
Master’s Thesis

Isospin-Violating Dark Matter and
Direct Detection Experiments

Author:

Zakary F. Whittamore

Advisor:

Dr. James M. Cline

Department of Physics

McGill University, Montréal
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Hints of direct detection of dark matter have been presented by the DAMA, CoGeNT, and

CRESST collaborations, despite a number of null results that seem to contradict such claims.

Although standard spin-independent dark matter is not capable of reconciling the results, dark

matter models containing isospin-violating couplings have shown promise in solving the issues

surrounding direct detection of dark matter. Inelastic or momentum-dependent scattering dark

matter has also been shown to help alleviate these tensions. In light of the 2012 XENON100

observations, updated analysis of surface event contamination at CoGeNT, revision of the energy

resolution employed by XENON10, and new results from the CDMS-II silicon detectors, we

study the extent to which spin-independent, spin-dependent, and combined models of isospin-

violating dark matter are capable of explaining current direct detection data. Moreover, we

explore the effect of an energy-dependent sodium quenching factor QNa for fitting the DAMA

observations, and give an isospin-violating prediction for XENON1T. In addition to the usual

analysis involving phase space plots, we investigate a halo-independent model of dark matter in

the space of minimum velocities required for a dark matter particle to scatter off a given nucleus.

For the first time, such an analysis is performed for models of dark matter which embrace both

inelastic and isospin-violating couplings, as well as for dark matter with momentum- and spin-

dependent interactions. With respect to the models considered herein, our results do not support

a dark matter interpretation of direct detection data in either the standard or halo-independent

formalisms.
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Matière Noire Isospin-Violation et Expériences de Détection Directe

par Zakary F. Whittamore

Conseils de détection directe de la matière noire ont été présentés par les DAMA, CoGeNT, et

CRESST collaborations, malgré un certain nombre de résultats nuls qui semblent contredire ces

allégations. Bien que la norme matière noire indépendante du spin n’est pas capable de concilier

la résultats, la matière noire modèles contenant couplages de isospin-violation ont montré des

résultats prometteurs dans résolution des problèmes de détection directe de la matière noire.

Diffusion inélastique ou dynamique dépendant de la matière noire a également été démontré

que aider à atténuer ces tensions. À la lumière des observations XENON100 2012, analyse

actualisée de la contamination de l’ événement de surface à CoGeNT, la révision de la résolution

de l’énergie utilisée par XENON10, et de nouveaux résultats provenant des détecteurs de silicium

CDMS-II, nous étudier la mesure dans laquelle indépendante du spin, dépendant du spin, et des

modèles combinés de la matière noire isospin-violation sont capables d’expliquer les données de

détection directs actuels. De plus, nous explorons l’effet d’une trempe de sodium dépendant

de l’énergie facteur QNa pour le montage des observations DAMA, et de donner une prévision

de isospin-violation de XENON1T. En plus de l’analyse habituelle impliquant des parcelles de

l’espace de phase, nous étudions un modèle de halo-indépendant de la matière noire dans l’espace

des vitesses minimales requises pour une particule de matière noire se disperser hors d’un noyau

donné. Pour la première fois, une telle analyse est effectuée pour les modèles de matière noire qui

embrassent les deux couplages élastiques et isospin-violation, ainsi que de la matière noire avec

des interactions dépendant du dynamique et spin. En ce qui concerne les modèles considérés ici,

nos résultats ne soutiennent pas une question d’interprétation sombre de données de détection

directe soit dans la norme ou formalismes halo-indépendant .
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Chapter 1

Our Dark Universe

1.1 Introduction

For centuries, the motion of celestial bodies across the sky have provided physicists with a

catalyst for understanding the fundamental laws of nature. From the discovery of Newton’s

inverse-square law of gravitation, to a confirmation of general relativity by observation of the

precession of the perihelion of Mercury’s orbit; from effectuating ideas that would develop into

the big bang theory of cosmological evolution, to the motion of supernovae revealing the ac-

cerelated expansion of our Universe, extraterrestrial phenomena have driven our pursuit for

knoweledge regarding the physical world. However, not all questions that arise from such astro-

physical observations have led to simple answers, if any at all.

One of the first indications that the Universe might be partially made up of an invisible but

gravitating matter component occurred in 1922. Attempts by James Hopwood Jeans to derive

the total matter density in our Solar vicinty resulted in the conclusion that for every bright star,

there must be two dark stars [1].1 The contradiction between the masses of visible stars and

the masses of the stellar systems they belonged to would be extended to the scale of galaxies

within galaxy clusters. In 1933, by observing the dynamics of galaxies composing the Coma

1In early years, Jeans was not the only physicist to discover a non-luminous gravitating mass component.
Between 1915 and 1932 calculations performed by Öpik [2], Kapteyn [3], and Oort [4] were able to show that the
total local matter density in our Solar vicinity could be explained provided a reasonable extrapolation of invisible
baryons.

1



Chapter 1. Our Dark Universe 2

cluster, Fritz Zwicky reasoned that within the cluster there must exist an electromagnetically

neutral mass component for which he bestowed the illustrious title of “dunkle Materie”, or in

other words “dark matter” [5].2

Today there exists indisputable indirect evidence for dark matter (DM) through its gravita-

tional signatures, which explain observations of the rotational velocity of stars in galaxies and

galaxies in galactic clusters, as well as the gravitational lensing of objects at high redshift and the

structure of the temperature and polarization anisotropies of the cosmic microwave background

(see section 1.2 for more details). As one might surmise, the problem of DM holds some of the

most important outstanding questions in both cosmology and particle physics. Despite there be-

ing a plethora of evidence asserting gravitational interactions of DM, the particle characteristic

of DM continues to elude a definitive explanation.

Hitherto, there is nothing to preclude the possibility that non-gravitational couplings to par-

ticles of the standard model (SM) are intrinsic to the nature of DM. As a matter of fact, models

in which DM particles are thermally produced require such interactions. Under scenarios of this

kind, the creation of DM pairs via the annihilation of SM particles during the freezout epoch,

along with the inverse process, is needed in order to produce the abundance of DM observed to-

day. In a Universe where such interactions exist, the direct detection of DM via its scattering on

SM particles would be essential for sharpening our understanding of the fundamental properties

of dark matter. Over the past two decades, a multitude of experiments have set out to measure

the recoil energy of DM scattering with nucleons, leading to increasingly stringent limits on the

DM-nucleon cross section, and a few tentative signals that might be interpreted as detections of

DM. However, based on our simplest assumptions regarding the nature of DM interactions, these

findings along with those obtained from null experiments appear to be inconsistent. Attempts

to build a DM model that yields compatible best-fit regions in the DM parameter space have

proven unsuccessful, not to mention unable to satisfy constraints arising from null experiments.

Motivated by the work of recent studies, this thesis aims to provide an in-depth examination

of a specific class of dark matter referred to as isospin-violating dark matter (IVDM) and its

pertinence to current terrestial direct detection experiments. Resolving the issues surrounding

2For a brief review on the early history of dark matter see [6].
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direct detection of DM requires a thorough exploration of the available phenomenological av-

enues and an emphasis on better quantifying the feasibility of various DM models.

In this chapter, a general introduction to the concepts and ideas relating to the DM paradigm

is given. In section 1.2 we motivate the existence of DM with explanations of some prominent

pieces of observational evidence. Following this, section 1.3 presents the various criteria that any

viable DM candidate must satisfy in order to fulfill its gravitational roles. Also in this section,

arguments are given in favour of weakly interacting massive particles as being the propitious DM

candidate. Finally, section 1.4 outlines the direction of this thesis, and connects the information

of this chapter to the subsequent subject matter.

1.2 Evidence for dark matter

There are a number of indirect pieces of evidence supporting the existence of dark matter. In

this section, we present the most compelling examples in an attempt to reiterate the importance

of dark matter in our Universe and why dark matter must exist.3

Rotation curves of spiral galaxies: Firstly, we examine the rotation curves of spiral galaxies

as a presentation of support for the existence of DM on galactic scales. Spiral galaxies con-

sist of a flat, rotating disk of visible stars and interstellar matter which for the most part are

concentrated in one or more spiral arms. Measurements on the velocity distributions of visible

matter within spiral galaxies have revealed that the rotation speed at the outer regions of the

galaxies is faster than what is predicted from the laws of gravitation [8, 9]. In other words, the

gravitational potential that is necessary for galaxies to rotate at the observed velocities must

contain a considerably greater amount of mass than expected based on the amount of luminous

matter observed therein.

Newtonian dynamics predicts that the speed of rotation v at a radius r from the center of the

galaxy is given by

v(r) =

√
GM(r)

r
, (1.1)

3Alternatives to dark matter have been proposed, the most prominent being modified Newtonian dynamics
or MOND [7]. MOND involves the introduction of a new large scale beyond which the gravitational potential
takes a different form. Since deviations from the standard theory of gravity occur on multiple scales, to explain
all observations within the MOND framework would be an arduous task.
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Figure 1.1: Data points for the velocity profile of spiral galaxy M33. Also shown, is the
observed rotation curve, and the curve expected from the luminous disc. There is also a

smaller contribution from galactic gas that is not shown. Figure taken from [10].

where M(r) is the total mass in the galaxy enclosed within the radius r. Beyond the disc of

visible matter, M(r) should remain constant and v(r) should decrease proportional to 1/
√
r.

However, observations indicate that past the optical disk, v(r) is nearly constant meaning that

M(r) must scale like r, despite the absence of any luminous matter. To explain this observation,

it requires to postulate an addition of an invisible halo of matter to the mass profiles of galaxies.

This invisible halo of matter extends beyond the visible component and is generally attributed

to DM. It is referred to as the dark matter halo. Figure 1.1 shows the rotation curve for the

dwarf spiral galaxy M33 clearly demonstrating the discrepancy between prediction of the velocity

profile based solely on visible matter, and observation.

Gravitational lensing: General relativity affirms the bending of light around massive objects.

This generates a phenomenon known as gravitational lensing in which the light deflection field

of a background source due to a mass concentration in the foreground, results in either a slight

distortion of the source’s shape (weak lensing), or in arcs called Einstein rings or several images

of the source (strong lensing). Gravitational lensing provides an unmistakable way of deter-

mining the true mass density of a foreground object including any DM constituent, since larger

concentrations of mass cause greater amounts of distortion in the image of a background source.

As an example, in the galaxy cluster Abell 2218, an analysis of lensed arcs reveals a mass-to-light

ratio which is 80 - 180 in units of the solar ratio [11].
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Doppler peaks of the cosmic microwave background: The relic blackbody radiation of the

hot Big Bang, last emitted from the surface of last scattering when photons decoupled from the

photon-baryon plasma, is referred to as the cosmic microwave background (CMB). Observations

of the temperature and polarization anisotropies in the CMB on the order of 10 µK and 0.1

µK respectively, have played a pivotal role in constructing and improving the standard ΛCDM

model of cosmology. Based on a set of initial conditions along with assumptions regarding the

background cosmology, it is possible to numerically compute the angular power spectrum of

the CMB anisotropies. Therefore, precise experimental measurements can be used to set tight

constraints on the cosmological parameters of the ΛCDM model including the mass density of

non-baryonic matter in the Universe.

Precipitated by the competition between gravity and radiation pressure prior to photon de-

coupling, oscillations about the potential wells of small overdensities in the photon-baryon fluid

would result in temperature fluctuations of the CMB at the surface of last scattering. The pres-

ence of dark matter in the photon-baryon fluid would have the effect of reducing the driving effect

of the acoustic oscillations since DM would interact gravitationally but not electromagnetically.

Hence, the CMB anisotropies give an excellent probe into the mass density of cold dark matter

at the time of last scattering.

Multipole moments are used to analyze the temperature and polarization fluctuations. The

resulting power spectrum in terms of multipole l exhibits a distinct pattern of Doppler peaks.

Figure 1.2 shows the power spectrum of the temperature anisotopies corresponding to the nine-

year analysis of the Wilkinson Microwave Anisotropy Probe (WMAP), along with SPT and

ACT data [12]. The solid line represents the best fitting standard ΛCDM model of cosmology

to the WMAP data alone. The results show an astounding agreement between experimental

CMB measurements and the ΛCDM model. Most recently, the PLANCK collaboration used

temperature power spectrum data to determine the densities of baryonic, cold dark matter, and

dark energy in our Universe [13]. The 68% limits of these cosmological parameters were found

to be, respectively:

Ωbh
2 = 0.02207± 0.00033, ΩCDMh

2 = 0.1196± 0.0031, ΩΛ = 0.686± 0.020. (1.2)
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Figure 1.2: CMB measurements in the nine-year WMAP analysis. The WMAP data (black)
is given, as well as the extended CMB data set which includes SPT data (blue) and ACT data
(orange). The solid grey curve represents the best fitting ΛCDM model to the WMAP data

alone. Figure taken from [12].

1.3 Criteria for dark matter candidates

For a DM particle candidate of the standard ΛCDM cosmological model to be considered viable,

i.e. sucessfully demonstrate its gravitational signatures, it must first satisfy the following basic

criteria. These criteria are placed under the assumption that a single DM species dominates the

DM sector. For more details, see [14].

Relic abundance: If DM particles are created in the early Universe, they do so either by

standard thermal interactions with the thermal bath, or via non-thermal processes. Regardless

of the production mechanism, the underlying microphysical theory which encapsulates the DM’s

particle properties and the parameters of said theory, as well as the early Universe conditions

must combine to reproduce the correct value of the relic density.

Arguably the most promising DM candidate (and that for which this dissertation focuses on),

weakly interacting massive particles or WIMPs4 form a class of particles which are an example

4What is the etymology behind the term WIMP? The following is an excerpt from a footnote appearing on
page 310 of Kolb and Turner’s textbook The Early Universe, and is perhaps a humorous reference to Steigman
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of a thermal relic. Particles that exist in thermal equilibrium during the early Universe will, as

the Universe cools down, have a number density which is Boltzmann suppressed, thus causing

the likelihood of particle annihilations of this species to decrease. The particle will fall out of

thermal equilibrium once the expansion rate of the universe surpasses the particle species’ rate of

creation and destruction. At this point, the particle decouples from the thermal bath becoming

a thermal relic, the relic is said to “freeze out”.

It is possible to show that an order of magnitude estimate of today’s relic density for a generic

thermally produced DM particle is given by5

ΩCDMh
2 ≈ 3× 10−26cm3/s

〈σannv〉
, (1.3)

where 〈σannv〉 is the thermally averaged annihilation cross section times velocity. As a result,

a successful theory of DM should predict an annihilation cross section which, in equation (1.3),

yields a cold DM density consistent with the experimentally determined value of ΩCDM .

Neutrality and collisionless nature: The electromagnetic properties and interaction strength

of DM play a vital role in determining the feasibility of phenomenological models. Electromag-

netic couplings of DM to SM photons must be considerably weaker than those of standard

charged particles in order to circumvent bounds concerning relic density, DM halo shape, large

scale structure, recombination-era coupling, and direct detection considerations [20]. In terms

of ε, the fraction of elementary charge defining the electromagnetic interaction strength, these

constraints set ε < 10−6 for standard DM with a mass of 1 GeV.

DM must be (at the very least) weakly interacting with both itself and neutral baryonic

matter. The conjecture that DM is nearly collisionless is in part due to the morphology of DM

halos however, astrophysical examples such as the Bullet cluster, and limits from direct terres-

tial searches underpin the collisionless nature of DM [21]. Currently, there exist a number of

reported bounds on the ratio of the spin-independent self-interaction cross section and the DM

and Turner’s 1984 paper [15] where the term reportedly first appeared: “WIMP c© is a copyrighted trademark of
the Chicago group, standing for Weakly Interacting Massive Particle.”

5The more exact expression for the cold DM density is ΩCDMh
2 ≈ 1.07×109GeV−1

Mpl

xf

g∗f
1

(a+3b/xf )
, where Mpl is

Planck’s mass, g∗f counts the relativistic degrees of freedom, and xf = MDM/Tf . Here MDM is the mass of the
DM particle, Tf is the temperature at freeze out, and 〈σannv〉 = a+ b〈v2〉+O(〈v4〉). Taking xf ∼ 20 produces
the result of equation (1.3) [16].
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mass, σSIDM/MDM . For instance, Markevitch et al. place a limit on this ratio of σSIDM/MDM < 0.7

cm2g−1 [22].

Cold dark matter: In order for the “bottom-up” hierarchy of large-scale structure formation

in the Universe to remain unaltered by DM density perturbations, the “temperature” of Dark

matter must be inherently cold, that is to say, we require the dominant DM species to be non-

relativistic in nature. To be more complete, consider the following. As the Universe entered the

matter-dominated epoch, DM density perturbations drove the oscillations of the baryon-photon

fluid eventually causing a decoupling of the baryons. Once decoupled, the baryons became

trapped in existing DM potential wells forming small scale structures. However, the growth of

baryon density fluctuations would continue, ultimately leading to the large scale structures we

observe today.

If a collisionless DM species were relativistic (hot) during structure formation, then small

scale density perturbations would have been carried away by free streaming of the DM. In

this case, one is left with structures on the scale of the free streaming length, which is large

for relativistic particles. As a result, in order to obtain small scale structures, the splintering

of large scale structures into smaller ones would have to have occurred — a contradiction to

current observation since it is known that galaxies are older than superclusters. Not suprisingly,

for this reason neutrinos are ruled out as the dominate DM component.

Dark matter is non-baryonic: Evidence derived from big bang nucleosynthesis (BBN) and

CMB considerations suggests a non-baryonic picture of DM. The primordial abundances of light

elements are highly dependent upon the baryon-to-photon ratio. Suppose we fix the photon

density and consider a Universe made up predominately of baryonic DM. A larger baryon density

would result in a faster rate of fusion to 4He meaning fewer “spare” nucleons for the formation

of lighter elements such as 2H and 3He. Measurements of the CMB temperature have set the

photon density thus allowing for excellent measurements of ordinary matter abundances using

light element ratios. To obtain the correct abundances, DM must be non-baryonic.

Faint neutron stars, brown dwarfs, white dwarfs, planets, etc. . . , collectively referred to as

massive compact halo objects or MACHOs, provide examples of baryonic dark matter. However,



Chapter 1. Our Dark Universe 9

due to constraints arising from observed chemical abundances and searches for microlensing by

MACHOs, MACHOs are ruled out as the primary DM candidate.

Stability over cosmological lifetimes: DM particles must be stable over cosmological timescales.

Models which involve decaying DM are tightly constrained by cosmological analyses of the CMB,

Type Ia supernova, Lyman-α forest, galaxy clustering and weak lensing observations. Further-

more, a stable DM particle is necessary so that the fraction of DM decays occuring during or

immediately after BBN is inconsequential to the predictions of BBN [18]. Reference [23] sets

limits on the lifetime for the decay of DM into W+W− and bb̄ both around τDM & 1027s for

masses at the multi-GeV scale.

1.3.1 The WIMP miracle

The coincidence of scales that occurs between the relic abundance of DM and strength of the

weak force interaction is known as the WIMP miracle. Dimensional analysis tells us that the

annihilation cross section of a WIMP goes like

〈σv〉 ≈ g4
w

16π2M2
DM

, (1.4)

where gw is some weak-scale effective coupling between WIMPs and SM particles, and provided

that MDM is the dominating scale. Interestingly, since WIMPs are an example of thermal relics,

and for WIMP masses on the order of 100 - 1000 GeV, it is possible to obtain an annihilation

cross section which is compatible with observations of ΩCDM by substituting the above expression

into equation (1.3) for reasonable values of gw. It is this naturalness for WIMPs to produce the

correct relic abundance that garners the term WIMP miracle. It should also be mentioned, that

WIMPs receive the adulation of phyisicists because strong candidates are known to appear in

supersymmetric extensions of the SM and in string theory.

Given the strong support for WIMPs as dark matter candidates and assuming that DM

couplings to SM particles remain tenable, henceforth we assume that WIMPs act as the primary

source for any unaccountable signals at direct detection experiments.
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1.4 Outline

By now the reader should be convinced of the following two statements:

• on the basis of gravitational observations, there is clear and compelling evidence which

asserts the existence of DM in our Universe and its role as a fundamental feature of

cosmology and particle physics,

• DM particles known as WIMPs, under the conditions that they be collisonless, non-

relativistic and stable, provide physicists with a natural dark particle candidate in which

to test theoretical models of DM against the observations of direct detection experiments.

As previously mentioned, the direct detection of WIMPs via scattering with SM nucleons is

an essential next step in understanding the DM sector and refining current theories and predic-

tions of DM models. Thus far, direct detection experiments which have claimed an excess signal

compatible with a DM interpretation of the data appear to be in contradiction with each other,

not to mention strenuously constrained by the results of null experiments.

In recent years, so-called isospin-violating dark matter has been shown to yield an overall more

consistent picture in the findings of experimental DM searches. IVDM refers to DM species in

which the couplings between DM and neutrons is allowed to differ from that between DM and

protons. A priori, there is no reason why WIMPs should couple equally to protons and neutrons

hence, IVDM is a well-motivated construct. In this thesis we investigate whether or not IVDM

models are capable of alleviating the tensions posed by positive signal experiments while simul-

taneosly circumventing bounds set by null ones. The theoretical frameworks of spin-independent

(SI) and spin-dependent (SD) DM are analysed, along with inelastic and momentum-dependent

(MD) extensions of the IVDM model. In a scenario which we refer to here as combined DM, the

possibility of a DM differential event rate which preserves both the SI and SD components is

explored under completely generalized couplings. Moreover, we examine the effect of an energy-

dependent sodium quenching factor QNa for fitting the DAMA observations, and give an IV

interpretation of predicted XENON1T results.

Our analysis of IVDM is presented in the way of two distinct formalisms. First, the standard

formalism which assesses the compatibility of direct detection data via a series of DM parameter
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space plots. This method assumes a particular velocity distribution of DM in the Galactic halo

in order to make theoretical predictions on the DM differential event rate. Second, the halo-

independent formalism which investigates experimental data in the space of minimum velocities

required for a dark matter particle to scatter off a given nucleus. The halo-independent formal-

ism makes almost no assumptions regarding the DM velocity distribution.

