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Abstract

Compiler toolkits make it possible to rapidly develop compilers and translators for new

programming languages. Recently, toolkit writers have focused on supporting extensible

languages and systems that mix the syntaxes of multiple programming languages. How-

ever, this work has not been extended down to the lexical analysis level. As a result, users of

these toolkits have to rely on ad-hoc solutions when they extend or mix syntaxes. This the-

sis presents MetaLexer, a new lexical specification language that remedies this deficiency.

MetaLexer has three key features: it abstracts lexical state transitions out of semantic ac-

tions, makes modules extensible by introducing multiple inheritance, and provides cross-

platform support for a variety of programming languages andcompiler front-end toolchains.

In addition to designing this new language, we have constructed a number of practical

tools. The most important are a pair of translators that map MetaLexer to the popular JFlex

lexical specification language and vice versa.

We have exercised MetaLexer by using it to create lexers for three real programming lan-

guages: AspectJ (and two extensions), a large subset of Matlab, and MetaLexer itself. The

new specifications are easier to read and require much less action code than the originals.
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Résum é

Les outils de compilation moderne permettent de développer rapidement des compilateurs

pour de nouveaux langages de programmation. Récemment, les auteurs de ces outils ont

travaillé à supporter des langages et systèmes extensibles qui ḿelangent la syntaxe de plu-

sieurs langages de programmation. Cependant, ce travail n’apasét́e étendu au niveau de

l’analyse lexicale. Le ŕesultat est que les utilisateurs de ces outils doivent se fierà des so-

lutions improviśees quand ils augmentent ou mélangent la syntaxe de leurs langages. Cette

thèse pŕesente MetaLexer, un nouveau langage de spécification lexical qui reḿedie à ce

manque.

MetaLexer a trois aspects principaux : il sépare les transitions d’états lexicaux des actions

sémantiques, il rend les modules extensibles en introduisant un syst̀eme d’h́eritage multiple,

et il offre un support multi-plateforme pour une variét́e de langages de programmation et

d’outils de compilation.

En plus de la conception de ce nouveau langage, nous avons implément́e un nombre d’outils

pratiques. Le plus importantétant une pair de programmes de traduction qui traduisent de

MetaLexer au populaire JFlex et vice-versa.

Nous avons testé MetaLexer en l’utilisant pour créer des sṕecifications lexicales pour trois

languages de programmations : AspectJ (et deux extensions), un large sous-ensemble du

langage Matlab, et MetaLexer lui-m̂eme. Les nouvelles spécifications sont plus lisibles et

demandent beaucoup moins de code d’action que les originales.
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Chapter 1

Introduction

Much work has been done in the area of extensible compilers. JastAdd [EH07b] is an

extensible attribute grammar framework that can be used to build compilers with extensible

abstract syntax trees (ASTs), transformations, and analyses. The Polyglot Parser Generator

[NCM03] is a extensible parser specification language (PSL). Unfortunately, little work has

been done to make lexical specification languages (LSLs) similarly extensible. As a result,

extensible compilers are forced to rely on ad-hoc solutionsfor lexing (e.g. [HdMC04]).

To remedy this deficiency, we have created a new LSL, MetaLexer, that is more modular

and extensible than traditional LSLs.

This chapter describes the motivation behind MetaLexer’s creation, lists contributions, and

outlines the subsequent chapters.

1.1 Key Features

Three key features distinguish MetaLexer from its predecessors:

1. Lexical state transitions are lifted out of semantic actions (Section1.1.1).

2. Modules support multiple inheritance (Section1.1.2).
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3. The design is cross-platform (Section1.1.3).

1.1.1 Key Feature: State Transitions

Lexers for non-trivial languages nearly always make use of lexical states to handle different

regions of the input according to different rules. The transitions between these states are

buried in the semantic actions associated with rules and arelanguage- and tool-dependent.

For example,Listing 1.1shows a JFlex1 lexer with three states: initial, within a class, and

within a string. Whenever an opening quotation mark is seen, whether in the initial state or

within a class, the lexer transitions to the string state. Note that the previous state must be

stored so that the lexer can return once the closing quote hasbeen seen.

1 <YYINITIAL> {
2 \" { yybegin(STRING_STATE); prev = YYINITIAL; }
3 / * other rules related to lexing in the base state * /
4 }
5 <CLASS> {
6 \" { yybegin(STRING_STATE); prev = CLASS; }
7 / * other rules related to lexing within a class * /
8 }
9 <STRING_STATE> {

10 \" { yybegin(prev); return STRING(text); }
11 / * other rules that build up the string stored in text * /
12 }

Listing 1.1 JFlex State Transitions

As in Listing 1.1, it is often the case that state transitions occur upon observing a particu-

lar sequence of tokens. Furthermore, transitions are oftenstack-based, like method calls.

When a transition is triggered, the triggering lexical stateis saved so that it can be restored

once a terminating sequence of tokens is observed.

In other words, lexer transitions can often be described by rules of the form

When in state S1, transition to state S2 upon seeing token(s) T1; transition back upon seeing

token(s) T2.

1http://jflex.de/
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For example,

When in state BASE, transition to state COMMENT upon seeing token(s) STARTCOMMENT;

transition back upon seeing token(s) ENDCOMMENT.

MetaLexer makes these rules explicit by associating “meta-tokens” with rules and then us-

ing a “meta-lexer” to match patterns of meta-tokens and trigger corresponding transitions.

This organization gives rise to two different types of modules:componentsandlayouts.

A componentcontains rules for matching tokens. It corresponds to a single lexical state in

a traditional lexer.

A layoutcontains rules for transitioning amongst components by matching meta-tokens.

For example,Figure 1.1 shows a possible organization of a Matlab lexer. A (blue) layout

– Matlab – refers to three (green) components –Base, String, andComment. Each of the

components describes a lexical state and the layout describes their interaction.

Figure 1.1 Layout (blue) and components (green) for Matlab

This division of specifications into components and layoutspromotes modularity because

components are more reusable than layouts. For example, many languages have the same

rules for lexing strings, numbers, comments etc. Factoringout the more reusable compo-

nents from the more language-specific layouts reduces coupling.

For example,Figure1.2extendsFigure1.1 to show how a second layout –Lang X– might

share some components in common with the original layout –Matlab. In particular, the
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other lexer might treat strings the same way, but comments differently. If so, it could reuse

the same string component, but create its own comment component.

Figure 1.2 Two layouts sharing components

We have found that this sharing of modules is very useful in practice. Components, in

particular, are very reusable. For example, the layouts of MetaLexer languages – com-

ponent and layout – use many of the same components (Section8.3.1). Additionally, the

components of the abc language inherit many of the same helper components (Section8.2).

1.1.2 Key Feature: Inheritance

MetaLexer uses multiple inheritance to achieve extensibility and modularity.

For example,Figure 1.3 shows how inheritance can be used to extend an existing lexer.

Given an existing Matlab lexer, one might wish to extend the syntax of strings, perhaps

allowing new escape sequences. One could do this by inheriting theStringcomponent in

a newString++ component which adds the new escape sequences. Then one could inherit

theMatlab layout in a newMatlab++ layout which replaces all references toStringwith

references toString++. Note that this process would leave the original Matlab lexer (i.e.

layout and components) intact.

On the other hand,Figure1.4shows how inheritance can improve modularity by factoring

out useful “helper” fragments into separate layouts/components. In this case, since the
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Figure 1.3 Using inheritance to extend the syntax of Matlab strings

componentsBaseandClassshare rules in common (keywords, and comment syntax), these

rules have been factored out into “helper” components (shown with dashed borders) that

are then inherited by both true components. The same modularity can be achieved with

layouts.

Figure 1.4 Using inheritance to improve modularity

The inheritance mechanism in MetaLexer is an extension of basic textual inclusion. Conse-

quently, anything that can be achieved using inheritance, can also be achieved by judicious

duplication and merging of existing files. In particular, common ancestors are not shared,

but duplicated.

Both layouts and components support multiple inheritance.
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1.1.3 Key Feature: Cross-Platform Functionality

In designing and implementing MetaLexer, great care was taken not to tie it to a specific

language or toolset. This effort was threefold (details inSection6.10).

First, the syntax and features of MetaLexer are not closely tied to those of an existing LSL.

For example, rather than providing all of the same directives as JFlex, MetaLexer provides

an%option directive that passes directives through to the underlyinglexer. It also avoids

LSL-specific quirks and advanced features.

Second, the features of MetaLexer are not tied to those of an existing PSL. For example,

it was not assumed that the meta-lexer could peak into the token stream, which is very

PSL-specific.

Third, the AIL of MetaLexer is not fixed. In fact, it should be possible to use nearly any

procedural or object-oriented language.

1.2 Examples

Mixed language programming is not a new concept. Since the early days of C, program-

mers have been inserting blocks of assembly withasmregions [KR78]. Around the same

time, C was being embedded in Lex specifications [LS75]. However, mixed language pro-

gramming is growing in popularity, especially in the web development community. HTML

documents often contain embedded JavaScript2. Languages like ASP3 and JSP4 go a step

further and mix general purpose languages with HTML.

In all of the examples above, the paired languages exist independently and are combined

after-the-fact. However, this need not be the case. We can also view more homogeneous

languages through the lens of mixed language programming. Javadoc5, for example, does

not exist independently of Java. It is, however, a separate language with its own lexing and

2http://www.w3.org/TR/html4/interact/scripts.html
3http://www.asp.net/
4http://java.sun.com/products/jsp/
5http://java.sun.com/j2se/javadoc/
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parsing rules. Similarly, the aspect language of AspectJ [KHH+01] has no independent

implementation, but it can be viewed as its own language, mixed with the Java language in

AspectJ.

In the extreme, we can view data-type literals as their own languages, mixed with the

more general language that contains them. For example, Ruby6 contains regular expression

literals. Clearly, they are lexed and parsed differently from the rest of Ruby. Similarly, most

languages contain string literals. String literals may have very simple lexing and parsing

rules, but that does not mean that they cannot be viewed as their own language.

MetaLexer is particularly well-suited to dealing with mixed language lexing. It allows the

lexers to be developed separately and then combined. This makes specifications both easier

to understand and more modular. For example, if the C programming language is to be used

in two different mixed language environments, then the samemodules can be used in both

cases. More detailed examples are described below and inChapter8.

1.2.1 Javadoc

Though Javadoc does not exist independently of Java, it possesses its own syntax rules and

even its own compiler (the eponymous javadoc). Indeed, one can imagine writing separate,

standalone lexers for Javadoc and Java. In some ways, this isthe simplest approach – the

Java lexer allows the Java parser to consider Javadoc blocksopaque and vice versa.

For example,Figure1.5shows a typical combination of Java and Javadoc. A Java compiler

can ignore the green regions and a Javadoc compiler can ignore the blue regions.

Of course, the regions are not perfectly separate. If they were, there would be little incentive

to put them in the same file. Rather, Javadoc tags reference Java elements and the two must

be kept synchronized. Hence, while we desire the modularityof separate lexers, we require

the error-checking capabilities of a unified syntax tree. With MetaLexer, exactly this is

possible.

6http://www.ruby-lang.org/
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Figure 1.5 Java/Javadoc as mixed language programming

1.2.2 AspectJ

AspectJ is an even more interesting use case because it requires both extension and mod-

ularity. AspectJ can be regarded as a mix of three languages:the aspect language, the

pointcut language, and Java [HdMC04]. In MetaLexer, the three can be specified sepa-

rately and then combined with a common layout.

The aspect language is an extension of Java. It introduces new keywords, such asaspect,

pointcut, before, after, andaround.

The pointcut language is completely separate from both the aspect language and Java. It

has its own lexing rules that allow it to express a variety of patterns.

Figure 1.6 shows a sample AspectJ file. Initially, we are in the Java language for the

package and import statements. Upon seeing theaspectkeyword, some additional tokens,

and a left brace, we switch to the aspect language. We revert to the Java language upon

seeing an unmatched right brace, but before that we see otherlanguage regions. In this

example, we switch to the pointcut language after seeing thebeforekeyword, but more

generally, we could be in a per declaration (percflow, perthis, etc) or a pointcut declaration

(pointcut). Note that if conditions within the pointcut language are written in the Java

language (delimited by the if keyword and an (unbalanced) right parenthesis). We revert

to the aspect language upon seeing a left brace (i.e. the beginning of the corresponding
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action). The text of the action, delimited by left and right braces is written in the Java

language. Similarly, the text of the nested class, delimited by theclasskeyword and an

unbalanced right brace, is written in the Java language.

Figure 1.6 AspectJ as mixed language programming

In practice, the implementation is more complicated than described above. Details can be

found inSection8.2.

1.3 Contributions

In creating MetaLexer, we have identified and filled a gap in the existing extensible com-

piler toolset. We have designed our new approach around three key features – abstraction of

lexical state transitions, multiple inheritance, and cross-platform support – and established

a pattern for future implementations. Finally, we have usedMetaLexer to build lexers for

real-world languages.
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1.3.1 Reference Implementation

Two different code generation engines for MetaLexer specifications are available online7.

One produces JFlex code that can be compiled into Java classes (seeSection5.1) and the

other produces flat (i.e. inheritance-free) MetaLexer (seeSection5.2). Source code and

binaries are available for both.

1.3.2 JFlex Translator

To help developers get started with MetaLexer, we have also provided a tool for translating

existing JFlex lexer specifications into MetaLexer (seeSection5.1). It should be noted

that, while the MetaLexer produced by the translator is guaranteed to be correct, it is not

guaranteed to be written in proper MetaLexer style.

1.3.3 Lexer Specification for McLab

The McLab project8 being developed by the Sable Lab will eventually be a framework

for building optimizing compilers for scientific languages(e.g. Matlab9, SciLab10, and

Modelica11). It is beginning, however, by building a single optimizingcompiler for a

slightly simplified version of Matlab called Natlab.12 We have built the Natlab lexer using

MetaLexer and a colleague, Toheed Aslam, is using it to create the lexer for an extended

language called AspectMcLab13. SeeSection8.1 for details.

7http://www.cs.mcgill.ca/metalexer/
8http://www.sable.mcgill.ca/mclab/
9http://www.mathworks.com/products/matlab/

10http://www.scilab.org/
11http://www.modelica.org/
12It omits, among other things, the convoluted command syntax, which complicates both lexing and pars-

ing.
13http://www.sable.mcgill.ca/mclab/
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1.3.4 Lexer Specification for AspectJ

As described above (Section1.2.2), AspectJ is an ideal candidate for MetaLexer lexing.

As an experiment, we have replaced the lexers for abc [ACH+05], an open-source AspectJ

implementation, and two of its extensions – Extended AspectJ (eaj) and Tracematches (tm).

Details are provided inSection8.2.

1.3.5 Lexer Specification for MetaLexer

Finally, to show our confidence in MetaLexer, we have bootstrapped it. The lexer classes

used by the MetaLexer frontend (i.e. for the layout and component languages) are actually

generated from MetaLexer specifications. SeeSection8.3 for details.

1.4 Organization of Thesis

The remainder of the thesis is organized as follows.Chapter2 provides some background

material on lexing and parsers for readers less familiar with the domain. It can be skipped.

Chapter3 describes the syntax of the MetaLexer LSL. It contains several examples which

will make it easier to understand concepts introduced in later chapters.Chapter4 describes

the new semantics of MetaLexer – those that differ from JFlexand other existing LSLs.

Chapter5 provides instructions for running the tools that translatespecifications to and

from MetaLexer. Once the mechanics have been explained,Chapter6 highlights some of

the design decisions behind MetaLexer andChapter7 describes some of the implementa-

tion issues.Chapter8 presents three case studies comparing MetaLexer to JFlex: McLab,

abc, and MetaLexer itself.Chapter9 describes previous work in this field and, in particu-

lar, other approaches that were considered and rejected.Chapter10 summarizes the thesis

and its conclusions andChapter11 describes logical directions for future work. Finally,

AppendixA provides a glossary of acronyms used in the thesis,AppendixB is a reference

for developers who wish to modify the MetaLexer source code,andAppendixC contains

the specification for the MetaLexer lexer, as both an exampleand a definition.
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Chapter 2

Background

This chapter provides some background information on lexing and parsing for readers who

are less familiar with the domain.1

2.1 Parsing

Intuitively, parsing is the process of extracting meaning from a body of text2. For example,

to a human, the sequence5 + 3 * (2 + 4) looks quite meaningful. To a computer,

however, it is no different from any other sequence of 15 characters3. Hence, we need to

give the computer some way to extract the arithmetic structure that we know is present. In

particular, we want the computer to build the expression tree shown inFigure2.1.

A parser is a computer program that extracts structure from bodies of text. To be more

precise, we will need to define a few terms.

An alphabetis a set of symbols. For example, the English alphabet we use every day is a set

of 26 symbols (52 if we include uppercase). Similarly, the digits0,1,2,3,4,5,6,7,8,9

form an alphabet.

1For greater detail we recommend [App98] and [Mar03].
2Of course, in a more general context, the input need not be text – it can be any sequence of symbols.
3Did you remember to count the spaces?
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Figure 2.1 An expression tree for “5 + 3 * (2 + 4)”

A string over an alphabet is a finite sequence of symbols from that alphabet. For example,

214 is a string over the alphabet of decimal digits.

A formal languageis a set of strings over a finite alphabet. For example, the strings{1,

11 , 111 , . . .} are a formal language over the alphabet of decimal digits.

A grammaris a succinct description of a formal language4. It captures structure in such

a way that the structure of any string in the language can be recovered using the gram-

mar. For example, a grammar for the language of all valid arithmetical expressions would

encapsulate the information needed to turn flat expressionsinto expression trees.

More precisely then, a parser is a computer program that encapsulates the grammar of a

formal language. Given a string in that language, it can extract the structure of the text.

2.2 Lexing versus Parsing

The previous section neglected to definesymbol. Through examples, it was implied that a

symbol is simply a character, but this need not be the case. Infact, anything with a finite

representation will do. In particular, there is no reason that we cannot use an entire string as

a symbol. For example, nearly all programming languages contain identifiers (i.e. names).

There are two ways to look at identifiers: they can be strings or they can be symbols. That

is, the name “foo” may be regarded as either a string of symbols (‘f’, ‘o’, ‘o’) or as a symbol

4A more formal definition is beyond the scope of this chapter.
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of its own (identifier).

This paradigm shift actually has important practical implications. Grouping multiple char-

acters into each symbol reduces the size of the input to the parser. For example, “foo bar”

is seven characters. However, if we are only interested in the identifier level of granular-

ity, then the input consists of only two symbols. Therefore,if we can break the sequence

of characters into symbols more quickly than we can parse, then we can reduce our total

execution time.

Lexing is the process of breaking a body of text into symbols (usually called tokens in the

lexer). In order to remain simpler, and thus faster, than parsing, lexers are restricted to a

simple class of formal languages called regular languages.

While lexing is not strictly necessary, it does reduce the time required for parsing and

simplify parser specifications (since the resulting symbols are much more abstract).

2.3 Traditional Lexing Tools

The first widely used lexical specification language (LSL) was lex [LS75], developed by

Mike Lesk and Eric Schmidt at Bell Laboratories. It was designed to work closely with the

fledgling C programming language [KR78] and yacc parser generator [Joh75], also from

Bell Laboratories.

Lex was re-implemented by the GNU project as Flex5. Flex has supplanted the proprietary

Lex and is now the de-factor standard for lexing in C/C++.

Several LSLs exist for Java, but the most popular are JLex6 and its successor JFlex7.

All of these tools provide approximately the same functionality, though some of the newer

ones have better performance and include more advanced features.

5http://flex.sourceforge.net/
6http://www.cs.princeton.edu/ appel/modern/java/JLex/
7http://jflex.de/
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2.4 Lexical States

Sometimes the boundary between lexing and parsing is unclear (unsurprisingly, since it is

arbitrary). One particularly common case is that of nested comments. Since comments

can appear virtually anywhere in the syntax of a programminglanguage, a grammar that

includes comments is bloated and hard to read. Fortunately,most comments have no se-

mantic effect and can safely be ignored. If comments are filtered out of the input by the

lexer – which does not need to consider context and so can avoid specifying them repeat-

edly – then the parser can be made much simpler. Unfortunately, because nested comments

require balanced start- and end-delimiters, they cannot becaptured by regular expressions

– a new construct is needed.

Nested comments can be handled by introducinglexical states. Each lexical state of a lexer

has a different set of lexing rules. That is, the current state of the lexer determines how

subsequent input will be interpreted. If the designer of thelexer can programmatically

control the transitions between these lexical states, thenthey increase the power of the

lexer.

For example, in the case of nested comments, a lexer could contain two lexical states – one

for nested comments, and one for the other rules. Upon encountering a start-delimeter, the

lexer would transition to the nested comment transition lexical state. It would then track

the balancing of delimiters in a state variable of the lexer and postpone the transition back

until balance was achieved. In this way, it could hide the contents of all nested comments

from the parser but handle all other input as usual.

In MetaLexer, these lexical states become components and their interactions are governed

by layouts, rather than by action implementation languate (AIL) code in actions and helper

methods.
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MetaLexer Syntax

MetaLexer actually consists of two specification languages: one for components and one

for layouts. Components take the place of lexical states; they contain the lexical rules.

Layouts specify the interaction of the components, the transitions between the lexical states.

This chapter describes the syntax of both languages.

3.1 Example

We begin with an example. Suppose we want to write a parser forJava property files.

A property consists of a key and a value, separated by an equals sign. The key is an

alphanumeric identifier and the value is a string that startsafter the equals sign and ends

at the end of the line. Each line contains a key-value pair, a comment (from ‘#’ to end-of-

line), or whitespace.Listing3.1shows a sample properties file. It specifies three key-value

pairs: (name, ‘properties’), (date, ‘2009/09/21’), and (owner, ‘root’). Everything else is

ignored.

Clearly, we could extract all of this information within the lexer, but to be more illustrative

we will tokenize the file for a hypothetical parser.

Ultimately, we will create a number of components and join them together using a layout.

17



MetaLexer Syntax

1 #some properties
2 name=properties
3 date=2009/09/21
4

5 #some more properties
6 owner=root

Listing 3.1 Syntax Example – A Properties File

For now, we’ll start with a single component that corresponds closely with the description

above.Listing 3.2 shows thekeycomponent that will be the workhorse of our lexer. This

listing is fairly intuitive. First, we specify the name of our component (%component).

Then we list methods that we plan to use but we expect to be defined elsewhere (%extern).

After a separator, we specify lexical rules. As one might expect,%%inherit pulls in the

macros we need from another file, in this casemacros.mlc. Finally, we note that one of the

rules is followed by an extra identifier,ASSIGN. This is a meta-token; it will be processed

by the layout to determine if a transition is necessary.

1 %component key
2

3 %extern "Token symbol(int)"
4 %extern "Token symbol(int, String)"
5 %extern "void error(String) throws LexerException"
6

7 %%
8

9 %%inherit macros
10

11 {lineTerminator} {: / * ignore * / :}
12 {otherWhitespace} {: / * ignore * / :}
13 "=" {: return symbol(ASSIGN); :} ASSIGN
14 %:
15 {identifier} {: return symbol(KEY, yytext()); :}
16 {comment} {: / * ignore * / :}
17 %:
18 <<ANY>> {: error( "Unexpected character ’" + yytext() + "’" ); :}
19 <<EOF>> {: return symbol(EOF); :}

Listing 3.2 Syntax Example – key.mlc

MetaLexer rules are very similar to JFlex rules except for three main differences. First,
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MetaLexer introduces a new (top-level)<<ANY>> pattern which is used to designate the

catchall rule (described below). Second, each rule may optionally be followed by a meta-

token declaration. Whenever, the pattern is matched, in addition to executing the action

code, the component will send the meta-token to the coordinating layout. Meta-tokens do

not need to be declared, nor do they need to be unique. Finally, for disambiguation reasons,

colons have been added inside the curly brackets (seeSection6.10.1for an explanation).

The keycomponent has a rule for constructing key tokens, but not forconstructing value

tokens. For that, we will need another component.Listing3.3shows thevaluecomponent,

wherein entirely different lexical rules apply. It has manyof the same features asListing3.2

– a component name, external declarations, inheritance of macros, meta-tokens – but it

also has a new construct, an%append block. The append block means that the goal of

the whole component is to build up a single token. Instead of returning tokens themselves,

the rules callappend()to concatenate strings onto a shared buffer. When the component is

‘complete’ (as decided by the layout), the body of the%append block will be executed and

a single token will be returned.

1 %component value
2

3 %extern "Token symbol(int, String, int, int, int, int)"
4

5 %append{
6 return symbol(VALUE, text, startLine, startCol, endLine, endCol);
7 %append}
8

9 %%
10

11 %%inherit macros
12

13 {lineTerminator} {: :} LINE_TERMINATOR
14 %:
15 %:
16 <<ANY>> {: append(yytext()); :}
17 <<EOF>> {: :} LINE_TERMINATOR

Listing 3.3 Syntax Example – value.mlc

Listing3.4shows themacroshelper component that is inherited by bothkeyandvalue. The

%helper directive indicates that the module is only to be inherited,never used directly.
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Notice how it encapsulates the code shared by thekeyandvaluecomponents so that the

code does not have to be duplicated. The macros themselves are just as in JFlex.

1 %component macros
2 %helper
3

4 lineTerminator = [\r\n] | "\r\n"
5 otherWhitespace = [ \t\f\b]
6 identifier = [a-zA-Z][a-zA-Z0-9_] *
7 comment = #[ˆ\r\n] *

Listing 3.4 Syntax Example – macros.mlc

Finally, Listing 3.5 shows thepropertieslayout that joins everything together. It is the

layout that we will compile into a working lexer. Like a normal LSL specification (Flex,

JFlex, etc), the layout begins with a free-form header. In MetaLexer, however, the header

is split in two. The first section is specific to the current layout, whereas the second section

will be inherited by any layout that extends this one.

After the header sections comes the option section. It begins with the layout name (%layout)

and the lexer options (%option). Each lexer option is given an identifier so that it can be

deleted or replaced in an extension of the lexer. The string part is passed directly to the

underlying LSL. Following the options are declarations in the AIL (surrounded by%{ and

%}). These methods will be added directly to the lexer class. Each one is shared with the

components of the lexer via a%declare directive. The%lexthrow directive reflects the

fact that, by callingerror(String), a lexer action may raise aLexerException. At the end

of this section, the components to be used are imported (%component) and a start com-

ponent is specified (%start). Until a transition occurs, the lexer will remain in the start

component.

The last section contains embeddings (i.e. transitions). In this case, if anASSIGNmeta-

token is seen while in thekeycomponent, then the lexer will transition to thevaluecompo-

nent. It will remain there until aLINE TERMINATORmeta-token is seen and then transi-

tion back to thekeycomponent.

