
Computational Material Science of Carbon/Carbon 
Composites based on Carbonaceous Mesophase 

Matrices 

Gaurav Gupta 

Master of Engineering 

Department of Chemical Engineering 

McGill University 

Montreal,Quebec 

August 2005 

A thesis submitted to the Faculty of Graduate Studies and Research in Partial fulfillment 
of the requirements for the degree of Master of Engineering 

@Gaurav Gupta 2005 All rights reserved 



1+1 Library and 
Archives Canada 

Bibliothèque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de l'édition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

ln compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page cou nt, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre référence 
ISBN: 978-0-494-22646-9 
Our file Notre référence 
ISBN: 978-0-494-22646-9 

L'auteur a accordé une licence non exclusive 
permettant à la Bibliothèque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par télécommunication ou par l'Internet, prêter, 
distribuer et vendre des thèses partout dans 
le monde, à des fins commerciales ou autres, 
sur support microforme, papier, électronique 
et/ou autres formats. 

L'auteur conserve la propriété du droit d'auteur 
et des droits moraux qui protège cette thèse. 
Ni la thèse ni des extraits substantiels de 
celle-ci ne doivent être imprimés ou autrement 
reproduits sans son autorisation. 

Conformément à la loi canadienne 
sur la protection de la vie privée, 
quelques formulaires secondaires 
ont été enlevés de cette thèse. 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



To my parents , 

for their unconditional love and support 

ii 



ABSTRACT 

Carbon/Carbon composites belong to the generic class of fiber reinforced composites 

and are widely used because of their high strength as weIl as chemical and thermal stability. 

Like other fiber reinforced composites they consist of the fibers which act as reinforcements 

and matrix which acts as a glue that binds the fibers. c/c composites from pitch based 

precursor are unique since the matrix in this case is a liquid crystal or mesophase. This 

makes them remarkable in the sense that unlike c/c composites from other precursors 

such as PAN, rayon etc. they have extremely high degree of molecular orientation and 

exhibit texture. An important characteristic of their textures is the presence of topological 

defects. It is hence of great interest to understand and elucidate the principles that govern 

the formation of textures so as to optimize their properties. In this work we present a 

computational study of structure formation in carbon-carbon composites that describes 

the emergence of topological defects due to the distortions in the oriented matrix created 

by the presence of fiber matrix interaction. Dynamical and structural features of texture 

formation were characterized using gradient elasticity and defect physics. 
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ABRÉGÉ 

Les composites carbone/carbone appartiennent à la classe générique des composites 

renforcés par fibres et sont couramment utilisés à cause de leur grande solidité ainsi que 

leur stabilité chimique et thermal. Comme d'autres composites renforcés par fibres, ils 

consistent de fibres agissant comme renforçant et d'une matrice qui agie comme une colle 

reliant les fibres. Les composites c/c basés sur des précurseurs pitch sont uniques étant 

donné que la matrice est dans ce cas un cristal liquide ou mésophase. Ceci les rends remar­

quable dans le sens qu'à la différence de composites c/c obtenu avec d'autres précurseur tel 

que PAN, rayon etc. ils ont un très grand degré d'alignement moléculaire et ils exhibent 

des textures. Une importante caractéristique de ces textures est la présence de défauts 

topologiques. Il est donc d'un grand intérêt de comprendre et d'élucider les principes 

gouvernant la formation des textures pour en optimiser les propriétés. Dans ce travail 

nous présentons une étude numérique de la formation de structures dans les composites 

carbone/carbones qui décrit l'émergence de défauts topologiques du aux distorsions dans 

la matrice orienté crées par la présence d'interaction matrice-fibres. Les caractéristiques 

dynamiques et structurelles de la formation de textures ont été caractérisées en utilisant 

la physique des gradients d'élasticités et des défauts. 
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1.1 Thesis Motivation 

CHAPTER 1 
Introduction 

Composites materials are composed of two or more materials that are mechanically 

combined together [1]. This combination is done to tailor unique and desirable proper-

ties like achieve superior strength, greater thermal resistance, lighter weight etc. These 

composites then have superior properties which cannot be offered by the components indi­

vidually. For example, polymer / ceramic composites have a greater young's modulus than 

the polymer component but aren't as brittle as ceramics. Figure 1-1 highlights two of the 

most important properties of the composites, strength and light weighted-ness. While a 

single component can offer one of these properties but to achieve both is difficult, however 

a composite can offer both of these properties at the same time. 

The two components in a composite are fillers and matrix. The matrix is the component 

that takes up the majority of the composite volume. In a composite, fillers are dispersed 

inside the matrix. While the fillers provide the required reinforcement; the matrix plays a 

crucial role in acting as the glue and provides load transfer between the fillers. Commonly 

used fillers are fibers and partic1es. Examples of the composites inc1ude Fiber Glass (glass 

fibers and polyesters), Kevlar and natural composite such as wood which contains cellulose 

fibers. 
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Figure 1-1: Schematic showing superior strength and light weighted-ness of the composites. 
Taken from; http:j jwww.composites-by-design.comjadvanced-composites.htm 

In a typical composite, the fibers can be randomly positioned inside the matrix or they 

can be aligned. A few possible configurations are depicted in figure 1-2. The choice of 

the arrangement of the fibers is based on tailoring of specific material properties. A part 

of this thesis focuses on understanding arrangement of fibers inside the matrix to achieve 

optimum properties. 

1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1111,1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 

1 1 
1 1 1 1 

1 1 1 1 
1 1 1 1 
1 1 1 1 

1 1 1 1 
1 1 1 1 
1 1 1 1 

Figure 1-2: Shows sorne of the possible arrangements of fibers inside the matrix. The 
first is random arrangement of fibers and the next two have fibers aligned in a particular 
fashion. 
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This thesis will concentrate on one of the widely used composites; carbon/carbon compos­

ites. In these composites the fillers are carbon fibers which are dispersed inside a carbon 

matrix. Both the carbon fibers and carbon matrix can be made from different materials 

also known as precursors. Most commonly used precursors include petroleum pitch and 

PAN (Polyacrylonitrile) [2]. Experiments have indicated that type of matrix obtained from 

either PAN or pitch based precursors plays a pivotaI role in determining the mechanical 

properties of the composite material [3]. For example figure 1-3 compares the mechanical 

properties of three carbon/carbon composites (labeled A, B, C) and an isostatically molded 

fine-grain petroleum coke graphite (labeled G). 
Aa ~ CC G 

Bult dedsity fI/œt') 1.68 1.77 1.51 1.76 
Y01lD&'s moduJu$ (OPl) 13.5 26.3 17.0 10.5 
Vickors ~ (MPa) US 163 172 
Bendina Ibeqtb (MPa) 65.7 96.9 39.6 
Tensilo SIleOJth (MP.) R.T. 35.7 55.4 68 28 

8OO'C 43.4 65.4 88 30 
l~ 42.0 50." 102 'S7 
2<1OO'C 62.7 83.0 111 44 

Fracture toqImea (MP •. mlll) R.T. 2.96 3.44 4.0 0.8 
.-c 2.8Z 3.58 5.5 0.8 
1~ 4.64 6.75 6.1 1.0 
2«JO'C 5.30 12.9 7.0 1.9 

TllenDal ~ty (mm2Jsee) 62.4 56.6 48.0 
'l"bermal aboct l'OIiItaDce (W1mm) -148 -155 -171 5O±6 
'l"bermal shoc:k fracture toua,hneIs ,.179 -«lS .... 856 33±3 

(W/mmlll) 

"PIrcb carbou-cadIoa CXlJIIIIClIltc. 
IIpAN~ClI.lIIIIJICMIiIe. 

"'fwo.dimeIIIio nyoa ~ CXlJIIIIClIltc· 
"Loadsq. 

Figure 1-3: Mechanical properties of three c/c composites (A, B, C) and graphite (G). 
From Ref.[4]. (A=pitch based, B=PAN, C=Rayon, D=graphite). 

The present work focuses on petroleum pitch as the matrix for making c/c composite. 

This petroleum pitch based matrix is known as carbonaceous mesophase pitch [5]. Com­

posites made from carbonaceous mesophase pitch as the matrix are unique in that they 

3 



exhibit texture. Texture means the presence of orientation and defects [6] as shown in the 

figure 1-4. Orientation indicated by lines in the figure depicts alignment of molecules along 

a preferred direction known as the director [6] (this would be made clearer in the next 

section). Defects are created by mismatch in orientation. 

No Texture Texture 

Defects 

Carbon fibers in Phenolic Resin Carbon fibers in Mesophase Pitch 

Figure 1-4: Shows a comparison of carbon fiber composite with phenolic resin and car­
bonaceous mesophase as the matrices. When light is shone through the samples, isotropie 
liquid shows black whereas anisotropie substance shows birefringence and show optical re­
sponse. The cie composites with mesophase show texture whereas the phenolic resin is 
isotropie and there is no orientation. Adapted from [3]. 

The presence of texture as shown above (orientation + defects) is of interest to mate-

rial scientists as it arises from high order of molecular orientation and hence it is desirable 

to retain and manipulate this ordering to achieve superior mechanieal properties [5]. 

These cie composites with mesophase pitch are perhaps one of the most advanced forms 

of carbon, and are extremely strong, tough and are thermally resistant. In fact the low 

density of the carbon ensures their superior specifie strength, specifie modulus and specifie 

thermal resistance among composites [3]. Due to their exceptional properties they find 
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usage in specialty applications and are used extensively in aerospace industry to make air­

craft brakes, heat pipe, reentry vehicles and also in rocket motor nozzles, hip replacements, 

biomedical implants and electronic heat sinks [3]. On the downside these composites have 

poorer mechanical strength compared to PAN based c/c composites. They tend to be ex­

pensive, hence optimization and tailoring their property becomes an essential component 

rather than a choice to justify the investment. 

Previously a lot of emphasis has been laid on understanding material properties of Car­

bon fiber/Carbon mesophase (CF/CM) composites [3], however in aIl these studies the 

matrix is considered dormant. But as explained before the matrix is actually a dynamic 

system exhibiting orientation and defects. Previous experimentation [7] has shown that 

understanding the matrix texture is important since defects are found to affect the fracture 

behavior of these materials [8]. This thesis focuses on understanding the dynamic pro cess of 

texture formation in CF/CM composites using modeling and simulation and hence provide 

scientific pathways to improve the performance of these composites. 

1.2 Carbonaceous Mesophase Pitches 

As previously outlined mesophase pitch based carbon/carbon composites are unique 

in the sense that they exhibit molecular ordering and hence have texture. The texture 

of mesophase pitch based carbon/carbon composites influences the physical changes that 

take place during processing and affects the final composite mechanical properties [8]. The 

following section gives an overview of the CM matrix. 

1.2.1 Description of the mesophase 

One question that cornes to mind is why do mesophase pitch based composites have 

texture? The answer to this question cornes from the fact that carbonaceous mesophase 

(CM) is a discotic liquid crystal. The word discotic [9] means that CM consists of disklike 

molecules. Figure 1-5 shows a schematic depicting molecular geometry, positional order, 
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and orientational order of discotic nematic liquid crystals. The partial orientational or der 

of the molecular unit u is along the average orientation or director n (n.n = 1). The 

name discotic distinguishes the molecular geometry and the name nematic identifies the 

type of liquid crystalline order. 

Figure 1-5: Schematic of disk shaped CM molecules. The director n is the average 
orientation of the unit normals u to the disklike molecules in a discotic nematic phase. 

These molecules dis play long range orientational order in the sense that the molecules 

lie approximately parallel to each other. The parallel stacking of molecules is shown in 

Figure 1-6. 

Figure 1-6: Schematic model of stacking of carbonaceous mesophase molecules adapted 
from [5] 
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The fact that the molecules in CM have disklike structure provides it with physical prop-

erties that are different from other nematic liquid crystals which contain rodlike molecules. 

Precise determination of the constituent molecules and their distribution in the carbona-

ceous mesophase is complicated by the wide range of molecular sizes and shapes. Infrared 

spectroscopy, NMR and vapor pressure osmometry can be used to estimate the structural 

configuration of the disklike aromatic molecules in the carbonaceous mesophase [5]. Few 

of the model structures for the molecules are shown in figure 1-7. 

Figure 1-7: Sorne model structure for mesophase-forming molecules, adapted from [5] 

1.2.2 Formation of the Mesophase 

The mesophase formation has been observed for many aromatic compounds, but the 

present work focuses solely on mesophase formation from the pyrolysis of petroleum and 

coal tar pitches. A general scheme for the formation of mesophase can be shown as: 

Petroleum Pitch 4o~cDiscotic Carbonaceous mesophase5o~CSolidified Coke 

In the absence of air, the organie component melts in heating and becomes an isotropie 

pitch or liquid. As the temperature rises over 4000 C,optieally anisotropie spheres, known 

as spherules [10], appear in the isotropie petroleum pitch matrix [10]. Figure 1-8 shows 
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an experimental picture of spherule formation. This formation of carbonaceous mesophase 

is a nucleation and growth process. Attractive forces among the spherules give rise to 

droplet coalescence and overall growth of the mesophase. As the polymerization reaction 

continues, the molecules get larger and the mesophase becomes more viscous. This growth 

phenomenon is commonly termed as "Brooks Taylor Morphology" [10] and has been iden­

tified in spherules as small as a few microns. These spherules seldom grow beyond 50l1m 

without developing complex internaI structures. As the pyrolysis proceeds, these spherules 

then coalesce and pro duce large regions of bulk mesophase. 

Figure 1-8: Picture showing growth of carbonaceous mesophase spheres known as 
spherules. Taken from http:j jwww.shanshantech.comjeptoduct-a.htm 

1.2.3 Textures in Carbonaceous Mesophase based clc composites 

The emphasis of this thesis is on identifying and characterizing the textures in the 

CM, in particular for cjc composites. Figure 1-9 shows a typical texture observed in CM 

in a cjc composite with CM as the matrix. 
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Figure 1-9: Experimental picture reference [7] indicating the presence of texture in car­
bonaceous mesophase. The picture is section of the composite transverse to the axis of the 
fiber bundle, mapped by polarized-light micrography with immersion oil. 

The ab ove figure 1-9 is an optical micrograph obtained by taking a section transverse 

to the fiber bundles, which are then polished and observed under immersion oil with cross 

polarized light. The characteristics of the texture can be described by two things. Firstly, 

the disklike molecules tend to lie parallel to the surface of the fibers and form a circular 

sheath sever al microns in thickness, this is known as the" sheath effect" [5]. Secondly the 

disclinations or defects are observed in abundance in this system and is of practical impor-

tance as it affects the fracture behavior of the material [5]. These defects are essentially 

discontinuities in the parallel stacking of layers owing to freedom of preferred orientation of 

splay, twist and bend [11] similar to that of other nematic liquid crystalsj details of defects 

are presented next. 

To perfect the composite properties understanding the study of textures is essential thus 
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studies are required to optimize defects and enhance structures resistive to crack propaga­

tion. 

1.2.4 Disclinations = Line Defects 

Disclinations [11] or defects [12] appear in system as a result of incompatibility or 

breakage of symmetry. These defects are common in liquid crystalline systems and have 

been studied quite extensively [12]. Defects play an important role in such phenomena as 

response to external stresses and the nature and type of phase transitions. For example 

the defects formed in CM in CF ICM composites are found to be related to the fracture 

behavior of the composite [8]. The presence of these defects can be attributed to control of 

boundary conditions, external fields, or surface conditions. As already explained the term 

texture refers to orientation of the liquid crystal molecules (CM molecules) in the vicinity 

of the surface. Each liquid crystalline material can form its own characteristic textures, 

which are useful in its identification. A nematic phase exhibits broken symmetry when 

compared to the isotropic phase because it is defined by the average molecular orientation, 

n [6]. Because any orientation of n is possible the degeneracy leads to the possibility 

of defects or spatial discontinuities of n . Defects are classified in ter ms of strength 

(8) and dimensionality (D). The strength captures the degree of rotational discontinuity 

when encircling the defect, whereas the dimension refers the points, lines, and walls. The 

spatial arrangement of defects is called texture. The strength 8 of a defect is equal to the 

number of rotations the director experiences on a path encircling the defect. Points are 

D=O defects, disclinations are D=l line defects, and walls are D=2 defects. The core of 

disclinations can be singular or non singular; S = ±~ (or ± 7r) have singular cores whereas 

S = ±1 (or ± 27r) disclinations can have either. 8ingular and non singular cores are 

explained in detail in chapter 4. Figure 1-10 shows sorne disclinations that are commonly 

observed in CM in c/c composite. 
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5=112 

S -+1 S = ·112 

or 5 = +2Jr or 5 =-Jr or 5 =+Jr 

Figure 1-10: Top row shows schematies of defects textures in liquid crystals. Bottom 
pietures are SEM images of disclination observed in carbonaceous mesophase taken from 
referenee referenee [5]. 