The subsequent topics of this thesis are outlined as follows. In Chapter 2, the theory of dark

matter scattering is presented focusing on differential event rates and the calculation of the total

number of DM events for the theoretical models considered herein. The DM model parameters

are introduced and given brief explanations. Chapter 3 focuses on the direct detection exper-

iments relevant to this analysis. Detailed descriptions of the experiments are given including:

methods of data acquisition, experimental results, outstanding criticisms, and the methodology

used to compute confidence intervals and upper limits in DM parameter space. Afterwards, a

phenomenological review of past and current results for IVDM is laid out in Chapter 4, with an

emphasis on the evolution of experimental and theoretical findings. In Chapter 5, the results

of the standard formalism are presented. Following this, Chapter 6 provides the reader with a

halo-independent analysis of the experimental data. Finally, in Chapter 7, conclusions of this

research are drawn, and we discuss the future outlook for IVDM.



Chapter 2

Theoretical Aspects of Dark Matter

Scattering

A review of the theoretical framework for calculating both the SI and SD DM differential event

rate and the total number of events expected in a given detector is provided in this chapter. The

various parameters of the DM model are introduced and given brief explanations. Furthermore,

a description of the standard halo model is given, which will complete the theory necessary to

carry out computations within the standard formalism of DM direct detection analysis.

2.1 Differential event rates

In general, the differential event rate or energy spectrum for the scattering of a DM particle of

mass MDM with a nucleus of mass MA is written as (see [24]):

dR

dEnr
= NT

ρDM
MDM

∫ ∞
vmin

d3v
dσ

dEnr
vf(~v + ~ve), (2.1)

where NT is the number of target nuclei per kilogram of the detector, ρDM is the Galactic DM

density, ~v and ~ve are the velocity of the dark matter and Earth relative the Sun, respectively

with v ≡ |~v|, dσ/dEnr is the DM-nucleus differential cross section, and f(~v+ ~ve) is the local DM

velocity distribution in the detector rest frame. For an event with nuclear recoil energy Enr, the

12
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incoming DM particle must have a minumum velocity vmin given by

vmin =

√
1

2MAEnr

(
MAEnr
µA

+ δ

)
, (2.2)

where µA is the DM-nucleus reduced mass, and δ is the mass splitting (mass difference) in keV

between the incoming and outgoing DM particles. We consider δ = O(keV) since DM kinetic

energies relevant to direct detection experiments are on this scale. If δ = 0, then the DM particle

will scatter elastically otherwise, the DM contains inelastic couplings which are either exothermic

(δ < 0) or endothermic (δ > 0).

The differential cross section for DM-nucleus scattering can be separated into a scalar spin-

independent and an axial-vector spin-dependent component [25]:

dσ

dEnr
(Enr) =

(
dσ

dEnr

)
SI

+

(
dσ

dEnr

)
SD

. (2.3)

The components of the DM differential cross section can be written as:

(
dσ

dEnr

)
SI

=
MAσ

SI
0

2µ2
Av

2
F 2
SI(Enr) (2.4)(

dσ

dEnr

)
SD

=
MAσ

SD
0

2µ2
Av

2
F 2
SD(Enr), (2.5)

where σ
SI(SD)
0 is the SI (SD) DM-nucleus cross section at zero-momentum transfer and in the

elastic limit, and FSI(SD)(Enr) is the SI (SD) nuclear form factor for nucleus with atomic number

Z and atomic mass number A.

2.1.1 Spin-independent differential cross section

For SI scattering, it is known that the DM-nucleus cross section at zero-momentum transfer

takes the form

σSI0 =
µ2
A

π

[
fpZ + fn(A− Z)

]2

, (2.6)

where fn and fp parameterize the relative dark matter coupling to neutrons and protons, respec-

tively. Equation (2.6) can be written in terms of the SI DM-proton cross section σSIp , using the
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fact that

σSIp =
µ2
p

π
f 2
p , (2.7)

where µp is the DM-proton reduced mass. Combining the above results and inserting them into

equation (2.4), one obtains the following expression for the SI DM differential event rate:

(
dσ

dEnr

)
SI

=
1

2v2

MAσ
SI
p

µ2
p

[(
Z +

fn
fp

(A− Z)

)]2

F 2
SI(Enr). (2.8)

We identify the ratio of the DM-nucleon couplings fn/fp as the SI isospin violation ratio. Our

SI DM model will be isospin-conserving (IC) if fn/fp = 1, and isopin-violating otherwise.

As it turns out, equation (2.4) makes the implicit assumption that the SI nuclear form fac-

tors for neutrons (F n
SI(Enr)) and protons (F p

SI(Enr)) are identical, that is to say FSI(Enr) ≡

F n
SI(Enr) = F p

SI(Enr). Indeed, in reality these form factors can be different. However, the de-

pendence of the differential cross section on differences in these terms is sub-dominant next to

possible variations of the ratio fn/fp [26]. As a result, we assume these form factors to be equiv-

alent and refer to them both as FSI(Enr). FSI(Enr) reflects the loss of coherence with increasing

momentum transfer. For our purposes, we use the Lewin-Smith parametrization of the Helm

form factor [24]:

F 2
SI(Enr) =

(
3j1(qR)

qR

)2

exp (−q2s2), (2.9)

where q =
√

2MAEnr is the momentum transfer, and j1 is the spherical Bessel function. R

and s are parameters that describe the form and size of the nucleus [27]. In this work, R =√
c2 + 7

3
π2a2 − 5s2, c = (1.23A1/3 − 0.60) fm, a = 0.52 fm, and s = 0.9 fm.

2.1.2 Spin-dependent differential cross section

Turning to the SD scenario, the general form of the SD DM-nucleus cross section at zero-

momentum transfer is given by [28]:

σSD0 =
32G2

fµ
2
A

π

J + 1

J

[
ap〈Sp〉+ an〈Sn〉

]2

, (2.10)
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where GF is Fermi’s constant, J is the total spin of the nucleus with atomic number Z and

atomic mass number A, 〈Sp〉 and 〈Sn〉 are the proton and neutron spin matrix elements for the

scattered nucleus, and an and ap are the DM couplings to the matrix elements of the axial-

vector currents in neutrons and protons, respectively. Similar to the SI case, it is possible to

write equation (2.10) in terms of the SD DM-proton cross section for a proton whose spin and

total angular momentum take the same value (J = S = ±1/2):

σSDp =
24G2

Fµ
2
p

π
a2
p. (2.11)

However, given the complex relationship between the DM-nucleon couplings an and ap, it is

important to realise that equation (2.11) represents the true SD DM-proton cross only in the

case where an = 0 and ap = 1. For more general values of the SD DM-nucleon couplings, it

remains that the SD DM-proton cross section defined by equation (2.11) is a useful measure

by which upper limits in the SD parameter space may be set, and we employ this parameter

accordingly.

Unlike the SI nuclear form factor, it is not possible to decouple the SD form factor from

the DM-nucleon couplings. The SD nuclear form factor is written in terms of the so-called

spin-dependent structure functions (SDSFs): S00(Enr), S01(Enr), S11(Enr), and the isoscalar

(a0 = ap + an) and isovector (a1 = ap − an) couplings as follows:

F 2
SD(Enr) = S(Enr)/S(0), (2.12)

where

S(Enr) = a2
0S00(Enr) + a0a1S01(Enr) + a2

1S11(Enr), (2.13)

and

S(0) =
2J + 1

π

J + 1

J

[
ap〈Sp〉+ an〈Sn〉

]2

. (2.14)

The SDSFs depend on the nucleus under consideration, and are calculated theoretically using

nuclear physics models. For the nucleons examined in the present analysis whose isotopes carry

spin, we implement the SDSFs as given by Bednyakov and Šimkovicin in reference [29].

With the previous results at hand, the SD differential cross section may be worked into the
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Isotope J 〈Sn〉 〈Sp〉
19F 1/2 0.441 -0.109

23Na 3/2 0.248 0.020
29Si 1/2 -0.002 0.130
73Ge 9/2 0.030 0.378
127I 5/2 0.309 0.075

129Xe 1/2 0.010 0.329
131Xe 3/2 -0.009 -0.272

Table 2.1: The total spin J , and nucleon spin matrix elements 〈Sn〉 and 〈Sn〉 for direct
detection isotopes with odd spin. Quantities are taken from reference [30].

following form:

(
dσ

dEnr

)
SD

=
2

3v2

πMAσ
SD
p

µ2
p(2J + 1)

[
S00 +S01 +S11 + 2(an/ap)(S00−S11) + (an/ap)

2(S00−S01 +S11)

]
,

(2.15)

where we identify the couplings ratio an/ap as the SD isospin violation ratio. Finally, the values

of J , 〈Sn〉, and 〈Sn〉 for the nuclides considered in our analysis are summarized in Table 2.1.

For the remainder of this chapter, we concentrate on the SI model of DM scattering however,

the following results can be easily generalized to the SD model, or the combined DM model

using findings of the previous sections.

2.1.3 Momentum-dependent scattering

Next, it is possible to allow for momentum-dependent scattering by rescaling the differential

cross section as follows:

dσ

dEnr
→
(
q2

q2
ref

)n
dσ

dEnr
, (2.16)

where qref = 100 MeV, and n = −1, 0, 1, 2 models are considered. Scattering in direct detection

is non-relativistic (NR) since incoming DM velocities are ∼10−3c. As a result, the kinetic

energy of incident DM and recoil energy are around 10 keV. For direct detection experiments

probing this low energy scale, different microscopic models or field theory operators describing

the DM-nucleus scattering lead to the same simple NR effective theory [31]. In such a case, it

is possible to describe the interaction using a NR effective potential with velocity-dependent or

MD expansion parameters. Focusing on the MD scenario, the expansion parameter is given by
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q/qref where q = |q| is the momentum transfer and qref is some large scale involved. The index

n in equation (2.16) parameterizes the various microscopic situations, such as the exchange of a

light mediator, the presence of a resonance, etc. . .

Combining equations (2.1), (2.8), and (2.16), the differential event rate becomes

dR

dEnr
=

(
q2

q2
ref

)n
NTρDMMAσp

2MDMµ2
ne

(
Z +

fn
fp

(A− Z)

)2

F 2
SI(Enr)η(Enr), (2.17)

where we have defined η(Enr) to be the integral over the allowed velocities, that is

η(Enr) =

∫ ∞
vmin

d3v
f(~v + ~ve)

v
. (2.18)

2.1.4 Detector isotopes

For a DM model consisting of IV couplings, the differential event rate will depend on the num-

ber of neutrons and protons in the scattering nuclei. As a result, it is crucial to include the

possibility of multiple isotopes in a given detector. Furthermore, we must also consider whether

a detector is composed of different element types. Let βij be the fractional abundance of isotope

i corresponding to a detector element j. In this case, the differential event rate becomes a sum

over i and j, and can be written as [26]:

dR

dEnr
=
∑
i,j

βij

(
q2
ij

q2
ref

)nNTjρDMiMAij
σp

2MDMµ2
ne

(
Zj +

fn
fp

(Aij − Zj)
)2

F 2
SIij

(Enr)η(Enr), (2.19)

where the values of Aij (the number of nucleons in isotope i of element type j) used in this

paper, along with their corresponding fractional abundances, βij, are listed in Table 2.2.

Under the assumption that the DM-nucleon couplings be IC and taking into account the

possibility of different isotopes, the DM-nucleus cross section becomes σ0 =
∑

i,j κjηij
µ2Aij

π
A2
ij,

where κj ≡ NTj/
∑

j NTj for the target material being considered. Here, it requires that we

assume variations in the nuclear form factor with respect to element and isotope type are small.

Thus using this result and equation (2.7) it is possible to define a cross section σICp , which is



Chapter 2. Theoretical Aspects of Dark Matter Scattering 18

related to the true DM-nucleus cross section by (see reference [32]):

σICp
∑
i,j

κjηij
µ2
Aij

π
A2
ij ≡ σSI0 . (2.20)

Therefore, inserting the generalized version of equation (2.6) into the previous result, it is possible

to express the true DM-nucleon cross section in terms of the isospin invariant cross section. We

have

σSIp = ξ(fn/fp)σ
IC
p , (2.21)

where the function ξ(fn/fp) is given by

ξ(fn/fp) =

∑
ij κjηi,jµ

2
Aij
A2
i,j∑

i,j κjηijµ
2
Aij

[Zj + (Aij − Zj)fn/fp]2
. (2.22)

As it so happens, for a given target material there exists a value of fn/fp which maximizes

the function ξ(fn/fp) [32]. The result for elastic momentum-independent scattering is:

(fn/fp)critical = −
∑

i,j κjηijµ
2
Aij

(Aij − Zj)Zj∑
i,j κjηijµ

2
Aij

(Aij − Zj)2
. (2.23)

Thus equation (2.23) determines the value of fn/fp which maximizes the true cross section σSIp

relative the IC one. In the case of Xe detectors and assuming a single isotope, the true cross

section is maximized for fn/fp = −0.70, and consequently, this is the isospin violation ratio

which yields the weakest bounds for xenon based detectors relative those published under an IC

scenario.

Another useful property of the relationship expressed in equation (2.21) is that it allows us

to determine bounds on IVDM from published bounds on standard IC DM through a simple

rescaling. Although disadvantages to this “rescaling method” do exist,1 it will allow us to

compare predicted bounds on DM parameters from future experiments in the IV scenario.

1It is not possible to introduce inelastic or momentum-dependent couplings into a rescaling method analysis.
Furthermore, astrophysical parameters such as the Galactic escape velocity are restricted to what value is used
in the calculation of the bound that is being rescaled, and it does not take into account variations in the nuclear
form factor for different isotopes.
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Xe Ge Si Ca W C
128 (1.9) 70 (21) 28 (92) 40 (97) 182 (27) 12 (99)
129 (26) 72 (28) 29 (4.7) 44 (2.1) 183 (14) 13 (1.1)
130 (4.1) 73 (7.7) 30 (3.1) 184 (31)
131 (21) 74 (36) 186 (28)
132 (27) 76 (7.4)
134 (10)
136 (8.9)

Table 2.2: Number of nucleons Aij for isotope i of element type j and their fractional abun-
dances βij in percent. Only isotopes with ηij ≥ 1% are presented. Values are taken from [26].
Any unspecified fractional abundances are assumed to have an averaged value of A correspond-

ing to the standard atomic mass.

2.2 Total number of DM events

The theoretical number of dark matter events expected in a given detector can be calculated by

integrating equation (2.19) over the recoil energy range of interest. In general, the energy that

is measured by the detector E ′ (in many circumstances denoted by Eee in units of keV electron

recoil equivalent or keVee) differs from the true nuclear recoil energy Enr (with units referred to

as keVnr) through a quenching factor, E ′ = EnrQ(Enr). As a result, there is ususally an energy

response function associated with each specific detector, represented here as A(Enr, E
′), which

incorporates both the quenching factor and energy resolution of the detector. Furthermore,

experiments will contain an efficiency or cut acceptance as a function of E ′, which is commonly

called ε(E ′). In experiments that measure photoelectrons, there will be an analogous situation

relating the true nuclear recoil energy to the number of measured photoelectrons.

As a result, the number of DM events N expected in a specific energy range E ′1 to E ′2 is found

to be

N = E
∫ E′2

E′1

dE ′ε(E ′)
∫

dEnrA(Enr, E
′)
dR

dEnr
, (2.24)

where E is the exposure of the detector in units of kg·days. The exact prescription for converting

the quantity that is measured to the nuclear recoil energy varies between experiments. In

Chapter 3 we outline these specific methods in detail.



Chapter 2. Theoretical Aspects of Dark Matter Scattering 20

2.3 DM halo velocity distribution

In this section, we discuss the form of the DM halo velocity distribution f(~v), and solutions to the

velocity integral η(Enr) of equation (2.18). In the simplest case, a Maxwell-Boltzmann velocity

distribution in the Galactic frame is assumed which produces an isotropic and isothermal sphere

for the distribution of DM within the halo. Such a model is referred to a the standard halo model

(SHM). The corresponding velocity distribution is given by

f(~v) =

{ 1
N

(
exp (−v2/v2

0)− exp (−v2
esc/v

2
0)
)

if v < vesc

0 if v > vesc

, (2.25)

where N is an overall normalization constant, v0 = (220± 20) km/s is the local circular velocity,

and vesc is the Galactic escape velocity with a median likelihood of vesc = 544+64
−46 km/s [33]. The

second term in equation (2.25) is manually inserted so as to ensure that the distribution function

approaches zero smoothly as the velocity approaches the Galactic escape velocity.2

Given that we are interested in the distribution of velocities relative to Earth, the velocity

that enters equation (2.25) is ~v+ ~ve. The Earth’s speed as a function of time t in years is known

to be

ve = |~ve| = v0(1.05 + 0.07 cos

(
2π(t− tpeak)

1yr

)
, (2.26)

where tpeak = June 2nd ± 3 days [34]. With the information provided, it is possible to compute

exact solutions to the velocity integral of η(Enr) as a function of nuclear recoil energy Enr. See

Appendix A for complete results.

The structure of DM in our Galaxy has been studied extensively using high-resolution N-body

simulations [35–37]. The results paint a picture of the DM velocity distribution which is different

from the SHM. Moreover, such simulations have shown large deviations from the SHM in cases

where the DM is allowed to scatter inelastically [38–42].

Not suprisingly, a number of alternative models to the distribution function of DM in the

Galactic halo have been proposed including: Tsallis model [39, 42], double-power law pro-

files [43], Navarro-Frenk-White (NFW) model [44], triaxial halo model [40, 41, 45], and Via

2It should be noted that not all analyses of DM differential event rates include a truncation of the velocity
distribution at the Galactic escape speed. The solutions to η(Enr) presented in Appendix A include a parameter
which makes it possible to turn off the truncating term.
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Lactea II halo model [35, 46, 47]. The various descriptions of the DM halo can be divided into

two groups: isotropic and anisotropic models. The first three models are examples of isotropic

scenarios and involve velocity distributions where f(v) only depends on the magnitude of the

velocity |~v|. The remaining two models are examples of anisotropic halo profiles in which the

defining characteristic of a preferred direction for DM velocities at the position of the Earth

is contained in an anisotropy parameter. The radially biased orbits which arise in numerical

situations inspire these anisotropic models.

With such a wide array of models attempting to describe the distribution of DM in the Galac-

tic halo, it would be extremely difficult to adequately incorporate the large number astrophysical

uncertainties associated within the standard DM analysis. Thus a framework which is indepen-

dent of assumptions made on the halo distribution is well-motivated, and we present the theory

for such a formalism in Chapter 6.



Chapter 3

Direct Detection Experiments

As mentioned in the introduction, there exist a number of ground-based direct searches using

sensitive, low-background particle detectors which aim to measure the recoil energy deposited

by interacting DM particles. In the following chapter, we review the various direct detection

experiments that are considered in our analysis of IVDM. More specifically, for each experiment

we discuss the technique for measuring WIMP recoil energies, experimental results, outstanding

criticisms, and the method that we employ in order to compute confidence intervals/levels for

fitting DM models.

3.1 CoGeNT

The CoGeNT experiment aims to detect DM-nucleon scattering events in a low-background set-

up at the Soudan Underground Laboratory. CoGeNT operates p-type point contact germanium

detectors that sense only ionization charge from nuclear recoils [48]. The background achieved

below 3 keVee (i.e. ionization energy) is one of the lowest reported by any DM detector. Recent

data confirms an exponentially distributed excess of events in the 0.5 – 1.5 keVee energy interval

which cannot be accounted for by any known background [49].

The CoGeNT collaboration also reports a modulating signal in the 0.5 – 3.0 keVee energy

range. This result has come under scrutiny. A time-series analysis of the CoGeNT time-stamped

22
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data in reference [50] reveals that in the low energy region, the presence of an annual modulation

signature can only be confirmed in the energy interval 1.6 – 3.0 keVee. As for the 0.5 – 1.6 keVee

energy region, no statistically significant annual modulation is observed despite having tested

a variety of procedures to remove the cosmogenic background. Furthermore, it is shown that

the yearly modulation attains its peak earlier than that predicted from WIMP recoils, making a

DM interpretation of the signal difficult. Since reference [50], CoGeNT has updated the fraction

of events passing the pulsar cut which are misidentified surface events, showing that it is in

fact larger than originally stated. As a result, the significance of a modulating signal against

background noise will be further reduced, and it is for these reasons that we focus our analysis

on the unmodulated component of the CoGeNT data.

To fit the unmodulated contribution, we perform a 0.05 keVee binning of the publically

available data [51] in the energy range 0.5 - 3.0 keVee. The binned data is reweighted using the

detector efficiency feff (E) found in reference [49] and the fraction of events due to surface event

contamination is removed using the correction factor fsurf (E) = (1 − exp (−1.21E/keVee)). In

the region of interest, cosmogenic L-shell electron capture events dominate the known background

and can be modeled as a sum of decaying Gaussians [51, 52]. The total number of L-shell

events expected in the detector are calculated using measurements of higher energy K-shell peak

captures, as well as the ratio between L-shell and K-shell decays. The required parameters are

found in the public release of CoGeNT data. Following Appendix A of [52], the cosmogenic

background contribution in each bin can be calculated and subtracted from the binned data.

Since light DM models attempting to describe low energy signals predict essentially no events

at higher recoil energies, a constant background of 2.565 cpd/kg/keVee is subtracted from the

CoGeNT event spectrum. This background is simply the average event rate between 2 keVee and

3 keVee after cosmogenic background subtraction and efficiency corrections. Finally, the errors

in each bin are computed by combining statistical errors on the raw binned CoGeNT event data,

and the error associated with the number of atoms to decay via K-shell electron capture.

