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Abstract

Quantum corrections to the conductivity have been studied at low temperatures down
to 0.15K and fields up to 8.8T in two different disordered systems, namely amorphous
Ca-Al alloys doped with Ag and Au and icosahedral Al-Cu-Fe alloys. In the former the
influence of spin-orbit scattering on the enhanced electron-electron contribution to the
resistivity has been, for the first time, clearly displayed. As the spin-orbit scattering
rate increases, this contribution decreases rapidly to finally vanish at extremely high
spin-orbit scattering rates. Furthermore the analysis shows that the current weak
localization theory gives an accurate description of the experiments irrespective of
the level of spin-orbit scattering.

In icosahedral Al-Cu-Fe alloys, detailed study of the low temperature resistivity
shows that the magnetor:sistance and the temperature dependence of the resistivity
data are consistent with the predictions of quantum corrections to the conductivity
theories. The success of these theories in this alloy system is attributed to intense
electron scattering due to disorder. The spin-orbit scattering and the electron wave-
function dephasing rates are extracted from fitting the magnetoresistance. The de-
phasing rate is found to vary as AT? with p ~ 1.5; a characteristic of electron-electron
scattering in the strong disorder limit. An antilocalization effect has also been directly

observed in the temperature dependence of the resistivity in one of the samples.



Résumé

Les corrections quantiques & la conductivité on été éludiées & basses températures
jusqu’a 0.15K et dans un champ magnétique atteignant 8.8T, dans deux systemes
désordonnés differents, en 'occurence les alliages amorphes de Ca-Al dopés avec Ag
et Au et les alliages icosaédriques d’Al-Cu-Fe. Dans le premier, l'influence de la diffu-
sion spin-orbite sur la contribution de 'interaction renforcée des électrons & la resis-
tivité a été, pour la premiere fois, clairement démontrée. Quand le taux de diffusion
spin-orbite augmente celle-ci diminue rapidement pour finalement disparaitre a tres
forte diffusion spin-orbite. D'autre part, I’analyse a demontré que la théorie actuelle
de la localisation faible donne une description précise des données expérimentales
indépendemment du niveau de la diffusion spin-orbite.

Dans les alliages icosaédriques d’Al-Cu-Fe, I'étude détaillée de la résistivité a basse
température montre que les données de la magnétoresistance et de la dépendence en
température de la résistivité sont en accord avec les prédictions des théories des
corrections quantiques & la conductivité. Le succés de ces théories est atiribué
4 la diffusion intense des électrons diie au désordre. Les taux de diffusion spin-
orbite et du déphasage de la fonction d’onde de I’électron ont été tirés du lissage
de la magnétorésistance. Le taux de déphasage varie selon ATP avec p ~ 1.5; car-
actéristique de la diffusion électron-électron dans les systémes fortement désordonnés.
Leffet de P’antilocalisation sur la dépendence en température de la résistivité a été

directement observé dans I’un des échantillons.
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Chapter 1

Introduction

In 1979 a new field in solid state physics was discovered. It deals with anomalous
clectron transport properties in disordered conductors. The phenomenon is generally
called weak localization and is essentially caused by coherent interference of the con-
duction electron wavefunctions due to intense elastic scattering by the defects of the
system. Theoretically, this phenomenon was first considered by Abrahams, Ander-
son, Licciardello and Ramakrishnan [1] when, following the ideas of Thouless [2], they
developed a scaling theory of electron localization in two dimensional systems. Since
then extensive theoretical work as well as experimental investigations have been car-
ried out and it has been shown that weak localization effects occur in one and three
dimensional systems as well as in two dimensional systems [3, 4, 5]

Weak localization shows up most dramatically as a change of the electrical resis-
tivity of a disordered conductor, for example an amorphous metal, in the presence of
a magnetic field. Since it is possible to measure these changes very accurately, many
interesting physical properties have been observed. Moreover, it is well known today
that measurement of the weak localization effect provides a very useful tool for de-
termining the characteristic scattering times of the conduction electron system [6, 7}.
The reason is that the phenomenon is a quantum interference effect controlled by the
different scattering processes such as inelastic, spin-orbit and spin-spin scattering,

and the rates can be deduced by a direct comparison of t%’{é theory to the experiment.

/



Chapter 1: Introduction 2

Almost coincidentally with the theory of weak localization, Altshuler and Aronov
pointed out that, in the limit of intense elastic scattering (as in amorphous metals)
the interaction between the electrons is affected causing important corrections to the
electron density of states [8]. Intense scattering leads to a decrease in the dynamical
screening, hence enhancing the electron-electron interaction. As a result significant
temperature and magnetic field dependent corrections to the resistivity were also
predicted.

Without exception, all theories developed so far to deal with the transport proper-
ties of disordered metals are based on the fact that, with disorder the electron motion
becomes diffusive in contrast with ordered (i.e. crystalline) conductors where the
electron motion is ballistic. In the presence of disorder, a plane-wave description of
the conduction electrons breaks down and the Boltzmann approach [9] is no longer
applicable for calculating the resistivity. Furthermore, as the amount of disorder is
increased quantum mechanical effects dominate the physics. As a consequence, they
must be incorporated in the calculations of the electronic transport properties of
disordered systems.

It is now well established that weak localization and enhanced electron-electron
interactions theories, also known today under the generic term quantum corrections
to the conductivity, provide a very good description of the low temperature trans-
port properties of a wide variety of disordered systems of various dimensionalities.
Bergmann investigated the magnetoresistance in Mg, Cu, Ag, and Au [7, 10, 11] films
and found remarkable agreement between the experiment and the theory for quasi-
two dimensional systems. Good agreement has also been reported in very thin wires
(quasi-one-dimensional conductors) by Masden and Giordano [12] and Santhanam
et al. [13]. Three dimensional disordered systems are no exception; although earlier
investigations reported some important discrepancies between the theory and exper-
iment at large magnetic fields [14, 15, 16, 17], it has been since shown that quantum

corrections to the conductivity theories provide an accurate descriptioxi of the data
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in simple bulk metals, as well.! Ir particular it was found by Sahnoune and Strém-
Olsen [18] and Lindqvist et al. [19] that the theory quantitatively agrees with the
measurements in Ca-Mg-Al amorphous alloys. Moreover it was clearly demonstrated
that both weak localization and enhanced electron-electron interactions terms are
essential for describing the data.

The success and the current understanding of the quantum corrections to the
conductivity theories is so good, that specific and detailed studies can be carried
out. Moreover, these theories can now be used as a tool not only to determine the
characteristic times of the electron system but also to probe the electronic properties
of non conventional metals {such as quasicrystals).

The present work has two main objectives. First, to investigate in a systematic way
the influence of spin-orbit scattering on the enhanced electron-electron interactions
corrections to the resistivity, the last major problem in quantum corrections to the
conductivity theories that remains unanswered. Second, by using quantum corrections
to the conductivity theories, to get an insight into the low temperature transport
properties of the novel Al-Cu-Fe icosahedral alloys.

Unlike the theory of weak localization for which the role of spin-orbit scattering has
been investigated in great detail by both theory [20, 21, 22] and experiment [10, 11, 23,
24], to date the influence of spin-orbit scattering on the electron-electron interaction
has received little attention. The only theoretical predictions due to Alishuler et al.
[25] and Millis and Lee [26], are that the magnetoresistance for example, vanishes
in the extremely strong spin-orbit regime. On the experimental side, most studies
have concentrated on qualitative comparisons with the theory without any detailed
analysis of the results. This was in part due to the relative insensitivity of the electron-
electron interaction to low magnetic fields. However, the studies were made even more

difficult as most of the systems selected where made of heavy elements (with strong

1Weak localization and enhanced electron-electron interaction effects in bulk conductors are less
pronounced than those observed in one- and two-dimensional systems where the restricted geometry

of the conductor imposes more constraints on the interfering electrons.
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spin-orbit scattering which is predicted to suppress the electron-electron interaction
contribution) [14, 27] or contained transition metal elements [15, 28, 29] which make
the analysis ambiguous and the results less conclusive.

To achieve the first goal it is therefore imperative to select a simple system where
the electron-electron interaction contribution to the resistivity is relatively large and
can be identified unambiguously. Such a system is amorphous Ca-Al alloys. Apart
from being well characterized [30, 31, 32, 33], this system has a very low level of
spin-orbit scattering when compared to other amorphous systems. Hence the spin-
orbit interaction effect on electron-electron interaction is at its minimum. In fact
this feature makes amorphous Ca-Al alloy system very attractive if not unique for a
quantitative study of spin-orbit scattering eflect on the correction to the resistivity
originating from electron-electron interaction in bulk disordered conductors. The
spin-orbit scattering will be systematically varied from very weak to very strong by
progressively replacing Al with heavy elements (Ag and Au) which have high spin-
orbit coupling. The level of the dopant is kept low so that other electronic properties
of the alloy are not appreciably affected. By this means, in an otherwise constant
system, the effect of spin-orbit interaction on electron-electron interactions can be
directly examined. Moreover, at the same time the study will also provide a test
of the accuracy of the quantum corrections to the conductivity theories over a wide
range of spin-orbit scattering.

Since the discovery by Shechtman and coworkers of the first quasicrystalline metal
alloy about eight years ago [34], quasicrystals have been under intensive investigation
in order to understand their basic structural and physical properties. Although their
structure is incompatible with conventional crystallography, these materials are not
structurally disordered either. They belong to a new class of an ordered structure
with a five-fold symmetry (not allowed in the Bravais lattice classification scheme)
and in which the translational order is preserved only in a quasiperiodic way while
maintaining the long-range orientational order [35]. Yet, these systems give very sharp

peaks (very often narrower than the instruments resolution) in x-ray and electron-



Chapter 1: Introduction 3

diffraction experiments, reminiscent only of single crystals. Most of the quasicrystals
known today have been prepared by rapid quenching from the melt as metastable
phases but some do exist as thermodynamically stable phases over a wide temperature
range, from room temperature to several hundred degrees just below the melting
temperature. Among them are Al-Cu-Ru [36] and Al-Cu-Fe [37, 38] icosahedral alloys.

Regarding the electron transport properties, they were also immediately investi-
gated. But in several cases, this was hindered by the presence of impurity crystalline
and/or amorphous phases along the quasicrystalline phase, as they also participate in
the transport. Furthermore a number of them, like AlMn and U-Pd-Si alloys, exhibit
magnetic behavior which complicates the analysis [39, 40]. It is only with the prepa-
ration of single-phased and non-magnetic quasicrystals that comprehensive studies
became possible. Based on the x-ray and electron diffraction patterns which indicate
a very well ordered structure, it was intuitively expected that the physical properties
of quasicrystals will be similar to those of crystalline metals. But this turned out to
be totally wrong. In fact it was found that the transport properties of these materials
resemble in many aspects those of highly disordered metals. For instance, early mea-
surements of the resistivity in several quasicrystalline alloys reported values varying
from ~ 50 to 400 pQ.cm, typical of amorphous conductors. Furthermore and to the
surprise of the workers in the field, 2 newly discovered class of stable quasicrystals,
which includes Al-Cu-Fe, Al-Cu-Ru and Al-Mn-Pd alloys, present very high resistiv-
ities (~ 4000 — 300001Q.cm), one to two orders of magnitude larger than that of the
most resistive amorphous metals. Another unexpected property of quasicrystals is
that their already high resistivity tends to increase with increasing quasicrystallinity,
i.e. with increasing atomic order, in contrast to conventional metals where removing
defects always lowers the resistivity. It has been suggested that this results from low
carrier density at the Fermi level due to the presence of a pseudogap in the density of
states. The existence of the pseudogap is believed to arise from a strong interaction of
the Fermi surface with the Brillouin zone boundaries [41, 42]. Moreover according to

many authors, this pseudogap plays a key role in the stability of the quasicrystalline
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phase, in the same way as the Hume-Rothery type metals. In fact, Poon [41] argues
that the positioning of the Fermi level near the minimum of the pseudogap would tend
to lower the electronic energy making the formation of a quasicrystalline phase com-
petitive with other structures. This view is supported by both specific heat measure-
ments [43, 44] which report reduced density of states at the Fermi level, and soft-x-ray
emission and photoabsorption spectroscopy experiments {45, 46, 47] which indicate
the emergence of a minimum in the density of states in the vicinity of the Fermi level.
Numerical calculations of the electron density of states, though limited to small sam-
ples due to the complexity of the quasicrystalline structure, are also in support of this
scenario [48, 49}, To set against this however are the low temperature resistivity and
magnetoresistance studies in several quasicystalline alloys (50, 51, 52, 53] where it is
found that both the temperature dependence of the resistivity and the magnetoresis-
tance are well described by quantum corrections to the conductivity theories which,
as pointed out above, were derived to describe the anomalous resistivity of disordered
conductors. Thus, the second aim of the present work is to make use of our knowledge
and understanding of weak localization and enhanced electron-electron theories in a
quantitative and complete study of the low temperature resistivity of one of the sim-
plest quasicrystalline alloys, namely icosahderal Al-Cu-Fe alloys. This alloy system is
particularly interesting for several reasons. First, samples of high structural quality
can be prepared with relative ease [37, 38]. Second, they exhibit very high resistivi-
ties, ranging from 4500 to 10000uQ.cm, reminiscent of highly doped semiconductors.
Third, magnetic susceptibility measurements [44, 53] have shown that the system is
non-magnetic. Hence difficulties, arising from possible superposition of complicated
magnetic effects are avoided. Recent work on this system by Biggs and coworkers
[43] and Klein et al. (44, 52, 53] was mainly limited to measurements of the specific
heat, Hall coefficient and temperature dependence of the resistivity. Here, the low
temperature resistivity and magnetoresistance are completely analyzed within the

framework of weak localization and enhanced electron-electron interaction theories®.

3n references 44, 52, 53] only the temperature dependence of the resistivity was so analyzed.
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Furthermore we show that it is of great importance to consider the full fitting to
obtain a clear and consistent picture of the dephasing of the electron wavefunction.
The thesis is organized as follows, In the next Chapter, weak localization and
enhanced electron-electron interactions phenomena are discussed followed by the an-
alytical expressions of the corrections to the resistivity that will be used for analyzing
the experimental data. In Chapter 3, the different experimental techniques used in
this work for the sample preparation and the resistance measurements are described.
In Chapter 4 we present, discuss and analyze the results of the low temperature
resistivity measurements of amorphous Ca-Al-(Ag,Au) and icosahedral Al-Cu-Fe al-
loys. Chapter 5 contains the summary of the main results obtained in this thesis and

suggestions for future work.



Chapter 2

Review of Quantum Corrections

to the Conductivity Theories

Over the past few years it has been well established that the transpori properties
of disordered conductors cannot be understood using models that were derived for
ordered systems. This chapter gives a review of the alternative theories that will help
the reader in understanding the significance of the results presented in this thesis.
Emphasis is placed on the physical origin of the quantum corrections to conductivity
and their predictions regarding the magnetic field and temperature dependence of
the resistivity. For a detailed derivation of the mathematical expressions the reader
is referred to the many excellent reviews on the subject [3, 4, 54].

Prior to presenting these theories it is useful to mention what is predicted by the
classical theories. It is well known that, within the free electron model where the
elastic scattering time of the electron, 7., is a constant, there is no magnetic field
dependence of the resistivity- i.e. no magnetoresistance [55]. However in real metals
it was observed a long time ago that a magnetoresistance does exist and is proportional
to B?, B being the magnetic field. This magnetoresistance results usually from non-

free electron behavior of metals- e.g. non-spherical Fermi surface [56], and can be

—a
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expressed as (see Kohler’s rule [55}):

Ap 2 1

8P o (wer)? = B 2.1

P) (wCT ) (n e P)z ’ ( )
where w, = % is the cyclotron frequency, n the electron density and p the resistivity.

In the case of high resistivity samples, such as the ones studied in this thesis, the
above equation gives values at least five to six orders of magnitude smaller than what
we observe experimentally. Therefore it is clear again that in order to explain our
results one cannot resort to classical theories but needs to consider more elaborate

theories.

2.1 Weak localization

Based on scaling arguments, Abrahams et al. [1] have shown in 1979 that the electrical
conductivity in the presence of disorder is no longer given by the Boltzmann theory.
Instead, due to coherent backscattering of the electron’s wavefunction, they predicted
important corrections to the conductivity.

The correction to the Boltzmann conductivity is usually calculated within the
Kubo formalism and is obtained by evaluating the so-called fan-diagrams, first con-
sidered by Langer and Neal [57]. We do not intend to reproduce the derivation of the
various expressions published to date. However we will describe below the physical
picture of the phenomenon and then give the relevant analytical results that will be
used in the analysis of the experimental data presented in chapter 4.

As mentioned in the previous chapter, when electron scattering is intense as in
a disordered conductor, the motion of the electron becomes diffusive rather than
ballistic. In most metals when this happens the mean free path, l., is of the order of the
electron’s wavelength Ap, and the electrons become localized and do not contribute
to the conduction. The amount of disorder is generally quantified by the so-called
disorder parameter defined as: (krl.)™!, where kp is the Fermi wavevector. Weak
and strong disorder correspond to (krl.)™! <« 1 and (krl.)™! ~ 1, respectively. To

illustrate the localization phenomenon consider an electron that is diffusing through a
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Figure 2.1: Electron diffusion paths, a) Non-intersecting paths, b) Self-intersecting paths
(path 2).

disordered conductor as shown in Figure 2.1. To get from point A to point B (Figure
2.1.a), the electron can diffuse along different paths. Then the total probability
P(A,B) to diffuse from A to B is given by the square modulus of the sum of all
amplitudes A; of the probability for the particle to follow each path, i.e.
2
P(A,B) = |Z Al =14+ A (2.2)
i i it

The first term in Eq. (2.2) represents the sum of probabilities for the particle

to diffuse along any possible path and the second term represents the interference of
various probability amplitudes. Since the path lengths differ strongly, the phases of
the wavefunctions are also substa.ntia;lly different. Therefore, when summing over all
possible paths, the mean value of the interference term at point B vanishes due to the
oscillatory behavior of the terms contributing to it, and the probability of transfer
reduces to P(4,B)=1; | A: |*.

