THE METALEXER LEXER SPECIFICATION LANGUAGE

by
Andrew Michael Casey

School of Computer Science
McGill University, Montreal

June 2009

A THESIS SUBMITTED TO THEFACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OFSCIENCE

Copyright(© 2009 Andrew Michael Casey

Abstract

Compiler toolkits make it possible to rapidly develop coraml and translators for new
programming languages. Recently, toolkit writers have $eduon supporting extensible
languages and systems that mix the syntaxes of multiplergnaging languages. How-
ever, this work has not been extended down to the lexicayaisdevel. As a result, users of
these toolkits have to rely on ad-hoc solutions when thegrekor mix syntaxes. This the-
sis presents MetaLexer, a new lexical specification langtiagt remedies this deficiency.

MetaLexer has three key features: it abstracts lexicag ¢stahsitions out of semantic ac-
tions, makes modules extensible by introducing multipleenitance, and provides cross-
platform support for a variety of programming languages@ndpiler front-end toolchains.

In addition to designing this new language, we have contgdua number of practical
tools. The most important are a pair of translators that magalexer to the popular JFlex
lexical specification language and vice versa.

We have exercised MetalLexer by using it to create lexerdhf@etreal programming lan-
guages: AspectJ (and two extensions), a large subset chbjaihd MetalLexer itself. The
new specifications are easier to read and require much lesa aode than the originals.

Résum é

Les outils de compilation moderne permettent deadopper rapidement des compilateurs
pour de nouveaux langages de programmatic@ceRment, les auteurs de ces outils ont
travaille a supporter des langages et gysés extensibles quigtangent la syntaxe de plu-
sieurs langages de programmation. Cependant, ce travailas@tée étendu au niveau de
'analyse lexicale. Le@sultat est que les utilisateurs de ces outils doivent sa filers so-
lutions improviges quand ils augmentent o@langent la syntaxe de leurs langages. Cette
these pesente MetalLexer, un nouveau langage decifigation lexical qui reradiea ce

manque.

MetalLexer a trois aspects principaux : @mare les transitions efats lexicaux des actions
semantiques, il rend les modules extensibles en introduisasyséme d’teritage multiple,

et il offre un support multi-plateforme pour une \&@ de langages de programmation et
d’outils de compilation.

En plus de la conception de ce nouveau langage, nous avol&nape un nombre d’outils
pratiques. Le plus importa@tant une pair de programmes de traduction qui traduisent de
MetaLexer au populaire JFlex et vice-versa.

Nous avons teétMetalLexer en I'utilisant pour éer des sgcifications lexicales pour trois
languages de programmations : AspectJ (et deux extensiom$rge sous-ensemble du
langage Matlab, et MetaLexer luiédme. Les nouvelles épifications sont plus lisibles et
demandent beaucoup moins de code d’action que les originale

Acknowledgements

| would like to thank my supervisor, Laurie Hendren, with@ttom this thesis would not
be what it is today. | am grateful for her feedback throughibet entire course of my
research.

| would also like to thank the McLab team, whose challengiagspg requirements in-
spired this work and gave it its first practical test. In pardar, | would like to thank
Toheed Aslam for being the first brave soul to extend a Metat_sgecification.

| would like to thank my bilingual colleagues, Maxime CheealBoisvert and Raphael
Mannadiar, who were kind enough to translate my abstragtfn¢nch.

| also owe a debt of gratitude to Todsp Ekman for his help with the JastAdd tool and to
the creators of JFlex for the inspiration their tool prowde

This work was funded by the National Science and Engine&aggarch Council (NSERC),
McGill University, and the McGill University School of Comtar Science (SOCS).

Vi

Table of Contents

Abstract i
Résune il
Acknowledgements \
Table of Contents vii
List of Figures XV
List of Tables XVii
Table of Contents XiX
1 Introduction 1

1.1 KeyFeatures. e
1.1.1 Key Feature: State Transitions.
1.1.2 Key Feature: Inheritance.
1.1.3 Key Feature: Cross-Platform Functionality. 6

1.2 Examples. e e
121 JavadoC e

1.2.2 Aspectd. e e 8

1.3 Contributions. 9
1.3.1 Reference Implementation. 10
1.3.2 JFlexTranslatar. 10
1.3.3 Lexer SpecificationforMcLab. 10
1.3.4 Lexer SpecificationforAspectd 11
1.3.5 Lexer Specification for MetaLexer. 11

1.4 Organizationof Thesis. 11

Background 13

2.1 Parsing e e e 13

2.2 LexingversusParsing. 14

2.3 Traditional LexingTools. 15

24 LexicalStates. 16

MetalLexer Syntax 17

3.1 Example. e e e e e e 17

3.2 Components e e e e 22
3.21 OptionSection. 23
3.22 RuleSection. 26

3.3 Layouts. 27
3.3.1 LocalHeader 27
3.3.2 InheritedHeader. 28
3.3.3 OptionsSection. e 28
3.34 RulesSection 29

viii

3.4 Comments e e e e e e e e 31

Metalexer Semantics 33
4.1 JFlexSemantiCs. e 33
4.2 Meta-Lexing 34
421 PairFilters. 38
4.3 Regions. e 40
4.4 Inheritance 41
4.4.1 EmbeddingOrdering, 41
442 LexicalRuleOrdering. 42
45 Conflicts. 44
46 ErrorChecking. o 45
4.6.1 Finalization. 46
46.2 HelperModules a7
A7 SCOPING. .« o v o i e e e e e e e e 47
4.8 QualifledNames. e 48
4.9 Append Components e e e 48
49.1 StartDelimiters 51
4.10 Conditional Meta-Tokens 52
4.10.1 Indentation-Based Languages. 52
Tool Execution 57
5.1 MetalLexer-to-JFlex Translator 57
5.1 Tracing. o e e e e e 58
5.2 MetalLexer-to-MetaLexer Translatar. 58

5.3 JFlex-to-MetaLexer Translator 60

5.3.1 Functionality. 60
532 EXeCution. 63
5.3.3 Limitations. 63
Language Design 65
6.1 LanguageDivision. 65
6.2 TypesofExtension. e 66
6.3 ComponentReplacement. 67
6.4 Inheritance 68
6.5 Finalization. 69
6.6 OrderandDuplication. 70
6.7 RuleOrganization e 71
6.8 Append Components 73
6.9 Meta-Pattern Restrictions. 74
6.10 Cross-Platform Support. 76
6.10.1 Action ImplementationLanguage. 76
6.10.2 Parsing Specification Language. 77
6.10.3 Lexer Specification Language. 78
Architecture 79
7.1 ToolsUsed 79
7.1.1 AntandEclipse o 79
7.1.2 JFlex e 80
7.1.3 MetaLexer. 81

7.1.4 Beaver e e e e e e e e e 81

7.1.5 JastAdd. 82
7.10.6 JUNIt . .. e e 82
7.2 MultipleBackends. e 83
7.21 Frontend. 84
7.2.2 MetaLexerBackend. L. 86
7.23 JFlexBackend. 86
Case Studies 101
8.1 McLab. e 101
8.1.1 Improvements. e e 102
8.1.2 Difficulties 104
8.2 abc. 108
8.2.1 Improvements. e 109
8.2.2 Difficulties 112
8.3 MetaLexer. 115
8.3.1 Improvements. e e e 115
8.3.2 Difficulties 116
8.4 Performance 117
841 TestingSetup e 117
842 CodeSize 118
8.4.3 CompilationTime 121
8.44 ExecutionTime 122
845 Summary. e e e 125

Xi

9 Related Work 129

9.1 Demand. 129
9.2 ApproachesusingLRParsers 130
9.3 Approaches using Other Classesof Parsers 131
9.3.1 Antlr 132
9.3.2 Rats! 132
9.3.3 GLR . . . e 134
9.3.4 metafront. 134
9.4 Approaches specific to Domain-Specific Languages. 135
10 Conclusions 137
11 Future Work 139
11.1 Optimizations. e 139
11.1.1 CompilationTime. i e e 139
11.1.2 CodeGeneration e 140
11.1.3 ExecutionTime 141
11.2 Analysis. e e e 141
11.3 Knownlssues e 142
11.31 Frontend. 142
11.3.2 JFlexBackend. 142
11.4 Qualifled Names. e 143
11.5 OtherPlatforms 144
11.6 JFlexPorting. e e e e 144
11.7 Comparison with Lexerless Techniques. 145

Xii

11.8 Parser Specification Language. 0. 145

A Acronyms 147
B Developer Manual 151
B.1 Organization e e 151
B.1.1 metalexer/ 151
B.1.2 metalexer/src/ & metalexerftest/. 152
B.1.3 metalexer/src/frontend/. o L 152
B.1.4 metalexer/src/frontend/metalexer 153
B.1.5 metalexer/src/frontend/lexer. 153
B.1.6 metalexer/src/backend-metalexer/. 154
B.1.7 metalexer/src/backend-jflex/. 154
B.1.8 metalexerftest/frontend/. 155
B.1.9 metalexer/test/frontend/metalexer/ 156
B.1.10 metalexer/test/backend-metalexer/ 157
B.1.11 metalexer/test/backend-jflex/. 157
B.1.12 metalexer/test/backend-jflex/metalexer/jflex/. 158
B.2 JFlex. e 158
B.3 Configurations 159
B.4 Building MetaLexer. 159
B.4.1 CommandlLine 159
B.4.2 Eclipse. e 160
C Language Specification 161

Xiii

C.1 Component. e e e e e 162

C.2 Layout. e e e e 181
C.3 Shared e 191
Bibliography 201

Xiv

1.1
1.2
1.3
1.4
1.5
1.6

2.1

4.1
4.2
4.3

5.1
5.2
5.3

6.1
6.2

List of Figures

Layout and ComponentExample. 3
Shared ComponentExample. 4
Extensibility Example L 5
Modularity Example e 5
Javadoc Example 8
AspectIExample. 9
Expression Tree Example. 14
JFlex/MetaLexer Comparison oo 35
Pair FilterExample. o 40
Rule TypesExample. 43
MetaLexer-to-JFlex Translator 58
MetaLexer-to-MetaLexer Translatar. 59
JFlex-to-MetaLexer Translator 60
Language Division Exampleo oL, 66
Insertion Points. 72

XV

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Multiple Backend Organization. 84

Generated Lexer Organization. v 86
Component Translation Example. 88
Colliding Generated Names Example. 89

e-NFAExample. 97
Reverse Match Example — Lexical StatBlFA 98

Reverse Match fExample — Reverse Meta-PagtddrA 98

State Renumbering Example. oo oL, 99
Compilation Times. 122
Execution TimesforNatlab. 123
Execution Times forabc—aspectj. 124
Execution Timesforabc—eaj 125
Execution Timesforabc—tm. 126
Execution Times for MetaLexer—Component 127

Execution Times for MetaLexer—Layout 127

XVi

4.1

8.1
8.2
8.3
8.4
8.5
8.6
8.7

List of Tables

Append Component Interactions. 49
Testing Environment. L 117
Code SizeforNatlab. 118
Code Sizeforabc—aspectj. oL 119
Code Sizeforabc—eaj. e 120
Code Sizeforabc—tm 120
Code Size for MetaLexer — Component. 120
Code Size for MetaLexer—Layout. 121

Xvii

XVili

List of Listings

1.1 JFlex State Transitions 2
3.1 Syntax Example — A PropertiesFile. 18
3.2 Syntax Example—key.mlc 18
3.3 Syntax Example—value.imic 19
3.4 Syntax Example—macros.mic. 20
3.5 Syntax Example —properties.mll. oo 21
4.1 Pseudo-Code forthe Main JFlexLoop. 34
4.2 MetaLexerExample. e 37
4.3 PairFilterExample. 39
4.4 Syntax Example — Regions —LanguageCode 41
4.5 Syntax Example —Regions—Layout 41
4.6 Rule Order Example — Inheriting Component. 44
4.7 Rule Order Example — Inherited Component. 44
4.8 Rule Order Example —Merged Component. 45
4.9 Append Component Example — String Literal. 50
4.10 Start Delimiter Example—Java. 51
4.11 Start Delimiter Example —Java Comment 52

XiX

4.12 Conditional Meta-Token Pattern Example. 53

4.13 Python IndentationExample 53
4.14 Indentation-Based Languagesin MetaLexer. 54
5.1 JFlex-to-MetalLexer Example — Original JFlex 61

5.2 JFlex-to-MetaLexer Example — Generated Layout. 61

5.3 JFlex-to-MetaLexer Example — Generated Component. 62

7.1 Pseudo-Code foran ActionMethod 90
7.2 Pseudo-CodeforanAction. 91
7.3 Meta-Lexer Lexical States Example — MetalLexer 93

7.4 Meta-Lexer Lexical States Example — Simulated JFlex 94

8.1 Example —Natlab MatrixSyntax. 105
8.2 Extract — Multiple Meta-Tokens. 107
8.3 Extract—ErroratEnd-of-File. 108
8.4 Extract — Embeddings from aspectp.mll 110
8.5 Extract— Adding New Global Keywords. 111
8.6 Extract— ReplacingComponents 111
8.7 Example —Unterminated Declare 113
8.8 Extract — Duplicate Pointcut Component 114

XX

Chapter 1

Introduction

Much work has been done in the area of extensible compileastAdd EHO7H is an
extensible attribute grammar framework that can be useditd tompilers with extensible
abstract syntax trees (ASTSs), transformations, and aeslylhe Polyglot Parser Generator
[NCMO3] is a extensible parser specification language (PSL). Wniately, little work has
been done to make lexical specification languages (LSLs)eslgnextensible. As a result,
extensible compilers are forced to rely on ad-hoc solutfontexing (e.g. HAMCO04).

To remedy this deficiency, we have created a new LSL, Metal_ é&xat is more modular
and extensible than traditional LSLs.

This chapter describes the motivation behind MetaLexe€atmon, lists contributions, and
outlines the subsequent chapters.
1.1 Key Features

Three key features distinguish MetaLexer from its predemes

1. Lexical state transitions are lifted out of semanticawiSectionl.1.]).

2. Modules support multiple inheritanc8dctionl.1.2).

Introduction

© 0 N O OB~ WN P

B oR e
N R O

3. The design is cross-platforrBéctionl.1.3.

1.1.1 Key Feature: State Transitions

Lexers for non-trivial languages nearly always make usexthl states to handle different
regions of the input according to different rules. The titmss between these states are
buried in the semantic actions associated with rules anthageiage- and tool-dependent.

For examplel.isting 1.1 shows a JFleklexer with three states: initial, within a class, and
within a string. Whenever an opening quotation mark is se@etker in the initial state or
within a class, the lexer transitions to the string stateteNbat the previous state must be
stored so that the lexer can return once the closing quotbdesseen.

<YYINITIAL> {

\" { yybegin(STRING_STATE); prev = YYINITIAL; }

[= other rules related to lexing in the base state * [
}
<CLASS> {

\" { yybegin(STRING_STATE); prev = CLASS; }

/= other rules related to lexing within a class */

}
<STRING_STATE> {

\" { yybegin(prev); return STRING(text); }
[= other rules that build up the string stored in text */

}
Listing 1.1 JFlex State Transitions

As in Listing 1.1, it is often the case that state transitions occur upon ghwgn particu-
lar sequence of tokens. Furthermore, transitions are stk-based, like method calls.
When a transition is triggered, the triggering lexical stateaved so that it can be restored
once a terminating sequence of tokens is observed.

In other words, lexer transitions can often be describedi®srof the form

When in state £ transition to state Supon seeing token(s) Ttransition back upon seeing
token(s) 7.

Lhttp://iflex.de/

1.1. Key Features

For example,

When in state BASE, transition to state COMMENT upon seeirg(skSTARTCOMMENT;
transition back upon seeing token(s) ENDDMMENT.

MetalLexer makes these rules explicit by associating “nekans” with rules and then us-
ing a “meta-lexer” to match patterns of meta-tokens andjéigorresponding transitions.
This organization gives rise to two different types of ma@&dutomponentandlayouts

A componentontains rules for matching tokens. It corresponds to desiegical state in
a traditional lexer.

A layoutcontains rules for transitioning amongst components byhiiag meta-tokens.

For exampleFigure 1.1 shows a possible organization of a Matlab lexer. A (bluedlay
— Matlab — refers to three (green) componentBase String, andComment Each of the
components describes a lexical state and the layout desdhkir interaction.

Figure 1.1 Layout (blue) and components (green) for Matlab

This division of specifications into components and layquitsmotes modularity because
components are more reusable than layouts. For example, lavagyuages have the same
rules for lexing strings, numbers, comments etc. Factasingthe more reusable compo-
nents from the more language-specific layouts reduces iogupl

For exampleFigure 1.2 extendgrigure 1.1to show how a second layout-ang X— might
share some components in common with the original layoMiatlab. In particular, the

Introduction

other lexer might treat strings the same way, but commeffeseintly. If so, it could reuse
the same string component, but create its own comment coempon

Matlab

Comment

Figure 1.2 Two layouts sharing components

We have found that this sharing of modules is very useful acfice. Components, in
particular, are very reusable. For example, the layouts efaldexer languages — com-
ponent and layout — use many of the same compon&astion8.3.1). Additionally, the
components of the abc language inherit many of the samermpgonentsgectiors.2).

1.1.2 Key Feature: Inheritance

MetalLexer uses multiple inheritance to achieve extensitahd modularity.

For exampleFigure 1.3 shows how inheritance can be used to extend an existing lexer
Given an existing Matlab lexer, one might wish to extend thetax of strings, perhaps
allowing new escape sequences. One could do this by ingetiie String component in

a newString++ component which adds the new escape sequences. Then odentaarit

the Matlab layout in a newMatlab++ layout which replaces all referencesString with
references t&tring++. Note that this process would leave the original Matlab €ke.
layout and components) intact.

On the other handsigure 1.4 shows how inheritance can improve modularity by factoring
out useful “helper” fragments into separate layouts/congmbs. In this case, since the

1.1. Key Features

Matlab g Matlab++

Figure 1.3 Using inheritance to extend the syntax of Matlab strings

component8aseandClassshare rules in common (keywords, and comment syntax), these
rules have been factored out into “helper” components (shwith dashed borders) that
are then inherited by both true components. The same matyutan be achieved with

layouts.
Comment

Figure 1.4 Using inheritance to improve modularity

The inheritance mechanism in MetalLexer is an extension®€axtual inclusion. Conse-
guently, anything that can be achieved using inheritarexe atso be achieved by judicious

duplication and merging of existing files. In particularnr@mon ancestors are not shared,
but duplicated.

Both layouts and components support multiple inheritance.

Introduction

1.1.3 Key Feature: Cross-Platform Functionality

In designing and implementing MetalLexer, great care wasrtadot to tie it to a specific
language or toolset. This effort was threefold (detailSattiont.10).

First, the syntax and features of MetaLexer are not closedito those of an existing LSL.
For example, rather than providing all of the same diresta® JFlex, MetaLexer provides
an%opt i on directive that passes directives through to the underligrgr. It also avoids
LSL-specific quirks and advanced features.

Second, the features of MetalLexer are not tied to those okistireg PSL. For example,
it was not assumed that the meta-lexer could peak into thentskream, which is very
PSL-specific.

Third, the AIL of MetaLexer is not fixed. In fact, it should begsible to use nearly any
procedural or object-oriented language.

1.2 Examples

Mixed language programming is not a new concept. Since tHg @ays of C, program-
mers have been inserting blocks of assembly ww&mregions KR78]. Around the same
time, C was being embedded in Lex specificatidrSs{5. However, mixed language pro-
gramming is growing in popularity, especially in the web @lepment community. HTML
documents often contain embedded JavaScripinguages like ASPand JSP go a step
further and mix general purpose languages with HTML.

In all of the examples above, the paired languages exispemtently and are combined
after-the-fact. However, this need not be the case. We anvédéw more homogeneous
languages through the lens of mixed language programmanvgddé, for example, does

not exist independently of Java. It is, however, a sepasaiguage with its own lexing and

2http://www.w3.0rg/TR/html4/interact/scripts.html
3http://www.asp.net/
“http://java.sun.com/products/jsp/
Shttp://java.sun.com/j2se/javadoc/

1.2. Examples

parsing rules. Similarly, the aspect language of Aspe¢tH "01] has no independent
implementation, but it can be viewed as its own languageedhixith the Java language in
AspectJ.

In the extreme, we can view data-type literals as their omguages, mixed with the
more general language that contains them. For example *Ruiyains regular expression
literals. Clearly, they are lexed and parsed differentlyftbe rest of Ruby. Similarly, most
languages contain string literals. String literals mayehesry simple lexing and parsing
rules, but that does not mean that they cannot be viewed m®wre language.

MetaLexer is particularly well-suited to dealing with mtkeanguage lexing. It allows the

lexers to be developed separately and then combined. Tlissspecifications both easier
to understand and more modular. For example, if the C progiiamlanguage is to be used
in two different mixed language environments, then the sarodules can be used in both
cases. More detailed examples are described below abbapters.

1.2.1 Javadoc

Though Javadoc does not exist independently of Java, iepess its own syntax rules and
even its own compiler (the eponymous javadoc). Indeed, an@magine writing separate,

standalone lexers for Javadoc and Java. In some ways, this @mplest approach — the
Java lexer allows the Java parser to consider Javadoc bbdpekgie and vice versa.

For exampleFigure 1.5shows a typical combination of Java and Javadoc. A Java éempi
can ignore the green regions and a Javadoc compiler careigi®blue regions.

Of course, the regions are not perfectly separate. If theg vieere would be little incentive
to put them in the same file. Rather, Javadoc tags referenaellEanents and the two must
be kept synchronized. Hence, while we desire the modulafisgparate lexers, we require
the error-checking capabilities of a unified syntax tree.thviletaLexer, exactly this is
possible.

Shttp://www.ruby-lang.org/

Introduction

g N

/**
* A sample Java application.
*/
public class HelloWorld {
/**
* This program prints "Hello World!" and exits.
* @param args Command-line arguments. Not used.
*/
public static void main(String[] args) {
System.out.println("Hello World!");

}

Figure 1.5 Java/Javadoc as mixed language programming

1.2.2 Aspectd

AspectJ is an even more interesting use case because itageoith extension and mod-
ularity. AspectJ can be regarded as a mix of three languabesaspect language, the
pointcut language, and JavadMCO04]. In MetaLexer, the three can be specified sepa-
rately and then combined with a common layout.

The aspect language is an extension of Java. It introduce&eygvords, such aaspect
pointcut before after, andaround

The pointcut language is completely separate from both $ped language and Java. It
has its own lexing rules that allow it to express a variety attgrns.

Figure 1.6 shows a sample AspectJ file. Initially, we are in the Javauagg for the
package and import statements. Upon seein@ipectkeyword, some additional tokens,
and a left brace, we switch to the aspect language. We rayéhnetJava language upon
seeing an unmatched right brace, but before that we see latigage regions. In this
example, we switch to the pointcut language after seeindg#ferekeyword, but more
generally, we could be in a per declaratigecflow perthis etc) or a pointcut declaration
(pointcu). Note that if conditions within the pointcut language aretten in the Java
language (delimited by the if keyword and an (unbalancegtjtrparenthesis). We revert
to the aspect language upon seeing a left brace (i.e. tharbegiof the corresponding

1.3. Contributions

action). The text of the action, delimited by left and riglmates is written in the Java
language. Similarly, the text of the nested class, deluniig theclasskeyword and an
unbalanced right brace, is written in the Java language.

p
package foo;

~

(hspect Aspect {
before() :(execution(* Clazz.* (..)) Il if(Clazz.flag)){
(System.out.println("Hello™)}

}

(class Clazz {)

static boolean flag = false;

public static void foo() {
flag = !flag;
¥

Figure 1.6 AspectJ as mixed language programming

In practice, the implementation is more complicated thastdked above. Details can be
found inSection8.2

1.3 Contributions

In creating MetaLexer, we have identified and filled a gap eehisting extensible com-
piler toolset. We have designed our new approach around keefeatures — abstraction of
lexical state transitions, multiple inheritance, and sfpkatform support — and established
a pattern for future implementations. Finally, we have ugetalexer to build lexers for
real-world languages.

Introduction

1.3.1 Reference Implementation

Two different code generation engines for MetaLexer spestifins are available onlife
One produces JFlex code that can be compiled into Java slésseSection5.1) and the
other produces flat (i.e. inheritance-free) MetaLexer Seetion5.2). Source code and
binaries are available for both.

1.3.2 JFlex Translator

To help developers get started with MetalLexer, we have atsdaged a tool for translating

existing JFlex lexer specifications into MetaLexer (Sstion5.1). It should be noted

that, while the MetalLexer produced by the translator is goi@ed to be correct, it is not
guaranteed to be written in proper MetaLexer style.

1.3.3 Lexer Specification for McLab

The McLab projec being developed by the Sable Lab will eventually be a frantkwo
for building optimizing compilers for scientific languagésg. Matlal, SciLab, and
Modelical). It is beginning, however, by building a single optimiziegmpiler for a
slightly simplified version of Matlab called NatldB.We have built the Natlab lexer using
MetaLexer and a colleague, Toheed Aslam, is using it to ertka lexer for an extended
language called AspectMcL&b SeeSections.1 for details.

http://www.cs.mcgill.ca/metalexer/

8http://www.sable.mcgill.ca/mclab/

Shttp://www.mathworks.com/products/matlab/

Onttp://www.scilab.org/

Uhttp://www.modelica.org/

121t omits, among other things, the convoluted command synthich complicates both lexing and pars-
ing.

Bhttp://www.sable.mcgill.ca/mclab/

10

1.4. Organization of Thesis

1.3.4 Lexer Specification for AspectJ

As described aboveSgctionl.2.9, Aspectd is an ideal candidate for Metalexer lexing.
As an experiment, we have replaced the lexers for abid{"05], an open-source AspectJ
implementation, and two of its extensions — Extended Ash@etj) and Tracematches (tm).
Details are provided isection3.2.

1.3.5 Lexer Specification for MetaLexer

Finally, to show our confidence in MetaLexer, we have boapgied it. The lexer classes
used by the MetalLexer frontend (i.e. for the layout and camepblanguages) are actually
generated from MetalLexer specifications. Seetion8.3for details.

1.4 Organization of Thesis

The remainder of the thesis is organized as follo@sapter2 provides some background
material on lexing and parsers for readers less familian thie€ domain. It can be skipped.
Chapter3 describes the syntax of the MetaLexer LSL. It contains sd\etamples which
will make it easier to understand concepts introduced er lettaptersChapter4 describes
the new semantics of MetaLexer — those that differ from Jiled other existing LSLs.
Chapter5 provides instructions for running the tools that transkpecifications to and
from MetalLexer. Once the mechanics have been explafbedpter6 highlights some of
the design decisions behind MetaLexer &fthpter7 describes some of the implementa-
tion issuesChapter8 presents three case studies comparing MetalLexer to JFlelxal/
abc, and MetalLexer itselChapter9 describes previous work in this field and, in particu-
lar, other approaches that were considered and rejeCteapter10 summarizes the thesis
and its conclusions an@hapter11 describes logical directions for future work. Finally,
AppendixA provides a glossary of acronyms used in the thegipendixB is a reference
for developers who wish to modify the MetalLexer source caaelAppendixC contains
the specification for the MetalLexer lexer, as both an exarptka definition.

11

Introduction

12

Chapter 2

Background

This chapter provides some background information on te&imd parsing for readers who
are less familiar with the domaih.

2.1 Parsing

Intuitively, parsing is the process of extracting meanirmgf a body of text. For example,
to a human, the sequenbe+ 3 * (2 + 4) looks quite meaningful. To a computer,
however, it is no different from any other sequence of 15 atiars. Hence, we need to
give the computer some way to extract the arithmetic stredtuat we know is present. In
particular, we want the computer to build the expressioa steown inFigure 2.1

A parser is a computer program that extracts structure frodies of text. To be more
precise, we will need to define a few terms.

An alphabets a set of symbols. For example, the English alphabet wevesg day is a set
of 26 symbols (52 if we include uppercase). Similarly, trgitdio,1,2,3,4,5,6,7,8,9
form an alphabet.

1For greater detail we recommentifp9g and [Mar03.
20f course, in a more general context, the input need not he-tiéxan be any sequence of symbols.
3Did you remember to count the spaces?

13

Background

5/+\

X

"

2 4
Figure 2.1 An expression tree for “5 + 3 * (2 + 4)”

A string over an alphabet is a finite sequence of symbols from thathlgh For example,
214 is a string over the alphabet of decimal digits.

A formal languages a set of strings over a finite alphabet. For example, thegst{ 1,
11,111, ...} are a formal language over the alphabet of decimal digits.

A grammaris a succinct description of a formal languégét captures structure in such
a way that the structure of any string in the language can tevesed using the gram-
mar. For example, a grammar for the language of all validhamétical expressions would
encapsulate the information needed to turn flat expresgibmexpression trees.

More precisely then, a parser is a computer program thatpsntates the grammar of a
formal language. Given a string in that language, it careexthe structure of the text.

2.2 Lexing versus Parsing

The previous section neglected to defayenbol Through examples, it was implied that a
symbol is simply a character, but this need not be the castactnanything with a finite
representation will do. In particular, there is no reas@t e cannot use an entire string as
a symbol. For example, nearly all programming languagetagordentifiers (i.e. names).
There are two ways to look at identifiers: they can be stringbey can be symbols. That
is, the name “foo” may be regarded as either a string of sysdtl ‘o’, ‘0’) or as a symbol

4A more formal definition is beyond the scope of this chapter.

14

2.3. Traditional Lexing Tools

of its own (identifier).

This paradigm shift actually has important practical irngtions. Grouping multiple char-
acters into each symbol reduces the size of the input to treepd-or example, “foo bar”
is seven characters. However, if we are only interestedandéntifier level of granular-
ity, then the input consists of only two symbols. Therefar&e can break the sequence
of characters into symbols more quickly than we can parss We can reduce our total
execution time.

Lexing is the process of breaking a body of text into symbuossuiélly called tokens in the
lexer). In order to remain simpler, and thus faster, thasipgr lexers are restricted to a
simple class of formal languages called regular languages.

While lexing is not strictly necessary, it does reduce theetimequired for parsing and
simplify parser specifications (since the resulting symlamé much more abstract).

2.3 Traditional Lexing Tools

The first widely used lexical specification language (LSLpVex [LS75, developed by
Mike Lesk and Eric Schmidt at Bell Laboratories. It was desijto work closely with the
fledgling C programming languag&R78] and yacc parser generataroh73, also from

Bell Laboratories.

Lex was re-implemented by the GNU project as FléXex has supplanted the proprietary
Lex and is now the de-factor standard for lexing in C/C++.

Several LSLs exist for Java, but the most popular are 9Ibex its successor JFiex

All of these tools provide approximately the same functliipahough some of the newer
ones have better performance and include more advancendeat

Shttp://flex.sourceforge.net/
Shttp://www.cs.princeton.edu/ appel/modern/java/JLex/
http://jflex.de/

15

Background

2.4 Lexical States

Sometimes the boundary between lexing and parsing is un@leaurprisingly, since it is
arbitrary). One particularly common case is that of nesmuroents. Since comments
can appear virtually anywhere in the syntax of a programntanguage, a grammar that
includes comments is bloated and hard to read. Fortunatelgt comments have no se-
mantic effect and can safely be ignored. If comments aredtteut of the input by the
lexer — which does not need to consider context and so cad apekifying them repeat-
edly —then the parser can be made much simpler. Unfortynaetause nested comments
require balanced start- and end-delimiters, they cannotiptured by regular expressions
— a new construct is needed.

Nested comments can be handled by introduterggal statesEach lexical state of a lexer
has a different set of lexing rules. That is, the currentestdtthe lexer determines how
subsequent input will be interpreted. If the designer ofltheer can programmatically
control the transitions between these lexical states, they increase the power of the
lexer.

For example, in the case of nested comments, a lexer coutdindwo lexical states — one

for nested comments, and one for the other rules. Upon et a start-delimeter, the

lexer would transition to the nested comment transitionckdxstate. It would then track

the balancing of delimiters in a state variable of the lexa postpone the transition back
until balance was achieved. In this way, it could hide theteots of all nested comments
from the parser but handle all other input as usual.

In MetaLexer, these lexical states become components andrtkeractions are governed
by layouts, rather than by action implementation languatk)(code in actions and helper
methods.

16

Chapter 3

MetalLexer Syntax

MetaLexer actually consists of two specification languagee for components and one
for layouts. Components take the place of lexical stateg; doatain the lexical rules.
Layouts specify the interaction of the components, thesitexms between the lexical states.
This chapter describes the syntax of both languages.

3.1 Example

We begin with an example. Suppose we want to write a parselddea property files.

A property consists of a key and a value, separated by an ®gigil. The key is an
alphanumeric identifier and the value is a string that sttty the equals sign and ends
at the end of the line. Each line contains a key-value paigranasent (from ‘#' to end-of-
line), or whitespaceL.isting 3.1 shows a sample properties file. It specifies three key-value
pairs: (name, ‘properties’), (date, ‘2009/09/21’), anavier, ‘root’). Everything else is
ignored.

Clearly, we could extract all of this information within thexkr, but to be more illustrative
we will tokenize the file for a hypothetical parser.

Ultimately, we will create a number of components and joenthtogether using a layout.

17

Metalexer Syntax

o O~ WN PP

© 0 N O O B WN P

B R R R R R R R R R
© 0O N O Ul A WNRER O

#some properties
name=properties
date=2009/09/21

#some more properties
owner=root

Listing 3.1 Syntax Example — A Properties File

For now, we’ll start with a single component that corresgoaldsely with the description
above.Listing 3.2 shows thekeycomponent that will be the workhorse of our lexer. This
listing is fairly intuitive. First, we specify the name of oaomponent eonponent).
Then we list methods that we plan to use but we expect to beadedilsewhereext er n).
After a separator, we specify lexical rules. As one mighteet@84 nherit pulls in the
macros we need from another file, in this cas&cros.mlic Finally, we note that one of the
rules is followed by an extra identifiehSSIGN This is a meta-token; it will be processed
by the layout to determine if a transition is necessary.