A χ2 is constructed by fitting the theoretical event rate in each bin, Ri:

χ2 =
50∑
i=1

(
Ri − datai
δdatai

)2

, (3.1)
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Bin (keVee) Rate (cpd−1kg−1keVee−1) σRate
2 – 2.5 0.016 0.004
2.5 – 3 0.026 0.005
3 – 3.5 0.022 0.005
3.5 – 4 0.008 0.005
4 – 4.5 0.011 0.004
4.5 – 5 0.005 0.004
5 – 5.5 0.009 0.003
5.5 – 6 0.004 0.003
6 – 14 0.000 0.000

Table 3.1: Energy bins, event rates, and uncertainties used to fit the DAMA modulated
amplitude. The event rate displayed is an average taken over the exposure period.

where datai and δdatai are the experimental rate and uncertainty, respectively. CoGeNT also

reports a quenching factor parametrized by Eee/keVee = Q(Enr/keVnr)p with Q = 0.2 and

p = 1.12, which relates the observed ionization energy to the true nuclear recoil energy.

3.2 DAMA

The DAMA collaboration has operated two detection experiements, DAMA/LIBRA [53] and the

former DAMA/NaI [54], at the Gran Sasso National Laboratory in a suitable low-background

set-up placed deep underground over the past decade and a half. Both projects strive to perform

a direct detection of DM particles in the Galactic DM halo through the model independent annual

modulation signature. DAMA uses highly radiopure NaI[Tl] scintillators as target matter which

measure the fraction of energy that scattering DM particles deposit as scintillation.

The combined results of DAMA/NaI and DAMA/LIBRA support the presence of DM particles

in the Galactic halo at 8.2σ CL [53]. The evidence is predominant in the lower energy bins,

for example: in the 2.0 – 6.0 keVee interval the modulation amplitude is (0.0131 ± 0.0016)

cpd/kg/keVee with a phase and period which favour June 2nd and one year, respectively.

Following the method of reference [55], a χ2 is calculated using the data of Table 3.1. The

theoretical rate is computed at the central energy point of the bin interval and an average of

its value at maximum and minimum Earth velocity, ve, is taken as the modulation amplitude.

Furthermore, the Gaussian energy smearing of reference [55] is introduced with a finite detector

resolution which is parametrized in terms of energy. The energy resolution is given by
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σres/keV = 0.448
√
E/keVee + 9.1× 10−3E/keVee.

Finally, we remark on the DAMA quenching factors.1 Although the quenching factor of iodine,

QI = 0.09, is well established, different groups report different values on the sodium quenching

factor, QNa (see section 5.2 for more details). An accurate knowledge of the sodium quenching

factor is important because larger values of QNa can relieve the tension between the DAMA

and CoGeNT best-fit regions, as well as with the null experiments [55]. The sodium quenching

factor is generally anticipated to be a function of recoil energy and a recent analysis has confirmed

such a dependence [56] which we will investigate in Chapter 5. For this thesis, we adopt the

conservative choice QNa = 0.3± 0.1, unless stated otherwise.

3.3 CRESST-II

The CRESST-II cyrogenic DM experiment employs a number of 0.3 kg scintillating CaWO4

crystals in its search for DM interactions [57–59]. The recoil energy deposited by interacting

DM particles is converted into phonons and photons which are measured by a series of phonon

and light detectors. While the phonon signal provides a measurement of the total event energy,

the light signal is used to reduce the electron-photon backgrounds and for the nuclear recoils, it

also provides some information on which nucleus is recoiling.

CRESST-II obtains after 730 kg·days of exposure a total of 67 events that satisfy all accep-

tance cuts [58]. As it turns out, estimates for the total background contribution do not appear

to be able to explain all the observed events. The result is that CRESST-II reports an excess

signal with statistical significance > 4σ.

Table 3.2 shows the CRESST-II data separated into 6 bins along with the estimated back-

ground in each bin.2 To compute the estimated background in each bin Bi, we integrate, for

the energy intervals of Table 3.2, the spectrum of each background source corresponding to the

low-mass benchmark point in Figure 11 of reference [58]. A χ2 test is performed by fitting the

predicted number of dark matter events to the data summarized in Table 3.2. Also, we take into

1Quenching factor here means the fraction of the total recoil energy that goes into scintillation.
2The CRESST-II best-fit region is highly sensitive to the binning procedure. The energy bins of Table 3.2

are chosen to produce confidence intervals which are compatible to those published by CRESST-II, where a
complicated maximum likelihood analysis is performed.
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Bin (keV) Total events Estimated background
10.2 – 15 20 6.4
15 – 20 17 10.4
20 – 25 10 8.0
25 – 30 7 6.3
30 – 35 5 5.6
35 – 40 8 5.1

Table 3.2: Energy intervals, total number of events, and estimated background used to fit
the CRESST-II unmodulated data.

account the individual energy thresholds of the 8 detector modules: 10.2, 12.1, 12.3, 12.9, 15.0,

15.5, 16.2, 19.0 keV. The χ2 is calculated in the usual way:

χ2 =
6∑
i=1

(
Ri +Bi − datai

δdatai

)2

, (3.2)

where we define δdatai =
√

datai/2. The theoretical number of events per bin is computed

assuming detection efficiencies, ε, for the three target elements. These are taken to be: ε =

0.9 for O,W and ε = 1.0 for Ca, which take into account their acceptance region (following

reference [60]). Furthermore, we introduce a Gaussian energy smearing defined by the detector

resolution σres = 0.3 keV.

3.4 XENON100

The XENON100 (and XENON10) experiment uses liquid xenon as both WIMP target and

detection medium, and measures simultaneously the scintillation (S1) and ionization (S2) signals

produced by particle interactions in the fiducial volume [61–63]. The ratio S2/S1 is used to

discriminate between WIMP (or neutron) and electromagnetic signals, thus making it possible

to resolve the background contribution arising from gamma and beta interactions. The S1 signal

is measured in terms of the number of photoelectrons (PE) captured by the detector.

XENON100’s 2012 analysis of 224.6 live days × 35 kg exposure observes two candidate events

in the pre-defined nuclear recoil energy range 6.6 – 30.5 keVnr (3 – 20 PE), one at 7.1 keVnr

(3.3 PE), and at 7.8 keVnr (3.8 PE) [63]. The expected number of events due to background is

1.0 ± 0.2. The recoil energy deposited by interacting WIMPs is related to the number of PEs
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in the S1 signal through the response function Leff , that is:

S1 = Leff
LySnr
See

Enr, (3.3)

where the factors See = 0.58 and Snr = 0.95 describe the scintillation quenching due to the

electric field. Ly = (0.28 ± 0.04) PE/keVee is the updated response to 122 keV gamma rays.

A low mass DM interpretation of XENON100 is highly sensitive to the form of the response

function [64, 65]. In this report, we use the central parametrization of Leff in Figure 1 of

reference [62], which has been logarithmically extrapolated to zero below 3 keVnr.

To determine bounds on light DM, we use the maximum gap method of reference [66]. This

method involves partitioning the photoelectron search window (3 - 20 PE) into intervals or

“gaps” which are separated by the observed events. In the present case, these intervals are

found to be: 3 – 3.3, 3.3 – 3.8, 3.8 – 20 PE. For a given DM model, the predicted number of

events in each gap is calculated taking into account both signal and background contributions

in that gap. The background events are assumed to be uniformly distributed throughout the

search region. Limits are set by singling out the interval in which the probability of observing

no events is minimal. The Poissonian probability that more than 0 events should have been

observed in this window is given by the function C0(x, µ), that is:

C0(x, µ) =
m∑
k=0

(kx− µ)ke−kx

k!

(
1 +

k

µ− kx

)
, (3.4)

where x is the total number of events in the maximum gap, µ the total number of events in the

full PE range, and m = Floor(µ/x). As an example, the 95.4% CL is set by determining the

value of the cross section which gives C0 = 0.954.

The calculation of the number of events in any given gap involves a convolution of the DM

matter rate with an acceptance function A(Enr), which depends on quality cuts and S2/S1

energy resolution discrimination. A full discussion on A(Enr) can be found in reference [67].

More explicitly, the number of events, N , in the PE range Sa - Sb is:

N =

∫
A(Enr)

dR

dEnr
dEnr, (3.5)
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where

A(Enr) = ε2(Enr)

∫ Sb

Sa

[
ε1(S1′)

∑
Npe=1

Gauss(S1′|Npe)× Pois(Npe|µ(Enr)

]
dS1′. (3.6)

In equation (3.6), the Gaussian functions have mean value Npe with width σres = 0.5
√
Npe, and

µ(Enr) is the expected S1 signal at energy Enr as determined using equation (3.3). Finally, the

cut acceptances ε2(Enr) and ε1(S1′) are given by the dashed red and a combination of the solid

blue and dotted green curves, respectively, in Figure 1 of reference [63].

3.5 XENON10

A low-energy threshold analysis that is sensitive to light WIMPs is possible with XENON10

search data, if one considers only the S2 electron signal in measuring nuclear recoil energies [68].

By discarding the primary scintillation signal, lower threshold energies may be achieved however,

this comes at the expense of compromising the ability to discriminate between incoming particle

types. In total, XENON10 observes 26 events in the range of the S2 signal, that is S2 = 5 – 43

electrons.

The nuclear energy of each event crucially depends on the so-called Qy parameter which

relates nuclear recoil energy to the number of electrons in the S2 signal,

S2 = Qy(Enr)Enr. (3.7)

At low recoil energies, the energy scale is calibrated purely in terms of the S2 signal since a low

number of primary scintillating photons does not result in a measurable S1 signal. The exact

form of the electronic response function Qy has come into question. The Qy that XENON10

reports has been criticised by references [69, 70] which propose an electronic response function

with lower energy threshold cut-off. Figure 3.1 shows the competing forms of Qy. For our pur-

poses (as was done in [71]), we adopt the central curve of Figure 3.1 which takes the average

between the results of XENON10 and the solid black curve in Figure 2 of reference [69]. The

intermediate choice yields an energy threshold for XENON10 of Emin = 2.8 keV. As an upper
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Figure 3.1: Forms of the electronic response function Qy. The solid curve labelled Collar is
from reference [69], dotted curve is that employed by XENON10 (see [68]), the dashed curve

is the hypothetical intermediate ansatz. Figure taken from reference [71].

limit to the search window, we follow XENON10 in taking Emax = 10 keV.

Like the official XENON10 analysis, CLs are calculated using the pmax method of refer-

ence [66]. The pmax method is an extension of the maximum gap method appropriated to

situations in which larger numbers of events are observed. Each event is assigned an energy

according to equation (3.7) and energy intervals are defined to be between any two events. For

a given cross section, one finds the interval that is most likely to contain more events than

what was actually observed in that interval. The maximal probability over all possible intervals

is then used to set limits on the cross section. Finally, in computing the expected number of

events, Gaussian smearing is performed using the energy resolution of reference [72] which is

parametrized by σres =
√
Enr/Qy(Enr). This is the corrected version of the energy resolution

from the one used in the official XENON10 analysis.

3.6 CDMS-Ge

The CDMS-II experiment, operating at the Soudan Underground Laboratory, consists of an array

of germanium and silicon solid-state detectors which measure the energy deposited by particle

interactions via ionization and athermal phonon signals [73–76]. CDMS-II rejects electronic
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backround based on the ratio of ionization to phonon signals, since backgrounds tend to deposit

more energy in the form of ionization.

Our study of the germanium target material, referred to here as CDMS-Ge, takes into account

data from the most recent low-threshold analyis of 19 germanium detectors [75]. The reported

threshold of 2 keV has been disputed by reference [77] which favours 5 keV as a more realistic

threshold. [77] argues that the ionization pulses which are used as references in defining the

nuclear recoil energy scale, are poorly resolved against the electronic noise in the ionization

channel below roughly 5 keV. Despite this, we take the threshold energy to be 2 keV, resulting

in more stringent constraints.

Following reference [55], we restrict our analysis to the T1Z5 detector data which observes 34

events in the 2 keV to 20 keV search window with a corresponding exposure of 35 kg·days. The

best sensitivity to low-mass WIMPs is obtained by the T1Z5 detector which displays the lowest

threshold and greatest ability to discriminate between electron and nuclear recoils. Our analysis

takes the conservative approach which assumes all of the observed events are DM induced recoils.

CLs are computed using the maximum gap method of reference [66] in the 2 – 20 keV energy

range and assuming all 34 events observed are due to DM recoils. In order to calculate the number

of events in each bin, we use the efficiency found in the inset of Figure 1 of reference [75].

3.7 CDMS-Si

Earlier this year, the CDMS-II experiment released an official analysis of its silicon detectors

corresponding to 140.2 kg·days of data aquisition in its search for WIMPs [78]. Using the same

experimental techniques as in the germanium detectors, the CDMS-Si data reveals three candi-

date DM events in the 7 – 100 keV energy range at recoil energies 8.2, 9.5, and 12.3 keV, with a

predicted number of background events due to surface-event leakage of 0.41+0.20
−0.08(stat.)+0.28

−0.24(syst.).

The CDMS collaboration claims that the probability of three or more events being produced by

known backgrounds in the energy range of interest is 5.4%, indicating the existence of an excess

signal that might be attributed to interacting DM.

An elastic SI DM interpretation of the excess signal results in the highest likelihood occurring

for a DM mass of 8.6 GeV and WIMP-nucleon cross section of 1.9× 10−41 cm2. Reference [78]
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demonstrates the compatibility of their signal with that claimed by CoGeNT, however, show

that it is at odds with other positive-signal experiments.

For our analysis, we test the CDMS-II silicon excess against a DM hypothesis only in the case

of our halo-independent formalism. Following the official publication, we do however employ

the maximum gap method in the 7 – 100 keV energy range in order to set upper limits on

the DM-nucleon cross section using CDMS-Si data. The nuclear recoil efficiency of Figure 1 of

reference [78] is inserted into the calculation of silicon event rates.

3.8 SIMPLE

The SIMPLE experiment operates 15 C2ClF5 superheated droplet detectors. The event-by-event

analysis searches for particle-induced bubble nucleations of the superheated liquid droplets which

can transition to the gas phase [79]. One requirement for nucleation of the gas phase is that the

energy deposited by incident particles be greater than a thermodynamic minimum. As a result,

it is possible to precisely set the threshold energy which, for the relevant data, turns out to be

8 keV.

Following [55] we consider only the results of the recent Stage 2 data which reports one recoil

event, consistent with the number of estimated background neutrons over an effective exposure

of 6.71 kg·days. The latest results provide better neutron shielding and a more rigorous analysis

of the individual detector run signals, sensitivities, and bubble nucleation efficiency.

To compute CLs, a χ2 is constructed out of the Poissonian likelihood defined by

L = e−Ntot , (3.8)

where Ntot is the total theoretical number of dark matter events. This method results in conser-

vative bounds which are compatible with those obtained by SIMPLE.

As a final remark, we comment on criticisms regarding the observation of acoustic discrimina-

tion, SIMPLE’s reported sensitivity to low-mass DM, and the longevity of the SIMPLE modules.

References [80, 81] both raise concerns over the fact that the SIMPLE analysis does not employ

the same parent acoustic distribution for the neutron calibration data set and events in the
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physics data identified as coming form neutrons. It is argued that using different distributions

in the calibration and physics data directly affects the resulting WIMP sensitivity. Additionally,

[80] calls into question the credibility on the claim by SIMPLE that it has achieved improved

limits on low-mass WIMPs. The main argument relies on reports that the SIMPLE detectors

are not able to contain target mass diffusion or gas leakage and therefore, suffer from a poor

“shelf-life”. Reference [80] contends that based on past experience with superheated droplet

detectors, a relaxation in the sensitivity of SIMPLE detectors is expected.

3.9 EDELWEISS-II

A search for low-energy WIMP-induced nuclear recoils is presented in the recent EDELWEISS-II

paper which analyses a restricted data set from the results of ten heat-and-ionization detec-

tors [82]. Selected on the basis of threshold and background performance, the results of four

germanium detectors, corresponding to an exposure of 113 kg·days, is used to achieve a low-

background sensitivity to nuclear recoils down to 5 keV. Accordingly, measured recoil energies

are limited to < 20 keV.

Measurements of the heat energy allow for an evaluation of the nuclear recoil energy Er.

Furthermore, signals from the ionization channels are used to reject the main backgrounds of

nonfiducial interactions such as surface beta radioactivity, gamma-ray-induced interactions in

the fiducial volume, and ionizationless events. The result is an efficiency loss for fiducial events

as a function of ionization energy described by the equation:

εion = 0.95
[
1− exp (−1.87(Eion − 1.25))

]
, (3.9)

where Eion is in keVee. Additionally, at low energy there is an efficiency loss caused by the online

trigger. The trigger efficiency as a function of recoil energy is given by

εonline = 0.5

[
1 + Erf

(
Er − Ethresh√

2σ

)]
, (3.10)
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with Ethresh the recorded trigger threshold and σ the measured resolution. EDELWEISS-II

reports that the average trigger efficency for the selected data is 78% at 5.0 keVnr and 90% at

6.3 keVnr. Therefore, given the available data, we make the approximation Ethresh = 3.03 keV

and σ = 2.55 keV.

Taking into consideration the measured resolutions of fiducial ionization energy σi = 0.7 and

heat energy σr = 0.8, it is possible to calculate the DM signal density:

ρ(Er, Ei) =
εonline(Er)εion(Ei)

2πσrσi

×
∫
dE

dR

dE
(E) exp

(
− (Er − E)2

2σ2
r

− (Ei −QnE)2

2σ2
i

)
, (3.11)

where the integral is over all E (the true recoil energy), and the parameterization Qn =

0.16(Er/keV)0.18. To compute the expected number of DM events, the signal density is in-

tegrated over the Er search region, that is 5 – 20 keV, and over all ionization energies.

The data shows no evidence for an exponential distribution of low-energy nuclear recoils that

could be attributed to standard DM scattering. The Poissonian likelihood of equation (3.8)

is used to compute upper limits on the DM scattering cross section with results that are in

agreement with EDELWEISS-II.



Chapter 4

Isospin-Violating Dark Matter: A

Review

In this chapter, we review the origin and evolution of the isospin-violating dark matter paradigm

with a focus on important results as they apply to direct detection experiments. Additionally,

an update on IVDM is provided along with a discussion on the results of various extentions to

the standard DM model. To conclude the chapter, a review of phenomenological findings of

prominent halo-independent analyses is given. In subsequent chapters, we will refer to the body

of content laid out here in order to give straightforward comparisons between the results of this

research and those of previous studies.

4.1 From Dirac neutrinos to generalized IV couplings

In 1985, Goodman and Witten released a seminal paper [83] which would soonafter initiate the

search for weakly interacting dark particles in ground-based detectors. Inspired by the potential

for possible dark matter candidates to be detected by a then recently proposed neutral-current

34
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neutrino detector [84],1 a prescription for computing dark matter event rates was outlined. In ad-

dition to analysing spin-dependent and strong interactions, Goodman and Witten considered the

case in which the unknown halo particle contained vector couplings to Z bosons and thus could

scatter with nuclei via Z exchange. It could be shown that the DM-nucleon elastic scattering

cross section satisfied the following relation:

σ ∝ [N − (1− 4 sin2 θ)Z]2, (4.1)

where N and Z are the number of neutrons and protons in a target nucleus, respectively.

Equation (4.1) resembles the spin-independent DM-nucleon cross section of Chapter 2 since

N = A− Z. Although equation (4.1) represents a model containing vector couplings, it is clear

that isospin violation naturally arises in a theory where the dark matter candidate has coherent

weak interactions since we may deduce the relation fp/fn = −(1−4 sin2 θ). In fact, if the Galac-

tic halo is dominated by a heavy standard Dirac neutrino then θ = θW is simply the Weinberg

angle.

Motivated by the concepts of Goodman and Witten, the first limits on WIMP-nucleon cross

sections would be computed by Ahlen et al. in 1987 using the results from then already existing

Ge double-beta decay experiments [85]. The predicted rate of recoils were computed using Dirac

neutrino dark matter as the dominant halo component for both the SI vector and SD axial-vector

interactions. Not before long, other groups [86, 87] would utilise double-beta decay experiments

in order to compute limits on dark matter cross sections under the heavy Dirac neutrino as-

sumption. Over the next decade, a number of experiments dedicated to dark matter searches

were constructed and tested against various DM hypotheses including: Baksan [88], COSME

[89], DAMA-NaI [90, 91], DEMOS [92], Heidelberg-Moscow [93, 94], and UKDMC [95], among

others. However, by the mid-nineties heavy Dirac neutrinos were ruled out by a combination of

collider searches, cosmological considerations, and direct detection experiments. The key reason

is the following: if a Dirac neutrino with mass & 1 GeV were made to yield the correct relic

abundance, its elastic cross section with SM nuclei induced by Z-exchange would be sufficiently

1The neutral-current neutrino detector originally proposed by Drukier and Stodolsky, relied on the ionization
by neutrinos of grains of superconducting material embedded in a non-conducting material and in a magnetic
field. Upon ionization, the grain would no longer be superconducting hence, a change in the magnetic field would
occur which would create a measurable signal. Interestingly enough, their detector was never constructed.
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large that it should have been seen at direct detection experiments.

With Dirac neutrinos out of the picture, efforts shifted towards models consisting of scalar

and axial-vector DM. One of the first scalar spin-independent DM candidates to be considered

was the well-favoured, theoretically motivated neutralino. Neutralinos arise in the minimal su-

persymmetric standard model (MSSM) as the lightest supersymmetric particle. For early papers

which compute limits on neutralino-nucleon elastic cross sections see references [96, 97]. It is

possible to show that the neutralino-nucleon spin-indpendent cross is given by:

σSI0 =
8GF

π
m2
Zµ

2
NA

2α
2
H

m4
h

, (4.2)

where mZ is the mass of the Z0 boson, mh the mass of the Higgs boson, and αH an expression

which depends on the neutralino-quark couplings mediated by Higgs bosons and squarks [98, 99].

