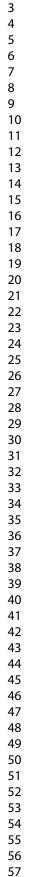


International Journal of Sustainability in Higher Edu


Mapping social structures for sustainability transformation at McGill University, Canada

Journal:	International Journal of Sustainability in Higher Education
Manuscript ID	IJSHE-04-2021-0164.R2
Manuscript Type:	Research Paper
Keywords:	transition, complexity, relation, network, social network analysis, transformation

Groups	El in core network		
A10	0.5	1	4
A14	0.6	0.636	
A2	0.412	0.4	
A3	0.647	0.619	
A4	0.143	0.143	
A5	0.6	0.5	
A6	0	-0.143	
C1	0.6	0.6	
C2	0.2	0.333	
C4	0.714	0.6	
E1	1	0.846	
E2	1	1	
E3	1	1	
01	0.333	0.333	
012	0	0.077	
02	-0.077	0.125	
03	0.222	0.222	
04	0.25	0.4	
05	0.059	0.111	
06	0.429	0.556	
07	0.143	0.158	
08	0	-0.091	
09	0.167	0.077	
R1	-1	-0.75	
R10	0	-0.259	
R11	-0.294	-0.217	
R12	-0.556	-0.217	· · ·
R2	-0.286	-0.053	
R3	-0.167	-0.167	
R4	0.333	0.231	
R5	0.333	0.231	
R6	0.5	0.6	
R7	0	-0.3	
R8	0	-0.12	
R9	0.176	0.2	
S1	-0.2	0.111	
S2	0.333	0.143	
S3	0.333	-0.273	

Table I: interviewed groups with their EI for the core network (middle column) and the affiliated network (right column).

S4	0.333	-0.2	
S5	1	0.5	
S6	0.556	0	
S7	0	0	
S8	0.077	-0.2	
S9 🔪	0.6	0.455	
		-0.2	

Figure 1: Affiliated social network. Size of nodes illustrates relative betweenness values of nodes. Color and first letter of code indicate domain. Red – R: research; purple – E: education; green – A: administration and governance; blue – O: operations; orange – C: connectivity; yellow – S: student.

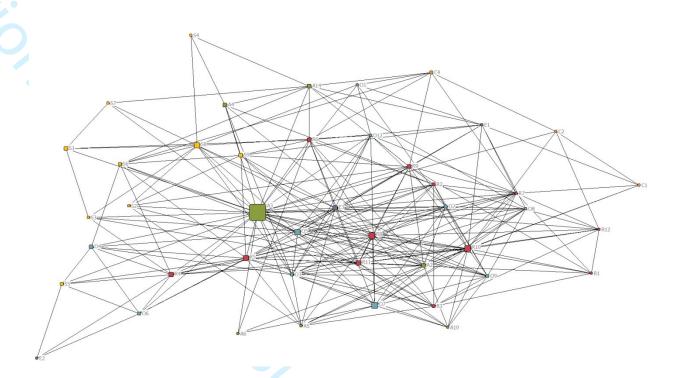
675x379mm (72 x 72 DPI)

