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c Abstract 

This thesis presents an efficient method for detecting straight line segments 

in digital pictures using a hypothesis prediction/verification paradigm ln this paradigm. 

a straight Ime segment of predefmed length IS predicted to eXlst at sorne partlcular pixel 

location. The ~mentatlon df thls predicted Ime segment IS based on the edge Orientation 

at the pixel location This prediction IS then venfled agillnst statlstlcal tests performed 

on the Ime As a result. the predlcted line is elther valldated as belng a Ime segment. 

or it 15 rejected Non-statlstlcal tests are also developed ln order to verify the predlcted 

hYi>0thesls An extension of thls algonthm for the detectlon of Ilnes at dlfferent lengths is 

also present~d. and a crlterlon 15 defmed ln order to evaluate the slgnlflcance of the detected 

line segments. Fmally. the algonthm IS successfully tested on a number of dlfferent Image;; . , 
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Résumé 

Cette thèse présente un algonthme pour la detectlon de lignes dans les- Images 

• numériques. L'algorithme présenté utilise un processus de prédiction/vérification Plus 

précise~ent. un segment de ligne droite est prédit à chaque pOint de contour da-Ânage 
-\, 

La longueur de ce segment est speclflée d'avance, tandis que son Orientation ~~t déduite 

de l'orrentatlon du gradient au pOint de contour conslderé Cette prédiction est ensUIte 

verifiée au moyen de tests statistiques et autres sur les échantillons 'qUI constituent le 

segment en <luec;tlon Une extenc;lon ne l'algorithme pour la detectlon de segments de 

differentes longueurs est presentée et un crttère est défini en vue de leur évaluation Enfin, 

la performance de l'algorithme est démontrée sur nombre d'images réelles 
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Introduction 

\ 

Computer VISion IS the field of Image interpretation by computer Images are 

formed of picture elements or pixels and are the projectIOn of 3-D scenes onto a 2-D field 

Th~ main problem adressed IS therefore how do we mterpret Images acqUired by external 

sensors 7 The final goal of thls interpretation stage. therefore. IS to arrive at a symbolic 

representatlon of the Image ln terms of known ~Iements 
., . 

One_could vlew the process of image Interpretation as consisting of one gigantic 

monolithlc stage. The Input to thls stage would be the raw ImiJge and the output would 
''----. . -" { 

consist of symbollc deSCriptIOns of the content of the Image. Conslderlng computer _~Ision 

ln this manner does not help ail of thefcomplexlty' of the interpretation task IS embedded ln 

one black box where only ItS Input-output behavlor IS known Th.e alternative way of 100 king 
1 

(~ 

at computer vision is to do s'o ln a modular way r<lther than-Olewlng the interpretation 

step as one single step. we decompose It Into a number of simpler operations Thus. we 

have a cascade of processrng elements. where the output of one feeds the Input of the next.' 
l ' 

Startin~from< the raw image data therefore. the final symbolrc lepresentatlon of the image 
\ . ' 

is achieved through processlng a number of IntermediateJepresentations (see figure 1.1): 

Since the processing elements are dependent on the symbolic representations 
. 

chosen. the question that should be asked at this pOint is: what are the intermediate 

representations that need to be chosen? ln the applied vision context. the intermediate 

'\ 
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.. 

Figure 1.1 Modular processlng 

representations ·'are problem dependent, and representations whlch mlght be suitable for 
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interpreting one class of Images mlght not be appropnate for tnterpretlng another. 

Another aspect of thls cascade-type of processlng IS the flow of control ln th,s 
( 

context. flow of control refers to the Interdependencles between the dlfferent processlng 

elements These mterdependencles can be roughly classlfled Into two categories' top-down 

and bot-tom-up ln bottom-up control. each processmg element processes the data fr~m the 
~ 

prevlous (lower) level ln the hlèrarchy. and feeds the next (hlgher) level ln thls paradlgm. 

the data flows From the Image up to ItS symbollc representatlon. and at each level. no 

knowledge IS assumed about hlgher levels Thus. each processtng element 15 as general 

purpose as possIble and IS not b,ased by what hlgher level processlng dlctates This IS ln 

dlr~ct contrast to top-down control where m addition to feedtng the next (hrgher) stage ln 

the hlerarchy. a processrng elcmen t can feed Informa tlon back to the prevlous (lower) level 

in the form of problem-,domaln knowledge and heurlstlcs ln top-down control. therefore. 

each processmg ele!1lent IS gUided by the expectatlons ~f hlgher level modules and hence 

loses ItS generallty by belng problem dependent 

Choosmg the nature of the dlfferent I,ntermedlate representatlons and of the 

control scheme IS not a simple task when addressmg the viSIon problem m general ln 

applled VISion however. the scene ta be Interpreted can be const~~lned to belong to a number 

of classes ThIS thesls presel)ts an algonthm for computlng one of these Intermedlate level 

representatlons ln an applled vIsion context and wlthout any a prIori knowledge of the scene., 
• 

content. More speclflcally. thls thesls presents an algonthm for detectlng Ime segments 

in gray It!vel digital Images wlthol./t any a pm>rl notIon of the hlgher lellel structures that 

they might constltute (e g rectangles. polygons. ). Why Imes and not clrdes ? Slmply 

because m most mdustrlal viSIon tasks. Ilnear features are predominant. and the main 
" 

requirements of any processing stage are that It be robust to variations ln the input data 
~ t 

and be computationally.efficlent The algonthm presented here could therefore be used as 

one .bUilding blo~k of a complete Image interpretation system An example such system is 

shawn in figure 1.2 for the case of detectlng polygonal obJects. 

The problem ta be solved is then the followlng: given a gray level image. find 

3 
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Figure 1.2 Example bottom-up system for detectlng polygonal obJccts 

Introduction 

the lines in thls Image As will be seen later. we will restrlCt ourselves (wlthout 1055 of 

generality) to the detect/On of contour lines, s/nce we belleve thls .5 the most /nterestlng 

case ln practlcal applications The solution we present IS based on the effIcIent hypothesls 

predIction/verifIcation parad.gm It conSlsts of predlct/ng the presence of a l/ne at a possible 

pixel los~tlon. and then verrfylng thls assertion through statlstlcal tests The err,C/ency of 

4 
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f!il List of Figures 

this framework and the slmplicity of the tests involved contribute to a large extent to the 

perfor~ance of this algÔrithm. and experiments that have been performed show that is 

1 both robust to fluctuations m the mput data and computationally efficient 

This thesis 15 structured as foflows: chapter 2 provldes an overvlew of algorithms 

for four different approaches to hne detectlon. chapter 3 presents the proposed algorithm . 

.:;, , (;hapter 4 d,sc'usses expenmental results. and finally. in chapter 5. appropriate conclusions 

are drawn and possIble exterrslOns to the proposed algorithm are suggested 
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Chapter 2 Une Detection: a Survey 

" 

2.1 The Hough Transform 

One of the earllest algonthms whlch was developed for Ime detectlon IS the 

Hough. tr:ansforml1 1[21 The Hough transform IS a mappmg from the Image space lOto a 

parameter space ln whlch shape features (Ir) thls case Imes) are more expllclt 'Conslder 

an Image functlon f defmed over a dlscrete two-dlmenslonal domam defmed by the mteger 

variables .r and y It IS assumed that f defmes a bm'ary Image (1 e f(I. yl = 0 or 

f(x, y) = 1) as a result of preprocesslng. and that the Imes to be detected are formed of 

picture elemen~.r,y) such that f(I,y) = 1 ln other words, the background has mtenslty 

o and the lines have mtenslty 1 

One of the earliest parameterlzatlons that was performed for the Hough trans­

form was the slope-mtercept parameterlzatlon ln thls case. a plcture element (I., yl 15 

deemed locatec:l on a line wlth slope m and mterc,ept n If and only If f(J, mI + n) = 1 The 

Hough transform then conslsted of a mappmg of the Image space lOto the parameter space 

formed by the range of values of the parameters m and n Thus. for each pomt (x, y) 10 the 

image space that has the property that f(x, y) = 1. the hne n = y ~- mI 15 formed in the 

parameter space m - n. Thus. the Hough transform maps each pomt ln the Image space 

into a line in this parameter space. The mterestmg property of the Hough transform is that 

collinear points in the image space are mapped into parameter space lmes which intersect 
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2 1 The Ho~gh Tr:)form 

at exactly one point. Conversely. the number of mtersecting lines at an intersection point 

(m, n) in parameter space corresponds to the number of collinear points m image space 

which are located on aime with slope m and mtercept n The Implementation of thls 

~o"thm. wh.ch was proposed by Duda and Hart[21. goens foUow,s. set up an accumu­

lator array (parameter s'pace) and for each pomt (x, y) m the Image such that f(x, y) = 1. 

increment the accumulator cells (m, y - mx) for ail values of m Thus. after the transform 
- , 

IS app"ed. intersection pomts are recognizable by thelr correspondlngly large count ln the 

accumulator array ln addition to thls Implem€ntatlon schem~. Ouda and Hart proposed a 

repararnetenzatlon of the Imes ln terms of the distance and Orientation of aime wlth respect 
, 

to the Image coordlnate system The reason for dorng 50 15 that the values of m and n 

coulcl grow unbounded for certam line configurations Wlth the new para!J1eterlzatJon. a 

pOint (.r, y) IS located on a "ne defrned by a distance p From the orrgln and an orientatIOn () 

wlth respect to the x-axIs If and only If f(x. y) = 1 and p = ICO"O + y.<,wO Thus m thls 

case. the Hough transform maps each Image feature pornt (.r. y) Into a smusoldal cl!~ve 

defined by the precedmg equatlon. Agam. collmear Image pOints yleld Intersectlng curves 

ln parameter spac\ (see figure 2 1) 

The Hough transform IS a special and dlscretlzed version of the Radon Hans­

form[3j. the latter bemg a mappmg From the space of functlons defined on the Image space 

Into the space of functlons defmed on the parameter space Thus assummg an. arbltrary 

Image functlon f defmed on some domain D of R2 (the contmuous Image). the Radon 

transform of f associated wlth a "ne L of the plane IS glven by 

J = .T<.f = Ir f(x. y)d.s (2.1 ) 

wlth ds being an increment of length along the Ime L Now conslder a Ilne L specified by 

a distarlce p from the orrgm and an Orientation () wlth respect to the x-coordinate aXIs 

The value of the Radon transform for parameters p and (} IS then 

J(p,O) = 1, f(x,y)ds 
L(p,~J 

Now let the unit vector f be defined by 

ê= ( 
COSO) 
smO 

m 

(2.2) 

(2.3) 
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Figure 2.1 Hou~h transforrn 

and the unit vector i~ orthogonal to It by 

_1 ( cr -- -- -
.~l 11 0 ) 

("0 . .,0 

2 1 The Hou~h Tr;lnsforlll 

. 0 

(2 4) 

i and (:.... are unIt vectors respectlvely orthogonal and parallel to the l/ne 1. (see 

figure 2.2). 

With thls new parameterizatlon. the Radon transferm becomes 

j
+oc 

j(p, i) = -00 f(pi + tl i )dt (2 5) 

Now consider the function 9 such that· 

(2.6) 

8 
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2 1 The Hough Transform 

ln other words. the functlOn 9 defines a hne simllar to f ln distance and orien-. , 

tatlon. but different in posItion (due to the shlftrng term a) , The Radon transform of. tj IS 

then found to be 

'+00 

i}(p.f)= J-,X) f(p'i + (t + a)i-'-)dt 

j
+oo 

= ~X) f(pE + (t + a}Ë-'- )d(t + a) 
(2.7) 

j
+oc 

= -00 f(pE + li l )dl 

= ](P, E) 

Thus f and 9 have slmllar Radon transforms Slmrlarly dllP to the hnearrty ('If 

the Radon transform. 

h(x,y) == f(x,y) + g(xIY) => ft == 1 +!J (2.8) 

What do these resufts imply7 The first result Implies that the Hough transform 

of a line is the same no matter where It IS located and as long as ItS distance to the 

origin and its orrentatlon are flxed Thus. position information IS not malntalned ln the 

9 
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2 1 The Hough Transform 

Hough transform. The second result implies that li ne segments which are not connected 

contribute to the same cell 10 parameter space. as lon'g as they have the same parameters p 

and (J. Using trrese two results. we conclude that ln the "mit. the Hough transform cannot 

distinguish between a Ilne of a certain length and a group of colhnear but disconnected 

"", pOints. 

ln addition to ,these problems whlch are mherent to the Hough transform. an­

other major problem still exists and IS due to the Implementation This problem IS that 

of parameter-space quantlzatlon A very fine quantlzatlon of the parameters p and 0 will 

tolerate only very small devlations from colhnearlty,- whlle a gross quantlzatlon will not 

dlscrÎmlnate between non-collmear pOints The flrst artefact will result ln clusters of smal/ 

values ln the accumulator array. whlle the second will result 10 large peaks 

We thus conclude that the Hough transform does not fully solve the problem of 

li ne detectlon. It only conslsts of a mappmg whlch hlghllghts colhnearltles The next loglcal 

step after the Hough transform 15 one of mterpretatlOn: the Imes ln the Image space must 

be mferred from the values of the parameter space ln addition to the above, problems. the 

computatlonal complexlty of the Hough transform does not w?rk to Its advantage Glven cp 

pOSSible quantlzed values of the orrentatlOn and .'1 feature pomts. the preceedrng equatlon 

is to be computed Sep tlmes ln order to reduce thls computatlonal complexlty. a scheme 

that IS often used IS to convolve the Image wlth a set of Orientation-sensitive masks and 

map each pOint ln Image space Into only a portion of the curve 10 parameler space. centered 

at the plxel's preferred Orientation. By usmg local information denved from tne convoiutlon 

tnasks. thls scheme reduces to some extent cross-interferences between non-col/mear line 

segments. 