In general, an embedding may be read as“When in component HOST, upon observing

meta-pattern START, transition to component GUEST. Transition back upon observing
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meta-pattern END.”

1 package properties;

2 %%

3 import static properties.TokenTypes. * ;

4 %%

5 %layout properties

6

7 %option public "%public"

8 %option final "%final"

9 %option class "%class PropertiesLexer"

10 %option unicode "%unicode"

11 %option function "%function getNext"

12 %option type "%type Token"

13 %option pos_line "%line"

14 %option pos_column "%column"

15

16 %declare "Token symbol(int)"

17 %declare "Token symbol(int, String)"

18 %declare "Token symbol(int, String, int, int, int, int)"

19 %{

20 private Token symbol(int symbolType) {

21 return symbol(symbolType, null);

22 }

23 private Token symbol(int symbolType, String text) {

24 return new Token(symbolType, text, yyline + 1, yycolumn + 1,

yyline + 1, yycolumn + yylength());

25 }

26 private Token symbol(int symbolType, String text, int star tLine, int

startCol, int endLine, int endCol) {

27 return new Token(symbolType, text, startLine + 1, startCol + 1,

endLine + 1, endCol + 1);

28 }

29 %}

30

31 %declare "void error(String) throws LexerException"

32 %{

33 private void error(String msg) throws LexerException {
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34 throw new LexerException(msg);

35 }

36 %}

37

38 %lexthrow "LexerException"

39

40 %component key

41 %component value

42

43 %start key

44

45 %%

46

47 %%embed

48 %name key_value

49 %host key

50 %guest value

51 %start ASSIGN

52 %end LINE_TERMINATOR

Listing 3.5 Syntax Example – properties.mll

Obviously, this simple example does not exercise the full syntax of MetaLexer. Read on

for a more complete description.

3.2 Components

Each component is divided into two sections. First there is an option section containing

configuration details and then there is a rule section. The sections are separated by a section

separator,%%.

Unless otherwise indicated, each item listed below should begin on a new line.
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3.2.1 Option Section

The option section consists of a%component directive, followed by a mixture of other

directives and code regions (order unimportant), followedby a list of macro declarations.

Name

%componentname– EXACTLY 1 – The name of the component must correspond to the

name of the file. The component X must appear in the file X.mlc (case-sensitive);

the component X.Y must appear in the file Y.mlc in the directory X (case-sensitive).

Directives

%helper – AT MOST 1 – If this directive is present, then the component can be inherited

by other components but not used in a layout. Checks related tomissing declarations

will be postponed until the component is incorporated into an inheriting component.

The following directives relate to lexical states.These are advanced directives and

should not be used under normal circumstances.

%state name, name, . . .– ANY NUMBER – This directive comes from JFlex. In rare

circumstances, it is necessary to use a lexical state in place of a component.%state

declares such a state. In particular, it declares aninclusivestate. This means that,

when the lexer is in the declared lexical state, only those rules that are labelled with

its name and those that are unlabelled will be considered. Aninclusive state called

YYINITIALis declared by default.

%xstate name, name, . . .– ANY NUMBER – This directive comes from JFlex. In rare

circumstances, it is necessary to use a lexical state in place of a component.%state

declares such a state. In particular, it declares anexclusivestate. This means that,

when the lexer is in the declared lexical state, only those rules that are labelled with

its name (but not those that are unlabelled) will be considered.
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%start name– AT MOST 1 – In cases where lexical states have been declared using

(%state or %xstate), it may be desirable to start in one of the declared states

rather than in the defaultYYINITIALstate. This directive indicates in which state the

component should start. If this directive is absent, then the component will start in

the automatically declaredYYINITIALstate.

The following directives relate to external requirements ofthe component.

%extern “signature” – ANY NUMBER – This directive indicates that the component

expects any layout making use of it to provide an entity with the specified signature.

In particular, the layout must include%declare “signature” .

%import “class” – ANY NUMBER – This directive indicates that the top-level lexer

should import/include/require (depending on the AIL; e.g.C for Flex, Java for JFlex,

etc) the specified class/module/file. Unlike an%extern directive, the%import di-

rective actually effects the change it requires. That is, itis sufficient on its own – no

additional import is required in the layout.

The following directives relate to exceptions that might be thrown by the component.

%lexthrow “exception type”, . . . – ANY NUMBER – This directive indicates that an

action (or the special append action method) may throw an exception of one of the

listed types.

%initthrow “exception type”, . . . – ANY NUMBER – This directive indicates that the

code in an%init block may throw an exception of one of the listed types.

Code Regions

%{ declaration code%} – ANY NUMBER – This code region is for declaring fields,

methods, inner classes, etc.
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%init { initialization code%init } – ANY NUMBER – This code region is for initializing

the entities declared in%{ %} blocks. For example, if the AIL were Java or C++,

then this code would be inserted in the constructor of the lexer class.

%append{ method code%append} – AT MOST 1 – An append block is both a directive

and a code region. First, its presence indicates that the component is an append

component. This means that anappend(String)method will be available in all actions

of the component. Second, its code is the body of a special append action method that

will be called when appending is finished (seeSection4.9 for details). The method

is like any other action block and may (optionally) return a token. It will receive

integer parametersstartLine, startCol, endLine, and endColand string parameter

text indicating the position and contents of the text passed toappend(String). The

positions will be indexed in the same way as the underlying LSL (e.g. zero-indexed

for JFlex).

%appendWithStartDelim { method code%appendWithStartDelim } – AT MOST 1 –

An appendWithStartDelim is very similar to an append block.It indicates that the

component is an append component (i.e.append(String)is available) and creates a

special append action method that will be called when appending is finished. How-

ever, when the append action method is called, the argumentsit receives will incor-

porate the start delimiter created byappendToStartDelim(String)(seeSection4.9.1

for details). In particular, the values ofstartLine, startColandtext will be different

from what they would be in an otherwise identical append block. The positions will

be indexed in the same way as the underlying LSL (e.g. zero-indexed for JFlex).

Macros

macro= regex– ANY NUMBER – This line declares a macro (a named regular expression)

with the specified name and value. Regular expressions are as in JFlex. The entire

declaration must appear on a single line.
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3.2.2 Rule Section

The rules section is a mix of rules and inheritance directives.

A rule is of the following form.

pattern{: action code:} meta-token

An inheritance directive indicates that another componentshould be inherited. It is of the

following form.

%%inherit component

If the character sequence “%%inherit” appears in a regular expression, it must be quoted

to distinguish it from the directive.

Each inheritance directive is immediately followed by zeroor more delete directives, which

prevent certain rules from being inherited. They are of the following form.

%delete<state, state, . . .> pattern

If the character sequence “%delete” appears in a regular expression, it must be quoted to

distinguish it from the directive.

If a rule with the given pattern appears in one of the listed states of the inherited compo-

nent, then it is not inherited. In most specifications, the state list will be empty – this is

equalivalent to a state list containing only the defaultYYINITIALlexical state.

Rule Order

As in JFlex, if two different patterns match the input, then the longer match is chosen. If

there is more than one longest match, then textual order is used as a tie-breaker. Clearly, this

gets more complicated when multiple inheritance is incorporated. To reduce complexity,

MetaLexer recognizes and separates three types of rules.

1. Acyclic rules can match only finitely many strings. Conceptually, their minimal

DFAs are acyclic.
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2. Cyclic rules are neither Acyclic nor Cleanup rules.

3. Cleanup rules are either catchall –<<ANY>>– or end-of-file –<<EOF>>– rules.

Acyclic rules are listed first, followed by a group separator–%:, then cyclic rules are listed,

followed by a group separator, and finally cleanup rules are listed. If the cleanup rules are

absent, then the second group separator may be omitted. If both cleanup and cyclic rules

are absent, then both group separators may be omitted. Otherwise, all group separators are

required, even around empty groups.

A new Acyclic-Cyclic-Cleanup group begins after the section separator –%% – and after

each%%inherit directive.

SeeSection6.7 for the importance of and the rationale behind this distinction between

different types of rules.

3.3 Layouts

Each layout is divided into four sections: the local header,the inherited header, the options

section, and the rule section. The sections are separated bysection separators,%%.

Unless otherwise indicated, each item listed below should begin on a new line.

3.3.1 Local Header

The local header is a block of free-form text that will be inserted at the top of the generated

lexer class (i.e. the file generated by the underlying LSL (e.g. JFlex) rather than the file

generated by MetaLexer). It is not incorporated into inheriting components. It is generally

used for something like a package declaration – something that will probably change in an

inheriting component.

27



MetaLexer Syntax

3.3.2 Inherited Header

The inherited header is another block of free-form text. It will be inserted just below the

local header at the top of the generated lexer class. It is exactly like the local header except

that it will be incorporated into inheriting components. Itis generally used to declare

imports, macros, etc.

3.3.3 Options Section

The option section is very similar to the corresponding section in a component. It consists

of a%layout directive, followed by a mixture of other directives and code regions (order

unimportant).

Name

%layout name– EXACTLY 1 – The name of the layout must correspond to the name of

the file. The layout X must appear in the file X.mll (case-sensitive); the layout X.Y

must appear in the file Y.mll in the directory X (case-sensitive).

Directives

%helper – AT MOST 1 – If this directive is present, then the layout can be inherited by

other layouts but not compiled into a lexer. Checks related tomissing declarations

will be postponed until the layout is incorporated into an inheriting layout.

%option name “lexer option”– ANY NUMBER – This directive inserts its text, verbatim,

in the option section of the generated lexer specification. The name is included so

that the option can be filtered out by inheriting layouts. Names must be unique.

%declare “signature” – ANY NUMBER – This directive indicates that the layout will

satisfy any referenced components with%extern “signature” .
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The following directives relate to exceptions that might be thrown by the lexer.

%lexthrow “exception type”, . . . – ANY NUMBER – This directive indicates that an

action (or a special append action method) may throw an exception of one of the

listed types.

%initthrow “exception type”, . . . – ANY NUMBER – This directive indicates that the

code in an%init block may throw an exception of one of the listed types.

The following directives relate to the use of components.

%component name, name, . . .– AT LEAST 1 – This directive declares that the layout

will make use of the named components.

%start name– EXACTLY 1 – This directive indicates in which component the layout will

start.

Code Regions

%{ declaration code%} – ANY NUMBER – This code region is for declaring fields,

methods, inner classes, etc.

%init { initialization code%init } – ANY NUMBER – This code region is for initializing

the entities declared in%{ %} blocks. For example, if the AIL were Java or C++,

then this code would be inserted in the constructor of the lexer class.

3.3.4 Rules Section

The rules section is a mix of embeddings and inheritance directives.

An embedding is of the following form (order matters).

%%embed

%name name
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%host component, component, . . .

%guestcomponent

%start meta-pattern

%end meta-pattern

%pair meta-token, meta-token

Zero or more%pair lines may be included.

The embedding is named so that inheriting layouts can exclude it, if necessary. The rest

may be read asWhen in component HOST, upon observing meta-pattern START,transition

to component GUEST. Transition back upon observing meta-pattern END.For each pair, if

the first element is observed, the next occurrence of the second element is suppressed (i.e.

not matched).

An inheritance directive indicates that another layout should be inherited. It is of the fol-

lowing form.

%%inherit layout

Each inheritance directive is immediately followed by zeroor more unoption, replace, and

unembed directives (in that order).

Unoption directives filter out options from inherited layouts. They are of the following

form.

%unoption name

Replace directives replace all references to one component with references to another. This

is very useful when a new layout uses an extended version of a component used by an

inherited layout (as inFigure1.3). They are of the following form.

%replace component, component

Unembed directives filter out embeddings from inherited layouts. They are of the following

form.

%unembedname
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Meta-Patterns

The basic meta-patterns are meta-tokens (from component rules) and regions. A region is a

component name surrounded by percent-signs. It indicates that a component with the given

name has just been completed.

The basic meta-patterns can be included in a classes – space-separated lists surrounded

by square brackets. Normal classes are simply shorthand foralternation. Negated classes

(those with a caret just inside the open square bracket) match any single meta-token or

region not listed in the class. The special<ANY> class matches any single meta-token or

region.

The <BOF> meta-pattern matches the beginning of the meta-stream (i.e. the stream of

meta-tokens and regions passed to the meta-lexer by the lexer).

Finally, parentheses, juxtaposition, alternation,+, ∗, and ? work as they do in regular

expressions.

3.4 Comments

Both layouts and components support Java-style single-line(//) and multi-line (/* */)

comments.
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Chapter 4

MetaLexer Semantics

The previous chapter described the syntax of MetaLexer. This chapter will describe the

semantics, focusing on differences between MetaLexer and JFlex.

4.1 JFlex Semantics

A JFlex lexer has one key method:nextToken(). When called, the method reads characters

from the input stream, attempting to match a lexer rule and return a token. This process

is summarized inListing 4.1. Within the current lexical state, all rules are tested in order.

The rule matching the longest prefix of the input is selected.If there is a tie, then the

first to appear textually is selected (accomplished in this case by simply not updating the

matchedRulevariable). Then the input pointer is advanced past the longest match and the

corresponding action is executed.

Notice that the loop has no exit condition and the method has no return statement. It is up

to the action code to break out of the loop by returning a token. If an action does not return

a value, then the loop will perform another iteration. Any number of rules may be matched

before a token is returned – there is no one-to-one correspondence.
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1 public Token nextToken() {
2 while( true) {
3 matchedRule = null
4 maxString = null
5 for each rule r in lexicalState {
6 s = prefix of input matched by r
7 if(s longer than maxString) {
8 matchedRule = r
9 maxString = s

10 }
11 }
12 if(matchedRule != null) {
13 advanceInputPast(maxString);
14 switch(matchedRule) {
15 case rule1:
16 perform action 1
17 break;
18 case rule2:
19 perform action 2
20 break;
21 ...
22 }
23 }
24 }
25 }

Listing 4.1 Pseudo-Code for the Main JFlex Loop

4.2 Meta-Lexing

MetaLexer uses the same basic lexing loop as JFlex (seeListing 4.1). Lexical rules are

tested in order and the earliest occurring longest match is selected. However, MetaLexer

uses a different mechanism for partitioning these rules anddetermining which subset should

be used.

Though MetaLexer supports lexical states, a well-written MetaLexer specification will es-

chew their use. Instead, it will use components to perform the same function and coordi-

nate the transitions between components using a layout. This difference is illustrated in

Figure 4.1. In Figure 4.1a, JFlex is shown reading a stream of characters and producing

a stream of tokens. Internally, it moves amongst a number of lexical states that determine
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which set of lexical rules will be used. Externally,Figure 4.1b is very similar. MetaLexer

reads a stream of characters and produces a stream of tokens.However, it uses a differ-

ent mechanism to determine which set of matching rules will be used. In place of lexical

states, it has components. These components, in addition toproducing tokens, produce

meta-tokens that are consumed by the layout. Based on this stream of meta-tokens, the

layout determines which component should be used. This process – choosing the current

component based on a stream of meta-tokens – is referred to asmeta-lexing.

(a) JFlex

(b) MetaLexer

Figure 4.1 A comparison of JFlex and MetaLexer

Observe that the job performed by the layout – reading in a stream of meta-tokens, match-

ing against a list of meta-patterns, and producing a stream of transitions – is very similar to

the job performed by a normal lexer. Instead of characters, we have meta-tokens; instead of

regular expressions, we have meta-patterns; and instead oftokens, we have transitions. If

we imagine converting each meta-token to a character and each transition to a token, then

it becomes quite clear how meta-lexing works.

For example, consider the layout fragment shown inListing 4.2. It is part of a Java lexer.
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The basecomponent lexes the package and import statements that exist outside classes

in a Java file. Theclasscomponent lexes what we usually think of as the Java language

– fields, methods, statements, expressions, etc. Thestring andcommentcomponents lex

string literals and multi-line comments respectively. Intuitively, we transition from thebase

component to theclasscomponent when we see a class declaration (i.e. a class keyword,

a name and maybe some superclasses/interfaces and an open brace) and back when we

see the end of the class declaration (i.e. thecorrespondingclosing brace). We transition

from theclasscomponent to thestring component on an open-quote and back on a close-

quote. Similarly, we transition from theclasscomponent to thecommentcomponent on an

open-comment symbol (‘/*’ ) and back on a close-comment symbol (‘*/’ ).

More formally, we transition based on sequences of meta-tokens. Of course, there is a clear

correspondence between tokens and meta-tokens in this case: CLASSKW is generated by

theclasskeyword token,LCURLYis generated by the open brace symbol token, etc.

With this in mind, we can readListing 4.2 as follows. We see that we should transition

from thebasecomponent to theclasscomponent upon seeing the meta-patternCLASSKW

[ˆLCURLY]* LCURLY. If we assignCLASSKW the character ‘a’ andLCURLYthe charac-

ter ‘b’ then, we can rewrite this meta-pattern as(a[ˆb]*b) . If we were to put this abbreviated

rule in a separate lexer, we would attach an action that returned the appropriate transition

from baseto class. Similarly, the action attached to the end meta-pattern would return the

reverse transition, fromclassback tobase.

Obviously, this is not all there is to meta-lexing. Astute readers will have noticed that, in

the example above, once we have transitioned to theclasscomponent, we no longer wish

to match the rule for(a[ˆb]*b) . We solve this problem by associating rules with specific

embeddings. We keep track of the current embedding on a stackand only match patterns

that make sense in the current embedding.1

If we always know which embedding we have encountered most recently, then we also

know which component we are in – the guest component of that embedding. For example,

if we have just started the embeddingclassembedding, then we are currently in theclass

1When the stack is empty, we consider ourselves to be in a special degenerate embedding with no end
meta-pattern or pair filter.
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1 %%embed
2 %name class_embedding
3 %host base
4 %guest class
5 %start CLASS_KW [ˆLCURLY]* LCURLY
6 %end RCURLY
7 %pair LCURLY, RCURLY
8

9 %%embed
10 %name string_embedding
11 %host class
12 %guest string
13 %start START_STRING
14 %end END_STRING
15

16 %%embed
17 %name comment_embedding
18 %host class
19 %guest comment
20 %start START_COMMENT
21 %end END_COMMENT

Listing 4.2 MetaLexer Example

component.

Now, knowing our current embedding and component, we can decide which meta-patterns

we need to match. First, we need to watch for the beginning of another embedding – in

particular, those embeddings that are hosted by the currentcomponent. Second, we need

to watch for the end of the current embedding.

For example, if we have just started the embeddingclassembedding, then we need to

look out for any start patterns that begin inclass (i.e. those forstring embeddingand

commentembedding) as well as the end pattern forclassembedding.

In the event that more than one meta-pattern matches, start meta-patterns are preferred to

end meta-patterns and earlier start meta-patterns are preferred to later start meta-patterns.

Extraneous meta-tokens, those not matched by any meta-pattern, are discarded – they will

not cause errors. They will, however, disrupt any meta-patterns for which prefixes have

been matched.
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There is one substantial difference between the meta-lexerand a traditional lexer. A tradi-

tional lexer, upon determining that a prefix of the input matches a given rule, will postpone

the selection of a rule until it has been determined that no rule matches a longer prefix.

These are often referred to as ‘longest match’ semantics. Incontrast, the meta-lexer selects

a rule as soon as any prefix of the input matches. This corresponds to ‘shortest match’

semantics.2

4.2.1 Pair Filters

In many cases, the meta-lexing procedure described above will be sufficient. However,

sometimes we want to ignore certain meta-tokens. In particular, many programming lan-

guages use a nested structure delimited by pairs of brackets(e.g. curly braces in Java). To

prevent balanced pairs of brackets (or other meta-tokens) from interfering with our meta-

lexing, we may wish to remove them from the stream entirely. We accomplish this using

pair filters.

At first glance, it is not clear why we need, or even want, pair filters. After all, parenthesis

balancing is traditionally the domain of the parser. However, a simple example makes the

need readily apparent. Consider an aspect in AspectJ. Outside an aspect, we use the Java

lexer, but inside we use the AspectJ lexer. Switching from Java to AspectJ is easy – we

just look for theaspectkeyword. Unfortunately, switching back is harder andListing 4.3

shows why. We need to switch back upon seeing a closing brace.However, not just any

closing brace will do – we need to find the brace the corresponds to the opening brace at

the beginning of the aspect. To do this, we must ignore balanced pairs of braces between

the two (e.g. the braces around the advice inListing4.3).

This example is quite representative. Most modern programming languages have hierarchi-

cal structures of this sort, delimited by bracketing tokens. In order to be able to use these

delimiters as lexical state boundaries in our lexers, we need to be able to find them.

Pair filters sit between the components and the layout. They act directly on the meta-token

2Extraneous meta-tokens are handled by treating each rule asthough it began with an implicit<ANY>*.
This replaces an explicit catch-all rule that would always be the shortest match.
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1 package xyz;
2

3 import foo. * ;
4

5 public class Klass {
6 public static void main(String args[]) {
7 //...
8 }
9 }

10 aspect Aspect {
11 void around(): execution( * * (..)) {
12 if( / * ... * / ) {
13 proceed();
14 }
15 }
16 }

Listing 4.3 Pair Filter Example

stream and prevent selected meta-tokens from reaching the layout. If a pair filter is in place,

then every meta-token is considered by the filter. If a meta-token is the closing element of

a pair and if the pair has been opened but not closed (i.e. onlythe opening element has

been seen), then the meta-token will be suppressed and nothing further will occur. If, on

the other hand, the meta-token does not complete a pair, thenit will be passed to the layout.

For example,Figure 4.2 shows a number of sample meta-token streams and the effects of

the classembeddingpair filter thereon. Italicized meta-tokens never reach thelayout. In

example1, we begin in thebasecomponent and transition toclassupon seeingCLASSKW

IDENTIFIER LCURLY. Within the embedding, there is noLCURLYto begin a pair, so the

RCURLYis untouched. In example2, on the other hand, the firstRCURLYis removed from

the stream because of theLCURLYthat precedes it. Note that this is exactly what we want

– we do not exit theclasscomponent until we see anunbalanced RCURLY. In example3,

the openingLCURLY is absent again and so the firstRCURLYends the embedding. The

second one is extraneous and is discarded.3 Example4 generalizes example2, showing a

more elaborate balanced-pair sequence. Once again, the embedding is correctly ended on

the finalRCURLY.
3It is important to distinguish between this meta-token, which is read from the stream and then discarded,

and the other meta-tokens in this example, which are removedfrom the stream before they are read.
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1. CLASSKW IDENTIFIER LCURLY RCURLY

2. CLASSKW IDENTIFIER LCURLY LCURLY RCURLYRCURLY

3. CLASSKW IDENTIFIER LCURLY RCURLY RCURLY

4. CLASSKW IDENTIFIER LCURLY LCURLY RCURLY LCURLY LCURLY
RCURLY RCURLYRCURLY

Figure 4.2 Streams of meta-tokens after filtering

Pair filters are embedding-specific. For example, inListing4.2, LCURLYandRCURLYare

only paired in the embeddingclassembedding, not instring embeddingorcommentembedding.

4.3 Regions

Meta-tokens are not the only information passed from the components to the layout. When-

ever an end meta-pattern is matched, the lexer transitions back to the current embedding’s

host component. This triggers the generation of a specialregion object corresponding to

the component just exited (i.e. the guest).

For example, consider the layout inListing4.2. If we were in the embeddingclassembedding

and we saw an (unpaired)RCURLYmeta-token, then we would transition back to thebase

component. Since this would indicate the “completion” of the classcomponent, a special

%class%region would be added to the meta-token stream.

Alternatively, suppose we were writing a lexer for a language with named scopes – brack-

eted regions preceded by string literal names (e.g.Listing 4.4). We could break this con-

struct into two components: one for the string literal and another for the block. The corre-

sponding layout would look something likeListing 4.5. Notice that the start meta-pattern

of thenamedblockembedding is a region. It will be matched whenever the lexer is in the

basecomponent and has just completed astring literal component.

Like meta-tokens, each region can be thought of as corresponding to a distinct character.

In this way, they can be used in meta-patterns in the same way as meta-tokens.
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1 "Region A" {
2 ...
3 };

Listing 4.4 Syntax Example – Regions – Language Code

1 %%embed
2 %name string_literal
3 %host base
4 %guest string_literal
5 %start START_STRING
6 %end END_STRING
7

8 %%embed
9 %name named_block

10 %host base
11 %guest block
12 %start %string_literal%
13 %end SEMICOLON

Listing 4.5 Syntax Example – Regions – Layout

4.4 Inheritance

Inheritance in MetaLexer has more in common with textual inclusion than with object-

oriented (OO) inheritance. An%%inherit directive instructs MetaLexer to merge the

contents of the referenced module into the current module, as if they had been typed di-

rectly into the file. Unlike straight textual inclusion, however, MetaLexer splits up the

inherited file and distributes its elements to the appropriate parts of the current module.

That is, headers go in the header section, options go in the option section, rules go in the

rules section, etc. Most inherited elements are inserted atthe ends of their corresponding

sections. Embeddings and lexical rules are more complicated. They are discussed below.

4.4.1 Embedding Ordering

When a layout inherits another layout, the inherited embeddings are not added to the end

of the file. This would be too inflexible. Instead, they are inserted at the location of the
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corresponding%%inherit directive. This allows the child layout to insert new embed-

dings both before and after the inherited embeddings. Furthermore, it clarifies the relative

positions of the embeddings inherited from different parent layouts.

4.4.2 Lexical Rule Ordering

Lexical rules are more complicated than embeddings. Their position is determined by the

position of the corresponding%%inherit directive, but they are not inserted at that exact

location. Instead, the order of the merged lexical rules is as follows.

• Child acyclic rules preceding the first%%inherit directive.

• Acyclic rules from the first parent component.

• Child acyclic rules preceding the second%%inherit directive.

• Acyclic rules from the second parent component.

• And so on, for subsequent parent components.

• Child acyclic rules following the last%%inherit directive.

• Child cyclic rules preceding the first%%inherit directive.

• Cyclic rules from the first parent component.

• And so on, for subsequent parent components.

• Child cyclic rules following the last%%inherit directive.

• Child cleanup rules preceding the first%%inherit directive.

• Cleanup rules from the first parent component.

• And so on, for subsequent parent components.
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• Child cleanup rules following the last%%inherit directive.

This conceptual rearrangement, which takes place during the inheritance process, is illus-

trated byFigure 4.3. Figure 4.3ashows a component (left) inheriting rules from its parent

(right). Figure 4.3b shows the order of the rules in the flattened component (i.e. after

inheritance).

