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Abstract

Model Driven Engineering (MDE) research has achieved major progress in the past few
years. Though MDE research and adoption are moving forward at an increasing pace,
there are still few major challenges left to be addressed. Model Transformations (MT)
represent an essential part of MDE that is gradually reaching maturity level. Testing MT
has been shown to be a challenging task due to a new set of problems. In this thesis we
attempt to complement the work done so far by the research community to address MT
testing challenges.

We use findings from the research in classical testing to create a prospective view on MT
testing challenges and opportunities. More specifically, we focus on two challenges : Mo-
del Comparison and automating testing execution through a Testing Framework. First,
we introduce a model comparison approach (based an existing graph comparison algo-
rithm) that is customizable, and fine tuned to performs best in testing situations. The
performance of our algorithm is throughly investigated against different types of models.
Second, we introduce TUnit : a modelled framework for testing Model transformations.
We demonstrate the benefit of using TUnit in supporting the process of testing transfor-
mations in regression testing and enabling semantic equivalence through extending our
case study to perform a comparison of coverability graphs of Petri Nets.
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Résumé

La recherche sur le Model Driven Engineering (MDE) a accomplit de grands progrès
au cours des dernières années. Bien que la recherche et l’adoption avancent à grands
pas, il reste encore plusieurs défis majeurs à adresser. La Transformation de Modèle
(TM) représente un élément essentiel du MDE qui atteint graduellement le niveau de
maturité. Le test sur les TM s’est démontré être une tâche difficile en raison des nouveaux
problèmes survenus. Dans cette thèse, nous essayons de complémenter le travail complété
par la communauté de recherche pour adresser les défis restants des tests sur les TM.

Nous utilisons les résultats de la recherche en tests classiques pour créer une vision
prospective sur les défis et opportunités des tests sur les TM. Nous nous concentrons plus
précisement sur les deux défis suivants : la comparaison des modèles et l’automation des
tests exécutés à travers un cadre de tests . Tout d’adord, nous présentons une approche
en comparaison de modèles qui peut être personnalisée et atteint de meilleurs résultats
dans des situations de tests. La performance de notre algorithme est rigoureusement
étudiée contre différents types de modèles. Deuxièmement, nous introduisons Tunit : un
cadre de tests en transformation de modèles qui est aussi un modèle. Nous démontrons
les avantages d’utiliser TUnit pour donner un support au processus de tests sur les
transformations en tests de regression et permettre l’équivalance sémantique.
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Introduction

We are solving increasingly complex problems using software everyday. Subsequently,
techniques such as Model Driven Engineering (MDE) have surfaced as a viable solution to
reduce complexity and increase efficiency. For example, MDE would help in construction
of software systems through automatic code generations. It also enables better design
and analysis of complex systems in all domains.

Although MDE has showed great potential so far, there are still some underlying chal-
lenges before achieving full adoption. Model Transformation is one of the core building
blocks of MDE. To help push MDE further we will focus our work on supporting a
complete process for building model transformations, through better testing.

The natural first step is to identify the main challenges around testing model transfor-
mations using a roadmap. To use a proper roadmap we start off by studying classi-
cal software testing approaches i.e coded systems. We then use this classification as a
roadmap to categorize current research in model transformation testing, its achievements
and remaining challenges.

The few challenges we chose to tackle are complementary to recent advancements in
model transformation testing research.

Namely we will focus on building an efficient model comparison algorithm suitable for
this context.

We then build a framework to streamline testing process of model transformations similar
to existing unit testing frameworks.

Finally we will demonstrate how the framework automates the execution of testing by
means of a case study, and further streamline the development process through regression
testing, and enabling more complex testing using Semantics Equivalence.
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1
Chapter 1 : State Of The Art Software

Testing

Software testing was created on the same day when the first program was written. [Het88]
points to testing literature starting as early as 1950. Early testing work was concerned
with debugging, i.e, finding the bugs and removing them from production systems. Sub-
sequently, testing has evolved into a separate discipline.

This chapter attempts to provide an overview of current foundations in software testing
research and practice. A discussion of software requirements is provided next in Section
1.1. Then we proceed by listing the major definitions of software testing throughout the
literature, in Section 1.2, and the evolution of the testing discipline in Section 1.3. We
examine the three different classification of testing techniques recurring in the literature
in Section 1.4. Finally an overview of testing techniques and challenges is thoroughly
examined in 1.5.

1.1 Requirements

Requirements, also referred to as specifications, are formal descriptions of the expected
system behaviour. Testing usually attempts to validate that the system behaves accord-
ing to its requirements.

Since requirements guide the testing process, it’s important that the requirements are
also tested. This procedure is referred to as Requirements Verification. Quality attributes
which can be used to evaluate requirements include:

• Completeness: details about all possible situations should be provided, even
exceptional scenarios should be considered and described.

• Precision and Clearness: this will allow for exact implementation with minimal
room for interpretation by the system implementers.

• Consistency: requirements should reflect the same overall functionality, and
should not describe conflicting or incompatible functionalities, at any level of the
specification.

• Testability: requirements should be measurable. Thus enabling checking the
correctness of their implementation in the resulting software product. Tthis criteria
should be judged by the implementing engineers. Unfeasible requirements cause to
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shift the project from success.

1.2 Definitions of Software Testing

We list few of the main definitions of testing, in an attempt to demonstrate the different
view points on testing, which in turn reflect its complexity as discussed in [Het88]:

Hetzel 1973 :

Testing is the process of establishing confidence that a program or a system
does what is it supposed to.

Myers 1979 :

Testing is the process of executing a program or system with the intent of
finding errors.

Hetzel 1983 :

Testing is any activity aimed at evaluating an attribute or capability of a
program or system and determining that it meets its required results.

Beizer :

The act of executing tests. Tests are designed and then executed to demon-
strate the correspondence between an element and its specification.

IEEE :

The process of exercising or evaluating a system or system component by
manual or automated means to verify that it satisfies specified requirements
or to identify differences between expected and actual results.

1.3 Evolution of Software Testing

The Evolution of software testing as a profound discipline in the software engineering
world has been gradual. Software testing research and techniques have been evolving in
parallel to the software engineering research since software was first created. A summary
of the focus of software engineering research since the 1960’ is presented in [Sha90].

In the 1950’s programming was restricted to writing small programs in machine languages
(e.g: assemblers), there was an elementary understanding of control flow, and back then
testing was debugging. Then in the 1960’s, compiler development took place, and testing
started to emerge separately from debugging.

Throughout the 1970’s, software engineering concepts were being introduced and adopted.
Programming and Algorithms were the main focus of research, as well as data structures
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and types. Testing took the path of a more technical discipline. Subsequently, during
the following period the focus switched to interfaces and system structure. Systems
grew into more complex specifications with a large structured state space, which lead to
the CASE tools into a more developed and evolved stage. Testing then grew into the
verification and validation concepts.

In the 1990’s the focus of software processes shifted to shorter development cycles and
increasing quality. Demand for specialized testing skills increased, followed by a growing
interest in software safety, security and fault tolerance through the recent years.

Today software testing has become a vital part of the software engineering process.
Numerous tools and techniques, which support test design and implementation has been
developed. They have been applied to almost all phases of the software engineering
process.

1.4 Taxonomy of Software Testing

The following is proposed classification of software testing techniques which exist to-
day, both in research and practice. We present three different high level views of this
classifications, and discuss each.

1.4.1 Static Vs Dynamic Analysis

This classification is based on the criteria of executing the program [Sch96] [Har00].
Static analysis does not involve the execution of the system under test (SUT), whether
it’s code, a design document or any other system artifact. It may however involve some
form of conceptual execution. Tools like findbugs 1, could identify dead code segments
for example. Static analysis could be manual (code reviews), or automatic: (compilers).

Dynamic analysis on the other hand, involves the execution of the source code. It
follows the the traditional approach of testing. The program is executed under certain
conditions, and then it’s behaviour is observed to conclude correctness.

Static, non-execution based

Techniques such as walkthroughs and inspections by experts has been shown to be highly
effective in revealing bugs. Nevertheless, these are relatively high cost if not accompanied
with other techniques. Formal approaches such as, correctness proving using mathemat-
ical proof are also used. They are intended to show that a product is correctly imple-
menting the specifications. But even then the product needs to be exposed to several
forms of execution based testing to ensure quality, which allows exposing other classes
of faults which are not related to the overall algorithmic correctness. See Figure 1.1 for
an overall view of static testing techniques. Another informal proof technique involves
inserting assertions into the code for example.

[KM07] provides the following description of what different static techniques apply
through different stages:

1. http://findbugs.sourceforge.net
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Static 
Testing

Manual

Inspection
Formal 
Review

Walkthrough

Automatic

Static 
Verification

Symbolic 
Execution

Syntax 
Parsing

Figure 1.1: Static testing techniques

Stage Phase Checks

1
Control Flow Analysis Loops with multiple exist or entry points

Unreachable code

2
Data Use Analysis Un-initialized variables

Variables written twice without intervening assignment
Variables declared but never used

3 Interface Analysis Consistency of procedure declaration and their use

4
Information Flow Analysis Dependencies of output variables

Information for code inspection review
5 Path Analysis Paths in the program and the statements executed in it.

Dynamic, Execution Based

Dynamic analysis enable testing other aspects of the system, including performance,
reliability and correctness. Test cases involve the execution of the system, or parts of it,
to achieve the testing verdicts. The main goal of execution based testing is to reveal as
many faults as possible. It’s understood that there is no way to guarantee the detection
of all faults using this approach.2

As concluded in [YT89], this taxonomy is well suited for planning purposes. It can
be applied throughout the different stages of the development life-cycle. The following
table is a summary to illustrate what testing activities apply for each of the software
development stages. For example, model checking is usually based on the requirement,
and it does not require executing the implementation.
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SUT

Input Output

Figure 1.2: Black-box testing

Execution-Dynamic Non-Execution-Static

Requirement
Functional testing
testing input classes Requirement validation
testing output classes Model checking

Design Design/Model Testing Reviewing/analyzing design artifacts

Coding
Coverage techniques Static error analysis (syntax/type checking)
Data-flow-testing Symbolic Execution
Control-flow-testing Peer reviewing

1.4.2 Functional Vs Structural Testing

Another classification is the functional vs structural testing which is the most adopted
taxonomy in software testing. Systems being tested usually have several associated
artifacts. The number of such artifacts grow as building the system progresses through
different levels. The specifications documents are referred to as the first artifact of
the system. Other artifact such as design documents, and actual implementation are
introduced later.

This classification differentiate testing techniques which are based on which artifact(s)
was used to derive test cases [Bei95].

Functional a.k.a Black-Box testing

Functional testing relies on the analysis of requirements of the system under test. Whether
it’s the complete system, a unit, a component or even the user documentations. The type
of testing does not consider the internal implementation, and treats the SUT as a black
box (see Figure 1.2). Functional testing implies executing all test cases derived from the
requirements. It focuses on the external behaviour of the SUT. Black-box testing include
techniques such as: partition analysis and equivalence classes.

Structural a.k.a White-Box testing

In structural testing, selecting test cases depends on the implementation of the system.
Design documents, or source code could be inspected to drive test case selection to ensure
execution of certain statements or branches of the code. The focus in structural testing
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SUT

Input Output

Figure 1.3: White-box testing

is on the internal behaviour (see Figure 1.3). Certain criterion such as coverage repre-
sent a qualitative value for the effectiveness of the testing. White-box testing includes
techniques such as: branch coverage and path coverage.

1.4.3 Folding Vs Sampling

This classification distinguishes among, on the one hand state space analysis techniques,
and on the other, techniques sampling several system behaviours. Such a taxonomy, can
relate techniques on one axis, and the relative effort needed on the second axis.

”Does program P obey specification S” is undecidable. Such a statement means that
there is a tradeoff between computational cost and accuracy. [YT89] introduces the
notion of pessimistic inaccuracy and optimistic inaccuracy. Pessimistic inaccuracy : is
the failure to accept a correct program. For example by failing to construct a complete
proof of correctness. Optimistic inaccuracy : is the failure to reject an incorrect program.
Could be the case since exhaustive testing can not be performed.

In Figure 1.4 we show on the horizontal axis the type of inaccuracy, and on the vertical
axis the effort needed to achieve the activity. Exhaustive testing and formal proof are
both intended to be on the top of pyramid. i.e they are both neither an optimistic nor
a pessimistic inaccuracy. The effort to achieve either is often unfeasible as it approaches
infinity. Threshold of tractability defines the limit beyond which it becomes hard to
implement a pragmatic solution from theoretical concepts which could work in most
cases. Threshold of decidability defines the limit beyond which it becomes unfeasible to
implement a pragmatic solution which could work in most cases.

Folding

Techniques which fold execution states together, using abstraction for example, are called
Folding techniques. Folding is when an analysis technique abstract away some details
of program execution. It involves transposing the representation of a system onto a
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different state space, removing unnecessary details by doing so. It may cause some
bad state of the program to be hidden. A thorough procedure is required to implement
folding in way which guarantees that no errors will be hidden by the choices of abstraction
[YT89]. Folding provides pessimistic inaccuracy. since it might fail to provide a proof
of correctness of the system. For example exhaustive analysis petri net could fail with a
finite but a large set of states. Instead, running simulations with specific sample space
could reveal properties.

Sampling

Sampling, on the other hand, only explores part of the infinite state space, which is what
most dynamic analysis techniques do. Picking a sample set/space which guarantees
sufficient coverage, and confidence into the system correctness is the challenge. This
sample set choice is referred to as test case selection and has its own section in this
chapter. Random selection of samples could bypass several critical values [YT89]. For
example a conditional path value. Systematic approaches provide a better job by taking
into consideration such critical values (using partitioning for example). However, recent
research suggests that random selection techniques are becoming more and more efficient,
mostly in terms of feasibility [Ber07]. Random selection techniques are usually automatic,
and can build on feedback information collected while the tests are executed to enhance
the test set.

The state space from which sampling and folding occurs, could be decided from the model
schemata (petri nets, state charts, flow graphs, etc). It’s easier to exploit interaction
between techniques when the same model schemata is shared between them.

1.5 Research Foundations and Challenges

In the following we list the main questions, and activities needed to perform software
testing in a systematic and engineered matter. For each question, we mention current
achievements and any existing related challenges. Such abstraction of activities is re-
flected, in the practice of software testing, by test plans. Note that we will focus on
the dynamic testing, which involves the execution of the System Under Test (SUT), as
opposed to other analysis techniques.

1.5.1 Why Are We Testing? (Test Objective)

Defining the test objective is the first step to testing. A test objective describes exactly
the main motivation of the testing and helps drive the following testing activities. It
will help guide the test cases selection process and even the environment in which the
test cases should be exercised. We can classify any testing objectives under on of the
following three classifications:

Functional Requirements

The term functional requirements, in software engineering, is used to describe the formal
goals and functionality the system should be built to provide. Functional requirements
represent the business logic related behaviour of the system. A function, defines for
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each input the system receives, the output it will generate. Functional requirements are
originated by the customer and then are decomposed along with the system decomposi-
tions, and hence can reach as low as small units within the system. In general functional
requirements describes what the system should do.

Extra-Functional Requirements

Extra-functional requirements tend to describe How? the system implements a function
rather than defining What? the functions should do. For example: The system should
have an average response time of less than 1 second. The speech recognition component
of the system should achieve an accuracy rate larger than 99 percent. Extra-functional
requirements are also called quality attributes or constraints on the systems behaviour.
Testing within this category tends to require different expertise and set of skills. Exam-
ples of extra-functional requirements include : Accessibility, Performance, Availability,
Extensibility and Testability

Special Purpose

Sometimes the testing objective is not intended towards ensuring any requirement (func-
tional or not). For example: we would like to test the installation of the system on the
windows 32bits and 64bits processors. Another example is protocol testing, for example
ensuring that a system implements its part of a communication protocol correctly, or
according to some standards (pages generated are always strict XHTML)

1.5.2 What Are We Testing? (SUT)

In order to realize the test objective, the next logical step is to identify what should be
executed. This is what we refer to as SUT (System Under Testing) , that is whatever is
being tested. For example considering testing a composite system, several levels of test-
ing could be identified: Unit Testing, Module Testing, Subsystem/Component Testing,
System/Acceptance Testing. This classification is seen to be linked to testing phases
(unit, integration and system) as well [Gla09]. When we are writing unit tests, the SUT
is whatever class or method(s) we are testing; When we are writing customer tests, the
SUT is probably the entire application (or at least a major subsystem of it) [Mes07].

Integration testing is defined as ensuring software components can work together prop-
erly, through their predefined interfaces.

Challenge: Compositional Testing

As software systems increase in complexity, several new techniques to construct software
were introduced to boost productivity, such as promoting reuse in component based
development. This lead to many systems today being composed of several individually
re-used components. Component in turn are composed of many different modules and
units . Classical approach to testing such systems is by divide and conquer i.e; by
testing each of the composing pieces. Current research provides guidance into how to
the organize the execution of testing of the different components. However, more work is
needed to minimize the testing efforts especially with the increased adoption of dynamic
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system compositions. A survey of recent work in this area can be found in [Ber07]. For
example, research questions being investigated such as: how to use the testing results of
separate components and units to infer about the global system, and subsequently which
test cases need be executed to ensure integration.

1.5.3 How Are We Testing? (Test Case Selection)

After choosing the test objective and specifying the SUT, the actual execution of the
tests can finally take place. However, in order to perform testing, a list of test cases
has to be constructed to decide on which behaviour samples to observe. This procedure
is referred to as test selection criteria, and can be performed in a number of different
approaches (random, systematic). Recent work has been pursued in this area reflecting
the impact test selection has over test efficacy and success. A test strategy or technique
is a systematic method used to select and/or generate tests which will be included in a
test suite. In classical research there is two main approaches or strategies, depending on
the source of information to derive the test cases [Bei95]:

1. Behavioural/Functional techniques: where test case selection strategies are
based on requirements. This is the same as black-box testing (e.g: execute all
the dirty tests implied by the requirement x). This testing approach applies to
all levels of testing. The main technique used in this domain is the Equivalence
Partitioning, described in [KM07], which help generate much less test case than
those generated by exhaustive testing, but with high efficacy in revealing bugs.

2. Structural Testing: where strategies are derived from the structure/source code
of the SUT (e.g: execute every statement at least once), same as white-box and
glass-box techniques.

3. Hybrid test strategies: combine both strategies.

Several other and new techniques for test selection have emerged from which we mention
the following :

• Model-Based Testing: represents the use of models of the system and its envi-
ronment to drive the testing process. More specifically [UL07] describes the four
main approaches to model-based testing as:

1. Generation of test input data from a domain model.

2. Generation of test cases from an environment model.

3. Generation of test cases with oracles from a behavioural model.

4. Generation of test scripts from abstract tests.

Model based testing is all about automating the design of the testing. It can
provide a solution to the oracle problem which is discussed next. As the system
complexity increases, the cost of maintenance and testing also increases and hence
the use of models (as described in Chapter 2) is desired, and provides a lot of
benefits in term of time saving, and even quality, presumably by avoiding low level
bugs, and staying closer to the problem domain.
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But then model based testing enables the reuse of the models which are used to
construct the system to help the testing. This is referred to as white box model based
testing, since it attempts reusing the same models which were used to generate the
system to generate test cases. This approach has the risks of missing a critical bug,
because the original model of the SUT has missed it, and may prove less effective.

On the other hand, creating a separate model from the requirements of the SUT
(black-box), is the other extreme and sort of implies double the work (of mod-
elling that is). This is considered black box model testing, where the test cases are
generated based on a model of the requirements and not the actual system.

The best approach is to combine both scenarios in a way which can help building
the SUT model to generate the test cases, and to reuse some parts of the existing
construction models. The book [UL07] presents an extensive information source of
model based testing.

• Anti Model-Based Testing: represents the other extreme to model based test-
ing, namely using dynamic analysis to synthesis models about the system be-
haviour. This is a highly useful approach when testing COTS or legacy systems,
where models simply do not exist. Dynamic analysis can be usually combined
with mutation based testing [SDZ09] techniques to derive and enhance a test suite.
Dynamic analysis could include monitoring logs to construct a theory about the
system behaviour.

• Object-Oriented Testing: this software paradigm, at the beginning gave hopes
of overcoming the need of testing, by reducing it to a minimum. However, later
it turned out that OO Paradigm introduced a new class of risks and challenges
in terms of testing, some of which is testing inheritance code, which needs to be
retested extensively to be covered in the inherited context. Also the polymorphism
coverage model is relatively different from regular coverage models; Finally, en-
capsulation increases the difficulty of testing and could cause missing hidden bugs
deep in classes. This is highly related to the concept of testability.