However, this is no longer true when one looks at paths similar to the one la-
beled 2 in Figure 2.1.b. Along this class of paths, called self-intersecting paths, the
interference term is essential and cannot be neglected. For instance consider point

O on path 2. Due to the wave-like character of the electron, there are two different
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ways in which the electron can propagate around the loop with equal probability;
clockwise and counterclockwise. In the presence of elastic scattering only, the two
partial wavefunctions will have at point O the same phase and hence will interfere
constructively. This coherent superposition of the wavefunctions therefore results in
an enhanced probability to find the electron at point O. To emphasize this further we
can let B tend to A. Each loop then can be traversed in both directions with equal
probability and the total probability of return of the electron to its initial position is
now given by:

P(0,0) =23 | A% (23)

i.e. twice as large as when the interference term is neglected. Under these circum-

stances, the electron is said to be weakly localized. The enhanced probability of return

implies that there is a reduced probability to find the electron elsewhere and hence

leads to an increase in the resistivity. However it is important to note that the

constructive interference just described occurs provided the diffusing electrons retain
phase coherence along the self-intersecting paths. In fact, phase coherence can be lost
in several ways; by inelastic electron-phonon, electron-electron, spin-spin and spin-
orbit scattering processes (which will be discussed later on in see subsections 2.1.2-4).
This leads to the definition of a characteristic length scale, Ly, called phase coherence
length (or equivalently to the definition of 7,4, the phase coherence time). This length
scale, given by Ly = \/D_r,,,, where D is the electron diffusion constant, is the average
distance beyond which phase coherence is lost. Thus loops longer than Ly do not
contribute to the constructive interference. At low temperatures, Ly is typically a
few tenths of a micron in three dimensional amorphous metals.

In real space the classical diffusion equation in d dimensions yields for the proba-

bility density of finding the electron at time ¢ and position T:

1 o a
p(r, t) = (41’r_Dt)d/_28 Ith. (2.4)

Hence the probability to find the electron at the origin is p(o,t) = FATI:)ﬂ‘?' But

as explained above, one must consider two partial waves which propagate around
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Figure 2.2: An electron diffusing around a closed loop. From reference [6]

a closed path in opposite directions as shown in Figure 2.2, At the origin, their
amplitudes add (instead of their intensities) and therefore the probability of return
is now doubled, i.e. 2 x m, as shown gualitatively in Figure 2.3.

To estimate the correction to the conductivity arising from the electron localization
one needs to consider the probability of an electron ray-tube of cross section A% to

intersect itself. The magnitude of the correction to the conductivity is then given by

ok A AMypd
o T¢ Atupdi
c N_j:-. (Dt)d?’ (2:5)

where vp is the Fermi velocity, and

__‘vpl,
D= 7

The lower integration limit 7, (the elastic scattering time) corresponds to the mini-

mum time for a self-intersecting path and the upper limit the phase coherence time
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Figure 2.3: The probability distribution of a diffusing electron which starts at ¥ = 0 at
t = 0 from Bergmann [6]. The solid line is the classical diffusion probability. Quantum
constructive interference enhances the probability of return to the origin by a factor of two
(dashed line). Large spin-orbit scattering reduces the probability by a factor of two and
leads to weak anti-localization (dotted peak).

of the electron wavefunction, as defined above. Evaluating the above integral gives:

Ao~ —SLy d=1
Ao~ -5l () d=2 (2.6)
Ao~ - d=3

It has to be stressed once again that the above interference is constructive only
in the absence of inelastic scattering and spin-spin scattering (the role of spin-orbit
scattering will be discussed separately later on). In other words, the time-reversal
symmetry must be conserved during the propagation of the electron wavefunction
around the loop. The temperature dependence of the correction to the conductivity
comes from the temperature dependence of Ly (or 74 & T'~?). Thus in two dimensions
one expects a logarithmic dependehce on temperature while in one and three dimen-

sions a power law dependence is predicted. The time 74 is a fundamental parameter of
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weak localization phenomenon and deserves special attention (see subsection 2.1.2),

In the presence of a magnuetic field, which also destroys the time-reversal symmetry
of the system, the coherent interference is altered. When placed in a magnetic field
B, the electron wavefunction propagating around a loop acquires a phase shift §¢ «
J A.dl, where A is the magnetic vector potential. The sign of the phase shift depends
on the direction of propagation with respect to the field. Therefore, the two partial
waves going in opposite directions return to the origin with a relative phase shift
AD =28 Adl = i%' where §y = 2{- is the quantum flux and & the magnetic flux
through the loop. The two waves are out of phase when —:’; ~ 1. This condition is
reached when the electrons take a longer time than 75 to traverse the loop. This

magnetic field dephasing time is defined by:

AD = 4"‘;) B, (2.7)
Qr
K
T ~ 4eDB. (2.8)

Here, 2D Brg is the average magnetic flux through the loop.
Therefore the magnetic field destroys the constructive interference, reduces the
probability of backscattering and, hence, reduces the resistivity. This is the origin of

the negative magnetoresistance observed in various disordered conductors.

More insight into the weak localization phenomenon can be gained by considering
the dual E-space representation introduced by Bergmann [6). Consider an electron
at initial state k. After many scattering events there is a finite probability for the
electron to be scattered into the final state —k (Figure 2.4). This scattering sequence
182

kokt+gok+a+dh— okt G=-F

i=1
Similarly, there is also a finite probability for the electron to be scattered into
state —k but in opposite sequence, i.e.

ko ktGao bt atfor ookt Y Gi=—k

i=1
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Figure 2.4: Complementary scattering sequences in k-space. From reference [6).

If the individual scatterings are time-reversible and symmetric (no inelastic, spin-

spin or spin-orbit scattering) the amplitudes in the final state is the same for both

scattering sequences.

1[v@) = [IV@). 29)

i=1 i=n

This leads, in the same way as above, to a constructive interference and therefore
to an enhanced probability for the electron to be backscattered.

Up till now we have not considered in detail the effect of the spin scattering on
weak localization. In fact this has important consequences on the cohercat superposi-
tion of the electron wavefunctions. This is only natural since the interference involves
not only the spatial part of the electron wavefunction but also its spin.

In the presence of magnetic impurities, the electron spin direction may be flipped
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each time a scattering event involves a local magnetic moment and thus may return to
the origin with a change in its orientation. The spin of the other partial wave, moving
around the loop in the opposite direction, is also scattered by the same impurities but
in the opposite sequence. Since in three dimensions, the rotation operators do not
commute, the two final states are different and tlc interference will be progressively
destroyed. The characteristic time associated with magnetic impurity scattering is
denoted by 7,. The effect of magnetic scattering on weak localization is very similar to
that of inelastic scattering and it is usually very difficult if not impessible to separate
the two contributions (see below and chapter 4).

On the other hand, although invariant under time-reversal, spin-orbit interaction
also destroys the constructive interference but in a more subtle way. Spin-orbit inter-
action is a relativistic effect. A simple way to picture its origin can be expressed as
follows [58]: In a coordinate system moving together with the electron in an electric
field (due to the electrostatic potential of the nucleus), a magnetic field is produced
by the orbiting nucleus. This magnetic field is proportional to the gradient of the
electrostatic potential. It interacts with the electron spin moment and thus alters the
electronic energy spectrum. According to Altshuler and Aronov the interference term

around a given loop can be written, in the presence of spin-orbit interaction, as [4}:
C = ¢4 g (2:10)

where ¢, and ¢ are the wavefunctions of the initial and final states respectively,
and the superscripts 1 and 2 refer to clockwise and counterclockwise directions. The
quantity C' can be rewritten in.a more transparent form in the total momentum

representation for two particles. For spin % particles this gives [4]:

¢1 +1 = (1) (2)a

Yo = (¢(1)¢(2) + ¢(l)¢(2))

%I

Yoo = %(‘ﬁu)d,(-) — 042
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Hence

m=1 1
C=3 |%m [ =5 %00 (2.11)

m=-1

The first term in Eq. (2.11) contains all the information on the spin part (called
triplet state, ; = 1,m = —1,0,1). Because of spin-orbit scattering, it decays in
time 7,, while the last term (called singlet state, 7 = 0,m = 0) decays in time 7.
Therefore for very short spin-orbit scattering time, 7,, € 74, the interference term
becomes negative, i.e. C = —2 | o0 |?, and the total probability for the electron
to be backscattered is now depressed by half from the classical one as shown by the
dashed line in Figure 2.3. This phenomenon is called weak anti.localization. More
quantitatively, the correction to the conductivity (Eq. 2.5), can be rewritten in the

presence of spin-orbit scattering as [5]:

Ao e Aludt (3

1
—_—— i — L [La=t/Tie _
v v (Dtyez \2° 2) (212)

which in three dimensions, yields for 7,, € 7 (strong spin-orbit scattering):
Ao o ———ro\, (2.13)

As seen from the preceding equation, the spin-orbit scattering not only reverses the
sign of the temperature correction to the conductivity but also reduces its magnitude
by half (compare with Eq. (2.6)). Between the extreme cases of Eqs. (2.6) and
(2.13) one obtains as a function of temperature, 2 maximum in the resistivity around
Teo R Ty

The effect of spin-orbit scattering is also reduced by the application of a magnetic
field. If T8 &« 7,0, i.e. large magnetic fields, the interference is constructive and =
reduction in the magnetic field (larger 7p) increases the coherent backscattering and
the resistivity [7]. If however 7,, is of the order of 75 the interference is destructive
and the resistivity decreases with decreasing field. In other words, in the presence
of spin-orbit scattering one expects a positive magnetoresistancé at low fields and a
negative magnetoresistance at large fields. The maximum in the magnetoresistance

occurs when 7,, & 75 [6, 59].
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In the previous paragraphs we have presented qualitatively and semi-quantitatively
the features of the weak localization phenomenon. In the following we will give the
complete quantitative expressions of the weak localization correction to the conduc-
tivity.

The correction to the magnetoresistance due to weak localization has been com-
puted by a number of authors. The most complete form was given by Fukuyama and
Hoshino [22] where, in addition to spin-orbit scattering and inelastic scattering they
included the splitting of the spin subbands. According to Fukuyama and Hoshino the

magnetoresistance, in the limit 7. € 7,,, 7 and 7, is given by [22):

(), s ((2) -+ (2)) -2
—\/4—3_1%:(—1'1\/—_"=1(\/t:_\/£)+ﬂ"m)}’ (2.14)

where
;= 3(B; + 2B,)
- 4B,, '
1
b =t+§(lﬂ:\/1—‘7),
20 _B.l
Bs =B‘-+2.B.+£(—Bi—3—l(1d: 1—7),

2 4

B2 = Bt’ + -:;Bl + §Bw1
with

_ 3g°p1pB :
7= \8D(B..-B))) °
g* is the effective g factor and D the diffusion constant.
All the characteristic fields defined above are related to the electron-scattering

times by the relation:

B, = h/4eDr., (2.15)
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where 7. is the inelastic scattering time 7, spin-orbit scattering time 7,,, and the

magnetic-impurity scattering time 7,. The dephasing field By is defined as:

B¢, = B; + 2B,. (2.16)
Thus as mentioned before the field By = “—gf‘- combines the dephasing effects due

to the inelastic electron-phonon and electron-electron scattering and the spin-spin
scattering (but not spin-orbit scattering).

The function fz(z) in Eq. (2.14) has been derived by Kawabata and is given by
(60):

f3(3)=§(2(\/‘£+1+3—\/‘5+3)—ﬁ). (2.17)

It is an infinite series that converges very slowly; its asymptotic form at small and
large = is:
fa(z) = la::’/z(l - lmz +--4), 21
: 48 64 ’

fa(m) 2= 0.605 — %

On the other hand, Altshuler and Aronov [4] have derived the following simpler

Ap & \/E 1, (B 3,(B
¥ a7 (35 (5) - 72 (7))} -

With B, = B, defined in Eq. (2.14).

, > 1L

expression:

In the preceding equation (2.18), the authors did not include the Zeeman splitting
effect gup B on the spin-down and spin-up bands which is expected to be important
in systems with low diffusion constant, as will be demonstrated below.

It is interesting to note that in spite of its apparent complex form, the weak
localization magnetoresistance expression given in Eqs. (2.14) and (2.18) is defined

by only three parameters: the diffusion constant D, the spin-orbit field B,, and the

dephasing field By (which is however temperature dependent).
The weak localization magnetoresistance is very sensitive to the strength of spin-

orbit scattering and dephasing fields. For very weak spin-orbit field i.e. 1/7,, € 1/7y,
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the expressions in Egs. (2.14) and (2.18) reduce to — f3( B/ B,) and the magnetoresis-
tance is always negative. When spin-orbit scattering is of the order or stronger than
inelastic scattering (1/7,, > 1/74) however, the expressions in Eqs. (2.14) and (2.18)
are positive 2t low fields and negative at large enough fields. Specifically, using the

asymptotic expressions of the function f3(z) given above, the magnetoresistance can

be expressed as:

Ap 2 & 1 B?
(T) WL - _P27r2h EBZ"!%- B« Bd’l B, & B¢

(ﬂ npl [EL B
p/wp 27h hggn 192

Ap e? [eB
— ~ p—o1sf —.0.605 By « B« B,
Py B =T i ¢

B« B.,s; B.o > B.;s

Ap) e [eB
27 e — —.0.605 B>» B,.;B
( P /wi P2a?hV R e

So as long as there is a finite spin-orbit scattering, the low field magnetoresistance
will always be proportional to 4-B? with a slope depending on the dephasing field By.
The high field magnetoresistance has = universal —v/B field dependence. However to
observe the asymptotic regime depends on the size of B,,. If B,, is very large, the
magnetoresistance will remain positive for all magnetic fields that are attainable in
the laboratory.

Figures 2.5-6 illustrate the expected behavior of the weak localization magne-
toresistance for different values of 7y, 74, and 7, using the Fukuyama and Hoshino
expression (Eq. 2.14). The values of the resistivity p and the diffusion constant D
are those of the CazoAlz, alloy, a typical high resistivity amorphous alloy [18, 19).

Figure 2.7 is a comparison between Fukuyama and Hoshino expression (Eq. 2.14)
and that of Altshuler and Aronov (Eq. 2.18) for different sets of the diffusion con-
stant D and spin-orbit scattering field B,,. The value D = 8cm?/s is typical of low
resistivity sp—band amorphous metals, such as CazoMgsq [18], whereas D = 0.3cm?/s
is characteristic of d—band amorphous alloys or icosahedral alloys. As may be seen,

for large values of D, both expressions give the same result. But for low diffusion
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Figure 2.5: Normalized weak localization magnetoresistance {Eq. 2,14) for different dephas-

ing fields By, at constant; (a) weak and (b} strong spin-orbit scattering. p = 300uQ.cm,
D = 1.5em?/s,
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Figure 2.6: Normalized weak localization magnetoresistance (Eq. 2.14) for variable, (a)

spin-orbit field B,, and (b) magnetic spin scattering B,, at constant dephasing field By.
p = 300uQ.cm, D = 1.5cm?/s.
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Figure 2.7: Normalized weak localization magnetoresistance (Eq, 2.14) for different values
of the diffusion constant and spin-orbit scattering field; p = 300pQ.cin, By = 10mT. Solid
line (Eq. 2.14) and dashed line (Eq. 2.18). For a larga diffusion constant the two expressions
give the same results.

constant, the Zeeman splitting effect plays an important role and the two expressions
may differ substantially. The physical origin of the Zeeman splitting effect can be ex-
plained as follows: The dephasing through the phase-shift due to the magnetic field
is proportional to the area of the closed loops and hence proportional to L} = D7,.
On the other hand, the dephasing due to Zeeman splitting in the presence of spin-
orbit scattering depends on the number of spin-orbit scatterers along the loop and
is therefore proportional to the length of the loop vpg. it follows that for small D
(£ 2cm?/s) the dephasing effect of the field is comparable or less than the Zeeman
splitting dephasing, whereas for large diffusivities, (D > 5cm?/s), the later effect is
negligible.

In the absence of a magnetic field, the complete correction to the conductivity

from weak localization in three dimensions reduces to [22]:
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Figure 2.8: Normalized quantum corrections to the resistivity as a function of temperature
for different values of By and B,,.

1) Weak localization contribution, Eq. (2.19), B,, = 0.

1') Weak localization contribution, Eq. (2.19), B,, large.

2) Diftusion channel contribution, Eq. (2.33), see subsection 2.2.1.

3) Cooper channel contribution, Eq. (2.35),see subsection 2.2.2.

(ﬁ) (T)=p (\/B_¢ -3 %Bao + By | . (2.19)
P /we

Representative plots for different sets of 7,, and 7, are shown in Figure 2.8 together

o2
272k

with other temperature dependent corrections to the conductivity from the electron-
electron interaction presented in the next section,

To complete this section, we give in the following the different theoretical ex-
pressions of the characteristic times introduced in the discussion of weak localization

phenomenon.



Chapter 2: Review of Quantum Corrections to the Conductivity Theories 25

2.1.1 Elastic relaxation time 7

The time 7. represents the electron relaxation time as found classically from the
conductivity, ¢ = 1‘%’- In our amorphous Ca-Al alloys, n = 10%??electrons/cm?
and p = 300uQ.cm, 7, is approximately 10~*°s. For Al-Cu-Fe quasicrystalline alloys,
n ~ 6 x 10%%lectrons/cm® [43, 44] and p = 4500 — 10000xQ.cm, 7. is also of the
order of 10155, This value of 7, is the time between scatterings of the electron by the
impurities and defects present in the system and is not expected to change much with
temperature (less than 20% for Ca-Al alloys and at most a factor of two for Al-Cu-Fe
alloys).

