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ABSTRACT  

 

Background: It has been noted in epidemiology and biostatistics that when the 

odds ratio (OR) is used to measure the causal effect of a treatment or exposure, 

there is a discrepancy between the marginal OR and the conditional OR even in 

the absence of confounding. This is known as non-collapsibility of the OR. It is 

sometimes described (incorrectly) as a bias in the estimated treatment effect from 

a logistic regression model if an important covariate is omitted.  

Objectives: Distinguish confounding bias from non-collapsibility and measure 

the non-collapsibility effect on the OR in different scenarios.  

Methods: We used marginal structural models and standard logistic regression to 

measure the non-collapsibility effect and confounding bias. An analytic approach 

is proposed to assess the non-collapsibility effect in a point-exposure study. This 

approach can be used to verify the conditions for the absence of non-collapsibility 

and to examine the phenomenon of confounding without non-collapsibility. A 

graphical approach is employed to show the relationship between the non-

collapsibility effect and the baseline risk or the marginal outcome probability, and 

it reveals the non-collapsibility behaviour with a range of different exposure 

effects and different covariate effects. In order to explore the non-collapsibility 

effect of the OR in the presence of time-varying confounding, an observational 

cohort study was simulated.  
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Results and Conclusion: The total difference between the conditional and crude 

effects can be decomposed into a sum of the non-collapsibility effect and the 

confounding bias. We provide a general formula for expressing the non-

collapsibility effect under different scenarios. Our analytic approach provided 

similar results to related formulae in the literature. Various interesting 

observations about non-collapsibility can be made from the different scenarios 

with or without confounding using the graphical approach. Somewhat 

surprisingly, the effect of the covariate plays a more important role in the non-

collapsibility effect than does the effect of the exposure. In the presence of time-

varying confounding, the non-collapsibility is comparable to the effect in the 

point-exposure study. 
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RÉSUMÉ 

 

Contexte : Il a été observé en épidémiologie et en biostatistique que lorsque le 

“odds ratio” (OR) est utilisé pour mesurer l‟effet causal d‟un traitement ou d‟une 

exposition, il y a une différence entre l‟OR marginal et l‟OR conditionnel et ce, 

même s‟il y a absence de biais de confusion. Ceci est décrit comme le non-

collapsibilité de l‟OR. Il est parfois incorrectement décrit comme un biais dans 

l‟effet estimé du traitement à partir d‟un modèle de régression logistique, si une 

covariante importante est exclue. 

Objectifs : Distinguer le biais provenant du biais de confusion du non-

collapsibilité et mesurer l‟effet du non-collapsibilité sur l‟OR dans plusieurs 

scénarios. 

Méthode : On a utilisé des modèles structuraux marginaux et la régression 

logistique ajustée pour mesurer l‟effet du non-collapsibilité dans une étude 

d‟exposition par points. Cette approche peut être utilisée pour vérifier les 

conditions de l‟absence de non-collapsibilité et pour examiner le phénomène de 

biais de confusion sans non-collapsibilité. Une approche graphique est employée 

pour démontrer la relation entre le non-collapsibilité et le risque de base ou la 

probabilité du résultat marginal; ceci révèle le comportement de non-collapsibilité 

avec une étendue d‟effets d‟exposition et de covariance différents. De manière à 

explorer l‟effet de non-collapsibilité de l‟OR en présence de biais de confusion 

variant en fonction du temps, une étude d‟observation de cohorte a été simulée. 



 

xii 

Résultats et Conclusion : La différence entre les effets conditionnels et bruts 

peut être décomposée dans la somme de l‟effet de non-collapsibilité et du biais de 

confusion. Nous suggérons une formule générale pour exprimer l‟effet du non-

collapsibilité dans plusieurs scénarios différents. Notre approche analytique 

expose des résultats similaires à d‟autres étant trouvés avec des formules 

présentes dans la littérature. Plusieurs observations intéressantes sur le non-

collapsibilité peuvent être faites à partir de différents scénarios, avec ou sans biais 

de confusion, en utilisant notre approche graphique. De manière surprenante, 

l‟effet d‟une covariable joue un plus grand rôle dans le non-collapsibilité que 

l‟effet de l‟exposition. En présence de biais de confusion reliée au temps, l‟effet 

du non-collapsibilité est comparable à l'effet de l‟étude d'exposition par point. 
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1 Introduction 

 

Non-collapsibility of the odds ratio (OR) is the phenomenon that when estimating the 

exposure outcome association with the OR, collapsing over the other covariate(s), the 

conditional OR does not necessarily equal the marginal OR even in the absence of 

confounding and effect modification. It is also known as the discrepancy between 

estimates of the treatment effect in a logistic regression model if a necessary covariate is 

omitted (Gail et al. 1984). The non-collapsibility of the OR derives from the fact that 

when the expected of outcome is modeled as a log odds of exposure, the marginal effect 

cannot be expressed as a weighted average of conditional effects. 

It is widely realized in epidemiologic research that the OR is not generally collapsible. 

Conditional and marginal ORs can be different in the absence of confounding and there 

could be confounding bias even when conditional and marginal ORs are equal 

(Greenland et al., 1999). Yet it remains puzzling exactly why and how the phenomena 

occur. This will be better understood if the non-collapsibility effect is defined and 

explored. A simple approach to quantify the magnitude of confounding is to compare the 

estimates with and without adjusting for the covariate(s) (Flanders  and Khoury, 1990; 

Miettinen, 1972), but it is not appropriate for the OR due to the problem of non-

collapsibility (Boivin and Wacholder 1985). Janes et al. showed that this simple 

quantification of confounding actually consists of two components: the true confounding 

bias and the nonlinearity (non-collapsibility) effect. They proposed a better measure of 

confounding that does not include the non-collapsibility effect (Janes et al. 2010). The 
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magnitude of confounding was defined as the discrepancy between a marginal exposure 

effect and a crude exposure effect. It was estimated in two different ways, one with the 

standardization and the other involved inverse probability weights. Both of the methods 

need additional estimates which are obtained from logistic regression models. 

Furthermore, the nonlinearity effect was measured as the discrepancy between the 

marginal exposure effect and a conditional exposure effect. It was estimated by referring 

to the formula (equation 8) via approximation in the paper of Neuhaus et al. (1991). 

Hence, there is no explicit form of the two components given in the paper.  

In this thesis, similar to the method developed by Janes et al., we propose an approach to 

measure the non-collapsibility effect by comparing the marginal OR ( mOR  ) from the 

marginal structural model (MSM) and the conditional OR ( COR  ) from the standard 

logistic regression model (SLRM). The confounding bias is measured by comparing the 

marginal OR and the crude OR ( crudeOR ).  

mOR corresponds to 
e   estimated by the MSM: 

AaAYEg   )]|([  weighting each subject by the inverse of the probability of 

receiving his/her exposure conditional on L.  

COR  corresponds to 
e estimated from the logistic regression model: 

LAlLaAYEg   )],|([ , where g  is the logit link function. 
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crudeOR  corresponds to 
*e estimated from the logistic regression model: 

AaAYEg **)]|([   . 

In our approach, we measure the non-collapsibility effect and confounding bias 

analytically instead of by estimation and approximation. We will present the two 

components explicitly as the functions of a range of parameters, i.e. the probabilities of 

outcome conditional on the exposure and the covariate, the probability of the exposure 

conditional on the covariate, and the prevalence of the covariate. Given the values of the 

parameters, we can obtain the accurate true value of confounding bias and the non-

collapsibility effect analytically and then investigate the relationship between the true 

value of non-collapsibility effect and the parameters. A decomposition of the total 

discrepancy between the conditional and the crude OR as the combination of the true 

confounding bias and the non-collapsibility effect is illustrated below by examples. 

Moreover, it can clearly explain the phenomena of non-collapsibility without 

confounding and confounding without non-collapsibility.  

Some conditions for the collapsibility of the OR have been remarked on already in the 

literature. If the true effect of exposure is not null, OR is collapsible when the covariate is 

independent of exposure conditional on outcome, or is independent of the outcome 

conditional on exposure (Wermuth, 1987; Shapiro, 1982; Geng and Li, 2002; Hernán et 

al, 2011; Greenland and Pearl, 2011). It was mentioned that the marginal OR is 

attenuated by a factor which depends on parameters of the distribution of the covariate 

(Ritz and Spiegelman 2004); the magnitude of the non-collapsibility effect depends on 

the effects of the exposure and covariate on outcome and on the variance of the covariate 
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(Groenwold and Moons et al., 2011). Beyond that, some formulae were also developed to 

measure the discrepancy between the marginal OR and conditional OR in randomized 

trials or clustered data (Samuels, 1981; Gail, 1984; Neuhuas, 1991). However, to our 

knowledge, none of them investigated the relationship between the non-collapsibility 

effect and all the other related parameters in a general scenario with or without 

confounding. A point-exposure study is designed in this thesis to measure the non-

collapsibility effect. A formula for the collapsibility effect on the OR will be expressed as 

the function of all parameters; figures under different scenarios and parameter settings 

will be presented to demonstrate the behavior of the non-collapsibility of the OR. When 

extending to scenarios in the presence of time-varying confounding, it remains difficult to 

derive a formula for the non-collapsibility effect. Thus simulations will be employed to 

explore the collapsibility behavior in the scenarios with a baseline covariate and compare 

to a similar point-exposure study.  

As the marginal OR and the conditional OR have different interpretations, it is important 

for scientists to take care to consider the causal structure and the population they are 

interested in and then determine the appropriate measure. One should also be cautious 

about whether to include the covariates in the model. When comparing the marginal OR 

and the conditional OR, the confounding bias should be taken account of, as well as the 

non-collapsibility effect. 
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2 Literature Review 

 

2.1 Definition of Non-collapsibility 

2.1.1 Collapsibility in contingency tables 

A 2x2xK contingency table is commonly constructed in an epidemiological study when 

the exposure (A) and outcome (Y) are binary and are stratified on a third variable (L) 

with K levels. A given measure of the exposure-outcome association is said to be 

collapsible, if collapsing over L, the value obtained from the marginal table can be 

expressed as a weighted average of the stratum-specific values. The measure is said to be 

strictly collapsible if the marginal value and the K stratum-specific values are all equal 

(Whittemore, 1978; Ducharme and Lepage, 1986; Greenland and Mickey, 1988; 

Greenland, Robins and Pearl, 1999；Newman, 2001). In other words, it is strictly 

collapsible if and only if the measure is averageable and the stratum-specific values are 

homogeneous.  

Non-collapsibility is the phenomenon that the measure violates the collapsibility 

condition. The most notable non-collapsibility phenomenon attracts many researchers‟ 

attention when the marginal value does not equal the stratum-specific values even when 

the latter are constant and there is no confounding.  
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2.1.2 Non-collapsibility in the context of regression 

In regression contexts, the measure is strictly collapsible over the third covariate (L) in a 

generalized linear model if the estimate is constant when L is included and omitted 

(Clogg, Petkova and Shihadeh, 1992). The measure is implicitly assumed to be 

homogenous across L from models conditional on L. Non-collapsibility is present if the 

estimates are distinct in the regression models with and without adjusting for L. 

Non-collapsibility has been also considered in the clustered and longitudinal data setting. 

The random effect of the cluster corresponds to the covariate L in the preceding 

regression models. It has been noticed, for example, that the cluster-specific effect from a 

mixed-effect logistic model can be different from the population averaged effect from a 

marginal regression model (Neuhaus, Kalbfleisch and Hauck, 1991; Ritz and 

Spiegelman, 2004). 