The Hough transform IS a global scheme for Ime detectlOn and highllghts collmear­

ities. Unes. however. are formed of Pbints whlCh possess a precise local structure (e.g. 

connectédness. location Qf endpolnts) Thus. for a hne detectlon scheme ta be successful. 

this local information must also be taken into account. In 'what follows. an algorlthm which 

uses thls local information in or der to enhance lines is presented. 
l 
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2 2 Relaxation labclhng 

2.2 Relaxation Labelling 

Relaxation labelling be/ongs to a class of Îterative a/gonthms where globally 

consistent solutions are achleved using local co~putationsI4J. More speciflcally. for the 

case of Ime detectlon. conslder an Image as bemg a graph. wlth each node ln the graph 

corrèsponding to a Plxelm the Image A pOint ln the Image can elther be part of a Ime or not 

ln the former case. a certain Orientation 15 assoclated wlth the pOint. whlch corresponds 

ta the orrentatlOn of the tangent to the curve at that pOint ln the latter case~-however. 

no such ta,ngent eXlsts Returnlng to the graph analogy. each node (1 e each pixel) IS 

asslgned a set of labels À (orrentatlOns) whlch are nothrng but symbols wlth a precise 

semantlc meanrng Associated wlth each label À of anode 1 IS a certalnty pz().). whlch 

reflects the confidence that the label whlch corresponds ta no de 1 IS label À (see figure 

23) 

Figure 2.3 Graph labclling 

These certaintles are normahzed by constraming them to add up to 1 and hence 

(2.9) 
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2 2 Relaxation labclling 

ln addition to this Initial label asslgnement. the interactions between nelghbormg nodes 

in the graph have to be defmed These mteractlo";s are defined through what are called 

"\ "compatlbllity functlons" The compatlbdlty function of label >. at node L and label ,\' 

at node ) specifies how much >. and>" favor each other when they are at nodes Land 

j re5pectlvely This compatlblhty functlon is u5ually denoted by rI] p. >.') The support 

glven to label>' at no de 1 by label X at node ) is equal to rI) P, >") p] (A') ln other words. 

the compatlblilty functlon IS Itself welghted by the confidence we have ln the presence of 

label>" at node) The support glven by no de } to label>' at node 1 15 equal to the total 

of each indivldual label support and IS hence equal to 

m 

L rI) (>., >.')p) (>.') , 
,\'=1 

The total support given to label>' at node 1 is then the total neighborhood support and is 

hence equa/ to 
n m 

8%{>.) = L L rZ)p, >.')pi"') (2.10) 
)=1,\'=1 

Let 

'-
(2.11a) 

and 

s~ = 
(

St (>'d ) 
S%(>.2) 

StPm) 

(2.11b) 

A labelling p~ of the graph is consistent if and on/y If p~ = s~ / (.<J~ • i). with the 

vector ï defined as ï = (11 1)T ln other words. conslstency is achleved orny wh en 

the neighborhood support confirms the label/mg asslgnment. The objective of relaxation 

labelling techniques is th us as folfows: given an Initial labelling assignment. It'èratively 
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22 Relaxation labclllOg 

update. thls labelling until consistency is achleved. Thus. glven thf"labellrng asslgnment 

p~k at iteration k and the nelghborhood support .'i~k. consistency IS achleved by mlnlmlZlng 

Il -k/( -k 1-) -k Il 
SI SI' - Pt 1 

This IS usually achleved by computrng the projection v~k of the support vector 

of\lthe hyperplane tangent to the constralnt on the labellrng asslgnment Jhe new labelling , 

asslgnment p~k+l IS then equal to p~k +v~k As far as hne detectlon goes. the initiai label/mg 

asslgnments are denved by applymg a number of Orientation sensitive masks to the Image 

The response of these coarse Orientation estlmators IS then used ln order to establtsh the 

mltlal label/mg p~O The compatlbllltles between Orientations at nelghborrng pixels on the 

other hand. are deflned through a study of the dlfferentlal geometry of Ilnes and curves 

and encode the a priOri contextual information relatmg to the problem domaln[51 ln an 

L - early work on thls toplc[61. elght Orientation labels were asslgned to each pixel. rn addltlO!] 

to the "no-Ime" label The compatlbllitles between nelghborrng labels were deflned as IS 

shown ln figure 2 4 Note also that the compatlbtlltles used are chosen so as to enhance 

the "stralghtness" of a curve more than Its 'turvrness" 

t 
1 

\.0 

1 
,1 
.5 l 

./ 

1 

-
• OS' -.,tS 

'Figure 2.4 Orientation compatlblhtles 

The resu/t of applyrng thls technique IS generally very satlsfactory. This IS to be '­

expected. since If the compatlbllity functions are properly chosen and If the Initiai labelling 

assignment is correct. the result will be a globally optimal asslgnment of orientation labels 

to the picture elements. The major drawback wlth thls scheme however. resides in Its 
, 

excessive computatlonal complexlty As noted ln 17). for a 256 x 256 size Image with 8 
r 

labels per pixel. 524288 label certamtles need be updated at every IteratIOn This induces a 
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2 3 Search Techniques 

heavy computatlonal burden on eXlstmg sequential machines and makes It Impractlcal for a 

large number of applied vision tas~s where tlme performance must be taken lOto account. 

2.3 \earCh Techniques 

Search tecnnlques. also referred to as Ilne tracklng technrques. are another class 

of algorithms which use local constramts The slmplest search techntque 15 also the least 

efficient and conslsts of exhaustive search Glven a startlng pOint (usually Identlfled as 

a bnght pOint on a dark background). the objective IS to select. among the Immediate 

nelghbors of thls pOint. the hlghest mtenslty pOint. and from there on the process IS 

repeated If the Ilne has a conslstently hlgher Intenslty than ItS background and If the 

background IS relatlvely unlform and nOlse-free. then such a technique could work weil 

Such is not the case however for real Images. and false contour pOints are generated due 

to noise and the line to be tracked IS sometlmes artlflclally broken up ln such cases. 

backtracking becomes necessary. and the set of possible contours grows exponentlally 

large. To see the effect of nOise on such an algonthm. assume that aime L IS formed of 

N connected pixels Pt(xt,Yt ) ln the nOlse-free case. J(PL ) 15 a maximum 10 a selected 

ne'ghborhood of Pt (say th~ one flxed by the d,rectIOn of search). and we have. 

Pr(line found)= Pr(all poznts are local maxIma) 
.V 

~ 

ln addition. assum
4l
e 

= Il Pr(J(Pl) local m<txlmum) 
t=1 

if Pi E L: 
otherwise. 

- (2.12) . 

(2.13) 
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2 3 Scarch Techntques 

. 
We would like to evaluate the performance of this simple local maximum sel~ctor C 

, 1 

ln the presence of noise For this purpose. we assume that a 2-0 nOise process '1 is added 

to the Image functlon f We assume each sample rJ{x, y) to be statlstlCally mdependent 

of another sample r}(r', yi) Wlthout any 1055 of genera/lty we assume ,I(I, y) tô be zero­

mean wlth variance a 2 Smce the probabliity of fmdlng a contour Ime IS related to that of 

each contour pOint bemg a local Intenslty maximum ln a selected nelghborhood. we will 

concentrate on quantlfymg thls latter probab'hty , 

/ Assume a slmflhflcatlon or thls general search problem. where the next pixel m 
1 • 

the contour IS to be foun'd ln a 4-connected nelghborhood of the current pixel and where 

, an aproxlmate a-priori knowledge of the dlreytlon of search reduces the problem to that of 

selectlJlg the pixel havmg the hlghest Intensl~y ln a 2-plxel nelghborhood (see figure 2 5). . . 
Thus 

" - -

~ 

1 ; 

1 
t-""'-

li 
1 

1 1 

1_ 
1 1 . " 

f' 

" 

;. . 

• 

Figure 2.5 Contour Itnc search 

\ 
(2.14) 

where Pt and Pl are the two possible oandidate pOints' Hence 

.. 

Pr(J( Pl) -'local manmum) =. Pr(J( Pt) --/(1;)) > 0) 
, . (2.15) 

1. 
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2.3 Search Techniques 

let Xl = f{Pt ) - f{P)) be the random variable corresponding to the difTerence ln intensity 

( of the two pixels. Also ,assume Pt 15 a contour poi~t. while Pl is a background pOints 

\ Thus. Pl .5 dlstributed wlth mean U and vanance a 2. whlle PliS zero-mean and wlth 
.,-

variance 0'2 Furthermore. smce the samples are statlstlcally Independent. we obta," that 

Xl is distributed with mean [' and vanance 2a2 Thus: 

Pr(f(Pt) local maxzmum) = Pr(X l > 0) 

Using Chebyshev's mequahty. we obtaln: 

, 

and hence 

Thus. we have 

and therefore 

Pr( Xl - U: ~ k\/2a 2 ) _ 1, k 2 

/ 

/ 
v'" 

" Pr((-X1 +.U) 2: k\/2a2 ) ~ 1/k2 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

1 

From equation (2.20). it is clear that we are Interested ln the case where Xl ylelds a positive 

value. We thus set k = [JI v2a2. and we obtaln 

(2.21) 
'h 

and after sorne manipulation. we get: 

\ PrIX! > 0) 2: (1 - 2,,2 fU2l 

\ Returning to the previous equation. we then obtain: . 

(2.22) 

(2.23) 

and therefore. assuming 1 - 2q 2/ U 2 2: 0: 
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Pr(lz'ne found)= Pr(all points are local maxima) 
N 

= TI Pr(!(P,} local maximum) 
o t=l 

N 

~ IT(1 - 2a2;'U2) 

t=l 

~ (1_2a 2 :U2)N 

(2.24) 

The expression (1 - 2a2,'U2)N IS th us seen to constltute a lower bound on the probabllity 

that the contour "ne IS correctly found We also note that for large values of the slgnal­

to-noise ratio U /0, thls lower bound approaches 1 and hence the probabliity of correct Ime 

detectlon 15 Increased What IS mterestlng to note ln thls'expresslon IS the dependence of 

this probabdlty on the signai-to-noise ratio [r a and ori the length .v of the Ime the whole 

~ry-QLnolse-sensltlvlty of contour trackmg algonthms IS embedded ln thls one mequallty 

-c::: 

An extensIOn of this simple algonthm has been proposedbY Mo-ntanan[8j, whlch 

incor.porates constramts other than connectedness More speclflcally. he Introduces con­

straints on curvature ln addition to constramts on Intenslty mto a dynamlc programmmg 

framework. where a global figure of merit related ta both Intenslty and curvature IS maxl­

mized The maXlmlzatlon of the Cri tenon yields the lowest curvature curve wlth the hlghest 

contrast. Assu~Tllng the Ime to be formed of successlvely connected pOints Pl, P2, Pn Wlth 

Pl (.xp yJ. the global figure of ment IS 

n n-l 

g(P1,P2, .. "Prd = L f(P1 ) - q L(d(P'+l,Pt) -d(P"P,-d mod 8) (2.25) 
,=2 

where f IS the Image intenslty function. and d(PI+l' Pt) is the slope of the curve between 

points Pt and Pt+l' 

The first term computes the overall mtensity of the line, while the second com­

putes its overall curvature. From the above. we see that the figure of ment can be expressed 

as a sum of figures of merit involving fewer variables and hence. oWlng to thls separability. 