Sinee Liquid crystals are anisotropie materials they exhibit birefringenee. That is they 

demonstrate double refraction. Light that is parallel to the director n has a different refrac­

tion (travels with a different speed) than the light polarized perpendieular to the director. 

Because these two components travel at different speeds, the waves get out of phase. And 

when they combine together on exiting the liquid crystal sample the polarization state has 

changed because of this phase differenee. Figure 1-11 is a microscope picture of a nematic 

liquid crystal, taken between cross polarizers. Sorne of the regions are dark whereas others 

appear lighter. The light and dark regions denote differenees in the director orientation n 
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Dark 
brushes 

Defect 

Figure 1-11: The optical microscope picture showing defects in a nematic Hquid crystal. 

The dark Hnes are known as brushes. Notice that the ab ove figure shows dark Hnes 

ending in a point. These points are defects in the sample. As a general rule the strength of 

the defect S is equal to number of dark brushes divided by four. That isS = ± ~. The sign 

positive or negative cornes from the sense of rotation [6]. For example, a point with four 

dark Hnes emanating out is a defect of strengthS = ±1, ( 4 dark frushes). This makes it 

easy to identify location and type of defect in a sample by looking at its optical picture. 

1.2.5 Processing of cie composites 

c/c composites are fabricated using four different methods, namely (1) liquid phase 

impregnation (LPI), (2) hot isostatic pressure impregnation carbonization (HIPIC), (3) hot 

pressing, and (4) chemical vapor infiltration (CVI). A schematic of the processing of c/c 

composite is shown in figure 1-12. In all the methods a prepreg is first prepared by combin­

ing the carbon fibers with pitch or resin. This pre-impregnation cycle is then followed by 

a second stage involving carbonization at about 350-8500 C. Usually carbonization causes 
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shrinking of the pitch and resin and hence additional pitch or resin has to be impregnated 

to make up for the loss. The carbon yield that is obtained after carbonization is dependent 

on the type of matrix (pitch based or resin) the pro cess (LPI, HIPIC, CVI) and also the 

Pressure. The mesophase pitch typically offers a higher carbon yield during carboniza­

tion hence the use of mesophase pitch offers the advantage of fewer impregnation cycles. 

The next stage is the graphitization which is the conversion of the carbon to graphite at 

excessive temperatures; the specifies are given in figure 1-12. 

1 ReiniJrœment (Carbon Fbre; 1-0. 2-0, 3-D, n-D) 1 

~ ~ ~ 
Thermosetting Thermoplaatic Hydrocarbon 

Reein PitCih Vapeur ....... ~ ....... ..........•....•... , 
~ • . • • • Liquid Phaaa : • SoIid Phase • VapolS Phase 

.t""- ~ : ~~s • PyroIysis ~ withfwithout pressure 1+- .. PyroIyaia 
1000-15OOOC • ... S00-1200oC • 55O-8ocfC 

l • • + , • 14timea 

.~ 
. 

~ Impregnation 1 Impregnation Impregnation .. • • • • 
: 14timee • • Carbonize • • .. 1000-15000C • •••••••• •••••••• • • 1-3timea 

~ 
: ........ ~ ....... ~ ~~ 

Heat Treatrnent Heat Treatmant HeatTreatrnent 
1500-2200OC 2200-27SOOC 2000-25Q()OC 

• .- .-
1 Carbon-Cmbon Composite 1 

Figure 1-12: Processing of clc composites. From reference [13] 
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1.3 Introduction to Liquid Crystals 

For many organic compounds the phase transition from solid state and the liquid 

state is not a single phase transition, and an intermediate state called mesophase exists 

between solid and liquid. Mesomorphic materials posses both liquid like fluidity and solid 

like molecular order. They contain order between that of a solid and a liquid. The shape of 

a molecule is an important factor for mesomorphism to occur. To types of liquid crystalline 

compounds characterized by their shape and size are most widely studied, the rodlike liquid 

crystal and the disklike liquid crystals known as discotic liquid crystals. As previously 

mentioned the carbonaceous mesophase pitch belongs to the class of discotic liquid crystals. 

1.3.1 Classification of Liquid Crystals [14] 

Phase transition to the ordered fluid state (mesophase) can be effected through changes 

temperature (thermotropic liquid crystal) or concentration (lyotropic liquid crystals). The 

molecular ordering in these systems can be best achieved with molecular shapes that are 

disk-, lath-, or rod-like. Based on symmetry a classification can be done into three main 

classes of liquid crystals: nematic, cholesteric, and smectic. 

N ematic Liquid Crystals 

The nematic phase is characterized by a long range orientational order (the long axis 

tend to align along a preferred direction known as the direct or n ) and an absence of 

position al order (there is no specific arrangement of molecules in space). Figure 1-13 

shows two types of nematogens rodlike and disklike along a preferred direction n and the 

molecules themselves seem to have no spatial arrangement in space. 
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Figure 1-13: Schematic representation of rodlike and disklike molecules in space in a 
nematic liquid crystal. 

Cholesteric Liquid Crystals 

Cholesteric liquid crystals are constituted of chiral molecules (molecules without mirror 

images). The cholesteric phase lacks positional order, like the nematic phase but the 

director follows helical path. The strong modulation of refractive index due to helical 

deformation causes Bragg scattering of various colors of light, a property that is exploited 

in the use of liquid crystals as temperature sensors. Figure 1-14 shows layers from a three 

dimension al assembly. In each layer the molecules have a uniform orientation (notice the 

molecules are orientated along a certain direction). However, from one layer to the next 

the orientation changes by a slight angle leading to a periodic configuration characterized 

by a length scale denoted by p (pitch). 
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Figure 1-14: Schematic representation of cholesteric. Rodlike molecules are represented 
by small segments lying on a series of equidistant planes. The structure is continuous and 
P here represents the pitch. 

Smectic Liquid Crystals 

Smectic liquid crystals have stratified structures which makes them the most ordered 

and viscous mesophases. Molecules stand on series of equidistant parallel layers which 

are free to move. Approximately 12 different types of smectic liquid crystals have been 

identified to this day. However the best known are A and C. Figure 1-15 shows a schematic 

of a typical smectic A. 

WP' yI! ri li 1 H Il 
Figure 1-15: schematic representation of Smectic A structure. 

1.4 Experimental Observations related to the Thesis 

a Multiple Length Scales: A cie composite mesophase pitch composite, as shown in 

figure 1-9, exhibits important features at different length scales. These have been 

characterized in great detail in experiments [5]. Figure 1-16 illustrates a schematic of 
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a c/c composite which highlights this multiscale phenomenon. The radius of the fibers 

(R) and the distance between them (LI) can be thought of as macro variables (these 

are of the order of microns [5,7,8]). On the other hand the defects that arise in the 

system as previously explained are nano-scale phenomena. Experimental evidence 

suggests that the size of these defects is of the order of lOnm [15J. As previously 

pointed out the presence of fibers influences how the molecules assemble inside the 

matrix thus creating a macro level assembly. This macro level assembly has broken 

symmetries (defects) which are nanoscopic. 80 changes in macro level ( changing fiber 

size or their arrangement) can cause changes at the nano scale. And since the nano 

sized defects are found to affect mechanical properties, such as the fracture behavior 

of these systems [8], it thus becomes important to understand the relationship and 

effect of different scales. This length scale relationship study for ms an important part 

of this thesis. 
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LI 
R: radius of the fiber 
LI :The distance between the fibers. 
r:Theradius of the defeet (smallestlength 
seale of the probl em, around 10nm.) 

Zoomed view of 
the defect texture 
insi de a triangle. 

Figure 1-16: The schematic illustrates different length scales observed in a cie composite. 
It is of great interest to control both the meso (R and L1) and nano (defect cores) sc ales 
of the system to optimize the performance of these systems. 

b Defect Core Structures: Previously it was pointed that cie composites have defects. 

However not an the defects that arise in these material systems are identical. CI C 

composites are found to contain variety of defects [7]. Sorne of these defects were 

mentioned in section 1.2.4. Experiments [7] have indicated that controlling the con­

figuration of fibers inside the mesophase influences the type of defects. For example 

in the work of [7,8] it was shown that an arrangement of fibers in triangular configu­

ration leads to S = - ~ defect but a square arrangement of fibers leads to the creation 

of S = -1 defect. This is illustrated in figure 1-17. The -1 defect is an escaped core 
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defect and is non singular in nature whereas the -1/2 defect is singular defect. To 

identify what type of defect is created under influences of fiber configuration or fiber 

size forms another section of this thesis. 

OISClINATlONS 

S:= -1 

Figure 1-17: Schematic of a c/c composite showing two different defect core structures. 
Adapted from reference [7]. 

c Stability of Defect Lattices: Experimentalists [16, 17] over the years have tried to 

manipulate the texture of carbonaceous mesophase during the fiber spinning process. 

This manipulation pro cess is known as mesophase miniaturization. They manipulate 

the mesophase flow to pro duce a desired texture at a workable scale. One of the ways 

to manipulate the texture is the use of wire screens. Figure 1-18 shows a schematic 

design of this manipulation process. Here wire screens are added to the spinning 

apparatus used for making fibers. The effect of the screens can be seen in figure 1-19. 
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Figure 1-19a shows the texture when no screen was used in the spinning apparatus. 

The texture is random and there is no periodicity in the texture. However when 

screens are used a regular array of +27r and -7r defects are created shown in figure 

1-19b. This periodic pattern is shown clearly in figure 1-20. The identification of 

defects is done by looking at the number of brushes which was discussed in section 

1.2.4. Theses defects lattice structures as they have come to be known [17] are stable 

structures. The possibility of achieving desired texture in the mesophase also forms 

an important part of this thesis. Details about possible control of mesophase to 

obtain experimentally observed periodic defect structures will be presented in detail 

in chapter 3. 

Figure 1-18: Schematic design of spinneret with the screen modification for controlling the 
texture of the mesophase. Adapted from reference, [17]. 
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Figure 1-19: Effect of manipulating the mesophase texture from reference [16]. These 
pictures are optical micrographs(a) No manipulation was done. (b) Manipulation was 
done by passing through a 200 mesh screen. 
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Figure 1-20: A more detailed picture of the disclination lattice adapted from reference 
[16]. The arrows indicate the presence of different defect types. 

1.5 Thesis Objective 

Establish a suit able mathematical framework for clc composites using the Landau 

de Gennes theory of liquid crystals. 

ii Validate the relevance of using the Landau de Gennes theory in modeling carbon-

based material systems. 

iii Use the developed model to understand the texture selection pro cess in CF ICM 

composites and elucidate the main mechanisms that control texture formation. 

iv Identify geometric parameters (fiber arrangement and size) and processing conditions 

(temperature) that lead to experimentally observed material architectures. 

1.6 Thesis Methodology 

In or der to analyze and understand the texturing process in a clc composite a standard 

multilevel modeling methodology of (a) Theory (b) Modeling, (c) Validation is adopted. 

a Previous theory and Modeling Work: Previous work done by Rey and coworkers 

[18,19,20,21,22] has demonstrated that liquid crystal theories can be applied success­

fully to describe key texture features of the mesophase. These theories have been 
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successfuUy used by them to characterize texture development in the fiber spinning 

pro cess [19,20], model the rheology of carbonaceous mesophases [18, 21] and simulate 

the texture of mesophase under pressure driven flows [22]. This thesis will build on 

previous modeling approaches and adapt the liquid crystal theory for CF ICM com­

posites. This involves introducing geometric constraints that arise from the presence 

of fibers in the system and processing conditions for these materials. 

b Multiscale modeling: As explained above, fiber size, fiber-fiber distance and presence 

of defect cores introduce multiscale phenomena into the system. Modeling these 

material systems requires robust large scale computational modeling tools that can 

resolve aU these length scales. To tackle this issue, computational methods have 

to be developed and used with utmost care. In this thesis a large effort has been 

devoted to take care of the disparate length scales using grid adaptation and numerical 

techniques. The numerical approach based on finite element method is presented in 

chapter 2. 

c Validation: Validation of simulation is a crucial step in pro cess modeling. Abun­

dant experimental data is available for c/c composites with mesophase pitch as the 

precursor [5,7,8,16,17] and will be used to validate the results. 

1. 7 Thesis Organization 

This thesis is organized as foUows: 

Chapter 1 presents a general background of the thesis including motivation, introduc­

tion to textures in CF ICM composites, properties of carbonaceous mesophase and a 

general outlook of liquid crystals. It also presents thesis objectives. 

11 Chapter 2 focuses on formalism and adaptation of Landau de Gennes theory for 

liquid crystals for CF ICM composite systems. It also presents multiscale modeling 
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technique and formulation of finite element based method for solving the governing 

equations. 

iii Chapter 3 focuses on understanding flow-based periodic texturing of mesophases to 

control the mesophase texture. It provides an alternative route based on particle 

dispersion inside the mesophase to obtain textures similar to those observed in ex­

periments. 

IV Chapter 4 focuses on CF ICM composites and presents computational modeling study 

of texture formation in these systems. The modeling predictions on texture formation 

and defects are validated with experiments. The role of fiber configurations inside 

the mesophase is the key element of this chapter. 

v Chapter 5 presents the effect of varying fiber size and their configurations inside 

the mesophase on the texture of the composite. The predictions are compared with 

experimental observations in a similar study. 

VI Chapter 6 presents the main conclusions of this thesis. 
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2.1 Introduction 

CHAPTER 2 
Theory and Methodology 

The processing of c/c composites is a complex pro cess involving viscous, elastic and 

thermal pro cesses [1]. Previously, theoretical approach has been successfully applied to 

model textures in carbon fibers [2,3] and carbonaceous mesophase [4]. Both experiments 

[5,6] and simulation [2,3] indicate that carbonaceous mesophase texturing pro cess follows 

a liquid crystalline self assembly process. This chapter presents the theoretical approach 

to modeling these systems. First an overview of present state of the art in theoretical 

modeling is given followed by the derivation of the model used to simulate this system. 

2.2 State of the art in modeling liquid crystalline systems, [7] 

Theories that describe the liquid crystalline phases can be divided into two general 

classes [8]: molecular and phenomenological. The molecular theories take into consid-

eration the interaction between the individual molecules. This approach is useful since 

information at macro scale is obtained from microscopie molecular interactions. However 

this approach requires a large group of molecules which are computationally expensive. 

Approximate theories are needed to overcome this problem and hence simplify the ap-

proach. Popular theories such as Onsager's hard rod model with purely steric repulsion 

[9] considers molecules as cylindrical rods and the interactions between them are hard, like 

billiard balls: the rods cannot penetrate or deform each other but they don't feel each 

other until they touch. This is a simplification since in reality the molecules could be flex­

ible. Other popular simplified theories include Maier-Saupe's mean field theory [10] and 
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approach proposed by Telo da Gama et al. [11]. Recently lot of effort [12,13,14,15] has also 

concentrated on numerically solving the problem using efficient Monte Carlo algorithm and 

molecular dynamics studies. In this method the nature of liquid crystal mediated effec­

tive interactions is studied by Monte Carlo method based on the combination of canonical 

expanded ensemble simulations and a density-of-states formalism. 

The phenomenological approach, on the other hand starts with a suit able macroscopic 

or der parameter and then expanding the free energy density of a liquid crystalline system in 

the vicinity of phase transition (isotropic-nematic) as a power series of the order parameter 

[16]. The minimum of free energy at each temperature and pressure is evaluated as a 

function of the order parameter and corresponds to the state of equilibrium. 

The present work on carbonaceous mesophase texturing in c/c composites is based on 

phenomenological model of Landau-de Gennes theory. In section 2.2 the concept of order 

parameter is introduced. The basic theory is presented in section 2.3. In section 2.4 the 

theory is derived for carbonaceous mesophase and their ordering due to the presence of 

carbon fibers, and finally section 2.5 discusses the numerical approach used. 

