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ABSTRACT

In this thesis, the H-plane pattern of a current element antenna
centered in front of a rectangular conducting plate, parallél to a "verticalg;
edge, 1s studled by the Geometrical Dif fraction Theory method- of analysis. An

extensive exploitation of the two-dimensional plate program reveals a systematic
o

behavior of the radiation pattern which is quite striking. ‘This behavior gan be

\

extracted from the large number of computed patterns for di{screte values of width

and separation, and expressed as a simple, continuous graphical synopsis.. Theé% -

r

"synoptic graphs?,bdf only allow the reconstruction of the original finite

*

number of“pgtterns, but also the plotting of patterns for a continyum of widths

4 .
dand separations withirn the range examined, without further computation. The

three-dimensional plate model's H-plane pattern is studied as a function of
plate height, and computed results are compared with published data and also
measurements obtained in an anechoic room facility.

The conclusions suggest that the synoptic graphs are a represent-

-

ation of a multidimensional function wh;ch generates the radiation’pattern in
terms of the physical dimensions of the antenna, or ''Pattern Generator Functien".

The concept of a Pattern Generator Function transcends the computational, analytic

: e

or experimental method used to obtain ig, and may be a useful tool for design

: {

purposes. -
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v
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RESUME )
- r

Dans cette thése, mnous; avons étudié par la méthode de

Diffragtion‘Geométrique, la configuration du champ H d'une antenne é&16-

mentairé, centrée au devant d'une plaque conductrice“rectangulaire, et

-

paralléle & un cbté "vertical" de la plaque.

e

Une utilisation intensive du programme &lahoré pour la plaque .

a trois dimensions, révele d'une mani2re éclatante, le compgrtement syst-—
o .

ématique du champ de radiation. Le comportement peut alors &tre connu a
partir d'un nombre considérable de configurations, calculées pour des valeurs
discreétes de largeur et de séparation, et il peut étre represenéé par une

méthode graphique trés simple,les courbes ''synoptiques' permettant non seule-

-~

ment de reconstruire les configurations initiales, mais aussi de connaitre

les configurations pour des valeurs continues de largeurs et de séparations, |
e |

et cela sans avoir recours a de nouveaux calculs.

La configuration tridimensionelle du champ H est étudiée en \

1

fonction de la hauteur de la plaque, et nous avons comparé les resultats
obtenus avec ceux gqui ont été publiés,ainsi qu'avec des mesures faites dans
une chambre anechoide specialement aménagée. -

- ¢
Fn conclusinn, 11 apparait que les courbes 'synoptiques'' constituent

a

un "générateur multidimensionel de champ de radiation" en fonction des di- '

\ v
mgnsions physiques de l'antenne: Ce concept de ''générateur de fonctions' est
{ 1

plus général et en quelque sorte transcende les méthodes de calcul analytique
1y

oul experimental généraleﬁent utilisés. Aussi peut—il constituer un.outil

utile pyﬁr le développement de nouveux systé&mes. o
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\ CHAPTER 1 . ,

INTRODUCTION 12

1.1 Statement of the Problem

When an antenna is mounted near a conducting body, therg is an
interaction between the body and the antenna which results in a radiation patt-
ern which is considerably different from that of the original antenna. It has
been possible to determine the resulting radiation pattern by various numerical
methods, using a digital computer, for a variety of structures ij;h as cylinders
(8,13), rectangular plates (11,14), a small aircraft (3), and a small helicopter
(12), among others. Once the radiation pattern has been determined, the problem
is generally considered solved. However, Bayou (8), in analyzing the H-plane i
pattern of a dipole anteﬁna parallel to the axis of a nearby cylindgr, notes that
the pattern exbibits alsystematic behavior with changing cylinder diameter and
cylinder to dipole spacing. Based on a large number of patternstgeegrated by this

computer program, Bayou draws up a rudimentary set of "parametric curves" which

describe this fﬁnctionai relationship. Further consideration of the ''parametric
curve' idea and a detaile& investigation of a different géometrical configuration,
using other analytic methods, as described in this thesis, leads to a conclusion
of potential utility to the antenna designer. The conclusion 1is that, for any
complex antenna system, it may be pgssible to deﬁérmine a simple direct functional _
relationship, defined here as the "pattern generator function', which provides
significant far field pattern information, for a particular antenna geometry, in
terms of the dimensional parameters of the radiating system.

In this thesis, an antenna near a conducting body problem:is anal-

yzed and the resulting program for the computation of the radiation pattern is

exploited to determine a representation of the pattern generator function. A current’
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4 /
element source antenna (10 radiates/in the presence of a flat rec-
s
7

"nTate"! The source is centered in front

tangllar conducting surface or
of the Jlate, separated fr iE) and parallel to one of its edges. The
effect of the plate on the cﬁ;;ént element's H-plane ngztern 1s studied’

by the "Geometrical DiffractiBE—Theory" (ADT) (6,16). The chief/é;—
vantage of this method s that it allows the components of field whiéh 77"
have the most significant effect in each region of space -to be identified

"with particular features on the scattering hbodv and hence the effect of

any part of the bodv on -the nattern {g readily avpparent. The GDT is ex-

ploited to reveal nev information about the shape of the H-nlane pattern,

—

as tﬂe size of the plate and‘the distance to the source change. A large
number éf computed patterns are reduced to a brief set of ";vnontic graphs"
which allow the pattern to_EE_E?constructed for anv plate width and

source separation distance_over the range covered.- Thus, the ''synoptic

_graphs" are a representation of the pattern generator function for this

radiating system,

}

—
—

1.2  Survey of the Methods of -Analysis

e -

The é;ﬁérical analysis of a radiating system can proceed

bv ,a "finite elerents” method, which seeks the current distribution on

A

‘the body-and hence therseconda?& radiation fields, or by "Geometrical

T

Dif fraction Theorvy" (QDIO; which relies upon rav optics. The ''radiating
T e

system" usually consists of a source antenna such as a dipole or current

.
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element, and a "body" which mav he solid such as an aircraft, or compnosed
of thin rods, such as the truss-like tail section of a Bell 47G-4A

helicopter or the passive elements in a Yagi arrav, or it may be an

J

1nfinitelv thin conducting surface such as the plate,
* , [ .
The finite elements method has tws chief sub-classes,

the surface element modelling, and the wire—grid medelling.

..

The surface element modelling divides the surface of the
bodv into "patches" and assumes a functional form for.the current flowing
on each patch by representing it as a linear combination of "hasis

functions'", often chosen as plecewise linear, polvnomial or trigonometric

functions. The unknown coefficients are found by solving an integral

* equation bv a profective method. In order’to simplifv the integrals en-

countered, and reduce the running time of the computer program, the cur-
" o “

rent is often represented as hav‘ing constant value over the paatch (pulse
basis) and the current complex amplitudes found by Dirac delta function
préiection, or "point-matching". Thus Bavou (8) solves the dirole an-
ténna near a conducting cylinder problem by assuming a z-directed surface
current, which is found bv this "gurfaée patch'".method. If the body has
sharp edges, they tend to carry large currents which have a high rate of
change with distance from the edge. In orde;' to represent such a current
adequately, a large number of small patches would be needed, which requires
large matrix equations and hence lomng computing times. Thus the surface
patch techniqﬂue is poorly suited to the flat olate problem.

A heuristic approach, making use of a physical assumption

<about the current, allows the surface element technique to be used to
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. directed current in both the longitudinal and the crosswise sense.
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solve the plate 'ox;?b.lem. . The current on the plate is assumed to flow -
¥ - ‘ '

omtv—tm—the longitudinal direction. In the equivalent two-dimensional

problem, the conducting strip, this longitudinal current is onlv a

' . -
function of crosswise position on the strin, Then a one dimensional

-~

current representation 1s all-that is necessary, and Shafai and El- . .
o N 0 T e et

Moazzen (11) have solved this problem bv using a truncated Fourier series

(trigonometric basis) and point-matching. Their solution is valid only

-~ - e

- i

for narrow plates, however, as the current representationis inadequate
when the width is large. The fully three dimensional plate problem can

also_be solved in this way, bv assuming zero current in the crosswise

direction and by accounting for t_hgjvjafz‘tation in the longitudinally

K

Nan Wang (18) solves the plate problem in this way, with piecewise °

- . ¢ .
sinusoidal functions in the crosswise direction and pulse basis'}n the

2 o

longitudinal sense. The crosswise directed comnonent of current could

also be accounted for, but at the cost of doubling the,number of un-

-~

knowns and hence the matrix size. L.

The wire—grid mo&elling’ mmethod uses currents constrained

to flow along lines or "wires" to represent the body, and also relies on

o

the projective solution of an integral equation to find ‘unknown current

amplitudes. Wfre antennas and arrays are easilv modelled, as well as

‘truss-like structures such as towers; or the tail of the small helicopter
4 L

-o

(12). Because all functions are one-dimensiorfal, general basis and project-

o

jon functions may be used, rather than pulse basis,and point matching. '

* Generalized problem solving coxﬂputeroprogratgs, using straight wire elemerits,
' 3



A

are available (15). An edge on a bodv which caryies a high cugrent along
o T !
its lerngth is well represented by a line current flowing in wire elements:

oriented along the edge, and the remainder of the bodv can be modelled

’

with ‘wires in sufficient density to resemble a surface current. The° - -

" plate as a scatterer has been dealt with bv Richmond (14), using - .
o o i

constant currents on short wire elements, and point~matching. Richmond

estimates that about 100 such eleﬂe%fs are needed per square wavelength
‘gﬁ o

of surface to adequately tepresent the current. This severely limits .

the size of plate that can be handled.

Yy - ————————

A body on whieh the edge currents dominate-is much more
> .

- ’ ’ 4 .
naturally modelled by Géometrical Diffraction Theory. The GDT is based
on ray ootics, and assumes that energv travels outward from the source

along lines called "rays'", and that the field at any point in space is
-t » “’

tﬂ; complex vector sum of the fields agdgociated with all the ravs

through the point. Ravs may be reflected from conducting surfaces,

2

but more important, a ray incident on an edge or vertex, or téngentiallv B -

3

incident on a curved surface, will set up diffracted rays. A bodv is

i a P

readily modelled by identifying its reflecting surfaces and its diffract-

ing, features, and tracing ravs ftrom the source to the field point,.

.y I

- The chief advantage of the (DT is the direct correapondence-
,:Between the features jon the body and components of field 5; the field point.

3

The effect of. anv of the body's features on the field is thus readily assess-

- o

' . ~+ :
ed, szexamining its component of field. Hence 2an enormous insight is

o t

gained into the behavior of the radiating system. Other advantages of the

N

GDT include the ease of“agaiysis of a oroblem by simple ray tracing, and

©

o

,
Ty



-

L]

1-6

-
y o~

}/] w?

<Ay

.
vk

that 1t is not necessary to formulate large matrix equations, nor to sof@e‘

thgm, and so a great saving in computer g}me is re/ ized. ”f

]\‘€> A more subéle advantage of thé‘g;& Lies~in the-fact g&ét E?
a)hodel of- a radlating svstem can be built in stages, each includ?gg d
new_classes of ravs:, and so the program can be debugged one part at a * é%

time. Thus if a crude model generates promising patterns, it can be _-

refined by adding further diffraction effects to it. In contra§§; a

fiPike elements'program must be virtually complete and fully debugged

’

before any indication of its success is obtained.
o o The GDT has been apnlied to the plate problem by Burnside

(3), in order to verify the operation of a GDT program written to solve

a more general class of problem. Burnside compares his comoutations with
measurements for the plate, and other configurationsy but the plate

patterns are not further explored.

m«" i
% .
e > - ’ ]

1.3 The-Present Work o —— - . .
<

-
- g
L]

N
}' The obiective of the present work is to systematicallv

3

study the H-plane pattern of a current element antenma centered in front

of a conducting plate, pardallel té an edge. The specific goal is to
R - @ -
.determine a graphical representation of the ngttern generdtor function.

o '

The Geometrical Diffraction Theory is used to build a model of the current
element-plate radiating system each step including a new class of ravs,

and giving further insight:into the behaviér‘Bf the system. “An intensive

bt

study of the H-plane pattern via the GDT computer program reveals previously

!




unknown information about the pattern as a function of plate height and

width, and source. separation distance.

o

The radiation field of the current elémént plate system is

computed by summing uo the complex vector fields ﬁsspciated with the ray

- »

from the source, the ray reflected from the plate's front face, and the

diffracted rays emanating from the plate's edges. The diffracted fields

are found using Kouvoumjian's Transition Diffraction Coefficient (TDC)

g

-t (5) *. The patterns are compared critically with computations and measure-
ments published by Burnside (3), computations published by Shafai and El- »

Moazzen (11), and experimental patterns obtained esveciallv for this work’,

Good agreement is noted. . } N

7

In Chanter 2 of this thesis, the "Geometrical Theorv of

/

Ontics" (GTO) is brieflv outlined, and convenient methods of comnuting

current element fields and reflected fields are detailed_ Then the effect

of edges and vertices on a GTO 'pattern is discussed, leading to an\but-

*1line of the "Geometrical Diffraction Theory" method of analysis.

I ) ~

4+ - — — P

-«
-

* Kouvoumiian in (1,4,5) uses the term '"'dvadic diffraction coefficient’ to
refer to his diffraction coefficient function. This function will be called

qpe "Pransition Diffraction Coefficient" in this thesis. The term ''Dyadic

¥

Diffraction Coefficient'" will be used to denote the dvadic f (Sect. 2.5) as
\
opposed the elements of D which will be called "diffraction coefficients".

The TDC ié a_§becific exnression for the elements of ﬁ.

-)“_\“
Rsrcm i
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Chanter 3 detalls the method used to calculate the

diffracted field from an edge. The "Law of Edge Diffraction" is given and

-

its significance in the calculation of a radiation pattern is discussed.

A coordinate transformation ealled the "edge-related coordinates " which
< 5,

facilitates the calculation of an edge diffracted field is given in detail,
and the best available diffraction coefficient, the Transition Diffracfion
Coefficient, is quoted from the 1iterature.\ A nractical approach to finding
té§~noint of diffraction or "flash noint’ on a straight edge is given, and

then the reader is taken step by step through an edge diffracted field

calculation. ’ 4 ﬁi .

The fourth chanter 1s devoted to a studfﬂof the flat plate
problem. The geometrical opntics model of the current element-nlate radiat-—
ing svstem; which accounts for the direct and reflected rav, is thoroughly
analvsed and provides an insight into the_behavior of the radiation pattern
as a function of the plate width and source separation distance which 1is
helpf&l in later stages of the analysis. A package of computer subroutines
which facilitate the calculatyon bf the radiation fields of a class of
simple_aqtenna problems by GDT was develovoed during the work for this thesis
and 1s presented at thig point. The two-dimensional (2-d) model of the
plate is constructed which adds the diffracted ravs from the edges parallel
to the source current element to the GTO fields. The comnutation of the
radiation pattern using the GDT sqbroutine package 1is outlined. The radiat-
ion nattern of the 2-d model is examined in detail, as a function of the
plate width andﬂsource gsevaration distance. The accuracv of the two-edge

program is.established by comparison with data computed by the surface element

method, published bv Shafai and Fl-Moazzen (11). The final stage model adds

e



Mo e ‘z-ﬂnm

' ‘etre*®iffracted rays from the two other edges of the plate, and so includes

the effect of all four of the plate's edges. The pattern is studied as a

___function of plate height. The radiation patterns computed hy the four-

edge pnrogram are comoared with computations and measurements published
by Burnside (3), and also with exverimental patterns for several values

-

of nlate. height and width, and source sevaration, obtained in an anechoic
room facilitv, a_. ]

The final éﬁapter summarizes the chief results of the study.
New informatioﬁ, of considerahble nractical interest, about the behavior of
the H-plane pattern of the current element-rectangular plate radiating
svstem as a function of its physical dimensions, has been generated.- It
is found that this behavior can be extracted Frc;m a large number of patterns
computed for discrete values of plate width and source separation distance,
and expressed as a simple, continuous granhical svnopsis. These "gvnoptic
graphsh allow a continuum of new naéterns to be obtained without further ‘
computation. Thus the "synoptic graphs' are a representation of the system's
Pattern Generator Function. The Pattern Gengrator Function transcends the

computational, analvtic or experimental method used to obtain it, and may

be a useful tool for design purposes. . s




‘each ray has a field associated with it which is a complex vector quantity.

~ CHAPTER 2

/

GEOMETRICAL OPTICS AND GEOMETRICAL DIFFRACTION

2.1 Ray fheory and the Geometrical Theory of Optics

~,

t

This chapter outlines the ''geometrical optics” method, and

details suitable expressions for calculating the fields of a current
element source and the reflected field from a smooth surface. The far

field pattern of a current element antenna near a body is discussed and

the 'geometrical diffraction" method is described.

The "ray theory' assumes that electromagnetic radiation -- . -
)

travels along straight lines called '"rays", which obey Alhazen's Law of

Reflection (17) at reflective surfaces, cannot penetrate perfectly
e /
*
conducting objects, and obey Snell's Law at media discontinuities. Ray

theory is primarily useful for problems involving incoherent radiation.
Each ray convergent on a point after the first raises the intensity by

3 dB. Simple. ray theory is notiteffective for problems involving coherent

waves, or in situations where diffraction plays a large rdle, and relative

3

phase and polarization must therefore be considered,

The "Geometrical Theory of Optics" is an extension of ray

theory and takes into account polarization and phase of the fie¥gs. Thus

.

The '"net field" or "total field" at any observation point ("field point"} is

the complex vector sum of the fields associated with all of the rays through

¢

the point. ’

°

3
* In the rest of this thesis, when the term '"conducting" is used,. a perfect-

’

ly conducting object is meant.

¢
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In the following sections, first, the current element

antenna is re—-examined as a GTO radiator, and suitable expressions

for calculating its fiélds are derived. A conducting body 1is, then
<
introduced near the current element, and its effect on the radiation

pattern is examined.

* 2.2 The Current Element Antenna

3
-

Consider a current element source antenna located at

source pointlﬁe, Fig. 2.1. The source field is thought of as travelling

°

outward from the source point i; in all directions along straight line
rays. Given a field point ﬁ} with a source ray through it, the complex
amplitude and vector direction of the source field is sought. The

source carries a current Is in direction p. Let the "source coordinates"
be centered at ﬁ% with unit vectors is, ?s, and 28 = . Then in the

A "~

associated "source spherical coordinates" (fs, 68, ¢s ) the current

element's field is (10)

} _ Isl e-ijS ~
| E = yz-a —R—S—'—' jwu sin BS Qs , v2.2.1
Or” h
where . “R = |[R,-R_| - ’ 2.2.2
+ .8 f c ¢ .

°

and 1 is the length of the current element. .

This is simplified by collecting constants,

- - -
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The current element's field can then be re-written in the base
Lo S /
) coordinate svstem in a form convenient for computation bv notiné
that since ¢ -
A ~ Fal
pxr = sin® ¢ \
s s 's
~ A ~
Xxr =
S and d)s s es P
we may write
A ~ ~ !
= sin Xr
gin 68 Bs 68 ¢S s
= r Xr
| (p 17 o) <
e-1kRS / ~ A ' ~
: . hence =g (oxr ) xf
o kR 9
]
where ~ Rf — Rc
r = e—
s | R
; \
, 0 .
. NG

i

N

2.2.3

e
Rl

2.2.4
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°
Fig. .2.2 The geometry of reflection from s
. a smooth conducting surface.
1 «
| Subroutine "S¥LD" (Anp.l) was developed for this proiect
te evaluate the source field vector at anv field point, and uses these -
. s
expressions. N % -

2.3 THhe Reflected Field
14 \

Consider a current element antenna radiating in the

presence of a conducting body, Fig. 2.2. At any field point, there

will be a reflégged ravy if a point PR exists on the bodv which

satisfii: Alhazen's Law of Reflection . Alhazen's Law stateg that

the reflected rav must lie in the plane of the incident ray and the

~

unit norgkl vector N to the surface at Pp, and that the angle « between

the incid;kt’ray and fi must equal the angle <, that the reflected
\

\ - -

ray makes with f.

N

we assume that the radius of curvature at Pp 1s sufficiently large that
'%he surface may be apnréximatéd by its tangent vlane. . Then the method of

images 1is used. The‘§mage source is located at'ﬁci, the same distance

1

\\To calc;iate the field associated with the reflected ray,
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Fig. 2.3 Calculating the reflected field
bv the Method of Images.
behind the tangent olane as the primarv source is in front of it,
Fig. 2.3. 1If it and Gt are unit vectors in the tangent nlane, and
the primprv source orientation vector is resolved as o
- P = (P)&t9 th’ pn ) } 2.3.1
the image orientation vector is given by
pi =‘( "'th: -Dyt’ Pn )
The rgflected field 1is then calculated fom the image current element
exactlv as the primarv curtent element's field was found in Sect. 2.2.
7
If R, 1s the position vector of the field point,
: ' ~JkR R n
T = e~ 1 .3.
CEL Eo R (ﬁixf)xf 2.3.2

i
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Fig. 2.4 The geometry of bhase referencing.

]
i

where R, = | Ry - Eji | 2.3.3

is the distance from the image to the fileld point, and

A R, -
f = —-—f—__._g.i_.. - .
) R ‘ .. 2.3.4
1 »
i l -
is a unit vector in the field direction. . -

All fields must be phase referred to the same
!

point in space. In Fig. 2.4, a source at s radiates a wave with phase

jkr

-

factor e 78 , Where r, is“the distance from s to the field~point, which

'
- *

1s asgumed to be far away. The phase must be referred to point 36. In

< ~ o
the £, fd p%?ne, Fig. 2.5, where f is the field direction,

where d = . (-f) = -rd.f

hence ' r =Y ~T,. £ 2.3.5

\ /



s <
By
R k)
¥ig. 2.5 The f, ?d— plane
Thus the phase factor of source s, referred to soint‘gé is
- e—jkro e1k rd . f 2.3.6
Thus the reflected field mavy be re-written nhase referred to the
1
position of the primarv source, by noting that in Fig. 2.3,
—- =. A
r, ~2s N
hence Ri =R + 25N .f 2.3.6
s
- ~ 2 -jkR N "
thus E =g o Jkfif e " s 5 2.3.7
r o € kRs (Di x f) x £

where RS replaces Ri in the denominator, since the field point is

very far awav and for amplitude purposes, Rs'NRi'
T Consider the speclal case of a nlanar refleéting surface

perpendicular to tbgmglvholane, Fig. 2.6, where the source lies in

that plane. There will be a reflected ray in the field direction ; in the

X,y plane if there is a point PR Dnﬁphe plane satisfving Alhazgn's Law. But

R

P_ 1is simpnly the point where Phe ray from the image intersects.

[

9,
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Fig. 2.6. Reflectio®“from a flat conducting surface

nervpendicular to the horizontal plane. SN
o N

- . |
g . 4
=

the reflecting plane’. Thus there is a reflected rav in direction

fif PR lies between the plane's endnoints P‘End PB’ Fig.a2.6.

