be NP-complete and remains open to further

investigations of embedded memory designers.

After performing all necessary calculations, the actual reparation is done by

disconnecting bad links using fuses. Normally, fuses are reconfigured with laser

techniques.

2.6.2 - Error Correcting Codes Application for Embedded Memories

Originally, the principles of coding theory were discovered by communication theorists.

However, these principles are so fundamental that they can be applied to many other

domains that need reliable data retrieving and receiving. The embedded memories are also

considered to be the systems for receiving, storing and retrieving data. There are many
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types of error-correcting codes known. The reason for using error-correcting codes is to

achieve good reliability of the protected system. The embedded memory reliability

problem differs a lot from the reliable communication problem. Because of this, the

embedded memory designer operates only with restricted number of error-correcting

codes that are more or less suitable for memory protection.

Why are the error-correcting codes so important for embedded memories? According to

statistical data, the majority of errors that happens in embedded memories are single bit

errors (Figure 2.15). For example, according to diagram in Figure 2.15, single bit errors

occur three times more often than column failure and four times more often than row

failure. Instead of wasting the whole redundant row or column, to correct one bit, it is

possible to use error-correcting codes.
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Another advantage of using error-correcting code is that the correction of the error can be

performed "on the fly", or during actual work, while introducing insignificant delay into

the performed operation time. Meanwhile, the redundancy reconfiguration can not be

performed "on the fly" and paralyzes the embedded memory for much more time to bum

the fuses, in order to apply the redundancy.

GeneraIly, the error-correcting code is a method that is able to detect, locate and correct

an error inside of the information data word. The information carried by a code is stored in

special code words. The error-correcting process consists of several steps. The first step is

encoding of the information being protected into coding words. The second step storing of

the code word into assigned memory location. The third step is decoding information. And

the final step is taking a decision according to decoded information. Depending on the

code performance, sorne error-correcting codes are able to correct the affected data and

sorne are just able to detect the presence of the error. The basic term that aIl error­

correcting codes operate with is the Bamming distance. Hamrning distance is the number

of bits that are different between correct data word and affected data word. For example,

the given data word is 01Qll and the erroneous word is 0111Q. Comparing these two

words one can find out that the difference between them is two bits. Since the difference is

two bits, the Hamming distance is equal to two. The minimum Hamming distance is caIled

the code distance. The code distance represents the major factor that describes its ability to

correct or detect the affected bits. There is a general equation to calculate the number of

corrected and detected bits that the error-correcting code can perform. Let c be the number

of bits that ECC is able to correct and d be the number of bits that ECC is able to detect. If

the Hamming distance Bd is known the relationship between c, d, and Bd will be given by

Equation (2.14)

(2.14)

There are plenty of error-correcting codes in theory, but only few of them are used in the

embedded memory application. The main codes that are used for embedded memory

reliability and yield improvement are described below.
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2.6.2.1 Parity codes

Parity code appears ta be one of the simplest error-correcting codes and is a basis for

deriving many other codes. The basic principle of this type of the code is shawn in

Figure 2.16. Initially the data word is passed through the Parity Generator circuitry and

the generated Check-Bit-To-Store is stored with the information bits. After storing the

information for sorne time, the data is passed through the Parity Generator again and the

New-Check-Bit is compared with Check-Bit-To-Store in Parity Checker. Depending on the

outcome, the Parity Checker either gives Error Alarm signal or No error signal.

New-Check-Bit Error alarm

~ ~

Check Bit To Store Data out

• •L. .J

Data out

~

Check-Bit-To-Store

~
Parity 1---+ r--- Parity 1---+ Parity -Generator Embedded Generator Checker

Memory
t ........ t,

- - -Data ln

• •L. .J

Encoding
Part

Decoding
Part

Figure 2.16: Main principle of parity code

Parity generator and Parity checker are usually implemented in the same black, as

shawn in Figure 2.17. The parity generator is based on XOR-gates.

ao
Data bits 8,

a2 ----'

a3---------'

Check-Bit-To-Store

Figure 2.17: Parity generator and Parity Checker
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The data passes through several XOR-gates, and at the end, the generated parity check

bit is compared with previously stored check bit. The signal named Errar Alarm shows the

occurrence of error. Depending on the System-On-Chip architecture, the parity codes can

be applied in different ways.

The first method to apply parity code is bit-per-ward parity code. As shown in

Figure 2.18(a), the memory data bus is divided into the words and the check bit is applied

to every word. The main disadvantage of this method is that it can not detect the errors on

adjacent lines.

Embedded
memory

core

Embedded
memory

core

a

b

Embedded Embedded Embedded Embedded
memory memory memory memory

core core core core

01112/3 0111213 0/1/2/3 0111213 CBO 1 CB1 1 CB2 1 CB3 1
1 1 1 1 1 1 1 1 1 1 1 1 1

1
1

Figure 2.18: Types of parity codes: (a) bit-per-word,
(b) interlaced parity, (c) bit-per-multiplememories.

c

The code architecture that overcomes this problem is the interlaced parity scheme

shown in Figure 2.18(b). The main memory bus is divided into several groups and one

36



Fault-tolerant embedded memories

check bit is attached to each group. In this case, if error happens between two adjacent bit

lines, both attached bits will show alarm thus pointing at the location of the error. If

System-On-Chip contains several embedded memories the bit-per-multiple-memories

method will be very helpful. As shown in Figure 2.18(c), one bit from each memory block

is passed through parity generator. This method gives very high possibility to detect the

error. If an error occurs in one memory black, it will be automatically manifested on the

check bit that is responsible for particular memory block.

The most powerful method of all previously described methods is the overlapping parity

method. The overlapping parity code is able not only to detect, but also to locate the error

in the same codeword. The main principle of this method is that each erroneous bit

generates the unique combination of check bits, as shown in Figure 2.19.

For example, if information bit 2 is affected the check bits create unique combination

CB2, CB3. If information bit 1 is affected the check bits create combination CB l, CB3 and

so on. The presented scheme can be easily extended to bigger number of information bits.

Embedded
memory

core

Erroneous Unique parity set
Bit

0 CB1 CB2

1 CB1 CB3

2 CB2 CB3

3 CB1 CB2 CB3

CB1 CB1

CB2 CB2

CB3 CB3

Figure 2.19: Principle of overlapping parity method

As usual, there is a trade-off. The overlapping parity method is very effective for error

detection and location, but at the same time it is area-hungry.
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2.6.2.2 Hamming error-correcting code

Hamming ECC is probably the most popular code in the memory industry. It is very

efficient, as it injects small time delays into circuitry, and requires small amount of

redundancy area (10%-40%) [9]. Since the Hamming ECC was derived on the basis of the

overlapping parity method, the basic structure of Hamming ECC is similar to this method.

Assume that there are n information bits in the code word and we need ch check bits or

redundant bits in order to detect and correct the error. The amount of redundancy needed

for Hamming ECC can be found by

(2.15)

Hamming correction code is described more precisely in Chapter 4 of this thesis.

There are also other error-correcting codes that can be used for embedded memory yield

and reliability improvement. Berger, Reed-Solomon and bidirectional codes are

considered to be very effective for specific needs.

2.7 - Conclusion

Choosing the appropriate protection method is an important issue, which affects not

only yield and reliability of the system, but also its speed, power consumption and the area

of the whole System-on-Chip. A designer can protect his embedded memory with either

redundancy, ECC or synergisticaIly, using both redundancy and ECC for the same

embedded memory. It is proven [10] that using synergistic approach works much better

than just using redundancy or ECC only. The embedded memory designer has to take in

account a lot of factors that may affect the protection circuitry for embedded memory.

Such factors are memory size, occupied area, proximity to noise sources, number of

sensitive elements, maturity of fabrication process, power consumption, available space

and so on. The number of aIl the factors are very large to present enough research material

for another thesis.
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Chapter 3 - MCSoC implementation

This chapter describes the design and implementation of the Managed Clock System­

on-a-Chip (MCSoC) project. The primary objective of my part of the project is to design

efficient embedded memory, and practically explore yield improvement and fault toler­

ance of the embedded memories. The second objective is to test novel software program­

mable dock management circuits, and substrate coupling exploration. As a part of the

project, three ICs and one printed circuit board were designed towards testing and debug­

ging of the MCSoC.

