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Abstract 

A three-dimensional code has been developed for the simulation of tone noise generated 

by turbofan engine inlets using computational aeroacoustics. The governing equations are 

the linearized Euler equations, which are further simplified to a set of equations in terms of 

acoustic potential, using the irrotational flow assumption, and subsequently solved in the 

frequency domain. 

Due to the special nature of acoustic wave propagation, the spatial discretization is 

performed using a spectral element method, where a tensor product of the n th-degree poly­

nomials based on Chebyshev orthogonal functions is used to approximate variations within 

hexahedral elements. Non-reflecting boundary conditions are imposed at the far-field us­

ing a damping layer concept. This is done by augmenting the continuity equation with an 

additional term without modifying the governing equations as in PML methods. 

Solution of the linear system of equations for the acoustic problem is based on the 

Schur complement method, which is a nonoverlapping domain decomposition technique. 

The Schur matrix is first solved using a matrix-free iterative method, whose convergence 

is accelerated with a novellocal preconditioner. The solution in the entire domain is then 

obtained by finding solutions in smaller subdomains. 

The 3D code also contains a mean flow solver based on the full potential equation in 

order to take into account the effects of flow variations around the nacelle on the scattering 

of the radiated sound field. 

AIl aspects of numerical simulations, including building and assembling the coefficient 

matrices, implementation of the Schur complement method, and solution of the system of 

equations for both the acoustic and mean flow problems are performed on multiprocessors 

in parallel using the resources of the CLUMEQ Supercomputer Center. A large number 

of test cases are presented, ranging in size from 100000-2000000 unknowns for which, 

depending on the size of the problem, between 8-48 CPU's are used. 

The developed code is demonstrated to be robust and efficient in simulating acoustic 

propagation for a large number of problems, with an excellent paralle1 performance. 
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Résumé 

Un code 3D pour la simulation du bruit généré par les entrées d'un réacteur à dou­

ble flux a été développé. La méthodologie est basée sur un calcul aéro-acoustique où les 

équations d'Euler linéarisées sont résolues sur le domaine entier. Le modèle d'équations 

est simplifié à une équation à une variable, soit le potentiel acoustique, utilisant l'hypothèse 

d'un écoulement irrotationnel, squi par la suite est résolu dans le domaine fréquentiel. 

Dû à la nature particulière de la propagation des ondes acoustiques, la discrétisation 

spatiale est réalisée par la méthode des éléments spectraux, où un produit tensoriel de 

polynômes de degré 'n' basés sur les fonction orthogonales de Chebyshev est utilisé pour 

l'approximation des variations à l'intérieur d'éléments héxahedraux. Pour le champ loin­

tain, des conditions non réfléchissantes basées sur le concept d'une couche absorbante sont 

imposées. Ceci est réalisé en ajoutant un terme à l'équation de continuité, sans pour autant 

modifier le model physique. 

La solution du système linéaire du problème acoustique est basée sur la méthode du 

complément de Schur, qui est une technique de décomposition de domaine sans recouvre­

ment. La matrice de Schur est résolue en premier en utilisant une méthode itérative sans 

stokage de matrice et dont la convergence est accélérée par un nouveau pré-conditionneur 

local. La solution globale est ensuite obtenue en récoltant les différentes solutions obtenues 

sur les différents sous-domaines. 

Le code 3D résoud également l'écoulement moyen par voie de l'équation du potentiel 

afin de tenir compte des effets de variation de l'écoulement autour de la nacelle sur la 

diffusion acoustique des champs de radiation sonore. 

Tous les aspects de la résolution numérique comprenant la construction et l'assemblage 

des coefficients de la matrice, l'implémentation de la méthode du complément de Schur, 

ainsi que la résolution du système d'équations pour l'acoustique et l'écoulement moyen 

sont réalisés sur multi-processeurs et en parallèle. Un grand nombre de cas testes sont 

présentés dont les tailles varient entre 100 000 à 2 000 000 d'inconnues et pour lesquels 

entre 8 et 48 CPUs sont utilisés sur le superordinateur du CLUMEQ. 
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L'approche développée a dèmontré une grande robustesse et efficacité pour la simula­

tion de la propagation acoustique pour un nombre important et varié de problèmes, avec 

une excellente performance de la parallélisation. 
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Chapter 1 

Introduction 

1.1 Historical Background 

Since the celebrated treatise of Lord Rayleigh more than a century ago [80], the subject of 

acoustics has expanded from its original context as a phenomenon c10sely related to fluid 

mechanics, to coyer a wide range of topics from speech communication and phonetics to 

ultrasonic, signal processing, and so on. 

The advancement of aeronautical and aerospace sciences during the early decades of 

the twentieth century, however, renewed interest in the subject of acoustics as a branch of 

fluid mechanics, where problems such as exhaust jet noise of newly developed engines had 

to be addressed. 

ln the early 1950's, a new theory emerged that revolutionized the field and brought new 

hope in finding solutions to very complicated problems. Introduced by Sir James Lighthill 

[60], the essence of the "Acoustic Analogy" theory is: "if the real fluid, in which highly 

nonlinear motions may occur, is replaced by a fictitious acoustic medium, in which only 

small amplitude linear motions occur, and if the medium is acted upon by an extemal stress 

system Tij(x, t), then exactly the same density fluctuations will be produced." 

That is, instead of solving the fully nonlinear equations, one can solve the linearized 

1 



CHAPTER 1. INTRODUCTION 2 

but inhomogeneous wave equation 

( 
82 2 2) 827ij 
8t2 + Co V' P = 8Xi8Xj' 

(1.1) 

where p is the density and Tij is the Lighthill stress tensor. A direct byproduct of Lighthill 's 

theory is the famous 'U8-law' for acoustic power of exhaust jets, derived by a relatively 

simple order of magnitude analysis based on far-field integral solution of equation (1.1), 

which found widespread use in jet noise prediction. 

Although Lighthill's inhomogeneous wave equation is only valid for sound fields gen­

erated by stationary turbulent eddies, the concept behind this theory can be used to derive 

equations for other situations of interest. This fact is what makes Lighthill 's acoustic anal­

ogy theory so significant. 

A powerful example is the case of noise generated by moving rigid bodies, such as 

propellers and helicopter rotors. Unsteadiness created by the motion of rigid bodies con­

tributes to the sound field. This contribution can be represented by adding extra terms to 

the right-hand side of equation (1.1) in the form of monopoles and dipoles. A general 

theory consisting of the case of moving solid bodies in arbitrary motion is presented by 

Ffowcs Williams and Hawkings, commonly known as the FW-H equation, which is the 

fundamental equation used in acoustic analysis of propellers and rotors [26]. Several inte­

gral solutions of the FW-H equation in the time domain, developed by Farassat [23], are 

currently the predominant formulations used in propeller/rotor noise analysis. 

Aeroacoustics, a name initially coined by Lighthill, which studies the noise generated 

by aerodynamic forces, encompasses several fields. In addition to jet and propeller/rotor 

noise, study of sound field generated by rotors/fans of turbofanlturbojet engines has been 

another significant area of research since the 1960's. In the early years of jet-powered 

flight, turbojet engines were the dominant form of power plant used for aircraft. The main 

source of noise for this type of engine was the turbulence associated with the exhaust jet of 

hot gases, which creates significantly higher noise levels compared to forward-propagating 

rotor noise. 

The advent of turbofan engines, however, created a shift in the way in which engine 
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noise was studied. This was mainly due to the partial unmasking of rotor/fan noise as a 

direct consequence of reduced jet noise caused by mixing of exhaust jet with the cooler by­

pass stream. As a result, studies of fan noise gained momentum, with research focusing on 

understanding the generating mechanisms and on methods for its prediction and analysis. 

1.2 Fan Noise Problem 

Research shows that as the bypass ratio of a turbofan engine increases beyond 10, fan noise 

dominates the engine noise signature, exceeding that generated by the exhaust jet [64]. This 

is more pronounced during take-off and landing, as depicted in Figure 1.1 [73]. 
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Figure 1.1: Flyover noise levels for a typical turbofan engine on a component basis. 

At subsonic speeds, fan noise is characterized by tone noise (blade-passage frequency 

(BPF) and its harmonies), superimposed over broadband noise (whieh is mainly due to 

turbulence in the atmosphere and distortions in the flow as it enters the eompressor inlet). 

As the rotor tip speed approaches supersonic values, shocks will be formed on the 

blades and the fan noise will be dominated by multiple pure tone (MPT) noise, also known 

as buzz-saw noise [39, 70]. As the name implies, MPT noise is characterized by spikes 
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across an frequencies within its spectrum. It starts at speeds where an inlet shock forms 

upstream of the rotor, and ends when the shock completely moves inside the passage be­

tween the blades, where pressure disturbances can no longer propagate upstream. 

For tonal noise, however, the generating mechanism is very different. As the blade 

rotates, its periodic velocity field induces pressure fluctuations on -stator blades, and vice 

versa. In addition, the impingement of wakes emanating from trailing edges of rotor blades 

onto stator blades creates a similar effect. So, the sound generated is caused by the rotor­

stator interaction propagating mostly upstream of the rotor and eventually into the far-field. 

The main goal of fan noise prediction is therefore to be able to accurately predict the 

sound field as it propagates away from the engine, taking into account inlet geometry vari­

ations and changes in the flow field. The altemate goal is to be able to predict changes in 

the sound field as a function of geometry and flow field variations. Materialization of these 

goals, even partly, would translate into reduced noise emissions. 

Given the noise generation mechanism, one can reduce the noise by adjusting rotor­

stator blade count to achieve cut-off of tone noise due to impingement or rotor wakes, 

increase rotor-stator spacing to weaken the wakes, improve inlet design to minimize flow 

distortion which contributes to broadband noise, shield downward propagation of sound 

by using scarf inlets, and use blowing at the trailing edge of rotor blades to weaken the 

wakes [21]. Aside from suppressing fan noise by source control, one can also use acoustic 

liners in the duct, or employ active noise control systems by installing actuator rings in the 

inletlexhaust duct or even on the rotor blades itself [95]. Several review articles summarize 

the status of fan noise prediction and the challenges ahead [21, 22, 44]. 

The research on noise simulation is mostly motivated by the desire to reduce noise 

pollution around the airports and to improve passenger comfort during flight. This is further 

driven by stricter noise standards put in place, such as ICAO Chapter 4, which came into 

effect on January 1, 2006. AIso, there is the element of business competitiveness that 

motivates engine manufacturers to build quieter engines. 

Based on a program initiated by NASA in 1992 in partnership with the Federal Aviation 
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Administration (FAA) and D.S. aerospace industries, a goal was set to develop technology 

to reduce aircraft noise by lOdB by 2007 and by 20dB by 2022, relative to 1992 levels. 

This means that fan noise reduction promises to remain an important component of overall 

engine noise concerns for the years to come. 

1.3 Simulation of Fan Noise: Methods and Approaches 

The problem of fan noise is comprised of three main components: 1) sound generation at 

the rotor/fan, 2) propagation of sound in the inlet duct, and 3) its radiation into the far-field. 

Problem of sound generation is usually considered independent of the latter two factors 

and is studied separately. Based on the theory of Tyler and Sofrin [l05], pressure field 

generated due to rotor-stator interaction is a superposition of an infinite number of m-lobe 

pressure patterns, where m = nB ± kV, each rotating at the speed nBn/m. Here, n are 

the harmonies of the blade-passage frequency, B and V are the number of rotor and stator 

blades, respectively, k is a positive integer, and n is the rotor's angular speed. Since its 

inception, this theory has been widely used to characterize noise generation at the source. 

Sound propagation in the duct and its radiation into the far-field, however, pose a bigger 

challenge. In the compressor inlet area, the cross-sectional area is generally not constant 

but varies along the duct. As a result, the assumption of a perfectly cylindrical shape 

(axisymmetrical flow) is a simplification that could be unrealistic. A bigger challenge is 

due to the fact that perturbations leaving the duct are radiated into an infinite domain. 

Obviously, for computational purposes a truncated domain has to be used, which brings 

up issues such as nonreflecting boundary conditions. Moreover, unlike many purely fluid 

mechanics problems, acoustic problems require an accurate solution even in the regions far 

from the source. This means a coarse grid, which will reduce computationalload, can not 

be used in the far-field region. 

These computational complexities have led researchers to adopt different approaches in 

analyzing fan noise problem. In general, the se methods can be divided into two categories: 
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Full Flow-field CAA Analysis 

Here, the computational domain covers the fan face, inlet duct, and a truncated region in 

front of the duct's exit, representing the far-field. Noise generation at the rotor is modeled 

using either the Tyler & Sofrin theory [l05], or by directly calculating pressure variations 

using first principles, i.e., by setting up the computational domain to include both rotor 

and stator, and then solving time-accurate Navier-Stokes equations with proper turbulence 

models. The work of Rumsey et al. [85] is among the first in this field, followed by 

Biedron [7], who used the same approach as in [85], but studied higher harmonies of BPF. 

Tsuchiya et al. [104], using unsteady CFD, performed similar analysis to investigate the 

characteristics of fan tone noise source. 

In any CFD analysis, the very fact that the goveming equations are replaced by their 

discrete counterparts naturally introduces some errors into the calculations. The issue of 

accuracy becomes even more important for aeroacoustic problems since the amplitude and 

energy levels of acoustic variables are .generally several orders of magnitude smaller than 

those of the flow variables [66]. This large disparity imposes stringent requirements on 

the accuracy of the discretization scheme. This is further complicated by the fact that fan 

noise problems are usually associated with very high frequencies, Le., more grid points are 

needed for accurate resolution of the waves. Therefore, the use of high-order schemes for 

aeroacoustic problems becomes an absolute necessity. 

In the finite difference context, LeIe [55] presented a series of schemes in which, instead 

of simply expanding the stencil, coefficients of the difference equations were chosen such 

that the scheme would represent more accurately wave components. over a wide range of 

wave numbers. The result was a set of schemes whose dis crete dispersion relation very 

accurately followed the dispersion relation of the acoustic waves. The dispersion relation, 

of the form w = W (k) , contains aU the propagation and dispersion characteristics of the 

associated wave phenomenon. 

Comparable to the compact schemes of LeIe in terms of computational cost and accu­

racy, the Dispersion-Relation-Preserving (DRP) scheme of Tam and Webb [99] is another 
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widely used high-order method. This method, however, has the added advantage of pre­

serving dispersion-relation and therefore guaranteeing that waves computed by this method 

will aIl propagate with the same speed. The work of Lan et al. [54] using linearized Euler 

equations in frequency domain, and Ozyorük and Long [75, 76] using the Euler equations 

in the time-domain are recent examples of the use of DRP schemes in the simulation of 

turbofan radiated noise. As pointed out in [99], DPR schemes can provide accurate results 

when at least 4 to 5 mesh points are used to coyer a wavelength. This is aIready a very 

significant improvement over classical second-order finite difference methods, where the 

required number of mesh points per wavelength for adequate accuracy is around 18 - 24. 

In the community of finite element users, research on fan noise is mostly due to Ev­

ersman and coworkers [19, 20, 62, 84], who tackled 2D and axisymmetrical geometries. 

Their approach was based on solving the convected wave equation in terms of velocity po­

tential, using quadratic or cubic finite elements in the near-field and wave envelope/infinite 

elements in the far-field. Wave envelopes are elements who se shape functions mimic the 

decaying behavior of outgoing waves of simple sources [2, 38]. Although Eversman's 

method gives overaIl good results for the sound pressure amplitudes in the far-field, it falls 

short of providing accurate phase information in the far-field unless a very fine grid is used 

As it has been noted so far, any numerical scheme used for simulation of aeroacoustic 

problems should be nondispersive. An added advantage would be a scheme that would re­

quire a smaller number of grid points per wavelength for accurate resolution of the waves. 

These two very important properties are embedded in the spectral methods [36]. Tradi­

tionally, the use of spectral methods was limited to fiows in simple domains with simple 

boundary conditions. This, however, changed with the introduction of spectral multido­

main method [50] and spectral element method [77], allowing problems in more complex 

geometries to be tackled. 

In spectral multidomain methods, as the name implies, the computational domain is 

divided into smaller subdomains where the fiow variables are discretized using high-order 

orthogonal polynomials. Appropriate patching techniques are then used to ensure conti-
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nuit y of flow variables and their derivatives across the interface boundaries of subdomains 

[51], with ideas similar to those used in the finite volume methods. Stanescu et al. [91] 

solved unsteady nonlinear Euler equations using this method to simulate noise radiation 

from ducted fans, inc1uding both axisymmetric and fully three-dimensional geomtries. 

The spectral element method (SEM) [77], however, is conceptually very similar to the 

finite e1ement method. The difference is that instead of c1assical Lagrangian-based polyno­

mials, spectral approximations based on orthogonal functions are used within each element. 

Recently, Stanescu et al. [93] used this method for the solution of fan noise problem for 

axisymmetric nacelles. Their approach was based on the weak formulation of the wave 

equation written in terms of velocity potential and solved in the frequency domain. More 

recently, Xu et al. [108] applied a similar technique to obtain far-field radiation patterns of 

a generic aft-mounted nacelle-body configuration. 

Hybrid Methods 

In a typical fan noise problem, the flow at the near-field, where the sound is generated, is 

highly nonlinear. These nonlinearities, however, diminish as the sound propagates along 

the duct and away from the source and radiates into the far-field. So, it seems natural 

to divide the computational domain into near-field, where nonlinear equations such as the 

Navier-Stokes ought to be used, and far-field, where linear acoustic theory could be applied. 

This segregation of computational domain and the use of two or more different forms of 

analysis in each subdomain is the essence of hybrid methods. 

While the choice of the method for the near-field (encompassing the acoustic source 

and duct interior) is usually limited to the full set of Navier-Stokes equations, a variety of 

methods could be used for the far-field analysis. Acoustic analogy is one such approach, 

where the goveming Navier-Stokes equations are rearranged in the form of an inhomoge­

neous wave equation, with the far-field sound pressure given in terms of surface and volume 

integrals using Green's function formulation [8, 40]. 

Assuming that the flow at the nonlinear near-field is well resolved, a linear Kirchhoff 
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formulation evaluated on an arbitrary control surface surrounding the nonlinear field and 

sound sources can also be used to calculate far-field radiation. Since, only surface integrals 

and first derivatives are inc1uded in the Kirchhoff formulation, it off ers an advantage over 

the acoustic analogy approach, which may require evaluation of volume integrals. 

An early application of the use of integral methods is due to Horowitz et al. [42]. To 

match the solutions between the near- and far-fields, they used an iterative technique so that 

a continuous description of the acoustic field could be obtained. More recent applications 

inc1ude the work of Lidoine et al. [59], Ozyôrük [74], and the hybrid method of Zhang et 

al. [110]. 

The c1assical Kirchhoff formulation is limited to a stationary surface. Farassat and 

Myers [24] derived and extended the formulation for a moving, deformable surface. This 

has found applications in propeller/rotor noise prediction [30]. In hybrid methods, the far­

field can also be modeled using the linearized Euler equations. However, to ensure accurate 

solutions in the far-field, issues such as mesh spacing and dissipation and dispersion errors 

must be properly addressed [56,101]. 

1.4 Proposed Approach 

The work presented in this thesis is based on a full flow-field CAA analysis. It is in fact an 

extension of the work of Stanescu et al. [93] to threedimensions with several modifications 

[98]. The main objective of this work is to present an efficient yet co st-effective approach 

for simulation of radiated fan noise. 

The governing equations are based on the linearized Euler equations, with the assump­

tion of a mean flow in the x-direction, written in terms of the velocity potential. The as­

sumption of isentropic flow, which allows the use of a velocity potential is valid if there are 

no significant nonlinearities near the duct inlet, such as those due to flow distortions. For 

the purpose of determining the forward-radiating acoustic field during take-off and landing, 

this assumption is reasonable. AIso, using a velocity potential has the added advantage that 
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it reduces the number of dependent variables to only one. This translates into lower com­

putational cost in terms of both memory usage and CPU time, which could be significant 

given the fact that three-dimensional problems are being solved. 

To ensure adequate resolution of acoustic waves and to minimize the point-per­

wavelength requirement, a spectral approximation is used in the context of the spectral 

element method by extending the 2D formulation of Patera [77] to three dimensions. 

U sing a time-harmonic assumption, the governing equations are solved in the frequency 

domain. This approach requires that a system of equations to be solved in order to obtain 

the solution. The alternative is a time-marching (explicit) method, which requires much less 

memory but the computation time will be comparable since time-steps are restricted by the 

very small grid size of the spectral mesh near the boundaries. Moreover, a low-dispersion 

scheme has to be used for time integration, which is more expensive than ordinary time 

marching techniques. 

Due to the large size of typical three-dimensional problems, a parallel algorithm based 

on a nonoverlapping domain decomposition method is used to solve the system of linear 

equations. The algorithm is based on the Schur complement method. It reduces the solution 

of the original set of equations to a system (Schur matrix) that is at least one order of 

magnitude smaUer and therefore much easier to solve. The paraUel algorithm is also very 

suitable for distributed memory machines, allowing the use of a c1uster or a network of 

computers for the solution of very large problems. Parallelization has been implemented 

using the MPI (Message Passing interface) protocol, with the extensive use of the PETSc 

libraries [4]. AIso, there exists the option ofusing a parallel direct solver [1], which is only 

suitable for small problems (with 105 dof or less) due to memory restrictions. 

At the noise source, i.e., fan face, the wave equation reduces to an eigenvalue problem 

in terms of the duct acoustic modes. Solution of this problem gives acoustic perturbations 

at the inlet in the form of rn-lobe spinning acoustic potential patterns, in accordance with 

the Tyler & Sofrin theory [105]. Given the number of radial and circumferential (spin­

ning) modes, boundary conditions at the fan face are then prescribed in terms of acoustic 
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potential. Cases of circular ducts (with or without a centerbody), rectangular sources, and 

semi-infinite paraUe1 plates are considered. 

The boundary conditions at the far-field are imposed using a buffer zone near the exit 

boundary in which outgoing waves are exponentially damped [28, 53]. This is achieved by 

adding a term to the governing equations to ensure that outdoing waves are not reflected 

back into the domain. 

The effect of the mean flow on acoustic scattering is also taken into account by solving 

the convected wave equation. This is accompli shed by first solving the mean flow problem 

separately on the same (spectral) grid. Once the mean flow field is known, the acoustic 

problem is solved taking into account the variations of mean flow properties. Solution 

of the mean flow problem is based on the full potential equation. Therefore, the results 

will be accurate for subsonic flows where nonlinearities are negligible and the assumption 

of irrotational flow remains valid. This is a reasonable assumption during take-off and 

landing, where Mach numbers are within the subsonic range and flow distortions near the 

inlet are not significant. 

1.5 Thesis Originality and Contribution 

The work presented addresses a difficult engineering problem in the area of computational 

aeroacoustics, i.e., simulation of noise propagation from turbofan engines. Currently, most 

indus trial analyses are based on 2D simulation software which are only applicable to re­

altively simple or axisymmetric geometries. Thus, lack of a modem simulation tool that 

could handle realistic geometries within a reasonable execution time is a handicap. This 

research is, therefore, aimed at filling this gap by presenting an original piece of work, 

reflected in the objectives outlined below: 

• Migrating from 2D to 3D technology, 

• Achieving practical solution times: hours instead of weeks, 
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• Finding solution for complex geometries with industrial application, 

• Creating an accurate and reliable design tool, and 

• Exploiting massively paraUe1 computers. 

The multi-disciplinary nature of the research encompasses the three areas of Engineer­

ing Science, Mathematics, and Computer Science. The work presented addresses scientific 

issues within each discipline and provides a practical solution. Thus, the contributions are: 

• Engineering Contribution: 

- Development of a 3D aeroacoustics code 

- Ability to simulate turbofan noise and other ducted acoustic problems 

- Accounting for mean flow effects 

- Incorporating symmetry formulation to reduce computational cost 

- Rapid solution times through extensive use of paraUe1 computations 

• Mathematical Contribution: 

- Delivering accurate results through the use of spectral methods 

- Using an iterative solution technique based on the Schur complement method 

- Introducing a novel preconditioner to reduce computation time 

• Computational Contribution: 

- Adopting algorithms and memory management techniques to achieve an excel­

lent paraUel efficiency 
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1.6 Thesis Outline 

Mter a comprehensive review of fan noise problem in this Chapter and discussion of dif­

ferent solution methods and literature review, we proceed to Chapter 2, where we present 

a detailed analysis of the acoustic problem by first deriving the governing equations, fol­

lowed by the formulation of the spectral element method in three dimensions and treatment 

of the boundary conditions. Solution of the mean flow problem, inc1uding derivation of 

the weak form, discretization of equations and linearization are then followed. The chapter 

conc1udes with the mathematical formulation for implementation of symmteric boundary 

conditions and with details regarding generation of the spectral grid. 

A brief discussion about parallelization, overlapping and nonoverlapping domain de­

composition methods, and issues related to parallel efficiency and presented in Chapter 3. 

Chapter 4 is dedicated entirely to the subject of the solution method. Overlapping and 

nonoverlapping methods used for solution of the mean flow and acoustic problems, respec­

tively, are discussed in detail and the algorithms are presented. The chapter also inc1udes 

several sections covering the important subject of preconditioning for the Schur matrix. 

Different preconditioners are discussed and a new preconditioner is proposed. The effi­

ciency and suitability of the proposed preconditioner is then demonstrated using numerical 

examples and eigenvalue analysis. 

Chapter 5 contains a variety of numerical tests to demonstrate and validate the numer­

ical method presented in this thesis for solution of a range of acoustic radiation problems. 

