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Abstract

Background: Current spine models for analog bench models, surgical navigation and

surgical training platforms are conventionally based on 3D models produced from

anatomical human body polygon database or reconstructed from manual-labelled

subject-specific scanning data. A quick and accurate reconstruction method for

subject-specific spine models is important as often such platforms are leveraged to develop

or improve treatments. In the meantime, the conventional 3D model evaluation metrics can

only reflect overall static model accuracy and lack the specificity to evaluate the model

accuracy from different perspectives.

Objective: Propose a workflow of automatic subject-specific vertebra reconstruction

method and quantify the reconstructed model accuracy and model form errors.

Methods: Four different neural networks SegNet, UNet, ResUNet and KiUNet were

customized and trained for vertebra segmentation. To test and validate the workflow in

clinical applications, an excised human lumbar vertebra was scanned via computed

tomography (CT) and was reconstructed into 3D CAD models using the above four refined

networks. A reverse engineering solution was proposed using a high-precision measuring

robotic arm to obtain the original geometry of the excised vertebra as the gold standard.
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Several 3D volumetric evaluation metrics and a finite element analysis (FEA) method were

designed to show the model accuracy and model form errors for the geometries.

Results: The automatic segmentation neural networks achieved the best Dice score of

94.2% in the VerSe and CSI validation datasets. The accuracy of reconstructed models was

quantified with the best 3D Dice index of 92.80%, 3D IoU of 86.56%, Hausdorff distance of

1.60 mm, and the heatmaps and histograms were used for error visualization. The FEA

results of average von-Mises stress showed the impact of different geometries of the

reconstructed vertebra on biomechanical results and reflected partial surface accuracy of

the reconstructed vertebra under biomechanical loads with the closest difference of

1.924× 104 Pa compared to the gold standard model.

Conclusion: In this work, a workflow of automatic subject-specific vertebra

reconstruction methods was proposed while the errors in geometry and the corresponding

stress distribution were quantified. Such errors should be considered when leveraging

subject-specific modeling towards the development and improvement of treatments.
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Abrégé

Contexte : Les modèles de colonne vertébrale actuels pour les modèles de banc

analogiques, les plates-formes de navigation chirurgicale et de formation chirurgicale sont

traditionnellement basés sur des modèles 3D produits à partir d’une base de données de

polygones anatomiques du corps humain ou reconstruits à partir de données de

numérisation spécifiques au sujet et étiquetées manuellement. Une méthode de

reconstruction rapide et précise pour les modèles de colonne vertébrale spécifiques à un

sujet est importante, car ces plates-formes sont souvent utilisées pour développer ou

améliorer des traitements. Dans l’intervalle, les métriques d’évaluation de modèles 3D

conventionnelles ne peuvent refléter que la précision globale du modèle statique et

manquent de spécificité pour évaluer la précision du modèle sous différents angles.

Objectif : Proposer un flux de travail de méthode de reconstruction automatique des

vertèbres spécifiques au sujet et quantifier la précision du modèle reconstruit et les erreurs

de forme du modèle.

Méthodes : Quatre réseaux de neurones différents SegNet, UNet, ResUNet et KiUNet

ont été personnalisés et entrâınés pour la segmentation des vertèbres. Pour tester et valider

le flux de travail dans l’application clinique, une vertèbre lombaire humaine excisée a été
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scannée par tomodensitométrie (TDM) et a été reconstruite en modèles CAO 3D à l’aide des

quatre réseaux raffinés ci-dessus. Une solution d’ingénierie inverse a été proposée en utilisant

un bras robotique de mesure de haute précision pour obtenir la géométrie d’origine comme

étalon-or. Plusieurs mesures d’évaluation volumétrique 3D et une méthode d’analyse par

éléments finis (FEA) ont été conçues pour montrer la précision du modèle et les erreurs de

forme du modèle pour les géométries.

Résultats : Les réseaux de neurones à segmentation automatique ont obtenu le meilleur

score Dice de 94.2% dans les ensembles de données de validation VerSe et CSI. La précision

des modèles reconstruits a été quantifiée avec le meilleur indice de dés 3D de 92.80%, IoU

3D de 86.56%, distance de Hausdorff de 1.60 mm, et les cartes thermiques et histogrammes

ont été utilisés pour la visualisation des erreurs. Les résultats FEA de la contrainte moyenne

de von-Mises ont montré l’impact de différentes géométries de la vertèbre reconstruite sur

les résultats biomécaniques et reflétaient la précision partielle de la surface de la vertèbre

reconstruite sous des charges biomécaniques avec la différence la plus proche de 1.924 ×104

Pa par rapport au modèle étalon-or.

Conclusion : Dans cette étude, un flux de travail de méthodes de reconstruction

automatique de vertèbres spécifiques à un sujet a été proposé tandis que les erreurs de

géométrie et la distribution des contraintes correspondantes étaient quantifiées. De telles

erreurs doivent être prises en compte lors de l’utilisation de la modélisation spécifique au

sujet pour le développement et l’amélioration des traitements.
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Chapter 1

Introduction

As an important part of the musculoskeletal system, the spine plays a major role in

mobility and supporting the human upper body. The 33 vertebrae that can be divided

into five categories: cervical, thoracic, lumbar, sacrum and coccyx, have each corresponding

functions. Due to the complex structure and biomechanics of spine, many spinal pathologies

are under-diagnosed [2–4]. Therefore, the diagnosis, therapeutic method, and biomechanical

analysis of the spine are challenging.

In modern spine surgery and surgical related applications, the subject-specific spine

model is critical in various aspects to support diagnosis, preoperative planning,

intraoperative navigation, surgical training platforms and biomechanical analysis. However,

current spine models for analog bench models, surgical navigation and surgical training

platforms generally come from anatomical human body dictionary database such as the

BodyParts3D/Anatomography [5] or are reconstructed from time-consuming manual

segmentation performed by professional radiologists on subject-specific scanning data [6].

Therefore, a quick and accurate reconstruction method for subject-specific spine models is
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important as often such platforms are leveraged to develop or improve treatments.

Moreover, when quantifying the reconstructed model accuracy, current basic 3D model

evaluation metrics in medical applications lack the specificity to evaluate the model

accuracy from different perspectives. And these conventional metrics only compute the

overall static model accuracy such as the mean deviation [7–10], the mean absolute

distance [11–14] and the root mean square distance [15, 16], ignoring the critical partial

surface accuracy - because even minor errors in the area between the intervertebral disc

(IVD) and the vertebra will be magnified under spinal loads and hence greatly affect the

results in biomechanics. Therefore, the model form assessment is required to be quantified

from different perspectives both in geometry and under biomechanical loads. And such

errors should be considered when leveraging subject-specific modeling towards the

development and improvement of treatments.

To solve the above two main tasks, this research has the following objectives:

1. Design a workflow of automatic subject-specific vertebra reconstruction method.

• Develop automatic vertebra segmentation algorithms using deep learning models.

2. Quantify the reconstructed model accuracy and model form errors.

• Use reverse engineering to reconstruct a gold standard model for evaluation of the

automatic reconstructed models in clinical applications.

• Design different 3D model evaluation metrics and heatmaps/histogram for error

visualization.
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• Propose a finite element analysis (FEA) method to show stress distribution and

to reflect the partial surface accuracy.

Chapter 2 is the literature review introducing the background of current

subjuect-specific spine model applications, spine reconstruction methods and 3D model

evaluation metrics; Chapter 3 includes the workflow of automatic vertebra reconstruction

methods using four neural networks and tests the clinical performance on a human excised

dried-out vertebra; Chapter 4 evaluated the overall static accuracy of reconstructed models

using different 3D evaluation metrics; Chapter 5 proposed an FEA evaluation method to

show stress distribution and to evaluate the partial surface accuracy; Chapter 6 includes

the discussion and conclusion sections.
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Chapter 2

Literature Review

2.1 Applications of Subject-specific Spine Models

The spine, also known as the vertebral column, plays a major role in mobility and

supporting the human upper body. The 33 vertebrae that can be divided into five categories:

cervical (C1 to C7), thoracic (T1 to T12), lumbar (L1 to L5), sacrum (S1 to S5) and coccyx (4

fused tailbones), have their corresponding functions. Different types of diseases such as spina

bifida, spondylolisthesis, spondylolysis, spinal disc herniation, etc. and their therapeutic

methods were being studied with the development of surgical procedures.

In modern spine surgery and surgical related applications, the subject-specific spine

model is necessary for various aspects to support diagnosis, preoperative planning,

intraoperative navigation, surgical training platforms and biomechanical analysis.

Due to the complex structure of spine and its multiple functions, spinal pathologies

are often under-diagnosed [2–4]. In this situation, a subject-specific reconstructed three-

dimensional (3D) model can provide a direct view of spatial morphology, facilitating the
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recognition of spinal deformities such as kyphosis and scoliosis, the severity of vertebral

fractures, etc. The reconstructed model helps an early diagnosis of these pathologies and

effective treatments in time.

In recent years, computer assisted surgery (CAS) has greatly improved the operation

accuracy in spine surgeries such as the pedicle screw placement [17] compared with the

traditional free-hand surgeries. Based on the image-guided navigation system, the augmented

reality (AR) technology was introduced in the CAS to further increase the efficiency and

accuracy by merging the virtual information such as the subject-specific 3D spine hologram

and virtual surgical path in the real environment. With the help of head-mounted display

(HMD), the surgeons can see through the glasses the virtual information superimposed on the

patient’s surgical region so that they do not need to look away from the patient into another

screen to check the preplanned surgical path and current surgical instrument’s position. In

2013, Abe et al. first applied the AR navigation for vertebroplasty on the thoracolumbar

spine [18]. Later, more applications in the pedicle screw fixation were proposed depending

on the high performance of HMD, such as the HoloLens1 [19–22]. In 2019, Wei et al. applied

kyphoplasty for thoracolumbar spine using AR navigation [23]. In 2019, the first AR-based

rod bending for lumbosacral spine was proposed by Wanivenhaus et al. [24] and was then

improved by von Atzigen et al. [25]. In these real-time AR navigation system, a quickly-

updated and accurate subject-specific 3D model will undisputedly and directly affect the

final surgical precision and results.

Another practical use of subject-specific reconstructed model is in the virtual reality

(VR) training platforms. The medical students, trainees and surgeons can use the
1An ergonomic, untethered self-contained holographic device developed by Microsoft Corporation.
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high-fidelity VR simulator to improve the surgical techniques and validate the preoperative

surgical plan in an immersive surgery environment with real-time interactions including

visual, audible and haptic feedbacks. Gasco et al. proved the potential advantage of using

the VR simulator for lumbar pedicle placement instructions by comparing two groups of

medical students, in which the group using VR simulator outperformed the group using

conventional visual instructions in all areas [26]. Shi et al. also assessed the validity of VR

training platform on pedicle screw placement [27]. Gottschalk et al. tested the effect of VR

simulator in the placement of cervical lateral mass screws using a blinded randomized

control trial [28]. Halic et al. developed a VR and AR simulator for artificial cervical disc

replacement, which was validated by five physicians [29]. In all these applications for VR

training platforms, an accurate subject-specific reconstructed spine model is indispensable

for creating the holograms in the simulator.

