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ABSTRACT 

Road transport has a tremendous impact on local urban regions as well as global 

planetary health. This impact is especially great given the large quantities of 

greenhouse gases and local air pollutants released across the world, quantities that 

continue to increase. For metropolitan regions, reductions in traffic-related air 

pollution are paramount. Which baseline is used and which strategies should be 

implemented are both vital questions in this regard. Integrated transport and 

emissions models are important tools that aid metropolitan planners in answering 

those questions. A regional traffic assignment model has been connected to a 

detailed emission processor for the Montreal metropolitan region. The road 

transport model contains details on all private driving trips across a standard 24-hr 

workday, including congested link speeds and stochastic path distributions. 

Meanwhile, the emissions processor incorporates local vehicle registry data and 

Montreal-specific ambient conditions in the estimation of both running and start 

emissions. Outputs include hourly link-level and trip-level emissions for 

greenhouse gases, hydrocarbons, and nitrogen oxides. Three research studies were 

then explored that were anchored by the integrated transport and emissions model. 

The first involved testing model sensitivity to variations in input data and 

randomness. The second study was aimed at understanding the land-use and 

socioeconomic determinants of traffic-related air pollution generation and 

exposure. The third study encompassed an equity analysis of social disadvantage, 

traffic-related air pollution generation and exposure. Major findings include 

evidence that: start emissions and accurate vehicle registry data have the biggest 

impact on accurate regional emission inventories; neighbourhoods closer to 

downtown tend to be low emitters while having high exposures to traffic-related 

air pollution, while the opposite is true for neighbourhoods in the suburbs and 

periphery of the region; and marginalized neighbourhoods with high social 

disadvantage tend to have the highest exposure levels in the region, while at the 

same time generating some of the lowest quantities of traffic-related air pollution. 

These findings support the claim that traffic is creating environmental justice 

issues at the metropolitan level.    
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RÉSUMÉ 

L’impact des systèmes de transports sur les régions urbaines et la santé planétaire 

est immense. Cet impact est notamment important parce-que les quantités de gaz à 

effet de serre et les polluants atmosphériques continuent à augmenter autour du 

monde. Pour les régions métropolitaines, les réductions de la pollution de l’air liée 

à la circulation sont essentielles. Cependant, quel point de référence est appliqué, 

et quelles stratégies devraient être mises en œuvre, sont deux questions vitales à 

cet égard. Une simulation intégrée du transport et des émissions est un outil 

important qui aide les planificateurs à répondre à ces questions. Une simulation de 

la circulation régionale a été liée à un simulateur des émissions détaillées pour la 

région métropolitaine de Montréal. La simulation de la circulation contient des 

détails sur tous les déplacements ‘auto conducteur’ pour chaque heure d’une 

journée normale de travail, incluant la vitesse de circulation encombrée, et 

distributions des trajets stochastiques. Aussi, le simulateur des émissions 

incorpore des données sur les types de véhicules et les conditions ambiantes 

locales dans l’estimation des émissions de conduite et d’ignition. Les données 

produisent sont des quantités d’émissions horaires au niveau des routes et des 

déplacements pour les gaz a effet de serre, les hydrocarbures, et les oxydes 

d’azote. Trois études de recherche ont été basées sur les résultats de la simulation 

intégrée de la circulation et des émissions. La première examine la sensibilité de la 

simulation aux variations dans les données. La deuxième évalue si l’utilisation du 

sol ou les caractéristiques socio-économiques sont les déterminants de production 

ou d’exposition à la pollution de l’air liée à la circulation. La troisième inclue une 

analyse du désavantage social et de la production et de l’exposition à la pollution 

de l’air liée à la circulation. On observe que les émissions à l’ignition et les 

données d’immatriculation des véhicules ont le plus grand impact sur les 

inventaires des émissions régionales. En terme d’exposition à la pollution de l’air, 

les quartiers les plus proches du centre-ville ont tendance à produire le moins 

d’émissions tandis qu’ils ont les niveaux d’exposition les plus élevés dans la 

région, alors que l’inverse est vrai pour les quartiers de banlieue et à la périphérie. 

Les quartiers caractérisés par un index de désavantage social élevé ont les niveaux 
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d’exposition les plus élevés et en même temps produisent de faibles taux 

d’émissions. Ces résultats appuient l’hypothèse que la circulation contribue aux 

problèmes de justice environnementale à l’échelle métropolitaine.      
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CHAPTER 1:  

INTRODUCTION 

 

1.1 Background 

Transportation and its negative externalities have a significant impact on global 

planetary health. As a sector, transport contributes 13.1 percent of global 

greenhouse gas (GHG) emissions (IPCC, 2007) and 24 percent of Canada’s GHG 

footprint (Environment Canada, 2011). Additionally, nearly half the world’s oil 

usage is attributed to motorized transport, further increasing its total contribution 

(Woodcock et al., 2007). Furthermore, on-road emissions are predicted to have the 

highest impact on climate forcing of any economic sector in the near future (10-15 

years), and the second highest impact over the long-term (100 years; Unger et al., 

2010). Road-transport, consisting of private light-duty cars and trucks, public 

transit vehicles and heavy-duty freight trucks, is specifically estimated to make up 

almost three-quarters of transport’s total contribution (IEA, 2012). While 

technological improvements have lowered emission rates per vehicle, increases in 

total vehicle-kilometres-travelled (VKT) have negated most of those gains.  

 

At the same time, the negative externalities from road-transport have a significant 

presence in urban environments. With the disappearance of urban industry over 

the last few decades, road transport has now become the largest contributor of air 

pollution in urban regions (Colvile et al., 2001). Local air pollutants from road 

transport come in the form of carbon monoxide (CO), hydrocarbons (HC), 

nitrogen oxides (NOx), and particulate matter (PM), while also contributing 

significant amounts of noise pollution. Previous studies have found considerable 

evidence that long-term exposure to local traffic-related air and noise pollution is 

potentially dangerous to various aspects of human health including birth outcomes 

(Brauer et al., 2008), children’s health (Kim et al., 2004; Zmirou et al., 2004; 

Kramer et al., 2000) and respiratory and cardiovascular diseases, including lung 

cancer (Gan et al., 2012; Selander et al., 2009; Chen et al., 2008; Babisch et al., 

2005; Hoek et al., 2002; and Kunzli et al., 2000). 
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Given the challenges that metropolitan regions face, road transport’s impact must 

be reduced. Planners and policymakers need tools in this regard that aid in 

quantifying the problem and assessing feasible solutions. Integrated transport and 

emission models are the best bet in this respect. Integrated models combine two 

streams of research through linkages between transportation modeling and 

detailed emission modeling, a combined focus that has grown rapidly in the past 

few years in light of the aforementioned issues facing metropolitan regions and the 

global community at large. These integrated transport and emission models are a 

crucial element for metropolitan planners in answering questions such as: What is 

the carbon footprint of our metropolitan region? Who are the highest emitters? 

Which neighbourhoods experience the greatest levels of traffic-related air 

pollution? What steps need to be taken to reduce emissions by 15, 20, or 25%? 

The purpose of this thesis is therefore to explore the various applications of an 

integrated transport and emissions model with a focus on the Montreal region.   

 

1.2 Objectives 

The objectives of this thesis are as follows:  

i. Development of a regional traffic assignment model for the Montreal 

metropolitan region (MMR) 

ii. Creation of an integrated transport and emission model that incorporates 

the following details in an emission processor: 

a. Vehicle allocation 

b. Running emissions 

c. Start emissions 

iii. Evaluation of the sensitivity of emission estimates from integrated 

transport and emission models to data inputs and model randomness 

iv. Assessment of the extent that land-use and socioeconomic characteristics 

play in determining traffic-related air pollution generation and exposure at 

the zonal level in the MMR 

v. Exploration of the equity of traffic-related air pollution generation, 

exposure and socioeconomic status across the MMR 
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1.3 Thesis structure 

The thesis begins with an overview of the context of this research. Specifically, 

previous research into integrated transport and emission models is explored and a 

summary of the study area (MMR) is included. From there, an entire section is 

devoted to model development, which explores the creation of the regional traffic 

assignment model, the emission processor, and validation of both models. The 

following three chapters cover three individual research papers that were anchored 

by the integrated transport and emissions model:  

 Chapter 4: Sensitivity of emission estimates 

 Chapter 5: Determinants of emissions generation and exposure 

 Chapter 6: Equity analysis 

Each chapter has context-specific sections on literature review, methodology, 

results and discussion. Finally, the thesis concludes with a summary of major 

findings as well as a short overview regarding pathways of future research. 
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CHAPTER 2:  

CONTEXT 

 

2.1 Integrated transportation and emission models 

Research into accurately estimating emissions from road transport has been 

growing over the past few decades. Unlike the estimation processes for stationary 

sources such as power plants, estimating exhaust levels from mobile sources such 

as road transport is quite difficult due to the numerous dimensions involved, such 

as travel speeds, vehicle characteristics, ambient conditions, and more. Focussing 

on private individual travel, instead of public or freight, has still resulted in a large 

variety in emission models. To begin, it is important to define the term ‘emission 

model’ and to describe how it interacts with transportation data inputs.  

 

Emission modeling of mobile sources involves the use of a modeling platform to 

simulate all types of emissions resulting from motor vehicles. Specifically, this 

includes those occurring at engine ignition (start emissions), during vehicle 

cruising (running emissions) and after engine shutdown (evaporative or soak 

emissions). Running emissions have been the focus of most research given that 

they typically constitute the majority of pollution emitted (Borrego et al., 2004; 

Houk, 2004). A modeling platform is therefore used to generate running emission 

factors (EFs) that dictate a relationship between vehicle, speed and quantity of 

emitted pollutant. For instance, if a vehicle with specific characteristics (type, 

model year, engine size, fuel type, presence of catalytic converter, etc.) drives at a 

given speed with a certain behaviour (acceleration, deceleration, gradient) and 

under particular ambient conditions (temperature, pressure, sun-exposure, etc.), 

then it has an associated EF in grams per VKT. Transportation data comes into the 

equation through travel speed and VKT, both considered crucial elements in 

emission estimation (Smit, 2006). Overall, emission models from the previous two 

decades span a wide spectrum of complexity, however this trend is neither time 

dependent nor geographical in nature (ie. concentrated in developed, Western 

nations). Emission models have certainly become more complex in general, yet 
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varying research objectives or data availability continue to favour the use of 

simple models in many situations.   

 

The simplest models are typically used to estimate basic national emission 

inventories, for instance in Mexico (Solis and Sheinbaum, 2013), or in research 

that studies the determinants of individual/household GHG footprints in regions 

such as Quebec City, Canada (Barla et al., 2011), Seoul, South Korea (Ko et al., 

2011), and Oxford, England (Brand and Preston, 2010). Numerous assumptions 

must be made across many of the model inputs. Transportation data is sourced 

from stated VKT estimates from travel surveys, and then EFs derived from 

average local fuel consumption rates are applied assuming a constant average 

vehicle speed. Another set of models combine similar travel survey data with EFs 

generated from an emission simulator. In North America, specifically in the Puget 

Sound region of Washington (Frank et al., 2006; Frank et al., 2000), the MOBILE 

series of emission modeling software developed by the United States 

Environmental Protection Agency (USEPA) was used to generate more accurate 

EFs for a range of pollutants and vehicle characteristics. A comparable approach 

was also taken in Europe, specifically in the Sardinia region in Italy (Bellasio et 

al., 2007), using the COPERT platform developed by the European Environmental 

Agency (EEA). Lumbreras et al (2013) even developed a platform that created 

more accurate transport and vehicle data for use in the COPERT emission 

simulator in order to estimate emissions for the entire country of Spain. While 

these types of models attempt to account for congestion in their composite EFs, 

assumptions are still made regarding vehicle characteristics, and no sense of 

spatial or temporal variation across their study areas is possible.  