AlI tests involve three-dimensional geometries and the results are compared to the analyti­

cal or other numerical data. Problems varying in size from 100 000 to 2 million unknowns 

are solved on multi-processors using 8-48 CPU's. 

Finally, a summary is presented in Chapter 6 and several recommendations are made 

regarding the direction of the future research. 



Chapter 2 

Mathematical Formulation 

As mentioned earlier in Chapter 1, the mathematical formulation used for simulating the 

fan noise problem is based on the linearized form of the Euler equations, which are further 

simplified by the introduction of velocity potential using an irrotational flow assumption. 

The Governing equations are non-dimensionalized using the freestream density Poo, speed 

of sound coo , and characteristic length of the engine inlet (usually fan radius) R, as the 

reference variables. Therefore, non-dimensional variables, denoted by "*", are 

p*=~, p*=L, 
Poocoo Poo 

1* = i 
R' 

V* = RV, (2.1) 

V * = ~ ;r,.* _ ~ * t 
, 'J!' - R' t = R/coo ' Coo Coo 

(2.2) 

where p; l, V, ~, and t are the pressure, length scale, velocity, velocity potential, and time, 

respectively. 

2.1 Governing Equations 

2.1.1 Equation of State 

For air, under the conditions of the acoustic problem, the ideal gas assumption is valid. So, 

the equation of state is 

p=pRT, (2.3) 

14 
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in which R is the universal gas constant, and T is the absolute temperature. Since the flow 

is both inviscid and irrotational, i.e., isentropic, the following relation also exists between 

the pressure and density 
p 
- = const., 
p'Y 

(2.4) 

where "( is the ratio of specifie heats. Given the above, one can readily obtain the equation 

for the speed of sound in the air, c, 

(2.5) 

The equation of state and the speed of sound after non-dimensionalization take the form 

1 
p* = _ (p*)'Y , 

"( 
(2.6) 

and 

(2.7) 

respectively. 

2.1.2 Continuity and Momentum Equations 

The non-dimensional form of the Euler equations in vector form is 

817* + 17* . \717* = _ \7 p* . 
8t* p* 

(2.8) 

Assuming an irrotational flow, a potential can be defined, <P*, such that 17* = \7 <P*. Using 

this definition, the momentum equation can be recast in terms of density 

* [ (8<P* \7<I>* . \7<I>* - M!)]l/C'Y-l) 
p = 1-("(-1) -8t-* +---2--~ , (2.9) 

in which Moo is the freestream Mach number. Details of this derivation are given in Ap­

pendix A. Similarly, the continuity equation 

8p* "( * V"" *) -+v·p =0 8t* , (2.10) 
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can be written in terms of the velocity potential 

~: + V' . (p*V'<I>*) = O. (2.11) 

Equations (2.9) and (2.11) are then linearized using the small-perturbation assumption. 

This is a valid assumption since acoustic variables are generally several orders of magnitude 

smaller than their flow counterparts. Vnder this assumption, flow variables are split into a 

mean value (denoted by '0' subscript) plus an acoustic perturbation. That is, 

p* = Po + p, and <I>* = <I>o + <I>. (2.12) 

Substitution of small-perturbation assumption into (2.9) and (2.11) results in two sets of 

equations for the continuity and momentum equations. One set represents the acoustic 

field 
ap at + V' . (Po V'<I> + pV'<I>o) = 0, (2.13) 

p = -~g [~! + (V'<I>0' V'<I»] , (2.14) 

while the other set 

V' . (Po V'<I>0) = 0, (2.15) 

[ 
1 ]1/(1'-1) 

Po = 1 - ("; ) (V'<I>0 . V'<I>0 - M!) , (2.16) 

represents the mean flow. In deriving these equations, the following approximate binomial 

expansion is used 

(2.17) 

in which higher-order terms are neglected. 

The momentum equation (2.14) can also be written in terms of the acoustic pressure. 

Expanding the pressure about the mean value using a Taylor series and ignoring higher­

order terms, we have 

'* (ap
) (* ) p ~po+ a p -Po, 

p S=80 

(2.18) 
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or 

(p* - Po) = c5 (p* - Po). (2.19) 

So, the relation between the acoustic pressure and the density is 

2 
P = cop· (2.20) 

U sing this, the momentum equation becomes 

(2.21) 

2.2 Acoustic Problem 

2.2.1 Weak Form 

The weak form of the acoustic problem is obtained by first muItipIying the continuity equa­

tion (2.13) by the test function, \li, and integrating the weighted residual over the computa­

tional domain, n, 

1 [~ + \7 . (Po \7eI? + p\7eI?o)] \li dn = o. (2.22) 

U sing the Divergence theorem and the vector identity 

\7 . (aÂ) = a \7 . Â + \7 a . Â, (2.23) 

the above integral can be written in the following weak form 

in which r is the boundary of the domain, n, and fi is the outward normal vector to the 

boundary. 

Given the time-harmonic nature of the acoustic probIem, the acoustic potential can be 

written as 

eI? = 4>(x, y, z) e-iwt . (2.25) 
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Here, i is the imaginary unit, i = y=r, and w is the reduced (non-dimensional) frequency, 

w = w RI cOO, with w being the angular frequency of the acoustic source. Similarly, the test 

function is defined as 

(2.26) 

compatible with the definition of the dot product in the complex Hilbert space. The mean 

potential has no time dependence. So, we have 

<I>o = qyo(x, y, z). (2.27) 

Using equations (2.14) and (2.25)-(2.27) and substituting them in (2.24), yields the 

weak form of the acoustic problem as a function of acoustic potential, qy, 

r p~ [w 2 qyV; + (u6 - c6) qyxV;x + (v5 - c6) qyyV;y + (W6 - c6) qyzV;z + ln Co 

iwuo (qyV;x - qyx7/J) + iwvo (qy7/Jy - qyy7/J) + iwwo (qyV;z - qyzV;)] dO. = 

-1 W(PoV<I> + pV<I>o) . fidr, (2.28) 

in which V = (ox, Oy, oz), and V<I>o = (uo, Vo, wo). 

2.2.2 Spatial Discretization 

Following the discussion in Chapter 1 about accuracy requirements for simulation of wave­

like phenomena, the spectral element method (SEM) [52,77] is used for spatial discretiza­

tion. By definition, spectral methods are based on representing a given smooth function 

u(x) as a truncated series of orthogonal functions 

(2.29) 

The function !n(x) is called orthogonal with respect to the weight w(x) within the interval 

[a, b], if 

l b { 0 !m(x) !n(x) w(x) dx = 
a k2 

m =J. n, 

m = n, k E:IR. 
(2.30) 
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It can be easily shown that any approximation based on orthogonal functions minimizes the 

mean square error [5]. such a property, however, does not exist for ordinary functions. In 

other words, approximations based on orthogonal functions provide the best fit in the sense 

of mean square error. 

Another very important property of spectral methods lies in their rate of convergence 

as the order of approximation increases. For a smooth function u(x) approximated by an 

Nth order polynomial UN (x), the error in the approximation is given by 

(2.31) 

in which c is a positive constant and Œ is a parameter related to the number of continu­

ous derivatives of u(x). The relation shows that for infinitely differentiable functions (i.e., 

smooth), the error is smaller than any power of 1/ N, hence exponential or infinite accuracy. 

In simple terms, exponential or 'spectral accuracy' means that if the order of approxima­

tion N is doubled, the error in the numerical solution will drop by at least two orders of 

magnitude. This is significantly different from finite difference, finite volume, or finite 

element methods, where the error drops by a fixed factor, Le., behaves as l/NP, where p 

depends on the scheme and is essentially finite. Exponential decay of the error as a function 

of order of approximation is shown in Figure 2.1 for the solution of the Helmholtz equation, 

Uxx + >...2U = 0, using the spectral element method. The error is obtained by comparing the 

numerical results to the exact solution, u(x) = cos (>...x), in [0,1] using >... = 21l". 

A familiar example of a spectral approximation is the Fourier series, in which the sine 

and cosine functions (orthogonal in the interval [0, 1l"]) are used. Due to periodicity of 

trigonometric functions, discrete Fourier series are best suited for representation of peri­

odic functions. For this reason, when applied to nonperiodic functions, they show slow 

convergence as the number of terms in the series increases. 

For nonperiodic problems, therefore, it is more appropriate to use nonperiodic polyno­

mials. A class of such polynomials, called Jacobi polynomials, p.::,f3(x), are available as 

eigenfunctions of the singular Sturm-Liouville problem in [-1, +1]. Using the Rodrigues 
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Figure 2.1: Exponential convergence of the spectral method. 

formula, the n th degree Jacobi polynomials, p::,(3(x), are 

a, f3 > -1. (2.32) 

A sub-class of Jacobi polynomials for which a = f3, called ultra-spherical polynomials, are 

often used in spectral approximation of nonperiodic functions. Well-known examples are 

Legendre (a = f3 = 0), and Chebyshev (a = f3 = - ~) polynomials. Reference [29] provides 

a detailed discussion on orthogonal polynomials and their properties. 

In the present formulation of the spectral element method, Chebyshev polynomials are 

used as basis functions although Legendre polynomials could also be used [61, 83, 87]. 

Chebyshev polynomials of order n are defined as 

Tn(x) = cos(ncos-1 x). (2.33) 
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These functions are orthogonal in [-1, +1] with respect to the weight w(x) = (1_X 2)-1/2, 

m#n, 
(2.34) 

m=n, 

where Co = 2, and Cn = 1 for n > O. Using the transformation, x = cos 0, Chebyshev 

polynomials can also be written as 

Tn(cos 0) = cos(nO). (2.35) 

The first few Chebyshev polynomials can be easily derived with the help of trigonometric 

identities. They are 

(2.36) 

Higher-order polynomials can be obtained using the recursion relation 

n>l. (2.37) 

2.2.3 Spectral Element Method 

The spectral element method (SEM) is in fact a p-version finite element, where spectral 

approximation is used within each element. This method, first proposed by Patera [77], has 

since been widely used in many applications because it combines the geometric flexibility 

of finite element method with the spatial accuracy associated with spectral methods. 

Spatial discretization proceeds by first subdividing the computational domain, n, into 

E elements, each of the size ne, such that, n = U!l ni, and n!l ni = 0. In the present 

formulation, ne represents a hexahedral element with curved edges (surfaces), in general. 

Bach element is mapped into the reference element, the bi-unit cuboid Q = [-1, + 1] 3, 

using the affine transformation 

N N N 

x(ç, rJ, () = L L L hi(ç) hj(rJ) hk(() (x, y, Z)ijk' (2.38) 
i=O j=o k=O 
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Figure 2.2: Coordinate transformation from physical domain to reference element. 

where (x, y, z) are coordinates in the physical space and x(~, 'TI, () the corresponding values 

in the transformed space (Fig. 2.2). 

The spatial approximation is obtained using a tensor product of the N th order interpo­

lation functions, h ( a ), which are Lagrangian interpolants collocated at the coordinates of 

the Gauss-Chebyshev-Lobatto (GCL) points, ai. That is, 

hm(an) = Omn, m,n= O, ... ,N, (2.39) 

where Omn is the Kronecker delta 

8,; ~ { 
1 i = j, 

(2.40) 

° i # j, 

and ai are defined as 

a· = - cos cri) 
t N ' i=O, ... ,N. (2.41) 

Interpolating functions, h( a), are built using a truncated series of the Chebyshev poly­

nomials 
N 

h(a) = I:"anTn(a), (2.42) 
n=O 

where " indicates that the first and the last term of the series is to be halved. Introducing 

the coefficient, en, 
n=O,N, 

otherwise, 
(2.43) 
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one can write 
N 1 

h(CY) = L - anTn(CY) , 
n=O en 

(2.44) 

in which the only unknowns are the coefficients, an. In order to obtain these coefficients, 

the dis crete orthogonal property of Chebyshev polynomials is exploited [18], giving 

2 N 1 
an = N L -;;- h(cym) Tn(cym). 

m=O m 

At any collocation point m, this relation simplifies to 

2 1 
an = N Cm Tn(cym), 

due to the fact that hm ( CY n) = t5mn. This leads to 

2 N 1 
hm(cy) = N L - Tn(cym) Tn(cy) , 

Cm n=O en 

(2.45) 

(2.46) 

(2.47) 

which is the N th degree interpolating polynomial in terms of the Chebyshev functions, and 

is used as the basis function to build spatial approximation within elements. 

For the sake of c1arity in formulations, from this point on the following abbreviated 

notation 
N N N 

L=LLL' (2.48) 
ijk i=O j=O k=O 

will be used to indicate the triple sumo AIso, summation over repeated indices is assumed, 

whenever meaningful. Therefore, equation (2.47) can be written in the following form 

(2.49) 

To approximate the acoustic potential' an isoparametric formulation is used, i.e., the 

polynomial basis for the solution and the geometry are the same. So, 

cp = L hi(é,) hj(T]) hk((,) CPijk' (2.50) 
ijk 

The test functions are defined as the tensor product of the I-D interpolation functions, 

(2.51) 
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Element coefficient matrices for the weak formulation, Eq. (2.28), are then obtained 

using the transformation defined by (2.38) and the equations (2.47)-(2.51) to give 

(2.52) 

in which 

(2.53) 

and 

Ae - -2A + A XX + AYY A ZZ AXY AYx ijk,lmn - W ijk,lmn ijk,lmn ijk,lmn + ijk,lmn + ijk,lmn + ijk,lmn 

A XZ + A ZX + AYz AZY . - [(A*x AX*) + ijk,lmn ijk,lmn ijk,lmn + ijk,lmn + zw ijk,lmn - ijk,lmn 

(2.54) 

The submatrices are given by 
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where due to symmetry 

AYX _ (Axy )T 
ijk,lmn - ijk,lmn , 

AZX (Axz)T ijk,lmn = ijk,lmn , 

AZY _ (AYZ )T 
ijk,lmn - ijk,lmn . 

In the above equations, 1 JI is the determinant of the Jaeobian of transfonnation 

J = a(x,y,z) 
a(e, ry, ()' 

and 'D are differential operators in the transfonned spaee 

VX (YT}Z( - y(zT}) (y(z~ - y~zç) (y~zT} - YT}z~) 

'DY - (x(ZT} - xT}zç) (x~z( - X(Z~) (xT}z~ - x~zT}) 

'DZ (xT}Y( - X(YT}) (x(Yt; - Xt;yç) (Xt;YT} - xT}Yt;) 

with, for example, 

Vijk = 'Dx [hi(e) hj(ry) hk(()]. 

a/ae 

a/ary = [..7] 

a/a( 
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(2.64) 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

(2.71) 

a~ 

aT} 

a( 
(2.72) 

(2.73) 

Metrie quantities ean be easily evaluated starting with equation (2.38). For example, 

(2.74) 

At any point (ep, ryq, (r) in the referenee element, Q, this beeomes 

(2.75) 
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in which 

D 
.. _ ahi(aj) 
'IJ - aa . 

Given the definition of the Kronecker delta and using contraction, one can write 

(ax) e 
al:, pqr = Dip Xiqr' 

That is, differentiation reduces to a matrix-vector operation. Similarly, one obtains 

26 

(2.76) 

(2.77) 

(2.78) 

Matrix D, the so-called Chebyshev differentiation matrix, is a (N + 1) x (N + 1) skew­

centrosymmetric matrix whose elements can be evaluated explicitly using a discrete Cheby­

shev transformation [71] 

Cj (_1)Hk 
D jk = - -7------'---:­

ck(aj-ak)' 

D. _ -aj 
Jk - 2(1 - aJ) , 

Doo = -DNN = -(2N2 + 1)/6, 

j =1= k, 

j =1= 0, N, (2.79) 

where ai are the Gauss-Chebyshev-Lobatto points given by (2.41), with coefficients Cn 

defined in (2.43). Once N is known, entries of D are calculated only once and stored for 

subsequent calculations. Performing differentiation operation using matrix-vector product 

could be costly if N is high. In that case, it would be more efficient to use fast transform 

methods [90]. 

Now that all components are in place, integrals (2.55)-(2.67), which form the element 

coefficient matrices, can be easily evaluated. Details of the evaluation for sample contribut­

ing matrices are presented in Appendix C. 

2.2.4 Boundary Conditions 

Once the global matrix and the right-hand side vector are built by assembly of element 

contributions, boundary conditions must be imposed to uniquely define the problem. In the 
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acoustic problem, three different types of boundaries exist: solid surfaces, acoustic source, 

and the far-field. 

SoUd Surfaces 

For a typical turbofan engine, solid surfaces include the inner duct, possibly a centerbody, 

and the nacelle. Since the flow is considered inviscid, only a no penetration condition is 

applied on aIl solid surfaces. That is, 

onrw , (2.80) 

where fi is the outward normal vector to the solid boundary, r w' This boundary condition is 

applied by simply discarding the contour integral on the right-hand side of equation (2.28) 

because it will be identically zero at such boundaries. 

Acoustic Source 

Before deriving equations for the boundary conditions at the source, it is assumed that the 

source is located at a section of the duct with a uniform cross section, whether circular or 

rectangular, and that freestream mean flow is along the x-axis perpendicular to the plane of 

the source (yz-plane), as shown in Figure 2.3. 

y 

x 

z 

Figure 2.3: Acoustic source in a duct with a circular cross section. 



CHAPTBR 2. MATHEMATICALFORMULATION 28 

Under these assumptions, the continuity equation (2.13) takes the form 

(2.81) 

Now, using the momentum equation we have 

(2.82) 

and 
8p Po ( 82

1> 821» 
8x = - c~ 8x ât + M 8x2 • 

(2.83) 

Substituting (2.82) and (2.83) into (2.81) yields 

(2.84) 

which is the convected wave equation at the acoustic source 1• 

Two different common shapes for the acoustic source are considered: 1) circular and 

2) rectangular. While the source shape for fan noise analysis is c1early circular/annular, 

rectangular shapes are also incorporated to allow a wider use of the code. 

In aU experimental tests, the amplitude of acoustic perturbations at the source is given 

in terms of acoustic pressure, p, rather than of the acoustic potential, 1>, which is considered 

below. Therefore, to perform the tests one needs to know the relationship between the two. 

This relationship can be easily obtained using the momentum equation (2.21) rewritten here 

p = -Po [~~ + (V1>o· V1»] . 

At the acoustic source, we have 

So, 

81> 0 

- = -'lwo1> ât ~, 

n m. 81> ..... ok m. ..... 
v'±' = 8x 'l = 'l x'±''l, and 

(2.85) 

V1>o = Me ï. (2.86) 

(2.87) 

lGiven the non-dimensionalization introduced at the beginning of the chapter, Co = 1 in this equationo 
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and the momentum equation at the source reduces to 

(2.88) 

or in terms of the acoustic pressure 

~= 'lp 
pdkxMe - we)' 

(2.89) 

Note that both P and ~ in the above equation are complex variables with a time-harmonic 

component. So, the acoustic potential corresponding to a known pressure amplitude, Pamp' 

is 
~ _ 'lPamp 

amp - pe (kxMe - we)· 
(2.90) 

This is the value As or Amn used in equations (2.97) and (2.116), respectively. 

Circular Cross Section Due to periodicity in the circumferential direction, the acoustic 

potential at a circular source can be represented by 

~(x, T, e, t) = rp(T) ei (k",x+m9-wt t) , (2.91) 

in which kx is the x-component of the wave number, and m an integer representing the 

circumferential (azimuthal) mode number. Subscript R indicates local values at acoustic 

source, and We is the source local frequency2 

wR wR/coo w 
We- - - --

- Ce - cd Coo - c;· (2.92) 

Substituting (2.91) into the wave equation (2.84), leads to an eigenvalue problem for rp 

at the acoustic source (fan face) in the form of the Bessel equation 

(2.93) 

with eigenvalues kms given by 

(2.94) 

2Note that We would be different from W only if Cl =1- Coo. This could only happen, when mean flow is not 

uniform at the fan face. 
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Here s represents the radial mode number. Numerical solution of equation (2.93) for a 

known acoustic mode (m, s) will result in kms as its eigenvalues and radial distribution of 

acoustic potential, cp(r), as its eigenvectors. Once these values are known, one can use 

equation (2.91) to evaluate acoustic potential at the source and impose it as a Dirichlet 

boundary condition. 

Boundary conditions associated with equation (2.93) are based on the zero normal ve­

locity at the walls and depend on the shape of the duct at the source. For a circular duct 

without a centerbody, these conditions are 

{ 

dcp/dr = 0 

<P = <Po 

r=R, 

r = 0, 

where CPo is given and is finite, and for a duct with a centerbody of radius ri, 

{ 

d<p/dr = 0 

d<p/dr = 0 

r=R, 

(2.95) 

(2.96) 

Alternatively, one can find <p(r) and kms given the fact that equation (2.93) has an 

analytical solution [102] 

<Pms(r) = I:: AsJm(kmsr) + Ym(kmsr) , (2.97) 
s 

where As is in general a function of the radial mode number, s, and Jm and Ym are the 

Bessel functions of the first and the second kind and of order m, respectively. Applying the 

boundary conditions (2.95) and (2.96) to (2.97) leads to 

for a duct without a centerbody, and to the system 

{ 

AsJ:n(kmsri) + Y~(kmsri) = 0, 

AsJ:n(kmsR) + Y~(kmsR) = 0, 

(2.98) 

(2.99) 

for a duct with a centerbody. Solution of (2.98) or (2.99) will give the eigenvalue kms , 

which can subsequently be used to evaluate <p(r) using (2.97). 
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In the present work, a mixed approach has been adopted by first solving the eigenvalue 

problem (2.93) numerically to find kms, and then using equation (2.97) to evaluate radial 

acoustic distribution, <p( r). This approach has the advantage that no assumptions are made 

about the distribution of the grid points on the fan face, e.g., being radial. That is, the grid 

can be completely unstructured and no interpolation will be needed, since an analytical 

relation is used to evaluate <p(r). 

To solve eigenvalue problem (2.93) numerically, we proceed by first building the weak 

form assuming w are the test functions 

(2.100) 

Here, ~ is the one-dimensional radial region. Mter integration by parts, the weak form 

becomes 

1 d<p dw 12m2 [ d<P] -d -d rdr - (kms - -2) <pwrdr = wr-
d 

. 
I: r r I: r r 8I: 

(2.101) 

Using the boundary conditions (2.95) and (2.96), the weak form reduces to 

{ (d<P dw m
2

) 2 { JI: dr dr + ~ i.pW r dr - kms JI: <pwr dr = O. (2.102) 

Equation (2.102) is discretized using a I-D spectral element formulation by dividing the 

radial domain, ~, into 40 elements of equallength. The order of interpolation, N, in each 

element is taken to be the same as for the 3D hexahedral elements. Details of discretization 

for equation (2.102) are given in Appendix D. Mter discretization, the resulting eigenvalue 

system 

([K] - k~slM]){ <p} = 0 (2.103) 

is solved to obtain eigenvalues kms , using routines from the LAPACK package 3 . 

It is worth mentioning that for any given propagation mode, (m, s), there are only cer-

tain harmonies of blade-passage frequency that will propagate in the duct, eventually radi­

ating into the far-field. These are waves with a real wave number, kx . Using equation(2.94) 

3LAPACK routines for a wide range of linear algebra applications are available freely from Netlib repos­

itory: www. net lib . org. 



CHAPTER 2. MATHEMATICAL FORMULATION 32 

and solving for the axial wave number gives 

(2.104) 

where ± indicates right- and left-propagating waves, respectively. Here, only right­

propagating waves are considered, which correspond to the "+" sign. For kx to be real, 

the term under the square root must be positive, i.e., 

1- (fi;')' > o. (2.105) 

Frequencies that satisfy this relation are called eut-on. That is, waves associated with 

these frequencies will propagate along the duct undamped. To determine whether a certain 

mode will propagate (eut-on) or will be damped (cut-oft), a parameter called eut-off ratio 

is defined 
W 

Çms = f3k
ms

· (2.106) 

So, the mode (m, s) at a given frequency w will propagate if Çms > 1. Otherwise, the 

corresponding acoustic waves will be damped in the duct and will not contribute to the 

radiated acoustic energy. 

Rectangular Cross Section For a source with a rectangular cross section, (Figure 2.4), 

there is no circumferential symmetry and therefore the acoustic potential takes the form 

(2.107) 

y 

lY).JLt __ ---1/" 

x 

z 

Figure 2.4: Acoustic source in a duct with a rectangular cross section. 
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Substituting this into the convected wave equation (2.84), with the Laplacian \72 written in 

Carte sian coordinates, yields the Helmholtz equation 

(2.108) 

with eigenvalues kmn given by 

(2.109) 

In the se equations, subscripts m and n correspond to the duct cross modes in the y- and 

z-directions, respectively. Equation (2.108) can be solved analytically using the method of 

separation of variables. Assuming 

<p(y, z) = F(y) G(z), (2.110) 

and substituting into the Helmholtz equation gives two ordinary differential equations with 

boundary conditions imposed assuming zero normal velocity at the walls 

{ 

F" + k':nF = 0, 

F' = 0, at y = 0, Ry, 
(2.111) 

{ (2.112) 
G'=O, 

where 1 indicates differentiation, and km and kn are components of the wave number in the 

y- and z-directions, respectively, which are related to the eigenvalue kmn by 

Solving (2.111) and (2.112) gives 

F(y) = Am cos(kmy) , 

and 

mn 
km=T' 

y 

(2.113) 

(2.114) 

(2.115) 
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Therefore, the general solution of the acoustic potential at the source is 

<1? = L Amn (cos kmy) ( cos knz) ei(k:r:x-wet) , (2.116) 
m,n 

in which Amn is the amplitude of the (m, n) mode, and the axial wave number kx is given 

by 

f3 = V1 - Ml- (2.117) 

The propagating modes correspond to real values of k x , i.e. when the cut-offratio, defined 

as 

(2.118) 

is greater then one. 