2.3 Order Parameter 

The concept of order parameter was first introduced by Landau [17] for the purpose 

of a phenomenological description of phase transitions. This is used for the description of 

long-range order of the structural or thermodynamic properties, that repeats uniformly in 

a given system and short-range order that takes into account the spatial thermodynamic 

fluctuations. 

Let us consider a disk like molecule with unit vector il along the axis of the molecule. n 

as was mentioned previously is the director which is the average direction of the molecules 

and () is the angle between il and n . 
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Figure 2-1: Schematic of a disklike molecule. 

If it is assumed that the distribution function1 is cylindrically symmetric about n 

and the directions n and -n are fully equivalent, Le., the preferred axis is non polar. 

Subject to these two conditions the degree of alignment was first introduced by Tsvetkov 

[18] 

(2.1) 

S is known as Maier-Saupe or Scalar or der parameter [16]. This function gives an 

indication of the distribution of molecular orientation u along the direct or n. Figure 

2-2 shows the different degree of ordering and consequently the variation of scalar order 

parameter with change in phase. 

1 Distribution function also known as the probability density functions describe the 
probability with which one can expect the molecules to occupy the available energy in a 
given system. 
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Figure 2-2: Schematie showing the molecular arrangement for different phases. Liquid 
crystalline systems have intermediate scalar order parameter values and show birefringence. 

For a perfectly ordered phase the unit directors of the molecule u are along the 

direct or n making () equal to zero and hence S = 1 from equation (2.1). In the isotropie 

phase or liquid phase, the molecules are randomly distributed. From the calculation of 

distribution function it gives S = O. For a Liquid Crystalline phase there is an average 

orientation along a certain preferred direction n and hence the scalar order parameter for 

a typical nematie phase corresponds toS ~ 0.3 - 0.6. Optically, due to the alignment of 

the liquid crystalline molecules birefringence is observed in these systems whereas for an 
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isotropie liquid no image is obtained when light is shone through the sample due to the 

random orientation of the molecules. 

The director n only gives the preferred orientation and the scalar order parameter 

S gives the degree of alignment. To combine these two concepts together a second or der 

tensor Q was introduced [16]. It is defined as: 

(2.2) 

Notice here that Q is a function of both the scalar order parameter and the direct or 

and hence is suit able to describe a uniaxial nematic phase. 8 is the kronecker delta function. 

Biaxial ordering is introduced by using a more general form: 

1 1 
Q = 8(nn - -8) + -P(mm -11) 

3 3 
(2.3) 

Where P is the biaxial order parameter. It is important to note that Q is always a 

symmetric and traceless tensor [16]. Biaxial states are important when describing defect 

cores [16], but in the bulk of the nematic phase, the ordering is uniaxial. The uniaxial 

director n corresponds to the maximum eigenvalueJ..tn = ~ 8 , the biaxial director m 

corresponds the second largest eigenvalueJ..tm = -~ (8 - P), and the second biaxial direct or 

1 (=n xm ) corresponds to the smallest eigenvalue J..tl = -1 (8 + P). The orientation is 

defined completely by the orthogonal direct or triad (n , m, 1 ). 

2.4 Landau-de Gennes Theory [16] 

The tensor order parameter can be used to construct a Landau expansion of the free 

energy density in the vicinity of the phase transition [16]. 
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1 ( ) 1 1 fh = -80 T - Tref (Q: Q) - -bQ : (Q.Q) + -c(Q : Q)2 
2 3 4 

(2.4) 

here aQ, b, c are material dependent parameters and Tref are independent of tempera-

ture whereas T is the temperature. Using the uniaxial definition of Q from equation (2.2), 

and assuming liquid crystal molecules are aligned along the x axis ( nx=l and ny= nz=O) 

gives: 

(2.5) 

Equation (2.5), is a power series in scalar order parameter 8, also higher order terms 

are neglected since 8 is smaller than one. At equilibrium the free energy of the system 

is minimum. The problem requires minimization of the free energy fh,so in essence we 

are interested in minimizing the free energy of the system under constraints of material 

properties, processing conditions and boundary conditions. 

In or der to understand the phase transitions from isotropie state to nematic state 

consider figure 2-3. The figure is a phase diagram obtained from the solution of equation 

(2.5). [7] .The are six regions in the figure: 

T > T** there is only one minimum corresponding to 8=0, which means at this 

temperature the liquid crystalline material has the properties of isotropie fluid. 

T** > T > TN 1 as we lower the temperature to this region a second minimum appears. 

This minimum corresponds to a metastable nematic phase since fhat this point is larger 

than that at 8=0 (the global minimum). Also T**is defined as the highest temperature at 
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whieh liquid erystals ean be found in metastable nematie phase and is referred to as the 

highest superheating tempe rature of the nematie phase. 

T = TN l at this temperature the values of fh eorresponding to the isotropie and 

nematie phase are equal indieating that the probability of finding the system in isotropie 

phase is equal to the probability of finding it in the nematie phase and henee is known as 

the phase transition temperature . 

TN l > T > Tref in this region the isotropie phase becomes metastable and the nematie 

phase becomes stable. 

T = Tref at this point the minimum at 8=0 disappears .This temperature corresponds 

to the lowest temperature at whieh metastable isotropie phase exists and is known as the 

supereooling temperature of the isotropie phase . 

T < Tref beyond this point the free energy has only one minimum eorresponding to 

the nematie phase. 
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Figure 2-3: The free energy density as a function of scalar order parameter for different 
values of temperature. Magnified image of the left figure is presented on the right. The 
parameters a, b,c etc. were taken from reference [7] 

2.5 Carbonaceous Mesophase texture modeling: theory and derivation 

This section is devoted to carbonaceous mesophase ab ove the phase transition tem-

perature TN1.The texture in these systems has been experimentally studied by White and 

coworkers [5,6] and lately modeling of these materials in carbon fibers has also been ac­

complished by Rey and coworkers [2,3]. However till now the effect of carbon fibers on the 

bulk mesophase texturing process was not studied and forms the basis of this thesis. 

The clc composite consists of a randomly positioned and axially aligned set of cylindri-

cal carbon fibers of equal radius embedded in a textured carbonaceous mesophase matrix, 

shown in figure 2-4. 

Mesophase Pitch 
(Liquid Crystal) 

Fiber 

Figure 2-4: Schematic of transverse section of clc composite. 
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In actual systems the fibers maybe weaved or arranged in two-dimensional or three di­

mensional configurations which were depicted in figure 1-2, however as a starting point in 

modeling these composites as weIl as to validate the simulations with the experiments of 

White et al. [5,6], a transverse cross-section along the fiber radius was studied. Experi­

mentally [5,6] it is known that the presence of fibers induces homeotropic anchoring where 

the disk like molecules lie face-on onto the fiber surface. This is illustrated schematically in 

figure 2-5a. The present work only deals with this type of surface anchoring consistent with 

experimental observations. In fact experiments [5,6] indicate that the effect of the fibers is 

so strong that molecules tend to align homeotropically around the fiber up to few microns 

outside the fiber periphery causing what is known as the "sheath effect". The presence of 

these fibers in the mesophase causes a disruption near the vicinity of the surface of these 

fibers leading to orientation and defects that were discussed before. For example consider 

figure 2-5b, shows a single fiber inside the mesophase. Since the molecules closer to the 

fiber will tend to align homeotropically to the fiber surface, however as we move away from 

the fiber surface this effect will reduce and in the bulk the molecules will be unaffected 

by the fibers. This forms the boundary condition for the problem. This would create an 

incompatibility between the molecules that are close to the fibers and that are in bulk, 

creating defects. 
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Figure 2-5: (a) Experimental observations ref indicate that the mesophase molecules align 
face-on along the fiber surface. This type of "homeotropic anchoring" causes what is 
popularly known as the sheath effect. (b) Close to the fiber the molecules are aligned 
homeotropically whereas away from the fiber surface the alignment is more uniform. 

2.6 Texture Equation for Carbonaceous Mesophase 

In the previous section it was mentioned that the presence of fibers inside the mesophase 

causes disruption. In this case the average preferred orientation of the molecules, given 

by direct or n varies from point to point in the material (close to the fiber surface the 

anchoring is homeotropic whereas away from the surface it is uniform). This requires that 

additional terms be added to the free energy of the bulk liquid crystal equation (2.4) (as 

previously the equation only accounted for phase transition but not spatial variation of 

director). Thus the generalized equation becomes 

f = !~ (T - Tref) (Q : Q) - kbQ : (Q.Q) + ic(Q : Q)2 

+!LI \7 aQ,B-y \7 aQ,B-y + !L2 \7 aQa-y \7 ,BQ,B-y + !L3 Qa,B \7 aQ-yo \7 ,BQ-yo 
(2.6) 

where the parameters LI, L2andL3are elastic parameters independent of temperature and 

concentration. These added terms take into account the distortion of mesophase due to 
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the elasticity of the material. The transient evolution of texturing in the mesophase can 

be obtained by solving a torque balance equation: 

8Q 
'Y(Q) Tt 
~ 

viscous resistance 

= (:~ys] 
~ 

elastic driving force 

[
&F &F ] [s] 
aq-\7·&vQ (2.7) 

where the left hand si de represents the viscous resistance, and the right hand size is the 

driving forcej the symbol [s] denotes symmetric and traceless condition that arise because 

Q is symmetric and traceless. The viscous resistance is due to the rotational viscosity 'Y(Q) 

of the mesophase and the driving force originates from a decrease in the total elastic free 

energy F of the system: 

F= J fdV 
v 

(2.8) 

Equation (2.7) is the governing equation and consists of five coupled parabolic non-linear 

partial differential equations. The solution vector is space-time dependent Q (x ,t). 

2.7 Computational Modeling 

During the last two decades modeling has played unquestionably a significant role in 

engineering. It has replaced the old trial and error system specifie methods that prototype 

engineers once used in design, research and development with science-based computational 

modeling based on finite element, finite volume and finite difference analysis. In fact model-

ing has been successfully applied to problems in biology, geology, chemical, and mechanical 

with the aid of the laws of physics, in terms of algebraic differential or integral equations. 

The fact that very few equations have an exact solution leads one to approximate methods 

such as finite elements. The present thesis uses finite elements for the approximation and 

solution of the governing equation (2.7). 
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In essence finite elements method (FEM) approximates a partial differential equation 

(PDE) with a problem that has finite number of unknown parameters. This pro cess is 

known as discretization of the original problem . 

• The first step in solving a PDE using finite elements is the generation of mesh. This 

means that the geometry is partitioned into small units of simple shape like triangles 

in 2D and prisms or cubes in 3D. These elements only approximate the geometry 

and the more elements that one takes the better this approximation gets. Figure 2-6 

below shows a typical mesh that was used in the computation.An important point 

to note regarding the mesh is that since the radius of the defect core is lOnm [19J 

the coarsest mesh size should be smaller than this number. This creates difficulty 

as the fiber size is in micron range. This large scaling difference creates computa­

tional resource problem and using a uniform mesh is inadequate. To overcome this 

challenge, adaptive grids were used. For the present problem the mesh was adapted 

manually. Simulation was stopped at an intermediate time step and then the domain 

was remeshed according to the spatial gradients in Q . The higher the gradients in Q 

the higher the density of elements. Figure 2-6 shows the mesh design at two different 

time steps. 
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Figure 2-6: The figure shows mesh at two different time steps in the problem. The first 
one is at initial time step and the second one is at a later time step. 

Initially, the mesh density is higher near the fiber surface because the directors start 

to arrange homeotropically near the fiber surface. At a later stage in the problem the 

mesh density decreases near the fiber surface as everything is already aligned and so 

the mesh becomes coarser there. Since FEMLAB at present didn't have automatic 
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grid adaptation, the remeshing was done manually. The simulation were stopped 

at an intermediate time step and the problem was remeshed based on the spatial 

gradients in Q . At a later stage in the research due to the availability of improved 

computational resources, the same results were compared with a uniform mesh. The 

two results were found to be in excellent agreement. 

• Once the mesh has been created the dependent variable needs to be approximated. 

The idea is to approximate the dependent variable with a function. This approxima­

tion of the dependent variable when introduced into the weak form [20] of the equation 

generated a system of algebraic equations. The governing equation (2.7) has Q as 

Q11 Q12 Q13 

the dependent variable, where the tensors order parameterQ = Q21 Q22 Q23 

Q31 Q32 Q33 

These dependent variables for the present simulations were approximated by a quadratic 

basis function for ego the variable Qll can be approximated by: 

N 

Q11 = L Q11j (t) 'Pj(x, y, z) (2.9) 
1 

Here, 'Pj(X, y, z) is a quadratic function and we have described the finite element 

space by using a basis function. 

• The third step is the discretization of the equations. The starting point is the for­

mulation of the weak form of the problem. For ego the weak form of the component 

Q11 is: 

J( 8Q11 [8F 8F ] [SI) -y(Q)-- + - - \1.-- 'Pidxdy = 0 
8t 8Q 8\1Q 11 

(2.10) 
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Now if we use the definition of Q11 from equation (2.9)and substitute into equation 

(2.1O)we have: 

âQ11 f J( [âF âF ] [8
1
) 1'(Q)m- 'Pi'Pjdxdy = - âQ - V'. âV' Q 11 'Pidxdy = A (2.11) 

this expression can be written in concise form as: 

(2.12) 

here M is called the mass matrix 

(2.13) 

where tnis the time of nthstep and " ~tn+1 is the time adopted in n+1 time step. 

Similar computations are performed for other components of Q. The governing sets 

of equations for aIl components of Q equation (2.12) were then solved by using a 

nonlinear iterative solver through commercial software FEMLAB [21] . 

• Convergence was monitored by increasing the mesh density, and comparing the so-

lution to get a mesh independent solution. 

2.8 Validation Methodology 

The approach described in this Chapter was applied to simulate significant texturaI 

features relevant to the science and engineering of c/c composites, and results are presented 

in the next three Chapters. In aIl cases the computational predictions were validated 

using available experimental data. The validation procedure was based on the fact that 

the structural variable Q is directly observed experimentally using reflection polarized 

optical microscopy (RPOM) [22]. The computed texture can then be compared with the 

observed textures. As indicated in Chapter 4, we use the identical fiber structure and 

overall geometry as in experiments. In addition in Chapter 3 the validation also included 
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optical computations based on the spatial distribution of Q . The optical computations 

were performed by Mr Dae Kun Hwang and the methodology is explained in [23J and 

Chapter 3. 
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CHAPTER 3 
Optical and structural modeling of disclination lattices in carbonaceous 

mesophase 

3.1 Abstract 

An integrated microstructural and optical model for carbonaceous mesophases is de-

veloped and used to explain the princip les that govern the formation and stability of 

experimentally observed disclination lattices. The model is able to capture the orientation 

features of disclination lattices, including the type and location of disclination lines, and 

the orientation field in the mesophase matrix. The optical model based on reflection polar-

ized optical microscopy is able to replicate aIl the details observed in actual observations. 

The typical brush figures have the proper distribution, orientation, and intensity. The 

computational predictions offer new science-based routes to create and control desirable 

material architectures based on carbonaceous mesophase-carbon fiber composites. 

3.2 Introduction 

Carbonaceous mesophases, such as coal tar and petroleum pitches, are used in the 

industrial manufacturing of mesophase carbon fiber, carbon foams, carbon fiber-carbon 

mesophase composites (CFCM), and carbon nanotube-carbon mesophase nanocomposites 

(CNCM) [1-5]. The thermodynamic phase that describes carbonaceous mesophases is the 

discotic nematic liquid crystal state [6, 7]. Liquid crystals are intermediate (Le. mesophase) 

phases, typically found for anisodiametric organic molecules, which exist between the higher 

temperature isotropic liquid state and the lower temperature crystalline state. Carbona-

ceous mesophases are composed of disk-like molecules [7]. Figure 3-1 shows the molecular 

geometry, positional disorder, and uniaxial orientational or der of discotic nematic liquid 
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crystals. The partial orientational order of the molecular unit normal u is along the aver-

age orientation or direct or n (n·n =1) [6]. The name discotic distinguishes the molecular 

geometry and the name nematie identifies the type of liquid crystalline orientational order 

[6]. 

Figure 3-1: Definition of the director orientation of uniaxial discotic nematie liquid crystals. 
The direct or n is the average orientation of the unit normals to the disk-like molecules in 
a discotic nematie phase. 

