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Brief Abstract in English 

Why do the decisions we make sometimes feel quick and effortless while other times 

long and effortful? My thesis explores the feeling and exertion of mental effort in both objective 

and subjective decisions. Recent models posit that mental effort is invested when the costs of 

exertion are associated with commensurate rewards. Yet, to better understand the predictions of 

cost-benefit models of effort, we first need to establish measures of momentary effort exertion 

while deciding. In the first experiment, we test whether task-evoked pupillary responses reflect 

momentary effort exertion while performing an objective decision-making task and track both 

individual differences in effort costs and reward-induced effort modulations. We observe that 

pupillary responses during objective decision-making tasks do indeed track individual 

differences in effort costs and momentary reward-induced changes in mental exertion. Next, we 

test whether strategic conflict in value-based choices engenders feelings of mental demand. We 

find that participants reliably rate value-based decisions with higher levels of strategic conflict as 

more demanding. Next, aligned with the predictions of cost-benefit models of effort, we test 

whether these decisions rated as more demanding are systematically avoided using a demand-

selection paradigm. Our results confirm that demanding value-based choices are reliably avoided 

when given the option. Finally, we sought to test whether demanding value-based choices 

elicited greater pupil dilation and to what extent the observed effort avoidance could be 

explained by individual differences in momentary effort exertion, indexed by pupillary 

responses. To our surprise, we find that demanding value-based choices elicited smaller pupil 

dilations and that the individuals with smaller pupillary responses to demanding value-based 

choices avoided the demand in a secondary task phase. Aligned with the marginal value of effort, 

these results suggest that participants withdraw their effort when exertion offers no additional 
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benefits to task performance. Together, the results of these studies suggest that pupillary 

responses can serve as a reliable measure of effort exertion in both objective and subjective 

decisions and that the cost-benefit model of effort can serve as a unifying framework to 

understand effort across both objective and subjective decisions. 
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Résumé en Français 

Pourquoi les décisions que nous prenons nous semblent-elles parfois rapides et sans effort alors 

qu’elles sont parfois longues et laborieuses? Ma thèse explore la sensation et l’exercice de 

l’effort mental dans les décisions objectives et subjectives. Des modèles récents suggèrent que 

l'effort mental est investi lorsque les coûts de l'effort sont associés à des récompenses 

proportionnelles. Cependant, pour mieux comprendre les prédictions des modèles coût-avantage 

de l'effort, nous devons d'abord établir des mesures d’effort momentané lors de la prise de 

décision. Dans la première expérience, nous testons si les réponses pupillaires provoquées par 

une tâche reflètent l'effort momentané lors de l'exécution d'une tâche de prise de décision 

objective et suivent à la fois les différences individuelles dans les coûts de l'effort et les 

modulations de l'effort induites par les récompenses. Nous observons que les dilatations 

pupillaires lors de tâches de prise de décision objective suivent, effectivement, les différences 

individuelles dans les coûts d'effort et les changements momentanés de l’effort mental induits par 

les récompenses. Ensuite, nous testons si le conflit stratégique dans les choix économiques 

engendre un sentiment d’exigence mentale. Nous constatons que les participants évaluent 

constamment comme étant plus exigeantes les décisions basées sur la valeur qui présentent des 

niveaux élevés de conflit stratégique. Ensuite, alignés sur les prédictions des modèles coût-

avantage de l'effort, nous testons si ces décisions jugées plus exigeantes sont systématiquement 

évitées à l'aide d'un paradigme de sélection de la demande. Nos résultats confirment que les 

choix économiques les plus exigeants sont évités davantage lorsque nous donnons l'option 

d’éviter aux participants. Enfin, nous avons testé si les choix économiques exigeants 

provoquaient une plus grande dilatation pupillaire, et dans quelle mesure il existe une relation 

entre les dilatations pupillaires et le choix d’éviter l’effort. À notre grande surprise, nous 



Running Head: EFFORTFUL DECISIONS 
 

8 

constatons que les choix plus exigeants ont suscité des dilatations pupillaires plus petites et que 

les individus ayant des réponses pupillaires plus faibles aux choix exigeants ont évité davantage 

les choix exigeants dans une deuxième phase. Alignés sur la valeur marginale de l'effort, ces 

résultats suggèrent que les participants réduisent leur effort lorsque celui-ci n'offre aucun 

avantage supplémentaire à l'exécution de la tâche. Globalement, les résultats de ces études 

suggèrent que les réponses pupillaires peuvent servir de mesure fiable de l'effort dans les 

décisions objectives et subjectives, et que le modèle coût-avantage de l'effort peut servir de cadre 

unificateur pour comprendre l'effort à travers les décisions objectives et subjectives. 
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Contribution to Original Knowledge 

The last decade of research in cognitive science has seen a rise in interest in better 

understanding humans’ allocation of cognitive resources to goal-directed tasks referred to as 

mental effort. Recent theories have suggested that mental effort allocation follows a cost-benefit 

trade-off whereby the decision to expend effort is determined by the costs associated with effort 

exertion, the rewards for successful task completion and their associated probabilities (Frömer et 

al., 2021; Kool et al., 2010; Kurzban et al., 2013; Shenhav et al., 2017; Silvetti et al., 2018). Yet, 

research on mental effort has been limited by researchers’ ability to measure the amount of effort 

invested in a task. This is particularly true for tasks where there is a non-monotonic relationship 

between effort investment and task performance like value-based decision-making. While there 

exists evidence that momentary changes in pupil diameter may reflect online effort investment, it 

remains unclear whether this measure reliably indexes within-person variation in effort investment 

(van der Wel & van Steenbergen, 2018). Furthermore, little research has sought to bridge the study 

of mental effort exertion in cognitive control tasks where responses are based on external criteria 

and value-based decision-making tasks where responses are based on internal criteria. Thus, it 

remains unclear whether these cost-benefit models of effort investment can serve as theories of 

effort allocation in both domains. 

The overarching aim of this thesis is to resolve these open questions and bridge cognitive 

control and value-based decision-making research by determining whether pupil diameter can be 

used as a viable index of mental effort exertion. To this end, I designed four experiments to address 

this lacuna and better understand cognitive effort exertion in cognitive control and value-based 

tasks. 
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The first study (Chapter 2), published in Cognitive Affective Behavioral Neuroscience, is 

the first to examine whether pupil diameter can be used as a reliable index of within-person pupil 

effort exertion within-person. To test this, we leveraged the cost-benefit model of effort exertion 

(Frömer et al., 2021; Kurzban et al., 2013; Shenhav et al., 2017; Silvetti et al., 2018) and asked 

participants to complete a cognitive control task under three reward conditions while measuring 

the fluctuations in their pupil diameter. The results indicate that participants’ pupils were indeed 

larger for more difficult tasks, larger for those who performed better at the task, and larger for 

those who showed greater reward-induced performance changes. 

The second study (Chapter 4), which has been prepared for submission, is the first to 

examine whether demanding value-based descisions are avoided as predicted by the cost-benefit 

model. Similarly, this study is the first to use pupil diameter to index effort exertion in value-based 

choice and relate this to individual differences in demand avoidance. To test this, we developed 

and validated a novel task to measure demand avoidance in value-based choices. Across two 

experiments, the results indicate that participants overwhelmingly avoid demanding value-based 

choices and that individual differences in effort exertion are predictive of later demand avoidance. 

Together, these studies are the first to bridge the study of mental effort in both cognitive control 

tasks and value-based decision-making, suggesting that common methods and theories can be used 

to understand the deployment of mental effort across task domains. 
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Section 1: Introduction & Comprehensive Review of the Relevant Literature 

Humans make decisions daily, each associated with its own respective subjective feeling 

of demand. Extensively researching and deliberating between investments intuitively feels more 

effortful than flipping a coin or phoning a friend. Yet, why we sometimes decide to use more 

effortful decision strategies while other times rely on fast, habitual strategies remains unclear. On 

the one hand, humans avoid cognitive effort—using cognitive resources (e.g., attention, working 

memory) in service of a goal (Kool et al., 2010)—and will even opt for a painful stimulus over 

the prospect of exerting cognitive effort (Vogel et al., 2020). Yet, on the other hand, individuals 

often must engage in effortful goal-directed behaviour to obtain rewards.  For example, a 

carefully selected investment offers the opportunity to reap large returns. Consequently, our 

decisions to expend (versus withhold) mentally effortful behaviours, often presents a conflict 

between two opposing goals: minimizing the associated effort costs and maximizing rewards. On 

this view, prominent theories of effort investment posit that our decision to expend (or withhold) 

cognitive effort requires the integration of the benefits, the costs, and the likelihood of successful 

performance (Frömer et al., 2021; Kurzban et al., 2013; Shenhav et al., 2017; Silvetti et al., 

2018). In fact, the prospect of performance-linked reward incentives has been found to motivate 

effort investment across a breadth of cognitive domains including task-switching (Sandra & 

Otto, 2018), response inhibition (Chiew & Braver, 2014), working memory (Beck et al., 2010), 

and episodic memory (da Silva Castanheira et al., 2022; Shohamy & Adcock, 2010) to name a 

few. However, while there is a plethora of work suggesting the decision to exert cognitive 

control follows a cost-benefit trade-off, there is comparably less work showing that these models 

also apply to value-based choices. Thus, the goal of my proposed research is to unify our 

understanding of effort investment in both cognitive control (i.e., how do I adjust my information 
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processing to achieve my goals?) and value-based choice (i.e., how do I weigh costs and benefits 

to choose?) using Cost-Benefit models of effort investment. 

A burgeoning body of literature suggests that people integrate costs and benefits when 

deciding to exert cognitive control—increasing benefits encourage effort investment while 

increasing costs discourage exertion (Frömer et al., 2021; Kurzban et al., 2013; Shenhav et al., 

2017; Silvetti et al., 2018). Supporting this view, reward incentives have been found to motivate 

effort investment (Botvinick & Braver, 2015; Westbrook & Braver, 2015), particularly for those 

with large effort costs (da Silva Castanheira, LoParco, et al., 2021; Sandra & Otto, 2018) and 

rewards associated with greater effort are less valued (Chong et al., 2017; Westbrook et al., 

2013). Thus, all else being equal, cost-benefit models predict that effort exertion should be 

avoided as the associated costs of deploying cognitive resources are not offset by benefits. While 

these predictions are generally aligned with models of effort exertion in value-based choice, cost-

benefit models have largely gone untested when studying value-based decision-making. In large 

part, the literature on cognitive control and value-based decision-making has developed in 

parallel with few attempts at developing an integrated account of effort. 

Our understanding of effort in value-based decision-making has largely stemmed from 

the Judgement and Decision-making (JDM) literature which is focused on the reduction of effort: 

the heuristics and biases approach (Tversky & Kahneman, 1974), and the fast and frugal 

approach (Gigerenzer & Todd, 1999). Both approaches explain how our preferences emerge 

from the use of limited cognitive resources which often leads to violations of economic norms. 

Classical Economic theories posit that decision-makers should maximize Expected value (EV)—

the mean outcome one should expect from selecting an option. Following the predictions of 

Rational Choice Theory should lead to forward-looking choices that maximize EV (Von 
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Neumann & Morgenstern, 1947). Yet decision-makers, even with complete information about 

the consequences of their choices, often deviate from these norms. For example, people will 

violate transitivity (Allais, 1953), violate the description invariance axiom by being sensitive to 

the framing of an option as gains or losses (Tversky & Kahneman, 1981), or even be influenced 

by previously incurred costs (Thaler, 1980). The heuristics and biases approach sees these 

violations as the downstream effects of withholding effort exertion when deciding via the use of 

simplifying decision strategies (i.e., heuristics; Thaler, 1980; Tversky & Kahneman, 1974).  

The Fast and frugal approach, however, suggests that decision-makers' use of these 

heuristics not only reflects the minimization of effort (i.e., time and resources) but also the 

maximization of task performance (Gigerenzer & Todd, 1999; Goldstein & Gigerenzer, 2002; 

Todd & Gigerenzer, 2007). In this framework, using heuristics does not invariably lead to biases, 

but can sometimes outperform other more deliberative approaches depending on the task 

environment (e.g., time pressure, available information).  

Together, these frameworks fall under the broader category of Dual process theories of 

decision-making which contrast effortful to effortless decision strategies (Diederich & 

Trueblood, 2018; Evans, 2003) in which withholding effort is interpreted as either reflecting the 

limitations on cognition or reflecting the frugal use of cognitive resources. Yet, defining the 

boundary between the two systems based on first principles has proven difficult (De Neys, 2021; 

Dewey, 2021; Evans & Stanovich, 2013). Perhaps, for this reason, a separate line of work has 

focused on the effects of the quantity rather than the quality of the information processed. 

 The Information-processing approach offers a third framework to understanding effort in 

decision-making. While Dual process accounts focus on the use of distinct cognitive strategies 

which require different levels of cognitive control to implement, the information processing 
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approach assumes that choices follow a speed-accuracy trade-off (Payne & Bettman, 2004). In 

this framework, preferences are constructed via the time-consuming sampling of evidence in 

favor of an option either from the environment (Busemeyer, 1993; Busemeyer & Townsend, 

1993; Payne et al., 1993; Roe et al., 2001) or memory (Lieder et al., 2018). Once a decision-

maker reaches a pre-specified level of evidence in favor of an option, the preferred option is 

chosen. Critically, the amount of evidence needed before deciding is a free parameter that 

controls the Speed-Accuracy trade-off: a high threshold will lead to slow and consistent choices 

whereas a low threshold will lead to fast and inconsistent choices (Clithero, 2018). If one’s 

ability to process information is limited and is experienced as effortful (i.e., draws upon 

cognitive resources), then these models provide an explanation for how investing effort in 

deliberation could help overcome initial biases and lead to greater EV maximizing choice. 

However, while these effort reduction models of choice can help explain the effects of 

deliberation on choice, they do not explain how one decides a priori how much effort to invest 

(i.e., where to set the decision threshold). 

 To address this gap, recent work has attempted to bridge the cognitive control literature 

and value-based decision-making literature by suggesting that control processes are used to 

adjust both attention and decision strategies use (Frömer & Shenhav, 2021). In turn, the choice of 

engaging in effortful control is governed by a cost-benefit trade-off (Shenhav et al., 2013, 2016, 

2017; Silvetti et al., 2018) where the potential to obtain rewards is traded-off with the rewards 

forgone through inaction (Kurzban et al., 2013; Otto & Daw, 2019; Tajima et al., 2016). 

Similarly, other cost-benefit models posit a confidence-effort trade-off whereby the decision to 

expend effort is governed by the potential to increase feelings of subjective confidence when 

there is uncertainty about the preferred option or imprecise estimates of options’ values (Lee & 
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Daunizeau, 2021). However, one critical limitation of this research is operationalizing cognitive 

effort in value-based choice. Thus, the goal of my thesis is to bridge cognitive control and value-

based decision-making and understand the regulation of effort invested in a value-based choice 

by accounting for the underlying strategies decision-makers employ.  

Section 1.1: How Do We Measure Momentary Changes in Effort Exertion? 

One limitation to studying cognitive effort in both value-based decisions and cognitive 

control is establishing an online measure of effort exertion. Previously, both explicit choices 

(e.g., avoidance) and metacognitive (e.g., demand ratings) measures of effort have been used to 

measure cognitive effort. However, these measures do not reflect the momentary investment of 

effort itself but rather the post-hoc evaluation of effort after exertion. Other work has used 

behavioural performance (i.e., accuracy or response times) as a proxy for effort investment, 

however, task performance and effort outlay may not always share a monotonic relationship—

effort is sometimes invested only when it is associated with performance increases (Otto et al., 

2021). Thus, it is difficult to infer effort exertion from performance alone: responding more 

quickly could equally reflect random responding or the efficient use of attentional control. More 

recently, there has been an interest in establishing a physiological measure of momentary effort 

outlay. 

One promising online measure of effort is task-evoked pupillary responses (TEPRs), 

which might serve as a viable index of cognitive effort exertion across a variety of task domains 

(Beatty, 1982). Across a diverse range of task domains, increasing the effort required to produce 

a correct response evokes larger TEPRs (van der Wel & Steenbergen, 2018). Specifically, 

TEPRs appear to track increases in working memory load (Heitz, Schrock, Payne, & Engle, 

2008; Hopstaken, Van Der Linden, Bakker, & Kompier, 2015; Kahneman & Beatty, 1966), 
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response inhibition requirements (Laeng, Ørbo, Holmlund, & Miozzo, 2011; Rondeel, Van 

Steenbergen, Holland, & van Knippenberg, 2015; van Steenbergen & Band, 2013), changes in 

task sets (Rondeel et al., 2015), syntactic complexity of written sentences (Just & Carpenter, 

1993), and the difficulty of arithmetic (Ahern & Beatty, 1979; Steinhauer, Siegle, Condray, & 

Pless, 2004) and geometric analogy problems (Van Der Meer et al., 2010). However, it is unclear 

if pupil diameter actually indexes effort exertion or merely reflects task demand as both 

constructs are, by nature, tightly intertwined in many cognitive tasks (van der Wel & van 

Steenbergen, 2018). Put another way, when the level of task demand increases, successful task 

performance often requires more effort on the part of participants to meet this increased demand.  

Indeed, disambiguating the effort and demand accounts of TEPRs is important because 

this body of extant pupillometry work, taken as a whole, finds inconsistent relationships between 

individual differences in cognitive task performance and TEPRs (van der Wel & van 

Steenbergen, 2018). For example, lending support to an effort account of TEPRs, heightened 

TEPRs were found to be associated with improved N-Back performance (Rondeel et al., 2015), 

and fewer errors on mental arithmetic problems (Ahern & Beatty, 1979). Other work has found 

that within-individual increases in TEPRs track improvements in performance on flanker-type 

tasks (Diede & Bugg, 2017). Interpreting these results within a cost-benefit framework, 

individuals with larger effort costs presumably invest less effort than individuals with smaller 

effort costs (Kool & Botvinick, 2018), and taking task performance as a proxy for effort 

investment, differences in effort investment would explain the finding that better performance in 

these tasks is associated with larger TEPRs. In support of this effort account, previous work has 

also demonstrated that individuals high in fluid intelligence (i.e. with low effort costs) exhibit 
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better performance  (i.e. more effort investment) and higher TEPRs on difficult geometric 

analogy problems (Van Der Meer et al., 2010). 

At the same time, consistent with a demand view, larger TEPR differentiation between 

trial types in a Stroop task (i.e. congruent versus incongruent trials), was found to correlate with 

larger Stroop RT interference costs (i.e. worse performance; Laeng et al., 2011; Rondeel et al., 

2015). This relationship between task performance and TEPRs might suggest that pupillary 

responses reflect the current level of task demand (i.e., the costs of cognitive control) rather than 

the actual effort exerted, as those with the worst performance also had the largest dilations. 

Further buttressing this view, a recent study observed a dissociation between physiological and 

performance measures, such that TEPRs reflect task conflict levels in a Stroop task (congruent 

versus neutral trials) in the absence of task conflict effects on performance (Hershman & Henik, 

2019). That is, the observation that increases in task conflict level can drive increased TEPRs 

without a change in performance lends support to the demand hypothesis, as this account 

predicts that TEPRs should only differentiate to demand levels but not to invested effort. 

However, taking a cost-benefit view of effort investment, inter-individual differences in task 

performance could reflect variation in abilities (i.e., effort costs) and/or motivation (i.e., reward 

incentives). This might explain the variability in the reported relationships between task 

performance and physiology across these studies. 

However, while there exists suggestive evidence that pupillary responses might index 

individual differences in effort outlay, it remains unclear if TEPRs also track within-individual 

reward-induced task performance improvements as a result of the decision to expend effort to 

obtain rewards. Indeed, examination of intra-individual differences are thought to be key in 

developing an understanding of TEPRs, as they can potentially circumvent issues associated with 
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inter-individual comparisons (see van der Wel & van Steenbergen (2018) for an extended 

discussion).  Taking a cost-benefit view of effort expenditure, we seek to disentangle the effort 

and demand accounts of pupil diameter by 1) modulating available rewards and 2) leveraging the 

inherent variability in individuals’ cognitive control capacity. 

Section 1.2: What makes a Value-Based Choice Effortful? 

Exercising cognitive control by flexibly adapting responses to goals is thought to be 

effortful, but what makes value-based decision-making effortful is unclear. Yet, to establish an 

account of why we sometimes laboriously deliberate about choices and other times rely on 

heuristics necessitates an understanding of what makes a value-based choice difficult. In the 

previous section, we saw that the decision to exercise cognitive control—in this case to flexibly 

switch between task sets—follows a cost-benefit trade-off whereby the aversion to effort can be 

overcome by performance contingent rewards. Although value-based decisions are thought to 

rely on similar cognitive processes to cognitive control, there exists comparatively less 

compelling evidence that value-based decisions are experienced as effortful. In large part, the 

difficulty in defining the demand of a choice is understanding the underlying decision process. 

Given two choice sets, how do we know which one is more demanding? Over the years, there 

have been several varied ways experimenters have manipulated the demand of choices—either 

by manipulating features of the environment or features of the choice set itself. In terms of 

environmental manipulations, a large focus has been on limiting the ability to execute time-

consuming effortful deliberation either via manipulations of time pressure (Guo et al., 2017; Hu 

et al., 2015; Madan et al., 2015; Olschewski & Rieskamp, 2021; Zur & Breznitz, 1981) or taxing 

cognitive load (Hinson et al., 2003, 2019; Whitney et al., 2008). However, with these 

manipulations, participants are assumed to engage in effortful deliberation when they are not 
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under constraints. In terms of manipulating choice features, previous work has focused on 

manipulating either the discriminability of or the amount of information. Aligned with the EV 

maximizing view of choice, others have used the similarity in (expected) value between options 

(i.e., discriminability) as a manipulation of demand (Lebreton et al., 2009; Lee & Daunizeau, 

2021). However, two equally valued options could either vary in terms of their similarity of 

attributes. For example, two television shows could be equally liked, one being more educational 

and the other being more entertaining. Aligned with information-processing approaches to 

decision-making which assume that effort scales positively with the amount of information to be 

processed, researchers have either increased the number of options (Iyengar & Lepper, 2000) or 

the complexity of the options (Bernheim & Sprenger, 2020; Huck & Weizsäcker, 1999; Sonsino 

et al., 2002; Zilker et al., 2020). Thus, the greater number of attributes to consider when 

deciding, the more difficult the decision. However, these approaches to defining the demand of a 

choice a priori a largely agnostic to the degree of cognitive control the assumed heuristic 

requires. Yet, it remains equally unclear what makes one decision strategy more demanding than 

the other. 

The value-based decision-making literature has used varied approaches to operationalizing 

cognitive effort of a heuristic, often producing contradictory interpretations. The effort reduction 

approaches to value-based choices, like Dual process theories and Information processing 

approaches, assume that effort is what is being conserved when fast responses are executed. This 

assumption follows from work on process tracing techniques in decision-making which defined 

the effort required to execute a given decision process as the number of Elementary Information 

Processes (EIP) (Johnson & Payne, 1985; Payne et al., 1993) needed to choose. For example, 

putting an attribute value in working memory, summing an option’s attribute values, or 
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contrasting options by subtracting summed attribute values. However, it is particularly difficult 

to determine the effort required to implement a heuristic from first principles, as parsing 

information into discrete units may be arbitrary and depend on the level of granularity (Thomson 

& Oppenheimer, 2021). Furthermore, the EIP approach fails to account for the cognitive 

processes (e.g., cognitive control, working memory, attention) needed to implement heuristics 

which may depend on situational factors. For example, Bobadilla-Suarez & Love, 2018 found 

that, while the Take-The-Best heuristic is more frugal in terms of information use, it takes longer 

to implement and fares worse under time pressure than Tallying. However, which decision 

strategy is more effortful also depends on how the information (i.e., options’ attributes) are 

presented. Thus, it is difficult to predict the demand of a heuristic for a given choice set and 

context. 

 One key component of cognitive control is the selection of relevant responses and 

inhibition of prepotent but inappropriate responses. Previous work has used Strategic control—

the conflict between different decision strategies—to test how this control affects neural activity 

(Venkatraman et al., 2009). Here, I propose using Strategic control as a manipulation of task 

demands in value-based decisions-making: high control choices require selecting among 

strategies which prescribe different responses, while low control choices require selecting among 

strategies which prescribe the same choice. Using this operationalization, choice demands can 

vary independently of the heuristic chosen. Thus, choices, where the use of different heuristics 

would lead to disparate choices, should require greater cognitive control to select an option and 

be experienced as effortful. 