3.1 - Introduction

The architecture of the Managed Clock System-on-Chip (MCSoC) project is shown in

Figure 3.1. The primary object of the MCSoC is a practicallearning of embedded memo­

ries function, dock management schemes, processors, substrate noise modeling.

From a research standpoint, the practical design of the embedded memory will enable

students to further investigations in this field. During the design, new practical knowledge

was obtained. AlI data that was discovered after design implementation was successfully

used in research outlined in Chapter 4 and Chapter 5. The collaboration of a team of

people served also for better understanding of planning and managing the practical

implementation, and gave students the possibility to experience the real implementation of

their ideas.
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Figure 3.1: System Level Overview of MCSoC

The final MCSoC chip was fabricated in TSMC's 3.3V 0.35mm CMOS process. The

design occupies 4mm by 4mm, including the 1/0 pads and buffers. The layout

organization is shown in the die photo, Figure 3.10.

3.2 - MCSoC Organization

MCSoC is comprised of five main subsystems, interconnected by an asynchronous bus,

as in Figure 3.1. The design occupies 4mm by 4mm, including the 1/0 pads and buffers.

Custom fast embedded SRAM is implemented in order to understand memory operation

and explore yield, reliability and fault-tolerance. Also included is an integrated processor
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that interfaces with the bus through the Processor Bus Controller (PBC), a Universal SeriaI

Bus (USB) host controller and a Programmable Clock Manager (PCM).

The processor is based on the Programmable Integrated Controller (PIC) from Micro­

chip Technology Inc. [11]. The PIC is a generic processor with sorne custom adaptations.

The design is compact due to the limited area of allotted silicon. The PBC was designed as

a separate component from the processor to enable independent control, thus increasing its

versatility.

For the purposes of external communication, a USB host controller has been incorpo­

rated into the Soc. The USB protocol was chosen due to its multiple operating speeds.

Our intention is to allow MCSoC to act as a low power device, possibly attached to the

USB bus.

The design and implementation of the MCSoC were a team effort of five people. The

people who participated in MCSoC design are named in Table 3.

Task Participant/Designer

Supervisor Prof. Zeljko Zilic

Adaptation and High Level Architectural Design lan Brynjolfson and Yanai Danan
of MCSoC Processor, MCSoC Testing

MCSoC Processor Implementation, VXI Code Yanai Danan
1mplementation

PCM Design, USB Host Design, Test Plan, PCB lan Brynjolfson
Design

Embedded SRAM Design, Control Block for Boris Polianskikh
PCM Design

Noise Modeling and Analysis Henry H. Y. Chan

Table 3: Contributions to MCSoC

3.3 - Memory Control Block for Programmable
Clock Manager

Although the control block for PCM was implemented in all three pilot chips, in this

chapter we explain only the most improved implementation. It should be noticed that even

after each implementation the core and reset circuitry were slightly changed, in order to
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improve overall performance, the main idea and basic operation always remained the

same.

The design explained in this chapter is a result of the experience accumulated during

two previous design implementations. The first two pilot chips were designed in 0.35 /lm

technology and the last one in 0.18 /lm technology. The control block is implemented as a

matrix of size 4 by 12. As seen from Figure 3.2 each cell of the register was designed on

the basis of 6 transistor SRAM cell.

The cell was modified according to the custom needs of the chip. The output transistor

of the cell was removed and additional reset transistor was introduced. Each cell can be

reset to "0" value by placing "1" on the reset transistor. There is an inverter at the output of

the cell, which is placed for two reasons. One is to get non-inverted value at the output,

since using only five transistors cell would always give inverted value. The second reason

is to amplify the signal, in order to charge the load and get a stable signal at the output of

the cell.

3.3.1 - Custom Reset for Control Block

For the proper operation of the whole Programmable Clock Manager, aIl cells in the

control block have to be reset to "0" value upon power-up of the whole circuitry. Then, the

reset signal has to be turned-off, and all cells have to be ready for normal operation again.

Several designs from IBM patent library were considered for implementing the reset

circuitry [12], [13], [14]. The main idea behind aIl those designs is that, upon powering-up

the circuitry, the capacitor starts charging, thus giving time to reset aIl the cells in the

control block. As soon as capacitor gets charged, the reset signal becomes "low", thus

letting core the cells operate normaIly.
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Figure 3.2: Architecture of the control black registers
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After analyzing the available space on a die, the IBM designs were rejected, since aIl of

these designs demand a lot of space, mostly occupied by a huge charging capacitor.

Another factor which affected the decision of rejecting these designs, is that by

introducing them in the circuitry, power consumption increases significantly.

Instead of using start-up circuitry with a capacitor, it was decided to use specialIy

designed reset circuit, which is shown in Figure 3.2. The global reset is implemented with

Master Reset signal, applied externalIy from dip switches. The dip switches are located on

a Printed Circuit Board (PCB), which was designed for control and testing of the MCSoC

chip.
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Figure 3.3: Example of the waveform for testing of the reset circuitry

Figure 3.3 shows an example of the testing of the reset circuitry. Comparing Figure 3.2

and Figure 3.3 helps to better understand the given logic reset operation. "High" values

were gradually written to celIs bOO, bU, b22, b32 and b50. As soon as the signal "reset"

went up, cell 50 was reset to "low" and since the value "0" was written to ceIl41,which is

responsible for row 1 reset, the cell bIl was also reset at time 9 ns.
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Now control block can be reset in several ways.

• Reset A: a1l48 cells can be reset by Master reset;

• Reset B: internaI reset signal and "0" value in reserved cell 62 will enable logic reset

signal;

• Reset C: cell 62 value is "0" and cell 63 value is "1" will also enable logic reset signal;

• Reset D: logic reset signal "1" will reset rows 5, 7,8,9;

• Reset E: logic reset signal "1" and cells 40, 41, 42, 43 "0" will reset divider control

registers rows 0, 1, 2, 3 correspondingly.

Basic operation of the cell is shown III Figure 3.4. All signaIs of the waveform

correspond to signaIs from Figure 3.2.
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Figure 3.4: Control block cell basic operation
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Initially, at time 200 ps, the cell is reset to "0". Next operation is write to "1". Input data

has to stable shortly before "write" signal becomes "high". As seen from the waveform,

the propagation delay is approximately 422 ps for 30 fF load. Write "0", and "1"

operations follow. After this, reset function is checked. For reset signal the propagation

delay is 246 ps.

The overall control black design is shown in Figure 3.5. The control block consists of

the row decoder and the cells core with reset circuitry. Row address and data inputs are

located at the bottom of the picture. Outputs are at the top of the design. The core of

registers is directly connected to a decoder.

Figure 3.5: Control black for PCM

3.3.2 - Row Decoder

The decoder is shown in Figure 3.6. The row-address decoder is required to select one of

the 2N word lines in response to an N-bit address input [15]. There are 13 rows to decode

in our case; consequently, N=4.
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Figure 3.6: Decoder for control black

Address of the accessible row is chosen with address bits Ao through A3, where Ao is least

significant bit and A3 is most significant bit. As shown in Figure 3.7, row 5 will be high,
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whenA3=O, A2=1, A]=O, Ao=1. In this case aH NMOS transistors in row 5 will be switched

off, thus, preventing row 5 from discharging, and at least one transistor in aH other rows

will be "on", thus enabling discharging of these rows. Thus, it is possible to express row­

line 5 as a Boolean function of A3' A2' A], and Ao,
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Next, applying Enable_not signal to PMOS transistors in the left part of the decoder

(Figure 3.6) will pull row line 5 up. InternaLreseCenable signal, which is in fifth position

from the top of the decoder, is also activated by a row line and has its own reserved

address 15 or binary A3=1, A2=1, A]=l, Ao=1. Since decoder has to activate only four cells

in a row, it is not necessary to use amplifying buffers between the decoder and the

registers. The 4-bit data and the address of the row have to be placed on the inputs data

[0...3] and A[0...3] (Figure 3.5) at the same time, but prior to activating the decoder

Enable_not signal. Meanwhile, these signaIs are getting in the stable condition, and the

Enable_not signal has to be kept "high", in order to prevent accidentaI faulty writing into

the cells. As shown in Figure 3.7, each time Enable_not signal becomes "high" it resets

previous value of the row to "0". Whenever data and address signaIs are stable

(approximately 200 ps after putting data on the lines), the decoder Enable_not signal

becomes "low" and activates the decoder. The chosen row line is pulled up, and the cells,

connected to that line, are written into. Approximately after 600 ps, written value

propagates to the output and activates the load (approximately 30 fF). As soon as the data

propagates to the output of the cell, the decoder Enable_not signal becomes "high" and

resets all row lines to "zero". Thus, control data is trapped into the cells. The control

operation starts.