3 A10 3 0.5 4.135 5 A14 3 0.6 52.337 6 A2 3 0.647 601.735 7 A3 0.647 601.735 7 A4 3 0.647 601.735 10 A5 3 0.6 0.758 11 A6 3 0 0.758 13 C1 5 0.6 6.227 14 C2 2 1 13.685 15 C4 5 0.714 34.727 15 C4 5 0.714 34.727 15 C4 0.333 3.297 201 4 0.033 3.297 21 01 4 0.25 22 01 4 0.25 23 02 4 0.027 24 0.059 108.329 25 03 4 0.25 26 04 0.429 34.211 05 0.94 10.57 </th <th>1 2</th> <th>Groups</th> <th>Domain</th> <th>El Index</th> <th>Between</th> <th></th>	1 2	Groups	Domain	El Index	Between	
4 A14 3 0.6 52.337 6 A2 3 0.412 63.017 7 A3 3 0.647 60.1735 8 A4 3 0.143 63.644 10 A5 3 0.6 0.758 11 A6 3 0 0.758 12 C1 5 0.6 6.227 13 C2 5 0.2 9.947 15 C4 5 0.714 34.727 16 E1 2 1 13.685 18 E2 2 1 0.333 19 E3 2 1 87.445 20 01 4 0.333 3.297 21 01 4 0.059 19.373 22 012 4 0.059 19.323 23 02 4 0.059 19.323 24 03 4 0.25 72.65 27 05 4 0.167 17.293 <th>3</th> <th></th> <th></th> <th></th> <th></th> <th></th>	3					
6 A2 3 0.412 63.017 7 A3 3 0.647 601.735 8 A4 3 0.143 63.644 9 A5 3 0.6 15.6 11 A6 3 0 0.758 12 C1 5 0.2 9.947 13 C2 5 0.2 9.947 14 C2 5 0.2 9.947 15 C4 5 0.114 34.2727 16 11 2 1 13.685 17 E2 2 1 0.333 18 E2 2 1 8.7445 20 01 4 0.333 3.297 21 01 4 0.222 36.167 25 03 4 0.222 36.167 26 04 4 0.25 72.65 27 05 4 0.059 108.329 28 06 4 0.429 34.211	4					
7 A3 3 0.647 601.735 8 A4 3 0.143 63.644 10 A5 3 0.6 15.6 11 A6 3 0 0.758 12 C1 5 0.6 6.227 13 C2 5 0.2 9.947 15 C4 5 0.714 34.727 16 E1 2 1 13.685 17 E2 2 1 8.33 20 01 4 0.333 3.297 21 01 4 0.333 3.297 22 012 4 0.6749 23 02 4 0.077 19.373 24 03 4 0.225 7.65 25 04 4 0.255 7.65 26 04 0.429 34.211 36 R1 1 1 0.577 37 R12 1 0.577 38 R1 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
A4 3 0.143 63.644 10 A5 3 0.6 15.6 11 A6 3 0 0.758 12 CL 5 0.2 9.947 14 C2 5 0.2 9.947 15 CA 5 0.714 34.727 16 E1 2 1 13.685 18 E2 2 1 87.445 0 1 4 0.333 3.297 101 4 0.333 3.297 112 012 4 0 6.749 114 0.222 36.167 10.44 0.232 115 0.4 0.225 72.65 10.143 10.143 116 0.4029 34.211 10.143 154.561 10.143 117 0.167 17.293 11.11 1 0.167 118 1 0 159.707 13.73 14.11 1 0.167 118 1 0.024 10.5617 14.14	7					
no A5 3 0.6 15.6 11 A6 3 0 0.758 12 C1 5 0.6 6.227 13 C2 5 0.2 9.947 15 C4 5 0.714 34.727 16 E1 2 1 13.685 17 E1 2 1 0.833 18 E2 2 1 87.445 20 01 4 0.333 3.297 21 012 4 0 6.749 22 012 4 0.25 72.65 22 014 4 0.25 72.65 23 02 4 0.429 34.211 24 03 4 0.25 72.65 25 04 0.429 34.211 26 04 0.429 34.211 36 R10 1 0 159.707 37 R11 1 -0.294 105.617 38 <	8					
11 A6 3 0 0.758 13 C1 5 0.6 6.227 14 C2 5 0.2 9.947 15 C4 5 0.714 34.727 16 E1 2 1 13.685 17 E2 2 1 0.833 20 01 4 0.333 3.297 21 01 4 0.6749 22 012 4 0 6.749 23 02 4 0.025 72.65 24 0.33 3.297 1.83.29 25 04 4 0.255 72.65 26 04 0.429 34.211 26 04 0.143 154.561 31 08 4 0 8.315 32 09 4 0.167 17.293 33 R11 1 -0.256 9.036 33 1 -0.167 26.647 4 1 0.333 9.8048						
13C250.29.94715C450.71434.72716E12113.68517E2210.83318E22187.44520O140.3333.29721O140.3333.29722O12406.74923O240.02572.6526O440.2572.6527O540.42934.21136O740.143154.56137O540.67719.37328O640.42934.21130O740.143154.56131O8408.31532O940.16717.29333R11-10.57735R1010159.70736R111-0.294105.61737R1110.16726.64741R410.33398.04843R510.22244R610.1545S16-0.246R71047R810.142.81848R910.17654S460.3331.455S56120.7556S660.25692.996						
13C250.29.94715C450.71434.72716E12113.68517E2210.83318E22187.44520O140.3333.29721O140.3333.29722O12406.74923O240.02572.6526O440.2572.6527O540.42934.21136O740.143154.56137O540.67719.37328O640.42934.21130O740.143154.56131O8408.31532O940.16717.29333R11-10.57735R1010159.70736R111-0.294105.61737R1110.16726.64741R410.33398.04843R510.22244R610.1545S16-0.246R71047R810.142.81848R910.17654S460.3331.455S56120.7556S660.25692.996	12					
15 C4 5 0.714 34.727 16 E1 2 1 13.685 18 E2 2 1 87.445 20 01 4 0.333 3.297 21 01 4 0.333 3.297 22 012 4 0 6.749 23 02 4 0.077 19.373 24 03 4 0.225 72.65 25 04 4 0.25 72.65 26 04 4 0.25 72.65 27 05 4 0.439 34.211 28 06 4 0.429 34.211 30 07 4 0.167 17.293 31 08 4 0 159.707 36 R10 1 0 159.707 36 R10 1 0.222 116.605 37 R12 1 0.256 9.036 38 R5 1 0.222 116.605<	13					
16 E1 2 1 13.685 18 E2 2 1 0.833 19 E3 2 1 87.445 20 01 4 0.333 3.297 21 012 4 0 6.749 22 012 4 0.077 19.373 23 02 4 0.022 36.167 25 03 4 0.222 34.211 26 04 4 0.25 72.65 27 05 4 0.059 108.329 28 06 4 0.429 34.211 30 07 4 0.167 17.293 31 08 4 0 8.315 32 09 4 0.167 17.293 34 R1 1 -0.286 23.957 35 R10 1 0.222 116.605 38 R12 1 0.222 116.605 44 R6 1 0.5 5.908<						
172 12 $13,003$ 18 12 1 $0,033$ 19 133 2 1 22 011 4 $0,333$ 222 012 4 0 222 012 4 0 232 02 4 0.077 243 02 4 0.025 226 04 4 0.222 236 04 4 0.255 226 06 4 0.429 292 06 4 0.429 292 06 4 0.429 292 06 4 0.429 342 1 0.167 17.293 333 $R1$ 1 -1 1 0 159.707 346 $R11$ 1 -0.294 105.617 7.333 8.12 338 $R12$ 1 0.575 23.957 348 $R12$ 1 0.576 9.036 398 $R2$ 1 0.5787 7.667 40 $R3$ 1 0.167 26.647 414 $R4$ 1 875 1 0.222 116.605 447 $R6$ 1 87 1 6 0.22 453 6 651 2.787 466 6.333 8.943 455 6 4533 6 45446 6	16					
19 E3 2 1 87.445 20 01 4 0.333 3.297 21 012 4 0 6.749 22 012 4 0.077 19.373 24 03 4 0.222 36.167 26 04 4 0.25 72.65 27 05 4 0.059 108.329 28 06 4 0.429 34.211 29 06 4 0.143 154.561 31 08 4 0 8.315 32 09 4 0.167 17.293 34 R1 1 -1 0.577 35 R10 1 0 159.707 36 R11 1 -0.286 9.396 37 R4 1 0.333 98.048 43 R5 1 0.222 116.605 44 R6 1 0.598 4 44 R6 0.333 1.3.16 5 </td <td>17</td> <td></td> <td></td> <td></td> <td></td> <td></td>	17					
20_{12} 01 4 0.333 3.297 22_{22} 012 4 0 6.749 23_{23} 02 4 0.077 19.373 24_{25} 03 4 0.222 36.167 25_{26} 04 4 0.25 72.65 27_{27} 05 4 0.059 108.329 28_{28} 06 4 0.429 34.211 30_{29} 07 4 0.167 17.293 31_{29} 08 4 0 8.315 32_{23} 09 4 0.167 17.293 34_{34} $R1$ 1 -1 0.577 35_{37} $R11$ 1 -0.294 105.617 37_{37} $R11$ 1 -0.286 23.957 40 $R3$ 1 -0.167 26.647 41 $R3$ 1 0.167 74.236 44 $R6$ 1 0.5 52.787 45 $R7$ 1 0 5.908 47 $R8$ 1 0 142.818 48 $R9$ 1 0.176 74.236 45 6 0.333 13.16 55 6 1 20.75 56 6 0.556 44.033 57 6 0.2592 58 6 0.077 122.499	18					
21 0.12 4 0.033 3.237 22 012 4 0.077 19.373 24 03 4 0.222 36.167 25 03 4 0.25 72.65 26 04 4 0.25 72.65 27 05 4 0.059 108.329 28 06 4 0.429 34.211 30 07 4 0.143 154.561 31 08 4 0 8.315 32 09 4 0.167 17.293 34 $R1$ 1 -1 0.577 36 $R11$ 1 -0.294 105.617 37 $R12$ 1 -0.286 23.957 40 $R3$ 1 -0.167 26.647 41 $R4$ 1 0.333 98.048 43 $R5$ 1 0.222 116.605 44 $R6$ 1 0.5 52.787 45 $R7$ 1 0 5.908 47 $R8$ 1 $0.142.818$ 48 $R9$ 1 0.176 51 6 0.333 13.16 52 6 0.333 1.4 55 55 6 1 56 6 0.556 44.033 57 6 $0.2.592$ 58 6 0.077 122.499						
23 02 4 0.077 19.373 24 03 4 0.222 36.167 25 04 4 0.25 72.65 26 04 0.429 34.211 29 06 4 0.429 34.211 29 07 4 0.143 154.561 31 08 4 0 8.315 22 09 4 0.167 17.293 33 $R1$ 1 -1 0.577 36 $R11$ 1 -0.294 105.617 37 $R12$ 1 -0.286 23.957 44 $R6$ 1 0.222 116.605 44 $R6$ 1 0.222 116.605 44 $R6$ 1 0.176 74.236 45 $R7$ 1 0 5.908 47 $R8$ 1 $0.142.818$ 48 $R9$ 1 0.176 48 $R9$ 1 0.176 51 6 0.233 13.16 53 54 6 0.333 54 6 0.333 1.4 55 55 6 1 56 6 0.556 44.033 57 6 0 2.592 58 6 0.077 122.499	21					
24 03 4 0.222 36.167 25 04 4 0.25 72.65 27 05 4 0.059 108.329 28 06 4 0.429 34.211 29 07 4 0.143 154.561 30 07 4 0.167 17.293 33 R1 1 -1 0.577 34 R1 1 0 159.707 35 R10 1 0 159.707 36 R11 1 -0.294 105.617 37 R12 1 -0.266 23.957 40 R3 1 -0.167 26.647 41 R4 1 0.333 98.048 43 R5 1 0.222 116.605 44 R6 1 0.5 52.787 45 R7 1 0 5908 47 R8 1 0.176 74.236 45 S1 6 0.333	22					
25 0.3 4 0.225 72.65 26 04 4 0.25 72.65 27 05 4 0.059 108.329 28 06 4 0.429 34.211 29 07 4 0.143 154.561 31 08 4 0 8.315 32 09 4 0.167 17.293 33 $R1$ 1 -1 0.577 35 $R10$ 1 0 159.707 36 $R11$ 1 -0.294 105.617 37 $R11$ 1 -0.294 105.617 38 $R12$ 1 -0.286 23.957 40 $R3$ 1 -0.167 26.647 41 $R4$ 1 0.333 98.048 43 $R5$ 1 0.222 116.605 44 $R6$ 1 0.5 52.787 45 $R7$ 1 0 5.908 47 $R8$ 1 0 142.818 48 $R9$ 1 0.176 74.236 50 51 6 0.333 1.4 53 56 6 0.333 1.4 54 6 0.333 1.4 55 55 6 1 20.75 56 6 0.556 44.033 57 6 0 2.592 58 6 0.077 122.499						
26 04 4 0.25 72.65 27 05 4 0.059 108.329 28 06 4 0.429 34.211 30 07 4 0.143 154.561 31 08 4 0 8.315 32 09 4 0.167 17.293 34 $R1$ 1 -1 0.577 35 $R10$ 1 0 159.707 36 $R11$ 1 -0.294 105.617 37 $R12$ 1 -0.556 9.036 39 $R2$ 1 -0.286 23.957 40 $R3$ 1 -0.167 26.647 41 $R4$ 1 0.333 98.048 43 $R5$ 1 0.222 116.605 444 $R6$ 1 0.5 52.787 45 $R7$ 1 0 5.908 447 $R8$ 1 0.176 74.236 450 51 6 -0.2 45.996 51 52 6 0.333 13.16 52 53 6 0.333 1.4 53 54 6 0.333 1.4 55 55 6 1 20.75 56 6 0.556 44.033 57 6 0.2592 58 6 0.077 122.499	24					
229 290 06 4 0.429 34.211 290 07 4 0.143 154.561 31 08 4 0 8.315 321 09 4 0.167 17.293 334 $R1$ 1 -1 0.577 355 $R10$ 1 0 159.707 36 $R11$ 1 -0.294 105.617 37 $R12$ 1 -0.556 9.036 399 $R2$ 1 -0.286 23.957 40 $R3$ 1 -0.167 26.647 41 $R4$ 1 0.333 98.048 43 $R5$ 1 0.222 116.605 44 $R6$ 1 0.5 52.787 45 $R7$ 1 0 5.908 47 $R8$ 1 0 142.818 48 $R9$ 1 0.176 74.236 55 55 6 0.333 1.4 54 55 6 0.333 1.4 54 55 6 1 20.75 55 55 6 0 2.592 56 58 6 0.077 122.499	26					
299 0.7 4 0.143 154.561 300 07 4 0.143 154.561 310 08 4 0 8.315 320 9 4 0.167 17.293 334 $R1$ 1 -1 0.577 355 $R10$ 1 0 159.707 36 $R11$ 1 -0.294 105.617 37 $R12$ 1 -0.286 23.957 40 $R3$ 1 -0.167 26.647 41 $R4$ 1 0.333 98.048 43 $R5$ 1 0.222 116.605 44 $R6$ 1 0.5 52.787 45 $R7$ 1 0 5.908 47 $R8$ 1 0.176 74.236 45 6 0.333 8.943 45 53 6 0.333 53 54 6 0.333 54 6 0.333 1.4 55 55 6 1 56 6 0.556 44.033 57 57 6 0 59 58 6 0.077 122.499 0.572	27					
30 07 4 0.143 154.561 31 08 4 0 8.315 32 09 4 0.167 17.293 33 $R1$ 1 0.577 34 $R1$ 1 $0.159.707$ 35 $R10$ 1 0.294 105.617 10.294 105.617 37 $R12$ 1 -0.286 23.957 1 -0.286 23.957 40 $R3$ 1 -0.167 26.647 41 $R4$ 1 0.333 98.048 43 $R5$ 1 0.222 116.605 44 $R6$ 1 0.5 52.787 46 $R7$ 1 0 5.908 47 $R8$ 1 0.176 74.236 49 1 0.176 74.236 50 51 6 0.333 1.4 52 53 6 0.333 1.4 53 55 6 1 20.75 54 6 0.556 44.033 54 6 0.556 44.033 55 55 6 1 20.75 56 58 6 0.077 122.499						
	30					
33 63 1 1 1 1 123 34 R11 -1 0.577 35 R101 0 159.707 36 R111 -0.294 105.617 37 R121 -0.286 23.957 40 R31 -0.167 26.647 41 R41 0.333 98.048 43 R51 0.222 116.605 44 R61 0.5 52.787 45 R71 0 5.908 47 R81 0.176 74.236 49 S1 6 -0.2 45.996 51 52 6 0.333 13.16 52 S3 6 0.333 1.4 53 S4 6 0.556 44.033 55 S5 6 1 20.75 56 S6 6 0.556 44.033 57 57 6 0 2.592 59 S8 6 0.077 122.499	31		4			
34R11-1 0.577 35 R1010 159.707 36 R111 -0.294 105.617 37 1 -0.556 9.036 39 R21 -0.286 23.957 40 R31 -0.167 26.647 41 R41 0.333 98.048 43 R51 0.222 116.605 44 R61 0.5 52.787 45 R710 5.908 47 R810 142.818 48 R91 0.176 74.236 49 S16 -0.2 45.996 51 526 0.333 13.16 53 S46 0.333 1.4 55 S561 20.75 56 S66 0.556 44.033 57 S760 2.592 59 S86 0.077 122.499		09	4	0.16	7 17.293	
35R1010 159.707 36 R111 -0.294 105.617 37 R121 -0.556 9.036 39 R21 -0.286 23.957 40 R31 -0.167 26.647 41 R41 0.333 98.048 43 R51 0.222 116.605 44 R61 0.5 52.787 45 R710 5.908 47 R81 0.176 74.236 45 S16 -0.2 45.996 51 526 0.333 13.16 52 536 1 20.75 54 6 0.556 44.033 55 576 1 20.75 56 566 0.556 44.033 57 576 0 2.592 59 58 6 0.077 122.499	34	R1	1	-:	L 0.577	
37R121 -0.556 9.036 38 R121 -0.556 9.036 39 R21 -0.286 23.957 40 R31 -0.167 26.647 41 R41 0.333 98.048 43 R51 0.222 116.605 44 R61 0.5 52.787 45 R710 5.908 47 R810 142.818 48 R91 0.176 74.236 50 S16 -0.2 45.996 51 S26 0.333 13.16 53 S46 0.333 1.4 55 S561 20.75 56 S66 0.556 44.033 57 60 2.592 59 S86 0.077 122.499 0.077 122.499	35	R10	1	. () 159.707	
338R121-0.5569.036 339 R21-0.28623.957 400 R31-0.16726.647 41 R410.33398.048 433 R510.222116.605 444 R610.552.787 456 R7105.908 477 R810142.818 48 R910.17674.236 49 S16-0.245.996 51 S260.3338.943 52 S360.3331.4 55 S56120.75 56 S660.55644.033 57 S7602.592 58 60.077122.499		R11	1	-0.294	105.617	
39R21-0.286 23.957 40 R31-0.167 26.647 41 R410.333 98.048 43 R510.222 116.605 44 R610.5 52.787 45 R710 5.908 47 R810 142.818 48 R910.176 74.236 49 S16-0.2 45.996 51 S260.333 8.943 52 S360.333 1.4 55 S561 20.75 56 S660.556 44.033 57 S760 2.592 59 S860.077 122.499	38	R12	1	-0.55	5 9.036	
41 10 $10,100$ $10,010$ 42 $R4$ 1 $0,333$ $98,048$ 43 $R5$ 1 0.222 $116,605$ 44 $R6$ 1 0.5 $52,787$ 45 $R7$ 1 0 5.908 46 $R7$ 1 0 5.908 47 $R8$ 1 0 142.818 48 $R9$ 1 0.176 74.236 49 51 6 -0.2 45.996 51 52 6 0.333 8.943 52 53 6 0.333 1.4 54 6 0.333 1.4 54 6 0.556 44.033 57 56 6 0.2592 59 58 6 0.077 59 58 6 0.077	39	R2	1	-0.28	5 23.957	
42R41 0.333 98.048 43 R51 0.222 116.605 44 R61 0.5 52.787 45 R710 5.908 46 R710 142.818 47 R810.176 74.236 48 R910.176 74.236 49 50S16 -0.2 50 S16 0.333 8.943 52 S360.333 13.16 53 S460.333 1.4 55 S561 20.75 56 S66 0.556 44.033 57 60 2.592 59 S86 0.077 122.499	40	R3	1	-0.16	7 26.647	
43R51 0.222 116.605 44R61 0.5 52.787 45R710 5.908 46R710 142.818 48R91 0.176 74.236 49S16 -0.2 45.996 50S16 0.333 8.943 52S36 0.333 13.16 53S46 0.333 1.4 54S5S56 1 20.75 56S66 0.556 44.033 5760 2.592 586 0.077 122.499		R4	1	0.333	98.048	
45 10 10 100 100 46 $R7$ 1 0 5.908 47 $R8$ 1 0 142.818 48 $R9$ 1 0.176 74.236 49 51 6 -0.2 45.996 50 51 6 0.333 8.943 52 53 6 0.333 13.16 53 54 6 0.333 1.4 55 55 6 1 20.75 56 56 6 0.556 44.033 57 57 6 0 2.592 59 58 6 0.077 122.499	43	R5	1	0.222	116.605	
46 $R7$ 1 0 5.908 47 $R8$ 1 0 142.818 48 $R9$ 1 0.176 74.236 49 51 6 -0.2 45.996 51 52 6 0.333 8.943 52 53 6 0.333 13.16 53 54 6 0.333 1.4 54 55 6 1 20.75 56 56 6 0.556 44.033 57 57 6 0 2.592 59 58 6 0.077 122.499	44	R6	1	0.5	5 52.787	
47R810142.818 48 R910.17674.236 49 S16-0.245.996 50 S260.3338.943 52 S360.33313.16 53 S460.3331.4 54 55S56120.75 56 S660.55644.033 57 S7602.592 58 60.077122.499		R7	1	. (5.908	
48 R9 1 0.176 74.236 49 S1 6 -0.2 45.996 50 S1 S2 6 0.333 8.943 52 S3 6 0.333 13.16 53 S4 6 0.333 1.4 55 S5 6 1 20.75 56 S6 6 0.556 44.033 57 S7 6 0 2.592 58 6 0.077 122.499	47	R8	1	. () 142.818	
	48		1	0.17		
50 52 6 0.333 8.943 52 53 6 0.333 13.16 53 54 6 0.333 1.4 55 55 6 1 20.75 56 56 6 0.556 44.033 57 57 6 0 2.592 58 6 0.077 122.499	49 50		e			
52 S3 6 0.333 13.16 53 S4 6 0.333 1.4 55 S5 6 1 20.75 56 S6 6 0.556 44.033 57 S7 6 0 2.592 58 59 S8 6 0.077 122.499	50 51					
53 54 6 0.333 1.4 55 55 6 1 20.75 56 56 6 0.556 44.033 57 57 6 0 2.592 58 6 0.077 122.499	52					
55 S5 6 1 20.75 56 S6 6 0.556 44.033 57 S7 6 0 2.592 58 59 S8 6 0.077 122.499	53					
56 56 6 0.556 44.033 57 57 6 0 2.592 58 6 0.077 122.499						
57 57 6 0 2.592 58 58 6 0.077 122.499	56					
50 59 58 6 0.077 122.499	57					
	58 50					
	60					
		.	C C	. 0.0	2 37.047	

