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3 comprises, in part, a characterization of semi-perfect rings in terms 

of idempotents and a structure theorem for finite1y-generated projec
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Résumé 

Dans cette thèse on développe les résultats fondamentaID~ 

de la théorie des anneaux parfaits et demi-parfaits. Une carac

térisation est donnée dans les théorèmes 1.13 pour les anneaux 
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du Chapitre 3 donne une caractérisation des anneaux demi-parfaits 

en utilisant les idempotents et un théorème de structure des 

modules projectives avec un nombre fini de générateurs sur les 

anneaux demi-parfaits. En conclusion, dans l'appendice l'auteur 

a formul~ et discuté une conjectur~sur les sous-anneaux des 

anneaux parfaits. 
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PREFACE 

The aim of this paper is to give a complete characterization of 

Perfect and Semi- Perfect rings as defined by H. Bas s [2]. 

In Chapter l, Theorem 1.13 gives a complete characterization 

of perfect rings which is due to H. Bass. These turn out to be those 

rings for which every fIat R-module is projective. Corollary 1.18 

shows that over a perfect ring, a generalized form of Nakayama's 

Lemma holds. In Theorem 1. 29, we prove that a ring R is left 

perfect <=> every completely reducible R-module has a projective 

coyer - a result due to F . Sandomier ski [33]. 

In Chapter II, a characterization of semi-perfect rings also due 

to H. Bass, is given. A corresponding theorem to 1.29 is proved 

for semi-perfect rings. A s a corollary, we show that a ring R is 

semi-perfect <=> every left simple R-module is of the form Re 1 Je 

where 
2 

e = e ER. 

The main theorem in Section A of Chapter III characterizes semi-

perfect rings in terms of idempotents. It has been recognized that 

much of the c1assical structure theory for Artinian rings can be 

developed under the weaker hypothesis that R be sem i-perfect. 

Section B contains some results for perfect and semi-perfect rings 

which are analogous to those characteristic of Artinian rings. 



We obtain a decomposition theorem for finitely generated 

projective modules over semi-perfect rings in Section C. Section 

D contains two structure theorems for semi-perfect rings. The 

second, given by E. Behrens [41 is somewhat analogous to the 

IISp litting Theo:i.·em" of A. Zaks r38J for semi-primary rings. 

Finally in the Appendix, we formulate and discuss a conjecture 

dealing with subrings of perfect rings. 
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CHAPTER l 

A: On Small Modules 

In order to give the main characterization of left perfect rings, 

we shan require sorne results involving the concept of smallness. 

In this re spect, Lemma 1.4 is very useful. 

1 . 1. Definition 

Let R be a ring and M a left R-module. A submodule P of M 

is called sman in P if M = P+Q ~ M = Q for any Q ~M. 

1.2. Definition 

An idea1 l of R is called left T-nilpotent if for any se'luence 

n 
fa.) cl, 

1 
there exists an integer n such that n a. = O. 

i= 1 1 

1.3. Remark 

Clearlya nilpotent ideal is both 1eft and right T-nilpotent. Also 

by considering a constant sequence of elements in l, it is c1ear that 

a T -nilpotent ideal is nil. 

1.4. Lemma 

Let R be a ring, J(R) its Jacobson radical and P, Q, M and N 

left R-modu1es. Then the following statements are true. 

(a) If P is small in M and f: M~N, then f(P) is small in N. 

(b) If P is small in M and Q ç P, then Q is small in M. 



2 

(c) If P and Q a.re small submodu1es of M, then so is P+Q. 

(This can be generalized to finite sums.) 

(d) If M is finite1y-generated, then J(M) is small in M. 

(e) 

(In particu1ar, J(R) is small in R. ) 

J{M) = ~ P. 
iEI l 

such that P. is small in M. 
l 

Hence if f: M~N, then f(J(M)) ~ J(N). 

(f) J(R)· M ~ J(M) for any left R -module M. 

(g) If P is a projective left R-modu1e, then J(R). P = J(P). 

(h) Let M be a projective Ieft R-module and E = End
R 

(M). 

Then J(E) = [f E E 1 Imf is small in M}. 

(i) J(R) is 1eft T -nilpotent ~ J(R)· M is small in M, 

for any left R-module M. 

(j) If RI J(R) is completely reducible, then J(R)· M = J(M) 

for any Ieft R-modu1e M. 

Proof 

(a) Suppose N = f(P)+B where B ~N. Then 
-1 -1 

M= P+f (B) = f (B) 

since P is small in M. Sa f(P) ç;;f(M) = B. Hence 

N = f(P)+B ç;; B, and sa f(P) is small in N. 

(b) Trivial. 

(c) Suppose (P+Q)+R = M where R ç;;N. Then P+(Q+R) = M. 

Sa Q+R = M since P is small in M. Hence R = M since Q is 

aiso small in M. But then P+Q is smal1 in M. (By induction 
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on the number of small submodules of M, we see that 

n 
I; P. 

i= l 1 

is small in M if P. is small in M for eaeh 
1 

i= l, ... , n. ) 

(d) Suppose J(M) is not small in M. Then there exists a 

proper submodule P of M sueh that J(M)+P = M. Sinee 

M is finitely-generated, there exists a maximal submodule 

Q of M sueh that PcQ. So J(M)+Q = M. Henee Q = M 

sinee J(M) cQ. But this eontradiets the maximality of Q. 

Henee J(M) is smaP i.n M. 

(e) The proof given here follows that of D. Fieldhouse [12]. 

It is clear that J(M):! I; P. 
i E l 1 

where P. is small in M, sinee 
1 

if N is a maximal submodule of M, then P. eN. 
1 

For the reverse inclusion, it suffiees to show that xE J(M) ~ Rx 

is small in M, sinee by (e), a finite sum of small submodules of M 

is small. Equivalently, it suffiees to prove that Rx is not 

small in M ~ x rt. J(M). So suppose x f. J(M). Then x rt. N for 

sorne maximal submodule N of M. So Rx+N = M. But 

Nf:. M and so Rx is not small in M. Conversely, suppose Rx 

is not small in M. Then there exists a proper submodule F 

of M sueh that Rx+F = M. Define 3' = fF cM 1 F is proper 

and Rx+F = M}. Then 3' f:. (jJ sinee F E 3'. Clearly x f. F for aU 

FE 3'. Observe also that if G is any proper submodule of M 
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and G::>F where FE 3', then GE 3'. Now order 3' by set 

inclusion. Then U F is a proper submodule of M since 
FE3' 

xéF for aH FE3'. Aiso since U F:JF for all FE3', 
FE3' 

then U F E3'. S'o, by Zorn's Lemma, there exists a maximal 
F E3' 

"element E in 3'. Clearly E is a maximal submodule of M, 

for if A :JE, then A E 3'. But this would contradict that E is 

maximal in 3'. Hence xéJ(M) since x~E. This proves (e). 

Our remark now follows trivially. Obse rve that by (a), P. 
1 

sm.aH in M ~ f(P.) is small in N where f: M~N. So 
1 

f(J(M)) = ~ f(P.) 
iEI 1 

~ ~ Q. 
i E l 1 

= J(N). 

where P. is small in M 
1 

where Q. is small in N 
1 

(f) We first observe that J(M) = n Ker f such that f E Hom
R 

(M, S) 

where S is a simple left R-module. Aiso if we define g: R~S 

by g(r) = r· s for 0 # sES, then g(R) # o. Hence g(R) =S and 

S = RI Ann(s). So 

J(R) = n Ann(s) 
sES 

The above remarks may be found, for example in [29]. 

So consider f:M~S where S is a simple left R-module. 
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Then f(J(R)'M) ç; J(R)'f(M) = J(R)·5 = 0 by (':~). 50 

J(R)'MçKerf for every f:Moo)5. Rence J(R).MÇ;nKerf 

= J(M). 

(g) Consider fir st the case where F is a free left R-mddule. 

Then F = EB R. where 
i E 1 1 

R. ::: R for all i El. Rence 
1 

J(F) = J( E9 R.) = E9 J(R.) = J(R)·F. Now let P be a 
iEl 1 iEl 1 

projective left R-module. Then P is a direct summand 

of a free left R-module F. Consider F ~ _~: P where TT 
a 

is an epimorphism which splits; i. e. 7Ta = idp ' Then 

J(P) = 7Tœ(J(P)) ç; TT(J(F)) by (e) 

= TT(J(R) . F) 

ç; J(R) 'TT(F) 

= J(R)' P. 

But J(R)· P ç; J(P) by (f). 50 J(R). P = J(P). 

(h) Our proofes sentially~follows that of 5andomier ski [34]. Let 

T = [fEE Ilmf is small in pl. We first show that Tc J(E). 

50 let fE T. Then P=lmf+lm(l-f) = lm(l-f) since lmf 

is small in P. Rence l-f is an epimorphism of P. But P 

is projective. Then, there exists g: poo) P such that (l-f)g = id p ' 

But then f E J(E). Now to prove J(E) cT. 50 let f E J(E) and 

is an epimorphism where TT: poo) P/K is the canonical map. 
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Since P is projective, there exists g: P-~ P such that 

P 

commutes. So '7Tfg=11. No.v let xE P. Then '7T(x-fg(x)) = 0, 

and so x-fg(x) EKer 11 = K. Bence lm(l-fg) ç K. But 

fE J(E) ~ l-fg is isomorphism of P ~ Im(l-fg) = P. So PçK. 

Bence P = K and lm f is small in P. This shows f ET, and 

so J(E) = T = (f E E 1 lmf is small in p} . 

(i) We follow the proof given by R.Bamsher [17J. Also, we note 

that if J(R)· M is small in M, then J(R)' M = M ~ M = O. 

(~). Assume J(R)· M is not small in M and let J(R)' M = M 

for sorne non-zero left R-module M. Then there exists 

ml E M and al E J(R) such that alm
l 

f. O. But if mE M, 
n 

then m = ~ aimi for ai E J(R) and mi E M. Bence akmk f. 0 
i=l 

for some index k. Bence there exists m
Z 

E M and a
Z 

E J(R) 

su ch that ml = aZm
Z 

f. 0, and hence al aZm
Z 

f. O. In this way, 

we have a sequence {ai) C J(R) and a sequence (mi} C M 

suchthat ala
Z

" . akmkf. 0 for aU k. This contradicts that 

J is left T -nilpotent. So, J(R)' M is small in M. 

1 
-~ 
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(<=) Let ta,} be a sequence of elements of J(R). Let F = El7 Rx, 
1 '1 l 1= 

be a free left R-module with countable basis tx,}, Aiso 
l 

00 

define G = El7 R(x,- a,x, 1)' Then, since J(F) = J(R), F by (g), 
i=l 1 1 1+ 

we have that F = G+J(R)· F = G by hypothesis, Now let xl E F. 