The layout of the control block is shown in Figure 3.8. AlI inputs and outputs are located

at the top of the design, which allows it to be easily accessible from controlled blocks.

Changing technology for the same design means not only scaling the design according to

new technology, but also new effects to be encountered for. For example, designing

control block in 0.35 /-lm technology we did not have to take care of antenna effect

(excessive charge accumulated through area occupied by a wire). For 0.18 /-lm technology

it is already necessary to protect transistor gates from destroying. In order to avoid this

effect we used n+ diffusion connected to the wire near the gate of the transistor. AlI

separate blocks of the control black are shown with lines on the layout picture.

AlI previously shown diagrams were simulated in Cadence environment after

implementing the layout and extracting it with parasitic capacitances.
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Figure 3.8: First pilot chip with the layout of the control block
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3.4 • Designing Statie Random Aeeess Memory for
MCSoC ehip

Initially, it was planified to design 8kBits Multi-Level DRAM for the second pilot chip.

Due to the fact that CMC (Canadian Microelectronics Corporation) did not support

technology for MLDRAMs at that time (complicated trench capacitor) and due to area

restrictions, the initial plans were changed towards simpler design of the fast SRAM.

RowO -~-----'-----r-----.----_

Row1 -~--t----.--+-----4

Row2 -~--t----.--+----4

Row3 ~~--1----t-----+----4

Row4 -~--t----1'--+----4

RowS ~~--1--_----+---4

Row6 ---1~--1----t-----+---1

Row7 ~~--t----.--+---I

Sense amplifiers

Precharge
circuitry

Write-read
circuitry

l.::±=~E=±====::::tt= Fp~ halCVDD

1----6-----t---.........._ Write_en

bitO Bit8

Figure 3.9: Memory sub-block schematic

51



•
MCSoC implementation

Fast operation of the SRAM was obtained by adding sense amplifiers and precharge

circuitry to the memory design. As shown in Figure 3.9, each black of the memory

consists of 8 columns and 8 rows. Each column in turn consists of memory cells, sense

amplifiers, precharge curcuitry and write-read circuitry. Write-read circuitry is used to

separate write and read operations. For example, if we need to write sorne value to the celI,

we have to put the information bit on the bit-line and the inverted value of the information

bit on the bit-not-line. If the Write_en signal is activated, the tri-state buffer is turned on,

and inverted information bit can freely propagate to the bit-not-line. The situation differs

for the read operation. When the Word signal is applied during read operation, the data

from the cell has to flow onto the bit-lines. This means that both bit-lines must be in a

floating state. Let's assume that there is no tri-state buffer at the bottom of each column. In

this case, even if the bit-line is in floating state, the bit-not-line will be either high or low

(undefined), depending on the inverter behavior. This will affect the sense amplifier

operation, since it has to detect voltage difference between bit and bit-not lines.

Eventually, the sense amplifier will give erroneous value if one of the bit lines is in

undefined state.

The layout architecture of the memory is shown in Figure 3.10. SRAM is located in the

left-bottom corner of the die, and occupies approximately 20% of the whole area of the

chip. Fast SRAM memory consists of two paralIel blocks. Each block is in turn

constructed oftwo sub-blocks. Each sub-block includes 512 celIs (8rows*8 columns*8bits

per each column). Each of the four sub-blocks has individual row and column decoders.

The decoder for fast SRAM was implemented in the same way as the control block

registers for PCM, see Figure 3.6. The only difference is that the number of rows were

reduced down to 8 and, consequently, the address for the row became three bits wide.

The column decoder is based on a pass-transistor decoder with NOR pre-decoder and is

shown in Figure 3.11. The address is selected with address bits BO, Bi, Bl, where Bl is

the most significant bit and BO is the least significant bit. As soon as one of the lines of the

pre-decoder is activated, the pass transistor is turned on, and data can propagate from or to

the memory core. Since it takes too much space to draw 64 transistors in the same picture
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Figure 3.10: The second pilot chip and fast SRAM layout
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Figure 3.11 shows colurnn decoder for I-bit bus only. In the case of 8-bit bus, each line of

the pre-decoder is connected to the gates of 8 transistors in parallel. The architecture

shown in Figure 3.11 is cornparatively fast, although it uses more transistors than other

similar architectures. It should be noticed that each time the signal passes through pass

transistor, it has to be restored to the original value due to the body effect voltage loss.

Columns 0...7 outputs

_Enable B2 B1 BO Columns 0...7 inputs

Figure 3.11: Column decoder

The operation of the memory is explained hierarchically in the following subsections.

First, the operation of the single celI is explained, folIowed with the sense amplifier and

the precharge circuitry operations.
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3.4.1 - Operation of the cell

MCSoC chip memory is designed on the basis of the standard six transistor cell.

Figure 3.12 shows typica1 architecture and operational waveform of the six transistor cell

designed in CMOS technology. The cell is comprised of two cross-coupled inverters

(transistors MO, M2 and Ml, M3) and two access transistors M6, M7. Access transistors

connect the flip-flop to the column (bit-fine and bit-not-fine) lines. In order to connect the

flip-flop with the bit-lines, Word line has to be pulled-up to VDD and transistors M6, M7

to be turned on. Below we explain how to perform write and read operations on the actual

waveform obtained during cell testing in Cadence environment. For better understanding,

different operational states of the cell are numbered at the top and bottom parts of the

waveform. AlI the signaIs are named in the right part of the waveform.

3.4.1.1 Write operation

State 1. Enable signal (waveform C) becomes high and lets Data (waveform D)

propagate to bit-lines. Since the data bit is "1", bit-fine becomes "high" and bit-not-fine

becomes "low" (waveforms F and 1). Now the memory cell is ready for the next operation.

State 2. Word signal (waveform E) becomes "high", turns on transistors M6, M7 and

lets data propagate to the cell. Then Word signal changes to "low" and captures

information bit in the cell. Form state 2 to state 3 the cell is in the storage mode.

3.4.1.2 Read operation

State 3. Read operation starts from precharging both bit-lines to mid-voltage value, for

0.35 ~m technology it is 1.65 V. As soon as Fp signal (waveform A) becomes "high" bit­

fine and bit-not-fine are precharged to 1.65 V (waveforms F and 1).

State 4. As soon as bit-lines are fully precharged Fp signal becomes "low" and at the

same time signaIs Fs (waveform B) and Word (waveform E) becomes high. When the

word line is selected the CUITent flows from VDD through Ml and M7 onto bit-fine,

charging the capacitance of the bit-fine. On the other side of the flip-flop the CUITent flows

from bit-not-fine to ground through transistors M6, M2 thus discharging bit-not-fine.
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Figure 3.12: Single-cel! basic operations waveform and circuit diagram
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As soon as sense amplifier is able to see the voltage difference, the bit-lines are precharged

or discharge to full voltage swing.

States 5, 6 show write "0" operation. As seen from waveforms F and 1 at state 5, bit-line

gets discharged and bit-not-line gets charged. At state 6, when Word line is selected the

information propagates from bit-lines to the cell. As seen from the waveforms G, H the

value written to the cell changes to "0".

States 7,8 show read "0" operation. The operation follows similar to read "1". The only

difference is that now bit-line is getting discharged and bit-not-line is getting charged.

When the word line is selected the CUITent flows from VDD through MO and M6 anto bit­

not-line, charging the capacitance of the bit-not-line. On the other side of the flip- flop, the

CUITent flows from bit-line to ground through transistors M7, M3 thus discharging bit-line.

In order ta test maximum performance of the cell, aIl operations were accelerated.

States 9,10, Il, 12 show write 1, read 1 operations. States 13,14 perform read 1 operation

again, in order to check non-destructiveness of the read operation. States 15 through 24

repeat write 0, read 0, read 0, write 1, read 1 operations with maximum possible speed.