Equation (2.116) was derived assuming the coordinate axes y and z are aligned with 

the bottom of the rectangular section, as shown in Fig. 2.4. However, in our program we 

assume the origin of the coordinate system to be at the center of the duct. Therefore, to 

calculate acoustic potential at the source, coordinates have to be shifted by the half duct 

length in the y and z directions. This yields 

<I> = L Amn [cos km{y + e; )][cos kn{z + i)] ei(k",x-wet). (2.119) 
m,n 

The case of a semi-infinite duct can be treated in a similar way. Assuming that the duct 

has an infinite length in the z-direction, acoustic potential becomes 

<1? = r.p(y) ei(k",x-wet) , 

which leads to a solution of the form 

<I> = L Am (cos kmy) ei(k",x-wtt) , 
m 

m7r 
km=C' 

y 

(2.120) 

(2.121) 

with kx defined as before. If the origin of the coordinates system is assumed to he at the 

center of the duct, then acoustic potential becomes 

<I> = L Am [cos km (y + e;) 1 ei(k:r:x-wet) . (2.122) 
m 



CHAPTER 2. MATHEMATICAL FORMULATION 35 

Far-field 

Wave-like exterior problems that are allowed to radiate into an infinite domain in the far­

field will naturally be attenuated as they travel away from the source or the scatterer. For 

computational purposes, however, the far-field domain must be truncated. Therefore, exte­

rior boundaries must be such that they appear transparent to the outgoing waves. Otherwise, 

waves refiected from the boundary will travel back into the domain and contaminate the in­

terior solution, with the situation worsening as the source frequency increases. So, it is 

c1ear that havingboundary conditions that can simulate a refiectionless effect (less than 

1 %) are of vital importance [33]. 

The simplest such boundary conditions, called characteristic boundary condition, re­

quires the incoming characteristic variables to vanish at the boundary [109]. These meth­

ods, however, are only optimal when the exterior boundary is perpendicular to the incident 

waves. Moreover, they usually require the outer boundary tobe about 10-20 wavelengths 

away from the scatterer, unless meshing is done in such a way that the exterior boundary is 

made almost perpendicular to the outgoing waves [75]. 

Radiation boundary conditions are another family of methods, based on asymptotic 

solution of the exterior fiow problem with the assumption that the governing equations 

have a linear behavior far from the source [17, 32, 100]. 

A broader set of methods, which can be generally called zonal techniques, are based 

on forming a layer around the exterior boundary in which the outgoing disturbances are 

attenuated. Terms such as "sponge layers" [78], "buffer zones" [96], "exit zones" [28], 

and "absorbing layers" [81] are commonly used in the literature when referring to various 

implementations of this technique. 

The most well-known of these methods is the perfectly matched layer (PML), first pro­

posed by Berenger [6] for the solution of exterior electromagnetic problems. The idea 

behind PML is to attribute to the layers surrounding the computational domain material 

properties that modify the original field equations, so that the incoming waves will de­

cay within the layer irrespective of their angle of incidence or frequency, thus creating a 
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reflectionless boundary. 

PML methods are generally implemented in rectilinear coordinates system, assuming 

the absorbing layer to form a rectangular box. However, they can also be implemented in 

curvilinear coordinate systems, as shown in [9] and [109]. While originally introduced for 

the solution of problems dealing with electromagnetic wave scattering, PML methods have 

also been wide1y used in the solution of aeroacoustic problems [14,43]. 

In the present work, however, another type of absorbing layer boundary condition, 

which is easier to implement, is used. It is based on simply adding a damping term to 

the governing equations; unlike the PML methods which require modifying the governing 

equations in the matched layer. This is consistent with our approach in building an efficient 

yet simple method for fan noise prediction. This concept was first introduced by Israeli and 

Orszag [45], and subsequently used by Kosloff and Kosloff [53] and others [28,93, 109]. 

As in PML, in this method frequency components are equally damped because the damping 

factor is independent of the frequency. 

Physical domain Damping layer 
;.E( :> 

D 

Figure 2.5: Schematic of damping layer. 

As shown in Figure 2.5, an absorbing layer is built by extending the physical domain in 
, 

the far-field direction beyond the outer boundary edge, XI. The thickness of the layer D is 

usually taken to be about 2-3 wavelengths. Within the layer, the continuity equation (2.13) 

is modified by adding a term to the right-hand side 

ap at + V . (Po V <1> + pV<1>o) = -lI(X)p, (2.123) 

which simulates exponential damping. The damping coefficient, li, is often taken to be a 



CHAPTER 2. MATHEMATICAL FORMULATION 37 

power function 
X -XI 

1 l

n 

v(x) = Vo D ' (2.124) 

or an exponential function 

v(X) = Vo [él(X-XI)/DI - 1] . (2.125) 

Here, Vo is the damping amplitude, and n and 8 parameters that detennine damping in­

tensity. These parameters are determined using numerical experiments. Sorne guidelines 

about choosing proper values for these parameters are given in Chapter 5. 

In general, any function v(x) used in (2.123) must satisfy the following two conditions 

v(x) = 0 X :::; XI, and dv = 0 X = XI. (2.126) 
dx 

The first condition lets disturbances enter the damping layer at their original value, and the 

second ensures continuity, and hence smooth transition, of the waves between the physical 

domain and the damping zone. 

As it is apparent from equation (2.123), damping is applied oruy in one dimensions. 

So, in multi-dimensional problems overall damping is taken to be a superposition of one­

dimensional damping in the X-, y-, and z-directions. This is done by modifying the weak 

fonn in the damping layer, where integrals of the fonn 

-1 (vp)'I! dO, = 1v~o (iw<jnj; + Uo<Px7./J + vo<Py7./J + wo<pz7./J) dO, 
n n Co 

(2.127) 

are evaluated along each coordinate direction and their contribution are added to the ele­

ment matrices. 

It should also be pointed out that due to strong damping effects at the far-field bound­

aries, the contour integral in equation (2.28) will have negligible contribution to the solution 

at the far-field and therefore is neglected in all computations. 

2.3 Mean Flow Problem 

The presence of the mean flow in the acoustic field affects the radiation pattern of the 

sound as it propagates into the far-field. Also, strong variations of flow near the engine 
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inlet - when the mean flow is present - affects the sound scattering off the inlet. Therefore, 

for a realistic prediction of the acoustic field, it is necessary to solve for the mean flow 

problem first, since the two sets of equations are uncoupled. 

Given the subsonic nature of the external flow and the range of Mach numbers for which 

irrotational condition and thus the potential flow assumption is valid, the full potential 

equation is solved, as given by equations (2.15) and (2.16). This also allows taking into 

account the compressibility effects, which are an important factor in sorne of the test cases 

being considered. 

2.3.1 Weak Form and Linearization 

We start by deriving the weak form for the mean flow problem based on the continuity 

equation for a steady, compressible flow 

v . (Po V<I>o) = o. (2.128) 

U sing the method of weighted residuals, and assuming 'li 0 to be the weight function, we 

set 

ln [\7 . (Po \7<I>0)] Wo dO = o. (2.129) 

With the help of the vector identity 

v . (aA) = \7 a . A + a \7 . A, (2.130) 

and then applying the Divergence theorem, the integral can be written in the following 

weak: form 

(2.131) 

in which r is the boundary of the domain, and fi is the outward normal vector to the 

boundary. Equation (2.131) is a nonlinear equation in terms of <I>o, because Po depends on 

the solution <I>o through (2.16), which is rewritten below 

[ 
1 ] 1/C1-1) 

Po = 1 - ('; ) (\7<I>0 . \7<I>0 - M~) (2.132) 
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Solution of (2.131), therefore, requires an iterative procedure. The simplest such method 

is the Jacobi iteration in which (2.131) is linearized using values of Po from the previous 

iteration, p~. That is, we solve 

1 \7wo . (p~ \7<I>0) dO = l Wo (p~ \7<I>0 . fi) df. (2.133) 

The Jacobi method, although easy to implement, has only a linear convergence rate. A 

more efficient approach, with a quadratic convergence, is based on the Newton-Raphson 

method, which is subsequently presented. 

In the Newton-Raphson method, the solution of the nonlinear equation 

(2.134) 

is achieved by the linear expansion of l about a mean value, <Ï>, using the Taylor series 

- (8I) I( <I>o, po( <I>o)) = I( <I» + 8<I>0 <Î> 8<I>0 = 0, (2.135) 

in which 8<I>0 = <I>o - <Ï>. Rearranging the terms leads to the following linear system 

( 8I) -
8<I>0 <Î> 8<I>0 = -I(<I», (2.136) 

which is solved for 8<I>0 in each iteration, with updates of the form <I>o = <Ï> + 8<I>0, until the 

residual, i.e, the right-hand side vector, becomes negligible. 

For the weak: form (2.131), the functional I(<I>o) is 

I(<I>o) = 1 \7wo . (Po \7<I>0) dO - 1 Wo (Po \7<I>0 . fi) df. (2.137) 

As will be discussed later in the section related to the boundary conditions, linearization of 

the above functional only involves the volume integral. Therefore, linearizing with respect 

to the mean fiow potential, cI>0, we have 

(2.138) . 
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Using (2.132), gives 
8po _ 1 2-1' 8 
84»0 - - 2" Po 84»0 (\74»0 . \74»0), (2.139) 

which is substituted back to give the linearized weak form 

ln [po (\7wo' \754»0) - p~-'Y(\7Wo' \74»0)(\74»0' \754»0)] dO = 

-ln \7wo . (Po \74»0) dO + 1 Wo (Po \74»0' fi) df. (2.140) 

This can be written in the matrlx form 

(2.141) 

in which k is the iteration number. Starting with an initial guess, <I> ~ = ~, mean flow 

density p~ is calculated from (2.132) and the above linear system is solved for 54»0. The 

iteration then continues by updating 4»0 

(2.142) 

until the norm of the residual, IIIk Il, drops below a certain tolerance. 

2.3.2 Spatial Discretization 

Since, to solve the acoustic problem the mean flow variables (Po, uo, vo, wo) are needed at 

the Gauss-Chebyshev-Lobatto points, we seek the solution of the mean flow problem on the 

same grid, i.e., the spectral grid. However, such a high resolution would not be necessary 

if only the solution of the mean flow problem was sought. 

We start the spatial discretization of (2.140) by first representing the variation in the 

mean potential, 5<I>0, in discrete form in terms of the Lagrange interpolation polynomials 

collocated at the Gauss-Chebyshev-Lobatto points, as defined in (2.47). So, we have 

5<I>0 = I: hi(ç) hj(T]) hk(() 5cjJ~,ijk' (2.143) 
ijk 
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with the weight function, W 0, defined as the tensor product of the one-dimensional interpo­

lation functions 

(2.144) 

Substituting for 6<1}0 and Wo from the above equations into (2.140) and noting that \7<1}0 = 

( Uo, Vo, wo), the linearized weak: form integrated over an element, ne, can be written as 

in which the element coefficient matrix [Be] is 

Be - B XX + BYY + B ZZ + BXY + BYx ijk,lmn - ijk,lmn ijk,lmn ijk,lmn ijk,lmn ijk,lmn 

+ Bf/k,lmn + B:;k,lmn + B~~,lmn + B:Jk,lmn' 

with the submatrices defined as follows 

Note that, due to the symmetry, we have 

BYX _ (BXY )T 
ijk,lmn - ijk,lmn , 

B ZX (Bxz)T ijk,lmn = ijk,lmn , 

BZY _ (BYz )T 
ijk,lmn - ijk,lmn . 

(2.145) 

(2.146) 

(2.147) 

(2.148) 

(2.149) 

(2.150) 

(2.151) 

(2.152) 

(2.153) 

(2.154) 

(2.155) 
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Similarly, the right-hand side vector, {gfjk}' is given by 

where 

ce - cxx + cyy + CZZ 

ijk,lmn - ijk,lmn ijk,lmn ijk,lmn' 

and the matrices are defined as 

Cf/k,lmn = ( - p~ Vijk V 1mn IJI-1 dç d1] d(, Jne 
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(2.156) 

(2.157) 

(2.158) 

(2.159) 

(2.160) 

It should he noted that the contribution from the surface integral over the engine inlet, 

r J, should be properly added to the right-hand side vector in (2.156). In all the above 

equations, the differential operator V is given by (2.72), and the superscript k refers to the 

values from the previous iteration. Evaluation of the integrals in the above equations is 

done in a manner very similar to those presented for the acoustic problem in Appendix C. 

2.3.3 Boundary Conditions 

In (2.140), the boundary r is composed of the solid surfaces, far-field, and the engine 

inlet, r = r w U r 00 u r J. Since the flow is inviscid, solid surfaces are considered to be 

impermeable to the flow, and therefore the no-penetration boundary condition 

on r w , (2.161) 

is applied by simply neglecting the contour integral in (2.140) over such surfaces. 

On the far-field boundary, r 00' which is considered to be at a sufficiently large distance 

from the engine inlet, the flow can be considered uniform with 

(2.162) 
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On this boundary, a Dirichlet boundary condition is imposed for the mean flow potential 

<1>0 by simply integrating (2.162) in the x-direction. This gives 

on f 00' (2.163) 

The last portion of the boundary corresponds to the engine inlet, f f' for which the mass 

flow rate (in) is known. Given the area of the engine inlet, A f' one can write 

(2.164) 

and the boundary integral becomes 

{ Wo (Po \7<1>0' fi) df = { Wo (Po \7<1>0 . fi) df, 
1r 1r, 

= ; { wodf, 
f 1r, 

(2.165) 

which is evaluated numerically using a proper weight function on the two-dimensional 

surface representing the inlet. 

Given the fact that Wo = 0 on the far-field boundary, where Dirichlet boundary condi­

tion is applied, and that boundary integral vanishes on f w, the contour integral needs to be 

evaluated on f f only, in which case it is written in terms of the mass flow rate and there­

fore is not dependent on <1>0, That is the reason why only the volume integral in (2.131) is 

considered, when linearizing the weak: form using the Newton-Raphson method. 

2.4 Geometrie Symmetry 

It is not very uncommon for the inlet duct to have a geometric symmetry, whether with 

respect to the xy-plane, xz-plane, or both (axisymmetry). So, one can properly take ad­

vantage of the symmetry conditions and perform calculations for only half or quarter of 

the domain4• This means a reduction of computational cost associated with building coeffi-

4In the case ofaxisymmetry, mathematically one can reduce the domain to even less than a quarter. 

However, since in our code the requirement for the exit boundaries is to be perpendicular to one of the 

coordinate axes, we are restricted to a minimum size of a quarter. 
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Figure 2.6: Front view of a duct in a symmetric domain. 

cient matrices by nearly a factor of 2 or 4, respectively. The cost associated with solving the 

system of equations, however, will be further reduced because operation counts are non­

linear (exponential) functions of the number of equations, whether a direct or an iterative 

solver is used. Therefore, it is important to take advantage of the symmetry of a problem 

to substantially reduce the co st. 

Removing part of the computational domain due to symmetry will expose the plane of 

symmetry as an exterior boundary, along which one should evaluate the boundary integral 

(2.166) 

for the acoustic problem and 

(2.167) 

for the mean flow problem, respectively, according to the weak forms (2.24) and (2.131). 

Figure 2.6 shows the front view of a circular duct symmetric with respect to the xy-plane, 

in which half the computational domain, e.g. z < 0, has been removed. Referring to this 

figure, we now discuss details of implementation for the mean flow and acoustic problems. 
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Generalization to other cases of geometrical symmetry, e.g., with respect to the xz-plane, 

is straightforward. 

2.4.1 Mean Flow Problem 

A doser look at the trimmed domain, Fig. 2.6, shows that in a mean flow problem the sym­

metry boundary (xy-plane) acts as a wall and therefore the normal component of acoustic 

potential, V<I>o . fi, will be zero on this surface. As a result, the integral in (2.167) will be 

zero and will not have any contributions to the coefficient matrix. So, no changes need to 

be made to the mean flow equations when geometric symmetry is present. 

2.4.2 Acoustic Problem 

For the acoustic problem, one should in general evaluate the integral in (2.166). Given that 

on a symmetry boundary the normal component of mean flow velocity is zero, as explained 

above, the boundary intergral in (2.166) reduces to 

Isym = - i Wpo(\7<I> . fi) df. (2.168) 

In what follows, we develop the formulation for evaluation of the above integral when 

symmetry exists along the xv-plane. Similar formulations could be easily developed for 

other cases. 

We first separate the integral in (2.168) into two, one covering the area above the x-axis 

and the other below it 

(2.169) 

We treat the case of y = 0 last, because it may not always be present. Also, to derive the 

equations we use the cylindrical form of the gradient operator along the plane of symmetry 

(2.170) 
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where the polar angle () is measured counter c10ckwise and relative to the y-axis5• 

~ Case: y > 0 

Along the positive side of the xy-plane, we have fi = -e(). Therefore, 

(2.171) 

Using the cylindrical form of acoustic potential along the plane of symmetry 

(2.172) 

weget 
zm . () . t \7<J? . fi = -- cjJ(x, r) e~m e-~w . 
r 

(2.173) 

Note that on the plane of symmetry and for y > 0, 

() = 0, and r = y. 

So, 
im . t \7<J? . fi = -- cjJ(x, y) e-~w . 
y 

(2.174) 

Similarly; defining the test function along the plane of symmetry to be 

(2.175) 

the boundary integral (2.168) becomes 

I;;m = im 1+ (~)<pV;dr. (2.176) 

To evaluate this integral, we subdivide the domain r+ into rectangular elements, which are 

indeed faces of the elements located on the symmetry plane. 

Let us define an isoparametric transformation between rectangular element faces and 

reference element Q = [-1, +1]2 in the (Ç", '1])-plane, and express the variation of acoustic 

5Note that this convention must match the one used for variation of 0 when boundary conditions are 

applied on the acoustic source. 
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potential and test function on these faces in terms of Lagrangian interpolants collocated at 

Gauss-Chebyshev-Lobatto points 

cp = L hi(ç) hj(rJ) CP~, and (2.177) 
ij 

Using this approximation, the surface integral in (2.176) evaluated over an element face 

becomes 

(2.178) 

As explained in Appendix C, this integral can be evaluated exactly using a Gauss­

Chebyshev quadrature. So, we have 

1-+ - S xy,/.I h sym - ij,lm 'l-'ij' W ere Sij~m = im L (~) pq Eilp Ejmq IJlpq, 
pq 

y> 0, 

(2.179) 

and Eijk = J~ll hi(ç) hj(ç) hk(ç) dç, as defined in Appendix C. Once the coefficient 

matrices S0~lm are evaluated, they should be properly added to the elements of Aijk,lmn in 

(2.54) for nodes on the symmetry plane. 

~ Case: y < 0 

U sing the same convention for () as before, along the negative side of the xy-plane we 

have 

() = 7r, and n= ëo. 

Therefore, 

VIP· n = ~ ~:. (2.180) 

We know that in polar coordinates, (r,7r) = (-r, 0). So, using the polar definition of 

acoustic potential, Eq. (2.172), we obtain 

zm . t 
VIP' n = -- cp(x, y) e-tW 

, 

y 

and the boundary integral becomes 

I~m = iml_ (:0) cp1/J df, 

(2.181) 

(2.182) 
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which is the same as Eq. (2.176). So, following a similar procedure, the boundary integral 

for faces below the x-axis will be 

j- - S xy ",! where 
sym - ij,lm 'f'ij' y < 0, 

(2.183) 

Equations (2.179) and (2.183) indicate that the surface integral (2.168) will he zero 

when there are no azimuthal modes, i.e. when m = 0, irrespective of the state of radial 

modes. This is to be expected, because radial modes cause perturbations that are axisym­

metric with respect to the x-axis. Therefore, for such modes the normal component of 

acoustic velocity, 'V q> • n, will be zero on any plane parallel to the x-axis, such as the 

xy-plane. 

~ Case: y = 0 

In deriving equations (2.179) and (2.183), the assumption that y ~ 0 was made. That 

is, the possibility of having any points on the x-axis was excluded. Obviously, such cases 

could happen, making the integrals in (2.176) and (2.182) singular. To resolve the sin­

gularity, numerical integration of boundary integrals involving such singular points are 

performed at the points of a staggered grid based on Gauss-Chebyshev (GC) points instead 

of Gauss-Chebyshev-Lobatto (GCL) points. 

Define the set of N Gauss-Chebyshev points as6 

~. _ _ [(2i + 1 )1f] 
a t - cos 2N ' i = 0, ... ,N -1, (2.184) 

where N is the number of GCL points used in the spectral grid. The interpolation function 

based on Chebyshev polynomials, Tn(a), collocated at N Gauss-Chebyshev points is [18] 

(2.185) 

6If the number of Gauss-Chebyshev points are taken to be the same as that of GeL points, i.e. N + 1, 

collocation points will be introduced on the x-axis, and therefore the problem of singularity will persist. 
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where êo = 2 and ên = 1. Therefore, the boundary integral for singular points becomes 

where SA

xy -,jm~(PO) E·l-E· -IJI--ij,lm -. ~ __ ~p Jmq pq, 
fj{j y pq 

(2.186) 

and Eijk = J~ll hi(ç) hj(ç) hk(ç) dç. Variables Po and y and the Jacobian !JI are evaluated 

at the GC points (p, q) using a tensor-product approximation at the GeL points defined 

with interpolating functions in (2.47). It should be noted that any face on the plane of 

symmetry that intersects the x-axis may not necessarily have a GeL collocation point on 

the axis itself. So, the singularity of integral in (2.176) or (2.182) will depend on the shape 

of the grid on the plane of symmetry and the number of GCL points used. 

2.5 Construction of the Spectral Grid 

To build the spectral grid corresponding to the coordinates Xijk in (2.38) from the 8-node 

hexahedral finite element grid, an algebraic method is used. Aigebraic grid generation 

methods, which are based on interpolation, are generally preferred over methods based 

on solving partial differential equations for two main reasons: 1) they are much faster to 

compute, and 2) they allow greater control over the location of grid points inside the domain 

[49]. 

The general framework for algebraic grid generation is the transfinite interpolation 

(TFI). Introduced by Gordon and Hall in the early 1970's, TF1 is based on interpolating 

a domain using the information about its primitive curves, i.e., the curves that form the 

domain [34, 35]. The term "transfinite" refers to the fact that interpolation matches the 

primitive curves over a nondenumerable (transfinite) number of points, rather than at only 

a finite number of distinct points, as in most c1assical interpolation methods. 

The building block for the TFI method is the unidirectional interpolation along a curve. 

Consider Figure 2.7, which shows the region V bounded by four curves given parametri­

cally as F(Çi, TJj), i, j = 0, 1, where F is a vector function, and ç and TJ are the parameters. 

We now define the interpolation along the vertical curves 
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Figure 2.7: Curves representing a typical two-dimensional domain, V. 

1 

X(Ç,17) = L 1/Jl(Ç) F(6, 17), (2.187) 
1=0 

where x(ç, 17) = (x, y) are the coordinates in the physical plane, and 1/J(ç) are the Lagrange 

interpolating functions satisfying the cardinality condition, 1/J i (çj) = Oij, with Oij being the 

Kronecker delta. Using this condition, it can be verified that (2.187) reduces to 

(2.188) 

along the vertical curves, Çi = const. That is, (2.187) interpolates each curve entirely and 

over a transfinite number of nodes. Interpolation along horizontal curves can be represented 

in a similar way 
1 

X(Ç,17) = L 'Pm(17) F(ç, 17m), (2.189) 
m=O 

where 'Pm ( 17) are the Lagrangian interpolants, as before. 

It is c1ear that (2.187) and (2.189) are in fact unidirectional interpolations because they 

interpolate x( ç, 17) along vertical or horizontal curves, only. AIso, they can be interpreted 

as projection operators, Pt; and P'fJ' respectively, 

1 

Pt;(F) = L 1/J1(Ç) F(ç[, 17), (2.190) 
[=0 
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1 

P1l (F) = 2: 'Pm(11) F(Ç-, 11m), (2.191) 
m=O 

because they satisfy the so-called idempotent property, p2 = P. Functions'l/J and 'P are 

called blending functions - the interpolation is built as a blend of primitive curves through 

these functions. 

We now move to build a multi-directional or planar interpolation by introducing the 

tensor product operator 

1 1 

X(Ç-,17) = (P~P1l)(F) = 2: 2: 'l/J1(Ç-) 'Pm(11) F(Ô, 17m), (2.192) 
1=0 m=O 

which interpolates F at the corners of the domain only, and not along the primitive curves, 

in general. To verify this, note that at any corner point (Ç-i' 17j), i,j = 0, 1, (2.192) becomes 

(2.193) 

where we have used the cardinality condition. This means that interpolation matches the 

curves at the points of intersection, satisfying the consistency condition. However, along a 

horizontal curve (17j = const.), for example, (2.192) becomes 

1 

X(Ç-,17j) = 2: 'l/Jl(Ç-) F(Ç-l, 17j), (2.194) 
1=0 

which is an exact fit only at collocation points of 'l/Jl and not along the entire curve, in 

general, unless F ( ç- , 11 j) is linear. 