2.2 Sufficient conditions for collapsibility of RD, RR and OR 

Many examples show that in one study, collapsibility can differ for the risk difference 

(RD), risk ratio (RR) and odds ratio (OR) (Greenland et al., 1999; Newman, 2001; 

Greenland and Morgenstern, 2001; Groenwold and Moons et al., 2011). That is to say 

collapsibility depends on the chosen measure. Newman in his book Biostatistical 

Methods in Epidemiology systematically investigates the conditions that are sufficient to 

guarantee the collapsibility of measures (Newman, 2011, pp 46-53).  

All three measures are collapsible when the risk of outcome is the same across strata of L 

in the unexposed population. It requires that the covariate is independent of the outcome 
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conditional on the exposure, i.e. 0=A|Y L . When this condition is satisfied and the 

stratum-specific values are homogenous, all the three measures are strictly collapsible.   

Another condition guaranteeing the collapsibility of RD and RR is that the distributions 

of L are the same in the exposed and unexposed population. This condition says that L is 

independent of A and can be related or unrelated to Y. When L is independent of both A 

and Y, it is a factor irrelevant to the study, thus the measures are collapsible over L 

naturally. When L is a risk factor for Y but marginally independent of A, the RD and RR 

are strictly collapsible if they are homogenous across L. However, this is not necessarily 

true for the OR. The marginal OR can be distinct from the stratum-specific ORs under 

this condition. This is exactly the condition that the randomized trial tries to create to 

balance the distributions of the risk factor in the unexposed and unexposed group. The 

non-collapsibility of the OR can be present even in the absence of confounding and effect 

modification. This particular phenomenon “non-collapsibility without confounding” was 

observed by Mietten and Cook and then discussed deeply in the literature (Mietten and 

Cook, 1981; Greenland, 1987; Greenland et al., 1999; Hernán et al, 2011).  

A particular condition for OR to be collapsible (but not for RD and RR) is that when L is 

independent of the exposure among the individuals in the population who do not have the 

outcome, i.e. 0=Y|A L  . When this condition is satisfied and the ORs are 

homogenous across L, the OR is strictly collapsible. This is the phenomenon of 

“confounding without non-collapsibility” that occurs when L is associated with both A 

and Y, but independent of A given Y.  
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Conditions for collapsibility discussed by many other researchers all coincide with 

Newman‟s (Wermuth, 1987; Shapiro, 1982; Geng and Li, 2002; Hernán et al, 2011; 

Greenland and Pearl, 2011). It should also be noticed that non-confounding also does not 

guarantee the collapsibility of person-time RD and RR (i.e. rate differences and ratios), 

because the distribution of person-time can be altered over time by exposure and the 

other risk factors even if the exposed and unexposed cohort are exchangeable at the 

beginning of the study (Greenland, 1996).  

The non-collapsibility phenomenon has also been investigated with respect to the collider 

and the mediator of the exposure and outcome besides the potential confounding variable 

(Hernán, Clayton and Keiding, 2011). Moreover, it was extended to the descendant and 

the ancestor of the covariate and a set of variables jointly or conditionally (Greenland and 

Pearl, 2011). 

In the regression context, collapsibility has been also widely researched in randomized 

trials and clustered and longitudinal data. A variety of models were applied to evaluate if 

the marginal effect is equivalent with the conditional effect (Gail et al., 1984; Ritz et al., 

2004). Measures from most of the generalized linear models are collapsible, for example 

with identity or log link. But it turns out to be non-collapsible in logistic regression (i.e., a 

logit link). This is accordant with the preceding discussion that after randomization, the 

RD (measured from an additive linear model) and RR (measured from an additive model 

on the log scale) are collapsible but the OR (measured from a multiplicative model on the 

log scale) is not. The OR is non-collapsible unless the effect of exposure is zero, or the 

covariate does not vary or it is not associated with the outcome (Gail et al., 1984).  
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Several tests of collapsibility and strict collapsibility have been established (Whittemore, 

1978; Asmussen and Edwards, 1983; Ducharme and LePage, 1986; Greenland and 

Mickey, 1988), though we will not focus on these tests in this thesis. 

2.3 Non-collapsibility of the odds ratio 

As mentioned before, the RD and RR are collapsible in the absence of confounding, 

while the OR is a non-collapsible measure in this case. This phenomenon is quite 

counterintuitive, and thus arouses great interest in many researchers. We will focus on 

non-collapsibility of the OR in the remainder of the literature review and the thesis. 

Jensen‟s inequality provides theoretical justification for non-collapsibility, showing that 

the marginal OR is shifted towards the null compared to the conditional OR (Samuels, 

1981). The non-collapsibility of the OR just reflects the fact that the marginal OR cannot 

be expressed as a weighted average of conditional OR values (Greenland, 1987; 

Greenland and Morgenstern, 2001).  

2.3.1 Non-collapsibility and confounding 

There is a collapsibility-based definition of confounding, but with a risk to detect 

confounding even when the covariate is not associated with the exposure. For example, 

the marginal effect can be said to be biased when the risk factor is perfectly balanced 

among the groups (Gail et al., 1984). Furthermore, in some statistics literature, non-

collapsibility has been treated as confounding bias incorrectly when comparing logistic 

regression with or without a baseline covariate (Boivin and Wacholder, 1985; Becher, 

1992). Similarly, a covariate is defined to be a non-confounder if the marginal OR equals 
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the conditional OR (Guo and Geng, 1995). Non-collapsibility has been a source of 

confusion when defining confounding (Grayson, 1987; Greenland et al., 1989). Due to 

non-collapsibility of the OR, it is not appropriate to define the discrepancy between the 

marginal OR and the conditional OR as a bias. They are estimates of two different 

parameters and both of them are valid. The marginal OR estimates the average effect of 

exposure in the entire population, whereas the conditional OR estimates the effect of 

exposure across strata (Greenland, 1987). 

Another definition of a confounding variable is a variable that associated with both 

exposure and outcome. It introduces bias in effect estimation when one analyzes data 

with a crude statistical model that ignores the confounding variable. In the counterfactual 

approach, “confounding is present if our substitute population imperfectly represents 

what our target would have been like under the counterfactual condition” (Maldonado 

and Greenland 2002). It follows that confounding and non-collapsibility are different 

concepts (Miettinen and Cook, 1981; Greenland and Robins, 1986). Collapsibility is 

based on the observable distribution alone, while non-confounding is a property of 

potential outcome distributions.  

Randomization is often considered to be a gold standard for control of confounding. 

Successful randomization ensures exchangeability of the exposed and unexposed 

populations, therefore confounding is absent. However non-collapsibility of the OR is 

present, since the crude estimate is not equal to a weighted average of stratum-specific 

estimates even after the randomization. We emphasize that the counterfactual definition 

of confounding depends on the target population and focuses on causal inference, while 
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collapsibility depends on the selected parameter and has no definitive implication for 

causality or confounding (Greenland et al., 1999; Greenland and Morgenstern, 2001). 

2.3.2 Other problems of non-collapsibility of the OR 

In a multi-dimensional study, some use stratification based on the propensity score to 

measure the effect of exposure across strata. The non-collapsibility of the OR implies that 

the weighted average of the stratum-specific OR values is not representative of the 

marginal OR in the entire population. This is perhaps one of the reasons why Austin 

showed that in some settings, propensity score methods are biased for the marginal 

(causal) OR (Austin, 2007), and that estimates from propensity score methods are further 

from the null than the marginal OR (Stampf and Graf et al., 2010; Forbes and Shortreed 

,2008; Zhang 2009).  

Non-collapsibility of the OR also explains some findings in randomized trials. Using 

logistic regression for adjustment will result in estimates that are further from null and 

that will have an increased standard error compared with unadjusted analysis (Breslow 

and Day, 1987; Wickramaratne and Holford, 1989; Robinson and Jewell, 1991; 

Steyerberg 2000; Hernandez 2004). One is actually comparing two standard errors for 

two different parameters (the marginal effect and the conditional effect). The increased 

standard error after adjustment reveals the fact that the standard error of the conditional 

OR ( COR ) exceeds that of the marginal OR ( mOR ). On the other hand, the RD and RR 

are not affected by the non-collapsibility problem in randomized trials. When using a 

linear regression or a generalized liner model with log link, adjusting baseline covariates 
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will result in the constant estimate. It gives a decreased standard error due to a reduction 

of residual variance after adjustment (Steyerberg, 2009).  

Non-collapsibility can also be used to illustrate why after adding null constant to null 

observed data in contingency tables, the modified table can show evidence against the 

null (Greenland 2010).  

2.4 Estimate the marginal (causal) OR in the presence of confounding 

Logistic regression model is a generalized linear model with a logit link when the 

outcome is from a Bernoulli distribution. It provides an unbiased estimate of the 

conditional effect of exposure ( COR ) when L is included in the model. The effect of 

exposure is assumed to be constant across the strata; COR  corresponds to the stratum-

specific ORs from the contingency table. When the covariate is not associated with the 

exposure, the logistic regression model excluding the covariate yields a marginal 

exposure effect which is the average effect in the entire population. However, when the 

covariate is a confounding variable, omitting the covariate provides a biased marginal 

effect in the population. Due to the non-collapsibility of the OR, the weighted average of 

the stratum-specific ORs is also biased for the marginal OR ( mOR ). Other approaches 

have been proposed to estimate the mOR  in the presence of confounding.  

2.4.1  G-computation 

Based on the counterfactual concept, G-computation or a simple imputation-type method 

was proposed to measure the mOR  (Petersen and Wang et al., 2006; Snowden and Rose 
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et al, 2011; Stampf and Graf et al., 2010; Zhang 2009). Y(A=1) denotes a subject‟s actual 

outcome among the exposed group, and Y(A=0) denote a subject‟s actual outcome 

among the unexposed group. Y(a=1) and Y(a=0) denote a subject‟s potential outcome if 

exposed and unexposed. Y(a=1) =Y(A=1) is only observed among the individuals who 

are exposed, and Y(a=0) is missing in that group. Whereas, for the individual who is 

unexposed, the potential outcome Y(a=0) =Y(A=0) is observed, and Y(a=1) is missing. 

The marginal (casual) OR can be estimated in the entire population by the mean of the 

probabilities of the potential outcome for each individual exposed and unexposed 

(Equation 1). The probabilities are predicted from the full logistic regression model 

(Equation 2) when the individual is under exposed and unexposed respectively. 

(1) 1])=0)=([(logit-])1=)1=([ (logit=)log( aYPaYPORm



where 


P  is the mean of the 

probability of the potential outcome of each individual. 

(2) LALAYP 210=),|1)=((logit    

2.4.2 IPW estimation in propensity score methods and Marginal structural models 

In point-exposure studies, inverse probability weighted (IPW) estimation using the 

propensity score can be used to measure the mOR  in the presence of confounding. It can 

be estimated from a marginal logistic regression by weighting each treated individual 

with the inverse of the propensity score (probability of receiving treatment given the 

confounding variables) and weighting each untreated individual with the inverse of one 

minus their propensity score (Hernán and Robins, 2006; Forbes and Shortreed, 2008). 
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In a time-varying confounding scenario where L can be simultaneously a confounder and 

an intermediate variable, the marginal structural model (MSM) can be used to estimate 

the mOR . The parameters of a MSM are estimated by the inverse-probability-of-treatment 

weighted (IPTW) estimators. Each subject is assigned a weight, which is the product of 

the inverse of receiving treatment conditional on the past confounder history at each time 

point. By IPTW, one creates a pseudo-population where the treatment is not confounded 

by the covariates. A standard marginal logistic regression is performed in the pseudo-

population, providing an unbiased marginal treatment effect (Robins, Hernán and 

Brumback, 2000).  

2.5 Measuring the non-collapsibility of the OR 

It has been described that in randomized trials and clustered data analysis, the 

discrepancy between mOR  and COR is related to the effect of L on Y and the distribution 

of L in the population (Ritz and Spiegelman 2004, Groenwold and Moons et al., 2011). 

Furthermore, various quantitative measures of non-collapsibility have been proposed.  