The subject-specific reconstructed 3D spine model can also serve as analog bench models

for finite element analysis (FEA). As the biomechanical changes can reflect on spinal disease

in either short term or in long term, such as the osteoporosis [30], the subject-specific FEA

can not only analyse the biomechanics of spine, but also guide diagnostics and treatment [31].

Since the first 3D spine model was developed for pilot ejection studies in 1957 [32], more

applications of spine FEA has appeared using numerical methods such as the damper and the

spring-mass system [33]. The medical applications of FEA have focused on scoliosis [34–36],

fractures [37–39], degenerative disc disease [40, 41] and osteoporosis [42–44], etc. Due to

the diversity of interpersonal spine stiffness, subject-specific models can also be used for

population-based analysis to better study the spine behavior among different ages [45]. With

the development of 3D printing techniques, the subject-specific model can even be replicated
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as 1:1 models for real biomechanical tests.

In clinical practice, most of the subject-specific spine models are reconstructed from

image data of multiple medical imaging modalities, in which computed tomography (CT)

scanning is the most preferred modality to study the vertebrae for its high contrast in bone

to soft tissue. Due to the high spatial accuracy of CT image data, the subject-specific

vertebrae include the 3D morphology, which can be observed in any slices from the axial,

coronal or sagittal planes. Although the CT image data itself is enough to satisfy the

requirements of some traditional image-guided spine surgical navigation methods, such as

in the vertebral fusion surgery [46] and load analysis [47], most of the modern surgery and

surgical applications still require a subject-specific 3D spine model reconstructed from the

CT images.

However, current spine models for AR surgical navigation, VR surgical training

platforms, and finite element analysis mainly come from two sides: (1) 3D models

produced from anatomical human body dictionary database such as the

BodyParts3D/Anatomography [5], where the spine polygon mesh files can be customized

as per the research [48,49]; (2) 3D models reconstructed from subject-specific imaging data

of CT and magnetic resonance imaging (MRI) [6]. This requires manual segmentation

performed by professional radiologists, which is accurate but subjective and very

time-consuming for annotations. This research proposed an automatic workflow for

subject-specific vertebra reconstruction with both high speed and accuracy.
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2.2 Spine Reconstruction Methods

To reconstruct the spine model from subject-specific CT image data, the spine needs

to be first segmented from bones and soft tissues at voxel level - the segmented image data,

termed as mask or label, can delineate the exact boundaries and the interior area of the

vertebra. After the segmentation, the Marching Cubes algorithm proposed by Lorensen et

al. [50] and many of its variants such as the Flying Edges algorithm [51] can be used to

render the surface as polygonal mesh on the basis of the segmented mask. The vertebral

segmentation is a crucial step, not only because it indicates the spinal morphology and

pathology, but also because the accuracy of the reconstructed model mainly depends on the

segmentation quality.

2.2.1 Conventional Segmentation Algorithms

Due to the complex shape of the vertebra, the similar structure between adjacent

vertebrae, and the spatial position of vertebrae, soft tissues and ribs, the vertebra

segmentation is challenging. Traditionally, the vertebral segmentation was performed

manually by experienced radiologists, which meets the requirement in accuracy but is

subjective and time-consuming. Several semi-automatic segmentation algorithms were then

widely used in clinical practice and the results were refined by professionals afterwards.

One approach in early works is based on the image intensity: Kang et al. used region

growth and adaptive thresholding for skeletal structures segmentation [52]. Lim et al. used

the Willmore flow in level sets for spine segmentation [53] in 2014 and Hammernik et al.

proposed a variational intensity framework [54] in 2015. Other algorithms include
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model-based approaches such as the shape and pose statistic model by Rasoulian et

al. [55], 3D superquadric model by Štern et al. [56], high-order Markov random fields by

Kadoury et al. [57] and landmark-based shape representations by Ibragimov [58], etc.

These approaches provided practical solutions for vertebral segmentation. However, the

results still required refinement as the segmentation accuracy cannot satisfy the clinical

demands. And meanwhile, most of the conventional segmentation algorithms took a long

time for computation on every CT slices.

2.2.2 Automatic Segmentation Algorithms

More recently, with the advent of artificial intelligence, the supervised learning had an

increase in the prevalence of end-to-end semantic segmentation tasks, including medical

image segmentation. The accuracy of automatic spine segmentation has been further

improved. In 2015, Suzan et al. employed multilayer perceptron (MLP) to locate the

vertebral body and deformable shape modelling for segmentation [59]; Chu et al. [60]

proposed a random forest classification method at voxel level for vertebra segmentation.

Due to the outstanding performance of convolution neural networks (CNN) in image

processing tasks, different structures using convolution filters were proposed for spine

segmentation. In 2017, Sekuboyina et al. used an MLP to locate the lumbar spine and

then applied the UNet structure [61] for multi-class spine segmentation [62]. In 2019,

Lessmann et al. designed an iterative fully CNN to segment the vertebra one after another

using a sliding window [63]. More recently, Payer et al. adopted a coarse-to-fine

segmentation method combining spine localization, labelling and segmentation using
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Spatialconfiguration-Net and UNet [64]. The CNN-based UNet and its variants are now

widely used in automatic spine segmentation for its high segmentation accuracy and quick

inference speed. The models reconstructed from these segmentation results can also have

better quality compared to conventional segmentaion results.

2.3 Spine Model Evaluation Metrics

Current 3D spine model evaluation metrics in medical applications usually include:

the maximum deviation, the minimum deviation [65], the mean deviation [7–10], the mean

absolute distance [11–14] and the root mean square distance [15, 16], etc. However, there

are some limitations of the conventional metrics: (1) These metrics lack the specificity to

evaluate the model accuracy from different perspectives and cannot reflect the association

with the segmentation results; (2) These metrics only evaluate the overall static surface

accuracy.

To overcome the first limitation, this research took the advantage of several evaluation

metrics for 2D medical image segmentation tasks, such as the Dice coefficient [66], the

Intersection over Union (IOU) [67] and the Hausdorff distance (HD), etc. These metrics

have different properties, either sensitive to the boundaries or to the interior area of the

segmented mask. To make full use of these properties, the 2D image evaluation metrics

were extended to 3D volumetric evaluation metrics in this research. Based on the Hausdorff

distance, the heatmaps and histograms were also used for error visualization. More details

will be presented in Section 4.1.

To solve the second limitation, this research introduced an FEA method for model form
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assessment to explore the impact of different geometries of the reconstructed vertebra on

biomechanical results using average von-Mises stresses so as to evaluate the critical partial

surface accuracy. The FEA evaluation methods can compute the deformation and stress

distribution of the model under various biomechanical scenarios, where the regional surface

accuracy is more critical than the overall model accuracy. Because even minor errors in the

area between the intervertebral disc and the vertebra will be magnified under spinal loads

and hence greatly affect the biomechanical results. The FEA provides a different approach

for 3D model evaluation, not only analysing the biomechanical results but also reflecting the

critical partial surface accuracy of the reconstructed vertebra.
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Chapter 3

Automatic Vertebra Reconstruction

In this chapter, four different neural networks were first customized for automatic

vertebra segmentation. Then, two public spine datasets were used for training and

validating the segmentation accuracy. Several practical strategies were applied for

facilitating the training procedures. The experiment results showed the training details and

the segmentation results. Finally, a human excised dried-out vertebra was introduced to

test the automatic segmentation performance in clinical applications and was then

reconstructed into surface mesh model using the segmented masks from the above four

refined networks. The originial geometry of the dried-out vertebra which served as the gold

standard was obtained using reverse engineering.

3.1 Automatic Vertebra Segmentation Structures

In this section, four deep learning models based on the encoder-decoder architecture:

SegNet, UNet, ResUNet, and KiUNet were modified and customized to automatically
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segment the vertebra from the CT image data. All the four neural networks can be trained

to extract 3D volume information from the input tensor using 3D convolution filters and

output the corresponding segmented vertebra masks - the annotations of the vertebrae.

3.1.1 SegNet
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Figure 3.1: Schematic diagram of a custom 3D SegNet neural network structure.

In 2015, Vijay et al. proposed a fully convolutional neural network using an

encoder-decoder architecture for semantic segmentation, the SegNet [68], which achieved

better segmentation results than other architectures with less inference time and less

memory usage on both the road scenes and indoor scenes datasets. The SegNet includes an

encoder network, topologically same as the convolutional layers in the VGG network [69]; a

decoder network, to restore the size of low-resolution encoder feature maps back to the

original input image size; and a final classification layer using softmax classifier [70], a

non-linear activation function for pixel-wise segmentation. In the encoder, the RGB image

tensor is first input into a convolutional layer to learn hidden features, producing a set of
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feature maps. Following the convolutional layer, the output feature maps are applied the

pixel-wise rectified linear activation function (ReLU) [71]: max(0, x), for non-linearity.

Then, a max pooling layer [72] with a 2×2 window and a stride of 2 is used for

downsampling, reducing the dimension of feature maps to half by selecting the maximum

value of pixels in every 2×2 windows. The max pooling layer also helps provide translation

invariance against small spatial shifts of the features. The downsampled feature maps are

then input into the next convolutional layer and the above steps are repeated to learn more

compact hidden hierarchical features. In the decoder, the max pooling indices in the

encoder are reused for upsampling and the sparse upsampled feature maps are convolved

with convolution filters to generate dense feature maps. The final softmax layer can be

trained to produce an N -channel image of probabilities for N segmentation classes, with

the maximum probability at each pixel corresponding to the segmentation results of that

class.

Based on the original SegNet structure, this research proposed a custom 3D SegNet

structure for vertebra segmentation, as is shown in the schematic diagram Fig. 3.1.

Different from the initial SegNet, the custom 3D SegNet made the following modifications

and improvements for spine segmentation tasks:

(1) The architecture was modified for 3D convolution using 3D convolutional filters

instead of 2D convolution. Unlike single colorful images, medical image data using

tomographic imaging techniques is comprised of stacked images usually larger than 100

continuous slices. Hence, the dimension of the input image tensor would be

Height × Weight × Depth. Due to this property of medical images, the original 2D

convolution was extended to 3D convolution which has a larger volume receptive field to
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better use the 3D volume information from the input tensor. In Fig. 3.1, the number below

each tensor denotes the number of channels, which equals the number of convolutional

filters. The 3 × 3 × 3 convolutional filters were used in the 3D convolution with a stride of

1 and padding of 1 to keep the output tensor size the same before convolutions.