»
PEd

Thus P, exists if -

8, <0<6,,

o‘r ’ cos OB > cos B > cos BAW. o
or uaf GB > f up- > cos eA 2.3.8

where ﬁl is a unit vector from PA to PB. This is a convenient

test for the presence of a reflected ray in direction f for this
b

snecial geometry, Subroutine "RER" (Anp.2) was developed for this

project to comoute the reflec"teVd\ field for this problem.

. \ ¥4
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2.4 Smooth.Bodies and Bodies with Edges. !

P

o-
/
A body 1is smooth at a point on its surface if’

>

the .

Lo~

unit normal vector is continuous. An edge is a locus of point{ &n

the surface w‘mere the body is nd/t: smooth. By definition, an edge
i " - -

—

has- a continuous tangent vector. A ''vertex'-is"a point where two or

more edges m\eet", or ' where an edge terminates. Edge-less vertices algso

J

exi%t, such as the vertex of a cone. x

o
A current element radiates in the presence of a body,
- b

Fig. ’2.7, and the far field in the plane of the paper 1s sought-as =z .
. /
o~ )
function of the field.angle. For ¢ < ¢1 there is a direct ray through :
iy 4 ‘ f
tl'?’e distant field point. TFor ¢ > ¢1 the . body obstructs the direct ray

and there is null GTO fiéld at the field point, which lies in the body's

K1
Ny N ¢ *



vt

Py

] . T -
RS -
I 4

"4 " h T & -
. - *
shadow. Angle ¢ 1 1s a "shadow boundary" (SB). The GT? field is

discontinuous at an SB, because the direct field vanishes. Angle ¢ 2 is also

an SB. ¢ X - e

; The body of Fig. 2.7 has an edge at E. For ¢ < ¢3

5

the noint of reflection on the boév‘gies away-from the edge, and there :
is a reflected rav at the field point. For ¢ + ¢3 the r~flection point ap-

prpaches the edge_(‘vor ¢ > ¢3 there is no point PR on.the body which
. |

satisfies Alhazen's Law. Hence at ¢3 the reflected Yiel@iv&hishes. T |

Angle ¢3 is a "reflection boundary" (RB). The GTO field is discodtinuous

¢ ‘ *
at an RB. L

4
'

A proint of "grazing incidence" is a point on the body
where the ray from the source travelling along the body {ust touches the
. ..
bodv's surface. Points E and S are points of grazing incidence in ¥ig.

R ]

2.7. Note that angle ¢2 is also an RB as well as an SB. When the body

is smooth at a point of grazing incidence, the RB and the SB coindide. L

kg

2.5 _Geometrical Diffraction Theory ! - —_

The "Geometrical Diffraction Theorv" (GDT) {¥an extensié;—

of geometrical optics, in which a new class of ravs 18 introduced, called'

, o

"diffracted ravs", These were first proposed bv .J.B. Reller in 1953 (16);‘
The GDT field at any polnt is the sum d¢f the GIN fielé, and the field

associated with all the diffracted ra}s.through the point.
o , M

A ray incident upon a poiﬂt,oﬁ an edge causes diffracted

rays to emanate from that point. A ray ilfﬂﬁinating a vartex gives rise

to a class of diffracted ravs originating at the vertex point. When a ray
. =

-
N > . ,

b
’




" © has grazing incidence at a point on a bodv, a ''surface diffracted'" ray

travels out along the bodv's surface, "shedding" diffracted ravs

-

t‘:angentiallv out from each voint on its path (1,4,5).

o

*

The GDT models diffracting features bv simnler "canonical

n
-

problems"”, with the same local geometry as the bodv has in the neighbour-

-

hood of the point of diffraction. It is a fundamental assumption of the
GDT that diffraction is a local process so that the diffracted field
of the feature is identical to and indistinguishable from the diffracted

field of the canonical problem. Each canonical problem has its 'Law of
S

Diffraction", which determines the direction in which the diffracted ravs

_ - will travel out from the voint of diffraction, and a '"'diffraction

coefficient" which relates the field on each diffracted rav to the field
11luminating the feature. The iinearitv of Maxwell's Equations'd{ctates
that the diffracted field must be proportional to the strengt~h and

vector direction of the 1ncide:nt field. Hence we would expect a transform-

.,ation to exilst which maps {ncident fields into diffracted field

)

B, = E |

The dvadic diffraction coefficient D can change the magnitude, phase,

\

oll

and vector direction of the incident field. 1Its elements are functions

0

01' the angles of incidence and diffraction, the distances to the source

and field, noint, and the radii of curvature of the incident wavefront.

In solving a canoniecal oroblem, the simplest form of q is sought.
1

i

The most important canonical problem is the infini
wedge. It 1s uged to find edge diffracted fields bv orienting its plpnes

to be tangent to the bodv's surfaces at the point of diffraction. A a

-t <8
present there is no vertex diffraction coefficient available in the

R

2

5.1




literature (1), Other canonical oroblems have been tried, such as the
diffraction from a small cylinder, used bv Burnside (3) to mode]
the wing-mounted engines in the roll plane analvysis of the radiation fields

of an antenna on a small aircraft. T:he method of calculating the

diffracted fields of an infinite wedge 1s given in Chapter 3, including
the Law of Edge Diffraction, the reduction of D to its simplest form,
and a new expression for the elements of f, Kouvoumiian's "Transition

Diffraction Coefficient'", which is designed to overcome many of the dis-

advantages of the original Keller coefficient.

L9
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CHAPTER 3

3-1

THE INFINITE WEDGE CANONICAL PROBLEM N

3.1 The Infinite Wedge Canonical Problem

~

The infinite wedge consists of two conducting half-planes

‘which meet at a straight line to form an edge,

Fig. 3.1.

The incident

ray makes an angle Bo to the edge, and its projection onto a plane perpen-

dicular to the edge makes an "incident angle' Yo with the wedge's reference

plane, Fig. 3.2. Similarly, the out-going diffracted ray makes an angle

B to thie edge and a '"diffraction angle" Y to the reference plane. The wedge

itself has an angle «,
\
\

- |
WEDGE ANGLE GT >I

T

—_——

—_—

=~

_ CONDUCTING > =~
“HALF=PLANES \; . R

DIFFRACTED RAY- ,
WITH FIELD Eg

—_—

INCIDENT RAY _ ‘
WITH FIELD B,

"-LEDGE FORMED 7 7 ST ——

WHERE HALF-PLANES

| MEET.
|-

)
I

Fig. 3.1

The infinite wedge.
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. PERPENDICULAR TO THE
PLANE OF THE PAPER

—~"  ANGLE )
B REFEREN CE PROJECTION OF
PLANE INCIDENT RAY

ONJO . PAPER

Fig. 3.2 Cross section of the infinite wedge problem

o

This chapter detalls the infinite wedge canonical problem,

which 1s used in the next chapter to calculate fields diffracted from |
edges. The "Law of Diffraction" is given and its consequences discussed.
The simplest form of the dyadic diffraction coefficient is developed and -~

expressions for its elements are quoted from the literature. A set of

subroutines for computing the diffracted field from a straight edge are ]

——————

given which are useful in the solution of amantenne-scatterer problem in |

the next chapter. a ,

]

3.2 The Law of Edge Diffraction

The "Law of Edge Diffraction"(1,4,%) states that the diffracted

rays lie on a cone of half angle B equal to the angle of incidence Bo, with

the point of diffraction as its vertex, and the tangent to the edge as its axis.
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RAY

DIRECT
RAY

DIFFRACTED
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TANGENT AT V

INTERSECTION OF DIFFRACTION A
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! 0
o _

Fig. 3.3 Flash points on an edge, and a diffraction

boundary. -

| . '
-

L4 -~
¢

In Fig. 3.3, a point source radiates near an edgéwahich lies ’
ha Ny v

in the (x,y) plane . It is a direct consequence of the Law of Edge Diffraction

that only cegtain "flash points™ on the edge, Fl and F2’ can launch a dif-

”~

fracted ray in a given '"field direction", designated by direction vector f,

When an infinite wedge is located at a flash point with planes coincident with

iy
—————

—_——

———

—
the body's tangent planes, . the ray from the source to the flash—peint-and __ ___

- the field direction vectoxr.f satisfy the Law of Edge Diffraction. Other points

‘on the edge do'not have B = Bo. The edge diffracted field is' then identical to

infinite wedge, which 1s readily calculated, as

detailed below. - - - S

If the body has a vertex, as at V in Fig. 3.3,\§ﬁen the tangent

. to the edge and the ray from source to vertex definé a cone in space according



, —jk’r PN
— e e~ . 3.3.2
g =g  ——
- h b Skt
ffraction

the edge ("hard'" boundary: condition) or the magnetic field is perpendicular

to the Law of Edge Diffraction. On one side of this conical surface, there -

is a diffracted ray from the edge, but on the other side, there is no point

on the edge which satisfies the Law, and hence no diffracted ray. The dif-
fracted field vanishes as the surface of this limiting géne 1s crossed, an& .

this surface is defined as the "diffraction boundary" (DB). ///

3.3 The Simple Diffraction Coefficient

i o

e a

P —
]

The "simple'" form of the wedge diffraction coefficient (6) — "~ — —

‘1S‘Ubtained—asffollow34ﬁ¥Coﬁ§1Qg£“§7ngne wave normally incident on the edge

—_—

of an infinite wedge, Fig.-3.4. Any general polarization can be resolved

into two components, in which the electric field vector is perpendicular to

>

("soft' case). In either case the field may be then treated as scalar.

Keller argues that the diffracted field must be an outgoing cylindrical wave oo

with the edge &s its axis, .
‘ -jkr
Eg= Do By 3.3.1

. n =

where E; Ts the incident—field-evaluated at the point of diffraction, r is

the distance from the edge, and the subscripts are for "soft™ or "hard". The

reduced diffraction coefficient D' is related to the full coefficient by

-~

In turn, DS must later be related to the ele
h o
coefficlent D in (2.5.1). Keller compares (3.3.1) with an expression asymp-

Y
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> i
L3

, totically expanded for large kr,f: of Sommerfeld('s; exact solution for the wedge,

o \

and concludes that the reduced cégfficient must be

s

. ejﬂ/l’ sin 7/n _— v - -1
' cos—— - cos-———n—-—n-
ﬁ -mn J2m sin B )
. " R R
- - R A cos— - cos 0 T
. /2 n n
- / / i
where n is related to the wedge angle o by
(2-n)m=q ) 3.3.4

E]
\ »

congervation of en:grgy in the cone of diffracted ravs gi\; s the 1 / sin B factor.

_—.Mx‘\
for tl}e/ "hard".

‘ - For normal incidepce 8 = 90° and sin g;_i:‘ﬁww

The "'-" sj:g; 15 for the "soft" case, and the "+"
/
- . =

!

/ B - T ———
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- Fig. 3.5 The simple diffraction coefficients

, , ’ for a plane wave incident at 30° on
/ : a 10° wedge.

1

In Fig. 3.5 the diffraction coefficients DS énd D

g

p are plotted

as functions of the diffraction angle § for incident angle t})o = 300, B = 900,‘“

1 v

along the p although the "hard" coefficient is only 7.5 dB

down from t}le

I
v
.

- - The simple diffraction coefficlent becomes unbounded near the

f

iYluminating field.
/




-

shadow and reflection boundaries. Near an 5B, for example, Y is nearly 7-y ,

t

and thus the second term in the diffraction coefficient becomes large.

The simple diffraction coefficient is said to be valid "far" from RBs and SBs .

—

e

3.4 The Edge-Related Coordinates.

_— : This section defines the edge-related coordinates (4,5) and shows

that they allow the dyadic diffraction coefficient D to-be written in its-——
simplest form.
If:the 11luminating field -i is written relative to some
"incident" coordinate system as
Eg ® (Egp s By s By ) -
— i ’

nd the diffracted field relative to some "diffracted" coordidates-as

s

By = (Eyp v Egp v Bge )

%

which are not necessarily the same as the incident coordinate directions,

the dyadic diffraction coefficient may then be written in full as

L} - —

da - {P1a P1p Pic

- {p. D, D

( Eil , E12 R E13 ) 2a 2b “2¢
-

Eie . 3a 236 D3¢

J . | J
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Fig. 3.6 The edge-related coordinates.

Ih general the elements of D are all functions of the direction anglés

Y, Yo » B , of the distance to the field point, and the radii of curvature :
of the incident wavefront.
. It is apparent from Sect. 3.3 that the components of incident

fields parallel and perpendicular to the edge are of fundamental importance

to the diffraction process. Let € be a unit vector in the direction of the

~ edge, Fig. 3.6, If § 1s a unit vector along the incident ray, a coordinate

”

direction ¢' can be defined, - ° .
- 8'x @&
‘ $ = — 3.4.2
- |8 x &



—_—

n

Unit vector ¢' is perpendicular to both the direction of incidenceﬂgnd the

edge. If 8 points along the diffracted ray, then unlt vector

Id

éx 8§
A ) ) 3.4.3

_lm $ -

|& x 8] ) o

- LY

18 also perpendicular f;hthe edge. The component of diffracted field along

—_—

~
¢ obeys the '"hard" boundary condition with respect to the component of in-

LY

cident field along ¢'. Thus

. - Ea{ = E . ¢ = D, 1_” e —DhEi¢, 3.

4.4
The incident field cannot have a component in the direction

of propagation. Thus its only other component must be in direction

3.4.5

The magﬂetic field associated with the 88 component of E& is perpendicular

to the edge. The component of diffracted field in direction

B = &x ¢ © 3.4.6

has an associated magnetig)field perpendicular to the edge. Hence the B

=

components of ¥

3 obeys the "soft" boundary condition with the Bé component

of E

1? ‘,

~ o 3.4.7
E .
—dB d s 1
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Tza

The "incident edge-related coordinates' are ( 8}, ¢°', Bc'> )

given by (3.4.2) and (3.4.5), and’are 11lustrated in Fig. 3.6. The "dif=

i
i

fracted edge related coordinates'" are ( 8§, ¢, é ) given by (3.4.3) and

(3.4.6). When the incident field and the diffracted fileld are resolved in-

to the edge-related components, by virtue of (3.4.4) and (3.4.7) the géneral

a

diffraction equation (3.4.1) can then be re-written in its simplest form
N\—\_ﬁ' . i e

mmt—, :

E =‘ (o,

d D, Eyerr Ps Bigy 3.4.8

o

By proper choice of coordinate systems, D has only two non-zero elements.

/_.,.F" - v
. . ]
3.5 The Transition Diffraction doefficient S
‘ ; . h\ -
e, \‘\*‘ :\ £2Y .
. R i
4 . -

v
¢

Consider the wedge diffraction problem of Fig. 3.4. At all

field points the total field must be continuous. As fhe field point a roaches
P P PP

b

a reflection or shadow boundary, where a compomnent of the GTO field vanishes,

o

the diffracted field must increase until its magnitude is comparable to the
/

e

direct field. I‘t must then exhibit a discontinulity at the boundary so that

the total fieldcremains smooth. As the field point moves away from the boundary,
\the diffracted field onge again d'ecreases. The four zones of space, where

the diffraction coefficient exhibits this special behavior, are called 'trans-
itiOn regilons" and lie one on each side of the Qeflection and shadow boundary.
The simple diffraction coeffic:l:ent: becomes unbounded in the transition r:giom,

P

as 1illustrated in Fig. 3.5.




fa

The best diffraction coeffﬂéfént available in the literature

to date is Kouyoumjian's "dyadic diffraction coefficient" (1,4,5,9) at which
L: ek )

a specific function for the elements of D, and which shall be referred to as

the "Transition Diffraction Coefficient" (TDC) in this thesis. It 1is valid

at nearly all field points; including those inside the- trans'it;ié)n regions.

This largely replaces other, more cumbersome methods such as : those eval-

u

uating series of Bessel functions'; those using limiting expressions at

certain field points (2) ; those postulating equivalent currents on the edge,

-

(whose value must be found, and whose field is used inside the transition zones) ;

or other tedious proc‘ec‘iures valid only for special fleld points in specific

Q

problems. The TDC bre% down only when the field point is very near the point

of diffraction, or when angle B [(Fig. ’3.1) 1s near 0°.

The TDC is derifved in (9). An asymptotic solution to the
wedge diffraction problem is obtainey by the method of s;:eepest descent. The
leading term of the ree;ﬂ,qing genei‘ali ed Pauli expansion is found to contain
ao.simple correcti‘on factor or *"f:'i*@},éion function'" which allows the diffracted
field to be computed easi}y inside the transition regions. The transition

function is unity valued away from the transition regions, making the TDC id-

entical to Keller's simple coefficient there.

s
The TDC has a term containing the transition function for each

\

of the four transition regions. When the,field point under consideration

enters a transition zone, the i:ransitg.on function in -the appi'Opriate term of
»

o
€

the TDC "switch'es"‘!on". As the, boundary is crossed, that transition function

""switches off'" and the correct one for the new region turns on, making the dif-

-

fraction coefficient discohtinuOus at the boundary, and as a result the total

v




P <
’
s

field remains.smooth. )
i

The Transition Diffraction Coefficient, which is described

in greater detail in (1,4,5,9) which has the following ‘form:

- o= - ‘
e L | i
D'! = - X v - 3
" 2n 21k sinB _” = -
-2—- . o o = ‘
T (Y- . 0 T W)
cot = r - FE:L at(p = )] % cot F[kL a - "”og
24 0 n _
3 hand b . )
o T+ (Vv+y,) RN - W) - '
?+ ot F{kL a(p + wo) + cot FE;L a (Y 4.%)]
p n - 2n .
e e !
4 ) ' 3.5.k
‘ +
2om ¥ - (Y 4 W) .
2 = ¥
B‘t( ‘piwo) = 2 cos . 3;5.2
»* 2
s * . ® _ .
where N — iost nearly satisfy _— . , (
- 8 T
21 oNt - (e rU ) 5o - 3.5.3a _
\ - ‘ ; ‘. 5
2raN - (W _"_“po) = m N . .3.5.3b

‘and L is a digtance parameter dependent on the radii of curvature of the

1

o

incident field. ‘ ) _

In general, the reduced diffraction coeffiéient is related to

¢ ~ P - -

the complete form by - ' - —

g .
: . L B, = D a(r) eI ' 3.5.4
h' ok ‘, , . LT
. . 4 ' - el
‘ - Kouyoumjian (1,4,5) gives expression fpr the dfvergence factor A (r) for various
_ ’ ° ’ - e ' ; VAN
- &N ’ - I
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| incident waves. Thus for plaﬁe wave illumination with the field point far
from the edge, 1 / Jkr is used as in Sect. 3.3. In antenna problems using ;
a point source, the incident wave has spherical divergence, and for far field

observation points, the divergence factor is ‘ ,

A(r) = 1/ kr

F(X) 1is the transition function given by

. . X . -3e2 dt
F(X) Zjﬁ'e; ,&ey

a -~ -

For X > 10, F(X)’ = 1. If all the transition function arguments in the

TDC are greater than 10, then the TDC is the same as the Keller coefficient.

Thus the region of validity of the simple form is clearly established.

.. A computer subroutine "DIFFLD", which evaluates the TDC, has
been developed during this project and 1s listed in App.3. In addition, a
simpie, fast computational method for evaluating the transition function ¥(X)
was developed, and is detailed in App.4. “
In Fig. 3.7 the transition diffraction, coefficient is plotted
., 4in dB as a function of the field a;gle w ,'for’the samelgrobleﬁ as 1in Fig.x3.5.

'e

Note that the TDC is bounded but discontilnuous at the shadow and reflection

[N

boundary.

%

3
N

[}

3.6 Evaluation of the Field Diffracted from a Strai;ht Edge

. A straight edge r&ming between vertices at Fl and ?2 ds

illuminated by a point source located at -ﬁc. Fig. 3.8 shows the plane containing

-
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>. L—lﬂw ~

e

REFLECT ION
\ BOUNDARY 0

. Fig. 3.7 The transition diffraction coefficients for

a plane wave incident at 30° on a 10° wedge.

<

the edge and the source point ® . The diffracted field at a distant point
- c .

<

in direction f is to be found.

A ray from the source incident on a point P on the edge makes

" '

'SR

- . cos BO = 8§ ) ‘ 3.6.1

W
/

' with the-edge; Where &€ is the unit vector pointing along the edge from Fl

to ?2, and unit vector §' points from the source to P. When P coincides with

. Pl R Bo assumes its greatest value Bl’ and for P at P, Bo is a minimum 82.

Hence, for anv P
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Fig. 3.8 The geometry of a far field diffraction

calculation

or & cos Bl < cos B° < cos 82

- o /

i

‘Given a field direction f, the half-angle of the cone of diffraction is fixed

as

cos’ B = f " & ° ’

e

The flash point on the edge satisfies the Law of Edge Diffraction, which rgquirés

that angle 8 = angle B . There is a flash goint on the edge only if the angle

) . \
between the field direction and the edge, B, lies between the two extreme values

i

for Bo, hence B must satisfy ‘ -
- .




ey
5

/ cosK§l~ < cos B < cos 82

cos 81 < f " & < cos 82

)
T

. 4

~ LN

otherwise no flash point exists. ' In order to find the flash point, an

iterative method is used. A tedf‘point ?; on the edge is chosen, and the

i

- ~
A7

intident angle cosine, cos Bt is computed. If )

cos B < cos B
t s

F} lies too near to the fi end of the edge, and a new test péiht is chosen,

! closer to ?é . The method converges rapidly.

Once the flash point Pf

is readily calculated. Thé source field is evaluated at f} (Sect. 2.2)

1is found, the edge diffracted field

ey — e—ijSF - A a
E (7))  =—E ———— (PFx8'")x8'
8 f 0. KR
, S¥
h R = |F -& )
where ST | pf Rc |

and

The |ncident edge-related coordinate u
-  are then found, and ¥ {5

& 8

§' =€P; -R) / Ry

E =

‘ The diffracted ed ated components of the diffracted field are then found

AN

using (3.4.8) r
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E = (0, D. E DS ES 5

h 8¢' ’ Bo

7 ’

3 where Dh and DS are the TDC evaluated for the appropriate incident and dif-

fraction angles. The diffracted field'vector EA i8 rewritten relative to the

base coordinates by evaluating the diffracted edge-related unit vectors
(Sect. 3.4Y, (8 = £, 9, é ). The diffracted field is then phase referred
to the position of the source (Seét. 2.3), which completes the calculation.
Subroutine DIFEDG (App. 5) was, developed to compute the field
diffracted by .a straight edge in a given field direction, by the method de-

tailed above.

The work presented in this chapter provides the computational

o ———
———

foundation for the analysis of a variety of specific&Sroblems. The remainder
of this thesis is devoted to the study of one such problem, the horizontal
plane radi;tion patternrof a current element centered in front of a rectangular
conducting sheet, or '"plate'. It is found that the GDT ;rovides great insight
into the shape of the pattern as\a,function of the physical dimensions of the

plate and the sepgg;tion distance of the source, as is described in Chapter 4.