 

The spatial distribution of traffic-related air pollution on the road network is 

paramount for the analysis of NOx, HCs, PM, and other local pollutants, especially 

given that intra-urban variation can be larger than inter-urban variation (Crouse et 

al., 2009a). Another set of models attempts to incorporate spatial issues through 

the use of manual traffic counts as the transport data input. This process also 
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usually captures local variations in vehicle composition, and has been applied to 

the northwest of England (Lindley et al., 1999), Beijing, China (Hao et al., 2000), 

Santiago, Chile (Corvalan et al., 2002), and Beirut, Lebanon (Waked and Afif, 

2012). Corvalan et al (2002) are even able to account for temporal variation by 

using hourly counts.  

 

However, the majority of research has focussed on the development of truly 

integrated transport and emission models incorporating detailed road-traffic 

simulations. Road-traffic networks are modeled at a macroscopic or mesoscopic 

scale, and then trips are assigned to the network on an hourly basis. Output data 

include VKT and average link speeds, which are both used directly in conjunction 

with the EFs generated from the emissions simulator. This process has garnered 

international popularity and has been employed in cities and regions such as 

Hamilton, Canada (Anderson et al., 1996), Helsinki, Finland (Karppinen et al., 

2000), Antwerp, Belgium (Mensink et al., 2000), Lisbon, Portugal (Borrego et al., 

2004), Hong Kong, China (Xia and Shao, 2005), Norwich, England (Nejadkoorki 

et al., 2008), and Madrid, Spain (Borge et al., 2012). Beckx et al (2009a) and Hao 

et al (2010) even incorporated activity-based models into their integrated 

modeling frameworks applied respectively to the Netherlands and the Greater 

Toronto Area, Canada. The advantage of integrated transport and emission models 

is that they are able to combine congestion-related speed effects and detailed 

vehicle data, often at the individual trip level. This provides significant detail 

regarding spatial and temporal variation, and allows for connections to 

socioeconomics or even to dispersion models that portray how meteorological 

conditions and the built environment influence pollutant concentrations (De 

Ridder et al., 2008).  

 

Meanwhile, start emissions occur at engine ignition and typically occur during the 

first two to three minutes of a trip. They are considered separate from those that 

are emitted during an engine’s cruising phase, and they are mostly caused by: (1) 

excess gasoline due to higher fuel enrichment; and (2) poor catalytic converter 
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performance due to the large gap between engine temperature at ignition and 

optimum temperature for catalytic conversion. The gap between engine and 

optimum temperatures is dependent on the ambient temperature, which varies by 

season, and the engine’s ignition temperature, which is related to the engine soak-

time, ie. the amount of time since the engine was turned off. Therefore, an engine 

that had been turned off recently would have a smaller soak-time and thus would 

have an ignition temperature that is closer to the optimum temperature of the 

catalytic converter. Start emissions are especially of concern when studying HC, 

CO or NOx emissions, accounting for approximately 28 percent, 31 percent and 20 

percent of total on-road VOCs, CO and NOx, respectively (Houk, 2004). Previous 

research that had employed the MOBILE platform implicitly account for start 

emissions through the generated running EFs (Hao et al., 2010; Frank et al., 2006; 

Frank et al., 2000; Anderson et al., 1996). COPERT models account for starts in a 

similar fashion (Lumbreras et al., 2013; Waked and Afif, 2013; Bellasio et al., 

2007). The current generation of emission software favours a distinct separation 

between running and start emissions, with start EFs used to dictate the relationship 

between vehicle characteristics, soak-time and amount of pollutants emitted 

during engine ignition.  

 

This research aims to build on the advancements in integrated transport and 

emission models through the development of a connected regional traffic 

assignment model and a comprehensive emission processor. The regional traffic 

assignment model provides accurate average link speed and VKT data, while 

accurate vehicle registry data is also incorporated. An emission simulator is used 

to generate both running and start EFs.  

 

2.2 Study Area 

Our study area includes the MMR, which covers an area of approximately 7,000 

km
2
 and has a population of about 3.8 million (Statistics Canada, 2011). The 

region is dominated by the island of Montreal, with approximately 47 percent of 

the region’s population and 71 percent of the region’s 1.4 million employment 
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opportunities (AMT, 2010). The remainder of the region consists of two sub-

regions north of Montreal: Laval and the twenty municipalities of the North Shore, 

and another two sub-regions south of the island: Longueuil and the twenty-five 

South Shore municipalities. Figure 1 provides the population distribution in terms 

of density across the MMR with all the major sub-regions identified. Further, the 

figure identifies the central business district (CBD) in a red box.  

 

 

Figure 1 – Population density of the MMR 

 

Figure 2 highlights the major boroughs on the island of Montreal as well as the 

cities of Laval to the northwest and Longueuil to the east. The CBD is located 

within the Ville-Marie borough.  

 

 



    9 

 

Figure 2 – Map of the Island of Montreal and surrounding municipalities 

 

The spatial economy of the Montreal region is anchored by the CBD; 59 percent 

of the region’s employment opportunities are within 10 km of downtown, while 

the remaining job distribution follows a concentric distance-decay curve 

(Shearmur and Coffey, 2002). The other major employment centre in the region is 

found near Montreal’s main airport in Ville-Saint-Laurent/Dorval, located 10-15 

km west of downtown. The imbalance between jobs and residents previously 

mentioned for the island of Montreal is especially large for the CBD and 

surrounding central areas. In the central areas there are 24 workers for every 10 

residents, an employment surplus that is being fed by Laval, Longueuil, and other 

municipalities on the North and South shores (Shearmur and Motte, 2009). 

Meanwhile, the island of Montreal is connected to the other sub-regions through a 

system of bridges. Five bridges connect the island to the north and five to the 

south, while two bridges at either end of the island connect the peripheral eastern 

and western edges. With the very high proportion of off-island and on-island 
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commuters, bridges linking the island to the rest of the region have become the 

salient element of the road network. At the same time, most of the residential 

growth is occurring in the periphery zones of the region particularly in the north 

and south shore municipalities (AMT, 2010). Overall, there are over two million 

vehicles registered in the region, resulting in a regional household vehicle 

ownership rate of about 1.2 vehicles (AMT, 2010). 
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CHAPTER 3:  

OVERALL MODEL STRUCTURE 

 

The integrated transport and emission model has two base data inputs (OD survey, 

vehicle registry) and two inputs generated from commercial software (emission 

factors, traffic data). The primary outputs include emissions at both the link- and 

trip-level. Developed as part of this thesis, the emission processor is the key 

element of the integrated model, incorporating all four data inputs in generating 

the desired output (Figure 3). The emission processor consists of:  (1) a vehicle 

allocation algorithm, (2) a running emissions model, and (3) a start emissions 

model. The interactions between all the elements in the integrated framework are 

highlighted in detail in Figure 4. The base data sources, specifically the travel 

behaviour information and the vehicle registry data, are described first. The 

platform used to generate running and start EFs is the Mobile Vehicle Emissions 

Simulator (MOVES) developed by the USEPA.  

 

 

Figure 3 – Integrated modeling framework 
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Figure 4 – Detailed framework (emission processor outlined in red) 
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3.1 Base Data Sources 

Origin-Destination Survey 

The base travel data for the integrated model encompasses the 2008 origin-

destination (OD) survey conducted by the Agence Métropolitaine de Transport 

(AMT), the regional transit authority in the MMR. The OD survey data contains 

information on 319,915 trips conducted in the MMR; each trip is associated with a 

set of attributes including origin, destination, departure time, travel mode, and 

attributes of the individual performing the trip including residential location. In 

addition, every trip is associated with a weight or “expansion factor” which allows 

us to scale the sample up to the total population. This survey is conducted every 

five years and is the primary source in Montreal for information on travel habits. 

The most recent survey was conducted in 2008 and the results were released in 

2010. Participants in the survey were identified through a random sample of the 

Montreal population using telephone listings; the sample is validated against 

census data using a wide range of variables (age, gender, employment status, 

home location, work location, etc.). In 2008, 66,100 households (representing 4% 

of the population) were interviewed including 156,700 individuals. Telephone 

interviews took place in autumn, a time period when most urban travel habits are 

stable. 

 

Vehicle Registry Data 

The vehicle registry database was obtained from the provincial registry at the 

Société de l’Assurance Automobile du Québec (SAAQ) for the base year of 2011. 

The SAAQ database includes vehicle ownership information for the Montreal 

region at the level of the Forward Sorting Area (FSA), indicated by the first three 

characters of the postal code. Within each FSA, the total number of vehicles by 

type (e.g. passenger car (PC), sports utility vehicle, minivan, small truck, large 

truck) and model year (1981-2011) is provided. The SAAQ data contains 12 

vehicle designations. These designations were collapsed into two groups, one for 

PCs and one for passenger trucks (PTs; which includes SUVs, minivans, and pick-

up trucks).  
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While it is possible that the 12 vehicle designations have different emission 

profiles, it is important to recognize that vehicle emissions on roadways are not 

only dependent on vehicle types and models but also influenced by fuel and 

engine technology, engine displacement, model year group, and regulatory class 

(USEPA, 2010). In fact the emission differences between different PCs of the 

same model year (and regulatory class) undergoing the same drive-cycle are 

smaller than emission differences for the same car undergoing different driving 

patterns. In real-road conditions, the differences due to vehicle make within the 

same category (PT or PC) can be neglected. For this reason the USEPA’s model 

MOVES 2010 has aggregated passenger vehicles into two broad categories: (1) 

PCs (i.e. all sedans, coupes, and station wagons manufactured primarily for the 

purpose of carrying passengers) and (2) PTs (which includes SUVs, minivans, and 

pick-up trucks) coming from a larger vehicle classification which was included in 

the older MOBILE6 series. The distribution of the fleet was computed for each 

FSA, based on the two vehicle types and thirty model years provided. 

 

3.2 Traffic Assignment 

A regional traffic assignment model was developed for the MMR (Figure 5). The 

model takes as input the 2008 OD trip data for the MMR provided by the AMT 

and assigns it on the road network using a stochastic assignment in the VISUM 

platform (PTV Vision, 2009). The regional network consists of 127,217 road links 

and 90,467 nodes associated with 1,552 traffic analysis zones (TAZs). All levels 

of road types were included in the model, ranging from expressways to arterials to 

local roads. It also contains various road characteristics such as length, speed 

limit, capacity, and number of lanes, as well as intersection characteristics such as 

capacity and turning restrictions.  

 

Only the driving trips were extracted from the OD survey for the purpose of this 

study and segmented into twenty-four 1-hour OD matrices based on trip departure 

times. The OD matrices were generated at the TAZ level. The simulated traffic 

was assigned to the network employing the stochastic user equilibrium approach 
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(SUE) in VISUM. The SUE approach allows for route choice distribution based 

on perceived travel times thus incorporating realistic route choice behavior 

compared to the traditional deterministic user equilibrium approach (PTV Vision, 

2009). Output from the traffic assignment simulations consisted of an array that 

contained a detailed description of all paths connecting pairs of OD zones in all 24 

hourly periods. This “path array” contains anywhere from 5,000 to 250,000 paths 

per hour for which the following characteristics are listed: links along the path, 

traffic volumes per link, average speed per link, link type and traffic volume per 

path. 

 

 

Figure 5 – Road network of the MMR 

 

3.3 Vehicle Allocation 

In order to maintain vehicle consistency between the estimation methods for 

running and start emissions, the first step in emission estimation involved 

allocating a vehicle to each of the driving trips in the 2008 OD survey (162,364 
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trips). Working at the household level, the main elements involved with vehicle 

allocation are the number of vehicles owned and each vehicle’s time of 

availability and geographic coordinates. A vehicle’s availability time was 

considered to be the end time of the previous trip if it ends at home. Trip end times 

are approximated using the regional traffic assignment model described in Section 

3.2. Hourly travel times were estimated for average driving routes between the 

1552 TAZs, and were then added to the start times for each trip in order to 

approximate trip end times. In a second step, an array was created for each 

household that had a number of elements equal to the number of vehicles owned. 

Each vehicle in the array was initialized at the household’s geographic 

coordinates. An algorithm then ordered all household trips chronologically and 

assigned every trip an index based on vehicle availability (time and geographic 

coordinates). Finally, each vehicle index was randomly allocated a vehicle type 

and model year based on the cumulative distribution function of the vehicle fleet 

composition of the household’s residential area. Therefore, every driving trip in 

the OD survey was allocated a vehicle type and model year that remained constant 

over a day’s worth of trip chains. 