(2) A deep supervision mechanism using auxiliary loss [73] at the end of each stage in

the decoder was introduced to facilitate the final loss backpropagating to early layers and

to improve the segmentation accuracy. In deep neural networks, the gradients vanishing

problem [74, 75] always occurs during backpropagation, hampering the weights being

updated. This problem is even more severe in the 3D convolutional neural network which

uses the voxel-wise classification for segmentation. The backpropagation in deep

supervision branches can effectively alleviate the vanishing gradients and help accelerate

the convergence, by deriving the gradients directly from these branches.

Specifically, three additional lower-level feature maps were first convolved with 1×1×1

convolutional filters, reducing the tensor channels to the number of labels which is 2 in our

case (foreground and background). Secondly, they were all upscaled to the size of input image

tensor size using trilinear interpolation with scale factors of 2, 4 and 8 respectively. Then,

the three low-level updated feature maps applied a voxel-wise softmax activation function

for classification. Finally, all three outputs as well as the output from the end of the decoder

were compared with the ground truth mask respectively using the loss function in Section

3.3.1 to calculate the total segmentation error. The final auxiliary loss was comprised of the

following two parts:

Losstotal = Lossmain path + ω · (loss0 + loss1 + loss2) (3.1)
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where loss0,1,2 is from three low-level feature maps compared with the ground truth mask,

ω is a balancing weight, which will be decayed over training to prevent the deep supervision

mechanism from affecting the segmentation results negatively in the late stage of training.

This is because the final segmentation result only comes from the output at the end of

decoder rather than from the branches.

Due to the hierarchical structure in the decoder, the branches extended from lower-level

layers have different size of receptive fields that helps the model learn from multiscale context

information to improve the segmentation accuracy.

(3) Other differences include: The batch normalization layer [76] after the convolutional

layer is optional to use for faster and more stable convergence. The trilinear interpolation

was used in the decoder after each convolutional layer with a scale factor of 2 to double the

size of the output tensor.

The output tensor at the end of the decoder has 2 channels and was then mapped to

the softmax layer for classification. The pixel with the larger value in the two channels was

classified to the foreground - the vertebra, and the pixel with the smaller value was set to

the black background.

3.1.2 UNet

Based on the fully convolutional networks for semantic segmentation [77], Ronneberger

et al. proposed a popular neural network structure termed UNet [61] for biomedical image

segmentation. It achieved the best Intersection over Union (IOU) score of 77.5% in the

cell segmentation task challenge in 2015. As its name suggests, the UNet also includes a
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Figure 3.2: Schematic diagram of a custom 3D UNet neural network structure.

contracting path (encoder) and a symmetric expanding path (decoder), yielding a U-shaped

architecture. However, unlike the computationally efficient SegNet, the UNet applied more

successive convolutional layers in the hierarchical structures. Another big difference is that

the U-Net adopted skip connections between the encoder and the decoder, facilitating the

transmission of local features from the encoder to decoder. Specifically, the feature maps in

the encoder will be concatenated to the corresponding upsampling tensors in the decoder.

The concatenated feature maps with a large number of feature channels can thus provide

the lost information on the encoder side because of downsampling to higher layers. The skip

connections also help mitigate the gradients vanishing problem by backpropagating through

these shortcuts.

Based on the original UNet, Çiçek et al. proposed the 3D UNet [78] for dense volumetric

segmentation by replacing the 2D operations with 3D counterparts. This research made a
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further step and proposed a custom 3D UNet for vertebra segmentation, as is shown in the

schematic diagram Fig. 3.2. Compared with the 2D UNet, the custom 3D UNet had the

following modifications and improvements:

(1) The architecture was extended to 3D operations and more successive 3D

convolutional layers than in the SegNet were used to extract hidden features. In the

decoder, 3D transposed convolutional layers were applied for upsampling with 2 × 2 × 2

convolutional filters and strides of 2, upscaling the feature maps by a factor of 2. The

advantage of using transposed convolution is that the transposed convolutional filters can

be trained to learn how to upsample the segmentation map and double the resolution,

rather than simple trilinear interpolation in pixels.

(2) The deep supervision mechanism was applied in the same way as in the custom 3D

SegNet to help backpropagate and to improve the segmentation accuracy.

(3) The regular activation function, ReLU was replaced by the Parametric Rectified

Linear Unit (PReLU) [79] for adaptive nonlinearities after the convolutional layers. As is

shown in Fig. 3.3, the coefficient α in the negative part of PReLU can be adaptively learned

with little extra computational cost. According to the findings from He et al. [79], the

initial layers try to detect features such as edges and textures, suggesting the model tends

to become linear with α greater than 0; on the contrary, deeper layers are more ”non-linear”

and discriminative, requiring a smaller α. When the learnable coefficient α is small enough,

the PReLU also has the property of Leaky ReLU [80] to avoid zero gradients.

The output tensor at the end of the decoder has 2 channels and was then mapped to

the softmax layer for classification. The pixel with the larger value in the two channels was

classified to the foreground - the vertebra, and the pixel with the smaller value was set to
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the black background.

Figure 3.3: Activation functions of ReLU (left) and PReLU (right) with adaptive coefficient
in the negative part.
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Figure 3.4: Schematic diagram of a custom 3DResUNet neural network structure.

The Deep Residual UNet (ResUNet) was first proposed by Zhang et al. [81] to extract

roads from aerial images. The ResUNet takes advantage of both the UNet and ResNet [82].
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The ResNet, with its residual blocks, was proposed by He et al. [82] to ease training and

address the degradation problem. Intuitively, a deeper model can learn from high-level

features and achieve better results than ”shallow” models; however, during training, He

et al. found that when the deep model was about to converge, the accuracy tended to

saturate and then degraded soon - because the information from shallow layers becomes more

difficult to propagate and therefore gets lost. The residual connection was then designed to

address the degradation problem by creating a shortcut to directly send the information

from shallow layers to deep layers. Specifically in the ResUNet, after the feature maps are

fed into the downsampling or upsampling layer, the output tensor will be input into next

deeper hierarchical path in one branch; and in another branch, it will be added directly to

the output feature maps in this path element-wisely, as they have the same dimension.

Based on the original ResUNet, Zhang et al. proposed a dial/hybrid cascade 3D

ResUNet [83] for liver and tumor segmentation. In light of this structure, a custom 3D

ResUNet architecture based on the 2D ResUNet was used for vertebra segmentation, as is

shown in Fig. 3.4. The red lines in the schematic diagram are the residual connections in

the encoder and decoder. Other improvements and modifications compared with the 2D

ResUNet include:

(1) The architecture was extended to 3D operations and more successive 3D

convolutional layers than in the UNet were used in both the encoder and decoder to

extract compact representations.

(2) The 3D dilated convolutions were used in deep layers in the encoder to enlarge

the receptive field (or the filter size) without increasing parameters. Fig. [1] shows a 3 × 3

convolution kernel convolving over a 7 × 7 feature map with a dilation factor of 2. In
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convolutional neural networks, the receptive field plays a vital role as it determines the

capability of convolution filters to perceive the spatial connectivity in the input feature

maps. In the encoder, the more downsampling layers are used, the more dilated information

will get lost if the normal convolution filter is still used over the compact feature maps.

Therefore, in the last two stages of the encoder in the custom 3D ResUNet, the normal

convolution operations were replaced by dilated convolutions to counteract this side effect.

However, Wang et al. [84] pointed out that continuous dilated convolution with the same

dilation factor would cause checkerboard effects - the receptive field only covers an area with

checkerboard patterns and the sparse feature map will then lose part of local information

permanently. So they proposed a hybrid dilated convolution, which is used in this custom

3D ResUNet: the dilation factors in the last two stages were 2, 4 and 3, 4, 5 respectively.

Figure 3.5: The dilated convolution with a 3× 3 convolutional filter and a dilation factor
of 2 [1].

(3) The dropout was applied after the summation of residual connections except for the

first and last one, to prevent overfitting problems. Details can be found in Section 3.3.5.

(4) The same deep supervision mechanism was used to help backpropagate and to

improve the segmentation accuracy.

The output tensor at the end of the decoder has 2 channels and was then mapped to

the softmax layer for classification. The pixel with the larger value in the two channels was

21



classified to the foreground - the vertebra, and the pixel with the smaller value was set to

the black background.

3.1.4 KiUNet
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Figure 3.6: Schematic diagram of a custom light version of 3D KiUNet neural network
structure.

The UNet architecture and its variants have performed quite well in segmentation tasks

based on the backbone of the encoder-decoder structure. In deep layers of the encoder, the

model can learn high-level features from the compact representations with an increase in

the receptive field size. However, on the other side, the model will inevitably miss low-level

features such as the small structures and boundaries of the vertebra. To solve this drawback,
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Valanarasu et al. proposed the KiUNet [85], which combines two networks: the Kite-Net

(KiNet) and the UNet. The KiNet, which is an overcomplete convolutional network, can map

the input image to a higher dimension so that the model can learn to extract small structures

and fine details. Moreover, to exploit the full capacity of the two networks, Valanarasu et

al. designed a cross residual feature block (CRFB) to combine the features from the two

networks at different stages, which helps add complementary features during training.

In light of the original complex KiUNet structure which requires high computational

resources, a custom light version of 3D KiUNet was proposed in this research for vertebra

segmentation with a simpler structure and high accuracy. The custom 3D light KiUNet

includes two main networks, as is shown in Fig. 3.6:

(1) The above one is the KiNet, an overcomplete architecture to map the inputs to

higher dimensions so that the model can focus more on low-level features, such as the fine

details of small structures and boundaries of the vertebra. More specifically, the input image

tensor was first fed into a 3 × 3 × 3 convolutional layer with 32 convolutional filters, and

was then upsampled by a scale factor of 2 using trilinear interpolation. The output feature

maps were fed into another convolutional layer with only 2 convolutional filters, reducing the

number of channels to the one of final output segmentation maps. A max pooling layer was

followed to downsample the feature maps back to the resolution of the input image tensor.

(2) The bottom network is the UNet, an undercomplete architecture to map the inputs

to lower dimensions so that the model can focus on high-level features, such as the large

structures like the main body of the vertebra. The UNet was simplified with only one

convolutional layer in each stage of the encoder and decoder to reduce memory usage.

The output tensors with 2 channels from KiNet and UNet were then applied element-
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wise summation and mapped to the softmax layer for classification. The pixel with the larger

value in the two channels was classified to the foreground - the vertebra, and the pixel with

the smaller value was set to the black background.

3.2 Datasets

A dataset is a collection of data pieces with certain distributions, from which a deep

neural network can be trained to learn the features and then output the predicted features.

The dataset can be also used for validation during training or for tests after training to

evaluate the generalization performance of the model on unseen data.