1	Ground	Domain	El Index	Between	
2 3	group A10		3 1		
4	A10 A11		3 0.091		
5			3 -0.333		
6 7	A12				
8	A13		3 -0.333 3 0.636		
8 9	A14				
10	A2		3 0.4		
11 12	A3		3 0.619		
13	A4		3 0.143		
14 15	A5		3 0.5		
15 16	A6		3 -0.143		
17	A7		3 -0.2		
18	A8		3 1		
19 20	A9		3 1 5 0.6		
20 21	C1				
22	C2		5 0.333		
23	C3		5 1		
24 25	C4		5 0.6		
26	C5		5 🔰	0	
27	E1		2 0.846	36.819	
28	E2		2 1	1.667	
29 30	E3		2 1	148.406	
31	E4		2 1	. 0	
32	E5		2 0.5		
33 34	01		4 0.333		
34 35	010		4 0		
36	011		4 -0.5		
37	012		4 0.077		
38 39	02		4 0.125		
40	03		4 0.222		
41	04		4 0.4		
42 43	05		4 0.111		
43 44	06		4 0.556		
45	00		4 0.350 4 0.158		
46	07		4 0.138 4 -0.091		
47 48	08				
49					
50	R1		1 -0.75		
51 52	R10		1 -0.259		
52 53	R11		1 -0.217		
54	R12		1 -0.5		
55	R13		1 -1		
56 57	R14		1 C		
58	R15		1 1		
59	R16		1 -1		
60	R17		1 -1		
	R18		1 -1	. 0	

1					
1	R19	1	0	0	
3 4 5 6 7 8 9	R2	1	-0.053	131.087	
5	R20	1	0	0	
6	R21	1	0	0	
7	R23	1	0	0	
8 9	R24	1	-1	0	
10	R25	1	-0.2	0	
11	R26	1	-1	0	
12	R27	1	-1	0	
13 14	R28	1	1	0	
15	R29	1	-1	0	
16	R3	1	-0.167	51.417	
17 18	R4	1	0.231	166.681	
18 19	R5	1	0.333	277.424	
20	R6	1	0.555	155.033	
21					
22 23	R7	1 1	-0.3	153.012	
23 24	R8		-0.12	288.574	
25	R9	1	0.2	188.861	
26	S1	6	0.111	99.862	
27 28	S10	6	-1	0	
29	S11	6	-0.5	0	
30	S12	6	-1	0	
31	S13	6	-1	0	
32 33	S14	6	1	0	
34	S15	6	0	0	
35	S16	6	0.5	0	
36 37	S17	6	0.222	0	
38	S18	6	-1	0	
39	S2	6	0.143	14.619	
40	S3	6	-0.273	129.19	
41 42	S4	6	-0.2	0	
43	S5	6	0.5	18.475	
44	S6	6	0	39.229	
45	S7	6	0	3.581	
46 47	S8	6	-0.2	212.865	
48	S9	6	0.455	103.946	
49		-			
50 51					
52					
53					
54					
55 56					
57					
58					
59 60					
60					

Appendix B


Core network:

Density: 0.156	
Re-scaled E-l index:069	
Group level E-I index:	
Research:	034
Education:	1.000
Administration:	.511
Operations:	.130
Connectivity:	.529
Students:	.355

Affiliated network

Density: 0.064 Re-scaled E-I index: 0.141 Group level E-I index:

Research: Education: Administration: Operations: Connectivity: Students:	034 1.000 .511 .130 .529 .355			
ated network sy: 0.064 aled E-I index: 0.141 o level E-I index: Research: Education: Administration: Operations: Connectivity: Students:	105 .905 .389 .141 .600 .024			

Figure A1:

, Size of nod. Joint, C – connectivit, illustration of the network of groups in the core group (n=44). Size of node indicates betweenness: the bigger, the higher the betweenness value. First letter in node name indicates domain: R – research, E – education, A – administration and governance, O – operations, C – connectivity, S – student.

Formulas to calculate betweenness and E-I index

Betweenness is defined by the following equation:

$$C_b = \sum \frac{g_{jk}(N_i)}{g_{jk}} ;$$

where g_{ik} is the number of geodesic paths between the two nodes i and j and $g_{ik}(N_i)$ is the number of geodesics between j and k that contain node i.

E-I index is defined by the following equation:

μα k . equation: $E - I_{index} = \frac{E_L - E_I}{E_L + E_I}$; where E_L is the number of external exchanges and E_I is the number of internal exchanges.

1 Mapping social structures for sustainability transformation at McGill

2 University, Canada

3 Klara J. Winkler, Department of Natural Resource Sciences, McGill University, Ste-Anne-de-

- 4 Bellevue, QC, Canada; klara.winkler@mcgill.ca
- 5 Hannah R. Chestnutt, Department of Integrated Studies in Education, McGill University,
- 6 Montreal, QC, Canada; hannah.chestnutt@mcgill.ca
- 7 Elena M. Bennett, Department of Natural Resource Sciences and Bieler School of Environment,
 - 8 Ste-Anne-de-Bellevue, QC, Canada; elena.bennett@mcgill.ca
 - 10 Submitted: 23-Apr-2021; revised: 27-Aug-2021

12 ABSTRACT

 Purpose: For a university to be a prime mover for sustainability transformation, all units of the university should contribute. However, organizational change in educational institutions is often studied by examining specific domains such as research or operation in isolation. This results in a less-than-complete picture of the potential for university-wide change. In contrast, we examine the network of social relations that determine the diffusion and sustainability of change efforts across a university. We use McGill University (Canada) as a model system to study the network of actors concerned with sustainability to learn how this network influences the penetration of sustainability throughout the university.

Design/ methodology/ approach: To explore the existing social structure, we use an innovative approach to illuminate the influence of social structure on organizational change efforts. Using a mixed methods approach combining social network analysis with qualitative interview data, we examine the influence of the social structure on sustainability transformation at McGill University. We conducted 52 interviews between January and April 2019 with representatives of different sustainability groups at the university across six domains (research, education, administration, operations, connectivity, students).