%conponent key

%ext ern "Token symbol(int)"
%ext ern "Token symbol(int, String)"
%ext ern "void error(String) throws LexerException”

%%
%%nherit macros

{lineTerminator} {: / xignore */ :}

{otherWhitespace} {: / =ignore */ 3}

"=" {: return symbol(ASSIGN); :} ASSIGN

%:

{identifier} {: return symbol(KEY, yytext()); :}

{comment} {: [=ignore =/ :}

%:

<<ANY>> {: error("Unexpected character ™ + yytext() + ™"); }
<<EOF>> {: return symbol(EOF); :}

Listing 3.2 Syntax Example — key.mic

MetaLexer rules are very similar to JFlex rules except foe¢ghmain differences. First,

18

© 0 N O OB~ W N P

N o e =
N o UM WNRO

3.1. Example

MetalLexer introduces a new (top-levelxANY>> pattern which is used to designate the
catchall rule (described below). Second, each rule mayoally be followed by a meta-
token declaration. Whenever, the pattern is matched, irtiaddio executing the action
code, the component will send the meta-token to the coaidmpéayout. Meta-tokens do
not need to be declared, nor do they need to be unique. Fifallgisambiguation reasons,
colons have been added inside the curly brackets§seton6.10.1for an explanation).

The keycomponent has a rule for constructing key tokens, but notdastructing value
tokens. For that, we will need another componéigting 3.3 shows thevaluecomponent,
wherein entirely different lexical rules apply. It has mariyhe same features assting 3.2
— a component name, external declarations, inheritanceasfas, meta-tokens — but it
also has a new construct, &append block. The append block means that the goal of
the whole component is to build up a single token. Instea@ifrning tokens themselves,
the rules calappend()to concatenate strings onto a shared buffer. When the compisne
‘complete’ (as decided by the layout), the body of #ag@pend block will be executed and
a single token will be returned.
%conponent value
%ext ern "Token symbol(int, String, int, int, int, int)"
Yappend{

return symbol(VALUE, text, startLine, startCol, endLine, endCol);
Y%append}
%%
%%nherit macros
{lineTerminator} {: :} LINE_TERMINATOR
%:
%:

<<ANY>> {; append(yytext()); :}
<<EOF>> {: :} LINE_TERMINATOR

Listing 3.3 Syntax Example — value.mic

Listing 3.4 shows thanacroshelper component that is inherited by ba&ttyandvalue The
el per directive indicates that the module is only to be inheriteelyer used directly.

19

Metalexer Syntax

~N o oA W NP

Notice how it encapsulates the code shared byk#hyeandvalue components so that the
code does not have to be duplicated. The macros themseb/@gssaas in JFlex.

% onponent macros
%hel per

lineTerminator = [\r\n] | "\r\n"
otherWhitespace = [\t\i\b]

identifier = [a-zA-Z][a-zA-Z0-9_] *
comment = #["\r\n] *

Listing 3.4 Syntax Example — macros.mlc

Finally, Listing 3.5 shows thepropertieslayout that joins everything together. It is the
layout that we will compile into a working lexer. Like a norhz5L specification (Flex,
JFlex, etc), the layout begins with a free-form header. Inaldexer, however, the header
is split in two. The first section is specific to the currentdat, whereas the second section
will be inherited by any layout that extends this one.

After the header sections comes the option section. It lsegith the layout nameX§ ayout)
and the lexer optiong6pt i on). Each lexer option is given an identifier so that it can be
deleted or replaced in an extension of the lexer. The strargip passed directly to the
underlying LSL. Following the options are declarationsha AIL (surrounded by4 and
%). These methods will be added directly to the lexer clasehime is shared with the
components of the lexer via%lecl ar e directive. The?d ext hr ow directive reflects the
fact that, by callingerror(String), a lexer action may raise laexerException At the end

of this section, the components to be used are impoeednponent) and a start com-
ponent is specified§t art). Until a transition occurs, the lexer will remain in thersta
component.

The last section contains embeddings (i.e. transitiors}his case, if almSSIGNmeta-
token is seen while in thiekeycomponent, then the lexer will transition to th&luecompo-
nent. It will remain there until &INE_ TERMINATORmMeta-token is seen and then transi-
tion back to thekeycomponent.

In general, an embedding may be read"&hen in component HOST, upon observing
meta-pattern START, transition to component GUEST. Tiiansback upon observing

20

© 00 N o g~ W N PP

NN N NN B R R R R R R R R
E W N P O © ®©® N O 00 M W N B O

25
26

27

28
29
30
31
32
33

3.1. Example

meta-pattern END.”

package properties;

%%

i mport static properties.TokenTypes. *;

%%

% ayout properties

Yopti
Yopt i
Yopt i
Yopt i
Yopt i
Yopti
Yopt i
Yopt i

on
on
on
on
on
on
on
on

public "%public”

final "%final"

class "%class PropertiesLexer"
unicode "%unicode"

function "%function getNext"
type "%type Token"

pos_line "%line"

pos_column "%column"

%ecl are "Token symbol(int)"

%lecl are "Token symbol(int, String)"

%lecl are "Token symbol(int, String, int, int, int, int)"

9%{

private Token symbol(int symbolType) {
return symbol(symbolType, null);

}

private Token symbol(int symbolType, String text) {
return new Token(symbolType, text, yyline + 1, yycolumn + 1,

}

private Token symbol(int symbolType, String text, int star

9%}

%lecl are "void error(String) throws LexerException"

9%{

private void error(String msg) throws LexerException {

yyline + 1, yycolumn + yylength());

startCol, int endLine, int endCol) {

return new Token(symbolType, text, startLine + 1, startCol

endLine + 1, endCol + 1);

21

tLine, int

+ 1,

Metalexer Syntax

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

throw new LexerException(msg);

}
9%}

% ext hr ow "LexerException”

%conponent key
%conponent value

Ystart key

%%

%%embed

%anme key value

%host key

%guest value

%tart ASSIGN

%end LINE_TERMINATOR

Listing 3.5 Syntax Example — properties.mll

Obviously, this simple example does not exercise the fuitay of MetalLexer. Read on

for a more complete description.

3.2 Components

Each component is divided into two sections. First thereni®ption section containing

configuration details and then there is a rule section. Ttioses are separated by a section

separator®s

Unless otherwise indicated, each item listed below shoetdrbon a new line.

22

3.2. Components

3.2.1 Option Section

The option section consists ofo@onponent directive, followed by a mixture of other
directives and code regions (order unimportant), follolwga list of macro declarations.

Name

%componentname— EXACTLY 1 — The name of the component must correspond to the
name of the file. The component X must appear in the file X.misdesensitive);
the component X.Y must appear in the file Y.mlc in the direcr(case-sensitive).

Directives

%helper — AT MOST 1 — If this directive is present, then the component can beritéd
by other components but not used in a layout. Checks relateisging declarations
will be postponed until the component is incorporated imardneriting component.

The following directives relate to lexical states hese are advanced directives and
should not be used under normal circumstances.

%state name, name, ... — ANY NUMBER — This directive comes from JFlex. In rare
circumstances, it is necessary to use a lexical state i plb& componentst at e
declares such a state. In particular, it declareshalusivestate. This means that,
when the lexer is in the declared lexical state, only thosesrthat are labelled with
its name and those that are unlabelled will be consideredinélosive state called
YYINITIALIs declared by default.

%xstate name, name, .. — ANY NUMBER — This directive comes from JFlex. In rare
circumstances, it is necessary to use a lexical state i pib& componentst at e
declares such a state. In particular, it declares»xtusivestate. This means that,
when the lexer is in the declared lexical state, only thosesrthat are labelled with
its name (but not those that are unlabelled) will be considler

23

Metalexer Syntax

%start name— AT MOST 1 — In cases where lexical states have been declared using
(%st at e or %st at e), it may be desirable to start in one of the declared states
rather than in the defauYINITIALstate. This directive indicates in which state the
component should start. If this directive is absent, thencbmponent will start in
the automatically declaredYINITIALstate.

The following directives relate to external requirementthef component.

%extern “signature” — ANY NUMBER — This directive indicates that the component
expects any layout making use of it to provide an entity whid $pecified signature.
In particular, the layout must includdlec! ar e “signature”.

%import “class” — ANY NUMBER — This directive indicates that the top-level lexer
should import/include/require (depending on the AIL; €Cgor Flex, Java for JFlex,
etc) the specified class/module/file. Unlike %#xt er n directive, the% nport di-
rective actually effects the change it requires. That is, sufficient on its own — no
additional import is required in the layout.

The following directives relate to exceptions that mighthyewn by the component.

%lexthrow “exception type”, ... — ANY NUMBER — This directive indicates that an
action (or the special append action method) may throw aapian of one of the
listed types.

%initthrow “exception type”, ... — ANY NUMBER — This directive indicates that the

code in arté ni t block may throw an exception of one of the listed types.

Code Regions

%{ declaration code } — ANY NUMBER — This code region is for declaring fields,
methods, inner classes, etc.

24

3.2. Components

%init { initialization code%init } — ANY NUMBER — This code region is for initializing
the entities declared it 94 blocks. For example, if the AIL were Java or C++,
then this code would be inserted in the constructor of therlelass.

%append{ method cod&oappend} — AT MOST 1 — An append block is both a directive
and a code region. First, its presence indicates that thepaonemt is an append
component. This means thatappend(Stringinethod will be available in all actions
of the component. Second, its code is the body of a specialajpgction method that
will be called when appending is finished (seectior4.9 for details). The method
is like any other action block and may (optionally) returno&en. It will receive
integer parameterstartLing startCol endLine andendColand string parameter
textindicating the position and contents of the text passeapigend(String) The
positions will be indexed in the same way as the underlying eS}. ¢ero-indexed
for JFlex).

%appendWithStartDelim { method codé&ocappendWithStartDelim } — AT MOST 1 —
An appendWithStartDelim is very similar to an append blottkindicates that the
component is an append component (append(String)s available) and creates a
special append action method that will be called when appgnid finished. How-
ever, when the append action method is called, the argunteeteives will incor-
porate the start delimiter created AgpendToStartDelim(StrindseeSection4.9.1
for details). In particular, the values sfartLing startColandtextwill be different
from what they would be in an otherwise identical appendldhe positions will
be indexed in the same way as the underlying LSL (e.g. zeexaqador JFlex).

Macros

macro=regex— ANY NUMBER — This line declares a macro (a named regular expression)
with the specified name and value. Regular expressions areJdax. The entire
declaration must appear on a single line.

25

Metalexer Syntax

3.2.2 Rule Section

The rules section is a mix of rules and inheritance direstive
A rule is of the following form.
pattern{: action code } meta-token

An inheritance directive indicates that another composéotuld be inherited. It is of the
following form.

%%inherit component

If the character sequence “%%inherit” appears in a regulagpeession, it must be quoted
to distinguish it from the directive.

Each inheritance directive is immediately followed by zermore delete directives, which
prevent certain rules from being inherited. They are of tileding form.

%delete <state, state, . .>» pattern

If the character sequence “%delete” appears in a regularresgion, it must be quoted to
distinguish it from the directive.

If a rule with the given pattern appears in one of the listedest of the inherited compo-
nent, then it is not inherited. In most specifications, ttegestist will be empty — this is
equalivalent to a state list containing only the def&MiNITIALlexical state.

Rule Order

As in JFlex, if two different patterns match the input, thba tonger match is chosen. If
there is more than one longest match, then textual ordeedasa tie-breaker. Clearly, this
gets more complicated when multiple inheritance is incoajesl. To reduce complexity,
MetaLexer recognizes and separates three types of rules.

1. Acyclic rules can match only finitely many strings. Conceptually,rtin@nimal
DFAs are acyclic.

26

3.3. Layouts

2. Cyclic rules are neither Acyclic nor Cleanup rules.

3. Cleanuprules are either catchall<<ANY>>— or end-of-file <<EOF>>- rules.

Acyclic rules are listed first, followed by a group separatét , then cyclic rules are listed,

followed by a group separator, and finally cleanup rulesiated. If the cleanup rules are
absent, then the second group separator may be omittedthlickeanup and cyclic rules

are absent, then both group separators may be omitted.v@$eerll group separators are
required, even around empty groups.

A new Acyclic-Cyclic-Cleanup group begins after the sectiepaator 98— and after
each%®b nherit directive.

SeeSection6.7 for the importance of and the rationale behind this distimcbetween
different types of rules.

3.3 Layouts

Each layout is divided into four sections: the local heatler,inherited header, the options
section, and the rule section. The sections are separateechpn separators®o

Unless otherwise indicated, each item listed below shoetgrbon a new line.

3.3.1 Local Header

The local header is a block of free-form text that will be irted at the top of the generated
lexer class (i.e. the file generated by the underlying LSH.(dFlex) rather than the file

generated by MetaLexer). It is not incorporated into infmggicomponents. It is generally
used for something like a package declaration — somethatgntiti probably change in an

inheriting component.

27

Metalexer Syntax

3.3.2 Inherited Header

The inherited header is another block of free-form text. ilt lae inserted just below the
local header at the top of the generated lexer class. It istlgdike the local header except
that it will be incorporated into inheriting components. idtgenerally used to declare
imports, macros, etc.

3.3.3 Options Section

The option section is very similar to the correspondingisadh a component. It consists
of a% ayout directive, followed by a mixture of other directives and eadgions (order
unimportant).

Name

%layout name— EXACTLY 1 — The name of the layout must correspond to the name of
the file. The layout X must appear in the file X.mll (case-s@reyi; the layout X.Y
must appear in the file Y.mll in the directory X (case-seusl}ti

Directives

%helper — AT MOST 1 — If this directive is present, then the layout can be iritedrby
other layouts but not compiled into a lexer. Checks relateahigsing declarations
will be postponed until the layout is incorporated into ananting layout.

%option name “lexer option’— ANY NUMBER — This directive inserts its text, verbatim,
in the option section of the generated lexer specificatiome ame is included so
that the option can be filtered out by inheriting layouts. amust be unique.

%declare “signature” — ANY NUMBER — This directive indicates that the layout will
satisfy any referenced components wigxt er n “signature”.

28

3.3. Layouts

The following directives relate to exceptions that mightlyvewn by the lexer.

%lexthrow “exception type”, ... — ANY NUMBER — This directive indicates that an
action (or a special append action method) may throw an éxcepf one of the
listed types.

%initthrow “exception type”, ... — ANY NUMBER — This directive indicates that the

code in arté ni t block may throw an exception of one of the listed types.

The following directives relate to the use of components.

%component name, name, .. — AT LEAST 1 — This directive declares that the layout
will make use of the named components.

%start name— EXACTLY 1 — This directive indicates in which component the layout wi
start.

Code Regions

% { declaration code% } — ANY NUMBER — This code region is for declaring fields,
methods, inner classes, etc.

%init { initialization code%init } — ANY NUMBER — This code region is for initializing
the entities declared it 94 blocks. For example, if the AIL were Java or C++,
then this code would be inserted in the constructor of therlebass.

3.3.4 Rules Section

The rules section is a mix of embeddings and inheritancetires.
An embedding is of the following form (order matters).
%%embed

%name name

29

Metalexer Syntax

%host componentcomponent. ..
%guestcomponent

%start meta-pattern

%end meta-pattern

%pair meta-tokenmeta-token

Zero or moréopair lines may be included.

The embedding is named so that inheriting layouts can egaldf necessary. The rest
may be read a#/hen in component HOST, upon observing meta-pattern STraR3ition

to component GUEST. Transition back upon observing mett@nmeEND.For each pair, if
the first element is observed, the next occurrence of thenseglement is suppressed (i.e.
not matched).

An inheritance directive indicates that another layoutdthde inherited. It is of the fol-
lowing form.

%%inherit layout

Each inheritance directive is immediately followed by zeranore unoption, replace, and
unembed directives (in that order).

Unoption directives filter out options from inherited laysu They are of the following
form.

%unoption name

Replace directives replace all references to one compontnteferences to another. This
is very useful when a new layout uses an extended version ofrgpgnent used by an
inherited layout (as ifrigure 1.3). They are of the following form.

%replace component, component

Unembed directives filter out embeddings from inheritedldy. They are of the following
form.

%unembed name

30

3.4. Comments

Meta-Patterns

The basic meta-patterns are meta-tokens (from componles) and regions. A region is a
component name surrounded by percent-signs. It indicagsitcomponent with the given
name has just been completed.

The basic meta-patterns can be included in a classes — sppaeated lists surrounded
by square brackets. Normal classes are simply shortharaltéonation. Negated classes
(those with a caret just inside the open square bracket)hratyg single meta-token or
region not listed in the class. The specialNY> class matches any single meta-token or
region.

The <BOF> meta-pattern matches the beginning of the meta-stream tfie stream of
meta-tokens and regions passed to the meta-lexer by thg.lexe

Finally, parentheses, juxtaposition, alternatian, x, and ? work as they do in regular
expressions.

3.4 Comments

Both layouts and components support Java-style singledlinpand multi-line (* /)
comments.

31

Metalexer Syntax

32

Chapter 4

MetalLexer Semantics

The previous chapter described the syntax of MetaLexers Thapter will describe the
semantics, focusing on differences between Metal exer Rlect.J

4.1 JFlex Semantics

A JFlex lexer has one key methodextToken()When called, the method reads characters
from the input stream, attempting to match a lexer rule amarmea token. This process
is summarized irListing 4.1 Within the current lexical state, all rules are tested itheor
The rule matching the longest prefix of the input is selectdédhere is a tie, then the
first to appear textually is selected (accomplished in thgedy simply not updating the
matchedRuleariable). Then the input pointer is advanced past the lsingatch and the
corresponding action is executed.

Notice that the loop has no exit condition and the method ba®turn statement. It is up
to the action code to break out of the loop by returning a tokieem action does not return
a value, then the loop will perform another iteration. Anynher of rules may be matched
before a token is returned — there is no one-to-one corregnue.

33

MetalLexer Semantics

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

publ i c Token nextToken() {
whil e(true) {
matchedRule = nul |
maxString = nul |
for each rule r in lexicalState {
s = prefix of input matched by r
i f (s longer than maxString) {
matchedRule = r
maxString = s

}

i f (matchedRule != nul I') {
advancelnputPast(maxString);
swi t ch(matchedRule) {
case rulel:
perform action 1
br eak;

case rule2:
perform action 2
br eak;

Listing 4.1 Pseudo-Code for the Main JFlex Loop

4.2 Meta-Lexing

MetalLexer uses the same basic lexing loop as JFlexl(stag 4.1). Lexical rules are
tested in order and the earliest occurring longest matchlected. However, MetalLexer
uses a different mechanism for partitioning these rulesiatermining which subset should
be used.

Though Metalexer supports lexical states, a well-writtegtdllexer specification will es-
chew their use. Instead, it will use components to perforensdime function and coordi-
nate the transitions between components using a layous difierence is illustrated in
Figure 4.1 In Figure 4.13 JFlex is shown reading a stream of characters and producing
a stream of tokens. Internally, it moves amongst a numbezxicadl states that determine

34

4.2. Meta-Lexing

which set of lexical rules will be used. Externallygure 4.1bis very similar. MetalLexer

reads a stream of characters and produces a stream of tdHen®ver, it uses a differ-

ent mechanism to determine which set of matching rules wilised. In place of lexical

states, it has components. These components, in additiprotiucing tokens, produce
meta-tokens that are consumed by the layout. Based on thanstof meta-tokens, the
layout determines which component should be used. Thisepsoe choosing the current
component based on a stream of meta-tokens — is referredretaslexing

Characters [REEMESEl Tokens

Characters Tokens

(b) MetalLexer

Figure 4.1 A comparison of JFlex and MetalLexer

Observe that the job performed by the layout — reading ineastrof meta-tokens, match-
ing against a list of meta-patterns, and producing a strddmarsitions — is very similar to
the job performed by a normal lexer. Instead of charactezd)ave meta-tokens; instead of
regular expressions, we have meta-patterns; and insteaftesfs, we have transitions. If
we imagine converting each meta-token to a character andtesatsition to a token, then
it becomes quite clear how meta-lexing works.

For example, consider the layout fragment showhisting 4.2 It is part of a Java lexer.

35

MetalLexer Semantics

The basecomponent lexes the package and import statements thatoexsde classes

in a Java file. Thelasscomponent lexes what we usually think of as the Java language
— fields, methods, statements, expressions, etc. sfritgg and commentcomponents lex
string literals and multi-line comments respectivelyuitively, we transition from théase
component to thelasscomponent when we see a class declaration (i.e. a class kaywo
a name and maybe some superclasses/interfaces and an apeh dmd back when we
see the end of the class declaration (i.e. ¢brespondingclosing brace). We transition
from theclasscomponent to thetring component on an open-quote and back on a close-
guote. Similarly, we transition from th@asscomponent to theommentomponent on an
open-comment symbol{’) and back on a close-comment symiaf ().

More formally, we transition based on sequences of metar®kOf course, there is a clear
correspondence between tokens and meta-tokens in this€a8&SKW is generated by
theclasskeyword token.CURLY is generated by the open brace symbol token, etc.

With this in mind, we can readtlisting 4.2 as follows. We see that we should transition
from thebasecomponent to thelasscomponent upon seeing the meta-pat@tMSSKW
['LCURLY]* LCURLY. If we assignCLASSKW the character ‘a’ andCURLYthe charac-
ter ‘b’ then, we can rewrite this meta-patternagb]*b) . If we were to put this abbreviated
rule in a separate lexer, we would attach an action thatrretuthe appropriate transition
from baseto class Similarly, the action attached to the end meta-patternldvaaturn the
reverse transition, froralassback tobase

Obviously, this is not all there is to meta-lexing. Astutaders will have noticed that, in
the example above, once we have transitioned telé®scomponent, we no longer wish
to match the rule fofa[’b]*b). We solve this problem by associating rules with specific
embeddings. We keep track of the current embedding on a atatknly match patterns
that make sense in the current embedding.

If we always know which embedding we have encountered masinily, then we also
know which component we are in — the guest component of thhedding. For example,
if we have just started the embeddicigssembeddingthen we are currently in theass

lWhen the stack is empty, we consider ourselves to be in a $plEgjenerate embedding with no end
meta-pattern or pair filter.

36

© 0 N O OB~ WN PP

T I e e I o
B O © 0 ~NO U NMNWRINREO

4.2. Meta-Lexing

%%embed

Y%nane class_embedding

%host base

%guest class

%start CLASS KW [LCURLY}F LCURLY
%end RCURLY

%pai r LCURLY, RCURLY

%%embed

%ane string_embedding
%host class

%guest string

%tart START_STRING
%end END_STRING

%%embed

% ame comment_embedding
%host class

Y%guest comment

%tart START_COMMENT
%end END_COMMENT

Listing 4.2 MetalLexer Example

component.

Now, knowing our current embedding and component, we caideedich meta-patterns
we need to match. First, we need to watch for the beginninghofleer embedding — in
particular, those embeddings that are hosted by the curaenponent. Second, we need
to watch for the end of the current embedding.

For example, if we have just started the embedditagsembeddingthen we need to
look out for any start patterns that begindtass(i.e. those forstring.embeddingand
commentembeddinpas well as the end pattern folassembedding

In the event that more than one meta-pattern matches, stéatpatterns are preferred to
end meta-patterns and earlier start meta-patterns arerpgréfto later start meta-patterns.

Extraneous meta-tokens, those not matched by any meenpadte discarded — they will
not cause errors. They will, however, disrupt any metagpast for which prefixes have
been matched.

37

MetalLexer Semantics

There is one substantial difference between the meta-txea traditional lexer. A tradi-
tional lexer, upon determining that a prefix of the input rhata given rule, will postpone
the selection of a rule until it has been determined that m® matches a longer prefix.
These are often referred to as ‘longest match’ semantiaritrast, the meta-lexer selects
a rule as soon as any prefix of the input matches. This comelsptm ‘shortest match’
semantics.

4.2.1 Pair Filters

In many cases, the meta-lexing procedure described abdveensufficient. However,
sometimes we want to ignore certain meta-tokens. In pdaticonany programming lan-
guages use a nested structure delimited by pairs of bragketscurly braces in Java). To
prevent balanced pairs of brackets (or other meta-tokeos) interfering with our meta-
lexing, we may wish to remove them from the stream entirelg atlcomplish this using
pair filters.

At first glance, it is not clear why we need, or even want, pders. After all, parenthesis
balancing is traditionally the domain of the parser. Howgaesimple example makes the
need readily apparent. Consider an aspect in Aspect]. @usidspect, we use the Java
lexer, but inside we use the AspectJ lexer. Switching frowa la AspectJ is easy — we
just look for theaspectkeyword. Unfortunately, switching back is harder dnsting 4.3
shows why. We need to switch back upon seeing a closing btdo@ever, not just any
closing brace will do — we need to find the brace the correspémdhe opening brace at
the beginning of the aspect. To do this, we must ignore bathpairs of braces between
the two (e.g. the braces around the advickigting 4.3).

This example is quite representative. Most modern progragnfanguages have hierarchi-
cal structures of this sort, delimited by bracketing tokeimsorder to be able to use these
delimiters as lexical state boundaries in our lexers, wel nede able to find them.

Pair filters sit between the components and the layout. Toegligectly on the meta-token

2Extraneous meta-tokens are handled by treating each rt®agh it began with an implick ANY>* .
This replaces an explicit catch-all rule that would alwagghe shortest match.

38

© 0 N O OB~ WN PP

e N i T =
o 0~ WNRFE O

4.2. Meta-Lexing

package xyz;
i mport foo. =*;

public class Klass {
public static void main(String args[]) {
/...

}
}

aspect Aspect {
voi d around(): execution(*x (L) {
if(/= ... */){
proceed();
}

}
}

Listing 4.3 Pair Filter Example

stream and prevent selected meta-tokens from reachingybetl If a pair filter is in place,
then every meta-token is considered by the filter. If a meka is the closing element of
a pair and if the pair has been opened but not closed (i.e. tbelppening element has
been seen), then the meta-token will be suppressed andgdthther will occur. If, on
the other hand, the meta-token does not complete a pairitthvéhbe passed to the layout.
For exampleFigure 4.2 shows a number of sample meta-token streams and the effects o
the classembeddingpair filter thereon. Italicized meta-tokens never reachldlgeut. In
examplel, we begin in thdbasecomponent and transition tdassupon seeingCLASSKW
IDENTIFIER LCURLY Within the embedding, there is ndCURLYto begin a pair, so the
RCURLYis untouched. In exampl® on the other hand, the firRICURLYis removed from
the stream because of th€URLYthat precedes it. Note that this is exactly what we want
— we do not exit thelasscomponent until we see ambalanced RCURLYn examples3,

the opening-CURLY is absent again and so the fiRCURLYends the embedding. The
second one is extraneous and is discard&kample4 generalizes exampl2 showing a
more elaborate balanced-pair sequence. Once again, theddmb is correctly ended on
the finaRCURLY

3]t is important to distinguish between this meta-token,ahtis read from the stream and then discarded,
and the other meta-tokens in this example, which are remgetthe stream before they are read.

39

MetalLexer Semantics

CLASSKW IDENTIFIER LCURLY RCURLY
CLASSKW IDENTIFIER LCURLY LCURLY RCURLYRCURLY
CLASSKW IDENTIFIER LCURLY RCURLY RCURLY

p w0 NP

CLASSKW IDENTIFIER LCURLY LCURLY RCURLY LCURLY LCURLY
RCURLY RCURLYRCURLY

Figure 4.2 Streams of meta-tokens after filtering

Pair filters are embedding-specific. For examplé,igting4.2 LCURLYandRCURLYare
only paired in the embeddirgdassembeddingnot instring_embeddingr commenembedding

4.3 Regions

Meta-tokens are not the only information passed from thepmrants to the layout. When-
ever an end meta-pattern is matched, the lexer transitiacis to the current embedding’s
host component. This triggers the generation of a speegabn object corresponding to
the component just exited (i.e. the guest).

For example, consider the layoutlirsting4.2. If we were in the embeddingassembedding
and we saw an (unpaireBICURLYmeta-token, then we would transition back to baese
component. Since this would indicate the “completion” & thasscomponent, a special
%class%region would be added to the meta-token stream.

Alternatively, suppose we were writing a lexer for a langaiagth named scopes — brack-
eted regions preceded by string literal names (kigting 4.4). We could break this con-
struct into two components: one for the string literal andthar for the block. The corre-
sponding layout would look something likesting 4.5. Notice that the start meta-pattern
of thenamedblockembedding is a region. It will be matched whenever the lexar the
basecomponent and has just completestiang literal component.

Like meta-tokens, each region can be thought of as correlapgmo a distinct character.
In this way, they can be used in meta-patterns in the same svaneta-tokens.

40

© 0 N O OB~ WDN P

e e
W N~ O

4.4. Inheritance

"Region A" {
h
Listing 4.4 Syntax Example — Regions — Language Code
%%embed
%ane string_literal
% ost base

%guest string_literal
%tart START_STRING
%end END_STRING

%%embed

%anme named_block
%host base

%guest block

U%start %string_literal%
%nd SEMICOLON

Listing 4.5 Syntax Example — Regions — Layout

4.4 Inheritance

Inheritance in MetalLexer has more in common with textualusion than with object-
oriented (OO) inheritance. AM®6 nherit directive instructs MetalLexer to merge the
contents of the referenced module into the current modslé, they had been typed di-
rectly into the file. Unlike straight textual inclusion, hewer, MetaLexer splits up the
inherited file and distributes its elements to the apprognmarts of the current module.
That is, headers go in the header section, options go in thenogection, rules go in the
rules section, etc. Most inherited elements are insertéoeag¢nds of their corresponding
sections. Embeddings and lexical rules are more compticdteey are discussed below.

4.4.1 Embedding Ordering

When a layout inherits another layout, the inherited embegidare not added to the end
of the file. This would be too inflexible. Instead, they areeited at the location of the

41

MetalLexer Semantics

corresponding®4 nheri t directive. This allows the child layout to insert new embed-
dings both before and after the inherited embeddings. Eurtbre, it clarifies the relative
positions of the embeddings inherited from different patayouts.

4.4.2 Lexical Rule Ordering

Lexical rules are more complicated than embeddings. Tlasitipn is determined by the
position of the correspondiri@s nher i t directive, but they are not inserted at that exact
location. Instead, the order of the merged lexical rules ioHows.

Child acyclic rules preceding the fir&4 nheri t directive.

e Acyclic rules from the first parent component.

e Child acyclic rules preceding the secov@a nheri t directive.
e Acyclic rules from the second parent component.

e And so on, for subsequent parent components.

e Child acyclic rules following the las® nheri t directive.

e Child cyclic rules preceding the fir386 nheri t directive.
e Cyclic rules from the first parent component.
e And so on, for subsequent parent components.

e Child cyclic rules following the lasi® nheri t directive.

e Child cleanup rules preceding the fie#t nheri t directive.
e Cleanup rules from the first parent component.

¢ And so on, for subsequent parent components.

42

4.4. Inheritance

e Child cleanup rules following the la%®6 nheri t directive.

This conceptual rearrangement, which takes place duragntieritance process, is illus-
trated byFigure 4.3. Figure 4.3ashows a component (left) inheriting rules from its parent
(right). Figure 4.3b shows the order of the rules in the flattened component (ifeer a
inheritance).

Acyclic

Acyclic

Acyclic
Cyclic
Cleanup

Acyclic
Cyclic
Cleanup

Acyclic
Cyclic

Cleanup

Acyclic
Cyclic
Cyclic
Cyclic

Cleanup

Cleanup

Cleanup

1o 103

(a) Before inheritance (b) After inheritance

Figure 4.3 Ordering of inherited rules

Consider the more concrete example shownistings4.6-4.8. Listing4.6shows a compo-
nent that extends the component definedisting 4.7. The original component had rules
for some keywords and a number token, but the new componeéstsamne new keywords
and an identifier.Listing 4.8 shows the result. Note the order of the keywordd. ist-
ing 4.8 — two keywords precede the originals, but one follows. Is thiay we control the
precedence of new rules. If they precede the old rules thentiave higher precedence;
otherwise they have lower precedence. Note also that timdifiée rule follows all of the
keyword rules, even the inherited ones.

43

MetalLexer Semantics

© 0 N O O~ WN PP

e e =
W N B O

~N O O~ WDN PP

% onponent inheriting_comp
%%

new_keywordl {: action5 :}
new_keyword2 {: action6 :}
%:

{identifier} {: action7 :}

%:

<<ANY>> {. action8 :}
<<EOF>> {: action9 3}

%%nherit inherited_comp

new_keyword3 {: action10 :}

Listing 4.6 Rule Order Example — Inheriting Component

%€ onponent inherited_comp
%%

keywordl {: actionl :}
keyword2 {: action2 :}
keyword3 {: action3 :}

%:

{number} {: action4 :}

Listing 4.7 Rule Order Example — Inherited Component

45 Conflicts

Since MetaLexer allows modules to inherit from multiplegy@s, there are frequently con-
flicts. For example, macros, exceptions, and lexical rudeshe declared in two parents of
a single component. Similarly, options, declarations, amibeddings can be declared in
two parents of a single layout. When this occurs, the instémoee the first module to be
inherited dominates.

To increase consistency, both internally and with JFlexé&cpdent, MetalLexer extends
this idea to other potential conflicts. For example, an aoptitay be declared in both a
layout and its parent or even twice within the same layouth&ahan calling this an error,

Metalexer resolves the conflict in favour of the first textoeturrence.

For example, suppose that a layout declared the optioption name “%name fooand its

44

© 0 N O OB~ WN PP

L e =
A wNPR O

4.6. Error Checking

% onponent inheriting_comp
%%

new_keywordl {: action5 :}
new_keyword2 {: action6 :}
keywordl {: actionl :}
keyword2 {: action2 :}
keyword3 {: action3 :}
new_keyword3 {: action10 :}
%:

{identifier} {: action7 :}
{number} {: action4 3}

%:

<<ANY>> {. action8 :}
<<EOF>> {: action9 :}

Listing 4.8 Rule Order Example — Merged Component

parent declared the same option with a different véhoption name “%name bar"Then,
since the parent option is added to #érelof the options section, the child option dominates.
That is, the final value of the optiammewould be“%name foo”. A warning would be
issued, flagging the duplication, but there would be no ertbthe parent declaration
actually appeared in the same file, the behaviour would beahree.

Conflicts amongst embeddings [lexical rules] are handledarsame way, after taking into
account the more complicated textual order describ&kertiord.4.1[Sectiord.4.7.