In supervised learning tasks such as the medical image segmentation, each image data is

associated with a label, from which the deep learning model can extract an optimal feature

representation from the input image. Therefore, the quality of the datasets, including (1)

the amount and variety of the dataset to improve generalization ability (2) accurate labelled

masks to ensure the segmentation accuracy, will greatly affect the training results of deep

learning models.

Based on the above two principles, two public spine datasets were used in this

research. The first is from Large Scale Vertebrae Segmentation Challenge (VerSe) held in

conjunction with 2019 Medical Image Computing and Computer Assisted Intervention

(MICCAI) conference. The VerSe dataset contains 160 multi-detector CT (MDCT) scans

of 141 patients with a mean age of ∼ 59(±17) years and altogether 1725 vertebrae were

annotated at voxel level by a human-machine hybrid algorithm [86]. The MDCT scans

from the VerSe dataset include but are not limited to fractured vertebrae, metallic
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implants, cemented vertebrae, transitional vertebrae and noisy scans. The second dataset is

from the test set of 2014 MICCAI Workshop on Computational Spine Imaging (CSI) [87],

which is publicly available on SpineWeb1. The CSI dataset includes 10 CT scans covering

the entire thoracic and lumbar spine. Five cases were from healthy young adults (20-34

years, mean 27 years) and the other five had at least one vertebral compression fracture

from an osteoporotic cohort (59-82 years, mean 73 years). The annotations of CSI were

manually labelled and refined by a medical fellow and a research fellow.

The two datasets (160 VerSe + 10 CSI ) as well as the corresponding labels were

randomly split into training set (128 VerSe + 8 CSI ) and validation set (32 VerSe + 2

CSI ), where the validation set was not involved in training and was only used to compute

the validation Dice score and validation loss to test the generalization ability.

As the two CT datasets were scanned by multiple CT scanners with different

manufacturers (GE, Siemens, Toshiba, etc) and used diverse scan settings, the in-plane

resolution, the slice thickness and the Hounsfield unit (HU) values were mostly different,

which will disturb the training process to learn from the right distribution of features.

Hence, the two datasets require preprocessing before training and validation. The image

intensity was all thresholded between -2500 and 3500 to maintain the main features. Due

to the different pixel spacing and slice thickness, the voxel spacing was resampled to

1×1×1 mm. To maintain the real scale of the vertebra, the image size was restored back to

its original size according to the following equation:

New Size = Original Size×Original Spacing / New Spacing (3.2)
1spineweb.digitalimaginggroup.ca
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As the dimensions of the CT images were also different from each other, the image size of

every CT slice was expanded to times of 32 by padding the input tensor using replication

of the input boundary, creating a feasible size for the convolutional layers in downsampling

and upsampling path.

3.3 Training Strategies

This section elaborates on the choice and design of several training strategies to

achieve better training results, including the loss function to compute the error, the

optimizer to minimize the error, weights initialization methods, early stopping, dropout

strategy to prevent overfitting problems and data augmentation to expand the dataset.

3.3.1 Loss Function

The loss function plays a vital role in instigating the learning process of neural

networks because deep learning algorithms use different optimization methods such as

stochastic gradient descents in back propagation [88] to update the model weights and

minimize the loss function. The choice of the loss function is therefore extremely

important; the principle to design a loss function is to effectively represent the error

between the ground truth and the predicted outputs.

In medical imaging, the pixels grouped together in an image are defined as different

elements. The medical image segmentation, as the semantic image segmentation task, aims

to classify these elements at pixel level. To compare the accuracy of the segmented label

with the ground truth, the Dice index is widely used as an evaluation metric in medical
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imaging since 1994 [89]. The Dice index was later adapted to Dice loss by Carole H Sudre

et al. in 2017 [90] as a loss function to train a deep learning model for the first time. More

details were presented in Section 4.1.1.

Based on the Dice index, Wong et al. [91] proposed an exponential logarithmic loss,

combining the Dice score and cross entropy loss to focus on less accurately predicted cases.

For simplicity, only the exponential logarithmic Dice loss was adapted in this research, as

shown in Equation 3.3.

LDice = E [(− ln(Dice + ϵ)γ)] (3.3)

with Dice = 2(Σiδxy(i)) + smooth

Σix + Σiy + smooth
(3.4)

where i denotes all the coordinates of pixels in a single slice of CT image. x and y are

the value of the predicted label and ground truth label at i, either 0 for the background

or 1 for the foreground elements. E [·] is the mean value of Dice score with respect to all

slices of an CT image data. δxy(i) is the Kronecker delta: when x = y at i, δxy(i) = 1,

otherwise, δxy(i) = 0. ϵ is 10−5 to prevent invalid logarithm. The smooth parameter is the

pseudocount for Laplace smoothing to prevent overfitting, which is 1 in this research. The

γ in Equation 3.3 can further control the nonlinearities of the losses. According to Wong et

al., when γ = 3, the loss function has an inflection point around Dice = 0.5, achieving a

good balance between both low and high prediction accuracy samples.
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3.3.2 Optimization Techniques

To minimize the loss function during training, an efficient optimization method can not

only find the global minimum expeditiously with little memory usage but can also update

well in poor conditions: a situation when the function f(θ) will change rapidly with respect

to small changes of inputs.

Gradient-based optimization is a quite useful iterative optimization solution as the

derivative of the loss function in every step indicates the next direction to update the

weights θ. The first ideal choice is using the second-order gradients, also known as the

Newton’s method, which takes aggressive and short steps in directions of the curvatures to

reach the global minimum. However, the drawback is that it generally requires the

computation or estimation of the Hessian matrix (and the inverse Hessian matrix) of f(θ),

requiring exceeded memory capacity. For example, a deep learning model with one million

parameters has to compute a Hessian matrix of size [1,000,000×1,000,000], using around

3725 GB memory [92], which is impractical in neural network applications.

The second choice is the first-order gradient-based stochastic gradient descent (SGD)

methods [93]. It is widely used for its simplicity and effectiveness as the SGD always searches

for the steepest descent to update the weights, as shown in Equation 3.5.

θt = θt−1 − lr · ∇θt−1f(θt−1) (3.5)

where ∇θf(θ) is the gradient of loss function at θ and lr is the learning rate, a

hyperparameter of the stepsize in every updates. However, when f ′(θ) = 0, in which the

gradients cannot provide further information, the points are called critical points. Except
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for the ideal situation where the global minimum point is successfully found, other

situations may include: a maximum point; a saddle point, which is usually surrounded by

flat regions, difficult for updating because of small gradients; a local minimum point, which

is lower than neighbor points but higher than the global minimum.

To jump out of critical points, adding a momentum term [94] can help accelerate the

SGD by dampening the oscillations. From a physical perspective, when a ball rolls down a

hill, it accumulates momentum to come across the local minimum. As is shown in Equation

3.6, the µ · v is the momentum term where the hyperparameter µ (typically µ = 0.9) can be

interpreted as the ”coefficient of friction” to stop the ball at the bottom of the hill:

vt = µ · vt−1 + lr · ∇θt−1f(θt−1)

θt = θt−1 − vt

(3.6)

Another critical problem in training neural networks is to anneal the learning rate over

time, especially in poor conditions. A large learning rate in the beginning helps accelerate

the rate of convergence to save time while a small learning rate helps reach the best position.

Duchi et al. proposed Adagrad [95] in 2011 which includes an adaptive learning rate: the

higher the gradients in the last iteration, the more the learning rate will be reduced.

vt = vt−1 +∇2
θt−1f(θt−1)

θt = θt−1 − lr · ∇θt−1f(θt−1)√
vt + ϵ

(3.7)

where smooth term ϵ = 10−8 avoids division by 0. However, as the Adagrad used the

accumulations of gradients in previous iterations, it usually stops too early. In 2012, Tieleman

et al. proposed RMSProp [96] that used a moving average of square gradients instead:
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vt = β · vt−1 + (1− β) · ∇2
θt−1f(θt−1)

θt = θt−1 − lr · ∇θt−1f(θt−1)√
vt + ϵ

(3.8)

where β = 0.9 is the hyperparameter of decay rate to equalize the effect of aggressive

decreasing learning rate in Adagrad.

Combining the advantages of momentum and RMSProp, Diederik et al. proposed the

Adam Optimizer [97], a first-order gradient-based optimization of stochastic objective

functions in 2015. This research used the Adam optimizer as described in Algorithm 1. It

is worth noting that as m0 and v0 are initilized at 0, they are also biased towards 0 during

initial time. Therefore, a bias correction mechanism was applied to m̂t and v̂t to counteract

the biases.

Algorithm 1 Adam Optimizer. Default β1 = 0.9, β2 = 0.9999 and ϵ = 10−8. g2
t is the

elementwise square. t in βt
1,2 denotes the exponent.

Require: lr: Learning rate
Require: β1, β2 ∈ [0, 1): Exponential decay rates for moment estimates
Require: f(θ): Loss function w.r.t. weights θ
Require: θ0: Initial weights

1: m0 ← 0 ▷ Initial first moment variable
2: v0 ← 0 ▷ Initial second moment variable
3: t← 0 ▷ Initial time step
4: while training continues do
5: t← t + 1
6: gt ← ∇θt−1f(θt−1) ▷ Compute the gradients of loss function at t
7: mt ← β1 ·mt−1 + (1− β1) · gt ▷ Update biased first moment
8: vt ← β2 · vt−1 + (1− β2) · g2

t ▷ Update biased second moment
9: m̂t ← mt/(1− βt

1) ▷ Update bias-corrected moment
10: v̂t ← vt/(1− βt

2) ▷ Update bias-corrected moment
11: θt ← θt−1 − lr · m̂t/(

√
v̂t + ϵ) ▷ Update weights

12: return θt ▷ Return updated parameters
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3.3.3 Weights Initialization

Before the neural network starts training, the weights of the model are usually given

a certain distribution to better prevent gradients vanish problem during back propagation.

Early CNNs were mostly initialized by normal distribution (Gaussian distribution) [98].

However, in more recent deep neural network structures such as VGG [69], the gradients will

easily get vanished during back propagation [99] so the model has difficulties converging.

This is because the variance of the activation results will decrease after each layer so that

the gradients will also gradually vanish during back propagation in deep layers, making it

difficult to update the weights.

In 2010, Glorot et al. proposed the Xavier initialization [100] with scaled uniform

distribution to solve this problem. The Xavier initialization can be denoted as:

Wij ∼ U

[
− 1√

N
,

1√
N

]
(3.9)

where Wij is the weight and N is the number of input parameters. All the biases are set as

0. The Xavier initialization was designed to successfully prevent the variance of the back-

propagated gradients from decreasing; however, it works well only with linear activation

functions, but not with rectified linear unit activation functions.