3.4.2 - Sense amplifier operation

Sense amplifier is designed on the basis of a full-complementary positive-feedback

voltage sense amplifier and is shown in Figure 3.13. The amplifier consists of two cross­

coupled latches and two switch transistors. One latch consists of transistors Ml, M2 and

another consists of transistors M3, M4. The main purpose of the sense amplifier is to

detect small voltage difference between bit-lines _B and Band to amplify detected

difference to full voltage swing, as shown in Figure 3.13. Two switch transistors serve to

connect cross-coupled latches to VDD and ground. The operational waveform of the sense

amplifier is also shown in Figure 3.13. Initially V(bit-line) is precharged to VDDI2. As

soon as Word signal is activated the small difference in a voltage appears on a bit-line.

Then sense amplifier is activated with the signal Fs. Sense amplifier detects the difference

li.V and pulls the detected value to a full voltage swing. AlI these operations can be
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compared with Figure 3.12, for example, sense operation can be observed at states 4,8, 12

and so on.

"">

'-- ~-_:_----<.Bit

Ul
Ul
>

i1V(1)
i1V(O)

--------------~~----

t-------t-- - - - - - t- - - [VDD/2

V(bit-Une)

Logic 1

tFs activatedWord activated

Logic 0 L...- ..L....- --L..__-.:===- _

Figure 3.13: Sense amplifier schematic and operational waveform.

3.4.3 - Precharge circuitry operation

Precharge circuitry is responsible for precharging and equalizing bit-lines to mid­

voltage. As shown in Figure 3.14, precharge circuit consists of three transistors powerful

enough to charge and equalize one column to VDDI2. The operation of the precharge

circuit is quiet simple. AlI three transistors conduct when signal Fp becomes high. While
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transistors Ml and M2 precharge bit-lines to mid voltage, transistor MO equalizes both bit­

lines and at the same time speeds-up precharging operation. AlI three transistors have to

be carefully matched.

01
LI
Q)

>a
1

-0
-0
>

Figure 3.14: Precharge circuitry schematic

If precharge circuit is not matched properly, it will introduce erroneous voltage onto the

bit-Hnes prior to sense operation and erroneous value will affect the sense amplifier

function and consecutively the whole memory performance.

3.5 - Testing of the pilot chips

Both pilot chips were tested and verified after actual fabrication. For the purposes of

efficiency, a test plan was used to organize efforts, share access to the device and test

equipment, and to ensure incremental debugging. The debugging process began with the

system bus and PCM, followed by the SRAM, then the processor and PBC. The USB is

tested Iast due to its complex seriaI communication protocoI, and because the EBI can be

used for external communication.

The Printed Circuit Board (PCB) is shown in Figure 3.15 was created to preserve the

integrity of the power, ground, dock and digital signaIs, and to provide a platform for

interconnecting the multiple buffers to the MCSoC IC and test equipment connectors.
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Initial tests, using a generic test head and HPl6500B logic analyzers, were conducted to

ensure functionality before proceeding with the design and construction of the PCM.

Many tri-state buffers are needed on the PCB due ta the bidirectional connections of the

EBI and VXI bus. Buffers are also needed ta step down the 5V signal of the VXI bus ta the

3.3V operating voltage of the MCSoC le.

Although it was impossible ta test the Control Black Registers and the fast SRAM

direcdy, due ta restricted number of pins on the chip and lack of direct access the Control

Black Registers and the fast SRAM were tested through observation of the connected ta

them components. For example, since the Control Black Registers are connected ta the

dock dividers of the Programmable Clock Manager the only way to test them is to observe

the changing of outputs of the PCM with the changing of the inputs of the Control Black

Registers. The test preparations are explained in following section.

Coaxial
connectors

The pilot chip

Dip switches ta
control PCM

Figure 3.15: PCB Test Board for testing of the pilot chips
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3.5.1 - The IEEE 488 and VXI Bus Measurement Setup

The test plan inc1uded the development of C code used for controlling the HPl401 VXI

bus mainframe, the primary test device for communicating with the MCSoC system bus

through the EBI. The VXI bus is capable of generating and reading several digital and

analog signaIs. For the purposes of MCSoC, the VXI bus used 32 bi-directional digital

pins and seven digital control pins. Although the VXI bus generators and analyzer

modules are limited to an operational speed of 20MHz, testing was possible due to the full

handshake protocol of the system bus. Additional analog test equipment is connected

through an IEEE 488 bus, and in early stages, the 50 MHz HP16500B logic analyzer was

used together with its signal generator modules.

The test process was established in advance, such that all desired options could be built

into the C code during its development. This resulted in an efficient hierarchical code

structure that is easily maintained and understood by successive designers. The test code

was written so that the specifie functions for controlling the test equipment were

transparent to designers when setting up programs to test their components. Designers

need to concern themselves only with high level functional calls for bus operations such as

master write, slave read and observation. With the hardware functionality of MCSoC

confirmed, a C program is used to automatically load the assembly level code from a text

file into the processor by merely running the executable and specifying the file on the

command liue.

3.6 - Summary

The System-on-chip (SoC) implementation of embedded memory is implemented in the

MCSoC project. This platform eases research in the areas of fault-tolerance of embedded

memories, yield improvement and reliability of the embedded memories and the

confirmation of ideas of organizing systems-on-chip. With embedded SRAM, a simple

generic processor, communication systems, and the PCM, MCSoC is has been optimized

for functionality from a research standpoint.
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Hardware research will continue into successive embedded memory designs methods,

yield and reliability improvement. These future developments will be carried out by

students furthering the work presented in this thesis.

Memory area 1569.65 !lm x 1762.35 !lm. Read cycle (Re) fastest time 33 ns, write

cycle fastest time (WR) 16 ns. Data has to be stable 1 ns before activating write-enable.

Clock speed 500 MHz. Dynamic power consumption for max clock speed is 97.62 mW,

112 of max clock speed 77.9 mW and for 114 of max clock speed is 68.91 mW.
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Chapter 4 - Induced Error-Correcting

Code for 2-bit-per-cell

Multi-Level DRAM

As microelectronics technology moves towards Systems-On-Chip (SOCs), it is often

profitable to create a few hardware components, and implement many features in software.

In order to facilitate a large software component, dense memories will be needed. Multi­

Level DRAMs (MLDRAM) can provide high capacity memories: in 1999, NEC broached

the 4-Gbit density level with a file-memory DRAM that uses multiple voltage levels to

store 2 bits in each cell [16]. Also, MOSAID technologies implemented several sensing

techniques of different voltage levels for MLDRAMs.

High susceptibility to errors due to reduced noise margins prevents MLDRAMs from

entering the commercial market. MLDRAMs must be able to tolerate process variations,

as weIl as common memory errors. Error Correcting Code (ECC) is one of the methods to

protect MLDRAM. Due to the fact that MLDRAM stores 2 bits/ceIl, conventional ECC is

not able to provide sufficient protection. In this chapter, we propose the induced ECC, that

protects MLDRAM in a better way.

As induced ECC implementation is tightly coupled in MLDRAM sensing circuitry, its

operation is described first. We then describe the types of fauIts which are usual for

MLDRAMs, and outline details of implementation and trade-offs of designing the induced
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Eec.

4.1 - MLDRAM Basic Operations

MLDRAM operation is more complicated than that of the conventional DRAM. The

state flow diagram of the cell is shown in Figure 4.1 Values show stored binary value and

storage voltages in 1.8V technology. Following presented diagram, the read operation first

compares stored voltage with reference voltage of O.9V. Then, depending on obtained

result from sense amplifier, the Most Significant Bit (MSB)is assigned to be one (high) or

zero (low), where X in the circles stands for unknown value of the Least Significant Bit

(LSB). The next operation consists of comparing the stored voltage value with the LSB

voltage reference. At the far right side of the diagram, the circuitry reads out the value of

the cell.
LSB reference

voltage

MSB reference

voltage Q 1 · 1/
.... ~- ~VDD = 1.5V
; 1 ."

