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ABSTRACT 

 

Oligodendrocytes (OLs) are the myelinating cells of the central nervous system 

(CNS). They develop from oligodendrocyte precursor cells and differentiate into 

mature myelin forming OLs. Once myelin is formed, myelinated axons are 

segregated into different domains around the myelin-devoid nodes of Ranvier. 

Maintenance of these domains is essential for efficient saltatory conduction, and 

several myelin proteins contribute to the maintenance of myelin structure and 

function. Netrin-1 and its receptor DCC were shown to be involved in the 

maintenance of paranodal axoglial junctions in vitro, but their role in vivo is not 

established. Myelin is also a major source of inhibition in the injured CNS, and 

several myelin proteins have been shown to inhibit axonal regeneration. In this 

thesis, different aspects of OL biology will be considered.  

 

First, signaling pathways involved in OL differentiation will be studied. I 

demonstrate a synergistic combination of growth factors that promotes late stages 

of OL differentiation via the PI3K/Akt/mTor pathway in vitro. In the second part, 

I present in vivo evidence of the involvement of DCC in paranodal and myelin 

maintenance, and in myelin protein composition. Furthermore, absence of DCC 

expression by OLs leads to the development of a balance and coordination deficit 

in mice. These results show that expression of DCC by OLs is required for proper 

maintenance and stability of myelin in vivo. Finally, I investigate the source of 

netrin-1 expression in the injured CNS. Our findings demonstrate that netrin-1, in 

addition to being a potential myelin-associated inhibitor, is also expressed by 

fibroblasts and some reactive astrocytes in the injured CNS. Netrin-1 expression 

might contribute to the inhibition of regeneration and failure of remyelination in 

the injured CNS.  

 

Understanding the mechanisms of myelin formation and maintenance will help to 

develop therapeutic strategies for the treatment of demyelinating diseases like 

multiple sclerosis, and to promote functional recovery following CNS injury.   
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RÉSUMÉ 

 

Les oligodendrocytes (OLs) sont les cellules myélinisantes du système nerveux 

central (SNC). Les OLs matures formant la myéline sont dérivés des précurseurs 

d’OLs, qui se différencient pendant le développement. La myélinisation engendre 

la formation de différents domaines axonaux autour des nœuds de Ranvier, zones 

non-myélinisées de l’axone. Le maintien de ces domaines est essentiel pour la 

conduction axonale saltatoire, et plusieurs protéines de la myéline contribuent au 

maintien de la structure et de la fonction de la myéline. La nétrine-1 et son 

récepteur DCC sont impliqués dans le maintien des jonctions paranodales in vitro, 

mais leur rôle in vivo n’est pas encore établi. La myéline est également une source 

majeure d’inhibition après une lésion du SNC. Dans cette thèse, différents aspects 

de la biologie des OLs seront couverts.  

 

Premièrement, les voies de signalisation impliquées dans la differentiation des 

OLs seront étudiées. Dans la première partie, je démontre une synergie de facteurs 

de croissance sur la voie de signalisation PI3K/Akt/mTor, agissant sur la 

différentiation morphologique des OLs in vitro. Dans la seconde partie, en 

utilisant des souris knockout conditionnelles, je présente des preuves de 

l’implication de DCC dans le maintien des paranodes, de la myéline, et de la 

composition protéique de la myéline. De plus, l’absence d’expression de DCC par 

les OLs mène au développement d’un déficit moteur de coordination et 

d’équilibre. Ces résultats montrent que l’expression de DCC par les OLs est 

requise pour le bon maintien et la stabilité de la myéline in vivo. Finalement, nous 

avons investigué la source de l’expression de la nétrine-1 dans les lésions du 

SNC. Nos résultats démontrent que la nétrine-1, en plus d’être potentiellement un 

inhibiteur associé à la myéline, est aussi exprimée par les fibroblastes et certains 

astrocytes réactifs dans les lésions de la moelle épinière. L’expression de nétrine-

1 pourrait donc contribuer à l’inhibition de la regénération et l’échec de la 

remyélinisation après une lésion du SNC.  
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Une meilleure compréhension des mécanismes de formation et de maintien de la 

myéline peut contribuer à développer des stratégies thérapeutiques pour le 

traitement de maladies démyélinisantes comme la sclérose en plaques, ou à 

promouvoir le rétablissement des fonctions après les lésions du SNC. 
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GENERAL PREFACE AND RATIONALE  

 

Myelin, the insulating sheath surrounding axons, was for a long time a forgotten 

and dismissed structure of the nervous system. However, with the identification of 

the cells responsible for its production both in the central and peripheral nervous 

system, the oligodendrocytes and the Schwann cells respectively, came the 

realization of the importance of myelin for CNS function. This importance is 

highlighted in diseases that affect myelin such as multiple sclerosis in the central 

nervous system, or peripheral demyelinating neuropathies such as Guillain-Barré 

syndrome or chronic inflammatory demyelinating neuropathy.  

 

In the last twenty years, tremendous advances have been made in the 

understanding of oligodendrocyte development and myelin formation. Our 

laboratory pioneered studies revealing the role of the secreted guidance cue 

netrin-1 and its receptor DCC in oligodendrocyte precursor cells migration, 

mature oligodendrocyte maturation, and myelin maintenance. Work carried out 

during my PhD aimed at building on that knowledge and I investigated different 

aspect of myelin biology, focusing on the mechanisms promoting myelin 

formation and maintenance, as well as myelin-derived inhibition following CNS 

injury. 
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CHAPTER I                                                                                                                     

LITERATURE REVIEW 

 

 

This thesis investigates oligodendrocyte and myelin biology, building on previous 

studies conducted by our laboratory and others. The introduction presents a 

detailed review of the literature, and is separated into three sections. The first 

section details the state of knowledge of netrin-1 and DCC function in the central 

nervous system. The second section describes the formation of myelin by 

oligodendrocytes during development. The last section presents some examples of 

myelin-associated pathologies.  

 

  

  



20 
 

I.1 NETRIN-1 AND ITS RECEPTORS  
 

The nervous system undergoes complex wiring during development, and intricate 

networks of axons form as a result of guided axonal growth. The question of how 

these axons navigate and find their targets fascinated scientists for decades. More 

than an century ago, Ramón y Cajal proposed that growth cones, sensitive 

structures at the tip of growing axons, could be either attracted or repulsed by 

secreted molecules along their developmental journey (Ramón y Cajal and 

Azoulay, 1909). Since then, scientists have been searching for such guidance 

factors. Commissural neurons, which extend their growing axons from their cell 

body in the dorsal spinal cord toward the ventral floor plate, constituted a system 

that played a pivotal role in proving that axon guidance could be achieved by 

secreted molecules in the central nervous system (CNS). In fact, it was 

demonstrated that the floor plate cells were a source of secreted factor(s) that were 

specifically attracting the commissural axons (Tessier-Lavigne et al., 1988; 

Placzek et al., 1990).  

1.1.1 The netrin family  

Netrin was named after the Sanskrit word Netr, which means “the one who 

guides”, and it was first identified in mammals during a search for a secreted 

molecule emanating from the floor plate that could attract commissural axons in 

the developing spinal cord (Kennedy et al., 1994; Serafini et al., 1994). Netrin 

was later found to be a vertebrate homologue of a previously identified guidance 

molecule in nematode worm Caenorhabditis (C.) elegans, UNC-6. The UNC 

genes were identified in a screening of molecules regulating neural development 

(Hedgecock et al., 1990; Ishii et al., 1992). UNC-6 mutations in the nematodes 

resulted in uncoordinated behaviour, which was also seen following mutations of 

two other genes: UNC-40 and UNC-5 (Hedgecock et al., 1990), later identified as 

UNC-6/netrin-1 receptors (Keino-Masu et al., 1996; Leonardo et al., 1997). Six 

members of the netrin family have been identified in vertebrates: four secreted 

netrins (1 to 4) and two GPI-linked netrins (G1 and G2). Of these, only netrin-2 is 

absent in mammals, but has been identified in chicken and zebrafish. Netrin-Gs 
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are evolutionarily distinct from the other netrins, and bind to the netrin-G ligands 

NGL-1 and NGL-2 (Moore et al., 2007; Rajasekharan and Kennedy, 2009).  

 

Netrins have a molecular mass of ~70-75 kDa and possess an amino-terminal 

signal peptide and three domains: domain V, VI and C (Figure 1-1A). Domains V 

and VI are homologous to laminins, with netrin 1-3 similar to the γ1 chain of 

laminin, and netrin-4, -G1 and –G2 similar to the β1 chain of laminin. Domain C, 

present in all secreted netrins, is rich in basic amino acids and can bind to cell 

surface molecules like heparan sulphate proteoglycans (Barallobre et al., 2005). 

Studies in C. elegans demonstrated that mutation of domain VI disrupted all 

UNC-6/netrin functions, while mutation of domain V-3 selectively disrupted 

UNC40/DCC mediated functions, and mutation of domains V-2 and V-3 

disrupted UNC-5 mediated functions (Lim and Wadsworth, 2002). Other evidence 

demonstrates that netrin-1 can bind to both UNC5 and DCC in the absence of 

domain V or domain VI, suggesting that netrin-1 binds to its receptors via 

multiple domains (Kruger et al., 2004). In mammals, netrin-1 is widely expressed 

throughout the developing CNS, and is required for normal migration of 

commissural axons in the brain and spinal cord. Mice lacking functional netrin-1 

die within hours after birth and exhibit multiple commissural guidance defects 

(Serafini et al., 1996). However, even if it was first identified as a guidance cue, 

the role of netrin-1 goes well beyond guidance in the CNS, and it is now 

appreciated that netrin-1 is expressed widely outside of the nervous system and 

serves several different functions.  

Netrin-1 expression  

In the developing nervous system, netrin-1 is expressed at the midline in the 

ventral neuroepithelium, but also in other structures of the developing forebrain, 

such as the retina, the striatum and the cerebellum (Livesey and Hunt, 1997). 

Netrin-1 is also expressed outside the nervous system in the developing embryo, 

and netrin-1 transcripts are detected in mammary glands, cardiac muscle, lungs, 

intestine and pancreas (Sun et al., 2011a). Netrin-1 levels decrease after birth, but 

netrin-1 is still expressed in the adult mature nervous system. Striatal cholinergic 
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and projection neurons express netrin-1 in the adult brain (Shatzmiller et al., 

2008). Netrin-1 mRNA expression is also high in the cerebellar granular layer, in 

the hippocampus and in the cortex (Allen Mouse Brain Atlas). In the adult rat 

spinal cord, in situ hybridization and immunohistochemistry revealed expression 

of netrin-1 by both neurons and oligodendrocytes, but not astrocytes. More 

specifically, netrin-1 was found to be membrane-associated in the adult spinal 

cord, and in white matter, concentrated in non-compact myelin fractions (Manitt 

et al., 2001).  

1.1.2 The netrin-1 receptors 

As established previously with its C. elegans homologue UNC-6, netrin-1 can act 

as a bifunctional cue, attracting some axons and repelling others (Colamarino and 

Tessier-Lavigne, 1995). The nature of the netrin-1 response is dependent on the 

type of receptors a cell expresses. Multiple proteins have been identified as 

putative netrin-1 receptors, but the most characterized ones are the UNC-40 

homologue Deleted in Colorectal Cancer (DCC), the DCC paralogue neogenin, 

and the UNC-5 homologues: UNC5A-D (Figure 1-1B). 

The DCC family  

In vertebrates, the DCC family of proteins consists of Deleted in Colorectal 

Cancer (DCC) and neogenin, two proteins from the immunoglobulin (Ig) 

superfamily, whose orthologs are UNC-40 in C. elegans and Frazzled in 

Drosophila. They both share homology to Neural Cell Adhesion Molecule 

(NCAM) (Cho and Fearon, 1995; Keino-Masu et al., 1996).  

Deleted in Colorectal Cancer (DCC) 

DCC is a single pass transmembrane protein with an extracellular domain 

composed of four Ig domains, six fibronectin type III (FNIII) repeats, and an 

intracellular C-terminus characterized by conserved P1, P2 and P3 regions 

(reviewed in Moore et al., 2007). Netrin-1 was shown to bind to DCC via its 

fourth and fifth FNIII repeats (Geisbrecht et al., 2003; Kruger et al., 2004). The 

dcc gene is located on chromosome 18q, spanning 1.4Mb and containing 29 exons 

(Cho et al., 1994). It was first identified as a candidate tumor suppressor gene 
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inactivated in colorectal cancer (Fearon et al., 1990). DCC absence from tumors 

was identified as a poor prognostic marker in colorectal cancer patients (Shibata 

et al., 1996). However, follow up studies shed doubt on the functional relevance 

of this deletion in the development of colorectal cancer (Fazeli et al., 1997), and 

exactly how DCC functions in tumourigenicity is not known (Sun et al., 2011a). 

The role of DCC in netrin-1 function was established very early using blocking 

antibodies that were seen to inhibit the netrin-1 induced axon outgrowth of 

commissural axons in vitro (Keino-Masu et al., 1996). The phenotype of mice 

lacking functional DCC is reminiscent of that of netrin-1 mutants, and they too 

die shortly after birth (Fazeli et al., 1997). In vitro studies have shown that DCC is 

required not only for netrin-1 mediated attraction (Keino-Masu et al., 1996; Stein 

et al., 2001), but also for netrin-1 induced repulsion (Hong et al., 1999; Keleman 

and Dickson, 2001). The P3 domain is required for DCC multimerization and 

attraction to netrin-1 (Stein et al., 2001), while repulsion depends on association 

of the P1 domain of DCC and the intracellular domain of UNC5 (Hong et al., 

1999). Work with chimeric proteins showed that the intracellular domains of DCC 

and UNC5 are central to the response to bound netrin (Hong et al., 1999; Keleman 

and Dickson, 2001). Interestingly, a spontaneous dcc mutant, the kanga mouse, is 

missing exon 29 coding for domain P3. This DCC mutant lacks CNS 

commissures, but survives into adulthood (Finger et al., 2002). DCC expression is 

very high in the developing CNS, but its levels decrease after birth. Expression is 

low in the adult rat spinal cord, but DCC was shown to be expressed by both 

neurons and oligodendroglial cells (Manitt et al., 2004).   

Neogenin 

Neogenin and DCC emerged from a common ancestral gene (Cole et al., 2007),  

and they share around 50% homology (Vielmetter et al., 1994). In embryogenesis, 

neogenin expression is high in the developing mesoderm, but contrary to DCC, its 

expression in the developing nervous system is limited. While DCC expression 

tends to decrease during development, neogenin levels increase in an opposite 

manner, suggesting complementary functions of these two receptors (Gad et al., 

1997). Netrin-3 was shown to bind to neogenin with higher affinity than netrin-1; 
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however, the Repulsive Guidance Molecule (RGM) proteins were shown to have 

even higher affinity to neogenin than netrins (Wilson and Key, 2007). RGMs are 

GPI-linked membrane proteins that by binding to the neogenin receptor, mediate 

axon guidance events and neuronal survival (Severyn et al., 2009). More recently, 

several members of the Bone Morphogenetic Proteins (BMPs) were also shown to 

bind neogenin receptors and activate RhoA (Hagihara et al., 2011). Although 

multiple roles of neogenin have been described in different developmental 

processes, its precise role in guidance and migration in response to netrin signals 

is still not well understood (Wilson and Key, 2007). However, adhesive functions 

of netrin-1 and neogenin have been described in the developing mammary gland 

(Srinivasan et al., 2003).  

The UNC5 family  

The UNC5 homologues are all single pass transmembrane proteins, expressed in 

different cell types and tissues. There are four UNC5 homologues in vertebrates: 

UNC5A, B, C, and D. UNC5s are composed of two Ig domains and two 

thrombospondin-like domains in their extracellular region. Their intracellular 

region contains a zona occludens 5 (ZO5) domain, a DCC binding domain, and a 

death domain (Moore et al., 2007). Netrin-1 interacts with UNC5 proteins through 

their Ig domains (Leonardo et al., 1997; Geisbrecht et al., 2003).  

 

In C. elegans, UNC-5 mutants exhibit defective ventro-dorsal axon guidance 

(Hedgecock et al., 1990). In vertebrates, UNC5 protein was shown to mediate the 

chemorepellent action of netrin-1 on trochlear axon guidance (Colamarino and 

Tessier-Lavigne, 1995). The expression of an UNC5 homologue is required for 

the repulsive response to netrin-1 to occur, both in cell migration and axon 

guidance (Keleman and Dickson, 2001; Jarjour et al., 2003). While association 

with DCC seems required for netrin-1 mediated long range repulsion, DCC-

independent UNC5 responses can mediate short-range repulsion (Hong et al., 

1999; Keleman and Dickson, 2001).  
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During development, UNC5A expression is restricted to the CNS. UNC5B 

expression is the most widespread, with expression in developing blood vessels, 

eyes, limb buds, and lungs (Engelkamp, 2002; Liu et al., 2004). UNC5C is 

expressed on developing limb buds, in hindbrain and in cerebellar neurons (Kim 

and Ackerman, 2011). UNC5D is the last homologue to turn on its expression 

during development, and is found on developing epithelial buds (Engelkamp, 

2002). In the adult mouse brain, all UNC5 homologues are expressed, albeit at 

different levels in different regions (Allen Mouse Brain Atlas). In the adult rat 

spinal cord, expression of UNC5 homologues is increased relative to 

developmental levels, with UNC5B being the homologue with the highest 

expression (Manitt et al., 2004). Concomitant with a decrease in DCC expression, 

these enhanced levels of UNC5 expression might contribute to the inhibitory 

environment of the mature adult nervous system (see section 1.3.3).   

 

The wide range of phenotypes seen in UNC5 mutants highlights the diversity of 

functions of each homologue. UNC5A knockout mice show decreased 

developmental apoptosis of neurons, and altered embryonic spinal cord 

morphology, but nevertheless survive after birth (Williams et al., 2006). UNC5B 

knockout mice do not survive after birth and exhibit a severe vascular phenotype 

(Lu et al., 2004). UNC5C knockout mice survive through adulthood, but exhibit a 

severe cerebellar phenotype and ataxia (Ackerman et al., 1997). UNC5C was 

shown to regulate dorsal guidance of cerebellar axons (Kim and Ackerman, 

2011). No known reports have described UNC5D knockout mice.  

Other netrin receptors 

Adenosine 2B (A2B) receptor, a G-protein coupled receptor, was described first 

as the netrin-1 receptor which, by complexing with DCC, mediates netrin-1 

induced axon outgrowth (Corset et al., 2000). However, subsequent reports 

questioned the specificity of the methods used and argued against a role of A2B 

receptors in netrin function (Stein et al., 2001). More recently, Down's syndrome 

Cell Adhesion Molecule (DSCAM), was shown to act as a netrin receptor 

(Andrews et al., 2008; Ly et al., 2008; Liu et al., 2009). Evidence shows that 
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DSCAM can act together with, and in parallel to, DCC to promote netrin-1 

induced axon turning (Ly et al., 2008; Liu et al., 2009) and midline crossing in the 

developing spinal cord (Andrews et al., 2008). More detailed examination is 

needed to determine the exact contribution of DSCAM to netrin-1 function.  

  

Similarities between netrin-1 and laminin structures suggest that netrin-1 could 

bind integrins, the laminin receptors. Indeed, binding of netrin-1 to α6β4 and α3β1 

integrins was demonstrated in pancreatic epithelial cells, although surprisingly 

through its non-laminin homologous C domain (Yebra et al., 2003). Netrin-1 

interaction with α3β1 integrins was also shown to regulate the migration of 

interneurons in the developing cortex (Stanco et al., 2009).  

 

In addition to conventional transmembrane receptors, netrin-1 can be sequestered 

by heparin sulphate proteoglycans (HSPGs) on the cell surface. It has long been 

known that netrin-1 binds to heparin, as heparin affinity chromatography was 

used in its initial purification (Serafini et al., 1994). Binding studies demonstrated 

that netrin-1 could bind heparin and HSPGs (Shipp and Hsieh-Wilson, 2007) and 

that this binding occurs through netrin’s C domain (Kappler et al., 2000). HSPG 

expression was in fact shown to be required in a cell autonomous fashion for 

netrin-1 induced commissural axons pathfinding (Matsumoto et al., 2007). 

Syndecan, a HSPG expressed in the CNS, was shown to regulate UNC5 function 

in C. elegans by modulating the distribution of extracellular cues (Schwabiuk et 

al., 2009). Together, these findings suggest a role for HSPGs in sequestering 

netrin protein and presenting it to its receptors present on the cell surface.  

Signaling downstream of DCC  

Migration of cells or axons is dependent on the reorganization of the actin 

cytoskeleton. In the recent years, much has been learned about the molecular 

mechanisms linking DCC to the actin cytoskeleton. Netrin-1 binding to DCC 

triggers the formation of a multimeric intracellular complex composed of the 

adaptor protein nck1 (Li et al., 2002b), which recruits N-WASP and pak1 

(Shekarabi et al., 2005). Members of the Rho family of small GTPases cdc42 and 
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Rac1, whose activation is essential for the remodelling of the actin cytoskeleton 

and netrin-1 mediated attraction (Li et al., 2002a), are in turn recruited to the 

complex via association with pak1 and N-WASP (Shekarabi et al., 2005). The 

Rho guanine nucleotide exchange factor (GEF) responsible for the activation of 

these Rho GTPases is currently being investigated, but substantial evidence 

supports a major role for β-Pix upstream of Cdc42 and Rac1 activation 

(Rodrigues and Kennedy, unpublished). Evidence supporting roles of two 

different GEFs for Rac acting downstream of DCC, Trio (Briancon-Marjollet et 

al., 2008) and Dock180 (Li et al., 2008), has recently been described. Netrin-1 

also induces DCC phosphorylation by the Src family kinase Fyn, and causes the 

recruitment of Focal Adhesion Kinase (FAK), both necessary for the attractive 

response to netrin-1 (Li et al., 2004; Meriane et al., 2004).  

 

Other signalling pathways have been implicated downstream of DCC in response 

to netrin-1 signals. Phospholipase Cγ and phosphoinositide 3-kinase (PI3K) were 

shown to mediate axon outgrowth in response to netrin (Ming et al., 1999; Xie et 

al., 2006). Protein kinase A (PKA) activity is also a key modulator of the response 

to netrin-1. In Xenopus spinal neurons, decreasing cAMP levels and PKA activity 

causes the response to netrin-1 to switch from attraction to repulsion (Ming et al., 

1997). However, that switch was not observed in rodent commissural axons, but a 

decreased sensitivity was observed when PKA activity was inhibited (Moore and 

Kennedy, 2006), which could be explained by a PKA-dependent increase of DCC 

insertion in plasma membrane following netrin-1 treatment (Bouchard et al., 

2004).  

 

DCC cleavage events can also regulate DCC signalling and modulate responses to 

netrin-1. The DCC extracellular domain can be cleaved by metalloproteases, and 

inhibiting this DCC shedding potentiates the response to netrin-1 (Galko and 

Tessier-Lavigne, 2000). Ubiquitination and proteolysis of DCC was also shown to 

occur following netrin-1 treatment of embryonic cortical neurons, inducing a 

down-regulation of DCC expression on the cell surface (Kim et al., 2005). 
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Localization of DCC to membrane microdomains is also critical for netrin-1 

responses. DCC palmitoylation induces its translocation into lipid rafts, whose 

integrity is essential for netrin-1 induced axon outgrowth (Guirland et al., 2004; 

Herincs et al., 2005). Interestingly, while evidence shows that netrin-1 binding 

does not affect DCC localization to rafts, DCC signalling complexes located in 

raft and non-raft regions were shown to differ, suggesting a localization-

dependant activation of signalling pathways downstream of DCC (Petrie et al., 

2008).  

 

Recent findings have linked the intracellular domain of DCC to the regulation of 

local translation. DCC associates physically with translation initiation factors and 

ribosomal subunits through its P1 domain. Following netrin-1 binding to DCC, 

the translation machinery is released and translation can proceed (Tcherkezian et 

al., 2010). These findings are consistent with observations that local translation at 

the growth cone is required for attraction to netrin-1 (Campbell and Holt, 2001).  

1.1.3 Functions of DCC/netrin-1  

Both long range and short range functions of netrin-1 have been described. In 

general, evidence of long-range functions of netrin-1 is found in the developing 

nervous system, where netrin-1 acts as a repellent or an attractant far from its 

expression site. Netrin-1, produced by floor plate cells, was shown to diffuse and 

form a gradient in the embryonic spinal cord (Kennedy et al., 2006). In the adult 

nervous system, netrin-1 most likely serves more short range functions, as it is 

found associated with cell membranes and extracellular matrix (Manitt et al., 

2001; Baker et al., 2006).  

Guidance functions 

Netrin-1 expression at the ventral midline and by floor plate cells in the 

developing spinal cord mediates a number of long-range guidance functions 

(Figure 1-2). While netrin-1 acts as a long-range attractant for commissural axons 

(Serafini et al., 1996), it repels growing trochlear motorneuron axons (Colamarino 

and Tessier-Lavigne, 1995). In addition to directing axons to their targets, netrin-1 
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can also mediate cell migration during development, both by attracting and 

repelling precursor cells in the CNS. Netrin-1 regulates chemoattraction of 

migrating cerebellar neural precursor cells through DCC (Alcantara et al., 2000). 

Netrin-1 also acts as a repellent for migrating oligodendrocyte precursor cells, 

(OPCs) which express both UNC5A and DCC receptors (Jarjour et al., 2003). 

These effects on axon guidance and cell migration observed during development 

can also be replicated in the adult CNS, as it was demonstrated that netrin-1 can 

act as a repellent for adult neural progenitor cells in the injured spinal cord (Petit 

et al., 2007).  

 

Netrin-1 also functions as a guidance and branching factor during developmental 

angiogenesis. Formation of blood vessels involves similar regulated pathfinding 

events to what regulates developmental axon guidance, and many guidance cues 

have been implicated in both systems. Netrin-1 is such a factor; however, its 

precise function during angiogenesis is still unclear (Adams and Eichmann, 

2010). Netrin-1 was associated with both chemorepulsion of nascent vessel 

branches and chemoattraction of migrating endothelial cells. A key modulator of 

netrin-1 response in angiogenesis may be the presence of UNC5B on endothelial 

cells (Castets and Mehlen, 2010).  