Findings: We find that McGill University has a centralized system with a low density. The network is centralized around the Office of Sustainability. The limited cross-domain interaction appears to be a result of differences in motivation and priorities. This leads to a network that has many actors but only a limited number of connections between them. The quality of the relationships is often utilitarian, with only a few relationships aiming for support and mutual growth.

 Originality: This study brings together social network analysis, sustainability transformation, and
 higher education in a new way. It also illustrates the complexity of guiding a large organization,
 such as a university, towards a sustainability transformation. Furthermore, it reveals the
 importance of considering each part of the university as part of an interconnected network rather
 than as isolated components.

- 43 <u>Keywords</u>: transition, leverage point, complexity, relation, network
- **INTRODUCTION**

Universities are important societal actors, as they educate future leaders, conduct research, are trusted entities in society, and in many countries, have significant endowments and own properties. Worldwide, universities have acknowledged their responsibility in society, noting that the generation and provision of knowledge is not enough to move society towards a sustainable future (Peer and Stoeglehner 2013). Making this acknowledgement a reality is sometimes called the 'third academic revolution,' reflecting universities' moral obligation to move beyond the objective of academic excellence to actively address urgent societal sustainability topics (Crow 2010, Wright and Horst 2013). For a university to be part of this revolution, it needs to actively transform itself.

A sustainability transformation is a fundamental change in the interaction between humans and the environment (Olsson et al. 2014). Different to other ideas discussed in relationship with sustainability, the emphasis in sustainability transformation is on the *fundamental* nature of the change, which is required due to an untenable situatfion of ecological and social conditions (Walker et al. 2004). While sustainability transformation is a comprehensive idea, we focus for the sake of this paper on aspects of a sustainability transformation in the context of a large organization (i.e., university). In order for a sustainability transformation to take place, people must engage with their norms, values, and power to (re)align them with sustainability, rather than focus on easy, 'shallow' fixes like reducing waste (Meadows 1999, Abson et al. 2017).

66 Change in large organizations is complex. The complexity is created by the number of individuals 67 and sub-groups in an organization who pursue their own objectives and act along their own

reasoning (Greenwood et al. 2011). Sustainability can only function as a long-term objective. It is unable to function as a short term objective despite attempts to do so in many organizations (Etzion 2018). Large organizations have the highest level of complexity if they are highly fragmented and moderately centralized. Fragmentation is a reaction of an organization to competing reasonings and objectives with the potential consequence of creating compartmentalized identities, which in turn exacerbate a transformation of the whole organization (Kraatz and Block 2008). Organizational strategy and structure are two aspects to manage organizational complexity (Greenwood et al. 2011).

 Most large organizations have sustainability strategies. However, knowledge about the implementation of sustainability strategies is limited because most research has concentrated on the creation and content of these strategies (Engert et al. 2016). Organizational structure and organizational culture are factors influencings the implementation of sustainability strategies (Engert and Baumgartner 2016). Organizational structure is important because sustainability is a holistic topic concerning all units of an organization (Engert and Baumgartner 2016, Casarejos et al. 2017). As such organizational structures that promote and support the collaboration across existing (unit) boundaries help to foster the implementation of sustainability rather than creating frictions due to unclear competences and missing communications. Organizational culture puts an emphasis on organizational sense-making including underlying values and norms, and organizational learning rather than the content or number of sustainability activities. The lived and promoted values by members on all levels of an organization must align with the objectives of the sustainability strategy, otherwise other objectives are weighted as more important and sustainability objectives are dropped (Benn et al. 2018). Reflexive processes (organizational learning) can change knowledge and values and result in behavioural change in organizations, which in turn can help to align values, objectives, and activities (Siebenhüner and Arnold 2007).

94 Organizational structure is a network of units and people interacting with each other. Strategies 95 and plans tend to reduce social action to the individual actor while organizational structure bring 96 our attention to the fact that "a more likely source is the network of interactions and relations in

which each actor is embedded" (Crossley and Edwards 2016). Change processes, including organization change, tend to be supported, constrained, and maintained through networks of social relations (Kolleck 2019). Connections within and across the units of an organization influence the agency of every individual unit and facilitate opportunities for knowledge sharing and knowledge transfer for the purposes of organizational change (Tenkasi and Chesmore 2003, Daly and Finnigan 2010). Lasting change is supported by interpersonal relationships rather than by specific plans and events (Mohrman et al. 2003). Both the individual relationships and the network impact the kind and trajectory of sustainability projects within an organization.

Scholarship on sustainability transformation also emphasizes the importance of social structures and norms and values to enable a transformation. The complexity of sustainability and the identification of pathways necessitates the involvement of as many people in an organization as possible who can shape and implement the change (Westley et al. 2011, Moore et al. 2015). The activities are either 'shallow' or 'deep' leverage points (Meadows 1999, Abson et al. 2017). While shallow activities (e.g., waste reduction) contribute to setting the stage (Fischer and Riechers 2019), a sustainability transformation requires people to act as moral entrepreneurs upholding norms as a moral compass for the transformation (Olsson et al. 2017). The relationships among people should not only exist but encourage the engagement with values and norms that motivate transformative activities (Lam et al. 2020). Fundamental change can only occur by engaging with values and norms. However, more research on sustainability transformation is needed to explore the interaction of multiple individuals and the consequences of the implementation of strategies (Olsson et al. 2014).

44 119

In the context of universities, research on organizational change has concentrated on the content and development of plans and strategies rather than on how organizational structure and culture influence the implementation of plans and strategies (Kezar 2014). Many universities have formulated university-level strategies and plans which need to be implemented on campus (Lozano et al. 2015, Dagiliūtė et al. 2018). Nevertheless, universities are often hindered by strategies or activities that focus on other objectives (e.g., economic development) (Bieler and

McKenzie 2017). In addition, universities that implement 'sustainability', often focus on either operations (e.g., waste management) or curricula (e.g., courses or programmes) (Dagiliute and Liobikiene 2015). However, the intentionality and holism of sustainability, requires that all domains of a university (operations, teaching, research, administration, outreach) pursue the same objective for a sustainability transformation (Alshuwaikhat and Abubakar 2008, Casarejos et al. 2017). At the same time, the network of interactions and relations found at universities tend to be invisible webs of influence hidden from the people embedded in them (O'Reilly et al. 1991).

134

A more in-depth investigation is needed to reveal how the structure of a university and the resulting culture influence its potential to undergo organizational change for a sustainability transformation (Hoover and Harder 2015). In this paper, we set out to understand how organizational structure and culture affect the possibility of a university to join the 'third academic revolution' and transform towards sustainability. We conduct a social network analysis of sustainability groups (sustainability actors) at McGill University (Canada). To not only reveal the existing organizational structure, but also the organizational culture, interviews conducted during the data collection help us to understand how the network and the promoted culture influence the penetration of sustainability throughout different units, activities, and members of the university (and beyond).

147 THEORY

In a social system, the quality of the ties between groups and individuals creates a structure to constrain or support opportunities for social capital transactions (Granovetter 1973, Lin 2001, Putnam 2002, Daly and Finnigan 2010). Social capital in this context can be defined as an actor's access to resources such as knowledge, advice, innovation, and the ability to mobilize these resources to effect change (Lin 2001). Social network theory assumes an actor's attributes alone cannot explain behavior or social capital. It is an understanding of the connections between actors that has the potential to illuminate the behavior and social capital of individual actors and reveal the possibilities of the overarching network (Borgatti et al. 2009). Using a social network

theory approach, these social relations can be examined and measured in a variety of ways to
help understand what the social structure is and how it influences the activities of the overall
network.

An actor's centrality in a network describes a measure of power because of their position in the network. A count of the number of times an actor is positioned between two otherwise disconnected actors is called betweenness centrality. Thus, an actor with a high betweenness centrality bridges groups that are not directly connected which can result in the sharing of knowledge and practices across the network. Forming bridges with those who have previously been disconnected can increase trust and group cohesion and flatten hierarchies. An actor with a high betweenness measure can broker with actors from different affiliation groups to their own. This position not only provides access to information and resources, but also provides the opportunity to either control or gatekeep the penetration of sustainability ideas and resources between separate parts of the network or between networks. A high betweenness measure tends to indicate a position of power or control.

³⁰ 171

The penetration of ideas or resources across a boundary can be initiated by an actor interacting across a boundary, the broker. The boundary may be an affiliation boundary such as membership in a particular group. The penetration of ideas or resources is not only dependent on the broker's number of relations, but also on the position of the broker. An actor with many ties outside of their own domain (group of similar actors) will have greater access to non-redundant information. An actor with many internal ties will have a greater flow of ideas, but much of the information will be redundant (Burt 2001). A measure of the degree to which a network is more externally or internally focused can be attained using the E-I index to compare the number of ties between groups and within groups. Networks with an external focus have demonstrated a capacity for successful organizational change (Krackhardt and Stern 1988, Daly and Finnigan 2010). University groups with a greater ratio of external ties to internal ties will be better positioned to support the introduction and sharing of non-redundant ideas and practices (Burt 2001) regarding sustainability. The E-I index can theoretically range between -1 (all ties internal to own domain) and +1 (all ties external to domain). However, number of domains, number of

186 groups in each domain, and number of ties restrict the possible values of the E-I index. For this 187 reason, we used the re-scaled E-I index which takes the restricting factors into consideration.

Additional measures can be calculated for an entire network, such as the density of the network. *Density* is a measure of the number of ties in the network as a fraction of the total possible number of ties (Carolan 2014). Within dense networks the multiple ties between each node result in the flow of redundant resources. In addition, dense networks tend to demonstrate social cohesion. Social cohesion may include feelings of trust and security among member (Moolenaar and Sleegers 2010), but it may also result in enforced norms of conduct (Burt 2001).

197 METHODS and CASE STUDY

199 CASE STUDY

For over twenty years, McGill University (Canada) has been working on different aspects of sustainability. Early work focused on its own environmental policy, operations, and environmental education, and left out aspects such as inter-university collaboration, interdisciplinary curricular, and public outreach (Wright 2002). Over the last decade, the university has taken major steps towards an integrated sustainability approach through all domains and is nowadays a 'progressive' university in Canada concerning sustainability (Bieler and McKenzie 2017). McGill has committed to a Sustainability Strategy with two major goals: (1) to achieve the AASHE Platinum Status in 2030 and (2) carbon-neutrality in 2040. In addition, the university has founded the McGill Office of Sustainability (MOOS) which coordinates, among other things, the largest university sustainability project fund (SPF) in Canada (annual budget of around 980,000 CAD). In research, in addition to many individual faculty members, groups, and projects on sustainability-related topics, the university has invested around 10 million CAD into the McGill Sustainability Systems Initiative (MSSI) with the aim to coordinate, initiate, and amplify sustainability research throughout all faculties. These activities, commitments, and investments have created a sustainability scene at McGill University.

54 215

Page 17 of 36

We use McGill University as a model organization, in which the university has publicly committed to sustainability. Sustainability activities are well-established and consequently this university is a suitable context for studying the network of sustainability actors and how this network influences the penetration of sustainability throughout domains, activities, and members of the university (and beyond) to join the 'third academic revolution' and promote a sustainability transformation.

