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ABSTRACT 

In this thesis, the H-plane pattern of a current element antenna 

centered in front of a rectangular condueting plate, parallel to a IIverticalë J 

edge, is studied by the Geometrieal Diffraction Theory method· of analysis. An 

extensive exploitation of th~.two-dimensional plate program reveals a systernatic 
û 

behavior of the radiation pattern which is quite striking. This behavior ~n be 

extracted from the large numbe: of comouted patterns for dtscrete values of width 

and separation, and expressed as a simple, continuous graphical synopsis" Thes~-
, ' 

"synoptic graphs'f~.ho't only allow the reconstruction ot the original finite 

" number of "pat.terns, but also tue plotting of patterns for a continuum of widths 
.r -

and separations within the range examined, without further computation. The 

three-dimensional plate model's H-plane_pattern i8 studied as a function of 

plate height, and computed results are dompared with published data and a1so 

measurements obtained in an anechoic roorn facility. 

The conclusions suggest that the synoptic graphs are a represent-

ation of a rnultidirnensional function which generates the radiation pattern in 
! 

terms of the physical dimensions of the antenna, or "Pattern Generator Function". 

The concept of a Pattern Generator Function transcends the computational, analytic 

or experimental method used to obta1n i~, and may be a use fuI tool for design 
( 

purposes. 
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RESUME 

" 1 

Dans cette thèse, nousI avons étudié par la méthode de 

Diffra~tion Geométrique, la configuration du champ H d'une antenne élé-

- -~ 

mentaire, centrée au devant d'une plaque conductriceifrectangulaire, et 

parallèle à un côté "vertical" de la plaque. 

Une utilisation intensive du programme éJAhorp pour la plaque 

a trois dimensions, révèle d'une manière éclatante, le comportement syst­
o 

ématique du champ de radiation. Le comportement peut alora être connu à 

partir d'un nombre considérable de configurations, calculées pour des valeurs 

discrètes de largeur et de séparation, et il peut être representé par une 

méthode graphique très simple,les courbes "synoptiques" permettant non seule-

ment de reconstruire les configurations initiales, mais aussi de connaltre 

les configurations pour des valeurs continues de largeurs et de séparations, 

et cela sans avoir recours à de nouveaux calculs. 

La configuration tridimensionelle du champ H est étudiée en 

fonction de la hauteur de la plaque, et nous avons comparé les resultats 

obtenus avec ceux qui ont été publiés,ainsi Qu'avec des mesures faites dans 

une chambre anechoide specialement aménagée. 

" . En conclus inn, il apparait que les courbes "synoptiql,les" constituent 

un, "gén~rateur multid~mensionel de champ de radi-ation" en fonction des di-
\ 

m~nsions physiques <le l'antenne.' Ce concept de "générateur 
1 

s général et en quelque sorte transcende les mé~hbdes de 

de foncHons" est 

\ 
calcul analytique 

experimental généralement utilisés. Aussi peut-il constitue~ un,outil 

u ile P~: le développement de nouveux systèmes. 'f' 
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CHAPTER l 

INTRODUCTION 

1.1 Statement of the' Problem 

When an antenna is mounted near a conducting body, there is an 

1 
1 

interaction between the body and the antenna which results in a radiation patt-

ern which is considerably different from that of the original antenna. It has 

been possible to determine the resulting radiation pattern by various numerieal 

methods, using a digital computer, for a variety of, structures ~ as cylinders 

(8,13), rectangular plates (11,14), a small aircraft (3), and a small h~licopter 

(12), among others. Once the rad'iation pattern has been determined, the problem 

is generally considered ~l~ed. However, Bayou (8), in analyzing the H-plane 

- ,1 

pattern of a dipole antenna parallel ta the pxis of a nearby cylinder, notes that 

the pattern eX?ibits a systematic behavior with changing cylinder diametér and 

cylinder to dipole spacing. Based on a largé number of patterns generated by this 
-- -? 

computer program, Bayou draws up a rudimentary set of "parametric CU~v~S" which 

describe this fùnctional relatiQnship. Further consideration of the "parametric 

curve" idea and a detailed investigation of a different g~ometrical co.nfiguration, 

using other analytic methods, as descrihed in this thesis, leads to a conclusion 

of potential utility to the antenna designer. The conclusion ls th~t, for any 

' .. ' complex antenna system, it may he possible ta determine a simple direct functiona!-,_ 

relationship, defined here as the "pattern generator function", which provides 

significant far field pattern information; for a particular antenna geometry, in 

terms of the dimensional parameters of the radiating system. 

In this thesis, an antenna near a conducting body problem,is anal-

yzed and ~he resulting program for the computation of the radiation pattern 15 

exploited ta determine a representation of the pattern generator funetion. A current' 
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) 
-

1 

e1ement source antenna (H.,..) radia tes/ln the presence of a fIat ree-r 
/ 

/ 

tangû1ar eondueting surface or ~ate"~ The source is centered in front 

of the J1ate, separated fr~ and parallel to one of its edges. The 

/ n 
effeet of the plate on the turr~nt èTèrnent 's H-plane pattern is studied' 

'. by the "Geometriea! Diffracti-o-;r Theory" (r.DT) (6,16). 
/ 

/ 
The chief /ad-

vantage of this method -1.s that i t allows the eomponents of field which 

have the most signifieant effeet in eaeh region of space ,to be identified 

o 
, with particular features on the scattering hody and hence the effect of 

any part of the bodv on -the nattern ~s readi1y apparent. the GDT is ex­

plott~d to reveal ne~ information ahout the shape of the H-nlane pattern, 

as the size of the plate and the distance to the source change. A large 

1 
.1 

1-2 

number of eomputed patterns are reduced to a brief set of "synontic graphs" 

whieh a110w the pattern ta be reconstructed for any plate width and 
--~ 

source separation distance over the range covered. Thus, the "synoptic 

graphs" are a representation of the pattern generator function for this 

radiating system. 

1 

1.2 Survey of the Methods of-Analysis 

Th~--~~rical analysis of a radiating system ean proeeed 

bV"a "Hnite e1e'1!ent'S" 'method, which seeks the current distribution on 

,the body- and hence theTseconda~ radiation fields, or bv "~eometrieal ---
Dif fraction Theory" (r.DT,), which relies upon ray opties. The "radiating 

-~ 

system" usually consists of a source antenna such as a dipole' or current , , 



o 
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element, and a "body" which mav he solid such as an aircraft, or comoosed 

of thin rods, Buch éIfI the truRs-l1ke tRi! !';ecttQn of a Bell 47r..-4A 

helicopter or the pasBive elements in a Vagi arr'av, or it may be an 
) 

infinitelv thin conducting surface such ,as the plate. 
1 ~ 

The flnite elements- ~t~hod has tw" chief c;ub-c1asses, 

the surface element modell1ng, and the wire-grid modelling. 

The surf ace element .modelling divides the surface of the 

body into "patches" and assumes a functional form for ,the current flowing 

9n each patch by representing it as a linear combination of "haRts 

functions", often chosen as niecewise li~ear. polynomial or tri.gonometric 

functions. The unknown coefficients are found by solvirig an integral 

equation hv a pro1ective method. In order'to simplifv the integrals en-

countered, and reduce the running time of the computer prograrq, th~ cur-
',' 

_ rent is often represented as having constant value over the patch (pulse 
o 

basis) and the current complex ampli tudes found hy Dirac delta function 

1-3 

proiection, or "point-matching". Thus Bavou (8) solves the dipole an­

ténna near a conducting cylinder problem by assuming a z-directed surface -

current, which ts found bv this "surface patch" ·method. If the body has 

sharp edges, they tend to carry large currents which have a high rate of 

change with distance from the edge. In order to represent such a current 

adequately, a large number of small patches would be needed; which requires 

larg,e matrix equations and hence long comp'~ting times. Thus the s'urface 

patch technique i8 poorly suited to the fIat olate problem. 

A heuri&ti'c approach. making use of a nhysical assumntion 
1 

'about the current, allows the surface element technique to be used to 
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s15'cl.ve the pl;te p~blem •. The current on the pl~te Is assumed ta flow 
~ .. > ~ 

oulY tn-the lan'gltudinal direction. I~ the eQuivalent two-dimension,al 

problem, the conducttng strip, this longitudinal current is onlv a 
..r 

function of crosswise Tlosit.Ûm on the strin, Then a one ~imensional 

current representation' is all- that is necessary, and Shafai an'd Èl:­
ô 

Moazzen (11) have solved this problem by using a truncated Fourier series 

(trigonometrtc basis) and point-ntatching. Their solution is valid on Iv 
..... ~J _ ..... 1 

for narrow plates, however, as tJ;:te curr~nt representation i8 Inadequate 

when, the width i8 large. The fully three dimensional plate problem can 
,. 

alsQ... be solved in this way, bv asstiming zero c'urrent in the crosswise 

-
direction and by accounting for th~:-V::a!,.!ation in the lo-ngitüdinallv 

• 0 

, 
directed current in bot~ the longitudinal and the crosswise sense. 

Nan Wang (18) solves the plate problem in this wav, with piecewise a 

a • 
sInusoi~al functions in the crosswise direction and pulse basis';Jin the 

longitudinal sense. The crosswise directed comnonent of current could 

also be accounted for, but' at th~ cost of doubling the û number of un-
.. ~ 

knowns and hence the matrix size • 

. 
The wire-grid modelling' tnethod uses curreni's constrained 

o 

to flow along lines or "wires ll to reoresent the body, and also relies on 
o 

the proiective solution of an integra:1,. equation to find 0 unknown current 

amplitudes. Wfre antenttàs and arrays are easilv modelled, as well as 

< truss-like structures such as. towers: or the tail of the small. helicopt~r ' 
1 

1-4 

_~... l 

-~ 

-Q 

(12). Because aIl functions are one-dimensiorfal, general basis and pro1ect-
~ 

o ' 
ion functions may be used, ra-ther than pulse basis.and point matcfiing. 

" Generalized problem solving computeroprograt\}S, using straight wire elemerits, 
ID 

J 
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are available (15). An ed~e on a body which c~r~ies a high cU>Eent along 
,~ -,~ .~ ~ : 

its lerigth is weIl represented by a line curtent flowing in wire elements· 

oriented along the edge, and the remainder of the hodv can he modelled 

with 'wires in sufficient density to resemble a surface current. The' 

plate as a sCfttterer has been dealt with bv Richmond (14), using 
, , 

constant currents on short wire élements, and poin~matching. ~ichmond .. 
estimates that about 100 such eleme~ts are needèd per SQUare wavelength 

~ '-' -~"A:U(:),) ~,,'" "r 

P~I 

of surface to adequatelv.~epresen; the current. This severely limits 

the size of plate that can be handled. 
------

A body on whieh the edgè currents dominate~is much more 
" ( 

• J 

naturally modelled by G~~metrical Diffraction.rheory. The GDT is based 

on ray ootics, and assu~eB that énergv trâve!s'outwa?d from the source 

-'" along lines called "ravs". and that the field at any point in sl?aœ lis . ~ 
~, 

t~ comple~ vector sum of the fields aèsociated with aIl the ravé 

through the point. Ravs may be ~eflected from conducting surfaces, 
.1{ 

hut more important, a rav incident on an edge or vertex, or tàngentiallv 

incident on a curved surface, will set uo diffracted rays. A ·~odv is 
'; 

, 0 

readilY,modelled bv identifying !~s reflecting surfaces and its diffract-

ing features. and tracing ravs itom-thé ~ource to the field point). 
1 • 

" . / 

The chief advantage of th~ r,DT is the direct corr~spondence 

hetween t~~ features ,~on the bo~y and COlllPonents of field ~t the field point. 

The effec,t: of, anv of the body'S"-,features on the field i8 thus readily assess-
,p. 

ed, b~ ex~mining its component of ~ield. 
ri • .. -' 

Hence àp enormous insight is 

gained into the'behavior of the radiating system. Other advantages of the 

GDT include -tne el!~e of .. analysie of a nroblem" bv simple ray tracing, and 

v" 

.J 

' . 
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t~.m. and B,~a great saving in computer ~tme, :~_,~ized. 
A more subtle advantage of the,GDT ~~es~ln 

> 

a'modei o~ a radiating system can be built in stages, each inciuding 
'V 

ne~Y classes of rays", and so the program can be debugged one part at a 

Ume. Thus.if a crude modeJ. generates promising oatterns, 'it can,!he -:.~. 

refined by' adding fur~her diffraction effects to it. In contras t, a 
f~ 

finite elements program must he virtually complete and fully debugged 
l 

before any"indication of its success is obtained. 

The GDT h~s been aop1ied to the plate problem by Burnside 

(3), in order to veriÎ~ the operation of a GDT program written to solve 

a more general class of problem. Burnside compares his coumutations with 

mea9u,rements for the plate, and other configurations-{but the plate 

patterns are not further explored • 

1.3 
J-- - -c--__ _ 

The '7riesent lolork -<1 

• 

, 
r 

The ob1ective of ~he present work i~ to systematicallv 

study the H-plane pattern of a current element antenna centered in front 

of a conductin~ plat~? para~lel té an edge. The specifie goal is te 
. " 

~determine a graphical reoresentation of ·the nattern generâtor function. 

element-plate radiating sys~em each step including' a new class of ravs, 
• . /1 

and giving further insight' into the behavior of the svs~em. ·A~ intensive 

study of the H-plane pattern via the GDT computer program reveals pieviously 
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unknown information about the oattern as a function of plate height and 

,·lid tl-t, and source .. separa tion dis tance. 

The radiation field of the current elëment plate system is 

~" 
computed bv summing uo the complex vector fields ,ass.ociated with the ray 

" 

from the source, the' rav reflected from the plate's front face, and the 

diffracted ravs emanating from the pIate's edges. The diffracted fields 

are found using Kouvoum,1ian's Transition Diffraction Coefficient (11)C)~ 

(5) * The patterns are çomoared criticaIIv with computations and 'mèasure-

rnents published by Burnside (3), computations oublished bv Shafai and El-

, 
~oazzen (11), and experimental patterns obtained especiallv for this work'. 

Good agreement i5 noted. -
" 

In Cl-taoter 2 of this thesis, the "Geometrica1 Theorv of 

On tics" (GTO) is brieflv outlined, and convenient methods of comnuting 

current element fields and reflected fields are detailed Then the effect 

of edges and vertices on a GTO'pattern is discussed, leading to an out-

~ line of the "Geometrieal Diffraction Theorv" method of analvsis. 

* Kouvoum11an in (1,4,5) uses the term-- IIdvadic' diffraction coefficient' to 

refer to his diffraction coefficient function. This function will be called 

,he "Transition Diffraction Coefficient" in this thesis. The term "Dyadic 

Diffraction Coefficient" will he used t.o denote the dvadic D (Sect. 2-.5) as 
\ 

oppose<! ~~ el~Il!ents of D which will be called "diffraction coefficients". 

The TDC is a ~pecific exnression for the elements of D. 

.' 

.,~ -
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Chanter 3 details the method used ta calculate the 

dfffracted field from an edge. The "La~v of Edge Diffracti.on" is p,iven and 

its significance in the calculatio~-~f-~--~~diation pattern is discussed-.-

A coordinate transformation ealled the "edge-related coordinates " which 

facilitates the calculation of an edge diffracted field is given in detail, 

and the best available diffraction coefficient, the Transition Diffraction 

Coefficient, is quoted from the literature. A nractical approach ta finding 
, 1"4 

tlie noint of diffraction or' "flash noint" on a straight edge is given, and 

then fhe reader is taken step bv step through an edge ~iffracted field 

calcula tian . 
/ 

'- -
The fourth chapter is devoted to a studv of the fIat plate 

problem. The geometrical on tics model of the current element-plate radiat~ 

ing system, which accounts for the direct and reflected rav, is t~oroughlv 

analvsed and provides an insight into the~behavior of the radiation pattern 

as a function of the plate width a~d source separation distance which ts 

helpful in later stages of the analvsis. A package of COMputer subroutines 

which facilitate the calculatyon of the radiation fields of a class of 
. 

simple antenna problems by GDT was develoDed during the work for this thesis 

and' is presented at thts point. The two-dimensional (2-d) model of the 
( 

plate is constructed which adds the diffracted ravs from the edges narallel 

./' 
ta the source current element ta the GTO fields. The comnutation of the 

radiation pattern using the GDT s~hroutine package ts outlined. The radiat-

ion nattern of the 2-d model is examined in detail, as a function of the 
l' 

plate width and source separation distance. The accuracv of the two-edge 

program is-established bv comoarison with data computed by the surface element 

method, published bv Shafai and El-Moazzen (11). ~e final stage model adds 
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t~~ffracted rays from the two other edges of the plate, and 90 Includes 

the effect of aIl four of the pIsters edges. The pattern 18 studled as a 

__ JllI1C.tion of plate height. The radiat~on patterns computed hv the four-

edge ~rogram are comoared wlth computations and measurements published 

hv Burnside (3), and a1so tvith exnerirnental patterns for severa! values 

of plate,height and width, and source separation, obtained in an anechoic 

roorn facilitv. ~ 

The fin~l chapter summarizes the chief results of the studv. 

New information, of considerahle oractical interest, about the behavior of 

the H-plane pattern of the current element-rectangular plate radiating 

system as a function of its ohvsical dimens~ons, has been generated.' lt 

is found that this hehavior can be extracted from a large number of oatterns 

computed for discrete values of plate width and source separation distance, 

and exoressed as a simple, continuous graphicsl svnopsis. These "svnoptic 

graphs" allow a continuum of new natterns to he obtained without further 

computation. Thus the "synoptic g'raphs" are a representation of the system's 

Pattern Generator Function. The Pattern Generator Function transcends the 
o 

/ computati~nal, analvtic or exoerimental method used to ohtain it, and may 

... 
1 

" - -, 

be a use fuI tool for design ourposes . 

. , 

, . 
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CHAPTER 2 

GEOMETRICAL OPTICS AND GEOMETRICAL DIFFRACTION 

2.1 Ray Theory and the Geometrieal Theory of Opties 

This chapter outlines the "geometrieal opties~ metAod. and - ............. " 

details suitable expressions for calculating the fields of a current 

element source and the reflected field from a smooth surface. The far 

field pattern of a cu~rent element antenna near a body is discussed and 
-- -

the "geometrical diffraction" method is described. 

The "ray theory" assumes that electromagnetic radiation 

travels along straight Ünes ealled Itrays", which obey Alhazen 18 Law of 

Reflection (17) at reflective surfaces, cannot penetrate perfectly 

* / 
conducting objects, and obey ~nell's Law at media discontinuities. Ray 

the ory is primarily useful for problems involving incoherent radiation. 

Each ray co-nvergent on a point after the first 't'aises the intensity bv 
" 

3 dB. Simple, ray theory is no~~ffective for problemS'" involving coherent 

waves, or in situations where diffraction plays a large rôle, and relative 

phase and polarization must therefore be eonsidered. 

The "Geometrical Theory of Optics" is an extension of ray 
.' 

theory and takes into account polarization and phase of the fielSs. Thus 

'each ray has a field assoc~ated,with it which i8 a complex vecto~ quantitv. 
,0 

The "net field" or "total field" at any observation point ("H.eld point") is 

the complex veetor sum of the fields associated with aIl of the rays through 

the point. ,/ 

) . 
l * In the rest of this thesis, when the term " conducting" i9 used" a perfect-

ly eondueting object 18 meant. 
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In the following A~ctionA, ftrst, the current element 

antenna 19 re-examined a~ R GTO radiator, and suitahle e~preRstons 
,1 , 

for calculating lts fields are der~ved. A conducting body isrthen 
~, 

introduced near the current element, and its effect on the radiation 

patt~rn i9 examined. 

'" . 

2.2 The Current Element Antenna 

Consider a current e1ement source antenna located at 

sOurce point R , Fig. 2.1. The sou;ce field ~s thought of as travelling 
c 

outward from the source point R in aIl directions along straight line 
c 

ravs. Glven a field point Rf with a source ray through it, the complex 

amplitude anc;l vector direction of the source field is sought. The 

source carries a current l in direction p. Let the "source coordinates" 
s 

he centered at R with unit vectors x , y , and z c 9 S S 
'" = p. Then in the 

associated "source sn. herica1 coordinates" (f , ê ,Â. ) the current s s 'Vg 

element's field is (10) 

l 1 -jkR e s " ,;; E=~ jWlJ sin e e 4'JT R s s 
r 
2.2.1 

s 
1" 

2.2.2 ,where .., R = 1 Rf R , .s c 

and 1 is the 1ength of the current element. 

This ls simplified by collecting constants, 
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E = E o 
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The current element antenna • 

-1kR. e s 
~k""'R-- "'Jin e e 

8 

e 
s 

, 
o 

The current element's field can then be r~-written in the base 
1 

coordinate svstem' in a form convenient for computation hv noting 

that since ! 

" '" -" 

0 x r = sin e ~s s s 
A 

..... 

and <l>s x r = e s s ,/ '. we mav write 

" " '" sin e e = sin e ~s x r s s s s 

" 

hence 

= ( p JÇ r ) x r s s 
-1kR 1 

"-e S ( P x r ) x f E = E kR S e 
0 s 

2-3 

2.2.3 

o 

2.2.4 

"- Rf - R 
= c \,/ where 2.2.5 

r , 
s R 

s 

~-
" , 

410<.......-.-.. 0\> 

" 

, 
.!.I, 

" 
l' " 
/, 

i .. 
'. 
j, 
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The geometrv of reflection from 

a smooth conducting surface. 
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Subroutine "Sl<'LD" (Anp,l) was developed for this pro1ect 

~~ evaluate the source field vector at anv field point, and uses these 

-expressions, 

2.3 T~e Reflected ~i~ld 
\ 

\ 
Consider a current element antenna radiatlng in the 

pr~§~nce of a conducting body, ~ig. 2.2. At anv field point, there 

will be a refle~~ed rav if a point PR exista on the body which 

satisfi s Alhazen's Law of Reflection Alhazen's Law statee that 

the refl cted rav must lie in the lane of the incident ra and the 

vector fi to the surface at P and that the an le Œ between 

the inciden and fi must e ual the an that the reflected 

\ - r 

ray makes Wie\o' 
calculate the field aasociat~d with the reflected rav, 

we assume that the radius of c?rvature at PR Is sufficientlv large that 

\h~ surface may be approximat~d bv its tangent plane. 0 Then the method of 

images ls used. The image source is located at RCi' the same distance 
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Calculating the ref1ected field 

bv the Method of Images. 
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I 

hehind the tangent n1ane a~_ the primarv source is in front of it, 

Fig. 2.3. If xt and v
t 

are unit vectors in the tan~ent n1ane, and 

the pri~rv source orientation vector 18 reso1ved as 

" p = (pvr' n n) 
-r- vt" n 

the image orientation vector is given by 

The reflected field is then ca1culated fo~ the image current element 

exactlv as the primarv current element's field was found in Sect. 2.2 • 
. ? 

If Rf is the position vector of the field point, 

E = E 
r 0 

( Pi x f ) x f 

2-5 

2.3.1 

2.3.2 

() 
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Fig. 2.4 The geometry of phase referenc!ng. 

where R = i 1 Rf - Rd! 1 2.3.3 

is the distance from the image ta the field point, and 

f 
Rf Rc! 

) = 
Ri .. 2.3.4 

is a unit vecto'l" in the field direction. 

AlI fields must be phase referred ta the same 
1 

point in space. In Fig. 2.4, a source at s radiates a wave with phase 

factor e -jkrs h h d f - h fi Id h • w ere ris" t e istance rom s to' tee po;tnt, whic 
s 

is ~~umed to be far away. The phase must be referred to point s . ln o 
~ ~ 

the f, rd p,ane, Fig. 2.5, where f ls the field direction, 

r = r + d 
s Cl, 

~ .::--where d = r d . (-f) = -rd·f 

A 

hence r .. r - rd . f 
s 0 

../ .. ---
\ / 

2.3.5 

If 

l -, 

/ 



~ , ---

.-

- ----------

1:'i8. 2.5 

"Thus tne phase factor of source I:l, referred to 130int 9
0 

is 

'" 

" 

Thus the reflected field may be re-written phase referred to the 

oosition of the primarv source, by noting that i~ Fig. 2.3, 

rd =-2s '" n 

hence 'R.i 
= R + 2s " of n s 

" '" n.f -jkR " 
""... ..... ''''-' 

" -1k thus E = E e s 
(Pi x f) x f e r 0 k'R. s 

where Rs replaces Ri in the denominator, since the field point ia 

very far awav and 'for amplitude purposes, R a-R ~ 
s i 

2-7 

2.3.6 

203.6 

203.7 

-----c~nsider the special case of a olanar reflecting surface 

perpendicular to the x,y plane, ~ig. 2.6, where the source lies irt 
~'-

that plane. There will be a reflected ray in the field direction f in the 

x,y plane if there is a point P on ~he plane satisfving Alhazen's Law. But 
R ""\ 

PRis simoly th~ point where ~he ray from the image intersects ' 

~, 
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Reflection~from a fIat conducting surface 

nerpe~dicular to the horizontal plane. 
t> 

a 

th~ reflecting plane'. Thus there is a reflected rav in direction 

f if PR lies between the plane's ~ndnoints p~~nd PB' Fig. 2.6. 

