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Abstract 

 Aquatic vegetation is a critical component of freshwater ecosystems, providing habitat 

for small fish and invertebrates, stabilizing sediments, altering flow regimes, and improving 

water quality. Vegetation communities are, however, facing new and escalating pressures due to 

climate change and increased human disturbances. Monitoring and managing these ecosystems 

are therefore vital if the services aquatic plants afford are to be maintained. Remote sensing has 

been suggested as a preferred method to monitor these habitats, but the technology hasn’t yet 

seen extensive implementation particularly to submerged aquatic vegetation (SAV) in the 

freshwater context. The goal of this thesis is to facilitate the application of remote sensing 

techniques to SAV monitoring through both information transfer and filling in foundational 

knowledge gaps in the field. A systematic literature review was conducted of previous work in 

SAV monitoring using remote sensing, which was synthesized with relevant general principles 

of remote sensing, to create a resource for ecosystem managers and ecological researchers 

unfamiliar with the discipline. This resource provides an overview of all aspects of a typical 

optical remote sensing workflow, concentrating on applications to SAV monitoring, to instruct 

non-specialists in whether and how to adopt remote sensing as a research method. The majority 

of previous work focused on coastal systems and primarily on determining community extent. 

While these applications did produce moderate to good results, the narrow scope of the data 

precludes many critical ecosystem management and research questions from being answered. For 

this reason, original research was undertaken to implement optical remote sensing techniques to 

a larger range of targets in a non-ideal (i.e., freshwater) environment. This work assessed the 

spectral separability of targets under laboratory conditions at various grouping levels (i.e., 

species to kingdom, vegetation/non-vegetation), under multiple sampling conditions, and 

modelled across spectral resolutions. In situ imagery was additionally analyzed to compare the 

expected modelled accuracy to what is possible under field conditions. Samples from thirteen 

species of SAV were collected across two seasons and were found to be spectrally separable 

(leave-one-out nearest neighbour criterion of 0.8 to 1 depending on grouping) during the peak of 

the growing season. Spectral separability depended directly on the spectral resolution and 

number of bands of the sensor chosen. Airborne hyperspectral imagery was effective with 

individual class recall of up to 100%, and overall recalls of 88% and 94% when detecting 

vegetation types and between vegetation or non-vegetation, respectively. Image analysis was 
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limited to targets of canopy-forming or carpeting vegetation and large unvegetated patches due 

to the ~ 1 m spatial resolution. The targets present in this freshwater ecosystem would be 

conducive to mapping and monitoring using remote sensing techniques, however, imagery of the 

spatial and spectral resolution required for such applications is expensive and not widely 

available. Development of targeted and sufficiently high-spatial resolution sensors aboard space-

borne platforms should therefore be prioritized if aquatic vegetation is to be effectively 

monitored at the regional to global scales. 
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Résumé 

 La végétation aquatique est une constituante essentielle des écosystèmes d'eau douce, 

fournissant un habitat pour la faune, stabilisant les sédiments, modifiant les régimes 

d'écoulement et améliorant la qualité d’eau. Les communautés végétales sont cependant sujets à 

de nouvelles pressions croissantes en raison du changement climatique et des perturbations 

humaines accrues. La surveillance et la gestion de ces écosystèmes sont donc essentielles pour le 

maintien des services rendus par les plantes aquatiques. La télédétection est suggérée comme 

méthode préférée pour surveiller ces habitats, mais la technologie n'a pas encore été mise en 

œuvre à grande échelle, en particulier pour la végétation aquatique submergée (VAS) dans le 

contexte de l'eau douce. L'objectif de cette thèse est de faciliter l'application des techniques de 

télédétection à la surveillance des VAS en transferant les informations de façon amenable aux 

non-specialistes et en addressant les lacunes dans les connaisances scientifiques actuelles. Une 

revue systématique de la littérature a été menée sur les travaux de surveillance des VAS à l'aide 

de la télédétection, ce qui a été synthétisée avec les principes généraux de la télédétection, afin 

de créer une ressource pour les gestionnaires d'écosystèmes et les chercheurs en écologie peu 

familiers avec la discipline. Cette resource touche sur tous les aspects d'un méthodologie de 

télédétection optique typique, avec une attention particulière sur la surveillance de la VAS, pour 

indiquer aux non-spécialistes si, et comment, adopter la télédétection dans leurs recherches. La 

majorité des travaux antérieurs se sont concentrés sur les systèmes côtiers marins et 

principalement sur la détermination de l'étendue des communautés végétales. Bien que ces 

applications aient produit des résultats de precision de modérés à bons, la portée étroite des 

données empêche de répondre à de nombreuses questions critiques de gestion des écosystèmes. 

Pour cette raison, des recherches originales ont été entreprises pour mettre en œuvre des 

techniques de télédétection optique sur un plus grand nombre de cibles dans un environnement 

non ideal, c'est-à-dire en eau douce. Ce travail a évalué la séparabilité spectrale des vegetaux 

sous conditions de laboratoire à divers niveaux de regroupement. L'imagerie in situ a été 

analysée pour comparer la précision modélisée attendue à ce qui est possible dans des conditions 

de terrain. Des échantillons de treize espèces de VAS ont été collectés sur deux saisons et se sont 

avérés etre spectralement séparables (critère de voisin-le-plus-proche de 0,8 à 1, selon le groupe) 

pendant l’apogee de la saison de croissance. La séparabilité spectrale dépendait directement de la 

résolution spectrale et du nombre de bandes du capteur choisi. L'imagerie hyperspectrale a été 
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efficace, avec un rappel de classe individuelle allant jusqu'à 100 % et des rappels globaux de 88 

% et 94 % lors de la détection des types de végétation et entre la végétation ou la non-végétation, 

respectivement. L'analyse des images était limitée aux cibles de végétation formant des canopées 

ou en tapis et aux grandes parcelles sans végétation en raison de la résolution spatiale d'environ 1 

m. Les cibles présentes dans cet écosystème d'eau douce seraient propices à la cartographie et à 

la surveillance à l'aide de techniques de télédétection, cependant, l'imagerie de la résolution 

spatiale et spectrale requise pour de telles applications est coûteuse et peu disponible. Le 

développement de capteurs ciblés et à résolution spatiale suffisamment élevée à bord de plates-

formes spatiales devrait donc être une priorité si l'on veut surveiller efficacement la végétation 

aquatique aux échelles régionales et mondiale. 

  



v 
 

Table of Contents 

 

Abstract ............................................................................................................................................ i 

Résumé ........................................................................................................................................... iii 

Table of Contents ............................................................................................................................ v 

List of tables ................................................................................................................................. viii 

List of figures .................................................................................................................................. x 

List of abbreviations .................................................................................................................... xvi 

Author Contributions ................................................................................................................... xxi 

Acknowledgements ..................................................................................................................... xxii 

1. Introduction ................................................................................................................................. 1 

1.1. Thesis Context ...................................................................................................................... 1 

1.2. Research objectives .............................................................................................................. 2 

1.3. Thesis structure .................................................................................................................... 3 

1.4. Figures .................................................................................................................................. 4 

2. A Review of Remote Sensing of Submerged Aquatic Vegetation for Non-Specialists ............. 5 

2.1. Context within the thesis ...................................................................................................... 5 

2.2. Abstract ................................................................................................................................ 5 

2.3. Introduction .......................................................................................................................... 6 

2.4. Review Article Methodology ............................................................................................... 9 

2.5. Technical Background.......................................................................................................... 9 

2.5.1. Key Concepts in RS for Aquatic Research .................................................................... 9 

2.5.2. Resolutions .................................................................................................................. 10 

2.5.3. Underwater Light Environment ................................................................................... 11 

2.5.4. Spectral Properties of SAV .......................................................................................... 12 

2.5.5. Supplemental Datasets in Aquatic RS ......................................................................... 13 

2.6. Sensors ............................................................................................................................... 14 

2.6.1. Available Sensors ........................................................................................................ 15 

2.6.2. Advancing Technologies ............................................................................................. 17 

2.7. Platforms ............................................................................................................................ 18 

2.7.1. ROVs and AUVs ......................................................................................................... 20 

2.7.2. Hand-Held, Vessels and Fixed Platforms .................................................................... 21 



vi 
 

2.7.3. Unmanned Aerial Vehicles .......................................................................................... 22 

2.7.4. Manned Aircraft .......................................................................................................... 23 

2.7.5. Satellite ........................................................................................................................ 23 

2.8. Corrections and Analysis ................................................................................................... 24 

2.8.1. Correction of Passive Optical RS Imagery .................................................................. 24 

2.8.2. Corrections Specific to Aquatic Applications ............................................................. 26 

2.8.3. Analysis of Passive Optical RS Imagery ..................................................................... 30 

2.9. Applications ....................................................................................................................... 37 

2.9.1. Identification ................................................................................................................ 37 

2.9.2. Location of SAV (Extent Mapping) ............................................................................ 39 

2.10. Discussion ........................................................................................................................ 41 

2.11. Conclusions ...................................................................................................................... 42 

2.12. Tables and Figures ........................................................................................................... 45 

3. Multi-scale spectral separability of submerged aquatic vegetation species in a freshwater 

ecosystem ...................................................................................................................................... 62 

3.1. Context within thesis .......................................................................................................... 62 

3.2. Abstract .............................................................................................................................. 62 

3.3. Introduction ........................................................................................................................ 63 

3.4. Methods .............................................................................................................................. 66 

3.4.1. Site description ............................................................................................................ 66 

3.4.2 Multiscale approach ...................................................................................................... 67 

3.4.3 Submerged Aquatic Vegetation sampling .................................................................... 67 

3.4.3 Microscopy ................................................................................................................... 68 

3.4.4 SAV ground truth data collection ................................................................................. 68 

3.4.5 High spatial resolution orthomosaic ............................................................................. 69 

3.4.6 Leaf-level spectra ......................................................................................................... 70 

3.4.7 Airborne hyperspectral imagery ................................................................................... 71 

3.4.8 Expert visual interpretation .......................................................................................... 73 

3.5 Results ................................................................................................................................. 74 

3.5.1 Submerged panel measurements – determination of usable wavelength range ........... 74 

3.5.2 Leaf spectroscopy ......................................................................................................... 74 

3.5.3 Imagery ......................................................................................................................... 77 

3.6 Discussion ........................................................................................................................... 79 



vii 
 

3.6.1 Water column impacts .................................................................................................. 79 

3.6.2 Leaf spectroscopy ......................................................................................................... 79 

3.6.3 Imagery ......................................................................................................................... 82 

3.6.4 Manual field photograph interpretation ........................................................................ 84 

3.6.5 Overall importance ....................................................................................................... 84 

3.7 Conclusion ........................................................................................................................... 85 

3.8. Tables and Figures ............................................................................................................. 87 

4. Conclusions ............................................................................................................................. 112 

4.1. Summary of findings ........................................................................................................ 112 

4.2. Future directions ............................................................................................................... 113 

References ................................................................................................................................... 116 

 

  



viii 
 

List of tables 

Table 2.1. A list of essential remote sensing concepts mentioned in this study that researchers 

new to remote sensing (RS) should familiarize themselves with. Readers are directed to 

explanatory resources such as [133, 138, 212] for further detail……………………...……...….45 

Table 2.2. The types of remote sensors that have been commonly applied to the study and 

monitoring of SAV, categorized by type, energy measured and number of bands (n). Example 

sensors and sources detailing applications of these sensors are also listed……………………...47 

Table 2.3. A selection of SVIs of interest in SAV studies, whether due to their popularity, target 

material or use. Their full names, abbreviations, equations and sources that use each are listed. L 

represents a water column correction factor determined for a specific image………..…………48 

Table 3.1. Results of the forward feature selection algorithm for the full resolution ASD spectra. 

The 95% of maximum LNN criterion value and number of features required to produce 95% of 

the maximum separability are included as many selected features provide only marginal gains in 

separability…………………………………………………………………...…………………..88 

Table 3.2. Maximum LNN values for each grouping and year for the original (ASD) spectra and 

all resampled spectra. Multi and hyperspectral sensors to which the spectra were resampled are 

ordered by increasing spectral information (No. bands). Cells have been coloured according to 

their value for rapid interpretation (gradient: red = 0.2, yellow = 0.6, blue = 1). All values above 

0.7 have been bolded for easy identification. *CASI is an airborne hyperspectral imager, all 

others are multi-spectral spaceborne sensors. ………………………………………..…………89 

Table 3.3.  Classification accuracy of the FSDC, NUSVC, and RBSVC classifiers for each 

grouping and year for the original (ASD) and all resampled spectra. Accuracy values have been 

colour coded for rapid interpretation (gradient: red = 0, yellow = 0.5, blue = 1). All values above 

0.7 have been bolded for easy identification. Datasets are described in Table SM3.2……...…...90 

Table 3.4. Validation results of the target detection analyses. Mixed pixels are identified as 

having at least 40% cover of the class in question..…………………………………………......91 

Table SM3.1. An overview of the samples collected, and the resulting number of darkroom 

spectra measured. Samples of N. odorata are separated according to their location in the water 

column at time of sampling due to potential differences in pigmentation and structure in 

immature (submerged) leaves. * Indicates samples that were not included in analysis of unfouled 

spectra due to degradation………………………………...…………………………….……….92 

Table SM3.2. Definition of the datasets and nomenclature used for the leaf level analysis. 

Presence/absence grouped all plants together as one class and the silt samples as a second class. 

The seven classes in the Ad hoc grouping are: 1. S. graminea and V. americana; 2. M spicatum; 

3. all Potamogeton species; 4. submerged and floating N. odorata; 5. C. demersum, E. 

canadensis, N. flexilis, and E. acicularis; 6. Chara sp.; and 7. Metaphyton. ………….……….93 



ix 
 

Table SM3.3 Band characteristics of the spaceborne sensors to which the leaf level spectra were 

resampled. ‘Max RSR λ’ refers to the wavelength at which the maximum Relative Spectral 

Response (RSR) is found. The Full Width Half Max (FWHM) is an indication of band width; it 

is rounded and not an exact value……………………………...………………………………...94 

Table SM3.4. Parameters of the CASI image acquisition and atmospheric compensation in 

ATCOR 4…………………………………...……………………………………………………95 

Table SM3.5. Classifier selection amongst classifiers tested from the PRtools toolbox through 

comparison of classification accuracy of the ASD a19 dataset. The classifiers which achieved at 

least 80% classification accuracy (testing data) were selected for implementation on all datasets 

(original and resampled) and are bolded below……………….…………………….….………..96 

Table SM3.6. ACE detection statistic thresholds, number of detected pixels and detected area. 

‘Class’ indicates the class being detected, with all other classes being identified as non-target 

spectra. Overall vegetation was only identified as a non-target in detecting the non-vegetation 

class, as it includes pixels all vegetation types. The ‘ribbon’ class comprises both S. graminea 

and V. americana…. ………………………………………………………………………..……97 

  



x 
 

List of figures 

Figure 1.1 A comparison of the catalogue of previous research pertaining to aquatic remote 

sensing in general and freshwater remote sensing specifically. Records were retrieved from 

Scopus using the search terms noted, including publications from the 2020 calendar year and 

earlier. Figure originally presented in [1]. ………………………………………………………..4 

Figure 2.1. Operation chronology of a selection of remote sensors used in Submerged Aquatic 

Vegetation (SAV) research by platform and sensor type………………………………..………49 

Figure 2.2. Comparison of spatial resolutions in representing natural and man-made features 

(most notably a flooded road) in the Saint-Lawrence River, Ontario, Canada. (a) 3 cm resampled 

pixel size image acquired from an unmanned aerial vehicle (UAV) platform with the uCASI 

sensor (288 spectral bands). Subset is shown as a true color composite R:648 nm/G:548 

nm/B:449 nm. (b) 1 m resampled pixel size image acquired from an airborne hyperspectral 

platform (CASI-1500, 288 spectral bands) Subset is shown as a true color composite R:641 

nm/G:550 nm/B:471 nm. The yellow box indicates the spatial extent of frame (a). (c) 

Panchromatic film photograph from a KH-9 satellite taken in 1980 at a spatial resolution of 2 to 

4 feet. (d) 3 m resampled pixel size image from the commercial PlanetScope satellite 

constellation (Dove-PS CubeSat). (e) 10 m resampled pixel size Sentinel-2 satellite image. (f) 30 

m resampled pixel size Landsat image. For d-f, the respective RGB bands are displayed as true 

color composites…………………………………………………………………..……………..50 

Figure 2.3. A simplified illustration of the interactions of light as they originate from the sun and 

are recorded by an optical sensor. The labels are as follows: LT = Radiance reflected by the 

target; LTS = Radiance reflected by the target then scattered out of the path to the sensor; LS = 

Radiance reflected by the non-target substrate; LA = Radiance reflected by the atmosphere to the 

sensor (also referred to as path radiance); LAS = Radiance scattered by the atmosphere; LW = 

Radiance reflected by the water column into the sensor; LWS = Radiance scattered by the water 

column; LWA = Radiance absorbed by the water column; LI = Radiance reflected by the air-water 

interface; LE = Radiance that is scattered into the scene by the ambient environment………….51 

Figure 2.4. The attenuative effect of the water column on the recorded signals of a flooded 

cement road at the Long Sault Parkway, ON, from airborne hyperspectral imagery (HSI) (CASI-

1500). The colored boxes identify the pixels for which the spectra are shown on the right in units 

of radiance. The pixels chosen represent an increasing effect of the water column, with the dry 

road pixel being entirely unaffected by water. The inset photo shows what the flooded road looks 

like from the ground and was taken at the point indicated by the yellow circle. Note that the 

spectra here are in radiance, prior to atmospheric correction, as such the strong atmospheric 

water absorption features (e.g., 940 nm) can be seen in the spectrum from the dry road……….52 



xi 
 

Figure 2.5. The absorption profiles of four major constituents of natural waters. “Oceanic water” 

refers to very clear seawater. Colored Dissolved Organic matter (CDOM), oceanic water and 

suspended non-living matter all use the primary axis; only the phytoplankton spectrum uses the 

secondary axis. Reprinted from Subsea Optics and Imaging, Johnsen et al., Underwater 

hyperspectral imagery to create biogeochemical maps of seafloor properties, 508-535. Copyright 

(2013), with permission from Elsevier [222]. …………………………………………………...53 

Figure 2.6. Examples of vegetation spectra, with one standard deviation from the mean shown as 

shading; (a) A comparison of the effect of a thin layer of water (<5 mm) on the measured 

reflectance of a single species and the difference in profile shape between species. Note the 

prominent green peak in the spectrum of Nymod near 550 nm and the red-edge around 680 nm. 

The measured spectra of the submerged plants are lower across the spectrum, especially so in the 

NIR region. Valam does not display as prominent a green peak due to its higher relative 

concentration of accessory pigments making the leaves appear reddish-brown. (b) A comparison 

of the effect of epibiont and sediment fouling on the same plant sample. The profile of the fouled 

plant has a different shape and less spectral variability in the visible region than that of the 

unfouled plant. Nymod = Nymphaea odorata; Valam = Vallisnaria americana. ………………54 

Figure 2.7. Output from a single beam echosounder at 200 kHz (upper panel) and 800 kHz 

(lower panel) wave frequency. Macrophyte presence is identified by the areas of signal 

reflections (in the upper right hand of each panel) above the lake bottom. From Stocks et al., 

2019 used according to CC-BY-ND http://creativecommons.org/licenses/by-nd/4.0/. Accessed 

07-10-2020 [39]. ……………………………………………………………………………..….55 

Figure 2.8. The three methods used to acquire geolocational data in RS using UAVs and manned 

aircraft (labeled “platform” in the figure). (a) Platform location is determined using trilateration 

of three or more satellite signals. (b) Platform location is determined by the user applying a 

correction to the Global Navigation Satellite System (GNSS) receiver-generated location file. 

The correction file is downloaded from either a local base station operated by the user or from a 

commercial base station operated by external parties, such as governments. (c) Platform location 

is determined by applying a correction signal from a base station concurrently to data 

acquisition………………………………………………………………………………………..55 

Figure 2.9. The effect of platform attitude on the look direction of a sensor. (a) A “rolled” 

aircraft will cause a sensor to image an area adjacent to the intended flight line. (b) A change in 

platform pitch will cause the sensor to image a portion of the flight line that is not directly below 

it; rapid changes in pitch may therefore cause duplicate imaging of some targets (downward pitch 

aiming the sensor backward) or gaps (upward pitch aiming the sensor ahead). (c) A change in yaw 

will angle the view of the sensor so consecutive rows of pixels are not parallel, resulting in gaps and 

duplication……………………………………………………………………………………….....56 



xii 
 

Figure 2.10. An example of imagery collected by a CASI-1500 onboard a manned aircraft 

acquiring imagery over the Long Sault Parkway, ON, Canada. Imagery was collected by a twin 

otter aircraft in partnership with the National Research Council of Canada. The NoData artefacts 

during the turn are portions of the ground over which no pixels are resolved in the 

geocorrection……………………………………………………………………………………..57  

Figure 2.11. An illustration of the extent and accuracy of previous aquatic RS work regarding 

SAV. The maximum accuracy found (reported as percent overall accuracy or R2) is depicted for 

each sensor-application pairing. Colored squares are on a gradient scale from 0 to 100, 

representing either percent overall accuracy or R2 ×100. White squares indicate that the sensor-

application pair was encountered but no suitable overall accuracy measure was provided. Grey 

squares indicate that no source employed that sensor-application pairing. The large number of 

white and grey squares respectively demonstrate the need for consistent accuracy reporting and 

the huge research gaps to date in aquatic RS. Active sensors are italicized. All sources cited in 

this text were reviewed in the compilation of the figure, as well as references [223-340]…..….58 

Figure 2.12. The relationship between data complexity, training set size and mean classification 

accuracy. Complexity is here calculated as the number of bands raised to the exponent of the 

number of possible DN values per band (2# of bits). For HSI (and MSI with many bands), huge 

training sets would be required to obtain adequate classification accuracies if all bands are used. 

m = training set size. © 2002 IEEE. Reprinted, with permission, from Landgrebe, D. (2002), 

Hyperspectral image data analysis, IEEE Signal Processing Magazine [160]...……..………….59 

Figure 2.13. A simplified illustration of the principle of Structure-from-Motion Multiview 

Stereo photogrammetry. Common points at the corners of a rectangular prism seen from various 

angles are used to reconstruct a three-dimensional representation of the object. (a) the side; (b) 

the top; (c) the front; (d) the reconstructed rectangular prism. In reality, hundreds to thousands of 

key points (uniquely identified points) per photograph are needed with hundreds to thousands of 

matches between photographs to reconstruct a surface in 3D...…………………………………60 

Figure 2.14. Dense 3D point cloud from the Salobra river, Mato Grosso do Sul, Brazil generated 

through a Structure-from-Motion Multiview Stereo workflow from 768 UAV photographs. 

Photographs were acquired with a DJI Mavic 2 Pro UAV with an integrated Hasselblad L1D-2C 

camera. The camera has a 1” sensor (77° field of view) producing an image size of 5472 × 3648 

pixels. A median of 67,753 key points were found per photograph with a median of 13,416 

matches per photograph. Final ground sampling distance of the model is 1.2 cm. Extensive 

floating water hyacinth (Eichhornia crassipes) can be seen. The interactive point cloud can be 

accessed at https://bit.ly/waterhyacinth3D . Panel A (yellow) illustrates a shallow (<30 cm) area 

with several species of SAV which produce a habitat utilized by small characins. Panel B (blue) 

illustrates floating E. crassipes in deep (>2 m) water frequented by giant otters (Pteronura 

brasiliensis) and caimans (Caiman yacare). Panel C (purple) is a mid-range depth (1–2 m) with 



xiii 
 

large patches of algae on the substrate. This open water habitat is frequented by larger fish 

species such as Prochilodus lineatus. Panel D (red) shows a bed of Camboba sp. in deep water 

(>2 m). The dense stems provide habitat for species such as Pygocentrus nattereri and 

Serrasalmus maculatus…………………………………………………………………………..61 

 Figure 3.1. Subset of CASI airborne hyperspectral imagery (red = 658.77 nm, green = 548.70 

nm, blue = 481.71 nm) presenting the study site west of Philpott’s Island in the Long Sault 

Parkway Provincial Park, Ontario, Canada. The yellow box outlines the shallow bay where 

samples were collected and SAV is mapped. The location of the two calibration tarps is shown in 

purple. The inset indicates the study site location (red star) in relation to the North American 

Great Lakes………………………………………………………………………………………94 

Figure 3.2. Examples of the vegetation encountered at the site (A-I) and examples of vegetation 

provided to expert interpreters (J-N). A) Vallisneria americana; B) Potamogeton richardsonii; 

C) Sagittaria graminea; D) Myriophyllum spicatum; E) Elodea canadensis; F) Metaphyton; G) 

Potamogeton robbinsii; H) Chara sp.; I) Vallisneria. americana with heavy leaf fouling; J) 

Chara sp.; K) Potamogeton richardsonii; L) Sagittaria graminea; M) Myriophyllum spicatum; 

N) Potamogeton sp………………………………………………………………………………95 

Figure 3.3. The multi-scale approach implemented in this study. Laboratory spectral 

measurements were collected of the leaves of each plant sample collected from the site; 

microscopy images of leaf cross-sections were then taken for each species to inform subsequent 

analysis of the leaf spectra. Leaf spectra were then resampled to an airborne and six spaceborne 

imaging sensors that deploy for large scale in situ applications. A shallow freshwater site was 

imaged using an airborne hyperspectral sensor from which spectra of the same vegetation 

examined in the lab could be extracted. Underwater video footage of four transects provided 

training and ground truth points for SAV target detection from the airborne imagery. Video stills 

were additionally presented to fellow researchers to be manually interpreted to present the utility 

of remote sensing in the context of the performance of conventional SAV monitoring 

methods……………………………………………………………………………...……...……96 

Figure 3.4. Workflow for both the leaf-level spectral analysis and the processing and analysis of 

the CASI image…………………………………………………………………...…………...…97 

Figure 3.5. Relative Spectral Response (RSR) functions of two satellite sensors and the airborne 

sensor resampled to in this work for the 400-950 nm spectral range, and an example of a V. 

americana spectrum obtained after each spectral resampling. (A) RSR of the Landsat 8OLI 

sensor. (B) V. americana spectrum resampled to Landsat 8OLI. (C) MODIS’s RSR. (D) V. 

americana spectrum resampled to MODIS. (E)  RSR of the CASI airborne hyperspectral imager. 

(F) V. americana spectrum resampled to the CASI…….………………………………………..98 

Figure 3.6. Effect of the water column on the reflectance of a submerged 99% Spectralon panel. 

(A) Estimated Absolute Reflectance (Rabs) at 5 cm depth intervals between ~0 cm to 115 cm. (B) 

Rabs at select VIS (440 nm, 565 nm, and 680 nm) and NIR (750 nm and 810 nm) wavelengths 

plotted against panel submergence depth…………………………………...…………………..99 



xiv 
 

Figure 3.7. Average spectra of all classes in each grouping scheme for both 2019 and 2020. (A) 

All samples grouped by species (a19 and a20); (B) All samples grouped by genus (p19 and p20); 

(C) All samples in ad hoc grouping (g19 and g20); (D) All samples grouped by kingdom (alga19 

and alga20); (E) All vegetation samples plus silt samples grouped as vegetation or non-

vegetation (s19 and s20)………………………………………………………………………..100 

Figure 3.8. CASI imagery used in this work at various processing stages and the input points 

used in target detection and validation. (A) RPAS orthomosaic showing points of each class 

chosen through visual interpretation and the locations of the transect points. (B) Atmospherically 

compensated CASI image (red=687.5 nm, green = 548.7, blue = 500.3 nm, optimized linear 

stretch applied on extent) before geocorrection. (C) DII-transformed CASI image following 

rasterization of the directly georeferenced point cloud without resampling (red = 682.7 nm & 

701.8 nm DII, green = 553.5 nm & 563.1 nm DII, blue = 424.3 nm & 438.7 nm DII, linear 

stretch on extent applied). Each pixel is a 25 cm by 25 cm visualization of the set of DIIs 

centered at the coordinates calculated to be where the signal originated from. (D) Conventionally 

geocorrected CASI imagery after atmospheric compensation, for reference…………………..101 

Figure 3.9. Results of the ACE target detection. Curves depict the number of pixels according to 

the ACE detection statistic assigned. Horizontal bars indicate the range of ACE detection 

statistic values attributable to each type of pixel (pure target, mixed target, background) with the 

mean value indicated by a coloured tick mark. Pure and background pixels are separated at the 

threshold values presented in Table SM3.6; mixed pixel ranges were determined according to 

ACE detection statistic values of mixed transect points. (A) Chara sp. (B) Metaphyton. (C) P. 

richardsonii. (D) Potamogeton sp. (E) Ribbon. (F) Road, no mixed pixels identified. (G) Silt / 

Rock. (H) Non-vegetation. (I) Vegetation……………………………...………………………102 

Figure 3.10. Example of validation for the Potamogeton sp. target detection with grey ellipses 

around detected pixels, pure validation points, mixed validation points, and validation points 

correctly detected identified. Conventionally geocorrected true colour CASI image shown in 

background for context. Insets are underwater photograph examples of pure Potamogeton sp. (A) 

and mixed (B) Potamogeton sp. and Chara sp. cover. In this example, 10 of the 13 pure cover 

points were detected shown by the green circles; one mixed cover point was detected……….103 

Figure 3.11. Comparison of recall results from visual interpretation, for both 40% class cover 

and any instance of class presence, and CASI airborne hyperspectral image target detection. The 

range of responses is shown by the error bars for visual interpretation results……………..….103 

Figure SM3.1. Experimental field set up. A) RPAS photo of the site acquired the same day 

(07/26/2019) as the CASI HSI; B) reference target set up for verifying the atmospheric 

compensation of the CASI HSI, targets are two tarpaulins with known reflectance; C) GCP 

placed at the site for orthorectification of the RPAS images and orthomosaic; D) improvised 

floating platform for underwater ASD measurements, measurement of Spectralon reference 

panel at the water’s surface is shown here; E) example transect marker captured in video footage 

(this point was labeled as a mix of Chara sp. and silt/rock)……………………………………104 

Figure SM3.2. Effect of fouling and season on the average spectral response and spectral 

variability of Chara sp. The average spectrum is shown as a solid line, with ± one standard 



xv 
 

deviation shaded. A) Effect of fouling, peak-growing season. B) Effect of fouling, late-growing 

season. C) Effect of seasonality, fouled samples. D) Effect of seasonality, unfouled samples. 

