PERFECT AND SEMI-PERFECT RINGS

Abstract
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Conjecture l1.19, which the author considers to be original. Chapter
3 comprises, in part, a characterization of semi-perfect rings in terms
of idempotents and a structure theorem for finitely-generated projec-
tive modules over semi-perfect rings. Finally, in the Appendix, the
author formulates and discusses a conjecture on subrings of perfect
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Résumé

Dans cette thése on développe les résultats fondamentausx
de la théorie des anneaux parfaits et demi-parfaits. Une carac-
térisation est donnée dans les théorémes 1.13 pour les anneaux
parfaits, 2.5 pour les anneaux demi-parfaits. L'auteur a obtenu
un résultat en connexion avec la conjecture 1l.19sur les anneaux
parfaits commutatifs, ce qu'il croit d'&tre original. Une partie
du Chapitre 3 donne une caractérisation des anneaux demi-parfaits
en utilisant les idempotents et un théoréme de structure des
modules projectives avec un nombre fini de générateurs sur les
anneaux demi-parfaits. En conclusion, dans 1'appendice 1l'auteur
a formulé et discuté une conjecturdsur les sous-anneaux des
anneaux parfaits.
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PREFACE

The aim of this paper is to give a complete characterization of
Perfect and Semi-Perfect rings as defined by H.Bass [2].

In Chapter I, Theorem 1.13 gives a complete characterization
of perfect rings which is due to H.Bass. These turn out to be those
rings for which every flat R-module is projective. Corollary 1.138
shows that over a perfect ring, a generalized form of Nakayama's
Lemma holds. In Theorem 1.29, we prove that a ring R is left
perfect & every completely reducible R-module has a projective
cover — a result due to F.Sandomierski [33].

In Chapter II, a characterization of semi-perfect rings also due
to H.Bass, is given. A corresponding theorem to 1.29 is proved
for semi-perfect rings. As a corollary, we show that a ring R is
semi-perfect ® every left simple R-module is of the form Re |Je
where e‘2 =e€R.

The main theorem in Section A of Chapter III characterizes semi-
perfect rings in terms of idempotents. It has been recognized that
much of the classical structure theory for Artinian rings can be
developed under the weaker hypothesis that R be semi-perfect.
Section B contains some results for perfect and semi-perfect rings

which are analogous to those characteristic of Artinian rings.



We obtain a decomposition theorem for finitely generated
projective modules over semi-perfect rings in Section C. Section
D contains two structure theorems for semi-perfect rings. The
second, given by E. Behrens [41 is somewhat analogous to the
"Splitting Theorem!' of A. Zaks r38] for semi-primary rings.
Finally in the Appendix, we formulate and discuss a conjecture
dealing with subrings of perfect rings.

The author wishes to express his appreciation to his director,
Professor J. Lambek for his generous advice and encouragement.
Also conversations with Professors M. Barr, J. Beck, I. Connell
and J. Golan have been most helpful. In addition, discussions with
fellow students - J. Lawrence, E. McKay, C.C. Poon, R. Zeamer
and especially D. Handelman, R. McMaster and M. Wright - have
been most stimulating. Also to Miss Francine Houle, who has

excellently typed this thesis, I offer special thanks.

Abdul H. Rahman
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CHAPTER I

A: On Small Modules

In order to give the main characterization of left perfect rings,
we shall require some results involving the concept of smallness.

In this respect, Lemma 1.4 is very useful.

1.1. Definition

Let R be a ring and M a left R-module. A submodule P of M

is called small in P if M=P+Q = M=Q for any QcM.

1.2. Definition

An ideal I of R is called left T-nilpotent if for any sequence

n
{ai}cl, there exists an integer n such that I a, = 0.
i=1

1.3. Remark

Clearly a nilpotent ideal is both left and right T-nilpotent. Also
by considering a constant sequence of elements in I, it is clear that

a T-nilpotent ideal is nil.

1.4. Lemma

Let R be a ring, J(R) its Jacobson radical and P,Q,M and N
left R-modules. Then the following statements are true.
(a) If P is smallin M and f:M-N, then f(P) is small in N.

(b) If P is smallin M and QcP, then Q is small in M.



(c) If P and Q are small submodules of M, then so is P+Q.
(This can be generalized to finite sums.)

(d) If M is finitely-generated, then J(M) is small in M.
(In particular, J(R) is small inR.)

(e) JM) = Z Pi such that Pi is small in M.

iel

Hence if f: M->N, then f(J(M)) ¢ J(N).

(f) JR)-M € J(M) for any left R-module M.

(g) If P is a projective left R-module, then J(R).P = J(P).

(h) Let M be a projective left R-module and E =EndR(M).
Then J(E) = {f€E |Imf is small in M]}.

(1) J(R) is left T-nilpotent ¢ J(R)-M is small in M,
for any left R-module M.

(j) If R/J(R) is completely reducible, then J(R)'M = J(M)
for any left R-module M.

(a) Suppose N=f(P)+B where BCEN. Then M=P+f [(B)={ *(B)
since P is small in M. So {(P)cf(M)=B. Hence
N = f(P)+B € B, and so f(P) is small in N.

(b) Trivial.

(c) Suppose (P+Q)+R = M where RcN. Then P+(Q+R) = M.
So Q+R =M since P is small in M. Hence R=M since Q is

also small in M. But then P+Q is small in M. (By induction



on the number of small submodules of M, we see that

n
z Pi is small in M if Pi is small in M for each
i=1

i=1,...,n.)

Suppose J(M) is not small in M. Then there exists a

proper submodule P of M such that J(M)+P=M. Since

M is finitely-generated, there exists a maximal submodule

Q of M such that PcQ. So JM)}+Q=M. Hence Q=M

since J(M)cQ. But this contradicts the maximality of Q.

Hence J(M) is smal’ in M.

The proof given here follows that of D.Fieldhouse [12].

It is clear that J(M)=2 XY P, where P, is small in M, since
ier !

if N is a maximal submodule of M, then Pic N.

For the reverse inclusion, it suffices to show that x€J(M) ¢ Rx

is small in M, since by (c), a finite sum of small submodules of M

is small. Equivalently, it suffices to prove that Rx 1is not

small in M & x¢ J(M). So suppose x¢J(M). Then x¢N for

some maximal submodule N of M. So Rx+N=M. But

N#M and so Rx is not small in M. Conversely, suppose Rx

is not small in M. Then there exists a proper submodule F

of M such that Rx+F =M. Define ¥={FcM |F is proper

and Rx+F =M}. Then %#¢ since F¢F. Clearly x¢F for all

F €F. Observe also that if G is any proper submodule of M



()

and GOF where F€3F then GE€F. Now order F by set
inclusion. Then |J F is a proper submodule of M since
FeJ

x¢F for all FE€F. Also since U FDOF forall Feg,
Fed

then U F€&. So, by Zorn's Lemma, there exists a maximal
FeX

-element E in F. Clearly E is a maximal submodule of M,

for if ADE, then A€ J. But this would contradict that E is

maximal in &. Hence x¢J(M) since x¢E. This proves (e).

Our remark now follows trivially. Observe that by (a), Pi

small in M = f(Pi) is small in N where f:M-N. So

f(IM)) = Z f(Pi) where Pi is smallin M
i€l
c I Qi where Qi is smallin N
iel
= J(N).

We first observe that J(M)={)Kerf such that f¢ HomR(M, S)
where S is a simple left R-module. Also if we define g:R=S
by g(r)=r.s for 0#s€S, then g(R)#0. Hence g(R)=S and

S=R/Ann(s). So

J(R) = () Ann(s) o (x
s€S

L
~

The above remarks may be found, for example in [29].

So consider f:M-S where S is a simple left R-module.



(g)

Then f(J(R)-M) € J(R)-f(M) = J(R)-S =0 by (*). So
JR)-M c Kerf for every f:M=S. Hence J(R)-Mc(\Kerf

= J(M).

Consider first the case where F is a free left R-moddule.
Then F = & Ri where RiaR for all i€1. Hence
iel
JFY=J( & Ri) = @ J(Ri) = JR)'F. Nowlet P bea
i€l iel

projective left R-module. Then P is a direct summand

of a free left R-module F. Consider F z%-:" P where 7
o

is an epimorphism which splits; 1i.e. 1mz=idP. Then

J(P) = 7a(J(P)) < w(I(F)) by (e)

1l

m(J(R)F)

n

J(R)-w(F)

JR) P.

But J(R)-P < J(P) by (f). So J(R).P = J(P).

Our proof essentially follows that of Sandomierski [34]. Let
T = {f¢E |Imf is smallin P}. We first show that Tc J(E).
Solet f€T. Then P=Imf+Im(l-f) =Im(1-f) since Imf

is small in P. Hence l-f is an epimorphism of P. But P

is projective. Then, there exists g: P-»P such that (1-f)g=idP.
But then f€J(E). Now to prove J(E)cT. Solet f€J(E) and

assume Imf+K=P where KcP. Clearly qf: P»P-»P/K

is an epimorphism where @:P-P/K is the canonical map.



Since P is projective, there exists g: PP such that

P
Pd
//
”
g .
// m
,I
e"f v
P > P T p/K

commutes. So qfg=7. Now let x€ P. Then g(x-fg(x)) =0,
and so x-fg(x)€Kerq = K. Hence Im(l-fg) ¢ K. But

feJ(E) = 1-fg is isomorphism of P = Im(l-fg) = P. So PcK.
Hence P=K and Imf{f is small in P. This shows f€T, and

so J(E) =T = {f€E |Imf is small in P}.