2.1.2 Inelastic scattering time =

According to Takayama [61] the inelastic scattering rate due to electron-phonon scat-

tering at low temperatures is given by:

h o 2n2) (kgT)*  3nhln2
7 = ImD kafp (3mD)2kBT' (2.20)

where A = O(1) and 8p the Debye temperature. At 4.2 K, 1/7;F is of the order of
10''s=1, On the other hand Chakravarty and Schmid [5] have recently presented a

more careful calculation of the inelastic electron-phonon scattering rate in which the
temperature exponent can take values anywhere between 2 and 4. They separated
the contributions due to longitudinal and transverse phonons and found in the first
case p = J or 4. For transverse phonons p is equal to either 2 or 4. Thus depending
on the phonon modes involved in the scattering and their relative velocities of sound,
p can vary between 2 and 4, as stated above.

For electron-electron scattering, Schmid [62] has given a general expression for

the scattering rate in three dimensional disordered metals and it can be expressed as

[62] :

1 _1"_("1‘:"1-')2 V3 -3/2(kBT)3/2
TE T8 KEp + D) (kFlt) ﬁ\/E—p ) (2‘21)

where Ep is the Fermi energy and (kpl.)™" the disorder parameter. A similar expres-

sion has also been derived by Altshuler and coworkers [4, 63]. The first term involves
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scatterings with large energy transfers and is expected to dominate in weak disorder
while the last term involving small energy transfers should dominate in the strong
disorder limit.

It is important to note that though in most cases the inelastic scattering time
(due to electron-phonon or electron-electron scattering) is identical to the dephasing
time they are in principle different, even when the contribution from magnetic spin
scattering is not included (see Eq. 2.16). According to Altshuler et al. [4] and also
to Chakravarty and Schmid [5], the effectiveness of energy transfer in the scattering
process has to be taken into account. Processes with small energy transfers, which
give rise for example to the T%2 in 1/r.., are less efficient in destroying the phase
coherence of the electron wavefunction whereas in the calculation of the inelastic
scattering time all energy transfers are weighted equally [64]. For inelastic electron-

phonon scattering the correction to 74 is negligible and the distinction between 1/7,

and 1/7? is unnecessary [65].

2.1.3 Spin-orbit scattering time 7,,

This relaxation time refers to the time between two spin rotations due to spin-orbit

interaction and was derived by Werthamer et al as [66, 67):

L = () | (M) T, (2.22)

where n; is the density of spin-orbit scattering centers, N( Er) the density of states at
the Fermi level and (M,,) is the average of the spin-orbit scattering matrix element.
In a hydrogen-like picture the matrix element varies as Z%/n®, Z being the atomic
number and n the principal quantum number of the orbit [68]. Therefore one expects
a strong dependence of 1/7,, on the concentration of any heavy elements present in
the alloy. Typically, the spin-orbit scattering rate varies from 10'%?, in pure Mg to
about 5 x 1035~ in pure Au [11].
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2.1.4 Magnetic spin scattering time 7,

The characteristic time 7, is associated with spin-flip scattering by magnetic impuri-

ties and is generally given by Fermi's golden rule as:

1. c?ﬁ’EN(Ep)QPS(S +1). (2.23)

Ta
¢ is the magnetic impurity concentration, {) the atomic volume, J the spin exchange
integral and §(S + 1) the degeneracy of the magnetic spin state S. In Ca-Al alloys
only manganese is expected to hold a moment. Taking appropriate values of § = 2.5
and J = —0.24eV [69, 70], 1/7, is found to be of the order of 2.4 x 10%s~! per ppm

of manganese.

2.2 Enhanced electron-electron interaction

In this section we present briefly the physical origin of the enhanced electron-electron
interaction in disordered conductors. In contrast to the weak localization effect which
is a direct result of quantum interference, the enhanced electron-electron interaction
is an indirect effect of quantum interference. As a result, the details of the processes
that lead to the corrections to the conductivity are considerably more complex. A full
discussion of the theory is beyond the scope of this work, and only the final results
will be given. And as in the case of weak localization the reader is referred to the
review articles on the subject [4, 54] for further details.

As pointed out before, due to intense elastic scattering the electron motion in
a disordered conductor is diffusive instead of being ballistic as it is the case in a
well ordered conductor. Under such circumstances the screening of the electron’s
Coulomb potential is reduced when cbmpa.red to that in a crystalline metal and thus
the electrons experience a stronger interaction which is said to be enhanced. Therefore
one expects the fundamental properties of disordered systems, such as amorphous

metals for example, to be greatly affected.

1These values correspond to a free Mn't ion.
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The disorder produces two important contributions to the interaction between the
electrons. The first effect is due to an interference between electrons with wavevectors
k and &' such that & = k + ¢ [71]. In analogy with Cooper pairs in the theory of
superconductivity, this term is called “Cooper channel” or “particle-particle chan-
nel”. The second contribution arises from modification in the matrix elements of
the interaction between the electrons due to the absence of translation symmetry in
disordered systems. This situation describes the interaction between an electron and
a hole with wave vectors k and % with &' = & + §. This contribution is often referred
to as “diffusion channel” or “particle-hole channel” contribution.

Before presenting the corrections to the conductivity resulting from the above
effects it is worth mentioning the transparent physical interpretation of electron-
electron interaction in disordered conductors introduced by Bergmann [71]. In this
model, the phase coherence of an electron with wavevector k (returning to the origin)
is re-established through the interaction of this electron with a wave charge that was
created by another electron of wavevector k + ¢ which has previously traversed the
closed loop and therefore contains all the phase informativn of the scattering events
along this particular loop (see Figure 2.9). Thus the charge acts like a “hologram”
but with the light flow replaced by a charge flow.

The constructive interference at the origin enhances the probability of return to
the origin of the electron and therefore increases the resistivity in a similar way as
weak localization phenomenon discussed in section 2.1. These remarks allow one to
make the following comments on what one expects from enhanced electron electron
interaction in disordered systems:

1- The maximum contribution is obtained when the energy difference between the
interacting electrons is small, so that the phase coherence is maintained around the
loops.

2- Any alteration of the phase coherence by inelastic scattering, magnetic spin
scattering etc, leads to the destruction of the enhanced interaction. In particular,

inelastic scattering progressively destroys these effects as it increases with increasing
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Figure 2.9: The charge hologram due to Bergmann {71]. The lower part shows the scat-
tering series which generates a charge pattern. The upper part shows the electron which
is scattered by the charge pattern. The two scattering sequences contain almost the same
momenta and differ only by small Q, thus ensuring conservation of phase coherence.
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temperature,
3- In the presence of a magnetic field, the phase shift is the same for the electron
and the “charge hologram”. Therefore to a first order, no change will occur in the

interference pattern at low magnetic fields.

2.2.1 Diffusion channel correction to the resistivity

According to Lee and Ramakrishnan (3] and Altshuler and Aronov {4], the various
contributions to the conductivity in the diffusion channel may be characterized by
the total spin (7) of the interacting elcctrons together with its projection (m).

As noted above, the correction to the conductivity is due io interaction betwecen
electrons that are nearby in energy. In the presence of magnetic field, the triplet term
( =1, m = -1,0,>) is dividad into m = 0 and two m =| 1 | terms. The singlet
( = 0, m = 0) and the triplet {7 - - 1, m = 0) terms involve interaction of electrons
with the same spin and are unaffectea by the spin splitting. In a magnetic ficld, the

total correction to the resistivity can be written as a sum of two terms (3],

() om-(2) me(8) om o

The first term represents the field--ndependent singlet and m = 0 triplet contribution

and is given, in three dimensions, by [3]:

Ap) 0.915¢2 (4 1- ) /kBT
— Y= — - —=F, — 2.25
( F'A‘ DCI( ) P 4rh \3 2°° KD’ ( )

where F, is the interaction constant which depends on the details of the electron

screening and the Fermi surface of the conductor under consideration. It is given by
[4, 2): | ,
- 32 -~ 3F F\z
-~ 22 el il .26
Fo 3F(1+4 (1+2))’ (2.26)

_ [dV{g = 2kpsin 6/2)
T [dQV(g=0)

with

(2.27)



0

Chapter 2: Review of Quantum Corrections to the Conductivity Theories 3

V(q) is the Fourier transform of the statistically screened Coulomb potential, £ a
solid angl: or ihe Fermi surface. Within the Thomas-Fermi screening theory [72] one
finds:

p=R+2) (2.28)

z
where z = (%’F): k, is the inverse screening length and kp the Fermi wavevector.
For complete screening (k, large) F' = 1 and for no screening (%, small) F ~ 0 and
in this case expression (2.26) becomes F, ~ F.

The second term in BEq. (2.24) is the m = +1 triplet contribution which is field-
dependent. Its field dependence has been calculated by Lee and Ramakrishnan and

can be written as [3, 73]
Ap _ & [eB F, [xksT (g‘uﬁ B)
( P )Dcz(B’T) =P\ R o/zV2eDB% \1aT / (2.29)

g3(z) = fo " dw (di;;(wN (w))) (Vo +z + v — z - 2y/w) (2.30)

and N(w) = 1/(e“ — 1). Details for the evaluation of the function gi(z) are given in

with

appendix A.

The physical interpretation of the field dependence can be explained as follows:
In the presence of the field, spin splitting produces a gap gup B between the spin-up
and spin-down subbands and therefore reduces the interaction between the electrons
of these bands as noted above. Since, at B = 0, the interaction reduce the resistivity,
the resulting magnetoresistance is positive as illustrated in Figure 2.10.

However this magnetoresistance is very sensitive to spin scattering and tempera-
ture. According to Alishuler et al. [4,25] and Lee and Ramakrishnan {3], the diffusion
channel contribution to magnetoresistanice vanishes not only at high temperatures,

but also when:

gusB < hft,, (2.31)
where
1 471 1
r=5(+n) (2.82)
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Figure 2.10: Normalized enhanced electron-electron interaction magnetoresistance for dif-
ferent values of D at T = 1.5K. Dashed line (D = 0.3cm?/s) and solid line (D = 8cm?/s).
1) Diffusion channel contribution, Eq. {2.29).

2} Cooper channel contribution, Eq. (2.34).
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is the total spin relaxation time. This is so because spin scattering tends to mix
the spin subbands and therefore destroys the effect. But to date, there has been
no detailed calculation on how this suppression by spin scattering occurs and what
one should expect in the intermediave spin scattering regime. From this observation
comes the motivation of the present work where the diffusion channel contribution to
the magnetoresistance will be investigated over wide range of spin-orbit scattering.
In the absence of a magnetic field the correction to the resistivity reduces to the

following expression [3]:

Ap _ 0915¢2 (4 3.\ [kgT
(p )DCI(T)‘ P anh (3“2F") KD’ (2:33)

which is the same as Eq. (2.25) except for the factor £ which is due to the multiplicity

of the j = 1 state, replacing 3 for E,.

2.2.2 Cooper channel correction to the resistivity

The magnetoresistance coming from the Cooper channel arises from the interactions
in the particle-particle channel such that | k + & |=| ¢ |&| 7 |-i.e. small total
momentum. Several authors have calculated this contribution, but their results are
not consistent [4, 21] 2. However there seems to be a consensus among workers that
Isawa and Fukuyama’s expression [74] is the most complete. These authors considered
in detail the spin-orbit scattering effect on this contribution and concluded that it
has no impact. Furthermore they explicitly included the dephasing effect of the
temperature through the inelastic field B;. In the case of non-superconductors, such

as all the alloys considered in this thesis, they found [74]:

A e? [eB3n? [ kgT \*
(%), 8D = 55 () s B@rmD, O30

© [ (51 & 2( b \?
‘I’F(BaT)=-Z(C(§:'2'+"%Yl)-§(&;) )’

k=0

where

3Different expressions were given by Altshuler et al. [21] and Altshuler and Aronov [4]
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- QGDB,'

V=TT T

L

¢ is the generalized Riemann zeta function.

g(T, B) is the coupling constant and is given by:

1
g(T: B) = ’
% + In (—E“;'T )
with
T* = maz (T, 48DB) ’
kp

Tr is the Fermi temperature.

It should be noted that the above expression for the coupling constant g(T, B) is
not exact. It is correct only to lowest order in B/T and a complete form remains to
be derived.

The Cooper channel magnetoresistance as predicted by Eq. {2.34) is shown in
Figure 2.10. For low diffusion constant it represents less than 10% of the diffusion
channel contribution. Moreover, it would be reduced even further if Zeeman splitting
and magnetic spin scattering (which decrease the Cooper channel magnetoresistance),
were to be included in the derivation. It is for this reason that the Cooper channel
contribution will not be included in the analysis of the experimental data presented
in Chapter 4. However, for the sake of completeness we give here the correction to
the temperature dependence of the resistivity coming from the Cooper channel. It is

given by the following expressions [74]:
Ap 0.915¢2 [ 2 /kBT
— = . 2.35
( p )cc (T)=+ 272k (ln I;F) h (2.35)

2.3 Magnetic impurity scattering contribution to

the magnetoresistance

Magnetic impurities contribute to the magnetoresistance in disordered conductors in

two ways. As mentioned in section 2.1, spin-flip scattering of conduction electrons
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by such impurities destroys the phase coherent backscattering responsible for weak
localization, and so reduces the quantum correction to the magnetoresistance. The
magnetic spin scattering rate is given in subsection 2.1.3.

The second contribution comes from the field and temperature dependence of
single-site magnetic scattering. The states available to the impurity are progressively
frozen out with increasing field giving rise to a magnetoresistance. This magnetore-
sistance has been calculated to second order in the exchange integral by Béal-Monod

and Weiner and is given by [70]:

(éﬁ) = kJ?Aa), (2.36)
P mag
where
_c 3rmfd
" p2he?Ep’

Aa) = 4(S8,)* + (S,) (coth(a/?) - —3/2—) s

sinh?(a/2)
gupB
kpT '’
M
S.) = = SB,(S
(5= 2L = 555

B,(Sa) is the Brillouin function, Q the atomic volume of the host alloy, ¢ the con-
centration of impurities, and n the number density of the impurities.

The above equation describes a magnetoresistance which is proportional to —B?
at low fields and saturates at high fields. It is important to note that both 1/7, and
(%ﬁ)m’ are proportional to ¢J? so that small concentrations of magnetic impixrities
may give a non-negligible contribution to both dephasing and magnetoresistance. A

representative plot of (ﬁ";,ﬂ)m‘T is included in Figure 2.11 at T = 1.5K and T = 10K

together with the other contributions.
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Figure 2.11: Normalized magnetoresistance for ¢ = 300ufd.cm, D = 1.5cm?/s, B,, =
0.1T,By = 10mT. (a) T = 1.5K and (b) T = 10K.

1) Weak localization contribution, Eq. (2.14).

2) Magnetic impurity scattering contribution, Eq. (2.36), ¢ = 50ppm, J = —0.24eV.

3) Electron-electron interaction contribution from the Cooper channel, Eq. (2.34).

4) Electron-electron interaction contribution from the diffusion channel, Eq. (2.29).
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2.4 Applications to amorphous Ca-Al-(Ag,Au) and
icosahedral Al-Cu-Fe systems

First we start with the amorphous Ca-Al-(Ag,Au) system. As mentioned in Chapter
1, the Ca-Al alloys have been extensively examined both experimentally and theo-
retically and are in consequence very well characterized. Mizutani et al. [31, 32}
carried out measurements of the electrical resistivity, electronic specific heat and Hall
coefficient of the different alloy compositions over a wide range of temperature. The
electrical resistivity is found to be strongly dependent on the Al concentration; it goes
from ~ 150p8.cm to ~ 400uQ.cm as the Al content varies from 20 to 40 at. %. The
density of states at the Fermi level, on the other hand, as deduced from the electronic

specific heat coefficient data by the following formula:

0.4241~
142X

N(Br) = states/eV.atom, (2.37)

where 7 is the electronic heat coefficient in mJ/mole.K? and X the electron-phonon
coupling constant, decreases with increasing Al concentration.

For the present alloys of CazgAlzs-x(Ag, Au)y, the resistivity varies only slightly
with the alloy composition except at large concentrations of Ag and Au (i.e. 2 and 3
at.%) where it decreases by up to 30%. Except for CazgAlsg, there is no available data
on the density of states at the Fermi level for the remaining alloys and we assume it
to stay constant (i.e. the same as for CazgAlsg, = 0.49 states/eV.atom [31, 32]) since
we do not expect it to change significantly upon substitution of Al by small amounts
of Ag or Au. This assumption is supported by the results of Ca-Mg-Al [32], where
the density of states, as deduced from specific heat measurements, only changes by
~ 7% when going from CazpAlsg to CaroMgioAlzy. At the same time the resistivity
spans the same range of values as that obs_ervcd in the present alloys. |

The disorder parameter, (kpl.)™* can be calculated from the measured resistivity
and the density of states. If we assume an sp—band structure for our alloys, which

is consistent with the thenretical calculations of Hafner and Jaswal [75) on Ca-Al
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compounds, then (kpl.)™? is given by the following formula:

(krlo)™ = 2 N(Br)p, (2.39)
Im

Using our results for the resistivity and the density of stntes calculated from
Mizutani et al. data (31, 32}, for CazpAls we find, (kplc)™! ~ 0.25 — 0.35. This
value of the disorder parameter reflects a relatively high degree of disorder and in
this case, as noticed in Chapter 1, the plane wave description breaks down as the
wavevector of the conduction electrons is not well defined. In fact when (kpl.)™! = 1,
we have Ak =~ k (uncertainty principle). Therefore, a priori one does not expect
the weak localization and enhanced electron-electron interaction expressions (Eqgs.
2.14 and 2.29), which were derived for the case (krl.})™! < 1, to give an accurate
account of the experimental data in Ca-Al-(Ag,Au) system. However, the author in
an earlier study of Ca-Mg-Al system where the disorder parameter was varied from
very low (~ 0.05) to the present value (i.e. ~ 0.35) showed that, in this range, the
quantum corrections to the conductivity provide an excellent description of the data
irrespective of the exact value of (krl.)~! [18, 19]. The only difference between the
Ca-Mg-Al alloys and the present Ca-Al-(Ag,Au) alloys is the level of the spin-orbit
scattering. The former system is characterized by a very weak spin-orbit scattering
[18, 19] whereas in the later spin-orbit scattering is varied from very weak to very
strong. Therefore a quantitative investigation of the quantum corrections to the
conductivity in Ca-Al-(Ag,Au) will also provide a test of the validity of the current
weak localization and enhanced electron-electron interaction expressions in the strong

spin-orbit regime.
The quantum corrections to the conductivity expressions are defined by By, B,,,
F, and D. The last two parameters are known; F, is simply given by the free-electron
Thomas-Fermi screening theory and is = O.gﬁﬁ'fo:j‘Ca—AL(Ag,Au) alloys. The diffusion

constant on the other hand is calculated by the Einstein relation (see Table 2.1):

1

b= e!N(Er)p’

(2:30)
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Since N(Er)is assumed to be the same for all the samples, the changes in the diffusion
constant are a consequence of the changing resistivity only.