+
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CHAPTER 4

THE FLAT PLATE PROBLEM .
4.1 The Flat Plate Problem ~ — ~ -

A current element antenna radlates in the presence of a flat
rectangular conducting sheet, or 'plate'", Fig. 4.1, of the width w and height
h. The source is centered in front of the élate, spaced from it by the
"separation distance', a, and is parallel to its vertical edges. The H-plane
pattern of the current element 1s affected considerably by reflections and
diffractions from the plate, and a systematic study of the resulting patterns
is undertakéa*in this--chapter. The_ computed patterns for a two-dimensional
model of the plate are reduced to a -.small number of synoptic graﬁﬁs which allow
the original patterns to be reconstruéted or new ones generated for any plate
width and source separation distancefwithin the range covered. The pattern of
| the full three-dimensional model is investigated as a function of plate height,

‘ and computations are compared with experimental results and published data.

4.2 The Two-Dimensional Plate

If a radla?iﬁg]:ody is much larger in one dimension than in the
others, thé‘fﬁafﬁf1dﬁ”fiéid*tn*the—pi&&e—pe;pendiculggzig:éhgzlgng*gzls can often

be found with sufficient accuracy by assuming that the body 1s infinitely long,
. and simply using a two-dimensional (2-d) model. Thus Burnside uses a 2-d model

to find the rq}} plane pattern of an on-aircraft antenna (3). The essential

P}
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element method.

T 4ORIZONTAL EDGE
€2 _ VERTICAL EDGE

__ Fig. 4.1 The rectangular flat plate.

"t

assumption is that the d

?

The H-plane pattern o6

considering plates much taller than they are wide.

the total"%{eia, and an essentially two-dimensional

oo —a

- cvlinder diameter and the dipole seraration distance.

¢ FIELD
ANGLE TO DISTANT
FIELD POINT
‘0
o
4
'f,,](
Op

e CURRENT ‘
ELEMENT
SOURCE

istaht ends of the structure contribute only

o

negligibly in the principle plane pattern to the total field.

The tatculation of the H-plane pattern may be approached bv

The horizontal edges may

/

plate remains, Fig. 4.2.

pattern, and is found by including the fields diffracted by the horizontal edges.

A similar nroblem was studied by Bavyou (8}, using the surface

e e

ripght—ctreular cylinder illuminated

‘ by a dipole antenna parallel to its'axis was studied as a functiop of the

The pattern is smooth,

then be neglected as they contribute insignificantly in the orinciple plane pattern to

The pat-~

tern of the three-dimensional plate of height h is a variant of the corresponding 2-d
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Fig. 4.2 The 2-d plate, plan view.

-/

with low peaks and shallow v 11&952 7The number of minima is proportional to

separation distance, a new pair-being added for every half-wavelength increase

in separation., Furthermore/ the minima location angles for a given diameter
fdnﬁfion of separation. Bavou compiled thé results into

1' move smoothly jas a
"marametric c rves"/Lhich give the number of minima, their location angles,

/&inimum ratio, which may be used to sketch the H~plane for

anv diameter-separation combination. One objective of this studv is to determine

whether similar graphs can be constructed for the flat plate problem.

Iad

The GTO Solution to the Flat Plate Problem

4.3

/ .

The first step in analvsing a radlating systém by the GDT 1is

/

/

-/

;
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Fig. 4.3 . The GTO nattern for w = 5),a = 0.75 .

to find the Geometrical Optics fields (Sect. 2.1), and thus gain the insight -

- s into the problem that this simple method has to offer.

Because of the symmetry of the problém in ¥ig. 4.2, the field

A - ' _— -

need only be-found—for —-- - - -

0® < ¢ < 180° 4.3.1

and all further diééussionwiﬁ this chapter refers to this half pattern. -
A typical GTO pattern 1is shown in Fig. 4.3:7 There 1is a

reflection boundary at

= tan ! (w/2a)

-

¢)RB

B o VU

shadow boundary at

"I’ .
) o b = 1800 = ey




At the reflection boundary angle ¢pp» the reflected component of field

vanigshes abruptly, and in the "side region" ( ¢éB <P < ¢SB ) the GTO

field 18 the constant source field alone

GTO = _lz o ,. 4-3:5

At the shadow boundarv angle ¢ the source fje3d vanishes, and the field

SB’
in the "back regiggd¥;ii"sﬁéﬁbﬁﬁfgéfbﬁ"_146?;‘¢sn ) i3 zero, since the field

-

I

4 point lies in the plate's shadow.
C ’ Although GTO patterns such as ¥ig. 4.3 Ean be computed by the
// direct evaluation of 4.3.4 and 4,3.5, the patterns were in fact calculated
by calling the general reflection subroutineg REF (App. 2), which automatically
finds the reflected field normed and phase referred to the source. The maiﬁ
program is listed ‘in Appendix 6. “
The direct and reflected fields are in phase at angles given

by

-1 3 5
cos ¢ = Ze * ha * Ga’ "t “ } 4.3.6

At these angles there 1s a 6 dB peak in the GYO pattern. The nulls occur

rat angles given/by

cos ¢ = %— , % . 3 s raes 4.3.7

These peak and null angles are graphed as a function of source separation

T — distance 1in Fig. 4.4, along with the reflection boundary angle for a variety’

‘ ~ of widths. .
. ’
vig. 4.4 illustrates that a new MA¥IMUM 45 .44ed to the pattern
- o minimum
- T "o .7 o R 4
at ¢ = o° ﬁor each A / 2 increase in separatiomn. “The§§:£:: have been _ _ .

numbered in their order of anﬁgarance as separation increases. After the

-, T
-y

—
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he location angle diagram for the ATO pattern minima .
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FIELD AT ¢ = 0°
¥

1 1 1
n/2 (n+l)/2

- " SEPARATION a ( A)

Fig. 4.5 Value of the GTO field at ¢ = O

between two minima.

maximum _ ° ’

0 0 k
Mth minimum has appeared at ¢ = 0, it moves smoothly through the pattern

with increasing separation, until it coincides w&th the reflection houndarv,
“where it disappears. A vertical line drawn in ¥ig. 4.4 for a ﬁarqiqg}ar
separation 'a' , intersects the curves giving the apgles of the 6 dB peaks and

the nulls in the front region of the pattern, and the angle of the reflection

s

boundary. ’
Fig. 4.5 gives the field at ¢ = 0° when neither a maximum nor

a minimum occurs at that angle. The value is given as a function of the source

to plate separation distance ﬁithin any half-wavelength interval between minima.

>

Thus Fig. 4.4 and‘ZTS provide enough information to ‘sketch the GTO pattern with

reasonable accuracy for any plate width and source separation distance in the

-

range covered. This graph .and others like it méy be useful to the designer,in
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t-Fig:‘4.6 The GDT model of the 2-d plate radiating

o ,
system. & 3

* predicting the type of pattern to be expegted. ' . ,
“ . ‘C) .

-

4,4 'The GDT Model of the 2~d Plate
e /

The GT0O plate is extended to a 2-d GDT medel by accounting for

the fields -diffracted from the two vertical edges, (Fig. 4.1): The GDT 2-d

plate model is shown in Fig. 4.6. Although the half-plane solution can be used to

—

“ - ' \ '
calculate the edpe diffracted fields, in this thﬁg@; these fields are calculated by

N S

modelline each edee with a small anrle wedge, since the plate is thin. For H-

plane field points, the flash point on each edge 18 its intersection point with
v o . “

)

et




A4

the x-y -plra.rrxe-. The source f1éld evaluated at tpﬁ' flash point is
> g -

A\ ! —ij
e SE 5

[o] én-
Rgg 1

~';/’Wz/l& + a2

where

(£ A

~
e

4.4!1

b.ob,2

a

Since Es 1s parallel fo the edge, the "soft" diffraction coefficient is used

- .
Hence, at large distances from the ‘edge, the diffracted.flelds are given by

< L T SR R -
- —E Vi ———— D 4-4.2
a1 ° R S1
s ¢ R SE El ‘3
ﬁ\s - ‘ - hy . 7
JkR JkR,
E E & SE D e 2 .
s oF B ob —_— 4.4.3
&2 o kR S2 KR
] SE E2 ‘
. . w« - )

- whére R El ar;d REZ are the distances from the flash points ;oﬁfield point,

and D

51 are the "'soft" diffraction coefficients

D
‘n“; +52

~ ¢

evaluated -for the

incident a¥fd diffraction angles for each wedge.- The diffracted fields are phase

- 4

referred and normed.to the source’ field, (Sect. %.3)

1 {

F e s JKGE, D) 4 bbb
= e dl
- dl KR S1 - _
=SE - F ,
' = . _—edfgp S TLEE j—
- 3 . e.,bSE D 1k(rd2,) - 5 Ji’;
d2 kR WF $2
- SE \
— Q — ) '
where rdl*wand r;, are vectors from the source point to the flash points on the
¢ . 0 _’1,_,*:.______ »
w. .edges. ~. .
< ) aad
) R’ 9 5 O
- P «% ey
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Fdge interaction gives rise to second and highe; order diffracﬁeera;s
emanating from each edge (21). These fields were neglected in this thesis. The
°yfllidity of this assumption is established by comparison with‘measurementq for
plate widths greater than 2X/3 in Sect. 4.15. Thus ghe GDT total field is taken

to-be

T = + E,. + E : 4.
E. = Eopo ' a8 a1 DT . 4.4.6
w—d - ww—j "
. CTO field L fields diffracted by
L] A

the vertical edges

et e, B —— ! -

The expressions detailed above could be directly evaluated to compute

the pattern of the 2-d plate radiating system, using subroutine DIFFLD (App.4)

)
[

to evaluate the diffraction coefficients. However, subroutines REF and DIFEDG —
have been developed to facilitate the programming of simple problems such as the

flat 'plate. Their use is detailed in the next section. e T

»

4.5 Computing the Radiation Pattern. . -

A special subroutine package has been developed for this project to

facilitate the computation of the pattern of a general~class of-simple radiating

L o e com - - -—
> systems, with current element illfumination:—inre-—complete—paclkapgo-consicts of -~
/ .
-~ o e _ ;‘ - B o o
— .‘ ) | 7
3
@ | ’ |
g . K
bt
<3 \ A |
e YOO ’ el
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Subrout?.ne STREF Section 2.3 . Appendix 2
B_E_}_“_
(DOTA)
S (UVEE) )

STDFL/Q Section 3.5 Appendix 3 .

DIFFLD
(INTN) : ¢

‘ FRESIN ¢  Section 3.5 Appendix &
_ FRESNL , and Appendix &- ’ -
R FRE1

s
STEDG Section 3.6 Appendix 5
DIFEDG ) -
(DOT) .

) -
SFLD ___Section 2.2 ——Appendix ‘1

I v b

| \
L -

»“‘ -
- The principal sub\routines are underlined, and the section where the theory is -

found is —given, along with the appendix number containing the program listing.
. .‘
\ These subroutines are not claimed to.-be the fastest or most accurate possible,
but are adequate for this work. The purpose and use of these subprograms for finding

radiation fields is detailed in this section, using the 2-d plate problem &s: an

example. The main program for the 2-d plate radiation.pattern calculation is i

listed in App. 7. Descriptions and details of all the subprogramé are iri_the

appendices. )




START r———!{Set field angle to zero, ¢ = 0.

Specify the field direction vector
£f= (cos¢, sind )
\ Direct ray in 7| Field point lies
direction f 2 in the plate's
L YES shadow so ES =0
Es = (pxf)xf
Y k 'l
Find the reflected field ER
' CALL REF
o Find the field diffracted from »
edge 1 Edl
//\L\——
W CALL DIFEDG . -
Find the field diffracted from
edge 2 Edz i
CALL DIFEDG
l \3
‘Find the tg,fal fleld :
ET - E + E l Ed_Z_.—..———J
_ b )
. l
- b + 4 '
¢ ¢ S
. —
s NO —< 6 > 180 ?} YES slsrop 7

Fig. 4.7 Computing the radiation pat:t:ernL of the 2-d plate by GDT .

]
\

oy

¢
.
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A radiation natterniis calculated as flowcharted iﬁ-Fig.Adlﬁtaﬁ

Field angle ¢ is swept thrahgh the Fuil_IEUo of the pattern in sufficiently

-~

small anglé increments A¢ . For ea%h ¢ , field vector f is computed,; and the

e ——

t

radiation fa;ld determined. )

The first step in the computation 1s to find the direct field '
f;. If the ray originating at the source point Eg and travelling outward in

direction f encounters a conducting plane, such as the surface of the plate, it

is reflected, and consequently there is no direct field at a distance point in the

f direction._ Then Ea = 0. Otherwise, the source field is found, normalized to

7

the field of an isotronic radiator and Bhase referred to point o by Eqn. 2.2.4
3

as

where § is the polarization vector of the source.
The reflected(field is found simply by calling subroutine REWT
REF calculates the field reflected in the E direction in tﬁé horizontal plane,
from é planar conducting surface perpendicular to the horizontal plane, illum-
inated 'by a current element in that plane, with any polatizafion. Sub;odt;ne, -
f

STREF inputs the s;é?;’éndﬁpointsﬁof'tﬁéfiIﬁéﬂgf’i;tersection of the conducting

=

sheet with the horizontal plane, and finds the 'edge cosines' cos GA cos 6B ,
. . o

and unit vector Gl (Sect. 2.3). Subroutine REF determines the presence of a

reflected ray in direction f bv the condition (2.3.8)

-~

R cos BB > f . ul > cos GA

If no reflected rav exists, REF sets E} to zero. Otherwise, E; is found by the B

- - -, _ o -
(; T - - - _ - _ -
2 \ - -
|
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method of images as detailed in Sect. 2.3, and is normed to an isotropic
source, and phase referred to point gg VV -

The next step in the calculation of the 2-d ﬁlate{s GDT'fields - -
(Fig. 4.7) is to determine the.field diffracted from the plate's vertical

4

edges, Eﬁl and E&Z , (Fig. 4.6) . This is accomplished by a CALL DIFEDG
statement for each edge, with the appropriate angle arggments. Subroutine
DIFEDG is a speclalized antenna radiation pattern calculation subprogram ;ﬁich
finds the fileld diffracted from a stﬁﬁight edge in the field direction E with
point source i1llumination. STEDG inputs the endpoints of the edgé, which may
be any two points in three dimensiopal space, and the angle x of the wedge
which will be used to modél the edge; STEDG computes the angle cosines cos B8,
and cos B , the edge unit ;ector §L and other quantities used by DIFEDG.
q’ by evaluating the edgé related co-
ordinates and by uEing the Transition Diffraction Coefficient, as d:tailed in

DIFEDG calculated the diffracted field E

Sect. 3.6. The value of the current element's field at the flash|point is _ __

found by calling subroutine SFBD which evaluates (  x £ ") x fd and distance

Rd, where, 1f R, is a vector from source point s to the flash po;At then

d

Ed = Iidl , and fd = Rd / Rd. The TDC 1is evaluated as required by sub-

routine DIFFLD, which wuses certain constants dependent on the wedge angle,

generated by calling subprogram STDFLD at the beginning of the main program.

Finally, DIFﬁDG norms E, to thg field of an isotropic radiator, and phase re-

d
fers 1t to point 56' If no flash point exists for field direction f,DIFEDG

-

sets Earto zero. Thus DIFEDG computes the field diffracted by a straight edge

by the best methods avadlable.

re~"

The last step in the calculation is the summing uj of the com-

\

ponent fields to find the total field (Fig. 4.'7).

e
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Fig, 4,8 H-plane patterns of the 2-d plate radiating
system, computed by GDT, , ‘
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EL = EE # E + E,. + E

-

If the effect of a particular component of the field on the

, pattern is to be evaluated, that component is set to zero, and the.resulting
! -

pattern compared with the complete vera;efjf\J
In this way, the radiation field is found for each angle ¢,

and a complete pattern 1s ctalculated.
Lo .

4.6 The Geometrical Diffraction Fields /

/

S "

.—-—-‘-"———__’—— . -
_ﬁﬂﬁﬁ.-w-—'“*“*”#-‘”fﬁM“, In the following sections, the radiation pagftern of the 2-d
\

plate radiating system will be studied extensively over fhe range of dimensions

A/ 4 < w <5 A

although larger or smaller widths and separations cauld have been used. The

number of graphs of radiation patterns megded did not justifv'tﬁf use of auto-

mat{%\plotting. Fig. 4.8 shows a mair x of patterns over this range of para-
- oy

meters, which derves to tllustrate the behavior to be described.

The GDT model of e 2-d plate employs a wedge to model-.each

of the two verti aI.edges as Yllustrated"in Fig..4.6. The angle of the wedges R

used was set at 1} , after"explora;ory calculations indicated that the pattern

—— - - \
- is not critically/ dependent on this parameter, and does not change greatly if

the wedge 1s made as large as 10°.
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’ When thg&fieldq diffracted from the vertical edges of the 2-d
- v 3
plate arénincludedxinh{he calculation, the resulting patterns are continuous
. T I POt ‘L *

across both the reflection and the shadow boundary. The front region behavior

of maxima and minima is carried over into the side region as a ripple on the

constant GTO field. The field in the plate's shadow is no longer zero but

!

decreases smoothly across the shadow boundary.
When the pattern of the 2-d plate is studied as a function of
¥ Y

separation, a distinctly digferent behavior for narrow plates (small w) and

wide plates is found. The pdtterns for narrow plates are smooth, with no pro-

A = s e s

" nounced nulls, as shown in5Fig. 4.8 for w = A /2. If the plate is more than

14

- 4
a wavelength wide, the diffracted fields are weak in the front region and
the total field is nearly the same as the GTO field. The shadow region field
for the wide plate is the result of the interference of the diffracted fields

from the two edges. It has a structure of peaks and nulls, and is at a sub-

g N s

stantiallv lower level than the front reglon fields. Wide plate patterns are

shown 1in Fig. 4.8 for plates of width gk and 4A.
The significant differénce between a narrow .plate pattern and
one for a wide plate is that the former are reminiscent of isotropic antenna

patterns, while the latter are direcgional, resembling a cardioid for small
v v
separations. ' Although this classification of "narrow" or "wide" plates is

- useful over the range of separations covered here, if breaks down at verv large
separations, where the pattern becomes isotropic for any width. The changeover
from "narrow" to "wide" occurs sharply near w = X , and the patterns at that

width reseible '"wide'" plate patterns for small separation, and 'narrow’ for large

. source spacing, as illustrated in-Fig. 4.8 - - - - - -
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- Fig. 4.9 “?;{iin—imum location angle diagram for narrow

- °  plates. /
4,7 Narrow Plate P_m:kans /

The narrow plate patterns are remarkably similar to Bayou's
cvlinder patterns (8). By computing patterns for a range ¢f widths and separ-
ations, the angles at which the minima occur can be ploftted as a function of

¢

separation, Fig: 4.9, and have been numbered in their order gf appearance, as

S SRRt o gk S - B e -
' ia Fig. 4.4. Note that the minima location angles are now a funct‘:‘ion of width,

e AN
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( dB )

MAXIMUM TO MINIMUM RATIO

SEPARATION a C'A) ] —

v ’ —_—

e —

Fig. 4.10, Maximum to minimum ratio for narrow plates.

.

whereas the GTO angle diagram, Fig. 4.4, uses the same curve<s for all widths,
Also, the maximum to minimum ratio in dB can be plotted for various widths as
a function of separation, F‘ig.lé.lo. ,Anv narrow plate pattern can now be

sketched, bv finding the minima location angles from ®ig. 4.9, and the ampli-
tude variation from Fig. 4.10, and recalling that the pattern is smooth. Fig.

4 8 for w rO.S A could be reconstituted this way. .

-

1

- 4.8 Minima Location Angles for Any Plate Width I

e —
—

et

3, .

S e ——— - - — - — [ ——

- - ,. . It is-possible to draw a minimum location diagram similar to
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Fig. 4.11 Location angle diagram for the first

(M= 1) minimum. _ ;

width, and change considerably as the width is increased from 0.5 to 5. wave-
\ -

1enét}uxs, t?\us requiring a new family of curves for each plate width.
Rather than plot the minima angle curves for all the minima
(all M) for a particuilar width, the angle of the Mth minimum can be graphed

- for a range of widths on the same axes, glving a separation-angle diagram such
'

as Fig. 4.11, drawn for.the first minimum. Fromwﬁ:«ig. 4.11 the angle of the first

minimum can be estimated over a range of separations ar}d widths. To find the

-
angle of all t:hcr. minima for separations up to five wavelengths, nine separat- -
. ion-angle diagrams like Fig. 4.11 would be needed, one for each mdnimum up to T T

M = 9.
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4

A horizontal line dl.:awn on the separation-angle diagram, Fig. 4.11,
for a particular ¢ valu&, intersects the set of curves at width-separation
(w,a) pairs having the first ( M= 1,Sect. 4:3 ) minimum at angle ¢. These
(w,a) pairs for each ¢ can be plotteél,»Fig. 4.127and all lie very nearly on a
stra‘ight line, which shall be called a "¢~line'. A separation-angle diagtam
such as Fig. 4.11 and hence a ¢-1line diagram like Fig. 4.12 can be drawn for

any minimum "M". A ¢-line on the Mth diagram' defines widths and separations of

€

o

2-d plate radiating systems which have the Mthl”minimum at the angle of the ¢-line,

or as nearly so as this linear approximation allows. _ -

- N

'

Fach ¢~1ine has slope 's" and intercep’t,"ao" and relates width and

L
a = sw -+ a
[¢]

o
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Fig. 4.13 The slope-intercept (S"ao) diagram or ‘. -

~

M-curve diagram. *

.

Note in ¥Fig. 4.12 that as ¢ increases, both slope and intercept increase

7

monotonically. If the slopes and intercepts of Fig. 4.12 are plotted on (s,ao)

axes, then the M = 1 curve of the slope-intercept diagram, or M-curve diagram,
O

g : (
Fig. 4,13 is obtained. Other" ¢-line diagrams for M = 2,3,.... can be plotted

to give slope-irttercept data for the remaining M-curves of Fig. 4.13. Also,
o

plotting the ¢ value against the intercept gives an intercept-angle. diagram, Fig, _

4.14. { " ~
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0

Given a particular width and éeparation, the angles of the front

and side region minima can now be found. - \

Specifying (w,a) locates a point on the Mth ¢-line (such :a’S‘Fig.

412 for M=1). The ¢-value of the ¢-line through that point 1is the angle ¢ at

9 . °

*
S




which the Mth minmum falls. In order to identifvy the @—value, an i‘%ter-
T polation must be made, using Figs. 4.13 and &.14 as describedbelow. With _ .

"w" and "a" fixed, the ¢-line equation represents a zonstraint on slopes and

a

intercepts,

©

T~ a = -~wg + 3

i , When this '"characteristic line" is plotted on the slope-intertept diagram
(Fig. 4.13), it will cut as many M-curves as there are minima in the front and\
side region of the pattern. The intersection point of the characteristic line -

with each M-curve givés the desired intereept value and hence the angle of the

.

