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Abstract -

This thesis presents an efficient method for detecting straight line segments
in digital pictures using a hypothesis prediction/verfication paradigm In this paradigm.
a straight hne segment of predefined length 1s predicted to exist at some particular pixel
location. The orientation df this predicted line segment i1s based on the edge orientation
at the pixel focation This prediction 1s then verified against statistical tests performed
on the line As a result, the predicted line is either validated as being a Ime segment,
or it 1s rejected Non-statistical tests are also developed in order to verify the predicted
hypothesis An extension of this algorithm for the detection of lines at different lengths is
also presented. and a criterion i1s defined in order to evaluate the significance of the detected

line segments. Finally, the algorithm s successfully tested on a number of different images
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Résumé
-

Cette thése présente un algonthme pour la detection de lignes dans les images
numériques. L'algorithme présenté utilise un processus de prediction/vértication Plus
précisen&ent un segment de ligne droite est predit a chaque point de contour d(}‘,\s Itnage
La longueur de ce segment est specifiée d'avance, tandis que son ortentation ggt déduite
de l'onentation du gradient au point de contour consideré Cette prédiction est ensuite
verifiée au moyen de tests statistiques et autres sur les échantillons -qut constituent le
segment en question Une extension de I'algonthme pour la detection de segments de
differentes longueurs est presentée et un critére est défini en vue de leur évaluation Enfin,

la performance de I'algorithme est démontrée sur nombre d'images reelles
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ﬁhapter 1 ' . Introduction

2 Computer vision 1s the field of image interpretation by computer Images are

formed of picture elements or pixels and are the projection of 3-D scenes onto a 2-D field

The main problem adressed is therefore how do we interpret images acquired by external

sensors ? The final goal of this interpretation stage. therefore, i1s to arrive at a symbolic

representation of the image in terms of known elements

3

One.could view the process of image interpretation as cbnsisting of one gigantic
monolithic stage. The input to this stage would be the 'raw image and the output would
consist of symbolic descriptions of the content of the image. Consudeng‘Cd?h'pruter_\{lsion
in this manner does not help all of the{complexnty‘of the interpretation task 1s embedded in
one black box whe‘re on\ly its input-output behavior 1s known The alternative way of looking
at computer vision is to do so in a modular way rather thansriewing the mterpretatl:)n
step as one single step. we decompose it into a number of simpler operations Thus, we
have a cascade of processing elemen;s. Where the output of one feeds the input of the next.’
Startingtfromethe raw imagé data therefore. the final symbolic 1epresentation of the image

\ N
is achieved through processing a number of intermediate.representations (see figure 1.1}.:

° PR

Since the processing elements are dependent on the symbolic representations
chosen, the question that should be asked at this pomi is: what are the intermediate

representations that need to be chosen? In the applied vision context, the intermediate
o ~ .

<

{
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Figure 1.1 Modular processing
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representations “are problem dependent. and representations which might be suitable for

-
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interpreting one class of images might not be appropriate for interpreting another.
. v

Another aspect of this cascade-type of processing 1s the flow of control In this
context. flow of control refers to the interdependencies between the different processing

elements These interdependencies can be roughly classified into two categories' top-down

the data from the

T

and bottom-up In bottom-up control, each processing element processes
previous (lower) level in the hierarchy. and feeds the next (higher) level In this paradigm.
the data flows from the image up to its symbolic representation. and at each level. no
knowledge 1s assumed about higher levels Thus. each processing element i1s as general
purpose as possible and 1s not biased by what higher level processing dictates This is in
direct contrast to top-down control where in addition to feeding the next (higher) stage in
the hierarchy, a processing element can feed information back to the previous (lower) level
in the form of problem-domain knowledge and heuristics In top-down control, therefore,

each processing element 1s guided by the expectations &f higher level modules and hence

loses its generality by being problem dependent .-

Choosing the nature of the different intermediate representations and of the
control scheme 1s not a simple task when addressing the vision problem in general In
applied vision however, the scene to be interpreted can be constrained to belong to a number
of classes This thesis presents an algorithm for computing one of these intermediate level
representations in an appled vision context and without any a priori knowledge of the sceney,
content, Moreespecmcally. this thesis presents an algorithm for detecting line segments
in gray level digital images without any a prion notion of the higher level structures that
they might constitute (e g rectangles. polygons. ). Why lines and not circles ? Simply
because in most industrial vision tasks, linear features are predominant. and the\ main
requirements of any processing stage are that it be robust to vanations in the input data
and be computationallyefﬁcnent The algorithm presented hrere could therefore be used as

one building block of a complete image interpretation system An example such system is

shown in figure 1.2 for the case of detecting polygonal objects.

The problem to be solved is then the following: given a gray level image, find

3
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Figure 1.2 Example bottom-up system for detecting polygonal objects

the lines in this image As will be seen later. we will restrict ourselves (without loss of
generality) to the detection of contour lines. since we believe this 1s the most interesting
case in practical applications The solution we present is based on the efficient hypothesis
prediction /verification paradigm It consists of predicting the presence of a hine at a possible

pixel location, and then verifying this assertion through statistical tests The efficiency of
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C . this framework and the simplicity of the tests involved contribute to a large extent to the
perforr%ance of this alg'&ithm. and experiments that have been performed show that is

. both robust to fluctuations in the input data and computationally efficient

This thesis 1s structured as follows: chapter 2 provides an overview of algorithms
for four different approaches to line detection. chapter 3 presents the proposed algorithm,
™ chapter 4 discusses experimental results, and finally, in chapter 5, appropriate conclusions

are drawn and possible extensions to the proposed algorithm are suggested



Chapter 2 Line Detection: a Survey

2.1 The Hough Transform , ra

One of the earliest algorithms which was developed for line detection i1s the
Hough transform{1][2] The Hough transform 1s a mapping from the image space into a
parameter space in which shape features (in this case lines) are more explcit " Consider
an image function f defined over a discrete two-dimensional domain defined by the integer
variables r and y It 1s assumed that f defines a binary image (1e f(r.y) = 0 or
f(z.y) = 1) as a result of preprocessing. and that the lines to be detected are formed of
picture elements (z,y) such that f(z,y) = 1 In other words. the background has intensity

0 and the lines have intensity 1

One of the earliest parametenizations that was performed for the Hough trans-
form was the slope-intercept parameterization In this case. a picture element (r,y) 1s
deemed located on a line with slope m and intercept n if and only if f{(r.mr+n) =1 The
Hough transform then consisted of a mapping of the image space into the parameter space
formed by the range of values of the parameters m and n  Thus, for each point (z, y) in the
image space that has the property that f(z.y) = 1. the hine n = y — mz 1s formed in the
parameter space m — n. Thus, the Hough transform maps each point in the image space
into a line in this parameter space. The interesting property of the Hough transform is that

collinear points in the image space are mapped into parameter space lines which intersect
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at exactly one point. Conversely, the number of intersecting lines at an intersection point

c (m,n) in parameter space corresponds to the number of collinear points in image space
which are located on a line with slope m and intercept n fhe implementation of this
\’_/aLgorlthm. which was proposed by Duda and Hart[2]. goes-as follows. set up an accumu-
‘ lator array (parameter space) and for each point (z,y) 1n the image such that f(z,y) = 1.
increment the accumulator cells (m,y — mz) for all values of m Thus, after the transform

is applied. intersection points are recognizable by their correspondingly large count in the
accumulator array In addition to this implementation schema, Duda and Hart proposed a
reparameterization of the lines in terms of the distance and orientation of a line with respect

to the 1mage coordinate system The reason for doing so s that the values of m and n

could grow unbounded for certain line configurations With the new parameterization. a

point (r,y) is located on a line defined by a distance p from the origin and an orientation 4

with respect to the r—axis if and only of f(z.y) =1 and p = rco<8d + ysin Thus n this

case. the Hough transform maps each image feature point (r.y) into a sinusoidal curve

defined by the preceding equation. Again, collinear image points yield intersecting curves

In parameter space (see figure 2 1)

The Hough transform 1s a special and discretized version of the Radon trans-
form[3]. the latter being a mapping from the space of functions defined on the image space
into the space of functions defined on the parameter space Thus assuming an.arbitrary
image function f defined on some domain D of R? (the continuous image). the Radon

transform of f associated with a line L of the plane 1s given by
f=Rf :/Lf(.r‘y)d.s (2.1)

with ds being an increment of length along the line L Now consider a line L specified by

a distanice p from the ongm and an orientation # with respect to the r—coordinate axis

The value of the Radon transform for parameters p and @ 1s then
Fp,8) = / f(z,y)ds : (2.2)
L{p9)

Now let the unit vector £ be defined by

C F= ( cosf ) | : (2.3)

sind




21  The Hough Transform

- ———— - — e e e e ey

\

[y

. v e e m m et v ———— g —— =

Figure 2.1 Hough transform

and the unit vector £~ orthogonal to it by

L ( sind
B cosl

o,

¢

'
1

(24)

€ and £+ are unit vectors respectively orthogonal and parallel to the line /, (see

figure 2.2).

With this new parameterization, the Radon transferm becomes

Hod = [ sloe+ et )ae

-~ 00

Now consider the function g such that-

+oo
y(;;,E):/ p_f(p5+(t+a)é‘i)dt a~<R

(25)

(2.6)
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Figure 2.2 Radon transform parameters

In other words. the function g defines a line similar to / in distance and orien-
tation, but different in position (due to the shifting term a) The Radon transform of, ¢ 1s

then found to be

i ~+00
glp. €)= /_ flp€ + (t + a)E+)dt -

o0 L

= /l+°° flp€ + (t + a)c>)d(t + a) (2.7)

0

+oc
= / f(p€ + tet)dt

[&¢)

= f(p.€)

Thus [ and g have similar Radon transforms Similarly due to the hineanty of

the Radon transform.

h(z,y) = f(z,y) + g(z.y) = h =] +§ (2.8)

What do these resuits imply? The first result implies that the Hough transform
of a line is the same no matter where 1t is located and as long as its distance to the

origin and its orientation are fixed Thus. position information 1s not maintained in the
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Hough transform. The second result implies that line segments which are not connected
contribute to the same cell in parameter space, as long as they have the same parameters p
and 8. Using these two results. we conclude that in the mit, the Hough transf;er cannot
distinguish between a line of a certain length and a group of collinear but disconnected

pgints.

in addition to these problems which are inherent to the Hough transform. an-
other major problem still exists and 1s due to the implementation This problem is that
of parameter-space quantization A very fine quantization of the parameters p and 0 will
tolerate only very smail deviations from collinearity. while a gross quantization will not
discriminate between non-collinear points The first artefact will result in clusters of small

values 1n the accumulator array, while the second will result in large peaks

We thus coﬁclude that thé Hough transform does not fully solve the problem of
line detection. It only consists of a mapping which highlights collineanties The next logical
step after the Hough transform is one of interpretation; the hines in the image space must
be inferred from the values of the parameter space In addition to the above problems. the
computational complexity of the Hough transform does not work to its advantage Given ¢
possible quantized values of the orientation and .V feature points. the preceed;ﬁg equation
is to be computed VN® times In order to reduce this computational complexity. a scheme
that i1s often used i1s to convolve the image with a set of orientation-sensitive masks and
map each point 1n image space into only a portion of the curve in parameter space, centered
at the pixel's preferred orientation. By using local information derived from tne convoiution
masks. this scheme reduces to some extent cross-interferences between non-collinear line

segments.