For anisotropie liquid crystalline phases, processing and product properties are strongly 

correlated with microstructure since liquid crystallinity implies molecular alignment and 

macroscopie orientation [8]. Rence thermodynamie, transport, and mechanieal properties 

can be controlled by manipulation of the underlying microstructure [7]. In these materials 

microstructural features exist at different length scales, from mierons to nanometers. As 

in the case of metals, pure liquid crystals exhibit point, line and wall defects, polydomain 

or grain textures, and banded patterns [9-14] . In general a defect is specified by a charge 

(s) and dimensionality (OD, ID, 2D). The magnitude of s denotes the amount of director 

rotation when encircling the defect and the sign the sense of this rotation [9-14]. The 

presence of textures or distributions of defects also offers a way to identify the phases using 
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polarized optical microscopy [11]. In practice the way to manipulate microstructure to 

design liquid crystalline materials with specific properties can be classified into: (i) hydro­

dynamic structuring, (ii) thermodynamic structuring, (iii) interfacial structuring and (iv) 

particle dispersion structuring. Hydrodynamic structuring can be achieved by flow through 

meshes [15, 16], and flow in capillaries and dies [17, 18], among others. Thermodynamic 

structuring is based on phase separation of a second phase in a liquid crystal matrix. These 

special liquid crystal colloids can organize the second phase in an ordered lattice through 

the action of long range orientational forces [19J. Interfacial structuring forms the basis 

of a sensor technology, since surface roughness can be detected by the resulting texture 

in liquid crystal thin films [20J. Particles and fibers dispersed in liquid crystals interact 

with the liquid crystalline matrix, giving rise to defect textures in the mesophase ma­

trix [21-23J. Currently significant effort is directed to study filled liquid crystals (FLCs), 

mesophase-carbon fiber composites [24], and mesophase-carbon nanotube nanocomposites 

[25]. 

Hydrodynamics structuring of carbonaceous mesophases has been studied by White 

and co-workers [15, 16]. The mesophase was pumped through capillary with a met al mesh 

screen of square symmetry. After traversing the mesh a robust super-disclination structure 

formed and persisted downstream. The microstructure was characterized using RPOM 

(reflection polarized optical microscopy) commonly used for anisotropic opaque materials 

[26J. Figure (3-2) shows the orientation distribution and the optical micrograph. 
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Figure 3-2: A map of regular array of +2 and - wedge disclinations formed by mesophase 
flow through a 200-mesh screen in an experiment to control the microstructure of mesophase 
pitch conducted by Fathollahi at al. Reprinted from [16] with permission of Taylor and 
Francis. The dark dots correspond to +2 (s=+l) disclinations, and the two disclinations 
along the diagonals of a unit square lattice are (s=-1/2) wedge disclinations. 

The figure shows that hydrodynamic structuring with square meshes pro duces a square 

disclination lattice of strength s=+ 1. Along one diagonal of each unit square cell two 

s=-1/2 disclinations are separated by a small distance. The total topological charge of 

the superdisclination is zero and the superdisclination is stable because aIl repulsive and 

attractive interactions are balanced. Hydrodynamic structuring acts through the action 

of viscous torques, also known as orientation. Since the mesophase can anchor in specific 

orientations at surfaces, structuring through particle dispersion is another route to create 

new material architectures. 

Particle dispersion structuring is based on interfacial mesophase-particle interactions 

[7,21]. Under strong interfacial orientational anchoring conditions, the mesophase tends to 

be oriented along the easy axis [7,26-28]. For circular interfaces the easY axis rotates with 
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the unit surface normal, and the distortion propagates into the bulk by a distance of the 

order of the particle size [6]. The distortion is quenched by the nucleation of point, line, or 

wall defects. For planar orientation, insertion of a circular fiber with their axis normal to the 

direct or field under strong anchoring conditions, creates a pair of disclinations of strength 

s=-1/2. A lattice of such fibers would in principle create a lattice of such defects, identical to 

the superdisclination structure creased by White and co-workers [15,16]. This paper seeks 

to show by computational modeling that immersing a lattice of sufficiently small circular 

fiber into an isotropie pitch evolves naturally into the super-disclination structure of [15, 

16], and demonstrate that particle structuring of carbonaceous mesophases is in addition 

to hydrodynamics structuring, a route to design new multiscale material architectures. 

The existence and properties of stable crystals of defects (Le. superdisclinations) has been 

discussed and reviewed by Bouligand[13]. It is known that in many mesophases, including 

water-lipid systems and blue-phases, defects enters the architecture of the unit cell in a 

three dimension al array, and the mesophase forms a crystal of defects. Hence the super­

disclinations observed and simulated in this paper are another example of a large number 

of defect lattices experimentally found in other liquid crystalline materials. 

The specifie objectives of this paper are: 

1 Develop, solve, and validate a computational model of microstructure formation in 

carbonaceous mesophases-fiber composites. 

2 Demonstrate that super-disclinations obtained by flow through grids and screens 

[15,16] are also achievable in principle by inserting periodic arrays offibers in mesophases. 

3 Develop, solve, and validate a computational model for reflection polarized microscopy, 

useful to characterize microstructures in textured carbonaceous materials. 

In this work the radius of the fibers inserted into the mesophase is approximately 0.5 

f..Lm, a scale intermediate between carbon fibers and nanotubes. No specifie claim is made 
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regarding the applicability of the model to single wall or double wall nanotubes. The key 

assumption in the paper is that the mesophase strongly orients at the fiber surface, which 

has been clearly demonstrated for carbon fibers of radius 5f.tm [7]. 

This paper is organized as follows. In section 3.3 we present the model formulation 

for microstructural and optical phenomena. Section 3.4 presents, discusses, and validates 

the microstructural and optical simulations results. Conclusions are given in section 3.5. 

3.3 Microstructural, Optical and Computational Modeling 

This section presents technical details of the microstructural model, the optical model, 

and the computational methodology. 

3.3.1 Microstructural Model for Carbonaceous Mesophases 

The microstructural modeling of carbonaceous mesophases requires spatio-temporal 

specification of the orientation and degree of molecular order, and their time evolution 

when driven by viscoelastic processes. This subsection defines the microstructure, the 

elastic energies involves in molecular and macroscopic distortions, and the microstructure 

evolution equation that governs the emergence of multiscale patterns and structures. In this 

work we adopt the Landau-de Gennes liquid crystal modeling formalism to carbonaceous 

mesophases [6, 29-32]. 

Description of Microstructure 

The Landau-de Gennes theory of liquid crystals [6] describes the viscoelastic behavior 

of nematic liquid crystals using the second moment of the orientation distribution function, 

known as the tensor or der parameter Q (x,t), and the velo city field v (x,t). The tensor 

or der parameter field Q (x,t) and the velocity field v (x,t) have independent origins. In 

the absence of macroscopic flow, v =0, the viscoelasticity of liquid crystals is described by 

Q (x ,t). This means that spatio-temporal changes in the order parameter may exist even 
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in the absence of flow. In this paper macroscopic flow do es not occur, v= 0, and the state 

of the liquid crystal is defined solely by Q (x ,t). 

The macroscopic and molecular description of the microstructure defined by the second 

order symmetric and traceless tensor Q [6] and is efficiently expressed as: 

1 1 
Q = 8(nn - -8) + -p (mm -11) 

3 3 

where the following restrictions apply: 

tr (Q) = 0 

1 -- < 8 < 1 2- -
3 3 -- < P <-2- -2 

n·n=m·m=l·l=l 

1 0 0 

nn + mm + 11 = 8 = 0 1 0 

001 

(3.1a) 

(3.1b) 

(3.1c) 

(3.1d) 

(3.1e) 

(3.lf) 

(3.1g) 

Equivalently, the symmetric traceless tensor order parameter Q can be written as an 

expansion of its eigenvectors: 

(3.2a) 

/-Ln + /-Lm + /-LI = 0 (3.2b) 

where the uniaxial director n corresponds to the maximum eigenvalue/-Ln = ~8 , the biaxial 

direct or m corresponds the second largest eigenvalue/-Lm = -~ (8 - P), and the second 

biaxial director l (=n x m ) corresponds to the smallest eigenvalue /-LI = - ~ (8 + P). 
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The orientation is defined completely by the orthogonal direct or triad (n , m, 1). The 

magnitude of the uniaxial scalar order parameter 8 is the molecular alignment along the 

uniaxial director n , and is given by:S = ~ (n . Q . n) . The magnitude of the biaxial scalar 

order parameter P is the molecular alignment in a plane perpendicular to the direction of 

uniaxial direct or n , and is given by:P = ~ (m· Q . m -1· Q .1) . On the principal axes, 

the tensor order parameter Q is represented as: 

-i(S-p) ° ° 
Q= ° -i(S + P) ° (3.3) 

° ° 'J.S 
3 

both 8 and P are positive for normal disc-like uniaxial nematie liquid crystals. According 

to equation (3-3), the model is able to describe biaxial (8#0,P # 0), uniaxial (8#0, P=O), 

and isotropie (8=0, P=O) states. The isotropie state is the zero tensor: Q =0. Defects 

are regions of molecular size in which orientational order (8, P) sharply changes. These 

localized disordered regions are in principle captured by mesoscopie models sinee Q remains 

weIl behaved. The eigenvalues of Q capture molecular information and the eigenvector 

describe macroscopie orientation, and henee the Landau-de Gennes model is a multiscale 

model [9]. 

Mesophase Elasticity. In the Landau-de Gennes theory the free energy density 

difference between nematie and isotropie state is expressed in terms of Q and its spatial 

gradients (\7Q) [30, 31]. The total elastie free energy density f is given by the sum of 

homogenous fh and gradient fg contributions: 

(3.4) 
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The homogeneous free energy density fhrepresents the free energy difference between the 

liquid crystal and isotropie phases and may be expressed as a power series in Q [9]: 

1 ( ) 1 1 fh ="2% T - Tref (Q: Q) - 3bQ : (Q.Q) + "4c(Q : Q)2 (3.5) 

where ao, b, and c are constants, and Tref is the liquid crystal-isotropie transition tempera-

ture [6]. The homogeneous energy describes energy changes due to molecular ordering. The 

isotropie state corresponds to zero homogeneous energy, while for the stable liquid crystal 

state corresponds to negative homogeneous energies. The gradient elasticity fg (\7Q)can 

be decomposed into thee contributions: 

fg (\7Q) = fg1 (\7Q) +fg2 (\7Q) +fg3 (Q, \7Q) (3.6) 

These three contributions arise naturally since mesophases are intrinsieally anisotropie[31]. 

The three contributions can be shown to be [31-33]. 

1 
fg1 ="2L1 \7 aQ,a')' \7 aQ,a')' (3.7a) 

1 
fg2="2L2 \7 aQa')' \7 ,aQ,a')' (3.7b) 

1 
fg3 = "2 L3 Qa,a \7 aQ')'8\7 ,aQ')'8 (3.7c) 

where a, (3",8 = 1,2,3 denote the components along the three orthogonal axes in the 

Cartesian coordinate system, and \7 i denotes the partial derivative~. AlI throughout 

the thesis summation over repeated indices is implied. The coefficients LI, L2, L3, are 

constant phenomenologieal parameters dependent on the liquid crystal. In the one-constant 

approximation, L2=L3=0, and the material is assumed to be eiastieally isotropie. The 

gradient energy fg is always non-negative:fg ~ O. In the presence of defects and distortions 

the gradient energy is always positive:fg > O. For spatially homogeneous states the gradient 

elastie energy vanishes:fg = o. In the definition of the total energy density (eqn. 3.4), for 
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the sake of simplicity we have neglected the free energy of the isotropie part, and influence 

of any external field and any surface energy contributions since we are interested in studying 

the bulk only. 

To discuss and characterize orientation process it is useful to consider the contribu-

tions due to orientation gradients. For most relatively low molar mass liquid crystals we 

can safely set L3=0 without missing any first order process. In the absence of biaxiality 

(P=O) and deviations from equilibrium in the order parameter, the tensor or der parameter 

simplifies to: 

where the equilibrium order parameter is given by:. 

Seq = ~ [1 + 
4c 

(24aoc (T - Tre f )) 
1- b2 

(3.8) 

(3.9) 

Using eqns. [3-(6-8)] and the conditions stated ab ove , the elastic energy density due to 

orientation gradients becomes: 

(3.10) 

In dassiealliquid crystal elasticity [6], the elastie free energy density is given by the Frank 

free energy fF: 

(3.11) 

where (Kll,K22,K33) are the twist, and bend elastie constants, respectively. Comparing 

eqns.(3-1O) and (3-11) under the assumption of splay-bend isotropy (Kll = K 33 ) the rela­

tions between the Landau-deGennes and Frank constants are [33]: 

L _K22 
1-282 

eq 
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L _Kn-K 22 
2- 282 

eq 
(3.13) 

The necessary condition for the stability of equilibrium liquid crystal configuration is that 

the gradient energy must be positive and this restricts the Landau-deGennes coefficients 

as follows: 

(3.14) 

For carbonaceous mesophases it was shown [35] that L2 <0, and the twist deformation is 

the most costly. It is thus expected that for most cases, planar splay-bend 2D structures 

are more favorable than twisted structures. 

Microstructure Evolution 

To describe the evolution of microstructures in carbonaceous mesophases dynamical 

equations for the tensor order parameter must be derived. For viscoelastic materials, 

relaxing the absence of fiow, the dynamics obeys the following equation: 

dQ 
,(Q)cit 
~ 

viscousresistance 

(:~ysl 
~ 

elasticdrivingforce 

(3.15) 

where the viscous resistance is due to the rotational viscosity of the mesophase and the 

driving force originates from a decrease in the total elastic free energy F of the system: 

F = J fdV = J (ih + fg) dV (3.16) 

v v 

The coefficient, in eqn.(3.15) is the rotational viscosity, 8F/8Q is the Volterra variational 

derivative [36], and the superscript [s] denotes symmetric and traceless property. The 

evolution equation (3-15) can also be derived using irreversible thermodynamics [6, 30]. 

The rate of entropy production b. under isothermal conditions for a relaxing mesophase is 
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given by [6, 30J. 

dQ ( 6F)[SJ 
~ = dt: - 6Q + t : V'v (3.17) 

Expanding the fluxes (~, t) in terms of forces ( ( - t~) [sJ , V'v ) 

( 
d

Q

) (f3 
dt 1 

t - -f312 
(3.18) 

where the f3's are phenomenological coefficients. In the absence of flow(V'v = 0), choosing 

f31 = 1/, we obtain eqn. (3-15). Nondimensionalization is useful to characterize pro cesses 

and diminish the number of parameters. The free energy density equation (3-4, 3-6, 3-7) 

is made dimensionless by using the following parameters [34J. 

f*=_f_ 
<pkT 

(3.19a) 

T ref 
(3.19b) U=3-

T 

ao = <pk (3.19c) 

b = c =<pkTU (3.19d) 

€=[lir <pkT 
(3.1ge) 

{)= L2 
LI 

(3.19f) 

L3 
(3.19g) K,= -

LI 

* 
V' = V'*H; (3.19h) 13n 

Seq = "4 +"4 1 - 3U (3.19i) 
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In the isotropie region U<8/3, for 8/3<U<3 there is biphasie equilibrium where nematie 

and isotropie regions coexist and for U>3 the phase is uniaxial nematic.cp, k are number 

density of molecules and Boltzmann's constant respectively. The parameter ç is the co­

herence length [6] and is of molecular length size. It is the distance over which the scalar 

or der parameter fluctuations are correlated in the sample of a given volume. H is the 

external length scale of the system in our case the radius of the cylinders. 1'J, '" are the 

dimensionless Landau Elastic constants and describe the materials elastie anisotropy. 

The dimensionless free energy density thus becomes [34]: 

(3.20a) 

fh=~ (1- ~) (Q: Q)_ ~Q :(Q.Q)+ ~(Q: Q)2 (3.20b) 
, .1 

v 

dimensionless short range Energy 

* ç2 (1 * * 1 * * 1 * * ) 
fg = H2 2 Y Q,6, Y Q,6, + 21'J Y Qa,1 Q,6, + 2",Qa,6 y Q,o 1 Q,o (3.20c) 

, 1 
v 

dimensionless long range energy 

The total dimensionless free energy of the system can be expressed in terms of dimensionless 

free energy density (20) for a given sample of volume V as: 

F* = J j*dV 
v 

Using eqns. (3-17, 3-18, 3-20, 3-21) the dynamic equation for Q becomes [6]: 

dQ _ 8F* _ [âF* * âF* 1 [s] 
-,(Q) dt* - 8Q - âQ - \7 ._*­

â\7Q 

t* = cpkTt 

(3.21) 

(3.22a) 

(3.22b) 

The rotational viscosity ,(Q) affects only the speed of the transient pro cess and has no 

effect on the steady-state solution hence in the simulation it was fixed to unity. 
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Combining (20) and (22) we obtain the 2D dimensionless time evolution equation for 

the tensar arder parameter Q(x*, y*, t*) : 

(3.23) 

Since Q is symmetric and traceless, eqn.(3-11) represents five coupled partial differential 

equations. 