Comparison between different test selection criteria has been under heavy research also.
It has been identified in [Har00] as a major challenge towards effective software testing
research. Since then, analytical studies looked at different factors influencing the ability
of techniques to detect faults (systematic versus random techniques for example) [Ber07].

1.5.4 Testing Oracles

Testing Oracles provide a verdict on whether a test case has passed or failed. It accom-
plishes this by comparing the actual test outcome to the expected outcome. The oracle
function is thought to be a magical unit which produce the expected outputs for any
test case input, or in other view an engine which annotate each test case with a pass fail
verdict according to its output. Subsequently any testing technique requires the presence
of an oracle.

Producing such oracles has been one of the barriers to test automation. The two re-
quirements when constructing such oracles is precision and effectiveness in avoiding false
positives and false negatives. [Ber07] and [BY01] survey research work regarding oracles
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and conclude with the following classifications:

• Partiality: represents checking only specific partial criteria of the actual output.
This approach has to make a tradeoff between precision and cost.

• Quantification: if executable specification languages used to describe oracles,
then a tradeoff between efficiency and expressiveness must be achieved.

• Test case selection: if using model based testing to select the test cases, then
the model could be used to also generate oracles.

1.5.5 Testing Process

Beizer described the process of testing to be of two phases: building a test plan at the
requirement gathering phase, and then implementing/executing the test plan only after
the software implementation phase is finalized [Har00]. Literature distinguishes among
several software development processes. In particular, the waterfall model has been the
most dominant form of software construction method in the past. It indicates that the
testing process takes place only after the software has been fully implemented.

Much research about testing process has since matured and became more systematic and
incorporated into the software development process. This helped better the test-design
by thinking about testing at earlier stages of software development process. A widely
adopted testing process is the V model [Ber07]. The V model specifies different testing
phases (Unit, Integration and system) applied at different stages. Other models like the
spiral model, RUP (Rational Unified Process) are also present and widely adopted. Such
processes tend to include a testing phase integrated into their progress [Gra08].

Another extreme approach has been gaining grounds lately, especially with the agile
community is TDD (Test Driven Development). TDD takes the extreme of writing the
testing code before the actual implementation code. Tests in TDD represent executable
requirements [Mes07]. But as [Het88] points out, testing is not a phase on its own,
but rather there are testing deliverables associated with every phase of the development
process.

1.5.6 Test Automation

Test automation is the most important piece of the puzzle in software testing. Software
testing methods are trying to keep pace with the software construction tools, as system
complexity increases. The need for automation is overwhelmingly critical for many rea-
sons. First, manual testing doesn’t always work since humans can make mistakes while
executing a complicated test case, either on testing inputs, or on observing outputs.
Second, It is not economically viable considering the maintenance cost associated to it.
Several types of testing such as stress, reliability and performance won’t be achievable
without automation.

Coverage Criteria Tools

As discussed behavioural testing is based on a model of software, and such models can
be wrong; and so to increase confidence in the testing, the structure of the software is
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considered. For example, common sense indicates that each program instruction should
be executed while testing at least once. Structural coverage tools provide a quantitative
measure of how much of the software was executed by testing, where a target coverage
of 100 percent is optimal. The main categories for structural coverage tools as presented
in [Bei95] are:

1. Control-flow Coverage: the simplest form is source code coverage. However, a
more fine-grain coverage such as branch, and predicate condition coverage is also
provided. Control-flow coverage tools work (typically) by transparently augmenting
the source code of the SUT with instrumentation statements that then will be
executed to record which paths and segments were exercised.

2. Block Coverage (Profilers): help provide coverage information for the whole
system code, and are not limited to the unit test level. Profilers do not interpret
the instructions executed (as does a normal coverage tool) but instead records if
a given memory location (object-level instruction) has or has not been executed.
Profilers may provide this coverage data for individual bytes, individual object in-
structions, or blocks of bytes or instructions. In [Bei95] two types of coverage are
also observed, deterministic coverage, where coverage is done for every instruction
execution and statistical coverage where coverage is achieved by sampling instruc-
tion execution periodically. The latter option provide more realistic results but
may take thousands of repetitions to reach statistical significance.

3. Data-flow and Other Coverage Tools: Although data-flow testing is defined
here in terms of behavioural testing, there are corresponding structural concepts
and associated coverage tools. There are tools that measure all-uses, all-definitions,
all-du paths, and even all-paths.

Test Execution Automation

Test execution is the process in which the input of the test case is exercised on the SUT,
and the resulting output is then collected and evaluated using an oracle function. Any
test design automation that generates a large number of test cases will be useless without
execution automation. The automation of the execution can be achieved in different ways
[Bei95]:

• Testing code: Writing test programs that specifically test the SUT code is one
way to go. However this might not be the best approach, because it introduces the
dilemma of testing the test code (since it will have specific logic embedded in it),
and testing the testing of the test code, and so on. Also it limits reuse which is
counter productive.

• Testing drivers: Drivers are appropriate structural tools which can be part of a
code package. They can be reused for testing different programs, and provide as
part of a framework, an increased automation support. Drivers proceed in three
different stages:

1. Setup Phase: for loading initial prerequisites and other hardware or software
elements, while also initializing any instrumentation and coverage tools.
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2. Execution Phase: performs re-initialization as necessary for each test, eval-
uates assertions and captures output. It also resets instrumentation for every
test.

3. Postmortem Phase: performs proper test verification through some cri-
terion and reports failures by exceptions. It compares actual to predicted
outcomes, using smart comparison methods (e.g. allows you to specify what
should and shouldn’t be included in the comparison and with what tolerance).

• Capture/Playback: a fundamental tool in achieving transition from manual to
automation. It could be used in both test design and execution automation. It
allows capturing the tester interaction with the SUT interface as part of a test
case, and then re-execute the tester role and observe the program’s behaviour. The
playback phase is just a test driver. Capture/Playback tools have a disadvantage
of being dependent on the user interface of the system, and will have to be changed
with every change in the interface.

Test Design Automation and Input Generation

Testing automation is achieved by either generating test inputs or automating the testing
process. XUnit frameworks for unit testing have helped overcome some of the barriers to
unit testing, namely the extra coding necessary for simulating the environment where unit
code will run, and the extra checks for the unit’s output. However, such frameworks do
not help with test generation and environment simulation. The DART project [GKS05]
attempts more automation for unit testing by automatically extracting the interface using
static code analysis for automatic generation of random test drivers for the interface,
followed by dynamic analysis of the program behaviour to drive the generation of new
test data to execute along different paths. For more in depth survey refer to [Ber07].

Three main approaches to address the automatic generation of test cases exist today :

• Model-based test generation: Incorporates both white box and black box approaches,
but most existing tools are state-based and do not focus on input data. One chal-
lenge faced when generating test cases from such models, is state explosion. The
introduction of symbolism could help overcome this problem, see [Ber07, UL07] for
most promising developments in this area.

• Random test generation: Traditionally this approach used to be a supplementary
approach, since it could not identify critical cases and domain knowledge. However
recent clever implementations of random testing appear to outperform systematic
test generation. For example random testing can use exploit feedback information
observed from the program dynamically. The combination of both random and
systematic approaches have great promises in automatic test generation.

• Search-based test generation: Explores the set of solutions for a given criteria and
using mathematical techniques which helps direct the search towards the poten-
tially most promising area of input space. Reference to work in this area is also
provided in [Ber07].
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Domain Specific Testing

Domain specific languages are specific languages with restricted domains which helps
abstract specification closer to the problem domain. Domain-specific languages provide
a special tool to help build better software. Several tools exist today which help trans-
late program specifications expressed in such languages into optimized implementation.
Domain specific testing can be considered as testing in specific domains, most likely
where domain specific languages are used to construct the software. The Siddhartha
framework [RR99] for example help in converting test specifications to domain specific
testing drivers. Also the HotTest technique which shows how modelling the SUT using
strongly typed domain specific languages allows for automatically embedding domain
specific requirements into the test models. Several other techniques and frameworks
exist.



2
Chapter 2: Model Transformation

Testing

We start by providing a summary of the main work in MDE (Model Driven Engineering).
First we provide a high level view of multi-formalism modelling benefits and challenges
in Section 2.1, followed by a more detailed description of the different building blocks of
MDE, such as meta-modelling, syntax and semantics in Section 2.2. We then introduce
model transformation in Section 2.3, and discuss its main design features and approaches
with a focus on graph based transformations. Finally, we delve into model transformation
testing. We use the testing classification established in Chapter 1, as a basis for classifying
techniques in model transformation testing in Section 2.4. We conclude with listing the
main challenges need to be addressed to set the basis for the main contribution in the
followings chapters.

2.1 Multi-formalism Modelling

Complex systems are not only difficult to code, but also difficult to test and analyze. In
most cases they deal with problems at a much different level of abstraction from code.
Modelling and Simulation Based Design has surfaced in recent years to address building,
maintaining and analyzing such complex systems. However, modelling truly complex
systems is a difficult task, since the system structure and semantics overpass a single
modelling language, also known as a formalism. Examples of commonly used formalisms
are Differential-Algebraic Equations (DAEs), Bond Graphs, Petri Nets, DEVS, Entity-
Relationship diagrams, State charts and UML2.0. We present the following introduction
to modelling based on the summary provided in [GLV07].

We can achieve modelling such systems in different ways:

• Constructing a super-formalism to include all the formalisms needed for describing
the system. However such approach is very complicated and not effective.

• Considering the different components of the system in a way where each can be
modelled using the most appropriate formalism for its abstraction. Then using co-
simulation, the overall modelled system behaviour could be analyzed through sim-
ulating each component using the specific formalism simulator. The co-simulation
engine orchestrates the flow of input/output data. In this approach, questions
about the overall system can only be answered at the level of input/output (state
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trajectory) level. It is no longer possible to answer higher-level questions which
could be answered within the individual components’ formalisms.

• Similarly to the co-simulation, each system component may be modelled using a
specific formalism, however, a single formalism is identified and used as a target
for symbolically transforming the models of the different components. This process
require a transformation function between both formalisms. Some system proper-
ties could be changes/lost as a result of the transformation (if the target formalism
cant express them), hence the target formalism and transformation function should
be chosen wisely to preserve the system properties we intend to investigate.

The model transformation approach seems most elegant and powerful. It enables the
synthesis of platform dependent systems from models described in different formalisms.
Like generating Java code from UML class and sequence diagrams. However, this ap-
proach is most challenging for it carries the difficulty of being tool dependent, and require
a great deal of standardization efforts. Object Management Group OMG 1 is one of the
largest efforts. It requires interconnecting a plethora of different tools, each designed
for a particular formalism. Also, it is desirable to have problem-specific formalisms and
tools which is very time consuming. In the light of this we feel the best approach (as we
describe in the following sections) is to explicitly model the different formalisms as well
as the transformations between them to ensure most compatibility.

2.2 Modelling

Models are an abstraction of the real world, they are typically used to describe the
structure and behaviour of systems to enable the design and analyses of such systems.

These models, at various levels of abstraction, are always described in some formalism
or modelling language. In addition to the syntax of a model (how it is represented), one
needs to also specify its meaning (i.e., assign semantics) see Figure 2.1 for a high level
view of Modelling Architecture.

On the one hand, we can describe how the system evolves dynamically overtime through
specifying its behaviour. On the other hand, we could concentrate purely on the struc-
tural aspect of the system that is static and not specifying any behaviour attached to
it. Furthermore, we can use models extensively during design to describe both the sys-
tem structure and behaviour, to enable code generation from these models into different
platforms such as hardware specific embedded systems.

In terms of analysis, and as discussed earlier, in many cases, system can be composed
of of multiple models representing different views, at various levels of abstraction, and
using a plethora of formalisms.

Dissecting a Modelling Language

To “model” modelling languages we will break down a modelling language into its basic
constituents [HR00].

1. http://www.omg.org/
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Figure 2.1: Meta Modelling Architecture

As mentioned previously, the two main aspects of a model are its syntax (how it is
represented) on the one hand and its semantics (what it means) on the other hand.

Syntax

The syntax of modelling languages is traditionally partitioned into concrete syntax and
abstract syntax. [HR00, GLV07] In textual languages for example, the concrete syntax is
made up of sequences of characters taken from an alphabet These characters are typically
grouped into words or tokens. Certain sequences of words or sentences are considered
valid (i.e., belong to the language). The (possibly infinite) set of all valid sentences
is said to make up the language. Costagliola et. al. [CLOP02] present a framework
of visual language classes in which the analogy between textual and visual characters,
words, and sentences becomes apparent. Visual languages are those languages whose
concrete syntax is visual (graphical, geometrical, topological, . . . ) as opposed to textual.

The abstract syntax represents an “abstract” view of the system capturing the “essence”
of the model which is stripped of irrelevant concrete syntax information. We can use
multiple concrete syntaxes to represent a single abstract syntax. In programming lan-
guage compilers, abstract syntax of models (due to the nature of programs) is typically
represented in Abstract Syntax Trees (ASTs). In the context of general modelling, where
models are often graph-like, this representation can be generalized to Abstract Syntax
Graphs (ASGs) [GLV07].

Semantics

Once the syntactic correctness of a model has been established, its unique and precise
meaning must be specified. Meaning can be expressed by specifying a semantic mapping
function which maps every model in a language onto an element in a semantic domain.
For example, the meaning of a Causal Block Diagram is given by mapping it onto an Or-



22 Chapter 2: Model Transformation Testing

Figure 2.2: Modelling Languages as Sets

dinary Differential Equation. For practical reasons, semantic mapping is usually applied
to the abstract rather than to the concrete syntax of a model. Note that the semantic
domain is a modelling language in its own right which needs to be properly modelled (and
so on, recursively). In practice, the semantic mapping function maps abstract syntax
onto abstract syntax.

Meta Modelling Elements As Sets

To continue the introduction of meta-modelling and model transformation concepts,
languages will explicitly be represented as (possibly infinite) sets as shown in Figure 2.2.

In the figure, insideness denotes the sub-set relationship.

The dots represent model which are elements of the encompassing set(s).

As one can always, at some level of abstraction, represent a model as a graph structure,
all models are shown as elements of the set of all graphs Graph. Though this restric-
tion is not necessary, it is commonly used as it allows for the design, implementation
and bootstrapping of (meta-)modelling environments. As such, any modelling language
becomes a (possibly infinite) set of graphs. In the bottom centre of Figure 2.2 is the
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abstract syntax set A. It is a set of models stripped of their concrete syntax.

Meta-modelling is the explicit description (in the form of a model in an appropriate meta-
modelling language) of the abstract syntax set A. Often, meta-modelling also covers a
model of the concrete syntax. Semantics is not covered. In the figure, the set A is
described by means of the model meta-model of A. On the one hand, a meta-model can
be used to check whether a general model (a graph) belongs to the set A. On the other
hand, one could, at least in principle, use a meta-model to generate all elements of A.

Several languages are suitable to describe meta-models in. Two approaches are in com-
mon use:

1. A meta-model is a type-graph. Elements of the language described by the meta-
model are instance graphs. There must be a morphism between an instance-graph
(model) and a type-graph (meta-model) for the model to be in the language. Com-
monly used meta-modelling languages are Entity Relationship Diagrams (ERDs)
and Class Diagrams (adding inheritance to ERDs). However this approach is not
sufficient and an extra constraint language (such as OCL the Object Constraint
Language in the UML) specifying constraints over instances is used to further
specify the set of models in a language.

2. A more general approach specifies a meta-model as a transformation (in an ap-
propriate formalism such as Graph Grammars) which, when applied to a model,
verifies its membership of a formalism by reduction. This is similar to the syntax
checking based on (context-free) grammars used in programming language compiler
compilers.

Both types of meta-models (type-graph or grammar) can be interpreted (for flexibility
and dynamic modification) or compiled (for performance).

The advantages of meta-modelling are numerous. Firstly, an explicit model of a modelling
language can serve as documentation and as specification. Such a specification can be the
basis for the analysis of properties of models in the language. From the meta-model, a
modelling environment may be automatically generated. The flexibility of the approach
is tremendous: new languages can be designed by simply modifying parts of a meta-
model. As this modification is explicitly applied to models, the relationship between
different variants of a modelling language is apparent. Above all, with an appropriate
meta-modelling tool, modifying a meta-model and subsequently generating a possibly
visual modelling tool is orders of magnitude faster than developing such a tool by hand.
The tool synthesis is repeatable and less error-prone than hand-crafting.

As a meta-model is a model in an appropriate modelling language in its own right, one
should be able to meta-model that language’s abstract syntax too. Such a model of a
meta-modelling language is called a meta-meta-model. This is depicted in Figure 2.2.

A model m in the Abstract Syntax set (see Figure 2.2) needs at least one concrete
syntax. This implies that a concrete syntax mapping function κ is needed to map an
abstract syntax graph onto a concrete syntax model. Such a model could be textual
(e.g., an element of the set of all Strings), or visual (e.g., an element of the set of all the
2D vector drawings). Furthermore, concrete models can be modelled in its own right.
Often, multiple concrete syntaxes will be defined for a single abstract syntax, depending
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on the user. If exchange between modelling tools is intended, an XML-based textual
syntax is often used, or a using a binary format for more efficiency. A visual concrete
syntax is often used for human consumption, mainly when the formalism is graph-like.
The concrete syntax of complex languages is however rarely entirely visual (we represent
equations using textual concrete syntax).

Finally, a model m in the Abstract Syntax set (see Figure 2.2) needs a unique and precise
meaning. As previously discussed, this is achieved by providing a Semantic Domain and
a semantic mapping function [[.]]. This mapping can be given informally in English,
pragmatically with code or formally with model transformations. Natural languages are
not executable. Code is executable, but it is often hard to understand, analyze and
maintain. This is why formalisms such as Graph Grammars are often used to specify
semantic mapping functions in particular and model transformations in general. Graph
Grammars are a visual formalism for specifying transformations. They are defined and
at a higher level than code. They express complex behaviour with a few graphical rules.
Furthermore, Graph Grammar models can be analyzed and executed. As efficient execu-
tion may be an issue, Graph Grammars can often be seen as an executable specification
for manual coding. As such, they can be used to automatically generate transformation
unit tests if they are are no intermediate structures.

2.3 Model Transformation

Model transformation is a key element of Model Driven Engineering, and in the light of
the previous discussion about MDE importance we will introduce model transformations
in this section. It can be thought of in software engineering as programs that write
programs. In fact any data manipulation can be thought of as a transformation. Code
generators represent one form of a Model to Text transformation. Note that the generated
text can be thought of as a model to a certain extent (since it will conform to the
syntax of the target language). Model transformation accepts a model as input and
produces a model as an output, where each model conforms to a specific meta-model as
shown in Figure 2.3. Model transformation is defined on meta-model elements, but its
implementation transforms models. Endogenous transformation is when the source and
the target meta-models are the same, and exogenous is when they are different. Model
Transformation can be used to transform models, and also to describe the semantics of
modelling languages. For example, defining the operational semantics of a finite state
machine.

Model transformation is a concept related to compilers (program transformations). Both
disciplines however have evolved separately, and hence have different communities. The
subject of the transformation (models versus source code) is the main difference. Pro-
gram transformation are focused and optimized for specific languages and platforms,
where model transformations tend to operate on a different and more diverse set of arti-
facts including UML models, database schemas and requirement specifications. Another
set of differences lie in the fact that model transformation may support multiway trans-
formation (transformation to different levels and back), as well as providing traceability.
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Figure 2.3: Model Transformation basic concepts

2.3.1 Main Design Features

A design-feature based classification of model transformation is introduced in [CH06].
(Note that although the classification we are introducing is a general, we will focus our
discussion on graph based methods for model transformations.) When transformation is
dealing with models, Transformation Rules represent the basic building blocks of model
transformation.

Rules have an input meta-model domain and an output meta-model domain, both do-
mains can be identical if the transformation is endogenous. The domain expresses how
the rules can access and operate on model elements. Models can be described in the
rules body using graphs, terms or string-like structures containing variables, constraints
and patterns. Rules can have a syntactic separation in terms of a LHS (Left Hand Side)
which operate on the source model and a RHS (Right Hand Side) operating on the target
model (replacing of original LHS patterns), however when a transformation is described
entirely using a programming language, such a separation doesn’t exist.

A transformation may involve more than two models and be generalized to an n → m

relation. This is highly desired when model synchronization is the goal of the transfor-
mation.

Parametrization of rules allows for more reuse.

During the transformation execution, the location determination of the first occurrence
of a a rule’s LHS takes place on the source model. Depending on the strategy used, the
transformation may produce different outputs in different runs. A deterministic transfor-
mation indicates that a repeated execution will always produce the same output. When
several choices occur in a non-deterministic transformation, we distinguish concurrent
execution where a rule is applied on all choices at the same time, from one-point ex-
ecution where the rule is applied on only one selected location in a non-deterministic
way.