In a randomized trial, the magnitude of discrepancy between a model with or without 

covariates was derived by Gail et al. (1984). Assume that the conditional expectation of 

Y given treatment (A) and covariate (L) satisfy the full regression model 

)(),|( LAhLAYE   , where (.)h  is a known function. It was shown that if the 

covariate is a random variable with expectation zero and variance 
2 , the discrepancy 

can be approximated by (3): 
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(3) }
)(

)(

)(

)(
{

4

1




















h

h

h

h
 where   is the covariance of the omitted 

covariates,  is the effect of the covariates on the outcome, and   is the intercept and   

is the conditional treatment effect from the full model.   

In the clustered data setting, when comparing the marginal model and the cluster-specific 

model, the discrepancy was approximated by (4): 

(4) 
)()(

)(

qEpE

pVar
  where   is the cluster-specific effect, and logit(p) is the distribution 

of the effect of the cluster variable (Neuhaus et al., 1991; Janes et al., 2010).  

Samuels showed the relationship between the mOR  and the COR  when the covariate and 

treatment are unconditionally independent (Samuels, 1981). The discrepancy was 

computed as (5) : 

(5) 
11 })(1}{)(){1(    iiCii rphORrphpp  

where )( iLPri  , ),0|1( iLAYPpi  ,  iirpp  and 

1)}1(1{)(  Ciii ORppph . 

By applying Jensen‟s inequality to the convex function, it follows that the mOR  will be 

always closer to 1 compared to the COR . The same conclusion can be also reached by the 

(3) and (4). 



 

16 

However these measures of collapsibility of the OR are all proposed under the scenario 

where the covariate is not a confounding variable. In my thesis, we will develop a general 

formula to measure the non-collapsibility effect in the scenario with or without 

confounding.  
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3 Introduction of the non-collapsibility effect on the odds ratio 

 

Non-collapsibility of the odds ratio (OR) is the phenomenon that occurs when estimating 

the exposure-outcome association by the OR, collapsing over the other covariate(s), the 

conditional ORs do not equal the marginal OR even in the absence of confounding and 

effect measure modification. As noted, Jensen‟s inequality provides theoretical 

justification for non-collapsibility; the marginal OR is shifted towards the null compared 

to the conditional OR. Non-collapsibility of the OR also implies that the marginal OR 

cannot be expressed as a weighted average of the conditional ORs. 

In the literature review, two interesting phenomena were mentioned, namely “non-

collapsibility without confounding” and “confounding without non-collapsibility”. We 

next demonstrate these by the following numerical examples. Hypothetical cohort studies 

are used in order to understand the phenomena in 2×2 tables. To avoid issues related to 

random error, we assume that the entire population has been recruited into the cohort. 

Probability refers to proportions in the source population in this section.   

3.1 Non-collapsibility without confounding 

Table 3-1 adapted from Greenland and Morgenstern (2001), shows data on exposure A, 

outcome Y, and covariate L. No confounding is observed in the data, as 

5.0)0|1()1|1(  LAPLAP . In the stratum L=0, 667.2
3010

4020
0 




LOR  

and in the stratum L=1, 667.2
1030

2040
1 




LOR . The conditional ORs are equal across 
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L, indicating that there is no modification of the effect of A on Y by L. Collapsing over L, 

intuitively one might expect the crude OR to be consistent with the common stratified OR 

of 2.667. However, because of non-collapsibility, the crude odds ratio 

25.2
)1030()3010(

)2040()4020(





crudeOR  is distinct from the homogenous conditional OR 

2.667. This could be interpreted (incorrectly) as confounding bias even if L is perfectly 

balanced among A (Boivin and Wacholder, 1985; Becher, 1992).  

Table 3-1: Non-collapsibility without confounding 

L=0 L=1 

 A=0 A=1  A=0 A=1 

Y=0 20 10 Y=0 40 30 

Y=1 30 40 Y=1 10 20 

 667.2
3010

4020
0 




LOR   667.2

1030

2040
1 




LOR  

3.2 Confounding without non-collapsibility 

In contrast, collapsibility of OR does not necessarily imply non-confounding. Table 3-2 

shows data to illustrate the constant crude OR with the homogenous conditional OR in 

the presence of confounding. Confounding can be observed in the data, as 

432.0)1|1(  LAP , and 578.0)0|1(  LAP . The conditional ORs are 

homogenous, 667.2
6015

10024
0 




LOR , and 667.2

1250

2080
1 




LOR . But 

667.2
)1260()5015(

)20100()8024(





crudeOR  even in the presence of confounding. 
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Table 3-2: Confounding without non-collapsibility 

L=0 L=1 

 A=0 A=1  A=0 A=1 

Y=0 24 15 Y=0 80 50 

Y=1 60 100 Y=1 12 20 

 667.2
6015

10024
0 




LOR   667.2

1250

2080
1 




LOR  

It is clearly shown in the preceding numerical examples that non-collapsibility of the OR 

cannot be used as a criterion for detecting confounding. In order to distinguish the non-

collapsibility of the OR from confounding, we introduce the concept of the non-

collapsibility effect. It is a measure of the discrepancy between the conditional OR and 

the marginal OR after taking account of the confounding bias. Though it is not a real 

effect in the causal sense, we will use this terminology to refer to the disparity between 

two different effect estimators. 

When we have data with confounding, ignoring confounding by simply collapsing the 

table over L will induce confounding bias. The discrepancy between the crude OR and 

the conditional OR actually consists of two components: the non-collapsibility effect and 

the confounding bias. Janes et al (2010) demonstrated that the total discrepancy is equal 

to the sum of the confounding bias plus the non-collapsibility effect. Under certain 

circumstances, the confounding bias and the non-collapsibility effect can cancel each 

other out thus lead to the equivalent crude OR and conditional OR. This explains the 

possibility of observing confounding without non-collapsibility. Condition for the 

occurrence of this phenomenon is that L is independent of A conditional on Y (Greenland 

and Robins, 1999, Hernán et al, 2011).  
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3.3 The measure of the non-collapsibility effect 

As demonstrated above, when collapsing over L, one needs to consider the non-

collapsibility effect and confounding bias separately. We propose an approach to measure 

the two distinct components. The total discrepancy while collapsing the table over L is 

defined as the difference between the crude odds ratio ( crudeOR ) and the conditional odds 

ratio ( COR ). For a measure of the non-collapsibility effect, we need to compare a 

marginal model and a conditional model after adjusting for confounding. Odds ratios 

estimated with the marginal structural model ( mOR ) have good properties (Hernán and 

Robins, 2006). It is a marginal measure of the effect of exposure and there is no 

confounding bias since the confounding is adjusted through the weights. Odds ratios 

estimated with the standard logistic regression model (SLRM) are conditional (stratum-

specific) odds ratios ( COR ), and are also adjusted for confounding. Therefore, we can 

compare mOR  and COR  to measure the non-collapsibility effect, and compare crudeOR  

and mOR  to measure the confounding bias. As Janes et al. did in their work (2010), if the 

measures are taken on the log scale, the decomposition can be written as 

)]log()[log()]log()[log()log()log( mcrudeCmCcrude OROROROROROR   (6) 

The decomposition will be shown in more examples in the following section. 
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4 The Non-collapsibility effect in a point-exposure study 

In this chapter, we are going to describe two different approaches to study the non-

collapsibility effect in a point-exposure study – an analytical approach and a graphical 

approach. The analytical approach is developed to derive the true value of the non-

collapsibility effect as a function of the related parameters, while the graphical approach 

is used to present how the non-collapsibility effect is affected by the related parameters. 

4.1 An analytical approach 

4.1.1 Introduction   

After realizing the non-collapsibility of the OR and the decomposition of the total 

discrepancy, it is also of great interest to measure the non-collapsibility effect in different 

scenarios. Samuels provided a formula to compute this in a setting where A is 

independent of L (Samuels, 1981), while Gail and Neuhaus provided an approximation of 

the non-collapsibility effect in a randomized trial and in clustered data respectively (Gail, 

1984; Neuhuas, 1991). In this section, we intend to develop a formula for measuring the 

non-collapsibility effect in a general scenario. This formula can be used to assess the 

conditions of collapsibility of OR, show the decomposition of the total discrepancy 

explicitly and compare with the other related formulae in the literature. 

Starting from the simplest scenario, figure 4-1 represents casual diagrams for point-

exposure studies with exposure A, outcome Y, and covariate L. L is a baseline covariate 

on the left of figure 4-1, while L is a confounding variable on the right of figure 4-1. 
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Figure 4-1: Causal diagrams for the point-exposure studies 

Table 4-1 shows the data in the point-exposure study with all individuals recruited from 

the entire population. Probability refers to proportions in the source population. We focus 

on the setting where all the variables are dichotomous with two levels, 0 and 1.  

Table 4-1: Data from the point-exposure study 

L=0 L=1 

 A=0 A=1  A=0 A=1 

Y=0 a b Y=0 e f 

Y=1 c d Y=1 g h 

4.1.2 Method 

4.1.2.1 Notation and related parameters 

We have assumed a deterministic procedure, the observed count and expected value for 

each cell are just different ways of referring to the same quantity, as well as the true OR 

and the estimated OR. We use the notation and terminology of probability for 

convenience. 

The outcome iY for each individual is a random variable following the Bernoulli 

distribution with parameter ),|1( iii lLaAYPP  . The probabilities of outcome 

conditional on A and L, the probability of A conditional on L, and the prevalence of L are 
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the related parameters. Table 4-1 can be constructed from these parameters, and mOR , 

crudeOR , COR  can be computed analytically.  

Denote the conditional outcome probabilities by )0,0|1(00  LAYPP , 

)0,1|1(10  LAYPP , )1,0|1(01  LAYPP , and )1,1|1(11  LAYPP . 

Denote the conditional exposure probabilities by )0|1(0  LAPPA  and 

)1|1(1  LAPPA ], and denote the prevalence of L by LP . Denote 0000 1 Pq  , 

00 1 AA Pq  , and the analogous notations for 10q , 01q , 11q , and 1Aq . 

4.1.2.2 Homogenous odds ratio across L 

Constraints were needed in order to guarantee two homogeneous conditional ORs across 

strata of L. In the stratum L=0, 
)1(

)1(

1000

1000
0

PP

PP
ORL




  and in the stratum L=1, 

)1(

)1(

1101

1101
1

PP

PP
ORL




 . 10   LL OROR  indicates the effect of A on Y is identical across L. 

Denote the common effect of A on Y across L by COR , then 10P  can be written as a 

function of 00P  and COR : 
C

C

ORPP

ORP
P






0000

00
10

1
   (7)  

The similar constraint can be made for 11P , 

C

C

ORPP

ORP
P






0101

01
11

1
   (8) 
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After fixing COR and constraining 10P  and 11P  by (7) and (8), we can ensure the common 

odds ratio COR  across L. 

4.1.2.3 Estimation of the odds ratios 

COR , crudeOR , mOR  can be computed analytically from table 4-1, and also can be 

estimated from the SLRM and the marginal structural model (MSM). As demonstrated in 

the introduction,  

COR  corresponds to e estimated from the logistic regression model: 

LAlLaAYEg   )],|([ , where g  is the logit link function. 

crudeOR  corresponds to 
*e estimated from the logistic regression model: 

AaAYEg **)]|([    

mOR corresponds to 
e   estimated by the MSM: 

AaAYEg   )]|([  weighting each subject by the inverse of the probability of 

receiving his/her exposure conditional on L.  
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4.1.3 Result  

4.1.3.1 Measure of non-collapsibility of the OR 

The expected value or observed value in each cell in Table 4-1 can be computed using the 

conditional outcome probabilities, the conditional exposure probabilities and the 

prevalence of L. For example, 

NPqqNLPLAPLAYPa LA  )1(*)0()0|0()0,0|0( 000 , 

where N is the sample size. The same calculations can be done for the observed count in 

the other cells. 