Y~ Mth minimum, via Fig. 4.14,

< The characteristic line concept immediately shows that the
(]

separation alone determines the number of M-curves which the characteristic
4

line will cut, and thus gives the number of minima in the pattern, since ché‘i{gé
ing the separation moves the line up or_down on the slope-intercept diagram.
-~ 1

¥

The plate width corresponds to the slope of the characteristic l1ine and influences

the location angles of the minima, but not the number of minima.

0

Y 4.9 Momeént Method Comparison

The rellability of the ODT solution to the 2-d plate problemis —

best judged by comparison with results obtained by an independent nethod: Shafai

N .

and E1-Moazzen (11) have solved the antenna-near—a-conducting-strip problem by

’

. . the moment method, by representing the current on the gtrip by a truncated -

Fourier series and finding the unknown coefficients by point matching an integral

™,

~ @



COMPARISON OF FRONT AND SIDE REGION MINIMA ANGLES OBTAINED BY

TABLE I
THE MOMENT METHOD(11), THE GDT PROGRAM, AND FROM THE SYNOPTIC”\
GRAPH FIGURE 4.13 .
DIMENSIONS MINIMA LOCATION ANGLES )
GDT DIRECT | SYNOPTIC
kw [. ka MOMENT METHOD COMPUTATION g
2
10 3 0 0 0 a
10 20 18 24
60" > 59 64
1 93 94 95
20 20 21 16
45 46 52
67 65 65
80 83 84
101 101 2 [
B 120 © 122 123
12 3 0. 0 0
5 70 71 58
10 2 23 %
75 73 73
- 1 B [ (UL 1 (N R (1B
20 o % % |
57 54 56
74 74 73
92 93 92
110 m m
132 132 7 133
T%x




_equation. Col. 1l of Table I gives- t:herangles--ef:;:he €front and sidé“i‘e’gloﬁ\ T