Energies and Forces in Disclination Lines and Disclination Lattices 

The objective of this subsection is to provide the necessary background that describes 

the driving forces behind the formation of the superdisclination shown in Fig.(3-2). Discli­

nation Hnes are described by singular solutions to the Frank elasticity given in eqn.(3-7). 

In particular wedge Hnes are obtained for planar 2D directar fields with the discHnation 

Hne along the axis of rotation of the direct or . The direct or n orientation in the vicinity of 

a wedge disclination Hne is best analyzed using a polar cylindrical coordinate system (r,a). 

To satisfy the unit length restriction (n . n = 1), we parameterize the direct or as follows: 

{ 

nr = case (a) 

no: = sine (a) 
(3.24) 

assuming that outside the defect cores, the scalar order parameter is constant and equal 

to its equilibrium value, S=Seq (see equation (3-9). The gradient free energy density then 

becomes: 

(3.25) 
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where we used eqns.(3-11) and isotopie elastieity assumption (K=Kll = K 22=K33 ). Replac­

ing this last equation in the governing equation (3-22a), assuming steady state, we get the 

classieal Laplace's equation of orientation elasticity that governs the steady planar (2-D) 

director field of a nematie liquid crystal in any geometry [6]: 

(3.26) 

A general singular defect solution of the Laplace equation in polar (r, a) coordinates to 

the direct or angle () is [6]: 

()(a)=sa+c (3.27) 

where c is an arbitrary constant and s is the strength of the defect. This singular solution 

is independent of the radial coordinate [6]. These singular solutions are known as wedge 

disclination lines and always observed in nematie liquid crystals [6]. The name nematie 

means thread and refer to the disclination lines observed under cross polarizer [6]. Since 

the direct or orientation angle () is governed by the linear Laplace operator \72, the principle 

of superposition can be used to describe textures with two or more defects. The general 

solution to the Laplace equation in the presence of arbitrary number N of defects of strength 

Si, at a point Pi, is [14]: 
N 

B= LSiai+c 
i=l 

(3.28) 

where ai is the polar angle of the ray originating at the defect of strength Si and ending at 

point Pi, C is a constant and B is the direct or angle at any point Pi. For a 2D disclination 

lattice with square symmetry, the (Xi,Yi) location of the singular lines obey: 

Xi+! = Xi + H,Yi+l = Yi + H (3.29) 

where H is the lattiee spacing. 
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In a defect lattice at equilibrium the total charge of the network must be zero [9, 13]: 

N M 

Lst+ LS:; =0 (3.30) 
i=l i=l 

where the superscript denotes the sign of the charge. To satisfy charge neutrality if there 

are N disclinations of strength s=+ 1, the total negative charge in the system should be: 

M 

LS:; =-N (3.31) 
i=l 

If the negatively charge disclinations are or strength s=-I, then M=N. As explained below 

that the preferred negatively charge disclination are of strength s=-1/2, and hence M=2N. 

The energy per unit length W of an isolated wedge disclination of strength s in a circular 

layer of radius R is given by [9]: 

(3.32a) 

211" R 

W= ~ !C\10)2dXdY=Wc+! da! flrdr=Wc+7rKS2ln(~) (3.32b) 

o Tc 

where rc is a eut-off radius of molecular size , and Wc is the core energy . As R ---t 00 

the energy diverges,W ---t 00, logarithmically. Since W scales with S2, defects of strength 

greater than ±1/2 will tend to dissociate into ±1/2 defects. This observation agrees with 

the data of Fathollahi and White [15, 16], where the s=-1 disclination splits into two s=-1/2 

disclination. For a given equilibrium square lattice of N disclinations of charge s=+I, the 

analytical calculation of the exact location of the balancing 2N disclination of charge s=-1/2 

is a non-trivial problem that is beyond the scope of this work. The experiments of White 

and co-workers [15,16] for hydrodynamic structuring clearly indicates that the s=-1/2 tend 

to lie on average on one of the two diagonals of the unit square lattice. The selection of this 

spatial distribution can be argued using disclination-disclination attractive and repulsive 
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interactions. Following the previous single-defect energy calculation procedure (eqns. (3-

32a,b)), the energy per unit length W associated with two defects of strength SI and S2, 

separated by a distance r12 is readily found [6, 14]: 

27r R 

W=Wc + J da J flrdr=Wc+1TK(Sl+S2)2In(~) -21TKSlS2In(;~:) (3.33) 

o Tc 

where rc « r12 < R . Then the interaction force F12 per unit length between two defects 

is then [6, 14]: 

(3.34) 

which shows that the force F12is inversely proportional to their separation distance r12, 

and that defect pairs of like sign repel and defect pairs of opposite sign attract. Hence if 

we consider a unit cell with s=+1 disclinations at the corners and two s=-1/2 along the 

diagonal, mutual repulsion between the negative charges is partially balanced by attractive 

forces between unequal charges. As shown below by computer simulation, total force 

balance is achieved by considering interactions with aIl charges in the network and not 

only with the nearest neighbours. 

Microstructural Computational Modeling 

The emergence of the defect lattice is studied by solving the governing dynamical equa­

tion (3-23) under the constraints eqn.(3-1). In this paper we report solutions using the one 

constant approximation ('I3,K, = 0) which is equivalent to Kll = K22= K33. This simplifica-

tion does not miss any important physics in the microstructural process described in this 

paper, as the simulations capture the superdisclination in a self-selected way. Since the 

defect lattice is a 2D texture, the eigenvalue 1 in equation (3-1) is fixed along the z* direc-

tion. The governing equation is a set of five non-linear coupled parabolic reaction-diffusion 
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equations. The auxiliary data for: (i) computational domain, (ii) boundary conditions, 

(iii) initial conditions, (iv) parametric values, are as follows. 

Computational domain:The 2D computational domain consists of the area enclosed 

by external and internaI boundaries (see Fig.3-3). The external boundaries Eb are 

the unit square. The internaI boundary lb are a lattice of small circular cylinder of 

dimensionless radius H*=O.05. The fiber lattice has a dimensionless length L *=5. 

ii Boundary Conditions: On the external boundary Eb the boundary conditions are 

periodie, thus simulating an infinite lattiee with no edge effects: 

aQ aQ aQ aQ 
Q(x = -L * /2) = Q(x = L*/2), By Iy=-L* = ay IY=L*' ax Ix=-L* = ax Ix=L* 

(3.35) 

here L * represents the dimensionless sample widthj in this paper L *=5. This type 

of boundary condition ensures the periodicity of the structure in space and presents 

no additional boundary constraints whieh might affect the system. On the internaI 

boundaries, the following Dirichlet boundary conditions are implemented: 

t* > O,Q=Qo (3.36a) 

(3.36b) 

where 8r is a radial unit vector emanating from each fiber. The internaI boundary 

conditions represent a lattice of +27r wedge disclinations [15, 16] embedded in the 

computational domain. 

iii Initial Conditions ln the initial state the system was quenched from isotropie state. 

Mathematically for the bulk mesophase the initial condition can be written as: 

(3.37) 
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Here nini is a random eigenvector and the initial scalar or der parameterSo :::::! O. This 

initial condition is spatially inhomogeneous, since at each mesh point the both Sand 

n are randomly selected and hence is a good representation of the isotropie phase. 

iv Parametric Values: The parameter vector V is V= (ç/H, U). The length scale ratio 

ç/H represents the ratio of a defect core diameter to the fiber diameter. In this work 

we use ç/H=0.01 due to numericallimitations. In actual experiments ç/H is much 

smaller, but as shown below this parametric selection captures the essence of defect 

lattice formation and its stability. The problem has an external length scale Le and 

internal length scale Li defined as: 

(3.38) 

where H is the radius of the cylindrical inclusion. In order to accurately capture 

the fluctuations in scalar order parameter S, the coarsest mesh size should always be 

smaller than the correlation length ç (eqn. 3-19) which is of molecular length scale [6, 

9] and is a ratio of the characteristic long range energy density (LI) and characteristic 

short range energy density (<pkT). The nematic potential U (i.e. dimensionless tem­

perature) was set to U=3.55, which gives equivalent scalar order parameter of Seq= 

0.62. Simulations at higher and lower temperatures did not affect the microstructural 

features of the results. 
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Figure 3-3: Schematic of the computational domain used for simulating the stable super­
disclination array shown in Figure 3-2. The cylindrical inclusions arranged in a square 
array pattern have strong homeotropic anchoring mimicking the +2 disclinations as in the 
experiments of Fathollahi [15, 16]. The size of the unit square is L*=5. The radius of each 
fiber is H*=O.05. 

The governing equations (3-23) were solved using finite elements method with tri­

angular elements, and quadratic interpolation, and Femlab software [43]. Suitable 

time integration was implemented and convergence and mesh independence following 

standard procedure were established. 

3.3.2 Optical Modeling 

Liquid Crystal Optics 

Carbonaceous mesophases are composed of disk-like molecules. The thermodynamic 

phase of carbonaceous mesophases is the discotic nematic liquid crystal state [1]. The 

discotic nematic molecules are optically uniaxial and its dielectric anisotropy is negative in 

the optic axis normal to the molecules in contrast to the classical nematic phase of rod-like 
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molecules [7]. Furthermore, carbonaceous mesophases are opaque materials which have 

complex refractive index; therefore in order to investigate textures reflection polarized 

optical microscopy (RPOM) is commonly used instead of transmission polarized optical 

microscopy (TPOM). 

Matrix-type optical methods based on the stratified approach such as Jones 2x2 

method [37, 38] and Berreman method [39-41] have been widely used in or der to study 

optical response of liquid crystals which are optically anisotropic and exhibit different het­

erogeneous orientations. Matrix-type optical computation methods have been widely used 

in liquid crystal displays [39] based on thermotropic low-molar mass rod-like nematic liquid 

crystals. Since thermotropic low-molar masS rod-like nematic liquid crystals are transpar­

ent, the transmission of the polarized light between two crossed polarizer's are used. How­

ever, Bortchagovsky [37] used the Jones method for reflection polarized light microscopy in 

order to study optical properties of carbon materials, pyrolytic carbon deposits since this 

anisotropic material is opaque. 

The Jones method is restricted to the normal incident case and it is not able to capture 

multiple reflections due to existence of different mediums. The Berreman method over­

cornes the limitation of the Jones method by introducing multiple reflections and oblique 

incidence cases [39]. However, another major restriction remains in the matrix-type meth­

ods due to the assumption that the variation of the dielectric tensor occurs only along the 

direction of wave propagation. In spite of these limitations on the matrix-type method, 

these methods are a valu able tool to investigate orientation of optically uniaxial materials 

in which a slow variation of the dielectric tensor occurs along the transverse directions and 

they are still widely used due to its simplicity. A complete characterization of all current 

TPOM methods for low-molar mass thermotropic nematic liquid crystals has been recently 

performed [42]. 
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In this paper the Berreman method for RPOM adapted to opaque carbonaceous mate-

rials of negative electric anisotropy is developed and used to simulate the optical response 

of disclination lattices in carbonaceous mesophases. 

Reflection Polarized Optical Microscopy 

The monochromatic incident light E = Eoeiwt is introduced into the computational 

space; E is the electric field of amplitude Eo and angular frequency w and t is elapsed time. 

The entire medium can be approximated by a stack of homogeneous cubic lattices in which 

each lattice is assumed to contain be a homogenous medium. 

Linear differential equations for the tangential components of the electric and magnetic 

field can be derived from Maxwell's equations with an assumption that a slow variation of 

the dielectric tensor occurs along the transverse directions: 

d'l/J = -i~~(z)'l/J 
dz c 

(3.39a) 

(3.39b) 

where c is the velo city of light in vacuum, z is the propagation direction, E =(Ex,Ey) is 

electric field vector, and H = (Hx ,Hy) is the magnetic field vector. The space-dependent 

matrix a (z) mainly depends on the dielectric constants, the birefringence, and the Euler 

angles of the local direct or n . The solution vectors for the transmitted and reflected waves 

based on the solution of the first arder linear equation (3-39 a) can be expressed by: 

(3.40a) 

(3.40b) 

The transmitted waves 'l/Jt and the reflected waves 'l/Jr are now obtained by use of the 

total transfer matrix F with the incident light 'l/Ji. The polarization, the retardation, 

absorptions, and the reflection of the polarized incident light due to the variation of the 
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optic axis and the existence of different media are computed in the total transfer matrix F 

which contains information on the refractive index of the materials, within the computation 

domain in equation (3-40 b). The total transfer matrix F can be obtained by the 

multiplication of the local transfer matrix P i which representing each homogenous cubic 

lattiee i with the thickness h. Since each cubie lattice is assumed to be homogenous within 

the thickness, so that the local transfer matrix Pican be expressed by the following series: 

.w iwh 1 iwh 2 2 1 iwh 3 3 
Pi(h) = exp('l-.6oh) = 1 + -a + -2

1 
(-) a + 3

1 
(-) a + ......... . 

cc. c . c 
(3.41) 

The incident wave 'l/Ji, the reflected wave 'l/Jr , and the transmitted wave 'l/Jt can be expressed 

in terms of electric components only since the magnetie components are proportion al to 

the corresponding orthogonal electrie components, where the proportionality constant is 

the refractive index of the medium whieh must be isotropie and of a nonmagnetie ambient 

medium. Now, the three waves are given by 

Ext Exi -Exr 

'l/Jt= 
ntExt 

'l/Ji= 
niExi 

(3.42) 
Eyt Eyi Eyr 

ntEyt niEyi 

where Exi and Eyi are the electric components of the incident wave, Exr, Eyr, Ext 

and Eyt are the electric tangential components of the reflected and the transmitted waves 

respectively, and nt,ni,nr indicate the refractive index of transmitted, incident and reflected 

wave respectively. 

In the initial step of the computation for the reflection light, the known incident 

wave, Exi andEyi, whieh are linearly polarized along the x direction, is introduced to the 

computational space. The solution vectors, the reflected wave and the transmitted wave 

are spontaneously obtained after solving the equation (3-40a,b). Finally, the intensity of 
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the reflected wave is obtained by considering the crossed analyzer which is along the y 

direction. Detailed mathematical description of the Berreman 4x4 method can be found 

in [40-42]. 

The optical constants chosen for carbonaceous materials are n..l =2.15+i1.42 and nll=1.81 

with wavelength 546nm [7]. 

3.4 Results and Discussions: 

3.4.1 Disclination Lattice Microstructure 

As mentioned above White and co-workers [15, 16] observed a regular array of +27f 

and-7f disclinations in their screen flow experiments with carbonaceous mesophase pit ch 

(fig. 3-2). In order to analyze and study the dynamics of this unique texture in detail 

we use a regular square arrangement of cylindrical inclusions as shown in Fig.3-3. Each 

cylinder along with homeotropic boundary condition at their surface as described before 

indicates a concentric + 27fdisclination. In order to maintain a zero total topological charge, 

stable negatively charged disclinations must arise in the system due to the distortion in 

the director field thus forming a superdisclination array [16] of +27f and - 7f disclinations. 

The initial configuration corresponds to a random state of directors inside the system 

as in the isotropie state with the initial Scalar Order parameterSo ~ Owhich happens for 

U<8/3. The system st arts evolving as the temperature reaches the nematic-isotropic phase 

transition temperature controlled by the parameter U. 
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(a) 

(b) 

Figure 3-4: (a) Computed gray scale plot of steady state scalar order parameter for the 
super-disclination array with U=3.55, *=0.01. In the plot the low scalar order parameter 
(So ~ 0) is black and high order parameter (So ~ Seq) is gray. (b) Zoomed view of the 
direct or profile for a square cell. 
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Fig. 3-4a is the steady state scalar order parameter profile for U=3.55, :k=0.01, and 

under isotropie elastic constant assumption. The results indieate the presence of two -7r 

defects per square ceIl formed by four simulated +27r disclinations forming a stable array 

of disclinations. In the figure black regions indieate the -7r defects and gray region indieate 

the nematie state. The result matches very weIl with experiments [15, 16Jshown in Fig.3-2. 