It is easy to show that: 

])1([])1([

])1([])1([

101000111010

111010101000

LALALALA

LALALALA
crude

PqPPqPPPqPPq

PPPPPPPqqPqq
OR






 

1101

0111

1000

0010

qP

qP

qP

qP
ORC









  

)()(

)()(

gcfb

hdea
m

wgwcwfwb

whwdwewa
OR




  where 

0

1

)0|0(

1

A

ca
qLAP

ww 


 ; 

0

1

)0|1(

1

A

db
PLAP

ww 


 ; 
1

1

)1|0(

1

A

ge
qLAP

ww 


 ; 

1

1

)1|1(

1

A

hf
PLAP

ww 


  

mOR  can be written as: 
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])1([])1([

])1([])1([

]
11

)1([]
11

)1([

]
11

)1([]
11

)1([

01001110

11100100

1

101

0

000

1

111

0

010

1

111

0

010

1

101

0

000

LLLL

LLLL

A

LA

A

LA

A

LA

A

LA

A

LA

A

LA

A

LA

A

LA

m

PPPPPqPq

PPPPPqPq

q
PqP

q
PqP

P
PPq

P
PPq

P
PPP

P
PPP

q
Pqq

q
Pqq

OR












 

As illustrated by the equation (6), )log(
C

m

OR

OR
was used to measure the magnitude of the 

non-collapsibility effect. 

4.1.3.2 Conditions for the absence of the non-collapsibility effect 

A historically important contribution to this literature was the work of Gail et al. (1984). 

Corollary 1 in the paper demonstrated that there is no non-collapsibility effect if L does 

not vary, or 0  or if 0 . These conclusions can be verified with our analytical 

approach. 

1. No non-collapsibility effect if L does not vary 

L does not vary implies the prevalence of L is 0 or 1. If the prevalence of L is 0, then 

cm OR
Pq

Pq
OR 






0010

1000 ; If the prevalence of L is 1, then cm OR
Pq

Pq
OR 






0111

1101 ; 

0)log( 
C

m

OR

OR
.  

In this case, we just have one stratum of L, either 0 or 1. There is no L covariate variation. 

Logically, and trivially, therefore, there is no non-collapsibility effect. 
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2. No non-collapsibility effect if 0  

0  indicates that the effect of A on Y conditional on L is 0 ( LAY | ), it follows that 

1000 PP   and 1101 PP   then 

1
])1([])1([

])1([])1([

01001110

01001110 





LLLL

LLLL
m

PPPPPqPq

PPPPPqPq
OR ;  1COR , and 

0)log( 
C

m

OR

OR
. The non-collapsibility effect is 0 if 0  or the conditional effect of A 

on Y is 0. 

3. No non-collapsibility effect if 0  

0  implies that the effect of L on Y conditional on A is 0 ( ALY | ), it follows 

0100 PP   and 1110 PP  , then  

C

LLLL

LLLL
m OR

Pq

Pq

PPPPPqPq

PPPPPqPq
OR 











0111

1101

01011111

11111010

])1([])1([

])1([])1([
, and 

0)log( 
C

m

OR

OR
. The non-collapsibility effect is 0 if 0  or L independent of Y 

conditional on A. 

4.  Confounding without non-collapsibility 

The analytical approach can also be used to illustrate the situation where confounding is 

present without non-collapsibility. It has been noted that the crude OR equals the 
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conditional OR if L is independent of A conditional on Y (Wermuth, 1987; Newman 

2011). YAL |  indicates that 

)0,1|1()0,0|1(  YLAPYLAP       (9) 

)1,1|1()1,0|1(  YLAPYLAP        (10) 

)0,0|0()0,1|0(  YLAPYLAP      (11) 

)1,0|0()1,1|0(  YLAPYLAP       (12) 

Denote )1|1(1  LYPPY  and )0|1(0  LYPPY . The conditional probabilities 

can be written as following: 

0

010

)0|0(

)0|1()0,1|0(

)0|0(

)0,0,1(
)0,0|1(

Y

A

L

L

L

q

Pq

PLYP

PLAPLAYP

PLYP

YLAP
YLAP














 

 
1

111)0,1|1(
Y

A

q

Pq
YLAP


 ;  

0

010)1,0|1(
Y

A

P

PP
YLAP


 ; 

1

111)1,1|1(
Y

A

P

PP
YLAP


 ;  

0

000)0,0|0(
Y

A

q

qq
YLAP


 ; 
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1

101)0,1|0(
Y

A

q

qq
YLAP


 ; 

0

000)1,0|0(
Y

A

P

qP
YLAP


 ; 

1

101)1,1|0(
Y

A

P

qP
YLAP


 . 

By (9)-(12), we have 
1

111

0

010

Y

A

Y

A

q

Pq

q

Pq 



; 

1

111

0

010

Y

A

Y

A
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Under the circumstance that the covariate is independent of exposure conditional on the 

outcome, the total discrepancy equals 0, 0)log( 
C

m

OR

OR
. 

4.1.3.3 Decomposition of the total discrepancy 

Table 4-2 shows the decomposition of the total discrepancy by the analytical approach. 

From the equation (6), the total discrepancy was computed by )log()log( Ccrude OROR  , 

the non-collapsibility effect was computed by )log()log( Cm OROR  , and the 

confounding bias was computed by )log()log( mcrude OROR  . 

Table 4-2: Decomposition of the total discrepancy 

)0,0

|1(





LA

YP

 

)1,0

|1(





LA

YP

 

COR  
mOR  crudeOR  )1( LP  

1AP  0AP  
Non-

collapsibility 

effect 

Confounding 

bias 

Total 

discrepancy 

0.2 0.6 2.667 2.253 2.253 0.45 0.500 0.500 -0.169 0 -0.169 

0.2 0.6 2.667 2.253 2.667 0.45 0.556 0.455 -0.169 0.169 0 

0.2 0.9 2.667 1.764 2.302 0.45 0.556 0.455 -0.413 0.266 -0.147 

 

Table 4-3: Data correspond to the first row of table 4-2 

 

L=0 

 

L=1 

 

 

A=0 A=1 A=0 A=1 

Y=0 220 165 90 45 

Y=1 55 110 135 180 

 

275 275 225 225 
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Table 4-4: Data correspond to the second row of table 4-2 

 

L=0 

 

L=1 

 

 

A=0 A=1 A=0 A=1 

Y=0 240 150 80 50 

Y=1 60 100 120 200 

 

300 250 200 250 

 

Table 4-5: Data correspond to the third row of table 4-2 

 

L=0 

 

L=1 

 

 

A=0 A=1 A=0 A=1 

Y=0 240 150 20 10 

Y=1 60 100 180 240 

 

300 250 200 250 

Table 4-3, table 4-4 and table 4-5 present data in each row of table 4-2 with sample size 

N= 1000. All the conditional ORs are homogeneous and equal to 2.667. Table 4-3 shows 

the data that 01 AA PP  , A is independent of L, indicating no confounding. The first row 

of table 4-2 shows the confounding bias equals 0, and the total discrepancy equals the 

non-collapsibility effect. Table 4-4 shows data in which A is independent of L 

conditional on Y, which is the condition that the total discrepancy is 0. 01 AA PP  in table 

4-4 implies confounding, and the second row of table 4-2 shows that the non-

collapsibility effect and confounding bias cancel each other out, thus leading to an 

equivalent crude OR and conditional OR in the presence of confounding. But this is not 

generally true. Table 4-5 shows data in which the non-collapsibility effect and the 

confounding bias both exist. The non-collapsibility effect and the confounding bias do 

not cancel each other out in the third row of table 4-2. It is clearly evident in table 4-2 
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that the total discrepancy is the sum of the non-collapsibility effect and the confounding 

bias. 

4.1.3.4 Comparison of non-collapsibility effect with other formulae 

Other formulae to measure the non-collapsibility effect can also be found in the literature, 

i.e. formula by Samuels (1981), equation (8) by Neuhaus et al. (1991) and equation (2.9) 

by Gail et al (1984). As discussed in the literature review, Samuels developed the formula 

in a model in which A and L are unconditionally independent. Neuhaus considered non-

collapsibility in the context of cluster-specific and population-averaged approaches for 

correlated binary data. In our setting, there are just two clusters, and L is the variable that 

differentiates clusters and acts as the random effect in the context of Neuhaus‟ work. The 

non-collapsibility effect was measured by 
)()(

)(

qEpE

pVar
 , where logit(p) takes the value 

  with probability LP  and value   with probability 1- LP , and pq 1 . Gail et al. 

assumed that the covariate is continuous with expectation 0 and variance 2 , while in our 

setting, the covariate is a binary variable. Hence we needed to modify Gail‟s formula to 

compare the results. It can be shown in the appendix that when the covariate is binary, the 

non-collapsibility effect measured by Gail‟s formula is 

}
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)(
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1 22
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Table 4-6 presents the comparison of results by our analytical approach and Samuels, 

Neuhaus and Gail formulae under various scenarios. The non-collapsibility effect by our 
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analytical approach is equivalent with the formula by Samuels, and is fairly close with 

the formula by Neuhaus. All of the four approaches give us the same qualitative findings. 

Table 4-6: Some example results of comparison of non-collapsibility effect with other formulae 

0AP  
1AP  )0,0|1(  LAYP  )1,0|1(  LAYP  

COR  )1( LP  )log(
C

m

OR

OR  
Samuels Neuhaus Gail 

0.5 0.5 0.1 0.5 5 0.3 -0.3438 -0.3438 -0.3151 -0.243 

0.5 0.5 0.4 0.5 2 0.3 -0.0058 -0.0058 -0.0059 -0.0079 

0.5 0.5 0.2 0.4 1 0.45 0 0 0 0 

0.5 0.5 0.5 0.8 0.25 0.2 0.0992 0.0992 0.081 0.1153 

0.5 0.5 0.5 0.6 0.5 0.7 0.0058 0.0058 0.0059 0.01918 

0.5 0.5 0.75 0.5 0.2 0.6 0.1054 0.1054 0.1006 0.2037 

0.45 0.55 0.20 0.60 2.67 0.45 -0.169 -0.169 -0.165 -0.227 

0.5 0.2 0.40 0.50 1 0.4 0 0 0 0 

0.3 0.6 0.80 0.50 0.2 0.40 0.163 0.163 0.160 0.195 

4.1.4 Discussion 

It is not appropriate to use OR to detect confounding bias conventionally due to the non-

collapsibility effect. However, one can use our analytical approach to measure the 

confounding bias and non-collapsibility effect separately if all confounders are measured. 

If a simpler approach is preferred, one can also just avoid using the OR to define the 

confounding but use a collapsible measure such as the RR or RD instead, since the 

conventional way of detecting non-confounding agrees with the collapsibility of the RR 

and RD. As we know, when the outcome is rare, the OR approximates the RR, and thus 

can be also used to detect confounding validly.  

We provide the same results as Samuels, mainly because the two formulae are closely 

related. Though Samuels developed the formula in the model that A is independent of L, 

after extending it to a more general case, it agrees with our results. Gail‟s results do not 

agree as closely with the others, presumably because it is only the first term of a Taylor 
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expansion, and thus makes the approximation less precise. Although they provide the 

same or similar results, all of the other three approaches concentrate on the situation 

where A is independent of L, while our approach gives a general formula to measure the 

non-collapsibility effect with or without confounding.  

4.2 A graphical approach 

4.2.1 Introduction 

There are some graphical approaches for the non-collapsibility of OR as well. For 

example, Shapiro (1982) used a coordinate system to represent the odds and revealed the 

non-collapsibility of OR and the conditions of collapsibility of the OR. Some conclusions 

were made, stating that the non-collapsibility depends on the effects of the exposure and 

covariate on outcome and on the variance of the covariate (Ritz and Spiegelman 2004; 

Groenwold and Moons et al., 2011). 