Thus P R exists if 

.. 
" or COB e

B 
> cos e > cos SA 

'" '" or .... e.
B 

)- f' . ul' eA 
~ -

~ .cos 

where 01 i6 a uni t vector from PA to 'PB' Thi.s is a convenient 

test for the presence of a reflected ray in direction f for this 
,p 

snecial geometrv. Subrouti~~ "RE~" (Anp. 2) was developed for this 

project ta comnute the refledted field for this probfem. 
u 

1 

~ 

a ~ 
'0 
6, 

.. ' 
'A '-

........ 
't 
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.~ 

0> 

A point. source radiating i~the 1".~. 

presence ~f a conduèt~n~ body. 

Smooth.Bodies and Bodies with Edges. , 
o· 

1 
1 

A body is smooth a~ a point on !ts sur,face if' the 
• j'~~ 

unit normal vector is continuous. An edge is a locus of pointE ~n 

the 'Surface w~~re the 
,; 

body i8 not smooth. By de fini tion, an edge 

has· a continuous tangent vector. A "vertex" --ls -Ii noint where two or 

2-9 

o 

(' 

more edges meet" t or' where an edge termina tes. Edge-less vt!rtices a15lP • 
, \ 

~t, such as the vertex of a cone. 

~ A current element radiates 

Fig. 2.7, and the far field in the plane of the paper ts sought.as a ' 

v 
in the p~esenée of a body, 

l " 

f~nction of the field-angle. For ~ < $1 thère is ~irect ray thro~h 

tfie distant field point. 'For -4>. "): ct>l t:he~pody ~ruct~ the di,rect Ilrav 
!!'" ~," 

and there is null GTO fièld at the field'·pqipt, which lies iI). -the body's 

.< 

." 

o 
\ . 

t'''' 1) 

~ 

.. 
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, ' 

shado~~. Angle ~ l 1s a "shadow bou~dary" (SB). Tl-te r.T~ field 18 

discontinuous at 'an SB, because th~ direct field vanishes. Angle ~ 2 i~ also 

an SB. 

The body of Fig". 2.7 ha!=! an edge .at E. ,J"or ~ < 4>3 
, . 

the point of reflection on the hodv lies awav- from tlle edge, and there ~ 

is a reflected rav at the field point~ ~or 4> + ~3 the r~Flection point ap­

p~paches the edg~., ~or ~ > 4>3 there ls no point P
R 

on.the hodv which 

\ satisfies Alhazen's Law;, He~cJ~ at '3 the reflected Ue1cCvll'nishes. 

-. 

Angle '3 ls a "reflection ?pundarv" (RB). The r.TO field i8 discorttinuous 

a.t:: an RB. , .­
'. . 

A noint of "grazin~ incidence" i8 a Doint on the body 

where the rav from ~he source travelling along the boÀv 1ust touches t~e 
';';>. 

bodv' s surf ace. Points E and S are points of grazing incidence in l<'ig. 

"--
2.7. ~ote that angle '2 18 a1so an RB as well!, as an SB. When the- hodv 

is smooth at a "point of grazing incidence. the RB and the SB coine1ae. 

2.5 .. Geometrieal Diffraction Theory 

The "r,eometrical Diffraction Theorv" (GDT) :E?-an extenswn· 

of geometrical ooties, in which a new class of ravs ls introduced, called 

"diffr.acted rays" , These were -Eirst proposed bv .T .B. Re,11er in 1953 (16). 
o 

The GDT field at anv point is the sum M the r.TO field, ând the field 

associated with all the d~ffracted rays ,through the point. ,...., 
A ray incident upon a, poi~t .on an edge causes diffrac ted 

rays to emanate from that point. A ray i11timinating a vèrtex gives rise 

, 
to a class of d1ffracted ravs originat1ng at the vertex noint. 

.. . 

.. 
1: \ 

o 



" 

• 

- , Il' . 

has grazin~ incidence at a point on a bodv, a "surface ditfracted" ray 

travels out along the bodv's surface., "shedd~1}g" diffra~ted rays 

tangentially out from each point on its path (1,4,5). 

The r.m models diffracting features bv simn1er "canonical 

problems", with the sarne local geometry as the body has in the neighhour-

hood of the point o'f diffraction. lt is a fundamental assumption of the 

GDT that diffraction is a local prOCess so that the dtffracted field 

~f the feature is identical ta an~ indistinguishab1e from the diffracted 

field of the canonica1 problem. Each canonical problem has its "Law of 
v 

Diffraction", which determines the direction in which the diffracted ravs 

will travel out from the point of diffraction, and a "diffraction 

coefficient" which re1at~s the field on each diffracted rav to the field 

illuminating ,he feature. The linearitv of ~axwel1' s Equations dictate1'l 

that the diffracted field must he nroportional to the strength and 

.. 

vector direction of the incident field. Hence we wou Id expect a transform-

ation ta exist which mails incident fields into diffracted field 

= , . 
= 

The dvadic diffraction coefficient D can change the ma~nitude, phase, 

and vector direction of the incident field. Its elements are functions 

,,' 
-,. f1f the angles of incidence and diffraction, the distances to the source 

and field.. noint, and the radii of curvature of the incident wavefront. 

In solving a canonic,a1 oroblem, the simplest form of ~ is sought. 
~ 

The mast important canonical problem is the infini 

wedge. lt is u~ed ta find edge diffracted fields bv orient,tng its 

to be tangent to the bodv's surfaces at the point of diffraction. 
(~J 

present there i8 no vertex diffraction coefficient available in the 

~\' 

nes 

...... , __ l'\. 
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literature (1). Other canonical nroblems have been trted, such as the 

diffraction from a small cylinder, used bv Burnside (3) to mode). 
1 • 

the w~ng-mounted engines in the ro11 plane analvsis of the radiation fields 

of an antenna"on a small aireraft. ~e method Qf calculating the 

diffracted fields of an infinite wedge is given in Chapter 3, ineluding 

the Law of Edge Diffraction, the reduction of n to its simplest form, 

and a new expression for the elements of D, Kouvoum1ian 's "Transition 

Diffraction Coefficient", which is designed to overcome many of the dis-

advantages of the original Keller coefficient. 

--- ......... 

,-

i 
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CHAPTER 3 

THE INFINITE WEDG~ CANONICAL PROBLEM 

3.1 The Infinite Wedge Canonical Problem 

The infini te wedge consists of two conducting half-planes 

'which meet at a straight line to form an edge. Fig. 3.1. The incident 

ray makes an angle 80 to the edge, and its pr01ection onto a plane perpen-

dicular to the edge makes an "incident angle" tPo with the wedge' s reference 

plane, Fig. 3.2: Similarly, the out-going diffracted ray makes an angle 

8 to dÎe edge and a "diffraction angle" tP to the reference plane. nie wedge 

itself has an angle IX. 

WED"GE ANGLE CI 

CONDUCTING 
-HÀl.F;;nANES 

____ -----1----~~----I~EDGE FORMeD ---, 

1 
WHERE HALF-PLANES 
HEET. 

1 ~ 

Fig. 3.1 The infini te wedge. 

1 

_ r 



, . 

--
WEDGE' S HALF PLANES 
PERPEND ICULAIt TO THE 
PLANE OF THE PAPER 

,/;7' 
~ ANGLE 

REFEREIICE 
PLANE 

J"OJECTIm' OF 
nIFFRACTl'D ~W 
O'I'ro pAf~R r, 

PROJECTION OF 
INCIDENT RAY 
ON.;rO, PAPER 

Fig. 3.2 Cross section of the, infinite wedge problem 

This chapter details the infini te wedge canonica1 prob1em, 

which is used in the next chapter ta ca1culate fields diffracted from 
J 

edges. The "Law of Diffraction" i9 given and i ta consequences discussed. 
> 

The sïmplest form of the dyadic diffraction coefficient is developed and 

expressions for its elements are quoted from the 1iterature. A set of 

8u~routines for computing the diffracted field from a straight edge are 
---------;=------------.:.-.._--

3-2 

given which are uaefu1 in the solufron of an antenna-o-tT __ ~..u:;.,,--~r~oM.b.:!:.l~em~-=i~n ______ ---1 

the next chapter. 

3.2 The Law of Edge Diffraction 

The "Law of Edge Diffract10n fl (1,4,,) Rtates that the.. diffracted 

raya lie on a cone of half angle B egual ta the angle of incidence 80, with 

the point of diffraction as its vertex, and the tangent ta the edge as its axis. 
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INTERSECTION OF DIFFRACTION 
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~ 

Fig. 3.3 Flash points on an edge, and a aiffraction 

boundary. 

In Fig. 3.3, a point source 'radiates near an edie~~hich lies 

3-3 

in the (x,y) plane . It is a direct consequence of the Law of Edge Diffraction 

tha't only certain "flash points" on the edge, FI an"d F
2

, can launch a dif-
• A 

fracted ray in a given "field direction"', designated by direction ~ector f. 

------________ When an infini te wedge is located at a flash point _with planes colncident with -------- --------
the body's tangent planes, the ray from the source to the flash~t--an~ __ . __ 

, '" 
. the field direction vectoE ,-f satisfy tl)e Law of Edge Diffraction. Other points 

on the edge do' not have S = (30. The edge dlffracted field Is' th en identical ta 

the fre~~~~m~~~~~~LJilJnlJf~i~n~i~t~e~w~e~d~g~e~,~W~h~i~C~h~i~s~r~e~a~d=i~l~y~C~a~l~c~u~l~a~t~e~d~, ~a:s~ _____ J 
detailed below. 

If the body has a vertex, as at V in Fig. 3.3,~en the tangent 

to the edge and the ray from source to vertex definé a cone in space accarding 



to the Law of Edge Diffraction. On one si4e of this conical surface, there 

is a diffracted ray from the edge, but on the other side, the~e is no point 

on the edge which satisfies the Law, and hence no diffracted ray. The dif­

fracted field vanishes as the surface of this lirniting i~ne is crossed, and 

this surface is defined as the "diffraction boundary" (DR). 

3.3 The Simple Diffraction 

! 
t 

Coefficient 

1 

3-4 

, 
The "simple" form of the wedge diffraction coefficienC16j--'J-----

-ts-ubtained-as -follow~ __ Con~ider a plane wave normally incident on the edge 
~ -~ ----

of an infinite wedge, Fig.-3.4. Any general polarization can be resolved 

into two compqnents, in which the electric field vector is perpendicular to 
'J 

the edge ("hard" boundary' condi tion) or the magne tic field i9 perpendicular 

("soft 1 case). In either case the field may be 'then treated as scalar. 

Keller argues that the diffracted field must be an outgoing cylindrica~ wave 

with the edge as its axis, 

E = d 
DI E s i" 

h 

-jkr 
e 

3.3.1 

whëre"Ef is-tnë- incident fiel4-ell.a~.9"_~j:_ the point of diffraction, r is 
- -

the dis tance from the edge, and the subscripts are for "soft Il or "hard". The 

reduced diffraction coefficient DI is related to the full coefficient by 

-jkr 
e '. 3.-3.2 ns---= -n~-_ 

- ___ ~~~~~~h~h~~~r~-1tnee1en1tents-~~~~~~_~ 
~ In turn, D; must later be related to ffraction 

coefficient D in (2.5.1). Keller cOlllp'e.,res (3.3.1) with at'! expression asymp-
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/ 7 , 

Fig. 3.4 A ray normally iin~cIiddeenntGoo:n~aa--=-----------__ _ 

ucting wedge. ! 
/ 

, totically expanded fÇ>r large kr ,i of Sonunerfeld' s exact s'Olution for the wedge, 
t " 

and concludes that the reduced co~fficient mu~t be 
/ 

jTI/4 ft 

[~ "r . e sin TI/n 1/1 -
1>' .. cos 0 

s 
n J2iT sin a n 

h 

+ [ TI • +. JI] 3.3.3 .. cos-- - cos--n-~ . . Il n 

1 
where n is related ta the weé1ge angle Cl by 

3.3.4 

B fadtor. 

For other thln armaI i 
, ," 
'~ ~ , 

conservation of eqergy ;Ln the cone of diffracted ravs giv s the l 1 sin 
--4t'----~~. 1 

The '''-'' sign is for the "soft" case, and the "+0" for t'" "hard". 

For normal incid~ce 6 .. 900 and sin B = 1. 

1 
1-
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INCIDENT DIlECTION 

---~-~ -

-- DH 

Fig. 3.5 The simple diffraction coefficients 

1 
for a plane wave incident at 300 on 

a 100 wedge. 

" 

In Fig. 3.5 the di~fraction coeffIëients Ds and Dh are plotted 

as f~nctions of the diffraction angle ~ for incident angle ~ = 30° B: 90°, o ' i' ~ 

and a 10° wedg~, on a dB scale. Th)'soft ll diffracted field falls to zero JI 

a. • 
'. 

------~aaIloo:nnggctnheelP"P"LanbflÜle-'wedg~e-'--~al~t~h~Ough the "hard" coefficient i8 only 7.5 dB 

down from ~e i luminating field. 

The simple diffraction coefficient becomes unbounded near the 

-1-------~-----
1 

/ 
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shadow and réflection boundaries. Near an SB, ~or example, 1P is nearly 1T-!JIo ' 
" . 

and thus the second term in the diffraction coefficient becomes large. 

The simple diffraction coefficient is said ta be valid "far" from RBs and SBs • 
------ Q -'-----

3.4 The Edge .. Related Coordinates. 

--- --- - - ---

This section defines the edge-related coordinates (4,5) and shows 

that they allow the dyadic diffraction coefficient D - to- be written in 1ts-

simplest form. 

If,the illuminating field Ef is written relative to sorne 

"incident" coordinate system as 

- { 

nd the diffract~d field relative to sorne "diffracte~" coordin'àtes" as 

" 

-

which are not necessarily the same as the incident coord1nate directions, 

the dyadic diffraction coefficient may then be written in full as 

E
da DIa DIb D

lc 

Edb = ( Eil ' E12 ' EiJ ) 
D2a D2b 

D
2c 

E
dc 3c 

..... 

-------------------------------------
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.......... -
INCIDENT RAY 

r . " 

Fig. 3.6 The edge-re1ated coordinates . 

.' 

Ih general the elements of D are al1 func~ions of the direction angles 

w_ , ~o , B , of the distance to the fiel~ point, and the radii of curvature 

of the 1.ncident wavefront. 

It is apparent from Sect. 3.3 that the components of inci"dent 

fields paral1~1 and perpendicular to the edge are of fundamental importance 

to the diffraction process. Let ~ be a unit vector in the direction of the 

edge, Fig. 3.6. If â ia a unit vector along the incident ray, a coordinate 

direction t' can be defined, 

â' x ê 
4J' 3.4.2 

---- ~-------------- ~---~-- Is' x'€1 
l' 

\', 

/" 

* 



• 

" 

A 

Unit vector ~' is perpendicular to both the direction of incidence~and the 

edge. If § points along the diffracted ray, then unit vector 

" " e x s 3.4.3 .. 
I~ x ~I o 

ià a190 perpendicular to the edge. The component of diffracted field along 
----,.. 

4> oheys the "hard" boundary conàition wi th respect to the component of in-

cident field aJ,oI!g .'. Thus 

.-
, , 3.4.4 

The incident field cannot have a component in the direction 

of propagation. Thus its only other component must be in direction 

.. i' x 4> 3.4.5 

. ",,-
The magnetic field associated with the 8~ component of Ei 1s perpendicular 

to the edge. The component of diffracted field in direction 

8 .. S x ~ 3.4.6 

has an associated magnetic) fie:~ perpendicular to the edge. Renee the B 
----

components of, id obeys the "soft" boun~ry condition with the B~ éomponent 

of Ei' 

" 
E = 'Id·B= -<:lB 

,., 
-Dg' Ei • B~ • -Ds Ei 6~ 

3.4.7 



, 
,-

.... 
The "incident edge-re la ted coordina tes" are ( â ~, 4>', ~' ) o , 

given by (3.4.2') and (3.4.5), ando~aré illustrated in Fig. 3.6. The "dif-

fracted edge related coordinates" are ( ~, 4>, ê ) given by (3.4.3) and 

0.4.6). When the incident field and the diffracted field are resolved in-
," 

3-10 

te the edge-related components, by virtue of (3.4.4) and (3.4.7) the general 

diffraction equation (3.4.1) can then be re-written in its simp1est forro 

= 3.4.8 

= 
By proper choice of coordinate systems, n has only two non-zero e1ements. 

~~. - . 
3.5 

;1 -

The Transition Diffraction doefficient 

J 

", 

') 

<. 

Consider the wedge diffraction prob1em of Fig. 3.4. At aIl , 

.-

field points the total field must be ~ontinuous. As ot'lie field point approaches 

a reflection or shadow boundary, where a component of the GTO field vanishes t 

the diffractedffe1d must increase untll its magnitude is comparabJ.e to the 
/ 

direct field. lt must t:!ten exhibit a discontinuity at the boundary so that 

the total field remains smooth. As the field point moves away from the boundary, 

the dif fracted field onçe again decreases. The four zones of space, where 

the diffraction coefficient exh!bits this special behavior, are called "trans-

ition regions" and lie one on each side of the ~f1ection and shadow boundary . 

• The simple diffraction coeffic~ent becomes unbeunded in the transition regions, 

as illustrated in Fig. 3.5. 
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'\ 

1 

" ' 

o 

" I~t.~""'" 

'the"-bes t diffraction coefuhent available in the literature 
l 

~-11 

to date is Kouyoumjian "s "dyadic diffraction coefficient" (1,4,5,9) at which 
, . 

- Id, 
a specifie function for the elements 9 f Dt and which shall be referred to as 

the "Transition D;iffraction Coefficient" (TDe) in th!s thesi~. lt is valid 

at nearly a11 field points; including those 1nside the- trans-iticyl regions. 

This largely replaces other, more cull)bersome methods Buch as : those eval-

uating series of Bessel functions'; those using limiting expressions at 

certain field points (2) . tl10se postulating equivalent currents on the edge, , . 
(whose value must be found, and whosoe fie'ld is used inside the transition zones); 

or other tedious procedures ,valid only for special field __ poiijts in specifie 
• 1 

problems. The TDC brea 
/ 

down only when the field point is very near the point 

of diffraction, or when angle B Fig. 3.1) is near 0 0 • 
~ 

The '!'DC is der! ed in (9). An asymptotic solution to the 

• 
wedge diffraction problem is obtaine by the method of steepest des cent . The 

, 

leading term of the reeu~ing generali ed Pauli expansion ia found to contain 

a osimple correction factor or "'''t't-~Jion function" which allows the diffrac-ted 

field ta be computed easily inside the transition regions. The transition 

function is unit y valued away from the transition regions', making the TDC id-

entical to Keller's simple coefficient there. 
\ 

The TDC has a term containing the transition function for each 

of the four transition regions. When the rfield point under consideration 

-, 

enters a transition zone, the transitit-0n function in -the appropriate term of 
o l, cl " 

the TDC "switcheà' on". As the, bQundary is crossed, that transition function 
'. 

~;;l "switches off" and the correct one for the new region turns on, making the dif-

e fraction coefficient discontinuous at the boundary, and as a result the total 

t 
r 
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o , ' 
''1 ), 

field r~mainsçsmooth. 
1 

The Transition Diffraction Coefficient, which i8 described 
.. 

in greater detail in (1,4t5~9) which has the following 'form: 

-. .. j'IT/4 
-k e'. 

D~ • x 
S 2n J2wk' sina • 
h 0 

E 'IT + ( 1IJ - $0) ~ ~O 'IT - (1IJ -~) ~c 1 " ~ 
~ot,-.--T~---:>I'<- F kL a+($ ~o) .,. cot --2n--- F kL ~::(~ - $0) . '~n 

t 'If + ( lJJ + Wo ) . -, 'II' - (tp + $0) E "'- "lo8~ , 
,-- ot FrkL a+(~ + lJJo)l + cot --2-n--- F kL a (111 T 't' 
+ 2n 1.: :J 

. 
where N ~most nearly satis~i 

, -

2 .. 2 cos. 

3.5.r 

3.5.2 

"3.5.3a " 

"and L i8 a distance parameter dependent 9n the ràdii of curvature of the 
,/ 

incident field. 

In general, the reduced diffraction cOèffièient i8 relat~d'~o 

the complete form by 

B 
s _ h; 

=te D' 
s 
h 

A(r) 

" 

-jkr e 3.5 .. 4 

e Kouyoumjian (1,4,5) Rives expression fpr' the "tvergence -factor A' (r) for various 

o 

o 
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-' 

incident waves. Thus for plane wave- illumination with the field point far. 

1 -from th~ edge, 1 / Jkr is used as in Sect. 3.3. In antenna problems using 

a point source, the incident wava qas spherical divergence, and for far field 

observation points, the divergence factor is 

A (r) • 1 / kr 

F(X) ia thé transition function Riven by 

F(X) = 2j IX jiX e, 
1 

dt 

For X > 10, F(X)' ::: 1. If aIl the transition function arguaents in the 

TOC are greater than 10, then the TOC i9 the same as the Keller coefficient. 
L. 

Thus the region of validity of the simple form is clearly established. 

A computer subroutine "DIFFLD"·, which evaluates ·the TDe, has 

been developed during this project and i9 listed in App.3. ln addition, a 

simple, fast computational method for evaluating the transition function F(X' 

was develo~ed~ and is detailed in App.4. 

In Fig. 3.7 the transition diffraction,coefficient i9 plotted 

in dB as a function of the field angle ~ ,'for the same problem as in Fig. '3.5. . , 
1 

Note that the TDC is bounded but discontinuous at the shadow and reflection 

boundary. 
\. 

3.6 Evaluation of the Field Diffracted from a Strai)ht Edge 

----
P:2 "9 A straight edge running between ve!tices at Pl and 

illuminated by a point source located at R • Fig. 3.8 shows t,he plane containing 
c 

,. 



r 

. / 

___ DS 

--DH 

Fig. 3.7 The transition diffrac~ion coefficients ,for 

a plane wave incident at 300 on a 100 wedge. 

the edge and the source point i. The diffracted field at a distant point 
.. ~q -- c 

in direction f is to be found. 

3-14 

A ray from the source incident on a point P on the edge makes 

an angle 

., 

cos B = s' . ê 
, 0 

3.6.1 ., 

with the-eù~here ê is the unit vector pointing along the edge from Pl 

to P2' and unit vector s' points from the source to'P. When P coincides with 

~ Pl ' Bo assumes its greatest value BI' and for P at P 2, Bo is a minimum B2• 

Hence, for anv P 



or 

Pt-------_ .. -..,-----itt:-----,,....---T2 

.. \~-
1(c 

SOURCE 

1 

Fig. 3.8 The geometry.of a far field diffraction 

calculatton 

> 

< 
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'Given a field âirection f, the half-angle of the cone of diffraction i8 fixed 

as 

cOff B = f . ~ 

"'!> 
, The flash point on the edge sat1sfies th~ Law of Edge Diffraction, whicr requires 

angle Ba· Ther~ fa a flash point on the-edge only if the angle 

between the field direction and the edge, a. lies between t~e two extreme values 

for B , hence B ~ust satisfy o .... 

-41 ________ _ 



, 

cos~ < cos B < 

< f . ê < cos 8
2 

otherwise no fJash point exists. ; rft order to f1nd the flash point, an 
> 

~ 

itersUve method is used. A tes(' point Pt on the edge is chosen, and the 

in~ident angle cosine, cos Bt is computed. If J 
cos B < cos Bt 

-

Pt lies too near to the Pl end of the edge, and a new test point is· chosen, 

closer to P2 . The method converges rapidly. 

Once the flash point Pf .is found, the edge diffracted field 

ia réadily calculated. -, -The source field is evaluated st Pf (Sect. 2.2) 

1 (P f) -E 
e -jkRSF ( p. ..., ) x â' • X 8 

S o. 
KRS~ 

-
where R '= Pf - R 1 SF c 

and s' 

1 _ 

___________ Th __ e~~ncide~t- edge-related 

are qhen found, and. ls 
~ s 

",f-, B') 

resolved inte .' and 

) 
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The d ffracted components of the diffracted field are then found 

usin (3.4.8) 

1 
1 



Ir 

<> 

-0 E "-) 
s sBo 

where Dh and Os are the TOC evaluated for the appropriate .incident and dif-
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fraction angles. The diffracted field'vector Ëd is rewritten relative to the 

base coordinates by evaluating the diffracted edge-related unit vectors , 
A 

(Sect. 3.4Y, (â = f, ~ , 8). The diffracted field Is then phase referred 

to rhe position of the source (Sect. 2.3), which completes the calculation. 

Subroutine DIFEDG (App. 5) was. developed to cOm?ute the field 

diffracted by ,a straight edge in a glven field direction, by the method de-

tailed ab ove . 