 Beyond the control demands of a choice, the effort deployed for deliberation should also 

vary as a function of the available rewards (da Silva Castanheira, LoParco, et al., 2021; Sandra & 
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Otto, 2018; Shenhav et al., 2013). In value-based choices, this would suggest that choices where 

there are high stakes and decision-makers stand to benefit more from choice (i.e., high average 

outcomes) should engender greater effort investment. However, previous work on value-based 

choice has found overall rewards on offer lead to response speeding which has been interpreted 

as evidence of effort disengagement (Frömer et al., 2019; Pirrone et al., 2018). This pattern of 

response speeding is also consistent with an effort investment account, as response speeding has 

previously been used as a marker of deploying cognitive control (da Silva Castanheira, LoParco, 

et al., 2021; Sandra & Otto, 2018). Thus, to disambiguate these accounts, I will use subjective 

reports to test whether response speeding when the reward on offer is high, reflect effort 

investment or disengagement. 

Section 1.3: Are Demanding Value-Based Choices Avoided? 

As discussed in the two preceding Sections, the decision to expend effort depends on the 

trade-off between a task’s associated costs and benefits. But what happens when tasks have 

equated or no available rewards? Cost-benefit models of effort allocation predict that effort 

should be avoided when all else is equal—this prediction was outlined in Hull’s (1943) law of 

least work. Yet, the data supporting cognitive effort avoidance pertains entirely to the 

deployment of cognitive control (Desender et al., 2017; Dunn et al., 2016; Kool et al., 2010; 

McGuire & Botvinick, 2010; Vogel et al., 2020; Westbrook & Braver, 2015) despite this 

principle often serving as a foundational assumption in the value-based decision-making 

literature (see Anderson, 2003 for a review). 

Aligned with the law of least work, the literature on value-based choice has developed in 

large part on the assumption of effort minimization: decision-makers will employ strategies to 

reduce the cognitive demands of choice. Indeed, it is reasonable to assume that, much like 
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cognitive control, the deployment of resources to implement decision strategies would be 

avoided in value-based choice as they rely on the same cognitive resources (Hinson et al., 2019; 

Whitney et al., 2008). Yet most of the evidence we have for this effort minimization principle in 

value-based choice has been indirect. This view is mainly supported by the heuristics and biases 

literature, which suggests that people avoid difficult deliberation by employing simplifying 

decision strategies (Gigerenzer & Selten, 2002; Goldstein & Gigerenzer, 2002; Payne et al., 

1993). For example, people will often prefer no change or default options (Inman & Zeelenberg, 

2002; Samuelson & Zeckhauser, 1988; Tsiros & Mittal, 2000), no action (omission bias, Ritov & 

Baron, 1992; inaction inertia, Tykocinski et al., 1995), and delay (choice deferral, Dhar, 1996). 

Additionally, features of the choice can also influence preferences: people avoid complex 

options (Zilker et al., 2020) or even avoid selecting altogether when there is too many options 

(Iyengar & Lepper, 2000). While there exists some debate as to whether the use of these 

heuristics reflects innate limitations of human cognition (Simon, 1957) or the rational use of 

limited resources (Gigerenzer & Selten, 2002; Goldstein & Gigerenzer, 2002), it is assumed that 

the use of these strategies is more frugal in terms of time and resources. However as reviewed in 

the previous section, there is some evidence that these strategies are not always faster or more 

frugal. While heuristics require less information, they also may require more attentional control 

needed to execute these heuristics (Bobadilla-Suarez & Love, 2018). Thus, it remains unclear 

whether the use of heuristics truly reflects the optimization of effort costs or some other quantity 

(e.g., feelings of confidence). 

Section 1.4: Does Effort Exertion Predict Demand Avoidance? 

The literature reviewed in two former sections suggests that we may engage in effort 

when there are high rewards at stake else, we may avoid effort when all else is equal. We also 
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saw how these conclusions are based on indirect measures of effort (metacognition) or the choice 

and evaluation of demand. This means that we may not be able to disambiguate an effort account 

from other possible explanations. For example, in Section 1.2 we discussed how a cost-benefit 

account of effort in value-based choice predicts a larger effort investment as a function of 

increasing rewards on offer. An alternative account of response speeding in decision-making 

engendered by larger rewards suggests this pattern reflects disengagement of effort to resolve 

deadlocks and maximize long-term rewards (Pirrone et al., 2018), with some notable exceptions 

(see Frömer et al., 2019). And in Section 1.3 we discussed how cost-benefit account of effort in 

value-based choice predicts the avoidance of effort all else being equal, however, there is some 

work suggesting this may alternatively reflect maximizing one’s subjective feelings of 

confidence (Lee & Daunizeau, 2021). Together, these gaps highlight the importance of an online 

measure effort exertion as discussed in Section 1.1.  

Using pupil diameter as an online measure of effort during value-based choices would 

help disambiguate the above-described ambiguities. For Example, if pupils dilate more when the 

rewards at stake are higher for the demanding choices, this suggests that the response speeding 

typically observed does in fact reflect reward-induced effort investment. Additionally, pupil 

diameter during difficult choices—an index of momentary effort investment—should correlate 

with demand avoidance if these choices reflect the aversiveness of effort exertion. Yet, most of 

the work on effort and pupillometry has largely focused on cognitive control with little work 

investigating the relationship in value-based decisions. While there is some evidence that 

pupillary responses may track effort investment in value-based decisions (Eldar et al., 2021), 

there is other evidence suggesting pupil dilations may reflect reward on offer (Bray et al., 2008; 

J. P. O’Doherty et al., 2003), risk (Lavín et al., 2014), or even surprising outcomes (Preuschoff et 
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al., 2011; Van Slooten et al., 2018)—making it difficult to infer effort investment from increases 

in pupil diameter. Thus, it is possible that pupil diameter could help corroborate whether task 

behaviour reflects cost-benefit trade-offs; but it is first necessary to show that pupil diameter 

during value-based choice tracks demand levels in value-based choices. 

Section 1.5: Summary & Specific Aims 

In my thesis, I will elucidate the relationship between effort and decision-making and 

unify the predictions of Cost-Benefit models across disparate domains of behaviour: cognitive 

control and value-based choice. Below, I propose several experiments to corroborate the 

subjective, behavioural, and physiological experience of effort exertion across domains. The 

goals of my thesis are fourfold: 

1) In Section 2, I will arbitrate between the effort and demand accounts of pupil 

diameter by leveraging Cost-Benefit models of effort exertion and assess whether 

task-evoked pupillary responses index both within-individual reward-induced 

modulations of effort investment and between-individual differences in cognitive 

control. 

2) In Section 4, I will probe subjective feelings of demand in value-based choices to 

understand whether strategic conflict between heuristics and low discriminability in 

EV differences engenders greater feelings of demand. 

3) In Section 4, I will use the stimuli rated as demanding in Section 3 to test whether 

demanding value-based choices are avoided all else being equal as posited by Cost-

Benefit models of effort. 
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4) In Section 4, I will test whether pupil diameter during value-based choice tracks both 

within-individual changes in decision demands and between-individual differences in 

decision avoidance. 

Together, the results of our experiments will integrate our understanding of effort across domains 

of behaviour and test the predictions of Cost-Benefit models as a possible unifying framework. 

Section 2: Pupil Diameter as a Measure of Online Effort Exertion 

Section 2.1: Introduction 

Why do we, under some circumstances, rely on costly, effortful cognitive processing, while other 

times turn to relatively effortless, cognitively ‘inexpensive’ forms of processing? A spate of 

recent research has endeavored to examine the situational and individual factors which govern 

the deployment of cognitive effort in service of task goals . Of particular interest in this 

burgeoning cognitive effort literature are tasks requiring cognitive control—broadly defined as 

the capacity to flexibly adapt one’s behavior and appropriately direct cognitive processing in 

accordance with internally maintained goals. Cognitive control is readily measurable in the lab 

using, for example, interference tasks such as the Stroop or flanker (Botvinick et al., 2001). In 

these tasks, successful performance is thought to reflect not only an individual’s cognitive 

capacity (i.e., executive function ability) but also the individual’s decision to invest cognitive 

effort at that particular moment. According to one influential account, this decision to engage in 

(or withhold) cognitively effortful processing is governed by the inherent trade-off between the 

costs of exerting effort and the benefits (i.e., rewards) potentially conferred by effort exertion 

(Shenhav et al., 2013). On this view, previous work has found monetary incentives to improve 

task performance by offsetting the costs of cognitive resource allocation, reflecting the 

mobilization of effort (Capa et al., 2013; Chiew & Braver, 2014; Hübner & Schlösser, 2010; 
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Otto & Daw, 2019; Padmala & Pessoa, 2011; Sandra & Otto, 2018). Furthermore, it has been 

shown that people consistently avoid expending cognitive effort when rewards are held constant 

(Inzlicht et al., 2014; Westbrook & Braver, 2015), and this avoidance appears more prevalent in 

individuals with limited cognitive capacity which, in turn are presumed to have higher effort 

costs (Kool et al., 2010). A key challenge in developing an account of the regulation of effortful 

behavior (or ‘metacontrol’) is the specification of a trial-by-trial measurement of an individual’s 

momentary cognitive effort outlay—that is, quantifying the amount of effort an individual 

exerts—in accordance with costs and benefits. One potentially promising online effort measure 

is pupil diameter. Indeed, a considerable body of psychophysiological work suggests that task-

evoked pupillary responses (TEPRs) might serve as a viable index of cognitive effort exertion 

(Beatty, 1982), finding that across a diverse range of task domains, increasing the effort required 

to produce a correct response evokes larger TEPRs (van der Wel & van Steenbergen, 2018). 

Specifically, TEPRs appear to track increases in working memory load (Heitz et al., 2008; 

Hopstaken et al., 2015; Kahneman & Beatty, 1966), response inhibition requirements (Laeng et 

al., 2011; Rondeel et al., 2015; Van Steenbergen & Band, 2013), changes in task sets (Rondeel et 

al., 2015), syntactic complexity of written sentences (Just & Carpenter, 1993), and the difficulty 

of arithmetic (Ahern & Beatty, 1979; Steinhauer et al., 2004) and geometric analogy problems 

(Van Der Meer et al., 2010). However, it is unclear if pupil diameter actually indexes effort 

exertion or merely reflects task demands as both constructs are, by nature, tightly intertwined in 

many cognitive tasks (van der Wel & van Steenbergen, 2018). Put another way, when the level 

of task demand increases, successful performance often requires more effort on the part of 

participants to meet this increased demand. To demonstrate pupil diameter might serve as a 

viable measure of cognitive effort outlay, separate from task demand, the present study seeks to 
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examine whether changes in TEPRs indeed reflect levels of effort investment—both varying 

intrinsically as a function of individual differences, and extrinsically, evoked by changes in 

reward incentives—while holding task demands constant. Indeed, disambiguating the effort and 

demand accounts of TEPRs is important because this body of extant pupillometry work, taken as 

a whole, finds inconsistent relationships between individual differences in cognitive task 

performance and TEPRs (van der Wel & van Steenbergen, 2018). For example, lending support 

to an effort account of TEPRs, heightened TEPRs were found to be associated with improved 

Nback performance (Rondeel et al., 2015), and fewer errors on mental arithmetic problems 

(Ahern & Beatty, 1979). Other work has found that within-individual increases in TEPRs track 

improvements in performance on flanker-type tasks (Diede & Bugg, 2017). Interpreting these 

results within a cost-benefit framework, individuals with larger effort costs presumably invest 

less effort than individuals with smaller effort costs (Kool & Botvinick, 2018), and taking task 

performance as a proxy for effort investment, differences in effort investment would explain the 

finding that better performance in these tasks is associated with larger TEPRs. In support of this 

effort account, previous work has also demonstrated that individuals high in fluid intelligence 

(i.e., with low effort costs) exhibit better performance (i.e., more effort investment) and higher 

TEPRs on difficult geometric analogy problems (Van Der Meer et al., 2010). At the same time, 

consistent with a demand view, larger TEPR differences between trial types in a Stroop task (i.e., 

congruent vs. incongruent trials), were found to correlate with larger Stroop RT interference 

costs (i.e., worse performance; Laeng et al., 2011; Rondeel et al., 2015). This particular 

relationship between task performance and TEPRs might suggest that pupillary responses reflect 

the current level of task demand (i.e., the costs of cognitive control) rather than the actual effort 

exerted, as those with the worst performance also had the largest dilations. Further buttressing 
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this view, a recent study observed a dissociation between physiological and performance 

measures, such that TEPRs reflect task conflict levels in a Stroop task (congruent vs. neutral 

trials) in the absence of task conflict effects on performance (Hershman & Henik, 2019). That is, 

the observation that increases in task conflict level can drive increased TEPRs without a change 

in performance lends support to the demand hypothesis, as this account predicts that TEPRs 

should only differentiate to demand levels, but not to invested effort. However, taking a cost-

benefit view of effort investment, interindividual differences in task performance could reflect 

variation in abilities (i.e., effort costs) and/or motivation (i.e., reward incentives). This might 

explain the variability in the reported relationships between task performance and physiology 

across these studies. Furthermore, while there is suggestive evidence that pupillary responses 

might index individual differences in effort outlay, it also remains unclear if TEPRs also track 

within-individual reward-induced task performance improvements as a result of a decision to 

expend increased effort to obtain rewards. Indeed, examination of intraindividual differences are 

thought to be key in developing an understanding of TEPRs, as they can potentially circumvent 

issues associated with interindividual comparisons (see van der Wel & van Steenbergen, 2018, 

for extended discussion). Taking a cost-benefit view of effort expenditure, here we seek to 

disentangle the effort and demand accounts of pupil diameter by (1) modulating available 

rewards and (2) leveraging the inherent variability in individuals’ in both cognitive capacity and 

intrinsic motivation to expend effort. In line with the cost-benefit view of effort, a large body of 

work demonstrates how reward incentives mobilize cognitive effort (Botvinick & Braver, 2015). 

As a consequence, task performance increases when large monetary rewards hinge on the 

successful deployment of cognitive control, compared with smaller reward incentives (Aarts et 

al., 2014; Bijleveld et al., 2009) or the absence of reward incentives altogether (Hübner & 
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Schlösser, 2010; Locke & Braver, 2008; Padmala & Pessoa, 2011). For example, in task-

switching paradigms—where task switch costs are thought to reflect, in part, reconfiguration 

costs necessary for shifting between task sets (Monsell, 2003)—larger performance-contingent 

monetary rewards engender task switch costs reductions, which are interpreted as a marker of 

increased effort investment (Capa et al., 2013; Fröber & Dreisbach, 2016; Kleinsorge & 

Rinkenauer, 2012; Otto & Vassena, 2021). If pupil diameter is thought to reflect effort 

investment, we would also expect that reward-induced changes in task performance should also 

be reflected in TEPRs. Indeed, previous pupillometry work finds that reward incentive levels 

increase TEPRs on difficult trials in a working memory task (Bijleveld et al., 2009). Similarly, 

other work has also found reward induced increases in both transient (i.e., trial-by-trial) and 

sustained pupil diameter, suggesting a distinct role for using pupil diameter to track changes in 

motivational state (Chiew & Braver, 2013, 2014). However, while these studies find that reward 

manipulations effectively modulate TEPRs, they did not examine whether these TEPR 

modulations are related to reward-induced task performance, which would lend strong support to 

an effort view of TEPRs (van der Wel & van Steenbergen, 2018). Thus, manipulating reward 

incentives offers an opportunity to study the intraindividual modulations of effort exertion (i.e., 

reward induced changes in task performance) and its subsequent effects on pupil diameter, while 

holding task demands (i.e., difficulty) constant. Finally, individual differences in cognitive 

capacity (i.e., effort costs) might bear upon the relationship between TEPRs and behavioral 

markers of effort exertion, as effort avoidance is observed to be more prevalent in individuals 

with limited cognitive ability (Kool et al., 2010), and more recent work finds that individuals 

with lower executive function (EF) capacity benefit the most from monetary incentives during 

task-switching (Sandra & Otto, 2018). Thus, we also assessed how differences in more general 
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EF capacity, as measured by Stroop interference costs—which are thought to tap into EF abilities 

(Kane & Engle, 2003)—moderate the relationship between rewards and effort allocation. While 

the Stroop task and task-switching rely, in part, on shared EF capacities (Miyake et al., 2000), 

they also impose unique requirements, respectively, on inhibition and set-shifting processes. Our 

use of qualitatively different EF-dependent tasks to separately assess individual differences 

underscores the generalizability of the relationship between effort costs and effort expenditure, 

as evidenced behaviorally and in TEPRs, while at the same time mitigating circularity issues 

potentially arising from the use of a task-switch-based measure to understand the relationship 

between task switch costs and TEPRs. Beyond cognitive capacity, other work has highlighted the 

variability in people’s aversion to exerting effort, suggesting that some individuals value 

effortful thought more than others (Inzlicht et al., 2018), over and above differences cognitive 

ability. Indeed, differences in intrinsic effort valuation predict the amount of money a person is 

willing to accept to exert effort (Westbrook et al., 2013) and the extent of reward-induced 

improvements on task performance (Sandra & Otto, 2018). Therefore, we further assess how 

interindividual differences in effort avoidance, operationalized by the Need for Cognition scale 

(NFC; Cacioppo et al., 1984), predict reward-induced effort recruitment, both behaviorally and 

physiologically. Finally, we examine how tonic (i.e., nonstimulus-evoked) changes in pupil 

diameter relate to task engagement and arousal. Previously, tonic pupil dilations have been 

shown to reflect control state changes (i.e., task engagement; (Gilzenrat et al., 2010), reward-

induced changes in arousal (Chiew & Braver, 2013, 2014), and individual differences in 

cognitive ability (Heitz et al., 2008; Van Der Meer et al., 2010). Accordingly, we also examine 

the extent to which reward incentives increase tonic pupil diameter, and whether those high in 

EF capacity (as indexed by Stroop interference costs) also have larger tonic pupil diameter, as 
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was previously reported for those high in fluid intelligence (Van Der Meer et al., 2010) and 

working memory (Heitz et al., 2008). Finally, we examine whether individual differences in 

motivation to deploy effort (indexed by NFC) relate to tonic pupil diameter, and whether the 

effect of reward on tonic pupil diameter depends on these individual differences. 

Section 2.2: Methods 

Overall experimental procedure  

We first assessed individual differences in motivation to exert effort (NFC) and EF abilities 

(Stroop interference costs). Following the individual difference assessments, participants were 

asked to complete a ‘baseline’ tasks witching paradigm in the absence of reward incentives, 

before completing the same paradigm under two different levels of reward incentives, termed 

low-reward and high-reward blocks. We recorded pupil diameter during all task-switching 

blocks. 

Participants 

Eighty English-speaking participants (55 females; mean age = 22.08 years, SD = 3.03 years) 

were recruited from the McGill University community for a base remuneration of $20 CAN and 

a performance-contingent cash bonus of up to $13.20. All participants had corrected-to-normal 

vision, and had no reported colour blindness or diagnosis of psychiatric or neurological 

conditions. Prior to the experiment, participants provided informed consent in accordance with 

the McGill University Research Ethics Board. We excluded the data of five participants missing 

more than 20 trials, one participant who failed to perform the task with at least 80% accuracy 

overall, and four participants for which no reliable pupil dilation data could be collected due to 

technical issues with the eye tracker. For those analyses involving the NFC, we excluded two 
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additional participants who were missing NFC questionnaire responses. Finally, for those 

analysis involving the Stroop task, we excluded an additional six participants. 

Materials and Procedure 

Prior to completing computerized tasks, participants first completed the Need for Cognition 

(NFC) questionnaire to assess individual differences in their tendency to engage in effortful 

thinking (Cacioppo et al., 1984). The questionnaire involves rating 18 statements—such as “I 

find satisfaction in deliberating for hard and long for hours” and “I only think as hard as I have 

to”—rated on a scale of how characteristic they are of the participant (1 = extremely 

uncharacteristic to 5 = extremely characteristic). Participants also completed the behavioral 

approach/inhibition scales (BIS/BAS; (Carver & White, 1994), which was not examined in the 

present analysis. In the computerized task portion of the experiment, participants were seated 

comfortably in front of a 24-inch monitor set to a resolution of 1,280 × 1,024 pixels in a dimly lit 

room. Participants were instructed to keep their heads still and rested on a mount positioned 60 

centimeters away from the screen. During both the Stroop and switching paradigm tasks, 

participants’ right pupil diameter was measured using an EyeLink 1000 eye tracker (SR 

Research, Osgoode, ON) set to a sampling rate of 250 Hz. Stimuli were presented using 

PsychoPy (Version 1.85.3), synchronized with the eye tracker. Prior to each task block, 

participants underwent a standard 9-point calibration procedure. 

Stroop interference task 

Participants completed a computerized version of the Stroop interference paradigm (Kerns et al., 

2004; Otto et al., 2015) to measure individual differences in executive function. Participants 

were instructed to identify, as quickly and accurately as possible, the color (i.e., green, red or 

blue) of the font a word was presented in (i.e., ‘GREEN’, ‘RED’, or ‘BLUE’), corresponding to 
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three keys (‘j’, ‘k’, or ‘l’), with stimulus–response mapping counterbalanced between 

participants. Participants completed a total of 120 trials, on 90 of which the word and font color 

matched (congruent trials), and on the remaining 30 trials they did not match (incongruent trials), 

presented in a pseudorandomized order. Before starting the task, participants were given 10 

practice trials to get accustomed to the timing and response procedure and received trial-by-trial 

feedback (600 ms) as to whether their response was correct or incorrect. During the task, 

participants were shown a fixation cross in yellow for 1.5 seconds before being shown the target 

and given 1.5 seconds to respond without feedback. 

Task-switching paradigm  

After completing the Stroop task, participants completed a number magnitude-parity task-

switching paradigm (Kool et al., 2010). In this task, participants were presented a single digit (9, 

8, 7, 6, 4, 3, 2, or 1) and were asked to judge either the magnitude (larger or smaller than 5) or 

the parity (even or odd) of the number, depending on the position of a bar above or below the 

digit, with position-task mappings counterbalanced between participants. The task (i.e., 

magnitude or parity) cue was chosen to reduce luminance-driven changes in pupillometric 

responses. Importantly, for approximately half of the trials, participants repeated the same task 

from the previous trial and on the other half of trials switched to the other task. The order of 

presentation of repeat and switch trials was pseudorandomized. Additionally, participants were 

presented with 10 practice trials with accuracy feedback to adjust to the timing and response 

procedure. On each trial, a fixation cross was presented in yellow for 2 seconds before being 

presented with the target digit, and participants were given 2.5 seconds to respond, followed by 

the same accuracy feedback immediately after participants’ responses (Chiew & Braver, 2013; 

Heitz et al., 2008; Hershman & Henik, 2019; Rondeel et al., 2015). The task was broken up into 
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6 blocks, each consisting of 60 trials. For the first two blocks, participants did not receive any 

reward incentives for correct responses. For the subsequent four reward blocks (see Fig. 1), 

participants were informed that they would receive either 10 cents (i.e., high reward) or 1 cent 

(i.e., low reward) per correct response. The reward manipulation was further made apparent by a 

change to task feedback from baseline signaling the amount of money earned on the trial (i.e., 

“+10 cents” or “+1 cent”; “+0 cents” for correct and incorrect responses, respectively). The order 

of reward block presentation was also counterbalanced between participants, such that Blocks 3–

4 were associated with high reward, and Blocks 5–6 were associated with low reward, or vice 

versa. Experimental blocks were separated by a participant-paced break to minimize fatigue (see 

Fig. 1). 
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Figure 1.  

A. Schematic of the phases of the experiment participants experienced. B. Illustration of the 

timeline of the task-switching paradigm where subtasks (i.e., magnitude or parity judgement) 

were cued by a bar presented either above or below the digit (with task-cue pairings 

counterbalanced between participants).  

 

 
 
Behavioral Data Analysis 

We analyzed participants’ responses on both the Stroop and task-switching tasks using linear 

mixed-effects regressions, using the lme4 package (Version 1.1.14; Bates & Maechler, 2019) for 

the R programming language. For both tasks, we removed the first 10 trials of the experiment to 

mitigate the influence of task novelty and/or early learning trials upon TEPRs, as well as trials in 

which participants failed to respond within the response window (2% of total trials for the 

Stroop, and <1% for task-switching). Both Stroop interference effects and task switch costs were 

calculated using RTs for correct trials only, which were log-transformed to remove skew 

(Ratcliff, 1993). We also removed unexpectedly fast or slow trials which were greater than or 

less than three standard deviations from the participant mean (Jiang et al., 2015; Laeng et al., 
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2011; Padmala & Pessoa, 2011; Qiao et al., 2017), resulting in the removal of less than 1% of 

trials (for each trial type). Each individual participant’s Stroop interference effect was calculated 

as the estimated per-subject regression coefficient representing the effect of trial incongruence. 