1 ~VDD = 09V 1

1 1 /

@-I_~_VD_D_=_0.3_V---,1 '"

HD is a Hamming Distance

Figure 4.1: MLDRAM basic operation

Noise mar-

between

levels are only

1I3VDD

Figure 4.2 shows the circuit schematic, on the basis of which all basic operations are

explained. MSB is always accessed from the bottom side of the circuit and LSB from the

top side. There is an interconnect matrix in the middle of the design, which serves for

sharing signaIs between right and left, top and bottom parts of the circuit. The matrix is

controlled by signals X, C, _X and _c. AlI operations are shown on a timing diagram in
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Figure 4.3. Each point represents the state of the memory at a given time. Operation is per­

formed on a cell WLi, which is situated on the left complementary bit line.

The main difference between operations of the MLDRAM and conventional DRAM is

that, for read operation, MLDRAM requires different voltage reference generations,

depending on the previously read value. AlI operations areexplained next.

4.1.1 - Write operation

Figure 4.3 shows waveform diagram for 0.18 /lm technology. During this cycle, a two­

bit value is written into the cell. The first operation starts from state 1.

State 1. Control signaIs YSR and YSL become "high" and allow data propagate to bit

lines.

State 2. Control signal IR become "low" and disconnects right bit line from sense

amplifier, leaving LSB captured on complementary right bit line _BR. Right after this _X

becomes "high" and connects _BL and BR, thus allowing both bit lines to carry MSB. Left

sense amplifier is disconnected and signal ER pulled up, thus allowing bit lines _BR, _BL,

BR to carry total charge.

4.1.2 - Isolate and store operation

During this cycle, the data is isolated from sense amplifiers and put in storage state.

State 3. Control circuit causes word signal WLi to go "high" and dummy word signal to

go "low". This action captures stored value into the cell.

State 4. AlI bit lines are precharged to VDD/2, and sense amplifiers are turned off. After

this, the memory is in the storing state.

4.1.3 - Read operation

During this operation, memory reads out stored value. Since read operation is self­

destructive (like in conventional DRAM), data needs to be restored.
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Figure 4.2: MLDRAM access circuit schematic.
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At the end, during state 9, the restore operation occurs.

State 5. At first WLi is enabled, then _C is also enabled. Signal stored in a cell is divided

between two bit lines _BL and _BR.
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Figure 4.3: MLDRAM basic operations

State 6. Left sense amplifier compares stored value on _BL to BL precharged to VDD/2.

Left sense amplifier applies full swing voltage to BL and _BL. Signal IL becomes "low"

and latches MSB value on the left sense amplifier.
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State 7. Ward line WLi becomes "high" and captures full MSB value (VSS or VDD) in

the ceIl, thus creating reference voltage for LSB. Then, the left bit lines are precharged to

mid-voltage and equalized. The MSB cell signal is then distributed onto bit lines _BL, BL,

BR by asserting EL and C. The resulting reference signal on BR is then isolated.

State 8. The signal IR is asserted, and right sense amplifier compares LSB stored value

on _BR with reference voltage on BR. Then, obtained value is amplified up ta a full swing

voltage and data is ready to be propagated to the data bus.

State 9. Restore operation OCCurs. Its operation is similar to write operation, states 1-3.

4.2 - Common MLDRAM faults

There are two general types of faults affecting MLDRAM. They are known as hard

Jaults and softJaults. The protection scheme has to be applied to both types.

Short between word line and cell capacitor

Short between sub·bit line and cell capacitor

Short between two cell capacitors

No connection between sub·bit line and cell

Cell access transistor stuck open

Cell access transistor stuck on

Excessive cellleakage current

Interrupted word line (WLj , WRj )

Interrupted sub·bit line (BL, _BL, BR, _BR)

Short between adjacent word Iines

Short between adjacent sub-bit Iines

Short between word line and sub·bit line

Stuck word line (WLÏ' WRj )

Stuck dummy word line (DLo' DLe, DRo' DRe)

Stuck bit·line precharge control (PL, PR)

Stuck bit·line equalize control (EL, ER)

Stuck sense amplifier isolation control (IL, IR)

Stuck sense amplifier precharge control (ZL, ZR)

Stuck switch matrix signal (C, _C, X, _X)

Table 4: Hard faults in MLDRAM
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Hard faults are permanent and manifested in at least 16 ways [17] as shawn in Table 4.

NormaIly, because of the large areas affected by hard fauIts, they are better repaired with

adding spare memory e1ements. However, in cases such as cell access transistor stuck

open or excessive ceIlleakage current, when fauIt affects a small number of ceIls, it is bet­

ter to repair the damage with ECC. The second type of fault is a soft fauIt. Due to reduced

noise margins (600 mV for 0.18 ~m technology) MLDRAM becomes very susceptible to

soft errors. Soft errors mostly occur because of the a-particles, that are He2+ nuclei (two

protons, two neutrons) emitted from radioactive elements during decay. Traces of such

elements are unavoidably present in the device packaging materials. With emitted energy

of 8 to 9 MeV, a-particles can travel up ta 10 ~m deep into silicon. While doing sa, they

interact strongly with the crystalline structure, generating roughly 2 x 106 electron-hole

pairs in the substrate. The soft error occurs when the trajectory of one of these particles

strikes the storage node of a memory cell.

a-particle

VDDWL

1 particle - 1 million carriers

Figure 4.4: a-particle induces soft error

Consider the cell of Figure 4.4. Electrons and hales generated by a striking particle dif­

fuse through the substrate. Electrons that reach the edge of the depletion region before

recombining are swept into the storage node by the electrical field. If enough electrons are

collected, the stored value can change [19].

4.3 - Induced ECC code for MLDRAM

Figure 4.5 shows conventional ECC for a 1bit/cell memory, that is also used for

MLDRAM [18], [9]. During the write operation, k-bits wide input data propagates through

69



Induced Error-Correcting Code for 2-bit-per-cell Multi-Level DRAM

encoder (check bits generator) and is stored in additional memory location. During the

read operation, data passes through check bit generator again and stored check bits are

compared with new check bits. A block responsible for the compare operation is called a

syndrome. A decoder is used to decode information returned by syndrome. Depending on

the values returned by decoder, the correction circuitry either corrects a single bit error or

Check bits

Syndrome

tion Check

arity Bit
Generator

cbits

~
MEMORY CORE- cy
!

Check
Check bits Syndrome

Bit Generator
Generator

cbits cbits

~
Uncorrected data

Decoder

~ ~

CORRECTION

~ ~

ln order to protect
k-bits of informa
we need c p
check bits

generates the double bit error detection signal.

Input data k bits

Double error alarm Corrected data

Figure 4.5: Conventional modified Hamming ECC for 1-bitlcell
memory

Unfortunately, this architecture of the ECC is not efficient for the MLDRAM, for rea­

sons apparent from Figure 4.1. The noise margin between levels of storage 01 and lOis

only 113 of VDD. This fact creates high probability of errors with Hamming distance 2

(difference between two binary words). Another drawback isthat this ECC has to wait for

both MSB and LSB to be ready for processing through ECC.

The proposed ECC, shown in Figure 4.6, is able to avoid and solve problems that occur

using conventional ECC. Based on a fact that ECC is able ta interact with the memory and
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affect its operations, this ECC is called induced. Induced ECC exploits an idea that MSB

and LSB are read out at different time and that LSB value strongly depends on previously

read MSB value.

bits

P its

Input data k bits

for- MSB k/2 bits LSB k/2 bits

ed !bits
Check Check

Bit Bit
Generator Generator

zbits zbits

~ Check,
ri MEMORY CORE 1 Z 1 z ~

! ~
E Check Syndrome...
ra Bitiij Generator... Generatore zbits zbits...
CIl
CIl ~:ë
j Uncorrected data
0 Decoderc ! !

Y CORRECTION

! Corrected data

1
OUTPUT LATCHES

~ Out ut data k b

z k2 >z+-+l- 2

1n order to pro­
tect k-bits of in
mation we ne
2z parity check

Figure 4.6: Induced ECC for 2-bitlcell memory

The operation of the induced ECC is quite simple. During the write operation, data is

divided in two groups: MSB group and LSB group. Since MSB and LSB can be written at

the same time, they are processed through different check bit generators. This also can be

done by using only one check bit generator, but in this case, the time to generate check bits

will double.