DATA COLLECTION AND ANALYSIS

To study the network of sustainability actors, we conducted 52 interviews between January and April 2019 with representatives from different sustainability groups at the university. We use the term (sustainability) group for different types of entities at the university including student groups, administrative or operational units, faculties, departments. We used snowball sampling to select our interviewees and started our interview series with representatives of MOOS and MSSI. Two persons declined our interview requests, but we succeeded in recruiting other members of their groups for an interview. We continued to do interviews until we reached no new names were suggested. Interviews took thirty to sixty minutes and were conducted in a location suggested by interviewees. All interviews were taped and transcribed with the written consent of the interviewees allowing us to identify the group they were representing. For this publication, we decided to only identify MOOS in the following sections. An anonymous code was used for smaller groups in which it would have been easier to identify individuals.

McGill University defines five domains for its sustainability work: (1) research, (2) education, (3) governance and administration, (4) operations, (5) connectivity (MOOS 2017). We added a sixth domain 'students' as we identified them as key sustainability actors whose work does often not fit into the five other domains because students' status poses own opportunities and challenges. We assigned all interviewed groups to one of the six domains based on the focus of their work. Certain groups (e.g., departments, faculties) fit in multiple domains (e.g., research and education). We conducted multiple interviews within some groups because either multiple people in the group were working on sustainability or because during the interview of the first person, it became obvious that we should talk with another person who had more or additional

insights. For the network analysis, we merged the information of these representatives as our network analysis is on the group level. For example, we conducted two interviews with representatives of the Faculty of Science and in our analysis the information is combined as Faculty of Science without a differentiation of interviewee. In the following sections, we refer to the interviewed groups with a code consistent of a letter based on their domain (e.g., A for administration) and a number to differentiate between groups, i.e., A2 is the second administrative unit in our list.

During the interviews, we collected information about with whom and how interviewees were interacting on issues related to sustainability. We digitalized this information and created network visualizations using the software Netdraw (Borgatti et al. 2002). We used the UCINET software (Borgatti et al. 2002) to calculate the betweenness centrality, the re-scaled externalinternal (E-I) index, and the density of the network (Appendix B).

We built two networks: the 'core network' and the 'affiliated network'. The core network contains only groups that we interviewed. Since we interviewed until saturation, we call this group 'core network'. During the interviews, our interviewees named additional groups they were working with on sustainability-related issues but did not suggest that we interview them. In our 'affiliated network', we included all groups from the core network and all groups that were named at least twice, but never suggested as potential interviewee partners.

41 267

42 268 **RESULTS**

Our 52 interviews can be organized into 44 groups in the six domains (Appendix A): 12 in the research domain, 3 in education, 7 in governance and administration, 10 in operations, 3 in connectivity, and 9 in students. Our interviewees named almost 200 groups on and off campus with whom they were working on sustainability issues of all kinds. About 75% of the other groups that our interviewees identified, were part of the university. There were 81 groups that were named by at least two interviewees independently (Figure 1). These 81 groups make up the affiliated network, while the 44 interviewed groups are the core network (Appendix B).

Around 50,000 people are affiliated with McGill which provides a big potential ground for engaged actors. However, an interviewee summarized that the actual amount of people working on sustainability issues is much smaller, saying "[...] you're going to find a lot of the same people [...] it's really this much smaller network" (R8). Another interviewee confirmed the perception by stating, "I keep running into a lot of the same people on the various sustainability initiatives on campus. So, I might work with someone on one thing, and then see them working on a completely *different initiative*" (O2). While this situation might allow actors, who are deeply engaged to get to know each other, it limits the penetration of sustainability throughout the whole university.

286 Network influence on sustainability penetration

We find a centralized system with a low density. The network is centralized around the Office of Sustainability (MOOS – A3). The E-I indices suggest that the domains in the core network tend to be separated and maintain many connections within their domain and fewer outside it. This leads to a network that has many actors but only a limited number of connections between them and thus a low density.

⁵ 293 Betweenness centrality

MOOS has by far the highest betweenness values (Figure 1, Appendix A, B). The high values suggest that MOOS has a large influence in the university concerning sustainability. MOOS is aware of its role as the center of sustainability activities at the university: "We are kind of the central hub to solidify this network" (MOOS). The central role of MOOS is also recognized by superior units to which MOOS reports. For example, a member of such a unit stated that all sustainability projects at McGill have been spearheaded by MOOS. This central role of MOOS means other groups in the network rely heavily on MOOS. They mainly turn to MOOS for financial support or knowledge to start and execute their own projects and activities on sustainability:

"We had initial support from [MOOS] to get all this going, which believe me, I would not have done if it wasn't for them" (O6)

3 305 4 306 5 306 6 307 7 308 9 309 10 310 12 311 13 312 16 313 17 314 19 315 20 317 23 317 24 319 25 318 26 319 28 320 30 322 33 324 35 325 36 327 40 328 41 329 43 330 44 329 43 330 44 331 45 331 47 48 49 50 51 52 53 54 55 56 57 58 59 60	2	
5 306 6 307 8 309 9 309 10 310 12 311 13 312 14 312 15 313 14 312 15 313 17 314 19 315 20 316 22 317 24 318 25 319 20 321 31 322 33 324 35 325 36 327 30 328 41 329 43 320 34 324 35 325 36 327 40 328 41 329 43 330 45 331 47 48 49 50 51 52 53 54 56	3	305
6 307 7 308 9 309 10 310 12 311 13 312 14 312 15 313 14 312 15 313 17 314 19 315 20 317 24 319 25 313 31 322 32 323 34 324 35 325 36 327 40 328 41 329 43 330 45 331 42 329 43 330 45 331 46 331 47 48 49 50 51 52 53 54 55 56 57 58 59 57	4	306
7 308 9 309 10 310 12 311 13 312 14 312 15 313 17 314 19 315 21 316 22 317 24 319 27 318 26 319 27 323 31 322 33 324 35 325 36 327 30 328 41 329 42 329 43 330 45 331 47 48 49 50 51 52 53 54 55 56 57 58 59 57		
9 309 10 310 11 311 12 311 13 312 14 312 15 313 17 314 19 315 20 316 22 317 24 318 26 319 27 323 31 322 32 323 34 324 35 325 36 327 30 328 41 329 43 330 45 331 42 329 43 330 45 331 46 331 47 48 49 50 51 52 53 54 56 57 58 59		
10 310 12 311 13 312 14 312 15 313 16 313 17 314 19 315 20 317 23 317 24 319 25 318 26 319 28 320 30 321 31 322 33 324 35 325 36 327 30 324 35 325 36 327 40 328 41 329 43 330 45 331 46 331 47 48 49 50 51 52 53 54 56 57 58 59	8	
11 310 12 311 13 312 14 312 15 313 16 313 17 314 19 315 20 317 24 318 25 318 26 319 28 320 30 321 31 322 33 324 35 325 36 327 30 328 41 329 43 330 45 331 42 329 43 330 45 331 46 331 47 48 49 50 51 52 53 54 55 56 57 58 59 59	9 10	
13 1431215 1631317 1831419 	11	
14 312 15 313 16 313 17 314 19 315 20 316 22 317 24 319 25 319 26 319 27 323 30 321 31 322 33 324 35 325 36 327 30 321 31 322 33 324 35 325 36 327 39 328 41 329 43 330 45 331 46 331 47 48 49 50 51 52 53 54 55 56 57 58 59 57	12 13	311
16 313 17 314 18 315 20 316 22 317 24 318 25 318 26 319 27 320 30 321 31 322 33 324 35 325 36 327 39 328 41 329 43 330 45 331 46 331 47 48 49 50 51 52 53 54 55 56 57 58 59 59	14	312
18 314 19 315 20 316 22 317 24 318 25 319 28 320 30 321 31 322 33 323 34 324 35 325 36 327 39 328 41 329 43 330 45 331 45 331 46 331 47 48 49 50 51 52 53 54 56 57 58 59		313
19 315 20 316 22 317 24 318 25 318 26 319 27 320 30 321 31 322 33 324 35 325 36 327 39 328 41 329 42 329 43 330 45 331 46 331 47 48 49 50 51 52 53 54 56 57 58 59		314
21 316 22 317 24 318 26 319 27 319 28 320 30 321 31 322 33 323 34 324 35 325 36 327 39 328 41 329 43 330 45 331 46 331 47 48 49 50 51 52 53 54 55 56 57 58 59 59	19	315
23 317 24 318 25 319 28 320 30 321 31 322 32 323 34 324 35 325 36 327 39 328 41 329 43 330 45 331 46 331 47 48 49 50 51 52 53 54 56 57 58 59	21	316
25 318 26 319 27 320 29 321 31 322 32 323 34 324 35 325 36 327 39 328 41 329 43 330 45 331 46 331 47 48 49 50 51 52 53 54 55 56 57 58 59 51	23	317
27 519 28 320 29 321 31 322 32 323 34 324 35 325 36 327 39 328 41 329 42 329 43 330 45 331 46 331 47 48 49 50 51 52 53 54 55 56 57 58 59 51		318
28 320 29 321 31 322 32 323 34 324 35 325 36 327 39 328 41 329 43 330 45 331 46 331 47 48 49 50 51 52 53 54 55 56 57 58 59 52		319
30 321 31 322 32 323 34 324 35 325 36 327 39 328 41 329 43 330 45 331 46 331 47 48 49 50 51 52 53 54 55 56 57 58 59 59	28	320
31 322 32 323 33 324 35 325 36 327 39 328 41 329 43 330 45 331 46 331 47 48 49 50 51 52 53 54 55 56 57 58 59 50		321
32 323 33 324 35 325 36 327 37 326 38 327 39 328 41 329 43 330 45 331 46 331 47 48 49 50 51 52 53 54 55 56 57 58 59 59		
33 324 34 324 35 325 36 327 39 328 40 328 41 329 43 330 45 331 46 331 47 48 49 50 51 52 53 54 55 56 57 58 59 59	32	
35 325 36 326 37 326 38 327 39 40 328 41 329 43 330 45 331 46 47 48 49 50 51 51 52 53 54 55 56 57 58 59 59		
36 323 37 326 38 327 39 328 40 328 41 329 43 330 45 331 46 331 47 48 49 50 51 52 53 54 55 56 57 58 59 59		
37 38 327 39 328 40 328 41 329 42 329 43 330 44 330 45 331 46 331 47 48 49 50 51 52 53 54 55 56 57 58 59 59		
39 40 328 41 329 42 329 43 330 45 331 46 331 47 48 49 50 51 52 53 54 55 56 57 58 59 59		
40 328 41 329 43 330 44 330 45 331 46 331 47 48 49 50 51 52 53 54 55 56 57 58 59 59		327
42 329 43 330 44 330 45 331 46 47 48 49 50 51 52 53 54 55 56 57 58 59	40	328
44 330 45 331 46 47 48 49 50 51 52 53 54 55 56 57 58 59	42	329
331 46 47 48 49 50 51 52 53 54 55 56 57 58 59		330
48 49 50 51 52 53 54 55 56 57 58 59		331
49 50 51 52 53 54 55 56 57 58 59		
50 51 52 53 54 55 56 57 58 59		
51 52 53 54 55 56 57 58 59		
53 54 55 56 57 58 59		
54 55 56 57 58 59		
55 56 57 58 59		
56 57 58 59		
58 59		
59		