4.6 Error Checking

Problems with Metalexer specifications are broken into taegories. Errors are prob-
lems that invalidate a specification, preventing furthéioac Warnings, on the other hand,
are problems (or potential problems) that will not resulhicorrect behaviour but are prob-
ably worthy of the developer’s attention.

The following problems are errors:
1. missing declarations (lexical states, macros, and to&ens),
2. missing modules (layouts and components),

45

MetalLexer Semantics

3. circular dependencies (macros, components, and Igyouts
4. misclassified lexical rules (s&ectiord.4.2),

5. lexical states that are both inclusive and exclusive,

6. unsatisfiedext ern’s,

7. empty character ranges in regular expressions,

8. components without lexical rules,

9. layouts without component references, and

10. layouts without start components.
The following problems are warnings:

1. deletions with no effect (lexical rules, options, and enitings),
2. replacements with no effect,
3. clobbered definitions (lexical states, macros, optiand,embeddings), and

4. unused definitions (lexical states, macros, and compomgorts).

4.6.1 Finalization

To improve the quality of error messages, modules are fedlpefore being inherited. A
component is finalized once all parents are finalized, akmtarhave been incorporated,
and all error checks have been performed. Similarly, a laygofinalized once all parents
are finalized, all parents have been incorporated, all eafexd components are finalized,
and all error checks have been performed. This means thialiepns with a module will be
reported in that module, rather than in an inheriting module

Once the top-level layout is finalized, the result is a sitfigle(i.e. inheritance-free) layout
referring to one or more flat components.

46

4.7. Scoping

4.6.2 Helper Modules

Sometimes, a module exists only as a repository for sharée. déor example, one might
create a single component that contains all of the macrosuiolexer and then inherit that
component in every other component. However, the lexerldhwever transition to the
macro component. In fact, since it contains no rules, itvalid. The macro component is
an example of a helper module — a module that can only be usaaigth inheritance.

If a module is flaggedael per, then some of its error (and warning) checks will be omit-
ted. As soon as itis inherited into a non-helper module, lvewehe checks will be applied
and any unresolved errors will be caught.

Deferred checks include: missing state declaration, mgssiacro declaration, missing
Yappend block, missing component import, missing start componaigsing¥dec! ar e.
Note that these are all deficiencies that could be remediacthild.

The%el per directive is not inherited. That is, the child of a helper migdwill not be a
helper module unless it also include$tee! per directive.

4.7 Scoping

Scopes are important for preventing name collisions. Inaldexer, each component is
a separate scope. AlL code regions, macro declarationsalestates, and lexical rules
are not visible outside the component — neither to non-daekrg components nor to lay-
outs. Meta-token declarations, which are implicit, areblesto layouts but not to other
components.

Each layout is also a separate scope. AIL code regions, aptibeclarations, and em-
beddings are not visible to other layouts. They are, howexsible within referenced
components, which are considered to be nested scopes.

During inheritance, the contents of the parent are incatgol into the child’s scope.
Hence, all parts of a module are visible to its children.

47

MetalLexer Semantics

4.8 Qualified Names

On occasion, it may be desirable to divide a large set of Metat files into folders and

subfolders. This might be because two similar modules @@mponents/layouts) have
the same name or because there are simply too many files. Rgiagdhe files is simple

enough, but we also need to ensure that MetaLexer can find tidm simplest option

would be to provide MetaLexer with a list of the directories @re using. However, this
will not suffice if we want to use two modules with the same ndwiedifferent paths. For

this reason, Metal exer allows qualification of module naniést is, a module name may
incorporate path information that tells MetaLexer wher&otik for it.

For example, suppose that while parsing a specificationaMeder encountered the com-
ponent namalirl.dir2.comp Then, for each directory on its path, it would look in the
subdirectorydirl/dir2/ for the file comp.mic Upon finding the module in question, it
would verify that it was namedirl.dir2.comp

Organizing MetalLexer files into folders does not introdung acopes. Modules within
the same directory relate to each other in exactly the sanges/enodules within different
directories and names must always be fully qualified.

4.9 Append Components

Append components are used to construct tokens contaitohg bf validated text. For
example, consider string literals. The resulting token @ohtain the text as it originally
appeared in the input stream (i.e. without modification}, dmme validation is required
before the token can be accepted. One might wish to weed wltdrescape sequences,
for instance. In an append component, successfully matoled append to a shared
buffer rather than returning individually. Then, when tleenmponent is complete (i.e. when
the end meta-pattern of the embedding of which it is the gisesibserved), the buffer is
wrapped in a token and returned.

A component is flagged as an append component by includis@@wmend or

48

4.9. Append Components

YappendW t hSt art Del i mregion. The AIL contents of the region will be treated as a
method to be called when the component is complete. Thisoddtlas parameteligt
startLing int startCol int endLing int endCo] String textindicating the position and con-
tents of the buffer built up by the component. They should $eduto construct and return
a token object.

The presence of a¥append or ¥%appendW t hSt ar t Del i mregion also makes available
anappend(Stringjnethod, which individual actions can use to append the kext inatch
to the buffer. It is possible to append a string other thamta&hed input, but the position
arguments passed to th@ppend or ¥%appendW t hSt ar t Del i mregion will only reflect
the size and location of the original text.

Listing 4.9 shows how an append region can be used to build up a stringl)itelidating
and evaluating escape sequences along the way. Wheneverage sgguence is encoun-
tered, itis evaluated and appended to the buffer. Everyttlse is appended directly. Then,
when the closing quote is encountered, the append actidmochét called and a new string
literal token is returned, containing the validated andeexjed text. Note that the position
of the token will reflect the size and location of the origitealt, rather than the expanded
text.

A component that inherits from an append component is alsapgend component. By
default, it will inherit its parent'®@ppend or ¥%appendW t hSt ar t Del i mregion but this
can be overridden with a local version.

Sometimes, append components interact with each othes ifit@raction is captured in
Table4.1

\ [ToNormal | ToAppend |

From Normal N/A New Buffer
From Append|| Call Append Region Retain Buffer

Table 4.1 Interaction of append components

Note that the append buffer is preserved when transitionétgzeen append components.
That is, consecutive append components append to the sdfeg building up a single
string.

49

MetalLexer Semantics

w N

© 0 N o 0o b

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

%conponent string
Yappend{

return new StringLiteral(text, startLine, startColumn, e

endColumn);
Y%append}

HexDigit = [0-9A-Fa-f]
%%
“\" {i :} END_STRING

(\u{HexDigit{1, 4}) | (\x{HexDigit{2}) {:
String hexString = yytext().substring(2);
int hexNum = Integer.parselnt(hexString, 16);
append((char) hexNum);

\\[0-3]?[0-7]?[0-7] {:
String octalString = yytext().substring(1);
int octalNum = Integer.parselnt(octalString, 8);
append((char) octalNum);

}

\\ (nj\n) {: append("\n"); :}

\\ (r\n) { append("\r*); :}

\t {: append("\t"); :}

W {: append("\f"); }

\\b {: append("\b"); 3}

V(W) append(yytext().substring(1)); :}
%:

%:

<<ANY>> {; append(yytext()); :}
<<EOF>> {: error("Unterminated string literal"

ndLine,

Listing 4.9 Append Component Example — String Literal

There is one exception to these general rules. As mention&cgtion4.3, on an end-

transition, a special region meta-pattern is triggeredr éxample, after we complete a

string_literal component, we seelastring literal% region. In rare cases, this region might

actually be the end meta-pattern of the next embedding ostéu. If it is, then another

50

1
2
3

4.9. Append Components

embedding will end and another region will be generatedcesihis effect can cascade, we
thought it prudent to suppress all but the first append actdier all, only the first append
action can receive a non-empty string since the buffer mretas soon as it is called.

4.9.1 Start Delimiters

Sometimes, it may be desirable to retain the delimiters @fgoend region. For example, if
we were building up a multiline comment in Java, we might wanetain the ‘/*" and /.
Unfortunately, the start delimiter comes before the ti#msito the append component.

MetaLexer solves this problem with a two part constructsti-ithe component that sees
the start delimiter callappendToStartDelim(String)vhich is available to all components,
whether or not they are append components) to store it in@amkelimiter buffer. Then,
the component that wants the start delimiter (i.e. the agpmmponent) can use an
YappendW t hSt ar t Del i mregion (rather than afiappend region) to request that the
contents of the delimiter buffer be prepended to the appeiffeér(and positions) that it
has built up.

For exampleListings4.10& 4.11 show how we might build up a multiline comment in
Java, retaining the delimiters. listing 4.10we call appendToStartDelim(Stringyhen
we encounter the start delimiter andListing4.11we use avappendW t hSt art Del i m
region rather than the usushppend region. We also cathppend(Stringjvhen we see the
end delimiter.

%conponent java

%%
"I «" { appendToStart Del i myytext()); :} START_COMMENT

Listing 4.10 Start Delimiter Example — Java

51

MetalLexer Semantics

© 0 N O O~ WN PP

% onponent comment
Y%appendW t hSt art Del i n{
return new Comment(text, startLine, startColumn, endLine , endColumn);
Y%appendW t hSt art Del i n}
%%
"« {i append(yytext()); :} END_COMMENT
%:
%:
<<ANY>> {; append(yytext()); :}

Listing 4.11 Start Delimiter Example — Java Comment

4.10 Conditional Meta-Tokens

Though Metalexer is intended to abstract all of the statesttimn logic out of the action
code, itis sometimes necessary to violate this abstradfionexample, the transition logic
may depend on an externally set runtime property.

Listing 4.12 shows an example of how to conditionally send a meta-tokethéometa-
lexer (presumably triggering a transition). A charactgruished back into the input stream
and an action code transition (unsafe, but occasionallgssary) determines which rule
will reconsume the character. After the character is recorsl and the meta-token is
or is not sent, an action code transition restores the @igitate. The unsafe logic is
entirely encapsulated within the module — no other parthefiéxer need to be aware of
the ugliness.

This pattern makes a lexer harder to read and understangisould be used sparingly.

4.10.1 Indentation-Based Languages

Some languages use indentation rather than symbols tcatedscoping levels. Pythtn
for example, creates a new scope whenever a line of codedatied more than the previous
line and closes a scope whenever a line of code is indentedHan the previous line. In
Listing 4.13 lines3, 4, and7 are all in new scopes. Furthermore, liaés actually in the

“http://www.python.org/

52

© 0 N O OB~ WN PP

NNNRERRRRRERRR R
NP O ®©O~NOU MWNERO

© 0 N O O~ WN PP

4.10. Conditional Meta-Tokens

% onponent conditional
%state COND_TRUE, COND_FALSE
%%
rule {:
yypushback(1);
if(external condition) {
yybegin(COND_TRUE);
} else {
yybegin(COND_FALSE);
}

.} /INB: no meta-token

%:
%:

<COND_TRUE> {

<<ANY>> {: yybegin(YYINITIAL); :} META_TOKEN /INB: meta-token
}
<COND_FALSE> {

<<ANY>> {: yybegin(YYINITIAL); :} /INB: no meta-token
}

Listing 4.12 Conditional Meta-Token Pattern Example

outermost scope, since it is dedented twice from the pragdutie.

i = 99
while 1:
if i==
print "1 bottle of beer on the wall."
br eak
el se:
print "%s bottles of beer on the wall." % i
i=i-1
print "No more beer on the wall."

Listing 4.13 Python Indentation Example

While this scheme does revolve around a stack of indentagieeld, it is difficult or im-
possible to simulate this behaviour with MetaLexer’s statlembeddings. Instead, the
conditional meta-tokens described above can be used tondegewhen an indentation
should trigger one or more transitions.

53

MetalLexer Semantics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30

Listing 4.14 outlines a solution in Metalexer pseudocode (with a Jeka-AlL). The in-
dentation level is tracked using a stack, just as in the digfaplementation of Python.
STARTSCOPEandEND_SCOPEmeta-tokens are generated at the beginning and end of
each scope so that they can be used in embedding start anchttachg. INDENT and
DEDENTtokens are also returned for the benefit of the parser. Ahisfaustom logic can

be encapsulated in a helper component and hidden from thefrtbe specification.

%{
/lindentation levels of scopes enclosing current scope
Stack<Integer> indentationLevels = new Stack<Integer>() ;
/Inumber of dedents indicate by single decrease in indentat ion
int numDedents = O;

%0}

{Whitespace} {:
int existing = indentationLevels.peek();
int current = yylength();
if(current > existing) {
/lindentation up - push level and start scope
indentationLevels.push(current);
yybegin(INDENT); /Inelper state handles token, meta-token
yypushback(1); llpushback so that helper state can re-consume
} else {
/lindentation down or same
/lpop, looking for current indentation level
while(current < existing) {
numDedents++;
indentationLevels.pop();
existing = indentationLevels.peek();
}
if(current != existing) {
/ldidn’'t find current level in stack - error
error("Invalid dedent - didn’t match any previous level");
} else if(numDedents > 0) {
/lfound current level in stack - valid
yybegin(DEDENT); //helper state handles tokens, meta-tokens
yypushback(1); /Ipushback so that helper state can re-consume

54

31
32
33
34
35
36
37
38
39
40
a1
42
43
44
45
46
47
48
49
50
51
52
53
54

4.10. Conditional Meta-Tokens

}
}
}
<INDENT> {
<<ANY>> {:
/lgenerate token and meta-token, then return to default sta
yybegin(YYINITIAL);
return token(INDENT);
'} START_SCOPE
}
<DEDENT> {
<<ANY>> {:
/InumDedents == num tokens/meta-tokens to generate
if(numDedents > 0) {
yypushback(1); /lpushback for re-consumption by self
numDedents--;
return token(DEDENT);
} else {
yybegin(YYINITIAL);
}
'} END_SCOPE
}

Listing 4.14 Indentation-Based Languages in Metalexer

55

te

MetalLexer Semantics

56

Chapter 5

Tool Execution

This chapter describes the tools provided in the MetaLestriloution: the MetalLexer-to-
JFlex, Metalexer-to-MetalLexer, and JFlex-to-Metal exanslators.

5.1 MetalLexer-to-JFlex Translator

The MetaLexer-to-JFlex translator is the most importanthef provided tools because it
creates executable lexers. As showirigure 5.1, it reads MetalLexer specificationsig-
ure 5.18 and produces JFlex specificatio®3gure 5.1b). The resulting JFlex specifica-
tions can be compiled to Java classes without any externmmdiencies (e.g. runtime
libraries).

The translator is most easily executed via metalexerjflexThe program accepts three
arguments: the name of a layout (without file extension)gihectory in which to look for
the layout, and the directory in which to write the new JFléesfi

For example, one might ryava -jar metalexer-jflex.jar natlab /home/userA/src /tmp

Otherwise, you can execute the main classtalexer.jflex.ML2JFlexirectly.

57

Tool Execution

(a) Input Files — MetaLexer (b) Output Files — Struc-
tured JFlex

Figure 5.1 MetalLexer-to-JFlex Translator

5.1.1 Tracing

If -tis passed before the first argument to the jar (or to ML2JFteen the generated lexer
will support tracing. To see a high-level meta-lexing trazdl setTracingEnabled(true)n
the generated lexer before using it.

Furthermore, when the is passed to MetalLexer, the generated lexer will providetfans
getCurrentComponentgndgetCurrentEmbedding()These functions return the names of
the current component and embedding, respectively. Theyldmever be used to affect
the control flow of the lexer but they are useful for debugging

5.2 MetalLexer-to-MetalLexer Translator

The MetalLexer-to-MetalLexer translator reads in a Metat.egecification, performs syn-
tactic and semantic checks, processes inheritance g@gectind then prints out a flattened
(i.e. inheritance-free) Metalexer specification (or adiserrors).Figure 5.2 shows an ex-
ample of this transformation. IRigure 5.2 the original specification consists of multiple
layouts (blue) and components (green). Dotted arrows @teimheritance (from child to
parent) and solid arrows indicate composition (from layloutomponent). As a result of

58

5.2. Metalexer-to-MetaLexer Translator

inheritance, the children are merged into their parentsaatyl the composition relation-
ships remain Figure 5.2b shows the result — a single flat layout referring to a number of
flat components.

(a) Input Files — MetaLexer (b) Output Files — Flat MetaLexer

Figure 5.2 MetalLexer-to-MetalLexer Translator

The MetaLexer-to-MetalLexer translator exists primargyagproof-of-concept — it demon-
strates that the MetaLexer architecture can support neltipde generation engines. The
translator is, however, useful in its own right. During thevelopment process, it can
be used to check a specification (syntactically and senaiyfiavithout considering AlL
fragments. Furthermore, it shows the effects of inhergamithout requiring the developer
to read through lower-level LSL code.

The process for running the translator is exactly as aboxegpt with metalexer-metalexer.jar
and metalexer.metalexer. ML2ML in place of metalexer-jieand metalexer.jflex. ML2JFlex,
respectively. Thatis ...

The translator is most easily executed via metalexer-metajar. The program accepts
three arguments: the name of a layout (without file extensitwe directories in which to
look for the layout (semicolon-separated list), and theaory in which to write the new
MetalLexer files.

For example, one might ryava -jar metalexer-metalexer.jar natlab /lhome/useré/émp

Otherwise, you can execute the main classtalexer.jflex.ML2MLdirectly.

59

Tool Execution

5.3 JFlex-to-MetalLexer Translator

The JFlex-to-MetaLexer translator also serves as a pribobacept. By converting (nearly)
any valid JFlex specification into a valid MetalLexer speatiimn, the translator shows that
MetalLexer is no less powerful than JFlex (as a LSL). We carubethat it will accept any
valid JFlex specification because the translator is agtaathodification of JFlex 1.411

Unfortunately, the JFlex-to-MetalLexer translator is netyuseful as a tool for porting
existing lexical specifications from JFlex to MetalLexereTgenerated files are not written
in proper MetalLexer style; rather, they are the simplessintes MetaLexer that will exhibit
the same behaviour as the original JFlex files. Furtherntbestranslator is subject to the
limitations described iBsection5.3.3 A more useful tool is described Bectionl1.6

Figure 5.3 shows the transformation performed by the JFlex-to-MetaL&anslatorFig-
ure 5.3ashows the original specification, a black box of JFlex codd,Fagure 5.3bshows
the output specification, naive MetaLexer. The output dation will always consist of
a single inheritance-free layout referring to a single ithace-free component.

(a) Input Files — JFlex (b) Output Files — Naive Metalexer

Figure 5.3 JFlex-to-MetalLexer Translator

5.3.1 Functionality

Listings5.1-5.3 illustrate the translation process. Starting with the ioagspecification,
Listing 5.1, the translator produces two MetalLexer files: a layaigting 5.2, and a com-
ponentListing5.3

http://jflex.de/

60

© 0 N O OB~ WN PP

e e e A e e =
® NN WNR O

~N o o b~ WODN P

5.3. JFlex-to-MetalLexer Translator

package pkg;
%%
%class Class
%{ /» action code =/ %}
%init{ /» init code */ 9%}
%xstate statel, state2
identifier = [a-zA-Z]+
%%
<statel> {
keywordl { kwl_action(); }
{identifier} { id_action(); }
(:\n) { catchall_action(); }
}

<state2> {
keyword2 { kw2_action(); }
(:\n) { catchall_action(); }
<<EOF>> { eof_action(); }

Listing 5.1 JFlex-to-MetalLexer Example — Original JFlex

package pkg;

%%

%%

%option class "%class Class"
%{ / + action code */ %}
%nit{ /* init code */ %]}
% st at e statel, state2

Listing 5.2 JFlex-to-MetalLexer Example — Generated Layout

The layout is constructed from the first part of the JFlex Bpation. First, the trans-
lator copies the JFlex header into the MetalLexer local headé leaves the MetaLexer
inherited header blank. Then it adds the optiotsame valudecomegooption name
"%name value” Finally, the translator copies code regions and stateadsobns directly
from JFlex. The generated layout has no embeddings seaimaube all transition logic is
contained in AlL code.

The component is constructed from the remainder of the Hflegification. The translator
copies macro declarations directly from JFlex to MetalLeXdren it copies the rules, but
not before they are modified and reordered. The AIL code digishave to be changed

61

Tool Execution

© 0 N O O~ WN PP

NNNRERRRRRERRR R
NP O ®©O0~NOU M WNEPRO

identifier = [a-zA-Z]+
%%

<statel> {
keywordl {: kwl_action(); :}
}
<state2> {
keyword2 {: kw2_action(); :}
}
%:
<statel> {
{identifier} {: id_action(); :}
}
%:
<statel> {
<<ANY>> {: catchall_action(); :}
}
<state2> {
<<ANY>> {: catchall_action(); :}
}

<statel, state2> {
<<EOF>> {: eof_action(); :}

}

Listing 5.3 JFlex-to-MetalLexer Example — Generated Component

—from *{ }’ to *{: :}’ — and the rules have to be divided into acyclic, cyclic, atehoup
categories. The translator will also attempt to find catgbetterns (e.g(.|\n)) and convert
them into<<ANY>> rules. Finally, the translator explicitly associates BeSEOF>> rules
with all declared states.

Adding explicit state lists tax<EOF>> rules is necessary because JFlex and MetalLexer
handle implicit states or<EOF>> rules slightly differently. Whereas MetalLexer treats
<<EOF>> rules the same as other rules (i.e. no explicit states implienclusive states),
JFlex treats them differently. In JFlex<xEOF>> rules with no explicit states are considered
to belong toall states. The translator makes this assumption explicit aothie resulting
MetaLexer specification has the same meaning as the origfthat specification.

62

5.3. JFlex-to-MetalLexer Translator

5.3.2 Execution

The translator accepts the same arguments as the origieal ekecutable: a list of JFlex
files, -d outdir, etc. JFlex options related to the type of finite automatobe@enerated
will be ignored. If no arguments are specified, then a graghiterface will be displayed.

If you have metalexer-jflex.jar, you can execute the traosldirectly. For example, one
might runjava jflex.metalexer.JFlex2ML lang.flex -d /gen

Otherwise, you will have to execute the main claex.metalexer.JFlex2ML

5.3.3 Limitations

Though the translator will generate a correct lexer modt@time, there are circumstances
under which it does not perform as one might desire.

First, the translator discards all comments at the spetditdevel (as opposed to within
actions). This is part of JFlex’s behaviour and the traoslgta modified version of JFlex.

Second, the translator does not support JFlex’s (infretiyuesed)%eof directive. This
is because MetalLexer lacks an comparable directive andaimy the behaviour would
require too much analysis to avoid name conflicts with theltrgpecification.

Third, the MetalLexer-to-JFlex and JFlex-to-Metal exeldpalternately applied, will never
achieve a steady state. The JFlex-to-MetalLexer translates not look for code generated
by the MetalLexer-to-JFlex translator so it is converted iAtL blocks in the resulting
MetaLexer specification. Consequently, when the MetaLexdi~lex translator is re-run,
it will generate the same code. In the present implememathis results in name con-
flicts (seeSection7.2.3for details). However, even if the name conflicts were resw|v
the MetalLexer-to-JFlex translator would still re-add tlaene constructs every iteration,
preventing a steady state.

Finally, if any of the action code in the JFlex specificatia@fiers explicitly to a lexical
state, then the generated MetalLexer specification will bernect. This is because, in the
generated MetalLexer specification, the lexical state weillleclared at the component level

63

Tool Execution

whereas the action code will be inserted at the layout lexel$coping issue).

64

Chapter 6

Language Design

The previous chapters have described how MetalLexer wotks.Chapter explains why it
works the way it does. By considering the most fundamentalcamdentious Metal exer
design decisions, we illustrate its underlying philosapBgach section explores a single
design decision and its consequences.

6.1 Language Division

A specification that must be contained in a single file is noy veodular, so some sort of
division is necessary. Now, in a lexer, we have two types fofrmation to specify: lexical
states and the interactions (i.e. transitions) betweesetlstates. As a result, there are
essentially two ways in which we can divide the specificatigither we can mix the two
types of information or we can keep them sepatdtedesigning MetalLexer, we decided to
keep them separate: components describe lexical statéayemds describe the transitions
between them.

Those familiar with aspect-oriented languages may re@eghiese setups as symmetric and asymmetric,
respectively.

2MetaLexer further subdivides files using inheritance. Thigs place after the more fundamental sepa-
ration (i.e. of layouts from components) discussed here.

65

Language Design

Figure 6.1 illustrates the two types of division. lAgure 6.1a we see a single monolithic
specification containing two types of informatidfigure 6.1bshows a symmetric division
of this specification. Each new file contains information otrhbtypes and any file can
refer to any other file. This would be like having severalditexical specifications, each
containing both lexical states and transitions. On theratiaad, Figure 6.1b shows an
asymmetric division of the specification. Each new file cor#aonly a single type of
information and references are unidirectional. This ie [kitting transitions in layouts and
lexical states in components and then creating referemogslayouts to components.

S

(a) Monolithic (b) Symmetric (c) Asymmetric

Figure 6.1 Dividing a monolithic specification into smaller files

The separation of components from layouts makes speotfitatiearer and easier to read
since all of the transition logic is in one place. Furthereyat makes both layouts and
components more reusable. After all, it is frequently theedaat two languages lex certain
constructs the same way. For example, many languages haviy r@entical rules for
lexing string literals. In MetaLexer, these rules are corgd in a single component. Now,
if this component contained the rules for transitioning@iat out of the string literal lexical
state (i.e. itself), then it would necessarily be couplegitother component. Unfortunately,
this other component would almost certainly be languageeifip and so reusability would
be greatly diminished.

6.2 Types of Extension

Extensibility was a primary design goal of Metalexer, so \ad ko decide what types of
extension to allow. The most general possible system wdidd addition, removal, or

66

6.3. Component Replacement

replacement of any element of a specification. We decidetbfjast short of this level
of extensibility because we wanted to prevent some potgntiangerous operations. As a
result, MetaLexer supports addition and replacement adlathents of a specification but
deletion of only rules, options, and embeddings.

Within a component, the most obvious candidates for modifinaare lexical rules. When
inheriting a component, these can be deleted, added, aidden (i.e. replaced). Deletion
is accomplished using titglel et e directive and addition and overriding are accomplished
by inserting new rules before the inherited component. Hedadms can be added or re-
placed but not deleted. Code regions, exceptions, and ma@ge integral to a component
that removing them would be quite unsafe.

When inheriting a layout, embeddings can be deleted, addedeoridden (i.e. replaced).
Deletion is accomplished using tB@nenbed directive. Addition and overriding are ac-
complished by inserting new embeddings before the inteldgout. Options are also fully
modifiable since they are likely to change from one lexer tortext, even if the languages
are similar. They can be deleted using #hmopt i on directive and added or overridden
by inserting new options before the inherited layout. Codgores, exceptions, and decla-
rations are not removable because they are so integral featlaSimilarly, the inherited
header can be supplemented but not reduced.

6.3 Component Replacement

Replacement of component references in layouts carriesiceitks — as does any sort of
global replacement — but we decided to allow it because istsuibially reduces develop-
ment time and specification fragility. We did, however, gpg#rtain restrictions to mitigate
some of the risks.

We could have omitted this feature since the same effect eacthieved using the normal
inheritance mechanisms. That is, existing embeddings ¢émel elements that refer to
components) can be explicitly deleted and re-added rafgta the new component. How-
ever, this approach is both labour-intensive and fragikeesithe inheriting and inherited

67

Language Design

layouts must be kept synchronized manually.

We restricted replacement of component references in twswairst, we decided that
all replacements would be perfomed in a single pass, so thatl@pers would not have
to worry about cumulative effects. Second, we decided ndetee into components and
replace the component references therein.

To make the replacement process intuitive, we decided tdowrell replacements (for
a single inherited layout) into a single translation map arake a single pass through
the affected layout. Whenever a component name is encodntie translation map is
consulted and a replacement is made, if necessary. Sinaeighenly one pass, there is
no chance of transforming a single component name more theg& d-or example, if the
replacement list consisted #freplace A, Band%replace B, Cthe translation map would
look like {A— B,B— C}. Note that occurrences of the component naimeould be
replaced byB, rather than byC since the translation map is only applied once.

To limit unintended consequences of replacements — eslydoithe inheritance hierarchy
of components — we decided not to have replacement affegpaoemts. That is, compo-
nent references in components referred to by the layouta@neadified by a replacement.
Hence, there is no need to worry that the component inhegtarerarchy will be modified
by a replacement. For example, if a layout uses a compdhémdt inherits a component
D, andD is replaced witlEe, then componer® will be unaffected even though it refers to
a component that has been replaced.

6.4 Inheritance

In designing MetaLexer’s inheritance mechanism, we carsidl two fundamentally dif-
ferent approaches. On the one hand, there was object-@dié®) inheritance, in which
children delegate to parents. On the other, there was fexitiasion, in which parents
are copied directly into children. We chose to use an exiholen of textual inclusion,
primarily because we found it to be substantially more iitei The reasons are threefold.

First, MetaLexer inheritance can always be mimicked by naipunerging a component

68

6.5. Finalization

or layout and its ancestors into a single file. This is possii@cause descendents of a
common ancestor share nothing in common — each has its owroceyhichever parts of
the ancestor remain.

Second, this approach is more consistent with existing LSiace developers are used
to working with a single specification file (and since ultielgt the implementation will
generally output a single specification file), having a cleay to process inheritance and
visualize the result is very helpful.

Third, as discussed iSection6.2, we wanted inheriting modules to be able to delete el-
ements of their ancestors. Speaking loosely, this meamndvibalLexer modules are not
subtypes of their ancestors. While this does not technicadiiate the definition of in-
heritance, popular OO languages so often conflate inhedtand subtyping that this dis-
crepancy could cause confusion. That is, we worried thatgopartially, but not totally
consistent with familiar OO systems would be counter-intei

Unfortunately, this decision is not without consequencedér this scheme, a naive imple-
mentation will likely produce output containing a substainhmount of duplicated code.
For example, if all of the macros are extracted into their dw@tper component and then
inherited by all components that use macros, then each aoampavill end up with copies
of all macros. A more advanced implementation would reczgyand eliminate identical
sections of inherited code, especially those that are itgteirom the same source.

6.5 Finalization

We decided early on that we wanted Metal exer error messades/e very specific posi-
tions in the source code. This had important consequencéisdanheritance mechanism.
In particular, it meant that each module had to be treatedsaff-&ontained unit, capable
of being error checked. Hence, each module is finalized — rmalflessufficient — before it
is inherited.

Finalizing each module before inheritance makes it posdibicheck for errors at each
step in the inheritance process, rather than waiting urgikeind when everything has been

69

Language Design

flattened. For example, suppose a component refers to a itetriohas not declared. An

error should be reported and it should refer to the specifiepoment and rule. However,

if error checking is delayed until after all inheritance leen performed, then the macro
might be defined in a component that inherits the invalid conemt and the error might

remain hidden. This is why each module (i.e. component asugyis evaluated to an

independent unit and error checked before it is integratedan inheriting module.

As an added benefit, this type of inheritance is very intajtivecause the intermediate files
can actually be constructed and examined independentlgreTis no need to visualize
sharing of data in memory.

The alternative would have been to perform error-checkiteg arocessing all inheritance.
This would have resulted in confusing situations where gapgpecifications (i.e. errors)
were inadvertently filled by inheriting modules. While tha@tsof behaviour is sometimes
useful, even necessary, we decided that we would prefer ke ma&xplicit. To this end,
modules can be flagged &®kel per and some checks will be deferred (s®ection4.6.2
for details).

6.6 Order and Duplication

The chief problem when combining multiple modules into @krspecification, especially
using multiple inheritance, is how to resolve conflicts. fTisaif two different modules
provide the identical (or overlapping) elements, then dwoneone must be chosen. One
option would be to raise an error for each conflict, but thiprapch tends to be too re-
strictive. Better options are to provide a general rule feoheng conflicts or to allow the
developer to resolve conflicts explicitly.

Fortunately, when designing MetaLexer, we had some pretédeely on. In JFlex (and
other LSLS), if two rules match the same input string, themfitst rule is chosen. For
example, if a lexer containing ruleg¢aa)* anda*b? (in that order) was executed on input
aaa then both rules would match bafaa)* would be chosen because it appears first
textually. We decided to take the same approach. Within aMeter specification, order

70

6.7. Rule Organization

matters. If two rules (or directives) conflict/overlap, ite first is chosen.

Seeing how well this worked, we decided to extend this pbpby to the rest of Meta-
Lexer: if two options have the same name then the second avitiored; if there are two
start states or start components, then the second will lmeednif there are twéappend
regions, then the second will be ignored; etc. This elingsa lot of errors and makes
it easier to combine modules that were developed separakelsthermore, we decided
to apply this policy to individual files to reinforce the id#eat inheritance can always be
simulated by manually merging files.

In general, duplicating part of a MetaLexer specificatiofi wot result in an error. If
something is obviously redundant, then MetaLexer may issuarning but it will have no
effect on the behaviour of the generated lexer.

To some extent, MetalLexer also allows the developer to mnesolve conflicts. For
example, when inheriting a module, they can choose to datetdement that would have
caused a conflict. This is primarily useful for eliminatingnuings.

6.7 Rule Organization

Perhaps our most controversial design decision was toalimitmponent rules into three
categories: acyclic, cyclic, and cleanup. We chose to doesause insertion points are
required for new rules and the boundaries between thesgaras are both natural and (in
practice) sufficient. Furthermore, the restrictions thigsibn imposes are not as severe as
they initially appear.

We chose this particular division based on our observationserning frequently used reg-
ular expressions. The three categories correspond nedtig imost commonly used types
of regular expressions: acyclic regular expressions aee ts represent keywords and
symbols; cyclic regular expressions are used to repredentifiers and numeric literals;

and cleanup regular expressions generally perform erradlimgy and other administration.

Furthermore, the order in which these categories are agthisqiatural — keywords usually
precede identifiers, which usually precede cleanup rules.

71

Language Design

The boundaries between these categories are (almosty tatifficient as insertion points
for new rules. That is, given a new rule and an arbitrary insepoint into an existing

list of rules, the same effect can (nearly) always be achidéyeinserting the new rule at
one of the boundaries. ASgure 6.2shows, new keywords and symbols should be inserted
before the existing acyclic section; new identifiers and eudaliterals should be inserted
after the existing acyclic section but before the existigglic section; and new cleanup
code should be inserted after the existing acyclic and cgelctions but before the existing
cleanup section.