The Hoqgh transform 1s a global scheme for line detection and highlights collinear-
ities. Lines, however. are forme,cli of points which possess a precise local structure (e.g.
connectédness. location of endpoints) Thus, for“a line detection scheme to be successful,
this local information must also be taken into account. In'what follows, an algorithm which

uses this local information in order to enhance lines is presented.
]
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2 2 Relaxation Labelling

2.2 Relaxation Labelling

v

Relaxation labelling belongs to a class of iterative algorithms where globally
consistent solutions are achieved using local computations[4]. More specifically. for the
case of hine detection, consider an image as being a graph. with each node in the graph
corrésponding to a pixel in the image A point in the image can either be part of a line or not
In the former case. a certain orientation 1s associated with the point. which corresponds
to the ornentation of the tangent to the curve at that point In the latter case. however,
no such tangent exists Returning to the graph analogy. each node (1 e each pixel) 1s
assigned a set of labels A (orientations) which are nothing but symbols with a precise

semantic meaning Associated with each label A of a node : is a certainty p,(A). which

reflects the confidence that the label which corresponds to node 1 1s label A (see figure

23)

Figure 2.3 Graph labelling

These certainties are normalized by constramning them to add up to 1 and hence

d o) =1 . '(2.9)
A=1 -

(

11



o'

2 2 Relaxation Labelling

In addition to this initial label assngneme:-nt. the interactions between neighboring nodes
in the graph have to be defined These interactions are defined through what are called
“compatibihity functions © The compatibility function of label A at node : and label \
at node j specifies how much A and A" favor each other when they are at nodes : and
7 respectively This compatibility function is usually denoted by "11()“)‘[) The support
given to label A at node : by label A" at node ) is equal to rlj(,\./\’)pj(,\') in other words.
the compatibility function 1s itself weighted by the confidence we have in the presence of
label A" at node ; The support given by node ) to Ia?ej A at node : 1s equal to the total

of each individual label support and is hence equal to

m

Z rl)(/\,/\’)pJ(A/)' =

M =1
The total support given to label A at node : is then the total neighborhood support and is

hence equal to

Z

5,(A) = Z Z (A, A )pJ,{7\') ’ (2.10)

Let Y

T e ()

,\ -
_ =] m0 (2.11a)
Pz(’\m)
and
° 31(’\1)
A .o
-- 5= s’(zz) ‘ (2.115)
Sz(Am)

A labelling p; of the graph is consistent if and only if p;, = s;/(s;.1). with the
vector 1 defined as 1 = (11 I)T In other words. consistency is achieved only when
the neighborhood support confirms the labelling assignment. The objective of relaxation

labelling techniques is thus as follows: given an nitial labelling assignment, iteratively

12
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update_ this labelling until consistency is achieved. Thus, given thg-labelling assignment

p';" at iteration k and the neighborhood support s"lk. consistency 1s achieved by minimizing

I s /(s51) - i* |

This 1s usually achieved by computing the projection u‘,k of the support vector
onthe hyperplane tangent to the constraint on the labelling assignment The new labelling
assignment p“l’”'1 is then equal to p:k+v:k As far as line detection goes. the mnitial labelling
assignments are derived by applying a number of ortentation sensitive masks to the image
The response of these coarse orientation estimators 1s then used in order to establish the

R
initial labelling p;O The compatibilities between ortentations at neighboring pixels on the
other hand. are defined through a study of the differential geometry of lines and curves
and encode the a priori contextual information relating to the problem domain(5] In an
early work on this topic[6]. eight orientation labels were assigned to each pixel. in addition
to the "no-line” label The compatibilities between neighboring labels were defined as 1s
shown in figure 2 4 Note also that the compatibilities used are chosen so as to enhance

the “straightness” of a curve more than its ‘curviness”

[ s =

S N T

1.0 .5 06  -.15  -as

‘Figure 2.4 Orentation compatibilities

The result of applying this technique i1s generally very satisfactory. This 1s to be
expected. since If the compatibility functions are properly chosen and if the initial labelling
assignment is correct, the result will be a globally optimal assignment of orientation labels
to the picture elements. The major drawback with this scheme however. resides in its
excessive computational complexity As noted in [7]. for a 256 x 256 size n;nage with{ 8

labels per pixel, 524288 label certainties need be updated at every iteration This induces a

13
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. — 23 Search Techniques

heavy computational burden on existing sequential machines and makes it impractical for a

large number of applied vision tasks where time performance must be taken into account.

o~

2.3 Search Techniques

— —

. Search techmques. also referred to as line tracking techniques. are another class
of algorithms which use local constraints The simplest search technique s also the least
efficient and consists of exhaustive search Given a starting point (usually identified as
a bright point on a dark background). the objective 1s to select. among the immediate
neighbors of this point, the highest intensity point. and from there o‘n the process is
repeated If the hine has a consistently higher intensity than its background and if the
background s relatively umform and noise-free, then such a technique could work well
Such is not the case however for real images. and false contour points are generated due
to noise and the line to be tracked 1s sometimes artificially broken up In such cases,
backtracking becomes necessary. and tf;e set of possible contours grows exponentially
large. To see the effect of noise on such an algorithm, assume that a line L 1s formed of

N connected pixels P,(r,.y,) In the noise-free case. f(F,) 1s a maximum n a selected

neighborhood of P, (say the one fixed by the direction of search). and we have.

Pr(line found)= Pr(all points are local marima)

v ‘
= [[ Pr(f(R) local mezimum) .~ (2.12)

=1

4
In addition, assume

U>0, if Pe L:

f(P‘) = {0, otherwise. (213)

- 14
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Q
°

We would like to evaluate the performance of this simple local maximum selector C
é 2

()

in the presence of noise For this purpose, we assume that a 2-D noise process 1 is added
to the image function f We assume each sample n(z,y) to be statistically independent
of another sample n(r’,y') Without any loss of generality we assume n(z,y) to be zero-
mean with variance o2 Since the probability of finding a contour line 1s related to that of

J each contour point being a local intensity maximum in a selected neighborhood. we will

concentrate on quantifying th|s, latter probabidity

- Assume a simplification of this general search problem. where the next pixel in

} .
the contour 1s to be found in a 4-connected neighborhood of the current pixel and where

« an aproximate a-priort knowledge of the direction of search reduces the problem to that of

selecting the pixel having the highest intensity in a 2-pixel neighborhood (see figure 2 5).

Y

Thus

7
Figure 2.5 Contour line search |
Pr(f(P) local mazimim) = Pr(f(P) > f(P;)) (2.14)
where P, and P, are the two possible candidate points'Hence '
R | ’
c . Pr(f(P,) local mazimum) = Pr(f(P,) -f(P)) >0) (2.15)
‘ 4 1

. , 15
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2.3 Search Techniques

Let Xy = f(P,) — f(P,) be the random variable corresponding to the difference in intensity
(of the two pixels. Also -assume P, 1s a contour pomt while P, is a background points
\ Thus. P, is distributed with mean U and vanance o, while P, 1s zero-mean and with

variance ¢ Furthermore, since the samples are statistically independent, we obtain that

X is distributed with mean U and vaniance 202 Thus; -
Pr(f(P,) local mazimum) = Pr(X; > 0) (2.16)

Using Chebyshev's inequality, we obtain:

PriX;-U < kv20?) >1 -1k k=R* (2.17)
and hence _
Pr( Xy -U >kV202) 1 k2 (2.18)
/
AV)'
Thus. we have : |
Pr((- X1 +U) > kV2o2) <17k~ - (2.19)
‘ - 3
and therefore
L Pr(Xy < (U - kV202)) = 1,k2 (2.20)

‘ /
From equation (2.20). it is clear that we are interested in the case where X yields a positive

value. We thus set £ = U/ V202, and we obtain

2 (2 N
Pr{X;20) 120° U (2.21)
and after some manipulation, we get: .
' Pr(X1 >0) = (1 - 20%/U?) (2.22)

\Returning to the previous equation, we then obtain: .
_ Pr(f(P) local mazimum) > (1 - 202/U?) (2.23')

and therefore, assuming 1 — 202/U2 > 0:

16
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Pr(line found)= Pr(all points are local mazima) ’
N
=HPr(f(Pl) local mazimum)
Y , (2.24)
- > [t - 202,0%)
=1

Z (1 - 202’/L72)1V

The expression (1 — 202 'U2)N s thus seen to constitute a lower bound on the probability )
that the contour hne s correctly found We also note that for large values of the signal-
to-noise ratio U/o. this lower bound approaches 1 and hence the.probaballty of correct line
detection 1s increased \What is interesting to note 1n this~expression 1s the dependence of
this probability on the sigral-to-noise }atlo {" o and on the length .V of the line the whole

v

—story-of noise-sensitivity of contour tracking algorithms is embedded 1n this one inequahty
1 -

An extension of this simple algorithm has been proposed by Montanan|8]. which
incorporates constraints other than connectedness More specifically. he introduces con-
straints on curvature in addition to constraints on intensity into a dynamic programming
framework, where a global figure of merit related to both intensity and curvature 1s maxi-
mized The maximization of the criterion yields the lowest curvature curve with the highest

contrast. Assuming the line to be formed of successively connected points Py, P,, P, with

P,(r,,y,). the global figure of merit 1s

n n-1
g(PlvPZs"'an):Zf(PJ "qZ(d(PH-laPz) ‘d(Pz'Pz—l) mod 8) (2'25)
=1 1=2

where f 1s the image intensity function. and d(P, .y, P,) is the slope of the curve between

points P, and P, y.