Notice in equation (4.2) the A2 dependence of the WIMP-nucleon cross section. As it so happens,

αH depends on parameters which are independent of the target material and the mass of the

neutralino. Therefore, the spin-independent WIMP-proton cross section of Chapter 2 can be

related to αH under an IC scenario as follows:

σSIp =
8GFµ

2
p

π

m2
Z

m4
h

α2
H . (4.3)

Hence, equation (4.3) demonstrates that an analysis of DM which evokes the σSIp cross section of

Chapter 2, can serve as an effective theory to more fundamental interactions between DM and

SM nuclei (in this case interactions between neutralinos and nuclei). By the new millennium,

the computation of upper limits on DM cross sections started to concentrate less on the specifics

of neutralino physics, and more on general effective models of SI DM interacting via scalar

couplings. Even so, the assumption that scalar DM be IC was an established theme which,

despite the knowledge of more extensive forms of the DM-nuclei cross section containing distinct

DM-neutron and DM-proton couplings [16], woud not be broken in favour of a general IV analysis

of direct detection for some time.
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4.2 Early results for IVDM

In 2003, Kurylov and Kamionkowski released the first generalized analysis of direct detection

searches in which the parameter fn/fp was allowed to vary [100]. At the time, DAMA-NaI was

the only detector reporting an excess signal compatible with DM-nucleon scattering, and null

bounds were placed using data from the following experiments: DAMA-Xe, EDELWEISS, and

ZEPLIN-I. Results were presented in the σSDn -MDM plane for purely SD dark matter (assuming

ap/an = 0) and the σSDp(n)-σ
SI
p plane for combined DM (assuming an/ap(ap/an) = 0). Kurylov

and Kamionkowski were able to conclude:

• Compatibility of all the data can be achieved with a predominantly SD DM-proton inter-

action.

• Almost purely SI interacting DM is allowed for heavier WIMPs of ∼ 50 GeV provided that

−0.77 . fn/fp . −0.75 and that the SI cross section statisfy σSIp ≈ 0.0035 pb.

The prospect of a negative ratio between DM-proton and DM-neutron couplings of order unity

being able to accomodate the DAMA best fit region was further supported by Giuliani [101].

Reference [101] showed that in a fully isospin-dependent interaction scenario, that is one where

fn = −fp, constraints on the DAMA region of interest (ROI) that arise from null experiments

are 1− 2 orders of madnitude less stringent.

The first published results from CoGeNT’s initial run of their ultra low noise germanium

detector brought about a new period in DM direct detection. Kopp, Schwetz, and Zupan were

the first group to interpret the 2010 CoGeNT results in terms of a positive signal DM scenario

[102]. Amidst a time of uncertainty regarding the form of the CoGeNT background, Kopp et al.

demonstrated a clear incompatibility between the CoGeNT and DAMA best fit regions under

a SI IC DM model, not to mention across the board tensions with null bounds. On the other

hand, the addition of a positive mass splitting parameter was seen to reduce the conflict between

the DAMA ROI and excluded areas of parameter space for both SI and SD cases.

Shortly after CoGeNT’s results were published, Chang et al. demonstrated that the intro-

duction of generalized SI DM couplings, in particular taking fp ≈ −fn, strengthens the overall
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agreement between CoGeNT and DAMA, and positive-signals with null constraints [103]. Ad-

ditionally, MD scattering was shown to further improve the situation.

These attempts to explain direct detection of DM failed to provide a quantitave analysis of

the models employed and, in the case of IV analyses, failed to account for the possibility of

isotopes in the target material. In 2011, Feng et al. explored the latter of these points by

introducing the abundunces of nuclei with multiple isotopes into their research on IV couplings

[26]. Reference [26] was able to conclude that for −0.72 < fn/fp < −0.66, there exists marginal

agreement between the CoGeNT and DAMA ROIs, and both can be brought into consistency

with the XENON100 bound due to a reduction in its sensitivity to WIMPs. It was pointed

out that for such values of fn/fp there occurs almost complete destructive interference between

the proton and neutron content of the isotopes in the WIMP-xenon cross section, resulting in

xenon’s diminished sensitivity to DM. On the other hand, the CoGeNT constraint was found to

marginally exclude the overlaping region, and since CoGeNT utilizes Ge, the tension between

CoGeNT and CDMS-Ge could not be alleviated by isospin violation alone. A similar conclusion

was reached by Frandsen et al. [104] however, inelastic scattering of mass-splitting ∼ 15 keV was

shown to improve the universal fit for IVDM. Working in the σSIn -MDM plane, another important

discovery was that larger values of QNa were seen to reduce tensions between DAMA and null

experiments.

Arguably, the most robust analysis of IVDM and its possible extensions was carried out in

late 2011 by Farina et al. [55] where, in addition to IV interactions, inelastic couplings, MD

couplings, velocity suppressed interactions, resonant scattering, and possible astrophysical and

experimental uncertainties were all expoited (individually and in some cases combined) in order

to unearth a successful fit to the data. A nominal feature of reference [55]’s study of a DM

interpretation of direct detection data, was their quantitative approach in introducing a chi-

squared value corresponding to the sum of chi-squareds of the positive signal experiments. By

minimizing an appropriate chi-squared statistic, benchmark values for parameters of the theory

could be deduced, in contrast to the approach of predecessors whereby parameter values were

chosen on an ad hoc basis. The results of Farina et al. are summarised as follows:

• Allowing fn/fp to float results in an improvement in the compatibility of CoGeNT and
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DAMA. Also, tuning the isospin violation ratio such that the neutron and proton compo-

nents cancel eachother weakens the tension of positive-signal results with null experiments.

For an IVDM model with v0 = 220 km/s, vesc = 500 km/s, and QNa = 0.4, the benchmark

value for the isospin violation ratio is fn/fp = −0.65.

• Larger values of QNa result in better agreement between DAMA and CoGeNT.

• For MD scattering, q2n form factors with n > 0 have the effect of causing an increase in

the separation between DAMA and CoGeNT ROIs, given that such form factors are seen

to enhance the CoGeNT signal relative DAMA’s. However, taking fn/fp ∼ −0.66 for q2

and q4 scattering mends this problem resulting in an overall fit which is only somewhat

more consistent than the q0 case. Form factors q2n where n < 0 are not seen to improve

the global fit with respect to the n = 0 case.

• Velocity-dependent elastic scattering is introduced by inserting form factors into the differ-

ential rate which go like v2/v2
0 or v4/v4

0 for some mean velocity v0. A small improvement in

the overall fit is realised for DM-nucleon coupling ratios in the range−0.6 < fn/fp < −0.56.

• An inelastic coupling is found to improve the overall fit for both endothermic, and exother-

mic DM models. For up-scattering, the benchmark parameters are fn/fp ≈ −0.66 and

δ ≈ 11 keV, and for exothermic DM they are fn/fp ≈ −0.68 and δ ≈ −10 keV.

Despite these improvements, the authors concluded that despite the use of many additional

parameters in the SI DM scenario, the prospect of providing a simultaneous explanation to all

the data is a difficult task. The authors also entertain the idea that one or possibly both of the

positive-signal experiments is/are seeing some phenomenon unrelated to DM.

By 2012, the CRESST-II collaboration had published results that claimed to see a significant

excess of events compatible with a DM hypothesis. Shortly thereafter, Kopp et al. performed

(separately) a SI inelastic and IV analysis of the CRESST-II data, making comparisons to the

DAMA ROI, and testing CRESST’s robustness against null constraints [105]. For the inelastic

case, a larger than usual value of the mass splitting (90 keV) was used causing DM scattering

to occur exclusively on W. The results displayed an incompatibility in the CRESST-W and

DAMA-I ROIs, as well as tension with the XENON100 bound. For an elastic SI IV scenario
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with fn/fp = −0.7, Kopp et al. found that although IV couplings were able to achieve clear

improvement over the IC case, a low probability of consistency from their parameter goodness

of fit test was achieved for a CRESST + CDMS-Ge + XENON100 hypothesis.

4.3 In light of new experimental results

Since the meaningful conclusions of Farina et al., a collection of new experimental findings have

come to light which significantly alter the DM picture of direct detection. As mentioned in

Chapter 3 these are: the 2012 release of XENON100’s 225 live days of direct detection data, an

updated analysis on surface event contamination in the results of CoGeNT, a correction to the

energy resolution in the XENON10 analysis, and the publishing of official silicon detector data

by the CDMS-II experiment. In this section, we review the effects that some of these new results

have on the DM parameter space.

Immediately following the release of XENON100’s 2012 results, Jin, Miao, and Zhou pub-

lished a paper which gave an IV interpretation of the data [32]. For a WIMP mass of 10 GeV,

the 2012 XENON100 limit on the DM-proton cross section for IVDM with fn/fp = −0.7 turned

out to be ∼ 3.6× stronger than the 2011 bound. Accordingly, the new constraint was discovered

to rule out almost all positive-signal ROIs. In a subsequent version of Jin et al.’s paper, the

updated surface event contamination in CoGeNT data was joined to their analysis. The result

being a worsening in the compatibility between the DAMA and CoGeNT signals to the extent

that no overlap is observed at the 3σ level. Conversely, a small improvement was seen for IVDM

in the tensions that null limits impose on the CoGeNT ROI.

An alternative assesment of DM signals in direct detection searches by Arina, employs Bayesian

statistics as a method of comparing various experiments [106]. An advantage to this method

of analysis is that it marginalises over experimental systematics and astrophysical uncertainties.

Taking into account both the 2012 XENON100 result and surface event contamination at Co-

GeNT,2 the outcome between elastic IC and IV scattering was determined to be inconclusive

at odds of 2 : 1, while inelastic scattering was found to be disfavoured with the odds of 1 :

2Reference [106] employs a version of the surface event contamination function from J. I. Collar’s talk given at
the International Dark Matter Conference in Chicago, 2012. This version postulates a smaller fraction of surface
events in the data than the one presented in the official CoGeNT release which appeared after this talk.
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32. Consequently, it is argued in the conclusion of reference [106] that since the data does not

support extra free parameters, positive-detection regions are best left to be described by elastic

IC DM scattering. It should be noted that the low energy analyses of XENON10 and CDMS

are not considered, in addition to the absence of a combined inelastic, IV hypothesis.

In reference [107], Yang investigates the compatibility between CoGeNT (2012) and DAMA

along with bounds from XENON100 and PICASSO in terms of IV SI and SD DM in fn-fp

and an-ap space, respectively. The findings of Yang’s SI IVDM analysis are similar to those of

previous works. On the other hand, results are shown to constrain the SD couplings in such

a way that requires |an| < 0.6 and |ap| < 1.0, for cross sections σSDn < 5.6 × 10−38 cm2 and

σSDp < 5.6× 1.6−37 cm2. It is also demonstrated that SI IVDM fails to reconcile the XENON100

constraint with the DAMA and CoGeNT ROIs. However, this analysis is contrained to a WIMP

candidate of mass 10 GeV and it is not explored whether or not other values of the mass change

the results of an overall fit to the data.

Moving on, the possibility of an excess signal in CDMS-Si data is given an isospin-violating

treatment in reference [108] by Feng et al. The analysis demonstrated that by using an isospin

violation ratio of fn/fp = −0.64, the positive-signal ROIs corresponding to the excess signals

at CDMS-Si and CoGeNT could be made to agree. Furthermore, large portions of the CDMS-

Si claimed signal are able to evade the stringent XENON100 constraint in the IVDM picture.

However, compatibility between the CDMS-Si region and that of DAMA or CRESST-II is not

observed, and the analysis does not consider CDMS-Si data as an upper limit.

4.4 Results from halo-independent analyses

Perhaps the greatest challenge facing the comparison of direct detection results are the various

uncertainties that permeate the data. In particular, the exact structure of the DM halo in our

Galaxy is subject to a number of possible uncertainties. Some models of the DM distribution

within the halo predict isotropic profiles whereas others favour anisotropic profiles. Further-

more, the possibility of DM streams, local overdensities, sub-halos, and halo rotation are known

to significantly alter expectations for the DM event rate.
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In recent months, there has been a surge in the number of halo-independent analyses, all

of which whose aim is to compare the results of DM direct detection in a way that removes

assumptions regarding the distribution of DM in our Galaxy. In the method proposed by Fox,

Lui and Weiner, observations of one experiment were mapped directly into another, thus cir-

cumventing astrophysical uncertainties arising from the DM halo profile [109]. As argued in

their paper, interpreting the data in η(vmin)-MDM space over σSIp -MDM space is advantageous

because it readily demonstrates the relationships between the regions of vmin-space probed by

different experiments, and allows for an easy method of discerning the existence of possible ten-

sions in the data. Their IC analysis shows that for a comparison of XENON10 and CoGeNT, the

excess signal observed by CoGeNT is compatible with null results in η(vmin)-MDM space pro-

vided that low values of Leff in XENON10 are chosen. On the other hand, constraints placed

by XENON10 on the excess signal predicted by DAMA show that for most choices of the DM

mass, the modulation fraction3 is too small for a consistent description with elastically scattering

WIMPs. Nevertheless, it is found that constraints on lower modulation fractions are weakened

for sufficiently larger values of the sodium quenching factor. Finally, their analysis reveals that

an elastic DM interpretation of the excess of events reported by the CRESST collaboration is

highly unlikely due to the severity of the CDMS-Si and XENON10 constraints.

The method of Fox, Lui, and Weiner suffers from a key disadvantage: comparisons between

different experiments become difficult to make when the regions of vmin-space probed are not the

same. In reference [110], Frandsen et al. address this problem by making the astrophysical un-

knowns explicit, thereby causing an assessment of their impact within the framework of various

DM models to become more apparent. To achieve this, Frandsen et al. mapped all experimental

results into vmin-space and inferred from the usual DM analysis the best estimate of the DM

mass. Focusing on the 6 - 15 GeV mass range, they established that there exists a particu-

lar anisotropic choice of η(vmin) which enables a consistent description of CoGeNT, CRESST,

and DAMA. However, bounds from XENON10/100 and CDMS-Ge/Si are shown to remain in

tension with the regions of vmin-space probed by positive-signal experiments. On the contrary,

the employment of IV couplings with fn/fp ≈ −0.7 resolved the conflict with the XENON and

CDMS-Ge constraints, although this scenario was also seen to enhance the upper limits set by

3The modulation fraction is defined by [109] to be (S −W )/(S + W ), where S and W are the summer and
winter event rates, respectively.



Chapter 4. Isospin-Violating Dark Matter: A Review 43

SIMPLE, CDMS-Si and the CRESST-II commisioning run. Moreover, Frandsen et al. show

explicitly how the specific choice of DM halo profile can widely affect the form of η(vmin), and

hence its influence on ROIs and upper limts in σSIp -MDM space for both standard and IV DM.

As a result, the importance of carrying out a halo-independent analysis is further solidified.

A crucial pitfall to the analysis performed in reference [110] is its inability to fully incorporate

the efficiencies, resolutions, and/or additional acceptance factors associated with the individual

experiments. Gondolo and Gelmini confront this problem in reference [111] in which they extend

the halo-indpendent analysis to include energy resolutions and efficiencies with arbitrary energy

dependence. Their conclusions are similar to that of [110] in that the XENON100 and CDMS

bounds tightly restrict the positive-signal measurements of η(vmin) in the elastic IC SI model,

and that the possibility of IV couplings at low energies remains plausible. Furthermore, the

CRESST-II signal in vmin is found to be incompatible with the DAMA and CoGeNT modula-

tion signals.

Early this year, Nobile et al. presented a halo-independent analysis [112] which incorporates:

the new CDMS-Si results both as a bound and excess signal, the updated surface event contam-

ination at CoGeNT, and the possibility of energy dependent quenching factors in NaI crystals.

They test the halo-independent hypothesis for various values of the WIMP mass, for IC DM,

and IV scenarios with fn/fp = −0.7 using the techniques of [111]. The results are summarised

as follows:

• For low values of QNa and hence those probed by the energy-dependent quenching factor, it

is not possible to explain the DAMA modulation data given a reasonable choice of escape

velocity for O(10) GeV WIMPs. In addition, the DAMA measurments of η(vmin) are found

to be excluded by several null constraints.

• Taking fn/fp = 1, only the lower energy bins of the CoGeNT (and DAMA for sufficiently

large QNa) modulation data are able to circumvent XENON10, XENON100 and CDMS-Ge

modulation bounds.

• For IV couplings with fn/fp = −0.7, CDMS-Si bounds are strengthened leading to the

exclusion of all central values of the CoGeNT data, except at the points corresponding to

the lowest energy bins.
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• The central values of the CDMS-Si unmodulated signal is in apparent conflict with upper

limits placed by XENON100 in the IC case. For the IV scenarios, the CDMS-Si signal is

allowed. However, the predicted unmodulated rate becomes lower than the modulated ones

favoured by CoGeNT and DAMA, which is a problematic contradiction if the unmodulated

and modulated components are to arise from the same DM candidate.

In a similar paper, Frandsen et al. [113] test a halo-independent DM interpretation of the

CDMS-Si excess signal against XENON10 and XENON100 bounds but with some key differences.

Firstly, [113] employs a constant energy resolution whereas Nobile et al. use a method which

accounts for the energy dependence of the resolution. Secondly, for the CDMS-Si excess signal,

reference [113] uses a 3 keV bin width everywhere, except in Figure 2 of that paper where

they use the same 2 keV bin width as reference [112]. Other than in Figure 2, which yields

comparable results to those obtained by Nobile et al., the two analyses cannot be compared

since they employ different binning strategies. Frandsen et al. demonstrate that the CDMS-

Si data points are not entirely excluded by XENON10/100 bounds in the IC case. However,

disagreement is still found to exist between the CDMS-Si measurements and the XENON100

constraint which is independent of uncertainties in the distribution of DM in the halo. As it so

happens, IV couplings are found to reduce these tensions.

The techniques of a halo-indpendent analysis were extendend by Bozorgnia et al. to include

the possibility of inelastic couplings in order to test the compatibility of the DAMA modulation

signal with the XENON100 unmodulated constraint [114]. As will be made clear in Chapter 6,

the introduction of inelastic couplings to a halo-independent analysis is a non-trivial procedure

because there no longer exists a unique relationship between the nuclear recoil energy and vmin.

In order to avoid astrophysical uncertainties in an inelastic framework, reference [114] devises

three halo-independent tests, the most important being their so-called “shape-test”. In a sense,

the “shape-test” quantifies deviations between the results obtained in converting to vmin-space

for the two possible nuclear recoil energies corresponding to a particular value of vmin. Bozorgnia

et al. were able to conclude that an inelastic DM interpretation of the DAMA modulation signal

is in strong contention with constraints placed by XENON100. Unfortunately, a DM hypothesis

which contains both inelastic and IV couplings was not considered.

Finally, we briefly mention a generalized halo-independent description of direct detection data
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formulated by Nobile et al. which extends the analysis to any type of WIMP-nucleon interaction

[115]. The method is applied to DM with magnetic moment interactions. It should be noted

however that this analysis does not allow for inelastic WIMP-nucleon scattering because it

assumes a trivial relation between vmin and the nuclear recoil energy Enr. The main purpose of

their generalization was to provide a halo-indpendent analysis of models whose DM interactions

depend on arbitrary functions of the DM particle velocity and the nuclear recoil energy, as is

the case for magnet dipole and anapole DM.



Chapter 5

Searching the Dark Matter Parameter

Space

The main purpose of direct detection experiments is two-fold: to confirm the existence of a DM

particle, and to determine the values of parameters (mass, cross section, etc. . . ) in the relevant

model. Naturally, one might ask the following questions: how do we extract and establish the

presence of an interacting DM particle from the tentative signals arising at possibly multiple

detection experiments, and what procedure do we impose on the data in order to assign values

to the various parameters of the theory?

Typically, tests on the compatibility of WIMP searches are done within the confines of

parameter space plots. For standard models of dark matter with or without minimal extensions,

this usually involves evaluating each experiment separately and displaying the resulting contours

in a single σ-MDM plot. Such an analysis will be referred to as the standard formalism. In the

standard formalism, the robustness of a model is judged qualitatively (essentially“by-eye”) on

two factors: whether ROIs for competing positive-signals exhibit marginal overlap, and whether

these regions elude null constraints. As is suggested in [109], such a procedure is less than ideal

because it fails to address the key question regarding the existence of DM, which inherently

requires an assesment of the astrophysical uncertainties involved. Moreover, given the substantial

amount of processing that enters parameter space plots, it is complicated to judge the impact

that astrophysical unknowns have on experimental findings, as well as uncertainties arising from

46
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nuclear, atomic, and particle physics. To complicate matters further, a misunderstanding of

background sources and noise in a detector can negate the claim of an excess signal [50, 116]

and/or significantly alter theoretical predictions.

Despite these downsides, parameter space plots are a crucial first step in understanding the

direct detection of dark matter. For example, a halo-independent analysis requires knowledge

of parameter values (except for the WIMP-nucleon cross section) in order to test the regions

of vmin-space probed by DM experiments. Furthermore, a standard formalism analysis may be

improved by better quantifying the values of model parameters through the introduction of a chi-

squared test. As it turns out, the standard formalism is convienent not only because it allows for

the determination of parameter values, but because it makes manifest the model-dependencies of

the different experimental results. Consequently, the standard and halo-independent formalisms

should be viewed as complements to one another.

In the following chapter, we aim to investigate the results of direct detection experiments under

the DM hypothesis through a series of parameter space plots. By minimizing an appropriate

chi-squared statistic, our goal is to better quantify the “goodness” of a number of DM models

including: SI, SD and combined, IC and IV, elastic and inelastic, MD, and possible combinations

of these. Also, we plan to determine the best-fit values of the various parameters and wish to

explore the effects of varying astrophysical parameters such as the Galactic escape velocity vmax,

the Sun’s circular velocity v0, and the local DM density ρDM .

Chapter 5 is layed out as follows. An overview of the plot definitions and method used to

obtain benchmark points in the parameter space for various models is outlined in section 5.1.

We proceed in section 5.2 by reviewing the results for standard SI and SD DM. In section 5.3 we

explore the effects of varying the various astrophysical parameters on the positive-signal regions

of interest and exclusion curves. Sections 5.4 - 5.6 test the DM hypothesis under extensions of

the standard model, the most important being the introduction of IV couplings.