Best place to insert new

symbols or keywords Acyclic

Keywords

. Punctuation
Best place to insert new

patterns

!

Cyclic
Identifiers
Numbers

Best place to insert new [
cleanup code

Cleanup
Errors
EOF

Figure 6.2 Rule type boundaries as insertion points

Exceptions do exist. For example, suppose that an exigpegjfecation contained the rules
(aa)+ and(aaaaa)+ Then, since 2, 3, and 5 are coprime, inser{jaga)+ between them
would change the behaviour of the lexer. For example, beéfearénsertion(a){ 15} would
have matched th@aaaa)+ whereas afterwards it would mat@ma)+. This problem can
arise in any specification where two rules overlap, but menbsumes the other. However,
this rarely occurs in practice so the following workaroundfises: simply delete the rules
in the inheriting component and reinsert them in the coreder.

As for the restrictions that this system seems to imposegrobghat, given a list of rules
such that no rule is (partially) subsumed by a preceding thtelist can be rearranged into
this order without changing its behaviour.

72

6.8. Append Components

6.8 Append Components

Another early consideration in the design of MetaLexer viwsgoal of eliminating boil-
erplate code for input validation lexical states. Thes&estgather up the input as they
validate it and return a single token at the end. Each ondresya lexical state, a string
buffer, and possibly position variables plus code to comt them. To eliminate this boil-
erplate code, we decided to supplement MetalLexer with featmaking this type of lexical
state easy to specify.

Before adding the new feature, we had to decide whether ortvesis worth the extra
complication. After all, it is frequently possible to elinate these validation lexical states
in favour of regular expressions. For example, a regularesgion can be used to validate
string literals (e.g. all escapes are valid, no newliney, étowever, regular expressions do
not produce very good error messages. Rather than indicahiodp part of a string fails to
match the regular expression, they simply fail to matchlafldde best one can hope for is
an ‘unexpected character’ message indicating that no atleehas matched the beginning
of the string literal. This is why lexer writers create ledistates to verify string literals
character-by-character as they are appended to a buffeseGoeantly, we decided that a
new language construct would be worthwhile.

MetaLexer eliminates validation lexical state boilerpléty introducing append compo-
nents (se&ectiond.9 for an explanation of their behaviour). In common cases, $ikking
literals and multi-line comments, no state informationeiguired at all — MetaLexer main-
tains it all behind the scenes. If some variables are redjitite because they pertain to the
specific component and are, therefore, not boilerplate.

Unfortunately, append components are not very good at mandtart delimiters. Since
start delimiters occur before the transition to an appemdpoment, they are unavailable
to that component. As such we had to add another pair of eartstrtheappendToStart-
Delim(String)method and appendWithStartDelim regions (Seetiord.9.1for an expla-
nation of their behaviour). ThappendToStartDelim(Stringhethod passes information to
the next component and an appendWithStartDelim regionvesd.

73

Language Design

Notice that this design does not couple the source and a@éistircomponents. If the source
component is used with a different, non-append destinaiionponent, then the start de-
limiter will be ignored. Similarly, if the destination corapent is used with a different
source, it will use the start delimiter, if any, from that qooment.

We append to the start delimiter rather than setting it, beeat could be build up across
several rules (since a start meta-pattern can be built ysaseveral rules).

6.9 Meta-Pattern Restrictions

When we designed the meta-patterns in MetaLexer, we had #ispemplementation in

mind. We expected to have a pair of lexers: one for procesbiagnput stream and one
for processing the meta-token stream (Seetion7.2.3for details of an example imple-
mentation). Since we expected both to be full-scale lexgeshad the option of making
meta-patterns every bit as complicated as normal patteensé€gular expressions). How-
ever, to keep meta-patterns intuitive and to avoid forcirgrie implementors to follow this
implementation pattern, we decided to restrict meta-patenore than normal patterns.

We did, however, give meta-patterns one feature that nqgoatérns lack. There is a single
meta-pattern that matches an empty input sequer@=>. Because of the risk of infinite
loops and the difficulty of matching an empty string with amat pattern, this particular
pattern, called gure BOFis supported separately. MetalLexer determines anallytical
all pure BOF transitions that will take place at the beginnifighe stream and performs
them as a single step. It also detects cycles ahead of timeas@itrors can be raised at
compilation time.

We included this feature mostly for consistency — it wouldsb@nge if it could be used
in combination with other meta-tokens, but not on its own pbthetically, it also allows
developers to initialize the embedding stack. Using pure 8 GtHs possible to move a
number of embeddings onto the stack before lexing startsagdltiey can be popped off at
appropriate times. While this is unlikely to be useful in giee, the meaning is sensible
and the behaviour would be very difficult to simulate withpute BOFs.

74

6.9. Meta-Pattern Restrictions

The first restriction we imposed on meta-patterns was theimdition of ranges. Since
meta-tokens and regions (i.e. references to entire conmp®n@re unordered, ranges have
no intuitive meaning. We could have implemented them quatglg they just would not
have had predictable behaviour.

Next, we eliminated general negation. While it is frequentigeful to specify the negation
of a single meta-token (e.g. anything but a newline), it$s leommonly necessary to spec-
ify the negation of a meta-pattern (e.g. anything but foymkards in a row). Furthermore,
it is often difficult to predict at what point such a meta-pattwill match. Consequently,
we decided to limit negation to classes. That is, classesatdistokens and regions can be
negated, but full meta-patterns cannot.

We decided not to implement meta-pattern macros since patarns are not generally
repeated. Furthermore, in order to be checkable, macrokivaure to be tied to specific
components and there are relatively few meta-patternsrigjeto any one component.
There are, however, no obstacles to adding support for petarn macros in the future.

We also insisted thatBOF> and regions only appear at the beginning of meta-patteims. T
reason for restricting the position @BOF> is obvious — nothing can precede the beginning
of the meta-token stream. Regions are a bit trickier — weictstt their positioning for
efficiency reasons. Regions can only appear at the beginhiagreta-pattern because,
if something preceded them, then a portion of the meta-taiteram would have to be
matched more than once. That is, since the region is preséné istream, it must be the
case that the preceding meta-tokens triggered a transgitithe corresponding component.
Therefore, they have already been matched. Allowing theilmetoematched, perhaps a
large number of times, would substantially increase thestoase runtime of the lexer.

Unfortunately, meta-patterns in which regions appear dffte first position can be quite
useful. For example, suppose we wanted to switch contexia speing parenthesized
strings; we might write a meta-pattern likPAREN %STRING% RPARERhis seems like
a perfectly reasonable thing to do, but MetalLexer forbibedause the regiofeSTRING%

is not in the first position. If we allowed this meta-pattehen we would have to re-process
theLPARENmMeta-token, possibly a large number of times.

75

Language Design

This might restriction might seem to impose quite a defigyebat recall the context — we
are still in the lexer. This sort of meta-pattern is propehdg domain of the parser. The
absence of this functionality is no more significant thanahsence of any other context-
free construct.

6.10 Cross-Platform Support

Our decision to make MetalLexer cross-platform — indepenaoteiiL, PSL, and (backing)
LSL — substantially increased the complexity of the projdtaffected all aspects of the
design and is responsible for many of the syntactic diffeesrbetween MetalLexer and
JFlex. However, the careful re-examination of all elemehtke design that cross-platform
support required was ultimately beneficial.

6.10.1 Action Implementation Language

To keep MetalLexer independent of AIL, we decided to treabediurrences of AlL code
in MetaLexer specifications as free-form strings. For eXamphen declaring exceptions,
the exception names are enclosed in quotation marks sohatan contain whitespace
or other non-identifier characters, depending on the AlIL.

We provided escape sequences for all closing delimiteesstaived the problem of allowing
closing delimiters within these free-form strings. Formyde, an action may contain the
character sequence}’:if it is escaped as ‘%¢’. Similarly, an % ni t code region may
contain the character sequence ‘%jhitit is escaped as ‘%%init’. As a result, free-form
strings are totally unrestricted.

Inheritance of header sections would have been simpleeyf bad been converted into a
series of directives (e.gfpackage, % nport, etc), but this would have tied MetaLexer to
the structure of one AlL. Instead, we decided to retain tbe-iorm header of JFlex and
other LSLs, merging them using simple concatenation. Uafately, this meant giving
up support for deletion and replacement of parts of the heade

76

6.10. Cross-Platform Support

After rule categorization (segectior6.7) our most controversial decision was to change the
brackets surrounding action code in component rules. @rliex (and JLex, Flex, etc),
Metalexer uses{- :}' rather than { }’. We made this breaking change because MetalLexer
might conceivably be used with an AIL in which a single idé&atiis a valid action. For
example, in Ruby, a single identifier can be a function calblbse parentheses are optional
in Ruby. In such cases, an action containing a single identifelld be indistinguishable
from a macro invocation at the end of the preceding regulpression. Modifying the
delimiters solves this problem.

Finally, we attempted to minimize the number of API calls iguieed to specification
writers (e.g.append(String)and lexer users (e.gtop() in order to remain implementable
in the largest possible number of AlLs.

6.10.2 Parsing Specification Language

As originally conceived, MetalLexer was to have monitores stream of tokens returned
by the lexer and used the tokens themselves to make decedoang transitions between
lexical states. This would have eliminated both the needfeta-tokens and the need
for special start delimiter behaviour (s&ection6.8). However, it would also have tied
MetaLexer not only to a specific AIL but to a specific PSL.

To keep MetaLexer cross-platform, we decided to introduetartokens. They require
some extra work on the part of the specification writer, bel/thlso simplify transition
logic.

First, meta-tokens eliminate the need to examine all toketasned by the lexer. By leaving
some rules unlabelled with meta-tokens, it is possible &stirally simplify most multi-
meta-token meta-patterns. In particular, they no longeeha account for uninteresting
tokens in the middle of desirable patterns.

Second, meta-tokens can be generated by rules that do oot tekens. This makes it
possible to make transition decisions without cluttering token stream received by the
parser.

77

Language Design

Finally, meta-tokens do not have to be distinct. Assignogites the same transition effect
is easy with meta-tokens — just label them with the same moéen. It does not matter if
they do not return the same type of token or even any tokerik at a

We also declined to provide a specific API for generated kex&his makes it easier for
specification writers to adapt the public APIs of their lexar suit their preferred PSLs.

6.10.3 Lexer Specification Language

Lexer specifications contain a lot of information in optiwiectives. However, these vary
substantially from language to language. To accomodase\tre made options free-form
but gave them names. This allows them to be deleted or rapiaitbout tying them to a
specific LSL.

78

Chapter 7

Architecture

The previous chapter described the design decisions béhatal_exer. This chapter dis-
cusses some of the specific implementation choices thatmade and the issues that were
encountered while constructing MetaLexer. It is broken wldnto two parts: first we dis-
cuss the tools that are used to build and execute MetalLexiethen we explore the more
interesting/involved parts of MetalLexer’s backend impbenation.

7.1 Tools Used

This section describes the tools that we use to build, ereand test MetalLexer.

7.1.1 Antand Eclipse
MetaLexer can be built from source using Aatone or a combination of Ant and Ecligse
This should satisfy the majority of Java developers.

Presently, the two most popular ways to build a Java projeat Source are to use an Ant
script or to create an Eclipse project and let Eclipse do tbekwTo accomodate a wide

Lhttp://ant.apache.org/
2http://www.eclipse.org/

79

Architecture

range of developers, MetalLexer supports both approackessdurce distribution includes
both Eclipse project files and Ant build scripts. In both caglee Ant build scripts are used
for all non-Java compilation, but if Eclipse is used, themehlipse.runningproperty must
be set to prevent the Ant build scripts from calling javac tiddclass files.

The two approaches — Ant and Eclipse — are basically equiydbet Ant should be used
to build jar files because otherwise Eclipse will compile amddude Java classes that may
not be necessary for a specific configuration.

Ant and Eclipse are not distributed with MetaLexer. They@asidered to be basic pro-
gramming tools and it is assumed that users of Metal exea@drbave or can easily obtain
them.

7.1.2 JFlex

MetalLexer uses JFlex in a number of ways, but the two projeatsot be distributed
together because of their incompatible licenses. Consdgueare was taken to ensure
that MetalLexer would work in JFlex’s absence.

JFlex specifications play several important roles in Mexale First, the initial specifi-
cations for the component and layout language lexers weiteewiin JFlex. Even after
bootstrapping MetaLexer (i.e. rewriting these specifaradiin MetalLexer), the lexer spec-
ifications are still translated to JFlex and compiled froraréh Second, Metalexer uses
a number of small lexers for string processing. Since theysar simple, these lexers
are specified in JFlex (rather than MetalLexer). Third, teresmce implementation — the
MetalLexer-to-JFlex translator — produces lexer specifinatwritten in JFlex. If JFlex is
absent, these generated JFlex files cannot be compiled @wlsober of the backend tests
cannot be run (those that test the behaviour of the gendeaters).

Unfortunately, JFlex is covered by the GNU General Publicebse (GPL3, so it can-
not be released under MetaLexer’s modified-B$iPense. As such, MetalLexer has been
designed to run in a (slightly) reduced-capacity mode wiéexlis absent. This is accom-

3http://www.gnu.org/copyleft/gpl.html
“http://www.opensource.org/licenses/bsd-license.php

80

7.1. Tools Used

plished by loading all JFlex classes reflectively and fgilgnacefully if they are missing.

JFlex lexers (i.e. the programs output by the JFlex tooltherother hand, are not covered
by the GPL. Hence, a number of pre-compiled lexers are ircluglith the distribution.
Using a special Ant target, these lexers are generatedebeffeating the release jar. Then,
at build-time, the build script searches for JFlex on thesgpath. If it is not found, the
JFlex compilation steps are skipped and the pre-generétsafe copied from theermgen
directory to the directory in which they would have been gatezl (i.e. thegendirectory).

If a user does not have access to JFlex, then these files daregenerated but MetaLexer
will still be useable.

The JFlex-to-Metalexer translator, which is distributegarately, is covered by the GPL
and so does not have this problem.

7.1.3 MetalLexer

The lexers for the MetaLexer component and layout languagespecified in MetaLexer
itself. They are compiled into JFlex specifications by a bingersion of the MetalLexer-
to-JFlex translator and are then compiled into Java classag JFlex.

Establishing this circular dependence was straightfaiw@nce we had a working MetalLexer-
to-JFlex translator, we created a jar file of the binariesenlve re-specified the compo-
nent and layout languages in MetaLexer and used the jar tpit®them, as we would any
other MetalLexer specification. To complete the process,reated a new jar containing
the lexer classes generated from the MetalLexer specifisatierom then on, development

of the lexer was done in MetaLexer.

7.1.4 Beaver

The parsers for the MetaLexer component and layout languagegenerated by the Beaver
parser generatdr Beaver has two main advantages over its popular competitd?® CU

Shttp://beaver.sourceforge.net/
Shttp://www2.cs.tum.edu/projects/cup/

81

Architecture

First, Beaver allows extended Backus-Naur form (EBNF) opesdice. ‘+’, *, *?’) to

be applied to parenthesized subexpressions, effectivefiting anonymous non-terminals.
This eliminates the need for a large number of temporary teaminals and makes the
grammar more readable. Second, Beaver is speed-orientddiniis to provide the fastest
possible dispatching of actions (within the LALR framewptk

Beaver is covered by a modified-BSD license and so is distabwith MetalLexer. Files
generated by Beaver are not covered by any license and sodabeyé distributed with
MetaLexer.

7.1.5 JastAdd

JastAdd EHO7H is an extensible attribute grammar framework. It provideparticu-
larly nice way to specify, build, and transform abstracttayrirees (ASTs). JastAdd also
provides lightweight support for aspects. It allows ingpe declarations into specific gen-
erated classes without forcing developers to deal with tmeptexity of an entirely aspect-
oriented project. Furthermore, since JastAdd is the saxt@nsible framework that Meta-
Lexer should eventually be used with, its use also servesas af proof of concept.

JastAdd is covered by a modified-BSD license and so is dis&rtbwith MetalLexer. Files
generated by JastAdd are not covered by any license and sdothare distributed with
MetaLexer.

7.1.6 JUnit

MetalLexer uses the infrastructure provided by the JUttibl to manage its test suites.
Though this violates design principles of the JUnit téaitis quite effective’.

JUnit has become the de-facto standard for testing Javagmsg Even when the tests are

“The inner workings of Beaver’s parsing engine use somaeéstig techniques which make it really
fast, probably as fast as a LARL [sic] parser can get” — htipaver.sourceforge.net/

8http://www.junit.org/

Shttp://junit.sourceforge.net/doc/fag/faq.htm#tekes

10For example, JUnit has actually been extended to handleifunat tests: http://jfunc.sourceforge.net/

82

7.2. Multiple Backends

not strictly unit tests, JUnit is a useful tool for organgiand running tests because of the
infrastructure it provides.

MetalLexer uses JUnit for integration and functional tagstifhere are test suites for the
various phases of compilation: scanning, parsing, intiec# processing, error checking,
and code generation. Unusually, the test suite classestralls generated from simpler
specifications.

Each test suite consists of a number of pairs of input andubditps. For example, for the
scanning test suite the input files contain MetalLexer fragsand the output files contain
lists of tokens (type, position, and contents) and errofses€ pairs are listed in another
file (in order to give the programmer explicit control overiattests will be run and in
what order). Finally, a JUnit 3 test suite class is generfitad the list of test cases — one
method for each test case. This approach is preferable pigmver a list of files for a
number of reasons. First, it keeps the tests independerditueefor exception in one will
not disrupt the others. Second, it makes it possible to rumgestest case. Third, it results
in much better reports from the standard JUnit tools — thericount is more accurate
and failing test cases are more easily located. (More im@feation details are available
in AppendixB.)

JUnit is covered by a modified-BSD license and so is distributih MetalLexer.

7.2 Multiple Backends

MetaLexer is divided into frontend and backend componeatthat it can easily be ex-
tended to support other AlLs, PSLs, and (backing) LSLs.

In addition to being cross-platform (s&e=ction6.10), MetalLexer is designed to support
multiple code generation targets without substantial pgmentation. To this end, it is
broken into frontend and backend components. The frontentams all of the shared
functionality. The backends depend on the frontend andnexitewith implementation-
specific transformations and code generation.

83

Architecture

As a proof of concept, the reference implementation coatawo different backends (see
Figure 7.1 The first is a simple pretty printer. It simply invokes thartsformations of the

frontend and then generates MetalLexer files from the regukiST. The second is a more
functional JFlex code generator. After invoking the fromdeit performs additional trans-
formations and then generates a JFlex lexer that implentiemtgletalexer specification.

MISEIR G Flattened ,
PY s Metalexer

Flattened

Metalexer Frontend

|Flex Lexer &’
PVl Meta-Lexer

Figure 7.1 The flow of information through the MetaLexer front- and backends.

Adding a new backend implementing MetaLexer with JLex okHer example, would be
quite straightforward. The design would closely follow fredtern established by the JFlex
backend because the lexical specification and programrairgubges are so similar.

Note that these backends are quite independent. They adindepn the frontend, but
otherwise they do not interact. This makes it straightfodMa create separate jars for
each one without including a lot of extraneous code.

7.2.1 Frontend

The shared frontend accomplishes everything up to anddimgjuerror checking in the
traditional compiler workflow (though, of course, a backerath add additional transfor-
mations and error checking). It searches a provided listrettbries (i.e. path), loads the
input files, scans them, parses them, builds an AST, buildsrdal table (in attributes,
since MetalLexer use JastAdd), processes all inheritant@yofits and components, and
performs error checking (which generates both warningsearuts).

When the frontend is finished, the result is either a sortédfiiwarnings and errors (sorted

84

7.2. Multiple Backends

by file, position, and message) or an AST. If the result is aifi,Al¥en it consists of a single
inheritance-free layout referring to a number of inhecifree components.

Error Checking

As discussed irbection6.5, each module is finalized — made complete in itself — before it
is inherited so that error checking can be performed on eatitidual module rather than
being limited to the specification as a whole.

However, to account for the fact that some modules are iioteaity incomplete because
they are only intended to be used through inheritance, MetaLincludes théthel per
directive. Layouts and components markedasl per will be subject to a subset of the
normal tests so that their deficiencies can be remedied @ritnlg modules.

The frontend issues errors for missing declarations (nsacstates, components, meta-
tokens, etc), misclassified lexical rules (sgection4.4.2, empty components, empty
ranges in regular expressions, missing modules (i.e. ndherpath), misnamed mod-
ules (i.e. with names not corresponding to filenames), isisat ¥ext er n’s, circular
dependencies, etc.

MetaLexer allows a lot of things that are unproductive bt @ot actually incorrect. To
notify the programmer of potential problems with their gpeation, MetalLexer raises non-
fatal warnings. Warnings are not severe enough to meritiagathe compilation process,
but they indicate areas of concern that deserve the progeasiattention.

The frontend issues warnings for deletions that have nateftkeletions of rules, options,
embeddings, etc), unused declarations (macros, statgs;lebbering of states and macros
in inheriting components, clobbering of options in inhegtcomponents, etc.

Some of these problems cannot possibly be remedied by iahee (e.g. circular de-

pendencies) and so are unconditional. Others are almosgbidgiadle in modules that are
intentionally incomplete to maximize reusability (e.g.ssing declaration). The checks for
those that could be corrected by inheriting modules arerdgfe

85

Architecture

7.2.2 MetalLexer Backend

The structure of MetaLexer backend is very simple. Sincedtsthot perform any transfor-
mations of its own, it simply uses intertype declarationgdid a pretty-printing function

to each AST node type. Then it creates a public method in tlyeuwteclass that creates
appropriate layout and component files and fills them withpttegty-printing output of the

corresponding nodes.

7.2.3 JFlex Backend

The JFlex backend is more complicated because it has tddrama high-level MetalLexer
specification into a lower-level JFlex specification. Mamygs that are implicit and hidden
in MetaLexer must be made explicit in JFlex. In addition goaust be taken to compensate
for the subtle semantic differences between MetalLexer &hek Jfor an example, see
Section5.3.1).

Meta-Tokens

Meta-Lexer

Transitions

Figure 7.2 A high-level view of the organization of a lexer generated JFlex backend.

Figure 7.2shows, at a high-level, the structure of the lexer geneiayetie JFlex backend.

On the left is the main lexer, which contains the componefiis.the right is the meta-

lexer, which controls the transitions amongst the comptmeAs input is matched, the

lexer generates meta-tokens and sends them to the meta-Tdhe meta-lexer processes
meta-tokens and optionally signals transitions in therlexe

The most interesting aspects of the implementation patemmonstrated by the JFlex back-
end are described below.

86

7.2. Multiple Backends

Scoping

Creating an AlL-level scope at the level of each componentiayalt is a non-trivial task.
The MetaLexer-to-JFlex translator illustrates a possbletion.

Components have their own state whereas lexical states dorhetefore, in converting
from one to the other, care must be taken to give each compsewn namespace so that
it does not interfere with any other components. On the dtlaed, all components share
state that is declared at the layout level and must add tadkethe same token stream.

The MetalLexer-to-JFlex translator solves this problemt@ating a non-static inner class
for each component. This gives each component its own nanesnd state plus access
to the shared layout state, which is declared in the top-lexer class. Each component
class is instantiated exactly once as a field of the lexesdiagure 7.3 shows a high-level
example of this procesdgzigure 7.3ashows the original MetalLexer specification. Notice
that both components have a field called. These fields are unrelated because each
component has a separate scdfigure 7.3bshows the resulting JFlex specification, which
contains an inner class for each component. The highliglegidns are oversimplified and
will be expanded upon later.

Layout state must be stored in the top-level class becauseairt of the API of the lexer.
If it was wrapped in an inner class, then clients of the lexeul have to access them
differently.

One limitation of this inner-class approach is that compdm€annot contain any static
fields or methods. This is because Java forbids static men@on-static inner classes.
This is a relatively minor problem that can be solved eitherdmoving the static modifier
or by promoting the member to the layout-level and addingcdede-extern pair.

Boilerplate code generated by the Metal exer-to-JFlex ka#mrs(which is required since
JFlex does not support the same abstractions) is wrappeawthexr inner class to prevent
name conflicts with programmer-defined state. Much of it impletely static and could
easily be moved into a top-level class but this would intieda requirement for a runtime
jar. Depending on a separate jar for execution is undesirabtause it places an added

87

Architecture

class ClI {

%component Cl| int foo;
%{ int foo; %} action | () {{foo++;}
patl {:foo++;:} Y

class C2 {

int foo;
J%component C2 action| () {i

%{ int foo; %} } |
pat2 {: foo--; :} pat| {; s
pat2 {{c2.action | ();}

(a) MetaLexer — Components (b) JFlex — Inner Classes

Figure 7.3 Translating components to JFlex code

burden on the clients of the jar.

Generated Names

Creating a separate inner class for each component solveproblem and introduces
another. Every time a new name is used, there is a potentiabfdlict with user-specified
names. For example, if the original specification declareshaer class calle@ompClass
and a componentomp then calling the inner class for the compon@umpClasswill
cause a conflict.

Following JFlex’s precedent, we have largely ignored thigbfem. That is, we generate
fairly complex names that are unlikely to conflict with usgecified names, but take no
action to eliminate or even flag conflicts. The resulting tex#l simply fail to compile and
the user will have to choose another name. A more ambitiopkementation could inspect
identifiers in user-specified AIL code and modify generataches to eliminate conflicts.

In order to be able to use reasonable identifiers in our geeteadde, we do wrap most of

88

7.2. Multiple Backends

the state information and helper functions in another irohess. This way, the user only
has to worry about conflicting with the name of a single clas$i¢s instantiation, rather
than all generated state variables and functions.

This problem is most noticeable when alternately apply Biex3to-Metalexer and MetaLexer-
to-JFlex translators. For examplégure 7.4 illustrates one such problem at a high level.
Figure 7.4ashows an initial JFlex specification. It is a black-box — wendd know any-
thing other than its nameFigure 7.4b shows the result of translating this specification
to MetaLexer. It consists of a single layout and a single comemt, both named for the
original specification. The pale blue box in the layout imdés that there is not presently
any AlL code of interestFigure 7.4cshows the translation back to JFlex. Now the JFlex
specification contains an inner class corresponding todhgonent inFigure 7.4h Fig-

ure 7.4dshows the second translation to MetalLexer. Once agaire tkamne layout and
one component, both named for the JFlex specification. Hekyeeow the inner class has
been moved into an AIL code region (pale blue) because it igemgnized as a com-
ponent. Finally, inFigure 7.4e we see a conflict between the inner class corresponding
to the component (green) and the inner class from the AIL cedmn (pale blue), which
formerly corresponded to a component.

& 8

(a) Original JFlex (b) Generated (c) Generated JFlex (d) Generated (e)Generated JFlex 2
MetaLexer 1 MetalLexer 2

Figure 7.4 Collisions of generated names in repeatedly translated code

However, even if this problem was resolved (e.g. by examginiser-specified names), the
JFlex-to-MetalLexer and MetalLexer-to-JFlex translatoosil still not interact nicely (see
Section5.3.3.

89

Architecture

A W N P

Actions

Actions are an important part of the scoping problem. Thegtrbe triggered by the rules
of the top-level lexer, but they must have access to the staleir containing components.

MetaLexer accomplishes this by turning actions into meshotithe component inner
classes and then calling these methods from the actual ctitna. Unfortunately, this
is less straightforward than it seems. Actions are not #igtualid method bodies because
they may or may not return a value. Metal exer addressessthug iby having action meth-
odsalwaysreturnpotentialvalues (rather thapotentiallyreturning adefinitevalue). That
is, each action method always returns a value, but that valyebe either a true return or
empty (this maybe-value pattern should be familiar to uséksaskell).

Unfortunately, this introduces a new problem. It is, in gahempossible to determine
whether or not a given return statement will be executed.sTthe highlighted method
bodies inFigure 7.3bare insufficient. MetaLexer must somehow provide a fallboek
returns a non-valuen@thing, if and only if the original action does not return a value.

Fortunately§14.210f the Java Language Specificatiaa]JSB05 tells us that code follow-
ing an if-statement with the conditidrue is never considered to be unreachable. That is,
even if the unconditionally executed body is known to ledernethod (e.g. by returning
or raising an exception), the code after the block will néwethe subject of an “unreach-
able” code error. This means that if the original action cisderapped in an if-statement
with the conditiontrue and followed by a non-value return, then a value will alwags b
returned. The pseudo-codelirsting 7.1lillustrates our solution.

if(true) {

/loriginal action code

}
return Maybe.Nothing();

Listing 7.1 Pseudo-Code for an Action Method

With this accomplished, it remains only to determine whaisth go in the rule actions of
the generated JFlex specification (highlighteBigure 7.3b). Each action must accomplish
the following, in order: the original action must be evatdtthe associated meta-token

90

© 0 N O OB~ WN P

7.2. Multiple Backends

must be generated, any exceptions raised by the originahattust be raised, and (if no
exceptions have been raised) any return value from thenadigiction must be returned.
The pseudo-code inisting 7.2illustrates one way of accomplishing this.

Maybe<? ext ends TokenType> maybeResult;

try {

maybeResult = complnstance.actionMethod();
} finally {

generateMetaToken();

}
i f (maybeResult.isJust()) {

ret urn maybeResult.fromJust();

}

Listing 7.2 Pseudo-Code for an Action

Abstraction Violation

Despite determined efforts to avoid it, it was found to beassary to violate the opacity of
the AIL. That is, to provide JFlex with certain informatidmet it requires but which is not
general enough to expose in MetalLexer itself, it is sometimecessary to read and even
modify some free-form AIL strings.

The required reading is fairly innocuous. First, in ordegige the meta-lexer the correct
package declaration, it is necessary to search the layadeing for the package declaration
that will be included in the JFlex specification. Second,voié constantly casting to and
from java.lang.Objectthe JFlex backend locates the JFtaxy pe directive amongst the
layout options and uses that type in a variety of method sigas. Finally, component
code regions are searched for the ‘static’ keyword so thatogguiate errors can be raised.

The modification is a little bit more complicated. While raagiSection7.2.3 astute read-
ers will have noticed that the value returned by an origintiba and the non-value returned
by the action method do not have the same type. MetalLexezatsrthis problem by wrap-
ping the true return value from the action in an object of tbeexct type. Unfortunately,
this cannot be accomplished without modifying the origaetion code — each occurrence
of return x;, wherex is an arbitrary expression, is replacedreyurn Maybe.just(x); This

91

Architecture

transformation will not fail very gracefully if the Java ihd action code is malformed, but
in that case the lexer would not have worked anyway.

Meta-Lexer

Once the components have been translated to JFlex, thet(ymust be dealt with. As
we saw inSection4.2, the layout resembles another lexer with meta-patterne@dar
expressions over an alphabet of symbols (i.e. meta-tokashsegjions). By associating a
distinct integer with each symbol, it becomes possible fwress each start and end meta-
pattern as a regular expression (over integers). Eachaegubression is combined with a
transition action to form a rule in the ‘meta-lexer’

Since the meta-lexer is just another lexer, it is temptingpiecify it in JFlex as well. Super-
ficially, the JFlex LSL appears to be ideal for describing lte@aviour of the meta-lexer.
Unfortunately, it is unsuitable because of one small butargmt semantic difference.
Whereas JFlex (and other traditional lexers) search forltimgest match’, the meta-lexer
searches for the ‘shortest match’. That is, in the metarlaeewant to match and per-
form a transition as soon asy meta-pattern has been observed. In contrast, a JFlex lexer
would note the observation of the meta-pattern and therirasprocessing meta-tokens

to ensure that no longer match was possible.

In spite of this semantic difference, we use the syntax @it illustrate the organization
of the meta-lexer. Note, however, that no such syntax is gratuced by the backend. In
fact, we actually build and generate code for finite autor(eea later irSection7.2.3.

States

The meta-lexer has a separate lexical state for each enmgeiidensure that meta-patterns
are not matched unless the system is in the correct embediiiedexical state for a given
embedding contains two types of rules.

First, the lexical state contains the start patterns of mlbbeddings hosted by the current

Upistinguish:MetalLexer- the entire LSL — versusieta-lexer- the lexer of meta-tokens.

92

© 0 N O OB~ WN P

e e N < =
o 00 h WN PR O

7.2. Multiple Backends

embedding’s guest component. For example, if embedHingas hosH; and guesG;
and embedding, has hosH, and guest,, and if G; = Hy, then the lexical state fdf;
contains the start meta-pattern tey.

Second, the lexical state contains all end patterns forahegponding embedding.

Within these groups (i.e. start and end meta-pattern®s e in the same order as in the
original MetaLexer layout specification.

Additionally, there is an initial lexical state containitige start meta-patterns of all embed-
dings hosted by the start component of the lexer.

Listings7.3& 7.4show an example of this translatidaisting 7.3shows part of a layout —a
start component and two embeddingisting 7.4 shows the corresponding lexical states in
the meta-lexer (in simulated JFlex). First, there BAESEstate containing rules for the start
meta-patterns of all embeddings hosted by the start conmponken, for each embedding,
there are rules for the start meta-patterns of all embeddmugted by the embedding’s
guest and a rule for the embedding’s end meta-pattern.

Ostart cl
%%

%%embed

%manme embedl
U%host cl

%guest c2
%start START_E1
%end END_E1

%%embed

%manme embed2
%host c2

%guest c3
%tart START_E2
%end END_E2

Listing 7.3 Meta-Lexer Lexical States Example — MetalLexer

93

Architecture

N -

© 0 N O o~ W

10
11
12
13
14
15
16

17
18
19
20
21

<BASE> {
/Istart meta-patterns from embeddings with host 'cl’ (star t
component)
{START_E1} { /=* trigger embedl [}

/Ino end meta-patterns since this is not a real embedding

}
<embedl> {
[Istart meta-patterns from embeddings with host 'c2’ (gues t of
embedl)
{START_E2} { /= trigger embed?2 [}
/lend meta-pattern of embedl
{END_E1} { /= trigger restore */ }
<embed2> {
/Istart meta-patterns from embeddings with host 'c3’ (gues t of
embed?2)
/IN/A
/lend meta-pattern of embed2
{END_E2} { /=« trigger restore [}
}
Listing 7.4 Meta-Lexer Lexical States Example — Simulated JFlex
Transitions

The meta-lexer keeps track of the current state of the lexex whole by transitioning
amongst its lexical states. The current lexical state adveayresponds to the most recently
triggered embedding. Hence, the current component is altayguest of the embedding
corresponding to the current lexical state.