The first term computes the overall intensity of the line, while the second com-
putes its overall curvature. From the above, we see that the figure of menit can be expressed

as a sum of figures of merit involving fewer variables and hence, owing to this separability,

17
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J

the multistage decision process of dynamic programming can be used Although this tech-
nique possesses a global perspe;ctive which the previous one did not have. the computational
time and storage requirements render it as impractical for any realistic application

N Another algonthm which 1s based on local search s that of Shirai9] Rather
than using low level constraints such as curvature. however, it employs high level constramts
given by a knowledge of the scene in which image lines are to be found As such therefore,
its application 1s imited to images of polyhedra and works as follows Given a set of
contour lines mitially found, compute the position of the vertices and from these hypothesize
possible line arrangements These line arrangements are given by a study of visible edges
in polyhedral scenes and could be due to internal or external boundaries and to junctions
of faces or occlusions The verification stage 1s done by computing an error or dispersion
measure between the hypothesized ne and the feature powmts in the mwnage which are
_supposed to support 1t Although this algonithm has proven to be successful in finding
lines in images of polyhedra, its use of high level knowledge constrams its applicability to
only that class of images and hence this algonthm is not suitable for general purpose hine

detection in a bottom-up context

2.4 Burns et al.’s Technique[10]

This algorithm explicitely uses the gradient orientation information as well as
the gradient magnitude and hence is the closest. among the algorithms mentioned. to the
one presented in this thesis. The algorithm can be summarized in four steps 1n a first
step. pixels are grouped into ine support regions based on similarity of gradient orientation

(see figure 2 6).

In a second step. the intensities of the pixels in this region are approximated
by a planar surface In other words, the edge itself 1s approximated by a plane. Then,

information related to the line characteristics (such as contrast or width) 1s extracted from

’
¥
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Figure 2.6 Linc support region (from [10])

the planar fit and from the line support region Once these attributes are extracted. the
lines can be symbolically represented and hence. selected. based on the desire to isolate

certain image events. In order to evaluate the merits and weaknesses of this algorithm,

each of these steps i1s described in more detail

y

The first step in the algonithm s pixel grouping. based on gradient orientation
Thus. a specific operator must be used in order to allow the extraction of gradient ori-
entation Too little neighborhood support for the operator will increase noise sensitivity,
while too large a support will average out too much detail The primary requirement that is
imposed is that no fine detail be lost at the operator convolution stage Thus, the smallest
possible mask. which is 422 pixel operator. 1s used Once the orientations at each
pixe| are estimated. the pixels must be grouped based on orientation similanity Region
growing could be a possible solution, but due to its local nature. i1t could cause disastrous
results since intermediate orientations are usually also created at discontinuities Instead.
therefore, the orientations are quantized into a number of distinct values, and pixels are

assigned a label which corresponds to the value of this quantization Then i)lxels having the

19
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-

same label are grouped together via a connected component labelling algonthm In effect,
the number of allowed quantization values determines how much variation in orientation
1s allowed within a line support region The finer this quantization, the smaller the toler-
ance The problem with this approach i1s that lines are sometimes artuﬁ—cially broken and
conversely, sometimes overmerged To overcome this problem. different quantizations are
used and the one which 1s kept 1s the one which yields the longest ine Another problem

with this approach is that whenever grouping problems occur. the shape of the line support

regions 1s dramatically changed

Once the line support region 1s found. a weighted least-squares fit of a planar
surface 1s made to the intensities of the pixels forming the region The weights are deter
mined by the gradient magnitudes at those pixels The associated fit parameters can then
be used to describe the type of line detected Additional attributes can also be extmc/ted
from the line support region. such as i1so-contours (contours of pixels of equal intensity).
orientation variance. piecewise average orientation, which all give a measure of the straight
ness of the line. and contrast., width and steepness. which give a measure of the strength

of the hne as well as its spatial spread

This algonthm. as reported in {10]. has been successfully applied to images of
outdoor scenes and aerial pictures Of all the algorithms that have been reviewed, Burns et
al.’s performs the best as far as the final result and the assoctated computational complexity
are concerned This is due to the fact that they use gradient onentation information. in
addition to gradient magmtude infformation With this scheme, however, placement of lines
can be skewed under slow intensity changes Also. the line support reglon'computataon is
based on a coarse orientation quantization which could cause artificial breakups in the line

segments

L3

This thesis presents an algornithm, onginally reported in a report in 1985 (see
[11]). which overcomes the above mentioned problems. while yielding equivalent perfor-

mance.
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Chapter 3 ' Line Detection: a Prediction/Verification Approach

3.1 Image Pre-processing

Before detecting lines, we shall first define exactly what we mean by straight line
segments In images. we can ba’sically distinguish between two types of linear structures:
the first type 1s a hinear arrangement of white pixels on a black background or vice-versa.
This corresponds to the case where the object perceived itself has a linear structure. such
as blood vessels in biomedical images or roads in aertal maps{12] The second type of linear
structure corresponds to inear contour lines. This corresponds to the case where the object
perceived contains linear or planar boundanes (e g polyhedra) and object/background or
object/object occlusions give rise to perceived linear contours Although as will be seen
later, the difference between detecting these two different structures 1s basically a matter
of preprocessing and does not change the essence of the algorithm present&;d in this thesis,
we will concentrate mostly on detecting contour lines since we believe that they arise more
frequently in the applied vision context where the detection of lines is not an end in 1tself,

but a means towards the detection of higher level structures.

Two main trends emerge from the early processing of images The first 1s the
contour based approach, where object contours, also called “edges”. are to be found in order

to help the recognition stage. The second type of low level processing 1s the region based
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approach, where the emphasis 1s not put on finding object contours (formed by occlusions),
but rather on finding object regions, 1 e. regions in the image which correspond to distinct
objects. Since our objective 1s to find straight contour lines, we will adopt the former
approach and we will use schemes that will enable us to find the set of those picture
elements which constitute object boundaries In order to do this. we will make use of edge

enhancement operators and attempt to quantify their performance
3.1.1 Edge Enhancement /

A number of edge enhancing operators have been developed to highlight region
Loundaries[13][14] Consider a continuous image function f defined on a continuous domain
and analytic at-every point In such an image object boundaries would correspond to
points 1n the image where the intensity function changes rapidly This rapid change could
,be quantified by considering the spatial denvative of the function Thus, object boundaries
would correspond to points in the image where the derivative of the function 1s “large °
How large i1s large 1s the legitimate question that arnses at this point, and. in many cases.
it 1s not possible to distinguish between a true object boundary (an edge) and points on
the image which correspond to noisy variations, using a simple differential operator as an
edge detector Other techniques that have been developed assume different edge models
and hence different criternia are used for edge detection{15] Although the performance of
the line detector proposed in this thesis depends to a large extent on the performance of
the edge enhancement operator used. we shall not focus on the details of this operation
Rather. the most suitable edge operator among the ones most used will be found, according
to a criterion given below These consist of mere approximations to the differential operator

and are hence termed “gradient operators” The operators that we will consider are the

Roberts cross-operator[16]. the Sobel operator[17]. and the Prewitt operator[18]
3.1.1.1 The Roberts Cross-operator {

The Roberts cross-operator consists of two orthogonal 2 « 2 pixel masks (see
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|
|
e

i
1
|
l o
\Figme 3.1 The Roberts operator

figure 3.1). \

Assuming animage function [, the response e, of the first mask is given by:

°

ex(ig) = f(g) - fle+ 1.5 +1) (3.1a)

4

and the response e, of the second mask 1s given by:
en(1,)) = S+ 1) - fla.) +1) (3.15)

The magnitude of the edge at the point (r,y) 1s then given by any choice of norm (Ly.

Ly. .... Lo} Usually however. the Euchdian (L;) norm s used and the edge magnitude

e(t.0) = \Jes(t.2)2 + ey (1,9)? (3.2)

Also. the orientation (1, ;) of the gradient vector with respect to the r— axis 1s given by-
0(1,7) = tan V(e /e,) + 7/4 (3.3)

We are interested in evaluating the ndise performance of this operator Clearly. this perfor-
mance will depend on the performance of each of the masks Consider a two dimensional
point noisé process 7. with (2. ;) being independent zero-mean identically distributed ran-
dom vanables with variance 02 We are interested in the vanance of ez and ¢, in response

to the noise process We then obtain

ex(t,7) =n(3,7) = n(t+1,7 +1) (3.40)

and ‘ :
ey(1.0) =n(e+ 1) ~n(r.7+1) (3.40)
23
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hence:
Var; = Var(ez(1,5)) = Var(n(t.)) + Var(n(t + 1.5 + 1)) = 252 (3.5q)
Vary = Var(ey(1,))) = Var(n(t + 1,)) + Var(n(1.; + 1)) = 242 (3 51,')

We thus obtain
Var,/o? = Vary ‘0? = 20%/0? =2 (3.6)

The output noise vanance 1s therefore twice as large as the input noise vanance With
this operator. therefore. the noise 1s not attenuated but radther s amphtied and hence. this

operator is very noise sensitive

4

3.1.1.2 The Sobel Operator

The Sobel operator consists of two orthogonal 3+ 3 pixel masks (see figure

3.2). 2
[ e
\ -l (o} 1 1 2 1

» ' —— — —

J =2 o ? 0 0 0 .
f
. -l s} 1 1 2 1
|
e e i ot e = - - -

Figure 3.2 The Sobel operator

Assuming an 1mage function f. the response ¢, of the first mask 1s given by:
ex(t,7) =(fe + 1.5+ 1) - fla - 1,7 +1))/4+
(f(r+1.) = [t - 1,5))72+ . (3-74)

(fle+1,5 1)~ flr - 1,5 ~1))/4
and the response e, of the second mask is given by

ey(t,2) =(f(r =1, +1) - J(z - 1,5 - 1))/4+
(fle,2+1) = fl2,0 - 1))/2+ (3.76) —
(fe+15+1) - fla+1,7 -1))/4
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Again, assuming an input noise process 7 with the same properties as before. we obtain

\
c " the following output variances: ’
£

Var, = Var(ez(1,7)) = 302/4 (3.8a)

and similarly,

Var, = Var(e,(i. 7)) = 302/4 (3.8b)

" The ratio of the output to the input noise variances is then

",
.