We follow the proof given by R.Hamsher [17]. Also, we note

that if J(R)'M is small in M, then JR)"'M=M = M=0.

(). Assume J(R)'M is not smallin M andlet J(R)'M =M
for some non-zero left R-module M. Then there exists

mleM and aIEJ(R) such that alml;éO. But if meM,
n
then m= Z a,my for aieJ’(R) and miEM. Hence a

m, £0
. k
i=1

k

for some index k. Hence there exists mZEM and 2, € J(R)

such that m, = azm2 #0, and hence 2 a,m, £0. In this way,

we have a sequence ,{ai}CJ(R) and a sequence {mi}c M

such that .a,m, #0 for all k. This contradicts that

aja,...am
J is left T-nilpotent. So, J(R)'M is small in M.



(j)

-]
() Let {ai} be a sequence of elements of J(R). Let F = & in
i=1
be a free left R-module with countable basis {Xi}' Also
o
define G = & R(Xi_ aixi ). Then, since J(F)=J(R)'¥ by (g),

i=1 +1

we have that F =G+J(R)-F =G by hypothesis. Now let x €F.

n

Then x,= % r.(x,-a.x. .)= r1x1+(r2-rlal)x2+(r3—r2a2)x3+...

1, iTi 1+l
i=1
.+ (rn-rn-lan-l)xn - rnanxn+l. Hence, by uniqueness of
representation, r1=1, r2=r1a1, r3=r2a2, .. .,rnan=0
So r2 =a1, r3 =a1a2, r4=ala2a3, .. .,rn=al. . 'an-l'
This shows that 0 =r a =a_...a a, and so J(R) is
nn 1 n-1"n

left T-nilpotent.
(We note that this implication only requires that F be a free

left R-module.)

Let M be a left R-module and J=J(R). Then M/JM is a left
R/J-module, and so is projective since R/J is completely
reducible. So by (g), J(M/IM) = J(R/J)'M/IM. Hence
JM/IM) =0 sinceR/J is semi-primitive. But for any left
R-module M, JM/J(M)) =0 and J(M) is the smallest sub-
module of M with this property. Hence J(M)cJM. So

J(M) = J(R)M since J(R)-M € J(M) for any left R-module M
by (f).

This completes the proof of Lemma 1.4.



1.5. Definition

ILet M be a left R-module. An epimorphism q:P->M is a

projective cover of M whenever P is a projective left R-module

and Ker g 1is small in P.

From Lemma 1.4, we obtain two interesting corollaries.

1.6. Coroliary

Let R be semi-primitive (i.e. J(R)=0). Then a left R-module M
is projective @ it has a projective cover.

(=). This implication is clear.

(¢). Suppose ®:P-M is an epimorphism where P is projective

and K=Kerq is small in P. Then

K c J(P) by 1.4(e)
= JR)-P by 1.4(g)
=0,

So 7 is an isomorphism and M is projective.

1.7. Corollary

For any ring R, a flat left R-module M is projective ¢ it has a
projective cover. |
(=). Trivial.

(€). Let m:P-M be a projective cover of M and let K=Ker 7.



Since M is flat, there exists f:P-»K such that f(k)=k for all k€K
[30,p.61]. So ImfcK. But K is small in P. Hence by 1.4(b),

Imf is smallin P. So f€J(E) where E=EndR(P), by 1.4(h).

Hence 1-f is a unit in E by [23, §3.2,Prop.5]. But (l1-f)k= k-f(k)=0.
Hence k=0 for all k€K. This shows that  is an isomorphism

and so M is ‘projective.

B: Perfect Rings Characterized

1.8. Definition

H.Bass called a ring R left perfect @ every left R-module has a

projective cover.

1.9. Definition

A submodule A of M is large in M if ANN=0= N=0 for any

NcM.

1.10. Lemma

Let M be a non-zero right R-module. Then M contains a simple
R-module & Soc(M) is large in M.
(). Let NcM suchthat N#0. By hypothesis, there exists a

simple right R-module ScN, S#0. But then ScNNSoc(M) and hence

NNSoc(M) £0. So Soc(M) is large in M.
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(¢). Assume Soc(M) is large in M. Let N#0 be a submodule
of M. Then Soc(M)NN#0. But Soc(M) is completely reducible,
and hence so is Soc(M)NN. So Soc(M)NN, and hence N, contains

a simple submodule.

1.11. Remark

An equivalent formulation of 1.10 is as follows: A non-zero

right R-module has a non-zero socle ® Soc{M) is large in M.

1.12. Definition

Let D be an ideal of R. Then idempotents can be lifted modulo D,

if for any idempotent e+D in R/D, there exists an idempotent f in R

such that f+D = e+4D.

We shall now give the main characteristization of left perfect rings.

1.13. Theorem (Bass [2])

ILet R be a ring and J=J(R) its Jacobson radical. Then the
following statements are equivalent:
(1) R/J is completely reducible and J is left T-nilpotent.
(2) R is left perfect.
(3) Every flat R-module is projective.
(4) R satisfies the descending chain condition on principal right ideals.
(5) R has no infinite set of orthogonal idempotents, and every non-zero

right R-module M contains a simple R-module.
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(6) R has no. infinite set of orthogonal idempotents and for every
non-zero right R-module M, Soc(M) is large in M.
The proof follows thatof Bass [2]. We also consult {34] extensively.
Now (2)=(3) follows directly from Corollary 1.7.
Also (5) & (6) is immediate from Lemma 1.10,
(1)=(2). Let M be a left R-module. To show that M has a
projective cover. Now M/JM is a left R/J-module, and since R/J
is completely reducible, then M/IM =.€B Si where Si is a simple
left ideal of R/J for each i in some in(liSi set I. Hence Si =(R/J)f-i
where f—i =fi+J and f_i2 =fi. Now J is left T-nilpotent and hence nil.
So idempotents can be lifted modulo J by [23,§3.6 Prop.1]. Hence
there exists ei2 =e.1€ R such that ;'i :f_i' Then M/IM = .@ISi
= @ Rei/Jei. let P= & Rei and consider ¢: P= M/JM,1 fwhere the
iel i€l
restriction of ¢ to Rei is the canonical epimorphism (pi:Re-.le Rei/Jei.
Clearly P is projective, being a direct sum of projective R-modules,
and ¢ is an epimorphism. Also Ker<p=_€3 Ker(pi = .63 Jei = J(.EB Rei)
i€l iel iel
= J(P) = J(R)-P by 1.4(g). But since J=J(R) is left T-nilpotent,
then J(R).P is small in P by 1.4(i). So Ker ¢ is small in P and
©: P> M/JM is a projective cover of M/JM. But P is projective.

So there exists B:P->M such that #8=a where 7:M-M/JM. That is,

the following diagram
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. P
B’
,," 0]
et
M > M/JIM

commutes. Now M=Im B+Kerq =Im g+JM=Im B since JM is

small in M by 1.4(i). So B8 is an epimorphism. Also Ker S Kergp
which is small in P since ¢@:P->M/JM 1is a projective cover. Hence,
by 1.4(b), Ker B8is small in P.

Hence, by 1.4(b), Ker 8 is small in P. So B: P->M is a projective

cover of M, and R is left perfect.

(3)=(4). Let rlR 2 r2R 2 r3R 2... be a descending chain

of principal right ideals of R. Pick a sequence {ai} c R suchthat

ry=a, and r et =rkak+1. Then alR 2 a.laZR 2 ala2a3R = ..
Hence it suffices to prove a,a,.. .anR =aa,.. 'an+kR for k=21.
Let F=& in be a free left R-module countably generated on {xi].
i=1 n
o]
Also let G = .GB R(xi-a,lel) and Gn=.® R(xi—aixiH) for each
i=1 i=1
n=1,2,... . Then clearly F/Gn is a free (hence flat) left R-module

with basis {x ...} where % =x+G . But F/G = limF/G .
n 1 1 n -> n

+1" Fns2’
So F/G is flat, since a direct limit of flat R-modules is flat [30,p.33].

So by hypothesis, F/G is projective and hence G is a direct summand

of F. The proof would be complete after we prove the following lemma.
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Lemma (%)

Suppose G is a direct summand of ¥ where F and G are defined
as above. Then the chain {al .. .anR} of principal right ideals
terminates.

The proof, based on that of Sandomierski [34], consists of
four claims.

Claim 1

For each k, define J, = {r ERIrak. ..ra, , =0 for some n}.

k+n
Then J ={r€R|rx =0} where x, =x1G.
k k i i

Proof of Claim 1

)ta, x +G = a +G since

Observe that x =x +G = (x 1Kk 1 kxk+1

Kk Tk K Kok+1
€G. So x =a G)

X X X k(xk+1+ By a similar computation,

T A kel

So x

edl " x4 1ke2 Kl " K41 PrinSkent]  LOF some n.

Now let rEJk. Then rak. . .ak+n=0 for some n. Hence rxk=

r(a 1 P S Kn

)=0. So Jkg{r ER|r§k=0}. For the reverse

)=0 for n=k. Hence

inclusion, let rx, =0. Then r(ak...

k an+ lxn+2

K an+lxn+2 € G. But this means that rak. . 'an+ lxn+2

n
= Trilx-ax
i=1

By comparing coefficients, we see that ray .- =0, and sor¢ Jk.

).

ra

Hence {r€R| r:_{k=0} c J,, and Claim 1 is proved.

k’
Now, by hypothesis, G is a direct summand of F. So if 7:F->F/G,
then there exists q: F/G-2>F such that qa=id. So ;{n = na(}—cn) =a(}_;n)+G.