To build a planar or transfinite interpolation that interpolates the entire region V, the 

Boolean sum of unidirectional operators must be used, defined as 

(2.195) 

It is easy to verify that (2.195) matches F on the nondenumerable set of points comprising 

the boundary of V. A generalization of (2.187) and (2.189) can be obtained when V is 

defined using M and L curves in the ç-- and 11-directions, respectively. In that case, the 
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operators become 

L-l 

P~(F) = L ~h(t;,) F(f;,z, 1]), (2.196) 
[=0 

M-l 

P1/(F) = L 'Pm(1]) F(t;" 1]m), (2.197) 
m=O 

where 'l/J and 'P are the Lagrange interpolating polynomials of order (L -1) and (M -1), 

respectively. Using (2.195), an interpolation of the region D can be obtained, which is 

transfinite along L + M curves. 

Similarly, one can extend this concept to three dimensions assuming that M, L, and N 

curves are used to interpolate a hexahedral region in the t;,-, 1]-, and (-directions, respec­

tively. Using F(t;" 1], () to represent the parametric form of the curves, the projectors then 

take the form 

L-l 

P~(F) = L 'l/J[(t;,) F(f;,z, 1], (), 

[=0 

M-l 

P1/(F) = L 'Pm(1]) F(t;" 1]m, (), 
m=O 

N-l 

Pç(F) = L 19n(() F(t;" 1], (n), 
n=O 

(2.198) 

(2.199) 

(2.200) 

with the transfinite interpolation along M L+ MN + LN curves given by the triple Boolean 

sum 

x(t;" 1], () = (P~ EB P1/ EB Pç)(F), 

= (P~ + P1/ + Pç - P~P1/ - P~Pç - P1/Pç + P~P1/Pç)(F). (2.201) 

We now proceed with the details regarding the construction of the spectral grid from 

the 8-node hexahedral elements. We begin by assuming that only linear blending functions 

are used, Le., M = L = N = 2. Therefore, aIl is needed is the parametric description of the 

(2 . 2 + 2 . 2 + 2 . 2) 12 edges that form the hexahedral elements, Fe (t;" 1], (). The linear 
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blending function, 1'(0"), is 

{ 

1'0(0") = (1 - 0")/2 

1'1(0") = (1 + 0")/2 ' 
0" E [-1, +1], 

with 0"0 = -0"1 = -1. So, the face projectors become 

the edge projectors 

1 

Pç(Fe) = L 1'i(Ç) Fe(Çi' 7], (), 

i=O 
1 

P7)(Fe) = L 1'j(7]) Fe(ç, 7]j, (), 
j=O 

1 

P((Fe) = L 1'k(() Fe(Ç, 7], ù), 
k=O· 

1 1 

PçP7)(Fe) = L L 1'i(Ç) 1'j(7]) Fe(Çi, 7]j, (), 
i=O j=O 

1 1 

PçP((Fe) = L L 1'i(Ç) 1'k(() Fe(Çi, 7], (k), 
i=O k=O 

1 1 

P7)P((Fe
) = L L 1'j(7]) 1'k(() Fe(ç, 7]j, (k), 

j=O k=O 

and the vertex projector 

111 

PçP7)P((Fe
) = L L L 1'i(Ç) 1'j(7]) 1'k(() Fe(Çi, 7]j, (k). 

i=O j=O k=O 

Let 30' be the set of Gauss-Chebyshev-Lobatto points 

30' = {O"e 1 O"e = - cos (ôr/N), f = 0, ... , N}, 
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(2.202) 

(2.203) 

(2.204) 

(2.205) 

(2.206) 

(2.207) 

(2.208) 

(2.209) 

(2.210) 

defined in [-1, + 1], where N is the order of polynomial approximation. The spectral grid 

is then a mapping of the nodal set 3 = 3 ç x 37) x 3( in the reference element, Q, onto the 

hexahedral elements in the physical space. That is, 

(2.211) 
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In practice, construction of the spectral grid can be done more easily by first building GeL 

points along individual edges, and then use face projectors of the form 

X(Ç"i, Tl, () = (P1/ EB Pd (Fe(Ç"i, 1], ()), 

x(Ç", 1]j, () = (Pç EB Pd (Fe(Ç", 1]j, ()), 

x(Ç", 1], (k) = (Pç EB p1/)(Fe(Ç", 1], (k)), 

i = 0,1, 

j = 0,1, 

k = 0,1, 

(2.212) 

(2.213) 

(2.214) 

to build the nodes on the faces. Then, the interior nodes are created using a Boolean sum, as 

in (2.201), defined over the interior nodal set 3 = 3ç X 31/ x 3" where 3(1 = Sa \ {O"o, O"N}' 

It is worth mentioning that if the parametric curves that define the hexahedral elements, 

Fe(Ç", Tl, (), are alllinear, then Pç = P1/ = Pc, andgiven theidempotentproperty, transfinite 

interpolation, Eq. (2.211), reduces to the familiar trilinear interpolation 

1 1 1 

(x, y, z)e = L L L li(Ç") Ij(1]) Ik() Fe(Ç"i' 1]j, (k) 13' 
i=O j=O k=O 

(2.215) 



Chapter 3 

Parallelization 

3.1 Introduction 

With the continuous increase in the computational power of microprocessors, which are 

expected to roughly double every 18 months (according to Moore's law [72]), scientists 

have found the necessary tools at their disposaI to taclde more realistic problems that re­

quire large-scale intensive calculations. This includes simulation of larger domain size, 

using tiner grids, problems that are computationally intensive, such as the direct numerical 

simulation (DNS) of turbulence, or a combination thereof. 

In computational aeroacoustics, accuracy requirements of the numerical scheme lead 

to larger amount of computations due to the increased size of the stencil or the higher 

order approximation being used. This is specially true for spectral methods, which employ 

high-order polynomials that have a global support, i.e., support over all the grid points 

within the element. This, combined with the increased size of the computational domain 

for realistic simulations, necessitates the use of multi-processors for parallel computations 

and subsequently a very large memory. 

In the following sections, we briefly discuss about different computer architectures and 

then introduce domain decomposition method as a way of solving large-scale problems in 

paraUel. We then continue by introducing sorne metrics to access the parallel performance. 

55 
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The material in this chapter sets the stage for a detailed discussion of the methods used for 

the solution of the meanflow and acoustic problems, which are presented in Chapter 4. 

3.2 Parallel Computer Architectures 

Given the fact that in a parallel computer calculations are done on a set of processors, one 

can conceptualize two different approaches in terms of performing the operations. The 

first approach, called single-instruction multiple-data (SIMD), requires that aIl processes 

perform the same instruction simultaneously but on different datasets in lockstep. This 

concept, which was used in the first generation of para1lel computers, was later replaced 

by the more flexible multiple-instruction multiple-data (MIMD) approach, in which syn­

chronization is not a constraint. As a result, multiple instructions could be carried out 

on different processors, each with its own set of data. The majority, if not aIl, of CUITent 

parallel computers, inc1uding the networks of workstations and Boewolfs, use the MIMD 

concept because of its flexibility in handling data. 

Categorization of parallel computers can also be done independently based on the re­

lation between the processors and the memory, giving rise to the shared-memory and the 

distributed-memory machines. In the former, Figure 3.1, each processor has a direct access 

Shared Memory 

Figure 3.1: Schematic diagram of a shared-memory machine. 

to the contents of the global memory (the shared data) almost simultaneously, while in the 

later, Figure 3.2, each processor has direct access to only a local (distributed) portion of 
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Figure 3.2: Schematic diagram of a distributed-memory machine. 

the memory, with the interconnection between them provided through a global commu­

nication network. The newer generation of parallel computers usually use a combination 

of these two concepts. In this new approach, parallelization is achieved through a set of 

distributed nodes, with each node operating on a shared-memory concept among typically 

2-12 processors. 

In distributed-memory machines based on the MIMD paradigm, the most commonly 

used method of performing computations is the single-program multiple-data (SPMD) ap­

proach. Here, each processor runs the same copy of the program with a different set of 

data/instructions associated with it. This means that, in general, variables and arrays within 

the program will have different values during the execution. In order to exchange data 

among the processors, one makes calis to a library of message passing routines, which in 

their primitive form, are simply a calI to a send() or a receive() procedure. Communication 

among processors creates a loose synchronization, mimicking the SIMD concept, while 

taking advantage of the MIMD flexibility. 

The message passage routines, which are standardized, eliminate the need to create 

extensions to the original programming language, and therefore lead to programs that are 

easily portable. There are currently two well-known standards to handle message passing, 

i.e., MPI (Message Passing Interface) [37] and PYM (Parallel Virtual Machine) [31], with 

the PYM tailored more toward a network of "heterogeneous" workstations. MPI is the 

result of a collective effort within the parallel computing community to define a standard 

for message passing communication among the processors in distributed parallel environ-
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ments. For this reason, it is a very popular choice among paralle1 programmers, gradually 

replacing PYM. 

On shared memory machines, the standard of choice is Open MP. It comprises a set of 

compiler directives that implement parallel processing in a C, C++, Fortran77 or Fortran90 

program. The directives allow the user to mark areas of the code, such as do, while or for 

loops, which are suitable for parallel processing. The directives appear as a special kind of 

comment, so the program can be compiled and mn in seriaI mode. However, the user can 

tell the compiler to "notice" the special directives, in which case a version of the pro gram 

will be created that mns in parallel. Thus the same pro gram can easily be mn in seriaI or 

parallel mode on a given computer, or mn on a computer that does not have Open MP at all. 

In what follows, our reference to the computer architecture is that of a distributed memory 

machine. 

In this work, we have made extensive use of the MPI and the PETSc (Portable, Ex­

tensible Toolkit for Scientific Computation) software [4] for parallel implementation of 

our acoustic and mean flow problems. PETSc is a library of basic linear algebra, higher 

level primitives, distributed data handIing routines, and solvers for the numerical solution 

of PDE's in paralle1, with the MPI as its underlying message passing protocol. Use of the 

PETSc library greatly simplifies the task of parallelization by allowing the programmer to 

. concentrate on the algorithm rather than on implementation of individual tasks. 

3.3 Domain Decomposition Methods 

A very large c1ass of methods for parallel solution of PDE's are based on the domain de­

composition method (DDM). In these methods, as the name implies, the computational 

domain is first broken down into smaller sections, called subdomains. The solution pro­

cedure then consists of assigning one or more subdomains to each processor with proper 

matching conditions enforced between them through the interconnecting network. Due 

to their segregated nature, domain decomposition methods are ideal candidates for use on 
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distributed memory machines because the solution method and the computer architecture 

follow the same philosophy. 

Domain decomposition is also the method of choice when solving problems of different 

physical nature that coexist within the same domain (e.g., conjugate heat transfer), when 

different solution methods are available for each subdomain, or when there is simply a need 

to distribute the computationalload across several processors. Therefore, the principal ad­

vantage of the domain decomposition methods is enhancement of parallelism and localized 

treatment of complex and irregular geometries. 

In any domain decomposition method, one can distinguish three levels of communi­

cation. This is shown schematically in Figure 3.3. The first level corresponds to serial 

Figure 3.3: Schematic diagram showing the three levels of communication in a distributed 

memory machine. 

computations within each CPU, where the performance is dominated by the dock rate of 

the CPU and the speed by which the local memory is accessed. In a distributed memory 

machine, since each CPU has a direct access to its own memory (usually enhanced by the 

use of cache) fast access to the local memory is not a major concem. The major factor in 

improving the performance is then getting the most out of the CPU's computational power 

by reducing its down time. This is accompli shed through the use of robust algorithms that 

improve pipelining by constantly feeding the data to the processor. 

The second and the third levels of communication are the local and the global, respec-
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tively. The local communication, represented by opposing arrows in the figure, corresponds 

to the communication between neighboring processors/domains, while the global commu­

nication, represented by the wire grid, inc1udes the communication between any two or 

more processors within the network. 

The cost associated with the local and/or global communications depends on the time 

it takes to pass a message within the network. Theoretically, this can be represented by a 

linear formula 

(3.1) 

in which tc(m) is the communication time for an m-word message, and ta is the average 

time to performan arithmetic operation such as addition or multiplication. The constants 

Œ and f3 are the message start-up time, also called latency, and the message transform 

rate, respectively. While ta depends on the speed of a CPU in performing an arithmetic 

operation, Œ and f3 depend on the bandwidth of the network and the speed at which the 

memory can be accessed. In general, Œ » f3, indicating that it is more efficient to pass a 

smaller number of long messages (of the order of m = 200), instead of a large number of 

very short messages. 

The communication time given by equation (3.1) is only valid when the number of 

processors is small, or when communication in the network is very efficient. Otherwise, 

barrier costs in the network, i.e., the co st of ensuring safe access to the memory, will gen­

erally degrade communication time by a factor of vp or log p, where p is the total number 

ofCPU's. 

Given the above discussion, one can deduce that the highest co st associated with par­

allelization in domain decomposition methods is due to the global inter-processor commu­

nication. Global communication is generally a high bandwidth process, i.e., one in which 

the number of messages travelled within the network are of the order of the problem size 

(total number of unknowns). This is in contrast with the low bandwidth communication, 

where the amount of messages exchanged is of the order of the number of processors and 

therefore much less costly, as in the local communication between neighboring domains. 
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The performance of an algorithm used in domain decomposition, however, does not 

solely depend on minimizing global communication. For example, consider the use of 

block Jacobi as a preconditioner for the solution of subdomain problems. Given the local­

ized nature of this preconditioner, creating and implementing it can be done without any 

need for global communication. However, this will adversely affect the overall iteration 

count because convergence is directly related to the amount of information exchanged at 

the globallevel between various subdomains. So, an optimum algorithm is one that min­

imizes the level of seriaI communications on one hand, while on the other hand creates a 

suitable balance betweeri the amount of local and global communications. 

When developing an algorithm, one should also pay attention to the concept of scal­

ability, i.e., maintaining the performance as the number of processors is increased. As a 

general rule, scalability is degraded with the increase in the number of processors/domains 

without an increase in the problem size. This is due to the fact that further partitioning 

of the domain increases their segregation and reduces the global exchange of data among 

them, an essential factor for a rapid convergence. To remedy this, one has to ensure that a 

proper level of global communication is maintained among processors as their number is 

increased, or 

3.3.1 Partitioning of the Domain 

In domain decomposition methods, proper partitioning of the domain among processors 

is of fundamental importance. By "proper", we mean a partitioning such that the amount 

of computations to be performed by each processor will be roughly the same, while the 

inter-processor communication is kept to a minimum. 

Partitioning begins by first constructing a graph representing the connectivity of the 

nodes for the finite element grid upon which the spectral grid is built. As shown in Figure 

3.4, each graph is made of vertices and edges, where each vertex represents an unknown 

and an edge is built between any two vertices Vi and Vj, if the corresponding entry in the 

global matrix aij is nonzero. In the context of the finite element method, this graph is 
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1 

Figure 3.4: An unstructured graph of a sparse matrix. 

basically a two-dimensional graph of the connectivity table. 

Assuming that the computational domain is to be partitioned according to the number 

of processors, p, i.e., into p subdomains, the problem then reduces to finding a partition­

ing in which the number of the vertices (unknowns) in each subdomain are (nearly) equal, 

while the number of the edges that are cut through are minimized. This will lead to a 

load-balanced partitioning since each processor will have almost the same amount of com­

putations to perform (equi-distribution of vertices) and the global inter-processor commu­

nication (represented by the number of edge-cuts) are kept to a minimum. So, the problem 

of partitioning of the domain reduces to a multi-constraint optimization problem. 

In our work, in order to partition the domain, we have used a publicly available soft­

ware, called ParMETIS, developed by Karypis and Kumar [47]. Without going into the 

details, here is a brief description of how the software works. Partitioning is based on par­

allei implementation of an algorithm that first constructs the graph of the finite element grid 

using the connectivity information, as explained above. It then uses a multi-level refining 

approach, where at each level neighborlng vertices are collapsed to obtain smaIler, sim­

pler graphs. At the last level, the smaller, refined graph is very quickly partitioned using 

the weights corresponding to the number of vertices collapsed on each other as a metric 

representing the computational load. Now, reversing the cycle, the method successively 

uncoarsens the partitioned refined graph to create a partitioning for the original grid. This 

procedure is shown schematically in Figure 3.5. 
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O@ 
Initial Partitioning 

Figure 3.5: Multi-level partitioning of a graph. 

The output of ParMETIS is a vector V of size E, E being the total number of elements, 

with entries of the form V ( e) = p, where p is the processor number to which element 

e belongs. That is, partitioning is provided in terms of the element distribution in each 

subdomain. 

3.3.2 Overlapping vs. Nonoverlapping Methods 

Domain decomposition methods, which coyer a wide range of algorithms, are primarily 

distinguished by whether the individual subdomains have any overlaps or are disjoint. The 

first domain decomposition algorithm, due to H.A. Schwarz (1870), was based on an over­

lapping concept. Although originally intended to prove existence of harmonie functions on 



CHAPTER 3. PARALLELIZATION 64 

r - -~---"'------, 
1 " 

12: \ 
\ 

!It , 

Figure 3.6: Original figure of Schwarz for overlapping subdomains. 

irregular regions which are union of overlapping subregions, Schwarz method later became 

the corner stone for development of a wide range of domain decomposition methods after 

computers, and subsequently parallel computing, became available. 

Due to its fundamental importance, we explain this algorithm for the solution of the 

problem 

Cu=j, (3.2) 

in n = nI U n2 (Figure 3.6), where 12 is a differential operator and u is the vector of 

unknowns. Let an represent boundary of the domain n on which u is given as a Dirichlet 

boundary condition, with rI being the portion of an1 that lies within the overlapping region 

rI = anl nn2, and likewisefor r2. Aniterative process is thenconstructed by first solving 

for u~ in Oh 

Cu1 = j 

U
k - U k - 1 
1 - 1 

and then using the newly obtained value of u on r 2 to solve for u~ in n2, 

Cu~ = j 

(3.3) 
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Figure 3.7: Nonoverlapping subdomains. 
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(3.4) 

until convergence is reached. Here k is the iteration number. This method is called the 

alternating Schwarz method due to the altemating nature of the solution between subdo­

mains. 

It is readily observed, and can be proven mathematically [13], that the convergence rate 

of the above iterative method is accelerated as the size of the overlap region is increased. In 

fact, in the limit when the size of the overlap region is a maximum, i.e., when n = nI = n2, 
the solution will be obtained in only one iteration 1. The second observation is that in 

overlapping methods, solution within the overlap region is an inherently iterative process, 

while within each subdomain both an iterative or a direct method could be used. As will 

be discussed later in section 4.1, we will use a variant of the Schwarz algorithm, called 

additive Schwarz method (ASM) for the solution of the mean flow equations. 

The absence of overlap region between subdomains leads to a c1ass of nonoverlapping 

domain decomposition methods, generally referred to as substructuring or Schur comple­

ment methods. As shown in Figure 3.7 for a two-subdomain partition, the interface bound­

ary r 3 is the medium through which the information between subdomains is exchanged. In 

another words, the equations corresponding to the points on the interface boundary r 3 will 

contain all the couplings between the degrees of freedom of the global problem. 

10ne should note that increasing the size of the overlap region leads to more computations, which in tum 

may offset the advantage of lower number of iterations. 
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Substructuring or Schur complement methods are based on rearranging the equations 

such that equations corresponding to the unknowns on the shared boundaries are solved 

first, followed by the solution of a Dirichlet problem in each subdomain independently. We 

will use such a method for the solution of the acoustic problem, as explained in section 4.2. 

3.4 Parallei Performance 

The cost associated with para1lelization is primarily dependent on two factors: 

1. load balancing, 

2. inter-processor communication. 

As mentioned earlier in section 3.3, there are three levels of communication in a paral­

leI computation, i.e., seriaI, local, and global. Load balancing represents the serial part 

and plays a significant role in paralle1 efficiency by ensuring that each processor performs 

roughly the same amount of computations, while processor idle times are kept to a min­

imum. The second factor, i.e., communication, refers to the cost of exchanging or pass­

ing messages among processors at the local (between neighboring subdomains) and at the 

global (in the entire domain) levels. 

A very important parameter which directly influences load balancing and communica­

tion is the algorithm. For example, during seriaI calculations within each subdomain an 

efficient algorithm will ensure that variables that are aIready brought into the cache are 

used as many times as possible in order to reduce memory access time. Or, at the global 

level, it is sometimes more efficient to perform a certain operation on an the processors 

rather than assigning the job to only one processor and later distributing the result among 

the rest. AIl these and many other issues are determined by the algorithm, testifying to its 

central role in improving the performance. 



CHAPTER 3. PARALLELIZATION 67 

To measure the efficiency of a parallel computation, generally two different but closely 

related metrics are used. The first is the parallel efficiency, defined as 

(3.5) 

Here, p is the total number of processors, h the time to execute the algorithm on a single 

devoted processor, and t p the time it takes to execute the same algorithm on p processors. 

In an ideal situation, T}p = 1. However, in practice, T}p usually lies within the range 0.8 - 0.9 

for most problems. 

The second widely used parameter is called the speed-up, and is given by 

(3.6) 

It is expected that at the very least, 8Sp /8p > 0, i.e., adding more processors willlead to 

an overall faster computation. In the ideal case, i.e., when T}p = 1, we get Sp = p. That is, 

running the same algorithm on p processors wi11lead to a p-fold increase in the speed of 

computations. Speed-up is usually measured by plotting Sp vs. p. Ideally, this curve should 

have a slope of one. However, it is not unexpected that in certain situations one could ob tain 

a slope greater than one, indicating a 'superlinear' speed-up. Superlinear speed-up usually 

happens when the nature of the problem is such that the algorithm responds better to a 

parallel implementation than a seriaI one (cache-effect). It is also worth mentioning that 

since both t l and t p refer to the same algorithm, parallel efficiency or speed-up are only 

weak: indicators of the quality of the algorithm. 
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Solution Method 

ln this chapter, the methods used for the solution of the mean flow and acoustic problems 

are discussed. Solution of the mean flow problem is obtained using an overlapping domain 

decomposition approach, where the Conjugate Gradient method is used with the additive 

Schwarz as the preconditioner. 

Solution of the acoustic problem is based on the Schur complement method, which is 

a nonoverlapping technique. Mter presenting the Schur method, preconditioning of the 

reduced Schur system is discussed, where we propose a new preconditioner followed by 

sorne numerical experiments to justify its suitability. Presentation of the algorithm for 

implementing the Schur method and the preconditioner conc1ude this Chapter. 

4.1 Solution Method for the Mean Flow Problem 

The discretization of equations (2.133) and (2.140), which are weak: forms of a Laplacian 

(continuity equation) in the form of a Jacobi or a Newton iteration, leads to a sparse linear 

system of equations 

Au=j, (4.1) 

68 
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where the coefficient matrix, A E }Rnxn is both symmetric and positive definite (SPD) 1. 

Such systems are best solved using the Conjugate Gradient (CG) method [3]. 

Theoretically, for any SPD matrix A, CG will converge to the exact solution in 'n' 

iterations. In practice, however, convergence is achieved in much less number of itera­

tions given that a 6-10 order of magnitude drop in the relative error is generally sufficient. 

The method of conjugate gradient belongs to a set of iterative methods for the solution of 

arbitrary matrices, called accelerators or Krylov subspace methods [86]. 

In any iterative method, reducing the number of iterations leading to a converged so­

lution not only depends on choosing a proper solution method, but also to a large extent 

on the conditioning of the coefficient matrix. The conditioning of a matrix, directly related 

to its eigenvalue distribution, is an indication of the error created in the results when op­

erations with the matrix are involved. In any computer, arithmetic operations, which are 

performed at a discrete level, represent a perturbation since they are not exact. So, if a ma­

trix is well-conditioned, then the error in computations such as multiplication by a vector 

will be minimal, whereas for an ill-conditioned matrix these errors will be magnified and 

contaminate the solution. Given the fact that matrix-vector products are at the heart of any 

iterative algorithm, it becomes evident that conditioning will have a direct effect on error 

magnification and propagation, and therefore on the speed of convergence. 

To represent the conditioning of a matrix A, a metric called the condition number is 

used. It is defined as 

K(A) = IIAIIIIA-1II, (4.2) 

where Il . Il is sorne matrix norm. This definition, however, is almost never used since it 

requires evaluation of the inverse matrix, which is a costly operation. Instead, the ratio of 

the largest to smallest singular value of A is used, 

K(A) = (Jmax, 

(Jmin 
(4.3) 

1 Matrix A is called positive definite, if for any nonzero vector x we have x T Ax > 0, which translates Ïnto 

aU its eigenvalues being positive real. 
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where the singular values are the square roots of the eigenvalues of AH A, where AH is the 

conjugate transpose. In the case of a symmetric matrix, AH = AT, and singular values are 

identical to the eigenvalues of A. 

For any matrix A, the condition number K(A) 2:: 1, where the equality holds when A is 

the identity matrix. As a mIe of thumb, if K(A) = O(10 t ), then t digits of accuracy may 

be lost during computations involving A. In another words, the condition number deter­

mines the maximum possible loss in accuracy due to the round-off errors for calculations 

involving A. 

Given the significant adverse effect the ill-conditioning of a matrix can have on the 

convergence rate of any iterative method, it is often recommended or even necessary to use 

preconditioning as a way of alleviating this effect. Preconditioning refers to a procedure in 

which a different yet equivalent system of equations 

Au=j, (4.4) 

is solved, such that K(A) « K(A). This can be achieved, for example, by premultiplying 

Eq.(4.1) by the matrix M-l, where M, called the preconditioner, is a matrix that is easily 

invertible, and such that M-1 approaches A-l in sorne sense. Therefore, in (4.4) we have 

A = M-1 A and j = M-l J.The simplest example of Mis a diagonal preconditioner, 

i.e., M = Diag(A). In the extreme case when M = A, it is clear that K(M-1 A) = 1, and 

any iteration applied to (4.4) will converge in only one iteration. Preconditioning can also 

be applied by multiplying (4.1) by M-l from the right, or from both the left and the right 

(split preconditioning). 