11 

Then xl = i~l ri(xi-aixi+l) = rlxl+(r2-rlal)xZ+(r3-rZa2)x3+'" 

.. ,+ (r - rIa l)x - r a xl' n n- n- n n n n+ 
Hence, by uniqueness of 

repre sentation, rI = l, r Z =r 1 al' r 3 =r ZaZ' . , . , r na n = O. 

This shows that 0 = r a = al' , . a 1 a, and so J(R) is 
n n n- n 

left T -nilpotent. 

(We note that this implication only requires that F be a free 

left R-module ,) 

(j) Let M be a left R-module and J = J(R). Then MI JM is a left 

RI J -module, and so is projective since RI J is completely 

reducible. So by (g), J(MI JM) = J(RI J)' MI JM. Hence 

J(MI JM) = 0 since RI J is semi-primitive, But for any left 

R-module M, J(MI J(M)) = 0 and J(M) is the smallest sub-

module of M with this property. Hence J(M) ~JM. So 

J(M) = J(R)' M since J(R), M ~ J(M) for any left R-module M 

by (f), 

This completes the proof of Lemma l ,4, 
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1 . 5. Definition 

Let M be a left R-module. An epimorphism 'TT: P~M is a 

projective cover of M whenever P is a projective left R-module 

and Ker 'TT is small in P. 

From Lemma 1.4, we obtain two interesting corollaries. 

1.6. Corollary 

Let R be semi-primitive (i. e. J(R) = 0). Then a left R-module M 

is projective Ç:) it has a projective cover. 

Proof 

(:)). This implication is c1ear. 

(Ç:). Suppose '7T: P~ M is an epimorphism where P is projective 

and K = Ker '7T is small in P. 

K ~ J(P) 

= J(R)· P 

= o. 

Then 

by 1. 4(e) 

by 1. 4(g) 

So '7T is an isomorphism and M is projective. 

1.7. Corollary 

For any ring R, a flat left R-module M is projective Ç:) it has a 

projective cover. 

Proof 

(:)). Trivial. 

(*,). Let 'TT: p..,. M be a pr ojective cover of M and let K = Ker 'IT. 



9 

Since M is fiat, there exists f:P-?K such that f(k) =k for aU kE K 

[30, p. 61]. So ImfeK. But K is small in P. Hence by l.4(b), 

lmf is small in P. So fE J(E) where E =EndR(P), by 1.4(h). 

Hence 1-f is a unit in E by [23, §3.2, Prop.S]. But (l-f)k= k-f(k) =0. 

Hence k=O forall kEK. Thisshowsthat 'fT isanisomorphism 

and so M is 'projective. 

B: Perfect Rings Characterized 

1 . 8. Definition 

H. Bass called a ring R 1eft perfect ~ every 1eft R-modu1e has a 

projective cover. 

1 . 9. Definition 

A submodu1e A of M is 1ar ge in M if A n N = 0 => N = 0 for any 

NÇM. 

1.10. Lemma 

Let M be a non-zero right R-modu1e. Then M contains a simple 

R-module ~ Soc(M) is large in M. 

Proof. 

(=». Let N çM such that N #0. By hypothesis, there exists a 

simple right R-module SeN, S 'f. O. But then SeN n Soc(M) and hence 

N nSoc(M) # o. So Soc(M) is large in M. 
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(<=). Assume Soc(M) is large in M. Let Nf:.O be a submodu1e 

of M. Then Soc(M) n N f:. O. But Soc(M) is completely reducible, 

and hence so is Soc(M) n N. So Soc(M) n N, and hence N, contains 

a simple submodule. 

1.11. Remark 

An equivalent formulation of 1.10 is as follows: A non-zero 

right R-module has a non-~ero socle ~ Soc(M) is large in M. 

1 . 12 . Definition 

Let D be an ideal of R. Then idempotents can be lifted modulo D , 

if for any idempotent e+D in R/D, there exists an idempotent f in R 

such that f+D = e+D. 

We shall now give the main characteristization of left perfect rings. 

1.13. Theorem (Bass [2J) 

Let R be a ring and J = J(R) its Jacobson radical. Then the 

following statements are equivalent: 

(1) R/J is completely reducible and J is left T-nilpotent. 

(2) R is left perfecto 

(3) Every flat R-module is projective. 

(4) R satisfies the descending chain condition on principal right ideals. 

(5) R has no infinite set of orthogonal idempotents, and every non-zero 

right R-module M contains a simple R-module. 
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(6) R has no. infinite set of orthogonal idempotents and for every 

non-zero right R-module M, Soc(M) is large in M. 

Proof. 

The proof follows thatof Bass [2J. We aiso consult [34J extensively. 

N ow (2) ~ (3) follows directly from Corollary 1. 7 . 

AIs 0 (5) ~ (6) is immediate from Lernrna 1. 10. 

(1) ~ (2). Let M be a left R-module. To show that M has a 

projective cover. N ow MI JM is a left RI J -module, and since RI J 

is completely reducible, then Ml JM = EB S. where S. is a simple 
iEI1 1 _ 

left ideal of RI J for each i in sorne index set I. Hence S. = (R 1 J)f. 
1 1 

where f.=f.+J and f.
2

=f.. NowJ isleftT-nilpotentandhencenil. 
1 1 1 l 

So idempotents can be lifted modulo J by [23, §3. 6 Prop. 1]. Hence 

there exists e.
2 

= e. E R such that ~. = f.. Then MI JM = EB S. 
1 1 1 1 iEI 1 

~ EB Re. 1 Je.. Let P = EB Re. and consider cp: P-> MI JM, where the 
iEI l 1 iEI 1 

restriction of cp to Re. is the canonical epimorphism cp. :Re·. -> Re. / Je .. 
1 1 1 l 1 

Clearly P is projective, being a direct SUffi of projective R-modules, 

and cp is an epimorphism. Also Kercp= œ Ker cp. = œ Je. = J( EB Re.) 
iEI 1 iEI 1 iEI 1 

= J( P) = J(R)· P by l .4(g). But since J = J(R) is Ieft T-nilpotent, 

then J(R). P is small in P by 1. 4(i). So Ker cp is small in P and 

cp: P->M/JM is a projective cover of M/JM. But Pis projective. 

So there exists {3:P->M such that '17'{3=Ci. where '17':M->M/JM. That is, 

the following diagram 



lZ 

M------~) M/JM 
'TT 

commutes. Now M=ImjS+Ker'TT = ImjS+JM=ImjS since JM is 

small in M by 1. 4(i). So jS is an epimorphism. Aiso Ker jSc Ker cp 

which is small in P since cp: p~ M/ JM is a projective cover. Hence, 

by l.4(b), Ker jS is small in P. 

Hence, by 1. 4(b), Ker jS is small in P. So {3: P~ M is a projective 

cover of M, and R is left perfect. 

of principal r ight itlea l s of R. Pick a sequence fa.} cR such that 
1 

Hence it suffices to prove al a
Z

· .. anR = al a
Z

· .. a n+kR for k ~ 1. 

Let F = E9 Rx. be a free left R-module countably generated on fx.}. 
1 1 

i=l n co 
Aiso let G = 6:) R(x.-a.x. 1) and G = 6:) R(x.-a.x. 1) for each 

. 1 1 1 1+ n . 1 1 1 1+ 

n=l, Z, ... 

1= 1= 

. Then clearly F /G is a free (hence flat) left R-module 
n 

with basis fi l' i Z,···} where i. =x.+G . But F /G = limF /G . 
n+ n+ 1 1 n ~ n 

So F/G is flat, since a direct limit of flat R-modules is flat [30, p.33J. 

So by hypothesis, F /G is projective and hence G is a direct summand 

of F. The proof would be complete after we prove the following lemma. 



13 

Suppose G is a direct sum.rnand of F where F and Gare defined 

as above. Then the chain [al ... anR) of principal right ideals 

terminates. 

Proof 

The proof, based on that of Sandomierski [34J, consists of 

four claims. 

Claim l 

For each k, define J
k 

= [r ER \ ra
k 
... ra

k
+

n 
= 0 for sorne n} . 

Then Jk=[rER\rxk=O} where xi=xi+G. 

Proof of C1aim l 

Observe that x
k 

= xk +G = {xk -akxk + l )+akx
k

+ l +G = akxk + l +G since 

x
k 

- a
k 

x
k

+ 1 E G. So x
k 

= a
k 

(x
k

+ l +G) = a
k 

x
k

+ l . By a sirnilar computatio n, 

xk +1 = ak+1~+2· So ~k+l = akak + l ... ak+nxk+n+l for sorne n. 

Now let rEJ
k

. Then ra
k 
... ak+n=O for sorne n. Hence rx

k
= 

So J
k 
~ [r ER \ rX

k 
= O}. For the reverse 

inclusion, let rxk=O. Then r(ak ... an+lxn+2)=0 for n:<!k. Hence 
n 

rak···a IX 2 EG. But this means that rak···a IX 2 = L r.(x.-a.x. 1)· 
n+ n+ n+ n+ i=l 1 1 1 1+ 

By comparing coefficients, we see that ra
k

.· .a
n

+
l 

=0, and so r E J
k

. 

Hence [r ER \ rX
k 

= O} ~ J
k

, and Claim 1 is proved. 