Hence x -qg(x ) € G forall n=1,2,... . Let z =g(x ). Then
n n n n

x = zn+gn where g, €G.
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Claim 2

I = {rEerzk=0} for all k.

Proof of Claim 2

By Claim 1, Jk={r€R[rxk=0}. But rzk=ra(xn)=og(rxn) since

o is an R-module homomorphism. Hence rz =0 a(r}-ik) =0 ®rx =0

k k
since @ is 2 monomorphism. This proves Claim 2.

Since z €Imgq, then z €F. So z = Y ¢ .x. where ¢ .€R
n n n n, ]

. PR s
j=1
for j=1,2,... . Consider the principal right ideal I of R generated
by {c1 j} where j=1,2,...
Claim 3
@
I= Na_...2a R.
1 n
n=1
Proof of Claim 3
Recall we showed in the proof of Claim 1 that ;{l = alﬁ-cz =...=aa,...8 X

But since znza()-;n) and o is a monomorphism, then z. =a. .z =...=

1 172
® ©
_alaz. . 'anzn+l' But Z 41 _j?lcn'*‘l,jxj' Hence z, —JE)lcl’jxj =
=a1az. . 'anzn+l =a1a2. . .an(j?}lcm_l, JXJ ). So for each j=1,2,...
cl,j=al' . 'ancn+1,j € al. . .anR for all n=1,2,... . Butlis
[+
generated by {c, .} for j=1,2,... . So I Na,...a R.
1,3 1 n
n=1
Claim 4
There exists an integer m such that a;-- .amE I.
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Proof of Claim 4

[e-] @0
Now Zl:j§1cl,jx' = Ecl,j(zj+gj)' But zlélma wher e

© © o ™

J
a:F/G>F. So z,.=XZc, .z,= L c, (ZTec, x)=2Z(Z

=
bojar B0 o Mo B0 Y o

Cl,jcj,i 1

=]
So ¢, .= Zc, .c, .. Inthe proof of Claim 3, we showed that
1, ] j=1 i

Z.=a

Leee@ Z for all n>j. So ¢, , =a,...a ¢ for all n>j,
i o] n n+l n

o
and all k=1,2,... . Hence for some n=g, Cl,k:jzlcl,j(aj"'aaca+1.k)

l,j(aj' . .aa). Then Cl,k:yc

o
for all k=1,2,... . Let y= 2 c

j=1 atl, k

So (y-a )

1”'aaza+1=0

and hence z1 :‘yz'y+l' But z1 :alaz. . .aaza+1 .

Hence by Claim 2, -y-al. . .aae Ja. Let p=y-a .. .aa. Then by Claim 1,

pal...aB=0 for some 8. So ya,...2a Hence if m =qg+t8,

a:alaz. . .aa+3.

then alaz. . .amel. By Claims 3 and 4, Lemma (%) is proved.

(4) = (5). Suppose there exists an infinite set of non-zero orthogonal
n

idempotents of R. Let {ei} be a countably infinite set. Put x = z e,.
i=1

) =1-x -X +x X 1-x . So (l-xn)RQ‘(l-x

n+1 n n n+1: n+l )R

Then (l-xn)(l-X n+1

n+1l
for all n=1,2,... . We now show that (l-xn)R#(l-xn+1)R. For

2

)Jr for ré R. Then x (1-x }=( Jr=0.

Suppose l-xn=(l-x ntl SR e

n+l

JR for all n.

Hence e =0, a contradiction. So (1-x )R ? (1-x
n n

+1 n+l

— s -} .
Let ri_l-xi for all i=1,2,... . Then rlR :,érzR ?r?’R? ... which
contradicts (4). So there cannot exist any infinite set of orthogonal

idempotents of R.
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Now suppose no non-zero right R-module M contains a simple
right R-module. Let 0#x¢€M. Then by assumption, xR is not

simple. So there exists XI#O such that X =XT where r€R

and le%xR. Again, by assumption, le is not simple. Hence

there exists XZ#O, x :xlr where rleR and xZR%le.

2 1

Continuing in this fashion, we have that xR?le?szi’ Ce
which again contradicts (4). This proves that every non-zero

right R-module contains a simple right R-module.

(5) = (1). If J=0, there is nothing to prove. So assume J#0.

0.

For each ordinal B, define inductively the right ideal JBC J of R by
1 <B =J cCJ,..
(1) a<pf o= 78
(2) JO = {0}.

(
(3) U J if Bis a limit ordinal

o
a<p
J, =1
"B

J'y+1 where 8=v+1 and where J‘V+1/J')/ —Soc(J/Jy).

“
Now there exists ﬁO such that .]'B =JB e and so Soc(J’/JB ):Jﬁ +1/JB =

0 0 0 0 0
By hypothesis, a non-zero module has non-zero socle. So J/JB =0
0
= J'=J'B . Now for each 0#a€J, define h(a) to be least ordinal B such
0

that a € JB. Then h(a) cannot be a limit ordinal, for if so, then
aEJﬁ= U Ja. Hence aEJa for some @<B, which contradicts the

a<fB
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minimality of 8. So then h(a)=y+l1 for some y. But Jy+1/J =Soc(J/T ),
Y Y

and since Soc(J/Jy) is completely reducible, then J‘y+ Jc J‘y. So

1

if a,,a,€7, then h(ala )< h(al). Now let {ai}CJ. If J is not left

2
n

T-nilpotent, then I a, #0 for all integers n. But then h(al) >h(a
i=1

> h(a1a2a3) >... would be an infinite decreasing chain of ordinals —

122)

a contradiction. Hence J is left T-nilpotent. Finally, to show R/J is
completely-reducible. We shall prove R/J=Soc(R/J). Now J is left
T-nilpotent and so is nil. Hence, if R has no infinite set of orthogonal
idempotents, then so is R/J. So Soc(k/J) is a finite direct sum of
minimal ideals each of which is generated by idempotent. Hence
Soc(R/J) is a direct summand of R/J. But then the complementary
module has zero socle and so is also zero, by hypothesis. Hence
R/J = Soc(R/J).

This completes the proof of Theorem 1.13. We shall now deduce

some interesting corollaries.

1.14. Definition

A ring R is called semi-primary & R/J is completely reducible

and J=J(R) is nilpotent.

1.15. Corollary

Let R be right Noetherian. Then R iis right Artinian ® R is left

perfect.



18

(=). Let R be right Artinian. Then R has the descending chain condition
on right ideals, and hence on principal right ideals. So R is left perfect.
(¢). Since R is left perfect, then R/J is completely reducible and
J is left T-nilpotent. Hence J is nil. But R is right Noetherian, and so
by [23, p.70], J is nilpotent. Hence R is semi-primary. But if R is
right Noetherian and semi-primary, then R is right Artinian by [6,§6,

Prop.12].

1.16 Definition

An ideal D of R is called a right annihilator, and denoted by r(D),

if D={r€R|Dr=0}.

1.17 Corollary (Faith [11])

Let R satisfy the ascending chain condition on right annihilators.
Then R is semi-primary # R is left perfect.
(). This implication is clear since a nilpotent ideal is left T-nilpotent.
(€). 1t suffices to prove that J is nilpotent. Consider r(J) r(JZ)
cr(J)e... By hypothesis, there exists an integer n such that
r(Jn) = r(Jn+1). We claim r(Jn) =R. Suppose not. Then Soc(R/r(Jn)) £0
since by Theorem 1.13, non-zero modules over a perfect ring have non-

zero socles. So Soc(R/r(Jn)) = I/r(J‘n) where I is a left ideal such

that Iv%r*(:.]:r:l). But Soc(R/r(Jn)) is completely-reducible and hence
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J(I/r(I™) = 0. This implies that J.Icr(J%). Hence IC (™ 1) =r(7™.

So I=r(.]'n), a contradiction. So r(Jn):R=>Jn=O.

1.18. Corollary

Let R be a left perfect ring. Then, for all left R-modules M,

(1) JR)M is small in M and
(2) JR) M = J(M).
Proof

Let R be left perfect. Then R/J is completely reducible and J is
left T-nilpotent. Hence conditions (1) and (2) follow from Lemma 1.4(i)

and (j).

The author had made the following conjecture in a Student Ring Theory

Seminar at McGill University (1973).

1.19. Conjecture

Let R be a ring, J(R) its Jacobson radical and suppose R does not
contain an infinite set of orthogonal idempotents. Then R is left perfect

o for all left R-modules (1) J(R)'M is smallin M and (2) J(R)-M =J(M).

Discussion

Now Corollary 1.18 shows that a left-perfect ring satisfies the conditions.
So we examine the converse. But Lemma .1.4(1'.) states that J(R)-M is small
in M & J(R) is left T-nilpotent. So in view of Theorem 1.13, it suffices

to prove that R/J is completely reducible. Since J(R) is left T-nilpotent
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then it is nil. Hence, since R does not have an infinite set of

orthogonal idempotents, neither does R/J. But B.Osofsky

[28] has remarked that a regular ring -in-which there- -

does not exist an infinite set of orthogonal idempotents is completely
reducible. So it suffices to prove that R/J is regular. But clearly
condition (2) implies that R/J is a V-ring (i.e. every left R/J-module
has zero Jacobson radical). However, a theorem of I.Kaplansky [31]
states that if a ring S is commutative, then S is regular © S is a V-ring.
Also an example of J.Cozzens [10] shows that the commutativity condition
cannot be dropped. So our conjectu\re. is true if R is commutative.