The transitions amongst the lexical states are tracked tack so that the meta-lexer can
return to the correct lexical state when an embedding erelswihen an end meta-pattern
is observed).

94

7.2. Multiple Backends

Extraneous Symbols

Obviously, not all meta-tokens and regions will be part oftartsor end meta-pattern.
If an extraneous symbol is observed, partially-matchetepad that cannot accept it are
discarded, as is the symbol itself.

<BOF>

The <BOF> meta-pattern is treated like a normal symbol (i.e. metanodr region). It is
assigned a distinct integer, which is matched in the sameagagny other integer. It is
generated exactly once at the beginning of the meta-tokearat There is no reason to
generate more than or®OF> because pure BOFs are handled elsewh8ezt{on6.9).
That is, the first time<BOF> is consumed, some other symbol(s) will also be consumed
(since the pattern is not a pure BOF) and the stream will nodohg un-started.

Communication

The lexer communicates with the meta-lexer via the metarleprocessSymbahethod.
The method accepts a singlg (representing a meta-token, a region<@&0oF>) and re-
turns aTransitionobject, possibly null. If the transition object is non-nutlcontains the
sequence of integers matched and an embedding index. linthbedding index is non-
negative, then it indicates the embedding that has begeingistart meta-pattern match).
Otherwise, it indicates that the current embedding hascilide an end meta-pattern
match).

Dependencies

Since the integer values of the symbols are assigned at ttipe, they can be included
directly in the specification of the meta-lexer. As a resattruntime, the meta-lexer is
completely independent of the lexer proper. It simply ate@gegers and outputs transi-

95

Architecture

tions. In particular, there is no runtime mapping betweenlsyls and integers — they are
all hard-coded in the generated class.

Finite Automata

Since JFlex was not suitable for the implementation of thearexer, we had to create our
own lexer. We took the fairly standard approach of consimgc discrete finite automaton
(DFA) for each lexical state. However, instead of looking lfmngest matches, we simply
match as soon as an accepting state is reached.

To obtain a DFA, we construct a non-deterministic finite awton withe-transitions (an
e-NFA) from the meta-patterns of the lexical state, elimgntite e-transitions to form a
non-deterministic finite automaton withogrtransitions (an NFA), and then apply the sub-
set construction algorithm to produce a DFA. This is a steshgeocess, described in detail
in many texts (e.g.App99g, [Mar03).

Figure 7.5shows the structure of theNFA for a lexical state. It consists of a distinguished
start state and theeNFAs corresponding to the individual meta-patterns inléxecal state
(shown with dotted borders). The start state has an edgéotbad back to itself on any
possible input. This loop handles extraneous charactersicédly, the machine will ac-
cept any amount of nonsense before it starts matching aalaoeta-pattern. Once the
nonsense has been consumed by the self-loop, the machioeda@ne-transition to the
appropriate meta-pattern sub-machine and completes thehmahe accepting state of
the sub-machine (shown with a double border) contains auenigteger identifying the
meta-pattern matched.

The generated DFA is minimized to save space and executioa tiWe followed the

fixed-point algorithm described in section 5.3 &i4r03, but we choose a different ini-
tial condition, also distinguishing accepting states vdiffierent meta-pattern identifiers.
The reasons for this are discussed below.

Unfortunately, when the DFA indicates a match and a sequehigegers is recovered,
there is no way to determine which prefix of the match came fitmerself-loop (i.e. which

96

7.2. Multiple Backends

Figure 7.5 A high-level view of the £-NFA generated for a lexical state of the meta-lexer.

are extraneous). This is why each accepting state storedahgfier of its corresponding
meta-pattern; when a match is made, we can work backwardsghrthe meta-pattern to
determine which suffix of the match comes from the meta-paitself. Everything not in
the suffix is discarded as extraneous. Since the meta-leesr shortest match semantics,
there is no danger that this suffix will be shorter than theaanatch.

For example, suppose we have just transitioned into a coemtdhat represents a Java
class. Then, barring intervening start meta-patternsnéx thing we are looking for is
the closing brace that will end the component. Hence, welweilin ane-NFA that looks
something likeFigure 7.6. However, we are likely to see a lot of extraneous symbols
before we reach the end of the component — keywords, passghdots, etc. Our raw
match might look likelF DOT WHILE RETURN RBRA&E While this is indeed the
sequence of symbols that we have matched, onlRBRACEvas actually matched by the
meta-pattern. When we work backwards through the match, wehnagainst arg-NFA

like Figure 7.7, which picks out just th&@BRACE

The backwards matching of meta-patterns is accomplishdauldging a DFA for the re-
verse of each meta-pattern. The process is the same asifial Istates except that there is

12Clearly, this is not a realistic trace of a Java class.

97

Architecture

>
>

™\ RBRACE @

Figure 7.6 A high-level view of the £-NFA generated for a lexical state of the meta-lexer.

_’O RBRACE :©

Figure 7.7 A high-level view of the reverse e-NFA generated for a single meta-pattern.

only one meta-pattern in eaeANFA and the self-loop is omitted.

Each DFA can be represented by two arrays: one for transitio one for actions. The
transitions array is two-dimensional with states on ons arid symbols on the other. The
actions array is one-dimensional with an element for eaatie sHence, we can encode each
DFA as a pair of statically initializethtegerarrays. These are both compact (especially
when accepting-state transitions are omitted) and quicktialize (since no string parsing

is required).

We perform a small optimization that is very effective ingiree. Since the numbering of
the DFA states is arbitrary, we can shuffle all of the accepsitates to the end (i.e. give
them the highest numbers). Then, when we print out the tiangable for the DFA, we
can omit those rows (since we are done as soon as we reacheptiagcstate) and still
have a contiguous matri¥igure 7.8 shows a sample renumbering.

Since most meta-patterns consist of a single symbol, maseahinimized DFAs consist

98

7.2. Multiple Backends

(a) Original Numbering (b) Revised Numbering

Figure 7.8 Renumbering DFA states to move accepting states to the end.

of a single start state with transitions to a variety of atiogpstates. That is, in practice,
the meta-pattern DFAs tend to have only one non-acceptatg.sfs a result, most meta-
pattern DFAs have a single-row transition table.

99

Architecture

100

Chapter 8

Case Studies

This chapter describes the experience of using MetalLexspéoify lexers for three real
programming languages: McLab, abc, and MetalLexer itse#.fiv8t describe the process
of developing the specifications and the improvements @mtlred. We then present our
experimental findings about the performance of these spatdns.

8.1 McLab

The Sable Labat McGill University is developing an optimizing compileafework for
scientific programming languages called McBan its first incarnation, McLab will be a
compiler for MatlaB.

Unfortunately, the syntax of Matlab is rather convolutegopaently having grown organ-
ically over the course of decades. As a result, some feaaresot amenable to nor-
mal lexing and LALR parsing techniques. For this reasonMiceab team has defined a
functionally equivalent subset of the language, calleddathat omits some of the more
troublesome syntax (e.g. command-style function calls).

Lhttp://www.sable.mcgill.ca/
2http://www.sable.mcgill.ca/mclab/
3http://www.mathworks.com/products/matlab/

101

Case Studies

Originally, the Natlab lexer was specified using JEldtowever, since the Natlab language
is intended to be the foundation of many language extenstbesNatlab lexer has been
re-specified in MetalLexer.

8.1.1 Improvements

Re-specifying Natlab in MetaLexer resulted in three suligthimprovements. First, the

new lexer is extensible. Second, nearly all of the actioredadhe JFlex lexer was elimi-

nated in favour of MetaLexer language constructs. Thildexgical states were replaced by
components. These improvements are particularly gragfym light of Natlab’s inherent

complexity.

Extensibility

Eventually, McLab will support type inference for Matlabograms. For now, however,
types are specified manually in specially formatted commealled annotations. Support
for annotations was added before the lexer was convertelliébalLexer. In the original
JFlex specification, however, there was no way to separatxension from the rest of the
language. Instead, the extended language replaced theabtapnguage. With MetalLexer,
the two languages — extended and unextended — can co-exist.

Given the MetalLexer specification for Natlab, creating ateesion for annotations was
easy. First, lexical rules for annotations were specified mew component. Then, com-
ponents were created for the start and end delimiters oftahons. For each component
that needed to use one of the new delimiters (i.e. anywhemnaatation can occur), a
new component was created inheriting both the original comept and the delimiter com-
ponent. Finally, a new layout was created. The new layowdrald the original layout,

introducing a single new embedding for annotations, anthogpy all components with

their new annotation counterparts.

4Disclosure: the JFlex lexer for Natlab was built by the aveaf MetaLexer.
5Since Natlab does not presently use an extensible parsertaions are still treated as opaque blobs and
handed off to a separate parser.

102

8.1. McLab

The extension required eight new files: the annotation &xigdes, the annotation start de-
limiter, the annotation end delimiter, the extended layaat four components that com-
bine an existing component with an annotation delimiter ponent (four lines each). It
could be done with fewer, but this solution is clean and easgad.

A colleague, Toheed Aslam, is presently working on the firajanextension of Natlab,
AspectMcLaB. It will add aspects to the Matlab programming language.e&afs initial
experiences have been positive — extension is straighdfolrand the specification is clean
and modular. He found pair filters to be the most difficult éeatof MetaLexer to under-
stand, so we have made an effort to explain them in greatail detd provide examples
(Sectiord.2.7).

Action Code Elimination

The JFlex specification for Natlab required a lot of embedikaa code to keep track of
state and accomplish lexical state transitions. In the Metar specification, virtually all
Java code has been eliminated. Simple methods for conagsytmbols, throwing errors,
parsing numeric literals, and passing comments directtiigégarser remain, but code for
tracking position and maintaining a stack of lexical stdtas been replaced by normal
MetaLexer control flow. Nearly all lexical rule actions c@if a single statement — an
append, a return, or an error.

Lexical State Elimination

The MetalLexer specification for Natlab does not dectarglexical states. All transitions
are controlled by the layout. As a result, the interactiothef components can be under-
stood without reading any Java code. Furthermore, the letdoe much easier to port to
another AIL/LSL because none of the transition logic wilVedo be modified.

Shttp://www.sable.mcgill.ca/mclab/

103

Case Studies

8.1.2 Difficulties

In most cases, it was straightforward to replace translogic written in Java with simple
embeddings. However, certain features of Natlab requipedial handling.

Transpose

In Natlab, a single-quote can indicate either a stringditeelimiter (i.e. opening or clos-
ing a string) or the transpose of a matrix. The two cases a@tenduished by the token
immediately preceding the single-quote.

In the JFlex implementation of the lexer, a flag was set atiehd@oken that could precede a
transpose operator and cleared after each token that could@ms process was simplified
slightly by filtering all symbol returns through a common hwd, but rules that did not
return tokens still had to explicitly clear the flag. Obvibyishis system was quite fragile
since it required each new rule and token type to correctiiatgpthe logic.

In the MetaLexer implementation, we created a componenthi®rtranspose. Any rule
matching text that can precede a transpose operator tsigggansition to théranspose
component. The component consumes the operator and iwassiiack. To limit the
number of spurious transitions, the meta-token is gengmatédy if the lexer’s lookahead
indicates that a single-quote will follow.

The MetaLexer solution is much easier to understand becausede is required for rules
that do not immediately precede transpose operators. tsight, the MetaLexer solution
could have been applied in the JFlex lexer. However, theisalonly presented itself after
reframing the problem in terms of components and meta-tken

Field Names

In Natlab, it is legal to use keywords as names for structeledi Since structure field
names are accessed using the dot operator, keywords fotjdive dot operator should be
treated as normal identifiers.

104

8.1. McLab

The JFlex implementation of the lexer handled this by swvimghnto a special keyword-
less state after each dot operator. Unfortunately, maniyeofules of this state were shared
with other lexical states (since it was inclusive) so spdoigic was required to leave that
state after returning any symbol.

The MetalLexer implementation simply transitions to a corgrd that only accepts iden-
tifiers. If it sees anything else, it pushes it back into thestebuffer and returns to the
previous component. Clearly, this same approach was pedssildFlex but, as above, it
was not obvious until the problem was reframed by Metalexer.

Matrix Row Separators

Natlab has special syntax for constructing two-dimendiamtrices — elements are sepa-
rated by commas and rows are separated by semicolons oetiméenators. However, if
the end of a row is indicated by a line terminator, Natlabvedl@ comma or semicolon,
whitespace, and a comment to appear after the last elem#émd now. Listing 8.1 shows
an example of such a matrix. To avoid grammar conflicts, thegrarequires that the
comma/semicolon and line terminator be returned as a siokén.
a=1[1, 2, 3, %this is the end of the first row

4, 5, 6]

Listing 8.1 Example — Natlab Matrix Syntax

The MetalLexer implementation handles this in more or leesstime way as the original
JFlex implementation. When a comma or semicolon is encoecht¢ine lexer switches to
a component/lexical state in which the line terminator iggdd. If it is found, a single
large token is returned. Otherwise, only the comma or sdoricis returned. Unfortu-
nately, in MetaLexer, there is no good way to keep track ofgbsition of the original
comma or semicolon so it must be stored in a (lexer-)globabkée shared by the two
components (i.e. the one that sees the comma or semicoloharmde that looks for the
line-terminator).

105

Case Studies

End Expression

Natlab classes use a number of keywords that are not redoyredn-OO programs. To
limit the impact on the programmer, Natlab allows these lays to be used as identifiers
outside of class bodies. Unfortunately, this means thdettex has to keep track of whether
or not it is in a class body. Superficially, it appears thas ttén be accomplished by
matchingend keywords with the beginnings of the corresponding blockd time end of
the class is found. Unfortunately, within index expressidie. expressions indicating
where to index into an array), trend keyword has another meaning — it evaluates to the
last index of the array.

The JFlex implementation addressed this problem by kedpael of the bracketing level.
An end keyword ends a block if-and-only-if it is not inside any bkats (round, curly,
or square). This requires a global counter plus appropiat@ments, decrements, and
checks.

In MetaLexer, we eliminated the counter by duplicating ¢tesscomponent. The
classbracketedcomponent is exactly the same as tfesscomponent except that tiead
keyword does not generated a meta-tokeal@issbracketedso it never gets paired with a
block opening. This component starts at an open-brackeeadd whenever an unpaired
close-bracket is encountered.

Multiple Meta-Tokens

Occassionally it seems desirable to label a single rule tmithmeta-tokens. For example,
an identifier can indicate both that a field name has been sekthat a transpose operator
could follow. We found that these cases are easily accoraddgtintroducing a new meta-
token with both meanings and then using meta-pattern ddssslow it in both situations
(e.g.END_FIELD_NAME STARTTRANSPOSI Listing 8.2).

"The use of inheritance and helper components significaetlyaes the amount of duplicate code.

106

© 0 N O OB~ WN PP

e e =
W N B O

8.1. McLab

%%embed

%mane field_name

ohost base, class

%guest field_name

%start START_FIELD _NAME

%end [END_FIELD_NAME END_FIELD_NAME_START_TRANSPOSE]

%%embed

%ane field_name_transpose

% ost field_name

%guest transpose

%tart END_FIELD_NAME_START_TRANSPOSE
%end END_TRANSPOSE

Listing 8.2 Extract — Multiple Meta-Tokens

Error at End-of-File

Natlab uses the Beaver PSL, which requires that a speciabefile- (EOF) token be re-
turned, even if an error has occurred. This can be problenfahe EOF causes a lexical
error.

For exampleListing 8.3 shows a typical string literal component (the one from Natla
actually). The problem is how to handi&e EOF>>. We would like to throw an exception
to indicate that the string literal is unterminated, but & @o so, then we cannot return
the EOF symbol required by the parser. If we generated a tokéar that will take us to
another component that will generated the EOF symbol, theappend block will trigger
and return the string literal token, even though it is incoete.

To avoid unwinding the entire embedding stack, we transifosward rather than back on
an EOF error. A dedicated component returns the EOF tokerreshby the parser and
then the parser stops requesting tokens (i.e. lexing ends).

This solution is not ideal, but it is acceptable.

8This could be avoided with a flag, but the extra token mak#s tifference after the error.

107

Case Studies

o O~ WN PP

10
11
12
13
14
15
16
17
18
19
20
21

%conponent string

%ext ern "Symbol symbol(short, Object, int, int, int, int)"
%ext ern "void error(String) throws Scanner.Exception”

YappendW t hStart Del i n{ /=(int startLine, int startCol, int endLine, int
endCol, String text) */
return symbol(STRING, text, startLine + 1, startCol + 1, end Line +
1, endCol + 1);
Y%appendW t hSt art Del i n}

%%
%%nherit macros

------ {: append(yytext(); :}

""" { /=+just end string - %append will handle token */ 1} END_STRING
{ValidEscape} {: append(yytext()); :}

\\ {: error("Invalid escape sequence"); }

{LineTerminator} {: error("Unterminated string literal”); :}

%:

%:

<<ANY>> {: append(yytext()); :}

<<EOF>> {: error("Unterminated string literal"); } EOF_ERROR

Listing 8.3 Extract — Error at End-of-File

8.2 abc

abc [ACH " 05] is an extensible research compiler for Aspeé&tdiH *01]. It has two differ-
ent implementations: one using PolyglotMO03] and the other using JastAd&IH074.
In this chapter, we will focus on the Polyglot implementatih.ogically enough, the Poly-
glot implementation uses the Polyglot Parser Generatds]Rét parsing. Since, Polyglot
does notinclude a corresponding extensible lexer, abcamsad-hoc approachiiMCO04].

Interestingly, excluding the extension mechanism, thelaker is remarkably similar in
structure to a MetaLexer lexer The abc lexer breaks AspectJ into four sub-languages:
java, aspect, pointcut, and pointcut-if-expression. Tist fiiree are self-explanatory. The
last refers to the bits of aspect syntax that appear withpoiitcuts. The nesting structure

SWe discovered this after the fact.

108

8.2. abc

of these sub-languages is tracked on a stack which is pusitega@ped when certain
tokens are observed.

The extension mechanism of the abc lexer is fairly intriceEach extension provides a
class containing a dynamic list of keywords, each of whicly imave an associated lexical
state transition. The lexer itself matches all keywordsdasiifiers and then checks them
against its list at runtime. If the identifier is found to be eyWword, then an appropriate
keyword token is returned and the associated transiti@myif is performed.

As an experiment, we tried replacing the abc lexer with oun @@rsion written in Meta-
Lexer. We also replaced two extensions: eaj anttneaj (Extended AspectJ) extends
AspectJ with experimental new join points and global paitgc This requires adding a few
new keywords plus a couple of extra transitiolet fias the same syntax dsandglobal

has the same syntaxdsclarg. tm (TraceMatches) allow users to create more complicated
pointcuts using temporal logic. This requires a few new kayls plus pointcuts that are
terminated by semicolons, rather than advice.

In the end, our modified abc compiler (i.e. with the new lexg3¥sed all but one of the
(roughly 1200) original abc test cases (for the aspectj,aeq] tm languages). In the case
where our compiler differed from the original, the divergermccurred only after a signifi-
cant lexical error and could easily have been eliminatee $&&tions8.2.29.

8.2.1 Improvements

MetaLexer is an excellent choice for specifying the syntb&gpectJ. It has many advan-
tages over the existing implementation.

Pointcut-If-Expression

The biggestimprovement made possible by MetalLexer wadithenation of the pointcut-
if-expression sub-language. In the original implementgtithe aspect and pointcut-if-
expression languages were identical except that the pmiftexpression would return

10For descriptions, see http://abc.comlab.ox.ac.uk/eibes

109

Case Studies

© 0 N O O~ WN PP

NN R R R R R R R R R R
B O © 0 ~NO Uu>MNWRNNLRERO

to the previous sub-language upon balancing the openirenteesis of the enclosing if
expression. Since this balancing is specified at the embgddvel, rather than at the
component level, in MetalLexer, there was no reason to keepuh-languages separate.

Clarity

It took us quite some time to figure out how the original lexerked. The JFlex lexer de-
clares lexical states for the four sub-languages but nesasitions amongst them. Even-
tually, we realized that the transitions were attached ¢éadynamically-defined keywords.
In MetalLexer, the transitions are where they always are khanayout.

Furthermore, the embeddings for the aspectj, eaj, and tguiges are extremely easy to
read. In particular, the embeddings that transition amotngssub-languages read almost
like the English descriptions i{dMCO04]. Listing 8.4 shows a few examples.

%%embed

%ane perclause

%host aspect_decl

%guest pointcut

%start [PERCFLOW PERCFLOWBELOW PERTARGET PERTHIS] LPAREN
%end RPAREN

%ai r LPAREN, RPAREN

%%embed

%anme decl are
% ost aspect
Y%guest pointcut
%tart DECLARE
%end SEMICOLON

%%embed

% ame pointcut
%host java, aspect
%guest pointcut
Y%start POINTCUT
%end SEMICOLON

Listing 8.4 Extract — Embeddings from aspectj.mll

110

A W NP

~N o o b~ WN P

8.2. abc

Extensibility

Extending the base aspectj layout to eaj and thence to tm evgeasy.

eaj adds new global keywords (i.e. affecting all sub-lamgsy, pointcut keywords (i.e.
affecting only the pointcut sub-language), and transgiorhe new keywords were added
by wrapping them in new components and then inheriting theextensions of the orig-
inal componentsListing 8.5 shows an example — the new global keywords are inherited
into a component extending the origiredpectcomponent. This was done for each com-
ponent that needed the new keywords, then the extendedtlpgdormed the necessary
replacements (e.d.isting 8.6). Finally, the new embeddings were added to the extended
layout.

%conponent eaj_aspect

%%

%%nherit eaj_global_keywords
%%nherit aspect

Listing 8.5 Extract — Adding New Global Keywords

%%nherit aspect

% epl ace aspect, eaj_aspect

% epl ace aspect_decl, eaj_aspect_decl
% epl ace java, eaj_java

% epl ace java_decl, eaj java_decl

% epl ace pointcut, eaj_pointcut

% epl ace pointcut2, eaj_pointcut2

Listing 8.6 Extract — Replacing Components

tm is similar — it extends eaj with a few new keywords and a newedding. This is
accomplished in exactly the same way (though inheritinghfeaj rather than aspectj).

Since tm introduces substantially different languageufiess, it might have benefitted from

new lexical rules as well. However, since the existing levamnot add new sub-languages,
there was no way implement this. With MetalLexer, on the olfzerd, adding a new sub-

language would have been easy — particularly since tracehasithave clear start- and
end-delimiters.

111

Case Studies

Compile-Time Keywords

In the MetaLexer specification, keywords are defined in tikerlé&self, rather than in an
auxiliary class. They can be compiled into the lexer’s fimitdomata, rather than being
retrieved at runtime.

8.2.2 Difficulties

Though, on the whole, the MetalLexer solution was very elegafew blemishes remain.

Failed Test Case

Our MetalLexer specifications for aspectj, eaj, and tm pagbédt one of over 1200 tests.
In that test, a declare statement is not terminated. The éwer$ agree up to the point
of the error, but differ afterwards. In the existing lexdre tclass body that follows the
declare statement is lexed normally, whereas in the Metllexer, it is lexed as if it were
a pointcut (which leads to further problems). It would beigfhtforward to handle this
case in the MetalLexer specification — it is just a matter aivalig a transition from the
pointcut sub-language to the java sub-language I(ss#img 8.7) — but we decided that the
behaviour was essentially inadvertent in the original leed preferred not to introduce a
confusing new embedding purely for consistency in erraragions.

New Keywords

The most straightforward method for adding new keywords Megal exer lexer requires
a surprising number of new files. Since this is the only kinégxtension present in abc,
the new specification looks rather verbose in this area.idftthrns out to be a particularly
common example, then a boilerplate-eliminating languagesttuct might be worthwhile.

Superficially, it appears that the nicest solution woulddoalkow insertion of the new key-
words directly into the old keyword helper components. Havgit is frequently difficult

112

© 0 N O OB~ WN PP

L e =
A wNPR O

8.2. abc

%%embed

%name pointcut_java_decl
%host pointcut

%guest java_decl

%start [CLASS INTERFACE]
%end LBRACE

%%embed

% anme pointcut_java
%host pointcut

Y%guest java

st art %java_decl%
%end RBRACE

%ai r LBRACE, RBRACE

Listing 8.7 Example — Unterminated Declare

to see all the implications of such a change. For this reagergecided that modification
of inherited components was too dangerous.

Runtime Behaviour

abc can change its lexical behaviour at runtime. In padicthe options singleton
(abc.main.options.OptionsParser) % used to determine whether multi-line comments
should be nestable and the debug singletdot (main.options.OptionsParservg used to
enable and disable keywords (eagserj. In the existing lexer, changing this behaviour at
runtime is easy because all keywords are defined at runtimieletalLexer, however, spe-
cial care must be taken. This is especially true for keywthdsgenerate meta-tokens. Itis
simple enough to pushback an incorrectly matched keywarthteventing generation of a
spurious meta-token requires the conditional meta-tolegtem described iBection4.10

Duplicate Components

Unfortunately, we found that some embeddings needed to beitamal. For example,
a pointcut ends at a semicolon in a declare statement, buleft larace if it is defining
before after, or around advice. We solved this problem by duplicating components an

113

Case Studies

© 0 N O O WN P

e N T e =
o 00~ WN R O

then giving the duplicates different behaviours. For eximnmppon seeingleclare we
transition topoincutbut, upon seeingpefordafter/aroundwe transition topointcut2(see
Listing 8.9).

%%embed

% anme pointcut

%host java, aspect

%guest pointcut

%start POINTCUT
%end SEMICOLON

%%embed

Y% anme advice

% ost aspect

%guest pointcut2

%tart [BEFORE AFTER AROUND]
%end LBRACE

%decl states
%duplicate components

Listing 8.8 Extract — Duplicate Pointcut Component

This does not cause any code duplication because the copystoof a single inherit
directive, inheriting the original. However, in the presenplementation of MetalLexer,
it does create duplicate code in the generated lexer. Iftthiss out to be commonly
necessary, then it may be worthwhile to create an expligiidation construct so that
the back-end can do something more intellegent when dujolicaccurs.

Pre-Defined Character Classes

Since MetalLexer was designed to be cross-platform, we ddaidt to include the same
language-specific predefined character classes as JFleacticular, MetalLexer lacks pre-
defined character classes for Java identifier characterfartunately, the explicit version
of this character class is quite long and unpleasant to define

114

8.3. MetalLexer

8.3 MetalLexer

MetaLexer actually consists of two languages: one for carepts and one for layouts.
The lexers for both are specified in MetaLexer. Originalheyt were written in JFlex,
but we wanted to show that we believe in our tool. The full igEation can be found in
AppendixC.

8.3.1 Improvements

Most of the benefits of re-implementing the MetalLexer lexeklietaLexer have been dis-
cussed above. The Metalexer version has no lexical statkksrareitions are performed

using embeddings; the action code that remains is mostlielthto append, return, and er-
ror; and the Java code for maintaining stacks of states asitigots as well as text buffers
is gone. However, there are a few other noteworthy improvese

Macro Definition State

In the original JFlex specification, there is some tricksesolved when defining macros.
Macros are defined by regular expressions. Unfortunatedylar expressions can contain
elements that look like identifiers and vice versa. This faobwas handled by match-
ing ambiguous strings as identifiers if they appeared at dginbing of a line (modulo
whitespace) and as regular expression elements otherwise.

When we ported these rules to MetaLexer, we found that we hatbt@ the regular ex-
pression element rule (which is acyclic) ahead of the idientrule (which is cyclic) to
satisfy MetaLexer’s rule group constraints. At first, theemed like a significant problem.
However, we realized that we could move the regular expsassiles into a separate com-
ponent. The macro definition component begins at an equaigisi the option section of
a component) and ends at the end of the line. This elimin&edmbiguity. Furthermore,
after this change, all elements of the component option@eended with line breaks so
we could always assume that they started at the beginninged.IThis eliminated a lot of

115

Case Studies

beginning-of-line-followed-by-whitespace patternstthare causing JFlex warnings.

This same solution was possible in JFlex, but we did not dechuse we were not thinking
about the problem in the right way.

Shared Code

The component and layout languages provide many excebemges of the reusability
of MetalLexer components. Since the two share so many lexiteg in common, nearly
a third of the modules in their definitions are shared (‘medusince there are also shared
helper components).

Merged Lexical States

As with the aspect and pointcut-if-expression sub-langaag abc $ection8.2.1), the

INSIDE ANGLEBRACKETS&ndINSIDE DELETEANGLEBRACKET3exical states of
the JFlex lexer differed only in their transition behavio@y encoding this difference in
embeddings rather than in components, we were able to meedetd (i.e. eliminate one).

8.3.2 Difficulties

Since MetalLexer was one of the use cases we have had in moehvgeébegan the project,
there were relatively few difficulties in creating its Metler specification.

Error at End-of-File

We had to deal with the end-of-file error problem describe8eawtion3.1.2 The solution
was the same.

116

8.4. Performance

Start Delimiter Position

The original JFlex specification dropped delimiters (e.gotgs around string literals) in
token values but counted them when determining positioormétion. To achieve this
same behaviour in the MetaLexer implementation we had teragpmpty start delimiters
to all of the affected components. This was not particuldifficult, but it was a case that
we had not considered when designing the start delimitehar@sm.

8.4 Performance

We compared the performance of MetaLexer and JFlex in a nuwifbeifferent areas:
specification length, generated lexer length, compildiioie, and execution time.

8.4.1 Testing Setup

Table8.1describes our testing environment.

Computer MacBook Pro
Operating Systemp OS X 10.6.0
Processor Type || Intel Core 2 Duo
Processor Speed 2.33 GHz

Memory 2GB
Java 1.6.015
Ant 1.7.0
JavaNCSS 32.53
Metalexer 20090912
JFlex 1.4.1

Table 8.1 Testing Environment

All times were measured using Jav&gstem.currentTimeMillis() The numbers in the
tables below reflect the averages of 11 runs each, exclubde§rst (warm-up), the best,
and the worst.,

11The entire suite can be found at http://www.cs.mcgill.catatexer/

117

Case Studies

8.4.2 Code Size

For each of our six MetalLexer specifications — Natlab, agpeaj, tm, component, and
layout — we measured the number of files in the specificatientdtal length of the speci-
fication, and the size of the generated Java lexer class.€Buéis are shown imables8.2-
8.7.

We defined the length of a specification file (JFlex or Metakkixebe the output ofvc -I*.

We defined the length of a Java file to be the total number ofaomnment source state-
ments (NCSS) as reported by the JavaNCSS'todlhis measure ignores whitespace and
comments, making the comparison more accurate that a simeleount.

Superficially, it appears that the MetalLexer specificat@mrNatlab is longer than the JFlex
specification Table8.2). However, 122 of those lines (and 8 of those files) are fonkgx

annotations, something that the JFlex specification do#savsingle regular expression.
That is, the original specification, having no capacity feteasion, simply lexed anno-
tations as opaque text regions. In contrast, the MetalLeexification actually validates
them. The generated lexer class is roughly 5 times as lange, Ibt of that comes from the
layers of abstraction around actions (Sstion7.2.3.

| | JFlex| MetalLexer|

Number of Specification Files 1 274
Specification Size (LoC) 668 767
Generated Class Size (NCS$) 859 4582

Table 8.2 Code Size for Natlab

The existing abc lexer specificationtaples8.3-8.5) are the only ones that contain both
Java and specification files. As describedSection8.2, the extension is accomplished
using auxiliary Java classes. We included all such codeensgiecification size of the

12This is a conservative metric — in general, MetalLexer spmtifins contains more blank lines and/or
comments.

Bhttp://www.kclee.de/clemens/java/javancss/

148 are for lexing annotations

15122 are for lexing annotations

118

8.4. Performance

lexers (each cell in the row has two values: one for the legtnbined length of the
lexical specification files and one for the combined lengtthefseparate Java files), but we
excluded them from the file count unless they were absenttinerivietalLexer version. For
example, theAbcExtensiortlasses used to initialize the keyword lists in the origieaér

are still present in the MetaLexer implementation becaleg perform other functions as
well. As a result, theAbcExtensiorclasses are included in the specification size of the
original JFlex lexer but not in the file count of either lexer.

The MetalLexer specification for the (abc) aspectj languagdightly shorter than the ex-
isting JFlex and Java specification, but the generated #aes is nearly 11 times as long
(Table8.3). This is due in part to the layers of abstraction aroundoastiand in part to
duplicated code in the MetaLexer output. That is, JFlextsraaes that appear in multiple
lexical states as shared whereas Metalexer treats rulesgpaar in multiple components
as copies. If the MetaLexer backend merged the rules as ugitl information it already
has available), its output size would shrink dramatically.

| | JFlex | MetalLexer]|

Number of Specification Files 5 20
Specification Size (LoC/NCSS) 860/143| 906/0
Generated Class Size (NCSS) 912 9852

Table 8.3 Code Size for abc — aspectj

The figures inTables8.4-8.5 represent differences from thoseTable8.3. For example,
the file count is represents the number of files added to theersy® extend the lexer.
(Files like AbcExtensiothat are not lexer-specific were not counted.) The excejitme
MetalLexer generated class size. Since a separate Javasctpsserated for each layout,
the file size is a total rather than a difference.

These figures are interesting because of the zeroes on e slée. In the existing abc

lexer, extensions require only a few lines of additionalaJewde — just adding some new
keywords to the list. Since itis specialized to handle ohig bne type of extension, it does
so very efficiently.