Rule scheduling determines which rules are applied when and can be applied in different
approaches. Scheduling can be achieved by explicit control structures or implicitly by the
tool. Explicit scheduling can be internal where rules can invoke each other, or external
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with a clear separation of the rules from the scheduling logic. Moreover, several rules
may be applicable at the same time, or sequentially using a conflict resolution to select
rules.

Rules can be organized into modules and packages, and also could allow inheritance and
extensions to further facilitate re-use.

Incremental transformations facilitate consistency among models. Furthermore, change
detection and change-propagation mechanisms are used.

Tracing transformation execution is crucial for model transformation debugging and
analysis. Traces may be automatically generated in the source or the target or kept
track of separately.

2.3.2 Model-to-Text Transformations

Model to Text transformation represent mainly code generators (for example generating
XML, HMTL, Java . . . ), and distinguished mainly because of the target’s concrete syntax
is textual. It’s noted that in most cases the produced text will have a structure which
conforms to a specific syntax, and in turn a sort of a meta model.

There exist two main approaches for model to text transformations, summarized in the
following:

• Visitor-Based Approaches: the approach here is to traverse, or iterate over
the elements of the model in a specific order and to write into a text stream. An
example of this approach is JAMDA ( Java Model driven architecture 2).

• Template-Based Approaches: a textual template resembles the text to be gen-
erated, with fields relating to the model, and meta code. textual templates can
be independent of the target language. and hence simplify the generation of any
textual artefact. No syntactical separation between the LHS and the RHS exists
in the transformation rules .

2.3.3 Model-to-Model Transformation

There exist an extensive number of tools and approaches to model to model transforma-
tion in the literature, which were surveyed in [CH06], and the following classifications
are suggested:

• Direct-manipulation: in this approach models of an API to operate on them,
usually using a programming language such as Java.

• Structure-driven: in this approach the framework provides scheduling and ap-
plication strategy. The transformation is performed in two distinct phases, first by
creating the hierarchical structure of the target model, and second by setting the
attributes and references on the target elements.

• Operational: extending the meta-models with facilities to extend computations.
For example we can add imperative constructs to OCL (Object Constrained Lan-
guage), and combine that with MOF (Meta Object Facility)[OMG08] to get a full

2. JAMDA, Java Model Driven Architecture 0.2, http://sourceforge.net/projects/jamda
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programming language. Examples of this approach are QVT [OMG08], C-SAW
[LZG05], and Kermeta [Ker05].

• Template-based: uses meta-code and annotations to help directing the transfor-
mation.

• Relational: includes declarative approaches using mathematical relations between
the source and target model, examples include QVT relations.

• Graph transformation based: used when we can represent models as typed,
attributed and labeled graphs, and hence the theory of graph transformation can
be used to execute the transformation.

• Hybrid: combining multiple of the above techniques.

2.3.4 Graph Transformations

Blostein et al [BFG96] during the late 90s explored issues regarding the practical use of
graph rewriting. Graphs provide high expressiveness and flexibility for data representa-
tion, and there are many advantages gained from representing the model transformation
using graphs over the the more general programming languages based transformations.

Graph based model transformation is considered the method with the most potential
for industrial adoption. Issues such as expressiveness, scale-ability and re-use of models
of graph transformation as well as the ability to integrate such models with traditional
software components were considered critical enablers for wide-spread use of graph trans-
formations [SV08].

Many of these issues were considered and tackled through a wide range of approaches,
most of which are surveyed in the general survey [CH06], and the graph transformation
specific survey in [TEG+05].

The programmed graph rewriting main requirements are outlined in [LLMC05]. First,
the control structure of the graph transformation should be achievable through control
flow primitives such as looping, and conditional branching. Second, encapsulation and
organization in a hierarchical scheme allows for more reuse and higher modularity. Some
tools add expressiveness through non-determinism and parallel composition. In general,
also the control structure should be expressed in a neutral way, from any programming
language. Explicit incorporation of time is rarely present in any of the current tools.

Note that our own MSDL lab tool: AToM3 [dLV02], “A Tool for Multi-formalism and
Meta-Modelling” is a visual environment which provides priority-based control structur-
ing.

We will now move into investigating the problem of testing this complex transformations.

2.4 Testing Model Transformation

MDE advocates human involvement at the correct level of abstraction, using model trans-
formation to automate the complex procedures like code generation, aspect weaving, or
multi-view modelling and model composition. Writing such a complex transformation is
inherently complex and subsequently error-prone. The increased promotion of reuse also
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dictates the importance of reliable and validated model transformation implementations.
The risks involved are also related to the vast number of existing approaches to imple-
ment the model transformations as discussed earlier in the chapter. However, model
transformation testing as examined in this work does no attempt to test the correctness
of the transformation engine. Instead it assumes that the underlying transformation
engine is correct and focuses of testing of the realization of a particular transformation
implemented in a particular language or a tool. For example, when using a rule based
graph transformation engine such as AToM3, we can implement certain transformation
by specifying rules and priority. We can assume that the engine can apply the trans-
formation rules on the host graph as expected. Model transformation testing which we
focus on pertains only to detecting bugs in the specified rules or priority in such a system.

In the following we present a running example of a model transformation specification
since a large number of the literature work refer to it. It also serves as an example
problem which model transformation has to address.

2.4.1 UML2RDBMS : UML-to-Schema transformation

This example represents a benchmark for model transformation languages and tools. The
OMG group provides a description of UML2RDBMS in the Meta Object Facility (MOF)
2.0 Query/View/Transformation specification document [OMG08]. UML2RDBMS has
been the benchmark since it was first introduced during the Model transformation work-
shop [Bé06] as a mandatory example for all submissions to attempt. The following
description of this case study is based on the specifications in [Bé06].

UML Class Diagram Meta Model

In Figure 2.4 we present a simple version of the UML meta model which is relevant to this
transformation. The simplified CD meta-model is represented using UML class diagrams
for simplicity. It includes the abstract concept of classifiers, which comprises classes and
primitive data types. Packages contain classes, and classes contain attributes. All model
elements have names, and classes could be labeled as persistent.

The following two constraints are part of the UML meta model :

1 context Class inv :
2 a l lA t t r i b u t e s ()−> s i z e > 0 and
3 a l lA t t r i b u t e s ()−> e x i s t s ( a t t r | a t t r . i s−primary = true )

Finally, classes can have relationships with other classes called associations. Such re-
lationship is only allowed if both classes are marked as persistent. This can easily be
added as an OCL constraint.

RDBMS Meta Model

Figure 2.5 represents the RDBMS (Relational DataBase Management System) meta
model. The meta model is also expressed using UML class diagrams. A schema is
composed of tables, and tables are composed of columns. Each column has a type which
is represented as a string. Every table has one primary-key column. Finally, the foreign
keys relates foreign-key columns to tables, and is labeled as Fkey.



2.4 Testing Model Transformation 29

name: String
Classifier

name: String
is_primary:bool

Attribute
Class

isPersistent : Boolname : String
Package

PrimitiveDataType
type

*

1

**
elems attrs

Association

* *
src dest

parent

Figure 2.4: Simple UML Meta Model

Table
name : Stringname : String

Schema *
tables

name: String
type: String

Column

*
cols

pkey 1

FKey
*fkeys

* refs
cols*

0..1

Figure 2.5: Simple RDBMS Meta Model



30 Chapter 2: Model Transformation Testing

UML2RDBMS Transformation

The transformation named UML2RDBMS should only accept input models which con-
form to the UML cd meta model, and only produce models conforming to the RDBMS
meta model as described above. The main mappings which need to be performed by the
transformation, as presented in [Bé06] are:

1. Every package in the input UML model should be transformed into a schema with
the same name in the resulting model.

2. Classes that are marked as persistent in the source model should be transformed
into a single table of the same name in the target model. The resultant table
should contain one or more columns for every attribute in the class, and one or
more columns for every association for which the class is marked as being the source

3. Classes that are marked as non-persistent should not be transformed at the top
level. For each attribute whose type is a non-persistent class, or for each association
whose dst is such a class, each of the classes’ attributes should be transformed as
per rule 4. The columns should be named name-transformed-attr where name is
the name of the attribute or association in question, and transformed-attr is a
transformed attribute, the two being separated by an underscore character. The
columns will be placed in tables created from persistent classes.

4. Attributes whose type is a primitive data type (e.g. String, Int) should be trans-
formed to a single column whose type is the same as the primitive data type.

5. Attributes whose type is a persistent class should be transformed to one or more
columns, which should be created from the persistent classes’ primary key at-
tributes. The columns should be named name transformed attr where name is
the attributes’ name. The resultant columns should be marked as constituting a
foreign key; the FKey element created should refer to the table created from the
persistent class.

6. Attributes whose type is a non-persistent class should be transformed to one or
more columns, as per rule 3. Note that the primary keys and foreign keys of the
translated non-persistent class need to be merged in appropriately, taking into
consideration that the translated non-persistent class may contain primary and
foreign keys from an arbitrary number of other translated classes.

7. When transforming a class, all attributes of its parent classes (which must be
recursively calculated), and all associations which have such classes as a src, should
be considered. Attributes in subclasses with the same name as an attribute in a
parent class are considered to override the parent attribute.

8. In inheritance hierarchies, only the top-most parent class should be converted into
a table; the resultant table should however contain the merged columns from all of
its subclasses.

Since we are interested in testing and not building the transformation, we will not include
a realization of the above specification of the UML2RDBMS transformation. Instead we
will use the specification to demonstrate testing techniques in the literature. We do
provide a complete realization in chapter 4 of another transformation, Traffic2PetriNet,
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to demonstrate our framework. We will now provide a literature review of the current
model transformation testing approaches. We will use the same classification approach
used in Chapter 1 to determine advancements, opportunities, and challenges.

2.4.2 Why Are We Testing? (Test Objective)

As discussed in 1.5 the two main categories in testing are functional requirements and
non-functional requirements testing. Most of the ongoing research in model transforma-
tion has been focused on case studies where only functional requirements are examined.
For example, the UML2RDBMS which is the standard transformation doesn’t examine
any extra-functional requirements such as performance or scalability.

Tools such as Kermeta [Ker05] do provide better performance than visual tools like
AToM3 [dLV02] for example. Very little attention has been paid to such criteria in
current model transformation testing research. But as model transformation is being
used in more applications and becoming more complex, the need for such extra-functional
requirements to be tested is inevitable.

Finally, we predict there will be a need for testing frameworks to support the execution
and automation of such extra-functional test cases as well.

2.4.3 What Are We Testing? (SUT)

The System Under Test (SUT) in model transformation testing is the implementation of
the complete transformation in most cases, mainly because the intermediate structures
do not generally represents valid models. However, depending on the transformation
technique (rule based or direct manipulation) and the testing approach (white-box or
black-box) compositional testing could be possible.

2.4.4 How Are We Testing? (Test Case Selection)

When testing model transformations, most of the existing test selection techniques in
software testing still apply. Testers would have to provide a list of input test models, run
the transformation and check the outcome correctness according to the specifications.
Coming up with an arbitrary list is achievable, however, as mentioned in the previous
chapter, techniques to guide the selection and to qualify the inputs is needed (adequacy
criteria). The difference in this case is that test inputs are models which should conform
to the input meta model. In an analogy to the testing world, we consider the different
approaches to selecting input models representing the test cases :

Black-box

Test cases are based on the requirements (input domain and behaviour), and not based
on the specific internals of the implementation of the model transformation. Techniques
in this category have the advantage of being applicable to all transformation languages
and tools. Subsequently, these techniques can use coverage criteria which is inspired by
partition analysis [Bei95], and possibly other coverage criteria specific to the input meta
model formalism, to generate input test cases. Such an approach is data centric, as it
focuses merely on data structures and values.
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Meta-model coverage: The work by Fleurey et al [FSB04] uses partition analysis on
the input meta model. They present techniques to explore the input meta model which
is expressed using EMOF or UML, based on the following coverage criteria:

• Association End Multiplicities: for each association end, each of the represen-
tative multiplicity must be covered. Then, the representative multiplicity pairs can
be computed using the Cartesian product of possible multiplicities at each end.

• Class Attribute: for each class attribute each representative value must be cov-
ered, if the attribute type is not simple then it needs to be processed as an associ-
ation, according to the previous rule.

Given the two coverage criteria above, the representative values are then created, using
two types of partitioning: First, an approach based on the default partitioning which is
based on the structure or type of data. The advantage of this approach is the extraction
of these values can be fully automated when all the data selection policies are provided.
And the second approach, is the knowledge-based portioning where representative values
are extracted from the transformation itself (from the requirements since this is a black-
box approach). In particular from the pre and post conditions where relevant values may
be indicated.

Both techniques can be combined to produce the most coverage possible.

The following table contains examples of representative values for partitioning different
model elements from the UML2RDBMS transformation described earlier:

Meta Model Element Representative Values
Class::name : String Null, ””, ”something”

Class::isPersistent : Bool True, False
Class − > attribute : [0..*] [0], [1], [>1]

The next step is creating the coverage items, based on the representative values. This
process leads to the definition of the most important combinations of the input meta
model representative values that should be covered.

Coverage items are computed after eliminating all invalid combinations. Each coverage
item represents a constraint on the input models of the transformation. However, it
should be noted that the computation complexity increases exponentially for this process
as the meta model size increases.

The following table represent a subset of the coverage items for the UML2RDBMS trans-
formation, not that we only list items for the class elements of CA criteria:

Criteria Type Meta Model Element Chosen Values(name,isPersistent)
CA Class ””,True
CA Class ””,False
CA Class ”something”,False
CA Class ”something”,True
CA Class Null,True
CA Class Null,False

Finally, the coverage criteria of input domain is achieved by producing models satisfying
a high volume of coverage items.
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Transformation rules coverage: Model transformation rarely spans all the input
meta model, which means that most of the test cases generated based on the input meta
model coverage would be useless. In [FSB04] an Effective meta model is proposed to
overcome this. It is a subset of the original meta model, computed by selecting only the
elements referred to in the transformation and the pre and post conditions. This will
allow better test case generation for the relevant subset of the meta-model. For example
in the UML2RDBMS transformation, the overall input meta model could include other
diagrams like sequence and interaction. The effective meta model would eliminate all
the useless cases and help focus on only parts of the meta model which are used.

In [WKC08] authors have implemented a tool which can automate the generation of
the effective meta model to restrict the scope of the transformation, followed by the
generation of representative values for model elements and finally the coverage items to
construct test cases.

Mutation based Test Case Generation: In [SB06], authors describe mutation based
approach to generating input test models, using mutation operators. In their work,
they describe the process by first automatically extracting mutation operators, which
are specific to any meta model that is expressed using EMOF. The Mutation operators
include three categories: First, operators to create objects of a particular concrete class
in the instance model. Second, operators to create a relationship between two existing
objects in the instance model. And finally, operators specifying an attribute for an
existing object.

Mutation operators should ensure that mutated models will still be syntactically correct
and a valid model. A collection of plans is created such that each plan contains a list of
atomic mutation operators. Such plans can then be used to synthesize or evolve models
incrementally. The synthesized models serve as input test cases for the transformation.
OCL constraints should be used however to validate and guide the model synthesis
process.

White-box

White box testing involves examining the model transformation implementation to select
the test cases. It is in general more difficult given the numerous approaches for model
transformation. It’s not clear at the current stage which transformation language, given
the diversity, should be considered for white box testing techniques [BGF+09].

However, initial research has been done. For example [KAER07] explains attempts to
use white box techniques on testing model transformations. The work focuses on model
transformation in the context of business process models. The authors describe using
an iterative approach to the design and implementation of the model transformation.
Starting with a high level design of the transformation that captures graphically, using
the concrete syntax of the underlying modelling language, the main features using a
set of conceptual transformation rules. The transformation was then implemented in
Java code based on the graphical rules. Testing the transformation is done by creating
model templates for each of the conceptual rules, followed by automatically generating
model instances which represent valid test cases from each template. Covering the rules
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guarantees meta model coverage in a white box approach. The OCL constraints specified
on the transformation are used to construct interesting test cases using the following
procedure: First, identify the elements changed by the transformation (either from the
conceptual rules or from the final implementation). Then, identify constraints that are
dependent on theses elements. Finally, for each constraint, construct a test case that
checks the validity of the constraint under the transformation.

In conclusion this white-box approach tests the correctness of rules individually to de-
termine correctness. It is highly dependent on the implementation, and test cases will
have to change if the rules change.

Hybrid Approaches:

Hybrid approaches involve combining both black-box and white-box techniques. For
example Wang et al [WKC08], implemented a tool which integrates both techniques.
White box, because the tool can take any model transformation implemented in the
Tefkat [LS] language and the input meta model of the transformation to automatically
detect the effective meta model. The tool then use black-box techniques to generate
input test models using techniques discussed in the previous section.

2.4.5 Testing Oracles

The oracle problem in the context of model transformation testing entails validating the
correctness of each of the output models produced by the transformation. An oracle
function should exist for each transformation, and accepts the input model and the
produced output as parameters to provide a pass or fail verdict to each case.

Note that all the test generation techniques discussed in Section 2.4.4 lack an oracle
function, and need expected output to be specified manually for each test case.

The oracle problem is often thought of as the model comparison problem. However,
limiting the oracle problem representation by only considering only the model comparison
problem has several disadvantages. For example, expected models are often complex and
hard to synthesize. Also in some cases, the verdict of the oracle depends on deep analysis
of different properties of the actual model elements. Ultimately, the problem becomes
one of checking semantic equivalence of models rather than of syntactic equality (we
discuss our solution to this problem in Ch4).

Mottu et. al. in [MBT08] discusses oracle functions in the context of model transforma-
tion testing and identify three techniques to implement testing oracles:

• Model comparison: The oracle function compares a reference model with a
model resulting from the transformation of the test model. However, in the general
case the comparison is an NP-complete problem because of the graph isomorphism
problem. Several attempts for comparison algorithm have been proposed [LZG05],
but most rely on strong assumption such as the presence of unique object identifiers,
which is only true when the models are produced in the same environment. Also
in [LZG04], authors discuss model comparison as an essential element to model
transformation testing and models version control. Some of the issues regarding
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model comparison include: What properties of models need to be compared? At
which level to compare models ? What are the effective algorithms?. Note that
Chapter 3 of this thesis is dedicated to discussing and addressing this challenge.

• Contracts: Pre-conditions constrain the set of input models and post-conditions
declare a set of expected properties. These can be used to represent partial oracle
functions. They can be expressed in OCL or other languages and tools [KAER07].

• Pattern matching: Verifying if a certain pattern exist in a model. Patterns
can be expressed using OCL assertions or model snippets (subset of a model that
conforms to a meta model). Such snippets can be expressed by the tester using the
same environment used for writing input test models. Patterns are post-conditions
which apply for specific input models, and hence are more specific than the contract
post conditions.

Solutions to ease the complexity of oracle problem summarized in the following list
[MBT08], where an oracle can be built using:

1. A reference model transformation: When another implementation of the
transformation exists, the oracle function can compare the output model from
the transformation with the output model from the reference transformation to
ensure they both are the same. However this approach is complex, and in most
cases hard to use.

2. An inverse transformation: The oracle can compare the input model to the
result model of two steps: first, applying the transformation under test to pro-
duce an intermediate model, then feeding that intermediary model into the inverse
transformation to produce the result model. The comparison should show that
both models are the same once this process is complete. To use this approach the
transformation needs to be injective, which is a rare case. For example adding
inheritance to our UML2RDBMS would not allow an inverse transformation.

3. An expected output model: The oracle compares the actual output test model
with a provided output model by the tester for equivalence. The task of creating
new expected models is complicated for complex data structures such as models.

4. A generic contract: Depending on the inputs, the contract can represent a post
condition of the transformation outputs. It can be thought of as a relationship
between the input and the output models. For example an OCL contract could
validate that the output model has a table with the same name as each persistent
class in the input model.

5. Model snippets: The oracle can check if the output model of the test transfor-
mation contains n model fragments. For example, we can a create model fragment
that represent one table called A, another fragment with a table named B, and
finally a fragment that contains a table with no specific name. Then certain in-
put models can require certain model fragments to apply on their outputs. This
will allow for more reuse of such fragments across different test cases, and greatly
reduce the effort of testing.
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2.4.6 Testing Process

[Kus04] proposes an analogous process to the water fall process to building transforma-
tion, however not much has been done on formalizing software construction processes
for the MDE world, and specifically for model transformation. Ideally, a systematic
process to build model transformations in the context of MDE should be defined and
further it should contain an integrated testing component. Testing Process for Model
Transformations could be identified as a research challenge and opportunity.