(a) Before inheritance (b) After inheritance

Figure 4.3 Ordering of inherited rules

Consider the more concrete example shown inListings4.6-4.8. Listing4.6shows a compo-

nent that extends the component defined inListing 4.7. The original component had rules

for some keywords and a number token, but the new component adds some new keywords

and an identifier.Listing 4.8 shows the result. Note the order of the keywords inList-

ing 4.8 – two keywords precede the originals, but one follows. In this way we control the

precedence of new rules. If they precede the old rules then they have higher precedence;

otherwise they have lower precedence. Note also that the identifier rule follows all of the

keyword rules, even the inherited ones.
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1 %component inheriting_comp
2 %%
3 new_keyword1 {: action5 :}
4 new_keyword2 {: action6 :}
5 %:
6 {identifier} {: action7 :}
7 %:
8 <<ANY>> {: action8 :}
9 <<EOF>> {: action9 :}

10

11 %%inherit inherited_comp
12

13 new_keyword3 {: action10 :}

Listing 4.6 Rule Order Example – Inheriting Component

1 %component inherited_comp
2 %%
3 keyword1 {: action1 :}
4 keyword2 {: action2 :}
5 keyword3 {: action3 :}
6 %:
7 {number} {: action4 :}

Listing 4.7 Rule Order Example – Inherited Component

4.5 Conflicts

Since MetaLexer allows modules to inherit from multiple parents, there are frequently con-

flicts. For example, macros, exceptions, and lexical rules can be declared in two parents of

a single component. Similarly, options, declarations, andembeddings can be declared in

two parents of a single layout. When this occurs, the instancefrom the first module to be

inherited dominates.

To increase consistency, both internally and with JFlex’s precedent, MetaLexer extends

this idea to other potential conflicts. For example, an option may be declared in both a

layout and its parent or even twice within the same layout. Rather than calling this an error,

MetaLexer resolves the conflict in favour of the first textualoccurrence.

For example, suppose that a layout declared the option%option name “%name foo”and its
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1 %component inheriting_comp
2 %%
3 new_keyword1 {: action5 :}
4 new_keyword2 {: action6 :}
5 keyword1 {: action1 :}
6 keyword2 {: action2 :}
7 keyword3 {: action3 :}
8 new_keyword3 {: action10 :}
9 %:

10 {identifier} {: action7 :}
11 {number} {: action4 :}
12 %:
13 <<ANY>> {: action8 :}
14 <<EOF>> {: action9 :}

Listing 4.8 Rule Order Example – Merged Component

parent declared the same option with a different value%option name “%name bar”. Then,

since the parent option is added to theendof the options section, the child option dominates.

That is, the final value of the optionnamewould be“%name foo”. A warning would be

issued, flagging the duplication, but there would be no error. If the parent declaration

actually appeared in the same file, the behaviour would be thesame.

Conflicts amongst embeddings [lexical rules] are handled in the same way, after taking into

account the more complicated textual order described inSection4.4.1[Section4.4.2].

4.6 Error Checking

Problems with MetaLexer specifications are broken into two categories. Errors are prob-

lems that invalidate a specification, preventing further action. Warnings, on the other hand,

are problems (or potential problems) that will not result inincorrect behaviour but are prob-

ably worthy of the developer’s attention.

The following problems are errors:

1. missing declarations (lexical states, macros, and meta-tokens),

2. missing modules (layouts and components),
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3. circular dependencies (macros, components, and layouts),

4. misclassified lexical rules (seeSection4.4.2),

5. lexical states that are both inclusive and exclusive,

6. unsatisfied%extern’s,

7. empty character ranges in regular expressions,

8. components without lexical rules,

9. layouts without component references, and

10. layouts without start components.

The following problems are warnings:

1. deletions with no effect (lexical rules, options, and embeddings),

2. replacements with no effect,

3. clobbered definitions (lexical states, macros, options,and embeddings), and

4. unused definitions (lexical states, macros, and component imports).

4.6.1 Finalization

To improve the quality of error messages, modules are finalized before being inherited. A

component is finalized once all parents are finalized, all parents have been incorporated,

and all error checks have been performed. Similarly, a layout is finalized once all parents

are finalized, all parents have been incorporated, all referenced components are finalized,

and all error checks have been performed. This means that problems with a module will be

reported in that module, rather than in an inheriting module.

Once the top-level layout is finalized, the result is a singleflat (i.e. inheritance-free) layout

referring to one or more flat components.
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4.6.2 Helper Modules

Sometimes, a module exists only as a repository for shared code. For example, one might

create a single component that contains all of the macros forour lexer and then inherit that

component in every other component. However, the lexer should never transition to the

macro component. In fact, since it contains no rules, it is invalid. The macro component is

an example of a helper module – a module that can only be used through inheritance.

If a module is flagged%helper, then some of its error (and warning) checks will be omit-

ted. As soon as it is inherited into a non-helper module, however, the checks will be applied

and any unresolved errors will be caught.

Deferred checks include: missing state declaration, missing macro declaration, missing

%append block, missing component import, missing start component,missing%declare.

Note that these are all deficiencies that could be remedied ina child.

The%helper directive is not inherited. That is, the child of a helper module will not be a

helper module unless it also includes a%helper directive.

4.7 Scoping

Scopes are important for preventing name collisions. In MetaLexer, each component is

a separate scope. AIL code regions, macro declarations, lexical states, and lexical rules

are not visible outside the component – neither to non-descendent components nor to lay-

outs. Meta-token declarations, which are implicit, are visible to layouts but not to other

components.

Each layout is also a separate scope. AIL code regions, options, declarations, and em-

beddings are not visible to other layouts. They are, however, visible within referenced

components, which are considered to be nested scopes.

During inheritance, the contents of the parent are incorporated into the child’s scope.

Hence, all parts of a module are visible to its children.
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4.8 Qualified Names

On occasion, it may be desirable to divide a large set of MetaLexer files into folders and

subfolders. This might be because two similar modules (i.e.components/layouts) have

the same name or because there are simply too many files. Rearranging the files is simple

enough, but we also need to ensure that MetaLexer can find them. The simplest option

would be to provide MetaLexer with a list of the directories we are using. However, this

will not suffice if we want to use two modules with the same namebut different paths. For

this reason, MetaLexer allows qualification of module names. That is, a module name may

incorporate path information that tells MetaLexer where tolook for it.

For example, suppose that while parsing a specification, MetaLexer encountered the com-

ponent namedir1.dir2.comp. Then, for each directory on its path, it would look in the

subdirectorydir1/dir2/ for the file comp.mlc. Upon finding the module in question, it

would verify that it was nameddir1.dir2.comp.

Organizing MetaLexer files into folders does not introduce any scopes. Modules within

the same directory relate to each other in exactly the same way as modules within different

directories and names must always be fully qualified.

4.9 Append Components

Append components are used to construct tokens containing blobs of validated text. For

example, consider string literals. The resulting token will contain the text as it originally

appeared in the input stream (i.e. without modification), but some validation is required

before the token can be accepted. One might wish to weed out invalid escape sequences,

for instance. In an append component, successfully matchedrules append to a shared

buffer rather than returning individually. Then, when the component is complete (i.e. when

the end meta-pattern of the embedding of which it is the guestis observed), the buffer is

wrapped in a token and returned.

A component is flagged as an append component by including an%append or
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%appendWithStartDelim region. The AIL contents of the region will be treated as a

method to be called when the component is complete. This method has parametersint

startLine, int startCol, int endLine, int endCol, String textindicating the position and con-

tents of the buffer built up by the component. They should be used to construct and return

a token object.

The presence of an%append or %appendWithStartDelim region also makes available

anappend(String)method, which individual actions can use to append the text they match

to the buffer. It is possible to append a string other than thematched input, but the position

arguments passed to the%append or %appendWithStartDelim region will only reflect

the size and location of the original text.

Listing 4.9shows how an append region can be used to build up a string literal, validating

and evaluating escape sequences along the way. Whenever an escape sequence is encoun-

tered, it is evaluated and appended to the buffer. Everything else is appended directly. Then,

when the closing quote is encountered, the append action method is called and a new string

literal token is returned, containing the validated and expanded text. Note that the position

of the token will reflect the size and location of the originaltext, rather than the expanded

text.

A component that inherits from an append component is also anappend component. By

default, it will inherit its parent’s%append or %appendWithStartDelim region but this

can be overridden with a local version.

Sometimes, append components interact with each other. This interaction is captured in

Table4.1.

To Normal To Append

From Normal N/A New Buffer
From Append Call Append Region Retain Buffer

Table 4.1 Interaction of append components

Note that the append buffer is preserved when transitioningbetween append components.

That is, consecutive append components append to the same buffer, building up a single

string.
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1 %component string
2 %append{
3 return new StringLiteral(text, startLine, startColumn, e ndLine,

endColumn);
4 %append}
5

6 HexDigit = [0-9A-Fa-f]
7

8 %%
9

10 "\"" {: :} END_STRING
11

12 (\\u{HexDigit}{1, 4}) | (\\x{HexDigit}{2}) {:
13 String hexString = yytext().substring(2);
14 int hexNum = Integer.parseInt(hexString, 16);
15 append((char) hexNum);
16 :}
17

18 \\[0-3]?[0-7]?[0-7] {:
19 String octalString = yytext().substring(1);
20 int octalNum = Integer.parseInt(octalString, 8);
21 append((char) octalNum);
22 :}
23

24 \\ (n|\n) {: append( "\n" ); :}
25 \\ (r|\r) {: append( "\r" ); :}
26 \\t {: append( "\t" ); :}
27 \\f {: append( "\f" ); :}
28 \\b {: append( "\b" ); :}
29

30 \\ (. | \n) {: append(yytext().substring(1)); :}
31

32 %:
33 %:
34

35 <<ANY>> {: append(yytext()); :}
36 <<EOF>> {: error( "Unterminated string literal" ); :}

Listing 4.9 Append Component Example – String Literal

There is one exception to these general rules. As mentioned in Section4.3, on an end-

transition, a special region meta-pattern is triggered. For example, after we complete a

string literal component, we see a%string literal% region. In rare cases, this region might

actually be the end meta-pattern of the next embedding on thestack. If it is, then another
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embedding will end and another region will be generated. Since this effect can cascade, we

thought it prudent to suppress all but the first append action. After all, only the first append

action can receive a non-empty string since the buffer is cleared as soon as it is called.

4.9.1 Start Delimiters

Sometimes, it may be desirable to retain the delimiters of anappend region. For example, if

we were building up a multiline comment in Java, we might wantto retain the ‘/*’ and ‘*/’.

Unfortunately, the start delimiter comes before the transition to the append component.

MetaLexer solves this problem with a two part construct. First, the component that sees

the start delimiter callsappendToStartDelim(String)(which is available to all components,

whether or not they are append components) to store it in a special delimiter buffer. Then,

the component that wants the start delimiter (i.e. the append component) can use an

%appendWithStartDelim region (rather than an%append region) to request that the

contents of the delimiter buffer be prepended to the append buffer (and positions) that it

has built up.

For example,Listings4.10& 4.11show how we might build up a multiline comment in

Java, retaining the delimiters. InListing 4.10we call appendToStartDelim(String)when

we encounter the start delimiter and inListing4.11we use an%appendWithStartDelim

region rather than the usual%append region. We also callappend(String)when we see the

end delimiter.

1 %component java
2 %%
3 "/ * " {: appendToStartDelim(yytext()); :} START_COMMENT

Listing 4.10 Start Delimiter Example – Java
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1 %component comment
2 %appendWithStartDelim{
3 return new Comment(text, startLine, startColumn, endLine , endColumn);
4 %appendWithStartDelim}
5 %%
6 " * /" {: append(yytext()); :} END_COMMENT
7 %:
8 %:
9 <<ANY>> {: append(yytext()); :}

Listing 4.11 Start Delimiter Example – Java Comment

4.10 Conditional Meta-Tokens

Though MetaLexer is intended to abstract all of the state transition logic out of the action

code, it is sometimes necessary to violate this abstraction. For example, the transition logic

may depend on an externally set runtime property.

Listing 4.12 shows an example of how to conditionally send a meta-token tothe meta-

lexer (presumably triggering a transition). A character ispushed back into the input stream

and an action code transition (unsafe, but occasionally necessary) determines which rule

will reconsume the character. After the character is reconsumed and the meta-token is

or is not sent, an action code transition restores the original state. The unsafe logic is

entirely encapsulated within the module – no other parts of the lexer need to be aware of

the ugliness.

This pattern makes a lexer harder to read and understand so itshould be used sparingly.

4.10.1 Indentation-Based Languages

Some languages use indentation rather than symbols to indicate scoping levels. Python4,

for example, creates a new scope whenever a line of code is indented more than the previous

line and closes a scope whenever a line of code is indented less than the previous line. In

Listing 4.13, lines3, 4, and7 are all in new scopes. Furthermore, line9 is actually in the

4http://www.python.org/
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1 %component conditional
2 %xstate COND_TRUE, COND_FALSE
3 %%
4 rule {:
5 yypushback(1);
6 if(external condition) {
7 yybegin(COND_TRUE);
8 } else {
9 yybegin(COND_FALSE);

10 }
11 :} //NB: no meta-token
12

13 %:
14 %:
15

16 <COND_TRUE> {
17 <<ANY>> {: yybegin(YYINITIAL); :} META_TOKEN //NB: meta-token
18 }
19

20 <COND_FALSE> {
21 <<ANY>> {: yybegin(YYINITIAL); :} //NB: no meta-token
22 }

Listing 4.12 Conditional Meta-Token Pattern Example

outermost scope, since it is dedented twice from the preceding line.

1 i = 99
2 while 1:
3 if i == 1:
4 print "1 bottle of beer on the wall."
5 break
6 else:
7 print "%s bottles of beer on the wall." % i
8 i = i - 1
9 print "No more beer on the wall."

Listing 4.13 Python Indentation Example

While this scheme does revolve around a stack of indentation levels, it is difficult or im-

possible to simulate this behaviour with MetaLexer’s stackof embeddings. Instead, the

conditional meta-tokens described above can be used to determine when an indentation

should trigger one or more transitions.
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Listing 4.14outlines a solution in MetaLexer pseudocode (with a Java-like AIL). The in-

dentation level is tracked using a stack, just as in the default implementation of Python.

STARTSCOPEandEND SCOPEmeta-tokens are generated at the beginning and end of

each scope so that they can be used in embedding start and end patterns. INDENT and

DEDENT tokens are also returned for the benefit of the parser. All of this custom logic can

be encapsulated in a helper component and hidden from the rest of the specification.

1 %{

2 //indentation levels of scopes enclosing current scope

3 Stack<Integer> indentationLevels = new Stack<Integer>() ;

4 //number of dedents indicate by single decrease in indentat ion

5 int numDedents = 0;

6 %}

7

8 {Whitespace} {:

9 int existing = indentationLevels.peek();

10 int current = yylength();

11 if(current > existing) {

12 //indentation up - push level and start scope

13 indentationLevels.push(current);

14 yybegin(INDENT); //helper state handles token, meta-token

15 yypushback(1); //pushback so that helper state can re-consume

16 } else {

17 //indentation down or same

18 //pop, looking for current indentation level

19 while(current < existing) {

20 numDedents++;

21 indentationLevels.pop();

22 existing = indentationLevels.peek();

23 }

24 if(current != existing) {

25 //didn’t find current level in stack - error

26 error( "Invalid dedent - didn’t match any previous level" );

27 } else if(numDedents > 0) {

28 //found current level in stack - valid

29 yybegin(DEDENT); //helper state handles tokens, meta-tokens

30 yypushback(1); //pushback so that helper state can re-consume
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31 }

32 }

33 :}

34

35 <INDENT> {

36 <<ANY>> {:

37 //generate token and meta-token, then return to default sta te

38 yybegin(YYINITIAL);

39 return token(INDENT);

40 :} START_SCOPE

41 }

42

43 <DEDENT> {

44 <<ANY>> {:

45 //numDedents == num tokens/meta-tokens to generate

46 if(numDedents > 0) {

47 yypushback(1); //pushback for re-consumption by self

48 numDedents--;

49 return token(DEDENT);

50 } else {

51 yybegin(YYINITIAL);

52 }

53 :} END_SCOPE

54 }

Listing 4.14 Indentation-Based Languages in MetaLexer
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Chapter 5

Tool Execution

This chapter describes the tools provided in the MetaLexer distribution: the MetaLexer-to-

JFlex, MetaLexer-to-MetaLexer, and JFlex-to-MetaLexer translators.

5.1 MetaLexer-to-JFlex Translator

The MetaLexer-to-JFlex translator is the most important ofthe provided tools because it

creates executable lexers. As shown inFigure 5.1, it reads MetaLexer specifications (Fig-

ure 5.1a) and produces JFlex specifications (Figure 5.1b). The resulting JFlex specifica-

tions can be compiled to Java classes without any external dependencies (e.g. runtime

libraries).

The translator is most easily executed via metalexer-jflex.jar. The program accepts three

arguments: the name of a layout (without file extension), thedirectory in which to look for

the layout, and the directory in which to write the new JFlex files.

For example, one might runjava -jar metalexer-jflex.jar natlab /home/userA/src /tmp.

Otherwise, you can execute the main class,metalexer.jflex.ML2JFlex, directly.
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(a) Input Files – MetaLexer (b) Output Files – Struc-
tured JFlex

Figure 5.1 MetaLexer-to-JFlex Translator

5.1.1 Tracing

If -t is passed before the first argument to the jar (or to ML2JFlex), then the generated lexer

will support tracing. To see a high-level meta-lexing trace, call setTracingEnabled(true)on

the generated lexer before using it.

Furthermore, when the-t is passed to MetaLexer, the generated lexer will provide functions

getCurrentComponent()andgetCurrentEmbedding(). These functions return the names of

the current component and embedding, respectively. They should never be used to affect

the control flow of the lexer but they are useful for debugging.

5.2 MetaLexer-to-MetaLexer Translator

The MetaLexer-to-MetaLexer translator reads in a MetaLexer specification, performs syn-

tactic and semantic checks, processes inheritance directives, and then prints out a flattened

(i.e. inheritance-free) MetaLexer specification (or a listof errors).Figure5.2shows an ex-

ample of this transformation. InFigure5.2a, the original specification consists of multiple

layouts (blue) and components (green). Dotted arrows indicate inheritance (from child to

parent) and solid arrows indicate composition (from layoutto component). As a result of
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inheritance, the children are merged into their parents andonly the composition relation-

ships remain.Figure 5.2bshows the result – a single flat layout referring to a number of

flat components.

(a) Input Files – MetaLexer (b) Output Files – Flat MetaLexer

Figure 5.2 MetaLexer-to-MetaLexer Translator

The MetaLexer-to-MetaLexer translator exists primarily as a proof-of-concept – it demon-

strates that the MetaLexer architecture can support multiple code generation engines. The

translator is, however, useful in its own right. During the development process, it can

be used to check a specification (syntactically and semantically) without considering AIL

fragments. Furthermore, it shows the effects of inheritance without requiring the developer

to read through lower-level LSL code.

The process for running the translator is exactly as above, except with metalexer-metalexer.jar

and metalexer.metalexer.ML2ML in place of metalexer-jflex.jar and metalexer.jflex.ML2JFlex,

respectively. That is . . .

The translator is most easily executed via metalexer-metalexer.jar. The program accepts

three arguments: the name of a layout (without file extension), the directories in which to

look for the layout (semicolon-separated list), and the directory in which to write the new

MetaLexer files.

For example, one might runjava -jar metalexer-metalexer.jar natlab /home/userA/src /tmp.

Otherwise, you can execute the main class,metalexer.jflex.ML2ML, directly.
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5.3 JFlex-to-MetaLexer Translator

The JFlex-to-MetaLexer translator also serves as a proof-of-concept. By converting (nearly)

any valid JFlex specification into a valid MetaLexer specification, the translator shows that

MetaLexer is no less powerful than JFlex (as a LSL). We can be sure that it will accept any

valid JFlex specification because the translator is actually a modification of JFlex 1.4.11.

Unfortunately, the JFlex-to-MetaLexer translator is not very useful as a tool for porting

existing lexical specifications from JFlex to MetaLexer. The generated files are not written

in proper MetaLexer style; rather, they are the simplest possible MetaLexer that will exhibit

the same behaviour as the original JFlex files. Furthermore,the translator is subject to the

limitations described inSection5.3.3. A more useful tool is described inSection11.6.

Figure 5.3shows the transformation performed by the JFlex-to-MetaLexer translator.Fig-

ure5.3ashows the original specification, a black box of JFlex code, andFigure5.3bshows

the output specification, naive MetaLexer. The output specification will always consist of

a single inheritance-free layout referring to a single inheritance-free component.

(a) Input Files – JFlex (b) Output Files – Naive MetaLexer

Figure 5.3 JFlex-to-MetaLexer Translator

5.3.1 Functionality

Listings5.1-5.3 illustrate the translation process. Starting with the original specification,

Listing 5.1, the translator produces two MetaLexer files: a layout,Listing 5.2, and a com-

ponent,Listing5.3.

1http://jflex.de/
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1 package pkg;
2 %%
3 %class Class
4 %{ / * action code * / %}
5 %init{ / * init code * / %}
6 %xstate state1, state2
7 identifier = [a-zA-Z]+
8 %%
9 <state1> {

10 keyword1 { kw1_action(); }
11 {identifier} { id_action(); }
12 (.|\n) { catchall_action(); }
13 }
14 <state2> {
15 keyword2 { kw2_action(); }
16 (.|\n) { catchall_action(); }
17 }
18 <<EOF>> { eof_action(); }

Listing 5.1 JFlex-to-MetaLexer Example – Original JFlex

1 package pkg;
2 %%
3 %%
4 %option class "%class Class"
5 %{ / * action code * / %}
6 %init{ / * init code * / %}
7 %xstate state1, state2

Listing 5.2 JFlex-to-MetaLexer Example – Generated Layout

The layout is constructed from the first part of the JFlex specification. First, the trans-

lator copies the JFlex header into the MetaLexer local header and leaves the MetaLexer

inherited header blank. Then it adds the options:%name valuebecomes%option name

”%name value”. Finally, the translator copies code regions and state declarations directly

from JFlex. The generated layout has no embeddings section because all transition logic is

contained in AIL code.

The component is constructed from the remainder of the JFlexspecification. The translator

copies macro declarations directly from JFlex to MetaLexer. Then it copies the rules, but

not before they are modified and reordered. The AIL code delimiters have to be changed
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1 identifier = [a-zA-Z]+
2 %%
3 <state1> {
4 keyword1 {: kw1_action(); :}
5 }
6 <state2> {
7 keyword2 {: kw2_action(); :}
8 }
9 %:

10 <state1> {
11 {identifier} {: id_action(); :}
12 }
13 %:
14 <state1> {
15 <<ANY>> {: catchall_action(); :}
16 }
17 <state2> {
18 <<ANY>> {: catchall_action(); :}
19 }
20 <state1, state2> {
21 <<EOF>> {: eof_action(); :}
22 }

Listing 5.3 JFlex-to-MetaLexer Example – Generated Component

– from ‘{ }’ to ‘ {: :}’ – and the rules have to be divided into acyclic, cyclic, and cleanup

categories. The translator will also attempt to find catchall patterns (e.g.(.|\n)) and convert

them into<<ANY>> rules. Finally, the translator explicitly associates loose<<EOF>> rules

with all declared states.

Adding explicit state lists to<<EOF>> rules is necessary because JFlex and MetaLexer

handle implicit states on<<EOF>> rules slightly differently. Whereas MetaLexer treats

<<EOF>> rules the same as other rules (i.e. no explicit states implies all inclusive states),

JFlex treats them differently. In JFlex,<<EOF>> rules with no explicit states are considered

to belong toall states. The translator makes this assumption explicit so that the resulting

MetaLexer specification has the same meaning as the originalJFlex specification.
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5.3.2 Execution

The translator accepts the same arguments as the original JFlex executable: a list of JFlex

files, -d outdir, etc. JFlex options related to the type of finite automaton tobe generated

will be ignored. If no arguments are specified, then a graphical interface will be displayed.

If you have metalexer-jflex.jar, you can execute the translator directly. For example, one

might runjava jflex.metalexer.JFlex2ML lang.flex -d /gen.

Otherwise, you will have to execute the main class,jflex.metalexer.JFlex2ML.

5.3.3 Limitations

Though the translator will generate a correct lexer most of the time, there are circumstances

under which it does not perform as one might desire.

First, the translator discards all comments at the specification level (as opposed to within

actions). This is part of JFlex’s behaviour and the translator is a modified version of JFlex.

Second, the translator does not support JFlex’s (infrequently used)%eof directive. This

is because MetaLexer lacks an comparable directive and simulating the behaviour would

require too much analysis to avoid name conflicts with the input specification.

Third, the MetaLexer-to-JFlex and JFlex-to-MetaLexer tools, alternately applied, will never

achieve a steady state. The JFlex-to-MetaLexer translatordoes not look for code generated

by the MetaLexer-to-JFlex translator so it is converted into AIL blocks in the resulting

MetaLexer specification. Consequently, when the MetaLexer-to-JFlex translator is re-run,

it will generate the same code. In the present implementation, this results in name con-

flicts (seeSection7.2.3 for details). However, even if the name conflicts were resolved,

the MetaLexer-to-JFlex translator would still re-add the same constructs every iteration,

preventing a steady state.

Finally, if any of the action code in the JFlex specification refers explicitly to a lexical

state, then the generated MetaLexer specification will be incorrect. This is because, in the

generated MetaLexer specification, the lexical state will be declared at the component level
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whereas the action code will be inserted at the layout level (i.e. scoping issue).
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Chapter 6

Language Design

The previous chapters have described how MetaLexer works. This chapter explains why it

works the way it does. By considering the most fundamental andcontentious MetaLexer

design decisions, we illustrate its underlying philosophy. Each section explores a single

design decision and its consequences.

6.1 Language Division

A specification that must be contained in a single file is not very modular, so some sort of

division is necessary. Now, in a lexer, we have two types of information to specify: lexical

states and the interactions (i.e. transitions) between those states. As a result, there are

essentially two ways in which we can divide the specification. Either we can mix the two

types of information or we can keep them separate.1 In designing MetaLexer, we decided to

keep them separate: components describe lexical states andlayouts describe the transitions

between them.2

1Those familiar with aspect-oriented languages may recognize these setups as symmetric and asymmetric,
respectively.

2MetaLexer further subdivides files using inheritance. Thistakes place after the more fundamental sepa-
ration (i.e. of layouts from components) discussed here.
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Figure 6.1 illustrates the two types of division. InFigure 6.1a, we see a single monolithic

specification containing two types of information.Figure6.1bshows a symmetric division

of this specification. Each new file contains information of both types and any file can

refer to any other file. This would be like having several little lexical specifications, each

containing both lexical states and transitions. On the other hand,Figure 6.1b shows an

asymmetric division of the specification. Each new file contains only a single type of

information and references are unidirectional. This is like putting transitions in layouts and

lexical states in components and then creating references from layouts to components.