—_—

__ _wide plates, however, the p;a-t/ﬁe; .h"as more st.:jture. While the front region

. a mean value of 0 dB and the shadow region field decreases to an um "
Some means 185 nekded-to -specify these unknowns to determine the patterns- for -
~~~~~~ B T O

I

[]

mimima estimated to about _4;30 from the published moment method pattekrné ‘of (11).

Col. 2 gives the minima angles 'computed by the GDT 2-d plate program for the

v

same dimensions. Comparing the numbers shows the degree of agreement. The

3

numbers of minima for the very large separation ka = 60 ( a = 9.6 ) obtained

by the moment method and by the GDT are completely different, being 10 and 20
\

e
w

respectively. . ‘e
The accuracy of the graphical summary of the GDT method minima
angle behaviour, Figs. 4.13 and 4.14, can be judged by comparing the minima™

angles given in Col. 3 obtained directly from the program,,Col.2. There is

little loss of accuracy, and the agreement with the moment method angles, Gol.l

» -
.

is still very good.

~

\}( &

4,10 Pattern Amplitude Parameters

o

,
For the narrow plate, the_ggle's of the front and side region

-

nulls are given by Fig. 4.9, and in ordexr to reconstitute the

[

Wthe maximum to minimum ratio, from Fig. 4.10. -For - -~~~

— -

. ~r
resembles—the GTO _field, the side region has

ipple of unknown amplitude,@f?z
- “~

~

arbitrarilv chosen widths and separations.

A suitable side region amplitude ‘parameter "SP'" is the helght of

P
the side region peak nearest 90°7. ¥or larpge deparations,'the GTC field is used to




e

s/
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4

='. FIELD AT PEAK NEAREST

\l L | 41

a
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— Fig. 4.15 The "gide peak'" SP amplitude parameter.

.
%

o sketch the front region field, with the nulls partly filled in, and sSP

gilves the amplitude of the side regiqg ripple. The l!!;tidn angles of the min-

s

ima are obtained from ¥ig.4.13 and 4.14. For sgpller separations, where there
are one or two peaks in front snd-side-region, SP specifies the height of the

- =~ — - One neﬁ{esf_90°. For vervy smal]l separations for which only one peak occurs,
T H"Mﬁ “

o . | , o
\

‘ ' =

//“ ~ J—
SEPARATION ( A )

its height is still given by SP. Thus, SP is.a useful narameter for all widths -

and separations. Fig. 4.15 shows tha& parameter 8P is a smooth function, tending
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( 4B )

¢ = 180°

FIELD AT

SF =

SEPARATION a CA) )

e

/ - i - v
16~ The "shadow field" S*¥ amplitude parameter.—— "

P 3

p——— - '

towards 0 dB for large separations, and & d3 for Bmall source snacing.

The shadow region field is thg result of the interference of ¢
two vertical edge diffracted fields. The nulls are not given by previous graph-
ical data, but the exact structure of the back region field i1s usually unimport-
ant, and is adequately described by its peak value, given by the "shaaow\field"
parameter, S¥, Fig. 4.16. As may be ekéected, for wide plates SF¥ is iower than

for narrow ones, and as the source senaration distance*®becomes large, SF¥ tends
3 7

—_—

FRT— -

° to 0 dB and the fiefd‘tzﬁdﬁs**t?Eﬁét‘of*a?rismxopiqlédi%qr:,
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Fig. 4.17 Geometry of diffraction from a horizontal -

edgla .

«~ 4.11 The Three Dimensional Plate

o

-

Previous discussion concerned, the patterns of the "tall" plate

" and are valid as long as the diffracted fields from the two horizontal edges
can be neg}ected. When the plate height is reduced, the contributions’ from

the horizontal edges must be included.

~

" The computation of the diffracted field for a horizontal edge
; :
is not as simple as for the vertical edges, where the point of diffraction is -

- alreadv known, and the source field is parallel to E:;he edge. The diffraction

-point, or "flash point'" must be found for eachl fieléan angle 8

equal angie 8;) in Fig. 4.17.- As the field angle increases from 0°. the flagh -

.point moves from the center of a horizontal edge, towards its\end. The éhgfl,e"

v '
~ . -

o

/
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// which makes qhg flash point move off the end of the edge is the "diffraction
T
boundary" (DB), Séct. 3.2.. At this angle, the horizontal edge diffracted field

contribution vanisbes abruptly. This results in a second diffraction boundary
. S

near the shadow boundary, where the diffracted field reappears. Thus the hor-

izontal edges cont;ibute to the pattern only in the front and back, regions, and, oo

neglecting vertex diffractions, the side region fields are independent of plate

height.

i o

—— — field is not generally perpendicular to_the horizontal edges. Thus the dif-

fractions are neither pure "hard" nor "soft", ‘and must be computed using the

,’B’ " v 1
"edge-related" coordinates (Sect. 3.4).: 18
! ‘ ‘
: - Thg horizontal edge diffracted fields are included in the computer

program simply by adding a CALL DIFEDG statement for each horizontal edge to the

flow chart in Fig. 4.7. Subroutine DIFEDG automaticallv finds the flash point

and computes the diffracted field, or if the field point lies beyond the dig;

fraction boundarv, sets the diffracted fiel

= +
Er = Eg Ep % Byt By v Eyy v Ey,

“" GTO field éields diffracted Fields diffracted
by the vertical by the horiaontal

»

edges edges

-4

4.12 The 3~d Plate Patterns

’ - o 7
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. “L

wide plate, with the source four wavelengths away 1s shown as a function of
plate height in ¥ig. 4.18. For h > 20 wavelengths, the pattern inéluding the
--horizontal edge diffracted rays, is identical to the corresponding 2-d plate
pattern. The horizontal edges are so far from the source that their diffract-
ed field id weak, and also, the diffraction boundaries fa11 near 0° and 180°
and so these edges only contribute owver a very narrow range of angles. As h
is reduced, the diffraction boundaries move towards the refleccioh and shadow
boundary. At h = 14 X the DB's are 17° and 1630, and the pattern is almost
the gsame as for a tall plate. At 8 X, the front region fields are not greatly
d¢hanged, but the chief back region null angle has moved considerably. By h =
6 A this null has disappeared and the fields are smoothing out. As the height

~

'1s further reduced, the fields tend towards the isotropic pattern which would
be expected for a very ShOfﬁ plate.
‘ The discontinuity in the patterns at the DB angles is due to the
abrupt vanishing of the diffkaq{ed fields of the horizontal edges. Reducing
| 7 —th& height of the pla?& causes the four corners or vertices to be strongly 11-
luminated. At present no coefficient has been developed to represent the vertex
diffraction process. The field would have to be found by a hybrid technique
using equivalent currents on the corner. The jump in the pattern at the DB
would be smoothed out 1f the vertex diffracted fields were included in the
calculation,

If the 3-d pattern is studied as a function of height for a large
[

N .
.

number of widths and separations, then three different regions of pattern be-

havior can be identified. Tall plate patterns are ilnsensitive to plate height,
‘ with the DB angles near 0° and 180°. As the height is reduced, the DB angles

move relatively quickly to coincide with the reflection and shadow boundaries,

.
“
\ U L
ne N N
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Fig. 4.19

and in this intermediate

very quickly with height.

w or SEPARATION

a

The three rerions of height for the case where

width = separation.

range of heights, the back region pattern change@

In Fig. 4.19, the three regions of height have been

established for the square problem with width = senaration, as a function of

width,

late zone of height.

4.13

b

of a plate with n sides,

The, case of height =

width = separation, always falle iq'ihe ihtermed--

1

Comparison with Burnside i v

L

Burnside (3) has developed a GDT program to compute the filelds

and in ordér to verify his program, he comparés his

computations with measurements for a 12 inch square nlate at 10.43 GHz, which

makes the plate 10.939 A

on a side. Figs. 4.20 and 4.21 compare our comput-




ations with Burnside's results. The Burnside (3) curves as shown here can dif- |
- ’L«l

fer by up to + 1dB due to the copying process used.

-

Fig. 4.20 compares our computations with Burnside for a current

element sodrce centered in front of the plate, separated from it by 5.961X.

-

All patterns are normed to have the same value at the peak near 15°.  Our

v

computations are remarkahly similar to Burnside's computations. The depth of

the minimum at 0° is a poor point of ‘comparison, as it is critically dependent

- )

on the source spacing. Thus if the spacing 1s increased by 0.039) to 6.000x,

then as shown in Fig. 4,20 the depth of the minimﬁ% changes drastically. Thus

o , . , : . .
the only significant difference between our computations and Burnside's is that

his patterns have 7 minima in the side region where ours have 8, as 1s pre-

dicted by the foregoing EEEE}ons. Tt is not known why Butnside's GDT calculations
. in Fip. 4.20 differ from our computations¥in this way.

In Fig. 4,21 our computations are compared with Burnside's experimental
pattern for the current element separated from the plate by 5.961Xx, but off-
center by 5:027%. For this seurce location, our computations are almost identical
with Burnside's, so only-his measured pattern is shown in the figure.

It 1s instructive to ask why the pattern with the Burnside dimenqlqn§
and the centered source, Fig. '4.20, does not appear to have discontinuities -

: ‘ at the diffraction boundaries, as do the patterns of Fig. 4.18. If the buck
- .

réglon of Fig. 4.20 1s p]otgéd for a range of heights near h = 10.939Xx, Fig.

&

4,22, 1t 1s found that the discontinuity is very much present at h = 12 and 114,

L "

o - apd is a step up with increasing angle, whereas at h = 10X, it 1s a step down.-
Y -

P
r

The Burnside height is very near the ehangeover from step upﬁf% step down, and so
- - ’ <

the discontinuity is not readily apparent, being effectively cancelled out, due

to the fortuitous choice of the dimensions used. =

e
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[
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Plate height h = Y R e T
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& ~—trer

Source displacement d
Fig. 4,21 Comparison(ofkcopgputed pattern with

. » Burnside's measured pattern(3) for the

off=center source, ‘
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4.14  Radtation-Pattern Measureménts — B - -

L)

To provide a sound verification of the computed radiation
patterns, experimental patt:erns“:wer'e ohtained in a 300 MHz - 3Hz anechoic
chamber designed especially foi radiation nattern neasurement. The anechoic |
{4;‘ . chamber and associated instrumentation is c%escribe& b'y Kubina' (12). ’

: j The experimental model, Fig. 4:2;. capitalized on t;he X-y .

plane symmetry of the problem. It consisted of a circular ground plane of

0.16 cm (1/16") thick aluminum, supported at the center bv a 30 cm square —

a

{
"support nlate' of 1 cth thick aluminum, to ensure the ground plape's flatness.

77— ————— The source antenna was a monopole 1.5 cm high mounted at the center of the

» -

" ‘ground disc. A 0.32 cm (1/8") thick aluminum plate mounted at  Fight -angles to

, the ground plate was uséd to model the flat pléte. The ground disc and supnort

plate were drilled and threaded so that the fiat plate could be mounted with

-— LJ

I -plate to monopole separation distances of a = 10,18.45, and 21.9 cm. Two

. flat plétes” were used, of lQ\fand 30 ecm square. Thus the plate width was % .

T k N
w = 10 or 30 crl[\, and because of the ground nlane configuration, the effective

heights were h's= 20 and 60 cm.

Measurements were carried out at 2.0 and 2.4 GHz. Ree‘ieviﬂp

paql:erflé were taken. The antenna model was illuminated by an openended rec-
@ - ¢

T e * _ 5

s

. s '
- - - tangular waveguide mounted in the plane of the ground disc,, about 2 m from the—m—
sourc':e antenna. The ground plane cbixifiiguration was used to minimize the ef- o

fect on the radiation pattern of the’ ecable carrving the received signal from
ST T T 9 e

- ‘ A

’ i 1
the monopole to the detection equipment. .

!

. ~ The: ¢xperimental error in the measured patterns is estimated to
¢ ' M »

~ be *#1 dBin-amplitude in the front and side region, and *2 degrees in the

R
. . | - = - -
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*angt}lar*peaition of any feature of a pattern. Larger experimental errors

" are present in certain regloms of the patterns: ) -

[

(1) In the front region at ¢ = 00, when the separation is near that for a

GTO null, the depth of the null is verv sensitive to separation distance;

s

and eperating frequency. In such cases the experimental error is large
near OO.

) Similairlv, the depth of anv front region null due primarily to GTO

effects, 1s subject to a large exnerimental error.

~(3) 1In fhé*back—regiom@Iﬁ is the sum of edge and- ~ . _ -

2

vertex diffracted components. These fields are- sensitive to departure——— ———

from the ideal in the phvsical model such as ground plane flatness and -

_ ‘%evg}negé,_a_rxdiothxeiZLIUMna"ting‘wavegui&é position and angular align-

ment Inaccuracies.. e
The measured patterns were found fo. Svmmetric to within -_t 1 dB
: n 7‘ o
+ ¢ -
and - 1 degree in the front and side region, but only very réughlv symmetric

in the back region. In the next section, measured patterns are shown omltv—— .

o

F X e 0

for 07 « ¢ < 1806, and in general the better half of the back region is shown -

in the dilagrams.

4.15 Comparison with Measured Patterns.

—————
T e

o —

T "Plgs. 4.24 and 4.25 compare the patterns measured at 2.0 and

2.4 GHz with computations made with both the two- and the four~edge plate k

models with dimensions corresnonding to the physical dimensions of the ex-



perimental model, given in the last section. It is seen that in general

# the calculations conform to the measurements. The agpreement is best in 3
fad .
the side region of the patterns, good in most of the front regions, but is
& A

m——

often poor in the back region.

It has been emphasized throughout this chapnter t:hjat the vertex
diffracted components of field have been neglected in the calculations. These
components of fieldhare expected to be large near ’the diffraction boundaries,

where the computed patterns with the four-edge model are discontinuous. Thus

in the side region, the vertex diffracted components on field are exnected

to be megligible, and ihdeed the measured and calclilated patterns agree best

M\\_\\\
in the gide region. ¥or this reason, in evervy case the expeyrimental pattern -

has been normalized to the same peak value as the computed pattern in the

i’ T — side region. _

Front region agreement in many patterns is verWgood, FTlg. 4. 24—  __

(a), (b), and Fig. 4.25 (c), (d), and (f). In some patterns, Fig. 4.24 (f) ,

77 _ and Fig. 4.25 (e), the disagreement occurs at § = 0° and can be attributed to

S a GTO effect (=see last section). In généra,l,‘hoyéy’e'r,‘tha vertex diffracted

components of field in the front region are nat r{egligible, especially near

the dif fraction boundarv, and can explain certain disagreements. Thus the

~—— - increased front lobe width in ¥ig. 4.24 (d) and (e) might be due to vertex
e —_—

v diffractions. 1In other patterns,‘Hémlﬁ—tHMﬁDib_ﬁ

are near 0° and the vertex diffracted components of field may have a con— ———
siderable effect in a regi;)n near 00. In Fig. 4.24 {(c) the ho;riizontal edge
diffracted fields are apparently cancelled by the vertex diffracted fields. a

’ But in Fig. 4.25 (a) the vertex diffractions smooth out the DUB. discontin-

“uity and somewhat reduce the field value near 0°. 1In Fig. 4.25 (b) the dis-



continuity is smoothed out but the computed level near o° including the hor-
'Q>

-

In the back region of the patterns, the total*GDT field is the

- —sum of the four edge diffracted and the four vertex diffracted components.

o ————

The vertex components can have a magnitude comparable to the edge diffracted

¥ields, so the measured patterns might be expected to display behavior com-

pletely different from the computed patterns, which enly include edge ‘dif-

fractions. It is found, however, that in most of the measured patterns,

__Fig. 4.24 7(7a7)7,“(¢2 > (f), and all of Fig. 4.25, that the measurements and

ften have a back regibn null not found in the computations,

s

, (f), and ¥ig. 4.25 (a), (b), (c), and (d), which could be

due to the interference of the vertex and the edge diffracted fieldg. In

Fig. 4.24 (c), note the measured pattern does not display the back region
Py

lobe due to horizontm diffractions which 18 seen In

pattern. The front region lobe due to these edges was also not found in

»

\ the measured pattel:n.i But the measured pattern in ¥ig. 4.25(b) tends to

jzontal edge diffractions is confirmed. - - — T

calculations disylay similar behavior, although "agreement" cz;nniotiimi Elai{péci. o

—_—

e

_confirm the lobe due to the horizontal edge diffractions in both "the front

- =

and the back regions.

Other disagreements in this set of patterns are worthv of note.

The calculated minimum in Tig. 4.24 (d) at @ = 40° is not well confirmed by

0 mﬁw*MMMC{MMJS_MLWD - This is

- — \

cugsed in the last section.

L

4 - ’ In ¥ig. 4.24 (a) the measured and experimental minimum near 50°

does not agree well. The reason for this difference is not apparent. Also,

T - — N




~ -
the back region in Fig, 4.25 (d) is grosslv in disagreement. Again, the

cause of this error 1is unknown.
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Fig. 4.23 "The experimental model.. A square aluminum

) plate is fastened at riggi: ;ﬁMTW,\
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5.1 Parametric Graphs, Parametric Families, and Synoptic Graphs

\ f

The investigation of an antenna by classical technigues seeks

the "pattern function" whiich gives the radiated field 4n terms of the dir-

ection of the field point and the physical dimensions of the particular an-

tenna geometry under consideration., Such an explicit function provides con-
° L] { @
- » 8iderable physical insight into the behavior of the radiation pattern as the

4

antenna's dimensions_are varied. Within a fixed antenna geometry, an analytic
- p;EE;;H_§GHEE§§T]§§EEEFE§‘Thepattern‘;ef~anv~dimensioﬁs‘meedia§%lv and dir-

ectly with a minimum of calculation. Unfortunatelv, the class of antenna

geometries in which pattern functions have been found is éeverelv limited.

At the opposite extrere, the pattern for any antenna geometrvy

whatsoever can be obtained by measurement with a suitable model. Such measure-

o
ments provide little insight into the behavior of the pattern as a function of

the antenna's dimensions, unless an extensive atlas of patterns is compiled for - .

-

y
many -sets of dimensions. This is a difficult and expensive undertgking since \

¢

most antenna models cannot have theit dimensions'changed easily.

Flectronic computers allow the solution of radiation problems

"

with complex antenna geometries, but this “solution" is in the form of numerical~-

[

ly generated radiation patterns. The computeraprogram allows the numericgal in-

—-—m—~_~_“gggggg@£192_gf the radiation pattern over a wide range -of antenna dimensions

T ST PR
"‘“__“**‘_——~‘———-—~——~‘__,_~_
within a piven geemetrv, but the reésults of such @ study come in the e e e

J—
large numbers of numbers that are hard to interpret. The insight:pf an explicit

. : y |

\ ' —_—

I ~' ) )
I : YA



pattern function is lost. The diffic;xltv lies in {ofd::\simz this numerical

pattern information to a succinct form which aids in understanding the ‘Evs_ical

processes governing the antenna system. Resorting to graphical presentation,

0 o -
whether by manual means or computer graphics, and plotting an extensive atlas .

ofhpatterns is a primitive _f:Lr'st step towards such interpretation. '

&

A means is needed of deducing from the numerical data the Y

behavioral traits of tm”radiationr}ﬁaitern in terms of the phvsical ﬁmerﬁions

of the particular antenna geometry. ‘! ‘ W/

In this theslis, an-attempt is made to cope with this infor- ' o

~

mation difstillation problem. The significant features of the radiation pat-

tern of the- antenna system are first identified. For example, for an antenna

.

5>
M broadly directignal pattern, the’/';l“ugiber of maxima and the number of

minima in the pattern, the angles at which these maxima and minima occur, o

and the Felat?[ve h

| -

eights of the maxima and minimg might _he considered to be

significant features.

lobe, the beamwidth, and the t'na:;(‘imum sidelobe level mipght be considered as the

important pattern features. The behavioral traits exhibited by these features

o

as a funttion of the antenna dimensions can be extra?ted from the numerical l

Py

patterns/ and expressed graphically. Thus for example the number of maxima

or the aL\gles at which the maxima occur jin the pattern as a function of an
’ . L
antenna [size dimension could be plottéd.,& )

Consider the problemoof flilly documenting in graphical form

the behgvior of one pattern feature " f " ag a function of two antenna physical
- ‘\ I

dimensi:o'ns 8, and 5, , over a spgcif‘fed rahge

— — —
b7
_ T o
. —_—
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For a fixed value of one dimension, say s, the value of feature f (the heiyht e :
- o

of the main lobe, for example) can be ﬂotted against the other dimension, Sy

47

~ -

A curve giving (f,s ) pairs can be drawn for N values of 8, over the range unider
considerdtion. The data for. these curves 1s extracted from the comp;xted num-~

_erical radiation patterr)s The result’is a parametric graph" describing the

" behavioral traits of feature f as a function of size variable“si for N dif-

ferent values of Sy o . : ,

Parametric graphg, represent a cohsiderable reduction of the