When proposing the Parametric Rectified Linear Unit (PReLU), He et al. also derived

the Kaiming initialization [79] that particularly takes the rectifier nonlinearities into

consideration. Intuitively, as the rectified linear unit clamps almost half the output to 0,

the mean value will be doubled, and so as the standard deviation (STD). Therefore, to

keep a zero-mean Gaussian distribution, the STD was changed from 1√
N

to
√

2
N

. A rigorous
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proof can be found in the paper [79]. In experiments, the Kaiming initialization allows

neural networks with 30 convolution layers to converge while the Xavier initialization can

not. And their PReLU networks with Kaiming initialization achieved a 26% relative

improvement over the GoogLeNet [101] and surpassed human-level performance on visual

recognition challenge first time in history. In this research, the Kaiming initialization was

used for all four deep learning models.

3.3.4 Early Stopping

In this chapter, all four neural networks were applied early stopping to avoid overfitting

problems during training.

Early in 1995, Tom Dietterich has pointed out a central problem in supervised learning:

as the machine learning model is trained and evaluated based on the training data, it can

well predict the observations in the training data after training; however, the overfitting

problem will then occur when a model is too well fit with the training data, incurring a large

generalization error, that is, performing poorly on new, previously unseen data.

The regularization was then introduced to solve this contradiction. Girosi et al. [102]

studied the application of the regularization term in neural networks in 1995, indicating

that it actually imposed a smoothness constraint on the learning model, such as the L2

regularization, also known as weight decay or Tikhonov regularization. The L2 regularization

is added to the loss function as a parameter norm penalty in the form of Ω(θ) = 1
2∥ω∥

2
2,

where θ represents all of the parameters and ω represents the parameters affected by a norm

penalty. Assume the optimal value of weights for the loss function J(ω) is ω∗ = arg minωJ(ω),
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a quadratic loss function with L2 regularization for a linear regression model can be denoted

as the approximation Ĵ(θ):

Ĵ(θ) = J(ω∗) + 1
2(ω − ω∗)H (ω − ω∗) (3.10)

where H is the Hessian matrix of J . As shown in Fig. 3.7a, the gradient vanishes at ω∗, which

is the minimum of the loss function. The dotted circles are the equal values of regularizer L2

while the solid circles are the equal values of the unregularized loss function. The equilibrium

point ω̃ is the new optimal weights for the loss function with regularization term. As can be

perceived that the weights ω̃ are generally smaller than ω∗, the model will be able to cope

with inputs of high variance, compared with larger weights that high variance inputs will

greatly affect the results.

(a) (b)

Figure 3.7: An illustration of equal values of quadratic loss function with regularization
(a) L2 regularization (b) Early stopping

Early stopping, as its name suggests, is to stop training before finishing the targeted

training epochs if the results did not improve. Early stopping is widely used for its simplicity
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and effectiveness to reduce the cost of computation. Fig. 3.7b shows how early stopping

functions as a regularizer in a quadratic loss function: during gradient descent, early stopping

restricts the iterations of optimization algorithms to stop at an earlier point ω̃, which has a

similar effect of L2 regularization. But early stopping is unobtrusive and does not change

any training procedures - it just simply stops the training. However, the number of epochs

in early stopping remains a hyperparameter. In ideal situations, when the overfitting is

observed in the validation loss curve when the loss is increasing instead of decreasing during

training, the early stopping should then be applied. But the real validation loss curve has

more fluctuations, which is not typical to estimate the overfitting occurs. Prechelt [103] in

2012 concluded a tradeoff between training time and generalization, presenting a way to

solve this problem.

3.3.5 Dropout

In deep neural network structures such as the ResUNet in Section 3.1.3, the dropout,

proposed by Srivastava et al. in 2012 [104, 105] was used to prevent overfitting by reducing

co-adaptation of units in a neural network. In other words, part of the units is randomly

omitted and their output will be clamped to 0 so that the rest part of units is able to

independently learn features from the input with less dependence on other neurons.

Fig. 3.8 shows an example of how dropout functions in a 1-hidden-layer feedforward

network with a 0.5 drop rate. In Fig. 3.8b, half of the units are disabled randomly and half

of the units are selected to connect to the subsequent layer during training. When testing,

all the units become active again and the learned weights are halved for compensation.
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(a) Original neural net (b) After dropout

Figure 3.8: Dropout neural network: (a) Original model with 1 hidden layer (b) Dropout
model with a drop rate of 0.5

Srivastava et al. explored the effectiveness of dropout using MNIST dataset for image

classification tasks and CIFAR-10 dataset for object recognition tasks, the result indicated

that random dropout could effectively reduce the error for both benchmark tasks, from 1.60%

to 1.35% and from 14.98% to 12.61% respectively.

3.3.6 Data Augmentation

Data augmentation is a practical technique to artificially expand the dataset, not only

increasing the amount but also promoting the diversity of the dataset. Due to reasons such as

privacy protection for patients and deep expertise in clinical applications, large scale medical

image data with good-quality annotations is not easily accessed. However, the performance of

deep learning models heavily depends on the amount and quality of training image dataset

to improve the generalization ability. The more diverse the training dataset is, the more

robust the deep learning model will be in segmentation tasks for unseen image data. In

one of the early applications of CNNs, LeNet-5 [106], the dataset of handwritten digits was
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warped for better image classification performance; the AlexNet proposed by Krizhevsky et

al. [107] used randomly cropped and flipped image augmentation techniques, which reduced

overfitting in deep neural networks.

(a) (b) (c) (d) (e)

Figure 3.9: Data augmentation of dataset: (a) Original image (b) Randomly cropped image
(c) Flipped image (left to right) (d) Flipped image (upsidedown) (e) Gaussian blurred image

In this research, several typical data augmentation methods were applied, as shown in

Fig. 3.9, including randomly cropping the image data in three dimensions, flipping the image

from left to right or upside down, and adding Gaussian blur on the image with a standard

deviation of 1 for the Gaussian kernel. The principle of designing these strategies is to create

various image datasets under different situations while keeping the main features unchanged.

During training, both the original CT image data and the corresponding label will apply

the above data augmentation techniques each with a probability of 50%.

3.4 Experiment Results

The four neural networks in Section 3.1 were implemented using PyTorch 1.10 (Paszke

et al.) [108], an open-source Python [109] package of machine learning framework. The total
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number of training epochs was 700 and the batch size was 1 due to memory limitation,

namely in every epoch all the training data will be propagated through the network one

after another. The four deep learning models were trained on a GTX 1080 GPU with 8

GB memory. The initial learning rate was 0.0001 and would be divided by 2 after every

150 epochs; in each epoch, the learning rate was adaptively adjusted according to the Adam

optimizer. The initial coefficient of auxiliary loss for the deep supervision mechanism was

0.4 and would be multiplied by 0.8 after every 30 epochs. The early stopping was applied

during training: if the validation Dice score does not improve after 100 epochs, the training

progress will be forced to stop. A dropout rate of 0.2 was used in ResUNet. Other training

strategies were used as per Section 3.3.

Table 3.1 shows the number of parameters of each model, results of training and

validation Dice score, and total training epochs and time. The number of parameters goes

up in direct proportional to the complexity of the model. The ResUNet achieved the best

validation Dice score of 0.9420 and the KiUNet achieved the best training Dice score of

0.9506. It is worth noting that although the number of parameters of KiUNet is quite less

than the one of ResUNet, the two models had similar training time due to high memory

usage of KiUNet. Fig. 3.10 ∼ Fig. 3.13 showed the learning curves of four neural networks

including the Dice score and the loss curves in both training and validation stages. The

validation Dice score and validation loss data were collected after every training epoch.

With the decline of the loss over time, the four models successfully converged and the Dice

score had an overall growth despite some oscillations. Fig. 3.14 shows the segmentation

results of one CT slice from the validation dataset during training of the SegNet at 10, 20,

30, 40, 50, 60, 70, 80, 90, 150, 300, 600 epochs.
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Table 3.1: Training details and segmentation results of SegNet, UNet, ResUNet and
KiUNet.

SegNet UNet ResUNet KiUNet
Number of parameters 2326190 3939844 9498744 2329264
Training Dice Score 0.8177 0.8979 0.9473 0.9506
Validation Dice Score 0.7549 0.8772 0.9420 0.9311
Training Time 1d13h 1d7h 1d23h 1d23h
Epochs 700 513 591 569

(a) (b) (c) (d)

Figure 3.10: Learning curves of SegNet: (a) Training Dice Score (b) Training Loss (c)
Validation Dice Score (d) Validation Loss

(a) (b) (c) (d)

Figure 3.11: Learning curves of UNet: (a) Training Dice Score (b) Training Loss (c)
Validation Dice Score (d) Validation Loss

(a) (b) (c) (d)

Figure 3.12: Learning curves of ResUNet: (a) Training Dice Score (b) Training Loss (c)
Validation Dice Score (d) Validation Loss
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(a) (b) (c) (d)

Figure 3.13: Learning curves of KiUNet: (a) Training Dice Score (b) Training Loss (c)
Validation Dice Score (d) Validation Loss

(a)

(b)

Figure 3.14: Segmentation results of SegNet during training at 10, 20, 30, 40, 50, 60, 70,
80, 90, 150, 300, 600 epochs. (a) Axial plane (b) Sagittal plane
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3.5 Reconstruction of the Dried-out Vertebra

To test the performance of the four neural networks in clinical applications, a human

excised dried-out lumbar vertebra was introduced. The dried-out vertebra was scanned

using computed tomography (CT) at McGill University Health Centre. The corresponding

CT image data has a dimension of 972×972×1247 with the image intensity from -999.7 to

8233. Both the slice thickness and pixel spacing are 0.08508 mm.

To keep the format of the input image data consistent with the training data, the CT

image intensity of the dried-out vertebra was thresholded between -2500 and 3500, and the

voxel spacing was resampled to 1×1×1 mm. To maintain the real scale of the vertebra, the

image size was also reset to 83×83×107 according to Equation 3.2.

The preprocessed CT image data of the dried-out vertebra was then input into four

neural networks using the best training models respectively to obtain the four different masks,

which is shown in the red area of Fig.3.15. The CT image of the dried-out vertebra was also

manually labelled using an open-source software ITK-SNAP (University of Pennsylvania,

PA) [110]. The Dice scores of the automatically segmented masks of the dried-out vertebra

compared to the manual label were 0.9002, 0.9333, 0.9483 and 0.9715 respectively for the

four networks. The Marching Cubes algorithm proposed by Lorensen et al. [50] was used to

reconstruct the model according to the above five masks. The reconstructed models were

shown in yellow in Fig.3.15.
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Figure 3.15: Reconstructed models of the dried-out vertebra according to different masks.

3.6 Reverse Engineering of the Dried-out Vertebra

In this section, an accurate reverse engineering solution using the FARO Arm, a high-

precision measuring robotic arm, is proposed to obtain the original geometry of the dried-out

vertebra, which will serve as the gold standard of the reconstructed virtual model. Several

post-processing procedures of the point clouds after scanning were conducted to restore the

geometry of the vertebra as much as possible.