(a) Monolithic (b) Symmetric (c) Asymmetric

Figure 6.1 Dividing a monolithic specification into smaller files

The separation of components from layouts makes specifications clearer and easier to read

since all of the transition logic is in one place. Furthermore, it makes both layouts and

components more reusable. After all, it is frequently the case that two languages lex certain

constructs the same way. For example, many languages have nearly identical rules for

lexing string literals. In MetaLexer, these rules are contained in a single component. Now,

if this component contained the rules for transitioning into or out of the string literal lexical

state (i.e. itself), then it would necessarily be coupled toanother component. Unfortunately,

this other component would almost certainly be language-specific and so reusability would

be greatly diminished.

6.2 Types of Extension

Extensibility was a primary design goal of MetaLexer, so we had to decide what types of

extension to allow. The most general possible system would allow addition, removal, or

66



6.3. Component Replacement

replacement of any element of a specification. We decided to stop just short of this level

of extensibility because we wanted to prevent some potentially dangerous operations. As a

result, MetaLexer supports addition and replacement of allelements of a specification but

deletion of only rules, options, and embeddings.

Within a component, the most obvious candidates for modification are lexical rules. When

inheriting a component, these can be deleted, added, or overridden (i.e. replaced). Deletion

is accomplished using the%delete directive and addition and overriding are accomplished

by inserting new rules before the inherited component. Header items can be added or re-

placed but not deleted. Code regions, exceptions, and macrosare so integral to a component

that removing them would be quite unsafe.

When inheriting a layout, embeddings can be deleted, added, or overridden (i.e. replaced).

Deletion is accomplished using the%unembed directive. Addition and overriding are ac-

complished by inserting new embeddings before the inherited layout. Options are also fully

modifiable since they are likely to change from one lexer to the next, even if the languages

are similar. They can be deleted using the%unoption directive and added or overridden

by inserting new options before the inherited layout. Code regions, exceptions, and decla-

rations are not removable because they are so integral to a layout. Similarly, the inherited

header can be supplemented but not reduced.

6.3 Component Replacement

Replacement of component references in layouts carries certain risks – as does any sort of

global replacement – but we decided to allow it because it substantially reduces develop-

ment time and specification fragility. We did, however, apply certain restrictions to mitigate

some of the risks.

We could have omitted this feature since the same effect can be achieved using the normal

inheritance mechanisms. That is, existing embeddings (andother elements that refer to

components) can be explicitly deleted and re-added referring to the new component. How-

ever, this approach is both labour-intensive and fragile since the inheriting and inherited
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layouts must be kept synchronized manually.

We restricted replacement of component references in two ways. First, we decided that

all replacements would be perfomed in a single pass, so that developers would not have

to worry about cumulative effects. Second, we decided not todelve into components and

replace the component references therein.

To make the replacement process intuitive, we decided to combine all replacements (for

a single inherited layout) into a single translation map andmake a single pass through

the affected layout. Whenever a component name is encountered, the translation map is

consulted and a replacement is made, if necessary. Since there is only one pass, there is

no chance of transforming a single component name more than once. For example, if the

replacement list consisted of%replace A, Band%replace B, C, the translation map would

look like {A 7→ B,B 7→ C}. Note that occurrences of the component nameA would be

replaced byB, rather than byC since the translation map is only applied once.

To limit unintended consequences of replacements – especially to the inheritance hierarchy

of components – we decided not to have replacement affect components. That is, compo-

nent references in components referred to by the layout are not modified by a replacement.

Hence, there is no need to worry that the component inheritance hierarchy will be modified

by a replacement. For example, if a layout uses a componentC that inherits a component

D, andD is replaced withE, then componentC will be unaffected even though it refers to

a component that has been replaced.

6.4 Inheritance

In designing MetaLexer’s inheritance mechanism, we considered two fundamentally dif-

ferent approaches. On the one hand, there was object-oriented (OO) inheritance, in which

children delegate to parents. On the other, there was textual inclusion, in which parents

are copied directly into children. We chose to use an extended form of textual inclusion,

primarily because we found it to be substantially more intuitive. The reasons are threefold.

First, MetaLexer inheritance can always be mimicked by manually merging a component
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or layout and its ancestors into a single file. This is possible because descendents of a

common ancestor share nothing in common – each has its own copy of whichever parts of

the ancestor remain.

Second, this approach is more consistent with existing LSLs. Since developers are used

to working with a single specification file (and since ultimately, the implementation will

generally output a single specification file), having a clearway to process inheritance and

visualize the result is very helpful.

Third, as discussed inSection6.2, we wanted inheriting modules to be able to delete el-

ements of their ancestors. Speaking loosely, this means that MetaLexer modules are not

subtypes of their ancestors. While this does not technicallyviolate the definition of in-

heritance, popular OO languages so often conflate inheritance and subtyping that this dis-

crepancy could cause confusion. That is, we worried that being partially, but not totally

consistent with familiar OO systems would be counter-intuitive.

Unfortunately, this decision is not without consequence. Under this scheme, a naive imple-

mentation will likely produce output containing a substantial amount of duplicated code.

For example, if all of the macros are extracted into their ownhelper component and then

inherited by all components that use macros, then each component will end up with copies

of all macros. A more advanced implementation would recognize and eliminate identical

sections of inherited code, especially those that are inherited from the same source.

6.5 Finalization

We decided early on that we wanted MetaLexer error messages to have very specific posi-

tions in the source code. This had important consequences for the inheritance mechanism.

In particular, it meant that each module had to be treated as aself-contained unit, capable

of being error checked. Hence, each module is finalized – madeself-sufficient – before it

is inherited.

Finalizing each module before inheritance makes it possible to check for errors at each

step in the inheritance process, rather than waiting until the end when everything has been
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flattened. For example, suppose a component refers to a macrothat it has not declared. An

error should be reported and it should refer to the specific component and rule. However,

if error checking is delayed until after all inheritance hasbeen performed, then the macro

might be defined in a component that inherits the invalid component and the error might

remain hidden. This is why each module (i.e. component or layout) is evaluated to an

independent unit and error checked before it is integrated into an inheriting module.

As an added benefit, this type of inheritance is very intuitive, because the intermediate files

can actually be constructed and examined independently. There is no need to visualize

sharing of data in memory.

The alternative would have been to perform error-checking after processing all inheritance.

This would have resulted in confusing situations where gapsin specifications (i.e. errors)

were inadvertently filled by inheriting modules. While this sort of behaviour is sometimes

useful, even necessary, we decided that we would prefer to make it explicit. To this end,

modules can be flagged as%helper and some checks will be deferred (seeSection4.6.2

for details).

6.6 Order and Duplication

The chief problem when combining multiple modules into a single specification, especially

using multiple inheritance, is how to resolve conflicts. That is, if two different modules

provide the identical (or overlapping) elements, then somehow one must be chosen. One

option would be to raise an error for each conflict, but this approach tends to be too re-

strictive. Better options are to provide a general rule for resolving conflicts or to allow the

developer to resolve conflicts explicitly.

Fortunately, when designing MetaLexer, we had some precedent to rely on. In JFlex (and

other LSLs), if two rules match the same input string, then the first rule is chosen. For

example, if a lexer containing rulesa(aa)* anda*b? (in that order) was executed on input

aaa, then both rules would match buta(aa)* would be chosen because it appears first

textually. We decided to take the same approach. Within a MetaLexer specification, order
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matters. If two rules (or directives) conflict/overlap, then the first is chosen.

Seeing how well this worked, we decided to extend this philosophy to the rest of Meta-

Lexer: if two options have the same name then the second will be ignored; if there are two

start states or start components, then the second will be ignored; if there are two%append

regions, then the second will be ignored; etc. This eliminates a lot of errors and makes

it easier to combine modules that were developed separately. Furthermore, we decided

to apply this policy to individual files to reinforce the ideathat inheritance can always be

simulated by manually merging files.

In general, duplicating part of a MetaLexer specification will not result in an error. If

something is obviously redundant, then MetaLexer may issuea warning but it will have no

effect on the behaviour of the generated lexer.

To some extent, MetaLexer also allows the developer to manually resolve conflicts. For

example, when inheriting a module, they can choose to deletean element that would have

caused a conflict. This is primarily useful for eliminating warnings.

6.7 Rule Organization

Perhaps our most controversial design decision was to divide component rules into three

categories: acyclic, cyclic, and cleanup. We chose to do so because insertion points are

required for new rules and the boundaries between these categories are both natural and (in

practice) sufficient. Furthermore, the restrictions this division imposes are not as severe as

they initially appear.

We chose this particular division based on our observationsconcerning frequently used reg-

ular expressions. The three categories correspond neatly to the most commonly used types

of regular expressions: acyclic regular expressions are used to represent keywords and

symbols; cyclic regular expressions are used to represent identifiers and numeric literals;

and cleanup regular expressions generally perform error handling and other administration.

Furthermore, the order in which these categories are arranged is natural – keywords usually

precede identifiers, which usually precede cleanup rules.
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The boundaries between these categories are (almost) totally sufficient as insertion points

for new rules. That is, given a new rule and an arbitrary insertion point into an existing

list of rules, the same effect can (nearly) always be achieved by inserting the new rule at

one of the boundaries. AsFigure6.2shows, new keywords and symbols should be inserted

before the existing acyclic section; new identifiers and numeric literals should be inserted

after the existing acyclic section but before the existing cyclic section; and new cleanup

code should be inserted after the existing acyclic and cyclic sections but before the existing

cleanup section.

Figure 6.2 Rule type boundaries as insertion points

Exceptions do exist. For example, suppose that an existing specification contained the rules

(aa)+ and(aaaaa)+. Then, since 2, 3, and 5 are coprime, inserting(aaa)+ between them

would change the behaviour of the lexer. For example, beforethe insertion,(a){15} would

have matched the(aaaaa)+, whereas afterwards it would match(aaa)+. This problem can

arise in any specification where two rules overlap, but neither subsumes the other. However,

this rarely occurs in practice so the following workaround suffices: simply delete the rules

in the inheriting component and reinsert them in the correctorder.

As for the restrictions that this system seems to impose, observe that, given a list of rules

such that no rule is (partially) subsumed by a preceding rule, the list can be rearranged into

this order without changing its behaviour.
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6.8 Append Components

Another early consideration in the design of MetaLexer was the goal of eliminating boil-

erplate code for input validation lexical states. These states gather up the input as they

validate it and return a single token at the end. Each one requires a lexical state, a string

buffer, and possibly position variables plus code to coordinate them. To eliminate this boil-

erplate code, we decided to supplement MetaLexer with features making this type of lexical

state easy to specify.

Before adding the new feature, we had to decide whether or not it was worth the extra

complication. After all, it is frequently possible to eliminate these validation lexical states

in favour of regular expressions. For example, a regular expression can be used to validate

string literals (e.g. all escapes are valid, no newlines, etc). However, regular expressions do

not produce very good error messages. Rather than indicatingwhich part of a string fails to

match the regular expression, they simply fail to match at all. The best one can hope for is

an ‘unexpected character’ message indicating that no otherrule has matched the beginning

of the string literal. This is why lexer writers create lexical states to verify string literals

character-by-character as they are appended to a buffer. Consequently, we decided that a

new language construct would be worthwhile.

MetaLexer eliminates validation lexical state boilerplate by introducing append compo-

nents (seeSection4.9 for an explanation of their behaviour). In common cases, like string

literals and multi-line comments, no state information is required at all – MetaLexer main-

tains it all behind the scenes. If some variables are required it is because they pertain to the

specific component and are, therefore, not boilerplate.

Unfortunately, append components are not very good at handling start delimiters. Since

start delimiters occur before the transition to an append component, they are unavailable

to that component. As such we had to add another pair of constructs: theappendToStart-

Delim(String)method and appendWithStartDelim regions (seeSection4.9.1for an expla-

nation of their behaviour). TheappendToStartDelim(String)method passes information to

the next component and an appendWithStartDelim region receives it.
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Notice that this design does not couple the source and destination components. If the source

component is used with a different, non-append destinationcomponent, then the start de-

limiter will be ignored. Similarly, if the destination component is used with a different

source, it will use the start delimiter, if any, from that component.

We append to the start delimiter rather than setting it, because it could be build up across

several rules (since a start meta-pattern can be built up across several rules).

6.9 Meta-Pattern Restrictions

When we designed the meta-patterns in MetaLexer, we had a specific implementation in

mind. We expected to have a pair of lexers: one for processingthe input stream and one

for processing the meta-token stream (seeSection7.2.3 for details of an example imple-

mentation). Since we expected both to be full-scale lexers,we had the option of making

meta-patterns every bit as complicated as normal patterns (i.e. regular expressions). How-

ever, to keep meta-patterns intuitive and to avoid forcing future implementors to follow this

implementation pattern, we decided to restrict meta-patterns more than normal patterns.

We did, however, give meta-patterns one feature that normalpatterns lack. There is a single

meta-pattern that matches an empty input sequence:<BOF>. Because of the risk of infinite

loops and the difficulty of matching an empty string with a normal pattern, this particular

pattern, called apure BOF is supported separately. MetaLexer determines analytically

all pure BOF transitions that will take place at the beginningof the stream and performs

them as a single step. It also detects cycles ahead of time so that errors can be raised at

compilation time.

We included this feature mostly for consistency – it would bestrange if it could be used

in combination with other meta-tokens, but not on its own. Hypothetically, it also allows

developers to initialize the embedding stack. Using pure BOFs, it is possible to move a

number of embeddings onto the stack before lexing starts so that they can be popped off at

appropriate times. While this is unlikely to be useful in practice, the meaning is sensible

and the behaviour would be very difficult to simulate withoutpure BOFs.

74



6.9. Meta-Pattern Restrictions

The first restriction we imposed on meta-patterns was the elimination of ranges. Since

meta-tokens and regions (i.e. references to entire components) are unordered, ranges have

no intuitive meaning. We could have implemented them quite easily, they just would not

have had predictable behaviour.

Next, we eliminated general negation. While it is frequentlyuseful to specify the negation

of a single meta-token (e.g. anything but a newline), it is less commonly necessary to spec-

ify the negation of a meta-pattern (e.g. anything but four keywords in a row). Furthermore,

it is often difficult to predict at what point such a meta-pattern will match. Consequently,

we decided to limit negation to classes. That is, classes of meta-tokens and regions can be

negated, but full meta-patterns cannot.

We decided not to implement meta-pattern macros since meta-patterns are not generally

repeated. Furthermore, in order to be checkable, macros would have to be tied to specific

components and there are relatively few meta-patterns referring to any one component.

There are, however, no obstacles to adding support for meta-pattern macros in the future.

We also insisted that<BOF> and regions only appear at the beginning of meta-patterns. The

reason for restricting the position of<BOF> is obvious – nothing can precede the beginning

of the meta-token stream. Regions are a bit trickier – we restricted their positioning for

efficiency reasons. Regions can only appear at the beginning of a meta-pattern because,

if something preceded them, then a portion of the meta-tokenstream would have to be

matched more than once. That is, since the region is present in the stream, it must be the

case that the preceding meta-tokens triggered a transitionto the corresponding component.

Therefore, they have already been matched. Allowing them tobe rematched, perhaps a

large number of times, would substantially increase the worst-case runtime of the lexer.

Unfortunately, meta-patterns in which regions appear after the first position can be quite

useful. For example, suppose we wanted to switch contexts upon seeing parenthesized

strings; we might write a meta-pattern likeLPAREN %STRING% RPAREN. This seems like

a perfectly reasonable thing to do, but MetaLexer forbids itbecause the region,%STRING%,

is not in the first position. If we allowed this meta-pattern,then we would have to re-process

theLPARENmeta-token, possibly a large number of times.
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This might restriction might seem to impose quite a deficiency, but recall the context – we

are still in the lexer. This sort of meta-pattern is properlythe domain of the parser. The

absence of this functionality is no more significant than theabsence of any other context-

free construct.

6.10 Cross-Platform Support

Our decision to make MetaLexer cross-platform – independent of AIL, PSL, and (backing)

LSL – substantially increased the complexity of the project. It affected all aspects of the

design and is responsible for many of the syntactic differences between MetaLexer and

JFlex. However, the careful re-examination of all elementsof the design that cross-platform

support required was ultimately beneficial.

6.10.1 Action Implementation Language

To keep MetaLexer independent of AIL, we decided to treat alloccurrences of AIL code

in MetaLexer specifications as free-form strings. For example, when declaring exceptions,

the exception names are enclosed in quotation marks so that they can contain whitespace

or other non-identifier characters, depending on the AIL.

We provided escape sequences for all closing delimiters to resolved the problem of allowing

closing delimiters within these free-form strings. For example, an action may contain the

character sequence ‘:}’ if it is escaped as ‘%:}’. Similarly, an %init code region may

contain the character sequence ‘%init}’ if it is escaped as ‘%%init}’. As a result, free-form

strings are totally unrestricted.

Inheritance of header sections would have been simpler if they had been converted into a

series of directives (e.g.%package, %import, etc), but this would have tied MetaLexer to

the structure of one AIL. Instead, we decided to retain the free-form header of JFlex and

other LSLs, merging them using simple concatenation. Unfortunately, this meant giving

up support for deletion and replacement of parts of the header.

76



6.10. Cross-Platform Support

After rule categorization (seeSection6.7) our most controversial decision was to change the

brackets surrounding action code in component rules. Unlike JFlex (and JLex, Flex, etc),

MetaLexer uses ‘{: :}’ rather than ‘{ }’. We made this breaking change because MetaLexer

might conceivably be used with an AIL in which a single identifier is a valid action. For

example, in Ruby, a single identifier can be a function call because parentheses are optional

in Ruby. In such cases, an action containing a single identifier would be indistinguishable

from a macro invocation at the end of the preceding regular expression. Modifying the

delimiters solves this problem.

Finally, we attempted to minimize the number of API calls guaranteed to specification

writers (e.g.append(String)) and lexer users (e.g.stop()) in order to remain implementable

in the largest possible number of AILs.

6.10.2 Parsing Specification Language

As originally conceived, MetaLexer was to have monitored the stream of tokens returned

by the lexer and used the tokens themselves to make decisionsabout transitions between

lexical states. This would have eliminated both the need formeta-tokens and the need

for special start delimiter behaviour (seeSection6.8). However, it would also have tied

MetaLexer not only to a specific AIL but to a specific PSL.

To keep MetaLexer cross-platform, we decided to introduce meta-tokens. They require

some extra work on the part of the specification writer, but they also simplify transition

logic.

First, meta-tokens eliminate the need to examine all tokensreturned by the lexer. By leaving

some rules unlabelled with meta-tokens, it is possible to drastically simplify most multi-

meta-token meta-patterns. In particular, they no longer have to account for uninteresting

tokens in the middle of desirable patterns.

Second, meta-tokens can be generated by rules that do not return tokens. This makes it

possible to make transition decisions without cluttering the token stream received by the

parser.
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Finally, meta-tokens do not have to be distinct. Assigning to rules the same transition effect

is easy with meta-tokens – just label them with the same meta-token. It does not matter if

they do not return the same type of token or even any tokens at all.

We also declined to provide a specific API for generated lexers. This makes it easier for

specification writers to adapt the public APIs of their lexers to suit their preferred PSLs.

6.10.3 Lexer Specification Language

Lexer specifications contain a lot of information in options/directives. However, these vary

substantially from language to language. To accomodate this, we made options free-form

but gave them names. This allows them to be deleted or replaced without tying them to a

specific LSL.
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Architecture

The previous chapter described the design decisions behindMetaLexer. This chapter dis-

cusses some of the specific implementation choices that weremade and the issues that were

encountered while constructing MetaLexer. It is broken down into two parts: first we dis-

cuss the tools that are used to build and execute MetaLexer and then we explore the more

interesting/involved parts of MetaLexer’s backend implementation.

7.1 Tools Used

This section describes the tools that we use to build, execute, and test MetaLexer.

7.1.1 Ant and Eclipse

MetaLexer can be built from source using Ant1 alone or a combination of Ant and Eclipse2.

This should satisfy the majority of Java developers.

Presently, the two most popular ways to build a Java project from source are to use an Ant

script or to create an Eclipse project and let Eclipse do the work. To accomodate a wide

1http://ant.apache.org/
2http://www.eclipse.org/
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range of developers, MetaLexer supports both approaches. The source distribution includes

both Eclipse project files and Ant build scripts. In both cases, the Ant build scripts are used

for all non-Java compilation, but if Eclipse is used, then the eclipse.runningproperty must

be set to prevent the Ant build scripts from calling javac to build class files.

The two approaches – Ant and Eclipse – are basically equivalent, but Ant should be used

to build jar files because otherwise Eclipse will compile andinclude Java classes that may

not be necessary for a specific configuration.

Ant and Eclipse are not distributed with MetaLexer. They areconsidered to be basic pro-

gramming tools and it is assumed that users of MetaLexer already have or can easily obtain

them.

7.1.2 JFlex

MetaLexer uses JFlex in a number of ways, but the two projectscannot be distributed

together because of their incompatible licenses. Consequently, care was taken to ensure

that MetaLexer would work in JFlex’s absence.

JFlex specifications play several important roles in MetaLexer. First, the initial specifi-

cations for the component and layout language lexers were written in JFlex. Even after

bootstrapping MetaLexer (i.e. rewriting these specifications in MetaLexer), the lexer spec-

ifications are still translated to JFlex and compiled from there. Second, MetaLexer uses

a number of small lexers for string processing. Since they are so simple, these lexers

are specified in JFlex (rather than MetaLexer). Third, the reference implementation – the

MetaLexer-to-JFlex translator – produces lexer specifications written in JFlex. If JFlex is

absent, these generated JFlex files cannot be compiled and soa number of the backend tests

cannot be run (those that test the behaviour of the generatedlexers).

Unfortunately, JFlex is covered by the GNU General Public License (GPL)3, so it can-

not be released under MetaLexer’s modified-BSD4 license. As such, MetaLexer has been

designed to run in a (slightly) reduced-capacity mode when JFlex is absent. This is accom-

3http://www.gnu.org/copyleft/gpl.html
4http://www.opensource.org/licenses/bsd-license.php
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plished by loading all JFlex classes reflectively and failing gracefully if they are missing.

JFlex lexers (i.e. the programs output by the JFlex tool), onthe other hand, are not covered

by the GPL. Hence, a number of pre-compiled lexers are included with the distribution.

Using a special Ant target, these lexers are generated before creating the release jar. Then,

at build-time, the build script searches for JFlex on the classpath. If it is not found, the

JFlex compilation steps are skipped and the pre-generated files are copied from thepermgen

directory to the directory in which they would have been generated (i.e. thegendirectory).

If a user does not have access to JFlex, then these files cannotbe regenerated but MetaLexer

will still be useable.

The JFlex-to-MetaLexer translator, which is distributed separately, is covered by the GPL

and so does not have this problem.

7.1.3 MetaLexer

The lexers for the MetaLexer component and layout languagesare specified in MetaLexer

itself. They are compiled into JFlex specifications by a binary version of the MetaLexer-

to-JFlex translator and are then compiled into Java classesusing JFlex.

Establishing this circular dependence was straightforward. Once we had a working MetaLexer-

to-JFlex translator, we created a jar file of the binaries. Then we re-specified the compo-

nent and layout languages in MetaLexer and used the jar to compile them, as we would any

other MetaLexer specification. To complete the process, we created a new jar containing

the lexer classes generated from the MetaLexer specifications. From then on, development

of the lexer was done in MetaLexer.

7.1.4 Beaver

The parsers for the MetaLexer component and layout languages are generated by the Beaver

parser generator5. Beaver has two main advantages over its popular competitor CUP6.

5http://beaver.sourceforge.net/
6http://www2.cs.tum.edu/projects/cup/
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First, Beaver allows extended Backus-Naur form (EBNF) operators (i.e. ‘+’, ‘*’, ‘?’) to

be applied to parenthesized subexpressions, effectively creating anonymous non-terminals.

This eliminates the need for a large number of temporary non-terminals and makes the

grammar more readable. Second, Beaver is speed-oriented. Itclaims to provide the fastest

possible dispatching of actions (within the LALR framework)7.

Beaver is covered by a modified-BSD license and so is distributed with MetaLexer. Files

generated by Beaver are not covered by any license and so they too are distributed with

MetaLexer.

7.1.5 JastAdd

JastAdd [EH07b] is an extensible attribute grammar framework. It providesa particu-

larly nice way to specify, build, and transform abstract syntax trees (ASTs). JastAdd also

provides lightweight support for aspects. It allows intertype declarations into specific gen-

erated classes without forcing developers to deal with the complexity of an entirely aspect-

oriented project. Furthermore, since JastAdd is the sort ofextensible framework that Meta-

Lexer should eventually be used with, its use also serves as asort of proof of concept.

JastAdd is covered by a modified-BSD license and so is distributed with MetaLexer. Files

generated by JastAdd are not covered by any license and so they too are distributed with

MetaLexer.

7.1.6 JUnit

MetaLexer uses the infrastructure provided by the JUnit8 tool to manage its test suites.

Though this violates design principles of the JUnit team9, it is quite effective10.

JUnit has become the de-facto standard for testing Java programs. Even when the tests are

7“The inner workings of Beaver’s parsing engine use some interesting techniques which make it really
fast, probably as fast as a LARL [sic] parser can get” – http://beaver.sourceforge.net/

8http://www.junit.org/
9http://junit.sourceforge.net/doc/faq/faq.htm#tests12

10For example, JUnit has actually been extended to handle functional tests: http://jfunc.sourceforge.net/
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not strictly unit tests, JUnit is a useful tool for organizing and running tests because of the

infrastructure it provides.

MetaLexer uses JUnit for integration and functional testing. There are test suites for the

various phases of compilation: scanning, parsing, inheritance processing, error checking,

and code generation. Unusually, the test suite classes are actually generated from simpler

specifications.

Each test suite consists of a number of pairs of input and output files. For example, for the

scanning test suite the input files contain MetaLexer fragments and the output files contain

lists of tokens (type, position, and contents) and errors. These pairs are listed in another

file (in order to give the programmer explicit control over which tests will be run and in

what order). Finally, a JUnit 3 test suite class is generatedfrom the list of test cases – one

method for each test case. This approach is preferable to looping over a list of files for a

number of reasons. First, it keeps the tests independent – a failure or exception in one will

not disrupt the others. Second, it makes it possible to run a single test case. Third, it results

in much better reports from the standard JUnit tools – the failure count is more accurate

and failing test cases are more easily located. (More implementation details are available

in AppendixB.)

JUnit is covered by a modified-BSD license and so is distributed with MetaLexer.

7.2 Multiple Backends

MetaLexer is divided into frontend and backend components so that it can easily be ex-

tended to support other AILs, PSLs, and (backing) LSLs.