We remark here that H.Bass [2] has conjectured that R is left
perfect ® every non-zero R-module has a maximal submodule and there
does not exist an infinite set of orthogonal idempotents. R.Hamsher [17]
and D.Fieldhouse [13] both independently settled this conjecture in the
affirmative , when R is commutative. As above, J. Cozzen's example
shows that commuta,tivity is necessary. We do notknow if Bass'

conjecture is equivalent to Conjecture 1.19.

1.20. Corollary

R is left perfect ® every flat left R-module has a projective cover.

Proof.
(). Follows from the definition of left perfect rings.

(¢). Suppose M is a flat left R-module which has a projective cover.

Then M is projective by Corollary 1.7. So, by Theorem 1.13, R is left

perfect.
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1.21. Definition

An R-module M is called quasi-projective & HomR(M, -) preserves

the exactness of all short exact sequences of the form 0-K->M->N=0.

The following result was proved by J.Golan [15] and also by

N.Vanaja [36].

1.22. Corollary

R is left perfect ® every flat left R-module is quasi-projective.
Proof.
(=). Clear, since a projective module is quasi-projective.

(&). Assume every flat left R-module is quasi-projective. Let

® o
F=@® Rx., be free on the countable set {x,}. Also, let G= ® R(x -ax, _)
. i i . i 1 i+l
i=1 i=1
n
and G = @ R(x.-a.x, .) for each n=1,2,... . Then as in the proof
nooL i 1+l

of Theorem 1.13, ZE‘/Gn is a free, hence flat, left R-module for each n.
Then F/G = li_f)nF/Gn is flat. But then F®F/G is also flat, and hence
quasi-projective by hypothesis. So by [15, Lemma 1.1], G is a direct
summand of . Hence by Lemma (%) of Theorem 1.13, R satisfies

the descending chain condition on principal right ideals.

1.23. Remark

Corollary 1.22 characterizes all rings R for which every flat left

R-module is quasi-projective — namely, left perfect rings.
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It would be interesting to characterize those rings R for which
every quasi-projective R-module is flat. J.Golan has conjectured
(in private communication) that every quasi-projective R-module
is flat @ every simple R-module is injective. N.Vanaja [36] has
proved that if R is commutative, then every quasi-projective R-module
is flat ® R is regular. Clearly Vanaja's result is a special case of
Golan's conjecture since I.Kaplansky [31] has proved that a commutative

ring R is regular © every simple R-module is injective.

It is well-known that R is left Noetherian & a direct limit of injective
left R-modules is injective. See, for example [30, p.87]. We now

prove a similar result for projective modules over left perfect rings.

1.24. Corollary (Bass [2])

R is left perfect ® a direct limit of projective left R-modules is
projective.
Proof

(=). Let {Pil i€l} be a family of projective left R-modules and
let P=lim Pi' Then P is flat since a direct limit of projective (hence
flat) R-modules is flat. Hence P is projective since R is left perfect.

(€). As in the proof of Corollary 1.22, we have that ]1"/(.‘z=11>m1?‘/Gn
n

@ ©
where F = &® Rx,, G=® R(x.-a.x, .) and G = & R(x.-a.x,
i=1 i i=1 i 11+l n i=1 i i

+1) for

each n=1,2,... . By hypothesis, F/G is projective. Hence G is a

direct summand of F. By Lemma (*) of Theorem 1.13, R is left perfect.
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1.25. Corollary

Let R be a local ring such that J=J(R) is left T-nilpotent.
Then a direct limit of free left R-modules is free.
Proof

Let {FiliEI} be a family of free left R-modules, and let F =lim F..
Since R is local, then R/J is completely reducible. Since J is left
T-nilpotent, then R is left perfect. So by Corollary 1.24, ¥ is projective.

Since R is local, F is free by [19, p.374].

It is well-known that a direct product of projective R-modules need not
be projective. R.Baer [20] has shown that if R =Z, the ring of integers,
then IIZ is not projective where the product is taken over a countably

infinite set. However, we do have the following result.

1.26. Corollary

Let R be left Noetherian and left perfect. Then a direct product
of an arbitrary family of projective left R-modules is projective.

Let {Pi |i€l} be a family of projective left R-modules and let
P= . I Pi' By [7, p.122], a direct product of flat left R-modules
ove:'eaI left Noetherian ring is flat. Hence P is flat and so projective

since R is left perfect.
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1.27. Corollary

If R is commutative Artinian, then a direct product of a family
of projective R-modules is projective.
Proof

This follows directly from Corollary 1.15 which states that if R
is commutative, then a perfect ring which is also Noetherian is

Artinian.

1.28. Remarks

(a) A ring R is called right coherent if each of its finitely-generated

right ideals is finitely-related (i.e. it is a quotient of a finitely-generated

free R-module by a finitely-generated submodule). S.Chase [8] has
characterized all rings for which a direct product of projective R-modules
is projective. These turn out to be rings which are left perfect and
right coherent. It is interesting to note that over a right coherent ring,
a direct product of flat left R-modules is flat.

(b) In view of Corollary 1.25, a natural question presents itself:
Over what rings is a direct limit of free left R-modules free? Actually,
the converse of 1.25 is true, and hence R is local and J(R) is left
T-nilpotent & a direct limit of free left R-modules is free. This follows

from a theorem of V.Govorov [14] which states that R is local and J(R)

left T-nilpotent & every flat R-module is free.
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We have seen in Corollary 1.20, that R is left perfect ® every
flat left R-module has a projective cover. However, this condition

can be weakened further.

1.29. Theorem (Sandomierski [33])

R is left perfect ® every completely reducible R-module has a
projective cover.

(). Follows from the definition of left perfect rings.

(€¢). In view of [23, §4.2, Ex.11], it suffices to prove that
J=J(R) is left T-nilpotent. Also by Lemma 1.4(i), it is sufficient
to prove J-F is small in F for any free left R-module F. So let F
be a free left R-module. Then F/J.F 1is completely reducible
R/J-module. So, being also an R-moddule, it has a projective
cover m:P-F/JF. But F, being free, is projective. Hence,
there exists B:F->P suchthat 78=a where @ is the canonical

map F-F/JF. That is, the following diagram

4” F
e’
P —~ F/JF
m

commutes. Now P=Imfg+Kerq =Imf since Kerq is small in P.

So B is an epimorphism. But P is projective. Hence Ker f is a
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direct summand of F. Since F is free, then Ker 8 is projective.
Let K=Ker 8. Then F=P/K. So by [23, §5.4, Prop.3],

JENK = JK. But clearly K=Ker g cKerqg =JF. Hence JFNK =K.
So JK=K. Since K is projective, then by [2, p.474], K=0, and so

B is an isomorphism. Hence J:F 1is small in F.
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CHAPTER 1I

In this chapter, we give a characterization of semi-perfect rings due

to H.Bass [2]. The principal result is Theorem 2.5.

2.1. Definition

H.Bass [2] called a ring R left semi-perfect ¢ every finitely-generated

left R-module has a projective cover.

2.2. Lemma
If R is left semi-perfect, then every finitely-generated flat left
R-module is projective.

Follows directly from Corollary 1.7.

2.3. Remark

The converse of Lemma 2.2 is false. The following example taken
from [34] shows this. Let R =2Z, the ring of integers. Then clearly
R satisfies the condition. In fact, it is clear that commutative Noetherian
rings have this property. However Z is not semi-perfect. For suppose
Zn=Z/nZ, n>0 1is a left Z-module which has a projective cover g:P= Zn.
Then, since Z is projective as a left Z-module, then there exists
ﬁ:Z—>Zn such that 78=a where a:Z—>Zn. Hence P=ImgB+Kerq=Imp
since Kerq is smallin P. So B is an epimorphism and hence P=Z

m

for some integer m. But P is a projective Z-module and hence free.
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So m=0 and P=Z. But

Kerq € J(P) by 1.4(e)
=J(Z) since P=Z
=0.

Hence 7 is an isomorphism, and so PEZn where n>0. This contradicts

that P?:Zn. Hence Z 1is not semi-perfect.

2.4. Lemma

Let I be a two-sided ideal of R and A an R/I~-module. If g:P=A
is an R-projective cover of A, when the induced map ¢’:P/PI»A is an
R/J-projective cover of A,

The obvious definition of ¢': P/PI»A is given by 1r'(p+PI) =n(p)
for p€P. This is clearly well-defined since I annihilates A. Since
P/PI == R/I®R P, then P/PI is a projective left R/I-module by
[23, §5.3, Prop.3]. Also Kerqg'c Kerq/Pl. But Kerq/PI is small
in P/PI by 1.4(a). Hence Kern' is small in P/PI by 1.4(b). This

completes the proof.

2.5. Theorem (Bass [2])

Let R be a ring and J=J(R) its Jacobson radical. Then the following
are equivalent:
(1) R is left semi-perfect.
(1" R is right semi-perfect.

(2) Every cyclic left R-module has a projective cover.-
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29 Every cyclic right R-module har a projective cover.
(3) R/J is completely reducible and idempotents can be lifted
modulo J(R).

Note that since condition (3) is symmetric, it suffices to prove

(1) = (2) = (3)=> L.

Our proof is based on that of H.Bass.

(1) = (2). Obvious from Definition 2.1.

(2) » (3). For this implication, we follow the argument outlined in the
exercises of [23, p.93]. So let C be a cyclic left R/J-module. Then C,
being also a left R-module, has an R-projective cover. So by Lemma 2.4,
C has an R/J-projective cover. But R/J is semi-primitive. Hence
by [23, §4.2, Ex.11], R/J is completely reducible.