"So, she [member of MOOS] actually came and helped our office develop our sustainability plan..." (A5)

"[...] a lot of the funding that we've gotten for past projects came from them [MOOS]" (S5)

811 The high betweenness values make MOOS the ideal broker or gatekeeper of the network. 312 According to our interviews, MOOS is the central for information and support: "MOOS connects 313 with all the people in the university [...]. They [MOOS] share knowledge" (R11). Nevertheless, only 814 a few interviewees had experienced MOOS as a facilitator to help the interviewee's group to 815 build relationships with other groups. In one case, an interviewee referred to the endeavor of 816 MOOS to coordinate different gardening projects: "It's basically to coordinate all of them [urban 817 gardens], see what their needs are through the Office of Sustainability" (O3). However, most of 18 the time our interviewees talked about their connection with MOOS as a one-to-one connection 819 in which they connect with MOOS about a certain topic, but beyond that with no other groups. 320 "And in this [project], I collaborated with the Office of Sustainability." (O9) 321 "Actually, my only partner now is the Office of Sustainability." (O1) 322 323 "We have a good relationship with them [MOOS] and try and work on as many projects 324 325 that we can together." (O4) 326 327 Only one interviewee remembered that MOOS facilitated to connect them with other groups 328 working on similar topics: "So, when somebody has something that touches on [focus of job

329 description] that I'm working on, they will often approach MOOS, who will then facilitate and link

330 *it up with me*" (O10). This indicates that MOOS, despite its central position, does not always act

as a broker and bridge, but as a gatekeeper which might be unintentionally.

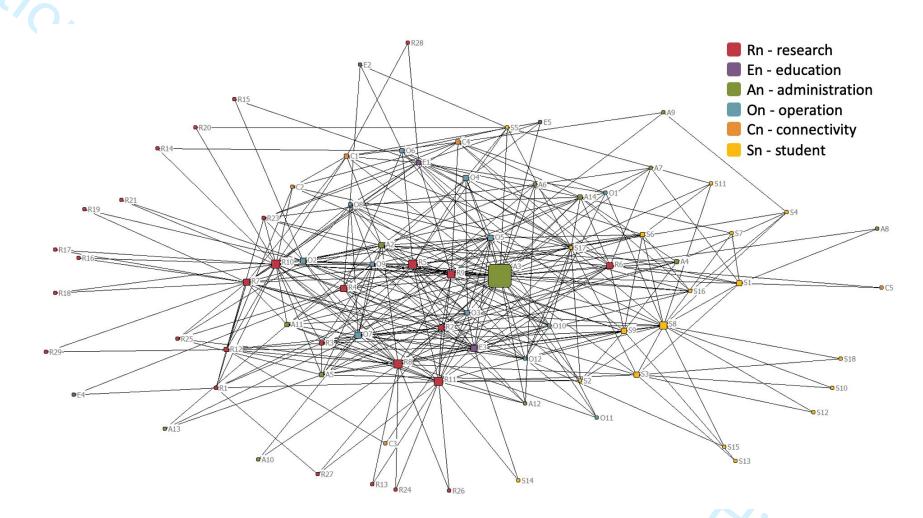


Figure 1: Affiliated social network. Size of nodes illustrates relative betweenness values of nodes. Color and first letter of code indicate domain. Red – R: research; purple – E: education; green – A: administration and governance; blue – O: operations; orange – C: connectivity; yellow – S: student.

Looking at the other groups and their betweenness values, multiple faculties, R11, S8, and O7 have high betweenness values compared to the rest of the network, but low betweenness values compared to MOOS. All these groups except O7 act as umbrella organizations to bring together a variety of others so the higher betweenness values are not surprising. For example, the objective of the R11 is to create a network of sustainability researchers ("[...] one of the things that we want to do is create this network."). The betweenness value of R11 is higher in the affiliated network as they work with researchers who work on sustainability related research but not in the context of the university. Thus, R11 is in the position to connect to researchers at the edge of the sustainability network. O7's betweenness values can be explained by the working philosophy of the person in charge, who actively strives for collaboration with other people and even created an own committee on sustainability within their working topic which meets "like three or four times a year" (07). This is remarkable as we could not identify other actors in the sustainability network who actively strive to create and maintain a network of actors across the university around their topic.

Groups in various domains have very low betweenness values which shows that they are not connecting to the broader network of sustainability actors. There are multiple possible reasons for this lack of connection, including: a) sustainability is not the main concern of their activities (A6), b) their activities and objectives are focused, and they do not feel the need to connect with other groups (O1, O10), or c) their activities focus more outside McGill University (S4).

41 353 E-I index

 The re-scaled E-I index for the core network is -0.069 (p < .01) which indicates that the overall structure shows a compartmentalisation of the individual domains. All domains have a positive E-I index except of the research domain which has an E-I index of -0.034. The three domains education, governance and administration, and connectivity all have an E-I index between 1.0 and 0.5 (1.000, 0.511, and 0.529 respectively) indicating that these domains are the backbone of the sustainability network as they connect across domains. More than two thirds of the groups in the core network have a positive E-I index (Table 1) - having more relationships with groups

outside their domain than within their domain. Four groups have an E-I index of +1.0 which means that they have only ties with groups in other domains. Remarkably, three of them (E1, E2, E3) are groups in the education domain. All three groups work in different ways and on various aspects of sustainability, but they do not connect with each other. This might have to do with their physical location and institutional affiliation. Seven groups in the core network have a negative E-I index - mainly working with groups in their domain. Five of the seven are associated with research (R1, R2, R3, R11, R12).

Table 1: interviewed groups with their EI for the core network (middle column) and the affiliated network (right column)

Groups	El core network	El affiliated network
A10	0.5	1
A14	0.6	0.636
A2	0.412	0.4
A3	0.647	0.619
A4	0.143	0.143
A5	0.6	0.5
A6	0	-0.143 0.6 0.333 0.6 0.846 1 1 0.333 0.077 0.125 0.222 0.4 0.111 0.556 0.158 -0.091 0.077 -0.75 -0.259 -0.217 -0.5
C1	0.6	0.6
C2	0.2	0.333
C4	0.714	0.6
E1	1	0.846
E2	1	1
E3	1	1
01	0.333	0.333
012	0	0.077
02	-0.077	0.125
03	0.222	0.222
04	0.25	0.4
05	0.059	0.111
O6	0.429	0.556
07	0.143	0.158
08	0	-0.091
09	0.167	0.077
R1	-1	-0.75
R10	0	-0.259
R11	-0.294	-0.217
	-0.556	-0.5

R2	-0.286	-0.053
R3	-0.167	-0.167
R4	0.333	0.231
R5	0.222	0.333
R6	0.5	0.6
R7	0	-0.3
R8	0	-0.12
R9	0.176	0.2
S1	-0.2	0.111
S2	0.333	0.143
S3	0.333	-0.273
S4	0.333	-0.2
S5	1	0.5
S6	0.556	0
S7	0	0
S8	0.077	-0.2
S9	0.6	0.455

> The calculated E-I indices in the affiliated network reflect the findings in the core network. All domains have a positive E-I index except research which has an E-I index of -0.105. Particularly, the education and the connectivity domain have high positive E-I indices (0.905 and 0.600 respectively) showing that groups in these domains are more likely to connect with groups outside their own domain. Almost 40% of the groups have a negative E-I index of which seventeen groups are part of the research domain and eight groups in the student domain.

The E-I index results suggest that research groups are poorly positioned for disseminating their resources and ideas outside their domain. It seems that researchers are more isolated than actors in other domains. The knowledge and practices of researchers appear to be limited to a closed group at the university. In our interviews, many of the interviewed researchers confirm our finding by elaborating that they entertain a "network of scholars" (R1) and a "collaboration with researchers" (R12). The relationships seem to be built on similar behavioural patterns and outcome interests. One interviewee explains when asked how relationships are created "It can sometimes just be at the level of going to the same talks, chatting afterwards, talking about the research, they are my colleagues [...] but these are people I interact with pretty commonly" (R8).

388 The quality and purpose of the relationship is clearly expressed *"I have a paper – so these are true collaborators – not just people I have coffee with" (R10).*

391 Density

Both the core and the affiliated network have low densities. In the affiliated network only 6.4% of all possible ties in the network are reported. The density of the core network is higher (15.6% of all possible ties occurred), but still low enough to suggest that relatively few sustainability-oriented interactions take place. One of the interviewees reflected, "I think that anyone of those institutes [on sustainability] or any of those units, anyone of those projects or programs could probably punch above its weight a lot more if there were more connective tissue among them" (R8). Occasionally, interviewees talked about coordination or networking meetings, but these meetings were never regular or aiming to reach out to additional groups. Most relationships that people reported were one-to-one relationships in which they work with one other group to exchange information, develop policies, or realize a project.

Umbrella organizations like R11 understand that they had a good position to build their own network ("that really provides me with a great base for networking" R11), but they worked with individuals ("we really connect with individuals" R11) rather than trying to build connections across the network and thus making themselves less central. Many of the umbrella organizations have annual meetings that bring together groups within their domain, but these annual meetings are mainly to share information, rather than to work together. We find the same pattern in S8 that describes itself "as a liaison" (S8) sharing and gathering information highlighting that "the biggest thing is the ability to bring different groups together" (S8). The most obvious umbrella organization, MOOS, mentions its objective "to solidify this network" (MOOS). Nevertheless, they work a lot with individual groups and do not appear to create spaces where groups can meet and initiate collaboration.

51 4**1**4

 Our interviewees described mainly relationships with a utilitarian character used for information
sharing and usage of specific resources (e.g., facilities, knowledge, funding).