The magnitude of confounding usually requires that values for three types of parameters 

be specified: the prevalence of the covariate in the population or subpopulation, the 

association between the exposure and the covariate and the effect of the covariate on the 

outcome. Flanders and Khoury (1990) illustrated the relationship between the magnitude 

of confounding and these parameters graphically, and derived limits of the magnitude if 

some of the relevant parameters cannot be specified. 

Inspired by graphical approaches such as Flanders and Khoury (1990) to represent 

relations between the parameters related to the magnitude of confounding, we will 
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investigate the relationship between the non-collapsibility effects with the related 

parameters in different scenarios by using figures.  

4.2.2 Method: relationship between non-collapsibility and the effect of A and L on Y 

In practice, one might be also interested in the relationship between the non-collapsibility 

effect and the effect of A ( COR ) and the effect of L ( LOR ) on Y. 

It can be shown in the appendix that 01P  can be expressed as a function of the baseline 

risk 00P , the effect of A and L on Y, the prevalence of L, and the exposure probability 

conditional on L. Therefore, we have the relationship between the non-collapsibility 

effect and all the other parameters. Again, )log(
C

m

OR

OR
 was used to measure the non-

collapsibility effect. Since there is no simple form of the non-collapsibility effect function 

of the relevant parameters, a graphical approach was implemented. The non-collapsibility 

behavior can be explored in different scenarios by plotting the effect with the baseline 

risk and different combinations of values of the other parameters. A range of different 

exposure effects and different covariate effects was specified. A strong association was 

defined by OR of 5 or 0.2, while a moderate association was defined by OR of 2 or 0.5. 

The value >1 represents a harmful effect, while the value <1 represents a protective effect. 
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4.2.3 Results 

4.2.3.1 Scenario without confounding 

Figure 4-2 shows the relationship between the non-collapsibility effect and the baseline 

risk ( 00P ). It shows the scenario in which there is no confounding, L is a baseline 

covariate, A is randomly assigned with probability 0.5 regardless of L 

( 5.0)0|1()1|1(  LAPLAP ), and the prevalence of L is 0.5. 

 

Figure 4-2: Non-collapsibility effect vs. the baseline risk with no confounding 

Figures for other values of the prevalence of L are similar to Figure 4-2. But the non-

collapsibility effect tends to be milder than that at 5.0LP , which implies that one will 

observe a relatively larger non-collapsibility effect when the prevalence of L is closer to 

0.5. 

In Figure 4-2, the solid lines present the non-collapsibility effect when the effects of A on 

Y are positive, while the dashed lines present the non-collapsibility effect when the 
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effects of A are negative. It is shown that all the dashed lines are above 0, and all the 

solid lines are below 0. This corresponds to the well-known fact that the marginal OR is 

always shifted towards the null compared to the conditional OR (Samuels, 1981). 

Therefore, the non-collapsibility effect is negative when the A effect is harmful, and the 

non-collapsibility effect is positive when the A effect is protective. 

The non-collapsibility effect was observed to be symmetric in Figure 4-2. Each pair of 

solid line and dashed line with the same color shows the non-collapsibility effect with the 

opposite A and L effect with the same magnitude. The shapes of each pair of lines are the 

same, which indicates that the magnitude of the non-collapsibility effect is the same but 

in a different direction if )2(
1

)1(
C

C
OR

OR  , )2(
1

)1(
L

L
OR

OR  , and )2(1)1( 0000 PP  . 

For example, the non-collapsibility effect is the same but in different direction 

for 5)1( COR , 5)1( LOR , 2.0)1(00 P  and 2.0)1( COR , 2.0)1( LOR , 8.0)1(00 P . 

We can observe that the black lines are further from 0 compared to the red lines, 

indicating that after fixing the effect of A on Y, the non-collapsibility effect is smaller as 

the effect of L on Y gets smaller. Whereas, the black lines are further from 0 compared to 

the light blue lines, indicating that after fixing the effect of L on Y, the non-collapsibility 

effect is smaller as the effect of A on Y gets smaller. If we compare the solid light blue 

line ( 2COR , 5LOR ) to the solid red line ( 5COR , 2LOR ), it is observed that the 

light blue line is further form 0 compared to the red one, which indicates the novel 

finding that the effect of L plays a more important role in the non-collapsibility effect 

compared to the effect of A.  
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The non-collapsibility behavior is quite modest when the effect of L and the effect of A 

are both small, by observing that the yellow lines and the purple lines are very close to 

the x axis.  

It can also be observed that as the baseline risk goes to 0, the non-collapsibility effect 

disappears. It is well known that when the risk is small the OR can be used to estimate 

the RR, and there is no non-collapsibility effect in a non-founding scenario when the 

measure of association is RR. However, it is less well known that as the baseline risk 

goes to 1, the non-collapsibility effect also tends to disappear. 

When both A and L effects are protective, the most extreme non-collapsibility effect is 

present when 00P  is around 0.9. This is quite sensible, since both A and L have negative 

effects, the other risks are smaller than the baseline risk. Only if the baseline risk is high 

can the other risks have moderate values. When the baseline risk is small, the other risks 

are even smaller, which makes the non-collapsibility effect trivial (vice versa when A and 

L are both harmful). We infer that when the four conditional outcome probabilities are all 

moderate, we can have a relatively large non-collapsibility effect. However when the four 

conditional outcome probabilities are all very small or very large, the non-collapsibility 

effect would have to be small.  Table 4-7 presents the non-collapsibility effect with 

different conditional outcome probabilities as well as the marginal outcome probabilities 

( YP ) after fixing the A and L effect. The third and the fourth row show that the non-

collapsibility effects are relatively small when the outcome probabilities are all large or 

small. 
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Table 4-7: Non-collapsibility effect with different conditional outcome probabilities 

A effect L effect 00P  10P  01P  
11P  YP  )log(

C

m

OR

OR
 

5 5 0.1 0.357 0.414 0.78 0.413 -0.274 

5 5 0.5 0.833 0.852 0.966 0.788 -0.149 

5 5 0.8 0.952 0.954 0.991 0.924 -0.048 

5 0.2 0.1 0.357 0.02 0.092 0.142 -0.096 

5 0.2 0.5 0.833 0.134 0.437 0.476 -0.288 

5 0.2 0.8 0.952 0.402 0.77 0.731 -0.191 

The relationship between the marginal outcome probability ( YP ) and the non-

collapsibility effect is shown in Figure 4-3. 

 

Figure 4-3: Non-collapsibility effect vs. the marginal risk (1) 

Figure 4-3 shows the scenario in which L is a baseline covariate, the prevalence of L is 

0.5, and A is randomly assigned regardless of L with probability 0.5. In this scenario the 

non-collapsibility effect is symmetric about 5.0YP and the x axis. There are pairs of 

lines overlapping, for example the blue lines and the black lines.  
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The non-collapsibility effect is the same for two identical A effects if the magnitude of 

the L effect is the same, regardless of the direction. For example, the non-collapsibility 

effect is the same for 5)1( COR , 5.0)1( LOR  and 5)2( COR , 2)2( LOR . For any 

two A effects with the same magnitudes but different directions (e.g. 5.0)1( COR  vs. 

2)2( COR ), the magnitude of the non-collapsibility effect will be the same but in the 

other direction. This is true for any fixed magnitude of the L effect, regardless of the 

direction of the L effect. For example, the magnitude of the non-collapsibility effect is the 

same for 5)1( COR , 2)1( LOR ; 2.0)2( COR , 2)2( LOR ; and 

2.0)3( COR , 5.0)3( LOR . 

Similarly to what we have illustrated above, after fixing one of the A or L effects, the 

non-collapsibility effect is smaller as the magnitude of the other effect gets smaller. 

Again we find the somewhat surprising result that the effect of L plays a more important 

role in the non-collapsibility effect compared to the effect of A.  

 

Figure 4-4: Non-collapsibility effect vs. the marginal risk (2) 
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Figure 4-5: Non-collapsibility effect vs. the marginal risk (3) 

Figure 4-4 and Figure 4-5 show the scenario in which the prevalence of L is 0.3 or 0.7. 

There are no lines overlapping in the figures, but the symmetric property remains. It 

seems that when there is no confounding, after fixing the A effect, the prevalence of L 

determines whether the non-collapsibility has the same behavior for )2(
1

)1(
L

L
OR

OR   . 

When the A effect is fixed, the non-collapsibility effect is symmetric about 5.0YP  if 

the L effects are in the opposite direction with the same magnitude. That is to say, the 

non-collapsibility effect is the same for )2(
1

)1(
L

L
OR

OR   and )2(1)1( YY PP   after 

fixing the A effect. And we still have the observation that if )2(
1

)1(
C

C
OR

OR  , 

)2(
1

)1(
L

L
OR

OR  , and )2(1)1( YY PP  , the non-collapsibility effect has the same 

magnitude in the opposite direction.  
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Figure 4-6: Non-collapsibility effect vs. the marginal risk (4) 

 

Figure 4-7: Non-collapsibility effect vs. the marginal risk (5) 

Figure 4-6 and Figure 4-7 show scenarios in which A is randomly assigned (i.e., un-

confounded) with probability not equal to 0.5. The non-collapsibility effect is not 

symmetric about 5.0YP  in these figures. It seems that when there is no confounding, 

after fixing the A effect, the prevalence of A determines whether the non-collapsibility 
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effect is symmetric about 5.0YP  when the L effects are in the opposite direction with 

the same magnitude. But there are still pairs of lines overlapping. If the prevalence of L is 

0.5, then the non-collapsibility effect is identical for the same L effect regardless of its 

direction after fixing the A effect. 

4.2.3.2 Scenario with confounding 

 

Figure 4-8: Non-collapsibility effect vs. the baseline risk with confounding 

Figure 4-8 shows the relationship between the non-collapsibility effect and the baseline 

risk in different combinations of A and L effects and the effect of L on A (denoted by 

LAOR ). The non-collapsibility effect is again symmetric. It is the same but in a different 

direction for )2(
1

)1(
C

C
OR

OR  , )2(
1

)1(
L

L
OR

OR  , )2()1( LALA OROR  , and 

)2(1)1( 0000 PP  . 
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An interesting and novel finding can be observed that if the A effect and L effect on Y 

are both in the same direction, the non-collapsibility effect is larger if the effect of L on A 

is negative than when the effect of L on A is positive with the same magnitude. And the 

more the effect of L on A tends to be negative, the larger the non-collapsibility effect is. 

For example, the non-collapsibility effect is decreasing for 2.0)1( COR , 

2.0)1( LOR , 2.0)1( LAOR ; 2.0)2( COR , 2.0)2( LOR , 5.0)2( LAOR ； 

2.0)3( COR , 2.0)3( LOR , 2)3( LAOR ；and 2.0)4( COR , 

2.0)4( LOR , 5)4( LAOR . When the A effect and L effect on Y are in different 

directions, the non-collapsibility effect is larger if the effect of L on A is positive than 

that when the effect of L on A is negative with the same magnitude. And the more the 

effect of L on A tends to be positive, the larger the non-collapsibility effect is. For 

example, the non-collapsibility effect is decreasing for 5)1( COR , 

2.0)1( LOR , 5)1( LAOR ; 5)2( COR , 2.0)2( LOR , 2)2( LAOR ; 5)3( COR , 

2.0)3( LOR , 5.0)3( LAOR ; 5)4( COR , 2.0)4( LOR , 2.0)4( LAOR . 
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Figure 4-9: Non-collapsibility effect vs. the marginal risk with confounding 

Figure 4-9 shows the relationship between the non-collapsibility effect with the marginal 

outcome probability in different combinations of A and L effects and the effect of L on A. 