Now, hy hypothesis, Gis a direct sumrnand of F. So if 'IT:F~F/G, 

thenthere exists O!:F/G~F suchthat 'lTO!=id. So x ='lTO!(x )=O!(x )tG. 
n n n 

Hence X -O!(x ) E G for an n= l, 2, . .. . Let z = O!(x ). Then 
n n n n 

X = z +g where g E G. 
n n n n 
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Clairn 2 

J
k 

= [r ER 1 rZ
k 

= O} for aH k, 

Proof of Claim 2 

ByClaiml, Jk=[rERlr~=O}. But rzk=ra(xn)=a(rx
n

) since 

a is an R-module homomorphisrn, Hence r zk = 0 ~ a(rx
k

) = 0 ~ rX
k 

= 0 

since Q! is a monomorphism, This proves Claim 2, 

5inee Z Elma, then zEF. 50 Z = ~ c ,x, where c ,ER 
n n n , l n, J J n, J 

J= 
for j=l, 2, , .. , Consider the principal right ideal 1 of R generated 

by [c l ' } w he re j = l, 2, . , , 
, J 

Claim 3 

0) 

1:= na", a R, 
n=l l n 

Proof of Claim 3 

Recall we showed in the proof of Clairn l that xl = al x
2 

= .. , = al a
2 

.. , anx
ntl 

' 

But since zn = a(x
n

) and a is a rnonomorphism, then Z l = al z2 = .. , = 

0) 

=a l a 2 ,,·a Z l' But Z l = ~ c l'x,. Hence zl = ~ Cl ,x, = 
n nt nt j=l nt , J J j=l ' J J 

=a
l

a
2
·, ,a Z l =a

l
a

2
, .. a ( t c l ;x,). 50 for each j=l, 2, '" 

n nt n j=l nt , J J 

Cl ,=al···a cl' E al···anR for all n=1,2",. , But 1 is 
,J n nt ,J 

0) 

generated by [cl'} for j=1,2, .... 50 le n al' .. anR, 
,J n=l 

Clairn 4 

There exists an integer m such that al'" a rn EL 



Proof of Claim 4 

00 

Now zl= ~ cl .X. 
j=l ,J J 

(Xl 

15 

00 

= r; cl .(z.+g.). But zl ElmŒ where 
j=l ,J J J 

00 (Xl (Xl (Xl 

O!:F/G~F. So Zl = ~ Cl .z. = ~ cl .( L; c .. x.) 
j=l ,J J j=l ,J i=l J,l 1 

= ~ ( L; cl .C. . )x .. 
. l . l ,J J,l 1 
1= J= 

00 

So Cl' = L; cl .C .. ' In the proof of Claim 3, we showed that 
,J . l ,J J,l 

J= 

z.=a .... a Z l for aU n>j. So c. k=a .... a C l k for aU n>j-, 
J J n n+ J, J n n+ , 

O! 
and aU k=l, 2, ... Hence for sorne n=O!, cl k= ~ cl .(a .... a C l k) 

, . l ,J J O! O!+ , 
J= 

ex 
for aU k=1,2,... Let y= ~ cl .(a .... a). Then cI,k=yc

ex
+ l k 

. l ,J J O! 
J= 

and hence zl =YZy+l But zl =a l a
2

·· .aO!zex+ l Sa (y-al" .aO!)zex+l = O. 

Hence by Claim 2, y-al'" a E J . Let p = y-al' .. a . Then by Claim l, 
O! O! O! 

pa
l

···a(3=O for sorne (3. So ya l ... aO!=a l a 2 ... aO!+(3' Hence ifm=O!+(3, 

then al a
2 
... am El. By Claims 3 and 4, Lemma (~:c) is proved. 

(4) ~ (5). Suppose there exists an iniinite set of non-zero orthogonal 
n 

idempotents of R. Let [e.} be a countably infinite set. Put x = ~ e .. 
1 n i= l 1 

Then (l-xn )( l-xn + l ) = l-xn+ l - x n +xnxn + l = l-xn+l' So (l-xn)R :l'(l-xn+l)R 

for aU n=l, 2, ., .. We now show that (l-x )R f. (l-x l)R. For 
n n+ 

2 
,suppose l-x =(l-x l)r for rER. Then x l(l-x )=(x l-x l )r=O. 

n n+ n+ n n+ n+ 

Hence e 1=0, a contradiction. So(l-x )R::;>(l-x I)R foralln. 
n+ n t- n+ 

Let ri=l-x
i 

forall i=1,2, .... Then rlR1r2R1r3R1 ... which 

contradicts (4). So there cannat exist any infinite set of orthogonal 

idempotents of R. 
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Now suppose no non-zero right R-module M contains a simple 

right R-module, Let 0 ~ x E M. Then by assumption, xR is not 

simple, So there exists xl ~ 0 such that xl = xr where r ER 

and xlR 1= xR, Again, byassumption, xlR is not simple, Hence 

there exists x2~0, x
2

=x l r l where rlER and x2RlxlR, 

Continuing in this fashion, we have that xR"1 xlR '1 x
2

R 1, , , 

which again contradicts (4), This proves that every non-zero 

right R-module contains a simple right R-module. 

(5) => (1), If J=O, there is nothing to prove. So asaume J~O. 

For each ordinal {3, define inductively the right ideal J {3c J of R by 

( 1) 0l.<{3 => JacJf3' 

(2 ) J = 
0 

(O} , 

(3) U J 
a < f3 01. 

if {3 is a limit ordinal 

J = - f3 
J 

y+l 
where {3=y+l and where J IIJ =Soc(J/J). 

'Y+ Y Y 

Nowthere exists {30 suchthat J
f30 

= Jf3
0

+1' and so Soc(J/J
f30

) = J{30+/J
f30

= 0, 

By hypothe sis, a non- zero module has non-zero socle, So JI J f3 = 0 
o 

~ J = J f3
0 

Now for each 0 ~ a E J, define h(a) to be least ordinal f3 

that a E J f3' Then h(a) cannot be a limit ordinal, for if so, then 

a E J {3 = U J a' Hence a E J a for sorne a< 8, which contradicts the 
a<{3 

such 
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minimalityof {3. So then h(a) =y+l for sorne y. But J I/J =Soc(J/J ), 
y+ ')1 Y 

and since Soc(J 1 J ) is completely reducible, then JI' J e J . So 
y ')1+ 'Y 

if al,a
Z 

EJ, then h(a
l 

a
Z

)< h(a
l
). Now let [ai}eJ. If J is not left 

n 
T-nilpotent, then n a. f 0 for aU integers n. But then h(a

l
) >h(ala

Z
) 

i=l l 

> h(a
l
a

Z
a

3
) >. .. would be an infinite decreasing chain of ordinals -

a contradiction. Renee J is left T -nilpotent. Finally, to show RI J is 

completely-reducible. We shall prove RI J = Soc(RI J). Now J is left 

T-nilpotent and so is nil. Renee, if R has no infinite set of orthogonal 

idempotents, then so is RI J. So Soc(kl J) is a finite direct sum of 

minimal ideals each of which is generated by idempotent. Renee 

Soc(RI J) is a direct summand of RI J. But then the complementary 

module has zero socle and so is also zero, by hypothesis. Renee 

RI J = Soc(RI J). 

This completes the proof of Theorem 1.13. We shaH now deduce 

sorne interesting corollaries. 

1. 14. Definition 

A ring R is called semi-primary ~ RI J is completely reducible 

and J = J(R) is nilpotent. 

1.15. Corollary 

Let R be right Noetherian. Then R lis right Artinian ~ R is left 

perfecto 
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Proof 

(~). Let R be right Artinian. Then R has the descending chain condition 

on right ideals, and hence on principal right idea1s. So R is 1eft perfect. 

(~). Since R is left perfect, then R/ J is completely reducible and 

J is left T -nilpotent. Hence J is nil. But R is r ight N oetherian, and so 

by [23, p.70J, J is nilpotent. Hence R is semi-primary. But if Ris 

right Noetherian and semi-primary, then R is right Artinian by [6, § 6, 

Prop.12J. 

1 . 16 Definition 

An idea1 D of R is called a right annihilator, and denoted by r(D), 

if D = (r ER 1 Dr = O). 

1. 17 Corollary (Faith [1 l J) 

Let R satisfy the ascending chain condition on right annihilator s. 

Then R is semi-primary ~ R is left perfect. 

Proof 

(~). This implication is clear since a nilpotent ideal is left T -nilpotent. 

({::). It suffices to prove that J is nilpotent. Consider r(J) ç; r(J2) 

3 
ç; r(J ) ç; ... By hypothesis, there exists an integer n such that 

n nt1 . n n 
r(J ) = r(J ). We clalm r(J ) =R. Suppose not. Then Soc(R/r(J )) f:. 0 

since by Theorem 1.13, non-zero modules over a perfect ring have non-

zero socles. So Soc(R/r(J
n

)) = I/r(Jn) where l is a left ideal such 

that If,r(.JP"). But Soc(R/r(J
n

)) is comp1ete1y-reducib1e and hence 
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J(l/r(Jn» = O. This implies that J. le r(Jn). 
n+l n 

Hence le r(J ) = r(J ). 

So 1 = r (Jn), a c ontr adiction. 50 
n n 

r(J)=R~J=O. 

1.18. CoroUary 

Let R be a left perfect ring. Then, for aU left R-modules M, 

(1) J(R)·M is small in M and 

(2) J(R)·M=J(M). 

ProoI 

Let R be left perfecto Then RI J is completely reducible and J is 

left T-nilpotent. Hence conditions (1) and (2) follow from Lemma 1.4(i) 

and (j). 

The author had made the following conjecture in a 5tudent Ring Theory 

5eminar at McGill Univer s ity (1973). 

1.19. Conjecture 

Let R be a ring, J(R) Us Jacobson radical and suppose R does not 

contain an infinite set of orthogonal idempotents. Then R is left perfect 

<=> for allieft R-modules (1) J(R)'M is small in M and (2) J(R).M=J(M). 

Discussion 

Now CoroUary 1.18 shows that a left-perfect ring satisfies the conditions. 

50 we examine the converse. But Lemma 1.4(i) states that J(R)· M is small 

in M <=> J(R) is left T -nilpotent. So in view of Theorem 1.13, it suffices 

to prove that RI J is completely reducible. 5ince J(R) is left T-nilpotent 
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then it is nil. Hence, s ince R does not have an infinite set of 

orthogonal iidempotent s, neither does RI J. But B. Osofsky 

[28J has remarked that a- regular- ring ~incwhich th.ere - ': 

does not exist an infinite s et of orthogonal idempotents is completely 

reducible. 80 it suffices to prove that RI J is regular. But c1early 

condition (2) implies that R/J is a V-ring (i.e. evelry left R/J-module 

has zero Jacobson radical). However, a theorem of 1. Kaplansky [31 ] 

states that if a ring S is commutative, then 8 is regular ~ 8 is a V -ring. 

A1so an example of J. Cozzens [10J shows that the commutativity condition 

cannot be dropped. So our conjectu~e is true if R is commutative. 

We remark here that H. Bass [2] has conjectured that R is left 

perfect ~ every non- zero R-module has a maximal submodule and there 

does not exist an infinite set of orthogonal idempotents. R. Hamsher [17 J 

and D. Fieldhouse [13] both independent1y settled this conjecture in the 

affirmative, whenR Is commutative. As above, J. Cozzen's examp1e 

shows that commuta.tivity is necessary. We do notknow if Bass' 

conjecture is equivalent to Conjecture 1.19. 

1.20. Corollary 

R is left perfect ~ every flat 1eft R-module has a projective cover. 

Proof. 

(=». Follows from the definition of left perfect rings. 

((=:). Suppose M is a flat left R-module which has a projective cover. 

Then M is projective by Corollary 1.7. 80, by Theorem 1.13, R is left 

perfect . 
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1 . 2 1. Definition 

An R-module M is called quasi-projective ~ Hom
R 

(M, -) preserves 

the exactness of aU short exact sequences of the form O~K-+M~N-+O. 