The work presented in this chapter provides the computationsl 
n 

foundation for the analysis of a variety of speclfic~problems. The remainder 

of this thesis ls devoted to the study of one such problem, the horizontal 

plane radiation pattern of a current el~ment centered in front of a rectangular 

conducting sheet, or "plate". It is found that the GDT provides g,reat insight 
\ 

" into the shape of the pattern as a function of the physical dimensions of the , 
~~ . 

plate and the separation distance of the sOurce, as is described in Chapter 4. 
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CHAP~R 4 

THE FLAT PLATE PROBLEM 

4.1 The Flat Plate Proolem-· 

A current element antenna radia tes in the presence of a fIat 

rectangular conducting sheet, or "plate", Fig. 4.1, of the width w and height 

h. The source i9 centered in front of the plate, spaced from ~t by the 

"separation dis tance", a, and is paraI leI to i ts vertical edges. The H-plane 

pattern of the current element is affected considerab1y by reflections and 

diffractions from the pl~te, and a systematic study of the resulting patterns 

" i8 undercaken--in this··{:hapter~ The_c_Qmputed patterns for a two-dimensional 

modelof the plate are reduced to a·$mall number of synoptie graphs which allow 

the original patterns to be reconstrù~'ted or new ones generated for any plate 

width and source separation distance'within the range eovered. The pattern of 
1 

the full three-dimensional model is investigated as a funetion of plate height, 

and computations are compared with experimentaf results and published data. , 

.4.2 The Two-Dimensional Plate 

;r 

If a radi.t~fiahody is much larger i~ one dimension than in the 
, 

ot~ers, the raalattorr~1eld iu the-plate perpendicuJaL to the !ong axis can often 

be found. -with sufffcient accuraey by assuming that the body is infinitely long, 

and simply using a two-dimensional (2-d) modela Thus Burnside uses ; 2-d model 

to find the r~;f plane pattern of an on-aireraft antenna (3). The essential 
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._._!~~ 4.1 The rectangular fIat plate. 

assumption is that the distaht ends of the structure contribute on1y , . 
negligiblv in the principle plane pattern ta the total field. 

The talculation of the H-plane pattern may be approached bv 

considering plates much taller than thev are wide. The horizontal edges may 

4-2 

--

1 
/ 

then be neglected as they contribute insignificantlvin the nrinciple plane pattern to 
- -, . / 

the total field, and. an essêntiaIlv two-dimensional plate remains, Fig. 4.2. The pat-

tern of the three-dimensional plate of height ~ is a variant of the corresponding 2-d 

pattern, and is found by including the fields diffracted by the horizontal edges. 

hv a dipole antenna parallel to its axis was studieq as a funetio of the .. 
cvlinder diameter and the dipole separation distance. The patt rn is smooth, 
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Fig. 4.2 

WIDTH 
v 

T 
SlPARATION • 

CUIlIlENT ELEKE"T 
v/2 

~ CONDUCT lHG STlllP ---JL-_-L_I 

The 2-d plate, plan view. 

with low peaks and shallow tllevs. , The number of minima is proportion~l to 

separation distance, a new p ir'beinr. added for every half-wavelength increase 
, 

in separation!: l"urthermore', the minima location angles for a given diameter 

move smoothù.y as ? f~n'tÜon of separation. Bavou comniled the results into 

"oaramet~ic C rves" fhiCh give the number of minima, their location angle., 

and the maximum tokinimum ratio, which mav be used to sketch the H-plane for 
---- -- J 

~ - Anv diameter-separation combination. One objective of this studv is to determine 

\olhether similar graphs can be constructed for the flat plate problem. 

--. ..................... _--~--............... ~..-..,..~-.....---.-"-----.--~~ ~- -

_______ 4.3 The GTO Solution t~--the "-F-lat- Ptatè-·Problem 

The first sten in analvsing a radiating system bv-Enê GDT 1s 

/ 
/ 
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Fig. lf-.3 _ The GTO nattern for w = 5)",a = 0.75)'-.. 

to find the Geometriea1 Optics fields (Sect. 2.1), and thus gain the insight 

inta the prab1em that this simple methad has ta affer. 

Because of the svmmetry of the prab1em in Fig. 4.2, the field 

----------neeaonly-bè" found --f01" 

4.3.1 

and a11 further discussion in this chapter r-efers ta this half pattern. 

A typica1 GTO pattern is shawn in Fi~. 4.3. There is a 
J-

reflectian boundary at 

4-4 

= 
-1 tan (w/2a) 4.3.2 1 

and a shadow boundary at 

= 4.3.3 

.. 



/ 

/ 

At the reflection boundary an~le ~RB' the reflected component of field 

vanishes abruptly, and in the "side region" ( cIl~B ~ cil < cIl
SB 

) the GTO 

field'ie the constant source field alone 

-, . 
EGTO • -12 .r ;; 

4.3.5 

At the shàdow boundarv angle $SB' the source f!e~ vanishes, and the field 
, 

in the "back region" or "shadow reg!"n" ( ~ > <P
SB 

) i~ zero, sinee the field 

point lies in the~~X~e's shadow. 

Although GTO patterns such 8S Vigo 4.3 can be computed by the 

direct evaluation of 4.3.4 and 4.3.5, the patterns were in fact calculated 

4-5 

by calling the gen~ral reflection subroutin~ REF (App. 2), which autom~tically 

finds the reflected field normed and phase,referred to tpe source. The main 

program is list~d "in Appendix 6. 

The direct and reflected fields are in phase at angles given 

by 

cos cil = l 3 5 
4a ' 4a ' 4a ' .... 4.3.6 

At these angles there is a 6 dB peak in the GTO pattern. The nulls occur 

~at angles given/by 

cos cil 1 2 3 
" 2a ' 2a ' 2a 

, ..... 4.3.7 

These peak and null angles are graphed as 8 functlon of source separation 

-- --------afifEance ih Vig. 4:7.-, aIong WI"th the reflection boundarv angle for a variet'!' 

of widths. 
\, 

" 

at cp 

~ig. 4.4 illustrates that a n~~ maxi~um is added ta the pattern 
minimum 

:: - Ô6 -i~r each À 1 2 increase in I?epara"tîon. -"The_~xima have been 
m:fnima 

numbered in their order of aopearance as separation !ncreases. ~fter ,the 
, Ifj. 

V > 

r' 
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Fig. 4.5 Value of the GTO field at ~ = 00 

between two minima • 

ffia'Clmum 0 

Mth mini~um has appeared at m = 0°, it moves smoothly through the pattern 

with increasipg separation, until it coincides with the reflection houndarv. 

--where it disappears. A vertical Une drawn in ""'ig. 4.4 for a part,iculat; 
,,.~/, . 

4-7 

separation 'a' , intersects the curves giving the aDgles of the 6 dB peaks and 

the nulls' in the front re~ion of the pattern, and the angle of the reflection 

boundary. 
i) 

""'ig. 4.5 gives the field at cf> = 0° when neither a maximum nor 

a minimum occurs at that angle. The value is given as a function of the source 
- . 

to plate separation distance within any half-wavelength interval between minima. 
'.:. ' .' , 

Thu8 Fig. 4.4 and~4:-5 provide enough information to \sketch the GTO pattern with ~."t-

~ reasonable accuracy for any p~ate width and source separation distance in the 

range covered. This graph ,and others like lt may be useful to the designer~in 
.' 1 

~ 

-" 

l~ 
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, predicting the t~J;>e of pattelm to be 

4.4 ',The GDT Model of the 2-d Plate 

4-8 

The CTÛ plate i~ extended to a 2-d GDT model by accountin~ for 

the fields ·diffracted from the two vertical edges, (Fig. 4.1). The GDT 2-d 

plate model is shown in "'i~ .. 4.6. Although the half-plane solti-t'ion can be used to 
~"- , 

calculate the edge diffracted fields. in this theRris these fields are calculated by -- .-~ 
modellinl' each e<ige Hith a sm~ll anlYle ,,,edge, since the plate is th!n. For H-

plane field points, the 'flash. aoint on each edge il; its intersection point with 
(.1 

. 
".: 

- -".. 

~ 
.t , 

t 

" 



... 

" .' 
. ' 

-. 

the -x':y plane. 'the source fiéld evalu~ted at t~ flash point 1s 
') ~~ - -

where 

~ 

Ë .: -E 
," 0 

RSE ~ j w
2
/4 

, 
• 

.. 

+ a 2 

, 
r' 

:-
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~ 

4.4-..2 

Since Ë is parallel the edge. to s the "soft~1 diffraction coefficient is used. 

Hencè, at large distances' from the'edge, 

, dr:,," 

• -E 
0-

:: -E o 

.... . 
the diffracted', fields are given by 

--- ---~I:: --- --- ------- --------
DS1 e Z. 4.4.2 

, ~1 

4 . .4.3 

, Whèra REl a~d 11:2 are the distances from the flash points t.fl~..field point, 

and' D U~:D are the "soft" diffrâ~tion ~oefÜcients evaluated -'for the 
SI " .S2 ~, , 

incident afi'd diffraction angles for each wedge. -,\ The diffracted fields are phase 

referred and normed ,'to the source
1 

field, (Sect. 12.3) 

.. 

. , 

" 

-e-jkRSE 

k.R ' 
-.!'SE .. 

4.4.4 

\ 

whe~e rdlvand r d2 are vectors fr.om the source point to the flash points on the 
-''I:"~. ----

• 
" 
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, 0 ~ 

Edge interaction gives rise to second and hi~her order ditfracted~rays 

emanating from each edge (21). These fields were neglected in this thesis. The 

),{llidi ty of this assumption is establ ished by comparison wi th measurements for 

plate widths greater than 2).,/3 in Sect. 4.15. Thus the GDT total field is taken 

tb-bé 

E 
T 

CTO field 

,t Rel 1 + Ed2 

~ 

fields diffracted~by 

the vertical edges 

The expressions detailed above could be directly evaluated ta compute 

the pattern of the 2-d plate radiating system, using subroutine DIFFLD (App.4) 
, 

ta evaluate the dif fraction coefficients. However, subroutines REF and DIFEDG ~ 

have been developed ta facilitate the programming of simple problems such as the 

fIat 'plate. Their use is detailed in ~e next section. 

) , 
4.5 Computine the Radiat ion Pat tern. 

A special subroutine package has been develop-ed fur this project ta 
, 1 

fac il i tate the computation of the pat tern of a general -class of-- simple radiatïhg 

--~-~~~'~'~-s~~~s~t~e~~;-~--:,~wiitthh~c~u~r~~~e~n~t~e~l~e~m~etInf[~Ltt~IûffinrnmTfi7.ftnat,TIaOflli~.~~~~~~~-~~~~~~a&~~~~~~~-:~::~~~J 

J 

~ ..... 

-
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~ubroutine , 

... 

STREF 

REF 

(DOTA) 

(UVEe) 

STDFLD 
r 

DIFFLD 

(INTN) 

FRESIN 

FREsN'L 

FREI 

STEDG 

DIFEDG 

(DOT) 

SFLD 

,.) 

\"' 

\ -

Section 2.3 

Section 3.5 

.Section 3.5 

and Appendix 4· 

/ 
Section 3.6 

r 

Appendix 2 

" 

Appendix 3, 

Appendix 4 

Appendix 5 

The principal SUb~outine. are ~nderlined. and the section where the theory is . 

found 1s g1Ven, along with the appendix number containlng the progYam listing. 

These subroutines are not claimed to,be the fastest or most accurate possible, 
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but are adequate for this work. The purpo$e and use of these subprograms for f1nding 

radiation fields is detaHed in this section, using the 2-d plate problem ~ an 

example. The main program for the ~-d plate radiation-pattern calculatlon iB 

listed in App. 7. Descriptions and details lof a11 the subprograms are in the 

appendices. 

. " 

c 

.1 
,1 
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1 - - - -- -~ - ____ _ 

A radiation pattern :1s calculated as flowcharted in Fig. 4.7. 
\ 

~ield angle ~ is 9wept thr~gh the fUÜ -:f8tf of the pattern in sufficierctly 

small angle increments 
f. 

6q, • 'For ea~h ~ , field vector i--fs- coriiputed; and the 

j \ radiation f\pld determined. 

The first step in the computation is to find the direct field 

E. If the ray originating at the source point s and travelling outward in 
s 0 -.... 

direction f encounters a conducting plane, such as the surface of the plate, it 
... ~ 

is reflected. and consequentlv there is no direct field at a distance ~oint inth€ 

f direction._ Then E = O. Otherwise, the source field is found, normalized ta 
B 

the field of an isotronic radiator and phase referred to point s by Eqn. 2.2.4~ 
~ a 

as 

Es = ( P x f ) x f 

where p is the polarization vector of the source. 

" The reflected field is found simply bv calling subroutine REF. 

REF calcula tes the field reflected in the f direction in the horizontal plane, 
. 

from a planar conducting su~face perpendicular to the horizontal olane, illum-

inated·bv a current element in that plane, with any polarization. Subroutine 

$}fREF lnputs t~e s_tà~'~ -~ndp.oi~~riec)ri~t~~se~tion of the conducting 
~ ~ --------------- --­-------
sheet wi th the horizontal plane, and finds the "edge cosines fi cos SA cos SB ' 

• 

• 
and unit vector û l (Sect. 2.3). Subroutine REl" determines the presence of a 

reflected ray in direction f bv the condition (2.3.8) 

cos 8 B > f 

If no reflected rayexists, REl<' sets E 

I~ r 

ta zero. Otherwise, E is found bv the 
r 



• 

-- - --4-14--- --

method of images as detailed in Sect. 2.3, and i8 normed to an iso~ropic 

source, and phase referred to point s . 
o 

, 
The next s t~p in the calcul:ation of the 2-d plate f s GDT fields 

(fig. 4.7) ls to determlne the-field diffracted from the platera vertical 

edges, Edl and Ed2 ' (Fig. 4.6). This Is accomplished by a CALL DIFEDG 

statement for each edge, with the appropriate angle arguments. Subroutine 
" 

DlfEDG is a specialized antenna radiation pattern calculation subprogram which 

finds the field diffracted from a straight edge in the field direction f with 
) 1 •• 

point source illuminat~on. STEDG inputs the endpoints of the edge, which may 

he any two points in three dirnensiopal space. and the angle Œ of the wedge 

which will be used to model the edge. STEDG computes the angle cosines cos BI 

and cOS B
2 

• the edge unit vector ê" and other quantities used by DlFEDG. 

DIFEDG calculated the diffracted fie:d Ed' by evaluating the edge related co­

'-\ 
ordinates and by using the Transition Diffraction Coefficient, as detailed in 

Sect. 3.6. The value of the current element's field at the flash point is 

found by calling subroutine §FL'D. which evaluates ( fi x rd") x rd and distance 

Rd' where, if Rd i8 a vector from source point s to the flash po~~At-, then 
0 

. -
,lRd l Rd , and rd = Rd / Rd' The 'TDC is evaluated as required by sub-

routine DI~FLD. which uses certain const~nts dependent on the wedge angle. 

generated by calling subpro_gra~"; STDFLD at the beginning of the main or?gram. 

Finally, DIFEDG norms Ed to th~ field of an isotropie radiator. and phase re-

fers it to point s . 
o 

If no flash point exists for field direction f,DIFEDG 

sets E ct- to zero. Thas DIFEDG computes the field diffracted by a straight edge 

by the best methods avatlable. 

The last step in the calculatlon is 

ponent fields to find the total field (Fig. 4~7). 

the SUmming~ of the com-

~.:-----'--
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p 

= E 
s 

+ E 
r 

., 

+ 

If the effect of a part1cular component field on the 

pattern 1a to be evaluated, that compQnent 1s set to zero, a d the,resu1ting 

pattern compared w1th the complete ver~ 

In this way, the radiation field 18 found for ach angl~ ~, 

and a complete oattern is calculated. 

4.6 The Geometrical Diffraction fields 1 
,) 

\ / 

In the -iOll~~:~ctions, \he radiation pa tern of the 2 .... d 
\ 

plate radiating sys tem will be studied extehsively over he range -of dimensions 

À/4<a <5À 

À / 4 < W < -5 À 

although larger or smaller widths and separa ions cou~d have been used. The 

number of graphs of radiation patterns 'ne ded did not justify the use of auto­
l -:, 

mat(ê\ plotting. Fig. 4.8 shows a matr x of patterns over this range of para-

meters, which ~rves to ~llustrate he behavior to be described. 

The GDT model of e 2-d plate employs a- wedge to mode1:.each 

of the two llustrated~in ~ig .. 4.6. The angle of the wedges 

used was set at l , after exploratory calculations indicated that the pattern 

" dependent on this parameter, and do es not change greatly if 

o the wedge is made as large as 10 . 

~-~ ------

. 
~------- ~ 
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,-;-.-.-. ~ .. .-.- ........ - ,." 
When the ',helds, diffraeted f'rom the vertical edges of the 2-d 

", 's 

plate arÈh"ineluded~ in""-tlfe calculation, the resulting patterns are continuous 
-- ]v,- ___ IO , 1~ -- ' . 

across both the refleetion and the shadow houndarv. The front region,pehavior 
, '/ 

of maxima and minima is carried over into the side region as a rioifle on the 

constant GTO field. The field in the plate's shadow is no longer zero but 
\ 

decreases &mooth;I.y across ''the shadow boundary. 

When the pattern of the 2-d plate is studied as ~ function of 
\J 1 

separatio~, a distinctlv dif~erent behavior for narrow plates (small w) and 
\ 

=ide Platfs ij foun~~. ~The.~~~~~~~_ n~rrow plates are smooth, with no pro-

-------oourlced nuÜs:-~shown inL'Fig. 4.8 for w = À /2. If the plate Is more than 

a waVeleng\h wide, the diffracted fields are we~k in the front '~giOn and 

the total field is nearly the same as the' GTÛ field. The shadow region field 

for the wide plate is the result of the Interference of the diffracted fields 

from ~e two edges. lt has a structure of peaks and nulls, and is at a sub­
) 

stantiallv lower level than the front region fields. Wide plate patterns are 

shown in ~ig. 4.8 for plates of width 2À and 4À. 
" 

ihe significant diffe!ence between a narrow,plate pattern and 

one for a wide plate is that the former are reminiscent of isotropie antenna 

patterns, while the latter are directional, resembling a cardioid for small 
/ 

separations-"_ AJ,though this classification of "narrow" or "wide" plates ,1.s 

usefûl oV,er the range of separations covered here, it breaks down at very large 

separations, where the pattern becomes isotropie for any wldth. The changeover 

from "narrow" to "wide" occurs _sharplv near w = À • and \the-patt~rn~ at that 

width t'eseÛlbJe "wide" plate patterns for small qeparation, and "narrow" for large 

I ____ .----~-~~~~-~ _s.pac:i~~, as illust.rated in-F1~. 4.8 .. -
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The narrow plate, patterns are remarkably Si~~r to Bayou's 

cvlinder patterns (8). Bv computing patterns for a range pf widths and separ-
, ,,~! 

ations. the angles at which the minima occur can be ploited as a function of 

separation, Fig. 4.9, and have been numbered in their order of appearance, as 
-~- ----~---~-- '-~.-~-~-~ --- -~ ~ ------ --- -- - -- -\ '--~--- ~._~. --_._ .... _-- ~------------~ 

ia Fig. 4.4. Note that the minima locatioÎl, angles are now a function of width, 

, ( , ... 
-~,,~ 

" 
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whereas the GTO angle diagrrun, Fig. 4.4,-uses the sarne curves for aIl widths. 

Also, the maximum to minimum ratio in dB can be plotted for various widths as 

a function of separation, Fig. 4.10. Anv narrow plate pattern can now be 

sketched~ by finding the minima location angles from ~ig. 4.9, and the ampli-

tude variation from Fig. 4.10, and recalling that the pattern i8 smooth. Fig. 

-4.8 for w rO. 5 À could be recons tituted this wav. 

4.8 Minima Location Angles for Any Plate Width __ -----------

It is-possible to draw a minimum location diagram similar to 

Fig. 4.9 for a plate of any width, but the exact curves are a function of the 

, . '. 

5 
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Fig. 4.11 Location angle diagram for the first 

(M = 1) miilimum. 

width, and chan~e considerab1v AA the width Is increased from 0.5 to 5. wave-
Q. \\ 

lengths, thus requiring a new fami1y of curves for each plate width. 

Rather than plot the minima angle curves for aIl the minima 

(aIl M) for a particular width, the angle of the ~th minimum can be ~raphed 

for a range of widths on the same axes, glvlng a separation-angle diagram such 
1 

as Fig. 4 .. 11, drawn fOl;.-t:he first minimum. From 14'ig. 4: 11 the angle of the first 

minimum can be estimated over a range of separations a~d widths. Ta find the 

angle of aIl the minima for separations up to five wavelengths, nine separat­
\ 

---~-~~-~~~~_.~~~~ ~-~-~-~-~~-----I---·------~- _~ _____ .. '_ 
ion-angle diagrams like Fig. 4.11 would be needed, one Jor eaCh ID{n{mum u~ to 

M = 9. 

--
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.. 5 
' .. 

A horizontal Ifne drawn on the separation-angle diagram, Fip,. 4.11, 

for a particulac <b vaH.1€, intersects the set of curv~s at width-separation 

(w,a) pairs having the first ( M .. 1, Sect. 4: 3 ) minimum at angle ct>. These 

(w,a) pairs for each cp can be plotted, Fig. 4.l2,/and a11 lie very near1v on a 

straight 1ille, which shaH be called a "cp-line". A separation-angle diagtam 

such ~s Fig. 4.11 ~nd hence a cj>-line diagram like Fi~. 4.12 can be drawn for 

") any minimum "M". A cp-1ine on the Hth diagram' -defines widths and separations of 
, 
1 2-d plate radiatin~ systems which have the Mtll..~minimum at the angle of the cp-line, 

or as nearly so as this linear approximation a110\.,s. _ 
~ lt- "\.1 

Bach cp-line has slope "s" and intercep't. 11a " and relates ,,,idth and 
o 

separation according ,ta 

a sw + a 
a 
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Fig. 4.13 

s'La PE s 

The slope-intercept (sfa ) diagram or 
o 

M-curve d;l.agram . 

1. 

Note in 1"ig. 4.12 that as cjI increases, both slope and intercept increase 

monotonically. If the slopes and intercepts of Fig. 4.12 are plotted on (s,a) 
o 

axes, then the M • l curve of the slope-intercept diagram, or M-curve diagram, 
o f 

Fig. 4.13 is obt~ined. athe~ 4>-line diagrams for M = 2,3, •.•. can be plotted 

to give slope-irrtercep1:: data for the remaining M-curves of Fig. 4.13. AIso, 
o 

4.14. 

) 

., 
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Given a particul~t.: width and separation, the -angl~s of the frOnt 

and side region minima can now be found. ' 

'" Specifying (w,a) locates a point on tlte Mth <I>-line (sucl:t "HS ---Fig . 

. 4-<12 for M=l). The <I>-val.ue of the <I>-line through tha't point 
• 

la the angle cp at 

\, • 



·~ ! 

J 

which the Mth min~um falls. In arder to identify the .-value, an i\ter­

polation must be made, usingF1gs.-4:13 atiirtr.14--as-liescri"bed--be-low-r-- With -

"'101" and "a" [ixedh:the ~-line equation represents a -.:onstraint on slopes and 

intercepts, 

" - t ....... a,= -ws +a 
a 

When this "characteristic line" is plotted on the slope-intet'cept diagram 

4-24 

(Fig. 4 .13). ft will eut as rnany M-curvef &S there are minima in the fron t and' 

side' region of the pattern. The intersection point of the eharacteristic Une 

with each M-curve gives the desired intereept value and hence the angle of the 

Mth minimum, via 1<'1g. 4.14. 

The ch1racteristic line concept immediately shows that the 
l' 

separation alone determines the number of M-curves which the eharacteristic 
q , 

,,""';J 
Hne will eut, and th us gives the number of minima in the pattern, since chang .. 

iog the separation moves the line up or .,down on the slape-intercept diagram. 
-, ! 

, 
The plate width corresponds -l:O the slope of the charâcteristic line and influences 

the location angles crf the minima, but not the number of minima. 

-
4.9 Moment Me thod Comparison 

best 1udged by comparison with résults obtained by an independent JieCbod'~ Shafai 

and EI-Moazzen (11) have solved the antenna-near-a-conducting-stnip problem by 

' . 
.. the moment method, by representing the current on the a.trip by a truncated ' 

" Fourier series and f1nding the unknown coefficients bv point matching an Integral 
~ . "", 



TABLE l COMPARISON OF FRONT AND SIDE REGION MINIMA ANGLES-oBtAINED BV 

THE MOMENT METHOD( 11). THE GOT PROr,RAM, AND FROM THE SYNOPTIC-
l 

GRAPH FI GURE 4. 13 • 

DIMENSIONS MINIMA L0CAT~ ANGLES TIl 

kw ka MOMENT METHOD GOT DIRECT SYNOPTIC 
COMPUT ATION GRAPH 

10 3 0 0 0 ù 

""'-

10 20 18 24. . 
60 ' ~ 59 

\ 

64 
-- - ---

93 94 95 

1 

20 20 21 -, 16 

45 46 - 52 
, 

67 65, 65 
; 

80 83 84 
. 