To solve the mean flow problem, a preconditioned CG method is used. Even though 

preconditioning will increase the computational cost of every iteration, the overall savings 

due to smaller number of iterations will offset the increased cost. Given that the solution 

is sought in the context of a domain decomposition method, it seems natural to choose 

a method for building the preconditioner that takes advantage of this fact by using, e.g., 

the information available in each subdomain to build a preconditioner for that subdomain. 

This approach has the advantage that much of the work in building the preconditioner will 



CHAPTER 4. SaLUT/ON METHOD 71 

be performed locally, therefore minimizing the expensive global communication between 

processors. 

To explain the preconditioning process used for the solution of the mean fiow problem, 

solution of the system 

Au=j, (4.5) 

in the simple two-domain region (Fig. 3.6) is considered, assuming that grids in the overlap 

region match each other, so that interpolation from one grid to another will not be needed. 

Using the altemating Schwarz algorithm presented in (3.3)-(3.4), assuming that the nodes 

on both sides of the overlap region have no direct coupling, leads to a two-step iterative 

method [89] 

(4.6) 

(4.7) 

in which 0, 0 1, and O2 represent the interior nodes of their corresponding domains only, 

with the contribution from the boundary conditions inc1uded in fI and f2. Iterations (4.6) 

and (4.7) can be written in a more compact form, if at each step the values of u that are not 

changing in that iteration are also inc1uded. Doing so changes the iteration to the following 

form 

(4.8) 

(4.9) 

which can be interpreted as a block Gauss-Siedel method with an overlap. 

We now introduce the restriction matrix R - a rectangular matrix containing only zeros 

and ones (Boolean operator) - that maps between the local and the global variables. That 

is, we have 

and (4.10) 
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The effect of RT , called the prolongation matrix, is a reverse mapping from the local to 

the globallevel, or the familiar assembly process in the finite element method. In parallel 

computing, the actions of R and RT on a vector are that of scatter and gather operations, 

respectively. Using this notation, we can write (4.8) and (4.9) in the following compact 

form 

(4.11) 

(4.12) 

where Bi = R[ (~ARn -1~. Therefore, the application of Bi to a vector v, Biv, involves 

a restriction to the local values (Vi = ~v), solution in the local subdomain (Wi = An:Vi), 

and a transformation back to the globallevel (w = R[ Wi). This two-step method can now 

be easily combined into a single-step method by eliminating U n+1/2 to yield 

(4.13) 

Equation (4.13) is called the multiplicative Schwarz method 2 applied to a two-domain re­

gion. A c10ser look reveals that this iteration is indeed a Richardson iteration with the 

preconditioning matrix given by 

(4.14) 

Due to the presence of the B2AB1 term, this method does not provide a symmetric 

preconditioning and also is not fully parallel (although one can remedy this by applying 

the preconditioner in the reverse order in altemate iterations). Both of these issues can be 

resolved, if one uses the simplified (and less accurate) preconditioner 

(4.15) 

which is caUed the additive Schwarz method (ASM) [16]. In the case of two subdomains, 

2The term multiplicative refers to the fact that B can be written in terms of the products of the (1 - B iA) 

operators, B = [1 - (I - B1A)(I - B 2A)]A-l. 
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Figure 4.1: Additive Schwarz preconditioner for two subdomains. 

the ASM can be written as 
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(4.16) 

which is simply a Richardson iteration with overlapping block Jacobi applied as a precon­

ditioner (Fig. 4.1). Generalization of the additive Schwarz method to many subdomains 

can be easily done by simply setting 

(4.17) 

Due to the symmetry of the system of equations (2.133) and (2.140), the additive 

Schwarz method provides a very suitable preconditioner for the solution of the mean flow 

problem. This is a preconditioner that is easy and relatively inexpensive to build, preserves 

symmetry, is fully parallelizable, and therefore very weIl suited for the solution of problems 

using the domain decomposition method. Development of the above preconditioner using 

the Richardson iteration was only used for demonstration purposes. In solving the mean 

flow problem, however, instead of using (4.16), which is a fixed-point iteration and known 

to have a very slow rate of convergence, the more optimum Conjugate Gradient method is 

used. 

Implementation of the additive Schwarz preconditioner and subsequently solving the 

system of equations in parallel using the CG method is done using the PETSc library 
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[4], with the information required for setting up the local domains Ani provided by the 

ParMETIS [47]. 

4.2 Solution Method for the Acoustic Problem 

The system of equations obtained through the assembly of matrices in (2.54) and (2.127) 

is a complex-valued system that unlik:e its mean flow counterpart is neither symmetric nor 

definite. Moreover, the system is ill-conditioned due to the choice of spectral method for 

discretization. An efficient approach for solving a large system of equations, of the order 

of 0(105) and more, is an iterative method. Direct solution methods, even in parallel, will 

be at least several times more expensive, both in terms of memory usage and computation 

time. However, iterative solution of the CUITent acoustic problem still poses a challenge 

given the ill-conditioning, nonsymmety and the indefiniteness of the global matrix. 

Among different approaches used by other researchers for the solution of systems with 

similar properties [27,63], we have chosen the Schur complement method. As briefly ex­

plained earlier in § 3.3.2, it is a nonoverlapping method based on domain decomposition, 

where solution of the original problem reduces to the solution of unknowns on interior 

boundaries of subdomains, which is usually 2-3 orders of magnitude smaller than the orig­

inal matrix, followed by a solution in each subdomain. This method is appealing because it 

is very weIl suited for parallei implementation on distributed memory machines. Moreover, 

the solution of the much smaller Schur system would be easier, for which a new type of 

preconditioning is proposed. 

4.2.1 Schur Complement Method 

First, we explain the method for two subdomains and later discuss its extension to arbi­

trary number of subdomains. Consider Fig. 4.2, where domain n is subdivided into two 

nonoverlapping subdomains nI and n2, with the proper boundary conditions applied on 

the exterior boundary, r. Denoting by 1 and B interior and interface boundary points, 
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Figure 4.2: Partitioning for two subdomains. 

respectively, the element matrix for subdomain 'i' can be written as 
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(4.18) 

where A J1 is the submatrix containing contribution of interior nodes on each other, An 

the submatrix containing contribution of interior nodes on boundary nodes, and so on. 

Rearranging the variables and the right-hand side vector in a similar manner, i.e. interior 

nodes followed by boundary nodes, we have in subdomain 'i' 

U(i) = {U(i) U(i)}.T and 
l 'B , 

Assembling equations for subdomains (1) and (2) yields 

A(l) A(l) (1) I?) II lB UI 

A(2) A(2) (2) 
- IF) II lB UI 

A(l) 
BI 

A(2) 
BI 

A(l) +A(2) 
BB BB UB I~) + 112

) 

which can be solved for boundary values UB using block Gaussian elimination 

o 

A(l) 
lB 

A(2) A(2) 
II lB 

o s 

(4.20) 

(4.21) 
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The matrix 8 thus obtained is called the Schur matrix and the corresponding system 

SUB = g, (4.22) 

is called the reduced Schur system. The Schur matrix is given by the sum of the Schur 

components of individual subdomains, SI and 82 , 

(4.23) 

and similarly for the right-hand side vector 

9 = g(1) + g(2) , where (i) _ f(i) _ A(i) A(i)-l
f

(i) 
9 - B BI II l' (4.24) 

Once the Schur system is solved and values at interface boundaries, UB, are known, one 

can easily obtain the solution within each subdomain by back substitution using (4.20) 

A (i) (i) + A(i) - f(i) 
IIUI IBUB-I, or U (i) - A(i) -1 (f(i) _ A(i) U ) 

l - II l lB B, i = 1,2. (4.25) 

It is c1ear from (4.25) that solution of interior variables is done independently within each 

subdomain and with no interaction between them. 

Let us now assume that computational domain n is subdivided into p disjoint subdo­

mains ni, i.e. n = Uf=l ni, and nf=l ni ~ 0. Therefore, the global matrix can be written 

in the following block form 

A(l) A(l) (1) 
f?) II lB U I 

A(2) A(2) (2) 
fF) II lB U I 

- (4.26) 

A(i) A(i) (i) fji) 
II lB UI 

A(l) 
BI 

A(l) 
BI ... A(i) 

BI 
f;A(i) 

BB UB f;f~) 

in which f; indicates assembly. U sing block Gaussian elimination, as before, the above 
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system can be reduced to 

A(2) 
II 

S 

where the last equation forms the Schur system. 
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(4.27) 

Define Ë4 as the restriction matrix which maps global boundary points to boundary 

points on subdomain 'i', 

(4.28) 

Ri is a rectangular matrix of size n~) x nB, containing only of zero's and one's, with n~) 

being the number of interface boundary points in subdomain 'i', and n B the total number 

of interface boundary unknowns in n. Using this operator, the Schur system in (4.27) can 

be written as 

p 

SUB = g, where and 9 = LRT g(i) , (4.29) 
i=l 

with S(i) and g(i) defined in (4.23) and (4.24). Once the Schur system is solved, unknown 

variables within each subdomain can be calculated 

(i) _ A(i)-l(!(i) _ A(i) (i)) 
U[ - II [ [BUB' i = 1,2, ... ,p. (4.30) 

At this point, the solution to the original system u = {U}l), U }2) , ... , U }i) , U B } T will be 

obtained. Equations (4.29) and (4.30) along with definitions in (4.23) and (4.24) provide 

the mathematical formulation for solution of the systems of equations using the Schur 

complement method. Details of implementation using these equations are presented at 

the end of this chapter. 

It is worth mentioning that one could apply the Schur complement method repeatedly, 

in what is called a multi-Ievel domain decomposition method. That is, S, could be used to 
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build a lower-Ievel Schur system by further partitioning of subdomains. After applying this 

method several times, the Schur matrix of the last level will be small enough to be solved 

using a direct method or an iterative method with a robust preconditioner. Marching back­

wards, one can then obtain the solution to the original system. A version of this method, 

called recursive multilevel solver, is discussed in detail by Li and Saad [58], and is public1y 

available as the "pARMS" package. 

4.2.2 Preconditioning 

Solution of the reduced Schur system is expected to be easier than the original matrix due to 

the fact that it is denser and generally better conditioned, especially for elliptic differential 

operators. Solving this smaller system, however, still poses a challenge because the Schur 

matrix implicitly contains the couplings between various subdomains and therefore inherits 

the negative properties of the original system. Preconditioning, therefore, is considered an 

essential step, which will reduce the solution time (iteration count) and consequently offset 

the extra cost associated with reformulating the original problem into the Schur comple­

mentform. 

The task of building a suitable preconditioner for the Schur matrix is somewhat com­

plicated by the fact that S is almost never formed explicitly due to the high cost. Themany 

different preconditioners proposed by researchers, therefore, rely on the Schur complement 

matrices of individual subdomains or their components [79, 103]. 

Here, we discuss the Neumann-Neumann method (NN) [57], which forms the basis for 

our proposed preconditioner. This method relies on the simple observation that a suitable 

preconditioner M for the Schur matrix could be built by assembling the inverse Schur 

complements of individual subdomains. That is, 

(4.31) 
i=l 

where p is the total number of subdomains. 

For a better convergence, Schur complements of individual subdomains are weighted 
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by a diagonal matrix Di of size n~) x n~), whose components, dkik, are the inverse of 

the number of subdomains shared by node k on interior boundary ni. As a result, weight 

matrices satisfy the relation 
p 

"LR;iJJt = l, (4.32) 
i=l 

where 1 is the identity matrix. So, the final form of the Neumann-Neumann preconditioner 

1S 

(4.33) 
i=l 

ln applying (4.33), the action of Sil on a vector is calculated by solving a system involving 

A (i) and without explicitly forming Sil [89]. 

The Neumann-Neumann preconditioner derives its name from the fact that at each iter­

ation, 'p' Neumann problems has to be solved, one in each subdomain. That is, the action 

of Si-1 amounts to solving a discrete problem in ni with Neumann boundary conditions ap­

plied on its interface. Consequently, if ni is an interior subdomain, the Neumann-Neumann 

preconditioner will fail because it entails solving of a problem which is not well-posed 

because all boundary conditions are of Neumann type. The remedy is to apply a pseudo­

inverse, whose accuracy will strongly affect the convergence of the Schur System. On the 

positive side, the Neumann-Neumann method has the favorable characteristic that can be 

easily extended to multi-dimensional domains and unstructured meshes without any special 

modifications. 

In domain decomposition methods, the condition number of the preconditioned system 

is in general a function of the characteristic size of subdomains (H), characteristic element 

size (h), and coefficients of the PDE (more specifically, their variation along subdomain 

boundaries). An optimal preconditioner is, therefore, one that is relatively in sensitive to 

variations of the above parameters. For the NN method, the condition number for an elliptic 

operator is given by [57] 

(4.34) 

in which C is a positive constant. This bound c1early shows that convergence rate of the 
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NN method strongly depends on the relative size of subdomains and so will rapidly de­

teriorate (not scalable) as the number of subdomains are increased, i.e. as H ~ o. This 

deterioration is to be expected because in the NN method the only mechanism for propaga­

tion of information between subdomains is through their mutual boundaries. Increasing the 

number of subdomains will lead to interface boundaries that are only remotely attached, 

hence convergence slowdown. 

To resolve this problem and improve scalability, Mandel [68] proposed the balancing 

Neumann-Neumann (BNN) method by adding a coarse grid correction to (4.33). This 

correction resulted in faster communication between subdomains and led to a better con­

vergence rate, as reflected in the new bound for the condition number 

(4.35) 

where dependency on the number of subdomains has been greatly reduced due to elimina­

tion of the 1/ H 2 term. 

U sing a 3-step Richardson iteration, the BNN method is as follows 

k+l/3 uk -T 1 - k 
UB f-- B + (Ro So Ro)(g - SUB)' 

P 
k+2/3 

f-- k+1/3 + (2: RT fJ-s-1 fJ.i4) ( - S k+1/3) UB UB i ~ i ~ 9 UB , 

i=l 

uk+1 
B f-- U~+2/3 + (il!; SOl Ro)(g - SU~+2/3), (4.36) 

where preconditioning is balanced by applying the coarse grid correction in both the first 

and last steps. The restriction operator Ro is a rectangular matrix of size p x n B, which 

when multiplied by the global boundary vector U B retums the weighted sum of boundary 

variables for each subdomain. Components ofrow 'i' of Ro, i.e. weights, are therefore the 

inverse of the number of subdomains each point on interface boundary of ni shares. So, Ra 
can be easily built by properly assembling the diagonal of the weight matrices, Di. Having 

built Ro, the p x p coarse grid matrix, So, is obtained from 

(4.37) 
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The action of the coarse grid correction can therefore be interpreted as removal of the 

constant part of the low-frequency error from each subdomain at each iteration. 

Denoting by Bo and BNN the coarse grid and Neumann-Neumann preconditioner op­

erators, respectively, 

and (4.38) 

the balancing Neumann-Neumann method can be simplified to a one-step formulation 

(4.39) 

The BNN is considered a two-Ievel preconditioner. Single-Ievel methods, such as the 

Neumann-Neumann are efficient only for a small number of subdomains. When the num­

ber of subdomains increases, multi-Ievel preconditioners provide a better convergence rate 

because they eliminate or weaken dependency of the condition number of the precondi­

tioned system on the number of subdomains. As a result, the extra cost associated with 

adding extra levels is properly offset by significant reduction in the number of iterations 

and also by improved robustness. 

4.2.3 Proposed Preconditioner 

The method proposed here for preconditioning the Schur system is a modified version of the 

balancing Neumann-Neumann method. First, mathematical formulation of the proposed 

approach is discussed followed by sorne numerical experiments to show its suitability. 

Recall that the Schur complement for subdomain 'i' is 

(4.40) 

Ignoring the last term on the right side of the equation, one can approximate Si with the 

local matrix of interface boundary points. That is, 

(4.41) 
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This simplification will eliminate, at each application of preconditioning, two matrix -:-vector 

multiplications involving A ~~ and A ~~, and one (costly) matrix solve involving AIl. U sing 

(4.41), the modified NN (MNN) preconditioner operator is defined as 

(4.42) 

One would expect that, similar to the Neumann-Neumann preconditioner, convergence 

rate of the above preconditioner will worsen with an increase in the number of subdomains. 

So, following the same line of thought, one could combine the above preconditioner with a 

coarse grid solve. 

It should be pointed out that in the BNN method, Bq. (4.36), the last coarse grid precon­

ditioner was applied to preserve the symmetry of the Schur system. So, for nonsymmetric 

problems, such as the acoustic problem, one can simply eliminate the last step (or the first 

step). In such a case, (4.39) simplifies to 

(4.43) 

which is a multiplicative preconditioner. The equivalent preconditioner, using the proposed 

modified operator B M N N, is 

(4.44) 

Eliminating the last term leads to a preconditioner of additive type 

(4.45) 

So, the preconditioning will consist of a local operation within each subdomain repre­

sented by BMNN, followed by an operation involving Bo at the globallevel. Tests were 

conducted using both the multiplicative form, (4.44), and the additive form, (4.45). The 

results indicated a very negligible difference between the two approaches in terms of the 

rate of convergence. This is somewhat expected because B M N N is only an approximation 
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to the original operator B N N, and unlike exact operators where multiplicative form out­

performs the additive type, the changes here were insignificant. Therefore, for subsequent 

calculations only the additive form was used. 

The method in 4.45, being a modified version of the balancing Neumann-Neumann 

method possesses many of its desirable features. This includes straightforward extension 

to three dimensions and its applicability to irregular domains and unstructured meshes. A 

closer look at (4.45) also shows that the most expensive part of the preconditioning, i.e. 

application of the B M N N operator, happens at the locallevel (assuming that computational 

domain is subdivided such that each partition is assigned to only one processor). This 

means interprocessor communications, which are the most expensive type, will be mini­

mized during the bulk of preconditioning step. The only part of (4.45) that requires global 

communication is application of the coarse grid operator, Bo. Given that So is only a matrix 

of size p, i.e. the number of subdomain partitions, applying a coarse grid preconditioner 

will require global communication of the order O(p2). This is extremely small compared 

to the dominant global message passing operation (scatter/gather) for vectors of size nB, 

which occurs several times at each iteration. 

However, as will be shown later in § 4.2.7, it was found that the coarse grid component 

Bo in (4.45) had essentially no effect on the convergence rate, and hence the number of 

iterations. It was expected that for a large number of subdomains, e.g. p > 10, addition 

of the coarse grid preconditioner would be necessary otherwise the convergence would 

deteriorate. However, the results for even a large number of subdomains, i.e. p = 32, 

showed that the preconditioner as defined in (4.42) performed as well as its counterpart 

with the coarse grid component, Bq. (4.45). 

Therefore, all calculations for the numerical test cases were performed with the follow-

ing preconditioner, which will be referred to as the 'proposed' preconditioner in the rest of 

this thesis: 
P 

M-I - '" .kT jj. A(i) -ljj. D. 
P - ~ i t BB t.L Li (4.46) 

i=l 
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As mentioned earlier, this preconditioner is a local operator, i.e., is applied on individual 

subdomains; a very attractive feature. Furthennore, absence of the coarse grid component 

reduces the computation time by eliminating the global communication associated with it. 

These factors combined, make the proposed preconditioner a very good choice. 

4.2.4 Other Preconditioners 

Recall that the Schur matrix is given by 

where (4.47) 

So, one can write 

p 

S - " RT (A (i) _ A (i) A (i) -1 A (i) ) D. - L....t i BB BI II lB .LLi, 
i=1 
P P 

= Lil; A~k~ - Lil;(A~~AW-1A}î)~, 
i=1 i=1 

p 

- A -" R-TA(i) A(i)-1A(i) D. 
- BB L....t i BI II IB.LLi· (4.48) 

i=1 

As an approximation to S, it then seems logical to use A BB as a preconditioner 

p 

Mi/ = ABB -
1 = (Lil; A~k~) -1. (4.49) 

i=l 

The global matrix ofboundary points, ABB' is equal to the BMNN operator for p = 2, 

i.e., two subdomains, but it better approximates S for much larger number of subdomains 

(p » 2). However, the disadvantage in using ABB as a preconditioner is that its application 

requires solution of a matrix at the globallevel, hence increased interprocessor communi­

cation. AIso, since the size of A BB is the same as the Schur matrix, each application of the 

preconditioner using this matrix will be several times more expensive than solving much 

smaller systems involving A ~k within each subdomain. However, due to better conver­

gence rate, use of ABB as a preconditioner could be justified if nE is not very large, say 

nB ~ 0(103). 
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As an alternative, one can use the diagonal part of ABB to build a Jacobi preconditioner 

(4.50) 

While this simple preconditioner could provide a very good convergence for certain prob­

lems [12], it was found that for the acoustic problem this method is not robust and iterations 

could easily stagnate unless an unrealistically large amount of damping is applied [108]. 

In sections 4.2.6 and 4.2.7, performance of different iterative methods and precondi­

tioners, inc1uding the proposed method, with and without the coarse grid solve will be 

discussed in detai!. 

It should also be mentioned that we also investigated the use of a probing method for 

preconditioning of the Schur matrix [10]. This method relies on the fact that if the Schur 

matrix is highly localized, i.e. has its large st components around the diagonal, one can 

obtain an approximation to its diagonal or tridiagonal part by multiplying it with a set of 

probing vectors. 

In its simple st form, the probing vector is a vector of unit y 

v = {l,I,I, ... ,l}T. (4.51) 

When multiplied by S, the result is a vector d = Sv, whose components are the row-sum 

of S. Vector d will be a very good approximation to Diag(S), if Sis highly diagonally 

dominant3. So, at the cost of one matrix-vector multiplication one can find a very good ap­

proximation to diagonal of S without explicitly forming it, and then use this approximation 

to build a Jacobi preconditioner. 

Probing techniques have been shown to significantly improve the convergence for el­

liptic problems, despite being a purely algebraic preconditioner4 [48]. However, after sorne 

experimentation, it was found that this method is not suitable for the acoustic problem as it 

failed to improve the convergence in any meaningful way (see § 4.2.7). 

3d will be equal to Diag(S), only if Sis a diagonal matrix itself. 

4The preconditioned system is not spectrally equivalent to the original system. 
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N 

2 

3 

nB 

337 

727 

1484 1412 

4773 4617 

Table 4.1: Number of interior and boundary nodes in the subdomains. 

4.2.5 Numerical Analysis 

86 

Mter explaining the theory, the results are now presented for several numerical experiments 

conducted using MATLAB to justify the suitability of the proposed preconditioner, Eq. 

(4.46). The test problem is the acoustic propagation of the plane wave from a zero thickness 

cylinder in the absence ofmean flow. The reduced frequency is w = 5.91, and the number 

of elements is 320. In order to carry out the analysis in a reasonable amount of time, given 

that the Schur matrix had to be built explicitly, the number of equations was limited to only 

a few thousands by performing the ca1culations for only the quadratic and cubic spectral 

approximations, i.e., N = 2, 3. AIso, only the case of two subdomains was considered in 

order to simplify the assembly of subdomain matrices in MATLAB. 

Table 4.1 shows the number of points within each subdomain and along the interface 

boundary using the notation defined in § 4.2.1. U sing the Schur complement method, the 

block matrices in each subdomain (A}1, A}î, A~~, and A~k) are used to build the Schur 
_ ( i) (i) (i) -1 (i) ._ 

complements, Si - A BB - AB/AlI AIB' 1, - 1,2. 

As an example, Figure 4.3 shows sparsity pattern for individual boundary matrices A ~1 

and A~1 and the global boundary matrix A BB = A~1 + A~1 for N = 2. The sparsity 

pattern for the cubic approximation would be similar. As shown in the figure, the matrices 

are both sparse and diagonally dominant, but not symmetric. The Schur complements and 

interior matrices, Si and Aji] , i = 1,2, are also nonsymmetric, but full matrices (not shown 

here). 

The behavior of the three different preconditioners discussed earlier are now examined. 

The first two are based on the global boundary matrix A BB and its diagonal, Le., M B and 
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N 1 K(8) 

2 

3 

60.18 

124.44 

190.61 

58.64 

108.99 

88.19 

252.85 

350.32 

Table 4.2: Condition number of the Schur system before and after preconditioning. 
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M J, respectively. The third preconditioner is the one proposed in (4.46) which simplifies 

to A~1-1 8 1 + A~1-1 8 2 for the case oftwo subdomains. As an initial metric assessing the 

performance of the preconditioners, the condition number for the Schur system before and 

after preconditioning was calculated. The results are presented in Table 4.2. 

The results show that the condition number of the Schur system increases with an in­

crease in the order of approximation, N, as expected. It is also observed that for a quadratic 

approximation (N = 2), preconditioning actually increases the condition number. The re­

sults also indicate that in both cases a diagonal preconditioner performs better than the 

proposed method. Note that condition number only provides a relative measure for de­

termining the efficiency of a preconditioner and using it as the only indicator could be 

misleading. To make a better judgment, one should examine the eigenvalue distribution of 

the system before and after preconditioning. Figures 4.4 and 4.5 show such results for the 

Schur matrix and its preconditioned forms for N = 2, 3, respectively. In both cases, the 

eigenvalues of the Schur matrix all have negative imaginary parts and the majority of them 

also have negative real parts. However, preconditioning in all three cases has the favorable 

effect of moving most of the eigenvalues to the positive side of the real axis and away from 

the zero, with a large number of them being c1ustered around one. 