5.1 Methodology

A standard minimization scheme on the total χ2 value for positive-signal data is performed in

order to determine benchmark points of various phenomonological scenarios. The plots will focus
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Object Label Description
DAMA ROI for DAMA

CoGeNT ROI for CoGeNT
CRESST ROI for CRESST-II

Xe10 95.4% and 99.7% upper limits for XENON10
Xe100 95.4% and 99.7% upper limits for XENON100

CDMS-Ge 95.4% and 99.7% upper limits for CDMS-Ge
CDMS-Si 95.4% and 99.7% upper limits for CDMS-Si
SIMPLE 95.4% and 99.7% upper limits for SIMPLE
EDEL 95.4% and 99.7% upper limits EDELWEISSt benchmark point

Table 5.1: Definitions for the objects of the parameter space plots including the colour scheme,
and labels. The solid (dashed) lines correspond to the 95.4% (99.7%) CL.

on parameter space in the σSIp -MDM plane for which we investigate the effects of SI, SD, elastic,

inelastic, IV, IC, and momentum dependent couplings.

In the plots to follow, the exclusion curves of null experiments are represented by solid (dashed)

lines corresponding to 95.4% (99.7%) CL. The best- fit regions for the positive-signal experiments

are indicated by three solid contours corresponding to 68.3%, 95.4% and 99.7% confidence in-

tervals with < 68.3% CL filled in by the lightest shade of the appropriate colour. Table 5.1

organizes the colour scheme, label, and description for the objects in the plots of this chapter.

Our total chi-squared statistic χ2
tot is defined as the sum of χ2s corresponding to the positive-

signal experiments being analysed. For example, if our analysis includes DAMA, CoGeNT and

CRESST, then χ2
tot = χ2

DAMA + χ2
CoGeNT + χ2

CRESST . The total χ2 is minimized in order to

fix values of the parameters not included in the phase space of the plot. Confidence levels and

contours are then computed using the individual χ2 or upper limit methodologies reported in

Chapter 3. Lastly, each plot includes a legend which displays the values of Galactic escape

velocity, local circular velocity, DM density and sodium quenching factor used, as well as the

values of additional model parameters and that of χ2
tot. For cases which involve a MD coupling,

the value of n appearing in the form factor (q2/q2
0)n is included, otherwise it is assumed to be

zero.
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5.2 Standard dark matter

Firstly, consider fitting the direct detection data in terms of elastic, IC (fn = fp) SI DM scat-

tering. Figure 5.1 shows the results in σSIp -MDM space where we have taken mean values for the

astrophysical parameters, and a constant sodium quenching factor of QNa = 0.3. A minimization

of the total chi-squared yields a benchmark point of MDM = 8.7 GeV and σSIp = 3.3 × 10−41

cm2 with χ2
tot = 167.9. Since a combined fit for DAMA, unmodulated CoGeNT, and CRESST

involves 64 data points, a two parameter model implies an optimal total chi-squared of χ2
opt ∼ 62.

As a result, the gross discrepancy in chi-squared values leads to the conclusion that standard SI

DM provides a poor model fit to all the data.

Furthermore, a qualitative analysis reveals a number of difficulties in the standard DM frame-

work. First off, all positive-signal ROIs are excluded by one or more null experimental constraints

by (at the very least) the 95.4% CL. On the compatibility of positive-signal experiments, there

is no overlap between the favoured regions of DAMA and CoGeNT, CoGeNT and CRESST,

and only marginal agreement between DAMA and CRESST. Additionally, the benchmark point

misrepresents the DAMA and CRESST best-fit points, and is excluded by both XENON100 and

CDMS-Ge. The strongest constraint arises from XENON100 which essentially excludes all pa-

rameter space relevant for low-mass direct detection in the standard scenario, that is MDM > 8

GeV and σSIp > 10−41.3 cm2.

Figures 5.2 and 5.3 investigate standard elastic, SD DM scattering as an explanation for

experimental data. Unlike the case of SI DM, “standard” here does not mean that the spin-

dependent WIMP-nucleon couplings (an and ap) are assumed to be equal. In the literature,

standard in this context means that we either assume a purely protonic spin interaction by set-

ting an = 0 (ap = 1), or a purely neutronic spin interaction by setting ap = 0 (an = 1). Since SD

interactions between nuclei and DM are only possible for nuclei that carry spin, a CRESST ROI

is not present given that none of its nuclei contain any odd spin. As mentioned in section 2.1.2,

we use the structure functions S00(q2), S01(q2), and S11(q2) of reference [29]. For nuclei where

multiple groups have published results on the strucutre functions, we implement the results of

Russel and Dean for 23Na and 131Xe, and Russel et al. for 29Si and 73Ge. Also, for 129Xe the
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Figure 5.1: Elastic isospin-conserving spin-independent DM fit to the experimental data in
the σSIp -MDM plane with fn/fp = 1.0 and δ = 0.0 keV.

structure functions that contain the full parameterizations for the Bonn A potential are used.1

One of the lightest target medium, 19F, is the isotope that has the greatest sensitivity to

spin-dependent DM-nucleon couplings. The reason being that its spin matrix element is not

quenched, and the various isospin channels add coherently [118], whereas for example, the spin

matrix elements of 23Na and 29Si are somewhat suppressed. Despite fluorine-19 amounting to

only a small percentage of the total SIMPLE target medium, Figure 5.2 clearly demonstrates

its role as the most constraining null experiment under SD interactions ruling out at the 95.4%

CL σSDp > 10−37 cm2 for MDM = 10 GeV.

We find the benchmark point for protonic spin-dependent DM to be MDM = 11.2 GeV and

σSDp = 7.4 × 10−37 cm2. As is the case with SI DM, there is no compelling evidence that SD

couplings alone are capable of explaining the experimental picture, since in this case χ2
opt ∼ 56

and we obtain a total chi-squared of χ2
tot = 226.9. The qualitative picture is also similar. The

DAMA and CoGeNT ROIs are in disagreement showing no overlap, and are excluded entirely by

1Computation of the structure functions rely on residual nuclear interactions which require knowledge of the
nucleon-nucleon potential. In reference [117], Ressell and Dean consider two such possibilities in their analysis:
the Bonn A and the Nijmegen II potential. Results show that the difference between structure functions which
use the Bonn A and Nijmegen-II based nuclear Hamiltonians is small.
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Figure 5.2: Elastic purely protonic spin-dependent DM fit to the experimental data in the
σSDp -MDM plane with an = 0.0, ap = 1.0 and δ = 0.0 keV.

one or more null constraints. In fact, the CoGeNT best-fit point corresponds to a cross section

which is approximately three orders of magnitude larger than that of DAMA.

On the other hand, an analysis of neutronic spin-dependent interactions reveals a more

favourable scenario. For ap = 0, a fit to DAMA and CoGeNT data yields a benchmark point of

MDM = 8.0 GeV and σSDn = 7.6×10−36 cm2, corresponding to a total chi-squared of χ2
tot = 138.5.

The improvement in the total chi-squared over purely protonic SD scattering is substantial how-

ever, it remains significantly larger than the optimal chi-squared value of 56 indicating that the

model does not fully encapsulate the data. Again, null constraints exclude all positive-signal

ROIs. In contrast to protonic SD DM, Figure 5.3 demonstrates that purely neutronic interac-

tions result in a relative weakening of the SIMPLE upper limit compared to constraints placed

by the XENON and CDMS-II collaborations. Figures 5.2 and 5.3 clearly show how a change in

the DM couplings to protons and neutrons can significantly alter the experimental picture in the

σSDp -MDM plane. One might surmise the possibility that the DAMA and CoGeNT ROIs might

be brought into agreement in the SD scenario through a tuning of SD couplings. We perform

such an investigation in section 5.5.
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Figure 5.3: Elastic purely neutronic spin-dependent DM fit to the experimental data in the
σSDp -MDM plane with an = 1.0, ap = 0.0 and δ = 0.0 keV.

5.3 Astrophysical uncertainties

Let us examine the uncertainties surrounding astrophysical parameters, and the effects that

varying them have on the DM parameter space. Considered here are the following quantities

that enter into the calculation of DM event rates: the Galactic escape velocity vesc, the Sun’s

circular velocity with respect to the Galactic rest frame v0, and the local DM density ρDM . The

arguments here are in a similar vein to those discussed in reference [119].

First off, perhaps the most detailed determination of vesc comes from the RAVE survey [33]

which places a 90% confidence interval of 495 < vesc < 608 km/s on the escape velocity with

median likelihood value 544 km/s.2 Our knowledge on the distribution of mass outside the solar

vicinity in terms of a local dynamical quantity comes entirely from the Galactic escape velocity.

Furthermore, vesc has immediate consequences for the number of events expected at a given

direct detection experiment. Qualitatively speaking, lower values of the Galactic escape velocity

correspond to a smaller number of DM particles in the halo available for scattering. As a result,

2After the bulk of this work was completed, the RAVE survey released an update on the Galactic escape
velocity [120]. A best estimate of the Galactic escape velocity is reported to be 537+59

−43 km/s.
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in order to produce the same number of events at an experiment requires that the DM-nucleon

cross section be larger.

Figure 5.4 shows the 95.4% CL exclusion curves and positive-signal contours in σSIp -MDM

space under standard elastic DM for escape velocities 495 km/s (dashed) and 608 km/s (solid).

The benchmark point corresponding to vesc = 498 km/s is represented by an unfilled, dashed,

magenta circle. Evidently, the qualitative predictions are consistent with phenomenological

results: for a fixed value of the DM mass, a weakening of upper limits occurs as we move to

lower values of the Galactic escape velocity . Further observation reveals that the change in σSIp

required to produce the correct number of events becomes greater as we move to smaller values

of MDM . The explanation for this is rather straightforward and relies on the fact that a signal’s

characteristics depends chiefly on the recoil energy deposited. If we increase the Galactic escape

velocity, then the average speed of the WIMPs in the halo will also increase. In principle the

nuclear recoil energy will depend on the intial kinetic energy of the DM particle in a simple

manner. Therefore, in order to hold the kinetic energy fixed as the average speed of the WIMPs

increases requires a shift to smaller DM masses. However, since the Maxwell-Boltzmann velocity

distribution is exponentially suppressed at high velocities, the effect of this increase will be

negligible unless vmin is close to vmax, which is the case for light DM (see equation (2.9)). Thus

the resulting shift in exclusion curves is exaggerated at smaller DM masses. For the same reasons

as light DM, inelastic DM will cause larger shifts in the exclusion curves since increasing the

mass splitting δ has the effect of bringing vmin closer to vesc.

A slight shift to lower masses is also observed in the positive-signal ROI as we move to larger

values of vesc. Interestingly, a small decrease in the total chi-squared value (∆χ2
tot ∼ 2) occurs as

we increase vesc however, this improvement comes at the cost of a relative strengthening of the

null constraints. As a result, we conclude that variations in the Galactic escape velocity have

little effect on the global fit to direct detection data, and although it is possible to weaken upper

limits by decreasing vesc, the relief this provides at the one sigma level in vesc leaves the overall

tension unchanged.

Next, we consider uncertainties associated with the Sun’s circular velocity which takes on

a fiducial value of v0 = 220 km/s. Attempts to determine the rotational speed of the local

standard of rest are numerous and have produced an array of results. Some of these methods
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Figure 5.4: Elastic isospin-conserving spin-independent DM fit to the experimental data in
the σSIp -MDM plane for different values of the Galactic escape velocity, vesc. Solid (dashed)

contours correspond to vesc = 608 (498) km/s.

include: extracting v0 from measurements on the apparent motion of Sgr A∗ (the compact radio

source at the centre of our Galaxy), measurements of Galactic parameters for masers in high

mass star-forming regions, and an analysis of the GD-1 stellar stream. Reference [119] combines

the known results for v0 to obtain a limit on the Sun’s circular velocity of 195 km/s < v0 < 255

km/s, which we implement here.

Figure 5.5 demonstrates, in the standard elastic σSIp -MDM parameter space, the dependence

of the 90% confidence intervals on the Sun’s circular velocity for values v0 = 195 km/s (dashed)

and v0 = 255 km/s (solid). Immediately, we see that generally the effects of varying v0 are

more pronouced than in the case of the Galactic escape velocity which, as we shall see, is to be

expected. A decrease in the Sun’s circular velocity results in an a shift to larger values of the

WIMP mass and consequently, a worsening in the tension between null constraints and positive-

signal ROIs. Again, we obtain only small variations in the total chi-squared when changes in v0

are applied.

v0 enters into the calculation of DM event rates in two ways. Firstly, it relates the Galactic

frame to the Earth frame through the equation ~ve = (~v0 + ~v~) + ~v⊕, where ~v� = ~v0 + ~v~ is
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Figure 5.5: Elastic isospin-conserving spin-independent DM fit to the experimental data
in the σSIp -MDM plane for different values of the Sun’s circular velocity, v0. Solid (dashed)

contours correspond to v0 = 255 (195) km/s.

the total velocity of the Sun about the centre of the Galaxy with ~v~ the Sun’s peculiar velocity,

and ~v⊕ is the Earth’s velocity relative to the Sun’s rest frame. Since the velocity that enters

the halo distribution is ~v + ~ve, increasing v0 has the effect of increasing the number of WIMPs

with speeds above vmin and therefore capable of scattering. The cross-section must decrease in

order to compensate for this in the predicted DM rates. Secondly, it enters into the DM velocity

distribution as a dispersion relation. A larger v0 means an increase in the range of velocites

allowed in the halo and thus increases the number of potential scattering WIMPs. Because

changes in v0 affect the entire velocity distribution, as opposed to just the exponential tail in

the case of vesc, we expect larger variations with respect to v0.

Finally, we comment on the local DM density in our Galaxy whose value is usually taken to be

ρDM = 0.3 GeV/cm3. A wide range of values for ρDM (sometimes with large uncertainties) exists

in the current literature. For instance, Weber and de Boer in their study [127] discover that

ρDM = 0.3 ± 0.1 GeV/cm2. The most precise claim to date comes from an analysis by Catena

and Ullio [121] where it is reported that ρDM = (0.389± 0.025) GeV/cm2. More recently, Nesti

and Salucci [122] find that ρDM = (0.43 ± 0.11 ± 0.10) GeV/cm2. In reference [123], Bidin
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et al. assert the claim that the solar vicinity is absent of any DM, at odds with all other

measurements.3 Despite this perplexing picture, varying the local dark matter density does not

affect the compatibility between positive-signal ROIs with eachother or null constraints since

ρDM is independent of experiment specific quantities. Given that the DM density and cross

section enter the DM event rate as ρDM × σSI,SDn,p , increases (decreases) in DM density are offset

by decreases (increases) in cross-section equally for all experiments.

5.4 Spin-independent isospin-violating dark matter

The common assumption that DM-nucleon couplings be isospin-conserving is neither well-motivated

in certain cases, nor a generic feature of theories involving WIMPs. For example, in the con-

strained minimal supersymmetric model, it is the result of a number of non-trivial coincidences

that a spin-independent (largely) isospin-conserving scattering matrix arises [108]. Furthermore,

the realisation of a low mass (< 100 GeV) DM candidate within this framework, and those

similar to it, is difficult to achieve.

In contrast, the argument that DM be IV is supported by an abundance of models in which

isospin violation naturally occurs. Fermionic (Dirac or Majorana) and scalar (complex or real)

DM that interacts with SM particles through the quark portal will generally break isospin sym-

metry, since the quark operator matrix elements will be different for up and down quarks [125].

Additionally, DM interactions which are mediated by new gauge bosons under a hidden U(1)

gauge symmetry will violate isospin if there exists a small kinetic mixing with the SM hyper-

charge [126].

Given that we are interested in a general model of DM irrespective of the underlying mi-

crophysical theory, the DM-nucleon couplings ratio fn/fp is treated as a free parameter whose

value we assign through a confluence of the data. Prior to computing confidence intervals for the

IVDM phase space, let us try to better understand how a particular choice of fn/fp can affect

the predicted DM event rate in a given target material. Recall that the DM-nucleus SI cross

3This null DM density conclusion has come under intense scrutiny, in particular by Bovy and Tremaine [124],
where it is pointed out that a number of arbitrary assumptions afflict Bidin et al.’s result.
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Figure 5.6: Graphing the function ξ(fn/fp) of equation (2.22) for various target material and
for DM mass MDM = 10 GeV. Vertical dashed lines correspond to the elastic SI benchmark
value of the isospin violation ratio fn/fp = −0.708, and the value fn/fp = −0.744 for which

larger fn/fp weaken the XENON100 bound relative the CoGeNT ROI.

section σSI0 is proportional to the following expression:

σSI0 ∝
(
fpZ + fn(A− Z)

)2

f 2
p

=⇒ σSI0 ∝
(
Z +

fn
fp

(A− Z)

)2

, (5.1)

which captures the cross section’s sensitivity towards the different number of protons and neu-

trons comprising the nucleus. Evidently, for a carefull choice of fn/fp it is possible for the

DM-proton and DM-neutron components to completely cancel one another. Under the assump-

tion that the nucleus has no additional isotopes, the predicted event rate for that nucleus would

be zero. Of course, since most nuclei have known isotopes, and many detectors are composed of

multiple element types, for real world scenarios it is not possible to tune the coupling parameters

so that a particular detector predicts zero WIMP events. On the other hand, it is conceivable

that minor cancellations might be possible for the right choice of isospin-violation ratio at a

given experiment, a result which could greatly weaken constraints since a higher DM-nucleon

cross section would be required to produce the observed number of events.

Figure 5.6 explores the interplay between various experiments for different values of fn/fp,

and the amount to which varying fn/fp can amplify the SI DM-proton cross section under an

IV hypothesis relative the IC case for various target medium. This is accomplished by plotting
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the proportionality factor which appears in equation (2.22) as a function of fn/fp for a WIMP

mass of MDM = 10 GeV. It is found that changes in ξ(fn/fp) for different low WIMP masses

are negligible.

In order to alleviate the tensions posed by standard SI DM using IV couplings, the cancella-

tions within the DM-nucleus cross section must boost the various σSIp relative the standard case

in such a way that procures compatibility. Thus an ideal fn/fp would be one that causes large

upwards σSIp shifts in the CoGeNT ROI and even more so in the XENON exclusion curves relative

that experienced by DAMA. For multi-element detectors where large mass differences between

nuclei exist, event rate predictions are largely influenced by the lighter masses. Hence for DAMA

and CRESST, it is more appropriate to consider the ξ(fn/fp) functions for Na and CaO4 in place

of NaI and CaWO4, respectively. Unfortunately, for experiments which use identical target ma-

terial, or ones which produce similar ξ functions, it is not possible to improve existing conflicts

via isospin violation alone, as is the case for CoGeNT and CDMS-Ge, DAMA and SIMPLE, and

CRESST-II and CDMS-Si. Figure 5.6 shows that in the range −0.744 < fn/fp . −0.5, ξ(fn/fp)

satisfies the minimal criteria for possible agreement. Moreover, since ξ(fn/fp) for xenon attains

its maximum near fn/fp = −0.7 and within the optimal range of values, we expect IVDM to

find its benchmark value around fn/fp = −0.7.

Figure 5.7 plots the confidence levels for elastic IV SI DM in the σSIp -MDM plane for DM-

nucleon coupling ratio fn/fp = −0.708. The benchmark values for the WIMP mass and cross

section are found to be MDM = 8.0 GeV and σSIp = 1.7×10−38 cm2 corresponding to a total chi-

squared of χ2
tot = 97.4. Improvements to the global fit of experimental data can be summarised

as follows:

• a large reduction in the total chi-squared relative the IC case is observed (∆χ2
tot = 70.5),

• marginal overlap is created between CoGeNT and DAMA ROIs,

• CoGeNT is brought into better agreement with CRESST,

• a weakening of the XENON100 bound creates allowed regions of phase space for positive-

signals at the 99.7% CL, and supports the benchmark point and a majority of the CoGeNT

ROI at the 95.4% CL,
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Figure 5.7: Elastic isospin-violating spin-independent DM fit to the experimental data in the
σSIp -MDM plane with fn/fp = −0.708 and δ = 0.0 keV.

• the XENON10 constraint is substantially reduced in comparison to other experiments.

In spite of all this, the lower mass region supported by DAMA fails to cohere to the CRESST

ROI for this particular choice of fn/fp. Additionally, a lack of improvement in the CDMS-Si

exclusion curve makes it the most constraining null experiment for IVDM ruling out entirely the

CoGeNT and DAMA signals at the 3σ level. Such a result is anticipated since in Figure 5.6,

silicon takes on the smallest value of ξ(fn/fp) when fn/fp = −0.708 and resultingly, undergoes

the smallest shift to larger DM-proton cross sections.

Before we test further extensions of the DM model on direct detection data, consider varying

the sodium quenching factor. It is widely known that larger values of QNa have the effect of

pushing the DAMA ROI to lower WIMP masses, thus improving the fit. The reason for this

being that the combination QNaMDM remains essentially constant. Figure 5.8 investigates SI IV

DM in the σSIp -MDM plane for an upper limit saturated sodium quenching factor of QNa = 0.4.

The benchmark point for this scenario corresponds to MDM = 8.1 GeV, σSIp = 1.6 × 10−38

cm2, and fn/fp = −0.705 with a total chi-squared of χ2
tot = 83.1. By setting QNa = 0.4, one
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Figure 5.8: Elastic isospin-violating spin-independent DM fit to the experimental data in the
σSIp -MDM plane for the upper limit value of the sodium quenching factor, QNa = 0.4, with

fn/fp = −0.705 and δ = 0.0 keV.

obtains remarkable consistency between CoGeNT and DAMA, a mutually compatible region

within the 95.4% confidence intervals of all three positive-signal experiments, and parts of the

DAMA claim which extend to regions of parameter space allowed by CDMS-Si. The first two

points are reflected in the further reduction of the total chi-squared value.

