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Abstract

Although the shape of objects is a key to their recognition, viable theories for repre-
senting and describing shape have been elusive. We propose a framework that unifies
competing approaches to shape. The basis for our approach is an analysis of deforma-
tions of shape designed to induce a topology over shapes suitable to support object
recognition, We show that deformations classify into constant motion and curvaiure
molion, which intriguingly lead to conservation laws for shape. These conservation
laws are nonlinear and lead to singularities. A notion of entropy for shape is devel-
oped which limits the singularities of shape to shocks. The formation of shocks and
their classification under arbitrary deformations is the basis of our representation for
shape. The space of deformations leads to a reaction-diffusion space for shape in
which the formation of shocks is studied. This leads us to propose parts, protrusions.
and bends as the computational elements of shape. A notion of scale on these elements
then naturally emerges, which is captured by the .ntropy scale-space. Any particular
shape is finally described as the interaction between processes for computing parts.
protrusions, and bends, the perceptual reality of which is illustrated via qualitative

experiments.
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Résumé

Quoique la forme des objets soit un élément clé dans le processus de reconnaissance
de ceux-ci, une théorie viable de 1eprésentation et de description des formes est restée
évasive jusqu’a ce jour. Nous proposons une théorie qui unifie des approches rivales de
la description des formes. La base de notre approche est une analyse des déformations
morphologiques congue pour induire une topologie sur I'ensemble des formes appro-
priée pour la reconnaissance d’objets. Nous montrons que les déformations se divisent
en mouvement constant et en mouvement courbe. produisant ainsi des lois de conser-
vation pour les formes. Ces lois sont non-linéaires et induisent des singularités. Une
notion d’entropie pour les formes est développée limitant les singularités de forme i des
chocs. La formation de chocs et leur classification. lorsque soumis a des déformations
arbitraires, est la base de notre représentation. L’espace des déformations produit
ce quon appcllera un espace de réaction-diffusion pour les formes dans lequel la
formation de chocs est étudice. Ceci nous amene a proposer comme éléments de
calcul de la forme les trois catégories suivantes, soit les parties, les appendiees et les
phs. Une notion d’échelle sur ces éléments se déduit naturellement et est caractérisée
par 'espace-€chellc d'entropie. N'importe quelle forme peut enfin ¢tre décrite par
I'intéraction entre les processus de calcul des parties. des appendices et des plis.
Enfin, leur plausibilité au niveau de la perception est illustiée par des expériences

qualitatives.
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Chapter 1

Introduction

Animals rely heavily on vision to survive. They depend on it to find food, flee
enemies, and reproduce. This everyday experience of vision comes to us instantly and
effortlessly: as we open our eyes. the world is perceived in its full three dimensions.
As a consequence, we navigate in it, avoid obstacles, escape danger, recognize and
manipulate objects. It is not surprising then that vision is considered one of the most
important components of an intelligent machine. Machine vision, however, has proved
surprisingly elusive, tracing back to some fundamental questions in the psychology of
perception, philosophy. and neurophysiology.

Vision is the process of inferring structuie in the world from a sequence of images.
Light emanates from light sources. strikes and bounces off objects in the scene, and
then enters the eye (camera) to form an image on the retina (photosensitive array).
These images may come fiom a pair of eyes and last over time. How is it that such a set
of two-dimensional images can give rise to a stable three-dimensional interpretation
that builds our sense of the external world [31]?

The purpose of vision may be as simple as differentiating between two hypotheses,
e.g. foe or friend, or it may be as intricate as painting miniatures. Vision is used in a

variety of tasks such as walking through a field o1 a driving a car through a crowded
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CHAPTER 1. INTRODUCTION

downtown strect. manipulating objects such as in carpentry or diamond cutting. or
in the recognition of predator and prey. The problem of recovery of structure from
images is necessarily dependent on the purpose for which this information is used.
This thesis in concerned with the perception of planar shapes. Even in the absence
of other visual cues. shape is used for object recognition. manipulation, and naviga-
tion. While, it is possible to devise special-purpose algorithms e.g. for inspection

tasks, the range of tasks and purposes requires a general framework.

1.1 What is a Shape, That an Algorithm May Know It, and
an Algorithm, That It May Know a Shape?

What is a shape? Consider figure 1.1 which most people would immediately recognize
as a cat [33]. This is despite a serious lack of other visual cues, such as color, stereo,
motion, textures, shading. internal contours, etc. We have accomplished this recog-
nition task based merely on the presentation of a patch of black (figure) on white
(background). There are many instances where an object is recognized simply based
on this kind of shape information [79]. We often recognize animals, trees, plants,
fruits, landscapes, and clouds.

In addition to these natural objects, man-made objects are often recognized when
the only visual cue is shape. This is principally because because components of
these objects are flat to begin with. or are rotationally symmetric, leading to generic
two-dimensional projections. Examples include tools. furniture, musical instruments.
and vehicles. Shape is important in othes images as well: medical images, (X-ray.
PET, MRI. etc.). laser range images. radar images. and electron microscope images.
Figure 1.2 displays images with casily recognizable shapes. We will use these examples
throughout this thesis to demonstrate our approach.

A number of other ficlds are also interested in shape. For example. biologists
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Figure 1.1: This figure is easily recognized despite the lack of visual cues such as
color, stereo, motion, shading. texture, etc.

have used shape to infer taxonomic relations in plants and animals. More recently,
measurement of biological shape has posed interesting questions [82. 81, 83, 11]. As
another example, artists have long been interested in capturing the shape of things
as one can observe in the ancient petroglyphs found in the caves of southern France.

In computer vision. numerous applications for the recognition and classification
of shapes exist. Levine et. al. used the shape of cells to isolate, track, and classify
the moving white blood cells [51]. There has been considerable activity in the area
of detection and classification of tumors in X-ray images. Other applications indude
the study of the shape of clouds [59], assembly line inspection tasks, and optical
character recognition. Shape has also been used in robotics to determine grasp points
for objects.

All these fields are useful sources of information {44]. not only as an aid in modehng
and analysis of shape. but as mirrors on our unconscious internal representations.
However, despite the wide interest in shape, its definition has remained elusive: Zusne
claims there are as many definitions for shape as there are for love. [96]! IT shape is so

elusive, what then. is an algorithm that captures the essence of shape? Attneave et
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CHAPTER 1. INTRODUCTION

al. suggested that shape, as a psychological quantity is multidimensional, although
it was not clear how many dimensions would suffice to describe shape, or what these
dimensions should have been [3]. In short, shape is an undefined, intuitive concept,
and can perhaps only be defined in an operational manner. It is clear that a large
part of the ambiguity surrounding shape is due to a serious lack of a natural language
for describing shape [6).

We submit that the essence of shape is in considering the many attributes of
it stmultancously: that shape is more than a curve, or a 1egion. It is perceived
locally, but also globally; one can focus in on a small feature, but then attend to
the general shape of the object. It may be viewed as a composition of parts; at the
same time it may look like it is the growth of another object, and yet it may look like
the deformation of another. Furthermore, it is evident that a framework for shape
defines shape operationally. As such, when building this framework, one should meet
the purposes for which shape is used. Finally, for general purpose vision, we believe
that insight into developing this framework can be attained by making it consistent

with our perception of shape.

1.2 Need for a New Geometry

Objects come in all forms, deform. and grow, and as they do so incrementally. their
shape does not change drastically. For example, a face with a pimple is still a face,
i.e. our perception of the face is not drastically altered when a pimple grows on it.
And, the perception of a tree with a flock of birds resting on it. has much in common
with the perception of a tree. Similarly, an industrial tool that is slightly bent or
chipped will be perceived exactly as we have just described it. In short, the primary
perception is one of an object with modifications. This is so intrinsic to us that to

mention it might appear redundant. Along a different direction. objects deform with
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motion, growth, erosion, ctc. However. our perception is only slightly modified as
figure 1.3 illustrates. There seems to be great stability of our visual sensation with
regatrd to such changes.

Unfortunately. standard geometries of traditional and modern mathematics do not
satisfactorily address these aspects of shape for the purposes of object recognition.
Topology is so general that bounding contours of non-fractal physical objects (planar,
closed, and simple) are equivalent. On the other hand, “Congruence geometries,
such as FEuclidean, affine. and projective geometries require an exact match, or some
distance or area tolerance from it” [11]. Mumford questioned the success of a theory of
shape description for recognition and categorization tasks without having first defined
what is meant by a “nearby” shape [61]. In other words, what is needed is to define
a space for shape and then to impose a topology on it. It is clear, however, that
the Euclidean metric is not natural for shape, in the sense that “close” objects are
perceived as different and “distant” objects are visually indistinguishable (as in figure
1.4). A number of other metrics, e.g. the Hausdorff metric, have been considered.
Koenderink et. al. point out that useful notions of “partial order, similarity, and
relatedness” have no equivalent in the usual geometrical shape theories. Indeed,
without these notions. the task of object recognition seems impractical [44] . These

ideas point to the need for a language that makes the morphogenesis of shape explicit.

A second problem concerns the treatment of singularities. Singularities have of-
ten been reduced to limits of highly bent structures. Attneave showed that the most
salient portions of a shape are corners and the high curvature points [2]. However,
Singularities do occur in nature, and they play a different role than their smoothed
versions [55]. However, given our predisposition to highly developed geometrical de-

scriptions of curves and surfaces, it is not surprising that smooth curves and surfaces
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Figure 1.3: Shapes are categorized into classes in spite of their differences. This

is partly due to our ability to abstract the shape of an object in the presence of
occlusions, protrusions, chips. noise. and various degradations.
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Figure 1.4: Standard geometries do not address the issues in shape. For example,
the Euclidean metric ignores the perceptually significant protrusion in the bottom
(C) and assign more differentiation to shape (A) when compared to figure (B), as
depicted on the right hand side.

have been the common tools used in describing the visual world. Nevertheless, sin-
gularities must have an explicit place in a theory of shape, as well as in some other
areas of vision.

What kind of geometry, then, do we require for shape? And. how does one define
a metric and/or a topology for shape? What are our constraints and guidelines?
It seems that one can not speak of likeness between two shapes, without having
discover~d a language for speaking about it. This thesis is concerned with a setting
to describe shape: one in which it is possible to define similarity between two shapes,
regardless of whether they arose as a composition of parts, or as a transformation of

other shapes.

1.3 Issues

Shape is the bottleneck between low-level and high-level vision. Two paradigms have
emerged for the early processing of visual information. First, the edge detection

paradigm asserts that in order to isolate, detect and recognize objects in the scene,
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the contours in the scene must first be obtained. The scgmentation paradigm, on
other hand. focuses on the region defining the object as the primary concept of low-
level vision. Whether we work with edges or 1egions, in representing shape we are
faced with the question: What is the essence of shape? What re-presentation of the
informatior- is pertinent to shape and suitable for object recognition? What kind of
description should our edge and region information be transformed into?

One might represent shape, fully and accurately, in a number of mathematically
precise ways. For example. one may concentrate on the shape as a “curve” and
represent the shape as the set of points describing the outline of the shape: or a chain
code describing the orientation of the outline [26]; or the curvature of the outline as
a function of the arc-length [1, 60], orientation. etc; or one might use the Fourier
transform of the boundary [94. 34]. or the interior and its the quadtree representation
[6]. etc. Although these representations are formal and mathematically faithful in
isolation. thev are inadequate for the purpose of recognition. This is precisely the
bottle-neck of shape. figure 1.5. To represent shape is more than merely describing
it, e.g. as a set of oriented edges. Part of the problem of shape is the isolation of the

object itself. Also. the needs of object recognition must be taken into account.

1.3.1 Boundary vs Region

This leads us to examine the first issue, namely, whether to represent the shape by
its boundary or by its interior region? The two approaches are egunivalent in the
sense that the interior is accessible via the boundary and vice versa. As such. most
approaches concentrate on either representing the region or the boundary. as sum-
marized in table 1.1. Nevertheless. representations make certain information explicit
while implicitly encoding the remainder. For example, if the shape is represented

by the boundary, the orientation information is explicit while closeness of points
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Hhe Bottle-Neck of Shaﬁl

Image Structure Low
Stmiicr Oriented Level
Neighbdors Elements
Regions Curves
?
? 4
High
«L evel
Object Model

Figure 1.5: Low-level algorithms in vision often employ intensity differences across
a contour, leading to the edge-detection paradigm, or grouping similar intensities to
form regions, leading to the segmentation paradigm. On the way to the recovery of
objects, there appears to be no intermediate level, or a language for speaking about
shape.

along the “necks™ and symmetry is implicit. In contrast. in a region-based repre-
sentation, the orientation of the boundary tangent is implicit while the closeness
of points through the region and object symmetry is explicit. A different trade-off
may arise when considering computational complexity: boundary representations are
one-dimensional and therefore inexpensive to process in contrast to an expensive two
dimensional regional representation.

We submit that a simultaneous representation of the boundary and the interior is
needed for a full understanding of shape. Throughout the rest of this thesis, when we
refer to boundary-based, or region-based approaches. we intend the type of distinction
in table 1.1. The distinction is in part semantic since one could always blur this
distinction by basing region computation as a global boundary function (e.g. to
derive an implicit characteristic function). and in part technical as will emerge in the

sequel.
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Boundary Region
Stiip Tiee [5] Quad Tree [73]
Chain C'ode [26] SAT [11]
Fourier Descriptors [94, 31, 67, 85) Foutier Descriptors [30]
Codon [70, 54] Generalized Cylinders [10, 58], Superquadiics [61]

Table 1.1: Most methods concentrate on either the on the boundary or on the interior
of the shape. However to fully capture shape a representation with a spectrum of
local to global is needed.

1.3.2 Local vs Global

One method of shape classification is based on shape featuies, Por example, the area
and the centroid of a shape are used to differentiate one shape from another. Another
feature is eccentricity (elongation). which may be defined in several ways, e.g. ratio
of principal axes of inertia or the ratio of the length of maximum cord to maximum
cord perpendicular to it. Other examples are the Euler number, compactness, shape
numbers. and shape moments, among others [6. T1]. All shape features attempt te
capture the shape by a few numbers and. as such. thev are global approximations
of the shape. In other words, information about the shape from all portions of it
combine to form a globhal description. More powerful 1epiesentations of shape can
be global too. The Fourier representations of the shape [01, 31, 67, 85] are global
representations in that each Fourier descriptor is dependent on all portions of the
shape. Bolles et. al. introduced focus featurcs where global relationships of local
features are represented [13]. Hough transform techmques gather votes for certain
features and. as such, can also be considered 1o be giobal.

The major problem with a global representation of a shape ocemsin the presence
of occlusions. \When an object is partially occluded. all global desaiptors change
drastically. As such. these representations are not smitable for object recogmtion.
Furthermore, a notion of approximation in the global domain does not correspond

to that in the shape domain. For example, the shapes conesponding to a set of



)

CHAPTER 1. INTRODUCTION 12

Boundary-Based Primitives Region-Based Primitives Volume-Based Primitives
Codons [70] Generalized Ribbons [15] | Generalized Cylinders [10, 58]
Arcs of circles [24] Superquadrics [64]
Primitive Curvature Changes (1] MLD parts [65] Geons [9]
Polygons [69] SAT [11] Polyhedra[86)

Table 1.2: A review of shape primitives.

Fourier descriptors with or without some higher order terms do not resemble each
other closely. Local features in isolation. on the other hand, do not give a global sense
of shape and are sensitive to noise. The challenge is to capture the general shape
of the object without losing its partial representaticns For object recognition, the

representation must degrade gracefully as portions of the object are occluded.

1.3.3 Composition vs Deformation

Let us begin by picturing the process of building a doll out of clay. One might place
a small chunk of clay (head) on top of a larger one (body); pull out some of the clay
to mimic the nose, push another part in to depict the eye; take another chunk of clay,
roll and attach to make the arm and bend it to represent the form. An exercise in
arts and crafts reveals that objects may be composed to form new ones, or existing
objects may be deformed to arrive at other objects.

The concept of composition is related to that of primitives. A large number of
ptimitives have been proposed to fit and approximate the boundary, the region or
the volume, table 1.2. Hoffman et. al. pointed out that each set of primitives is well
suited to represent some shapes. but not others [36).

Composition suggests a notion of part. These paits are regions of the shape that
will most likely belong to a distinct entity in the three dimensional world. Several
arguments support the notion of parts. First. objects in the real world are. in fact,
made out of parts. For example. as animals move. portions of their body stay intact,

while some others move relative to each other. This relative motion is one of the
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factors giving rise to the head, the torso. and the legs, as parts. As the wind blows
through trees. the leaves move relative to the tree. Second, objects are rarely seen in
their entirety. Recognition must take place on partial information [Y]. as evidenced by
the example of a tiger that is partially occluded by a bush. Indeed, object recognition
in a world made out of parts would he a great deal more complex if one had to index
on whole objects rather than their parts. Representing parts saves us liom rediscovery
of new instances that are combinations of the old. Third, there is often a neck-like
joint between parts which is perceptually significant. For example. it can be used as a
stable hold site. Or, the neck is where an object made of homogenous material would
break if forced. One must however be careful to distinguish between the notion of
parts and the primitives used to model those parts [36, 9], table 1.2.

Deformations. on the other hand. suggest change. For example, objects grow
and shrink, bend and straighten, protrude and indent, stretch and squish. Leyton
suggested that the relationship between shapes may be captured by studying the
relationship between curvature extrema [54]. Specifically, a shape is related to another
by a sequence of certain rewrite rules (process) in a shape grammar. Paits are claimed
to be a certain type of process.