The most interesting thing abolibles8.6-8.7 is the amount of shared code (sBec-

119

Case Studies

| | JFlex| MetaLexer]|
Number of Specification Files 0 9

Specification Size (LoOC/NCSS)) 0/22 172/0
Generated Class Size (NCSS)| 0 10388°

Table 8.4 Code Size for abc — eaj

| [JFlex]| MetaLexer]
Number of Specification Files 0 4
Specification Size (LoC/NCSS) 0/8 71/0
Generated Class Size (NCSS)| 0 10544

Table 8.5 Code Size for abc —tm

tion 8.3.1). Considering the languages separately, the JFlex and Metalspecification
sizes look very similar. However, the JFlex specificatiomsthe two languages are in-
dependent, whereas the MetalLexer specifications overlapsi@ring the languages to-
gether, the MetalLexer specification is shorter. Furtheemibre generated lexers are only
3-4 times as large.

| | JFlex | MetaLexer|

Number of Specification Files 1 267
Specification Size (LoC) 837 8808
Generated Class Size (NCS$) 875 3199

Table 8.6 Code Size for MetaLexer — Component

For all of these languages, we see that the MetalLexer sgmficrequires many more
files. This is simply the result of a different design thatogle a greater emphasis on
encapsulation. It does not result in longer specifications.

16Total — independent of previous generated classes.
1710 are shared
18243 are shared

120

8.4. Performance

| | JFlex]| MetaLexer]|

Number of Specification Files 1 1819
Specification Size (LoC) 628 5940
Generated Class Size (NCS$) 702 1937

Table 8.7 Code Size for MetaLexer — Layout

8.4.3 Compilation Time

Figure 8.1 shows how long it took to convert the specifications for ourlahguages into

Java lexer classes. Two different values are shown for easthlMxer specification — the
time taken for the MetaLexer-to-JFlex translator to run #meltime taken for the entire
translation process (MetalLexer-to-JFlex plus JFlexata).

As we expected, compiling a MetalLexer specification takeéte gubit longer than compil-
ing a JFlex specification (even ignoring the fact that Meta@teompilation includes JFlex
compilation). This makes sense because MetalLexer perfatotof processing to handle
multiple inheritance and performs much more validatiomtbilex.

It is interesting to note that the MetaLexer-to-JFlex ttamgn generally took only about
half of the MetaLexer compilation time. This suggests thegasnlining the JFlex output
by the translator would substantially speed up compilatiioie.

The other interesting observation we can make abayire 8.1 is that, even though eaj

and tm are tiny extensions, their presence slows down thsl&tr substantially. This is

because inherited code frequently needs to be re-checkibe icontext of the inheriting

module. It might be able to reduce the slowdown by optimizngy some of these checks,
but some duplication will always be necessary.

1910 are shared
20243 are shared

121

Case Studies

4000

3000

2000

Time (ms)

1000

, R [| - [| ||

Natlab abc - aspectj abc - eaj abc - tm Metalexer - component Metalexer - layout

B JFlex-to-Java MetalLexer-to-JFlex MetalLexer-to-Java

Figure 8.1 Compilation Times

8.4.4 Execution Time

For each of our six languages, we chose a variety of realeWmrhchmarks (i.e. files that
are actually in use in real projects) and measured four éixectimes: the time taken to
the lex the file with the original JFlex lexer, the time takenléx the file with the new
Metalexer lexer, the time taken to parse the file using thexising parser and the JFlex
lexer, and the time taken to parse the file using the exisimggyr and the MetalLexer lexer.
We measured the execution times of the lexers so that we coulgare them directly and
the execution times of the parsers to get a sense of how muittte afverall runtime the
lexer representsigures8.2-8.7 show the results.

Natlab

We drew our Natlab benchmarks from the suite used by the Mdrabp. Two of the
four benchmarks benchmarkzandreduction— perform computations and the other two
are drivers -drv_edit anddrv_svd benchmark2308 lines) is a numerical computation
benchmark for Matlab created by Philippe Grosféareduction(141 lines) computes the
LLL-QRZ factorization of a matrix (created by Xiao-Wen Chamgdalianyang Zhou);
drv_edit (292 lines) is a test driver for an edit-distance calcutaaaddrv_svd (6494 lines)

is a test driver for a function that computes the singulanealecomposition of a matrix.

21http://www.sciviews.org/

122

8.4. Performance

Only small modifications were made to the files. First, thesfiere in normal Matlab
syntax. We used a tool provided by the McLab project to cdrihem to Natlab. Second,
we corrected an unescaped backsladteinchmark?2

We see fronFigure 8.2that MetalLexer is slower than JFlex (which certainly malersss,
in light of the sizes of the generated classes) but we cammyoth@w much slower because
most of the differences are below the error threshold of itheny mechanism. A rough
estimate would be that MetaLexer is generally about 3 tineses (thought it may spike
to 8 times).

160

140
120
<+ 100
£
> 80
£
=~ 60
40
20
- L O mmil
benchmark2 drv_edit drv_svd reduction
B JFlex Lexer [l Metalexer Lexer JFlex Parser B Metalexer Parser
Figure 8.2 Execution Times for Natlab
abc

We drew our abc benchmarks from AspectBert@uites. This seemed prudent as the abc
implementation of AspectJ differs slightly from the origlrajc implementation.

Since we planned to re-test the aspectj benchmarks in eable elktensions (i.e. eaj and
tm), we chose only thred&nforceCodingStandard86 lines) is an aspect that logs allll
returns from non-void functiondyletrics (134 lines) computes metrics of a running pro-
gram (i.e. profiling data); anbISTPrim(212 lines) adds a strongly-connected-components
method to a graph class.

22http://www.aspectbench.org/

123

Case Studies

These files are all relatively short, so it is hard to draw amyatusions from the execution
times (sedigure 8.3). It does, however, seem likely that MetalLexer is roughlyass as
JFlex.

70

60
50
20
N 1 | l.
0

EnforceCodingStandards Metrics MSTPrim

B
o

Time (ms)
w
o

B JFlex Lexer [Metalexer Lexer JFlex Parser B Metalexer Parser

Figure 8.3 Execution Times for abc — aspect]

Since eaj is a testbed for experimental features, we werbleirta find any real-world
files that made use of the extension. Consequehrthyre 8.4 shows only the runtimes for
the aspectj benchmarks. As expected, it strongly reserkigese 8.3. Some slowdown is
evident, but it is difficult to quantify. It likely stems frothe increased size of the generated
class (sedables8.3-8.5).

Several papers have been published about tracematchelanudarious applications so
we were able to find tm-specific benchmarkailSafeEnumThrea(b8 lines) verifies that
enumerations are not modified between reddsliSafelter (57 lines) does the same for
iterators; andHashMapTes(66 lines) verifies that objects in hashmaps are not modified i
ways that change their hashcodes.

In Figure 8.5 see a little bit more slowdown in the original aspectj benahs, but the
tm-specific benchmarks are all very fast.

Once again, all we can conclude is that MetalLexer is slowaar flirlex — we cannot say by
how much.

The MetalLexer implementations exhibited their greatestvébwns on the abc bench-

124

8.4. Performance

B OO O 9=
o o O o

Time (ms)
W
o

EnforceCodingStandards Metrics MSTPrim

B JFlex Lexer I Metalexer Lexer JFlex Parser B Metalexer Parser

Figure 8.4 Execution Times for abc — eaj

marks. This is consistent with our findings for code size aochmlation time, which
suggests that the large amount of duplication Seetion8.2.2) is to blame. The problem
can probably be addressed by finding a way to share this coniegBo should speed up
inheritance and reduce the size of the generated code,ingdhe runtime.

Metalexer

Our MetalLexer benchmarks were easy to choose. We simplyectneslargest layouts
(120-310 lines) and components (60-140 lines) in the onistiexg real-world MetaLexer
specifications — those of our six example languages.

The MetalLexer syntax is relatively simple and so, as expedtgures 8.6-8.7 show a
relatively small slowdown (roughly 1.5 times for the compaohlanguage and 1.25 times
for the layout language). We also see that the lexer takes lapga percentage of the
parser’s total runtime because the parser proper is soasimpl

8.4.5 Summary

We compared Metalexer’'s performance to that of JFlex in treas: specification size,
generated lexer size, compilation time, and execution .tindetaLexer generally has

125

Case Studies

~
(e]

D
o

)]
o

N
o

Time (ms)
w
o

N
o

—_
o

EnforceCodingStandards Metrics MSTPrim

B JFlex Lexer [Metalexer Lexer [JFlex Parser B Metalexer Parser
70

60

50

N
o

Time (ms)
wW
=]

N
o

-
o

FailSafeEnumThread FailSafelter HashMapTest

B JFlex Lexer [Metalexer Lexer [l JFlex Parser B MetalLexer Parser

Figure 8.5 Execution Times for abc — tm

shorter and clearer specifications than JFlex and the oth&ras are all within an order
of magnitude. The increased clarity of the specificationkandhis tradeoff worthwhile,

especially since our initial implementation is untuned andptimized. Furthermore, new
improvements frequently present themselves when lexersearitten in MetalLexer.

126

8.4. Performance

60

50

40

30

Time (ms)

20

10

annotations comp_options global_options shared_keywords

B JFlex Lexer I Metalexer Lexer [l JFlex Parser B Metalexer Parser

Figure 8.6 Execution Times for MetalLexer — Component

80

70

60
50
40
30

Time (ms)

20
10

annotations comp_options global_options shared_keywords

B JFlex Lexer I Metalexer Lexer [l JFlex Parser B Metalexer Parser

Figure 8.7 Execution Times for MetaLexer — Layout

127

Case Studies

128

Chapter 9
Related Work

We were not the first to explore the area of modular, exteasibmpilers. This chapter
describes research that shows the demand for such comgildrthe work that has been
done to satisfy the demand.

9.1 Demand

There are many applications for modular, extensible coengil One of the most rapidly
growing is mixed language programming (MP)n MLP, multiple programming lan-
guages are combined not only in the same program, but in tine $de. This allows
programmers to use the most suitable language for eachgnoging task at a finer gran-
ularity than the program level.

During the development process, integrated developmentosments (IDEs) such as
Eclips€ are invaluable tools. However, most IDEs provide assistamith only a single

language. Even more advanced IDEs with plugins for multipfgyuages provide assis-
tance with only a single language in each file. (Usually,e@hsra separate editor for each

1Since the field is not yet established, there is no standamirielogy. Sometimes it is referred to as
‘multi-language programming’ or programming with ‘embeddanguages’.
2http://eclipse.org/

129

Related Work

language and so a single language must be chosen when tiseoflened.) However, Kats
et al (KKV08]) have done work to provide MLP support in the Eclipse IDE &#&toling
Platform (IMP)3. Using their extended IMP, it is possible to create an MLRagdhat
supports syntax checking, syntax highlighting, outlineniand code folding.

Since such MLP editors are not widely available, some rebeas have used libraries
to simulate MLP within a single language. This approach isheommonly used in the
functional programming (FP) community (e.g. Haskelui9q and Lisp EH8(). In most
cases, this places much stronger limits on the new langagettue MLP would.

MLP can also be applied to improve programs with modulege&vriin different languages.
For example, the Jeannie todlG07] created by Hirzel and Grimm simplifies programs
written using the Java Native Interface (JNI). Rather tharassting C and Java code into
separate files and then having them call each other throughteriace, Jeannie mixes
both languages in every file. This makes JNI programs mudbrdagead and write. They
accomplish this by introducing new delimiters that switodnii one language to the other.
When the MLP code is compiled, it is separated into separa&e ifil the traditional JNI
style.

Other calls for mixed language functionality, whether & fthe level or at the program
level, can be found in\jol05] and [Bur94.

9.2 Approaches using LR Parsers

The most commonly used parser generators all accept sonaimaron LR grammars,
usually LALR but occasionally SLR or full LR(1). As a resulhetse classes of grammars
are familiar and well understood and there are mature toolddveloping them. Naturally
then, work has been done to make such grammars modular axtémsible.

The Polyglot Parser Generatdot CMO03], developed by Brukman and Myers, is an exten-
sion of the popular CUPparser generator that adds extensibility. Existing grarsman

3http://eclipse-imp.sourceforge.net/
“http://www2.cs.tum.edu/projects/cup/

130

9.3. Approaches using Other Classes of Parsers

be extended by new grammars that add, delete, or replaceptioeiuctions. The Polyglot
Parser Generator is only one element of the larger Polygteneible compiler framework.
Unfortunately, Polyglot does not address the problem ofresible lexing. Instead, each
project must develop its own solution, in the worst case ldgieg a new lexer for each
extension of the parser.

Going to the next level, Ekman et al created JastAeld(7l], an extensible, modular at-
tribute grammar system that can be used to build entire siktlencompilers. JastAdd is
mostly indifferent to how its input is parsed, as long as theser builds up an abstract
syntax tree (AST) using its generated AST classes. Howéwetheir own project, the
JastAddJ extensible Java compil&H074, they created a parsing tool that compiles a
new specification language (Beaver, slightly modified to inprmodularity) to Beavér

It moves rule type information and token declarations ouhefparser header so that sep-
arate files can be merged by simple concatenation. Then edé&hs®n concatenates an
appropriate subset of the parser files to form its own parEstensible lexing is simi-
larly handled by concatenating lexer specification fragiménritten in JFlex). Of course,
concatenation is blind — no checks are performed. Furthexptoncatenation is purely
constructive — deletion of (lexer or parser) rules is imgass

The abc extensible AspectJ compiléi]H " 05], developed by Avgustinov et al, combines
all of these ideas. At present, it has two front-ends, ondtevriusing Polyglot and the
other using JastAdd. Both, however, use an ad-hoc exteriskdewritten in JFlex. Inter-
estingly, the behaviour of the manually written abc lexerasy similar to the behaviour of
the generated JFlex produced by MetaLexer. A detailed igi#iser of the abc lexer can be
found inSection8.2

9.3 Approaches using Other Classes of Parsers

Since LR(1)/SLR/LALR grammars are not composable, they atepadicularly well
suited to modular parsing. With this in mind, some researchave explored approaches

Shttp://beaver.sourceforge.net/

131

Related Work

based on other classes of grammars. All are slower, but noevenful, than LR(1)/SLR/LALR
grammars.

Some approaches, having already accepted a reductionformpance, go a step further
and eliminate the lexer. Obviously, once a full-scale paiséeffectively) handling the
lexing of a language, MLP becomes very straightforward.

9.3.1 Antlr

The Antlr parser generatoPfr0O1, created by Terrence Parr, aims to be a declarative way to
specify the sort of recursive descent parser that one wadidarily build by hand. It uses

an extension of LL(K) parsing called LL(*). In LL(*), unlessrestriction is imposed by the
grammar writer, an arbitrary amount of lookahead is av&ladhen resolving ambiguity.

As a result, Antlr is powerful enough to be able to specifysimstax of C++.

Since Antlr was created primarily as a tool for practicingnguler writers (rather than a

proof-of-concept or an academic research project), it resyrfeatures that make common
parsing tasks easier. It has a nice IDE for creating and dgbggyrammars as well as

special syntax for building ASTs and performing sourcesaoice translations. It also
supports extended Bachus-Naur form (EBNF) syntax, whickialies much of the pain of

being unable to use left-recursion.

With all of its features, lookahead, and backtracking, Aistdecidedly slower than an LR
tool like Beaver. It also generates a much larger parser ($asse the code for a recursive
descent parser is much larger than the binary represamtatenfew LR parsing tables).

9.3.2 Rats!

Another particularly interesting system is Rats!, creatgdbbert Grimm {5ri0€]. Rats!
discards context free grammars (CFGSs) in favour of parsipgession grammars (PEGS).
The specification for a PEG looks like a normal CFG, but it ielipteted differently. If a

8Since LR approaches cannot specify the syntax of C++, thegifspa slightly larger language. Subse-
guent phases of the compiler then perform weeding and digaation.

132

9.3. Approaches using Other Classes of Parsers

non-terminal has multiple productions, then they will b&téel in order until one matches.
If no matching production is found, then the parser backsaa the derivation.

Unfortunately, the frequent backtracking required by a Ria@ser can easily lead to an
exponential runtime (in the size of the input text). To avthis problem, PEG parsers
memoize all intermediate results (i.e. matches of noniteals). For this reason, they are
also referred to as ‘packrat’ parsers. With memoizatiorGp@rsers run in linear time but
require linear additional space (both linear in the sizehefihput text).

Another consequence of frequent backtracking is that Ratamgar actions with side
effects must be performed in nested transactions so thatctrebe undone. This can be
quite cumbersome, especially if the parser needs to maistame sort of global state (e.g.
a counter of some sort).

Rats! does not use a separate lexer. Instead it uses PEG csgtemif$ all the way down to

the character level. As aresult, itis very straightforwartex different regions of the input

according to different rules. Furthermore, Rats! allowseligpers to integrate their own,

hand-code lexical analysis methods into the grammar. Bhahiaracters are not the only
terminals in the grammar — developers can create their ommirtals using customized

functions.

Rats! is implemented as a recursive descent parser (it i®thegive calls that are memo-
ized). With its backtracking, transactions, and lack otsafe lexer, Rats! tends to generate
very large parser classes.

In spite of its drawbacks, Rats! is immensely powerful. Itxpressive enough to specify
complex languages like C and Matlab (which is notable forcasxmand-style function
calls). Furthermore, since the class of PEGs is composRies! is very modular. An
excellent example of this is the Jeannie tad{07] which combines Java and C in a single
file. Using special delimiters, C code can contains block¥awh code, which can contain
blocks of C code, ad infinitum. The system was actually coiegtid by combining existing
Rats! parsers for C and Java.

133

Related Work

9.3.3 GLR

Generalized LR (GLR) parsing is an extension of LR parsing #itaepts the full class
of CFGs. Unlike a normal LR parser, a GLR parser accepts grasmwigh shift-reduce

or reduce-reduce conflicts. It handles conflicts at runtimértanching its execution and
following both paths (i.e. building both CSTs). Some GLR passsimply return all CSTs
constructed in this way. Others use heuristics or user Spatons to choose the ‘correct’
CST before proceeding. ElkhoundSDF8, and Bisofl (which is actually an LALR parser
generator with a GLR mode) are the most popular GLR parsesrgaors.

If the lexing is done separately, GLR does not address thelgmoof how to handle dif-
ferent regions of a program differently. As a result, someel@moposed using scannerless
GLR (SGLR) parsers. SGLR parsers have characters, rathretdkans as their terminals.
This makes it very straightforward to handle MLP.

For example, Bravenboer and Visser recommend SGLR for enmgedidmain-specific
languages (DSLs) in general-purpose programming langufig)¢04]. Along similar
lines, Kats et al have used SGLR to support create rich edisoMLP in Eclipse KKV08].
Even more relevantly, Bravenboer et al have recommended 6$h.R in the abc frontend
[BETVO06].

Since (S)GLR grammars can capture any CFG, the class is dlmgkd composition. As
aresult, it is possible to create modular (S)GLR parser igeoes.

GLR is slower than Rats!, which is slower than Antlirj0€], but work has been done on
improving its performance by isolating ambiguities (e\y.§99).
9.3.4 metafront

Developed by Brabrand et al, the metafront syst&®\[03, serves a twofold purpose.
First, it is a declarative language for transforming CSTsdioe grammar into CSTs for

http://www.cs.berkeley.edu/ smcpeak/elkhound/
8http://www.program-transformation.org/Sdf/SGLR/
Shttp://www.gnu.org/software/bison/

134

9.4. Approaches specific to Domain-Specific Languages

another grammar. Second, and more interestingly, it is gansible parsing system.

metafront achieves extensibility by using specificity pagsrather than context free pars-
ing. Intuitively, specificity parsing is a scannerless pagsechnique that resolves ambigu-
ity in favour of the ‘most specific’ alternative. This occwaisboth the lexical and syntactic
levels'©,

Specificity parsing is highly unconventional and presemislear benefits over PEG or
(S)GLR parsing. It is, however, more extensible than LRURAALR systems.

9.4 Approaches specific to Domain-Specific Languages

Finally, some approaches are specifically tailored to rdpicelopment of domain-specific
languages (DSLs). Systems like MontiCoreqV07], [GKR*08] and MPS? (the Meta
Programming System) allow developers to quickly plug tbgetexer, parser, and seman-
tic modules to create new DSLs from libraries of availablbawours. While these tools
are well suited to creating languages and editors for DSkls kmited syntax, they cannot
be used to parse more complicated, general purpose larggu@et is, they are less ex-
pressive than traditional L/PSLs and are not suitable fantgparsing complex languages
like C or Java.

10Though there is no lexical pre-processor, the terminale@frammar are still tokens formed by match-
ing regular expressions.
Uhttp://www.onboard.jetbrains.com/is1/articles/04iap/

135

Related Work

136

Chapter 10

Conclusions

The idea of creating compilers for languages with extersslyintax and compilers for
mixed language programming (MLP) is growing in populartiyymerous tools have sprung
up for extensible and composable parsing, attribute grassyraad analyses, but still there
is a gap. None of these tools provides a system for handlitgnsible and composable
lexing.

To fill this gap, we presented the MetalLexer lexical spedificalanguage. It has three
key features. First, it abstracts lexical state trans#tioat of semantic actions. This makes
specifications clearer, easier to read, and more modulazon8e it introduces multiple
inheritance. This is useful for both extension and codeisbarThird, it provides cross-
platform support for a variety of programming languages @mdpiler toolchains.

We implemented three translators for MetaLexer. The mogbmant translates Metalexer
specifications into JFlex specifications so that they canebézed as Java classes. The
others provide help with debugging of MetalLexer specifaraiand porting of existing
JFlex specifications.

Using these translators, we implemented lexers for thriéereint programming systems:
the Natlab language of the McLab project, the aspectj laggud the abc project (with
its eaj and tm extensions), and the component and layouttyes of Metalexer itself.
We compared these specifications to the original JFlex imetgations and found them

137

Conclusions

to be much simpler and clearer. In particular, nearly allhef supporting Java code was
eliminated in favour of standard MetaLexer constructsth@mmore, rewriting JFlex spec-
ifications in MetaLexer enabled us to see new solutions tstiegj lexer problems.

We compared MetalLexer’'s performance to that of JFlex in treas: specification size,
generated lexer size, compilation time, and execution .tifvetalexer generally has
shorter specifications than JFlex and the other metrics |avathin an order of magni-
tude. The increased clarity of the specifications makedrhaeoff worthwhile, especially
since our initial implementation is untuned and unoptirdize

138

Chapter 11
Future Work

In its current state, MetaLexer is already a useful tool. Ewsv, there is always room for
improvement. This chapter describes directions for sulisaicdevelopment of MetalLexer.

11.1 Optimizations

During the initial development of MetalLexer, relativelitle has been done in the way of
optimization — neither in the compiler itself, nor in the gested code. Clearly, however,
there is substantial opportunity to do so in the future.

11.1.1 Compilation Time

The most straightforward way to improve the execution tifne MetalLexer compiler(s)
would be to make more efficient use of JastAdd attributes. aliqular, many attributes
need only be calculated once because they will never ch&wgh attributes can be flagged
aslazy so that their values will be memoized. Even the attributes$ tlo need to be re-
computed generally only have be recomputed when the steugfihe AST changes. Mak-
ing these attributes lazy as well and then flushing them nibndaring transformations
might also improve performance.

139

Future Work

Of course, since MetalLexer performs more elaborate chéeksttaditional lexer genera-
tors, it can never be expected to compile specifications igklgas they do.

11.1.2 Code Generation

At present, the JFlex specifications generated by Metalamemuch longer than the cor-
responding hand-written specifications (&exction8.4.2. Several improvements to the
JFlex code generator are possible and could help close the ga

First, the DFAs of the MetaLexer are stored naively. Unlikée3, which compresses its
transition tables, MetalLexer generates arrays of intedg@irsary representations of these
tables would be much more compact.

Second, the DFA transition tables could be shrunk by usimgpament-specific alphabets.
Observe that, for a given components, the only symbols trabe seen by the meta-lexer
are the meta-tokens declared in that componeBGF>, and all possible region's. By
sharing the same alphabet across all components, we amgadiaieachable columns to
all of the transition tables.

Third, the unconditional if-statements describedSiection7.2.3 are often unnecessary.
Frequently, we can determine statically whethathing or Just will be returned. For
example, many actions are either empty or contain only amettatement. Obviously,
there is no need to consider bdtlothingandJustcases in these instances. Going a step
further, if we know that the state (i.e. fields) of the companeill not be accessed or
modified (as is frequently the case), then we can inline thierabody in the generated
action rather than wrapping it in a method of the componeag<t|

Finally, the generated code contains substantial dupicat The simplest example is
macros. If two components inherit the same macro (and bokemse of it), then both get
a copy. It would be much better to recognize that the macrdbas inherited and use the
same one in both cases. Similarly, it might be possible toeniokerited code regions into
shared superclasses. For example, if compoAeamdB both inherit helper componeht,

We can actually go a step further if we observe that not albregjare possible — we can only see those
that are guests of the current component in some embedding.

140

11.2. Analysis

then perhaps the corresponding classeéfandB could both inherit functionality from the
corresponding class fét. Of course, substantial thought and, perhaps, analystgjisned
to ensure that this is done soundly (i.e. without affectimgtemantics).

11.1.3 Execution Time

If the present implementation of the JFlex backend is rethithen most execution time
improvements will come from performance tuning of commosesaand the elimination
of layers of abstraction described above (Seetion11.1.9. Alternatively, there may be
another way to organize the backend that results in fastarge

Fundamentally, the execution time is limited by the fact theneta-token (and, potentially,
aregion) may be generated for each character in the inpatidmcases, a MetalLexer lexer
must process two (or three) times as many symbols as a conipdfdex lexer. However,
there is hope because the transition logic in the JFlex Imatisshandled entirely by DFAS,
whereas a JFlex lexer may use a slower ad-hoc solution.

11.2 Analysis

Another area that is ripe for examination is the new analyisasbecome possible once
lexical state transitions are abstracted out of semantiorec If no lexical states are de-
clared in a MetalLexer specification, then the compiler knfawsertain that all transitions
are specified in the top-level layout. As a result, all traoss are available to the lexer —
the interaction of the various components is perfectly kmow seems likely that this in-
formation could facilitate optimizations of the generalecker. Even if it does not, it makes
possible a variety of verification and visualization tools.

141

Future Work

11.3 Known Issues

Unfortunately, the present implementation of MetaLexenas without blemish. A few
issues remain.

11.3.1 Frontend

Some issues affect the frontend, and thus affect all backend

First, for convenience and to eliminate duplication, erm@ssages are sorted. They are
arranged by file, by position, and then by message. Unforélynahis means that if two
messages occur at the same position in the same file — perbeggdse they are related —
then they may be reordered. A better solution might be torardly by file and by position
and eliminate duplicates in some other way.

Second, the append buffer (sBection4.9) is unavailable to rules generating error mes-
sages. Keeping the buffer hidden was a design decisiondatkto prevent developers
from using it to affect control flow. However, it may ultimétgrove worthwhile to expose
it.

Third, if a lexical state is declared at the component letvedn there is no way to refer to
it at the layout level. In general, this is a good thing because it encourages sulzion.
However, it does make it harder to port some older JFlex (@x)Mpecifications that refer
to specific lexical states in helper methods.

11.3.2 JFlex Backend

Other issues affect the JFlex backend. They may or may nettadther LSL backends,
depending on the features of the LSL and the underlying AlL.

First, JFlex uses Java as an AlL and Java does not allow adio-stner classes to contain
static members or fields. As a result, AIL code regions in conemts (which are wrapped

2Unless one cheats and makes assumptions about the namérgang|

142

11.4. Qualified Names

in inner classes) may not contain static members or funstidfhile not a major limitation,
this is quite frustrating. Any backend with Java as an Allngsihe same implementation
pattern will encounter this problem.

Second, when tracing code is embedded in the generatedilageznabled by a static
method setTracingEnabled()it would be much nicer to pass this as a flag to the construc-
tor. Unfortunately, only the very latest version of JFleypgarts adding arguments to the
lexer’s constructor and we felt that this would limit its fideess. Since some tracing oc-
curs in the constructor itself, the flag must be set beforedmstructor is executed, hence
the static method.

Third, the pair filter does not interact nicely with start empiatterns. It is frequently the
case that a start meta-pattern contains a meta-token tietersded to be paired with a
meta-token in the end meta-pattern. For example, a Java obesponent might have an
open brace in its start meta-pattern and a close brace imdtsneta-pattern. Obviously,
these braces are intended to be paired. Unfortunatelytdinenseta-pattern occurs in the
host component and the end meta-pattern occurs in the getatpattern, making it im-
possible to pair them. To resolve this issue, open-itemsagoed in the start meta-pattern
are cleaned out of the pair filter. This works well in practibat it is not very nice in
principle. In particular, close-items in the start metdtgra are not cleaned out of the pair
filter because there is no good way to restore the open-iteayshtave already cancelled.
As a result, the pair filter recognizes close-items but nenejpems in start meta-patterns.
This is not very intuitive.

11.4 Qualified Names

At present, qualified names in MetalLexer are not particylaseful. Instead of qualifying
names with a dot, one could just as easily put everything endirectory and group files
be prepending prefixes. Qualified names would be much morelus¢here were cir-
cumstances in which names could be used without qualificatiperhaps within the same
directory or when explicitly imported, as in Java. Altermaly, an aliasing mechanism

143

Future Work

could be introduced to allow components to be referred tdloyter names.

11.5 Other Platforms

As discussed isection/.2, it should be quite straightforward to implement additicwde
generation engines for MetalLexer. Two, in particular, vidog especially helpful.

First, a JLex backend would serve as a useful starting péhugh it is less powerful and
modern than JFlex, it has the advantage of being releasest anuodified-BSD license.
This means that it could be freely distributed with Metalrexaaking the project more
self-contained.

Second, a Flex backend would be useful because it would gi@ed3C++ programmers
access to the power of MetaLexer. Some of the implementdttails would not translate
directly — inner classes differ slightly between Java and @/€-but there are no funda-
mental obstacles.

11.6 JFlex Porting

As discussed irsection5.3, the JFlex-to-MetaLexer translator exists primarily tonbe-
strate that MetalLexer is as powerful as JFlex. Unfortugattells not very useful as a tool.
A more practical tool would disregard the validity of its put and focus instead on pro-
viding useful stubs for the developer porting from JFlex tetBdexer. Basically, it would
perform the grunt work of splitting the specification up istmaller files and replacing all
action delimiters (i.e.{ }' to ‘ {: :}").

Given a JFlex specification, the tool would create a layotit Wie same name containing
all AIL helper code and imports for the components describext. It would create a
helper component containing all macros and a non-helpepoaent for each lexical state,

inheriting the macro component and containing all the raféke lexical state. It would be
up to the developer to port the transition logic to MetaLeX#&hile the output would not

144

11.7. Comparison with Lexerless Techniques

be remotely complete, it would serve as a much more usefuirgjgpoint than the valid
MetaLexer produced by the existing translator.

11.7 Comparison with Lexerless Techniques

Lexerless parsing is another good way to handle MLP and a#sés that require exten-
sible, modular compiler frontends. However, techniquks REG and SGLR parsing are
slower than traditional LALR parsing and frequently thaifl foower is not needed. For
example, it seems likely that MetaLexer and LALR could hagerbused to generate MLP
editors for Eclipse (fKV08]) or to parse JeannieH[G07]).

We built MetaLexer because we believe that LALR is frequeflgbod enough’ and that,
when it is, the performance benefit of using it is substanttalvould interesting to com-
pare these approaches directly. The work of Bravenboer explessing the syntax of
abc in SGLR BETV06], presents an excellent opportunity for comparison. Timologth
approaches are relatively new and unoptimized, it wouldriberésting to see how they
compare. Furthermore, additional work will be required éedmine how often the com-
bination of MetaLexer and LALR is ‘good enough'’.

11.8 Parser Specification Language

When we began, our goal was to create not an LSL but a PSL. H&a@ag dissatisfied
with a number of such tools, we decided to create a compoP&ileHowever, we realized
that before we could begin we would need a composable LSLs Was born MetalLexer.
However, our goal remains. We record below the fruits of oitral research in the hope
that they may be useful to a future implementer.

The chief problem when creating a composable PSL is thatl#sses of grammars tradi-
tionally used for parsing (i.e. LR(1)/SLR/LALR) are not compbke. In particular, any
new productions added during composition have a chancenflictiing with existing pro-
ductions (either shift-reduce or reduce-reduce). Congetyyé is necessary to use another

145

Future Work

class of grammar. Antfruses LL(*) grammars, which extend LL(k) grammars with infi-
nite lookahead. SGLR systems like SDise full context-free grammars, which are closed
under composition. Rats!dri06] uses PEGs, which eliminate ambiguity by testing rules
in order and backtracking upon failure.

All of these classes of grammars are composable, but all@asesthan LR(1)/SLR/LALR
grammars. Furthermore, they are less established andastretd, so their are fewer
tools designed to work with them. Without tables, Antlr gextes an enormous amount of
decision-making code. It also lacks left-recursion andipoes slower parsers than Beaver.
SGLR is slower than LR(1)/SLR/LALR and does not work nicelyhnaixisting tools (e.g.
[KKV08]). Rats! has to be able to backtrack, so actions cannot hdeeefiects. It also
produces slower parsers than Antlr.

The Polyglot Parser Generatdi CM03] adds extensibility to the popular LALR CUP
parser but it is not composable.

We propose returning to a LR(1)/SLR/LALR approach, but restrg composition to sub-
grammars with different alphabets. If two subgrammarseshartokens in common, then
they can never conflict with each otfelOf course, MetaLexer is ideal for specifying the
lexer for each subgrammar separately.

At a high-level, our composable PSL would have many featiuremmon with Meta-
Lexer. First, it would allow rules to be added, removed, aplaced. This would make
specifications extensible. Second, it would serve primad a preprocessor, compiling
high-level specifications down to the syntax of existing BSuch as beaver and bison. In
this way, it could provide a standard feature set acrossréifit platforms. As a prepro-
cessor, it could provide syntactic sugar for full EBNF syraax left-recursion, even if the
underlying PSL lacked support.

As an additional nicety, our composable PSL would probabpasate the enumeration of
tokens from the parser proper to eliminate the dependentte déxer on the parser.

Shttp://www.antlr.org/
4http://www.program-transformation.org/Sdf/SGLR/
Shttp://www?2.cs.tum.edu/projects/cup/

6Special handling may be required for nullable rules.

146

Appendix A

Acronyms

e-NFA: Epsilon Non-deterministic Finite Automaton — a specialANiR which some
transitions (i.e e-transitions) can be made without consuming input.

abc: AspectBench Compiler — an open source implementation of gpeétJ program-
ming language.

AlIL : Action Implementation Language — the language in whiclelections are speci-
fied. For example, JFlex uses Java as its AlL.