2.4.7 Test Automation

The automation of the testing process involves several aspects summarized in the fol-
lowing sections. Since the testing process consist of different stages, they can each be
automated and implemented using a tool, or compiled into an overall testing framework.

Test design automation: generation of test cases

The ability to automatically generate input test models for different model transforma-
tion. The process can use data collected from different sources as discussed in Section
2.4.4.

In [WKC08], authors have implemented a tool which can automatically generate test
models, based on the input meta model of the transformation, and the implementation
(written in Tefkat) and produce a set of input test cases for the transformation. Their
work is based on the original data partitioning for models presented in [FSB04].

Sen et al, in [SBM08], present a tool called Cartier which provides an automatic approach
for generating and qualifying input test models. It can interpret and combine knowledge
from different sources which are then used to synthesize models. The knowledge is
encoded into constraints expressed using the Alloy language. The overall knowledge
sources are:

• Meta model expressed in Ecore.

• The transformation pre-conditions as OCL constraints.

• Partitions of meta model as sets of objects expressed in a model fragment language.

• The test model objectives expressed in Alloy.

In [SB06], authors presented an automated transformation to generate mutation oper-
ators, and described how it could be compiled into a genetic algorithm to synthesize
models which are valid input test cases (as mentioned in Section 2.4.4).

The work in [FBMT09] describes a framework to asses the quality of given input test
models for testing a given transformation. The framework examines the coverage of
the test models with respect to the meta model and the transformation. Instead of
the naive strategy of combining partitions to generate the combinatorial product of all
partitions, the notion of object and model fragments is used to define specific combination
of ranges for properties that should be covered by test models. The framework works by
generating model fragments for the input meta model, and then providing guidance into
which fragments still need to be covered by the test set.
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Execution and Result collection

Once the test cases have been generated the testing execution process can take place.
This step involves executing the transformation with each of the specified input test
cases, and collecting the associated resulting models. In some cases this involves auto-
matically loading the input model into a specific state/representation under which it can
be ready for execution. In [LZG05] Lin et al. describe a testing framework for model
transformations that can automate this task. It focuses on the testing within the context
of model-to-model transformation where source models and target models belong to the
same meta-model. The framework relies on model comparison as an oracle function, and
hence input test models and their expected output models have to be specified before-
hand. Their testing framework supports construction/loading of test cases based on test
specifications, the execution of test cases, and examination of the produced results, it
consists of the following components:

• Test Case Constructor: The test case constructor interprets the test specifica-
tions to retrieve the necessary information involved in a test case, the input model,
the expected model, and finally generates an executable test case. It should be
noted these elements are manually prepared, and not created by the framework.

• Test Engine Exercises each test case dynamically through the executor. It then
collects the generated output models and pass that to the comparator which in
turn compares it to the expected output model for this test case.

• Test Analyzer: Receives from the test engine comparator the comparison out-
comes, namely the difference set. The analyzer then lets the tester visualize the
differences and mappings between the actual versus the expected models.

The framework is tool and language specific, and is integrated within the C-SAW model
transformation engine and the GME (General Modelling Environment).

2.4.8 General Challenges

Several challenges which face testing model transformations exist, some of which are
under heavy research and have promising solutions, and some are caused by the relatively
recent nature of MDE research. In recent work, Baudry et al [BGF+09] discusses the
following general challenges of testing model transformations:

• Complex input and output data: Especially in graph transformation where
input and output data is made of complex models represented using graphs. For
example these models can have several views (which need to be consistent). This
increases the difficulty of generating test models, mainly because the automatic
generation translate into a complex constraint solving problem when synthesizing
graphs with a lot of multiplicities and OCL constraints. Also such complexity
and the lack of historical data makes it difficult to determine the efficacy of test
selection criteria. Finally, in terms of the output complexity this also reflect on the
complication of finding an oracle. However, several pragmatic solutions to address
this problem have been proposed.

• Model management environments Since the construction of models for test
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cases an error prone process if done manually. The environment needs to provide
the right tools to aid in building such models.

• Heterogeneity of transformation languages and techniques As discussed
earlier in the chapter, there exist numerous tools and techniques for model trans-
formation, which are divided into different categories. This means that black-box
approaches to testing transformations can be better candidate since they can ap-
ply to all categories. However, a combination with white box techniques would
provide better quality and testing coverage. White box techniques have a draw-
back of being coupled to the transformation language and in most cases need to
be completely redefined for another transformation language.

2.4.9 Discussion

Finally we would like to set the focus of the work presented in the coming chapter by
referring to Figure 2.6. It shows one axis the SUT (what are we testing: code, transfor-
mation or a model) and the other axis as the basis of the method used to achieve the
testing (either using code, or using models.) The content is based on the review we pre-
sented in the current and previous chapter, to highlight major achievements, challenges
and to highlight what is still needed to be addressed.

Section A: Testing code using code is the most studied subject. It refers to techniques
mentioned in Chapter 1 like: Black-Box testing through domain partitioning, and white-
box techniques to generate test cases. In the same area we notice the automation of
execution through testing drivers and XUnit frameworks.

Section B: When using models to test the coded system, techniques surfaced such as,
domain specific testing and model-based testing to generate test cases, and in some
scenarios oracle functions.

Section C: On the other hand, when we are testing models and their artifacts we could
use code to validate the syntax of the models, and check consistency. In fact we also
could test models using simulators in some cases.

Section D: We also could use models to test models. For example, we could use trans-
formations which are modelled and apply them on the SUT model to expose certain
properties and hence validate it.

Section E: Finally, our focus is testing model transformations. As we discussed in
this chapter, most research has focused on addressing functional testing and its test
case generation. In fact, we believe it has produced solid findings such as meta-model
coverage techniques, effective meta models, and using mutation techniques to enhance the
test efficacy. Although, answers to the oracle function problem for model transformation
have matured such as using patterns and model fragments, there is still problems with
model comparison which need to be further studied. Finally, automating the execution of
a test suite, is still needed to support an effective testing process. We believe it needs to
further be combined with model comparison techniques and other oracle measures. Such
a framework should be flexible and allow for further analysis such as extra-functional
requirements and semantic equivalence. We present our proposed solutions to these
challenges in the next chapters as follows:
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Figure 2.6: Testing Research Matrix

• Model comparison to help solve the oracle problem in chapter 3.

• Automating the execution of the test suite within a framework in chapter 4.

• Enabling semantic equivalence in chapter 4.
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Chapter 3: Model Comparison aka

Model Differencing

In this chapter we address an important challenge of model transformation testing which
is model comparison. We start by providing a brief introduction of related work on model
comparison and differencing in Section 3.1. We then introduce the problem of Maximum
Common Sub-graph (MCS) matching as a possible approach for model comparison in
Section 3.2. We discuss the most relevant algorithms to solve MCS matching and subse-
quently focus on one such backtracking-based algorithm, described in Section 3.3, which
we then customize to work optimally in our context as demonstrated by performance
experiments. A characterization of the main requirements for model comparison in the
context of testing is then presented in Section 3.6. In the last section we describe the
performance experiments we run to evaluate the algorithm performance in Section 3.5,
and proceed into specifying our enhancements on the search heuristics with their corre-
sponding their impact on performance in Section 3.7. Finally the main advantages and
disadvantages of our approach are discussed in Section 3.10.

3.1 Background

Model comparison is an essential element in the MDE world. The ability to perform
model comparison and model differencing plays a major role in areas like model evolution
and version control, and most importantly in the context of testing [LZG04].

Any testing framework for model transformation requires an implementation of a model
comparison technique. The models being compared have to conform to the same meta
model.

An example of the difference between model M1 and model M2 is described in M1−M2
in Figure 3.1.

Models have abstract syntax (Abstract Syntax Graph), concrete syntax (an XML rep-
resentation) and semantics as discussed in Chapter 2. Model differencing is applied
generally to the models’ abstract syntax, and the difference is described according to it.

However in some cases models can be transformed to a concrete syntax representation
and then compared. For example, each model can be exported to an equivalent XML rep-
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Figure 3.1: An example of model differencing

resentation, and then both models can be compared, either using GNU diff 1 or XMLdiff
[WDyC03]. When we compare two XML files using straight GNU diff, we are comparing
the concrete syntax representation of the XML files. on the other hand, when comparing
two XML files using XMLDiff for example, the files are parsed into their Abstract Syntax
Trees, which are then compared.

However, comparison at an inadequate level (like on the XMI file which represent the
source code of the mode) produces many conceptually irrelevant deviations. Thus the
comparison must be performed on the basis of a conceptual representation (abstract or
concrete syntax), at the correct level of abstraction.

In the context of testing, model comparison is used to compare the resulting transformed
model to the specified expected model. Even if the transformation implementation has
few defects we would still expect the models being compared to be of similar sizes.

Comparing two models involves several activities namely:

1. Identifying matching elements (mapping set between elements of both models);

2. Calculating and representing the difference (usually in the form of an edit script);

3. Visualize those differences appropriately if necessary;

In this chapter we focus on addressing the first two steps: identifying matching elements
and calculating the difference.

Before calculating the difference between two models, a criterion should be defined for
matching model elements. For example, if we consider two text files as models, the
criterion would be that a full byte by byte diff is run between the model files (Lexical
Differencing). Another criterion for comparing models would be to compare only certain
properties of the files, like the name, elements and some structural similarities. Once the
criterion is defined, then several algorithms can be used to find the actual matching and
to calculate the difference.

1. http://www.gnu.org/software/diffutils/
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To illustrate this see figure 3.2, which contains two models M1 and M2. Both models are
represented as graphs which can contain white or black nodes, and connecting edges. If
node colour is the criterion used in matching the nodes, then we notice that node 3 in M2

maps node 1 in M1. It’s visually clear that the difference of M2 to M1 is an addition of
a black node with a connecting edge to the white node, however given only the previous
matching criterion, we notice that node 2 in M1 can be mapped to either node 4 or node
5 in M2. Both solution would be correct.

Even a more extreme case would be the following: assume nodes have a state attribute
which contains an integer, and that:
node 2 in M1 has value 5, node 4 in M2 has value 2, node 5 in M2 has value 7. Then
several solutions exist:

• first solution is that node 2 in M1 was deleted, and two new nodes were added (
node 4 and 5 in M2 ).

• second solution is that node 2 in M1 has changed its state value from 5 to 7, and
that a new node was added (node 4 in M2).

• third solution is that node 2 in M1 has changed its state value from 5 to 2, and
that a new node was added (node 5 in M2).

Models can be represented using attributed typed graphs on all meta levels. It is not
always possible to reduce the representation of such models into trees and run tree
comparison algorithms to calculate differences. For example, models can have cyclic
dependencies, and depending on the approaches used to generate them, could end up
with a different tree representations. Hence, If we treat all models as graphs, then the
model comparison problem becomes in turn the graph matching problem. However the
graph matching problem can be reduced to the graph isomorphism problem which is
NP-Complete as discussed in [KR96]. To overcome this problem of complexity, many
techniques have been proposed. Most are tool or language specific, which make use of the
semantics. Few techniques claim to be generic and meta model independent. A recent
survey of such approaches can be found in [KRPP09] which we will describe next.

When comparing complex models represented as graphs, with many relationships this
can become a very complex procedure. This problem is solved easily if there exist a
unique identifier which can be used to map nodes, as explained later in this section.

Once the difference has been calculated, it has be to represented using a proper difference
model. This step is crucial for analysis and visualization of the differences. However, the
difference model tends to be affected by the calculating method. Some of the existing
techniques include edit scripts [AP03]. Edit scripts are ordered sets of atomic operations
(Create, Delete, Update/Change) which can be applied on the starting model to obtain
the target model. They represent low-level implementation which can be optimized to
become efficient. However, in most cases, this difference model depends on the presence
of a persistent unique identifier attached to model elements for it to be applicable.

Finally, the differences between the two models should be visualized in a meaningful way
to the user.

In the context of model evolution, detecting differences between consecutive versions



44 Chapter 3: Model Comparison aka Model Differencing
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Figure 3.2: Two models being compared

could be solved easily, if the same modelling tool or environment is used to edit or
transform the model. If the environment supports traceability on the lowest level, then
it is possible to record the trace of the mutating CUD (Create, Update and Delete)
operations used to conclude the new version of the model. However, this is not the
case in most situations, where models are evolved separately, in difference environments
where no unique identifiers are available.

In [KRPP09], the authors propose a categorization for the main existing approaches to
model differencing as summarized below:

• Static Identity Based Matching: Assumes that model elements always have
a unique persistent identifier which is used for matching. This approach has high
performance. It however does not work when models were constructed in different
environments or tools. [AP03] presents a meta-model independent algorithm to
calculate model difference based on uniques identifiers and can be applied in any
MOF-based modelling language. And hence it is language specific.

• Signature Based Matching: This approach is meant to overcome the assump-
tions of having a static identity for each model element by the previous approach.
It is similar to the last approach in that that elements are compared according to
some identity (static or dynamically generated signature) and that is the matching
criterion. The identity in this case is calculated based on a user defined function
for generating the identity of each model element. It is usually made up of a col-
lection of element properties. The main disadvantage here is that users will have
to provide these functions for each of the model types.

The work in [RFG+05] describes using a signature based, rather than name based,
for matching model elements. The name based criterion can lead to conflicts,
like matching two classes with the same name but representing different meta
concepts or having different properties. Their approach allows for a generic way for
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specifying signatures for model elements to be matched. For example, the signature
of a class can be its name, meta type as well as the signatures of its operations.
The signature is then used to match model elements. This is related to having a
canonical form representation of any model in a specific formalism, however in this
case the canonical form is restricted to the model elements, whereas in canonical
representation means the order of the elements in the representation will be the
same.

• Language specific: Matching algorithms in this category are tailored towards a
specific language or category. For example, UMLDiff [XS05] can compare UML
models. Such algorithms can benefit from the domain knowledge to perform more
efficiently. However, the full matching algorithm needs to be specified for the given
language.

• Similarity Based Matching: This approach treats models as attributed typed
graphs which allows matching elements based on their feature similarities. It’s
related to signature based matching, however, depending on the meta model, dif-
ferent features might have different importance in calculating similarity. This is
usually provided by the user to indicate the weight of each model feature.

SiDiff [TBWK07] is a tool which can compare two models based on their similarity
model. Authors claim that SiDiff is easily configurable to work almost any model
with a graph structure. The tool first transform both models being compared into
an internal representation (a directed, typed graph with fixed set of runtime object
types to make the system independent of the original model type). The difference
is then calculated on the new representation.

SiDiff uses a set of compare functions to determine the similarity between two nodes
(e.g. compare two attributed values, or sets of neighbouring nodes). Each attribute
have a defined weight in an external file. The overall similarity of the two elements
is calculated as the weighted mean of the similarity relevant properties. If the
similarity total number exceeds a specific threshold, both elements are considered
a match. SiDiff was demonstrated on UML class diagrams, however the authors
claim it is language independent. The disadvantage is that the user will have to
define weights for each formalism.

Another tool, DSMDiff [LGJ07], attempts calculating model difference for any
domain specific model whose meta model is defined using GME (General Modelling
Environment). The authors claim their approach is applicable to any meta mod-
elling tool which represent models as hierarchical graphs. Meta-models in GME
consist of a set of atoms, models, and connections. They represent the type of any
element of an instance model conforming to this unique meta-model.

The matching algorithm that is used by DSMDiff does not attempt to find the most
optimal solution. It instead employs a greedy strategy to select a match for a node
n from a list of candidate nodes x,y,z by simply comparing structural similarities
around both nodes for one level. To illustrate see Figure 3.3, when attempting to
map node N from M1, three candidate nodes with the same property, having white
labels, exist X,Y,Z. The algorithm, ranks the three candidates according to their
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Figure 3.3: Structural similarities in model comparison

edge similarities for node N, which has one edge pointing to a black node. The
only candidates in M2 which have the same edge similarity are: X, and Z. The
algorithm would pick any of them at this stage, say X, as the match of N, even
though it is clear that the optimal mapping would be Z. The reason is that the
edge similarity relies only on one level search. This greedy approach is a possible
solution to the otherwise NP-complete problem, but we believe it is not enough, as
it could produce incorrect results on simple cases as such illustrated in figure 3.3.

In other words, can not guarantee that the solution it finds is most optimal.

Other Approaches like [ACP07] provides a meta model level solution to graph comparison
problem. It is however not clear how efficient and usable this approach is yet.

We show how our approach gives the user more control over the accuracy of the result
through different customizations, and works without sacrificing accuracy best fit the
context of model transformation testing.

3.2 Maximum Common Subgraph Isomorphism

The problem of Maximum Common sub-graph Isomorphism can be defined as follows:
Common sub-graphs H1 = [V, E, k] and H2 = [W, F, k] of two given graphs G1, and G2,
are those of equal size k, that are isomorphic to each other. Assume we have a function
µ to determine if two nodes are equivalent using some criteria (such as label or type).
And the function ν checks if two edges are comparable (edge exists or not in both).

This means that there should be such numeration of sub-graphs’ vertices x(i) and y(i)
where :

µ(vx(i), wy(i)) = true & ν(g1x(i),x(j), g2y(i),y(j)) = true ∀i, j ∈ 1...k (3.1)
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Figure 3.4: A simple example of MCS between two models (highlighted in red)

The above formula implies that for each pair of matching vertices in the sub-graphs, they
are connected with matching edges to all other edges in each of the subgraph nodes. For
example, the maximum common sub-graph of M1 and M2 is highlighted in Figure 3.4.

Graphs are commonly used to represent structured objects, and models. In applications
where graphs need to be compared for similarity, the MCS (Maximum Common Sub-
graph) problem is used to measure similarity. MCS is used to measure if two graphs
share identical parts. It has several essential applications such as: Pattern Recognition,
Chemical Reactions and Information handling. [RW02] conducts a review of the many
MCS algorithms and makes recommendations regarding their applicability to typical
chemo-informatics tasks.

In what follows, we build on the main foundations and recent results achieved in solving
the MCS problem to obtain a powerful model comparison algorithm which can be used
in the context of testing. The relationship between model comparison and detecting
common isomorphic sub-graphs of models is clear. They both rely on detecting a mapping
between pairs of nodes, one from each graph, in such a way that the structure (represented
by edges between nodes) is similar.

We start by describing the existing approaches to solve the MCS problem. There exist
two main categories of algorithms: exact and approximate.

Approximate algorithms, rely on using heuristics in order to reach a solution within
acceptable time constraints. However, this class of algorithms can not provide guarantees
to how close the solution is to the true MCS. Nonetheless, such algorithms can prove
usable in certain domains where the size of models is upper bounded such as comparing
chemical structures [RW02].

One the other hand, exact algorithms attempt to find the optimal solution for the MCS
problem. The MCS problem, however, is NP-complete [KR96], and thus such algorithms
have a worse-case, exponential-time complexity in most cases. Exact algorithms include
two main approaches: backtracking and clique based.
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Backtracking based algorithms in general are based on the concept of systematically
attempting all possible solutions to guarantee the best solution. In the case of MCS,
the algorithm builds a search tree, where at each level it attempts the different possible
enumerations between unmapped nodes. To avoid attempting all enumeration (NP-
complete), backtracking algorithms increase the performance through the pruning of
certain paths in the search tree unless they provide a more optimal solution. In addition
to evaluating the isomorphic property described in Equation 3.1, to exclude any violating
mapping. One of the original backtrack based algorithms to address MCS was suggested
by McGregor in [McG82].

On the other hand, clique based algorithm attempt to reduce the mapping problem to
finding the maximum clique in an association graph problem. It can then can use existing
clique finding algorithms to reach the result.

For a discussion of the performance of different MCS exact algorithms including clique
based and backtracking algorithms, we refer to [DCV07]. The evaluation showed that
the run time complexity of these algorithms is similar. However, depending on the type
of graphs being compared, some approaches proved more efficient. For example, for very
large graphs, creating the association graph, in the clique based approaches, tends to
require significantly more memory.

For the purpose of our work, we started from a particular backtracking solution described
by Krissenel and Henrick in [KH04] called CSIA. The algorithm was derived using results
from the ESI (Exact Subgraph Isomorphism) problem, namely the Ullman (UA) ([Ull76]),
which implies the backtracking approach may be efficient for MCS at least in cases that
are close to ESI (i.e when the two graphs being compared are almost identical and the
difference is not significant). We claim that this is common in model transformation
testing where the focus is on comparing models with small differences in most cases.
The authors showed that the proposed CSIA algorithm is considerably more efficient
than existing MCS solutions in this context.

3.3 CSIA Algorithm

We adopted the backtracking algorithm, CSIA, proposed by Krissenel and Henrick in
[KH04].