 

3.4 Running Emissions Model 

Linked with the regional traffic assignment model, an emission processor was 

developed that incorporated the two main data sources described in Section 3.1 

(OD survey data, vehicle registry) with two additional data sources as inputs 

(paths array, EF look-up tables). Two outputs were obtained, the individual 

running emission level for each individual trip and hourly link-level emissions for 

all roads in the regional network. The processor goes through the list of 

individuals in the OD survey and randomly selects a path for each trip based on 

the cumulative path volume distribution from the path array. For each link along 

the path, based on the link type, average speed, and vehicle type/age, it attaches an 

EF in g/veh.km, and finally, multiplies the EF by the length of the link. After 

generating an emission per individual trip, total emissions per person are 
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aggregated and assigned to the TAZ where the individual resides. We also 

calculate total emissions occurring on the network in each TAZ.  

Four main databases are used to calculate individual trip emissions, these include: 

1) the OD trip table, 2) the vehicle ownership database, 3) the paths array, and 4) 

the EF look-up table. The OD trip table and the vehicle ownership database are 

covered previously in Section 3.1.  

 

Path Arrays 

The path array output from the regional traffic model contains information on each 

path between every active OD pair. Every path in the array has information on the 

volume of vehicles for that path as well as the type, length, speed, and volume of 

each link along the path. A path was allocated to each driver based on their origin 

and destination TAZs. In the case of multiple paths for one OD pair, a path was 

randomly allocated based on the volume proportion between the multiple paths.  

 

Vehicle EFs 

Vehicle EFs were generated using MOVES. All default input distributions within 

MOVES were replaced with Montreal-specific data reflecting the vehicle fleet, 

fuel composition, and ambient conditions. These EFs (in g/veh.km) vary by 

vehicle type (PC and PT), age (30 model years), fuel (gasoline), average speed (15 

speed bins ranging from 2.5mph to >65mph), season (winter, summer), and 

facility type (uninterrupted, interrupted). The latter is based on MOVES’ 

differentiation between two different driving behaviors based on two different 

types of road facilities. Uninterrupted facilities are roadways that have controlled 

access points with no signal control (i.e. expressways), resulting in more free-

flowing traffic. Interrupted facilities, on the other hand, are roadways with 

intersections, signal lights, or stop signs, resulting in more stop-and-go driving. 

The ambient environmental data applied to the summer and winter scenarios are 

highlighted in the next section. Emissions are computed for NOx, HC, and 

greenhouse gases (as CO2-eq). This leads to a large multi-dimensional look-up 

table with 10,800 EFs. Following the generation of the look-up table, trip 
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emissions (in grams) are calculated by matching the corresponding EF (g/veh.km) 

with each link along the trip taking into account vehicle characteristics and 

multiplying by the length of the link (km). EFs for link speeds that fall in between 

two speed bins are linearly interpolated. Further, emissions for each path are 

multiplied by the trip expansion factor and then assigned to the TAZ of the 

driver’s home location, as well as allocated onto the TAZs of every link on the 

driver’s path.  

 

3.5 Start Emissions Model 

In order to estimate trip-level start emissions, the emission processor required that 

each trip needed to have a soak-time and a vehicle-specific start EF. Soak-times 

were estimated once the vehicle allocation process was completed. The entire trip 

chain was tracked for every vehicle during the day and a sequence of engine 

ignitions and shutdowns was used to calculate soak-times. Specifically, the soak-

time for a given trip is calculated as the start time of the current trip minus the end 

time of the previous trip. The maximum soak-time was capped at 1440 minutes 

(24 hours), and if a vehicle only had one trip in its trip-chain then it was given the 

maximum soak-time. The vehicle-specific start EFs were generated using the 

same platform (MOVES) as the running emissions with a similar Montreal-

specific context. EFs for HC were generated; a total of 960 start EFs were 

computed in order to consider the effect of soak-time (8 bins), weather (2 

seasons), vehicle type (2 types), vehicle model year (30 model years) and pollutant 

type (HC) independently. Given that Montreal has significant seasonal variability 

and that meteorological conditions can have a significant effect on start emissions, 

we simulated EFs for both a summer and winter scenario (Table 1).  
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Table 1 – Atmospheric Conditions Used For Emission Modeling 

Season Date 
Temperature 

(
o
C) 

Atmospheric 

Pressure (kPA) 

Relative 

Humidity 

Winter 31-01-2008 -6.5 101 88 

Summer 14-06-2008 21.1 101 60 

Source : http://climate.weatheroffice.gc.ca/ 

 

EFs for vehicle model years between 1978 and 2008 were generated for PCs and 

PTs independently. As seen in Figure 6, increased vehicle age is associated with 

increased start emissions. A similar relationship is observed for all pollutants and 

atmospheric conditions considered. Vehicles manufactured before 1985 are 

associated with considerably higher start EFs. It is also interesting to note that the 

jump in start emissions for PTs coincides with the significant increase in SUV and 

minivan popularity during the mid- to late-1990s.  

 

 

Figure 6 – Start emissions for vehicle types and model years under winter conditions 
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Start EFs were developed for eight different soak-time bins in line with the eight 

operating modes used for start emission calculations in MOVES. The eight 

operating modes corresponded to the following time bins (ranges in minutes): (1) 

0-6; (2) 7-30; (3) 31-60; (4) 61-90; (5) 91-120; (6) 121-360; (7) 361-720; and (8) 

721-1440. The relationship between soak times and EFs is nearly logarithmic 

(Figure 7) and compares well to previous findings into the connection between 

start EFs and soak-times (Favez et al., 2009). Engine starts with soak-times greater 

than 12 hours (720 minutes) are considered to be cold-starts. Trip-level start 

emissions were estimated through the emission processor by assigning a start EF 

to each vehicle/trip based on its soak-time bin and vehicle characteristics (type and 

model year). The trip-level start emissions from the OD survey were then 

expanded to the full population based on survey expansion factors to produce total 

daily start emissions. In addition, hourly start emissions along with their spatial 

distributions are estimated.  

 

 

Figure 7 – Start emissions for PCs (model year 2000) as a function  

of soak time under winter conditions 
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3.6 Model Validation 

Transport Model 

The regional traffic assignment model was validated using traffic counts 

(integrated over a week) on 75 major arterials within the region as well as five 

bridges linking the Island of Montreal with the rest of the region (one count for 

each direction). The data were obtained using automatic and manual traffic counts 

conducted by the city of Montreal between the years 2008 and 2012, and the total 

number of count points was 160. The comparison between actual counts versus 

predicted counts provides an R
2 

value for the 6AM - 7AM period of 0.78 (Figure 

8) and a R
2 

value for the 7AM - 8AM period of 0.65 (Figure 9). The correlations 

(R-values) for the remaining 24-hour periods range from 0.62 to 0.86. Currently, 

traffic counts on highways remain unavailable to the research team and hence 

validation was confined to arterial roads and bridges. We recognize this as a 

significant limitation that will be addressed once highway traffic counts are 

obtained. However, given the strong correlations across the 24-hour period, we 

can confidently state that the model is adequately capturing the regional travel 

behaviour.  

 

As mentioned earlier, a large portion of the MMR includes the Montreal Island 

which is heavily dependent on its bridges. To validate our MMR model we also 

examine simulated traffic volumes across the day on Montreal bridges (Figure 10). 
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Figure 8 – Comparison between measured and modelled traffic volumes (6 - 7 AM) 

 

 

Figure 9 – Comparison between measured and modelled traffic volumes (7 - 8 AM) 
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Figure 10 – Hourly traffic volume profile on the bridges 

 

Emissions Model 

Initially, attempts were made to validate the emission results by comparing 

regional daily GHG emission estimates across several Canadian metropolitan 

regions (Table 2). Each estimate incorporates all private vehicle travel (PCs and 

PTs) from a standard workday, and measures GHG levels as CO2-eq emissions. The 

comparison includes two estimates for Montreal from varying years and 

geographic boundaries, as well as two from the Toronto area and another from 

Metro-Vancouver. Despite the difficulties in assessing inventories across different 

regional sizes, estimate years, and methodologies, the results are still relatively 

similar especially compared to the previous Montreal-based estimates.  The one 

outlier from Hao et al (2007), with estimates over two-times greater, is expected 

given that the Greater Toronto and Hamilton Area is over two-times the size of the 

MMR.  
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Table 2 – Comparison of Daily GHG Emission Inventories from Private Vehicle Operation 

Region Source Year of Estimate 
GHG Estimate  

(tons per day) 

MMR 
Integrated transport 

and emission model 
2008 11,920 

Montreal CMA 
Statistics  

Canada (2012) 
2007 11,900 – 14,500 

a
 

Island of Montreal Logé (2006) 2003 10,070 – 12,790 
a
 

City of Toronto 
ICF International 

(2007) 
2004 17,040 – 20,690 

a
 

Greater Toronto & 

Hamilton Area 
Hao et al. (2007) 2001 24,120 – 25,810 

Metro Vancouver BC MoE (2013) 2010 10,600 – 12,872 
a
 

a
 Calculated from a yearly estimate by assuming 261 workdays per year and that 70-85% of traffic 

occurs during the week 

 

While it is hard to validate link-level NOx emissions at a regional level, we 

propose to validate our link-level NOx emissions (in grams) by evaluating their 

association with near-road NO2 levels (in parts per billion) derived previously. For 

this purpose, the NOx concentrations estimated at the TAZ level (grams per km
2
) 

are compared to ambient NO2 concentrations from a land-use regression (LUR) 

model developed previously for the island of Montreal. The LUR model was 

created by Crouse et al (2009a) through a series of dense air quality monitoring 

campaigns whereby NO2 samplers were placed at 133 near-roadway points at a 

height of 2.5 meters. Data on land-use and road density were then obtained for all 

locations, and a resulting multivariate regression model was estimated and used to 

predict NO2 concentrations in areas without measurements.   

 

The resulting overlay between link-level NOx emissions and NO2 levels is 

presented in Figure 6. Based on the number of raster cells falling in each TAZ, we 

calculate the average NO2 level (in ppb) per TAZ and correlate this level with the 

level of NOx emissions occurring in the same TAZ per km
2
. While the aggregation 

to the level of the TAZ is expected to introduce disparity in the two datasets 
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(therefore reducing the correlation coefficient), a visual inspection of Figure 6 

clearly indicates that our highest simulated NOx emissions do correspond to the 

areas with the highest NO2 levels in Montreal. Furthermore, we observe that the 

overall correlation between our NOx link emissions and NO2 concentrations along 

roadways is around 0.8. 

 

 

Figure 11 – Link-level NOx emissions overlaid on a map of ambient NO2 
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CHAPTER 4:  

EVALUATING THE VARIABILITY IN EMISSION INVENTORIES 

 

4.1 Context 

The importance of accurate emission inventories has never been greater given the 

current impact that transportation systems have on the local and global 

environment, highlighted in Section 1.1. The current state of practice in research 

primarily involves the estimation of inventories through integrated traffic and 

emission models. Increases in model complexity have generally resulted in 

improved estimates, yet the improvements often come at the cost of investing in 

resource-intensive data inputs. In addition, not all investments in more accurate 

data inputs yield similar increases in estimate accuracies. For the research sector, 

this may not be a significant issue, yet for primary practitioners (ie. metropolitan 

planning agencies, provincial/state governments, etc.) involved in environmental 

and public health policy, this becomes much more relevant.  

 

Input data are often either non-existent or resource- and time-intensive to gather, 

therefore simplifying assumptions must be made. Yet which simplifying 

assumptions are reasonable, and which result in estimation errors, is still not 

entirely known. Previous literature reveals two main studies in the past decade that 

have attempted a comprehensive review of best practices in emission modeling. 

Kioutsioukis et al. (2004) were the first in assessing the uncertainty and sensitivity 

of emission models of the late 1990s and early 2000s. Their summary of previous 

research concluded that accurate activity data was as important as accurate 

emissions data in generating better emission inventories, and that sensitivity 

analysis must also be added to all emission models. More recently, Smit et al. 