We view the above appioaches of parts and process as two extiemes in approaches
to shape. Ideally. the relationship between shapes is represented when both compo-

sition and deformations are captured explicitly.

1.3.4 Scale and a Hierarchy of Significance

Scale is a way of assigning significance to various aspects of shape. This is necessary
for several reasons. First, stability with noise requires that small features he given
small weight in the representation.

In conclusion, shape has many attitbutes and to successfully represent it. these
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attributes must be represented simultaneously. Specifically, the shape must be repre-
sented along the axes of local and global, boundary and region, and composition and

deformation, figure 1.6.

1.4 Deformations Underlying a Topology for Shape

Choosing a representation for shape makes certain relationships between shapes ex-
plicit. For many tasks, such as object recognition, it is desirable that shapes which are
slightly deformed, occluded, chipped. or covered relate clos:ly to the original shape.
This is perceptually not unreasonable, since our perceptions do not abruptly change
when objects undergo these transformations; see figure d.1. Thus we begin with the

following axiom:

Axiom 1.1 Slight changes in the boundary of an object cause only slight changes to

its shape.

Thus we consider a shape represented by the curve Co(s) = (xo(s),y0(s)) under-
going a deformation. With the notation of section 2.1, let each point of this curve
move by some arbitrary amount in some arbitrary direction, figure 1.7.

L =a(s, )T +B(s,)N

C(b. 0) = CQ(S),

(1.1)

where T is the tangent, N is the outward normal, & is the Gaussian curvature, and a,
B are arbitrary functions as in equation 2.1. This can be reduced to (see chapter 2,

equation 2.2,
ac v
= = B(s, 1))\
e B(s, 1)) (1.2)
C(s,0) = Co(s),

Now, we concentrate on those deformations that depend on local information about

the geometry of the curve, namely those dependent on the curvature [22],
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Parts
[Hoffman & Richards]
N
L ocal Features
/ [Curvature Extremal]
//
P4
7’
7/
/
, /
Boundary —=-==-===«--- - > Region
[Chain Code]j | [SAT, Blum]
|
|
I
l .
] The NMulti-Dimensional Face of
: SHRPE
Global Features :
[Area, Eccentricity]
Process
[Leyton]

Figure 1.6: This figure depicts the multi-dimensional nature of shape: Shape has

both boundary and regional features, which

may be local or global. Further. shape

may be the result of composition or deformation.
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7

Deferastion
Coordinate

Deformed Curve

Figure 1.7: The point on the initial curve A move by some small but arbitrary
amount in some arbitrary direction to B. With simple restriction. one can classify
this deformation to constant motion and curvature motion along the normal.

5 = B(x(s,2)))N
C(s,0) = Co(s).

(1.3)

Further, we propose that:

Axiom 1.2 The similarily between a shape and ils deformed version does not depend

on the time of deformation.

Then,
& = B(s(s))N

ot

C(s,0) = Cofs).

To examine this deformation closely, expand f(x) into its Taylor expansion and con-

(1.4)

sider the fitst order approximation

& =(Bo-pHn)N
C(s.0) = Cols).

(1.5)
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The remaining terms involving higher orders of & gualitatively resemble & as we will
show.

The above equation contains two terms. The first term describes a deformation
that is a constant motion along the normal, or constant motion. The second term, on
the other hand, describes a deformation that is proportional to the curvatuie along
the normal. or curvalure motion. To summarize the above discussion of deformations,

it has been shown that

Result 1.1 Arbitrary local deformations of a curve in an avbitrary divection are qual-
itatively captured by a linear combination of two basis deformations, namdly, the con-

stant molion and curvature motion, of the curve along its normal.

Such deformations will be fundamental to the remainder of this thesis. and will

provide the basis forming a topology over shape.

1.5 The Multidimensional Nature of Shape

Earlier it was argued that a representation of shape ought to span a range of local to
global. explicitly encode both boundary and region information, represent a notion
of significance for shape, and should be expressed in a language that is appropriate
for shape. Namely. a language in which one can break the shape into parts. perform
boundary and regional deformations. In the previous section we introduced our basis
deformations. consfant motion and curvature motion, we now sketch how they are
related to the various aspects of shape.

The basis deformations have drastically different but complementary effects on an
initial curve: While constant motion requires no curvature information. or in othe
words local shape knowledge of the boundary, the curvature motion depends on it.
In the course of this manuscript, we will show that the entropy condition of constant

motion is a regional concept. in that it relates portions of the curves close m the plane,
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but perhaps far along the boundary. As such entropy and constant motion deal di-
rectly with regional information. Curvature motion deals with boundary information,
and hence is complementary according to our previous discussion.

While constant motion often creates singularities in the original, the curvature mo-
tion smoothes out singularities immediately and yields a progressively more rounded
shape. Infact, the following theorem shows that this is precisely Gaussian smoothing

of the curve coordinates.

Theorem 1.1 Consider the family of curves C(s,t)=(2(s,t), y(s,1)) salisfying

Q,Q = —N(s,t)ﬁ

CO(S)v

(1.6)

o
— o~
7
-
(=]
S
l

where Cy(s) = (vo(s). yo(s) s the initial curve, s is some arbitrary paramcter along
the curve, t is time, K is curvature, and N is the normal. Then the coordinales satisfy

the diffusion equation

9 _ 2 . X
o =aw (50) =203 (17)
a ik 2 3

B o=fy y(5.0) = ),

where & s the arc-length parameter along the curve.

This being an introductory chapter, the proof is presented in the context of a
scale-space for shape in chapter 7. Rather, we emphasize that the effect of Gaussian
convolution is smoothing, which takes complicated shapes to simpler ones and even-
tually to a rounded blob. More rigorously, embedded curves shrink to a rounded point
without creating self-intersections [28. 35]. The smoothing properties of Gaussians
have been utilized to build a scale-space representation of shape [60]: sec chapter 7
for an extensive treatment of a scale-space for shape.

One may contrast the local-global properties of curvature and constant motions

from vet another perspective. While curvature motion operates globally on the curve.
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the constant motion spans a local neighborhood of the curve. 'To illustrate this,
consider a finite deformation time and Theorem 1.1. Now, based on the curvature
motion, a smooth initial curve will evolve to a curve whose every point is determined
by information from all along the curve, weighted by a Gaussian. In contrast, in the
same duration, the support for a point in the evolved curve (the portion of curve
affecting its outcome) for local motion is a finite segment of the cuive, this follows
from Huygens’ principle [29].

It is also interesting to note that while Gaussian smoothing and the heat equation
are linear, the constant motion is nonlinear. In fact, lincar processes retain the
smoothness of the initial curve. while nonlinear processes can lead to singulatities.
Figure 1.8 summarizes the contrasting but complementary properties constant motion

and curvature motion.

1.6 Overview

There are sceveral distinct aspects to this thesis, a reflection on the natuie of shape
itsell. The essence of shape is in its connectivity with other shapes. Therefore com-
position and deformations play an important role in the representation of shapes.
Observe that a slightly delormed curve looks similar to the original. We have al-
ready shown that arbitrary deformations break down to two kind of deformations:
1) constant speed motion along the normal (constant motion) and 2) motion along
the normal whose speed at any point is proportional to the curvatmie at that point
(curvature motion). In chapter 2 evolution equations are derived for the tangent, nor-
mal, metric, curvature, and length under arbitrary deformations. Then. we obtain
bounds for length, total curvature. and the distance a curve can travel. Basd on
these results, our key mathematical result is an existence theorem fo1 evolution up to

and including the time when a shape develops a shock. The implication is that visible
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MOTION
Constant Motion Curvature Motion
REACTION DIFFUSION
Region Boundary
Hyperbolic Parabolic
Nonlinear Linear
Local Global
Singularity Smooth

Figure 1.8: This figure summarized the contrasting but complementary properties of
constant motion and curvature motion. These extremes in isolation are not sufficient
to captute an understanding of shape. Rather, a spectrum of these attribute, e.g.
from local to global. must be considered. 1t is in this context that the basis motions

are relevant to shape, figure 1.6.
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shapes will evolve to characterizable limiting shapes even in the presence of shocks.

It is intriguing that combinations of constant motion and curvature motion sat-
isfy a viscous conservation law, as we will show in chapter 3. Hyperbolic conservation
laws capture the dynamics of a number of physical applications and have been well
studied. The viscous conservation law presents interacti~m between two extremes of
conservation, or reaction and viscosity, or diffusion. Combinations of these two ex-
tremes together with time constitute the reaction-diffusion space for shape, chapter b,
This space represents the spectrum of extremes: local to global, boundary and region.
composition and deformation.

One of the significant aspects of conservation laws is that they are nonlinear and.
as opposed to linear systems, develop singularities. To deal with these singularitics,
we use notions of shocks and entropy in chapter 4. Various types of shocks form in
the reaction-diffusion space. which leads us to our proposed computational elements
of shape: parts, protrusions and bends, in chapter 6. The reaction-diffusion space is
a particular implementation of a more abstract framework for understanding shape.
In chapter 8, we propose the shapc triangle, in which shape is perceived as the ie-
sult of competition/cooperatio. between certain processes that are biased to perceive
parts, bending, or protrusion. Qualitative perceptual experiments motivate and test
the reality of proposed approach. As a consequence of the reaction-diffusion imple-
mentation, we build the entropy scale-space for shape, chapter 7, which encompasses
certain morphological and Gaussian smoothing methods as special cases. It is from
the entropy scale-space that a topology of shape begins to emerge and we illustrate
this by showing how to place shapes in the shape triangle based on the structure of

the entropy scale-space.
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1.7 Contributions of the Thesis

This thesis makes a number of contributions. It brings together a number of seemingly
dispatate approachs to shape under a unifying framework. In addition, 2 mathemat-
ical framework is suggested which will perhaps have implications for other areas of

vision. In summary, the specific contributions are:

o Introducing conscrvation laws and reaction-diffusion equations to the study of

shape in vision.

o Characterized deformations of shape as combinations of constant motion and

curvalurc motion.

e Proposed computational elements for shape: parts. protrusions and bends as

they emerge from the formation of shocks in the reaction-diffusion space.

e A hierarchy of significance and a novel notion of scale for shape in the entropy

scale-space.

o The Shape Triangle as the set of three shape processes that describe shape in
terms of compositions, boundary deformations, and regional deformations, in

cooperation or in competition.
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Chapter 2

On General Curve Deformation

2.1 Motivation

In this chapter, we study certain evolution equations of embedded plane curves where
the speed of the deformation is a function of the curvature, and whose direction is in
the normal direction.

The curve evolution problem is relevant in applied sciences. The study of immersed
closed curves evolving as functions of their curvature has been carried out for crystal
growth [46, 8], flame propagation {75, 76, 63], and curve shorteuing [28, 35]. We would
like to investigate properties of the classical solutions of these evolution equations. I
a sequel we plan to consider the weak solutions when shocks develop [49, 48, 63).

The research has been motivated by the study of certain problems in computer
vision. Specifically, in the context shape perception, it becomes essential to study
the process of deforming the boundary of shapes, especially when singularities form.
This chapter is primarily concerned with providing a rigorous basis for the process
of deformation. First, the basic notation for tangent, normal, orientation, curvature,
length and total Gaussian curvature is defined. Second. evolution equations are de-
rived for these entities. Third, bounds are derived for length. curvature, and the

.)3
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travelled distance. Finally, ....

2.2 Notation

We will now set up some of the basic notation and concepts which we will need in

what follows.

Let C(s,t) : 8' — R? be a family of embedded curves where ¢ denotes time
and s parameterizes cach curve. We assume that this family evolves according to the
cvolution equation

& = a(s,t)f—{-ﬂ(s,t)ﬂ’

It

C(S 0) = Co(S),

(2.1)

where N is the outward normal. & is the Gaussian curvature. and a, /3 are arbitrary
functions. For each deformation {a. 3}, there exists another deformation {0.3'} such
that the resulting traces of curves are equivalent [27]. Furthermore. we constrain the
deformations to be determined by the local geometry of the curve. i.e., /3 should be a
function of curvature. Therefore, we consider the case a(s,?) = 0 where /4 is typically
of the form g(x) = | — ex. Assume that C; = C{., t) is a C?-classical solution on some

interval [0,1'), (' < o). Thus we are considering C'? solutions of the system

L = Br(s, )N

at
C(s,0) = Cols),
(Note that we do not rule out the possibility that a C?-solution may exist for all
t>0.)
Let, '
oout) = |51 = o+ 42 (2.3

denote the metric along the curve. The arc-length parameter & is then defined as

.ty = [ gleat)de



CHAPTER 2. ON GENERAL CURVE DEFORMATION 25

Let the positive orientation of a curve be defined so that the mtetior is to the left
when traversing the curve. The tangent, curvature. normal. orienlation and length
are defined in the standard way. We will take the normal to be pointing outwards,
where the inward or outward is determined by the interior. or equivalentiy by the
orientation of the curve. We then have that

= Jac  1ac
T T o
| Qfl L oT

$

[l s : ‘
aT o7
51wy O
0 :=T,7)
2r

L(ty = g(s.t)ds
0

We also dufine a quantity which we will call length-squared by

2
L‘*”(i)::/ g3 (s. 1) ds.
0

Finally. we let
2r
r(t) :=/O [&(s.)fg(s. 1) ds.

denote the total absolute Gaussian curvature.

2.3 Evolution Equations

In this section we will derive the evolution equation for the tangent 7. normal N,
metric g, curvature s, orientation ¢ and length L, for families of cunves satislying

(2.1).
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It is easily established that

o _ .. N
5 = TN (2.4)
%—1:'- = ngT,

which will be used in the following proofs. Note that these evolution equations are
for the general deformation {a, 3}.

Morcover, we can compute that the metric ¢ evolves as follows:

ot _o i oc
ol T Ot T 0s’ Os

_)<_0_C..2£>

T 7T 9s’ 0t 9s
o 9
0L‘0Ldt
=‘7<JT [aT+/31'\']>

a aT 0P 4 ()N

=2

<ol T+°a * %
=2<gT,a,T — akgN + BN + /3hgT >

!
o

<

= 2g[a, + Brg).

Hence. we see that
d
a—f = a, + PKy. (2.5)

In the special case of a =0,

dy )
i BKrg.

We will need the following change of partials for computing evolution equations:
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0 d 100
Tog? Os Jmm
a
3 - =
[0 + hJ] T

Next we have the following evolution equation for tangent:

af _ aac
ot T ot as

= [0 +ﬂhJ]ds LI;%

= :l[o‘s + ﬂh_/]’] + ‘—'[0'11.*. AN

= Float brgT + osT + ot + BN + 555,
= :g-l-[a, + ﬂhJ]T + ;asT —axlN + ;/U\' + BT
= 2B —~ arg)N.

Similarly. for the normal we see that

aN  __ aN
T <d!’[>7

= T NS T

u’

= —glm ~ ang]T.

tw
-3

Next we define the orientation of a curve as the angle the tangent makes with the

r-axis. Let T = (cos(@),sin(8)). so that N= {sm(@). = cos()). Then,

oT . a0
5 = (-».sm(()).cos(O))'g,'
N -
= —— N,
o1

Therefore,

ds

2.8)
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As for curvature, we compute that

N
i
an

a2

[a, + Brgl5e + 51-52 + ax]
——{c:’, +ﬂh‘g]h —@+a ;K + ads
o 320 + a — /3 .2

T as
For the length, we derive
L _ . f2r .
% =3k g(s,1)ds
021' ch!(s 1) (19

= g"[as + Brg)ds.

and similarly for length-squared.

81.12) _ -
G =0 fO *(sit)ds
2r (g2 !s.t!dq
0 Jt N

= fuz" 2g[as + Brg)ds.

[ 8
oD

(2.10)

(2.11)

We now specialize to the case 3(#) = 1 — ex which is a common model frequently

used in applications such as flame propagation. crystal growth. among others. First

we can easily show in this case that the me/ric evolves according to

dg

2
— = (—en‘ + K)g.
o = | + #)g
Second. for the tangent and normal we have
of _ _ehs
ai g
ON  ehgm
= —T.
o g
Next, the orientation evolution is governed by
0 en,
an - g
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Similarly, one can show that the evolution equation for curvature is

Ik
- = (K33 + en® — K2

ot
Finally, length evolves as

2n
Ly=2r— c/ £2gds.
0

249

It is also useful to further constrain the flow and obtain evolution equations for

the particular case of € = 0, or B(~) =1, for which we have

@
ol
ar
Ji
oN
a
_(')_()
ol
dw 5
ol
dl.

ot

= Ky,

= 0,

The evolution equation for curvature may be solved explicitly as

£(s.0)

)= o

This implies that the classical solution will fail to exist when

(2.19)

(2.20)

Hence. if the initial curve to (2.2) is convex. the equation will have a classical

solution for all time.
The metric equation may also he solved as

g

T wlst)gls. )
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gt __ #(s.0)
g 1+nx(s,0)
dln(g) _ #(s,0)
ot T 14 k(s,0)t
din(y) _ 9In(1 + w(s,0)t)
o - ot

In(g(s.1)) —In(g(s,0)) = In(l+ x(s,0)t)=In(1)
In(g(s,1)) = In(g(s,0)) + In(1 + x(s,0)!)
g(s,0) = g(s,0)(1 + #(s5,0)7)

Hence, the metric changes linearly in time with a curvature dependent coefficient. In
particular,

Lemma 2.1 Consider a solution of 2.2 when (k) = 1. Then, for any point (s,0)
with negative curvature k(s,0). curvature will tend to infinity and metric to zero as
t — k(s,0). Furthermore. in any ncighborhood of the curve C, the point of negative

curvalure minimum is the first point whose curvature becomes unbounded.