We now show that idempotents can be lifted modulo J. So let r €R
such that ;2 =r where r=r+J. We shall show that there exists
e€R, ez =e suchthat e=r. Let s=1-r and R =R/J. Also let
o:P-Rr and B: Q-Rs be projective covers for Rr and Rs
respectively. (These exist by hypothesis and by Lemma 2.4.)

Then by [23,84.2,Ex.9], f:P®Q > Rr®Rs isa projective cover of R.
(Observe that R = Rr@®Rs.) Note that f(p+q) = a(p)+8(q) for p€ P

and g€Q. But R is projective as an R-module. Hence, there exists
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g:R->P®Q such that fg=h where h:R-R/J. That is, the following

diagram

POQ ——— S5 R/J

commutes. Hence P®Q =Img + Kerf =Img since Kerf is small

in P®Q. So g is an epimorphism. But P@Q is projective, and

so Kerg is a direct summand of R. But Kerg < Kerh = J(R) which
is small in R by 1.4(d). Hence Kerg =0, and so R =P®Q. Hence
R = g’l(PeaQ) = g"l(P)@g'l(Q) = Re®R(l-e) where eZ-e€cR. (This
last equality follows from the well-known fact that a left idealI of R
is a direct summand © I1=Re where e2 =e€R.) So h(Re)=1fg(Re)

= fg(g_l(P)) = {(P) = @(P) = Rr. But h(Re) = Re. Hence Re = Rr.

Similarly Rf=Rs where f=1-e. So e+f=1=r+s. Hence e-r =s-{.
But both sides of the last equation are in different summands. So
e-r =0 = s-f. This shows that e = r, and so idempotents can be lifted
modulo J(R).

(3)=(1). Let M be a finitely-generated left R-module. To show
that M has a projective cover. Let R=R/J. Then M/JM is a left
R-module and since R is completely reducible, then M/JM = ; Si

i=1
where Si is a simple left ideal of R for each i=1,2,...,n.
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n

But since S, =Re. where o, =e.+J and e,2=e_, then M/JM= ® Re..
1 1 1 1 1 1 i=1 1
But idempotents can be lifted modulo J. So there exists fie R,
n
f.2 =f and f. =e., for each i=1l,...,n. Hence M/JM= & Rf, /Jf. .
i i i i . i
n i=1
Define P = @& Rf,. Then, clearly, P is a projective left R-module
T
since it is a direct sum of direct summands of R. Consider
g:P->M/IM (1)
n
We shall show that (1) is a projective cover of P. Note that g= & Ker g;
i=1

where g.:Rf »Rf /Jf .. Clearly Kerg, is small in Rf, since
i "7 i i

Ker g < Kerh where h:R-R/J, and J(R) is small in R by 1.4(d).
n

So Kerg = & Ker g; is small in P by 1.4(c). So (l) is a projective
i=1

cover of M/JM. But P is projective, and hence there exists B8: P->M

such that g8=g where 7 is the canonical map: M~>M/JM. That is,

the following diagram

r,P
B g
¢’ .
M > M/IM

commutes. Observe that Kerq=JM is small in M by Nakayama's
Lemma. So M=ImB+Kerqs =Impf. Hence B8 is an epimorphism.
Also Ker B c Kerg which is small in P since (1) is a projective cover
of M/IM. Hence B:P->M is a projective cover of M.

This completes the proof.
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We shall now obtain a characterization of semi-perfect in terms

of a weaker condition than any of the equivalent ones of Theorem 2.5.

2.6. Theorem (Sandomierski [33])

A ring R is semi-perfect ® every simple left R~-module has a
projective cover.

(). R semi-perfect = every cyclic, and hence simple, left
R-module has a projective cover.

(€). First we show that R/J is completely reducible. Let S be
a simple left R/J-module. Then S, being also a left R-module, has an
R-projective cover. So by Lemma 2.4, S has an R/J-projective cover.
Then by [23, p.93], R/J is completely reducible. Now, let C be
a cyclic left R~-module. We shall show that C has a projective cover.
Let C=R/I where Iis a left ideal of R. Then R/I+J is a finitely-
generated left R/J-module. Since R/J is completely reducible,

n
then R/I+J = & Si where Si is a simple left R/J-module for each
i=1

i=l, ...,n. As above, each Si has a projective cover and so does
R/I+J by [23,84.2, Ex.9]. Let #: P->R/I+J be a projective cover
of R/I+J. Then since P is projective, there exists B: P»R/I such
that gf=m where @ is the canonical map:P-P/I. That is, the

following diagram
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P
B
’// Tr
L’
o
R/I —> R/I+J

commutes. Now Ker g=I+J/I. But I+J/I is the homomorphic image
of J(R) under the canonical map R-R/I. Hence by Lemma 1.4(a),
Ker @ is small in R/I. But R/I=Im 8+Ker . Hence R/I=Im§f

and so Bis an epimorphism. Also Ker Bc Kerq which is small in P.
So B:P-R/I=C is a projective cover of C and hence R is semi-

perfect.

2.7. Corollary

R is semi-perfect @ every simple left R-module has the form
Re/Je where e2 =ecR.

(). Let A be a simple left R-module. Then either JA=0 or
JA =A.

Case 1. Let JA=0. Then A, as an R/J-module is simple, since

any submodule of A 1is also a submodule of RA. So A :(R/J)f_ where

R/J
f=f+J and f_z =f. But idempotents can be lifted modulo J(R). Hence

A = Re/Je where e2=e€R and e =f.
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Case 2. Let A=JA. Since R is semi-perfect,then every simple
left R-module has a projective cover by Theorem 2.6. So let g7:P=A
be a projective cover of A, andlet K=Kerq. Then A=P/K and
by assumption, P/K=J(P/K). Hence P =J(P)+K = J(P) since K is
small in P. But P is projective, and so by [2,p.474], P=0. Hence
a=0.

(¢). Assume every simple left R-module has the form Re/Je
where e2=e € R. Consider f:Re=Re/Je where f is the restriction
of the canonical epimorphism g:R-R/J. Clearly Re is a projective
left R-module and f is an epimorphism. So it remains to show that
Kerf is smallinRe. But Kerf=Je=J'Re by 1.4(g). Also
J.Re ¢ J(Re) by 1.4(f). Furthermore, J(Re) is small in Re since
Re is finitely-generated. Hence Kerf is small in Re. This shows
that every simple left R-module has a projective cover, and so,

by Theorem 2.6, R is semi-perfect.
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CHAPTER III

A: Lifting Idempotents

- 3.1. Definitions

(a) A set {ei] of idempotents of R is called mutually orthogonal

if eiej=0 for i#j.

(b) An idempotent e of R is called primitive if it.cannot be written

as the sum of two non-zero orthogonal idempotents.

(c) An idempotent e is called local if eRe 1is a local ring. (I.e.

it has a unique maximal ideal.)

3.2. Lemma

Let R be a ring and J(R) its Jacobson radical. If x2=x€J(R),
then x=0.

Suppose x2=x6J(R). Then x%(l1-x)=0. But x€J(R)=>dr€eR

such that (l-x)r=1. So x=x"1=x(1-x)r=0.

3.3. Lemma
If eand f are idempotents in a ring R such that ef=fe and
e-f€ J(R), then e=f.

Since J(R) is a two-sided ideal of R, then f-ef€ J(R). But (f—ef)2=

£% _fof-ef’+efef = f-ef. So by Lemma 3.2 f=zef. But (e-f)> =

e2+f2—ef-fe = etf-2ef = e-f. Again by Lemma 3.2, e=f.

1]
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3.4. Lemma

Let N be a nil ideal of R. Then idempotents can be lifted to
idempotents of R/J.
Proof

Our proof follows that of L. Levy [24] who attributes it to A. W Goldie.
Let u€R such that 112=1_1 where u=u+N. Since N is nil, there exists

an integer k such that (uZ—u)k =0. Observe that (l—x)k =1 -xf(x)

where f(x) is some ‘polynomial with integer coefficients. So 0=(u—u2)k

' k
= u.k(l—u)k =uk(1—uf(u)) = uk-uk+lf(u). Hence uk=uk+lf(u). Let e«=ukf(u) .

Then we shall show that e2 =e. But this is clear since e =ukf(u)k =

= uka(u)k+l = ...= u.Zkf(u)Zk = ez, by repeated use of uk=uk+lf(u).
Also e=a @ = o e - S5 gmF =2 3523 since d isan

idempotent. This completes the proof.

3.5. Corollary

R right Artinian = R is semi-perfect.
Let R be right Artinian. Then R/J is completely reducible. But
J(R) is nil. Hence idempotents can be lifted modulo J(R). So R is

semi-perfect.

3.6. Lemma (Kaye [217)
Let R be semi-perfect. Then an idempotent e of R- is primitive

& e+J(R) is primitive in R/J(R).
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Let e=e+J where J=J(R), and suppose e is not primitive
in R/J. Then there exist idempotents fl and f2 in R/J such that
e =fl+f2 and flfz =0. But R is semi-perfect. So there exist-s
idempotents e in R where éi.:fi for i=1,2. By [23, 8§3.6, Prop.2],

we may assume e. e =0. But then e and e +e_ are idempotents

12 1 72
in R such that e(e1+e2) =(e1+e2)e and ézél—ﬂ-éz. Hence by Lemma 3.3,
e=e.*e,. This contradicts that e is primitive. Hence e is primitive

1 2
in R = e is primitive in R/J.
(&). This is clear. For suppose e is not primitive in R, then
e=e1+e2 where e1e2=0 and ei#O for i=1,2. But then e=el+e2

in R/J where éi#O and éléZ:O' (Note that e =m(e) where
m:R->R/J.) Hence e is not primitive in R/J. So e primitive

inR/J = e is primitive in R.