1~2 ... ........ -t 

101 101 

- 120 ' 122 123 
r 

-
2 3 0 .. 0 0 

5 70 71 58 
- • 

10 28 23 28 

75 73 73 
- - f---- - - .. --·-~O- ---

- - IJO 109 - - -- - - - - - - --
----- r--- - - -

20 28 26 26 \ 

, --

57 54 56 
- - - -

74 
~- -

74 73 
92 -93 . 92 

L 

110 111 111 
132 132 " 

" 133 - , 

-

... "-, 
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millima estimated ta about + 30 from the published moment method patterns 'of (11). 

Col. 2 gives the minima angles 'eoIDPuted bv the GDT 2-d plate pro~ram for the 

same dimensions. Comparing the numbers shows the degree of agreement. The 

numbers of minimà for-the very large separation ka = 60 ( a c 9.6À ) obt~ined 

by the moment method and bv the GDT are completelv different, being 10 and 20 
i 
',~ "'" 

respeetively. '~ 

The aeeuraey of the graphieal summary of the GDT method minima 

angle behaviour, Figs. 4.13 and 4.14, ean be judged by eomparing the minima~ 
1 .-

angles given in Col. 3 obtained dir~e&!y from the program"Col.2. There is 

little 108s of aeeuracy, and the agreement ~ith the moment method angles, Oo~.l 

is still very good. 
'\ 

4.10 Pattern Amplitude Paramet~rs 
o 

For the narrow plate, the kes of the front and sid: region 

nulls are given by Fig. 4.9, and in arder to reeonstitute the 

ly it fs sufficient ta use the maximum to minimum ratio, ~r~~.~ig. 4.1D. •. -J<'or--

_--- -----'Wide--pla-tes,--irowever, the pattern has more :tr~ture. While the front, region 

---res-embles the GIO field, the" side region has -Vripple of unknown ampli tude , ~~ 
, _ ~n IL"",,, 

'-

a mean value Of 0 dB and the shadow region field crecrease8 ta an un ~ 

Some T'1eans ls ne~ned--to -speGif'.y.--1:.hese __ uI!~nowns to' determine the 'Patterns~O'r 
--- --------.... ----~--

arbit~ariiv chosen widths and separations. 

A 8uitable side regi'on amplitude l>aYameter "Sp" te th-a heigl-tt of 
• p 

the sid~ rp.gion peak nearest 90~. var large ~p.p8rations,·the G10 field i9 uqed ta 

Î 
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-- Fig. 4.15 The "side peak" SP amplitude parameter. 

sketch the front region field, with the nulls partIy filled in, and SP 

gives the amplitude of the side regiün ripple. The l~tién angles of the min-" . .•. 
ima are obtained _from Fig. 4.13 and 4.14. 

----~-----------~-~ -

are ·~p~n~e~o~r;-t=tw~o~p~e~a~k~s~i=fnrlf:::;r~o:nI:t=il tF==Ja:m<nEl=si;:de--=r-e:g-i<m~ _Sj) e ci fi_es the he i gh t 0 f th e 

For smaller sepa,rations, where there 
r" 

o~e~~~est 90°. For very smal~ separations for which only one peak occurs, 
--------~--------~\-~ 

1t~ ~ignt is still given by SP. Thu~, spii:a·useful T>arameter for a11 widths 

Fig. 4.1':; shows thaJ:. parameter 8P i8 a smooth function, tending , and separations. 
.-

" 
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towards 0 dB for lar~e separatiO:1s, anel-. '6 d:3 f"r 'small <;lource A?llcing. 

The shadow region field i~ the result of t~e interference 
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two vertical edge diffracted fields. The nulls are not given by previous graph-
, 

ical data; but the exact structure of the back region field is usually unimport-

1 

ant," and is adequately described by its peak value, given bv the "shadow field" 
l \ 

, 
parameter, S1", Fig. 4.16. As may be e'xpecteQ, for wide plates S1" is lower than 

for narrow one:s, and as the source senaration distance· .... ecomes large, 51" tends 
~ j 

)'. - - ---
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Previous discussion concerned. the patterns of the "tall" plate 

and are valid as long as the diffracted fields from the two horizontal edges 

can be pe~}ected. When the plate heigltt is reduced, the contributions' from 

the horizontal edges mus t be included. 

The computation of the diffracted field for a horizontal edge 

1 j 
is not as simole as for the vertical edges, where the point of diffraction is 

_. alreadv known, and the source field i5 parallel to the edgë. The diffraction 
~ 

~~oint, or "flash point" must be found for eac.h:fiel~ng angle {3 

. 0 
equal angle B in J:'ig. 4 ~F1-.- As the fieldaGgle increases from 0 . the flaah 

o 

. point moves from the center of a horizontal edge, towards its\end. The angl,e 

, -
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which makes the flash point m'Ove off the end of the edge is the "diffraction 
..;-~-... 

\ 

boundary" (DB), S'éct. 3.2.' At this angle, the horizontal edge diffracted field 
~ ~ 

contribution vanispes abruptly. This results in a second diffraction boundary 
? ' 

near the shadow boundary, where the diffracted field reappears. Thus the hor-

izontal edges cOntribute to the pattern 'only in the front and back,. re~ions, and, 

neglecting vertex diffractions, the side region fields are independent of plate 

height. 
, 

A further comlll!cation ls introdu<:!ed by _th~_fac~J:hat tl1.e_~ourc~ 

_--4f .. i~eld-isnot general~y_~rpendicular to the horizontal edges. Thus 'the dif'7_ 

fractions are neither pure "hard" nor "soft", 'and must be comouted using the 

(} .. ~, ,) 

"edge-related" coordinates (Sect. 3 . .4).' ~: \ 
1 

The horizontal edge diffracted f{Éüds are inc1uded in the computer 

program slmplv hv adding a CALL DIFEDG statement for ~ach horizontal edge ta the 
D 

flow chart in Fig. 4.7. Subroutine DIFEDn automaticallv fings the flash point 

and comput,es the diffracted field, or if the field point lies beyond the dif-

fraction boundarv, sets the diffracted fiel to zero. 

ET = Es + ER + Edl + E
d2 + Ed3 + Ed4 

)/ 
~ields diffracted .,,!~. GTO field Fields diffracted 

by the vertical by the hori.ontal 

edges ~' edges 

4.12 The 3-d Plate Patterns 

The front and back region of the pattern for a five wavelength 

/ 



't 
vide plate, with the source four wavelengths away 1a shown as a function of 

plate height in ~ig. 4.18. For h > 20 wave1engths, the pattern including the 

,-horizontal edge diffracted rays, is identical to the corresponding 2-d plate 

pattern. The horizontal edges are so far from the source that ,heir diffract-
1_ 

ed field i9 weak, and also, the diffraction boundaries fall near 00 and 1800 

and so these edges only contribute over a very narrow range of an~les. As h 

is reduced, the diffraction boundaries move towards the reflectioh and shadow 

boundary. At h = 14 A o 0 the DB's are 17 and 163 , and the pattern is almost 

the same as for a tall plate. At 8 À, the front region fields are not greatlv 

dhanged, but the chief back region null angle has moved considerably. By h = 

6 À thia null has disappeared and the fields are smoothing out. As the he,tght 

is further reduced, the fields tend towards the isotropie pattern which would 

be expected for a very short plate. 
,~ 

4-31 

The discontinuity in the patterns at the DB angles is due to the 

abrupt vanishing of the dif~ed fields of the horizontal edges. Reducing 
,~ , 

---th~--hel-ght- of' -the plate causes_ the four corners or vertices to be strongly 11-

luminated. At present no coefficient has been developed to represent the v~r-tex--~-\ 

diffract~on proces8. The field would have ta be ~ound bv a hybrid technique 

using equivalent currents on the corner. The 1ump in the pattern at the DB 

would be smoothed out if the vertex diffracted fields were included in the 

calculation. 

If the 3-d pattern is studied as a fu~ction of height for a large 
~ 

number of widths and separations, th en three different regions of pattern be-

havior can be identified. Tall plate patterns are insensitive to ~late height, 
• 

with the DB angles near 00 and 1800
, As the height is reduced, the DB angles 

move relatively quickly to coincide with the reflection and shadow boundaries, 
.. " Il 

\ 
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Fig. 4.19 The three re~ions of hei~ht for the case where 

width = separation. 

and in this intermediate range of heights, the back region pattern change~\ 

very quicklv with height. In ~ig. 4.19, the three regions of height have been 

established for the square proble~ with width = senaration, as a function of 

~ width. The. case of height = width = separation, alwavlI faUe in t'Ure ihtermed--

iate ZOne of height. 

""or-- 4.13 Comparison with Burnside 

Burnside (3) has developed a GDT program ta compute the fields 
1 l 

qf a plate with n sides, and in order to verify his orogram, he compares his 
<' 

computations with measurements for a 12 inch square nlate at 10.43 GHz, which 
.. 

makes the plate 10.939 À on a side. ~igs. 4.20 and 4.21 compare our comput-



'., ~ t 

4-33 

ations with Rurnside's results. The Burnside (3) curves as shown here can di f- i 
~~' 

fer by up to + IdB due to the copying process used. 

Fig. 4.20 compares our computations with Burnside for a current 

element source centered in front of the plate, separated from it by 5.96H. 

AlI l h h III IS ü
• " patterns are normer to dve t e same va ue at t le pca ( near Our 

computations are remarkably similar to Burnside's computatIons. The depth of 

the mInimum at 00 is a poor point of 'comparison, as ft is critical1y depenclent 

on the source spacJ-ng. Thus if the spacing is increased hy 0.03~n to 6.000À, 

then as shown in Fig. 4 L 20 the depth of the minim~ changes drastù:aIly. Thus 

1> 

the only silinificant difference between our computations and Burnside's is that 

his patterns have 7 mi nima in the side region where ours have 8, as 1 s pre-

dicted by the foregoing sections. Tt is not knowri why Butnside's GDT caiculations -
in Fi!~. 4.20 differ fromour computations-'in this way. 

rn Fip,. 4.21 our computations are compared \vi th Rurns Hle' s experimen tal 

pattern for the current element separated from the plate by 5.96U, hut off-

center by 5.027;\' For this Sliturce location, our computations arc almost identical 

W.ltt}, Rurnsirle'5, sa only--his ~asured pattern is shown in the f1gure. 

It 15 instructive to ask \o/hy the pattern wlth the -Burnside dimensl~ns' 

and the centered source, Fig. '4.20, cloes not appear to have discontinu1ties ~ 

at the diffractIon houndaries, as do the patterns of Fig. 4.18. If the b'llck 

r~glOn of Fig. 4.20 IS plotted for a range of heip,hts near h = ]0.939>", FIg. 
<. 

4.22, lt 1S found that the discontinuity is very much pres,eni nt h '" 12 and llÀ, 

• 
a,prl is a step up ~ith increasing angle, whereas at h '" 10À, it .lS a step down.-

~ 
Tf~'e Burnside height is very near the ehangeo'ver from step up""'o step clown, and 50 . 

.:/ 
the discontinuity is not readily apparent, being cffl'ctive1y cancel1ed out, due 

to the fortu!tous choice of the dimensions userl. 
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4.14 ~ad1ation-Fatter~~~surements 

To ptovide a sound verification of the computed radiation 

patterns, exPerimental patterns~were ohtained in a 300 MHz - 3 r.Hz anechoic 

chamber designed especial1v fot radiation nattern ~easurement. The anechoic 

chambèr and associated ins trumentation is' described by Kubina (12). 

The exnerimental model, Fig. 4.23, capitalized on the x-y 

plane ,symmetry of the prohlem. Tt consisted of a circular ~rouqd plane of 

0.16 cm (1/16") thick aluminurn, supported at the center bv a 30 cm squa"r~e"-------------j 
, j 

i 

"support plate" of 1 cl'lt thick aluminum, to ensure the ground plap,e 's flatness. 

The source antenna ~.Tas a monopole 1.5 cm high mounted at the center of the 
"*- --

-ground dise. A 0.32 cm (1/8") ,thick aluminu!ll piite-motmtea at- righ~"angles_ to 

the g-round plate -was usêd to model the fIat pl~te. The ~round dise and supnort 
1 ' 

plate ,were drilled and threaded so that the fîat' pl~te could be moun~~d with 
{' 

r---------.t1late to monopole separation distances of a = 10,18.45, and 21.9 cm. !l'olo 

flat pl~tes) were used,. of l~~and 30 cm square. Thus the plate width was ':.--) 

\. 
w = 10 or 30 cm, 

r 
and because of the ground nlane confi~uration, the effective 

heights were h (= 20 and 60 cm. 

Measurements were carried out at 2.0 and 2.4 GHz. RêQfeViftp 

-----~-

fbattferns Jo/ere _~~~e_n_. __ Th-=--_ -=n_ten-na~el was-il,lumi-nated bv an opeI}::. erule_d rec-
.~--~~ ____ ---L. r' : 

tangula~ waveguide mounted in the plane of the ground dise" about7 m-_-~l'Orn 1t-tlT1'le>----

source antenna. The ground plane configuration was used ta minimize the ef- 0 

fect on the radiation pattern of th~ ~able tarrving the received signal fro~ 

the monopole to the detection equipment. ' 
, -

-\ 
The' ~xperimental errar in the measured 'Oatterns is estimated ta 

f ' • 

---
- -be~ ~ dIt-in --amoli-tude in i~e_ front and side regiont and ± 2 degrees in the 

'1 

! ' -.-:r 

L 
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v 

'angular - PG41ition of- any -feature 9f ~ pattern. Larger exoerimental errors 
'"', -

~ '. are oresent in certain regions of the patterns: 
c.. 

o 
In the front region at dl = 0 , when the -separation ls near that for a 

. 
r,TO null, the depth of the--null is very sensitive to separation distance, 

'J 

and operating frequency. In such cases the experimental ~XJ'0r is large 
<, 

near 0
0

• 
fI'''r 

~ (2) Similarly, the deoth of ar.v front region null due primarilv to GTO 

" . ~ . 

----------

effects, ls sub1ect to a large experimental error. 

the pattern, the Heîô lB tlie sum- cif -edge and- - -~--

vert~x difrracted components. These fielgs are-sensitive te 'departUY~-------~ 

from the idea! in the nhvslcal model such as ground plane flatness and 

- -:l-e-v~Jne~~_aJld ta the illutninating- waveguide position and an~ular align--

ment inaccuracies. 0 

The measured patterns were ~oun~t'td. ~v1!Ûlletric to within -+ l' dB 
-:_~ --~-+ 0' -

and - 1 degree in the front and side region, but on1'L very roughly svrnmetric 

in the back region. In the next section, measured patterns are shownoo't1nrjl~vr-----___ '--

for 0
0 

<: 4> < 180
0

, and in general the better half of the back region t8 shown 

in the diagrams. 

---"--"-'---~-
4.15 Comparison with Measuled Patte.r.nSo __ 

-------~---=- -
- --=-- ~--

- -Ti'igs. 4.24 and 4.25 compare the patterns measured at 2.0 and ... 
2.4 GHz with computations made with both the two- and the four-edge plate , . 
models with dimensions corresnonding to the physica,l dimensions of the ex-

l 

" --------



------

perimental model, given in the last sec~on. It is seen that in ~eneral 

~ the calculations conform to the measurements. The apreement is best in 
r-

the si~e region of the patterns, gond_in m9_~9f the front regions, but is 
---[ . --- ------

4-39 

-------
often poor in the back region. 

It has been emphasized throughout this chao ter that the vertex 
, 

diffracted components of field have been neglected~ in the calculations. These 

components of field are e~ected to ~e large near the diffraction boundaries, 

in the side region, the vertex diffracted components on field are exnected 

1:0 be negH-gibcle._ancLJjldeed the -measured and caYc,41ated patterns agree best 
---------------- \ 

in the side region. ~or this reason, in everv case the exPerimental pa~ern 

has heen normalized to the same peak value as the computed pattern in the 

'-1 - -------- side -t::egioa. _ 

1 

Front region agreement in manv patterns is ver'" good; -Fig-.---4-.--l4--- - -_ 

(a), (h), and Fig. 4.25 (c), (d), and (f). In sorne 'patterns, 1<'ig. 4
ù

.24 (f) 

an~ Fig. 4.25 (e), the disagreement occurs at 0 = 0 0 and can be attributed ta 
~---- ----

a GTO eff~ct (see last section). In gener~l, ha~ver~~ vertex diffracted 

components of field in the front re~ion are nat negligible, especiallv near 

the diffraction boundarv, and can explain certain disagreements. Thus the 

increased front lobe width in 1<'ig. 4.24 (d) and Ce) might be due to vertex 

dif frac t!!ons. - ,~- ::::~;:n--;;---.=--..1o.......---' In other patterns, especiallv for the lft--em Blate, thtLD.B.s 
- ----:------

~re--near oP and the vertex diffracted cottlponents of field may have a con-

• . -- - 0 
siderable effeet in a region near O. In Fig. 4.24 Cc) the horizontal edge 

l' - -

diffracted fields are apparently eancelled bv the vertex diffraeted field~ . 
. 

But in lfig. 4.25 (a) the veJ:tex diffractions smooth out the D':B. discontin-

. uity and somewhat reduce the field value near 00
• In Fig. 4.25 (b) the dis-

\ 
\ 
1 
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Ir 

, 
t; 

continuitv is smoothed out but the cOlIIT>uted level near 00 includin~ the hor-

izontal edge diffractions is confirmed.-

In the back re~don of the patterns, the total .... c;DT field is the 

. _____ -.s.um...QL..th~our edge ~if~~~cted an~ the four vertex diffracted components. 
~------- - -----

The vertex components can have a magnitude comparable ta the edge difrracted 

Sd the meaaured patterns might be expected to displav behavior com-

different frpm the comouted patterns. which ~nlv incrucle edge 'dif-

fractions. It i8 found, hmo1ever, that in most of the measured patterns; 

__ ]i&.. 3.)4 _(a), (e). (f), and aIl of Fig. 4.25, chat the measurements and 

calculat.ions dis lay simi,l.ar,behavior, althougb "agreement" cannot be claiwed. 
\ -

a back region null not found in the computations, 

Fig. 'Fig. 4.25 (a)', Cb), (c), and (d), which could be 
.' 

due to the Interference of tne vertex 'and the edge diffracted field~. In 

Vigo 4.24 (c). ,note the measured pattern does not disolav the back region 
-----~---

(1;. 

lobe due to horizontal edge diffractions which la seen in the calculated 

pattern. The front region lobe due ta thase edges was also not found in 

\ the measured pattern. But the measured patte~n in 'l:'lg. 4.25---<0:-) tends to , , 

. confinll the lobe due to the horizontal edge diffractions in both 'the front 
- - ...,<. -, -=~~ 

and the back regions. 

Other disagreements in this set of patterns are worthv of note. 

The calculated minimum in ~ig. 4.24 (d) at 0 = 40° ts not weIl confirmed bv 

(J the measiIl"e-d-lTIinimum wM~c--c-urs at 48
0 

and is_no.Lnearly as deep. This is 

primarilv a GTO minimum and is not expected to be reliably measured, as dis-

cu~sed in the last section. 
~ 

In l<'ig. 4.24 (a) the measured and exnerlmental minimum near 500 

does not agree weIl. The reason Tor tois difference is not apparent. Also, 

.. 
" 

/ . 
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- - --- -------"----

....... 
the back region in Vigo 4.25 (d) i8 gro9s1v in disagreement. A~ain, the 

, 
, 

cause of this error la unknown. 
~ 1 

- ----------

, 

....... -~- - .. ----

Fig. 4.23 The experlm'rntal mode!.., A square alumlnum 

plate 19 fastened at right angles to-a-ll~a~r~g~e-----------------~ 

__ circular ground plane, and- -19 illuminated by 
-- ---~ -- -~ --~ 

-----

,f 

--- --_fJ __ 

• 

7
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5.1' Parame tric f;raphs, °arametric "'amj lies, and Synoptic r.raphs 

The investigation of an ântenna bV classical techni9ues seeks 

tlie "pattern function" wl'iich gives the radiated field 4.n terms of the dir-
c 

ection ~f the fiel'd point and the physical dimensions of the particular an-

tenna geometry under consideration. Such an explicit function provides con-
00 

siderable physical insight into the behavior ~f the radiation pattern as the 

5-1 

antenna's dimensions. are varied-. Within ~ iixed antenna geometry, an analytic 
~ , t 

pattern function generates the l'<1ttern-fe-r--anv--di~sions_llll11lediaTly 
, ' ~ . 

and di r-

ectly with a minimum of calculation. Unfortunatelv, the class of antenna 
, 

geo~etries in which pattern functions have been found Is severelv limited. 

~t the opposite extrewe, the pattern for any antenna geometrv 

whatsoever can be obtained bv measurement with a suitable model. Such measure­
{} 

ments provlde little insi~ht into the behavior of the pattern as a· function of 

the antenna's dimensions, unless an extensive atlas of patterns is compiled for 

many'sets of dimens . .ions. This i5 a difficult and expensive undert~king since 

most antenna models cannat have their dimensions 'Changed easilv .. 

F,lectronic computers allow the solution of radjation problems 

with compl~x antenna geometries, but this ':'Soliltion" i9 in the form of numerical-
• 0 

Iv generated radiation patterns. The compute~ program allows the numeri)al in-

vestÜatio~l of the radiation pattern over_ a3-Lde-~ge -or an~nna dimens~ons --- , ' 
- within a g~emerrv,- but-the results of such a studv come in the--.......-..-......ç:--~-~-~-=== 

--.--~;è- :un:bers of numbers ~hat are hard to i·nterp~et. The instght -.of 1 

1 

) 1 

, 1 

-~-- - c __ 1 
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pattern function is lost. The diffierlty lies in ra::::~i"" thi, numeriea] 

pattern infor~'ation to a succin~s.t form which aids in understanding the .phys-ical 

processes governin'g the antenna system'. Resorting to graphical present~;ltion ~ 

~ 
wpether by manual means or computer graphies, and plotting an extensive ~tlas 

of patterns is a primitiv~ _Ur/st step towards sucl-t Interpretation. 

A means i~ neLeded Q,f deducing- from the numerical data th~ ~ 

behavioral traits 

of the particular 

of t~adiation~a\tern 

antenna geometry. \ 

in terms of the physical ~me1.0ns 

V 

In this,thesis, an"'attemPl: is made ta cope with this infor-

. -
mation di'tillation problem. The significant features of the radiation pat-

tern of the· antenna system are first identified. For example, for ah antenna 
:r 

6 with a broadly direçti\nal p!'lttern, the.A~yiber of maxima and the numb'er of 

/ 

minima in the pattern, the angles at which these maxima and minima occur, 

~ , 
and the relative heights of the maxima and minimf.t.m.:!.ght . ..Q.e considered to be 

- 1 ~" • '- J 

signific~nt features. For a highly directive anten~a, the height of the main 

lobe, t+ beamwidth, and the m.~,imum sidel~be level ·"-;·;~t he eonsidered as the 

important ,pattern features. The behavior~l traits exhibited by these features 

as a fUn~tiOn of the :ntenna dimensions ean he extrared, from the numerieal 

patternsj and expressed grap~ical1y. Thus for example the number of maxima 

or the a~gleS at which the maxima occur ~n the pattern as a function of an 
1 

antennà size dimension ,cou1d 

Consider the 

the beh vior of one pattern 

be plott~~ . 

problem' of 'llY 
feature Il ( " as a 

'\ 
': 

dimensions sI and ~2 ' over a sP~c,ifJed range 

documenting in graphical form 

function of two antenna physical 

~I=======------~-----

• 

" 
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• ..:) 
L! -

- --- ------~~- -~--
~~------------

" 
Su < sI < .slH 

0 

, 

s21. < s2 < s2H 

~ 
For a fixed value of one dimension, say sI' the value of featwre f (the heip,ht ,0 

~ 

~~,-----~ ___ ~o,,-,f. the main lobe-t- Jo'!!' examjl1e) can be,J>1otted -agaiD~J: thé other dimensio"-n~.-----,,s'-'l2-'-'~_~ __ _ 

, 
" 

A curve giving (f 'SI) pairs can be drawn for N values of 8
2 

over the range under 

consideration. The, data for- these' c'urves is extracted from the comPfted num-
t.- • 

~erical radiation patterqs.' The result::(s a "parametr!e graph" describing the 
'. 

behaviora1 traits of feature f as a function of size ~ariabl:~si for N dif­

ferent values of s2' 

~~raIhetr;l.c graph~ represent a considerable reduction of the 

computer '8 raw numerical radiation pattern data. A set of such parametric 
" ) \ 

) 
.' 

graphs describes thep-behavior of the sip,nifieant pattern features in a way'--that' 
: l , 

~ lend's itself~ 'to interpretation and henè,e unde,rstanding (lf the phvsiça1 proeesses 
,() 

of the antenna system much bette~ than, ~oes an ay'as of patterno/-" 
~ . . 