In Fig. 3-4b which is the close view of direct or profile, the two - 7r defects for every 

square ceIl can be seen clearly. These defects lie along one of the diagonals of each square 

although insignificant deviations do result from finite computational accuracy. The defect 

array presents complexity in computing an analytieal solution for defect separation due 

to multiple force interactions among the defects however statisticaIly speaking the average 

defect distance was found to be 0.3616 in dimensionless units. 

Fig. 3-5a, b shows the computed visualization of the scalar order parameter and the 

zoomed director profile for the intermediate state for dimensionless time t*=130. 

The simulations suggest that initially the texture goes through a formation of - 27r 

defect. As the time proceeds defect splitting occurs and two - 7rdefects form which sub­

sequently st art move away from each other due to the repulsive force between them and 

attractive force with the neighboring +27r defects. Eventually the two -7r defects come to 

an equilibrium position where the net force is balanced. 
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Figure 3-5: Computed visualizations of (a) scalar order parameter field S and (b) zoomed 
director field n at time t*=130, for the same parametric conditions as in fig. 3-4. 
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Fig. 3-6 shows the time evolution of dimensionless long range and total energy. The 

equations for long range and total energy can be obtained by integrating eqn. (3-20) over 

the sample volume. The increase in the long range energy at time t*=150 indicate the 

transformation from a-21r disclinations. The long range energy then decreases to reduce 

the gradients. The reason for splitting as explained in detail before is that the long range 

energy scales with s2 where s indicates the strength of the disclination. Based on this 

argument it seems logical that the two disclinations of rotation - 1r and strength -1/2 will 

have lower energy than of a single defect with rotation -21rand strength -1. The total 

energy decreases as expected from the minimization theory . 
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Figure 3-6: Dynamic evolution of dimensionless gradient and total energy. 

3.4.2 Computational Reflection Polarized Optical Microscopy 

The optical simulations of equilibrium disclination lattices were performed as follows. 

Firstly, the direct or profiles were obtained by extracting the main eigenvector of the tensor 

or der parameter corresponding to the equilibrium disclination lattice, shown in Fig. (3-2). 

Once the director field is known, the space-dependent dielectric tensor is calculated, and 

then the intensity of refl.ected light is computed as explained above. 
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Figure 3-7. shows optical images of the refl.ected polarized light computed using the 

Berreman method based on the simulated director structure of the superdisclination. The 

characteristic feature of this figure is the presence of two and four brush features. The 

spatial distributions of the centers of the four brush features form a lattice of square 

symmetry. The two brush features lie on the diagonals of this square lattice. The source of 

this complex pattern is as follows. As is weIl known in liquid crystal optics [6], observing 

wedge disclinations under cross-polars gives rise to typical brush figures. The number of 

brushes B is related to the wedge disclination strength s by: 

B=4s 
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(b) 
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Figure 3-7: The optical textures (a) The experimental optical textures [16] reprinted with 
permission of Taylor and Francis (b )Simulated optical textures using the Berreman method 
based on the simulated director profiles shown in Fig.(3-4) 

Renee s=+l disclinations result in four brushes, while s=-1/2 disclinations result in two 

brushes. The simulated optical images thus correspond to the disclination lattiee shown in 

Fig. (3-4). 
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3.5 Conclusions 

An integrated computational mierostructural and optieal model of disclination lattices 

in carbonaceous mesophases filled with small fibers has been developed, solved, and vali­

dated with experimental data from hydrodynamie structuring. The mierostructural model 

is used to predict the orientation and defect texture in the discotic nematie ordering in the 

carbonaceous mesophase. The optieal model is used to validate the mierostructural model 

by comparing the optieal response with available experimental data. 

Inserting mieron-sized particles on mesophases creates a disclination network. If the 

particles display positional ordering (colloidal crystal ordering), the defect network will be a 

defect lattice. In the present paper we have studied a colloidal crystal of square symmetry, 

with the aim of characterizing the resulting defect network structure. The microstructural 

model predicts the formation of a disclination network of square symmetry, composed of 

a square lattice array of +27r disclinations and an array of -7r disclination lines along the 

diagonals of the square lattiee. The disclination lattice is a robust superstructure that is 

self-selected and emerges by quenching a disordered isotropie pitch. 

The most direct way to validate texture modeling of a nematic liquid crystal is po­

larized optieal mieroscopy. For opaque materials, reflection mieroscopy is used. In the 

present paper the reflection optieal mieroscopy model predicts an ordered array of two and 

four brushes, corresponding to the +27r and -7r disclination array. A comparison between 

simulations and experiments show excellent quantitative agreement. 

In this paper we have shown a pathway to create carbon-based materials with designed 

micro-architectures. Positional order in filler particles are shown to be translated into de­

fect lattices in the suspending matrix. Defect lattices are a topie of current interest since 

they arise in a number of naturai liquid crystalline phases, including the blue phases of 
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DNA solutions. In this paper we have shown that disclination lattices are stable hierarchi­

cal superstructures that contain positional and orientational order and low symmetry. The 

dual ordering may be manipulated to design and control high strengthjhigh conductivity 

materials. The new integrated structural-optical model allows for a complete characteriza­

tion of carbonaceous mesophases and can be easily extended to flowing systems, and other 

natural and synthetic liquid crystalline materials. 
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CHAPTER 4 
Texture Modeling in Carbon-Carbon Composites based on Mesophase 

Precursor Matrices 

4.1 Abstract 

A computational modeling study of texture formation in carbon-carbon composites 

based on carbon fibers and carbonaceous mesophase precursors is presented. The model-

ing predictions on texture formation and disclination structures are quantitatively validated 

with extensive experimental data. The number and type of disclinations displayed by the 

carbonaceous mesophase matrix is shown to be governed by the elasticity of the mesophase, 

the carbon fiber-mesophase interfacial energy, the size of the fibers, and position al arrange­

ment of the fibers. The simulations provide new insights on the fundamental principles 

that govern texturing and disclination nucleation, and on how to control the structure of 

carbon-carbon composites through fiber concentration, fiber cross-section, and fiber-matrix 

interaction. 

4.2 Introduction 

Carbon-carbon composites (C/CC) are industrial materials used in the defense, sports, 

and transportation industries [1, 2, 3]. Tailoring mechanical property profiles and transport 

functionality usually leads to uses of different precursors as weIl as different processing tech-

niques. The use of carbonaceous mesophases (CM) as matrices has the potential to offer 

advantages in the development of advanced CIC composites, since the matrix microstruc­

ture can be manipulated during the formation stage. This paper presents a computational 

study of texture development during the formation of CIC composites consisting of carbon 
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fibers embedded in carbonaceous mesophase precursors. Experimental data in CjC com­

posites based on carbon fiber-mesophase carbon precursors, related to the present study, 

has been widely documented by Zimmer and White [4, 5]. Optimization, control of prop­

erty profiles and functionality, as weIl as science-based manufacturing requires a better 

understanding of the fundamental principles that control microstructural features of the 

composite. As shown below, a unique feature of using CM precursors is the fact that 

inserting mieron size fibers has a structuring effect on the mesophase. In this paper we 

simulate textures in the mesophase, while the experimental textures [4, 5] are obtained 

after carbonization. The premise of the present work is that significant texturaI features 

present in the mesophase state are preserved after carbonization. Since the simulation 

results are in excellent agreement with experimental textures, it is more than reasonable to 

conclude that our modeling premise is correct. Moreover previous simulations of texture 

development in the fiber spinning of mesophase precursors [6] are in excellent agreement 

with experiments, giving additional evidence to the assumption that significant aspects of 

mesophase texture are retained after carbonization. 

Carbonaceous mesophases are discotie nematic liquid crystals, characterized by ori­

entational order and positional disorder. Mesophases fiow like viscous liquids but due to 

their orientational or der , they are anisotropie as crystalline solids. A unique characteristie 

of liquid crystals including CM is their orientational response to surfaces, interfaces, fiow 

fields, and electromagnetic fields. In CjCM composites the carbonaceous mesophase cornes 

in contact with a dispersion of carbon fibers that affect the orientation of the mesophase 

based on their characteristie size. The intensity of the texturing process, such as the num­

ber of disclinations and the orientation gradients in the mesophase, depends on the nature 

of the fiber-mesophase interface and on the diameter of the fiber. The fiber-mesophase 

interfacial interaction is characterized by the anchoring coefficient ran([==] energyjarea), 
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whose sign determines whether the mesophase orientation is edge-on ('Yan >0) or face-on 

ban <0). The effect of substrate chemistry on mesophase interfacial orientation has been 

characterized [7]. For the present case, it has been found that the mesophase orients face-on 

with respect to the carbon fiber [4, 5]. The orientation gradient elasticity [8] of carbona-

ceous mesophases is due to basic distortion modes known as splay, bend, and twist [8], and 

is characterized by the Frank modulus of elasticity K ([==] energy/length). Embedding a 

circular fiber of radius R in an infinite mesophase will result in an orientational distortion 

only if: 
K 

.eextrapolation = -1 -1 < R 
'Yan 

(4.1) 

where .eextrapolation is the extrapolation length and is a property of the interface ('Yan) and 

the mesophase elasticity (K). The magnitude of the extrapolation length indicates whether 

the distortion created by immersing an object in the mesophase is absorbed by the bulk or 

by the interface. When .eextrapolation < R it is energetically favorable to distort the matrix, 

and when .eextrapolation > R, it is energetically favorable to distort the relative orientation 

between the mesophase and the object. The regime .eextrapolation < R is known as 'strong 

anchoring", and .eextrapolation > R is known as "weak anchoring" [9]. In addition when 

.eextrapolation < R the distortion is usually confined to a close region by the appearance 

of disclination lines (fibrous objects) or disclination points (spherical objects). Figure 4-1 

shows a schematic of a circular carbon fiber embedded in a carbonaceous mesophase for: 

(a) strong anchoring with face-on interfacial orientation, and (b) weak anchoring, the Hnes 

indicate the orientation of the directors. Figure 4-1 shows that under strong anchoring two 

disclinations arise closer to the interface and the mesophase orientation displays bending 

distortions. For typical mesophases and micron-thick carbon fibers, experiments (see Figure 

4-2) shows that strong anchoring holds, and hence C/C composites will inevitably have a 

number of disclinations. 
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f extrapolation < R f extrapolation > R 

(a) (b) 

Figure 4-1: Schematic of carbon fiber embedded in a carbonaceous mesophase matrix 
at different anchoring regimes: (a) strong anchoring with face-on interfacial orientation, 
when lextrapolation < R, and (b) weak anchoring, when lextrapolation > R. The lines in both 
plots represent a side-view of the molecular planes; see Figure 4-2 for an actual composite 
structure under the strong anchoring regime. 

Texturing in C/C composites includes disclination nucleation phenomena from multiple 

fiber effects. At high fiber density three, four, and higher, multi-fiber clusters encircle 

mesophase domains and give rise to disclination nucleation from multiple surface anchoring. 

The rules of disclination nucleation in multiple fiber arrangements have been characterized 

experimentally [5], and will be discussed in Section 4.2 below. Figure 4-2 shows a typical 

texture in C/CM composite [5]. The figure shows the random arrangement of circular and 

wedge carbon fibers and the texture in the mesophase. The figure indicates that according 

to the type of multi-fiber arrangement different types of disclinations arise; disclination 

characteristics are discussed in section (4.2) and in the literature [4, 5]. For example on 

the upper left a four fiber configuration gives rise to a -21l" defect [5], while on the lower 
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left the figure shows that a three fiber configuration gives rise to a -7r disclination. The 

dependence of textures on fiber density and fiber arrangement is the focus of this paper. 

, . -, 
5 : -1 ft ~::::--_..J 

Figure 4-2: Alignment of mesophase layers in a random arrangement of fibers. Disclina­
tions of -7rand -27r are found in the matrix with -7r having a discontinuous core whereas 
-27r have continuous cores. Adapted from [5]. Reprinted with permission of Elsevier. 

The specifie objectives of this paper are: 

(1) Use computational modeling of texturaI pro cess in CjCM and replicate the main 

texturaI features of Figure 4-2, including disclination types. 

(2) Provide a fundamental understanding of the pro cesses that govern textures in 

CjCM composites. 

The organization of this paper is as follows. 

Section 4.3 presents the theory and model formulation for texture evolution, emphasiz-

ing concepts and principles; a detailed discussion of the model has been presented elsewhere 

[10]. Section 4.4 presents, discusses and validates the microstructural results. Conclusions 

are given in section 4.5. 
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4.3 Theory and Modeling 

A unique feature of carbon-carbon composites based on mesophase precursors is the 

distortion of the mesophase in response to the embedded carbon fibers. To assess the 

texturaI impact of embedded circular carbon fibers on a carbonaceous mesophase matrix, 

we develop and solve a model that is able to describe the spatiotemporal behavior of 

the average molecular orientation of the mesophase. The model is based on the Landau-

deGennes theory for liquid crystals, adapted to carbonaceous mesophases. A detailed 

description of the model and successful applications to microstructural modeling in pitch­

based carbon fibers of circular and ribbon shape have been presented before [6, 11]. In 

the present paper the number, size, and location of the carbon fibers are known and the 

texture of the mesophase matrix is the unknown. 

4.3.1 Microstructure Modeling 

The orientational texture of the mesophase is analysed in terms of tensor order para-

meter Q [8, 10] defined as 

1 1 
Q = S(nn - -<5) + -P (mm -Il) 

3 3 
(4.2) 

The orientation is defined completely by the orthogonal director triad (n, m, 1) which are 

the uniaxial direct or , and the biaxial directors respectively. The scalar order parameter S 

is a measure of the molecular alignment along the uniaxial director n and P the biaxial 

scalar order parameter is the molecular alignment in a plane perpendicular to the direction 

of uniaxial director n . The spatiotemporal microstructure evolution of the mesophase is 

obtained by solving the torque balance equation: 

oQ 
,(Q)-at 
'-....--' 

viscous resistance 

(:~ysl 
'-....--' 

elastic driving force 
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where the left hand side represents the vis cous resistance, and the right hand size is the 

driving force; the symbol [s] denotes symmetric and traceless condition. The viscous re­

sistance is due to the rotational viscosity ')'(Q) of the mesophase and the driving force 

originates from a decrease in the total elastic free energy F of the system: 

F= j fdV= jUh+fg)dV (4.4) 

v v 

The steady state solution to equation (4-3) minimizes the total free energy F under the 

geometric constraints of the CjC composite, such as orientation of the directors at the 

Carbon Fiber (CF)-CM interface, and number, shape, and locations of the CF's. The free 

energy F is expressed in ter ms of Q and its derivatives \7Q [8, 10], corresponding to the 

homogenous energy fhand gradient energy fg respectively. The gradient terms contribution 

gives the long range elastic force dominant in the nematic phase (Le. mesophase matrix) 

and is expressed in dimensionless form as [10] 

* e (1 * * 1 * * 1 * * ) 
fg = R2 2 Y Q/3')' Y Q/3')' + 2'!9 Y QQ')' ~ Q/3')' + 2 ~QQ/3 Y Q')'8 ~ Q')'8 (4.5) 

, 1 

v 
DimensionlessLongRangeEnergy 

and the homogenous elastic contribution describes energy changes due to molecular order 

[8, 10] and is given by: 

fh= ~ (1- U) (Q . Q) _ U Q . (Q Q) + U (Q . Q)2 2 3 . 3·· 4 . 
, 1 

v 

dimensionlesshomogeneousrangeEnergy 

The nematic potential U is the dimensionless temperature 

U=3
T* 
T 

(4.6) 

(4.7) 

where T* is the isotropic-liquid crystal transition temperature. In the isotropie (disordered) 

region U<8j3, for 8j3<U<3 there is biphasic equilibrium where liquid crystal and isotropie 
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regions coexist, and for U>3 the phase is uniaxial nematic liquid crystal. The parameter 

ç is the coherence length [8], and is the characteristic size of a singular disclination; the 

length scale of ç is in the nanometer range [8, 9]. R is the external length scale of the 

system, which in our case is the radius of the fibers. {J, ri, are the dimensionless Frank 

elastic constants [10] related to splay, bend and twist distortions [8]. 

The CjCM composite model geometry has internaI surfaces and bounding surfaces. 