3.7. Lemma (Lambek [23])

Let R be semi-perfect. Then a primitive idempotent e is local.
Proof

We adopt the proof given in [23]. Solet e be a primitive idempotent
of R and let J=J(R). Since R is semi-perfect, then R/J is completely
reducible and hence regular. So if u€eRe, then there exists u’e€R
such that uu’u=u modulo J. We may assume u’=eue. Clearly uu’

is an idempotent in R/J. Also e=eu and u’=u’e, and so uu’(l-e)=0
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and (l-e)uu’=0. Since R is semi-perfect, idempotents can be lifted.
Hence there exists fZ:feR such that f=uu’. Furthermore, by
[23, §3.6, Prop.2], we may assume f(l-e)=0 and (l-e)f=0. So
f=gf=fe, and hence f€eRe. Clearly f and e-f are orthogonal
and e=f+e-f. Since e is primitive, £=0 or e-f=0. Now let ut 0.
Then f#0 since fu=uu'u=u. So e=f. Inthis case uu'=f=e and
so u is right invertible. Similarly, u is left invertible. So if 1;.790,
then it is a unit. This shows that eRe/JNeRe is a division ring.

But by [23, §3.7, Lemma 1 ], JNeRe = J(eRe). So eRe is a

local ring.

3.8. Corollary

A ring R is local ®» R is semi-perfect and 1 is a primitive idempotent.
(®). If R is local, then R/J is a division ring, and hence completely
reducible. Also, the two idempotents 0 and 1 are easily Iifted.

(¢). By Lemma 3.7, R=1R1 is local.

3.9. Corollary

Let R be a local ring. Then every finitely-generated flat R-module
is free.

Since R is local, then it is semi-perfect. So by Lemma 2.2, every
finitely-generated flat R-module is projective, and hence free since

R is local.
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3.10. Theorem (Lambek-Miieller)

Let R be a ring. J=J(R) its Jacobson radical and 1 the identity
of R. Then the following statements are equivalent.
(a) R is semi-perfect.

n
(b) 1 = ¥ e. where e is a local orthogonal idempotent for each

(a) = (b). The proof of this implication is given by Lambek [237].
n
In view of Lemma 3,7, it suffices to prove that 1= ¥ e, where each
i=1

e, is a primitive orthogonal idempotent. Since R is semi-perfect,

then R/J is completely reducible. The indecomposable left ideals

in R/J are the minimal left ideals. Hence R/J =Efl+. 3 .+an where

R =R/J and {f1+. . .+f_n] is a set of primitive orthogonal idempotents

in R suchthat f +...+f =1. But by hypothesis, idempotents can

1 n
be lifted modulo J. Hence there exists a set of idempotents {el’ cees en}
in R such that éifi for i=1,...,n. Also the ei's are primitive by

Lemma 3.6 and mutually orthogonal by [23, §3.6, Prop.2]. Suppose

n
x = 3 e, Then x2=x and (1—x)2=1—2x+x2=1—x50 modulo J. Hence

i=1
n

1-x is an idempotent in J. By Lemma 3.2, 1-x=0 =21= % e,
i=1

(b) = (a). Our proof essentially follows that of E.Behrens [4].

So assume that 1= e1+. . .+en where each e, is a local idempotent.
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First we show that R =R/J is completely reducible. Clearly it suffices
to prove that éii is irreducible for each i. Consider R=eR @(_—é)ﬁ
where e =ei for some i. Then (T—é)i #ﬁ. So there exists a maximal
right ideal L of R suchthat (l1-e)R c L. Hence R =eR+L. We shall
now show that this sum is direct. If not, then Lﬂéi #0. Hence
(LN é_li)z £0 for otherwise Lﬂéf_{ c J(ﬁ) =0. Then, there exists
x €R such that ex€ L, and exeR #0. In particular exe # 0. Moreover,
exe has an inverse ';r in éié since e local = eRe/J(eRe)=é_P:e is a
division ring. So exey=e € L. But (i—é)R CL = l-e€L. Hence
iEL, which contradicts that L is proper. This proves that eR+L =R
is a direct sum. Since L is maximal, eR is irreducible.

Applying the above analysis to each e,, wWe see that R/J has a finite
maximal chain of right ideals éiR c élReaéZR c...c élRGB. : .eénR.
By the Jordan HOlder Theorem, R/J is completely reducible. We now
show that idempotents can be lifted modulo J=J(R). Let f-=22 ER.

Also let f=f +...+f and 1-f=f _+...+f <where 1=f +...+f
1 r r+l m 1

m

is a sum of primitive orthogonal idempotents of R. Now by [23,p.77],
n m 2 2

if 1=2Z e, = Zf, where e, =e. and f. =f,, then there exists a unit
=1 b j=1 j i i j

v in R such that vei:fiv and m=n. But R/J is Artinian and hence
semi-perfect. So by Lemma 3.7, éi and }j are local idempotents

for i=1,...,n and j=1,...,m. Hence E;/'Eﬁ such that ;;i ZYEiW—I

and m=n. Let u= (\—r)_1 . Then \7(;1+. . .+én)1_1 =f. Also u =(v)

= va =1 moduloJ = vu=1l-w for w€J. But we€J = 1l-w is right
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invertible. Let (l-w)(l-w’)=1. Then vu(l-w’)=1. Now let

v =V and u, =u(l-w’). Then v, =V modulo J and u, =u modulo J.

But vlulzl. Hence ulvlu.lv1 =u1v1- So ulv1 and hence l—ulv1

is an idempotent. But w v Eu = 1 modulo J. So l-ulv1 €J.

By Lemma 3.2, ulv1 =1. Finally, vl(e1+. . .+en)u1 = v(e1+. . .+en)u =f,

So idempotents can be lifted modulo J=J(R).

3.11. Corollary (Mieller [27])

If (i) every primitive idempotent is local and (ii) there does not
exist an infirﬁte set of orthogonal idempotents, then R is semi-perfect.

It iswell-known (see, for example [16,p.685]) that a sufficient condition
for the identity of R to be a sum of orthogonal primitive idempotents,
is for condition (ii) to hold. Now by Theorem 3.10 and condition (i),

R is semi-perfect.

3.12. Corollary

If R is semi-perfect, then R has a unique decomposition into a finite

direct sum of indecomposable left ideals.

Proof
n
Since 1 = e. where e, is a local orthogonal idempotent for each
i=1 '
n
i=1l,...,n, then R= @& Rei. Note the sum is direct by the orthogonality
i=1

of the ei's, and Re.1 is indecomposable for each i, since the ei's are
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local and hence primitive. Since En%(Rei) = eiRei, which is local for
each i, then uniqueness follows from Azumaya's version of the Krull-

Remak-Schmidt Theorem, [23,p.78].

B: Some Artinianly-inspired Results:for Perfect and

Semi-Perfect Rings

It has been observed that much of the classical structure theory for
Artinian rings can be developed under the weaker hypothesis that R be
semi-perfect. In this section, we obtain results for Perfect and
Semi-perfect rings which are analogous to those characteristic of

Artinian rings.

3.13. Lemma

Let R be left perfect, then P(R)=J(R), where P(R) and J(R)
denote the prime and Jacobson radicals of R respectively.

Now P(R) € J(R) for all rings R. The reverse inclusion is equally
trivial, since an element of a left T-nilpotent ideal is clearly, strongly
nilpotent, and P(R) is the intersection of all strongly nilpotent elements

of R.
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3.14. Lemma

Every homomorphic image of a left perfect (resp.semi-perfect)
ring R is left perfect (resp.semi-perfect).
Proof

This is an immediate consequence of Lemma 2.4.

3.15. Lemma

Let R be a left perfect ring without zero divisors: ThenR is a
division ring.
Proof

Let réR, r#0. Consider rR=2 rzR 2 r3R >...2r'R2.
Since R is left perfect, it has the descending chain condition on
principal right ideals. So there exists an integer n such that
rnR = rn+lR. Hence rn=rn+1x for some xXx€R. = rn(l—rx) =0
= 1l-rx =0 since R has no zero divisors. So l=rx and x is a
right inverse of r. Also x=xrx = (l-xr)x=0= l-xr=0 since x#0.

Hence every non-zero element of R has an inverse, and R is a

division ring.

3.16. Corollary

Let R be a commutative perfect ring. Then every prime two-sided
ideal is maximal.

Let P be a prime two- s;ded ideal. Then R/P is an integral domain,
and so has no zero divisors. By Lemma 3.14, R/P is perfect. By

Lemma 3.15, R/P is a field and so P is maximal.
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3.17. Remark

The following result has been proved by W.Vasconcelos [37]:
Let R be commutative. Then an injective endomorphism of a
finitely-generated R-module is an isomorphism & every prime ideal
is maximal. Vasconcelos suggested that this should be true for rings
which are close to being Artinian, for instance, perfect rings.
Corollary 3.16 shows that perfect rings do satisfy the afore-mentioned

result.

3.18. Lemma

The following statements are equivalent for a ring R.
(1) R is completely reducible.
(2) R is left perfect and regular.

(3) R is left perfect and semi-primitive.

Observe that (1) is symmetric and so the word "left" can be replaced by
"right'" in (2) and (3).