. " The parametric p,raph described above does not display the data 
1 

ih its most meaningful form. ~e indep~ndent variables are the antenna .ij.hys-

ieal dimens.ion~ s~ and s2" The,'va1~e of the dependent 'variable f shou1d be 

plotted on a z-ax\s against SI and s2 on the li[ and y axes. This d~sp1ays the 
.f>. 

va,lues of 51 and s2 whieh p,ive a l'articu1ar value of f. The infonnation for 
' . • 

, 

such a graph is avallable direct1y from the parametric graph describerl above. 
.' " ,-------------- - - '---;: 

Several constant f con tours can be plotted, _iQx----di-f-ferent values of" If. - Such ln 

~ 
" 

-- 0 -

,. 
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\ 

a graph will be ca lIed a "parametric familv". 
~ -~' ~ 

~----------~----------------~----------~o--------·----------------
feature f against; the independent vltriables ,8

1 
and s2' ~though ,panametric 

Tt displavs the value of-pattern 
.., 

{, î 
1 

al 

, 

familv contours contain _the same infarmation{lS--a_parametl'icgrap14 _~'-...oI.illn=-_________ _ 
"1: 

formation is displayed in a much more méanilTp,ful wav. '" 

, 
--- -I.f !t-is -possib±e--to-r-ep-resent -aIl of the curves in ..the par-~ _______ . ___ . 