3		International Journal of Sustainability in Higher Education	Ρ
10			
2			
3 4	417		
5 6	418	"They [other group] use our garden." (S3)	
7 8	419	<i>"We're just three different clients under one contract."</i> (O10)	
9	420	"They use them [fellowship group] for seed money." (R2)	
10 11	421	"They [MOOS] have resources that we really appreciate." (08)	
12 13	422		
14 15	423	It is remarkable that only groups with low betweenness values talked about relationships to other	
16 17	424	groups and people that have an explicit value or learning aspect:	
18	425		
19 20	426	"[] and really explicitly trying to learn from each other" (S1)	
21 22	427	"It's really meant to be creating a robust support" (A6)	
23 24	428	"[] to think about how we can support each other []" (C1).	
25	429		
26 27	430	This sense of trust and community might be missing in the more utilitarian relationships. This in	
28 29	431	turn might hinder the engagement with values and norms and 'deeper' change. The	
30 31	432	predominately utilitarian relationships might impede the stability of the existing sustainability	
32 33	433	network and inhibit the growth of the network as certain actors will look for relationships that	
34 35	434	are built on commonality rather than opportunity.	
36	435		
37 38	436	The relatively few interactions of groups to develop together sustainability ideas and practices	
39 40	437	suggest room for growth, however, the low densities also suggests that each group is connecting	
41 42	438	with diverse audiences (inside and outside the university) to convey complex ideas by spanning	
43	439	multiple communities of practice (Reagans and McEvily 2003).	
44 45	440		
46 47	441		
48 49	442	DISCUSSION	
50	443	Our results show that McGill's sustainability network has the characteristics of a centralized	
51 52	444	system with a low density, meaning that many sustainability groups work on their own, and most	
53 54	445	relationships with others have a utilitarian character (e.g., when in need of resources or	
55 56	446	information). Through the interviews, we learned that each domain has their own objectives,	
57 58			
59		17	

Page 27 of 36

447 motivations, and reasonings. Overall, sustainability activities are mainly related to environmental
448 sustainability as opposed to social sustainability. Finally, and importantly many networking
449 events have the purpose of information sharing rather than creating common understandings
450 and objectives, limiting the university's ability to undertake deeper change that engages values
451 and culture.

13 452

While the literature on sustainability transformation indicates that deeper engagement with culture and norms is required for transformation, most sustainability activities described in the interviews aim for sustainability fixes (e.g., energy saving) rather than engaging with values and norms. An array of groups works on different aspects of sustainability; however the organizational culture seems to encourage more 'shallow' activities than fundamental changes. For example, most urban gardens appear to be motivated by food production without engaging with questions around food insecurity. This corresponds with research on sustainability activities, showing that many sustainability activities and initiatives are limited in their contribution to a sustainability transformation as they aim for tangible fixes which do not generally change the root causes of the problem (Abson et al. 2017). This is not to say that these activities might not initiate a deeper change in engaged individuals, but their primary objective is more mechanistic (Fischer and Riechers 2019). In this sense, McGill University has prepared the system for a sustainability transformation.

38 466

A few initiatives have tried to change institutional structures and objectives but have thus far met limited success. To overcome this situation, organizational learning could be encouraged. This includes creating opportunities to reflect on norms, values, and one's own activities (Siebenhüner and Arnold 2007). Such learning could be promoted with events that encourage reflection on one's own norms and values and how they align with the objectives of the university. External or internal crises or changes could create a window of opportunity allowing the university to change fundamental structures, rules, and norms (Herrfahrdt-Pähle et al. 2020). During the COVID-19 pandemic, the university was predominately in an online teaching and telework mode. However, no major policies or strategies have been published that would allow us to suspect a sustainability

transformation to be initiated, or a fundamental reconsideration of values and objectives of the organization.

Another part of the organizational culture, the weak intensity of collaboration between different groups working on sustainability, is reflected in the low density of the network and the betweenness centrality of MOOS being much higher than the centrality of any other group. This means that the resilience of the network is limited as it relies heavily on MOOS. More links between groups who are not currently connected would increase the density and balance the betweenness centrality. Higher density values indicate more trust and cohesion in the network since more direct interaction and communication is possible. To this end, O7 stands out as it is actively striving to maintain relationships with other sustainability groups inside and outside the university. While many groups look to MOOS for guidance, O7 demonstrates that it is possible for individual groups to increase the density of the network, connect across domains, and create their own role in the network. In this way, a common understanding and shared responsibility for the sustainability of the organization can be built.

 The limited number of connections between the sustainability groups is also reflected in the fragmentation of the university into domains with own reasonings and objectives, as is the case at most large organizations. Here, organizational culture and structure work together to enforce the complexity of the university. The internal reasonings of each domain are a challenge to increasing the number of connections in the network. That is, each domain has its own objectives and ways of operating that make collaboration across domains challenging. For example, researchers expressed a desire to produce scientific publications as an outcome. The interest in publications makes it harder for groups in other domains to be relevant for the research domain. It is typical for large organizations to experience fragmentation since objectives are not aligned between individuals, subgroups, and the organization (Greenwood et al. 2011). These multiple reasonings foster the identity of individual domains, but also hamper organizational change (Kraatz and Block 2008). In order to implement fundamental change, the current fragmentation would need to be overcome by aligning objectives (Hoffman et al. 2011).

505
506 Organizational culture seems to hamper engagement with fundamental change at McGill
507 University, where we find many sustainability activities and public commitment to sustainability,
508 but little engagement with values and norms that could contribute to more fundamental
509 changes. So how to move the university as a large organization into a space where fundamental
510 change can happen? Activities both in the sustainability network of the university but also in the
511 leadership of the university could help to initiate a sustainability transformation at the university.

The groups in McGill's sustainability network might benefit from interactions to foster engagement with values and norms, thereby progressing beyond information and resource sharing. Such interactions could also bring groups with low betweenness from the periphery into the core of the network by pursuing relationships that aim at support, learning, and value-sharing. As such the interactions could strengthen the sustainability of the network, bringing in additional groups, and engaging with aspects crucial for a fundamental change. Engaging with values might also encourage more interactions with issues of social sustainability in the network. Lastly, such interactions could identify moral entrepreneurs who are vocal about the values and norms which contribute to a sustainability transformation (Olsson et al. 2017).

⁴ 522

If the university wants to join the 'third academic revolution', it must embrace the values of this revolution (i.e., redefine what a university is) and immunize itself from external identity pressures by bringing different reasonings and objectives together (Kraatz and Block 2008). A first step would be to include sustainability in its mission statement which currently focuses on research. Another possible activity could be to facilitate and encourage connections with the surrounding communities in the city. We find only a few connections between the sustainability groups and local groups in the city. McGill University is often seen as an entity destined for higher, bigger, and better (hampton 2020). Little contact to the world outside the university is not a unique phenomenon to McGill University. While universities are seen as potential role models for society, outreach is often neglected in the sustainability activities of a university (Shawe et al. 2019). Overall, Canadian universities have shown a lack of engagement with the local, but also

wider community concerning sustainability (Bieler and McKenzie 2017). Clear incentive systems
such as recognition in grades, performance reviews, and tenure packages are ways for university
leadership to show that the connection of the university to its surrounding are important and
encouraged.

We see two major avenues for future research coming out of our work. One concerns the use of social network analysis to understand how sustainability transformation takes place especially in large organizations. Future research can contribute to an understanding of which structures in large organizations are beneficial for promoting a sustainability transformation, rather than fostering shallow activities that fail to question fundamental norms and values. Another avenue for future research is an exploration of sustainability activities at universities and other educational organizations. So far, there is no ready-to-apply scheme to classify sustainability activities as shallow or deep sustainable leverage points (and more refined). We have used our qualitative understanding of these concepts for our analysis. However, such a scheme could help to standardize and create more comparable findings.

³² 550 **CONCLUSION**

Based on the existing literature on sustainability in higher education and the broader literature on organizational change for sustainability, we can assume that McGill University is not alone in making a commitment to sustainability and taking on many sustainability-oriented activities, while simultaneously missing the opportunity to make more fundamental changes in the form of a sustainability transformation. Our social network analysis with the interview material afforded an understanding of the organizational structure and culture and their effect on the penetration of sustainability through the university.

47 558

559 Universities can join the third academic revolution by analyzing the alignment of the values and 560 objectives currently held by individuals and groups within the university to the values and 561 objectives needed for a sustainability transformation. In addition, already active sustainability 562 groups should collaborate to not only prepare the ground with well-intended, tangible

2		
3 4	563	sustainability activities but also to create possibilities to engage with values and align them with
5	564	sustainability objectives. These interactions will require time and resources but are necessary for
6 7	565	a sustainability transformation. Rather than a focus on activities such as research excellence, a
8 9	566	fundamental change of norms and values is needed to pave the way for prioritizing the activities
10 11	567	that are crucial to our quest for a just and sustainable future. In this way, universities can be the
12 13	568	crucial societal actors for the sustainability transformation they aim to be.
14	569	
15 16	570	
17 18	571	ACKNOWLEDGEMENTS
18 19	572	We thank our interviewees for their time and willingness to share their experience, perspectives,
20 21	573	and thoughts with us. This research was conducted with the approval of the Research Ethics
21	574	Board of McGill University - REB File # 331-0119 and was financed by the Principal of McGill
23	575	University.
24 25 26 27 28 29 30 31 32 33 34 35 36 37	576	
	577	
	578	REFERENCES
	579	Abson, D. J., J. Fischer, J. Leventon, J. Newig, T. Schomerus, U. Vilsmaier, H. von Wehrden, P.
	580	Abernethy, C. D. Ives, N. W. Jager, and D. J. Lang. 2017. Leverage points for sustainability
	581	transformation. Ambio 46(1):30–39.
	582	Alshuwaikhat, H. M., and I. Abubakar. 2008. An integrated approach to achieving campus
	583	sustainability: assessment of the current campus environmental management practices.
38 39	584	Journal of Cleaner Production 16(16):1777–1785.
40	585	Benn, S., M. Edwards, and T. Williams. 2018. Organizational Change for Corporate Sustainability.
41 42	586	4th edition. Routledge, Abingdon, Oxon; New York, NY.
43 44	587	Bieler, A., and M. McKenzie. 2017. Strategic planning for sustainability in Canadian higher
45 46 47 48	588	education. <i>Sustainability</i> 9(2):1–22.
	589	Borgatti, S. P., M. G. Everett, and L. C. Freeman. 2002. UCINET for Windows: Software for Social
49	590	Network Analysis.
50 51	591	Borgatti, S. P., A. Mehra, D. J. Brass, and G. Labianca. 2009. Network Analysis in the Social
52 53	592	Sciences. <i>Science</i> 323(5916):892–895.
54 55		
56 57		
58		22
59 60		