Check bits are generated according to Table 5. The table is constructed in such a way

that the effect of each erroneous bit is unique; a unique combination of parity check bits is

produced in each individual case, so the erroneous bit can be easily located. Aiso one total

parity check bit has to be generated in order to detect a double bit error. The check bits
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generator schematic is shown in Figure 4.8. Check bits are stored in two separate loca­

tions, z bits for MSB and z bits for LSB.

k cl c2 c3 c4 cS

0 c4 c5 3

1 c3 c5 5

2 c3 c4 6

3 c3 c4 c5 7

4 c2 c5 9

5 c2 c4 10

6 c2 c4 c5 11

7 c2 c3 12

8 c2 c3 c5 13

9 c2 c3 c4 14

10 c2 c3 c4 c5 15

11 cl c5 17

12 cl c4 18

13 cl c4 c5 19

14 cl c3 20

15 cl c3 c5 21

cl cl 16

c2 c2 8

c3 c3 4

c4 c4 2

c5 c5 1

24 23 22 21 2°

Table 5: Check bits generation for induced ECC (k=32).

The most left column of the table shows aIl 16 bits of the bus plus check bits cl ta c5.

The right most column represents positions of the erroneous bit for row decoder. For

example, if bit 2 is affected, the row number 6 will be excited since the unique combina­

tian of check bits c3 and c4 is responsible for bit 2. It should be noted that bit c5 represents

less significant bit and cl represents most significant bit as it may be seen at the bottom of

Table 5. Comparing check bits cl and c2 in Table 5, one can see that the check bit c2 can

serve as a parity generator for bits 4 ta 10, inclusively, and check bit cl as a parity genera­

tor for bits Il ta 15. This fact was exploited for total parity generator bit c6.
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4.3.1 - Efficient total parity check

c1c2c3c4

Narmally, in arder to get total parity check bit, one should use 15 two-input XOR gates,

as shown in Figure 4.7. Comparing Figure 4.7 and Figure 4.8 one can notice possible

improvement for total parity check bit generation, which saves time, area and power con­

sumption for given ECC. As seen from Table 5 and Figure 4.7 check bit cl serves as a par­

ity generator for bits Il, 12, 13, 14, 15 and check bit c2 serves as a parity generator for bits

4,5,6, 7,8,9, 10.
c5

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

F
~

" '"

1::

w~
~

c6
Figure 4.7: Check bit generator without improvement

Since check bits cl and c2 are used as parity generatars for completely different bits we

understood that it was possible to reuse them for total parity generator bit c6. As shown in
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Figure 4.8, total parity check bit was constructed using check bits cl, c2 and 5 additional

XOR gates, instead of using additional 15 XOR gates for total parity generation, which

significantly reduces area occupied by induced ECC.

Check bit generators take kl2 bit on the input and encode z bits on the output, where z

satisfies bounds in Figure 4.6.

c6

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Figure 4.8: Improved check bit generator for induced ECC

During the read operation, the bits that were generated during the write operation (c1w,

c2w, c3w, c4w, cSw) are compared with newly generated bits (c1r, c2r, c3r, c4r, cSr)

through syndrome circuitry, as shown in Figure 4.9. There are three possible outcomes

that can happen during the comparison.

A) the first case, there are neither single errors nor double errors. In this case, the binary

syndrome SI through SS returns "zero" and the output of total parity bits c6w and c6r do

not differ, which returns zero on the output of the XOR gate for c6 comparison. A "zero"
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from total parity check bit c6 propagates through inverter, and there are "zero" and "one"

at the inputs of AND gate, which gives a negative result for double bit error detection

alarm.

Double Error Detection Alarm

c6w ---J

c5w -------+----'
c4w ------+--t--....
c3w -------I--+---+----J
c2w -------I--+---+---I---J
c1w -------1--+---+--+---+---'

c6r c5r c4r c3r c2r c1 r

Figure 4.9: Syndrome generation and DED circuitry.

B) the second case, there is a single error and no double errors. In this case, the binary

syndrome SI through SS gives sorne binary value other than "zero" showing the exact

location of the error. The total parity bits c6w and c6r also differ, which returns "one" on

the output of XOR gate for c6 comparison. "One" from total parity check bit c6 propa­

gates through inverter and there are "zero" and "one" at the inputs of AND gate, which

again gives a negative result for double bit error detection alarm.

C) the third case, there is a double bit error. In this case, the binary syndrome SI through

SS gives sorne binary value other than "zero" showing the location of the error, but the
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location is erroneous itself and should not be used for correction. At the same time, bits

c6w and c6r do not differ, which returns "zero" on the output of XOR gate for c6 compar­

ison. "Zero" from total parity check bit c6 propagates through an inverter and there are

"one" and "one" at the inputs of AND gate, which now gives a positive result for double

bit error detection alarm. This situation produces double bit error alarm. If there are more

than two erroneous bits, this circuitry fails to work properly.

After the comparison, the data has to propagate to the decoder and correction circuitry.

The decoder and correction circuitry were implemented as a single block, shown in

Figure 4.10. The decoder is implemented on a basis of a standard NOR decoder with

improved enable signal. AlI uncorrected data from a memory location propagates to the

inputs of XOR gates and is compared to the same data that propagated through ECC cir­

cuitry. The operation of the decoder and correction circuitry is best demonstrated on an

example. Assume that the bit 7 originaIly was "0", and after read operation it was read as

"1". In this case, as it is shown in Table 5, only check bits c2 and c3 will differ after read

operation. This combination corresponds to binary value 12 as it is seen from right part of

Table 5.

Syndrome bits SI through S5 will propagate to decoder. As soon as the decoder is ena­

bled with negative signal, only the row that goes to the same XOR gate as bit 7 will be

puIled up "high". Since corrupted value is "1" and exited row produces "1", the XORed

output (bit7out) will give a corrected value "0".

The same is true for the opposite corruption polarity. Assume that the bit 7 originaIly

was "1" and got corrupted to "0". The same row will be exited and corrupted "0" XORed

with exited row will give "1".

An additional feature that improves the decoder function is the enable signal. NMOS

and PMOS transistors in the left part of the Figure 4.10 serve for precharging and dis­

charging the row lines. In order to precharge one of the decoder Hnes, enable has to

become "low". In this case, aIl PMOS transistors in the left part will be turned on, but only

one row Hne will be puIled up since the rest of the lines will be discharged by NMOS tran­

sistors in the right part of the circuitry.
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VOO!

c1 r-+C5r t
bits 0 through 15
obtained during
the read operation

cl

c2

c3

c4

c5

bit150ut

bit140ut

bit130ut

bit120ut

bitl10ut

bit100ut

bit90ut

bit80ut

bit70ut

bit60ut

bit50ut

bit40ut

bit30ut

bit20ut

bitlout

bitOout

_Enable 51 52 53 54 55

Figure 4.10: The decoder and the correction circuitry schematic

77



Induced Error-Correcting Code for 2-bit-per-cell Multi-Level DRAM

However, if at certain moment the decoder has to be disabled, the enable signal has to

become "high". In this case, the enable signal is pulled up and NMOS transistors at the left

part of the circuitry are tumed on. As soon as NMOS transistors are tumed on, all row

lines become discharged, and the decoder does not make any changes to the correction cir­

cuitry. The addition of the extra NMOS transistors in the left part of the decoder prevents

Eee from erroneous correction and saves power consumption, since we do not need to

apply additional signaIs on SI through S5 in order to discharge all row lines.

As shown in Figure 4.3, an MSB is generated first, and is ready at state 7. At this point,

aIl MSBs can be processed through check bit generator and compared with MSBs that are

stored in the memory. After processing MSBs through the rest of the Eee, there are three

possible outcomes available.

• First outcome: there is a single bit error amongst MSBs. Eee is able to correct it and

retums correct values back to memory. By doing so, we avoid a double error, since the

wrong MSB value will be automatically written back to the cell (state 7 of Figure 4.3).

Also, the memory is protected against the error between levels 01 and 10 (Hamming dis­

tance two).

• Second outcome: there is a double bit error. Eee is not able to correct it, but it retums

the double bit error detection alarm to the memory controller. Since the double bit error

between MSB will provoke double error between LSB, it does not make any sense to con­

tinue the read operation and upon receiving MSB, a double error alarm signal memory

controller stops the read operation at state 7. As it can be seen from Figure 4.3, by doing

so we save time and power consumption. Simulations show that time saved is about 35 ns

for 0.18 Jlm technology.