The bounding surfaces are the edges of the bounding rectangle. The internaI surfaces are 

the circular boundaries between the fibers and the mesophase. Since there are internaI and 

external surfaces we implement two types of boundary conditions: (a) external boundary 

conditions, and (b) internaI boundary conditions. For external boundary conditions (i.e. 

along the outer rectangle) we use periodic boundary conditions, and hence assume that 

the computational domain is replicated ad-infinitum in the two coordinate directions. The 

periodic boundary conditions are passive and allow to capture the essence of the whole 

sample by focusing on a representative unit. In our case the representative unit size was 

taken from real experiments [5]. For internaI boundary conditions we use the so-called 

Dirichlet condition, were the system state is known. In the present case this means that we 

specify Q with a known value. Again the chosen values for Q are taken in part from real 

experiments, as explained in what follows. As mentioned above the disk-like molecules 

of the mesophase pitch tend to align parallel to the surface of the fibers [4, 5], forming 

a circular sheath around the fibers, hence at the bounding surface assuming uniaxiality 

(P=O), Q has the form 

(4.8) 
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where <>r is a radial unit vector emanating from each fiber, and Seq is the equilibrium scalar 

order parameter given by[10, 12] 

(4.9) 

Although the boundary values of the scalar order parameter are not known experimentally, 

the assumed values do not play an essential role in the objectives and/or predictions of 

the model. It will be confirmed posteriori that condition (4.8) leads to excellent agreement 

with real experiments (compare Figures (4-2,3)). Eqn. (4.8) represents a strong boundary 

condition known as homeotropic boundary condition and mimic's the tendency of the 

carbonaceous mesophase layers to align parallel to the surface of the substrates such as 

fibers, as observed in real experiments [5]. 

The solution to the model eqn.(4.3) require initial conditions on the tensor order 

parameter throughout the computational domain. Since the main objective of this paper 

is to characterize the texture selection in CF/CM composites, initially we assume that the 

matrix is isotropic, thus avoiding any biasing. 

The geometric, operating conditions and material parameters are as follows: 

(a) Geometric Parameters: the number, location, and size of the CF's correspond to 

the real experiments [5], shown in Fig.4-2. The wedge fibers used in the experiments 

were replaced by circular fibers in the simulations; this departure causes sorne differences 

in the direct or field but the number and type of disclinations obtained in the simulations 

are in agreement with experiments. The ratio between a disclination core and the CF 

radius is ç/R = 0.0033 , corresponding to fibers of roughly three micron radius. 

(b) Operating conditions: the value of U is chosen to be 3.5 to give an equilibrium 

scalar order parameter value of Seq =0.62. 
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(c) Material Properties: in the present work we have imposed the equal elastic constant 

approximation (Splay = Twist = Bend), which implies {), K,= o. 
The governing eqn. (4.3) was solved using the Galerkin Finite Elements Method 

with triangular elements, quadratic Lagrangean interpolation, and Femlab software [13]. 

Suitable high order implicit time integration was implemented and convergence and mesh 

independence were established following standard procedures. Given the length scale ratio 

of ç/H = 0.0033 , sufficient number of triangular elements had to be used, in particular at 

locations where disclinations appear. 

4.3.2 Textures in Carbon-Mesophase Carbon Composites 

In this section we summarize the main principles and concepts necessary to char ac­

terize the simulations that lead to textures in agreement with Fig.4-2. Qualitatively a 

mesophase texture is described by a spatial disclination distribution. In more quantitative 

ter ms a mesophase texture T can be defined as follows: 

T: {x(CT, s), n(CT, sn (4.10) 

where x denotes the spatial location of the disclinations, and n denotes the number of 

disclinations of core type CT and strength s. The strength is quantized as follows: 

s = ±1/2 (±11") ,±1 (±211") , ±3/2 (±311") , ±2 (±411") , .... (4.11) 

The sign of s denotes the sense of rotation and the magnitude the amount of rotation 

when encircling the defect. The quantities in the parenthesis in eqn.(4.11) denote the 

actual rotation angle; for example a s=-1/2 disclination is also known as a -11" disclination. 

A rigorous discussion and review of disclination in carbonaceous mesophases has been 

presented [4]. In general since the energy of a disclination is proportional to s2, lower order 

disclinations are more abundant. On the other hand in C/C composites, anchoring effects 
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due to several fibers lead to higher order disclinations [5]. Experiments [5] on carbonaceous 

mesophases laden with carbon fibers and generalliquid crystal elasticity theory have shown 

that disclinations can be of escaped core (EC) or singular core (SC). Experiments [5] on 

carbonaceous mesophases laden with carbon fibers, under face-on strong anchoring, show 

that the relation between micron-sized fiber arrangements and disclinations are: 

(a) Triangular fiber arrangement: s=-1/2, CT: singular 

(b) Square fiber arrangement: s= -1, CT: escaped 

These results indicate that at least locally a charge balance equation that governs the 

charge of disclination reads: 

s=_(n;2) (4.12) 

where n is the number of si des in the fiber configuration. For a triangle n=3, and for a 

square n=4. This simple rule describes the defects in Figure 4-2. In the 4-fiber configuration 

in the upper left we have: 

(
4-2) s = - -2- = -1disclination 

and in the 3-fiber configuration in the lower left: 

(3 -2) 1 
s = - -2- = -2disclination 

We next briefly characterize the core type of these disclinations; for an authoritative treat­

ment see the review of Zimmer and White [4]. 

Singular Core Disclinations 

Singular core disclinations commonly observed in carbonaceous mesophase such as 

s = ±! are singular, with a core of molecular nm size, where the ordering of the mesophase 

has been eliminated [14]. The energy per unit length W of an isolated singular disclination 
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of strength s in a circular mesophase layer of radius R is given by [15] 

(4.13) 

271" H 

W = ~ J ('VB)2 dxdy = Wc + J da J ftrdr = Wc + 7rKs2ln (~) (4.14) 

o Tc 

where rc is the radius of the core of the singular disclination and is of molecular size , 

Wc is the core energy . As R ---t 00 the energy diverges,W ---t 00, logarithmically. Since 

W scales with s2, defects of strength greater than ±1/2 will tend to dissociate into ±1/2 

defects, hence we don't expect to see singular high strength disclinations. Cases for singular 

high strength disclinations have been reported in the literature for rod-like nematic liquid 

crystals [16], and carbonaceous mesophase [17]. In this paper we only restrict the discussion 

to s=-1/2 singular disclinations, since Fig.4-2 does not show the presence of high order 

singular disclination lines. 

Escaped Core Disclinations 

Disclinations of strength s = ±1 commonly observed in carbonaceous mesophase are 

non-singular, with a core of macroscopic /-Lm size, where the ordering of the mesophase has 

been retained. The escape of direct or along the disclination line can remove the singularity 

from the core of the disclination [18, 19]. This can happen by the tilting of molecules 

outside the plane along the disclination line leading to a structure of lower energy. This 

lower energy configuration allows the possibility of high strength disclinations as confirmed 

by the observations of Zimmer and White [5]. The energy per unit length of an escaped 

core does not depend on the externallength scale R in our case the radius of the fiber and 

can be written as [15]: 

W = 37rKlsl (4.15) 
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Comparison of eqn.(4.14) with eqn.(4.15) indicates that for disclinations of strength Isl > 

~, escape is generally favored with exceptions when K3 » KI and R ~ nm. In the 

experiments [5] sinee the 4-fiber configuration encloses an area A whose characteristic size 

is of the same or der as the fiber diameter (R » nm), no s=-l disclinations of singular 

core are observed exp eriment ally. 

4.4 Computational Results and Discussion 

Figure 4-3a shows a 2D gray-scale visualization of the scalar order parameter S, and 

Fig.4-3b shows the corresponding director field on the computational domain. In figure 3a, 

black regions represent low scalar order parameter depicting singular disclinations (negative 

haIf integer singular disclinations) whereas grey regions depict regions whereSo ~ Seq = 

0.62( see eqn.(4.9)). The white circles are the carbon fibers. As mentioned above the 

location and size of the fibers are identical to the experimental case [5]. 

Figure 4-3: (a) Computed gray scale plot of steady state scaIar order parameter with 
U=3.5, * = 0.0033. In the plot the low scalar order parameter(So ~ 0) is black and high 
order parameter (So ~ Sseq) is gray. (b) Computed director field, where the lines represent 
the average molecular orientation, which is normal to the molecular planes. 
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The thin lines define the polygonal mesh obtained by uniting neighboring fibers. The 

computed texture contains twenty four s=-1/2 and one s=-1. The s=-1 escaped core 

disclination appears in the 4-fiber configuration and each 3-fiber configuration contains 

singular disclinations of strength s=-1/2, as shown in Fig.4-2. Of-center a large 7-sided 

polygon contains five s=-1/2 disclinations. Using equation (4.12) for n=7 we get 

which is consistent with the simulations. Figure 4-3b shows the orientation distortion in 

the matrix as weIl as the singular and non-singular disclinations. When the fibers are 

clustered together distortions increase. In the large 7-sided polygon distortions are weaker. 
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Figure 4-4: Computed direct or field for the triangular symmetry extracted from fig.4-3b. 
Each triangular arrangement is accompanied by a -7l" (s =-1/2) in the center. 

Figure 4-4 shows a computed visualization of the direct or field of the 3-fiber configuration 

extracted from the lower left triangle in Figure 4-3; the large dot denotes the singular 
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core. The triangular array of fibers have a singular core disclination of strength s= -1/2. 

This disclination line is located in the center of the triangular arrangement. The relation 

between disclination strength and fiber configuration (eqn.(4.12)) is fulfilled. 

Figure 4-5 shows a computed visualization of the direct or field of the 4-fiber configu­

ration extracted from the upper left square in Figure 4-3. The square array of fibers have 

an escaped core disclination of strength s= -1. The relation between disclination strength 

and fiber configuration (eqn.(4.12)) is fulfilled. As explained before the presence of a s = 

-1 disclination is due that fact this structure with an escaped core has a lower energy thus 

making it more stable thermodynamically. 

'\. ',~-'--"---'-' 
\. \ ',-', .. '-'--'--./--'/~ 

J, ~ ) '- .. _.~F ~/ 

/ ... " '- ' 
/< .. ----

-"" '-', . 
~ --- -', " 
...... : .. -... : ....• 

....... _ ... -..... 

, ' " , 

.- ...... -. 

Figure 4-5: Computed direct or field for the square configuration extracted from fig.4-3b. 
The square configuration has a -27r (s =-1) disclination in the center with an escaped core. 

In summary, the following experimental features have been captured in the simulations: 

(1) 4-fiber configuration lead to escaped core s=-1 disclinations, 
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(2) 3-fiber configurations lead to singular s=-1/2 disclinations, 

(3) 7-fiber configuration leads to 5 singular s=-1/2 disclinations 

(4) The orientation distortions with strong face-on anchoring are strongest under close 

proximity of multiple fibers. 

4.5 Conclusions 

A computational and theoretical study of orientation pro cesses in spatially heteroge­

neous carbon fiber-carbon mesophase composites reveals the principles that control texturaI 

processes. Micron sized fibers embedded in a mesophase create texture through strong an-

choring. The property that governs this effect is the anchoring length, which is the ratio of 

the bulk elastic coefficient of the mesophase to the anchoring energy of the fiber-mesophase 

interface. When the fiber radius is greater than the anchoring length, texturing and discli-

nation lines nucleate in the vicinity of the fiber-mesophase interface. For concentrated fiber 

suspensions, multiple fiber effects lead to specifie disclination types. Three fiber configu­

rations lead to singular s=-1/2 disclinations, while 

Four fiber configurations lead to escaped core s=-l disclinations. The number of 3, 

4, 5, etc. fiber configurations will undoubtedly depend on the fiber density. For moderate 

packing fractions as shown in Figure 4-2, 3-fiber configurations dominate over 4-fiber con-

figurations, and hence the most prevalent defects will be singular core of strength s=-1/2. 

The conceptual framework and computational modeling provide new insights in how to 

optimize and control textures in C/CM composites. Specifically, it has been shown that 

the texture T is a function of the fiber volume fraction and the dimensionless length scale 

ratio: 

T = f (cp, _R_) 
Rextrapolation 

The dimensionless length scale ratio is a function of the fiber geometry (R), the temperature-

dependent mesophase elasticity (K), and the fiber-mesophase interfacial tension (-yan). 
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Hence for a given fiber loading, temperature and surface treatments are control variables 

to achieve specifie textures. 
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CHAPTER 5 
Texture Rules for Concentrated Filled Nematics 

5.1 Abstract 

Defect textures in concentrated fiber-filled polygonal networks in nematic liquid crys-

tals are analyzed using differential geometry and computational modeling based on Landau-

de Gennes theory. Micron fibers exhibit singular cores of strength -1/2 for odd polygons 

and escaped cores of strength -(N-2)/2for even polygons (N: number of sides), in agreement 

with experiments while simulations predict singular cores of strength -1/2 in submicron 

fibers. The computed textures satisfy physical and topological stability rules, and the total 

charge inside each polygon obeys the Poincaré-Brouwer theorem. 

5.2 Introduction and Discussion 

Filled nematics (FNs) [1], ferronematics [2], colloidal nematics [3], and carbon-mesophase 

carbon composites [4] are biphasic heterogeneous materials consisting of embedded parti­

des, drops, and fibers in a nematic matrix, that have attracted much interest due to the 

need to develop new colloidal and composite science as weIl as for their potential applica-

tions. For random and ordered heterogeneous materials the emphasis is on the description 

of spatial organization [5]. On the other hand for FNs, additional measures indude dis­

tortions in the liquid crystal, and emergence of topological defects, which occur when the 

director is fixed at the liquid crystal-partide interface. Available theoretical descriptions 

indude suspensions of spherical partides [6] and disks [7]. However, most of the work 

till now has focused on single or two partides. The problem of multipartide becomes 

more involved since depending on the interactions of the partides inside the host, partides 
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can form long linear chains [8], periodically aligned chains of drops [9], or more compli­

cated structures such as two dimension al hexagonal ordering of particles [10]. On the other 

hand, random heterogeneous filled nematics (RHFNs), such as carbon fiber-mesophase car­

bon (c/c) composites, are materials not covered in the existing theories of composites. A 

significant body of experimental literature indicates that the polygonal network as shown 

schematically in fig. 5-1a, obtained by joining the fiber centers in typical clc composites 

includes triangles, rectangles, pentagons, and hexagons. 

Figure 5-1: (a) Particle arrangements in a carbon fiber-mesophase carbon composites; the 
circles are cross-section of the carbon fibers. The outlined areas denote different polygonal 
networks: N=3, 4, 5, and 6. (b). Shows fibers in an infinite triangular lattice, here number 
of polygon sides N =3 and the coordination number for this lattice Z=6. 

The origin of type of topological defects or super-disclinations (i.e. group of disclinations) 

that may arise within these polygons [11] is not weIl understood. The texture within the 

polygon of N sides r N can be characterized by 

(5.1) 
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n is the number of wedge disclinations, De is the type of disclination core, Ch represents 

the total charge of the super-disclination, and R is the fiber radius. In nematic liquid 

crystals the defect core type can be singular or nonsingular (also known as escaped core 

[12]); in the former the defect core is characterized by a complex radial nano-scale gradient 

in the molecular or der parameters, while in the latter the direct or escapes into the third 

dimension forming a macroscopic core region. A summary of experimental texture results 

[13] for c/c micro composites is shown in Table I; the results indicate that the texture 

pattern is: 

rN=even=w (n,Df, - (N - 2) /2, R ~ /-Lm) ,rN=odd=w (n,D~, - (N - 2) /2, R ~ /-Lm) 

The objective of this letter is to use theory and simulation to explain the texture se­

lection mechanisms, shown in Table l, and to establish the role of fiber size on texture 

selection:rN = r N (R) in these multiple fiber arrangements. Although due to available ex­

periment al data [13] we focus on discotic nematic carbonaceous mesophases as the model 

material, the results are applicable to other uniaxial nematic materials. 