For all RT regressions, we included a linear predictor of trial block to account for practice 

effects, and categorical nuisance variables accounting for the previous trial type (i.e., 

incongruent/congruent or switch/repeat), previous errors, and key repetitions with respect to the 

previous trial. Finally, in the task-switching regressions, we included a response congruence 

predictor, specifying whether the correct response for a given stimulus mapped to the same or 

different keys for both tasks. 

Pupillary Data Analysis 

Pupillary data were preprocessed in MATLAB (Version 2017b) before calculating a trial-

by-trial task-evoked pupillary response (TEPR). First, eye blinks were detected and corrected 

using linear interpolation, and pupil diameter measurements were passed through a high-pass 

Butterworth filter to remove slow drift below a frequency of 4Hz, following Nasser et al (2012). 

After this pre-processing step, pupil diameter was first Z-scored within-block in order to make 

pupil units comparable between blocks (de Gee et al., 2014; Nassar et al., 2012; Urai et al., 

2017), and then baseline-corrected on a trial-by-trial basis by subtracting the mean diameter of a 

200ms baseline period prior to stimulus presentation, following previous work (Eckstein et al., 

2019; Hershman & Henik, 2019). TEPRs were subsequently calculated as the maximum pupil 

diameter (Gilzenrat et al., 2010) observed between 1000ms and 3000ms after stimulus onset—a 

time window which has been previously shown to contain the pupillary response of interest in 

similar tasks (Laeng et al., 2011; Rondeel et al., 2015; see Figure 2). Critically, the calculation of 

TEPRs did not depend on participants’ response latency, as switch and repeat trials typically 
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engender different RTs. Trial-by-trial tonic pupil diameter was calculated as the average 

unfiltered pupil diameter during the 200ms baseline period before stimulus onset, following 

Chiew and Braver (2013). We also used mixed-effects regressions to examine task-switching 

effects upon TEPRs, predicting trial-by-trial TEPRs, as computed above, on the basis of trial 

type (i.e. Repeat or Switch) and subtask (i.e. Magnitude vs Parity).  

To examine how TEPRs related to individual differences in task performance in Baseline 

blocks, we calculated switch costs (switch trial RTs minus repeat trials RTs) for each 30-trial 

‘mini-block’ (yielding two switch costs per experimental block). Afterward, we estimated a 

mixed-effects regression predicting these RT switch costs estimates as a function of mean mini-

block TEPRs on switch trials, mini-block number (to account for practice effects), as well as 

each participant’s Stroop interference cost and NFC scores (z-scored across participants), with 

random effects taken over intercepts and mini-block. To test whether individual differences in 

reward-induced TEPR changes tracked switch cost reductions, we computed reward-induced RT 

switch cost changes by subtracting baseline switch costs from the mean RT switch cost across 

both Reward blocks and the analogous per-participant change in switch trial TEPRs (Reward - 

Baseline). We then estimated a linear regression predicting change in RT switch costs based on 

change in TEPRs, Stroop costs, NFC scores (z-scored across participants) and a categorical 

regressor of reward presentation order. 

Section 2.3 Results 

Task Performance 

 As typically observed in the Stroop task, participants were slower (𝜷 = 0.2578, SE = 

0.0115, p <.0001; see Fig. 2b and Supplemental Table S1) and less accurate (𝜷 = -1.7928, SE = 

0.1803, p < .0001; see Supplemental Table S2) to respond to incongruent trials compared to 
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congruent trials. From these RTs, we calculated Stroop interference costs as the estimate of the 

per-participant incongruent effect, yielding our individual difference measure of executive 

function (EF). Analyzing performance on the Baseline task-switching paradigm (without 

rewards), we observe the typical task switch costs (Monsell, 2003): participants were both slower  

(𝜷 = 0.1431, SE = 0.0087, p < .001; see Table 2) and less accurate (𝜷 = -0.4508, SE = 0.0937, p 

< 0.001; see Supplemental Table S5) on task switches compared to task repetitions (see Table 1).  

Figure 2. 

 A. Time Series depicting the stimulus-onset (dashed line) locked average pupil diameter over 

the course of trials. Median response times for each trial type are depicted as solid vertical lines. 

The shaded area shows the time period used to calculate TEPRs. B. Bar graph depicting the 

average TEPR by trial type (Switch vs Repeat) and Reward condition. Error bars represent 

bootstrapped 95% confidence intervals. 
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Table 1.  

Average median RTs, TEPRs, and accuracy for congruent versus incongruent trials in the Stroop 

task and in repeat and switch trials across the three blocks of the task-switching paradigm. 

 
 RT (ms) Accuracy TEPR 
 Mean SD Mean SD Mean SD 
Stroop task 
  Congruent 626.36 79.7 0.9865 0.0188   
  Incongruent 831.35 151.87 0.9283 0.0741   
Task switching (baseline) 
  Task repeat 1,010.95 151 0.9423 0.0565 0.7993 0.3778 
  Task switch 1,176.76 175.67 0.9132 0.0655 0.9004 0.4086 
Task switching (low reward) 
  Task repeat 960.45 163.41 0.9524 0.0421 0.7513 0.3544 
  Task switch 1,094.94 186.33 0.9356 0.0519 0.839 0.382 
Task switching (high reward) 
  Task repeat 949.97 156.17 0.9678 0.033 0.7933 0.3646 
  Task switch 1,078.30 167.74 0.9501 0.04941 0.915 0.3739 

 

Table 2.  

Mixed-effects regression coefficients indicating the influence of trial type (task switch versus 

task repeat), reward level (reward vs. baseline), and the interaction between reward and trial type 

on RTs in the task-switching paradigm. 

 
Predictors Estimates SE p 
(Intercept) 6.9823 0.0277 <.001* 
Switch (vs. repeat) 0.1431 0.0087 <.001* 
Reward (vs. none) −0.0252 0.0107 .019* 
Trial −0.0002 0.0001 .001* 
Task (parity vs. magnitude) 0.0245 0.0234 0.294 
Prev. switch 0.0106 0.0019 <.001* 
Prev. missed 0.0041 0.0183 0.823 
Prev. incorrect 0.0145 0.0041 <.001* 
Key repetition −0.0231 0.0022 <.001* 
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Bar (above vs. below) −0.0066 0.0234 0.779 
Congruent −0.0408 0.0105 <.001* 
Switch (vs. Repeat) × Reward (vs. None) −0.0237 0.0077 .002* 

 

 

We also examined task-switching performance across High- and Low- reward conditions 

(Figure 2) but, mirroring past findings (Sandra & Otto, 2018), we did not observe a significant 

effect of reward effect upon switch costs (Task Switch x Reward interaction 𝛽 = -0.0087, SE = 

0.0083, p = .29, see Supplemental Table S3), suggesting either a weak effect of reward, large 

heterogeneity in individual response to reward, or both. Similarly, we did not observe a 

significant reward effect on switch costs expressed in terms of accuracy (Switch x Reward 

interaction; 𝛽 = -0.1277, SE = 0.1503, p = .39; see Supplemental Table S4), but found a main 

effect of reward on accuracy such that participants were more accurate overall on High- versus 

Low- reward trials (𝛽 = 0.4613, SE = 0.1191, p < .001, see Supplemtnal Table S4). Collapsing 

across reward levels, we found that reward reduced both individuals’ RTs  (𝛽 = -0.0252, SE = 

0.0107, p = .01, see Table 2), and switch costs expressed in RT when compared to Baseline 

blocks (𝛽 = -0.0237, SE = 0.0077, p = .002, see Table 2),  as well as a main effect of reward on 

accuracy, such that rewarded responses were more accurate  (𝛽 = 0.2863, SE = 0.0937, p = .03; 

see Supplemental Table S5), but failed to find this effect on switch costs expressed in terms of 

accuracy (i.e. Switch x Reward interaction;  𝛽 = 0.0558, SE =  0.1194, p = .64; see Supplemental 

Table S5). 

Task-Evoked Pupillary Responses (TEPRs) 

Examining Task-Evoked Pupillary Responses (TEPRs) on correct trials, we observed a 

significant difference between switch trials in the baseline block in comparison to repeat trials 

(see Figure 2A), whereby switches engendered larger TEPRs than repetitions (𝜷 = 0.0881, SE = 
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0.0163,  p < .001; see Table 3), thus supporting the demand account. As seen in Figure 2, TEPRs 

peaked in a window ranging from 1 to 2 seconds post-stimulus onset, where these switch-versus-

repeat differences were observed. Comparing reward conditions to baseline, we found no effect 

of reward on TEPRs (𝜷 = -0.0389, SE = 0.0333,  p = .24; see Table 3), nor an interaction 

between reward condition and trial type (Reward x Switch; 𝜷 = 0.0173, SE = 0.0187, p = .35; see 

Table 3 and Fig 3b), suggesting that reward did not increase TEPRs on average. 

Figure 3.  

Scatter plot depicting the relationship between TEPRs on switch trials (horizontal axis) and 

switch costs during the Baseline block (vertical axis).  
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Table 3.  

Mixed-effects regression coefficients indicating the influence of trial type (task switch versus 

task repeat), reward level (reward vs. baseline), and the interaction between reward and trial type 

on TEPRs in the task-switching paradigm. 

 
Predictors Estimates SE p 
(Intercept) 0.5701 0.0618 <.001* 
Switch (vs. repeat) 0.0881 0.0163 <.001* 
Reward (vs. none) −0.0389 0.0333 0.242 
Trial 0.0341 0.0638 0.592 
Task (parity vs. magnitude) −0.0068 0.0043 0.113 
Prev. switch −0.1847 0.0503 <.001* 
Prev. missed −0.1000 0.0137 <.001* 
Prev. incorrect 0.0001 0.0001 0.697 
Key repetition −0.0227 0.0043 <.001* 
Bar (above vs. below) −0.0321 0.0638 0.615 
Congruent −0.0262 0.0136 0.054 
Switch (vs. Repeat) × Reward (vs. None) 0.0173 0.0187 0.355 

 
Relationship Between TEPRs and Task Switch Costs at Baseline 

To arbitrate between potential effort and demand accounts of pupillary responses, we first 

sought to test if larger TEPRs during task-switching would predict greater effort exertion in task 

switching, as measured by task switch costs—a result uniquely predicted by the effort account. 

As seen in Figure 3, we found a significant effect of switch trial TEPRs upon RT switch costs 

during the Baseline blocks, indicating that larger pupil dilations on switch trials predicted smaller 

switch costs at baseline (𝜷 = -25.6165, SE = 11.8921, p = .03; see Table 4).  
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Figure 4.  

Scatter plot depicting the relationship between reward-induced changes in TEPRs on task switch 

trials, computed as the difference between rewarded and Baseline blocks (horizontal axis) and 

reward-induced change in RT switch costs, computed as the difference between rewarded and 

Baseline blocks (vertical axis).  
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Table 4.  

Mixed-effects regression coefficients indicating the influence of TEPRs, NFC scores, Stroop 

costs, and their interactions on mini block switch costs in the baseline block of the task-switching 

paradigm. 

Predictors Estimates SE p 
(Intercept)  30.0812 <.001* 
TEPR  11.8921 .031* 
Stroop cost 11.7237 0.46 
NFC  12.0031 0.435 
Mini block  10.2607 0.371 
TEPR × Stroop Cost 11.3658 .012* 
TEPR × NFC 13.8212 0.056 

 
We further probed whether individual differences in Stroop RT costs and NFC might 

bear upon the observed relationship between TEPRs and task switch costs at baseline. As seen in 

Fig. 5, both Stroop RT costs and NFC scores appeared to modulate the strength of the 

relationship between switch costs and TEPRs. Statistically, we found a significant interaction 

between TEPR and Stroop RT costs (β = −28.6091, SE = 11.3658, p = .012) while the interaction 

between TEPRs and NFC only reached marginal significance (β = 26.37, SE = 13.8212, p = .056; 

see Table 4). In other words, while TEPRs significantly predicted individual task switch costs at 

baseline across the entire sample, this relationship was stronger for individuals lower in EF 

ability as operationalized by Stroop RT costs, and marginally stronger for low-NFC individuals. 
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Figure 5.  

Scatter plots depicting the relationship between TEPRs on switch trials (horizontal axes) and 

switch costs during the baseline block (vertical axes) as a function of individual differences. The 

first row (a and b) is a median split of participants based on Need for Cognition (NFC) scores, 

and the second row (c and d) groups participants based on a median split performed upon Stroop 

RT costs. 

 
 
Importantly, EF ability and NFC were not able to predict task switch costs at baseline, as we 

found neither a significant main effect of Stroop RT costs (β = 8.6686, SE = 11.7237, p =.46; see 

Table 4) nor NFC scores (β = 9.3651, SE = 12.0031, p = .43; see Table 4). The absence of a 

relationship suggests that the moderating effect of individual difference measures on the 

relationship between TEPR and task performance is not driven by overall differences in 
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performance. Furthermore, EF ability and NFC were not significantly correlated (r = −.02, p = 

.88), suggesting that these two measures tap into dissociable constructs. Finally, to control for the 

possibility that these individual differences in TEPR–switch-cost relationships were attributable 

to age differences , we entered participant age as a covariate into the regression and found nearly 

identical results, suggesting that our results were not driven by differences in participant age (see 

Supplemental Table S6). Of note, covarying out the effect of age revealed a significant 

interaction between NFC scores and TEPRs on baseline switch costs: TEPRs are a better 

predictor of baseline switch costs for those low in NFC (β = 29.1472, SE = 14.0607, p = .03; see 

Supplemental Table S6). 

Reward-Induced Changes in Pupil Diameter and Task Performance 

To further probe the effort account, we sought to test if individual differences in reward-

induced switch cost reductions—interpreted as increased effort investment in accordance with 

incentives—could be predicted in pupil diameter. Since we did not observe significant changes 

in RT switch costs between the Low- and High-reward conditions, we elected to compare TEPRs 

between rewarded blocks (collapsed across low and high conditions) and the Baseline block. For 

each participant, we calculated 1) the difference in switch costs between rewarded and non-

rewarded blocks and 2) the difference in switch-trial TEPRs between rewarded and non-

rewarded blocks. Plotting these scores against each other (see Figure 4), we see that majority of 

the switch cost difference scores are negative—indicating reward-induced switch costs 

reductions—and these differences are tracked by changes to switch-trial TEPRs. Statistically, we 

observed a significant predictive relationship between reward-induced changes in switch trial 

TEPRs and reward-induced changes in switch costs indexed by a main effect of delta TEPRs on 

delta Switch Costs (β = -31.0843, SE = 13.1172, p = .02; see Table 5). This result provides 
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further support for the effort account as it suggests that intra-individual, reward-induced 

modulations of effort are tracked by pupil diameter, while, critically, task demand remained 

constant.  

Figure 6. 

Scatter plot depicting the relationship between reward-induced changes in TEPRs on task switch 

trials, computed as the difference between rewarded and baseline blocks (horizontal axis) and 

reward-induced change in RT switch costs, computed as the difference between rewarded and 

baseline blocks (vertical axis). 
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Table 5.  

Linear regression coefficients indicating the influence of change in TEPRs, NFC scores, Stroop 

costs on reward induced changes in switch costs in the task-switching paradigm. 

 
Predictors Estimates SE p 
(Intercept) −37.8641 12.7085 .004* 
Delta TEPR −31.0843 13.1172 .021* 
Stroop cost 2.2853 13.0106 0.861 
NFC −2.8281 13.0982 0.83 
Reward presentation order −3.8905 13.0287 0.766 

 
Tonic pupil diameter 

Finally, we sought to test whether reward-induced changes in arousal would manifest in 

tonic pupil diameter, operationalized here as the average raw pupil diameter during the baseline 

period of each trial. Indeed, as depicted in Fig. 7, we found that tonic pupil diameter increased 

linearly with reward incentive level (β = 251.1978, SE = 9.3582, p < .001; see Table 6), 

corroborating previous observations examining reward-induced tonic pupil diameter changes 

(Chiew & Braver, 2013; Heitz et al., 2008; MacLachlan & Howland, 2002). As above, we also 

sought to test whether tonic pupil diameter, measured during baseline and reward blocks, could 

be predicted on the basis of individual differences in Stroop RT costs or NFC, as previous work 

has shown tonic pupil diameter bears some relationship with both working memory ability (Heitz 

et al., 2008) and fluid intelligence (Van Der Meer et al., 2010). We failed to find a significant 

relationship between Stroop RT costs and tonic pupil diameter on baseline blocks (β = 3.3240, 

SE = 74.9657, p = .95), while higher NFC had a marginally significant predictive effect upon 

Baseline tonic pupil diameter (β = −143.5890, SE = 74.9709, p = .05). 
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Figure 7.  

Average tonic pupil diameter during the three task-switching blocks. Error bars represent 

bootstrapped 95% confidence intervals. Individual dots represent participant-level data.
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Table 6. 

Mixed-effects regression coefficients indicating the influence of reward (0 = baseline, 1 = low 

reward, 2 = high reward), TEPRs, NFC scores, Stroop costs, and their interactions on tonic pupil 

diameter. 

Predictors Estimates SE p 
(Intercept) 5,450.41 74.7646 <.001* 
Reward 251.1978 9.3582 <.001* 
Stroop cost 3.324 74.9657 0.965 
NFC −143.5890 74.9709 0.055 
TEPR −248.6662 8.803 <.001* 
Trial −1.1553 0.1682 <.001* 
Reward × Stroop 
Cost −2.8445 6.6682 0.67 
Reward × NFC −63.8837 8.3446 <.001* 
Reward × TEPR −39.7326 6.674 <.001* 

 
 Examining the reward blocks separately (see Fig. 8), we found reward-induced increases 

in tonic pupil diameter to be strongest in low-NFC individuals (reward NFC interaction, β = 

−39.7326, SE = 8.3446, p < .001), but did not depend on executive functioning ability (reward 

Stroop RT cost interaction; β = −2.8445, SE = 6.6682, p = .670). Finally, we tested whether 

phasic pupillary responses (i.e., TEPRs) related to tonic pupil diameter at the level of individual 

participants, observing a significant negative relationship (β = −248.6662, SE = 8.8030, p < 

.001). In other words, phasic changes in pupil diameter appeared largest for individuals whose 

tonic pupil diameter size was smallest, mirroring previous findings examining this tonic–phasic 

relationship (Gilzenrat et al., 2010). Further, this tonic–phasic relationship was moderated by 

reward incentives, such that higher available reward led to a stronger relationship between phasic 

and tonic pupillary responses (TEPR × Reward interaction, β = −39.7326, SE = 6.6740, p < 

.001). Again, to ensure these observed relationships were not driven by differences in age 

(MacLachlan & Howland, 2002), we added participant age as a covariate to this regression and 
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found similar results, suggesting that the observed interaction between individual differences in 

intrinsic motivation and reward incentives was not attributable to differences in age (see 

Supplemental Table S7). 

Figure 8. 

 a Average tonic pupil diameter by block type and grouping by median split Stroop 

costs. b Average tonic pupil diameter by block and grouping by median split Need for Cognition 

(NFC) scores. Error bars represent bootstrapped 95% confidence intervals. Individual dots 

represent participant-level data 

 

 
 

Section 2.4 Discussion 

While a considerable body of results has pointed toward using task-evoked pupillary 

responses (TEPRs) as a potential index of cognitive effort (Laeng et al., 2011; Rondeel et al., 

2015; Van Der Meer et al., 2010), other work suggests that pupil diameter reflects task demand 

level (Beatty, 1982; Hershman & Henik, 2019; Kahneman & Beatty, 1966). Here, we sought to 

arbitrate between the effort and demand accounts of pupil dilations, by measuring TEPRs while 

holding task demand constant and examining how individual differences in task switch costs—a 

behavioral maker of effort investment—relate to task-evoked pupillary responses both at 

baseline and in response to changes in reward incentives. 
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First, upon examining the interrelationship between individual differences in task 

performance and pupillary responses at baseline—in the absence of reward incentives—we 

found that larger TEPRs on switch trials predicted smaller task switch costs. In other words, 

holding task demand constant, larger pupillary responses predicted better task-switching 

performance across individuals. This result provides compelling support for the effort account 

and complements previous work that has similarly found improved task performance to be 

associated with larger phasic pupil diameter (Rondeel et al., 2015; Van Der Meer et al., 2010). 

At the same time, we found evidence in support of the demand account, as TEPRs were larger on 

more demanding task switch trials, mirroring previous findings that highlight the positive 

relationship between TEPRs and task demand (Katidioti et al., 2014; Rondeel et al., 2015). 

Taken together, this pattern of observed results suggests that TEPRs can potentially provide 

unique information about an individual’s effort outlay, over and above task demand level. 

Second, we observed that the relationship between TEPRs and task switch costs at 

baseline was strongest for those low in EF capacity (as measured by Stroop interference effects). 

In other words, individual effort costs—stemming from either cognitive processing limitations, 

intrinsic motivation to expend effort, or both (Inzlicht et al., 2018)—appeared to moderate the 

observed relationship between this putative physiological measure of effort (TEPR) and the 

behavioral consequences of effort (task switch costs), highlighting the usefulness of examining 

individual differences. Again, these results are difficult to explain with a pure task demand 

interpretation of TEPRs, as we did not find that either these trait measures could predict task 

switch costs at baseline (see Table 4). Instead, this pattern of results could suggest that the 

observed variability in task performance reflects heterogenous levels of effort investment across 

the entire sample—for example, for those with the lowest EF capacity, variability in task 
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performance may arise from increased processing of task-relevant information, while for those 

high in ability, variability in task performance may be harder to account for. This observation 

dovetails with past work finding that individuals low in working memory capacity also had 

larger phasic pupillary responses while completing a demanding working memory task (Heitz et 

al., 2008). Similarly, with respect to intrinsic motivation to exert effort—as measured by the 

NFC scale—we found suggestive, but statistically marginal, evidence that individual differences 

in TEPRs for lower NFC individuals more strongly predicted task-switching performance. 

Third, we tested whether these observed individual differences in effort exertion, in response to 

increasing performance-contingent rewards (i.e., reward vs. baseline) were related to reward-

induced changes in TEPRs. In accordance with the notion of a cost-benefit trade-off guiding 

effort investment (Shenhav et al., 2017), we found that reward-induced decreases in task switch 

costs—interpreted as increased effort investment in accordance with incentives—were also 

predicted by individual differences in reward-driven TEPR modulations. This observation 

provides particularly compelling evidence for the effort account, as comparing TEPRs within 

participant addresses any concerns of potential confounds that may arise when comparing 

between individuals or groups (e.g., ambient lighting, age; van der Wel & van Steenbergen, 

2018). 

It is worth noting that while reward incentives have previously been shown to increase 

pupil diameter on demanding working memory and cognitive control tasks (Bijleveld et al., 

2009; Chiew & Braver, 2013, 2014), the current study builds on these findings and demonstrates 

that reward-induced changes in pupil diameter relate to behavioral changes, further providing 

evidence that pupil diameter reflects increased effort investment. These findings extend our 

previous work, revealing how EF capacity and NFC differentially predict reward-induced 
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cognitive effort modulations, measured behaviorally with task switch costs (Sandra & Otto, 

2018). Here, we found that individual differences in presumed effort costs (i.e., EF capacity) also 

bear upon the strength of the relationship between behavioral and pupillary measures of effort 

exertion, and in doing so, compellingly suggest that TEPRs might, in principle, provide a 

window into cost-benefit effort computations that may not be observable with behavioral 

measures alone. 

Our results are difficult to reconcile with a demand account of task-evoked pupillary 

responses, as they suggest that intraindividual modulations in performance can be tracked by 

pupillary responses. It is possible that the observed lack of an effect between high-reward and 

low-reward conditions can be attributable to the small difference in reward values (i.e., 1 cent vs. 