While Chara sp. is shown as an example, the same pattern was found for all species…...……105 

Figure SM3.3. Effect of fouling and season, shown as difference in mean reflectance. The 

average change across all species is shown in black. A) peak season, fouled minus unfouled, B) 

late season, fouled minus unfouled, C) fouled, peak season minus late season, D) unfouled, peak 

season minus late season. Only species that were measured in both fouled and unfouled states 

and in both seasons are shown in panels A) and B) and panels C) and D), respectively………106 

Figure SM3.4. Band rankings from the forward feature selection. The wavelengths of each band 

from the ASD spectra are ranked in descending order according to contribution to separability 

(i.e., a ranking of 1 indicates the most important contributor to separability for that dataset). The 

grey bars highlight three regions of notable green vegetation spectral features: the total pigment 

absorption feature (~ 450 nm), the Chl-a absorptance feature (~550 nm), and the red-edge (~ 700 

nm). The Y-axis has been log-transformed to facilitate interpretation…………………………107 

Figure SM3.5. LNN criterion separability values from the forward feature selection (FFS) from 

all datasets (original leaf spectra). The X-axis has been log-transformed to facilitate 

interpretation……………………………………………………………………………………107 

Figure SM3.6. Microscopy photographs of leaf cross sections of submerged plants, a floating 

plant and a macroalgae. Similarities (i.e., no air spaces between mesophyll cells; large lacunae 

within the mesophyll; single layer of epidermal cells; no stomata) in leaf structure across six 

genera of vascular SAV found at the site (A-F) contrast the complexity of leaf structure in 

floating leaves (i.e., columnar mesophyll, spongy mesophyll, defined epidermal cell layers, etc.) 

(G). The macroalgae lacks all internal structure (H). (A) P. robbinsii. (B) M. spicatum. (C) V. 

americana. (D) C. demersum. (E) E. canadensis. (F) E. acicularis. (G) N. odorata. (H) Chara 

sp………………………………………………………………………………………………..108 

  



xvi 
 

List of abbreviations 

 

6SV 
Second Simulation of the Satellite Signal in the Solar Spectrum 

(Vermote et al., 1997) 

ACE Adaptive Coherence Estimator 

AISA Airborne Imaging Spectrometer for Applications 

ANOVA Analysis Of Variance 

ASD Applied Spectrographic Devices 

ATM Airborne Thematic Mapper 

AUV Autonomous Underwater Vehicle 

AVHRR Advanced Very High Resolution Radiometer 

AVIRIS Airborne Visible/Infrared Imaging Spectrometer 

Bio-ORACLE Bio-Ocean Rasters for Analysis of Climate and Environment 

CASI Compact Airborne Spectrographic Imager 

CDOM Coloured Dissolved Organic Matter 

Chl-a Chlorophyll-a 

CIR Colour Infra Red 

COCI Coastal Ocean Color Imager 

CSA Canadian Space Agency 

CVA Change Vector Analysis 

DEM Digital Elevation Model 

DHPC Directly-georeferenced Hyperspectral Point Cloud 

DHPC Directly-Georeferenced Point Cloud 

DII Depth Invariant Index 



xvii 
 

DN Digital Number 

ELM Emipiric Line Method 

ETM+ Enhanced Thematic Mapper plus 

FDSC Feature Dissimilarity Space Classifier 

FWHM Full Width Half Max 

GCP Ground Control Point 

GNSS Global Navigation Satellite System 

GPS Global Positioning System 

GRVI Green-Red Vegetation Index 

HJ-CCD Huan Jing - Charge-Coupled Device 

HSI Hyperspectral Imagery 

IFRR In-Flight Radiometric Refinement 

IMU Inertial Measurement Unit 

INS Inertial Navigation System 

IR Infra Red 

LED Light-Emitting Diode 

libRadtran library for radiative transfer 

LiDAR Light Detection And Ranging 

LNN Leave-one-out Nearest Neighbor  

MERIS MEdium Resolution Imaging Spectroradiometer 

MiDAR Multispectral Imaging, Detection and Active Reflectance 

MIVIS Multispectral Infrared and Visible Imaging Spectrometer 



xviii 
 

MNF Minimum Noise Fraction 

MODIS MODerate resolution Imaging Spectroradiometer 

MODTRAN MODerate resolution atmospheric TRANsmission 

MSI Multispectral Imagery 

MSS Multispectral Scanner System 

NASA National Aeronautics and Space Administration 

NDAVI Normalized Difference Aquatic Vegetation Index 

NDVI Normalized Difference Vegetation Index 

NIR Near Infra Red 

NPCI Normalized total Pigment to Chlorophyll-a ratio Index 

NRC-FRL National Research Council of Canada – Flight Research Laboratory 

NTRIP Networked Transport of RTCM via Internet Protocol 

NUSVC Nu-Support Vector Machine 

OBIA Object-Based Image Analysis 

OBIS Ocean Biogeographical Information System 

OLI Ocean and Land Imager 

OTU Operational Taxonomic Unit 

PACE Plankton, Aerosols, Cloud, ocean Ecosystem mission 

PCA Principle Component Analysis 

PHILLS Ocean Portable Hyperspectral Imager for Low-Light Spectroscopy 

PPC Post-Classification Comparison 

PPK Post-Processing Kinematic 



xix 
 

PRISM Portable Remote Imaging SpectroMeter 

Rabs Estimated Absolute Reflectance 

RADAR RAdio Detection And Ranging 

RBSVC Radial-Based Support Vector Machine 

RGB Red Green Blue 

ROV Remotely Operated Vehicle 

RPAS Remotely-Piloted Aerial System 

RS Remote Sensing 

RSR Relative Spectral Response 

RTK Real-Time Kinematic 

RTM Radiative Transfer Model 

SAM Spectral Angle Mapper 

SAMSON Spectroscopic Aerial Mapper with On-board Navigation 

SAV Submerged Aquatic Vegetation 

SeaWiFS Sea-viewing Wide Field-of-view Sensor 

SfM-MVS Structure from Motion-MultiView Stereo photogrammetry 

SHOALS Scanning Hydrographic Operational Airborne Lidar Survey 

SIMPER SIMilarity PERcentages 

SNR Signal-to-Noise Ratio 

SPOT 
Satellite Pour l'Observation de la Terre (Satellite for Earth 

Observation) 

SVI Spectral Vegetation Index 

SWIR Short-Wave Infra Red 



xx 
 

SWOT Surface Water and Ocean Topography 

TID Temporal Image Differencing 

TM Thematic Mapper 

UAV Unmanned Aerial Vehicle 

uCASI micro-Compact Airborne Spectrographic Imager 

UV Ultraviolet 

VIS Visible spectral region 

VR Virtual Reality 

VTOL Vertical Take-Off and Landing 

WAVI Water-Adjusted Vegetation Index 

WISE WaterSat Imaging Spectrometer Experiment 

 

  



xxi 
 

Author Contributions 

 

 The second and third chapters of this thesis are written in manuscript style; both have 

been published in peer-reviewed journals, in Remote Sensing and Frontiers in Environmental 

Science, respectively. 

 Gillian Rowan (GR) and Margaret Kalacska (MK) both contributed to the 

conceptualization of the two chapters. GR developed the methods and reviewed the literature 

included in chapter two as well as prepared the original draft. MK and GR reviewed and edited 

the manuscript. 

 GR and MK developed the methods of the third chapter. Raymond Soffer (RS) developed 

and applied the radiometric correction used on the imagery, and contributed a written 

explanation of the method for inclusion. Deep Inamdar (DI) implemented the DII transformation 

and created the georeferenced data product used in the research. GR undertook the analysis and 

wrote the original draft of the paper. J. Pablo Arroyo-Mora (JPAM) contributed a figure to the 

paper. JPAM and RS funded and acquired the imagery used in the study. GR, DI, JPAM and MK 

acquired the ground calibration data, GR acquired the underwater validation data. All authors 

reviewed and edited the manuscript. 

 All other content within this thesis was written by GR and reviewed by MK. 

  



xxii 
 

Acknowledgements 

 It took a lot to get me to this point, so I have many people to thank. Firstly, I am infinitely 

grateful to my supervisor, Prof. Margaret Kalacska. She took a chance on me, a student with no 

experience in or knowledge of remote sensing but a desire to learn, and changed my life. Since 

then, Margaret has taught me not only remote sensing, but also how to approach problems 

critically and creatively. She has dedicated countless hours to making me a better scientist and to 

preparing me for a research career. Her high expectations and consistent encouragement made 

me want to push myself to my full potential. Maybe most of all, Margaret showed her incredible 

dedication to her students in how many times she read and re-read my work, so that I could 

produce a thesis worth being proud of. Margaret, thank you so much for everything over these 

past three years.  

 I’d also like to thank Prof. Andrew Hendry, a member of my supervisory committee, for 

his support, guidance, and creativity in our discussions. I always left our meetings with new 

avenues to investigate and feelings of excitement about my work and where it might take me. 

 I would like to thank our collaborators at the NRC-FRL, specifically Dr. Pablo Arroyo-

Mora and Raymond Soffer. Pablo brought expertise and enthusiasm to all our meetings, setting 

high standards while also making sure that we love what we do. Thank you, Pablo, for all the 

help, feedback, and advice you’ve given me. Ray, thank you for your incessant effort to make the 

data we use and the research we do as high quality as it can be, and for taking the time to teach 

me. My research wouldn’t have been possible without all the hard work from both of you to get 

the field campaign off the ground. I genuinely can’t thank you enough.  

 I need to thank Deep Inamdar, an absolute legend of a friend and labmate. Thank you, 

Deep, for the advice, support, jokes, pizza nights, and video calls. I wouldn’t have made it 

without you. Thanks to Oliver Lucanus for collecting many of the photos I used in this work and 

for keeping field work fun. Thanks E-Skye, Patrick, and Kathryn for your help in the field, and 

your support throughout my degree. I really hit the jackpot in getting to know and work with you 

all in ARSL.  

 My gratitude goes out to the Natural Sciences and Engineering Research Council of 

Canada and the Canadian Airborne Biodiversity Observatory for supporting this research. I 

would also like to thank Mr. Roger Warren for his incredible generosity in supporting students 



xxiii 
 

like me through the Rathlyn Fellowship in GIS. I am additionally grateful to the staff of the Long 

Sault Parkway provincial park, without whom field work and data collection would have been 

impossible. 

Finally, the biggest thank you to my friends and family. To Lesley, Fanny, Dan, Patrick, 

Jennifer, Annalise, Victor, and Kelsey for making me happy on even the hardest days. Thanks to 

my parents for making me the curious, determined, stubborn person that I am today, and for 

giving me my love of the water that still drives me in all aspects of my life. Thank you for 

supporting me in all my adventures. To Zach, for challenging me when I need a push and 

believing in me when I don’t. And to Nolan, for cheering me on so enthusiastically I started to 

think you were being sarcastic. You’ll never know how much I appreciate having you here when 

things get tough (other times too, but you know what I mean). Whenever I think I’m ready to 

give up, you fine people pick me up, dust me off, and keep me going. I’m so grateful have you 

all in my life.  



1 
 

1. Introduction 

 

1.1. Thesis Context 

 While applications of remote sensing in terrestrial environments have been thoroughly 

investigated and leveraged across academic fields and industries, substantially less attention has 

been paid to applying these technologies to the aquatic environment, especially so for 

freshwaters (Figure 1.1) [1,2]. This inequality can be attributed to the complexity introduced by 

the presence of an overlying water column, freshwater scientists’ general inexperience with 

remotely sensed data, and the historically low interest in studying these systems relative to their 

terrestrial and marine counterparts. The combination of the vital ecosystem services provided by 

submerged aquatic vegetation (SAV) and its increasingly threatened status are however drawing 

more interest and investment into the management of freshwater ecosystems [3-6]. Remote 

sensing instruments, platforms, and data are meanwhile becoming more accessible to researchers 

through public access data sharing platforms and technological commercialization and 

miniaturization. Aquatic researchers and ecosystem managers are thus progressively adopting 

remote sensing techniques for data collection to improve the monitoring of these systems. 

 Remote sensing is however a highly technical field, incorporating aspects of physics, 

electrical engineering, computer science, and geography. Without a primer in each of these 

subjects, a newcomer to the field may not understand the data they are working with, or reading 

about in others’ publications, leading to a high barrier of entry to the field. Furthermore, if such a 

researcher attempts to implement remote sensing tools in their work and find they do not provide 

the expected results, they may be inclined to disregard the discipline all together. Finally, while 

remote sensing experts will always be needed for technological innovations, researchers from 

other fields with user-level knowledge are generally the ones to implement remote sensing in 

new, creative, and exciting ways [7]. Making the theories and techniques used in remote sensing 

easily available in an accessible manner is therefore of utmost importance if the discipline is to 

be fully potentiated.  

 It must be noted that this disconnect between ecologists/biologists and remote sensing 

experts is not attributable to either one group or the other. While this thesis focuses on 

acquainting ecosystem researchers with remote sensing theories and techniques, analogous work 

is needed to inform remote sensing experts on ecological principles. Even the most rigorous and 
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technically advanced remote sensing application would be practically meaningless without 

understanding the system or processes being studied. Furthermore, considering that applying 

remote sensing often requires extensive ground truth data and/or expert judgement, poor 

knowledge of the research subject may result in biased or blatantly incorrect results. To reap the 

full rewards offered through remote sensing, increasing multi-disciplinary collaboration and 

knowledge exchange amongst researchers is thus  essential. 

 Most remote sensing work in aquatic environments has focused on waters that are both 

shallow and clears, which are most commonly coastal, as these traits facilitate the retrieval of 

optical data (see Figure 1.1). Freshwaters, however, tend to have higher coloration and turbidity, 

both of which vary across small spatial and temporal scales [8]. They are thus more difficult to 

characterize and account for in optical remote sensing applications. Additionally, freshwaters 

tend to be managed and regulated at the national level, and so have not benefited from the same 

level of multinational collaboration that international (i.e., primarily coastal and marine) waters 

have (e.g. [9,10]). Due to this combination of factors, less work has implemented remote sensing 

in freshwaters than in coastal waters, leaving many foundational knowledge gaps regarding the 

type of questions remote sensing can be used to answer in freshwaters and the methodologies 

that are most effective. Before large investments of time and capital are made into applying 

remote sensing to freshwater habitats, there should be an investigation of if these ecosystems are 

amenable to mapping and monitoring via remote sensing, what information can be reasonably 

expected, and what type of remote sensing analyses may be well suited to these applications. 

1.2. Research objectives 

 The high-level objectives of this thesis are to 1) create a resource for non-specialists who 

are considering applying remote sensing to SAV research (in both fresh and marine waters) and, 

2) address some of the foundational knowledge gaps that exist in applying optical remote sensing 

to monitoring SAV in freshwater ecosystems.  

 Prior to this work, there has been no comprehensive resource available to entry-level 

remote sensing users in aquatic studies that addresses all considerations of a remote sensing 

workflow from project planning to data analysis. As aquatic remote sensing is more complex 

than terrestrial applications, articles discussing techniques and processes specific to the aquatic 

environment are also often written for more advanced users. Aquatic researchers unfamiliar with 
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the concepts and theory behind remote sensing were thereby left to assemble knowledge from 

sources primarily discussing terrestrial ecosystems or to decipher the highly technical aquatic 

remote sensing literature. This “missing piece” motivated the first objective (and first chapter) of 

this thesis. 

 While some work has been conducted in assessing the suitability of SAV to identification 

and mapping using optical remote sensing, the subjects considered have primarily been single, or 

a small set of, SAV species or types examined with a single kind of data. This limits how the 

results can be extrapolated to inform other applications. The second objective of this thesis was 

conceptualized to produce generalizable data to inform future work. The specific objectives were 

to 1) determine the spectral separability of a set of SAV species, 2) examine the consequences of 

sampling conditions and project parameters, and 3) compare how the theoretical maximum 

separability between SAV targets translates into in situ mapping success. 

 The original research in this thesis is based on data collected in the Long Sault Parkway 

Provincial Park, in southeastern Ontario, Canada, which is a part of the traditional territory of the 

Audenosaunee, Mohawk, Haudenosaunee, and Huron-Wendat Peoples. Access to the Park was 

granted by Park management. Airborne imagery was funded and collected by the National 

Research Council – Flight Research Laboratory. 

1.3. Thesis structure 

 This thesis is divided into four chapters. This first chapter presents the context 

surrounding the development of this thesis, the research objectives, and the structure of the 

thesis. A published review article presenting all necessary considerations in implementing 

remote sensing for monitoring SAV is provided as the second chapter. The third chapter presents 

original research on determining the spectral separability of SAV and a practical application in 

the form of a manuscript to be submitted for publication. The fourth and last chapter summarizes 

the findings of the thesis and outlines directions of future research that could further the work of 

this thesis. 
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1.4. Figures  

 

 

Figure 1.1 A comparison of the catalogue of previous research pertaining to aquatic remote sensing in 

general and freshwater remote sensing specifically. Records were retrieved from Scopus using the search 

terms noted, including publications from the 2020 calendar year and earlier. Figure originally presented in 

[1].  
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2. A Review of Remote Sensing of Submerged Aquatic Vegetation for Non-Specialists 

 

Rowan, G.S.L.; Kalacska, M. A Review of Remote Sensing of Submerged Aquatic Vegetation 

for Non-Specialists. Remote Sens. 2021, 13, 623. https://doi.org/10.3390/rs13040623 

 

2.1. Context within the thesis 

 This chapter presents a comprehensive literature review describing the state of the art in 

remote sensing of SAV. The scope of the chapter was meant to include all that a non-specialist in 

remote sensing would need to consider when planning their own data collection campaigns, as 

well as to introduce concepts used in published works that may not be familiar to someone 

without formal training in remote sensing or geomatics. Simply, the goal of this chapter was to 

present everything a non-specialist would need to understand to reach a user-level of knowledge 

in aquatic remote sensing and to discuss the work that has been conducted thus far. The literature 

review highlighted the potential for remote sensing to be used in monitoring SAV but also the 

lasting need for further research and innovation in the technologies and methods available.  

 Per the thesis submission guidelines, the text of this chapter is exactly that of the 

published article.  

2.2. Abstract 

 Submerged aquatic vegetation (SAV) is a critical component of aquatic ecosystems. It is 

however understudied and rapidly changing due to global climate change and anthropogenic 

disturbances. Remote sensing (RS) can provide the efficient, accurate and large-scale monitoring 

needed for proper SAV management and has been shown to produce accurate results when 

properly implemented. Our objective is to introduce RS to researchers in the field of aquatic 

ecology. Applying RS to underwater ecosystems is complicated by the water column as water, 

and dissolved or suspended particulate matter, interacts with the same energy that is reflected or 

emitted by the target. This is addressed using theoretical or empiric models to remove the water 

column effect, though no model is appropriate for all aquatic conditions. The suitability of 

various sensors and platforms to aquatic research is discussed in relation to both SAV as the 

subject and to project aims and resources. An overview of the required corrections, processing 

and analysis methods for passive optical imagery is presented and discussed. Previous 

applications of remote sensing to identify and detect SAV are briefly presented and notable 

https://doi.org/10.3390/rs13040623
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results and lessons are discussed. The success of previous work generally depended on the 

variability in, and suitability of, the available training data, the data’s spatial and spectral 

resolutions, the quality of the water column corrections and the level to which the SAV was 

being investigated (i.e., community versus species.) 

Keywords 

remote sensing; submerged aquatic vegetation; hyperspectral imaging; species discrimination; 

extent mapping 

2.3. Introduction 

 Submerged Aquatic Vegetation (SAV) is a key component of aquatic ecosystems as it 

creates habitat for fauna, regulates water flow, stabilizes sediments, and contributes to 

biogeochemical cycling [5,11-15]. SAV refers to all plants that obligately grow underwater, 

though they may have floating or emersed reproductive organs. Here, we refer to both freshwater 

and marine plants, as well as macroalgae (though not plants, they are spectrally similar). SAV 

growth has been shown to limit phytoplankton concentrations and reduce turbidity, improving 

water quality [16]. Seagrasses are especially notable for their role in capturing as much as 18% of 

all oceanic carbon and storing it as what is known as “blue carbon” [5]. SAV is therefore a vital 

ecosystem indicator of both biotic and abiotic processes and a significant carbon sink helping to 

mitigate climate change [4,5,17,18]. Despite the numerous physical, ecological and economic 

services SAV provides, it is in a state of global decline [5,14,19,20]. Several federal and 

international water quality frameworks, such as those in the European Union, the United States 

and Australia and New Zealand, include SAV extent or health as assessment indicators [17,21]. 

Other policies consider the conservation and protection of SAV as its own goal [4]. There is 

therefore a need for accurate, representative and timely knowledge of SAV extent and 

community composition [19]. The economic value of areas with SAV and the services they 

provide further increase the importance of proper monitoring [21,22]. 

 Conventional SAV research involves in situ visual assessment of extent, species 

distribution or plant health using quadrats or transects [5,17,22]. This manual monitoring is costly, 

time consuming, can be dangerous (e.g., wildlife, parasites, traffic, etc.) and often has a high 

error rate [22-24]. These errors stem from observer misidentification, poor estimation and location 

accessibility biases that may not represent the full ecosystem heterogeneity [17,25]. Other 
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traditional methods include comprehensive sampling and the use of grabs or grappling hooks to 

collect specimens, which are destructive to the organisms being studied [26,27]. 

 Remote sensing (RS) is increasingly being used as a tool in aquatic studies, often in 

conjunction with conventional techniques, to address some of the limitations of in situ methods 

[4,26,28,29]. RS is time efficient and increasingly affordable for researchers working at local, 

regional and global scales [28,30]. Accessibility issues are reduced as data are gathered at a 

distance, allowing the survey of fragile or dangerous sites while the operator remains at a single 

point of safety [31,32]. RS products can be used in quantitative analysis and can be compared 

over space and time when acquired and processed correctly [11,33]. The precise, quantitative data 

acquired by RS can also be used to monitor the slow, progressive changes in various ecosystems. 

As shown in Figure 2.1, the Landsat series of satellite-based sensors, for example, has an over 

40-year historic catalogue of inter-comparable imagery [11]. Finally, RS may be the only realistic 

way to efficiently monitor remote and under-funded regions [4]. 

 Innovations in aerospace technologies have allowed the evolution of manned aircraft-

mounted (hereafter called “airborne”) sensors and satellite platforms; each increasing the spatial 

scale of the RS data available to users. Satellite RS has largely dominated the discipline, as can 

be seen through the substantial volume of work exploiting this data source and the large selection 

of active sensors shown in Figure 2.1 [34]. Technological advances, though, particularly in terms 

of unmanned aerial vehicles (UAV), are continuously providing new opportunities. The recent 

commercialization of UAVs and innovations leading to their increased affordability have made 

UAVs an appealing option for small-scale studies [32,35,36]. 

 RS has been less extensively applied in aquatic studies than terrestrial ones. This can be 

attributed to the lack of early generation products specifically designed for use in water, high 

costs, as well as to the challenges of working in an aquatic environment and the SAV themselves 

[37-39]. The water column complicates analysis by attenuating the strength of benthic reflectance 

signals and introducing heterogeneity within a scene [40]; early applications of RS to macrophytes 

therefore relied solely on qualitative visual inspection of aerial photographs to extract SAV cover 

and distribution [22,40]. The small size of SAV features necessitates very high spatial resolution 

data which is expensive and may be unavailable to researchers working with a small budget [40]. 

The inconsistent application of calibration and correction methods to account for the atmospheric 
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and water column effects makes sharing and comparing imagery and data across studies difficult 

[17]. 

 RS is rapidly evolving. As such, users unfamiliar with the discipline may not be aware of 

the applications, technological opportunities and products available to them. Additionally, no 

single RS method can be effectively employed across all conditions for all research questions 

[39,41]. It is therefore important to be informed of the options available, their strengths and 

limitations and how they may be combined. There is wide consensus in the RS community that 

while experts are vital for technological innovation and methods development, it is users from 

other fields applying RS methods to their own work that push RS forward through new and 

creative applications [7]. In short, there is a need to make RS more accessible to non-specialists. 

This paper is thus intended as a preliminary guide for those considering applying RS in aquatic 

botany, with a focus on optical approaches. 

 This review introduces and discusses the essential concepts in SAV RS to lay a 

foundational understanding of the discipline for non-specialists that are interested in applying RS 

in their work. It briefly presents the essential concepts in RS then examines specific 

considerations in applying RS to SAV. A selection of previous applications is presented to 

highlight some of the successes and challenges encountered in the field. While seagrasses and 

the research surrounding them are included in this text, the reader interested exclusively in 

seagrasses is additionally directed to [42]. 

 While there is significant work being done on corals and some concepts may be 

translated from that field to the study of SAV, this paper does not directly discuss RS 

applications to corals and coral reefs. Similarly, mangroves, marshes, wetlands and riparian 

vegetation are not discussed here as the RS techniques applied to these habitats are vastly 

different from those applied to fully submerged targets. 

 This paper presents the following five aspects of RS application to SAV studies that any 

researcher should be aware of and consider: (1) a technical background on the use of RS in the 

aquatic medium; (2) a description of the types of sensors and data produced; (3) an overview of 

the relevant RS platforms and their operational levels; (4) an overview of how optical RS data is 

processed and analyzed; (5) examples of RS applications in SAV research. 
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2.4. Review Article Methodology 

 A literature review was conducted of English language peer-reviewed articles, theses, 

books and conference papers relating to the RS of SAV with no time constraints. The literature 

was found by keyword search using the logic (“Remote* sens*” OR “hyperspectral” OR 

“multispectral” AND “Aquatic vegeta*” OR “macrophyt*” OR “hydrophyt*”) on Scopus. This 

returned 4139 references, of which the first four hundred most relevant English language entries 

were selected. Duplicates were removed and the remaining items were screened according to 

their abstracts (articles and conference papers) or introductions/summaries (theses and books). 

The bibliographies of selected references were also consulted to extract other relevant sources. A 

total of 305 references about SAV studies using RS (predominantly optical) were selected for 

review, though not all of those were included in this text. A small selection of other references 

has also been included in this work regarding general RS and data processing. 

2.5. Technical Background 

2.5.1. Key Concepts in RS for Aquatic Research 

 Earth observation RS measures the energy reflected or emitted by an object or surface, 

hereafter referred to as a target, to infer information about that target. The information obtained 

can be qualitative, such as presence/absence or cover classes, or quantitative, such as a 

reflectance profile or temperature. Data from RS is also positional, meaning that each piece of 

information obtained represents a discrete known location. 

 Spectroradiometry, and passive optical RS generally, provides information about the 

composition of targets based on how they reflect or emit energy. Active RS, on the other hand, 

measures the distance from the sensor to the target which can be used to determine the target’s 

position and/or structure. It can, with some sensors, also record backscatter intensity providing 

some information about the condition or identity (e.g., RADAR). Considering aquatic research, 

active RS can be applied, for example, to measure and model habitat structure (e.g., [43]) or 

vegetation presence and absence (e.g., [41]). Table 2.1 presents a list of essential RS concepts that 

should be reviewed by anyone new to the field and may be helpful to those who are familiar with 

RS but are not experts. 