The following result was proved by J. Golan [15J and also by 

N.Vanaja [36J. 

1.22. Corollary 

R is left perfect ~ every fiat left R-module is quasi-projective. 

Proof. 

(~). Clear, since a proj ective module is quasi-projective. 

(<=). Assume every Hat left R-module is quasi-projective. Let 

00 00 

F = E9 Rx. be free on the countable set [x. }. Also, let G = œ R(x. -a.x. 1) 
i=l 1 1 i=l 1 1 lt 

n 

and G = E9 R(x.-a.x. 1) for each n=l, 2, .... Then as in the proof 
n i=1 1 1 1+ 

of Theorem 1.13, F /G is a free, hence flat, left R-module for each n. 
n 

Then F /G = lim F /G is flat. But then F EDF /G is also flat, and hence 
~ n 

quasi-projective by hypothesis. Sa by [15, Lemma 1.lJ, Gis a direct 

summand of F. Hence by Lemma (,:<) of Theorem 1.13, R satisfies 

the descending chain condition on principal right ideals. 

1.23. Remark 

Corollary 1.22 characterizes aU rings R for which every fiat left 

R-module is quasi-projective - namely, left perfect rings. 
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It would be interesting to characterize those rings R for which 

every quasi-projective R-module is flat. J. Golan has conjectured 

(in private communication) that every quasi-projective R-module 

is flat ~ every simple R-module is injective. N. Vanaja [36J has 

proved that if R is commutative, then every quasi-projective R-module 

is flat ~ R is regular. Clearly Vanaja 1 s result is a special case of 

Golan's conjecture since 1. Kaplansky [31J has proved that a commutative 

ring R is regular ~ every simple R-module is injective. 

It is well-known that R is left Noetherian ~ a direct limit of injective 

left R-modules is injective. See, for example [30, p. 87J. We now 

prove a similar result for projective modules over left perfect rings. 

1.24. Corollary (Bass [2J) 

R is left perfect ~ a direct limit of projective left R-modules 15 

projective. 

Proof 

(=». Let [P.I i Er} be a family of projective left R-modules and 
1 

let P = lim P., Then P is flat since a direct limit of projective (hence 
~ 1 

flat) R-modules is flat. Hence P is projective since R is left perfect. 

(<=). A 5 in the proof of Corollary 1.22, we have that F /G = lim F /G 
~ n 

where F = œ Rx., 
i=l 1 

each n=l, 2, ... 

00 n 
G = œ R(x. -a.x. 1) and G = œ R(x. -a.x. 1) for 

i=l 1 1 1+ n i=l 1 1 1+ 

By hYp3thesis, F /G is projective. Hence G is a 

direct summand of F. By Lemma (~~) of Theorem 1.13, R is left perfecto 
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1.25. Corollary 

Let R be a local ring suc h that J = J(R) is left T -nilpotent. 

Then a direct limit of free left R-modules is free. 

Proof 

Let {F.liEI} be a family of free left R-modules, and let F =limF .. 
l ~ l 

Since R is local, then RI J is completely reducible. Since J is left 

T-nilpotent, then R is left perfect. So by Corollary 1.24, F is projective. 

Since R is local, F is free by [19, p. 374J. 

It is well-known that a direct productof projective R-moo ules need not 

be projective. R. Baer [20J has shown that if R = Z J the ring of integers, 

then nz is not projective where the product is taken over a countably 

infinite set. However, we do have the following result. 

1.26. Corollary 

Let R be .1eft Noetherian and left perfecto Then a direct product 

of an arbitrary family of projective left R-modules is projective. 

Proof. 

Let {P.liEI} be a family of projective left R-modules and let 
l 

P = n P.. By [7, p. 122 J, a direct product of flat left R-modules 
iEI l 

over a left Noetherian ring is flat. Hence P is flat and so projective 

since R is left perfect. 
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1.27. Corollary 

If R is com.mutative Artinian, then a direct product of a family 

of projective R-modules is projective. 

Proof 

This follows directly from Corollary 1.15 which states that if R 

is com.mutative, then a perfect ring which is also Noetherian is 

Artinian. 

1.28. Remarks 

(a) A ring R is called right coherent if each of its finitely- generated 

right ideals is finitely-related (Le. it is a quotient of a finitely-generated 

free R-module by a finitely-generated submodule). S. Chase [8J has 

characterized aIl rings for which a direct product of projective R-modules 

is projective. These turn out to be rings which are left perfect and 

right coherent. It is interesting to note that over a right coherent ring, 

a direct product of flat left R-modules is flat. 

(b) In view of Corollary 1.25, a natural question presents itself: 

Over what rings is a direct limit of free left R-modules free? ActuaIly, 

the converse of 1.25 is true, and hence R is local and J(R) 'is left 

T-nilpotent Ç> a direct limit of free left R-modules is free. this follows 

from a theorem of V . Govorov [14J which states that Ris local and J(R) 

left T-nilpotent Ç> every fiat R-module is free. 
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We have seen in Corollary 1.20, that R is left perfect ~ every 

Hat left R-module has a projective cover. However, this conc'lition 

can be weakened further . 

1.29. Theorem (Sandomierski [33J) 

R is left perfect ~ every completely reducible R-module has a 

projective cover. 

Proof. 

(~). Follows from the definition of left perfect rings. 

(<=). In view of [23, § 4.2, Ex. 11 J, it suffices to prove that 

J=J(R) is left T-nilpotent. Aiso by Lemma 1.4(i), it is sufficient 

to prove J. F is small in F for any free left R-module F. So let F 

be a free left R-module. Then FI J. F is completely reducible 

RI J -module. So, being aiso an R-mcidule, it has a projective 

cover TT: P~F 1 JF. But F, being free, is projective. Hence, 

there exists fj: F ~ P such that TTfj = a where a is the canonical 

map F ~ FI JF. That is, the following diagram 

TT 

commutes. Now P=Imfj+KerTT = Imfj since KerTT is small in P. 

So f1 is an epimorphism. But P is projective. Hence Ker fj is a 
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direct sUrrlmand of F. Since F is free, t hen Ker (3 is projective. 

Let K=Ker (3. Then F==P/K. 50 by [23, §5.4, Prop.3], 

JFnK = JK. But clearly K=Ker {3 ç Kerœ = JF. Hence JFnK = K. 

50 JK=K. Since K is projective, then by [2, p.474], K=O, and 50 

{3 is an isomorphism. Hence J. F is small in F. 
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CHAPTER II 

In this chapter, we give a characterization of semi-perfect rings due 

to H. Bass [2 J. The principal result is Theorem 2.5. 

2 . 1. Definition 

H. Bass [2J called a ring R left semi-perfect ~ every finitely-generated 

left R-module has a projective cover. 

2.2. Lemma 

If R is left semi-perfect, then every finitely-generated flat left 

R-module is projective. 

Proof 

Follows directly from Corollary 1.7. 

2.3. Remark 

The converse of Lemma 2.2 is false. The following example taken 

from [34J shows this. Let R = Z, the ring of integers. Then c1early 

R satisfies the condition. In fact, it is clear that commutative Noetherian 

rings have this property. However Z is not semi-perfect. For suppose 

Z = Z /nZ, n >0 is a left Z -module which has a projective cover 'TT: P-+ Z 
n n 

Then, since Z is projective as a left Z-module, then there exists 

(3: Z -+ Z such that 'TT(3 = ex where ex: Z ~ Z . Hence P = lm (3 + Ker 'TT = Im,B 
n n 

since Ker'TT is small in P. 50 (3 is an epimorphism and hence P= Z 
m 

for sorne integer m. But Pis a projective Z-module and hence free. 
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So m = 0 and P~Z. But 

Ker 11' ç;; J(P) by 1. 4(e) 

=J(Z) since P~Z 

= O. 

Hence 11' is an isomorphism, and so P~Z where n>O. This eontradicts 
n 

that PE!:! Z . Hence Z is not semi-perfect. 
n 

2.4. Lemma 

Let l be a two-sided ideal of R and A an R/I-module. If TT: P~A 

is an R-projective cover of A, wh en the induced map TT': P/PI~A is an 

RI J -projeCtive cover of A. 

Proof 

The obvious definition of 11": P/PI~A is given by TT'(P+PI) =TT(p) 

for pEP. This is c1early well-defined since l annihilates A. Sinee 

P/PI~ R/I®R P, then PIPI is a projective ldt R/I-module by 

[23, §5.3, Prop.3J. Aiso Ker7T'cKerTTIPI. But KerTTIPI is small 

in PIPI by 1.4(a). Hence Ker'!T 1 is small in PIPI by 1.4(b). This 

completes the proof. 

2.5. Theorem (Bass [2J) 

Let R be a ring and J = J(R) its Jacobson radical. Then the following 

are equivalent: 

(1) Ris left serni-perfect. 

(1') R is right semi-perfect. 

(2) Every cyclic left R-module has a projective cover .. 
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(2 ') Every cyc1ic right R-module· ha8 a projective cover. 

(3) RI J is completely reducible and idempotents can be lifted 

modulo J(R). 

Note that since condition (3) is symmetric, it suffices to prove 

(1)~(2)~(3)~1. 

Proof 

Our proof is based on that of H. Bass. 

(1) ~ (2). Obvious from Definition 2.1. 

(2) ~ (3). For this implication, we follow the argument outlined in the 

exercises of [23, p.93]. So let C be a cyc1ic 1eft R/J-module. 'irhen C, 

being also a left R-module, has an R-projective cover. So by Lernma 2.4, 

Chas an RI J -projective cover. But RI J is semi-primitive. Hence 

by [23, §4.2, Ex.l1], R/J is completely reducible. 

We now show that idempotents can be lifted modulo J. So let r ER 

-2 - -
such that r = r where r = rtJ. We shaH show that there exists 

2 - - -
eER, e =e suchthat e=r. Let s=l-r and R=R/J. Also let 

a: P~Rr and {3: Q~Rs be projective covers for Rr and Rs 

respectively. (These exist by hypothesis and by Lemma 2.4.) 

Then by [23, §4.2, Ex.9], f: PEElQ ~ RrEBRs is a projective cover of R. 