2.4 Bounds for Things

In this section we give bounds on the length and total absolute curvature for the
family defined in Section 1. As before we are particularly interested in the casea = 0
and f(s,1) =1 — en(s,t) which is not only of interest in physical applications, but

also as we will show in subsequent chapters for the study of shape.

2.4.1 A Bound for Length

Lemma 2.2 Let C(s.1) be a solution of (2.2) for t € [0,t') and vp3(x) < M for all
x € R (regarding 3 as a function of ). Then,

L) < min(L(0) + 2xt. L(0)eM).
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In particular. for p(r) =1 —¢x.

L{t) < min(L(0) + 2r(, L(0)e ).

Proof. We have

2n 9
L,='27r—c/ Kegds.
0

So,

Lt _<_ 2‘”9
L(1) < 2xt + L(0).

Note. the equality holds for € = 0. Alternatively,

JL 2T
_3_1_=/u PRy ds

Since x3(r) < M

()L 2r
—_— < 8
T < Mgd
< ML)
Therefore,
L'(t)
<
L(t) — M
(In[L()])Y <M
that is.

In[L{!)] < Mt 4 In(L(0))

L(1) < L(0) M,

31
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In particular for =1 —en, M = ;"—(, and

L(t) < L(0)c. '

Remarks 1.

(i) For the second estimate, as ¢ = oo, L(f) < L(0). It is interesting to observe that
the two estimates complement each other: for small € the second estimate is very
large making the first estimate more useful. However, for large ¢, the first estimate

is exaggerated making the second estimate more useful.

(ii) A similar same proof shows that the length-squared
2n
JARIED :=:/ glds
0

is bounded by

L(2)(0)62Ml).

2.4.2 A Bound for Total Absolute Curvature

Lemma 2.3 Lel C(s.t) be a solution of (2.2) fort € [0,1'). Supposc that k3(n) < M,
and 3, <0 Then,

Proof. Define
27
q(1) :=/0 g(r(s.1))g(s,1)ds,

)l il
)=y "
7+ 50 il o] £




CHAPTER 2. ON GENERAL CURVE DEFORMATION

Then
y 2n 2n
70 = [ amngds+ [T gngds
2 2
== [ o) s + Btlgds + [ () (g ds
0 0
L(t) . P14
= —/ gn(K)Bs;5 ds +/ [g(r) — kg (8))(BRg) ds.
b o

= —(qn(K):3)

L{t) . 27
= / Gun (KR35 dS + / (g(®) = kg (#))(Fng) ds.
) v

L{t) 27
= / Gun(K)K23, di + / lq(k) = kqu(K))(Irg) ds.
) 0

Since g, < 0 and convexity of ¢ requires ¢” > 0, we have

2r
g'(1) < A [q(r:) — kg (N)](Brg)ds.

Note that
&(1) < ql1).
so that a bound on ¢ is a bound on &. Moreover. we have that
0 x> -7'7

Loir el
2n lf.lS"

0 < gla) —2q(x) £ {
Now since
Br)s < A,
and [¢(x) — rq.(r)] 2 0,

2r
q'(1) <M [q(#) = ngu(r)]gds
0

1 o
< M—-/ g ds.
0

2n
M

< —L{1).
"'ZNL()

L(t) L(t) . 2r
o+ j{, Gan (KK ds + / [q(n) = kg (R))(Frg) ds.
)

33
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and so,

M
R(t) <=L
2n
Since by lemma 2.21 the length is finite, letting n — oo. we get
®'(1) <0.
or

R(t) < &(0) i
Remark 2. The conditions of the above lemma holds for A(x(s,1)) = 1 — ex(s,1).

for ¢ > 0.

Lemima 2.4 Lct a family of curves satisfy (2.2) with conver initial condition. i.e.
K(8,0) 2 0. Then, k(1) = &(0) = 27 and the curve rcnans conver for all times.
Proof. For convex curves.

2n
#(s,0) =/ kg ds = 2.
0

There is some neighborhood of time such that x(s.!) > 0 for all s. Therefore,

R a [
e —:0—1/0 Kgds

2n
=/(; [Keg + Kgt] ds
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Hence,

R(t) = 2r.
Since only convex curves can satisfy this condition, the evolved curve must be convex.

Lemma 2.5 Let a family of curves satisfy (2.2) for which 3, < 0. Then, if k5(3,1) #
0foralls and 0 <t <t
k(1) < #(0).

For 3, = 0.
r(t) = r(0).

Proof. This proof is due to Sethian [75] and we include it here for completeness with
a few changes.

Without loss of generality pick the starting point & = 0 to be a zero of curvature
such that positive curvature begins in the positive direction of the curve. Partition

the interval [0. L(?)] into » + 1 maximal subintervals.
{[§o = 0, §]]. [.;1. 32]. MR [S,, S’l-’rl]' Tttt [.':,,. .‘:‘,,+| = IJ(I)]},

such that x(8) is entirely positive. negative, or zero in the interval (8,,5,4,) for 7 =
1.2,--- n. Then. § are zeros of curvature, ~(5,) = 0. Note further that in general

s, = §(1). Also, let

1 i k(&) > 0for s € (a.b)
plrfa.b]):=¢ 0  ifa(3)=01ori € (a.bh)

—1 il w(s) < Ofors € (a.h)

Then.

Ak J o2 | | /
—_— = — v S
ol ol /o Hig e
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&,

()I 2 /s"“ |x|g ds
w0 0" 5
/ i “hly] ds s + E :"\ La-Ha IJ '~I+lst) - +1 - l"("’“ Ig(b”

1=0 i=0

- Z S kg + Inlge] ds

1=0

Since intervals for which curvature is uniformly zero do not contribute to the sum,

we will discount them. Without loss of generality assume otherwise in the following.

a_' t41
0% [

/3 M (= s — Br?) + x| BK] d

1=0
|+l " R 1 — 3N .
=3[ s 3 [ T+ el
1 ( 1=0 1=0 3: |H'
‘ n 3|+l . .
= _Z[ [p K, [Sn Si41 )])ﬂs;] (IS
1=0" 3
n
= =2k (3 o ))Bs [5
1=0
= =3 p(k[30 S HslEir) = Bs(30)
1=0
Now, by our original assumption p(r.[$p.31]) = 1. The next interval, then, has
negative curvature and p(x,[§.3,]) = —1. Since zeros of curvature must pair up,

(R[50 8n41]) = =1, In short, p(w.[8,.841]) = (=1)'. Therefore,

%{;: = —Z(—l)'[ﬂg(sﬁ-l) - ﬂi(ét)]
1=0
-_2—1)3 St +§: —1)'Bs(3
n-H
( _2—1)1‘ ,)+Z( 1)'3s(s1)
1=0

s
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=Y (= 1)3(8,) + S(=1)'8s(3,)
=0 1=0
=23 (1))
1=0

=23 (—1)'pu(8)r3(3)
1=0

Now. since x3(8,) has sign (=1)" if 3, <0, then

dw
a<?
so that

R(1) < R(0).

However, if 8,, = 0. such as the case with g =1,

m(t) = &(0). )

Remark 3.

In conclusion, convex curves remain convex and k(f) = 27 for all deformations. For
nonconvex curves and /4 = 1, we have k() = ®(0). Note therefoie that for all
curves. the deformation /7 = 1 does not alter the total absolute curvature. [Finally,
for nonconvex curves and deformations for which 8, < 0, such as /4 = 1 — ¢ with
¢ > 0, we have

R(1) < #(0).

This describes the important role of ¢ in the deformation as one of 1educing the total
absolute curvature. Note that for 4 = —en. the deformation will exolve an embedded
curve to a circle [28. 35).

In this section we will address the key issue of how far the evolved cinve can be

away fiom the initial curve. First we derive a relationship between the distance of a
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point from a curve and the curvature of the curve at the nearest point. Second, the
rate of change of distance of a point to a curve is related to the speed of the curve
at its nearest point. This result holds for nonshock points. Third, the distance of a
point from a curve hounds the rate of change of that distance with time. Fourth, we
show that a curve can not travel too far pointwise. Fifth, for any time neighbourhood
for which the curve does not travel heyond ¢, we constrain its expansion as a function
of time. From these we conclude that two curves close in time are closc in their
Hausdorfl distance. Finally, a theorem shows that the limit of curvature evolution

exists, and using the above we can even bound the total Gaussian curvature.

2.4.3 On the Distance Travelled

In what follows we will limit ourselves to the case
B(r) =1—ex.

For a subset S C R2. let N4(S) denote a closed §—neightborhood. Define the signed
distance of a point from a curve (regarded as a point set in R?) as
inf{d(p,q)lqg € C;}  if pis outside C,
d(p,C) =
—inf{d(p,q)|lg € C;} otherwise,
where outsidc is the region to the right of the curve as one traverses the curve in the
positive orientation. In this section we will consider an arbitrary point in the plane,

p. and consider its reladon to the curve C;. Set

d(t) := d(p.C)
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Lemma 2.6 Lel p & C be a point in R%:. Lel g be the closest pornt on the curve lo p.
(Note that ¢ exists by compactness.) Then,

: =l s S ?
k(q) 2 goy U p s oulside €

k(q) S gty i pis inside C.
Proof. Set d = d(p. q). First suppose the point p is outside the curve, so that d > 0.
Let ¢ be the closest point on the curve C to p. Consider the ciicle of radins d and
center p which is tangent to the curve at ¢. We have two separate cases: (i) the curve
has non-negative curvature at q. In this case. k(q) > ‘(—1', trivially. (1) the curve has
negative curvature at ¢. In this case. the curve C lies entirely outside the circle of
radius  and center p. In order to see this suppose to the contrary; then there exist

points on C closer to p than d, a contradiction. Therefore, the curvatuie of the circle

1

4 s greater than the curvature of the curve at . i.c. 5 > —#(q). Therefore, for both

cases when the point p is outside the curve C, we have

Klq) > —
d

Now. as required suppose the point p is inside the curve C, d < 0, and ¢ the
closest point of the curve C to it. Again, consider the cirele of radius —d and center
p which is tangent to the curve at ¢. Once more we have two cases: (i) the curve
has non-positive curvature at g. curvature. Trivially, then x(¢) < 3. (i) the curve
has positive cutvature at ¢. In this case, the dircle again lies entitels within the
curve. touching it only at q. so that, the curvature of the cirele =t is greater than the

curvature of the curve x(g). Then.
k(g) < = "
—d
Lemma 2.7 Ll p be a pont in R* wheie C deforms along the normal according to
2.2). lffj can be bounded. then
ac

I'(t) = ——.
) =-5




griaksy

('HAPTER 2. ON GENERAL CURVE DEFORMATION 40

Proof. Let ¢(s,1) be the closest point to p on C; and ¢(s+6s,t+ 6t) the closest point
on C(..1 + 61) to p. Since the line (p, q(s.t)) is normal to C;, the point ¢(s,t + 61) is
on this line a distance %9;-61 from ¢(s,1). Consider the triangle with vertices p,¢(s,t +

81).q(s + bs,1 + ét). where the angle at p is denoted by 60. Then,

dit + 6ty —d(t) 1 (d(t)—5261)
o =5l w0s(00) = d(t)]
_ 1 . 25079y _ 9C
= W[Zd(t)sm (60/2) Y 1]
=_2d(t)sin?(60/‘2) =

cos(60)é1  cos(60)

In the limit. 6t — 0, 60 — 0. From the equations for rate of change of orientation

with sin Section 2,

a0 -4,

ot g

Since 8, can be bounded

ac

(I’(t)= ——a—t—. B

Remark 4. Observe that as ¢ aproaches the time of shock formation, g(s,t) goes to

zero, and therefore the condition of Lemma 2.7 does not hold in the limit. -

Lemma 2.8 Let C; be a solution of (2.2) where B(n) =1 — ex. Let p be a point in

R Ifd(t)y =d(p.C;) < ¢, then,
d'()d(t) > =2e.

Proof. Let ¢(/) be the closest point on the curve C; to p. First, consider the case
where the pomt p is outside the curve C;. Then. by Lemma 2.6, x(q(t)) > ﬁl).

Consequently,

d() =w-1
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—<
~ d(t)
=1
= d(?)

since d(1) is positive and d({) < €. Hence we can conclude that
d'(t)d(t) > -2

Now. consider the case where the point p is inside the curve which implies n(g(!)) <

j'(:—). Then.

d'(1)

H
™
>

I
—_

|

since d(1) is negative and d({) < ¢. Once again, we can conclude that

d'(1)d(t) > —2e. (]

Lemma 2.9 Consider a curve Co cvolving through a function of curvalure as m (2.2),
with B(rk) = 1 —ex. Then for each €, there crists | = 1(¢,Cy) > 0, such that for each
p €C; with 0 <i <1 we have that

d(t) <e Yo<t<l.
Proof. Let p € C; for some 0 < { < 1. Note that | — (a(g(#),1) is the speed of the

point ¢(1) on C; in the evolving family. Now since n(s.1) is a periodic solution of a

polynomial reaction-diffusion equation with analytic coeflicients and smiooth initial

-
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condition, there exists an interval [0, t,] such that &(s.7) is uniformly bounded as a
function in t say by Al. Therefore on [0,1,]

|1 —en(q(t),t)| < T+ el

Thus any point ¢(0) € Cy caunot have travelled more than distance ¢ from Cy in time

Set

:= min(1,1,).

Since p € C, for some 0 < { < 1. the lemma is proven. g

Theorem 2.1 Consider a curve Cy evolving through a function of curvature as in 2.2
g

with B(n) =1 —ex. Let { =1(e.Cy) be as in the previous lemma. Then
Ct C N z(Co).

Jor all t € [0.1].

Proof. From Lemma 2.9, given ¢ there exists 7 such that for all t € [0.7] and for all
p € Cy we have
dity =d(p(1),C) <e.
Now. by Lemma 2.8,
(¢t
- i = dt)dir) > 2

for all t € [0.1]. By integration
d(t) < V.

Hence, we have shown there is { such that for 1 € [0.1] we have

¢ C N (o) h
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Remark 5. For dj; the Hausdorfl metric defined on compact subsets of R?, from the

above theorem we have that

(I}I(C,.Cu) < Vel

2.4.4 Limits of Classical Solutions

Lemma 2.10 Lct C,: 8' — R? be a family of C? functions with uniformly boundcd

length-squared L'\®(t). Then, Cy 1s unmiformly equicontinuous.

Proof. The lemma is a simple modification of the result for functions with bounded
derivatives. Note that

s 0C
Cls.ty=Cl(s,. 1) = / —do.

So ()0

Therefore if L is the uniform bound on the length-squarea

IC(s.t) = C(s0, )] <
1/2
s dJC s|for)? dy :
/ I |(Ia'-/su [<%) + (-(9—5) ] do
] 1/2
s (o)’ dy 2
< — 2 < Lls — s |12
= [/(()a) +(aa) ‘l"] S Lls = '

that is, the familv is equicontinuous with Hélder constant L and exponent 1/2. g

Theorem 2.2 Consider a curve Cy evolving through a function of curvalure as in
2.2). Then,
hmC, =C".

t—t!
in the Hausdorfl meiriec. The curve C° regarded as a mapping C* 2 S — R* 15 Holde r

continuous with exponcut 1/2
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Proof. Since the lengths-squared of the curves €, are uniformly bounded (see Lemma
2.2 and Remark 1(ii)) regarding each C, : S — R?, we can apply the Lemma 2.10 to
the family
{Cr}te[o.t’j

to conclude that it is equicontinucus. Moreover from Theorem 2.1, the curves lic in
a compact region. Thus by the Arzela-Ascoli theorem and the proof of Lemma 2.10.
there exists a uniformly convergent subsequence Cy,, — C*, where C*: S! — R?is a
Hdélder continuous function with exponent 1/2. (The Hélder continuity of the limit
follows from the fact that the family is equicontinuous and Holder continuous. C* will
also denote the corresponding curve.) Thus as compact subsets of the plane. we have

that C;,, — C~ in the Hausdorfl metric.

To complete the proof. we need to show that all the C;, — C* (in the Hausdorff

metric) as  — ', Let & > 0. and choose 1,, such that
C,, C N‘s/z(C')

and

(We choose & > 0 sufficiently small so that ' — 1—562—( > 0.) Note that for all t € [¢,,t').

we have
§2
=t < —.
" 16¢

Therefore, by Theorem 2.1

C C N\/;TT%?(C“,).

Cl C Na/2(ctn)~
Ce C Ng(C7),

as required. g
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Remarks 6.

(1) Note that since C* is Holder continuous. and since the total Gaussian curvature of
the family is uniformly bounded (see Lemma 3.2.1), C* will have finite total Gaussian
curvature.

(i) From the above results. we have a fairly complete picture about the the classical

evolution of a lamily of curves with

BR)=1—ex 20.
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Chapter 3

Conservation Laws

We now continue the study of curve deformations. and relate them to conservation
laws. In particular, we review an expression of hyperbolic conservation laws as dif-
ferential equations and we show that orientation and the product curvature-metric
satisfy it. First, it is shown that the axiom "slightly deformed shapes appear similar”
leads to a qualitative description of arbitrary deformation of shape as a sum of two
types of deformations: constant motion and curvature motion. It is shown that while
constant motion leads to a conservation law for orientation, adding curvature motion

is tantamount to adding viscosity to the system.

3.1 Hyperbolic Conservation Laws

C'onservation laws appear frequently in physical sciences. Examples include conserva-
tion of matter, energy, electric charge, and heat, among others. To illustrate, consider
the conservation of matter, which can be stated as follows: “the amount of matter
that flows into a volume is exactly the amount of increase of matter within that vol-
ume.” In other words. matter is neither created nor destroyed. In this section, we

hrst review hy perbolic conservation laws, express them as differential equations. and

46
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then show that orientation satisfies a similar equation. As such, given a “picce™ of
orientation. the total change of orientation in that “piece” is equal to the change in
the orientation of neighboring cuive segments.