(2010) performed a review and meta-analysis of integrated traffic and emission 

models, specifically concerning validation techniques. They had a similar finding 

in that there was an inadequate understanding of uncertainties in traffic emission 

models. Furthermore, they concluded that there was likely a modeling optimum 

that would balance input accuracy and model accuracy. This optimum point is 

characterized by diminishing marginal returns in model accuracy if more 
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resources are invested in input accuracy, and vice versa. Model development, ie. 

which details to focus on, and model application, ie. which data is most relevant to 

collect, were put forward as two key elements in establishing a modeling 

optimum.  

 

This chapter aims to explore the different input elements within an integrated 

transport and emission model and identify those that contribute the most to the 

accuracy of the final emission inventory. For this purpose, we estimate total daily 

HC emissions from passenger travel at the metropolitan level through the 

integrated modeling framework described in Section 3. The primary inputs of both 

running and start emission models are then altered in order to test the effects of 

different levels of aggregation in model inputs on the final estimates. We also test 

the effects of prevailing assumptions frequently made when emission inventories 

are conducted within government agencies.  

 

4.2 Methodology 

With the development of the integrated traffic assignment and emission model, a 

series of model runs were then undertaken in order to systematically evaluate the 

effects of input data precision on the final emission inventory. In addition, the 

effect of randomness we built into the model and which pertains to the vehicle 

allocation as well as path allocation processes is evaluated through multiple model 

runs leading to the generation of a standard error associated with every daily 

regional emission estimate.  

 

A total of 7 sets of model inputs were varied; these include: 1) the inclusion or 

exclusion of start emissions; 2) ambient temperature (winter vs. summer); 3) level 

of speed aggregation extracted from the assignment model (average network 

speed, trip speed, link speed); 4) vehicle age distribution (average vehicle age in 

the province vs. real distribution obtained from registry data); 5) vehicle types 

distribution (assuming all PCs vs. real distribution obtained from registry data); 6) 

soak-time distribution (assuming all starts are cold starts, assuming that all starts 
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are warm starts, using default soak time distributions, and deriving the real soak 

time distribution from trip start and end times); and 7) path selection (shortest path 

or stochastic assignment).  

 

1) Inclusion of start emissions – Excess emissions during engine starts have been 

estimated to account for nearly 28-31 percent of total on-road VOC emissions 

under summer conditions (Borrego et al., 2004; Houk, 2004). Kioutsioukis et al. 

(2004) also found that cold start effects in relation to average trip lengths were one 

of the three most important elements in accurate VOC estimates. While earlier 

emission inventories have accounted for starts through three different types of 

running EFs (cold-transient, hot-transient, and hot-stabilized), the current 

generation of emission simulators tend to separate running and start EFs. 

Therefore, in order to evaluate the effect of start emissions on daily regional 

emission inventories in isolation from other factors, we ran the model while 

including and excluding start emissions.  

 

2) Season – For regions and urban areas with high temperature differentials 

between summer and winter, season becomes an important consideration in 

developing emission inventories. Emission rates, especially the excess ones from 

starts, tend to significantly change under winter conditions, with start 

contributions rising to over 50 percent of total on-road emissions (Houk, 2004). 

Therefore, total emissions (start and running) were evaluated under summer and 

winter conditions in order to assess the isolated effect of ambient temperature.   

 

3) Travel speed – There are varying levels of detail with regard to travel speed 

aggregations used in emission modeling. The simplest assumption involves 

applying the average network speed (daily or peak-period) to all trips (Ko et al., 

2011; Brand and Preston, 2010). Certain models have increased the level of detail 

by assuming average trip speeds for emission calculations (Borge et al., 2012; 

Barla et al., 2011; Frank et al., 2000; Hao et al. 2000). Adding another layer of 

detail, the majority of emission models tend to use average link-speeds (Borge et 
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al., 2012; Hao et al., 2010; Beckx et al., 2009a; Xia and Shao, 2005; Borrego et 

al., 2004; Anderson et al., 1996). The detail in travel speed has been repeatedly 

shown to be highly significant with regards to emission estimates. Smit (2006) 

concluded that congestion and its impact on travel speeds was the second most 

important element in HC estimates after VKT. Anderson et al. (1996) found that 

HC estimates increased by 56 percent when using congested versus free-flow 

speeds. Therefore, three different travel speed assumptions were tested. The first 

was the most detailed and involved estimating link emissions using the congested 

speed of every link in a trip’s path. The second involved calculating an average 

trip speed for every OD trip using the trip length and time, and then estimating 

link emissions using this speed. The third speed assumption was to apply an 

hourly network-wide average speed to each link/trip.  

 

4) Vehicle age – Vehicle age is a significant factor in emission modeling. Previous 

studies have made three common assumptions: (1) all trips use the same vehicle 

age (Ko et al., 2011; Hao et al., 2000); (2) all trips are assigned a single EF 

representing the actual distribution of vehicles (obtained from fleet registry data; 

Borge et al., 2012; Xia and Shao, 2005; Borrego et al., 2004; Frank et al., 2000; 

Anderson et al., 1996); or (3) each trip is allocated a model year that is related to a 

unique EF (Barla et al., 2011; Hao et al., 2010; Brand and Preston, 2010). 

Therefore for this study two different vehicle age assumptions were tested. One 

involved creating a set of EFs from Montreal-specific fleet information for 30 

different model years (1978-2008). When each trip was assigned a unique vehicle 

age, it was also associated with a single EF for that same model year. The second 

involved using an EF for one model year, and assuming that all trips were made 

using that same vehicle age. The vehicle age used was the average for the 

Montreal fleet, which is eight years old (model year 2000 in 2008, the year of our 

simulation).  

 

5) Vehicle type – Common misconceptions in operational emission modeling 

frameworks is to assume that all household vehicles are of the same type, often 
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assumed to be PCs (Ko et al., 2011; Brand and Preston, 2010; Anderson et al., 

1996). For this reason, we evaluated the effects of two different vehicle type 

distributions: a) the actual household vehicle types existing in Montreal including 

PCs, and PTs, a category that covers light-duty trucks and sports utility vehicles; 

and b) the assumption that every trip was made using a PC.  

 

6) Soak-time – The time between turning an engine off and its successful re-

ignition is known as the vehicle soak-time, and is a primary determinant of start 

emissions. Previous generations of emission models employed default soak-time 

distributions in order to account for start emissions. Over a certain period, all the 

trips would be randomly allocated soak-times based on that hour’s distribution. 

Nair et al. (2000) recommended replacing the default distribution with regional-

specific data if possible. For this study, individual soak-times for each vehicle/trip 

were estimated based on the vehicle allocation algorithm. Three other soak-time 

configurations were also tested for the start emissions analysis. The second and 

third involved the assumptions that every start was a cold start (largest soak-time 

bin), or a warm start (smallest soak-time bin). The fourth configuration is based on 

the assumption that all vehicles in the survey data are randomly assigned a soak-

time based on default cumulative distributions from MOBILE6 (USEPA, 1998). 

The MOBILE series is the previous generation of emission models developed by 

the USEPA, with MOVES being its successor. Given that numerous studies have 

used either MOBILE6 (Hao et al., 2010) or a previous generation of the MOBILE 

model (Frank et al., 2000; Anderson et al., 1996), it is interesting to assess its 

impact compared to emission estimates generated from locally derived soak-times. 

The comparison between soak-time distributions derived from local travel diaries 

in Montreal (for 2008) and from MOBILE6 is illustrated in Figure 12. The 

differences across several hours seem to be relatively consistent between the 

MOBILE6 distribution and the travel diary distribution, however the overall 

differences between the two distributions are fairly large. The travel-diary 

distribution favours larger soak-times (greater than 12 hours), whereas the 

MOBILE6 distribution has a more relatively balanced range. Initially, this 
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suggests that the MOBILE6 soak-time distribution might underestimate the total 

start emissions given that the soak-times are smaller on average.   

 

 

Figure 12 – Soak-time comparison between local travel diary  

information and MOBILE6 defaults 

 

7) Path selection – Not to be confused with path allocation (where vehicles are 

allocated to different paths linking their origin and destination based on volume 

distributions on each path resulting from the traffic assignment), path selection 

involves the choice of path used for any trip between an OD pair that is 

determined by the assignment type employed in the regional traffic model. 

Various assignment types used in conjunction with emission models include: (1) 

shortest path (Barla et al., 2011); (2) deterministic user equilibrium (Beckx et al., 

2009a; Borrego et al., 2004; Anderson et al., 1996); (3) stochastic user equilibrium 

(Hao et al., 2010); and (4) dynamic user equilibrium (Borge et al., 2012; Xia and 

Shao, 2005). Otherwise, VKT data are sometimes gathered directly from travel 

surveys (Ko et al., 2011; Brand and Preston, 2010; Frank et al., 2000; Hao et al., 

2000). For computational reasons, both deterministic and dynamic user 
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equilibrium assignments were ignored in this study, resulting in two path selection 

algorithms being tested. One involves a stochastic path selection, which randomly 

allocates a trip to a path within a probability-based path set for every OD pair. The 

other involves the simplification that all trips select the shortest path.  

 

The final element of interest in the framework is the variance within the emission 

processor. Assuming all other inputs remain constant, the variance within the 

emission output is caused by randomness in both the vehicle allocation and the 

path allocation steps. The vehicle allocation step entails randomly assigning each 

vehicle a model year and type based on the cumulative vehicle fleet distribution 

characterizing the household’s residential zone. The cumulative distribution 

function was created using vehicle registry data, broken down into number of 

vehicles owned by type and model year. Therefore, the individual vehicles change 

between model runs, however the aggregate makeup of each zone remains 

consistent with the actual fleet distribution.  Meanwhile, the path allocation step 

entails randomly assigning a trip to a certain path between its origin and 

destination TAZs based on a cumulative path volume distribution function. The 

cumulative distribution function is created for every path set and is based on the 

volumes assigned to each path from the regional traffic assignment model. 

Therefore, individuals will have a higher chance of taking the most popular (ie. 

least congested) paths, yet there are lengthier alternatives also available.  

 

In order to account for this variance, the model was run under three different 

vehicle allocation simulations as well as three different path allocations combined 

to create three model iterations. These three iterations will form the basis for error 

estimation, and every input (belonging to the seven categories presented) is 

evaluated three times thus leading to three values for the total emissions output. 

The three values are averaged and a standard error (SE) is calculated, totaling 27 

total model runs and an additional 12 runs of the start emissions processor to 

assess soak-times. Figure 13 details the process used in testing five sets of data 

input, with each tree being generated for both seasons of analysis (soak-time is 



    33 

omitted from the results tree since it uniquely effects start emissions). The results 

are presented in the same format with the mean and SE from the three iterations 

for each inventory estimated.  

 

 

Figure 13 – Flowchart of changes to data inputs and model simulations 

 

4.3 Results 

Results of all the data input permutations that were tested are presented in the two 

trees that show daily regional emission estimates in tons per day, along with SE 

values (Figure 14). The two trees serve to differentiate two sets of emission 

models with one involving a common omission: start-emissions. The figure shows 

an estimate that includes start emissions (top tree) versus a less accurate one that 

ignores starts (bottom tree). The uppermost branch of the top tree reveals the most 

detailed emission estimate of about 18 tons per day, a quantity comparable to 

previously estimated daily HC inventories for similar Canadian metropolitan areas 

(Hao et al., 2010; Anderson et al., 1996). Meanwhile, it is important to note that 

the SE of all estimates is due to randomness in the vehicle and path allocation 

steps and accounts for at most 0.36 percent of the daily regional emission 

estimate. This means that the variance in allocating vehicles to individual trips 

based on zone-level registry data is insignificant given the size of the region and 



    34 

the fact that we are only looking at total daily emissions. More specifically, 

vehicle ownership trends (type and age) at the zonal level are respected during 

each iteration resulting in relatively consistent emission estimates, even though 

vehicle allocation at the individual level may be varying drastically. The same 

conclusion can be reached for the randomness due to the path allocation process. 