' Vary/Var(n(1,))) = Vary/l’ar(r](z,])) = 302/402 =3/4 (3.9)

. In this case. the output noise vaniance 1s smaller than the input noise variance and hence.
the noise Is to some extent reduced. This is due to the fact that the operation performed in
the Sobel operator 1s not merely a straight differencing of intensities at two different pixel
locations. but rather a differencing of their neighborhood averages. It 1s this averaging that

3 reduces the noise vanance This stands in direct contrast with the Roberts operator which

- does not perform any kind of pre-averaging

3.1.1.3 The Prewitt Operator

°

The Prewitt operator also consists of two orthogonal 3 ~ 3 pixel masks (see

figure 3.3).
t
-] o | 1| o 1
«r | o | oo o
-l 0 1 1 -1 -1
! Figure 3.3 The Prewitt operator "
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Given an image function f. the response e, of the first mask is given by:

ez(i,j) =(ft + 1.0+ 1) - /(i = 1.5 +1))/3+
(fle+1,0) - f(2-1,1))/3+ (3.10a)
(Fl+ 1y = 1) = 6 = 1,5 = 1)/3

and the response ey, of the second mask is given by

ey(t,7) =(fe =15 +1) = f(z - 1,j - 1))/3+
(fle,0 +1) = fleg = 1))/3+ . (3.100)
(fE+1+41) - fe+15-1))/3

Again. assuming an input noise process n with the same properties as\b\;fore. we obtam

the following output variances: ;/»7 *J
~_ /

Varr = Var(e,(2.))) = 26%/3 (3.11a)
¥
and similarly,
Var, = Var(e,(i,))) = 20%/3 (3.116)
The ratio of the output to the input notse variances is then
Var,/Var(n(i, 7)) = Var,, Var(n{i.y)) = 2/3 (3.12)

In this case. noise attenuation is even stronger than with the Sobel operator This 1s due to
[
the fact that ‘the averaging that 1s performed before the differencing operation takes place

is not a V\';elghted averaging. but rather, all the samples are given equal weight

3.1.1.4 Choice of Local Operator

Of the three operators that have been presented, only the Sobel operator and the

Prewitt operator attenuate noise We thus discard the Roberts cross-operator because of

its low noise immunity Using noise performance as the only selection criterion, one would
choose the Prewitt operator. Noise performance is not everything, however As important

as noise performance is the ability of the operator to properly localize the edge. With the
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Prewitt operator, the averaging operations that are performed attribute equal weight to all
intensity samples. and hence, any permutations of those intensity samples will not change
the operator response while changing the structure of the edge to be detected. With the
Sobel operator, however, closer samples are attrnbuted larger weight and hence the spatial
structure of the edge to be detected is more accurately captured. In addition. given that
the noise performance of the Sobel operator is comparable to that of the Prewitt operator,
the Sobel operator will be used in order to enhance edges in intensity images Once the
edges are enhanced. however, only those that correspond to the desired image events must
be kept. Achieving this is not possible unless some a priort knowledge i1s avaitable about
the scene whose 1image is being processed This a prion knowledge usually concerns the
gradient magnitude and is based on the premise that strong edges correspond to desnable
image features while weak edges are induced by noisy vanations This assu—mptson breaks
down for images with strong texture patterns (e g. outdoor scenes) butis a reasonable
one for most industnal vision tasks where most objects have uniform intensities and the

contrasts are strong. Hence. we shall use this assumption in order to “detect” edges after

having enhanced them

3.1.2 Edge Detection

. The result of edge detection is a binary image: either a pixel is an edge element
or it is not. In order to achieve this result, the edge magnitude e(z,y) of a point P(z,y) 1s
confbuted. using the two orthogonal edge components ez(z,y) and ey(z, y) and an arbitrary
choice of norm (Ly. Ly. . . Ly) The point P(z,y) 1s considered to be an edge element
if and only if e(z,y) > T where T 1s an arbitrary positive constant. Otherwise. the point
P(z,y) 1s considered to be a background point. The intensity value T, which delimits the
intensity values comprising edge and non-edge pixels is usually referred to as the “intensity
threshold.” and this operation as “intensity thresholding.” From the above definition. it can

be seen that thresholding is a global operation. Points in the image are assigned different

labels (e.g edge and non-edge) based only on their intensity and independently of the
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local properties they might have. In order to quantify the performance of the thresholding
operation, a criterion which reflects how good or how bad the final result is has to be

defined. For this purpose. we define a probability of error for the edge detection stage as:

Pr(error) =Pr(edge classified as non - edge)+ : |
3.13

N Pr(non — edge classified as edge)‘

Let Rp be the set of all edge pixels and Ry be the set of all non-edge pixels The union
Rpu Ry of these two sets i1s the set of all images points In addition, the intersection
Rpn Ry of these sets s the null set since no pixel can assume both states The probabulity

of occurénce Pg of an edge pixel 1s defined as
Pgp = Card(Rg) Card(Rg . Ry) (3 14)

and is the ratio of the number of edge points to the total number of image points C'ard
refers to the cardinality of the set in question Simularly. the probability of occurence Py

of a non-edge pixel 1s defined as

Py = Card(Ry)/Card{Rg - Ry) (3.15)

With these definitions. the probability of error is then rewritten as.

Pr(error) = Pr(e(z,y) > T, P(z.y) = Ry)Pv+
(error) (e(z v) (r.y) ) (3.1

Prle(z,y) < T P(z.y) - Rg)Pg

We shall now study the conditional probabilities which contribute to the(qlaSSIficatlon error.

el

)
Assume the set R g has an intensity distribution with mean u 5 and van?nce a%, while the

set Ry of non-edge pixels has an intensity distribution with mean un and variance afv

Assuming un < T < ug. we have

Pr(e(z,y) > T/P(I, y) € RN) < 1 —’Pr(l;(z,y)’— l‘Nl < (T ‘#N)) (317)

and
Pr(e(z,y) <T/P(z,y) € Rg) <1 — Pr(le(z,y) — ug| < (ug - T)) (3.18)
| 28
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s

Thus:
. Pr(error) <Pn(1 — Pr(je(z,y) — un| < (T — nn)))+

, Pg(1 - Pr{le(z,y) - ngl < (kg — T)))
Let T = uy +kjoy. We then obtain ky = (T — pny)/oy. and from Chebyshev's theorem:

(3.19)

Pr(le(z,y) = un| < (T ~ un)) 2 1 = 0% /(T - uy)? (3.20)
Now, let T = pug —kyop. We then get ky = (up~T)/og. and from Chebyshev's theorem:
Pr(le(z,y) - ngl < (ug = T)) 21 - 0/ (T - ug)? (3.21)

1
{

After some simple manipulations. we obtain

Pr(error) < PAVU%//(T - ’u,v)z + PEU%;/(;LE - T)2 (3.22) .
Let '
UB(T) = PyoX /(T - un)? + Pgok/(ug — T)? (3.23)

be the upper bound on the error probability. The optimal threshold T* is the one which
minimizes U B(T). To find it. we let dU B(T);dT = 0. After simple manipulations, the

optimal threshold is found to be
ST = (pp(Pyod) - wy (Prod)3) Py od) + (Ppod)t’d) (3.24)

It can be seen that if the two sets have similar siZe and vanances, the optimal threshold

will be halfway between the two ineans. which is as expected The minimum value U B*

’

of UB(T) associated with the optimal threshold T* is tself found to be.

LS \

UB* = UB(T") = ((Pyo¥)'? + (Peod) ' *)P ifug - un)? (3.25)
The above equality shows the minimum value that can be attained with the upper bound
on the probability of misclassification As expected, the larger the variances of the two
classes (i.e. edge and non-edge) and the smaller their mean difference, the larger the

upper bound on the error probability Conversely. the smaller the variances and the larger

the mean difference. then the smaller the upper bound will be. It is now ﬁunderstood
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/

why the aim has been. when choosing the local operators. to reduce their output noise
variance. In principle, the abO\;e derivations give us the necessary tools for selecting the
optimal threshold However, this requires a priort knowledge concérnmg the probability of
occurence of each class in addition to some StatIStI§C8| properties which are not us‘ually
available beforehand This s why, 1n practice. other cntena are used for threshold selection

and which do not depend on a priori quantified knowledge [19]
3.2 \ he Algorithm

3.2.1 Basic ldea

The algonthm proposed in this thesis is based on the following idea. use as
much local information as possible 1n order to have accuracy in the line detection process,
and use as much global information as possible in order to ensure noise iImmumty This
idea illustrates the basic tradeoff inherent in all line detection schemes [n order to satisfy
this tradeoff. a two-step procedure 1s used In the first step. local information 1s used n
order to predict the line or lines that could exist, while in the second step. these predic-
tions are verified against more global information  This paradigm 1s also known as the
hypothesis prediction/verification paradigm{20][21]. which can be stated in the following
informal manner for a given problem, hypothesize all possible solutions to this problem,”
reject those solutions that do not obey the given constraints. and retain onliy those that
solve the problem under all prescribed constraints The prediction/verification paradigm s
thus seen to consist of two parts: a predictor. which enumerates all possible solutions, and
_a verifier, which evaluates each proposed solution. either accepting 1t or rejecting it (see

Figure 3.4)

.

Stated in a more formal manner. the predictor generates a set H of N hy-

potheses {hy,hy,...,hx}. The verifier then maps the set H into a subset H’ such that

' ' 30
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Figure 3.4 The hypothesis prediction/venfication paradigm

therefore, must be based on strong heuristics

all hypotheses h, € H' evaluate to true The truth value.of the hypotheses is evaluated
based on criteria that are developed later on Good prealctors have the following two prop-
erties: they are complete, in the sense that they produce all possible hypotheses Also,
they are informed in the sense that they use possibility-hmiting information. restricting
the hypotheses they propose accordingly Informability 1s important. otherwise, hypothesis

verification becomes an exhaustive tree-search algonthm The prediction of hypotheses. .