All the observations from Figure 4-8 appear in Figure 4-9. In addition, the non-

collapsibility effect is the same if )2(1)1( YY PP  , )2(
1

)1(
L

L
OR

OR  , and 

)2(
1

)1(
LA

LA
OR

OR   after fixing the A effect. For example, the non-collapsibility is the 

same for 5)1( COR , 5)1( LOR , 2.0)1( LAOR , and 2.0)1( YP , and 5)2( COR , 

2.0)2( LOR , 5)2( LAOR , and 8.0)2( YP . 

4.2.4 Discussion 

It is logical to think that the L effect and A effect do not play an identical role in the non-

collapsibility effect. The A effect is the effect of exposure and is assumed to be 

homogenous across the strata, whereas L is the variable that we collapse over. In each 
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scenario, it indicates that the L effect does have a larger influence on the non-

collapsibility effect.  

We presents the relationship between the non-collapsibility effect and the baseline risk or 

marginal outcome probability in a two dimensional figure while fixing the values of the 

other parameters. Since there are four additional parameters, it is much more difficult to 

present non-collapsibility with all the parameters (every possible value) in one figure. 

Further investigation is needed about how to make the figure and present the non-

collapsibility effect in a more vivid and perceptually intuitive way. 
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5 The non-collapsibility in the presence of time-varying confounding 

 

5.1 Introduction 

In some observational studies, exposure may vary over time, and a confounding variable 

that is also affected by the previous exposure can be also encountered frequently. If the 

exposure and other factors of the individuals are measured multiple times during the 

follow-up, in the presence of time-varying confounding, will the non-collapsibility effect 

change? It appears difficult to use the analytical approach in this relatively complex 

scenario. Observational cohort studies were simulated to explore the non-collapsibility 

effect in these scenarios.  

5.2 Method 

5.2.1 Time-varying confounding scenario 

To make sure everything is well understood, we started from the simplest scenario in the 

presence of time-varying confounding that is most like our point-exposure study. Figure 

5-1 shows the scenario we want to explore first, assuming there are two time points, no 

unmeasured confounding and no loss to follow-up. Let A0 denote the exposure at the first 

time point, let A1 denote the exposure at the second time point and let Y denote the 

outcome. L is a time-varying confounding variable in the Figure 5-1. It is an intermediate 

variable when we measure the A0 effect, so we must not adjust for L. Meanwhile it is a 

common cause of the exposure and the outcome that confounds the A1 effect on Y, 
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therefore we must adjust for L to obtain the unbiased estimate of the A1 effect. MSM can 

be employed to assess the exposure effect in this longitudinal setting with inverse-

probability-of-treat weighted (IPTW) estimators and it provides a marginal exposure 

effect.  Nevertheless, it is always a biased estimation of the cumulative treatment effect of 

A0 and A1 with the SLRM. There is therefore no good way to research the non-

collapsibility effect with respect to  L. But we can add another baseline variable Z which 

has an effect on the outcome but independent of any other variables. This makes the 

diagram (Figure 5-2) be analogous to the one on the left of Figure 4-1 in spite of the time-

varying confounding L. Therefore we can study the non-collapsibility effect of Z and 

compare it to the point-exposure study.  

In order to understand the models and interpret the results better, we first assume the 

direct effects of A0 and A1on Y are both null. The simulation and the analysis were firstly 

implemented in the scenario without the Z variable. 

 

Figure 5-1: Time-varying confounding scenario 
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Figure 5-2: Time-varying confounding scenario with baseline variable Z (Scenario 1) 

5.2.1.1 Data Generation 

We simulated an observational cohort study with N=100,000 subjects who were 

randomly assigned to be exposed at the first time point with probability 0.5, i.e. 

5.0)1( 0 AP  (A0=1 indicates exposed and A0=0 indicates unexposed). A0 was 

generated from a Bernoulli distribution with 5.0)1( 0 AP . L is a factor that is affected 

by A0 and also has an effect on A1, so L was generated from a Bernoulli distribution with 

)expit()1( 010 ALP   , where 
)exp(1

)exp(
)expit(

x

x
x


 .  1  should be the unbiased 

estimate of the effect of A0 on L. Likewise, A1 was generated from a Bernoulli 

distribution with )expit()1( 101 LAP   , 1 should be the unbiased estimate of the 

effect of L on A1. Since we assume that there is no direct effect of A0 and A1 on Y, Y was 

generated from a Bernoulli distribution with )expit()1( 10 LYP   . 0 , 0  and 0  

are the parameters which are not really important to us, hence we are willing to assume 

arbitrarily that 0000   . We set 1 , 1  and 1  to be log(5), log(2), log(0.5) or 

log(0.2), and ran the simulation with all the combinations of those values, so as to 

illustrate the scenario overall with strong or moderate effects and with harmful or 

protective effects.  
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The datasets were generated according to the parameters settings described previously. 

For each setting, we generated 100 independent random samples. All simulations were 

performed in R version 2.14.1 running on a Linux platform. 

5.2.1.2 Data Analysis 

We proposed 7 models (Model 1 to Model 7) to analyze the data. Model 1 and model 2 

provide the estimates of the effect of A0 by adjusting L marginally and conditionally. As 

discussed above, one should not adjust for L which is on the causal pathway between A0 

and Y. It implies that model 3 which contains only A0 in the model should provide the 

unbiased estimate of the total effect of A0 on Y through L, while model 1 and model 2 

yield biased estimates of the A0 effect. We can obtain unbiased estimates of the marginal 

and conditional A1 effects by adjusting L with MSM and SLRM from model 4 and model 

5 respectively. Model 6 provides a crude and biased estimate of the A1 effect. Model 7 is 

a MSM that can be used to estimate the cumulative effect of the exposure, where L was 

adjusted by the IPTW estimators. The cumulative effect of A0 and A1 is denoted by A 

which equals the value of A0+A1 deterministically.  

Model 1:  010))1(logit( AYP    
)|(

)(

0

0

LAP

AP
weights   

Model 2:  LAYP 2010))1(logit(     

Model 3:  010))1((logit AYP     

Model 4:  110))1((logit AYP    
)|(

)(

1

1

LAP

AP
weights   

Model 5:  LAYP 2110))1((logit     

Model 6:  110))1((logit AYP     
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Model 7:  AYP 10))1((logit      
),|(

)|(

01

01

LAAP

AAP
weights   

5.2.1.3 Results 

We repeated the simulation and analysis 100 times. The averages of the 100 log odds 

ratios are considered to be estimates of the exposure effects from those models. Table 5-1 

presents the exponential of the means under different parameter settings. The results are 

estimates of the ORs. 

Table 5-1: Estimates in time-varying confounding scenario 

1e  1e  1e  ORModel 1 ORModel 2 ORModel 3 ORModel 4 ORModel 5 ORModel 6 ORModel 7 

5 5 5 1.000 1.000 1.750 1.002 1.001 1.800 1.353 

2 5 5 0.999 0.998 1.299 1.001 1.002 1.792 1.151 

0.5 5 5 1.000 1.000 0.785 0.999 0..999 1.649 0.881 

0.2 5 5 0.999 0.999 0.624 1.002 1.003 1.549 0.786 

5 2 5 0.999 0.999 1.747 0.999 0.998 1.290 1.326 

5 0.5 5 1.000 1.000 1.751 0.999 0.999 0.773 1.333 

5 0.2 5 0.999 0.999 1.750 1.003 1.003 0.557 1.375 

5 5 2 1.001 1.001 1.263 0.999 0.998 1.288 1.136 

5 5 0.5 1.001 1.001 0.791 1.000 1.000 0.773 0.879 

5 5 0.2 1.001 1.001 0.573 1.001 1.001 0.557 0.741 

In each parameter setting, the estimates of the effect of A0 on Y we obtained from model 

1 and model 2 are null and those we obtained from model 3 are not. As A0 affects L and 

L affects Y, even though there is no direct effect of A0 on Y, there should be a total effect 

through L. As we can see from the results, A0 and Y are conditionally independent. 

Model 1 and model 2 provide biased estimates by conditioning on the intermediate 
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variable. Without adjusting for the intermediate variable, estimates from model 3 are the 

unbiased estimates of the total effect of A0 on Y through L.  

But what is the magnitude of the total effect? How is it related to the effect of A0 on L 

and the effect of L on Y? 

According to the data generation,  

0100 ))|1(logit( AALP   , we have 

)expit()1|1( 100   ALP , and )expit()0|1( 00  ALP  

Similarly,  

LLYP 10))|1(logit(   , then it follows that 

))expit(expit()1|1( 10100   AYP  and 

))expit(expit()0|1( 0100   AYP   

))expit(expit(

))expit(expit(1

))expit(expit(1

))expit(expit(

)0|1()1|0(

)0|0()1|1(

010

010

1010

1010

00

00
,0
























AYPAYP

AYPAYP
OR YA

 

After setting 000   , it follows, 

)expit (

)expit (

0
11

11

)(1

)(
)1|1(





e

e
AYP


  and 

2

1

2

1

)0expit(

)0expit(

0

)(1

)(

)(1

)(
)0|1(

1

1

1

1









e

e

e

e
AYP






  
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2

1
)expit(

2

1

)expit(

,

1
1

1

11

0
)(

)(

)( 










e

e

e
OR YA                  

)
2

1
)(expit())log(()log( 11

2

1
)expit(

,

1
1

0








eOR YA      (13) 

By using equation (13), if we assume there is no random error, one can derive the true 

magnitude of the total effect of A0 on Y through L as a function of 1  and 1 . To 

compare the results from the simulations and equation (13), uncertainty of the simulation 

must be estimated. The empirical standard error can be used, calculated as the standard 

deviation from the 100 simulations (Burton, Altman and et al., 2006). 95% confidence 

intervals of the )log( 3 ModelOR  were computed. A one-sample t-test was performed to 

compare the estimates and the true effects. Table5-2 shows that the confidence intervals 

of the )log( 3 ModelOR  include the results from equation (13) and the p values are 

generally  >0.05. After taking account of the uncertainty of the simulation, results are 

comparable to the ones calculated by the formula. Theoretically, as the sample size goes 

to infinity and the number of repetitions in the simulation becomes large, the simulation 

results should converge to the analytical results.  
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Table 5-2: Comparison between the simulation and equation (13) for the total effect of A0 on Y through L 

1e  1e  1e  )log( 3 ModelOR  
Results from 
equation(13) 

CI for 

)log( 3 ModelOR  
P value 

5 5 5 0.560 0.536 [ 0.529,  0.591] 0.135 

2 5 5 0.261 0.268 [ 0.234,  0.289] 0.641 

0.5 5 5 -0.242 -0.268 [-0.269, -0.215] 0.055 

0.2 5 5 -0.471 -0.536 [-0.496, -0.445] 0.000 

5 2 5 0.558 0.536 [ 0.531,  0.586] 0.113 

5 0.5 5 0.560 0.536 [ 0.529,  0.591] 0.123 

5 0.2 5 0.560 0.536 [ 0.529,  0.591] 0.132 

5 5 2 0.234 0.231 [ 0.208,  0.259] 0.828 

5 5 0.5 -0.235 -0.231 [-0.258, -0.211] 0.758 

5 5 0.2 -0.557 -0.536 [-0.582, -0.533] 0.094 

When we focus on the effect of A1 on Y, the results are consistent with the discussion 

above, showing there is no effect of A1 on Y from model 4 and model 5 in each 

parameter setting. It again confirms the condition of the absence of non-collapsibility 

when the exposure effect is null. Model 6 ignoring L provides biased estimates caused by 

confounding.  