Survival functions 

Multiple lines of evidence point to the possibility that netrin-1 acts as a survival 

factor (Mehlen and Furne, 2005). The mechanism by which netrin-1 promotes 

survival is thought to follow the dependence receptor hypothesis. According to 

this view, cells expressing DCC and/or UNC5 undergo apoptosis in the absence of 

netrin-1. The dependence receptor hypothesis has revived the possibility that DCC 

inactivation may be implicated in colorectal cancer progression, as absence of 

DCC would release the cells from the apoptotic pathway (Mehlen and Fearon, 

2004). However, evidence from knockout mice argues against that hypothesis, 

since netrin-1 knockout mice do not exhibit increased cell death (Williams et al., 

2006). Furthermore, DCC knockout mice display increased cell death in the 
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retina, which argues against its function as a dependence receptor (Shi et al., 

2010).  

 

UNC5 homologues have also been categorized as dependence receptors. 

However, even if UNC5A mediates neuronal apoptosis in vivo, this effect seems 

to be independent of netrin-1 expression (Williams et al., 2006). Nonetheless, it is 

possible that netrin-1 modulates UNC5 mediated apoptosis under certain 

conditions. Interaction of UNC5B with death associated protein kinase (DAPK) 

and its subsequent activation through the protein phosphatase A2 (PP2A) were 

shown to be increased in the absence of netrin-1, and to induce apoptosis (Llambi 

et al., 2005). Netrin-1 binding to UNC5B inhibits DAPK activation by recruiting 

CIP2A (cancerous inhibitor of PP2A) to the complex and neutralizing apoptotic 

signals (Guenebeaud et al., 2010).  

Cell adhesion functions 

DCC’s structural homology to NCAM suggests a role for the netrin receptor in 

adhesion. Recruitment of adhesive complex components to DCC and UNC5 also 

suggests that netrin-1 binding to its receptors is involved in the formation of 

adhesive complexes (Li et al., 2004; Meriane et al., 2004; Li et al., 2006). 

Importantly, such short-range actions of netrin-1 have been shown to regulate 

morphogenesis of several organs including mammary glands (Srinivasan et al., 

2003) and developing lungs (Liu et al., 2004; Strickland et al., 2006). DCC was 

shown to increase cell-cell adhesion, an effect that could be mediated through 

ezrin association with the intracellular portion of DCC (Martin et al., 2006). 

Independent of DCC, netrin-1 mediates adhesion of epithelial cells in the 

developing pancreas through interaction with integrins (Yebra et al., 2003). 

Netrin-1 and DCC were also shown to regulate the adhesion between the 

noncompact glial loops of myelin and the axonal membrane at paranodal 

junctions (Jarjour et al., 2008).  

Functions in oligodendrocytes 

In the developing spinal cord, OPCs originate in the ventral ventricular zone, and 
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migrate dorsally (Noll and Miller, 1993). Netrin-1, expressed by the floor plate, 

acts as a repellent for OPCs that express both Unc5A and DCC (Jarjour et al., 

2003; Tsai et al., 2003). This repellent response is dependent on the activation of 

RhoA by netrin-1 (Rajasekharan et al., 2010). Netrin-1 starts to be expressed by 

oligodendrocytes at the initiation of myelination in the CNS (Rajasekharan et al., 

2009), and adult oligodendrocytes still express netrin-1 at high levels (Manitt et 

al., 2001). Subcellular fractionation of adult rat spinal cord white matter revealed 

the presence of netrin-1 in the non-compact myelin fraction (Manitt et al., 2001). 

More specifically, netrin-1 and DCC were later shown to be enriched at the 

paranode, a non-compact myelin compartment, in adult rat spinal cord (Jarjour et 

al., 2008; Low et al., 2008). In vitro, DCC and netrin-1 do not seem to be required 

for formation of myelin and paranodes per se, but rather play an important role in 

the maintenance of adhesive contacts between the paranodal loops and the 

axolemma. More detailed description of oligodendrocyte and myelin biology 

follows in section I.2.  
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FIGURE 1-1: Netrin-1 and its receptors. A) Netrins are composed of three 

domains: domain VI, V, and C. Domain VI and V are homologous to domains in 

laminin. B) DCC and UNC5 homologues are the most well characterized netrin-1 

receptors. Netrin-1 binds to DCC through its fibronectin domains and to UNC5 

through an Ig domain.  

 

FIGURE 1-2: Netrin-1 mediated guidance in the developing spinal cord. 

Netrin-1 secreted by floor plate cells establishes a ventro-dorsal gradient in the 

developing spinal cord. A) Growth cones of commissural axons are attracted by 

netrin-1 and will reach and cross the ventral midline. B) OPCs, born in the ventral 

part of the spinal cord, migrate dorsally in response to netrin-1. 
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I.2 OLIGODENDROCYTE DEVELOPMENT AND MYELIN FORMATION  
 

Unlike his descriptions of neuronal anatomy and structure, Cajal’s reports of 

myelin were highly imprecise. He described myelin as a fatty substance 

surrounding the axon, most likely secreted by the axon itself (Ramón y Cajal and 

Azoulay, 1909). Notably, Wilder Penfield, following the initial description of 

oligodendrocytes by Rio Hortega, characterized these cells as the myelin 

producing cells of the CNS, and proved to Cajal their existence (Gill and Binder, 

2007). Further studies highlighted the tremendous advantage that myelination 

procures. Throughout evolution, the nervous system has adapted to achieve more 

rapid and efficient conduction of action potentials. Myelination of axons allows 

for increased speed of nerve transmission at a lower energy expense for neurons. 

Myelin is an insulating membrane sheath produced by oligodendrocytes (OLs) in 

the CNS, and by Schwann cells in the peripheral nervous system (PNS). While 

some commonalities exist between the two types of myelinating cells, some 

features differ dramatically. For example, one OL can myelinate several axon 

segments, whereas Schwann cells myelinate axons following a 1:1 ratio (Poliak 

and Peles, 2003). This section will focus on OLs, their biology, and the anatomy 

of CNS myelin. When relevant, differences between the CNS and PNS myelin 

will be highlighted.  

I.2.1 Oligodendrocyte development and differentiation  

Oligodendrocyte specification during development  

Early studies of cell specification in the CNS suggested that OLs are the last cell 

type to be specified, after neurons and astrocytes (Altman and Bayer, 1984). 

OPCs arise from the subventricular zone neuroepithelium in the ventral side of the 

developing neural tube, although there is evidence for a dorsal source of OPCs 

(Cai et al., 2005; Vallstedt et al., 2005). As with other cells generated at the floor 

plate, the specification of OPCs is dependent on signals from the notochord that 

will induce the expression of transcription factors in a gradient-like fashion 

(Trousse et al., 1995; Orentas and Miller, 1996; Pringle et al., 1996).  
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Transcriptional control of specification  

Sonic hedgehog (Shh), a signalling molecule secreted by the notochord and the 

floor plate (Echelard et al., 1993), was the first induction signal described for 

OPC specification (Pringle et al., 1996; Orentas et al., 1999; Davies and Miller, 

2001). Shh signaling was shown to be necessary and sufficient for the expression 

of the Olig class of transcription factors in the ventral spinal cord (Lu et al., 

2000). However, Shh-independent Olig expression in the dorsal spinal cord was 

described, revealing a different class of OLs originating from the dorsal part of 

the CNS (Nery et al., 2001; Cai et al., 2005). Olig 1 and 2 are expressed in the 

motor neuron progenitor domain (pMN) of the ventral spinal cord (Sun et al., 

1998), that gives rise to both OPCs and motor neurons. Loss of Olig2 expression 

results in a complete loss of all OPCs and spinal motor neurons. Recent findings 

demonstrate that the phosphorylation state of Olig2 is responsible for the switch 

from a motor neuron fate to an OPC fate (Li et al., 2011; Sun et al., 2011b). 

Changes in the phosphorylation state of serine 147 appears to regulate the 

preferred dimerization partners of Olig2 (Li et al., 2011) that will ultimately 

control the transcriptional activation. Olig2 is activated not only during OPC 

specification, but is continuously expressed in differentiated and myelinating OLs 

(Lu et al., 2002). There have been conflicting findings on the role of Olig1 in 

OPC specification, with some reporting no effect on developmental myelination 

(Lu et al., 2002), and others describing myelination defects (Xin et al., 2005) in 

Olig1 deficient mice. Nevertheless, the same group that described no role of Olig1 

in developmental myelination (Lu et al., 2002) reported that Olig1 deficient mice 

failed to remyelinate following cuprizone-induced demyelination (Arnett, 2004), 

arguing for a role of Olig1 in OL maturation under certain circumstances.  

 

Coexpression of the transcription factors Nkx2.2 and Olig2 in cells of the pMN 

domain is necessary for OPC differentiation (Zhou et al., 2001) and gives rise to 

Sox10 expression and commitment to the OL lineage (Sun et al., 2001). Sox10 

was identified as a transcription factor specifically expressed in myelinating glia 

(Kuhlbrodt et al., 1998), and was shown to be essential for terminal differentiation 
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of OLs (Stolt et al., 2002). Together with Sox9, Sox10 regulates the expression of 

Platelet-derived growth factor receptor alpha (PDGFR-α) in OPCs (Finzsch et al., 

2008) and is able to induce expression of several myelin genes essential in the 

terminal differentiation  of OLs (Wegner, 2008).  

 

Many transcription factors active during developmental OPC specification 

continue to be expressed in mature OLs (Wegner, 2008). Some of them were 

shown to regulate specific aspects of OL and myelin structure, like Nkx6.2, which 

controls axo-glial interactions at the paranode in fully formed myelin (Southwood, 

2004). Other transcription factors, like Olig2, Nkx2.2 and Sox10, control broader 

activation of myelin genes throughout life (Wegner, 2008).  

Dorsal origins of OLs 

Whether dorsally generated OLs exist has been a matter of debate for many years 

(Cameron-Curry and Le Douarin, 1995; Richardson et al., 2006). However, recent 

knockout studies have provided evidence of a dorsal source of OLs in the spinal 

cord. In the absence of Nkx6 transcription factors, whose expression are induced 

by Shh signalling, no OLs or motor neurons develop in the ventral ventricular 

zone. This complete loss of ventral pMN domain permits the observation of Olig2 

and PDGFRα positive cells in the dorsal spinal cord (Cai et al., 2005; Vallstedt et 

al., 2005). A dorsal origin of OLs in the forebrain has also been shown (Kessaris 

et al., 2006). A commonality between dorsally derived OLs in spinal cord and 

forebrain is their late appearance in development, as they are specified after 

ventral OLs have started to migrate (Richardson et al., 2006).   

Proliferation and migration 

Proliferation and migration are intertwined, as OPCs will start to differentiate 

when they reach their destination. Thus, signals affecting migration often have 

roles in proliferation and vice versa. For example, PDGFRα activation was 

identified as a proliferative signal for OPCs (Collarini et al., 1991; Pringle et al., 

1992), while PDGF was also shown to increase general motility and migration of 

OPCs (Armstrong et al., 1990). However, since PDGF is present uniformly in the 
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developing CNS (Yeh et al., 1991), it is unlikely to guide OPCs toward a precise 

target. Other factors contribute to more than one aspect of OL development. Shh, 

in addition to controlling OPC specification, was shown to promote migration and 

proliferation of OPCs (Merchan et al., 2007). Netrin-1, in addition to its role in 

OPC migration (Tsai et al., 2003), was also shown to regulate branching in later 

stages of OL development (Rajasekharan et al., 2009).  

 

Paths of OPC migration in the cortex are not well defined, but mechanisms of 

OPC dispersal are better understood in spinal cord and optic nerve, where the 

paths of migration are easier to follow (Miller, 2002). OPCs are thought to 

migrate along pre-existing tracts, most likely through interactions with adhesion 

molecules and extracellular matrix components. A distinction is made between 

short range cues, which are substrate bound, and long range cues, which can 

diffuse and function far from the cells that secrete them. Short range cues can 

either promote OPC migration, like fibronectin and laminin, or inhibit migration, 

like tenascin-C. Long range cues include growth factors like PDGF and Fibroblast 

growth factor (FGF), and guidance cues like netrins and semaphorins. Most 

evidence indicates that netrin-1 and class 3 semaphorins act as repellent cues for 

migrating OPCs (Jarjour and Kennedy, 2004). Migration arrest of OPCs at the 

correct destination is also important to achieve a uniform concentration of OPCs 

throughout the CNS. The chemokine CXCL1, whose expression is temporally 

regulated during development, acts on OPCs through CXCR2 receptor to stop 

their migration (Tsai et al., 2002).  

Survival 

Once OPCs have stopped their migration, survival mechanisms come into play 

and it is estimated that around 50% of OPCs and pre-myelinating OLs undergo 

programmed cell death (Richardson et al., 2006). Evidence tends to show that this 

cell death is caused by competition for a limited amount of trophic factors 

provided by axons (Barres et al., 1992; Raff et al., 1993). Survival of OLs and 

differentiation seem to be connected events as several factors promoting survival 

were also shown to favour differentiation. Many factors were shown to promote 
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survival of OPCs, such as PDGF, NT-3 and IGF-1 (Barres et al., 1992). Several 

factors were shown to act through the Akt pathway to increase survival in vitro 

(see section below on signalling pathways). The final result of the massive OL 

death happening prior to myelination is that the number of differentiating OLs 

matches the number of axons that must be myelinated.  

Oligodendrocyte differentiation 

The different steps described above, from OPCs specification to the initiation of 

myelination, are characterized by differential expression of protein and surface 

markers, as well as morphological changes (Figure 1-3). These discrete phases of 

differentiation can be observed both in vivo and in vitro. At the progenitor phase, 

highly motile bipolar OPCs express PDGFRα and are A2B5-positive in vitro. As 

differentiation proceeds, pre-OLs/immature OLs start to express 2′,3′-cyclic 

nucleotide 3′-phosphodiesterase (CNP or RIP) (Bradl and Lassmann, 2010) and  

are characterized by a dense branching network; however, they do not yet exhibit 

myelin sheets. Maturation of these immature cells is characterized by appearance 

of myelin membrane domains. Mature myelinating OLs start to express myelin 

specific proteins such as myelin binding protein (MBP), proteolipid protein (PLP) 

and myelin-associated glycoprotein (MAG) and extend myelin sheaths around 

axons in vivo, and myelin-like sheets in vitro (Baumann and Pham-Dinh, 2001).  

Myelin formation and compaction  

Myelination occurs mostly postnatally in rodents and humans, and follows a 

spatiotemporal sequence that is highly reproducible within a species (Baumann 

and Pham-Dinh, 2001). Axons with a caliber exceeding a certain limit (~1 µm) 

will be myelinated, whereas smaller caliber axons will remain unmyelinated. 

Likewise, myelin thickness is also dependent on axon caliber, such that larger 

axons are surrounded by a thicker layer of myelin. Axonal signals most likely 

regulate myelin thickness, as a single OL can myelinate several axons with 

distinct diameters (Waxman and Sims, 1984). In the PNS, the amount of 

neuregulin1 (NRG1) type III on the axon is a critical signal triggering myelination 

by Schwann cells, as it determines not only if the axon will be myelinated 
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(Taveggia et al., 2005), but also the number of wraps of myelin produced 

(Michailov et al., 2004). However, NRG1 signals do not seem to be required in 

the CNS (Brinkmann et al., 2008), and the mechanisms underlying the recognition 

of axon caliber by OLs are still not well defined (Sherman and Brophy, 2005). 

 

Initiation of myelination relies on the establishment of an adhesive contact 

between the extending myelin-producing OL process and the axon to be 

myelinated. It is thus not a surprise that several proteins that mediate the 

formation of adhesive complexes were found to be implicated in the process of 

myelination. For example, FAK regulates the timing of myelin initiation through 

OL morphological remodelling (Forrest et al., 2009). Of all the proteins 

implicated in the formation of adhesion complexes, integrins received a lot of 

attention in studies looking for membrane-associated initiators of myelin 

formation. Laminin-2, expressed on axons, was shown to promote myelin 

formation through OL integrin α6β1 (Colognato et al., 2002). The laminin-2 

mutant exhibited hypomyelination (Chun et al., 2003), suggesting a role for 

integrin signalling in myelin formation. However, subsequent studies on the role 

of β1 integrins yielded puzzling and apparently contradicting results. β1 integrin 

knockout mice showed no defect in CNS myelination (Benninger et al., 2006). 

Taking a dominant negative strategy by overexpressing the extracellular domain 

of β1 integrin, Lee et al, (2006), described hypomyelination of several CNS axon 

tracts. In contrast, overexpression of the intracellular domain of β1 demonstrated a 

myelination delay of small caliber axon (Camara et al., 2009). Thus, while 

integrins might have a role in the initiation of myelination, myelin formation per 

se is not an integrin-dependent mechanism. Interestingly, recent findings provide 

a link between α6β1 integrin and localized translation of myelin proteins such as 

MBP through the interaction of the mRNA binding protein hnRNP-K (Laursen et 

al., 2011), providing additional evidence for a role of integrins in the initiation of 

myelination and myelin gene expression.  
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Negative regulation of myelination could also have a role in the timing and choice 

of axons to myelinate. Polysialylated neural cell adhesion molecule (PSA-

NCAM) was shown to inhibit myelination when present on the axonal surface 

(Charles et al., 2000; Jakovcevski et al., 2007). Importantly, demyelinated axons 

start to re-express PSA-NCAM, which could contribute to remyelination failure in 

several pathological conditions (Charles et al., 2002a). Another negative regulator 

of myelination is LINGO-1, which is expressed on OLs and inhibits 

differentiation and myelination through RhoA activation (Mi et al., 2005).  

 

The exclusion of cytoplasm from the wrapped layers of OL membrane is termed 

“compaction”. Localized translation of MBP protein, which mediates the adhesion 

of the intracellular membrane leaflet, is central to the compaction of CNS myelin. 

The role of cytoskeletal remodelling in myelin compaction is highlighted in the 

RhoGTPase cdc42 and Rac1 conditional mutants, which exhibit aberrant myelin 

compaction (Thurnherr et al., 2006). Other signalling pathways have been 

implicated in different stages of OL development, and this aspect is further 

discussed in the next section.  

Signaling pathways involved in OL development and differentiation  

Several signalling pathways are implicated in OL maturation, differentiation and 

myelination. While some pathways act primarily on cell remodelling through their 

action on the cytoskeleton, some signalling pathways exert their action through 

gene activation and protein synthesis. Even though significant progress has been 

made in recent years in the identification of signalling molecules involved in OL 

differentiation, the exact function of each pathway is still unclear, especially since 

in vitro and in vivo studies have not always agreed. Collaboration and synergy of 

multiple signalling pathways is probably regulating the different stages of OL 

development.  

PI3K/Akt pathway  

Akt (also known as protein kinase B or PKB) is a serine/threonine kinase that can 

mediate numerous cellular functions. Phosphoinositide 3-kinase (PI3K) is a lipid 
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kinase that can be activated downstream of the majority of receptor tyrosine 

kinases and other plasma membrane receptors. Upon activation by receptors, 

PI3K phosphorylates the specialized lipid PtdIns-4,5-P2 generating PtdIns-3,4,5-

P3 which recruits Akt and phosphinoside-dependent kinase 1 (PDK1) to the 

plasma membrane. Akt is in turn activated by PDK1 and can phosphorylate a 

variety of targets implicated in different cell functions including survival, 

proliferation, glucose metabolism and protein synthesis. To turn off the signal, 

PTEN (Phosphatase and Tensin homolog) antagonizes the action of PI3K and 

dephosphorylates PtdIns-3,4,5-P3 (reviewed in Katso et al., 2001). 

 

Growth factor dependent Akt signalling has been implicated in survival of cells of 

the OL lineage after growth factor deprivation (Flores et al., 2000; Cui et al., 

2005), TNFα exposure (Takano et al., 2000; Pang et al., 2007) and glutamate 

toxicity (Ness and Wood, 2002). Akt signalling in cells of the OL lineage has 

been mostly investigated downstream of IGF-1 receptor (insulin-like growth 

factor-1 receptor). IGF-1 induces a sustained Akt activation and provides long 

term protection against cell death (Ness and Wood, 2002; Zaka et al., 2005). 

Transgenic mice overexpressing IGF-1 display increased brain weight, OL 

number and myelin sheet thickness, as well as an upregulation of myelin protein 

gene expression (Carson et al., 1993; Ye et al., 1995). However, the specificity of 

the IGF-1 response is unclear. Early reports describe a hypomyelination 

phenotype in IGF-1 knockout mice (Beck et al., 1995). However, follow-up 

studies suggested an indirect effect on OLs secondary to loss of projection 

neurons, as IGF-1 knockout mice display normal myelination in areas where the 

axon tracts are normal (Cheng et al., 1998). These  results are in concordance with 

a case report of a boy bearing a homozygous IGF-1 deletion that displayed normal 

myelination (Woods et al., 1996). Signaling through the IGF1R receptor has been 

shown to play a role in remyelination following a cuprizone demyelinating 

challenge (Mason et al., 2003). Thus, the physiological role of IGF-1 in OLs 

development and myelination is unclear, and it may be involved more in 

remyelination events than in initial myelination.  
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Whereas the Akt pathway seems to be central to OPC and OL survival in culture 

systems (Ebner et al., 2000; Baron et al., 2003; Jaillard et al., 2005), the 

expression of constitutively active Akt in OLs using a PLP promoter did not 

increase the number of OLs in vivo (Flores et al., 2008). Rather, overexpression of 

constitutively active Akt caused hypermyelination in the CNS that persisted 

through adulthood. This hypermyelination was found to be mediated by mTor 

activation (mammalian target of rapamycin), as it was prevented by 

administration of rapamycin (Narayanan et al., 2009). mTor is a serine/threonine 

kinase that can be activated downstream of Akt and that mediates protein 

synthesis. mTor activation of its downstream targets S6K1 and 4E-BP seems to be 

central to the OL differentiation process, mediating differentiation from the 

precursor stage (A2B5+) to immature OL stage (GalC+) (Tyler et al., 2009). The 

mTor pathway was also shown to mediate IGF-1 induced protein synthesis and 

OL development in vitro (Bibollet-Bahena and Almazan, 2009). Thus, Akt 

activation in OLs might have a survival effect in vitro or in the context of survival 

following injury, but its primary action in vivo seems to be on differentiation and 

myelin formation.  

 

Consistent with a predominant role of the PI3K/Akt pathway in morphological 

differentiation of OLs and myelin wrapping, PTEN inactivation in OLs caused a 

hypermyelination phenotype similar to what was seen in the Akt overexpression 

model (Flores et al., 2008; Goebbels et al., 2010). Thus, a sensitive balance 

between PI3K and PTEN, the brake turning off PI3K signalling, seems to be 

necessary for normal myelination and myelin thickness. Knocking-out PTEN in 

the nervous system or specifically in OLs produced hypermyelination and myelin 

compaction abnormalities (Fraser et al., 2008; Goebbels et al., 2010). 

Interestingly, transgenically removing PTEN expression in OLs later in 

development using an inducible conditional knockout also caused 

hypermyelination and increased myelin thickness (Goebbels et al., 2010), which 

indicates that the signalling pathways governing myelination during development 
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are still active later in life. However, following a demyelination insult to the CNS, 

PTEN inactivation did not increase remyelination efficiency (Harrington et al., 

2010). 

MAPK/ERK pathway  

The mitogen-activated protein kinases (MAPK) are serine/threonine kinases that 

are activated downstream of multiple types of receptors. The kinase cascade 

comprised of Ras, Raf, and MEK, in turn phosphorylates and activates MAPKs. 

Conditional ablation of B-Raf, a Raf kinase family member, in neuronal 

precursors highlighted the importance of the MAPK pathway in OL development, 

as these mice had impaired OL differentiation and substantial hypomyelination. In 

addition, in cells of the OL lineage, B-Raf is the critical upstream activator of 

ERK1/2 (Galabova-Kovacs et al., 2008). 

 

Multiple components of the MAPK pathway have been implicated in OL 

differentiation. p38 MAPK is essential for morphological maturation of OLs, 

expression of stage specific myelin markers (Bhat et al., 2007) and myelination in 

a co-culture system (Fragoso et al., 2007). cAMP responsive element (CREB) was 

shown to be activated by p38 in the regulation of differentiation (Bhat et al., 

2007). More recently, the MAPK-activated protein kinase 2 (MK2) was shown to 

be a critical effector downstream of p38 for the regulation of OL differentiation 

(Haines et al., 2010).  

 

ERK1 and ERK2 (p42 and p44 MAPK respectively) are solely activated by MEK 

MAPK. They are thought to compensate for one another; however, while ERK1 

knockout mice have no overt phenotype (Adams and Sweatt, 2002), ERK2 

knockout mice develop numerous deformities and are embryonic lethal (Satoh et 

al., 2007). ERK1/2 activation was shown to mediate differentiation of OLs from 

neural stem cells in response to NT-3 (Hu et al., 2004) and PDGF-AA (Hu et al., 

2008). MAPK activation is also critical for differentiation in response to brain-

derived neurotrophic factor (BNDF)(Du et al., 2006; Van't Veer et al., 2009). 

ERK1/2 was shown to be activated downstream of IGF-1 and to promote 
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proliferation of OPCs. Interestingly, this activation is dependent on PI3K and Src-

like tyrosine kinase activation, in addition to MEK1 activation, raising the 

possibility of the convergence of multiple signalling pathway onto a common 

effector (Cui and Almazan, 2007). MAPKs thus seem to play a major role in 

proliferation, survival, and differentiation of OLs. In adult myelin, the MAPK 

pathaway is also linked to myelin maintenance and stability. For example, MAPK 

phosphorylation confers stability to MBP and this phosphorylation was altered in 

cases of the demyelinating disease multiple sclerosis (Yon et al., 1996).  

Small Rho GTPases 

The Rho family of small GTPases consists of 3 subfamilies: Rho, Rac and Cdc42. 

They have emerged in recent years as key regulatory molecules linking membrane 

receptors to the actin cytoskeleton. Current models propose antagonistic action 

between Rho and Cdc42/Rac1 in the regulation of process extension in several 

different cell types, with Rho inhibiting and Cdc42/Rac1 promoting process 

extension (reviewed in Ridley, 2006). Their central role in the regulation of cell 

morphology makes them appealing candidates for the regulation of differentiation 

and myelination in OLs. 