Individuals are likely taking different paths over different iterations, however at 

the aggregate level the variance is small. These results are contrasted with the 

substantial inaccuracy when solely making assumptions based on vehicle 

ownership data.  For instance, estimates involving a simplification in vehicle age 

actually result in overestimations of 4 to 32 percent. Larger overestimations occur 

in scenarios where start emissions are included, owing to the fact that they are 

highly dependent on vehicle age (Figure 6).  

 

Figure 14 also highlights the impact of various assumptions in combination. For 

instance, the lowest branch of the lower tree shows the multiplying effect of 

simplifications regarding start-exclusion, speed aggregation, vehicle type and age, 

and path selection. Together, those impacts lead to an underestimation of 28 

percent compared to the detailed estimate excluding starts, and an underestimation 

of 76 percent compared to the most accurate estimate including starts. However, 

making all those assumptions while including starts results in an underestimate of 

7 percent.  
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Figure 14 – Sensitivity results for daily regional emission estimates  

(values in parentheses include daily mean HC amount followed by its SE) 

 

Analyzing the effect that starts have on daily estimates, it is clear that ignoring 

start emissions will result in significant underestimations. Daily regional emission 

estimates increase threefold when including starts under summer conditions and 

this increase can rise to as much as eight times if winter conditions are considered 

(Figure 15). These results show that starts alone can contribute 67 to 86 percent of 

total daily HC emissions, percentages that are twice as large as those suggested in 
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previous research (Borrego et al., 2004; Houk, 2004). These results also highlight 

two important points with regards to season, in that: 1) substantial differences in 

weather conditions do not have a significant effect on running emissions, at least 

for HCs; and 2) that any impact seasonality has on running estimates pales in 

comparison to its pivotal role in start estimates.  

 

Meanwhile, the effect of different assumptions on travel speed aggregation is 

summarized in Figure 16. The effect of using average trip speeds in emission 

calculations reduces the total daily estimate by 2 percent from the baseline, which 

employs more accurate average link speed data. Applying the more simplistic 

assumption that all drivers travel at average hourly network speeds also results in 

an underestimation of about 6 percent. The fact that both simplifications result in 

underestimation comes as no surprise given that congestion effects tend to be lost 

in speed aggregation. However, the impacts are much smaller than anticipated. 

This is possibly caused by aggregating hourly running emissions, which typically 

vary significantly in peak versus non-peak traffic, into one daily estimate. Yet 

hourly emissions from all three speed inputs were compared and no significant 

differences between the aggregations were observed over the 24-hr period. The 

reasons for this are likely twofold: 1) the EFs are not that sensitive to speeds since 

instantaneous second-by-second speeds are not simulated, and 2) the speed 

impacts are negated by the sheer magnitude of regional VKT.    

 

Regarding the co-impacts of vehicle age, the assumption that all trips are made 

with an average model year (8 years old) results in a consistent overestimation of 

about 4 percent across each of the speed aggregation scenarios. The error bars in 

Figure 16 represent the range of estimate totals from model randomness. The 

smaller error bars of the constant vehicle age scenarios clearly indicate that the 

bulk of model randomness lies in the vehicle allocation step.  

 

If the effect of vehicle type in combination with vehicle age is then isolated, the 

resulting outputs show that assuming all trips are made with PCs leads to a large 
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underestimation in emission estimates (Figure 17). The underestimate from this 

assumption is nearly 25 percent and is consistent whether applying the full fleet 

age distribution or assuming an average vehicle age. Similarly when including 

starts, the underestimation is 22 percent. This indicates that vehicle type has a 

much larger impact than vehicle age on estimate accuracy. In addition, the size of 

the error bars in Figure 17 again highlight that model randomness is largely due to 

variance in vehicle allocation.  

 

Moreover, the type of path selection algorithm employed in the transportation 

model has a significant impact on the daily emission estimate. The assumption 

that all trips were taken on the shortest path results in a 7 percent drop in total 

regional emissions from the baseline, in which a path set is created through a 

stochastic distribution (Figure 14). 

 

The results of analyzing the effects of soak time on starts can be seen in Figure 18. 

The error bars shown represent the range in values from different vehicle 

allocations. The soak-time distribution from detailed travel diaries estimated 12.00 

tons of start-based HCs. Assuming all trips began under warm-start conditions 

resulted in a drastic decrease of 94 percent, whereas the total start emissions rose 

by 33 percent under the assumption that all trips were cold-starts. Given that start 

emissions are responsible for the majority of total HC emissions, it is important 

that soak-time distributions are accurate due to the wide range of values seen in 

Figure 18. Another finding of note is that the total daily start emission estimates 

are relatively similar when using the local soak-time distributions derived from 

travel diaries versus the default distribution in MOBILE6. Although the 

contribution from starts was higher under the soak-times derived from travel 

diaries (12 tons per day vs. 11.5 tons per day), the differences are smaller than 

expected (Figure 12). If hourly start emissions are compared, it is evident that the 

discrepancy in estimates is primarily due to differences in the morning and 

afternoon peak-periods (Figure 19). Meanwhile, the distributions from travel 
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diaries vs. MOBILE6 provide nearly identical start emission totals for all other 

times of day.  

 

 

Figure 15 – Daily regional emissions ignoring and including the effect of starts and season 
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Figure 16 – Daily regional emissions for different travel speed aggregations and vehicle ages  

(ignoring starts) 

 

 

Figure 17 – Daily regional emissions for different vehicle ages and types (ignoring starts) 
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Figure 18 – Daily regional start emissions for different soak-time distributions  

 

 

Figure 19 – Soak-time comparison of start emissions per hour 
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4.4 Conclusions 

The level of accuracy in travel behaviour data is highly linked to accurate 

emission inventories (Kioutsioukis et al., 2004). Using accurate travel behaviour 

data as the baseline, the question remains as to which inputs contribute the most to 

the accuracy of emission estimates. To address this question, the integrated traffic 

and emission model was used to estimate daily regional emissions for the MMR. 

The detailed model was set as the baseline, and then seven different data inputs 

were altered in isolation, as well as several in combination, to assess their impact 

on daily emission inventories. Overall, start emissions had the largest impact. 

Even under summer conditions, start emissions are estimated to make up two 

thirds of total on-road HC emissions. The impact of starts would likely be less if 

inventories were being made for other pollutants such as NOx. Vehicle registry 

data is the next element with the highest impact, specifically data on vehicle type 

distribution. SUVs and light-duty trucks emit more running and start emissions 

than PCs with similar model years, and so regions with high levels of PT use need 

to account for them. Meanwhile, speed aggregation and path selection type both 

have significant impacts on regional emission estimates, however nowhere close 

to the extent of including starts or accurate vehicle data. Our results also seem to 

support the argument that VKT remains a significant element in determining trip 

emissions. For practitioners, reaching the modeling optimum that balances input 

accuracy with model accuracy likely means investing resources in start emissions 

and accurate vehicle ownership data.  
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CHAPTER 5:  

LAND-USE AND SOCIOECONOMICS AS DETERMINANTS OF 

TRAFFIC EMISSIONS AND INDIVIDUAL EXPOSURE TO AIR 

POLLUTION 

 

5.1 Context 

The objective of this chapter is to better understand the generation of traffic-

related air pollution at a metropolitan scale and identify the regions that are 

potentially the most affected by these emissions. We propose two measures of 

traffic emissions that potentially capture inequity in the spatial distribution of 

emissions: (1) the average level of emissions generated per individual and (2) the 

level of emissions occurring in a zone as a proxy for air pollution exposure. These 

indicators are estimated at the TAZ level through the integrated transport and 

emission model. We examine the spatial distribution of emissions as well as 

capture the determinants of emissions generated and exposed to through a 

multivariate regression analysis of the two indicators against a set of land-use and 

socio-economic variables.  

 

Using significantly more aggregate travel and emission modeling tools, a number 

of studies have calculated individual and household emissions (from transport 

only) at a metropolitan level and analyzed the relationship between emissions and 

a host of socio-economic, land-use and transport supply variables. In one of the 

earliest studies conducted in California, Khan (1998) found that richer households 

might have higher vehicle emissions because they drive more often and own more 

vehicles. Poorer households were likely to have higher emissions as well because 

of their older, higher polluting vehicles. Frank et al. (2000) explored the 

relationship between land use patterns and household vehicle emissions in the 

Puget Sound region and found that household density, work tract employment 

density, and street connectivity (block density) were inversely related to 

household vehicle emissions, while commute trip distance had a positive 

influence. More recently, Brand and Preston (2010) estimated CO2 emissions at 

the individual level for the Oxfordshire region in the United Kingdom. They found 
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a significant relationship between individual CO2 emissions and age, gender and 

car ownership. Income, household location, working status and accessibility were 

not found to be significant. In another study with a similar methodology focusing 

on the Seoul metropolis area, Ko et al. (2011) found that household location and 

income were significant in relation to individual CO2 emissions, along with age 

and car ownership. Barla et al. (2011) observed similar effects in Quebec City. 

 

5.2 Methodology 

The emission post-processor estimates two indicators of traffic-related emissions: 

1) an average level of emissions generated per person for each TAZ calculated by 

dividing the total emissions generated by residents of the TAZ with the TAZ’s 

population. This measure is an indicator of the “polluting power” of the TAZ; and 

2) an average level of emissions occurring in a TAZ calculated by dividing the 

total emissions allocated to that TAZ by its area (in km
2
)
1
. This measure relates to 

the amount of pollution experienced by a TAZ; in this chapter we use it as a proxy 

for air pollution exposure in the absence of an air pollution dispersion model. In 

our analysis, we restrict ourselves to examining the NOx related emissions
2
 as they 

have the highest co-locational association with other traffic-related pollutants 

(Beckerman et al., 2008; Wheeler et al., 2008). 

 

In order to capture the strengths of associations between vehicle emissions and 

land-use and socio-economic attributes, a regression analysis was performed on 

the two TAZ-level indicators: 1) average emissions generated per individual, 2) 

emissions exposed to per km
2
. Multivariate regressions were run on the logarithm 

of the two indicators as both distributions are lognormal. In this respect, an 

extensive database of variables potentially affecting emissions was computed at 

the TAZ level for the MMR. The database includes a range of socio-economic, 

land-use and transportation related variables (e.g. population, residential density, 

                                                 
1
 The same measure is used in Chapter 6, however the estimation process differs and is explained 

in Section 6.2.  
2
 Start emission estimates were not available at the time of this study, and so NOx was chosen as 

the target pollutant (in contrast to Chapters 4 and 6, where HC was favoured due to its strong 

connection to start emissions).  
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highway length, etc.). The population data was estimated through data from the 

2008 OD survey (AMT, 2010). Factor analysis is then employed in order to 

structure the large dataset into a number of factors for use in the linear regression. 

The individual variables were first classified into two categories: (1) variables 

affecting travel demand (e.g. car ownership, average income, vehicle age, etc.), 

and (2) variables affecting transport supply (e.g. network density, bus stop density, 

walkability, etc.).  