17 
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7. 4 Burns ct .11 s r cchlllquCI101 

the multistage decislon process of d}tnamic programmmg can be used Although thls tech­

nique posses~es a gl<?!>al perspective whlCh the prevlous one dld not have. the computatlOnal 

time and storage requi rements render It as Impractlcal for any reallstic application 

"­
Another algonthm whlch IS based on local search IS that of Simal191 Rather 

than using low level constralnts such as curvature. however. It employs hlgh level constralllts 

given by a knowledge of the scene ln whlch Image Imes are to be found As such therefore. 

its application IS hmlted ta images of polyhedra and works as follows Glven d set of 

contour Imes Inltlally found. compute the positIOn of the vertlccs and from these hypotheslze 

possible li ne arrangements These hne arrangements are glven by il study of vIsible edgcs 

ln polyhedral scenes and could be due to internai or external bound,Hlcs .md to JIJIl(tlon~ 

of faces or occlusions The VerifICation stage 15 done by computmg .ln error or dl~per~lOn 

measure between the hypotheslzed Ime and the featurc pOints m the IIndgc wIll( h .He 

supposed to support It Although thls algonthm has proven to be ~u( Lcs~flJl 111 Imdll1g 

Imes ln Images of polyhedra. its use of hlgh level knowledge constralllS ItS apphcdhlllt1y to 

only that class of Images and hence thls algonthm IS not sUitable for general purpose hne 

detectlon in a bottom-up context 

2.4 Burns et al.'s Technique(10) 

This algorithm explicltely uses the gradient Orientation Information as weil dS 

the gradient magnitude and hence IS the closest. among the algonthms mentloned. to the 

one presented ln thls thesls. The algorlth~ can be summarized ln four steps ln <1 flrst 

step. pixels are grouped into hne support reglons based on simllarity of gradient orientation 

(see figure 2 6). 

ln a second step. the mtenslties of the pixels ln thls reglOn are approxlmated 

by a planar surface ln other words. the edge itself IS approxlmated by a plane. Then. 

information related to the line characteristlcs (such as contrast or wldth) IS extracted from 

18 
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Figure 2.6 Lille support reglon (from 1101) 

the planar fIt and from the Ime support reglon Once these attnbutes are extracted. the 

lines can be symbolically represented and hence. selected. based on the des Ire to Isolate 

certain image events. In order to evaluate the merits and weaknesses of thls algorithm. 

each of these steps IS descr/bed ln more detall 

The flrst step in the algorlthm IS pIxel groupmg. based on gradIent orientation 

Thus. a specifIe operator must be used in order to allow the extractIon of gradIent Or!-

entation Too httle nelghborhood support' for the operator wIll increase nOIse sensltlvlty. 

while too large a support wIll average out too much detall The pnmary requirement that is 

Imposed IS that no fme detall be lost at the operator convolutIon stage Thus. the smallest 

possIble mask. whlCh is â' 2 x 2 pIxel operator. IS used Once the orientations at each 

putel are estimated. the pIxels must be grouped based on orientatIon slmllarJty RegIon 

growlng could be a possIble solutIon. but due to ItS local nature. It 'could cause dlsastrous 

results sinee Intermedlate orientatIOns are usually also created at dlsconttnU/ties Instead. 

therefore o the orientations are quantlzed into a number of dIstinct values. and pixels are 
. 

asslgned a label which corresponds to the value of thls quantlzatlon Then p"tels havmg the 
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same label are grouped together via a connected component labelling algonthm ln effect. 

the number of allowed quantlzatlon values determmes how much variatIOn 10 onentation 

15 allowed wlthm a line support reglon The fmer this quantlzatlOn. the smaller the toler-
-

ance The problem wlth thls approach IS that Imes are sometlmes artlflcially broken and 

conversely. sometlmes overmerged To overcome this problem. dlfferent quantlzatlons Jre 

used and the one whlch IS kept IS the one whlCh ylelds the longest Ime Another problem 
o 

wlth this approach IS that whenever groupmg problems occur. the ~hdpe of the Ime ~uppo,t 

reglons IS dramatically changed 

Once the Ime support reglon IS found. a welghted least-squares ht of J planilr 

surface IS made to the mtensltles of the pixels formmg the reglon The wClghts art' deter 

mined by the gradient magnitudes at those pixels The Jssoclatcd fit pilr,lmeter~ can lhcll 

be used to descnbe the type of hne detected AddltlOnal attnbutes can .Ibo he cxtr,JCted 
/ 

from the hne support reglon. such as Iso-contours (contours of pixels of eqlJ.11 II1t('n~lty). 

orientation variance. pleceWlse average Orlcntatlon. wlllch ail glve a measure of thc ~tr<lIght 

ness of the Ime. and contrast. wldth and steepness. whlch glve il measure of the ~trength 

of the hne as weil as ItS spatial spread 

ThiS algorlthm. as reported ln [101. has been successfully appllCd to Images of 

outdoor scenes and aenal plctures Of ail the algorithms that have been revlcwed. Burns et 

al.·s performs the best as far as the flllai result and the assoclated computatlOnal complexlty 

are concerned ThiS IS due to the fact that they use gradient onentatlon mformiltlon. III 

addition to gradient magmtude information Wlth thls scheme. however. placement of Imes 

can be skewed under slow Irltenslty changes Aiso. the line support reglon computation is 

based on a coarse orientation quantizatlon whlch could cause artlflClal breakups III the IIne 

segments 

This thesls presents an algonthm. onginally reported ln a report ln 1985 (see 

[11)). whlch overcomes the above mentioned problems. whlle yielding equivalent perfor-

mance. 
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Chapter 3 Line Detection: a Prediction jVerification Approach 

3.1 1 mage Pre-processing 

Before detectrng Imes. wc shall first defme exactly what we mean by stralght Ime 

segments ln Images. we can basically distrnguish between two types of Imear structures: 

the first type IS a Ilnear arrangement of whIte pixels on a black background or vIce-versa. 

ThIS corresponds to the case where the obJect percelved Itself has a IInear structure. such 

as blood vessels ln blomedlcallmages or roads in aerlal maps{12] The second type of hnear 

structure corresponds ta hnear contour Imes. ThiS corresponds to the case where the obJect 

perceived contarns,linear or planar boundapcs (e g polyhedra) and obJect/background or 

obJect/obJect occlusIons glve rise to percelved Imear contours Although as wIll be seen 

later. the dlfference between detecting these two different structures IS baslCally a matter 

of preprocessing and do es not change th.e 'essence of the algorithm presentid rn thls thesls. 

we will concentrate mostly on detectmg contour Imes smce we believe that they arise more 

frequently in the applied VISIon context where the detection of Imes is not an end ln Itself. 

but a means towards the detectlon of hlgher level structures. 

Two mam trends emerge from the early processing of Images The flrst IS the 

contour based approach. where obJect contours. also ca lied "edges". are to be found in order 

to help the recognitipn stage. The second type of low level processing IS the reglon based 
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3 1 11'T1age Pre-processrng 

approach. where the emphasis IS not put on finding obJect contours (formed by occlusions). 

but rather on finding object reglons. 1 e. reglons ln the Image whlch correspond to distinct 

objects. Smce our objective IS to hnd stralght contour Ilnes. we will adopt the former 

approach and we will use schemes tha tWill enable us to flnd the set of those plcture 

elements whlch constltute obJect boundanes ln order to do thls. we will make use of edge 

enhancement operators and attempt to quantlfy thelr performance 

3.1.1 Edge Enhancement 

A number of edge enhancing opera tors have been developed to hlghllght reglon 

Loundanes[13][14] Conslder a contlnuous Image functlon f defmed on él contlnuous domaln 

and analytlc at-every pOint ln such an Image obJect boundancs would correspond to 

pomts ln the Image where the Intenslty functlOn changes rapldly This raplcl change coulcl 

be quantlfled by consldering the spatial derrvatlve of the functlon Thus. obJect boundélrle~ 

would correspond to pomts m the Image where the deflvatlve of the functlon IS "large' 

How large IS large IS the legitlmate question that arISes at thls pOint. and. m man y cases. 

It IS not possible ta dlstmguish between a true obJect boundélry (an edge) and pOints on 

the Image whlch correspond to nOlsy variations. uSlng a simple dlfferentlal operator as an 

eage detector Other techniques that have been developed assume dlfferent edge models 

and hence dlfferent crlterlél are used for edge detectlon[15] Although the performance of 

the Ime detector proposed ln thls thesls depends to a large extent on the performance of 

the edge enhancement operator used. we shall not focus on the detéllis of thls operation 

Rather. the most sUltable edge operator among the ones most used Will be found. accordlng 

to a crlterion given below These conslst of mere approxImatIons to the dlfferentlal operator 

and are hence termed "gradient operators" The operators that we WIll conslder are the 

Rob~rts cross-operator{161. the Sobel operator[t 71. and the Prewitt operator[18/ 

3.1.1.1 The Roberts Cross-operator 

The Roberts cross-operator tonslsts of two orthogonal 2 .. 2 pixel masks (see . 
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figure 3.1). 
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\ Figure 3.1 The Roberts oper.ltor 

~ 3 1 Image Pre-processing 

Assumlng an Image functlon f. the response eL of t~e first mask IS glven by: 

t:X(l,J) = J(l,)) - f(l + 1.) + 1) (3.1a) 

and the response e" of the second mask IS glven by: 

... 
e '1 ( l , )) = f (1 + 1, J) -- f ( l . J + 1) (3.1b) 

The magnttude of the edge at the pOlOt (x,y) IS then glven by any choree of norm (LI' 

L2' .... Loo) Usually however. the Eucltdlan (L 2 ) norm IS used and the edge magnitude 

equals 

(3.2) 

Also. the Ortentatlon O( l,)) of the gradIent vector wlth respeCt to the l - aXIs IS glven by' 

(3.3) 

We ~re Interested ln evaluating the nOise performance of thls operator Clearly. thls perfor­

mance will depend on the performance of each of the masks Conslder a two dlmenslonal 

pomt nOIse process 71· Wlth 17(1.]) betng independent zero-mean Identlcally dlstrtbuted ran­

dom vartables wlth vartance a 2 We are Interested ln the vartance of ex and ey ln response 

to the nOise process We then obtaln 

fX(Z,)) = ,.,(z,)) - "'(1 + 1,) + 1) (3Aa) 

and 

ey(z,)) = ,.,(z + 1,) - 17(t,j + 1) (3.46) 
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hence: 

(3.5a) 

Vary = Var(ey(I,J)) = Var("(l + 1,J)) + Var(,,(z.} + 1)) = 20 2 (3 SIl) 

We th us obtam' 

, (3.6) 

-
The output nOise variance IS therefore tWlce as large as (he rnput nOise varIance Wlth 

thls operator. therefore. the nOise IS not attenuated but r~t.her 4S ampfrf,ed and hence, thls 

operator IS very nOise sensitive 

3.1.1.2 The Sobel Operator 

The Sobel operator consists of two orthogonal 3 '. 3 pixel masks (see figure 

3.2). ' 

.! 
i 

-, 0 , 1 '} 1 

~--.. ~ 0 ] 0 0 0 

-, C 1 1 ? 1 

L--
__ L_ 

Figure 3.2 The Sobel operJtor 

Assummg an Image funct,on f. the response CI of'the f,rst ma\sk IS g,ven by: 

ex(z,)) =(1(1 + 1,J + 1) - 1(1 - 1,) + 1))/4+ 

(1(z + 1,)) - f(1 - 1,)))/2+ 

(1 (z + 1,) - 1) -- 1 (1 - 1,] ..:: 1)) /4 

and the response ey of the second mask 's glven by 

ey(i,)) =(1(z - 1,) + 1) - I(z - 1,) - 1))/4+ 

([(l,) + 1) - 1(1,) - 1))/2+ 

(1(1 + 1,) + 1) - f(z + 1,) - 1))/4 

(3.7a) 

(J.7b) -
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3 1 Image Pre-processing 

Again. assuming an input noise process Tf with the same pr.operties as before. we obtam 

the following output variances: 

(3.Ba) 

: 

and slmilarly. 

(J.8b) 

- The ratio of the output to the input nOise varrances IS then 
", 

(3.9) 

ln this case. the output nOise varrance 15 smaller than the input noise varrance and hence. 

the nOIse 15 to some extent reduced. This 15 due to the fact that the operation performed ln 

the Sobel operator IS not merely a stralght dlfferenclng of Intensltles at two dlfferent pIxel 

locatIons. but rather a differencing of the.r nelghborhood averages. It IS thls averagrng that 

f reduces the nOIse varrance ThIs stands ln direct contrast wlth the Roberts operator whlCh 

does not perform any krnd of pre-averagrng 

3.1.1.3 The Prewitt Operator 

The Prewltt operator also consists of two ortho'gonal 3 ,', 3 piA€1 ma~ks (see 

figure 3.3). 