computer's raw numerical radiation pattern data. A set of such parametric
-~ !

graphs describes therbehavior of the sipnificant pattern features in a way’ that
lends itself to interpretation and hende understanding pf the phvsical processes
of the antenna system much better than does an a}as of patterns’f

° 3 L
The parametric graph described above does not displav the data
’ h]

in its most meaningful form. ﬁ'he independent variables are the antenna phys-

ical dimensions SL and Sy, The"val;le of the dependent variable f should be

1 2 .

plotted on a z-axis against s and s on the x and y axes. This d‘ispla;/s the °

" £, #
values of 8, and s, which pive a particular value of f. The information for

.

such a graph is available directly from the parametric graph descr'ibed above,

¢ [

- R //
Several constant f contours can be plotted, for different values of.f.- Such.,
e e . °

o - ¥
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- )

a graph will be called a "parametric familv". Tt disphlavs the value of pattern ,

-

feature f against the indgpendent viriables 8, and 8p- Although pamametric

family contours contain the same information,‘.‘aLa;panametric4g]:aph, _this in-
s ’

¢

formation is displayed in a much more meanimpful way. s 5 . N ,
v . 3

-

' ---— - If 1t-is -possible--to-represent allbof the curves in the par- ... _.__ .

L

ametric family by an analvtic function determined empirically from ‘Ehe par-

v

.. further digtillation of th

|

|

r

k]

ametric familﬂraph, of the form , .l L.
o | '

= f(mct?’ion of (sl s Py pz) -

)‘1"\&
A :
vhere p1 and ?)2 are "famil:}}af\é’ﬁ'iqurs" which are functions of f, then a

52

numerical radiation pattern is readjily acsiéyed. .

Thus, for example, 1f the curves in the parametric family are straight lines, 3‘

\
|

then the "parame'i:ric family law" would be J

/

o T P11 tR .

where the family parameters Py and p, are t& slope ahd the intercept of the
= P

L ~
» [
-

straight line. ° ) ) 0

. In gengral, the family parameters pl and p2 will e different ™
f ¢ ' -
for each contour in the parametric family, and hence are , functioms. of the

L ' t - )

feature value f. Familv parameter P, can be graphed against parameter p,, : ¢ s

and beecause Py and p, are both functions of f, the feature value f will be , =
. . « 1 . ‘ . .
a known function of position along the curve. -Thus N separate curves on the “ -

S
— ) -
f °

N 4’_,#/—/// ' - - T
— + S—parametric family graph can be reduced t® ¢ne curve on tRe (pl, pz) graph.
This single curve contains all of “the ianf()rmatiori of the N parametric graph - ' "
- g'a N i v il . .
L] } -
; - »F °

ez
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curves, and so the (pl, pz) graph will be called a "synootic graph”. A svn-

optic graph is based on the parémetric graphs and hence on the computed datay
and also o;x an empirical function describing the curves of the parametric
family. The fgrm of this empirical relationship determ;lnes the dependence
of file family parameters Py and p, on the antenna dimensions Sy and 8,- This
procedure is 1llustrated by the current element - plate radiati}\z system
analysis in the next section. ,

1f a set of parametric graphs and/or synoptic graphs are
constructed describing the Rﬁhavior of the significant features of the pattern
on the antenna physical dimensions sy and S the graphs can be uged to re-
construét the pattern for any values of the size variab\les 8y and s, over the
range covered. If the "significant featured' of the pattern ha;ze been’ carefullyv
éelectéd, then the 'reconstructed" pattern should be accurate enough for practical
purposed. Thus parametric graphs and/or synoptic graphs can be used to generate

patterns for antenna dimensions s and S, for which no explicit run of the

’ ]
computer p‘togram has been made, and so constitute a '"Pattern Generator

Function" (PGF) for the antenna system. The classical pattern function

~

is only one form of sthe radiating system's PGF. [

- Fven 1f an analvtic pattern function can ‘be obtained for a

particular antenna geometry, the design of the antenna to meet predetermined

&
.
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R
Fhe , -

[N

o Y

specifications 1s still an iterative procedure requiring many calculations

and compariso;xs, based on the a\gsumption that it is possible to realize the
specifications with the given gntenna geometry. However, if a formal '"inverse"
of thé—pattern function is possible, then the realizabilitv of specifications 1
is immediately apparent, and the choice of2§hysical antenna dimensions té

achieve the design is available directlvf\‘Unfortunately few antenna geometries

>

have mathematical pattern functions, and fewellpgill have an identified formal

N P
inverse. f
3y

Parametric and hence synoptic graphs can be plotted from numerical

»

radiation patterns, or from patterns obtained experimentallv, or even generated
b§ a maihematical pattern function, by the systematic proc;dure described above. v
These graphs have a powerful pakterﬁ generation capability in that approximate

patterns can be sketched immediatelv from parametric or svynoptic graéhs for any

antenna physical dimensions in the range covered. The graphs make apparent

at once the realizability of a given set of specifications with the antenna

gfometry under consideration. Further, the cholce of antenna dimensions to

obtain a given performance is obtained directly from the parametric or synoptic

graphs. Parametric and synoptic graphs may be usefyl for design purposes.

i - .



5.2 Parametric Graphs and a Synoptic Graph for the Flat Plate Problem.
’ﬁ\ .
In this thesis the H-plane radiation pattern of

“

element centered in front of a rectangular plate, parallel to t

urrent

[

"vertical"

edges, is studied in detail by the Geometrical Diffraction eory method

of analysis. General information about the behavior,of the radiation pattern

as a function of plate€ height, width, and source seégration distance is readily

generated. Regions of height are established (Sect. 4.12) for which the plate

can be considered?
v 1

i) tall, where the horizontal edge diffracted fields have little effect on

the pattern, or

i1) intermediate, in which case the front and back, regions o?'tﬁe pattern are
° AN
sensitive to plate height and the hprizontal and verwical edge diffracted
- L

o

f;;lds are of comparable magnitude, or

i1i) short, in which case the horizontal edge diffracted fields dominate the
front and back regions and the pattern is again insensitive to plate height.
These results are summarized in table II, 7Tt 1s also found that, as a function
of width, the pattern behavior is different in twp regioﬁs, for which the plate
can be considered "narrow” or '"wide" (Sect. 4.6). Narrow plate patterns are
often reminiscent of isotropic pattermns, whereas wide plate patterns‘are dir-
ectional (Fig. 4.8).

The pattern of the current element - plate radiating system for

5

any platgﬂ%eight h can be derived from the pattern for large h and the same

plate width and source separation, by the addition of the components of field
diffracted from the horizontal edges (Sect. 4.11). Thus a systematic invest-

igation-of the ''tall" plate pattern yields useful information for all heights.

A




o

TABLE IIt Regions in whdch horizontal (H) and vertical (V) edge contributions
- dominate. &
T Region of
. . Front Side Back
Angle -
= o=y
Region of |
Plate Height 4
Short o v H
Intermediate H+vV ‘ v A H+V
f
Tall v v 4 v

The tall plate pattern is studied in Chapter 4 by the parametric

graph - synoptic graph‘approach over the range of.widths and separations

A/ 4 <

WA

w

a

<

<

5

5

A

A

<

(

_and the ratio of the pattern maximum to the pattern minimum.

‘l
The investigation of the tall plate radiation patterns is begun

-

The significant results are summarized below.

with a study of the simpler "marrow” plate patterns and then extended to in-

/
clude plates of any width over the fange covered. The significant features .

’

/
. of the narrow plate pattern are identified as the number of minima in thé pat-
- \ v

i
ea

terﬁ, the angles at which these minima occur in the pattern ("ldcation angles"),

The behavior of .

«

i
o
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these features as a function of the plate width and the source separation
N ‘

distance ié determined by running the computer program for a set of discrete *
values of width and separation.
It is found that the number of minima in the front and gide
region of the pattern is stepwise proportional to the source sepa;a;ion dis- ; ey
P

tance \

of minima = 2 x Separation -
where the s;paration in wavelengths is rQ?nded down to the nearest half
yavelength. The parametric graph shown in Fig. 4.9 gives the number of ‘
minima and their location angles as a function of an antenna size variable,

the separation, for various fixed values, the second antenna size variable,-

[
\

the width which fall in the "narrow" range. This parametric graph is readily
derived from the computed radiation patterns. The parametric graph shown

in Fig. 4.10 gives the maximum to minimum ratio as a function of sepgg;tion for
various widths and is also readily obtaiped from the numerical patterns. These

/
two parametric graphs represent a considerable reduction of the Taw computed

/

data ‘and present the behavior of the gignificant features of the pattern in a
way which aids in understanding the physical processes of the raaiating system. They
contain enough information to reconstruct the narrow plate radiation pattern
for any separation over the range ‘covered, and for a small range of "narrow"
widths.

The shape of the plate pattern as a function of separation and
width when the‘width does not fall in the narrow range can now be considered.
The significant features of the pattern are identified as the number and loc-

/
ation angles of the minima in the front and side region of the pattern, the

relative height of the maxima and the mihima in the side region as represented
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by parameter SP (see Sect. 4.10), and the value of the field in the plate's

-- /
shadow as given by parameter SF (Sect. 4.10). Parametric graphs showing the

functional dependence of amplitude parameters SP and SF as a function of the
source separation distance for various values of plate width are readily

g

derived from the computed patterns and are shown in Fig. 4.15 and 4.16.
The number of minima in the plate pattern for anv width is

O
found to be stepwise proportional to the separation distance, exactly ag, in

'thL "narrow" plate case. It is helpful to sequence the minima in order of
appearance as the separation éistance increases as detailed in Sect. 4.3 an®
Fig. 4.4, and to consider each minimum M as a separate "significant pattern
feature'". A parametric graph giving the location angle in the pattern of

{
each minimum M as a function of source separation distance for various fixed

widths 1s easily plotted from the computed numerical data. Fip. 4.11 is such

a parametric graph for the first minimum (M=1). Similar parametric graphs for cv ol

M=2,3,..... ,9 would be necessary to desc}ibe the behavioral traits of all the

minima over the complete range of separations under consideration.
Any of the above parametric graphs, Fig. 4.9, 4.10, 4.15,

4,16, or the set represented by Fig. 4.11, could be replotted as a parametric

family graph’as discussed in Sect. 5.1. This work pursueg this studv onlv for -

Pd

the parametric graphs for the minimum location angles. The results of this

study are discussed bel
The par ric family graph for the Mth minimum censists of
contours of constant location angle ¢ of the Mth minimum, plotted against the

independent variables, namelv the source separation distance on one axls, and ,

the plate width on the other. Fig. 4.12 shows the parametric family contours



for the first minimum (M = 1 ), and is easily derived from the parametric

graph Fig. 4.11 as detailed in Sect. 4.8. Each contour on the parametric
family graph for the Mth ﬁinimum is for a differenf value of the location
angle ¢ of the Méh minimum, and so tlie contour represents widths and separ- .
égions for which the radiation pattern has the Mth minimum at the anglea?
of the contour.

One parametfic familv granh is derived from the parametric
graph for each of the nine minima for M = 1,2,....9. Thus, although‘she

s /
parametric family contours aid in understanding the physical processes of the
\

radiating system by graphing thé value of the dependent variable against the

independent variables, the Sarametric familyygraph itself does not represent
any further compacting of the computed data of the arigina] parametric graph.
However, the Significant contribution of the parametric family contours plot-

ted in Fig. 4.12 is that they bring to light a simple relationship between the

[FRSNSE

variables width apd separation, for constant 1ocatiQF angle of the Mth mipimum.

- «

The "curves" in Fig. 4.12 are found to be straight lines, as precisely as can be

determined from the computed data. ,

The next step in the data distillation procedure described in

a

Sect. S.i is the determination of an empirical "parametric family law' to de-
scribe the coritours on the parametric family graph. The '"law" can then be ex-
ploited to derive a "synoptic graph'.

The parametric family graph‘for the location angle ¢ of the Mth
minimum displays a linear relationship between widths and sépaggtioés which
make khe Mth minimum fall in the pattern at a particuléf angle ¢ , and so_the
paramétric family law has the form o

é : 0 .

H

a = sw +a
(o]

tor
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The "family parametersh discussed in Sect. 5.1 are now identified ;s thee
slope and intercept of the straight line. A synoptic graph can.now be “pre-
pared. The value of the slgpe s and the intercept a of each straight line
on the parametric family graph for the Mth minimum is determined gr?phically.

Since each line has an angle ¢ associated with 1t, each slope-intercept pair

also carries an associated angle ¢. If the intercepts are pldtted against the

slopes, then the Mt? curve on the "synoptic graph" Fig. 4.13 is obtained.

This procedure reduces the set of curves on the parametric family graph for the
Mth minimum to one curve on Fig. 4.13. The parametric family graph for each
minimum M = 1,2, ..... »9 has been reduced to the Mth curve on Fig. 4.13. Thus
nine graphs have b%gn summarized in one "synoptic graph'. The ¢ value assoc-
iated with each point on each curve on the synoptic graph Fig. 4.15 could be
inditated on the diagram. For greater accuracy in finding the location angles
of the minima given a width and separation by the method discussed below, a

< , separate graph has-been plotted relating minimum location angle ¢ to the

{
intercept value a_ s and is shown in Fig.\é.la.y This graph explicitly displays

the dependence of family parameter a_ on the location angle of the Mth minimum.
The synoptic graph Fig. 4.13 can be used to obtain the nuﬁber‘
/ jand location“4dngles of all the minima in the front and side region of the pat-

tern for any plate width and source separation over the- range covered. The par-

ametric familv law is rearranged to read

a = -w s + a
o

Given a value of separation a and width w, this equation relates the intercepts

and slopes possible for this system. "The straight line will intersect as many
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of the synoptic curves on the synoptic graph Fig. 4;13 as there are minima in
the front and side region of the pattern. Further, the intercept values of
the intersection points of this straight line with the svnoptic curves can be

3etermined, and then the actual location angles of the minima read from Fig.

4.14.

Thus new information about the behavioral traits of the H=plane

pattern of the current element centered in front of a rectangular plate radiat-

ing system has been discovered. A systematic procedure has been developed which
allows such information to be extracted from a large numerical "atlas' of '

i

cbmputed H-plane patterns for discrete values of width and separation, and ex- |
pressed as simple, continuous '"parametric graphs". This concept has been

extended via a empirically determined "parametric family }aw” which allows a

'
L4

set of curves on a parametric graph to be reduced to a Eing]e curve on a
"synoptic graph". Twé parametric graphs and the synoptic graph found for the
current element-plate system allow a centinuum of new patterns to be obtained-

without further computation, and hence are considerably more useful than the

original numerical atlas of patterns. The graphs display the system's be-

2]

havioral traits in a form that is easv to understand and which lends itself to

the Interpretation of the physical processes of the radiating system. Such

-«

graplis may‘be useful for design purposes.

’

5.3 Vertex Diffractions

€

. " It was found that when the height of the plate is such that

’ .
the horizontal edges contribute a significant field, the calculated pattern

o
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then exhibits ;bdiscontinuity at angles where the Law of Edge‘ﬁlffraction forces
’ the horizontal edge diffracteé fields to vanish ;bFuptiﬁ (Sect. 4.11;4.1%).
This observation and others similar to it lead to the conjecture that the current
stage development of the GDT“technique is still incomplete, even with the |
Kouyoumjian dvadic diffraction coefficient. In seeking possible phvsical ex-
planations it 1is reasonable to consider the effect of vertices and thelr possib}e
dontribution to the diffracted field.  The discontinuity noted above may be
due to the neglected components of field diffracted from the plate's four
corners of 'vertices". If the vertex diffracted fields were included in the
computation, then the discontinuity might be smoothed out. It was not possible
to include these vertex diffracted fields in the calculation since no vertex
diffraction coefficient>has been developed to date.

In this tbesis, a comparison 1s made of 12 experimentél patterns
with patterns computed with the four-edge GDT plate m&del. (Sect. 4.15). It is
found that the best agreement 1is obtained in the sid; region of the patterns
where the vertex diffracted components- of field may be expectgd to be insignifi-

cant. In the front region, the vertex diffracted fields could also be ‘im-

portant, even though this region is dominated by the GTO fields. While in manv

patterns the front region agreement is good, some pattefns indicate that the .

—~ .

neglected vertex diffracted fields might have considerable effect. In the

o— pattern's back region, the vertex diffracted components of field might be ex-
pected to have magnitudes comparable to the edge diffracted fields, 4nd in

some patterns ‘a considerable disagreement 1s seen in the back region, as sug-

2

gested.
‘ Thus the plate study has identified the need for a more intensive'

investigation of wvertex diffraction and possibly the development of a vertex
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.

.

the edge dyadic diffractiop coefficient D so that it has only two non-zero

elements, so special "vertex related" coordinates might be sought. %?

5.4 The GDT Method -t

7

]
The GDT method of analysis offers several significant ad-

Y
vantages.

>

There i3 a direct correspondence between body features such as

reflecting surfaces, or edges, and components of field which allows the ef-

fect of anv feature of the body on the radiation pattern to be readily-asessed.
1 o

&

., Thus great insight into the behavior of the pattern is gained. |

There is considerable ease of analysis. The total field is

the sum of several easily. evaluated components, which are identified by simple
ray tracing techniques.

Subroutines of. general application, such as REF for reflected
fields and DIFEDG for edge diffractions, are possible, which, once available,

greatly simplify the analysis of any particular problem.

A numerical model of a radiating system can be programmed

. and debugged in stages. If a simple model shows promising results, further

Pt
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diffracted rays can be included in the computation to improve the agree-
I ment .

Since the solution of large matrix equations is not necessary ,
- .

potentially there may be a reductioer in computer running time, over moment

method techniques. ’

5.5  Hybrid Modeling .

‘

The opportungty to merge the currently known computational
methods in order to solve a more general class of brpblems, now bBecomes ap-
- !
parent. Attempts at hybridization of some moment methods are already known

(20). A hybrid of the wire grid moment method with the GDT accounting for

~
interactions between the wire segments of an antenna and a nearby reflecting-
7

difoAraEi:ﬁi_ﬁ\g body\is'a first step in this direction (19). Additional terms
are included in the impedancg matrix to account for the field at the j-th
wix:e segment due to the field of the Mi-t‘h segment being reflected or dif-
fracted by the body. Such a hybrid method could be used to study the plite

illuminated by a half-wave dipole rather than a current element. *

Hybrid modelling also offers a computational method to‘eval—
uate diffraction effects where no closed-form diffraction coefficient exists.
Thus. vertex diffracted fields might be computed by putting a small numbér of

+surface patches or wire elements of current near the vertex, and finding the

values of the currents by matrix inversion.
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3 ,In conclusion)-this thesis has- -

'S - 4 .
o
1. Studied the ,(!urreg{"element centered in front of a.rectangular conducting

L)

; plate radiati'ng, system, by;thg Geometrical biffrac:ion 'f'heory method: of

-
analysis ; . ) N .

«
&

S Devéloped and- described a systematic procedure for obtaiping parametric graphs

L]

from computed data, and deriving from them synoptic graphe; which succinetly