5.4.1 Inelastic scattering

As mentioned in Chapter 4, studies have shown that the introduction of inelastic couplings to

the DM model might serve as a way to help alleviate tensions concerning the DAMA and Co-

GeNT best-fit regions. Such a scenario involves, via up-scattering, the excitation of the DM

particle χ to a state χ∗ with mass difference δ = Mχ∗ −Mχ. In priciple, first investigated in

reference [128], it is possible instead for down-scattering to occur in which case the mass splitting

parameter satisfies δ < 0. For clarity, we refer to the up-scattering and down-scattering cases as

endothermic DM and exothermic DM, respectively.
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Early results for inelastic DM focused on large mass splittings O(100) keV comparable to the

kinetic energy of the incoming DM particle. However, such models favour large WIMP masses

and are heavily constrained by null bounds [129, 130]. In the same spirit as Farina et al. [55],

our analysis of inelastic DM concentrates on mass splittings O(10) keV.

In an inelastic scattering scenario, elastic scattering is assumed to be forbidden or highly

suppressed. As a result, the change in scattering kinematics alters on a fundamental level how

inelastic DM particles are detected in ground-based experiments. Recall the minimum velocity

requirement of equation (2.2). In the endothermic case, a simple kinematic argument reveals

that WIMPs with speeds less than
√

2δ/µN are not capable of scattering whatsoever since the

insufficient amount of kinetic energy will prevent excitations to the more massive state. In that

case, the range of velocities available for heavier target material will be greater compared to

lighter nuclei and consequently, there will be a larger fraction of WIMPs in the halo available for

scattering. Furthermore, endothermic scattering results in a differential event rate which reaches

its peak at higher nuclear recoil energies, as opposed to the charateristic exponetially decaying

spectrum of elastic DM. For that reason, signals are suppressed at low recoil energies. Finally,

signals which support an annual modulation are significantly enhanced.4

As for exothermic DM, vmin is minimized for recoil energies Enr on the order of δ/MN . Ac-

cordingly, experiments with light nuclei and low thresholds will be more sensitive to exothermic

inelastic scattering.

The results for allowing the mass splitting parameter δ to float are presented in Figure 5.9

for IVDM in the σSIp -MDM plane. A minimized total chi-squared of χ2
tot = 96.2 is obtained for

the benchmark point MDM = 8.6 GeV, σSIp = 3.0 × 10−38 cm2, fn/fp = −0.715, and δ = 3.25

keV. Relative the elastic IV model, a small improvement in the likeness between the CoGeNT,

CRESST, and DAMA regions is realised. By the same token, there exists a triangular section

slightly below the benchmark point which is accomodated by every 3σ exclusion curve (with

the exception of the CDMS-Si bound) and simultaneosly explains all the positive-signal data.

Furthermore, the upper bound placed by SIMPLE is moderately weakened, and part of the

4In the inelastic scenario, modulation signals may be enhanced due to the fact that a higher velocity component
of the DM velocity distribution is probed, and in this region quantities undergo drastic changes as a function of
velocity.
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Figure 5.9: Inelastic isospin-violating spin-independent DM fit to the experimental data in
the σSIp -MDM plane with fn/fp = −0.715 and δ = 3.25 keV.

CoGeNT claim no longer comes into conflict with the CDMS-Si 99.7% CL. Unfortunately, a rel-

ative strengthening of the XENON100 bound has lead to the benchmark point and large areas

of CoGeNT and CRESST becoming excluded.

Given that the reduction in total chi-squared is only of order unity, one might raise the fol-

lowing concern: is adding a mass splitting parameter even justifiable in the first place? After

calculating the Bayesian information criterion (BIC) for models with and without inelastic cou-

plings, we find that the insertion of a mass splitting parameter into the differential event rate

results in overfitting of the data.5 Thus inelastic scattering is not favoured under a new under-

standing of surface event contamination at CoGeNT. This supports the conclusion of reference

[106]. For those interested in the effects that a larger, non-trivial value of the mass splitting,

or exothermic scattering has on the data, please turn to Appendix B (though the resuts are

5The Bayesian Information Criterion is defined for a specific model as follows:

BIC = χ2 + k · log n, (5.2)

where χ2 is the minimized value of the models chi-squared, k the number of free parameters to be estimated, and
n the number of data points in the observation. In comparing two models, the one that attains a smaller BIC
value, is the more favourable model.
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not overly enlightening). Also, in Appendix B one can view an inelastic IV SI DM fit to the

experimental data in fn/fp-δ space where it is evident that for most values of fn/fp, there is a

corresponding δ that provides a good fit to the CoGeNT data.
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Figure 5.10: Differential event rate for momentum-dependent DM scattering on sodium nuclei
for DM mass MDM = 10 GeV, and with arbirtrary normaliztion. The dashed blue, solid red,
dot-dashed green, and dotted purple curves correspond to momentum-dependent scattering

with n = −1, n = 0, n = 1, and n = 2, respectively.

5.4.2 Momentum-dependent scattering

The motivation and theory behind momentum-dependent scattering in the context of WIMPs

was outligned in Chapter 2. A past analysis of DM event rates with generalized IV MD and

velocity suppressed form factors revealed marginal improvement over the standard IC and elastic

IV cases [55]. In this section, we study the effects of MD scattering in combination with both

IV and inelastic couplings.

Before continuing, let’s briefly discuss the expectations for a momentum dependent form

factor. Figure 5.10 demonstrates the differences between the sodium DM event rate for various

MD scattering scenarios in the standard SI model, with arbitrary normalization, and MDM = 10

GeV. The results are comparable to that of inelastic DM in that positive powers of q2 have

the effect of suppressing the event spectra at low recoil energies while causing enhancement at

higher ones. Analogously, a dependence of the form 1/q2 produces an event rate reminiscent of
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exothermic DM with a larger spectrum at lower recoil energies and a faster decay. As opposed to

inelastic DM, the crest in the differential event rate for MD scattering is generated without the

tuning of any parameters. Also, MD form factors have the effect of broading the event spectrum

over a large range of recoil energies, thereby avoiding the possibility of sharp peaks.

Another interesting feature of n > 0 MD scatterng is that increasing the DM mass shifts

the event spectrum to higher recoil energies. Thus for experiments that probe higher values

of q2, such as XENON100, a strengthening of the bounds is expected for positive values of n

and a weakening in the case of n = −1. On the other hand, since CoGeNT explores a higher

region of q2 compared to DAMA, n > 0 MD DM has the ability to enhance the CoGeNT ROI

relative the DAMA signal. This is an alluring property of MD couplings given that in light of

a better understanding of surface event contamination in the CoGeNT data, CoGeNT prefers a

WIMP-proton cross section which is smaller than that favoured by DAMA. This is in contrast

to observations made prior to the updated surface event acceptance factor (as was the case at

the time [55] was published). As a result, the possibility of such an enhancement is highly

intriguing.

Figures 5.11, 5.12, and 5.13 show the limts on MD interactions under an inelastic IV

scenario for n = −1, n = 1, and n = 2 scattering, respectively. Here, fn/fp and δ are enabled to

float so as to minimize the total chi-squared corresponding to the positive-signal experiments.

The benchmark points and minimized values of chi-squared for the considered models are as

follows: for n = −1 we obtain a benchmark point of MDM = 10.5 GeV, σSIp = 1.4 × 10−39

cm2, fn/fp = −0.706, and δ = 8.4 keV with χ2
tot = 101.1, for n = 1 we have MDM = 7.8 GeV,

σSIp = 5.0 × 10−36 cm2, fn/fp = −0.808, and δ = 4.0 keV with χ2
tot = 94.7, and for n = 2 the

benchmark values are MDM = 6.6 GeV, σSIp = 2.5 × 10−35 cm2, fn/fp = −0.73, and δ = −2.8

keV with χ2
tot = 90.1.

Overall, our a priori expectations are verified. As indicated by the relative reduction in total

chi-squared, greater overlap between the DAMA and CoGeNT ROIs is achieved by increasing

the powers of q2 in the MD scattering form factor. With respect to the XENON constraints,

MD DM with 1/q2 dependence results in a weakening of the limits relative the purely inelastic

IV case, whereas the bounds become noticably stronger for the n > 0 form factors (especially in

the case of XENON10 which probes a lower range of recoil energy and hence is more susceptible
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Figure 5.11: Momentum-dependent inelastic isospin-violating spin-independent DM fit to
the experimental data in the σSIp -MDM plane with n = −1, fn/fp = −0.706 and δ = 8.4 keV.
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Figure 5.12: Momentum-dependent inelastic isospin-violating spin-independent DM fit to
the experimental data in the σSIp -MDM plane with n = 1, fn/fp = −0.808 and δ = 4.0 keV.
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Figure 5.13: Momentum-dependent inelastic isospin-violating spin-independent DM fit to
the experimental data in the σSIp -MDM plane with n = 2, fn/fp = −0.730 and δ = −2.8 keV.

to the broadening of the event spectra). However, in the case of q2 scattering, the isospin

violation ratio required to minimize the total chi-squared deviates from the optimal value of

−0.7 to the extent that the CoGeNT ROI is completely excluded by XENON100, and almost

entirely by XENON10. As for q4 scattering, the value of fn/fp at the benchmark point is such

that a significant portion of the CoGeNT signal is able to evade the XENON100 95.4% CL.

Unfortunately, in all the MD scattering scenarios considered here, it remains that the CDMS-Si

exclusion curves forbade any fully mutual overlap between positive-signal ROIs.

5.4.3 Energy dependent DAMA quenching factors

A recent experimental determination of the quenching factor for nuclear recoils in NaI[Tl] is per-

formed in reference [56]. The result confirms expectations that QNa depends on the nuclear recoil

energy deposited by incident particles. Reference [56] reveals a propensity for the quenching fac-

tor to diminish with decreasing sodium recoil energy. This is in contrast to previous evaluations

of the sodium quenching factor which all suggest a quenching factor which is constant with
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Figure 5.14: Forms of the sodium (Na) and iodine (I) energy dependent quenching factors
of this thesis in percent, as interpolated using the original results in Figure 9 of reference [56].

nuclear recoil energy and & 0.15. However, reference [56] argues that at past measurements, an

inadequate light yield mixed with an insufficient control of systematics close to threshold could

falsely produce constant or increasing quenching factors with decreasing recoil energy.

The implications of these results is most crucial for low-mass DM which deposits small

amounts of nuclear recoil energy and hence, most affected by a diminishing quenching factor. By

interpolating the values of the quenching factor found in Figure 9 of [56], it is possible to fit the

DAMA data to energy-dependent quenching factors. For the iodine quenching factor, we take

QI to be constant below the energy corresponding to the first data point, and logarithmically

extrapolate the line connecting the final two data points to higher values of Enr. The results

of our interpolation of the sodium and iodine quenching factors as a function of nuclear recoil

energy are plotted in Figure 5.14.

Figure 5.15 reveals the results of fitting DAMA using energy-dependent quenching factors.

The result is a deterioration in the agreement between DAMA and the other positive-signal

experiments for both standard and non-standard models. Even with the substantial amount of

isospin-violation and mass splitting required to minimize the total chi-squared, the DAMA ROI

strongly disagrees with all other experimental observations. As a result, with these new values

of the NaI[Tl] quenching factors, the possibility of using IVDM to ameliorate the tensions posed

by DAMA is ruled out. An analysis of inelastic IVDM with these energy dependent quenching

factors arrives at the same conclusion.
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Figure 5.15: Elastic isospin-violating spin-independent DM fit to the experimental data in the
σSIp -MDM plane with fn/fp = −0.686, δ = 0.0 keV and using the energy dependent quenching

factors of Figure 5.14 for DAMA target material.

5.4.4 Expectations for XENON1T

Currently, the XENON collaboration is finalizing technical designs for the next generation de-

tector XENON1T, which plans to employ a dual-phase time projection chamber containing 3

tonnes of liquid xenon (corresponding to a fiducial mass of 1 tonne) in its search for WIMPs

[131, 132]. Through combination of an increased fiducial volume, and reduction in the expected

background by a factor of 100, XENON1T’s sensitivity for 50 GeV WIMPs is estimated to fall

to 2× 10−47 cm2 in the standard SI model. If XENON1T fails to detect any signal compatible

with DM, the prospect of O(10) GeV WIMPs providing an explanation for positive-signal ex-

periments will be deeply challenged.

However, using the method surronding equation (2.21), it is possible to forecast how strongly

IVDM will be constrained by XENON1T data by rescaling the IC results of reference [132]. Fig-

ure 5.16 shows the evolution of the XENON upper limit including the 2011 and 2012 XENON100

results, as well as the 90% CL 2017 projection for XENON1T under an elastic SI IV DM model.
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Figure 5.16: Expectations for XENON1T on elastic isospin-violating spin-independent DM.
An IVDM fit to the positive-signal data is also plotted. The 2011 XENON100 constraint
is shown in black, the 2012 XENON100 constraint is shown in red, and the projected 2017

XENON1T 90% CL is shown in blue.

As usual, fn/fp is chosen to minimize the total chi-squared. The results show that in the ab-

sence of a DM signal at XENON1T, an elastic IVDM framework fails to simultaneously explain

the null and positive signal experiments. On the other hand, given that inelastic DM has the

potential to weaken the XENON100 exlusion curve relative CoGeNT, it is conceivable that in

light of XENON1T, inelastic IVDM might be able to provide a consistent explanation to the

CoGeNT data only.

5.5 Spin-dependent isospin-violating DM

In parallel with our analysis of SI IV DM, the SD WIMP-nucleon coupling ratio an/ap is treated

as a free parameter which is allowed to float. As mentioned in Chapter 4, the only study to

have considered a generalized elastic SD interpretation of DM was carried out in reference [107]

whereby the compatibility of CoGeNT and DAMA signals in light of XENON100 and PICASSO
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constraints was tested within the an−ap phase space for fixed DM mass. In contrast to [107], we

assess the viability of SD DM as a possible explanation for the experimental data through a series

of σSDp -MDM space plots where an/ap is fixed by minimizing the total chi-squared representing

the unmodulated CoGeNT and DAMA data. Furthermore, for the first time, inelastic and MD

couplings are introduced within the SD framework.

Unlike the SI case, it is not possible to relate the IV WIMP-proton cross section to the one

which would be observed under the assumption of isospin conservation via a rescaling factor. The

reason being that the SDSFs S(q) depend too strongly on the SD WIMP-nucleon couplings ratio.

On the other hand, by taking the limit of zero momentum transfer in the SD WIMP-nucleus

cross sections for IV and IC DM, it can be shown that

σIVp ∼ ξSD(an/ap)σ
IC
p , (5.3)

where

ξSD(an/ap) =

∑
i,j κjβijµAij

Jij+1

Jij
〈Sp〉2ij∑

i,j κjβijµAij

Jij+1

Jij
(〈Sp〉ij + an/ap〈Sn〉ij)2

. (5.4)

In the above equation, 〈Sp〉ij and 〈Sn〉ij are the proton and neutron spin matrix elements for

nuclei Aij, respectively. Similar to section 5.3, by using equation (5.4) it should be possible

to gain qualitative insight into the effects that varying the SD IV ratio has on the ROIs and

exclusion curves of Figure 5.2.

Figure 5.17 plots ξSD as a function of an/ap for a WIMP mass of 10 GeV and for the various

target material relevant to SD DM. Again, for the relevant WIMP masses, the DM-nucleon

scattering will be dominated by the lighter nuclei in detectors that are composed of multiple

element types. Relative the standard protonic SD scenario, a favourable value of an/ap is one that

amplifies the DAMA ROI with respect to the CoGeNT claim by about three orders of magnitude.

Figure 5.17 demonstrates that this occurs for two values of the couplings ratio, once at an/ap ∼

−2, and again at an/ap ∼ 3. In fact, our analysis confirms the existence of two minima in the

total chi-squared for DAMA and CoGeNT which are in excellent agreement with the predictions

mentioned here, with the global minimum occuring at an/ap = 2.93. Notwithstanding this

result, the findings of Figure 5.17 extinguish the possibility of weakening both the XENON100

and SIMPLE constraints with respect to DAMA, since neither have ξSD functions which are
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Figure 5.17: Graphing the spin-dependent function ξSD(an/ap) of equation (5.4) for various
target material and for DM mass MDM = 10 GeV.

simultaneously greater than that of sodium. Additionally, only for the larger benchmark value

of an/ap where agreement between CoGeNT and DAMA arise, does the SIMPLE ξSD function

surpass sodium’s. Hence, we focus on this region of parameter space.

Figure 5.18 shows the ROIs and exclusion curves for elastic SD DM under a general IV

scenario. The benchmark point with χ2
tot = 80.6 corresponds to parameter values MDM = 8.9

GeV, σSDp = 6.9 × 10−37 cm2, and an/ap = 2.93. Fair overlap between the CoGeNT and

DAMA claimed regions is obtained however, both are excluded by the 99.7% XENON100 and

SIMPLE CL’s. Moreover, the benchmark point is also ruled out by the XENON10 and CDMS-Ge

bounds. Conversely, a substantial improvement in the goodness of fit over the purely protonic and

neutronic SD models is observed with reductions in the total chi-squared value of ∆χ2
tot = 146.3

and 57.9, respectively.

5.5.1 Inelastic and momentum-dependent couplings

The introduction of inelastic couplings to a SD model of DM scattering will incur the same effects

as those observed for SI DM that is, a non-zero mass splitting parameter will alter the range

of recoil energies probed by scattering DM particles. In a SD scenario, exothermic scattering

will be the preferred mode of interaction for the following reasons: sodium is much lighter than

germanium and hence a negative mass splitting parameter would cause greater shifts to lower
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Figure 5.18: Elastic isospin-violating spin-dependent DM fit to the experimental data in the
σSDp -MDM plane with an/ap = 2.93 and δ = 0.0 keV.

DM masses in DAMA than in CoGeNT, and since CRESST is absent from the analysis, the

cost of increases in χ2
CRESST that would arise in trying to optimize the fit between DAMA and

CoGeNT is not present. Therefore, the relative shift in the DAMA ROI can be optimized with

the correct choice of δ without an unwanted increase in χ2
tot due to CRESST.

Figure 5.19 plots the experimental results for inelastic IV SD DM in the σSDp -MDM phase

space for best-fit values MDM = 6.9 GeV, σSDp = 4.9 × 10−37 cm2, an/ap = 1.84, and δ =

−14.7 keV with corresponding total chi-squared χ2
tot = 63.7. As anticipated, the benchmark

parameter values are in agreement with the previously stated predictions. Evidently, there exists

overwhelming consistency in the overlap between the DAMA and CoGeNT ROIs, and given that

the corresponding optimal chi-squared value is χ2
opt = 54, this substantiates the construction of

an inelastic SD IV model of DM.6 What’s more is that compatibility is achieved using the fiducial

value of for the sodium quenching factor, that is, QNa = 0.3. In fact, even when the lower limit

value of QNa = 0.2 is assigned to the quenching factor, an/ap and δ can be chosen such that

strong overlap in the DAMA and CoGeNT signals is attainable — a feature not possible with

6An analysis of a SI inelastic IVDM model that considers only CoGeNT and DAMA data results in a total
chi-squared value of χ2

tot = 65.2, revealing that the SD scenario is indeed the more favourable DM scheme.
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Figure 5.19: Inelastic isospin-violating spin-dependent DM fit to the experimental data in
the σSDp -MDM plane with an/ap = 1.84 and δ = −14.7 keV.

SI DM, and desirable since the quenching factor is expected to take on such lower values.

Nonetheless, aspiration for a global fit to all the data is once again stifled by the persistent

tensions posed by null constraints. In section 5.4.2, MD scattering with a form factor ∝ 1/q2

( n = -1 case) was shown to considerably weaken both the XENON100 and SIMPLE exlusion

limits hence, one might conjecture its advantageous impact on the pertinent SD model. Figure

5.20 investigates the effects that a n = −1 MD coupling has on the σSDp -MDM phase space

plot for inelastic IV SD DM. For parameter values MDM = 8.6 GeV, σSDp = 2.4 × 10−38 cm2,

an/ap = 1.76, and δ = −10.36 keV, a slightly larger chi-squared statistic of χ2
tot = 67.0 is

obtained however, there is excellent agreement between the CoGeNT and DAMA ROIs, and the

SIMPLE exclusion curve is, for the most part, entirely evaded at the 95.4% CL. Regardless, the

XENON100 constraint remains strong and rules out all regions of mutual compatability.

With almost all of the phenomenological avenues contained herein exhausted in our attempt

to reconcile direct detection data, it remains to combine the SI and SD components of the DM

event rate.
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Figure 5.20: Momentum-dependent inelastic isospin-violating spin-independent DM fit to
the experimental data in the σSDp -MDM plane with n = −1, an/ap = 1.76 and δ = −10.36 keV.

5.6 Combined isospin-violating DM

Recall from Chapter 2 that the DM event spectrum is comprised (independently) of a SI and a

SD component. Typically, it is assumed that either the scalar or axial-vector current dominates

the differential event rate; interactions contain purely SI or SD couplings. This assumption is

not well justified since in the most general case there is no a priori reason to set one of the

operators in the DM-nucleon interaction to zero. Although phenomenological models which aim

to describe the microphysical DM interactions tend to focus on only the SI or SD component, it

is conceivable that such a combined model of DM might be formulated. For example, in the case

of slow-moving Majorana neutralinos, the two terms that remain in the interaction Lagrangian

in the non-relativistic limit are the SI and SD components [100]. As a result, we employ a gen-

eralized scenario, referred to here as combined DM, which incorporates the following parameters

as a final attempt to fit direct detection data: MDM , σSIp , fn/fp, σ
SD
p , an/ap, and δ.

A clear advantage to mixed DM is that it allows for a fit to the CRESST-II data while taking

into consideration possible SD effects arising in interactions with nuclei that contain spin. In
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Figure 5.21: Inelastic isospin-violating combined DM fit to the experimental data in the
σSIp -MDM plane with fn/fp = −0.712, an/ap = 1.60, σSDp = 4.63 × 10−37 cm2 and δ = −14.2

keV. Fiducial values of vesc, v0, ρDM , and QNa are used.

an effort to provide a comprehensive fit to all the data, we advance straightaway to the case of

inelastic DM thereby utilizing all the available parameters of the general theory. First, consider

the results of Figure 5.21 which plots the experimental findings of inelastic combined IVDM.