 

As one might predict, expression of dominant negative Rho increased process 

extension in OLs (Wolf, 2001), whereas expression of dominant negative Rac1 or 

Cdc42 inhibited differentiation and process extension in vitro (Liang, 2004). 

However, conditional deletion of Rac1 or Cdc42 from OLs in vivo appears to 

impair myelin compaction only, with no effect on differentiation or initiation of 

myelination (Thurnherr et al., 2006). Actin remodelling molecules downstream of 

Rac1 and Cdc42 have also been linked to OL morphological maturation. Neural 

Wiskott-Aldrich syndrome protein (N-WASP) activation leads to process 

extension in OLs (Bacon et al., 2007), while knockout mice for WASP family 

Verprolin-homologous protein 1 (WAVE1) are hypomyelinated (Kim et al., 

2006).  
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Membrane specialization in OLs is crucial for differentiation into myelinating 

OLs. Neuronal signals were shown to trigger redistribution of PLP-containing 

membranes from late endosomes and lysosomes to the cell membrane (Trajkovic 

et al., 2006). This process was shown to be regulated by Rho activity, and the 

authors suggest that development of membrane specialization and myelin in OLs 

is dependent on Rho inactivation (Kippert et al., 2007). Furthermore, RhoA 

activity was shown to decrease as differentiation was triggered in an 

oligodendrocyte cell line, which is consistent with previous results suggesting the 

requirement for inactivation of Rho for differentiation to proceed (Liang et al., 

2004). This is particularly relevant in a disease context, where inhibition of the 

differentiation of OPCs is thought to contribute to the failure of remyelination in 

demyelinated lesions (section I.3.2). Downstream of Rho, Rho kinase (ROCK) 

and its target myosin II have also been implicated in myelination. The activation 

levels of both ROCK and myosin II are reduced during myelination, and 

inhibition of myosin II leads to increased branching and myelin formation (Wang 

et al., 2008). Several factors were shown to act through Rho GTPases in OLs. 

Laminin-2, a component of the extracellular matrix that promotes OL process 

outgrowth and myelin formation, exerts its effect through the activation of 

Cdc42/Rac1 and deactivation of RhoA downstream of its receptor integrin α6β1 

(Liang et al., 2004). In this case, signalling to the GTPases is dependent on the 

kinase activity of fyn, a member of the Src family kinases.  

 

Another cue that acts on RhoGTPases in OL is netrin-1. As mentioned in section 

I.1, netrin-1 acts as a chemorepellent for OPCs and thus triggers process retraction 

(Jarjour et al., 2003; Tsai et al., 2003). This process retraction was shown to be 

dependent on RhoA and ROCK activation (Rajasekharan et al., 2010). In 

differentiated OLs grown in vitro, netrin-1 induced morphological differentiation 

and process elaboration (Rajasekharan et al., 2009). This effect was mediated by 

the netrin-1 mediated recruitment and activation of fyn and concomitant reduction 

of RhoA activity (Rajasekharan et al., 2010). Thus, distinct effects of netrin-1 

along OLs differentiation path were shown to rely on a molecular switch resulting 
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in differential regulation of RhoA activity. This switch could be caused by 

different receptor expression on OLs, as UNC5 homologs expression changes 

throughout development (Manitt et al., 2004). Alternatively, the switch could 

result from increased association of fyn with DCC as the OL mature, which could 

decrease RhoA activation through its action on p190RhoGAP (Wolf et al., 2001).  

Other signalling partners and pathways 

Fyn kinase activity is upregulated early during OL differentiation and 

morphological maturation is impared when fyn function is inhibited (Osterhout et 

al., 1999). In vitro, IGF-1 (Sperber and McMorris, 2001) and netrin-1 

(Rajasekharan et al., 2009) failed to stimulate morphological maturation in fyn 

knock out OLs. Fyn is thus required for the activation of multiple signalling 

pathways in OLs. Another signalling pathway, the Notch pathway, was shown to 

inhibit OL differentiation during development (Wang et al., 1998; Genoud et al., 

2002), but more recent studies disagree on the importance of Notch in OPC 

differentiation in development and following demyelination insult (Fancy et al., 

2010).  More recently, the Wnt/β –catenin pathway was shown to contribute to the 

timing of myelination (Fancy et al., 2009; Feigenson et al., 2009) and inhibiting 

this pathway blocked expression of several myelin genes, such as PLP, in OLs 

(Tawk et al., 2011).   

 

I.2.2 Myelin architecture 

Nerve impulses in myelinated fibres jump between each myelin segment from one 

node of Ranvier to another, allowing for rapid saltatory conduction. This is based 

on the complex domain architecture along the myelinated fiber. The internode is 

the area of the axon surrounded by compact myelin, and its length depends on 

axon caliber. Compact myelin is formed of multiple wraps of compacted 

membrane bilayers. When observed through an electron microscope, one can 

distinguish myelin as alternating dark and light lines. The major dense line, or 

dark line, corresponds to the intracellular membrane portion that is brought in 

close apposition through proteins like MBP and the exclusion of cytoplasm. The 
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intraperiodic line corresponds to the extracellular portion of myelin. When an OL 

wraps its membrane around an axon, and cytoplasm is excluded from the myelin, 

cytoplasm-filled channels still remain on each side of the compacted membrane. 

These channels – or loops – contact the axons at the end of each myelin section. 

The loops are called paranodes, because they are located each side of the 

unmyelinated portion of the axons, the nodes of Ranvier (Baumann and Pham-

Dinh, 2001). As a consequence of this complex architecture, myelin structure is 

highly organized around different domains: the node, the paranode and the 

juxtaparanode (Figure 1-4).  

Nodes of Ranvier 

Interaction complexes at the node are different between the CNS and the PNS. In 

the PNS, nodes are contacted by the Schwann cells’ microvilli, whereas CNS 

nodes are surrounded by perinodal astrocytes, an NG2 positive astrocytes subtype 

(Poliak and Peles, 2003). Nodes contain high densities of voltage gated sodium 

(Na
+
) channels, essential for the rapid depolarization required for saltatory 

conduction. These channels form a complex with the neuronal 186 kDa isoform of 

neurofascin (NF186) through a direct interaction and with the neural-glial-related 

cell adhesion molecule (NrCAM) indirectly (Davis et al., 1996; McEwen and 

Isom, 2004). NF186 is essential for the formation of Na
+
 channel complexes, but 

NrCAM is dispensable (Sherman et al., 2005). AnkyrinG, an adaptor protein 

linking transmembrane proteins to spectrins and the actin cytoskeleton, is the first 

protein to appear at the node. It is thought to recruit the Na
+
 channel complex 

components and to provide a link to the cytoskeleton (Kordeli et al., 1995; Jenkins 

and Bennett, 2002; Dzhashiashvili et al., 2007), along with βIV spectrin (Berghs 

et al., 2000). 

 

In the PNS, microvilli of Schwann cells express gliomedin, a transmembrane 

protein that associates with NrCAM and NF186 and mediates the assembly of the 

nodal complex (Eshed et al., 2005). In contrast, work on retinal ganglion cells in 

vitro showed that a diffusible factor secreted by OLs is responsible for Na
+
 

channel clustering (Kaplan et al., 1997) and formation of paranodal junctions 
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(Susuki and Rasband, 2008) in the CNS. It thus appears that the mechanisms of 

node assembly differ between the PNS and CNS.  

Paranode  

The paranode is located on each side of the node of Ranvier, where the compact 

myelin membranes terminate in cytoplasm-filled loops that contact the axolemma 

(Figure 1-4). The paranode is believed to act as a barrier against the diffusion of 

protein between the node and the juxtaparanode, and it electrically isolates the 

myelinated from the unmyelinated portions of the axon (Pedraza et al., 2001). The 

paranode is also considered to act as a path for the trafficking of protein and for 

communication between the axon and the glial cell (Trapp and Kidd, 2000). The 

points of contact between the oligodendroglial loops and the axolemma are 

characterized ultrastructurally by the presence of transverse bands (TBs) (Schnapp 

et al., 1976). In the last decade, multiple proteins located at the paranode were 

characterized, but whether or not these proteins form the core of the TBs or are 

only required for the assembly of TBs is still under debate.  

 

The glial loops of the paranode contain the glial 155 kDa isoform of neurofascin 

(NF155), which is necessary for the recruitment of the axonal complex partner, 

formed by Caspr and contactin, to the paranodal domain (Tait et al., 2000; 

Sherman et al., 2005). NF155 can be differently glycosylated, and the most 

glycosylated form was shown to be required for paranodal integrity (Pomicter et 

al., 2010). On the axonal side of the paranode, contactin, a GPI-linked protein, 

forms a complex in cis with Caspr (Peles et al., 1997), and its presence is 

necessary for the expression of the complex at the paranode (Faivre-Sarrailh et al., 

2000). NF155 was shown to bind to Caspr and contactin on the axonal membrane, 

and this complex is thought to be the molecular basis of the formation of axoglial 

junction (Charles et al., 2002b). However, some evidence contradicts this 

tripartite complex model. Gollan et al. (2003) demonstrated through binding 

studies that Caspr inhibits NF155 binding to contactin. Nonetheless, these three 

proteins have been shown to play a pivotal role in paranode organization. NF155 

function is dependent on its immunoglobulin domains 5 and 6 (Thaxton et al., 
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2010), and NF155 mutants show motor defects, paranodal disorganization and 

early lethality (Sherman et al., 2005; Pillai et al., 2009). Contactin mutants exhibit 

neurological defects, absence of TBs and die by P18. Caspr is absent from 

paranodes in this mutant, demonstrating the need for contactin for proper 

transport of the Caspr/contactin complex to the paranode (Boyle et al., 2001). 

Caspr mutants exhibit paranodal abnormalities, irregular TBs and have a 

relatively longer life span than the contactin mutant (Bhat et al., 2001). Notably, 

severity of the phenotype of paranodal mutants is related to the integrity of TBs 

(Mierzwa et al., 2010b) suggesting a crucial role for these adhesive complexes in 

the function of myelinated fibers. Interaction with the axonal cytoskeleton is 

essential to the domain organization of paranodes, and the intracellular portion of 

Caspr acts as a scaffold that mediates this interaction (Gollan et al., 2002). Protein 

4.1B acts as a linker between Caspr and the actin cytoskeleton (Ohara et al., 2000; 

Denisenko-Nehrbass et al., 2003). Other cytoskeletal components were identified 

at the paranode, like ankyrinB, αII spectrin and βII spectrin (Garcia-Fresco, 2006; 

Ogawa et al., 2006), but their exact contributions to the stabilization of paranodal 

junctions are still unclear.  

 

Lipid composition and organization of OL membranes were also shown to be 

critical for the maintenance of paranodal organization. Myelin galactolipids, 

galactocerebroside (GalC) and sulfatide, are essential for the establishment and 

maintenance of functional axoglial adhesive complexes (Dupree et al., 1998; 

Marcus and Popko, 2002). Mutating the enzyme responsible for the formation of 

both GalC and sulfatide (CGT mutant) led to myelin abnormalities and the 

absence of TBs (Dupree et al., 1998). In contrast, mice lacking only sulfatide 

(CST mutant) develop normally, but exhibit myelin and paranode maintenance 

defects as they age (Ishibashi et al., 2002; Marcus et al., 2006). Abnormal 

galactolipid composition has been shown to inhibit NF155 partitioning into lipid 

rafts (Schafer et al., 2004) and to alter expression of cytoskeletal proteins in OLs 

(Fewou et al., 2010). This highlights the highly complex interplay between 

transmembrane proteins, molecular bridges to the cytoskeleton and membrane 
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microdomains in the establishment of functional axoglial junctions and myelin 

domains.  

 

A common interpretation of paranodes’ function is that it serves as a tight seal 

preventing short circuiting and loss of power of travelling impulses. However, a 

recent study demonstrated that molecules can reach the space between the axon 

and the myelin sheath at the juxtaparanodes and the internodes by travelling 

through the paranodes. This transport channel is believed to lie between the glial 

loops (Mierzwa et al., 2010a). Thus, paranodes are believed to serve different 

functions. First, they provide electrical isolation while leaving a small 

communication channel to transport small molecules and metabolites to the 

internode. Second, it acts as a barrier against the diffusion of proteins and ions 

channels along the different domains of the axon. Third, it maintains the nodal 

domain to ensure proper conduction from node to node (Rosenbluth, 2009).  

Juxtaparanode 

The juxtaparanodes are located next to the paranodes, under the compact myelin 

sheet. They are characterized by clusters of voltage-gated potassium (K
+
) 

channels (Wang et al., 1993), but also contain adhesive molecules such as Tag1 

(Traka et al., 2002) and Caspr2 (Poliak et al., 1999) that are required for the 

clustering of channels at the juxtaparanode (Traka et al., 2003). Tag1 is expressed 

on both the OL and axonal plasma membrane; however, only glial Tag-1 is 

required for the assembly of the K
+
 channel complex at the juxtaparanode 

(Savvaki et al., 2010). Caspr2 is a scaffold protein that mediates the K
+
 channel 

complex assembly through its intracellular interaction with protein 4.1B (Horresh 

et al., 2010). The role of K
+
 channels under the myelin sheath at the juxtaparanode 

is not fully understood, but some propose that they serve to maintain the 

internodal resting potential and act as a mediator of axoglial communication 

(Poliak and Peles, 2003).  
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Compact myelin composition 

Myelin is composed primarily of lipids, in particular the galactolipids GalC and 

sulfatide, and cholesterol. Compact myelin also contains several proteins, of 

which PLP/DM20 and MBP are the most abundant in the CNS.  

Proteolipid Protein (PLP)/DM20 

PLP is the most abundant protein in CNS myelin, while its expression in PNS 

myelin is minimal. The PLP gene is highly conserved and is alternatively spliced. 

It encodes both PLP and its shorter isoform DM20, which is expressed early in 

development (Wight and Dobretsova, 2004). Both proteins consist of four 

transmembrane domains. PLP transport to the cell surface is controlled by a 

secreted neuronal signal, which activates a cAMP- and RhoGTPase-dependent 

signalling pathway that leads to the redistribution of PLP from late 

endosomes/lysosomes to the cell surface (Trajkovic et al., 2006; Kippert et al., 

2007). Because of its molecular structure, its location in compact myelin and its 

abundance, it was previously believed that PLP mediated adhesion and 

compaction of extracellular membranes. However, mutant mice that lack the 

expression of PLP/DM20 do not exhibit any myelin formation defects, and mice 

appear phenotypically normal until one year of age. A destabilization of myelin in 

older mutant mice was observed (Klugmann et al., 1997), followed by axon 

degeneration (Griffiths et al., 1998). This suggests a role of PLP in the 

maintenance of myelin integrity rather than myelin formation and membrane 

compaction.   

Myelin Basic Protein (MBP) 

MBP is the second most abundant myelin protein, but it is considered the most 

important one. Moreover, it is the only protein essential for formation of myelin in 

the CNS. The shiverer mutant mice carry a naturally-occurring deletion of part of 

the MBP gene. Although OLs wrap their membrane around axons in this mutant, 

there is no compact myelin, leading to severe neurological deficits and death by 3 

months of age (Readhead et al., 1987; Readhead and Hood, 1990). MBP is an 

intracellular protein bound to the OL membrane through electrostatic interactions, 
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and it mediates intracellular membrane reorganization and adhesion, and myelin 

compaction (Fitzner et al., 2006). Several isoforms are formed by alternative 

splicing, and their expression is developmentally regulated (Boggs, 2006). 

Interestingly, MBP is not required for myelin formation in the PNS, and it is 

thought that other proteins expressed in PNS myelin, such as PMP22 and P0, 

compensate for the absence of MBP in these mutants (Martini et al., 1995; Boggs, 

2006). Local translation of MBP occurs via assembly of MBP mRNA in RNA 

granules, which include proteins of the translation machinery and transport of 

these granules via the vesicular transport pathways (Colman et al., 1982; 

Barbarese et al., 1995; Baron and Hoekstra, 2010). In addition to ensuring that 

membrane compaction does not occur in domains other than myelin, this allows 

for spatiotemporal control of MBP translation through the activation of signals 

such as integrin or fyn signalling (White et al., 2008; Laursen et al., 2011).  

Non-compact myelin composition 

Non-compact myelin includes the paranodal loops, the innermost layer of OL 

membrane contacting the axon (also named adaxonal membrane), and the 

outermost layer of OL membrane. Pockets of uncompacted myelin along the 

internodes, named the Schmidt-Lanterman incisures, are common in the PNS, but 

are rarely observed in the CNS (Baumann and Pham-Dinh, 2001). In addition to 

the paranodal and juxtaparanodal proteins expressed by OLs (described above), 

several other proteins are specially localized to those non-compact myelin 

domains.  

Myelin associated glycoprotein (MAG)  

MAG is a transmembrane protein of the Ig superfamily, and has an apparent 

molecular weight of 100 kDa, of which 30% is due to its heavy glycosylation 

(Baumann and Pham-Dinh, 2001). MAG is expressed predominantly on the 

adaxonal OL membrane, facing the axonal membrane, but is also present in other 

non-compact compartments. MAG axonal receptors include gangliosides GD1a 

and GT1b, and the Nogo receptor NgR1 (Schnaar and Lopez, 2009). Mice 

deficient for MAG exhibit normal myelin formation, but develop axon and myelin 
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degeneration in late adulthood, suggesting a role of MAG in the maintenance of 

myelinated fibers (Li et al., 1994; Fruttiger et al., 1995). Interestingly, MAG was 

shown to be critical for axonal neurofilament phosphorylation, central to the 

phenomenon of myelination-induced axonal expansion (Yin et al., 1998). Thus, 

MAG could exert its functions through the maintenance of the axonal 

cytoskeleton and the preservation of efficient axonal transport in myelinated 

fibers (Sousa and Bhat, 2007).  

2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNP) 

CNP is an abundant myelin protein and is localized specifically in the cytoplasm 

of non-compact regions such as inner mesaxon and paranodes (Braun et al., 1988; 

Trapp et al., 1988). There are two isoforms of CNP resulting from distinct 

translation start sites (Monoh et al., 1989). The precise function of CNP is still 

elusive, as in vitro and in vivo results are hard to reconcile. In vitro, CNP was 

shown to mediate process outgrowth in OLs (Lee et al., 2005) and was able to 

induce microtubule polymerization (Bifulco et al., 2002). Despite its abundance 

and function in vitro, CNP knockout mice show no myelination defects (Lappe-

Siefke et al., 2003). However, paranodes start to become disorganized at 3-4 

months of age (Rasband et al., 2005), followed by axonal swelling, degeneration, 

and premature death (Lappe-Siefke et al., 2003), implying a role for CNP in glial 

support of axonal integrity. Interestingly, a protein microarray identified CNP as a 

binding partner of the intracellular domain of Nogo-A in OLs, suggesting a role 

for CNP in stabilizing myelin transmembrane receptors (Sumiyoshi, 2010).  

Oligodendrocyte myelin glycoprotein (OMgp) 

Oligodendrocyte myelin glycoprotein (OMgp) is a glycosylphosphotidylinositol 

(GPI)-anchored protein expressed both in neurons and OLs in the mature CNS. Its 

precise localization and role in myelin are still under debate. Early reports of 

OMgp mutants described a role for OMgp in nodal integrity, either by restricting 

axonal sprouting at the node (Huang et al., 2005) or by controlling nodal length 

and structure (Nie et al., 2006). However, more recent studies disagree with these 

results. Chang et al. (2010) demonstrated the absence of OMgp immunostaining at 
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nodes as previously reported (Huang et al., 2005; Nie et al., 2006), and found no 

effect of OMgp absence on nodes, paranodes or myelin thickness in optic nerve. 

Another group recently showed decreased myelin thickness in spinal cord of 

OMgp mutants (Lee et al., 2011). Clearly, more evidence is needed to draw a firm 

conclusion on the role of OMgp in OL biology and myelin formation. 
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I.3 MYELIN-ASSOCIATED CNS PATHOLOGIES 

 

I.3.1 Normal and pathological aging  

 

Aging is associated with a decline in cognitive performance, which can be 

exacerbated by pathological conditions such as Alzheimer’s disease (AD) or other 

types of dementias. Previous models have focused on neuronal loss with aging 

and its effect on cognitive performance. However, a magnetic resonance imaging 

(MRI) study described a decrease in white matter volume with age, while the grey 

matter areas were unchanged (Guttmann et al., 1998). In fact, imaging studies and 

histopathological observations have led several groups to link the integrity of 

white matter tracts to age-related cognitive decline (Hinman and Abraham, 2007). 

With aging, myelin integrity is compromised, and loss of myelin correlates with 

age in humans (Svennerholm et al., 1994), and cognitive decline in aged monkeys 

(Luebke et al., 2010). Ultrastructural defects of myelin, such as decompaction or 

redundant myelination, have been described in myelinated fibers of aged monkeys 

(Sloane et al., 2003; Peters, 2009). Paranodal junctions undergo substantial 

reorganization with aging. Paranodal loops detach from the axon, and Caspr and 

K
+ 

channels expression profiles are abnormal in paranodes of aged monkeys and 

rats (Sugiyama et al., 2002; Hinman et al., 2006). More specifically, this 

reorganization of paranodes leads to the disruption of TBs (Shepherd et al., 2010), 

whose integrity is related to the severity of the phenotypes observed in transgenic 

mice models (Mierzwa et al., 2010b).   

 

Pathological conditions developed in aged individuals such as AD have also been 

linked to myelin function. The myelin model of AD states that AD results from 

the failure of the brain to maintain and repair its myelin with age (Bartzokis, 

2009). Evidence in favour of this model is at the most circumstantial. However, 

several reports have described white matter abnormalities in patients with AD, 

contributing to cognitive impairment (Roth et al., 2005; Heo et al., 2009; Agosta 

et al., 2011). AD is characterized by accumulation of β-amyloid, forming 
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extracellular plaques toxic both for neurons and OLs (Roth et al., 2005). 

Interestingly, MBP binds to β-amyloid and promotes its degradation (Liao et al., 

2009), which raises the possibility that myelin breakdown could potentiate the 

assembly of toxic β-amyloid plaques and accelerate the AD course.  

 

Altogether, these recent findings shake preconceptions about cognitive 

impairment, which was thought to be the result of neuronal loss, and bring to light 

the possibility that a primary defect in myelin maintenance and integrity can 

affect cognitive performance. Future research in this area will possibly identify 

new targets for future studies on age related and pathological cognitive decline.   

 

I.3.2 Multiple Sclerosis 

 

The most prevalent demyelinating disease, multiple sclerosis (MS), is 

characterized by inflammation and degeneration of myelin in the CNS, and 

ultimately a failure of remyelination (Prat and Antel, 2005). The most common 

type of MS is the relapsing-remitting form, characterized by the appearance of 

symptoms, followed by total remission. In the majority of cases, a secondary 

progressive form of MS develops, where symptoms worsen in between attacks, 

and this form of MS is sometimes referred to as chronic MS (Reynolds et al., 

2011). The cause leading to the development of MS remains unknown. While 

several studies suggest that the primary event is a dysregulation of the immune 

system (McFarland and Martin, 2007), others argue that a primary defect in 

myelin stability causes an exposure of antigenic material that subsequently 

triggers an immune response (Mastronardi and Moscarello, 2005).  

Remyelination failure 

The fact that MS patients can recover from their relapse symptoms, along with the 

presence of shadow plaques, was an early indication that remyelination could take 

place in MS (Prineas et al., 1984; Prineas et al., 1993). Remyelination can lead to 

functional recovery, and protection of axons from transection and subsequent 
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neurodegeneration (Trapp et al., 1988). However, most studies indicate that 

remyelination does occur at early stages of the disease, but after a certain point in 

the course of the disease, remyelination fails, which can ultimately cause neuronal 

death (Lassmann et al., 1997). As immunomodulatory therapeutic agents are 

becoming more effective at preventing relapses in MS patients, the secondary 

progressive course caused by the death of chronically demyelinated neurons is 

still hardly treatable. Finding ways to promote endogenous myelination is thus a 

focus of MS research.  

 

To achieve successful remyelination, OPCs need to migrate to the lesion, 

differentiate, and remyelinate the axons. Several factors expressed in myelin 

could be present in MS plaques and could act as repellent for migratory OPCs, 

such as netrin-1 or semaphorins (Manitt et al., 2001; Williams et al., 2007). 

Nevertheless, absence of remyelination in chronic MS is not caused by a lack of 

precursors, since OPCs are found within chronic lesions (Chang et al., 2002; 

Wilson et al., 2006), but rather lack of remyelination seems to be due to blocked 

differentiation of OPCs (Kuhlmann et al., 2008). MS plaques thus seem to 

constitute an inhibitory environment for OL differentiation. Inhibition of 

differentiation can occur through exposure of OPCs to myelin debris (Baer et al., 

2009), LINGO-1 (Mi et al., 2005) or PSA-NCAM re-expression on demyelinated 

axons (Charles et al., 2002a). Evidence points to the convergence of inhibition 

signals through Rho activation in OPCs. In vitro, pharmacological inhibition of 

RhoA, ROCK or PKC signalling was able to overcome the halt in differentiation 

provoked by myelin debris (Baer et al., 2009). In further agreement of Rho 

inactivation in OLs differentiation, inhibition of myelination by LINGO-1 has 

been linked to its ability to activate RhoA (Mi et al., 2005). Other pathways, such 

as the Wnt/β-catenin pathway, were also shown to regulate OPCs differentiation 

following demyelination (Fancy et al., 2009). The causes and mechanisms of OL 

differentiation block in MS are still being investigated, and therapeutic 

interventions that aim to improve endogenous remyelination are key strategies 

both to alleviate the symptoms and to promote the recovery of MS patients.  
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Paranodal dysfunction in MS 

Some models of MS implicate an initial disruption of myelin stability as the event 

that triggers the disease process. This instability, which can be caused by an 

imbalance of myelin protein expression, could lead to decompaction of myelin 

and exposure of antigenic material (Mastronardi and Moscarello, 2005). In 

addition to changes in compact myelin, paranodal abnormalities have also been 

observed in MS patients. Expression and localization of Caspr is altered both in 

chronic lesions and in normal appearing white matter, raising the possibility that  

paranodal dysfunction could precede the appearance of a demyelinating plaque 

(Wolswijk and Balesar, 2003). NF155 expression has also been found to be 

altered in and near demyelinated MS lesions, causing juxtaparanodal K
+
 channels 

to migrate into the paranodal regions (Howell et al., 2006). More specifically, the 

glycosylated form of NF155, termed NF155 high, is decreased in MS (Pomicter et 

al., 2010). These findings suggest that paranodal disorganization may precede 

demyelination in MS, and investigating the consequences of this alteration in 

paranodal integrity is an important step in identifying the mechanisms that lead to 

demyelination events in MS.  