To derive an equation expressing the conservation of a quantity u, such as heat,
consider the volume G with boundary d¢/. The total quantity of u in the volume is
Je udv, where dv is the volume element. and the total quantity passing through the

boundary is [, udS. where dS is the surface element. figure 3.1. Then, conservation

holds if
a:///. wdv = “/ ) -t dS, (3.1)

where H is the flux. Using the Divergence Theorem, the right hand side is simply

T [V - H(u)dv. so that

du
v = 3.2
// (155 + ¥ - i) de =0, (3.2)
Since this holds for any volume ¢,
du
P + V- H(u)=0, (3.3)

which is the differential equation representing the above integral equation. Kquation
3.3 is called a hyperbolic consecrvation law and is satisfied by heat, mass. energy.
momentum. electric chaige and some other physical quantities. For functions of one

variable r the equation 1educes to

du
— + I, 0. 3.4
o T (u) = (3.4)
For example. H(u) = —u,. vields the heat eqnation
du
}-)—"' = t,,.

At the heart of this thesis is the abstiaction of certain properties of shape that also

satisly conservation laws,
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> o]

Heat

in

Infinitesinal
Slab

3) Conservation of Heat

Figure 3.1: This igure illustrates the conservation of heat: the net amount of heat
that flows into the volume is exactly the amount of increase of heat in that volume.
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3.2 Conservation of Orientation

We now turn to conservation laws for orientation and show that, in an arbitraiy de-
formation of a shape, orientation satisfies a viscous conservation law. Specifically. we
show first that when a curve is deformed by constant motion, orientation is conserved.
By adding curvature motion. orientation then follows a viscous conservation law, i.c.
curvature plays the role of viscosity [75].

C'onsider a curve C(s.1) = (x(s.t),y(s.1)) satisfying 1.3. Then, for almost any s

and for some neighborhood ¢, we can write

y = y(a.1).

/ ;2
,J DI ¢

The metric is

(3.5)
= \/1 + 7 ]J.
The tangent and normal are
T = —(1.7,)
. Vis (3.6)
b 1
N = l+'y?( s 1)
Curvature in turn is
%
K= —B (3.7)
(1+442)
Then equation 1.3 tianslates into
(5. 8) =pn)¥ )

(2£.2) = Blr) = (=a1)

Now. y; = 7,11 + 3¢ leading to

Gt = Yo — e

= ,1(}{)7]-—-— -— /3( 71—:—-;('—‘), (';‘))
= O’(K)\/l + “/T
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This can also be shown to hold in the weak sense when one removes smoothness

assumptions.

Now. let us turn to constant motion, namely 3(x) = 1. The equationy, = /1 + 42
is a first order Hamilton-Jacobi equation. Using the transformation m = ~,, the
equation becomes a conservation law [18]. Specifically, the evolution for orientation

~- can be found by differentiating

(3 = Y1 + 22l (3.10)
As such. the slope of the curve m = v, satisfies

my + [Hm(m)]: =0, (3.11)

where Hy, (1) = =1 + m?, the flux of slope. To translate this equation into one

with orientation. 0. observe tan(8) = m:

[tan(0)}, =1+ tan2(0))%]r

(1 4+ tan(0)2)0; = 3(1 + tan())7 - 2tan(6)(1 + tan(9)), (3.12)
_ tan{f T

O - (1+mn2(e))¥lor

0, = sin(0)0;.

Hence,

Theorem 3.1 Orentation of a curve deformed by constant motion satisfies a hyper-

bolic conscrvation law for orientation 0:

o0
5 +He(0)= =0, (3.13)

where Ho(0) = cos(0), —7w/2< 0 < =/2.

So far. we have shown that slope and orientation satisfy conservation laws when
the deformation is a constant one along the normal. It is natural to ask what happens

when the deformation is arbitrary. i.e. when curvature motion is now involved as well.
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The role of curvature may be examined by deriving an equation for the combination
of constant and curvature motions which is similar to 3.13. Returning to equation

3.9, by letting B(x) = o + A1 K to include curvature motion, we have:

w ={(Po+ A1 +1} 01

Differentiate

(72)e = Boly/} +7f]f=ﬂ.[“1“ﬁ2)],. (3.15)
or

my + Ho[Hm(m)), = ﬁ][n—%ﬁj]r. (3.16)

For orientation tan(d) = ..

[tan(0)]: — o[(1 + 1802(0))%]: = ﬁl[“i—m)ﬁ},—,]]r
[1 4 tan2(0)]0, — 3o tan(0)(1 + tani(0)):0, = /1,[“[;*—_:_1‘:":%]{])-’],
0, — 3y sin(0)0, = f3) cos?(0)0,,
0, + 3u,[H(0)], = 3, cos?(0)0,,.

(3.17)

Theorem 3.2 Orientation of a curve deformed by a combimation of constant motion
and cureature motion salisfies a viscous hypcrbolic conservation law for oruentation
0:

0: + Bo[H(0)), = B, cos*(0)0,,. (3.18)

where Hg(0) = cos(8).

Note that the latter equation is the original conservation law with a right hand
side that contains a second derivative for 0, a diffusive term (recall the heat equation
b, = 0,,). In fact. this is a rcection-diffuston equation where the term fy|H(0)},
is the reaction term and /3 cos?(0)0,, is the diffusion term. It can be seen from
the coefficients of these terms, 3y and ;. that the constant motion corresponds to

reaction and the curvature motion to diffusion. In the next chapter we continue with
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this idea and build a 1eaction-diffusion space where, through the interaction of the

two “forces™ reaction and diffusion, the various aspects of shape can be characterized.

3.3 Conservation of Curvature-Metric

We end this chapter with a second intriguing conservation law and one on which the
remainder of this thesis will not depend. Consider the product of curvature and the

metric ¢ defined as in 2.3, Define the curvature-metric as K = rg.
Lemma 3.1 The quantily K = kg is conserved.

Proof:
‘?;’;: = Keg + Kgt
= —r2g + nKg (3.19)
= 0.

The question naturally arises whether the curvature-metric K deserves special
attention. To answer this, observe that. intuitively curvature is taken to be a measure
of how bent a curve is. However, while curvature is formally defined as change in
tangent per unit arclength, arclength is not always easy to specify or to measure, an
issue often ignorea in numerical implementations. Recall that a curve is defined by two
coordinate functions. The theorem stating that curvature alone can determine a curve
[22]. involves an implicit assumption of parameterization by arc-length. However, it
seems that our perceptual judgements of bending depend on curvature and on a
perceived arc-length as well. !'. To illustrate, consider figure 3.2, where the curve
parametrized as (s2.53) is sketched. A computation reveals that curvature increases
in magnitude and is unbounded as we approach the cusp. Note in addition that
curvature changes sign as we cross the cusp. Covering half the graph, so that only

the right o1 the left portion is visible. indicates that the curve does not appear to

"This pomnt among others i this section was the result of many discussions with Allan Dobbins
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be infinitely bent as we approach the cusp. This is in clear contradiction to what a
computation of curvature would predict.

The problem appears to be based on several assumptions. First, the curve is
assumed to be smooth. when in fact a large number of shapes contain discontinuitics.
Second, is the issue of representation: A curve may be represented by a pair of
functions {r(s).y(s)}. or it may alternatively be represented by curvature x. Tmplicit
in this latter representation is that curvature is a function of arc-length &, However,
this is not always possible. We suggest that a perceptually important representation

could be the pair of functions (. g) leading to the definition of generalized curvature

as +As/2
s+Asf2 |
Fas(s) = 25232 = i;y dh, (3.20)
LR FAY
fs—.’ls/) gd"’

where 2As is the “stick size” of measurement, s is curvature, and ¢ is “speed” as
before.

To motivate this definition. consider the following physical analogy. Immagine your-
self driving along a winding road and observe the speed variation. When the road
is relatively straight. one increases speed and. when approaching the bends, one de-
creases speed. For the very difficult turns, one may even slow down to zero. The
limiting factor is friction and lateral acceleration. In analogy. as one’s mind’s eye
traverses a curve. it must limit the “visual acceleration™; i.e. sample greatly when
close to higher bending and sample sparsely when the curve is straight. Returning

. . As/2 oo . .
to the definition. the integral ]:fA:/z (' ds represents an “extent” over which bending

is measured. The numeiator j:fif//f kg ds is the change in orientation in that inter-
val. As such owr dehinition takes into account both crtent of the curve and speed of
traversal. In the cusp example of figure 3.2 speed approaches zero as we approach
the cusp. thereby the extent over which curvature is unbounded is infinitesimal.

When ¢(s) = 1. namely, when the curve is represented by arclength, the gener-

alized curvature & reduces to the standard notion of curvature. Also. note that a
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Figure 3.2° Tins example illustrates that the standard notion of curvature as a func-
tion of arclength may not be the ideal mathematical representation of our perceptual
representation for “amount of bend”. This graph is a sketch of (s2,s3)-whose curva-
ture at { = (i is unbounded for each side of the cusp. However, covering half the graph.
we can not possiblv associate infinite bending with the curve. Our proposal is that
not curvature. bnt crivature-metric is involved in a notion of “amount of bending™.
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notion of scale is built in to the definition. Singularities in this representation are
the highest possible change in the smallest possible scale. Now, consider a rectan-
gle. While at the corners curvature is undefined, the generalized curvature gives r /2.
which is perceptually intuitive. This preliminary definition deserves a great deal more

development, but is bevond the scope of this thesis.
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Chapter 4

Shocks and the Role of Entropy

In the previous chapters it was shown that within a stable representation of shape.
slightly deformed shapes ought to look similar. The study of arbitrary deformations
lead to their classification as combinations of constant motion and curvature motion.
This in turn leads to conservation laws for orientation and other quantities when
the shape is deformed by constant motion. The more general case, when curvature
motion is added to the deformation. leads to viscous conservation laws. Solving these
conservations laws. however. is not trivial: the space of differentiable or continuous
function is not large enough to accommodate the shocks that signal key aspects of
shapes. In this chapter, solutions of conservation laws are sought in the much larger
space of generalized functions. This leads to too many solutions. and a notion of
entropy is required to pick the physically significant one. Entropy satisfying solutions
exist and are the unique solutions of the conservation law. Finally, the role of shocks

and entropy for shape is described.

0
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4.1 The Formation of Shocks
Consider a single hyperbolic conservation law

du

-5[-+H,(u)—0. (1.1)

where & is the space variable, ¢ is time, u is the conserved quantity and I is the
flux of v This iv a nonlinear partial differential equation and. as such. smooth initial
conditions may not (and as will shortly become clear, often will not) remain smooth
or even continuous. The lack of a classical solution, however, does not imply the
lack of a physical solution. Observe that the differential form of the conservation law
in 3.3 is a convenient representation for differentiable functions only and that the
original relation is an integral one ( 3.2). Consequently, given the integral relation.
there 1 no inherent reason for limiting the space to that of continnous functions.
especially since i our case of shape representation (a. well as other arcas of vision),
discontunuties are often salient features that play a significant role in the recovery
of structure  Consider. then. the much larger space of generalized functions, i.e. the
space of bounded and measurable functions. which are capable of 1epresenting many
kinds of discontinuities. The notion of what constitutes a solution. must. however,
be reformulated from an integral perspective. This leads to the idea of weak solutions
of ( 3 3). with bounded and measurable initial condition u(.r.t) = ugl.r. 1), as those

functions that satisfy the integral relation

// [uo + H(u)o, Jd rdt +/ upod r = (). (1.2)
J Ji>o t=0

for all differentiable o with compact suppott. Notice that a classical solution of 31
is alsu a weak solution of it.

Untortunately . while the larger space of generalized functions is richer in its repre
sentational power. now there are many generalized solutions that satisfy ( 3 1)" Since

the physical solution exists and is umque. however, the question anses as how to
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determine which generalized solution is physically significant. The solution lies in the
notion of entropy [19. 48, 62] which. in the case of gas dynamics dictates that the
“entropy of the particles must increase as they cross a shock front™. In the domain of
generalized funetions. it can be shown that an entropy satisfying solution exists and
is the unique physical solution.

There are at least five mathematically different approaches to the problems con-
cerned with the solutions of scalar conservation laws. namely: (1) Calculus of vari-
ations and the Hamilton-Jacobi theory [18]: (2) the viscosity method [21, 45]: (3)
nonhnear semigroup theory [20]: (4) the method of characteristics [23); and (5) the
method of fimte differences [47. 32). [78]. In the following illustration of shocks and
entiopy. we will principally use the method of characteristics. with some reference to
other methods.

To motivate the idea of shocks and entropy., let us consider the well-studied Burg-

ers” equation [37] as a simple model of turbulence in fluid flow
U+ Uity = puy, . (4.3)
which is a consenvation law with H = 1/2u® when viscosity u is zero.
g+ uuy = 0. (4.4)

The <olution to 1.1 for the initial condition

| ifr <0
wlr) =4 l-2 if0<r<1 {4.5)
0 ifl1 <,

may be found using the method of characte ristics [29. 40, 30], where

dr dH
T (46)

or &y =u Tomterpret this, all points on the negative r-axis will move to the right

with speed 1 all points with 0 < o < 1 will move to the right with speeds varying
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from 1 to 0. and all points with.r > 1 stay put. With time, the point on the left of the
slope will get closer to the stationary segment and. consequently, the slope hecomes
sharper. It is clear from figure 4.1 that for 1 < | the function u(. t) remains single
valued. However, for £ > 1. the characteristics clash. and there exists the potential
for the formation of a shock. Beyond this point, the two charadteristios enforee two
different values for u. namely. 1 and 0. This is cleaily not possible. The dilemima of
which of the two values is physically meaningful is solved by enforcing conservation

at a traveling shock, leading to the so-called jump condition ' [19).

s(u, —w)="H, - H,. (17)

whete Land r denote left and right. respectively. and s is the speed with which the
shock will move. For the case of Burgers™ flux. the shock will move with average speed

of the two imcoming characteristics.

4.2 The Role of Entropy

A second problem arises when we consider diverging characteristics. Consider the

initial condition
0 if r<
ug(ar) = (1.8)
I if0<u
Here. the pomnt to the left of the y-axis will stay put. while the points to the right
will move to the right with speed 1. As such. there will bhe points whose value can
not be determined as is depicted in figure 1.2, Consider the follow ing funetions.
0 if r<t/2

w(r) = (19)
1 if1/2 <

FAlso known as the Rankine-Hugomot condition
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Figure 4.1: This figures illustrates how characteristics clash and shocks form. Note
that alter the shock forms. it travels with a speed that is determined by the jump con-
dition. To interpret this picture, imagine a pipeline on the x-axis where the particles
to the right of the y-axis are stationary; particles to the left of # = —1 are moving to
the right with velocity 1 and all others with intermediate speeds as the characteristics
show (left). On the 1ight the shock forms at the step, and subsequently travels to
the right. A significant point is the explicit representation of the singularities in the
context of generalized functions.

and u,.
0 ifr<0
wpr)y=4¢ 2/t f0<r<t (4.10)
1 ft<e

where vy 15 discontinuous and w, is continuous, but which both satisfy 4.4 with
initial condition L8, see figure 4.2, Since the Rankine-Hugoniot condition (jump
condition) adnuts rarc fuction waees of the above type. how can one pick the physically
significant solution! Observe that the discontinuity of the above solution is such that
the charactenistics diverge from the discontinuity, In contrast, in the discontinuity of

the solution 1 hgnie 1 1. the characteristics move into the discontinuity. This is one

expression of the notion of entropy which forces the shock speed to be intermediate

to the speed of 1< lateral characteristics.

H'(uy) > € > H'(u,). (411)
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Figure 4.2: This fignies illustrates the situation where a gap exists when the cha
acteristics diverge The jump condition alone does not resolve this situation as the
two examples shown above. one continuous and one discontinuous, but which hoth
satisfy 1.4 with imtial condition 4.8, The entiopy condition rules ont the non shock
discontinuous solution and pichs a unique continuous solution u,.
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where up and u, correspond to the left and right values. respectively, and H'(u) is the
speed of propagation of quantity u, and H” > 0. Equation .11 is referred to as the
entropy mequalidy.

A different expiession of entropy comes in the form of an entropy condition:

u(r + AJ‘AI) —u(r.t) < E'tl' Ar>0.1>0, (4.12)
&x

where £ s independent of &, { and Ar [62]. Note that for a fixed t increasing  implies

that the change in w is always in the same direction across a discontinuity, namely,
u, > u, when H s convex (H” > 0). To reduce this to the entropy inequality. note
that, by comvexity of H. H'(w;) > H'(u,). Now consider the speed of the shock as

determined by the jump condition

H(uy) — H(u,)

Uy — U,

£ =

Cleatly. s = H'(r) for some v between u; and u,. Now. across a discontinuity,

up > v > u, which implies
H'(w) > & =H(v) > H(ur).

or the entropy inequality. More generally, Lax introduced the generalized entropy

conditions {18]:
H(ou, + (1 —a)uy) < aM(u,) + (1 —a)H(wy).0 € a < 1, (4.13)

for u; > u,.