The minimum value of the total chi-squared χ2
tot = 71.0, is achieved for the benchmark point

MDM = 7.1 GeV, σSIp = 1.2× 10−39 cm2, fn/fp = −0.712, an/ap = 1.60, σSDp = 4.6× 10−37 cm2,

and δ = −14.2 keV. Given that the corresponding optimal chi-squared value is χ2
opt = 58, the

results of this universal model illustrate that even when we employ a large number of parameters,

it is a Sisyphean task to provide a consistent DM explanation to all the data. On an aside, it

is verified that the addition of two extra parameters is justified under the Bayesian information

criterion. For the three parameter elastic IV SI model BIC = 109.8, and for the inelastic IV

combined model BIC = 95.9, indicating that the additional parameters are indeed justified.

Qualitatively speaking, the universal model of DM demonstrates that mutual overlap

amongst the three positive-signal ROIs is possible. Furthermore, there exists a small trian-

gular region of compatibility which bypasses all 99.7% exclusion curves except for that posed

by SIMPLE. This is encouraging since no model of CoGeNT, CRESST, and DAMA considered
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Figure 5.22: Inelastic isospin-violating combined DM fit to the experimental data in the
σSIp -MDM plane with n = −1, fn/fp = −0.809, an/ap = 1.72, σSDp = 2.39 × 10−38 cm2 and

δ = −8.56 keV. Fiducial values of vesc, v0, ρDM , and QNa are used.

thus far has been able to simultaneously evade the XENON100 and CDMS-Si bounds — bounds

which are most constraining for IVDM. As for SIMPLE, it remains plausible that due to the

vast number of unknowns associated with the SIMPLE modules, the officially purported limit

might be over exaggerated. As a result, it is premature to entirely rule out the most general

inelastic combined IVDM scenario.

In the same manner as the previous section, we introduce n = −1 MD scattering as a means to

reduce the tensions between the positive-signal claimed regions, and SIMPLE and XENON100.

Figure 5.22 discovers that the introduction of a 1/q2 form factor has the same effects as in the

inelastic IV SD case that is, there is an extensive weakening of the SIMPLE constraint at the

cost of a slight increase in the total chi-squared value, and a small enhancement in the region

excluded by XENON100. The benchmark point for the n = −1 model is MDM = 9.3 GeV,

σSIp = 1.1 × 10−40 cm2, fn/fp = −0.809, an/ap = 1.72, σSDp = 2.4 × 10−38 cm2, and δ = −8.56

keV. Consequently, we conclude that there is little basis to favour MD couplings over the stan-

dard case for general combined DM.



Chapter 6

A Halo-Independent Analysis

Perhaps the greatest challenge facing the interpretation of direct detection data is developing an

understanding of the uncertainties associated with the distribution and dynamics of DM within

the Galactic halo. In section 5.2, we investigated how variations in the Galactic escape velocity

and Sun’s circular velocity affect the experimental data. The results of this analysis were highly

dependent on the mass of the target nucleus, and the range of nuclear recoil energies probed

by the respective experiments. Furthermore, although simulations have shown that the SHM

provides a satisfactory approximation to the distribution of DM in our Galaxy, we pointed out a

number of more sophisticated models which together, produce a range of theoretical predictions

for light DM scattering.

As a result, the formulation of an analysis of DM detection which is independent of the as-

trophysical and halo uncertainties is well motivated. Although several different methods for

a halo-indpendent analysis are available, we employ the one first developed by Fox, Lui, and

Weiner as extended by Gondolo and Gelmini [111]. The approach involves converting the ex-

perimental results into vmin-space using the fact that each experiment, for a given model of

DM, should in theory measure the same integral of the velocity distribution in the differential

event rate. Since the velocity integral includes all the necessary information on the astrophysical

parameters and distribution of DM in the Galaxy, by assuming that all the direct detection

experiments are observing the same DM particle, the experimental event rates should combine

to yield a consistent velocity integral as a function of vmin. The advantage of the Gondolo and

77
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Gelmini method, is that it readily includes energy resolution and efficiency with arbitrary energy

dependence, making it more adept in treating experimental results.

Additionally, we will show how the halo-independent analysis can be extended to include

inelastically scattering DM. In contrast to reference [114] which tests inelastic DM in a halo-

independent way via their “shape-test”, we develop a method that allows a presentation of

inelastic scattering models in the η̃-vmin phase space plots common to the literature. Also

for the first time, we generalize the halo-independent method to account for the possibility of

momentum- and spin-dependent scattering.

6.1 Theory: Converting to vmin-space

To convert the experimental results to vmin-space, we follow the method of reference [111],

and then extend their analysis to include spin-dependent, inelastic and momentum-dependent

scattering. Recall the differential event rate of equation (2.19) but with each term divided by

the total mass of the corresponding element to obtain units of [counts/keV/kg/day]:

dR

dEnr
=
∑
i,j

κjβij

(
qij(Enr)

2

q2
ref

)n
ρDMσp

2MDMµ2
ne

(
Zj +

fn
fp

(Aij − Zj)
)2

F 2
SIij

(Enr)η(vmin, t), (6.1)

where we have inserted κj (the fraction of target material composed of element j), and have

left all other definitions unchanged. One might consider the possibility of inferring the velocity

distribution directly from the experimental data. Since any WIMP which has an incoming ve-

locity larger than the minimum velocity required to produce a particular nuclear recoil energy

has the potential to create an event with that energy, performing such an inference would be

burdensome (see for instance references [133, 134]). As a result, the quantity that is more readily

probed by the various experiments will be the integral of the velocity distribution. Since we can

relate the nuclear recoil energy to the minimum velocity for scattering through equation (2.2),

it should be possible to convert equation (6.1) to vmin-space and use experimental results for

dR/dEnr to determine values of η as a function of vmin. Furthermore, depending on the range

of recoil energies accessed by a particular experiment, different experiments will probe different
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regimes of vmin-space and in principle, this should result in the inferred function of η.

To account for the dynamics of the Galactic DM halo, it is desirable to separate the velocity

distribution into a time-independent and time-dependent component. The time dependence of

the velocity distribution integral, due to the Earth’s revolution around the Sun, can be approx-

imated by the first term of a harmonic series as such:

η(vmin, t) = η0(vmin) + η1(vmin) cos

[
2π(t− t0)

1yr

]
. (6.2)

As a result, we can gain knowledge on the static and temporal amplitudes η̃0 and η̃1 using

unmodulated and modulated experimental data. Furthermore, notice how the combination

η̃(vmin, t) ≡ (σSIp ρDM/MDM)η(vmin, t) is common to all experiments. Hence, it is possible to

remove any assumptions regarding the DM-proton cross section and local DM density from the

halo-independent analysis.

We mentioned in Chapter 2 that experimental results are usually quoted in terms of the elec-

tron recoil equivalent energy (keVee) as opposed to the true recoil energy (keVnr). The detected

energies E ′, are subject to measurement uncertainties and fluctuations which are encapsulated

in the energy response function A(Enr, E
′). In addition, detectors had specific efficiency or ac-

ceptance cuts which were contained in the function ε(E ′).

Introducing the energy response function and efficiency to equation (6.1), one obtains the

experimental differential event rate:

dR

dE ′
= ε(E ′)

∫ ∞
0

dEnr
∑
i,j

κjβij

(
qij(Enr)

2

q2
ref

)n
ρDMσp

2MDMµ2
p

(
Zj +

fn
fp

(Aij − Zj)
)2

F 2
SIij

(Enr)

×A(Enr, E
′)η(vmin, t), (6.3)

In order to convert to vmin-space, we must differentiate equation (2.2) and solve for dEnr in

terms of vmin. It is easy to show that for an isotope with atomic mass number Aij,

dEnr =
4MAij

vmin

(MAij
/µAij

)2 − (δ/Enr)2
dvmin, (6.4)
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where Enr is given by

E±nr =
µAij

MDM

(
µAij

v2
min − δ ± vmin

√
µAij

(µAij
v2
min − 2δ)

)
. (6.5)

For an elastic scenario, δ = 0 and there is a one-to-one correspondence between vmin and Enr.

Thus for every range of energies there is a unique range of velocities, and vice versa. If δ 6= 0,

then there is an ambiguity in that there may be two possible solutions to Enr. This complication

is addressed in section 6.1.1.

Combining these results, the average expected event rate in the energy range [E ′1, E
′
2] can be

written as:

R̄[E′1,E
′
2](vmin, t) =

∫ ∞
0

dvminΓSI[E′1,E
′
2](vmin)η̃(vmin, t), (6.6)

where ΓSI[E′1,E
′
2](vmin) is a response function which takes the form

ΓSI[E′1,E
′
2](vmin) =

∑
i,j

κjβij

(
qij(Enr)

2

q2
ref

)n 2MAij
vmin

µ2
p(E

′
2 − E ′1)[(MAij

/µAij
)2 − (δ/Enr)2]

×
(
Zj +

fn
fp

(Aij − Zj)
)2

F 2
SIij

(Enr)

∫ E′2

E′1

dE ′ε(E ′)A(Enr, E
′). (6.7)

As discussed in reference [111], by mapping the energy interval [E ′1, E
′
2] into the range of velocities

[vmin,1, vmin,2], it is possible to calculate the vmin-weighted average of the velocity integral:

η̃[E′1,E
′
2] =

∫ vmin,2

vmin,1
dvminΓSI[E′1,E

′
2](vmin)η̃(vmin, t)∫ vmin,2

vmin,1
dvminΓSI[E′1,E

′
2](vmin)

, (6.8)

which we rewrite as

η̃[E′1,E
′
2] =

R̂[E′1,E
′
2]

BSI[E′1,E
′
2]

, (6.9)

where BSI[E′1,E
′
2] is defined as the denominator of equation (6.8).

Note that the average event rate in the energy interval [E ′1, E
′
2] can be represented by a

static and temporal component: R̂[E′1,E
′
2] = R̂0 + R̂1 cos

[
2π(t−t0)

1yr

]
. Therefore, it is possible

to make predictions on the functions η̃0(vmin) and η̃1(vmin) along with their associated un-

certainties using experimental unmodulated and modulated measurements of R̂0 ± ∆R0 and

R̂1 ± ∆R1, respectively. Furthermore, by evaluating η̃0,1 in all the energy bins of a given
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experiment, one may determine η̃0 and η̃1 as functions of vmin. In fact, for a particular ex-

periment, the energy intervals are those given by the binning of the respective data along

with any corresponding energy resolution σ(E ′) evaluated at the endpoints of the bin. There-

fore, for an energy range [E ′1 − σ(E ′1), E ′2 + σ(E ′2)], the corresponding vmin interval is given by

[vmin,1, vmin,2] = [vmin(Enr(E
′
1 − σ(E ′1))), vmin(Enr(E

′
2 + σ(E ′2)))]. This interval is taken as the

uncertainty in vmin for the corresponding value of η̃0,1.

Carrying out a similar anaylsis using the spin-dependent WIMP-nucleus cross section, one

can derive the η functions under a spin-dependent interpretation of the experimental data. The

analogous SD response function of the halo-independent analysis is found to be

ΓSI[E′1,E
′
2](vmin) =

∑
i,j

κjβij

(
qij(Enr)

2

q2
ref

)n 8πMAij
vmin

3µ2
p(2J + 1)(E ′2 − E ′1)[(MAij

/µAij
)2 − (δ/Enr)2]

×
(
Zj +

fn
fp

(Aij − Zj)
)2

S̃SDij
(Enr)

∫ E′2

E′1

dE ′ε(E ′)A(Enr, E
′), (6.10)

where S̃SDij
(Enr) = S00 + S01 + S11 + 2(an/ap)(S00 − S11) + (an/ap)

2(S00 − S01 + S11) with the

SDSFs corrseponding to isotope i of element j, and Enr given by equation (6.5).

6.1.1 Inelastic halo-independent analysis

We now address complications associated with converting a range of nuclear recoil energies to a

unique range of minimum velocities in the case of inelastic scattering. Our discussion follows a

similar vein to that of reference [114]. Since a given value of vmin can correspond to up to two

values of Enr, it is conceivable that for some energy range [E1, E2], the minimum value of vmin

is found for an energy other than E1. Furthermore, it is possible that vmin(E2) is not the true

maximum value of vmin in the energy range considered. Thus the integral bounds appearing

in equation (6.8) are not (necessarily) the range [vmin(E1), vmin(E2)], but the range [umin, umax]

where umin and umax are the minimum and maximum values of vmin, respectively, in the energy

range of interest. As a result, depending on whether umax lies to the right or left in recoil energy

of umin, one must choose the solution E+
nr or E−nr, respectively, in equation (6.5).

As an example, consider Figure 6.1 which plots vmin as a function of Enr for some ar-

bitrary nucleus mass, WIMP mass, and mass splitting δ > 0. The minimum value of vmin
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Figure 6.1: Plotting vmin as a function of Enr for arbitrary nucleus mass, WIMP mass, and
mass splitting δ > 0. For a nuclear recoil energy range [E1, E2], the corresponding range of
minimum velocities [umin, umax] is shown. The velocity vmed demonstrates how one value of

vmin can arise from two values of Enr.

is umin =
√

2δ/µAij
at a recoil energy of Emin = µAij

δ/MAij
. Suppose we are interested

in converting the energy range [E1, E2] into vmin-space. In this case, E1 < Emin < E2 and

vmin(E1) > vmin(E2). Accordingly, the range of velocities that the energy range [E1, E2] probes

is not vmin(E1) to vmin(E2), but the range umin to umax and it is the latter range which we

integrate over for the energy interval [E1, E2] in equation (6.8). Moreover, we realise that since

we are integrating over velocities which correspond to energies less than Emin, we choose the E−nr

solution in equation (6.5). Thus it is the energies corresponding to the range umin - umax which

determine the particular solution of equation (6.5).

As another example, suppose vmin(E1) and vmin(E2) are both greater than Emin. In that case

umin = vmin(E1), umax = vmin(E2), and we choose the E+
nr solution in equation (6.5). Of course,

other possibilities exist depending on the mass splitting and energy range under consideration

however, we leave it to the reader to work out all scenarios.

As a final point, consider splitting the integral of our first example into the intervals [umin, umed]

and [umed, umax]. Then, there are two energy intervals that correspond to the velocity range
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[umin, umed], that is: [Emin, Emed] and [Emin, E2]. Reference [114] argues that both energy inter-

vals will yield the same value of the velocity integral provided that the inelastic model being

analysed is in fact correct. [114] tests inelastic DM as an interpretation of the data by deter-

mining whether or not the two energy intervals produce the same value of the velocity integral

within experimental errors. This is what is meant by “shape-test”. In our halo-independent

study of inelastic scattering, an optimistic approach is taken in that we assume the inelastic DM

hypothesis to be correct and consequently, that both energy intervals produce the same velocity

integral result.

6.1.2 Determining upper limits in η̃-vmin space

For null experiments, we would like to be able to compute upper limts in vmin-space. A method

for doing so was first presented by Fox, Lui, and Weiner in reference [109]. Since η̃(vmin) is a

monotonicaly decreasing function, the following inequality holds for all vmin:

η̃(vmin) ≥ η̃∗(v∗)Θ(v∗ − vmin), (6.11)

where v∗ is a fixed velocity and Θ(v) is the Heaviside function. Consequently, the η̃-function

that predicts the smallest event rate with η̃ = η̃∗ and vmin = v∗ is that given by η̃(vmin) =

η̃∗Θ(v∗ − vmin). For this reason, the average event rate that is predicted in an energy interval

[E ′1, E
′
2] using the above form of the velocity integral will be the most conservative, and is given

by

R̄[E′1,E
′
2](vmin, t) = η∗

∫ v∗

0

dvminΓSI[E′1,E
′
2](vmin) (6.12)

By using the respective technique of a given experiment to compute upper limits, one simply

increases η∗ in equation (6.12) at each and every value of v∗ until the event rate corresponding

to a particular confidence level is reached. For example, in the prescription of the maximum gap

method, the number of events are computed in the energy intervals corresponding to each gap,

and η̃∗ is increased until the desired value of C0(x, µ) is obtained.

Let us make another remark regarding the conversion of a range of energies into a unique range

of minimum velocities. If a target material is composed of different element types or contains
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different isotopes, then there will not be a unique range of minimum velocities corresponding

to some energy interval since the different elements and isotopes will have different masses. To

deal with the possibility of multiple isotopes, we compute η̃ by adding up the η̃i for each isotope

weighted by their respective fractional abundance. For detectors with different elements, varia-

tions in the element-dependent quatities are too large to perform a simple fractional abundance

weighted sum. In the following section, we give references to the methods that are used here in

order to deal with multi-element experiments.

6.2 Methodology

In this section, we briefly outline the methodologies for computing the η̃(vmin) values and/or

upper limits for the experiments being examined in our halo-independent analysis.

CoGeNT To analyse the CoGeNT data, we calculate and employ event rates and uncertainties

corresponding to the first 8 energy bins between 0.5 - 3.0 keVee using a 0.1 keVee binning, taking

into account the quenching factor, efficiency cut, surface event acceptance, and background due

to cosmogenic L-shell electron capture as outlined in section 3.1. Unlike reference [112] which

considers a DM + background hypothesis, we follow Chapter 3 in subtracting a constant back-

ground from the data, which in this case is 2.35 cpd/kg/keVee. As in Chapter 3, we do not

consider an energy resolution.

DAMA: For DAMA, we consider the same 8 energy bins and values of the modulated rate

plus uncertanties as in Table 3.1. Since low mass WIMP-nuclei scattering is dominated by the

Na nuclei, we follow references [110–112] and ignore the iodine scattering component for our

halo-independent analysis of DAMA. We employ the same resolution as in section 3.2.

CRESST-II: In order to deal with the multiple detector elements at CRESST, we ignore scat-

tering off W, and use method 2 of Appendix A in reference [110] in order to deal with scattering

off both O and Ca. In their method, the energy bins and therefore the event rate that are used

depend on the DM mass being considered. The energy intervals, event rates, and upper and

lower limits on the event rate for the WIMP masses considered here are given in Table 3 of

reference [110]. Our halo-independent analysis uses the same efficiencies and resolution as in

section 3.3, and takes into account each module’s energy threshold.
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XENON10/100: For both XENON10 and XENON100 we implement the same events, back-

grounds, efficiencies, and acceptance functions as outlined in Chapter 3. However, for simplicity,

we use the maximum gap method instead of the pmax-method to compute XENON10 bounds.

CDMS-II Again, the same events, expected background, and efficiencies of Chapter 3 are

used in our analysis of CDMS-Ge and CDMS-Si. However, for the halo-independent analy-

sis we follow reference [112] in introducing an energy resolution to both CDMS experiments:

σ(E)/keV =
√

0.2932 + 0.0562E/keV. Since the CDMS-Si experiment has not measured the

energy resolution in its detectors, we assume it to be the same as that used by CDMS-Ge.

For the analysis of the unmodulated CDMS-Si excess, the recoil spectrum is binned using a

2 keVnr bin width. The resulting bins contain either 0 or 1 event. Assuming zero background,

the Poisson central confidence interval of (0.173, 3.30) expected events may be used to determine

the 1σ error bars in the bins containing 1 event.

SIMPLE: For SIMPLE, we employ the method of Frandsen et al. [110] in order to deal with

the multiple detector elements in the context of an upper limit. The maximum gap method is

performed using the same efficiency as in section 3.8, and we take into account the one observed

event and expected backround of 2.2 ± 0.3.

EDELWEISS-II: We do not consider a halo-independent analysis of EDELWEISS-II since it

was consistently found to give weak upper bounds in the phase space plots of Chapter 5.

6.3 Defining consistency in vmin-space

Before displaying any results, let us address the following question: what are the characteristics

of a consistent fit in η̃-vmin space for a halo-independent analysis? There are a number of criteria

that the results of a model must satisfy in order for a fit in vmin-space to be deemed sensible.

Firstly, since our plots contain results from DAMA, which probes values of η̃1, and CoGeNT,

CDMS-Si and CRESST-II, which probe values of η̃0, then the region favoured by DAMA should

be considerably lower in η̃-space than that favoured by experiments which pertain to unmodu-

lated event rates. This relies on the fact that any reasonable model of the Galactic halo should

have η1 sufficiently smaller than η0, seeing as it appears at a higher order in the expansion of η.
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Secondly, predictions for both η̃0 and η̃1 should be monotonically decreasing with larger val-

ues of vmin since any realistic halo model has a positive-definite velocity distribution, f(v) ≥ 0,

which means increasing the lower integral bound will decrease the resulting integral for a fixed

upper limit. Furthermore, we expect the form of this decreasing η-function to be comparable

to that of known Galactic halo models. Qualitatively speaking in a logarithmic plot, it is a

non-linear function of vmin. Figure 4 of reference [110] shows η-functions corresponding to some

well-known models of the Galactic halo.

Also, experiments which probe the same region of vmin should yield η̃0 values which are consis-

tent with one another within experimental uncertainty. Finally, the exclusion curves provided by

null experiments should be compatible with the η̃ values favoured by positive-signal experiments.

6.4 Spin-independent results

For both the SI and SD halo-independent analyses, the values of MDM , fn/fp, an/ap, and δ are

chosen such that they correspond to the benchmark point in the σSI,SDp -MDM plots of the stan-

dard analysis for the particular model under consideration (excluding contributions to χ2
tot from

the CDMS-Si signal). In that sense, it is apparent how the standard analysis in terms of the DM

mass and DM-nucleon cross section are complementary to the halo-independent analysis. This

is in contrast to all previous studies of halo-independent DM which choose parameter values

based on qualitative inferences from the standard formalism literature. Unless stated otherwise,

the sodium quenching factor in our analysis of DAMA data is taken to be QNa = 0.3.

Figure 6.2 presents the results in η̃-vmin space for the standard SI model of WIMP scattering

where MDM = 8.7 GeV, fn/fp = 1.0, and δ = 0 keV. The unmodulated measurements of η̃0

are shown for CoGeNT, CDMS-Si, and CRESST-II, along with measurements by DAMA on the

modulated component η̃1 against the most constraining bounds arising from null experiments.