In the light of the earlier work on Ca-Mg-Al [30, 18, 19], the following predictions
can be made about the low temperature magnetoresistance and resistivity temper-
ature dependence of Ca-Al-(Ag,Au) alloys. Due to finite spin-orbit scattering the
magnetoresistance will be positive at low fields for all samples. At high fields it is
expected to either change sign or stay positive depending on the Ag or Au concentra-
tion. Because of the low diffusion constant the Zeeman band-splitting effect on the
weak localization magnetoresistance should be important. The enhanced electron-
electron interaction contribution will be positive and should be significant only at
large field values and low temperature (T' € 6 K) (see Figure 2.11). For the tempera-
ture dependence of the resistivity however, electron-electron interaction contribution
is expected to dominate.

Application of the quantum corrections to the conductivity theories to Al-Cu-Fe
quasicrystals is less obvious. Due to their recent discovery, many physical properties
of quasicrystals in general and of this system in particular, are not completely under-
stood and are still under intensive investigation both theoretical and experimental.
The second part of the thesis is motivated by the desire to gain further information
on the electronic properties of the icosahedral Al-Cu-Fe system. Applying quantum
corrections to the conductivity theories to analyze the low temperature resistivity
provides a way to answer (at least partly) the question: Are icosahedral Al-Cu-Fe
alloys ordered or disordered?.

To use weak localization and enhanced electron-electron interaction theories in
a quantitative analysis of the icosahedral Al-Cu-Fe data we need, at least, to know
the diffusion constant D. This can be determined with the help of equation (2.39).
However only the density of states for AlgysCuszqsFe;2 is known from experiment
[43, 44} and we therefore assume, in contrast to Ca-Al-(Ag,Au) alloys, that N(Er)
remains the same for all Al-Cu-Fe samples. “Thus the change in the resistivity is a

result of the varying N(Er). This assumption is véf}"ieasonable if we consider that a
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Alloy d P D N(EF)
(g/cm?) (uQem) | (em?/s) | (st/eV.at)
CazoAlso 185+ 0.04 | 310% 16 1.5 0.49
CazoAlzg 7Agos | 1.84 £ 0.04 | 264 £ 13 1.8
CazoAlapsAgor | 1.84£0.04 | 27013 | 1.7 .
CaroAligAgs | 1924004 | 245412 | 1.94 .
CasoAlzgpAuoy | 1.86+0.04 | 20715 | 156
CazgAlzggAugs | 1.86 £ 0.04 | 280414 1.66 -
CazpAlzggAupq | 1.87+0.04 | 2801 14 1.66 -
CarnAlgsAugs | 1.92£0.04 | 200+15 | 1.6
CazgAlagAu, 2.00+0.04 | 220414 2.1
CazoAlz7Aus 212+0.04 ) 21014 2,27 -
Algs 5Cugzq 5Fe 4.5% 4620 % 460 0.25 0.3
Alg3CugpFeg s 4.5t 5330 £ 530 0.25
Al sCugssFerz | 451 | 67004670 | 0.25
Alg2Cugs sFeqas 4.5¢ 9730 £ 970 0.25 -

Table 2.1: The physical parameters of amorphous Ca-Al-{(Ag,Au) and icosahedral Al-Cu-Fe
samples studied in this thesis. t: from reference [42].

pseudogap in the density of states exists at the Fermi level as mentioned in Chapter 1.
Note that although the resistivity is known from room-temperature measurements it
will be used as a free parameter in the analysis and the results will serve as consistency
check to our fitting procedure. Because of the low density of conduction electrons
(n ~ 6 x 10%%lectrons/cm?, as found from Hall coefficient measurements [43, 44]), it
is questionable to calculate F, from the Thomas-Fermi theory and will therefore be

treated as a free parameter like p, B,, and Bj.



Chapter 3

Experimental Techniques

The aim of this chapter is to describe the different stages of the sample preparation
and characterization, and the different techniques used to measure the resistivity
and its temperature and magnetic field dependence. During the preparation of the
samples special attention was paid to their quality as contamination by foreign phases
and/or the presence of magnetic impurities alter dramatically the electrical transport

properties.

3.1 Sample preparation

The characteristics of the raw materials used in preparing the different samples are
as follows:
Ca, Granule: From Rare Metallic Co. Japan.

Purity: 99.99% with 5ppm Mn, less than 18ppm Fe, 3-5ppm Ni, Co, and Cr.
Al, Rod: From McKay, New York, USA.

Purity: 99.9999%. Contaminants unknown but less than 1 ppm.
Mg, Rod: From Alfa Products, Massachusettts, USA.

Purity: m99.95% with 40ppm Mn, 20ppm Fe and 10ppm Ni.
Cu, Shot: From ASARCO Ltd. New York, USA.

Purity: 99.999% with less than 1ppm transition metal impurities.

41
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Fe, Lump: From Atlantic Equipment Engineers, New Jersy, USA.
Purity: 99.99%.

Au, Shot: From Alfa Products (Morton Thiokol, Inc.), Massachusetts, USA.
Purity: 99.9999%.

Ag, Rod: From Johnson Matthey Chemicals Ltd. London, UK.
Purity: 99.999% with 3ppm Fe, 1lppm Cu, less than 1ppm Bi, Cd, and Mg.

3.1.1 Amorphous alloys

Prior to the preparation of the Ca-Al-X (X=Ag,Au), Al was etched with NaOH +
H20 to remove any surface contaminants. The Ca could not be treated because of
its high reactivity and was used as it is. The alloys were made by induction melting
appropriate amounts in a water-cooled Cu boat. Alloying was done under a high
purity (99.998% pure) argon atmosphere of about 30kPa. The induction coil was
powered by a high frequency LEPEL generator. In order to ensure homogeneity
the ingots and the target were turned over and melted several times under the same
conditions. The final mass loss was less than 2%. The nominal chemical compositions

of the twelve amorphous samples used in this thesis are listed in Table 3.1.

3.1.2 Quasicrystals

The Al-Cu-Fe alloys are less reactive and were prepared in an arc furnace under a
titanium-gettered argon atmosphere. Prior to alloying Cu was also etched with HNO,
+ H.O solution to remove any surface contamination. The Fe lump was not etched
because of the risk of oxidation and was only cleaned with a steel brush. To prevent
evaporation of Al, which has 2 much lower melting temperature than Fe and Cu,
the ambient pressure in the chamber was set to approximately 60kPa. The resultant
buttons (~ 7g) were also melted several times for homogeneity purposes and the mass

loss was very small (less than 1%).
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Amorphous Alloys

Quasicrystals

CazgAlsg
CazoAlyg 7AK0a
CazoAlag 3Ago.7
CazpAlzsAg,

Alga sCuzqsFe,
Alg3CuzgFey2
Alg2.5Cusg sFeys

AlgaCuyg sFeyas

43

CazohlzgAug,
CazgAlzg sAup.2
CazoAlze.6Au0.4
CazoAlzg 2Augs
CazoAlsgAu,
CazoAlyAug

Table 3.1: The nominal chemical compositions of the amorphous and the quasierystalline
samples.

The four selected compositions (see Table 3.1) lie in the region were it has been
experimentally established that a single phase icosahedral structure can be obtained
as shown in the phase diagram (Figure 3.1.b) [37, 38, 76]. Although the chosen
compositions are very close to each other, their electrical transport properties are

very sensitive to the compositi. n as will be discussed in the next chapter.

3.1.3 Meltspinning

Meltspinning is by far the most widely used technique for producing amorphous and
quasicrystalline metals, It allows production of large quantities of material with
relative ease and in suitable geometry for electrical transport measurements. In this
technique the alloy is melted by induction and directed on the surface of a rapidly
spinning wheel, usually made of copper. The material is spread into very thin and
long ribbons and undergoes a cooling rate of ~ 10° degree/s. This process allows
alloys with sufficiently deep eutectics to be quenched into the amorphous state. In

Figure 3.1.2 we have reproduced the phase diagra.ni of Ca-Al [77]. One can see that
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Figure 3.1: Phase diagrams,

a) Phase diagram of binary Ca-Al from reference [77). The solid bar limits the glass forming
region according to reference [78]. B

b) Phase diagram of Al-Cu-Fe. The dashed line limits the region of formation of icosahedral
phases [37). The solid points are the four compositions selected in this thesis.
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Figure 3.2: Schematic of the melt-spinning apparatus.

the CazgAlsg composition lies in the middle of the glass forming region which extends
from 12.5 to 47.5 at.% Al {78]. The substitution of Al by small amcunts of Ag or
Au is not expected to affect the glass forming ability of the system as was confirmed
from X-ray diffraction patterns (see below). An alloy pellet of ~ 0.5 g placed in a
quartz tube is induction melted. The liquid is then ejected through the orifice (about
0.5 mm in diameter) onto the rotating wheel by high purity argon at a pressure of
approximately 50 kPa above the atmospheric pressure. The liquid solidifies as a thin
ribbon on the wheel surface and is collected in a long Al tube; see Figﬁre 3.2. The

tangential velocity was typically 42 m/s for Ca-Al-(Ag,Au) alloys and the resulting
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ribbons were 1-2 mm wide, 1-1.5 meters long and about 20 microns thick. Because
of the high brittleness of Al-Cu-Fe alloys the wheel speed was lowered to 25-30 m/s.
This allowed preparation of relatively long ribbons (1-3 cm). To avoid oxidation and
also to obtain ribbons with uniform geometry, the melt-spinning chamber was, in all
cases, evacuated and back-filled with He to a pressure of 30 kPa.

In order to prevent crystallization and oxidation, the Ca-Al-(Ag,Au) ribbons were
stored in liquid nitrogen (Ca reacts easily with oxygen and water). The Al-Cu-Fe on

the other hand were kept in glass vials at room temperature.

3.2 Sample Characterization

3.2.1 X-ray diffraction

The main technique used to check the structure of the samples was X-ray diffraction
with a Cu K, radiation (A = 1.5418A). Impurity phases down to a level of 2%
can be detected by this method. The configuration of the NICOLET/STOE Ll11
automated powder diffractometer used is shown in Figure 3.3. The beam passes
through a graphite monochromator and X-rays reflected by the sample are detected

with a photo-multiplier system.

A. Amorphous Alloys

The diffraction pattern of Ca-Al-(Ag,Au) samples consisted of a very broad peak a
characteristic of amorphous materials as shown in Figure 3.4. However for some
samples a few crystalline peaks were superposed on the amorphous background. Us-
ing the JCPDS data files [79] those peaks were identified as due to Ca oxides and
hydroxides. The peaks disappeared after polishing the surface implying that they are
not in the bulk of the samples but only on the surface. Their presence does therefore

not affect our measurements.
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Figure 3.3: Schematic diagram of the X-ray diffractometer.

B. Icosahedral Al-Cu-Fe alloys

The as-quenched ribbons of Al-Cu-Fe always contain two phases: the icosahedral
phase together with a small amount of a simple cubic FezAl crystalline phase (lattice
parameter ¢ = 2.914 [76]). This impurity phase however could be easily removed by
high temperature annealing to obtain single phased icosahedral samples. In fact, as
it may be seen in Figure 3.5.a, the FeAl crystalline peak at 26 = 43.9° disappears
completely after thé ribbons were annealed at 750 °C for 3 hours under vacuum. At
the same time the auasicrystalline peaks become sharper indi(;ating an implrovement ,

of the structural quality of the icosahedral phase.

(!
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Figure 3.4: X-ray diffraction patterns of amorphous Ca-Al-(Ag,Au) alloys. The alloy

chemical composition is indicated in the figure. The crystalline peak at 20 = 37.4° (o) is
due to Ca oxides on the surface of the ribbons.
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Figure 3.5: X-ray diffraction patterns of Al-Cu-Fe alloys.

a} Diffraction pattern of Algy 5CuzqsFe;, before and after annealing ( (o): AlFe-type crys-
talline phase).

b) Diffraction patterns of the four alloys selected in this thesis; the nominal compesition
is indicated in the figure. Note: all ribbons present texturing along the 5-fold axis corre-
sponding to the (18,29) peak. ;
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The diffraction peaks of the annealed ribbons, for the four different compositions,
exactly index to an icosahedral structure. The indexing was done using the scheme
proposed by Cahn et al. {80] as explained in Appendix B. It is important to note that
for proper indexing of the x-ray diffraction patterns, which is based on the relative
intensities of the peaks, it is preferable to perform powder diffraction scans as most
of the ribbons prepared with low quenching rates, such as the ones considered here,
present appreciable texturing (along the 5-fold axis for Al-Cu-Fe ribbons). However,
the texturing has no effect on the measurements of the resistivity and magnetore-
sistance because of the high symmetry of the icosahedral structure. According to
Bessiére et al. [76] the perfect icosahedral phase exists only at a composition very
close to Algz 5CuzgFe;2 5 and small deviations from it lead to a relative broadening of

the diffraction peaks.

. 3.2.2 Transmission and scanning electron microscopy

The quality of the quasicystalline structure was also checked by transmission elec-
tron microscopy (TEM) and scanning electron microscopy (SEM). The TEM analysis
was performed using a Philips CM20 transmission eleciron microscope with an ac-
celerating voltage of 200 keV. The samples were thinned to the desired thickness by
electrochemical thinning. Diffraction patterns were taken in the standard bright field
mode along the ‘nigh.symmetry axis; i.e. 5-fold, 3-fold and 2-fold axis, on several re-
gions of the samples. Equally good qﬁality diffraction patterns were observed for the
four different alloy compositions (Figure 3.6). It was also possible by using the high
resolution ca.ipabi]ity of the microscope to obtain a clear picture of the high degree of
topological order of the icosahedral phase over relatively large areas, see Figure 3.7.
The SEM was done on a2 JEOL scanning electron microscope. The accelerating volt-
age was 20 keV. The samples were glued to an Al sample holder using silver paste.
Relatively large single “quasicrystals” are observed embedded in a fine single qua-
sicrystals matrix (Figure 3.8.a). The average size of the crystals is reduced when the
composition-a.pproaches the composition where the ideal icosahedral phase has been

— T

‘L:ir
)/
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Figure 3.6: Electron diffraction patterns of icosahedral Algz 5Cuyq sFey; alloy along (a)
2-fold, (b) 3-fold, (c) 5-fold axis; respectively.
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Figure 3.7: High-resolution electron transmission image of icosahedral Alga gCuyqsFeyzs
4 (a) along the fivefold axis. (b) The electron diffraction pattern used to obtain image (a).




Chapter 3: Experimental Technigues 53

Figure 3.8: Scanning (a) and high-resolution electron transmission (b) micrographs of
icosahedral Algs sCuz4 sFe;2 showing the symmetry and the large size of the quasicrystallites.
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Figure 3.9: Scanning electron micrographs of icosahedral Al-Cu-Fe alloys.
(a) AlgzCugs sFeys  showing a more homogeneous structure, (b) AlgaCuggFe;s: cross sec-
tional view showing texture along the 5-fold axis.
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shown to exist [76] (3.9). On the other hand, cross section micrographs confirmed the

presence of texturing in the alloys (see Figure 3.9.h).

3.2.3 Mass density and room temperature resistivity

Mass density measurements of the Ca-Al alloys were carried out using the Archimedes
method with toluene as the working fluid. In order to reduce surface tension effects,
a thin fiber glass wire was used to suspend the sample in the liquid. The weight in air
Woir and in toluene W, was measured with a mechanical balance (Mettler H20T) to

an accuracy of 1073 gram. The mass density is then simply given by:

Waiv
= S (o = dain) + dain, 1
d, Wm',. — Wgol( tol au') + d (3 )

where dy,; = 0.8669 g/cm® is the mass density of toluene at room temperature and
dai- the mass density of air (~ 1072 g/cm® at 293K and 100 kPa). However because
of the very low density of Ca-Al alloys it was difficult to accommodate more than
~ 30 mg of material in the buoyancy balance which resulted in large error bars in
d, (about 10% or more). To overcome this problem, small buttons of the crystalline
alloys were used instead and the accuracy was then 1% or better. The mass density
of the morphous samples is then obtained by subtracting 2% of the measured value
to account for the volume difference [81]. In this way the error on the final values
is estimated to be only about 3% or less. Within the error bars the mass density
is a linear function of the Ag and Au concentration as shown in Figure 3.10 (see
also Table 3.2). The present mass density value for CazpAlsg is in good agreement
with our previous results {18, 30] and with that reported by Mizutani and coworkers
[31, 32).

In the case of Al-Cu-Fe samples it was not possible to measure their mass densities
because of the large amounts of material required for a precise determination and we
quote here the value reported by other authors [42).