 In its simplest form, SAV extent mapping in optically clear waters may be done through 

visual inspection, so only imagery and user judgment are required. More involved research 
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objectives, such as species discrimination or health analysis, may also require reference spectra 

from the macrophytes of interest, validation data and specialized analytic tools and software. It is 

therefore important to define what information is needed from any RS project and which data 

inputs are required before beginning a data collection campaign. 

2.5.2. Resolutions 

 The four types of resolution presented in Table 2.1 are discussed below as they relate to 

SAV monitoring. While pixel size may be resampled during post processing, spatial resolution 

depends on the sensor and imagery acquisition parameters and cannot be improved post-

collection. Moderate to high spatial resolution is vital in SAV research because of the often-

linear distribution of SAV along coastal and bathymetric contours and the patchiness of SAV 

growth [44,45]. Imagery acquired at a high spatial resolution can thus be used to identify far 

smaller features than from coarse images, as shown in Figure 2.2. Giardino et al. [44] found that 

pixels as small as 4 m may still be too large to be suitable for SAV studies in small lakes [44]. 

 The strong similarity between SAV species’ spectral profiles demands very high spectral 

resolution to allow discrimination. Additionally, not all sensors have spectral ranges suitable for 

SAV studies as water absorbs most energy in the infrared (IR) region and signals in the 

ultraviolet (UV) region are often unreliably weak, thus limiting SAV research to operating 

primarily in the VIS and marginally in the NIR regions [46]. 

 High radiometric resolution is advantageous when analyzing surfaces with very similar 

reflectance values, such as SAV, as small differences in reflectance intensity are captured. For 

example, Landsat 5 acquires 8-bit data while Landsat 8 acquires 12-bit data, which results in 256 

and 4096 possible values per wavelength per pixel respectively [47]; Landsat 8 may thus allow 

better discrimination between targets even though the two satellite sensors share very similar 

band configurations. 

 The temporal resolution of satellite imagery is determined by a satellite’s revisit time. 

Landsat missions have a 16-day temporal resolution while the commercial PlanetScope satellite 

constellation achieves daily revisits [47,48]. The temporal resolutions of other platforms (e.g., 

UAV) are determined according to the research project planning [49]. For SAV monitoring, a 

short revisit time is often desired because of the rapid growth and maturation of aquatic 
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vegetation. Additionally, identification may be most successful when considering the effect of 

seasonality. In temperate climatic zones, spring measurements tend to be brightest because of 

exposed light sediments below still-developing leaves. Dense summer canopies with full cover 

cause the benthic reflectance to be exclusively from the plants. Fall measurements capture 

heterogeneous changes due to senescence [17]. A study using multitemporal data would therefore 

capture the highest amount of spectral variation for each species and may produce the best 

identification results [16,17,46]. A thorough discussion of the implications of the four types of 

resolution in freshwater SAV research is presented in [30]. 

2.5.3. Underwater Light Environment 

 The water column complicates optical RS and differentiates analysis of data from those 

acquired of terrestrial scenes. Water molecules scatter, reflect and absorb electromagnetic 

energy, adding complexity to the path of light travelling between the sun, the target and a sensor 

[50], as depicted in Figure 2.3. The water column decreasingly scatters light with increasing 

wavelength, resulting in very strongly scattered UV energy and negligible scattering of 

wavelengths longer than blue. While water absorbs some energy across the spectrum, it absorbs 

light most strongly for wavelengths greater than 680 nm. Together, this means that optical RS of 

aquatic environments is largely limited to the visible region (VIS) of the spectrum [50], though 

some information can often be garnered from the near infrared (NIR) region if the water column 

is very thin (less than ~ 1 m) [26]. Water’s very strong absorption of radiation in the IR can 

facilitate the distinction between above and below water targets [51]. Increasing water depth 

increases scattering and absorption, thus reduces signal strength across all wavelengths though 

most quickly in the IR, as illustrated in Figure 2.4 [52]. 

 Natural waters however also carry dissolved organic and inorganic materials and 

plankton that each reflect and absorb a portion of the light passing through the water column. 

Characterizing the underwater light environment is therefore complex as these substances change 

the reflectance properties of a water column and can vary greatly across small temporal and 

spatial scales [50]. For example, because the reflectance profiles of sediments suspended in the 

water column have been shown to depend on the size of those sediments, the reflectance profile 

of the water column will thus be altered by a disturbance that resuspends sediments and by the 

amount of time that passes since the disturbance to allow for re- sedimentation [53]. Figure 2.5 
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presents the absorption profiles of major water column constituents in marine environments. The 

absorption profiles of natural waters are thus determined by combining the absorbances of each 

of these materials (and those of any other materials present in the waters), adjusted for the 

relative amounts of each component. The relationship between particulate and dissolved matter 

in the water column and their contributions to a spectral signal are complex, being both depth 

and wavelength dependent [50,51,54]. It is therefore important to characterize the effect of the 

water column if the absolute target reflectance is to be calculated; methods to do so are discussed 

Section 5. A thorough examination of the spectral effects of water column constituents is 

presented in [44]. 

 When waves curve the water’s surface, light is concentrated by convex wave crests and 

dispersed by concave wave troughs, resulting in the familiar web pattern of bright lines that one 

sees in a swimming pool [50]. Concentrating and dispersing light does not alter the wavelengths 

of light reflected by a target but does create disparities in the intensity of light available to be 

reflected over space and time [50]. Waves can therefore produce variation in the magnitude of the 

spectral reflectance profile of a material without affecting the shape of a target’s profile. A wave 

crest or trough does however change the thickness of the water column and may thereby alter the 

shape of the water-leaving signal, particularly in very shallow waters where wave height is a 

significant portion of the total water column thickness. Furthermore, the differences in refraction 

caused by wave crests and troughs produces unequal magnification of benthic features which can 

distort the perceived shape of underwater targets [55]. 

 The measured spectrum of a target therefore depends on the thickness of the water 

column, its constituents and its behavior. Areas that are sufficiently clear and shallow to see the 

benthos are called “optically shallow waters” and it is to these areas that optical RS can be 

applied; waters that are either too deep or turbid to do so are called “optically deep” and are more 

suited to study from acoustic RS. Clear coastal waters under ideal conditions may be optically 

shallow up to 40 m [5] while inland freshwaters are often optically deep at just a few meters 

[50,56]. 

2.5.4. Spectral Properties of SAV 

 When radiation reaches a leaf, it is either absorbed, transmitted or scattered by the leaf 

components (primarily the pigments and cellular structure), with light scattered back away from 
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the leaf appearing to be reflected [57]. Green vegetation, including many SAV species, has an 

easily identifiable spectral profile because of the consistent absorbance properties of its 

pigments. Chlorophylls, lutein and a-carotene all absorb blue light (around 445 nm) very 

strongly and do not absorb green light (around 550 nm) much at all. Chlorophyll-a (Chl-a) and -b 

also absorb red light (around 645 nm) [17,57]. This produces the characteristic “green peak” in the 

VIS. Accessory pigments, like carotenes and xanthophylls, create additional absorption features 

in the VIS that can be used for distinguishing groups or species [57]. Increasing the concentration 

of any pigment will reduce reflectance across the spectrum but will do so inconsistently to 

reinforce and widen any associated spectral features. High concentrations of accessory pigments 

can therefore attenuate the overall reflectance magnitude and the relative prominence of features 

indicative of the major pigments [58]. Vegetation also displays a distinct and drastic increase in 

energy reflection in the NIR called the “red edge” and the “IR plateau” due to the multiple 

scattering of IR energy in leaf tissues [57]. The red edge and IR plateau are however heavily 

affected by water’s absorption in that region, making these features more difficult to analyze 

underwater than in terrestrial situations [59]. As shown in Figure 2.6a), the spectra of two SAV 

species differ in shape, particularly in the VIS where reflectance is determined by pigment 

concentrations. It is additionally shown that the magnitude of reflectance within a species is 

significantly reduced when the plant is placed under even a thin water column. 

 The measured reflectance of SAV varies across seasons, depths, light intensities and 

habitat types. Epibionts and sediments on the plants can also confound reflectance signals 

registered in situ as shown in Figure 2.6b). Therefore, if a spectral library is to be used in image 

analysis across many scenes or conditions, sufficient variation should be included in the library 

to account for the changes in each of these factors [58]. 

2.5.5. Supplemental Datasets in Aquatic RS 

 RS has been applied to determine SAV distribution, cover classes, canopy density, health 

and species. Measurements from aquatic RS have also been used as inputs for modelling fish 

habitat and distributions [60,61]. However, assessing the biophysical properties of SAV through 

RS has yet to be extensively explored and those studies that did, examined superficial 

characteristics such as biomass or plant height [17,62-64]. More advanced applications of RS have 
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likely not yet become popular because of the substantial amount of supplementary data required 

for accurate results. 

 The three primary types of supplemental data involved in SAV RS are vegetation ground-

truth data, depth and bathymetry and water column optical properties. Vegetation ground truth 

data could include spectral profiles, biophysical metrics, presence and absence data and so forth 

depending on the study goals. Collecting these data often uses traditional SAV sampling methods 

(i.e., quadrats and transect surveying), in situ spectral measurements or geolocated observations 

from ships. A thorough example of vegetation ground truth sampling is presented in [65]. Depth 

and bathymetry information is sometimes readily available as many organizations have created 

bathymetric maps of major water bodies for navigation purposes. Using these pre-existing data 

sets as inputs into water column corrections (discussed below) may improve the accuracy of the 

correction and thereby facilitate further analysis. It must however be noted that plant depth and 

bathymetric depth are not equivalent; preexisting bathymetric depth datasets are more useful 

when considering carpeting or short growing SAV than when investigating tall plants that reach 

far above the benthos. Otherwise depth in optically clear environments can be modeled from 

high spatial resolution satellite (or airborne) imagery [66,67]. Quantifying the effect of the water 

column radiation is essential if a study is to examine the reflectance of an underwater target as 

opposed to the reflectance leaving the surface of the water over a target. While there are models 

that estimate the effect of the water column without directly measuring it [67,68], researchers may 

achieve better results by including directly measured parameters. This can include quantifying 

the concentration of dissolved substances through spectrophotometry and measuring the light 

penetration at various depths in situ to calculate attenuation [69,70]. Obtaining these 

supplementary datasets can be financially and time demanding while their utility will depend on 

conditions at the specific study location. The cost of supplementary data must therefore be 

weighed against the potential improvements in results and accuracy during study planning. 

2.6. Sensors 

 Sensors can be passive or active, acoustic or optical, depending on the source and type of 

measured energy. Sensors also vary in how many discrete bands of energy wavelengths they 

record. Table 2.2 presents the types of sensors that are commonly used in SAV RS according to 

these criteria, as well as examples of each type and sources with previous applications. 
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2.6.1. Available Sensors 

 As described in Table 2.2, The Light Detection And Ranging (LiDAR) sensors used in 

aquatic studies are termed “bathymetric LiDAR” because they use green light as opposed to the 

conventional IR which is heavily affected by water column absorption [71]. The Scanning 

Hydrographic Operational Airborne Lidar Survey (SHOALS) system, can measure bathymetric 

features up to 40 m in depth. SHOALS’ typical 4-m spatial resolution may however be too 

coarse to resolve small SAV patches and provides only structural and positional data [72]. Radar, 

while useful for detecting water features, sea ice, surface characteristics and the canopy structure 

of emergent vegetation (e.g., [73-75]), is not applicable in SAV studies because the microwave 

energy used is nearly entirely reflected at the water’s surface [18,71,76]. 

 Acoustic sensors are advantageous in aquatic settings because of the high transmission of 

sound waves through water. They perform well in turbid or optically deep waters where optical 

methods fail [41]. As plant canopies reflect only a part of the acoustic energy with the remainder 

passing through to the substrate, acoustic scanners can receive multiple reflection signals that 

detail multiple layers of vegetation and the material below them, as shown in Figure 2.7. A 

single beam echosounder produces transects of data (Figure 2.7), while a multibeam echosounder 

can create acoustic images with two dimensions of pixels [41]. Side scanners also produce 

acoustic images and are especially effective in macrophyte studies as their horizontal plane 

intersects vertically growing plants [41,71,77]. 

 The exclusively positional data provided by acoustic sensors cannot provide information 

about the species, health or maturity of vegetation; the applications of such sensors are thus 

limited to structural information. The accuracy of hydroacoustic methods has also been 

questioned by some studies. It has been found that hydroacoustic methods produce higher SAV 

height and percent cover measurements than those from divers or imagery. Hydroacoustic methods 

may therefore not capture modest changes in SAV conditions and are not suited to direct comparison 

with data gathered through other methods [77,78]. Still, ongoing innovations in hydroacoustic RS—

such as the Dual-frequency Identification Sonar, which produces acoustic video footage—are 

expected to make acoustic RS more appealing and accessible for work in turbid waters [41]. 

 In addition to the criteria in Table 2.2, passive optical sensors are additionally grouped by 

how they record information. Non-imaging, point measurement spectrometers collect a single 
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spectrum at a time and produce signatures such as those shown in Figure 2.6. Most imaging 

sensors are either whiskbroom or pushbroom, meaning they collect one pixel or one row of 

pixels at a time, respectively [79]. There are also full frame multi- and hyperspectral options, for 

example the Ultris 20 from Cubert acquires spectra for a 400 × 400 pixel array at once across 

100 bands [80]. 

 Panchromatic and RGB film photographs provide historical records of macrophyte 

conditions as far back as the late 1920s in some areas [30,81,82]. These aerial images can be used 

as raw inputs for maps or supporting information for interpreting satellite imagery [71]. Modern 

digital RGB cameras can additionally be used to collect data for simple analyses; Flynn et al. 

used an RGB Go Pro Hero 3+ mounted on a consumer grade UAV to map green Cladophora 

glomerata cover against a yellowish-brown background with 92% overall accuracy in a shallow 

river [83]. 

 Wavelengths covered by bands on multispectral sensors are selected to avoid regions 

with near complete attenuation from the atmosphere and placed to detect specific features such 

as the green peak, red edge and IR plateau [84]. Thermal bands may be chosen to record sea-

surface temperatures [85]. There is a plethora of multispectral sensors on orbiting satellites, each 

strategically designed with specific spectral, spatial and radiometric characteristics dependent on 

their intended uses [44,86]. 

 Some imagers, such as the hyperspectral Compact Airborne Spectrographic Imager 

(CASI), allow the user to define the band placement and width according to features of interest 

[58,87]. This flexibility makes them especially well-suited to macrophyte studies where band 

placement in the VIS wavelengths can be prioritized. The information contained within the 

additional bands of hyperspectral imagery (HSI) allows many more variables to be calculated 

than from multispectral imagery (MSI) of the same scene and improves the accuracy of 

atmospheric and water column corrections [44]. Though MSI contains less spectral information 

than HSI, it is well suited to aquatic applications such as ocean color investigations or detecting 

SAV cover and is less expensive than HSI of the same spatial resolution [23]. 

 Handheld and portable spectroradiometers that collect point-measurements are often used 

for ground-truthing or sample measurement under laboratory conditions. Because these 

measurements are taken close to (or in contact with) the targets, they capture the reflectance of the 
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targets with very little (or no) contribution from other sources. Classifications on these pure spectra 

are therefore far more accurate than on image pixels that may contain more than one material, 

blurring and atmospheric effects. The RAMSES hyperspectral radiometer (TriOS, Rastede, DE, 

USA) for example, is designed for aquatic applications such being mounted on a boat or being 

submerged into the water column [88]. Other common examples of portable, hand-held 

hyperspectral sensors include the ASD Fieldspec series (Malvern Panalytical, Boulder, CO, 

USA) [89], the SVC HR-640i (Spectral Vista Corporation, Poughkeepsie, NY, USA) [90], the 

Flame series (Ocean Insight, Orlando, FL, USA) [91] and Spectral Evolutions’ SR series 

(Spectral Evolution, Haverhill, MA, USA) [92], each having different features like underwater 

housings or fiber optic measurement tips. 

2.6.2. Advancing Technologies 

 Water’s absorption of electromagnetic radiation diminishes the strength of signals from 

aquatic targets; a sensor with a high signal-to-noise ratio (SNR) thus allows the low magnitude 

target signal to be discriminated from atmospheric and sensor noise [44]. Muller-Karger et al. [93] 

suggest an SNR of 800 or more to be ideal for sensors designated for coastal RS, though few 

current sensors comply with such a high SNR requirement. Macrophytes often grow individually 

or in small patches and, as with terrestrial vegetation, may have very similar spectral profiles 

across different species. SAV monitoring therefore necessitates high spatial and spectral 

resolution data that can resolve subtle features. As the near UV and blue regions are not strongly 

absorbed by water, these regions could provide essential information about aquatic targets. 

Furthermore, when successfully captured, blue wavelengths are suggested to be useful for 

discriminating between species [58]. Short wavelengths are, however, highly susceptible to 

scattering the water column and atmospheric aerosols, so the blue region signal is often especially 

weak. A sensor well suited to aquatic research would therefore have a high SNR across its 

spectral range; high radiometric, spatial and spectral resolutions; and would be sensitive to the 

near UV and blue regions. Such sensors are being actively designed and developed. 

 The Portable Remote Imaging Spectrometer (PRISM) airborne sensor, for example, was 

designed to address aquatic research needs. Its spectral range is from 350 nm to 1053.5 nm with 

bands 2.83 nm wide. The 14-bit radiometric resolution allows for 16,384 discrete radiance values 
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and the SNR of 500 in the blue region is an improvement over most other sensors. Depending on 

the flight parameters of its deployment, pixels of less than 1 m can be achieved [94]. 

 The Canadian Space Agency (CSA) has planned the WaterSat microsatellite mission to 

improve its RS capabilities in inland waters (particularly rivers and lakes below 10 km in width) 

and in near-shore coastal areas. The proposed specifications for the WaterSat optical imager are 

aligned with the above outlined aquatic needs: 100 m spatial resolution over a 300 km swath 

width and 10 nm spectral resolution from 400 nm to 1000 nm [95]. Clearly the proposed 100 m 

spatial resolution would not be well suited to small SAV patches, rather it would be appropriate 

for assessing SAV communities at large. A prototype for this optical sensor, the Water Imaging 

Spectrometer Experiment (WISE), was developed in 2018 [96] and is currently being tested. The 

Pre-Aerosol, Clouds and ocean Ecosystems (PACE) sensor, planned to be launched into orbit in 

2022/2023, will provide ocean color information and data relating to phytoplankton and 

atmospheric conditions at a 1 km spatial resolution [95,97]. If the WaterSat and WISE prove 

successful, a similar sensor called the Coastal Ocean Color Imager will be added to the PACE 

mission, thus providing large spatial scale multispectral, and finer spatial scale hyperspectral, 

imagery. NASA is additionally developing two new active sensors for aquatic observation 

purposes: the MiDAR, designed to help correct for the distorting effects of waves, and the 

Surface Water & Ocean Topography (SWOT) sensor which will allow improved measurements 

of in-land and marine surface height to better understand hydrological dynamics [55,98]. The 

airborne prototype, AirSWOT is currently being tested [99]. 

2.7. Platforms 

 RS systems include all components required to collect, store, process and analyze RS 

data. On a satellite platform, the user interacts solely with the imagery. For user operated 

platforms (e.g., manned aircraft, UAV, ROV) however, not only is the choice of sensor 

important but also the platform upon which it is mounted and any additional hardware. While the 

operational levels and set-ups of platforms vary, all systems that provide spatially explicit 

information incorporate a device for doing so. This is especially important for aquatic research as 

landmarks that may later help situate imagery are rare. 

 Most RS systems include one or both of a Global Navigation Satellite System (GNSS) 

receiver and an inertial measurement unit (IMU). A GNSS receiver records its positional 
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coordinates at a set interval, by calculating its position relative to satellites transmitting their 

known locations. The best results are produced when many well-spaced satellite signals are 

intercepted [100]. Time-stamped positional information collected in this way allows 

contemporaneous measurements to be registered with the associated coordinates. While a 

conventional GNSS receiver can achieve geolocational accuracy on the scale of a few meters 

[101], realizing better geographic accuracy necessitates more involved positioning systems and 

corrections. Real-time kinematics (RTK) and post-processing kinematics (PPK) can improve this 

accuracy by incorporating correction transmissions from base stations (either temporary, local 

base stations at the field site or permanent, commercial base stations elsewhere) with known 

locations [102]. Platforms using RTK receive the base station corrections and apply them 

concurrently to data collection while PPK incorporates the corrections after data collection is 

complete in post-processing [103]. The three geolocation methods are illustrated in Figure 2.8. By 

measuring how many signal cycles occurred between the base station and receiver, the distance 

between the two is known with accuracy equal to the wavelength of the signal [114]. While 

GNSS uses only the coded signal, RTK and PPK use both the coded and carrier signal types and 

can thus obtain positional accuracy on the centimeter scale [104]. As RTK and PPK are 

dependent on base station corrections, their accuracy is limited by the accuracy of the base 

station position [103]. Any error or uncertainty in the base station position will translate into 

equal error and uncertainty in the position of the receiver. IMUs collect information on the 

acceleration and attitude of the platform. Considering the acceleration and rotational changes 

during the data acquisition allows the user to calculate the position and look direction of the 

sensor throughout acquisition [100]. Attitude information provided by the IMU can be used to 

trace the direction of the sensor lens and indicates how the area imaged differs from one instance 

to the next, as illustrated in Figure 2.9. If the positional accuracy of the image registration 

through such methods is inadequate or the equipment is unavailable, placing or finding easily 

visible ground control points (GCPs) with precisely known locations within the image and 

registering the image to those points can also be effective [21]. In aquatic settings however, 

placing GCPs may be difficult due to accessibility or currents. As very high accuracy GPS 

receivers do not function underwater, using GCPs to position an image with high accuracy is 

limited to shallow and intertidal sites [105]. 
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 RS platforms for aquatic applications can be situated within the water column, at or near 

the surface, in the near atmosphere or in orbit. As such, they are inconsistently influenced by 

atmospheric and water column effects and produce imagery of vastly different quality, spatial 

resolution and spectral resolution. The platforms employed in aquatic RS can be categorized as 

on-water or off-water platforms and as moving or fixed [41]. Sensors mounted on on-water 

platforms are negligibly—if at all—affected by the atmosphere and so do not require 

atmospheric correction. Fixed platforms collect information about a single point over a given 

period. Moving platforms collect a snapshot of data across multiple locations [106]. On-water 

moving platforms comprise submerged vehicles, hand-held equipment and vessels; on-water 

fixed platforms include buoy- and pier-mounted systems. Unmanned aerial vehicles (UAVs), 

aircraft and satellites are all off-water moving platforms. 

2.7.1. ROVs and AUVs 

 Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs) are 

used to overcome accessibility issues in aquatic environments. ROVs and AUVs are motorized 

instruments that can collect data underwater replacing a person in snorkel, scuba or submersible 

equipment. ROVs are tethered to the point of operation and receive power and instruction from 

this tether. The tether also allows data to be transmitted in real time to the operator. ROVs are 

therefore valuable tools in complex sites, where water conditions are unpredictable or unideal 

and for bottom sampling [107]. AUVs are entirely unattached, with their own navigation, power 

and data storage equipment onboard. This allows their missions to be pre-programmed and 

leaves the user free to address other tasks during the AUVs’ operation, though this also means 

that an AUV may be lost during a mission [107-109]. 

 ROVs and AUVs range greatly in ability and price point, both of which should be 

considered when choosing a vehicle. While small, relatively fragile ROVs may be suitable for 

conducting research in shallow waters with weak flow regimes such as lakes, ponds and 

protected inlets, much larger and sturdier instruments are required to collect data near deep-sea 

hydrothermal vents [107]. These more advanced units are more expensive to acquire and operate 

and are thus often developed and managed by governmental agencies or large research facilities 

[107,110]. 
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 While open sourced or low-cost ROVs and AUVs may not be suited to specialized 

sampling or extreme environments, they do offer the advantage of customization and 

convenience. Davie et al. [52] showed that simple additions of hardware to the Starbug AUV 

facilitated and improved depth correction during post-processing. These aquatic vehicles can 

otherwise be easily upgraded by changing or adding to their stock sensors [52]. Roelfsema et al. 

found that using an AUV to collect ground-truth data was more repeatable than snorkeling 

surveys as an AUV strictly follows a preprogrammed route whereas a snorkeler relies on initial 

headings or visual cues and may drift. The use of an AUV was also shown to extends the depths 

to which they could collect ground-truth data [111]. 

 There are certain risks associated with the use of ROVs and AUVs. In the case of 

imperfect waterproofing or sealing, data on the device or the device itself may be compromised 

[111]. In benthic surveys, the vehicle may become entangled in debris or vegetation which could 

lead to mission complications or loss of the vehicle. Malfunctions due to temperature or pressure 

extremes can additionally cause vehicular damage or loss [109]. Apart from potential risks to the 

research operation, ROV and AUV use can be damaging to the environments in which they are 

employed, particularly through the spread of invasive species [112]. 

2.7.2. Hand-Held, Vessels and Fixed Platforms 

 Sensors mounted on vessels, piers or buoys and hand-held devices can be used to collect 

data above or below the water’s surface. For spectral data collection, however, it is suggested 

that only in collecting measurements both above and below the surface can a researcher account 

for all factors contributing to the measured signal [17]. In the case of a sensor being mounted on a 

large platform—such as a boat, pier or researcher—the influence of the platform should be 

considered in planning the collection geometry and procedure. A boat or pier may shadow the 

target if the sensor is poorly placed. A researcher may stir up sediments or disrupt epibionts—or 

the SAV itself—during collection [17,58]. If the field observations are taken to be used as ground 

truth or validation data for airborne or satellite imagery, scale discrepancies must also be 

accounted for through sampling designed to be representative of the whole scene being validated. 

Point source spectra acquired by spectroradiometers should not be used directly from the 

instrument. Spectra should be processed to absolute reflectance to allow for valid comparisons of 
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spectra of the same target over time or acquired at different locations, by different instruments or 

reference targets [113]. 

2.7.3. Unmanned Aerial Vehicles 

 UAVs range dramatically in size and flight capabilities [36,114]; those referred to here are 

ones that are available to civilian researchers and are thus relatively small (<25 kg) and operate at 

low-altitudes. Most regulatory bodies limit this kind of drone operation to the pilot’s visual line of 

sight [103]. The units are lightweight and can be deployed by a small team of users with limited 

available space. UAVs range in complexity from balloons to gliders to motorized vehicles [33]. 

There are two groups of motorized UAVs: fixed-wing and rotary-wing. Rotary-wing UAVs ascend 

vertically (referred to as Vertical Takeoff and Landing—VTOL) and are thus not constrained by 

needing a runway [114]. Most fixed-wing UAVs operate similarly to traditional aircraft in that they 

require an open area to take off and land in but some modern fixed wing systems also incorporate 

VTOL capabilities. 

 The expansion of UAV employment in RS provides many advantages. UAV-mounted 

sensors are preferred in situations when very high spatial resolution optical data over a small 

physical area is needed (e.g., Figure 2.2a) [26,36]. These systems can be deployed quickly with 

varying sensor configurations, thus making them well suited to environmental monitoring 

missions [32,87]. Their proximity to the target lessens the atmospheric contribution in the 

registered signal. The expansion of UAVs is pushing sensor development towards lightweight, 

financially accessible sensors of similar quality to those traditionally flown on aircraft or 

satellites [32]. 

 The application of UAVs in RS is constrained by their limited payload tolerance, 

preventing most heavy multi- and hyper- spectral sensors from being flown on them. This 

limitation is however being addressed through innovations in developing smaller sensors and 

stronger UAVs (e.g., [115-118]). As small UAVs tend to be battery powered, their flight durations 

are further limited to flying only so long as the charge lasts. Rotary-winged UAVs are especially 

affected as vertical ascent and hovering are energy-intensive operations [114]. Joyce et al. [105] 

provide an extensive look into the logistical, practical and regulatory considerations of 

implementing UAVs in aquatic research. 
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2.7.4. Manned Aircraft 

 Airborne imagery is especially useful when high spatial resolution information is 

required over a larger spatial extent than can be achieved with a UAV or when the desired sensor 

cannot be accommodated by a UAV due to size or weight restrictions. It provides a link between 

very high-resolution ground or UAV data and satellite data and can aid in the interpretation of 

the latter [119]. Figure 2.10 presents an example of the imagery obtained from one flight line 

collected using a CASI-1500 mounted in a twin otter aircraft. The 1 m pixels are sufficiently 

small to allow underwater features and SAV patches to be resolved while the spatial coverage of 

the imagery is far larger than what would be possible using a UAV. 