3.6.1 FARO Arm Scanning

To obtain the original geometry of the dried-out vertebra with high accuracy, the FARO

Edge ScanArm HD (FARO Technologies, Lake Mary, FL) was used to capture the point

clouds of the model. The FARO Edge ScanArm HD is a 7-axis, articulated arm with a

spherical working volume. A laser line probe can be attached to the end effector of the

robotic arm for three-dimensional scanning. According to the technical specifications [111],

the robotic arm has an accuracy of±25 µm and repeatability of 25 µm, 2σ, and the maximum

scan rate of the laser probe can reach 560,000 points/sec.
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(a) (b)

Figure 3.16: The FARO Arm with laser line probe attached to the end effector for 3D
scanning.

The Geomagic Studio 2014 1 was used for communication and parameters setting

between the Faro Arm and the computer. It was also used for post-processing procedures

of the raw data in the following steps.

A plane compensation of the laser probe was first applied to look for reference of the

plane on which the vertebra was ready for scanning. Then, during scanning, the spacing of

the ordered data was set to 0.013 mm. The dried-out vertebra was first scanned in the upper

half and was then flipped to scan the bottom half to ensure there was a complete vertebra

included in the point clouds, as shown in Fig. 3.16.

3.6.2 Point Clouds Post-processing

After the two sets of point clouds were collected, several post-processing procedures

were conducted to transform the raw 3D scanned data into a complete vertebra as surface
1A Toolbox for transforming 3D scanned data into surface and native CAD models, developed by 3D

Systems, inc.
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mesh.

The point clouds of the table, which were also scanned in as part of the raw data, were

firstly removed. Secondly, as the two sets of point clouds, the upper and bottom halves of

the vertebra, both include the same transverse process, a rough registration using landmarks

was applied. Four landmarks were selected on the tranverse process of the two sets of point

clouds in the same sequence, as shown in Fig. 3.17.

Figure 3.17: A rough registration based on four landmarks selected on the transverse
process for each half of the vertebra.

A global registration of two halves of the vertebra was then conducted using functions in

Geomagic Studio with a result of an average distance of 0.1056 mm and standard deviation

of 0.1418 mm after 18 iterations, as shown in Fig. 3.18.

The point clouds of the complete vertebra were then transformed into surface mesh.

Fig. 3.19 shows the final result of the scanned dried-out vertebra composed of very high

accurate surface mesh with 3,314,916 triangles.

43



Figure 3.18: Global registration based on the two halves of the vertebra.

Figure 3.19: Final result of the scanned dried-out vertebra.
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Chapter 4

Model Evaluation of Reconstructed

Vertebra

In this chapter, to evaluate the accuracy of the reconstructed models compared with

the gold standard model, several 3D model evaluation metrics were proposed as well as the

heatmap was used for error visualization and the histogram to show error distribution.

4.1 Metrics for Three-dimensional Model Evaluation

In this section, several evaluation metrics originally designed for two-dimensional image

segmentation tasks including Dice score, IoU and Hausdorff distance, were modified for

3D surface mesh evaluation. The heatmap and histogram as well as some basic 3D model

evaluation metrics were also introduced.
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4.1.1 Sørensen - Dice Coefficient

The Sørensen - Dice coefficient, which is also known as the Dice similarity coefficient

(DSC) or F1 score, was first proposed by Lee R. Dice [66] in 1945 to gauge the similarity of

two species. The original formula was applied to discrete data, as shown in Equation 4.1.

DSC = 2 SA
⋂

SB

SA + SB

(4.1)

The Dice coefficient was first introduced to the field of medical image segmentation

by Zijdenbos et al. [89] in 1994 for comparing the difference between pixel-based images.

Since then, the Dice coefficient, as well as many of its variations [112], has become one of

the essential metrics to compare the labeled masks against the gold standard masks. As

the image segmentation task belongs to the binary classification, the Dice coefficient can

also be denoted using the confusion matrices of true positive (TP), false positive (FP), and

false negative (FN), which stands for pixels correctly segmented as foreground, pixels falsely

segmented as foreground and pixels falsely detected as background respectively.

DSC = 2 TP

FP + 2TP + FN
(4.2)

Different from the pixel-wise accuracy, the Dice coefficient can not only reflect the

accuracy but also penalize the false positive data and focus more on perceptual quality. Due

to this feature, it was later adapted to a loss function for semantic segmentation tasks in

deep learning by Carole H Sudre et al. [90] in 2017, known as the Dice Loss:
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Dice Loss = 1− 2 SA
⋂

SB

SA + SB

(4.3)

However, as the Dice coefficient is generally used to compare the similarity between two-

dimensional images, it was modified in this section for 3D model evaluation. In Equation

4.4, the modified Dice coefficient is twice the intersection over the sum of two volumes A

and B. The result ranges between 0 and 1. And when the result equals 1, the two models

are considered the same one.

3D DSC = 2 VA
⋂

VB

VA + VB

∈ [0, 1] (4.4)

4.1.2 Intersection over Union

The intersection over union (IoU), also known as the Jaccard similarity coefficient or

Jaccard index, is another commonly used evaluation metric for medical image segmentation.

The IoU was first designed by Paul Jaccard [67] in 1912 to measure the similarity between

finite sample sets. It was later broadly used in semantic segmentation for its outstanding

evaluation performance.

As its name suggests, the IoU computes the ratio of the overlapped area between the

predicted mask and the ground truth mask to the union area of the predicted mask and

the ground truth mask. Equation 4.5 indicates that the IOU always ranges from 0 to 1,

signifying a poor segmentation result to a perfect segmentation result.

IoU = SA
⋂

SB

SA
⋃

SB

(4.5)
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Similar to the Dice coefficient, the IoU can reflect both the value and localization of the

masks. Actually, the IoU and Dice coefficient are monotonically related: IoU = Dice/(2 −

Dice). In image segmentation tasks, the IoU can be described using confusion matrices for

binary classification, as shown in Equation 4.6.

IoU = TP

FP + TP + FN
(4.6)

The IoU can also serve as the geometrical-based loss function when training deep neural

networks for image segmentation. It was first used in 2009 by Polak et al. [113] and has a

more common name of Jaccard loss.

In this section, the formula of IoU was extended to fit with three-dimensional models.

In Equation 4.7, the modified IoU is the intersection of two volumes A and B over the union

of two volumes A and B. The result ranges between 0 and 1. And when the result is equal

to 1, the two models are considered the same one.

3D IoU = VA
⋂

VB

VA
⋃

VB

∈ [0, 1] (4.7)

4.1.3 Hausdorff Distance

The Hausdorff distance (HD) was first proposed by Felix Hausdorff in 1914 to measure

the degree of mismatch between two subsets of a metric space in his book Grundzüge der

Mengenlehre. During past decades, Hausdorff distance had many applications in computer

vision such as object matching [114], image comparison [115] and measuring surface errors

[116], etc.
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Given two non-empty point sets A = {a1, a2, ..., am} and B = {b1, b2, ..., bn}, the shortest

distance of point a to set B is defined as:

d(a, B) = min
b∈B
∥a− b∥ (4.8)

where ∥·∥ denotes the L2 norm. Then, the one-sided Hausdorff distance from A to B is

defined as:

h(A, B) = max
a∈A

d(a, B) (4.9)

Equation 4.9 aims to find the farthest distance among the shortest distances of every

point in A from all points in B. The Hausdorff distance from B to A is defined as h(B, A)

in the same way. The function of h(A, B) and h(B, A) is asymmetric, which in general they

will have different results. Therefore, a bi-directional Hausdorff distance between A and B

is defined as:

H(A, B) = max{h(A, B), h(B, A)} (4.10)

Different from metrics such as the Dice coefficient and IoU index which are composed

of the interior area of the mask, the Hausdorff distance is very sensitive to the contour of

the segmented masks. Even a single outlying point will greatly affect the result of Hausdorff

distance of that point. Hence, the 95th percentile of Hausdorff distances between boundary

points in A and B (95% Hausdorff distance) is frequently used to eliminate the impact of

those small subsets of outliers.
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To measure the differences between two 3D surfaces in triangular meshes A and B

using Hausdorff distances, a common solution is to take each vertex a from mesh A to

search for the closest vertex b on mesh B. The farthest distance among all those shortest

distances of vertexes between mesh A and B is the one-sided Hausdorff distance. And then,

vice versa to compute the other-sided Hausdorff distance. To improve the accuracy and to

reduce memory usage and unnecessary computations of the above method, Aspert et al. [116]

appropriately implemented the Hausdorff distance algorithm by adding more sample points

on each triangular mesh and adding the points to triangle distance evaluation.

In practice, to clearly show the different areas and range of errors, the colorful heatmap

is often used to compare the surface quality. Each Hausdorff distance of the sample points

on the surface mesh was computed and stored so that the range of error can be colored on

each triangular mesh until covering its whole surface.

4.1.4 Basic Evaluation Metrics

Assume there are N sample points on mesh A. Based on Equation 4.8, we can compute

each shortest distance di of all sample points on mesh A as Equation 4.11:

di(a, B) = min
b∈B
∥a− b∥ (4.11)

Using every di, the following useful metrics can be also modified to further evaluate the

3D surface mesh:

Maximum Sample Error, which quantifies the maximum error between two surface

meshes:
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Max Sample Error = Max(di) (4.12)

Minimum Sample Error, which quantifies the minimum error between two surface

meshes:

Min Sample Error = Min(di) (4.13)

Mean Sample Error, which quantifies the mean error between two surface meshes:

MSE = d̄ = 1
N

Σidi (4.14)

Standard Deviation Error, which quantifies the standard deviation of the sample error:

STD =
√

1
N − 1Σi(di − d̄)2 (4.15)

Mean Square Distance, which computes the mean square distance of all sample errors:

MSD = 1
N

Σid
2
i (4.16)

Mean Absolute Distance, which computes the mean absolute distance of all sample

errors:

MAD = 1
N

Σi |di| (4.17)

It is worth noting that the above metrics are all one-directional.
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4.2 Model Registration

To compare the difference between two models, model registration is necessary as the

FARO Arm scanning coordinate system of the gold standard model is different from the CT

coordinate system of the reconstructed vertebra. A homogeneous transformation matrix was

used to apply the rigid body transformation to the gold standard model.

To obtain the transformation matrix, a coarse registration based on landmarks was

first introduced. Two sets of landmarks were selected in the same order on approximate

same positions of the surface mesh of the two different models, as is shown in Fig.4.1a.