 

I.3.3 Spinal cord injury 

 

The inherent inhibitory nature of the adult CNS is apparent after spinal cord 

injury, where severed axons fail to regenerate. In comparison, severed PNS axons 

are capable of regrowth and reinnervation of peripheral targets after peripheral 

nerve transection. This distinction between the PNS and CNS injury environment 

was highlighted in the early 1980s, in studies showing that spinal cord axons can 

regenerate into peripheral nerve grafts after injury (David and Aguayo, 1981). The 

major source of inhibition in the CNS results from the breakdown of myelin, and 

proteins expressed by OLs were shown to mediate this inhibition (Caroni and 

Schwab, 1988).  
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Three main myelin-derived inhibitors were identified as having an effect on the 

failure of neurite regeneration: Nogo, MAG, and OMgp (Xie and Zheng, 2008). 

These three inhibitors exert their effect by binding to a common receptor, the 

Nogo Receptor 1 (NgR1), which forms a complex with co-receptors p75NTR, 

TROY, and LINGO-1 (Yiu and He, 2006). Evidence suggests that activation of 

RhoA and its effector ROCK, downstream of this receptor complex, mediates the 

inhibitory effect on axonal growth (Niederost et al., 2002; McGee and 

Strittmatter, 2003). This signaling pathway has been a target for the development 

of therapeutic agents to enhance regeneration (Dergham et al., 2002; Walmsley 

and Mir, 2007). However, the absence of these three inhibitors does not produce 

strong regeneration following injury, as there is little to no effect on regeneration 

in single Nogo, MAG, or OMgp knockout mice, or triple knockout mice (Bartsch 

et al., 1995; Lee et al., 2010). Moreover, NgR1 knockout mice also exhibit a 

limited effect on neurite outgrowth and do not show long distance regeneration 

after injury (Kim et al., 2004; Zheng et al., 2005). This suggests that more 

inhibitors are present within the lesion, and that they act on other receptors on 

regenerating axons. Of note, OLs also express several repulsive guidance 

molecules, which could repel growing axons and prevent outgrowth. Such factors 

include ephrin-B3, sema4D, sema5A, RGM, and netrin-1 (Xie and Zheng, 2008). 

In the injured nervous system, netrin-1 expression increases in mouse spinal cord 

and cerebellum (Wehrle et al., 2005), whereas expression in the injured rat spinal 

cord was shown to decrease (Manitt et al., 2006). When present at lesion sites, 

netrin-1 acts as a myelin-associated growth inhibitor and can impede axonal 

regeneration (Low et al., 2008). Moreover, this inhibitory effect of netrin-1 on 

regenerating axons is specific for UNC5-expressing axons (Low et al., 2008).  

 

Some myelin proteins acting as inhibitors are specific to OLs, and are not 

expressed by Schwann cells, like Nogo, which provide a partial explanation as to 

why the CNS environment may be functionally different (Xie and Zheng, 2008). 

Another difference is the immune system response and the clearing of myelin 
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debris after injury, which is substantially more efficient in the PNS than in the 

CNS (Hirata and Kawabuchi, 2002).  

 

In addition to myelin-derived inhibitors, glial scar formation at the site of injury 

can also be a source of inhibitory molecules and is believed to be another barrier 

to regeneration in the CNS. The scar is composed mostly of reactive astrocytes, 

which secrete chondroitin sulphate proteoglycans (CSPGs), an extracellular 

matrix component that inhibits neurite outgrowth (McKeon et al., 1999). 

Treatment of the injury with chondroitinase ABC, which degrades CSPGs, leads 

to improvement of axonal regeneration and functional recovery (Moon et al., 

2001; Bradbury et al., 2002). Fibroblasts within the glial scar also express 

semaphorin class 3, which repels regenerating growth cones (De Winter et al., 

2002). However, a growing body of evidence tends to demonstrate that glial scar 

formation is beneficial in mediating different aspects of CNS repair after injury, 

such as toxicity buffering, immune modulation and promotion of angiogenesis 

(Rolls et al., 2009). Deciphering both the myelin-associated proteins and the glial 

scar-derived molecules involved in promoting and inhibiting regeneration could 

thus help in identifying specific targets for therapeutic intervention after spinal 

cord injury.  
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FIGURE 1-3: The life of an oligodendrocyte. OLs develop from bipolar and 

highly motile OPCs, which follow an ordered path of differentiation characterized 

by the expression of different markers (in blue). Cells are influenced by different 

signals, both positive (green) and negative (red).  
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FIGURE 1-4: Domain segregation and organization around the Node of 

Ranvier. A) The compact myelin sheath terminates in cytoplasm-filled loops 

around the node of Ranvier. This leads to the formation of the paranode domain. 

The juxtaparanodes are located under the compact myelin sheaths adjacent to the 

paranodes.  B) Juxtaparanodes contain K
+
 channel complexes formed by Caspr2 

and Tag1 proteins. C) A glial form of neurofascin NF155 on the paranodal loop 

membrane interacts with the the Caspr and Contactin complex on the axonal 

membrane. The Caspr intracellular domain interacts with the actin cytoskeleton 

through protein 4.1B, AnkyrinB and spectrins. D) Sodium channels at the nodes 

complex with the neuronal form of neurofascin NF186 and NrCam, which links 

the sodium channel clusters with the cytoskeleton through AnkyrinG and 

spectrins.   
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RESEARCH RATIONALE AND OBJECTIVES 

 

As described in chapter I, myelin formation and maintenance result from the 

complex interplay of extracellular signals and the signalling pathways activated. 

During the course of my PhD, a body of literature emerged describing a 

preponderant role of Akt and mTor in OL development and myelin formation 

(Narayanan et al., 2009; Tyler et al., 2009). We hypothesized that screening for 

molecules that could activate Akt in OLs could provide insight into the role of this 

signalling pathway in OL maturation. This is addressed in chapter II.  

 

Previous work carried on in the lab described a role for DCC and netrin-1 in 

paranodal maintenance in organotypic cerebellar slice cultures in vitro (Jarjour et 

al., 2008). However, the cellular location where DCC is required to function at 

paranodes still had to be determined. In addition, we did not know whether the 

abnormal phenotype observed in vitro also occurs in vivo. These questions are 

addressed in chapter III, using intraretinal OPCs injection and a conditional knock 

out strategy.  

 

Finally, our lab and others provided evidence that netrin-1 is a myelin-associated 

inhibitor of axon growth after injury (Wehrle et al., 2005; Manitt et al., 2006; Low 

et al., 2008). However, conflicting results were reported, depending on the study. 

To resolve this issue, and to test whether oligodendroglial netrin-1 was the only 

source of netrin-1 at sites of injury in the CNS, we examined netrin-1 gene 

activation in a model of spinal cord injury. This study is presented in chapter IV.  
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CHAPTER II                                                                                                                                                                                                 

NT-3, BNDF, NGF AND NRG1 SYNERGIZE VIA AKT/MTOR PATHWAY TO 

REGULATE OLIGODENDROCYTE MORPHOLOGICAL DIFFERENTIATION  

 

 

 

The results presented in this chapter are part of a manuscript prepared in 

collaboration with members of Dr David Colman’s laboratory and members of the 

Experimental Therapeutic Program (ETP)  
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PREFACE AND RATIONALE  
 

Recent findings have identified Akt/mTor signaling as a key pathway in OL 

differentiation and myelin formation (Flores et al., 2008; Narayanan et al., 2009; 

Tyler et al., 2009). Activation of the Akt pathway, either by ablation of PTEN 

(Goebbels et al., 2010) or overexpression of constitutively active Akt (Flores et 

al., 2008) in OLs induces hypermyelination via the key downstream effector of 

Akt mTor, and subsequent activation of protein synthesis (Narayanan et al., 2009; 

Tyler et al., 2009).  

 

The upstream activators of Akt and mTor that are responsible for promoting 

myelination in vivo are not fully characterized. Akt signalling in OLs has been 

mostly investigated downstream of the IGF-1 receptor (insulin-like growth factor-

1 receptor). However, the physiological role of IGF-1 in OL development and 

myelination is unclear (see section I.2.1), and it may be involved more in 

remyelination events than in initial myelination. Signaling downstream of 

multiple factors converges on Akt, and loss of IGF-1 could thus be compensated 

for by other factors present in the developing CNS, such as growth factors. Nerve 

growth factor (NGF), brain–derived neurotrophic factor (BDNF) and 

neurotrophins-3 (NT-3) are neurotrophins highly expressed in the developing 

CNS and they bind preferentially to TrkA, TrkB and TrkC, respectively. In 

addition to their preferred Trk receptors, they all bind to p75 (Huang and 

Reichardt, 2001). Most studies agree on the expression of p75 by OLs, but the 

described pattern of expression of different Trks varies. Overall, expression of the 

three Trks has been reported in OLs (Althaus et al., 2008). Neuregulin 1 (NRG1) 

is also a growth factor highly enriched in the nervous system. NRG1 binds to the 

ErbB class of receptors that includes members ErbB2, ErbB3 and ErbB4, and can 

activate several signalling pathways, including the Akt pathway (Falls, 2003). 

 

All these growth factors were examined for their capacity to promote myelination 

or remyelination in vitro and in vivo. Neuregulin 1 (NRG1) regulates myelination 
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in the PNS (Taveggia et al., 2005), but its role in OL differentiation and 

myelination in the CNS is unclear (Brinkmann et al., 2008). Neurotrophins have 

also received considerable attention as they are potent regulators of many 

different aspects of nervous system development (Huang and Reichardt, 2001). 

BDNF and NT-3 promote differentiation of OLs (Lachyankar et al., 1997; 

McTigue et al., 1998; Heinrich et al., 1999; Du et al., 2006; Xiao et al., 2011). 

NGF inhibits differentiation and myelination through axonal signals (Chan et al., 

2004; Lee et al., 2007), but was also identified as a remyelination promoting 

factor following lysolecithin demyelination of the corpus callosum (Althaus, 

2004). Extracellular factors can elicit distinct effects depending on the 

downstream signalling pathways they activate. In addition, convergence of 

signalling pathways can contribute to the different effects described in some 

studies. Here we aimed to identify factors that would stimulate Akt activation and 

increase OL differentiation.  
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MATERIALS AND METHODS 

 

Animals  

Sprague Dawley newborn pups were obtained from Charles River Canada 

(Montreal, Québec, Canada). All procedures were performed in accordance with 

the Canadian Council on Animal Care guidelines for the use of animals in 

research. 

 

Oli-neu cell culture  

Oli-neu cells, originally generated by Dr Jacqueline Trotter (Johannes Gutenberg 

University, Mainz, Germany) (Jung et al., 1995), were provided by Dr. Ajit-Singh 

Dhaunchak (McGill University) and cultured in Sato medium containing 1% heat-

inactivated horse serum. Cells were plated onto cell culture substrates coated with 

poly-D-lysine (PDL). Prior to treatment of oli-neu cells with different factors (see 

below), media was changed to DMEM alone.  

 

Rat OPC isolation and treatments 

Primary OLs were cultured as previously described (Armstrong, 1998; Jarjour et 

al., 2003). In brief, P0 rat pups were decapitated, neocortices removed, chopped 

with a razor blade, and treated with trypsin-EDTA (Invitrogen) for 20 minutes at 

37°C. The tissue was then triturated with 18G and 22G syringes, and plated in 

T75 flasks containing 10% heat-inactivated foetal bovine serum, 1% 

penicillin/streptomycin in DMEM. Cultures were allowed to proliferate for 10-12 

days, with the media being changed every 2 days. Microglia were removed by a 

1hr shake-off at 150 rpm. OPCs were then obtained by an overnight shake off at 

180 rpm, and purified by differential adhesion. Cells were plated in OL defined 

media (DMEM, 100ug/ml transferrin, 30nM sodium selenite, 30nM T3, 100 

µg/ml penicillin/streptomycin, 2mM glutamax) onto PDL coated chamber slides 

for immunocytochemistry analysis and onto PDL coated 6 well dishes for 

biochemical analysis. When present in the media, insulin was at a concentration 

of 5 µg/ml.  
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Cells were treated with either NRG1 ectodomain (Sigma), NT-3 (Invitrogen), 

BDNF (Invitrogen), NGF (Invitrogen), or N1 supplement (Sigma). For all 

experiments with primary OLs, when used alone, NRG1, NT-3, BDNF and NGF 

were used at 10 ng/ml. When combined, these factors were used at a 

concentration of 5 ng/ml. The following inhibitors were used: Rapamycin (15 nM; 

Calbiochem), Wortmannin (0,5 µM; Sigma), and Pi-103 (0,5 µM; Biovision).  

 

Luminex assay  

Treated oli-neu cells were lysed using the Bio-Plex Cell lysis kit (Bio-Rad). 

Levels of Akt phosphorylation (pAkt) were assessed using bead based Luminex 

xMAP technology (Bio-Rad) described in Figure 2-1. A similar assay was run in 

parallel to assess total levels of Akt protein in each sample. Levels of pAkt were 

compared to total Akt levels in the lysate.  

 

Western blot  

Cells were rinsed with cell washing buffer (Bio-Rad) and lysed with Tris-HCl 

RIPA buffer (50mM Tris-HCl pH 7.4, 150mM NaCl, 1% NP-40, 0.5% sodium 

deoxycholate, 0.1% SDS) containing protease and phosphatase inhibitors. 

Proteins were separated by SDS-PAGE and submitted to standard western 

blotting using BSA as a blocking agent. Phospho-Akt was detected using a rabbit 

monoclonal p-Akt directed against phosphor-Ser473 (Cell Signaling). Total 

protein levels were assessed using a rabbit polyclonal anti-Calnexin (Biovision).  

 

Immunocytochemistry and morphological analysis  

Cells were fixed with 4% paraformaldehyde (PFA) and stained either with 

chicken anti-MBP (AvesLabs) or mouse anti-PLP (provided by Dr. David 

Colman, McGill University), and with phalloidin-488 (Invitrogen) to visualize 

actin. Images were captured with a Magnafire CCD camera (Optronics, Goleta, 

CA) and an Axiovert 100 microscope (Carl Zeiss Canada, Toronto, ON).  
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Morphological maturation was assessed using the Sholl analysis plugin in ImageJ 

(National Institutes of Health (NIH) Bethesda, MD, USA), using concentric 

circles 12 μm apart around the cell body of mature PLP-positive 

oligodendrocytes. The total number of intersects was used as a branching index.  

 

Cell Survival Assay  

Purified OLs were plated in media with or without insulin for 5 days in 48 well 

plates. After fixation and staining with MBP and phalloidin, 9 pictures from each 

well were taken and MBP positive cells counted using ImageJ cell counter.  
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FIGURE 2-1: Overview of the Luminex Assay. A) Cell lysates are incubated with 

fluorescent beads coated with antibodies against a specific target. A second 

antibody to the specific target linked to a fluorescent protein is then added. B) The 

beads flowing through the luminex are excited by two different lasers to detect the 

bead signal and the detection signal. A value proportional to the amount of protein 

bound to each bead is then generated.  
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RESULTS 

 

Insulin-independent OL survival and differentiation 

Cell culture protocols typically use insulin to promote OL proliferation and 

differentiation in vitro. Insulin binds to IGF1R and insulin receptors expressed by 

OLs, and activation of these receptors produces a strong and sustained activation 

of Akt in OLs (Baron-Van Evercooren et al., 1991; Ness and Wood, 2002; Cui 

and Almazan, 2007), promoting OL survival (Barres et al., 1993; Ness and Wood, 

2002; Cui and Almazan, 2007 and Figure 2-2). This strong Akt activation could 

easily mask the effect of neurotrophins on Akt activation. This was confirmed by 

examining Akt activation in cells grown in insulin-free media, after treatment 

with insulin. Not surprisingly, treatment of oli-neu cells with N1 supplement, 

which contains insulin (Figure 2-2A) or treatment of differentiated OLs with 

insulin (0,5 µg/ml; Figure 2-2B) produced a strong and sustained activation of 

Akt. Furthermore, OLs cultured in insulin-containing media exhibit high baseline 

Akt phosphorylation levels (Figure 2-2C), which could mask the effect of adding 

insulin or other factors that could activate Akt.  

 

We, therefore, analyzed OL viability when grown in absence of insulin. For this, 

OLs were isolated and allowed to differentiate in OL-defined medium in the 

presence or absence of insulin (5 µg/ml). After 4 days in vitro (DIV), MBP-

positive cells were observed in both conditions (Figure 2-2D), demonstrating that 

the presence of insulin in the media is not essential for differentiation in vitro. 

However, approximately 50% fewer MBP-positive cells were present in the 

insulin-free condition (Figure 2-2E). Apart from minimal contamination by 

astrocytes and fibroblasts that did not differ between the two conditions, no other 

phalloidin+/MBP- or CNP+/MBP- cells were detected in the cultures. This 

indicates that while insulin promotes OL survival, differentiation to a mature 

myelinating MBP-expressing state is insulin-independent. We subsequently 

performed all of the following experiments using insulin free media.  
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Akt activation during OL differentiation in vitro 

To investigate Akt activation during OL differentiation, we examined Akt 

phosphorylation levels at different time points during OL differentiation in vitro. 

After isolation, plated OPCs rapidly began to differentiate and after 4 DIV, they 

displayed MBP and PLP positive membrane sheets. Akt activation during 

differentiation in vitro was assessed by lysing the cells at different time points 

after plating. As a screening method, we used the Luminex Multiplex Technology 

(Luminex Corporation, Austin, TX), a highly sensitive antibody based detection 

method adapted to phosphoprotein detection. 

 

Mature OLs, at 4 DIV, exhibited higher Akt activation levels than did OPCs and 

immature OLs after 12 hours and 24 hours in culture respectively (Figure 2-3). 

This is consistent with a key role for Akt activation in the differentiation process, 

in agreement with previous studies (Flores et al., 2008; Tyler et al., 2009). The 

implication of Akt in myelin membrane formation highlighted by activated Akt 

overexpressing mice (Flores et al., 2008) prompted us to screen for factors that 

could activate Akt and promote morphological differentiation at a late stage of 

differentiation. Thus, we examined the effect of different treatments on the level 

of Akt phosphorylation and on the cellular morphology of 4 DIV OLs. 

 

Only collectively applied factors induce prolonged activation of Akt 

To identify putative factors that would trigger Akt activation in OLs, and thus 

contribute to the differentiation process, we first analyzed Akt activation in serum 

and growth factor starved oli-neu cells with the luminex assay. We assayed Akt 

activation 10 min and 60 min after treatment with factors that are highly 

expressed in the developing nervous system, including NT-3, BDNF, NGF, and 

NRG1, either applied individually or collectively. When applied individually, NT-

3, BDNF, NGF and NRG1 produced a weak and transient Akt activation. 

Interestingly, when applied collectively, these four factors induce a prolonged and 

robust activation of Akt (Figure 2-4A).  
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Next, we examined whether these factors exert similar Akt activation profiles in 

differentiated primary rodent OLs. We treated OLs grown 4 DIV in the absence of 

insulin with either individual neurotrophins or NRG1 at a concentration of 10 

ng/ml, or with a combination of NRG1/NT-3/BDNF/NGF, each added at a 

concentration of 5 ng/ml. Whole cell lysates obtained from OLs treated with the 

growth factors individually or collectively were then analyzed using 

immunoblotting against pAkt. We found that neurotrophins and NRG1 only 

induced a strong and sustained Akt activation when applied collectively (Figure 2-

4B), in agreement with our findings with oli-neu cells (Figure 2-4A). These 

results demonstrate that the combination of growth factors mediates a similar Akt 

activation pattern in both serum and growth factor starved oli-neu cells and 

primary OLs.  

 

Prolonged Akt activation induces OL differentiation via mTor that can be 

inhibited by pharmacological inhibitors  

Akt/mTor activation in OLs promotes their differentiation from the precursor 

stage (A2B5+ cells) to the immature OL stage (GalC+) in vitro (Tyler et al., 

2009). After 4 DIV, our cultures consisted only of PLP-positive mature OL cells. 

We thus examined the level of OL morphological differentiation induced by 

treatment with NRG1/NT-3/NGF/BDNF. Overexpression of Akt in OLs by two 

independent groups using two independent approaches was shown to induce 

hyper-myelination in vivo. Therefore, we determined if prolonged Akt activation 

mediated by neurotrophins and NRG1 also results in elevated morphological 

differentiation and branching, in vitro. Since OLs differentiate into MBP and PLP 

positive sheet forming cells in vitro, we examined the branching index of OLs 24 

hrs after treatment with neurotrophins and NRG1, either applied individually or 

collectively. Cells were stained with phalloidin to visualize all OL branches, since 

the actin filament network extends from the cell body to peripheral branches and 

small villi in OLs (Song et al., 2001). Branching index was obtained by summing 

the intersect values of each level of a Sholl analysis (see methods; Rajasekharan et 
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al., 2009; Figure 2-5C). In agreement with luminex and immunoblotting data, we 

found that during prolonged Akt activation, upon collective application of 

NRG1/NT-3/NGF/BDNF, a significantly higher degree of morphological 

differentiation in OLs was observed. Treatment with NT-3, BDNF, NGF, or 

NRG1 individually had no effect on OL morphological differentiation (Figure 2-

5D).  

 

PI3K activation by plasma membrane receptors induces the recruitment and 

activation of Akt. Akt can phosphorylate a variety of targets implicated in 

different cell functions including survival, proliferation, glucose metabolism and 

protein synthesis (reviewed in Katso et al., 2001). Amongst the known targets of 

Akt in OLs is mTor (Narayanan et al., 2009; Tyler et al., 2009). We thus wanted 

to determine if the effect on differentiation of collectively applied factors was 

dependent on PI3K/Akt/mTor activation by application of various pharmalogical 

inhibitors. The morphological differentiation induced by collectively applied 

neurotrophins and NRG1 is dependent on the activation of PI3K, as it was not 

observed when cells were treated in conjunction with PI3K inhibitors 

Wortmannin and Pi-103 (Figure 2-6). Furthermore, this differentiation is 

dependent on mTor activation, since addition of the mTor inhibitor Rapamycin 

inhibited the increased branching induced by the combination of neurotrophins. 

The inhibitors alone did not have any significant effect on morphological 

differentiation. This might suggest that baseline morphological differentiation and 

branching in vitro at that stage of OL maturation is not regulated by the 

PI3K/Akt/mTor axis. Alternatively, baseline branching triggering events in the 

absence of any external cues could happen prior to 4 DIV, time when the 

inhibitors were added along with the factors. Our findings support the conclusion 

that the increased maturation caused by NRG1/NT-3/NGF/BDNF is dependent on 

PI3K/Akt/mTor activity.  
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FIGURE 2-2: Using insulin-free media unmasks Akt signalling activation in 

OLs A) Using the luminex assay, Akt phoshorylation was assessed following 

application of N1 supplement, which contains insulin, on oli-neu cells. pAkt/total 

Akt values of untreated controls were set to 0. Insulin was shown to induce a 

strong and sustained increase in Akt phosphorylation, as it remained elevated 60 

mins after treatment. B) A similar effect was detected using immunoblotting of 

whole cell lysates of primary OLs treated with insulin (0,5 µg/mL) for either 10 or 

60 min. C) Activation of Akt following insulin treatment was masked by high 

baseline Akt phosphorylation levels produced by the presence of insulin in the 

media. D) OLs survive and differentiate in insulin-free media. MBP-positive cells 

were visible after 4 DIV in the presence (left panel) or absence (right panel) of 

insulin in the media. E) In the absence of insulin, the number of OLs was reduced 

by 50%. ***: p< 0.001. Scale bar = 200 µm. 
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FIGURE 2-3: Akt activation during OL differentiation in vitro. Akt activation 

during OL differentiation in vitro was assessed with the luminex assay. Mature 

OLs at 4 days in vitro exhibited higher Akt activation levels than OPCs and 

immature OLs at 12 hours and 24 hours in vitro respectively. Each time point 

represents 3 separate replicates. *:p<0,05 
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FIGURE 2-4: Synergistic effect of NRG1/NT-3/NGF/BDNF on Akt activation. 

A) Differentiated oli-neu cells were assessed for pAkt levels after different 

treatments using the luminex assay. PhosphoAkt/totalAkt values were normalized 

to untreated values, which were set to 0. Treatment with NRG1, NT-3, NGF or 

BDNF induced moderate Akt activation. However, the same factors used 

collectively induced a strong and sustained Akt activation, and 

phosphoAkt/totalAkt levels were still elevated 60 mins after treatment  B) This 

effect was confirmed in rat primary differentiated OLs in vitro by 

immunoblotting. The same amount of protein was loaded for each condition 

(5µg).   
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FIGURE 2-5: Synergistic effect of NRG1/NT-3/NGF/BDNF on morphological 

maturation of OLs in vitro. Different treatments were applied to rat primary OLs 

at 4 DIV and morphology was assessed 24 hrs later by staining with phalloidin 

and PLP. A) Example of phalloidin stained untreated OLs. B) Example of a 

phalloidin stained OL treated with NRG1/NT-3/NGF/BDNF. C) Morphological 

analysis was performed using Sholl analysis and the total number of intersects 

made by OL branches was used as a branching index. D) Treatment with either 

factor alone (10 ng/mL) did not induce any morphological differentiation. 

However, treatment with NRG1/NT-3/NGF/BDNF (5 ng/mL) in combination 

induced a strong morphological differentiation ***: p< 0.001 except **: p< 0.01 

when compared to BDNF. 
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FIGURE 2-6: Synergistic effect of NRG1/NT-3/NGF/BDNF on morphological 

maturation of OLs in vitro is mediated by PI3K/Akt/mTor axis activation. 