The CSIA algorithm introduces a complexity controlling parameter n0 representing the
minimum size of common sub-graph to be matched (the size is measured by the number
of vertices) to be found. In other words if all the common subgraphs of size which exist
are of size smaller than n0, CSIA wont detect any.

In most applications, only sufficiently large common sub-graphs are considered as a
useful result of graph matching. For example, pattern recognition tasks normally require
MCSs to be found to yield a match, however if the MCS found is insignificant in size, the
recognition will return with a no match. Using this parameter, CSIA will reject branches
of the recursion tree not leading to acceptable results, from the application point of view,
without spending time on finding them. In the context of testing such a parameter can
help indicate the accuracy threshold of the solution to be found as will be discussed this
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in the next section.

The following describes the CSIA algorithm. We start by setting up two sets X,Y to
empty. These sets are used to store an ordered list of mapped vertices from models m1,
and m2 respectively. Also, we set the parameter nmax to 0 until we update it when we
find solutions. We then call initialize and subsequently start the backtrack search.

Algorithm 1 CSIA : Global

1: call Initialize(D)
2: X ⇐ ∅, Y ⇐ ∅
3: nmax = 0
4: n0 = n0 //User Provided
5: call Backtrack(D)

The procedure Initialize examines each pair of nodes from m1, m2 respectively by exe-
cuting the function Equivalent(vi, wj) which can be customized by the user to incorporate
any equivalence criteria (types, labels, attributes) between nodes. The algorithm builds
a dictionary of the nodes vi from m1 to their potential candidates in m2, alongside the
length of the candidate list. The length of the lists is stored in a vector Li. This mapping
dictionary is called PM (Possible Mappings).

Algorithm 2 CSIA : procedure Initialize[M,L])

1: for all vi ∈ V do
2: k = 0
3: for all wj ∈ W do
4: if Equivalent(vi, wj) then
5: k + +;
6: M [vi].append(wj);
7: end if
8: end for
9: Li = k;

10: end for

The main work and recursion of the overall algorithm takes place in the Backtrack
procedure. The algorithm first checks if the current search is Extendable (we will
describe this later), and if it is not, the algorithm considers the MCS it has found so far
and stores it in memory if is a new maximum, it also updates nmax.

If the current search is extendable, the algorithm will then pick an unmapped vertex from
m1 through PickVertex procedure, and get its possible candidate mappings from m2
through procedure GetMappableVertices, and try each mapping by one by one. In
each iteration the back tracking function call Refine procedure to check the isomorphic
properties of the unmapped nodes and their candidates and hence reduce the search.
The backtracking then restore the solutions and attempts a different candidate.

The procedure PickVertex simply picks the unmapped node vi from m1 with the least
number of candidate nodes from m2. Mapping the most restricted nodes first leads to
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Algorithm 3 CSIA : procedure Backtrack(PM D)

1: if Extendible(D) then
2: vi := PickVertex(D)
3: Candidates:= GetMappableVertices(vi,D)
4: for all wj ∈ Candidates do
5: X = X + {vi}
6: Y = Y + {wj}
7: D′ = Refine(D)
8: call Backtrack(D′)
9: X = X − {vi}

10: Y = Y − {wj}
11: end for
12: V = V − {vi}
13: call Backtrack(D);
14: V = V + {vi}
15: else
16: nmax = max(nmax, | X |)
17: Print(X, Y )
18: end if

less calls to backtrack.

Algorithm 4 CSIA:procedure PickVertex(PM D=[M,L])

1: return vi such that 0 < Li ≤ Lk for any vk ∈ V

The procedure GetMappableVertices simply returns the list of candidates in m2 for
a vertex vi in m1.

Algorithm 5 CSIA:procedure GetMappableVertices(vertex vi, VMM D=[M,L])

1: return M [vi] from i to Li

The procedure Refine iterates over the current potential mappings dictionary, to check
the isomorphic property of each entry against the current mapping solution. In other
words, it filters out the mappings (the candidate list for nodes vi from m1) and ex-
cludes them if any violate the isomorphic property with the current in memory mapping
solution. It is the Refine function which helps reduce the search tree dramatically.

The function Isomorphic(ei,x(q), fj,y(q)) takes two nodes vi, wj and the current solution
set X, Y . It then evaluate if mapping vi, wj is allowed under the isomorphic property
when added to the current solution X, Y . Note that e, f define the edges in m1, m2
respectively.

Finally the procedure Extenable examines the current mapping dictionary, and deter-
mines how many more vertices (in the best case) could be mapped from such iteration. It
then compare that to the size of the MCS found so far, and the minimum size allowed n0
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Algorithm 6 CSIA:procedure Refine(PM D=[M,L])

1: PM D1 = [T,N]
2: q := —X—
3: for all vi ∈ V − X do
4: l = 0;
5: for all wj ∈ M [i] do
6: if Isomorphic(ei,x(q), fj,y(q)) then
7: l + +;
8: T [vi].append(wj);
9: end if

10: end for
11: Ni = l;
12: end for
13: return D1

to determine whether to allow the search to continue along this branch or to terminate
it.

Algorithm 7 CSIA:procedure Extendable(PM D=[M,L])

1: q := s := —X—;
2: for all vi ∈ V − X do
3: if Li > 0 then
4: s++;
5: end if
6: end for
7: if s > max(n0, nmax) and s > q then
8: return true;
9: else

10: return false;
11: end if

3.4 CSIA Complexity Analysis

We implemented the original CSIA algorithm using the Python language. We then
identified and added several enhancements which we describe later in this chapter. These
enhancements are specific to model transformation testing.

For the CSIA algorithm, the complexity reduces to that of Ullman algorithm when
comparing two models and choosing n0 = min(size(m1), size(m2)).

The best case of the algorithm run time is when nodes are uniquely labelled, or in other
words, the equivalence criterion uses a global unique identifier. The initialization would
set that each node has one candidate, and takes O(nm) comparisons. Then there would
be O(n) Backtrack calls, and for each call there would be a call to Refine which in turn
is O(n) giving a best case of O( nn + mn) = O(mn).
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The worst case, Backtrack is called O(m) times on each of the O(n) recursion levels giving
O(mn) and for each backtrack there is a call to Refine which takes O(mn) comparisons,
and hence in total O(mn * mn + mn) = O(mn+1n)

O(mn) ≤ CSIA ≤ O(mn+1n) [KH04].

This indicates that the CSIA algorithm is optimal for comparing models of different sizes,
and choosing n0 to be of the size close to the smallest of the two model sizes.

3.5 Performance Analysis

We have implemented the CSIA algorithm in Python in a version which was also cus-
tomized to handle AToM3 [dLV02] models and be able to compare them. To validate the
implementation, we built a small test suite of functional test cases. We ran the algorithm
to detect the MCS between the models of each test case. Due to the well described model
comparison problem we will not further discuss the functional testing of the algorithm,
but rather focus on its performance.

The following step was to measure the performance of the CSIA algorithm under different
input graphs, and to get a feeling for its scalability. To achieve this we generated a series
of models with increasing sizes.

Due to the exploratory approach we followed in determining heuristics to increase the
algorithm performance, we will show different types of experiments.

First type of experiments we attempted uses models made up of blocks, where each block
contains nodes with a different density of edges. This experiment does not reflect the
complete picture of the effects of increasing edge density of the model since the edges
are restricted to individual blocks. It was however necessary to guide the enhancements
process. We later scale up this experiment by fixing number of nodes and increasing
the edge densities of the models being compared. This will allow us to demonstrate the
increase in performance induced by our added heuristics.

Composite Blocks Experiment

Three types of graphs were created (see figure 3.5):

1. “No links”: Graphs made up of n composites each made of four nodes with no
links.

2. “Two links”: Graphs made up of n composites each made of four nodes with two
links (50 percent edges).

3. “Three links”: Graphs made up of n composites each made of four nodes with
three links(75 percent edges).

For each model category (“no-links”, “two-links”, or “three-links”) different instances
were created, by varying n from (1 to 30) where each instance is a composed of n

blocks of the corresponding composite described above. There were no links between the
different blocks.

For example, under the “no link” category, instance where n = 10 will have 10 composite
blocks each with 4 nodes, and no links (so 40 nodes, 0 edges in total). Instance n = 20
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Figure 3.5: The building composite blocks for each type of created test model.

will have 20 composite blocks each with 4 nodes, and no links (so 80 nodes in total) and
so on.

In each category, the algorithm was run to compare instances in the same category with
different sizes of n, for example comparing “no-link” instance n = 5 with instance n = 10.
The time to complete the comparison was then logged and compared, and the following
results was obtained.

Fixing N0 to 0, we attempted to run the algorithm on different cases of “no-link” type, in
some cases the running time exceeds 100 seconds, at which point we stop the process and
set the running time to a 100 seconds. The graph in Figure 3.6 was obtained, with the
following observations: When size of g1 is (n=1, i.e 4 nodes), the algorithm can produce
results within the time constraint (100 seconds) up until the size of g2 reaches (n=29, i.e
116 nodes).

Note the figures are organized as follows: each cell (i,j) contains the time the algorithm in
question took to find the MCS between the graphs g1(n = i) and g2(n = j). Depending
on the time out set, the algorithm wont run beyond such time. The figures are heat
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Figure 3.6: Original algorithm with input type ”no-link”

Figure 3.7: Original algorithm with input of type ”Two-link”

mapped so that they can be better viewed, with red representing a running time of
longer than 100 seconds.

Then we attempted to run the ”two-links” instances, the results are shown in Figure
3.7. Note how that in this type of models the algorithm performs a little better than the
previous type. And even better for the ”three-links” models as seen in figure 3.8.

The explanation for this increased performance when models have more structure (repre-
sented by higher edge density) is due to the search and pruning mechanism of the CSIA.
The fact that the resulting MCS has to satisfy equation 3.1 or the isomorphism property,
implies that with more structure more nodes would be eliminated during the search, and
hence more pruning and less permutations needs to be tried.

Best Case Experiment

We also created a benchmark for our enhancements, we describe an experiment rep-
resenting the best case running time for the algorithm. Using the same approach to
building models as described before, we tweak the equivalence criterion to use a unique
identifier for nodes instead of only using the type. The figures show the scalability of
both algorithms (original and enhanced) in terms of input models sizes. We do this only
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Figure 3.8: Original algorithm with input type ”three-links”

Figure 3.9: Original algorithm with input type ”three-link” using a unique identifier

for the models of type ”three-links”, on the original CSIA algorithm in Figure 3.9. Note
that the algorithm can scale up to a much larger input size graphs (up to graphs of n=250
reflecting a model of size 1000 nodes). Our graphs scale has changed from 1 to 10 for
each cell to show more data for this experiment. Another note is that our enhancements
do not have direct impact on performance as this is the best case experiment where each
node of m1 has a candidate list of size 1 nodes from m2, and hence, no room for the
pruning to help.

Edge Density Scale

The final method of evaluation is based on examining the effects of changing the number
of edges on the performance. To do this we build model instances of a fixed number of
nodes, and for each instance n detail the number of edges we add to the model (in random
fashion). This is important to demonstrate the effects of the greedy enhancements we
describe in the following section. For example for instance n of an edge based model
with m nodes, it will have 3*n edges. We do this for models of size 20 nodes, and 40
nodes. Note that adding edges randomly produces models representing worst case for
the algorithm. We will at the end of the enhancements section run an experiment with
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Figure 3.10: Order algorithm with input ”three-links” using a unique identifier

fixed number of nodes and fixed number of edges while increasing the edge density to
show how much our final version of the algorithm can scale.

3.6 Specifics of Model Comparison for testing

The authors in [KPP06] proposed a rule based model comparison technique, to enable
model transformation testing. It however does not attempt to do a complete model
matching using graphs. Also in their testing framework, the authors in [LZG05] assumes
a unique identifier exists for comparing models.

The comparison would result in a mapping set (describing which elements of m1 map
to which elements of m2). The work in [KPP06] provides a detailed classification of the
mapping and difference sets. The mapping set is equivalent to calculating the maximum
common sub-graph. This set in turn is used to generate an edit script to describe the
difference between both models. So the size of the edit script is proportional to the
difference between the two models being compared, and hence when the models are the
same, the edit script is empty.

In the context of testing, the edit script is used to help in debugging activities to help
localize bugs in the transformation. We argue that minimizing the edit script becomes
less useful beyond a certain threshold. For example consider when comparing two model
of size 30 nodes each, then there would be no point in optimizing an edit script of more
than 20 edit operations to say 15 operations since the models are very different anyway.
This note could be indicative of the usefulness of a controlling parameter for the size of
the MCS similar to the one proposed in the CSIA algorithm mentioned before. So in
essence we are dealing with a problem close to the ESI (exact (sub)graph isomorphism).

There is an apparent consensus in existing approaches to model comparison (generic
or domain/language specific) on the importance of adding domain specific information
as part of the node matching criteria. The simplest example is using a static unified
identifier to determine node matching. Other approaches use a dynamic function to gen-
erate node signatures as a matching criterion. We feel that this should be an important
functionality of any model comparison algorithm. Specifically, the algorithm should give
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flexibility to the modeller to decide on a matching criteria as needed per domain. It can
be a simple type comparison or a complex formula involving each of the nodes attributes.
We integrate this flexibility into our algorithm and show in the performance section how
using different criteria impact performance.

The algorithm should be optimized to detect exact matches with confidence, as this the
most common case especially when running regression testing suites. If however the
models are not exact matches (test case fails), then the edit script need not to be most
optimal but to achieve a reasonable solution close to the most optimal. At the very least,
we feel there should be a mechanism with which the modeller can control how much time
can the algorithm spend on searching for the best solution. We discuss our approach on
this in the enhancement section.

Finally generating the edit script from the mapping will be discussed in 3.9

To summarize, we identify the following requirements for the algorithm:

• Allows Customizable matching criteria and run time.

• Optimized to compare models of similar size

• Consistent i.e behaves exactly the same if run several times on the same input.

3.7 Performance Enhancements

To enhance the performance of the algorithm to become a good candidate for model
transformation testing, we propose to implement and evaluate several modifications to
the CSIA algorithm.

There are three possible dimensions (algorithmic enhancements, data structures imple-
mentation features and implementation language) to apply enhancements to the perfor-
mance of the above mentioned algorithm. First, several algorithmic enhancement to take
advantage of the mechanics of the algorithm, we will mention such enhancements in this
section. Second, the data structures implementations axis, namely how the algorithm is
implemented to take advantage of the target language features (for example in Python
testing membership in a set is much faster than testing membership is a list). Finally, the
language of implementation is another large factor of the overall performance. Switch-
ing our implementations from Python to C should increase the performance by about a
factor 10. For the sake of this work, and rapid prototyping we will only use Python and
describe the algorithmic enhancement we applied to the original algorithm and how they
translate in relative performance.

Time-out parameter

Since the nature of the algorithm is to, while it is searching for the best solution (MCS),
keep track of the best found solution so far, we are able to introduce a time out control
parameter to stop execution when needed. The parameter is only applied as a cut-off for
execution once a solution is found and would otherwise be nothing more than a timer
with an interrupt from the calling function. The parameter is optional such that if it is
not specified, the algorithm will continue executing until it finds the best solution. We
have set a time-out on our algorithm as part of the performance analysis we enclose in
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Figure 3.11: Single-MCS enhanced algorithm with input type “no-links”

this work.

Only one MCS is required

The original algorithm was intended to detect and print all maximum common sub-
graphs of the graphs being compared. This is relevant if we expect to find more than
one common sub-graph, of size k < min(m, n), which could be essential in certain
applications. In the context of testing, and according to our discussion in the previous
section this is not really needed.

For this purpose we modify the algorithm to only find the single largest (or any if
multiple exist) common sub-graph. Specifically in the function Extendible we modify
the pruning condition related to the Nmax condition. Line 7 of Extendible becomes :
s > max(n0 − 1, nmax) and s > q

To demonstrate the effectiveness of this change we ran the new algorithm on the three
types of models and monitored the performance, see figure 3.11, 3.12, and 3.13, for
“no-links”, “two-links” and “three-links” type models respectively.

Note the increased performance over the original algorithm, as the algorithm can scale
up and process larger size model instances within the time-out criteria. However we can
notice that performance is linked to the size of the first input, which inspired us for the
next enhancement.

Order of comparison

The second enhancement refers to the order of comparison performed on the input graphs.
We noted that the algorithm search tree depends on the size of the first input graph, as
shown in the previous results. To exploit this dependency, we added an extra step in
the initialization to account for the size of the input models and perform the comparison
starting with the smaller size input as the first model and mapped it to second model.
To demonstrate the speed up the CSIA algorithm was modified to account for the size
of the input graphs, and order them appropriately. We ran the new order algorithm on
three types of models to measure its performance in Figure 3.14,3.15 and 3.16. Note how
the algorithm performance exhibits a more symmetrical graph with respect to inputs
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Figure 3.12: Single-MCS enhanced algorithm with input type “one-links”

Figure 3.13: Single-MCS enhanced algorithm with input type “two-links”
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Figure 3.14: Order algorithm with input of type “no-link”

Figure 3.15: Order algorithm with input of type “two-links”

sizes. Also we ran the best case experiment using the ordering enhancement described
in the enhancements section in Figure 3.10.

Greedy choices

In accordance with our discussion about the characteristics of model comparison in the
context of testing, we attempt to modify the algorithm to satisfy such requirements.
Namely, optimizing the algorithm to detect exact matches quickly with confidence, and
in the case of a mismatch attempting to find the most optimal edit script possible, within
any of the constraints (time or minimum size n0 of the match). We implemented two
main greedy strategies, then we show the effects they have in performance.

GetMappableVertices

First, in the function GetMappableVertices which is responsible for returning for
node v from M1, a list of vertices v1′ . . . vn′ from M2 which are candidates mapping for
v. The original algorithm returns the list of candidates with no particular order, which
could lead to exploring less promising branches first. We modify the function to return a
sorted list of candidate nodes according to their structural similarity to the vertex v we
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Figure 3.16: Order algorithm with input of type “three-links”

are trying to match. More specifically we use as an indication the absolute value of the
difference between the number of incoming edges between the node and its candidate in
addition to the absolute value of the difference in the number of outgoing edges. This
approach ensures choosing the most promising vertices first, and hence has the potential
of increasing the performance. The reason for this is simple: the algorithm proceeds in
searching for a solution only if the branch can achieve a better than current solution.

The previous enhancement is one step towards ensuring that repeated runs on the same
inputs converge on the best solution within the same required timing, i.e; since there is
no specific order in examining the candidate vertices, the algorithm could run longer in
cases where it attempts a different order especially in the initial depth first search. We
show the performance enhancement of this first strategy grouped with the second once,
and with the third in another.

The cost is that for each call to GetMappableVertices is n2, which is called once for every
Backtrack call.

In the worst case there is O(mn) Backtrack calls so total cost is O(n2∗mn) = O(n∗mn∗n).
but we know that m ≤ n because of the order enhancement. When compared to the
worst case of the original CSIA algorithm : O(mn+1n) we notice that the worst case
complexity gets shifted to: O(n2 ∗ mn).

PickVertix

We implemented another greedy strategy regarding the function PickVertix which de-
cides in the original algorithm which vertex v from M1 to attempt mapping next. The
heuristic used in the original CSIA algorithm was to choose the vertex with the least
number of candidates (i.e the most restricted vertex) which is a very good performance
enhancement but is not optimal for the context of testing where exact matches are more
important. It does not give any indication of what to do when you get two vertices
of equal least number of candidates. This could lead to different running times by the
algorithm on the same set of inputs where such case arises. Furthermore, we feel that
a greedy strategy should be in place to help the function in choosing which vertex to
process next in such scenarios.
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Figure 3.17: Original algorithm with input size 20 nodes with varying edges

To achieve this, we implement a custom PickVertixGreedy function to extend the
function PickVertix. The main idea is to consider the a greedy optimization within
each candidate list when deciding which vertex to pick. We would like to choose a vertex
vi from M1 to process such that for its candidate list there is a candidate which is most
similar according to the in,out-degree difference. If we find more than one such node in
M1, we then further choose the one which has the least number of similar candidates.
If we find more than one such node in M1 satisfying both previous criteria, we choose
the one which has a larger sum of differences among all of its candidate nodes from M2.
This seems complex, but it ensures we follow the most promising path first (where only
few candidate seem optimal and the rest seem non-optimal).

This logic provides ground for choosing more deterministically in which order to process
the nodes. Combined with the previous greedy heuristic GetMappableVertices the
performance increases. Note that this enhancement does not change the complexity of
the algorithm but make it converge to the best solution in a faster and more persistent
manner

The impact on performance for this enhancement is negligible since the degree difference
does not change per vertex and calculated only once.

To demonstrate the performance gains we compare the results from this version of the
algorithm to the original version using the varying edge models.