In addition to being cross-platform (seeSection6.10), MetaLexer is designed to support

multiple code generation targets without substantial reimplementation. To this end, it is

broken into frontend and backend components. The frontend contains all of the shared

functionality. The backends depend on the frontend and extend it with implementation-

specific transformations and code generation.
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As a proof of concept, the reference implementation contains two different backends (see

Figure 7.1. The first is a simple pretty printer. It simply invokes the transformations of the

frontend and then generates MetaLexer files from the resulting AST. The second is a more

functional JFlex code generator. After invoking the frontend, it performs additional trans-

formations and then generates a JFlex lexer that implementsthe MetaLexer specification.

Figure 7.1 The flow of information through the MetaLexer front- and backends.

Adding a new backend implementing MetaLexer with JLex or Flex, for example, would be

quite straightforward. The design would closely follow thepattern established by the JFlex

backend because the lexical specification and programming languages are so similar.

Note that these backends are quite independent. They all depend on the frontend, but

otherwise they do not interact. This makes it straightforward to create separate jars for

each one without including a lot of extraneous code.

7.2.1 Frontend

The shared frontend accomplishes everything up to and including error checking in the

traditional compiler workflow (though, of course, a backendcan add additional transfor-

mations and error checking). It searches a provided list of directories (i.e. path), loads the

input files, scans them, parses them, builds an AST, builds a symbol table (in attributes,

since MetaLexer use JastAdd), processes all inheritance oflayouts and components, and

performs error checking (which generates both warnings anderrors).

When the frontend is finished, the result is either a sorted list of warnings and errors (sorted
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by file, position, and message) or an AST. If the result is an AST, then it consists of a single

inheritance-free layout referring to a number of inheritance-free components.

Error Checking

As discussed inSection6.5, each module is finalized – made complete in itself – before it

is inherited so that error checking can be performed on each individual module rather than

being limited to the specification as a whole.

However, to account for the fact that some modules are intentionally incomplete because

they are only intended to be used through inheritance, MetaLexer includes the%helper

directive. Layouts and components marked as%helper will be subject to a subset of the

normal tests so that their deficiencies can be remedied in inheriting modules.

The frontend issues errors for missing declarations (macros, states, components, meta-

tokens, etc), misclassified lexical rules (seeSection4.4.2), empty components, empty

ranges in regular expressions, missing modules (i.e. not onthe path), misnamed mod-

ules (i.e. with names not corresponding to filenames), unsatisfied %extern’s, circular

dependencies, etc.

MetaLexer allows a lot of things that are unproductive but are not actually incorrect. To

notify the programmer of potential problems with their specification, MetaLexer raises non-

fatal warnings. Warnings are not severe enough to merit aborting the compilation process,

but they indicate areas of concern that deserve the programmer’s attention.

The frontend issues warnings for deletions that have no effect (deletions of rules, options,

embeddings, etc), unused declarations (macros, states, etc), clobbering of states and macros

in inheriting components, clobbering of options in inheriting components, etc.

Some of these problems cannot possibly be remedied by inheritance (e.g. circular de-

pendencies) and so are unconditional. Others are almost unavoidable in modules that are

intentionally incomplete to maximize reusability (e.g. missing declaration). The checks for

those that could be corrected by inheriting modules are deferred.
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7.2.2 MetaLexer Backend

The structure of MetaLexer backend is very simple. Since it does not perform any transfor-

mations of its own, it simply uses intertype declarations toadd a pretty-printing function

to each AST node type. Then it creates a public method in the Layout class that creates

appropriate layout and component files and fills them with thepretty-printing output of the

corresponding nodes.

7.2.3 JFlex Backend

The JFlex backend is more complicated because it has to transform a high-level MetaLexer

specification into a lower-level JFlex specification. Many things that are implicit and hidden

in MetaLexer must be made explicit in JFlex. In addition, care must be taken to compensate

for the subtle semantic differences between MetaLexer and JFlex (for an example, see

Section5.3.1).

Figure 7.2 A high-level view of the organization of a lexer generated JFlex backend.

Figure7.2shows, at a high-level, the structure of the lexer generatedby the JFlex backend.

On the left is the main lexer, which contains the components.On the right is the meta-

lexer, which controls the transitions amongst the components. As input is matched, the

lexer generates meta-tokens and sends them to the meta-lexer. The meta-lexer processes

meta-tokens and optionally signals transitions in the lexer.

The most interesting aspects of the implementation patterndemonstrated by the JFlex back-

end are described below.

86



7.2. Multiple Backends

Scoping

Creating an AIL-level scope at the level of each component andlayout is a non-trivial task.

The MetaLexer-to-JFlex translator illustrates a possiblesolution.

Components have their own state whereas lexical states do not. Therefore, in converting

from one to the other, care must be taken to give each component its own namespace so that

it does not interfere with any other components. On the otherhand, all components share

state that is declared at the layout level and must add tokensto the same token stream.

The MetaLexer-to-JFlex translator solves this problem by creating a non-static inner class

for each component. This gives each component its own namespace and state plus access

to the shared layout state, which is declared in the top-level lexer class. Each component

class is instantiated exactly once as a field of the lexer class. Figure7.3shows a high-level

example of this process.Figure 7.3ashows the original MetaLexer specification. Notice

that both components have a field calledfoo. These fields are unrelated because each

component has a separate scope.Figure7.3bshows the resulting JFlex specification, which

contains an inner class for each component. The highlightedregions are oversimplified and

will be expanded upon later.

Layout state must be stored in the top-level class because itis part of the API of the lexer.

If it was wrapped in an inner class, then clients of the lexer would have to access them

differently.

One limitation of this inner-class approach is that components cannot contain any static

fields or methods. This is because Java forbids static members in non-static inner classes.

This is a relatively minor problem that can be solved either by removing the static modifier

or by promoting the member to the layout-level and adding a declare-extern pair.

Boilerplate code generated by the MetaLexer-to-JFlex translator (which is required since

JFlex does not support the same abstractions) is wrapped in another inner class to prevent

name conflicts with programmer-defined state. Much of it is completely static and could

easily be moved into a top-level class but this would introduce a requirement for a runtime

jar. Depending on a separate jar for execution is undesirable because it places an added
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(a) MetaLexer – Components (b) JFlex – Inner Classes

Figure 7.3 Translating components to JFlex code

burden on the clients of the jar.

Generated Names

Creating a separate inner class for each component solves oneproblem and introduces

another. Every time a new name is used, there is a potential for conflict with user-specified

names. For example, if the original specification declared an inner class calledCompClass

and a componentComp, then calling the inner class for the componentCompClasswill

cause a conflict.

Following JFlex’s precedent, we have largely ignored this problem. That is, we generate

fairly complex names that are unlikely to conflict with user-specified names, but take no

action to eliminate or even flag conflicts. The resulting lexer will simply fail to compile and

the user will have to choose another name. A more ambitious implementation could inspect

identifiers in user-specified AIL code and modify generated names to eliminate conflicts.

In order to be able to use reasonable identifiers in our generated code, we do wrap most of
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the state information and helper functions in another innerclass. This way, the user only

has to worry about conflicting with the name of a single class and its instantiation, rather

than all generated state variables and functions.

This problem is most noticeable when alternately apply the JFlex-to-MetaLexer and MetaLexer-

to-JFlex translators. For example,Figure 7.4 illustrates one such problem at a high level.

Figure 7.4ashows an initial JFlex specification. It is a black-box – we donot know any-

thing other than its name.Figure 7.4b shows the result of translating this specification

to MetaLexer. It consists of a single layout and a single component, both named for the

original specification. The pale blue box in the layout indicates that there is not presently

any AIL code of interest.Figure 7.4cshows the translation back to JFlex. Now the JFlex

specification contains an inner class corresponding to the component inFigure 7.4b. Fig-

ure 7.4dshows the second translation to MetaLexer. Once again, there is one layout and

one component, both named for the JFlex specification. However, now the inner class has

been moved into an AIL code region (pale blue) because it is not recognized as a com-

ponent. Finally, inFigure 7.4e, we see a conflict between the inner class corresponding

to the component (green) and the inner class from the AIL coderegion (pale blue), which

formerly corresponded to a component.

(a) Original JFlex (b) Generated
MetaLexer 1

(c) Generated JFlex 1(d) Generated
MetaLexer 2

(e)Generated JFlex 2

Figure 7.4 Collisions of generated names in repeatedly translated code

However, even if this problem was resolved (e.g. by examining user-specified names), the

JFlex-to-MetaLexer and MetaLexer-to-JFlex translators would still not interact nicely (see

Section5.3.3).
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Actions

Actions are an important part of the scoping problem. They must be triggered by the rules

of the top-level lexer, but they must have access to the stateof their containing components.

MetaLexer accomplishes this by turning actions into methods of the component inner

classes and then calling these methods from the actual rule actions. Unfortunately, this

is less straightforward than it seems. Actions are not actually valid method bodies because

they may or may not return a value. MetaLexer addresses this issue by having action meth-

odsalwaysreturnpotentialvalues (rather thanpotentiallyreturning adefinitevalue). That

is, each action method always returns a value, but that valuemay be either a true return or

empty (this maybe-value pattern should be familiar to usersof Haskell).

Unfortunately, this introduces a new problem. It is, in general, impossible to determine

whether or not a given return statement will be executed. Thus, the highlighted method

bodies inFigure 7.3bare insufficient. MetaLexer must somehow provide a fallbackthat

returns a non-value, (nothing), if and only if the original action does not return a value.

Fortunately,§14.21of the Java Language Specification [GJSB05] tells us that code follow-

ing an if-statement with the conditiontrue is never considered to be unreachable. That is,

even if the unconditionally executed body is known to leave the method (e.g. by returning

or raising an exception), the code after the block will neverbe the subject of an “unreach-

able” code error. This means that if the original action codeis wrapped in an if-statement

with the conditiontrue and followed by a non-value return, then a value will always be

returned. The pseudo-code inListing7.1 illustrates our solution.

1 if( true) {
2 //original action code
3 }
4 return Maybe.Nothing();

Listing 7.1 Pseudo-Code for an Action Method

With this accomplished, it remains only to determine what should go in the rule actions of

the generated JFlex specification (highlighted inFigure7.3b). Each action must accomplish

the following, in order: the original action must be evaluated, the associated meta-token
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must be generated, any exceptions raised by the original action must be raised, and (if no

exceptions have been raised) any return value from the original action must be returned.

The pseudo-code inListing7.2 illustrates one way of accomplishing this.

1 Maybe<? extends TokenType> maybeResult;
2 try {
3 maybeResult = compInstance.actionMethod();
4 } finally {
5 generateMetaToken();
6 }
7 if(maybeResult.isJust()) {
8 return maybeResult.fromJust();
9 }

Listing 7.2 Pseudo-Code for an Action

Abstraction Violation

Despite determined efforts to avoid it, it was found to be necessary to violate the opacity of

the AIL. That is, to provide JFlex with certain information that it requires but which is not

general enough to expose in MetaLexer itself, it is sometimes necessary to read and even

modify some free-form AIL strings.

The required reading is fairly innocuous. First, in order togive the meta-lexer the correct

package declaration, it is necessary to search the layout headers for the package declaration

that will be included in the JFlex specification. Second, to avoid constantly casting to and

from java.lang.Object, the JFlex backend locates the JFlex%type directive amongst the

layout options and uses that type in a variety of method signatures. Finally, component

code regions are searched for the ‘static’ keyword so that appropriate errors can be raised.

The modification is a little bit more complicated. While readingSection7.2.3, astute read-

ers will have noticed that the value returned by an original action and the non-value returned

by the action method do not have the same type. MetaLexer corrects this problem by wrap-

ping the true return value from the action in an object of the correct type. Unfortunately,

this cannot be accomplished without modifying the originalaction code – each occurrence

of return x;, wherex is an arbitrary expression, is replaced byreturn Maybe.just(x);. This
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transformation will not fail very gracefully if the Java in the action code is malformed, but

in that case the lexer would not have worked anyway.

Meta-Lexer

Once the components have been translated to JFlex, the layout(s) must be dealt with. As

we saw inSection4.2, the layout resembles another lexer with meta-patterns as regular

expressions over an alphabet of symbols (i.e. meta-tokens and regions). By associating a

distinct integer with each symbol, it becomes possible to express each start and end meta-

pattern as a regular expression (over integers). Each regular expression is combined with a

transition action to form a rule in the ‘meta-lexer’11.

Since the meta-lexer is just another lexer, it is tempting tospecify it in JFlex as well. Super-

ficially, the JFlex LSL appears to be ideal for describing thebehaviour of the meta-lexer.

Unfortunately, it is unsuitable because of one small but important semantic difference.

Whereas JFlex (and other traditional lexers) search for the ‘longest match’, the meta-lexer

searches for the ‘shortest match’. That is, in the meta-lexer we want to match and per-

form a transition as soon asanymeta-pattern has been observed. In contrast, a JFlex lexer

would note the observation of the meta-pattern and then continue processing meta-tokens

to ensure that no longer match was possible.

In spite of this semantic difference, we use the syntax of JFlex to illustrate the organization

of the meta-lexer. Note, however, that no such syntax is everproduced by the backend. In

fact, we actually build and generate code for finite automata(see later inSection7.2.3).

States

The meta-lexer has a separate lexical state for each embedding to ensure that meta-patterns

are not matched unless the system is in the correct embedding. The lexical state for a given

embedding contains two types of rules.

First, the lexical state contains the start patterns of all embeddings hosted by the current

11Distinguish:MetaLexer– the entire LSL – versusmeta-lexer– the lexer of meta-tokens.
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embedding’s guest component. For example, if embeddingE1 has hostH1 and guestG1

and embeddingE2 has hostH2 and guestG2, and ifG1 = H2, then the lexical state forE1

contains the start meta-pattern forE2.

Second, the lexical state contains all end patterns for the corresponding embedding.

Within these groups (i.e. start and end meta-patterns), rules are in the same order as in the

original MetaLexer layout specification.

Additionally, there is an initial lexical state containingthe start meta-patterns of all embed-

dings hosted by the start component of the lexer.

Listings7.3& 7.4show an example of this translation.Listing7.3shows part of a layout – a

start component and two embeddings.Listing7.4shows the corresponding lexical states in

the meta-lexer (in simulated JFlex). First, there is aBASEstate containing rules for the start

meta-patterns of all embeddings hosted by the start component. Then, for each embedding,

there are rules for the start meta-patterns of all embeddings hosted by the embedding’s

guest and a rule for the embedding’s end meta-pattern.

1 %start c1
2 %%
3

4 %%embed
5 %name embed1
6 %host c1
7 %guest c2
8 %start START_E1
9 %end END_E1

10

11 %%embed
12 %name embed2
13 %host c2
14 %guest c3
15 %start START_E2
16 %end END_E2

Listing 7.3 Meta-Lexer Lexical States Example – MetaLexer
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1 <BASE> {
2 //start meta-patterns from embeddings with host ’c1’ (star t

component)
3 {START_E1} { / * trigger embed1 * / }
4

5 //no end meta-patterns since this is not a real embedding
6 }
7

8 <embed1> {
9 //start meta-patterns from embeddings with host ’c2’ (gues t of

embed1)
10 {START_E2} { / * trigger embed2 * / }
11

12 //end meta-pattern of embed1
13 {END_E1} { / * trigger restore * / }
14 }
15 <embed2> {
16 //start meta-patterns from embeddings with host ’c3’ (gues t of

embed2)
17 //N/A
18

19 //end meta-pattern of embed2
20 {END_E2} { / * trigger restore * / }
21 }

Listing 7.4 Meta-Lexer Lexical States Example – Simulated JFlex

Transitions

The meta-lexer keeps track of the current state of the lexer as a whole by transitioning

amongst its lexical states. The current lexical state always corresponds to the most recently

triggered embedding. Hence, the current component is always the guest of the embedding

corresponding to the current lexical state.

The transitions amongst the lexical states are tracked on a stack so that the meta-lexer can

return to the correct lexical state when an embedding ends (i.e. when an end meta-pattern

is observed).
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Extraneous Symbols

Obviously, not all meta-tokens and regions will be part of a start or end meta-pattern.

If an extraneous symbol is observed, partially-matched patterns that cannot accept it are

discarded, as is the symbol itself.

<BOF>

The<BOF> meta-pattern is treated like a normal symbol (i.e. meta-token or region). It is

assigned a distinct integer, which is matched in the same wayas any other integer. It is

generated exactly once at the beginning of the meta-token stream. There is no reason to

generate more than one<BOF> because pure BOFs are handled elsewhere (Section6.9).

That is, the first time<BOF> is consumed, some other symbol(s) will also be consumed

(since the pattern is not a pure BOF) and the stream will no longer be un-started.

Communication

The lexer communicates with the meta-lexer via the meta-lexer’s processSymbolmethod.

The method accepts a singleint (representing a meta-token, a region, or<BOF>) and re-

turns aTransitionobject, possibly null. If the transition object is non-null, it contains the

sequence of integers matched and an embedding index. If the embedding index is non-

negative, then it indicates the embedding that has begun (i.e. a start meta-pattern match).

Otherwise, it indicates that the current embedding has ended (i.e. an end meta-pattern

match).

Dependencies

Since the integer values of the symbols are assigned at compile-time, they can be included

directly in the specification of the meta-lexer. As a result,at runtime, the meta-lexer is

completely independent of the lexer proper. It simply accepts integers and outputs transi-
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tions. In particular, there is no runtime mapping between symbols and integers – they are

all hard-coded in the generated class.

Finite Automata

Since JFlex was not suitable for the implementation of the meta-lexer, we had to create our

own lexer. We took the fairly standard approach of constructing a discrete finite automaton

(DFA) for each lexical state. However, instead of looking for longest matches, we simply

match as soon as an accepting state is reached.

To obtain a DFA, we construct a non-deterministic finite automaton withε-transitions (an

ε-NFA) from the meta-patterns of the lexical state, eliminate theε-transitions to form a

non-deterministic finite automaton withoutε-transitions (an NFA), and then apply the sub-

set construction algorithm to produce a DFA. This is a standard process, described in detail

in many texts (e.g. [App98], [Mar03]).

Figure7.5shows the structure of theε-NFA for a lexical state. It consists of a distinguished

start state and theε-NFAs corresponding to the individual meta-patterns in thelexical state

(shown with dotted borders). The start state has an edge thatloops back to itself on any

possible input. This loop handles extraneous characters. Basically, the machine will ac-

cept any amount of nonsense before it starts matching an actual meta-pattern. Once the

nonsense has been consumed by the self-loop, the machine follows anε-transition to the

appropriate meta-pattern sub-machine and completes the match. The accepting state of

the sub-machine (shown with a double border) contains a unique integer identifying the

meta-pattern matched.

The generated DFA is minimized to save space and execution time. We followed the

fixed-point algorithm described in section 5.3 of [Mar03], but we choose a different ini-

tial condition, also distinguishing accepting states withdifferent meta-pattern identifiers.

The reasons for this are discussed below.

Unfortunately, when the DFA indicates a match and a sequenceof integers is recovered,

there is no way to determine which prefix of the match came fromthe self-loop (i.e. which
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Figure 7.5 A high-level view of the ε-NFA generated for a lexical state of the meta-lexer.

are extraneous). This is why each accepting state stores theidentifier of its corresponding

meta-pattern; when a match is made, we can work backwards through the meta-pattern to

determine which suffix of the match comes from the meta-pattern itself. Everything not in

the suffix is discarded as extraneous. Since the meta-lexer uses shortest match semantics,

there is no danger that this suffix will be shorter than the actual match.

For example, suppose we have just transitioned into a component that represents a Java

class. Then, barring intervening start meta-patterns, thenext thing we are looking for is

the closing brace that will end the component. Hence, we willbe in anε-NFA that looks

something likeFigure 7.6. However, we are likely to see a lot of extraneous symbols

before we reach the end of the component – keywords, parentheses, dots, etc. Our raw

match might look likeIF DOT WHILE RETURN RBRACE12. While this is indeed the

sequence of symbols that we have matched, only theRBRACEwas actually matched by the

meta-pattern. When we work backwards through the match, we match against anε-NFA

like Figure7.7, which picks out just theRBRACE.

The backwards matching of meta-patterns is accomplished bybuilding a DFA for the re-

verse of each meta-pattern. The process is the same as for lexical states except that there is

12Clearly, this is not a realistic trace of a Java class.
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Figure 7.6 A high-level view of the ε-NFA generated for a lexical state of the meta-lexer.

Figure 7.7 A high-level view of the reverse ε-NFA generated for a single meta-pattern.

only one meta-pattern in eachε-NFA and the self-loop is omitted.

Each DFA can be represented by two arrays: one for transitions and one for actions. The

transitions array is two-dimensional with states on one axis and symbols on the other. The

actions array is one-dimensional with an element for each state. Hence, we can encode each

DFA as a pair of statically initializedIntegerarrays. These are both compact (especially

when accepting-state transitions are omitted) and quick toinitialize (since no string parsing

is required).

We perform a small optimization that is very effective in practice. Since the numbering of

the DFA states is arbitrary, we can shuffle all of the accepting states to the end (i.e. give

them the highest numbers). Then, when we print out the transition table for the DFA, we

can omit those rows (since we are done as soon as we reach an accepting state) and still

have a contiguous matrix.Figure7.8shows a sample renumbering.

Since most meta-patterns consist of a single symbol, most ofthe minimized DFAs consist
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(a) Original Numbering (b) Revised Numbering

Figure 7.8 Renumbering DFA states to move accepting states to the end.

of a single start state with transitions to a variety of accepting states. That is, in practice,

the meta-pattern DFAs tend to have only one non-accepting state. As a result, most meta-

pattern DFAs have a single-row transition table.
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Chapter 8

Case Studies

This chapter describes the experience of using MetaLexer tospecify lexers for three real

programming languages: McLab, abc, and MetaLexer itself. We first describe the process

of developing the specifications and the improvements that resulted. We then present our

experimental findings about the performance of these specifications.

8.1 McLab

The Sable Lab1 at McGill University is developing an optimizing compiler framework for

scientific programming languages called McLab2. In its first incarnation, McLab will be a

compiler for Matlab3.

Unfortunately, the syntax of Matlab is rather convoluted, apparently having grown organ-

ically over the course of decades. As a result, some featuresare not amenable to nor-

mal lexing and LALR parsing techniques. For this reason, theMcLab team has defined a

functionally equivalent subset of the language, called Natlab, that omits some of the more

troublesome syntax (e.g. command-style function calls).

1http://www.sable.mcgill.ca/
2http://www.sable.mcgill.ca/mclab/
3http://www.mathworks.com/products/matlab/
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Originally, the Natlab lexer was specified using JFlex4. However, since the Natlab language

is intended to be the foundation of many language extensions, the Natlab lexer has been

re-specified in MetaLexer.

8.1.1 Improvements

Re-specifying Natlab in MetaLexer resulted in three substantial improvements. First, the

new lexer is extensible. Second, nearly all of the action code in the JFlex lexer was elimi-

nated in favour of MetaLexer language constructs. Third, all lexical states were replaced by

components. These improvements are particularly gratifying in light of Natlab’s inherent

complexity.

Extensibility

Eventually, McLab will support type inference for Matlab programs. For now, however,

types are specified manually in specially formatted comments called annotations. Support

for annotations was added before the lexer was converted forMetaLexer. In the original

JFlex specification, however, there was no way to separate the extension from the rest of the

language. Instead, the extended language replaced the original language. With MetaLexer,

the two languages – extended and unextended – can co-exist.

Given the MetaLexer specification for Natlab, creating an extension for annotations was

easy. First, lexical rules for annotations were specified ina new component. Then, com-

ponents were created for the start and end delimiters of annotations. For each component

that needed to use one of the new delimiters (i.e. anywhere anannotation can occur), a

new component was created inheriting both the original component and the delimiter com-

ponent. Finally, a new layout was created. The new layout extends the original layout,

introducing a single new embedding for annotations, and replacing all components with

their new annotation counterparts.5

4Disclosure: the JFlex lexer for Natlab was built by the creator of MetaLexer.
5Since Natlab does not presently use an extensible parser, annotations are still treated as opaque blobs and

handed off to a separate parser.
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The extension required eight new files: the annotation lexical rules, the annotation start de-

limiter, the annotation end delimiter, the extended layout, and four components that com-

bine an existing component with an annotation delimiter component (four lines each). It

could be done with fewer, but this solution is clean and easy to read.

A colleague, Toheed Aslam, is presently working on the first major extension of Natlab,

AspectMcLab6. It will add aspects to the Matlab programming language. Toheed’s initial

experiences have been positive – extension is straightforward and the specification is clean

and modular. He found pair filters to be the most difficult feature of MetaLexer to under-

stand, so we have made an effort to explain them in greater detail and provide examples

(Section4.2.1).

Action Code Elimination

The JFlex specification for Natlab required a lot of embeddedJava code to keep track of

state and accomplish lexical state transitions. In the MetaLexer specification, virtually all

Java code has been eliminated. Simple methods for constructing symbols, throwing errors,

parsing numeric literals, and passing comments directly tothe parser remain, but code for

tracking position and maintaining a stack of lexical stateshas been replaced by normal

MetaLexer control flow. Nearly all lexical rule actions consist of a single statement – an

append, a return, or an error.

Lexical State Elimination

The MetaLexer specification for Natlab does not declareany lexical states. All transitions

are controlled by the layout. As a result, the interaction ofthe components can be under-

stood without reading any Java code. Furthermore, the lexerwill be much easier to port to

another AIL/LSL because none of the transition logic will have to be modified.

6http://www.sable.mcgill.ca/mclab/
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8.1.2 Difficulties

In most cases, it was straightforward to replace transitionlogic written in Java with simple

embeddings. However, certain features of Natlab required special handling.

Transpose

In Natlab, a single-quote can indicate either a string literal delimiter (i.e. opening or clos-

ing a string) or the transpose of a matrix. The two cases are distinguished by the token

immediately preceding the single-quote.

In the JFlex implementation of the lexer, a flag was set after each token that could precede a

transpose operator and cleared after each token that could not. This process was simplified

slightly by filtering all symbol returns through a common method, but rules that did not

return tokens still had to explicitly clear the flag. Obviously, this system was quite fragile

since it required each new rule and token type to correctly update the logic.

In the MetaLexer implementation, we created a component forthe transpose. Any rule

matching text that can precede a transpose operator triggers a transition to thetranspose

component. The component consumes the operator and transitions back. To limit the

number of spurious transitions, the meta-token is generated only if the lexer’s lookahead

indicates that a single-quote will follow.

The MetaLexer solution is much easier to understand becauseno code is required for rules

that do not immediately precede transpose operators. In hindsight, the MetaLexer solution

could have been applied in the JFlex lexer. However, the solution only presented itself after

reframing the problem in terms of components and meta-tokens.