The morphological differentiation induced by NRG1/NT-3/NGF/BDNF is 

abolished when cells are treated with PI3K inhibitors (Wortmannin and Pi-103) or 

an mTor inhibitor (Rapamycin). Treatment with inhibitors alone did not have any 

significant effect on the branching index. ***: p< 0.001 when compared to all 

conditions, except **: p< 0.01 when compared to NRG1/NT-3/NGF/BDNF + 

Rapamycin condition.  
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DISCUSSION AND CONCLUSION 

 

Treatment with NRG1, NT-3, NGF or BDNF alone produced a small and 

transient increase in Akt phosphorylation. Surprisingly, application of NRG1, NT-

3, NGF and BDNF together resulted in a large and sustained increase in Akt 

phosphorylation, assessed both by the luminex assay and by standard 

immunoblotting. This synergistic activation of the PI3K/Akt pathway 

substantially enhanced morphological differentiation of OLs in vitro. 

Furthermore, we demonstrated that the synergistic action of these factors requires 

the activation of mTor downstream of the PI3K/Akt pathway. 

 

It was previously shown that mTor activation is critical for early stages of 

differentiation in OLs, mediating differentiation from the precursor stage (A2B5
+
 

cells) to immature OL stage (GalC
+
 cells). However, there was no significant 

effect on differentiation when mTor was inhibited in later stages of 

differentiation, at 3-4 DIV (Tyler et al., 2009). Consistent with that finding, we 

did not see any effect on morphological maturation when baseline mTor activity 

was inhibited at 4 DIV, which agrees with the findings of Tyler et al. (2009). 

Nonetheless, we showed that mTor activity is required for the morphological 

differentiation induced by collectively applied NRG1/NT-3/NGF/BDNF. This 

raises the possibility that the PI3K/Akt/mTor pathway plays a broader role in OL 

differentiation, regulating more than one stage of differentiation in response to 

growth factors present in the OL environment during development in vivo. The 

increase in pAkt levels during OL differentiation in vitro is consistent with such a 

role. 

 

The mechanism regulating the synergistic effect of collectively applied 

neurotrophins and NRG1 is unknown. Possible redundant action of neurotrophins 

also needs to be addressed, to gain insight into which Trk receptors might mediate 

the synergy. The synergy could be mediated by the regulation of extracellular 

receptors, either by affecting receptor trafficking or by regulating the formation of 



81 
 

different receptor complexes. Alternatively, the synergy could be explained by 

activation of parallel signaling pathways resulting in an increased and sustained 

Akt activation. Likewise, the mechanism by which mTor activation regulates 

morphological differentiation of OLs needs to be elucidated. Given the major role 

of mTor in protein translation, activation of local translation of myelin proteins or 

cytoskeletal elements such as actin might underlie the Akt/mTor dependent 

increase in branching in OLs.  

 

Sequential steps of OL differentiation can be viewed as an integration of 

signalling pathways regulating different aspects of maturation, downstream of the 

large array of factors to which OLs are exposed during their differentiation. 

Hopefully, understanding how different signaling pathways are activated during 

differentiation will provide insight into which factors can promote differentiation 

and myelination both during development and after demyelination, such as in MS.  
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CHAPTER III                                                                                                                                            

DCC EXPRESSION BY OLIGODENDROCYTES REGULATES MYELIN AND 

PARANODAL MAINTENANCE IN VIVO 

 

 

 

 

 

 

Part I: Cell autonomous requirement for DCC in paranodal organization 

assessment via an intravitreal transplantation approach 

 

The first part of this chapter was published as Figure 8 in:  

 

 Jarjour AA, Bull SJ, Almasieh M, Rajasekharan S, Baker KA, Mui J, 

 Antel JP, Di Polo A, Kennedy TE (2008) Maintenance of axo-

 oligodendroglial paranodal junctions requires DCC and netrin-1. J 

 Neurosci 28:11003-11014. 

 

 

 

Part II: Cell autonomous requirement for DCC in paranodal organization 

assessment via inducible conditional knock out approach 

 

The results included in the second part of this chapter are included in a manuscript 

currently in preparation for submission. 
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PREFACE AND RATIONALE  

 

As described in chapter I, paranodal axoglial junctions are essential for the 

segregation of myelinated axons into distinct domains and for the efficient 

conduction of action potentials. We have previously established that netrin-1 and 

DCC are enriched at paranodal axo-oligodendroglial junctions both in vivo and in 

vitro (Jarjour et al., 2008). Myelination in the CNS of mice occurs during the first 

few post-natal weeks. Mice null for netrin-1 or DCC die within a few hours after 

birth; therefore, it is not possible to examine myelin formation in these animals in 

vivo. Studies carried out in vitro have provided evidence that netrin-1 and DCC 

are required for the maintenance of normal paranodal junctions (Jarjour et al., 

2008). In myelinated cultures generated from DCC
-/-

 and netrin-1
-/-

 knockout 

pups, the paranodes formed normally, but became disorganized after two months 

in culture. Ultrastructural analysis indicated that the paranodal loops detached 

from the axon and the transverse bands were disorganized. Maintenance of the 

different domains integrity was also impaired, as revealed by the widening of 

Caspr staining at the paranode, Na
+
 channel staining at the node, and the invasion 

of K
+
 channel staining into the paranode (Jarjour et al., 2008). 

 

In the following chapter, I have aimed to determine if DCC is required cell-

autonomously in OLs to function at paranodes. Neurons express both DCC and 

netrin-1, but in vitro, netrin-1 expression appears to be primarily dendritic (Tritsch 

and Kennedy, unpublished observation). Furthermore, confocal imaging of DCC 

immunostaining at paranodes suggests glial localization (Jarjour et al., 2008). 

Additionally, the studies described aimed to confirm that the abnormal phenotype 

observed in organotypic cultures derived from conventional DCC null mice also 

occurs in vivo in mice specifically lacking DCC from mature OLs.  

 

To determine if netrin signalling is required for the organization of paranodal 

junctions in vivo, we first used an intravitreal transplantation model and assessed 

the capacity of oligodendrocyte precursor cells (OPCs) derived from DCC
-/-

 mice 
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to myelinate retinal ganglion cell axons when transplanted into the eyes of wild-

type mice. The results of these experiments are presented in the first part of this 

chapter. We then used an inducible conditional knockout model to specifically 

ablate DCC expression in mature OLs. The analysis of paranodal, myelin, and the 

behavioural phenotypes of these mice is presented in the second part of this 

chapter. With these two models, we provide evidence supporting the conclusion 

that DCC expression by OLs is required for proper maintenance of myelin and 

paranodes in vivo.  
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MATERIALS AND METHODS  

 

Animals  

DCC
lox/lox

 and PLPcreER
T
 mice were obtained from Anton Berns (The 

Netherlands Cancer Institute, Amsterdam, Netherlands) and Samuel David 

(McGill University, Montreal, Canada) respectively. Mice heterozygous for the 

conventional dcc knockout (Fazeli et al., 1997) were obtained from Robert 

Weinberg (Whitehead Institute for Biomedical Research, Cambridge, MA, USA), 

and were extensively backcrossed into a CD-1 genetic background. CMVcre 

animals were kindly provided by David Colman (McGill University, Montreal, 

Canada). ROSA26 mice were kindly provided by Jean-François Cloutier (McGill 

University, Montreal, Canada). All procedures were performed in accordance 

with the Canadian Council on Animal Care guidelines for the use of animals in 

research. 

 

Tamoxifen induction 

Tamoxifen (Sigma; T5648) was dissolved in a 10:1 mixture of sunflower 

oil/ethanol at a concentration of 10 mg/ml. 0.1 ml (1mg) was injected 

intraperitoneally twice a day for five consecutive days into the test group, as well 

as the control littermates. Injections were performed between 4.5 and 6 weeks of 

age. All animals used were males. 

 

Mouse OPC isolation  

OPCs were obtained from a mixed glial culture derived from newborn mice 

neocortices, as described (Armstrong, 1998). In brief, the forebrains of newborn 

mouse pups were removed, chopped, and incubated for 45-60 min at 37°C in a 

solution of 1.2 U/ml of papain, 0.24 mg/ml L-cysteine, 40 µg/ml of DNaseI in 

MEM/HEPES. Dissociated tissue was then triturated with syringes and plated in 

T75 flasks containing 10% heat-inactivated horse serum and 1% 

penicillin/streptomycin in DMEM. Cultures were allowed to proliferate for 10-12 

days, with the media being changed every 2 days. The DCC
-/- 

pups were identified 

based on stereotypical behaviours and cells from these pups were cultured 
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separately from their wild-type and heterozygote littermates. Genotypes were later 

confirmed by PCR. After 10-12 days in vitro, OPCs were obtained by an 

overnight shake-off of the flasks, and purified by differential adhesion.  

 

Intravitreal transplantation and retina processing  

Isolated mouse OPCs were concentrated at a density of 15 000 cells/µl in OL 

defined medium containing insulin and 2 µl of cell suspension was transplanted 

into an adult wild type CD1 mouse eye as described previously (Setzu et al., 

2004). Animals were perfused transcardially 8 weeks after transplantation with 

4% PFA, the eyes enucleated, postfixed, and the retinas dissected. Flat-mounted 

retinas were permeabilized in 2% Triton X-100, 0.5% DMSO in PBS for 4 days 

and blocked for 2 hrs in 10% Normal Goat Serum (NGS), 2% Triton X-100 and 

0.5% DMSO in PBS. Retinas were then incubated in primary antibodies for 48 

hrs, washed once for 5 min, and thrice for 20 min. Secondary antibodies were 

applied for 2 hrs, and retinas were finally washed and mounted on slides.  

 

Antibodies  

The following antibodies were used in this study: mouse monoclonal anti-Caspr 

(University of California Davis NeuroMab; catalog #75-001), rabbit polyclonal 

anti-Kv1.2 (Alomone Labs; catalog #APC-010), rabbit polyclonal anti-NFM 

(Millipore; catalog #AB1987), goat polyclonal anti-DCC (Santa Cruz; catalog 

#SC6535), mouse monoclonal anti-DCC (BD Biosciences Pharmingen; catalog 

#554223), rabbit polyclonal anti-Calnexin (Biovision; catalog #3811-100), rabbit 

polyclonal anti-MAG and mouse monoclonal anti-PLP (gift of Dr. David Colman, 

McGill University), rabbit polyclonal anti-neurofascin (Tait et al., 2000; gift of 

Dr. Peter Brophy, University of Edinburgh), rat polyclonal anti-MBP (Millipore; 

catalog #MAB386), rabbit polyclonal anti-glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH; Santa Cruz; catalog #Sc-25778), mouse monoclonal 

anti-CNP (Abcam; catalog #ab24566), rabbit polyclonal Olig2 (Abcam; catalog 

#ab81093) and mouse monoclonal anti-APC (CC1; Abcam; catalog #ab16794). 

Secondary antibodies used were Alexa 546-conjugated goat anti-mouse 
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(Invitrogen; A11003) and goat anti-rabbit (Invitrogen; A11010), Alexa 488-

conjugated goat anti-rabbit (Invitrogen; A11008), HRP-conjugated donkey anti-

goat (Cederlane; 705-035-147), donkey anti-rat (Cederlane; 712-035-153), 

donkey anti-mouse (Cederlane; 715-035-150), and donkey anti-rabbit (Cederlane; 

711-035-152).  

 

Immunohistochemistry  

For the study of adult PLPcreERT
+
DCC

lox/lox 
mice, animals were deeply 

anesthetized and perfused with phosphate buffer saline pH 7,4 (PBS) followed by 

4% paraformaldehyde (PFA). Brain and spinal cord were dissected, postfixed in 

4% PFA for 1 hr and equilibrated in 30% sucrose at 4°C. After embedding in 

optimal cutting temperature compound (Sakura Finetek), 16 µm sections were cut 

on a cryostat. For the study of CMVcre
+
DCC

lox/lox
, embryos were fixed in 

Carnoy’s solution (60% ethanol, 30% chloroform and 10% acetic acid), 

dehydrated and embedded in paraffin. 8 µm sections were cut and processed for 

staining. Briefly, after blocking for 1 hour at room temperature (RT) in 3% BSA 

0.3% Triton X-100 in PBS, primary antibodies were added (diluted in blocking 

solution), incubated overnight at 4°C, and then rinsed three times with PBS. Cells 

were then incubated with secondary antibodies, along with phalloidin and/or 

Hoescht when needed, for 1.5 hour at RT, before washing and mounting with 

Fluoromount-G (Southern Biotech). Images were captured with a Magnafire CCD 

camera (Optronics, Goleta, CA) and an Axiovert 100 microscope (Carl Zeiss 

Canada, Toronto, ON). For paranode analysis, images were captured using 

a Zeiss LSM 510 confocal microscope and quantified by a blinded experimenter 

using the LSM510 software.  

 

X-Gal staining 

Ten days after tamoxifen administration, PLPcreER
T+

ROSA26 mice were 

anesthetized and perfused with PBS followed by 4% PFA containing 

2 mM MgSO4, and 5 mM EGTA. 16µm brain and spinal cord sections were then 

rapidly processed for X-Gal staining as previously described (Mombaerts et al., 

1996).  

http://www.jneurosci.org/cgi/redirect-inline?ad=Zeiss
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Electron microscopy  

Mice were deeply anesthetized and perfused with 0.1 M phosphate buffer, pH 7.4, 

followed by 2.5% glutaraldehyde 2% PFA, and then by 2% PFA. Tissue was 

dissected and post-fixed for 1 week at 4°C, rinsed with buffer and postfixed in 2% 

osmium tetroxide for 40 min. Fixed tissue was then dehydrated through a graded 

ethanol series and embedded in Epon. Ultrathin sections (70-100 nm) were 

prepared, placed onto 200 mesh copper grids and stained with 4% uranyl acetate 

for 5 min, followed by Reynold’s lead citrate for 3 min. Images were observed 

using a transmission electron microscope at 120 kV and captured using a Tecnai 

12 (FEI) Gatan Bioscan CCD camera.  

 

g-ratio measurement  

G-ratio (axon diameter/fiber diameter) was calculated with a g-ratio calculator 

Plug-in for ImageJ (available online at http://gratio.efil.de/) applied to electron 

microscopy pictures of coronal sections of optic nerves. 60 myelinated axons per 

animal were randomly selected for measurement (6 animals per group, for a total 

of 360 axons per genotype). Mice were aged between 6 and 9 months of age. No 

effect of age was detected.  

 

Behavioral Testing  

Open field tests were performed in a square open field (50 cm x 50 cm) 

surrounded by 30 cm high walls (Figure 3-1A). After a 20 min habituation period, 

recordings of individual mouse movements were performed for 2 hrs using 

VideoTrack software (ViewPoint Life Sciences, Montreal, Canada). The hanging 

wire grip test was performed as described (Sango et al., 1996). This test gives 

information on overall muscle strength. Briefly, mice were put on a cage lid held 

upside down and the time that each mouse was able to grip to the wires without 

falling was recorded (Figure 3-1B). A cut-off time was set to 60 s. The balance 

beam test was performed as previously described (Carter et al, 1999) to assess 

general balance and coordination. Briefly, mice were trained for 4 consecutive 

days to cross a narrow beam (0.8 cm diameter, 50 cm long) and reach an enclosed 

http://gratio.efil.de/
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safety platform (Figure 3-1C). On the fifth day, the time taken by each mouse to 

cross the beam was recorded; with a cut-off time set at 60 s. Accelerating rotarod 

(Rotamex; 3 cm rod diameter, grey PVC with a knurled finish) testing was 

performed after 3 consecutive days of training. During each training session, the 

mice received 5 trials on an accelerating rotarod (1 rpm to 24 rpm) for a 

maximum of 150 sec. On the test day, mice were tested on an accelerating rod (1 

rpm/5 sec) that reached a maximum speed of 24 rpm. Mice were allowed between 

3 and 5 trials with a rest of at least 20 mins between each trial. The latency to fall 

was recorded, with a cut-off time of 300 sec.  

 

Brain lysates and Western blotting  

E14 brains were lysed in RIPA buffer (10 mM Phosphate buffer pH 7.2, 150 mM 

NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) containing protease 

inhibitors. Adult brain tissue was lysed in 3% Triton X-100 buffer (20mM Tris 

pH 8, 150 mM NaCl, 10 mM EGTA, 10 mM EDTA, 3% Triton X-100) to 

maximize myelin membrane solubilisation containing protease inhibitors. Proteins 

were separated by SDS-PAGE and transferred onto nitrocellulose membrane 

(Amersham Pharmacia Biotech). Membranes were then subjected to standard 

western blotting. Densitometric analysis was performed using Adobe Photoshop. 

Values were normalized to loading control values for GAPDH. To reduce the 

variability due to experimental conditions (each set of control and 

PLPcreER
T+

DCC
lox/lox

 littermates were harvested at different times), each 

PLPcreER
T+

DCC
lox/lox

 was compared to its control littermate. Five mice of each 

genotype were used in the analysis.  

 

Cell number count  

Optic nerve and spinal cord sections from animals 9 months post-induction were 

immunolabelled with CC1 and Olig2, both markers of OLs. Pictures were taken 

randomly (3 fields of view per animal; 3 animals per genotype) and CC1/Olig2 

double positive cells were counted.   
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FIGURE 3-1: Behaviour tests. A) Open field test was performed in a square open 

field (50 cm x 50 cm) surrounded by 30 cm high walls. Animal’s movements 

were recorded by a tracking device linked to a camera B) The hanging wire grip 

test gives information on muscle strength. Mice were put on a cage lid held upside 

down and the time that each mouse was able to grip to the wires without falling 

was recorded. C) The balance beam was used to assess general balance and 

coordination. After a series of training trials, the time taken by mice to cross a 

narrow beam (0.8 cm diameter, 50 cm long) and reach a closed safety platform 

was recorded.  
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RESULTS 

 

III.1 Cell autonomous requirement for DCC in paranodal organization: 

Assessment via an intravitreal transplantation approach 

To determine if DCC expression by OLs is required for paranode maintenance in 

vivo, we initially assessed the capacity of OPCs derived from DCC
-/-

 mice to 

myelinate retinal ganglion cell (RGC) axons. RGCs cell bodies are located in the 

retina. They send their axons through the optic nerve head into the optic nerve, 

and synapse in the lateral geniculate body. RGCs axons are myelinated in the 

optic nerve; however, OPCs do not invade the retina during development and the 

proximal segment of the axon within the retina remains unmyelinated in rat, 

mouse and humans (Baumann and Pham-Dinh, 2001). The intraretinal segment of 

the RGC axon thus provides a unique opportunity to assess the capacity of OPCs 

transplanted in to the retina to myelinate, in the absence of endogenous OPCs. 

Transplantation of rat OPCs into adult rat retinas can generate abundant MBP 

positive myelin segments (Setzu et al., 2004), but this method had not been 

applied to the mouse. Moreover, formation of paranodal domains was never 

assessed in this model.  

 

Formation of paranodal domain and clustering of Caspr in that model 

To validate the model, wild type OPCs were first isolated and transplanted into 

two month old wildtype mice (Figure3-2A). Around 3 weeks after transplantation, 

the retinas were dissected and stained using anti-MBP and anti-Caspr antibodies. 

Abundant MBP-positive myelin segments were observed along RGC axons of 

eyes that received OPCs (Figure 3-2B and C), but no MBP immunoreactivity was 

detected in the control eye (data not shown). Paranodal specializations, visualized 

by labelling for the paranodal marker Caspr, were readily detectable along 

myelinated fibres (Figure 3-2D). We concluded that the OPC transplantation 

paradigm to study myelin can be applied to a mouse model. Furthermore, this 

system can be used to study paranodes, as myelination by exogenous OLs triggers 
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the proper localisation of Caspr proteins at points of paranodal loop contact on the 

axon, at each side of the node of Ranvier.  

 

Disruption of paranodal domains formed by DCC
-/-

 oligodendrocytes in vivo 

Following validation of the method, OPCs were then purified from DCC-deficient 

mice and from their wild type and heterozygous littermates, and injected into 

normal CD1 adult mouse eyes. In this experimental paradigm, OLs are DCC 

deficient, whereas the RGCs axons are wildtype and are thus able to express 

DCC. Eight weeks after transplantation, quantitative analysis revealed an 

increased length of Caspr immunoreactivity in paranodes formed by DCC
-/- 

OLs 

(Figure 3-3C and D) compared with paranodes formed by DCC expressing OLs 

(either DCC
+/+

 or DCC
+/-

) (Figure 3-3A, B and E). This phenotype is similar to 

what was observed in long term DCC
-/-

 organotypic cultures (Jarjour et al., 2008). 

Some paranodes formed by DCC
-/-

 OLs displayed leakage or ectopic clustering of 

Caspr immunoreactivity along the axon (Figure 3-3D, arrowhead), suggesting an 

ongoing disorganization of paranodal junctions. The abnormal paranodal 

phenotype observed provides a first indication that DCC is required cell 

autonomously in OLs to function at paranodes in vivo.  
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FIGURE 3-2: Formation of MBP-positive myelin and paranodal domains 

following intravitreal transplantation of OPCs. Injection of OPCs into mouse 

eyes (A) leads to formation of MBP-positive myelin segments (B,C) and 

formation of paranodes (D). A flat-mounted retina (B) was double-labelled with 

antibodies against MBP to visualize myelin and Caspr to visualize paranodes (C-

D). B: 10X objective. C: 100X objective D: 100X objective, digital zoom 2. Scale 

bars correspond to 5 µm. 
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FIGURE 3-3: Disruption of paranodal domains formed by DCC
-/-

 

oligodendrocytes in the intravitreal transplantation method. Caspr 

immunoreactive domain length was measured in paranodes formed by DCC 

expressing OLs (A,B) and DCC
-/-

 OLs (C,D). Some paranodes formed by DCC
-/- 

OLs exhibited leakage of Caspr out of the paranode (D, arrowhead). The Caspr 

immunoreactive domains were lengthened in DCC
-/-

 myelin group, compared with 

the wild-type and heterozygote group (E). A-D: 100X objective, digital zoom 4. 

Scale bars correspond to 2 µm. **: p < 0.01.  
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III.2 Cell autonomous requirement for DCC in paranodal organization:  

Assessment via inducible conditional knock out approach 

To study the specific effect of the absence of DCC expression by OLs at 

paranodes in vivo, we used a conditional knockout strategy to selectively delete 

DCC from OLs in vivo. DCC
lox/lox 

mice carry loxP site within their dcc gene. Cre-

mediated recombination of the loxP sequence removes exon 23, coding for the 

transmembrane domain of DCC, and ablates functional DCC expression. Our goal 

was to trigger the recombination event in mature OLs. We thus chose the 

PLPcreER
T
 mouse line in which Cre expression is specific to OLs, in addition to 

being inducible, so that recombination could be specifically triggered in mature 

OLs once myelination is complete in the CNS.  

 

Validation of DCC
lox/lox 

mouse line 

DCC knockout mice die at birth and their nervous systems are characterized in 

part by impaired crossing of commissural axons during development (Fazeli et al., 

1997). In order to confirm that recombination of the loxP sites by Cre yields a 

non-functional DCC protein, we crossed DCC
lox/lox

 to the CMVcre mouse line, 

which expresses Cre under a human cytomegalovirus promoter. The CMV 

promoter drives Cre expression in a ubiquitous manner before the implantation 

stage (Schwenk et al., 1995). Therefore, all cells should be recombined and the 

CMVcre
+
DCC

lox/lox
 embryos should not express any DCC protein and phenocopy 

the DCC
-/-

 embryos. CMVcre
+
DCC

lox/lox
 and DCC

-/-
 embryos were collected at 

embryonic day 14 (E14). We first examined brain lysates to assess DCC protein 

expression in the different knockouts. DCC protein was not detected in brain 

lysates of either CMVcre
+
DCC

lox/lox
 or DCC

-/-
 mice (Figure 3-4B).  

 

To confirm the functional knockout of DCC by Cre-mediated recombination, the 

formation of the spinal cord ventral commissure was investigated in the 

CMVcre
+
DCC

lox/lox 
embryos. This commissure is substantially reduced in netrin-1 

(Serafini et al., 1996) and conventional DCC knockout mice (Fazeli et al., 1997). 

At E14, the ventral commissure of the CMVcre
+
DCC

lox/lox
 embryos was thinner 
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than its CMVcre
-
DCC

lox/lox
 littermates (Figure 3-4A). This phenotype is similar to 

what was observed in E14 DCC
-/-

 spinal cord. These results demonstrate the 

efficiency of DCC knockout upon Cre-mediated recombination.  

 

Validation of the induction of Cre recombination in PLPcreER
T+

 

To study the role of DCC in myelin maintenance, we used the PLPcreER
T
 line, in 

which Cre-mediated recombination can be temporally regulated by administration 

of tamoxifen (Doerflinger et al., 2003). Cre expression is driven by the PLP 

promoter, which is activated in differentiated OLs and to a limited extent in 

differentiated Schwann cells (Puckett et al., 1987) and some spinal motor neurons 

(Jacobs et al., 2004). To confirm that the injection protocol (1 mg tamoxifen twice 

a day for five consecutive days) was inducing efficient recombination, we first 

crossed the PLPcreER
T
 with ROSA26 mice, in which the reporter gene β-

galactosidase expression is turned on as a result of Cre-mediated recombination 

(Araki et al., 1995). In PLPcreER
T+

ROSA26 mice, high expression of the reporter 

protein was obtained 10 days after the end of the tamoxifen injection regimen in 

cells of all white matter tracts observed, but not after injection with vehicle 

(Figure 3-5). Nevertheless, for all subsequent experiments, controls, also referred 

to as wildtype, consisted of PLPcreER
T-

DCC
lox/lox

 and PLPcreER
T+

DCC
+/+

 

littermates that were submitted to the same tamoxifen regimen as the 

PLPcreER
T+

DCC
lox/lox 

group to control for any indirect effect of tamoxifen. In 

addition, to prevent any gender difference, only males were used in this analysis. 