3
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The Al hypothesis prediction/verification paradigm 1s very close to the concept
of Kalman Filtering often encountered in estimation theory The underlying formulation of

the Kalman Filter is the following

Estimation = Prediction + Correction

In this model. the estimation of a state at some time index n is equalized to a
prediction of this same state based on time samples preceeding or equal to n 1, added to
a correction factor that 1s a function of the predicted and observed states The correction
factor 1s in some sense the ‘prediction verifier © Were the prediction exact. the correction
term would be zero In our model. the prediction 1s based on strictly logal formation In
other words. a given straight line segment 1s predicted to exist, based only on the features
at one pixel location The verification however, 1s based on a more global analysu&\. since

statistical tests are now performed on a neighborhood of this pixel location

3.2.2 Hypothesis Prediction

Consider a picture element at (r..y.) To this pixel. we associate, through
gradient filtering, the two orthogonal edge components (e, .e, ) Assuming {r..y. ) to be

a point on a line segment S. the equation
(Il - 'E(')ef‘ + (yl Y )e'lt = 0 (3 26) '

has to be met by alk points (z,,y,) that are located on the hine segment S Equation (3}
is merely a mathematical representation of the statement that edge vectors are orthogonal
to region boundaries. Let us assume that we wish to detect all straight line segments that
are composed of 2n + 1 picture elements (1e are of order n) The hypothesis predictor

then predicts the following hypothesis which we call Hj

There is a segment S of order n centered at (z:,y:) such that
V(It’yz) €85 (z, - Ic)fzc +(y, - yc)eyc =0 . (3'.27)
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The set of hypotheses is thus formed from the single hypothesis Hj.

The verifier now must evaluate the predicted hypothesis. This verification is
done using statistical tests performed on the predicted line segment § Let

€r

E; = {-V—z € Ri(r,,y) =S} (3.28a)
71
e
Eyz{—\i—tt?/?'(xl,y,)—:b’} (3.28b)
‘7
with
N, = \/"e%l + 6,2/ (3.29)

E; and E, are respectively the horizontal and vertical normalized edge components of the
picture elements that are located on the predicted line segment § The edge components
have been normalized in order to provide robustness to changes in intensity In other words,

we are now dealing with unit vectors and the only information we are interested in 1s their

orientation.

3.2.3 Hypothesis Verification

We assume a statistical model for the purpose of our analysis. We interpret £
as a set of 2n + 1 observations on a random varnable X normally distributed with mean p
and vanance o2. Similarly. we interpret E, as a set of 2n + 1 observations on a random
variable Y normally distributed with mean uy, and vanance 032/‘ In other words, we interpret
E; (and Ey) as a sample set drawn from a population having an infinity of elements This
infinitely large population would be the continuous line segment; since the image 1s defined
over a discrete two-dimensional domain however, only a finite number of points on this
continuous segment can be observed. and these points correspond to the discrete values

at which the image function is defined '

In the ideal case. i.e. the case where there i1s a line segment of order n centered

at (z¢,yc). the mean of the random variable X has to be equal to e;./N. and the mean
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of the random vanable ¥ to e,., ' N. In addition. the variances of the random vanables X
and Y would be zero. This is usually not the case' Small variances of X" and Y however,
indicate a uniformity in the orientation of the edge elements in the population In other
words, if the variance in the distribution of the r— and y -~ edge components 1s small. there
is a large probability that the predicted line segment does actually exist [f on the other
hand. the variances are large. the probability that the predicted line exists 1s fairly small
since this would mean that the edge elements located on the predicted line segment have
random orientations These observations are essential to the algonthm, and hypothesis
verification 1s based on these very same observations of the behavior of the mean and the

variance in the normalized edge components

It should be noted that the means and varniances that have been mentioned so

far concern the population and not the sample set The only statistical tests that can be

performed however relate to the sample set Thus. we must investigate the sigmficance
of the statistical measurements that are performed on the sample set, with respect to the

overall population This significance test 1s performed on the sample mean using Student’s

t-distnibution and on the sample variance using chi-square (\2) tests We define the sample

variances S_%( and 5)2, of X and Y. respectively. as

IAY

1 2n+1
5% = — ; N, - 5y)? ,
X =5, 2 (e, Vo - 5y) (3.30a)
=1
and,
1 2n+1 1
S¢ = n L (ey, 1V, - Sy)2. (3.300)

also Sy and Sy are the sample means of X and Y. respectively. defined as

2n+1

— 1 \
X = o " 1 Z e;r;z /Nl (3310)
1=
P 1 2n+1
Sv = 51 > ey /N, (3.318)

1=

Note that in our definition of the variance, the summation has been divided by 2n and not

L

by 2n + 1. and so. the sample variance 1s an unbiased estimator for the true variance of

R

Ay
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the population. The sample mean. as defined in equations (3.31a) and (3.31b) is also an

unbiased estimator for the true mean of the population

Since the random variables X and Y are assumed to be normally distributed.

the statistics

Sx — ks Sy — ny
v Sk (2n+1) V’Sz/(2n+1)

are t- distributed (Student’s ¥ distribution) with 2n degrees of freedom. and the statistics

2 2
ZnSX ZnS}

4

2
7y

o?
are chi-squared with 2n degrees of freedom The reduction in the number of degrees of
freedom from 2n + 1 to 2n 1s due to the fact that the population means and varnances are

not known and can be only estimated by sample measurements

The main objective underlining the above expressions is the ability to generate
confidence intervals on the population statistics[22] In other words. we desire to estabhsh
lower and upper bounds on the population mean and variance, with some confidence, based
on the mean and the variance of the sample set Once bounds on the population statistics

have been estimated. there is enough evidence to accept or reject the predicted hypothesis

concerning the existence of a line segment

The 100(1 ~ a}% confidence intervals on the population means u; and p, {with

0 < a < 1) are respectively defined as’ 1

A’[.\’ = (§X - ta/12v15§/"(2n + 1),§X + t,)/zv Si/’(Qn + 1)) (332(1)
and
— e T T =
My = (Sy ~ty2\/S§i(2n +1),Sy +1t,,5\/SE/(2n +1)) (3.326)

The 100(1 — «)% confidence intervals on the population vanances og and 05
(with 0 < a < 1) are respectively defined as

2 52 2nS%
vy = (= . S (3.33q)

a/2 Xl (a/2)
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and

2nS%  2nS%
VY=(nY, Y ) (3.33b)

Y(}/Z Yl (x,'2)

I4

Now that the bounds on the population mean and variance have been estab-
lished, a procedure must be defined upon which the prediction verifier can base itself in
order to infer whether or not a predicted line segment does actually exist As was mentioned
previously, if the vanance of the orientations 1s small and if the mean of the onentations
is close to the onentation of the predicted line segment then the probability of the line
segment prediction being true is quite large As far as the population vanances a and (I
are concerned therefare, we define a simple threshold on the upper bound of the confidence
intervals V'y and Vy Note that the assumption of normality of the random vanables .\
and Y 1s not independent of the sample variances and that this assumption 1s correct only
for small sample variances As for the population means ;, and ju,. we are interested in
knowing how close the mean orientation of the edge elements on the predicted line segment
1s to the orientation of the predicted line segment. 1e how close u, and pu, are to the
normalized x- and y- components of the edge element at which the hne segment 1s cen-
tered Since the population means belong to the intervals My and My (with a degree of
confidence of (1 - a)). we use the bounds on these confidence intervals in order to evaluate
the discrepancy between the population means and the normahized x- and y- components -
of the edge element at which the predicted line segment 1s centered If this discrepancy s
large. the probability of all edge elements on the predicted line segment having the same
orientation as the line segment itself 1s quite small Let Dy be the largest difference be-
tween e;./.V. and the bounds of the interval M y. and Dy the Iargest difference between

ey./ Nc and the bounds of the interval My. .V, being equal to v (,2 + e2 In otirer words,

DX_—.J‘/[A‘(( eJ_.,,NCwS‘*X~ta/2\/5§(/(2n+1).,err/N b(+l] 2\/5 2n+1))

Dy = MAX(ley,/Nc — Sy — ta/z\/S}z,/'(Zn +1)', e, /N - Sy + tu/z\/S}z,/(Zn + 1))

Summarizing the hypothesis venfication procedure, we have
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Accept Hj if and only if:
2nS52 52
——&— <0k AND —X— <02 AND Dy < A, AND Dy < A,
X1-(a/2) , 1-(a,2)
Reject Hy if and only if
2n52 2n52
X Y 552 OR Dy > A, OR Dy > A,
X1—(a/2) ( Y (a/2)

’

where a% is defined as the threshold variance and A as the threshold mean
difference A complete description of the algpnthm 1s shown in Figure 3 5 For the sake of
completeness. this algorithm s summar:zeé\as follows: 1n a first step, the intensity edges
in the image are enhanced This 1s done using the Sobel gradient operator. although other
%perators with stmilar or superior performance could be used as well In a second step. the
intensity edges are thresholded. and as a result, a binary image formed of edge elements and
non-edge elements 1s obtained This binary image 1s then scanned in a sequential manner,
and eqch edge element is n turn and independently considered At each of these edge
elements. a line of specified length is predicted. which orientation 1s given by the gradient
orientation at the edge element considered Statistical tests on the gradient onentation of
the samples that constitute this predicted line are then performed and if the orientations
of the samples are similar to the ortentation of the predicted line segment, the latter is

accepted. otherwise. 1t 1s rejected

3.2.4 Statistical Model Reuvisited

The main assumption that was taken in the preceeding section that justified the
use of in;:erval estimation was the fact that the normalized edge components were normally
distributed. Clearly, this assumption breaks down when the predicted line segment spans
a varnety of different image structures, since, in_this case, the samples would not originate
from one umque population In this case, the vaniance of the distribution of the normalized

edge elements would be large. depending on the uniformuty of the underlying samples.
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Figure 3.5 The algonthm

When the variance in the distribution is small. however. the samples tend to cluster around

Since one cannot always assume

18
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a normal distribution, it is possible to use only sample measurements in the hypothesis

verification process. Defining the sample dewviation as

! 1 2n+1
" \ 2n + 1 Z (erl/Nz — ez, /Nc)? (3.34a)
and
. 1 2n+1 :
dyy = \ T 2 (o5 N~ ey Ne)? (3.346)

we get the dispersion of the edge elements that are located on the predicted line segment
with respect to the parameters of this same line segment The above dispersion measure
is only a vanation of one special distance measure. also called Euclidian distance In order

to quantify this dispersion. one could also use a variant of the Ly norm, defined as

1 2n+1
diy = T E Z ez, /vy — ez /N (3.35a)
1=
and ]
1 2n+1
diy = ) Z ey, )V, — ey /el (3.35b)
= .
or the Lo, norm. defined as:
doox = max ez /N, — ez /N (3.36a)
14 .
and
dmy = max!eyl/lvz - eyc /AVC' (3.36b)
t