10 cents per correct response) used here, or the use of a blocked design rather than employing 

trial-by-trial variation in rewards (cf. Fröber & Dreisbach, 2016; Kleinsorge & Rinkenauer, 

2012; Shen & Chun, 2011). This is consistent with past work also finding equivocal evidence for 

the ability of reward incentives alone to reduce switch costs (e.g., Aarts et al., 2014). Here, as in 

our previous work, the increase in potential rewards in high-reward versus low-reward trials may 

not be sufficient to increase effort outlay alone, but it was large enough to elicit differences 

between individuals in reward-induced effort expenditure (Sandra & Otto, 2018). Relatedly, in 

the specific reward incentive manipulation used here, task-switching performance at baseline 

(i.e., without incentives) was measured prior to performance in rewarded blocks, following 

designs employed in previous investigations of motivated cognitive control (Chiew & Braver, 

2013, 2014; Fröber & Dreisbach, 2016). While the fact that all participants performed the 

baseline block first could potentially contribute to a practice effect—after controlling for linear 

effects of trial number and block order in our regression models—we should note that we 
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observed no significant effects of mini-block order upon switch costs (see Table 4), suggesting 

that performance did not merely improve as a result of practice over successive trial blocks, 

perhaps owing to the practice participants underwent prior to the baseline blocks. Similarly, we 

find that while participants’ RTs generally decreased over the course of the experiment, TEPRs 

remained stable (see Table 3) suggesting the observed reward-induced TEPR changes were not 

driven by practice effects. In terms of accuracy, while participants showed slight improvements 

over the course of the entire experiment (see Supplemental Table S5), these improvements were 

not found to be significant when comparing the reward blocks (see Supplemental Table S4). 

Future work investigating rewarded-guided effort allocation should employ designs that carefully 

control order effects to firmly rule out the possibility that apparent reward-induced changes in 

behavior and physiological responses arise from practice. 

It is also worth noting that task switch costs are thought to reflect two constituent 

processes: a task set reconfiguration cost accompanying task switches, which can be reduced by 

increasing preparatory or proactive control, and a residual switch cost, thought to arise from 

reactive control processes stemming from task set interference (Kiesel et al., 2010). While the 

task-switching paradigm employed in the present experiment was not designed to disentangle the 

specific form of effortful control—proactive versus reactive—presumably reflected by TEPRs, 

we speculate that effort-linked TEPRs observed here might uniquely reflect a proactive 

component, on the basis of a body of previous work linking TEPRs to proactive control 

adjustments in continuous performance tasks (Chiew & Braver, 2013, 2014). Of course, future 

work leveraging more specialized task-switching paradigms that can adjudicate between 

reconfiguration and residual switch costs is necessary to resolve which specific form(s) of 

effortful control—proactive and/or reactive—TEPRs index. Relatedly, while the present study 
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did not employ a task precue, providing task cues in advance of the stimulus permits individuals 

to engage in advance preparation for task switches, which as the result of reducing task switch 

costs (Kiesel et al., 2010; Monsell & Mizon, 2006). Accordingly, while the present experimental 

design is unable to conclusively link TEPRs to (effortful) preparatory processes that occur in 

advance of stimuli but rather speak to effort investment at the time of stimulus presentation, 

future research should probe (1) the relationships between switch costs and TEPRs under 

baseline and reward conditions in a task-switching paradigm employing precues, and (2) how 

parametrically manipulating the cue-stimulus interval might alter these observed relationships 

between switch costs and TEPRs. 

Finally, we also sought to test whether changes in arousal state or task engagement would 

manifest in tonic pupil diameter (Unsworth & Robison, 2018). We hypothesized that increasing 

reward would result in upregulation of arousal, resulting in larger tonic pupil diameter, following 

previous findings (Chiew & Braver, 2013, 2014; Hopstaken et al., 2015). Confirming our 

hypotheses, we found that reward incentives increased tonic pupil diameter, suggesting that this 

measure correlates to one’s overall state of arousal and is perhaps indicative of the use of more 

proactive (i.e., sustained) rather than reactive (i.e., transient) control processes (Braver, 2012; 

Chiew & Braver, 2013) in task-switching. 

Given these results indicating that tonic pupil diameter could index one’s attentional 

state, we also sought to test whether individual differences in executive functioning and intrinsic 

motivation for exerting effort were reflected in tonic pupil diameter. While we did not observe 

robust relationships between tonic pupil diameter and EF capacity, individual differences in 

intrinsic motivation (measured with the NFC scale) were found to modulate the effect of reward 

on tonic pupil size. Specifically, reward-induced changes in tonic pupil diameter were strongest 
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for those low on intrinsic motivation to exert effort, suggesting that reward incentives offset their 

aversion to exert cognitive effort and led them to increase general task engagement vis-à-vis 

arousal. However, we did not observe a significant relationship between EF capacity and reward-

induced increases in tonic pupil diameter. 

Of note, while our phasic pupil diameter analyses found that individual differences in EF 

capacity and NFC were found to moderate the relationship between performance and TEPRs, we 

failed to find predictive effects of tonic pupil diameter upon performance. This pattern of results 

suggests that phasic and tonic measures might index separable psychological constructs, (i.e., 

momentary effort investment vs. a more sustained arousal state) as was previously suggested 

(Chiew & Braver, 2013, 2014; Unsworth & Robison, 2018). More generally, while our results 

speak to the importance of measuring both individual differences in EF and intrinsic motivation, 

it should be noted that our Stroop-based measure of EF is not domain general but rather is 

specific to the inhibition component of EF (see Miyake et al., 2000). Thus, future work should 

examine the extent to which the observed relationships between EF, task performance and 

reward responsiveness generalize to other components of EF (e.g., updating and set-shifting) or 

if they are specific to the facet of EF indexed by Stroop interference (i.e., inhibition). 

Recently, it has been theorized that the relationship between limited working memory capacity 

and performance on executive control tasks is mediated by a dysregulation in the locus 

coeruleus-norepinephrine system, which in turn is thought to lead to greater default-mode 

network activity and lapses in attention (Unsworth & Robison, 2017). At the same time, pupil 

diameter has been previously linked to locus-coeruleus norepinephrine functioning (Joshi et al., 

2016), which, in turn, is thought to be modulated in response to increasing arousal (e.g., via 

increasing task demands; Aston-Jones & Cohen, 2005). Thus, pupil diameter is thought to index 
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momentary shifts in neuronal gain driven by modulations in norepinephrine functioning (Aston-

Jones & Cohen, 2005; Nieuwenhuis et al., 2011) and has also been previously shown to decrease 

with off-task thoughts (i.e., mind-wandering, distraction, inattention; Unsworth & Robison, 

2016). These phasic pupil-linked changes in norepinephrine-mediated attentional state also lend 

support to the effort account of pupil diameter, as it has been found that the trials in which 

participants report greatest task engagement are also trials with the largest TEPRs (Unsworth & 

Robison, 2016). Finally, we observed a negative relationship between tonic pupil diameter and 

phasic pupillary responses, which was further modulated by reward. These observations buttress 

the putative norepinephrine-dependent trade-off between control states (i.e., task engagement vs. 

disengagement; Gilzenrat et al., 2010), and suggest that perhaps monetary incentives alter task 

performance through locus coeruleus functioning. 

Overall, our results weigh in favor of an effort account of TEPRs, suggesting that pupil 

diameter, under controlled circumstances, can serve as viable index of cognitive effort 

investment in cognitive control tasks, and, in turn, that pupil measurements can inform models of 

the regulation of effortful cognitive processing. Given the theorized neural basis for 

nonluminance mediated pupil diameter changes, our results further suggest potential neural 

correlates of metacontrol. As previously discussed, it is thought that changes in pupil diameter 

reflects locus-coeruleus norepinephrine mediated changes in arousal state. These changes in 

norepinephrine are thought to be driven by the anterior cingulate cortex (ACC; Aston-Jones & 

Cohen, 2005) which has been previously implicated in signaling the need for increased cognitive 

control (Botvinick et al., 2004; Braver et al., 2001; Carter & Van Veen, 2007). Interestingly, it 

has also been shown that, to some degree, pupil dilations in nonhuman primates correlate with 

spontaneous ACC firing, and in some cases precedes pupil-linked modulations of locus 
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coeruleus neuronal activity (Joshi et al., 2016). More recent theories of ACC function posit that 

the ACC allocates cognitive control by weighing the relative costs of exerting control and the 

benefits (i.e., rewards) potentially conferred by successfully completing one’s goal (Shenhav et 

al., 2013, 2016). Mirroring this view, our results indicate that offsetting the costs of control, by 

increasing reward incentives, not only improved task performance but was also tracked by 

increases in pupil diameter. Together, these results suggest that task performance reflects the 

momentary decisions to exert cognitive control based on the relative costs and benefits, which 

are reflected in modulations of phasic pupil diameter. Future work should directly investigate the 

interrelationship between TEPRs, ACC activity, and both interindividual and intraindividual 

variation in EF capacity, intrinsic motivation, and performance on cognitive control tasks. 
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Section 2.6: Supplemental Materials 

Table S1. 

Mixed-effects regression coefficients indicating the influence of trial type (congruent vs 
incongruent) on log RTs in the Stroop Interference task. 
 
Predictor Estimate SE p 

(Intercept) 6.4408 0.0180 <0.001 

Incongruent 0.2578 0.0115 <0.001 

Prev.  Incorrect 0.0351 0.0096 <0.001 

Prev. Incongruent 0.0128 0.0035 <0.001 

Key Repetition -0.0312 0.0051 <0.001 

Prev. Missed -0.0250 0.0135 0.063 

trial 0.0000 0.0002 0.776 
 
Table S2. 

Logistic mixed-effects regression coefficients indicating the influence of trial type (congruent vs 
incongruent) on response (correct vs incorrect) in the Stroop Interference task. 
Predictor Estimate SE p 

(Intercept) 5.0362 0.3235 <0.001 

Incongruent -1.7928 0.1803 <0.001 

Prev.  Incorrect -0.2183 0.1880 0.246 

Prev. Incongruent -0.0011 0.1083 0.992 

Key Repetition 0.0815 0.0988 0.410 

Prev. Missed 0.4326 0.3179 0.174 

trial -0.0026 0.0028 0.356 
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Table S3. 

Mixed-effects regression coefficients indicating the influence of trial type (task switch versus 
task repeat), reward level (low vs. High), and the interaction between Reward and trial type on 
RTs in the task-switching paradigm. 
 
Predictor Estimate SE p 

(Intercept) 6.9332 0.0259 <0.001 

Switch (vs Repeat) 0.1243 0.0092 <0.001 

Reward (High vs Low) -0.0188 0.0101 0.064 

Trial -0.0001 0.0001 0.193 

Task (Magnitude vs Parity) 0.0238 0.0058 <0.001 

Prev. Switch 0.0088 0.0023 <0.001 

Prev. Missed -0.0089 0.0164 0.588 

Prev. Incorrect 0.0098 0.0057 0.085 

Prev. Response same -0.0224 0.0026 <0.001 

Bar (above vs below) -0.0099 0.0058 0.085 

Congruent -0.0518 0.0100 <0.001 

Switch * Reward (High vs Low) -0.0087 0.0083 0.298 
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Table S4.  

Mixed-effects logistic regression coefficients indicating the influence of trial type (task switch 
versus task repeat), reward level (low vs. High), and the interaction between Reward and trial 
type on responses (correct vs incorrect) in the task-switching paradigm. 
 
Predictor Estimate SE p 

(Intercept) 2.4581 0.2691 <0.001 

Switch (vs Baseline) -0.3476 0.0982 <0.001 

Reward (High vs Low) 0.4613 0.1191 <0.001 

Trial 0.0013 0.0007 0.081 

Task (Magnitude vs Parity) -0.2479 0.0626 <0.001 

Prev. Switch -0.0453 0.0400 0.257 

Prev. Missed -0.2867 0.2006 0.153 

Prev. Incorrect 0.1352 0.1006 0.179 

Key Repetition 0.0578 0.0370 0.119 

Bar (Above vs below) 0.0200 0.0626 0.749 

Congruent 1.5841 0.1565 <0.001 

Switch (vs Repeat) x Reward (High vs Low) -0.1277 0.1503 0.395 
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Table S5. 

Mixed-effects logistic regression coefficients indicating the influence of trial type (task switch 
versus task repeat), reward level (Reward vs. None), and the interaction between Reward and 
trial type on responses (correct vs incorrect) in the task-switching paradigm. 
 
Predictor Estimate SE p 

(Intercept) 2.4730 0.1790 <0.001 

Switch (vs. Repeat) -0.4508 0.0937 <0.001 

Reward (vs. Baseline) 0.2863 0.1356 0.035 

Trial 0.0013 0.0006 0.035 

Task (magnitude vs Parity) -0.2936 0.0559 <0.001 

Prev. Switch -0.0326 0.0309 0.292 

Prev. Missed -0.1965 0.1312 0.134 

Prev. Incorrect 0.0298 0.0560 0.594 

Prev. Response same 0.0230 0.0301 0.445 

Bar (above vs Below) 0.0153 0.0559 0.784 

Congruent 1.2067 0.1125 <0.001 

Switch x Reward 0.0558 0.1194 0.640 
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Table S6.  

Mixed-effects regression coefficients indicating the influence of TEPRs, NFC scores, Stroop 
Costs and their interactions on mini-Block Switch Costs in the baseline block of the task-
switching paradigm, controlling for age. 
 
Predictor Estimate SE p 

(Intercept) 181.7356 96.4765 0.060 

Age 0.4749 4.1689 0.909 

TEPR -27.1290 12.1365 0.025 

Stroop Cost 8.6575 12.1439 0.476 

NFC  10.5055 13.0492 0.421 

Trial mini-Block -8.9553 10.3102 0.385 

TEPR x Stroop Cost -29.5429 11.4993 0.010 

TEPR x NFC 29.1472 14.0607 0.038 
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Table S7. 

Mixed-effects regression coefficients indicating the influence of Reward (0: Baseline, 1: Low 
Reward, 2: High Reward), TEPRs, NFC scores, Stroop Costs and their interactions on tonic pupil 
diameter, controlling for age. 
 
Predictor Estimate SE p 

(Intercept) 6261.6765 573.0688 <0.001 

Reward 250.2746 9.4239 <0.001 

Stroop Cost -23.4519 77.1955 0.761 

NFC -125.3013 80.2295 0.118 

TEPR -247.7645 8.8594 <0.001 

Age -36.6238 25.7677 0.155 

Trial -1.1411 0.1705 <0.001 

Reward * Stroop Cost -3.0574 6.6880 0.648 

Reward * NFC -61.7912 8.5420 <0.001 

Reward * TEPR -39.7337 6.7273 <0.001 
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Section 3: Bridging Text  

 Having a measure of effort investment, independent of task demands, and task 

performance is important as it allows us to investigate the deployment of cognitive effort 

independently. The literature has taken three broad approaches to measure cognitive effort 

investment: 1) subjective ratings, 2) task performance, and 3) physiological reactions. Critically, 

these different approaches tap into three distinct aspects of cognitive effort exertion. 

 Subjective ratings have long been a method psychologists use to measure individuals’ 

experiences and provide insight into the subjective experience of participants. For cognitive 

effort, this has taken the form of the National Aeronautics and Space Administration—Task 

Load Index (NASA-TLX) which asks participants to retroactively reflect on one’s feelings of 

demand and exertion (Hart, 2006). Previous research has used this measure to index how much 

effort participants subjectively felt they invested (Crawford et al., 2023; Grier et al., 2003; Krejtz 

et al., 2018), yet it remains unclear whether these feelings of demand and exertion reflect the 

inherent costs of effort exertion or the value of control which integrates effort costs and available 

rewards (Devine et al., 2022; Kurzban, 2016; Saunders et al., 2017). Thus, while subjective 

report measures can help corroborate retrospective metacognitions, they are limited in their 

ability to capture momentary changes in effort exertion.  

The cognitive control literature has equally used task performance as a proxy for effort 

investment. Of particular interest accuracy in responding and response times have often been 

used under the assumption that effort investment and task performance share a positive, 

monotonic relationship. However, this often-used assumption may sometimes be violated for 

tasks where task performance is not contingent on effort investment (Otto et al., 2022). 
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Furthermore, value-based decisions are by nature subjective, meaning there is no externally 

defined correct response. While experimenters often use Expected value maximizing choice as a 

proxy for accuracy in value-based choice (da Silva Castanheira, Fleming, et al., 2021; De 

Martino et al., 2013; Zysset et al., 2006), this assumes the goal of the decision-maker is to 

maximize economic gain and not some other quantity (i.e., subjective utility). Importantly, 

without a measure of response accuracy, it is difficult to tell whether response speeding reflects 

effort investment or disengagement. For example, previous work on value-based choice has 

found overall rewards on offer lead to response speeding which has been interpreted as evidence 

of effort disengagement (Frömer et al., 2019; Pirrone et al., 2018). This pattern of response times 

has equally been interpreted as effort investment in the cognitive control literature, as seen in 

Section 2. Together, this makes task performance as a proxy for effort investment an impractical 

measure in value-based choice. 

 Finally, experimenters have also turned to physiological measures to index momentary 

cognitive effort expenditure. In the previous section, we provided evidence that the effort 

account of pupil diameter by leveraging individual differences in effort costs and reward-induced 

changes in task performance. We showed that task-evoked pupil dilations related to both 

between-individual differences in effort costs, indexed by measuring capacity for cognitive 

control capacity using the Stroop Interference task. We also showed that reward-induced 

increases in task performance, indexed by smaller switch costs, tracked changes in pupil 

diameter. Together these results suggest that pupil diameter can be used as an online measure of 

effort exertion. Thus, in the following section, we will use pupil diameter to index effort 

expenditure in value-based decision-making to test whether demanding choices are avoided, and 

effort investment can predict demand avoidance. 
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Section 4: Measuring Effort in Value-Based Choice 

Section 4.1: Introduction 

The decisions we encounter daily feel mentally taxing. Whether the choice we face is 

perceptual (i.e., how do I adjust my information processing to achieve my goals?) where 

responses are based on external criteria or value-based (i.e., how do I weigh costs and benefits to 

choose?) where responses are based on internally-defined preferences (Smith & Krajbich, 2021; 

Hanks & Summerfield, 2017; Padoa-Schioppa & Schoenbaum, 2015; Shadlen & Shohamy, 

2016). Yet, prominent theories of mental effort in psychology often overlook value-based 

choices like risky decision-making (Frömer et al., 2021; Kurzban et al., 2013; Shenhav et al., 

2017; Silvetti et al., 2018). Intuitively, extensively deliberating between investment portfolios 

feels more effortful than consulting a financial advisor. Why some risky decisions are 

experienced as demanding but not others, and why we sometimes decide to use more effortful 

decision strategies while other times avoid deliberation remains unclear. Thus, we aim to 

understand: 1) whether we can experimentally manipulate value-based choice task demands, 2) 

whether demanding risky value-based choices are avoided and 3) does momentary effort exertion 

predict demand avoidance in risky decision-making. 

Cost-benefit models of effort allocation predict that cognitive effort is aversive and 

should be avoided when all else is equal (Frömer et al., 2021; Kurzban et al., 2013; Shenhav et 

al., 2017; Silvetti et al., 2018). Yet, the data supporting cognitive effort avoidance pertains 

entirely to the deployment of cognitive control (Desender et al., 2017; Dunn et al., 2016; Kool et 

al., 2010; McGuire & Botvinick, 2010; Vogel et al., 2020; Westbrook & Braver, 2015) despite 

this principle often serving as a foundational assumption in the value-based decision-making 
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literature (see Anderson, 2003 for a review). Thus, it remains unclear whether risky decisions 

can also be experienced as demanding and therefore avoided. 

Can value-based choice task demands be experimentally manipulated? 

Experimenters have leveraged two major methods to increase the demand of choices—

either by manipulating features of the environment or features of the choice set itself. In terms of 

environmental features, one method is to limit the ability to execute time-consuming deliberation 

either via manipulations of time pressure (Guo et al., 2017; Hu et al., 2015; Madan et al., 2015; 

Olschewski & Rieskamp, 2021; Zur & Breznitz, 1981) or increasing the tax on individuals’ 

cognitive load (Hinson et al., 2003, 2019; Whitney et al., 2008). These manipulations are thought 

to increase participants’ reliance on heuristics—decision strategies which conserve information 

processing (Gigerenzer & Gaissmaier, 2011). However, using these manipulations to increase 

task demands assumes that participants engage in more demanding deliberation when there are 

no environmental constraint rather than continuing their use of heuristics. In terms of choice 

features, previous work has focused on manipulating the discriminability the amount of 

information. Aligned with the expected value (EV) maximizing view of choice (Allais, 1953), 

others have used the similarity in (expected) value between options (i.e., discriminability) as a 

manipulation of decision demand (da Silva Castanheira, Fleming, et al., 2021; Lebreton et al., 

2009; Lee & Daunizeau, 2021; Zysset et al., 2006). Yet, with risky choices the same level of 

discriminability between options can sometimes seem harder and engender lower self-reported 

subjective confidence (da Silva Castanheira, Fleming, et al., 2021). Aligned with information-

processing approaches to decision-making which assume that effort scales positively with the 

amount of information to be processed, researchers have either increased the number of options 

(Iyengar & Lepper, 2000) or the complexity of the options (Bernheim & Sprenger, 2020; Huck 
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& Weizsäcker, 1999; Sonsino et al., 2002; Zilker et al., 2020). Thus, the greater amount of 

information to consider when deciding, the more difficult the decision. However, these 

approaches are largely agnostic to the degree of cognitive control heuristics requires to execute.  

The value-based decision-making literature has used various approaches to operationalize 

the cognitive effort of a heuristic, often producing contradictory interpretations. Effort reduction 

approaches to value-based choices, like dual process (Diederich & Trueblood, 2018; Evans & 

Stanovich, 2013) theories and information processing approaches (Busemeyer & Townsend, 

1993; De Martino et al., 2013; Krajbich & Rangel, 2011; Roe et al., 2001), assume that effort is 

what is being conserved when fast responses are executed. This assumption follows from work 

on process tracing techniques in decision-making which defined the effort required to execute a 

given decision process as the number of Elementary Information Processes (EIP) (Johnson & 

Payne, 1985; Payne et al., 1993) needed to choose e.g., putting an option’s attribute value in 

working memory and contrasting options by subtracting summed attribute values. However, it is 

particularly difficult to determine the effort required to implement a heuristic from first 

principles, as parsing information into discrete units may be arbitrary and depend on the level of 

granularity (Thomson & Oppenheimer, 2021). Furthermore, the EIP approach fails to account for 

the cognitive processes (e.g., cognitive control, working memory, attention) needed to implement 

heuristics which may depend on situational factors. For example, Bobadilla-Suarez & Love 

(2018) found that, while the Take-The-Best heuristic uses information more frugally by choosing 

based on the first discriminatory cue between option, it takes longer to implement and fares 

worse under time pressure than more deliberative strategies. Thus, it is difficult to predict the 

demand of a heuristic for a given choice set and context. 
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Are Demanding value-based choices avoided? 

The literature on value-based choice has developed in large part on the assumption of 

effort minimization: decision-makers will employ strategies to reduce the cognitive demands of 

choice. Indeed, it is reasonable to assume that value-based decisions which tax cognitive 

resources are avoided as they rely on the same resources as cognitive control (Hinson et al., 

2019; Whitney et al., 2008). Yet most of the evidence we have for this effort minimization 

principle in value-based choice has been indirect and is mainly supported by the heuristics and 

biases literature, which suggests that people avoid difficult deliberation by employing 

simplifying decision strategies (Gigerenzer & Selten, 2002; Goldstein & Gigerenzer, 2002; 

Payne et al., 1993). For example, people will often prefer no change or default options (Inman & 

Zeelenberg, 2002; Samuelson & Zeckhauser, 1988; Tsiros & Mittal, 2000), no action (omission 

bias, Ritov & Baron, 1992; inaction inertia, Tykocinski et al., 1995), and delay (choice deferral, 

Dhar, 1996). Additionally, features of the choice can also influence preferences: people avoid 

complex options (Zilker et al., 2020) or even avoid selecting altogether when there are too many 

options (Iyengar & Lepper, 2000). It is often assumed that the use of these strategies is more 

frugal in terms of time and resources. Yet, while heuristics require less information, they also 

may require more attentional control needed to execute these heuristics (Bobadilla-Suarez & 

Love, 2018). The use of heuristics remains a purported index of effort avoidance. Thus, it is 

unclear whether the choices researchers think are more demanding are in fact subjectively 

experienced as demanding and whether in turn these more demanding choices are truly avoided. 

To address these concerns, we leverage online physiological measures of effort exertion (da 

Silva Castanheira, LoParco, et al., 2021).  
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Does effort exertion predict demand avoidance? 