AST: Abstract Syntax Tree — a refined and simplified CST.
CFG: Context Free Grammar — a succinct way of describing a cofriexianguage.
CST: Concrete Syntax Tree — the raw parse tree constructed bysarpar

DFA: Deterministic Finite Automaton —an FSM in which for a giveate and input, there
is precisely one next state.

DSL: Domain Specific Language — a programming language thailased to a specific
field of inquiry.

147

Acronyms

eaj. Extended AspectJ — an extension of the AspectJ languagtedrasing abc. Includes
several new pointcuts.

EBNF: Extended Bachus-Naur Form — a canonical syntax for spegfgbntext free
grammars.

FSM: Finite State Machine — an automaton consisting of a finitalver of states con-
nected by transition edges.

GPL: General Public License — an open-source copyleft licerma the GNU founda-
tion.

GLR: Generalized LR — an extension of LR parsing that handldsgduce and reduce-
reduce conflicts by building both possible CSTs.

IDE: Integrated Development Environment — a feature-rich iappbn for developing
software.

IMP : IDE Meta-tooling Platform — a platform for developing rielitors for the Eclipse
IDE.

JNI: Java Native Interface — Java’s foreign function interfégieh C).

LSL: Lexer Specification Language — a language in which lexezipations are written.
For example, the JFlex system calls its LSL ‘JFlex’. Notedistinction between the
language for specifying lexers and the system for compgpegifications into lexers.

MLP : Mixed Language Programming —when multiple programmimgleages are mixed
within a single source file.

NFA: Non-deterministic Finite Automaton —an FSM in which foriaemn state and input,
there are zero or more next states.

PEG: Parsing Expression Grammar — a CFG-like grammar in whichiystions are
tested in order.

148

PSL: Parser Specification Language — a language in which pgvseifgations are writ-
ten. For example, the Beaver parser generator calls its PSAvée Note the dis-

tinction between the language for specifying parsers aadsystem for compiling
specifications into parsers.

SGLR: Scannerless GLR — an extension of GLR that handles lexittymihe parser.

tm: Tracematches — an extension of the AspectJ language l(gctfahe eaj extension
of that language) that extends pointcuts with temporaklaghnstructs.

149

Acronyms

150

Appendix B

Developer Manual

This appendix describes the organization of the MetaLexajept. In order to postpone
the inevitable obsolescence of this appendix, we focus ghlights rather than providing
an exhaustive listing.

B.1 Organization

The files of the MetalLexer project are organized as follows.

B.1.1 metalexer/

.classpath & .project & .settings/Eclipse project files.

common.properties & .xml The Ant build file for the frontend. Shared by all backends.
metalexer.properties & .xml The Ant build file for the metalexer backend.
jflex.properties & .xml The Ant build file for the jflex backend.

bin/ The directory containing the Java class files produced thé process (either Eclipse
or CLI). If jars are produced, then they will be stored elsesghe

151

Developer Manual

gen/ The directory containing source files produced by the builttess (scanners pro-
duced by JFlex, parsers produced by Beaver, AST node classeg, JUnit test classes,
etc).

permgen/ The directory containing files that will be copied ¢g@n if for some reason
generation is impossible (e.g. if JFlex is missing).

lib/ The directory containing external jars depended upon byotlie process. Note that
these jars are not required by the produced jars.

run _targets/ Useful eclipse run targets (mostly for running tests, bsib &r the frontend).

src/ Handwritten (vs generated) source code (JFlex, BeaveAddsiava, etc), not related
to testing. Must not depend on anything@st.

test/ Handwritten (vs generated) testing source code. Not irdud jars.

... Anything else is unofficial and is not required for buildingsMLexer. It is not consid-
ered to be part of the system and may not be depended upon.

B.1.2 metalexer/src/ & metalexer/test/

frontend Files related to the frontend or shared by all backends.

backend-metalexerFiles related to the MetalLexer backend (i.e. for the Meta-¢®-
Metalexer translator).

backend-jflex Files related to the JFlex backend (i.e. for the MetalLeseiRlex transla-
tor).
B.1.3 metalexer/src/frontend/

metalexerJava package.
lexer Directory containing the specification of the lexers.

component.grammar & .astSpecification of the component language parser.

152

B.1. Organization

layout.grammar & .ast Specification of the layout language parser.

Component & Layoutlnherit.jadd The specifications of processinheritance for compo-
nents and layouts, respectively. These are the methodsritger processing of the raw
AST from the parser.

Component & LayoutErrors.jrag The specifications of getErrors for components and
layouts, respectively. These files delineate the posditdaténd) errors that can be raised.
(Note that some errors are raised in the parser, the file tpath?.

Component & LayoutWarnings.jrag The specifications of getWarnings for components
and layouts, respectively. These files delineate the ples@ifontend) errors that can be
raised. (Note that some errors are raised in the parsenliegiance mechanism, etc).

... The other files provide support methods for processinhex@and getErrors.

B.1.4 metalexer/src/frontend/metalexer

CompilationProblem & Error & Warning CompilationProblem is the base type of all
errors and warning encountered during compilation.

ConstantsSome helpful constants.
FileLoader Handles loading of components and layouts from files.

PatternType An enumeration of possible pattern types (i.e. acycliclicycleanup).

B.1.5 metalexer/src/frontend/lexer

componentComponents and layouts specific to the component lexer.
layout Components and layouts specific to the layout lexer.

shared Components and layouts shared by the component and layeuslex

153

Developer Manual

B.1.6 metalexer/src/backend-metalexer/

Component & LayoutGeneration.jadd The printers that turn a processed AST into Meta-
Lexer files.

metalexer/metalexerlJava package containibgL2ML , the entry point for the MetaLexer-
to-MetalLexer translator.

B.1.7 metalexer/src/backend-jflex/

Component & LayoutGeneration.jadd The printers that turn a processed AST into JFlex
files.

_Generation.jadd Hierarchically called fromComponent & LayoutGeneration.jadd.
Generate the .flex file output by the translator (i.e. theadéxer).

_DFAGeneration.jadd Hierarchically called fronbayoutGeneration.jadd via LayoutDFA-
Generation. Generate the meta-lexer class for the specification, noabty the automata
used to match meta-patterns.

JFlexErrors.jrag The specification of JFlex-specific component and layowrsrrCon-
tributes to the same collections@smponent & LayoutErrors.jrag .

ReturnWrap.flex Custom lexer for translating return statements of the feeturn X;
into statements of the formeturn Maybe.Just(X); . This is handled with a lexer so
that comments and strings can be handled properly.

PackageFind.flexCustom lexer for finding package statements of the fpatkage X;
and returningX. This is handled with a lexer so that comments and stringbedrandled
properly.

StaticFind.flex Custom lexer for finding all occurrences of the keyword stafitis is

handled with a lexer so that comments and strings can be édpdbperly.

metalexer/jflex/ Java package containingL2JFlex, the entry point for the MetalLexer-
to-JFlex translator.

154

B.1. Organization

metalexer/jflex/fsm/Java package containing the classes for constructing anguiat-
ing finite state machines, nametyNFAs, NFAs, and DFAs.

... Files that support generation and meta-generation.

B.1.8 metalexer/test/frontend/

c_scanner.testlistList of component language scanner tests (input in .in, @&oeoutput in
.out). Output files contain a list of tokens up to either EORherfirst error. (No warnings
are possible.)

c_parserpass.testlisList of component language parser tests (input in .in, ebquboutput
in .out). Output files contain pretty printed versions ofuhfiles. (Warnings are ignored.)

c_parserfail.testlist List of component language parser tests (input in .in, ebguecutput
in .out). Output files contain lists of errors. (Warnings my@ored.)

c_inheritancepass.testlistList of component language inheritance tests (input in ,.ene
pected output in .out). Output files contain collapsed p@st-inheritance), pretty printed
versions of input files. (Warnings are ignored.)

c_inheritancefail.testlist List of component language inheritance tests (input in /e
pected output in .out). Output files contain lists of errg¥¥arnings are ignored.)

c_error.testlist List of component language error tests (input in .mlc, exg@output in
.out). Output files contain lists of errors. (Warnings aneoiged.)

c_warning.testlist List of component language warning tests (input in .mlc,eeted out-
put in .out). Output files contain lists of warnings (errors gnored).

|_scanner.testlistList of layout language scanner tests (input in .in, expecetput in
.out). Output files contain a list of tokens up to either EORherfirst error.

|_parserpass.testlistList of layout language parser tests (input in .in, expectegbut in
.out). Output files contain pretty printed versions of infilets. (Warnings are ignored.)

|_parserfail.testlist List of layout language parser tests (input in .in, expeaetput in
.out). Output files contain lists of errors. (Warnings ansoiged.)

155

Developer Manual

I_inheritancepass.testlisiList of layout language inheritance tests (input in .mlipested
outputin .out). Output files contain collapsed (i.e. podteritance), pretty printed versions
of input files. (Warnings are ignored.)

|_inheritancefail.testlist List of layout language inheritance tests (input in .mllpested
output in .out). Output files contain lists of errors. (Waugs are ignored.)

|_error.testlist List of layout language error tests (input in .mll, expectedput in .out).
Output files contain lists of errors. Note.etrorhelper tests check the effect of the
%helper directive on errors. (Warnings are ignored.)

| _warning.testlist List of layout language error tests (input in .mll, expeadetput in .out).
Output files contain lists of warnings. (Errors are ignoyed.

metalexer/Java package. Contains JastAdd files (in contrastdpto keep them separate
from the test input and output files.

... Test specifications (as listed in .testlist files).

B.1.9 metalexer/test/frontend/metalexer/

Component & LayoutPrint.jrag Pretty printers for testing. Produce an output that is
useful for testing. Not guaranteed to produce correct Metal (e.g. may include helpful,
but illegal annotations).

FrontendTestsThe top-level JUnit test suite.

_TestBaseClass to be extended by generated test file.
_TestGeneratorClass that generates a test file from a .testlist file.
_TestTool Class for generating .out files automatically.

... Support files for the Base, Generator, and Tool classes.

156

B.1. Organization

B.1.10 metalexer/test/backend-metalexer/

metalexer/metalexer/Java package containing the top-level JUnit test sleckend-
MetalexerTests

in/ Metalexer specifications.
outl/ Files fromin that have been run through the pretty printer.

out2/ Files fromoutl that have been run through the pretty printer. Contents dhiosil
identical to those obutl.

B.1.11 metalexer/test/backend-jflex/

c_error.testlist List of component language (JFlex-specific) error testgutinn .mll, ex-
pected output in .out). Output files contain lists of errors.

c_error.testlist List of layout language (JFlex-specific) error tests (inpuimll, expected
output in .out). Output files contain lists of errors.

m_c_meta.testlistList of tests. Each test has a .in file list of meta-tokens a>bns to be
passed to the generated meta-lexer for the component lgagpa&cification and a .out file
listing the expected embedding transitions returned byrtet-lexer.

n_scanner.testlistList of natlab language scanner tests. Copied from McLab lmdified
by removing lines passed through the comment buffer (iecemted by '# in the original).

in/ Specifications of various languages given in MetalLexer.

out/ The output from translating the specificationsim to JFlex: lexer and meta-lexer
JFlex files, properties files recording the characters asdigo regions and meta-tokens
and the numbers assigned to embeddings, and Java scantpersbyuFlex.

out/bin/ The class files that result from compiling the Java scanngmubby JFlex. Note:
this directory is on the classpath so that these scannetsectasted by the JUnit test suite.

placeholders/Stubs of Java classes that contain just enough to make tleeaged scanners
work. Most importantly, the parser stubs contain the listabens on which the scanners

157

Developer Manual

depend. Note: subdirectories are all Java packages and #ne classpath.

metalexer/jflex/ Java package. Contains JastAdd files to keep them separatetdsd
intput files.

B.1.12 metalexer/test/backend-jflex/metalexer/jflex/

BackendJFlexTestsThe top-level JUnit test suite.

CompilationTests Arguably the most important test cases. Compiles the MeelLgxec-
ifications inin to JFlex, to Java, to class files. Depended upon by the tesdtexbrcise the
generated scanners. Note: when running in Eclipse, it isssaey to run the tests more
than once, refreshing in between, because Eclipse will ioét ypo the changes made by
this test during a single run.

_TestsHandwritten (vs generated) test cases.

_TestBaseClass to be extended by generated test file.
_TestGeneratorClass that generates a test file from a .testlist file.
_TestTool Class for generating .out files automatically.

JFlexHelper A helper class that loads the JFlex jar at runtime if it is prets

ReflectionHelper A helper class that loads the generated scanner files atraiitithey
have been generated (i.e. if JFlex is available).

... Support files for the Base, Generator, and Tool classes.

B.2 JFlex

Unfortunately, JFlex is covered by a GPL license. Since tlealdexer is covered by a
modified BSD-style license, the MetalLexer distribution aarinclude JFlex.

MetaLexer will function properly without JFlex, but you Wibe unable to rebuild any
modified .flex files and the compilation-based tests in thexJBackend will be unavailable.

158

B.3. Configurations

If you wish to download JFlex on your own, it is available hdtp://jfflex.de/ Just un-
zip the archive under the lib/ directory and poijfiex.jar.path.prop in com-
mon.propertiest the jar file (path should be relative to lib/).

B.3 Configurations

The MetalLexer compiler supports multiple backends withareth frontend. The current
implementation supports MetalLexer-to-JFlex and Metat-exéMetalexer.

Unfortunately, since the project uses aspects, thereeasf@mence between the backends.
As a result, only one can be built and developed at a time. @nefli of this approach is
that it keeps the release jars small by excluding code reddiar other backends.

To work solely on the frontend, use themmon.xmlbuild file. To work on the MetaLexer
backend and the frontend, use thetalexer.xmlbuild file. To work on the JFlex backend
and the frontend, use thigex.xml build file.

B.4 Building MetalLexer

MetaLexer developers can use either the command line ordliygsg IDE.

B.4.1 Command Line

When executing the build files from the command line, ensua¢ tie eclipse.running
property is not set. If itis, then the Java compilation stepisbe skipped.

The Ant build file takes care of all classpath issues. No condigon should be required.

159

Developer Manual

B.4.2 Eclipse

To build the project in Eclipse, use the same Ant targets @® the command line, but
ensure that theclipse.runningproperty is set. This will allow Eclipse to build Java files
that are in source path folders in the Eclipse build path.

The providedclasspathfile takes care of all source- and classpath issues. No coafign
should be required.

When running the JUnit tests in the JUnit view, note that tlatiEnd and backend tests
must be run separately. (In contrast, testAnt target runs all appropriate tests in a single
pass.)

If you want a really minimal release jar, you have to builddarh the command line because
otherwise Eclipse will compile some extraneous Java filelsthey will be included.

160

Appendix C

Language Specification

The Metalexer tool is covered by the (modified) BSD License.

Copyright (c) 2009, Andrew Casey (McGill University)
All rights reserved.

Redistribution and use in source and binary forms, with or wi thout
modification, are permitted provided that the following co nditions are met:

+ Redistributions of source code must retain the above copyri ght notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above cop yright notice,
this list of conditions and the following disclaimer in the d ocumentation
and/or other materials provided with the distribution.

* Neither the name of McGill University nor the names of its con tributors
may be used to endorse or promote products derived from this s oftware

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND BNIMGBRS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICUIARRPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONIRIRS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR C ONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTEOGDS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HEVEER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILTY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

161

Language Specification

© 0 N O o B~ W N P

W oW oW W WRN N NNDNRNDNRNNNRNER B P B R B R R e
E ® N P O © ® N 0o a S~ O N P O © 0 N~ o 00 » W N B O

C.1 Component

package metalexer;
%%
/lbased on http://jflex.de/manual.html

i mport static metalexer.ComponentParser.Terminals.
%%

% ayout conponent

%opt i on visibility

"%public”

Y%option finality "%final"

%option class_name "%class ComponentScanner

% onponent
% onponent
% onponent
%€ onponent
%€ onponent
% onponent
% onponent
%€ onponent
% onponent
% onponent
%€ onponent
%€ onponent
% onponent
% onponent
% onponent
% onponent
%€ onponent
% onponent
% onponent

start base

action
append_delim_region
append_region
base
bracket_comment
char_class
comp_options
comp_rules
decl_region
delete_directive
init_region
macro_defn
macro_invoc
mtok_decl
open_rule_group
repetition_spec
state_list
string_id_directive
string

162

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

C.1. Component

%%

%%nherit beaver
%%nherit hel per

%%embed

% ame header

%host base

%guest comp_options

Y%start <BOF>

%end END_HEADER_SECTION

%%embed

Y%ame rules

% ost base

%guest comp_rules

st art %comp_options%
%end END_RULE_SECTION

%%embed

%anme action

%host comp_rules
%guest action

%tart START_ACTION
%end END_ACTION

%%embed

Y%name init_region

%host comp_options

%guest init_region

Ystart START_INIT_REGION
%end END_INIT_REGION

%%embed

%nanme decl_region
%host comp_options

163

Language Specification

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107

Y%guest decl_region
%tart START_DECL_REGION
%end END_DECL_REGION

%%embed

% anme append_region

%host comp_options

%guest append_region

%tart START_APPEND_REGION
%end END_APPEND_REGION

%%embed

%manme append_delim_region

%host comp_options

%guest append_delim_region

%start START_APPEND_DELIM_REGION
%end END_APPEND_DELIM_REGION

%%embed

%ame macro_defn

%host comp_options

%guest macro_defn

%tart START_MACRO_DEFN
%nd END_MACRO_DEFN

%%embed

% anme bracket comment

%host comp_options, macro_defn, comp_rules, mtok decl, state_
string_id_directive, delete_directive, open_rule_grou

ohost bracket_ comment //NB: host and guest => nestable

%guest bracket comment

%start START_BRACKET_COMMENT

%end END_BRACKET_COMMENT

%%embed

% ame char_class
9host macro_defn, comp_rules, delete_directive

164

list,

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

C.1. Component

%guest char_class
%tart START_CHAR_CLASS
%end END_CHAR_CLASS

%%embed

% ane delete_directive

%host comp_rules

%guest delete_directive

%tart START_DELETE_DIRECTIVE
%end END_DELETE_DIRECTIVE

%%embed
%ane macro_invoc

9host macro_defn, comp_rules, delete_directive

%guest macro_invoc
%start START_MACRO_INVOC
%end END_MACRO_INVOC

%%embed
%anme repetition_spec

9host macro_defn, comp_rules, delete_directive

%guest repetition_spec
%tart START_REP_SPEC
%end END_REP_SPEC

%%embed

%anme mtok_decl

%host comp_rules
%guest mtok_decl
Ystart %Yaction%
%end END_MTOK_DECL

%%embed

Y%nanme string_id_directive

%host comp_options, comp_rules
%guest string_id_directive

%tart START_STRING_ID DIRECTIVE

165

Language Specification

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

178

179

%end END_STRING_ID_DIRECTIVE

%%embed

Y%mame string

9host macro_defn, comp_rules, delete_directive, string_id_di
%guest string

%start START_STRING

%end END_STRING

%%embed

Y%nane state_list

%host comp_rules, delete_directive
%guest state_list

%tart START_STATE_LIST

%end END_STATE_LIST

%%embed

Y%mane delete_state_list

%host delete_directive
Y%guest state_list

%tart START_STATE_LIST
%end END_STATE_LIST

%%embed

% anme open_rule_group

ohost comp_rules

%guest open_rule_group
U%start %state list%

%end END_OPEN_RULE_GROUP

%%embed
Y%ame eof_error

9host action, append_delim_region, append_region, bracket co

char_class

%host decl _region, init_region, macro_invoc, open_rule_group
repetition_spec

% ost state_list, string

166

rective

mment,

180
181
182

10
11
12
13
14
15
16
17
18
19
20
21

C.1. Component

%guest base
%tart EOF_ERROR
%end <ANY> //NB: will never happen

lexer/component/component.mli

%conponent action

%ext ern "private Symbol symbol(short type, Object value, int start Line,
int startCol, int endLine, int endCol)"
%ext ern "private void error(String msg) throws Scanner.Exception

YappendWt hStartDel i m{ /=*(int startLine, int startCol, int endLine, int
endCol, String text) */
return symbol(ACTION, text, startLine + 1, startCol + 1, end Line +
1, endCol + 1);
Y%appendW t hSt art Del i n}

%%

%%nherit comp_macros

%{CloseAction} {: append(yytext().substring(1)); :}
{CloseAction} {: :} END_ACTION

%:
%:

<<ANY>> {: append(yytext()); :}
<<EOF>> {: error("Unterminated action"); :} EOF_ERROR

lexer/component/action.mic
%conponent append_delim_region
%ext ern "private Symbol symbol(short type, Object value, int start Line,

int startCol, int endLine, int endCol)"
%ext ern "private void error(String msg) throws Scanner.Exception

167

Language Specification

Y%appendW t hStart Del i i{ /=(int startLine, int startCol, int endLine, int
endCol, String text) */
return symbol(APPEND_WITH_START_DELIM_REGION, text, st artLine + 1,
startCol + 1, endLine + 1, endCol + 1);
Y%appendW t hSt art Del i n}

CloseAppendDelimRegion = "%appendWithStartDelim}"

11
12
13
14
15
16
17
18
19

%{CloseAppendDelimRegion} {:
{CloseAppendDelimRegion} {: :} END_APPEND_DELIM_REGION

append(yytext().substring(1)); :

<<ANY>> {. append(yytext()); :}
<<EOF>> {: error("Unterminated append region"); :} EOF_ERROR

lexer/component/append_delim_region.mic

%conponent append_region

%ext ern "private Symbol symbol(short type, Object value, int start Line,
int startCol, int endLine, int endCol)"
%ext ern "private void error(String msg) throws Scanner.Exception "

Y%appendW t hStart Del i n{ /= (int startLine, int startCol, int endLine, int
endCol, String text) */
return symbol(APPEND_REGION, text, startLine + 1, startCo | + 1,
endLine + 1, endCol + 1);
Y%appendW t hSt art Del i n}

CloseAppendRegion = "%append}’

11
12
13

14
15
16
17
18
19
20
21

© 0 N o o~ W N P

N RN NN R R R R R R R R R
W N B O © ® N o o0 A W N B O

C.1. Component

%{CloseAppendRegion} {:

append(yytext().substring(1)); :}

{CloseAppendRegion} {: :} END_APPEND_REGION

%:
%:

<<ANY>> {: append(yytext()); :}
<<EOF>> {: error("Unterminated append region"); } EOF_ERROR

lexer/component/append_region.mic

% onponent char_class

%ext ern "private Symbol symbol(short type)”

%ext ern "private Symbol symbol(short type, Object value)"

%ext ern "private void error(String msg) throws Scanner.Exception

%%

%%nherit comp_macros

\" {: return symbol(CHAR_CLASS NEGATE); :}

\- {i return symbol(DASH); 3}

\] { return symbol(RSQUARE); :} END_CHAR_CLASS

{EscapeSequence} {: return symbol(ESCAPE_SEQUENCE, yyte xt()); :}
\\{Any} {: return symbol(CHAR_CLASS_CHAR, yytext().subs tring(1)); }
\ {: error("Incomplete escape sequence"); 3}

%:
%:

<<ANY>> {: return symbol(CHAR_CLASS_CHAR, yytext()); :}
<<EOF>> {: error("Unterminated character class"); :} EOF_ERROR

%€onponent comp_macros

lexer/component/char_class.mlc

169

Language Specification

© 00 N o g b~ W N

e~ e e e L o s =
© 0O N o U~ W N B O

20

21
22
23
24
25
26

~N o o B~ W N P

%hel per

OpenAppendRegion = "%append{"

OpenAppendWithStartDelimRegion = "%appendWithStartDelim{"
OpenAction = "{:"
CloseAction = "

OpenCurlyBracket = \{
CloseCurlyBracket = \}

OpenAngleBracket = \<
CloseAngleBracket = \>

NonMeta = [\NOWHM<SWA 2SN "]

/lok to not handle comments - JFlex doesn’t either

MacroLookahead = {OtherWhiteSpace} * {ldentifier} {OtherWhiteSpace}
{CloseCurlyBracket}

RepetitionLookahead = {OtherWhiteSpace} * {Number} ({OtherWhiteSpace}
", " {OtherWhiteSpace} * {Number})? {OtherWhiteSpace} *
{CloseCurlyBracket}

GroupSeparator = " %:"

%%

%%inherit shared_macros

lexer/component/comp_macros.mlc

%conponent comp_options

%ext ern "private Symbol symbol(short type)”

%ext ern "private Symbol symbol(short type, Object value)"

%ext ern "private void error(String msg) throws Scanner.Exception

%%

170

10
11
12
13
14
15
16

17

18

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

C.1. Component

%%nherit comp_macros
%%nherit comment_start

/lwhitespace

{LineTerminator} {: [+ ignore =/ :}
{OtherWhiteSpace} {: /= ignore =/ :}
{OpenDeclRegion} {: appendToSt artDel i m(™);

START_DECL_REGION

{OpeninitRegion} {: appendToSt art Del i m("™);

START_INIT_REGION

{OpenAppendRegion} {: appendToSt art Del i (™);

START_APPEND_REGION

{OpenAppendWithStartDelimRegion} {: appendToStartDel i m("™);
start pos +/ :} START_APPEND_DELIM_REGION

/Ino-arg directives

"%helper" |/ {DirectiveLookahead} {:
return symbol(HELPER_DIRECTIVE);

.} START_STRING_ID_DIRECTIVE

/lidentifier directives
"%component"” / {DirectiveLookahead} {:
return symbol(COMPONENT_DIRECTIVE);
.} START_STRING_ID_DIRECTIVE
"%state" / {DirectiveLookahead} {:
return symbol(STATE_DIRECTIVE);
.} START_STRING_ID_DIRECTIVE
"%%xstate"” /| {DirectiveLookahead} {:
return symbol(XSTATE_DIRECTIVE);
:} START_STRING_ID DIRECTIVE
"%start" / {DirectiveLookahead} {:
return symbol(START_DIRECTIVE);
.} START_STRING_ID_DIRECTIVE

/Istring directives

171

/ »tweak start pos

/ »tweak start pos

/ *tweak start pos

Language Specification

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70

A w N R

"%extern" |/ {DirectiveLookahead} {:
return symbol(EXTERN_DIRECTIVE);

:} START_STRING_ID DIRECTIVE

"%import" / {DirectiveLookahead} {:
return symbol(IMPORT_DIRECTIVE);

.} START_STRING_ID_DIRECTIVE

"%initthrow" | {DirectiveLookahead} {:
return symbol(INITTHROW _DIRECTIVE);

.} START_STRING_ID_DIRECTIVE

"%lexthrow" / {DirectiveLookahead} {:
return symbol(LEXTHROW_DIRECTIVE);

:} START_STRING_ID _DIRECTIVE

/linvalid directives
"%" {: error("Invalid directive"); 1}

/lend of section
{SectionSeparator} {:

return symbol(SECTION_SEPARATOR);
:} END_HEADER_SECTION

%:
/[for macro declarations
/INB: beginning of line so that it doesn't interfere with pat

{Identifier} {: return symbol(IDENTIFIER, yytext().trim
START_MACRO_DEFN

%:

<<ANY>> {. error("Unexpected character: " + yytext()); :}
<<EOF>> {: :} END_HEADER_SECTION

lexer/component/comp_options.mic

%€onponent comp_rules

%ext ern "private Symbol symbol(short type)"

172

0) 3}

terns

© 0 N o O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36

37
38
39

C.1. Component

%%

%%nherit comp_macros
%%nherit comment_ start

/lwhitespace
{LineTerminator} {: /= ignore =/ :}
{OtherWhiteSpace} {: [+ ignore */ :}

{OpenAngleBracket} {:
return symbol(LANGLE);
.} START_STATE_LIST

{OpenCurlyBracket} / {MacroLookahead} {:
return symbol(OPEN_MACRO);
'} START_MACRO_INVOC

{OpenCurlyBracket} / {RepetitionLookahead} {:
return symbol(OPEN_REPETITION_SPEC);
'} START_REP_SPEC

{OpenAction} {: appendToStartDel i (™); [/=tweak start pos =/ :}
START_ACTION

/lfor ending state rule-groups
{CloseCurlyBracket} {: return symbol(CLOSE_RULE_GROUP) -

{GroupSeparator} {: return symbol(GROUP_SEPARATOR); }

{SectionSeparator} i nherit / {DirectiveLookahead} {:
return symbol(INHERIT_SECTION_SEPARATOR);

.} START_STRING_ID_DIRECTIVE

/llookahead ensures that "%delete" isn't a prefix (e.g. "%d eleted") and
that we're not in a regex (since no <)

"%delete" / {DirectiveLookahead} {:
return symbol(DELETE_DIRECTIVE);

.} START_DELETE_DIRECTIVE

173

Language Specification

40
41
42
43
44
45
46

© 00 N o o~ W N PP

N R N N N N RN NN R R P B R B R R R
® N o 00 R W N B O © ® N o o0 M W N B O

%:
%:

<<EOF>> {: :} END_RULE_SECTION

%%nherit comp_symbols

lexer/component/comp_rules.mic

%conponent comp_symbols
%hel per

%ext ern "private Symbol symbol(short type)"

%ext ern "private Symbol symbol(short type, Object value)"

%ext ern "private void error(String msg) throws Scanner.Exception
%%

%%nherit comp_macros

\({; return symbol(LPAREN); :}

\) {i return symbol(RPAREN); :}

\[{ return symbol(LSQUARE); :} START_CHAR_CLASS

\] {{ return symbol(RSQUARE); :}

\" {i return symbol(BEGINNING_OF_LINE); :}
\$ {: return symbol(END_OF_LINE); :}

\I {: return symbol(NOT); :}
\" {: return symbol(UPTO); :}

\'* { return symbol(STAR); :}
\+ {: return symbol(PLUS); :}
\? {: return symbol(OPT); :}

\- {: return symbol(DASH); }

174

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

© 00 N oo g M~ W N P

10
11

C.1. Component

V { return symbol(SLASH); :}
\| { return symbol(ALT); :}

\. { return symbol(DOT); :}

n_n {: return symbOI(ASS|GN), :}

"<<ANY>>" {: return symbol(ANY_PATTERN); 3}
"<<EOF>>" {: return symbol(EOF_PATTERN); :}

{EscapeSequence} {: return symbol(ESCAPE_SEQUENCE, yyte
\{Any} {: return symbol(NON_META, yytext().substring(1
\\ {& error(“Incomplete escape sequence"”); }

{Quote} {: appendToStartDel i m(™); /=*tweak start pos

/Isafe fallback for patterns
{NonMeta} {: return symbol(NON_META, yytext()); :}

%:
%:

<<ANY>> {: error("Unexpected character: " + yytext());

lexer/component/comp_symbols.mlc
%conponent delete_directive
%ext ern "private Symbol symbol(short type)"
%%
%%nherit comment_start
{LineTerminator} {: return symbol(DELETE_TERMINATOR); :

END_DELETE_DIRECTIVE
{OtherWhiteSpace} {: [+ ignore */ :}

175

*/

'}

xt(0); }
N i}

7} START_STRING

Language Specification

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

© 00 N o o~ W N P

e~ e e N T o s =
© O N o U~ W N kB O

{OpenAngleBracket} {: return symbol(LANGLE); :} START_ST ATE_LIST
{OpenCurlyBracket} / {MacroLookahead} {:
return symbol(OPEN_MACRO);
.} START_MACRO_INVOC
{OpenCurlyBracket} / {RepetitionLookahead} {:
return symbol(OPEN_REPETITION_SPEC);
.} START_REP_SPEC

%%nherit comp_symbols

%:
%:

<<EOF>> {: return symbol(DELETE_TERMINATOR): :} END_DELE TE_DIRECTIVE

lexer/component/delete_directive.mlc

Y%conponent macro_defn

%ext ern "private Symbol symbol(short type)”

%%

%%nherit comp_macros
%%nherit comment_start

/lwhitespace
{LineTerminator} {: :} END_MACRO_DEFN
{OtherWhiteSpace} {: [+ ignore =/ :}

{OpenCurlyBracket} / {MacroLookahead} {:
return symbol(OPEN_MACRO);
.} START_MACRO_INVOC

{OpenCurlyBracket} / {RepetitionLookahead} {:
return symbol(OPEN_REPETITION_SPEC);

176

20
21
22
23
24
25
26
27

© 0 N o o~ W N P

N NN NN B R R R R R R R R
A W N P O © 0 N O 00 A W N B O

25

C.1. Component

7} START_REP_SPEC

%:
%:

<<EOF>> {: :;} END_MACRO_DEFN

%%nherit comp_symbols

lexer/component/macro_defn.mic
% onponent macro_invoc
%ext ern "private Symbol symbol(short type)"
%ext ern "private Symbol symbol(short type, Object value)"
%ext ern "private void error(String msg) throws Scanner.Exception
%%
%%nherit comp_macros
/Iwhitespace
{LineTerminator} {: / xignore */ }
{OtherWhiteSpace} {: / xignore */ :}
{CloseCurlyBracket} {: return symbol(CLOSE_MACRO); :} EN

%:

/lfor macro names
{Identifier} {: return symbol(IDENTIFIER, yytext()); :}

D_MACRO_INVOC

%:

<<ANY>> {: error("Unexpected character in macro invocation: " +
yytext()); :}

<<EOF>> {: error("Unterminated macro invocation"); } EOF_ERROR

177

Language Specification

© 00 N O U B~ W N P

NORNN R R R R R R R R R
N B O © ® N o o M W N B O

23

0 N o o~ W N P

lexer/component/macro_invoc.mic

%conponent mtok_decl

%ext ern "private Symbol symbol(short type, Object value)"
%ext ern "private void error(String msg) throws Scanner.Exception

%%

%%nherit comp_macros
%%nherit comment_start

/lwhitespace
{LineTerminator} {: :} END_MTOK_DECL
{OtherWhiteSpace} {: / * ignore [/ :}

%:

/llfor meta-token types
{Identifier} {: return symbol(IDENTIFIER, yytext()); :}

%:

<<ANY>> {: error("Unexpected character in meta token specification:

yytext()); :}
<<EOF>> {: :} END_MTOK_DECL

lexer/component/mtok_decl.mlc

%€ onponent open_rule_group

%ext ern "private Symbol symbol(short type)"
%ext ern "private void error(String msg) throws Scanner.Exception