The standard SI model fails to meet almost all criteria outlined in the previous section. The

unmodulated CoGeNT measurements are for practical purposes, entirely excluded by the CDMS-

Ge 95.4 % C.L. In addition, the XENON100 exclusion curve greatly constrains the regions of

vmin-space favoured by DAMA, CDMS-Si, and CRESST-II, leaving only the lowest energy events

of each experiment not entirely ruled out. Although the DAMA η̃1 signal is smaller than the
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Figure 6.2: Elastic isospin-conserving spin-independent halo-independent DM fit to the ex-
perimental data in η̃-vmin space with MDM = 8.7 GeV, fn/fp = 1.0, and δ = 0.0 keV.

η̃0 signal at CoGeNT, it is in gross conflict with the unmodulated measurements claimed by

CDMS-Si and CRESST-II. On the other hand, the CDMS-Si and CRESST-II data suggest some

degree of compatibility.

Introducing IV couplings, Figure 6.3 investigates the effects in vmin-space of setting fn/fp =

−0.708. As anticipated, there is a substantial weakening of the XENON100 exclusion bound

along with a strengthening in the CDMS-Si constraint. No relief in the tension between CoGeNT

and CDMS-Ge is observed given that they are both composed of the same target material. In

contrast, it is seen that the CDMS-Si and CRESST-II unmodulated measurements are mutually

compatible and consistent with all null constraints. However, these measurements are in conflict

with the region favoured by CoGeNT, and claim regions of η̃ space which are for the most part

smaller than that observed by DAMA. Interestingly enough, the DAMA modulated data points

are all consistent within their respective uncertainty with each null experiment upper limit.

Figure 6.4 considers a DM interpretation of elastic IV SI DM for the energy dependent sodium

and iodine quenching factors of Figure 5.14. In this scenario, MDM = 8.36 GeV, fn/fp = −0.686

and δ = 0 keV. The qualitative results of all experiments other than DAMA remain unchanged.
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Figure 6.3: Elastic isospin-violating spin-independent halo-independent DM fit to the exper-
imental data in η̃-vmin space with MDM = 8.03 GeV, fn/fp = −0.708, and δ = 0.0 keV.
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Figure 6.4: Elastic isospin-conserving spin-independent halo-independent DM fit to the exper-
imental data in η̃-vmin space for energy dependent DAMA quenching factors with MDM = 8.36

GeV, fn/fp = −0.686, and δ = 0.0 keV.
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Figure 6.5: Inelastic isospin-violating spin-independent halo-independent DM fit to the ex-
perimental data in η̃-vmin space with MDM = 8.60 GeV, fn/fp = −0.715, and δ = 3.25 keV.

With energy dependent quenching factors, the DAMA measurements of the modulated η̃1 func-

tion are all excluded by a combination of the XENON100 and to a lesser extent the CDMS-Si

exclusion curves. This is expected since the energy dependent quenching factors produce larger

values of the nuclear recoil energy Enr which in turn, result in DAMA probing larger regions of

vmin-space. Under this scenario, DAMA is irreconcilable with null constraints.

In Chapter 5, the addition of a mass splitting parameter to the SI IV DM model re-

sults in a benchmark point for the relevant halo-independent parameters of MDM = 8.60 GeV,

fn/fp = −0.715, and δ = 3.25 keV. However the reduction in the total chi-squared value is

not enough to make favourable the inclusion of an inelastic coupling. Figure 6.5 considers this

scenario in η̃-vmin phase space nevertheless. For positive-signal experiments, there is a small

shift to larger values of vmin for the data points corresponding to lower recoil energies. The in-

compatibility between CoGeNT and other unmodulated measurements of η̃0 remains unresolved,

not to mention the deterioration in the agreement between the CDMS-Si and CRESST values of

η̃0 relative the elastic case. Also, DAMA remains in conflict with the CDMS-Si and CRESST-II

unmodulated measurements and overall, the XENON100 upper limit becomes more constrain-

ing in the inelastic scenario. Nevertheless, one could conceivably argue that the combination of
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Figure 6.6: Momentum-dependent inelastic isospin-violating spin-independent halo-
independent DM fit to the experimental data in η̃-vmin space with n = −1, MDM = 10.5

GeV, fn/fp = −0.706, and δ = 8.4 keV.

CoGeNT and CRESST-II data resembles a more realistic η̃0 function for inelastic DM.

Moving on, let us consider momentum-dependent scattering in our study of halo-independent

DM. Figures 6.6, 6.7, and 6.8 show the η̃ values and exclusion curves for inelastic IV SI DM with

MD form factors with exponent n = −1, n = 1, and n = 2, respectively. In the n = −1 case,

the benchmark parameter values are MDM = 10.5 GeV, fn/fp = −0.706, and δ = 8.4 keV. Since

a form factor in the differential event rate proportional to 1/q2 results in a lower WIMP-proton

cross section in order to compensate for the increase in events, and because η̃ ∝ σSIp , there is an

overall shift in the experimental results to lower values of η̃. The experimental picture is largely

unchanged in that CDMS-Si does not agree with the results of CoGeNT and CRESST-II. On

the other hand, CRESST-II and CoGeNT exhibit a greater amount of compatibility over both

the elastic and inelastic momentum-independent IV models. Unfortunately, n = −1 MD scat-

tering is not able to alleviate tensions between positive-signal and null experiments, and fails to

construct agreement between measurements of η̃0 and η̃1.

As anticipated, Figure 6.7 demonstrates overall increases in measurements of η̃ for n = 1

MD scattering. The benchmark values of the parameters are given by MDM = 7.8 GeV,

fn/fp = −0.808, and δ = 4.0 keV. The tensions between experimental results that existed
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Figure 6.7: Momentum-dependent inelastic isospin-violating spin-independent halo-
independent DM fit to the experimental data in η̃-vmin space with n = 1, MDM = 7.8 GeV,

fn/fp = −0.808, and δ = 4.0 keV.

MDM = 6.6 GeV
fn� fp = -0.730
∆ = -2.8 keV

QNa = 0.3
n = 2

SI

Xe10

Xe100
Ge

Si

CDMS-Si
SIMPLE

DAMA

CoGeNT

CRESST

300 400 500 600 700 800 900 1000
-22

-21

-20

-19

-18

-17

vmin Hkm�sL

L
og

10
@Η

��
�

Hv
m

in
L�

Hd
ay

-
1 LD

Figure 6.8: Momentum-dependent inelastic isospin-violating spin-independent halo-
independent DM fit to the experimental data in η̃-vmin space with n = 2, MDM = 6.6 GeV,

fn/fp = −0.730, and δ = −2.8 keV.
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in all other models considered thus far remain largely unchanged. However, compared to the

momentum-independent IV cases, the XENON100 bound is much more constraining due to

the fact that in n = 1 scattering, the benchmark value of fn/fp deviates considerably from

the optimal value of −0.7. As a result, a majority of the DAMA, CDMS-Si, and CRESST-II

mearurements are ruled out.

Finally, Figure 6.8 investigates the impact of a MD form factor ∝ q4 for MDM = 6.6 GeV,

fn/fp = −0.730, and δ = −2.8 keV. Even more so than in the n = 1 case, there is a trend

in the positive-signal measurements to take on larger values of η̃. Again, this particular model

suffers the same pitfalls as momentum-independent scattering. However in contrast to previous

models, n = 2 MD scattering yields a much weaker 95.4% CL XENON100 constraint which is

in complete agreement with all experimental measurements.

It should also be noted that for both n = 1 and n = 2 MD scattering, the CDMS-Ge bound

is slightly diminished relative the η̃0 measurements made by CoGeNT however, there is no com-

pelling evidence to suggest any compatibility between the two experiments.

Arguably, the most illuminating realisation of our SI halo-independent analysis which is lost

in the standard formalism, is the large incompatibility that exists between the DAMA and

CRESST-II measurements. In the σSIp -MDM plane, DAMA and CoGeNT are found to be mildly

compatible in some cases. On the other hand, since in vmin-space any reasonable model of the

DM velocity distribution should result in η1 < η0, the halo-independent analysis reveals that

DAMA is in strong contention with CRESST-II measurements.

6.5 Spin-dependent results

Consider now, a halo-independent analysis of direct detection data under a SD hypothesis of

DM. The criteria upon which a successful fit to all the data is based will be the same as in the

SI case. Our analysis of SD DM in Chapter 5 allows us to make a few predictions regarding a

halo-independent analysis. Firstly, since SD favours larger values of the WIMP-nucleon cross

section, we expect measurements of η̃0 and η̃1 to be large in comparison to SI DM. Furthermore,

the SIMPLE and XENON100 exclusion curves will be the most consequential in constraining

positive-signal data in η̃-vmin phase space. Finally, since silicon carries an isotope with spin, the
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Figure 6.9: Elastic purely protonic spin-dependent halo-independent DM fit to the experi-
mental data in η̃-vmin space with MDM = 8.0 GeV, an = 0.0, ap = 1.0, and δ = 0.0 keV.
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Figure 6.10: Elastic purely neutronic spin-dependent halo-independent DM fit to the ex-
perimental data in η̃-vmin space with MDM = 8.0 GeV, an = 1.0, ap = 0.0, and δ = 0.0

keV.
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CDMS-Si data will be able to provide measurements of η̃0.

Figure 6.9 compares the unmodulated measurements of CoGeNT and CDMS-Si with the

modulated measurements of DAMA against null upper limits in the elastic SD model with

an = 0 and ap = 1. The WIMP mass is taken to be MDM = 8.0 GeV. A feature unique to this

situation, is the exceptional agreement between the various η̃ measurements. Not only are the

CDMS-Si and CoGeNT evaluations of η̃0 mutually consistent, they are both sufficiently greater

than measurements of η̃1 procured by DAMA. Unfortunately, the positive-signal data is almost

entirely ruled out by one or more null constraints. Constraints due to the CDMS-Ge bound

have a marked consequence for the data points of CoGeNT, not to mention, large portions

of the CDMS-Si favoured region. In addition, the SIMPLE exclusion curve rejects completely

measurements made by CDMS-Si, and excludes most of the DAMA data points.

Setting ap = 0 and an = 1 in the elastic SD model with MDM = 8.0 GeV, one obtains in

Figure 6.10 the results of the corresponding vmin-space analysis. Figure 6.10 illustrates a clear

deterioration of the global fit between positive-signal experiments. In fact, of all the models

considered thus far in the halo-independent formalism, purely neutronic SD scattering results

in the greatest conflict between CoGeNT and DAMA data. In addition, measurements of the

unmodulated η̃0 function are in contention, specifically in the case of the lower-velocity CDMS-

Si data points. On the other hand, there is significant weakening in the SIMPLE constraint;

however, a combination of upper limits placed by CDMS-Ge and XENON100 conspire to exclude

a majority of vmin-space.

Allowing the SD isospin-violation ratio to float, Figure 6.11 investigates halo-independent DM

with elastic couplings for parameter values MDM = 8.74 GeV and an/ap = 2.93. Besides a slight

improvement in the upper limit placed by SIMPLE, there is no strong evidence that suggests a

generalized SD isospin violation ratio be used over the standard an/ap = 0 case. Because the

DAMA data points shift to larger values of η̃ relative XENON100, most of the measurements

which probe higher values of vmin are excluded by XENON100. Also, a strengthenig occurs

in the case of the CDMS-Si exclusion curve, and it remains that the SIMPLE and CDMS-Ge

bounds combine to reject almost all umodulated measurements. Despite all of this, the CDMS-Si

and CoGeNT measurements of η̃0 are marginally compatible, and taking the upper limits of the

CDMS-Si data points are sufficiently larger than the DAMA results for η̃1.
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Figure 6.11: Elastic isospin-violating spin-dependent halo-independent DM fit to the exper-
imental data in η̃-vmin space with MDM = 8.74 GeV, an/ap = 2.93, and δ = 0.0 keV.
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Figure 6.12: Inelastic isospin-violating spin-dependent halo-independent DM fit to the ex-
perimental data in η̃-vmin space with MDM = 6.9 GeV, an/ap = 1.84, and δ = −14.7 keV.



Chapter 6. A Halo-Independent Analysis 96

Turning to a model which involves generalized inelastic and SD IV couplings, Figure 6.12 plots

the results in vmin-space for parameter values MDM = 6.9 GeV, an/ap = 1.84, and δ = −14.7

keV. There is an overall shift to lower values of vmin for all measurements of the η̃ functions

with a relatively larger shift in the case of DAMA and CDMS-Si. Compared to the elastic IV

SD scenario, the SIMPLE and CDMS-Si bounds have become comparatively more constraining

at smaller values of vmin, whereas the XENON100 bound is found to reject fewer data points.

Compatibility between unmoduated and modulated measurements is mostly unaffected with

respect to the elastic IV SD case, although there is a small improvement between the CDMS-Si

and DAMA data. Lastly, the smallest-velocity CDMS-Si measurement is in conflict with the

values of η̃0 favoured by CoGeNT.

The results of a generalized MD analysis of SD DM are found to not improve the halo-

independent picture any further and we refer the interested reader to Appendix C to examine

the n = −1 and n = 1 phase space plots.

Our investigation of SD dark matter epitomizes the apparent disconsonance between the

standard and halo-independent formalisms. Consider the results of elastic protonic SD DM. In

Chapter 5, strong disagreement between the DAMA and CoGeNT ROIs was obtained when the

SHM was used to describe the DM velocity distribution. Conversely, in the halo-independent

analysis, measurments made by DAMA were found to be compatible with those computed using

CoGeNT data. Furthermore, almost all regions of vmin-space probed by CoGeNT were found to

be excluded by the 95.4% CL CDMS-Ge bound however, in the σp-MDM plots, large portions of

the CoGeNT ROI were allowed by CDMS-Ge. As a result, this research has clearly demonstrated

that both the standard and halo-independent formalisms of DM analysis must be implemented

as complements to one another in order to make sophisticated conclusions regarding any model

of DM.



Chapter 7

Summary and Conclusions

In the past, isospin-violating dark matter has shown great promise in its ability to explain the

various excess signals reported by direct detection experiments while simultaneously circumvent-

ing null constraints. On the other hand, as the body of experimental data continues to grow,

and as direct detection experiments become more sensitive to lower nuclear recoil energies, it

appears as if models of dark matter which contain isospin-violating couplings have reached their

limit.

In this dissertation, we reviewed the dark matter paradigm and introduced to the reader the

field of direct detection of dark matter including: the theory behind dark matter event rates,

and a discussion surrounding the most prominent ground-based dark matter searches. Following

this, a review was given on the history of direct detection of dark matter and isospin-violating

models with a focus on experimental and theoretical findings. In the final two chapters, our

results for fitting current experimental data to isospin-violating dark matter and its possible

extensions were presented in the manner of two formalisms: standard and halo-independent.

In the standard formalism, we investigated the experimental picture of dark matter through a

series of σp−MDM phase space plots. Spin-independent, spin-dependent, mixed, elastic, inelastic,

isospin-conserving, isospin-violating, and momentum-dependent models with possible combina-

tions were all considered in our concerted effort to explain direct detection data. In all cases,

there was a failure to meet the criteria under which an experimental fit could be deemed suc-

cessful. Specifically speaking, in the spin-independent models, a combination of the XENON100

97
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and CDMS-Si bounds caused any mutual overlap between positive-signal regions of interest to

be rejected. In the spin-dependent case, the same went for the SIMPLE and XENON100 con-

straints. On the other hand, inelastic isospin-violating spin-dependent dark matter was shown

to yield the best agreement between the DAMA and CoGeNT claims in a scenario which had

yet to be explored until now. In this model, a fit to the DAMA and CoGeNT data was able

to achieve a minimum value of the total chi-squared of χ2
tot = 63.7, which for 58 data points

and 4 parameters corresponds to an optimal value of chi-squared of χ2
opt = 54. Finally, in the

mixed model of DM, mutual positive-signal overlap that was able to avoid the XENON100 and

CDMS-Si constraints was achieved and only marginally excluded by SIMPLE. Given that the

SIMPLE bound has come under scrutiny, one might still imagine using isospin-violating DM as

a way to explain current results.

The experimental picture was discovered to be no better in the halo-independent formalism.

For the first time, the following halo-independent dark matter models were tested: inelastic

and isospin-violating, inelastic-isospin-violating and momentum-dependent, and spin-dependent

with all extensions. Furthermore, unique to this work, inelastic dark matter was studied in the

confines of η̃−vmin space. Out of all the models considered, none were able to produce consistent

measurements of η̃0 that could satisfy null constraints and be compatible with η̃1 measurements.

The most favourable model within the halo-independent formalism was the standard elastic

purely protonic spin-dependent scenario which was the only model to obtain excellent agree-

ment between CoGeNT and another unmodulated experiment.

Thus, we may conclude that our results do not support a dark matter interpretation of direct

detection data in both the standard and halo-independent formalisms.

7.1 Future expectations for isospin-violating dark matter

The future of IVDM as a theoretical framework for explaining the excess signals of recent di-

rect detection data will lie in the hands of upcoming experiments. As this work was nearing

completion, the Large Underground Xenon (LUX) DM experiment released its first results cor-

responding to 85.3 live days×118 kg of data acquisition [135]. So far there have been no observed

events, resulting in an extracted limit on the DM-nucleon cross section which is the strongest
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reported by any experiment to date. Moreover, since LUX is composed of xenon, it will scale

identically to XENON100 when converting IC bounds into IV ones. Thus the new LUX results

are expected to rule out all positive-signal ROIs in both the SI and SD IVDM models. On the

other hand, given the weakening of XENON100 that was observed in certain IV models of our

halo-independent analysis, it is possible that the LUX bound may be avoided in this formalism.

It was pointed out in Chapter 5 that the much anticipated XENON1T DM search experiment

will provide a greater sensitivity to probe the regions favoured by IVDM and could quite possibly

exclude it altogether. In fact, if XENON1T fails to observe an excess signal that is unaccounted

for by known backgrounds, then IVDM of the kind considered here will most likely be ruled out.

Another interesting upcoming direct detection experiment is DM-Ice. DM-Ice [136] is cur-

rently testing NaI crystal prototypes for a new DM experiment deployed deep in the ice of the

South Pole. DM-Ice has the capacity to confirm or refute the DAMA/LIBRA claims of an annual

modulation signature due to DM. This will be crucial in determining whether or not the DAMA

signal is indeed a result of the DM annual modulation signature.

Whatever the future may hold for isospin-violating dark matter and its many extensions, let

it remind us to continually think outside the simplest model of dark matter in our attempts to

explain the mysterious and evasive nature of perhaps the most profound enigma of our time.



Appendix A

Integration of the Velocity Distribution

Results for the velocity integral of equation (2.18) using the SHM velocity distribution with a

parameter α which allows one to turn on (α = 1) or off (α = 0) the truncating term. The

analytic solutions are taken from reference [119]. We have the integral

η(Enr) =

∫ ∞
vmin

d3v
f(~v + ~ve)

v
, (A.1)

where the velocity distribution is given by

f(~v) =

{ 1
N

(
exp (−v2/v2

0)− α exp (−v2
esc/v

2
0)
)

if v < vesc

0 if v > vesc

. (A.2)

Using the definitions xesc = vesc/v0, xmin = vmin/v0, and xe = ve/v0, where the velocities are

magnitude values, the normalization constant N is found to be:

N = π3/2v3
0

[
erf(xesc)−

4√
π

exp (−x2
esc)

(
xesc
2

+ α
x3
esc

3

)]
. (A.3)

If xe + xesc < xmin then,

η(Enr) = 0. (A.4)
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If xe + xmin < xesc then,

η(Enr) =
π3/2v2

0

2Nxe

[
erf(xmin + xe)− erf(xmin − xe)

−4xe√
π

exp (−x2
esc)

(
1 + α(x2

esc − x2
e/3− x2

min)

)]
. (A.5)

If xmin > |xesc − xe| and xe + xesc > xmin then,

η(Enr) =
π3/2v2

0

2Nxe

[
erf(xesc)− erf(xe − xmin) (A.6)

− 2√
π

exp (−x2
esc)

(
xesc + xe − xmin −

α

3
(xe − 2xesc − xmin)(xesc + xe − xmin)2

)]
.



Appendix B

Supplementary Phase Space Plots

Figures B.1 and B.2 are supplementary phase space plots showing the effects of a larger

exothermic and endothermic inelastic mass splitting on the experimental fit to all the data,

respectively.

Figure B.3 shows the experimental fit to all the data in fn/fp-δ phase space for a DM mass and

cross section of MDM = 8.55 GeV and σSIp = 2.90× 10−38 cm2.
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Figure B.1: Exothermic inelastic isospin-violating spin-independent DM fit to the experi-
mental data in the σSIp −MDM plane for larger (negative) mass splitting with fn/fp = −0.633

and δ = −15.0 keV.
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Figure B.2: Endothermic inelastic isospin-violating spin-independent DM fit to the experi-
mental data in the σSIp −MDM plane for larger mass splitting with fn/fp = −0.748 and δ = 15.0

keV.
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Figure B.3: Inelastic isospin-violating spin-independent fit to the experimental data in the
fn/fp-δ plane with MDM = 8.55 GeV and σSIp = 2.90× 10−38 cm2.



Appendix C

Supplementary Halo-Independent Plots

Figures C.1 and C.2 show a n = −1 and n = 1 momentum-dependent, inelastic, isospin-violating,

spin-dependent DM fit to the experimental data under the halo-independent formalism, respec-

tively.
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Figure C.1: Momentum-dependent inelastic isospin-violating spin-dependent halo-
independent DM fit to the experimental data in η̃ − vmin space with n = −1, MDM = 8.5

GeV, an/ap = 1.76, and δ = −10.36 keV.
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Figure C.2: Momentum-dependent inelastic isospin-violating spin-dependent halo-
independent DM fit to the experimental data in η̃ − vmin space with n = 1, MDM = 4.53

GeV, an/ap = 1.31, and δ = −39.4 keV.
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