The room temperature resistivity ﬁra.s measured by a four terminal technique using

an LR400 resistance bridge (see subsection 3.3.4). For Ca-Al alloys, long ribbons (0.3
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Figure 3.10: Mass density of amorphous Ca-Al-(Ag,Au) alloys.

m) were used and the cross sectional area needed for converting the resistance to
resistivity was determined from measured mass densities. Then the resistivity is

simply given by:
_Bm RA
Pear ™1
R being the resistance, L the ribbon length and d the mass density. The resistivity

(3.2)

of Al-Cu-Fe specimens was estimated from the measuied length, width and thickness
of the samples. However in this way, large error bars especizally for Al-Cu-Fe samples
are encountered because of the uncertainty in measuring the exact dimensions of
relatively short ribbons (about 5 - 20 mm). But in general the extracted values agree
well with the reported results of other workers [43, 44, 52, 82]. The room temperature

resistivities of all samples studied in this work is listed in Table 3.2.
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Alloy d (g/em®) | p(pSt.cm)
CazgAlzg 1.854+0.04 | 310+ 16
CargAle7Ages | 1.54 5:0.04 | 264 +13
CaroAlosAgor | 1.84 £0.04 | 270 +13
CazAlsAg: 192 £0.04 | 245 £ 12
CazAlippAug, [ 1.86 £0.04 | 297 £15
CazpAlygsAugs | 1.86 £0.04 | 280 14
CazpAlygeAuge | 1.87 £0.04 | 280 £ 14
CazgAlze2Augs { 1.924+0.04 | 290+ 15
CazoAlsgAug 2004004 22014
CazoAly7Au; 2124004 | 210+ 14
Algz 5Cuzq sFe;2 4.51 4620 X 460
AlgzCuszsFe;, 4.5¢ 5330 £ 530
Alga sCuas sFeqs 4.5f 6700 £ 670
Alg:Cuas sFer2s 4.5% 9730 £ 970

Table 3.2: Mass density and room temperature resistivity of amorphous Ca-Al-(Ag,Au)
and icosahedral Al-Cu-Fe samples. {: From reference [42).

3.3 Low temperature resistivity and magnetore-
sistance measurements

Low temperature resistivity and magnetoresistance measurements were carried out in
a standard liquid He cryostat between room temperature and 1.5 K aud, in a dilution

refrigerator down to 150 mK. All magnetoresistance measurements were done in the

longitudinal field configusation, i.e. Bl|J]IEL

1On one occasion, measurements in the perpendicular configuration, B 1 J, were performed to_
S

confirm that texturing has no effect on the magnetoresistance of icosahedral Al-Cu-Fe alloys.
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3.3.1 Liquid helium cryostat

The temperature dependence of the resistivity and the magnetoresistance up to 8.8T
and down to 1.5K was measured in the bore (2.54cm) of a Nb-Ti superconducting
solenoid (from American Magnetics, Inc; Model # 2468) installed in a stainiess-steel
dewar system (Hoffmann, Airco). The setup is shown in Figure 3.11. The solenoid
is immersed in liquid He 1nd a set of Allen-Bradley 1/8 watt resistors placed below
and above it served as level detectors. The He bath is thermally shielded by liquid
nitrogen in the outer dewar. The sample holder is placed inside a thin-wall stainless-
steel dewar made in the laboratory [83]. Measurements between 1.5 and 4.2K were
performed by first immersing the sample in the liquid and lowering the temperature
of the bath by reducing the pressure in the sample chamber. A system of valves,
gauges and a heater allows temperature control to within 1% or better. Above 4.2K
the temperature is stabilized by thermally linking the sample space to the magnet He
bath and heating the sample holder by the non inductively wound heater. Typically,
the pressure in the sample chamber and the interspace were 0.1 mbar and 10~* mbar,
respectively. The heater current was controlled by an analog feedback mechanism.
The magnet was energized by a HP Harrison 6260A DC power supply through two
diode protection stacks. The role of the diode stacks is to limit the rate of current
change through the solenoid below its maximum rated value (Ine. = 78.4 Amps)
and also to protect the source from overload voltages from the solenoid. The current
through the solenoid and hence the field strength was varied manually by a discrete
Keithley K2601 nanovoot source and was monitored as a voltage drop across a 0.5 m{2
resistor. The voltage was read by a 175A Keithley digital multimeter. According to
the manufacturer’s speciﬁca.tibris the superconducting solenoid’s field factor ratio is
B/I =0.11486 T/Amps and the field is uniform to within 0.2% over tilc sample. To
further minimize liquid He loss during the field sweeps (by Joule heating and thermal
dissipation), the vapor cooled leads carrying the magnet’s current were made of two

successive assemblies of 20 and 10 copper wires of 0.3 mm diameter each [84]. -
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Figure’ 3.11: Schematic diagram of magnetoresistance cryostat. 1) Cu sample holder, 2)
Stainless steel tubes, 3) Terminal lead box, 4) Superconducting magnet solenoid, 5) Liquid

"Helium dewar, 6) Liquid nitrogen dewar, 7) Sample holder dewar, 8) Liquid Helium level

detectors, 9) Rotary vacuum pump, 10) Diffusion pump 11) Liquid Helium transfer tube,
12) Vazuum gauges, 13) O-ring, 14) He gas inlet, 15) He gas outlet.
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3.3.2 Sample holder

Figure 3.12 shows the probe used for the measurements of the magnetic field and
temperature dependence of the resistivity in the range 0 to 8.8T and 1.5 to 300
K respectively. To facilitate their installation the samples were first mounted on
individual copper plates and electrically isolated from them with thin mylar foils.
The plates were then glued (one on each side) with GE varnish to the copper block.
The whole was suspended inside the sample chamber at the center of the magnet with
four thin-wall stainless steel tubes that contains the thin (~ 70 pm diameter) copper
leads for the samples, thermometer, heater and He level detector. We should note
that the sample current and voltage leads were kept away from each other to avoid
any interference between them. The Ca-Al-(Ag,Au) and Al-Cu-Fe samples are very
brittle and vacuum grease was used to attach them to the copper plates, but only
at the ends. In this way, sufficient thermal contact was ensured, without subjecting
the sample to too much strain duz to differential thermal contraction. Thin gold
wires (~ 70 pm diameter) were used to make current and voltage contacts and, were
attached to the sample with silver paste.

The temperature of the sample was measured with a calibrated carbon-glass re-
sistor (CGR) from Lakeshore Cryotronics Inc. with an accuracy varying from +0.1%
at 1.5 K to +0.05% at 300 K. Its conductance was monitored with a PCB 4-terminal
a.c. conductance bridge (from SHE Inc, now Biomagnetic Technologies Inc.). The
low-power PCB bridge cun measure conductances from 200 uQ~? to 200 27! to an ac-
curacy of +£0.05%. Hence the only limit on the accuracy of the measured temperature
is the small magnetoresistance of the carbon-glass resistor which causes a misreading
of less than 2.3% at 4.2K and 8T. The differential analog voltage output feature on
the PCB was used as a driver to control the sample heater current as mentioned

earlier.
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Figure 3.12: The sample holder used for magnetoresistance and resistivity measurements

3.3.3 Dilution refrigerator

Measurements of the resistivity of Al-Cu-Fe and Mg-Cu samples down to 150 mK
were performed in a SHE mini-dilution refrigerator. A schematic of the apparatus
is shown in Figure 3.13. The Al-Cu-Fe were mounted directly on a copper block in
the same way as above. The copper block was then tightly screwed to the bottom
of the stage. To increase thermal contact a thin layer of vacuum grease mixed with
copper powder was used: The working ﬁéx{;iple of the dilution rrefrigera.tor has been -
explained in detail by several authors (see ftit:exa.mple the recent book by Betts [85]).
’;hg cooled stage is contained in an evacuated stainless steel jacket surrounded by a

‘He bath. At the top of this stage a chamber that draws ‘He from the bath is kept at
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Figure 3.13: Schematic of the dilution refrigerator cold stage

1K by pumping on the liquid. Sample cooling is produced in the mixing chamber by
the continuous dilution of *He atoms in the *He rich m‘i,xture. When measuring the
resistance great care was taken to avoid self-heating effects of the sample. Self-heating
occurs 'when the energy dissipated by the sensing current can not be conducted at
the same rate into the sample holder (mixi'ng chamber) due to the poor thermal
conductivity at low temperatures. Thus, the sensing current was reduced to about
1pA for the resistivity measurements in the dilution refrigeratof;flépsulting in a few

tens of pW of power being dissipated by the sample and theiconté.'cftfs.
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3.3.4 Resistance bridge and data acquisition

A low-power LR400 a.c. resistance bridge (from Linear Research, USA) was used to
measure the resistance of the different samples considered in this thesis. Depending
on the alloy, the sample resistance varied from 1 to 15Q. The main features of the
bridge are its high stability, sensitivity and wide range of applications. It can measure
resistances from 20m¢) to 200k} to a precision of one part in 10%. Furthermore the
bridge has a variable excitation level which can be very useful for measurements at
dilution refrigerator temperatures.

The resistance changes in our samples due to phenomena described in Chapter
2 are expected to range from 10~° to 10~'. Hence the LR400 bridge has enough
sensitivity to extract the signal. A filter with a time constant of 3 seconds was used
to reduce the noise level further.

For data acquisition, all voltages: PCB, LR400, ard the voltage across the 0.5m{
resistor (which is proportional to the magnetic field) were measured by Keithly In-
struments, models 197A and 175 auto-ranging multimeters as shown in Figure 3.14.
The multimeter readings were then fed into an IBM PC through an IEEE 488 inter-
face. To reduce even more the noise, which decreases as the inverse of the number
of readings v/N, each data point is the average of four separate readings of the volt-

meter. For further processing the data were transferred to a SUN computer system.
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Figure 3.14: Schematic diagram of the experimental setup for magnetoresistance and re-
sistance measurements and the data acquisition system
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Results and Discussion

In this Chapter we present and discuss our experimental measurements of the mag-
netic field and temperature dependences of the resistivity in ten different Ca-Al-
(Au,Ag) metallic glasses and four Al-Cu-Fe icosahedral quasicrystals. In most cases,
the measurements were done between 1.5 and 30 K in fields up to 8.8 T using the
standard liquid He cryostat described in the previous Chapter. But measurements
of the temperature dependence of the resistivity of two Al-Cu-Fe samples were made
down to 150 mK in the dilution refrigerator and are also presented here.

The chapter is made of two main sections. The first one (section 4.1) contains
all the results and discussion of the Ca-Al-(Ag,Au) amorphous alloys. For clarity the
section is divided into several subsections. In 4.1.1, the magnetoresistance data are
presented and described qualitatively within the framework of quantum corrections to
the condnc.tivitj Then a quantitative comparison between the theory and experiment
is presented in 4.1.2. Discussions of the dephasing raie 74, the spin-orbit scattering
rate 7,4, and the influence of spin-orbit scattering on the enhanced electron-electron
interaction follow in 4.1.3-5, respectively. In subsection 4.1.6 we discuss in detail the
temperature dependence of the rﬁsistivity between 1.5 and 4.3 K. A summary is given
at the end of the section in 4.1.7. Section 4.2 is dedicated to icosahedral Al-Cu-Fe
samples and is structured in very much the same wajr as section 4.1. The main features
of the Al-Cu-Fe icosahedral alloys magnetoresistance are commented on in 4.2.1. The

r
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analysis of the experimental data and the discussion of the dephasing rate ry and
the interaction constant F, follow in subsections 4.2.2, 4.2.3 and 4.2.4, respectively.
The temperature dependence of the resistivity down to 150 mK is presented in 4.2.5.

Finally a summary of the discussion is given in 4.2.6.

4.1 Amorphous Ca-Al-(Ag,Au)

4.1.1 Magnetoresistance

In this subsection we present our experimental results of the magnetoresistance of
CazoAlyp-yX;; X = Ag,Avand y = 0, 0.3, 0.7, 2for Agand, y = 0.1, 0.2, 0.4, 0.8, 2,
3 for Au respectively. These are shown in Figures 4.1-10 for different temperatures
ranging between 1.5 and 25 K. Note that measurements at 30 K were also carried out
for CaygAlssAu, and CaggAlarAu3. The error in the data is estimated to be much less
than the size of the points (= 4 x 10~®) and is mainly due to temperature fluctuations.

The magnetoresistance is much larger than what would be expected form the or-
bital magnetoresistance resulting frem the Lorentz force on the conduction electrons
(Eq. 2.1). In all samples it is positive at low fields reflecting the presence of finite spin-
orbit scattering. At high fields however it is either positive or negative depending on
the concentration of Ag or Au. As the temperature increases the overall magnitude
of the raagnetoresistance is reduced, due to increasing inelastic scattering, which, as
explained in Chapter 2 destroys the phase coherence of the electron wavefunction.
Moreover in samples with small Ag or Au content, the region of positive magnetore-
sistance at low fields disappears completely at high temperatures. This is because
the effect of the spin-orbit scattering becomes overwhelmed by the dephasing due to
the inelastic scattering by phonons at high temperatures. For samples with large Au
concentration (i.e. 2 and 3 at.%), however, the magnetoresistance remains positive
over the full range of field and temperature because of the more intense spm-orblt
scattering in these alloys. We also note that the da.ta of the CazgAly, alloy are lden-

tical with earlier results [18, 19, 30]. However our data are in conflict with previous
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Figure 4.1: Normalized magnetoresistance of CaygAlyp. The scale and temperatures are
indicated in the figure. The points are the experimental data, the solid line the fitted
magnetoresistance (Eq. 2.14) and the dashed line its extrapolation as described in the text.
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Figure 4.2: Normalized magnetoresistance of CazpAlyg 7Ago3. The scale and temperatures
are indicated in the figure. The points are the experimental data, the solid line the fitted
magnetoresistance (Eq. 2.14) and the dashed line its extrapolation as described in the text.
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Figure 4.3: Normalized magnetoresistance of CazoAlyg 3Ago,7. The scale and temperatures
are indicated in the figure. The points are the experimental data, the solid line the fitted
magnetoresistance (Eq. 2.14) and the dashed line its extrapolation as described in the text.
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Figure 4.4: Normalized magnetoresistance of CazpAl;sAgs. The scale and temperatures
are indicated in the figure, The points are the experimental data, the solid line the fitted
megnetoresistance (Eq. 2.14) and the dashed line its extrapolation as described in the text.
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Figure 4.5: Normalized magnetoresistance of CazgAlyg gAuyp ;. The scale and temperatures
are indicated in the figure. The points are the experimental data, the solid line the fitted
magnetoresistance (Eq. 2.14) and the dashed line its extrapolation as described in the text.
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are indicated in the figure. The points are the experimental data, the solid line the fitted
magnetoresistance (Eq. 2.14) and the dashed line its extrapolation as described in the text.
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Figure 4.7: Normalized magnetoresistance of CazgAlzg gAug4. The scale and temperatures
are indicated in the figure. The points are the experimental data, the solid line the fitted
magnetoresistance (Eq. 2.14) and the dashed line its extrapolation as described in the text.
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Figure 4.8: Normalized magnetoresistance of CazgAlyg 2 Augs. The scale and temperatures
are indicated in the figure. The points are the experimental data, the solid line the fitted
magnetoresistance (Eq. 2.14) and the dashed line its extrapolation as described in the text.
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Figure 4.9: Normalized magnetoresistance of CaypAlygAu;. The scale and temperatures
are indicated in the figure. The points are the experimental data, the solid line the fitted
magnetoresistance (Eq. 2.14) and the dashed line its extrapolation as described in the text.
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Pigure 4.10: Normalized magnetoresistance of CaypAl;7Aus. The scale and temperatures
are indicated in the figure. The points are the experimental data, the solid line the fitted
magnetoresistance (Eq. 2.14) and the dashed line its extrapolation as described in the text.
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measurements reported by Tsai and Lu {86] on Ca-Al alloys and by Howson et al. [87}
on Ca-Al-(Au) where the positive part of the magnetoresistance in the pure alloy (i.e.
CazpAly) was not observed. We shall show later that this is characteristic of the
presence in their samples of a relatively high amount of magnetic impurities, which
both destroy phase coherence and also give rise to a negative magnetoresistance (see
sections 2.1 and 2.3). As has been pointed out by Baxter et al. {88], the level of
magnetic impurities is of particular importance since it can lead to erroneous results
when quantitative analysis of the experimental data is made. This point will be
further commented on below when we discuss the dephasing rate and the spin-orbit
scattering rate. Here we estimate only the magnetoresistance due to the manganese,
which is the only niapurity present in our alloys which is expected to hold a2 moment
in Ca-Al (see section 4.1.3). Using Eq. (2.36) with J = —0.24 eV and § = 2.2 [69, 70],
we find that the contribution to the magnetoresistance of 4 ppm Mn impurity level is
of the order of 2 x 10® and is therefore negligible compared with the contributions

due to quantum corrections to the conductivity.

4.1.2 Fitting procedure

We now test whether the theoretical predictions of weak localization and enhanced
electron-electron interaction provide a guantitatively accurate deseription of the ex-
perimental data. To do so we make use of the fact that weak localization is more
sensitive to low magnetic fields than the enhanced electron-electron interaction as

was demonstrated in Chapter 2 (see Figure 2.11).

- A~ Low field range

We start the fitting by restricting it to low fields ( B/T < 0.5T/K) where only

weak localization contributes to the magnetoresistance !, The contribution from

1The same procedure was successfully used in references [18, 23] to test the validity of weak
localisation theory in three dimensional systems. Also, a similar approach was adopted by Bergmann

in quantitative analysis of the magnetoresistance of two dimensional Mg, Cu, Ag, and Au films
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Figure 4.11: The spin-orbit scattering field, B,,, as a function of temperature in three
different alloys. The dashed line represent the average value of B,,.
enhanced electron-electron interaction being negligible (~ 1078). In doing so we will
determine the unknown parameters; the spin-orbit field B,, and the dephasing field
B,, in the weak localization expression (Eq. 2.14). Hence B,, and By are kept as
free parameters in a multiparameter least-squares fitting routine. The process stops
when the deviation between the data and the theoretical expression is 2 minimum. In
carrying out the fitting, we found that B,, is tempera.t.;lre independent (the scaiter
for different temperatures is less than 15% in the low spin-orbit alloys, see Figure.
4.11) whereas B, increases with temperature, as expected. |
To obtain an intem-ally‘ consistent fit, we then fix B,, to its average valuec and
repeat the analysis. By is now the only adjustable parameter. Our analysis therefore
yields a well defined value of the spin-orbit field B,, and one value for the dephasing
field By at each temperature for each alloy. The results are given in Table 4.1, The

10, 11, 59].
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x|y |Bo| F B,

(T) {mT)

T(K)
1.5 2 3 36 42 6 10 15 20 25 30
0] oo01f056|12 11 16 16 18 27 190 500 960 1750 -
03| 0 [0a5]047| 7 10 12 15 17T 32 180 420 910 1280 -
07| 0 [o22]|040| 9 9 12 15 17 20 98 480 810 1610 -
2 | 0 {o046|024| 7 8 10 12 16 26 106 290 900 1620 -
o [01]066]018|] 9 10 14 17 22 35 115 320 - - -
o (02|13 |010| 8 9 11 14 16 32 113 320 750 1030 -
0 (04|24 |007T| 9 10 10 13 17 30 105 340 400 555 -
o |08| 50 00112 12 13 17 15 33 107 350 730 1270 -
0| 2|70]00{12 14 15 17 22 34 100 300 620 1000 1490
o3 |12}o00]|9 12 12 13 15 31 109 330 670 1100 1590

Table 4.1: Least-squares fitting parameters for amorphous Ca-Al-(Ag,Au). x and y refer
to the Ag and Au concentrations, respectively.

significance of these result.s for each parameter will be discussed later.