 Airborne campaigns can be planned to acquire imagery suited to various purposes as the 

image properties are largely dependent on the flight parameters. The altitude and flight speed 

determine the across-track and along-track pixel dimensions respectively [120,121]. The altitude 

will also affect the swath width imaged during the mission, with lower flights covering smaller 

geographic locations for the same sensor configuration [122]. The stability of the aircraft during 

flight will contribute to how well positional and attitude distortions can be corrected. Note the 

distortions and gaps in the SE corner of Figure 2.10. These are caused by unintentional changes 

in aircraft attitude and the intentional turning of the aircraft at the start of the flight line (the 

aircraft travelled from south to north). There are visible attitude adjustments, seen as the very 

curvy portion that resulted from aircraft roll, after the turn as the aircraft stabilizes along the 

flight line, shown by the straighter northward segment. An experienced pilot is thus essential for 

a successful mission. 

 Airborne imagery is expensive to procure either directly or from a data provider, which 

may be financially restrictive [32]. It is therefore sometimes useful to use less costly products 

such as satellite imagery to identify priority areas to be analyzed with airborne imagery instead 

of procuring airborne imagery for an entire region [71]. 

2.7.5. Satellite 

 Satellite platforms and the sensors they carry tend to be referred to collectively, a 

convention that is followed in this text. Data collected from orbiting platforms generally have 

near-global coverage and can have temporal resolutions of less than a day (e.g., AVHRR, 
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SkySat), though most satellites or constellations have revisit times of a day up to two weeks. 

Open access satellite data products, such as those provided by the United States Geological 

Survey from the Landsat missions and those provided through the Copernicus program of the 

European Space Agency are, however, limited in their spatial, spectral and temporal resolutions. 

Moderate (e.g., 10–30 m) (Figure 2.2e,f) and low spatial resolution satellite products (e.g., 500 

m–1 km) are often too coarse to capture the natural variation in aquatic vegetation distribution 

that is of interest to researchers [71,123]. For example, patches must have a diameter of 85 m to be 

reliably identified by the 30 m moderate resolution products from Landsat (Figure 2.2f) and 

SPOT satellites [124]. Large pixels also increase the chance of multiple materials or species 

contributing to the single signature registered for that pixel. Satellites thus have limited 

applicability in identifying SAV to the species level but have often been used to map broad SAV 

community extent [18]. Newer satellite systems are addressing this spatial limitation; the 

commercial multispectral satellite products from Maxar’s WorldView series and Planet’s 

SkySat, for example, can achieve multispectral spatial resolutions of 1.24 m and 50 cm, 

respectively [125,126]. The small number of spectral bands on multispectral satellites further 

restricts the information contained within each pixel. 

 Figure 2.11 presents a non-exhaustive list of sensors, organized by operating platform 

level, that have been used in aquatic RS, including many currently operating satellite sensors or 

constellations. The applications of each sensor and the accuracy achieved is shown. As seen in 

Figure 2.11, the open-access products appropriate to and available for, use in SAV research are 

limited to moderate spatial resolution satellite imagers such as Sentinel-2 (10–60 m) [127], 

Hyperion (30 m) [127] and Landsat (30 m) [47]. These are only useful if studying large features 

such as extensive seagrass meadows. Commercial systems like WorldView-3 have very high 

spatial (0.31 m panchromatic and 1.24 m multispectral) [126] and moderately high spectral 

resolutions (29 bands through the VIS and IR regions) [126] and can be used to accurately answer 

a wider range of SAV research questions. However, they are commercial products and their 

acquisition can be financially unrealistic [49]. Furthermore, imagery that is considered of 

sufficient quality to vendors may not be well suited to certain research applications or locations 

due to cloud cover, positional accuracy, glint, and so forth [16,21]. 

2.8. Corrections and Analysis 

2.8.1. Correction of Passive Optical RS Imagery 
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 While photographs and RGB imagery can sometimes be visually interpreted as-is, 

imagery being used in quantitative analysis or to compare between different dates or locations, 

must first undergo a range of corrections. The three necessary for RS optical imagery are 

radiometric correction, atmospheric compensation and geometric correction. Water column and 

air-water interface corrections are additionally commonly applied to imagery of aquatic 

environments. 

 Sensors record reflected radiance from the surface (and in-scattered from nearby objects) 

in the form of digital numbers (DN), with the range of possible DN values corresponding to the 

radiometric resolution. Radiometric correction converts the raw DN data to radiance, which is 

the amount of energy reaching the sensor, given in Spectral Radiance Units (1 SRU = 1 µWcm-1 

sr-1 nm-1) [128]. This correction accounts for the sensor-specific detection and sensitivity 

variations and is often done using calibration files provided by the sensor manufacturer or another 

calibration provider [129]. Satellite imagery is provided to the user having already undergone 

radiometric correction (although a scaling factor or simple function may need to be applied to the 

data as delivered). Digital RGB (or black and white) photographs do not require this correction 

because the spectral response of the cameras rarely has been characterized in such a way as to 

allow for this type of processing. 

 Next, for imaging sensors, the scattering and absorption effects of the gases and aerosols in 

the atmosphere must be compensated for to isolate the target’s signal. The magnitude of 

atmospheric contribution to a signal is directly related to the thickness of the atmosphere between 

the target and the sensor and the composition of the atmosphere [130-132]. While spectral signatures 

collected through contact measurements are not affected by the atmosphere, for spaceborne 

sensors, the atmospheric contribution can be the predominant contributor to the signal received in 

certain wavelengths (e.g., absorption of the signal at 1.4 µm and 1.9 µm by atmospheric water 

vapor) and a less significant contributor in others. The scattering and attenuation by the 

atmospheric constituents are wavelength dependent. While always required for quantitative 

analysis of MSI and HSI, atmospheric compensation is especially important when comparing 

scenes from different regions or collection dates as the effect of the atmosphere is inconsistent in 

space and time [133]. Atmospheric compensation can be accomplished using a scene-specific 

calibration methods such as the empirical line method (ELM) [134] or through radiative transfer 
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models (RTMs) (see Chapter 6 of Manolakis et al. [135] for a comprehensive description). In the 

ELM, materials such as calibration panels, calibration tarpaulins, concrete, bright sand or deep 

water are often used as calibration pixels. The reflectance spectra of both bright and dark 

calibration pixels, ideally characterized on the ground as close in time to the imagery collection 

as possible, are used to define the relationship between the at-sensor radiance and the target’s 

actual reflectance [23,128,136]. The ELM is considered to be reliable, including for aquatic scenes 

and is most accurate when the conditions are constant between the ground and sensor 

measurement collections [129]. Such calibration is only effective if appropriate and well-

characterized materials are present in the scene; deep-water pixels may not be suitable 

calibration pixels when the target is also underwater or when there are effects such as glare 

contaminating the pixels [18]. 

 RTMs use parameters such as sensor altitude, ground elevation, aerosol optical depth and 

atmospheric composition to model the interaction of radiation through the atmosphere and 

estimate what portion of the recorded radiation was reflected by the target versus what portion 

originated in the atmosphere [18]. A variety of RTMs are available for atmospheric correction—

such as MODTRAN [137], LibRadTran [138] and 6 SV [139]—each with its own strengths and 

limitations. Such RTMs are often applied with specialized software tools or dedicated user 

interfaces [133]. 

 Imagery is geometrically corrected to assign coordinates to every pixel in the image and 

remove image distortions. This is done by accounting for changes in sensor altitude or attitude, 

differences in terrain elevation and sensor optics [140]. Systems equipped with both a GNSS and 

IMU produce the most geographically accurate and precise imagery. By combining the inputs of 

where the sensor is, how it is directed and the scene elevation, a ray can be traced onto the 

ground to the location being imaged in each pixel [129]. 

2.8.2. Corrections Specific to Aquatic Applications 

 Compared to terrestrial RS, aquatic applications have the additional processing 

requirements of accounting for the effect of the water column [71]. In shallow waters, the 

reflectance signal is most dependent on the vegetation density and the bottom reflectance. 

Measurements in very shallow water may also be heavily influenced by internal reflection if they 

are taken at a large angle from nadir [141]. As depth increases, the water column increasingly 
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contributes to the measured profile. This can result in sparse crown cover in deep waters 

spectrally resembling dense canopies in shallower areas [22,23]. Bathymetric data is therefore 

helpful as an additional variable in performing a water column correction. Even the simplest 

method of accounting for depth, masking out deep-water pixels, has been shown to improve the 

accuracy of classifications [22,71,142,143]. Specialized algorithms can also correct for the effect of 

the water column as a function of depth. Consider, for example, a definition of aquatic radiance 

as follows (Equation 1) 

𝐿𝑖 = 𝐿𝑠𝑖 + 𝑑𝑖𝑅𝑖
−𝐾𝑖𝑓𝑧, (1) 

where Li is the sensor recorded radiance in wavelength i, Lsi is the radiance of deep water 

pixels, di is a constant representing the total irradiance just below the surface of the water, Ri is 

the bottom leaving reflectance, Ki is the effective attenuation coefficient of the water, f is a 

geometric factor to account for pathlength (nadir measurements would use a factor of 2) and z is 

the depth. 

Operating under the assumption that water quality is consistent across an image, Lyzenga [141] 

created an RTM for water column correction based on Equation (1) that can account for different 

water conditions and bottom types and is solvable to estimate water depth (z) or bottom 

composition [141,144]. Modifications to Lyzenga’s RTM like those by Sagawa et al. [145] and 

Tassan [146] have been designed to apply the RTM to specific research conditions and goals. 

Lyzenga based water column corrections are not however appropriate for research questions in 

which the absolute spectral reflectance values are needed [143]. 

 In cases where absolute reflectance values are required, such as in studies comparing 

sensor values to in situ measurements, empirical or empirically based methods can be used. 

Purkis and Pasterkamp [143] describe one such model, adapted from [147], used to calculate target 

reflectance, Ri, as (Equation (2)) 

𝑅𝑖 =
1

0.54
𝑅𝐴𝑖 −(1−𝑒−2𝐾𝑖𝑧) 𝑅𝑠𝑖

𝑒−2𝐾𝑖𝑧 , (2) 

where RAi is the apparent reflectance measured just above the water’s surface (obtained 

through either in situ measurements or by atmospherically correcting imagery) and Rsi is the 

reflectance of optically deep water. This model accounts for the effects of the atmosphere, 
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surface refraction and depth while maintaining full spectral information. Purkis and Pasterkamp 

[143] found classification accuracies using this model to be sensitive to the depth used: roughly 

modelling the depth into five intervals and applying the actual target depths produced 

classification accuracies of 53% and 73%, respectively. The effectiveness of water column 

correction procedures may therefore be dependent on the quality of supplemental data available. 

Water column correction algorithms can also be developed for a specific situation. To do so, 

Cho and Lu [148] measured the reflectance of white (100% reflectance) and black (<5% 

reflectance) targets at various depths to calculate absorption and reflectance parameters which 

could then be applied to imagery with known bathymetry. Algorithmic correction methods that 

rely on the spectral information as input parameters, however, are limited by the quality of the 

data and therefore by optical depth. The interested reader is directed to the methodology of [23] 

for a sample application of pre-existing algorithms. 

 Akkaynak and Treibitz [149] have developed the Sea-thru water column correction model, 

to represent the physical interactions of light in the water column. Sea-thru considers that the 

backscattering and diffuse attenuation coefficients differ and that these coefficients change 

amongst bands and images. The method therefore computes the two different coefficients for 

each band and image using each image itself as the input data. The developers show that Sea-

thru can effectively be used to remove the effect of the water column in large RGB images sets 

[149]; its applicability to MSI and HSI has not yet been determined. 

 As for atmospheric correction, planning for depth correction should begin before data 

collection to ensure that all data needed to facilitate later processing is collected. For example, 

Davie et al. [52] incorporated a color correction key into the field of view of their camera during 

imagery collection using a customized system of mirrors installed on their low-cost AUV. 

Knowing the above-water reflectance of each color in the key as measured by the camera, they 

calculated the attenuation of each RGB band for every image. They were then able to distinguish 

between algae, sand and rock reliably [52]. 

 Evaluating the results of water-column corrections has not yet been a prominent area of 

research, though some work has evaluated individual models [23,143,150,151]. For example, 

O’Neill and Costa [23] compared the water-column corrected spectra achieved through 

algorithmic manipulation to the “true” measurements of the substrates laid out on a dry, black 
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background. It was found that the water column correction’s success was dependent on depth 

and wavelength considered. Purkis and Pasterkamp [143] evaluated the performance of a water 

column correction method applied at five different complexity levels and found that only the two 

most complex correction methods provided at least moderate classification accuracies [143]. 

Evaluating the performances of various correction methods against one another cannot always be 

easily done as each model is best suited to a set of conditions; it is impossible for any one 

method to be deemed “best” across all aquatic ecosystems [44]. Researchers should therefore 

carefully examine the assumptions and constraints of a model before applying it to their data. 

 The air-water interface complicates the analysis of RS imagery because of white caps, 

sun glint, wave action, reflection and refraction. White caps and sun glint increase the radiation 

reflected towards the sensor [21]. The best way to minimize the impact of sun glint and wave 

action is to collect imagery during calm surface conditions, gathering imagery when the sun is at 

a 15° to 30° elevation angle and travelling along a path perpendicular to the incident sunlight 

[21,23,50,152,153]. The methods for removing the effect of glint can rely on statistical models of 

the water surface behavior according to atmospheric conditions (i.e., wind) or on spectral 

analysis of the imagery itself, and they are inconsistently effective across water conditions [152]. 

Algorithms used to remove the effect of sun glint often rely on the assumptions that there is no 

upwelling radiance in deep water pixels or in certain wavelengths that are heavily absorbed by 

water [152,154-156]. If these methods are not appropriate or effective on the imagery under 

investigation, sun glint pixels may simply be masked out. To the best of our knowledge, there are 

no analogous algorithms to correct pixels affected by white caps; these are instead masked out or 

not used in the analyses. 

 When imagery is collected with the sensor nadir to the water’s surface—and the radiance 

reaching the sensor is therefore largely perpendicular to the water’s surface—refraction and 

reflection have very minor effects on the radiation’s path. However, as the angle of incidence 

increases (away from the nadir) a higher percentage of the light is reflected and the path of light 

is altered through refraction [50]. When waves disrupt the water’s surface, the angle of incidence 

of light is altered and becomes inconsistent across the image, thus producing inconsistent 

reflection and refraction between pixels and across time. Though these distortions can be small 

in magnitude, they add uncertainty to the locations, shapes and reflectances of objects. Fluid 
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lensing [55] is a new analytical method to account for such wave distortions. Fluid lensing uses 

very high frequency videography to track the movement of waves and identify where the wave 

crests are in each frame. By reconstructing a scene using only image segments affected by wave 

crests, fluid lensing homogenizes the effect of waves across the composite scene, effectively 

removing distortion. It also exploits the magnification caused by convex wave crests to increase 

the spatial resolution of the imagery without changing the system configuration [55]. 

 Finally, refraction diffuses upwelling radiance as it re-enters air, resulting in the above-

water radiance intensity being only roughly 54% of the below-water radiance per unit area [50]. 

This produces a weaker at-sensor signal than would have been measured just below the water’s 

surface. Researchers primarily account for the effects of reflection and refraction by avoiding 

data collection on windy days and by using a nadir sensor configuration to reduce the angles of 

incidence and refraction. 

2.8.3. Analysis of Passive Optical RS Imagery 

 Computer-aided image interpretation allows more imagery to be analyzed more rapidly 

than ever before. This has expanded the use of quantitative analysis as compared to the previous 

largely qualitative, manual, visual interpretation of SAV cover and canopy density. However, 

while digital analysis is faster, it is limited by the information available to the model being 

implemented [17]. For computer-aided analysis of MSI or HSI to be accurate, the data used to 

train the model or classifier must represent the total variation of a scene. Some of the most 

common computer-aided analyses applied in SAV research are described below. Readers are 

directed to [157-161] for examples of the quantitative analysis of photographs not covered here. 

2.8.3.1. Hyperspectral Dimension Reduction 

  Hyperspectral imagers produce highly complex data. The large number of bands 

(e.g., >100) requires unfeasibly large training sample sets for pixels to be accurately recognized 

in classification processes if all bands are used [162,163]. Figure 2.12 presents a theoretical 

illustration of the decrease in recognition accuracy for various training set sizes as the datasets 

being examined become more complex. Classification on the fully spectral set of HSI often 

therefore produces results of limited accuracy. High dimensional data (the dimensionality being 

equal to the number of bands being considered) can, however, be projected onto a lower 

dimension, thus reducing the complexity, without losing much useful information. This is the 
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foundational theory of dimension reduction [162]. Per Figure 2.12, dimension reduction improves 

the accuracy of both target detection and scene classification because in addition to decreasing the 

complexity it effectively eliminates redundant (and often correlated) bands. It additionally reduces 

process times and storage requirements by reducing the amount of data being worked with [162]. 

Dimension reduction can be performed in a variety of ways. The most common methods include 

band/feature selection and the orthogonal transformation methods of principal component analysis 

(PCA) and minimum noise fraction (MNF). 

 Band selection, also referred to as feature selection, entails sub-setting the available 

spectral bands to the optimal set for analysis of a given problem [58,164-166]. Importantly, band 

selection retains the original units and physical meaning of the data, as opposed to 

transformations which do not. Bands are selected if they are both relevant and not redundant by 

maximizing the accuracy of the analysis (e.g., classification) [166,167]. A band is considered 

relevant if its inclusion improves the prediction accuracy of the chosen model, that is, if it 

contains useful discriminatory information about the target. A band is not redundant if it is not 

completely correlated with another band or set of bands included in the subset [166]. Feature 

selection can be performed with a variety of algorithms (see [167] for a review). Some biological 

and ecological researchers have successfully used statistical methods such as ANOVA or 

SIMPER to perform band selection (e.g., [58,87]), however these methods are not recommended 

for high dimension data as they do not consider band redundancy or classification accuracy. 

 Transformations change the units of the features being considered by combining multiple 

features into one or through rotation to produce orthogonal features (e.g., PCA). Using 

transformative dimension reduction methods can produce more accurate classification results 

than using feature selection algorithms but the features produced through transformation may not 

be easily interpretable as they are no longer directly related to the target’s physical state [166]. 

The PCA and MNF transformations follow the same principle of producing orthogonal 

component vectors; PCA orders the vectors according to variance while MNF orders the 

transformed components according to SNR [168]. 

2.8.3.2. Indices 

 Spectral Vegetation Indices (SVIs), such as the most widely used Normalized Difference 

Vegetation Index (NDVI) [169], can be used to distill single values from multiple bands, 
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simplifying analysis and comparison across different locations or times. Different materials have 

different SVI value ranges, thus pixels can be labelled as a certain material based on which range 

their calculated SVI value falls into. Table 2.3 presents several vegetation indices that have been 

applied to SAV, their formulas and a selection of one or more sources that have applied each 

index. 

 Although originally developed for broadband terrestrial satellite imagery, NDVI remains 

one of the most popular SVIs for vegetation-related RS research. Recent work by Costa et al. [29] 

showed that NDVI can accurately estimate seagrass biomass without requiring destructive 

sampling [29]. Some work contests the utility of NDVI in underwater studies because of the high 

absorption of red and NIR radiation by the water column [33,170]. Espel et al. [171] found that using 

NDVI and the Green-Red Vegetation Index (GRVI) produced worse classification results than 

using the band values themselves [171]. Hyun et al. [172] found that while NDVI was not suitable 

for detecting SAV in raw imagery, it can be effective if the attenuation according to depth is 

accounted for. 

 The obstacle of IR attenuation has also been addressed by modifying the NDVI  to use 

the red edge region instead of NIR [173]. Indices such as the normalized difference aquatic 

vegetation index (NDAVI) and the water adjusted vegetation index (WAVI) were developed 

with the aquatic medium in mind and have been shown to produce better separability in the 

aquatic environment than other SVIs presented in the literature [174,175]. The normalized total 

pigment to Chl-a ratio index (NPCI) provides an indication of vegetation health by analyzing the 

ratio of total pigments to Chl-a, as healthy vegetation tends to have more Chl-a than other 

pigments [170]. Some researchers have also performed successful analysis using indices they 

developed for their specific study and targets [176]. As expected, each index may perform best for 

different conditions and retrieves different vegetation characteristics [177]. Combining indices 

can also provide additional information, such as estimates of ecological diversity [25]. In addition 

to being used as primary tools of analysis, index values can be used as variables in more 

advanced analyses like decision trees [178,179]. 

 It is vital to remember that indices are developed with a specific sensor and application in 

mind. They do not therefore necessarily translate well when applied to different sensors, 

environments or questions; their function and structure should be thoroughly examined before 
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adopting an index from one project to another. Additionally, indices are all designed to be 

applied to the reflectance values of imagery, not the radiance or DN. They can therefore only be 

properly applied to radiometrically and atmospherically corrected imagery. 

2.8.3.3. Classification and Target Detection 

 Many SAV research questions in RS studies are answered with classification and target 

detection analyses. Classifications assign a thematic identity (label) to most/every pixel in an 

image using either a spectral library provided by the researcher, training pixels from the image 

itself or statistical measures of separability (i.e., unsupervised clustering). The results of 

classifications illustrate how multiple materials known to be present are distributed throughout a 

scene. Target detection locates pixels in an image that resemble a reference spectrum and is 

usually employed to verify if and where a material of interest occurs in a scene [180]. 

Classification and target detection can be used to determine SAV extent, canopy density, 

stressors (such as disease and salinity), the taxonomic composition of a canopy and where a SAV 

species occurs [22,170,178,181-183]. 

 Supervised classification requires the user to identify materials of interest in a scene 

according to previous knowledge, ground-truths or other data sources. The pixels identified 

compose a set of training data for each known material in the image [49]. One method, the 

Spectral Angle Mapper (SAM), interprets each spectrum as a vector in n-dimensional space, 

where n equals the number of bands. The angle between a reference spectrum and the pixel 

spectrum is calculated and should the angle fall within a defined threshold, the pixel is labelled 

as that reference material [184]. SAM therefore evaluates the shape of the spectra but not the 

magnitude, which is beneficial when examining imagery with uneven illumination conditions 

such as underwater environments affected by waves [128]. Species discrimination through 

classification is possible but spectral differences may be subtle and there is often relatively high 

intraspecific variation and low interspecific variation [17,18]. Including spatial information, as is 

done in object-based image analysis (OBIA) through grouping contiguous sets of spectrally 

similar pixels together, can further improve classification results by analyzing patterns of pixel 

distributions [38,185,186]. 

 Target detection (e.g., Adaptive Coherence Estimator, Mixture Tuned Matched Filter, 

etc.) identifies if and where a single target material of interest exists in a scene and is typically 
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employed for rare or scarce materials [180]. If the target material is abundant, the classification 

methods described above usually suffice. Target detection would therefore be used in SAV studies in 

applications such as detecting if an invasive species is present or mapping the distribution of an 

endangered species. Statistical target detection relies on probabilistic tests, such as the likelihood 

ratio test or the generalized likelihood ratio test [187]. In these statistical approaches, the null 

hypothesis of the target material not being present in a pixel is tested against the alternative 

hypothesis that the pixel contains the target material. This process produces a map in which each 

pixel is either target or background. In all such tests, the probability threshold is inversely related 

to the odds of recording a false positive [187]. If, for example, it is vital that every individual of 

an invasive plant is flagged, the user can set a low probability threshold. This will improve the 

chance that all pixels containing the invader are found, though there may be more false alarms. 

 Considering that pixels may be larger than the ground features they represent and the way 

optical images are generated (e.g., see [121]), several materials often contribute to the measured 

signal of a pixel. Unmixing estimates how much of a pixel’s signal originates from each of the 

possible materials and thus relatively how much of each material there is in the pixel. Unmixing 

methods follow one of two general assumptions: the contributions are either linear or non-linear. 

Linear mixing infers that a material’s contribution is directly proportional to its relative surface 

coverage of the pixel [168,188]. Non-linear mixing occurs when the materials within a pixel are 

mixed homogeneously or when there are multiple reflections of light between the different 

materials [168]. Non-linear mixing may also arise when materials partially transmit light, such as 

in the case of thin leaves, allowing the underlying materials to contribute to the signal without 

being considered as “cover.” In these situations, the spectral contribution is indirectly related to 

the material’s cover and the relative abundance is more difficult to calculate. 

 Due to the reduced growing season in temperate latitudes, SAV matures and senesces 

rapidly relative to terrestrial plants. This means that the pigment concentrations and leaf 

structures in macrophytes that are the primary determinants of their reflectance spectra can vary 

widely depending on the date of observation [57]. Seasonality thus influences the separability of 

different species of SAV and thereby can affect how successful classification and target 

detection analysis is. Some research has shown that the end of the growing cycle is best suited 

for discrimination between species [71]. 
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2.8.3.4. Time-Series and Time Sequence Analyses 

 Time series and time sequence analyses present a special problem in image analysis 

because of atmospheric variability. Time series refers to multiple measurement acquired equally 

spaced in time, whereas time sequence refers to multiple measures with varying sampling 

intervals. Time series analyses are popular in SAV studies to examine the dynamics of a 

population’s or a community’s spread and growth [189-191]. In monitoring applications, temporal 

analysis can be used to examine if a management program is effective [192]. Time series and time 

sequence analyses can be done in a variety of ways, common examples of which are described 

below. 

 Post-classification comparison (PPC) detects changes in environmental variables by 

classifying two images of the same scene from different times and identifying the differences 

between the classification results. This, though, means that an error in the first image that did not 

occur in the second image and vice versa, would be falsely marked as a change, thus 

compounding the likelihood of misclassifications over time [71]. Such compounding errors can 

be reduced using the alternate method of temporal image differencing (TID). In TID, one image 

is classified, then the values of a single band in both images are used to identify a change if the 

difference in band values between two corresponding pixels is above a defined threshold. TID’s 

success is dependent on a reliable classification of the original image and appropriate selection of 

the band to be compared [49]. 

 If the analysis is being performed on reflectance images or transformed data with many 

bands (e.g., stack of SVIs from different dates), Change Vector Analysis (CVA) is recommended 

as it can consider all bands at once. In CVA, an n-dimensional vector is created to represent the 

change between the spectra of two co-registered pixels from different images in a time series. 

The vector is then assessed against a user-defined magnitude threshold. This analysis technique 

allows for intra-group variation to be classified as static depending on the threshold and is 

therefore valuable when classifying complex materials, such as vegetation [71]. 

2.8.4. Structure-from-Motion Photogrammetry 

 Analysis of optical MSI or HSI largely focuses on the reflectance values that provide 

information on the composition of the scene. An image is, however, a two-dimensional 

representation of a three-dimensional surface; structural information is not captured. 
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 Structure-from-Motion Multiview Stereo photogrammetry (SfM-MVS) analysis on a set 

of 2-D photographs recreates the 3-D surface of a landscape for structural applications. 

Photographs should be collected in a grid pattern with high overlap between neighboring images. 

Common points, seen from different angles in different photographs, can be used to infer the 

relative external orientation and internal camera parameters (e.g., focal length) of the 

photographs—and thus the position of the points therein—to create a 3-D point cloud [31,193,194]. 

The surfaces between the points in the cloud can then be connected to produce a 3-D mesh or 

interpolated to create a Digital Elevation Model (DEM), as outlined in Figure 2.13. The reader is 

referred to [194] for a detailed description of the process. 

 3-D meshes produced through SfM-MVS can be used as visualization products, VR 

simulations or as data inputs for qualitative or quantitative analysis. The use of SfM-MVS has 

been endorsed as a time and cost-efficient method of filling in the data gaps in nearshore 

bathymetry and ground cover maps [195]. Rugosity, grain size and fractal dimension are 

important physical traits in classifying aquatic habitats and can all be computed through 

quantitative analysis of DEMs or 3-D mesh surfaces [193,196]. Measures from an SfM-MVS 

model are often more accurate and precise than traditional methods and can be applied to an 

entire scene as opposed to the few transects that can reasonably be conducted in situ [197]. 

Canopy volume and plant biomass information can also be reliably estimated using DEMs 

produced through SfM-MVS of terrestrial and emergent vegetation [198], though it has yet to be 

demonstrated for SAV. SfM-MVS can create very high-resolution digital elevation models when 

LiDAR is unavailable [31,199], such as in the case of most underwater research. SfM-MVS has 

been a popular tool for studying highly structured environments such as coral reefs (e.g., 

[200,201]) but has yet to see the same level of adoption in SAV studies. Recent work by Kalacska 

et al. [193] demonstrates the viability of applying SfM-MVS to freshwater fluvial environments 

and provides a preliminary set of recommendations on employing the method in such 

ecosystems. An example of an SfM-MVS 3D point cloud of a tropical freshwater river with 

emergent, floating and submerged macrophytes is shown in Figure 2.14. 