For N = 2, the proposed preconditioner is better than the Jacobi method despite having 

a larger condition number. This is indicated by the eigenvalues that are less scattered and 

also mostly located on the positive side of the real axis. The effect of preconditioning for 

N = 3 is similar. Although we have not been able to show the results for higher values of 
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N, preconditioning is expected to have the same qualitative effect on the eigen distribution 

of the Schur system. It should be pointed out that despite seemingly better performance of 

the Jacobi preconditioner with respect to the proposed method, as indicated in the figures, 

it provides a relatively poor convergence for large values of N, and could easily stagnate 

unless small number of subdomains are used. 

Given that a good preconditioner is one for which the eigenvalues of the preconditioned 

system are c10sely c1ustered (little scattering) and preferably positioned around unity, there­

fore, given the above results, it can be conc1uded that the proposed method is well suited 

for preconditioning of the Schur matrix. This fact is supported by numerical results of the 

many different test cases presented in Chapter 5. 

4.2.6 Solver Analysis 

Among different Krylov subspace methods, tests were conducted using the CGS (Conju­

gate Gradients Squared), GMRES (Generalized Minimal Residual), TFQMR (Transpose­

free Quasi-minimal Residual) and Bi-CGSTAB algorithms. The main reason for limiting 

the tests to these four was that the algorithm of other iterative methods involve a matrix­

vector multiplication with the transpose of the coefficient matrix, in addition to a multipli­

cation with the matrix itself. In the current implementation, however, the coefficient matrix 

(the Schur matrix) is not formed explicitly and so its transpose is not available. 

For a typical test case (solution of the plane wave propagation from an unflanged cylin­

der) convergence history of the above four methods is compared in Figure 4.6. Table 4.3 

gives the solution time and the corresponding iteration count for each method. The CGS, 

Method 1 CGS GMRES TFQMR Bi-CGSTAB 1 

Solution Time (min:sec) 15:07 9:29 13:54 15:47 

No. of Iterations 190 173 142 139 

Table 4.3: Solution time and number of iterations for different algorithms. 



CHAPTER 4. SOLUTION METHOD 89 

TFQMR, and Bi-CGSTAB take much longer to converge compared to the GMRES method. 

This is because each iieration of these three algorithms involves 2 matrix-vector multipli­

cations as opposed to only one such operation for the GMRES. In terms of the rate of 

convergence, both Bi-CGSTAB and GMRES exhibit a monotonic behavior as opposed to 

a very violent and irregular convergence history of the CGS. In fact, Bi-CGSTAB was 

developed as a smooth and more stable variant of the CGS and Bi-CG algorithms [106]. 

The TFQMR, also has a smooth convergence with typical plateaus before each drop in the 

residual norm. 

Another issue to be considered in choosing the solver is its sensitivity to the round-off 

errors. This becomes an even more important issue for ill-conditioned systems, such as 

the acoustic problem, where the coefficient matrix would magnify small perturbations. To 

examine this for the three algorithms (TFQMR, Bi-CGSTAB, GMRES), calculations were 

performed twice using the exact same conditions and the residual history was compared. 

It was found that the convergence history of both TFQMR and Bi-CGSTAB were only 

identical in the first few iterations and they started to differ at larger iterations. However, 

the GMRES method produced exactly the same residuals in both runs. Figure 4.7 shows 

such a behavior for the TFQMR method (a similar trend was observed for the Bi-CGSTAB). 

Referring to the figure, while the difference in the iteration count between the two cases was 

negligible, for much larger test cases and higher orders of approximations the difference 

could be higher. Given the above discussion, the GMRES method was considered the most 

suitable algorithm for solution of the acoustic problem. 

Theoretically, the full GMRES is guaranteed to converge in n iterations, n being the 

size of the coefficient matrix, while such a bound does not exist for other methods. Due 

to memory requirements and computational costs associated with the full GMRES, the 

restarted version is commonly used. The restart parameter, m, determines the size of the 

Krylov subspace used for building orthogonal search directions. In most applications, a 

value for m in the range of m = 20-35 is generally used. However, for problems where the 

coefficient matrix is not positive definite (such as the acoustic problem), restarted GMRES 
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could stagnate or lead to a very slow convergence [86]. Figure 5.58 shows the convergence 

rate for the scarfed inlet test case for two different values of the restart parameter, m. Note 

the four-foId increase in iteration count (solution time) when m is small. 

Given that tests showed that with the proposed preconditioner most problems would 

converge in about 200-450 iterations, to guarantee a fast convergence rate a restart parame­

ter of m = 400-600 was used for most calculations. U sing such a large value for m would 

obviously demand a larger memory usage. However, given the poor convergence rate as­

sociated with the smaller values of the restart parameter, it would he a logical trade-off to 

use more memory and instead significantly reduce the computation time. Moreover, extra 

memory usage would not be extraordinarily high given that the size of the Schur matrix 

is of the order of 0(105
) for the largest test problem. AIso, by comparison, the Schur 

complement method would require a much larger amount of memory. 

4.2.7 Preconditioner Performance 

For a sample problem, tests were performed to demonstrate the performance of different 

preconditioners. Figure 4.8 shows the convergence history. As expected, using the global 

boundary matrix(ABB) as the preconditioner leads to the fastest convergence, followed by 

its less accurate approximations, Mpl and M:;l, respectively. However, referring to Ta­

ble 4.4, it is c1ear that the proposed preconditioner is the best choice in terms of the solution 

time. It is also a good compromise between the simple Jacobi method M:; 1 and the more 

expensive MBl preconditioner. Also shown in Figure 4.8, is the convergence behavior of 

the probing method. It is c1ear that that probing technique has actually a negative effect on 

Preconditioner 

Solution Time (min:sec) 

No. of Iterations 

1 None 

10:55 

261 

9:39 

223 

9:29 

173 

14:58 

129 

Table 4.4: Solution time and iteration count for different preconditioners. 
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the convergence rate as its performance is even worse that the nonpreconditioned system. 

Effect of the order of approximation on iteration count is shown in Figure 4.9. The 

figure confirms the expected effect of N on the rate of convergence, i.e., worsening of the 

condition number of the original system and consequently the Schur matrix as N increases. 

A small value of N, however, does not necessarily mean a smaller number of iterations. It is 

possible to have a poor convergence for small values of N despite relatively low condition 

number of the matrix. This could happen if the grid resolution is far less than the minimum 

required to resolve the acoustic waves, leaving the high frequency components of the error 

trapped in the· grid and therefore unresolved. 

The effect of adding the coarse grid preconditioner on the convergence rate is shown in 

Figures 4.10 and 4.11 for the TFQMR and GMRES methods, respectively. As the results 

indicate, adding the coarse grid component had essentially no effect on the convergence 

rate. On the other hand, given the coarse grid component of the preconditioner requires 

communication among subdomains at the globallevel, its addition would increase the so­

lution time. Therefore, as mentioned earlier, we conclude that the proposed preconditioner 

without coarse grid component, i.e., Eq. (4.46), is the most appropriate preconditioner to 

be used. 
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Figure 4.3: Sparsity pattern of boundary matrices; 'nz' is the total number of nonzeros. 
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Figure 4.8: Effect of different preconditioners on convergence history of the Schur matrix 

using the GMRES solver. 
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Figure 4.9: Effect of the order of approximation on convergence of the GMRES algorithm .. 
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Figure 4.10: Convergence behavior of the preconditioned TFQMR solver with and without 

the coarse grid preconditioner. 
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Figure 4.11: Convergence behavior of the preconditioned GMRES solver with and without 

the coarse grid preconditioner. 



CHAPTER 4. SOLUTION METHOD 98 

4.2.8 Implementation 

In this section, details regarding the implementation of the Schur complement method and 

its solution using an iterative method with the proposed preconditioner is discussed. It 

should be mentioned that other than simple operations and those related to setup of data 

structures, which were done in Fortran 90, the bulk of implementation was programmed 

using various commands of the PETSc library [4]. This included vector and matrix opera­

tions, solution of the system of equations at the local and globallevels, vector gatherlscatter, 

and local to global mappings and vice versa. 

Step 1: Decomposing the domain and building interiorlboundary pointers 

• Decompose the domain into 'p' subdomains (processors) using the ParMETIS li-

brary. 

• For each subdomain, build the pointer of interior and interface boundary points. 

• Build the global pointer of interface boundary points. 

Step 2: Setting up subdomain systems 

• For each subdomain, build the local matrix A (i) and the local right-hand side vector 

j(i) , with interior nodes ordered first followed by the interface boundary nodes 

and (4.52) 

• Apply boundary conditions in appropriate subdomains5• 

• Build the right-hand side vector6 g(i) = j(i) _ A(i) A(i)-lj(i). , B BI II 1· 

5Note that in subdomains where boundary conditions are applied A ~~ i= A}î T 

6In the following, u and v and their interiorlboundary components are dummy vectors. 
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- solve for U(i): A}1u(i) = f]ï), 

- ca1culate: v(i) = A~~U(i), 

- calculate: g(i) = f~) - v(i) . 

Step 3: Solving the Schur system 

As mentioned earlier; creating the Schur matrix explicitly is very expensive. Therefore, 

solution of the Schur matrix is implemented using the matrix-free method. In any iterative 

method, the only operation which involves the coefficient matrix is in the form of a matrix­

vector product, w = Sv. This operation can be performed without explicitly building S by 

using Schur complements of individual subdomains, as explained below. 

• Create the scatter (gather) operator k (RD using the pointers defined in step 1. So, 

the action of I4 on a global vector of size n B will result in the local boundary vector 

of size n~), 

Similarly, the action of Rf will be that of assembly 

-T (i) 
UB = Ri uB · 

p 

• Create the right-hand side vector for the Schur system, 9 = L Rf g(i). 

i=l 

• Perform the matrix-vector operation, w = Sv. Recall that, 

p p 

S = L Rf SiRi = L Rf (A~k - A~~A}1-1 A}i1 )k. 

Therefore, 

- scatter v: 

- calculate: 

i=l i=l 

v~) = kv, 

(i) _ A(i) (i) 
VI - IBVB' 
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- calculate: 

- calculate: 

- update: 

- assemble: 

Step 4: Preconditioning 

(i) _ A(i) (i) 
vB - BjUj , 

wei) - wei) _ v(i) 
B - B B' 

p 

W = 2:: Rf w~). 
i=l 

100 

For the preconditioner, Eq. (4.45), each step involves a local preconditioning in each sub­

domain, followed by a piecewise correction over the entire domain 

= w+wo. 

The first step in applying the preconditioner is to build the scaling matrix Di (represented 

by a vector), and the coarse grid operator, Ra. 

• Using the pointers defined in step 1, build the diagonal matrix Di, 

• Build Ra operator. Elements in row 'i' of Ra are indeed components of Di that are 

properlyassembled. Note that Ra and R'{; are in fact the coarse grid scatter and gather 

operators. 

• Build the coarse grid matrix 7, Sa, 

• Calculate w: 
7 Since Sis not explicitly fonned, matrix-matrix multiplication is carried out using matrix-vector products. 
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- scatter w: w~) = i4w, 

- calculate: (i) D- - (i) 
vB = iWB' 

- calculate: - (i) D- (i) 
WB = iUB' 

P 

- assemble: W = LRrw~). 
i=l 

• Calculate Wo: 

- scatter W: Wo = Row, 

- solve for Uo: SOUo = Wo, 
p 
~ -T - assemble: Wo = L..J Ri uo· 
i=l 
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It should be noted that when there are only two subdomains, Ra will have identical rows: 

Ra = Hu, U}T, where 'u' represents a vector whose components are aU one. Conse­

quently, Ra and So will both be singular and the coarse grid solve will require special 

treatment. 

Step 5: Solution of the interior problems 

• Once the Schur system is solved, once can easily obtain the solution to interior do­

mains by solving a Dirichlet problem in each subdomain: 

- scatter U B: U (i) - D.U 
B -.LLi B, 

- caJculate: 

- update: (i) _ f(i) (i) 
VI - l - VI ' 

• 
As one can see, solution of a system of equations using the Schur complement method 

is an expensive procedure. Each matrix-vector product with the Schur matrix (Sv) requires 
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three matrix-vector operations with A}i1, A~~, and A~~, and a solve involving A}i) within 

"each" subdomain, keeping in mind that any Krylov subspace iterative method contains at 

least one such matrix-vector product per iteration. AIso, preconditioning is almost always 

applied, adding to the overall iteration co st. 

Since the convergence of the Schur complement method depends largely on the ac­

curacy of the solution involving A}~ within each subdomain, these solves were performed 

with a direct solver in the present implementation. That is, A }i) matrices were factored only 

once before the start of the iteration loop. Factored matrices were then used for successive 

solves. In applying preconditioners, the same approach was followed, i.e. subdomain 

solves involving A ~~ were performed with a direct solver. This approach, even though 

memory intensive, insures satisfactory convergence of the Schur system. It also eliminated 

the need for building robust preconditioners required for iterative solution of systems in­

volving AW and A~B' AIso, due to the very small size of the 8 0 matrix, coarse grid solves 

were performed using a direct solver. 



Chapter 5 

Numerical Results 

In this chapter, numerical results will be presented for four different problems, to both 

validate and demonstrate the suitability of the spectral element method for the simulation 

of acoustic problems. AlI geometries considered are three-dimensional and all calculations 

have been performed on multiprocessors ranging from 8 to 48 CPU's, depending on the size 

of the problem. The test problems coyer a range of different geometries and frequencies. 

The results for aIl cases are compared with other numerical results or with analytical data, 

when available. 

5.1 Uniform Cylinder 

5.1.1 Validation 

We start by presenting the results for acoustic propagation in a uniform cylinder of zero 

thickness (unflanged). This test case is important not only because its analytical solution 

is known, but also because it is the simplest geometry which resembles the engine inlet. 

For the sake of completeness. three different combinations of azimuthal (m) and radial 

(8) modes (m, 8) are considered: the plane wave (0,0), the first radial mode (0,1), and the 

first azimuthal mode (1,0). The frequency at the source is 320.075 Hz, which is equivalent 

103 



CHAPTER 5. NUMBRICAL RESULTS 104 

to a reduced (nondimensional) frequency of w = wR/coo = 5.91, or a nondimensional 

wavelength of À = 1.0631
• The mean flow is assumed to be zero. AlI ca1culations are run 

in paralIel using 8 processors on an SGI Origin 3400 machine with 400MRz MIPS R12000 

CPU's. 

Figure 5.1 shows the outline of the coarse or finite element grid used for the plane wave 

and first radial mode calculations. Using the finite element grid, the code automatically 

builds a spectral grid within each element given the number of GCL points, N. A c1ose-up 

of such a mesh in the inlet area is shown in Figure 5.2. The grid dimensions are 10 x 7 x 7 , 

with a total of 3258 elements. The duct radius, R, is chosen to be one and the duct length 

is 2.5R. By taking advantage of symmetry, ca1culations are performed in only a quarter of 

the domain, as shown (see § 2.4 for details), which obviously leads to a significant savings 

in computation time . 

Figures 5.3 and 5.4 show the acoustic pressure and sound pressure level (SPL) contours, 

respectively, along the xy-plane for propagation of the plane wave. For this ca1culation, 

the number of Gauss-Chebyshev-Lobatto points is N = 4, leading to a spectral grid with 

220 157 nodes. The size of the Schur system using 8 processors is 16111. Given the 

uniformity of the grid, there are an average of 7.4 points per wavelength (P PW) in all three 

directions. 

Damping is applied on all external boundaries, except on symmetry planes. The effect 

of damping is visible in the form of compressed contour lines near the boundaries. The 

damping parameters are set to (D, vo, n) = (2, 8, 2), where D is the thickness of the damp­

ing layer in units of the wavelength, and Vo and n are the damping amplitude and exponent, 

respectively, as defined in Eq. (2.124). For the purpose of validation, directivity at the far­

field is compared to the exact solution of Romicz and Lordi [41] and the boundary integral 

calculations of Lidoine et al. [59] in Figure 5.5. The results are adjusted so that SPL peaks 

at 100 dB. The results show a very good agreement with the exact solution both at small 

1 In the results presented in this chapter, freestream conditions, T 00 = 288.15 K and Poo = 101.325 kPa, 

and duct radius or thickness are used for nondirnensionalization. 
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and large angles from the duct axis and also in predicting the location of the minimum SPL, 

which occurs at around 40° . 

The effect of the far-field boundary on SPL is also examined. For this purpose, the 

same test case was run on a domain of size 13 x 10 x 10, leading to 536 813 unknowns, 

more than twice the number of equations for the smaller domain. The SPL directivity 

at the same radial distance as in the smaller domain is shown in Figure 5.6. As the results 

indicate, there is practically no difference between the calculations for the closer and farther 

domains. Therefore, it is sufficent to use the smaller domain for calculations. 

For the first radial mode, (m, s) = (0,1), acoustic pressure contours and directivity 

plots are shown in Figures 5.7 and 5.8, respectively. The results are obtained on the same 

grid as the plane wave problem with the same order of approximation (N = 4). When only 

radial modes are present, the fluid merely performs transverse oscillations (while convected 

along the duct axis). That is, radial modes have transverse but no azimuthal dependence, 

and therefore their propagation in axisymmetric. Depending on the order of the mode 's' 

being propagated, there will be the same number of nodal 'cirdes' on any cross section of 

the duct. For the first radial mode, only one such nodal circle exists, which is located at 

about 0.63R from the duct axis2, as shown by the gap between pressure contour tines in 

Figure 5.7. 

Directivity of the SPL (Figure 5.8) compares well with the exact solution except near 

the axis. This behavior also exists in the other numerical results. This is due to the fact 

that directivity is measured at a "finite" distance from the duct exit, as compared to the 

"infinite" distance for the exact solution. As the waves move farther from the duct exit, 

acoustic intensity along the axis, and therefore SPL, will diminish since acoustic energy 

has to be distributed over a larger surface area. In Figure 5.8, directivity is measured at a 

distance of d = 4.l4R =3.9'\ from the duct exit, while in Lidoine et al. [59] the directivity 

surface is 25R away. To further demonstrate this, the same test was performed in a larger 

domain and directivity was measured at a distance of d = 6.7 R =6.3'\ from the duct exit, 

2This distance isthe ratio of the zero's of Jo(k01r) and J~(k01r): 2.4048/3.8317 = 0.6276. 
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as shown in Figure 5.9. The SPL profile for the farther directivity measurement clearly 

indicates an improved solution, confirming the above argument. 

For propagation of a uniformly moving fluid in an infinite duct, Farassat and Myers [25] 

use a graphical interpretation to derive the following formula for location of the principal 

lobe measured in terms of the angle from the duct axis, Op, 

(3 
tan Op = -:-;-----:-------;:====:_ 

I(Moo - M) Çms - "/C:ns - 11 
(5.1) 

In the above equation, (3 = JI - M2, Çms is the cut-off ratio, and M and Moo are the 

Mach numbers in the duct and at the far-field, respectively. In the absence of mean flow, 

Moo = M = 0, and the equation simplifies to 

(5.2) 

which is the same result obtained by Rice at al. [82]. For the plane wave, the principal lobe 

occurs on the axis (Op = 0) because the cut-off ratio çoo = 00. For the first radial mode 

at w = 5.91, the radial wave number ko! = 3.8317, which gives a eut-off ratio of ÇOl = 

1.542. This predicted location of the principal lobe is Op = 40.420
, which is very close to 

the calculated value of 41.170 in Fig .. 5.8. 

The last validation test concems radiation of the first azimuthal (spinning) mode, 

(m, s) = (1,0). This test is also used to demonstrate the validity of the theoretical de­

velopment for symmetry boundaries conditions, as presented in § 2.4. Figure 5.10 shows 

the computational domain with dimensions of7x 14x 10. The duct geometry is the same as 

before, and so are the frequency and damping parameters. The yellow surface indicates the 

plane of symmetry. There are a total of 2004 elements in the domain. Given that domain 

size is twice as large as the domain in the plane wave problem, but the number of elements 

are not doubled, a higher order approximation (N = 5) is used to provide the necessary 

resolution. A 5th-order approximation gives an average of PPW = 6.38. The total num­

ber of unknowns and the size of the Schur system for this case are 263 816 and 18 685, 

respectively. 
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Mode (m, s) (0,0) (0,1) (1,0) 

Building Matrix 10:46 10:43 33:34 

Solving Equations 9:29 7:57 14:43 

Total (min:sec) 20:15 18:40 48:17 

Table 5.1: Computation time for validation test cases. 

Figure 5.11 shows the acoustic pressure along the x:y-plane. Tangential variations are 

evident in the figure, pointing to a counter clockwise swirling motion, as shown in several 

cross sectional views. Similar to the radial modes, azimuthal modes form nodal 'Unes' at 

any cross section of the duct that rotate 27r radians per wavelength. The number of nodal 

lines is equal to the order of the mode m being propagated. In this case, only one such line 

exists, which is clearly visible at the acoustic source in the form of a straight line paraIlel 

to the z-axis. 

Unlike the plane wave, the acoustic energy of both the radial and azimuthal modes 

peaks off the axis. This is shown in Figure 5.12 for the first azimuthal mode, where the SPL 

isosurface is plotted along with the SPL contour lines in the lower plane. The maximum 

SPL occurs at around 20° from the axis, with zero acoustic energy radiated on the axis -itself. 

Figure 5.13 shows directivity of the radiated field and its comparison with theoretical data. 

OveraIl, the results show a very good agreement both qualitatively and quantitatively. 

AIl the above test cases were solved using the preconditioned Schur complement 

method with the GMRES iterative solver, for which the restart parameter was set to 400. 

Figure 5.14 shows the convergence history for the three problems and the corresponding 

computation time is given in Table 5.1. 

5.1.2 Effeet of the Order of Approximation 

One of the main advantages of high-order methods, especially spectral methods, is that one 

can use a smaIler number of PPW by using a higher order of approximation within each 
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element (we already observed this in the previous section when presenting the results for 

the first azimuthal mode). This relation, however, is not linear, in the sense that by doubling 

the order of approximation less than twice the number of points are required to obtain the 

same level of accuracy. As a result, increasing the order of approximation will lead to a 

smaller number of unknowns. To show the effect of the order of approximation (N) on 

accuracy and P PW requirement, two different tests are presented. 

First, the effect of N for a fixed number of elements has been studied. Using the grid 

with 3258 elements, calculations were performed for three different values of N. Figures 

5.15 and 5.16 show the contours of acoustic pressure amplitude along the xy-plane as 

N is varied between 3 and 5, corresponding to 5.5, 7.4, and 9.2 points per wavelength, 

respectively. The figures also show the spectral grid used for each case. For N = 3, the 

acoustic field is c1early underresolved. But, as N increases, the contour Unes become 

smoother indicating improvement in the accuracy, as expected. The figure also shows that 

the results for the fourth and fifth order approximations are almost identical. This indicates 

that further increase in the order of approximation do not yield any significant changes in 

the accuracy. This is also shown in Figure 5.17, where the far-field directivity is plotted 

for different values of N. Given that increasing the order of approximation from fourth to 

fifth order yields the same results, one can conc1ude for the given frequency and grid, that 

a 4th-order spectral method provides an adequate resolution. 

The second test demonstrates another aspect of using a high-order method. Here, the 

number of elements in the domain has been reduced by about 10 times from 3258 to 320, 

but the order of approximation has been increased from N = 4 to N = 6, i.e. only 1.5 

times. Coarsening the grid leads to an approximately 66% reduction in the total number of 

unknowns from 220157 for N = 4, to 74 881 for N = 6. Note, however, that decreasing 

the number of elements by almost a factor of ten does not lead to a tenfold decrease in the 

number of equations. This is because when a higher order of approximation is used many 

extra points are generated within each element. For the N =6 case, 10 processors were 

used and total assembly time depsite a smaller number of equations was 17 min. and 20 
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sec., which was higher compared to an assembly time of Il min. for the N =4 run. This 

was, however, somewhat compensated by the solution time, which was only 4 minutes for 

N =6 as compared to about 9 minutes for the lower-order test. 

Figure 5.18 shows part of the coarse grid with 320 elements. Aiso shown are the SPL 

contour lines along the xv-plane for the plane wave propagation, which are comparable to 

those in Fig. 5.4. In the coarse grid, even with increased N, the PPW has been reduced 

significantly to 5.1 from 7.4 for the 3258-element grid without sacrificing accuracy (Figure 

5.19). 

Another attractive feature of high-order methods is that once the finite element grid is 

generated, it can be used for computations over a range of frequencies by simply changing 

the.order of approximation within each element, without having to regenerate another grid. 

An example ofthis approach is demonstrated in section 5.1.3. 

Increasing the order of approximation, however, has negative consequences in terms 

of increased cost associated with building the matrix, which varies exponentially. This is 

demonstrated in Figure 5.20, where the CPU time is plotted versus N for the test problem 

with 320 elements. 

While for 2D problems one can use a very high order of approximation, e.g., N = 10-

Il [93], such a practice for 3D problems would be very costly, if not computationally 

prohibitive. Our experience has been that for 3D problems, a value in the range of N = 4-6 

would be optimum in terms of minimizing the computation time while providing sufficient 

accuracy. 

5.1.3 Effeet of the Lip Thiekness 

Given that realistic engine inlet geometries have a finite thickness, it would be appropriate 

to study the effect of Hp thickness on the radiated acoustic field. For this purpose, two 

inlet shapes with circular lips are considered, with el R = 1/8 and 1/4, where e is the lip 

thickness (Figures 5.21 and 5.22). Using the plane wave test conditions described earlier, 

i.e. w = 5.91 and a grid with 3258 elements and N = 4, the SPL directivity was ca1culated 



CHAPTER 5. NUMBRICAL RESULTS 110 

for the two geometries and compared with the results for the zero-thickness cylinder. The 

results are shown in Figure 5.23. According to the figure, at small angles near the duct axis 

(0 ::; 30°) there is a Httle difference between the flanged and unflanged duct results. The 

situation, however, is different at higher radiation angles, where the minimum SPL occurs 

at smaller angles due to the finite thickness of the wall. AIso, there is a significant reduction 

in the sound pressure level for 0 > 60° due to reflection of sound waves near the Hp. These 

changes are more significant for the thicker lip, as expected. 