describe the behavior of the ;'adiation pattern as a function ot the physical

9 & o~
K o . J
-~

Obtained- parametric and a synoptic graph for the current element ; plate rad-

Q

o
dimensional parameters of the radiating system ;

[

- .
o

iating system ;

7 »
.

o

Recognised that these ‘parametric and synoptic graphs may be a representation

of a simple, direct functiovnal relationship, defined herein as the 'pattern

o
generator function", which provides significarst pattern informatipn in terms
g k]

of the physical dimensions of the radiating soystem ; ¢

P ) i
o g T
Shown that, while the GDT method provides a solution to this type of ;i'oblem

which promotés insight into the physical processes governing the radiating

-3
- ‘

system, it has an important shortcoming at present‘in that the diffracted

-~ -

fields of vertices “cannot be taken into account .

o




(2)

(4)

N~ (5)

6)°

- Diffraction for an Edge in a‘Perfectiy Condugting Surface," Proc. IEEE,

' . REFERENCES

T |
A} - i

R.G. I,{ouyoumjian, "An Introduction to the Geometricﬁdr{eory of Dif-

fraction,”" notes from Short- Course on {Lppl-ication of GTD and Numerical -

Techniques 'to-the Analysis of Electromagnetic and Acoustic Ra(iiat;ion

and Scattering,  The Ohio State University, Columbus, Ohio, 1974.

[ »
o -
v

. , . ‘
R.C. Rudduck, YApplication gf Wedge Diffraction and Wave Interaction

Methods to Antenna Theory,” Notes from Short Course, The Ohio State
2 .
1 ')
University, 1974, ‘ ) , -
. ’ A
A ’ ' - —

W.D. Burnside, "Principle Plane Pattern Anaiysis of On-Aircraft An-

tennas,'" notes from Short Course, The Ohio State Uni;rérsity, 1974.

£

—— T

R.G. Kouyoumjian, and P.H. Pathak, "The Dyadic Diffraction Coefficient

»

for an Edge, Part I and Part -II," private communication to be published.

hY

n, - ‘ &
R.G. Kou&oumjian, and P.H. Pathak, "A Uniform Geometrical Theory of -

Vol 62, pp. 144‘8-1461, November, 1974.
« T )
& o Lt .
J.B. Keller, "Geometrical Theory of Diffraction," Jour. Optical Society

of America, Vol. 52, pp.l116-130, February, 1962.

Al
I

o

' Abramowitz and Stegun, eds. "Handbook of Mathematical Functiong,"” Dover.



(8)

(9

(10)

C\I

(11)

(12)

(13)

1 Ay

& .

T. Bayou, "Surface Element Analysis of the Far Field Behavior of a

Dipole Antenna Near a Conducting Cylinder,' Masters Thesis, Department )
of Elect{kﬁl Engineering, McGill University, Montreal, Quebec, March,

1972. -

ﬁ
7 | :
’ }

P.H. Pathak, and R.G. Kouyoumjian, '"The Dyadic Diffraction Coefficient

for a Perfectly Conducting Wedge,' Report 2183-4, Electroscience Lab-

~

v

oratory, The Ohio State University, Columbus, Ohio, 1970.

— o !

R.F. Harrington, "Time Harmonic Electromagnetic Fields," McGraw-Hill,

1

1961.

skl

L. Shafai, and Y.S. El-Moazzen, ''Radiation Patterns of an Antenna

Near a Codducting Strip." 1FEE Trans. Antennas and Propagatiofi, Vol.

s ’
AP—ZO,’ pp 642-644, September, 1972. ‘ I

P

N

-~ “‘5‘5 ° :
S.J. Kubina, "Radiation ChHaracteristics of Vehtcle-Mounted Antennas

and their Application to Comprehensive System Desi\gn," Ph.D. Thesis,
Department of Electrical Engineering, McGill Aniversity, Montreal,

Quebec, August, 1972,

- -

-4

W. Wolde-Ghiorgis, 'Wire-Grid Analysis of .Antennas near Gonducting
: )
Surfaces,' Ph.D., Thesis, Department of Electrical Engineering, McGill

University, Montreal, Quebec, March, 1972. N : L.

N

o
)
H
|




~

-

\ (14)

L]
<

(16)

(17)

e

(18) °

(19)

9

J.H. -Richmond, "A Wire-=Grid Model Por Scattering by Conducting Bodies,"

IEEE Trans. Antennas and Propagation,Vol. AP-14, pp. 782-786, November

1966.

g
K.K. Chan, '"Projective Solution of Antenna Structures Assembled From
Arbitrarily Located Straight Wires,'" Ph.D. Thesis, Department of Elec-

trical Engineering, McGill University, Montreal, Quebec, August, 1973,

J.B. Keller, "The Geometrical Optics Theory of Diffraction;" from "The
McGill Symposium on Microwave Optics (1953), Part II, Diffraction and

Scattering,”" Karasik and Zuker, editors, Bedford, Massachusetts, April,

1959, p.207.
[

~

W.T. Sedgwick, and HoW. Tyler, "A Short History of Science," revised by

Tyler and R.P. Bigelow, MacMillan, New York, p.189.

J.ﬁ. Richmond, and N. Wang, '"Sinusoidal Reaction Formulation for Scat-
tering by Conducting Bodies of Arbitraryvshape," notes for Sﬂort Course
on:Application df éTD and Numeriézl Techniques the Analysis of Electro-—
magnetic And Acoustic Radiatioﬁ and Scattering, The Ohio State Univer~
;igy, Columbus, Ohio, 19%4.

]

G.A. Thiele, "A Hybrid Technique for Tombining Moment Methods with the

Geometrical Theory of Diffraction,' .IEEE Trans. Antennas and Propagation,
- o . 7
Vol. AP*23,_pp.62-69, January, 1975. !

>y



(20)

(21)

s

N.C. Albeftsen, J.G, Hansen, and E.N, Eilskov Jensen, ''Computation of
Spacecraft Antenna Radiation Patterns,' Contractor Report ESRO CR-207,

LESTEC contract No. 1340/71, Technical University, Lyngby, Denmark.

S

— oy N
L.L. Tsai, D.R. Wilton, M.G. Harrison, E.H. Wright, "A Comparison of Geo-
metrical Theory of Diffraction and Integral Equation Formulation for
Analysis of Reflector Anténnas,” IEEE Trans. Antennas,and Propagation, -
Vol AP-20, pp 705-711, Nove?ber, 1972 !
< 1
%
>
.‘0 l Y
s
- 'MN
) b
. .
. .



A.l

App. 1  Subroutine SFLD

!
! '

! Given the position vector of a field point, Eé (RP)

subroutine® SFLD finds the distance RSM and -the unit vectdr fs (RS) from the

c&rrent element source located at 5'(8% with nolarizafign 6(%). SFLD then
evaluates vector TH whose comnonents are given bv the, cross oroduct (f x fs)
X ?s. In Sect. 2.2 it 1s shown that this double cross-nroduct gives the
source field vector normalizeé to an isotropic source of magnitude 1. RSM

may be used to remove the normalization, and is also the radius of curvature

°

.

of the source's spherical wavefront. - Y

SUBROUTINE SFLD{ RP,RSM,TH )
C FINDS THE DIRECTICN AND DIRECTIVITY OF A POINT SOURCE AT S .
REAL RP(3),4P(3)4S(3)4RS(3),PH{3),TH(3)

COMMON /. SOURCE / S,P
! UNIT VECTOR IN THE DIREBCTION OF THE CURRENT ELEMENT .

cre :

CsS : POSIT;CN VECTOR OF THE SOURCE . ] -
C

CF

INDO THE OISTANCE AND DIRECTION FROM SOURCE TO FIELD POINT :
0011 =1,3
1 RS(I) = RP(I) - S(I)
CALL UVEC( RS,RSM )
C DIRECTION OF THE FIELD s

PH(1) = _P(2)#¥RS(3) = P(3) * RS(2)
PH(2) = ~P(1)*RS(3) + P(3)%*RS(1)
PH(3) = P(1)*RS(2) - P(2)*RS$(1)
TH(1) = PH(2)1*RS(3) — PH(3)%RS(2)
- TH{2) = ~PH{1)%RS(3) + PH{3)%RS(1) -
TH(3) = PHIL)*RS(2) - PH{2)*RS(1) =
RETURN : ~ . . |
END ( ,
a “ |
/

* ' Y
The name of the corresponding variable in the computer nrogram is given T
r -
§ e

in the brackets. o ) : o
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cos GA and CG2 = cos GB. Then for a given field direction £, subroutine

.

s perpendicular to the ( x,v )
2.3 there will be a re-~

~
~

Sect

'

i

plane, subroutine REF finds the reflected field at a distant point in the

/

referred to the position of the primary source s (S).

v

4 to determine if a reflectéd rav exists.

As shown 1n(

, unit vector ﬁl(Ul), the direction cosines CGl =

-~

(x,¥) plane in direction f (F).
d polarization of the 1magg are used to find the re-

If ,a planar conducting sheet
3

Subroutine REF

- * 3NV HOY3
AD¥s 01313 031537434 3uL ONIJ OL 030338 ¥AVG ML SILVINIIWO
' 43815 3INLLNCUUENS
~ ' -~y
' dZ4lS BPurinoiqng

-

-

If so, the location an
VLUV ULULVLLULVLRLVLULLVVDLLY

\

its nolarization POLI

N

flected field as given in Sect. 2.3, normed to an isotropic source, and phase

Subrouting STREF calculates and stores the location of the image source

flected ray at the distant field point if

REF evaluates the dot product f

App. 2
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A

Subroutine STREF (cont'd) : Subroutine REF : ‘
% "
11 U2il,3) = -U2(1,J)
10 CONTINUE SUBROUTINE REF( F,ER,1 ) ;
C FIND POINT P WHICH IS CLQSEST TO THE SCURCE ON THE I-TH EDGE @ C FINDS THE VALLE OF THE FLIELD REFLECTED FRCM THE- I=TH PLANE .
D1 ¥ O. C INPYUTS : - )
B2 = UIM ' CF T UNIT VECTOR IN THE DIRECTION OF THE FIELD POINTY .
TOL = 0,01 c1 H REFLECT!OC& PLANE EDGE NUMBER
50P =Dl + (D2-D1)/ 2. C OuTPUT = , «
00 6 J = 1, C ER : THE COMPLEX VECTOR COMPONENTS OF THE REFLECTED FIELD
6 PlJ) = PALI,J) & DP & Ul(I,9) = S(J) ¢ . PHASE REFERENCED TO THE SOQURCE . !
CALL UVEC( PyPM ) COMPLEX ER(3),ERP N .
CG = -DOTA( Ul,P,I ) . ' REAL PI(6&¢3),PH(3),THL3) -
{F( A8SC/C6 F LT. TOLS1 GO TO 7T REAL F(l).ul(b-ﬂ.ul(bnﬂoSl(&.!hD(bvaGHM.CGZ(H N -
{F{ CG .GY. 0., ) GO ¥C 8 ’ COMMON / STREF2 / Ll,U2,S51,0,CGL14CG2,PI 4
C CP YOO LARGE s . . C DETERMINE IF THERE IS A REFLECTYED FIELD 3
D2 = DP H . c .
% Go 19 S N C OCES THE FIELD POINT LIE ON THE SOURCE SIOE OF THE PLANE ?
8 CONTINUE < - DOTU2F = DOTA( U2,F,1 ) .
C DP TCO SMALL @ IF( DOTU2F .LT. 0. ) GO TO 1001 ‘ o
D1 = OP C COES THE REFLECTICN POINT LIE WITHIN THE FINITE PLANE ?
GO 10 5. CA = -DOTAL :Ul4F,1 1}
7 CONTINUE IFC ( CA LY. CGI(I) ) LAND. ( CA .GT. CG2(I) } } GO TD 1000
C LCCATE THE IMAGE SOURCE 1 ' — C KC REFLECTED FIELC = R
DIy = 2, & P¥ o \ 1CC1 CONTINUE
009 J = 1,) DO 2 J = 1,3
9 SI(IsJ) = S(J) ¢ O(1) & PLJ) 2 ER(J) = ( 0uy0. | N .
- DUI} = D(I) * 2, & 3,1415926 RETURN 3
I =1+ 1000 CONTINUE ‘
IF{ T +GT. NR ) RETURN C FIND THRE REFLECTEC FIELD :
GO 10 1000 . RC = D{I} * DCTU2F ¢
END Ly ERP = CEXP( CNMPLX( 0.,-RD ) ) -
' - - C CIRECTION OF THE REFLECTED FIELD INCLUDING SQURCE DIRECTIVITY 3 ‘5
PH{1) = PI(1,2)%F(3) = PI(f,3)®F(2)
ha . PHI2) = -PI(T,1)8F(3) ¢ PI(T1,3)®F(})
. - - * PHIZY = PI(I,1)¢F(2) - PILI,218F( 1) N
» TH{1} = PHMMEE(3) - PH(3)#*F(2)
R i TH(2) = =PH{1)8F(3) + PH(3)sF(]) :
Subroutine DOT : o TH{3) = PH{1)®F(2) = PH(2)®F (1}
. D0 1.4 = 1,3 '
FUNCTION OCTA( E,R,1 ) 1 ER(J) ¥ TH(J) = ERP
C FINDS THE DOT PROCUCT OF THE 1~TH ROW OF E, AND THE VECTOR R RETURN § .
REAL E1&4314R{3) ) END
OQTA = Q. . t
001 J = 1,3 e ! .
1 DOTA = DOTA + E(1,J) f,nul .
) RETURN &
s/  END ‘. ; > f
\, \ -
- | . ’ &ite
- ! o
| . -
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;‘ App. 3 Su!)routine DEFFLD .y
Subroutine DIFFLD evaluates the Transition Diffr;ction Co~
'effic}ents DS and DH (Sect. 3.5), given the angles of incidence BETAO = By 2
PSIO = ﬂg , and PSI = ¥ |, and the distance RSM from the source to the point
of diffragtion. Subroutine DIFEDG Cg;;./S) ;inds the point of diffraction
"~ on the edge and evaluates BETAO, PSIozﬁPSI, and RSM, and calls DIFFLD to %%nd
the value of the TDC. DIFFLD calls subroutine INTN to find N 2, and then
N de'termines if the simple diffraction coefficient applies, which is used ff
possible to save computational effort. If the TDC is needed, DIFFLD calls
subroutine FRESNL to evaluate the transition function F (X). Subroutine

STDFLD finds certain constants used by DIFFLD, which are related to the wedge

— angle.

P

- I.x".‘ v
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Subroutine STDFLD : . Subroutine DIFFLD : \\
SUBRQUTINE STCFLO \ SUBROUTINE DIFFLD( DS,DHM,BETAD,PSIC,PSI,I,RSM )
C CCWPUTES SUBROUTINE CIFFLO PARAMETERS . C CCMPUTES THE DIFFRACTION COEFFICIENTS USING FORMULAE VALID EVERYWNERE,
C INPUTS :- C INCLUDING IN THE TRANSITICN REGIDNS .
€ N : THENUMBER OF WEDGES IN THE MODEL . C OLTPUT : N ;
CN @ ! THE ANGLE PARAMETER FOR EACH EDGE . € CS,DN 2 THE SOFT AND HARD DIFFRACTION COEFFICIENTS .
COMMON / STED? /7 Cl4TPN,C3,Cé C INPUTS : .
COMPLEX C106),C316) C BETAD : THE DIFFRACTION CONE HALF-ANGLE .
REAL TPNIG),NLEY,Ch16) c PSiO 3 THE INCIDENT ANGLE .
COMMGN / SYEDG / N,NE C PSIt : THE DIFFRACTION ANGLE . - .
COMMON / CCNSTS / PI,TP1,PI2,PI&,RTD,OTR c1 : THE WECGE NUMBER , :
STPI = SQRT( TPI ) C RSM ? THE DISTANCE FROM THE POINT OF DIFFRACTION TO THE
—C-CCMPUTE FCR EACH ECGE, I=1,NE ¢ = . c FIELD POINT .
1 =1 - REAL KL.TPNI&1,N{6),Calb)
1000 CONTINUE COMPLEX C1(61, ESAsP14P2,05,0H,C3(6}),FRESNL
C TRANSITION ZCNE FCRMULA PARAMETERS 3 COMMON / CONSTS / PI,TPI,PI2,P14,RTD,DTR
TPNL 1) = TPI ® NID) COMMON / STENI 7 CL,TEN,C3,C4 .
CLE I ) = ~CEXP{ CWPLX{ 0.o=PI& ) ) / { 2. & STPL ® N{I} ) COMMON 7 STED4 / NoNE .
C SIMPLE FORMULA PARAMETERS TN = 2. * N(T)
C3U1) = 1. 7 ( NLTIOSTPL ) & SINC PI/ZNCE) o o RSMK = RSM s TP
1 ® CEXP( CFMPLX( 0.,~PL[/4. )} . - ESA = CEXP( CPPLX! 0.,~RSMK ) ) / SQRT( RSMK }
C4(1) = COS( PL / NUT) . SBO = SIN( BETAQ )
[ =1 ¢ PHIL = PSI = PSIOD
1F( 1 .GT. NE ) RETURN _ PHI2 = PSI ¢ PSIQ i
GO 10 10C0 ~KL = P] % RSM # [ SBO#s2 ) ® 2.
END > . TP = TAN( T ) .
. RNPL = { P} ¢ PHI1 ) /7 TP - ~ .
. RNP2 = ( Pl & PHI2 } / TP N !
T~ RNML = | =Pl ¢ PHIL ) /7 TP /
. \ - : Sl RNM2 = { =Bl ¢ PHIZ )} / TP -
NP1 = INTN{ RAPL )
NP2 = INTNU RAPZ )
. L. NMI = INTNC RAML }
Sebroutine UVEC NM2 = INTN( RAMZ2 }
: APL = 2. ®(( COSI (TP ®NPL=-PHIL)/2, ) )2 | & KL
SUBROUTINE UVEC( A AM ) , AP2 = 2, #{( COSU (TP &NP2~-PHI2}1/2.) )*e2 ) ®» KL
REAL A{3) AML = 2, *(( CCS{ (TP SNM1-PHI1)/2.} 1%%2 )} ® KL
AM » SQRT{ A(l)es2 ¢ A(2)%%2 » “3)..2 H AM2 = 2, #(( COS( (TP SNM2-PHI21/2.) (%92 | « KL
0011 = IH2 . v C CETERMINE IF THE SIMPLE FORMULA MAY BE USED @
1 ACTY = ALY /7 am : TF( (AP1.GV.10.1 AND. (APZ.GT.10.) «AND. (AM1.GT.10.}
RETURN 2 «AND, ( aM2.GT.10.) ) GO TO 1000
END - C THE TRANSITION ZONE FORMLLA MUST BE USED & ° .
R - Pl = COTAN( (PI+PHIL}/TN ) » FRESNL( APl }
1 * COTANC (PI-PHILIZTN )} * FRESNL{ AM1 )
Subroutine INTN - P2 = COTAN( (PI+PHI21/TN ) = FRESNL( APZ: ) °
* "2 + COTANI (PI-PHI2}/TN ) * FRESNLI AM2 }
FUNCTION INTN( P ) N 0S = C1{1) 7 SBO = {( Pl - P2 } * ESA
C THIS FUNCTICN IS USED IN EVALUATING THE TRANSITION OIFFRACTION DM = CLUI) / SBO # [ P1 + P2 ) & ESA -
C CCEFFICIENTS BY SLBROUTINE BIFFLD RETURN
INTN = INTL P ) ¢ N .
R = p - FLCAT{ INTN ) C THE SIMPLE FORMULA CAN BE APPLIED t ™ -
IFC R .GE. 0.5 ) INTN = INTN o [ 1000 CONTINUE .
RE TURN - Pl = 1. / ( C&LL) - COS( PHIL/NCI) ) ) 7 SBO
END \ P2 = 1. / ( C4(1) - COST PHI2/NIIY ) ) / $BO
“ N 1 DS = ( PL-P2 } ® C3(1) ® ESA
é‘;’.’» . , OH = ( PLePZ ) ® C3(1) & ESA :
: RETURN
oo END

SV
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App. 4 Evaluating the Transition Function:

Subroutines WRESIN, FRESNL, WREI

A4.1 Introduction

This appendix shows how to evaluate the transition function

4

- 2

rx) = 23/% ¥ f eIt a4
Jx

A

For X > 10, F(X) = 1. VFor X < 10, numerical integration will be used. A

graph of ¥(X) will be found in (1).

A4.2 Relationship to the Fresnel Integral

The integral in the transition function may be rewritten as

[++] - (2] 2 'r)? 2
f e 3t gt =‘f\ et dt—f e 1t 4¢ A4.2.1
X 0 0

I . X

' @
The last integral is similar to a known and tabulated Fresnel Integral

(7p.300) o
3 ..

a 2
£(A) =f el (/2" 4

fzx/n

O//
hence i £ J2X/) J = f

2
e-j(n/2)u du
0

,wheré the bar denotes confugate. Let t = JW/Z u ; when .

u = |2X/ﬂ , then ¢t = fiﬁand the integral becomes

K 2
o [2%/7) =ﬁ_‘f it de
™V "0 N

which is thée same as the/second integral on the RHS of Eqn. A4.2.1. Thus

\00 2

/ fj\.\?\e—jt at - ."? 1im f(u) _ﬁ-;f(JZX/TT)

y-»co
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The limit is easily found (7)

R IOV I ST

hence the transition function becomes

241X eJXL[g'(i +13) - j;’f (f2x/7) ]
v X IX T
JWX e (1+41) -Jf2mrXe fF(JZX/W)
Thus evaluating the transition function is reduced to finding the Fresnel

{
Integral, f (2x/™ .

2

F (X)

"

; /

The Fresnel Integral must be evaluated for arguments
!

A4.3 Tinding the Fresnel Integral

a-= IZX/n where X < 10, that is, for a < 2.5231.... . (7) uses a polv-
nomial approximation for a > 5, and tables for smaller a . For computer ap- d

plication, tables are inconvenient and a numerical integration is preferred.

[
Expanding f (a) as real and imaginary part,

f (a) =‘/PZ

The kernels are rapidly varying functions and so cannot be integrated accurate-

a
cos (( 7™/2) uz) du + 1[ sin ((7/2) uz).)du
0

ly with low-order quadrature. Let u be the points where the kernels are zero,

" or "nodes",

- . I

(Hence either cos ((7/2) k ) or sin (("™/2) k ) is zero. ) Between any con-

secutive u both kernels are slowly varving, and can be integrated easily.
- -

-
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\1
Let S

L - 3

i : 2 ~
B °© f“k el (n/2) u du k = 1,2,...
. . k-1
Then for any argume}xt a ,-we can write - .
n a 2
m ¢
R v . m=1 u '

where u is the largest w less than a . Let fk be t-_he value of the

-

Fresnel Integral at the nodes Y then the ''mode values" are

and

8 2
RGN

N A |

where the integral"c:ﬁiﬁt“i?é1 eva1~ua~ted quickly and accurately by low order

u
n

Gauss-Legendre Quadrature .

A4.4 Subroutines FRESIN, FRESNL, FRE1

*"Subroutine FRESIN generates'the nodes of the kernels, uo-
(#(k)),and finds the node valt.ies, fk/ (Fsik)) . T-'uncti/on FRESNL evaluates the
Transition Functic»m fprfgn‘y\argument‘ , using the expressions obtained above.
The value of the Frensel Integral is i—?ound by function FREI, for anv argument,
using the polynomial approxirﬁation (7) where valid, and otherwise the numerical
integration technique detailed above. The nodes and node values found by

FRESIN must be included in the main program's BLOCK DATA segment. ~
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Subroutine FRESIN 2 Subroutine FREl :
- ,
SLBRCLTINE FRESIN R FUNCTICN FREL ( X ) . : .
C THIS SUBACUTIAE FINCS THE FRESNEL TATECRAL EVALLATICA CATA . € EVALUATES THF FRESNEL INTEGRAL AT X .
AFAL Z(2&),BCAN(R),ECwiB) RE;‘L BN{B)RW{B) .
COCVWPLEX FL24) 4FR,FS(2%),C1,C2 COFMON 7/ CUAD / BW,BR,NG

CCPPCN 7 CUAT 7 AGWACA NG R COMMON / CCNSTS 7 PI,YPL,PI2,P14,RT0D,DTIR"

CC¥MCN / FRES1 /7 2,FS,C1,C2,5PI2 : COMMON / FRESY / IsFS 3 .
CrPPCN / CONSTS / PI,TPI,FI2,P14,RTC,CTR COMPLEX FS(25),FW,FREL . A ,
SPI2 = SCRTL P12 ) REAL 2(26) ° + ! -
€1 = CPPLX{1.y=1s) # CMPLXL 0.,SPI2 ) . IFE % LT, S. ) GO TO 4
C2 = CHMPLXL Coy~2.985P12 ) XS = X » X
C GENERATE THE NCCES @ . X4 = XS * XS >
CC 1 1 = 1,2¢ . Cl = ( 0.3183C99 - 0,098 7 X4 ) 7 X
RF = [ -1 1 €2 = { 0.,10132 -~ 0,154 /7 X4 } 7 ( X & XS ) 4
1 2t1) = SCRY{ RI ) . < . PXS = 3,1415926 / 2. % XS \
C EVALUATE THE F-QUASTANTS : - SPXS = SIN( PxS )} » \
CC 2 1 = 1,24 . CPXS = COS( PxS # :
Fw = ( CepC. ) . CX = 0.5+ Cle*SPXS - C2eCPXS / N .
A= M) ? SX = 0.5 = C19CPXS — C2%SPXS .
B = 201+1) ' FREL = CMPLX{ CX,SX ) .
AVE = ( B-R ),/ 2. RETURN .
APR = { AsB ) / 2, ' . 4 CONTINUE
CC 3 J = I,NG s C LOCATE THE INTERVAL IN wHICH X LIES 3
U = BME % EGNLJ) > “dPE . Y =2 i - - *
Fn = Fan ¢ CEXF( CPPLX( Coy PI2%(L%92)))} * gCWIJ) 1 IF(C 201} «GFe X ) GO TQ 2
3 CCATINUE 1 =°1 ¢ 1
F(I} = -BMB * FW GO TO 1 . . . |
2 RCATINLE “ 2 CCNTINUE ° \ !
C EVALUATE THE FS CCNSTANTS ¢ ! \ C EVALUATE THE INTEGRAL ¢ * - - |
FS(1) = ( 0.,Ce )} *.g. A= 20 I-1) >
FS(21 = F(1) . 8 = X . .
0C 4 I = 1,22 AMB = (o A=R } / 2, . : -
FS{I1+2) = FS{1+1) + F([+1) APB = { A+B } / 2.
4 CCATIANUE ° - FW = ( 0.,0. )
RETLRA , ' DO 3.4 = 1.NG > . - M
ENC - / U = AMB * BN(J) - aPA -
. . FW = FW + CEXP{ CMPLX[Oa» PIT‘(U”Z) TN IR} , ,
4 CONTINUE
Subroutine FVRESNL : NI . Ea
3 - FRE1 = FS(I-1) + Fu . .
\ RETURN N
FUNCTION FRESALE X ) END , °
C EVALUATES THE TRANSITION FUNCTION BPOR ANY ARGUEMENT X . i
© CCMPLEX FR,C1,C2,FREL,FRESNL . .
“ COMMAN /7 FRE2L / C1,C2,5P12 - °
IF( X .GT., 10. ) GO T0 t - . o ~-
€ FCR SMALL ARGUEMEANTS : .
SX = SQRT( X ) , o -
Y = SX / SPI2 - . N
FR = FRELL Y } . .
FRESNL=SX ® CEXP( CMPLX{ 0.,X)) % { CL+C20CONJIG( FR }) -
RETURN
1 FRESNL = 1. ’
RETURN
END

6°V




Main program for calculating the Fresnel

integral evaluation data :

[ o
C GENERATE THE FRESNEL INTECRAL EVALUATICA DATA . N
¢ .

~

- .
|
‘/’
I

e CCVPLEX FSt25),01,C2 °
REAL 2¢€2¢)
CCPMOIN 7 FREST /7 Z4FS.Cl,C2,SPI2

CCMMEN 7 CONSTS 7 PRHoTPI4PI2,PI4RTIC,CTR -~ <

PI = 3,141582¢
TPl =~ 2, = P{
P12 = PI / 2.
Pl4 = PI /7 &, N N
RTE = {8C. 7 FI ° s
CTR = PI 7 1eC, . S °
CALL FRESIN
WRITE(6,1CC) -
FCRNAT(/7/7," "y FREENEL INTECRAL EVALLATICN CATA ssac¢)
WRITEL6,1CL) SPI2,L1,C2
1C1 FORMAT(//," * INDIVICUAL CCNSTANTS :  SPI2 =
1 F028X,°C1 3 {9 E15.T4% % EL5.741)0,
C 13 loZ!!"Cz 'J'vElsc7v""Ex5.7"”'
WRITE(E,1C2)
1C2 FCRMAT(//,"

o

1cc

*4E15.7,

* THE NCCES Z2(k) ANC THE NCCE VALUES FU 2(x) ),
1 let K® 35Xy *NCCE Z(K}®,12X,*NCCE VALULE F( Z(X) ),
2 J92EX g *REAL Y ¢SX,*IPAGT)

CC 1 x = 1,25
1 WRITE(6,103) K,Z(K},FS(K)
T1C2 FCRMAT(® *,[3,2X,3€1%5.7) -
STCP
| 1,14

BLCCx Late N

C SPECIFY GALSSIAN CLACRATLRE DATA FCR THE FRESAEL INTEGRAL EVALUATICN
CIMENSICA RLB),An(P}
CCPMON / QULAC /7 Bw,B NG
DATA NG /7 € / -
CATA BN / 17122644522,.36CT€1572C,.6679135345, ' :

o 1 «4679139345,.28607615730,.1712244523 /7 «

w Cata 0%y ~e5324655142¢-.6612053864,-.238¢61918¢6C,
lE ¢ 0 2IEEIS18EC . £E12093884,.9224695142 /
A . )

. -
)

~ ° *
'Tne Fresnel intepral evaluation data generated by @
the proeram at left : o
1 <
4¢s FRESNEL INTEGRAL EVALLATICN OATA #¢» N
® INCIVICUAL CCNSTANTS 3 sP12 = C.1253314E+01 °
[ = { C.12%2214E+01, C(.1252214E4C1) R
c2 = { ¢.C ~0.250€¢€28E+CL) ; e
' \
* TEHE NCCES 20K} ANL THE ACLCE ¥ALUES F( 2iX) )
x ACQCE 2ix) NCDE VALLE F( 2(x) )
REAL 1*8G
1 C.J c.C - C.C
2 C.1CCCCCCESOL C.T798924£4C0 0.4282589E4C0
] C.l614212E4CL C2S288G6Z2E4(C C.TLINT2TE4CC » .
4 0.1722C51E+401 C.221C5E52€+(C «E1LT2CICE+CO
L C.2CCCLCCE+CUY (CL.4BB25CSECLC C.24341¢SE+CO °
€ C.227€CEFE+CY C.€408BNS4ESs(C C.4513917E+CO
1 C.24494GCE+01 C.ECEE41TELLC C.€2864C1E+CO N w0
8 Ca2845751E401 C,28038GSE+LC C.5CS22CSE+CO
S C.2826427E40k C.45561T76E4C0 0.3P757CCE4CO
1C U .ICCCCCCELCL C.ECSTISTESCC C.4S563126E+C0
1 0.31€2277€+01 C.S031SP5E+GC C.ECCIE2PE(C
1 Co22VE€25E+4CE C.4042584F¢LQ0 0.50274¢5E+CO
13 Ce48G]CZEFCT (L, 4ST5€27E4(C" C.4CPIC2LECO o
14 0.36C5552E+01 C.EEEB1257E+4CC 1C.4STPEEIESCO
15 Ce3741€657E+01 "CL5CIG166E+(L C.594642EE+(CD
1€ C.3E72682E+401 C.41792{2€E+4(CC C.5C173C¢€ECC
17 C.4CCCCCCE*Q01 C.498421SE+CC C.42CC1le€lE+CC
i@ CLhl1221CEE+OL C.ETTI2CCE+CC Q.4S85¢C2ELC Qo
19 Co424264CE+C] C.5013220E4C0 0.574SS75E+C0 .
20 C.A2SEESSEMCD  (.427C34SEeCC C.5C12217€0CO
21 0.447212¢E+01 C.49886A0E+(C C.42EB87ET7E+(O v
22 C.45R25T€E¢Cl C.5694134E+C0 0.498949CE+L0 :
3 Ce4t9C415E4C1 C.5CCSELISE«(C C.S5¢7€21%E+CO
24 0.4 RA2E401 (C.4226¢5SE+CC C.5CCS1E3EeCO
25 0.469B8STFE+0L C.4GF13B6E+CC O0.435C4CLE*CO

2
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. 3.6 by the iterative method, then the
(App.l), 1is resolved into
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components of the diffracted field
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2oeTr41)IN « 410 = WIN @
€1 = ¢ 8 DC
0 = WINn