• Third outcome: there are no errors between MSBs. MSB values are latched to output

latches and Eee is ready for LSB checking. Now, LSB check bits are propagated through

the same blocks as MSB. Depending on the outcome of the correction circuitry, data is

either latched to output latches and ready to be read or Eee sends double bit error signal

to the processor and memory waits for further instructions.
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4.4 - Performance of the induced ECC

The reliability model was derived and aIl modelling was performed using MATLAB.

The model is combinatorial, which means that the set of the operational states of the sys­

tem is categorized in such a way that the probabilities of each of the states can be deter­

mined by combinatorial means [9].

As shown in Figure 4.11, the MLDRAM can be described as astate flow diagram with

aIl possible states it can tolerate. Curved lines show normal transitions and straight lines

show faulty transitions that can happen due to several reasons. Figure 4.11 (a) shows that

MLDRAM protected with conventional ECC can not tolerate faulty transitions with Ham­

ming distance 2. Figure 4.11 (b) shows that MLDRAM protected with induced ECC can

tolerate any faulty transition between the states.

Equation (4.1) describes reliability R(y) of the previously described system.

(4.1)

where F is a total number of faulty transition that can happen in the system. From

Figure 4.11 it follows that there are 6 faulty transitions which can happen in MLDRAM; f

is the number of faulty states that system can tolerate. From Figure 4.11 follows that

MLDRAM protected with conventional ECC can tolerate only up to 4 faulty transitions

(f=4) and MLDRAM protected with induced ECC can tolerate up-to 6 faulty transitions

(f=6). ex is the probability of the possible faulty transition. ex itself is a function of the cell

area Acel! and of the, so caIled, y factor and is expressed by Equation (4.2). ActuaIly, for

MLDRAM y is the main factor that affects MLDRAM system reliability, which itself

depends on many factors, such as noise margins of the system, defect density and so on.

-(A cell ' y)
ex = e (4.2)

Equation (4.1) is graphically shown in Figure 4.12. The induced ECC code significantly

improves reliability of the MLDRAM comparing to the conventional ECC code. It has to

be mentioned that the plot for MLDRAM without ECC was obtained as a system that can

not tolerate any faulty transitions.
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(a) (b)

Figure 4.11: State flow diagram for MLDRAM (a) MLDRAM protected with
conventional ECC (b) MLDRAM protected with induced ECC
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Figure 4.12: Reliability improvement with induced ECC

By designing induced Eee, one has to cope with area and delay propagation that even­

tually affects the overall memory performance. As follows from Figure 4.13 (a), bus width

dramatically affects area occupied by check bits. Figure 4.13 (b) shows that it is more

profitable to have wide buses than narrow ones. For example, for 2 bit wide bus we need 4

check bits, which makes it 200% of the area occupied by redundancy bits; for 16 bit wide
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bus we need aiready 50% redundancy and so on. At the same time, one shouid deai with

propagation delay introduced by ECC in the whole circuitry. As shown in Figure 4.14, the

propagation delay time dramatically increases with increasing the number of information

bits. For exampIe, just increasing the bus from 4 bits to 100 bits introduces as much as

aimost 7 times more delay into the circuitry. Comparing Figure 4.13 and Figure 4.14, it is

obvious that bus width introduces completely opposite effects on the redundancy percent­

age and propagation deIay. For redundancy percentage it is better to have a Iarger bus.

Meanwhile, for propagation delay it is better to have the bus width as small as possible.
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Figure 4.13: Area (a) and the redundancy percentage (b) of the induced ECC
as a function of a number of information bits.

Eventually designer has to choose optimal trade-off that best suits to his needs, either it

is a space-saving strategy or an increased speed of operation strategy.
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Bus width or number of information bits

Figure 4.14: Propagation delay as a function of a bus width

4.5 - Conclusions

The conventional ECC can not cope with sorne of the rnost cornrnon errors in

MLDRAM, as they appear to corrupt two bits. The induced ECC scherne irnproves correc­

tion of these errors, and hence increases the MLDRAM reliability. An irnplernentation of

induced ECC circuitry that is tightly coupled in MLDRAM sensing circuitry is presented

and its performance is shown to surpass that of the conventional ECC.
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Chapter 5 - New Embedded Memory

Architecture for Enhanced

Yield, Performance and

Power Consumption

5.1 - Introduction

With advances in deep-submicron CMOS technology, it is practical to create Systems­

On-Chip (SOCs), where designers can integrate many components on the same die [21].

SOCs provide a lot of flexibility, but engineers have to account for effects such as interfer­

ence between digital and analog parts, yield and reliability. Proper function of the whole

system depends on the function of each block. They aIl have to operate correctly.

Since software gives more flexibility, distinguishing features of SOCs are often imple­

mented in software, rather than in hardware. It is becoming more profitable to create hard­

ware as small as possible, and use instead a large software component. To accept these

trends, engineers need more and more fast and reliable memory, which consumes less

power. Embedded memories fit perfectly to these conditions. This chapter investigates the

means to improve the yield of embedded memory, while retaining speed and power per­

formance bounds, if redundant elements are to be employed.
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5.2 - Cross-Shared Redundancy

In this chapter, we introduce a cross-shared redundancy (CSR) scheme. Architecture of

the CSR model was designed in consideration of yield improvement and protection of the

embedded memory against most important types of failures, such as single-cell, row,

column and chip-kill failures. As shown in Figure 5.1, on example of 4 Mbit memory, the

memory core is organized as a square array of M independent blacks (M=16 in

Figure 5.1).

Each block consists of 512 rows and 512 columns and has its own column and row

decoders. There are also redundant columns and rows for fauIt tolerance, and BIST (Built­

In-Self-Test) circuitry and main MC (Memory Controller) in the middle of the core. In

addition to the main controller, there are four redundant memory controllers to protect

memory from chip-kill or fatal defects. As known from practice, defects tend to occur in

clusters and do not spread evenly over the chip [20],[7],[8]. For this model, if a cluster

error occurs and destroys the memory controller, the defected controller can be easily

replaced with one of the four spare controllers. This feature significantly augments yield

of the whole chip (probability of chip kill defect reduced by power of 4), since memory

functioning is very important for a SOc.
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Figure 5.1 : Cross-Shared Redundancy memory

As seen from Figure 5.1, redundant rows and columns are positioned in such a way, that

redundant columns between blocks A and B may be used for both blocks depending 00

where the fauIt happeos. The same is true for rows.

The same effect could be achieved just by placing the redundancy on the side and at the

bottom of the core, but for speed and low-power consumption reasons, this model is more

suitable. Power consumption is defined by equation Pd = k V1D CLI , where CL is load

capacitance, k switching activity, VDD is a power supply, 1 is a switching frequency. One

way to reduce power consumption is to reduce load capacitance. For CSR model, by plac­

ing redundancy in the middle of the core, load capacitance of the access wire is reduced by
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a factor of 2 in the worst case. For example, if there is a couple of destroyed columns in

the left-top part of block A and there are redundant columns on the right side of the global

core, each signal has to propagate through the whole memory and it needs to charge wire

twice as much compared to our model, in order to activate necessary operation.

Meanwhile, with redundancy in the middle of the memory core, the time for the signal

to propagate will be reduced to half, and the wire to charge will be twice shorter.

5.3 - Failure Types

As shown in [10], if aIl faults in memory were single-ceIl failures, the error-correcting

code could bring yield up to 99.9%. However, most of these failures affect the chip sup­

port circuits, and the word and bit lines. For deep-submicron technology, this is even more

true. Transistor sizes and, consequently, ceIl sizes become smaIler. Chances that defect

cluster affects only one ceIl, are very low. NormaIly, it is several ceIls, word and bit lines

that are covered with a cluster failure. These types of defects can not be repaired by ECC

(Error-Correcting Code) alone, due to 2-dimensional nature of cluster defects. It is essen­

tial to have sufficient row and column redundancy to repair these fauIts.

This model covers three major types of failures. Each type, in turn, consists of different

subtypes of fauIts.

The first type is a single cell failure. This type of fauIt describes the situations when the

defect is contained inside the cell. This can happen for several reasons.

1) Transistor damage happens more often for deep-submicron technologies [5].