		Fage 52 01 50
593	Burt. 2001. Structural holes versus network closure as social capital. Page in N. Lin, K. Cook, and	
594	R. S. Burt, editors. Social Captial: Theory and research. Walter de Gruyter, New York.	
595	Carolan, B. 2014. Social Network Analysis and Education: Theory, Methods & Applications. SAGE	
596	Publications, Inc., Thousand Oaks.	
597	Casarejos, F., M. N. Frota, and L. M. Gustavson. 2017. Higher education institutions: a strategy	
598	towards sustainability. International Journal of Sustainability in Higher Education	
599	18(7):995–1017.	
600	Crossley, N., and G. Edwards. 2016. Cases, Mechanisms and the Real: The Theory and	
601	Methodology of Mixed-Method Social Network Analysis. Sociological Research Online	
602	21(2):217–285.	
603	Crow, M. M. 2010. Organizing Teaching and Research to Address the Grand Challenges of	
604	Sustainable Development. <i>Bioscience</i> 60(7):488–489.	
605	Dagiliute, R., and G. Liobikiene. 2015. University contributions to environmental sustainability:	
606	Challenges and opportunities from the Lithuanian case. Journal of Cleaner Production	
607	108:891–899.	
608	Dagiliūtė, R., G. Liobikienė, and A. Minelgaitė. 2018. Sustainability at universities: Students'	
609	perceptions from Green and Non-Green universities. Journal of Cleaner Production	
610	181:473–482.	
611	Daly, A. J., and K. S. Finnigan. 2010. A bridge between worlds: understanding network structure	
612	to understand change strategy. <i>Journal of Educational Change</i> 11(2):111–138.	
613	Engert, S., and R. J. Baumgartner. 2016. Corporate sustainability strategy – bridging the gap	
614	between formulation and implementation. Journal of Cleaner Production 113:822–834.	
615	Engert, S., R. Rauter, and R. J. Baumgartner. 2016. Exploring the integration of corporate	
616	sustainability into strategic management: a literature review. Journal of Cleaner	
617	Production 112:2833–2850.	
618	Etzion, D. 2018. Management for sustainability. <i>Nature Sustainability</i> 1(12):744–749.	
619	Fischer, J., and M. Riechers. 2019. A leverage points perspective on sustainability. People and	
620	Nature 1:115–120.	
	23	
	 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 	 R. S. Burt, editors. Social Captial: Theory and research. Walter de Gruyter, New York. Carolan, B. 2014. Social Network Analysis and Education: Theory, Methods & Applications. SAGE Publications, Inc., Thousand Oaks. Casarejos, F., M. N. Frota, and L. M. Gustavson. 2017. Higher education institutions: a strategy towards sustainability. International Journal of Sustainability in Higher Education 18(7):995–1017. Crossley, N., and G. Edwards. 2016. Cases, Mechanisms and the Real: The Theory and Methodology of Mixed-Method Social Network Analysis. Sociological Research Online 21(2):217–285. Crow, M. M. 2010. Organizing Teaching and Research to Address the Grand Challenges of Sustainable Development. Bioscience 60(7):488–489. Dagillute, R., and G. Liobikiene. 2015. University contributions to environmental sustainability: Challenges and opportunities from the Lithuanian case. Journal of Cleaner Production 108:891–899. Dagillüte, R., G. Liobikiene, and A. Minelgaité. 2018. Sustainability at universities: Students' perceptions from Green and Non-Green universities. Journal of Cleaner Production 181:473–482. Daly, A. J., and K. S. Finnigan. 2010. A bridge between worlds: understanding network structure to understand change strategy. Journal of Educational Change 11(2):111–138. Engert, S., and R. J. Baumgartner. 2016. Corporate sustainability strategy – bridging the gap between formulation and implementation. Journal of Cleaner Production 113:822–834. Engert, S., R. Rauter, and R. J. Baumgartner. 2016. Exploring the integration of corporate sustainability into strategic management: a literature review. Journal of Cleaner Production 112:283–2850. Etzion, D. 2018. Management for sustainability. Nature Sustainability 1(12):744–749. Fischer, J., and M. Riechers. 2019. A leverage points perspecti

1		
2 3 4 5 6 7 8 9	621	Granovetter, M. S. 1973. The Strength of Weak Ties. American Journal of Sociology 78(6):1360–
	622	1380.
	623	Greenwood, R., M. Raynard, F. Kodeih, E. R. Micelotta, and M. Lounsbury. 2011. Institutional
	624	Complexity and Organizational Responses. Academy of Management Annals 5(1):317–
10 11	625	371.
12 13 14 15	626	hampton, rosalind. 2020. Black racialization and resistance at an elite university. University of
	627	Toronto Press, Toronto.
16	628	Herrfahrdt-Pähle, E., M. Schlüter, P. Olsson, C. Folke, S. Gelcich, and C. Pahl-Wostl. 2020.
17 18	629	Sustainability transformations: socio-political shocks as opportunities for governance
19 20	630	transitions. Global Environmental Change 63:102097.
21 22	631	Hoffman, B. J., B. H. Bynum, R. F. Piccolo, and A. W. Sutton. 2011. Person-Organization Value
23 24	632	Congruence: How Transformational Leaders Influence Work Group Effectiveness.
25 26	633	Academy of Management Journal 54(4):779–796.
27	634	Hoover, E., and M. K. Harder. 2015. What lies beneath the surface? The hidden complexities of
28 29	635	organizational change for sustainability in higher education. Journal of Cleaner Production
30 31	636	106:175–188.
32 33	637	Kezar, A. 2014. Higher Education Change and Social Networks: A Review of Research. The Journal
34 35	638	of Higher Education 85(1):91–125.
36 37	639	Kolleck, N. 2019. The emergence of a global innovation in education: diffusing Education for
38	640	Sustainable Development through social networks. Environmental Education Research
39 40	641	25(11):1635–1653.
41 42	642	Kraatz, M. S., and E. S. Block. 2008. Organizational Implications of Institutional Pluralism. Pages
43 44	643	243–275 The SAGE Handbook of Organizational Institutionalism. SAGE Publications Ltd,
45 46	644	London.
47 48	645	Krackhardt, D., and R. N. Stern. 1988. Informal Networks and Organizational Crises: An
49 50	646	Experimental Simulation. Social Psychology Quarterly 51(2):123.
51	647	Lam, D. P. M., B. Martín-López, A. I. Horcea-Milcu, and D. J. Lang. 2020. A leverage points
52 53	648	perspective on social networks to understand sustainability transformations: evidence
54 55	649	from Southern Transylvania. Sustainability Science.
56 57		
58 59		24
60		

3 4	650	Lin, N. 2001. Social Capital: A Theory of Social Structure and Action. First edition. Cambridge
5 6	651	University Press.
7	652	Lozano, R., K. Ceulemans, M. Alonso-Almeida, D. Huisingh, F. J. Lozano, T. Waas, W. Lambrechts,
8 9	653	R. Lukman, and J. Hugé. 2015. A review of commitment and implementation of
10 11	654	sustainable development in higher education: Results from a worldwide survey. Journal
12 13	655	of Cleaner Production 108:1–18.
14 15	656	McGill Office of Sustainability (MOOS). 2017. Vision 2020 - Climate & Sustainability Action Plan
16	657	2017 - 2020.
17 18	658	Meadows, D. H. 1999. Leverage points: Places to intervene in a system. The Sustainability
19 20	659	Institute, Hartland.
21 22	660	Mohrman, S. A., R. V. Tenkasi, and A. M. Mohrman. 2003. The Role of Networks in Fundamental
23 24	661	Organizational Change: A Grounded Analysis. The Journal of Applied Behavioral Science
25 26	662	39(3):301–323.
27	663	Moolenaar, N. M., and P. J. C. Sleegers. 2010. Social networks, trust, and innovation: The role of
28 29	664	relationships in supporting an innovative climate in Dutch schools. Pages 97–114 in A. J.
30 31	665	Daly, editor. Social network theory and educational change. Harvard Univ. Press,
32 33	666	Cambridge, MA.
34 35	667	Moore, ML., D. Riddell, and D. Vocisano. 2015. Scaling Out, Scaling Up, Scaling Deep: Strategies
36 37	668	of Non-profits in Advancing Systemic Social Innovation. Journal of Corporate Citizenship
38 39	669	2015(58):67–84.
40	670	Olsson, P., V. Galaz, and W. J. Boonstra. 2014. Sustainability transformations: A resilience
41 42	671	perspective. Ecology and Society 19(4).
43 44	672	Olsson, P., M. L. Moore, F. R. Westley, and D. D. P. McCarthy. 2017. The concept of the
45 46	673	Anthropocene as a game-changer: A new context for social innovation and
47 48	674	transformations to sustainability. <i>Ecology and Society</i> 22(2).
49	675	O'Reilly, C. A., J. Chatman, and D. F. Caldwell. 1991. People and Organiyational Culture: A Profile
50 51	676	Comparison Approach to Assessing Person-Organization Fit. Academy of Management
52 53	677	Journal 34(3):487–516.
54 55		
56 57		
58 59		25
60		

19		
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	678	Peer, V., and G. Stoeglehner. 2013. Universities as change agents for sustainability-framing the
	679	role of knowledge transfer and generation in regional development processes. <i>Journal of</i>
	680	Cleaner Production 44:85–95.
	681	Putnam, R. D. 2002. Democracies in Flux. Oxford University Press, Oxford; New York.
	682	Reagans, R., and B. McEvily. 2003. Network Structure and Knowledge Transfer: The Effects of
	683	Cohesion and Range. Administrative Science Quarterly 48(2):240.
	684	Shawe, R., W. Horan, R. Moles, and B. O'Regan. 2019. Mapping of sustainability policies and
	685	initiatives in higher education institutes. Environmental Science & Policy 99:80–88.
	686	Siebenhüner, B., and M. Arnold. 2007. Organizational learning to manage sustainable
	687	development. Business Strategy and the Environment 16(5):339–353.
	688	Stephens, J. C., M. E. Hernandez, M. Román, A. C. Graham, and R. W. Scholz. 2008. Higher
	689	education as a change agent for sustainability in different cultures and contexts.
25 26	690	Tenkasi, R. V., and M. C. Chesmore. 2003. Social Networks and Planned Organizational Change:
27	691	The Impact of Strong Network Ties on Effective Change Implementation and Use. The
28 29	692	Journal of Applied Behavioral Science 39(3):281–300.
30 31	693	Walker, B., C. S. Holling, S. R. Carpenter, and A. Kinzig. 2004. Resilience, Adaptability and
32 33	694	Transformability in Social-ecological Systems. Ecology & Society 9(12):art5.
34 35	695	Westley, F., P. Olsson, C. Folke, T. Homer-Dixon, H. Vredenburg, D. Loorbach, J. Thompson, M.
36 37	696	Nilsson, E. Lambin, J. Sendzimir, B. Banerjee, V. Galaz, and S. Van Der Leeuw. 2011. Tipping
38	697	toward sustainability: Emerging pathways of transformation. Ambio 40(7):762–780.
39 40	698	Wright, T., and N. Horst. 2013. Exploring the ambiguity: What faculty leaders really think of
41 42	699	sustainability in higher education. International Journal of Sustainability in Higher
43 44	700	Education 14(2):209–227.
45 46	701	Wright, T. S. A. 2002. Definitions and frameworks for environmental sustainability in higher
47 48 49	702	education. International Journal of Sustainability in Higher Education 3(3):203–220.
	703	ABOUT THE AUTHORS
50 51	704	Klara J. Winkler is a sustainability scientist at the Department of Natural Resource Sciences at
52 53	705	McGill University. Her interest is in sustainability transformation, governance, and human-nature
54 55 56	706	relationships.
57 58 59		26
60		

<text><text> Hannah R. Chestnutt joined the Department of Integrated Studies in Education at McGill University as faculty lecturer in 2019. Her research interests include the study of collaboration in educational contexts using social network analysis. Elena M. Bennett completed her PhD at the University of Wisconsin in 2002 in Limnology and Marine Sciences. She has been a professor at McGill University in the Department of Natural Resource Sciences and Bieler School of Environment since 2005, where her work focuses on agricultural systems and ecosystem services.