The usefulness of the entropy inequality 4.11 is in an existence and uniqueness
theorem: “Every mitial value problem 3.3 has exactly one generalized solution defined
for all £ > 0 which has only shocks as discontinuities.” [19. 62, 78]. In addition to the
entropy inequahity and entropy condition. one can define a notion of entropy through

the additional conservation law

Ui+ [F(U)]s = 0.
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[48].
There is also an interesting connection between the notion of entropy aud that of
viscosity. Consider the following conservation law with viscosity
%;-i—ll,(u):(n“. (111
where € is a measure of viscosity. What happens to the solutions of the viscous con-
senvation law as viscosity vanishes, ¢ — 07 With viscosity added to the conservation
law. the shocks are smoothed out and therefore we are back to the classical situation
[84]. As € — 0. it would be plausible to assume that the limit of the viscous solutions

ought to be the solution of the conservation law. In fact. the limit of the viscous

solution is precisely the one determined by the entropy condition |62, 45, 7).

4.3 Boundary-Based Shape Entropy

What are the implications of shocks and the notion of entropy for shape? Recall that
our goal is to establish a connection between similar shapes by studying deformations
that take one to the other. We have alicady shown that arbitrary deformations
of a shape lead to a viscous conservation law for the orientation of the boundary
of the shape. The relevant question then is “what happens when, in the process
of deformation. a discontinuity develops in otientation?”. Our treatment has been
one of deforming the curve along the normal and. in the case of a curve with a
discontinuity in the orientation. this is cleatly no longer in the realm of the classical
theory of differential geometry. This situation is illustiated in figuie 4.3 where points
near a negative curvature minimum bunch up together. In time, these points are
destined for collision as lemma 2.1 shows  To continue our deformations separately
for cach segment of the curve would lead to portions of the curve crossing over each
other. figure 1.4, This is cleatly not desirable as the crossed-over boundary does not

cortespond to an object.
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Figure 1.3: (Left) Points near a negative curvature minimum bunch up together. In
time, these points are headed for collision and the formation of a shock. (Right)
Negative curvature minima give rise to discontinuities.

Figure -1..: Bevond a discontinuity. deformations by following along the normal to
each segment procedure boundaries that do not correspond to a shape representing
an object,
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To answer this question. recall that our initial motivation for studying deforma-
tions was to connect shapes through some process; to somehow distinguish “close”
shapes from “distant™ ones. Now, in the process of deforming the shape. it is possible
that non-neighboring portions of the boundary touch each other. To continue the
process beyond this point. we are guided by the basic principle that we are deformig
an object to another. Since boundaries of objects do not cross over (simple curves),

we demand

Axiom 4.1 In the process of deformation the boundary of the shape must not cross

over itself.
Also, at no time should the boundary evolve to an open curve:

Axiom 4.2 In the proce~~ of deformation the boundary of the shape must remain

closed.

Our axioms are in correspondence with the notions of shock and entiopy for con-
servation laws. To illustrate. consider figure 4.5 where the shape and the orientation
of its boundary are displaved in cotresponding colummns. In (i) the shape boundary
is a pair of line segments tangent to a circular arc. (it) is the result of deforming the
shape for some time. Here, the points of the circular arc bunch up together, while the
points on the line segments simply translate. Eventually, the points on the dircular
arc collide into one point (shock) resulting in a tangent discontinuity for the eurve
(iif). Up to the shock formation. the deformation of the boundary along the normal
by a constant amount is exactly equivalent to the evolution of orientation according
to the conservation law. However. past the formation of the shock, the normal along
the boundary is multi-valued and the deformation becomes ill-defined at thaet point
The evolution i1r the conservation law domain, however. is still well-defined in the

weak sense. where the shock travels with a speed determined by the jump condition.
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5‘—’1&(‘,'}%;,'1—'“(0—‘1. The orientation and its corresponding shape is shown in (iv). Note that
evolving the boundary to the left and the right side of the singularity separately.
would produce a cross-over in the boundary of the shape violating axiom 4.1. In
contrast. evolution in the conservation law domain satisfies this axiom because shocks
form and travel in time, avoiding the formation of a tail, figure 4.4. We will shortly
sce that this axiom is pait of an enfropy condition for shape.

To summarize, one can view the constant deformation of a shape as a flow of
orientation from high curvature points to low curvature points. Figure 4.3 depicts this
flow where namely points of higher magnitude negative curvature gain in magnitude
and eventually tend to infinity forming a shock. In contrast. positive curvature points
decrease in magnitude. As the first shock point is created, it becomes a “black hole
of orientation”: orientation pours into it locally. never to be recovered. This is the
basis of a scale-space of approximation and significance for shape. the entropy scale
space, which is described in chapter 7.

What does the rarefaction wave of figure 4.2 correspond to in the domain of
shape?  As before, the entropy condition requires that the only discontinuities of
shape be shocks. Recall that for the Burgers equation 4.4 with initial condition
1.8, the discontinuous function wuy can not be a solution. Similarly, this is also the
case with the orientation conservation law and initial condition of figure 4.6. Here,
the rarefaction wave evolves to the continuous solution which satisfies H'(u(€)) = ¢
with & = r/t. In omr case. it is easy to see that &+ = sin(0)t and y = — cos(0)i.

Consequently. the rarelaction solution following a shock yields a circular arc.

4.4 Region-Based Shape Entropy

So far, we have tepresented the shape locally by the orientation of it boundary. Using

notions of shodcks. entropy. and weak solutions of conservation laws for orientation
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Figure 1.5: The shock as depicted for the Burgers’ equation in figure 4 1 i now
applied to shape Recall that orientation satisfies a conservation law which produces
a similar shoch (left column). On the other hand. the deformation in the <hape
domain is constant motion along the normal. Note that with time. the circular are
will dissolve into one pomnt. leaving the orientation of the boundary discontinnons
How does one continne the deformation heyond this point?
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Figure 4.6: How should the shape in (i) deform in time? Again, while the normal is
defined elsewhere. at B it is not clear how to deform the shape. Axiom 4.2 rules out
evolving each segment separately. In the conservation law domain this corresponds
to a rarefaction wave, figure 4.2. The evolution of orientation is shown in figure (ii)
where in the coresponding shape. point B evolves into a circular arc.
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we have heen able to extend deformations bevond the realm of classical differential
geometry using simple shape axioms. However, we have argued that shape is mul-
tidimensional in nature: both local/global and boundary/region properties must be
taken into account. To motivate, consider fignre 4.7 where in the process of de-
forming the shape, two distant portions of the boundary touch each other. Following
the deformation locally and based on the boundary would produce the dashed lines,
violating axiom 1.1. Clearly, a richer representation embedding global and regional
properties is required.

To motivate our approach. let us consider the field of fluid dynamics and the two
formulations capturing flow of fluids, a problem not unlike ours. In the Lagrangian
Formulation. equations of motion are based on the flow of particles, whereas the
Eulerian Formulation constrains the physical quantities as a funiction of their position.
One may view the first framework as local and boundary-based, and the latter as
global and region-based. To accommodate the regional and global attributes, points
distant along the boundary but close through the region may have to be connected.
Consider. then. the shape as the level set of some function =z = (x,y,t). Here ¢
is an imaginary quantity reminiscent of some physical quantity e.g. density, which
indicates where the region of interest, e.g. shape, is located The simplest scheme is
to consider all points for which ¢'(z,y.1) > 0 as belonging to the region. In shape
representation, Koenderink has utilized the characteristic function of some region as
an indicator of the shape {42, 44]. Similar representations have been proposed for the
propagation of flame fionts [74. 7].

What are the equations governing the evolution of the surface z = ¢(r,y.1)?
Note that the surface is initially only constrained by its zero level set. Similarly its
evolution is only constrained by the evolution of the zero level set. As such, let us
impose the same deformation on all level sets. The degree of ficedom unconstrained in

the initial level set may later be utilized to represent grey level (or other) information
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Figure 170 This figmie depict the case when two points of a shape (A) that aie
distant along its boundary come together during an arbitrary deformation (B). How
should the deformation proceed bevond this point? A pointwise deformation along
the normal would produce the dashed-lines, which clearly violate axiom 4.1 sinuce

they do not correspond to an actual object.
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A level set is defined by v*(x.y.t) = C. which may be solved as t = f(x,y) deseribing

the level set cuirve implicitly. Now. let the level sets deform according to 2 2. Then,

-

B+ T =1 (115)

where f;. f, are partial derivatives of f with respect to & and y, respectively and as
shown in [63]. To relate this to the surface function ¢+, observe from (e y.t) = ('

that

vy + "‘I_IJ =0

(1 16)
l“ll + L‘fj‘q == O.
Solving for fa and fy using 1.15.
i+ el = (117)
Or.
v = 30y + o] =0 (118

Now. we ate in a position to consider the case of figure 1.7 To restate, the
question 1s how to continue the deformation bevond the point where two remaote
points of the boundary collide. The straightforward motion in the normal duection
along each individual piece of the honndary would produce the dashed hnes that
violate Axiom 1. On the other hand. f one propeily identifies the two points that
have come together (at the moment the boundanies touch) as one, then it s not ¢lem
what the normal should be. The proper wdentification is formed by returming to the
world of objects and visnahzing the bonndary as encapsulating the material of which
objects ate made. Then. when such a pimdinng of the shape takes place, the object
should be segiegated into two sub-objects, since the pinching has left the pomnt of

touch with no material to connect the two. This suggests
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Axiom 4.3 When in the process of deforming shape. two distinct points of the bound-
ary of the croleed shape touch each other. the evolved shape segregales mto two

(sub)shape~ wlieh represent tico separale objects.

With the help of this axiom, the evolution of the region-based surface function ¥
15 now unambiguous. Since the surface function may correspond to many connected
shanes, the transition from one shape to two 1s not inconceivable. The two points that
come together will transform to the two cusp point that belong to separate shapes.
figme 17

There 1s a connection between conservation laws and Hamilton-Jacobi theory that

is televant here A first order Hamilton-Jacobi equation is of the form
Jo+ H(l.x.J.) = 0. (1.19)

where s a function of r and £, Note that with constant motion equation 4.18
becomes fnst order Hamilton-Jacobi of the above type. Barles studied this equation
and contrasted 1t with its other applications of geometric optics and optimal contiol
[7]

Thete are several advantages for using a formulation of this kind While boundary
methods do not casthy lend to a split or a merge in objects. a 1egional representation
of this hind 1~ suited for it. Furthermore. 1 cases where points bunch together (see
figuie 1 3). a ~segment of the curve with finite aic length eventually disappears into
one pont Winle such a reparametrization is difficult in a boundary representation.
it s casthy handled by a region-based method. There are also issues of numerical

stallity extensivelv discussed in [74. 63] in favor of the latter scheme.

4.5 Shape Entropy

In the previons sections, several axioms defined the deformation of shape bevond the

case were the houndary develops a smgularity and where two remote points of the
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boundary come together. These axioms can be brought together by using an e ntropy
condifion for shape. The nse of intuitive language helps, and we need the [ollowing
terms. Think of the boundary of the shape as engulfing material points that define

its interiorn:

Definition 4.1 Entropy Condition: In the process of mward deformation, onee a
pomnt s dislodged from a shape. it remans disjont from at forceer. Sumdarly, i the

process of outward deformation. once a point becomes part of a shape, o rosnaens parl

of il forever.

The entropy condition relates to Huygens™ principle of geometric optics for wave
fronts moving outward. Huygens” prindiple states that the motion of the front along
the normal is obtamed by the enmvelope of dircular waves ssuing from the ongnal
wavefront [10] The "grass hire™ analogy for the construction of the medial axis trans
form 1s also intimately connected to the entropy condition  The analogy supposes
simultaneously lighting fites along the boundary of a shape  Each point of fine would
then spread uniformly by consuming grass (interior of the shape). When two fue
fronts colhide. the fire 15 subsequently extinguished at that point [12]  The quend
points of fite are precisely the shock points, see chapter 9 The grassfite analogy -
also presented in [T1] in the context of flame propagation

A more formal justification of the entropy condition is through its equivalence

with the viscosity solution [21] Consider
vy = F(n )t 4+ 1,'5]""’ = (A (120}

which is the equation of motion 1 18 with added viscosity  Now as ¢ — 01t 18
reasonable to demend that the solution to 4.138 (the entropy solution) and  1.20 (the
so-called viscosity solution) be the same. Batles has shown that this is in fact the

case (7).
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Chapter 5

The Reaction-Diffusion Space

In the presious chapters. it was shown that orientation of arbitrarily deformed curves
satishes a conservation law. Since the goal of this thesis is to use athitiary deforma-
twons as a hnk hetween shapes, our representation must capture these deformations
even when and alter singularities form. Entropy satisfying generalized solutions form
shocks on which we shall concentrate in this chapter. Our goal is to show how shocks
relate to shape, Specifically, first-order shocks signal profrusions o indentations.
1solated second-order shochs correspond to parts and third-order shocks are related
to bends Moreover, a degiee of signtficance is associated with shockhs in a reaction-
diffuston space This 1s a two-dimensional space in which one axis spans the ratio of

teaction to diffusion. and the other axis represents deformation time

5.1 Shocks as Determinants of Shape

In this section we mvestigate the relationship between shape and shocks. In this
regard. we are guided by the processes that create and modify shape. The basic
assumption is that “similarity™ between two shapes is directly related to the number

and simphaity of processes involved in taking one into the other. In this way, one

74
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can create a range of simple to complex shapes by taking a simple shape, such as o
citcle, and deforming it in various ways in increasing magnitudes. For example, one
might stretch and squeeze. dent and pull out. spht and merge, bend and straighten
the shape. We propose that three ty pes of shape processes capture all others, forming,
a basis for shape: see chapter 8 for a more abstract view. More specifically, we now
consider three processes: the protrusion process (indentation), a transformation that
pushes and pulls parts of shape: the part process, a process that composes two ohjects
o1 splits objects into components: and the bend process which bends or straightens
objects Our goal is to study the effect of these processes on the formation of shocks
We have found a direct cortelation hetween shapes and shocks forming the basis of
the reaction-diffusion space. We begin by considering each shape process in tuin and

its effect on shochs, Until section 5.0, we concentrate on constant motion.

5.2 First-Order Shocks

Consider the shape i figmie 5 1 which is formed by pushing a portion of a « ~dle
outwards. It would not be uncommon to describe this shape as a “circle with «
protrusion”. While other descriptions. e.g  a hall encle glued on a half deformed
1ectangle. are possible. nevertheless our perception 1s clear (unless we have heen
primed to another category previously ). Now. let us consider the effect of a constant
molion tvpe of deformation on this shape. Recall that in figures 4.5 and 130 the
constan! motion produces a single isolated otientation discontinuity fronm a negatinve
curvature minimum. \dhering closely to the termimology of classical conservation

laws. then. let us prescive the term shock and define

Definition 5.1 .1 Fuist-Oider Shoch s a descontinuity in orventation of the boundary

of a shape.
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Circle Deformation Final Shape

Formation of Singularity
(First Order)

Recovery of Deformation ‘
Figute 5 1+ ‘The shape on the right is perceived as a circle with a deformation. While

a number of other imterpretations are possible, this interpretation seems to be favored
natmally - How can this deformation be recovered?
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Lemma 2.1 shows that this is always true: Every nepative curvature minimum will
produce a single isolated first-order shock in time, provided there is no interaction
from nonlocal portions of the boundary(see the following sections). Figure 5.1 illus
trates the process by which the information flows into a propagating first-order shock.
The remaining information is the approximated shape, in tiies case a civele. On the
other hand. the lost information is the deformation.

To illustrate this situation in detail. consider the formation of a shock in an ellipse,

r

figmie 5.2, represented as,

r(0) = acos(0) 50)
y(0) = bsin(N),
where 2a.2b are the major and minor axes. Without loss of generahity assumea > b
Then.
T(0) = (—asin(0).bcos(h))

B (5.2)
N(O0) = (bcos(0),asin(0)).
following the convention that the normal points ontwards. Curvature is
—ab
k() = ; N3
@) [0® sin®(0) + b? cos2(0))¥? (3)
It can be seen ftom Lemma 2 1 that the time to shock formation is
) -1 h* 1)
shochk = —— - = — D
hock ~(0) a

All points follow their normals so that the poiut £3(#) moves into the x-axis at point

("
2

b
('(a — — cos(0).0)
a
where it ammhilates into the shock. The elapsed time for I8 to move into €7 s

bh? ,
b1 —(1- -,—2)('0#(0)

a

Suppose now « = 2 and b =1 as is the case in fignmie 52 Then. the shock first forms

at C(1.5.0) after 0.3 units of time. Afterwards, the shock propagates. annilnlating
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increasingly larger portions of the boundary, until after 2.0 units of time the whole
shape is consumed. Notice that the locus of shocks. the thick line in the figure. is
the Symmetric Axis [11]. It is interesting that the locus of of first-order shocks for
piecewise circular boundaries is a piecewise conic section.

Finally. the shape can be deformed both inwards and outwards, corresponding to
the sign of 3y. Therefore. both indentations and protrusions can be recovered since

both curvature minima and maxima give rise to shocks. To summarize then:

Result 5.1 In absence of global interaction. every indentation or protrusion (hencc-

Jorth referrad to as protrusion) produces an isolated single first-order shock.

5.3 Second-Order Shocks

A second kind of shock forms, not due to curvature build-up as in the first type of
shock. but due to a collision of houndaries. Consider the shape in figure 5.3. As
the shape (A) evolves in time due to » constan! motion deformation. portions of the
boundary collide and give rise to two cusps (B). These cusps are discontinuities. not
i tangent. but in curvature. We call these second-order shocks. Note the change of
connectivity at this instant. Bevond this instant, portions of the boundaries cioss
each other (the dashed lines). The role of entropy in this case is to remove portions

of the boundary that have reached a previously visited point (('). Formally.