The effect of lip thickness has been studied by a number of researchers [59,88], who 

have documented similar variations in SPL directivity. The variations are attributed to the 

frequency as weIl as the level of geometrical singularity (curvature radius) of the lip, which 

plays a key role. For the same inlet shape, these two parameters are interrelated in the 

sense that with an increase in frequency, the ratio el À also increases making the lip appear 

thicker to the waves. This effect is shown in Figure 5.24 for a much higher frequency (w = 

10.3). The grid is the same as before, but due to higher source frequency, N = 6 is used. 

Compared to the results for the lower frequency, w = 5.91, SPL deteriorates much worse 

at higher angles. AIso, for a given frequency, higher modes (both azimuthal and radial) are 

more sensitive to the shape of the lip and its thickness. This is because such modes carry a 

larger part of their energy away from the duct axis and closer to the wall, noting the shape 

of the Bessel functions for such modes. 

5.1.4 Effeet of the Uniform Flow 

So far, acoustic radiation from the ducts in the absence of any external flow was considered. 

For problems of interest to the subject of this research, that is the simulation of engine noise 

during take-off and landing, the inlet duct is exposed to a subsonic inflow with a Mach 

number in the range Moo = 0.2-0.3. To study the effect of external flow, a set of tests with 

different Mach numbers are conducted, assuming uniform flow. Plane wave propagation at 

a frequency of w = 5.91 and a grid with 3258 elements is considered. 

The results are shown in Figure 5.25. At low Mach numbers, the effect of uniform 
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flow on acoustic radiation in the far-field is very similar to the effect of lip thickness. Note 

that increasing the Mach number leads to an increase in the axial wave number kx , and 

consequently a decrease in the radial wave number, kms , according to Eq. (2.94). So, the 

cut-off ratio not only will be higher, but in sorne cases could become greater than one. As 

a result, certain modes that were originally cut-off, will become cut-on. This is shown for 

the plane wave at M = 0.6, where it appears to have another minimum at around () = 80°, 

not very well captured in the figure. 

5.1.5 Effeet of the Mean Flow 

One of the objectives of the current research was to include the effect of mean flow on the 

radiated sound field. For this purpose, a mean flow solver using a compressible potential 

model was included to accurately determine variations of the flow around the inlet. Figure 

5.26 shows the results of such calculations, where the velocity field and Mach contours 

around an inlet with a finite thickness of el R = 1/8 are plotted. The results correspond to 

a freestream Mach number of Moo = 0.2 and a mass flow rate on the fan face (x = 0) of 50 

kg/s. These conditions translate into a Mach number of Mf = 0.6 on the fan face. 

Given the high gradient of velocity field near the lip, as compared to the unifonn flow, 

it is expected that far-field directivity will be affected more negatively at higher radiation 

angles. Ca1culated SPL in Figure 5.27 confirms this variation. Since the acoustic and 

mean flow solvers are not coupled, the effect of mean flow solution on convergence of the 

acoustic solver is expected to be negligible. This is shown in Figure 5.28, which also shows 

the convergence history of the mean flow solver. 

For the mean flow problem, a grid with 3258 elements was used, and the order of 

approximation was N = 4. This is the same order used for the acoustic solver, because 

the mean flow variables (Po, uo, Vo, wo) at the nodes of the spectral grid are needed for the 

acoustic calculations. This leads to a system of equations with 220 157 unknowns. As 

explained in Chapter 4, a Conjugate Gradient solver with additive Schwarz preconditioner 

was used to solve the nonlinear equations using a Newton iterative loop. At every iteration 
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of the Newton loop, the computation time to build and assemble the mean flow coefficient 

matrix was about 8 minutes and the corresponding solution time close to 78 seconds. Each 

solve with the preconditioned CG method required about 76 iterations to converge. 

5.2 2D Semi-infinite Duct 

This test case will demonstrate the ability of the code to perform simulations for 2D prob­

lems and rectangular inlets. The geometry consists of two horizontal walls, one unit apart, 

with a ratio of duct length to height, LI H = 2.5, as shown in Figure 5.29. The size of 

the domain is 7 x Il xl, comprised of 459 elements. A sixth-order approximation is used 

within each element (N = 6), leading to a total of 118 027 equations. 

Figures 5.30 and 5.31 show the acoustic propagation within the duct and into the far­

field for the second and third transverse modes, respectively, for a reduced frequency of 

w = 15 in the absence of external flow. Note the change in directionality of the acoustic 

energy away from the axis for the higher cross mode. As discussed in § 2.2.4, acoustic 

modes in a rectangular duct are cosine functions, with their maximum amplitude at the 

walls to satisfy the zero normal velocity condition. Looking closely at contour lines within 

the duct, especially near the source, one could recognize the cosine curves envelopîng 

pressure contours. 

For the semi-infinite duct, the eut-off ratio, Bq. (2.118), simplifies to ~m = wl(mn). 

With w = 15, this value for the second and third transverse modes is: Ç2 = 2.387 and 

6 = 1.591, respectively. Both values are greater than one, which indicates a eut-on or 

propagating mode .. 

Simulations in 2D using a 3D code was made possible by applying periodic boundary 

conditions in the z-direction. As a result, as shown in Figure 5.32, only one element in that 

direction is required, irrespective of the domain length. Also shown in the figure, are the 

acoustic pressure contour lines, which show no variations in the z-direction- an indication 

of proper implementation of periodic boundary conditions. 
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Far-field directivity is compared to the exact solution of Mani [69] and numerical re­

sults of Dong et al. [15] in Figures 5.33 and 5.34 for the second and third cross modes, 

respectively. SPL is adjusted so that its maximum occurs at 100 dB. The results are in very 

good agreement with the analytical data. Again, notice the discrepancy in SPL near the 

axis (similar to the (0,1) mode propagation in § 5.1.1), which is due to the finite radius of 

the surface on which directivity is measured. For this problem, directivity surface was 7), 

away from the duct exit plane. 

Oiven the relatively small size of the problem (118 027 unknowns), a paraUel direct 

solver called SPOOLES [1] was used to solve the system of equations. A total of 12 CPU's 

were used on an SOI Origin 3800 machine. Solution of the system was obtained in about 

90 seconds. The time needed to build and assemble the coefficient matrix was close to 22 

minutes, which was relatively high and due to the fact that a high order of approximation 

(N = 6) was used. Due to the higher frequency of the acoustic source, damping layer 

thickness and amplitude were slightly increased to (D, Vo, n) = (2.5, 15,2), compared to 

the cylinder test problem. 

The results in Dong et al. were obtained using a Dispersion-Preserving-Relation (DPR) 

finite difference scheme [99] in the near-field and a Kirchhoffmethod in the far-field. They 

used a minimum of 10 mesh points for the shortest wavelength. However, in the present 

calculation with N = 6, the number of points per wavelength was approximately PPW = 

6, showing the advantage in using a spectral method. 

5.3 3D Curved Duct 

This is a test case for which experimental data and numerical results for two different 

methods, i.e. a boundary integral method [67] and nonlinear Euler calculations [91] are 

available. Therefore, it provides a good opportunity to compare three different numerical 

methods. The problem is also interesting in that it involves propagation of noise through 

a curved duct, as opposed to straight ducts studied earlier, with implications that will be 
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discussed later. 

Figure 5.35 shows the duct geometry, with the outline of the finite element grid built 

around the duct shown in Figure 5.36. For the integral method, the acoustic pressure on 

the surface of the duct exit plane was used for calculating far-field radiation. However, 

present calculations and those in Ref. [91] both require an external grid surrounding the 

duct exit, as shown. The externaI grid starts right after the bend and extends lOR in all 

three directions relative to the duct exit plane. The grid contains a total of 1776 elements. 

Figure 5.37 shows a c1ose-up of the duct and the spectral grid. Note that the spectral 

grid is obtained by projecting wall boundary nodes on the CAD surface. This is done 

automatically by the spectral mesh generation routine. 

The first set of calculations were performed for the plane wave (m = 0) and the first 

azimuthal mode (m = 1) using a frequency of 1000 Hz (w = 2.769). Within each ele­

ment, a 5th-order spectral approximation was used, leading to a spectral grid with 234 341 

unknowns. Damping parameters were set to (D, /Jo, n) = (1.5, 6, 2). The domain was parti­

tioned into 12 regions (p = 12), with a total of 20 784 unknowns on the interface boundaries 

(size of the Schur system). Building the matrix for the entire spectral grid took about 20 

minutes of CPU time while solving the system of equations using the Schur complement 

method required about 7 minutes for both tests. 

Figure 5.38 shows the pressure contours for the plane wave propagation on the duct 

wall and along the exit plane at the far-field. Note the symmetry of the radiated sound with 

respect to the xy-plane. For w = 2.769, the wavelength is >. = 2.268, which means the 

wave at the source will travel about 5>' along the straight part of the duct before reaching 

the bend, as shown by the yellow stripes in the figure. The acoustic field outside the duct, 

however, is not symmetric in aIl directions. The symmetry exists only in the xy-plane, as 

the acoustic pressure contour lines and the isosurface of SPL directivity at the duct exit 

indicate (Figure 5.39). 

As demonstrated by Malbéqui et al. [67], the presence of the bend and reflection of 

the waves from the duct exit's create additional azimuthal modes which are responsible 
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for asymmetry of the radiated field. For the plane wave, their modal analysis of the wall 

pressure field at the duct exit shows strong presence of two other modes, m = ± 1, with an 

amplitude comparable to the mode specifiedat the source (m= 0). This is also apparent in 

the shape of acoustic pressure contours at the duct exit in Fig. 5.39. 

Figures 5.40 and 5.41 show the comparison of numerical results for the normalized 

pressure amplitude along the y z-plane for the m = 0 and m = 1 modes, respectively. In 

both cases, especially for the plane wave, the results are in a very good agreement with both 

the experiment and other numerical data. The results by Stanescu et al. [91] were obtained 

using a multidomain spectral method with a radiation boundary condition applied at the 

far-field. For the first azimuthal mode (m = 1), all numerical methods show discrepancy 

with experimental results for () > 20°, which could be attributed to the extra modes are 

present at the duct exit, but not specified as boundary conditions at the source. 

Figure 5.42 shows the variation of acoustic pressure on the duct plane of symmeuy 

(xy-plane) for the first azimuthal mode. For a straight circular duct, the pressure amplitude 

along the duct axis should be zero (see, e.g., Fig. 5.13). However, this is not the case for the 

curved duct. This confirms that there are other modes with different phase angles present 

at the duct exit. 

Increasing the frequency to 1500 Hz (w = 4.154), calculations were performed for the 

propagation of the second azimuthal mode (m, s) = (2,0). Due to higher frequency, a 

slightly higher order of approximation (N = 6) was used. Pressure contours with only 

positive values are shown in Figure 5.43 to demonstrate the tangential variation of these 

modes as they travel along the duct. At the duct exit, directionality of sound pressure 

level is shown with an isosurface. For a straight duct, m = 2 would create only 2 lobes 

with a large common surface area (similar to the m = 1 mode in Fig. 5.12). However, 

the irregular shape of the SPL isosurface indicates that presence of the bend has caused 

significant change in the structure of the radiated field. In fact, for this case modal analysis 

indicated the presence of 5 modes (m = 0,±I,±2) with relatively equal amplitude at the 

duct exit [67]. The asymetry is further evident in Figure 5.44, where contour lines of the 
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Mode (m,s) (0,0) (0,1) (0,2) 

Building Matrix 19:54 19:56 80:13 

Solving Equations 7:07 6:36 23:47 

Total (min:sec) 26:51 26:32 104:00 

No. of Iterations 215 198 259 

Table 5.2: Computation time for the curved duct test cases. 

SPL at the duct exit plane (y = 2.26R) are plotted. 

Figure 5.45 shows the convergence history for the three tests presented above. For all 

three, calculations were performed on 12 CPU's using the preconditioned GMRES algo­

rithm. For the m = 2 test, the total number of unknowns were 401 329, while the Schur 

matrix was about one order of magnitude smaller with only 29 903 unknowns. AIso, due 

to higher frequency, slightly larger damping layer and amplitude was used, (D, Vo, n) = (2, 

8, 2), compared to the first two calculations. Computation time for the core calculations 

(building the coefficient matrix and solving the equations) is given in Table 5.2. 

5.4 Generic Scarfed Inlet 

As the final test case and also the largest numerical calculation, the results of acoustic 

radiation from a generic scarfed inlet are presented. This problem represents a realistic 

example of an engine geometry and its propagating mode. Figure 5.46 shows the geometry 

of the scarfed inlet in which the lips have elliptical profiles. For numerical ca1culations, the 

exterior boundary is moved by one meter behind the fan face to create enough thickness for 

damping to be applied. The size ofthe computational domain is therefore 4.7x7.4x7.4 m, 

with a total of 15328 elements. 

A c1ose-up of the spectral mesh around the inlet is shown in Figure 5.47. The ParMETIS 

library [47] was used to partition the computational domain into smaller nonoverlapping 
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subdomains for implementation of the Schur complement method. Figure 5.48 shows 

the outIine for a typical partitioning, where each color represents a separate subdomain. 

ParMETIS performs the partitioning in such a way that each subdomain contains re1a­

tively the same number of nodes, interior and boundary combined. This is to ensure a 

balanced load distribution between the processors and subsequentIy a better parallel effi­

ciency. Figures 5.49 and 5.50 show the element and corresponding node distribution for a 

48-subdomain partitioning. 

We examine the acoustic propagation of the (13,0) mode in the absence of mean flow at 

a relative1y high frequency of w = 17. For this frequency and azimuthal mode, the cut-off 

ratio is Ç13,O = 1.138 > 1, which indicates a propagating mode. A fifth-order approximation 

is used within each element (N = 5) equivalent to an approximate number of 7.77 points 

per wavelength. Given the relatively high frequency, a larger damping layer is used with 

damping parameters set to (D, va, n) = (3, 10,2). 

Figure 5.51 shows the acoustic pressure contours at the inlet (fan face), inside the na­

celle and on its walls, and at a distance from the duct exit. Given the shape of the Bessel 

functions, for higher azimuthal modes the acoustic energy is convected closer to the walls. 

This is clearly visible by the shape of contour lines on the inlet face and also by the pressure 

amplitude contour lines shown in Figure 5.52. 

The difference in the thickness of the lower and upper lips as well as the extended lower 

lip causes asymmetry in the radiated field. This is weIl demonstrated in Figure 5.53, where 

the sound pressure level isosurface is plotted. AIso, note the directionality of the radiated 

sound toward the upper part of the xy-plane. The asymmetry is also visible in Figure 5.54, 

which shows the radiation in the xz-plane using the acoustic pressure contours at the top, 

middle, and bottom of the computational domain. Note the lower magnitude of the acoustic 

pressure on the bottom surface. 

Directivity of the SPL was measured at a distance of 5,À from the nacelle exit plane 

and plotted against the numerical results of Hamilton and AstIey [38] in Figures 5.55 and 

5.56. The method used in [38] is a hybrid approach, where quadratic finite elements are 
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used in the near-field and 5th-order infinite elements in the far-field. Infinite elements use 

an exponentially decaying shape function to simulate the propagation behavior of waves 

away from the source [2]. They solved the resulting system of equations, originally written 

in frequency domain, with a time marching approach by first transforming them using a 

complex Fourier transform. 

Referring to Figures 5.55 and 5.56, numerical values near the duct axis (-20° :::; (J :::; 

20°) are meaningless and would diminish if a higher order of approximation was used. 

Outside this region, however, there is little match between our results and those presented 

in [38]. To gain a better insight and to better judge the quality of results for the two numeri­

cal methods, analytical results corresponding to propagation from a zero-thickness uniform 

duct at the same frequency and azimuthal mode are also plotted in the figures. By compari­

son, the spectral method provides very smooth curves and "qualitatively" exhibits a similar 

trend as the exact solution. The results presented by Hamilton and Astley, on the other 

hand, are very oscillatory and orny weak:ly resemble the exact data or the present calcu­

lation. However, it seems that both numerical methods predict the location of maximum 

SPL c1osely. Given the above argument, the accuracy of the method presented in [38] is 

questionable. 

The location of the principal lobe as predicted by equation (5.2) with a cut-off ratio 

of çù,o = 1.138 is 61.42°. Due to the asymmetric duct shape and also lip thickness, these 

values for the scarfed inlet are -70.86° ,-63.82°, 67.5° and 72.84°. In section 5.1.3, the effect 

of finite Hp thickness was found to be a reduction in the far-field SPL directivity, especially 

at large angles away from the duct axis. This explains the deviation in our results from 

the exact solution for I(JI > 70° in Figures 5.55 and 5.56. AIso, note the asymmetry in 

directivity curves along both the xy- and xz-planes. This is more pronounced along the 

xy-plane, where the maximum SPL is about 4.5 dB less in the downward direction. This 

difference is also c1early visible in Figure 5.53, where the isosurface extends farther in the 

upper region. The reduction in the SPL is due to the longer lower Hp, which shields part 

of the acoustic energy directed in that direction. For this reason, scarfed inlets were one 
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1 No. of Rows (Nodes) (%) 1 Nonzero per Row 1 

1050840 53.349 216 

734456 37.287 396 

216 0.011 546 

170654 8.664 726 

280 0.014 906 

48 0.002 1001 

13 188 0.670 1331 

64 0.003 1661 

Table 5.3: Sparsity structure of the global coefficient matrix; scarfed inlet test case. 

of the early methods studied for reduction of noise propagated from the engine toward the 

ground. 

The spectral grid with 15328 elements and N = 5 contains close to two million 

(1969746) unknowns. The global coefficient matrix, however, is extremely sparse and 

contains only about 660 million (659800016) nonzeros. This means only less than 1% 

of the matrix is fiUed (sparsity of 99.983%). A better understanding of the sparsity of the 

matrix can be achieved by analysing the data in Table 5.3, which shows the number of 

nonzeros (nnz) per row. The numbers in the first and second rows correspond to the in­

terior and face nodes of the spectral elements (connected only with the nodes within one 

or two elements), respectively. Note that the entries of the matrix are complex numbers 

and aU variables have a double precision accuracy. So, storing the nonzeros alone requires 

about 2.5 GB of memory. Given that the bulk of the matrix ( 90%) contains a very small 

number of nonzeros per row, it is extremely important to aUocate the memory accordingly. 

Proper memory management is crucial in achieving a high performance, especiaUy when 

a large system of equations is solved. It will also minimize or eliminate dynamic memory 

allocation, which could significantly increase matrix assembly time. 
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Computations were performed in paraUel using 48 CPU's. With this number of parti­

tions, 148 137 nodes were generated on interface boundaries (size of the Schur system). 

This is more than one order of magnitude smaUer than the size of the original system (more 

precisely 7.5%). Calculations were performed on an SGI Origin 3800 machine with MIPS 

R12000 processors, each with a clock rate of 400 MHz. By comparison, the coefficient ma­

trix in Ref. [38] contained approximately 450 000 unknowns and calculations were done 

on a single 1 GHz processor. 

To examine the behavior of iterative methods, two different solvers, Le., the TFQMR 

and restarted GMRES were used to solve the system of equations using the Schur com­

plement method and the proposed preconditioner, Eq. (4.46). Figure 5.57 shows the con­

vergence history for the two methods for a 32 CPU mn. Wbile restarted GMRES shows a 

monotonie convergence, TFQMR has an irregular behavior and starts to slow down after 

close to 1100 iterations. GMRES solver converged in 484 iterations in 2hr and 19 min., 

while TFQMR required 2758 iterations lasting 21hr and 27 minutes. This obviously points 

to the fact that GMRES is a much better choice for this kind of problems. In both methods, 

however, memory usage was very large given that matrices for interior subdomains (A W) 
each of an approximate size of 4 x 105, and boundary matrices (A ~k) of relative size 7 x 104 

were all solved by a direct method. At the peak of the calculations, the total memory usage 

was roughly 70GB. 

It should be pointed out that a slowdown in convergence rate was observed when the 

restart parameter for the GMRES solver was set to a smaU value, (m = 30). Figure 5.58 

shows the effect of the restart parameter on convergence of the Schur system for a 24-

cpu mn. It seems that stagnation or slowdown in convergence happens when frequency 

is relatively high, as such a negative trend was not observed for smaller values of w. The 

computation time with GMRES(600) was about 2hr 7min. while it took 9hr 24min. and 

four times more iterations to converge to the same tolerance with GMRES(30), as shown 

in the figure. Therefore, to speed up the convergence all calculations using GMRES solver 

were performed with a restart parameter of (m = 600). 
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No.ofCPU's 8 16 24 32 40 48 

Building Matrix 4:25 2:11 1:27 1:04 0:52 0:44 

Solving Equations 7:41 3:40 2:07 2:19 2:06 1:05 

Total (hr:min) 12:17 5:51 3:34 3:23 2:58 1:49 

No. of Iterations 216 288 406 484 586 614 

Table 5.4: CPU time for different parallel computations; scarfed inlet test case. 

The effect of the number of processors on the convergence rate of the GMRES method 

is shown in Figure 5.59. The figure shows that a faster convergence is obtained when a 

smaller number of CPU's is used. However, to make a proper judgment the corresponding 

computation time should also be taken into account. Table5.4 shows that despite a larger 

number of iterations, calculations with 48 processors result in the shortest computation 

time. For the 8- and 16-CPU runs the Jacobi preconditioner (MJ ) was used, while the 

other results were obtained using the proposed preconditioner. By comparison, the results 

in [38] were obtained using the Bi-CGSTAB algorithm with a diagonal preconditioner in 

approximately 10 hrs. 

Reduction in the number of iterations as a smaller number of CPU's is used is attributed 

to the fact that the ratio of the number of boundary nodes to the internaI nodes decreases 

with a decrease in the number of subdomains. As a result, the Schur matrix will be smaller 

and the proposed preconditioner will be a better representation of the global boundary 

matrix, thus providing a faster convergence. 

To show the paraUel efficiency of the code, computation time for building and assem­

bling the matrix vs. the number of processors is plotted in Figure 5.60. Given the extremely 

large size of the problem, it was not possible to run the test on a single CPU, as stipulated 

in Bq. (3.6). Instead, the 8-processor results were used as the reference data. The parallel 

performance is very satisfactory, showing a superlinear speed up for the majority of the 

calculations. Such an excellent scaling is attributed to many factors, among which is the 
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optimality of the algorithms used in the code and also an efficient memory management. 

For example, after generating the spectral mesh, additional pointers were created to ensure 

that each CPU would only process the elements it has been assigned to in the partitioning 

stage, so that interprocessor communication would be minimized. Optimization measure­

ments like this are necessary in order to gain a high parallel efficiency, especially when a 

large number of equations, say> 300 000, are solved. 

Overall, about 80%-85% of the total computation time was spent on building, as sem­

bling and solving the system of equations (core calculations) and the rest on pre- and post­

processing, such as decomposing the domain, creating the spectral grid and its associated 

pointers, memory management, etc. 
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Figure 5.1: Computational domain and background finite element grid for the uniform 

cylinder. 

Figure 5.2: Outline of the spectral grid inside the cylinder. 
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Figure 5.3: Acoustic pressure distribution for the plane wave radiation. 

\'\, 

Figure 5.4: SPL contours for the plane wave radiation. 
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Figure 5.5: Far-field directivity of SPL for the plane wave. 
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Figure 5.6: Comparison of SPL directivity at the far-field for domains of different size. 
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Figure 5.7: Acoustic pressure distribution for the first radial mode; (0,1). 
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Figure 5.8: Far-field directivity of SPL the first radial mode. 
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Figure 5.9: Effect of far-field boundary on SPL directivity near the axis for the first radial 

mode. 

Figure 5.10: Computational domain and spectral grid outIine for the first azimuthal mode 

calculations. 
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Figure 5.11: Acoustic pressure distribution for the (1,0) mode along the plane of symmetry 

and at several axial locations. 
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, , 

Figure 5.12: SPL isosurface and contour lines for the first azimuthal mode. 
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Figure 5.13: Directivity at the far-field for the first azimuthal mode. 
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Figure 5.14: Convergence history of the GMRES algorithm for validation tests. 
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Figure 5.15: Acoustic pressure amplitude contours and spectral grid outline; N = 3. 

Figure 5.16: Acoustic pressure amplitude contours and spectral grid outline; N = 4, 5. 
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Figure 5.17: Effect of the order of approximation on SPL directivity of the plane wave. 

Figure 5.18: Oudine of the spectral grid (N = 6) and SPL contours for the plane wave 

radiation. 
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Figure 5.19: Comparison of directivity for a coarse (N = 6) and a fine (N = 4) spectral 

grid. 
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Figure 5.20: Exponential growth of the computation time for building the matrix vs. N. 
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Figure 5.21: Close-up of the cylindrical duct with a lip thickness of ~R. 

Figure 5.22: Close-up of the cylindrical duct with a lip thickness of ~ R. 
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Figure 5.23: Effect of the Hp thickness on directivity of the plane wave. 
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Figure 5.24: Effect of the Hp thickness on directivity at a higher frequency. 
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Figure 5.25: Effect of the uniform extemal flow on SPL directivity. 