 SfM-MVS relies on the scene being immobile so that the relationships between different 

points is consistent. This is not always possible underwater. Variable currents, wave action and 

researcher disturbances can all cause the vegetation being imaged to move, especially so for tall 
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vegetation. SfM-MVS is therefore best suited to short or carpeting SAV, in calm waters, with an 

experienced photographer that is an adept swimmer. 

2.9. Applications 

 Previous applications of RS to the aquatic environment have included work in freshwater, 

brackish and marine ecosystems and have answered a variety of spatially explicit questions. In 

the case of SAV studies, these can be largely broken down into: “What SAV is here?” and, 

“where is this SAV found?” The first is an identification problem, either of the species, growth 

type or another biophysical state, while the second is a question of mapping extent or presence 

and absence. This section presents a selection of previous work to provide insights when 

considering implementing RS for SAV research. 

2.9.1. Identification 

 Determining if a group of species are distinct from one another is often the first step in 

studies aiming to map vegetation at the species level. McIlwaine et al. [87] extensively examined 

the spectral separability of eight macroalgal species. These analyses identified which bands were 

most valuable in discriminating species and higher-level groups. While not all species could be 

differentiated, three groups were spectrally distinct as were pairs of species from separate groups. 

Everitt et al. [202] similarly evaluated the spectral separability of nine freshwater SAV species 

using multiple comparison analysis and stepwise discriminant analysis to select the best bands for 

spectral discrimination. The consequent species classification using the identified bands was 

between 96.3% and 100% accurate [202]. 

 Besides examining species, Fyfe [58] investigated the effect of habitat type, season and 

fouling on spectral response. She conducted statistical analyses on the profiles of leaves collected 

across three sites and two years to determine if three species of seagrasses, Zostera capricorni, 

Posidonia australis and Halophila ovalis, are spectrally distinct. The seagrasses were separable 

when considering the VIS-NIR region and the VIS alone, suggesting that these spectral 

differences should be perceivable through a water column. Additionally, there were consistent 

patterns of intraspecific variation between samples of Z. capricorni grown in brackish and 

marine habitats [58]. This suggests that some intraspecific variation could be both a product and 

indication of SAV habitat. 
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 At the canopy-level, Dierssen et al. [203] used PRISM airborne imagery to differentiate 

between species of seagrass and macroalgae that form wracks off the coast of Florida. During 

analysis, the researchers employed indices such as NDVI and the floating algal index to identify 

vegetation at or near the surface. The fine spectral (2.83 nm bandwidth from 349.9 nm to 1053.5 

nm) and spatial resolutions (1 m) afforded by the PRISM sensor allowed them to discern 

between the types of vegetation and age the debris in the wracks [203]. 

 Visser et al. [26] used sub-resolution data from hand-held and UAV-mounted sensors to 

perform OBIA when spectral analysis alone was unable to discriminate between species. By 

combining the texture, shape and spectral information of the targets, they successfully 

distinguished three species of SAV. Later, Visser et al. [38] expanded on the OBIA method to 

discriminate between five species of SAV, areas of species mixing, general vegetation and 

background materials. They used spectral thresholds in multiple bands and geometric analysis to 

identify plants’ properties such as stem length or leaf shape. Although the classification accuracy 

was modest (61% overall accuracy), they believe that OBIA shows promise in SAV research 

[38]. 

 Brooks et al. [173] gathered data using hand-held, vessel-mounted and UAV-mounted 

sensors to determine if the invasive Myriophyllum spicatum could be discriminated from 

amongst the other SAV species present. Analysis using full-dimensional multispectral 

measurements could not successfully distinguish M. spicatum from the background vegetation. 

Hyperspectral data and multispectral data transformed into modified NDVI values, however, did 

show M. spicatum to be distinct from native vegetation. 

 When taxonomy is unimportant, SAV can be identified by growth type or physiological 

characteristics. To do so, Chen et al. [178] used 16 m spatial resolution, 4-band GF-1 satellite 

imagery, field measurements and a decision tree analysis using band ratios to classify emergent 

vegetation, submerged vegetation and alga with over 90% accuracy. Seasonality and canopy 

density were critical determinants of separability while the spatial resolution of the imagery was 

shown to limit the max separability as the large pixels often contained more than one material. 

The methods used produced inconsistent classification accuracies with changes in depth and 

water type [178]. Nelson et al. [40] used the larger 30 m spatial resolution, 6-band Landsat 5 TM 

imagery of a set of Michigan lakes to test how well macrophyte growth types could be predicted 
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through modelling. While the model they produced performed well (61–98% classification 

accuracy) for the calibration lakes, it did poorly when applied to a set of validation lakes [40]. 

This inconsistent model success is potentially due to the lack of variation captured by their set of 

calibration lakes which thereby limits the conditions that the model is suited to. This work 

highlights both the strong potential of RS as a monitoring tool and the need for extensive input 

data in developing robust classification models. Finally, Rotta et al. [62] calculated bottom-

reflectance index values from SPOT-6 imagery and related those values to field observations to 

infer SAV height. Though the model produced only moderate accuracy (R2 = 0.54) and was 

limited to depths of less than roughly 5 m, further calibration could improve the model’s 

performance [62]. 

2.9.2. Location of SAV (Extent Mapping) 

 Detection studies seek to locate targets, such as community extent, a certain SAV species 

or a growth type. Simple band ratios have been shown to be effective at detecting SAV extent in 

shallow waters from Landsat imagery [59] though their success depends on water depth and the 

SAV being detected. In mapping community extent and density with Landsat imagery, Ackleson 

and Klemas [22] found that the unsupervised classification algorithm produced more accurate 

results when pixels over deep water were masked out. The deep-water pixels were confused with 

dense canopy cover and vice versa [22]. Wolter et al. [16] found that incorporating a 

multitemporal differencing technique improved classification accuracy. By subtracting the red 

reflectance at the start from the end of the growing season and using this difference as a band 

along with the visible green and red, the effect of the water column was reduced and SAV was 

more reliably detected [16]. Work by Giardino et al. [204] combined mapping community extent 

and species identification. Water column constituent concentrations, depth and SAV community 

extent were modelled using field measurements and airborne MSI as input data. They thereby 

probabilistically classified the bottom cover as Chara ssp., other SAV or substrate [204]. Santos 

et al. [191] used airborne HSI spanning several years to examine the dynamics of a community of 

invasive species at the scale of a 2220 km2 delta. They found that there was a slightly negative 

spread rate of the invader across the study time and a relatively short inter-annual persistence 

which suggests that the invasion may be weakened with time [191]. 
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 Locating a species of SAV instead of a community may require different data and 

analyses. Williams et al. [205] conducted a preliminary exercise of species mapping using 

hyperspectral airborne imagery to match the spectral features of two species to those present in 

pixels’ spectra. The contributions of active water column constituents, such as chlorophylls, were 

minimized through band selection. Although the results seemed align with reality, the lack of 

appropriate validation data meant that no measure of accuracy could be calculated [205]. O’Neill 

and Costa [23] mapped the extent of Zostera marina using both airborne and high-resolution 

satellite imagery. They found that performing dimension reduction on the airborne imagery 

produced the most accurate results and that the products of different classification algorithms 

varied widely. Notably, the map accuracy decreased after water column correction because of the 

additional error introduced, highlighting the importance of appropriate and verified water column 

corrections. Such species-specific mapping is especially valuable considering invasive species. 

Kumar et al. [206] used Landsat 8 imagery as input data to a model of the invasive Hydrilla 

verticillata’s presence. The model effectively predicted H. verticillata’s presence/absence as 

validated by a concurrent field campaign [206]. Such models allow managers to better and more 

frequently monitor plant growth and the effects of their control efforts. 

 In a study comparing macrophyte monitoring techniques, Stocks et al. [41] had two teams 

of researchers use hydroacoustic sensors, satellite imagery and hand-held geolocation devices to 

create maps of macrophyte cover in two lentic environments with different turbidity levels. In 

comparing the resulting maps between teams and amongst techniques, they found that vertical 

hydroacoustic and optical RS methods were consistent between operators while acoustic side-

scanning and manual delineation of polygons were subject to user error. In turbid waters, the 

vertically oriented acoustic data far outperformed the optical footage taken from an RGB camera 

[41]. Vis et al. [24] similarly conducted a cross validation experiment to compare the utility of 

various SAV extent mapping methods. In comparing optical RS, hydroacoustic data and three 

environmental models, they found that optical RS was the least accurate. However, the available 

optical imagery was 10 years older than the ground data and had been spatially resampled to a 

coarser size. The significant temporal and spatial variability in macrophyte communities and the 

lag between imagery and reference data collection could explain why optical RS was shown to 

be inaccurate. Echo sounding RS was shown to be the most accurate method of detecting 

macrophyte type, supporting the use of this technology for SAV studies in turbid waters [24]. As 
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inland waters are often turbid and this turbidity varies over space and time, the ability to operate 

both optical and acoustic sensors (and combine them if necessary) is an asset for lentic or fluvial 

RS researchers. 

 Nahirnick et al. [207] used an off-the-shelf, consumer grade UAV and RGB Go Pro 

camera to collect very fine resolution imagery of the Z. marina habitat in three locations. Using 

SfM-MVS postprocessing to produce an accurate orthomosaic, they mapped presence and 

absence with 86.5% to 96.3% accuracy [207]. They found that using OBIA helped achieve high 

accuracy classifications on images with varying illumination and environmental conditions [207]. 

2.10. Discussion 

 As with most new technologies, the regulatory environment surrounding low altitude or 

surface RS is still in development and may differ amongst governments. It can however be 

largely broken down into two categories: policies regulating the platforms and those regulating 

data collection. Satellite RS is governed by international laws, such as the Outer Space Treaty or 

various United Nations resolutions, as satellites do not orbit in the territory of any State and 

States can collect imagery of one another [208]; a discussion of the legalities of satellite RS is 

presented in [208]. 

 Legislation regarding the use of platforms such as aircraft, UAVs or vessels are primarily 

concerned with safe operation and respecting territorial boundaries. Aircraft and vessels must 

follow all relevant licensing, operational and navigational regulations in the study’s administrative 

district(s). Most localities also have regulations relating to un-manned flight. In Canada for 

example, all UAVs over 250 g must be federally registered and flown by a licensed pilot. They 

cannot be flown near airports or in military airspace without permission and permission is also 

required for operations within a national park [209]. Operations may also be restricted near or over 

bystanders minimize the risk of personal injury. The American Federal Aviation Association has 

implemented similar regulations for all UAVs in their airspace [114]. 

 Recent advances in aquatic RS have focused on post-processing methodologies and 

analytical tools. Data collection procedures however are not yet standardized, making 

comparisons across studies of the same location difficult, and studies of different locations or by 

different researchers can rarely be meaningfully compared. Spectroradiometer measurements are 

heavily influenced by the collection conditions, may not be reproducible and contain 
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uncertainties and sources of error that are not well defined [210]. Without a widespread 

commitment to normalizing data and to quantifying uncertainties during data collection, 

processing and analysis, users can be left with little idea of how representative the data are. This 

is an area of intense focus and effort for the European Space Agency, through the Quality 

Assurance Framework for Earth Observation and NASA, through their Earth Science Data and 

Information System Standards Office [211,212]. 

  When used appropriately, RS is a novel tool for policymakers and ecosystem 

managers across the globe. However, the current lead time and expertise needed for a beginner to 

implement a new RS system is an obstacle. Automation is therefore a primary goal for aquatic 

RS [23]. Being able to produce reliable, rapid and accurate information without extensive user 

input would allow the proliferation of RS into environmental management. Complete automation 

is unlikely but advances such as creating more complete spectral libraries will make RS more 

user-friendly and widely applied [23,46]. 

 Besides applying RS to the identification and detection of SAV, there has been progress 

in harnessing it to collect data as environmental variables for modelling. Research projects such 

as the “Spectral Library of Dutch Waters” have endeavored to gather spectral information and 

samples of a wide variety of water types and qualities to clarify the relationship between water 

column constituents and spectral response [213]. The Bio-ORACLE (Ocean Rasters for Analysis 

of CLimate and Environment) database, for example, contains 23 global rasters incorporating 

satellite and in situ measurements that can be used for modelling shallow water species 

distributions [25]. The Ocean Biogeographical Information System (OBIS) database for marine 

biodiversity research illustrates regional disparities in marine RS research. Creating a global 

network of aquatic RS infrastructure and researchers could efficiently fill these data gaps. 

Developing such databases will allow more accurate modelling and predictions considering the 

changing climate. 

2.11. Conclusions 

 Inland and marine aquatic habitats rely heavily on SAV for the ecosystem services they 

provide. SAV communities are changing across the planet; extensive monitoring is therefore 

desperately needed. RS provides a time, cost and labor efficient monitoring method for large 
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scale SAV studies. The interactions between light, the water’s surface and the water column, 

however, complicate the analysis of aquatic RS data compared to terrestrial studies. 

Still, SAV has been accurately and efficiently monitored using RS in clear, shallow waters. 

Depth and turbidity obscure the measured reflectance of SAV and thereby reduce the accuracy 

with which RS can be applied to detect and identify SAV. There are a variety of empirical and 

analytic models available to correct for the effects of the water column; not all models are 

successful in all water conditions and there has yet to be a comprehensive evaluation of these 

methods. High spatial, spectral, radiometric and temporal resolutions are vital to achieving 

meaningful and accurate results in SAV studies due to the strong similarities between benthic 

substrates, patchiness of SAV growth, weak water-leaving signal and rapid development of 

SAV, respectively. 

 Using RS to map the extent of SAV cover has been most explored in previous 

applications and has produced remarkably accurate results (up to 99% overall classification 

accuracy). Other applications that seek to examine SAV at a more granular level (canopy 

density, growth type, species extent, etc.) have been less well explored. Data fusion techniques 

that allow users to more readily combine datasets are likely to improve the performance of these 

higher-level investigations. 

 Technological innovations—like PRISM, WISE, SHOALS and MiDAR—are producing 

raw data that are more appropriate to aquatic applications than traditional sensors. Computational 

advances, such as Sea-Thru and fluid lensing, are improving the water column corrections and 

providing researchers ever-more accurate and detailed information about the benthic 

environment. Combined, these advancements will allow researchers to ask more complex 

questions and produce more accurate results for a larger range of ecosystems. With this 

anticipated high-quality imagery and an understanding of RS, ecosystem managers could create 

targeted conservation and preservation plans (e.g., weeding out invasive species before they 

establish themselves; protecting endangered species and spawning sites; culling diseased 

individuals; or, optimizing SAV to improve water quality). This would improve the effectiveness 

and time- and cost-efficiency of conservation efforts. 

 There is a growing body of work applying RS to SAV monitoring. New analysis methods 

and sensors are being developed to better address the needs of the aquatic RS community. There 
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are concerted efforts by inter-organizational and international groups to create global RS data 

repositories for aquatic environments. SAV monitoring is a global priority plagued by high costs, 

labor intensity, access issues and limited spatial scale—problems for which RS is becoming a 

more and more attractive solution. 
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2.12. Tables and Figures 

Table 2.1. A list of essential remote sensing concepts mentioned in this study that researchers 

new to remote sensing (RS) should familiarize themselves with. Readers are directed to 

explanatory resources such as [135,140,214] for further detail. 

 

Concept Definition 

Acoustic remote sensing 
Measures backscatter of acoustic waves which are vibrations of 

the medium (e.g., water) through which the waves propagate. 

Active sensor A sensor that generates its own signal to illuminate the target. 

Anomaly detection 
A type of target detection in which there is no a priori target 

information. 

Classification 

An analytical method in which pixels in an image are given a 

thematic label as belonging to groups that have either been defined 

by the user or algorithmically generated. 

Full-Width-Half-

Maximum (FWHM) 

The width at half of the peak transmittance of the weighting 

function that describes the range of wavelengths a particular band 

is sensitive to. If a sensor has bands with narrow FWHMs finer 

spectral details can be resolved. For example, the uCASI (Figure 

2.2a) has a narrow FWHM for each band (i.e., 2.6 nm) in contrast 

to 66 nm for band 2 of Sentinel-2. 

Near Infrared (NIR) 
The region of the electromagnetic spectrum between 700 nm and 

1100 nm. 

Optical remote sensing Measures reflected electromagnetic radiation. 

Passive sensor 
A sensor that measures ambient energy, usually reflected solar 

radiation, thermal radiation, or microwaves. 

Pixel size 

The distance between pixels. It encompasses most of the area on 

the ground contributing signal to a pixel. Most often this metric is 

used to describe an image after it has been geometrically corrected 

to square pixels but can also refer to the raw unaltered geometry 

(see [121] for an example). 
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Table 2.1. (Continued) 

 

Concept Definition 

Radiometric resolution 

Distinct levels into which the incoming signal is divided, the 

number of which determines how many energy intensity levels can 

be distinguished as being different by the sensor. This is typically 

given in the form of bits used to encode the pixel values in binary 

format where each bit corresponds to an exponent of 2 (e.g., an 8-

bit image has 28 or 256 digital numbers referred to as grey levels). 

Many modern imagers acquire data in 10, 12 or 14-bits. 

Spatial resolution 

The smallest resolvable detail achievable by a given system 

configuration. Spatial resolution can be divided as: very high < 1 

m; high 1 m < x < 5 m; moderate 5 m < x < 30 m; low > 30 m. 

Spectral profile/signature  
Response of a sensor to radiation across wavelengths sensed. 

Often represented as a curve of radiation reflected by a target. 

Spectral resolution 

Ability of a sensor to define fine wavelength intervals. A finer 

spectral resolution allows for a narrower wavelength range for a 

particular band. While the number of bands recorded by a given 

sensor can range from < 10 to > 200, the narrowness of the 

spectral interval that can be resolved defines the resolution. This is 

often reported as the FWHM of the spectral response function of 

each band. 

Target detection 
An analysis method in which the known spectral, thermal, or 

microwave response of a material is located in an image. 

Temporal resolution 
The time interval between successive measurements of the same 

target. 

Ultra-violet (UV) 
The region of the electromagnetic spectrum between 270 nm and 

400 nm. 

Visible spectrum (VIS) 
The region of the electromagnetic spectrum between 400 nm to 

700 nm comprising all visible wavelengths of light. 
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Table 2.2. The types of remote sensors that have been commonly applied to the study and 

monitoring of SAV, categorized by type, energy measured and number of bands (n). Example 

sensors and sources detailing applications of these sensors are also listed. 

 

Type Energy n Name Description Examples Sources 

Active 

Acoustic 1 
Side-scan 

sonar 

Emits energy from above, 

at or near the water’s 

surface. 

Hummingbird 

SSS 

[41,77,21

5] 

Acoustic 1–2 Echo-sounder 

Emits energy horizontally 

from within the water 

column. 

DIDSON, 

DT- X, 

Sonic2024 

[41,64,21

6,217] 

Electro- 

magnetic 
1 

Bathymetric 

LiDAR 

Emits green light (~530 

nm) that penetrates the 

water column. 

SHOALS, 

EAARL 
[72,218] 

Passive 
Electro- 

magnetic 

1 Panchromatic 

Film and digital sensors 

that are sensitive to a wide 

wavelength range of light 

(usually the VIS) and 

produce greyscale images 

comprised of a single band. 

Film, 

PAN band on 

SPOT 

[157,158] 

3 
Red-Green- 

Blue (RGB) 

Film and digital sensors 

that capture visible light to 

produce true color images. 

DSLR 

camera, 

Go Pro 

[83,185,2

07] 

4–30 Multispectral 

Sensors that record up to 15 

non-contiguous bands, 

potentially across the entire 

reflective optical spectrum. 

Sequoia 

sensor, 

MEIS, 

Landsat 

[186,219,

220] 

30+ Hyperspectral 

Sensors that record dozens 

to > 100 narrow, 

contiguous bands. 

ASD 

fieldspec, 

CASI, 

Hyperion 

[46,221,2

22] 
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Table 2.3. A selection of SVIs of interest in SAV studies, whether due to their popularity, target 

material or use. Their full names, abbreviations, equations and sources that use each are listed. L 

represents a water column correction factor determined for a specific image. 

 

 

 

 

 

 

  

Name Abbreviation Equation 
Source

(s) 

Normalized difference 

vegetation index 
NDVI 

(𝑁𝐼𝑅 𝑏𝑎𝑛𝑑 − 𝑟𝑒𝑑 𝑏𝑎𝑛𝑑)

(𝑁𝐼𝑅 𝑏𝑎𝑛𝑑 + 𝑟𝑒𝑑 𝑏𝑎𝑛𝑑)
 

[29,171,1

73,223] 

Normalized difference 

aquatic vegetation index 
NDAVI 

(𝑁𝐼𝑅 𝑏𝑎𝑛𝑑 − 𝑏𝑙𝑢𝑒 𝑏𝑎𝑛𝑑)

(𝑁𝐼𝑅 𝑏𝑎𝑛𝑑 + 𝑏𝑙𝑢𝑒 𝑏𝑎𝑛𝑑)
 

[173-

175]  

Water-adjusted 

vegetation index 
WAVI (1 + 𝐿) ∗

(𝑁𝐼𝑅 𝑏𝑎𝑛𝑑 − 𝑟𝑒𝑑 𝑏𝑎𝑛𝑑)

(𝑁𝐼𝑅 𝑏𝑎𝑛𝑑 + 𝑟𝑒𝑑 𝑏𝑎𝑛𝑑)
 

[173-

175] 

Green-red vegetation 

index 
GRVI 

(𝑔𝑟𝑒𝑒𝑛 𝑏𝑎𝑛𝑑 − 𝑟𝑒𝑑 𝑏𝑎𝑛𝑑)

(𝑔𝑟𝑒𝑒𝑛 𝑏𝑎𝑛𝑑 + 𝑟𝑒𝑑 𝑏𝑎𝑛𝑑)
 [171] 

Normalized total 

pigment to Chl-a ratio 

index 

NPCI 
(𝑟𝑒𝑑 𝑏𝑎𝑛𝑑 − 𝑏𝑙𝑢𝑒 𝑏𝑎𝑛𝑑)

(𝑟𝑒𝑑 𝑏𝑎𝑛𝑑 + 𝑏𝑙𝑢𝑒 𝑏𝑎𝑛𝑑)
 [170] 
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Figure 2.1. Operation chronology of a selection of remote sensors used in Submerged Aquatic 

Vegetation (SAV) research by platform and sensor type. 
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Figure 2.2. Comparison of spatial resolutions in representing natural and man-made features 

(most notably a flooded road) in the Saint-Lawrence River, Ontario, Canada. (a) 3 cm 

resampled pixel size image acquired from an unmanned aerial vehicle (UAV) platform with 

the uCASI sensor (288 spectral bands). Subset is shown as a true color composite R:648 

nm/G:548 nm/B:449 nm. (b) 1 m resampled pixel size image acquired from an airborne 

hyperspectral platform (CASI-1500, 288 spectral bands) Subset is shown as a true color 

composite R:641 nm/G:550 nm/B:471 nm. The yellow box indicates the spatial extent of 

frame (a). (c) Panchromatic film photograph from a KH-9 satellite taken in 1980 at a spatial 

resolution of 2 to 4 feet. (d) 3 m resampled pixel size image from the commercial 

PlanetScope satellite constellation (Dove-PS CubeSat). (e) 10 m resampled pixel size 

Sentinel-2 satellite image. (f) 30 m resampled pixel size Landsat image. For d-f, the 

respective RGB bands are displayed as true color composites. 
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Figure 2.3. A simplified illustration of the interactions of light as they originate from the sun and 

are recorded by an optical sensor. The labels are as follows: LT = Radiance reflected by the 

target; LTS = Radiance reflected by the target then scattered out of the path to the sensor; LS = 

Radiance reflected by the non-target substrate; LA = Radiance reflected by the atmosphere to the 

sensor (also referred to as path radiance); LAS = Radiance scattered by the atmosphere; LW = 

Radiance reflected by the water column into the sensor; LWS = Radiance scattered by the water 

column; LWA = Radiance absorbed by the water column; LI = Radiance reflected by the air-water 

interface; LE = Radiance that is scattered into the scene by the ambient environment. 
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Figure 2.4. The attenuative effect of the water column on the recorded signals of a flooded 

cement road at the Long Sault Parkway, ON, from airborne hyperspectral imagery (HSI) (CASI-

1500). The colored boxes identify the pixels for which the spectra are shown on the right in units 

of radiance. The pixels chosen represent an increasing effect of the water column, with the dry 

road pixel being entirely unaffected by water. The inset photo shows what the flooded road looks 

like from the ground and was taken at the point indicated by the yellow circle. Note that the 

spectra here are in radiance, prior to atmospheric correction, as such the strong atmospheric 

water absorption features (e.g., 940 nm) can be seen in the spectrum from the dry road. 
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Figure 2.5. The absorption profiles of four major constituents of natural waters. “Oceanic water” 

refers to very clear seawater. Colored Dissolved Organic matter (CDOM), oceanic water and 

suspended non-living matter all use the primary axis; only the phytoplankton spectrum uses the 

secondary axis. Reprinted from Subsea Optics and Imaging, Johnsen et al., Underwater 

hyperspectral imagery to create biogeochemical maps of seafloor properties, 508-535. Copyright 

(2013), with permission from Elsevier[224]. 
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Figure 2.6. Examples of vegetation spectra, with one standard deviation from the mean shown as 

shading; (a) A comparison of the effect of a thin layer of water (<5 mm) on the measured 

reflectance of a single species and the difference in profile shape between species. Note the 

prominent green peak in the spectrum of Nymod near 550 nm and the red-edge around 680 nm. 

The measured spectra of the submerged plants are lower across the spectrum, especially so in the 

NIR region. Valam does not display as prominent a green peak due to its higher relative 

concentration of accessory pigments making the leaves appear reddish-brown. (b) A comparison 

of the effect of epibiont and sediment fouling on the same plant sample. The profile of the fouled 

plant has a different shape and less spectral variability in the visible region than that of the 

unfouled plant. Nymod = Nymphaea odorata; Valam = Vallisnaria americana. 
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Figure 2.7. Output from a single beam echosounder at 200 kHz (upper panel) and 800 kHz 

(lower panel) wave frequency. Macrophyte presence is identified by the areas of signal 

reflections (in the upper right hand of each panel) above the lake bottom. From Stocks et al., 

2019 used according to CC-BY-ND http://creativecommons.org/licenses/by-nd/4.0/. Accessed 

07-10-2020 [41]. 

 

Figure 2.8. The three methods used to acquire geolocational data in RS using UAVs and manned 

aircraft (labeled “platform” in the figure). (a) Platform location is determined using trilateration 

of three or more satellite signals. (b) Platform location is determined by the user applying a 

correction to the Global Navigation Satellite System (GNSS) receiver-generated location file. 

The correction file is downloaded from either a local base station operated by the user or from a 

commercial base station operated by external parties, such as governments. (c) Platform location 

is determined by applying a correction signal from a base station concurrently to data 

acquisition. 
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Figure 2.9. The effect of platform attitude on the look direction of a sensor. (a) A “rolled” 

aircraft will cause a sensor to image an area adjacent to the intended flight line. (b) A change in 

platform pitch will cause the sensor to image a portion of the flight line that is not directly below 

it; rapid changes in pitch may therefore cause duplicate imaging of some targets (downward pitch 

aiming the sensor backward) or gaps (upward pitch aiming the sensor ahead). (c) A change in yaw 

will angle the view of the sensor so consecutive rows of pixels are not parallel, resulting in gaps and 

duplication. 
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Figure 2.10. An example of imagery collected by a CASI-1500 onboard a manned aircraft 

acquiring imagery over the Long Sault Parkway, ON, Canada. Imagery was collected by a twin 

otter aircraft in partnership with the National Research Council of Canada. The NoData artefacts 

during the turn are portions of the ground over which no pixels are resolved in the geocorrection.  
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Figure 2.11. An illustration of the extent and accuracy of previous aquatic RS work regarding 

SAV.  The maximum accuracy found (reported as percent overall accuracy or R2) is depicted for 

each sensor-application pairing. Colored squares are on a gradient scale from 0 to 100, 

representing either percent overall accuracy or R2 × 100. White squares indicate that the sensor-

application pair was encountered but no suitable overall accuracy measure was provided. Grey 

squares indicate that no source employed that sensor-application pairing. The large number of 

white and grey squares respectively demonstrate the need for consistent accuracy reporting and 

the huge research gaps to date in aquatic RS. Active sensors are italicized. All sources cited in 

this text were reviewed in the compilation of the figure, as well as references [225-342]. 