 

The results of the factor analysis are shown in Table 3. Based on the six demand 

variables, three factors were derived. The first factor (i.e. high income, newer 

vehicles) represents the effect of household income and vehicle age. A zone that 

exhibits a high value for this factor can include more households with high income 

and newer vehicles. The second and third factors represent high vehicle ownership 

and larger vehicles (second factor) and older vehicles (third factor). Cumulatively, 

the three factors account for 81.5% of the variability in the six demand-based 

variables. Based on the supply variables three factors were derived to capture the 

effects of zones that are: (1) dense, walkable and have transit oriented 

development (TOD), (2) commercial, and (3) government and institutional.  
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Table 3 – Factor Analysis Results: Factor Loadings and Summary
a
 

Demand Factors
b
 

Components 

High income, 

newer vehicles 

High vehicle 

ownership, 

larger vehicles 

Older vehicles 

TAZ average income 0.657   

Vehicles per household  0.884  

Ratio of light-duty trucks vs. cars  0.772  

Fraction of model year: 1981 to 1990    0.949 

Fraction of model year: 1991 to 2000  -0.966   

Fraction of model year: 2001 to 2011  0.956   

Summary Statistics 

Eigen Value 

Variance accounted for (%) 

2.32 

38.62 

1.44 

24.03 

1.13 

18.89 

Supply Factors
b
 

Components 

Dense, 

walkable and 

TOD 

Commercial 
Government & 

institutional 

TAZ Walkscore 0.690   

Residential density (%) 0.732   

Length of highways (km) -0.630   

Local road density (%) 0.862   

Open water density (%) -0.803   

Bus stop density (%) 0.638   

Commercial area (km
2
)  0.935  

Government and institutional area (km
2
)   0.981 

Summary Statistics 

Eigen Value 

Variance accounted for (%) 

3.21 

40.08 

1.04 

13.00 

1.03 

12.91 

a
 Principal components estimation, varimax rotation and kaiser normalization were used in creating 

the factors 

b
 Factor loadings below 0.4 are considered insignificant and not shown in the table 
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5.3 Results 

Spatial Distribution of Emissions 

The average emitted NOx per person (am and pm peak periods only) across the 

1,552 TAZs in the region ranges from 0.0 to 17.5 grams. The spatial distribution 

of results across the region is shown in Figure 20. As expected, the high emitting 

individuals tend to reside on the periphery of the region, which is furthest from the 

CBD. Concurrently, the majority of low emitting individuals live centrally, on the 

island, much closer to the CBD. Overall, these results clearly confirm the intuitive 

hypothesis that high polluting individuals reside away from the downtown in 

suburban areas. When we overlay the map of emissions occurring on the network 

onto Figure 20, it is evident that most of the emissions occur in areas where the 

lowest polluting individuals reside (Figure 21).  This is confirmed when plotting 

the emissions occurring within a TAZ. Indeed, it is clear that there is much higher 

pollution along the main highway corridors and in the areas closer to downtown. 

In addition, emissions are very low for all of the zones on the region’s periphery. 

The spatial distribution of NOx emissions per km
2
 is presented in Figure 22.  
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Figure 20 – Emitted NOx per person for the MMR (island outlined in red) 

 

Figure 21 – Link-level NOx emissions overlaid on a map of emitted NOx per person 
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Figure 22 – Exposed to NOx per km
2
 for the MMR (island outline in red) 

 

Statistical Analysis 

In order to better understand the underlying factors associated with the generation 

and exposure to emissions, the two indicators of emissions were regressed against 

the set of factors derived from socio-economic, land-use and transport supply 

variables at the TAZ level. A summary of the regression results is presented in 

Table 4.  
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Table 4 – Multivariate Regression Results for ln (emitted NOx / person) and  

ln (exposed to NOx / km
2
) 

Factors 

Ln (emitted NOx  

/ person) 

Ln (exposed to NOx  

/ km
2
) 

B t-stat B t-stat 

Constant 0.077 2.543 7.103 96.02 

Dense, Walkable, TOD zones -0.082 -2.166 0.687 7.883 

Government & Institutional  -0.042 -1.390 -0.120 -1.610 

Commercial -0.111 -3.497 0.238 3.147 

Older Vehicles -0.304 -9.702 -0.408 -5.507 

High car ownership, larger vehicles 0.666 15.74 -0.856 -9.747 

High income, newer vehicles -0.096 -3.134 0.115 1.535 

Summary Statistics 

Adjusted R
2
 0.314 0.192 

 

We observe that the emitted NOx per person per TAZ are positively associated 

with high car ownership and larger vehicles and negatively associated with dense, 

walkable, TOD zones. Commercial zones also tend to decrease the average 

individual emissions since zones with higher amounts of commercial land-use 

tend to be located in areas with higher accessibility, thus reducing trip length. In 

addition, zones with high income and newer vehicles tend to decrease individual 

level emissions. This is likely because newer vehicles have lower emission 

factors. It is important to distinguish this factor from ‘high car ownership and 

larger vehicles’. This factor (high income, newer vehicles) seems to represent 

high-income urban dwellers who are not necessarily high emitters. This is an 

interesting finding, since it indicates that income influences emissions generation 

only when it is connected to higher car ownership. The final factor with negative 

association is ‘older vehicles’. The negative sign is counter-intuitive since older 

vehicles tend to have significantly higher emission factors (Figure 23). This 

finding is however confirmed by examining the level of car ownership of owners 

of older vehicles. Indeed, a cross tabulation of car ownership and average vehicle 

age (Table 5) confirms that the factor ‘older vehicles’ also includes low vehicle 

ownership. In fact, there is clear evidence indicating that a lower vehicle 
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ownership leads to lower vehicle mileage (NHTS, 2009). We can then conclude 

that households with older vehicles tend to make fewer trips therefore offsetting 

the higher emissions of their vehicles. 

 

 

Figure 23 – Emission factor vs. vehicle age (at a constant speed of 25 mph)  

derived from MOVES 

 

Table 5 – Cross-Tabulation of Vehicles per Household vs. Model Year: 1981-1990 (%) 

 

Vehicles per Household 

Total 0-0.5 0.5-1 1-1.5 1.5-2 2-2.5 2.5-3 3+ 

Fraction of 

model year: 

1981 to 1990  

0-0.01 2 0 0 0 0 0 0 2 

0.01-0.15 32 8 22 33 3 0 0 98 

0.015-0.02 55 67 114 121 20 3 1 381 

0.02-0.025 66 181 180 163 26 1 0 617 

0.025-0.03 73 78 48 41 7 0 0 247 

0.04-0.04 42 39 17 49 22 1 1 171 

0.04-0.05 18 3 4 7 3 0 0 35 

0.05+ 1 0 0 0 0 0 0 1 

Total 289 376 385 414 81 5 2 1552 

 

The multivariate regression model for NOx emissions occurring per km
2
 (used as a 

proxy for air pollution exposure) had four significant factors. Zones that were 
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dense, walkable, and accessible by transit or had more commercial land-use were 

positively associated with air pollution exposure. Meanwhile, zones with high car 

ownership and larger vehicles or ones with older vehicles were negatively 

correlated with exposure to NOx per km
2
. This is likely because zones with higher 

car ownership and larger vehicles are located further away from the downtown 

and do not attract as much traffic.  

 

The regression analysis points towards asymmetry in the roles of the factors 

influencing emissions generated and exposed to. To further explore this 

asymmetry, we conducted a two-step cluster analysis based on the two indicators. 

The cluster analysis divided the 1,552 zones into four clusters: 1) low emitter, 

high exposure; 2) low emitter, moderate exposure; (3) high emitter, moderate 

exposure; and (4) high emitter, low exposure. Based on the spatial distribution of 

the clusters (Figure 24), it is evident that the lowest emitting zones (highlighted in 

white and the lightest shade of grey) are also the ones that are exposed to the 

highest emissions. They are mostly located in central areas and in the CBD. In 

contrast, high emitting zones (dark grey) are also exposed to low amounts of 

pollution and located outside of the urban core. This analysis points towards 

spatial and socio-economic disparities in air pollution generation and exposure.  
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Figure 24 – Spatial distribution of the generated clusters (island outlined in red) 

It is interesting to situate these results within the context of the region’s spatial 

economy. As has been mentioned, the central areas of Montreal have a large 

disparity in jobs vs. residents, matched on the opposite side of the spectrum by 

areas such as Laval or Longueuil, which only have between 6-7 jobs for every 10 

residents. It has also been shown that the CBD is the only employment centre 

attracting labour from across the entire region, in contrast to smaller suburban 

centres that tend to have local labour catchments (Shearmur and Motte, 2009). The 

central areas of Montreal therefore rely on the suburbs for labour. At the same 

time, a form of income redistribution is occurring wherein income, often high 

income, is made through employment in the CBD and is then transferred back to 

the suburbs where the high-income earners typically live (Shearmur and Motte, 

2009). This income redistribution is mirrored by the results of our study which 

show an opposite redistribution of traffic’s negative externalities from suburbs to 
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central areas downtown. Downtown residents are therefore faced with a net loss of 

wealth along with a net gain in pollution, the majority of which they are not 

responsible for.  

 

5.4 Conclusions 

In this chapter, we have estimated two key indicators of emissions through the 

development of a multi-model framework involving a regional traffic assignment 

model, a vehicle emissions model, and an emission post-processor. The two 

indicators are: (1) the average level of NOx emissions generated per individual in a 

TAZ, and (2) the average level of NOx occurring in a TAZ per km
2
. Our findings 

indicate significant spatial disparity between the areas that generate or are 

responsible for high levels of individual emissions and areas that experience high 

emissions. Both measures were a function of socioeconomic and built 

environment characteristics. We observe that the factors that positively influence 

the emissions generated are also the ones that negatively influence the emissions 

occurring in a zone therefore pointing towards equity issues in the generation and 

distribution of traffic-related emissions.  

 

These findings are of significant relevance to policy evaluation at the metropolitan 

level. When cities are faced with challenges such as reducing traffic emissions by 

2030 to a certain percentage less than 1990 levels; a main question arises: Are 

these the emissions generated within the city or emissions generated by 

individuals residing in the city? In areas where residents living outside the city 

generate most of the traffic emissions, policy development becomes a challenging 

task. The modeling framework that we propose provides a way to quantify the 

responsibility for emissions generated and the impact of every individual’s 

emissions on the region. It will be used to simulate regional-level transport 

policies and their effects on the spatial distributions of emissions and on equity in 

emissions generated and exposed to.  
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The developed modeling framework is associated with a range of limitations. In 

our emission modeling exercise, we focus our attention on private vehicle 

emissions. We are currently introducing transit emissions but we have not yet 

considered emissions generated by commercial traffic (freight and delivery 

trucks). The task of obtaining data on commercial traffic is far from trivial. In 

terms of traffic assignment, we employed the Stochastic User Equilibrium 

algorithm. We do intend to explore more advanced assignment procedures 

including Dynamic Traffic Assignment for generating inputs to the emission post-

processor. Moreover, our current implementation of vehicle allocation is based on 

the vehicle type/age distribution of the residential zone of the trip-maker while not 

explicitly accounting for factors related to household vehicle use and potential trip 

chaining. In future research attempts, a vehicle allocation model based on data 

related to the use of specific vehicles for specific trips and by specific individuals 

will be developed. The nearest future extensions for this model include: linkage 

with dispersion models, estimation of population exposure, quantification of 

equity, and the evaluation of policy scenarios.   
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CHAPTER 6:  

EQUITY IN THE GENERATION AND EXPOSURE TO TRAFFIC-

RELATED AIR POLLUTION 

 

6.1 Context 

Equity in the field of transportation and land-use planning has traditionally dealt 

with the equal distribution of resources in the transportation system in order to 

support equal levels of accessibility and mobility. At the same time, there has been 

a parallel stream of equity research into issues of environmental justice, which 

tend to focus on whether marginalized or disadvantaged communities bear the 

brunt of pollution, be it from energy production, waste management, or 

transportation externalities. With the disappearance of most industry and energy 

production in urban areas, transportation is now the biggest contributor to urban 

air pollution (Colvile, et al., 2001). Traffic-related air pollution is a byproduct of 

the combustion process that occurs in the majority of automobiles and trucks, 

producing a host of pollutants such as PM, NOx, VOCs, and more. A significant 

amount of research over the past 10-15 years has linked the aforementioned 

pollutants with a host of chronic and acute health effects (Brauer et al., 2008; Gan 

et al., 2012; Selander, et al., 2009). Furthermore, the spatial distribution of traffic-

related air pollution is not uniform across urban metropolitan regions, resulting in 

exposure disparities across different population groups. Previous research has 

consistently shown that areas with higher levels of social disadvantage tend to 

have worse levels of air quality, creating a ‘double-burden’ of high disadvantage 

and high risk of air pollution related illness (Fan et al., 2012; Goodman et al., 

2012; Jephcote and Chen, 2012; Crouse et al., 2009b; Jerrett, 2009).  

 

In this chapter, we test two hypotheses related to the distributional effects of 

traffic-related air pollution in a large metropolitan area. First, we test the 

traditional hypothesis that individuals living in neighborhoods characterized by a 

high social disadvantage metric are also exposed to the highest levels of traffic 

emissions. In addition, another hypothesis is tested that neighbourhoods 

experiencing a certain level of traffic emissions are also responsible for similar 
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levels of emission generation (through travel behavior of inhabitants), often 

termed as the polluter-pays principle (PPP). To assess these two hypotheses, two 

measures of traffic-related air pollution are estimated: (1) an average level of 

traffic-based emissions generated per household in each TAZ and (2) an average 

density of experienced traffic-based emissions, also calculated at the TAZ. A 

cumulative index of social disadvantage is also estimated in order to highlight the 

most marginalized zones within the study area. Our analysis aims to investigate 

the relationships between the index of social disadvantage and traffic-related air 

pollution generation and exposure.  