Model 7 provides estimates of the cumulative effect of A0 and A1 on Y, where A=A0+A1 

and takes value of 0, 1, 2. Assuming A acts as a numeric variable, the estimate we 

obtained is the effect of increasing one unit of A (i.e. A0 or A1) on Y, yet we don‟t know 

whether the increasing unit is due to A0 or A1. Therefore we presume that the cumulative 

effect is the average of A0 effect and A1 effect. By the study design and learning from the 

results, A1 has no effect on Y, and A0 has a total effect through L, hence the cumulative 

effect is a half of A0 effect and we should have the relationship below: 

2

)log(
)log( 3 Model

7 Model

OR
OR           (14) 
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Table 5-3 shows the cumulative effect from the simulation by ORModel 7 and from 

equation (14) by ORModel 3. A two-sample t-test was performed to compare the estimates 

for each parameters setting. The 95% confidence intervals are overlapped for the 

estimates, and the p values are generally >0.05. The results are comparable after taking 

account of the uncertainty in the simulation. 

Table 5-3: Comparison of the results from model 7 and equation (14) 

1e  1e  1e  
)log( 7 ModelOR

 2

)log( 3 ModelOR
 

CI for 

)log( 7 ModelOR

 

CI for 

2

)log( 3 ModelOR
 

P 

value 

5 5 5 0.302 0.280 [ 0.281,  0.323] [ 0.264,  0.295] 0.092 

2 5 5 0.141 0.131 [ 0.122,  0.160] [ 0.117,  0.145] 0.400 

0.5 5 5 -0.126 -0.121 [-0.147, -0.106] [-0.134, -0.107] 0.655 

0.2 5 5 -0.241 -0.235 [-0.262, -0.221] [-0.248, -0.223] 0.636 

5 2 5 0.282 0.279 [ 0.264,  0.301] [ 0.265,  0.293] 0.791 

5 0.5 5 0.288 0.280 [ 0.265,  0.311] [ 0.265,  0.296] 0.591 

5 0.2 5 0.319 0.280 [ 0.292,  0.346] [ 0.264,  0.295] 0.014 

5 5 2 0.127 0.117 [ 0.109,  0.146] [ 0.104,  0.130] 0.353 

5 5 0.5 0.129 -0.117 [-0.146, -0.111] [-0.129, -0.105] 0.289 

5 5 0.2 0.300 -0.279 [-0.319, -0.280] [-0.291, -0.266] 0.071 

5.2.2 Non-collapsibility with Z 

5.2.2.1 Method 

Now we add the baseline variable Z into the simulation study to explore the non-

collapsibility effect in the time-varying confounding scenario (Figure 5-2). Z is a risk 

factor for Y but independent of any other variables. It was generated from a Bernoulli 

distribution with 5.0)1( ZP . Y was generated from a Bernoulli distribution with 
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)expit()1( 210 ZLYP   . 2 was specified with the value of 0.2. The generation 

of A0, L and A1 is accordant with the previous data generation.  

We proposed 12 models (Model 8 to Model 19) below to explore the non-collapsibility 

effect. Learning from the diagram and the results from the previous simulation, not 

adjusting for L yields unbiased estimates of the total effect of A0 on Y through L. Model 

10 which is the same as model 3 provides us the marginal effect of A0. Based on model 

10, model 8 and model 9 adjust for Z marginally and conditionally. As we defined in 

section 3.3, )log(
9 Model

8 Model

OR

OR
 can be measured as the non-collapsibility effect of Z with 

respect to A0 effect. Since there is no confounding bias, model 8 and model 10 provide 

the same estimates. As for the effect of A1 on Y, we must adjust for L marginally or 

conditionally to obtain an unbiased estimates. Model 11 to model 13 adjust for L 

marginally and model 14 to model 16 adjust for L conditionally. After adjusting for L, 

those models provide null estimates of effect by adjusting for Z with MSM, SLRM or 

without any adjustment. There should be neither a non-collapsibility effect nor a 

confounding bias by Z after adjusting for L, as the effect of A1 on Y is null. To estimate 

the cumulative effect of A on Y, after adjusting L marginally by IPTW, Z is adjusted 

marginally or conditionally or left unadjusted in model 17 to model 19 respectively. 

Comparing model 17 and model 19, we should get the same estimates since there is no 

confounding bias. By comparing model 17 and model 18 we get the non-collapsibility of 

Z with respect to cumulative effect A.  

Model 8:   010))1(logit( AYP    
)|(

)(

0

0

ZAP

AP
weights   
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Model 9:   ZAYP 2010))1((logit     

Model 10:  010))1(logit( AYP     

Model 11:  110))1(logit( AYP    
),|(

)(

1

1

ZLAP

AP
weights   

Model 12:  ZAYP 2110))1(logit(    
)|(

)(

1

1

LAP

AP
weights   

Model 13:  110))1(logit( AYP    
)|(

)(

1

1

LAP

AP
weights   

Model 14:  LAYP 2110))1(logit(    
)|(

)(

1

1

ZAP

AP
weights   

Model 15:  ZLAYP 32110))1(logit(     

Model 16:  LAYP 2110))1(logit(     

Model 17:  AYP 10))1(logit(    
),,|(

)|(

01

01

ZLAAP

AAP
weights   

Model 18:  ZAYP 210))1((logit    
),|(

)|(

01

01

LAAP

AAP
weights   

Model 19:  AYP 10))1(logit(      
),|(

)|(

01

01

LAAP

AAP
weights   

In order to compare the non-collapsibility effect in the longitudinal study with the point-

exposure study, we need to change Figure 5-2 slightly. The structure remains the same 

except the relationship between L and A1 needs to be removed. A1 was generated from a 

Bernoulli distribution with 5.0)1( 1 AP . We keep L in the Figure in order to have the 

same randomness as what we have in the time-varying confounding case. For the point-

exposure study, the non-collapsibility effect with respect to A0 is again measured by 

comparing model 8 and model 9. The non-collapsibility effect with respect to A is 

measured by comparing model 20 and model 21. L was left unadjusted, since it is a 

mediator rather than a time-varying confounding variable. 
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Model 20: AYP 10))1(logit(    
),|(

)|(

01

01

ZAAP

AAP
weights   

Model 21:  ZAYP 210))1(logit(     

To assess the comparability of the non-collapsibility effect in the time-varying 

confounding and the point-exposure study, 95% confidence intervals of the non-

collapsibility effect were computed for each parameters setting. Two-sample t-test was 

performed to compare the non-collapsibility effect between the two scenarios.  

5.2.2.2 Result 

The results in the time-varying confounding scenario are presented in table 5-4. Estimates 

from model 11 to model 16 all show no effect, and therefore they are not listed.  

Table 5-4: Estimates in time-varying confounding scenario with Z 

1e  1e  1e  2e  ORModel 8 ORModel 9 ORModel 10 ORModel 17 ORModel 18 ORModel 19 

5 5 5 0.2 1.573 1.668 1.573 1.282 1.324 1.282 

2 5 5 0.2 1.249 1.285 1.249 1.128 1.145 1.128 

0.5 5 5 0.2 0.799 0.777 0.798 0.889 0.877 0.889 

0.2 5 5 0.2 0.636 0.600 0.636 0.793 0.770 0.792 

5 2 5 0.2 1.575 1.671 1.574 1.262 1.301 1.262 

5 0.5 5 0.2 1.571 1.666 1.570 1.261 1.300 1.261 

5 0.2 5 0.2 1.572 1.667 1.572 1.291 1.333 1.290 

5 5 2 0.2 1.215 1.254 1.216 1.115 1.135 1.115 

5 5 0.5 0.2 0.808 0.789 0.807 0.890 0.879 0.890 

5 5 0.2 0.2 0.588 0.566 0.588 0.754 0.738 0.754 

Table 5-5 and table 5-6 shows the non-collapsibility effect of Z with respect to A0 effect 

and the cumulative effect (A) in different parameter settings measured from the time-

varying confounding and point-exposure study. The 95% confidence intervals for the two 
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scenarios are overlapping and the p values are >0.05. After adjusting for the time-varying 

confounding by IPTW, the non-collapsibility effect of the baseline variable Z with 

respect to the cumulative effect is comparable with that from the point-exposure study. 

So is the non-collapsibility of Z with respect to A0.  

Table 5-5: Comparison of non-collapsibility effect with respect to A0 effect 

1e  1e  1e  2e  

time-varying confounding point-exposure study 

P value 

)log(
9 Model

8 Model

OR

OR
 CI )log(

9 Model

8 Model

OR

OR  
CI 

5 5 5 0.2 -0.059 [-0.063, -0.055] -0.059 [-0.062, -0.055] 0.986 

2 5 5 0.2 -0.028 [-0.031, -0.025] -0.028 [-0.031, -0.025] 0.951 

0.5 5 5 0.2 0.028 [ 0.025,  0.031] 0.028 [ 0.025,  0.032] 0.912 

0.2 5 5 0.2 0.059 [ 0.055,  0.062] 0.059 [ 0.055,  0.063] 0.950 

5 2 5 0.2 -0.059 [-0.063, -0.056] -0.059 [-0.062, -0.055] 0.806 

5 0.5 5 0.2 -0.059 [-0.063, -0.055] -0.059 [-0.063, -0.055] 0.931 

5 0.2 5 0.2 -0.059 [-0.063, -0.055] -0.059 [-0.063, -0.055] 0.966 

5 5 2 0.2 -0.031 [-0.035, -0.027] -0.031 [-0.035, -0.027] 0.968 

5 5 0.5 0.2 0.023 [ 0.020,  0.026] 0.024 [ 0.021,  0.027] 0.919 

5 5 0.2 0.2 0.037 [ 0.035,  0.040] 0.037 [ 0.034,  0.040] 0.862 

 

Table 5-6: Comparison of non-collapsibility effect with respect to A effect (1) 

1e  1e  1e  2e  

time-varying confounding point-exposure study 

P value 

)log(
18 Model

17 Model

OR

OR  
CI )log(

21Model

20Model

OR

OR
 CI 

5 5 5 0.2 -0.032 [-0.038, -0.026] -0.029 [-0.034, -0.025] 0.463 

2 5 5 0.2 -0.015 [-0.021, -0.009] -0.014 [-0.019, -0.009] 0.678 

0.5 5 5 0.2 0.014 [ 0.009,  0.019] 0.014 [ 0.008,  0.020] 0.931 

0.2 5 5 0.2 0.030 [ 0.024,  0.035] 0.029 [ 0.024,  0.034] 0.847 

5 2 5 0.2 -0.030 [-0.034, -0.026] -0.029 [-0.034, -0.024] 0.700 

5 0.5 5 0.2 -0.030 [-0.035, -0.025] -0.029 [-0.034, -0.024] 0.770 

5 0.2 5 0.2 -0.032 [-0.039, -0.026] -0.029 [-0.033, -0.025] 0.358 

5 5 2 0.2 -0.017 [-0.024,-0.011] -0.016 [-0.020, -0.011] 0.707 

5 5 0.5 0.2 0.013 [ 0.006,  0.019] 0.012 [ 0.006,  0.017] 0.810 

5 5 0.2 0.2 0.021 [ 0.016,  0.026] 0.019 [ 0.014,  0.023] 0.464 
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We extend the simulation study to a more general scenario by removing the assumption 

that the cumulative effect of A on Y is null. Figure 5-3 shows the scenario where there is 

an effect of A0 on A1 and there is a cumulative effect of A on Y, where A=A0+A1 

deterministically. Consequently, we generated A1 from a Bernoulli distribution with 

)expit()1( 02101 ALAP   , and Y from a Bernoulli distribution with 

)expit()1( 3210 AZLYP   . The generation of A0, L and Z is identical to the 

previous data generation. 0 , 0  and 0  were set to 0. The other parameters were set to 

be the values in table 5-7. 