 

Expression of DCC and netrin-1 in PNS myelin 

As indicated above, PLP is highly expressed in the CNS, whereas its expression in 

the PNS is minimal. Schwann cells are the myelinating cells of the PNS, and in 

contrast to OLs that can myelinate several axon segments, they associate with 

only one axon segment. Nonetheless, myelin structure is morphologically similar 

in the CNS and PNS. However, protein and lipid compositions differ, which 

renders them differentially susceptible to myelin disorders (Quarles, 2005). To 

assess for a possible effect of the conditional knockout on peripheral myelin, we 
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first determine if DCC and netrin-1 were expressed in rat sciatic nerve. The teased 

sciatic nerve preparation allows us to follow and study independent nerve fibres. 

Immunostaining of teased rat sciatic nerve revealed paranodal enrichment of DCC 

and netrin-1 in the PNS (Figure 3-6). In addition to the paranodal localization, 

DCC appeared to be enriched in the Schwann cell microvilli. DCC expression by 

Schwann cells and localization to noncompact myelin in the PNS was recently 

described by another group (Webber et al., 2011).  

 

We conclude that DCC and netrin-1 are enriched at paranodes both in the CNS 

and the PNS. Using conditional knockout mice to remove DCC expression from 

OLs, we could thus also affect peripheral myelin. In the PLPcreER
T
 line, Cre was 

shown to be expressed in some Schwann cells (Doerflinger et al., 2003). 

However, the age at which recombination is induced was shown to be critical 

when using the PLPcreER
T+

 mouse line. Before P16, the PLP promoter is active 

in Schwann cells and some neurons; however, after 3 week of age, the PLP 

promoter induces Cre expression exclusively in OLs (Michalski et al., 2011). In 

our experiments, mice are injected between 4.5 and 6 weeks of age. In addition, 

examination of sciatic nerves of tamoxifen induced PLPcreER
T+

ROSA26 did not 

reveal high levels of recombination in Schwann cells. Therefore, phenotypes 

observed in PLPcreER
T+

DCC
lox/lox 

will result from the absence of DCC in OLs, 

and not by the absence of DCC in Schwann cells.  

 

DCC expression levels and turnover rate in PLPcreER
T+

DCC
lox/lox

 mice 

Signaling downstream of DCC regulates OPC migration (Jarjour et al., 2003; Tsai 

et al., 2003) and process retraction (Rajasekharan et al., 2010) as well as process 

branching by mature OLs (Rajasekharan et al., 2009). To avoid disruption of these 

functions and to isolate DCC function in fully formed myelin, we induced 

recombination in mice between 4.5 and 6 weeks of age, when myelination is 

complete in the rodent CNS (Foran and Peterson, 1992; Hamano et al., 1998). 

 

 



98 
 

To confirm the knockout of DCC expression in OLs, we used western blots to 

assay lysates of microdissected cerebellum, a white matter rich region, two weeks 

after induction. At this time point, DCC protein levels did not differ between 

PLPcreER
T+

DCC
lox/lox 

and their control littermates. However, 2 months after 

induction, DCC protein levels decreased in PLPcreER
T+

DCC
lox/lox

, and remained 

low 8 months after induction (Figure 3-4C). Residual DCC protein detected in 

these samples likely resulted from protein expression by non-recombined OLs or 

by neurons, which express DCC in the adult CNS (Manitt et al., 2001; Manitt et 

al., 2004; Shatzmiller et al., 2008). Relatively slow turnover of proteins localized 

to paranodes has been reported previously (Hedstrom et al., 2008). In light of the 

apparent long half life of DCC in myelin and because we were interested in 

studying the effect of the absence of DCC on myelin maintenance, we chose in 

subsequent experiments to examine mice that were aged for at least 6 months after 

tamoxifen induction.  

 

Maintenance of paranodal junctions and myelin architecture in 

PLPcreER
T+

DCC
lox/lox

 mice   

In vitro, the absence of DCC expression was shown to cause a defect in the 

maintenance of paranodes, characterized by disorganization of paranodal 

ultrastructure (Jarjour et al., 2008). Paranodal ultrastructure was thus examined 6 

months after induction of Cre expression in sagittal sections of optic nerve (Figure 

3-7A). The degree of disorganization was assessed by scoring each paranode as 

previously described (Jarjour et al., 2008) according to the presence or absence of 

4 faults: lack of transverse bands, lack of interloop densities, loops detached from 

the axon, or everted loops (Figure 3-7B).  

 

Paranodes in PLPcreER
T+

DCC
lox/lox

 mice had more faults than in wildtype mice 

(Figure 3-7C). The majority of wildtype paranodes analyzed were normal, 

whereas the majority of PLPcreER
T+

DCC
lox/lox 

paranodes were scored as faulty, 

having one fault or more (Figure 3-7D). Of note, some wildtype control paranodes 

were mildly or severely disorganized, a phenomenon that occurs both randomly 
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and as a result of aging in normal animals (Mierzwa et al., 2010b; Shepherd et al., 

2010). Strikingly, while 15% of control paranodes had detached glial loops, 52% 

of PLPcreER
T+

DCC
lox/lox

 paranodes had loops not contacting the axon (Figure 3-

7E). The presence of glial loops not contacting the axon was the most prevalent 

type of fault in PLPcreER
T+

DCC
lox/lox 

paranodes (Figure 3-7A, arrowhead). In 

contrast, absence of DCC expression by OLs did not lead to a dramatic increase in 

the proportion of paranodes which displayed abnormal interloop densities or 

spacing between the loops (Figure 3-7E; 19% for controls vs 25% for 

PLPcreER
T+

DCC
lox/lox

), which suggests that DCC may regulate axo-glial 

interactions more than glial-glial interactions. Thus, the CNS of 

PLPcreER
T+

DCC
lox/lox

 mice exhibit paranodal defects 6 months after induction 

that can be detected by electron microscopy examination of optic nerve myelin. 

 

Maintenance of paranodal domain organization in PLPcreER
T+

DCC
lox/lox

 

mice 

Caspr is an axonal protein, highly enriched at paranodes, which interacts with 

contactin in cis and with neurofascin-155 on the glial loop. Absence of DCC in 

vitro results in diffusion of Caspr along the axon and widening of Caspr 

immunoreactive domains at paranodes (Jarjour et al., 2008). This effect is 

hypothesized to result from disruption of axoglial contacts at the paranode, which 

allows unbound Caspr to diffuse along the axonal membrane.  

 

To investigate the effect of abnormal paranodal ultrastructure on domain 

organization in PLPcreER
T+

DCC
lox/lox

 mice, Caspr domain length was measured 

in corpus callosum, cerebellum, spinal cord and optic nerve at both 6 months and 

9 months (Figure 3-8A, B, C) after tamoxifen induction. Surprisingly, Caspr 

domain length was not affected 6 months after induction in any of the four regions 

analyzed (Figure 3-8D; cKO 6m). Thus, even if paranode ultrastructure was 

affected 6 months after induction, it did not translate into a measurable 

disorganization of the Caspr domain. In contrast, 9 months after induction, we 

detected a significant increase in the length of Caspr immunoreactivity in all 
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regions analyzed (Figure 3-8D; cKO 9m). In some cases, juxtaparanodal K
+
 

channels (Kv1.2) were found leaking into the paranode (Figure 3-8B; white 

arrowhead), or Caspr was seen to invade the nodal region (Figure 3-8C; white 

arrowhead). This phenotype is similar to what was observed in vitro in long term 

DCC
-/-

 slices (Jarjour et al., 2008). These results, together with the electron 

microscopy observations, indicate that the absence of DCC expression in OLs 

leads to a disorganization of paranodal ultrastructure that precedes paranodal 

domain disorganization. Hence, absence of DCC expression by OLs leads to a 

progressive disruption of the juxtaparanodal/paranodal/nodal domain integrity.  

 

Abnormalities in compact myelin architecture and protein content in  

PLPcreER
T+

DCC
lox/lox

 mice 

Next, we investigated whether the paranodal defects seen in 

PLPcreER
T+

DCC
lox/lox 

were accompanied by defects in compact myelin. We first 

examined myelin architecture by looking at optic nerve cross sections by electron 

microscopy. In cross sections of optic nerves from PLPcreER
T+

DCC
lox/lox

 mice six 

months after tamoxifen induction, we observed a substantial increase in myelin 

outfoldings (Figure 3-9A, arrows). This observation suggests that in addition to 

paranodal defects, compact myelin exhibits abnormalities in 

PLPcreER
T+

DCC
lox/lox

 mice. 

 

Destabilization of myelin and disruption of juxtaparanodal, paranodal and nodal 

domain integrity could lead to alterations in myelin protein content. Alternatively, 

the absence of DCC could affect other myelin protein levels. We thus looked at 

myelin protein content in PLPcreER
T+

DCC
lox/lox

 mice and controls. To 

biochemically assay myelin protein expression, we microdissected the cerebellum 

of mice 7-9 months after induction and looked at the expression of compact 

myelin proteins (MBP, PLP), proteins associated with non-compact OL 

membranes (CNP, MAG), and paranodal proteins (Caspr, neurofascin). Each 

PLPcreER
T+

DCC
lox/lox

 was compared to its control littermate and the fold change 

of protein expression was analyzed. MBP and MAG levels were significantly 
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decreased in PLPcreER
T+

DCC
lox/lox

 mice, while paranodal and nodal proteins 

Caspr and neurofascins were not affected. The mean values of PLP levels were 

variable but mostly decreasing, although this change was not significant (Figure 

3-9C).  

 

Changes in the level of compact myelin proteins like MBP suggest alterations of 

compact myelin. Therefore, we examined myelin thickness to assess for any 

differences in compact myelin. However, the analysis of G-ratio (axon 

diameter/fiber diameter) in control and PLPcreER
T+

DCC
lox/lox

 mice did not reveal 

a significant change in the thickness of myelin sheaths in the absence of DCC 

expression by OLs (Figure 3-9B). To assess for a possible loss of OLs in 

PLPcreER
T+

DCC
lox/lox

 that could account for the alterations in myelin protein 

content, cells counts were performed in the optic nerve and spinal cord. The 

number of Olig2/CC1 double positive cells did not change in either region 9 

months after induction (Figure 3-9D-F), suggesting that the loss of DCC 

expression by OLs did not affect their survival.  

 

PLPcreER
T+

DCC
lox/lox

 mice develop a coordination deficit 

Most myelin and paranodal protein mutants exhibit varying degrees of motor 

deficits (Bhat et al., 2001; Boyle et al., 2001; Mierzwa et al., 2010b). 

PLPcreER
T+

DCC
lox/lox

 mice did not exhibit an overt behavioural phenotype. 

Nonetheless, we tested the mice for behavioural deficits 6 months after tamoxifen 

induction. When assayed using the open field test, PLPcreER
T+

DCC
lox/lox

 mice 

exhibited normal motility. In a 2 hour test period, they walked a mean distance 

that was not significantly different from their control counterparts (Figure 3-10A; 

n=7 for the control group, n=8 for the knockout group) and no difference in speed 

of walking or time spent walking was detected (data not shown). Muscle strength 

assessed with the grip test was also normal in PLPcreER
T+

DCC
lox/lox

 mice when 

compared to controls (Figure 3-10B; n=20 for the control group, n=19 for the 

knockout group). However, at 6 months after induction, PLPcreER
T+

DCC
lox/lox

 

mice exhibited balance and coordination deficits when tested with the balance 
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beam. This test measures the time taken by a mouse to cross a narrow beam and 

reach an enclosed safety platform. PLPcreER
T+

DCC
lox/lox

 mice took more time to 

cross the balance beam than their wild type littermates (Figure 3-10D; n=11 for 

both groups). Yet, when tested one month after induction, PLPcreER
T+

DCC
lox/lox

 

mice performed as well as controls in this test (Figure 3-10C; n=8 for the control 

group, n=10 for the knockout group). This difference suggests a progressive loss 

of coordination due to the loss of DCC expression in OLs. To confirm the results 

obtained with the balance beam, PLPcreER
T+

DCC
lox/lox

 mice were then tested on 

the rotarod, another behavioural test sensitive to motor coordination and balance. 

PLPcreER
T+

DCC
lox/lox

 mice also exhibited decreased motor performance when 

tested on an accelerating rotarod 6 months after induction (Figure 3-10E; n=9 for 

the control group, n=11 for the knockout group). PLPcreER
T+

DCC
lox/lox

 mice had 

a significantly lower latency to fall compared to their control littermates. 

Together, these results show that absence of DCC expression in OLs leads to the 

development of motor coordination and balance deficits. 

 

  



103 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



104 
 

FIGURE 3-4: Validation of mouse lines. A, B) Cre-mediated recombination of 

the floxed DCC allele ablates expression of a functional DCC protein. DCC
lox/lox 

mice were bred to CMVcre mice to induce ubiquitous recombination and embryos 

were collected at E14. A) CMVcre
+
DCC

lox/lox 
embryos have a thinner spinal cord 

ventral commissure compared to littermate controls at E14. A similar phenotype 

was observed in E14 DCC
-/-

 spinal cord. The commissure is visualized by staining 

with NFM antibodies. Scale bar = 100 µm. B) No DCC protein was detected in 

brain lysates of E14 CMVcre
+
DCC

lox/lox
 and DCC

-/-
 embryos. C) DCC protein has 

a slow turnover rate in myelinating OLs. To assess DCC protein expression after 

tamoxifen induction, cerebellar lysates were compared for their expression of 

DCC. Two weeks after induction, no differences in DCC protein levels were 

detected. Two months after induction, a reduction in DCC protein levels was 

observed, which could still be observed 8 months after induction. 
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FIGURE 3-5: Validation of the tamoxifen induction protocol. Validation of our 

induction protocol was performed by crossing PLPcreER
T
 mice to ROSA26 mice. 

Injection with tamoxifen (1 mg intraperitoneal; twice a day for five consecutive 

days) into PLPcreER
T+

ROSA26 mice revealed successful Cre recombination as 

revealed by β-galactosidase expression. 10X objective for all except anterior 

commissure (40X). Scale bar = 200 µm.  
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FIGURE 3-6: Expression of DCC and netrin-1 at the PNS paranode. Teased 

sciatic nerve fibres were immunostained with antibodies against Caspr, as well as 

DCC or netrin-1. Top panel: DCC expression was localized at the paranode, and 

possibly to the Schwann cell microvilli. Bottom panel: Netrin-1 expression was 

variable, but always present at the paranode. All panels: 100X objective, digital 

zoom 4 
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FIGURE 3-7: Paranodal architecture becomes disrupted in 

PLPcreER
T+

DCC
lox/lox

 mice.  A) Example of paranodes in wildtype and 

PLPcreER
T+

DCC
lox/lox

 optic nerve. The majority of control paranodes exhibited 

normal loops contacting the axon and visible transverse bands (black arrows), 

whereas the majority of knockout paranodes were abnormal. The depicted knock 

out paranode shows loops detached from the axon (white arrowheads). Scale bar = 

0,2 µm B) Paranodes were scored according to 4 faults: absence of transverse 

bands (1), absence of interloop densities (2), detached loops (3) and everted loops 

(4). C) At 6 months after induction, PLPcreER
T+

DCC
lox/lox

 paranodes display 

more faults per paranode than the control paranodes. D) The majority of wildtype 

paranodes are normal while the majority of PLPcreER
T+

DCC
lox/lox

 paranodes are 

abnormal, bearing one fault or more. E) Prevalence of each type of fault in 

PLPcreER
T+

DCC
lox/lox 

paranodes compared with controls. Three animals of each 

genotype were analyzed. (***: p=0,0002; two tailed Student’s T test). 
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FIGURE 3-8: Progressive paranodal domain disorganisation in 

PLPcreER
T+

DCC
lox/lox

 mice. Paranodal domain organization was assessed by 

looking at the length of the paranodal marker Caspr. Examples of spinal cord 

paranodes seen in control (A) and PLPcreER
T+

DCC
lox/lox

 (B, C) mice 9 months 

after tamoxifen induction are depicted. Paranodal domains are visualized with 

Caspr antibodies and juxtaparanodal domains are visualized with potassium 

channel (Kv1.2) antibodies. Some paranodes displayed Caspr leaking out of the 

paranodes, Kv1.2 leaking into the paranodes (B; white arrowhead) or widening of 

Caspr immunoreactive domains and Caspr diffusion into the node (C; white 

arrowhead). D) Length of Caspr immunoreactive domain was quantified in 

different regions of the CNS. Caspr immunoreactive domains are similar to 

controls 6 months after induction of PLPcreER
T+

DCC
lox/lox

 mice (cKO 6m), but 

disorganized 9 months after tamoxifen induction (cKO 9m) in the corpus 

callosum, cerebellum, spinal cord and optic nerve. Three animals were analyzed 

per group and compared to their littermate controls. Scale bar = 2 µm (*: p<0,05; 

**: p<0,01; Tukey’s test). 
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FIGURE 3-9: Abnormalities in compact myelin architecture and protein 

content. A) Cross sections of optic nerve were examined 6 months after 

tamoxifen induction of control and PLPcreER
T+

DCC
lox/lox

 mice. Numerous myelin 

outfoldings were observed in PLPcreER
T+

DCC
lox/lox

 myelin (black arrows). Scale 

bar =2 µm B) PLPcreER
T+

DCC
lox/lox

 did not exhibit any changes in their myelin 

G-ratios compared to controls. G-ratios (ratio between the diameter of the axon 

and the thickness of its myelin sheath) were calculated in optic nerves of mice 

between 6 and 9 months after tamoxifen induction and are plotted against axon 

diameter. 6 animals of each genotype were used for this analysis. No effect of age 

was detected. C) Decreased levels of MBP and MAG were observed in 

PLPcreER
T+

DCC
lox/lox

 compared with their control littermates 7-9 months after 

induction. Levels of CNP, Neurofascin (Nfsc) and Caspr were unaffected. 

Examples of immunoblots for each protein are shown along with the fold change 

of protein expression for each protein. 5 pairs of brothers were analyzed (**: 

p<0,01, *: p<0,05; One sample t test). D) The numbers of Olig2/CC1 positive 

OLs was counted in different regions 9 months after induction to assess for any 

loss of OLs. The number of OLs was not affected either in the spinal cord (E) or 

the optic nerve (F). 3 pairs of brothers were analyzed.  
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FIGURE 3-10: PLPcreER
T+

DCC
lox/lox

 mice develop a balance and coordination 

deficit. Different aspects of locomotion were tested 6 months after tamoxifen 

induction. A) Gross motility was normal in PLPcreER
T+

DCC
lox/lox

 mice as tested 

in the open field test (total distance travelled in 2 hrs testing session). B) Motor 

strength was also similar to their control littermates, as tested with the hanging 

wire grip test. C) PLPcreER
T+

DCC
lox/lox

 mice exhibited balance and motor 

coordination impairment 6 months after induction, as tested in the balance beam 

test. D) Motor coordination and balance are normal 1 month after induction, 

which indicates that the coordination phenotype develops progressively. E) 

PLPcreER
T+

DCC
lox/lox

 exhibited decreased motor performance 6 months after 

induction when tested on an accelerating rotarod. (*: p<0.05; one tail T test) 
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DISCUSSION AND CONCLUSION  

 

Our findings indicate that DCC expression by OLs is required for the maintenance 

of axoglial junctions in vivo. Both by intravitreal transplantation of OPCs derived 

from conventional DCC knockout mice and by examining inducible conditional 

DCC knockout mice, I have shown that selective loss of DCC from mature OLs 

disrupts myelin and paranode ultrastructure and causes a progressive 

disorganization of paranodal domains along axons. Furthermore, loss of DCC 

function from OLs leads to alterations in compact myelin and defects in 

coordinated behaviour.  

 

In aged PLPcreER
T+

DCC
lox/lox

, we described a decrease in MAG and MBP 

protein levels compared to controls. The cause of this alteration in myelin protein 

expression is unknown, but could be a consequence of a general instability of 

myelin in the absence of DCC. Myelin instability observed in 

PLPcreER
T+

DCC
lox/lox 

mice could be caused by an adhesion defect in absence of 

DCC. Netrin-1 and DCC mediate the formation of adhesive contacts in several 

tissues and organs (Baker et al., 2006). Loss of DCC expression by OLs could 

lead to adhesion defects between the OL and the axon both at the paranode and at 

the level of the internode. Of note, PLPcreER
T+

DCC
lox/lox

 paranodes displayed 

more paranodal loops detached from the axon, but the interaction between the 

loops did not seem to be affected. It is possible that disruption of DCC expression 

causes adhesion defects between the glial loops and the axon, but it would not be 

involved in adhesion between the glial loops themselves. Absence of DCC 

expression by OLs could thus lead to defective axo-glial adhesive contacts, and 

such defects could explain the myelin outfoldings, as well as the increased 

incidence of detached loops observed in the conditional DCC knockout mice.  

 

The paranodal phenotype observed in vivo was not as severe as what was 

described in vitro in DCC knockout organotypic slices (Jarjour et al., 2008). This 

could be explained by different factors. First, the recombination efficiency 
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induced by tamoxifen administration is not one hundred percent (Doerflinger et 

al., 2003), which could dilute the phenotype observed. Second, normal ongoing 

remyelination could also occur. In this study, mice were induced only once with 

tamoxifen, so OLs that differentiated later in life would still express DCC. Not 

much is known about the degree of remyelination that occurs under normal 

conditions or if myelin turnover is frequent. Existence of newly formed OPCs in 

the adult nervous system has been described (Ffrench-Constant and Raff, 1986; 

McCarthy and Leblond, 1988), but the extent to which these cells contribute to 

continuous remyelination is unknown.  

 

Deficits in the maintenance of myelin and intact axoglial junctions could lead to 

the development of pathological conditions. Myelin instability and damage have 

been proposed to underlie the age-related cognitive deficits observed in the 

elderly (Bartzokis, 2004). It was also proposed to constitute a predisposition to 

immune attacks, which could lead to the development of pathologies like MS 

(Mastronardi and Moscarello, 2005). Notably, paranodal disorganization was 

identified as an early sign of demyelination around MS lesions (Wolswijk and 

Balesar, 2003; Howell et al., 2006). Identifying factors that play a role in stability 

and maintenance of myelin is thus of tremendous importance to develop 

therapeutic strategies to prevent and treat these pathological conditions.  
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CHAPTER IV                                                                                                                                      

GLIAL SCAR ASSOCIATED ASTROCYTES AND FIBROBLASTS EXPRESS NETRIN-1 IN 

THE INJURED MOUSE SPINAL CORD 

 

 

The results included in this chapter are included in:  

 

Baker KA, Bull
 
SJ, David S, and Kennedy

 
TE. Glial scar associated astrocytes and 

fibroblasts express netrin-1 in the injured mouse spinal cord. Submitted to Journal 

of Neuroscience Research.  

 

 

 

 

 

 

 

 

 

  



116 
 

PREFACE AND RATIONALE 

 

As described in chapter I, the expression of netrin-1 and its receptors changes 

during development of the CNS. In the mature CNS, netrin-1 is expressed by 

neurons and myelinating OLs (Manitt et al., 2001; Jarjour et al., 2008; 

Rajasekharan et al., 2009), and has been proposed to be a myelin-associated 

inhibitor of axon regeneration following injury (Manitt et al., 2001; Manitt et al., 

2006; Low et al., 2008). When present at lesion sites, netrin-1 was shown to 

inhibit axon regeneration, an effect mediated by axonal expression of UNC5 

receptors (Low et al., 2008).  

 

However, descriptions of netrin-1 expression patterns after spinal cord injury do 

not agree. In adult rat, netrin-1 expression decreases after dorsal myelotomy. Both 

netrin-1 mRNA and protein were reduced after injury and stayed below control 

levels for at least seven months post-injury (Manitt et al., 2006). In contrast, 

Wehrle et al. (2005) reported an increase in netrin-1 transcript and protein at the 

core of the glial scar eight days following spinal cord hemisections and cerebellar 

lesions in mice. By immunohistochemistry, they identified the glial scar 

associated microglia and macrophages as netrin-1 positive; however, they did not 

confirm that these cells were the source the netrin-1 at the injury site (Wehrle et 

al., 2005).  

 

In this chapter, we aim to resolve these conflicting results, and to identify the 

source of netrin-1 after spinal cord injury, by using netrin-1
βgeo/+ 

mice, which 

express a fusion reporter gene downstream of the netrin-1 promoter
 
(Skarnes et 

al., 1995).  
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MATERIALS AND METHODS 

 

Animals  

Netrin-1
βgeo/+ 

mice, generated by Skarnes et al., (1995) and further characterized 

by Serafini et al., (1996), were provided by Dr. Marc Tessier-Lavigne 

(Genentech, South San Francisco, CA). Sprague Dawley newborn pups were 

obtained from Charles River Canada (Montreal, Québec, Canada). All procedures 

were performed in accordance with the Canadian Council on Animal Care 

guidelines for the use of animals in research. 

 

Dorsal Hemisection Surgeries and Spinal Cord Processing 

Six 8-week old male netrin-1
Bgeo/+

 heterozygotes and two 8-week old male wild 

type littermates were anesthetized using a ketamine:xylazine:acepromazine 

(50:5:1 mg/kg) mixture. A laminectomy was performed at the T8 level and a 

dorsal hemisection made with a pair of microscissors. Animals were closely 

monitored after the surgery. Eight days following dorsal hemisections, mice were 

anaesthetized and then perfused with PBS and 4% PFA. Spinal cords were 

removed and post-fixed overnight in 4% PFA followed by cryoprotection in 30% 

sucrose in PBS. Four 5 mm segments of the spinal cords, 2 rostral and 2 caudal 

from the injury epicenter, were embedded in optimal cutting
 

temperature 

compound (Sakura Finetek, Torrance, CA), then rapidly frozen in liquid nitrogen-

cooled isopentane and stored at -80°C prior to sectioning. Twenty micron thick 

sections were cut with a cryostat (Leica Microsystems; Richmond Hill, ON) and 

collected on Superfrost Plus electrostatic slides (Fisher Scientific Co., Ottawa, 

ON).   