, ., 

-1 U 1 1 1 1 

-1 0 1 0 0 0 

-1 0 1 1 - 1 -1 

Figure 3.3 The Prewltt operator 
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3 1 Image Pre-processing 

Given an image function f. the response ex of the first mask is gigen by: 

ex(i,j) =(J(l + 1,) + 1) - f(i - 1,) + 1))/3+ 

(J(l + 1,)) - f(l -1,)))/3+ 

(J(z + },) - 1) - f(l - 1,) - 1))/3 

and the response ey of the second mask is given by 

ey(i,j) =(J(z - 1,) + 1) - f(z - l,j - 1))/3+ 

(3.10a) 

(J(z,) + 1) - f( l.) - 1) )/1+ / 1 (3.10b) 

(J(i + 1,) + 1) - f(z + 1,) - 1))/3 ( 

Again. assuming an input noise process Tl wlth the same propertles a~~fore. we obtaÎ11 

the followmg output variances' 

(3.11a) 

and simllarly. 

(3.11b) 

The ratio of the output to the input nOise variances IS then 

(3.12) 

ln this case. noise attenuatlon IS even stronger than wlth the Sobel operator ThiS IS due to 
(, 

the fact that ,the averagtng that IS performed before the dlfferenclng operation takes place 

is not a ~elghted averaging. but rather. ail the samples are glven equal welght 

3.1.1.4 Choice. of local Operator 

Of the three opera tors that have been presented. only the Sobel operator and the 

Prewitt operator attenuate nOise We thus dlscard the Roberts cross-operator because of 

its low noise immunlty Usmg noise performance as the only selectIOn Cri tenon. one wou/d 

choose the Prewitt operator. NOise performance IS not everythlng. however As important 

as noise performance is the ability of the operator to properly localize the edge. With the 
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3 1 Image Pre-processing 

Pre~,lÎtt operator. the averaging operations that are performed attribute equal weight to ail 

intensity samples. and hence. any permutations of those inten51ty samples will not change 

the operator response ,whlle changing the structure of the edge to be detected. With the 

Sobel operator. however. closer samples are attnbuted larger weight and hence the spatial 

structure of the edge to be detected i3 more accurately captured. In addition. glven that 

the noise performance of the Sobel operator 15 comparable to that of the Prewitt operator. 

the Sobel operator Will be used ln order to enhance edges ln Intenslty Images Once the 

edges are enhanced. however. only those that correspond to the desired Image events ,!!U5t 

be kept. Achievlng thls IS not possible unless sorne a priori knowledge 15 avallable about \ 

the scene whose Image IS belng processed This a priOri knowledge usually concerns the 

gradient magnitude and is based on the prem.se that strong edges correspond to des Il able 

Image features whlle weak edges are mduced by nOlsy Ifêlrlatlons Th.s assurnptlOn breaks 

down for Images w.th strong texture patterns (e g. outdoor scenes) but.s a reasonable 

one for most industnal vls.on tasks where most obJects have unlform mtens.t.es and the 

contrasts are strong. Hence. we shall use this assumpt.on ln order to "detecC edges alter 

having enhanced thern 

3.1.2 Edge Detection 

The result of edge detection is a binary image: either a pixel is an edge element 

or it is not. 10 order to ach.eve this result. the edge magnitude e(x, y) of a point P(x, y) .s 

cbnrfPuted. using the two orthogonal edge components ex(x, y) and ey(x, y) and an arb.trary 

choice of norm (L 1• L2. , • Loo) The point P(x, y) .s consldered to be an edge elpment 

if and only if e(x, y} > T where T IS an arbltrary posit.ve constant. Otherwise. the pOi:lt 

P(x, y) IS considered to be a background pOint. The Intensity value T. whlch delimits the 

intensity values éomprising edge and non-edge pixels is usually referred to as the "intenslty 

threshold," and this operation as "intensity thresholding," From the above deflnitlOn. it can 

be seen that thresholding is a global operation. Points in the image are assigned different 

labels' (e.g edge and non-edge) based only on their intensity and independently of the 

, 
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3 1 Image Pre·processing 

local properties they mlght have. In arder to quantify the performance of the thresholding 

operation. a criterion whlch reflects how good or how bad the final result 15 has to be 

defined. For this purpose. we define a probabllity of error for the edge detection stage as: 

Pr(error) =Pr( edge classlfzed as non - edge)+ 
(3.13) 

Pr(non - edge cla.5,qfled a,~ edge) 

let RE be the set of ail edge pixels and R.v be the set of ail non-edge pixels The union 

I?E u RN of these two sets IS the set of ail Images pomts ln additIOn. the intersection 

RE n RN of these sets IS the null set since no pixel can assume both states The probabllity 

of occurence PE of an edge pixel IS deflned as 

(3 14) 

and is the ratio of the number of edge pOints to the total number of Imagè pOints C tLrd 

refers ta the cardtnahty of the set in question Simllarly. the- probabllity of occurence P,y -

of a non-edge pixel IS defined as 

PlY = Card(RN)/Card(RE - R.v) 

With these definitions. the probablilty of error is "then rewrttten as~ 
~ 

Pr(error) =Pr(e(x,y) > T:P(r,y}"': R.y}Pv+ 

Pr(e(i, Ii) < T' P(r,y) ': RE)PE 

(3.15) 

(3.16) 

We shall now study the conditional probabdltles whlch contnbute to the(~lasslficatlon error. 
.... \ 

Assume the set RE has an tntensity distrtbutlon wlth mean J1. E and varl~nce o}. while the 

set RN of non-edge pixels has an Intenslty distribution with mean J.l N and variance o~ 

Assuming /-Ln < T < J.l E. we have 

,. 
Pr(e(x, y) > T / P(x, y) E RN) :S 1 -'Pr(le(x, y)' - J.lNI < (T - /-LN)) (3.17) 

and 

Pr(e(x, y) < T / P(x, y) E RE) :S 1 - Pr(te(x, y) - J.lEI < (J..I.E - T») (3.18) 
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Thus: -,' 

Pr(error) :::;PN(1 - Pr(le(x,y) - /.lN 1 < (T - /.lN)))+­

PE(1 - Pr{le(x, y) - /.l El ~ (/.lE - 1))) 
. (3.19) 

Let r = /.lN +ktuN' w.e then obtain kt = (T - J1N)/U/v. and from Chebyshev's theorem: 

Pr(lè(x,y) - J.LNI < (T -/lN)) ~ 1 - u~/(T - /.lN)2 (3.20) 

t Now. let T = J1E-'k2uE' We then get k2 = (/lE-T)/U~. and from Chebyshev's theorem: 

. 2 2 
Pr(le(.c, yJ - J1El < (ILE - T)) 2: 1 - U El (T - J1E) (3.21 ) 

After sorne simple manrpulations. we obtain' 

(3.22) . 

Let , 

U B(T) = PNU~/rT - /.lN)2 + PEuk/(/.lF; - T)2 (3.23) 

be the upper bound' on the error probabllity. The optimal threshold T* is the one which 

minimizes U 8(T). To fmd It. we let dU B(T)/dT = O. After simple manipulations. the 

optimal 'threshold is found to be 

~ T* -(II (P (J2)1/1.+11 (P ( 2 )1/3)/((p ( 2 )1/3+(p (J2)1I3) -,-E N N ,..,N E E ,D N NEE (3.24 ) 

It can be seen that if the two sets have similar site and variances. the optimal threshold 

will be halfway between the two rneans. whlch is as expected The minimum value U B* 

of U B(T) assoclated wlth the optimal threshold T* 1,5 Itself found to be. 

\ 

UB· = UB(T·) = ((P.V(J~)l/3 + (PE(Jk)1/3)3 L(/lE -J.LN)2 (3.25) 

The above equality shows the minimum value that can be attained with the upper bound 

on the probability of mlsclassificatlon As expected. the larger the variances of the two , 

c1a~ses (i.e. edge and non-edge) and the sm aller thelr mean ~,ffere.nce. the larger the 

upper bound on the error probability Conversely. the smaller the variances and the larger 

the mean difference. then the smaller the upper bound will be. It is now iunderstood 
1 

\ 
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why the aim has been. when choos1ng the local operators. to reduce thelr output nOise 

variance. In principle. the above derlvatlons glve us the necessary tools for selectrng the 

optimal threshold However. ~h,s reqUires a prion knowledge concernmg the probabllity of 

occurence of each class ln addition to sorne statlstlcal propertles whlch are not usually 
( . 

avallable beforehand ThiS IS why. m practlce. other criteria are used for threshold selection 

and' which do not depend on a priOri quantlfied knowledge [191 
if 

3.2 'fhe Aigorithm 

3.2.1 Basic Idea 

The algonthm proposed ln thls thesls 15 based on the followrng Idea. use as 

much local information as pOSSible rn order to have accuracy ln the "ne detectlon process. 

and use as much global information as pOSSible rn order to ensure nOise Immunlty ThiS 

Idea Illustrates the baSIC tradeoff Inherent ln ail Ilne detectlon schemes ln order to satls~y 

thls tradeoff. a two-step procedure IS used ln the flrst step. local mformatlon IS used m 

order to predlCt the Ime or Ilnes that could eXlst. whrle m the second step. these prediC­

tions are yerrfled agarnst more global rnformatlon ThiS paradlgm IS also known as the 

hypothesis prediction/verification paradlgm[20J[211. whlch can be stated ln the followlng 

informai manner for a glven problem. hypotheslze ail pOSSible solutIons to thls problem." 
" 

reject those solutions that do not obey the glven constrarnts. and retaln only those that 

solve the problem under ail prescrlbëd constralnts Th'e predrctlonjverrflcaJlo'n paradlgm IS 

thus seen to consist of two parts: a predictor, whlch enumerates ail pOSSible solutions. and 

a verifier. whlch evaluates each proposed solution. elther acceptmg It or reJectmg it (see 

Figure 3,4) 

Stated ln a more formai manner. the predictor generates a set H of N hy-

potheses {hl, h2, ... , hN}' The verifier th en maps the set If into a subset H' such that 
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" 

-+ 
-+ 

Observations =t Hypothesis V I!dfier 
-~ 
-~ 

Figure 3.4 The hypothesls prediction/verificatIon paradigm 

ail hypoth'eses hl E H'evaluate to true The truth value. of the hypotheses 15 evaluated 

based on critena that are developed later on Good predlctors have the followmg two prop­

erties: they are ccmplf!t~, ln the sense that they produce ail possIble hypotheses Also, 

they are mformed ln the sense that they use possibtllty-IImlting information. restrictmg 

the hypotheses they propose accordingly Informab.llty 15 Important, otherwise. hypothesis 

verification becomes an exhaustive tree-5earch algorlthm The prediction of hypotheses, . 

therefore. must be based on strong heurlstics 
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3 2 The Aigorithm 

The AI hypothesis prediction/verification paradigm IS very close to the concept 

of Kalman Filtermg often encountered ln estimation theory The underlymg formulation of 

the Kalman Filter is the followlng 

EstImation = PredIctIOn + Correction 

ln thls mode!. the estimation of astate at sorne tlme Index n IS equa"zed to a 

prediction of thls same state based on tlme samples preceeding or equal to ri 1. added to 

a correction factor that IS a functlon of the predlcted and observed states The correction 

factor IS ln some sense the 'predlctlon verifier" Were the prediction exact. the correction 

term would be zero ln our model. the prediction IS based on strlctly laçai Irlform<Jtlon ln 

other words. a glven str<:lIght Ime segment IS predlcted to eXlst. based only on the features 

at one pixel location The Verification however. IS based on il more global analyslS\. smce 
\ 

statlstlcal tests are now performed on a nelghborhood of thls pixel location 

3.2.2 Hypothesis Prediction 

Consider a, plctl:Jre element at (.r", YI') T 0 thls pixel. we assoC/ate. through 

gradient filterlng. the two orthogonal edge components (cr, ,e,,,) Assummg (r, ,y, ) to be 

a point on a Ime segment S. the equatlon 

(3 26) 

has to be met by al~ pOints (.rI' Yi) that are located on the Ime segment S Equation (3) 

is merely a mathematlcal representatlOn of the statement that edge vectors are orthogonal 

to feg10n boundarles. Let us assume that we wish to detect ail stralght Ime segments that 

are composed of 2n + 1 plcture elements (1 e are of order n) The hypothesls predlctor 

then predicts the followmg hypothesls whlch we cali 110 

There is a segment S of order n centered at (.lc, yc) such that 
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The set of hypotheses is thus formed From the single hypothesis Ho. 