It may be seen (Figures 4.1-10) that the agreement between the theory and the
experiment is excellent in the field range over which the fit is made. Moreover the fit
is equally good at all temperatures and for all samples. Similar results were found by

several nuthors in various systems (14, 15, 16, 23, 28].

B- Full field range

Now if we extrapolate the weak localization contribution to higher field values one
can immediately see that it underestimates the measured data especially at lower
temperatures and in alloys ¢ontaining small amounts of Ag or Au (the dashed lines

in Figures 4.1-10 ). This gap is in fact a direct reflection of the missing positive

enhanced electron-electron interaction which is expected to be important in this field -~
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Figure 4.12: The interaction constant, F,, as a function of temperature in three different
alloys.

range. We therefore, as a second step, extend the fit to the entire field range including

the enhanced electron-electron contribution with the only free parameter being the

interacticn constant F,. As mentioned in section 2.3, only the diffusion channel
contribution is retained in the fitting.

Like B,., F, should also be temperature independent (see Figvre 4.12; at high
temperatures, T > 15K, the diffusion channel contribution is sn sidall that the values
of F, are not reliable).

Hence the final theoretical curves in Figures 4,13-22 are generated with common
values of B,, and F‘, and a value of By at each temperature for each family of curves.
Again, the agreement between the theory and experiment is excellent but now over
the full range of field and temperature. Furthermore, the quality of the fit is equally

good for all alloys irrespective of their chemical composition. Thus our first signifi-

R
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cant conclusion is that quantum corrections to the conductivity expressions give the
right field and temperature dependence of the magnetoresistance in this alloy sys-
tem, regardless of the level of the spin-orbit scattering., Furthermore there was no
need to include the Cooper channel contribution in the fitting. Weak localization
and diffusion channel contributions are sufficient to describe the experimentzl data;
provided the interaction constant F, is allowed to vary from one alloy to the other
(for details on this point see subsection 4.1.5). Moreover we stress that our analysis
effectively involved only one temperature dependent variable, (Bg), the dephasing
field, the interaction constant F, and the spin-orbit field B,, being constant in each
alloy.

In most previous work on bulk systems reported by different workers, quan-
tum corrections to the magnetoresistance fail to account for the experimental data

over the whole field range. Bieri and coworkers [15, 89] have investigated weak local-

ization and enhanced electron-electron interaction in a large series of metallic glasses
(MgaoCuzo, CugrZrys, PdgoSizg, -« « etc). Although the theory describes the data very
well at low fields, there is a substantial discrepancy at large fields. The same problem
was encountered by Ousset et al. for amorphous V-5i alloys [16], Olivier et al. for
Y-Al [17] and Richter et al. for the simple Mg-Cu alloys [23, 83]. The deviations
observed between the theory and experiment in these systems at higa magnetic fields
have been attributed to a variety of sources. First according to Isawa [90], the weak
localization magnetoresistance is overestiinated because of the approximations used
in deriving expressions (2.14). However Baxter et al. [88] have numerically shown that
the difference between the proposed magnetoresistance of Isawa [90] and that given
in (2.14) is completely negligible in metallic glasses such as the Ca-Al alloys consid-
ered here. Consequently Isawa’s argument cannot justify the obéerved failure of weak
localization theory for these systems. Another suggestion was that the magnetoresis-
tance expression (214) is only adequate in the limit of weak spin-orbit scattering f19].
This argument ié"ﬁfc::wever discredited by the excellent agreement between the data

and the theory in the present Ca-Al-(Ag,Au) system and by the results of Bergmann
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Figure 4.13: Normalized magnetoresistance of CayzgAlzg. The scale and temperatures
- are indicated in the figure. The points experimental data and the solid line the fitted
magnetoresistance (Eq. 2.14, 2.29) as explained in the text.
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Figure 4.14: Normalized magnetoresistance of CazgAlyg 7Agg.3. The scale and temperatures
are indicated in the figure. The points experimental data and the solid line the fitted
magnetoresistance (Eq. 2.14, 2.29) as explained in the text.
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Figure 4.15: Normalized magnetoresistance of CazgAlyp 3Ago.7. The scale and temperatures
are indicated in the figure. The points experimental data and the solid line the fitted
magnetoresistance (Eq. 2.14, 2.29) as explained in the text.
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Figure 4.16: Normalized magnetoresistance of CazgAl;aAg,. The scale and temperatures
are indicated in the figure. The points experimental data and the solid line the fitted
magnetoresistance {(Eq. 2.14, 2.29) as explained in the text.
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Figure 4.17: Normalized magnetoresistance of CazgAlze.94ug;. The scale and tempera-
tures are indicated in the figure, The points experimental data and the solid line the fitted
magnetoresistance (Eq. 2.14, 2.29) as explained in the text.



Chapter 4: Results and Discussion

Lo ]
-3

|
29.8AY

]
Ca. Al

70 0.2

1.5K
2K ]
3K
3.6K

4.2K =

6K

Ap/p

10K
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tures are indicated in the figure. The points experimental data and the solid line the fitted
magnetoresistance (Eq. 2.14, 2.29) as explained in the text.



Chapter 4: Results and Discussion 88

! { ! ! ]

~ CagpAlag gAug 4 1.5K"]

2K
3K

3.6K_
4.2K

6K

Ap/p

R e

B(T)

Figure 4.19: Normalized magnetoresistance of CazpAlyggAug4. The scale and tempera-
tures are indicated in the figure. The points experimental data and the solid line the fitted
magnetoresistance (Eq. 2.14, 2.29) as explained in the text.
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Figure 4.20: Normalized magnetoresistance of CazpAlzg2Augg. The scale and tempera-
tures are indicated in the figure. The points experimental data and the solid line the fitted
magnetoresistance (Eq. 2.14, 2.28) as explained in the text.
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Figure 4.21: Normalized magnetoresistance of CazgAlzsAu,. The scale and temperatures
are indicated in the figure. The points experimental data and the solid line the fitted
magnetoresistance (Eq. 2.14, 2.29) as explained in the text.
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Figure‘ 4.22: Normalized magnetoresistance of CazgAlz7Aus. The scale and temperatures
are indicated in the figure. The points experimental data and the solid line the fitted
magnetoresistance (Eq. 2.14, 2.29) as explained in the text.
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in Mg/Au and thin films where a remarkable quantitative description of the data by
weak localization was also found [11, 59].

Before we start the analysis of the results for By, B,, and F. we note that very
recently Gey et al.  [91] and Mayeya and Howson [92] have studied the Ca-Al and
Ca-Al-(Ag,Au) systems respectively, and confirmed our measurements and thus lend
strong support to our results. Discarding the Cooper channel contribution in the
analysis is well justified. As we mentioned before, the Cooper channel contribution is
very small in these alloys. Approaches similar to ours were adopted by several authors
(93, 28, 92, 94]. In particular Trudeau and Cochrane have found, using the weak
localization and diffusion channel contributions only, an excellent agreement between
the magnetoresistance data in paramagnetic amorphous Fe-Zr alloys and the theory.
More closely related to the present work is the recent report of Mayeya and Howson on
the Ca-Al-(Ag,Au) in which the authors followed the same analysis procedure [92]. To
summarize, based on the‘results presented here and on our earlier work [18, 19, 30,
we have shown using a strict fitting procedure that the current quantum corrections
to the conductivity as given in Chapter 2 provide a very good tool to describe the low
temperature magnetoresistance of amorphous Ca-based alloys not only over a wide
range of B/T [19] but also over a wide range of spin-orbit scattering (see subsection
4.1.4). The observed discrepancy in other systems is still not understood. However
it is worth mentioning that, unlike the Ca-based alloys considered here, most of
those systems present serious complications: d-band conduction due to the presence
of transition metal elements [17, 24, 28, 89], superconductivity [28, 95], magnetic
behavior [96] or high level of magnetic impurities [15], render the analysis difficult
and less conclusive. Thus a comprehensive investigation of quantum corrections to
the conductivity in such systems will only be possible once the c';ntributions, for

example from the effects just cited above, are separated and well understood.
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4.1.3 The dephasing rate 1/

Figure 4.23 shows the dephasing rate, 1/7, = 4eD B /h, plotied as a function of tem-
perature. An immediate remark is that there is a universal behavior of the dephasing
rate in all the samples. It has the same magnitude and is independent of the alloy
composition, hence providing a powerful consistency check to the results. The tem-

perature dependence of the dephasing rate 1/7, is well described by the expression:

:—qb = -1:12 + AT?, (4.1)
The most important parameter here is the exponent p from which one can in principle
determine the mechanism responsible for the destruction of the electron’s wavefunc-
tion phase coherence. The best fit is obtained for p = 3.0 £0.3, A = 1.1 x 10%~!/K?®
and 1/7) = 1.05 x 10'%"! (the solid line in Figure 4.23). This means that at high
temperatures (T > 6K) 1/74 varies rapidly with temperature and obeys a T3. A
similar power law dependence has also been reported by other workers using different
materials but in some cases their results give smaller values of the exponent p. In Mg
films [6, 10] and in various metallic glasses (15, 17, 94] 1/7, varies as T?. On the
other hand Hickey and coworkers found a T dependence in Cu-Ti-(Au) glasses over
a wide range of composition. Also, Richter et al. [83] found in Mg-based amorphous
alloys that 1/74 is also described by the same equation as Eq. (4.1).

Below 4.2 K, the dephasing rate 1/7; saturates to the value 1/7J. Many authors
have discussed this behavior and suggested a number of causes. Among them are:
residual spin scattering from magnetic impurities present in the samples; dephasing
due to zero-point motion; decoupling of the electron gas from the thermal bath; or
scattering by paramagnetic states. In our alloys the last two explanations are ruled
out. Thermal decoupling of the electron gas from the thermal bath above 1.5 K
is unlikely. Bergmann and coworkers [97] and Liu et al. [98] have shown in Au
and Ag films res-pectively, that the electron gas can only be overheated when the
current densities exceed ~ 2 x 10 A/m? at 4.2 K. In the present measurements of

the resistivity above 1.5 K, the current densities were always less than 200 A/m?,
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Figure 4.23: The dephasing rate 1/74 in amorphous Ca-Al-(Ag,Au) alloys as a function of
temperature. The solid line is a fit as described in the text.
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besides the fact that the samples were directly immersed in liquid helium below 4.2
K. The scattering by paramagnetic surface effects is also unlikely to influence 1/7y;
this mechanism is expected to be important only in very thin films and not in thick
bulk materials like the ones considered here.

The third alternative for the low temperature behavior of 1/7y is dephasing due
to zero-point motion. This possibility has been proposed by Kumar et al. [99], based
on the results of the dephasing rate in Mg-Cu and Mg-Zn amorphous alloys .[23]‘
where none of the other sources, listed above, could explain the saturation of 1/7,.
Thermal decoupling of the electron gas and paramagnetic surface effects were ruled
out for the same reasons as above. Magnetic impurity contamination was too low
(£ 0.2 ppm) to give a significant contribution to 1/7s. The model is based on the
idea that virtual phonon exchange could lead to dephasing by independently changing
the phase of the two complementary electron paths around a closed loop (sce section
2.1) even though the final energy of the electron is unchanged. Although this view
has recently received some support [100, 101, 102] many workers have questioned
its validity [103, 104, 105]. Unfortunately, because of the presence of the magnetic
impurities in our samples (see below), it is not possible from our results to either
confirm or disprove this model.

As mentioned before, there is about 4 ppm Mn content in our samples. Therefore
a possible explanation for the saturation is spin-scattering by this magnetic impurity.
Indeed, using the expression ( 2.23) for the magnetic spin scattering rate, we obtain

for 4 ppm impurity level of Mn atoms:

2 o6 10%s72, (4.2)

Ta
where we have taken § = 2.2 and J = —0.24 eV on the Mn atom [69, 70]. This value
is very close to the saturation value:
lu ~ 105 x 10'%"t, (4.3)
T
¢
However, we should notice that, since there is no data available in the literature about

the magnetic moment of dilute Mn in pure Ca which represents 70% of our alloys, it
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was assumed that Mn atoms hold a moment in our Ca-based alloys just on the basis
that they have a moment in Mg [83] which has a similar electronic configuration as
that of Ca.

To conclude, based on our estimation of 1/7,, we are led to attribute the observed
saturation of 1/7, at low temperatures in Ca-Al-(Ag,Au) system to residual magnetic
spin-scattering. The same conclusion was also reached in the recent work by Mayeya

and Howson [92] on the same alloy system.

4.1.4 The spin-orbit scattering rate 1/7,,

The spin-orbit scattering rate,1/r,, = 4eDB,,/k, as deduced from the low field range
fitting using the weak localization expression, is shown in Figure 4.24. The large
error bars at 2 and 3 at.% of Au are due to the fact that the relatively featureless
magnetoresistance data at these concentrations are relatively insensitive to the exact
value of 1/7,,. Where spin-orbit scattering is low the magnetoresistance changes sign
at accessible magnetic fields and this defines 7,, much more precisely. The spin-orbit
scattering rate changes by more than two orders of magnitude from 8.2 x 10 to
1.52 x 1035~ (see Table 3.1). The value for CazgAlyg is consistent with our previous
results. However the value reported by Howson and coworkers [87] is significantly
different (~ 10%s™'). This unphysically low value is probably an artifact of a high
value of magnetic impurities which suppress the positive part of the magnetoresistance
at low field as was shown in Figure 2.6.b. In fact, using our value of 1/7,, we find
that in order to reproduce their data 1/74 must take a value of = 2 x 10''s~!. From
this we can infer 2 magnetic impurity contamination (assuming Mn is the impurity
and using the same parameters as above) of about 50 ppm in the samples used in
reference [87), which again underscores the need to use materials of the highest purity
when studying the quantum corrections to the conductivity in disordered systems. It
is also interesting to note that even at the largest concentration of Au, i.e. 3 at.%,
the condition 1/7 > 1/, (7. is the elastic scattering time) under which the weak

localization expression (Eq. 2.14) was derived is still satisfied since 1/7, ~ 10%5~1
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Figure 4.24: The spin-orbit scattering rate 1/7,, as a function of the Ag and Au concen-
tration in amorphous Ca-Al-(Ag,Au) alloys. Inset: 1/7,, for CazgAlzo—xAgx on an enlarged
scale, The solid line is a guide to the eye.
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(see subsection 2.1.1).

It may be seen from Figure 4.24 that the spin-orbit scattering rate increases lin-
carly with concentration; however the increase is much faster for Au than Ag, as
expected. The ratio between the slopes is ~ 21. A similar result was found by
Mayeya and Howson [92] in this alloy system and by Richter et al. [23, 83] in Mg-Cu
and Mg-Zn amorphous alloys also doped with Ag and Au over the same concentra-
tion range, although the absolute value of the spin-orbit scattering rate at a given
Ag or Au content is larger in the present case. As noted in section 2.1.3, in the
simplest case where the electrons are assumed to move on hydrogenic orbits, the ma-
trix element (M,,} in Eq. (2.22) is proportional to Z*/n®, where Z is the atomic
number and » the principal quantum number [68]. This yields a spin-orbit scattering
rate which should vary as Z8/n® Then in our case, since Z4, = 79 and Zpy, = 47
and n = 5 and 4 respectively ? one expects, if this description is valid, the ratio
of the slopes of the two lines approximating the data in Figure 4.24 to be around
(Zau/Zag)’ (Rag/mau)® = 16.67. Our value and that of references [23] and [92] range
from 20 to 22.5, not too far from the estimated one. Therefore, even though the
hydrogenic picture is a very simplistic idea, its predictions give a good estimate of
the spin-orbit interaction dependence on atomic parameters.

Finally we should mention that there are different conventions in defining ,, [93].
This has to be taken into account when specific comparisons with the results from
different groups are made. In the present case we have assumed an isotropic spin-orbit
scattering, i.e. 1/7% = 1/7¥ = 1/7% = 1/(37,,) ®. Therefore a factor of 3 exists, for

example, between our definition of 1/7,, and that of reference [14].