First, we use the 20 nodes fixed models to run the original algorithm in figure 3.17,
the order based algorithm in figure 3.18 and the greedy based algorithm in figure 3.19.
Note that in this case the greedy strategy does not show a significant enhancement in
performance.

Second we use the 40 nodes fixed models to run the order based algorithm (original algo-
rithm will be even worse running time) in Figure 3.20 , and the greedy based algorithm
in Figure 3.21. Note how the greedy algorithm performs best in situations where there is
an exact match (i.e the diagonal of the map). The order based algorithm suffers greatly
in this type of models, this is due to the fact that the fixed size models with varying
random edges represent the worst case models for MCS to deal with.
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Figure 3.18: Order algorithm with input size 20 nodes with varying edges

Figure 3.19: Greedy algorithm with input size 20 nodes with varying edges

Figure 3.20: Order enhanced algorithm with input size 40 nodes with varying edges
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Figure 3.21: Greedy enhanced algorithm with input size 40 nodes with varying edges

The cost of PickVertix will not affect the previously found worst case complexity caused
by the getMappableVertices enhancement, since PickVertix is called once for every back-
track and not for every recursion level.

Delayed n0 application

Finally we make another modifications to help further accomplish the testing require-
ments. We introduce the option to delay the use of the pruning condition n0 (representing
the minimum MCS size allowed) until a solution is found.

To demonstrate the usefulness of such a delay, imagine the following scenario. We have
to compare two models of size n each. We know if there is an exact match then we
should get an MCS with size n, and hence if we set n0 = n then we will find the MCS
very fast. However, if there is a mismatch (even a very small one) then the actual MCS
size will be less than n0, and hence the algorithm will ignore it and return that no MCS
of minimum size n0 exists.

Subsequently it would be useful if we only start looking if there is a MCS of size ≥ n0 only
after some solution has been found. Furthermore, this always guarantees the algorithm
returning a solution either larger than n0 if it exists, or smaller if it does not.

For example, we can use this feature when we are most interested in a complete match,
where we know that it would be of size n. Then we can set n0 = n and run the algorithm
with the delayed option specified here. The algorithm would find some solution in the
initial depth first search iteration (note that we expect this solution to be a good solution
in most cases since we are using a greedy ordering strategy), then it will start using the
pruning condition n0 which would make it as fast as possible converge on the complete
match if it exists and terminate quickly. Also, note that when size of M1,M2 = n then
there is no solution larger than n.

To demonstrate the use of the delayed application on n0 we run two two experiments
using the fixed size of nodes models. In the first case we run models of 20 nodes with
setting n0 = 15 in Figure 3.22. Note that this is using the greedy enhanced algorithm,
and the data should be compared to Figure 3.19.
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Figure 3.22: Order algorithm with input size 20 nodes, varying edges and n0 = 15

Figure 3.23: Greedy algorithm with input size 40 nodes, varying edges and n0 = 35

In the second case we run models of size 40 nodes with setting n0 = 35 in Figure 3.23.
Note that this is using the greedy enhanced algorithm, and the data should be compared
to Figure 3.21.

Note that in both of the previous cases, the algorithm would converge quickly in case of
n0 values are most accurate. The main advantage of the delayed application is that a
solution is returned even if it is of size less n0. In complex cases, choosing n0 wont help
(as shown in the previous graphs) since the algorithm could still have to explore search
branches promising potentially larger MCS, in which case the time out parameter could
serve as the stopping condition.

3.8 Edge Density Scalability Test

To further understand the effects of edge density on our enhanced algorithm versions we
run a different set of experiments. We generate models with the same number of nodes
but with different edge density percentage. The edges are directed and a node can point
to it self. i.e a model with n nodes can have from 0 to n2 edges.

We perform the experiment using our enhanced algorithm version, on models of size (100,
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Figure 3.24: Effects of edge density on the algorithm’s performance

200, 300) nodes. As shown in Figure 3.24, each point(x,y) represents comparing a model
with density percentage x to it self, and y is the time for the algorithm to finish with
a timeout of 150 seconds. We plot line by line the three sizes: (100, 200, 300) nodes,
We notice how the worst running time happens when the edge density is 0 or above
90 percent. We discussed how higher edge density helps in pruning. However when all
nodes have similar connectivity (as in the case of a complete clique) then this situation
becomes similar to 0 density case. Since all nodes are similar, and pruning is minimal.
This is shown in Figure 3.24.

Finally we note that when we tried the original CSIA implementation on the same type
of models as above, results were almost always representing worst case (more than 150
seconds) for all densities of the 100 nodes models. This indicates the effect of our added
heuristics.

3.9 Edit Script

In model comparison, the desired outcome of the algorithm is to represent the difference
between the first and the second input models if it exists. In most cases the difference is
represented with and edit script.

The CSIA algorithm (and any MCS algorithm) produce a mapping set (MS) which
indicate which nodes of g1 are mapped to which nodes of g2. The Mapping set is then
used tos generate the edit script which contains a Removed Elements Set (RS) and a
Created Elements Set (CS).

The overall process generates three sets: MS, RS and CS describing an edit script which



3.10 Discussion 67

M2
M1

Figure 3.25: An example of An Edit Script

as a list of actions to produce M2 form M1 (the order matter), and there is two types of
actions:

• Remove(e): indicate to remove the element e form M1, where e could be a node or
an edge between two nodes.

• Create(e): indicate to add the element e to M1, where e could be a node or an edge
between two nodes.

It should also be noted that the order of the actions in the edit script is important. An
action should never reference an element which does not “yet” exist in the current model.
For example the sequence: [Remove(n1), Remove(e(n1, n2))] is not correct, because n1

would not exist after the first remove was executed, and the order should be reversed.

For example an edit script form M1 to M2 in Figure 3.25, is the following:

[Create(place2), Create(transition1, place2)]

Finally, sometimes the edit script could include a change/update action indicating that
two elements match but some of their attributes need to be updated. This is very related
to the equivalence criterion used when comparing nodes. The criterion could check the
type equivalence, or go on into checking internal attributes of the nodes being compared.

3.10 Discussion

The problem of MCS greatly resembles the model comparison problem, as long as models
are considered as graphs, with nodes and connections.

In model comparison, the desired outcome of the algorithm is to represent the difference
between the first and the second input models. In most cases the difference is represented
with and edit script.

The nodes different attributes could be used as in the nodes comparison function. For
example, the function could determine if two nodes are comparable if both share the
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same type (place or a transition in Petri Nets). Using only the type of the nodes as an
indicator would clearly increase the number of possibilities to explore. It may be possible
however, in some domains to include other properties of the nodes in the comparison
function. In the context of comparing Petri Nets for example, two nodes are equal if
they have the same type (place, transition) and the same name. One can go further and
include the number of tokens a place has as part of the comparison criteria.

Our approach aims at giving the user more control over the accuracy of the comparison
results through different algorithm parameters. Since our approach is based on MCS we
argue that it is produces more accurate results, as opposed to using only a greedy strat-
egy, since the algorithm examines all possible solutions through backtracking to find the
most optimal one. However, this comes at a cost of longer processing times than greedy
algorithms, which we address through customizations by the user such as: nodes compare
function customizability, time out parameter, n0 parameter (with delayed application).
Finally a disadvantage to our algorithm is that it may exercise different running times on
the same input. The reason is that greedy choices are not always deterministic enough for
certain models. Also, when calculating a MCS, situations can arise where that the iso-
morphic rule is too restrictive and leads to a larger (though still correct) edit script. For
example the edit script could be: (note n1, n2 have the same properties here and consid-
ered equivalent): [remove(noden1), remove(edge(n1, n7), create(noden1), create(edge(n1, n5))],
where the most optimal edit script is: [remove(edge(n1, n7), create(edge(n1, n5))]. This
situation can be resolved by running specific optimization on the edit script.

3.11 Conclusion

In this chapter we have presented a new customizable approach to model comparison. We
discussed the overlap between graph similarity and model comparison and proposed using
Maximum Common Subgraph (MCS) algorithms to solve the model comparison problem.
We chose one such algorithm and extended it using heuristics, and implemented it in
Python language. Performance of the algorithm and various heuristics were evaluated
using extensive experiments of model instances with different attributes. We attempted
to characterize the requirements of model comparison in the context of testing model
transformations. We then identified and implemented potential enhancements to the
algorithm to increase its performance taking into consideration that it will be used in the
context of model transformation testing. The results are promising, taken into account
that model differences are typically small, within the context of model transformation
testing. We will use this algorithm in our TUnit framework described in Chapter 4.
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Chapter 4: TUnit, A Framework for

testing Model Transformations

In this chapter we describe TUnit, our proposed framework for testing model transfor-
mations. We start off by describing the underlying formalism used in our framework in
Section 4.1. Then we introduce the framework TUnit and describe the overall architec-
ture in Section 4.2, where we describe the functionality of each of the components in
more details. We present a case study (Traffic2PN transformation) in Section 4.3 which
we use to demonstrate the effectiveness of TUnit in reducing testing efforts in Section
4.4, and in achieving semantic equivalence in Section 4.5. Finally we end the chapter
with a discussion in Section 4.6.

4.1 Underlying Formalism

To implement the TUnit testing framework, and following the multi-paradigm philosophy
of modelling everything explicitly, at the most appropriate level of abstraction, using the
most appropriate formalism, we chose to use the Discrete Event system Specification
(DEVS) rather than using a general object oriented code using a specific language.
Recent work has shown its power and modularity in the context of complicated tasks such
as model transformation [SV08]. Each of the DEVS blocks represent an encapsulated unit
with a defined interface though its ports to communicate with other blocks. Using a well
known formalism such as DEVS supports a platform independent approach. Platform
dependent code generators can be used to generate code from a DEVS model description.
Furthermore, the formalism introduces the notion of time, and hence can help formulate
complex testing scenarios. Finally, several distributed environments for DEVS models
simulation exist [SPB+04, CSPZ04, ZZH06, SKHP07], which can be used to enhance the
performance of simulation (which in our approach corresponds to executing a test suite)
among other benefits.

This section introduces the Discrete EVent system Specification (DEVS) formalism. The
(DEVS) formalism was introduced in the late seventies by Bernard Zeigler as a rigorous
basis for the compositional modelling and simulation of discrete event systems [Zei84],
and been successfully applied to the design, performance analysis and implementation
of a plethora of complex systems.

A DEVS model is either atomic or coupled. An atomic model describes the behaviour
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of a reactive system. A coupled model is the composition of several DEVS sub-models
which can be either atomic or coupled. Each sub-model could have ports, which are
connected by channels, and are either input or output. Ports and channels allow a model
to send and receive signals (events) between models. A channel must either connect:

• An output port of some model to an input port of another.

• An output port of a sub-model to one of its parent model output ports.

• An input port of a coupled model to an input port of one of its sub-models.

An atomic DEVS 1 model is a tuple (S, X, Y, δint, δext, λ, τ) where S is a set of sequential
states, one of which is the initial state. X is a set of allowed input events. Y is a set of
allowed output events. There are two types of transitions between states: δint : S → S

is the internal transition function, δext : Q × X → S is the external transition
function, Associated with each state are τ : S → R

+
0 , the time-advance function and

λ : S → Y , the output function. In this definition, Q = {(s, e) ∈ S × R
+ | 0 ≤ e ≤

τ(s)} is called the total state space. For each (s, e) ∈ Q, e is called the elapsed time.
R

+
0 denotes the positive reals with zero included.

Informally, the operational semantics of an atomic model is as follows: the model starts
in its initial state. It remains in any given state for as long as specified by the time-
advance function result for state or until input is received on some port. If no input is
received, after the state time-advance expires, the model first sends the output specified
by the output function and then instantaneously jumps to a new state specified by the
internal transition function. If input is received before the time for the next internal
transition however, then it is the external transition function which is applied. The
external transition depends on the current state, the time elapsed since the last transition
and the inputs from the input ports.

The following definition formalizes the concept of coupled DEVS models. A coupled
DEVS1 model named D is a tuple (X, Y, N, M, I, Z, select) where X is a set of allowed
input events and Y is a set of allowed output events. N is a set of component
names (or labels) such that D 6∈ N . M = {Mn | n ∈ N, Mn is a DEVS model
(atomic or coupled) with input set Xn and output set Yn} is a set of DEVS sub-models.
I = {In | n ∈ N, In ⊆ N ∪ {D}} is a set of influencer sets for each component named
n. I encodes the connection topology of sub-models. Z = {Zi,n | ∀n ∈ N, i ∈ In.Zi,n :
Yi → Xn or ZD,n : X → Xn or Zi,D : Yi → Y } is a set of transfer functions from
each component i to some component n. select : 2N → N is the select or tie-breaking
function. 2N denotes the powerset of N (the set of all sub-sets of N).

The connection topology of sub-models is expressed by the influencer set of each com-
ponent. Note that for a given model n, this set includes not only the external models
that provide inputs to n, but also its own internal sub-models that produce its output
(if n is a coupled model.) Transfer functions represent output-to-input translations be-
tween components, and can be thought of as channels that make the appropriate type
translations. For example, a “departure” event output of one sub-model is translated to
an“arrival” event on a connected sub-model’s input. The select function takes care of

1. For simplicity, we do not present a formalization of the concept of “ports”.
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Figure 4.1: An Overview of TUnit

conflicts as explained below.

The semantics for a coupled model is, informally, the parallel composition of all the
sub-models. A priori, each sub-model in a coupled model is assumed to be an inde-
pendent process, concurrent to the rest. There is no explicit method of synchronization
between processes. Blocking does not occur except if it is explicitly modelled by the
output function of a sender, and the external transition function of a receiver. There
is however a serialization whenever there are multiple sub-models that have an internal
transition scheduled to be performed at the same time. The modeller controls which of
the conflicting sub-models undergoes its transition first by means of the select function.

For this work, we use our own DEVS simulator called pythonDEVS [BV01], grafted onto
the object-oriented scripting language Python.

4.2 Overall Components

Our DEVS-based testing framework contains several building blocks each made up of
atomic or coupled DEVS models. Each block has a specific function as specified in
this section. Communication between the blocks is achieved using the events TestCase,
TestResult, and FinalTestResult.

Such events capture and encapsulate different attributes of a “test case” to be communi-
cated throughout the framework. The overall framework components are shown in figure
4.1

4.2.1 Events

In the following we list all the DEVS events communicated in TUnit alongside their
attributes.

TestCase

TestCase is the main event which encodes the test case specification needed for the
framework to execute a test case. It contains the following attributes:
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• Input Model Name: The name of the file containing the input model which will
undergo the transformation.

• Input Model: An instantiated input model object to be transformed. Initially
this attribute is Null until it gets set by the model generator block.

• Expected Model Name: The name of the file containing the expected output
model. This is the output model which will be compared to the actual transforma-
tion output model. The attribute is set to Null initially to indicate that the test
case has no expected model yet.

• Expected Model: The instantiated instance of the expected model. Initially the
value is Null until it is set by the model comparator block (maybe by the model
generator block).

• Fragment Model Name: The name of the file containing the model fragment
which the output model should be tested against. The attribute is set to Null
initially to indicate that the test case has no model fragment for the resulting
model to be satisfied.

• Output Model: an attribute initially set to Null until is set to include the actual
output model produced by the transformation in the SUT block.

ComparisonResult

This event is used to encode the outcome result of comparing an actual output model to
and expected output model. ComparisonResult encodes the following information:

• Input Model Name: The name of the file containing the input model which
constituted the test case. It is needed to match all the results events into a final
test result event as we will show later.

• Verdict: A pass/fail attribute indicating whether the comparison was successful.

• Edit Script: The edit script generated by the comparison algorithm to indicate
the mismatches if any.

CriteriaResult

This event is used to encode the outcome results of comparing an actual output model to
a specified model fragment or to a post-condition. CriteriaResult encodes the following
information:

• Input Model Name: The name of the file containing the input model which
constituted the test case.

• Verdict: A pass/fail attribute indicating whether the comparison was successful.

• Matching Errors: Debugging errors to indicate which parts of the model did not
conform to the fragment elements, if any.

• Fragment Name: The name of the file containing the model fragment to be used.
In the case of a post-condition block, this attribute will reflect the block’s name.
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FinalTestResults

This event is used to encode the outcome results of a test case by composing the individual
results from comparison block, fragment block, and the post conditions. It is the event
which gets transmitted back to the invoker to finalize the test case. FinalTestResult
encodes the following information:

• Input Model Name: The name of the file containing the input model which
constituted the test case.

• Comparison Result: The event resulting from executing a comparison test on
the output, if any.

• Criteria Result: The event resulting from executing a fragment test on the out-
put, if any.

• Post Condition Results: A list of the events representing the results of applying
a check of each post condition.

4.2.2 Invoker Block

The invoker block is the main controller of the framework execution. It initiates the
testing process, by reading and executing the test specifications. The test suite is speci-
fied as a group of test case events. The invoker attempts to execute each test case, and
collects the test results for final reporting.

It contains a list of test cases (encoded as events) to be executed by the framework. Each
test case event contains the information needed perform the test evaluation. If the test
case does not have any specified expected output model, or a model fragment, it will be
evaluated solely based on post condition evaluations.

The Invoker block is an Atomic DEVS block which represents a scheduling for executing
a list of test cases, where each test case contains the names of the files of the input model
and their corresponding expectations.

It has two ports: sendTestcase (out-port) and recvResult (in-port).

The block proceeds to send the first test case containing the name of the file to be
tested in testCase event from its sendTestcase out-port. Then it waits until it receives
on itsrecvResult in-port, the test result event, containing the results and the verdict
(pass/fail) with some debug information. This result received is encapsulated in an
event called finalTestResult. The block stores all these finalTestResult events list for the
executed test cases. The event’s attributes were listed above in the events section. They
contain information about the result and a description message of any mismatch errors,
to help debugging. The Invoker block keeps sending test cases and collecting results until
the list of all test cases has been fully executed.

4.2.3 Model Generator Block

This block is responsible for the first step in the process of executing a test case. It
represents an abstraction of the procedure for loading input models (In general, the block
could also generate input models on the fly randomly or according to some strategy),
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which could be complex data structures, and may require complex loading procedures.
It helps load the input model M using the specified file name in the test case event. The
model is loaded to be compatible with the SUT under test. The model generator block
could be customized to parse model files from any format it chooses to support, into
an object that is compatible with the SUT. In the context of our case study, the SUT
is a MoTif [SV08] model which understands AToM3 [dLV02] Python representation of
models. Such models could be represented as XML or using other format; and then
translated into AToM3 models by the model generator block. The tester could create
these input models visually in a modelling environment and automatically generate their
code, or could code them manually.

The model generator block is an atomic DEVS block which receives on its in-port
recvTestcase, the testCase event. This event contains the file name of the input model
that needs to be tested. This block is responsible for parsing the input model from the
file with the specified name in the input. It then sends this parsed model object encoded
in the testCase event to its out port sendTestCase.

4.2.4 SUT Block

The system under test is a model transformation implementation, and is treated as
a function which takes a model M as input, and produces a transformed model M ′

as output. The SUT block serves as a wrapper for the Model Transformation function
allowing it to be integrated into the TUnit framework. For the purpose of this case study,
the model transformation is implemented using MoTif [SV08]. The block is intended as
an abstraction of the transformation procedure, which in its own right could be composed
of multiple steps or a chain of transformations.

The SUT container block is an Atomic DEVS block that represents a container for the
transformation function/engine that need to be tested. It accepts on its input port
recvTestCase the event testCase. The block then extracts the model object which is
encoded in the event, and triggers the transformation function execution. It then waits
for the transformation to finish, and encodes the resulting transformed model (output
model) into the event testCase and sends it to its outport sendOutputModel.

4.2.5 Acceptor Block

The acceptor block is responsible for examining the transformed model M ′ to produce
a verdict for the test case, namely pass or fail. The block uses the test specifications
encoded in the test case event to determine which conditions the output model should
satisfy. It contains the three types of oracle blocks that are used to evaluate a test case
as discussed earlier: A comparison of the output model, a test against a model fragment
and post conditions to satisfy.

The acceptor block is not an atomic DEVS instance, Rather it is a coupled DEVS instance
which is a composite of several atomic DEVS building blocks. The actual testing and
assertions on M ′ are performed in this block. A verdict on the test is determined in
general by the collective results of the different evaluation criteria, and then encoded
into a finalTestResult event to be transmitted back to the invoker.
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Outport
Inport

Figure 4.2: An overview of Acceptor block in TUnit

The block receives the testCase event, on its recvTestCase in-port. It then generates the
verdict, and finally sends the finalTestResult event to its out-port sendResult. Figure
4.2) illustrates the different components of the acceptor block:

Distributor Block

The distributor block’s job is to distribute the test case event to all evaluating blocks in
order for the testing oracle configurations to be executed. In particular, the block will
forward on its outport sendTestCase the test case event to:

• Comparator block;

• Fragment block;

• Each of the post-condition blocks.