It equally remains unclear whether the use of heuristics truly reflects the optimization of 

effort costs or some other quantity like feelings of confidence (Lee & Daunizeau, 2021). To help 

disambiguate these accounts, we use pupil diameter as an online measure of effort exertion 

during value-based choices. Importantly, most of the work on effort and pupillometry has largely 

focused on cognitive control with little work investigating the relationship in value-based 

decisions (da Silva Castanheira et al., 2021). While there is some evidence that pupillary 

responses may track effort investment in value-based decisions (Eldar et al., 2021), there is other 

evidence suggesting pupil dilations may reflect reward on offer (Bray et al., 2008; J. P. 

O’Doherty et al., 2003), risk (Lavín et al., 2014), or even surprising outcomes (Preuschoff et al., 

2011; Van Slooten et al., 2018)—making it difficult to infer effort investment from increases in 

pupil diameter in risky decision-making tasks where these factors vary.  

The present experiments 

Here, we present three experiments around a new behavioural paradigm we call the 

decision avoidance task (DAT). In the first experiment, we validate the hypothesis that strategic 

conflict between heuristics in value-based choice is experienced as demanding by leveraging 

performance and subjective ratings of task demands. Using the demand ratings from the first 

experiment we create two choice sets of high and low task demands controlling for other 

important features in the DAT. In the DAT participants are asked to complete two phases: the 

learning where stimulus-stimulus associations are learned and test phase where they are free to 

choose which choices (i.e., high vs low demand) they prefer. In second experiment, participants 

were asked to learn an association between a stimulus and one of the two choice sets (i.e., high 

vs low demand) and then given the choice between the paired stimuli in a subsequent task phase. 
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We predict that participants will develop a strong tendency to avoid the stimulus associated with 

the choice set previously rated as demanding. Finally, in a third experiment, we asked 

participants to complete the DAT while measuring momentary effort exertion as indexed by their 

pupil diameter. We predict that those who exerted the most effort in the learning phase indexed 

by larger pupil diameter will also develop the strongest avoidance of demand in the test phase. 

Together, these experiments will help corroborate whether demanding risky decision are 

aversive, avoided and truly elicit greater effort exertion. 

Section 4.2: Experiment 1 

In this first experiment, we seek to test whether risky decisions with low discriminability 

and high strategic conflict elicit changes in task performance (i.e., EV maximizing choice and 

response times) and are experienced as subjectively more demanding. To this end, we asked 

participants to complete a typical risky decision-making task and rate the demand of these 

choices using the standard demand scale from the NASA Task Load Index (Hart, 2006). These 

ratings allow us to test whether participants experience the choices labelled as difficult—

designed to elicit greater strategic conflict—as more demanding and engendering less 

confidence. 

Methods  
Participants 

Data were collected from 37 healthy young adults (5 males, Mage = 20.18, SDage = 1.32) 

who were recruited via the McGill Participant pool and asked to complete several tasks for 

course credits and a cash bonus of $5. Of the 37 participants, data from 3 participants failed to 

record properly resulting in a sample of 34 participants. Of the 34 participants, we further 

excluded the data from one participant who failed to choose the EV maximizing option for the 

easy choices more than 60% of the time, resulting in a final sample of 33.  
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Materials and Procedure 

Participants were asked to complete two computerized tasks measuring cognitive ability: 

the Digit Symbol Coding Task (Kail & Salthouse, 1994; Mathias et al., 2017) and the Operation 

Span task (Unsworth et al., 2005). Participants were then asked to complete a risky decision-

making task—the main task of interest (da Silva Castanheira, Fleming, et al., 2021; da Silva 

Castanheira, Sharp, et al., 2021). After the tasks, participants were asked to answer 3 

questionnaires in a randomized order to measure individual differences: The Maximization Scale 

(Nenkov et al., 2008), the Need for Cognition Scale (Cacioppo et al., 1984), and the State-Trait 

Anxiety Inventory (STAI) (Spielberger, 1983). For more information on the individual 

difference measures please refer to the supplemental materials. 

Risky Decision-Making Task  

 To assess participants’ subjective feelings of demand when choosing between difficult or 

easy decisions, we asked participants to complete a risky decision-making task. The decision-

making task consisted of a series of risky choices presented to the participants as possible 

monetary rewards represented as two side-by-side pie charts (da Silva Castanheira, Fleming, et 

al., 2021; da Silva Castanheira, Sharp, et al., 2021; Guo et al., 2017). Each option consisted of 

two possible outcomes and their associated chances of occurring (see Figure 1). Responses to 

these choices were self-paced. Importantly, participants were instructed that they would be paid a 

cash bonus in proportion to their total earnings on the risky decision-making task at the end of 

the experiment and consequently had to choose options to maximize their bonus. However, at the 

end of the experiment, all participants were remunerated the same amount: $5.00. 

Critically, we manipulated task demands via decreasing discriminability in Expected 

value and assessed whether our manipulation engendered feelings of higher task demand. We 
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used similarity in desirability to manipulate decision conflict by changing the differences in 

Expected Values (EV) between the options (Venkatraman et al., 2009). Expected value is 

defined as the weighted average of an options’ outcomes by their associated probabilities—the 

long-run average outcome of a gamble. If the options differed in EV (i.e., non-zero difference in 

EV; min= 32, max=220), we considered the choice easy (e.g., 45% chance of $450 and $179 

otherwise, EV= 300.95; versus 55% chance of $365 and $94 otherwise, EV= 243.05). 

Meanwhile, if both options had similar EVs was near zero (i.e., near zero difference in EV; min= 

0, max=0.76), we considered the choice harder (e.g., 84% chance of $355 and $250 otherwise, 

EV= 338.2; versus 35% chance of $611 and $192 otherwise, EV= 338.65). Importantly, for the 

easy stimuli where there was a larger non-zero difference in EV, we ensured that both options 

(i.e., left vs right) were equally favored resulting in an overall mean difference in EV of 

approximately 0 (see Table S3). However, here the perceived difficulty of a choice depended on 

both the choice and the decision strategy being used, as participants may not only be using 

differences in EV to choose. Thus, decision-makers using any other strategy may not find 

choices with similar in EV demanding.  

To account for the variability in possible heuristic use, we considered two well-known 

heuristics that subjects may be relying on if they are not computing differences in EV: Maximin 

and Maximax. The Maximin heuristic predicts that decision-makers should maximize the 

minimum possible—select the option with the best of the worst outcomes (Coombs et al., 1970). 

Contrastingly, the Maximax heuristic predicts that decision-makers should maximize the 

maximum possible gain—select the option with the best of the best outcomes (Coombs et al., 

1970). Importantly, unlike EV maximization, both these heuristics are agnostic toward outcomes 

probabilities and focus solely on the outcomes themselves. Here, we ensured that hard choices 
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presented a conflict between the Maximin and Maximax heuristics such both heuristics would 

suggest different choices (e.g., Option 1: 45% chance of winning $392 and $146 otherwise; 

versus Option 2: 80% chance of winning $269 and $208 otherwise; where Maximin predicts 

option 2 Maximax predicts option 1), whereas the easy choices presented no conflict between the 

Maximin and the Maximax heuristics (e.g., Option 1: 32% chance of winning $116 and $129 

otherwise; versus Option 2: 29% chance of winning $74 and $87 otherwise; where both 

Maximax and Maximin predict option 1). One key component of cognitive control is the 

selection of relevant responses and inhibition of prepotent but inappropriate responses. To 

control for any other choice features (the coefficient of variation, the standard deviation of the 

outcomes etc.,) possibly contributing to demand and confidence ratings, we ensured both hard 

and easy problems were equated in terms of total reward on offer, outcome probabilities, their 

coefficient of variation, their expected values and the standard deviation of the outcomes (see 

Tables S1-S3).  
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Figure 1. 

 A Schematic depicting the risky decision-making task. Participants were asked to decide 

between two risky options for whose outcomes and associated probabilities were depicted as pie 

charts. Choices were recorded using the right and left arrow keys. After each choice, participants 

were presented asked to rate how demanding (“How mentally demanding was that choice?”) or 

how confident (“How confident are you that the choice you made was the best choice?”) they 

were on a 7-point Likert scale using the numbers on the keyboard. Results of the risky decision-

making task. B Subjective feelings of confidence also varied by choice difficulty: easy choices 

were rated as engendering higher subjective confidence when compared to difficult choices. C In 

terms of subjective feelings of demand, participants rated the difficult choices are more 

demanding than the easy choices. 
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 After each choice, participants were asked either to rate how demanding the preceding 

choice was (“How mentally demanding was that choice”) (Hart, 2006) or how confident they felt 

in having made the best choice (“How confidence are you that the choice you made was the best 

choice?”) (da Silva Castanheira, Fleming, et al., 2021). The rating following each choice 

alternated randomly whereby half the choices were followed by demand ratings. Subjective 

ratings were collected on a Likert scale from 1-7, where 1 indicated not being confident/not 

demanding, and 7 indicated being extremely confident/demanding. Responses were recorded 

using the number keys 1 through 7.  

Data Analysis 

 We used linear mixed-effects regressions to test how decision difficulty (Easy vs Hard) 

affected subjective ratings. For both the confidence and demand regressions, we modelled 

Likert-scale ratings as a function of dummy coded task demand (1=hard, 0=easy), RTs Z-scored 

both within-person as well as the interaction between RTs and task difficulty. To assess the 

effect of reward on demand ratings and RTs, we included the maximum reward on offer (i.e., 

max of all four outcomes across options) Z-scored within-person as well as the interaction 

between reward and demand level. We also assessed the effect of task difficulty on log-

transformed response times and EV maximizing choice. For the choice model, we estimated the 

effect of difficulty using a logistic mixed-effects regression predicting the binary outcome of 

choice (0=non-maximizing, 1=maximizing). For all regressions, we also included a per-

participant random intercept and a random slope of task difficulty.  
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Results 

Figure 2.  

Behavioural results for all three experiments. The dots and lines represent individual participants 

in each study. A. Participants were also slower at responding when deciding between difficult 

choices when compared to easy choices across all experiments B Participants were more likely to 

select the Expected Value (EV) maximizing option for the easy over the difficult choices across 

all experiments. 
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Table 1. 

Results of the hierarchical linear regression on demand ratings as a function of choice difficulty, 

trial-level max reward on offer Z-scored within person, and trial-level RT Z-scored within person 

and difficulty, their interaction, as well as the covariates of stimulus color and run order. 

 
Predictors Estimates CI p 

(Intercept) 2.22 1.96 – 2.48 <0.001 

Choice Difficulty (Easy vs. hard) 1.56 1.20 – 1.91 <0.001 

RT (Z score) 0.48 0.28 – 0.68 <0.001 

Reward on Offer (Z Score) -0.02 -0.08 – 0.04 0.481 

Color (Red vs Blue) -0.05 -0.13 – 0.03 0.185 

Run Order (2 vs 1) 0.12 -0.33 – 0.58 0.590 

Run Order (3 vs 1) -0.26 -0.69 – 0.17 0.241 

Run Order (4 vs 1) 0.02 -0.44 – 0.48 0.941 

Difficulty * RTZ 0.20 0.03 – 0.36 0.021 

Difficulty * Reward 0.18 0.10 – 0.26 <0.001 
 
Subjective Ratings 

We first assessed whether our manipulation of choice difficulty engendered changes in 

subjective ratings of confidence and demand. As depicted in Figure 2B, participants rated the 

more difficult choices (MHard= 3.88) as more demanding than the easier choices (MEasy= 2.09). 

We confirmed this result statistically with our hierarchical linear regression which revealed a 

statistically significant main effect of choice difficulty (b= 1.56, 95%CI= [1.20, 1.91], p<0.001; 

see Table 1). Again, we assessed whether response times on the risky choice predicted 

subsequent demand ratings and found a significant positive relationship (b= 0.48, 95%CI= [0.28, 

0.68], p<0.001; see Table 1). This result suggests that taking longer to decide was associated 
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with higher demand ratings. The results of our regression also revealed a significant positive 

interaction between choice difficulty and RTs (b= 0.20, 95%CI= [0.03, 0.36], p<0.001). This 

suggests that for difficult choices, response slowing has a larger impact on subjective feelings of 

demand. In terms of rewards, there was no relationship between the chance to win a larger 

reward on demand ratings for the easy choices (b= -0.02, 95%CI= [-0.08, 0.04], p= .481; see 

Table 4). Yet, the opportunity to win a larger reward led to higher demand ratings for the 

difficult choices (b= 0.18, 95%CI= [0.10, 0.26], p< .001; see Table 1). Together these results 

suggest that much like the decision to exert cognitive control, effort investment in value-based 

choice similarly follows a Cost-Benefit tradeoff: rewards offset the costs of effort investment 

associated with demanding choices and lead to faster choices which are rated as more 

demanding. 
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Table 2.  

Results of the hierarchical linear regression on confidence ratings as a function of choice 

difficulty, trial-level max reward on offer Z-scored within-person, trial-level RT Z-scored 

within-person and difficulty, their interaction, as well as the covariates of stimulus color and run 

order. 

Predictors Estimates CI p 

(Intercept) 6.07 5.81 – 6.33 <0.001 

Choice Difficulty (Easy vs. hard) -1.50 -1.71 – -1.29 <0.001 

RT (Z score) -0.18 -0.38 – 0.02 0.076 

Reward on Offer (Z Score) 0.09 0.03 – 0.15 0.002 

Color (Red vs Blue) -0.00 -0.08 – 0.08 0.944 

Run Order (2 vs 1) -0.05 -0.50 – 0.41 0.842 

Run Order (3 vs 1) 0.16 -0.28 – 0.59 0.480 

Run Order (4 vs 1) 0.01 -0.44 – 0.47 0.957 

Difficulty * RTZ -0.27 -0.43 – -0.11 0.001 

Difficulty * Reward -0.11 -0.19 – -0.03 0.006 
In terms of subjective confidence, participants felt less confident in having made the best 

choice when deciding between the difficult options (MHard= 4.52) when compared to the easy 

options (MEasy= 6.11; see Figure 2B). We confirmed this effect statistically with our hierarchical 

linear regression which revealed a statistically significant main effect of choice difficulty (b= -

1.50, 95%CI= [-1.71, -1.29], p< .001; see Table 2). We also assessed whether decision times—

Z-scored within-person and choice difficulty—predicted confidence ratings and failed to find a 

significant relationship (b= -0.18, 95%CI= [-0.386, 0.02], p=.076; see Table 2). Importantly, 

choice difficulty was found to moderate the relationship between decision times and confidence. 

The results of our regression also revealed a significant negative interaction between choice 
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difficulty and z-scored RT suggesting that the negative relationship between RT and confidence 

is stronger for difficult choices (b= -0.27, 95%CI = [-0.43, -0.11], p=.001; see Table 2). 

Participants felt more confident when there was a chance to win a larger amount of money (b= 

0.09, 95%CI= [0.03, 0.15], p=.002; see Table 2) but this relationship was attenuated for the 

difficult choices as indexed by a difficulty reward interaction (b= -0.11, 95%CI= [-0.19, -0.03], 

p=.006; see Table 2). Together, our results suggest that difficult choices reduce both confidence 

and the benefits of reward prospects on confidence, as well as increase the sensitivity to response 

times when rating confidence. 

Performance 

Next, we assessed whether our manipulation of choice difficulty engendered a change in 

behavioural performance namely on response times and EV maximizing choice. As depicted in 

Figure 2A, participants were slower at responding to the difficult choices (MHard= 5.02 seconds) 

when compared to the easy choices (MEasy= 3.57 seconds). This slowing was confirmed 

statistically by the main effect of trial type in our hierarchical linear regression on log response-

times (b = 0.33, 95% CI = [0.26, 0.40], p < .001; see Table 3).  We also observed a significant 

decrease in EV maximizing choice for the hard choices (MHard= 47%) when compared to easy 

choices (MEasy= 95%; see Figure 2B), suggesting our manipulation of discriminability worked. 

The results of our hierarchical logistic regression confirmed this decrease in EV maximizing 

choice (b= -3.84, 95% CI= [-4.08, -3.61], p < .001; see Table 4). Together, these results suggest 

that our stimuli successfully manipulated choice difficulty as demonstrated by slower response 

times and less sensitivity to expected values. 
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Table 3.  

Results of the hierarchical linear regression on log-transformed response times as a function of 

choice difficulty, trial-level max reward on offer Z-scored within-person, as well as the 

covariates of stimulus colour and run order. 

Predictors Estimates CI p 

(Intercept) 1.10 0.96 – 1.23 <0.001 

Choice Difficulty (Easy vs. hard) 0.33 0.26 – 0.40 <0.001 

Reward on Offer (Z Score) 0.02 0.01 – 0.04 0.001 

Color (Red vs Blue) 0.00 -0.02 – 0.02 0.798 

Run Order (2 vs 1) 0.17 -0.07 – 0.40 0.169 

Run Order (3 vs 1) 0.10 -0.13 – 0.33 0.406 

Run Order (4 vs 1) -0.27 -0.51 – -0.03 0.025 

Difficulty * Reward -0.05 -0.07 – -0.03 <0.001 
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Table 4.  

Results of the hierarchical logistic regression on EV maximizing choice as a function of choice 

difficulty, trial-level max reward on offer Z-scored within-person as well as the covariates of 

stimulus colour and run order. 

Predictors Log-Odds CI p 

(Intercept) 3.71 3.48 – 3.94 <0.001 

Choice Difficulty (Easy vs. hard) -3.84 -4.08 – -3.61 <0.001 

Reward on Offer (Z Score) 0.05 -0.18 – 0.28 0.697 

Color (Red vs Blue) 0.05 -0.08 – 0.18 0.472 

Run Order (2 vs 1) 0.01 -0.14 – 0.16 0.896 

Run Order (3 vs 1) 0.06 -0.08 – 0.20 0.421 

Run Order (4 vs 1) -0.04 -0.19 – 0.11 0.600 

Difficulty * Reward -0.02 -0.26 – 0.22 0.880 
 

Next, aligned with the predictions of Cost-Benefit models of effort allocation, we 

assessed whether the importance of the decision (i.e., high-stakes decisions) affected choices and 

response times. We tested whether participants responded more quickly when there was the 

potential to gain greater rewards (Shevlin et al., 2022)—indexed here as the maximum of all 

outcomes of both risky options—and found that the potential to gain larger rewards was 

associated with slower responses for easy choices (b= 0.02, 95%CI= [0.01, 0.04], p< .002; see 

Table 3). Yet, for difficult choices, the potential to gain greater rewards was associated with 

faster responses as shown by the significant interaction between maximal reward and trial 

difficulty (b = -0.05, 95%CI = [-0.07, -0.03], p < .001,  see Table 3). However, we failed to find 

any modulation of EV sensitivity to rewards on offer for both easy (b= 0.05, 95%CI= [-0.18, 

0.28], p =.697; see Table 4) and difficult choices (b= -0.02, 95%CI= [-0.26, 0.22], p= .880; see 
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Table 4). Together these results provide preliminary evidence that the effort invested in 

deliberating between choices is modulated by both choice difficulty and rewards. 

Discussion 

Can value-based choice task demands be experimentally manipulated? Previous work has 

used the discriminability of the options’ Expected value to manipulate task demands (da Silva 

Castanheira, Fleming, et al., 2021; De Martino et al., 2013; Lebreton et al., 2009; Lee & 

Daunizeau, 2021; Zysset et al., 2006). Yet these manipulations rely on the assumption that 

participants are using differences in EV to decide, which may not always be the case (Coombs et 

al., 1970). Alternatively, other work has used the Strategic conflict—the conflict between 

different decision strategies—to manipulate task demands (Venkatraman et al., 2009). Recent 

work has extended this notion by suggesting cognitive control—the selection of relevant 

responses to value-based decision-making—is used to select responses congruent with one’s 

goals (Frömer & Shenhav, 2021).  

The results of the first experiment demonstrated that choices low in discriminability and 

high strategic conflict are experienced as demanding, both in terms of demand ratings and 

performance. While it remains unclear what specifically, makes a value-based choice 

demanding, we show that these task demands can be systematically and reliably manipulated. 

Leveraging the previous choice set and extant work on cognitive control demonstrating demand 

avoidance  (Desender et al., 2017; Dunn et al., 2016; Kool et al., 2010; McGuire & Botvinick, 

2010; Vogel et al., 2020; Westbrook & Braver, 2015), we sought to test a central prediction of 

the Cost-Benefit Model of effort: effort should be avoided all else being equal (i.e., rewards on 

offer).  
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Section 4.3: Experiment 2 

 The goal of the current experiment was to test whether demanding value-based choices 

are avoided in favour of less demanding value-based choices. To this end, we asked participants 

to complete the decision avoidance task (DAT) where they first learned the association between 

stimuli and their resulting decisions; and then were asked to freely choose between the stimuli. 

The DAT was modelled after previous work which investigated the avoidance of cognitive 

control exertion using a task called the demand selection task (Kool et al., 2010).  

Method 
Participants 

 Data were collected from 81 participants recruited via the McGill University’s 

Psychology participant pool (20 males; 18-33 years old; Mean= 21.17; SD= 2.81). We excluded 

data from two participants as it failed to record properly. To ensure participants understood the 

task we further excluded the data of one participant who failed to pick the EV maximizing choice 

on more than 60% trials for the easy stimuli during the learning phase. This resulted in the 

exclusion of 5 participants. 

Materials and Procedures 

First, participants completed the digit-symbol coding task (Kail & Salthouse, 1994; 

Mathias et al., 2017; da Silva Castanheira, Sharp, et al., 2021), followed by the Operation Span 

task (Unsworth et al., 2005; Unsworth & Engle, 2005). Next, participants were asked to 

complete the Decision Avoidance Task followed by a Framing Effect task. The choice sets were 

identical to the first experiment. Because we did not want to introduce demand characteristics to 

the DAT, by highlighting the main difference between the choice sets was demand level, we 

opted not to collect subjective ratings for this study. After completing the DAT, participants 

completed a Framing Effect task and several questionnaires in a counterbalanced order (i.e., 
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maximization, Need for cognition, and State-Trait Anxiety Inventory). Please refer to the 

Supplemental Materials for details. 

Figure 3.  

A Schematic depicting the decision avoidance task (DAT). In the learning phase, participants 

were asked to learn the kinds of choices each stimulus (i.e., fractal) was associated with. Choices 

were offered between two risky options for whose outcomes and associated probabilities were 

depicted as pie charts. In the Test phase, participants were told to choose the stimulus associated 

with the set of choices they preferred. B Violin plot with an embedded boxplot depicting 

proportion High effort choice during the test phase for the 76 participants. The dashed line 

represents chance (0.5) and the solid black line represents the median high effort choice 

proportion (0.27). 

 
 
Decision Avoidance Task 

To test whether high-demand choices are avoided we asked participants to complete a 

demand selection task where participants learned the association between stimuli and decisions 

and then were instructed to select the stimulus they preferred (Kool et al., 2010). In the task, two 

fractals (randomly selected without replacement from a set of 4 possible fractals) were each 
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associated with a set of risky decisions. Critically, one stimulus was always associated with 

decisions from the easy set of choices outlined in Experiment 1 while the other was associated 

with the hard choices outlined in Experiment 1. The decision type and stimulus association were 

counterbalanced across participants (see Figure 3). Critically, participants were not instructed of 

this key difference in demand level. Instead, they were simply instructed to select the “patterned 

image” (stimulus) associated with the decisions they preferred. This task consisted of two phases 

separated by a self-paced break. In the first phase (Learning phase) participants were asked to 

learn the association between the stimuli and the associated choice sets. To learn the association, 

presented participants with a forced choice of stimulus by increasing the transparency of one of 

the stimuli and forcing participants to select the opaque stimulus. Participants were presented 50 

consecutive trials for each stimulus before alternating to the other stimulus in a counterbalanced 

order. Then, participants completed the test phase where they were able to freely choose between 

the two stimuli for a total of 100 trials. Across both phases, participants had 5 seconds to choose 

for both the fractal and risky choices (see Figure 8). Of interest, we measured participants’ 

choice of fractal (high vs low demand) during the test phase.  

Data Analysis 

We assessed the effect of task difficulty on log-transformed decision times between the 

risky options, and EV maximizing choice using a linear mixed-effects regression and a logistic 

mixed-effects regression predicting the binary outcome of choice (0=non-maximizing, 

1=maximizing) respectively. For these two models, we only used choices from the learning 

phase as there were equal number of observations for each decision type (hard versus easy). 

Next, we assessed whether participants avoided demanding decisions by estimating a 

hierarchical logistic regression predicting high demand choice during the test phase. Critically, 
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we tested whether the group intercept of the model, reflecting general choice preference, was 

different from chance—indicating a reliable preference for either low or high-demand decisions.  

Results 
Replication of Demand Manipulation  

Table 5.  