IFollowing the work of Mayeya and Howson [92] we assume that it is the 5p and 4p orbitals that

should be considered. ,
3Even though 7,, is not isotropic in general, this definition makes negligible difference in bulk

disordered metals,
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4.1.5 The influence of spin-orbit scattering on the diffusion

channel contribution to the magnetoresistance

In this section we discuss the influence of spin-orbit scattering on the enhanced elec-
tron electron interaction through the third and last parameter we have deduced from
the magnetoresistance fits; i.e. F,. As stated in Chapter 2 (section 2.2.1), the
magnetic-field-dependent part of the diffusion channel correction to the resistivity
(Eq. 2.29) is due to the interaction between the electrons with a total spin moment
j=1and M = %1 [3, 4, 26] . In the presence of a spin scattering, this magnetic
field dependence is suppressed when the Zeeman energy

R
gupB K t—:, (4.4)

where ¢, is the total spin relaxation time given by Eq. (2.23). Physically, this is
because, in the presence of a magnetic field the dephasing time for electron-electron
interaction is controlled by the Zeeman energy gap gupB between the spin-up and
spin-down interacting electrons rather than just temperature. The spin-mixing ef-
fect of spin scattering shortens this dephasing time and leads to a field-independent
electron-electron interaction for strong spin scattering. As a result the magnetoresis-
tance from the triplet state with M = 11 disappears. Following our discussion of the
saturation of the dephasing rate at low temperatures, in subsection 4.1.3, we assume
1/7, to be constant and equal to 1/73 = 1.05 x 10'% !, the saturation value of 1/7y.
The equality in the above condition (4.4) is then reached for 1/7,, = 1.2 x 10*3s72, .
' It can be seen in Figure 4.25 that at this spin-orbit scattering rate, the diffusion
channel contribution is already reduced to about a fifth of its low spin-orbit scatter-
ing rate value. Further increase in 1/7,, results in a complete removal of the effect.
Note that we have used the interaction constait F,, since it appears as a scaling
factor in the diffusion channel magnetoresistance expression (Eq. 2.29), as a measure

of the progressive reduction of the diffusion channel contribution. It is also impor-

YReference [26] contains several errors that were corrected later on by the authors in reference
(106].
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tant to mention that in CazeAlse, the value of F, is very close to the free-electron
value estimated using the Thomas-Fermi screening theory [72] (see Figure 4.25) and
is therefore another indication that in this alloy we are in the limit of very weak
spin-orbit scattering. In conclusion we have quantitatively shown for the first time
the influence of spin-orbit scattering on the magnetoresistance arising from the diffu-
sion channel [107]°. The magnetoresistance decreases rather rapidly with increasing
spin-orbit scattering. Unfortunately apart from predicting the disappearance of the
diffusion channel magnetic field dependence contribution at extremely high spin-orbit
scattering, there has been to our knowledge no explicit theoretical study of the effect.

Therefore it is impossible to compare our finding with theory.

4.1.6 Temperature dependence of the resistivity

To complement our study of the low temperature magnetoresistance of amorphous Ca-
Al-(Ag,Au} we present in this subsection the temperature dependence of the resistivity
between 1.5 and 4.3 K. Figure 4.26 shows the data of all ten samples. The data are
plotted as 9%,—‘/5 against v/T so that the effect of spin-orbit scattering can be clearly
displayed. The solid line is a fit using the diffusion channel expression in the absence
of magnetic field (see section 2.2, Eq. 2.33).

The weak localization contribution is very small and can be neglected since the
temperature dependence of the resistivity comes from the dephasing time 7y which
saturates over this temperature range as shown in subsection 4.1.3. As for the magne-
toresistance, the fit is excellent for all alloys over the full temperature range. However
the best fits are obtained for smaller values of the interaction constant F, than those
found from the magnetoresistance analysis (see Table 4.1). Moreover for large spin-
orbit scattering alloys F, has to be negative in order to fit the data. This is not
an isolated case. Poon and coworkers [27] also found that it was necessary for F,

to take a negative value (-0.6) in order to account for the temperature dependence

5This observation has been recently confirmed, independently of this work, by Mayeya and How-
son {92].
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Figure 4.26: Low-temperature resistivity of amorphous Ca-Al-(Ag,Au) alloys as a function
of temperature. The solid line is a fit using Eq. (2.33). The composition is indicated in the
figure.
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of the resistivity of amorphous Lu-Pd and Lu-Ni alloys which are characterized by a
strong spin-orbit scattering (1/7,, ~ 10'%s~?), about a factor of ten larger than that of
CazpAlz7Auz. Furthermore it has also been found by the same group that F, ~ —0.05
in amorphous Cu-Zr [27], where the spin-orbit scattering rate is & 1.2 x 10'3s~!
(Again one should note that in order to be consistent with our definition of 7,, the
values given in reference [27] should be multiplied 3). This value is very close to that
at which we observe the change of sign in our samples and is therefore consistent
with our results. According to Altshuler, Aronov and Zuzin [25] the term %F-‘., in Eq.
(2.33) should be replaced by 27, in the limit of high spin-orbit scattering. However
even with this adjustment it is not possible to account for the observed magnitude
of the resistivity at large spin-orbit scattering rates. On the other hand it was sug-
gested, since the Coulomb interaction parameter F, given by Eq. (2.27), include only
the Coulomb repulsion of electrons, that F should be replaced by F* = F — 2A, A
being the electron-phonon mass-enhancement parameter, when attractive interaction
between electrons due to the exchange of virtual phonons is included [4, 28, 87]. In
this case negative values of F, are allowed when F is small (< 2)). But though this
redefinition of F' might explain the reduced values F,, it certainly fails to account
for the systematic change with the spin-orbit scattering rate. Moreover, if this new
definition is assumed to be valid, the attractive interaction should also be included in
the magnetoresistance expression. Qur results from the magnetoresistance analysis
give no sign that this should be so. Therefore we are led to the conclusion that, even
though it predicts the right functional dependence on temperature (—+/T), the tem-
perature dependence of the resistivity correction from the diffusion channel needs to
be refined. In particular the role of spin-orbit scattering should be explicitly included

in the final expression.

4.1.7 Summary

In what precedes we have shown the remarkable success of quantum corrections to

the conductivity theories in predicting the low temperature magnetoresistance and
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resistivily of Ca-Al-(Ag,Au) alloys, a typical high resistivity amorphous metals. This
was achieved using a minimum number of free parameters and a strict fitting proce-
dure. This allowed us to extract unambiguously the dephasing rate of the electron
wavefunciion and the spin-orbit scattering rate. Furthermore, our systematic study
of spin-orbit scattering effect on the diffusion channel contribution to the resistivity
has given an answer to a long standing question in the theory of quantum corrections
to the conductivity. It is found that this contribution is very sensitive to the level
of spin-orbit scattering and is completely suppressed at extremely high spin-orbit
scattering rates. Even though we were not able to provide a model which incorpo-
rates this eflect in the theory, our results can now serve as a benchmark for a further
improvement of the diffusion channel correction to the resistivity expressions.

The next natural step is to make use of our understanding of the weak localiza-
tion and enhanced electron-electron interaction contributions in amorphous metals,
to gather more information on the transport properties of more complex systems.
Bearing in mind that these quantum corrections to the conductivity were derived to
account for the low temperature behavior of the resistivity in disordered conductors,
their success or failure in describing the resistivity of non conventional metals, such
as quasicrystals, offers an alternative route to the understanding of the real nature
of electron conduction in these materials. It is the aim of the upcoming section to

demonstrate how good this approach is.

4.2 Icosahedral Al-Cu-Fe

We follow here the same scheme as that followed in presenting the results of the

Ca-Al-(Ag,Au) system in section 4.1.

4.2.1 Magnetoresistance

The magnetoresistance of the four different Al-Cu-Fe icosahedral alloys is shown in

Figures 4.27-30 as a function of temperatme:from 1.5 to 41 K. Again, the dots rep-
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resent the experimental data and the solid line the fit to the theoretical expressions,
as will be shortly explained below. The magnetoresistance is at least an order of
magnitude larger than that observed in amorphous systems and rises to about 12%
in Alg2CuassFe;zs at 1.5 K and 8.8 T (compare for example with the Ca-Al-(Ag,Au)
magnetoresistance presented in 4.1.1}). This behavior is expected since the quantum
corrections to the conductivity theories predict épﬂ « p. The magnetoresistance is
positive over the whole range of temperature and field reflecting a large spin-orbit
scattering field. As the temperature increases its magnitude is reduced due to the
destruction of phase-coherence by inelastic scattering events, in the same way as in
amorphous metals. Before we describe the fitting procedure we should mention that
no negative magnetoresistance was observed in any of the samples at any temperature
considered here, in contrast to the data of reference [52] where a negative magnctore-
sistance is reported in AlggCupsFe;z at 30 K. Apart from this our data are in very

good agreement with that of other groups {44, 52, 53, 82].

4.2.2 Fitting procedure

The data are fitted to the predictions of weak localization and enhanced electron-
electron interaction as given in Chapter 2. As a first step, the fitting is restricted to low
fields (B/T < 1T.K™!)® with the resistivity p, the dephasing field By and the spin-
orbit scattering field B,, as free parameters using only the weak localization expression
(Eq. 2.14), enhanced electron-electron interaction contribution being important only
at high fields. B,, is temperature independent. Using p as a free parameter in the
weak localization expression allows us to determine the resistivity in a way which is
independent of the sample geometry and microcracks that might exist in these very

brittle samples. A similar procedure was first used by Baxter et al. to measure the

8To obtain consistent parameter values the fitling range is slightly larger than that for Ca-Al-
(Ag,Au) samples. This is because the magnetoresistance in the present case is always positive
and relatively featureless, Note that the enhanced electron-clectron interaction contribution is still

negligible (see Figure 2.11).
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Figure 4.27: Normalized magnetoresistance of Algz 5Cuz4 5Fe12. The points are the experi-

mental data, the solid line the fitted magnetoresistance (Eq. 2.14 and 2.29). Temperatures
are indicated in the figure.
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resistivity of Al-Mg-Si quasicrystals [50].

The fitting is then extended to the entire field range, including the enhanced
electron-electron interaction (diffusion channel) term with the screened Coulomb in-
teraction constant F, as the only variable. Thus, as for Ca-Al-(Ag,Au) system, each
family of curves in Figures 4.27-30 is fitted with common values of F, and B,, and
one value of By at each temperature. The results of the the fitting are given in Table
4.2.

It may be seen from the figures that agreement between the data and quantum
corrections to the conductivity theories is very good over the entire range of field and
temperature. In all cases, the enhanced electron-electron interaction contribution is
important at high fields and even exceeds that of weak localization in AlgzCusssFer2s
at low temperatures, in contrast to amorphous alloys (section 4.1) and thin films
[6, 7, 10] where the magnetoresistance is always dominated by the weak localization
contribution. A similar observation, though to a lesser degree, has also been reported
by Chui et al. [108] in high resistivity granular Al films close to the metal-insulator
transition [109]. This is consistent with the increasing role of the interaction effects
when the resistivity becomes very large [108, 110]. The contribution is positive and
comes from the diffusion channel only. The Cooper channel contribution is even
smaller here and was neglected.

The values of the resistivity obtained from the fits at low temperatures are con-
sistent with the measurements made at room temperature with the conventional four
terminal measurements, as explained in section 3.2, Furthermore our values are in
excellent agreement with the values reported by Biggs et al. [43] and Klein et al.
[44, 52, 53]. The spin-orbit scattering field is found to be about 11 T (1/7,, ~
1.4 x 10'%s™') and is the same in all the samples. This was expected since their
chemical compositions are very close. The fact that only 1/7,, remain constant while
the other parameters vary (see Table 4.2) reinforces strongly our fitting procedure.
It is worth noting that because of the large value of B,, it is not possible to see

a maximum in the magnetoresistance which is normally seen when B > B,,. This
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maximum is further delayed by the large positive enhanced clectron-clectron interac-
tion contribution at high fields, as mentioned earlier and supported by the results of
Klein et al. [52, 53] where they only observed a slight decrease in the slope of the
magnetoresistance up to 35 T.

At this stage a remark about the use of weak localization and enhanced electroun-
electron interaction theories for this system is in order. Weak localization and electron-
electron interaction expressions are first order terms in the disorder parameter (kgl,)™!
of a perturbation treatment of the disorder and should be used, in principle, only when
(kple)™? < 1. The estimation, based on the free electron like formula (Bq. 2.38),
of (kpl.)~? for the present alloys gives a value ~ 1.5. It is clear if that approach is
valid the electron mean free path I, will be much less than the interatomic distance.
Using the value of kp = 1.52A-1, obtained from the positions of the strongest peaks
in the X-ray diffraction pattern (see appendix B) , one finds [, = 0.4A; less than
the Bohr radius!. This unphysically low value of I, definitely casts in doubt the free-
electron approach. According to Poon [41] the electron effective mass in this systems

is enhanced and therefore the disorder parameter, given in this case by:

(kpl)™ ' ~ 1.5 ( m) : (4.5)

m¢
where m; = hikp/(OE[Ok)F is the tangential eflective mass and m the free electron
mass, can still be much less than unity. However by no means this implies that icosa-
hedral Al-Cu-Fe alloys are ordered. Assuming a factor ten for the mass enhancement
gives a mean free path of about 5A which is much less than that of, for example,
amorphous CazoMgao [18] and still represents a high degree of disorder. The fact that
l. is short is consistent with the success of quantum corrections to the conductivity
theoties in describing the magnetoresistance as demonstrated above. Therefore, in
conclusion, we have two indications of the disorder-induced nature of the low tem-
perature electronic transport properties in icosahedral Al-Cu-Fe system: the short
electron mean free path and the good agreement between the predictions of weak

localization and enhanced electron-electron theories and the magnetoresistance data.
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4.2.3 The dephasing rate 1/7,

The temperature dependence of the dephasing rate as deduced from the magnetore-
sistance analysis is shown in Figure 4.31. It may be described by an expression of the

form:
1

> = ATP. (4.6)
In all samples, 2 best fit is obtained for p ~ 1.5 and A &~ 1—2x10'%~!/K*?, Sim-
ilar results have also been found by Haberkern et al. [82] in their magnetoresistance
study of this alloy system. It is well known [3, 4, 62] that an exponent % is expected
for clectron-electron scattering in the so-called dirty limit when (kpl.)~* > 1. More-
over, the value p = 2 is consistent with the theoretical expression of the dephasing
rate due to electron-electron scattering given by equation (2.21). Note that this value
of pis a further evidence of the presence of disorder in icosahedral Al-Cu-Fe alloys.
For a quantitative comparison of the data to the theory, (Eq. 2:21), we use the
value of (kpl.)~! given above and take Er ~ 1eV for the Fermi energy. Eq. (2.21)
then yields:

L _ g4 x10°7? +2 x 10°T%/%1, (4.7)

Tce

Although the calculated value is about a factor five smaller than the one we find from
the fits, it is consistent with the fact that the T*2 term dominates. The first term
is expected to dominate when the disorder is not too strong. The difference in the
magnitude between the estimated 1/74 and the experimental one is not specific to
the present case. The same problem has been encountered in several other systems
where the theoretical expression of 1/7,. always underestimates the observed dephas-
ing rate (see Altshuler and Aronov (4], for example). The origin of the discrepancy
is not understood and remains to be investigated. In surmmary, we conclude that
dephasing is due to electron-electron scattering, in the strong disorder limit and that
the electron-electron scattering rate expression, Eq. (2.21), needs to be reevaluated

so that quantitative comparison with the experiment can be made.
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Figure 4.31: The dephasing rate, 1/7y, in icosahedral Al-Cu-Fe alloys as a function of
temperature. The solid line is a fit as described in the text.
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Alloy Yrolps™!) | F2 | Fo | 1/mels™')® Yre(s™')® | p(pQl.cm)
AlgasCuaqsFerz 1.4 0.25 | 0.56 | 9.9 x 109747 8.4 x 10873 4500
AlgaCugsFe;3 14 0.2 | 0.60 | 1.0 x 10!°714% | 8.6 x 10872 5300
Algs.sCugs.sFeyz 14 0.1 | 0.64 | 1.7 x 10107138 [ 9.7 % 10872 7000
Alg2Cuzs sFeras 1.4 1.06 | 1.08 | 1.8 x 10107143 | 2,0 x 1007134 | 10000

Table 4.2: Least-squares fitting parameters of icosahedral Al-Cu-Fe alloys. Errors: 7,4,
T6,110%.

°From the magnetoresistance.

}From the temperature dependence of the resistivity.

4.2.4 The interaction constant F,

The values of the interaction constant, F,, for the different Al-Cu-Fe alloys are listed
in Table 4.2. Except in the most resistive alloy, these values compare well with those
found in amorphous metals. They range from 0.1 to 0.65. In Alg;Cuyg sFe;25 the best
fit is obtained for F, = 1,06 % 0.3 corresponding to a value of F' = 1.15, F being the
average of the screened Coulomb potential defined in Eq. (2.27). The large value of F
may be an indication of the breakdown of the Thomas-Fermi theory when the density
of electrons is very low as is the case in these alloys. In fact, as pointed out in section
2.4, measurements of the Hall coefficient revealed that the density of electrons is only
6.3 x 102%cm™3 in Alga sCuzq 5Fey, and may be even less in Alg;CusssFerns. In such a
situation the screening deteriorates rapidly and the screening length tends to diverge
[110]. Another possibility for the large F may be band structure effects, as suggested
by Klein et al. [53] and Thomas al. [111]. The suggestion is well justified since all the
phenomena we consider here are the result of the electron diffusion which depends
critically on the band structure of the system. If the conduction band contains, for
example, n equivalent valleys, the constant F' should be replaced by (2n — 1/2)F [4].
As an illustration, in Si where n = 2, F is multiplied by a factor % In the present

case there is no detailed information on the band structure to test this approach.
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4.2.5 Temperature dependence of the resistivity

Figure 4.32.a shows the measurement of the temperature dependence of the resistivity
in the temperature range from 1.5 to 300 K. We see that the behavior of the resis-
tivity depends strongly on alloy composition. In Algz sCuszqsFez, p increases by enly
67% between room temperature and 1.5 K whereas in Alg;Cugg sFeyz 5 it increases by
almost 225% in the same temperature range. Furthermore in this alloy a maximum
in the resistivity is observed at low temperatures. These results are also in excellent
agreement with those reported in references [43, 52, 53].