 

Traffic-related air pollution has been an important environmental justice concern 

since the late 1990s, and has spurred an array of studies into the linkages between 

exposure and socio-economic status (SES). Most of this research has focused on 

assessing whether inequities exist in the spatial distribution of air pollution across 

metropolitan regions. The two critical elements in such evaluations include (1) air 

pollution levels used for exposure estimates, and (2) socioeconomic indicators of 

disadvantage. The baseline for exposure in most studies is often established 

through measurement campaigns that collect ambient air pollution levels at 

specific points across urban areas. This method has been used in several cities 

across Canada, including Hamilton (Jerrett et al., 2001), Toronto (Buzzelli & 

Jerrett, 2007), and Montreal (Crouse et al., 2009b), as well as in London, UK 

(Goodman et al., 2012). At the same time, several other studies have attempted to 

directly estimate traffic’s contribution to air pollution through the use of emission 

models whereby a density of traffic emissions is used as a proxy for air pollution 

levels without the reliance on dispersion modelling. Outputs from an emission 

model are then used to estimate residential exposure levels, with this method 

being used in studies in Christchurch, New Zealand (Kingham et al., 2007); 

Leicester, UK (Jephcote and Chen, 2012); Hong Kong, China (Fan et al., 2012); 

and Great Britain (Mitchell and Dorling, 2003). Several studies have even used 

proximity to high-density roads as a surrogate for exposure to traffic related air 

pollution (Bae et al., 2007).  
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Groups and neighbourhoods with lower SES have consistently been shown to 

experience higher levels of air pollution, a conclusion further confirmed in a 

summary review by Jerrett (2009). Nonetheless, Buzzelli and Jerrett (2007) found 

that certain centrally located, high-status zones were also susceptible to higher 

exposures. Crouse et al (2009b) found similar central areas where exposure levels 

crossed social and economic boundaries. Mitchell and Dorling (2003) also 

concluded that the poorest experienced the worst air quality, yet the least poor did 

not have the best air quality. Several of the aforementioned studies also tried to 

address the issue of the PPP, wherein neighbourhoods with high exposure levels 

contribute equally high levels of pollution thereby negating the sense of inequity. 

Mitchell and Dorling (2003) found that the PPP was applicable to a certain 

percentage of high exposure zones across Great Britain, while Jephcote and Chen 

(2012) found similar results for the central areas of Leicester, UK.  

 

Regarding the socio-economic side of equity research, there has been much 

interest in the identification of marginalized or disadvantaged segments of the 

population. The history of measuring social disadvantage (often termed 

deprivation) has evolved over time, leading to the creation of a measure of 

cumulative disadvantage through combinations of a set of socio-economic 

measures. Cumulative disadvantage indicators tend to incorporate factors that are 

linked to the independent variable being studied, for instance with car ownership 

for transportation equity studies, or with parental education for a study on 

pediatric health (Bauman et al., 2006). The motivation behind the cumulative 

disadvantage approach is that a combination of socio-economic factors is more 

representative of a population’s disadvantage, in that it can account for both 

material and social elements. Certain studies have found that social disadvantage 

indicators should be tailored to country-specific conditions (Sanchez-Cantalejo et 

al., 2008). Kingham et al (2007) employed a similar methodology in using a 

deprivation index that was unique to New Zealand. This line of research has also 

been extended to Quebec, and even Montreal. Langlois and Kitchen (1996) first 

proposed the use of a Montreal-specific index of General Urban Deprivation 
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employing the number of young residents, low-quality housing, unemployment 

rate, ethnicity, and youth employment participation. Pampalon and Raymond 

(2000) developed a similar Quebec-specific Deprivation Index that consisted of 

education level, employment rate, household income, marriage status, single-

parent families, and number of people living alone. Meanwhile, Apparicio et al 

(2007) also created a Montreal-specific index of social deprivation, again 

accounting for the common factors of income, lone-parent families, 

unemployment rate, education level, and immigration. Most recently, Foth et al 

(2013) developed an index of social disadvantage for Toronto that combines a 

weighted average of median income, unemployment rate, rate of immigration 

within the last 5 years, and rate of households that spend over 30% of their income 

on rent.  

 

In this chapter, advancements in emission modeling are used to directly estimate 

traffic’s contribution to intra-urban air pollution. This contribution is extended to 

capture residential exposure levels to total HC, a common traffic-related pollutant 

and smog precursor, while at the same time quantifying ‘responsibility’ through 

estimating the generation of car-based HC. The two traffic-related pollution 

measures are then combined with a social disadvantage index to form a three-

dimensional analysis involving social and environmental inequities.  

 

6.2 Methodology 

Three measures are estimated in this chapter: (1) generation of emissions per 

household; (2) exposure to emissions via residential zone; and (3) index of social 

disadvantage. The first two measures are based on outputs from the integrated 

transport and emission model. Specifically, the first measure regarding emission 

generation is the daily average emissions generated per household, calculated by 

normalizing total daily TAZ emissions by the number of households 

(kg/household). 
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Exposure to Traffic-Related Air Pollution 

The second measure involves deriving population exposure levels to traffic-related 

emissions for the same set of TAZs across the Montreal region. In the absence of a 

dispersion model, we use the emissions occurring in the residential TAZ as a 

measure of population exposure. This is the same measure as was used in Chapter 

5, however the estimation process differs in that it employs buffers and accounts 

for start emissions. Rounded buffers were created around each link to approximate 

dispersion effects. The buffer sizes are dependent of road type and range from 10 

meters for local roads to 50 meters for expressways. The range of buffer sizes 

employed parallel findings from field measurements (Padro-Martinez et al., 2012) 

and is more conservative than typical residential buffers used in previous literature 

(Bae et al., 2007). Link-level running emissions generated in section 3.4 are then 

spatially allocated to each TAZ based on the intersecting percentage of the road 

buffer. At the same time, vehicle start emissions are assumed to occur entirely in 

the origin TAZ of each trip. Average exposure values are then calculated by 

normalizing the total HC emitted by the land-area of the TAZ to generate an 

average emission density (kg/km
2
).  

 

Social Disadvantage Index 

The estimation of a social disadvantage index (SDI) follows a similar 

methodology to the one used in Foth et al (2013), although there is a difference in 

spatial resolution. The SDI is estimated at the TAZ level instead of the census 

tract (CT) level in order to maintain consistency with the measures for traffic-

related emissions. At the same time, TAZs are at an even finer level of detail than 

CTs, which are often delineated in order to capture relatively homogeneous socio-

economic neighborhoods. The improvement in resolution should serve to provide 

clearer associations with exposure to traffic emissions, as has been previously 

found in Goodman et al (2011). The following socio-economic data from the 2006 

census were retrieved at the CT and census subdivision level (Statistics Canada, 

2006): 

 



    60 

 Median household income 

 Unemployment rate (percentage of labor force that is unemployed) 

 Percentage of population that had immigrated within the last 5 years 

(2001-2006) 

 Percentage of households that spend over 30% of their income on rent 

 

Despite the fact that no correlation was found between immigration status and 

disadvantage in previous studies (Crouse et al., 2009b), immigration rate was still 

included in order to ensure that the elements of social disadvantage 

(unemployment and immigration) were equally as present as elements of material 

disadvantage (income and % of income spent on rent).  

 

After the four variables were retrieved for all CTs and census subdivisions in the 

region, the amount of habitable land was estimated for each TAZ based on land-

use information for the region (all land-uses aside from ‘open water’ and ‘parks 

and recreation’ were considered ‘habitable’; DMTI, 2007). The area of habitable 

land was then used to create area-based weights, and subsequently population-

based weights, that were used in converting the four variables from CT to TAZ 

level. Each variable was then standardized and weighted equally to create the SDI 

(see equation 1).  

 

                                        

                                                ( ) 

 

For instance, a zone with a median household income of $48,758 (Z-score = -

0.196), unemployment rate of 7.8% (Z-score = 0.246), recent immigration rate of 

11.4% (Z-score = 1.567), and having 32.6% of households that spend over 30 

percent of income on rent (Z-score = 1.388), has an SDI of 3.397. A correlation 

matrix was calculated to ensure that the index is capturing similar socio-economic 

groups, and the four variables were all significantly correlated with Pearson 

coefficients above 0.44 (significant at the 0.01 level). The SDI results were then 
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normalized into deciles and each TAZ was given a score between 1-10 based on 

its respective decile. There were zones with either no reported population or 

insignificant data available and so TAZs with populations below 1 were omitted 

from the analysis, resulting in a sample size of 1513 TAZs.   

 

Statistical Analysis 

An empirical analysis was conducted to examine the relationships between the 

estimated SDI and the two measures of traffic emissions (emissions generated per 

household and emissions occurring in a TAZ); both measures accounting for 

running and start emissions. Analyses were conducted using data normalized in 

deciles, as has been favoured in several equity studies previously conducted (Fan 

et al., 2012; Mitchell & Dorling, 2003).  

 

Social disadvantage and exposure 

The first measure is calculated by taking the difference between the social 

disadvantage decile and the exposure decile. This measure ranges from -9 to 9, 

and serves to test the relationship between disadvantage and exposure. For 

instance, if there are many values clustered around zero then there is likely a 

positive relationship between disadvantage and exposure (ie. zones with high 

disadvantage have high exposure, and zones with low disadvantage have low 

exposure). Otherwise, a high positive value means that the zone has high 

disadvantage and low exposure, and a high negative value means low 

disadvantage and high exposure. In addition to that, the sum of SDI and exposure 

deciles is taken in order to spatially highlight zones that face a ‘double-burden’ of 

greater disadvantage and higher amounts of air pollution.  

 

Exposure and emission generation 

Another measure is calculated that aims to capture whether the responsibility in 

emission generation is being matched with equivalent exposure to air pollution. 

This ‘polluter-pays index’ is calculated by taking the difference in the exposure 

decile and the emissions decile, with values ranging from -9 to 9. Inequity is 
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therefore evident if there are many zones in the lowest or highest areas of that 

range, for instance if there are many neighbourhoods that have high exposure and 

low emission responsibility or vise versa. Otherwise, if a majority of zones are 

relatively close to zero, then the polluter-pays principle likely applies.  

 

Social disadvantage, exposure and emissions 

The final measure involves adding the third dimension of emission generation to 

the previously explored concept of disadvantage combined with air pollution 

exposure. The measure is calculated by taking the sum of the SDI decile and the 

‘polluter-pays index’ [SDI + (Exposure – Emissions)]. Only the uppermost and 

lowermost values are of interest in this analysis. The uppermost values correspond 

with zones that are highly disadvantaged, have high exposure to air pollution and 

generate low amounts of emissions. Meanwhile, the lowermost values are those 

with low disadvantage, low exposure and who generate the highest amounts of 

traffic-related air pollution. 

 

6.3 Results 

The distribution of raw values for the social disadvantage index is slightly skewed 

to the right, and range from – 13.64 to 13.54 (Figure 25). Table 6 illustrates the 

SDI values divided into deciles; we observe large discrepancies in the four 

socioeconomic factors between the lowest SDI values (1
st
 decile) and the highest 

(10
th

 decile). The spatial distribution of the SDI deciles across the MMR can be 

seen in Figure 26. The areas of highest social disadvantage are distributed across 

the island of Montreal with the highest concentration around the denser inner parts 

of the city. Other socially disadvantaged neighborhoods (8-9
th

 deciles) are also 

heavily concentrated in central areas on the island, including large portions of the 

boroughs of Ahuntsic-Cartierville, Côte-des-Neiges, Hochelega-Maisonneuve, Le 

Sud-Ouest, Parc-Extension, and Ville-Marie. At the same time, the wealthy 

enclaves of Westmount, Outremont, and Mont-Royal are all visibly present near 

downtown, as well as the suburban neighbourhoods in the west part of the island. 