Proof
n

(1) = (2). If R is completely reducible, then R= @ Di where Di
i=1

is a minimal right ideal of R. So we have a composition series
Dl c D1+D2 c...C D1+D2+. . '+Dn' Then R 1is right Artinian and
right Noetherian. By Corollary 1.15, R is left perfect. Also,

every right ideal, and hence every principal right ideal is a direct

summand. So R is regular.
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(2) = (3). Let R be regular and let r € J(R), the Jacobson radical
of R. Then #r’€R suchthat l-rr’ is a unit. So there exists
x €R suchthat x(l-rr’)=1. But R regular =rr'’r=r = (l-rr’')r=0.
Hence r=1.r =x(l-rr’)r = 0. So J(R)=0 and R is semi-primitive.
(3) ® (1). Let R be left-perfect. Then every left R-module M
has a projective cover. But R is semi-primitive. Hence, by
Corollary 1.7, M is projective. So we have shown that every left

R-module is projective. Hence R is completely reducible.

It is interesting to note that Lemma 3.18 is still valid if the word

"perfect" is replaced by "Artinian'". See, for example [23, p.68].

We now study some results of Morita Theory which would culminate

in Theorem 3.28.

3.19. Definition

Let ModR be the category of all right R-modules. Let G and M
be objects of Mod-R where G is fixed and M is arbitrary with respect
to G. Then G is called a generator of Mod-R providedfor all 0 #h:M=X,
there exists f:G->M suchthat hf #0 for all objects X in Mod-R.

A finitely-generated-projective generator is called a pro-generator.

It is well-known that if P is a projective right R-module, then P is a

generator ® P@M=0=>M=0 for any right R-module M.
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3.20. Theorem

Let R and T be two rings such that Mod-R and Mod-T are the
categories of right R- and right T-modules respectively. Then Mod-R
is equivalent to Mod-T @ Mod-R has a pro-generator P such that

d =T,

En R(P) T
Proof

For the proof, we refer to H.Bass [3].

3.21. Definition

Two rings R and T are called Morita invariant © Mod-R and Mod-T

are equivalent.

3.22. Definition

n
f.em)= L f(m,)
1 1421

=}

Let P>'<=HomR(P,R). Define T P>'<®P—>R by T(
i

It ™

where fie Pa\ and miEM for i=1,...,n. Then the image of r is called

the trace ideal of R.

3.23. Lemma

G is a generator & T(G)=R.
Proof

(¢). This implication is clear, from the remark in 3.19.

(). Assume 7(G)#R, and consider f:R-2>R/7(G) where f#0.
Since G is a generator, there exists h:G-»>R such that fh#0.

But h€G¥=HomR(G,R) and Kerf=7(G). Hence {(r(G))=0. Moreover,
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h(g) =r(h®g) € 7(G). Hence h(G)< 7(G). This shows that (fh)(G)=1£(h(G))

c f(r(G)) = 0. Hence fh=0 — a contradiction. So T(G)=R.

3.24. Lemma

Let R be a ring, and Rn the ring of all nxn matrices over R.

Then (a) R is Morita equivalent to Rn’ and (b) R is Morita equivalent
to eRe where e2 =e€R and ReR =R.

(). Let P=nR where nR denotes a direct sum of n copies of R
(n>0). Clearly P is finitely-generated and projective. We now show
that P is a generator. Suppose P®RX:O. Then nR@RX=O
o n(R ®RX)=0 ® nX=0 © X=0. So P is a pro-generator. Also
EndR(P) =Rn. By Theorem 3.20, R is Morita equivalent to Rn.

(b). Let P=eR. Clearly P is finitely-generated and projective.
Also P =Hom (eR,R) = Re. So the trace ideal r(P)=ReR=R by

hypothesis. Hence by Lemma 3.23, P is a pro-generator. Moreover,

EndR(P) =eRe. So by Theorem 3.20, R is Morita equivalent to eRe.

3.25. Definition

A property of rings is called Morita invariant if it is preserved

under Morita equivalence. We shall show that ''perfectness' and

"semi-perfectness' are Morita invariant, but first a remark.
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3.26. Remarks

(a). E.Mares [25] called a projective R-module M semi-perfect
if every factor module of M has a projective cover. Thus this
definition shows that semi-perfect modules can be considered as a
generalization of semi-perfect rings. Also, she showed [25,Cor.5.3]
that a finite direct sum of semi-perfect modules is semi-perfect.
Also E.Bjork [5] defined an R-module to be perfect if it satisfies
the descending chain condition on cyclic submodules. From [5, Thm 2],
it is easily deduced that a submodule of a perfect module is perfect,
and a direct sum of perfect modules is perfect.

(b). It is well-known that G is a generator & R is a direct summand
of a finite direct sum of n copies of G. In particular R, as an

R-module, is a generator.

3.27. Lemma

The concepts of left (right) perfectness and semi-perfectness on a
ring R are Morita invariant.

To prove that perfectness is Morita invariant it suffices to show that
there exists a perfect generator. Clearly if R is perfect, then R is
a perfect generator by Remark 3.26(b). Now let G, as an R-module,
be a perfect generator. Then by Remark 3.26(b), nG=R®&M where
nG denotes a direct sum of n copies of G. So R is perfect by Remark

3.26(a).
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In a similar way, we see that semi-perfectness is Morita invariant.

3.28. Theorem

(a) R is left perfect (resp.semi-perfect) & Rn is.
(b) If e2=e€R where ReR =R. Then R is left perfect (resp.
semi-perfect) ® eRe is. ‘

Immediate from Lemmas 3.24 and 3.27.

We conclude this section by the following remark.

3.29. Remark

I.Connell [9] has proved that the group ring RG is Artinian ® R is
Artinian and G is finite. A corresponding result for perfect rings was
established by S.Kaye [217]: RG is left perfect ® R is left perfect
and G is finite. A complete characterization in the semi-perfect case

is still an open problem.

C: Structure of Projective Modules over

Semi-Perfect Rings

E.Matlis [26] has proved that if R is right Noetherian, then any

injective right R-module is a direct sum of indecomposable ones.
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U.Shukla [357 has shown that every projective module over a semi-
primary ring can be expressed as the direct sum of indecomposable
projective modules. We now consider the structure of finitely-

generated projective left R-modules over semi-perfect rings.

3.30. Theorem

Let R be semi-perfect and M a finitely-generated left R-module.
Then M is projective & it can be decomposed uniquely into a
finite direct sum of indecomposable projective left R-modules.

(¢). This implication is folk-lore. See for example [23,p.82].

(®). Let M be a finitely-generated left R-module and let J=J(R).

n
By hypothesis, R/J is completely reducible, and so M/JM= & S,
i=1
where Si is a simple left ideal of R/J. Hence Si=(R/.T)f-'i where
f-i =f+7, fi =fiz and fi is primitive for each i=1,...,n. But idempotents

can be lifted modulo J. Hence there exist idempotents eieR such that

n
éi=f-i. So M/IM = & Rei/Jei. Note also that by Lemma 3.6, e is
i=1
primitive for i=1,...,n. Moreover, by Lemma 3.7, the e,l's are local.
n
Let P=& Rei. Then P is a projective left R-module. By the
i=1

argument used in the proof of Theorem 2.5, we see that o: P>M/IM
is a projective cover. Since P is projective, there exists S:P-M
such that 78 =« where = is the canonical map: M->M/JM. That is,

the following diagram
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P
B ..
/,, a
",
M T —>» M/IM

commutes. Then M=Im g+Kerq =ImB since Kerqr=J-M is small

in M by Nakayama's Lemma. So fis an epimorphism. Since M is

projective, Ker 81is a direct summand of P. But Ker §c Ker ¢ which
n

is small in P. So Ker §=0. And M= P = & Rei. Recall that we proved
i=1

abovethat the ei‘s are local. So uniqueness follows by Azumaya-Krull-
Remak-Schmidt Theorem since EndR(Rei) = eiRei for i=1,...,n.

This com?letes the proof of the theorem.

We now obtain some interesting corollaries. It is well-known that
if R is commutative, then R is Artinian & R can be decomposed into a
finite direct product of Artinian local rings. There is an analogous

result for semi-perfect rings.

3.31. Corollary

Let R be commutative. Then R 1is semi-perfect ® R can be
decomposed uniquely into a finite direct product of local rings.

Proof
n
By Theorem 3.30, R= & Rei uniquely) since R, considered as
i=1
a left R-module is finitely-generated and projective. Also Rei = eiRe.1
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n
since R 1is commutative. Hence R = & Li where Li:eiRei is a
i=1
local ring for each i=1,...,n.
In particular, if R is commutative, then R 1is left perfect ® R has

a unique decomposition into a finite direct product of local rings, where

the unique maximal ideal of each is left T-nilpotent.

3.32. Corollary (Sabbagh [327)

Let R be semi-perfect and Pla finitely-generated projective
left R-module. Then any surjective endomorphism of P is injective.
Tet f: P-»P be surjective. Since P is projective, then f splits =

i.e. there exists g:P-P such that fg=id So P=Kerf@Img.

P

But g is a monomorphism, and so P=Kerf® P, where Pla‘ P.

1
By the uniqueness of decomposition, guaranteed by Theorem 3.30,

Kerf=0. Sof is injective.

We now obtain some results for projective modules over perfect

rings.

3.33. Lemma (Shukla [35])

Let R be a left perfect ring and P a projective left R-module.
Then P is indecomposable @ for every proper submodule M, the

canonical epimorphism #: P->P/M is a projective cover of P/M.
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Proof
(2). Let M§ P. Then, since R is left perfect, P/M has a
projective cover f: P’»P/M. Since P is projective, there exists
B: P»>P’ suchthat £f8=q where ¢ is the canonical map : P»P/M.