The verrfier now must evaluate the predlcted hypothesls. This verification IS 

done us;ng statistlcal tests performed on the predlcted "ne segment S Let 

(3.28a) 

(3.28b) 

with 

V - "e 2 + e2 
, ! - \1 l '1 - v! ! 

(3.29) 

Ex and E" are respectlvely the horrzontal and vertical normalized edge components of the 

picture elements that are located on the predicted Irne segment S The edge components 

have been normalrzed ln order to provlde robustness to changes 1n rntenslty ln other worcls. 

we are now dealrng wlth unrt vectors and the only informatIOn we are rnterested 10 IS thelr 

orren ta tlon. 

3.2.3 Hypothesis Verification 

We assume a statlstlCal model for the purpose of our analysis. We Interpret Ex 

as a set of 2n + 1 observations on a random variable X normally dlstrrbuted wlth mean J1.x 

and varrance a;. Siml/arly. we Interpret El) as a set of 2n + 1 observations on a random 

variable Y normally dlstrrbuted wlth mean f..ly and variance a~. In other wo:-d:;. wc :r.terpret 

Ex (and Ey) as a sample set drawn from a population havmg an rnfmlty of elements ThiS 

mfrnrtely large populatIon would be the continuous Ime segment: since the Image IS defined 

over a dlscrete two-dlmensional domaln nowever. only a finrte number of pomts on this 

continuous segment can be observed. and these pomts correspond to the dlscrete values 

at whlch the image functlon is defmed 1 

ln the ideal case. i.e. the case where there IS a Ime segment of order n centered 

at (xc, Yc). the mean of the random variable X has to be equal to fxc / Ne and the mean 
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of the random variable Y to eyO' Ne ln addition. the variances of the random varrables X 

and Y wou/d be zero. This is usually not the case l Small variances of X and }' however, 

indicate a uniformlty ln the orrentatlon of the edge elements ln the population ln other 

words. if the varrance ln the dlstrrbutlon of the' I- and y - edge components IS small. there 

is a large probabllrty that the predlcted Ime segment does actually eXlst If on the other 

hand. the vàrlances are large. the probabtllty that the predlcted Ime eXlsts 15 falrly s~all 

since this would mean that the edge elements located on the predlcted Ime !>egment have 

random Orientations These observations are essentlal to the algorrthm. and hypothesls 

verrficatlon IS based on these very same observations of the behavlor of the mean and the 

variance ln the normalrzed edge components 

It shou/d be noted that the means and variances that have been mentloned 50 

far concern the population and not the sam pie set The only statlsttcal tests thJt can be 

performed however relate to the sample set Thus. we must Investlgate the slgntfrcance 

of the statlstlcal mea5urements that are performed on the sample set. wlth respect to the 

overall populatIon ThiS slgmflCance test IS performed on the 5ample mean usrng Student' s 

t-dlstrlbutlon and on the samplc variance usrng chi-square (\ 2) tests We defme the sample 

vartances S~ and S~ of X and Y. respectlvely. as 
" -,. 

1 2n+l 
St. = 2- '"' (e I .V) - S,y)2 (3.30n) .'\ n L 1 

and. 

5 2 -Y:-

1=1 

t 2n-t1 
-) (t'y IN 2n '---' ! ' ! 

z=1 

~~ 2 j 
- Sy) . 

a/so Sx and Sy are the sample means of X and Y". respectlvely, defmed as 

_ t 2n+l 

Sy = 2n+1 L ey)Nt 

t=1 

( 

(3.30b) 

(3.31a) , 

(3.3tb) 

Note that ln our definrtion of the variance. the summatlon has been dlvlded by 2n and not 

by 2~ + 1. and 50. the sample variance 15 an unblased estlmator for the true variance of 
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the population. The sample mean. as defin_ed in equations (3.31a) and (3.31b) is also an 

unbiased estimator for the true mean of the population 

" Since the random vanables X and Y are assumed to be normally dlstnbuted. 

the statistics 
Sx - f.J.x 

vISl/'(2n + 1)' \/S~/(2n+1) 
are t- distributed (Student' 51 distribution) wlth 2n degrees of freedom. and the statistlcs 

2nSl 2nSç. 
--2-' 2 

(7 l (71/ 

are chl-squared wlth 2n degrees of freedom The reductlon ln the number of degrees of 

freedom from 2n + 1 to 2n IS due to the fact that the population means and variances are 

not known and can be only estlmated by sample measurements 

The main objective underlinmg the above expressIOns is the abdlty to generate 

confidence Intervals on the population statistlcs[22J ln other words. wc deslre to estabhsh 

lower and upper bounds on the population mean and variance: wlth sorne confidence. based 

on the mean and the variance of the sample set Once bounds on the population statlstlCs 

have been estlmated. there 15 enough eVldence to accept or reJect the predlcted hypothesis 

concernmg the eXistence of a line segment 

The 100(1 - a)% confIdence mtervals on the populatIon means f.J.x and f.J.y (Wlt~ 

o :S Cl S 1) are respectlvely defmed as' 

(3.32a) 

and 
/ .,-------

A/y = (Sy - t a12v S~/(2n + 1), Sy + t a/ 2V S~/(2n + 1)) (3.32b) 

The 100(1 - a)% confidence intervals on the population variances (7~ and (7~ 

(wlth 0 :S ct ::; 1) are respectlveJy defined as 

Vx = (2~sl, ;ns.~ ) 
Xa /2 X1-(a/2j 

(3.33a) 
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(3.33b) 

Now that the bounds on the population mean and variance have been estab­

lished. a procedure must be defrned upon whlCh the prediction verifier can base Itself ln 

order to Infer whether or not a predicteq Ime segment does actually eXlst As was mentloned 

prevlously. If the variance of the onentatlOns 15 small and If the mean of the orientations 

is close to the onentatlon of the predlcted Irne segment then the probabdity of the Irne 

segment predictIon belng true IS qUlt p large As far as the populatIon variances 0; and a~ 

are concerned therefQre. we defme a simple threshold on the upper bound of the confidence 

rntervals ~"X and Vr Note that the assumptlon of norma"ty of the random varIables X 

and }" IS not Independent of the sample varrances and that th,s assumptlon IS correct only 

for sm ail sample varIances As for the populatIon means IlF and Il'I' wc ,He Hltere~ted Hl 

knowlng how close the mean orrentation of the edge elements on the predlcted Ime segment 

IS to the orIentatIon of the predlcted Ilne segment. 1 e how close I1F and Il!/ are to the 

norma"zed )(- and y- components of the edge element at whlch the Ilne segment IS cen­

tered Smce the populatIon means belong to the mtervals .\1 rand \Ii (wlth a degree of 

confidence of (1 - a)). we use the bounds on these confIdence Intervals ln order to evaluate 

the dlscrepancy between the population mearlS and the normaltzed )(- Jnd y- components­

of the edge element at wh,ch the predlcted "ne segment IS centered If 'thls dlscrepancy IS 

large. the probablilty of ail edge elements on the predrcted Ilne segment havmg the same 

Orientation as the Ime segment Itsel f IS qUite small Let D \" be the largest dlffer<::>nce be­

tween exc / Ne and the bounds of the Interval :'vIX' and Dy the largest dlfference between 

eyc / Ne and the bounds of the Interval .\ly . . V" berng equal to \' 'e~, + t'~( ln other 'Nards. 

-

DX = AtfAX( exe/Ne - Sx - t cr /2yS1/(2n + 1)" ex,/Nc 

and 

/--------­
:;. X + t.

" 
2 V S'} / (2n + 1) i) 

Dy = iHAXCeYc/Nc - Sy - t,:r!2jS~,/(2n + 1)', e'Je l .Vc - Sy +t,:t/2/S~/(2~ ~-lii) 

Summarizlng the hypothesls venflcation procedure. we have 
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Accept HO If and only if: " 

2 ~2 2 .:2 noJX 2 n...,y 2 
2 - ::; uT AND 2 - ~ uT AND Dx :::; AJ.L AND Dy :::; 6J.L 

xl -(a/2) \' 1-(ù:2) 

ReJect Ho If and only If' 

mS2 2 s2 
--..----"X-,-- > U 2 0 R n y 

2 T '(2 
xI-(a/2) 1-(0/2) 

> at 0 R D X > t::.. J.L 0 R Dy > 6 J.L 

1 

where a} is defmed .as the threshold variance and flJ.L as the threshold mean 

difference A complete deSCription of the algonthm IS shown ln Figure 3 5 For the sake of 
\1 

completeness. thls algorlthm IS summamed as fo/lows' ln a flrst step. the mtensity edges 

ln the Image are enhanced This IS do ne us mg the Sobel gradient operator. although other 
--... 
àperators wlth simllar or superlor performance could be used as weil ln a second step. the 

Intenslty edges are thresholded. and as a result. a bmary Image formcd of edgc elements and 

non-edge elements IS obtamed This bmary Image IS then scanned ln a sequentlal manner. 

and each edge element IS ln turn and mdependently considered At each of these edge 

elements. a Ime of speCifled length is' predicted. whlch orientation IS glven by the gradient 

Orientation at the edge element consldered Statlstlcal tests on the gradient Orientation of 

the samples that constltute thls predlcted Ime are then performed and If the Orientations 

of the samp/es are slmllar to the Orientation of the predlcted Ime segment. the latter is 

accepted. otherwlse. It IS reJected 

3.2.4 Statistical Model Revisited 

The main assumptlon that was taken in the preceeding section !hat justlfied the 
c 

use of intervaJ estimation was the fact that the normalized edge components were normally 

distributed. Clearly. thls assumptlon breaks down when the predicted line segment spans 

a vanety of different image structures. smce. in.thls case. the samples would not origmate 

From one unique population ln this case. the variance of the distribution of the normalized 

edge elements wou Id be large. depending on the uniformlty of the underlying samples. 
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When the variance," the distribution is 5mall. nowever. the samples tend to cluster around 

one mean. and here the normality asssumption holds Smce one cannot always assume 
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a normafaistnbution. it is possible to use only sam pie measurements in the hypothesis 

verification process. Defining the sample devlation as 

(3.34a) 

and 

(3.34b) 

we get the dispersion of the edge elements tl1at are located on the predlcted li ne segment 

with respect to the parameters of thls sa me Ilne segment The above dispersion measure 

is on/y a variation of one special distance measure. also called Euclldlan distance ln order 

to quantlfy thls dispersion. one could also use a variant of the LI norm. defined as 

and 

1 2n+l 

dU :=2n+l L eXl/,VI-eXc/Ncl 
t=1 

or the Loo norm. defined as: 

and 

(3.35a) 

(3.35b) 

\ 

(3.36a) 

(3.36b) 

The dlfference between these dlfferent norm5 resldes ln the followmg: the LI 

no(m provides a lot of averaging and hence. the final dispersion measure is relatlve/y in-
, 

sensitive to large deviations in isolated samples The Loo norm on the other hand 15 very 

sensitive to a large devlation of a single sample. since among ail samples consldered. It se­

lects the one that yle/ds maximal deviation The choice of these difTerent norms is basically 

a matter of robustness to fluctuations and computatlonal complexlty. 
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Given ~ cert!m chOice of norm (say the Ln norm). the hypothesis prediction 

stage would be Identical to what has been prevlously descnbed. and glven a hypothesis 

HO. Ho wou Id be accepted If and only If 

where ,\ is the chosen threshold on the sam pie devlatlons 

3.2.5 Singular Cases 

As was mentloned prevlously. the edge companents <He normallzed ln arder to 

yield informatIon whlch IS contrast-Independent and whlch IS only dlrectlOn-dependent ln 

order to do so the edge components ex and l'" at pomts fJ (.r,. 1/,) on the predlcted 
t 1 

line are dlvlded by the edge magnltude.\ ln some cases however. It could happen that 

there eXlst pOints PL on a predlcted hne such that thelf edge magnltude,o) ,VI = 0 ThIS 

would correspond to the case where the prec';~~e9 Ime spans il po'rtlon of ~unlform reglon 

(1 e a reglon wlth no contrast at ail) ThiS IS what we cali il ·slngular~." slnce ln 