Results of the hierarchical linear regression on log Response-times during the learning phase as a 

function of stimulus type (Hard vs. Easy) and trial-level total reward on offer Z-scored within-

person. 

Predictors Estimates CI p 

(Intercept) 0.67 0.61 – 0.73 <0.001 

Choice Demand (Hard vs. Easy) 0.16 0.11 – 0.20 <0.001 

Reward on Offer (Z Score) 0.02 0.02 – 0.03 <0.001 

Demand * Reward -0.04 -0.05 – -0.03 <0.001 
 
Table 6.  

Results of the hierarchical logistic regression on EV maximizing choice during the learning 

phase as a function of stimulus type (Hard vs. Easy) and trial-level total reward on offer Z-scored 

within-person. 

Predictors Log-Odds CI p 

(Intercept) 3.27 3.08 – 3.47 <0.001 

Choice Demand (Hard vs. Easy) -3.39 -3.58 – -3.19 <0.001 

Reward on Offer (Z Score) -0.09 -0.20 – 0.03 0.136 

Demand * Reward 0.10 -0.03 – 0.22 0.122 
 

We first attempted to replicate the performance results in Experiment 1: longer decision 

times and lower choice consistency (i.e., EV maximizing choice) for the high-demand choices. 
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Consistent with our previous experiment, participants were significantly slower on difficult 

compared to easy decisions (b= 0.16, 95%CI= [0.11, 0.20], p < .001; See Table 5 and Figure 

2A). Next, replicating our previous experiment, we found people were less consistent at picking 

the EV maximizing choice for the difficult decisions (b= -3.39, 95%CI= [-3.58, -3.19], p < .001; 

See Figure 2B and Table 2). Again, we failed to find evidence that total reward on offer 

motivated EV maximizing choice (b= -0.09, 95%CI= [-0.20, 0.03], p= .164; See Table 6) nor 

was it dependent on decision demand (b= 0.10; 95%CI = [-0.03, 0.22], p= .122; see Table 6). We 

also found that participants were slower when the stakes were higher (b= 0.02, 95%CI= [0.02, 

0.03], p < .001; See Table 5) but that decision difficulty modulated the effect of rewards on 

response times (b= -0.04, 95%CI= [-0.05, -0.03], p < .001; See Table 5). In other words, 

participants were faster when the maximum reward on offer was larger, but only for difficult 

decisions.  
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Demand Avoidance 

Table 7.  

Results of the hierarchical logistic regression on high demand choice during the test phase as a 

function of trial, counterbalance condition and individual differences in decision-frame 

susceptibility, Processing speed (z-scored), Maximization (z-scored), Need for cognition (z-

scored), and Operation span (z-scored). 

 
Predictors Log-Odds CI p 

(Intercept) -1.41 -2.02 – -0.80 <0.001 

Framing Effect -0.30 -0.59 – -0.02 0.039 

Digit Symbol score -0.01 -0.04 – 0.02 0.421 

Maximization -0.33 -0.78 – 0.12 0.155 

Need for Cognition -0.19 -0.65 – 0.26 0.405 

OSPAN -0.13 -0.61 – 0.35 0.592 

Trial 0.03 -0.07 – 0.13 0.598 

Counterbalance 0.31 -0.57 – 1.19 0.490 
 
  Our main question for this experiment was whether people consistently avoid difficult 

decisions in the test phase. Of interest, we wanted to see if people would reliably choose the 

fractal associated with the easier decisions, as indexed by a negative intercept in our hierarchical 

logistic regression predicting high demand choice. As depicted in Figure 3B, we found that 

participants reliably avoided the difficult decisions (Median proportion high demand choice = 

0.27); this was confirmed statistically by a negative intercept in our hierarchical logistic 

regression (b= -1.41, 95%CI= [-2.02, -0.80], p<.001).; see Table 7). Thus, participants were 

more likely to select the low demand choices, beyond chance level. 
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Individual differences as predictors of Demand Avoidance 

 Next, we tested whether individual differences in motivation, or cognitive ability or 

predicted demand avoidance in the DAT. To this end, we modelled high-demand choice in the 

test phase as a function of trial, counterbalance condition, Processing speed, Maximization, Need 

for cognition, and Operation span. Critically, our measures of individual differences were not 

strongly correlated to each other (all r’s < 0.30) Our results suggest that neither measure of 

cognitive ability (i.e., processing speed or operation span) was a significant predictor of high-

demand choice (both p > .40).  We also failed to find a relationship between effort avoidance and 

either individual motivation to engage in effortful tasks as indexed by the need for cognition or 

individual tendency to decide without much cogitation as indexed by scores on the maximizer 

scale (both p >. 15). Together, our results suggest that the effort avoidance observed could not be 

better explained by a lack of motivation or cognitive ability. 

Discussion 

All else being equal, people should avoid demanding cognitive tasks (Frömer et al., 2021; 

Kurzban et al., 2013; Shenhav et al., 2013, 2017), a behaviour which has been consistently found 

in the cognitive control literature (Desender et al., 2017; Dunn et al., 2016; Kool et al., 2010; 

McGuire & Botvinick, 2010; Vogel et al., 2020; Westbrook & Braver, 2015). The results of the 

previous experiment extend these findings to demonstrate that demanding risky choices are also 

avoided, all else being equal. Together, these results tentatively suggest that participants are 

avoiding demanding risky choices due to the increased effort costs associated with deliberation.  

Section 4.4: Experiment 3 

 Previous work has established task-evoked pupillary responses (i.e., TEPRs) as a viable 

index of momentary effort exertion in cognitive control tasks (da Silva Castanheira, LoParco, et 



Running Head: EFFORTFUL DECISIONS 
 

108 

al., 2021; van der Wel & van Steenbergen, 2018). Yet, whether pupillary responses can index 

effort investment in risky decision-making remains unclear as it can also track other factors 

(Bray et al., 2008; Eldar et al., 2021; Lavín et al., 2014; J. P. O’Doherty et al., 2003; Preuschoff 

et al., 2011; Van Slooten et al., 2018). In this experiment, we will leverage measures of pupillary 

dilation to test whether greater demand avoidance can, in part, be explained by greater effort 

costs. Thus, this experiment is twofold: 1) test whether trial-by-trial pupil dilations increase in 

response to greater decision demands and 2) test whether individual differences in pupil dilation 

predict future demand avoidance in value-based choice. We hypothesize that high-demand 

choices will elicit greater effort investment thereby increasing pupil diameter and that greater 

effort investment—indexed by larger pupillary responses—will predict greater demand 

avoidance. 

Method 
Participants 

We collected data from 81 English-speaking participants (18 males, 2 non-binary 

participants, 18 – 29, Mage= 20.99, SD=2.44) recruited from the McGill University community 

for a base remuneration of $20 CAN or 2 class credits and a performance-contingent cash bonus 

of up to $5. All participants were screened for corrected-to-normal, colour blindness, and 

diagnoses of psychiatric or neurological conditions. We excluded those participants who failed 

40% or more of the catch trials, those who failed to respond to more than 20% of trials, or those 

without reliable pupil recordings based on visual inspection of the eye data .With these exclusion 

criteria, 29 participants were excluded from the analysis resulting in a final sample of 52. 

Materials and Procedures 

Participants were seated comfortably in front of a 24-inch monitor set to a resolution of 

1280x1024 pixels in a dimly lit room and instructed to keep their heads rested on a mount 
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positioned 60 centimetres away from the screen. During both the demand selection task and the 

risky decision-making task, participants’ left pupil diameter was measured using an Eyelink-

1000 eye tracker (SR Research, Osgoode, ON) at a sampling rate of 250 Hz. Prior to the start of 

each experimental block, participants underwent a nine-point calibration procedure. 

Figure 4.  

A Schematic of the Decision Avoidance task adapted for pupillometry. B Violin plot of high 

demand choices in the test phase of the DAT. 

 

Decision Avoidance Task 

Following the procedures of Experiment 2, participants were be asked to complete a 

Decision Avoidance Task. To control for possible differences in luminance which could 

confound our pupil measure (Joshi & Gold, 2020), we ensured that both stimuli were as visually 
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similar as possible and thus opted to use two similar coloured rectangles each with an identifying 

symbol (i.e., a five-point star or lightning bolt; see Figure 4A). Participants had two seconds to 

decide between the two doors using the keyboard, and trials were not response terminated but 

instead masked until 2 seconds have elapsed. After selecting the desired door, participants were 

shown a choice between two gambles, now presented as stacked bar charts (Tymula et al., 2012). 

These bar charts depicted the probability of each outcome as the height of the bar, with the 

associated reward amount written on the screen. We chose bar charts as this would minimize 

changes in the overall luminance and appearance of the screen between the cues and stimuli. 

Critically, trials were not response-terminated but instead had a fixed duration of 5 seconds with 

a visual mask applied after responding. After which, participants were presented a fixation cross 

which served as a jittered inter-trial interval between 2.5 to 3.5 seconds. To complete the task 

within the 2-hour experimental session, and to avoid fatigue, we reduced the total number of 

trials from 200 (50 each block) in Experiment 2 to 120 in the learning phase (30 each block). 

Trials were organized into 4 learning phase blocks and 2 test phase blocks. 
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Figure 5.  

A Graph of group-level task-evoked pupillary responses in the learning phase as a function of 

high (blue) and low demand (orange) choices. B Participants’ TEPRs were significantly smaller 

for the high- compared to the low-demand decisions. C Scatterplot with marginal distributions of 

low-demand TEPRs in the learning phase and high effort choice in the test phase. D Participants’ 

baseline pupil diameter was significantly higher in high-demand blocks compared to low-

demand blocks. 

 

Pupillary Data Analysis 

Pupillary data were preprocessed before computing trial-by-trial task-evoked pupillary 

responses (TEPRs) using the pypillometry python package (Mittner, 2020). Eye blinks were 

corrected using linear interpolation and passed through a low-pass filter to high-frequency noise 
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above a frequency of 1 Hz. Pupillary data were baseline-corrected on a trial-by-trial basis by 

subtracting the mean diameter of a 500ms baseline period prior to stimulus presentation. TEPRs 

will be calculated as the maximum pupil diameter (da Silva Castanheira, LoParco, et al., 2021; 

Gilzenrat et al., 2010) observed between 1000ms and 3000ms after stimulus onset while deciding 

between the two risky options. This time window of interest corresponds approximately to the 

median response time for the learning phase of the decision avoidance task in the previous 

experiment (RTHard= 2.40, RTEasy= 1.96). 

 We compared pupil diameter across trial types (i.e., Hard vs Easy) to test whether pupil 

diameter is sensitive to the manipulations of strategic conflict. To this end, we used a 

hierarchical linear regression predicting TEPRs as a function of demand level controlling for trial 

number, the maximum reward on offer, the outcome probabilities of the left and right options, 

and whether and EV maximizing choice was made. Importantly, we included a random per-

participant slope for demand level in the regression model. Using these individual estimates of 

demand on pupillary dilation, we will then predict demand avoidance in the test phase as a 

function of pupillary differentiation. 

  



Running Head: EFFORTFUL DECISIONS 
 

113 

Figure 6.  

A Example gaze trajectory from a participant for a low- and a high-demand trial. B Participants 

switched their gaze between the two options less often for the high-demand choices when 

compared to the low-demand choices. Bar plot of the average number of switches as a function 

of decision demand. C Participants looked at more areas on the screen in the first second of the 

trial for the low-demand choices when compared to the high-demand choices. Bar plot of 

average Euclidean distance in the first second as a function of decision demand. 

 

Eye Movement Data Analysis 

Using the eye-tracker, we measured eye-movements between the presentation of the 

gamble stimulus and participants’ response. Like with the pupillary data, the eye-position data 

i.e., x and y pixel coordinates were blink-corrected using linear interpolation and down-sampled 

to a frequency of 100Hz. We defined large two areas of interest (AOI) centered on the gamble 

options presented to the participant, with a slack of 100 pixels to the left and right of the 
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gambles, running the entire height of the screen (see Figure 6A). Using these two AOIs, we 

computed the total number of shifts in gaze between these two areas before responding (Folke et 

al., 2016). We also wanted to assess the amount of information sampling in a trial aligned with 

previous work in multi-attribute decision-making (Wedel et al., 2022; Yang et al., 2018; 

Yegoryan et al., 2020). However, the current risky decision-making task did use not the typical 

use a gaze-contingent drawing paradigm for multi-attribute choice as this would affect our ability 

to control the overall luminance and accurately measure pupil diameter. Thus, we are unable to 

measure the number of fixations for each individual attribute (i.e., probability versus outcome) 

and instead opted for change in gaze position as is typical for visual search tasks (Stephen & 

Anastas, 2011). We computed the sum of total Euclidean distance (in pixels) covered by the eye 

movements in the first second of the trial.  

Again, we compared both the number of switches and the total distance covered between 

high and low-demand trials in the learning phase using hierarchical regressions. We used a 

hierarchical Poisson regression to predict the total number of switches on a given trial from the 

demand level controlling for trial number, the total reward on offer, the outcome probabilities of 

the left and right options, and whether an EV maximizing choice was made. The total distance 

covered was also modelled using a linear regression with the same predictors. 

Behavioural Data Analysis 

As with the first two Experiments, we used hierarchical regressions to predict log 

response times and EV maximizing choice during the learning phase as a function of demand 

(high versus low) and total reward on offer. Additionally, we modelled demand avoidance as a 

function of median pupil dilation in the learning phase for high- and low-demand choices.  
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Results 
Behavioural Results 

 First, we tested whether we observed a similar behavioural profile to the choices given 

the new visual presentation of the gambles. Our hierarchical linear regression on log RTs 

confirmed that participants were slower on high demand compared to low demand trials (b=  

0.11, 95% CI= [0.04, 0.18], p=0.001; See Figure 2A and Table 8). Similarly, we replicated both 

the main (b= 0.02, 95%CI = [0.00, 0.03], p=0.013) and interaction between choice demand level 

and total reward on offer (b= -0.04, 95%CI= [-0.06, -0.02], p<0.001; Table 8) suggesting that 

participants sped up when both the total reward at stake the task demand were high. Once again, 

we found that participants were also worse at selecting the EV maximizing option for the high-

demand trials when compared to the low-demand trials (b= -3.010, 95%CI= [-3.64, -2.55], 

p<0.001, see Figure 2B and Table 9). Importantly, we again find evidence for demand avoidance 

in the test phase of the decision avoidance task as evidenced by the intercept of the logistic 

hierarchical regression predicting high demand choice (b= -0.98, 95%CI= [-1.41, -0.54], 

p<0.001; see Figure 4B). Together, these results replicate the behavioural findings from 

experiments 1 and 2, suggesting generalization across different stimulus presentations. 
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Table 8. 

Results of the hierarchical linear regression on log Response-times during the learning phase as a 

function of stimulus type (Hard vs. Easy) and trial-level total reward on offer Z-scored within-

person. 

Predictors Estimates CI p 

(Intercept) 0.61 0.52 – 0.70 <0.001 

Choice Demand (Hard vs. Easy) 0.12 0.05 – 0.19 0.001 

Reward on Offer (Z Score) 0.02 0.00 – 0.03 0.013 

Trial -0.05 -0.07 – -0.04 <0.001 

Demand * Reward -0.06 -0.08 – -0.04 <0.001 
 

Table 9.  

Results of the hierarchical logistic regression on EV maximizing choice during the learning 

phase as a function of stimulus type (Hard vs. Easy) and trial-level total reward on offer Z-scored 

within-person. 

Predictors Log-Odds CI p 

(Intercept) 3.37 2.74 – 3.99 <0.001 

Choice Demand (Hard vs. Easy) -3.10 -3.64 – -2.55 <0.001 

Reward on Offer (Z Score) 0.07 -0.08 – 0.21 0.371 

Trial -0.10 -0.27 – 0.08 0.275 

Demand * Reward -0.01 -0.18 – 0.17 0.951 
 

Pupillary Results 

Next, we assessed whether choice demand level impacted participant’s task-evoked 

pupillary response (TEPRs) when deciding between gambles in the learning phase of the task. To 
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this end, we compared participants’ maximum, baseline-corrected, pupil dilation 1 to 3 seconds 

after stimulus presentation between demand conditions. The linear mixed-effects regression 

revealed a significant difference in pupil size between choice types, such that low-demand 

choices were associated with higher pupil dilations (b= -61.46, 95%CI= [-93.62, -29.31], 

p<0.001; see Figure 5B). Next, we assessed whether pupil diameter for low-demand trials was 

comparable between the learning and test phases of the task but failed to find a difference (b= 

38.60, 95%CI= [-85.62, 8.42], p=0.108). Finally, we tested whether median high- and low-

demand TEPRs during the learning phase could predict demand avoidance in the test phase. We 

found that larger pupil diameter for low (b= -0.68, 95%CI= [-1.33, -0.03], p= 0.042; see Table 10 

and Figure 5C) but not high-demand trials predicted fewer high-demand choices (b= 0.25, 

95%CI= [-0.40, 0.90], p= 0.444; see Table 10). Together with the behavioural and eye 

movement results, our pupillary analyses suggest that participants were withdrawing effort 

exertion during high-demand choices in the learning phase, and this degree of effort withdrawal 

predicts demand avoidance in the subsequent task phase. 
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Table 10.  

Results of the hierarchical logistic regression on high demand choice during the test phase as a 

function of trial, and individual differences in median TEPRS for the high and low demand 

choices in the test phase. 

Predictors Log-Odds CI p 

(Intercept) -0.98 -1.41 – -0.54 <0.001 

Trial 0.00 -0.11 – 0.12 0.954 

High demand TEPR 0.25 -0.40 – 0.90 0.444 

Low demand TEPR -0.68 -1.33 – -0.03 0.042 
 

We further probed whether participants were withdrawing their effort by testing whether 

high-demand blocks had higher tonic pupil diameter indexed here by the average pupil diameter 

in the 500ms baseline period prior to stimulus onset. Tonic pupil diameter has previously been 

used as a measure of task disengagement as it is thought to reflect tonic levels of norepinephrine 

in the Locus Coeruleus (Aston-Jones & Cohen, 2005; Gilzenrat et al., 2010; Rajkowski et al., 

1994). The results of our linear hierarchical regression reveal that participants’ tonic pupil size 

was significantly higher during high-demand blocks in the learning phase controlling for 

presentation order (b= 90.90, 95%CI= [44.86, 136.94], p<0.001; see Figure 5D). 

Eye Movement Results 

Next, we assessed whether there was any evidence for different patterns of gaze between 

the high- and low-demand stimuli, suggesting a difference in effort investment. First, we ensured 

our measure of fixation captured fixations at the stimuli by comparing total percent fixation in 

our areas of interest. We find that overall, participants overwhelmingly spent their time looking 

at either of the two stimuli (b= 0.98, 95%CI= [0.98, 0.99], p<0.001) and the demand level was 
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not found to affect fixations to the stimulus (b= 0.00, 95%CI= [-0.00, 0.00], p= 0.809). Second, 

we tested whether participants switched between looking at the stimuli more often in the high- 

compared to the low-demand condition. To do so, we modeled the number of switches using a 

hierarchical Poisson regression as a function of choice demand level. Surprisingly, we found that 

participants switched their gaze between the two stimuli less often for the high compared to the 

low-demand choices (b= -0.06, 95%CI= [-0.12, -0.01], p=0.031; see Supplementary Table S4 

and Figure 6B). We also found that the difference in number of switches between low and high 

demand choices (i.e., Δ switch (low – high)) was larger for when the stakes were also higher as 

indicated by a reward on offer by demand level interaction (b = -0.05, 95%CI= [-0.09, -0.02], p = 

.004; see Supplementary Table S4). Finally, we assessed whether the distance covered by the 

participants’ gaze in the first second of the trial and their average speed of fixations differed 

between choice demand level. Modelling total Euclidean distanced covered in the first second, 

we found participants’ gaze covered less area on the screen in the first second of the trial for 

high- compared to low-demand trials (b= -40.55, 95%CI= [-67.31, -14.39], p<0.001; see 

Supplementary Table S5). Again, we found that total rewards on offer increased the difference in 

information sampling between high- and low-demand choices for the total distance covered in 

the first second (b= -19.61, 95%CI= [-37.52, -1.69], p= 0.032). Importantly, we failed to find any 

difference between the number of switches (b= -0.019, 95%CI= [0.03503, -0.536], p=0.591), and 

the total distance covered in the first second (b= 21.55, 95%CI= [-16.14, 59.23], p=0.262) 

between the test and learning phase for low-demand choices. 

We also tested whether distance covered in the first second, z-scored within demand 

level, predicted whether participants made and EV maximizing choice. We found that 

participants were more likely to make an EV maximizing choice as they sampled more 
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information (b= 0.44, 95%CI= [0.27, 0.60], p < 0.001; see Supplementary Table S6). However, 

the relationship between fixation speed and EV maximizing choices was only true for low-

demand choices (b= -0.41, 95%CI= [-0.60, -0.322], p< 0.001; see Supplementary Table S6). 

Together, our eye fixation data suggest that participants are seeking out less information for the 

high-demand choices. 

Section 4.5: General Discussion 

Across three experiments, we demonstrate that task demands of value-based choices can 

be systematically and reliably manipulated both in terms of subjective reports and behaviourally 

in terms of response slowing. We also demonstrate that people tend to avoid these decisions 

where there is greater strategic control. Together, our results are aligned with previous work in 

the cognitive control literature which suggests that humans avoid tasks high in cognitive 

demands all else being equal (Desender et al., 2017; Dunn et al., 2016; Kool et al., 2010; 

McGuire & Botvinick, 2010; Westbrook & Braver, 2015)—and will even opt for a painful 

stimulus over the prospect of exerting cognitive effort (Vogel et al., 2020). Despite these results, 

participants’ pupil dilations, a marker of momentary effort exertion (da Silva Castanheira, 

LoParco, et al., 2021),  were surprisingly larger for low- compared to high-demand choices. 

While it appears behaviourally choices with high strategic control are more effortful, 

physiologically these choices elicited less effort investment. Below, we discuss a possible 

interpretation of these purportedly conflicting findings. 

 Cost-benefit models of effort investment suggest that individuals will exert themselves 

when the benefits outweigh the costs (Frömer et al., 2021; Kurzban et al., 2013; Shenhav et al., 

2017; Silvetti et al., 2018). This model suggests that effort investment should increase as a 

function of task demands, all else being equal. However, as the task demands and costs of effort 
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increase, the effort invested should decrease (Silvestrini et al., 2022; Brehm & Self, 1989). This 

suggests the relationship between task demands and effort investment can be characterized by an 

inverted-U: as task demands increase, effort investment increases up to a critical point, after 

which people will begin to disengage (Silvestrini et al., 2022). We believe the discrepancy 

between the behavioural and physiological data can be explained by the disengagement of effort 

in response to excessive task demands. Firstly, we find that participants’ pupil diameter reflected 

the typical pattern of task disengagement: low task-evoked pupillary responses and high baseline 

pupil dilation (da Silva Castanheira, LoParco, et al., 2021). Other work has similarly found 

higher baseline pupil diameter during high-demand cognitive control tasks (McGuire & 

Botvinick, 2010). This pattern of pupillary responses is thought to reflect the functioning of the 

Locus-Coerleus norepinephrine functioning which is important for specifying the control state: 

where high tonic but low phasic functioning reflects disengagement from the current task to 

explore new ones (Gilzenrat et al., 2010). Secondly, we show that individual differences in effort 

exertion predict the degree of decision avoidance: those who invest the most effort in low-

demand choices, indexed by their pupil dilations are those who are most demand-avoidant. In 

other words, those who invested the least amount of effort in the low-demand trials showed a 

near-chance preference for the high-demand option, either reflecting a failure to learn the 

stimulus-demand contingency or indifference. Our results suggest that this avoidance of effort 

reflects the inherent costs of cognitive effort (Kurzban et al., 2013). Alternatively, the observed 

pattern of larger pupil dilation to the low-demand choices may also reflect some other factors 

like individual preferences (Hess & Polt, 1960). However, we believe this is unlikely as 

participants’ pattern of fixations suggested differential investment of effort: we found that 

participants’ pattern of gaze during the high-demand choices reflected less information sampling, 
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both in terms of between-option comparisons and within-option attribute integration. Together, 

these results suggest that while the high-demand options are rated as more demanding, associated 

with slower responses, and avoided, when possible, they are associated with overall effort 

disengagement. 