(Observe that R = RrEBRs.) Note that f(ptq) = a(p)t{3(q) for pE P 

and q E Q. But R is projective as an R-module. Hence, there exists 
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g:R~PEBQ such that fg=h where h:R-.R/J. Thatis, thefollowing 

diagram 

/t' 
'" , " , 

'" '" g",'''' 

, '" 
'" '" 
",R 

jh 
f 

PEflQ ---~ R/J 

commutes. Bence PEBQ = lm g + Ker f = lm g s ince Ker f is srnall 

in PEBQ. So g is an epimorphism. But PEBO is projective, and 

so Ker g is a direct summand of R. But Ker g c Ker h = J(R) which 

is small in R by 1. 4(d). Bence Ker g = 0, and so R:=:! PEBQ. Bence 

-1 -1 -1 2 
R = g (PEBQ) = g (P)EBg (Q) = ReEBR(l-e) where e =e ER. (This 

last equality follows from the well-known fact that a 1eft ideal 1 of R 

2 
is a direct summand (::) 1 = Re where e = e ER.) So h(Re).= fg(Re) 

-1 --
= fg(g (P)) = f(P) = G!(P) = Rr. But h(Re) = R~. - -Bence Re = Rr . 

Similar1y Rf =Rs where f = ï-~. So ~+f = ï = r+s. Bence ~-r = a-f. 

But both sides of the 1ast equation are in different summands. So 

~-r = 0 = s -f. This shows that ~ = r, and so idempotents can be lifted 

modulo J(R). 

(3) ~ (1). Let M be a finite1y-generated 1eft R-module. To show 

that M has a projective cover. Let R =RI J. Then MI JM is a 1eft 

n 
R-module and since R is comp1ete1y reducible, then MI JM = EB S . 

. 1 1 
1: 

where S. is a simple left idea1 of R for each i=l, 2 , ... , n. 
1 
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n 

But since S. = Rë. where ë. = e. +J and 
2 

e. = e., then M/ JM = œ Rë .. 
l 1 1 l 1 1 

But idempotents can be lifted modulo J. So there exists f.E R, 
1 

i=l 

2 n 
f. =f. and f. =e. for each i=l, ... ,n. Hence M/JM= œ Rf./Jf .. 

1 1 ri: 1 i= 1 1 1 

Define P = ES Rf.. Then, clearly, P is a projective left R-module 
i=l 1 

since it is a direct sum of direct surnmands of R. Consider 

g: P ~ M/JM ( 1 ) 

n 

1 

We shall show that (1) is a projective cover of P. Note that g = œ Ker g. 
i=1 1 

where g.: Rf. ~ Rf. / Jf.. Clearly Ker g. is small in Rf., since 
1 1 l 1 1 1 

Ker g. c Ker h where h: R~R/ J, and J(R) is small in R by l.4(d). 
1 

n 
So Kerg = ES Kerg. is small in P by l.4(c). So (1) is a projective 

i= 1 1 

cover of M/ JM. But Pis projective, and hence there exists {3: P~M 

such that 'fT{3 = g where 'T1 is the canonical map: M~M/ JM. That is, 

the following diagram 

M __ 'T1 __ ~> M/ JM 

commutes. Observe that Ker'T1 = JM is small in M by Nakayama's 

Lernma. 80 M = lm {3 + Ker 'fT = lm {3. Hence {3 is an epimorphism. 

Aiso Ker (3 c Ker g which is small in P since (1) is a projective cover 

of M/JM. Hence {3:P~M is a projective cover ofM. 

This completes the proof. 



32 

We shaH now obtain a characterization of semi-perfect in terms 

of a weaker condition than any of the equivalent ones of Theorem 2.5. 

2.6. Theorem (Sandomierski [33J) 

A ring R is semi-perfect ~ every simple left R-module has a 

projective cover. 

Proof 

(~). R semi-perfect ~ every cyc1ic, and hence simple, left 

R-module has a projective cover. 

({=). First we show that RI J is completely redu.cible. Let S be 

a simple left RI J -module. Then S, being also a left R-module, has an 

R-projective cover. So by Lemma 2.4, S has an RI J -projective cover. 

Then by [23, p.93], R/J is completely reducible. Now, let C be 

a cyc1ic left R-module. We shall show that Chas a projective cover. 

Let C = R/I where l is a left ideal of R. Then R/I+J is a finitely-

generated left RI J -module. Since RI J is completely reducible, 

n 
then R/I+J = EB S. where S. is a simple left RI J -module for each 

i=l 1 1 

i=l, ... , n. As above, each S. has a projective cover and so does 
1 

R/I+J by [23, § 4.2, Ex. 9J. Let 'TT': P~R/I+J be a projective cover 

of R/I+J. Then since P is projective, there exists {3: P~R/I such 

that œ{3 = TT where œ is the canonical map: P~ PlI. That is, the 

following diagram 
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'fT 

,," 
/:" 

a 
R/I------~l R/1+J 

commutes. Now Ker a = 1+J II. But 1+J II is the homomorphie image 

of J(R) under the canonicai map R-?R/I. Hence by Lemma l.4(a), 

Kera is smallinR/I. But R/I=Im,8+Kera. Hence R/I=Im,8 

and so ,B is an epi.morphism. Aiso Ker,8 c Ker 'fT which is small in P. 

50 ,8: P-?R/I = C is a projective cover of C and hence R is semi-

perfecto 

2.7. Corollary 

R is semi-perfect ~ every simple left R-module has the form 

2 
Rel Je w her e e = e <= R. 

Proof ----
(=». Let A be a simple left R-module. Then either JA = 0 or 

JA =A. 

Case 1. Let JA = O. Then A, as an RI J -module is simple, since 

any submodule ofR/JA is aiso a submodule of RA. So A = (RI J)f where 

- -2 -
f= f+J and f = f. But idempotents can be lifted modulo J(R). Hence 

2 - -
A = Rel Je where e = e E Rand e = f. 
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Case 2. Let A = JA. Since R is semi-perfect, then every simple 

left R-module has a projective cover by Theorem 2.6. So let 'TT: P~A 

be a projective cover of A, andlet K=Ker'TT. Then A~ F/K and 

byassumption, P/K=J(P/K). Hence P =J(P)+K = J(P) since K is 

small in P. But Pis projective, and so by [2,p.474], P= O. Hence 

A = O. 

(<=). Assume every simple left R-module has the form Re/ Je 

where e
2 

=e ER. Consider f:Re~Re/Je where f is the restriction 

of the canonical epimorphism g:R-')R/J. Clearly Re is a projective 

left R-module and f is an epimorphism. So it remains to show that 

Ker f is small in Re. But Ker f = Je = J' Re by 1. 4(g). Also 

J . Re ç; J(Re) by l. 4(f). Furthermore, J(Re) is small in Re since 

Re is finitely-generated. Hence Ker f is small in Re. This shows 

that every simple left R-module has a projective cover, and so, 

by Theorem 2.6, R is semi-perfect. 
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CHAPTER III 

A: Lifting Idempotents 

3. 1. Definitions 

(a) A set te.} of idempotents of R is called mutually orthogonal 
1 

if e.e. =0 for if.j. 
l J 

(b) A n idempotent e of R is called primitive if itcannot be written 

as the sum of two non-zero orthogonal idempotents. 

(c) A n idempotent e is called local if eRe is a local ring. (1. e. 

it has a unique maximal ideal.) 

3.2. Lemma 

Let R be a ring and J(R) its Jacobson radical. If x
2 

= xE J(R), 

then x = O. 

Proof 

2 
Suppose x =xEJ(R). Then x(l-x)=O. But xEJ(R) ~:B:rER 

suchthat (l-x)r=l. 50 x=x·l=x(l-x)r=O. 

3.3. Lemma 

If e and f are idempotents in a ring R such that ef = fe and 

e-fEJ(R), then e=f. 

Proof 

Since J(R) is a two- sided ide al of R, then f-ef E J(R). But (f_ef)2 = 

222 
= f -fef-ef +efef = f-ef. 50 by Lemma 3.2 f = ef. But (e-f) = 

= e
2 

+f2 -ef-fe = e+f-2ef = e-f. Again by Lemma 3.2, e = f. 
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3.4. Lemma 

Let N be a nU ideal of R. Then idempotents can be li.fted to 

idempotents of RI J. 

Proof 

Our proof follows that of L Levy [24] who attributes it to A. W Goldie. 

Let uER such that ü2 
=;;. where ü = u+~. Since N is nil, there exists 

2 k k 
an integer k such that (u -u) = o. Observe that (l-x) = l-xf(x) 

where f(x) is some 'polynomial with integer coefficients. So 0 = (u_u
2

)k = 

k k k k k+l 
= u (1 - u) = u (1 - uf ( u » = u - u f ( u) . 

k k+l k k 
Hence u = u f(u). Let e·= u f(u) . 

2 k k 
Therrwe ·shaH show that e =e. But this is clear since e =u f(u} = 

= uk+lf(u}k+l = ... = u 2kf(u)2k = e 2 , by repeated use of u k =uk+lf(u}. 

- -k-k -k+l-k -k-k-l -k-
A 1so e = u f(u) = u f(u) = u f(u) = ... = u = u since u is an 

idempotent. This completes the proof. 

3.5. Corollary 

R right Artinian => R is semi-perfect. 

Proof. 

Let R be right A rtinian. Then R / J is completely reducible. But 

J(R) is nit. Hence idempotents can be lifted modulo J(R). So R is 

semi-perfect . 

3.6. Lemma (Kaye [211) 

Let R be semi-perfa:t. Then an idempotent e Of R- il: primitive 

~ e+J(R) is primitive in RI J(R). 
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Proof 

Let e = etJ where J = J(R), and suppose e is not primitive 

in RI J. Then there exist idempotents f land fZ in RI J such that 

ë = f 1 HZ and f 1 fZ = O. But R is semi-perfect. 80 there exists 

idempotents e. inR where ë.=f. for i:.:l,Z. By [Z3, §3.6, Prop.Z], 
111 

we may assume el e
Z

= O. But then e and el tez are idempotents 

in R such that e(elte
Z

) =(elteZ)e and ë =ëlTë
Z

' Hence by Lemma 3.3, 

e = e l·Le
Z

' This contradicts that e is primitive. Hence e is primitive 

in R ~ ë is primitive in RI J. 

(4:). This is clear. For suppose e is nnt primitive in R, then 

- -
e =e1te

Z 
where ele

Z 
=0 and e

i 
~O for i=l, Z. But then e =e1teZ 

inR/Jwhere ëi~O and eleZ=O. (Notethat ë=7T(e) where 

'1T:R-+R/J.) Hence ë is not primitive in R/J. 80 ë primitive 

in R/J ~ e is primitive in R. 

3.7. Lemma (Lambek [Z3]) 

Let R' be semi-perfect. Then a primitive idempotent e is local. 

Proof 

We adopt the proof given in [Z3J. SO let e be a primitive idempotent 

of R and let J = J(R). Since R is semi-perfect, then RI J is completely 

reduc ible and hence regular. 80 if u E eRe, then there exists u' ER 

such that uu'u:=u modulo J. We may assume u'=eue. Clearly uu' 

is an idempotent in R/J. AIso e=eu and u'=u'e, and so uu'(l-e)=O 
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and (l-e)uu 1 = O. Since R is semi-perfect, idempotents can be lifted. 