The difference between these different norms resides in the following: the Ly
norm provides a lot of averaging and hence. the final dispersion measure is relatively in-
sensitive to large deviations in isolated samples The Lo, norm on the other hand 1s very
sensitive to a large deviation of a single sample, since among all samples considered. 1t se-
lects the one that yields maximal deviation The choice of these different norms is basically

a matter of robustness to fluctuations and computational complexity.
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4 .
Given a certhin choice of norm (say the L, norm). the hypothesis prediction

stage would be identical to what has been previously described. and given a hypothesis

Hy. Hy would be accepted if and only if
dox ~ A and dpy < A

where A is the chosen threshold on the sample deviations

3.2.5 Singular Cases

As was mentioned previously. the edge components are normalized in order to
yield information which i1s contrast-independent and which 1s only direction-dependent In
order to do so the edge components er, and ey at pomts P(r,.y,) on the predicted
line are divided by the edge magnitude .V, In some cases however. it could happen that
there exist points P, on a predicted line such that their édge magmtudebe .V, =0 This
would correspond to the case where the predicted line spans a portion of fluniform region
(re a region with no contrast at all) This 1s what we call a ‘singular’chse.” since in
such cases. the usual hypothesis verfication tests cannot be performed any more The
approach we have taken is to reject lines which have at least one point at which the edge
magnitude (s null In other words. the lines that are subsequently kept are not allowed to
cross over any uniform region This, of course, prevents the proposed line detector from
having any interpolatory capability and a contour line broken into two pieces by a uniform
intensity patch will not be detected On the other hand. a predicted line might very well
be acc_epted. depending on the chosen tolerances. even if it covers regions having points of
different gradient orientations as long as the gradient magnitude does not vanish at any of
the points. It will of course be argued whether the proposed scheme is satisfactoiy We

believe it is. owing to its simplicity. since lines which are artificially broken up due to noise

could be merged together at a higher processing level
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3.2.6 Complexity Analysis

We shall now study the computatiogal complexity involved in performing line
detection with the proposed algorithm. The complexity involved in the preprocessing stages
(edge enhancement and edge detection) i1s not included in this analysis We thus assume
that we are given K edge elements Computing the normalized gradient involves 1 addition
operation. 2 multiplications, 2 divisions and 1 square-root operation for every edge-element
considered Assuming we are looking for lines formed of N pixels and assuming we are
using the dyy and dyy dewiation critena, 2(/N -- 1) addition operations and 2 divisions are
involved in calculating the sample mean, and 4N -2 addition operations. 2.V multiplications *
and 2 division operations are necessary for calculating the sample variance, for every edge
element considered In total therefore, given K edge elements and hines of length NV, we
have 3K (2NV 1) addition operations, 2K (N + 1) multiplications. 6 K dwisions, and K
square-root operations involved The computational complexity of the algonthm is thus

seen to grow linearly in the number of edge elements and in the length of the lines to be

detected

3.2.7 Comparison with Burns-et al.’s Algorithm -

Now that the main body of the algorithm has been presented. it would be
interesting to perform a comparison with Burns et al.’s algorithm which was introduced
as being the closest to the algonthm presented in this thesis While both our algorithm
and theirs are based on-gradient orientation information, the main discrepancy comes from
the fact- that they do not make full use of all the constraints involved. the main one being
the following: if a contour fine segr-nent is supposed to go through an edge point, then the
gradient orientation at that edge element should be orthogonal to the contour line. It is
this very same observation that allows us to make a prediction on the precise location and
orientation of the line segment to be detected. The second constraint comes from the fact

that in order for the predicted hine segment to actually overlap with an image contour line,

41
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4

the first constraint must be met (in a loose sense) at all the points on this predicted line
This is the information that we use in the verification process Burns et al’s algorithm
makes partial use of the second constraint by accepting in a line support‘ region onl; those
edge elements that have similar orientations The information 1t does not use., however,
is that each edge element constrains the underlying contour line to have a unique position
and orientation Thus, they end up doing a type of region growing operation without ever

considering the geometrical structure of the region being formed

3.2.8 Sequential Pruning

-

Note that the hypothesis verification procedure outhned above will validate the
existence of a line at a given point based only on the statistical tests mentioned. and
therefore overlapping between line segments are to be expected In order to reduce this
overlap. and hence yield a smaller and more tractable set of ine segments for subsequent
analysis, an additional test could be incorporated in the venfication procedure so as to
discard line segments which have too much overlap with previously detected ones This
test could be conducted as follows for every hypothesized hne segment S which also
satisfies the mean and vaniance tests, let {(z,,y,)} be the set of points which constitute S
Furthermore, let N¢ be the number of points in S which are part of previously detected line
segments of the same order Assuming the order of the line segments to be n, the number
of points on each line 1s then V = 2n+1 Thus the ratio Ng/N is the percentage of points
in § which are part of previously detected line segments A hypothesized line segment S
which also satisfies the mean and variance test could thus be validated if the above ratio i1s
less than some specified threshold (i.e. if the overiap betwéen the line segment considered
and previously detected ones i1s less than some amount) and rejected otherwise While
the linear structures present in the image are captured in the initial hypothesis test. the
net effect of adding this extra test 1s that a smaller number of hne segments are typically

detected. This simplifies subsequent interpretation tasks.
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3.2.9 Resolution Trees and Multiple-length Line Detection

Now that the line detection algorithm has been presented. we investigate a
possible representation for the set of line segments that are present in a given picture.
This representation can be based either on the orientation of the line segments. or on their
length Representing the line segments in the image 1n termys of their orientation can be
of interest whenever attention 1s to be focused on those line segments that have specific
ortentations Representing line segments based on arientation reduces to assigning them
to particular orientation classes A property of this representation s its lack of ambugmty.

since no two line segments that share a common set of pixels can have distinct (to within

\

a certain quantization factor) orentations

Representing line segments based on tbeir length 1s another representational
scheme, which 1s more suited for cases where the line segments are to be matched to .a
specific model In this case. information concerning the length of the different line segments
is used in order to verify the vahdity of candidate matches Representing hn'e segments
based on thewr length i1s again_a grouping problem, but unlike the previous one, it 1s inherently
) ambiguous. since a certain line segment can very well be composed of a number 6f smaller’)

segments. The problem then is to choose a representation that overcomes the ambiguity

“associated with redundant segments

The representation we chose i1s based on~a tree structure The root R of the
tree is the original image Thg first level of nodes. starting from the root. is formed of line
segments S’ constituted of m pixels Each node is itself expanded into a subtree. where
each subnode corresponds to a line segment S}" of inferior length, with the additional prop-

_erty that the segmef;t associated with the subnode 1s included in the segment associated

with the node In other werds, SJ" is a subnode of the node S if and only if:

,

n<m, ,SJ"C s

In this context. the inclusion of SJ" into 5™ 1s equivalent to the number of pixels cgmmon

both .to SJ" and a neighborhood N(S™) of ST being superior to a certain fraction A of the
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total number of pixels that constitute ST In other words.
(S']" 85" = (C'ard(SJ" ~N(S™) > ACard(S}'))

- where Card(S). the cardinality of a set S. is defined as the number of sample points in S
in subsequent experiments, the value for A was chosen as being a half It 1s to be noted
that a higher value for this coefficient would not yield the desired results due to the fact
that 1n practice. similar line segments do not always coincide In addition. the reason for
evaluating inclusion over a neighborhood of the larger segmenrt rather than the segment
itself stems from the fact that ihe edges are not of the ideal step edge type and have a
certain spatltal spread The neighborhood N of each line segment is defined as the region
formed by”thuc\kenmg the line segment width by one pixel on each side This 1s equivalent
to convolving the image of the line with a spatial averaging mask and then retaining only
the pixels that have an :nte’n;ty value above some predetermined threshold

¥

The process of expanding nodes into subnodes 1s done recursively until a mini-
mal length of line segment 1s achieved The segments having minimal length are the leaves
of the tree (see Figure 3 6) .

‘ ' <

This representation s analogous to the one used In representing images at

1

multiple resolutions, which, owing to its geometrical arrangement 1s often referred to as
a "resolution pyramud © In a snmlla'r way. we referp to the problem of detecting hnes of
different length as that of detecting lines at different resolutions in the resolution tree A
major advantage of this representation l:es in its ability to distinguish line segments based
on their significance Intuitively. a line segment which 1s included in another line segment
of superior length does not have the same sngmflcaﬁc;a as another line segment which is
not included in any other hne, since this would amount to redundant information In order
\

to remove these redundancies and ambiguities, line segments having low significance are *.

discarded The process of removing lines of low significance is called "pruning ”
S

Pruning the resolution tree 1s done by removing those subnodes which are not

directly linked to the root. In other words. line segments which are part of longer segments

44
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Figure 3.6 The resolution tree

\ (i.e.. subnodes of the resolution tree which are directly connected to other subnodes rather

than to the root) are discarded. The resulting structute 1s a tree having one root., and
leaves at different levels, indicating the different lengths of the line segments associated
with the leaves This remaining structureis in a sense a best piecewise fit of line segments

to the image. since all the partial fits have been discarded in the pruning process

To perform prumng. we do as follows first define the different lengths at which
the line segments are to be detected. Then find the lines, starting with the longest, and
prg‘ceeding to the shortest. With each line detected. flag the corresponding pixels that
constitute 1t. Thus. when evaluating whether a line segment is to be rétamed. it is not

only necessary to perform the statistical tests as described in section 5. but we also must

take into account whether the line segment considered is included in previously detected

!
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line segments of longer length Since the computational cost of evaluating inclusions of line
segments in other line segments 1s considerably less than the cost of performing statistical

tests on the lines. pruning could be used to reduce the number of predicted hypotheses

1
]

that have to be verified

It should be noted that the resolution with which line segments of different
length can be detected depends solely on the number of different levels in the resolution
tree. and that the larger the chosen number of levels in the resolution tree. the finer the

representation of line segments in the oniginal picture
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Chapter 4 , Experimental Results

The line detection 5lgonthm has been successfully applied to a wide variety of
digital pictures. The robustness of the algonthm i1s inherent In 1ts two-step procedure
while the prediction of hypotheses is essentialfy local to a picture element the verification
of the predicted hypotheses involves statistical tests over a selected neighborhood In what
follows. a number of experiments are illustrated In the ones involving statistical tests. the
95% confidence intervals on the population statistics are computed (re o = 005) The
purpose of these experiments is to show how the performance of the proposed algorithm
depends on the choice of its associated parameters The first test image. shown in figure