The Distributer block will send the event to all blocks even those which do not apply.
For example, even if a test case does not have a specified expected output model Mexp,
it will be sent to the comparator block. It is the job of the individual blocks, comparator
and fragment, to determine how to interpret and handle the specifications.

Comparator Block

The comparator block compares the actual output model M ′ with the expected model
Mexp. The block waits in idle mode until it receive the testCase event on its recvTest-
Case in-port. If the event specifies the expected output model Mexp, it is then compared
to the actual output model M ′, and a verdict is calculated and encoded into a Com-
paratorResult event (described earlier). The event is then sent in turn to out-port
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sendResult. The block uses the modified CSIA algorithm described in chapter 3 to con-
duct the comparison and produce the edit script if any. However, if the testCase which
the comparator block receives has no specified expected output model Mexp, then an
empty ComparatorResult event is built and sent instantly to the collector block.

Fragment Block

The block load the fragment file, and checks if the output model M ′ corresponds to
the specified model fragment. Model fragments are described as an approach to help
address the oracle function problem in MDE [MBT08]. For our purposes we consider
model fragments to be pattern rules which specify a set of models, similar to regular
expressions for strings. They can also be thought of as a query which is applied on a
model for checking the presence of a specific pattern.

The main motivation for using fragments is the complexity nature of models, as in most
cases it is very hard to build exact expected models for each test case. Fragments
can help in detecting specific errors in the transformation by considering very specific
scenarios, and they can be reused and applied to a large group of models. The block
provide flexibility as it can load fragments specifications from files applicable to certain
test cases. This abstraction could be modified to allow testing a list of fragments against
a single test case.

When the testCase event specifies a fragment to be evaluated, the block proceeds by
loading the fragment, evaluating whether the output model conforms to the fragment
and encodes the result in a criteriaResult event (described earlier). Once done, the block
sends the event to its out-port sendResult. However, if no fragment was specified, then
the block builds an empty criteriaResult event instantly and forwards it through the
same out-port.

Post-Condition Block(s)

These blocks are the same as the fragment block, however they use a fixed fragment per
block to represent a post condition which applies to all models.

Each post-condition block is an Atomic DEVS, it contains an in-port recvTestCase to
receive the model thats encoded in the event, and execute the criteria check.

The block encodes a criteriaResult event with the result of the checks as a verdict and
the error messages if applicable. It also has an out-port sendResult which it uses to send
the event. An excerpt of the containsNoTrafficLight post-condition is shown below

1

2 c l a s s C o n t a i n s t r a f f i c l i g h t :
3 de f check ( s e l f , graph ) :
4 ’ ’ ’ Returns Result , a d e s c r i p t i o n s t r i n g o f what went wrong
5 ’ ’ ’
6

7 C = {}
8 N = {}
9 C[ 1 ] = ’ TR Traff icLight ’

10 N[ 1 ] = [ ]
11

12 # with the LHS l a b e l as key
13 f o r l a b e l in C:
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14 i f graph . l i s tNode s . has key (C[ l a b e l ] ) :
15 N[ l a b e l ] += graph . l i s tNode s [C[ l a b e l ] ]
16

17

18 # Check i f a l l nodes types e x i s t in the host graph
19 f o r k in N:
20 i f not N[ k ] :
21 r e turn False , ” C r i t e r i a ”+ s e l f . name + ” f a i l e d : mis s ing nodes”
22

23 # Ver i fy l i n k s between nodes
24 M = {} # holds a l l the matched nodes
25 f o r t r t r a f f i c l i g h t 1 in N [ 1 ] :
26 M[ 1 ] = t r t r a f f i c l i g h t 1
27 break
28

29 # check i f a l l the nodes are matched
30 i f l en (M) != len (N) :
31 r e turn False , ” C r i t e r i a ”+ s e l f . name+” f a i l e d : mismatch”
32

33 r e turn True , ” C r i t e r i a ” +s e l f . name+” was matched s u c c e s s f u l l y . ”

Listing 4.1: Post-condition as a query in TUnit

Collector Block

The collector block acts a synchronizer to ensure that all evaluating blocks have finished
processing so a verdict on a test case can be made. The total number of postconditions
is indicated to the block at initiation time. It is important for this block to expect the
correct number of post conditions events, in order for the framework to work correctly.
The block is represented by an Atomic DEVS block, that contains three in-ports:

• recvComparatorResult receives the test result outcome of the model comparator
block.

• recvFragmentResult receives the fragment evaluator result from the correspond-
ing block.

• recvConditionResult receives all the of the post-conditions results.

The block builds the event finalTestResult by composing the above results, only when
it receives all expected events from all blocks. Once all the final result are ready the
block transmits the event onto its out-port sendFinalTestResult that is connected to the
Acceptor block’s out-port sendResult to make its way back to the invoker block. It then
waits in idle mode for the next test case.

4.2.6 Handling Errors

When dealing with models and transformations, running the test suite becomes more
complicated than in normal code. It is a multi-stage process with many dependencies,
and several potential points of failure. TUnit deals with errors in any test case in the
following manner: If an exception happens in any stage of the process then the flag valid,
in the test case, is set to False to indicate to any further processing that this test case is
invalid. The framework will continue processing any other test cases from the test suite
after logging the errors. Also, the exception type and message is pushed onto the test
case event for easier debugging.
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Potential errors in the framework execution include:

1. Loading of models: Since models are complex data structures with many depen-
dencies. The model generator block could fail to load the input model properly.
The framework encodes the exception message within the test case event, and sets
a valid flag to False. Subsequent processing of this test case by other blocks would
detect the flag and don’t attempt further processing as the result gets propagated
back to the invoker block.

2. Transformation Errors: For the purpose of this work we will treat the transfor-
mation as a black box, there is however recent work describing in details exception
handling in model transformation [SKV].

3. Comparison Errors: The comparator block is responsible for loading the ex-
pected output model of the transformation and executing the comparison algo-
rithm, both of which could lead to exceptions. Exceptions are handled in the same
way though setting a valid flag to False and encapsulate it in the test case event.

4. Fragment and post conditions Errors: Same as above.

4.3 Case study

In this case study we describe transformation from a domain specific language we created,
called “Traffic” to the well known Petri-Net formalism. We start by describing the meta
models of the source and target formalisms, followed by describing the transformation.
An example of a simple transformation is then shown.

4.3.1 Petri-Net meta model

Petri nets is a modelling formalism that is most useful for analysis of concurrent systems
[Mur89].

Petri nets consist of two types of entities: places, and transitions. Places have two
attributes:

• a name to distinguish different instances,

• a positive integer representing the number of tokens within the place.

Transitions on the other hand have only a name to distinguish each instance. Finally, a
place can have links to transitions through the relationship pl2tran, and transitions can
have links to places through the relationship tran2pl, as shown in the Petri-Nets meta
model in Figure 4.3. The PN meta model shown is described using Entity Relational
Diagrams formalism.

See also Figure 4.4 for example instances of the visual syntax of Petri nets. The places
are represented visually as circles with an integer in the centre representing the number
of tokens the place currently contains. The transitions are represented using horizontal
(or vertical) bars. Note that a place can never be linked directly with a place, and the
transitions can never be directly linked to transitions either.
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trans2pl

pl2tran

Figure 4.3: Petri-Nets Meta Model, expressed as an E/R model

Figure 4.4: Petri-Nets visual concrete syntax
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4.3.2 Traffic meta model

Traffic is a specific domain we created to model simple traffic networks. The Meta Model
in figure 4.5 (described using a UML class diagram) contains the following entities:

• TR-RoadSegment : Represents the simplest building block of traffic roads, namely
the road segment which contains the following attributes: CarCapacity as an
integer to indicate how many cars can fit on the specified road segment, Occupied
as a boolean to represent if the segment is occupied with cars, name to distinguish
the road segment instance, and finally numCars as an integer representing the
number of cars currently present in the segment. When a carCapacity is set to
−1, we call infinite capacity road segments, this indicate a road segment that can
accept cars indefinitely.

• TR-Outport : Represents the out-port for road segments which helps to identify the
exit point where the road segment can link to other entities.

• TR-Inport : Similar to the previous except that it represents the entry point where
other entities can link to the attached segment. Also, it gives a sense of direction
of car movement over the different segments.

• TR-Generator : Represent a source for generating cars in the traffic network. It
has a name attribute to distinguish its identity.

• TR-Join : A special type of road segment, it represents a lane merge between two
road segments into one. It also has knowledge about direction through its links
relationships.

• TR-TrafficLight : represents a traffic light as barrier for entering cars. It has a name

attribute to distinguish it from other instances.

The Meta Model also describes the following relationships, which determine the allowed
associations among the previous list of entities:

• RoadSegmentOutPort: indicates that a road segment entity can be linked to not
more than one out-port entity.

• RoadSegmentInPort: indicates that an out-port entity can be linked to not more
than one road segment entity.

• RoadConnection: indicates that each out-port entity can be linked to not more
than one in-port entity.

• GeneratorOutPort: indicates that a car generator entity can be linked to not more
than one out-port entity.

• JoinInPorts: indicates that up to two in-ports entities can be linked to a segment
join entity.

• JoinOutPort: indicates that each segment join entity can be linked to not more
than one out-port entity.

• TrafficLightBarrier: indicates that a traffic light barrier entity could be linked to
control many in-port entities.

The concrete visual syntax of the traffic formalism is shown in Figure 4.6.
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Figure 4.5: The Traffic formalism Meta Model

Figure 4.6: Traffic formalism visual concrete syntax example

4.3.3 Traffic to Petri-Net transformation

To define the semantics of the traffic formalism we choose to map it to the PN formalism
which allows the use of existing analysis techniques for PN models.

This transformation accepts instance models of the Traffic formalism and produces mod-
els of the PN formalism. It is described using 11 rules illustrated in Figure 4.7 and Figure
4.8. Note that the transformation makes use of a helper formalism Generic Graph which
allows one to connect arbitrary entities to accommodate intermediate steps during the
process. The rules used are described in the following:

• Light to PN: The rule appends the equivalent of a traffic light as a Petri Nets
model. It will also keep a temporary generic graph link attached to the traffic
light.

• RoadSegment 2 PN: The rule appends the equivalent of a road segment as a PN
model. It keeps two generic links to the road segment in-port and out-ports to
keep direction.

• Infinity to PN: Appends the PN representation of an infinite capacity road segment,
and keeps two generic links to the segment’s ports.

• Generator to PN: Does the same with a generator.

• Join Generator: Will attempt to link the PN representation of the generator to the
PN representation of a road segment entry.
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• Join Roads: attempts to link the PN representation of the road segments.

• Join Light: attempts to link the PN representation of the traffic light to the PN
representation of a road segment entry.

• Complete Collector: finishes the collector entities transformation.

• Remove Generator: removes any traces of the traffic generator entities left in the
starting model.

• Remove Roads: remove any traffic road entities left in the starting model.

• Remove Lights: remove any traffic light entities left in the starting model.

The rules are applied in order of priority, in the same order as listed above. For example,
the transformation engine attempts to apply Rule1 until it cannot be applied any more.
Then it applies Rule2, until it can’t be applied any more and so on. It terminates when
no rule can be applied on the model. The final model is the resulting model.

See Figure 4.9 for a demonstration of a simple example to show how the transformation
applies.

For now we will treat the transformation mechanism as a black box, namely it will be
executed using the above mentioned rules embedded in MoTif. MoTif will specify the
control flow of the different rule application until the final model is completely produced
and the transformation is done.

4.3.4 Example Test Cases

To test the Traffic2PN transformation we need to list test cases and demonstrate how the
TUnit framework could help in testing. This will include specifying some input models,
fragments, and expected output models. Also, we will include post conditions which will
apply to all test cases.

To test the correctness of the implementation of this transformation, we attempt to build
a test suite based on different criteria.

We will build the models for these test cases visually and generate their code using
AToM3. We presented in chapter 2 existing approaches to test case generation, we don’t
follow an existing method exactly step by step. However, we use a similar approach to
cover different attributes and association values. Test case generation is a complementary
companion to TUnit (which focuses on execution framework). TUnit abstraction blocks
can load models generated by other means, such as a model generation tool, as discussed
earlier.

In the following we list the test cases we will use to test the Traffic2PN transformation.

Comparator Test Cases

We build a few test cases to validate the Traffic to Petri-nets transformation. Each test
case has a specified input model and a specified output model. The following is a list of
those test cases:

1. Generator to Segment to Infinity Traffic model: This model involves three traffic
entities linked together through single links representing a generator which gener-
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Rule1:
Light to PN

Rule2:
RoadSeg to PN

Rule3:
Inf to PN

Rule4:
Gen to PN

Rule5:
joinGenerator

Figure 4.7: Traffic to Petri-Nets transformation rules part 1
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Rule7:
joinLights 

Rule8:
completeCollector

Rule9:
removeGen

Rule10:
removeRoads

Rule6:
joinRoads

Rule11:
removeLights

Figure 4.8: Traffic to Petri-Nets transformation rules part 2
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Starting Model 

Step 1

Ste
p 2

Step 3

Ste
p 4

Step 5

Figure 4.9: Traffic to Petri-Nets Transformation Example
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Input Model

Expected Output Model

Test Case

Figure 4.10: Test Case 1 : Input and Expected Output models

Input Model

Expected Output Model

Test Case

Figure 4.11: Test Case 2 : Input and Expected Output models

ates cars into a road segment and then to an infinity segment in Figure 4.10

2. Generator Segment Infinity No Links Traffic model: Same as before but no links
exist between the elements in Figure 4.12.

3. Generator To Light To Segment To Infinity: Same as the first model, but the
generator to segment link is controlled by a Traffic Light element in Figure 4.12.

Post Conditions Test Cases

We specify the following post conditions to be applied towards all test cases output
models:

1. No Traffic model elements (light, road segment, road connectors, generators or
other link entities) present.

2. All elements are Petri Nets instances (overlaps with the previous condition).

3. All elements have a specified id attribute.

The post conditions can be expressed in different ways, in most cases using OCL (Ob-
ject Constraints Language) [KW00]. OCL is also used in most cases to describe any
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Input Model

Expected Output Model

Test Case

Figure 4.12: Test Case 3 : Input and Expected Output models

constraints on the meta models. Depending on the expressiveness of the language used
to describe them, post conditions or model fragment can be very powerful. For this
work, we implement post conditions and fragments in two ways: Python code which can
navigate model elements to determine a matching criterion, and using a LHS (left hand
side) Rule pattern which is similar to conducting a Query on the model to determine
existence of some criteria (we show an example in the next section for a fragment test
case).

All test cases will be tested against these post conditions.

Fragment Test Cases

The fragment we choose to implement has the input model: “Generator to segment to
infinity traffic two tokens” which has a generator linked to a road segment capacity of
two cars, linked to an infinity segment. For this test case we don’t specify an expected
output model, but instead we specify a model fragment: “place with two tokens” to
match it. The fragment will look for a PN place in the output model which has two
tokens.

The output model will also be tested against the previously mentioned post-conditions.

4.4 Framework Demonstration

After deciding on the test suite to be used, including for each test case an input model,
and an expected outcome (model or fragment), we will demonstrate how to configure the
framework and show traces of the test suite execution. As we will show in this section,
we demonstrate the advantage of having TUnit in a realistic “test-fix-retest” engineering
process, where we find bugs after running tests, fix them and re run the test suite to
ensure tests pass.
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4.4.1 Configuration

Models are modelled visually in AToM3 and then compiled into files with specific names.
Test cases specified in the format including input file name, expected model file name,
fragment file name. They are encoded into a list of Test Case events each representing
a simple case. The code specifying the test suite, describes four test cases for each in
the form: TestCase(input model name, expected output model name, expected fragment
name)

We show the python code used to specify them in the following Listing:

1 # Test Case 1
2 i n p u t l i s t . append (
3 TestCase (” g e n e r a t o r t o s e g t o i n f i n i t y t r a f f i c ” ,
4 ” g e n e r a t o r t o s e g t o i n f i n i t y p n ” ,
5 None ) )
6 # Test Case 2
7 i n p u t l i s t . append (
8 TestCase (” g e n e r a t o r s e g i n f i n i t y n o l i n k s t r a f f i c ” ,
9 ” g e n e r a t o r s e g i n f i n i t y n o l i n k s p n ” ,

10 None ) )
11 # Test Case 3
12 i n p u t l i s t . append (
13 TestCase (” g e n e r a t o r t o l i g h t t o s e g t o i n f i n i t y t r a f f i c ” ,
14 ” g e n e r a t o r t o l i g h t t o s e g t o i n f i n i t y p n ” ,
15 None ) )
16 # Test Case 4
17 i n p u t l i s t . append (
18 TestCase (” g e n e r a t o r s e g t o i n f i n i t y t r a f f i c t w o t o k e n s ” ,
19 None ,
20 ” ha s p la c e s two tokens ” ) )

Listing 4.2: Python code showing the specification of the tests to be run

Note that in Listing 4.2, we specified 4 test cases, 3 of which have a specified expected
output model and no fragments, and one has a fragment with no expected model speci-
fied. This indicates that:

• Test 4 will not be processed by the model comparator block since it does not have
a specified model

• Test 4 will be the only test to be processed by the fragment block, using the
specified fragment name.

• All Tests will be processed by every post condition.

In the model comparator block we use the model comparison algorithm described earlier
in chapter 3. The algorithm lets us define the minimum size allowed for the match n0,
and the time we allow the comparison to run.

We pass to the SUT block a callable reference to the transformation function which is
being tested, namely our rule based implementation of the “Traffic2PN” transforma-
tion. The callable should be able to return the resulting transformed graph from the
transformation.
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4.4.2 Execution

We start executing the framework environment to process the test cases, and collect the
results. The framework as earlier specified proceeds to execute the test cases in the test
suite one by one. We ran the framework using our Python DEVS platform. We will
present the output we got in the following sections

4.4.3 Results

We ran the framework on the specified input test cases, and the Traffic2PN transforma-
tion described earlier, the following was a sample output of framework:

1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 Invoker Block : Sending Next Test Case
3 Loading Model . . . . .
4 Caught an except ion in b lock Model Generator Block
5 Type : <type except i ons . ImportError>
6 Message : No module named g e n e r a t o r s e g t o i n f i n i t y t r a f f i c tw o t o k e n s
7 Transforming None . . . . . I nva l i d Test Case
8 Post−Condit ion : : No Tra f f i c E lements Rule : : . . . . . None , I nva l i d Test Case
9 Post−Condit ion : : Al l PN Elements Rule : : . . . . . None , I nva l i d Test Case

10 Post−Condit ion : : A l l E l ements id s Ru l e : : . . . . . None , I nva l i d Test Case
11 ModelComparator : : . . . . . None , I nva l i d Test Case
12 FragmentComparator : : . . . . . None , I nva l i d Test Case
13 Invoker Block : Received Test Resu l t :
14 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
15 Invoker Block : Sending Next Test Case
16 Loading Model . . . . . . . . . done
17 Transforming <g e n e r a t o r t o l i g h t t o s e g t o i n f i n i t y t r a f f i c > . . . . . done
18 Post−Condit ion : : No Tra f f i c E lements Rule : : . . . . . . . . . . Fa i l , Check Error s
19 Error s : Found T r a f f i c Nodes o f type :
20 Tra f f i cL i g h tBa r r i e r , RoadConnection ,
21 Post−Condit ion : : Al l PN Elements Rule : : . . . . . . . . . . Fa i l , Check Error s
22 Error s : Found Non PN Nodes o f type :
23 Tra f f i cL i g h tBa r r i e r , RoadConnection , GenericGraphEdge ,
24 Post−Condit ion : : A l l E l ements id s Ru l e : : . . . . . . . . . . Fa i l , Check Error s
25 Error s : Found Nodes with no ID o f type :
26 pl2tran , tran2pl , GenericGraphEdge , PNPlace , PNTransition ,
27 ModelComparator : : . . . . . . . . . Fa i led , check Edit S c r i p t
28 FragmentComparator : : . . . . . . . . . . none
29 Invoker Block : Received Test Resu l t
30 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
31 Invoker Block : Sending Next Test Case
32 Loading Model . . . . . . . . . done
33 Transforming <g e n e r a t o r s e g i n f i n i t y n o l i n k s t r a f f i c > . . . . . done
34 Post−Condit ion : : No Tra f f i c E lements Rule : : . . . . . . . . . . Pass
35 Post−Condit ion : : Al l PN Elements Rule : : . . . . . . . . . . Fa i l , Check Error s
36 Error s : Found Non PN Nodes o f type :
37 GenericGraphEdge ,
38 Post−Condit ion : : A l l E l ements id s Ru l e : : . . . . . . . . . . Fa i l , Check Error s
39 Error s : Found Nodes with no ID o f type :
40 pl2tran , tran2pl , PNPlace , GenericGraphEdge , PNPlace , PNTransition ,
41 ModelComparator : : . . . . . . . . . Fa i led , check Edit S c r i p t
42 FragmentComparator : : . . . . . . . . . . none
43 Invoker Block : Received Test Resu l t
44 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
45 Invoker Block : Sending Next Test Case
46 Loading Model . . . . . . . . . done
47 Transforming <g e n e r a t o r t o s e g t o i n f i n i t y t r a f f i c > . . . . . done
48 Post−Condit ion : : No Tra f f i c E lements Rule : : . . . . . . . . . . Fa i l , Check Error s
49 Error s : Found T r a f f i c Nodes o f type :
50 RoadConnection ,
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51 Post−Condit ion : : Al l PN Elements Rule : : . . . . . . . . . . Fa i l , Check Error s
52 Error s : Found Non PN Nodes o f type :
53 RoadConnection , GenericGraphEdge ,
54 Post−Condit ion : : A l l E l ements id s Ru l e : : . . . . . . . . . . Fa i l , Check Error s
55 Error s : Found Nodes with no ID o f type :
56 pl2tran , tran2pl , PNPlace , GenericGraphEdge , PNTransition ,
57 ModelComparator : : . . . . . . . . . Fa i led , check Edit S c r i p t
58 FragmentComparator : : . . . . . . . . . . none
59 Invoker Block : Received Test Resu l t
60 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
61 Invoker Block : Fin i shed Proce s s ing Al l Test Cases

Listing 4.3: The TUnit output trace running the sample test suite

The output is formatted as follows: Indicate the processing stage for each test case and
its results, i.e., sending Test Case, Transformation, Post-Conditions, Expected Model
Comparison, Fragment Comparison. If some steps are not applicable, print none. Also,
if an error occurs, indicate the exception type and message. For example in Listing 4.3
line 3-6, when TUnit failed to find the specified input model named: “segment to infinity
traffic two tokens”, it indicated the exception and skipped over the subsequent steps for
that specific test case.