2 - -
Hence there exists f = fER such that f = uu '. Furthermore, by 

[23, §3.6, Frop.2], we may assume f(l-e) =0 and (l-e)f=O. Sa 

f = af = fe , and hence f'E eRe. Clearly f and e-f are orthogonal 

and e = He -f. Sillce e is primitive, f = 0 or e-f = O. Now let ü ~ o. 

Then f~O since fu=~=ü. Sa e=f. Inthis case iîU/=f=~ and 

so u is right invertible. Similarly, ü is left invertible. So if ü ~ 0, 

then it is a unit. This shows that eRel J n eRe is a division ring. 

But by [23, §3. 7, Lemma l], J n eRe = J(eRe). Sa eRe is a 

local ring. 

3.8. Corollary 

A ring R is local ~ R is semi-perfect and l is a primitive idempotent. 

Proof. 

(=). If R is local, then RI J is a division ring, and hence completely 

reducible. Also, the two idempotents 0 and lare easily Iifted. 

(<=). By Lemma 3 . 7, R = IR l is local. 

3 .9. Corollary 

Let R be a local ring. Then every finitely- generated flat R-module 

is free. 

Proof. 

Since R is local, then it is semi-perfect. Sa by Lemma 2.2, every 

finitely-generated flat R-module is projective, and hence free since 

R is local. 
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3.10. Theorem (Lambek-Müeller) 

Let R be a ring. J = J(R) its Jacobson radical and l the identity 

of R. Then the following statements are equivalent. 

(a) R is semi-perfe ct. 

(b) 
n 

l = !; e. where 
i= l 1 

i:::1; ... , n°. 

e. is a local orthogonal idempotent for each 
1 

Proof 

(a) ~ (b). The proof of this implication is given by Lambek [23 J . 
n 

In view of Lemma 3 f 7, it suffices to prove that l = !; e. where each 
i=l 1 

e. is a primitive orthogonal idempotent. Since R is semi-perfect, 
l 

then RI J is completely reducible. The indecomposable left ideals 

in R/J are the minimalleft ideals. Hence R/J=Ri
l
+ .. . +Rfn where 

R = RI J and [Il + ... +i
n

) is a set of primitive orthogonal idempotents 

in R such that fI + ... +i
n 

= 1. But by hypothesis, idempotents can 

be lifted modulo J. Hence there exists a set of idempotents [e l' ... , en} 

in R such that ~.l. for i=l, ... , n. 
1 1 

Also the e.'s are primitive by 
1 

Lemma 3.6 and mutually orthogonal by [23, § 3.6, Prop. 2 J. Suppose 

n 2 2 2 
x = l, e .. Then x =x and (l-x) = 1-2x+x = l-x:; 0 modulo J. Hence 

. , 1 
1=1 

n 

l-x is an idempotent in J. By Lemma 3.2, l-x = 0 ~ 1= !; e .. 
i= 1 1 

(b) ~ (a). Our proof essentially follows that of E. Behrens [4J. 

So assume that 1 =e
l

+ ... +e where each e. is a local idempotent. 
n 1 
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First we show that R = RI J is completely reducible. Clearly it suffices 

to prove that e.R is irreducible for each i. Consider R= eR EB(l-e)R 
1 

where e = e. for sorne i. Then (l-~)R FR. SO there exists a maximal 
1 

right ideal L of R such that (l-e)R cL. Hence R =eR+L. We shall 

now show that this sum is direct. If not, then Ln eR F O. Hence 

-- 2 -- -
(LneR) FO forotherwise LneRcJ(R)=O. Then, thereexists 

xE R such that ex EL, and ~x~R F O. In particular ex~ F O. Moreover, 

exe has an inverse y in eRe since e local ~ eRel J(eRe) = eRe is a 

division ring. So ~xey = e E L. But (l-ë)R c L ~ 1-e EL. Hence 

--
1 EL, which contradicts that L is proper. This proves that eR+L = R 

is a direct sum. Since L is maximal, eR is irreducible. 

Applying the above analysis to each e., we see that RI J has a finite 
1 

maximal chain of right ideals ~iR c e
l

REBe
2

R C .•. c e
1

REB ... EBenR. 

By the Jordan Holder Theorem, RI J is completely reducible. We now 

show that idempotents can be lifted modulo J = J(R). Let f = i 2 ER. 

Also let f = f
1

+ ... +f and Ï-f=f 1+' .. +f where 1 =f
1

+ ... +f 
r r+ m m 

is a sum of primitive orthogonal idempotents of R. N ow by [23, p. 77], 
n m 

if 1 = 1; e. = 1; f. w he r e 
i=l 1 j=l J 

2 
e. = e. 

1 1 

2 
and f. =f., then there exists a unit 

J J 

v in R such that ve. =f.v and m = n. But RI J is Artinian and hence 
1 1 

sem i-perfect. So by Lemma 3.7, e. and f. are local idempotents 
1 J 

for i=l, ... ,n and j=l, ... , m. Hence :R-V E R such that ;e. = f.; 
1 1 

- - -1 - - - - - - --1 
and m=n. Let u=(v) . Then v(e.+ ... +e )u=f. Also u=(v) 

1 n 

~ vu == 1 modulo J ~ vu = l-w for w E J. But w E J ~ 1-w is right 
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invertible. Let (l-w)( l-w ') = 1. Then vu( l-w ') = I. N ow let 

vI = v and u
i 

=u( l-w '). Then v l =v modulo J and u
i 

=u modulo J. 

But viu l = 1. Hence uIvlulv l =ùIv l ' 50 ulv i and hence l-ulv l 

is an idempotent. But ulv
l 

= u
v

= l modulo J. Sa l-uiv
i 

E J. 

By Lemma 3.2, u1vl = 1. Finally, VI(~I+" '+~n){il = ~(~l+" '+~n)~ = f. 

50 idempotents can be lifted modulo J = J(R). 

3.11. Corollary (Müeller [27J) 

If (i) every primitive idempotent is local and (ii) there d-oes not 

exist an infinite set of orthogonal idempotents, then R is semi-perfect. 

Proof 

It iswell-known (see, for example [16, p. 685J) that a sufficient condition 

for the identity of R to be a sum of orthogonal primitive idempotents, 

is for condition (ii) to hold. Now by Theorem 3.10 and condition (il. 

R is semi-perfect. 

3.12. Corollary 

If R is semi-perfect, then R has a unique decomposition into a finite 

direct sum of indecomposab1e left idea1s . 

Proof 
n 

Since 1 = ~ e. where e. is a local orthogonal idempotent for each 
i= l 1 1 

n 

i=l, ... , n, then R = E9 Re .. Note the sum is direct by the orthogonality 
i=l 1 

of the e. 's, and Re. is indecomposab1e for each i, since the e.'s are 
1 1 1 
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local and hence primitive. Since EndR(Re.) = e.Re., which is local for 
1 1 1 

each i, then uniqueness foUows from Azumaya's version of the Krull-

Remak-Schmidt Theorem, [23, p. 78J. 

1?: Sorne Artinianly"'inspired Results-:for Pe-rfect ang. 

Semi..;.-Perfect Rings 

It has been observed that much of the clas sical structure theory for 

Artinian rings can be developed under the weaker hypothesis that R be 

semi-perfect. In this section, we obtain results for Perfect and 

Semi-perfect rings which are analogous to those characteristic of 

Artinian rings. 

3.13. Lemma 

Let R be left perfect, then P(R) = J(R), where P(R) and J(R) 

denote the prime and Jacobson radicals of R respectively. 

Proof 

Now P(R) ç;; J(R) for aU rings R. The rever se inclusion is equally 

trivial, since an element of a left T-nilpotent ideal is clearly, strongly 

nilpotent, and P(R) is the inter section of aU strongly nilpotent elements 

of R. 
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3.14. Lemma 

Every homomorphie image of a left perfect (resp. semi-perfect) 

ring R is left perfect (resp. semi-perfect). 

Proof 

This is an im.m.ediate consequence of Lemma 2.4. 

~ .15. Lemma 

Let R he a left perfect ring without zero divisors~ Then R is a 

division ring. 

Proof 

Since R is left perfect, it has the descending chain condition on 

principal right ideals. Sa there exists an integer n such that 

n n+l n n+l n 
r R = r R. Hence r =r x for sorne xER. ~ r (l-rx) =0 

~ l-rx = 0 since R has no zero divis ors. Sa 1 =rx and· x is a 

right inverse of r. Also x=xrx ~ (l-xr)x=O ~ l-xr =0 since xi=O. 

Hence every non-zero element of R has an inverse, and R is a 

division ring. 

3.16. Corollary 

Let R he a commutative perfect ring. Then every prime two- sided 

ideal is m.aximal. 

Proof. 

Let P he a prime two-sided ideal. Then R/P is an integral domain, 

and sa has no zero divisors. By Lemma 3.14, R/P 1S perfecto By 

Lem.ma 3.15, R/P is a field and sa P is maximal. 
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3. 17. Remark 

The following resu1t has been proved by W . Vasconce10s [37J: 

Let R be commutative. Then an injective endomorphism of a 

finitely-generated R-module is an isomorphism ~ every prime ideal 

is maximal. Vasconcelos suggested that this should be true for rings 

which are close to being Artinian, for instance, perfect rings. 

Corollary 3.16 shows that perfect rings do satisfy the afore-mentioned 

result. 

~.18. Lemma 

The following statements are equivalent for a ring R. 

(1) R is completely reducible. 

(2) R is left perfect and regular. 

(3) R is left perfect and semi-primitive. 

Observe that (1) is symmetric and so the word "left" can be replaced by 

"right" in (2) and (3). 

Proo;[ 
n 

(1) = (2). If R is completely reducible, then R = E9 D. where D. 
i=1 1 1 

is a minimal right ideal of R. 50 we have a composition series 

Dl c D
1

+D
2 

c ... c D
1

+D
2
+.· .+Dn' Then R is right Artinian and 

right Noetherian. By Corollary 1.15, R is left perfecto Also, 

every right ideal, and henc e every principal right ideal is a direct 

summand. 50 R is regular. 
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(2) ~ (3). Let R be regular and let r E J(R), the Jacobson radical 

of R. Then :B:r' E R such that l-rr' is a unit. So there exists 

x ER such that x(l-rr ') = 1. But R regular ~ rr 'r = r ~ (l-rr ')r = 0 . 

Hence r = 1. r = x( 1-rr ')r = O. So J(R) = 0 and R is semi-primitive. 