- ~ 

, 

ametrie familv by an anal vtie function determ:f,ned empirically from 1the p~r-

ametric fami~raph, of the form 
'<:::::> " 

~~~~~ . 
where Pl and t

2 
are "familv ~~etf!rs" which,are functions o.f. f, ,then a 

further d:i.st,illation dlf thjnumer~~'al radiation patt~rn is readPv achUved. . '- , ' • " '0 . 

Thus, for exatnp'le, if the curves in the pa,rametric familv are straight lines, 
. . 

then the \"param~tr~c fa~ily 

'2 = 

> where - the family pat'ameters Pl and P2 are t~ slape and the intercept of the . :~ " 

law" would be ~ 

straight l1ne. 

In gen~ral, the farnUv par'ameters Pl ind P2 will 1,e di fferent 
1 ~ 

for each contour in the parametric familv, and hence are ",functioLls. of the 
l' ~ , 

feature value f. Familv parametel;' P2 can be graphed against parameter Pl' 

" , 
and ~ecause Pl and P2 are both functions of f, the fëature value f will be 
. . ~ f 

•. : l 'a known fun~~~~i~n alonr;' the .f';lrve .. ThUS, ~ separ,8se cùrvej on t~e-
,-.- ·--'-=parcameTIlc tamily graph can he reduced t~ 'one cu~ve on tHe (Pl' P21 grapli-;-'--

"::! "l] .. 

This single curve contains a11 of -the information of the N parametric graph 
f 

Q' 

,1 IJI" 
" 

., 

.... \ 

.3 

, . 
-o 
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curves, and sa the (Pl' P2) graph will be called' a "syno1>tic p,rapn". A. syn­

optic graph i9 based on the paràmetric graphs and hence on the co~puted data~ 

and aIs a on an empirica1 function describinp, the curves of the parametric 

family. The ~rm of titis empirical re1ationship determines the dependence 

. - -
of tbe family parameters Pl and P2 on the antenna dimensions SI and 9

2
, This 

-'-' 

procedure is illustrated by the current element - plate radiatine: system 
~ 

analysis in the next section. 

If a set of parame tric graphs and/or synoptic graphs are 
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constructed describing tne l;havior of the significant features of the pattern 

on the antenna physical dimensions SI and s2' the graphs can be u~ed ta re­

construct the pattern for any values of the size variab~es SI and 52 over the 

range covered. If the "significant featur~tI of the pattern have been carefullv 

selected, then the "reconstructed" pattern should be accurate enough for practical 

purposeè. Thus parame tric graphs and/or 9ynoptic graphs can be used ta generate 

patterns for antenna dimensions 9
1 

and 9
2

, for which no explicit 'l'un of the 
, 

( 

computer 'l0gram has been made, and so constitute a 'îp-attern f;eneratQr 

Function" (PGF) for the antenns system. The classical pattern function 

i8 only one form of the radiatiog system's PGF. 

F.ven if an analytic pattern function can 'be obtained for a 

pa~icular antenna geometry, the design of the a~tenna ta meet predetermined 

\ ( 



.. 

specifications le still an Iterative procedure requiring manv calculations 

and comparisons, based on the assumption that it 18 pO$8i~le to realize the 

" specifications with the given antenna geometry. However, if a formaI "inverse" 

of the pattern function is possible, then the realizabilitv of specifications 
, 

Is immediately apparent, and the choice of physicai antenna dimensions ta 
~ \.. . 

achieve the nesign is available directlv.,' Unfortunately few antenna geometries 
-----7( ~ 

have mathematical pattern functions, and fewe1l'til1 haye an identified formaI 
'- J' 
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inverse. "----..~ 

Parametric and hence ,synoptic graphs can be plotted from numerical \ 

radiation patterns, or from patterns obtained experimentallv, or ev en generated 

by a mathematical pattern function, bv thë systematic procedure described above. 

These graphs have a powerful pattern p,eneration capability in that approximate 

patterns can be sketched immediatelv from parametric or svnQptic graphs for any 

antenna physical dimensions ~n the range covered. The p,raphs make apparent 

st once the ~ealizability of a given se~ of specifications with the antenna r 
under consideration. Further, ~he ehoice of antenna dimensions to 

given performance i9 obtained directly from the parame tric or svnoptic 
.. 

Parametr!c and synoptic graphs May be usef~l for design purposes. 

'\ -
" 

. " 

• 
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5.2 Parametric Graphs and a Synoptic r.raph for the Flat Plate Problem. 

In this thesis the H-plane radiation patter:!' of urrent 

element centered in front of a rectangular plate, paraI leI to t "vertical"" 

edges, is ·studied in detail by the Geometrieal Diffraction eory method 

5-7 

of ~nalysis. 

as a funetion 

General information about the -behaVi~r,.of the radiation pattern 

of plate height, w1dth, and source sep1ration distance ls read11y 

generated. Regions of height are established (Sect. 4.12) for whieh the plate 

can be considered: 
, 1 

i) tall, where the horizontal edge diffraeted fields have little effect on 

the pattern, or 

i~) intermediate, in which case the front and back, rep,ions 01- the pattern are 

sensitive to plate hei~ht and the horizontal and versieal ed~e âif~racted 
'"... 

fields are of comparable magnitude, or .. 
iii) short, in which case the horizontal ed~e diffracted fields dominate the 

front and back' regions and the pattern is a~ain insensitive to plate height. 

These results are summarized in table II. Tt is also found that, as a function 

of width, the pattern behavior is different in twp regions, for which the plate 

ean be considered "narrow" or ''wide'' (Sect. 4.6). Narrow,plate patterns are 

often reminiscent of isotropie patterns, whereas wide plate patterns' are dir-

eetion~l (Fig. 4.8). 
-0 

The pattern of the current element - plate radiating system for 

any Plat~~eight h can be derived from the pattern for large h and the same 

plate width and source separation, by the addition of the components of field 

~ diffracted from the horizontal edges (Sect. 4.11). Thus a systematic invest­

igation' of the "tall" plate pattern yields useful information for a11 hei~hts . 

. 
"' 

, . 

. 1 
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TABLE II: Re~dons in wh!l.ch horizontal (H) and vertical (v) edge contributions 

, 
" 

dominate. 

Region of 

Angle 

Region of 

Plate Height 

Short 

Intermediate 

TaU 

Front 

--

H -

H +--V 

0 

V 

Sid·e. Back 
--

- ,"?l'" \,.. ---, 
• 

V H 

V 
, 

H + V 

V • V 

The taii plate pattern is studied in r.hapter 4 by the parametric 

gr~ph - synoptic graph approach over the range of .. w1dths and separations 

>"/4<w<5À , ' 

...... 

C.- À / 4 < a < 5 À 

The significant results are summarized below. 

The investigation of the talI plate radiation patterns i8 begun 

with a study of the simpler "narrow" plate patterns and then extended ta in-

1 

clude plates of any width over the range covereq. The significant features , 
/ 

/ 

. of the narrow plate pattern are identified as the numbet of minima in the pat-
<.;, 

tern, the angles at which these minima oeeur in the pattern ("locat~on angles"), 

and the ratio of the pa~t~rn ma~imum to the pattern minimum. The behavior of 

v 

..- .. 

1 

<u 
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these features as a function of the plate width and the source sepa~ation 
\ 

distance is determined by running the computer pro gram for a set of discrete 

vqlùes of width and separation. 

lt is found that the number of minima in the front and side 

region of the pattern is stepwise proportional to the source sep~a~ion dis-

tance \ 

(J/I minima = 2 x Separation -

where the separation in wavelengths is r~~nded down to the nearest half 

wavelength. The parametric graph shown in Fig. 4.9 gives the num~er of 
r 

minima and their location angles as a function of an antenna size variable, 

the separation, for various fixed values, the second antenna size variable,' 

the width which fall in the "narrow" range. This l?1:irametric graph is readily 

derived from the computed radiation patterns. The parametric graph sh~wn 

in Fig. 4.10 givês the maximum to minimum ratio as a function of sep{;ation for 

various \-1idths and is a1so readily obtai1(ed from the numerical patterns. These 
1 

two parame tric graphs represent a considerable reduction of the iaw computed 
1 / 

da~a -and present the behavior of the ~ignificant features of the pattern in a 
,~ , 

Il 

way which aids in understanding the physical processes of the radiating system. They 

conta~n enough information ta reconstruct the narrow plate radiation pattern 
1 

for any separation ovet the range 'covered, and for a small range of "narrow" 

widths. 

. The shape 04 tbe plate pattern as a function of sèparation and 

width when the width does not fall in the narrow range can now be considered. 

The significant features of the pattern are identified as the number and loc-

l " 
ation angles of the minima in the front and side region of the pattern, the 

relative height of the maxima and the mihima in the side region as represented 

1 

<> 
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by parameter SP (see Sect. 4.10), and the value of the fiein in the pIate's 

/ 
shadow as given by parameter SF (Sect. 4.10Y. Parametric graphs showing the 

functional dependence of amplitude parameters SP and SF aS a function of the 

source separation distance for various values of plate width are readiIy . 
tJ 

derived from the computed patterns and are shown in Fig. 4.15 and 4.16. 

The number of minima in the plate pattern for anv width is 
o 

found to be stepwise proportional to the sep~ration distance, exactlv at in 
1 

. the "narrow" plate case. It is helpful to sequence the minima in order of 
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appearance as the separation distance increases as detailed in Sect. 4.3 an~ 

Fig. 4.4, and to consider each minimum ~ as a separa te "significant pattern 

feature". A parametric graph giving the location angle in the pattern of 

each minimum ~ as a function of source separation distance for various fixed 

widths is easilv plotted From the computed numerical data. Fip. 4.11 i5 such 

a parametric graph for the first minimum (M=l). Similar parametric graphs for 
o 

M = 2,3, ..... ,9 would be n.e-aessary to describe the oehavioral traits of aIl the 

minima over the complete range of separations under consideration. 

Any of the abd've parametric graphs, Fig. 4.9,4.10.,4.15, 

4.16, or th~ set represented by Fig. 4.11, could be replotted as a parametric 
!L 

f'\lmily grapJ' as discussed in Sect. 5.1. This work purque~ this studv onlv for 

the paramet~ic graphs for the minimum location angles. The results of this 

study are discussed 

The p,raph for the ~th minimum censists of 

contours of constant location angle ~ of the Mth minimum, plotted against the 

independent variables, namelv the source separation distance on one axis, ~nd 

the plate width on the other. Fig. 4.12 shows the parametric family contours 

, 



for the first minimum (M = 1 ), and is easily derived from the parametric 

graph Fig. 4.11 as detailed in Sect. 4.8. Each contour on the parametric 

family graph for the Mth ~inimum is for a different value of the location 

angle ~ of the Mth minimum, and sa the contour represents widths and separ-
;i' 

at'ions for which the radiation pattern has the t-fth minimum at the angle' ~ 

" of the contour. 

One paràmetric fami1v p,raoh is derived from the parametric 

graph for each of the nine minima for ~ = 1,2, .... 9. Thus, although ihe 

/ 
understanding the physical procegaes of 

, 
parametric family contours aiâ in 

\ 
the 

radiatinp, system by graphing the value of the dependent variable against the 
\ -

independent variables, the Jarametric family'graph itself does not represent 
J 

any further compacting of the computed data of the original parametric ~raph. 

However, the sip,nificant contribution of the parametric family contours plot-
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ted in Fig. 4.12 is that 'they bring to light a simple re1ationship between the 

variables width a~d separation, for constant location angle of the ~th mipimum. 
\ 

The "c~rv-es" in Fig. 4.12 are found to be straight lines, as precisely as can be 
\ 

determined from the computed data. 

The next step in the data distillation procedure described in 

Sect. 5.1 is the determination of an ernpirical "parametric famUy law" ta de-

scribe the contours on the parametric famUy graph. The "law" can then be ex-

ploited to derive a "synoptic p.raph". 

The parametric family grqph for the location angle ~ of the ~th (1 

minimum displays a 1inear re1ationship between widths and separations which 
o 

make the ~th minimum fall in the pattern at a particular angle ~ , and sa_the 

parametric family law has the form 
~ 

a s w + a o 

o l' 

o 

p 

\ 
\ 

o 



\ 
\ 

The "famil" paraméters" discussed in Sect. 5.1 are now identified as the 

slope and intercept of the straight line. A synoptic graph can,now be~re-

pared. The value of the slope s and the intercept a of each straight line 
o 

on the parametric family graph for the Mth minimum i8 determined graphically. 

Since each line has an angle, associated with it, each slope-intercept pair 
, 
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also carries an associated angle~. If the intercepte are pldtted against the 

slopes, then the ).l'th curve on the "synoptic ~raph" Fig. 4.13 is obtained. 
/ 

This procedure reduces the set of curves on the parame tric family graph for the 

Mth minimum to one curve on Fig. 4.13. The parametric famUy graph for each 

minimum M = 1,2, ..... ,9 has been reduced to the Mth curve on Fig. 4.13. Thus 

nine graphs have ber,en summarized in one "synoptic graph". The, value as soc-

ia ted with each point on each curve ,~:m the synoptic graph Fig. 4.13 coulql be 

indi~ated qn the diagram. For greater accuracy in finding the location angles 

of the minima given a width and separation by the method discussed below, a 

separate graph has-. been plotted relating minimum locatipn angle ~ to the 
- J 

intercept value a , and is shawn in Fig • .4 .14. 
o 1 

This graph explicitly disp1ays 

the dependence of family parameter a on the location angle of the Mth minimum. 
o 

1 

The synoptic graph Fig. 4.13 can be used to obtain the number, 

/ land location -é1ngles of a11 the minima in the front and side region of the pat-

tern for any plate width and source separation over the- range covered. The par-

ametric familv law is rearra~ged to read 
u 

a -w s + a o 
o 

Give~ a value of separation a and width w, Othis equation relates the intercepts 

and slopes possible for this system. The straight line will intersect as many 

o 



,e 
of the synoptlc curves on "the synoptic graph Fig. 4 .. 13 as the!e are minima in 

1:;0 

the front and side reg,on of the pattern. Further, the intercept values of 

the intersection points of this straight line with the svnoptic curves can be 

Jetermined, and then the actual location angles of the minima read from Fig. 
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Thus new information about the behavioràl traits of the H~~lane 

pattern of the current erement centered in front of a rectangular plate radiat-

ing system has heen discovered. A systematic procedure has been developed which 

allows such information to he extracted from a large numerical "atlas" of 

computed H-plane patterns for discrete values of width and separation, and ex-

pressed as simple, continuous "parametric graphs". This concept has heen 

extended via a empirically determined "parametric family law" which allows a 
-:. 

set of curves on a parametric graph to he reduced to a single curve on a 

"synoptic graph". T~e parametric graphs and the synoptic graph found for the 

current element-plate system allow a cQntinuum of new patterns to be obtained' 

without further computation, and hence are considerably more useful than the 

original numerical atlas of patterns. The graphs display the system's be-
, 

havioral traits in a form that is easv to understand and which lends itself ta 

the Interpretation of the physical processes of the radiating system. Such .., 

graphs m&y'be useful for design purposes. 

5.3 Vertex Diffractions 

It was found that when the height of the plate is such that , 
the hbrizontal edge's contrihute a significant field, the calculated pattern 

., 
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then 

\, 

exhibits ~"'discontinuity at anRles where the Law of Edge-lffraction forces 

the horizontal edge diffracte~ fields to vanish abruptly (Sect. 4.11-4.1~). 

This observation and others similar to it lead to the con1ecture that the current 

stage development of the r.DT technique i8 still incomplete, even with the 

Kouyoum1ian dvadic diffraction coefficient. In seeking possible phvsical ex-

planations it is reasonable to consider the effect of vertices and their possible 

dontribution to the diffracted field.' The discontinuity noted above may be 

due to the neglected components of field diffracted from the pIate's four 

corners of "vertices". If the vertex diffracted fie-Ids were included in the 

computation, then the discontinuity might be smoothed out. It was not possible 

to include these vertex diffracted fields in the calculation since no vertex 

diffraction coefficient, has been developed to date. 

In this thesis, a comparison is made of 12 experiment~l patterns 
1 

with patterns computed with the four-edge GDT plate model. (Se~t. 4.15). It is 

found that the best agreement is obtained in the si de region of the patterns 

where the vertex diffracted components- of field rnay be expected to be insignifi-

canto In the front region, the vertex diffracted fields could _also be 'im-

portant, even though this region is dominated bv the GTO fields. While in manv 

patterns the front region agreement is good, sorne patterns indicate that the 

neglected vertex diffracted fields might have considerable effect. In the 

pattern's back region, the vertex diffracted cornponents of field might be ex-

pected ta have magnitudes comparable to the edge dtffracted fields, and in 

sorne patterns "a considerable disagreement Is seen in the back region, as sug-

gested. 

Thus the plate study has identified the need for a more intensive:-

investigation of vertex diffraction and possibl, the deveIoprnent of a vertex 

.. 
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-------
diffraction coefficient. Such a vertex ction ~ncient i5' would -- v 

-pe a 3 x 3 dyadic whi~h would ~enerate verte diffracted fields from 

incident fields 

Just as "edge related lt simplify 

the edge dyadic d~ioTl coe-fficient j) so that it has only two non-zero 

elements, so special "vertex related" coordinates rni~ht be sought. 

o 

5.4 The GDT Method 

, 
The GOT method of analysis offers several significant ad-

vantages. 

There 1a a direct correspondence between body features such as 

reflecting surfaces, or ed~es, and components of field which allows the ef-

fect of anv feature of the body on the radiation pattern to be readilv-asessed. 
\ -

, Thus ~reat insight into the behavior of the pattern is gained. 

There i8 considerable ease of analysis. The total field 18 

the sum of several easil~ evaluated components, which are identified' by simple 

r~y tracing techniques. 

Subroutines of. general application, sueh as REF for reflected 

fields and DIFEDr. for edge diffractions, are possible, whiéh, once available, 

greatly simplify the analysis of any particular problem. 

A numeriea! model of a radiating system can be prograrnmed 

and debugged in stages. If a simple model shows promising results, furth~r 

a • 
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. 
diffracted raya can he included in th~ computation to improve the a~ree-

ment. 

Since the solution of large lIIatrix equations is not necess~ry , 
- 1 

potentially there may be a reduct:iotî'"ln computer running time, oVf)!r 1110ment 

method techniques. 

5.5 Hybrid Model ing 

The opporSy to merge the currently known computational 

methods in order to solve a more p.enera1 class of pr~blems, now Becomes ap-

1 
parent. Attempts at hybrid1zat10n of &lome moment methods are already known 

(20). A hybrid of the wire ~rid moment method with the GDT accountinp:- for 

'­
inte~actions between the wire se~nts of an antenna and 

7-- -r _,, ____ .- ..... -. 

diffracting body is a tirst step in this direction (19). 

. 

a nearby ref1ecting­
a 

Additional terms 

are included in the itnpedance matrix to account for the field at the j-th 

wire segment due to the field of the i-th segment being reflected or dif-

frac ted by the body. Such a ~ybrid method could be used to s tudv the pUte 

illuminated by a half-wave dipol~ rather than a current element. 

Hybrid mode1ling a1so offers a computational method to eval-

uate diffraction effects where no closed-form diffraction coefficient exists. , 
, 

Thus, "vertex diffracted fields might be computed by putting a sma11 numbèr of 

,surface patches or wire elements of curre~~ near the vertex, and finding the 

values of the curre~ts by matrix inversion. 

,- -

r 

1 
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• L 

~Io èbnclusion~' this thesis has' 

1. Studied the &rre~~element; ceotered ioO'front of a .rectangu1a~ condueting 

plate radiating. system, by' th7 Geometrieal Diffraction Theory method', of 

" analysis ; t 

2: Dev~loped and- described i; systematic procedure for obtaining param~tric graphs , . 

from computed, data, and ~eriving from them synoptic gr4phs which s1Jceiùctly 

describe the behav:1or of the ~adiation pattern as a functio~ol' the physica1 
• c 

e 
dimensiona! parameters of the radiating system ; '. 

.j 
3. Obtained, parametric and a synoptic graph for the current element ;; plate rad-

, 

iating system 

f? 

4. Recognise~ t'hat these parametrie and synoptie graphs May be a representation 

of a simple, direct functipnal relationship, defined herein as the "pattern 
Cf 

generator function", whieh provides significant: pattern inforlllatipn in terms 

of the physical dimensions of tne radiating sOystem ; t 

5. Shown that, while the GDT me~~od provides a solu~ion to this typ~ of -~Oblem 
which promotes insight into the physical processes governing the radiating 

system, it has an important shortcoming at present L1.n tttat the diffracted 

fields of vertices 'cannot he taken into account . .. 
" 

! 

,/ 



(1) 

. 
(2) 

\ 

REFERENCES 

R.G. ~ouyoum"1ian, "An Introduction to the Geometdc~ory of Dif-

fraction," notes from Short> Course on Application of GTD and Numerica1-

Techniques 't?--the Ana1ysis of Electromagnetic and Acoustic Radiation 
1 

and Scattering, ,The Ohio State~niversity, Columbus, Ohio, 1974 • 

• , ".C. Rudduck, "Application ~f Wedge Diffraction and .W~ye Interaction . 
Mëthods to Antenna Theory,'~ Notes from Short Course, The Ohio Seate 

University, 1974. 
b., ' •• l ' 

~ "-

ç 
'\ 

(3) w.n. Burnside, "Princip1e Plane Pattern Ana1ysis of On .... Aircraft An-

tenna~," notes trom Short Course, The Ohio State Uni;'èrsity, 1974 • 
... 

(4) li' R.G. Kouyolimj ian, and P .H. Pathak, "The Dyadic Diffractio:n Coefficient 

for an Edge, 'Part 1 and Part 'II," privste communication to he" published. 

'" (5) .;, R.G. Kouyoumj ian, and P .H. Pathsk, "A ,Uniform Geometrics1 Theory bf 

. . 

• 

(6) , 

", l ,pj 
• ' " JI 

,.e 
1 ~ 

, 

... > 

. J)iffraction for an Edge in a Perfect"ly ÇonduÇ~ng Surface, "_ Proc. IEEE, 

Vol 62, pp. 1448-1461, November, 1974 • 

"> 

, , ......... "> 

J.B. Keller, "Geometrical ThEwry of Diffraction," Jour. Optical SocietI, 

of America, Vol. 52, pp.H6-I30, February, 1,962. 

Abramowitz and Stegun, eds. "Hàndbook of Mathematical Function~," Dover • 

, ( 



--
(8) T. Bayou, "Surface Element Analysis of the Far Field Behavior of a 

. 1\ Dipole Antenna Near a Conduct1ng Cvlinder," Masters Thesis, Department 

of E1ec~1 Engineering, McGi11 University, Montreal, Quebee, March, 

1972. 

J, 

(9) P.R. Pathak, and R.G. lCouyoumjian, "The Dyadic Diffraction Coefficient 

.. 

(10) 

(11) 

for a Perfectly Conducting Wedl5.e," Report 2183-4, E1ectrosc1ence Lab­

oratory, The Ohio State Univeràity, Columbus, Ohio, 1970,' 

R. F. Harrington, "Time Fields," McGraw-Bill, 

1961. 

Near a Codducting StrJf.;" tEEE Trans. Antennas and p~opagatid,n,Vol. 
\ 

.:- AP-20, pp 642-644, '&'p,t.:!mlber, 1972. 

Îl'~ 

(12) S.J. Kubina, "Radiatiort Ch:aracteristics of Veh:l:c1e-Mounted Antennas 

and their Application to Comprehensive System Design," ph.D. Thesis, 
< 1 

Departme,nt of E1ectrica1 Engineering, McG;ll ,tJniversity, Montreal, 
" 

Quebec, August, 1972. 
• 

" 

(13) W. Wo1de-Ghiorgis, "Wire-Grid Ana1ysis of -Antennas near Gonducfing 

Surfaces," Ph.D •. Thesis, Department of E1ectrica1 Engineering, McGil1' 

University, Montreal, Quebec, March, 1972. 

, 

;, -

, .. 



1 -

L 

"J.H: -R:tchmond, liA Wi:re...,Grid Model For Scattering by Conducting Bodies," 

IEEE Trans. Antennas and Propagation,Vol. AP-14, pp. 782-786, November 

1966. 

K~K. Chan, "Projective Solution of Antenna Structures Assembled From 

Arbitrarily Located Straight Wires," Ph.D. Thesis, Department of E1ee-

tr~eal Engineering, MeGill University,- ~ontrea1, Quebec, Âugust, 1973. 

(16) J.B. Keller. "The Geometriea1 Optics Theory of Diffraçtion;" from "i'be 

McGi11 Symposium on Microwave Optics (1953), Part II, Diffraction and 

Scattering," Karasik and Zuker, éditors, Bedford, Massachusetts, April, 

(17) W.T. Sedgwf.ck, and H.W. Tyler, "A Short History of'Science," revised by 

Tyler and R.P. Bige1ow, MacMi11àn, New York, p.189. 

(18) J.H. Richmond, and N. Wang, "Sinusoida1 Reaction Formulation for Scat­

tering by Conducting.,todies of Arb itrary Shape," notes for Short Course 

\, '< (19) 

~ 

on-AppLication df GTD and Numerical Techniques ~ the Ana1ysts of Electro-

magnetic And Acoustic Radiation and Scattering, The Ohio State Uni ver-

sity, Columbus, Ohio; 1974. 

G.A. Thiele, fiA Hybrid Technique for C,ombining Moment Methods with thê 
"" o 

Geometric~l The~rz. of Diffraction," LlEEE Trans. Antennas and Propag?tion, 

Vol. AP-23, pp.62-69, January, 1975. i' 



• ~ 

" \ 

(20) 
. 

N.C. Albertsen, J.G. Hansen, and E.N. Eilskov Jensen, "Computation of 

Spacecraft Antenna Radiation Patterns," Contractor Report ESRO CR-207, 

" ESTEC contract No .. 1340/71, Technical University, Lyngby, Denmark. 

." ... 

(21) L.L. TRai, D.R. Wilton, M.G. Harrison, E.H. Wright, '~ Comparison of Geo-

metrical Theory of Diffraction and Integral Equation Formulation fOr 
D 

Ana1ysis of gef~ector Antennas," IEEE Trans. 'Antennas, and Propagation, , 

Vol AP-20, p~ 705-711, November, 1972 
1-

. , 

. ., 

J 

.-

", 



.e 

\ 

\ 
\ 

. , 
1 Subroutine SFLD 

~ * Given the position vector of a field point, Rp (RP) 

subroutin~S~D finds the distance RSM and -the unit vectôr r (RS) from the 
s 

-- ---------
current element source located at s (S)I with nolarization p(P). SF'LD then 

1 

evaluates vector TH whose comnonents, are given bv the,cross oroduct (p x rs) 

x r. In Sect. 2.2 it is shown that this double cross-nroduct gives the 
.r .. """\. S 

source field vector normalized ta an isotronic source of magnitude 1. RSM 

may be used to remove the normalization, and is also the radius of curvature 

of the source's spherical wavefront. 

SU8ROUTIfo.:E SFLOf RP,RSM,TH , 
C FINDS THE DIRECTtCN AND OIRECTIVITY' OF A POINT SO'URCE AT S • 

REA L R P ( 3 , ,P ( 3 ) , S (3 ) .. R S ( 3) , PH f.3) • rH (3 ) 

COMMON 1- SOURCE 1 $,P 

A . .l 

C P 
C S 

~ C 

: UNIT VECTOR IN THE DIRECTION OF THE CURRENT ELEMENT. 
: POSITICN'VECTOR OF THE SOURCE. 

C 
~, 

FINO THE DISTANCE AND DIRECTION ~OM SOURCE TO FIELD POINT: 
00 1 1 :: l, 3 

l RS(IJ :: RP([) - s(n 
CALL UVEC( RS,RSM ) 

C DIRECTION OF, THE FIELD: 

* 

PH(l) = _P(21*RS(3) "'" P(3' * RS(Z) 
PH(ZJ = -POI*RS(3J + P(3J*RS(U 
PH«)' = P(l).RS(2J P(2).R$(1' 
TH(I' :: P+HZ1*RS('3) - 'PH(),.RS(Z) 
THe2' = -PHfl'*RS()) + PH(3,*RS(1' 
TH()' = PHrl)*RS(Z) - PH(Z)*RSfl) 
RETURN 
END 

The name of the corresponding variable in the computer orogram 18 given 
" 

in the brackets. 

o 
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App. 2 Subroutine REl" 

!f ,a planar conaucting sheet ,. ~s c 

oerpendicular to the ( x, v ) 

plane, subroutine REl" finds the reflected field at a distant point in the 

(x, yv) plane in direction f (li') • As shown in 1 Sec t'> 2.3 there will be a re-

flected ray at the distant field point if 

> f 'Û 
1 

> 

Subroutinê STREF calculates and stores the location of the image s9urce 

'SI, Hs nolariz,ation POLI, unit vector ~ (UI), the dtrection cosines'Cr.l = 

cos 9A and cm :: cos aB' Then for a given field direction f, subroutine 

REF evaluates the dot product f : û to determine if a reflectèd rav exists. 

If so, thé location and polarization of the image are used to find the re-

flected field as given in Sect. 2.3, normed to an isotropie source, and phase 
/ 

referred to the position of the primarv source s (5). 
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Subroutine STREF (cont' .}) 

11 U211,JI • -U21I,JI 
10 CONTINUE 

C FIND POINT P ~HICH 1$ ClOSEST TO THE SOURCE ON THE I-TH eote 1 
Dl , o. 

., 

02 • Ull'l 
TOL • 0.01 

5 OP • Dl + 1 02 - Dl 1 1 2. 
00 6 J • 1.3 

6 PIJI • PAII,JI • OP ~ U111,JI - SIJ' 
CAll UVEel P,PM 1 
CC • -00T1I Ul,P,1 1 
IFI A8S1 'CC f .LT. TClFI GO Ta 7 
IFI CC .GT. O. 1 GO TC a 

C CP TaO lA~CE : 
02 • OP 
CO JO 5 

a CO~TlNUE (' 
C OP Teo SI'All \. 

01 • OP 
GO TO 5-

Ti CO'llTtNUE 
C L~CATE THE I~'CE SOURCE 1 

. - 'DI n • 2. - PI' Q , 

DO 9 J • l,] 
9 SIII.JI • SIJI • Ocrl _ PCJI 

0111 • 011' - Z. - 3.1~159Z6 
1 • 1 + 1 
IFI 1 .GT. NR 1 RETURN 
GO Ta 1000 
END, 

- 1 

Subroutine DOT 
FUNCTION DelAI E.~.t 1 

.' 
C FINDS THE DOT PROCUCT OF THE I-TH ROW OF E. AND TH! Y!CTOR R • 

REAL fI6.1,.Rfll 

, / 
./' 

\, 

OOU • 0.. 
DO 1 J • 1.3 
OOTA • DOTA + EII,J' • ~IJI 
RETURN J 
END 

'J' 

J 

" , 
ï 

r!' 

Subroutine REF 

SU8ROUTJNE REFI F,ER.I 1 _ 
C FINOS THE VAL~E OF THE FIELD REFlECTED FRC~ THE'I-TH PLANE. 
C INPUTS: ... 
CF: UNIT VECTOR IN THE O[RECTION OF THE FIELD POINT. 
C 1 REFl EeTtON PLANE EOCE NUMBER • 
C O\;TIIUT ' 
C ER 
C 

: THE COMPlEX \/ECTOR COMPO'NE"'rs OF THE REFLECTED FIELD 
. PHASE REFERENCED Ta THE SOURCE • ' 
C~"PlEx ERIl'.ERP 
REAL PII6,3I,PHI31.THlll 
REAL FI31.UlI6,]I.U216,]I.SI16,3I,DI6I,eCll61,CG2161 
eO~MON 1 STREFZ 1 ~1.U2,SI,O,eGl,eG2,PI 

C DETERMINE IF THERE IS A REFlECTEO FIELD : 
C • 
C DCES THE FIELD POINT lIe CH THE SOURCE SIOE OF THE PLANE? 

DOTU2F • DOTAI U2.F,1 1 
IFr OOTU2F .lT. O. 1 CO TO 1001 

C COES T~E REFLECTICN POINT lIE WtTHtN THE FINITE PLANE? 
CA. -OOTAI'UI.FoI 1 
IFI 1 CA .lT. CGIIII 

C NC REFlECTED FIELC 
ICCl CONTINUE 

DO 2 J • 1.] 
2 ERIJI • 1 0 •• 0 •• ~_ 

RETURN 
1000 CONTINUE 

C FINO T~E REFlfCTec FIELD 
Re • DIlI .OCTU1F 

.AND. 1 CA .GT. CG2111 , 1 GO TD lOOO 

ERP. CExPI C~PlxI O.,-RO 1 1 
C CtRECTION OF THE REFlECTED FIELD tNClUOING SOURCE DIRECTIYITY 1 

PHIII. PIII.21.Flll - Pllf.31*FIZI 
PHIZI • -PIII,II.FI)1 + Pllt.31-FIII 
PHIl'. PIII,II.FI21 - PIII.21-FI11 
THIII. PH~31 - PH131.F121 
THIZI • -PHIlI--FI3I • PHI3I-FClI 
THI31. PHIII-FIZ, - PHIZI-FIl' 
00 1,.J,. 1." 

1 ERIJI ~ THIJ' _ ERP 
RETURN 
END 

,,~ 

• 

\ , , 

~ 
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App. 3 Subroutine D'tF'FLD 

Subroutine DIFFLD evaluates the Transition Diffraction Co-

efficients DS ançl DH (Sect. 3.5), given the angles of incidence BETAO .. 13
0 

.' 

PSIO = 111 ,and PSI .. 111 • and the distance RS'M from the source to the point 
o -... ' 

of diffraction. Subroutine DIFEDG ~Pp. 5) finda the point of diffraction 

on the edge and evaluates BETAO, PSIO~!~SI, and RSM, and calls DI~FLD to find 

the value of the TDC. 
+ DIFFLD calls subroutine INTN to find N - , and then 

determines if the simple diffraction ëoefficient applies, which is used if 
_ 1 'l 

possible to save computational :ffort. If the !DC i8 needed, DI~FLD calls 

subroutine FRESNL to evaluate the transition function F (X). Sub~outine 

• 
STDFLD finds certain constants used by DIVFLD 4 which are related to the wedge 

angle. 
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Subroutine STDFLD 

SUR~OUTINE STCFtO 
( CCMPUTES SU8ROUTI~E CIFFLO P~AMETE_S • 
C INPurs:- ----
C /tE , T~ OF WEOGES 1'" THE "'OOEl 
C If : TI-IE ''''CLE PA1U"ETER FOR E4CH ECGE 

CO~MON 1 STE03 1 C1.TPN,C3,(4 
COMPlEX ClI6',C316' 
REAL TPNI6"NI61,(416, 
c~ 1 STEO~ 1 N,NE 
CO~~ON 1 CCNSTS 1 PI,TPI,PI2,PI4,RTO,OTR 
STPI z SJlRTI TPI , 

-G-CCI'4PUTE FOR EACH ECGE, 1-1,NE 1 

. 1· 1 
1000 CONTINUE 

C TRANSITION lCNE FCRMUlA PJRAMETERS 1 
TPNI 1 , • TPI - Nil' 

\ 

ClI 1 1 • -CEXPI C~PLxl 0.,-PI4 1 1 1 1 2 •• ST'I _ NIH 
C SllilPLE FORMUL' PARA"ETERS 1 

~lll' • 1. 1 1 NIII-STPI 1 • SINI PI/NIII 
1 - CExPI C~PLX( 0 •• -P(/4. '.' 
C4111 • COSI PI 1 NIII 1 
( • r + 1 
IFI 1 .GT. NE 1 RETURN 
GO Ta 10CO 
END 

s.brou Hne uVEe 
SU8ROUTINE UYECI A.AM 
REAL A/3, 

~~ ; ~O:T"h~llI"~ + AI21-.2 • A'l' •• Z ) 

AllI - Ail' 1 AM 
RET\;RN 
EIfO 

Subroutine INTN 
FU"ICTION INTNI P 1 

:--... 

'''-----

C T~IS FUNClICN IS USEO IN EVALUATING 
C tCEFFICIENTS BV SI.BROUTINE OIFFLO 

INTN • INTI P 1 

TKE TRANSITION DIFFRACTION 

R - P - FLCATI INTN 1 
IFI Il .CE. 0.5 1 INTN • INTH • t 
RET~N 
EPia 

$~ " 
.. 

1. 

/ 

~ .. 

\ 
Subroutine DIFFLD 

". 

SU8ROUTINE OIFFlOf OS,OH.8ETAO.PSlc"sr.I,RSlil 1 
C CC"'PUTES THE DIFFRACTION COE'FICI!NTS USING FORMULA! 
C I~CLUDING IN T~E I~ANSITICN REGIONS. 

\ 

YAllD !V!RVNH!R!. 

C 01. TPUT 
C CS.OH 
C I"purs 
C BEUO 
C PSIO 

THE SO'T AND HARO DIFFRACTION COEFFICIENTS 

C PSI 
C ( 

THE OIFFQACTION CONE HALF-ANGLE 
THE INCIDENT ANGLE. 
THE DIFFRACTION ANGLE 
THf wECGE NUMSER • 

C RSM 
C 

THE DISTANCE FROIII THE POINT OF DIFFRACTION TO THE 
FIELD POINT. 

REAL Kl,TPHI61.NI61.C4(6' 
COMPlEX C116', ESA.Pl,P2.DS.DH,C)(61.FReSNl 
COMMON 1 CON~TS 1 PI,TPI,PI2.PI4,RTO.OTR 
COIII"OH 1 STEn3 1 Cl,r~,CJ,C4 
CO~IIION 1 STE04 1 N,NE 
lN- Z. -Nif/ 

RSMK - RS'" - 'PI 
ESA • ceXPI C~PlXI O.,-RSMK 1 1 1 SORfl R$MK 
S80 • SINI 8ETAO 1 
PHIl - PSI - PSIO 
PHI2 - PSI + PSIO 

-KL • PI - RS~ - 1 580--2 
TP • TPNI 1 , 
IINPl a 1 Pit PHil , 1 TP 
RNP2 • 1 PI • PHI2 1 1 TP 
RN~1 z 1 -PI' PHIl' 1 T9 
R~~2 • C -PI • PHI2 l , TP 
NP1 • INTNI R~Pl 1 
NP2 - INTNI R~P2 1 
N"'l • I~TN' R"~l 1 
"1"'2 • INTNI R~~2 1 

• 2. 

API - 2. -II COSI CTP -NP1-PHI11/2. 1 1--2 1 - Kl 
AP2 • 2. -II COSI CTP -NP2-PHI21/2.1 1--2 1 • Kl 
AMI z 1. -II CCSI CTP .NMl-PHIl1I1.1 /--2 1 • Kl 
AM2 • 2. -" COSI ITP -N"'2~PH(2112. 1 1--2 1 • Kl 

C CETERMINE IF THE SIMPLE FORMULA ~AY BE USEO 1 
IF( (API.GT.la.I • .&"10. (.&P~.GT.IO.I .'NO. (AMI.GT.IO.I 

2 .ANO. C .~2.GT.10.1 1 GO TC 1000 
C Tf;E TRANS (T 1 ON lO"E FOR"'!.l' ~'uS T BE USEO :' • 

Pl • COTANI CPI+P~111/TN , - FRESNl( API 1 
1 - • COTANI IPI-PHIlIITN •• fRESNLI AMI 

PZ • COTANI IPI+PH(21/TN 1 _ FRESNlt .,Z, 1 
Z • COTANt IPI-PHIZI/TN , • FIIESNlI AM2 

OS - Cllll 1 SBO - 1 Pl - P2 1 • ESA 
OH • Cllll 1 S80 - ( Pl + PZ 1 • ESA 
RHURN 

C 
C THE SIMPLE FORMULA CAN 8E APPLIED l ,~ 

1000 CONTINUE ' 
Pl • 1. 1 1 C4111 - cdSI PHI1/NIII 
P2 • 1. 1 1 C~CII - COSI PHIZINII' 
OS • 1 P1-P2 1 • C3111 • ESA 
OH • 1 Pl+P2 1 - C3111 - ESA 
RHUR"! 
ENO 

1 SilO 
1 seo 

e 

.. 

(, 

'-

> . 
\JI 
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App. 4 Evaluating the Transition Function: 

Subroutines VRESIN~ VRESNL, FREI 

A4.1 Introduction 

, This appendix shows how to eva1uate the transition function 

F(X) = dt 

For X > la, F(X) = 1. For X < la, numerica1 integration will be used. A 

graph of F(X) will be found in (1). 

A4.2 Relationship to the ,FresnEfl Integral 

The inte~ral in the transition function may be rewritten as 

00 2 J, e-jt dt 
[? 

00" 2 .Ff 2 -J -jt J -1t =" \ e dt- e dt 
o 0 

A4.2.l 
r • 

<If 
The lest integral i9 similer to a known and tabulated Fresnel Integral 

Op.300) 
" 
~ 

f(A) =fa 1 (TT/2)u2 
du e 

a 

fl Jzx7.) / = f J2X
/

TT
' 

i 1 e- 1(TT/2)u du hence\ 
1 

0 

where the bar denotes con1ugate. Let t = ~u ; when 

u = J 2X/TT' then t = IX and 

f J 2X/TT) 

the integral becomes 

Ifl r~ -1t2 dt 
:r: 2 j, e 

TT ,', a 
which i9 thè same as the;second integral on the RHS of Eqn. A4.2.1. Thus 

IF lim (7T' ~ 
~)"r u-+clO f (u) - J"2 f (J 2X/TT) 

A.6 

1 , 
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o 

The limit is easily' found (7) 

lim 1 1 
u ~ ~f(~) : ~ + j, 

hence the transition function becomes 

F (X) • 21fi ejiJt (! + j!) - If f (j2X/;) ] 

1X e 

Thus evaluating the transition 'function is reduced to finding the Fresnel 
( 

Integral, f (}2X/'/T). 

/ 
A4.3' Finding the Fresnel Integral 

Th~ Vresnel Integral must'be evaluated for .rguments 

a = J 2X/; 
1 

where X < 10, that ia, for a < 2.S23l ... ~ (7) uses a polv-

nornial approximation for a > S, and tables for smaller a. ~or comouter ap-

plication, tables are Inconvenient and a numerical Integration i5 preferred. 

Expanding f (a) as reai and imaginarv part, . 

" 

f (a) cos + 
2 -

sin «'/T/2) u )ldu 

The kernels are rapidly varving functions and so cannat be int~grated accurate-

Iy with low-order quadrature. Let ~ be the points where the kernels are zero, 

or "nodes", 

~ = Jk 
(Hence either cos «'rf/2) k ) or sin «'/T/2) k ) is zero.) Betwee,n any con-

secutive ~ both /~erne18 are slowly varving, and can be integratefl easily. 

r, 

(' 
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Let 

"f~ 
~-l 

--- -----

- 2 
e 1 (Tr/2) u. du k = 1,2, ... '\ 

Then for any argument a ,owe can wri te 

f(a) = 
, -,.. .... 

2 
1(lT/2)u d e u 

e 

where un is the largest ~ less than a. Let f
k 

be the value of the 

Fresnel Integral at the nodes ~, then the "node value's" are 

k 

and 

" 
f (a) 

.. ~ 

m=l 

.. f +fa 
·n 

u 
n 

- -

2 
eHrr /2)u du 

where the integral éanïi"€ evaluated qulckly and accurate1y bv low order 

Gauss-Legendre Quadrature . 

A4.4 Suhroutines FRESIN, FRESNL, FREI 

. -Subroutine li'RE~I~ gen~rates \ the nodes ",o.f the kernels, u
k 

' 

(~(k»),and finds the no de values, f k (FS(k» • ~unct1on VRESNt evaluates the 

Transition FURction for any argument' , using the expressions ohta:lned above. 
- - ---------.,-. ~ 

-
The value of the Frell8e:l Integral i9 found by function 'FREI, for anv argument, 

using the polynomial approximation (7) where vaUd, and otherwise the numerical 

integra~ion technique detailed above. The nodes and node values found bv 

VRESIN must he included in the main program' s BLOCK D~TÀ segment. 

r 
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Subroutine FRESIN 

\ 

. 
• 

SLeqCl.T\"E FRESI~ .\ 

< • 

C r~IS SueRrUT,~e FI~CS T~e FRESNEL l''TECRAl EVAllATIC" CATA • 
~F.L 112~I.eC~lel.eCwI81 
Cr."PLE. FI2"'.F~.F~12~I.Cl;C2 
CC~~C~ 1 CUAe 1 Ar,~,RC".~G 
C(~~C" 1 FPESl , 1.FS.Cl.C2,SPI2 
cr~~~~ 1 CC"SIS 1 PI,TPI,FIZ,PI4,RTC,C" 
$P12 • SCRTI Pl2 1 
Cl - C~PLxll •• -l.1 • C~PL.I 0 •• SPI2 1 
C2 • C"PL.~ C •• -2~.SPI2 1 

C GENfR&Tf T~E NCCE! : 
CC li· l, le 
Rt • 1 - 1 

1 1111 • ~CPTI RI 1 
C EYAlUATE T~E F-VO~STANTS 1 

CC 2 1 • 1.21, 
Fw • 1 C •• C. 1 
A • 1111 
~·lll.ll 
A~e • 1 A-I! '.' 2. 
APB • 1 A_e 1 1 2. 
te 3 J • 1."G 
lJ • A"e • eG'" IJI :l. "jpe 
F~ • F~ + CEXF( C~PlXI C., PIZ.I~ •• 211~ • eG~IJ~ 

""TlNUE 
FIJI • -I~e • FW 

2 "'C\'III.I.E 
e EYALLATE T~E F5 CCNSTA"TS 

FSlll - C C.,C. 1 '.~_ 
FSI21 • FIII 
OC " 1 • l, 2 ~ 
FSII-21 • FSII-il • FII.I) 

" CCO,TII\l:E 
RET~R'" ., 
,I\t • ~ 

Subroutine JI1.5NL 1J 

\ 

)rc FUNCTIO~ FRES~LI X 1 
EVAlUlTES T~E TRANSITION fUNCTION fOR ANY ARGUE"E"T X • 
. .~CMPlEX FR,CI,C2,FREl,FRESNl 

, CO"'M"N 1 FREZl 1 Cl,C2.SPI2 

o 

IFI x .GT. 10. , GO Ta 1 
C FCR SMALL ARCUEME"TS 

SX - SOR TC X 1 
Y • SX 1 SPIZ 
FR • FRE 11 y 1 
FRESNL-SX • CEXP! CMPlXI O •• x" - 1 Cl+C2-CONJGI FR " 
RETURN 
FRESNL • 1. 
RETURN 
END ' 

o 

eJ'. 

Subroutine FRE! 

FUNeTleN FREI 1 X 1 
C EVALUA TES T~F FIIES~EL l~TEGRAl AT X • 

REA~ 8~lel.~wI81 
cO~MnN 1 CUAO 1 AW.8~.NC 
CO~MON 1 CCNSTS , PI,TPI.PIZ.PI4.RTO.OTR­
CO~MON 1 FIIESl 1 l.FS 
CQ~PleX FS(25',FW.FREI 
REAL ll2bl 
1 F 1 li • LT. 5. 1 GO '0 4 
liS - '1. • X 
)(4 - liS • liS 
Cl • 1 O.3183C99 - 0.C9b8 , X4 1 1 x 
C2 • 1 0.10132 ~ 0.154 1 K4 1 1 1 X • xs 
PliS • 3.l~159Zb 1 2 •• XS 
SPXS • SINI P'S 1 
CPXS • COSI PXS • 
CX • 0.5-+ Cl.SPXS - C2.CPXS 
SX • 0.5 - Cl.CPXS - CZ-SPXS 
FREt • C~PLX( CK,SX 1 
RElUltN 

4 CONTINUE 
C LOC~'E 'HE INTERYAL 

l • 2 
IN IoHtCH • LIES 1 

J 
1 F 1 llll • GT • 
1 • <1 + 1 

X 1 GO TQ 2 

GO TO l 
Z CC'-TlNUE 

C EYAlUAT~ THE INTECRAL 
A • II 1-1 , 
8 • X 
AMII. (oA-Il ) 1 2. 
APB • 1 A-e 1 1 2. 
~w • 1 0 •• 0. 1 
00 3~J • I.NG 

- APII " U • AMB • BN(JI 
FW • FW • cexPI 

) CONTINUE 
CMPlX,O., PlrIU--2) Il - !lWIJI 

FW • -A~B • Fil 
FREI - FSlt-ll + Fw 
REJURN 
ENO 

-
/" 

\ 

\ 
\ 
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~in pro gram for calculating the Fresn~l 

integral evaluat10n data 

c c 
C ce~eRIIE T~E FPES~EL I~TECRAl EVAl~AltC~ DA1. 
C - ' 

CCWPlEX FSt251.Cl.C2 0 

RHL ztu, 
C(~~h 1 FAESl 1 Z.FS.CI.C2.SPI2 
CC~~C\ 1 CC~S7S 1 PI,lPI,PI2,PI~.RTC,C1P 
PI • 3.1415Ç2t 
TP 1 • 2" • PI 
PI2 • PI 1 2. 
PI ... PlI ... 
R'Tt • 18e. 1 FI 0 

CfR • Pillee. 
OLl FRE51tj 
I;A!TF 16, lee 1 

• 

../ 

If 

lce FCR~AT(IJI,' ••• FRE~NEL INTECRAl EVILlATICN CATA •••• , , 
~AITEI6,1(1) ~PI2.CI,C2 

tCI FOR~ATI/',' • INDIVIClAl CCNSTANTS: SPI2. ',E15.7, 
1 I.Zex.'Cl' 1',EI5.7,',~.EI5.1."', 
1 1,2e~,'C2. J·,E15.1,',',E15.7,"~' 
wRJTEIl:.tC2' 

lez FCA~6T(".' • T~E ~CCES t(~1 A~C T~E ~CCE VAL~ES FI ZI~J 
l l,' K·,5 •• ·~C[E ZI~I',lZ)(,'"ceE VAL"E FI Zl~' l'. 
2 1.2t~,·RfAL·.~X.·I~AG·) 

CC 1 l( • 1,25 
wRITEI6,I031 ~,IIKI,FSIl(1 

-IC~ FCA~,rl' ',ll.2X,3El!.11 
STCP 
E"" 

@LCCk C'TA 

c 

l' , 

C ~PECIFV GAl5SI4~ 'LAC~ATlPe DATA FCA T~E FAES"'El I~TEGRAl EVALUATICN 
CI~E~stc~ Plel,RwlPI 
CC~~c~ "LAC 1 e~,e,~c 
DATA NG 1 E 1 
C'TA RW , .111~24~~2~ •• ]tClfI51~C •• 'flq13Ç3~5. 

1 .~6191393~5 •• 3tOl~15130 •• 111~2~~Ç23 1 
~ CAlA eC, -.ÇJ<~6Ç5142,-.6~12~Je6~,-.ZJ@~191etC, 

1 .23tflçle6C •• ~tI2093e~4 •• 932469'142 1 
E~t 

... 

~ 
?( 

• 
',1 

";. 

c 

" , 
( 

., 

-----

# 

,The Fresnel interral evaluation data generated by 

the pro~am at left; 0 

••• FRES~EL l~rEGR'L EyALLA1IC~ CATA ••• 

• l"'tIVItU'L CC~SlA~T! SPI2 • 
Cl • ( 
C2 • 1 

C.12SHI~E·OI 

(j 

• T~f ~CCfS llKI A"'C 
" ~c[e ZIKI 

1 
2 
! .. 
5 
t , 
e 
c; 

le 

!} 
13 
14 
15 
lt 
11 
18 
19 
te 
21 
2Z 
'J 
24 
25 

(" 

O.:! 
t.lceCceeE+OI 
C.161 .. 21~E+C~ 
o 01 n2C~IE+Ol 
C.lceccece+ul 
C.<2~tCeFE+Cl 

C.24494ÇCf'Ol 
C.U4'HHE+Ol 
C.2f2f421E+Ol<! 
~.HCCCCCE+Cl 
O.31U211E+Ol 
C. 3~lttZ~E+Cl, 
C.'6t41CH·CI 
O.HC~552E+Ol 
c.nQf57e+Ol 
C.H72~e~E·OI 
c.l,eCCeeeE·OI 
C;1,123ICH-OI 
C.42'o2Hce+CI 
C.4~~EE~GE.Cl 
O.447213tE+Ol 
C.45~251tE·Cl 
C.Iot9Clol~E·Cl 

O.4m~HE·Ol 
O ... ffi919E+Ol 

C.l~~J314E+Ol. C.125l!I~E+Cl) 
O.C • -O.250tt2ee+CII 

\ 
T~E ~CCE ~ALUES FI 21KI 1 

~COE vallE fI llKI 
REAL I~AC 

C.C C.'C 
C.llq~q24f+CO O.43€25Pge+CO 
e~~2epç,2e+(C C.l\~q121e~CC > 

C.321C5~?E+CC C.~ll?C7CE+CO 
C.4B825C9E+CC C.~4J41t5E.CO 

e.t408~54E'CC C.IoÇllQllE+CO 
C.~C~t417E+CC .C.E2~Ç4CIE+CO 
C.?80Jeç5EtCC C.~C~~2CÇE.CO 

C.4~S~17bf.CO O.)P1Q1CCetCO 
C.fC~11ç7E'Ce C.4Çt312tE+CO 
C.50~15P5E.GC C.tCC~t2PE.CC 
C.4042~e4F.CO O.50?71ot5E+CO 
C.4Çl~E~7E+CC' C.4C"lÇ2lE+CO 
C.~€eI2S7E'CC \C.4S1P~E!EtCO 
-C.~CIÇlÇÇE'CC C.~~4Ç42EE+CO 

C.417Q2C2E+CC C.5CI7j~tE.CC 
[.4ge421çE.CC C.~2C~lttE+CC 

C.~771ZCCE.CC O.4Ç~~tC?E.CC 

C.50132?OE+CO O.51~9~75E+CO 

C.427t)4~E.CC C.5C12211E'CO 
C.4Q88b~OE.CO C.42eel!lE+!O 
C.56QloIJ4E.CO O.49P949Ce+CO 
c.~CCçelçE.CC C.567eZ15E+CO 
C.4~~éé5çE.eC C.!CC~le3E.CO 

e.4~913ebE.~C O.~!'C6CIE.CO 

\ 

QI 

CL--

Il! 

-~ 

o 

() 

... 

> 
1-' 

00 , 
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App. 5 Subroutine DIFEDG 

Subroutine DI~EpG finds the comolex vector in 

field direction f(~), by a straight edge.which starts at point Pl (Pl) and 

ends ~-~p~int P2 (P2), illuminated by a point sou~ce located at s (S) ~ 
\ c) 

The flash point i8 found as in,Sect. 3.6 by the Iterative method, then the 

" edge-related coordinates are determined, and the source field vectQ~ evàf-

uated at the diffraction poin~ hV Subrout1ne SVLD (Aop.l), i6 re60lved into 

edge-related C'bmponents. ,The edge-reJ,.ated ëomponents of the diffracted fie~l,d 

'1 

ED are found bv gqn 3.4.8, using the Transition Diffraction Coefficient 

evaluated by Subroutine DIFFLD (Aop. 3). The diffracted field 1s then re-

stored to base coordinates and phase referred to the location of the source. 

For each edge 1n the GDT model, Subroutine STEDG computes 
,f 

the "edge cosines" cos BI and cos 82 ~ the edge unit vector ê, and other 
Q 

parameters ;~artd stores them for later reference bv D!FEDG. 
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Subroutine STEDG 

, 
(cont ·i) 

f 
CGlI., • - COIII E,Al,1 1 1 
00 5 J • l,] 

5 RIIJI • P211,JI - SIJI ' 

• 

\ 
f' 

,~r 

CALL UVECI RI,Rl" 1 ~ 

,tG211' - - 00"1 E,Rl.~ ~ 
MA - 1 Z. - ~III 1 • 180. 
WAITEI6,IOOI ~WA,I EfJ,JI,J-l,l ""EIlIo' ullr.J',J-l,l t, 

1 1 UZll,JI,J-t,3 , 
lCO FORMAte/,' • DERIYEO ~EOCE DA TI EDCE ",IZ,', '~'LE ',FS.l,' OE~ 

lREES',7,' • UNIT VEtTOR ALONG EOCE', -
13EI5.1,1,' • ECCE LE~GTH ',El,.7, 
3 l,' • REFERE~CE VECTCR • l ',3El,.7. 
4 l,' • REFERENCE VECrOIt • Z ',3EI5.7 1 

t « 1 + 1 
Ife t .>Gr. NE • ItETURtt 
GO TO 1001 
ENO 

Sul routine DOT 
FUNCTION DOTI A,8 
REAL An.,"I3' 
DOT - AI11."Il' + A'Z'.8(Z' + '(J,.a(J' 

'> 1 ENC 

o 

""QO 

., 
" 

~~routine DlFEDG 

~j., 

, 1 
.... Il .... - , 
~ . , 

SUAAOUTINE DlrEDGI F.I.EO 1 • 
C FINDS THE D(F~RACTEO FIELD FROM EDCE 1. IN DIRECTION ~ • 
t AEQUIREO SU8ROUTINES 1 UVEt.OOT,OOTA,OIFFLO,SFLO • 
C II'IIPurs , 0 

CF. UNIT vEcrOR I~ THE DIRECTION OF THE FIELD POINT • 
é 1 : ECGE HUMAE_ • 
C OTHER INPUTS AS IS SueROUTI~E STEDCE • 
C OUTPUTS , 

Q) 

C Et "": THE COMPLE. x,v,l COMPONENTS OF THE OIFFItAtTEO fIELD, ,"ASE 
C REFERENCR. ro THE SOURCE • 

COMMON"? SOuqCE 1 s,pel 
tOMMO~ 1 SiEOI f pl.PZ,P) 
CO~MON , STE02 1 E,RE,UI,U2.CGl.CG2-