Table 5-1: Experimental Textures [13] for c/c composites 

Array Strength Core Struc-
ture 

Triangular -1/2 Singular 
Square -1 Escape 
Pentagonal -3/2 Singular 
Hexagonal -2 Escape 

The number of disclinations in FNs is restricted by the Poincaré-Brouwer theorem, 

which dictates the number of singularities in polygonal planar vector fields [14]. The type 

of disclinations is governed by texture energies [15]. The minimization of texture energy 

proceeds by two mechanisms: (a) split of high strength singular core disclinations into 

multiple low strength singular core disclinations, and (b) instability of singular disclinations 
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of integral strength due to director escape into the third dimension; this mechanism drives 

the production of non-singular lines of integral strength. The presented computational 

results based on the Landau-de Gennes liquid crystal model allows to quant if y the impact 

of these three rules in texture selection in real fiber-filled nematics [13], and show if the 

energy minimization pro cess satisfies topological stability rules that state that for nematics, 

the only topological stable singular lines are of strength S = ±1/2 

We start by using Poincaré-Brouwer theorem to establish rN=w (Ch) and hence the 

relation between number of particles N and total charge Ch. The disclination charge of a 

planar direct or field within a polygon is equal to its Euler characteristic X [14]: 

L Si = Fe - E + V = X (5.2) 

where Si { i=F e, E, V} is the disclination strength , Fe the number of faces, Ethe number 

of edges, and V the number of vertices. For a network of N sides polygons and coordination 

number Z an example of which is shown schematically in fig. 5-1b, the relations E=VZ/2, 

Fe=VZ/N hold. Using Euler's theorem in 2D (Fe-E+V=l) we find for an infinite polygonal 

network: Z/N=2/(N-2). Replacing Z/N into eqn. (5.2) we find that for an infinite network 

in the absence of edge defects (SE = O):SFc = -Sv (N - 2) /2. For the present homeotropic 

anchoring, each circular fiber has a charge sv=+l, and hencesFc = - (N - 2) /2, which 

explains the observed functionality between N andCh . (See Table 1 and [13]). For example, 

for N=5, SFc= -3/2 [13]. This simple analysis shows that real textures [13] do obey the 

Poincaré-Brouwer theorem. 

To establish how all the elements of the texture rN=W (n,De, R) depend on the number 

of particles N we must use computational modeling. The model system consists of N 

cylinders of radius R suspended inside the liquid crystalline matrix. We only need to 

consider single polygonal lattices, N=3, 4, 5, 6, in conjunction with periodic boundary 
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conditions. The length scales are: fiber radius (R), center to center distance between 

two fibers (L), and the system size (H). We are interested in concentrated FNs, and use 

a constant and representative packing fraction of L/R=2.3. By varying R at constant 

L/R, the distance between the fibers changes but geometric self-similarity is preserved. 

Results for low and intermediate packing fractions are not discussed. It is well-known that 

for /-lm carbon fibers, strong homeotropic anchoring prevails [16, 17]. In addition it was 

demonstrated [18] that strong anchoring in these materials persists to approximately 100 

nm glass cavities, and motivated by this result we retain the strong anchoring assumption 

in aIl our simulations. We recall that all experimental results are for /-lm fibers [13]. The 

nematic order of the mesophase is represented by the second order symmetric tensor order 

parameter Q (r, t) [19]. The eigenvectors or director triad (n , m , 1) describe macroscopic 

orientation, and eigenvalues of Q are related to the uniaxial and biaxial molecular order 

parameters (8, P), which describe the degree of molecular order. The evolution of Q in 

the absence of flow is determined by the Volterra variational derivative of the total free 

energy F with respect to the tensor order parameter: 

(5.3) 

Here ,gepresents the rotational viscosity and [s] implies symmetric and traceless property. 

In Landau-de Gennes theory the dimensionless free energy density f* can be expressed in 

terms of homogenous fh and the gradient f; contributions (under one constant assumption 

(L2=L3=0) for simplicity) 

P* = J j*dV* = J (R*3fh+R*f*) dV* 
V' V' g 

(5.4) 
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* 1 (U) U U 2 fh=- 1-- (Q' Q) --Q . (Q Q) +-(Q . Q) 2 3 . 3" 4 . (5.5) 

(5.6) 

where * indicates dimensionless quantities [20]. The coefficient U is a dimensionless tem­

peraturej U=8/3 corresponds to the isotropic-nematic transition. The correlation length 

ç = J 'Pt~T is of molecular length size, LI is elastic constant [19] and T is the temper­

ature. <p, kB are number density of molecules and Boltzmann's constant respectively. 

The term R* = R/ç is the dimensionless radius of the fiber. Since the value of ç is of 

the order of 10 t'V 20nm [3] we choose R* from 40 to 300 (representative of fiber radius 

R = 400nmto3p,m. We consider cylindrical fibers dispersed in the isotropie stateQ ~ 0, 

and then perform a thermal quench (U < 8/3 -t U = 3.5) to simulate texture formation. 

At aH internaI interfaces we impose strong anchoring:Qo = Seq(8r8r-i8)j here 8r is the 

radial unit outward normal at the fiber surface and Seq is the equilibrium scalar order pa­

rameter of the bulk nematie and in dimensionless units is expressed as Seq = t + i JI - 3t 
[20]. 
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Figure 5-2: Summary of computational results for submicron (left column) and micron 
fiber results. Different scales are selected for clarity. See text. 
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A summary of representative numerical results are shown in Figure 5-2. The computed 

visualizations are for the direct or orientation (short arrows) which are superposed on the 

scalar order parameter S, given in terms of gray scale ( white is S=Seq=0.616, black is 

S=O); in aU visualizations dark dots are singular defect cores and escaped non-singular 

cores show no changes in order parameter and therefore are white. 

The left column corresponds to submicron fibers (R/~ < 100) and the right column 

to micron fibers (R/~ > 100). For submicron fibers we find: 

Teven= Todd = 'li' (N - 2,Df, - (N - 2) /2), the number of defects is N-2, aU disclinations 

are singular, the total charge foUows the Poincaré-Brouwer result of (N - 2) /2, defect 

splitting removes high charge lines, and the topological stability mIe is obeyed since only 

stable singular cores of s=-1/2 are observed. For micron fibers we find: 

Teven =J Todd, Teven=W (l,D!, - (N - 2) /2) ,Todd=W (N - 2,Df,- (N - 2) /2) 

For even number of particles there is a single defect with an escaped core, of charge 

- (N - 2) /2; for example for six particle configuration the disclination has a charge of 

-2. For odd number of particles, the N-2 disclinations have singular cores of strength 

-1/2 and the total charge is- (N - 2) /2. For aU micron fiber-based polygons, Poincaré-

Brouwer theorem is obeyed, defect splitting operates for odd polygons, escape into third 

dimension removes singular cores of integral strength, and topological stability mIes are 

fulfiUed. The main distinction between submicron and micron fibers occurs for even number 

of particles, where the former displays N-2 singular core disclination and the latter a 

single escaped core high strength disclinations. To establish the texture selection driving 

force for even number of particles we compute the total gradient elasticity in the system 

(integral of eqn. (5-6)), since this energy will be responsible for transition between singular 

and escaped core disclinations [19]. Figure 5-3 shows a representative computation of 

the dimensionless gradient energy as a function of dimensionless fiber radius, for N =4; it 
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shows that submicron fibers display singular multiple s = -1/2 defects while micron fibers 

display one escape core s = -1 disclination; the cross-over is approximatelyR* = 120. Our 

results are in excellent agreement with experiments [13] and with well-known geometry­

driven transitions between singular and escape cores [19]. Using the instability theorem 

for integrallines for a capillary of radius Re, the transition between escape-singular defect 

occurs at R~ rv 20 [19]; computing an equivalent capillary radius from the inner circle 

tangent to the four fibers we find using the integral theorem thatR* rv 37; this deviation 

is due to the more complex internaI surface geometry of the present multi-fiber structure 

as opposed to the circular capillary geometry. 
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Figure 5-3: Dimensionless gradient elasticity as a function of dimensionless fiber radiusR*, 
for N=4, U=3.5. See text. 

Experiments [13] shows that for N=5, high order s = -3/2 singular disclinations are ob­

served, in contrast to our computational results (see third row, right column in Fig.(5.2)), 

which shows that the stable selected state are three s=-1/2 singular disclinations. Several 
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mechanisms may explain the presence of the s = -3/2 line at higher temperature, includ­

ing saddle-splay energy [15], elastic anisotropy [19], viscosity divergence [17], and defect 

splitting kinetics fors = -3/2(singular) ~ 3s = -1/2(singular). We note that heating 

carbonaceous mesophases at high temperatures produces a very viscous melt and even-

tually a solid phase [17]. The present model always predicts at the early stage, s=-3/2 

defect is created, which subsequently splits. Figure 5-4 shows the increase of the computed 

dimensionless splitting time with increasing dimensionless temperature D, a kinetic effect 

that is compatible with the observed viscosity divergence [17]. 
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Figure 5-4: (a) Computed enlarged view of as = -3/2 singular disclination line, for N=5, 
D=3.5, at intermediate time t*= 600. See text. (b) Dimensionless splitting time as a 
function of nematic potential D. The slow-down is driven by proximity to the nematic­
isotropic transition temperature. 

In summary, we have used differential geometry and computational modeling to ana-

lyze texture selection rules in multi-fiber filled nematic mesophases. Three defect physics 

rules, including the Poincaré-Brouwer theorem, the instability theorem for integral lines 
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and energy minimization by defect-splitting are shown to operate in actual texture selec­

tion of clc composites based on micron-sized fibers [13]. Computational predictions for 

submicron fibers show that regardless of packing geometry, only singular and topologically 

stable -1/2 will be observed. The findings provide a robust theoretical framework for a 

theory of composites involving oriented matrices. 
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CHAPTER 6 
Conclusions 

A model used to describe texture formation in carbon fiber Icarbon mesophase com­

posites has been formulated, solved and validated with existing experimental data. The 

computational and theoretical study based on the Landau de Gennes theory for liquid 

crystals is able to replicate commonly observed textures in these composites. 

The model is able to predict the defect lattice structure observed in experiments done 

to manipulate mesophase texture. The model predicts the formation of a disclination 

network of square symmetry, composed of square lattice array of +21T and an array of -1T 

disclinations that lie along the diagonals of the square lattice. A reflection polarized optical 

microscopy model was implemented and solved to validate the texture with experiments. A 

comparison between experiments and simulations show excellent quantitative agreement. 

The model for CF ICM composite captures the texturing effect induced by micron­

sized fibers embedded in the mesophase. A concentrated fiber regime study shows relation 

of the type of defect to specifie fiber arrangement. Three fiber configuration leads to a 

s = - !defect, while four fiber configuration lead to s = -1 defect. A detailed study of the 

effect of fiber configurations in high concentrated regime is also carried out. Three defect 

physics rules, including the Poincaré-Brouwer theorem, the instability theorem for integral 

lines and energy minimization by defect-splitting are shown to operate in actual texture 

selection of c/c composites based on micron-sized fibers. A study of submicron sized fibers 

indicates that only singular defects are created regardless of the fiber configuration. 

The computational study performed in this thesis provides new and significant insights 

and a better fundamental understanding of the role of processing and geometric conditions 

112 



on texture formation in carbonaceous materials. The thesis shows that defect lattices 

can be long-lived structures that once formed remain in the system regardless of thermal 

processing. The thesis also shows that control of defect distributions in clc composites 

is possible through fiber packing densities, fiber-matrix interfacial conditions, fiber sizes, 

and temperature. Large fibers at high packing fractions and sufficiently low temperatures 

tend to form textures with small number of singular defects. Nano-fibers at high packing 

fractions tend to pro duce large number of singular defects. Mechanical properties of clc 

composites ean then be manipulated through careful control of thermal and geometrie 

conditions. 

Future work should extend the simulations to other interfacial cie conditions, other 

fiber size distributions, and other fiber densities. On the computational side, automatic 

remeshing, and optimized 3D simulation codes will provide a better understanding of tex­

ture formation in clc composites. 
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APPENDIX A 

This appendix is to summarizes the constitutive equation and lists the parameters 

used in simulating the different cases studied in this thesis. 

The dimensionless, coupled, time dependent, non-linear partial differential tensor equation 

that was solved using commercially available finite element software package FEMLAB© 

is: 

The ab ove equation was implemented in FEMLAB's general PDE mode. In this mode the 

partial differential equations have to be written in the form: 

(A-2) 

Since Q is symmetric and traceless, the dependent variables of the problem are the five 

components of tensor Q. For FEMLAB implementation ql, q2, q3, q4, q5 correspond to 

Q11, Q12, Q13, Q22,Q23 components of the Q=u tensor respectively. The expanded terms 

in FEMLAB then become: 

f11X = 1/3*eh A2* ((3+2* v)* qlx+2* v* q2y+3* k* qh qlx+3* h q2* qly) 

f 11y = 1/3*eh A2*(3*qly-v*q2x-v*q4y+3*k*q2*qlx+3*hq4*qly) 

f 12X = 1/2*eh
A
2*((2+v)*q2x+v*q4y+2*hqhq2x+2*hq2*q2y) 
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r 12y = 1 /2*eh A 2*(2*q2y+v*q lx+v*q2y+ 2*hq2*q2x+ 2*k*q4*q2y) 

r 13X = 1 /2*eh A 2*( (2+v )*q3x+v*q5y+ 2*hq hq3x+ 2*k*q2*q3y) 

r 13y =eh
A
2*(q3y+hq2*q3x+hq4*q3y) 

r 22X = l/3*eh A2*(3*q4x-v*qlx-v*q2y+3*hq hq4x+3*hq2*q4y) 

r 22y = l/3*eh A2*(2*v*q2x+(3+2*v)*q4y+3*k*q2*q4x+3*k*q4*q4y) 

r23X =eh A2*q5x+eh
A
2*h(qhq5x+q2*q5y) 

r 23y = l/2*eh A2*(2*q5y+v*q3x+v*q5y+2*hq2*q5x+2*hq4*q5y) 

The corresponding F terms are: 

F11=(ql-l/3*ql *U-l/3*U*qlA2-l/3*U*q2A2-l/3*U*q3 A2 

+2/3*U*q4 A2+2/3*U*ql *q4+2/3*U*q5 A2+2*U*( ql A2 

+q4 A2+ql *q4+q2A2+q3 A2+q5 A2)*ql-l/3*eh A2*k*(_2*qlxA2 

-2*qlx*q4x-2*q4xA2-2*q2xA2-2*q3xA2-2*q5xA2+qlyA2 

+q4yA2+qly*q4y+q2yA2+q3yA2+q5yA2)) 

Fl2=((l-l/3*U)*q2-U*(ql *q2+q2*q4+q3*q5)+2*U*(ql A2+q4 A2+ql *q4+q2 A2 

+q3 A 2+q5 A2)*q2_l /2*eh A2*k* (2*q ly*q lx+ 2*q4x*q4y+q lx*q4y+q ly*q4x 

+ 2*q2x*q2y+ 2*q5x*q5y+ 2*q3x*q3y)) 

Fl3= ( q3-l /3*q3*U-U*q2*q5+ U*q3*q4+ 2*U*( q 1 A 2+q4 A2+q 1 *q4+q2 A 2+q3 A 2+q5 A 2) *q3) 

F22=( q4-l/3*q4*U-l/3*U*q2A2-l/3*U*q4 A2-l/3*U*q5 A2+2/3*U*ql A2+2/3*U*ql *q4 

+2/3*U*q3 A2+2*U*(ql A2+q4 A2+ql *q4+q2A2+q3 A2+q5 A2)*q4+l/3*eh A2*k*(2*qly
A
2 

+2*q4yA2+2*qly*q4y+2*q2yA2+2*q5yA2+2*q3yA2-qlxA2-qlx*q4x-q4xA2 
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F23=(q5-1/3*q5*U-U*q3*q2+U*q5*q1+2*U*(q1~2+q4~2+q1*q4+q2~2+q3~2+q5~2)*q5) 

The parameters chosen to simulate the cases studied in this thesis are as follows: 

1. Study of Periodic disclination Lattices in Carbonaceous Mesophase(Chapter 3): 

Equilibrium Scalar Order Pramater:Seq = 0.62 

Initial Scalar Order Parameter: So = 1-10 

Biaxial Order Parameter: P = 0 

Nematic Potential: U=3.5 

Dimensionless Radius (R*): -& = 0.01 

Dimensionless Elastic Constants: {J, K, = 0 

Rotational Viscosity: ,(Q) = 1 

2. Defect study in CIC Composites (Chapter 4) 

So = 1-10 

p=o 

U=3.5 

-& = 0.01 

{J,K, = 0 

3. Defect study of concentrated Filled Nematics (Chapter 5) 

So = 1-10 

p=o 
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U=3.5 

from ~ = 0.0033 (for micron sized fibers); ~ = 0.025 (for nano sized fibers) 

{), /î, = 0 

117 