(3) ~ (1). Let R be left-perfect. Then every left R-module M 

has a projective cover. But R is semi-primitive. Hence, by 

Corollary 1.7, M is projective. So we hav.e shown that every 1eft 

R-modu1e is projective. Hence R is completely reducible. 

It is interesting to note that Lemma 3.18 is still valid if the word 

"perfect" is replaced by "Artinian". See, for example [23, p. 68J. 

We now study some results of Morita Theory which would culminate 

in Theorem 3.28. 

3.19. Definition 

Let Mod-R. be the category of aU right R-modules. Let Gand M 

be objects of Mod-R where G is fixed and M is arbitrary with respect 

to G. Then G is called a generator of Mod-R providedfor aIl 0 {; h:M~X, 

there exists f: G~M such that hl {; 0 for all objects X in Mod-R. 

A finitely-generated-projective generator is called a pro-generator. 

It is well-known that if P is a projective right R-module, then P is a 

generator ~ P®M= 0 ~ M = 0 for any right R-module M. 
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3.20. Theorem 

Let Rand T be two rings such that Mod-R and Mod-T are the 

categories of right R- and right T-modu1es respective1y. Then Mod-R 

is equiva1ent to Mod-T ~ Mod-R has a pro-generator P such that 

EndR(P) == T. 

Proof 

For the proof, we refer to H. Bass [3]. 

3.21. Definition 

Two rings Rand Tare caUed Morita invariant ~ Mod-R and Mod-T 

are equivalent . 

3.22. Definition 
n 11. 

Let p':~= HomR(P, R). Define 7': p'\.~P ~ R by 7'( ~ f. ®m ) = ~ f.(m.) 
'1 1 i '1 11 
1= 1= 

::.'< 

where f. EPand m. E M for i=l, ... , n. Then the image of 7' is called 
1 1 

the trace ide al of R. 

3.23. Lemma 

G is a generator ~ 7'(G) = R. 

Proof 

(ç). This implication is c1ear, from the remark in 3.19 . 

(~). Assume T(G)fR, and consider f:R~R/7'(G) where ffO. 

Since G is a generator, there exists h:G ~R such that fh f:. O. 

But hE G':< = Hom
R 

(G, R) and Ker f = 7'(G). Hence f(T(G)) = O. Moreover, 
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h(g) = r(h ®g) E r(G). Hence h(G) ç r(G). This shows that (fh)(G) = f(h(G)) 

ç f(r(G)) = O. Hence fh = 0 - a contradiction. So r(G) = R. 

3.24. Lemma 

Let R be a ring, and R the ring of aU nxn matrices over R. 
n 

Then (a) R is Morita equival ent to R , and (b) R is Morita equivalent 
n 

2 
to eRe where e = e ER and ReR =R. 

Proof 

(a). Let P = nR where nR denotes a direct sum of n copies of R 

(n >0). Clearly P is finitely-generated and projective. We now show 

that Pis a generator. Suppose Pi8l
R 

X = O. Then nR ®R X = 0 

~ n(R ®R X) = 0 ~ nX = 0 ~ X = O. So P is a pro-generator. Also 

EndR(P) =Rn' By Theorem 3.20, R is Morita equivalent to Rn' 

(b). Let P = eR. Clearly P is finitely-generated and pr ojective . 

... , 
Also P"- = Hom

R 
(eR, R) =:! Re. So the trace ideal r(P) = ReR = R by 

hypothesis. Hence by Lemma 3.23, P is a pro- generator. Moreover, 

End
R 

(P) = eRe. So by Theorem 3.20, R is Morita equivalent to eRe. 

3 .25. Definition 

.A property of rings is called Morita invariant if it is preserved 

under Morita equivalence. We shaH show that "perfectness Il and 

" semi-perfectness" are Morita invariant, but first a remark. 
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3.26. Remarks 

(a). E.Mares [25J called a projective R-module M semi-perfect 

if every factor module of M has a projective cover. Thus this 

definition shows that semi-perfect modules can be considered as a 

generalization of semi-perfect rings. A Iso, she showed [25, Cor. 5.3 J 

that a finite direct sum of semi-perfect modules is semi-perfect. 

Also E. Bjork [5 J defined an R-module ta be perfect if it satisfies 

the descending chain condition on cyclic submodules. From [5, Thm 2 J, 

it is easily deduced that a submodule of a perfect module is perfect, 

and a direct sum of perfect modules is perfect. 

(b). It is well-known that G is a generator ~ R is a direct summand 

of a finite direct sum of n copies of G. In particular R, as an 

R-module, is a generator. 

3.27. Lemma 

The concepts of left (right) perfectness and semi-perfectness on a 

ring R are Morita invariant. 

Proof 

Ta prove that perfectness is Morita invariant it suffices to show that 

there exists a perfect generator. Clearly if R is perfect, then R is 

a perfect generator by Remark 3. 26(b). Now let G, as an R-module, 

be a perfect generator. Then by Remark 3. 26(b), nG = REBM where 

nG denotes a direct sum of n copies of G. So R is perfect by Remark 

3.26(a). 
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In a similar way, we see that semi-perfectness is Morita invariant. 

3.28. Theorem 

(a) 

(b) 

R is left perfect (resp. semi-perfect) ~ R is. 
n 

2 
If e =eERwhere ReR=R. Then R is leftperfect (resp. 

semi-perfect) ~ eRe is. 

Proof 

Immediate from Lemmas 3.24 and 3.27. 

We conc1ude this section by the following remark. 

3.29. Remark 

1. Connell [9] has proved that the group ring RG is A rtinian ~ R is 

Artinian and G is finite. A corresponding result for perfect rings was 

established by S. Kaye [21]: RG is left perfect ~ R is left perfect 

and G is finite. A complete characterization in the semi-perfect case 

is still an open problem. 

~: Structure of Projective Modules over 

Semi- Perfect Rings 

E. MatHs [26] has proved that if R is right Noetherian, then any 

injective right R-module is a direct sum of indecomposable ones. 
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U .Shukla [35J has shown that every projective module over a semi-

prinlary ring can be expressed as the direct sum of indecomposable 

projective modules. We now consider the structure of finitely-

generated projective left R-modules over semi-perfect rings. 

3.30. Theorem 

Let R be semi-perfect and M a finitely- generated left R-module. 

Then M is projective ~ it can be deco:mposed uniquely into a 

finite direct sum of indecomposable projective left R-modules. 

Proof 

({:). This implication is folk-lore. See for example [23, p. 82]. 

(:::)) .. Let M be a finite1y- generated 1eft R-module and let J = J(R). 
n 

By hypothesis, RI J is compJetely reducible, and so MI JM = E9 S. 
i=l 1 

where S. is a simple left ideal of RI J. Hence S. = (RI J)f. where 
1 1 1 

- - - 2 
f. =f+J, f. =f. and l. is primitive for each i=1, ... , n. But idempotents 

1 1 1 1 

can be lifted modulo J. Hence there exist idempotents e. ER such that 
1 

n 
~.=l.. So M/JM= E9Re./Je .. Note alsothatby Lemma3.6, e. is 

1 1 i= 1 1 1 1 

primitive for i= 1, ... , n. Moreover, by Lemma 3. 7, the e.' s ar e local. 
1 

n 

Let P= E9 Re .. 
1 

Then P is a projective left R-module. By the 
i=l 

argument used in the proof of Theorem 2.5, we see that Q!: P~ MI JM 

is a projective cover. Since P is projective, there exists f3: P~ M 

such that 1Tf3 = Q! where '" is the canonical map: M~MI JM. That is, 

the following diagram 
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commutes. Then M = lm (:H Ker 'fT = lm f3 since Ker'IT = J. M is small 

in M by Nakayama's Lemma. So f3 is an epimorphism. Since Mis 

projective, Ker f3 is a direct summand of P. But Ker f3 c Ker a which 
n 

is small in P. So Ker f3=0. And M~ P = EB Re .. Recall that we proved 
1 

i= 1 

abovethat the e.'s are local. So uniqueness follows by Azumaya-Krull-
1 

Remak-Schmidt Theorem since End
R 

(Re
i
) = eiRe

i 
for i=l, ... , n. 

This completes the proof of the theorem. 

We now obtain some interesting corollaries. It is well-known that 

if R is commutative, then R is Artinian ~ R can be decomposed into a 

fini te direct product of Artinian local rings. There is an analogous 

result for semi-perfect rings. 

3 .31. Corollary 

Let R be commutative. Then R is semi-perfect ~ R can be 

decomposed uniquely into a finite direct product of local rings. 

Proof 

By Theorem 3.30, 
n 

R ~ EEl Re. uniquely) since R, considered as 
i=l 1 

'a left R-module is finitely-generated and projective. Also Re. = e.Re. 
1 1 1 
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n 

since R is commutative. Hence R ~ EB L. 
i=l 1 

local ring for each i= 1, ... , n. 

where L. = e.Re. is a 
l l 1 

In particular, if R is commutative, then R is left perfect ~ R has 

a unique decomposition into a finite direct product of local rings, where 

the unique maximal ideal of each is left T -nilpotent. 

3.32. Corollary (Sabbagh [32 J) 

Let R be semi-perfect and Pa finitely- generated projective 

left R-module. Then any surjective endomorphism of P is injective. 

Proof 

Let f: P~ P be surjective. Since Pis projective, then f split&' ~ 

i.e. there exists g:P~P suchthat fg=id p ' 50 P=Kerfœlmg. 

But g isamonomorphism, andso P=KerfEBP
l 

where Pl~P, 

By the uniqueness of decomposition, guaranteed by Theorem 3.30, 

Ker f = O. 50 f is injective. 

We now obtain sorne results for projective modules over perfect 

rings. 

3.33. Lemma (Shukla [35 J) 

Let R be a left perfect ring and P a projective left R-module. 

Then P is indecomposable ~ for every proper submodule M, the 

canonical epimorphism 'TT: P~ P/M is a projective cover of P/M. 
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Proof 

(~). Let M1 P. Then, since R is left perfect, P/M has a 

projective cover f: P '-,> P/M. Since P is project!Ï. ve, there exists 

f3:p-,>pl suchthat ff3='1T where 'TTisthe canonicalmap: Poo)P/M. 

That is, the following diagram 

commutes. So p' = Kerf + lm f3 = lm f3 since Ker f is small in p'. 

Since P' is projective, there exists a:p/oo)p suchthat {3a= id. 

Hence P = Ker P E9 lma = Ker f3E9 p' . So Ker f3 = 0 since P is 

indecomposable. This shows that P '~ P and so 1T: P...) P/M is a 

projective cover. 

(<;:). The conver se is c1ear, for if P is decomposable, then Ker 'TT 

cannot be small in P where 'TT: poo) P/M. 

The following corollaries are also given in [35]. 