The temperature dependence of the zero-field conductivity change between 150
mK and 30 K is shown in Figure 4.32.b. In all samples, the resistivity increases as the
temperature is lowered except in Alg;CugssFe;25 where after reaching a maximum
around 14 K it decreases down to the lowest temperatures. As for the magnetore-
sistance, the data are analyzed within the quantum corrections to the conductivity
theories using Eqs. (2.19) and (2.33). In contrast to amorphous Ca-Al-(Ag,Au) sys-
tem, the weak localization contribution in this high resistivity system is important
and maust be included in the analysis (the dephasing rate 1/7; does not saturate in
the present case). Moreover, it increases with increasing resistivity and dominates
in AlgzCuzssFejos. The values of p and B,, are the same as those extracted from
the magnetoresistance fits. However the dephasing field and the Coulomb interaction
constant were allowed to vary in order to fit the data over a wide range of tempet-
ature. Here also good fits are found from the lowest temperatures to approximately
- 15 K. However although the dephasing rate 1/7, is found to follow a power law AT?,
the value of p is equal to 2.0 £ 0.1 and the coefficient A ~ 9 x 108K~2.571, in the low
resistivity samples. Similar values of A and p were reported by Klein and coworkers
[44, 52]. The present results are significantly di.lerent from the findings from the
magnetoresistance analysis. They suggest perhaps that only the first term of the
electron-electron scattering rate (Eq. (2.21)) is relevant to the temperature depen-
dence of the resistivity in the relatively low resistivity samples. On the other hand,

according to Takayama’s expression for inelastic electron-phonon scattering [61] (Eq.
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(2.20)) and to Chakravarty and Schmid [5], a value of p = 2 can also be attributed to
electron-phonon scattering. If the former alternative is valid it opens the question of
whether the magnetoresistance is more sensitive to intense electron scattering (dis-
order) than the temperature dependence of the resistivity. In fact as mentioned in
subsection 2.1.2, the T%/2 term in the electron-clectron scattering rate is expected to
dominate in the strong disorder limit whereas the 7 should dominate in the weak
disorder limit. Qur conjecture is supported by the results of the most resistive alloy
{with highest disorder), i.e. Alg2CuzsgFe;s5, where both the magnetoresistance and
the temperature dependence of the resistivity give, within error, the same 1/74 < T'5,
It is still not clear why the temperature dependence of the resistivity seems to be less
sensitive to disorder and further investigation is needed to explain the origin of the
discrepancy in the value of p for the other samples. But the discrepancy underscores
the importance of our approach in analyzing the experimental data. A {ull picture of
the dephasing rate can only be obtained by considering both the magnetic field and
temperature dependence of the resistivity.

The low-temperature dependence of the resistivity of AlgyCuzssFeiss deserves
special attention and is shown in Figure 4.33 at different constant magnetic fields. The
maximum in the resistivity around 14 K was not expected. Such behavior is only seen
in highly doped semiconductors (eg. Si:P and Ge:Sh) {111, 112, 113]. Note that our
data are in excellent agreement with that reported by Klein et al. in their most recent
work on this system [53]. They attributed this peculiar behavior of the resistivity
to a band structure effect in this very high resistivity alloy. Here we show that it is
consistent with weak anti-localization effects caused by spin-orbit scattering discussed
in section 2.1 (see also Figure 2.8). A change in the slope of the resistivity occurs for
1/74 2 §1/7.o as the dephasing becomes more important at high temperatures. It
is worth noting that for the other three Al-Cu-Fe samples considered here, it is not
possible to see such an effect because as deduced from the fitting By < B,,. Another
way to destroy anti-localization effect on the resistivity is by applying a magnetic

field. One can see from the figure that as the field increases the negative slope of the
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of temperature in different magnetic fields. The solid line is a fit as described in the text.
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resistivity with temperature is progressively recovered. We also note that even a field
as high as 8.4 T is not sufficient to suppress (saturate) the temperature dependence
of the weak localization contribution to the resistivity. The solid lines in Figure 4.33
are therefore the result of a combination of weak localization and enhanced electron-
electron interaction (diffusion channel) using the full theoretical expressions with the
same parameters as those extracted from the magnetoresistance analysis and are
therefore zero parameter fits to the data. Since F = 1.08, the diffusion channel
contribution to the resistivity in the absence of the field is positive in this sample in
contrast with the other samples of lower resistivity where it is negative. A similar
sign change of the diffusion channel contribution has also been observed by Klein
et al. [53] in this alloy system and by Thomas et al. [111] and Rosenbaum et al.
[112] in doped Ge:Sb and Si:P, respectively, as a function of dopant concentration
just above the metal-insulator transition [109]. This observation with the large effect
of electron-electron interaction as found above suggests that Alg;CuzssFeizs is also

very close to the transition.

4.2.6 Summary

Throughout this section we have used weak localization and enhanced electron-
electron to analyze the low temperature resistivity and magnetoresistance of icosa-
hedral Al-Cu-Fe alloys. The agreement between the data and theory is more than
satisfactory. By itself, this is a strong indication for the presence of disorder in this
system. Moreover, our estimate of the electron mean free path, based on realistic
parameters, places icosahedral Al-Cu-Fe among the most disordered alloys. The tem-
perature exponent of the dephasing rate (p = 3/2) is another indication of the high
degree of disorder in this alloy system, '

However, it is important to underline that disorder alone cannot fully explain the
resistivity behavior observed in these alloys. The rapid variation of the resistivity
with composition, the reduced density of states are all in favor of the existence of a

pseudogap in the density of states at the Fermi level. But here also a pseudogap at
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the Fermi level is not sufficient to account for the low temperature dependence of the
resistivity on magnetic field and temperature. However the two scenarios, disorder
and band structure effects complement each other nicely. Therefore, we are led to
the conclusion that the transport properties of icosahedral Al-Cu-Fe are intimately

related to both disorder and band structure effects,
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Conclusion

We have presented in this thesis measurements of the magnetoresistance and the
temperature dependence of the resistivity in two different systems, namely amorphous
Ca-Al-(Ag,Au) alloys and icosahedral Al-Cu-Fe alloys. Our main achievements are,
in the former the influence of spin-orbit scattering was, through a systematic study,
quantitatively demonstrated for the first time on the electron-electron interaction
contributions to the magnetoresistance, a question that has been long overlooked. In

icosahedral Al-Cu-Fe we presented the first detailed and complete analysis of the low

temperature resistivity and magnetoresistance data in terms of weak localization and
enhanced electron-electron interactions theories.

From the results of Ca-Al-(Ag,Au), we have been able to show that weak localiza-
tion theory is not restricted to weak spin-orbit scattering systems only; it provides an
accurate description of the magnetic field and temperature dependences of the resis-
tivity over a wide range of spin-orbit scattering rate; from very small to very large, as
well. On the other hand, the diffusion channel contribution to the magnetoresistance
was found to be very sensitive to spin-orbit scattering. It decreases rapidly with 4in-
creasing spin-orbit scattering and is totally removed in the extremely high spin-orbit
scattering regime (1/7,, > 1013s~1),

The dephasing and spin-orbit rates were extracted from the low field comparison of

the weak localization theory and the experimental data. In this system, the dephasing

121
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rate has a universal behavior in all samples and is controlled by inelastic electron-
phonon scattering and varies as T at high temperatures (T > 5K). The saturation
at lower temperatures (7' < 4.2K) is due to magnetic impurity scattering.

The spin-orbit scattering rate is found to increase linearly with Ag and Au con-
centrations up to 3% at. of Au. The rate of increase is much larger for Au than for
Ag, as expected from the spin-orbit interaction dependence on the atomic number.
The hydrogen-like orbital picture, though very simplistic, is found to give a good
estimate of the ratio of the two slopes.

Furthermore, we have also shown that in its actual form, the expression for the
temperature dependence of the resistivity from the diffusion channel, though it gives
the exact dependence on the temperature, cannot account for the observed magnitude
of the resistivity change in high spin-orbit scattering alloys unless unphysical values
of the screening parameter are assumed.

In icosahedral Al-Cu-Fe we also found good agreement between the experimental
data and the theories of quantum corrections to the conductivity. But in contrast
to the amorphous system, it was necessary to treat weak localization and enhanced
electron-electron interactions contributions on an equal footing in order to account
for the magnetoresistance and the resistivity temperature dependence. The analy-
sis allows us to correlate strongly the low temperature behavior to the presence of
disorder.

However in spite of the good agreement, discrepancies were found in the magnitude
and temperature dependence of the dephasing rate. As deduced from the magnetore-
sistance 1/74 o< T? with p = 2, a characteristic of electron-electron scattering in the
strong disorder limit. The zero-field data on the other hand suggest that dephasing
is due to electron-phonon or electron-electron scattering in the weak disorder limit
(p = 2). This is not due to a weakness in our approach, which separately give results
consistent with that of other groups, but rather to a genuine physical phenomenon:
the relevance of the degree of disorder to the magnetoresistance and the temperature

dependence of the resistivity.
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In one of the samples, AlgzCuzs sFerzs weak anti localization was directly observed
and was nicely accounted for by the theory. Furthermore, a sign change in the diffu-
sion channel contribution to the zero-field resistivity in this sample was found and is
attributed to the proximity of the metal-insulator transition in similarity with highly
doped semiconductor.

Although substantial progress has been made through this work for a complete
understanding of the electronic transport properties in disordered conductors, there
are still many open questions that remain to be answered.

On the theoretical side, the effect of spin-orbit scattering on the electron-electron
interactions should be investigated in detail. Specifically, the corrections to the resis-
tivity and magnetoresistance from the diffusion channel have to be rederived taking
explicitly into account the spin-orbit interaction. The results presented in this the-
sis may serve as a guide in testing the models proposed. Another important point
that also deserves particular attention is the discrepancy observed in the temperature
exponent of Al-Cu-Fe; our results need to be put on a solid theoretical ground.

On the experimental side, it will be very useful in the future to complement
the magnetoresistance measurements in icosahedral Al-Cu-Fe alloys presented here,
by a systematic investigation of the Hall effect in this alloy system. To date all
measurements of the Hall coefficient report negative values whereas in a situation
where the Fermi surface is believed to interact strongly with the boundaries of the
Brillouin zone, one could expect at least some samples with a positive value due to
unfilled hole states. The presence of a pscudogap in the density of states at the Fermi
level will then be put on a firm ground as the sign change will indicate a sign change in
the slope of the density of states with respect to the energy. The crossover is expected
to occur in the alloy where the Fermi sphere perfectly matches the first Brillouin zone.
Furthermore, these measurements will also allow an independent investigation of the
enhanced electron-electron interaction contribution to the magnetoresistance. This
is possible because weak localization does not contribute to the Hall effect and the

correction to the Hall coefficient comes from enhanced electron-electron interaction
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only.

Finally, a full answer to the question of whether Al-Cu-Fe is ordered or disordered
remains to be given. The success of quantum corrections to the conductivity in
describing the magnetotransport properties at low temperatures implies immediately
very intense scattering of the electrons at the Fermi level. Even if band structure
effects are important and can explain some of the electronic properties, our estimate
of the electron mean free path corresponds to extremely high disorder and compares
with that of the most resistive amorphous metals. It will be of great interest in the
future to reconcile this with the high degree of atomic order displayed in electron
transmission images through models that take into account the specificity of the

quasiperiodic structure.



Appendix A

The functions f3 and g3

A.1 Weak localization function f;

The magnetoresistance associated with weak localization as given by Fukuyama and
Hoshino [54], Eq. (2.14) and Alishuler et al. [4], Eq. (2.18) involves the function fa

which can be expressed as an infinite series [60]:

oo

faz) =3 an(z) (A.1)

n=0
with
1

an(x)=2(\/n+1+m—\/n+z)—m

This series converges very slowly. For large n, the terms fall off only as n~3/2, This is

(A.2)

so slow that one needs to sum more 10° terms to achieve an accuracy better than 1%
[23]. To avoid doing so compact formulas from which fa can be computed eficiently
were given by several authors. Qusset and coworkers [114] were the first to provide an
approximation the the function based on an Euler-Maclaurin expansion of the series.
However although it represents a great improvement over summing the series directly
it is somewhat cumbersome. A more compact and efficient expression, which is used
for analysing the data in this thesis, has been recently provided by Baxter et al. [88].
This was done by explicitly summing the first two terms of the series. The remaining

terms (denoted as R(z)) being treated as an integral from 3/2 to infinity with the
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intergrand rewritten as a rapidly convergeni Taylor series. More explicitly, fs(z) can

be writien as:

I [1 1 1
falz) =2 (\/2 Tt \/":E) B (\/1/2 +1z 32+ 1/:) TR, (A9

with the remainder,

L (254 1/z)"3? L 25+ 1/z)""*

R(z) 48 1024

+oens (A.4)

The accuracy of the above expression is better than 0.1% by only including the first
term of R(x). Moreover if the lower limit in the integral used to compute R(z) is set
to 1.53 the correct asymptotic limit, i.e. fa(z — 00) = 0.6049, is retained [88).

Note that this expression can also be extended to the case where v > 1 in Eq.
2.14 at large magnetic fields. In fact no discontinuity is observed at 4 = 1 and Eq.

(2.14) falls onto Eq. (2.18) for large diffusion constant as was shown in Figure 4.1.

A.2 The diffusion channel function g;

The diffusion channel contribution to the magnetoresistance, Eq. (2.29), is propor-

tional to function ga(z). This function has defined by {3):

we)= [N {[VaTE+flomal-2E)  (a%)

Where N(w) = 1/(ezp(w) — 1). ga(z) has the limiting behaviors:

0.0562:2 &1
gs(z) =
JE-1204 21

An approximation to the function gs(z), for other values of z, has also been given by
Ousset et al. [114] which was used in this thesis. It is accurate to better than 0.25%.
For z < 3 Ousset and coworkers have evaluated numerically the integral in Eq. (A.5)
and fitted the result to a polynomiul expression. They found:

gz = 5.6464 x 107222 — 1.4759 x 10~3z%+
4.2747 x 1075276 — 1.5351 x 107828 + 6 x 10~8=z%°
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For large =, they expanded the square roots in the integrand in terms of w/z and
evaluated the resulting series. This gives for z > 8:

72 7t 58

0(=) ™ Vo = 12902 - e — {5 ~ g

In the intermediate range, 3 < z £ 8 with u = z—4, the authors fitted the numerically

integrated function g3(z) to a polynomial in u and found:

ga(z) ~ 0.64548 + 0.235u — 7.45 x 10-*u? — 2.94
%1073 + 6.32 x 10~ %u — 522 x 107545

The calculations by Ousset et al. [114] were later confirmed by Richter [83].

The least squares fitting algorithm used for fitting the theory to the experimen-
tal data presented in Chapter 4 is essentizlly the same the one employed by Richter
[83] and is based on the procedures duveloped by Marquardt {115]. The kernel pro-
grams that call the routine contain the different magnetoresistance and temperature
dependence of the resistivity expression as given in Chapter 2. Where it applies, the
approximate expressions of fi(z) and gy(z) given above are used. Listing the pro-

grams here will only add 40 or more pages to the thesis and are therefore omitted.



Appendix B

Indexing of icosahedral

quasicrystals

As mentioned in the introduction, quasicrystals belong to a new class of structures
which is not accounted for by conventional crystallography, yet sharp diffraction peaks
are observed in x-ray diffraction experiments. Indexing these peaks is an essential
step in the identification of the quasicrystalline structure. Consequently, soon after
the discovery of the first quasicrystaline alloy [34], several indexing schemes were

developed to accomplish such a task. Here, we describe very briefly a “recipe”, based

- on the method proposed by Cahn et al. [80], which was used to index the diffraction

peaks in Figure 3.5. For further details, the reader is refered to the original article.
This method consists of assigning a set of integers, (N, My), to each diffraction
peak such that the whole diffraction pattern can be consistently indexed. To do so,
Cahn et al. [80] defined a vector Qo in six-dimensional space such that its magritude
is given by:
Qi = N + 7 My, (B.1)

where 7 is the so-called golden mean; 7 = 2cos 36° = (1 + x/g)/2 and —N/r < Mp <
Nz,
The quantity Q3 together with Q2 = (Nt — M,) define the sequence of intense

reflections. @, should inversely scale with the intensify.
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NiMo| QF | Qc |g(ATT)] 26
6 1 9 | 2056 | 1.07 1.68 23.8
T |11 | 24.80 | 0.72 1.85 | 26.2
8 | 12 | 2742 | 1.4 194 | 27.6
11} 16 ; 36.90 | 1.71 225 | 321
14 | 21 | 47.98 | 1.64 2,63 37.6
18{ 29 | 64.92 [ 0.45] 298 | 43.0
20| 32 | 71.78 | 0.76 .14 | 453
27| 43 | 96.57 | 1.05 3.64 53.1
38 | 61 | 136.70 | 0.89 | 4.33 | 64.2
40 | 64 | 143.55 [ 1.08 | 4.43 65.9
52 [ 84 | 187.91 ] 0.47 5.07 77.0

Table B.1: The indices of the quasicrystalline x-ray diffraction peaks according to Cahn et
al. scheme {80] (A = 1.5418A and dy = 2.704).

On the other hand, the three dimensional diffraction vector 4, defined as: q =

4rsin 8/2; (A = 1.5418A), is given by:

_ @
q= d_O' (B.?)

dp is the quasilattice constant. Knowing, the position of the fundamental peak (most
intense with smallest @.), Eq. B.2 allows one to determine the quasilattice constant
dg. Then using the relations between N and My, one can determine the indices of
the remaining peaks. To illustrate this, consider the strong diffraction peak in Figure
3.5, at 260 = 45.3° which should correspond to the set (N,M;) = (20,32). The
value of the corresponding diffraction vector is equal to ¢ = 3.14A~'. From this one
obtains dg = 2.70A for the quasilattice constant. Now, using this value of dy and the
diffraction vector for each peak in the diffraction pattern, it is possible to determine
the indices (N, My) through Eqs. B.1 and B.2. These are given above, in Table B.1.

Finally, we add a note on the correlation between the x-ray diffraction pattern
and the electronic structure of quasicrystals which allows one to determine the Fermi
wavector kp. According to Fujiwara the wavector g of the strongest peaks and kp

always satisfy the condition [116]:

2kp =4dq. (B3)
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In the case of icosahedral Al-Cu-Fe studied here, the strongest peaks are (18,29) and
(20,32) which correspond to ¢ = 2.98A7! and g, = 3.14A?, respectively. If we take
2k to be the mean of these values we obtain kg = 1.53A~!. The same method was
used by Burkov et al. [42] to calculate kp and their value agrees very well with ours.

The value of kr will be used in our discussion of the disorder parameter in section

4.2,
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