Beyond costs-benefit trade-offs, recent work has outlined the importance of response 

efficacy—the relationship between the effort invested and task performance—in the decision to 

expend effort (Frömer et al., 2021). Under certain conditions, there can be a non-monotonic 

relationship between effort and task performance. For example, participants may choose to 

withhold effort during an impossible task where greater exertion would not improve 

performance. This non-monotonic relationship also suggests that the prospect of higher rewards 

may not yield improvements in performance. As such, previous work has noted performance 

decrements in response to larger reward prospects (Lee & Grafton, 2015). Indeed, some previous 

work has demonstrated people’s sensitivity to the marginal value of effort by contrasting 

performance-contingent to random rewards (Frömer et al., 2021; Shenhav et al., 2013; Späti et 

al., 2014). On this view, effort should only be invested when increasing effort investment confers 

larger performance benefits—i.e., the marginal value of effort (R. Otto et al., 2021). Aligned 

with this view, we find that participants speed-up their responses and sample less information as 

indexed by their gaze when both the reward on offer and the strategic conflict are high. Put 

another way, participants may be withholding their effort when the marginal benefits of effort 

are low and the opportunity cost of time is high (Otto & Daw, 2019). This suggests that 

participants may be disengaging their effort to resolve deadlocks and maximize long-term 

rewards (Pirrone et al., 2018). Echoing this interpretation, we find that participants’ information 

sampling was predictive of making an EV maximizing choice but only for the low-conflict 
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choices, suggesting that effort in decision-making for the high-demand choices is unrelated to 

obtaining rewards. Together, our results suggest that individuals will only invest effort in value-

based choices when their efforts are associated with greater task performance and rewards. 

 In light of these results, this suggests that people may not be pure cognitive misers as the 

law of least (cognitive) work would suggest (Hull, 1943; Kool et al., 2010). Recent theoretical 

work has focused on the situations in which people purportedly seek cognitive effort all else 

being equal (Inzlicht et al., 2018). While we demonstrate that people will avoid demanding 

value-based choices, pure cognitive effort avoidance would suggest that participants should in 

fact be selecting the high-demand decisions, in which they seem to invest the least amount of 

effort, as evidenced by their gaze and pupil diameter. Yet, participants show a marked preference 

for the low-demand choices across two experiments, with no associated decrease in either pupil 

dilations or information sampling in the test phase of the task. One possible interpretation is that 

in addition to minimizing effort costs, people may be optimizing other signals like subjective 

feelings of confidence. Indeed, recent work in value-based choice suggests that individuals may 

be trading-off effort costs for feelings of confidence (Lee & Daunizeau, 2021). While we found 

that participants did feel more confident when responding to the low-demand choices, future 

work is needed to corroborate whether preference for these choices reflects a metacognitive 

trade-off between effort and confidence. Future work should also assess whether this trade-off 

extends to cognitive control or is specific to value-based choice.  
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Section 4.7: Supplemental Materials 

Digit Symbol Coding 

To measure processing speed, participants were asked to complete a computerized version of the 

Digit-Symbol Coding task (Mathias et al., 2017; Salthouse, 1985). During this task, participants 

are shown a static list of 9 digit-symbol pairs, which remain visible at the top of screen for the 

entirety of the task. On each trial, participants are asked to indicate whether the digit-symbol pair 

presented in the centre of the screen matches one of the 9 digit-symbol pairs depicted at the top 

of the screen. Yes/No responses were made using the left and right arrow keys, with the 

response-key mappings counterbalanced between participants.  

Operation Span Task 

To measure individual differences in working memory capacity, we asked participants to 

complete the automated version of the Operation Span Task (Ospan; Unsworth et al., 2005). In 

this task, participants are asked to encode and recall a sequence of letters while completing 

simple arithmetic problems between the presentation of each letter. Immediately after being 

presented with a letter, participants were asked to solve a simple arithmetic problem and answer 

whether the proposed solution on the screen was correct or incorrect. Letters were presented in 

sets of different sizes ranging from 3 to 7 letters. Working memory capacity was quantified by 

the Ospan score which was computed as the sum of all correctly recalled set sizes (Unsworth et 

al., 2005).  

Need For Cognition Scale 

To measure individual differences in motivation to engage in effortful thinking, we asked 

participants to complete the Need for Cognition scale (NFC; Cacioppo et al., 1984). The scale 

consists of 18 items which participants rated how characteristic they thought each statement was 
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of themselves on a scale of 1-5, 1 being extremely uncharacteristic and 5 being extremely 

characteristic. Example items include: “Thinking is not my idea of fun” and “I would prefer 

complex to simple problems”. 

Maximization Scale 

 To measure individual differences in decision strategy, we asked participants to complete 

the short form of the Maximization scale (Nenkov et al., 2008). The scale consists of 6 items 

which participants rated how characteristic they thought each statement was of themselves on a 

scale of 1 – 7, 1 being extremely uncharacteristic and 7 being extremely characteristic. Example 

items include: “I never settle for second best” and “No matter what I do, I have the highest 

standards for myself”. Scores on the scale are designed to differentiate between dispositional 

“maximizers”—those who try to choose the “best” option—and “satisficers”—those who rather 

settle for a “good enough” option. 
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Table S1.  

High demand stimuli used for the demand rating and demand avoidance tasks. 

Option 1 Option 2 
Outcome1 P(O1) Outcome2 P(O2) Outcome1 P(O1) Outcome2 P(O2) 
$220 0.13 $353 0.87 $708 0.3 $177 0.7 
$597 0.4 $167 0.6 $248 0.16 $356 0.84 
$252 0.12 $414 0.88 $815 0.35 $168 0.65 
$214 0.34 $248 0.66 $311 0.45 $176 0.55 
$241 0.4 $55 0.6 $90 0.15 $136 0.85 
$136 0.11 $245 0.89 $562 0.25 $124 0.75 
$334 0.45 $143 0.55 $192 0.23 $240 0.77 
$219 0.14 $327 0.86 $570 0.4 $139 0.6 
$169 0.4 $91 0.6 $108 0.29 $128 0.71 
$155 0.15 $224 0.85 $406 0.3 $131 0.7 
$504 0.25 $105 0.75 $115 0.1 $215 0.9 
$141 0.4 $73 0.6 $88 0.28 $105 0.72 
$68 0.13 $105 0.87 $204 0.3 $56 0.7 
$490 0.4 $151 0.6 $216 0.17 $301 0.83 
$128 0.12 $214 0.88 $428 0.35 $83 0.65 
$331 0.35 $122 0.65 $153 0.19 $205 0.81 
$315 0.45 $139 0.55 $185 0.24 $229 0.76 
$296 0.4 $121 0.6 $157 0.23 $201 0.77 
$185 0.26 $228 0.74 $328 0.35 $157 0.65 
$170 0.13 $273 0.87 $547 0.3 $137 0.7 
$134 0.35 $155 0.65 $198 0.4 $114 0.6 
$590 0.45 $172 0.55 $274 0.17 $378 0.83 
$142 0.14 $212 0.86 $413 0.25 $132 0.75 
$105 0.08 $239 0.92 $630 0.25 $94 0.75 
$126 0.14 $197 0.86 $372 0.35 $88 0.65 
$169 0.45 $60 0.55 $87 0.19 $114 0.81 
$349 0.3 $52 0.7 $74 0.09 $148 0.91 
$370 0.3 $105 0.7 $128 0.14 $194 0.86 
$236 0.4 $104 0.6 $132 0.25 $165 0.75 
$322 0.35 $71 0.65 $104 0.13 $167 0.87 
$92 0.11 $161 0.89 $345 0.3 $71 0.7 
$131 0.18 $182 0.82 $305 0.35 $102 0.65 
$194 0.2 $255 0.8 $378 0.45 $132 0.55 
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$414 0.3 $122 0.7 $147 0.14 $220 0.86 
$433 0.3 $70 0.7 $97 0.1 $188 0.9 
$494 0.4 $169 0.6 $233 0.18 $314 0.82 
$212 0.27 $259 0.73 $358 0.4 $172 0.6 
$812 0.35 $162 0.65 $246 0.12 $409 0.88 
$470 0.25 $142 0.75 $153 0.13 $235 0.87 
$402 0.4 $162 0.6 $211 0.21 $271 0.79 
$637 0.35 $175 0.65 $238 0.14 $353 0.86 
$160 0.4 $183 0.6 $225 0.45 $132 0.55 
$150 0.16 $215 0.84 $386 0.3 $127 0.7 
$551 0.4 $169 0.6 $242 0.17 $338 0.83 
$241 0.14 $360 0.86 $652 0.35 $177 0.65 
$475 0.35 $173 0.65 $218 0.19 $293 0.81 
$101 0.22 $127 0.78 $178 0.45 $75 0.55 
$226 0.4 $55 0.6 $86 0.13 $129 0.87 
$773 0.4 $189 0.6 $298 0.15 $444 0.85 
$140 0.11 $235 0.89 $491 0.3 $110 0.7 
$118 0.13 $191 0.87 $370 0.35 $80 0.65 
$177 0.15 $260 0.85 $447 0.4 $114 0.6 
$543 0.25 $93 0.75 $104 0.09 $216 0.91 
$96 0.18 $134 0.82 $235 0.3 $81 0.7 
$333 0.3 $86 0.7 $106 0.13 $168 0.87 
$173 0.19 $232 0.81 $363 0.4 $126 0.6 
$107 0.09 $247 0.91 $654 0.25 $95 0.75 
$208 0.2 $269 0.8 $392 0.45 $146 0.55 
$168 0.12 $289 0.88 $615 0.3 $129 0.7 
$320 0.4 $74 0.6 $120 0.14 $181 0.86 
$390 0.45 $168 0.55 $226 0.24 $281 0.76 
$611 0.35 $192 0.65 $250 0.16 $355 0.84 
$555 0.4 $135 0.6 $213 0.14 $318 0.86 
$290 0.17 $402 0.83 $628 0.45 $182 0.55 
$260 0.19 $346 0.81 $535 0.4 $192 0.6 
$498 0.35 $123 0.65 $173 0.14 $267 0.86 
$509 0.25 $57 0.75 $65 0.07 $178 0.93 
$617 0.25 $155 0.75 $168 0.12 $284 0.88 
$204 0.1 $386 0.9 $878 0.3 $149 0.7 
$130 0.1 $238 0.9 $528 0.3 $98 0.7 
$178 0.17 $245 0.83 $381 0.45 $113 0.55 
$707 0.25 $197 0.75 $214 0.13 $341 0.87 
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$84 0.13 $131 0.87 $246 0.35 $60 0.65 
$257 0.4 $59 0.6 $96 0.14 $145 0.86 
$259 0.45 $126 0.55 $162 0.28 $195 0.72 
$144 0.35 $73 0.65 $85 0.28 $103 0.72 
$131 0.14 $202 0.86 $405 0.25 $121 0.75 
$120 0.11 $208 0.89 $463 0.25 $110 0.75 
$149 0.11 $265 0.89 $578 0.3 $113 0.7 
$303 0.35 $61 0.65 $92 0.12 $153 0.88 
$243 0.12 $407 0.88 $815 0.35 $158 0.65 
$853 0.25 $139 0.75 $154 0.09 $333 0.91 
$192 0.15 $282 0.85 $503 0.35 $143 0.65 
$125 0.26 $152 0.74 $204 0.45 $97 0.55 
$899 0.25 $157 0.75 $174 0.09 $360 0.91 
$186 0.35 $81 0.65 $98 0.25 $124 0.75 
$355 0.4 $153 0.6 $194 0.22 $245 0.78 
$148 0.45 $67 0.55 $89 0.27 $109 0.73 
$152 0.23 $191 0.77 $282 0.35 $128 0.65 
$70 0.23 $86 0.77 $124 0.35 $60 0.65 
$215 0.15 $315 0.85 $581 0.3 $180 0.7 
$238 0.15 $347 0.85 $636 0.3 $200 0.7 
$114 0.27 $140 0.73 $202 0.35 $96 0.65 
$769 0.25 $90 0.75 $103 0.08 $273 0.92 
$170 0.1 $329 0.9 $758 0.3 $123 0.7 
$146 0.12 $239 0.88 $487 0.3 $117 0.7 
$103 0.12 $174 0.88 $350 0.35 $66 0.65 
$135 0.32 $157 0.68 $199 0.45 $110 0.55 
$424 0.35 $105 0.65 $147 0.13 $227 0.87 
$117 0.25 $144 0.75 $207 0.35 $100 0.65 

Option 1 represents the first choice with two outcomes (G11 & G12) and their respective 
outcome probabilities (p11, &p12). Option 2 represents the second option with twou outcomes 
(G21 & G22) and their respective outcome probabilities (p21 & p22). 
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Table S3.  

Low demand stimuli used for the demand rating and demand avoidance tasks. 

Option 1 Option 2 
G11 p11 G12 p12 G21 p21 G22 p22 
$101 0.22 $127 0.78 $165 0.35 $191 0.65 
$395 0.4 $196 0.6 $8 0.35 $207 0.65 
$280 0.17 $385 0.83 $483 0.35 $588 0.65 
$451 0.17 $72 0.83 $540 0.3 $161 0.7 
$310 0.4 $131 0.6 $243 0.21 $64 0.79 
$116 0.14 $175 0.86 $212 0.35 $271 0.65 
$91 0.12 $154 0.88 $180 0.37 $243 0.63 
$75 0.17 $101 0.83 $128 0.35 $154 0.65 
$637 0.15 $68 0.85 $703 0.3 $134 0.7 
$801 0.3 $165 0.7 $717 0.15 $81 0.85 
$255 0.18 $42 0.82 $288 0.4 $75 0.6 
$701 0.17 $100 0.83 $792 0.35 $191 0.65 
$143 0.45 $57 0.55 $116 0.21 $30 0.79 
$136 0.3 $162 0.7 $214 0.33 $240 0.67 
$260 0.35 $90 0.65 $213 0.19 $43 0.81 
$293 0.35 $352 0.65 $173 0.19 $232 0.81 
$261 0.33 $282 0.67 $171 0.41 $192 0.59 
$240 0.18 $326 0.82 $410 0.35 $496 0.65 
$561 0.36 $713 0.64 $308 0.14 $460 0.86 
$90 0.32 $106 0.68 $141 0.36 $157 0.64 
$332 0.35 $379 0.65 $207 0.26 $254 0.74 
$422 0.38 $598 0.62 $196 0.1 $372 0.9 
$379 0.36 $473 0.64 $213 0.15 $307 0.85 
$104 0.17 $141 0.83 $178 0.35 $215 0.65 
$450 0.45 $179 0.55 $365 0.21 $94 0.79 
$183 0.38 $261 0.62 $84 0.1 $162 0.9 
$365 0.34 $423 0.66 $224 0.23 $282 0.77 
$458 0.4 $132 0.6 $398 0.18 $72 0.82 
$460 0.3 $194 0.7 $349 0.2 $83 0.8 
$259 0.3 $81 0.7 $214 0.18 $36 0.82 
$304 0.21 $82 0.79 $391 0.4 $169 0.6 
$116 0.32 $129 0.68 $74 0.29 $87 0.71 
$204 0.21 $260 0.79 $336 0.35 $392 0.65 



Running Head: EFFORTFUL DECISIONS 
 

138 

$222 0.2 $55 0.8 $270 0.45 $103 0.55 
$347 0.35 $106 0.65 $293 0.18 $52 0.82 
$91 0.32 $100 0.68 $59 0.36 $68 0.64 
$116 0.23 $145 0.77 $189 0.36 $218 0.64 
$132 0.26 $159 0.74 $210 0.33 $237 0.67 
$186 0.21 $50 0.79 $240 0.4 $104 0.6 
$232 0.4 $139 0.6 $39 0.47 $132 0.53 
$411 0.25 $76 0.75 $368 0.14 $33 0.86 
$260 0.36 $309 0.64 $155 0.2 $204 0.8 
$216 0.13 $340 0.87 $407 0.36 $531 0.64 
$399 0.18 $75 0.82 $448 0.45 $124 0.55 
$93 0.21 $27 0.79 $125 0.35 $59 0.65 
$694 0.17 $110 0.83 $773 0.4 $189 0.6 
$378 0.37 $519 0.63 $186 0.11 $327 0.89 
$398 0.35 $149 0.65 $318 0.2 $69 0.8 
$139 0.34 $147 0.66 $93 0.6 $101 0.4 
$109 0.34 $121 0.66 $70 0.34 $82 0.66 
$539 0.18 $91 0.82 $609 0.4 $161 0.6 
$76 0.1 $140 0.9 $160 0.37 $224 0.63 
$157 0.36 $208 0.64 $82 0.13 $133 0.87 
$534 0.3 $106 0.7 $481 0.15 $53 0.85 
$341 0.36 $411 0.64 $200 0.18 $270 0.82 
$569 0.18 $94 0.82 $641 0.4 $166 0.6 
$212 0.36 $252 0.64 $126 0.19 $166 0.81 
$259 0.45 $126 0.55 $6 0.35 $139 0.65 
$515 0.35 $128 0.65 $454 0.17 $67 0.83 
$84 0.13 $131 0.87 $157 0.35 $204 0.65 
$607 0.4 $153 0.6 $542 0.17 $88 0.83 
$130 0.37 $175 0.63 $66 0.12 $111 0.88 
$282 0.4 $147 0.6 $16 0.37 $151 0.63 
$203 0.38 $292 0.62 $92 0.1 $181 0.9 
$194 0.14 $289 0.86 $353 0.36 $448 0.64 
$575 0.18 $100 0.82 $655 0.4 $180 0.6 
$483 0.25 $83 0.75 $437 0.14 $37 0.86 
$140 0.12 $244 0.88 $282 0.37 $386 0.63 
$476 0.45 $132 0.55 $424 0.18 $80 0.82 
$195 0.84 $207 0.16 $287 0.3 $299 0.7 
$383 0.18 $71 0.82 $443 0.4 $131 0.6 
$244 0.4 $88 0.6 $201 0.19 $45 0.81 
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$183 0.37 $266 0.63 $82 0.1 $165 0.9 
$103 0.12 $174 0.88 $203 0.36 $274 0.64 
$522 0.18 $90 0.82 $616 0.35 $184 0.65 
$202 0.35 $245 0.65 $118 0.18 $161 0.82 
$122 0.14 $185 0.86 $224 0.36 $287 0.64 
$326 0.35 $390 0.65 $194 0.2 $258 0.8 
$397 0.45 $186 0.55 $305 0.22 $94 0.78 
$193 0.23 $244 0.77 $315 0.35 $366 0.65 
$195 0.11 $360 0.89 $409 0.37 $574 0.63 
$492 0.17 $72 0.83 $601 0.25 $181 0.75 
$108 0.21 $31 0.79 $141 0.4 $64 0.6 
$125 0.2 $167 0.8 $211 0.36 $253 0.64 
$470 0.36 $578 0.64 $269 0.16 $377 0.84 
$124 0.33 $146 0.67 $194 0.36 $216 0.64 
$162 0.15 $235 0.85 $289 0.36 $362 0.64 
$168 0.12 $284 0.88 $332 0.37 $448 0.63 
$215 0.37 $294 0.63 $106 0.11 $185 0.89 
$467 0.3 $67 0.7 $439 0.14 $39 0.86 
$818 0.12 $56 0.88 $873 0.25 $111 0.75 
$230 0.18 $313 0.82 $394 0.36 $477 0.64 
$703 0.16 $94 0.84 $782 0.35 $173 0.65 
$306 0.36 $373 0.64 $177 0.17 $244 0.83 
$218 0.24 $274 0.76 $354 0.34 $410 0.66 
$149 0.21 $39 0.79 $189 0.4 $79 0.6 
$685 0.12 $46 0.88 $729 0.25 $90 0.75 
$202 0.3 $53 0.7 $173 0.17 $24 0.83 
$787 0.25 $143 0.75 $707 0.14 $63 0.86 
$590 0.45 $172 0.55 $520 0.19 $102 0.81 

Option 1 represents the first choice with two outcomes (G11 & G12) and their respective 
outcome probabilities (p11, &p12). Option 2 represents the second option with twou outcomes 
(G21 & G22) and their respective outcome probabilities (p21 & p22). 
 
Table S3.  

Comparing Easy and Hard stimuli.  

 Parameter Easy Stimuli Hard Stimuli T df p 
Option1 Outcome 1 311.16 291.09 0.73 197.73 0.46 
Option 1 Outcome 1 190.08 181.29 0.55 172.47 0.58 
Option 1 SD 133.70 136.06 -0.13 196.72 0.89 
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Option 1 P(O1) 0.28 0.26 1.10 197.99 0.27 
Option 2 Outcome 1 303.37 304.29 -0.03 197.96 0.97 
Option 2 Outcome 2 193.49 176.93 1.05 172.62 0.30 
Option 2 SD 133.70 143.50 -0.55 197.13 0.58 
Option 2 P(O1) 0.28 0.26 1.39 197.98 0.17 
Option 1 EV 220.58 226.21 -0.41 180.83 0.68 
Option 2 EV 222.15 226.25 -0.29 174.63 0.77 
Option 1 Ratio (O1/O2) 2.66 2.18 1.42 176.75 0.16 
Option 2 Ratio (O1/O2) 2.65 2.23 1.27 166.94 0.21 
Option 1 Coefficient of variation 0.73 0.59 1.62 157.24 0.11 
Option 2 Coefficient of variation 0.76 0.61 1.67 153.45 0.10 
 EV Option1 – EV Option2 -3.40 -0.04 -0.28 99.00 0.78 

 
Parameter represents what is being compared between the stimulus sets. For example, the first 
row represents a t-test between the first outcome of the first option between easy and hard choice 
sets 
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Table S4.  

Results of the hierarchical Poisson regression on number of gaze switches during the learning 

phase as a function of choice demand, trial, and Reward on Offer. 

 
Predictors Log-Mean CI p 

(Intercept) 0.80 0.73 – 0.86 <0.001 

Choice Difficulty (Easy vs. hard) -0.06 -0.12 – -0.01 0.032 

Trial (Learning phase) 0.00 -0.03 – 0.04 0.804 

Reward on Offer (Z Score) 0.01 -0.02 – 0.03 0.480 

Difficulty * Reward -0.05 -0.09 – -0.02 0.004 
 
 
Table S5. 

Results of the hierarchical Linear regression on total Euclidean distance covered in the first 

second during the learning phase as a function of choice demand, trial, and Reward on Offer. 

 
Predictors Estimates CI p 

(Intercept) 1524.77 1449.98 – 1599.55 <0.001 

Choice Difficulty (Easy vs. hard) -40.85 -67.31 – -14.39 0.002 

Trial (Learning phase) 1.79 -10.92 – 14.51 0.782 

Reward on Offer (Z Score) -4.69 -21.10 – 11.72 0.576 

Difficulty * Reward -19.61 -37.52 – -1.69 0.032 
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Table S6  

Results of the hierarchical Logistic regression EV maximizing choice during the learning phase 

as a function of choice demand, trial, and total Euclidean distance covered in the first second. 

 
Predictors Log-Odds CI p 

(Intercept) 2.49 2.23 – 2.75 <0.001 

Trial (Learning phase) 0.14 0.03 – 0.26 0.017 

Choice Difficulty (Easy vs. hard) -2.60 -2.86 – -2.33 <0.001 

Euclidean Distance 0.44 0.27 – 0.60 <0.001 

Difficulty * Distance -0.41 -0.60 – -0.22 <0.001 
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Section 5: Bridging Text 

In the previous section, we examined three open research questions my thesis aims to 

address. First, we sought to better understand whether value-based decision-making demands 

could be manipulated without assuming a priori the strategy decision-makers use to choose. We 

hypothesized that choices high strategic conflict arising from conflicting responses from 

different decision-making strategies and low discriminability in terms of EV would be rated as 

more demanding. Indeed, this was reflected in participants' subjective ratings of demand. 

Secondly, we sought to test the main prediction of Cost-Benefit models (Frömer et al., 2021; 

Kool et al., 2010; Kurzban et al., 2013; Shenhav et al., 2017; Silvetti et al., 2018) of effort 

allocation: demand should be avoided all else being equal. Again, we found participants avoided 

demanding value-based choice, providing support for this hypothesis. Finally, we tested whether 

pupil diameter—a marker of momentary effort allocation—during value-based decisions tracks 

both within individual changes in demand and between individual differences in demand 

avoidance. Below, we discuss how these findings corroborate the main aim of this thesis: 

unifying models of effort exertion in both cognitive control and decision-making. 