Assume the two point sets, P and Q, each having n ordered points, P = (p1, p2, ..., pn) and

Q = (q1, q2, ..., qn), the landmark registration is designed to find the matrix T̂ :

T̂ =arg min
T

n∑
i=1
|pi − qi|2 (4.18)

Based on the matrix T̂ , the Iterative Closest Point (ICP) algorithm was then applied as

a more accurate global registration. The ICP algorithm was first proposed independently by

Chen et al. [117] and Besl and McKay [118], which is capable of estimating a transformation

T that best aligns two point sets P = (p1, p2, ..., pn) and Q = (q1, q2, ..., qm), where in general

n ̸= m. In this section, P and Q are the vertices of the two surface meshes. In the first

step, given the initial rotation matrix R and translation matrix t from T̂ , the source point

sets will be transformed to a new position and orientation. The second step is to compute

the nearest point in the set P for every point in the set Q using Euclidean distance without

requiring the correspondences between P and Q:
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di = min{
√

p2
n − q2

m} (4.19)

The outliers that have a distance di larger than a threshold will be removed. In the third

step, the homogeneous transformation matrix T including rotation matrix R and translation

matrix t is calculated using Singular Value Decomposition (SVD) to minimize the error:

E(R, t) =
m∑

i=1

n∑
j=1

ωij∥qi − (Rpj + t)∥2 (4.20)

where ωij = 1 if point qi is the nearest point to pj. If the error is higher than the given

threshold, the R and t will be input into the first step and all the three steps will be iterated;

otherwise, the T is the optimal transformation matrix.

(a) Landmark Registration (b) ICP Registration

Figure 4.1: A practical GUI software for model registration.

To realize the functions of selecting points on the surface mesh, a practical software1

1https://github.com/dzzhang96/Points-Registration-ICP
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with graphical user interface (GUI) was developed for this research based on Visualization

Toolkit (VTK) 7.0 (Kitware Inc.) [119], an open-source library for 3D computer graphics

and Qt 5.14.2 (The Qt Company, Espoo, Finland), a widget toolkit for creating GUI, as

shown in Fig.4.1.

By right-clicking on the surface mush, the software can render a red sphere on the

clicked point and collect the corresponding coordinates. After two sets of points were

selected, the landmark registration and the ICP registration using two VTK modules, the

vtkLandmarkTransform class1 and vtkIterativeClosestPointTransform class2 were

conducted to obtain the homogeneous transformation matrix T , which was then applied on

the target model to complete the model registration. The maximum iteration number was

set to 50 for the ICP registration.

4.3 Experiment Results

In this section, the accuracy of five different dried-out vertebra models reconstructed

from output masks of the manual label, SegNet, UNet, ResUNet and KiUNet was evaluated

using metrics in Section 4.1 as well as the heatmap for error visualization and the histogram

for error distribution.

The evaluation methods were calculated based on the structure of Meshvalmet 3.0

(University of North Carolina at Chapel Hill, NC), an open-source tool measuring surface

to surface distance between two triangle meshes using VTK library [119] for computation

and visualization. Meshvalmet 3.0 implemented the methods of Nicolas Aspert et al. [116]
1https://vtk.org/doc/nightly/html/classvtkLandmarkTransform.html
2https://vtk.org/doc/nightly/html/classvtkIterativeClosestPointTransform.html
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to efficiently select the sample points and estimate the distance between discrete triangular

3D meshes with adjustable user-specified uniform sampling level.

4.3.1 Different Metrics Results

Before evaluation, to keep the number of triangles of the reconstructed models and

the FARO Arm-scanned model in the same order of magnitude, the latter was reduced to

57,332 triangles while maintaining the original geometry as much as possible. Due to over-

segmentation volumes in the reconstructed models, those outliers that were not attached to

the vertebra were removed so that the evaluation results can better focus on the accuracy of

the main body of the vertebra.

As most of the metrics in Section 4.1 are one-directional, the results will be different

when comparing the reconstructed model with the gold standard model, and in turn, when

comparing the gold standard model with the reconstructed model. Therefore, the evaluation

will include both two-directional results.

Table 4.1 shows the evaluation results of the model reconstructed from the manual label.

The reconstructed model achieved a Dice score of 96.41%, IOU of 93.08% compared with

the gold standard model and the maximum Hausdorff distance was 2.27 mm. The standard

deviation error of all sample points, the mean square distance and mean absolute distance

were both low in two-directional results, indicating that the model was quite close to the

gold standard geometry. However, the drawback is that the manual label took around an

hour to label on the CT image data and required examination by professional radiologists,

which is time-consuming in clinical applications. And this model still shows minor errors

55



compared to the FARO Arm-scanned vertebra.

Table 4.1: Evaluation results of the vertebra reconstructed from the manual label.

A: Gold Standard Vertices: 28640 Triangles: 57332
B: Manual Label Vertices: 17476 Triangles: 34952
Sampling Steps Min Sampling Frequency Number of Bins

0.5 2 256
A→B

HD (mm) Dice Index IOU MSD (mm) MAD (mm)
2.2666 0.964149 0.93078 0.106805 0.246156

Signed Distance
MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)
-0.0908982 0.313915 -2.2666 2.112402

Absolute Distance
MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)

0.246156 0.21497 0 2.2666
B→A

HD (mm) Dice Index IOU MSD (mm) MAD (mm)
1.188989 0.964149 0.93078 0.062877 0.200327

Signed Distance
MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)

0.137428 0.209741 -0.92042 1.188989
Absolute Distance

MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)
0.200327 0.150819 0 1.188989

Table 4.2 shows the evaluation results of the model reconstructed from the output mask

of SegNet. The reconstructed model has an over-segmentation volume on the spinous process,

which can be seen in Fig. 4.2 so that the maximum Hausdorff distance (or the maximum

sample error) came to 20.80 mm and the mean square distance was 7.11 mm. The model

achieved a Dice score of 88.29%, IOU of 79.03%. When the reconstructed model was overlaid

on the gold standard model, the heatmap in Section 4.3.2 shows a large blue area, which

means the model is actually smaller than the gold standard model.

Table 4.3 shows the evaluation results of the model reconstructed from the output mask

of UNet. The reconstructed model achieved a Dice score of 92.43%, IOU of 85.93% and the

maximum Hausdorff distance was 3.24 mm. The standard deviation error of sample points,

the mean square distance and mean absolute distance were low in both two-directional
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Table 4.2: Evaluation results of the vertebra reconstructed from SegNet mask.

A: Gold Standard Vertices: 28640 Triangles: 57332
B: SegNet Vertices: 16600 Triangles: 33200

Sampling Steps Min Sampling Frequency Number of Bins
0.5 2 256

A→B
HD (mm) Dice Index IOU MSD (mm) MAD (mm)

7.59992 0.882875 0.79031 1.60269 0.863267
Signed Distance

MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)
0.181716 1.25287 -4.51087 7.59992

Absolute Distance
MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)

0.863267 0.925994 0 7.59992
B→A

HD (mm) Dice Index IOU MSD (mm) MAD (mm)
20.8031 0.882875 0.79031 7.10579 1.06772

Signed Distance
MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)

0.6965 2.57308 -2.39903 20.8031
Absolute Distance

MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)
1.06772 2.4425 0 20.8031

evaluations. However, several stripes on the surface of the model can be observed in Fig.

4.2, which cannot be figured out from the results in table 4.3. In this case, the histogram in

Fig. 4.3 was used as a practical method to present the distribution of bins of sample points

at different Hausdorff distances. When the reconstructed model was overlaid on the gold

standard model, the curve shows distinct oscillations in both diagrams of signed distance

and absolute distance.

Table 4.4 shows the evaluation results of the model reconstructed from the output mask

of ResUNet. Although the ResUNet achieved excellent results in the validation dataset, it

failed to segment the transverse process of the dried-out vertebra (Fig. 4.2) so that the

reconstructed model had a Dice score of 91.41%, IOU of 84.18%, even lower than the results

of the UNet model. This may happen in all UNet variations due to its undercomplete

architecture. When the ResUNet network comes deeper, it will more likely focus on high-
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Table 4.3: Evaluation results of the vertebra reconstructed from UNet mask.

A: Gold Standard Vertices: 28640 Triangles: 57332
B: UNet Vertices: 17082 Triangles: 34164

Sampling Steps Min Sampling Frequency Number of Bins
0.5 2 256

A→B
HD (mm) Dice Index IOU MSD (mm) MAD (mm)

3.240766 0.924302 0.859258 0.398099 0.493476
Signed Distance

MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)
-0.043914 0.629423 -2.917733 3.240766

Absolute Distance
MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)

0.493476 0.393168 0 3.24066
B→A

HD (mm) Dice Index IOU MSD (mm) MAD (mm)
1.601908 0.924302 0.859258 0.298134 0.443916

Signed Distance
MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)

0.189396 0.512118 -1.472695 1.601908
Absolute Distance

MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)
0.443916 0.31792 0 1.601908

level features to extract large structure annotations but ignore structures of boundaries. On

the other hand, the main body of the ResUNet reconstructed vertebra still has very high

accuracy. As is shown in table 4.4, when the reconstructed model was compared to the

gold standard model, the mean square distance was only 0.2698 mm and the mean absolute

distance was 0.4113 mm.

Table 4.5 shows the evaluation results of the model reconstructed from the output mask

of KiUNet. The KiUNet output mask, integrating both the advantages of KiNet and UNet,

performs the best in all the automatically reconstructed models. The reconstructed model

achieved a Dice score of 92.79%, IOU of 86.56% and the maximum Hausdorff distance was

3.85 mm. Compared with the gold standard model, the standard deviation error of sample

points was 0.2815 mm, the mean square distance was 0.2459 mm and the mean absolute

distance was 0.4083 mm.
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Table 4.4: Evaluation results of the vertebra reconstructed from ResUNet mask.

A: Gold Standard Vertices: 28640 Triangles: 57332
B: ResUNet Vertices: 15304 Triangles: 30608

Sampling Steps Min Sampling Frequency Number of Bins
0.5 2 256

A→B
HD (mm) Dice Index IOU MSD (mm) MAD (mm)
19.153991 0.91413 0.841841 7.584956 1.159835

Signed Distance
MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)

0.728901 2.65588 -5.607024 19.153991
Absolute Distance

MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)
1.159822 2.497935 0 19.153991

B→A
HD (mm) Dice Index IOU MSD (mm) MAD (mm)

3.273735 0.91413 0.841841 0.269847 0.411342
Signed Distance

MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)
0.109184 0.507866 -3.273735 1.435534

Absolute Distance
MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)

0.411342 0.317247 0 3.273735

Table 4.5: Evaluation results of the vertebra reconstructed from KiUNet mask.