136 

Figure 5.26: Velocity field and Mach contours around a cylinder with a lip thickness of ~ R; 

potential flow solution (Moo = 0.2). 
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Figure 5.27: Effect of the unifonn and mean flow on SPL directivity. 
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Figure 5.28: Convergence history of the acoustic and mean flow potential solvers. 
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Figure 5.29: Computational domain and spectral grid outline for the semi-infinite duct. 
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Figure 5.30: Acoustic pressure contours for the 2D duct; second cross mode. 
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Figure 5.31: Acoustic pressure contours for the 2D duct; third cross mode. 
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Figure 5.32: Acoustic pressure contours at y = 0, in the periodic direction. 



CHAPTER 5. NUMERICAL RESULTS 

100 . 

90· 

: " .. : V 
. ~. 

. ) 

... :.( ! .. 

80 . 

~ 70 

~ 
CIl 

60 

50 . 

40· 

-80 -60 -40 -20 o 20 

Angle (fi) 

. ...... ~.Present 

40 

(>ongeta( . 
.. AnalyticaI 

60 80 

142 

Figure 5.33: Directivity for the second cross mode; comparison with analytical and numer­

ical data. 
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Figure 5.34: Directivity for the third cross mode; comparison with analytical and numerical 

data. 
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Figure 5.35: Geometry of the curved duct. 

Figure 5.36: Computational domain showing the finite element background grid. 
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Figure 5.37: Close-up of the spectral grid around the curved duct after CAD projection. 
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Figure 5.38: Acoustic pressure distribution in the duct and on the exit plane; plane wave 

radiation. 
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Figure 5.39: Isosurface of SPL and acoustic pressure contour Hnes at the duct exit; plane 

wave radiation. 
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Figure 5.40: Pressure directivity of the plane wave radiation at x = 2.004; f = 1000Hz. 
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Figure 5.41: Pressure directivity of the (m, s) = (1,0) mode at x= 2.004; f = 1000Hz. 
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Figure 5.42: Pressure directivity of the (m, s) = (1, 0) mode on the xy-plane; f = 1000Hz. 
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Figure 5.43: Acoustic pressure contours in the duct and SPL isosurface at the exit plane for 

the second azimuthal mode; f = 1500Hz. 



CHAPTER 5. NUMERICAL RESULTS 150 

74 

1 45 

Figure 5.44: SPL contours at the duct exit plane (y = 0.34) for the second azimuthal mode; 

f = 1500Hz. 
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Figure 5.45: Convergence history of the GMRES algorithm for different tests. 
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Figure 5.46: Geometry of the scarfed inlet. 

Figure 5.47: Outline of the spectral mesh in and around the nacelle. 
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Figure 5.48: Typical nonoverlapping partitioning of the computational domain into smaller 

subdomains. 
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Figure 5.49: Element distribution among subdomains for a 48-CPU partitioning. 
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Figure 5.50: Node distribution among subdomains for a 48-CPU partitioning. 

153 



CHAPTER 5. NUMERICAL RESULTS 154 

.. -0.02 

1
:""~M\1 ,:";~fI;; l ,~ 

-0.08 

Figure 5.51: Acoustic pressure contours inside the nacelle and at an axial location away 

from the inlet. 
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Figure 5.52: Pressure amplitude contours along the duct's plane of symmetry. 
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Figure 5.53: Acoustic pressure contours superimposed on the isosurface of SPL at the 

necelle exit. 
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Figure 5.54: Contour maps of the acoustic pressure at both ends of the computational 

domain and along the y = 0 plane. 
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Figure 5.55: SPL directivity ofthe (13,0) mode on the xy-plane; w = 17. 
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Figure 5.56: SPL directivity of the (13,0) mode on the xz-plane; w = 17. 
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Figure 5.57: Convergence history of the iterative solvers for the Schur matrix. 
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Figure 5.58: Effect of the restart parameter on convergence rate of the GMRES algorithm. 
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Figure 5.59: Effect of the number of partitions on the convergence rate of the Schur matrix, 

using the GMRES algorithm. 
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Figure 5.60: Speedup vs. number of CPU's; data normalized with respect to p = 8. 



Chapter 6 

Conclusions and Future Research 

6.1 Summary and Conclusions 

A 3D code was developed using the spectral element method for the simulation of noise 

generated by turbofan engine inlets. The applicability of the code, however, is not restricted 

to fan noise problems. The 3D fonnulation allows prediction of far-field aeoustic radiation 

from a duet of an arbitrary shape (asymmetric) and geometry with a rectangular or circular 

source. 

The governing equations are based on the linearized Euler equations, which are further 

simplified to a set of equations in tenns of a single variable, i.e. the acoustic potential, 

using the irrotational flow assumption. Spatial discretization is based on a spectral element 

method, where the computational domain is subdivided into hexahedral elements within 

which an Nth-order Chebyshev spectral approximation is applied at the nodes of a Gauss­

Chebyshev-Lobatto grid. Due to the distinct features of a wave propagation problem, use 

of a high-order method is essential to minimize the errors associated with dissipation or 

dispersion as the waves travel within the domain. 

Further, given the periodic nature of the fan noise problem, the governing equations 

were written in the frequency domain. This eliminated the need for a time-marching (ex­

plicit) solution method. Instead, a large system of linear equations had to be solved, which 

161 
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is known to be challenging due to ill-conditioning of the coefficient matrix. For this pur­

pose, a solution method based on the domain decomposition using a Schur complement 

method was used. The Schur matrix was solved iteratively using a matrlx-free approach 

using a novel local preconditioner. The method was demonstrated to be robust and very 

efficient for a large number of problems. 

Moreover, a mean fiow solver based on the full potential equation was added in order 

to take into account the effects of fiow variations around the nacelle on the scattering of the 

radiated sound field. 

A large number of test cases were presented, ranging in size from 100000-2000000 

unknowns. In all tests, the results were compared with either analytical or other numerical 

data (or both), which validated and demonstrated the suitability of the proposed method for 

the solution of a wide range of acoustic problems. 

AlI aspects of numerical simulations, including building and assembling the coefficient 

matrices, implementation of the Schur complement method, and solution of the system of 

equations were performed in parallel. Depending on the size of the problem, between 8-48 

CPU's were used. The developed code was shown to have an excellent parallel performance 

with a linear or superlinear speed-up. For the purpose of parallelization, the MPI standard 

and PETSc libraries were extensively used. 

The method presented in this thesis and the associated computer code were developed 

to enable a tool that can be applied and used for realistic design problems. Therefore, a 

very important aspect of this technology, in addition to accuracy, is the amount of time and 

computer resources required to perform such simulations. It was shown that the CUITent 

method could solve a real world problem (scarfed inlet) in about 5 hrs on 16 CPU's. This is 

still considered a very expensive computation by many industrial standards. So, reducing 

the amount of memory usage and speeding up the calculations are the areas where we 

will focus and make several recommendations for future work in the context of the CUITent 

research. 
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6.2 Future Research 

Recall that in applying the Schur complement method, a large amount of memory was 

used for storing the factorized matrices A}1 and A ~k because a direct method was used for 

solving systems involving the two at every iteration. An alternative is to use an iterative 

method that will substantially require much less memory, especially for the A}1 matrix that 

is dense. A good preconditioner is the key for a fast convergence, given the ill-conditioning 

of these matrices, otherwise the large solution time will outweigh the benefits of using less 

memory. Our experiments indicated that standard preconditioners, such as ILU were not 

efficient. 

One possibility that could be investigated is to build a preconditioner using the fast 

diagonal method (FDM) [12]. This method uses ID matrix operators to build the three 

dimensional differential operator using a matrix tensor product, assuming that the geometry 

is a cuboid (hexahedral with right angles). For such geometries, it is then possible to build 

an inverse operator using eigenvalues and eigenvectors of the ID operators, which are of 

smaller size [65]. 

For hexahedral elements with general shapes, one could build an approximate inverse 

operator in a similar manner by first creating a cuboid to represent the deformed elements 

using proper average dimensions in each coordinate direction. Such an approximate in­

verse operator could be used as a preconditioner for the A}1 matrices. The ID operators 

could either be based on the Nth degree polynomials of the spectral grid or simpler linear 

or quadratic approximations. Such an approach has been used recently in the context of 

domain decomposition method for the solution of the Poisson equation [63]. In addition, 

one can simplify the process by. building the inverse operator only for the elliptic terms in 

the weak form, Eq. (2.28). Ref. [13] provides the formulas for differential operators for 

this case. 

One area that could be considered is mesh adaptation, which to our best knowledge, has 

not been examined for the fan noise problem before. Given the directionality of acoustic 

radiation from the engine inlet, such a measure is justified and could reduce the size of the 
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problem. The issues to be considered include the type of the a posteriori error estimator to 

be used, which is somewhat different for acoustic problems [11,94], and reconstruction of 

the spectral grid and associated data structure for the newly added or deformed elements. 

AIso, to estimate the error, it would be easier to use the information on the spectral grid 

but apply the adaptation to the background finite element grid using sorne kind of lumping 

or averaging strategy. The literature on the subject of the mesh adaptation for acoustic 

problems is not vast, but it seems that the majority of approaches favor an h-refinement. 

In addition to being ill-conditioned, the coefficient matrix of the discretized acoustic 

problem is also nonsymmetric and indefinite. If the governing equations are recast in the 

form of a system of first order differential equations, then one could use a least-squares 

method to build the coefficient matrix [97]. In this case, the coefficient matrix would be 

symmetric and positive definite (SPD), for which efficient preconditioners are available, 

not to mention the savings in computer memory due to storing only half the matrix. Such 

an approach was applied for the solution of unsteady sound propagation problems in one 

and two dimensions [61]. The current acoustic problem could be solved with this method 

either in the frequency domain, or by introducing a pseudo-time term, in the time domain. 

Obviously, there will be a large savings in memory if the latter approach is adopted. How­

ever, in a very recent work by Ozyorük et al., the solution of a fan noise problem using a 

pseudo-time on a grid of size 241 x81 (i.e., 19521 unknowns) required 60000 time steps 

and 4.3 hrs of CPU time on 12 processors to converge. This is a large computation time, 

given that using the Schur complement method, we solved a problem of slightly larger size 

on 8 processors in only 20 minutes. 

The current approach based on solving the acoustic equations in the entire domain has 

limitations for problems where the observer is located at a very large distance from the 

source, simply because a high-order solution for such a large domain will be extremely 

expensive and not practical. An alternative is to use a hybrid method, where the CAA is 

used only in the near-field region, and the far-field domain is resolved using a boundary 

integral method. This approach relies on the acoustic analogy and could lead to savings in 
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computation time of more than an order of magnitude [107]. The integral solution in the 

far-field is usually based on the Kirchhoff formulation. The assumption involved, however, 

is that the finite volume surface surrounding the near-field must be located at a region where 

the linear wave equation is valid. This restriction, however, could be lifted if one uses a 

permeable surface form of the Ffowcs Williams-Hawkings (FW-H) equation [8], which is 

completely based on the continuity and momentum equations and is valid in regions of the 

domain where nonlinearities exist. This latter form, however, is in terms of the primitive 

flow variables, i.e., p, u, v, w and p. So, if a potential formulation is used in the near-field, 

the integral equations should be modified to be in terms of the acoustic potential. 
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AppendixA 

Derivation of Momentum Equation in 

Terms of Density 

We start the derivation with the momentum equation written in the vector form, equation 

(2.8), 
aV -+ -+ Vp 
-+v·vv=--8t p' 

(A.l) 

where we have dropped the superscript "*" for the sake of simplicity. Since the flow is 

assumed irrotational, i.e., V x V = 0, one can introduce a potential, <I>, such that, V = V <I>. 

So, using the vector identity 
-+2 

-+ -+ (A) -+-+ A . V A = V 2 + (V x A) x A, (A. 2) 

we can write 

(A.3) 

and the left-hand side of the momentum equation becomes 

a: +V·VV= a~<I> +V(V<P~V<P) =V [~~ +~(V<I>.V<I»]. (A.4) 

To write the right-hand side of the momentum equation in terms of acoustic potential, 

<I>, we first use the equation of state, (Bq. 2.6), and find its gradient 

1 
Vp = - (J p'Y-1 V p) = p'Y-1 V p. 

'Y 
(A.S) 
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In a similar way, the equation for the speed of sound, Eq. (2.7), becomes 

(A.6) 

Combining these two equations, we get 

(A.7) 

or, 

P ')'-1 
(A. 8) 

So, the momentum equation can be written as 

(A. 9) 

or along a streamline 

[
8<1> 1 ] c

2 

-8 + - (\7<1>. \7<1» + -- = const. 
t 2 ')'-1 

(A. 10) 

For a point at the far-field, we have 

(8j8t)oo = 0, and Coo = 1, (A.U) 

leading to 
M 2 1 
~ + -- = const. 

2 ')'-1 
(A. 12) 

So, writing equation (A. 10) along a streamline between the two points, one in the near field 

and one in the far-field, gives 

[
8<1> 1 ] c2 M2 1 - + - (\7<1>. \7<1» + - = ~ + --, 
8t 2 ')'-1 2 ')'-1 

(A. 13) 

or 

(A. 14) 

which can also be written in terms of density using the equation for the speed of sound 

[ (
8<1> \7<1>. \7<1> - M!)] l/b-l) 

p= 1-(')'-1) -8t +---2-----=:'::' (A.IS) 



AppendixB 

Integrais Involving Chebyshev Functions 

Here, we derive exact formulas for several integrals involving Chebyshev polynomials 

and/or their derivatives. These integrals appear frequently in the derivation of coefficient 

matrices, as discussed in the following appendices. We start with the definition of the n th 

order Chebyshev polynomial, Tn(ç), 

where ç = cos B. (B.l) 

Derivative of the Chebyshev polynomial can be easily obtained by applying the chain rule 

or 

dTn dB 
--
dB dç 

dTn/dB 
dç/d() , 

nsin ne 
sin e . 

In the course of derivation, we will repeatedly make use of the following results 

1" sinplJ sinqO dO = { 0 2p 
p+q even, 

p+q odd, p2 _ q2 

1" sinplJ sinqB dB = { 0 p+q odd, 

o sin () ~ [J!(p+Q)/2! - J!(p-Q)/2!l p+q even, 

179 

(B.2) 

(B.3) 

(B.4) 

(B.S) 
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in which 

Jk = k 1 
{ 

0 , 

4~­
~2i-l 
i=l 

k = 0, 

k ~ 1. 

We now proceed by finding the c10sed fonn solutions for the following integrals. 

amn = -1° cos mO cos nO cos 0 sin 0 dO, 

Il'1r = '2 0 sin 20 cos mO cos nO dO. 

U sing the trigonometric identity 

1 
cosmO cos nO = '2 [cos(m + n)O + cos(m - n)O], 

wehave 

1 l'1r 1 l'1r amn =4 ° sin20cos(m+n)OdO+ 4 ° sin20cos(m-n)OdO, 

which can be written as 

amn~ { 
0 m+n even, 

1 1 
4-(m+n)2 + 4-(m-n)2 m+n odd, 

using (B.4). 

1+1 ~ bmn = -1 Tm(Ç") Tn(Ç") dÇ" 

In a similar way, one can obtain 

{ 0 
m+n odd, 

bmn = 
1 1 m+n 1-(m+n)2 + 1-(m-n)2 even. 
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(B.6) 

(B.7) 

(B.8) 

(B.9) 

(B.IO) 

(B.ll) 
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_ -10 
in sin mO n sin nO O' 0 dO 

Cmn - . 0 . 0 cos sm , 
'Ir sm sm 

= mn l'lr sin mO s~n nO cos 0 dO. 
o smO 

(B.12) 

U sing the trigonometric identity 

1 
sin mO cos nO = "2 [sin( m + n)O + sin( m - n )0], (B.13) 

we can write 

= mn l'lr sin mO sin(n + 1)0 dO mn l'lr sin mO sin(n - 1)0 dO. 
Cmn 2 . 0 + 2 . 0 o sm 0 sm 

(B. 14) 

Or, using (B.5) 

Cmn = { ~n [JI (m+n+l)/21 - Jl(m-n-l)/21 + JI(m+n-l)/21 - J I(m-n+l)/2!i 

Note that when (m + n)is odd, so will (m - n), and so on. 

1+1 dT. dT. 
~ dmn = -1 d; dE,n dE, 

Following a similar procedure, one finds 

m+n odd, 

m+n even. 

elmn = -10 

cos lO cos mO cos nO sin 0 dO, 

= l'lr cos l() cos mO cos nO sin 0 dO. 

m+n even, 

m+n odd. 
(B.15) 

(B.16) 

(B. 17) 
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Repeated application of (B.8), leads to 

1 rr elmn = 4 Jo sin 0 [cos(l+m+n)B+cos(l+m-n)B+cos(l-m+n)B+cos(l-m-n)B] dO, 

or, after using (BA) 

{ 

0 
e -

lmn - 1 1 1 1 1 

2 [1-(l+m+n)2 + 1-(I+m-n)2 + 1-(I-m+n)2 + 1-(I-m-n)2 ] 

10 l sinl{) 
flmn = - . 0 cos mO cos nO sin 0 dB, 

7T SIn 

= l 17T sin l{) cos mO cos nO dO, 

ll7T ="2 ° sinl{) [cos(m + n)B + cos(m - n)B] dO, 

or 
l +m+n even, 

l +m+n odd. 

10 l sin l{) m sin mO 
9lmn = - . 0 . 0 cos nO sin 0 dO, 7T sm sm 

= lm (7T sin l{) sin mO cos nO dB 
Jo sine ' 

(B.18) 

l+m+n odd, 

l +m+ n even. 

(B.19) 

(B.20) 

(B.21) 

lm l7T sin l{) 
= -2 -'-0 [sin(m + n)B + sin(m - n)B] dO. ° sm 

(B.22) 
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Using (B.5), gives 

{ 

0 
glmn = lm 

4"" [JI (l+m+n)/21 - JI(I-m-n)/21 + JI(l+m-n)/21 - JI(I-m+n)/21] 

l +m+n odd, 

l +m+n even. 
(B.23) 



Appendix C 

Evaluation of Submatrices 

Let us define 

Eijk = 1:1 

hi(ç) hj(ç) hk(ç) dç, (C.l) 

1+1 dhi(Ç) 
Fijk = -1 dç hj(ç) hk(ç) dç, (C.2) 

G.. = 1+1 dhi(ç) dhj(ç) h (C) dC. 
tJk -1 dç dç k ~ ~ (C.3) 

If we write hi (ç), the Lagrange interpolating polynomial, as 

2 N 1 
where /-lin = N L - Tn(Çi) , 

Ci n=O Cn 
(C.4) 

integrals (C.l)-(C.3) can be recast in the following compact forril 

(C.5) 

(C.6) 

(C.7) 

in which eijb fijb and gijk are given in Appendix B. 
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We can now proceed to derive formulas for the evaluation of submatrices (2.55)-(2.67). 

Note that the integrals over the elements are in fact volume integrals over the master ele-

ment, i.e., 

(C.8) 

Starting with (2.55) 

the integral becomes 

U sing the Gauss-Chebyshev quadrature to evaluate the above integral, we have 

(C.ll) 

Or, using (C.5) 

(C.12) 
pqr 

Submatrices of the form Aftk,lmn' A~Jk,lmn' AfA,lmn' ... , which involve double deriva­

tives, can be evaluated in a similar fashion. We show this for A~Jk,lmn in detail and then 

provide the general formula in matrix form for the evaluation of other integrals. 

Recall that 

(C.13) 

From (2.72) and (2.73), we have 

(C.14) 
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and 

( dhl ) ( dhm ) ( dhn ) 
= J21 dç hm hn + J22 hl drJ hn + J23 hl hm de, . 

So, the product, V 0k VYmn' becomes 

( 
dhi ) ( dhn) + JU dç hj hk J23 hl hm de, + ... , 

and the integral 

A~lk,lmn = r (poUoVo/c~)VftkVYmnIJI-ldçdrJd(, Jne 

+ .... 

186 

(C.lS) 

(C.16) 

(C.17) 

Using the Gauss-Chebyshev quadrature to evaluate the terms involving mean flow vari­

ables and Jacobian terms, we have 

A~lk,lmn = I: (Pouovo/ c~)pqr 
pqr 



APPENDIX C. EVALUATION OF SUBMATRICES 

Simplifying the integral using (C.1)-(C.3) leads to 

A:Jk,lmn = {[ (J21)pqr( Gilp Ejmq E knr ) + (J22)pqr(Filp Fmjq E knr ) + 

(J23)pqr(Filp Ejmq F nkr )] (Jll)pqr 

+ [(J21) pqr(.FliP Fjmq E knr ) + (J22)pqr(Eilp Gjmq E knr ) + 

(J23)pqr(Eilp Fjmq F nkr )] (J12)pqr 

+ [(J21) pqr(.FliP Ejmq F knr ) + (J22)pqr(Eilp Fmjq F knr ) + 

] } (
POuovO/C6) 

(J23)pqr(Eilp Ejmq Gknr ) (J13)pqr IJI pqr' 

187 

(C.19) 

where summation over repeated indices, pqr, is assumed. Other submatrices can be ob­

tained in a similar way. They can be written in a compact form using the matrix notation 

as 

A = Bpqr 8 ([J]pqr C [J];qr) , 

in which [.1] is given by (2.72). A is the matrix of submatrices 

AXX 
ijk,lmn 

AXY 
ijk,lmn 

AXZ 
ijk,lmn 

A= A
Yx 
ijk,lmn A

YY 
ijk,lmn A

Yz 
ijk,lmn 

AZX 
ijk,lmn 

AZY 
ijk,lmn 

AZZ 
ijk,lmn 

B is the matrix containing mean flow values 

(U6 - c6) uovo UOWo 

VOUo (va - c6) voWo 

WOUo Wovo 

with 8 representing pointwise matrix multiplication, and C is given by 

Gilp Ejmq Eknr Flip Fjmq Eknr Flip Ejmq Fknr 

C = Filp Fmjq Eknr Eilp Gjmq Eknr Eilp Fmjq F knr 

Filp Ejmq F nkr Eilp Fjmq F nkr Eilp Ejmq Gknr 

(C.20) 

(C.21) 

(C.22) 

(C.23) 
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Similarly, integrals involving single derivatives can be written in the compact matrix form 

AX* A*x ijk,lmn ijk,lmn 

Ay* A*Y V [.I] E ijk,lmn ijk,lmn = pqr pqr pqn (C.24) 

AZ* A*z ijk,lmn ijk,lmn 

where V is the diagonal matrix of mean fiow variables 

Ua 0 0 

V = (~~) 0 Va 0 (C.25) 

0 0 Wa 

and 

Filp Ejmq E knr Flip Ejmq E knr 

E= Eilp Fjmq E knr Eilp Fmjq E knr (C.26) 

Eilp Ejmq F knr Eilp Ejmq F nkr 



AppendixD 

Discretization of the Eigenvalue Problem 

Here, we present the details regarding discretization of the Bessel equation, Eq. (2.93), in 

the radial direction. Derivation begins using the weak fonu, Eq. (2.102), rewritten below 

i (~~~~ + 72
2 
~w) rdr - k~s i ~wrdr = O. (D.l) 

In this equation, L; is the one-dimensional region in the radial direction, which is divided 

into E elements, each of size Le. As shown in Figure D.l, a mapping is defined between 

-1 +1 

Figure D.l: One-dimensional mapping in the radial direction. 

the e1ements in the physical plane and the reference element in the computational plane, 

s) = [-1, +1], given by 

(D.2) 

in which ri and r 0 are the coordinates of the initial and end points of an element in the r­

direction, respectively, and Le = (r 0 - ri). Let us represent the acoustic potential as the dis-
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crete sum of Lagrange interpolation functions, hj(ç), collocated at the Gauss-Chebyshev­

Lobatto points 
N 

<pe(ç) = L hj(ç) <Pj, (D.3) 
j=O 

where N is the order of spectral approximation. hj(ç), given by (2.47), can also be written 

in the following compact form 

(D.4) 

in which summation over repeated indices is assumed. Taking the weight function to be 

w = hi(ç), and integrating over an element, ~e, the integrals in (D.1) become 

N 

= LKij<pj, (D.5) 
j=O 

and 

N 

= LMij<pj. (D.6) 
j=O 

Coefficient matrices Kij and Mtj are evaluated using the transformation defined in (D.2). 

Starting with Kij, we have 

e 1 dhidh j 1 m 2 

K-- = --rdr+ -h-h-dr tJ d d t J , 
~e r r ~e r 

(D.7) 

in which a = (ri +r 0) / Le. To evaluate the integrals, we use the definition of the Chebyshev 

polynomials, given by (D.4) and (2.35), to obtain 

e [1+1 dTi dTn 1+1 dTi dTn 21+1 Ti Tn ] 
Kij=J.LilJ.Ljn -1 dç dç çdç+a -1 d[ dç dç+m -1 (ç+a)dç . (D.8) 
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or, simply 

e [ 217r 
cos l() cos nfJ sin fJ ] 

Kij=/-lil/-ljn (cln+adln)+m 0 (cosfJ+a) dfJ, (D.9) 

where Cln and dln are defined in Appendix B, and the last integral on the right-hand side is 

evaluated using Gauss-Legendre quadrature, because it does not have a c1osed-fonn solu­

tion. 

Similarly, we can write for MiJ 

(U)2j+1 
= -4- hi hj (1; + a) dl;, 

-1 

(D.10) 

or 
e (Le )2 

Mij = -4- /-lil /-ljn (aln + a bln ). (D.ll) 

Matrices aln and bln are given in Appendix B. Once the coefficient matrices are created for 

aIl elements, their assembly gives the global eigenvalue problem, Equation (2.103) 

([K] - k~s[M]){ <p} = 0, (D.12) 

which is solved using LAPACK routines to obtain the eigenvalue kms . 