3.34. Corollary 

Let R be left-perfect. Then every finitely-generated indecomposable 

projective left R-module Pis principal. 
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Proof 

Suppose [xl' ... ' xn} is a minimal set of generators of P and 

assume n 11. Let Q be generated by [x
2

' ... ' xn} and R generated 

by [xl}. Consider the canonical map 'TT: P~ P/R. Since P is 

indecomposable and projective, then by Lemma 3.33, Ker7T=R is 

small in P. But clearly P = Q+R. 50 P = Q. This contradicts 

that [xl' ... ' xn} is a minimal set of generators of P. 50 n = l 

and P is principal. 

3.35. Corollary 

Let R be left Artinian. Then every indecomposable projective 

left ideal is principal. 

Proof 

If R is left Artinian, then it is left Noetherian, and so every 

left ideal is finitely generated. Aiso R left Artinian ~ R is semi

primary ~ R is left (and right) perfect by Corollary 1.15. The result 

now follows from Corollary 3.34. 

D: Structure of Semi-perfect Rings 

In this section we prove two structure theorems for semi-perfect 

rings. Theorem 3.39 is somewhat similar to the "splitting theorem" 

of A .Z·a~s [38J for semi-primary rings. 
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3.36. Theorem 

Let R be a semi-perfect ring and J = J(R) its Jacobson radical 

such that RI J is a simple ring. Then there exists a local ring S 

such that R ~ EndS(F) wher e F is a finitely-generated free S-module. 

Proof 

We note here that Theorem 3.36 is proved in [23J and also in [4J. 

Denote RI J by R. Sinee R is semi-perfeet, t here exists a finite set 
n 

of prim.itive orthogonal idempotents [e.} sueh that ~ e. = 1. Let 
1 i=l 1 

7T(e.)=e. where 7T is the eanonicalmap R-?R/J. Then ~R is a 
1 1 

minimal left ideal of R, sinee, if R is semi-perfect, the indeeomposable 

left ideals of R eorcr<e:spond t0 theniinimal left ideals of R under 

the eanonical map 7T. Since R is eompletely reducible, these minimal 

ideals are isomorphic. Let e =e
l

. Then ~R~ ~iR, By [23, p. 77J, 

there exists u., v. ER such that v.u. = e and u.v, = e.. Observe that 
Il Il 111 

. 2 2 
u.ev. = u.v.u.v. =(u.v.) = e. = e., We now show that HoIn.- (R, R) 
111111 Il 1 1 K 

~ Hom R (Re, Re). 
e e 

Let cp E HOffi
R 

(R, R). Define cp' :Re -?Re by 

cp'(re) = cp(re) = cp(re
2

) = cp(re)e. Also, if r'ER, then co'(re'er'e) 

= cp(re)er 'e = ({l' (re)er 'e. Hence cp' E Hom R (Re, ReJ). Now let r ER. 
e e 

n n n 
Then r = ~ e.r. = :E u,ev.r. sinee u.ev. =e .. So cp(r) = :E cp(u.e)v.r. 

'1 11 . Il Il Il 1 '1 1 Il 1= 1= 1= 
n 

= ~ cp' (u.e)v.r.. Clearly, this last equation defines an isomorphism 
i= l 1 1 1 

Tl: Hom
R 

(R, R) -? Hom
eRe 

(Re, Re) by 77(CO) = cp'. Hence R ~ Hom
R 

(R, R) 

n 
~ Hom R (Re, Re). Sinee 1 = I; e., 

e e i=l 1 
where e. 1 s are primitive 

1 
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n 

orthogonal idempotents, then Re = EEl e.Re. For each i, define 
1 

i=l 

cp.: e.Re ~ eRe by cp.(e.re) = v.e.re. Note that v.e.re = v.u.v.re 
11 11 11 11 111 

= ev.re. Then clearly cp. is an eRe-isomorphism for each i. 
1 1 

So Re,. as an eRe -module is fr:ee on n-generators. Hence 

R ~ HomS(F, F), where F is a finitely-generated free S-module 

such that S = eRe and F = Re. Moreover S is local, since over 

a semi-perfect ring, a primitive idempotent is local. 

3.37. Remark 

Since for any ring R, J(R ) = J(R) , then we have an equivalent 
n n 

formulation of 3.36 as follows: If Ris semi-perfect suchthat 

RI J ~ D where D is a division ring~ then there exists a local 
n 

ring S such that R ~ S and SI J(S) ~ D. 
n 

A s a corollary of 3.36, we obtain a result of S. Kaye [15]. 

3.38. Corollary 

Let R be semi-perfect and J = J(R) its Jacobson radical. 
n 

Let RI J = EEl ID.) where D. is a division ring for each i and 
. l 1 n. 1 

(D. ) 
1 n. 

1 

let A 

1= 1 

denotes the ring of aIl n. xn. matrices over D .. 
111 

n 
2 

= :E e.Re. where e. =e.ER for i=l, ... ,n. 
i=l 1 1 1 1 

n 

Furthermore, 

Then ther e exi st 

local rings L. such that L. / J( L.) ~ D. and A = 
1 1 1 1 

EEl (L.) 
. 1 1 n. 
1= 1 
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Proof 

8ince R is semi-perfect, we can choose the e. 1 s orthogonal and 
1 . 

n n 
primitive such that ~ e. = 1. Hence A = ~ e.Re. is direct since 

i = 1 1 i= 1 1 1 

e . e. = 0 if i f:. j . N ow e . R e./ J ( e . Re.) = e. Re. / e. Je. ~ (D.) . 
1 J 1 1 1 1 1 1 1 1 1 n. 

1 

8ince e.Re. is semi-perfect, then by Remark 3.37, there exists a 
1 1 

local ring L. for each i=1, ... , n such that e.Re. ~ (L.) and 
1 1 1 1 n. 

1 
n n 

L./J(L.) ~ D .. Hence A = EB e.Re. ~ ® (L.) where L./J'(L.) ~ D .. 
1 1 1 i= 1 1 1 i= 1 1 n. 1 1 1 

1 

This finishes the proof of the Corollary. 

3.39. Theorem (Behrens [4J) 

Let R be semi-perfect and J = J(R) its Jacobson radica1. Then the 

underlying additive group of R admits a decomposition R = 8EBN where 

8 is a subring of Rand N a subgroup of the additive grou.p of J(R) such 

that, 

(a) 

(b) 

n 

8 = EB 8. 
i=1 1 

where 8. = e.Re. is semi-perfect for each 
1 1 1 

i=1, ... ,n; e.e.=O for if:.j and 8./J(8.) is simple. 
1 J 1 1 

N = 'E e.Re .. 
if:j 1 J 

[Note that in the "8plitting Theorem" of Zaks [38J, N is a two-sided 

ideal of R. However, in our case, this is not true· in general since 

e.Re.· e .Re. ç;; e.Re. for if:.j. J 
1 J J 1 1 1 
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Proof 
n 

R semi-perfect ~ RI J completely reducible. SO RI J = $ R. 
i=l 1 

where R. is a simple ring for each i=l, ... , n. Now R semi-perfect 
1 

n . 

~ RI J is also. So 1= r l. 
. l 1 1= 

where i. are primitive orthogonal 
1 

idempotents of RI J. Since idempoter;ts can be lifted, there exists 
n 

n 
a set [e'}'_l ofidempotentsinR suchthat ~ e.=l. Observealso 

1 1- . 1 1 
1= 

that the e. 1 sare also primitive and orthogonal. 
1 

n 
So R = IR l = ~ e.Re. + ~ e.Re.. Let S. = e.Re.. Then 

i=l 1 l ilj 1 J 1 1 1 

S. is semi-perfect. Also S./J(S.) = e.Re./e.Je. ~R. which is simple. 
1 1111111 

n 
Moreover, if S = ~ e.Re., then this sum is direct since e.e. = 0 

i= l 1 1 1 J 

for il j. This proves conclusion (a) of the Theorem. Finally, 

e.Re.= e.e.R=OmodJ(R), foriFj. 
1 J 1 J 

Hence, if N = ~ e.Re., then N 
• J.' 1 J 
1,... J 

is a subgroup of the additive group of J(R). 
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APPENDIX 

Subrings of Perfect Rings 

1. Definition 

Let M be a right R-module. M is called faithfully flat ~ M is flat, 

and, for any Ieft R-module N, M ®R N = 0 :::) N = o. 

2. Lemma 

Let M be a ::.-ight R-moduie. The following statements are 

equivaient. 

(a) M is faithfully Hat. 

(b) A sequence A-'B~C ofleftR-modules is exact ~ 

M®R A ~ M®R B ~ M®R C is exact. 

Proof 

Evident. 

3. Corollary 

Let M be a faithfully flat right R-module and f: A ~ B a Ieft R-module 

homomorphism. Then f is injective (re sp. sur jective, bijective) 

~ id
M 

®f: M®R A ~ M®R B is aiso. 

Proof 

Immediate from condition (b) of Lemma 2. 
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We remark here that Q is a flat and faithful Z -module but it is not 

faithfully flat. We now formulate and discus s the following conjecture. 

4. Conjecture 

Let R cS as rings and S a faithfully Hat left R-module. Let R -mod 

denote the category of aU left R-modules and let T be the functor 

S ® - : R -mod -? S -mod. Then T is full and faithful. 

Discussion 

We prove that T is faithflll. Let f: A -?B be a left R-module. homo

morphism such that T(f) = O. To prove f = O. N ow A!. B ~ C ... O. 

is exact where C = B/lmf. 'Then T(A) Ti!) T(B) T-ig) T(C) -? 0 is exact 

since T = S ® - is a right exact functor. But T(f) =0 ~ T(g) is a mono

morphism. :By Corollary 3, g is a monomorphism. But then B~B/lmf. 

Hence lrnf = 0 ~ f = O. 

We areunable to prove T is full. However, we shall assume that the 

conjecture is true, and deduce the following result. 

5. Corollary 

Assume the hypothesis of the conjecture. If S ®R M is a projective 

left S-module, then M is a projective left R-module. 

Proof 

Follows, since S ® - is full and faithful by the conjecture. 
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We now obtain a result on subrings of perfect rings. 

6. Theorem 

Let R cS as rings, and S is a faithfully fIat right R-modu1e. 

If S is a 1eft perfect ring, then so is R. 

Proof 

Let (P. 1 i E I} be a family of projective left R-modules. Then 
1. 

S ®R Pi is a . projective left 8-module for each i E 1. 8ince 8 is left 

perfect, lim (8 ®.R P.) = S ®R lim P. is a projective left R-module by 
~ 1. ~ 1. 

Corollary 1.24 By Corollary 5, lim P. is a projective left R-module, 
~ 1. 

and so R is left perfect, again by Corollary 1.24. 
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