Definition 5.2 When tn the process of deformation two distinct non-neighboring
boundary ponts join and not all the other nerghboring boundary points have collupsed

together, a Second-Order Shock s formed.

In the case of fignie 5.30 at the point of shock formation the top and bottom bound-

aries seem to be tangent,
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Figure 5.2: The ellipse deforms to form a shock after b2/a units of time, where a. b
are the major and minor axes. respectively. While before this time. the ellipse can
be reconstructed completely (each point maps to a point), after this time an arc
of the ellipse maps into one point (shock). As a consequence, the process 15 no
longer reversible. A reconstruction yields an arc of a circle. This basis of shape
approximation 1~ utihized in chapter 7.
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Figure H5.3: This figure illustrate the formation of the second-order shocks. In the
process of deformation, distant portions of the boundary of the shape (A) approach
each other and finally touch (B). The result is that the shape splits into two parts as
illustrated in (('). Note that two shocks have formed as a result of two points coming
together. The shocks are discontinuities in the curvature of the boundary, in contrast
to the tangent discontinuity of the first order shock.
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Theorem 5.1 When two distinet non-neighboring points of the boundary first com

together. of boundary tangents exist at the eollision point, then the tangonts must be

parallel

Proof The proof is by showing that the contiary assertion contradicts the entropy
condition Suppose the contrary, namely. that the tangents have different orentations
0, and 0, at pomt A. the first collision point at time (y, higure 5.1 Let us represent the
portions of the boundary represented by tangents 6y and 0, by By and I3, respectively.
Then. since 0, is not tangent to I3)., it crosses the shape around £3;..5,. on both sides.
By continuity of tangents. it is not difficult to see that there exists 13 on B, such that
a ball of radius ¢ aronnd B, Bg(¢). is entirely within the shape portion of By for some
¢ > 0 This cleatly violates the entropy condition since 3 could not have belonged
both to the boundary B; and have been part of the region S\. Henee, the tangents
are parallel, I

Is it necessary to assume the existence of tangents at the point of collision? Could
the boundary somehow evolve i a discontinuity forms exactly at the same time as
colliding with a distant portion of the boundary? The following theorem shows this

can not happen

Theorem 5.2 WWhen two distinet non-naghboring pornis of the boundary come lo-

gether, the tangenls must be parallel.

Proof. Consider the shape some At units of time earlier. The boundary of this
shape has only one pomt in common (tangent if smooth) A and B. with the ball of
radius Af} 44| atound P. the point of collision P, Bp(At|3y]). by assumption  Note
that A/ is perpendienlar to the present boundary at that point, and similaly for
BP. Now. balls B (Al]d]). Be(At|f]) both include . In fact, P must be the
only point thev have in common. Therefore, since the balls aie both entirely within

the shape (Huvgens” principle), they must be tangent to the present houndary This
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Fignie .10 The tangents at a second-order shock are parallel. (i) The crossing of
tangents is non-intuitive and can not happen as theorem 5.1 shows. (ii) The tangents
of the houndary must be parallel even if there closely follow a shock (A), theorem
- D.2
imphes that AP and BP are co-linear. Therefore, AB which is orthogonal to the
shape houndaries 6t units of time earlier, is also orthogonal to the shape boundary
now. 1

It is likely however that two shock points join to form another shock. e.g. a rectangle.

The following lemma follows from the previous theorem:

Lemma 5.1 When three distinct non-neighboring points of a shape collide, tmmedi-
ately past the collision, there 1s some neighborhood around the point of collision that

will contarn no pont of the shape, in some time nerghborhood past collision.

In other words, three points can not come together, unless part of the shape will
annihilate aitsell entirely, e.g. a circle collapsing to a point.
While theorem 5.2 asserts that tangents at a second-order shock are parallel.

{ curvatute (or at times some highet order derivative) need not be equal on both sides
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Figure 5.5: Other examples of second-order shocks. (i) the shock forms at the nar-
rowest region of the shape and leads to a change in the connectivity of the shape. (ii)
The secoud order shock form from points where the bar and circle come together, hut
do not lead to a change of connectivity. This is a case where there is a simultancous
annihilation of the new region with the change in connectivity. Note that other points
of the bar are not second-order shocks. but thiid order ones as we shall see in the
next section.

(by definition). Hence, a second-order shock is a discontinuity in curvature, in contiast
to the first-order shock which is a discontinuity in the tangent of the boundary of the
shape.

Other examples of second-order shocks are displayed in figure 5.5, where the
curvature at the second-order shock is different from the previous example. Note
that both in the example of figure 5.3 and (i) there is a topological change in the
connectivity of the figure. Case (ii) is a degenerate case, in that topological change in
connectivity is simultaneously accompanied with an annihilation of the new region.

We shall demonstrate that these ideas are essential in a definition of “neck”™ and its

eflect on “parts”in chapter 8.
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5.4 Third-Order Shocks

A third type of shoch point is generated when distinet boundary points are brought
together as in sceond-order shocks, but unlike the second-order shock, the neighboring
houndary points on each side have also joined with other distant boundary ponts

Formally.

Definition 5.3 When in the process of deformation two distinet non-neighboring

boundary points jow. so that naghborimg boundaries of cach pomt also collupse to-

gether, a Thitd-Order Shock s formed

As defined above. third-order shocks can not possibly change the topological con-
nectivity of the shape. Rather. they mdicate a symumetric axis, as in the case of an
ellipse. However. this axis is not composed of fitst-order shocks where portions ol
the boundary collapse into a single point. Rather. this axis is the result of a 1egron
collapsing into points. figure 5.6 Thetefore. the locus of these points mdicates o

bending of the region. rather than a protrusion of the bhoundary.

5.5 Fourth-Order Shocks

In the process of inward evolution of shape, tegions shimmk and form shocks  In time,
remining 1egions finally shrink to a pomnt and disappear due to the entropy condition
All parts of a shape must eventually annililate to a point. since the shape mav he
entirely embedded inside some aicle of radius & which willl i 1/ umts of tine

disappear. These are the fourth-order shochs and are the seeds for shape

Definition 5.4 When w the process of deformation a closed boundary collapsi~ {o

smgle pomnt. a Fourth-Order Shock s formed

Figure 5.7 depicts the process of deformation for a “dus abbell”.




CHAPTIER 5 THE REACTION-DIFFUSION SPACE 85

Third-Order Shocks

Figwie 56 The snake shape forms thitd-otder shocks when distant points of the
boundaiy come together not in isolation. but 1ather in conjunction with neighbors.
Thud-order shocks mdicate the “bending”™ of an object. The interpretation of the
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Second-Order Shocks

‘/f HHH\.

Third-Order Shocks

Fourth-Order Shocks

/ N

Time
Figure 5.7: In the deformation of a dumbbell. the bar collapses to a single hne
segment. While. the two end points are second-order shocks, the rest of the line

segment consists of third-order shocks. The single citcles then collapse to o pont

each, the forth order shocks.
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5.6 Physical Analogy

A number of physical applications are modelled by reaction-diffusion equations. e.g.
aystal growth [16]. flame propagation [70, 75]. predator-prey population dynamics
[78]. the oill-water boundary problem. and the deternoration of the shapes of stones
[25) Typrcalls. m these models. a 1eact ve term is in conflict with a diffusive term.
To illnstrate consider the case of civstal growth where the growth pattern of a so-
lidification front 1s determined by the interaction of two forces. the driving force of
the instability due to heat diffusion and the restabilizing force due to surface tension
[77] Common to these models is a 1eactive force which corresponds to our constant
motion and a diffusive force depending on suiface curvature which corresponds to our
curvature motion.

From a different perspective. Courant and Friedrichs classify events in nature to
two classes: the linear group ol phenomena. e.g. sound. hght. and electromagnetic
events and the non-lincar group. e.g  detonation of explosives. supersonic flights. and
impact of solids [19]. While the hinear group 15 smoothness preserving. the nonlinear
group can lead to singularities  Retuiming to reaction-diffusion equations, diffusion
belongs to the linear gioup while reaction 1s a nonlinear phenomeno: .

It is not surptising that for shape. as well. the forces of reaction and diffusion
captuwre complementary aspects of shape. figuie 1.8. In the next section, then. we

study the effect of adding curvature motion. ot diffusion, to the deformations.

5.7 Arbitrary Deformations

We have seen how various shape fec tures give tise to shocks under the constant motion
deformation We now consider general deformations of shape, namely when curva-
tme motion deformation (diffusion) is combined with constant motion deformation

(reaction). Figure H.8llustiates arole for diffusion. Since reaction is region-based. it
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Figure 5.8: Long sticks o1 shott ones?

takes into account the "area” features. tather than the ‘length™ aspects of the featige
Adding diffusion to the deformation captures the length properties of the features.
Another role for diffusion is the inereased connectivity between shapes. Consider
figure 5.9 where the top and bottom shapes are differentiated by the reaction process.
Diffusion, however. makes the two shape appear “close™ in the reaction-diffusion

space.

5.8 The Reaction-Diffusion Space

We ate in a position now to define the reactron-diffusion space. Recall that in order
to associate nearby shapes to each other. we have used deformations which m tun

can be captuted v a linear combination of constant molion and curvature molion
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Figure 59 Diffusion brings moie and a different sort of connectivity to shapes.
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deformations We view these two deformations to have drastically different and com
plementary propetties. Viewed in the reaction-diftusion model of phvsical svstems,
these are two forces competing to describe shape. Note that in the viscous conset
vation law 318 two parameters 235,39 that embed the extent of constant motion
and curvature motion of the general deformation equation 1.5, it appears then that
we should attempt to represent shape by deformng it for all possible combimations
(Fu..%1) and all time. However. note that a scaling of (Jy..3)) can be refllected 1 a

scaling of time ¢, Henceo the onlv relevant parameters are £ and the 1atwo 3,/ .3,

Definition 5.5 The veprosentation of shape in all possible tome and all possible 1atio-

Jo/ 3y s called the Reaction-Diffusion Space.

Note that while .3 can not be negative for stability teasons ',y can be negative o
positive corresponding to imward and outward motion. Time can only he positive
unless there i« no difftusion 9 = 0 Since diffusion is always present an the least
some minate form. and since for pure reaction (3 = 0) negative time cotresponds o
inverting the sign of 4. negative time need not be represented  As such the 1eaction
diffusion space mav be represented by the x-axis as representing all combmations of
(4o..%1) and the positive v-axis 1epresenting time and where each pomnt an this space
represents a shape  Points on the x-axis correspond to the onginal shape. and any
other point ( 4,/ 3;.1) is the onginal shape deformed by equation 318 with parameters

(39..31) for duration 4; ¢ units of tnne

5.9 Examples

In the following pages. samples of the reaction-diffusion space s displayed for several
images. Note that bhoth axes aie samples in a nonhnear loganthime fashion  Also

for the moment we have concentrated only on mward motion

"Runmmg the hear cquation hackwards i ill-conditioned [3a)
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Figure 5 10- The Reaction-Dhflusion Space 1s the representation of all possible defor-
mations of shape e x-axis 1epresents the relative proportion of 1eaction to diffusion
and the v axis s e Bote that the absolute magnitude of reaction and diffusion is
absothed v tnne /
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Chapter 6

The Computational Elements of

Shape

In the last chapter we considered shape as represented in the reaction-diffusion space
where various types of shocks form. In this chapter, we propose thiee computational
elements for shape: parts. protrusions to stand for both protrusions and mmdentations
of the boundary. and bends to stand for bending, stretching and squishing the shape.
We then connect each of these clements to the order (type) of shock that forms in

the reaction-diffusion space.

6.1 Necks as Determinants of Parts

Why should a shape be parsed mto components?  If shapes are to be effectively
recognized. it should be mote efficient to represent the shape as a composition of paits,
each of which is 1epresented in memory 1ather than an exhaustive representation of
all combinations. In this way. recogmtion can take place in the presence of occlusions
while not all of the object i1s in view. some patts of it are likely to be, each of which

can be independently 1ecogmzed  Fiuithenmore. part-based representations support

100)
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nonrigid objects with moving parts.

The essential question 1s how to break an object into parts. One approach has
been based on promitives. e g generahzed oy hinders [10. 15, 58]. These primitives
then impose pairt boundaries hetween two primitives and the notion of parts becomes
intimately tied to the selection of primitives. Hoflman and Richards [36] differentiate
hetween primdive-based and boundary-based differentiation of parts and argue against
primitine-based representations based on a versalidily aigument. primitives are lim-
ited in the tange of then applicability. e g. generahzed cy hinders are good for animal
limbs. bhut not as good for faces. Rather. they propose a boundary-based represen-
tation of parts based on the tiansversality principle. “When two arbitrarily shaped
sutfaces are made to interpenetiate. they (almost ) always meet in a contour of concave
discontimmty of their tangent planes.™ This 1n tuin leads to the minima rule “divide
a sutface mto parts at loar of negative mmma of each principal curvature along its
assoCiated family of cunvature lines™. Another houndaiy-based partitioning scheme
emphasizes iflection pomnts [H] arguing that curvature extieria are not mvariant to
afline transformation Motivated by ideas fiom mformation theory. Attneave showed
that cunvature extrema are pomts of high information  As such. contours replaced
by polygons with veitices at curvatuie extrema appronimate the shape well as in the
sleeping ot [2]. Lowe proposed that the same pnnciple holds for inflection points.
However, while this s vahd for complicated shapes. 1t 1s not true for simple ones.
eg a peanut To explamn this, note that m complicated shapes inflection points are
close to cunvature extiema  Therefore, mflection points approximate a shape since
curvature extrema do. W hen inflection points are not close to curvature extrema,
mflection points do not approximate a shape. Fuirthermore, Levton showed that cui-
vatute extienma are related to symmetry [53. 51]  Biedeiman showed that midsegment
contoutt deletion 1~ less destrictive to our recognition abilities than corner deletions

of the contom [9).
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In the previous chapters we have argued for a simultancous iepresentation of shape
based on both the boundary and the region of the shape. A putely boundai -based
definition of parts renders the regional information unnecessary For example conside
shapes m figure 6.1, The shape on the left s seen to have four (o1 sometines five)
parts. while the shape on the nght is seen to have thiee parts. A purely boundary-
based approach is incapable of differentiating between these two shapes  Rather, at s
also essential to include the paiting of cunvature extrema through distance Figure 632
depicts a snahe’s body which will be partitioned mto many parts by the boundarny-
based schemes.  However. taking region effects into account. by paiting curvature
extrema thiongh the region allows the snake to be percenved as a *hent stich”™

One would like to recover from a shape the components from which it was com-
posed. However. thete are a large number of wavs a shape can be broken imto seg-
ments. Qur motivation for paits comes once again {iom the world of objedts Consider
the objects m figure 6.3 and ask whether objects can be broken mto components af
obvious places  These shapes lead us to define a Neckof a shape as the studctly shortest
line segment whose two distinct end pomnts are on the boundary of the shape

To motnate this notion of necks. observe that when two objects are connected,
then interconnection is often playving the role of attaching the two objects only. and
as such. need not require a great deal of “material™ If this is not the case. then often
there is no clue from shape to determine whether the object is indeed composed of two
(sub)objects For example. this narrowing of the shape is true of the neck connecting,
the head and the body of animals. the stem the connects the top and the bottom
of a wine glass. the hottle nech. the stem that connects a leal to a tice, and <o on.
This 1s also seen m the interconnection between moving parts, as it allows space for
the motion of either part. The proposed nartowing at the pomt of attachiment 15 also
significant for manipulation purposes. nechs offer a hold-site since they are stable o

slight motion to aither side will meet greater width, e.g a dog likely holds a hone at
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How Many Parts?

Hoffman-Richards

Gur Approach
Based on |
Conservation Lawvs

O%O o( Yo

4

Recognition of Parts

Figwie 6 1.\ pure boundary-based approach obviates the 1ole of 1egion. The two
shape have preasely the same number of curvature extrema of the same type in the
nght order Yet the shape on the left 1s seen to have four (sometimes five) parts, while
the shape on the night as seen to have thiee paits The difference s the effect of the
region distance between the curvature extrema is varied as one shape 1s stret ched into
another W hile the curvature extrema of the houndary do indeed play an essential
role m deternmumation of parts, the role of region in pairing these extrema must be
tahen mto account, see the defimtion of a “neck”™.
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Hov Many Parts Does a Snake Have?

W NN

Hoffman-Richards
Recognition of Parts

Our Rpproach
Reaction-Diffusion

Space

9 Parts

2 Parts

Figuie 6.2. This figuie illustrates the contiast hetween a boundary -hased scheme and

one that takes 1egional information iito account as well

Viewed purely along the

boundarv the indentations and protrusions are seens as parts However, viewed along
A\ ) 13

the region. the body 15 seen to be an undulating stick
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Figure 6.3. Can vou casilv partition these shape into components? Does this partition
correspond to a "neck”™!
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the center not at the sides  Also, if our goal is to break an object into two, the nedhs
often offer least resistance lHence, let us summarize our assumptions as: When two
shapes are made to interpenetrate, often the point of attachment is not wider than
the width of the object on either side

Can necks be detetminants of parts? Observe that a neck is a region-based con
cept. at least as it is normally described. However. we have heen advocating the
integration of boundarv-based and region-based information. To apply this 1dea to
necks. note that the hoomerang-like shape of figure 6.4 has a neck. althougl the
narrowing is often not seen as the interconnection between two parts  As a second
example. consider the pipe-like shape where again most often the shape 1s seen as a
single object. This 1s illustrated more systematically in figuie 6.5 where shape (i) is
progressively deformed Note that, in this sequence there is increasing displacement
between the nech and the curvature extrema. This is in correspondence with our per-
ception: while object (1) is most often seen as having two parts. object (vi) 15 most
often judged to be a single object that is deformed (this question was put imformally
to a number of McGill graduate students).