 

Mouse astrocyte isolation 

To investigate netrin-1 expression by reactive astrocytes, mechanical injury was 

produced in cultures of confluent astrocytes and fibroblasts derived from a mix of 

netrin-1
Bgeo/+

 mice and their wild type littermates (Barral-Moran et al., 2003). As 

netrin-1
Bgeo/Bgeo

 mice die at birth (Skarnes et al., 1995), brains from both netrin-
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1
Bgeo/+

 and wild type littermates were pooled. Astrocyte/fibroblast cultures were 

obtained by removing microglia and oligodendrocyte precursors by shaking off 

the glial cultures on an orbital shaker overnight at 37°C (180 rpm). The cells were 

then trypsinized, and plated on 12 mm coverslips coated with 20 µg/ml PDL at a 

density of 100,000 cells/coverslip. The astrocyte enriched cultures were then 

grown in 10% FBS, 1% penicillin/streptomycin, 1% glutamine in DMEM.  At 

confluence (~3 days), the media was replaced, with half of the wells receiving 

serum-free media. On the following day, mechanical injuries were produced by 

sliding a 22 gauge needle across the astrocyte monolayer twice, first vertically and 

then horizontally, as described (Barral-Moran et al., 2003). On the following day, 

cultures were fixed in 4% paraformaldehyde (PFA) for 15 min, rinsed with 

phosphate buffered saline (PBS) and processed for immunocytochemistry.  

 

Immunocytochemistry 

Cells were fixed with ice cold 4% PFA for 30 minutes, and rinsed with PBS 

thrice. After blocking for 1 hr at RT in 3% BSA, 0.1% triton X-100 in PBS, 

primary antibodies diluted in blocking solution were added, incubated overnight 

at 4°C, and then rinsed three times with PBS. Cells were then incubated with 

secondary antibodies for 1 hr at RT, before washing and mounting with 

Fluoromount-G (Southern Biotech).  

 

Immunohistochemistry 

Spinal cord sections were washed in PBS and then blocked in 3% BSA, 0.3% 

triton X-100 in PBS for 1 hr. Sections were incubated overnight in primary 

antibody diluted in blocking solution at 4°C. The next day, sections were rinsed 

with PBS before being incubated with the secondary antibodies diluted in 3% 

BSA in PBS for 1 hr at RT. Sections were then washed with PBS and 

coverslipped in GelMount anti-fading medium (Biomeda Corporation, Foster 

City, CA). Epifluorescent images were taken with a Magnafire CCD camera 

(Optronics, Goleta, CA) and an Axiovert 100 microscope (Carl Zeiss Canada, 

Toronto, ON). To assess intracellular localization of β-gal staining, z-stacks 
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images were captured using a Zeiss LSM 510 confocal microscope (Carl Zeiss 

Canada, Toronto, ON).  

 

Antibodies  

The following antibodies were used in this study: rabbit polyclonal anti-β-gal (3 

Prime Inc., Boulder, CO), chicken polyclonal anti-vimentin (Encor 

Biotechnology, catalog #CPCA-Vim), mouse monoclonal anti-CD11b (Mac1; 

AbD Serotec, catalog #MCA2087), CY3-conjugated mouse anti-Glial fibrillary 

acidic protein (GFAP; Sigma-Aldrich, catalog #C9205), mouse monoclonal anti-

CNP (Abcam; catalog #ab24566), and rat monoclonal anti-netrin-1 (R&D 

Systems, catalog #MAB1109). 

 

Quantification of ß-gal expression after injury 

Approximately 340 X 340 μm images of ß-gal staining were taken of the dorsal 

white matter (DWM) at 0.7 mm (injury site measurements) and 5.7 mm rostral 

and caudal to the lesion. Quantification was performed by a blinded experimenter 

using ImageJ software (National Institutes of Health, Bethesda, MD) to measure 

the relative area (in arbitrary units) of ß-gal immunopositivity within the field of 

interest. A non parametric one-way analysis of variance followed by a Wilcoxon 

test were used to compare paired values of injury site and control values of 5.7 

mm distal to the site in the six netrin-1
βgeo/+

 injured mice.   

 

 

 

  

http://www.jneurosci.org/cgi/redirect-inline?ad=Zeiss
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RESULTS 

 

To identify cells that express netrin-1 in the adult mouse spinal cord following 

injury, we utilized a mouse line carrying a gene trap vector (pGT1.8TM) encoding 

β-gal inserted into the netrin-1 gene. Mice carrying the inserted transgene express 

a chimeric netrin-1/β-gal fusion protein regulated by the endogenous netrin-1 

promoter (Skarnes et al., 1995; Serafini et al., 1996). The protein chimera consists 

extracellularly of domain VI and the first EGF-like repeat of domain V of netrin-

1, followed by a transmembrane domain encoded by the inserted transgene and an 

intracellular ß-gal, fused to neomycin phosphotransferase (ß-geo). Mice 

homozygous for this insertion, netrin-1
Bgeo/Bgeo

, are severe netrin-1 hypomorphs 

and die within a few hours of birth. They exhibit a severe neural phenotype that is 

consistent with axon guidance errors produced by loss of netrin-1 function 

(Serafini et al., 1996). In contrast, mice heterozygous for the insertion, netrin-

1
Bgeo/+

, develop to adulthood and exhibit no identified abnormal phenotype 

(Serafini et al., 1996; Braisted et al., 2000; Jarjour et al., 2003; Shatzmiller et al., 

2008).  

 

Netrin-1 expression is upregulated at the site of injury 

To investigate netrin-1 expression after spinal cord injury, dorsal hemisections 

were performed in netrin-1
βgeo/+

 heterozygous mice. Two wild-type and six 

heterozygous 8-week old male mice received dorsal hemisection injuries. To 

correspond to the time point used previously by Wehrle et al. (2005), we chose to 

examine netrin-1 expression eight days after spinal cord injury. Mice were 

perfused eight days after injury and β-gal immunoreactivity was used to identify 

netrin-1 expressing cells at the injury site. 

 

Immunostaining revealed punctate β-gal expression by cells within the injury 

epicenter associated with the glial scar (Figure 4-1A-C; Figure 4-2A-D). 

Immunostaining for β-gal did not entirely correspond with that of netrin-1 (Figure 

4-1A-C), likely because netrin-1 is secreted from netrin-producing cells whereas 
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β-gal expression is seen as punctuate intracellular staining (Figure 4-1A-C; G-I; 4-

4A-H; 4-5A-D) or in association with the cell membrane (Figure 4-1D-F). This 

pattern of β-gal staining was previously described in these mice (Shatzmiller et 

al., 2008). β-gal expression by large cells in ventral gray matter (Figure 4-1D-F) 

and CNP-positive cells in the white matter (Figure 4-1G-I) neighboring the site of 

injury were also detected, corresponding to motor neurons and OLs, as previously 

described (Manitt et al., 2001; Wehrle et al., 2005; Manitt et al., 2006).  

 

The increased β-gal expression associated with the injury area was not found in 

dorsal sections located more than 5 mm rostral (Figure 4-2E, F) or caudal (not 

shown) to the injury epicenter. In tissue sections with an intact central canal, β-gal 

expression was detected in the ependymal cells surrounding the central canal 

(Figure 4-2E), consistent with previous findings in rodents and lamprey (Petit et 

al., 2007; Shifman and Selzer, 2007; Low et al., 2008). β-gal immunostaining was 

not observed in sections of injured wild-type spinal cord, demonstrating the 

specificity of the β-gal antibody (Figure 4-2G, H). The area of ß-gal 

immunostaining in the dorsal white matter (DWM) (Figure 4-3A) was determined 

in transverse sections 5.7 and 0.7 mm rostral and caudal to lesion site. Very little 

ß-gal immunostaining was observed in the DWM 5.7 mm rostral and caudal to the 

lesion. However, a significant increase in the area of ß-gal immunopositive 

staining was seen within 0.7 mm of the lesion site (Figure 4-3B; p<0.05). 

  

Netrin-1 is expressed by fibroblasts and few astrocytes in the injured spinal 

cord  

Using in situ hybridization and immunohistochemistry, Wehrle et al. (2005) 

reported widespread netrin-1 expression by cells in the glial scar eight days 

following injury. Double labeling demonstrated that microglia/macrophages 

(identified by isolectin B4 staining) were netrin-1 immunoreactive; but it was not 

determined if these cells were the source of netrin-1. Here, using the netrin-1
βgeo/+ 

reporter mice, we identified netrin-1 expressing cell types at the site of injury. 

Double immunofluorescence labelling using Mac-1, an antibody specific for 
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microglia/macrophages (Malhotra et al., 1986), and an antibody against β-gal was 

performed. Use of the Mac-1 antibody was shown to produce more consistent 

microglia staining than IB4 staining (Goings et al., 2006). Many Mac-1 positive 

microglia/macrophages were readily detected at the site of injury, and β-gal 

immunoreactivity was detected in close proximity to these cells; however, 

analysis of stacks of serial confocal images did not detect co-localization of Mac-

1 and β-gal immunoreactivity, suggesting that microglia/macrophages are not a 

source of netrin-1 expression at an injury site in mouse spinal cord (Figure 4-4A, 

B).   

 

Fibroblasts can be distinguished from astrocytes by expression of vimentin but not 

GFAP, whereas resting astrocytes express GFAP but not vimentin, and reactive 

astrocytes express both vimentin and GFAP (Conrad et al., 2005). Triple-staining 

for β-gal, vimentin and GFAP revealed vimentin+/GFAP- fibroblasts in the dorsal 

portion of the spinal cord near the injury epicenter, surrounded by a dense 

network of vimentin+/GFAP+ reactive astrocytes and their processes. Confocal 

image analysis revealed expression of β-gal by vimentin+/GFAP- fibroblasts 

(Figure 4-4C, D). β-gal immunoreactivity, indicating netrin-1 expression, was also 

associated with some vimentin+/GFAP+ reactive astrocytes near the injury site 

(Figure 4-4E, F). Notably, previous studies have shown that netrin-1 was not 

expressed by resting or reactive astrocytes in the injured rat spinal cord (Manitt et 

al., 2006; Löw et al., 2008). Consistent with Manitt et al., (2006), we did not 

detect netrin-1 expression by vimentin-/GFAP+ resting astrocytes in the ventral 

white matter of the mouse spinal cord, although some reactive vimentin+/GFAP+ 

astrocytes expressed β-gal at the injury site.   

 

Netrin-1 expression by fibroblasts and reactive astrocytes in vitro  

To further verify the expression of netrin-1 by astrocytes and fibroblasts, we 

examined mixed-glial cultures derived from the brains of newborn wild-type and 

heterozygous mouse pups. Cells were grown to confluence, at which point a 

mechanical injury was created by scratching the surface with a needle tip. 
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Immunostaining revealed astrocytes growing on a layer of fibroblasts. Consistent 

with our findings in vivo, β-gal immunoreactivity was detected in 

vimentin+/GFAP- fibroblasts (Figure 4-5A, B), and also associated with 

vimentin+/GFAP+ astrocytes (Figure 4-5C, D). This immunoreactivity persisted, 

regardless of the presence (Figure 4-5A, C) or absence (Figure 4-5B, D) of serum 

in the culture media. A small number of Mac-1
+
 microglia/macrophages remained 

in the primarily astrocyte/fibroblast-rich cultures. Consistent with our findings in 

vivo, β-gal immunoreactivity, indicative of netrin-1 expression, was not detected 

in these cells.    
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FIGURE 4-1: Examples of β-gal immunostaining in netrin-1
Bgeo/+

 mouse 

thoracic spinal cord 8 days after dorsal hemisections. A-C) Immunostaining 

for netrin-1 (red) and β-gal (green) showed some overlap at the injury site; 

however, netrin-1 expression was more widespread than β-gal expression. D-F) 

The netrin-1-β-gal protein chimera consists of a transmembrane domain encoded 

by the inserted transgene and is primarily found intracellularly or associated with 

the cell membrane. The typical distribution of β-gal immunoreactivity within a 

cell is apparent in the large cells in the ventral horn, likely motor neurons 

(arrow). G-I)  β-gal immunostaining is also associated with CNP-positive OLs 

(arrows). Scale bar: 50 µm 
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FIGURE 4-2: β-gal immunoreactivity in a transverse section of injured netrin-

1
Bgeo/+

 mice thoracic spinal cord. A-D) Intracellular β-gal immunoreactivity 

(arrows), labeling cells expressing netrin-1, is present at the injury site. B-D) 

Higher power photomicrographs of the boxes in A. E,F) β-gal immunostaining is 

not as extensive 5-6 mm rostral to the injury site, consistent with staining in the 

uninjured mouse and rat spinal cords (Manitt et al., 2001). G,H) In wild-type 

mice, no β-gal immunoreactivity was detected at the site of injury. All images are 

oriented similarly, with the top corresponding to the dorsal side of the spinal cord. 

Scale bar in B-D, F, H corresponds to 300 µm, and in A, E, G to 150 µm.  
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FIGURE 4-3: Quantification of β-gal immunostaining in the dorsal white 

matter of the injured mouse spinal cord. A) A schematic representation of a 

transverse section through the spinal cord showing the region in which the extent 

of β-gal staining was quantified is depicted. B) The area (in arbitrary units (A.U.); 

+ standard error of the mean) of β-gal immunostaining was determined at 5.7 mm 

and 0.7 mm rostral and caudal of the injury epicenter. The values 0.7 mm rostral 

and caudal to the epicenter were averaged to provide a representative value of the 

area of β-gal staining surrounding the lesion area. A significant increase in β-gal 

staining was detected adjacent to the lesion as compared to 5.7 mm rostral or 

caudal to the lesion site. (p<0.05)  
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FIGURE 4-4: Identification of the cell types that express netrin-1 at an injury 

site in adult netrin-1
Bgeo/+

 mouse spinal cord. A,B) β-gal immunoreactivity (red) 

was occasionally found closely associated with microglia/macrophages (Mac1+ 

cells, green); however, co-localization of β-gal within the Mac1+ cell was never 

detected. C,D) β-gal+ immunoreactivity (green) was detected in fibroblasts 

(GFAP-, red/vimentin+, blue) in the dorsal portion of the injury site. E,F) β-gal+ 

immunoreactivity (green) could also be detected in some reactive astrocytes 

(GFAP+, red/vimentin+, blue). For A-F, the boxes on the top and right side of 

each panel present a view through the orthogonal axis of the Z-stack generated by 

confocal imaging. Scale bar: 20µm. 
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FIGURE 4-5: In vitro β-gal expression after scrape injury of netrin-1
Bgeo/+

-

derived glial cultures. A,B) Widespread expression of β-gal (green) by GFAP-

(red)/vimentin+(blue) fibroblasts in glial enriched cultures following a mechanical 

(scratch) injury. C,D) GFAP+/vimentin+ reactive astrocytes also co-expressed β-

gal in vitro. Two representative micrographs are included. A and C illustrate 

cultures grown in media with serum, while B and D illustrate cultures grown in 

serum-free media. The boxes on the top and right side of each panel present a 

view through the orthogonal axis of a Z-stack generated by confocal imaging. 

Scale bar: 50µm. 
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DISCUSSION AND CONCLUSION  
 

In agreement with the findings described by Wehrle et al. (2005), we observed 

significantly higher expression of netrin-1 (β-gal) within the lesion. However, we 

did not detect expression of netrin-1 in microglia/macrophages as previously 

reported (Wehrle et al, 2005). In contrast, our findings provide evidence that 

netrin-1 is expressed in the injured mouse spinal cord by fibroblasts and some 

reactive astrocytes, but not by microglia/macrophages within the glial scar. 

Similar results were obtained examining cells expressing netrin-1 in mixed glial 

cultures derived from netrin-1
βgeo/+

 mice. The observation that netrin-1 

immunoreactivity was more widely distributed than that of β-gal (Figure 4-1C) 

suggests that netrin-1 is secreted into the injury environment and likely binds to 

either its transmembrane receptors or to HSPGs on the surface of cells (Kappler et 

al., 2000; Shipp and Hsieh-Wilson, 2007). This possibility may partially explain 

the results of Wehrle et al. (2005), describing netrin-1 expression by 

microglia/macrophages at the injury site. It is also possible that other cells not 

investigated here may also express netrin-1 in the injured mouse spinal cord, such 

as endothelial cells (unpublished observations), or Schwann cells, which can 

migrate into the injured spinal cord and have been shown to express netrin-1 after 

peripheral nerve injury (Madison et al., 2000).  

 

In contrast to the results obtained in mice, examination of netrin-1 expression 

after spinal cord injury in rat yielded opposite results (Manitt et al., 2006; Low et 

al., 2008). Such species-specific differences in the response to spinal cord injury 

have been described previously (Steward et al., 1999; Inman and Steward, 2003; 

Sroga et al., 2003). Even more subtle strain-specific differences exist within the 

same species (Basso et al., 2006; Kigerl et al., 2006). Strikingly, the most 

important difference in the response to spinal cord injury between mice and rats is 

the level of cavitation formed at the site of injury. In contrast to rats, which 

exhibit progressive necrosis and cavitation following injury, the cystic cavity fills 

with a connective tissue matrix in mice (Steward et al., 1999; Byrnes et al., 2010). 
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Differences in the magnitude and the onset of the inflammatory responses are 

proposed to underlie this distinct cavity formation response. Mice display a 

delayed infiltration of lymphocytes and dendritic cells into the lesion compared to 

rat (Sroga et al., 2003). Furthermore, fibroblasts invade the lesioned area more 

aggressively in mice (Sroga et al., 2003). Such differences in both the cavity 

formation and the inflammatory responses could underlie the discrepancy of 

results obtained in mice and rats.  

 

Previous analyses detected netrin-1 immunohistochemical reactivity associated 

with microglia/macrophages in the injured murine CNS (Wehrle et al., 2005), 

macrophages in the sciatic nerve of rats with experimental allergic neuritis (Moon 

et al., 2006), and inflammatory cells invading the spinal cord of rats at the peak 

stage of experimental autoimmune encephalomyelitis (Moon et al., 2011). In 

contrast, our analysis using adult netrin-1
Bgeo/+

 mice did not detect endogenous 

netrin-1 expression by microglia/macrophages. However, we detected β-gal 

staining in close proximity to microglia/macrophages. A possible explanation for 

the reports that microglia/macrophages exhibit netrin-1 immunostaining may be 

that these cells phagocytosed a netrin-1 expressing cell or netrin-1 containing 

debris from the site of injury. Netrin-1 is associated with myelin at the paranode 

(Jarjour et al., 2008; Low et al., 2008), and thus myelin debris produced by the 

breakdown of myelin following injury most likely contains netrin-1 protein. 

Alternatively, netrin-1 protein may be bound to heparin sulfate proteoglycans on 

the surface of microglia/macrophages (Kappler et al., 2000; Shipp and Hsieh-

Wilson, 2007). Taken together, our results provide evidence that microglia or 

macrophages do not express netrin-1 following CNS injury, but support the 

conclusion that fibroblasts and a limited number of reactive astrocytes are the 

predominant source of netrin-1 at such sites of injury in the mouse CNS. 

Inhibitory cues such as netrin-1 secreted after CNS injury are therapeutic targets 

and their neutralization could promote axonal regeneration and remyelination.  
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CHAPTER V                                                                                                                           

DISCUSSION 

 

 

 

 

In this chapter, I will briefly describe the results obtained in chapters II, III and  

IV, and discuss how they integrate into previous models of myelin formation, 

myelin maintenance, and myelin-associated inhibition following injury.  
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V-1. MYELIN FORMATION: MECHANISMS PROMOTING OL DIFFERENTIATION 

 

Akt/mTor activity plays a crucial role in the early OL differentiation and 

myelination process (Flores et al., 2008; Narayanan et al., 2009; Tyler et al., 

2009). In chapter II of this thesis, we demonstrate that at late stages of OL 

differentiation in vitro, the PI3K/Akt/mTor pathway is also involved in 

morphological differentiation downstream of neurotrophins and NRG1 signaling. 

We show that, individually applied, NT-3, BDNF, NGF, or NRG1 have limited to 

no effect on Akt activation and morphological maturation. However, when 

applied collectively, they synergize and induce a PI3K/Akt/mTor dependent 

morphological differentiation.  

 

Receptor activation downstream of NGF, NT-3, BDNF and NRG1 

The mechanism underlying the synergistic effect of collectively applied 

neurotrophins and NRG1 is unknown. The synergy could be mediated by 

convergence of signals downstream of classical receptor or co-receptor 

interactions. NGF, BDNF and NT-3 bind preferentially to TrkA, TrkB and TrkC, 

respectively, and they all bind to p75 (Huang and Reichardt, 2001). In addition to 

their classical receptors, NGF and other neurotrophins were recently shown to 

bind to integrins (Staniszewska et al., 2008). NRG1 binds to the ErbB class of 

receptors that includes members ErbB2, ErbB3 and ErbB4, and can activate 

several signalling pathways (Falls, 2003). Like neurotrophins, NRG1 can bind 

directly to integrins, and this binding was shown to modulate NRG1/ErbB 

signalling (Colognato et al., 2002; Ieguchi et al., 2010). Moreover, β1 integrin 

engagement in OLs was shown to be associated with Akt activation and myelin 

sheet formation downstream of NRG1 signals in vitro (Barros et al., 2009). Co-

activation of integrin receptors and neurotrophins/ErbB receptors could thus 

underlie the synergistic effect on Akt signalling seen with the combination of 

factors. Formation of different receptor complexes could affect intracellular 

recruitment of signalling partners, and mediate the synergistic action of 

neurotrophins and NRG1.  
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Context-dependent effects of NGF, NT-3, BDNF and NRG1 in OLs 

The effects of NGF, NT-3, BDNF and NRG1 on OPCs and OLs have been 

examined previously in multiple studies. In vitro, NRG1 was shown to promote 

survival and proliferation of OLs (Canoll et al., 1999), an effect dependent on Akt 

activation (Flores et al., 2000). However, reports describing the effect of NRG1 

on OL differentiation do not agree. While some groups report that NRG1- 

promotes OL differentiation (Calaora et al., 2001; Park et al., 2001), others 

describe an inhibitory effect of NRG1 on differentiation (Canoll et al., 1999; 

Sussman et al., 2005). This discrepancy could be explained by the receptor 

complex activated by NRG1. ErbB2, even while lacking a ligand-binding activity, 

mediates terminal differentiation of OLs (Park et al., 2001). ErbB4 activation, in 

contrast, inhibits OL differentiation (Sussman et al., 2005), while ErbB3 is not 

required at this stage of OL maturation (Schmucker et al., 2003). Despite these 

effects, NRG1 signaling seems dispensable for OL differentiation and myelination 

in vivo (Brinkmann et al., 2008). However, when overexpressed during 

myelination, NRG1 promotes myelination independently of proliferation 

(Brinkmann et al., 2008). Interestingly, the authors hypothesized that this effect of 

NRG1 in vivo is mediated by the PI3K/Akt/mTor pathway, based on unpublished 

observations. The difference between in vitro and in vivo studies on NRG1 in the 

CNS highlights the complexity of OL differentiation studies, whose results might 

vary depending on specific factors present in OL environment.  

 

Reported effects of neurotrophins on OLs also vary. While NGF was shown to 

have no effect on survival of OPCs (Barres et al., 1993), it was shown to inhibit 

myelination through an indirect effect on axonal TrkA receptors (Chan et al., 

2004). NGF also upregulates the expression of LINGO-1 on axons, thereby 

inhibiting myelination (Lee et al., 2007). However, NGF increases remyelination 

in the mature nervous system following a lysolecithin-induced demyelination 

challenge (Althaus, 2004). NT-3 promotes proliferation and survival of OPCs 

when combined with PDGF and insulin (Barres et al., 1993; Barres et al., 1994). 
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In vitro, NT-3 was also shown to enhance differentiation (Lachyankar et al., 1997; 

Heinrich et al., 1999). Both NT-3 and BDNF promote remyelination of 

regenerating axons in vivo (McTigue et al., 1998). Unlike NT-3, no effect of 

BDNF on survival of OPCs was described (Barres et al., 1993). On the other 

hand, BDNF had an effect on myelin protein expression, which was mediated by 

activation of the MAPK pathway (Du et al., 2006). Interestingly, BDNF promotes 

differentiation and myelination of human OPCs when used in conjunction with 

IGF-1 (Cui et al., 2010). We could speculate that some of the effects described 

downstream of neurotrophins or NRG1 depend on the activation of the Akt 

pathway. In studies done in vitro, the insulin present in the media could promote 

Akt phosphorylation and thus prime the cells to respond positively to certain 

factors. Also, when looking at effects on remyelination in vivo, it is very 

challenging to isolate the action attributed to individual factors, since sites of 

demyelination and/or injury contain several cues either present in the myelin or 

secreted by the glial scar. It is therefore possible that some of the findings 

mentioned above are the result of the integration through the Akt pathway of 

multiple extracellular and intracellular signals. In addition, the effects of different 

factors on OL maturation are dependent on the stage of differentiation. Different 

downstream signalling pathways can be activated depending on the maturation 

stage, and a switch in the response to the same cue could occur along the 

differentiation from OPCs to OLs.  

 

Signaling switches along OL differentiation  

Signaling switches have been previously described in OLs. For example, the 

interaction of laminin with integrins has been proposed to underlie a switch in the 

signalling pathway promoting OL survival from being PI3K-dependent to being 

MAPK-dependent (Colognato et al., 2002; Colognato et al., 2004). Such switches 

in signalling pathways could explain why OLs respond differently to growth 

factors as a consequence of their differentiation state. Switching responses have 

also been linked to the receptors expressed by OLs. In OLs with no TrkA 

expression, treatment with NGF induces p75-dependent JNK signalling, which 
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leads to OL cell death (Casaccia-Bonnefil et al., 1996; Yoon et al., 1998). 

However, when TrkA expression is induced in these OLs, the response to NGF 

switches to being pro-survival, an effect dependent on both decreased JNK 

signalling and increased ERK signalling (Yoon et al., 1998).  As mentioned in 

chapter I, another example of how OLs modify their response to the same cue 

during differentiation is the different response elicited by netrin-1 in OPCs and 

OLs (Jarjour et al., 2003; Tsai et al., 2003; Rajasekharan et al., 2009), a molecular 

switch resulting in differential regulation of RhoA activity (Rajasekharan et al., 

2010). Thus, an extracellular cue can have distinct effects on cells of the OL 

lineage depending on receptor expression and on the intracellular signalling state, 

both of which can vary during OL differentiation.  

 

Understanding the different molecular switches in OL differentiation, either 

intrinsic or environmentally-induced, becomes important when looking at 

myelination outside of a developmental context. Remyelination of demyelinated 

plaques in MS is dependent on the reactivation of OPC migration, proliferation 

and differentiation within the plaques (Miron et al., 2011). Understanding why a 

factor inhibiting myelination during development can promote remyelination in 

the adult, such as described with NGF (Althaus, 2004; Lee et al., 2007), might 

depend on the appreciation and consideration of such molecular switches in OLs.    