That is, the following diagram

P
B .7
/’,’ m
& £
P’ - P/M

commutes. So P’'=Kerf+ImgB=Imp since Kerf is small in P’.
Since P’ is projective, there exists g: P’»>P such that Ba= id.
Hence P=Ker @ Img = Ker ﬁ@P'. So Ker 8=0 since P is
indecomposable. This shows that P'>~P and so 7: P»P/M is a
projective cover.

(¢). The converse is clear, for if P is decomposable, then Ker g

cannot be small in P where q: P->P/M.

The following corollaries are also given in [35].

3.34. Corollary

Let R be left-perfect. Then every finitely-generated indecomposable

projective left R-module P is principal.
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Proof
Suppose {xl, ce ,xn] is a minimal set of generators of P and
assume ni 1. Let Q be generated by {XZ’ ...,xn} and R generated

by {xl}. Consider the canonical map 7:P->P/R. Since Pis
indecomposable and projective, then by Lemma 3.33, Kerqr =R is
small in P. But clearly P=Q+R. So P=Q. This contradicts
that {xl, .. .,xn} is a minimal set of generators of P. So n=1

and P 1is principal.

3.35. Corollary

Let R be left Artinian. Then every indecomposable projective
left ideal is principal.
Proof

If R is left Artinian, then it is left Noetherian, and so every
left ideal is finitely generated. Also R left Artinian = R is semi-
primary = R is left (and right) perfect by Corollary 1.15. The result

now follows from Corollary 3.34.

D: Structure of Semi-perfect Rings

In this section we prove two structure theorems for semi-perfect
rings. Theorem 3.39 is somewhat similar to the "splitting theorem'

of A.Zaks [38] for semi-primary rings.
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3.36. Theorem

Let R be a semi-perfect ring and J=J(R) its Jacobson radical
such that R/J is a simple ring. Then there exists a local ring S

such that R = EndS(F) where F is a finitely-generated free S-module.

Proof
We note here that Theorem 3.36 is proved in [23] and also in [4].

Denote R/J by I_{ Since R is semi-perfect, there exists a finite set
n

of primitive orthogonal idempotents {ei} such that T e, = 1. Let
i=1

ﬁ(ei)'-‘-éi where 7 is the canonical map R-R/J. Then eR is a

minimal left ideal of ﬁ , since, if R is semi-perfect, the indecomposable
left ideals of R coraespond to the. minimal left ideals of R under
the canonical map . Since R is completely reducible, these minimal

ideals are isomorphic. Let e =e,. Then eR = éif_l- . By [23,p.77],

there exists ui,vieR such that v, =e and uv, =e,. Observe that
2 2

u.ievi—uiviuivi —(uivi) —ei =e;- We now show that HornR(R,R)

= HomeRe(Re,Re). Let goEHomR(R,R). Define (p':Re—>Re by

(p'(re)=(p(re) = cp(rez) = ¢p(re)e. Also, if r’€R, then ¢’(re-er’e)

= p(re)er ‘e = ¢'(re)er‘e. Hence o’e HomeR (Re,Re). Now let r€R.
n n e n
Then r = ¥ e,r, = ¥ u,ev,r, since u,ev,=e,. So ¢(r) = T ¢lu.e)v,r,
ity i it i’ i i . i i
=1 i=1 i=1
n .
z (p'(uie)vir.l. Clearly, this last equation defines an isomorphism

i=1

1

n:HomR(R,R) - Hom (Re,Re) by n(p) = ¢’. Hence R = HomR(R,R)

eRe

iR

Hom Re,Re). Since 1 =

e where ei's are primitive
i

eRe(

RSP
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n
orthogonal idempotents, then Re = e_lRe. For each i, define

i=1

¢.:e.Re=eRe by ¢.(e,re) = v,e,re. Note that v,e,re = v,u,v.re
it 7i i i i’ i'i iii

= ev.,re. Then clearly ¢. is an eRe-isomorphism for each i.
i i
So Re, as an eRe -module is free on n-generators. Hence

R = Hom_(F,F), where F is a finitely-generated free S-module

S(
such that S=eRe and F =Re. Moreover S is local, since over

a semi-perfect ring, a primitive idempotent is local.

3.37. Remark

Since for any ring R, J(Rn) = J(R)n, then we have an equivalent
formulation of 3.36 as follows: If R is semi-perfect such that
R/J = Dn where D is a division ring, then there exists a local

ring S such that R = Sn and S/J(S) =D.
As a corollary of 3.36, we obtain a result of S.Kaye [15].

3.38. Corollary

Let R be semi-perfect and J=J(R) its Jacobson radical.
n
Let R/JT= o §Di)n where D, isa division ring for each i and
i=1 i

(Di)n denotes the ring of all nixni matrices over Di. Furthermore,
i

™M

let A =
i=1
n
local rings Li such that Li/J(Li) = Di and A = & (L,)

i'n,’
i=l i

2
eiRei where ei =eieR for i=1,...,n. Then there exist

1)
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Proof

Since R is semi-perfect, we can choose the ei's orthogonal and
n n
primitive suchthat ¥ e.=1. Hence A= T e.Re., is direct since
T i=1 * 7
e.e,=0 if i#j. Now e.Re./J(e.Re.,) = e.Re./e.Je, = (D.)
1 1 1 1 1 1 1 1 1

i'n.’
J i

Since eiRei is semi-perfect, then by Remark 3.37, there exists a
local ring Li for each i=1,...,n such that eiRei = (Li)n and
' i

n n
L. /J(L)=D,. Hence A= & e, Re, = ® (L) where L./J(L.)=D,.
i i i T S n i i i

This finishes the proof of the Corollary.

3.39. Theorem (Behrens [4])

Let R be semi-perfect and J=J(R) its Jacobson radical. Then the
underlying additive group of R admits a decomposition R =S®N where
S is a subring of R and N a subgroup of the additive group of J(R) such

that,

n
(2) S= Si where Si:eiRei is semi-perfect for each

i=1, ..., n; eiej=0 for i#j and Si/J(Si) is simple.

(b)) N= % e.Re..
I
i#j

[Note that in the "Splitting Theorem" of Zaks [38], N is a two-sided

ideal of R. However, in our case, this is not true in general since

e.Re.-e Re, ceRe, for i#j, ]
SR G B it Rt
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Proof

n
R semi-perfect ® R/J completely reducible. So R/J = & Ri
i=1

where -ﬁi is a simple ring for each i=1,...,n. Now R semi-perfect
n .

» R/Jis also. So I= % f-i where f, are primitive orthogonal
i=1 :
idempotents of R/J. Since idempoterts can be lifted, there exists
n
of idempotents in R such that % e, = 1. Observe also

a set {e.}fl
b i=1

i=1
that the ei's are also primitive and orthogonal.

n
So R=1R1= %Y eRe.+ L eRe,. Let S, =e.Re.. Then
i i i i i

i=1 it
S. is semi-perfect. Also S./J(S.) = e.Re, /e, Je, =~ R, which is simple.
i n i i il i i
Moreover, if S = % eiRei, then this sum is direct since eiej =0
i=1

for i#j. This proves conclusion (a) of the Theorem. Finally,

eiRej = eiejR = 0 mod J(R), for i#j. Hence, if N=Z eiRe., then N
1#_]

is a subgroup of the additive group of J(R).
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APPENDIX

Subrings of Perfect Rings

1. Definition

Let M bea right R-module. M is called faithfully flat « M is flat,

and, for any left R-module N, M®RN:O = N=0.

2. Lemma
Let M be a right R-module. The following statements are
equivalent.
(a) M is faithfully flat.
(b) A sequence A=B=-C of left R-modules is exact ¢

B=->M i .
Mg A ->M®R ®RC is exact

R
Proof
Evident.

3. Corollary
Let M be a faithfully flat right R-module and f:A->B a left R-module

homomorphism. Then f is injective (resp.surjective, bijective)
@ 1dM®fz M®RA - M®R B is also.
Proof

Immediate from condition (b) of Lemma 2.
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We remark here that Q is a flat and faithful Z-module but it is not

faithfully flat. We now formulate and discuss the following conjecture.

4. Conjecture

Let RcS as rings and S a faithfully flat left R-module. Let R-mod
denote the. category of all left R-modules and let T be the functor
S®-: R-mod » S-mod. Then T is full and faithful.
Discussion

We prove that T is faithful. Let f:A->B be a left R-module. homo-
morphism such that T(f)=0. To prove £=0. Now A 3B &C 0.
is exact where C=B/Imf. Then T(A) Tg) T(B) T_gg) T(C)=->0 1is exact
since T=S®- is a right exact functor. But T(f) =0 = T(g) is a mono-
morphism. By Corollary 3, g is a monomorphism. But then B=B/Imf.
Hence Imf=0 ={=0.

We areunable to prove T is full. However, we shall assume that the

conjecture is true, and deduce the following resuit.

5. Corollary

Assume the hypothesis of the conjecture. If S®RM is a projective
left S-module, then M is a projective left R-module.
Proof

Follows, since S®- is full and faithful by the conjecture.
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We now obtain a result on subrings of perfect rings.

6. Theorem

Let RCS as rings, and S is a faithfully flat right R-module.
If S is a left perfect ring, then so is R.

Let {Pi\ i€ 1} be a family of projective left R-modules. Then
S® Pi is a .projective left S-module for each i€I. Since S i; left

R

perfect, 11_1;n (S ®R Pi) = S®R lim Pi is a projective left R-module by

Corollary 1.24 . By Corollary 5, 1i)m Pi is a projective left R-module,

and so R is left perfect, again by Corollary 1.24.
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