The spatial SDI results for the island of Montreal parallel similar findings in 
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previous research (Crouse et al., 2009b; Apparicio et al., 2007; Langlois and 

Kitchen, 1996). Aside from Montreal, most of the region is almost entirely under 

the 50
th

 percentile for social disadvantage, aside from pockets in the cities of 

Laval and Longueuil. 

 

 

Figure 25 – Histogram of the raw values of the Social Disadvantage Index 

 

Table 6 – Comparison of Socioeconomic Variables Between SDI Deciles (mean values) 

Socioeconomic Variable 1
st
 decile Mean 10

th
 decile 

i) Median Household  

Income (CAD) 
91,319 52,856 29,759 

ii) Unemployment  

Rate (%)  
3.5 6.9 13.8 

iii) Immigration Rate  

(2001-2006; %) 
1.3 4.3 13.9 

iv) Households that spend over 30% 

income on Rent (%) 
3.0 16.3 35.8 
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Figure 26 – Social Disadvantage Index deciles across the MMR 

 

Further examination of Figure 26 reveals that many of the most socially 

disadvantaged neighborhoods are located in close proximity to major highways 

that typically carry high traffic flows. Meanwhile, the majority of wealthier 

neighborhoods appear to be in areas that are relatively free of major highways. 

This initial observation suggests the existence of a socio-economic gradient in 

traffic-related air pollution exposure. This relationship is further explored by 

observing the difference in decile rankings between SDI and exposure (Figure 27). 

We observe that 50% of zones have comparable rankings in SDI and exposure; the 

difference between their SDI and exposure is between -1 and +1. This indicates 

that a positive correlation between SDI and exposure exists; higher disadvantaged 

neighbourhoods tend to have higher exposure levels and vice versa. The other 

50% of zones are split almost equally between areas with ‘high social 

disadvantage and low exposure’ (difference is greater than 1) and areas with ‘low 

social disadvantage and high exposure’ (difference is less than -1).  
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Figure 27 – Histogram of the difference in rankings between SDI and exposure 

 

The second measure of social disadvantage and population exposure is calculated 

involving the summation of SDI and exposure decile rankings. The spatial 

distribution of the resulting measure can be seen in Figure 28. Neighbourhoods 

with combined SDI and exposure greater than 18 were of most interest, as these 

are the neighborhoods that experience the ‘double-burden’ of greatest 

disadvantage and highest traffic-related air pollution exposure. The majority of 

these neighbourhoods border the major highways that surround the central part of 

the island of Montreal. Neighbourhoods within the Plateau Mont-Royal and 

Rosemont boroughs also experience a similar double-burden through their 

proximity to high traffic densities on arterial roads. At the same time, certain 

neighbourhoods facing a double-burden exist outside of the central areas, as there 

are pockets of ‘high disadvantage and high exposure’ in the borough of Montréal 

Nord, northeast of Saint-Léonard, and in Longueuil.  

 

The majority of the region outside of Montreal falls into the bracket of lowest 

disadvantage and exposure. However, it is interesting to note that there are several 
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neighborhoods close to downtown, specifically Westmount, Outremont, and parts 

of Mont-Royal, that are categorized in the same bracket. This finding contradicts 

those in Crouse et al (2009b), which found that the very same central 

neighborhoods in Montreal with higher SES also experienced relatively higher air 

pollution. This discrepancy in findings is likely because the buffer sizes used in 

linking road emissions to TAZs were more conservative than other methods for 

generating spatially refined air quality levels. 

 

 

Figure 28 – Sum of social disadvantage ranking and exposure ranking across the MMR 

 

Aside from direct exposure inequity, it is also interesting to test whether the PPP 

is in effect across the Montreal region. In order to test for PPP, a polluter-pays 

index that takes the difference between exposure ranking and emission ranking 

was calculated, and the resulting histogram is shown in Figure 29. Given that only 

22.2% of zones have equivalent exposure and emission rankings, it seems as if the 

polluter-pays principle is not generally applicable to the region. At the same time, 
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nearly 40% of neighborhoods ‘pay’ more than they contribute in terms of traffic-

related air pollution, while 38% are contributing more than they ‘pay’.  

 

 

Figure 29 – Histogram of the difference in rankings between  

exposure and emission generation 

 

The polluter-pays index was mapped in order to observe whether the inequity has 

a spatial component as well, or whether the neighbourhoods exhibiting PPP are 

geographically linked (Figure 30). The spatial distribution across the MMR is 

variable yet much of the central areas near downtown and along highway corridors 

have higher rankings in exposure over emissions. There are also neighbourhoods 

in the CBD and along the most heavily trafficked freeways with extreme gradients 

between exposure and emission generation (differences of 8 or 9 deciles). 

Neighbourhoods exhibiting PPP with a polluter-pay index between -1 and 1 are 

scattered across Montreal, Laval and Longueuil, with no real spatial pattern. 

Meanwhile, peripheral areas of the region are almost entirely on the negative side 

of the distribution with differences in exposure vs. emissions ranging from -2 to -

9, a finding consistent with a similar study conducted in the UK (Jephcote and 
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Chen, 2012). Therefore, not only is the polluter-pays principle absent for most of 

the MMR, the inequity is also spatially biased towards central neighborhoods 

closer to Montreal’s downtown. While this finding is important, it is not altogether 

surprising given that central neighbourhoods have some of the highest traffic 

levels while at the same time having residents who make nearly half their trips by 

public transit or active transportation (AMT, 2010). On the other hand, the 

peripheral areas of the region are much more car-reliant yet reside in 

neighbourhoods with light traffic volumes.  

 

 

Figure 30 – Ranking comparison between emission generation and exposure 

 

Finally, the last measure incorporating generation/exposure ranking and SDI was 

calculated in order to add another dimension in combining the ideas of ‘polluter 

pays’ with socioeconomic equity. The resulting spatial distribution is shown in 

Figure 31, and confirms that there are numerous neighborhoods, primarily in the 

central areas closer to downtown (shown in black), that have the ‘double-burden’ 
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of social disadvantage, higher traffic-related air pollution and contribute very little 

of the pollution they are experiencing. This finding contradicts several conclusions 

made by both Mitchell and Dorling (2003) and Jephcote and Chen (2012) who 

found that centrally located disadvantaged neighborhoods actually produced 

comparable levels of traffic-related air pollution to those they were experiencing. 

The difference in findings could be due to methodological differences, although it 

could again be attributed to the high levels of transit use and lower car-based 

travel distances amongst these central Montreal neighborhoods (AMT, 2010). 

Again, the peripheral areas of the region are almost unanimously of low 

disadvantage, with low exposure to traffic-related air pollution, while at the same 

time often generating the highest amounts of emissions.  

 

 

Figure 31 – Socioeconomic equity of traffic-related air pollution generation and exposure 
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6.4 Conclusions 

This chapter has explored the relationships between traffic-related air pollution 

generation, exposure, and socioeconomic disadvantage. Two measures of traffic-

related air pollution are estimated; one that captures the generation of HC 

emissions per household, and another that captures location-based exposure to HC 

emissions. In addition, an index of social disadvantage was developed that 

incorporates elements of both social and material deprivation. The findings from 

this study suggest three levels of environmental injustice occurring across the 

Montreal region. The first is that neighborhoods with the highest social 

disadvantage experience the worst exposures to traffic-related air pollution, 

confirming similar findings across cities in North America and beyond. At the 

same time, the polluter-pays principle is mostly absent given that the majority of 

neighborhoods in central areas experience much higher levels of air pollution than 

they are responsible for. In addition, there is a subset of those same central 

neighborhoods that are highly disadvantaged communities who are being exposed 

to higher levels of pollution that they have little to no role in producing. Given the 

findings of social and environmental inequities, it would be interesting to extend 

the analysis to testing whether a ‘triple-jeopardy’ situation exists that includes an 

additional dimension of health inequities.  

 

There were a few limitations with this analysis. Commercial truck traffic was not 

factored into the exposure measure. This omission could result in an under-

prediction of pollution levels in the socially disadvantaged areas, given the 

previous associations seen between lower-income areas and heavy-duty truck 

traffic (Houston, et al., 2008). The index of social disadvantage employed in this 

study does not capture elements that might show increased susceptibility to air 

pollution exposure such as higher presence of young children, elderly people, 

people with previous health issues, and even indigenous populations. Furthermore, 

the measure of exposure does not employ dispersion models to account for local 

variations in built environment or climactic conditions, nor does it account for a 

wholly detailed source-receptor relationship, as described in Beckx et al (2009b).  
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Despite these limitations, this research highlights three levels of inequity 

regarding socioeconomics and traffic-related air pollution in the Montreal region. 

An unfair burden of negative externalities from transport is being placed on the 

region’s disadvantaged populations, many of whom emit some of the lowest levels 

of emissions. It falls to policy-makers to address these imbalances, either by 

targeting the highest emitters or by creating buffers for those facing the double-

burden of social disadvantage and higher air pollution.   
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CHAPTER 7:  

CONCLUSIONS AND FUTURE PATHWAYS OF RESEARCH 

 

An integrated transport and emission model has been developed for the MMR that 

incorporates an average-speed regional traffic model with a comprehensive 

emission processor. Detailed travel behaviour information, vehicle registry data, 

and local environmental conditions are all accounted for in the model. Both 

running and start emissions are estimated at the individual and link-level with a 

temporal resolution of one hour. The integrated model captures the emissions of 

both global pollutants, such as CO2-eq, and local pollutants, such as HC, NOx, and 

CO. Link-level emissions are further extended using buffers to act as a surrogate 

measure of exposure to traffic-related air pollution.  

 

The outputs from the integrated model were first used to test the accuracy of 

emission inventories, specifically the sensitivity to variability in input data. Start 

emissions were found to have the greatest impact on estimates, followed by 

accurate vehicle registry data. Building upon those accurate estimates, the research 

moved forward to testing whether various land-use and socioeconomic 

characteristics were determinants of either traffic-related air pollution generation 

or exposure. Neighbourhoods with greater car ownership and larger vehicles were 

found have higher emission rates per household, whereas areas with higher 

network densities and better transit access had much higher exposure levels. In 

addition, large spatial disparities in both generation and exposure were observed 

between suburban areas and neighbourhoods closer to downtown. These 

disparities were then explored further in conjunction with socioeconomic standing. 

Three levels of inequity were observed in the MMR: (1) neighbourhoods with 

higher social disadvantage tend to experience higher air pollution levels, (2) 

neighbourhoods closer to downtown tend to experience greater levels of air 

pollution than they create, and (3) neighbourhoods with the greatest disparities in 

exposure versus generation often tend to be those with the highest social 

disadvantage.  
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While several limitations of the integrated modeling framework have been 

identified in previous chapters, it is worth highlighting them again especially in 

light of future pathways for research. The first major exclusions from the 

integrated model are public transit and commercial heavy-duty freight traffic, both 

large components under the umbrella of road transport. Public transit is likely 

easier to include in the analysis given that data are much more available than 

information from private freight companies. Another model limitation is that the 

current integrated framework does not include dispersion effects after the link-

level emissions are estimated.   

 

Despite these limitations, the future for integrated transport and emission models 

is bright. With the current state of computing, the models can be extended to entire 

metropolitan regions and even certain countries, depending on size. Integrated 

models are invaluable tools for planners in estimating accurate road transport 

emission inventories, measuring intra-urban variations in residential exposure 

levels, assessing metropolitan-wide levels of responsibility for emission 

generation, and more. In addition, they are crucial for assessing the effectiveness 

of future policy scenarios regarding emission reduction targets or regional air 

quality management strategies.  

 

Therefore, future pathways of research include incorporating public transit and 

freight traffic into the integrated framework as well as adding a dispersion model. 

At the same time, the regional traffic assignment model can be updated to one that 

is based on activities and agents rather than trips and flows. The combination of an 

activity- and agent-based model in conjunction with dispersion modeling would 

provide highly detailed source-receptor relationships for use in exposure studies. 

Overall, the addition of all previously mentioned elements would significantly 

strengthen the capabilities of the integrated framework in assessing future 

scenarios and policy implications.  
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