 

 

Figure 2.12. The relationship between data complexity, training set size and mean classification 

accuracy. Complexity is here calculated as the number of bands raised to the exponent of the 

number of possible DN values per band (2# of bits). For HSI (and MSI with many bands), huge 

training sets would be required to obtain adequate classification accuracies if all bands are used. 

m = training set size. © 2002 IEEE. Reprinted, with permission, from Landgrebe, D. (2002), 

Hyperspectral image data analysis, IEEE Signal Processing Magazine. [162]. 
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Figure 2.13. A simplified illustration of the principle of Structure-from-Motion Multiview 

Stereo photogrammetry. Common points at the corners of a rectangular prism seen from various 

angles are used to reconstruct a three-dimensional representation of the object. (a) the side; (b) 

the top; (c) the front; (d) the reconstructed rectangular prism. In reality, hundreds to thousands of 

key points (uniquely identified points) per photograph are needed with hundreds to thousands of 

matches between photographs to reconstruct a surface in 3D. 



61 
 

 

Figure 2.14. Dense 3D point cloud from the Salobra river, Mato Grosso do Sul, Brazil generated 

through a Structure-from-Motion Multiview Stereo workflow from 768 UAV photographs. 

Photographs were acquired with a DJI Mavic 2 Pro UAV with an integrated Hasselblad L1D-2C 

camera. The camera has a 1” sensor (77° field of view) producing an image size of 5472 × 3648 

pixels. A median of 67,753 key points were found per photograph with a median of 13,416 

matches per photograph. Final ground sampling distance of the model is 1.2 cm. Extensive 

floating water hyacinth (Eichhornia crassipes) can be seen. The interactive point cloud can be 

accessed at https://bit.ly/waterhyacinth3D . Panel A (yellow) illustrates a shallow (<30 cm) area 

with several species of SAV which produce a habitat utilized by small characins. Panel B (blue) 

illustrates floating E. crassipes in deep (>2 m) water frequented by giant otters (Pteronura 

brasiliensis) and caimans (Caiman yacare). Panel C (purple) is a mid-range depth (1–2 m) with 

large patches of algae on the substrate. This open water habitat is frequented by larger fish 

species such as Prochilodus lineatus. Panel D (red) shows a bed of Camboba sp. in deep water 

(>2 m). The dense stems provide habitat for species such as Pygocentrus nattereri and 

Serrasalmus maculatus. 
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3. Multi-scale spectral separability of submerged aquatic vegetation species in a freshwater 

ecosystem 

 

Rowan, G.S.L., Kalacska, M., Inamdar, D., Arroyo-Mora, J.P., Soffer, R. Multi-scale spectral 

separability of submerged aquatic vegetation species in a freshwater ecosystem. Frontiers in 

Environment Science. 2021, 9, 438. DOI: 10.3389/fenvs.2021.760372  

3.1. Context within thesis 

 The research in this chapter was conducted to fill in some of the foundational knowledge 

gaps that existed in aquatic remote sensing. It presents original research exploring the spectral 

properties of a set of thirteen SAV species collected from a freshwater habitat under both 

idealized and in situ conditions. The theoretical maximum separability between the species is 

determined, as well as the effects on separability of two sampling conditions (leaf fouling and 

season) and two project design choices (class coarseness and sensor selection). The same set of 

species were then mapped in airborne hyperspectral imagery to examine how the theoretical 

maximum separability translated to practical results. The limitations of the in-situ mapping 

exercise are discussed to guide future work on planning methodologies and shaping their 

expectations of possible results. This work illustrates how optical remote sensing could be 

applied to map SAV across a wide range in scope of various factors including spatial and 

spectral resolutions, and question specificity. Per the thesis submission guidelines, the text of this 

chapter is exactly that of the published article. 

3.2. Abstract 

 Optical remote sensing has been suggested as a preferred method for monitoring 

submerged aquatic vegetation (SAV), a critical component of freshwater ecosystems that is 

facing increasing pressures due to climate change and human disturbance. However, due to the 

limited prior application of remote sensing to mapping freshwater vegetation, major foundational 

knowledge gaps remain, specifically in terms of the specificity of the targets and the scales at 

which they can be monitored. The spectral separability of SAV from the St. Lawrence River, 

Ontario, Canada, was therefore examined at the leaf level (i.e., spectroradiometer) as well as at 

coarser spectral resolutions simulating airborne and satellite sensors commonly used in the SAV 

mapping literature. On a Leave-one-out Nearest Neighbor criterion (LNN) scale of values from 0 

(inseparable) to 1 (entirely separable), an LNN criterion value between 0.82 (separating amongst 
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all species) and 1 (separating between vegetation and non-vegetation) was achieved for samples 

collected in the peak-growing season from the leaf level spectroradiometer data. In contrast, 

samples from the late-growing season and those resampled to coarser spectral resolutions were 

less separable (e.g., inter-specific LNN reduction of 0.25 in late-growing season samples as 

compared to the peak-growing season, and of 0.28 after resampling to the spectral response of 

Landsat TM5). The same SAV species were also mapped from actual airborne hyperspectral 

imagery using target detection analyses to illustrate how theoretical fine-scale separability 

translates to an in situ, moderate-spatial scale application. Novel radiometric correction, 

georeferencing, and water column compensation methods were applied to optimize the imagery 

analyzed. The SAV was generally well detected (overall recall of 88% and 94% detecting 

individual vegetation classes and vegetation/non-vegetation, respectively). In comparison, 

underwater photographs manually interpreted by a group of experts (i.e., a conventional SAV 

survey method) tended to be more effective than target detection at identifying individual 

classes, though responses varied substantially. These findings demonstrated that hyperspectral 

remote sensing is a viable alternative to conventional methods for identifying SAV at the leaf 

level and for monitoring at larger spatial scales of interest to ecosystem managers and aquatic 

researchers. 

Keywords  

hyperspectral remote sensing; freshwater; Myriophyllum spicatum; target detection; Depth 

Invariant Index; St. Lawrence River. 

3.3. Introduction 

  Submerged aquatic vegetation (SAV) is vital to the health of aquatic ecosystems. It 

provides habitat and food for fauna, stabilizes sediments, modifies flow regimes, and improves 

water quality [5,12,15]. SAV is also facing severe threats in the forms of warming waters, 

increased water levels, invasive species, and human modification to water ways [5,13,19]. 

Monitoring is therefore critical to assessing the health of SAV communities, their population 

dynamics, and changes in their distributions due to these pressures as well as to evaluating the 

efficacy of ecological management projects [2,343]. As optical remote sensing is widely effective 

in terrestrial vegetation monitoring in many applications including biodiversity assessment, 

forestry, agriculture, etc. (e.g., [344-346], there is a desire to expand the use of the discipline to 
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underwater ecosystems. Optical remote sensing has been suggested as a preferred method for 

large scale SAV monitoring [2,4-6] and has been effective in detecting SAV communities at local 

and regional scales [16,178,191,204]. Past SAV monitoring applications have however largely 

focused on seagrasses and marine algae growing in clear coastal waters. Further exploration into 

freshwater plant species is therefore needed to determine if optical remote sensing is suited to 

freshwater SAV monitoring. 

 Detecting or identifying a target through optical remote sensing relies on the principle of 

spectroscopy whereby an unknown material is labeled according to the similarities in its spectral 

response to those of known reference materials or spectra [140]. This method requires that all 

materials being labeled are represented in the reference set and the spectral signatures of these 

materials as recorded by the sensor are sufficiently distinct to be separable. The spectral 

separability of terrestrial vegetation has been thoroughly evaluated (e.g., [347-349]) and has paved 

the way for very specific applications such as precision agriculture and forestry. While there is a 

small body of existing work examining the spectral separability of SAV (here including both 

plants and macroalgae due to their functional and spectral similarities), it does not sufficiently 

address freshwaters. For example, Fyfe (2003)  examined three species of seagrasses across 

different habitats and water conditions using a spectroradiometer and found them to be separable 

amongst the species as well as separable within the same species depending on sampling location 

(i.e., population level separability). McIlwaine et al. (2019) separated between eight species of 

macroalgae. Both studies however exclusively treated marine SAV. A study conducted by 

Brooks et al. (2019) applied multiscale spectroradiometer data and multispectral imagery to 

investigate freshwater vegetation, but separated only amongst individual samples, not classes, 

thus limiting the applicability of the results to large scale SAV mapping.  Thus, there remains a 

need to establish spectral separability amongst freshwater SAV before widescale mapping and 

monitoring efforts are pursued.  

 At the leaf level, the spectral signatures of vegetation are determined by the relative 

concentrations of their pigments and by their cellular structure [18,57]. As green vegetation shares 

a common set of pigments, the spectra of various green vegetation species tend to be similarly 

shaped: a notable reflectance peak at 550 nm represents chlorophyll-a (Chl-a) reflecting green 

light, troughs around 445 nm and 660 nm where blue and red light are absorbed, respectively, 

and a steep increase in reflectance in the near infrared (NIR) where multiple refractions produce 



65 
 

high apparent reflectance [57]. At the canopy level, the combination of illumination conditions 

and plant structure (e.g., leaf orientation relative to incident sunlight, self-shading, etc.), and 

intra-individual spectral diversity affect the recorded at-sensor reflectance [205,350]. SAV is, 

however, located beneath a water column, even if that water column is thin (i.e., < 0.5 m). All 

light reaching submerged leaves is thus affected by the water column which contains not only 

water but also suspended and dissolved constituents like phytoplankton or salts. The combined 

effect is that wavelengths of light below 450 nm are strongly scattered, NIR wavelengths are 

strongly absorbed, and the wavelengths in between – the visible region (VIS) – are inconsistently 

affected depending on the water column constituents and depth [50]. Depending on the state of 

the surface (e.g. roughness) and the viewing geometry of the sensors, surface reflectance effects 

such as glint may further confound analysis and need to be compensated for [351]. Because both 

water and water column constituents confound the signal from aquatic targets, optical remote 

sensing for SAV studies is limited to applications in shallow waters of clear to moderate water 

type [351]. These waters are highly transparent and demonstrate minimal interference from water 

column constituents [352]. The spectral information reasonably expected to be available for 

spectroscopy and mapping from in situ measurements of SAV, even in this subset of water types, 

is therefore limited to the visible portion of the spectrum and, in very shallow waters, the very 

short NIR. Considering that the NIR region can provide spectral information that is useful in 

classification [353], the truncation of spectral information may hinder the classification of SAV.  

In addition to the water column, SAV is often covered by a thin biofilm, a layer of debris, 

bacteria, and epibionts, whose thickness and composition vary due to flow regime, disturbances, 

and water quality. This leaf fouling can thus not only obscure the signal originating from a target 

but also contribute its own [205]. As leaf pigment contents change throughout growth, the 

spectral signature of an individual plant may thus change substantially according to the stage of 

growth in which it is measured. Past work with estuarian SAV has suggested that measurements 

taken at the end of the growing season produce the most accurate classification results [71]. This 

has, however, not yet been tested in freshwater SAV. Understanding how sampling conditions 

such as presence of fouling and plant maturity affect their spectral response, and thereby the 

spectral separability of the SAV, is thus essential if freshwater SAV mapping efforts are to 

succeed.  
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To be useful for in situ monitoring campaigns, an examination of SAV spectral 

separability would thus need to not only establish a sufficient leaf-level spectral diversity, but 

also consider how this separability may be affected by the experimental conditions of larger-

scale in situ applications (e.g., airborne and satellite based). The spectral resolution required to 

separate between SAV operational taxonomic units (OTUs), the minimum size of SAV stands 

that can be detected, the effect of biophysical vegetation conditions on separability, and how 

narrowly vegetation OTUs can be defined while remaining spectrally separable have all yet to be 

thoroughly examined. Addressing each of these knowledge gaps will inform what kind of 

research questions optical remote sensing can be used to answer in shallow, clear to moderate 

optical water types such as the freshwaters examined as well as many brackish and coastal 

waters of similar depth. In this study, our overall objective was to provide a foundational 

understanding of freshwater SAV spectral separability at different spectral and spatial scales. At 

the finest scale, the separability of different SAV species was evaluated at the leaf level and how 

this separability translates to both resampled airborne hyperspectral and multispectral satellite-

based sensors commonly used in SAV studies was assessed. Both the full spectral resolution 

leaf-level and resampled air/spaceborne spectra were assessed in terms of OTUs (e.g., species, 

genus, kingdom), leaf biofouling and sampling season. Lastly, we conducted a target detection 

analysis with an actual airborne hyperspectral image (144 bands from 400-1000 nm), to explore 

the extent to which SAV can be mapped and discuss the implications of image characteristics 

(e.g., spatial resolution, image pre-processing) on the use of these data for operational SAV 

mapping. 

3.4. Methods 

3.4.1. Site description 

 The St Lawrence River connects the North American Great Lakes to the Northern 

Atlantic, with a large stretch forming the Canada-United States border. It is a major navigational 

channel for commercial and leisure traffic (nearly 15,000 vessels passed through the St. 

Lawrence Seaway in 2019 [354]) and is especially vulnerable to human disturbances and 

ecological invasions [355,356]. The St. Lawrence is also the subject of many restoration and 

ecological management programs from the local to international scales [357,358]. The study site 

was a shallow bay along the St. Lawrence to the west of Phillpott’s Island, in the Long Sault 
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Parkway recreation area (Figure 3.1). The region surrounding the Parkway is primarily zoned for 

agriculture and residential space, though there is some industrial activity in the nearby towns 

[359]. The area had previously been the small town of Moulinette, Ontario, before being flooded 

in 1958 during construction of the Moses-Saunders hydroelectric dam [360]. Infrastructural 

remnants provided reference points during surveying and in imagery (Supplementary Figure 

3.1). The sampling area was restricted to depths of less than 1.5 m due to strong currents in 

deeper waters and covered an area of approximately 1.85 ha. Vegetation found at the site 

includes various Potamogeton species, Chara sp., Sagittaria graminea, Vallisnaria americana, 

and the invasive Myriophyllum spicatum (Figure 3.2). Where not cpvered by vegetation or 

asphalt, the bottome varied between large rocks and gravel along the shoreline to a fine silt in the 

middle of the bay. 

3.4.2 Multiscale approach 

 Figure 3.3 shows the different levels at which SAV was assessed including leaf-level 

spectroscopy (i.e., finest spectral resolution), resampled air/spaceborne sensors, and actual 

airborne hyperspectral imagery. The following sections thoroughly describe the data acquisition, 

processing and analysis employed in this study. A flowchart of the analytical steps is shown in 

Figure 3.4. 

3.4.3 Submerged Aquatic Vegetation sampling 

3.4.3.1 Spectralon panel measurements 

  A 99% reflective Spectralon (Labsphere, North Sutton, New Hampshire) panel was 

submerged to different depths to determine the absorptive properties of the water column in 

relation to a separate 99% reflective Spectralon panel which remained on dry land. Spectra of the 

panel were collected using an Analytical Spectral Devices (ASD) Fieldspec 3 spectroradiometer 

(Malvern Panalytical, Boulder Colorado), referred to hereafter as ‘ASD’, at depths from ~ 1 mm 

to 115 cm at 5 cm intervals (Supplementary Figure 3.1). This instrument measures reflected 

radiation in the 350-2500 nm range, has a spectral resolution of 3 nm and a sampling interval of 

1.4 nm in the visible (VIS) and near infrared (NIR) regions and a spectral resolution of 10 nm 

with a sampling interval of 2 nm in the shortwave infrared (SWIR) (ASD, Inc., 2010). 

Measurements were repeated at three locations within the bay for each depth and then averaged 

following the calculation of the estimated absolute reflectance (Rabs) according to [113,120].  
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3.4.3.2 Plant sample collection 

 Plants were collected twice: on August 5th, 2019, and on August 12th 2020, with water 

temperatures of 21°C and 23.5°C, respectively. The 2020 flora was substantially more mature 

than the previous year, likely due to differences in springtime flooding (severe flooding in 2019 

potentially delayed the growing season). Many plants were flowering in 2020 and leaves were 

senescing. The 2019 and 2020 samples were therefore designated as peak-growing season and 

late-growing season, respectively. The study area was informally surveyed by a snorkeler to 

identify as many species as possible and approximate their relative abundance; the plants were 

harvested according to those estimates. Whenever possible, plants of the same species were 

collected from different areas and depths to maximize intra-specific variability. Sampling in 

2020 was additionally selective to find plants with healthy leaves. Two silt samples were 

collected in 2019. Samples were labeled, stored in river water, and transported to a dark room.  

 The taxonomy of each sample was determined according to [361]. In the cases of 

uncertainty at the species level, the sample was labelled to the genus level. Supplementary Table 

3.1 presents an overview of the samples collected in both years and the coded nomenclature used 

throughout this work. 

3.4.3 Microscopy 

 To supplement the leaf level spectral measurements (see section 3.4.6.1) because 

vegetation’s NIR reflectance is strongly influenced by leaf structure [362], microscopy 

photographs were collected of each species sampled in 2020 to qualitatively assess the structural 

diversity present in the SAV being studied. Images were acquired at the McGill University Multi-

Scale Imaging Facility, Sainte-Anne-de-Bellevue, Québec, Canada. Plants were kept in water 

until being prepared for imaging, ensuring their freshness; they were neither preserved nor 

stained before imaging. Thin cross sections were cut across the center of each leaf, ensuring all 

internal structures (i.e., mesophyll, lacunae, vascular bundles, etc.) were included in the images. 

Cross sections were placed in a small amount of water to avoid desiccation. Photographs were 

taken using an AxioCam MRm Rev.2. mounted on a Zeiss AxioImager Z1 microscope equipped 

with an LED light and a halogen lamp for illumination. Magnifications between x4 and x40 were 

applied depending on the subject. 

3.4.4 SAV ground truth data collection 
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Ground truth points recording the locations of different SAV species in the bay were 

gathered to provide input and validation data for analysis of the airborne imagery. Points 

recording locations of exposed silt and cement and asphalt (i.e., from a submerged road and 

building foundations) without vegetation cover were also collected. These points were collected 

in two ways: recorded observations at each location of the 2019 plant sampling, and underwater 

video footage of four 20 m transects each with thirty-one location markers (Supplementary 

Figure 3.1). The locations sampled and the placement of the transects were stratified to include 

the full variability in vegetation cover present. Sampling points were included for use in imagery 

analysis if they were observed to have homogeneous cover of one of the operational taxonomic 

units (OTUs) considered over at least ∼1 m2. Video footage of each transect was collected by 

tracing over the length of the transect in a square wave pattern with a Go Pro hero 5 held nadir at 

the surface of the water. Frames of each transect marker (124 in total) were extracted from this 

video and assessed to determine ground cover. Transect markers were assigned to a given OTU 

if the frame containing the marker was covered at least 40% by a single class; points could thus 

be assigned to up to two vegetation classes: unassigned points were discarded; points assigned to 

a single class were divided into training and validation sets; points assigned to two classes were 

used in validation but not training. Sampling locations and transect marker placements were 

recorded using a Reach RS+ (EMLID, St. Petersburg, Russia) Global Navigation Satellite 

System (GNSS) receiver unit according to [363], with incoming Network Transport of RTCM via 

Internet Protocol (NTRIP) corrections from a SmartNet North America base station located ∼25 

km away in Morrisburg, Ontario. 

3.4.5 High spatial resolution orthomosaic 

To supplement the input and validation data available for analysis from the ground truth 

points, a high spatial resolution RGB orthomosaic was produced from which additional training 

and validation data could be extracted. A DJI Inspire 2 Remotely Piloted Aircraft System 

(RPAS) with an X5S camera (micro 4/3 sensor) and a DJI MFT 15 mm/1.7 aspherical lens (72° 

diagonal field of view) was used to acquire photographs of the bay from an altitude of 40 m 

AGL. A total of 703 photographs were acquired in a double grid pattern with 85% front and side 

overlaps. The 20.8 MP .jpg photographs were 5,280 pixels wide by 3,956 pixels tall. Pix4D 

Mapper v4.7.1 was used to generate an orthomosaic following the Structure-from-Motion 
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MultiView Stereo workflow described in [193]. Twenty-three ground control points (GCPs) 

consisting of submerged targets placed throughout the bay were used to improve the positional 

accuracy of the orthomosaic during processing with Pix4D Mapper since the geotags of the 

Inspire 2 are neither real-time kinematic nor post-processing kinematic corrected [103]. The 

coordinates of the GCPs were measured with the Reach RS + GNSS receiver as described above. 

Two hundred and forty points over areas of at least 1 m2 of homogenous ground cover were 

manually identified from the orthomosaic. As not all species sampled at the site grow in canopy-

forming stands and some stands were homogenous by growth type rather than species, the points 

were limited to the following 7 classes: ribbon-like leaves (Sagittaria graminea and Vallisneria 

americana), Potamogeton richardsonii, metaphyton, Chara sp., Potamogeton sp., paved asphalt, 

and other non-vegetation (silt and rock). 

3.4.6 Leaf-level spectra 

3.4.6.1. Leaf-level spectral measurements 

 The leaf level spectra of each sample were collected in a darkroom through a modified 

contact measurement procedure using the ASD and a low intensity halogen contact probe. The 

probe ensures a constant viewing and illumination geometry with a 1 cm diameter spot. The 

samples were placed in a matte black dish with a ~1-2 mm layer of water covering the leaves to 

avoid desiccation. The probe was placed close enough for the lens to touch the thin water layer 

over the leaves and a spectrum was collected over each leaf or leaf segment as there was often 

visible variability present within individual plants and leaves (Supplementary Table 3.1). The 

samples were measured both in their natural fouled state as well as after rinsing to remove the 

fouling. The 2019 samples of metaphyton, Potamogeton crispus, and Nymphaea odorata were 

not re-measured following rinsing due to sample degradation. The reflectance ratio of each 

sample acquired by the ASD was converted to Rabs following Elmer et al. (2020). Each sample 

was pressed and kept as records locally to be deposited within a herbarium at a later date. The 

leaf spectra were then sorted into 7 datasets in each year according to the OTUs outlined in 

Supplementary Table 3.2. 

3.4.6.2 Resampled airborne HSI and multi-spectral satellite SAV spectra  

Both airborne hyperspectral and multispectral satellite imagery have a lower spectral 

resolution and are thus incomparable to that of the leaf level spectra collected under laboratory 
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conditions with a spectroradiometer. It was therefore important to analyze the leaf level spectra 

resampled to the spectral response functions of the air/spaceborne sensors simulating how the 

signatures would be recorded by these coarser resolution sensors. The leaf spectra were 

resampled to the relative spectral response (RSR) functions of six former or current multispectral 

satellite sensors and an airborne hyperspectral imager, the Compact Airborne Spectrographic 

Imager-1500 (CASI) (Figure 3.5, Supplementary Table 3.3). See section 2.7.1 for a description 

of the CASI. The resampled spectra then underwent the subsequent analysis described below 

alongside the original ASD spectra to compare results across sensors. 

3.4.6.3 Feature selection and Classification 

 The leaf level spectra underwent dimension reduction and classification, steps that are 

often also applied to imagery, to determine the theoretical best separability and classification 

accuracy achievable for this set of SAV species. All leaf spectra were subset to the 400 – 950 nm 

range due to the artificial illumination causing substantial noise in shorter wavelengths, and the 

near-complete absorption of longer wavelengths by even a very thin water column, as determined 

from measurements of the submerged Spectralon panel (see section 3.5.1). A forward feature 

selection (FFS) with a nearest neighbour criterion [364] was implemented in MATLAB R2020a 

(Mathworks, Natick Massachusetts) using the PRTools5 toolbox [365] to determine the optimal 

bandset to distinguish between the various OTUs. After feature selection, each dataset, reduced to 

the optimal bands was divided 60/40 into training and testing samples. After an initial trial run 

with all thirty-four classifiers in the PRTools toolbox on the peak-growing season, species level 

of both fouled and unfouled samples (a19 dataset; Supplementary Table 3.2), all classifiers that 

resulted in a validation accuracy ≥80% were retained and applied to all datasets (see section 

3.5.2.5). 

3.4.7 Airborne hyperspectral imagery 

3.4.7.1 Image acquisition and processing 

 A 144-band airborne hyperspectral image (HSI) of the study area (Figure 3.1) was 

acquired with the CASI-1500 sensor (ITRES Ltd, Calgary, AB) on July 26th, 2019, by the 

National Research Council of Canada’s Flight Research Laboratory (NRC-FRL) (acquisition 

parameters are provided in Supplementary Table 3.4). The image was preprocessed to units of 

radiance (uW/cm²/sr/nm) using lab-derived calibration parameters applied using standard 
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processing modules as provided by the manufacturer [120]. Because surface water results in a 

weak signal, conventional radiometric correction procedures developed for imagery of terrestrial 

environments result in radiance values that are erroneously low and often negative at 

wavelengths below 450 nm (Soffer et al. 2021). As such, a two-part, non-linear In-Flight 

Radiometric Refinement (IFRR) methodology following Soffer et al. (2021) specifically 

developed for pixel spectral responses equivalent to surface reflectance levels < 3% was applied 

prior to atmospheric correction.  

 The IFRR refined radiance image was then atmospherically corrected with ATCOR4 

v7.3.0. to generate surface reflectance (Figure 3.4, Supplementary Table 3.4). To compensate for 

the effect of the water column, the Depth Invariant Index (DII) [141,144] was calculated for all 

band pairs including only wavelengths below 950 nm (Inamdar et al. 2021, submitted). A 

maximum correlation coefficient threshold of 0.9 was applied to reduce the dimensionality of the 

DII data from 5,565 (all pairs) to 124. Following the methodology described in [366,367], the DII 

bands were geocorrected without raster resampling to generate a hyperspectral point cloud which 

assigns 3D spatial coordinates to each image spectrum without introducing the pixel duplications 

and loss that result from conventional nearest neighbour raster resampling. Next, in 

CloudCompare v2.12, the point cloud was subset to the study site and was rasterized to 25 cm 

pixels (empty cells were not interpolated over) to allow data visualization of the point cloud in 

raster data format without introducing pixel loss or duplication; NoData values were given to 

empty cells. In ENVI v5.5.3 (Harris Geospatial Solutions, Inc., Broomfield, CO), all NoData 

pixels were masked out. Ground truth points (section 3.4.4) and points extracted from the 

orthomosaic (section 3.4.5) were imported into ENVI and the nearest DII data pixel to each was 

manually selected and assigned the point’s label, sometimes resulting in a single data pixel being 

assigned multiple ground truth point labels.    

3.4.7.2 Target Detection 

Target detection was used to identify SAV classes in the airborne HSI as not all materials 

in the HSI were known and the classes covered relatively small areas. A target detection was 

performed in ENVI on the 124 band DII image for each of the classes of interest (i.e., five 

canopy-forming vegetation types, the paved asphalt road, silt/rock, all vegetation combined, and 

a non-vegetation class). The selected pixels corresponding to the ground truth and orthomosaic 

points were divided 60/40 into input (target and non-target) spectra and validation points. The 
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Adaptive Coherence Estimator (ACE) algorithm [368] (Equation 1) was used to create rule 

images for each class with all other classes input as non-target spectra. Assignment thresholds 

were then selected to maximize the detection of known class extent while minimizing false 

positive detections (Supplementary Table 3.5). ACE was chosen for its ability to detect sub-pixel 

targets as was common at the field site due to the small areal extent of most SAV stands and is 

calculated as follows:  

𝐴𝐶𝐸 =  
(𝑆𝑇Σ𝑏

−1𝑥)2

(𝑆𝑇Σ𝑏
−1𝑆)(𝑥𝑇Σ𝑏

−1𝑥)
 

where ST is the mean input spectrum of the target class after undergoing a matrix 

transposition, x is the pixel spectrum under consideration and b is the covariance matrix of the 

classes identified as non-target background [187].  

3.4.7.3 Accuracy assessment 

To account for the spatial uncertainty in both the reported locations of the ground truth 

data and the geocorrection of the CASI imagery, buffers were created around all detected pixels 

and validation points according to the spatial uncertainty of each data set. For the validation 

points recorded in situ, the buffer diameter was calculated as the sum of the manufacturer 

reported accuracy for NTRIP baselines >10 km (i.e., 1 m) and the average standard deviation of 

the points reported by the Reach RS+ unit [369]. For the pixels output from the target detection, 

the uncertainty buffer considered the reported spatial accuracy of the CASI imagery (2.25 m) 

[369] and the effective pixel resolution, the area corresponding to the full-width half-max of the 

CASI’s point spread function [121] (i.e., 1.038 m in the across-track and 0.978 m in the along-

track) as determined following [366]. The sum of the spatial accuracy and the effective pixel 

resolution resulted in elliptical uncertainty boundaries where materials contributing to each 

pixel’s recorded signal were located. Validation points were deemed to have been correctly 

detected if the points’ and the pixels’ buffers overlapped. 