~,!ch cases. the usual hypothesis verification tests, cannot be performed any more The 

approach we have taken 15 to reJect Imes whlCh have at least one pOint at whlch the edge 

li'a~nitude IS null ln other words. the Imes that are subsequently kept are not allowed to 

cross OVflr ;:!ny untform reglon ThiS. of cOlJr~~. prevents the proposed Ilne detector from 

havlng any mterpolatory capabliity and a contour Ime broken mto two pleces by a unlform 

Intensity patch will not bt detected On the other hand. a predlcted Ime mlght very weil 

be accepted. dependlng on the chosen tolerances. even If It covers reglons havlng pomts of 

different gradient orientations as long as the gradient magnitude does not vamsh at any of 

the pOints. It will of course be argued whether the proposed scheme IS satlsfactoiy We 

believe it is. owmg to ItS simpliclty. smce lines whlch are artiflclally broken up due to nOIse 

could be merged together at a f'lIgher processlng level 
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3 2 The Aigorithm 

3.2.6 Complexity Analysis 

We shall now study the computatiooal complexity involved in performing line 

detection with the proposed algorithm. The complexity involved in the preprocessing stages 

(edge enhancement and edge detectlon) IS not included in thls analysls We thus assume 

that we are glven f\ edge elements Computlng th.e....nOIlTlalized gradient Involves 1 addition 

operation. 2 multiplications. 2 divIsions and 1 square-root operation for every edge- element 

consldered Assummg wê are lookmg for Imes formed of N pixels and assummg we are 

usmg the dv < and d2y devlatlon criteria. 2(N -- 1) addition operations and 2 divIsions are 

Involved ln calculattng the sample mean. and 4N - 2 addition operations. 2,V multiplications ( 

and 2 diVISion operations are necessary for calculatmg the sample variance. for every edge ~-

element consldered ln total therefore. glven K edge elements and Ilnes of length N. we 

have 3K(2N 1) addition operations. 2K(N + 1) multiplications. 6[( divIsions. and K 

square-root operations mvolved The computational complexlty of the algonthm IS thus 

seen to grow Ilnearly in the number of edgé elements and ln the length of the lines to be 

detected 

3.2.7 Comparison with Burns -et al.'s Algorithm 

Now that the mam body of th~ algorithm has been presented. it would be 

interesting to perform a companson wlth Burns et al.' s algonthm which was Introduced 

as betng the c10sest tà the algonthm presented JO this thesis While both our algorithm 

and thelrs are based on-gradient Orientation mformation. the main discrepancy cornes from 

the facto that they do not make full use of ail the constramts involved. the main one being 

the following: if a contour line segment is supposed to go through an edge point. then the 

gradient Orientation at that edge element should be orthogonal to the contour Ime. It is 

this very same observation that allows us to make a prediction on the precise location and 

orientation of the line segment to be detected. The second constraint comes from the fact '. ' ~ 

that in order for the predicted hne segment to actually overlap with an image contour line. 
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3 2 The All1.onthl1l 

the first constraint must be met (in a loose sense) at ail the pOints on this predlcted line 

This is the information that we use m the vérificatIOn process Burns et al' s algorithm 

makes partial use of the second constraint by accepting 10 a hne support reglon only those 

edge elements that have slmilar orientatIOns The mformatlon It does not use. howevN. 

is that each edge element cons trams the underlYlng contour hne to have a unique position 

and OrientatIon Thus. they end up dOlng a type of reglon growmg operation wlthout ever 

considermg the geometrical structure of the reglon bemg formed 

3.2.8 Sequential Pruning 

Note that the hypothesis venflcatlon procedure outhned above Will vahdate the 

eXistence of a hne at a glven pomt based only on the statlstlcal tests rnentloned. ,1Ild 

therefore overlappmg between Ime segments are to be expected ln order to reduce thls 

overlap. and hence yleld a smaller and more tractable set of hne segments for sub~equent 

analysis. an addition al test could be Incorporated 10 the verificatIOn procedure 50 as to 

discard line segments whlch have too much overlap wlth prevlously detected ones Tlus 
-

test could be conducted as follows for every hypotheslzed hne segment S whlch also 

satis fies the mean and variance tests. let {( X p yJ} be the set of pOints whlch con~tl tute 5 

Furthermore. let N S be the number of pOints III S whlCh are part of prevlously detected line 

segments of the same order Assumuig the order of the hne segments to be TI. the number 

of -points on each line IS then N = 2n + 1 Thus the ratio N SiN IS the percentage of points 

În S whlch are part of previously detected line segments Ahy·potheslzed Ime segment S 

which also satisfles the mean and variance test could thus be vahdated if the above ratio IS 

less· than some specihed threshold (i.e. If the overlap betwéen the line segment consldered 

and previously detected ones 15 less than sorne amount) and rejected otherwise Wh Ile 

the linear structures present in the Image are captured 10 the Initiai hypothesls test. the 

net effect of addmg this extra test IS that a smaller nurnber of hne segments are typ.cally 

detected. This simplifies subsequent Interpretation tasks. 
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3.2.9 Resolution Trees and Multiple-Iength Line Detection 

Now that the line detectlon algonthm has been presented. we mvestigate a 

possible representatlon for the set of line segments that are present m a given plcture. 

This representatlon can b,e based either on the Orientation of tte lin~ segments. or on their 

length Representmg the Ime segments ln the Image ln temjs of theJr Orientation can be 

of mterest whenever attention IS to be focused on thosE' hne segments that have speclfic 

orientatIOns Representmg Ilne segments based on Orientation reduces to asslgnmg them 

to partlCular orientation classes A property of thls representatlon IS Its lack of amblgUlty. 

smce no two Ime segments that share a common set of pixels can have' distinct (to withm 

a certain quantlzatlon factor) Orientations 
.\ 

Represcntlng line segments based on thelr length IS another representatlonal 

scheme. whlCh 15 more sUlted for cases where the Ime segments' are to be matched to.a 

specific model ln th,s case. information concerning the length of the dlfferent Ime segments 

.. 

is used ln order to verlfy the valldlty of candidate matches Representmg hnc segments 

based on thelr length IS agam,a groupmg problem. but unllke the prevlous one, It IS Inherently , 
:.­

amblguous. slnce a certain 11O~ segment can very weil be composed of a number Of smaller 

segments. The problem then IS to choose a representatlon that overcomes the amblgUity 

"assoclated with redundant segments 

The re()resentatlOn we chose IS based on-a tree structure The root R of the 

tree is the original Image The first level of nodes, startmg from the root. IS formed of line " 

segments SIm con.stltuted of m pixels Each node is Itself expanded lOtO a subtree. where 

each subnode corr'esponds to a Ime segment sn of Infe;ior length. with the additlonal prop­
) 

,1 

erty that the segment assoclated wlth the subnode IS IOciuded in the segment associated 

with the node ln other words. s}n is a subnode of the node S;n If and only if: 

ln ~this context. the inclusion of SJn into SIm IS equivalent to the number of pixels cQ,mmon 

both.to sn and a neighborhood }./ (sm) of sm being supenor to a certaïn fraction .x of the 
} .. ,t 
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3 2 The Algorithm 

total number of pixels t~at constitute 5
J
n ln other words. 

where Card(5). the cardmallty of a set 5. is defmed as the number of sample pomts ln S 

ln subsequent experrments. the value for À was chosen as belng a half It 15 to be noted 

that a ~igher value for thls coefficient would not yleld the deslred results due to the faet 

that ln practlc~. similar "ne segments do not alway~ cornclde ln addition. the reason for 

evaluatmg inclusIOn ov'er a nelghborhood of the larger segmert rather than the segment 

itself stems from the fact that the edges are not of the Ideal step edge type and have J 

certain spatial spread The nelghborhood )/ of each "ne segment 15 defmed as the reglon 

formed by,thlckenlng the Ilne segment wldth by one pl~el on each slde This IS eqUivalent 

to convolvlng the Image of the Ime wlth a spatial averaglng mask and then retalnlng only 
-

the pixels that have an Inte'nslty value above some predetermlned threshold 

<. 

The process of expa.ndmg nodes mto subnodes 15 do ne recurslvely until a mini­

mal length of Ilne segment IS achleved The segments havrng mlnlmallength are the leaves 
1 • 

of the tree (see Figure 3 6) 

This representatlon IS analogous to the one used m representrng Images at 
! 

multiple resolutlOns. whlch. oWlng to ItS geornetTlcal arrangement IS often referred to as 

a "resolutlon pyramld· In 'J slmllar way_ we refer to the problem of detectlng Imes of 

different Jength as that of detectrng Ilnes at dlfferent resolutlons m the resolutlon tree A 

major adlldntage of this re~resentatlon I~es ln ItS ablll~y to distrnguish "ne segments based 

on thelr slgnlficance Intuitlvely. a Ilne segment whlCh IS rncluded rn another fine segment 

of superror length does not have the same slgnlflCarfce as another line segment whlch IS 

not included in any other Ilne. slnce this would amount ta redundant Information ln arder 

to remove these redundancies and ambiguities. line segments havrng low slgnlfrcance are \, 

discarded The process of removing Imes of low slgnrflcance is called "prunrng" ""', ," 

Pruning the resolutlon tree 15 done by removrng those subnodes which are not 

directly linked to the root. In other words. Ime segments which are part of longer segments 
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(Length 1 < Length2 < Length3) 

r 
Figure 3.6 The resolutlon tree 

(i.e .. subnodes of the resolution tree whlch are directly connected to other subnodes rather 

than to the root) are dlscarded. The resultmg structu~e IS a tree havmg one root. and 

leaves at different levels. mdlcatmg the _dlfferent lengths of the li ne segments associated 

with the leaves This remalnmg structure 15 ln a sense a best pleceWlse fit of Ime segments 

to the Image. slnce ail the partial flts have been discarded ln the prumng process 

To perform prunmg. we do as follows flrst defme the dlfferent lengths at whlch 

the Ime segments are to be detected. Then fmd the lines. startmg wlth the longest. and 

proceeding to the shortest. With each line detected. flag the correspondlng pixels that 
h. 

-~ J 

constltute It. Thus. when evaluating whether a li ne segment IS to be retamed. It is not 

only necessary to perform the statistical tests as descrlbed in section 5. but we also must 

take mto account whether the line segment consldered is Included in prevlously detected 
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3 2 The Aigonthm 

line segments of longer length Since the computational cast of evaluatmg mcluslons of Ime 

segments in other line segments 15 conslderably less th an the cost of performmg statlstical 

tests on the Imes. prumng could be used ta reduce the number of predlcted hypotheses 

that have ta be venfied 

It should be noted that the resolutlon wlth whlCh IIne segments of dlfferent 

length can be detected depend15 solely on the number of dlfferent levels ln the resolutlOn 

tree. and that the larger the chosen number of levels ln the resolutlOn tree. the finer the 

represen tatlOn ?f Ime segments ln the original plcture 

; 

\ , 
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Chapter 4 Experimental Results 

The IÎne detectlon algonthm has been successfully applied to a wlde variety of 

digital pictures. The robustness of the algonthm IS mherent ln Its two-step procedure' 

whlle the predictIOn of hypotheses IS essentlaUy local to a plCture element the verIfIcation 

of the predlCted hypotheses tnvolves statlstlcal tests over a selected nelghborhood ln what 

follows. a number of expenments are IIlustrated ln the ones tnvolvtng statlstlcal tests. the 

95% confidence tntervals on the population statlstlcs are computed (I,e Q = 005) The 

purpose of these experlments 15 to show how the performance of the proposed algortthm 

depends on the cholce of ItS assoClated parameters The flrst test Image. shawn ln figure 

4 1. IS that of a capacltor 

Figure 4.1 Original Image 
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4 1 Image Preproccsslng 

mounted on a ceramlc substrate. This Image IS chosen not only because It 15 

rich in contour lines but also because the wide dlversity of hnear features present ln It 

would illustrate weil the performance of the proposed algorJthm ln real Images 

The experlments on the line dete<:!tlon algortthm are performed as follows. ftrst. 

the effect of performmg sequential prunmg 15 hlghltghted on the fmal result Different 

pararneters for this prunmg are chosen. and the one whlCh ylelds_5atlsfactory results 15 

chosen for further expenments Then. us mg the statlstlcal mode!. the result of asslgnmg 

different values to the'threshold variance o}and to the thrcshold mean dlfferencc 6.,. IS 

presented Subsequently. dlfferent hne lengths are chosen for the Ilne detectlon cllgonthm 

based on the statlstlcal mode!. and the results are dlscussed Thc next group of expcnments 

IS performed on the Ime detectlon algorrthm wlthout use of the statlstlcJI model Rather. 