4 1, 1s that of a capacitor (

°

Figure 4.1 Original image
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mounted on a ceramic substrate. This image i1s chosen not only because 1t is
rich in contour lines but also because the wide diversity of linear features present in 1t

would illustrate well the performance of the proposed algorithm in real images

The expenments on the line deteetion algornithm are performed as follows. first,
the effect of performing sequential pruning 1s highlighted on the final result Different
paramieters for this pruning are chosen, and the one which yields satisfactory results 1s
chosen for further expenments Then, using the statistical model. the result of assigning
different values to the-threshold variance o%and to the threshold mean difference A, s
presented Subsequently, different line lengths are chosen for the line detection algonthm
based on the statistical model. and the results are discussed The next group of experiments
1s performed on the line detection algorthm without use of the statistical model Rather,
the simplified criterta presented in se/c}non 32 4 are used. and the associated results are
shown Following this. the use of the resolution tree s presented and a best fit of lines
(within the lengths considered) to the image 1s performed Finally. the performance of the

algorithm is illustrated on some images of outdoor scenes

Before. however, the preprocessing steps associaled with the algorithm are
~—~s
performed -

4.1 Image Preprocessing

Figure 4.1 shows the picture of a capacitor mounted on a ceramic substrate
In this picture, as well as in all subsequent ones, the gray levels range from 0 to 63 The
linear features in this image are those of the dehmitating boundaries of the capacitor. and
also those of the conductive traces on the substrate The nonlinear features present in
the image are mainly due to surface texture. Figure 4 2 shows the same picture after edge
enhancement using the Sobel masks and thresholding with a threshold of 10. followed by

thinning; }
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Figure 4.2 Edge elements

in other words, 1n a first step. all edge elements havur'ig a gradient magnitude
greater than or equal to 10 have been assigned the gray value 63. while others have been
assigned the gray value 0 In a second step. the resulting binary image 1s thinned in order
to reduce the spatial spread of diffused edges The thinning algorithm used 1s Hilditch's
sequential algorithm for thinning binary images|[23] Thus. only those edge elements that
have survived both the thresholdmg‘and the thinning steps are considered by the hne

detection algornthm

3

As observed in the picture. only a small portion of the edge elements correspond
to linear features, and this can be attributed to the large amount of surface texture Figure
4.3 shows the orientations of the edge elements that have been retained after intensity
thresholding. These orientations are symbolically dlSp'BKyed by short line segments of equal

length having the direction of the gradient at the point from which they emerge

4.2 Sequential Pruning

In this experiment. line detection is performed using the statistical model. The
length of the line 1s chosen to be 55 pixels. and the threshold values are chosen to be

0% = 0.2 and 4, = 0.2. Three different experiments are performed in arder to highhght
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Figure 4.3 Gradient vectors
the use of sequential pruning In the first experiment lines are detected without any

§équent|al pruning being performed The result ts shown in figure 4 4

Figure 4.4 Line detection w.th ac sequential pruning

In this case. 225 line segments were found Clearly, for the type of picture
considered and for the length of line chosen, this number 1s overwhelming In figure 45,
lines are detected with sequential pruning and such that each line segment detected shares

at most 10 percent of its pixels with previously detected line segments

In this case. only 34 line segments were found. Note that although the number

of line segments detected i1s in this case m&eh inferior to the 225 that were previously found.
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Figure 4.5 Line detection with sequential prumag {10 % overlap)
the linear structures in the image are accurately captured. In figure 4 6, firally, the result

of sequential pruming 1s displayed. where no two line segments are allowed to intersect
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Figure 4.6 Line detection with sequential pruning (no overlap) -

This further reduces the number of detected lines to 24 In this case. a number

of linear features are missed.

Since the purpose of this line detection algorithm s to act as a preprocessing
step for higher level interpretation stages. it 1s of importance to reduce the amount of data
that is to be fed to higher levels. Sequential pruning then becomes necessary insofar as,

with the proper choice of parameter. the number of line segments detected is considerably
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-

reduced and the most of the linear features of the image are captured In all subsequent
éxperiments, therefore, sequential pruning will be performed. and a line segment will be

detected only if 1t shares less than 10 percent of its pixels with previously detected lines

4.3 Statistical Model: Choice of Parameters

In the following experiments. the mfluerﬂme of the thresholds a%' and Ay, on
the detection of lines 1s shown Remember that 0% sets a limit on the uniformity of the
orientations of the edge elements that are on the predicted line segment. while 4, sets
a himit on the deviation of the orientation of these edge elements from the orientation of
the hne segment that they are supposed to constitute Three types of ‘errors might occur.
depending on the choice of a% and A, If both are chosen conservatively then the varance
in onentation of the edge elements forming the detected line segments is constrained to be
small and the average orientation of t‘hese edge elerﬁents Is constrained to be close to that
of the line segment itself This s precisely the case where. owing to the small vanance,
the normality assumption holds If. however, 0% 1s given a large value and A, 1s set
conservatively, then the predicted line segments will be accepted based only on the average
ortentation of their edge elements, regardless of their umformity Conversely, if (I% Is set
conservatively and if A, 1s given a large value. then the line segments are accepted based
only on the uniformity of the orientation of the underlying edge elements and regardless
of their actual onentation Finally, if both a% and A, are assigned large values, predicted

lines are accepted even iIf they do not reflect the presence of underlying linear structures

Figure 4.7 shows the result of detecting lines 55 pixels fong with 0% = 0.1 and

A, =01, v

13

Also bear in mind. that the normalized edge components span the range (-1, 1)
The estimated deviation allowed with this choice of parameters is then close to 15 percent

while the deviation from the mean i1s constrained to lie within 5 percent As a result, .27 line
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Figure 4.7 Line detection with 72 =01 and A, =0.1
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Figure 4.8 Line detection with a% =02and Ay =02

segments are detected. Figure 4.8 shows the result of detecting lines of the same length

and with 02. =02 and A, = 0.2

In this case. 34 line segments are detected. The additional lines that are detected

are "more noisy” than the ones found with the previous parameter settings and hence could

not satisfy the previously required conditions. Figure 4.9 shows the result of detecting lines

with a% =03and A, =03

Ry
’

In this case 42 line segments are detected. some of which do not correspond to

linear features. In effect, the thresholds have been relaxed to the extent that line segments
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Figure 4.9 Line detection with n%, =03and A, =03

are accepted even if the underlying pattern they coveris not perceived as being linear This
artefact 1s even more pronounced in figure 4 10. where values of 0’21‘ =05and A, =05

are chosen

>

Figure 4.10 Line detection with ag[, =05ad Ay, =05

In total. 55 line \segments are detected. and among these./many which are

nothing more than a set of randomly oriented edge elements

Based on the previous experiments. values of 0% = 0.2and Ay = 0.2 were

found to yield reliable line detection. One should not forget that these values depend to a

» large extent on the picture being processed Had the image been noise-free, much smaler
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4 4 Statisucal Model Choice of Line Length

values of these two parameters could have been safely chosen. Since-the image is not

ideal. however. tolerance to deviations has to be embedded in the values assigned to these

thresholds.

4.4 Statistical Model: Choi¢e of)Line Length
w

AN
In this expeniment. we will jnvestigate the dependence of the results on the
length of line that is specified Of ccurse. the choice of the proper line lengths is closely
related to the a priori knowledge one has about the image to be processed Different line

lengths. however. will induce different results and these will be examined now

"Based on the previous results, we set the threshold variance to a%- = 0.2 and

" the threshold mean difference to A, = 0.2 We first detect lines of length 155 The.result

is shown in figure 4 11, and only 2 lines are detected which correspond to the long sides

A

of the capacitor.

A

= 7

Figure 411 Line detection with length 155. %

In figure 4.12. the result of detecting lines of length 75 pixels is shown.

. In this case, the iwo sides of the capacitor are again found. in addition to other

contour lines which were not accomodated by the previous line length This simple example
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\ Figure 4.12 Line detection with length 75

illustrates well enough the concept of significance of detected lines that was introduced in
the previous chapter Conceptually. the lines of length 75 that overlap with the previously
detected lines of length 155 dp not have the same significance as the ones that do not
overlap. since m the former case the hnes of length 155 yreld a more complete fit than the
lines of length 75 This point will be illustrated later on with an example implementation

of the resolution tree Figure 413 shows the result of line detection with a length of 35

T . e
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Figure 4.13 Line detection with length 35

More and more fine detail i1s captured as compared to previous line lengths.

o Figure 4.14. finally. shows the result of line detection with a specified length of 15 pixels.
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ﬁ @q ’ j

Figure 4.14 Line detection with length 15 .

<

At this point we could ask ourselves the followiné qdestlon: is 1t better to
detect long hnes first and then specify successively smaller andé('naller lengths (.m order
to catch more and more fine detai!). or is 1t better to detect very‘short _segmentps once and
for all, and then group them together wherever possible in order to form longer seg'm;ents
? The first approach suffers from the computz}tl'(')tzal complexity involved. since a variety
of different lengths would have to be specified The second approach however, suffers
from the noise sensitivity inherent 1n the detection of short line segments A short line
segment 1s. by defimtion. formed of a small number o’f samples (or pixels) Uslng the

statistical model therefote. small deviations in any of the samples might considerably affedt

the estimated intervals on the underlying population Sta{l}QCS. and this extrapolation step

might be very noise sensitive. Of course this problem 1s not as accute with the other

suggested scheme which is based solely on sample measurements The second problem
with detecting short segments lies in the obervation that if, on a long line segment, r{oi§y
samples are not randomly distributed but are rather spatially grouped. a short segn%ent
can not be detected at that position Despite all thesg problems however, an algontim
is suggested in the conclusion of this thesis for merging small line segur%ents into longer
ones while overcoming the noise sensitivity associated with the detection of short hnes.