A: Gold Standard Vertices: 28640 Triangles: 57332
B: KiUNet Vertices: 16988 Triangles: 33972

Sampling Steps Min Sampling Frequency Number of Bins
0.5 2 256

A→B
HD (mm) Dice Index IOU MSD (mm) MAD (mm)

3.85562 0.927957 0.865597 0.388774 0.482925
Signed Distance

MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)
-0.0165427 0.6233 -3.01027 3.85562

Absolute Distance
MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)

0.482925 0.394409 0 3.85562
B→A

HD (mm) Dice Index IOU MSD (mm) MAD (mm)
2.11992 0.927957 0.865597 0.245989 0.408279

Signed Distance
MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)

0.149168 0.473012 -2.11992 1.6358
Absolute Distance

MSE (mm) STD (mm) Min Sample Error (mm) Max Sample Error (mm)
0.408279 0.281599 0 2.11992
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4.3.2 Heatmap

Figure 4.2 is the heatmap visualizing the differences between two vertebra models. The

Hausdorff distance of every sample point was computed. In this study, a blue-green-red map

was used, where blue stands for negative errors and red means positive errors. Two different

types of distance were applied: the absolute distance converts all the errors to positive values

while the signed distance shows the actual values of the error. The heatmaps in Fig.4.2 also

include two-directional results, the reconstructed model being mapped on the gold standard

model, and in turn, the gold standard model being mapped on the reconstructed model.

4.3.3 Histogram

Figure 4.3 is the histogram showing the distribution of bins of sample points error at

different Hausdorff distances. The number of bins was 256 in all cases. Both the signed

distance and the absolute distance were used to observe the error distribution from different

aspects. The oscillations of the curve can reflect the surface quality compared with the gold

standard model such as the stripes on the UNet model.
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Figure 4.2: Heatmaps for error visulization between gold standard vertebra and
reconstructed vertebra.The results include both two directions of Hausdorff distance.
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Figure 4.3: Histograms showing error distribution of bin of sample points at different
Hausdorff distances.
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Chapter 5

Finite Element Analysis

Finite element analysis (FEA) is a practical tool for numerical simulation. Nowadays,

many applications of FEA have been used in numerous medical researches, providing a

platform for surgeons and researchers to accurately simulate the biomechanics for both

healthy and pathological situations. Due to the complex structure and biomechanics of the

spine, relevant study of finite element modelling in spine has been conducted as early as

1957 [120].

In this research, an evaluation method using FEA was used to explore the impact of

different geometries of the reconstructed vertebra on biomechanical results. In the meantime,

the FEA can evaluate the critical partial surface accuracy of the vertebra from another

perspective. Because even minor errors in the surface area between the intervertebral disc and

the vertebra will be magnified under spinal loads and hence greatly affect the biomechanical

results.

To obtain effective FEA results, two experiments were designed considering the

biomechanics of human lumbar spine and were conducted on all the reconstructed
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(a) Follower Load (b) Follower Load + Bending Moment

Figure 5.1: Two FEA experiments on the dried-out vertebra models with (a) Follower load
of 1000 N (b) Follower load of 1000 N + Bending moment of 7.5 N ·m. The follower load was
added vertically to the top surface area of around 6.8 ×10−4 m2 while the bending moment
was applied to the whole body of the vertebra. The bottom surface area of the vertebra
served as the fixed support.

dried-out vertebra models and the FARO Arm-scanned gold standard model. Experiment 1

applied the follower load on the top surface area of the vertebra, covering an area of around

6.8 ×10−4 m2. And the bottom surface of the area served as the fixed support. The

follower load [121] was first proposed by Patwardhan et al. to define a compressive vertical

load whose direction is along the tangent to the curve of the lumbar spine. Based on

Experiment 1, Experiment 2 added a pure bending moment to simulate the

flexion/extension. Fig. 5.1 shows the two experiments on the dried-out vertebra.

The follower load was 1000 N which approximates the compression on the lumbar spine

when standing and walking [121, 122]. The bending moment was set to 7.5 N ·m [49, 123].

The material properties of the dried-out vertebra body were assumed isotropic elasticity

with the Young’s modulus of 5 ×109Pa and the Poisson’s ratio of 0.3 according to previous

literature [122,124–126].
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Table 5.1: Finite element analysis results of different reconstructed models. Both the top
surface area and the bottom fixed support area were restricted around 6.8 ×10−4 m2. P1

stands for the equivalent (von-Mises) stress under a follower load of 1000 N and P2 stands
for the von-Mises stress under both the follower load of 1000 N and a bending moment of
7.5 N ·m. ∆P1,2 shows the absolute error between the stress of the gold standard model and
the automatic reconstructed models.

Gold Standard Manual Label SegNet UNet ResUNet KiUNet
Top Surface
Area (m2)

6.803×10−4

(2083 Faces)
6.8014×10−4

(1792 Faces)
6.8086×10−4

(1771 Faces)
6.7977×10−4

(1672 Faces)
6.7986×10−4

(1753 Faces)
6.8058×10−4

(1563 Faces)
Bottom Surface

Area (m2)
6.803×10−4

(1968 Faces)
6.8043×10−4

(1848 Faces)
6.8004×10−4

(1799 Faces)
6.8066×10−4

(1730 Faces)
6.8047×10−4

(1851 Faces)
6.8082×10−4

(1443 Faces)
2D Dice Score 0.9002 0.9333 0.9483 0.9715
3D Dice Score 0.9641 0.882875 0.9243 0.91413 0.927957

3D IOU 0.93078 0.79031 0.859258 0.841841 0.865597
P1 (Pa) 4.5053×105 4.1491×105 4.0931×105 3.8804×105 4.6977×105 4.1305×105

∆P1 (Pa) 3.5620×104 4.1220×104 6.2490×104 1.9240×104 3.7480×104

P2 (Pa) 2.0973×106 1.9873×106 2.2020×106 1.8814×106 1.9677×106 1.9450×106

∆P2 (Pa) 1.1000×105 1.0470×105 2.1590×105 1.2960×105 1.5230×105

Table 5.1 shows the details of two experiments and the corresponding FEA results.

Both the top and bottom surfaces were selected as close as to 6.8 ×10−4m2 area. P1,2 were

the results of equivalent (von-Mises) stresses from different models in Experiments 1 and 2.

∆P1,2 computed the absolute error of von-Mises stresses between the gold standard model

and other reconstructed models. Fig. 5.2 is the line graph describing the FEA results.

In Experiment 1, considering the results of static model evaluation metrics of 3D Dice

score and 3D IOU, the equivalent stress of the model reconstructed from manual label still

performed quite close to the gold standard, indicating an accurate reconstruction. The

ResUNet vertebra model obtained the closest biomechanical results to the gold standard

model - which means although the ResUNet model failed to segment the transverse process,

it still had the most accurate top surface area, corresponding to the best validation Dice

score during training. The KiUNet model had the second accurate FEA results among the

automatic reconstructed models with the second accurate top surface, despite the fact that
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Figure 5.2: The line graph shows the von-Mises stress of different reconstructed models
in the scenario of only the follower load and the scenario of both the follower load and the
bending moment. Two lines of stress from the FAROArm-scanned model are set as the gold
standard.

the KiUNet has the best overall accuracy as it achieved the best 3D Dice score and the 3D

IOU score. Following is the SegNet model that has the smallest volume. The UNet model

had the worst performance, which mainly contributed to the stripes layer by layer on the

surface area, though the UNet model achieved better results than SegNet model in the static

3D evaluation metrics.

In Experiment 2, the FEA results as well as the model form error were further magnified

with an extra bending moment, reflecting the top surface quality more clearly. The manual

label model still has a very close result to the gold standard model with 1.1 ×105pa error.

The SegNet model has the least absolute error in all the automatic reconstructed models.
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However, it is worth noting that the von-Mises stress of the SegNet model is actually larger

than the gold standard stress, which is probably because of the smaller volume of the SegNet

model; hence, the result may be overrated. The rest results follow the sequence of ResUNet,

KiUNet and UNet, which is reasonable compared with the results of 3D evaluation metrics.

The FEA results did not show a strong positive correlation with the static model

accuracy. This is mainly because in FEA, the top (or bottom) surface quality is more

critical to affecting the biomechanical results than the overall model accuracy. Even if

some models reconstructed from neural networks did achieve a better score in the overall

accuracy, they may not have a better quality in these partial surface areas.

To conclude, the FEA provides an evaluation method not only presenting the stress

distribution but also evaluating the model form error from a different perspective especially

for the partial surface accuracy that the static evaluation metrics cannot quantify.
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Chapter 6

Discussion and Conclusions

6.1 Discussion

This research proposed a workflow of quick and accurate automatic subject-specific

vertebra reconstruction method using four different deep learning models for automatic

vertebra segmentation. The workflow performance in a clinical application was validated

using an excised human lumbar spine, which was scanned via computed tomography and

reconstructed into 3D CAD models using the above refined neural networks. The original

geometry of the excised vertebra, also serving as the gold standard model, was obtained

using a high-precision reverse engineering solution. Several 3D volumetric evaluation

metrics were modified to quantify the overall model accuracy and a finite element analysis

method was designed to show the model form errors and to further evaluate the partial

surface accuracy from a different perspective.

However, there still exist several limitations during the study:

(1) Due to the GPU memory capacity, the image datasets for training and the CT
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scan of the dried-out vertebra were all preprocessed to reduce the resolution. The output

segmented masks would then have a lower resolution than the original corresponding CT

image, which will affect the final reconstructed model precision.

(2) The CT scanning can have a perspective of the interior vertebra due to the features

of X-rays, observing the interior details of the bone structure such as the cancellous bone.

However, when the vertebra is reconstructed into 3D surface mesh, the inside information

will be lost. The 3D evaluation metrics only focus on the surface accuracy while the FEA

will instead mesh the interior structure.

(3) Current FEA methods for evaluation only include the follower load and bending

moment applied on a single lumbar vertebra with homogenous material despite the difference

between cortical and cancellous bone. In future, a complete spine model of at least two

vertebrae and the intervertebral discs with real material properties will be built for simulation

closer to the real scenario.

These limitations will be focused on and addressed in future research.

6.2 Conclusion

This research proposed and validated the workflow of a quick and accurate automatic

subject-specific vertebra reconstruction method. Four different neural networks, SegNet,

UNet, ResUNet and KiUNet were customized and trained for automatic vertebra

segmentation with the highest validation Dice score of 0.942 in ResUNet and the highest

training Dice score of 0.9505 in KiUNet. The reconstruction errors were quantified in

clinical applications via an excised human lumbar spine, which was CT scanned and
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reconstructed into 3D CAD models using four refined networks. A reverse engineering

solution based on a high-precision measuring robotic arm was proposed to obtain the

original geometry of the excised vertebra, serving as the gold standard. Details of 3D

evaluation metrics as well as the heatmap/histogram and the results were presented for

each reconstructed model. An FEA method was designed to explore potential

biomechanical results of different reconstructed models and to further evaluate the partial

surface accuracy. Those errors should be considered when leveraging subject-specific

modeling towards the development of improvement of treatments.
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