3.4.8 Expert visual interpretation 

 To assess the relative utility of employing remote sensing methods to aquatic vegetation 

monitoring, the validation accuracy of the target detections performed on the imagery was 

compared to the accuracy a team of researchers could achieve by manually inspecting the same 
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vegetation OTUs. Field assistants that had participated in this fieldwork, and select external 

researchers with experience in botany and/or remote sensing, interpreted 135 pictures from the 

field site consisting of field photos and frames extracted from the underwater video transects. All 

pictures were color corrected to improve their interpretability. The pictures were made available 

online similar to the implementation described by [370]. The online platform chosen to host the 

pictures and record the selections was SurveyLegend (surveylegend.com). The content consisted 

of three sections: first, examples of vegetation were presented; second, expert interpreters 

identified photos with at least 40% of the frame covered by a specified vegetation type; and third, 

expert interpreters selected all photos with any amount of a specified vegetation type. It is 

acknowledged that this method did not account for user expertise or the choice of photos 

included; it is presented strictly as a coarse estimate of manual detection accuracy. 

3.5 Results 

3.5.1 Submerged panel measurements – determination of usable wavelength range 

 The average Rabs measurements of the Spectralon panel submerged across depths up to 

115 cm are shown in Figure 3.6. In general, as expected, the reflected signal decreases in 

amplitude with increasing depth (Figure 3.6a). The reflectance of the panel in the VIS 

wavelengths (450 – 650 nm) does not however demonstrate consistent exponential decay across 

all depths; at certain wavelengths (e.g., 440 nm), increased reflectance values at lower depths 

were recorded (Figure 3.6b). Beyond 900 nm, there is strong absorption by the water column 

with reflectance < 0.06 for any depth of 5 cm or more. For all depths of more than 15 cm, 

reflectance is < 0.02 at wavelengths greater than 950 nm, indicating that spectral information 

from almost all aquatic targets would be limited to wavelengths shorter than 950 nm.  

3.5.2 Leaf spectroscopy 

3.5.2.1 Impact of biofouling and season 

The average laboratory spectra for each leaf-level OTU for each year (Supplementary 

Table 3.2) are shown in Figure 3.7. While all plant and algae spectra have the expected spectral 

signature of green vegetation [57] the amplitude is low, especially in the NIR (< 0.27). Fouling 

had only a minimal effect on the spectra (Supplementary Figure 3.2a, b, Supplementary Figure 

3.3a). Averaged across all species, removing the fouling produced a maximum difference in the 

reflectance amplitude of 3.9% at 921 nm in the peak growing season and of 1.1% at 900 nm in 



75 
 

the late season, with the average difference ranging from -0.1% to 3.9% and from -1.1% to 0.5%, 

respectively. Seasonality had a more varied effect on mean spectra across species 

(Supplementary Figure 3.2c, d, Supplementary Figure 3.3c, d). The maximum difference in 

reflectance between peak-growing season and late-growing season samples, averaged across all 

species, was 4.5% at 921 nm in fouled samples and 1.3% at 909 nm in unfouled samples, with 

the average differences between seasons ranging from -1.6% to 4.5% and -1% to 1.3%, 

respectively.  

3.5.2.2 Forward feature selection across OTUs 

 The forward feature selection produced ranked lists of features (i.e., bands) according to 

the marginal contributions of each wavelength to maximum theoretical separability (Leave-one-

out Nearest Neighbor criterion (LNN) for each dataset for each sensor (Supplemental Figures 3.4 

and 3.5, Tables 3.1, 3.2). In both seasons and across all OTUs, features in the VIS tended to be 

higher ranked than those in the NIR (Supplementary Figure 3.4). In the peak-growing season 

samples, five of the seven OTUs’ most important contributors to separability were near the Chl-a 

reflectance peak (~550 nm), with the other two top ranked features located in the total pigment 

absorbance peak (~450 nm) and the red edge region (~700 nm). In the late season however, five 

out of seven OTUs’ top-ranked feature was located in the NIR region; the majority of subsequent 

highly ranked wavelengths remained in the VIS. In every case, most of the maximum 

separability between classes can be attributed to just a few of the top ranked wavelengths 

(Supplementary Figure 3.5). Ninety five percent of the total separability between classes could 

be achieved with at most 24 of the top ranked bands (out of a maximum 551 bands). Increasing 

the separability from 95% to the maximum value could require > 200 additional input bands 

(Table 3.1).  

 The original laboratory spectra produced the highest separability values in all cases 

(Table 3.2). On a scale from 0 (classes entirely inseparable) to 1 (classes perfectly separable), the 

peak-growing season samples had LNN criterion values ranging from 0.8 (all samples, grouped 

by species) to 1 (vegetation/non-vegetation) depending on the coarseness of the OTU definition. 

The late-growing season samples had LNN criterion values between 0.55 (unfouled and all 

samples, grouped by species) and 1 (vegetation/non-vegetation). While separation between 

kingdoms and between vegetation/non-vegetation were equally high (0.98 and 1, respectively) in 

both years, the more granular OTUs were found to be sensitive to the effect of seasonality; peak-
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growing season samples were more separable than late-growing season samples (e.g., LNN 

values 0.80 and 0.55 for the species level OTU from the peak-growing season and late-growing 

season samples, respectively). A slight improvement in separability (from 0.82 to 0.84 and from 

0.55 to 0.56 for peak-growing season and late-growing season samples, respectively) was seen in 

the fouled samples as compared to the unfouled samples, in both years (Table 3.2). 

3.5.2.3 Leaf cross sections 

 Cross-section photographs of the leaves taken via microscope revealed common patterns 

in leaf structure, largely divided between the plants with thin flat leaves (E. canadensis, P. 

richardsonii, P. robbinsii, S. graminea, V. americana) and those with compound leaflets (C. 

demersum, N. flexilis, M. spicatum) or exclusively stems (E. acicularis) (Supplementary Figure 

3.6). In all plants, large lacunae were visible (or developing) with a single layer of large 

mesophyll cells dividing them. There were no disaggregated intra-cellular air spaces as is 

common in the spongy mesophyll of terrestrial, emergent, and floating vegetation 

(Supplementary Figure 3.6g), nor was there columnar mesophyll in any submerged leaves. Thin 

flat leaves tended to only be a few cells thick except for in proximity to a vascular bundle where 

the cells were smaller and more densely packed. Leaflets and stems were roughly circular with up 

to four large central lacunae and radial thicknesses of only a few cells. Chara sp., a macroalgae, 

was distinct from the plants in lacking all interior structure. 

3.5.2.4 Resampled airborne HSI and multispectral satellite spectral separability 

 Resampling the spectra to the RSRs of space- and air-borne sensors (Figure 3.5) clearly 

demonstrates the dependence of separability on spectral resolution and number of bands (Table 

3.2). For example, spectra resampled to the RSR of Landsat TM5 resulted in LNN separability on 

the fouled, peak-growing season species level OTU of 0.56, compared to 0.84 from the original 

ASD spectra. This pattern of increasing separability with increasing spectral resolution and 

number of bands was consistent across resampled datasets (Table 3.2). The theoretical LNN 

separability from all RSR resampled spectra was found to be adequately (> 0.70) high to separate 

spectra between kingdoms and between vegetation/non-vegetation OTUs in both years. Spectra 

resampled to the RSRs of Sentinel-2, MODIS and the CASI (airborne hyperspectral) produced 

acceptably high separability values for the species level OTUs from the peak-growing season 

fouled and unfouled samples (i.e., 0.73 and 0.70, 0.73 and 0.70, and 0.81 and 0.76, respectively), 
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as well as for all genus level OTUs from the peak-growing season samples (0.70, 0.70, and 0.77, 

respectively) or the ad hoc OTU (0.75, 0.74, and 0.82, respectively) (Table 3.2). 

3.5.2.5 Leaf level and resampled air/spaceborne spectral classification 

Classification accuracy (at the species level OTU from the peak-growing season with both 

fouled and unfouled spectra) with the FDSC, NUSVC, and RBSVC classifiers was > 80% 

(Supplementary Table 3.1). Classification accuracies across OTUs for each of those three 

classifiers are presented in Table 3.3. Although the NUSVC performed well on the leaf level 

spectroradiometer data, it resulted in 26% and 23% lower accuracy at the species level than 

FDSC and RBSVC, respectively. The accuracies of the FDSC and RBSVC classifiers were 

similar across OTUs, years, and resampled sensors, with the resultant classification accuracies 

being similar to the maximum theoretical separability determined for each dataset (Table 3.3). 

3.5.3 Imagery 

3.5.3.1 High-spatial resolution RGB orthomosaic 

 The Structure from Motion photogrammetry (703 UAS photographs) produced a high-

spatial resolution orthomosaic with a ground sampling distance of 1.16 cm (Figure 3.8a). Pix4D 

Mapper found a median of 71,013 key points per photograph (435 photographs out of the 703 

input were calibrated), and a median of 1489.9 matches between adjacent photographs. The 

mean residual root mean square error in the positional accuracy of the orthomosaic related to the 

GCPs was 1.14 m.  The blank spaces in the lower middle section of the final orthomosaic due to 

the interference of surface glare which precluded identifying key points in those areas (Figure 

3.8a). 

3.5.3.2 Airborne hyperspectral imagery target detection 

 The atmospherically corrected CASI HSI image and the directly-georeferenced DII image 

are presented in Figure 3.8b, c.  SAV was detected in 5,444 pixels (5,527 m2, 0.55 ha) of the total 

65,160 water pixels (66,148 m2, 6.6 ha) contained in the DII image, Likewise, non-vegetation 

substrate was detected in 2,518 pixels (2,556 m2, 0.26 ha) (Supplementary Table 3.2). A total of 

6,368 pixels (6,465 m2, 0.65 ha) were detected to contain one of the seven more granular target 

classes. The range of the ACE detection statistic attributable to mixed pixels varied widely across 

classes, though the mean ACE value of the mixed pixels was never greater than the threshold 

value (Figure 3.9). For some classes, such as metaphyton and non-vegetation, the range of the 
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ACE detection statistic values representing mixed pixels is exceedingly small, perhaps indicating 

that the points considered mixed pixels did not contain enough of the material to produce an 

identifiable spectral contribution. 

3.5.3.3 Target detection validation 

An example of the target detection validation for Potamogeton sp. is shown in Figure 3.10. 

In this example, pure points of Potamogeton cover were detected in 10 of 13 instances, resulting 

in a recall of 77%; mixed pixels were however poorly detected with only one of nine mixed 

pixels detected (combined pure and mixed pixel recall of 50%). Overall, the target detections, for 

the OTUs and the binary vegetation/non-vegetation classes, were effective, especially when 

considering validation points representing pure pixels (Table 3.4). The target detection validation 

with pure pixels resulted in an overall, average accuracy of 87.8% across the individual OTUs 

and two non-vegetation classes, and 93.6% for the binary vegetation/non-vegetation classes. 

Including mixed pixels (i.e., points with more than one cover type present) in the validation 

reduced the overall accuracy of the target detection to an average of 67.0% across the OTUs. In 

this case the label of each class with > 40% areal coverage was assessed. The asphalt class was 

perfectly recalled, and the silt/rock class achieved 94% recall, however 408 (414 m2, 0.04 ha) 

instances of asphalt were detected in the silt/rock class. The metaphyton class was poorly 

recalled; potentially due to the limited training and validation data or due to biophysical 

properties of the metaphyton itself. The binary vegetation and non-vegetation classes were very 

well detected (recall of 94%). Notably, 5 of the 6 instances of missed vegetation (false negatives) 

represented points of ribbon-like plants (V. americana and S. graminea).  

3.5.3.4 Expert interpretation 

 Twelve visual interpreters completed the manual online SAV identification. The true 

positives from the visual interpreters are shown in Figure 3.11, alongside true positives of the 

ACE target detection validation. Generally, the visual interpreters accurately identified extensive 

(> 40% areal coverage) SAV cover, with class recall rates of between 67% and 96%. Detection of 

individual plants was however less effective and consistent, with recall between 49% and 89% 

(Figure 3.12). While manual image interpretation was more successful at detecting most of the 

SAV OTUs, higher recall values were achieved using ACE for detecting Chara sp. and P. 

richardsonii at the species level. There was a wide variability in interpretation responses, for 
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example in the detection of extensive P. richardsonii or ribbon-like plants as seen in Figure 3.11 

suggesting that in situ manual observations of vegetation by those who are not already closely 

acquainted with the plants may not be accurate. 

3.6 Discussion 

 The leaf-level separability analysis has shown that freshwater SAV does indeed contain 

sufficient spectral diversity within the VIS and NIR to be reliably separated with hyperspectral 

data across various OTU definitions (Table 3.2). In situ mapping of that same set of SAV, while 

successful overall, highlights that the use of remote sensing in monitoring SAV is limited by the 

spatial resolution of imagery available. 

3.6.1 Water column impacts  

Our submerged panels measurements reveal that the usable spectral region was limited to 

wavelengths <950 nm due to the strong absorption of radiation by water in the NIR (Figure 3.6). 

Although 950 nm is somewhat more restrictive than the maximum wavelength used in other 

work (e.g., 1050 nm by [26] and 1000 nm by [173]), the selection of this upper limit is supported 

by water’s third harmonic absorption peak at ~960 nm, after which absorption remains high [50]. 

Therefore, future work should expect useful information exclusively from the VIS (e.g., up to 

700nm) and shortest wavelengths in the NIR regardless of bathymetry for all water types. As 

little as 5 cm of submergence reduced the panel Rabs to 0.66 at 550 nm and to 0.34 at 900 nm. 

Under a 40 cm thick water column, Rabs reduced further to 0.52 at 550 nm and 0.00 at 900 nm 

(Figure 3.6). A very high signal-to-noise ratio (SNR) would hence be necessary to meaningfully 

capture radiance from underwater targets (e.g., Muller-Karger et al. (2018) cite an SNR of 800 as 

sufficient for aquatic studies). However, even upcoming sensors conceptualized specifically for 

aquatic applications are not expected to meet such high SNR demands (e.g. PRISM has a SNR of 

500 in the blue region [94]; PACE is expected to have an SNR ranging from 400 to 1700 [371]. 

3.6.2 Leaf spectroscopy 

3.6.2.1 Effect of biofouling and season 

At the leaf-level, confirming previous findings by Fyfe (2003), it was found that light 

fouling had very little effect on species’ mean reflectance signatures though it did mask some 

intra-class variability in the NIR (Supplementary Figure 3.1a, b), which may explain the minor, 
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yet positive, effect fouling produced on class separability in both years (Table 3.2). As neither 

the fouling load nor its composition were examined, the relationship between fouling and 

spectral response cannot be here defined. Still, these results are encouraging for future mapping 

efforts in fluvial freshwaters such as the St. Lawrence River where light fouling is common. As 

expected, season substantially affected the SAV species’ spectral signatures (Supplementary 

Figure 3.2b). Increased variability was prominent in the late-growing season samples compared 

to their peak-growing season counterparts (Supplementary Figure 3.2c, d) potentially due to the 

increased relative concentration of accessory pigments later in the growing season [372,373]. This 

evolution in leaf spectral response through senescence, combined with the recorded changes in 

spectral response as a young leaf matures [57], indicate that SAV spectral measurements are 

temporally distinct and could be used to estimate plant maturity.  

3.6.2.2 Leaf level feature selection and separability 

 Physiological changes occurring within leaves throughout maturation were reflected in 

the features selected as important contributors to class separability (Figure 3.8). Mesophyll 

thickness, intra-cellular space, and leaf thickness determine the number of multiple refractions 

within a leaf and mediate NIR reflectance, previously shown in terrestrial plants [353]. The lack 

of structural complexity and diversity in the SAV leaves examined here (Supplementary Figure 

3.6) thus explain the NIR’s irrelevance in achieving spectral separability in the peak-growing 

season. However, the introduced structural diversity in the late-growing season due to uneven 

senescence resulted in NIR features to contribute most to separability for the majority of the 

OTUs (e.g., 938 nm and 809 nm were top ranked for discriminating across all species and 

between vegetation and non-vegetation, respectively).  

 Besides changes in leaf and cellular structure, the selected features mirrored the evolution 

of pigment concentrations throughout the growing season. The Chl-a reflectance peak, referred 

to as the green peak (~550 nm) was the primary contributor to spectral separability for most 

OTUs during the peak-growing season when plants invest in Chl-a production. Chl-a 

absorptance was comparatively unimportant later in the summer when Chl-a is less abundant due 

to increased shading [374] and plants redirect resources toward accessory pigments [372]. This 

temporal variability in relative pigment abundance also explains the substantial increase in 

moderately to highly ranked features in the red and red edge regions (650–710 nm). The total 

pigment absorptance feature (~445 nm) was the most important contributor to separability in 
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both years when distinguishing between plants and algae possibly due to the differences in 

pigment composition and content between the two kingdoms [375]. The dissimilarity in selected 

features between the two seasons signifies that the spectral response of SAV is temporally 

specific; data collected in the peak of summer should not be used to train or validate work done 

later in the summer, or vice versa.  

 Contradictory to previous work (e.g. [71]), the decrease in OTU class separability in the 

late-growing season suggests that SAV monitoring campaigns should target the peak-growing 

season to maximize accuracy. The maximum separability between classes (Table 3.2) is also 

related directly to the coarseness of the OTUs. Though aggregating multiple similar species into 

more coarsely defined classes such as genera (rather than species) increases the intra-class 

spectral variability, it can likewise increase inter-class variability, improving classification 

results. Although this study is the first instance of it being documented in vascular aquatic plants, 

the improvement in class separability in higher-level OTUs has previously been demonstrated in 

macroalgae (species vs clade) and trees (population vs species) [87,376]. Interestingly, class 

separability increased not only across progressively higher taxa but also in the combination of 

species into the ad hoc group that was not exclusively based on evolutionary proximity. While 

spectral similarity may relate to a common phenotype or functional group, shared traits cannot be 

assumed to confer the spectral similarity that would produce accurate classification [377]. The 

high separability of the ad hoc group (Table 3.2) is therefore encouraging for ecosystem 

managers that may be interested in classes other than taxonomy, like growth type. 

3.6.2.3 Resampled air and spaceborne sensor spectra 

Even though high spectral separability was obtained after resampling the leaf level 

spectra to the RSRs of Sentinel-2 and MODIS (Table 3.2), these resampled spectra model a 

signal originating from a single species (i.e., pure pixels) and do not account for the uncertainties 

of even the most accurate radiometric, atmospheric and water column corrections, conditions that 

cannot be met with actual imagery. To be reliably detect in imagery, targets need to be at least 

twice the length of a pixel’s diagonal [124]. Patches of vegetation would thus need to be at least 

28 m in diameter to be detected by Sentinel-2’s 10 m pixels; only one stand of this size was 

observed in this study, while all others were much smaller (<10 m in diameter). Reliable 

detection in MODIS pixels would require patches over 282 m in diameter. The spatial resolution 

of current spaceborne sensors thus precludes their use with many in-land freshwater ecosystems 
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in which such large extents of vegetation are rare. Past sensors, such as Landsat TM5 and EO-1 

ALI, had been included to examine the feasibility of retrospective analysis on archived data 

(Table 3.2). While the retrieval of historical images to extend time series is common in other 

fields, the poor separability between all but the coarsest OTUs (i.e., the binary vegetation/non-

vegetation classes) severely restricts the utility of archived satellite imagery in SAV research. 

 In contrast to the satellites, very good separability (LNN criterion values of between 0.76 

and 1 for the species-level OTU of unfouled samples and the vegetation/non-vegetation OTU, 

respectively) was achieved for peak-growing season spectra resampled to the CASI RSR for all 

OTUs (Table 3.2). This is unsurprising, given the CASI’s high spectral resolution in terms of 

both band width and number of bands. As the CASI is an airborne sensor, the high spatial 

resolution (~1 m pixel size) is also much better suited to the spatial distribution patterns of SAV 

than spaceborne platforms. Airborne hyperspectral imagery such as that produced by the CASI is 

thus expected to be appropriate for SAV mapping.  

3.6.3 Imagery 

3.6.3.1 Airborne hyperspectral imagery Depth Invariant Index (DII)  

 A novel DII transformation [141,144,378] based on a hyperspectral point cloud as opposed 

to conventional geocorrected, resampled raster imagery [366,367] was implemented to optimize 

the data quality of the CASI imagery. While Lyzenga’s DII may be highly effective at 

distinguishing between bottom cover types, its performance depends entirely on the two input 

bands. If two (or more) targets do not reflect differently in the two wavelengths chosen, a DII 

calculated using those bands will not be unique to either material [141]. Considering that two 

materials may be spectrally alike in some, but not all pairs of wavelengths, computing all 

possible DIIs ensures that the spectral diversity in the signals is represented. A set of all possible 

DII values however increases the data dimensionality, rendering it (in the case of hyperspectral 

data) computationally unfeasible (i.e., 5565 DII bands from a 106 input-band image). The DII 

transformation used here addressed this by sub-setting all possible DIIs to only those below a 0.9 

covariance threshold. Thus, most unique spectral information was retained, the imagery 

dimension was limited, and the water column was compensated for. Work by Mumby et al 

(1998) demonstrated that implementing as few as two DII bands and some contextual editing 

could improve bottom cover classification accuracy (between 4 and 13 classes) by up to 23%. It 
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is thus expected that maximizing the number of DII bands with unique information would 

similarly increase mapping accuracy. However, if reliable bathymetric information is available, 

empirical methods such as that described in Purkis and Pasterkamp (2004) could be used to 

retrieve relative bottom reflectance as opposed to the transformed DII values, facilitating 

interpretation. By rasterizing the georeferenced DII point cloud without resampling (Figure 3.9), 

the original image acquisition geometry was respected and facilitated extraction of the target DII 

spectra and validation points based on the RGB orthomosaic and field sampling. Furthermore, 

because the goal of this study was fine scale target detection, it was critical to preserve all pixels 

captured in the raw imagery. The Directly-georeferenced Hyperspectral Point Cloud method 

implemented here was shown to substantially reduce target detection false negatives due to pixel 

loss over conventionally georeferenced and resampled raster imagery [367]; applying this method 

therefore maximized the number of potential target pixels included in the analysis. 

3.6.3.2 Airborne hyperspectral image target detection 

The ACE detection statistic thresholds were chosen to discern known areas of class cover 

and minimize false positives. These thresholds were strict, as shown in Figure 3.9 by the mean 

mixed pixel always being outside the target class range. It is thus unlikely that these sub-pixel 

targets could be effectively detected without producing many false positives. The target classes 

were limited to the OTUs present in patches of similar size to the CASI pixel resolution (~1 m) 

to avoid classes of uniquely sub-pixel targets. Hence, not all SAV species included in the leaf-

level analysis were targets in the imagery (e.g., E. canadensis and M. spicatum were both 

abundant at the site, but did not form large, monotypic stands). If a sparse or non-canopy 

forming species, such as the invasive M. spicatum were of critical interest, monitoring efforts 

would require imagery on the scale of a few centimeters such as that produced from RPAS-

mounted sensors (e.g. [116]).  

 The ACE target detections identified points of pure bottom cover well, particularly for 

the binary vegetation/non-vegetation classes (Table 3.4, Figure 3.10). ACE uses target and non-

target input spectra to estimate and disregard noise that is shared between the two groups. It 

produces a single statistic value that is invariant to changes in scaling (such as might be produced 

by changes in signal strength due to variable water column thickness) [380]. Previous work by 

Flynn and Chapra (2014) confirms the utility of ACE in mapping aquatic targets by correctly 



84 
 

detecting Cladophora extent with 90% accuracy. Macfarlane et al (2021) additionally 

determined the ACE algorithm to be most effective in airborne hyperspectral target detection in a 

cross-comparison of five target detection processes. As ACE uses all input target spectra to 

calculate a mean target profile, it is unsurprising that five of the six false negative vegetation 

points were in dense patches of ribbon-like plants. These plants (S. graminea and V. americana) 

tended to be visibly darker and redder than other species (Figure 3.2) and were, in some areas, 

sufficiently dark to be confused with deep water pixels. Thus, spectra of these dense stands were 

too different from the average of all vegetation (mostly greener and brighter) (Figure 3.7) to be 

detected without introducing innumerable false positives. Separating the darker, redder 

vegetation into its own class may thereby be more effective. The very good overall detection 

recall across vegetation types (Table 3.4) suggests that a similar methodology would be of use in 

management situations in which the growth type is of interest, such as in maintaining clear 

navigation corridors or preventing the establishment of tall vegetation near water intakes.  

3.6.4 Manual field photograph interpretation  

Manual interpretation of field photographs was conducted to compare the performance of 

traditional surveys of SAV and the remote sensing methodology used here. Interpreters 

completed two tasks (selecting images that presented >40% cover of a specified bottom type and 

identifying all images with any instance of the specified bottom type) to simulate detection of 

full-pixel and sub-pixel targets. Recall values were not substantially different between manual 

detection of extensive bottom cover and the ACE target detection of pure pixels (Figure 3.11), 

suggesting that the remote sensing methods used here could produce similarly accurate results to 

in person surveys conducted by researchers that are not already well acquainted with the 

vegetation. Photograph interpretation for sub-pixel target identification was generally less 

successful, with more response variability. This decrease in manual interpretation success 

mirrors the decline in recall of the ACE target detections when including mixed pixels in the 

validation set (Table 3.4). While manual interpretation remains more effective at detecting 

targets over a small area, the remote sensing methods used here provided acceptable target 

detection rates and could be applied to a larger spatial scale by a smaller team. 

3.6.5 Overall importance 
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 Our results show that the SAV examined do present enough spectral diversity to be 

separable despite the limited spectral range available in aquatic remote sensing and the general 

lack of identifying information in the NIR. That separability extends beyond taxonomic 

groupings, having been observed in the ad hoc grouping roughly based on phenotype. Mapping 

and identifying SAV through optical remote sensing is therefore anticipated to be an appropriate 

tool in a broad range of management and research applications. Using airborne hyperspectral 

imagery to map that same SAV demonstrated that very high detection rates can be achieved for 

targets of a similar size to the imagery pixels. The increasing availability of RPAS platforms, and 

thereby higher spatial resolution imagery, is expected to further extend to scope of aquatic targets 

suited to detection and mapping through remote sensing. This work has shown that optical remote 

sensing is indeed a viable alternative to manual surveys for monitoring SAV in shallow clear to 

moderate optical water types from freshwater ecosystems, and its spectrum of potential uses is 

still growing. 

3.7 Conclusion 

 To address some of the fundamental knowledge gaps remaining in the application of 

optical remote sensing to freshwater ecosystems identified by Rowan and Kalacska (2021), the 

spectral separability amongst thirteen SAV species was examined under laboratory conditions 

and through actual airborne imagery. Implementing a multi-scale approach provided insight into 

what is currently possible for researchers/practitioners working across scales and with varying 

resources and highlighted future possibilities from further technological innovation and 

investment. The species of SAV were reliably separable under laboratory conditions from leaf-

level spectroradiometer data, with light leaf fouling having minimal effect but seasonality being 

an important determinant of separability. As the samples were found to be less separable late in 

the growing season than at its peak, it is recommended that future studies consider avoiding late-

growing season data collection. Additionally, separability was improved with progressively 

higher-level OTUs (i.e., genus or kingdom). Resampling the leaf level spectra to simulate 

spaceborne sensors reduced separability, demonstrating that most publicly available satellite data 

products do not have the necessary spectral resolution required for reliable SAV separation; 

those that do, lack the high spatial resolution needed to study freshwater SAV communities. 

Resampling the leaf level spectra to simulate the CASI, an airborne hyperspectral sensor, 

produced high separability results. Combining this high separability with the fine spatial 
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resolution achievable from airborne platforms, airborne HSI with similar spatial and spectral 

characteristics could be amenable to SAV monitoring applications. Detecting instances of target 

vegetation and bottom cover from the airborne HSI was effective, though it was limited to cover 

types occurring in patches of similar size to the imagery pixels, meaning not all species at the site 

could be detected. Before SAV can be operationally mapped in freshwaters across broad spatial 

extents, higher resolution spaceborne sensors and more precise pre-processing workflows for low 

signal level targets are needed. The enhanced radiometric correction (i.e., IFRR) used here 

enhanced the useable low-level signals and the novel DII transformation allowed for an effective 

water column compensation. Importantly, the directly-georeferenced point cloud data model 

ensured maximal retention of information and spatial integrity. These improvements over 

conventional aquatic remote sensing workflows are thus recommended for application in future 

SAV monitoring and mapping endeavors. Freshwater SAV has here been shown to contain 

sufficient spectral diversity for reliable separation, though the success of in situ applications 

remains limited by the spectral and spatial resolution of available data.  
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3.8. Tables and Figures 

 

Table 3.1. Results of the forward feature selection algorithm for the full resolution ASD spectra. 