Field Names

In Natlab, it is legal to use keywords as names for structure fields. Since structure field

names are accessed using the dot operator, keywords following the dot operator should be

treated as normal identifiers.
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The JFlex implementation of the lexer handled this by switching into a special keyword-

less state after each dot operator. Unfortunately, many of the rules of this state were shared

with other lexical states (since it was inclusive) so special logic was required to leave that

state after returning any symbol.

The MetaLexer implementation simply transitions to a component that only accepts iden-

tifiers. If it sees anything else, it pushes it back into the lexer buffer and returns to the

previous component. Clearly, this same approach was possible in JFlex but, as above, it

was not obvious until the problem was reframed by MetaLexer.

Matrix Row Separators

Natlab has special syntax for constructing two-dimensional matrices – elements are sepa-

rated by commas and rows are separated by semicolons or line terminators. However, if

the end of a row is indicated by a line terminator, Natlab allows a comma or semicolon,

whitespace, and a comment to appear after the last element inthe row. Listing 8.1 shows

an example of such a matrix. To avoid grammar conflicts, the parser requires that the

comma/semicolon and line terminator be returned as a singletoken.

1 a = [1, 2, 3, %this is the end of the first row
2 4, 5, 6]

Listing 8.1 Example – Natlab Matrix Syntax

The MetaLexer implementation handles this in more or less the same way as the original

JFlex implementation. When a comma or semicolon is encountered, the lexer switches to

a component/lexical state in which the line terminator is sought. If it is found, a single

large token is returned. Otherwise, only the comma or semicolon is returned. Unfortu-

nately, in MetaLexer, there is no good way to keep track of theposition of the original

comma or semicolon so it must be stored in a (lexer-)global variable shared by the two

components (i.e. the one that sees the comma or semicolon andthe one that looks for the

line-terminator).
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End Expression

Natlab classes use a number of keywords that are not requiredby non-OO programs. To

limit the impact on the programmer, Natlab allows these keywords to be used as identifiers

outside of class bodies. Unfortunately, this means that thelexer has to keep track of whether

or not it is in a class body. Superficially, it appears that this can be accomplished by

matchingendkeywords with the beginnings of the corresponding blocks until the end of

the class is found. Unfortunately, within index expressions (i.e. expressions indicating

where to index into an array), theendkeyword has another meaning – it evaluates to the

last index of the array.

The JFlex implementation addressed this problem by keepingtrack of the bracketing level.

An end keyword ends a block if-and-only-if it is not inside any brackets (round, curly,

or square). This requires a global counter plus appropriateincrements, decrements, and

checks.

In MetaLexer, we eliminated the counter by duplicating theclasscomponent7. The

classbracketedcomponent is exactly the same as theclasscomponent except that theend

keyword does not generated a meta-token inclassbracketedso it never gets paired with a

block opening. This component starts at an open-bracket andends whenever an unpaired

close-bracket is encountered.

Multiple Meta-Tokens

Occassionally it seems desirable to label a single rule withtwo meta-tokens. For example,

an identifier can indicate both that a field name has been seen and that a transpose operator

could follow. We found that these cases are easily accomodated by introducing a new meta-

token with both meanings and then using meta-pattern classes to allow it in both situations

(e.g.END FIELD NAME STARTTRANSPOSEin Listing8.2).

7The use of inheritance and helper components significantly reduces the amount of duplicate code.
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1 %%embed
2 %name field_name
3 %host base, class
4 %guest field_name
5 %start START_FIELD_NAME
6 %end [END_FIELD_NAME END_FIELD_NAME_START_TRANSPOSE]
7

8 %%embed
9 %name field_name_transpose

10 %host field_name
11 %guest transpose
12 %start END_FIELD_NAME_START_TRANSPOSE
13 %end END_TRANSPOSE

Listing 8.2 Extract – Multiple Meta-Tokens

Error at End-of-File

Natlab uses the Beaver PSL, which requires that a special end-of-file (EOF) token be re-

turned, even if an error has occurred. This can be problematic if the EOF causes a lexical

error.

For example,Listing 8.3 shows a typical string literal component (the one from Natlab,

actually). The problem is how to handle<<EOF>>. We would like to throw an exception

to indicate that the string literal is unterminated, but if we do so, then we cannot return

the EOF symbol required by the parser. If we generated a meta-token that will take us to

another component that will generated the EOF symbol, then the append block will trigger

and return the string literal token, even though it is incomplete8.

To avoid unwinding the entire embedding stack, we transition forward rather than back on

an EOF error. A dedicated component returns the EOF token required by the parser and

then the parser stops requesting tokens (i.e. lexing ends).

This solution is not ideal, but it is acceptable.

8This could be avoided with a flag, but the extra token makes little difference after the error.
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1 %component string
2

3 %extern "Symbol symbol(short, Object, int, int, int, int)"
4 %extern "void error(String) throws Scanner.Exception"
5

6 %appendWithStartDelim{ / * (int startLine, int startCol, int endLine, int
endCol, String text) * /

7 return symbol(STRING, text, startLine + 1, startCol + 1, end Line +
1, endCol + 1);

8 %appendWithStartDelim}
9

10 %%
11 %%inherit macros
12

13 "’’" {: append(yytext()); :}
14 "’" {: / * just end string - %append will handle token * / :} END_STRING
15 {ValidEscape} {: append(yytext()); :}
16 \\ {: error( "Invalid escape sequence" ); :}
17 {LineTerminator} {: error( "Unterminated string literal" ); :}
18 %:
19 %:
20 <<ANY>> {: append(yytext()); :}
21 <<EOF>> {: error( "Unterminated string literal" ); :} EOF_ERROR

Listing 8.3 Extract – Error at End-of-File

8.2 abc

abc [ACH+05] is an extensible research compiler for AspectJ [KHH+01]. It has two differ-

ent implementations: one using Polyglot [NCM03] and the other using JastAdd [EH07b].

In this chapter, we will focus on the Polyglot implementation. Logically enough, the Poly-

glot implementation uses the Polyglot Parser Generator (PPG) for parsing. Since, Polyglot

does not include a corresponding extensible lexer, abc usesan ad-hoc approach [HdMC04].

Interestingly, excluding the extension mechanism, the abclexer is remarkably similar in

structure to a MetaLexer lexer9. The abc lexer breaks AspectJ into four sub-languages:

java, aspect, pointcut, and pointcut-if-expression. The first three are self-explanatory. The

last refers to the bits of aspect syntax that appear within ifpointcuts. The nesting structure

9We discovered this after the fact.
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of these sub-languages is tracked on a stack which is pushed and popped when certain

tokens are observed.

The extension mechanism of the abc lexer is fairly intricate. Each extension provides a

class containing a dynamic list of keywords, each of which may have an associated lexical

state transition. The lexer itself matches all keywords as identifiers and then checks them

against its list at runtime. If the identifier is found to be a keyword, then an appropriate

keyword token is returned and the associated transition, ifany, is performed.

As an experiment, we tried replacing the abc lexer with our own version written in Meta-

Lexer. We also replaced two extensions: eaj and tm10. eaj (Extended AspectJ) extends

AspectJ with experimental new join points and global pointcuts. This requires adding a few

new keywords plus a couple of extra transitions (let has the same syntax asif andglobal

has the same syntax asdeclare). tm (TraceMatches) allow users to create more complicated

pointcuts using temporal logic. This requires a few new keywords plus pointcuts that are

terminated by semicolons, rather than advice.

In the end, our modified abc compiler (i.e. with the new lexer)passed all but one of the

(roughly 1200) original abc test cases (for the aspectj, eaj, and tm languages). In the case

where our compiler differed from the original, the divergence occurred only after a signifi-

cant lexical error and could easily have been eliminated (seeSection8.2.2).

8.2.1 Improvements

MetaLexer is an excellent choice for specifying the syntax of AspectJ. It has many advan-

tages over the existing implementation.

Pointcut-If-Expression

The biggest improvement made possible by MetaLexer was the elimination of the pointcut-

if-expression sub-language. In the original implementation, the aspect and pointcut-if-

expression languages were identical except that the pointcut-if-expression would return

10For descriptions, see http://abc.comlab.ox.ac.uk/extensions
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to the previous sub-language upon balancing the opening parenthesis of the enclosing if

expression. Since this balancing is specified at the embedding level, rather than at the

component level, in MetaLexer, there was no reason to keep the sub-languages separate.

Clarity

It took us quite some time to figure out how the original lexer worked. The JFlex lexer de-

clares lexical states for the four sub-languages but never transitions amongst them. Even-

tually, we realized that the transitions were attached to the dynamically-defined keywords.

In MetaLexer, the transitions are where they always are – in the layout.

Furthermore, the embeddings for the aspectj, eaj, and tm languages are extremely easy to

read. In particular, the embeddings that transition amongst the sub-languages read almost

like the English descriptions in [HdMC04]. Listing8.4shows a few examples.

1 %%embed
2 %name perclause
3 %host aspect_decl
4 %guest pointcut
5 %start [PERCFLOW PERCFLOWBELOW PERTARGET PERTHIS] LPAREN
6 %end RPAREN
7 %pair LPAREN, RPAREN
8

9 %%embed
10 %name declare
11 %host aspect
12 %guest pointcut
13 %start DECLARE
14 %end SEMICOLON
15

16 %%embed
17 %name pointcut
18 %host java, aspect
19 %guest pointcut
20 %start POINTCUT
21 %end SEMICOLON

Listing 8.4 Extract – Embeddings from aspectj.mll
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Extensibility

Extending the base aspectj layout to eaj and thence to tm was very easy.

eaj adds new global keywords (i.e. affecting all sub-languages), pointcut keywords (i.e.

affecting only the pointcut sub-language), and transitions. The new keywords were added

by wrapping them in new components and then inheriting them in extensions of the orig-

inal components.Listing 8.5 shows an example – the new global keywords are inherited

into a component extending the originalaspectcomponent. This was done for each com-

ponent that needed the new keywords, then the extended layout performed the necessary

replacements (e.g.Listing 8.6). Finally, the new embeddings were added to the extended

layout.

1 %component eaj_aspect
2 %%
3 %%inherit eaj_global_keywords
4 %%inherit aspect

Listing 8.5 Extract – Adding New Global Keywords

1 %%inherit aspectj
2 %replace aspect, eaj_aspect
3 %replace aspect_decl, eaj_aspect_decl
4 %replace java, eaj_java
5 %replace java_decl, eaj_java_decl
6 %replace pointcut, eaj_pointcut
7 %replace pointcut2, eaj_pointcut2

Listing 8.6 Extract – Replacing Components

tm is similar – it extends eaj with a few new keywords and a new embedding. This is

accomplished in exactly the same way (though inheriting from eaj rather than aspectj).

Since tm introduces substantially different language features, it might have benefitted from

new lexical rules as well. However, since the existing lexercannot add new sub-languages,

there was no way implement this. With MetaLexer, on the otherhand, adding a new sub-

language would have been easy – particularly since trace matches have clear start- and

end-delimiters.
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Compile-Time Keywords

In the MetaLexer specification, keywords are defined in the lexer itself, rather than in an

auxiliary class. They can be compiled into the lexer’s finiteautomata, rather than being

retrieved at runtime.

8.2.2 Difficulties

Though, on the whole, the MetaLexer solution was very elegant, a few blemishes remain.

Failed Test Case

Our MetaLexer specifications for aspectj, eaj, and tm passedall but one of over 1200 tests.

In that test, a declare statement is not terminated. The two lexers agree up to the point

of the error, but differ afterwards. In the existing lexer, the class body that follows the

declare statement is lexed normally, whereas in the MetaLexer lexer, it is lexed as if it were

a pointcut (which leads to further problems). It would be straightforward to handle this

case in the MetaLexer specification – it is just a matter of allowing a transition from the

pointcut sub-language to the java sub-language (seeListing 8.7) – but we decided that the

behaviour was essentially inadvertent in the original lexer and preferred not to introduce a

confusing new embedding purely for consistency in error situations.

New Keywords

The most straightforward method for adding new keywords to aMetaLexer lexer requires

a surprising number of new files. Since this is the only kind ofextension present in abc,

the new specification looks rather verbose in this area. If this turns out to be a particularly

common example, then a boilerplate-eliminating language construct might be worthwhile.

Superficially, it appears that the nicest solution would be to allow insertion of the new key-

words directly into the old keyword helper components. However, it is frequently difficult
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1 %%embed
2 %name pointcut_java_decl
3 %host pointcut
4 %guest java_decl
5 %start [CLASS INTERFACE]
6 %end LBRACE
7

8 %%embed
9 %name pointcut_java

10 %host pointcut
11 %guest java
12 %start %java_decl%
13 %end RBRACE
14 %pair LBRACE, RBRACE

Listing 8.7 Example – Unterminated Declare

to see all the implications of such a change. For this reason,we decided that modification

of inherited components was too dangerous.

Runtime Behaviour

abc can change its lexical behaviour at runtime. In particular, the options singleton

(abc.main.options.OptionsParser.v()) is used to determine whether multi-line comments

should be nestable and the debug singleton (abc.main.options.OptionsParser.v()) is used to

enable and disable keywords (e.g.assert). In the existing lexer, changing this behaviour at

runtime is easy because all keywords are defined at runtime. In MetaLexer, however, spe-

cial care must be taken. This is especially true for keywordsthat generate meta-tokens. It is

simple enough to pushback an incorrectly matched keyword, but preventing generation of a

spurious meta-token requires the conditional meta-token pattern described inSection4.10.

Duplicate Components

Unfortunately, we found that some embeddings needed to be conditional. For example,

a pointcut ends at a semicolon in a declare statement, but at aleft brace if it is defining

before, after, or aroundadvice. We solved this problem by duplicating components and
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then giving the duplicates different behaviours. For example, upon seeingdeclare, we

transition topoincutbut, upon seeingbefore/after/aroundwe transition topointcut2(see

Listing 8.8).

1 %%embed
2 %name pointcut
3 %host java, aspect
4 %guest pointcut
5 %start POINTCUT
6 %end SEMICOLON
7

8 %%embed
9 %name advice

10 %host aspect
11 %guest pointcut2
12 %start [BEFORE AFTER AROUND]
13 %end LBRACE
14

15 %decl states
16 %duplicate components

Listing 8.8 Extract – Duplicate Pointcut Component

This does not cause any code duplication because the copy consists of a single inherit

directive, inheriting the original. However, in the present implementation of MetaLexer,

it does create duplicate code in the generated lexer. If thisturns out to be commonly

necessary, then it may be worthwhile to create an explicit duplication construct so that

the back-end can do something more intellegent when duplication occurs.

Pre-Defined Character Classes

Since MetaLexer was designed to be cross-platform, we decided not to include the same

language-specific predefined character classes as JFlex. Inparticular, MetaLexer lacks pre-

defined character classes for Java identifier characters. Unfortunately, the explicit version

of this character class is quite long and unpleasant to define.
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8.3 MetaLexer

MetaLexer actually consists of two languages: one for components and one for layouts.

The lexers for both are specified in MetaLexer. Originally, they were written in JFlex,

but we wanted to show that we believe in our tool. The full specification can be found in

AppendixC.

8.3.1 Improvements

Most of the benefits of re-implementing the MetaLexer lexer in MetaLexer have been dis-

cussed above. The MetaLexer version has no lexical states – all transitions are performed

using embeddings; the action code that remains is mostly limited to append, return, and er-

ror; and the Java code for maintaining stacks of states and positions as well as text buffers

is gone. However, there are a few other noteworthy improvements.

Macro Definition State

In the original JFlex specification, there is some trickiness involved when defining macros.

Macros are defined by regular expressions. Unfortunately, regular expressions can contain

elements that look like identifiers and vice versa. This problem was handled by match-

ing ambiguous strings as identifiers if they appeared at the beginning of a line (modulo

whitespace) and as regular expression elements otherwise.

When we ported these rules to MetaLexer, we found that we had tomove the regular ex-

pression element rule (which is acyclic) ahead of the identifier rule (which is cyclic) to

satisfy MetaLexer’s rule group constraints. At first, this seemed like a significant problem.

However, we realized that we could move the regular expression rules into a separate com-

ponent. The macro definition component begins at an equals sign (in the option section of

a component) and ends at the end of the line. This eliminated the ambiguity. Furthermore,

after this change, all elements of the component option section ended with line breaks so

we could always assume that they started at the beginning of lines. This eliminated a lot of
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beginning-of-line-followed-by-whitespace patterns that were causing JFlex warnings.

This same solution was possible in JFlex, but we did not see itbecause we were not thinking

about the problem in the right way.

Shared Code

The component and layout languages provide many excellent examples of the reusability

of MetaLexer components. Since the two share so many lexicalrules in common, nearly

a third of the modules in their definitions are shared (‘modules’ since there are also shared

helper components).

Merged Lexical States

As with the aspect and pointcut-if-expression sub-languages in abc (Section8.2.1), the

INSIDE ANGLEBRACKETSandINSIDE DELETEANGLEBRACKETSlexical states of

the JFlex lexer differed only in their transition behaviour. By encoding this difference in

embeddings rather than in components, we were able to merge the two (i.e. eliminate one).

8.3.2 Difficulties

Since MetaLexer was one of the use cases we have had in mind since we began the project,

there were relatively few difficulties in creating its MetaLexer specification.

Error at End-of-File

We had to deal with the end-of-file error problem described inSection8.1.2. The solution

was the same.
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Start Delimiter Position

The original JFlex specification dropped delimiters (e.g. quotes around string literals) in

token values but counted them when determining position information. To achieve this

same behaviour in the MetaLexer implementation we had to append empty start delimiters

to all of the affected components. This was not particularlydifficult, but it was a case that

we had not considered when designing the start delimiter mechanism.

8.4 Performance

We compared the performance of MetaLexer and JFlex in a number of different areas:

specification length, generated lexer length, compilationtime, and execution time.

8.4.1 Testing Setup

Table8.1describes our testing environment.

Computer MacBook Pro
Operating System OS X 10.6.0
Processor Type Intel Core 2 Duo
Processor Speed 2.33 GHz
Memory 2 GB
Java 1.6.015
Ant 1.7.0
JavaNCSS 32.53
MetaLexer 20090912
JFlex 1.4.1

Table 8.1 Testing Environment

All times were measured using Java’sSystem.currentTimeMillis(). The numbers in the

tables below reflect the averages of 11 runs each, excluding the first (warm-up), the best,

and the worst11.
11The entire suite can be found at http://www.cs.mcgill.ca/metalexer/
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8.4.2 Code Size

For each of our six MetaLexer specifications – Natlab, aspectj, eaj, tm, component, and

layout – we measured the number of files in the specification, the total length of the speci-

fication, and the size of the generated Java lexer class. The results are shown inTables8.2-

8.7.

We defined the length of a specification file (JFlex or MetaLexer) to be the output ofwc -l12.

We defined the length of a Java file to be the total number of non-comment source state-

ments (NCSS) as reported by the JavaNCSS tool13. This measure ignores whitespace and

comments, making the comparison more accurate that a simpleline count.

Superficially, it appears that the MetaLexer specification for Natlab is longer than the JFlex

specification (Table8.2). However, 122 of those lines (and 8 of those files) are for lexing

annotations, something that the JFlex specification does with a single regular expression.

That is, the original specification, having no capacity for extension, simply lexed anno-

tations as opaque text regions. In contrast, the MetaLexer specification actually validates

them. The generated lexer class is roughly 5 times as large, but a lot of that comes from the

layers of abstraction around actions (seeSection7.2.3).

JFlex MetaLexer

Number of Specification Files 1 2714

Specification Size (LoC) 668 76715

Generated Class Size (NCSS) 859 4582

Table 8.2 Code Size for Natlab

The existing abc lexer specifications (Tables8.3-8.5) are the only ones that contain both

Java and specification files. As described inSection8.2, the extension is accomplished

using auxiliary Java classes. We included all such code in the specification size of the

12This is a conservative metric – in general, MetaLexer specifications contains more blank lines and/or
comments.

13http://www.kclee.de/clemens/java/javancss/
148 are for lexing annotations
15122 are for lexing annotations
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lexers (each cell in the row has two values: one for the lengthcombined length of the

lexical specification files and one for the combined length ofthe separate Java files), but we

excluded them from the file count unless they were absent fromthe MetaLexer version. For

example, theAbcExtensionclasses used to initialize the keyword lists in the originallexer

are still present in the MetaLexer implementation because they perform other functions as

well. As a result, theAbcExtensionclasses are included in the specification size of the

original JFlex lexer but not in the file count of either lexer.

The MetaLexer specification for the (abc) aspectj language is slightly shorter than the ex-

isting JFlex and Java specification, but the generated lexerclass is nearly 11 times as long

(Table8.3). This is due in part to the layers of abstraction around actions and in part to

duplicated code in the MetaLexer output. That is, JFlex treats rules that appear in multiple

lexical states as shared whereas MetaLexer treats rules that appear in multiple components

as copies. If the MetaLexer backend merged the rules as well (using information it already

has available), its output size would shrink dramatically.

JFlex MetaLexer

Number of Specification Files 5 20
Specification Size (LoC/NCSS) 860/143 906/0
Generated Class Size (NCSS) 912 9852

Table 8.3 Code Size for abc – aspectj

The figures inTables8.4-8.5 represent differences from those inTable8.3. For example,

the file count is represents the number of files added to the system to extend the lexer.

(Files likeAbcExtensionthat are not lexer-specific were not counted.) The exceptionis the

MetaLexer generated class size. Since a separate Java classis generated for each layout,

the file size is a total rather than a difference.

These figures are interesting because of the zeroes on the JFlex side. In the existing abc

lexer, extensions require only a few lines of additional Java code – just adding some new

keywords to the list. Since it is specialized to handle only this one type of extension, it does

so very efficiently.

The most interesting thing aboutTables8.6-8.7 is the amount of shared code (seeSec-
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JFlex MetaLexer

Number of Specification Files 0 9
Specification Size (LoC/NCSS) 0/22 172/0
Generated Class Size (NCSS) 0 1038816

Table 8.4 Code Size for abc – eaj

JFlex MetaLexer

Number of Specification Files 0 4
Specification Size (LoC/NCSS) 0/8 71/0
Generated Class Size (NCSS) 0 1054416

Table 8.5 Code Size for abc – tm

tion 8.3.1). Considering the languages separately, the JFlex and MetaLexer specification

sizes look very similar. However, the JFlex specifications for the two languages are in-

dependent, whereas the MetaLexer specifications overlap. Considering the languages to-

gether, the MetaLexer specification is shorter. Furthermore, the generated lexers are only

3-4 times as large.

JFlex MetaLexer

Number of Specification Files 1 2617

Specification Size (LoC) 837 88018

Generated Class Size (NCSS) 875 3199

Table 8.6 Code Size for MetaLexer – Component

For all of these languages, we see that the MetaLexer specification requires many more

files. This is simply the result of a different design that places a greater emphasis on

encapsulation. It does not result in longer specifications.

16Total – independent of previous generated classes.
1710 are shared
18243 are shared
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JFlex MetaLexer

Number of Specification Files 1 1819

Specification Size (LoC) 628 59420

Generated Class Size (NCSS) 702 1937

Table 8.7 Code Size for MetaLexer – Layout

8.4.3 Compilation Time

Figure 8.1 shows how long it took to convert the specifications for our six languages into

Java lexer classes. Two different values are shown for each MetaLexer specification – the

time taken for the MetaLexer-to-JFlex translator to run andthe time taken for the entire

translation process (MetaLexer-to-JFlex plus JFlex-to-Java).

As we expected, compiling a MetaLexer specification takes quite a bit longer than compil-

ing a JFlex specification (even ignoring the fact that MetaLexer compilation includes JFlex

compilation). This makes sense because MetaLexer performsa lot of processing to handle

multiple inheritance and performs much more validation than JFlex.

It is interesting to note that the MetaLexer-to-JFlex translation generally took only about

half of the MetaLexer compilation time. This suggests that streamlining the JFlex output

by the translator would substantially speed up compilationtime.

The other interesting observation we can make aboutFigure 8.1 is that, even though eaj

and tm are tiny extensions, their presence slows down the translator substantially. This is

because inherited code frequently needs to be re-checked inthe context of the inheriting

module. It might be able to reduce the slowdown by optimizingaway some of these checks,

but some duplication will always be necessary.

1910 are shared
20243 are shared
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Figure 8.1 Compilation Times

8.4.4 Execution Time

For each of our six languages, we chose a variety of real-world benchmarks (i.e. files that

are actually in use in real projects) and measured four execution times: the time taken to

the lex the file with the original JFlex lexer, the time taken to lex the file with the new

MetaLexer lexer, the time taken to parse the file using the theexisting parser and the JFlex

lexer, and the time taken to parse the file using the existing parser and the MetaLexer lexer.

We measured the execution times of the lexers so that we couldcompare them directly and

the execution times of the parsers to get a sense of how much ofthe overall runtime the

lexer represents.Figures8.2-8.7show the results.

Natlab

We drew our Natlab benchmarks from the suite used by the McLabgroup. Two of the

four benchmarks –benchmark2andreduction– perform computations and the other two

are drivers –drv edit and drv svd. benchmark2(308 lines) is a numerical computation

benchmark for Matlab created by Philippe Grosjean21; reduction(141 lines) computes the

LLL-QRZ factorization of a matrix (created by Xiao-Wen Chang and Tianyang Zhou);

drv edit (292 lines) is a test driver for an edit-distance calculator; anddrv svd(6494 lines)

is a test driver for a function that computes the singular value decomposition of a matrix.

21http://www.sciviews.org/

122



8.4. Performance

Only small modifications were made to the files. First, the files were in normal Matlab

syntax. We used a tool provided by the McLab project to convert them to Natlab. Second,

we corrected an unescaped backslash inbenchmark2.

We see fromFigure8.2 that MetaLexer is slower than JFlex (which certainly makes sense,

in light of the sizes of the generated classes) but we cannot say how much slower because

most of the differences are below the error threshold of the timing mechanism. A rough

estimate would be that MetaLexer is generally about 3 times slower (thought it may spike

to 8 times).

Figure 8.2 Execution Times for Natlab

abc

We drew our abc benchmarks from AspectBench22 suites. This seemed prudent as the abc

implementation of AspectJ differs slightly from the original ajc implementation.

Since we planned to re-test the aspectj benchmarks in each ofthe extensions (i.e. eaj and

tm), we chose only three.EnforceCodingStandards(86 lines) is an aspect that logs allnull

returns from non-void functions;Metrics (134 lines) computes metrics of a running pro-

gram (i.e. profiling data); andMSTPrim(212 lines) adds a strongly-connected-components

method to a graph class.

22http://www.aspectbench.org/
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These files are all relatively short, so it is hard to draw any conclusions from the execution

times (seeFigure 8.3). It does, however, seem likely that MetaLexer is roughly asfast as

JFlex.