%%

%%nherit comp_macros

178

10
11
12
13
14
15

16
17
18
19
20
21

© 00 N O o B~ W N P

e N T =
© N o 00 A W N B O

19
20

C.1. Component

%%nherit comment_start

/lwhitespace

{LineTerminator} {: /= ignore =/ :}
{OtherWhiteSpace} {: /= ignore */ :}
{OpenCurlyBracket} {: return symbol(OPEN_RULE_GROUP); : }

END_OPEN_RULE_GROUP

%:

%:

<<ANY>> {: error("Expecting '{,, found: " + yytext()); :}

<<EOF>> {: error("No group associated with state list"); :} EOF_ERROR

lexer/component/open_rule_group.mic
%conponent repetition_spec
%ext ern "private Symbol symbol(short type)"
%ext ern "private Symbol symbol(short type, Object value)”
%ext ern "private void error(String msg) throws Scanner.Exception
%%
%%nherit comp_macros
/lwhitespace
{LineTerminator} {: / xignore */ :}

{OtherWhiteSpace} {: / xignore =/ :}

/lfor separating repetition quantities
, {- return symbol(COMMA); :}

{CloseCurlyBracket} {: return symbol(CLOSE_REPETITION _ SPEC); 1}
END_REP_SPEC

%:

179

Language Specification

21
22
23
24
25
26
27

28

© 0 N O g B~ W N P

NNNNNNN PR R R R R R R R R
o U A W N P O © ® N O o M W N B O

[[for repetition quantities
{Number} {: return symbol(NUMBER, yytext()); :}

%:

<<ANY>> {: error("Unexpected character in repetition specification: " +
yytext()); :}

<<EOF>> {: error("Unterminated repetition specification"); } EOF_ERROR

lexer/component/repetition_spec.mlc

%conponent state_list

%ext ern "private Symbol symbol(short type)"

%ext ern "private Symbol symbol(short type, Object value)"

%ext ern "private void error(String msg) throws Scanner.Exception "

%%

%%nherit comp_macros

%%nherit comment_start

{CloseAngleBracket} {: return symbol(RANGLE); :} END_STA TE_LIST

/Iwhitespace
{LineTerminator} {: /= ignore =/ :}
{OtherWhiteSpace} {: /= ignore =/ :}

[/lfor separating state names
, {: return symbol(COMMA); :}

%:

/lfor state names
{Identifier} {: return symbol(IDENTIFIER, yytext()); :}

180

27
28
29
30
31

© 0 N O g B~ W N P

NNNNNNN PR R R R R R R R R
o U A W N P O © ® N O o M W N B O

C.2. Layout

%:

/lcatchall - error

<<ANY>> {: error(
<<EOF>> {: error(

"Unexpected character in state list: " + yytext()); :}

"Unterminated state list"); 3} EOF_ERROR

lexer/component/state_list.mic

C.2 Layout

package metalexer;

%%

/lbased on http://jflex.de/manual.html

i mport static metalexer.LayoutParser.Terminals. *
%%

% ayout | ayout

%opt i on visibility "%public”

Y%option finality "%final"

%opti on class_name

% onponent
% onponent
%€ onponent
%€ onponent
% onponent
% onponent
% onponent
%€ onponent
%€ onponent
% onponent
% onponent
%€ onponent

"%class LayoutScanner"

base
bracket_comment
decl_region
init_region
layout_inherited_header
layout_local_header
layout_options
layout_rules
mpat_directive
pair_directive
string_id_directive
string

181

Language Specification

27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

start base

%%

%%nherit beaver
%%nherit hel per

%%embed

%ane local_header

%host base

%guest layout local _header
Y%start <BOF>

%end END_LOCAL_HEADER

%%embed

%nane inherited_header

%host base

%guest layout_inherited_header
Y%start %layout local_header%
%end END_INHERITED_HEADER

%%embed

% ane options_section

% ost base

%guest layout options

st art %layout_inherited_header%
%end END_OPTION_SECTION

%%embed

%mane rules_section

% ost base

%guest layout rules

%t art %layout_options%
%end END_RULES_SECTION

%%embed
%ane bracket comments

182

64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

C.2. Layout

%host layout_options, layout_ rules, string_id_directive,

mpat_directive, pair_directive

% ost bracket_comment //NB: host and guest => nestable

%guest bracket_comment
%tart START_BRACKET_COMMENT
%end END_BRACKET_COMMENT

%%embed

%namne init_region

9host layout_options

%guest init_region

Y%start START_INIT_REGION
%end END_INIT_REGION

%%embed

Y%manme decl_region

%host layout_options

%guest decl_region

%tart START_DECL_REGION
%nd END_DECL_REGION

%%embed

%nane string_id_directive

%host layout_options, layout rules
%guest string_id_directive

%tart START_STRING_ID_DIRECTIVE
%end END_STRING_ID_DIRECTIVE

%%embed

%mane pair_directive

%host layout_rules

%guest pair_directive

%tart START_PAIR_DIRECTIVE
%end END_PAIR_DIRECTIVE

%%embed
% ame mpat_directive

183

Language Specification

100 Yhost layout_ rules

101 Yguest mpat_directive

102 Ystart START_MPAT_DIRECTIVE

103 %nd END_MPAT DIRECTIVE

104

105 %%embed

106 Ymame string

107 9 ost string_id_directive

108 Yguest string

109 %start START_STRING

110 %end END_STRING

111

112 %%embed

113 Y%ane eof error

114 9Ymost bracket_comment, decl _region, init_region,
layout_inherited_header, layout local_header, string

115 Yguest base

116 %start EOF_ERROR

117 %end <ANY> //NB: will never happen

lexer/layout/layout.mll

1 %¢onponent layout inherited _header

3 % extern “"private Symbol symbol(short type, Object value, int start Line,
int startCol, int endLine, int endCol)"
4 Yextern "private void error(String msg) throws Scanner.Exception

6 Yappend{ /=*(int startLine, int startCol, int endLine, int endCol,
String text) */

7 if(text.startsWith(“\n\n") {

8 text = text.substring(2);

9 } else if(text.startsWith("“\n") || text.startsWith(“\r') {

10 text = text.substring(1);

11 }

12 return symbol(INHERITED_HEADER, text, startLine + 1, star tCol + 1,

endLine + 1, endCol + 1);
13 Y%append}

184

14
15
16
17
18
19
20
21
22
23
24
25
26

10
11
12
13
14
15
16
17
18
19

C.2. Layout

%%

%%nherit layout macros

/lend of section
{SectionSeparator} {: :} END_INHERITED_ HEADER

%:
%:

<<ANY>> {: append(yytext()); :}
<<EOF>> {: error("Unterminated inherited header section."

lexer/layout/layout_inherited_header.mic

%conponent layout_local_header

%ext ern "private Symbol symbol(short type, Object value, int start
int startCol, int endLine, int endCol)"
%ext ern "private void error(String msg) throws Scanner.Exception

Y%append{ /= (int startLine, int startCol, int endLine, int endCol,
String text) */
return symbol(LOCAL_HEADER, text, startLine + 1, startCol
endLine + 1, endCol + 1);
Y%append}
%%

%%nherit layout macros

/lend of section
{SectionSeparator} {: :} END_LOCAL_HEADER

%:
%:

185

); ©} EOF_ERROR

Line,

Language Specification

20
21

o o0 b~ WON BB

© 00 N o o~ W N P

e < s
g M W N B O

16

17
18
19
20
21
22

<<ANY>> {: append(yytext()); :}
<<EOF>> {: error("Unterminated local header section."); :} EOF_ERROR

lexer/layout/layout_local_header.mic

% onponent layout_macros
%hel per

%%

%%nherit shared_macros

lexer/layout/layout_macros.mic

% onponent layout_options

%ext ern "private Symbol symbol(short type)"
%ext ern "private void error(String msg) throws Scanner.Exception

%%

%%nherit layout macros
%%nherit comment_start

/lwhitespace

{LineTerminator} {: [+ ignore =/ :}

{OtherWhiteSpace} {: /= ignore =/ :}

{OpenDeclRegion} {: appendToStartDel i (™); [/=tweak start pos =/ :}
START_DECL_REGION

{OpenInitRegion} {: appendToStartDel i m(™); /=*tweak start pos =/ :}

START_INIT_REGION

/Ino-arg directives

"%helper* / {DirectiveLookahead} {:
return symbol(HELPER_DIRECTIVE);

.} START_STRING_ID_DIRECTIVE

186

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

C.2. Layout

/lidentifier directives
"%layout” / {DirectiveLookahead} {:
return symbol(LAYOUT_DIRECTIVE);
:} START_STRING_ID_DIRECTIVE
"%start" / {DirectiveLookahead} {:
return symbol(START_DIRECTIVE);
:} START_STRING_ID DIRECTIVE
"%component” / {DirectiveLookahead} {:
return symbol(COMPONENT_DIRECTIVE);
.} START_STRING_ID_DIRECTIVE

/Istring directives
"%declare" /| {DirectiveLookahead} {:
return symbol(DECLARE_DIRECTIVE);
.} START_STRING_ID_DIRECTIVE
"%initthrow" | {DirectiveLookahead} ({:
return symbol(INITTHROW_DIRECTIVE);
.} START_STRING_ID_DIRECTIVE
"%lexthrow" / {DirectiveLookahead} {:
return symbol(LEXTHROW_DIRECTIVE);
.} START_STRING_ID_DIRECTIVE

//mixed directives

"%option" / {DirectiveLookahead} {:
return symbol(OPTION_DIRECTIVE);

.} START_STRING_ID_DIRECTIVE

/linvalid directives
"%" {: error("Invalid directive"); 3

/lend of section
{SectionSeparator} {: :} END_OPTION_SECTION

%:
%:

<<ANY>> {: error("Unexpected character in option section: "

187

Language Specification

60

© 00 N O O B~ W N P

W W W W N N DD DN N D N DN DNDNDN PR R R R R, R R R
w N P O © 00 N O O A W N P O © 0o N O o0 b~ W N P O

yytext()); :}
<<EOF>> {; :} END_OPTION_SECTION

lexer/layout/layout_options.mic

%conponent layout rules

%ext ern "private Symbol symbol(short type)"
%ext ern "private void error(String msg) throws Scanner.Exception

%%

%%nherit layout macros
%%nherit comment_start

/lwhitespace
{LineTerminator} {: /* ignore /[:}
{OtherWhiteSpace} {: [+ ignore =/ :}

"%%embed" / {DirectiveLookahead} {:
return symbol(START_EMBED_GROUP);

"%name" / {DirectiveLookahead} {:
return symbol(EMBEDDING_NAME);
.} START_STRING_ID_DIRECTIVE
"%host" / {DirectiveLookahead} {:
return symbol(EMBEDDING_HOST);
.} START_STRING_ID_DIRECTIVE
"%guest" / {DirectiveLookahead} {:
return symbol(EMBEDDING_GUEST);
:} START_STRING_ID_DIRECTIVE
"%pair* /| {DirectiveLookahead} {:
return symbol(EMBEDDING_PAIR);
:} START_PAIR_DIRECTIVE

"%start" / {DirectiveLookahead} {:
return symbol(EMBEDDING_START);

188

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56

© 00 N o o~ W N P

=
= O

C.2. Layout

.} START_MPAT_DIRECTIVE

"%end" / {DirectiveLookahead} {:
return symbol(EMBEDDING_END);

.} START_MPAT_DIRECTIVE

"%%inherit" / {DirectiveLookahead} {:
return symbol(START_INHERIT_GROUP);
:} START_STRING_ID_DIRECTIVE
"%unembed" / {DirectiveLookahead} {:
return symbol(INHERIT_UNEMBED);
:} START_STRING_ID DIRECTIVE
"%replace" | {DirectiveLookahead} {:
return symbol(INHERIT_REPLACE);
.} START_STRING_ID_DIRECTIVE
"%unoption” / {DirectiveLookahead} {:
return symbol(INHERIT_UNOPTION);
.} START_STRING_ID_DIRECTIVE

%:
%:

<<ANY>> {. error("Unexpected character in rule section:
}
<<EOF>> {: :} END_RULES_ SECTION

lexer/layout/layout_rules.mic
%conponent mpat_directive
%ext ern "private Symbol symbol(short type)”
%ext ern "private Symbol symbol(short type, Object value)"
%ext ern "private void error(String msg) throws Scanner.Exception

%%

%%nherit layout macros
%%nherit comment_start

189

+ yytext());

Language Specification

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

32
33
34
35
36
37

38

a A W N

/lwhitespace
{LineTerminator} {: :} END_MPAT_DIRECTIVE
{OtherWhiteSpace} {: [+ ignore =/ :}

"<ANY>" {: return symbol(MP_ANY); :}
"<BOF>" {: return symbol(MP_BOF); :}
“(" {: return symbol(MP_LPAREN); :}
)" {: return symbol(MP_RPAREN); :}
"I {: return symbol(MP_LSQUARE); :}

" { return symbol(MP_RSQUARE); :}

" {: return symbol(MP_CARET); :}

“+" {. return symbol(MP_STAR); :}

"+" {: return symbol(MP_PLUS); :}

"?" {. return symbol(MP_OPT); :}

""" {: return symbol(MP_OR); :}

%:

"%" {Identifier} "%" {: return symbol(MP_REGION, yytext().substring(1,
yylength() - 1)); :}

"%" {QualifiedIdentifier} "%" {: return symbol(MP_REGION,

yytext().substring(1, yylength() - 1)); }
{Identifier} {: return symbol(MP_SYM, yytext()); :}

%:

/Icatchall - error
<<ANY>> {: error("Unexpected character in meta-pattern: " + yytext());

}
<<EOF>> {: :} END_MPAT_DIRECTIVE

lexer/layout/mpat_directive.mic
%conponent pair_directive
%ext ern "private Symbol symbol(short type)"
%ext ern "private Symbol symbol(short type, Object value)"

%ext ern "private void error(String msg) throws Scanner.Exception

190

© 00 N O

10
11
12
13
14
15
16
17
18
19
20

21

22
23
24
25
26
27

28

a A W N

C.3. Shared

%%

%%nherit layout_macros
%%nherit comment_start

/lwhitespace
{LineTerminator} {: :} END_PAIR_DIRECTIVE

{OtherWhiteSpace} {: [+ ignore */ :}

, {: return symbol(COMMA); :}

%:

"%" {Identifier} "%" {: return symbol(MP_REGION, yytext().substring(1,
yylength() - 1)); 3}

"%" {Qualifiedldentifier} "%" {: return symbol(MP_REGION,

yytext().substring(1, yylength() - 1)); 3}
{Identifier} {: return symbol(MP_SYM, yytext(); :}

%:

/lcatchall - error
<<ANY>> {: error("Unexpected character in pair element: " + yytext());

}
<<EOF>> {: :} END_PAIR_DIRECTIVE

lexer/layout/pair_directive.mic

C.3 Shared

%%
%%

% ayout hel per
%hel per

191

Language Specification

© 00 N O

10
11

12
13

14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34

35

36

%lecl ar e "private Symbol symbol(short type)"
%lecl are "private Symbol symbol(short type, Object value)"
%lecl are "private Symbol symbol(short type, Object value, int
startLine, int startCol, int endLine, int endCol)"
%{
/Il Returning symbols
o 1

/[Create a symbol using the current line and column number, a S
computed by JFlex
/INo attached value
/ISymbol is assumed to start and end on the same line
/le.g. symbol(SEMICOLON)
private Symbol symbol(short type) {
return symbol(type, null);

/[Create a symbol using the current line and column number, a S
computed by JFlex
/[Attached value gives content information
/ISymbol is assumed to start and end on the same line
/le.g. symbol(IDENTIFIER, "x")
private Symbol symbol(short type, Object value) {
/INB: JFlex is zero-indexed, but we want one-indexed
int startLine = yyline + 1;
int startCol = yycolumn + 1;
int endLine = startLine;
int endCol = startCol + yylength() - 1;
return symbol(type, value, startLine, startCol, endLine, endCol);

/ICreate a symbol using explicit position information (inp ut is
one-indexed)
private Symbol symbol(short type, Object value, int startL ine, int
startCol, int endLine, int endCol) {
int startPos = Symbol.makePosition(startLine, startCol) ;

192

37
38
39
40
41
42
43

44
45

46
47
48
49
50
51
52
53
54
55

56
57

58
59

0 N o o~ W N P

C.3. Shared

int endPos = Symbol.makePosition(endLine, endCol);
return new Symbol(type, startPos, endPos, value);

}
9%}

%lecl ar e "private void error(String msg) throws Scanner.Exception
%lecl ar e "private void error(String msg, int columnOffset) throws
Scanner.Exception”
%{
/Il Errors
HHHH T

/lthrow an exceptions with position information from JFlex
private void error(String msg) throws Scanner.Exception {
/[correct to one-indexed
throw new Scanner.Exception(yyline + 1, yycolumn + 1, msg);

}

/lthrow an exceptions with position information from JFlex
/lcolumnOffset is added to the column
private void error(String msg, int columnOffset) throws
Scanner.Exception {
/lcorrect to one-indexed
throw new Scanner.Exception(yyline + 1, yycolumn + 1 + colum
msg);

90}

lexer/shared/helper.mll
%%
i mport beaver.Symbol;

i mport beaver.Scanner,;
%%

% ayout beaver
%hel per

193

nOffset,

Language Specification

10
11
12
13
14
15
16
17

© 0 N O o B~ W N P

=
N kO

© 0 N o o~ W N P

=
= O

llrequired for beaver compatibility

%opti on parent_class "%extends Scanner"
%opti on encoding "%unicode"
%opt i on function_name "%function nextToken"

%opti on token_type "%type Symbol"
% ext hr ow "Scanner.Exception”

Y%option line "%line"
%option column "%column"

lexer/shared/beaver.mll

%conponent base

%ext ern "private Symbol symbol(short type)"
%ext ern "private void error(String msg) throws Scanner.Exception

%%

%:
%:

<<ANY>> {: error("Unexpected character: " + yytext()); :}
<<EOF>> {: return symbol(EOF); :}

lexer/shared/base.mlc

% onponent bracket comment

%ext ern "private void error(String msg) throws Scanner.Exception

%%

%%nherit shared_macros

{OpenBracketComment} {: :} START_BRACKET_COMMENT
{CloseBracketComment} {: :} END_BRACKET_COMMENT

194

12
13
14
15
16

© 0 N O g A~ W N P

A =
N kO

10
11
12

C.3. Shared

%:
%:

<<ANY>> {; /=* ignore =/ :}
<<EOF>> {: error("Unterminated bracket comment"); } EOF_ERROR

lexer/shared/bracket_.comment.mic

% onponent comment_start
%hel per

%%

%%nherit shared_macros

{OpenBracketComment} {: :} START_BRACKET_COMMENT

%:

{Comment} { /=* ignore =*/ :}
lexer/shared/comment _start.mlc

% onponent decl_region

%ext ern "private Symbol symbol(short type, Object value, int start Line,
int startCol, int endLine, int endCol)"

%ext ern "private void error(String msg) throws Scanner.Exception

Y%appendW t hStart Del i n{ /=(int startLine, int startCol, int endLine, int
endCol, String text) */
return symbol(DECL_REGION, text, startLine + 1, startCol + 1,

endLine + 1, endCol + 1);
Y%appendW t hSt art Del i n}

%%

%%nherit shared_macros

195

Language Specification

13
14
15
16
17
18
19
20
21

10
11
12
13
14
15
16
17
18
19
20
21

%{CloseDeclRegion} {: append(yytext().substring(1)); :}
{CloseDeclIRegion} {: :} END_DECL_REGION

%:
%:

<<ANY>> {: append(yytext()); :}
<<EOF>> {: error("Unterminated declaration region"); } EOF_ERROR

lexer/shared/decl_region.mlc

%conponent init_region

%ext ern "private Symbol symbol(short type, Object value, int start Line,
int startCol, int endLine, int endCol)"
%ext ern "private void error(String msg) throws Scanner.Exception

YappendW t hStart Del i n{ /=(int startLine, int startCol, int endLine, int
endCol, String text) */
return symbol(INIT_REGION, text, startLine + 1, startCol + 1,
endLine + 1, endCol + 1);
Y%appendW t hSt art Del i n}

%%

%%nherit shared_macros

%{CloselnitRegion} {: append(yytext().substring(1)); :}
{CloselnitRegion} {: :} END_INIT_REGION

%:
%:

<<ANY>> {: append(yytext()); :}
<<EOF>> {: error("Unterminated initialization region"); 3} EOF_ERROR

lexer/shared/init_region.mic

196

© 00 N o o~ W N PP

e N i I e =
o o0 A W N B O

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

C.3. Shared

%conponent shared_macros
%hel per

LineTerminator = \r[\n|\r\n
OtherWhiteSpace = [\t\f]

Letter = [a-zA-Z]

Digit = [0-9]

Identifier = {Letter} (_ | {Letter} | {Digit}) *
Qualifiedldentifier = {ldentifier} (\. {ldentifier})+

Number = 0 | [1-9] {Digit} *

Quote =\ "

HexDigit = {Digit} | [a-fA-F]

EscapeSequence = \\ ([nrtfb] | x {HexDigit{2} | u {HexDigit H1,4} |
[0-3]? [0-7]? [O-7] |
NORAD<ASWA *\H2ANS\\N-])

Any = . | \n

Comment = "//"["\r\n] *

OpenBracketComment = "/ "

CloseBracketComment = "*/"

SectionSeparator = "%%"

OpenDeclRegion = "%{"

CloseDeclRegion = "%}"

OpenlnitRegion = "%init{"

CloselnitRegion = "%init}"

//handles comments

DirectiveLookahead = !({Letter} | {Digit} |) /INB: use not (instead

of a class) because it also catches EOF

197

Language Specification

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

A w N R

lexer/shared/shared_macros.mlc

%conponent string
%ext ern "private Symbol symbol(short type, Object value, int start Line,
int startCol, int endLine, int endCol)"

%ext ern "private void error(String msg) throws Scanner.Exception

YappendW t hStart Del i n{ /= (int startLine, int startCol, int endLine, int

endCol, String text) */
return symbol(STRING, text, startLine + 1, startCol + 1, end Line +
1, endCol + 1);

Y%appendW t hSt art Del i n}
%%

%%nherit shared_macros
{Quote} {: :} END_STRING

{EscapeSequence} {: append(yytext(); :}
\WAny} {: append(yytext().substring(1)); :}

\\ {: error("Incomplete escape sequence"); }

{LineTerminator} {: error("Unterminated string literal"); 1}
%:

%:

<<ANY>> {: append(yytext()); :}
<<EOF>> {: error("Unterminated string literal"); } EOF_ERROR

lexer/shared/string.mic

% onponent string_id_directive

%ext ern "private Symbol symbol(short type)"
%ext ern "private Symbol symbol(short type, Object value)”

198

© 0 N o O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29

30

C.3. Shared

%ext ern "private void error(String msg) throws Scanner.Exception

%%

%%nherit shared_macros
%%nherit comment_start

/lwhitespace
{LineTerminator} {: :} END_STRING_ID_DIRECTIVE

{OtherWhiteSpace} {: /= ignore /[}

/[for strings
{Quote} {: appendToStartDel i m(™); /=*tweak start pos

, {: return symbol(COMMA); :}
%:
/[for state names

{Identifier} {: return symbol(IDENTIFIER, yytext()); :}
{Qualifiedldentifier} {: return symbol(QUALIFIED IDENT

'}

%:

*/

.} START_STRING

IFIER, yytext());

<<ANY>> {. error("Unexpected character in string/identifier directive:

"+ yytext(); :}
<<EOF>> {: :} END_STRING_ID_DIRECTIVE

lexer/shared/string_id_directive.mic

199

Language Specification

200

Bibliography

[ACHT05] Pavel Avgustinov, Aske Simon Christensen, Laurie Hemd8ascha Kuzins,

[App98]

[BETVO6]

[BSVO3]

Jennifer Lhoak, Ondej Lhotak, Oege de Moor, Damien Sereni, Ganesh Sit-
tampalam, and Julian Tibblebc : An extensible AspectJ compildn AOSD

05: Proceedings of the 4th International Conference on Aspeiented Soft-
ware DevelopmentChicago, lllinois, 2005, pages 87-98. ACM, New York,
NY, USA.

Andrew W. Appel. Modern Compiler Implementation in JavaCambridge
University Press, New York, NY, USA, 1998.

Martin BravenboerEric Tanter, and Eelco VisserDeclarative, formal, and
extensible syntax definition for Aspectdn OOPSLA '06: Proceedings of
the 21st Annual ACM SIGPLAN Conference on Object-OrientedrBroming
Systems, Languages, and ApplicatioRsrtland, Oregon, USA, 2006, pages
209-228. ACM, New York, NY, USA.

Claus Brabrand, Michael I. Schwartzbach, and Mads Yaagd. The

metafront system: Extensible parsing and transformatiorProceedings of
the 3rd ACM SIGPLAN Workshop on Language Descriptions, TaadsAp-

plications, LDTA '03 2003, volume 82(3), pages 592—611.

201

http://doi.acm.org/10.1145/1052898.1052906
http://doi.acm.org/10.1145/1167473.1167491
http://dx.doi.org/10.1016/s1571-0661(05)82630-1

Bibliography

[Bur95]

[BVO4]

[EHS0]

[EHO74]

[EHO7b]

[GJSBO5]

[GKRT08]

[Gri06]

BD Burow. Mixed language programming In Pro-
ceedings of Computing in High Energy Physics 1995.
http://www.hep.net/chep95/html/papers/p69/p69.pdf.

Martin Bravenboer and Eelco Vissé&toncrete syntax for objects. domain-spe-
cific language embedding and assimilation without restmst In OOPSLA
'04: Proceedings of the 19th Annual ACM SIGPLAN Conference bjec
Oriented Programming, Systems, Languages, and Applitgtidancouver,
BC, Canada, 2004, pages 365-383. ACM, New York, NY, USA.

Par Emanuelson and Anders Haraldss@m compiling embedded languages

in LISP. In LFP '80: Proceedings of the 1980 ACM Conference on LISP
and Functional ProgrammingStanford University, California, United States,

1980, pages 208—-215. ACM, New York, NY, USA.

Torbprn Ekman and Grel Hedin.The Jastadd extensible Java compi8IG-
PLAN Not, 42(10):1-18, 2007.

Torbprn Ekman and G@rel Hedin. The JastAdd system: Modular extensible
compiler construction Science of Computer Programming9(1-3):14-26,
Dec 2007.

James Gosling, Bill Joy, Guy Steele, and Gilad Bragaea Language Speci-
fication Addison-Wesley Professional, Jan 2005.

Hans Gonniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven \blkel. MontiCore: A framework for the development of textual do-
main specific languagesin ICSE Companion '08: Companion of the 30th
International Conference on Software Engineeribgipzig, Germany, 2008,
pages 925-926. ACM, New York, NY, USA.

Robert Grimm. Better extensibility through modular syntaxn PLDI '06:
Proceedings of the 2006 ACM SIGPLAN Conference on Programbang
guage Design and Implementatjddttawa, Ontario, Canada, 2006, pages 38—
51. ACM, New York, NY, USA.

202

http://www.hep.net/chep95/html/papers/p69/p69.pdf
http://doi.acm.org/10.1145/1028976.1029007
http://doi.acm.org/10.1145/800087.802808
http://doi.acm.org/10.1145/1297105.1297029
http://dx.doi.org/10.1016/j.scico.2007.02.003
http://doi.acm.org/10.1145/1370175.1370190
http://doi.acm.org/10.1145/1133981.1133987

Bibliography

[HAMCO4]

[HGO7]

[Hud96]

[Joh75]

[KHH*01]

[KKVO8]

[KR78]

[KRVO7]

[LS75]

[Mar03]

Laurie Hendren, Oege de Moor, and Aske Simon Chrsgen The abc
scanner and parser Technical report, Programming Tools Group, Ox-
ford University and the Sable research group, McGill Ursitgr Sep 2004.
http://abc.comlab.ox.ac.uk/documents/scannerandppds.

Martin Hirzel and Robert Grimm.Jeannie: Granting Java Native Interface
developers their wishe ACM SIGPLAN Notice12(10):19-38, 2007.

Paul Hudak.Building domain-specific embedded languag&CM Comput.
Surv, page 196, 1996.

Stephen C. Johnson. Yacc: Yet another compiler-demZComp. Sci. Tech.
Rep. 32, Bell Laboratories, Jan 1975.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kensieleffrey Palm, and
William G. Griswold. An overview of AspectJ In ECOOP 2001 Object-
Oriented Programming2001, pages 327-353. Springer-Verlag.

Lennart Kats, Karl Trygve Kalleberg, and Eelco M&ss Generating edi-
tors for embedded languagesTechnical Report Series TUD-SERG-2008-
006, Delft University of Technology, Software EngineeriRgsearch Group,
2008. http://swerl.tudelft.nl/twiki/pub/Main/TechmitReports/TUD-SERG-
2008-006.pdf.

B. W. Kernighan and D. M. RitchieThe C Programming Languag®@rentice-
Hall, Englewood Cliffs, New Jersey, 1978.

Holger Krahn, Bernhard Rumpe, and Steveolkel. Efficient editor genera-
tion for compositional DSLs in Eclipse. IRroceedings of the 7th OOPSLA
Workshop on Domain-Specific Modeljr&p07.

M.E. Lesk and Eric Schmidt. Lex: A lexical analyzemgeator. Comp. Sci.
Tech. Rep. 39, Bell Laboratories, Oct 1975.

John C. Matrtin. Introduction to Languages and the Theory of Computation
McGraw-Hill Higher Education, New York, NY, USA, 2003.

203

http://abc.comlab.ox.ac.uk/documents/scannerandparser.pdf
http://doi.acm.org/10.1145/1297105.1297030
http://doi.acm.org/10.1145/242224.242477
http://www.springerlink.com/content/mc9xermkrav48ff1
http://swerl.tudelft.nl/twiki/pub/main/technicalreports/tud-serg-2008-006.pdf

Bibliography

[NCMO03] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C.av/Polyglot: An
extensible compiler framework for Javin 12th International Conference on
Compiler Construction2003, pages 138-152. Springer-Verlag.

[Par07] Terrence ParrThe Definitive ANTLR Reference: Building Domain-Specific
LanguagesPragmatic Bookshelf, Raleigh, NC, 2007.

[VolO5] Elias Wolanakis. Mixed-language usage scenarios in EclipRosition Paper
for the Eclipse Languages Symposium, Oct 2005.
<http://lwww.eclipse.org/org/langsymp/Volanakis - Mixkeshguage usage
scenarios.pdf .

[WS95] Fuliang Weng and Andreas Stolcke. Partitioning gramsvand composing
parsers. InProceedings of the 4th International Workshop on Parsinghie
nologies 1995.

204

http://www.springerlink.com/content/9bjr845plqxckhhq
http://www.eclipse.org/org/langsymp/Volanakis - Mixed-language usage scenarios.pdf
http://www.eclipse.org/org/langsymp/Volanakis - Mixed-language usage scenarios.pdf

	Abstract
	Résumé
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Key Features
	Key Feature: State Transitions
	Key Feature: Inheritance
	Key Feature: Cross-Platform Functionality

	Examples
	Javadoc
	AspectJ

	Contributions
	Reference Implementation
	JFlex Translator
	Lexer Specification for McLab
	Lexer Specification for AspectJ
	Lexer Specification for MetaLexer

	Organization of Thesis

	Background
	Parsing
	Lexing versus Parsing
	Traditional Lexing Tools
	Lexical States

	MetaLexer Syntax
	Example
	Components
	Option Section
	Rule Section

	Layouts
	Local Header
	Inherited Header
	Options Section
	Rules Section

	Comments

	MetaLexer Semantics
	JFlex Semantics
	Meta-Lexing
	Pair Filters

	Regions
	Inheritance
	Embedding Ordering
	Lexical Rule Ordering

	Conflicts
	Error Checking
	Finalization
	Helper Modules

	Scoping
	Qualified Names
	Append Components
	Start Delimiters

	Conditional Meta-Tokens
	Indentation-Based Languages

	Tool Execution
	MetaLexer-to-JFlex Translator
	Tracing

	MetaLexer-to-MetaLexer Translator
	JFlex-to-MetaLexer Translator
	Functionality
	Execution
	Limitations

	Language Design
	Language Division
	Types of Extension
	Component Replacement
	Inheritance
	Finalization
	Order and Duplication
	Rule Organization
	Append Components
	Meta-Pattern Restrictions
	Cross-Platform Support
	Action Implementation Language
	Parsing Specification Language
	Lexer Specification Language

	Architecture
	Tools Used
	Ant and Eclipse
	JFlex
	MetaLexer
	Beaver
	JastAdd
	JUnit

	Multiple Backends
	Frontend
	MetaLexer Backend
	JFlex Backend

	Case Studies
	McLab
	Improvements
	Difficulties

	abc
	Improvements
	Difficulties

	MetaLexer
	Improvements
	Difficulties

	Performance
	Testing Setup
	Code Size
	Compilation Time
	Execution Time
	Summary

	Related Work
	Demand
	Approaches using LR Parsers
	Approaches using Other Classes of Parsers
	Antlr
	Rats!
	GLR
	metafront

	Approaches specific to Domain-Specific Languages

	Conclusions
	Future Work
	Optimizations
	Compilation Time
	Code Generation
	Execution Time

	Analysis
	Known Issues
	Frontend
	JFlex Backend

	Qualified Names
	Other Platforms
	JFlex Porting
	Comparison with Lexerless Techniques
	Parser Specification Language

	Acronyms
	Developer Manual
	Organization
	metalexer/
	metalexer/src/ & metalexer/test/
	metalexer/src/frontend/
	metalexer/src/frontend/metalexer
	metalexer/src/frontend/lexer
	metalexer/src/backend-metalexer/
	metalexer/src/backend-jflex/
	metalexer/test/frontend/
	metalexer/test/frontend/metalexer/
	metalexer/test/backend-metalexer/
	metalexer/test/backend-jflex/
	metalexer/test/backend-jflex/metalexer/jflex/

	JFlex
	Configurations
	Building MetaLexer
	Command Line
	Eclipse

	Language Specification
	Component
	Layout
	Shared

	Bibliography