2) Capacitor damage (very important for state-of-art DRAMs), happens due to several

reasons, such as absence of metal [6] or a short circuit to another metallayer. As shown in

Figure 5.2, cluster B damages only four ceIls and does not harm whole row or column.

This type of fault is efficiently repaired with ECC, in order not to waste unnecessary ceIls

of redundant rows or columns.

The second type is a row failure. If a cluster error breaks a word line close to the row

decoder, the whole row does not function and can be replaced only with a redundant row.

As shown in Figure 5.2, cluster A destroys rows 5 and 6 completely and it is necessary to
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have two redundant rows 1 and II to repair such a damage. This type of fauIts happens for

several reasons, such as bridging faults, cluster faults and many others.

The third type of faults is a columnjailure. It is known that columns are more suscepti­

ble to failure than rows [10]. There are several reasons why column failure happens. They

can be classified in following way:

a) one or both bit lines are damaged;

b) precharge circuitry failure;

c) sense amplifier failure.

This type is especially important because the very sensitive and precisely tuned-up sense

amplifiers have to sense shrinking voltage levels, as the technology shrinks.

For this type of failures, ECC is not a suitable solution, because it is impossible to repair

sense amplifiers and the only acceptable solution is to replace the column, which contains

a damaged sense amplifier, with the redundant one.
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Figure 5.2: Embedded memories major types of failures
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5.4 • Yield Modeling

Since redundancy allocation is a NP-complete problem, it is impossible to describe

exact allocation of redundant columns and rows. The model presented below describes

rather approximate outcome of spare allocation. Since aIl three types of failures are inde­

pendent and can happen at the same time, yield is obtained if their probabilities are multi­

plied [24]. Our model uses combined Poisson and Binomial distributions for yield

modelling [7]. The Poisson distribution is used to describe the yield of a single cell and the

whole core, in the case when there is no redundancy. Binomial distribution describes the

yields of individual columns and rows. The yield of one cell, i. e. probability that one cell

functions correctly, is given by Equation (5.1)

(5.1)

where Acel! is the area of one cell and Do is the defect density, which depends on process

variations and process conditions. Do is defined on the basis of empirical data for a spe­

cific process. There are three possible cases to consider to obtain memory yield.

5.4.1 - Memory without redundancy

In this case, memory is not protected with redundancy and can not tolerate any damage.

In this case, yield is expressed as probability of not having any faults in the memory core.

Since there are N row times Ncol cells in memory block (where N row is the number of rows

and Ncol is the number of columns), probability that a block functions without any fauIts

will be expressed by Equation (5.2)

(5.2)

There are M blocks in the core and there is equal possibility for any of them to be dam­

aged, the yield of the whole core is going to be as in Equation (5.3)

(5.3)

where Ywor stands for Yield without redundancy.
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5.4.2 - Memory protected only with redundant rows or columns

In this case, memory can tolerate only one type of damage: either row or column, but not

both. NormaIly, this is a column redundancy because columns are more susceptible to fail­

ure. In this case, yield is expressed as the probability of having a certain number of failed

columns or rows. Yield is described with combined Poisson and Binomial distributions.

Yield of one column is expressed with Poisson distribution and the event of damage hap­

pening in several columns out of total number of columns is described with Binomial dis­

tribution. Since the number of cells per column is NroW' probability that one column

functions is defined by Equation (5.4)

(5.4)

Probability of having c failed columns out of N eol is given by Binomial distribution,

Equation (5.5)

(5.5)

Now consider assumption that there are c failed columns that may be replaced with

redundant columns. As is shown in Figure 5.3, any cell in redundancy-protected columns

c can be repaired for any damage, but if one of the rows of length Neol-c is damaged, the

memory can not function properly already. Since no row redundancy is employed, mem­

ory can not tolerate any row damage and ID-redundancy for one block is described by

Equation (5.6)

Rcol
y = ~ (NCOl) (1 _ À )cÀ(Nco/- c)ÀNrow

2 L.J c col col row

c =1

(5.6)

where ÀroW' the probability that one row of size Neoz-c will function is given by Equation

(5.7) and Reol is the number of redundant columns

"1 _ -(AceU·DO·(Nco/-c»
A row - e (5.7)

For function memory core only several outcomes are possible: either there are no faults
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in the core and this event is described with Equation (5.2), or there are several fauIts but

not more than number of redundant columns and these events are described with Equation

(5.6). Since aIl these events are mutually exclusive, the yield of the whole chip protected

with ID-redundancy can be given as in Equation (5.8), where Y jD stands for yield with

1D-redundancy.

(5.8)

5.4.3 - Memory protected with redundant rows and columns

Now, memory is able ta tolerate 2D-cluster damage. The yield of any of M blacks is

Yield = P(no Jaults) + P(1D) + P(2D)

(5.9)

where Y j describes yield in case when memory core is free of damage, Y2 describes yield

in case when memory is damaged and it is possible to repair the damage only with redun­

dant columns or rows, Y3 is the part that describes failures which may be repaired only

with redundant columns and rows together given by Equation (5.10)
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Figure 5.3: Effect of redundancy on yield

The double summation in Y3 goes through aIl possible combinations, i. e. 1 column+1 row,
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1 column+2 rows, 2 columns+1 row, 2 columns+2 rows and so on, until aIl redundant col­

umns and rows are exhausted. For example, if there are three redundant columns and four

rows (Real =3, Real =4), the model will sum aIl 12 possible situations which memory can

tolerate, with P (e col, r row) denoting probability of having e damaged columns and r

damaged rows in the memory core.

Real R row

Y3 = L L (N~OI)(N~ow)(1_ÀCOI)C
e=lr=l

. À(Ncot-c)(l_À )rÀ(Nrow-r)
col row row

(5.10)

Since the memory is divided in M blocks and yield of one block is given by Equation

(5.9) the yield of the memory will be

where 2D stands for two dimensional redundancy.

5.5 - Results

As is shown in Figure 5.4, the curve wr represents yield of the CSR without redundancy,

curves le, 2e and l5e represent models with lD-redundancy 1,2, 15 redundant columns

and curves le+lr, 2e+2r represent models with two dimensional redundancy with 1 col­

umn and 1 row, and 2 columns and 2 rows respectively.

Comparing models with 2 redundant columns (lD- redundancy) and 1 redundant col­

umn + 1 redundant row (2D- redundancy), it is obvious that yield is better for two dimen­

sional redundancy. The case, when there are 4 redundant columns (ID- redundancy)

compared to 2 redundant columns + 2 redundant rows (2D- redundancy) gives even better

results for yield. It is clearly seen from these results that the yield is much better for two

dimensional redundancy than for one dimensional, not because of the quantity of the

redundancy, but because of the quality of it. One might also notice that the area in space

between curves 4e and 2e+2r is much larger than area in space between curves 2e and

1e+1r. This shows that even little increase in quantity of two dimensional redundancy

results in dramatic improvement of yield. Two dimensional redundancy repairs much
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more defect types than one dimensional redundancy with the same space occupied.
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Figure 5.4: One dimensional versus two dimensional redundancy.

Another interesting observation is that after certain value, the yield of the model with

single redundancy converges to sorne point and does not improve further. As is shown in

Figure 5.5, comparing curves wr, le, 2e, 4e, l5e, yield improvement eventually stops

when approximately 4 redundant columns are employed and curves 4e and l5e converged

to the same line, and are seen as one single line with this scale. This happens because sin­

gle redundancy alone is not sufficient to repair aH types of faults in a core. Increasing the

redundancy, which is not able to repair certain defects gives nothing, and memory is still

going to fail.
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Figure 5.5: Limitations of one dimensional redundancy

5.6 - Conclusions

Selection of suitable redundancy (number of redundant columns, rows, combination of

ECC and 2D-redundancy, redundant memory controllers) for specific memory model can

significantly increase the yield of embedded memory. Comparing to other existing models

[20], [22], [23], [25] the CSR model proves that in the future deep-submicron technologies

yield might be improved without excessive performance penalty.

The CSR model achieves better yield and performance due to cross-shared redundancy

positioning and additional memory controllers. Power consumption is kept within bounds

for the memory without redundancy because of the placement of redundant columns and

rows, which allows to charge less wires to access necessary cells.
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