 

Figure 5-3: Time-varying confounding scenario with baseline variable Z (Scenario 2) 

Model 17 and model 18 are again utilized to measure the non-collapsibility effect of Z 

with respect to the cumulative effect of A on Y. A point-exposure study was simulated by 

removing the relationship between L, A0 and A1 in figure 5-3. The non-collapsibility 

effect is measured by comparing estimates from model 20 and model 21 in the point-

exposure study. Results were presented in Table 5-7. The 95% confidence intervals of the 

non-collapsibility effect for time-varying confounding scenario and point-exposure 
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scenario are overlapping and the p values are >0.05, indicating that the non-collapsibility 

effect of Z with respect to the cumulative effect is comparable with point-exposure study. 

Table 5-7: Comparison of non-collapsibility effect with respect to A effect (2) 

1e
 

1e
 

2e  
1e  

2e  
3e  

time-varying confounding point-exposure study  

)log(
18 Model

17 Model

OR

OR

 
CI 

)log(
21 Model

20 Model

OR

OR

 

CI 
P 

value 

2 2 2 2 0.2 5 -0.166 [-0.175, -0.157] -0.176 [-0.187, -0.165] 0.148 

5 2 2 2 0.2 5 -0.171 [-0.180, -0.162] -0.182 [-0.192, -0.173] 0.090 

0.5 2 2 2 0.2 5 -0.159 [-0.169, -0.150] -0.167 [-0.176, -0.157] 0.282 

0.2 2 2 2 0.2 5 -0.157 [-0.165, -0.149] -0.163 [-0.172, -0.154] 0.297 

2 5 2 2 0.2 5 -0.163 [-0.173, -0.154] -0.176 [-0.185, -0.166] 0.079 

2 0.5 2 2 0.2 5 -0.175 [-0.184, -0.165] -0.177 [-0.187, -0.167] 0.759 

2 0.2 2 2 0.2 5 -0.181 [-0.192, -0.170] -0.175 [-0.185, -0.166] 0.475 

2 2 5 2 0.2 5 -0.164 [-0.174, -0.155] -0.176 [-0.186, -0.167] 0.072 

2 2 0.5 2 0.2 5 -0.178 [-0.188, -0.167] -0.176 [-0.185, -0.166] 0.786 

2 2 0.2 2 0.2 5 -0.187 [-0.185, -0.167] -0.176 [-0.199, -0.176] 0.132 

2 2 2 5 0.2 5 -0.124 [-0.134, -0.115] -0.131 [-0.140, -0.123] 0.263 

2 2 2 0.5 0.2 5 -0.175 [-0.182, -0.167] -0.178 [-0.188, -0.169] 0.522 

2 2 2 0.2 0.2 5 -0.137 [-0.145, -0.129] -0.135 [-0.142, -0.128] 0.749 

2 2 2 2 0.1 5 -0.327 [-0.339, -0.314] -0.340 [-0.354, -0.326] 0.166 

2 2 2 2 0.2 10 -0.220 [-0.233, -0.206] -0.233 [-0.248, -0.219] 0.170 

2 2 2 2 5 0.2 0.174 [ 0.166,  0.183] 0.178 [ 0.168,  0.188] 0.586 

5.3 Discussion 

Informed by the observations from the point-exposure study, we anticipate that when 

both the effects of Z and A are harmful, the risks will be high thus the magnitude of the 

non-collapsibility will become trivial. Therefore, in the process of exploring the non-

collapsibility effect of Z in the time-varying confounding scenario, we mainly set the 

effect of Z on Y with the OR of 0.2, and the effect of A on Y with the OR of 5.  From the 

figures, we can also predict the symmetric behavior of the non-collapsibility effect when 
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the effect of Z and A are on the opposite direction with the same magnitude. One of the 

parameter settings in table 5-7 again confirms this. Moreover, the main objective in this 

section was to find out whether time-varying confounding has an influence on the non-

collapsibility effect. We have already described the other basic features of the non-

collapsibility effect from the point-exposure study. Thus it is not necessary to carry out 

the simulation with every combination of the parameters. This setting would be a good 

representative of the non-collapsibility effect in time-varying confounding scenarios. 

The Z effect only goes into the study at the very last point on Y, and is independent of 

any other variables in the time-varying confounding scenario. Under the assumptions that 

there is no unmeasured confounding and no loss to follow-up, the results are expected to 

be comparable with the point-exposure study whenever the time-varying confounding 

was controlled appropriately.  

One can also use more models to analyze the data, for example adjusting Z in both the 

numerator and the denominator of the weights in the conditional model to examine if the 

confidence interval will be decreased. However, we do not focus on the precision of the 

estimates in this thesis.  
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6 Conclusions and Discussion 

 

In this thesis, first we attempted to distinguish the concept of non-collapsibility and 

confounding bias. Considering the conditions of the collapsibility of the RD, RR and OR 

measures, non-collapsibility and confounding are equivalent when the RD or the RR is 

used as the measure of association. However, when the OR is applied, the two concepts 

are not always concordant. One should always keep in mind that comparing the COR and 

crudeOR  cannot be deemed as a good strategy to detecting confounding bias. It was shown 

that the total discrepancy between the COR  and crudeOR  is the combination of the true 

confounding bias and the non-collapsibility effect. We emphasis again that both mOR and 

COR  are legitimate effect estimates. They are unbiased estimators for two different 

parameters, i.e. marginal effect at the population level and conditional effect at the 

individual or clustered level. They just happen to be different due to the non-collapsibility 

effect. The choice of mOR  or COR  should depend on the question under research. It is 

important for the investigator to consider which parameter is mainly of interest and 

choose the corresponding estimator. 

The analytical approach provides a tool to compute the non-collapsibility effect in 

different scenarios. Given a dataset from a real life study, one can measure the non-

collapsibility of OR using the formula provided in this thesis. It explicitly shows the 

decomposition of the total discrepancy and verification of various conditions of the 

collapsibility of the OR. Other formulae in the literature provided similar results in the 
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setting that A is independent of L. However, the formula in our novel approach provides 

the non-collapsibility effect in general scenarios. This allows one to assess the non-

collapsibility effect and the confounding bias simultaneously if a potential confounding 

variable is excluded in the models.  

The graphical approach gives us a straightforward impression of the non-collapsibility 

effect by visualizing it with figures. It provides a comprehensive view of the non-

collapsibility effect with a variety of parameter values. Therefore, we can draw 

conclusions about the relationship between the non-collapsibility effect with one 

specified related factor given that the others are fixed. Many interesting observations 

from the figures were discussed, providing another aspect of understanding the non-

collapsibility effect besides the magnitude.  

The objective of the simulation study was to explore the non-collapsibility effect in the 

time-varying confounding scenario. The results are comparable under the settings with or 

without a direct cumulative effect on the outcome. Some scenarios and models that do 

not involve the non-collapsibility effect were also demonstrated in this part of the data 

analysis. Though they were not the aims of the study, it provided additional confirmation 

of model specification and adjustment of variables concerning mediation and 

confounding in the causal diagram. However, a few results in table 5-2 and table 5-3 

imply that the simulation results do not agree the theoretical results under some settings. 

We suppose that it could happen by chance. Moreover, if the alpha level is set to 0.01 

instead of 0.05, we would not reject the null hypothesis. We can conclude that the results 

are comparable in table 5-3. 
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Some assumptions and limitations of the analytical approach have to be acknowledged. 

Firstly, several assumptions were made in the analytical approach. MSM and SLRM were 

performed to measure the marginal effect and the conditional effect. They are unbiased 

estimates under the assumption that there is no unmeasured confounding, no 

misclassification and no missing data. Furthermore, we used the un-stabilized weighted 

estimators in the MSM. The assumption of the positivity of weights was made, and it 

would be problematic if the denominator of the weights approaches 0 or 1 due to sparse 

or even empty cells in the observed data. In addition, we‟ve implemented a deterministic 

process to measure the non-collapsibility effect. We are studying the true value of the 

non-collapsibility effect in a source population and there is no sampling variability. 

However, random error and sampling variability are inevitable in practice. When one 

measures the non-collapsibility effect in finite samples, the precision of the estimate is 

also of interest in practice. Bootstrapping would be a good method to obtain the standard 

deviation. 

Furthermore, in the point-exposure studies, we have explored the non-collapsibility effect 

in very simple scenarios, whereas reality is often much more complicated. For example, 

there can be more than two strata of L, and the non-collapsibility behavior could be 

different depending on how the strata were collapsed over. It is also possible that there 

are more than one baseline variable in one study, while we‟ve only observed the non-

collapsibility effect of one variable. When L is a vector, further study can be performed 

to investigate the non-collapsibility effect over some variables in L given that the others 

are conditionally or marginally adjusted. It could be interesting to know whether the non-

collapsibility effect is additive with more than one baseline variable.  
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The graphical approach presented the analytical non-collapsibility effect with figures, 

however the derivation of the formula expressed by the other parameters is implicit. 

Along with the figures, a concise and understandable formula is needed to convey more 

precise information in a mathematical and statistical perspective.  

For the time-varying confounding scenario, more simulations and more settings are 

required to better illustrate the non-collapsibility effect compared to the time-point 

exposure scenario. The simulation was performed 100 times for each parameters setting. 

More simulations will provide a better accuracy of the estimates. We demonstrated that 

the non-collapsibility effect is comparable between the time-exposure and time-varying 

confounding scenario. However, from the results in table 5-7, it appears that the results 

are more likely to be further from the null in point-exposure scenarios. There might be 

some still unknown mechanism or related factors that are driving this subtle behavior. 

More research is needed to demonstrate the reason for this unexpected phenomenon. 

Moreover, I focused on the relatively limited settings so far. For example, the intercepts 

of the models are set to be zero, and only a few values of the parameters were specified. 

Further research should aim at exploring more possible values of the parameters to make 

the comparison more complete.  

In conclusion, the non-collapsibility problem of the OR should be neither ignored nor 

confused with confounding. The non-collapsibility effect depends on a variety of 

parameters, i.e. the baseline risk, the effect of the exposure, the prevalence and effect of 

the covariate. Particularly, the effect of the covariate plays a more important role than 

does the effect of the exposure, a result that has never been reported previously. Lastly, 
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simulation results suggested that the non-collapsibility effect over a baseline variable in a 

time-varying confounding scenario is comparable to the time-exposure study if the time-

varying confounder was adjusted appropriately in the model.  
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Appendix A 

 

A.1 The approximation of non-collapsibility effect by Gail 

In Gail‟s work, X is the covariate with expectation 0 and covariance 2 . Equation (2.9) 

shows the approximation of non-collapsibility effect over X. In the context of this thesis, 

L is a binary variable. We will derive a formula analogous to (2.9), assuming L is the 

covariate we are considering. 

By (2.5), 

)(
2

1
)(

2

1
2

1

1

1*    hh  

For a small  , by the second-order Taylor series, 

)()(
2

1
)()()()}({ 2

1   hLEhLEhLhE  

Thus, 

))()(
2

1
)()()(()( 21

1

1    hLEhLEhhh  

By the Taylor series expansion, we have 

)]()(
2

1
)()())[(()())(()( 211

1

1    hLEhLEhhhhh  



 

69 

From 1)()))((())(()( 11   






d

d
hh

d

d
hh  and 

)())(()()))((( 11 


  hhhhh
d

d
 

It follows that: 

)(

1
))(()( 1







h
hh  

Thus, 

)(/)()(
2

1
)()( 2

1

1   hhLELEh  

Similarly, 
)(

)(
)(

2

1
)()( 2

2

1











h

h
LELEh  

Submitting )( 1

1 h  and )( 2

1 h  into (2.5) gives 

}
)(

)(

)(

)(
{)(

2

1
2(

2

1
)(

2

1
)(

2

1 2

2

1

1

1*


















 

h

h

h

h
LEhh  

Then the approximation of non-collapsibility effect is: 
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A.2 The expression of 01P  as a function of the other parameters 

LOR  can be constructed in table 3.  
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Solving the above quadratic equation, we define 
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