 

Candidate intracellular mediators of signalling integration  

A pivotal role of Focal Adhesion Kinase (FAK) downstream of extracellular 

matrix (ECM) components in morphological maturation of OLs has recently been 

described (Lafrenaye and Fuss, 2010). FAK activation has an inhibitory effect on 

OL maturation in pre-myelinating OLs, while it promotes maturation in later 

stages of OL development. This switch was shown to be in part due to the ECM 

composition, and could be an indication that OLs require the integration of both 

the extracellular signalling cues and intracellular signalling environments for 

successful differentiation to proceed. Interestingly, FAK links integrins to the 

MAPK pathway (Schlaepfer et al., 1999), to the Rac1 pathway (Chang et al., 



137 
 

2007) and to the PI3K-Akt pathway (Xia et al., 2004). Integration of signals 

through FAK could underlie the synergistic effect and the convergence of 

different signalling pathways.   

 

The Src family tyrosine kinase fyn is implicated in several processes during OL 

development. Fyn knockout mice are hypomyelinated (Umemori et al., 1994; 

Sperber et al., 2001), and fyn influences OL process elongation and branching in 

vitro (Osterhout et al., 1999; Rajasekharan, 2008). There are multiple downstream 

targets of fyn that can be implicated in OL differentiation. Fyn is activated 

downstream of integrin α6β1 in OLs, and it mediates late stages of OL 

differentiation (Colognato et al., 2004; Laursen et al., 2009; Relucio et al., 2009). 

IGF-1 and netrin-1 failed to stimulate morphological maturation of fyn null OLs 

(Sperber and McMorris, 2001; Rajasekharan, 2008), highlighting its importance 

in signal transduction downstream of multiple extracellular cues. Fyn recruits tau 

and tubulin to OL lipid rafts (Klein et al., 2002), and an intact tau and microtubule 

network is critical for the transport of vesicles containing myelin protein (Lunn et 

al., 1997; Song et al., 2001). In addition, activated fyn can phosphorylate the 

protein PI3K enhancer (PIKE) (Tang et al., 2007), which stimulates PI3K and 

enhances Akt activation (Ye et al., 2000). Importantly, Trk receptors interact with 

fyn (Rajagopal and Chao, 2006; Pereira and Chao, 2007). Synergy of signals 

leading to Akt activation and to morphological differentiation could thus be in 

part mediated by fyn activation.  

 

Of course, there are other mechanisms by which synergistic action of different 

factors could lead to increased Akt activation and morphological differentiation in 

OLs. For example, inhibition of an Akt phosphatase, like PHLPP (PH domain and 

Leucine rich repeat Protein Phosphatase), together with PI3K/Akt activation, 

could lead to increased and prolonged Akt activation. Also, synergy could result 

from different regulation of endocytosis, which has already been shown to 

regulate neurotrophin signalling to promote differentiation (Zhang et al., 2000), 
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and Akt signaling (Zheng et al., 2008), as well as signaling downstream of the 

ErbB receptor (Sorkin and Goh, 2009).  

 

mTor-dependent pathways regulating morphology 

mTor activation is largely associated with activation of protein synthesis; 

however, downstream targets of mTor complexes are still being identified and 

mTor’s functions go beyond activation of translation. In mammalian cells, mTor 

can be incorporated into two different complexes: mTORC1 and mTORC2, in 

which mTor associates with either Raptor (Regulatory Associated Protein of 

mTor) or Rictor (Rapamycin Insensitive companion of mTor), respectively. These 

complexes have distinct downstream targets and cellular effects. Translation 

activation through the inhibition of 4EBP1 and activation of S6K1 occurs through 

mTORC1 activation. mTORC2 activation leads to phosphorylation of different 

kinases, including Akt and protein kinase Cα (PKCα). Rictor was first identified 

as conferring insensitivity to rapamycin (Sarbassov et al., 2004). During acute 

treatment, rapamycin inhibits mTORC1 but not mTORC2; however, chronic 

rapamycin treatment can inhibit mTORC2 by blocking complex assembly 

(Sarbassov et al., 2006). Morphological maturation induced by NT-

3/BDNF/NGF/NRG1 after 24 hours was inhibited by the presence of rapamycin, 

which can, after one day, inhibit both mTORC1 and mTORC2. Both complexes 

could therefore mediate the observed morphological differentiation. Interestingly, 

Woods and colleagues provide evidence for the implication of both complexes in 

OL differentiation in vitro (Tyler et al., 2009).  

 

In addition to inhibiting mTor-dependent activation of translation, rapamycin can 

also inhibit cytoskeletal reorganization downstream of IGF-1 in cancer cells. This 

effect is caused in part by inhibiting mTor-dependent phosphorylation of focal 

adhesion proteins like FAK, paxillin and p130
cas

 (Liu et al., 2006; Liu et al., 

2008). mTor activation is also linked to increased RhoGTPase expression and 

activation (Liu et al., 2010), thus mediating reorganization of the actin 

cytoskeleton. This raises the possibility that the PI3K/Akt/mTor-dependent 
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morphological maturation and increased branching observed when OLs are 

treated with NT-3/BDNF/NGF/NRG1 could be caused by the increased 

expression, as well as direct activation, of cytoskeletal elements by mTor.  

 

OL differentiation is the result of the integration of different signaling pathways 

activated by different sets of receptors. In this thesis, I have presented evidence 

that NT-3/BDNF/NGF/NRG1 can converge on the PI3K/Akt/mTor pathway in 

OLs to promote later stages of differentiation of mature OLs. Mapping the 

signalling events implicated in OL differentiation could help in the understanding 

of the process of myelin formation and could potentially reveal therapeutic targets 

to promote endogenous remyelination in demyelinating diseases like MS.  
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V- 2. MYELIN MAINTENANCE: MECHANISMS PROMOTING MYELIN STABILITY 

THROUGHOUT LIFE 

 

Following the formation of myelin, maintenance mechanisms ensure that its 

functions stay intact the adult nervous system. In chapter III of this thesis, I have 

used a temporally regulated and cell type specific conditional knockout approach 

to study the role of DCC expression in mature myelinating OLs. We found that 

DCC expression by OLs is necessary for the maintenance of paranodal and 

myelin cytoarchitecture. Furthermore, the disorganization of paranodal 

architecture leads to loss of domain integrity around the node of Ranvier. Myelin 

phenotypes include the development of abnormal myelin profiles and alterations 

of myelin protein expression. Paranodal and myelin instability caused by the loss 

of DCC leads to the development of balance and coordination deficits.  

 

Comparison with other myelin mutants 

Loss of DCC does not cause a dramatic paranodal phenotype, as does the loss of 

other paranodal components like NF155 (Pillai et al., 2009), Caspr (Bhat et al., 

2001) or contactin (Boyle et al., 2001). Furthermore, there is only limited 

disruption of transverse bands (TBs) in the absence of DCC expression in OLs, 

while mutations of most of other paranodal components display complete lack of 

TBs. Whether DCC interacts with one or more of these proteins at the paranodes 

is not known. However, the absence of NF155, Caspr or contactin results in 

paranode formation defects, whereas the absence of DCC produces a myelin and 

paranode maintenance defect. Like DCC, other myelin protein mutants have been 

shown to exhibit paranodal maintenance defects, and some of them are described 

below.   

 

Myelin and lymphocytes (MAL) protein is a proteolipid expressed by myelinating 

cells in the CNS and PNS. When MAL is absent from myelin, paranodal loops 

form normally, but start to disorganize at a time point corresponding to the onset 

of MAL expression. This disorganization is accompanied by compact myelin 
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defects, and a reduced level of expression of Caspr, Kv1.2 and NF155. 

Furthermore, NF155 incorporation into lipid microdomains on paranodal loops 

seemed to be dependent on the presence of MAL, and failure of these membrane 

domains to form seems to underlie the paranodal defects observed in MAL 

mutants (Schaeren-Wiemers et al., 2004). This phenotype is distinct from what we 

observed in the DCC conditional mutants, since we did not see alterations in 

paranodal protein levels. However, we cannot exclude an interaction between 

DCC and MAL at paranodes or in myelin lipid raft, since DCC can also localize 

to lipid raft and associate with specific signaling partners in these domains 

(Herincs et al., 2005; Petrie et al., 2008).    

 

Stabilization of the paranodal components by the axonal cytoskeletal adaptor 

protein 4.1B was also shown to play an important role in the maintenance of 

paranodes. Paranodal domains appear normal at one month of age in the CNS of 

protein 4.1B mutants, but become progressively disorganized starting at four 

months of age (Buttermore et al., 2011). Protein 4.1B interactions with the 

cytoplasmic tail of both Caspr and Caspr2 mediate the stabilization of the protein 

complexes at the paranode and the juxtaparanode (Horresh et al., 2010). Such 

interactions with cytoskeletal components are not defined on the glial side of 

paranodes, and there are no known intracellular binding partners of NF155 or 

DCC at the paranode. However, we could hypothesize that similar stabilization 

mechanisms are equally important in paranodal loops, linking the paranodal 

adhesive complexes to the OL cytoskeleton.  

 

CGT mutants, lacking the enzyme responsible for the formation of both GalC and 

sulfatide, cannot form proper lipid raft domains in myelin, leading to aberrant 

localization of proteins like NF155 and causing a severe paranodal and myelin 

phenotype (Dupree et al., 1998). When only sulfatide is absent (CST mutant), 

mice develop normally, but myelin and paranode maintenance defects appear as 

they age (Ishibashi et al., 2002; Marcus et al., 2006). Biochemical analysis 

revealed alterations in the expression of several proteins associated with adhesion 
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and cytoskeletal dynamics in these mutants (Fewou et al., 2010), which supports 

the hypothesis that OL paranodal proteins are located in membrane microdomains 

and interact with several adaptor partners and cytoskeletal elements. We could 

speculate that DCC, along with other membrane proteins, forms a bridge with 

cytoskeletal elements in these membrane microdomains, and that in its absence, 

similar adhesion defects as those seen in the CST mutant develop.  

 

Mice deficient for MAG exhibit deficits in the maintenance of myelinated fibers, 

and they develop a myelin and an axonal degeneration phenotype when they are 

around six month old (Li et al., 1994; Fruttiger et al., 1995). In that regard, the 

MAG knockout mice closely resemble our DCC conditional knockout. 

Interestingly, we observed a decrease in MAG protein levels in the absence of 

DCC expression by OLs, but the significance of this decrease has not yet been 

investigated. 

 

Comments on altered myelin protein expression   

How could the absence of DCC in OLs affect MAG expression? If DCC mediates 

adhesion between the glial and axonal membrane, it could be present in a complex 

along with MAG, and promote its stabilization. Absence of DCC could thus lead 

to an increase in MAG degradation. Alternatively, DCC and MAG could be co-

transported to the myelin membrane, and the absence of DCC might cause a 

defect in MAG transport. Beyond the mechanisms by which removal of DCC 

leads to a decrease in MAG expression, the effect of this decrease could affect 

MAG-related functions in the conditional DCC knockout mice.  

 

MAG is involved in axonal neurofilament phosphorylation, which leads to a 

myelination-induced axonal expansion (Yin et al., 1998). Axonal diameter at the 

internode can be up to five-fold the diameter at the node of Ranvier, and this 

axonal expansion is mediated through MAG-dependent phosphorylation of NFH 

and NFM (Sousa and Bhat, 2007). Despite the reduction in MAG protein 

expression levels observed in our conditional DCC knockout mice, we did not 
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detect any significant alterations in axonal diameter both at the paranode, by 

measuring Caspr width, and at internodes, by measuring axon diameter for the G-

ratio analysis. However, for G-ratio analysis, we excluded axon profiles that were 

too difficult to quantify, such as those presenting extensive myelin outfoldings. 

Those outfoldings could be in part explained by the reduction in axonal diameter 

caused by the decreased MAG levels. More careful examination of neurofilament 

spacing and axonal diameter is needed to draw any conclusion in regard to the 

effect of the decreased levels of MAG in the absence of DCC. In addition, the 

mechanism by which the absence of DCC affects MAG levels needs to be 

investigated further.  

 

Suprisingly, the decreased levels of MBP in our conditional DCC knockout mice 

seem to be without consequences for compact myelin integrity. In fact, this can be 

explained by the observation that there is no effect on myelin integrity even when 

up to 50% of MBP protein is lost (Shine et al., 1992). However, the cause of this 

diminution of MBP protein in our conditional DCC knockout mice is not clear. 

Such a phenomenon could be the result of a general instability of myelin, which 

could lead to a decreased stability of MBP protein or a diminution of its localized 

translation to the myelin sheath. Interestingly, DCC was recently shown to be 

directly involved in local translation. DCC associates physically with translation 

initiation factors and ribosomal subunits through its P1 domain. Following netrin-

1 binding to DCC, the translation machinery is released and translation can 

proceed (Tcherkezian et al., 2010). According to that model, removal of DCC 

would not necessarily result in less transcripts being translated, since there would 

be less inhibition of translation. However, DCC could affect MBP translation in 

an indirect manner. For example, the Src family tyrosine kinase fyn was shown to 

regulate local translation of MBP (Lu et al., 2005; White et al., 2008). Our group 

showed that netrin-1 binding to DCC causes fyn to be recruited to a complex with 

DCC in OLs (Rajasekharan et al., 2009). DCC may thus regulate MBP local 

translation indirectly through the activation of fyn, and the absence of DCC from 

myelin membranes might lead to a reduction in MBP protein.  
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Paranodal remodelling and aging 

To our surprise, an unexpectedly high proportion of paranodes were abnormal in 

wild type myelin. This result could indicate normal myelin remodelling 

throughout life or disorganization of paranodes due to normal aging, as described 

in Chapter I (section I.3.1). Recent evidence has demonstrated an age-dependent 

reorganization of paranodes (Shepherd et al., 2010). The authors demonstrate that 

while TBs were gradually lost in mice older than 17 months, detachment of loops 

from the axon did not increase with age, but rather correlated with myelin 

thickness (Shepherd et al., 2010). Hence, the detached loop phenotype we 

observed in conditional DCC knockout mice is unlikely a result of an accelerated 

aging process in the absence of DCC.  

 

The degree of myelin remodelling occurring through normal life has never been 

tested. Like myelin, paranodes are thought of as fixed and immobile structures. 

Technical limitations render the study of myelin and paranode plasticity difficult. 

However, our results show that even in the wild type mice, paranodes exhibit 

disorganization, albeit to a lesser degree than in our conditional DCC knock out 

mice. Another structure of the nervous system, the synapse, once thought to be 

fixed, was shown to be subject to a high degree of turnover and continuous 

remodelling. Interestingly, the Kennedy lab has also been investigating a role for 

DCC in the maintenance and maturation of CNS synapses (Horn and Kennedy, 

unpublished). It is tempting to speculate that, like the synapse, the paranode 

undergoes constant remodelling and that the stability of the adhesion between the 

axon and the glial loops is constantly challenged. In such a model, DCC could 

have a role in the stabilization of the paranodal and myelin entities, by mediating 

adhesion between axonal and OL membrane, so that in its absence, adhesive 

contacts and interactions would be more easily challenged, leading to myelin 

instability.  
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Beyond the paranode: evidence for a broader role of DCC in myelin  

While we previously described a role of DCC and netrin-1 solely in the 

maintenance of paranodes (Jarjour et al., 2008), the results presented here argue 

for a broader role of DCC in the maintenance of myelin. In fact, while DCC might 

be concentrated at the paranode, we cannot exclude that it is also present in other 

compartments of noncompact myelin such as the adaxonal or abaxonal 

membrane. We have also shown here that DCC is present outside the paranodes in 

PNS myelin, a finding that was recently confirmed by another group (Webber et 

al., 2011). Visualization of independent fibers with the teased nerve preparation of 

sciatic nerves is an easier task in the PNS, which could explain the detection of 

DCC in these other noncompact myelin compartments in the PNS. Similarly, 

DCC might also be present outside the paranode in the CNS, and mediate 

functions beyond paranodal maintenance.  

 

Signaling downstream of DCC in mature myelin 

Myelin outfoldings were observed in conditional DCC knockout mice. This 

phenomenon is thought to reflect normal but sparse remodelling in wild type 

myelin. The higher prevalence of these outfoldings in the myelin of conditional 

DCC knockout myelin could indicate destabilization and a higher level of 

remodelling in the absence of DCC expression by OLs. Interestingly, loss of 

Cdc42 and Rac1 expression in OLs gave rise to an outfolding phenotype and a 

bigger inner tongue during early myelination (Thurnherr et al., 2006). These Rho 

GTPases act downstream of DCC in growth cone remodelling in response to 

netrin-1 (Shekarabi, 2005). However, in purified mature OLs grown in culture, 

DCC-dependent morphological response to netrin-1 is independent of cdc42 or 

Rac1 activation (Rajasekharan et al., 2009). A Rho GTPase signaling switch 

mediated by DCC has already been described in OLs along their maturation path 

(Rajasekharan et al., 2010) and an interaction of cdc42, Rac1 and DCC in mature 

myelinating OLs in vivo cannot be ruled out. It would of interest to examine the 

effect of transgenically removing cdc42 and Rac1 in fully myelinated adult mice 

to test for the appearance of these outfoldings.  
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Implication in pathological conditions 

Deficits in the maintenance of myelin and intact axoglial junctions could lead to 

the development of pathological conditions. Myelin instability and damage have 

been proposed to underlie the age-related cognitive deficits observed in the 

elderly (Bartzokis, 2004). The instability was also suggested to be a predisposition 

to immune attacks, which could lead to the development of pathologies like 

multiple sclerosis (Mastronardi and Moscarello, 2005). In such a model, 

instability of myelin would be responsible for the exposure of myelin antigens 

triggering an auto-immune response. Also, when the CNS is damaged, myelin 

instability could lead to increased myelin breakdown, releasing more inhibitors 

into the environment and impeding both regeneration and remyelination. 

Unveiling the mechanisms by which myelin structure is maintained throughout 

life could help understand the etiology of myelin-associated pathologies.  
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V- 3. MYELIN BREAKDOWN: EXPRESSION OF NETRIN-1 IN THE INJURED CNS 

 

Section I.3.3 discussed the inhibitory components present in the injured CNS. In 

chapter IV, using netrin-1
βgeo/+

 reporter mice, we showed that eight days after 

spinal cord injury, netrin-1 expression is increased at the injury site. We also 

demonstrated that this increase in netrin-1 expression can be attributed to 

fibroblasts and some reactive astrocytes. These results, together with the results 

presented by Dusart and colleagues (Wehrle et al., 2005), suggest that in addition 

to being potentially released by myelin breakdown following injury, netrin-1 is 

also secreted by cells forming the glial scar. The presence of netrin-1 could 

contribute to the inhibitory environment created after an injury in the CNS.   

 

Effect of netrin-1 on regeneration and remyelination after spinal cord injury 

During development, netrin-1 acts both as an attractant and a repellent cue for 

growing axons and migrating cells. In fact, DCC expression levels are high in the 

developing CNS, but decrease as development proceeds; and the Unc5 

homologues expression predominate in the adult CNS (Manitt et al., 2004). This 

switch in netrin-1 receptor expression suggests that netrin-1 could act as an 

inhibitor of axon regeneration after injury. This hypothesis is supported by the 

insensitivity of CGRP nociceptive neurons, which lack UNC5 expression, to 

netrin-1 mediated inhibition in the injured rat spinal cord (Low et al., 2008). 

Moreover, changes in netrin-1 receptor expression after spinal cord injury support 

the idea that it acts as an inhibitor of regeneration. Two independent studies 

reported changes in netrin-1 receptors expression following injury. Low et al. 

(2008) reported no change in DCC expression, but an increase in UNC5 levels for 

up to two months after spinal cord injury in rat. In contrast, our group described a 

decrease in DCC protein levels, lasting for at least seven months, whereas no 

changes were detected in UNC5 levels (Manitt et al., 2006). Nonetheless, in both 

cases, the ratio of UNC5 to DCC proteins is shifting after injury, supporting a role 

for netrin-1 as an inhibitor of regeneration.  

 



148 
 

Not only do axons need to regenerate after spinal cord injury, but the myelin 

sheath also needs to be replaced. After spinal cord injury, OLs are subject to 

necrosis and apoptosis, starting within 15 minutes at sites of injury, and detected 

up to two to three weeks post-injury at distal sites, a phenomenon linked to 

Wallerian degeneration (Almad et al., 2011). OLs are very vulnerable to ischemic 

and oxidative stress (Thorburne and Juurlink, 1996; McAdoo et al., 1999; Almad 

et al., 2011), but are also affected by secondary excitotoxicity (Xu et al., 2004; Xu 

et al., 2008), and can be targeted by an activated immune system (Antel et al., 

1994; Popovich et al., 1997; Schonberg et al., 2007). Preventing myelin 

breakdown far from the injury, to protect the ensheathed axons, as well as 

promote remyelination of regenerated axons, are both therapeutic avenues to 

decrease the level of functional impairment after spinal cord injury. In addition to 

acting as a repellent cue for regenerating axons after spinal cord injury, netrin-1 

could thus also play a role in the remyelination process, given its known roles in 

OL biology, regulating OL process branching and myelin membrane formation 

(Rajasekharan et al., 2009).   

 

Netrin-1 in other CNS pathologies: potential role in MS  

Beyond spinal cord injury, netrin-1 expression at sites of CNS injury could also 

inhibit remyelination after a demyelinating insult. In demyelinated MS plaques, 

naked axons are surrounded by an astrocytic glial scar (Fawcett and Asher, 1999), 

which expresses markers of reactive astrocytes (Holley et al., 2003). Despite the 

absence of fibroblasts in MS lesions, netrin-1 is still detected within MS plaques 

(Rajasekharan and Kennedy, unpublished observations). In addition to being 

released from destructed myelin, netrin-1 could also be secreted by infiltrating 

activated immune cells or by reactive astrocytes. The presence of netrin-1 in MS 

lesions could have consequences on remyelination efficiency, as netrin-1 was 

shown both to repel migrating OPCs and to promote branching and membrane 

formation in mature OLs (Jarjour et al., 2003; Tsai et al., 2003; Rajasekharan et 

al., 2009). However, fetal OPCs behave differently than adult-derived OPCs, at 

least in humans (Ruffini et al., 2004), and preliminary evidence shows that netrin-
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1 elicits different responses in these two cell types (Rajasekharan and Kennedy, 

unpublished observation). More detailed investigation of the effect of netrin-1 on 

adult-derived progenitors is needed to determine the consequence of netrin-1 

presence in the injured CNS on remyelination.  

 

The glial scar: a necessary evil after a CNS insult? 

The glial scar is often considered the major barrier to regeneration following CNS 

injury. In addition to forming a physical barrier for growing axons, cells of the 

glial scar also express several inhibitory molecules (Moore et al., 2011). However, 

some evidence suggests that astrocytes are crucial in the immediate response to 

injury, and that in the first week following a CNS insult, the glial scar mediates 

several processes that are beneficial to regeneration. Cells of the glial scar can act 

as scavengers, preventing the spreading of excitotoxicity (Chen et al., 2001; Cui et 

al., 2001); provide trophic support to surviving neurons and OLs (Faulkner et al., 

2004; Moore et al., 2011); regulate immune responses (Rolls et al., 2009); and 

even promote revascularization of the injury site (Stichel and Muller, 1998; Parri 

and Crunelli, 2003). Likewise, expression of netrin-1 by the glial scar might have 

beneficial effects on survival, revascularization, or recruitment of immune cells to 

the lesioned area, for example. Like the glial scar, both detrimental and beneficial 

effects on repair could thus be attributed to netrin-1. The specific effects of netrin-

1 on different aspects of CNS repair after injury is an area that warrants further 

investigation.  
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GENERAL CONCLUSION AND PERSPECTIVES  

 

 

Myelination is the result of evolutionary pressure to increase the velocity of signal 

transduction without increasing axon caliber, and while maintaining a relatively 

low expense of energy by neurons. Myelination is a carefully orchestrated process 

that leads to the development of a complex and highly organized architecture. In 

the course of my PhD, I explored different aspects of OL and myelin biology. In 

this thesis, I first describe a synergy of signals leading to Akt/mTor dependent 

morphological maturation of OLs. However, this work was done in vitro, and 

might not reflect the complexity of the OL environment during development. The 

study of OL differentiation in vivo is challenged by the complexity of the OL 

environment and the cell-cell interactions involved. Hopefully, technical advances 

will allow the study of signaling mechanisms and myelination process in vivo. 

Nonetheless, instead of studying the effects of single factors, mapping the 

signaling events leading to successful OL differentiation and myelination could 

provide greater insight into what is happening during myelination in vivo.  

 

In the second part of this thesis, I described a role for OL expression of DCC in 

the maintenance of myelin and paranodes in vivo. The high level of complexity of 

myelin, both structural and metabolic, renders it particularly vulnerable and 

myelinated fibres are indeed affected in several dysmyelinating and demyelinating 

diseases. The mechanisms by which DCC promotes myelin architecture stability 

could thus provide insight into myelin protective mechanisms, important in the 

prevention of myelin breakdown in several myelin-associated pathologies. The 

involvement of netrin-1 in this process also needs to be addressed, as well as the 

source of secreted netrin-1 that accumulates in myelin. A conditional netrin-1 

knockout mouse is presently being validated and characterized, and hopefully will 

provide another piece of information towards building a model of DCC function 

in OLs. The use of this mouse model could also help in dissecting the effect of 

netrin-1 after CNS insult, such as spinal cord injury. To what extent myelin-
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derived and glial scar-secreted netrin-1 contributes to the failure of regeneration 

and remyelination is an obvious question that can hopefully be addressed in the 

near future.  

 

Taken together, the work presented in this thesis addresses key aspects of OL and 

myelin biology. Global understanding of the mechanisms by which myelin is 

formed, maintained, and repaired after a CNS insult could unveil possible targets 

in the treatment of myelin-associated pathologies. Providing knowledge that will 

set the base for the development of tools and therapeutic agents that will improve 

our global quality of life is the ultimate goal of any researcher. I hope that this 

thesis and studies carried out during my PhD research constitutes a step further 

towards that goal.  
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