~~~~l:~I:~i;~~'31.ES~~~Z~~;~~,OS~UH,E02~EO],PHASE 
REIL k,RCI11,6RIZIll,ERI1'3I,ERFZ(l"ERF1'l"ItP'l'.RlfJ'.E(6,l', 
ISI1'.U116,1',L216.3'~CGlI6"CGZ(6'.Pll6.3'.PZ'6,l'.Pl",l'.FfJI 

COMMON 1 STE04 1 N.HE 
CO~MON 1 CCNSTS 1 PI,TPI.Pll,PI4.RTO,DTR • 

• 

C DETERMINE IF DIFFRACTICN F~O" THE I-TH EDGE TAkES PLACE FOIt THtS FIELO_ 
C DIRECTION t -

tA - -DOTA' E,F,J ) 
tFI , CA .CT. CGZ(I) !'.ANO. ( CA .LT. CGlIlt t 1 GO TO 1000 

C NO DIFFRACTION , 
DO 1 J - 1.3 

1 EOIJI • 1 0 •• 0. 
RElURN 

C 
C CIFFRACTION CCCURS 

10CO Dl - O. 
02 - REIIl 
TOl • 0.01 

Z CONTINUE' -

, 
l ' ~ 

FINO THE OIFFRACTION POINT t 

o • Dl + ( 02 - Dl t 1 2. 
DO, 1 J • 1.1 

] RPI~I • P111.JI • 0 • EII.JI 
DO ~ J - 1,3 

4 RlIJI -' RPtJI - SIJI 
CAll UVECI Rl,RlH , 
CT • -DOTAI E.AI,I 1 

/' 

C CETERMI~E IF THE OIFFRACTtON POINT P "AS aEEN FOUNO MtTH 
C EMOUGH ICCURACY t 

JF! ABSI CT - CA 1 .LT. TOL 1 GO JO 1001 
1Ft CT .LT. CA 1 GO TC 5 

C C NUST ftE INCREASEO 
Dl - 0 GO TO 2 

C 0 MUST ~E OECREASED t 
5 DT- 0 

'c 
GO JO 2 

1001 CCHTI~E 

.... 

? 

C CALCULATE THE DIFFRACTEO FIELD t 
t '-

') 

> . 
~ 
t-.) 

... 



• 1 
\ 

S.'t;outine DlPEDG (eOllt td) 

C OETEqMI~F THE'V~llE OF THE SOURCE FIELD AT THE DIFFRACTION POINT' 1 
CAll SF(OI RP,RP~,ES 1 

C FI~O T~E INCIDeNt FDce-RFlATED COORnl~ATes 
fR12111. RlI2,-ell.H - /tIlH.fll.2' 
ERIZIZI • -RIII'-EII,ll • RIC11*EII,l' ' 
eQlzl31· Qllll*EII,21 - RlIZI.EII,11 
CAll UVECI ERIZ,ERIZM 1 
ERllII'oO RI12'-ERlllll - R1Ill*ERI~ez' 
ERlllZI - -AIIII-EAllel' • RlI3'*ERIIIl' 
EAI]I3' • AI.II*ERII.ZI - Al'ZI*EAI21I' 
CALL UVEC' ERI~,ERI1M , 

C RESOLVE THE INCIOE~T ~IElO INTC fDCE-FIXEe CCMPOMENTS 1 

ESEZ • ESI11*EQI1(11 • ESIZI.ERIZ(ZI • ESC11.EAIZC11 
ESEl • ESIll*ERI3111 • ESIZI.ElI1121 + ESI3"ERI1131 

C DfTER"I~E THE DIFFRACTID~ ANGLES 1 
8ETAO • ARse AAcose CA , 1 

C FINO THE INCIDENT ANGLE 1 

CPI • OOUI Ul,ltL,1 " 
CPZ • DOTAI UZ.Rl,1 1 

~ 

.~ 

IFI CPI .NE. O. , GO TO 100 
P510 • PI2 ' 
IFI CPI .GT. C. 1 PSIO • 1. - PI2 

\ GO TO e 
'JlgO~~H • ATANI CPZ 1 CPI , 
.'~ 'FI CPI .Lf. C. , GO TO 7 

Ip • PI • ALPH 
TO e 

1 mO . ALPH IF' CPl .lT. C. , GO TO e 
P la • TPI + 'lPH 

1 C NTINUE 
FINO THE OI~RACTION ANGLE 1 

CPI • -OCTAl Ul,F,1 , 
CPZ • -DOTA' LZ.F,I , 
IF' CPI .NE. C. " GO 10 102 
PS 1 • P 12 
IFI CPZ .GT. O. 1 PSI • 3 •• PI2 
GD TO la 

10Z 'lPH • 'TANI CP2 / CPI , 
103 COl'lrINUe 

IFl CPI .LT. C. 1 GO TO 9 
PSI· PI • AlPH 
CD Ta la 

9 PSI • ALPH 
IF' CPI .lT. C. , GO TO 10 
PSI. TPI • ALPH 

10 CONTINUE 

1.\ 

r 

.' 

C FIND THE OIFFR'CT*N CCEFFICIENTS 1 
CALl OIFFlOI ,O",eE1AO,PSIO.PSI,[,RP~ 1 

C FIND THE CONPONEN S OF T~E DIFFRACTEO FIELD IN ED~E-FIXED CODROIHATES 
,E02 • -OH. ESE2 

... EO] • -OS. ESEl 
C FINO T~e OIFFA'CTEO EOGE-FIXEO CODRQINATES 

ERFZI1' • EII.ZI*FI]I - EII.3'*fIZI li 

Î· 

~ 

, ' 

Subroutine DIFEDG (cont'd) 

ERF2121 • -EII,ll*FIll + EII,ll'Fll' 
EAF213'oO EII,II.FIZI -'EII,21-FIll 
CAll UVEC! E~F2.FRF2~ 1 
E~F311' • F12,*eRF2111 - F!l,.e~F212' 

ERF)12' • -FI1'*FRFZI31 • Flll.ERFZI1' 
EAF313100 FII'*6AFZIZI - FIZI*ERFZ(ll 
CALL UVECI ERF1.EAF1M 1 

<..,.. 

C FINO THE x.Y,Z,CO~P~NENTS OF THE DIFFRACTIO FIELD 1 . 
EDlll ~ EDl-E~FlIl' • E01-ERF1Il' 
EOIZ' • EDZ*ERFZll' • EOl-ERF]'2' 
EOl31 • EOZ-ERFlI3' • E01.ERFllll 

C RELATE THE PHASE CF THE DIFFItACTED FIELD TO THE SOURCE 1 
DO 12 J • 1,3 

12 RO'J' • RPIJI - SIJI 
OELTAA • - DorlF,ROI 
PHASE· CEXPC CMPLx. O •• -TPI*DELTAR 1 , 
00 14 J • 1,3 

14 EDIJI • EDIJI - PHASE 
RETURN 
END 

'" 

~) 

" ;, 

Il' , 1 
111 
:1 1 

... 

't" 

• 

e' 

,. 

4 

r:-

'.~ 
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~ 
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C GEC-ET~ICA~'OPTICS P~OB~EN • 
C . 
C SUBAOUTINES AEOUI~EO )' STAEF.UVEC,~E~.OOTA._AGPH.PTPRT 

REA~ PA(6.3),PB(6,J).S(J),~(J),AA(.),PO~C3).ARRC.).P~NI 361 , 
CO~MON , CONSTS , PI.TPI.PI2.PI •• RTD.DTA 
CO~MCN , MAINI , ARR 
CO~MO~ , STREFI , PA.PB.NA 
COMMON , SOU~C~ , S.POL 
COMMON , PTPATI , 10.IN.ID.DaN 
COMPLEX EO.EA,E~,EAEF(J) 
PI '" ].1415926 
TP l '" 2 •• PI 
oTR '" PI , 180. 
ATO • 180. ;' Pt 

C LOCAT~ THE E~POINTS OF THE EDGe 
" • 2'.5-
NR,,'" 1 
PAil .. ) -1 
PAI1.2) a O. 
PACt .. .], • o. 
pee J.l J •• 
PBCI.Z) • o. 
PBO ,J) '" O. 
ICNT .: 1 

2000 CONTINUE 
A a .~~I ICNT 

C LOCATE THE seURCE 
511.) - o. 
SUI. A 
Sill .: O. 

W~ITEI6.IOO) 1 PA(I.I,.I_I,] ),1 Pftll.I,.I_r.] ',e SIII.I-I.] 
100 FOA_ATt'"" ••• GEO-eTAICAL OPTICS PAOaLEM ••••• 

1 ;"' ••• ENOPOINT_S OF T"E E'OGE : e .. 

2/.20J(.~ 7,'.20X.JEI5. 7. 
3 ',.' • SO~RCE POINT: ',3E15.T 

C SPECrFY THE REGIONS WHEAE THE DIAECT FIELD 15 SCAEINED 
PSIO - AlAN' W / A ) 
AL 1 • p 1 - PS 1 0 

C SET UP THE REFLECTEO FIELO SU8AOUTINI : 
C 
C 
C' 
C CA~CULATE THE PATTERN 
C 

lAD :a 0 
1000 CONTINUE 

PHI .. lAD. OTA 
C FINO THE DIRECT FIELD 

EO • C -1 •• 0. J 
1Ft PHI .GT. ALI ) ED • C 0 •• 0. J 
Fil) SIN( PHI) 
F(2) - cost PHI 1 
Fill .. O. 

C FINO ~T .. E AEFLECTED F IE~O 
"CALL REFI ".EREF,l ) \ 

EA - ERE~l.3) 

CFt"" T ... &! TOTA\.. !"IE .. " 
ET • EO + ER 
1", • '.n • 1 

L 

... 

'"'-

, 

,C 

r 

CALL MAGPHI IT,PTNI IP~ l , ptl 
lAD .. lAD + 2 
IF( JAO .~T. 181 ) GO Ta 1000 

C WRITE THE PATTEAN 
C 

100 .. a 
CALL PTPRTI PTM,IOO ) 
ICNT - ICNT • 1 
IFI ICNT .LE •• ) GO TO 2000 
STOP 
END 

BLOC~ DATA 

e 
'"'" > o 'tJ 
0; "d 

/"1' 
::r 0\ 
~ 

~ ;t 
o ~ 

~ Cl 
/"1' /tI 
0; o· 
lb :f ~ 
., ~ /"1' 
.... al P1 .... 
~ > n 
::r '" al 
ct '" .... o ~ 

.~ - 50 .g 
.... rt 

o >< .... 
CO •• ON , PTPAtl , 10,IM.IO.DeN 
DATA IO.IN.ID.08N ;' 0.180.2.0. 
CO~MON , SOUAC~ / S,POL 
OIME~SION S(l).POLI]) 

MI n 
n 01 

1 0 0 
.. ::1 ::J: 

DATA PO~' 0.,0.,1. 1 
CaNNON' MAINI , ARR 
REAL AARI.) 
DATA ARA / .25 •• 5 •• 6 •• 75 ;' 
ENO 

\ 

... al 0, 

.. ~ 0. 
n 01 ~ 
• l''t .... 

01 

~ 0 l 
a. .... ~ 
ct :s 
.... Pl 

"d o n P1 
'"'" 0 0 S I)Q 
/"1' "d P1 ::r .... Pl 
~ (9 51 

l''t 
~ .. ~ C' 
al .... 
/"1' ~ 

01 
~ ''tJ /"1' .... , .... 

Pl :s 
-/"1' .(JQ 
~ 

P1 ~ t al . 
0. l''t / 
.... ::r "'.~ 
Pl ~ 
l''t 
~ 51 
::1 al 
'JQ .... 

:s 
al 
'< "d 
01 0; 
rt 0 
/tI\< JQ 
51 0; 

Pl 
S 

> 
.... 
.c-
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C ••• TwO - D(WE~stONAL GOT PROGAA~ ••• 
CQ~PLEX ED.ER.ET.EDrFFI13,.EOIFF2131.ECIFI.EOIF2 .EOtFF3131.EDIF3 
CO~PLE' EOIFF_131.EDIF •• EREFIl' 
I~TeGEq lAMé(2S).IA~N(25).IAND(251 
CO""ON / ,.AIN2 / l'''~O.,,JA'''N.IAND.INOYS 
REAL AqW(25).PA(b.J).p~(6.3).Pl'6.3).P2(6.3,.PJ(6.3,.~C6).Np.VAte. 
REA"" PT2~ 361 ) • PS2( 361 ) 

RE~ PHi( 361 )'PSI136. ).PT3136.I.PS3Il61' ... ARRIIOI 
CO~"CN / MAI~I 1 W .... qq.WA.P~OqMM.IHI~,ILO,..(SACfM.HAAA.(HM 
INTEGEA IHI"'(251.ILO"~S) 

REAL FIll.OI8,.5Cll.AOEGI81.POL(ll.PNOR_MI251 
CO~~O~ / PTPRTI / IA~GC.I.NGN.IA~GO.OBN 

CO~MO~ / srQEFl / PA,pe,NR 
CO""ON 1 STED4 / N.NE 
CO""CN / STEOI / PI.P2.Pl 
CO .. ,.CN 1 SOU ACE / S,POL 
CC~MCN / CO~STS / Pf,TPl.pr2.PI.,ATO.OTR 
PI '" 3.14.5<;126 
TPI :II: 2 •• P J 

PI2 '" PI / 2. 
DTR '" PI/ISO, 
RTD '" 180. 1 PI 
PI. = PI / 4. 
.. II: .. / 2. 

C LOCATE THE REFLECTING PLANE 
PAt 1,1) z o. 
PAII.2) '" -w 
PAII.l,. a O. 
PB ( 1.1) • 0_ 
P8tl.2) t W 
petl.) a 0_ 
NQ = l 

H = HA RA III 
IN'" t l , ' 
WQITE(6.100) (PA(1.J).~=1.2).(P8(1.J).~.1.2)-

100 FQR~Ar('l •• ' •••••• THE FLA~ PLA~e •••••• ~. 
1 ///,' ••• ~OCATION OF AEFLECTING PLANE·~ 
2/.' _START POINT : '.2~15.7.'.· .~NO PCINT: 

C LOCATE tHE OIFFIUCn .. G -EOGES 

... 

Ne :: Z 
H .... ,. 2. 
PI'I.I) • o. 
PIII.21 s-w 
PIII.J) " -H 
P211.11 " O. 
P211.2) " -. 
P21 1. J 1 z H 
P3(1.1' • o. 
P3(1.2) :. -.+1. 
Plll.31 "-H 
P1I2" l '" O. 
PII2.2) ... 
Pl(Z.J) z H 
P2 C 2-.11 .. o. 
~212.21 " • 
P212.J) __ lof 

PJI2.11 a O. 
P3C2.Z) •• - 1. 
Pl(2.31. H 

~ : 

·.21!15.7 , 

>" 

:.. 

r! 

DO 201 1 a I.NE 
201 NIl) = 2. -.All, 1 180. 