Figure 8.3 Execution Times for abc – aspectj

Since eaj is a testbed for experimental features, we were unable to find any real-world

files that made use of the extension. Consequently,Figure 8.4shows only the runtimes for

the aspectj benchmarks. As expected, it strongly resemblesFigure 8.3. Some slowdown is

evident, but it is difficult to quantify. It likely stems fromthe increased size of the generated

class (seeTables8.3-8.5).

Several papers have been published about tracematches and their various applications so

we were able to find tm-specific benchmarks.FailSafeEnumThread(68 lines) verifies that

enumerations are not modified between reads;FailSafeIter (57 lines) does the same for

iterators; andHashMapTest(66 lines) verifies that objects in hashmaps are not modified in

ways that change their hashcodes.

In Figure 8.5 see a little bit more slowdown in the original aspectj benchmarks, but the

tm-specific benchmarks are all very fast.

Once again, all we can conclude is that MetaLexer is slower than JFlex – we cannot say by

how much.

The MetaLexer implementations exhibited their greatest slowdowns on the abc bench-

124



8.4. Performance

Figure 8.4 Execution Times for abc – eaj

marks. This is consistent with our findings for code size and compilation time, which

suggests that the large amount of duplication (seeSection8.2.2) is to blame. The problem

can probably be addressed by finding a way to share this code. Doing so should speed up

inheritance and reduce the size of the generated code, reducing the runtime.

MetaLexer

Our MetaLexer benchmarks were easy to choose. We simply chose the largest layouts

(120-310 lines) and components (60-140 lines) in the only existing real-world MetaLexer

specifications – those of our six example languages.

The MetaLexer syntax is relatively simple and so, as expected, Figures 8.6-8.7 show a

relatively small slowdown (roughly 1.5 times for the component language and 1.25 times

for the layout language). We also see that the lexer takes up alarge percentage of the

parser’s total runtime because the parser proper is so simple.

8.4.5 Summary

We compared MetaLexer’s performance to that of JFlex in fourareas: specification size,

generated lexer size, compilation time, and execution time. MetaLexer generally has
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Figure 8.5 Execution Times for abc – tm

shorter and clearer specifications than JFlex and the other metrics are all within an order

of magnitude. The increased clarity of the specifications makes this tradeoff worthwhile,

especially since our initial implementation is untuned andunoptimized. Furthermore, new

improvements frequently present themselves when lexers are rewritten in MetaLexer.
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Figure 8.6 Execution Times for MetaLexer – Component

Figure 8.7 Execution Times for MetaLexer – Layout
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Chapter 9

Related Work

We were not the first to explore the area of modular, extensible compilers. This chapter

describes research that shows the demand for such compilersand the work that has been

done to satisfy the demand.

9.1 Demand

There are many applications for modular, extensible compilers. One of the most rapidly

growing is mixed language programming (MLP)1. In MLP, multiple programming lan-

guages are combined not only in the same program, but in the same file. This allows

programmers to use the most suitable language for each programming task at a finer gran-

ularity than the program level.

During the development process, integrated development environments (IDEs) such as

Eclipse2 are invaluable tools. However, most IDEs provide assistance with only a single

language. Even more advanced IDEs with plugins for multiplelanguages provide assis-

tance with only a single language in each file. (Usually, there is a separate editor for each

1Since the field is not yet established, there is no standard terminology. Sometimes it is referred to as
‘multi-language programming’ or programming with ‘embedded languages’.

2http://eclipse.org/
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language and so a single language must be chosen when the file is opened.) However, Kats

et al ([KKV08]) have done work to provide MLP support in the Eclipse IDE Meta-tooling

Platform (IMP) 3. Using their extended IMP, it is possible to create an MLP editor that

supports syntax checking, syntax highlighting, outline view, and code folding.

Since such MLP editors are not widely available, some researchers have used libraries

to simulate MLP within a single language. This approach is most commonly used in the

functional programming (FP) community (e.g. Haskell [Hud96] and Lisp [EH80]). In most

cases, this places much stronger limits on the new language than true MLP would.

MLP can also be applied to improve programs with modules written in different languages.

For example, the Jeannie tool [HG07] created by Hirzel and Grimm simplifies programs

written using the Java Native Interface (JNI). Rather than separating C and Java code into

separate files and then having them call each other through aninterface, Jeannie mixes

both languages in every file. This makes JNI programs much easier to read and write. They

accomplish this by introducing new delimiters that switch from one language to the other.

When the MLP code is compiled, it is separated into separate files in the traditional JNI

style.

Other calls for mixed language functionality, whether at the file level or at the program

level, can be found in [Vol05] and [Bur95].

9.2 Approaches using LR Parsers

The most commonly used parser generators all accept some variation on LR grammars,

usually LALR but occasionally SLR or full LR(1). As a result, these classes of grammars

are familiar and well understood and there are mature tools for developing them. Naturally

then, work has been done to make such grammars modular and/orextensible.

The Polyglot Parser Generator [NCM03], developed by Brukman and Myers, is an exten-

sion of the popular CUP4 parser generator that adds extensibility. Existing grammars can

3http://eclipse-imp.sourceforge.net/
4http://www2.cs.tum.edu/projects/cup/
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be extended by new grammars that add, delete, or replace their productions. The Polyglot

Parser Generator is only one element of the larger Polyglot extensible compiler framework.

Unfortunately, Polyglot does not address the problem of extensible lexing. Instead, each

project must develop its own solution, in the worst case developing a new lexer for each

extension of the parser.

Going to the next level, Ekman et al created JastAdd [EH07b], an extensible, modular at-

tribute grammar system that can be used to build entire extensible compilers. JastAdd is

mostly indifferent to how its input is parsed, as long as the parser builds up an abstract

syntax tree (AST) using its generated AST classes. However,for their own project, the

JastAddJ extensible Java compiler [EH07a], they created a parsing tool that compiles a

new specification language (Beaver, slightly modified to improve modularity) to Beaver5.

It moves rule type information and token declarations out ofthe parser header so that sep-

arate files can be merged by simple concatenation. Then each extension concatenates an

appropriate subset of the parser files to form its own parser.Extensible lexing is simi-

larly handled by concatenating lexer specification fragments (written in JFlex). Of course,

concatenation is blind – no checks are performed. Furthermore, concatenation is purely

constructive – deletion of (lexer or parser) rules is impossible.

The abc extensible AspectJ compiler [ACH+05], developed by Avgustinov et al, combines

all of these ideas. At present, it has two front-ends, one written using Polyglot and the

other using JastAdd. Both, however, use an ad-hoc extensiblelexer written in JFlex. Inter-

estingly, the behaviour of the manually written abc lexer isvery similar to the behaviour of

the generated JFlex produced by MetaLexer. A detailed description of the abc lexer can be

found inSection8.2.

9.3 Approaches using Other Classes of Parsers

Since LR(1)/SLR/LALR grammars are not composable, they are not particularly well

suited to modular parsing. With this in mind, some researchers have explored approaches

5http://beaver.sourceforge.net/
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based on other classes of grammars. All are slower, but more powerful, than LR(1)/SLR/LALR

grammars.

Some approaches, having already accepted a reduction in performance, go a step further

and eliminate the lexer. Obviously, once a full-scale parser is (effectively) handling the

lexing of a language, MLP becomes very straightforward.

9.3.1 Antlr

The Antlr parser generator [Par07], created by Terrence Parr, aims to be a declarative way to

specify the sort of recursive descent parser that one would ordinarily build by hand. It uses

an extension of LL(k) parsing called LL(*). In LL(*), unlessa restriction is imposed by the

grammar writer, an arbitrary amount of lookahead is available when resolving ambiguity.

As a result, Antlr is powerful enough to be able to specify thesyntax of C++6.

Since Antlr was created primarily as a tool for practicing compiler writers (rather than a

proof-of-concept or an academic research project), it has many features that make common

parsing tasks easier. It has a nice IDE for creating and debugging grammars as well as

special syntax for building ASTs and performing source-to-source translations. It also

supports extended Bachus-Naur form (EBNF) syntax, which alleviates much of the pain of

being unable to use left-recursion.

With all of its features, lookahead, and backtracking, Antlr is decidedly slower than an LR

tool like Beaver. It also generates a much larger parser class(since the code for a recursive

descent parser is much larger than the binary representation of a few LR parsing tables).

9.3.2 Rats!

Another particularly interesting system is Rats!, created by Robert Grimm [Gri06]. Rats!

discards context free grammars (CFGs) in favour of parsing expression grammars (PEGs).

The specification for a PEG looks like a normal CFG, but it is interpreted differently. If a

6Since LR approaches cannot specify the syntax of C++, they specify a slightly larger language. Subse-
quent phases of the compiler then perform weeding and disambiguation.

132



9.3. Approaches using Other Classes of Parsers

non-terminal has multiple productions, then they will be tested in order until one matches.

If no matching production is found, then the parser backtracks in the derivation.

Unfortunately, the frequent backtracking required by a PEGparser can easily lead to an

exponential runtime (in the size of the input text). To avoidthis problem, PEG parsers

memoize all intermediate results (i.e. matches of non-terminals). For this reason, they are

also referred to as ‘packrat’ parsers. With memoization, PEG parsers run in linear time but

require linear additional space (both linear in the size of the input text).

Another consequence of frequent backtracking is that Rats! grammar actions with side

effects must be performed in nested transactions so that they can be undone. This can be

quite cumbersome, especially if the parser needs to maintain some sort of global state (e.g.

a counter of some sort).

Rats! does not use a separate lexer. Instead it uses PEG specifications all the way down to

the character level. As a result, it is very straightforwardto lex different regions of the input

according to different rules. Furthermore, Rats! allows developers to integrate their own,

hand-code lexical analysis methods into the grammar. That is, characters are not the only

terminals in the grammar – developers can create their own terminals using customized

functions.

Rats! is implemented as a recursive descent parser (it is the recursive calls that are memo-

ized). With its backtracking, transactions, and lack of separate lexer, Rats! tends to generate

very large parser classes.

In spite of its drawbacks, Rats! is immensely powerful. It is expressive enough to specify

complex languages like C and Matlab (which is notable for itscommand-style function

calls). Furthermore, since the class of PEGs is composable,Rats! is very modular. An

excellent example of this is the Jeannie tool [HG07] which combines Java and C in a single

file. Using special delimiters, C code can contains blocks ofJava code, which can contain

blocks of C code, ad infinitum. The system was actually constructed by combining existing

Rats! parsers for C and Java.
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9.3.3 GLR

Generalized LR (GLR) parsing is an extension of LR parsing that accepts the full class

of CFGs. Unlike a normal LR parser, a GLR parser accepts grammars with shift-reduce

or reduce-reduce conflicts. It handles conflicts at runtime by branching its execution and

following both paths (i.e. building both CSTs). Some GLR parsers simply return all CSTs

constructed in this way. Others use heuristics or user specifications to choose the ‘correct’

CST before proceeding. Elkhound7, SDF8, and Bison9 (which is actually an LALR parser

generator with a GLR mode) are the most popular GLR parser generators.

If the lexing is done separately, GLR does not address the problem of how to handle dif-

ferent regions of a program differently. As a result, some have proposed using scannerless

GLR (SGLR) parsers. SGLR parsers have characters, rather than tokens as their terminals.

This makes it very straightforward to handle MLP.

For example, Bravenboer and Visser recommend SGLR for embedding domain-specific

languages (DSLs) in general-purpose programming languages [BV04]. Along similar

lines, Kats et al have used SGLR to support create rich editors for MLP in Eclipse [KKV08].

Even more relevantly, Bravenboer et al have recommended using SGLR in the abc frontend

[BETV06].

Since (S)GLR grammars can capture any CFG, the class is closedunder composition. As

a result, it is possible to create modular (S)GLR parser generators.

GLR is slower than Rats!, which is slower than Antlr [Gri06], but work has been done on

improving its performance by isolating ambiguities (e.g. [WS95]).

9.3.4 metafront

Developed by Brabrand et al, the metafront system [BSV03], serves a twofold purpose.

First, it is a declarative language for transforming CSTs forone grammar into CSTs for

7http://www.cs.berkeley.edu/ smcpeak/elkhound/
8http://www.program-transformation.org/Sdf/SGLR/
9http://www.gnu.org/software/bison/
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another grammar. Second, and more interestingly, it is an extensible parsing system.

metafront achieves extensibility by using specificity parsing, rather than context free pars-

ing. Intuitively, specificity parsing is a scannerless parsing technique that resolves ambigu-

ity in favour of the ‘most specific’ alternative. This occursat both the lexical and syntactic

levels10.

Specificity parsing is highly unconventional and presents no clear benefits over PEG or

(S)GLR parsing. It is, however, more extensible than LR(1)/SLR/LALR systems.

9.4 Approaches specific to Domain-Specific Languages

Finally, some approaches are specifically tailored to rapiddevelopment of domain-specific

languages (DSLs). Systems like MontiCore [KRV07], [GKR+08] and MPS11 (the Meta

Programming System) allow developers to quickly plug together lexer, parser, and seman-

tic modules to create new DSLs from libraries of available behaviours. While these tools

are well suited to creating languages and editors for DSLs with limited syntax, they cannot

be used to parse more complicated, general purpose languages. That is, they are less ex-

pressive than traditional L/PSLs and are not suitable for lexing/parsing complex languages

like C or Java.

10Though there is no lexical pre-processor, the terminals of the grammar are still tokens formed by match-
ing regular expressions.

11http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
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Conclusions

The idea of creating compilers for languages with extensible syntax and compilers for

mixed language programming (MLP) is growing in popularity.Numerous tools have sprung

up for extensible and composable parsing, attribute grammars, and analyses, but still there

is a gap. None of these tools provides a system for handling extensible and composable

lexing.

To fill this gap, we presented the MetaLexer lexical specification language. It has three

key features. First, it abstracts lexical state transitions out of semantic actions. This makes

specifications clearer, easier to read, and more modular. Second, it introduces multiple

inheritance. This is useful for both extension and code sharing. Third, it provides cross-

platform support for a variety of programming languages andcompiler toolchains.

We implemented three translators for MetaLexer. The most important translates MetaLexer

specifications into JFlex specifications so that they can be realized as Java classes. The

others provide help with debugging of MetaLexer specifications and porting of existing

JFlex specifications.

Using these translators, we implemented lexers for three different programming systems:

the Natlab language of the McLab project, the aspectj language of the abc project (with

its eaj and tm extensions), and the component and layout languages of MetaLexer itself.

We compared these specifications to the original JFlex implementations and found them
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to be much simpler and clearer. In particular, nearly all of the supporting Java code was

eliminated in favour of standard MetaLexer constructs. Furthermore, rewriting JFlex spec-

ifications in MetaLexer enabled us to see new solutions to existing lexer problems.

We compared MetaLexer’s performance to that of JFlex in fourareas: specification size,

generated lexer size, compilation time, and execution time. MetaLexer generally has

shorter specifications than JFlex and the other metrics are all within an order of magni-

tude. The increased clarity of the specifications makes thistradeoff worthwhile, especially

since our initial implementation is untuned and unoptimized.
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Future Work

In its current state, MetaLexer is already a useful tool. However, there is always room for

improvement. This chapter describes directions for subsequent development of MetaLexer.

11.1 Optimizations

During the initial development of MetaLexer, relatively little has been done in the way of

optimization – neither in the compiler itself, nor in the generated code. Clearly, however,

there is substantial opportunity to do so in the future.

11.1.1 Compilation Time

The most straightforward way to improve the execution time of the MetaLexer compiler(s)

would be to make more efficient use of JastAdd attributes. In particular, many attributes

need only be calculated once because they will never change.Such attributes can be flagged

as lazy so that their values will be memoized. Even the attributes that do need to be re-

computed generally only have be recomputed when the structure of the AST changes. Mak-

ing these attributes lazy as well and then flushing them manually during transformations

might also improve performance.
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Of course, since MetaLexer performs more elaborate checks than traditional lexer genera-

tors, it can never be expected to compile specifications as quickly as they do.

11.1.2 Code Generation

At present, the JFlex specifications generated by MetaLexerare much longer than the cor-

responding hand-written specifications (seeSection8.4.2). Several improvements to the

JFlex code generator are possible and could help close the gap.

First, the DFAs of the MetaLexer are stored naively. Unlike JFlex, which compresses its

transition tables, MetaLexer generates arrays of integers. Binary representations of these

tables would be much more compact.

Second, the DFA transition tables could be shrunk by using component-specific alphabets.

Observe that, for a given components, the only symbols that can be seen by the meta-lexer

are the meta-tokens declared in that component,<BOF>, and all possible regions.1 By

sharing the same alphabet across all components, we are adding unreachable columns to

all of the transition tables.

Third, the unconditional if-statements described inSection7.2.3 are often unnecessary.

Frequently, we can determine statically whetherNothing or Just will be returned. For

example, many actions are either empty or contain only a return statement. Obviously,

there is no need to consider bothNothingandJustcases in these instances. Going a step

further, if we know that the state (i.e. fields) of the component will not be accessed or

modified (as is frequently the case), then we can inline the action body in the generated

action rather than wrapping it in a method of the component class.

Finally, the generated code contains substantial duplication. The simplest example is

macros. If two components inherit the same macro (and both make use of it), then both get

a copy. It would be much better to recognize that the macro hasbeen inherited and use the

same one in both cases. Similarly, it might be possible to move inherited code regions into

shared superclasses. For example, if componentA andB both inherit helper componentH,

1We can actually go a step further if we observe that not all regions are possible – we can only see those
that are guests of the current component in some embedding.
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then perhaps the corresponding classes forA andB could both inherit functionality from the

corresponding class forH. Of course, substantial thought and, perhaps, analysis is required

to ensure that this is done soundly (i.e. without affecting the semantics).

11.1.3 Execution Time

If the present implementation of the JFlex backend is retained, then most execution time

improvements will come from performance tuning of common cases and the elimination

of layers of abstraction described above (seeSection11.1.2). Alternatively, there may be

another way to organize the backend that results in faster lexing.

Fundamentally, the execution time is limited by the fact that a meta-token (and, potentially,

a region) may be generated for each character in the input. Insuch cases, a MetaLexer lexer

must process two (or three) times as many symbols as a comparable JFlex lexer. However,

there is hope because the transition logic in the JFlex backend is handled entirely by DFAs,

whereas a JFlex lexer may use a slower ad-hoc solution.

11.2 Analysis

Another area that is ripe for examination is the new analysesthat become possible once

lexical state transitions are abstracted out of semantic actions. If no lexical states are de-

clared in a MetaLexer specification, then the compiler knowsfor certain that all transitions

are specified in the top-level layout. As a result, all transitions are available to the lexer –

the interaction of the various components is perfectly known. It seems likely that this in-

formation could facilitate optimizations of the generatedlexer. Even if it does not, it makes

possible a variety of verification and visualization tools.
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11.3 Known Issues

Unfortunately, the present implementation of MetaLexer isnot without blemish. A few

issues remain.

11.3.1 Frontend

Some issues affect the frontend, and thus affect all backends.

First, for convenience and to eliminate duplication, errormessages are sorted. They are

arranged by file, by position, and then by message. Unfortunately, this means that if two

messages occur at the same position in the same file – perhaps because they are related –

then they may be reordered. A better solution might be to order only by file and by position

and eliminate duplicates in some other way.

Second, the append buffer (seeSection4.9) is unavailable to rules generating error mes-

sages. Keeping the buffer hidden was a design decision intended to prevent developers

from using it to affect control flow. However, it may ultimately prove worthwhile to expose

it.

Third, if a lexical state is declared at the component level,then there is no way to refer to

it at the layout level2. In general, this is a good thing because it encourages encapsulation.

However, it does make it harder to port some older JFlex (or Flex) specifications that refer

to specific lexical states in helper methods.

11.3.2 JFlex Backend

Other issues affect the JFlex backend. They may or may not affect other LSL backends,

depending on the features of the LSL and the underlying AIL.

First, JFlex uses Java as an AIL and Java does not allow non-static inner classes to contain

static members or fields. As a result, AIL code regions in components (which are wrapped

2Unless one cheats and makes assumptions about the name mangling.
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in inner classes) may not contain static members or functions. While not a major limitation,

this is quite frustrating. Any backend with Java as an AIL using the same implementation

pattern will encounter this problem.

Second, when tracing code is embedded in the generated lexerit is enabled by a static

method,setTracingEnabled(). It would be much nicer to pass this as a flag to the construc-

tor. Unfortunately, only the very latest version of JFlex supports adding arguments to the

lexer’s constructor and we felt that this would limit its usefulness. Since some tracing oc-

curs in the constructor itself, the flag must be set before theconstructor is executed, hence

the static method.

Third, the pair filter does not interact nicely with start meta-patterns. It is frequently the

case that a start meta-pattern contains a meta-token that isintended to be paired with a

meta-token in the end meta-pattern. For example, a Java class component might have an

open brace in its start meta-pattern and a close brace in its end meta-pattern. Obviously,

these braces are intended to be paired. Unfortunately, the start meta-pattern occurs in the

host component and the end meta-pattern occurs in the guest meta-pattern, making it im-

possible to pair them. To resolve this issue, open-items contained in the start meta-pattern

are cleaned out of the pair filter. This works well in practice, but it is not very nice in

principle. In particular, close-items in the start meta-pattern are not cleaned out of the pair

filter because there is no good way to restore the open-items they have already cancelled.

As a result, the pair filter recognizes close-items but not open-items in start meta-patterns.

This is not very intuitive.

11.4 Qualified Names

At present, qualified names in MetaLexer are not particularly useful. Instead of qualifying

names with a dot, one could just as easily put everything in one directory and group files

be prepending prefixes. Qualified names would be much more useful if there were cir-

cumstances in which names could be used without qualification – perhaps within the same

directory or when explicitly imported, as in Java. Alternatively, an aliasing mechanism
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could be introduced to allow components to be referred to by shorter names.

11.5 Other Platforms

As discussed inSection7.2, it should be quite straightforward to implement additional code

generation engines for MetaLexer. Two, in particular, would be especially helpful.

First, a JLex backend would serve as a useful starting point.Though it is less powerful and

modern than JFlex, it has the advantage of being released under a modified-BSD license.

This means that it could be freely distributed with MetaLexer, making the project more

self-contained.

Second, a Flex backend would be useful because it would give Cand C++ programmers

access to the power of MetaLexer. Some of the implementationdetails would not translate

directly – inner classes differ slightly between Java and C/C++ – but there are no funda-

mental obstacles.

11.6 JFlex Porting

As discussed inSection5.3, the JFlex-to-MetaLexer translator exists primarily to demon-

strate that MetaLexer is as powerful as JFlex. Unfortunately, it is not very useful as a tool.

A more practical tool would disregard the validity of its output and focus instead on pro-

viding useful stubs for the developer porting from JFlex to MetaLexer. Basically, it would

perform the grunt work of splitting the specification up intosmaller files and replacing all

action delimiters (i.e. ‘{ }’ to ‘ {: :}’).

Given a JFlex specification, the tool would create a layout with the same name containing

all AIL helper code and imports for the components describednext. It would create a

helper component containing all macros and a non-helper component for each lexical state,

inheriting the macro component and containing all the rulesof the lexical state. It would be

up to the developer to port the transition logic to MetaLexer. While the output would not
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be remotely complete, it would serve as a much more useful starting point than the valid

MetaLexer produced by the existing translator.

11.7 Comparison with Lexerless Techniques

Lexerless parsing is another good way to handle MLP and othertasks that require exten-

sible, modular compiler frontends. However, techniques like PEG and SGLR parsing are

slower than traditional LALR parsing and frequently their full power is not needed. For

example, it seems likely that MetaLexer and LALR could have been used to generate MLP

editors for Eclipse ([KKV08]) or to parse Jeannie ([HG07]).

We built MetaLexer because we believe that LALR is frequently ‘good enough’ and that,

when it is, the performance benefit of using it is substantial. It would interesting to com-

pare these approaches directly. The work of Bravenboer et al,expressing the syntax of

abc in SGLR [BETV06], presents an excellent opportunity for comparison. Though both

approaches are relatively new and unoptimized, it would be interesting to see how they

compare. Furthermore, additional work will be required to determine how often the com-

bination of MetaLexer and LALR is ‘good enough’.

11.8 Parser Specification Language

When we began, our goal was to create not an LSL but a PSL. Havingbeen dissatisfied

with a number of such tools, we decided to create a composablePSL. However, we realized

that before we could begin we would need a composable LSL. Thus was born MetaLexer.

However, our goal remains. We record below the fruits of our initial research in the hope

that they may be useful to a future implementer.

The chief problem when creating a composable PSL is that the classes of grammars tradi-

tionally used for parsing (i.e. LR(1)/SLR/LALR) are not composable. In particular, any

new productions added during composition have a chance of conflicting with existing pro-

ductions (either shift-reduce or reduce-reduce). Consequently, it is necessary to use another
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class of grammar. Antlr3 uses LL(*) grammars, which extend LL(k) grammars with infi-

nite lookahead. SGLR systems like SDF4 use full context-free grammars, which are closed

under composition. Rats! [Gri06] uses PEGs, which eliminate ambiguity by testing rules

in order and backtracking upon failure.

All of these classes of grammars are composable, but all are slower than LR(1)/SLR/LALR

grammars. Furthermore, they are less established and standardized, so their are fewer

tools designed to work with them. Without tables, Antlr generates an enormous amount of

decision-making code. It also lacks left-recursion and produces slower parsers than Beaver.

SGLR is slower than LR(1)/SLR/LALR and does not work nicely with existing tools (e.g.

[KKV08]). Rats! has to be able to backtrack, so actions cannot have side-effects. It also

produces slower parsers than Antlr.

The Polyglot Parser Generator [NCM03] adds extensibility to the popular LALR CUP5

parser but it is not composable.

We propose returning to a LR(1)/SLR/LALR approach, but restricting composition to sub-

grammars with different alphabets. If two subgrammars share no tokens in common, then

they can never conflict with each other6. Of course, MetaLexer is ideal for specifying the

lexer for each subgrammar separately.

At a high-level, our composable PSL would have many featuresin common with Meta-

Lexer. First, it would allow rules to be added, removed, and replaced. This would make

specifications extensible. Second, it would serve primarily as a preprocessor, compiling

high-level specifications down to the syntax of existing PSLs such as beaver and bison. In

this way, it could provide a standard feature set across different platforms. As a prepro-

cessor, it could provide syntactic sugar for full EBNF syntaxand left-recursion, even if the

underlying PSL lacked support.

As an additional nicety, our composable PSL would probably separate the enumeration of

tokens from the parser proper to eliminate the dependence ofthe lexer on the parser.

3http://www.antlr.org/
4http://www.program-transformation.org/Sdf/SGLR/
5http://www2.cs.tum.edu/projects/cup/
6Special handling may be required for nullable rules.
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Acronyms

ε-NFA: Epsilon Non-deterministic Finite Automaton – a special NFA in which some

transitions (i.e.ε-transitions) can be made without consuming input.

abc: AspectBench Compiler – an open source implementation of the AspectJ program-

ming language.