the slmpllfled cnterla presented ln sevbon 3 2 4 a~e used. and the Jssoclated results Jre 
" 

shown Followtng thls. the use of the resolutlOn tree 15· presented and J best ftt of Ilnes 

(wlthin the lengths consldered) tü the Image IS performed Ftnally. the performance of the 

algortthm IS dlustrated on sorne Images of outdoor scenes 

performed 

Before. however. the preprocessmg steps assoclaled wlth the algorithm are 
r-.J 

\ 4.1 Image Preprocessing 

", 

Figure 4.1 shows the picture of a capacitor mounted on a ceramic substrate 

ln this plcture. as weil as m ail subsequent ones. the gray levels range from 0 to 63 The 

linear features in thls image are those of the deltmltating boundartes of the capacltor. and 

also those of the conductive traces on the substrate The nonlinear features present ln 

the image are mamly due to surface texture. Figure 4 2 shows the same plcture after edge 

enhancement usmg the Sobel masks and thresholding wlth a threshold of 10. followed by 

thinning: 
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Figure 4.2 Edgc clements 

4 2 Sequentlal Prumng 

ln other words, ln a flrst step. ail edge elements havlng a gradient magnitude 

greater than or equal to 10 have been assigned the gray value 63. while others have been 

assigned the gray value 0 ln a second step. the resultmg bmary Image IS thlnned m order 

to reduce the spatial spread of dlffused edges The thmnmg algonthm used IS Hddltch's 

sequentlal algoflthm for thlnnmg bmary Images(23) Thus. only those edge elements that 

have survlved both the thresholdlng and the thmnmg steps are consldered by the hne 

detectlon algorlthm 

As observed ln the plcture. only a small portion of the edge elements correspond 

to linear features. and this can be attribute;d to the large amount of surface texture Figure 

4.3 shows the orientations of the edge elements that have been retamed after mtensity 

thresholdmg. These orientations are symbolically dlsplayed by short hne segments of equal 

length having the direction of the gradient at the pOint from whlch they emerge 

4.2 Sequential Pruning 

ln thls experiment. line detectlon IS performed usmg the statlstical ~odel. The 

length of the line IS chosen to be 5~ pixels. and the threshold values are chosen to be 

o} = 0.2 and IlJ.l = 0.2. Three different expeflments are performed ln order to tllghhght 
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Figure 4.3 Gradient vcctors 

the use of sequentlal prunrng ln the flrst experrment Imes Jre detected wlthot.:t any 
" 

sequentlal prunrng berng performed The result 15 shown ln figure 4 4 

-
- • 

.. 
Figure 4.4 LI,ne detectlon w.:h :le ~(qucntlal prunltlg 

ln this case. 225 Ime segments were found Clearly. for the type of plCture 

considered and for the length of line chosen. th'5 number IS overwhelmrng ln fIgure 4 5. 

lines are detected w;th sequential prunrng and such that each hne segment detected shares 

at most 10 percent of Its pixels with previously detected line segments 

ln thls case. only 34 Hne segments were found. Note that although the number 

of hne segments detected 15 ln th,s c~se m~ll rnferto~ to the 225 that were prevlously found. 
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( 
Figure 4.5 Lme dctcctlon wlth scqucntlal prllllln~ (10 % ovcrlap) 

the hnear structures ln the Image are accurately captured. In figure 46. flr.ally. the result 
~ 

of sequentlal prunmg IS dlsplayed. where no two hne segments are allowed to mtersect 

-

1 

1 

Figure 4.6 Une dctcctlon w:tll scq u~ntlal pruni ng (no ovcrlap)' 

This further reduces the number of detected lines to 24 ln thls case. a number 

of linear features are mlssed. 

Since the purpose of this Ime detectlon algonthm IS to act as a preprocessmg 

step for hlgher level interpretation stages. it IS of Importance to reduce the amount of data 

that is to be fed to higher levels. Sequential pruning then becomes necessary msofar as. 

wrth the proper choice of parameter. the number of Ime segments detected is considerably 
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reduced and the most of the Ilnear features of the image are captured ln ail subsequent 

~xperiments. therefore. sequentlal prunlng will be performed. and a line segment Will be 

detected only if It shares less than 10 percent of ItS pixels wlth prevlously detected Imes 

4.3 Statistical Model: Choice of Parameters 

ln the followmg experrments. the mflue~ce of the thresholds ut and /j.Jl on 

the detectlon of Imes IS shown Ren:ember that Ut sets a "mit on the unlformlty of the 

orientations of the edge elements that are on the predlcted Ime segment. whrle /j.JI sets 

a hmlt on the devlatlon of the Orientation of these edge elements from the Orientation of 

the hne seg_ment that they are supposed ,to constltute Three types of 'errors mlght occur. 

dependmg on the chOice of 0t and b.fJ. If both are chosen conservatlvely then the vartance 

m orrentatlon of the edge elements formlng the detected Ime segments IS constramed to be 

small and the average orrentatlon of these edge elements 15 constrarned to be close to that 

of the Ilne segment Itself ThIS IS preCisely the case where. owrng to the small variance. 

the normality assumptlon holds if. however. u} IS glven a large va,lue and b.'l IS set 

conservatlvely. then the predlcted Ime segments \;!JII be accepted basèd only on the average 

onentat/On of the., edge elements. regardless of thelr unrformlty Conversely. If Œt IS set 

conservatlvely and If /j.1l IS glven a large value. then the Ime segments are accepted based 

only on .the unlfo, mit y of the Orientation of the underlymg edge elements and regardless 

of their actual ortentatlon Fmally. If both u} and /j.fJ. are asslgned large values. pred,cted 

lines are accepted even If they do not reflect the presence of underlymg linear structures 

Figure 4.7 shows the result of detectmg Imes 55 pixels long wlth Ut = 0.1 and 

tlp. = 0.1. \ 

Aiso bear in mmd. that the normalized edge components span the range (-1,1') 

The estimated deviation allowed with thls choice of parameters is then close to 15 percent 

while the deviation from the mean IS constrained to lie within 5 percent As a result .. 27 line 
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Figure 4.7 Llne dctcctlon 'Nlth o'} = 0 1 and tl.'l = 0,1 

1 
~- 1 

1 

Figure 4.8 Une detectlon wlth O'} = 0 2 and tl.J1. = 0 2 

segments are detected. Figure 4.8 shows the result of detectmg lines of the same length 

and with o} = q 2 and Âf.l = 0.2 

ln thls case. 34 Ime segments are detected. The ddditionailines that are detected 

~re "more nOlsy" th an the ones found wlth the prevlous parameter settings and ~ence could 

not satisfy the prevlously reqUired conditions. Figure 4.9 shows the result of detecting lines 

with o} = 0.3 and l::.f.l = 0.3 

ln thls case 42 line segments are detected. sorne of whlch do not correspond to 

linear features. In effect. the thresholds have been relaxed to the extent that line segments 
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Figure 4.9 llne detcctlOn wlth (7~. = 0 3 and 6.11. = 03 

are accepted even if the underlymg pattern they ,-over IS not percelved a~ bemg linear This 

artefact IS even more pronounced ln figure 4 10. where values of a} = 0.5 and 6/-, = 0.5 

are chosen 

= a:::: 

Figure 4.10 llnc detectlon wlth (J"} = 0 5 .1Od 6./l. = 0 5 

ln total. 55 Ime segments are detected. and among these. many whJCh are 

nothing more than a set of randomly oriented edge elements 

Based on the previous expe,riments. values of a} = 0.2 and llJl = 0.2 were 

found to yield reliable li ne detectlon. One should not forget that these values depend to a 

~ large extent on the plcture being processed Had the .mage been nOlse-free. much sma:ler 
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values of these two parameters could have been safely chosen. Since- the Image is not 

ideal. however. tolerance to deviatlons has to be embedded in the values assigned to these 

thresholds. 

\ 

4.4 Statistical Model: Choi 

ln thls expenment. we will nvestlgate the dependence of the results on the 
Il 

length of Ime that IS speClhed Of course. the cholce of the proper li ne lengths is closely 

related to the a priOri knowledge one has about the Image to be processed Different Ime 

lengths. however. will induce dl fferent results and these will be examlned now 

"Based on the prevlous results. we set the threshold variance to a} = 0.2 and 

the threshold mean difference to 6'l = 0.2 We first detect ,Ilnes of length 155 The,rrult 

is shawn ln figure 4 11. an~ only 2 Imes are detected whlch correspond to the long sides 

of the capacltor. 

Figure 4.11 line detection with length 155. " 

ln figure 4.12. the result of detecting lines of length 7S pixels is shown . 

. In this case. the l'WO sides of the capacitor are agam found. In addition to other 

contour lines which, were not accomodated by the prevlOus hne length This simple example 

55 

( 



~I 
\ 

o 

4 4 Statlstical Model (hoite of Une Length 

-J~ -

\ -

Figure 4.12 Lmc dClCCllon Wilil 1c\1~th 75 

illustrates weil enough the cùncept of ~Ignrflcance of derccted Itnes that WilS Introduced ln 

the prevlous chapter Conceptually. the Imes of length 75 that overlap wlth the prevlously 

detected lines of length 155 do not have the same slgnlflcance as the ones that do not 

overlap. Slnce 10 the former case the Imes of length 155 y'eld a more complete fit th an the 

lines of length 75 This point will be Illustrated la ter on wlth an example ImplementatIOn 
-

of the resolutlon tree Figure 4 13 shows the result of Ime detectlon wlth il length of 35 

-
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Figure 4.13 Une detectlon wlth length 35 

More and more fine detail IS captured as compared to prevlous line lengths. 

Figure 4.14. finally. shows the result of line detection wlth a speclfied length of 15 pixels. 
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Figure 4.14 Llne detectlOn wlth leng,th 15 

, ,\ 

. At this point we could ask ourselves the following questlon: is It better ta 

detect long Ilnes flrst and then speclfy su~cesslvely smaller and, ~a"er lengths {In arder 
c 

to catch more and more fine detal!l. or IS It better to detect very short segments once and - ' . \ 

for ail. and then group them together wherever possJble ln arder ta form longer segments , . 
? The first approach suffers From the c0mput~tl~'1al comple)oty Involved. Slnce a vanety ,,' 

of different lengths wou Id have to be speclfled The second approach however. suffers 

from the nOise sensltlvity Inherent m the detectlon of short Ilne segments A short Ilne 

segment IS. by deflnltl~n. formèd of a small number of samples (or pixels) Uslng the 

statÎstlcal model therefoœ. small d~vlatlons ln any of the samples mlght considerably afTe~ 

the estimated mtervals on the underlying populat~on sta~cs. and thls extrapolation step 

mlght be very nOise sensitive. Of <:,.ourse thlS problem IS not as accute wlth the other 

suggested scheme which is based solely on sample measurements The second problem 

with detecting short segments Iles m the obervatlon that If. on a long Ime segment, noi.sy 

samples ar,e not randomly distrlbuted but are rattler spatially grouped. a short segment 
~" 

can not be detected at that position Despite ail these problems however. an algorlthm 

is suggested in the conclusion of this thesls for mergmg sma" l/ne seg")nts into longer 

.. on es while overcoming the noise sensltlvity associated wlth the detection of short Imes. 