WQ1TE(6.102) 
102 FORMAT,/,.' •••• EOGE DATA') 

DO 2CO 1 : I.NE 

~ 
e 

20~ WAITEI6.IOS1 1 •• AIII.IPIII.JI.J"I.JI.(P21(.JI.Jal.ll.IPlll.J).J_I. 
1 J) , 

IO~ FO~~AT(' .weOGE • ·.rl •• X.'A~GLe : ·.~S.O.· OEGAE~S·.'.· .-.IOX. 
l'SlAqT PCINT : ',JEIS.7, • 
1 /.' • ENO POINT: ·.lEIS.7. 
Z ".' • 

lSACE " 1 
REF 

2000 SIl) " APRI ISRCE ) 

POINT '.JE15.7 , 

C FINO THE REGIONS WHERE THE VARIDUS FIELDS ARE PAE5E"T __ 
AI " ATANI 1. S(21)' 511) 1 
A2 " "T Ar. 1 1 w + S ( 2 1 1 1 5 Il) 1 

C DIRECT 
ADI " PI - AI 

, A02 a Pt + A2 
C REFLfCTEO 

A~ 1 " 
AR2 '" 

C DIFFRACTEO 
AOII 
AOl2 

AI 
2. • PI - A2 

PI2 
PI2 ... Ail ).OTA 

A021 = 3._ ~r2 - W.tZ).OTA 
A022 = J •• PI2 
w~ 1 TE 1 6. 104) 151 J ) • J"I • 3) • 1 POI.l JI. J"I • 3) 

104 FQRpotAT( '0'. 
1///' • SCURCE POINT ~ e.3E15.7.· .... VI!LE .. GTHS·. 
2/, . • P()LA~IZATION : •• 3F5.0 1 

A-OEG( Il "'01 • RTD 
ADEGI21 A02 • R-I'O 
AOfGIJ) AAI • RTO 
ADEGI.) A"2 • RTO 
AOEGIS) s "011 • RTD 
"DCGlé) 4012 • PTO 
ADEGI71 AD". • RTO 
AOEGcel "0 .. 2 • RTO 
.RITrC6.f>OO) C AOEGI J) .J:l.S 

600 FOR"A TI' .. // .. • LI_ITING ANGLES 
2/,' • DtRECT • ,2EI5.7,· DEGREES •• 
Il.' • AEFLECTIO.. ·,2EI5.7.' DEGREES'. 
3/- • OlFFWACTION ·.2E15.7.' OEGREeS·. 
./,' • : •• 2E15 .. 1.· DEGREI!S' t 

CALL STREF 
CALL STEDG 
C#lLI. STOFLO 
CALL FRES1N' 

C Z~AO THE PATTEA" VECTOAS 
00 lQQ ~ = 1.361 
PTN( JI .. O. 
PSIIJ) " O. 
PT2IJ) O. 
PSZ(JI • o. 
PTllJI " O. 

190 PSJIJI '" O. 
tANGO IA"OI IN" 
100"'G" IA>\"I IN" 
IANGO z IA"OI ..... 

J 

~ 
"0 

-..J 

pl 
(D 

~ 
~ 1 
S!r 
~~ .., 
(D 
o 
~ 
rt 
11 

h 
III 
f-' 

t;; ..... 
H'\ 

"" H 
III 
o 
rt 

b 
::; 

5i 
CD 
o 
11 
'< 
~ o 
CI. 

e. 
6f 
~ 
"d 
11 
o 

OQ 
H 
III 
::1 

> 
f-' 
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------- . 
e 

'''I\te r=r l ",....c:;,O 
1000 PHI 2 OTA. IANG 

JFII'.COsI PHI , 
FIZ, = slNI PHI 1 
FI.l1 ., O • 

C 'INO TME DIRECT FIE~D ~ 

ED '" 1 -1 ... 0. 1 
IF' r PH) .GT. AD! ) .AND •• PHI .LY. AD2 ) ) EQ • 

C FIND T~E REFLECTED FIELD 
CALL REFI F.EREF.I , 
ER = EREFI l , 

C FiNn TME DIFFRACT~O FIE~O 
E01Fl ~ ( 0 •• 0. ) 

0 •• 0. 

IFI 1 PMI .GT. ADII 1 .AND. C PHI .LT. AOl2 , , GO T~ 1002 
CALL DIFEDGI F.I.EDIF~I 

EOIFl z EDIFF1ClI 
1002 CONTINUE 

EotF2 ~ C 0 •• 0. ) 
IFI 1 PMI .GT. AD21 1 .AND. , PHI .LT. A022 
CA~L DIFEOG' F.2,EDIFF2 
EOIF2 = EDIFFl(ll 

100l CONTINUE 
ET s ED + ER + EDIFI + EOIF2 
IPL IANG + 1 
CALL MAGPH( ET .PTN(lPL),PSICIPL) 
IANG x IANG + IANGO 
(F( IANG .LE. IANGII 1 GO TO 1000 
C~N z O. 
IF( INOYS .EO. 0 1 GO TO 2010 
PNORM k PNOR~"I INII 1 
IMI % IHI.O/ IN" ) 
ILO ., ILC"I 1"" 1 

C FIND TME NO~"A~IZATION FACTOR 
P"AX '= PTNI ILO + 1 1 
(PL z ILe. 1 + IANGD 

3000 IF 1 PT"I IPL 1 .GT. PIIAX 1 PMAX .. PTN( IPL ) 
IPL z IPL + IANGD 
IFI IPL .LE. IMI 1 GO TO 3000 

C SPfCIFY TME "AXIIIU" VALUf nF 
OBN z PNCP" - P"AX 

THf Da PATTER~: 

WRITEC6.110) PNO~~.ILO.tHJ.P~A •• OBN 
110 FDR~AT(////'" •••• NORM~L1ZATtON QAT. " 

1//,' •• ~ORMeo TC A ~AXI~U. OF '.E15.7.· 08 '. 

, GO TO 1003 

li,' BET_EEN ',Il,' DEGREis AND '.11.' DEGREES '. 
4 1/,'. ACTUAL "AXI~U~ ',fI5.7.' DB'. 
5 1/.' • "OR"ALflATION FACTOR D8N '.EI$.7.' De " 

2010 CO~TINUE 
toO ~ 0 
101 = 1 

.RITE/6.loa, 
loe FOR"ATI/I,' • TOTAL FIELDS 'II 

CALL PTPAT( PTN,IDO 1 

11050 

IN" .. IN" + 1 
TSRCE Z (RCE + 1 
IFI ISRC .LE. ISRCEM 
ST~ • 
EN~ 

• 

1 GO TO 2cfl1"o 

.' 

t· 

BLOCt< DATA 
l'ITEGE~'IO('''5I,I''(0151,IOIZ51 
co""o ... " "AlN2 / 10,"·,IO.INOT,S 
REAL ARR(251,WA(6I,PNDRMM'251.HARR~IO) 

~EAL S(]I,POLI11 
INTEGER IMIMIZ5I,ILO"1251 
CO~~ON / ~AI~l , •• ARR.W4.P~OAM •• I~I •• ILO·.ISRCEM."AAA.I~ 
REAL .... LAN." 
CO"~ON / SOURCE 1 S.POL 

,C SPECIFY THE PLATE WIDT" : 
OATA " 1 0.11 1 

C SPECIFY TME sou~ce POINT: 
DATA lSRCE~ / 3 / 
DATA AR~ 1 .1I.1.476,I.T52 / 
DATA 5 1 0.,0 •• 0. 1 

è SPECIFY TME .EDGE ANCLES IN OEGREES 
OA T .. - •• / 1 •• 1 •• ' •• 1. / 

C SPECIFY THE SOuqCE POLARllATION 
_, OATA peL / 0 •• 0 •• 1. / 

è SPEC/FY THE PATTF4N CALCULATION PARA"ETER5 
DATA 10 1 25.0 1 
DATA I~ 1 25*180 / 
DATA 10 1 25.' / , 

C IF tNQYS ~ 0 • fHE~ THE CO~PUTED PATTERNS ARE NOT NCAMALIZED • 
OATA r~oys / 0 / 

C SPECIFY THE PATTERN "ORIIALIZATION DATA: 
DATA PNOPMM 1 -1.6 1 
DATA ILCM / 25'10 1 

DATA I~I" / 015'010 / 
DATA I~" / 1 1 
DATA HARA / 1.6 / 

C SPECIFY GALSSIAN CUAO~ATURE DATA ~OR THE FRESNEL INTEGRAL EVAL~ATICN 
OI"E~SIO~ B(~I.B.lel 

CO .... CN / OUAO / Aw.S.NG 
DATA ~G 1 6 / 

e_ / .1713~ •• q2J •• 3é07é15730 ••• 679Il93.5. 
.46791JqJ.5 •• 36a'tl~7JO •• 17IJ2 •• 92J ~ 

e 

OATa. 

1 

OUA 
1 

R 1 -.~l2.b~5142,-.b612091116.,-.2lE61~1860. 
,2J86Iqte60,.661209J8~',.9l2469"42 / 

C SPECIFy THE F~ESN~L IHT(GRA~ (CNSTA~TS 

CO,NPL€".oF$(ZS, 

.... 
~EAL ""61 
CD"wc~ / FRf SI 1 1.FS 
DATA FS / (0 •• 0.). .77C;8924E+OO. .4lI!25119E+001. 

CI .52P.BÇ21E+OD,' .1IJ9727E'OOI,1 
C( 
CI 
CI 
CI 
CI, 
ce 
C ( 

CI 
C ( 
C( 
CI 

•• ee2S0QL.OO, .l.J.lb~f+OOI.1 

.~O~l411E.OO. .61e940IE+OO).( 

.49561fbE+OO 3e7Q70Q~.QO).' 

.50JI5e~E+00, 01601èE+OOI.1 

.4'l7StJ7E+00. 021EoOOI,I 

.5019199E.00. .5A. zeE-OOI,e 
•• Qe4ZI9E'QO, .420~6E'001.( 
.SOlJ2JOe+oO. .57.9575e+oO).( 
•• gee68CE+OO. .4zeS787E+OO).( 
.~009~19E_OO. .567821510+001,( 
.49913e6E,00. .4J50601~'001' 

1 

DATA Z / 
C 0.0 .IOOOOOOE+OI, 
C .2000000~.01. 

C .?H1P.z,rtOl, 
~<') .J_J,t4to,t.oi. 
t' •• 000eOOEoOI, 
C 
C 

ENO 

••• ,2IJ6E.0I, 
.4"96Q19E+Ol. 

• ZZ360~ee:+OI • 
• 1oooobOF.Ol. 
• J"'O",)~·.)"'t..O' • 
•• 12JI06f+01. 
• 4.,eZ576E+01 • 
.50èooooe'01 

.6.C80s.e+oo 

.Je03e95E.c~. .505 

.6057,q7E.OO~ 

.4270l49E+OO. 

.S694IJ4e.oo. 

.433EE59[+Ç,0 

.1414213f,OI. 

.2449490E,01 • 

.]'62""(".01. 
• J'.I051F+01, 
• 4l42e40E~al. 
• 4690USf+OI • , 

.113205IE+OI, 

.264575It+OI. 
..']l'f'tfo~"iF+Ol. 

.J8729I1JEfOI • 

.41S •• 99ffOI • 

.4795.12E+01 • 
> 
..... 
a-



e 

CO~PlFx EO.E~.ET.EDIFFII".EDIFF211'.EDIF1,EOIFP ,EDIFF3'31.EDlf3 
CO~PL:x EOlff~(31,EOlf4,EReF(31 
I~TEr.~~ lAMOI251.1A~~125I,llMOI251 
Cn~~nN 1 ~AI~7 1 rA"n.rA"M,rAMn,rNn,~ 
PEAL AR~(2~I,PA(6.31.PH(6,jl,PlI6,)I,P216,3"P3'6,)I,NI61,NP,VA(6' 
REAL PTZ( 361 l , PS;:-I :)61 1 
R~AL PT~I 361 ',PSI13611,PT31361"PS31361"HARRIIO' 
CO~MON 1 ~INI 1 ~,ARR,WA.PNORMM,IHIM.JLOM.ISRCEM.HARR.1HM 
INTEtER IHINI251,llO"I251 
REAL Flll,CI8I,SI1I,ACfGI81,POlI1',PHORMMI25' 
eO~MON 1 PTPRTI 1 IlNGO,lANGM,(ANGO,DBN 
eOMMryN 1 STREFl 1 PA,PB,NR 
eO"MO~ 1 STEO~ r N,NE 
eO~"CN 1 STËDI 1 Pl,P2,P3 
CO~M~ 1 SOuRCE 1 s,pel 
CO~~ON 1 CONSTS 1 PI,TPI,PI2,PI~.RTO,OTR 
PI .. 3.1415926 
TP 1 .. 2. _ PI 
Pl2 .. PI 1 2. 
DTR " Pt 1 180. 
ATD .. Ua. 1 PC 
P 14 .. PI 1 ~. 

v .. W 1 2. 
e LOCATE THE REFLECTtNG PLANE " 

PAll.l1 .. O. 
P"1,21 .. -w 
PAII.11 .. O. 
P811,11 .. O. 
P81 l, Z 1 .. W 
P811.31 .. O. 
NR .. 1 
H .. HARRlll 
tNM z 1 

" 

~ WQITEI6,1001 IPAll,JI,J.t,ZI,(pell,JI,J-1,21 
ICO FOqM~TI'I',' •••••• THE FLAT PLA'E •••••• '. 

1 III,' - •• LOCATION OF REFLECTING PLANE', 
2/,' -ST_RT POINT ~ '.2E15.T./.· -END POINT l '.2E15., 

C LOCATE THE OIFFRACTING fOGES t 
NF " 4 
H " H 1 2. 
P1I1,1I -o. 
P III, 21 • -101 
P11l,31 • -H 
P211.11 • O. 
P21l.21 • -II 
P211,3I • H 
P311.l1 • O. 
P311.21 " -101+1. 
P311031 " -H 
Pl12,11 .. O. 
P1I2,ZI • 10 
Pl/2,31 .. H 
P21Z,11 • O. 
P212.21 • W 

--
) 

/ 

,,-,/ 
;/ 

P212.31 &-~ 
P]IZ011. O. 
P)12,2' " w - 1. 
P1I2,l'. If 
PIIl,I) • O. 
PII1,2) " .1; 
P1I3.31 " .. 
PZ13,11 • o. 
P21'3.21 • 10 
P213,ll "H ~ 
P)(3.11 • O. 
Pli 3.21,. -w 
P313,31 • -1. + H 
pll", 1 1 " O. 
~",21 " iii 
P1l4,31 - -H 
P214,11 • O. 
P214,21 • -loi 
PZI4,}, " -H 
P)I~.l1 • O. 
P314,ll " loi 
P'314,,' • -H • 1. 
00 lOI 1 • 1,I\E 

201 NIII " 2. -WAIII 1 1110. 
WIIITEf6.10ZI 

It2 FORMlTIII.' ••• wEOCE DATA'I 

-.( 

) , 
... 

'. 

il. 

00 200 1 • 1.~E , 

• 

---
1 

.J 

200 WRITEI6,I051 J,W'll).IP1'I.J~,J-l,1"IP~'I,J',J-l.11.'P1CI.JI.J-1, 
)lI 

10sIFORMATI' .WEOGE , ',ll.4X,'ANGLE : '.fS.O,' DEGREES',I,' .',lOX, 
t'START PCINT '.3EIS.T, 
1 l,' • END POINT 
2 l,' • REF POINT 
IS~CE • 

20CO 5111 .. ARQI ISRCE ~ 
C FINO THE REr.IONS aHEqE THE VARIDUS 

Al 2 ATANI ( loi - 5121 1 1,5111 
A2 • ATANI l '1+ 5121 l , 5111 

C DIRECT 
AD l " PI - Al 
"02 • PI + AZ 

C IIEFLECTEO 
"R 1,." "1 
ARZ - 2. - P( - Al 

C 0lFFR4CTEO 
"Hl .. Pil 
AOI2'· PIZ .WlI11.OTR 
ADll " 3 •• PI2 - WAIZI.O~A 
A022 " 3 •• P(2 

',3ElS.T, 
',3EIS.1 1 

FIELDS ARE p_eSfNT 1 
1 
1 

W~ITEI6,IO~) ISIJ),J-l,3I,IPOLIJI,J-1,11 
104 FORMUI'O', 

11/1' • SOURCE P.OINT l ',3fl5.1,' VAYELENGTHS', 
2/,' • POLARllATIOH , ',3~5.0 ) 

ADEGPlI - AOl • RTD 

--',' 

j 

---

> "tj-
"CS . 
CID 

;,i 
~ 

~ 
C 
t1 
1 
t!2 
~ 

,QQ 
~ 

(j) 
~ 
0 
S 
ID 
n-
t-t .... 
n 
III ..... 
t:1 .... 
H'I 
H\ 
t1 
1» n 
n-.... 
0 
=' 
pl 
~ 
o -
t-t 
'< 

~ 
~ 
ID 
~ 
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( 

" 

• 
AOEGI2' • A02 • RTO ' 
A~EG!ll • A~I- • RTO 
ADEGI41 • AR2 • RfO 
AOECI;I • AOII - ~TO 
ADECI61 • ADI2 • ATD 
ACEGI7l • AO~I • RTO 
AUEGI81 • AD22 • ATD 
WRITEI6,6001 1 AOEGIJI,J-I,1I l , 

6CO FORMATI' ',l',' • llNITING ANGLES t ' 
2/,' • OIAECT l ',2EIS.7,' DEGAEES', 
11,' • REFlECTIO" l ',2E15.7,' DEGREES', 
li' • blFFRACTION 1',2Et5.7,' DEGREES', 
41,' • ", ZEJ5.7,' DEGREES" 

CALL .-STREF 
CALL STE DG -
CUL STOFlO 
CALL FRESIN 

C ZERO THE PATTERN VECTORS 1 
DO 190 J • 1,361 
PTNIJI • ..9', 
pSlIJI • O. 
PT21JI - O. 
f>S2IJI • O. 
PT31Jl • O. 

190 PS1IJ' 8_0. 
IANGO • IA~O' INM 
IANGM • IA~~' INN 
'ANGO • IAMOt INN 
UNG .• rANGe 

1eco PHI. oTR • IANG 
FIII • COSI PI-! 1 
FI21 - SINI p~1 1 
FBI • O. 

C FI"o THE DIRECT FIELD 
'''1 Eo • ! -1.,0. 1 

.-

.~ 

r-

IF' 1 PHI .GT. Aol 1 .ANo. PHI .n. A02 lIED. O. ,o. t' 
C FINo THE REFLECTEo FIELD l 

CALL REFI F,EREF,I 1 
EII • EREF 1 3 1 

C FINo THE olFFRACTEo FIELD t 
EOIFI • 1 O •• C. 1 
IF! ! ~I .GT. A011 1 .ANO. 
CALL olFEOGI F,l,EoIFFI 

leOIFl· EOtFFI13. 
1002 CONTINUE 

EOIF2 • 1 0,,0. J 

l'Hl .lT. A012 1 

IFI 1 PHI .GT. A021 1 .ANO. 1 !>HI .lT. 1022 1 
CAll olFEOGI F,2,EDIFF2 J 
EOIPl • eDIFF2131 

lce3 CONTINUE 
ET - eo • ER + EOIFI + EoIF2 
IPl • UNG + 1 _ 
CAll NAGPHI El ,PTNIIplI,pSIClpl' 
IANG • lANG • lANGO 

r' 

GO TO 10~2 

1 

GO TO 1003 

IF! IANG .lE. IAHG~ , GO Ta IODa 
OB"I • O. 
IFI I~OYS .ED. 0 J GO TO ZOIO 
PNOAM • PNOA~~I INM 1 
IHI • IHIMI 1"" J 
IlO • ILO"! 1"'" 1 

C FINO THE NOR"ALIZATION FACTOA t 
PNAX ,. PTNI ILe. 1 • 
IPL - IlO + 1 + IANGO 

r-, 

30CO IFI PTNI IPl J .GT. p~A)( t PMA)( - PTNI IPL 
IpL • IPl + IANGO-
IFI IPL .lE. IHI J 1>0 Ta 3000 

C SpECIFY THE ~AXIMUM VALUE OF THE 08 P.TTEAN t 
oBN • PNORM - PMAX 
WRITEI6,llOl PNOR~,lle,IHt,PMAX,08N 

110 FORMATlf"",' •••• NOAHALIlATION DATA " 
l",' •• HORMEt TO A MAXIMUM OF ',EIS.7,' OB " 
2/,' BETwEEN ',Il,' DEGREES AND ',Il,' DEGREES " 
~ Il,'. ACTUAL MAXIMUM '.E1S.7.' Da', 
5 ",' • ~ORMAlllATION FACTOR 08N ',Elt.7,' 08 '1 

2CIO CO~TlNUE 
100 • 0 

'lOI • 1 
WRITEI6,10BJ 

108 FO~MATIII,' • TOTAL FIELDS 'II 
CAll PTPRTI PTN,loO 1 
INN - IN~ + 1 
ISRce • ISRCE • 1 
IFI rSACE .lE. ISACEM GO Ta 2000 

11050 STOP -
END 

-....:., 
1 

r::.. 
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C 

• (' 

~ --
•• - 3-0IME~SIONAL GTO PRCGAAM •• - • 

BLOCK OlTA 
INTEGER IOI251.Pl(25),IOI251 ~ 
COMMON 1 MAI~2 1 IO.I~.IO.INOY~ 

.. 

REAL AAQC2S'.WAlbl.PNORM"1251,H"'RRllOI 
REAL Sll'.PCLI]) 
IN1E~;R IHI~1251.ILO~12SI 

--
, 

COMMON " MAIN1 1 W.ARR.W .... PNORMM.1HIII.llOII.ISIICEM,HARR.IHIt 
REAL M.LAN.K 
CO~MON 1 SCUACE 1 S.POL 

C SPEC1FY THE PLATE HEIGHT 1 

OAU IHM 1 1 1 
C SPECIFY THE PLATE WIOTH t 
C SPECIFY THE SO~RCE POINT t 

o loT A t SRC'tlM -/- 3 1 
OAU W 1 0.8 1 
DArA HARR 1 1.6 1 
DATA ARR 1 .8.1.476,1.752 1 
DATA S 1 0.,0 •• 0. 1 

C SPECIFY THE WfOGE .~GlES IN OEÇREES • 
DATA WA 1 1.,1.,1.,1. 1 

C SPECIFY THE SOUR~ POLAAIZATlbN 
DATA POL 1 0.,0 •• 1. 1 

C SPECIFY THE PATTEA~ CAlCUL ... TION PAR'~ETERS f 

DATA 10 1 2~.O 1 
DAT'" lM 1 25-180 , 
oaTa ID 1 25-1 1 

C IF INOYS • 0 • THEN THE COMPUTED PATTERNS aRE NOT NORM"'~IIEO 
DATA INOYS 1 0 1 • 

C SPECIFY THE PATTER~ ~OR"'LIl&TION OATA ; 
DATA PNOR~~ 1 -1.6 1 
DaTA IlC~ ~ 25-10 1 
DATA IHI~ 1 25-Z0 1 

C SPECIFY GA~SSI.N C~ADRATURE DATA FOR'THE FRESNEL INTEGRAL EV"'UUATION 
DIMENSION ~181.eWle) " CO~~ON 1 Q~.D , ew,8.NC 
DATA NG 1 () , 
OATA aN 1 ~17132~49Z] •• ]6076157]0 •• 4619139]45. 

1 .4679~39345 •• 3b07615730,.1'1]24492]cl 
OATA 8 1 ~.9324695142.-.66120931164.-.23116191860. 

1 .23B&lQ1860 •• 661l09J864,.9324695142 1 
C SPECIFY THE FRESNEL INTECRAl CONSTANTS 1 

CO"PlEX FSI251 
REAL lez!:. 
CO"~O~ 1 FRESI / l.FS 
DATA FS , 10 •• 0.1. 

tl .5288922E+CO, 
CI .4118250QE+CO~ 
CI .5066417E'CO. 

"CI .495U76E.CO. 
CI .5031585E+CO. 
CC .4975831E+CO. 
tl .5019199E+OO, 
CI .4984Z19E+CO, 

( 

.71 39127E+001.1 

.HH16!iE+001.1 

.6289401E+OOI.1 
• U19100e+OOI. C 
.60036Z8E+OOI.I 
.40830Z1E+OOI.1 
.!i84942eE+OOI,1 
.4205166E+00I,1 

.17911924E+00. 

.3Z10552E+00. 

.6401l054E+OO. 

.3803895E~OO. 

.6051197E+OO. 

.40425114E+OO. 

.581112S7E+OO. 

./t179Z02E+00, 

.5771200 hOO • 

.H82589E+001. 

.51n070E+001. 

./t911917E+001_ 

.5053209E+001,'--.­

.4963126E+001, 
• 5021465E+OO " 
.4971156lE+OOI. 
.5017356E+OOlt 
./t985603E+00 " 

./ 

CI .5013230E+CO. 
CI .491111680e+CO, 
CI .'009819E'CO. 
CI .499138bE+CO. 
on ... l 1 

C 0.0 • 
C .2000000E+Ol. 
C .2828427E+Cl. 
C .3464102E+Cl. 
C .4000000E+Ol. 
C .4472116E+Ol. 
C .41198979E+Cl, 

END 

---------

.5149575E+OOI. 1 

./t2887I17hOOI,1 

.'101'~15E+OOI. 1 

.4350601 E,+OO 1 1 

.tcoooooe+Ol. 

.2236068hOI. 
• 30000aOE~h 
.3605552E+Ol. 
• 4123106E+Ol. 

'.HII2576f+Ol. 
.5000000E*01 

~ 

l'',. 

(> 

.. 
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