Detecting long line segments does not present the same kind of noise sensitivity problems.

sincce averaging 1s performed over a larger number of observed samples The main problem

) 57
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4 5 Non-Statistical Model Choice of Dewviation Criterion

associated with detecting long lines. however, 1s inherent 1n the fact that the ornientation of
the predicted line is based on the gradient orientation of a single edge element. and shght
deviations in the gradient ortentation could yield large deviations of the predicted hne from

the true contour line and as a result. the line will not be detected

4

a
~

4.5 Non-Statistical Model: Choice of Deviation Criterion

The previous hypothesis venflcat;on criterion was based on the premise that the
normalized edge elements were normally distributed As was pointed out in section 3 2 4,
this assumption 1s valid only for small variances. and cannot be deemed true for arbitrary
threshold values A new set of hypothesis verfication.critena was therefore proposed and

which were not based on interval estimation

¥

In this group of experiments. we will investigate the choice of an appropriate
deviation criterion, from the ones proposed in section 3 2 4 of this thesis The length
of the lines to be detected will be set to 55 pixels The deviation criteria considered
are dy. dy and doc which are based on the Lj. Lé and /[ x norms respectively As was
pointed out previously. the L; norm is equivalent to an ave‘ragmg operation, whue the
Lo norm s e;quuvalent to maximum value selection The deviation criterion dy is thus an
average deviation measure, while the cnterion d 1s a maximum deviation measure dy will
thus exhibit dependence on group deviations, while do, will exhibit dependence on sample
deviations Any choice of norm between these two extremes will thus be a tradeoff between
noise immunity and sensitivity to.changes in onéntatlon In what follows, the threshold on

’

the deviation in the z— and y— edge components will be denoted by A

The first experiment is performed using the dyx and dyy criteria (as defined
in equation 3 35) with A = 0.1. In other words. the tolerated average dewviation shall not
exceed 5 percent of the full range. As a result. only 9 lines are detected. as shown in figure
4.15. S
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-

Figure 4.15 Line detectron with A =01
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Figure 4.16 Line detection with A =02

Relaxing this condition and doubling the allowed deviation yields 26 lines (figure

4.16)

While the lines previously found were seen as being “perceptually straight.”
increasing the tolerated deviation on the normalized edge components results in additional
lines which could be qualified as “perceptually noisy.” Increasing the tolerance to A = 0.5
finally. yields additional lines which do not coincide with underlying contour lines (figure

4.17).

(%Y

4 We now use the dj x and dyy critenia (see equation 3.34) with A = 0.1. Since
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4 5 Non-Statistical Model Choice of Deviation Cniterion

l// p— |

——

Figure 4.17 Line detection with A =05
less averaging i1s performed using these criteria (as opposed to dyy and dyy ) and since. as
" a result, more sensitivity 1s exhibited to individual sample deviations it would be reasonable

to expect fewer lines to be found and indeed. only 2 are detected {figure 4 18)

Figure 4.18 Line detection with A =01
A 3
Y Doubling the allowed deviation to A = 0.2 yrelds 18 Illnes which are seen to be
' (’ less noisy than the ones found with the dy y and dyy cnitena (figure 4 19)

Finally letting A = 0.5 yields 37 lines. among which many exhibit noticeable

deviations from the underlying contour lines which they are supposed to match (f}gure

(1) 4.20).
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Figure 4.19 Line detection with A =02
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Figure 4.20 Line detection with A =05

The last criterion considered 1s based on the Loo norm and is formed of d, y and
dooy. This criterion 1s the most sensitive to individual sample deviations since no averaging
operation whatsoever is performed. This criterion 1s thus the most noise sensitive, and
indeed. no lines are found with A = 0.1 and A = 0.2. This shows that in the lines previously
found with other criteria. there were samples exhibiting individual dewiations larger than
what was tolerated. but these deviations were averaged out in the set of samples considered.
Setting A = 0.5 however. yields 16 lines all of which are seen to match .the least noisy

underlying contour lines (figure 4.21).
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-

Figure 4.21 Line detection with A =0 5

Based on the previous expenments. we will adopt the dyy and dpy cnteria
for subsequent experimentation This choice 1s dictated by their predicted and observed

tradeoff between immunity to noise and sensitivity to changes of orientation

¥

4.6 Pruning the Resolution Tree

In this section, we will perform experiments on the resolution tree, which was
introduced in section 329 as a useful data structure for highhghting redundancies between
detected lines of different length The different lengths that the lines will be detected at
are 155, 75 and 35 In all cases. the maximum tolerated deviation A 1s set to A = 0 4,
Figure 4.22 shows the detection of lines of length 155

f["

As expected, only the two main sides of the capacitor have been detected. In

figure 4.23. the result of detecting lines of length 75 after pruning 1s shown

As exp :cted. overlap between lines of length 75 and the ones previously found
(i.e. lines of length 155) have been reduced to a mimmum Simularly. figure 4 24 shows the

result of line detection with length 35 and after pruning 1s performed
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Figure 4.22 Line detection with length 155
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Figure 4.23 Line detection with length 75

Again, redundancies between these lines and the ones found previously (i.e.
lines of length 75 and 155) have been reduced to a mimmum In figure 4 25, the last three

images are overlapped for the sake of clarnty

As observed. redundancies between lines of different length have been reduced.
and each line segment in the resolution tree is a best piecewise fit to the image. for the

different line lengths that have been selected.
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Figure 4.25 Pruned resolution tree

4.7 Example Outdoor Scenes

Figure 4 26 shows an outdoor scene

The linear features that are present in this picture correspond to the car chassis,
and part of the projected shadows In Figure 4 27, the result of line detectron 1s displayed

with A = 0.4 and a line length of 55. .

As expected. the main linear features are captured. Another outdoor scene

image 1s shown in figure 4.28.
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Figure 4.26 Example outdoor scene .

Figure 4.27 Line detection with length 55

AN

Line detection i1s performed on this image with again the same parameters, and

the resk{l't is shown in figure 4.29.

rd

(
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Figure 4.29 Line detection with length 55
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Chapter 5 Conclusions

In this thesis, an algorithm was presented that detected line segments in inten-
sity images. This algonthm was shown to be based on the hypothesis prediction/verification
paradigm. and was found to be both computationally efficient and robust to fluctuations
in the input data. The algonthm works as follows for every edge element predict a hne
segment of specnflc length centered at that same edge element, and venfy this prediction
using statistical tests on the samples tha; constitute thrs: predicted line The prediction
1s done using the gradient orlentatlo-n at the edge element, and _hypothesis verification is
performed using the gradient orientation of all edge elements that are on the predicted line.
In addition to the bas&cyc algonthm. a data structure for representing the detected lines was
introduced n order to reduce the redundancies between lines of different length Exper-
ments were performed on the algorithm using both the statistical and the non-statistical

models, highlighting the dependence of the algonthm on its associated parameters Addi-

tignal experiments were aiso performed with the resolution tree, and the result of pruning it
//

-~ was shown to yield a best linear fit to the original image from within the line segments that

had been originally considered. Finally, the algorithm was successfully tested on images of

outdoor scenes. -

\

Two possible extensions could be envisaged for this algorithm: the first relates

to the grouping of lines that have been detected, and the second relates to the detection of

curves (of a restricted type) using the same paradigm that has been adopted here for the

case of line detection. In what follows, each of these ideas 1s briefly discussed.




51 Line Merging

5.1 Line Merging

The algorithm, as presented in this thesis. d;ztects lines of a specified length.
In manj practical cases, no a prioti knowledge of the possible line lengths in the p:‘;:ture is
available The resolutlop tree was thus introduced as a means of representing lines based
on their length in order to yield a best assignment of hines to the image The drawback with
this approach lies in the computational c‘omplexaty involved since a large number of different
lengths have to be specified for line detection before any useful result can be attained A
possible alternative to the resolution tree Is to detect lines only for one possible length, and

then to group together those lines which are actually part of the same contour line

When are two line segments part of the same contour hne ? When any group
of points taken from any of the two lines are collinear This condition being necessary. 1s
far from being sufficient however, since one also has to take into account the proximity of

the two lines We thus have constraints on ortentation and constraints on proximity

The algornithm for line merging, embedding the constraints mentioned above,
can be efficiently framed into the hypothesis prediction/venfication paradigm. and goes
as follows consider merging every pair of lines if theirr normalized gradient components
differ by less than a certain threshold value (which could be the same as the one used for
detecting the hnes in the first place) This means in effect that the lines are close to being
parallel. One now has to verify that they actually oniginate from the same contour line
To do so. predict the line formed by merging the pan being considered (through joining of

their end-points), and compute the normalized gradient components of the new line just

formed (figure 51) .

Now perform a hypothesis verification test on that line, exactly in the same
manner as the ones shown in chapter 3 of this thesis If the test fails. then the merge 1s

not valid. If the test succeeds and the hypothesis i1s accepted, then the new line is kept.
(

1

[ ¢
The merging process 1s then iterated until no new merges can be performed.
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Figure 5.1 Line Merging

5.2 Curve Detection

The first q@stlbn that ought to be answered at this point i1s* what is a curve?
Simply stated. a (plane) curve is a mapping from the field of real numbers onto the two-
dimensional plane This mapping could be arbitrary, and straight lines are just stmple cases
of plane curves Since curves exist 1n large varieties, 1t is necessary to somehow specify
thé kind of curve that we propose to detect We propose to detect only those curves which
form arcs of circles Why only these and not others? Because we feel this to be the next
logical step: the algorithm that was presented in this thesis detected. straight lines. 1.e.
curves of zero curvature We now propose to detect arcs of circles. 1 e. curves of constant

curvature. It can be seen, therefore. that line detection becomes a special case of the

proposed algorithm for curve detection

The next question that ought to be answered is. how do we perform such a
task? In order to do this. we shall draw analogs from what has been presented for line
detection. Lines were detected based on two parameters: position and orientation. Arcs
of circles will be detected based on three parameters. These are position. orientation. and

curvature. Once these thrze parameters are computed for a certain edge element, it is
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$ 2 Curve Detection

possible to predict a unique arc of circle having a prespecified length and which s centered
at the edge element of interest Having the curvature of the predicted curve, one could easily
compute 1ts assocrated radiwus of curvature. From thnhs radius and from the orientation and
position of the edge element, one could compute the center of the predicted arc of circle
AR
Once this center 1s compute(f./ the ornentation and curvature values at the points on the
predicted arc could be predicted. and these predicted values could be matched against the
actual orientation and curvature measurements on those same points i order to venfy the

predicted hypothesis (figure 52) The main problem with this approach 1s. of course the

reliable computation of a curvature estimate on which the curve prediction stage is based

/
v P’

Figure 5.2 Curve Detection

-

The hypothesis prediction and verification stages are thus seen to be similar

to what was presented for line detection except that additional steps are now included in
-

©

order to accomodate curvature. ,

- 10
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