Detecting long line segments does not present the same kind of nOise sensltlvity problems. 

sin~ averaglng IS perforlT)ed over a larger number of observed samples The main problem 
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4 5 Non-Statistlcal Model Choice of Deviation Criterlon 

associated with detectmg long lines. however. IS Inherent ln the fact that the orientation of 

the predicted line is based on the gradient Orientation of a single f'dge element. and sllght 

deviations ln the gradient Orientation could ylf'lri large devlatlons of the predlcted Ime from 

the true contour line and as a result. the line will not be detected 

4.5 Non-Statistical Model: Choice of Deviation Criterion 

The prevlous hypothesls verification cntenon was based on the premlse that the 

normahzed edge elements were normally dlstnbuted As WélS pomted out ln section 3 2 4. 

this assumption IS valtd only for small vanances. and cannot be deemed true for arbltrary 

threshold values A new set of hypothesls verlflcatlon,crltena was therefore proposed and 

which were not based on Interval estimatIOn 

ln thls group of expenments. we will mvestlgate the cholce of an appropnate 

f. devlatlon crltenon. from the ones proposed ln section 3 2 4 of thl5 the~ls The length 

of the Imes tà be detected will be set to 55 pixels The devlatlon Crltena consldered 

are dt. d2 and doc whlch are based on the LI. L2 and l,x: norms, respectlvely As was 

pOlnted out prevlously. the LI norm IS eqUivalent to an averaglng operation. whl.e the 

Loo norm 15 eqUivalent to maximum value selection The devlatlon crltenon dl 15 thus <,ln 

average devlatlOn measure. whlle the cntenon dx IS ct maxImum devlatlOn measure ri I Will 

, 1 

th,us exhlblt rJependence on group deviatlons. whlle doc '11111 exhlblt dependence on sample 

----deviations Any cholce of norm between thèse two extremes will thus be a tradeofT between 

noise immulHty and sensltlvlty to.changes m orrentatlon ln what follows. the threshold on . 
the deviation ln the x, and y- edge componehts will be denoted by À 

The first expenment IS performed usmg the dl X and dl y criteria (as defined 

in equation 3 35) with À = 0.1. In other words. the tolerated average devlatlon shall not 

exceed 5 percent of the full range. As a result. only 9 lines are detected. as shown in figure . , 
4.15. 
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4.5 Non·Statistical Model Choice of Dev.ation Criterion 

1 

j ... 
Figure 4.15 l.ne dctect!on -N.th A = 0 1 

-
• 

1 

Figure 4.16 Une detectlon w.th A = 0 2 

Relaxing this condition and doubling the 'allowed devlatlon ylelds 26 lines (figure 

4.16) 

Whlle the lines previously found were seen as betng "perceptually straight." 

increasing the tolerated devlation on the normalized edge components results in additional 

fines which could be qualified as "perceptually noisy." Incr~asing th~ tolerance to A = 0.5 

final/y. yields additional lines which do not coinclde with underlying contour lines (figure 

4.17) . 

J We now use the d2X and d 2y criterta (see equatlon 3.34) with A = 0.1. Since 
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4 5 Non-SlallstlCal Madel Chotee of Devlalion Crtterton 

== 

\ 

\ 

Figure 4.17 Llne dctectloll wlth ,\ = 0 5 

fess averagin~ IS performed uSlng these criteria (as opposed to d lX and dl}') and smce. as 

a result. more sensltlvlty 15 exhlblted to mdlvldual sam pie devlatlons It would be reasonable 

t'o expect fewer Imes to be found and Indeed. only 2 are detected (figure 4 18) 

1--
.il 

1 

1 
1 

1 
1 

1 

Figure 4.18 Ltne delectlOn wlth ~ = 01 

l 
J 

Doubling the allowed devlation to ). = 0.2 ylelds 18 Imes which are seen to be 

less noisy than the ones found wlth the d1X and d I y criteria (figure 4 19) 

Finalty letting ). = '0.5 ylelds 37 lines. among which many exhlblt notlceable 

deviations from the uW1derlying contour fines whrch they are supposed to match (figure 
1 

4.20). 
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4 5 Non-Statistical Model Choice of Deviation Crlterion 

1 

Figure 4.19 Lwc detcctlon wlth ). = 0 2 

- --
:; 

1 

Figure 4.20 Llne detectlon wlth ). = 0 5 

The last criterlOn consldered IS based on thtr Lr::;o norm and is formed of dr::;oX and 

dooY ' ThIs crlterion IS the most sensitive to mdlvldual sam pie devlations smce no averagmg 

operation whatsoever is performed. This criterlon IS thus the most nOise sensitive. and 

mdeed. no lines are found wlth À = 0.1 and À = 0.2. This shows that m the lines prevlously 

found with other criteria. there were samples exhibltmg indivldual devlations larger than 

what was tolerated. but these devlations were averaged out in the set of samples considered. 

Setting À = 0.5 however. yields 16 lines ail of whlch are seen to match the least noisy 

underlymg contour Imes (fIgure 4.21). 

1 
1 
1 
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4 6 PruOing the Resolution Trec 

1 1 

Figure 4.21 Lille detcctlon wlth .x = 0 5 

Based on the prevlOus experlments. we will adopt the li 2 X and d2y criterIa 

for subsequent experrmentatlon ThIS cholce IS dlctated by thelr predrcted and observed 

tradeoff between Immunlty to nOIse and 5ensltlvlty to changes of Orientation 

4.6 Pruning the Resolution Tree 

ln thls section. we will perform expenments on the resolutlon tree. whlch was 

introduced in section 3 2 9 as a useful data structure for hlghllghtmg redundanCle5 between 
, . 

detected lines of dlfferent length The dlfTerent lengths that the Ilnes will be detected at 

are 155. 75 and 35 ln ail cases. the maximum tolerated devl<ltlon À 15 set to >. = 0 4. 

Figure 4.22 shows the detèctlon of Imes of length 155 

/ , 
As expected. only the two main sides of the céwacÎtor have been detected. In 

figure 4.23. the result of detectlng Ilnes of length 75 after pruning IS shown 

As exp ~cted. overlap between Imes of length 75 and the ones prevlOusly round 

(i.e. lines of length 155) have been reduced to a minimum Sim"arly. fIgure 4 24 shows the 

result of hne detection wlth length 35 and after prunlng 15 performed 
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\ 

--:) 
Figure 4.22 Lme detectlon wlth length 155 

.. 

--
Figure 4.23 Une detectlon wlth length 75 

Agam. redundancles between these Imes and the on es found previously (i.e. 

lines of length 75 and 155) have been reduced to a minimum ln figure 4 25. the last three 

images are overlapped for the sake of clarlty 

As observed. redundancies between Imes of dlfferent length have been reduced. 

and ,çach line segment in the resolutlon tree is a best piece~ise fit to the image. for the 

different line lengths that have becn selected. 
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4 7 Ex.al11plc Outdoor Sccnes 

---
Of 
Figuré 4.24 

j 

. \ \ 
1 

Llne dctcctlOn Wllh Icngth 35 

---

\ 
1 

Figure 4.25 Pruned resolutlon tree 

4.7 Example Outdoor Scenes 

Figure 426 shows an outdoor scene 

The linear features that are present ln thls plcture correspond to the car cha5sls. 

and part of the proJected shadow5 ln Figure 4 27. the result of fine detectlon 15 displayed 

with ..\ = 0.4 and aime length of 55. 

As expected. the mam linear features are captured. Another outdoor scene 

image IS shown ln figure 4.28. 
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4 7 E<ample Outdoor Scenes 

... ~ • t • # 

Figure 4.26 Examplc outdoor scelle 

-----

Figure 4.27 Llne detectlon wÎth length 55 

Line detectlon IS performed on thls Image wlth aga," the same parameters. and 

the res~'lt is shown in figure 4.29. 

/ 

'. 
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Figure 4.28 Example outdoor.scene 
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F~gure 4.29 Llne dctcctlon wlth len~th 55 
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• 

Exalllple Outdoor Scelles 
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Chapter 5 Conclusions 

ln this thesis. an algortthm was presented that detected line segments ln inten­

sity images. This algonthm was shown to be based on the hypothesis prediction/venflcation 

paradigm. and was foul)d to be both computatlonally efficient and robust to fluctuations 

in the Input data. The algonthm works as follows for every edge element predict aime ' 

segment of speclflc length centered at that same edge element. and verlfy thls prediction 
i ' , . : 
uSlng statlstlcal tests on the samples that constltute thrs precllctecJ l/ne The prediction 

IS done us mg the gradient onentatlon at the edge element. and .hypothesls verification IS 

performed usmg the gradient Orientation of ail edge elements that are on the predlcted Ime. 
" 

ln addition to the baSIC algonthm. a data structure for representlng the detected Imes was 

introduced ln order to reduce the redundancles between Imes of dlfferent length Experl­

ments were performed on the algonthm usmg both the statlstlcal and the non-statlstlcal 

models. hlghhght/ng the dependence of the algonthm on ItS assoCiated parameters Addl­

ti/nal expertments were aiso performed wlth the resolutlon tree. and the result of prunmg It 

/~as s~own to yield a best linear ht to the original Image From WlthlO the "ne segments that 

\ had been ongmally consldered. Fmally. the algonthm was successfuily tested on Images of 

outdoor scenes. .. . 

Two possible extensions could be envisaged for thls algonthm' the first relates 

to the grouping of lines that have been detected. and the second relates to the detection of 

curves (of a restncted type) using the same paradigm that has been adopted here for the 

case of line detection. In what follows. each of these ideas 15 bnefly dlscussed. 
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5 1 Une McrglOg 

5.1 Line Merging 

The algonthm. as presented ln this thesis. ~etects lines of a specified length. 
. . 

ln many practlcal cases. no a priori knowledge of the possible Ime lengths ln the plcture is 

available The resolutlon tree was thus mtroduced as a means of representmg lines based , 

on thelr length m order to yleld a best asslgnment of Imes to the Image The drawback wlth 

thls approach Iles m the computatlonal complexlty Involved smce a large number of dlfrerent 

lengths have to be speclfled for "ne detectlon before any useful result can be attamed A 

pOSSible alternative to the resolutlon tree IS to detect Imes only for one pOSSible length. and 

then to group together those Imes wh,ch are actually part of the same contour Ime 

When are two Ime segments part of the same contour lille 7 When any grotp 

of points taken from any of the two Imes are collmear ThiS condition bemg necessary. IS 

far from belng sufflClent however. smce one .1150 has to take Into account the proxlmlty of 

the two "nes \flle thus have constralnts on Orientation and constralnts on proxlmlty 

The algorlthm for Ime merglng. embeddlng the constralflts mentloned above. 

can be eff,clently framed Into the hypothesls predlctlOn/venflcatlon paradlgm. and goes 

as follows conslder mergmg every pair of Imes I( thelr normallzed gradient components 

differ by less th an a certain threshold value (whlch could be the same as the one used for 

d~tectmg the Imes ln the flrst place) 1hls means ln effect that the Imes are close to belng 

paraI/el. One now has to verlfy that they actual/y orlgmate From the same contour Ime 

To do so., predlct the Ime formed by mergltlg the pail bemg consldered (through JOlnmg of 
-=--

their end-points). and compute the normalized gradient components of the new "ne Just 

formed (figure 5 1) 

Now perform a hypothesls verification test on that Ime. exactly m the sa me 

manner as the ones shown in chapter 3 of this thesls If the test falls. then the merge 15 

not valid. If the test succeeds and the hypothesis 15 accepted. then the new line is kept. 
1 
1 

! 
The merging process 15 then Iterated untll no new merges can be performed. 
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5 2 Curve Detection 

Figure 5.1 Line Merging 

5~2 Curve Detection 

The frrst question that ought to be answered at this pornt is' what is a curve? 

Simply stated. a (plane) curve IS a mappmg from the field of real numbers onto the two­

dimenslonal plane This mapprng could be arbltrary. and stralght Imes are Just simple cases 

of plane curves Srnce curves eXlst ln large varretles. It is necessary to somehow specify 

the kmd of curve that we propose to detect We propose to detect only those curves whlch 

forl')1 arcs of clrdes Why only these and not others 7 Because we feel thls to be ~he next 

logical step: the algorrthm that was presented m thls thesis dete~. straight lines. I.e. 

curves of z-ero curvature We now propose to detect arcs of clrdes. 1 e. curves of constant 

curvature. It can be seen. therefore. that "ne detectlon becomes a special case of the 

proposed algorrthm for curve detectlon 

The next question that ought to be answered is. how do we perform such a 

task? ln order to do this. we shall draw analogs from what has been presented for li ne 

detection. Lines were detected based on two parameters' pOSition and orrentation. Arcs 

of circles will be det~cted based on three parameters. These are position. orientation. and 

curvature. Once these trr:;e parù'11eters are computed for a certam edge element. it is 
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52 ClIrvc DetectlOll 

possible to predlct a unique arc of circle havmg a prespeclfled length and whlCh IS centercd 

at the edge element of mterest Havmg the curvature of the predlcted curve. one could e.lslly 

compute ItS assoclated radius of curvature. From thls radius and from the onentatlOn and 

position of the edge element. one could compute the center of the predlcted Jrc of Clrcle 
/. 

Once thls center IS compute<f. the ollentatlOn and curvature values at the pOints on the 

predicted arc could be predlcted. and these predlcted values could be n1atched agall1~t the 

actual Orientation and curvature measurements on those same potOts ln order to verdy the 

predicted hypothesis (fIgure 5 2) The main problem wlth thls approach IS. of cour.,e the 

reliable computatIOn of a curvature estlmate on whlch the curve prediction stage IS based 

1 / 

, . \ l " " .. \ _ ...... " .. 1 / 
.... ,-' li, 

~---- - ~ ........ ', 
---~ 

Figure 5.2 Curve Detection 

The hypothesis prediction and Verification stages are th us seen to be slmllar 

to what was presented for hne detectlon except that addltlonal steps are now Included ln 

or der to accomodate curvature. 

• 
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