Ir*1)1d ~ :..:mﬁn (re1)¥In ¢
€4l.= € 00
A3Y = (1)3Y
xwu /4 15%1)3 = (r*1)3 ¢
€'l = r 2 Qa
 Ceslf®1)3 ¢ 43¥ = W3Y 9
€'Yl = 9 00
‘0 = W3I¥ .
€'l = 2 o0
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1141)13e(20)IN = (241138141010 = (E*1)2N .
€'Y =T 6 00
, H mumbuw> 3IN3 Y3338 IHL ONI3 D
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M .n...~¢ - (F*1)124 = (£*113 2
” I'= 1

The diffracted field is then re-
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the "edge cosines" cos 81

(), by a straight edge .which starts at point Pl (PT) and
VOLLVOLLLVLLVLVL

(P2), illuminated by a point source located at
For each edge in the GDT model, Subroutine STEDG computes

2

The flash point is found as in Sect
~and stores them for later reference by DIFEDG.

.
»

a

oint P

Subroutine DIFEDG finds

P
VL

:

ED are found bv Eqn 3.4.8, using the Transition Diffraction Coefficient
stored to base coordinates and phase referred to the location of the source.

edge-related coordinates are determined, and the source field vector eval-

App. 5 Subroutine DIFEDG

uated at the diffraction point by Subroutine SFLD
edge-related cbmponents.

evaluated by Subroutine DIFFLD (Avp. 3).

field direction £
parameters

enés at

-
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Subroutine STEDG (cont 'ﬁ) :
N ¥

CGL{T1) = - COTA( E,R1,1 }

DO 5 J % 1,3 £
S RI(J) = P2(L,J) - SUN) A
CALL UVEC( RI,R1m }
L €G2(1) = - DOTA( E.R1vt=y" .

NA = ( 2, - N(1) ) & 180,

WRITE(6,100) LeWA,l E(IoJ)ednle3 },REULD,t ULlL

1 ( U201,49)4328,3 )

A

v d)ydnl,e3 3,
1Y

1CO0 FORMAY(/,* & DERIVED WEODGE DATA  EOGE €',124%¢ ANGLE *yF5.1.° DEG

IREES*y7+* » UNIT VECTOR ALONG EDGE ¢,
a 23E15.7,/, * ECGE LENGTH *,E1S5.7,

3 /4% ® REFERENCE VECTCR # 1 *,3E1%5.7,

4 /y* ® REFERENCE VECTOR # 2 *,3€15.7 )

=1+

, IFU 1 &GT. NE ) RETURNK .
60 TO 1001
END '

~  Sulroutine DOT

FUNCTICN DOT( A,8 ) g

REAL A{3),B13) .

00T = A(1)e8(1) « AC2)8B(2) + al3}en{3)
v, END [ N

C
[

[
c

C
c

c
[+
[+

COoOOONANOO

Savroutine DIFEDG

SURROUTINE DIFEDGE F,1,ED )

FINDS THE DIFFRACTED FIELD FROM EDGE I, IN DIRECTION F .
REQUIRED SUBROUTINES t UVEC,00T,00TA,DIFFLD,SFLD .
INPUTS 2 e N
F T UNIT VECTOR IN THE DIRECTION OF THE FIELD POINT .
H : EDGE NUMRER . ,
OVHER INPUTS AS 1S SUBROUTINE STEDGE . -
QUTPUTS : .
EC o 2 THE COMPLEX X,Y,2 COMPONENTS OF THE DIFFRACTED FIELD, PHASE
REFERENC@Q‘TU THE SOURCE . )
COMMON™7 SQURCE / S.PCL ]
COMMON / STEDL / P1,P2.P3
COMMON / STED2 / &,RE,U1,U2,C61,CG2-
REAL REL6)4POLII)LESE3) ,NIS)
COMPLEX ED{3), ESE2,ESE,0SyDHED2,ED3, PHASE
REAL K RCU3),ERI2(3),ERII(IDLERFZ(IILERFI(3) RP{I),R1(3),E(6,3),
1S(3),U1€643)40L2(643),C6188),C6216),PL16,3),P2(6:3)sP3{6,3),F(3)
COMMON / STED4 / N,NE .
COMMON / CCNSTS / PI,TPI,PI2,P14,RTD,DTR
DETERMINE tF DIFFRACTICN FBOM THE I-TH EDGE TAKES PLACE FOR THIS FIELOD.
DIRECTION : .
CA = —DOTA{ E,Fy1 )
IF(C ¢ CA .GT, CG2(I) {‘.AND. { CA LT, CGL(I) } ) GO T0 1000
NO OIFFRACTION :
001 4 = 1,3
1 EDC(J) = ( 0.y0. T ,
RE TURN [+
CIFFRACTION CCCURS . FIND THE OIFFRACTION POINT 3 N
16¢0 01 = 0. B
0Z = RE(I)
TOL = Q.01 -
2 CONTINUE " - <
D=D1 ¢« D2~-01)7/ 2,
00,3 J = 1,3
3 RPUJ) = P1(I,J) + D & E(1,J)
DO 4 4 % 1,3
Y & RLIUIY =" RPLJI)Y - SEJ)
CALL UVEC( R1,RIN }
CY = ~DOTA( E,R1,1 )
CETERMINE IF TME OIFFRACTION POINT P HAS BEEN FOUND WITH @
ENOUGH ACCURACY :
IFL ABSI €T - CA ) .LT. TOL )} GO YD 1001
IFL CT .LT. CA ) GO TC S
0 MUST RE INCREASED ~
01 = g *
GO 10 2
D MUST BE DECREASED 3 2 ’ .
S 02« 0 A .
GO 10 2 -

1001 CCNTINUE
CALCULATE THE DIFFRACTED FIELD @

A



k.3

Subroutine DIFEDG (cont'd) :
C DETERMINF THE VALLE QOF THE SOURCE FIELD AT THE DIFFRACTION POINT P 3
CALL SF{D( RP,RPM,ES ) ’
C FIND THE INCIDCNT FDCE-RELATED COORNDINATES 2
ERIZ2Z(1) = RIC2V®E(L1,3) - RI(IVI®E(L,2) .
ER12(2) = ~RL(1ISE([43) + RI{IISE([41]
ERI2t3) = RICLISE(1,2) = RLI2V%E(1,])
CALL UVEC( ERI2,ERI2M } .
ERI3Z{1) = RI(2)*ERI2{3) - R1{IICERTI2(2)
ERI32) = -RICLIVSERT2(3) ¢ RL(3)SERIZI1)
ERI3(3) = RIC1)®ERIZ2(2) — RL(2)®ERI2(1)
CALL UVEC( ER[3,ERIIM )
C RESOLVE THE INCIDENT FIELD INTC EDGE-FIXED COMPONENTS 3
ESE2 = ESU1)®ERI2(1) ¢ ES{2)®ERI2(2) + ES{I)SERI2(3)
ESE3 » ES(1)®ERII(1) o ES(2)®ERII(2) + ES(3)CERIZ(3} .
C DETERMINE THE DIFFRACTION ANGLES 3 ™~
BETAD = ARS( ARCOS! CA } 3
C FIND TME INCIDENT ANGLE 1 =
CPL = DOTA( UL,RI,I ) AN
. CP2 = DOTAL U2,RL,I ) i

IF( CP1 .NE. 0. ) GO TO 300 - ﬁ
PSIC = P12
IF{ CP2 .GT. C. )} PSIO = 3, & P12

\\ GO TO0 8
JAQ0ALPH = ATANC CP2 7 CP1 )
- F( CP1 (LY. Co ) GO TO 7
I3 = Pt & ALPH [\Y

IFt CP2 .LT. Ca ) GO TO 68
PSI0 = TPI + MPH
8 CONTINUE
C FIND/THE OIEFRACTION ANGLE @
CPl = ~DUTAl Ul,F,1 )
CP2 = -DOTA( L2,F,1 )
1F( CP1 .NE. C. ) GO T0 302
1 = P12
IF{ CP2 .GT, Q. ) PSI = 3, & P12
GO 10 10 -
302 ALPH = ATAN( CP2 7 CPL )
303 CONTINUE
IFL CP1 LT, Co ) GO TO 9
PS1 = Pl & ALPH .
GO T0 10 ©
9 PSI = ALPH .
IF{ CP2 .LT. C. ) GO TO 10
PST = TPL + ALPH
10 CONTINUE
C FIND THE DIFFRACTJON CCEFFICIENTS 3
CALL DIFFLO( é;:DH.BE!AO.PSlO.PSI.loRPI )

|

C FIND THE COMPONENTS OF THE DIFFRACTED FLELO IN EOGE-FIXED COORDINATES

JED2 = -DH ® ESEZ
“'ED3 = -DS # ESE3
C FIND THE OIFFRACTED EOGE-FIXED COORDINATES 3
ERF2(1) = E(1,2)9F(3) - E(1,3)eF(2)

|

Subroutine DIFEDG (cont'd)

ERF2(2) = <E(L.1)8F(3) & E(I,3)8F(1} N
ERF2(3) = E(1,1)8F(2) -'E(I,2)®F(1) !

CALL UVEC! ERF2,FRF2V )

ERF3(1) = FI2I4ERF2{3) ~ FUI)SERF2(2) !
ERF3(2) = ~F{1}%ERF2(3) + F{3I)®ERF2(]}
ERFI{3) = F{1)I®ERF2(2) = F{2)1*ERF2(])

CALL UVEC{ ERF3,ERF3IM )

C FIND THE X,¥,2 COFPONENTS OF THE DIFFRACTED FIELD s

ED(1) = ED2*ERF2(1) + EDITERF3I(1)
ED(2) = ED2*ERF2(2) + ED3ISERF3{(2)
ED{3) = ED2#ERF2(3) + ED3ISERF3())

C RELATE THE PHASE CF THE DIFFRACTED FIELD TO THE SOURCE ¢

12

14

D0 12 J = 1,3

RD{J) = RPEIY - SLJ) -
DELTAR = - DOT(F,RO)

PHASE = CEXP( CMPLX( O.,~TPI®DELTAR } )

DO 14 J = 1,3

ED(J) = ED(J) * PHASE

RETURN

END .
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C GECMETRICAL-OPTICS PROBLEM
[4

€ SUBROUTINES REQUIRED 5'SYREF.UVEC.REF-DOYA.NAGPN.FTDH?
REAL PA(643)4PBI6.,3)4S(3).F(3),AA(4),POLI3)ARR(4)PTN{ 361 )
COVPMON / CONSTS /7 PleTP1ePI2.,PI&4.RTD,DTR

COVMMCN / MAINL / ARR
COWNMON 7/ STREF) / PAJPB.NR
CONMMON / SDURCE / S,POL
CONMON 7 PTPRTL 7/ 10.3M.I0.08N
COMPLEX ED+ERIETLEREF(I)
Pl = 3.1415926
TPl = 2, *» P
DTR = Pl 7/ 180,
RTD = 180. 7/ PI
C LOCATE THE EMOPOINTS OF THE EDGE :

¥ = 2.5 .

NR,= 1

PA(1.1) = -v
PA{1.,2) = 0.
Pai1e3) = O. .
PEB(1.,1) = w
PB(1.,2) = Q.
PB{1+3) = 0O,

ICNT =

2000 CONTINUE
A = ARR( TCNT )
€ LOCATE THE SCURCE :
S(1) = Q.
${2) = a
$(3) = 0.

WRITE(6,100) { PACL+1)e121.3 Dol PBIL.1)elnte3 )of S(I)elml,d )
100 FORMAT (v, ses GEOMETRICAL OPTICS PROBLEM sise,

2 277.% @ ENDPOINTS OF THE EDGE : ¢,
z/.zox;iETsf1./.20:.3&15.1.
3 //+% & SOURCE PCINT : ¢,3€185.7 )

€ SPECIFY THE REGIONS WHERE THE OIRECT FIELD IS SCRE!NED l

PSIO = ATANL w / A )
ALl = P1 - PSIQ
SET UP THE REFLECTED FIELD SUBROUTINE ¢

N

CALCULATE THE PATTERN @

N NN NaN,)

tAD = O
1000 CONTINUE
PHI = IAD ¢ DTR
C FIND THE DIRECY FIELD :
€D = ( -1.,0. )
IFt PHI .GTe ALL ) ED = { Oao0. )
FL1) = SINC PHT )
F(2) = COS{ PH] )
Ft3) = o,
€ FIND 'THE REFLECTED FIELD @
"CALL REF( F,EREF.1 ) \
ER = EREFT3)
C FIND TAL TOTAL FIELD :
ET = EO ¢ ER
TPt x Tah & 1

CALL MAGPH( ET.PTN{ IPL ) , PSE )
IAD = (AD + 2
IF( JAD «LT. 181 ) GO TO 1000

"C WRITE THE PATTERN @

100 = 0

CALL PTPRT( PIN.IDO )

ICNT = ICNT ¢ }

IF{ ICNT .LE. 4 ) GO TO 2000
sSToP

END

BLOCK DATA

Cavugn 7 PTPRTL 7 [0.1M,10,08N
DAYTA IC0.IMJIDDEBN / 0.180,2,0. 7/
COMMON 7/ SOURCE 7/ S,POL
DIMEASION S(3),.POL(3)

DATA POL / Oes0eolas /

COMMGN /7 MAINI / ARR

REAL ARR(4)

DATA ARR / +28:eSe06ee?S /

END
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TwO —~ DIMENSIONAL GET PROGRAM e
COVMPLEX ED+ERLET.EDIFFLIL3).EOIFF2(3),ECIF1.EDIF2
COMPLEX €CIFFA(3).EDIFA,EREF(3)

|
INTEGER 1AMO(25).1AMM(25), [AMD(25)

COMMON / MAIN2 7/ 1AMD.JAMM, ]AMD, INOYS

+EDIFF3(3).EDIF3

B on 201t
201 NeI)Y =

I = 14MNE

2.

-waA(

wRITE(6.102)

102
DO 2¢O

FORMAT(//,*
{1 =

REAL AQR(25) PAL6+3),PE(6:43):P1{6431.P2(6:3)eP3(6:3)1sN(6)NPVALS)

REAL PT2{
REML PTN(

361 )
361

PS2¢( 361 )
JePS1(361).PT3(361).PSI(361)+HARR(10)

CQVMEN /7 MAINL / WoARR, WA PNORMM IHIV s TLOM, ISRCEM, HARR » [ M
INTEGER IHIM(25).ILCM&2S)
REAL FU3).D{8)15(3),ADEG(B)POL(3)PNORNK({2S}
CO¥MMON / PTPART1 /s TANGC, IANGM, IANGO.DEN
COWMON 7 STREFL / PAJPB,.NR
COMMON / STED4 7/ M.NE
CAvMCn 7/ STEOL 72 PLl.P2,P3
COMMCON /7 SOURCE / S+POL
COMMCN / CONSTS 7/ P1.TPL.PI2,P14.RTO,DTR
Pl = 3.1415926
TR = 2., ¢ P]
P12 = P1 7 2.
DYR = 9] / 18Q.
RTO = 180. 7 Pi
Pla = Pl / &,
ws=sw/ 2. R
€ LOCATE THE REFLECTING PLANE ' N
Pa(l,1) = Oa
PA{1.2) = =W
h PA{143) = 04
PBI141) = O
- PU(1.2) = s
PB(1.3) = 0. {
NR = ) h
H = MARR(1)}
INVM = | ’
, WRITE(6+100) (PA{14J)sJd=142)e(PBllsJd)adxls2)”
I 100 FQARANMAT( 41441 sevens THE FLAT PLATE esessar,
~ 1 /7/4* *e$LOCATION OF REFLECTING PLANE®,
&7+* SSTART POINT I *,2E1S5e7¢/¢* SEND PCINT : ".,281%.7 )
€ LOCATE THE DIFFRACYING EDGES ¢
NE = 2
H = M/ 2,
P1{1.1) = O.
P1(1.2) = ~-w *
P1(1.,3) = -H ¢
, P2(1,1}) = O,
P2(1,2) = -w
P2(1,3) = H
; P3(1,1) = O -
P3{142) = ~wW+la
P3(1,3) = ~n B .
PL(2,1) = O. Ty
P1(2.,2) = W t , ,
<« PlL2,3) = H v
P2(2,1) = 0. .
R2(2.2) = -~
P2(243) =~H
P3(241) » 0o
' P3(2:2) = W - 1o
I P3(2+3) = H

200
13

108 FDRMAT(®* SWEDGE ¥ *,11,8X,*ANGLE : *,F5,.0," OEGREES'.I.'."OIOQ-

1)

LWNE

7 1

80.

SOCWEDGE DATA')

WRITE(6,105) T4wALL)e(PL(1eJ)eI=1:3),(P2(L0aJ)eIzx143)e(PI(LeJ)odm],

L?START PCINT © *4,3E15.7,
I 7.0 & END POINT 3
2 /4t REF POINT @
ISRCE = 1
2000 S{1) = ARR{ ISRCE )

C FIND THE REGIONS WHERE THE VARIOUS FIELDS ARE PRESENT @
) 7 Sty )

Al = ATANI

A2 = ATAN(
C DIRECT

AD] = Pl -

. AD2 = PI »

C REFLECTED

ARL = Al

AR2 = 2, *
C DIFFRACTED

AD11 = P12
ADLIZ = PI2
AD21 = 3.%
AD22 = 3.

WRITE(6410
104 FORMAT('O*
17774
2/,
ADEGIL) =
ADEG(2)
ADEG(3}
ADEG(4)
ADEGS)
ADEG(6)
ADEGI(7)
ADEG(8)
WRITE(6.60

oW 8o owou

600 FORMAT('® *4//,* » LIMITING ANGLES : .
27+, & DIRECT P "+2E15.7.°" DEGREES®.
1/+* ¢ REFLECTION ¢ *,2E15.7,* DEGREES®.

3/
as,0 ®

caLL

CALL

CALL

caLL

C ZERO THE
DO 190 4 =
PYN(J)
PSL(J)
PT2(J)
PS2C4)
PT3{J)
PS34}

STREF
STEDG

0
[+]
[:4

HON "R

i9¢0

{ w -
(W +5(2) }y 7 §41)

Al
A2

Pl

s(2)

- A2

+ wA{1)sDTR

P12
P12

4) (S(J)ed=1e3),(POLIS)eIxl,e3)

AD1L
AD2
ARl
AR2
ADI11
AD12
AD21
AD22
0) ¢

STDFLD
FRESIN'
PATTERN YECTORS :

»

L
’
-
-
-
-
*

wa{

¢ SCURCE POINT
* POLARIZATION

RTO
RID
RTD
RTD
RTD
RTO
RTD
RTD

2)%0TR

P eL3ELS5.Te"*

‘+3F5.0 )

ADEG( J),J=1,8 )

* DIFFRACTION

12361

[

O
Os

LANGO = 1AMO(
IANGM = JTAMM{
TANGD = JAMD(

INM
INM
TN

*¢2E157.” DEGREES®.

v 2E1S.7,*

1

{
*+3E1S5.7,
*+3E1S.7 )

|
{
b

c]
"o
»
~
&
®
g
<
o
0
®
@O

)

WAVELENGTHS® o

DEGREES*)
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TANG = 1 ANGO
{000 PHI = OTA =
F{1) = COSt
FE2) = SIN(
F(3) = 0,
C FIND THE DIRECTY FIELOD : <
ED = { =1lse0. )
IF( ( PHI +GT« ADI ) .AND.
C FIND THE REFLECTED FIELD @
CALL REF{ F,EREF,1 )
ER = EREF( 3 )
C FIND THE DIFFRACTED FIELD
EDIFt = { 0e,0. )
IFU ¢ PHI .GTa AD11 ) <ANDe.
CALL DIFEDG! F,1.EDIFF1 )
EDIFL = EDIFFLI(]) .
1002 CONTINUE -
EDIF2 = ( OesQ. )
IFC { PHI .GTe AD21 ) .AND.
CALL DIFENG( F,2,EDIFF2 )
EOIF2 = EDIFF2(3)
1003 CONTINUE .
ET = €ED + ER + EDIF1 + EDIF2
1PL = JANG ¢+ 1
CALL MAGPH( ET JPTINIIPL).PSI{IPL)
IANG x TANG + [ANGD o

{ANG
PHI )
AHL )

{ PH] «LTs AD2 } ) EO = ( Oes0.o

{ Pl +LTe ADI2 3 ) GO YO 1002

{ PHI +LTa AD22 }) ) GO T0 1003

IF{ UANG +LE. IANGM ) GO TO 1000
CBN = 0.
IF{ INOYS +EQ. 0 ) GO TD 2010

PNCRM & PNQORWM(
IHI = FrIMC INM )
ILO = JLCM( TNM )
C FIND THE NORMALIZATIQON FACTOR @
Prax ‘= PINL 1LOD + 1 )
IPL = ILC + 1 ¢ 1ANGD
3000 IF( PTN( IPL ) «GTa PMAX ) PMAX = PTN{ [PL ) +
IPL = IPL ¢ 1ANGD
1F( IPL «LEs LWl ) GO TO 3000 .
C SPECIFY THE MAXIMUM VALUE OF THE 08 PATTERN,:
OBN = PNCRM « PMAX
WRITE(G6.110) PNORMJILO+1H] PMAX,DBN
110 FORMAT(///7/7.% #0ss NDRNQLIZATION OATA ¢,
177+ &8 NOQAMED TO A MAXIMUM OF *,E1%5.7,* 08 ¢,
2/4° BETWEEN *+I34¢ DEGREES AND *,13,¢ DEGREES °,
& //74% & ACTUAL MAXIMUM ¢ ,E15,T7,° DB*,
S /7. ® NORMALIZATION FACTOR DBN ¢ ,E1%,7¢"
2010 CONTINUE
100 = o
0V = 1
WRITEL6,108) . .
108 FORMAT(//," ® TOTAL FIELDS */)
CALL PTPRY({ PTN.IDO } -
INWP = INM ¢ 1}

ISRCE = ISRCE + 1 .
IF( ISRCE o1.E. ISRCEM ) GO TQ 2600

8030 S'& »
€N

INM )

o8 ¢}

)

*

.

BLOCK DATA

INTEGER  10(25),IM(25).1D(2%)

COMMON ./ MAIN2 / [0.IM.10,INOYS

REAL ARR(25).wA(6).PNORNM{25) , HARR{10) ¢
REAL S${3).POLL3) ,

INTEGER IHIM(25),[LOM(2%) . .

COMMON / MAINY 7/ WoARR s WA, PNORMM o THIN, ILOM, JSRCEM, MARR o T HM
REAL M L AN,K

COMNMON / SGURCE / S.POL

,C SPECIFY THE PLATE wiDTH @

DATA W 7/ 0,8 7/
C SPECIFY TME SOURCE POINT : -
OATA ISRCEM 7 3 7
DATA ARR / +B8.1447641.752 / N
DATA S /7 04404404 7/ N
¢ SPECIFY THE WEDGE ANGLES N DEGREES 3
DATA WA / lestoslosle /
C SPECIFY THE SQUIICE PALARIZATION 3
DATA PCL 7/ DeyOaqle /
c 'SPECIFY THE PATTFHN CALCULATION PARAMETERS 3
OATA 1O 7 250 / « ’
DATA Iw 7 2543180 / .
DAYA [D 7 25%1 7/
C IF INOYS = 0 « FTHEN THE COMPUTED PATTERNS ARE NOT NORMALIZED .
OATA INOYS 7/ O 7/
C SPECIFY THE PATTERN NORMALIZATION DATA @
DATA PNORMM / -l 4,6 /
DATA [LC™ / 25%10 / .
DATA IniN 7 25420 /
DATA Inm / 1t 7/ e \
DATA HARR /7 1,6 7
C SPECIFY GALSSIAN CUADRATURE DATA FOR THE FRESNEL lntecaAL EVALUATION
DIMENSION B(&).Bw{E)
CO¥MCN 7/ QUAD 7 AN,B,.NG
DATA "G 7 & 7
s DATA B 7/ +1713248923,.3€07€15730.,4679)1131934%,
i ed673139345,43807¢1573001713244923 7
DATA B / ~¢73240695142,~,56612093864,-,23€6191860,
H 2 2346191060,.0612093868,,932469%142 / -
€ SPECIFY THE FHESNEL INTEGRAL CCONSTANTS @ &
CONPLEX FS(25) ¢
REAL 2(26)
COMNEN 7 FRFS) /7 2.FS
DATA FS / (0ae0ale ¢
Cl  +52PBG22E+00," «7139727E400),1
Cl  <ABEZSOSL+00, «3434165F¢00) ¢
Cl .%0rEAL1TE+QO, «B28Q401E+00) 1
[ «49561 76E+00 387970QE+00) .
Ct .S031SBSE 00

«T7S8924E+00,
»3210552F+00,
«64CBOSAE«00,
«3JaclaosE«cq.,
*«G0S7197E+0Q
«A042SL4E+ 00,

.l]825805000).

Cl o «4775837E400, «A0NI021E+00) 4l 58B125TE+00,

€l  5019199E4+00, «SRAPA2BE+00) o »A179202E400, «50173

LCl  «a984219E+00, ¥ 44205166E+00)e( «57T12C0E+00, = 4985¢03E+00) .
Cl «S013230E¢00. «STAGSTSE+00) . 4270349€+00, «5017217€+00),
Cl +492€6BOE+CO, «A2EBTBTESO0) ¢( +S654134E+00, FI89490€+00),

¢ «S009B1GE+400.

,/
»5009183E+00),
[} «849913806E+00,

-

«S6T78215E+00) 4
1-035060&5000) /

«433€€S9E+Q0

DATYA 2 /7 T -

€ Q.0

c .zooooootsol.

[ 2 ?H2PA2IF 40N,
n L Sanalult +0d.

@ + +4000COOE+OL,

[ cAATZ136E4ON .

c «AARQBITIELOL .

«1000000E¢01 s
«2236068£¢01,
+30000bBOF+01,
v IDUHLL/L¢0 1
+4123106E401,
“AGB2STEE+O1 .
»5080000€+01

«1414213E+01,
+2849490€4+01,
«J1&2277E201 .,
s 3781657F+01,
«A242840E+ Q1
«4690415E+01,
4

«1732081€+01., S
«2645751E&4+01,
+31316625F401
«387298IE+01 .
+43888939E401
«4795832E401.




COMPLEX ED,ER,EV,EDIFF1{3),EDIFF2(3),EDTF1, EDIFE ,EOIFF3(3),EOIF3
COMPLEX EDIFF4{31,€E0IF4,EREF(3]
INTEGER [AMG(25),1AMU(25),1AMD(25)
COMMON 7 PATN? 7 TAND, LAMN, TAMD, INOYS
REAL ARR(25),PAL6,3) sPHIG ) oPLUG,3),P2(6,3)4P3(6,3),N(6) NP MALS)
REAL PT2( 34! } , PS2{ 361 )}
M REAL PTIN[ 361 },PS1(361),PT3(361),PS3(361),HARR(]10)
COPFMON / MAINL / WeARR ¢ WAy PNORMM, IHIM, ILOM, ISRCEM, HARR, THM
INTEGER [MIM(25), 1LOM{25)
REAL FI3),C18),5(3),ACEG(8),POL{3),PNORMMI2S)
COFMON /7 PTPRTL / 1ANGO, IANGM, IANGD,DBN
COMMON / STAREFL /7 PA,PB,NR
COmMMQN / STED4 / NGNE
COMNCN / STEDY 7 P1,P2,P3
| COPMON / SOURCE / S,PCL ¢
| COMMON / CONSTS / PI,TP1,P12,P14,RT0,0TR
Pl = 3.141592¢ -
' TPl = 2. » PpI
P12 =PI 7 2.
DTR & PI1 / 180.
RTO = 180. 7/ P{
Plé = Pl / 4.
Wa=w/ 2. ¢
C LGCATE THE REFLECTING PLANE =,
PAllel} = Q.

PAIL1,2) = -

PALl1,3) = O,

PBILI,1) = O, !
. PB1,2) = W '
' PB{1,3) = O.

NR = |

H = HARR(1)

INM = )

B OWRITE(6,100) (PA(L,J) 421,20, (PBI1sd),del,2)
1C0 FOAMAT(81¢, sx98es THE FLAT PLATE ssesssst,
1 7//+* *s«LQCATION OF REFLECTING PLANE®,

2/4° ®STARY POINT 3 *,2E15.79/+° SEND  POINT 1 *,2€15.Y )
C LQCATE THE DIFFRACTING EDGES @

NE = &

H =W/ 2,

Plil1,1) = O, ‘

Pril,2) = =W

P1(1,3) = =KW , .

P2(l,1} = 0. .

P2(1,2) = -u

P2l14,31 = H

P3(l,1) = 0.

P3{1,2) = -uel.

P3(1,3) = -H

PI(2,1) = O,

Pl{2,2) = %

P112.,3) = H

PZ(Z.H = 0,

P2(2,2) = W !

U

A

*
3
Ny

- - 1
7 d
=)
.
: oo
. o
o P212,3) ==k -
P3(2,1) = Q. o
P3(2,2) =W - 1, 5
PI(2,3) = M )
P1(3,1) = 0. ' - o)
P1(3,2) = »W : } )) o,
P1(3,3) = W . J a9
P213,1) = 0.
P2(3,2) = & . 0
P2(3,3) = H o®
P3(3,1) = 0. ~ o]
P3(3,2) .= -W . B
P3(3,3) = -1. + H ped
PrI4,1) = 0, H
4,2) = W . . ke
Pll4,3) = -H . 8
P2(4,1} = O, -
P2(4,2) = -W - .
P2(4s3) = ~H o
P3(4,1) = O, ' :
P3(4,2) = W N Y
P3(4,3) = =H ¢ 1, ]
00 201 I = 1,AE : . ®
201 NUI) = 2, -wAlI) / 180. b o
WRITE{6,102} o
1C2 FORMAT(//,* #seWEDGE DATA®) ! o
DO 200 I = 1,NE ‘ =]
200 WRITE(6,105) [oHl(l)r(Pl(loJ)vJ'l'3lo|P?(IQJ,UJ'103)|‘P3(loleJ-lo
£}
1053 FORMAT(* WEDGE # *,T1,4X,'ANGLE 2 *,FS5.0,* DEGREES',/,* #7,10X, E
R USTART PCINT : 9,3E15.7, o -
1 /74t = END  POINT 1 *,3€15.7, "
27,0 % REF  POINT & *,3ELS.7 1 <
ISRCE = 1 - 2
20C0 S(1) = ARR( ISRCE ) 3
C FIND THE REGIONS RNERE THE VARIOUS FIELDS ARE PRESENT 3 (=%
Al = ATANL ( W = S[2) ) /7 St1) ) o
A2 = ATAN( ¢ E;o S€2) ) 77s1) ) =
C DIRECY E
ADL = PI - Al
ADZ2 = PL » A2 | ol
C REFLECTED ]
AR = Al o
ARZ = 2. % PL ~ A2 - ‘"
C OIFFRACTED - )
ADIL = P12 qg
AD12 = PI2 ¢ WA{L1)*DTR ,
AD21 = 3. P2 - WAL2)#DIR e g

AD22 = 3.»P[2 -
WRITE(E6,104)
104 FORMAT(*J*,

1503),J%1,3),(P0LEJ) =1, ) B

1777 & SOURCE POINT 3 *,3E15,7,% WAVELENGTHS®, f
2/, * POLARIZATION &t 9,3F5,0 ) . b
ADEGEL) = ADL & RTYD
>
—- . —
~
L L2




-

ADEG(2) = AD2 + RTD
ADEG(3) = ARl- * RTD
ADEGI4) = AR2 ® RID . \\._’\
ADEG(S) = AD11 & RTD
ADEGUA) = ADL2 & ATD
ACEG{(T) = AD21 » RTD .
. ADEG(8) = AD22 ® RTD

WRITE(6,600) ( ADEG(J) J=1,8 )
6CO FORMAT(* *4//,* & LIMITING ANGLES ¢ ¢
2/.% * DIRECY t ',2E15.7,' DEGREES!*,
L/+* ® REFLECTION t *,2E15.7+* DEGREES',
3/* ® DIFFRACTION :*,2E15.7,* DEGREES?,
YL 1%, 2E15.7,* DEGREES®) '
CALL STREF
CALL STEDG
CALL STODFLD i
CALL FRESIN ¢
€ ZERC THE PATTERN VECTORS 1
00 190 J = 1,381
PIN(J) = @,
PS1(J) = Q.
PT2(J) = @,
PS2tJ) = 0,
PT3(J) = 0.
190 PS3(J) »_0. =~
TANGO = TAMO( INM )
TANGM « [AMM{ INM ) -
g EANGD = 1AMD( INM )
IANG .= TANGO .
1€CO PHI = DTR * [ANG 4 -
F{1) = COS( Pr1 ) -
F(2) = SIN( PE] ) .
Ft3) = 0,
€ FIND THE DIRECT FIELD ¢’ ~
i ED = { -1.90a ) | -
IF{ ( PHI .GT. ADL ) 4AND. { PHI oLT. AD2 ) ) ED = { 0.,0. ¥
C FIND THE REFLECTED FIELD 1t -
CALL REF{ F,EREF,1 1} '
ER = EREF({ 3 )
C FIND THE DIFFRACTED FIELD 2 R "
EDIFL = { 0..C. ) i /
TFL ( M1 .GT. ADI1 ) .AND. { PHI LT, ADLIZ ) ) GO TO 1002
CALL DIFEDG( F,1,E0IFF1 } . N
TEDIFL = EDIFF1(3)
1002 CONTINUE . y
EDIF2 = { Oe+0s 1}
IF( { PHI .GY. AD21 ) .AND. ( PHI .LT. AD22 ) ) GO TC 1003
CALL DIFEOGU Fy2+EDIFF2 ) .
EDIF2 = EDIFF2(3)
1€C3 CONTINUE
ET = ED + ER ¢ EDIF1 ¢ EOIF2
IPL = IANG ¢ 1 _
CALL MAGPH( ET ,PTNLIPL),PSI(IPL) ) -
IANG = IANG & TANGD -

o

IF{ TANG .LE. TANG¥ ) GO TQ 1000
08N = 0.
IFt INOYS .E0. O ) GO YO 2010
PNORM = PNORMM{ INM )
THI = IHIM{ [AM )
ILO = [LOM{ IAM )

€ FIND THE NORMALIZATION FACTOR 1 T
PMAX = PIN( ILC ¢ 1}
IPL = 1L0 ¢ 1 + [ANGD

30CO IF( PTNI IPL ) .GT. PFMAX ¥ PMAX = PTIN( IPL )

IPL = IPL + [ANGD - \\“—-__\
IFt IPL ,LE. IHI ) GO YO 3000
C SPECIFY THE PAXIMUM VALUE OF THE DB PATTERN 2 R -
DBN = PNCRM - PMAX
WRITE(6,11C) PNORM,ILO,IHI,PMAX,DBN
110 FORMAY(////7,¢ wess NOQRMALIZATION DATA *, R
1774 %% NORMEC TO A MAXIMUM OF *,E15.7,° D8 °,
2/ BETWEEN *,13,* DEGREES AND *,13,°* DEGREES °*, @
& /74 % ACTUAL MAXIMUM *,E1S5.7,° DB¢, - R
S /7y' & NORMALIZATION FACTOR DBN *,E15.7,* DB *)
2€10 CONTINUE . .
100 =0
101 = 1
WRITE(6,108)
108 FORMAT(//,% * TOQTAL FIELOS */)
CALL PTPRT{ PIN, 100 )
INM = INV ¢ ) .
ISRCE = ISRCE ¢ 1 °
IF( ISRCE .LE. ISRCEM ) GG TO 2000
80S0 StOP
END . . ’
< M . @ 1
\ ~

8T'V
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[ $8% I-DIMENSIONAL GTD PRCGRAM ss» <
BLOCK DATA A\ Cl  .S5013230E+C0y, «57495TSE+00),( .4270369E+00, «5012217E+00)
INTEGER XO(ZS).I"(ZS).ID(ZSI Cl  .49006B0FE¢COy . 428BT78TE400)¢( .5694136E¢00, +4909490E¢00),
CONMON / MATN2 7 10s1F,1DyINCYS Ct  .%5009819€+C0, +S478215€+400),{ .43366%9£400, .S5009183£+00},
REAL ARR(251,WAL6),PNORMM{25) yHARR(10) Cl  .4991386E+C0, +4350601E+00) / .
REAL S{3),PCL(3) OATA Z 7 s
IN1EG§R lﬂl!(25)'lLOV(ZS) C 0.0 «1C000C0E+01, +1414213€+01, «1732051E+01,
COMMON 7 MAINL 7 Mo ARR WA, PNORMM,IHIM, [LOM, ISRCER, HARR, THM c .20000005001. «2236068E401, 1;659&Qg§f01. »2645731E+01,
REAL M, LAN,K € .2B28427E+Cl, «3000000E+0ty  .316227TE+Ol,  .3316625€+01,
COPMON / SCURCE / S,PCL . C  .3464102E+C1, <3605552E¢01,  o3741657E+01,  .38T2983E+0),
C SPECIFY THE PLATE HEIGHT 3 . H C  .4000000E+01, «4123106E+01, «4262640€E+01, .4358899E+01,
DATA IHM /7 1 ¢ [ «44T2136E+01y - o4582576E+01, «4690415E¢01, .‘79581?6001'
C SPECIFY THE PLATE WIDTH @ C  .4898979E+Cl, .5000000€+01 /
C SPECIFY THE SOURCE POINT ¢ END ;
DATA ISRCBM-£ 3 /
OATA W / 0.8 7 :
DATA HARR / 1.6 /
OATA ARR / .8,1.476,1.752 / . -
OATA S / 0.40.,0. /
C SPECIFY THE WEDGE ANGLES IN DEGREES 2
OATA WA / leylevlesle / .
C SPECIFY THE SOURCE POLARIZATIDN 3 — N
DATA POL /7 0u+0esl. / . L N
C SPECIFY THE PATTERN CALCULATION PARAMETERS ¢ ' -
DATA [0 / 25%0 / .- ;

DATA {M / 25%180 7/ [
OATA 1D /7 25%1 7/

C IF INOYS = O 4 THEN THE COMPUTED PATTERNS ARE NOT NORMA{IZEOD . * . \ -
DAYA INCYS /7 O / T~ - o

€ SPECIFY THE PATTERN NORMALIZATION DATA 3 . ’ .
DATA PNORMM / -1.6 / : *
DATA ILCM / 25%10 /
DATA IHIF 7 25820 /

C SPECIFY GAUSSIAN CLADRATURE DATA FOR-THE FRESNEL INTEGRAL EVALUATION P
OIMENSION H{8),8w(8) “ -
COKKON / QUAD / BW,B,NG
OATA NG /7 & /
DATA BW / L 1713244923,.3607615730,.4679139345, h

1 24679139345, .3607615730, . 1713244923/ o ]
DATA 8 / ~.9326695142,-,6612093864,-.2386191850, -
I «23861G1860,.68120938464,,9324695142 / ! ! ! *
€ SPECIFY THE FRESNEL INTEGRAL COMSTANTS @ . -
COMPLEX FS{251) ~ -,
REAL zt2¢) ¢ +
COMMON / FRES1 / I,FS P . & ‘ - .
OATA FS /7 (044041, { oT798924E+00,  +4382589E+001), b >
Cl  .52B8922E4(0,  LTI39T27E+00)4( .3210552E400, ,S173070€+00), . .
Cl .4BB250SE+CO0. 34341656400} ,( .6408054E+00,  .4913917E+001, .
Cl  .5066417E+C0,  .6289401E+D0),{ .3803895E+400, .S3053Z09E+00) ,
S Cl .455561T6E+C0,  .3879700£+400),( .6057197E400, .4963126E+001,
Ct .S5031585E+C0, .6003628E+00)1,( .4062584E+00, .502T465E400),
€t .497S83TE+CO, .4083021E+00),( .5881257E+00, .4978563E+00),
Cl .5019199E+00, +5849428E+00),( 4179202E+00, +5017356€+00), ! @
C{  .49B4219E4C0,  .4205186E+00),( 5771200E+00, .4985603E+001, i
' >
o . o’
: v