The 95% of maximum LNN criterion value and number of features required to produce 95% of 

the maximum separability are included as many selected features provide only marginal gains in 

separability. 

Dataset grouping, fouling, season (code) Max LNN  
95% of max 

LNN 

No. features 

selected to 

max LNN 

No. features to 

95% of max LNN 

By species, fouled, peak-growing season 

(f19) 0.84 0.80 38 10 

By species, unfouled, peak-growing 

season (u19) 0.82 0.77 281 13 

By species, combined, peak-growing 

season (a19) 0.80 0.76 276 23 

By genus, combined, peak-growing season 

(p19) 0.81 0.77 258 14 

Ad hoc, combined, peak-growing season 

(g19) 0.84 0.80 267 10 

By kingdom, combined, peak-growing 

season (alga19) 0.98 0.93 52 4 

Vegetation/non-vegetation, combined, 

peak-growing season (s19) 1.00 0.95 58 1 

By species, fouled, late-growing season 

(f20) 0.56 0.53 32 19 

By species, unfouled, late-growing season 

(u20) 0.55 0.52 57 15 

By species, combined, late-growing season 

(a20) 0.55 0.52 238 15 

By genus, combined, late-growing season 

(p20) 0.56 0.54 162 15 

Ad hoc, combined, late-growing season 

(g20) 0.62 0.59 64 10 

By kingdom, combined, late-growing 

season (alga20) 0.98 0.93 13 3 

Vegetation/non-vegetation, combined, 

late-growing season (s20) 1.00 0.95 6 1 
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Table 3.2. Maximum LNN values for each grouping and year for the original (ASD) spectra and 

all resampled spectra. Multi and hyperspectral sensors to which the spectra were resampled are 

ordered by increasing spectral information (No. bands). Cells have been coloured according to 

their value for rapid interpretation (gradient: red = 0.2, yellow = 0.6, blue = 1). All values above 

0.7 have been bolded for easy identification. *CASI is an airborne hyperspectral imager, all 

others are multi-spectral spaceborne sensors.  

 f19 u19 a19 p19 g19 alga19 s19 f20 u20 a20 p20 g20 alga20 s20 

Landsat 5 

TM 
0.56 0.54 0.52 0.53 0.57 0.86 1.00 0.34 0.31 0.34 0.36 0.42 0.92 0.99 

RapidEye 0.64 0.58 0.59 0.61 0.66 0.89 1.00 0.43 0.40 0.42 0.44 0.49 0.93 0.99 

Landsat 8 0.58 0.55 0.53 0.54 0.59 0.87 1.00 0.36 0.33 0.33 0.35 0.43 0.92 0.99 

EO-1 ALI 0.64 0.62 0.63 0.62 0.66 0.87 1.00 0.39 0.36 0.39 0.41 0.47 0.93 1.00 

Sentinel 2 0.73 0.70 0.69 0.70 0.75 0.90 1.00 0.48 0.45 0.49 0.50 0.54 0.93 1.00 

MODIS 0.73 0.70 0.69 0.70 0.74 0.93 1.00 0.45 0.43 0.43 0.45 0.52 0.95 1.00 

CASI* 0.81 0.76 0.76 0.77 0.82 0.98 1.00 0.53 0.52 0.52 0.53 0.59 0.97 1.00 

ASD 0.84 0.82 0.80 0.81 0.84 0.98 1.00 0.56 0.55 0.55 0.56 0.62 0.98 1.00 
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Table 3.3.  Classification accuracy of the FSDC, NUSVC, and RBSVC classifiers for each 

grouping and year for the original (ASD) and all resampled spectra. Accuracy values have been 

colour coded for rapid interpretation (gradient: red = 0, yellow = 0.5, blue = 1). All values above 

0.7 have been bolded for easy identification. Datasets are described in Table SM3.2 

 
 

Classification accuracy (%), by dataset 

Sensor Classifier a19 f19 u19 p19 g19 alga19 s19 a20 f20 u20 p20 g20 alga20 s20 

Landsat 

5 TM 

FDSC 53 56 59 56 59 89 100 38 41 33 39 46 94 100 

NUSVC 17 33 30 21 49 76 100 26 31 29 28 40 87 98 

RBSVC 51 54 47 51 59 86 100 32 43 34 43 41 94 100 

Rapideye 

FDSC 61 64 61 63 66 90 100 50 48 43 51 53 94 100 

NUSVC 23 36 41 22 54 75 100 37 36 40 38 34 93 98 

RBSVC 61 60 58 61 67 89 100 49 42 47 49 51 94 99 

Landsat 

8 OLI 

FDSC 55 63 54 58 63 87 100 42 38 37 41 47 93 99 

NUSVC 22 45 35 20 43 75 100 37 25 42 42 45 93 99 

RBSVC 50 59 55 53 68 87 100 38 41 36 47 43 95 100 

EO-

ALI 

FDSC 63 65 64 63 70 89 100 46 46 41 48 54 95 100 

NUSVC 24 36 55 22 44 76 100 52 38 43 45 52 91 100 

RBSVC 60 63 58 62 66 88 100 48 56 46 46 55 96 100 

Sentinel - 

2 

FDSC 74 73 70 73 78 91 100 56 56 55 61 63 94 100 

NUSVC 28 47 52 40 62 79 100 50 48 53 52 58 93 100 

RBSVC 67 70 65 68 72 90 100 53 52 56 54 66 95 100 

MODIS 

FDSC 74 75 72 78 78 96 100 57 57 52 53 65 97 100 

NUSVC 49 53 65 54 66 94 100 64 53 59 63 46 100 100 

RBSVC 70 74 71 81 79 95 100 64 67 57 60 68 100 100 

CASI 

FDSC 85 85 82 87 89 98 100 65 68 63 63 67 98 100 

NUSVC 82 82 82 78 81 97 100 62 65 61 54 66 99 100 

RBSVC 82 81 77 88 86 98 100 64 66 58 65 71 99 99 

ASD 

FDSC 88 86 86 89 91 98 100 74 64 61 71 74 99 100 

NUSVC 80 73 83 79 84 97 100 71 63 70 68 72 100 100 

RBSVC 88 88 82 88 90 98 100 84 68 66 78 75 100 100 
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Table 3.4. Validation results of the target detection analyses. Mixed pixels are identified as 

having at least 40% cover of the class in question. 

  Pure pixels only Pure and mixed pixels 

Class 

No. 

Validation 

points 

True 

Positives 
Recall 

No. 

Validation 

points 

True 

Positives 
Recall 

Chara sp.  24 19 79% 81 53 65% 

Metaphyton 2 0 0% 4 0 0% 

P. richardsonii 6 6 100% 20 18 90% 

Ribbon 18 15 83% 32 20 63% 

Potamogeton 

sp. 13 10 77% 22 11 50% 

Road 20 20 100% 20 20 100% 

Silt / Rock 17 16 94% 51 32 63% 

Overall 98 86 88% 230 154 67% 

Vegetation 56 50 89%    
Non-vegetation 38 38 100%    

Overall 94 88 94%    
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Table SM3.1. An overview of the samples collected, and the resulting number of darkroom 

spectra measured. Samples of N. odorata are separated according to their location in the water 

column at time of sampling due to potential differences in pigmentation and structure in 

immature (submerged) leaves. * Indicates samples that were not included in analysis of unfouled 

spectra due to degradation.

  No. Samples No. Spectra 

Taxonomic designation Code 2019 2020 2019 2020 

Ceratophyllum demersum cerde 1 2 134 63 

Chara ssp. chara 4 4 470 101 

Elodea canadensis eloca 3 7 309 162 

Metaphyton metap 2* 0 28 N/A 

Myriophyllum spicatum myrsp 3 3 141 164 

Najas flexilis najfl 3 4 102 95 

Nympheae odorata (floating) nymoa 3* 3 34 47 

Nympheae odorata 

(submerged) 
nymob 3* 3 26 34 

Potamogeton ssp. potas 3 0 126 N/A 

Potamogeton crispus potcr 1* 0 48 N/A 

Potamogeton richarsonii potri 3 4 182 204 

Potamogeton robbinsii potro 1 4 51 133 

Sagittaria graminea saggr 7 5 281 177 

Vallisnaria americana valam 3 6 147 329 

Eleocharis acicularis eleac 0 1 N/A 34 

Total collected 40 46 2079 1543 
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Table SM3.2. Definition of the datasets and nomenclature used for the leaf level analysis. 

Presence/absence grouped all plants together as one class and the silt samples as a second class. 

The seven classes in the Ad hoc grouping are: 1. S. graminea and V. americana; 2. M spicatum; 

3. all Potamogeton species; 4. submerged and floating N. odorata; 5. C. demersum, E. 

canadensis, N. flexilis, and E. acicularis; 6. Chara sp.; and 7. Metaphyton. 

Year Fouling Grouping 
No. 

spectra 

No. 

classes 

Dataset 

code 

2019 

Fouled By species 973 14 f19 

Unfouled By species 1106 10 u19 

Fouled 

and 

unfouled 

together 

By species 2079 14 a19 

By genus 2079 11 p19 

By kingdom 2079 2 alga19 

Presence/Absence 2089 2 s19 

Ad hoc 2079 7 g19 

2020 

Fouled By species 777 12 f20 

Unfouled By species 766 12 u20 

Fouled 

and 

unfouled 

together 

By species 1543 12 a20 

By genus 1543 11 p20 

By kingdom 1543 2 alga20 

Presence/Absence 1554 2 s20 

Ad hoc 1543 8 g20 

Both Fouled By species 990 15 a1920 
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Table SM3.3. Band characteristics of the spaceborne sensors to which the leaf level spectra were 

resampled. ‘Max RSR λ’ refers to the wavelength at which the maximum Relative Spectral 

Response is found. The Full Width Half Max (FWHM) is an indication of band width; it is 

rounded and not an exact value. 

Sensor Band  Range (nm) Max RSR λ (nm) FWHM (nm) 

Landsat 5 

TM 

Blue 420 - 550 503 65 

Green 501 - 645 594 81 

Red 580 - 740 677 67 

NIR 730 - 945 800 128 

RapidEye 

Blue 438 - 512 505 69 

Green 515 - 593 584 70 

Red 625 - 689 678 54 

Red Edge 684 - 736 698 43 

NIR 749 - 860 765 91 

Landsat 8 

OLI 

Coastal Aerosol 427 - 459 445 16 

Blue 436 - 528 509 60 

Green 512 - 610 550 58 

Red 625 - 691 656 38 

NIR 829 - 900 859 28 

Pan 488 - 692 663 172 

E-O1 ALI 

1 415 - 559 509 62 

1p 415 - 494 446 20 

2 500 - 630 596 75 

3 575 - 740 683 59 

4 750 - 840 779 30 

4p 800 - 935 854 45 

Pan 440 - 740 656 166 

Sentinel-2 

1 430 - 457 446 17 

2 440 - 535 520 53 

3 537 - 582 560 35 

4 646 - 684 654 30 

5 694 - 713 700 14 

6 731 - 749 743 14 

7 769 - 797 778 19 

8 773 - 908 789 115 

8a 848 - 881 871 20 

9 932 - 958 947 19 

MODIS 

8 400 - 423 416 14 

9 433 - 448 441 10 

3 452 - 480 460 12 

10 478 - 495 488 10 

11 520 - 540 530 11 

12 538 - 556 547 11 

4 539 - 568 550 20 

1 614 - 681 658 47 

13 656 - 674 665 10 

14 666 - 687 676 11 

15 736 - 757 746 10 

2 820 - 898 863 38 

16 852 - 881 865 16 

17 471 - 938 902 44 

19 890 - 958 940 46 

18 923 - 948 935 14 
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Table SM3.4. Parameters of the CASI image acquisition and atmospheric compensation in 

ATCOR 4. 

Stage of image 

preparation 
Parameter name 

Value and units 

Flight and image 

acquisition 

Date of collection 26/07/2019 

Time of collection 15:19:51 GMT 

Flight altitude 898 m AGL 

Flight speed 80 knots 

No. bands acquired 144 

CASI integration time 28 ms 

CASI frame time 28 ms 

Along track pixel spacing 1.152 m 

Across-track pixel spacing 0.434 m 

Wavelength range 376.5-1060.27 nm 

Full width half max (FWHM) 5.04 nm 

Atmospheric 

Compensation 

Aerosol Type Rural 

Solar zenith angle (SZA) 33.8° 

Solar azimuth angle 130.6° 

Atmosphere  H01000_wv20_rura 

Visibility (scene average) 56.5 
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Table SM3.5. Classifier selection amongst classifiers tested from the PRtools toolbox through 

comparison of classification accuracy of the ASD a19 dataset. The classifiers which achieved at 

least 80|% classification accuracy (testing data) were selected for implementation on all datasets 

(original and resampled) and are bolded below. 

Classifier name Abbreviation Testing Accuracy 

Weak classifier weakc 21% 

Decision Tree classifier dtc 53% 

Construct binary decision tree classifier treec 44% 

k-nearest neighbour classifier knnc 78% 

Mixture of gaussians classifier mogc 6% 

Uncorrelated normal densities based quadratic classifier udc 21% 

Scaled nearest mean linear classifier nmsc 16% 

Parzen classifier parzenc 6% 

Parzen density-based classifier parzendc 6% 

Decision stump classifier stumpc 29% 

ADABoost classifier adaboostc 32% 

Breiman's random forest classifier randomforestc 67% 

Feature based dissimilarity space  fdsc 89% 

Discriminative restricted Boltzmann machine classifier drbmc 61% 

Support vector classifier svc 25% 

Nu-support vector classifier nusvc 83% 

Radial basis support vector classifier rbsvc 85% 

Voted perceptron classifier vpc 66% 

Linear perceptron perlc 74% 
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Table SM3.6. ACE detection statistic thresholds, number of detected pixels and detected area. 

‘Class’ indicates the class being detected, with all other classes being identified as non-target 

spectra (overall vegetation was only identified as a non-target in detecting the non-vegetation 

class, as it includes pixels all vegetation types). The ‘ribbon’ class comprises both S. graminea 

and V. americana.  

Class Threshold No. of pixels Area (m2) 

Asphalt 0.110 580 589 

Chara sp. 0.070 951 965 

Metaphyton 0.100 186 189 

Potamogeton sp.  0.070 473 480 

P. richardsonii 0.080 776 788 

Ribbon 0.060 1679 1,704 

Silt / Rock 0.070 1723 1,749 

Non-vegetation 0.060 2518 2,556 

Vegetation 0.030 5444 5,527 
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 Figure 3.1. Subset of CASI airborne hyperspectral imagery (red = 658.77 nm, green = 548.70 

nm, blue = 481.71 nm) presenting the study site west of Philpott’s Island in the Long Sault 

Parkway Provincial Park, Ontario, Canada. The yellow box outlines the shallow bay where 

samples were collected and SAV is mapped. The location of the two calibration tarps is shown in 

purple. The inset indicates the study site location (red star) in relation to the North American 

Great Lakes. 
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Figure 3.2. Examples of the vegetation encountered at the site (A-I) and examples of vegetation 

provided to expert interpreters (J-N). A) V. americana; B) P. richardsonii; C) S. graminea; D) 

M. spicatum; E) E. canadensis; F) Metaphyton; G) P. robbinsii; H) Chara sp.; I) V. americana 

with heavy leaf fouling; J) Chara sp.; K) P. richardsonii; L) S. graminea; M) M. spicatum; N) 

Potamogeton sp. 
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Figure 3.3. The multi-scale approach implemented in this study. Laboratory spectral 

measurements were collected of the leaves of each plant sample collected from the site; 

microscopy images of leaf cross-sections were then taken for each species to inform subsequent 

analysis of the leaf spectra. Leaf spectra were then resampled to an airborne and six spaceborne 

imaging sensors that deploy for large scale in situ applications. A shallow freshwater site was 

imaged using an airborne hyperspectral sensor from which spectra of the same vegetation 

examined in the lab could be extracted. Underwater video footage of four transects provided 

training and ground truth points for SAV target detection from the airborne imagery. Video stills 

were additionally presented to fellow researchers to be manually interpreted to present the utility 

of remote sensing in the context of the performance of conventional SAV monitoring methods. 

 

 

 

Figure 3.4. Workflow for both the leaf-level spectral analysis and the processing and analysis of 

the CASI image. 
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Figure 3.5. Relative Spectral Response (RSR) functions of two satellite sensors and the airborne 

sensor resampled to in this work for the 400-950 nm spectral range, and an example of a V. 

americana spectrum obtained after each spectral resampling. (A) RSR of the Landsat 8OLI 

sensor. (B) V. americana spectrum resampled to Landsat 8OLI. (C) MODIS’s RSR. (D) V. 

americana spectrum resampled to MODIS. (E)  RSR of the CASI airborne hyperspectral imager. 

(F) V. americana spectrum resampled to the CASI. 
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Figure 3.6. Effect of the water column on the reflectance of a submerged 99% Spectralon panel. 

(A) Estimated Absolute Reflectance (Rabs) at 5 cm depth intervals between ~0 cm to 115 cm. (B) 

Rabs at select VIS (440 nm, 565 nm, and 680 nm) and NIR (750 nm and 810 nm) wavelengths 

plotted against panel submergence depth.  
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Figure 3.7. Average spectra of all classes in each grouping scheme for both 2019 and 2020. (A) 

All samples grouped by species (a19 and a20); (B) All samples grouped by genus (p19 and p20); 

(C) All samples in ad hoc grouping (g19 and g20); (D) All samples grouped by kingdom (alga19 

and alga20); (E) All vegetation samples plus silt samples grouped as vegetation or non-vegetation 

(s19 and s20).  

Figure 3.8. CASI imagery used in this work at various processing stages and the input points 

used in target detection and validation. (A) RPAS orthomosaic showing points of each class 

chosen through visual interpretation and the locations of the transect points. (B) Atmospherically 

compensated CASI image (red=687.5 nm, green = 548.7, blue = 500.3 nm, optimized linear 

stretch applied on extent) before geocorrection. (C) DII-transformed CASI image following 

rasterization of the directly georeferenced point cloud without resampling (red = 682.7 nm & 

701.8 nm DII, green = 553.5 nm & 563.1 nm DII, blue = 424.3 nm & 438.7 nm DII, linear stretch 

on extent applied). Each pixel is a 25 cm by 25 cm visualization of the set of DIIs centered at the 

coordinates calculated to be where the signal originated from. (D) Conventionally geocorrected 

CASI imagery after atmospheric compensation, for reference. 
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Figure 3.9. Results of the ACE target detection. Curves depict the number of pixels according to 

the ACE detection statistic assigned. Horizontal bars indicate the range of ACE detection statistic 

values attributable to each type of pixel (pure target, mixed target, background) with the mean 

value indicated by a coloured tick mark. Pure and background pixels are separated at the 

threshold values presented in Table SM3.6; mixed pixel ranges were determined according to 

ACE detection statistic values of mixed transect points. (A) Chara sp. (B) Metaphyton. (C) P. 

richardsonii. (D) Potamogeton sp. (E) Ribbon. (F) Road, no mixed pixels identified. (G) Silt / 

Rock. (H) Non-vegetation. (I) Vegetation.  
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Figure 3.10. Example of validation for the Potamogeton sp. target detection with grey ellipses 

around detected pixels, pure validation points, mixed validation points, and validation points 

correctly detected identified. Conventionally geocorrected true colour CASI image shown in 

background for context. Insets are underwater photograph examples of pure Potamogeton sp. (A) 

and mixed (B) Potamogeton sp. and Chara sp. cover. In this example, 10 of the 13 pure cover 

points were detected shown by the green circles; one mixed cover point was detected. 

 

Figure 3.11. Comparison of recall results from visual interpretation, for both 40% class cover and 

any instance of class presence, and CASI airborne hyperspectral image target detection. The 

range of responses is shown by the error bars for visual interpretation results. 
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Figure SM3.1. Experimental field set up. A) RPAS photo of the site acquired the same day 

(07/26/2019) as the CASI HSI; B) reference target set up for verifying the atmospheric 

compensation of the CASI HSI, targets are two tarpaulins with known reflectance; C) GCP 

placed at the site for orthorectification of the RPAS images and orthomosaic; D) improvised 

floating platform for underwater ASD measurements, measurement of Spectralon reference 

panel at the water’s surface is shown here; E) example transect marker captured in video footage 

(this point would have been labeled as Chara sp.).  
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Figure SM3.2. Effect of fouling and season on the average spectral response and spectral 

variability of Chara sp. The average spectrum is shown as a solid line, with ± one standard 

deviation shaded. A) Effect of fouling, peak-growing season. B) Effect of fouling, late season. C) 

Effect of seasonality, fouled samples. D) Effect of seasonality, unfouled samples. While Chara 

sp. is shown as an example, the same pattern was found for all species.  
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Figure SM3.3. Effect of fouling and season, shown as difference in mean spectra. The average 

change across all species is shown in black on both plots. A) peak season, fouled minus 

unfouled, B) late season, fouled minus unfouled, C) fouled, peak season minus late season, D) 

unfouled, peak season minus late season. Only species that were measured in both fouled and 

unfouled states and in both seasons are shown in panels A) and B) and panels C) and D), 

respectively. 
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Figure SM3.4. Band rankings from the forward feature selection. The wavelengths of each band 

from the ASD spectra are ranked in descending order according to contribution to separability 

(i.e., a ranking of 1 indicates the most important contributor to separability for that dataset). The 

grey bars highlight three regions of notable green vegetation spectral features: the total pigment 

absorption feature (~ 450 nm), the Chl-a absorptance feature (~550 nm), and the red-edge (~ 700 

nm). The Y-axis has been log-transformed to facilitate interpretation. 

 

Figure SM3.5. Results from the forward feature selection (FFS) from all datasets (original ASD 

spectra). The X-axis has been log-transformed to facilitate interpretation. 
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Figure SM3.6. Microscopy photographs of leaf cross sections of submerged plants, a floating 

plant and a macroalgae. Similarities (i.e., no air spaces between mesophyll cells; large lacunae 

within the mesophyll; single layer of epidermal cells; no stomata) in leaf structure across six 

genera of vascular SAV found at the site (A-F) contrast the complexity of leaf structure in 

floating leaves (i.e., columnar mesophyll, spongy mesophyll, defined epidermal cell layers, etc.) 

(G). The macroalgae lacks all internal structure (H). (A) P. robbinsii. (B) M. spicatum. (C) V. 

americana. (D) C. demersum. (E) E. canadensis. (F) E. acicularis. (G) N. Odorata. (H) Chara 

sp.  
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4. Conclusions 

 

4.1. Summary of findings 

 A comprehensive resource for non-specialists was created to advise researchers from 

other fields on the theory and considerations involved in applying remote sensing to the aquatic 

environment. All aspects of a typical remote sensing workflow were presented with explicit 

mentions of how these steps might look or vary when dealing with aquatic subjects like SAV. 

Additionally, previous work in mapping SAV and recent innovations in the field were discussed. 

Most past studies examining SAV were restricted to marine environments where the water is 

clear and shallow and aimed to detect either community-level extent or large monospecific 

stands; these broad classes thus limited the specificity of the questions that could be addressed. 

Using hyperspectral data (either leaf-level or imagery) has provided increasingly more accurate 

study results and is opening new potential research avenues. Researchers must however be 

cognizant of their research design, particularly as it relates to water column compensation 

methodology, as no single method is best for all conditions, nor does there exist a structured 

framework to guide such decisions. Methods may also be better suited to one sensor or platform 

over another (e.g., NDVI was developed for use with Landsat, Structure from Motion would not 

be effective with satellite or coarse resolution airborne imagery, etc.). There have been many 

major recent investments in technological innovations intended for use in aquatic settings both in 

terms of sensors and processing methods. As the available data becomes better suited to the 

aquatic environment, and there are more powerful compensation and analytic methods well-

suited to remote sensing over water, the potential scope of applications and the possible mapping 

accuracy of those applications are constantly growing. 

 In examining the spectral separability of a set of freshwater SAV, the vegetation was 

found to be sufficiently separable using hyperspectral data to suggest that accurate mapping 

could be achieved. Resampling the hyperspectral data to simulate the responses of multispectral 

satellite sensors however dramatically reduced how spectrally distinct the vegetation was. The 

choice of sampling season was also an influential determinant of the spectral separability, with 

classes being less distinct at the end of the growing season than at its peak. Researchers should 

thus aim to deploy high spectral resolution sensors at the peak of the SAV growing season to 

maximize the likelihood of producing accurate results. In situ target detection of SAV produced 
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acceptably high overall recall results, both when detecting single types of vegetation (88%) and 

when detecting for broad vegetation or non-vegetation classes (94%). The classes targeted in 

imagery were however limited to those occurring in patches of similar size as the spatial 

resolution of the imagery. This exemplifies one of the major limitations remaining to be 

addressed before remote sensing can be fully leveraged in aquatic studies: the targets of interest 

are often too small to be detectable in pixels of the spatial resolution that is currently available 

from satellite platforms. Researchers involved in future developments of sensors specifically for 

application in aquatic ecosystems should therefore prioritize appropriate band placement and fine 

spatial resolution over a high number of contiguous bands. Novel processing methods, such as 

those used here, are additionally widening the range of water types to which optical remote 

sensing can be applied. Once suitable data and appropriate processing methods are available, 

aquatic targets such as SAV are expected to be amenable to mapping from the local to global 

scale. 

 

4.2. Future directions 

 While this thesis addressed some of the major knowledge gaps existing in aquatic remote 

sensing, a substantial amount of work remains to be done to make the discipline both well suited 

and easily implemented to aquatic environments for ecosystem monitoring.  

 Firstly, work must be done to remove the elements of trial and error and ambiguity when 

it comes to water column characterization and compensation. It is understandable that many 

systems have been developed to characterize water according to its characteristics, constituents, 

or optical properties (e.g., [8,352,382-384]). The numerous competing systems are however not all 

easily applicable nor meaningful in remote sensing, and there are no equivalency guidelines. The 

creation of a single system would allow standardization across the field. Synthesizing the results 

of past work to identify trends in the application and suitability of various water column 

compensation processes would assist in guiding future practitioners in selecting the most 

appropriate analytic methods. The combination of a standardized water type classification 

scheme and a thorough examination of the strengths and limitations of water column 

compensations in each water type would facilitate future research and ensure that results across 

different studies could be compared. Once the water column can be satisfactorily compensated 
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for across water types, SAV could more easily be monitored using remote sensing across regions 

and scales. 

 Secondly, as turbid waters have largely been avoided in past research, the effect of 

turbidity has not been comprehensively examined. SAV does indeed grow in turbid, or optically 

deep, waters, thus the presence of vegetation should not be used as an indicator that a water body 

would be well-suited to remote sensing. Rather, the combination of depth and turbidity itself 

must be considered. As turbidity varies in composition and intensity over space and time, 

defining the effect of turbidity could help interpret images collected over unideal water 

conditions; determining the maximum turbidity level possible while information is still 

extractable from imagery would guide researchers as to when remote sensing campaigns are 

worth investing in.  

 Thirdly, there remains much to be studied relating to the spectral properties of aquatic 

targets like SAV. As mentioned previously, research concentrating on determining the effect of 

fouling as a function of its abundance should be conducted to define the boundary of which 

ecosystems remote sensing should be applied to. Additionally, the in-situ mapping conducted 

here was limited to targets of similar spatial extent as the imagery pixels, but it did not 

quantitatively examine the effect of sub-pixel target size on detection rate. The minimum spatial 

extent for an aquatic target to be detected in imagery of a given resolution should therefore be 

investigated to comprehensively define the scope of research questions that can be addressed 

using remote sensing. 

 Fourthly, a 99% reflectance Spectralon panel was here used to examine the effect of 

water across depths under the assumption that the panel’s own reflectivity remained unchanged. 

This has not been established and was beyond the scope of this work. The suitability of 

Spectralon panels for underwater operations should be investigated to determine if they can be 

used as appropriate targets for training and validation of empiric water column compensation 

methodologies. 

 Finally, a comprehensive resource was created in this thesis to guide non-specialists who 

are interested in exploring or implementing remote sensing. While this will hopefully facilitate 

their adoption of remote sensing, the fast-moving pace of the discipline and constant innovation 

mean that resources such as this must constantly be updated to remain useful. Remote sensing 
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experts in general, and those studying aquatic applications specifically, must therefore share their 

effort between advancing the field and exchanging knowledge with users from aquatic, 

biological and ecological specialities. Technological innovations are indeed needed and strongly 

desired, but the value in ensuring that there are others prepared to leverage those innovations into 

meaningful results can not be understated.  
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