Therefore. problems illustrated with necks as sole determinants of parts are two-
fold: one associated with the boometang and the second with the pipe-like figmie
Both can be explained by observing the curvature disparity at the two ends of the
neck. In the case of the boomerang. the two boundaries aie not bending very dif-
ferently. Sinmlaitly. in the case of the pipe-like fignie, the curvature of the boundary
at the two ends of the nedk is not «!l that different  Let us, then, propose a notion
of significance for necks as the boundary support (given the same nech width)  The
significance of a nech o~ estableshed through the desparty of bending an the conlour al
its two ends, namely the absolute value of the sum of curvatures.

What Kind of a shape has a significant neck” When the two contour segments both

bend in the same cirection. as m the boomerang. one of the curvatures s negative
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AT

Figure 6. 1: Neck. the narrowest region of the shape are often formed when two objects
interpenetrate However, it does not follow that necks lead to parts as the above
counterexamples depict. What is missing is the integration of boundary support for

parts.
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U] m
(i) (v)
v) (v)
Strait
Curvature Extrema °

Figure 6.5: This figurellustrates six shape which are deforniations of the shape m (i).
In (i) the neck is in agteement with the cmvature extiema  However, the neck aned
the curvature extiema are progressively moie out of phase as the shape 1s deformed.
Note that while in (1) the shape is seen as having two parts the shape i (vi) 1s more
often seen to be a sigle object that 15 hent. It appears that for “parts™ one needs
agreement between the boundary support substantial difference m bending (as 1s the
case with negatine curvature extrema) and the regicnal support (nechs)
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and the other positive. As such the sum is neaily zero. Similarly, in the case of the
pipelihe figure, the two curvatures are slight, leading to a small sum. In contrast,
when the contour segments at the two end points move away from each other, then
cunvatutes aire both of the samme sign, leading to a large magmtude sum  In fact,
when the two curve segments curve away from each other. this sum 1s largest when
the two curvatuies are at their extreme. In other words. it appears the stiongest necks
are produced when the end points of a neck are negative curvature extrema. This
is i agreement with the transversality principle set forth by Hoffinan and Richards
[36]. which states when two shapes ate made to interpenetrate, at the point of their
intersection. they will form negative curvature minima (or singularities). Recall.
however. that not all negative curvature extrema give rise to parts. Shapes in figure
6.3 all have significant necks since the necks are doubly concave with extrema close
to the neck.

To summarize. necks are determinants of shape parts. Their significance is estab-
lished by the disparity in curvature across the neck. Therefore, the strongest necks
aic those with small widths and negative curvature minima as end points. This rep-
resents an integration of a region-concept, the neck. with a boundaiy-concept, its

significance .\ neck 1s representable in the language of shocks:
Theorem 6.1 Fach neck yields a second order shock.

Proof Let the width of the neck be A and let the shape evolve for time A/2. At
this time. the two ends of the neck must come together. Since the shape is wider on
at least one sude. not all pomts of the boundary will have vanished on this side. By
definition. then, this s a second-ordet shock. (]

To illustrate how second order shocks gives rise to necks and therefore parts,
consider the evolution m hgute 6 6 of a set of overlapping discs. Each image is a

point i the reaction-chiffusion space which is reconstructed to compate to the original
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shape (see chapter 7). figure 6.7 displays its hierarchy of parts. Similarly, figure 6.8
depicts the evolution of the doll forward in time whose representation in the reaction-
diffusion space ?7 is reconstructed backwards in time (see chapter 7). The hierarchy
of parts may be seen in figure 6.9. where the significance of a part s in its survival

duration: the parts that last are the significant ones

6.2 PROTRUSIONS as Boundary Deformations

One of the way s of modifving a shape is to deform the boundary of the shape. For ex-
ample. consider the circle and its protrusion in figure 5.1. Recall fiom chapter 5 that
a single deformation of a boundary creates a curvatute extiemun While protiusions
give rise to positive curvature maxima, indentations give rise to negatine curvature
minima. We generically refer to these boundary deformations as protrusions,

Both forms of protiusion give rise to first-order shocks according to lemma 2.1,
depending on the sign of ,3y. Therefore. each type of protrusion (protrusion or inden-
tation) appears only to the left o1 to the right of the time axis Dunng the comrse
of evolution in the eaction-diffusion space. small shocks disappear in larger ones. In
contrast to Gaussian smoothing for which a smal! spike in the shape senously aflects
the global properties ol the shape, the formation of fitst order shocks is local to a
segment of the curve. As such. a hierarchy of “bumps’ can be bt The introduction
of furthe: bumps at a small scale only affects that level: laiger protiusions are not
affected at all  The scale of the bump then is dependent on how loug 1t survives.
We will see in chapter 7 that first-order shocks represent the boundary as deviations
fiom a circular arc  Fially, the protrusion is a boundary concept and is local to the

shape
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SRSINSISS;

Figure 6.6: This figuie depicts the evolution of a shape made of overlapping discs
in the reaction-diffusion. having been reconstructed back in time. Note the shape
decomposed into parts in a hierarchical fashion.
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Part 1

Part 3 Part 4

Figure 6.7: A hieraichy of significance for parts. !
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Figure 6.8: This figure depicts the evolution of a doll in time. Each step is a sample in
the reaction-ditfusion space that is reconstructed backwards in time (entropy space-
space, see chapter 7. During the evolution the doll decomposes into paits. Those
parts that appear later in time aie mote significant. figure 6.9.
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Figuie 6.9: The parts of a doll can be arranged in a himaichy of significance based
on their survival in time. Note that the “hands™ appear fust and disappear quickly,
while the “torso™ appears last.
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Figure 6.10° Small bumps will disappear in time of the formation of the larger shock.
What s significant here is that the number of small bumps does not affect the time
of formation of the larger shock. In. contrast consider Gaussian smoothing of this
boundary. See also smoothing of shape in chapter 7.
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Figure 6.11: A shape may be modified by bending it. This is similar to the snake
which may be considered as a bent 10d.

6.3 BENDS as Regional Deformations

Another way of modifving the shape of an object is to bend the shape along its axis.
Consider the rectangle of figure 6.11 which is bent to form an arc  Note that this
single-pait shape with no protrusions leads to third otder shocks. The axis formed by
the locus of thitd-order shocks represents the amount of bending of the shape Other
operations which affect the locus of third order shocks are stretehig and squashing
of the shape. A bend is significant when the amount of bending 1s bigh. A bend is
closely related to the symmetiy of a shape, since the locus of third-order shocks is
part of the symmetric axis transform. Note that a bend is a region concept and that

is global.
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6.4 A Hierarchy of Significance

In order to differentiate between smaller and larger features of a shape, it becomes
necessary to have a notion of significance associated with these features. A neck or
a parl is significant when the width of the neck is small and the curvature disparity
across the nech s large. In the reaction-diffusion space, a neck will lead to a topo-
logical split along one of the pure reaction axes. Time determines the significance of
cach part. mn that a part that lasts longer 1s more significant. Diffusion. on the other
hand, pulls out a neck towards bluining the shape into a circle. As such, with more
diffusion. the neck forms later 1in time. With enough diffusion the neck does not form
at all This s a measure of strength for the neck and for whether the shape contains
two parts.

Protrusions. on the other hand. smooth away with diffusion. The effect of time on
protrusions is to metrge smaller ones into laiger ones. Again. time becomes a measure
of significance for protrusions: those that form last are the most significant ones.

Bends. are global concepts and their sigmificance is established by the curvature

in the locus of thitd order shocks.

6.5 Shocks and Shape

A representation of shape should be 1 a language that is natural for it, and we have
argued that the language of parts. piotrusions and bends is just such a candidate.
Since shocks are mtimately connected to these elements. a database of the shocks of
the shape 1s a tepresentation for shape m the following way. Fourth order shocks at
some time and location assert that a seed should be placed at that location and time.
That seed then grows protiusions accordimg to its first-order shocks. Second-oider
shocks suggest that two adjacent parts be connected. and this shock subsequently

grows to a nech. Pinally, a group of third oider shocks represent the bending of
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Parts N (> Q Second Order Shock

Protrusions . O First Order Shocks

Bends A - Third Order Shocks

Figure 6.12: This figure illustrates the relationship between the computational ele-
ments of shape and shocks.

some element. which is made by growing them backwards in time, figure 6.12. Many
questions remain to be answered: how shocks evolve in time? What types of shochs
can merge and what do they lead to? These ate cuirently under examination and
several interesting results have emerged that we shall be reporting on separately from

this thesis.
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Chapter 7

The Entropy Scale Space for
Shape

Events in the world occur at different scales. and as such, qualitative understanding
of a sensory signal, such as an image. should reflect these different scales. To cite
the classical example, fingers exhibit structure at a finer scale than hands, hands
are finet than luabs, and so on. Thus there 1s a connection between scale and size,
and, for many applications in computer vision, scale size became synonymous with
operator size Big operators select structure at large scales, and small operators select
structure at fine scales: one need only recall the tree image in [57] to recall the force
of this arguunent: see also (72, 57, 43, 95] as well as the psychophysical suppoit they
were engaging [16. 89].

But confounding these assessmerts of structure is noise, which suggests a different
inteipretation ol opetator size: big operators smooth large fractions of tl.o image.
while small operators smooth only tiny fiactions. This confeunding is clear for the
“hand™ above. i 1espect of which the “fingers” are just noise. Witkin [91] put these
two mterpretations together by suggesting a continuum of operators in a kind of scale

space Stinctine was captuted by signal extiema. and these were computed not over

119
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a few neighborhood sizes. but over a continuum of neighborhoods, established by
convolution against Gaussians of increasing extents. The behaviour of extienma as the
signal is smoothed out yields the qualitative description of the signal  In addition.
a hidden bonus emerged in the form of a significance hietarchy on the extiema, in
the sense that the extrema that suivive laiger smoothing extents are considered more
signtficant. This is analogous to the fingers being smoothed out hefore the hand. The
space of the signal and its continuously smoothed versions 1s the scale space for the

signal.

7.1 Gaussian Smoothing Annihilates Structure

The question thus arises of how to “smooth™ the signal so that onlv mcreasingly
“significant”™ features survive further smoothing. Koendetinh showed that, given as-
sumptions ol causality, homogeneity. and sotropy. the diffusion equation s the only
sensible way of embedding a signal in a family of simpler signals with the requitement
that structuie is not created [42. 44]. From a different perspective Babaud et.al. m-
dependently showed that the Gaussian is the unique smoothing keinel that does not
create structure in that, with increased smoothing. no new zeto-crossings are (reated
[4]. Yuille and Poggio extended this result to two dimensions [93] and Hummel and
Mecnoit showed that zero-crossings, when supplemented with gracdient data along the
zero-crossing houndaries. aie sufficient to reconstruct the original signal.

While these theorems and the popularity of Gaussian scale-spaces attest to ats
functionality in certain domains. it does not always provide “semanticallv meaningful™
descriptions of mmages [66] Rather, the above notions of structure are often not the
natural ones. and Ganssian scale spaces may lead to more problems than they solve
For example. m an edge-detection Gaussian scale-space. the true location of edges

is not available Instead. the tiue location 1s estimated by tracking edges across the
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scale space.  Furthermore. the edges, which are very high in information content,
become blutred out in the Gaussian representation. This point is illustrated even
more powet fully 1 the domam of shape, and exemplified by the depiction of “don
Quixote™ in fignie 7 1. lIdeally a scale-space representation of this profile should
relate the structure of “the man on the horse with a lance ” to that of ‘the man on
the hoise™ in much the same way as a qualitative desctiption of a car with a radio
antenna ought to be very closely 1elated to the representation of the same car without
the antenna. fignie 8§ 1. Unfortunately. in the Gaussian scale-space representation of
the shape. the lance (o1 the antenna) assumes a role much more significant than it
has in the oniginal image  In fact. the longer the lance is, the more it dominates and

distorts the remamder of the shape 1.

7.2 The Three Components of a Scale-Space

To review current scale-space structures in one common language. consider a scale-

space as a structute composed of three elements:
o A signal. e.g. an mtensity image;

e A feature that coniesponds to some interesting structure, e.g. a curvature ex-

tremum. or a point of inflection: and,

e A process that anmhilates information in a way that gradually removes low
significance stiucture without affecting higher significance structure. While the

process leaves high-order structure intact, it should not create new stiucture,

Figuie 7.2 reviews and summaiizes the several common scale-spaces in the above
frameworh For example. Asada and Brady partition a curve into certain curvature-

based multiscale primitines {I]  Their approach is to detect significant changes in

fsee [1] for an tllustration of the “dumbbell” problem
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Boundary Blur Region 8lur Entropy Scale-Space
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Fignre 7.1: A depiction of don Quioxte. The left column illustrates three instances of
the process of blurting the boundary coordinates: the middle column displays effects
of blurring the charactenstic function of the interior of the shape On the nght. thiee
steps along one axis ol the entropy scale-space 1s shown Note. that while the lance as
well as other featnies of the shape are distiibuted thronghout the shape by Gaussian
smoothing. this does not happeu m the entropy scale-space. Here. small features like
the lance aie temoved without affecting the larger structures
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Signal Feature Process
Zero-crossings Gaussian
Witkin Int j t j
nrensTty .m . Smoothing
Derivatives
NMokhtarian Boundary Inflection Gaussian
& .
Nackworth Coordinates Points Smoothing
Richards Boundary Curvature Gaussian
et. al. Orientation Extrema Smoothing
Extrema
Asada Boundary 2 Gaussian
g &d- Curvature Inflection Smoothing
raay Points
Interior Gaussian
. Inflection "
Chracteristic Smoothing

Koenderink

; Points
Function + Thesholding
Gaussian
Pizer Interior .
. . . . Smoothing
et. al Chracteristic Synmnmetric Axis .
. . Function + Normalized
i Thesholding
Figure 7.2° Tlns hgure 1eviews some of the proposed scale spaces. Note that the use

of Gaussian smoothing is prominent.
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cur' ature by observing its behaviour as 1t is convolved with a Gaussian. Inour terms,
the signalis curvature as a function of arc-length, the features are curvature extiema,
and the process for removal of information is Gaussian smoothing. As another exam-
ple. Mokhtarian and Mackworth abstiact the general structure of boundanes found
in Landsat images by convolving the coordinates of the curve with a Gaussian [60].
The zero-crossings of curvature are then located and studied over a range of scales
[24]. This representation of zeros of curvature over scale is suitable to register the
image to a map. In this case. the signal conesponds to the coordinates of the curve,
the features to the zetos of curvature. and the process of annihilating wformation is
again Gaussian smoothing. To illustrate further. consider the scale-space proposed
for the Symmetric Axis Transform (SAT) [68]. where a hierarchy of significance is
placed on the symmetiic axis by blurring the 1mage  In this case, the signal 1s the
two-dimensional intensity image, the features are the symmetnic axis, and the pro-
cess of annihilating information is two-dimensional Gaussian smoothing Yet another
example is the work of Witkin et. al.. who considered the general problem of signal
matching. Here. the problem is formulated as minimizing an energy functional by
tracking the global minima from coarse scale to fine scale [90]. In this case, the signal
is the general signal under consideration, the featurc is the set of energy minima, and
the processis again Gaussian smoothing.

The various properties of the Gaussian and its popularity show that it plays an
important role i building a notion of scale  However, Gaussian smoothing amal-
gamates information regarding small scale structuie with information of larger scale
structure linearly In fact. under certain smoothness assumptions, one can show that
Gaussian bl does not a.nihilate information m a signal. but merely redistributes
it {38]' Rather. the resulting simplicity of a bluried signal is due to quantization

Nevertheless. Gaussian blur remains an important component of a scale-space.
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7.3 Nonlinear Annihilation of Structure

Thus, for Gaussian scale spaces. the “cure™ almost seems worse than the “problem”;
once the lance has been blurred together with don Quixote, it is almost impossible to
remove i, Now. the situation is starting to look rather bleak, since the numqueness
theorems would seem to exclude other smoothing options for building scale-spaces.
However, these theorems in fact make strong smoothness assumptions and do not
hold when the scale space is extended to include non-differentiable or even non-
contmuous signals. Perona and Malik relax the homogeneity assumption and suggest
that the candidate paradigin for generating a multiscale description should satisfy
causality. rmmediate localization, and precewise smoothing [66]. As before. causality
requites that spunous detail should not be generated while passing from coaise to fine;
immediate locahzation requites sharp scale-invariant placement of boundanes: and
piecewise smoothing encoutages intraregion over interregion smoothing. To alleviate
the latter problem. they suggest that diffusion be location dependent, or anisotropic.
for edge-detection

Others have argued that much stronger nonlinearities are necessary. For example,
moiphological operations are another, very different approach to extracting structure,
and several 1esearchers have suggested morphological scale spaces: [52. 17. 56]

There is an immense conceptual transition from Gaussian smoothing to mathemat-
ical motphology. somehow. to be generally applicable, scale spaces must be extended
to include these extremes  we now propose a formal mathematical framework for

accomplishing this extension.

7.4 Entropy Scale Space

To review, a scale-space should capture essential structure while progressively elimi-

nating small featutes  Although a hinear smoothing method such as Gaussian blurring
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captures structure in a meaningful way for certain domains, it has shortcomings in
others [92]. We suggest a scale space based on our two different basis motions. a
constant motion along the normal and a curvature motion along the normal. A scale
space arises in the sense that these processes annihilate information in two completely
different and complementary ways.