Bug1-Visual Links

After examining the output log we got when we ran the framework on our test suite, we
noticed few errors. We start by examining the post conditions failures in our test cases,
since they apply to all test cases. Note that in the above listing the edit scripts were not
shown for simplicity. However, we have shown a sample edit script in Section 3.9.

First notice the post condition “No-Traffic-Elements-Rule” is failing, indicating that
there are traffic elements left in the output of the transformed model. Notice how the
elements types are links, such as e.g., TrafficLightBarrier, RoadConnection and Gener-
icGraphEdge.

Intuitively, we consider that the transformation is working on the concrete syntax layer of
the models. In particular, the following two rules: Remove Roads and Remove Light,
proceed to remove the visual traffic elements, but do not specify what happens to the
“link elements” pointing to the removed elements explicitly. Visually these links are not
shown since we need both ends of a link to be present for it to be visible. Subsequently
when the rules remove these elements, they remove one end of the link while leaving the
other present.

We modify the rules Remove Roads and Remove Light to ensure removing any
attached linking elements (Traffic links and Generic Graph links). We then re-run our
test suite to get the Listing 4.4. Note that now the first two post conditions pass on all
valid test cases.

1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 Invoker Block : Sending Next Test Case
3 Loading Model . . . . .
4 Caught an except ion in b lock Model Generator Block
5 Type : <type except i ons . ImportError>
6 Message : No module named g e n e r a t o r s e g t o i n f i n i t y t r a f f i c tw o t o k e n s
7 Transforming None . . . . . I nva l i d Test Case
8 Post−Condit ion : : No Tra f f i c E lements Rule : : . . . . . None , I nva l i d Test Case
9 Post−Condit ion : : Al l PN Elements Rule : : . . . . . None , I nva l i d Test Case
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10 Post−Condit ion : : A l l E l ements id s Ru l e : : . . . . . None , I nva l i d Test Case
11 ModelComparator : : . . . . . None , I nva l i d Test Case
12 FragmentComparator : : . . . . . None , I nva l i d Test Case
13 Invoker Block : Received Test Resu l t :
14 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
15 Invoker Block : Sending Next Test Case
16 Loading Model . . . . . . . . . done
17 Transforming <g e n e r a t o r t o l i g h t t o s e g t o i n f i n i t y t r a f f i c > . . . . . done
18 Post−Condit ion : : No Tra f f i c E lements Rule : : . . . . . . . . . . Pass
19 Post−Condit ion : : Al l PN Elements Rule : : . . . . . . . . . . Pass
20 Post−Condit ion : : A l l E l ements id s Ru l e : : . . . . . . . . . . Fa i l , Check Error s
21 Error s : Found Nodes with no ID o f type :
22 pl2tran , tran2pl , PNPlace , PNTransition ,
23 ModelComparator : : . . . . . . . . . Pass
24 FragmentComparator : : . . . . . . . . . . none
25 Invoker Block : Received Test Resu l t :
26 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
27 Invoker Block : Sending Next Test Case
28 Loading Model . . . . . . . . . done
29 Transforming <g e n e r a t o r s e g i n f i n i t y n o l i n k s t r a f f i c > . . . . . done
30 Post−Condit ion : : No Tra f f i c E lements Rule : : . . . . . . . . . . Pass
31 Post−Condit ion : : Al l PN Elements Rule : : . . . . . . . . . . Pass
32 Post−Condit ion : : A l l E l ements id s Ru l e : : . . . . . . . . . . Fa i l , Check Error s
33 Error s : Found Nodes with no ID o f type :
34 pl2tran , tran2pl , PNPlace , PNTransition ,
35 ModelComparator : : . . . . . . . . . Fa i led , check Edit S c r i p t
36 FragmentComparator : : . . . . . . . . . . none
37 Invoker Block : Received Test Resu l t :
38 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
39 Invoker Block : Sending Next Test Case
40 Loading Model . . . . . . . . . done
41 Transforming <g e n e r a t o r t o s e g t o i n f i n i t y t r a f f i c > . . . . . done
42 Post−Condit ion : : No Tra f f i c E lements Rule : : . . . . . . . . . . Pass
43 Post−Condit ion : : Al l PN Elements Rule : : . . . . . . . . . . Pass
44 Post−Condit ion : : A l l E l ements id s Ru l e : : . . . . . . . . . . Fa i l , Check Error s
45 Error s : Found Nodes with no ID o f type :
46 pl2tran , tran2pl , PNPlace , PNTransition ,
47 ModelComparator : : . . . . . . . . . Pass
48 FragmentComparator : : . . . . . . . . . . none
49 Invoker Block : Received Test Resu l t :
50 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
51 Invoker Block : Fin i shed Proce s s ing Al l Test Cases

Listing 4.4: The TUnit output trace running the test suite after fixing bug1

Bug2-No-Links

After fixing the first bug, we notice in the Listing 4.4, we notice that the model com-
parator step fails for the test case “generator segment infinity no links traffic” (the test
case is shown in Figure 4.11).

After investigation, we notice that the Rule Complete Collector is not specific enough.
We modify it to check for outports only attached to an infinity segment.

This will avoid it being applied to outports attached to road segments. This is only
visible in test case “Generator Segment Infinity no links”.

We fix it and re-run the test suite to find that the test cases pass now. Furthermore,
our changes did not break the test cases which passed before the changes, as shown in
Listing 4.5.

1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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2 Invoker Block : Sending Next Test Case
3 Loading Model . . . . .
4 Caught an except ion in b lock Model Generator Block
5 Type : <type ’ except i ons . ImportError ’>
6 Message : No module named g e n e r a t o r s e g t o i n f i n i t y t r a f f i c tw o t o k e n s
7 Transforming None . . . . . I nva l i d Test Case
8 Post−Condit ion : : No Tra f f i c E lements Rule : : . . . . . None . . . . . I nva l i d Test Case
9 Post−Condit ion : : Al l PN Elements Rule : : . . . . . None . . . . . I nva l i d Test Case

10 Post−Condit ion : : A l l E l ements id s Ru l e : : . . . . . None . . . . . I nva l i d Test Case
11 ModelComparator : : . . . . . None . . . . . I nva l i d Test Case
12 FragmentComparator : : . . . . . None . . . . . I nva l i d Test Case
13 Invoker Block : Received Test Resu l t :
14 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
15 Invoker Block : Sending Next Test Case
16 Loading Model . . . . . . . . . done
17 Transforming <g e n e r a t o r t o l i g h t t o s e g t o i n f i n i t y t r a f f i c > . . . . . done
18 Post−Condit ion : : No Tra f f i c E lements Rule : : . . . . . . . . . . Pass
19 Post−Condit ion : : Al l PN Elements Rule : : . . . . . . . . . . Pass
20 Post−Condit ion : : A l l E l ements id s Ru l e : : . . . . . . . . . . Fa i l , Check Error s
21 Error s : Found Nodes with no ID o f type :
22 pl2tran , tran2pl , PNPlace , PNTransition ,
23 ModelComparator : : . . . . . . . . . Pass
24 FragmentComparator : : . . . . . . . . . . none
25 Invoker Block : Received Test Resu l t :
26 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
27 Invoker Block : Sending Next Test Case
28 Loading Model . . . . . . . . . done
29 Transforming <g e n e r a t o r s e g i n f i n i t y n o l i n k s t r a f f i c ins tance > . . . . . done
30 Post−Condit ion : : No Tra f f i c E lements Rule : : . . . . . . . . . . Pass
31 Post−Condit ion : : Al l PN Elements Rule : : . . . . . . . . . . Pass
32 Post−Condit ion : : A l l E l ements id s Ru l e : : . . . . . . . . . . Fa i l , Check Error s
33 Error s : Found Nodes with no ID o f type :
34 pl2tran , tran2pl , PNPlace , PNTransition ,
35 ModelComparator : : . . . . . . . . . Pass
36 FragmentComparator : : . . . . . . . . . . none
37 Invoker Block : Received Test Resu l t :
38 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
39 Invoker Block : Sending Next Test Case
40 Loading Model . . . . . . . . . done
41 Transforming <g e n e r a t o r t o s e g t o i n f i n i t y t r a f f i c > . . . . . done
42 Post−Condit ion : : No Tra f f i c E lements Rule : : . . . . . . . . . . Pass
43 Post−Condit ion : : Al l PN Elements Rule : : . . . . . . . . . . Pass
44 Post−Condit ion : : A l l E l ements id s Ru l e : : . . . . . . . . . . Fa i l , Check Error s
45 Error s : Found Nodes with no ID o f type :
46 pl2tran , tran2pl , PNPlace , PNTransition ,
47 ModelComparator : : . . . . . . . . . Pass
48 FragmentComparator : : . . . . . . . . . . none
49 Invoker Block : Received Test Resu l t :
50 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
51 Invoker Block : Fin i shed Proce s s ing Al l Test Cases

Listing 4.5: The TUnit output trace running the test suite after fixing bug2

Bug3-Model-Fragment

We finally fix the file not found in the model fragment test case, by adding the right file
in the test directory. A re-run of the test suite shows all test cases as passing except the
post conditions 3, regarding the unique id of elements as shown in Listing 4.6. This is
called the traceability link aspect of model transformations, namely we can use the id of
an element in the transformed output model, to figure out which elements of the starting
model it was generated from.
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We can fix this post-condition by enforcing the rules which create PN elements to specify
the id attribute, but we won’t do it here as we have demonstrated the effectiveness of
the TUnit framework in performing regression testing. (Note by regression testing we
mean an implementation change due to a bug fix rather than a requirement change)

1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 Invoker Block : Sending Next Test Case
3 Loading Model . . . . . . . . . done
4 Transforming <g e n e r a t o r s e g t o i n f i n i t y t r a f f i c tw o t o k e n s ins tance > . . . . . done
5 Post−Condit ion : : No Tra f f i c E lements Rule : : . . . . . . . . . . Pass
6 Post−Condit ion : : Al l PN Elements Rule : : . . . . . . . . . . Pass
7 Post−Condit ion : : A l l E l ements id s Ru l e : : . . . . . . . . . . Fa i l , Check Error s
8 Error s : Found Nodes with no ID o f type :
9 pl2tran , tran2pl , PNPlace , PNTransition ,

10 ModelComparator : : . . . . . . . . . None
11 FragmentComparator : : . . . . . . . . . . . pass
12 Invoker Block : Received Test Resu l t :
13 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
14 Invoker Block : Sending Next Test Case
15 Loading Model . . . . . . . . . done
16 Transforming <g e n e r a t o r t o l i g h t t o s e g t o i n f i n i t y t r a f f i c > . . . . . done
17 Post−Condit ion : : No Tra f f i c E lements Rule : : . . . . . . . . . . Pass
18 Post−Condit ion : : Al l PN Elements Rule : : . . . . . . . . . . Pass
19 Post−Condit ion : : A l l E l ements id s Ru l e : : . . . . . . . . . . Fa i l , Check Error s
20 Error s : Found Nodes with no ID o f type :
21 pl2tran , tran2pl , PNPlace , PNTransition ,
22 ModelComparator : : . . . . . . . . . Pass
23 FragmentComparator : : . . . . . . . . . . none
24 Invoker Block : Received Test Resu l t :
25 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
26 Invoker Block : Sending Next Test Case
27 Loading Model . . . . . . . . . done
28 Transforming <g e n e r a t o r s e g i n f i n i t y n o l i n k s t r a f f i c ins tance > . . . . . done
29 Post−Condit ion : : No Tra f f i c E lements Rule : : . . . . . . . . . . Pass
30 Post−Condit ion : : Al l PN Elements Rule : : . . . . . . . . . . Pass
31 Post−Condit ion : : A l l E l ements id s Ru l e : : . . . . . . . . . . Fa i l , Check Error s
32 Error s : Found Nodes with no ID o f type :
33 pl2tran , tran2pl , PNPlace , PNTransition ,
34 ModelComparator : : . . . . . . . . . Pass
35 FragmentComparator : : . . . . . . . . . . none
36 Invoker Block : Received Test Resu l t :
37 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
38 Invoker Block : Sending Next Test Case
39 Loading Model . . . . . . . . . done
40 Transforming <g e n e r a t o r t o s e g t o i n f i n i t y t r a f f i c ins tance > . . . . . done
41 Post−Condit ion : : No Tra f f i c E lements Rule : : . . . . . . . . . . Pass
42 Post−Condit ion : : Al l PN Elements Rule : : . . . . . . . . . . Pass
43 Post−Condit ion : : A l l E l ements id s Ru l e : : . . . . . . . . . . Fa i l , Check Error s
44 Error s : Found Nodes with no ID o f type :
45 pl2tran , tran2pl , PNPlace , PNTransition ,
46 ModelComparator : : . . . . . . . . . Pass
47 FragmentComparator : : . . . . . . . . . . none
48 Invoker Block : Received Test Resu l t :
49 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
50 Invoker Block : Fin i shed Proce s s ing Al l Test Cases

Listing 4.6: The TUnit output trace running the test suite after fixing fragment bug
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Figure 4.13: Acceptor Block Semantic Equivalence

4.5 Semantic Equivalence

Comparing models is usually done at the syntax level (abstract or concrete). For example,
in the TUnit demonstration we showed that we were comparing PN models (expected
vs. actual transformed models) at the syntax level. But ultimately, we would like to
check if the models have the same meaning, and hence compare at the semantic level.
For example, PN models have a reachability/coverability graphs as semantic domain.
So instead of giving a PN expected, we could specify an expected a coverability graph
to do the comparison at the semantic level. TUnit enables such changes with minimal
efforts. For example, the acceptor block would have an extra block to do the conversion
between PN and coverability graphs as shown in Figure 4.13. Note that in this scenario,
the expected output could be specified as a coverability graph or as a PN, where in the
latter case the block will convert both, the actual PN output to a coverability graph and
the expected PN to its coverability graph. The Comparator block will then compare the
coverability graphs of both PN models.

For example as shown in Figure 4.14, PN models shown are different in direct comparison,
however they are semantically the same as shown by the coverability analysis. TUnit
lets us specify test cases pertaining not only to the syntactic, but also to the semantic
level.
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Figure 4.14: Coverability Graph Example

4.6 Discussion

In this section we discuss the advantages and disadvantages of the choices we made to
address the main challenges we chose to tackle. To reiterate, the problem we are dealing
with is automating the execution of testing for model transformations. We choose to
build a framework to enable the automation of repetitive testing tasks. The framework
was modelled at a level of abstraction which we feel is most appropriate for testing
transformations.

In what follows, we further elaborate on the three aspects of this framework: model
based, DEVS formalism choice and automating execution.

In the “model everything” spirit, we feel that modelling the testing framework could best
realize this notion by focusing on the right level of abstraction. It can help promoting
reuse and productivity through code generation. And hence allow for more complex
scenarios. Furthermore, since we are dealing with model objects, it makes sense to have
a modelled framework to deal with models.

The event based DEVS formalism is a natural candidate for our testing. DEVS is
a powerful simulation and analysis formalism, and testing can be seen as running a
simulation experiment of the SUT. We can encode graphs in events to be transmitted
and processed through blocks. DEVS has a well established research community to
provide support for different DEVS tools and simulators.

Most work in model transformation testing has been focusing on areas such as gener-
ating input models and building oracles as discussed in chapter 2. In software testing,
frameworks like XUnits (JUnit, NUnit, PyUnit .. etc) are well established and represent
an essential part of the engineering process of creating software. These frameworks rep-
resent testing drivers (as described in Chapter1), to allow seamless repetitive execution
of the test suites in areas such as functional and regression testing. We feel that for MDE
to realize its potential as a well established engineering process, we need parallels to the
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XUnit testing frameworks in the MDE world. However, a new level of challenges arise
when dealing with models and their transformations as models are complex objects which
could have dependencies. The process also depends on model comparison (as discussed
in Chapter 3) to be integrated and fully automated.

We built TUnit to address the challenges of automation when testing model transfor-
mations and to complement the work done by others in the test case generation area as
discussed in detail in section 2.4. A major advantage of using TUnit, is that we could
test several different implementations of the same transformation in parallel. Given the
advantages of the model based nature of TUnit, we could modify the acceptor block to
compare the output of the two transformations to check for any discrepancies for exam-
ple. We could also build complex verdict criteria in the acceptor block like mapping to a
semantic domain as discussed in Section 4.5. Furthermore, we could test the performance
of different model comparison algorithms by applying minimal modifications.

4.7 Conclusion

In this chapter we presented our “modelled” TUnit framework to help enable the au-
tomatic testing of model transformations. Our contribution lies in providing a hands
on practical experience with using a framework to enable complex testing. For example
we enable different types of oracle functions used for model transformation testing. We
further show how our framework helps in regression testing. Finally, we show how TUnit
enables semantic domain equivalence testing by introducing the proper framework hooks
and demonstrate it in our case study.



Conclusion

In conclusion, this thesis has made an attempt to resolve several outstanding issues in
model transformation testing. Our approach was to start by studying the foundations
of software testing research and identifying its main achievements, and remaining chal-
lenges. Using this knowledge we built a categorization for studying software testing in
different contexts. We then briefly introduced the foundations of Model Driven Engi-
neering (MDE) and Model Transformation (MT) in particular. Afterwards we surveyed
current research related to testing model transformations. The categorization we built
in Chapter 1 for software testing was used to classify MT testing techniques, and subse-
quently build a roadmap of achievements and outstanding research challenges.

The main contribution of this thesis is summarized in three items.

First, in chapter 3 we presented the first challenge we tackled, model comparison. We
built on existing techniques and algorithms in other domains to derive a lean and mean
algorithm which is most suitable for comparing models in the context of testing. The
algorithm is mean in that it provide exact non-approximate results, and lean in terms
of customizability. We ran extensive experiments to qualify the performance of our
customized algorithm according to a set of different input model types.

Second, we presented our testing framework TUnit (Transformation Unit) to enable
the automation of execution of the test suites. TUnit’s model based architecture was
described in details along with its underlying DEVS formalism. We described new MDE
related challenges and our solutions through TUnit. The model comparison algorithm
was integrated into TUnit to serve as one of its different oracle function capabilities.
Using a case study, we demonstrated the frameworks’s advantages to streamline the
testing process, specifically by allowing regressions testing due to code changes or bug
fixes.

Finally, our last contribution was to demonstrate achieving semantic equivalence in the
context of MT testing, due to the model based nature of TUnit. Semantic equivalence
checking enables a new level of model comparison, which could scale beyond current
testing scenarios in terms of accuracy.

We believe our work would complement the current MT testing research which is focused
on test case generations, and should be combined with such techniques in future work
as have been discussed.
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