As discussed above, our joint analysis of response times, gaze and pupil diameter 

indicates that participants were withdrawing their effort for the high-demand choices. Yet, 

together with the behavioural results of the earlier experiments in that section, it is difficult to 

determine where the choices labelled as low-demand lie on the inverted-U relationship between 

demand and effort. It is possible that the low-demand choices actually reflect demanding but 

achievable challenges implying that there are choices lower in demand than those used in the 

experiment. It is equally possible that the choices labelled as low demand are in fact low in 

demand meaning there are choices whose demand level lies somewhere between the high- and 
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low-demand choices (i.e., medium-demand). While in the experiments discussed here, demand 

was manipulated in a binary fashion—conflict versus no conflict—future research should 

investigate whether feelings of demand can be manipulated either by varying the number of 

conflicting responses or other factors like the magnitude of the difference in EV. 

Together with the research in Section 2, the research discussed here suggests that 

investigating effort exertion in both cognitive control tasks and value-based decision-making 

tasks can be unified. In Section 2, we show that both individuals’ effort costs and available 

rewards modulate effort investment as indexed by pupil diameter. In Section 4, we show that 

when all else is equal, demanding value-based choices are avoided and effort is conserved for 

value-based choices where exertion does not yield performance improvements (Otto et al., 

2022). We equally show that when opportunity costs are high (i.e., the decision demands and 

reward on offer are high), effort is withheld (Kurzban et al., 2013; Otto & Daw, 2019). These 

experiments suggest that pupil diameter can be used as a reliable measure of effort exertion in 

both cognitive control and value-based decision-making tasks. Furthermore, these experiments 

equally suggest that cost-benefit models can capture effort exertion in both cognitive control and 

value-based decision-making tasks.  

 
 
 
  



Running Head: EFFORTFUL DECISIONS 
 

145 

Section 6: Discussion 

Across four experiments, my research has investigated why we sometimes deliberate effortfully, 

and other times rely on habitual or effortless strategies. The results of my thesis bridge theories on 

effort exertion in cognitive control and value-based decision-making— two fields in psychology 

which have largely progressed independently—and suggest that cost-benefit models of effort 

allocation are a viable framework for understanding effort across domains. Furthermore, my thesis 

leverages varied techniques to understand not only metacognitive (i.e., subjective feelings of 

demand) and behavioural (i.e., avoidance) consequences of previous effort investment but also 

physiological markers of momentary effort allocation. In the first manuscript, I leveraged cost-

benefit models of effort exertion to demonstrate the momentary changes in pupil diameter track 

individual differences in effort costs—indexed by Stroop costs—and reward-induced effort exertion. 

In the second manuscript, we show that strategic conflict in value-based choices is experienced as 

demanding, and avoided when all else is equal. I anticipate that my thesis will help refine our models 

of cognitive effort investment and provide the groundwork (e.g., stimuli, tasks, and measures) for 

future research on effort in value-based choices.  

 The experiments in this dissertation have provided novel insights into the allocation of 

cognitive effort in both cognitive control and value-based decision-making tasks. First, we helped 

corroborate pupil diameter as a reliable index of momentary changes in within-person effort exertion. 

Prior to this study, it remained unclear whether pupil diameter could be used as an indicator of 

within-person changes in pupil dilation as the wealth of evidence was from between-subjects designs 

(van der Wel & van Steenbergen, 2018). In section 2, we leveraged Cost-Benefit models of effort 

allocation (Frömer et al., 2021; Kurzban et al., 2013; Shenhav et al., 2017) to show reward-induced 

changes in pupil diameter predicted reward-induced changes in task performance. Second, we 

demonstrated demand avoidance in value-based choices independent of choice preference with a 



Running Head: EFFORTFUL DECISIONS 
 

146 

novel experimental paradigm. While previous work had established demand avoidance for cognitive 

control tasks control (Desender et al., 2017; Dunn et al., 2016; Kool et al., 2010; McGuire & 

Botvinick, 2010; Vogel et al., 2020; Westbrook & Braver, 2015) and a preference for less complex 

options (Zilker et al., 2020) or the status quo (Inman & Zeelenberg, 2002; Ritov & Baron, 1992; 

Samuelson & Zeckhauser, 1988; Tsiros & Mittal, 2000), it remained unclear whether this reflected 

demand avoidance or a preference for other choice features. This was particularly unclear as the use 

of heuristics is often assumed to be less effortful (Evans, 2003; Evans & Stanovich, 2013; Gigerenzer 

& Todd, 1999), however, there are some notable exceptions (Bobadilla-Suarez & Love, 2018; 

Thomson & Oppenheimer, 2021). In Section 4, we developed a novel paradigm to address these 

concerns by first validating choice sets using subjective demand ratings and leveraging a demand 

selection paradigm (Kool et al., 2010). Finally, we demonstrate that demand avoidance in value-

based choice is predicted by individual differences in momentary effort exertion. While previous 

work has demonstrated demand avoidance for cognitive control tasks predicts individual differences 

in cognitive task performance (Kool et al., 2010) there is considerably less work linking momentary 

effort exertion and demand avoidance. This is particularly important as it remains unclear whether 

those who demonstrate near chance-level (i.e., 0.5) preferences are indifferent or have failed to learn 

the task structure. In section 4, we leverage our novel experimental paradigm to demonstrate that 

effort exertion—indexed here by pupil diameter —during low-demand value-based choices predicts 

later demand avoidance. Together, the experiments outlined here demonstrate how effort exertion in 

value-based choice can be measured and studied using physiological, behavioural, and metacognitive 

methods. 

 While previous theories on value-based choice like Dual process theory posit that we use 

heuristics to avoid effort investment (Evans, 2003; Evans & Stanovich, 2013; Frederick, 2005), 

there is considerably less work which measures and predicts when effort is invested as people are 
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assumed to exert themselves when they are not using heuristics to decide (Thomson & 

Oppenheimer, 2021). Yet, recent work shows that heuristics may be more effortful as they 

require attentional control to implement when compared to more deliberative strategies like 

computing differences in EV (Bobadilla-Suarez & Love, 2018). To address this, we investigated 

this assumption by measuring pupil dilations while deciding in section 4 and show demanding 

value-based choices may not always elicit greater effort investment. This finding raises the 

question of whether momentary effort investment or trait-level demand avoidance predicts 

heuristic use, as posited by Dual Process models (Diederich & Trueblood, 2018; Evans, 2003; 

Evans & Stanovich, 2013). Further research is needed to test whether trait-level demand 

avoidance predicts individuals’ tendency to rely on heuristics across decision problems more 

generally, or whether it depends on the kinds of decisions or heuristics used. Furthermore, it 

remains unclear whether the strength of the relationship between heuristic use and demand 

avoidance in value-based choice depends on the amount of effort (e.g., how much working 

memory capacity, attentional control etc.) each heuristic requires to be implemented. 

Interestingly, theories of heuristic use like Dual Process theory also assume that effort in value-

based choice tends to lead decision-makers to EV maximizing choice (Diederich & Trueblood, 

2018). Yet, in experiments 2 and 3 of Section 4, we show that longer deliberation was not 

associated with more EV maximizing choice. Considering the results of this thesis, perhaps this 

view is not complete and requires the consideration of the marginal value of effort in value-based 

choice. 

 Other models of cognitive effort allocation like the Motivational Intensity Theory (Brehm 

& Self, 1989) highlight the importance of the marginal value of effort—"Is increasing my 

cognitive effort investment worth it?”. While effort exertion usually confers gains on task 
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performance, there are certain situations in which increasing effort exertion may not yield 

proportionally larger improvements in task performance. Researchers have recently 

demonstrated that decision-makers are sensitive to this marginal value of effort and modulate 

their exertion in proportion to the efficacy of their responses (Frömer et al., 2021; Otto et al., 

2022). When efficacy is high and task performance is strongly dependent on effort exertion, 

people tend to invest more effort when compared to situations where efficacy is low, and their 

task performance is decoupled from their effort. Aligned with these findings, we saw in the 

second section that people invest more effort when they are rewarded for correct responses in a 

cognitive control task. In section 4, however, we saw that when rewards were highest, people 

withdrew their effort—indexed both by faster response times and less information sampling—for 

demanding decisions. While these results seem contradictory, they are both aligned with the 

predictions of cost-benefit models which include the marginal value of effort (Frömer et al., 

2021; Otto et al., 2022). In section 2, greater effort investment was associated with better task 

performance—smaller switch costs—and more rewards. Yet, in section 4 greater effort 

investment for demanding choices did not yield more EV maximizing choices (i.e., rewards). 

Thus, while theories of value-based decision-making posit that effortful deliberation (i.e., not 

using heuristics) leads to more EV maximizing (i.e., unbiased) choices (Diederich & Trueblood, 

2018; Evans & Stanovich, 2013; Gigerenzer & Todd, 1999), the results outlined in my thesis 

suggest that effort is only allocated when it confers larger rewards, which is not the case for 

demanding value-based choices. Together with other work which suggests that heuristic use may 

place a greater tax on attentional control (Bobadilla-Suarez & Love, 2018), these results suggest 

that the marginal value of effort may differ between different decision strategies and guide which 
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strategy is ultimately used. Future work is needed to directly test whether people are equally 

sensitive to the marginal value of effort in value-based choice. 

 Despite the experiments in Section 4, it remains unclear which specific factors make a 

value-based choice demanding. In the first experiment of section 4, we show that decisions 

where there is low discrimination between the options in terms of expected value and decisions 

in which there is conflict between the heuristic responses are rated as more demanding. Thus, it 

remains unclear if choices are deemed as more demanding due to the increase in strategic 

conflict, their low discriminability or both. While this was not a research question explored in 

this thesis, it remains a limitation of the experiments in section 4. Previous work has increased 

task demands in value-based choice by placing environmental constraints on available time (Guo 

et al., 2017; Hu et al., 2015; Madan et al., 2015; Olschewski & Rieskamp, 2021; Zur & Breznitz, 

1981) or taxing cognitive load (Hinson et al., 2003, 2019; Whitney et al., 2008). While it is 

reasonable to assume that these kinds of manipulations may tax the cognitive resources (i.e., 

information processing and working memory capacity) needed to decide, they also assume that 

more effortful strategies are used when there are no constraints—an assumption that has yet to be 

confirmed. As mentioned above, the discriminability (i.e., similarity) of two options has also 

been used to manipulate the decision demand (Lebreton et al., 2009; Lee & Daunizeau, 2021). 

However, this assumes that decision-makers are attending to and using the expected values to 

decide, which may not always be the case when using heuristics like Maximax and Maximin 

(Coombs et al., 1970). Others have used similar approaches to define decision demand as the 

amount of information to be processed like the number of options (Iyengar & Lepper, 2000) or 

the complexity of the options (Bernheim & Sprenger, 2020; Huck & Weizsäcker, 1999; Sonsino 

et al., 2002; Zilker et al., 2020). However, these approaches to defining decision demand are 
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agnostic to the amount of cognitive control needed to execute a given heuristic (Frömer & 

Shenhav, 2021; Thomson & Oppenheimer, 2021). Other more fundamental approaches have 

relied on the number of Elementary Information Processes (EIP) (Johnson & Payne, 1985; Payne 

et al., 1993) needed to decide. Yet this approach is limited as it relies on parsing information into 

discrete units which is arbitrary and depends on the level of granularity (Thomson & 

Oppenheimer, 2021). To overcome some of these challenges, we focused on the possible 

underlying cognitive processes when deciding and we used the conflict between different 

decision strategies as a proxy for the cognitive control demands (Venkatraman et al., 2009). 

While this approach proved successful in eliciting higher demand ratings, it failed to elicit 

greater pupil diameter. It is difficult to predict the demand of a choice a priori; more work is 

needed to better understand what makes a value-based choice demanding by focusing on the 

underlying cognitive processes (i.e., working memory, information processing, and cognitive 

control) recruited to decide. 

Cognitive effort is defined as the intensification of mental activity using cognitive resources 

in service of a goal (Inzlicht et al., 2018). While this definition fits nicely in the cognitive control 

literature as the task demands are usually defined based on the tax it places on cognitive 

resources (Kurzban et al., 2013), this remains an open question for value-based decision-making. 

As previously discussed, research should focus on the demands placed on cognitive processes 

used while decision-making. For example, increasing demands on working memory could be 

achieved by increasing the number of options available (Iyengar & Lepper, 2000), the number of 

relevant attributes (Bernheim & Sprenger, 2020; Huck & Weizsäcker, 1999; Sonsino et al., 

2002) or asking participants to simultaneously complete a separate task (Hinson et al., 2019; 

Whitney et al., 2008). Additionally, information processing could be taxed by increasing the 
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amount of relevant information or decreasing the amount of time available to decide (Bobadilla-

Suarez & Love, 2018; Guo et al., 2017; Hu et al., 2015; Madan et al., 2015; Zur & Breznitz, 

1981, 1981). Information processing and attentional control are particularly relevant for 

implementing complex heuristics which require additional cognitive control to select the relevant 

information to successfully execute (Bobadilla-Suarez & Love, 2018). Cognitive control can 

equally help decision-makers select the optimal decision strategy or relevant information given a 

goal (Frömer & Shenhav, 2021; Smith & Krajbich, 2019; Thomas et al., 2019). Yet, it may be 

difficult to isolate a single cognitive process as many of the manipulations mentioned above tax 

multiple cognitive processes simultaneously. As discussed above, we show that decisions with 

low discriminability and strategic conflict are rated as more demanding. In addition, other 

cognitive processes like episodic memory have been shown to contribute to decision-making. 

For example, having participants engage in episodic future thinking, where they imagine 

themselves completing a task in a counterfactual future time and place has been shown to 

increase preferences for larger future rewards over small rewards now (Peters & Büchel, 2010). 

Similarly, participants’ risk preferences were shown to change after being given an episodic 

induction task (St-Amand et al., 2018). Both these findings are aligned with neuroimaging data 

which suggests that the hippocampus plays a critical role in breaking deadlocks in value-based 

decision-making (Bakkour et al., 2019) and the broader theory that posits that episodic memory 

supports decision-making via the hippocampus (Biderman et al., 2020). Thus, future work should 

also explore the contributions of episodic memory and future thinking to subjective feelings of 

mental effort. While we are limited in concluding that increasing strategic conflict makes value-

based choices more demanding, it highlights the importance of manipulating the demands on the 
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presumed cognitive processes underlying value-based decision-making. It also highlights the 

need to further study whether cognitive control is involved in resolving strategic conflict. 

Another key limitation of the research outlined here in this thesis is it focused on risky value-

based decision-making and not other forms of value-based decision-making. Here, we focused 

on risky value-based decision-making because it offered more experimental control over the 

stimuli where we could equate the rewards, risk level, and the amount of information between 

the choice sets. While these results suggest that demanding value-based choices are avoided 

when rewards are equated, it would be interesting to generalize these results to other types of 

decision-making like multiattribute decisions where the relevant features for deciding may be 

context-dependent (Busemeyer & Townsend, 1993; Frömer & Shenhav, 2021; Roe et al., 2001). 

This would be particularly important as there are numerous heuristics that could be applied to 

multiattribute decisions where each option can vary on the number of attributes and their relative 

importance, allowing experimenters to parametrically manipulate the degree of responses in 

conflict. It is possible then to test whether demands scale as a function of strategic conflict and 

avoidance scale with demand levels. These kinds of decisions may be more aligned with the 

choices faced in their daily lives. Yet, in most situations, participants have incomplete or no 

information about the consequences of the available options, this is studied in the domain of 

decision-making from experience (Hertwig & Erev, 2009), where choices are made based on 

previous experiences with each option. These choices have been classically understood using 

reinforcement-learning models (Dayan & Daw, 2008; Palminteri et al., 2015; Palminteri & 

Lebreton, 2021; Sutton & Barto, 2018) where preferences are formed as a function of each 

option’s reward history. Importantly, preferences when making these kinds of decisions have 

been demonstrated to differ dramatically from choices made from description—where the reward 
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contingencies and probabilities are made explicit (Hertwig & Erev, 2009). It remains unclear 

what would make these choices demanding and whether demanding choices would be avoided. 

Perhaps, similar to description-based decisions, perhaps low discriminability of reward 

contingencies in experienced-based choices can be used to manipulate decision demands. Thus, 

future work is needed to better understand demand in other kinds of value-based decisions and 

whether demand in these various forms of decisions would equally be avoided. 

We are also limited in our ability to interpret the unexpected decrease in pupil size observed 

in experiment 3 in Section 4 as a withdrawal of effort. Our pupillary results suggest that 

participants withdrew their effort when completing the high-demand risky choices. While the 

both the behavioural (i.e., RT and EV maximizing choice) and eye movement data are aligned 

with this interpretation, we cannot rule out other possibilities. For example, the correlation 

between low-demand choice in the test phase and pupil dilations to low-demand choice in the 

learning phase may reflect individuals’ general preferences (Hess & Polt, 1960). Alternatively, 

the observed relationship may be better explained by individual differences in learning the 

stimulus-choice set contingency. For example, those who learned this contingency best, may also 

be those with a more extreme preference for low-demand choice and larger pupillary responses. 

Further research is needed to help disambiguate these possibilities. Perhaps researchers could 

manipulate the marginal value of effort by leveraging stimuli with differing levels of task 

demands to test whether pupil diameter tracks effort investment. 

A wealth of indirect evidence for decision avoidance exists in the literature (Anderson, 2003) 

and here we show direct evidence that demanding value-based decisions are avoided, yet there 

also exists a parallel line of work which suggests that the freedom of choice is valued 

irrespective of its consequences (Leotti & Delgado, 2011). There is a wealth of behavioural 
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evidence suggesting that humans desire the freedom to choose consequences even if they are 

inconsequential on reward outcomes (Bobadilla-Suarez et al., 2017; Bown et al., 2003; Leotti & 

Delgado, 2011, 2014) or come at a financial cost (Bobadilla-Suarez et al., 2017). 

Neurobiologically, this preference for choice has been linked to activity in the ventral striatum 

(Leotti & Delgado, 2011, 2014), a brain region typically associated with reward processing 

(Knutson & Cooper, 2005; J. O’Doherty et al., 2004; J. P. O’Doherty et al., 2003). Together, 

researchers have interpreted these findings as suggesting that there is an inherent value to 

choosing (Bartling et al., 2014; Bobadilla-Suarez et al., 2017; Leotti & Delgado, 2011; Sunstein, 

2015). At the same time, other research suggests that demanding choices are avoided when there 

are too many options (Iyengar & Lepper, 2000) or one of the options is more complex. Together, 

these results suggest a purported paradox: choices are both valued and avoided. Why would 

people value and even seek out the freedom to choose when choosing is experienced as 

demanding and engages cognitive resources? Perhaps the key to understanding these 

contradictory findings is captured by the response efficacy—i.e., the association between actions 

and their rewards—in cost-benefit models of effort allocation (Frömer et al., 2021; Kurzban et 

al., 2013; Shenhav et al., 2017).  Cost-benefit models predict that demanding choice should be 

avoided when all else is equal (Hull, 1943; Kool et al., 2010; Kurzban et al., 2013). Indeed, 

across two experiments we found that demanding value-based choices were avoided. Yet, most 

experiments reporting a value of choice contrast a condition where choices have high response 

efficacy to a condition without response efficacy (Bobadilla-Suarez et al., 2017; Leotti & 

Delgado, 2011, 2014). Thus, it is possible that response efficacy is valued above and beyond the 

costs associated with effortful deliberation. More research is needed to better understand why 

choice is both valued and avoided. 
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Outside the lab, there is evidence that value-based choices can be taxing and are affected by 

extraneous factors. For example, there is some evidence that judicial decisions are swayed by the 

time since the last break (Danziger et al., 2011). Other work shows that demanding choices are 

even avoided, like a recent online webpage by Levitt (2021) which offered decision-makers 

struggling with decision paralysis the opportunity to flip a coin instead. This researcher surveyed 

these decision-makers after 2 and 6 months and found that they were more likely than chance to 

follow the advice of the coin (Levitt, 2021). Interestingly, these participants were also more 

satisfied with their decision and happier after 6 months when the coin suggested making a 

change over maintaining the status quo. This raises the question: what is the impact of decision 

avoidance on satisfaction, regret, and overall well-being? Does avoiding hard decisions make 

impact one’s happiness? On the one hand, avoiding demanding decisions requires forgoing more 

deliberative decision strategies which can result in higher rewards. On the other hand, avoiding 

demanding decisions can free cognitive resources and time to invest in more rewarding activities. 

This distinction between laboriously trying to maximize rewards and selecting “good-enough” 

strategies is captured by the cognitive styles of maximizing and satisficing respectively 

(Schwartz et al., 2002). Importantly, these individual differences in cognitive styles are thought 

to predict a number of important psychological outcomes. For example, maximizers have been 

found to be associated with lower levels of self-esteem, happiness, and well-being (Schwartz et 

al., 2002). Maximizers have been equally found to suffer from more regret in their choices and 

endorse more symptoms of depression (Iyengar et al., 2006; Schwartz et al., 2002). Although 

there are some mixed findings which suggest that maximizing may not consistently predict lower 

life satisfaction (Dalal et al., 2015; Diab et al., 2008). Perhaps this is because there is a difference 

between those who actually engage in maximizing strategies and those who simply strive to be 
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maximizers, where the goal of maximizing is uniquely associated with poorer well-being 

(Vargová et al., 2020).	This	distinction	between	behaviour	and	self-report	was	mirrored	

here,	as	we	found	that	individuals	consistently	avoid	demanding	value-based	choices,	yet	

this	trait	was	not	found	to	relate	to	trait-level	tendencies	of	satisficing.	Furthermore,	the	

results	outlined	in	this	thesis	highlight	the	importance	of	the	marginal	value	of	effort	(Otto	

et	al.,	2022)	whereby	effort	is	only	exerted	when	it	confers	benefits	to	both	task	

performance	and	performance-contingent	rewards.	Perhaps,	this	dependency	between	

effort,	performance	and	rewards	is	an	important	factor	in	determining	the	affective	

consequences	of	engaging	in	either	cognitive	style.	For	example,	maximizing	might	be	

better	suited	to	situations	where	the	marginal	value	of	effort	is	high	rather	than	in	

situations	where	there	is	a	decoupling	of	either	the	relationship	between	effort	and	

performance	or	performance	and	reward.	Future	work	is	needed	to	better	understand	the	

downstream	affective	consequences—well-being,	happiness,	regret	etc.—of	demand	

avoidance	on	decision-makers. 
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Section 7: Final Conclusions 

 While the judgement and decision-making literature and the cognitive control literature 

have—for the most part—developed independently, they both are based on the understanding of 

cognitive effort—how individuals choose to allocate their cognitive resources (Thomson & 

Oppenheimer, 2021). Across four experiments, we sought to test whether demand in risky value-

based choices is avoided like in the cognitive control domain by leveraging pupillometry and 

eye-tracking. Our results indicate that pupil diameter is a viable measure of momentary effort 

investment in cognitive control tasks, tracking both individual differences in cognitive capacity 

and reward-induced effort investment. We equally show that pupil diameter can be used in 

value-based choice to index effort exertion, controlling for differences in total reward, risk, and 

the number of outcomes. Behaviourally, we demonstrated that people find choices with smaller 

differences in expected value and more strategic conflict as more demanding and will avoid these 

demanding value-based choices when given the choice, all else being equal. Together, these 

findings suggest that risky value-based choices are experienced as demanding and avoided unless 

rewards offset the costs of effort investment—suggesting that cost-benefit models of effort 

investment provide a possible unifying framework between effort in both value-based and 

cognitive control tasks. 

 Understanding effort in risky value-based decisions is complex the demand level depends 

on the decision process used to choose. Often, researchers assume that employing heuristics is 

less effortful because they are faster or require less information to implement (Diederich & 

Trueblood, 2018; Evans & Stanovich, 2013; Frederick, 2005; Gigerenzer & Todd, 1999; 

Goldstein & Gigerenzer, 2002; Guo et al., 2017). Yet, some research suggests that successful 

heuristic implementation may require attentional control or other cognitive abilities (Bobadilla-
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Suarez & Love, 2018), making it unclear whether heuristic use truly reflects less effort 

investment. The research outlined in this thesis provides evidence for new behavioural and 

physiological ways of assessing effort investment in risky value-based decision-making. Here we 

similarly discuss how the cost-benefit framework of effort investment can serve as a unifying 

framework for the study of effort investment in both the domains of value-based choice and 

cognitive control. The work described in this thesis marks the initial steps to measuring, 

predicting, and understanding effort allocation in value-based work. However, future work is 

needed to corroborate which cognitive mechanisms are engaged when deciding between risky 

value-based options, how they contribute to feelings of demand, and how they differentially 

contribute to the cost-benefit decision to allocate effort. 
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