C'urvature motion is equivalent to the diffusion equation. o1 equivalently blurring
of the boundary coordinates using Gaussian smoothing: see theorem 7.1. Based on
this connection. therefore, curvature motion enjoys properties of Gaussian smoot hing,.
in patticular the property that structure can only be annilnlated  Recall that recent
results state that all embedded curves converge to a circle before they vamish [28,
35. 87). Note that this process is linear. global. and spreads information with mfinite

speed.

Theorem 7.1 Consider the family of curves C(s.t)=(a(s. 1), y(s. 1)) saltsfying

—

Le —K(s )N
= Cu(*)-

(7.1)

=
”
<
{

where Co(s) = (ro(s). yo(s) is the wnttial curve. s 15 some arbitvary parameter along
the curve, t s teme, K 1s curvature, and N s the normal. Then the coordimales satisfy

the diffusion equation

. 2 ‘ -
%f = E')S;‘ J'( N. 0) = -"U(-") (7 ‘))
. o2 ~ ‘ B
Bo=Z y(5.0) = g(s),

wherc s s the arc-length parameter along the curve,

Proof- Recall from section 2.1 that,

JoT
= |—1. 73
K Iml (73)
- T
N o = I—TI (74)
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Therefore )
- aT .
KN = —.(i' ( 45)
Since.
- ac
T == —, 7.6
PF (7.6)
we conclude that
- 0*C o
K7=—a‘;2. (7.7)
Leading to
ac = 8¢
at - as? (7 S)

In terms of coordinates this is simply the diffusion (heat) equation.

y a2 - -
£ = 3—5 r(8.0) = 2o(8) .
oy " (7.9)

= o=53 y(8.0) = yol3).

It s well-known that the kernel for this equation is the Gaussian [88]. Hence, one
may generate coordmates (. y) at time ¢ by simply convolving the initial coordinates
with a Gausstan whose extent increases with time £, ]

C'onstant motion. on the other hand, simplifies shape nonlinearly and more like
mathematical moiphology. 1t 1s based on the concepts of shocks and entropy and in
contrast to previous one. is nonlinear, local, and spreads information with finite speed.
The following theorem asserts that as scale incieases the shape becomes simpler in
the sense that the total absolute curvature is nonincieasing [11]. More specifically,
no new zero-crossings of curvature may be created. therefore as before. structure can

only be annihilated as the followimg theorem shows.

Theorem 7.2 Let C(s.t) be a solulion of
ac
ot

C(s.0) = Co(s).
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t €[0.t'). Suppose that 3, <0 and k5(3.1) #0 for all s and 0 <t < t'. Then,

R(t) < R(0).

This theorem was proved in section 2.4.2.

To illustrate why we view shocks as “black holes of information™, let us consides
the system 4.4 and the initial condition 4.5. Up to the time of shock formation the
process is reversible in that the signal may be recovered by tracing the characteristics
back in time. As such the information content of the signal 1emains the same up to
the formation of a shock. However. at any point past shock formation, the process
is irreversible [19]. In the context of gas dynammcs, this irreversibulity and the fact
that entropy must increase across a shock (and therefore loss of information) has long
been recognized [78, 50] Any attempt 10 tecover the mitial signal will be successful
only for those characteristics that can be traced back m time; that is. any point
other than the shock itself. However. the shock point maps to a region of the imtial
signal. namely its doman of de pendenee [29]. Therefore, information contamed in this
section of the signal is irreversibly lost, sec figures 4 1, 4 2. It is with this view that we
have termied a shock a “black hole™ of information with increasing time, inaeasmpgly
larger sections of the signal map onto the shock, irrecoverably lost  Other sections
of the signal, however. can be recovered fully and exactly. This is, therefore, a local
process whose domain increases with time and eventually becomes global

An interesting question 1s what happens to the lost section of the signal upon
recovery. The nonshock points can be retrieved by running the same process back-
wards in time ¢. However. the process of runmng a shock backwards in time leads to
a rarefaction wave. The rarefaction wave generates a continuous solution connecting

the two dispatate ends. For the case of shape. this will be equivalent to arc of circle

?For the diffusive-type conservation laws (e g heat equation) this process 1s all-conditioned
however for the wave-type (e g our case) this process has proven extremely robust
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approximadon. figures 4.5 and 4.6.

Shocks interact by merging to form more significant shocks. The significance of a
shock is in the contour or the parts that it maps to. The longer a shock survives, the
more its back projection extends. This is precisely the hierarchy that is required for

a scale-space ‘Therelore,

Definition 7.1 Tl Euntiopy Scale Space s generated from the reaction-diffusion
space an the followmg way. each point of the entropy scale-space is the result of
reconstructing the shape at the corresponding point by running the process backward

m Lae with the same reaction and zero diffusion.

Roughly speaking. we 1econstruct the reaction part to undo the shock into a
circular arc. In fact. this is a process of replacing local portions of shape by circular

arcs.

7.5 Examples

We illustrate the entiopy scale space for don Quixote of figure 7.1, and the four
pears presented by Richards et. al. The pears sequence contains four pears and is
interesting becaise the shapes contain various combinations of texture and noise.

To illustiate the fignies, recall that the entropy scale space is a two dimensional
space. One axis 1eflects relative amounts of reaction to diffusion. the other is time. We
use logarithmic samplimg of both axes [42] There are no parameters so that tuning is
not necessary The diffusion extreme is the equivalent of Gaussian bluriing and gives
expected 1esults. The 1eaction extreme 1emoves structure locally without affecting
the global shape. It s equivalent to the morphological operation of opening/closure
with a ball as the stinctuning element.

In the first hguieo one shee through the entropy scale-space representation for

each of the fomr pears s <hown together to demonstrate the potential for building
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Figure 7.3: Samples from a shee through the entropy scale-space are displaved for
four pears. Note that the similarity that emerges with increased smoothimg provides

a basis for building a sunilatity measure hetween shapes.
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4

Boundary Blur Region Blur Entropy Scale-Space

SRS
50
0 0 ¢

Figure 7.4: Samples of the “electric pear™ are taken and displayed in columns. The left
column corresponds to the smoothing the boundary coordinates, the middle column
to smoothing the region characteristic function. Finally, the night column displays
samples from one shee of the entropy scale-space.
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a measure of similarity and a topology on shape. This is then contrasted with the
results based on boundary-based and region-based Gaussian blur. Finally, the portion
of the entropy scale-space is shown for several images. These images show that the
entropy scale-space is a promising framework within which to build a topology for

shape.
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Chapter 8

The Shape Triangle

In the previous chapter, parts, protrusions, and bends weie proposed as computational
elements of shape. Paits are components of composition, protrusions are boundary
deformations, and bends are regron dcformations. We now assign a process to com-
pute each of these elements and focus on effects at a single scale. Each process defines
a corner in the shape trnangle. In this chapter. we explote the relationship and the
interaction between these shape processes. We propose that these processes in coop-
cration and in competition desciibe the shape; that is thev locate the shape in the

shape triangle.

8.1 The Many Faces of Shape

The essence of shape is in its relationship to its many similar neighboring shapes.
In other words. one might describe a shape as a similar shape with some alteration.
For example. "a car with its antenna raised” is very. intimately connected to “a
car with its antenna down™ figure 8.1. A description of shape ought to capture
this relationship. or otherwise. as the antenna is raised the desciiption could become

dhastically different. Furthermore. the interpretation of this description 1s not unique.

145
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Figure 8.1: Our perception of a car does not change drastically as its antenna s
raised. Similarly, the change in representation of objects when a smiall feature is
added should be slight.

Figure 8.2: The clbow may be paititioned in many ways [36]. This ambiguity is not
necessarily undesirable: connectivity of shape is the essence of 1t
in that there are often many ways of interpreting a shape, figme 820 Tn this chapter,
we explore the multiple interpietations of shapes, and show that. contimy to popular
opinion, this is not an undesirable effect. In fact. to force a shape mto o discrete
interpretation is to ignore the relationships between shapes i eflect to ignore the
natural topology of shape

To illustrate this multiple interpretation of shape. we have done a mimber of guahi-
tative psychophysical expermments. Fach experiment involves a sequence tepresenting
gradual alteration of one shape to another  The goal 1s to conelate the change in

percept with the geometiical aspects of shape.
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BEBEIIl!

Figure 8.3. The sequence is generated by altering the top shape by expanding a
pottion of each of its lateral boundaries. As such, the number. order. and the spacing
of non-lateral extrema remains intact. Nevertheless. there is a change in percept from
the top shape as having two paits to the bottom shape as a rectangle with a deformed
boundary.
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As the first example of this multiple interpietation of shape, consider tigme 8.3
where the top shape is progressively changed so that. during this sequence, the top and
bottom portions of the boundary remain intact. while the lateral boundary segments
are stietched. Observe how the percept of the shapes comprising the sequence varies:
While the shape on the top (bowtie) is often perceived as having two patts, the shape
on the bottom (trainwheel) is most often seen as a single object. In other words, the
shape on top is seen to be an object where two paits came together and were attached.
In contiast, the object on the bottom is perceived as a rectangle whose boundary was
modified. For shapes in between both explanations aie plausible to varying degrees:
they can either be seen as a glued pair or as a deformed rectangle. Schemes which
are purely based on the location and ordering of the curvature extiema would tend
to miss this change of percept.

As a second example, consider shapes in figure 8.1 wheire the shape sequence is
constructed as above. Here, the shape on top is 1ecogmzed as a snahe, o1 perthaps a
worm. while the shape on the bottom can be recognized as a lasagna noodle. The
shape of the snake may be interpreted as a bending of its body, sometimes straight and
other times bent. In contrast, the lasagna-noodle shape may best be explained as the
result of deforming the boundary of some rectangle by cutting along 1ts edges. Note
that it is difficult to see the hottom shape as a bent 1od, or the top shape as a rectangle
with modified boundary. Again. the change 1epresents increased spacing hetween two
pairs of curvature features (extrema or inflection points) without changing either the
number. order, or the spacing of other curvature features. A houndary-based scheme
without regional grouping of curvature extrema again would likely miss this change
in percept.

As a third example, consider the sequence of shapes m fignie 8.5 which s gen-
erated by displacing the bottom portion of the bonndary. In this case, the bottom

portion is displaced by sliding it under the top portion. Again. the change s hetween
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T

Figure 8.4: This sequence is generated by stretching the lateral boundary which does
not affect the number, order. and spacing of other boundary features. The change in
petcept is one of a bent stick (top) to a rectangle with a deformed boundary (bottom).
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two boundary points only and all other points are not affected. Observe that the top
shape (sausage) is most frequently judged to have six parts while the bottom shape
(auger) is scen to be a single object. The bottom shape is instead seen as a hent
stick, while this is unlikely to be the case for the top shape. This change of percept
can be explained as a grouping of boundary features through the 1egion: in the first
case two negative curvature extrema group to form a neck In contrast, in the second
case positive curvature maxima and negative curvature minuna group to claim the
shape as a bending of a rectangle.

As another example, consider the modification of shapes in fignre 8.6 where, as
before, portions of the boundary are stretched. Note that while the shape on the top
(cross) is seen to have forn paits (sometimes five pairts were 1eported), the shape on
the bottom is judged as having three patts (1olling pin)  The intermediate shapes
are sometimes seen as having thiee paits and other times as four or five. In othe
words. while in the extremes the perception 1s clear, for shapes in between multiple

interpretations are possible.

8.2 The Shape Triangle

The multiple perceptions and interpretations of shape are not undesirable. In fact, we
argue that without the power to support multiple and sunultaneous interpretations
of shape. our perceptions would violently change as shapes were modified, e.g. con
sider any sequence of the previous section Since we live in a changing world where
movement of parts. growth. occlusion. ete i~ not uncommon. 1epresentations that
support multiple interpretations are necessany.

Descriptions of shape aie indeed 1elated to othet shapes In chapter 6 we pro
posed thiee compntational elements for shape. partstor composition. profrusions for

boundary deformations. and bends for region deformac on Ingeneral a shape may he
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VAAAAA

VAAAAA

Figute 8 5: This seque.ice s generated by slifting the bottom portion of the boundary
under the top portion. The change percept changes fiom an objert with six parts to
a that of a bent stich Agamn. this change of percept can not be explained by purely

boundary -based methods
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Figme 86
The percept changes from the “non aos™ to that of a “1olling pin™ when the top
shape is transformed to the bottom one  the sequence 1s generated by stietchimg the
top and portions of the boundary.
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transformed in any combination of these thiee shape processes. These processes form
a basis for arhitiary transformations and we conceptually assign each to the corner
of a shape triangle. figme 8.7. A shape. then.is placed somewhere in the triangle
between other shapes in the corners. This is onr 1epresentation for a simple shape:
mote comphicated shapes involve a more complex sequence of these three processes

with multiple layers of scale.

8.3 The Shape Triangle

The shape triangle 1epresents three dimensions of shape: compositions. boundary
deformations. and region deformations.

To illustiate the idea of the shape triangle. consider the sequence in figmie 8.3 and
the analysis of the (hbowtie) versus the (trainwheel) 1n the shape triangle While the
bowtie has a stiong part component. the boundary deformation process is giving a
weah interpretation. figure 8 8. In contiast. the boundary process gives a strong in-
terpretation of the tramwheel, the pait gives a weak nterpretation of the tramwheel.
figmie 8 9 How can these interpretations be denved from the reaction-diffusion space”
For the bowtie, the reaction process gives patts due to a topological split and forma-
tion of a second order shock  Increasig the diffusion ratio only delays the time of
shock (second order) formation. It s only for large diffusion values that this shock
does not form. The trammwheel has a different 1epresentation in the reaction-diffusion
space, sinee second order shocks do not form. o1 at best form for only very small
diffusion values

Let us now consider the sequence in igute 8 4 where the two extremes., the snahe
and the noodle have different representations in the shape triangle. For the snake.
the bend process claims a strong interpretation. winle the boundary process gives

a weah one. figme 8 10 In contiast. for the noudle, the bend process gives a weak
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Figute 8 7+ 'The Shape Tuangle is tiiangular in shape.
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art

Interpretation 1: Strong Interpretation 3:
NIL

Interpretation 2:
Weak

Figure 8.8: The bowtie shape has a strong part interpretation, but a weak boundary
interpretation.
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“ Interpretation 1: Weak Imefpl{?l‘ﬁﬁon 3:

Figure 8.9: The trainwheel shape has a weah part interpretation. but a stiong hound
ary interpretation.
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interpretation. while the boundary process asserts a strong inteipretation, figure 8.11.
To relate this to shocks. for the snake third order shocks form quickly. while for the
noodle first order shocks form.

Fially, to depict the competition along the third axis of paits-bends. consider
the sequence in figure 8.5 The sansage has a strong pait iterpietation. while the
snake has a stiong bend interpretation. To summarize. figuie 8.12 depicts the tension

between the thiee processes of shape. At this point, we present the following proposal.

Proposal 8.1 (shape triangle) Shape s explained as the interaction of three shape
processes. Que shape process (parts) in biased to “sec™ parls and composition. It
very oplinustically scarches for possibilities of compositions and reports its parts. The
sccond shape process (protrusions) concentrates on the boundary and 1s entirely biased
to see shapes as simpler shaypes whose boundary was deformed The thord shape process
(bends), 1s requon-oricnted and reports of modifications of the shape through s ans.
Through competition and coopcration these processes explain a shape as a seres of

opcralions on sumplc shapes.

While we showed in this chapter how the shape triangle can support shape de-
scriptions, and indicated intuitively how it can be derived from the 1eaction/diffusion
space. it remains to study them with the same mathematical pirecision utilized in

carlier parts of this thesis.
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| |
Interpretation 1: Interpretation 2: “

NIL Strong T T T

Vo 4

Interpretation 1:
Weak

Figure 8.10 The snahe is interpreted strongly as a bend. hut is weakly imterpreted
as the result of boundary deformation.
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poe

Interpretation 2:
Weak

Interpretation 1:

Figine 8.11: The Lasagnia noodle is given a strong vote by the piotrusion process
but is given a weak one by the bend process.

Ao



CHAPTER 8. THE SHAPE TRIANCLE 160

AT

Figuie 8.12 The shape sequences are placed along the axes of the Shape Trangle to
illustrate the competition between the corners of the tuangle



Chapter 9

Conclusion

We have presented the beginning of a theory of shape based on the dynamic evolu-
tion of curves. We were motivated by the need for a new geometiy, which lead to a
classification of deformations into constant motion and cuivature motion. While con-
stant motion satisfies a conservation law, curvature motion plays the role of viscosity.
Viewed differently. constant and curvature motion satisfy a reaction-diffusion system
The two extremes of 1eaction and diffusion bring out complementary properties of
Jhape. Most importantly. the reaction-diffusion equations lead to entiopy satisfy-
ing, singularities called shocks It 1s the classification of these shocks that inspired
our proposal that parts. protiusions. and bends be considered as the computational
elements of shape. The shocks were studied in a reaction-diffusion space, which is
spanned by time and the ratio of 1eaction to diffusion, and leads to a natural notion
of approximation and scale. Scale lead in turn to another space. the entropy scale-
space, which, provided the final support for the shape triangle. This final structure
suggested a 1epresentation for shapes in which thiee shape processes cooperate and
compete for an interpretation of shape

Our work i1s by no means complete  While we have provided a new approach to

study shape, the final mappimg fiom the shape triangle into formal shape descriptions

161
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requires much additional rescarch. The metric and topology remain to he speaified
in mathematical detail. and the application to object matching in computer vision
remains to he implemented. However, we fecl confident that foundation has been

propetly laid. and that these next tasks can be accomplished in the near futme
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