AIL : Action Implementation Language – the language in which lexer actions are speci-

fied. For example, JFlex uses Java as its AIL.

AST: Abstract Syntax Tree – a refined and simplified CST.

CFG: Context Free Grammar – a succinct way of describing a contextfree language.

CST: Concrete Syntax Tree – the raw parse tree constructed by a parser.

DFA: Deterministic Finite Automaton – an FSM in which for a givenstate and input, there

is precisely one next state.

DSL: Domain Specific Language – a programming language that is tailored to a specific

field of inquiry.
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eaj: Extended AspectJ – an extension of the AspectJ language created using abc. Includes

several new pointcuts.

EBNF: Extended Bachus-Naur Form – a canonical syntax for specifying context free

grammars.

FSM: Finite State Machine – an automaton consisting of a finite number of states con-

nected by transition edges.

GPL: General Public License – an open-source copyleft license from the GNU founda-

tion.

GLR : Generalized LR – an extension of LR parsing that handles shift-reduce and reduce-

reduce conflicts by building both possible CSTs.

IDE : Integrated Development Environment – a feature-rich application for developing

software.

IMP : IDE Meta-tooling Platform – a platform for developing rich-editors for the Eclipse

IDE.

JNI : Java Native Interface – Java’s foreign function interface(with C).

LSL : Lexer Specification Language – a language in which lexer specifications are written.

For example, the JFlex system calls its LSL ‘JFlex’. Note thedistinction between the

language for specifying lexers and the system for compilingspecifications into lexers.

MLP : Mixed Language Programming – when multiple programming languages are mixed

within a single source file.

NFA: Non-deterministic Finite Automaton – an FSM in which for a given state and input,

there are zero or more next states.

PEG: Parsing Expression Grammar – a CFG-like grammar in which productions are

tested in order.
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PSL: Parser Specification Language – a language in which parser specifications are writ-

ten. For example, the Beaver parser generator calls its PSL ‘Beaver’. Note the dis-

tinction between the language for specifying parsers and the system for compiling

specifications into parsers.

SGLR: Scannerless GLR – an extension of GLR that handles lexing within the parser.

tm: Tracematches – an extension of the AspectJ language (actually, of the eaj extension

of that language) that extends pointcuts with temporal logic constructs.
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Developer Manual

This appendix describes the organization of the MetaLexer project. In order to postpone

the inevitable obsolescence of this appendix, we focus on highlights rather than providing

an exhaustive listing.

B.1 Organization

The files of the MetaLexer project are organized as follows.

B.1.1 metalexer/

.classpath & .project & .settings/Eclipse project files.

common.properties & .xml The Ant build file for the frontend. Shared by all backends.

metalexer.properties & .xml The Ant build file for the metalexer backend.

jflex.properties & .xml The Ant build file for the jflex backend.

bin/ The directory containing the Java class files produced the build process (either Eclipse

or CLI). If jars are produced, then they will be stored elsewhere.
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gen/ The directory containing source files produced by the build process (scanners pro-

duced by JFlex, parsers produced by Beaver, AST node classes,some JUnit test classes,

etc).

permgen/ The directory containing files that will be copied togen if for some reason

generation is impossible (e.g. if JFlex is missing).

lib/ The directory containing external jars depended upon by thebuild process. Note that

these jars are not required by the produced jars.

run targets/Useful eclipse run targets (mostly for running tests, but also for the frontend).

src/ Handwritten (vs generated) source code (JFlex, Beaver, JastAdd, Java, etc), not related

to testing. Must not depend on anything intest.

test/Handwritten (vs generated) testing source code. Not included in jars.

. . . Anything else is unofficial and is not required for building MetaLexer. It is not consid-

ered to be part of the system and may not be depended upon.

B.1.2 metalexer/src/ & metalexer/test/

frontend Files related to the frontend or shared by all backends.

backend-metalexerFiles related to the MetaLexer backend (i.e. for the MetaLexer-to-

MetaLexer translator).

backend-jflex Files related to the JFlex backend (i.e. for the MetaLexer-to-JFlex transla-

tor).

B.1.3 metalexer/src/frontend/

metalexerJava package.

lexer Directory containing the specification of the lexers.

component.grammar & .astSpecification of the component language parser.
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layout.grammar & .ast Specification of the layout language parser.

Component & LayoutInherit.jadd The specifications of processInheritance for compo-

nents and layouts, respectively. These are the methods thattrigger processing of the raw

AST from the parser.

Component & LayoutErrors.jrag The specifications of getErrors for components and

layouts, respectively. These files delineate the possible (frontend) errors that can be raised.

(Note that some errors are raised in the parser, the file loader, etc).

Component & LayoutWarnings.jrag The specifications of getWarnings for components

and layouts, respectively. These files delineate the possible (frontend) errors that can be

raised. (Note that some errors are raised in the parser, the inheritance mechanism, etc).

. . . The other files provide support methods for processInheritance and getErrors.

B.1.4 metalexer/src/frontend/metalexer

CompilationProblem & Error & Warning CompilationProblem is the base type of all

errors and warning encountered during compilation.

ConstantsSome helpful constants.

FileLoader Handles loading of components and layouts from files.

PatternType An enumeration of possible pattern types (i.e. acyclic, cyclic, cleanup).

B.1.5 metalexer/src/frontend/lexer

componentComponents and layouts specific to the component lexer.

layout Components and layouts specific to the layout lexer.

sharedComponents and layouts shared by the component and layout lexers.
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B.1.6 metalexer/src/backend-metalexer/

Component & LayoutGeneration.jadd The printers that turn a processed AST into Meta-

Lexer files.

metalexer/metalexer/Java package containingML2ML , the entry point for the MetaLexer-

to-MetaLexer translator.

B.1.7 metalexer/src/backend-jflex/

Component & LayoutGeneration.jadd The printers that turn a processed AST into JFlex

files.

Generation.jadd Hierarchically called fromComponent & LayoutGeneration.jadd.

Generate the .flex file output by the translator (i.e. the actual lexer).

DFAGeneration.jadd Hierarchically called fromLayoutGeneration.jadd viaLayoutDFA-

Generation. Generate the meta-lexer class for the specification, most notably the automata

used to match meta-patterns.

JFlexErrors.jrag The specification of JFlex-specific component and layout errors. Con-

tributes to the same collections asComponent & LayoutErrors.jrag .

ReturnWrap.flex Custom lexer for translating return statements of the formreturn X;

into statements of the formreturn Maybe.Just(X); . This is handled with a lexer so

that comments and strings can be handled properly.

PackageFind.flexCustom lexer for finding package statements of the formpackage X;

and returningX. This is handled with a lexer so that comments and strings canbe handled

properly.

StaticFind.flex Custom lexer for finding all occurrences of the keyword static. This is

handled with a lexer so that comments and strings can be handled properly.

metalexer/jflex/ Java package containingML2JFlex , the entry point for the MetaLexer-

to-JFlex translator.
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metalexer/jflex/fsm/Java package containing the classes for constructing and manipulat-

ing finite state machines, namelyε-NFAs, NFAs, and DFAs.

. . . Files that support generation and meta-generation.

B.1.8 metalexer/test/frontend/

c scanner.testlistList of component language scanner tests (input in .in, expected output in

.out). Output files contain a list of tokens up to either EOF orthe first error. (No warnings

are possible.)

c parserpass.testlistList of component language parser tests (input in .in, expected output

in .out). Output files contain pretty printed versions of input files. (Warnings are ignored.)

c parserfail.testlist List of component language parser tests (input in .in, expected output

in .out). Output files contain lists of errors. (Warnings areignored.)

c inheritancepass.testlistList of component language inheritance tests (input in .mlc, ex-

pected output in .out). Output files contain collapsed (i.e.post-inheritance), pretty printed

versions of input files. (Warnings are ignored.)

c inheritancefail.testlist List of component language inheritance tests (input in .mlc, ex-

pected output in .out). Output files contain lists of errors.(Warnings are ignored.)

c error.testlist List of component language error tests (input in .mlc, expected output in

.out). Output files contain lists of errors. (Warnings are ignored.)

c warning.testlist List of component language warning tests (input in .mlc, expected out-

put in .out). Output files contain lists of warnings (errors are ignored).

l scanner.testlistList of layout language scanner tests (input in .in, expected output in

.out). Output files contain a list of tokens up to either EOF orthe first error.

l parserpass.testlistList of layout language parser tests (input in .in, expectedoutput in

.out). Output files contain pretty printed versions of inputfiles. (Warnings are ignored.)

l parserfail.testlist List of layout language parser tests (input in .in, expectedoutput in

.out). Output files contain lists of errors. (Warnings are ignored.)
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l inheritancepass.testlistList of layout language inheritance tests (input in .mll, expected

output in .out). Output files contain collapsed (i.e. post-inheritance), pretty printed versions

of input files. (Warnings are ignored.)

l inheritancefail.testlist List of layout language inheritance tests (input in .mll, expected

output in .out). Output files contain lists of errors. (Warnings are ignored.)

l error.testlist List of layout language error tests (input in .mll, expectedoutput in .out).

Output files contain lists of errors. Note: lerror helper tests check the effect of the

%helper directive on errors. (Warnings are ignored.)

l warning.testlist List of layout language error tests (input in .mll, expectedoutput in .out).

Output files contain lists of warnings. (Errors are ignored.)

metalexer/Java package. Contains JastAdd files (in contrast tosrc) to keep them separate

from the test input and output files.

. . . Test specifications (as listed in .testlist files).

B.1.9 metalexer/test/frontend/metalexer/

Component & LayoutPrint.jrag Pretty printers for testing. Produce an output that is

useful for testing. Not guaranteed to produce correct MetaLexer (e.g. may include helpful,

but illegal annotations).

FrontendTestsThe top-level JUnit test suite.

TestBaseClass to be extended by generated test file.

TestGeneratorClass that generates a test file from a .testlist file.

TestToolClass for generating .out files automatically.

. . . Support files for the Base, Generator, and Tool classes.
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B.1.10 metalexer/test/backend-metalexer/

metalexer/metalexer/Java package containing the top-level JUnit test suite,Backend-

MetalexerTests.

in/ Metalexer specifications.

out1/ Files fromin that have been run through the pretty printer.

out2/ Files fromout1 that have been run through the pretty printer. Contents should be

identical to those ofout1.

B.1.11 metalexer/test/backend-jflex/

c error.testlist List of component language (JFlex-specific) error tests (input in .mll, ex-

pected output in .out). Output files contain lists of errors.

c error.testlist List of layout language (JFlex-specific) error tests (inputin .mll, expected

output in .out). Output files contain lists of errors.

m c meta.testlistList of tests. Each test has a .in file list of meta-tokens and regions to be

passed to the generated meta-lexer for the component language specification and a .out file

listing the expected embedding transitions returned by themeta-lexer.

n scanner.testlistList of natlab language scanner tests. Copied from McLab but modified

by removing lines passed through the comment buffer (i.e. preceded by ’#’ in the original).

in/ Specifications of various languages given in MetaLexer.

out/ The output from translating the specifications inin/ to JFlex: lexer and meta-lexer

JFlex files, properties files recording the characters assigned to regions and meta-tokens

and the numbers assigned to embeddings, and Java scanners output by JFlex.

out/bin/ The class files that result from compiling the Java scanners output by JFlex. Note:

this directory is on the classpath so that these scanners canbe tested by the JUnit test suite.

placeholders/Stubs of Java classes that contain just enough to make the generated scanners

work. Most importantly, the parser stubs contain the list oftokens on which the scanners
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depend. Note: subdirectories are all Java packages and are on the classpath.

metalexer/jflex/ Java package. Contains JastAdd files to keep them separate from test

intput files.

B.1.12 metalexer/test/backend-jflex/metalexer/jflex/

BackendJFlexTestsThe top-level JUnit test suite.

CompilationTestsArguably the most important test cases. Compiles the MetaLexer spec-

ifications inin to JFlex, to Java, to class files. Depended upon by the tests that exercise the

generated scanners. Note: when running in Eclipse, it is necessary to run the tests more

than once, refreshing in between, because Eclipse will not pick up the changes made by

this test during a single run.

TestsHandwritten (vs generated) test cases.

TestBaseClass to be extended by generated test file.

TestGeneratorClass that generates a test file from a .testlist file.

TestToolClass for generating .out files automatically.

JFlexHelper A helper class that loads the JFlex jar at runtime if it is present.

ReflectionHelper A helper class that loads the generated scanner files at runtime if they

have been generated (i.e. if JFlex is available).

. . . Support files for the Base, Generator, and Tool classes.

B.2 JFlex

Unfortunately, JFlex is covered by a GPL license. Since the MetaLexer is covered by a

modified BSD-style license, the MetaLexer distribution cannot include JFlex.

MetaLexer will function properly without JFlex, but you will be unable to rebuild any

modified .flex files and the compilation-based tests in the JFlex backend will be unavailable.
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If you wish to download JFlex on your own, it is available athttp://jflex.de/. Just un-

zip the archive under the lib/ directory and pointjflex.jar.path.prop in com-

mon.propertiesat the jar file (path should be relative to lib/).

B.3 Configurations

The MetaLexer compiler supports multiple backends with a shared frontend. The current

implementation supports MetaLexer-to-JFlex and MetaLexer-to-MetaLexer.

Unfortunately, since the project uses aspects, there is interference between the backends.

As a result, only one can be built and developed at a time. One benefit of this approach is

that it keeps the release jars small by excluding code required for other backends.

To work solely on the frontend, use thecommon.xmlbuild file. To work on the MetaLexer

backend and the frontend, use themetalexer.xmlbuild file. To work on the JFlex backend

and the frontend, use thejflex.xml build file.

B.4 Building MetaLexer

MetaLexer developers can use either the command line or the Eclipse IDE.

B.4.1 Command Line

When executing the build files from the command line, ensure that theeclipse.running

property is not set. If it is, then the Java compilation stepswill be skipped.

The Ant build file takes care of all classpath issues. No configuration should be required.
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B.4.2 Eclipse

To build the project in Eclipse, use the same Ant targets as from the command line, but

ensure that theeclipse.runningproperty is set. This will allow Eclipse to build Java files

that are in source path folders in the Eclipse build path.

The provided.classpathfile takes care of all source- and classpath issues. No configuration

should be required.

When running the JUnit tests in the JUnit view, note that the frontend and backend tests

must be run separately. (In contrast, thetestAnt target runs all appropriate tests in a single

pass.)

If you want a really minimal release jar, you have to build it from the command line because

otherwise Eclipse will compile some extraneous Java files and they will be included.
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The MetaLexer tool is covered by the (modified) BSD License.

Copyright (c) 2009, Andrew Casey (McGill University)

All rights reserved.

Redistribution and use in source and binary forms, with or wi thout

modification, are permitted provided that the following co nditions are met:

* Redistributions of source code must retain the above copyri ght notice,

this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above cop yright notice,

this list of conditions and the following disclaimer in the d ocumentation

and/or other materials provided with the distribution.

* Neither the name of McGill University nor the names of its con tributors

may be used to endorse or promote products derived from this s oftware

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULARPURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR C ONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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C.1 Component

1 package metalexer;

2 %%

3 //based on http://jflex.de/manual.html

4

5 import static metalexer.ComponentParser.Terminals. * ;

6 %%

7

8 %layout component

9

10 %option visibility "%public"

11 %option finality "%final"

12 %option class_name "%class ComponentScanner"

13

14 %component action

15 %component append_delim_region

16 %component append_region

17 %component base

18 %component bracket_comment

19 %component char_class

20 %component comp_options

21 %component comp_rules

22 %component decl_region

23 %component delete_directive

24 %component init_region

25 %component macro_defn

26 %component macro_invoc

27 %component mtok_decl

28 %component open_rule_group

29 %component repetition_spec

30 %component state_list

31 %component string_id_directive

32 %component string

33

34 %start base
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35

36 %%

37

38 %%inherit beaver

39 %%inherit helper

40

41 %%embed

42 %name header

43 %host base

44 %guest comp_options

45 %start <BOF>

46 %end END_HEADER_SECTION

47

48 %%embed

49 %name rules

50 %host base

51 %guest comp_rules

52 %start %comp_options%

53 %end END_RULE_SECTION

54

55 %%embed

56 %name action

57 %host comp_rules

58 %guest action

59 %start START_ACTION

60 %end END_ACTION

61

62 %%embed

63 %name init_region

64 %host comp_options

65 %guest init_region

66 %start START_INIT_REGION

67 %end END_INIT_REGION

68

69 %%embed

70 %name decl_region

71 %host comp_options
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72 %guest decl_region

73 %start START_DECL_REGION

74 %end END_DECL_REGION

75

76 %%embed

77 %name append_region

78 %host comp_options

79 %guest append_region

80 %start START_APPEND_REGION

81 %end END_APPEND_REGION

82

83 %%embed

84 %name append_delim_region

85 %host comp_options

86 %guest append_delim_region

87 %start START_APPEND_DELIM_REGION

88 %end END_APPEND_DELIM_REGION

89

90 %%embed

91 %name macro_defn

92 %host comp_options

93 %guest macro_defn

94 %start START_MACRO_DEFN

95 %end END_MACRO_DEFN

96

97 %%embed

98 %name bracket_comment

99 %host comp_options, macro_defn, comp_rules, mtok_decl, state_ list,

string_id_directive, delete_directive, open_rule_grou p

100 %host bracket_comment //NB: host and guest => nestable

101 %guest bracket_comment

102 %start START_BRACKET_COMMENT

103 %end END_BRACKET_COMMENT

104

105 %%embed

106 %name char_class

107 %host macro_defn, comp_rules, delete_directive
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108 %guest char_class

109 %start START_CHAR_CLASS

110 %end END_CHAR_CLASS

111

112 %%embed

113 %name delete_directive

114 %host comp_rules

115 %guest delete_directive

116 %start START_DELETE_DIRECTIVE

117 %end END_DELETE_DIRECTIVE

118

119 %%embed

120 %name macro_invoc

121 %host macro_defn, comp_rules, delete_directive

122 %guest macro_invoc

123 %start START_MACRO_INVOC

124 %end END_MACRO_INVOC

125

126 %%embed

127 %name repetition_spec

128 %host macro_defn, comp_rules, delete_directive

129 %guest repetition_spec

130 %start START_REP_SPEC

131 %end END_REP_SPEC

132

133 %%embed

134 %name mtok_decl

135 %host comp_rules

136 %guest mtok_decl

137 %start %action%

138 %end END_MTOK_DECL

139

140 %%embed

141 %name string_id_directive

142 %host comp_options, comp_rules

143 %guest string_id_directive

144 %start START_STRING_ID_DIRECTIVE
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145 %end END_STRING_ID_DIRECTIVE

146

147 %%embed

148 %name string

149 %host macro_defn, comp_rules, delete_directive, string_id_di rective

150 %guest string

151 %start START_STRING

152 %end END_STRING

153

154 %%embed

155 %name state_list

156 %host comp_rules, delete_directive

157 %guest state_list

158 %start START_STATE_LIST

159 %end END_STATE_LIST

160

161 %%embed

162 %name delete_state_list

163 %host delete_directive

164 %guest state_list

165 %start START_STATE_LIST

166 %end END_STATE_LIST

167

168 %%embed

169 %name open_rule_group

170 %host comp_rules

171 %guest open_rule_group

172 %start %state_list%

173 %end END_OPEN_RULE_GROUP

174

175 %%embed

176 %name eof_error

177 %host action, append_delim_region, append_region, bracket_co mment,

char_class

178 %host decl_region, init_region, macro_invoc, open_rule_group ,

repetition_spec

179 %host state_list, string
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180 %guest base

181 %start EOF_ERROR

182 %end <ANY> //NB: will never happen

lexer/component/component.mll

1 %component action

2

3 %extern "private Symbol symbol(short type, Object value, int start Line,

int startCol, int endLine, int endCol)"

4 %extern "private void error(String msg) throws Scanner.Exception "

5

6 %appendWithStartDelim{ / * (int startLine, int startCol, int endLine, int

endCol, String text) * /

7 return symbol(ACTION, text, startLine + 1, startCol + 1, end Line +

1, endCol + 1);

8 %appendWithStartDelim}

9

10 %%

11

12 %%inherit comp_macros

13

14 %{CloseAction} {: append(yytext().substring(1)); :}

15 {CloseAction} {: :} END_ACTION

16

17 %:

18 %:

19

20 <<ANY>> {: append(yytext()); :}

21 <<EOF>> {: error( "Unterminated action" ); :} EOF_ERROR

lexer/component/action.mlc

1 %component append_delim_region

2

3 %extern "private Symbol symbol(short type, Object value, int start Line,

int startCol, int endLine, int endCol)"

4 %extern "private void error(String msg) throws Scanner.Exception "
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5

6 %appendWithStartDelim{ / * (int startLine, int startCol, int endLine, int

endCol, String text) * /

7 return symbol(APPEND_WITH_START_DELIM_REGION, text, st artLine + 1,

startCol + 1, endLine + 1, endCol + 1);

8 %appendWithStartDelim}

9

10 CloseAppendDelimRegion = "%appendWithStartDelim}"

11

12 %%

13

14 %{CloseAppendDelimRegion} {: append(yytext().substring(1)); :}

15 {CloseAppendDelimRegion} {: :} END_APPEND_DELIM_REGION

16

17 %:

18 %:

19

20 <<ANY>> {: append(yytext()); :}

21 <<EOF>> {: error( "Unterminated append region" ); :} EOF_ERROR

lexer/component/append delim region.mlc

1 %component append_region

2

3 %extern "private Symbol symbol(short type, Object value, int start Line,

int startCol, int endLine, int endCol)"

4 %extern "private void error(String msg) throws Scanner.Exception "

5

6 %appendWithStartDelim{ / * (int startLine, int startCol, int endLine, int

endCol, String text) * /

7 return symbol(APPEND_REGION, text, startLine + 1, startCo l + 1,

endLine + 1, endCol + 1);

8 %appendWithStartDelim}

9

10 CloseAppendRegion = "%append}"

11

12 %%

13
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14 %{CloseAppendRegion} {: append(yytext().substring(1)); :}

15 {CloseAppendRegion} {: :} END_APPEND_REGION

16

17 %:

18 %:

19

20 <<ANY>> {: append(yytext()); :}

21 <<EOF>> {: error( "Unterminated append region" ); :} EOF_ERROR

lexer/component/append region.mlc

1 %component char_class

2

3 %extern "private Symbol symbol(short type)"

4 %extern "private Symbol symbol(short type, Object value)"

5 %extern "private void error(String msg) throws Scanner.Exception "

6

7 %%

8

9 %%inherit comp_macros

10

11 \ˆ {: return symbol(CHAR_CLASS_NEGATE); :}

12 \- {: return symbol(DASH); :}

13 \] {: return symbol(RSQUARE); :} END_CHAR_CLASS

14

15 {EscapeSequence} {: return symbol(ESCAPE_SEQUENCE, yyte xt()); :}

16 \\{Any} {: return symbol(CHAR_CLASS_CHAR, yytext().subs tring(1)); :}

17 \\ {: error( "Incomplete escape sequence" ); :}

18

19 %:

20 %:

21

22 <<ANY>> {: return symbol(CHAR_CLASS_CHAR, yytext()); :}

23 <<EOF>> {: error( "Unterminated character class" ); :} EOF_ERROR

lexer/component/char class.mlc

1 %component comp_macros
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2 %helper

3

4 OpenAppendRegion = "%append{"

5 OpenAppendWithStartDelimRegion = "%appendWithStartDelim{"

6

7 OpenAction = "{:"

8 CloseAction = ":}"

9

10 OpenCurlyBracket = \{

11 CloseCurlyBracket = \}

12

13 OpenAngleBracket = \<

14 CloseAngleBracket = \>

15

16 NonMeta = [ˆ\|\(\)\{\}\[\]\<\>\\\.\ * \+\?\ˆ\$\/\.\ "\˜\!\-]

17

18 //ok to not handle comments - JFlex doesn’t either

19 MacroLookahead = {OtherWhiteSpace} * {Identifier} {OtherWhiteSpace} *

{CloseCurlyBracket}

20 RepetitionLookahead = {OtherWhiteSpace} * {Number} ({OtherWhiteSpace} *

" , " {OtherWhiteSpace} * {Number})? {OtherWhiteSpace} *

{CloseCurlyBracket}

21

22 GroupSeparator = " %:"

23

24 %%

25

26 %%inherit shared_macros

lexer/component/comp macros.mlc

1 %component comp_options

2

3 %extern "private Symbol symbol(short type)"

4 %extern "private Symbol symbol(short type, Object value)"

5 %extern "private void error(String msg) throws Scanner.Exception "

6

7 %%
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8

9 %%inherit comp_macros

10 %%inherit comment_start

11

12 //whitespace

13 {LineTerminator} {: / * ignore * / :}

14 {OtherWhiteSpace} {: / * ignore * / :}

15

16 {OpenDeclRegion} {: appendToStartDelim( "" ); / * tweak start pos * / :}

START_DECL_REGION

17 {OpenInitRegion} {: appendToStartDelim( "" ); / * tweak start pos * / :}

START_INIT_REGION

18 {OpenAppendRegion} {: appendToStartDelim( "" ); / * tweak start pos * / :}

START_APPEND_REGION

19 {OpenAppendWithStartDelimRegion} {: appendToStartDelim( "" ); / * tweak

start pos * / :} START_APPEND_DELIM_REGION

20

21 //no-arg directives

22 "%helper" / {DirectiveLookahead} {:

23 return symbol(HELPER_DIRECTIVE);

24 :} START_STRING_ID_DIRECTIVE

25

26 //identifier directives

27 "%component" / {DirectiveLookahead} {:

28 return symbol(COMPONENT_DIRECTIVE);

29 :} START_STRING_ID_DIRECTIVE

30 "%state" / {DirectiveLookahead} {:

31 return symbol(STATE_DIRECTIVE);

32 :} START_STRING_ID_DIRECTIVE

33 "%xstate" / {DirectiveLookahead} {:

34 return symbol(XSTATE_DIRECTIVE);

35 :} START_STRING_ID_DIRECTIVE

36 "%start" / {DirectiveLookahead} {:

37 return symbol(START_DIRECTIVE);

38 :} START_STRING_ID_DIRECTIVE

39

40 //string directives
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41 "%extern" / {DirectiveLookahead} {:

42 return symbol(EXTERN_DIRECTIVE);

43 :} START_STRING_ID_DIRECTIVE

44 "%import" / {DirectiveLookahead} {:

45 return symbol(IMPORT_DIRECTIVE);

46 :} START_STRING_ID_DIRECTIVE

47 "%initthrow" / {DirectiveLookahead} {:

48 return symbol(INITTHROW_DIRECTIVE);

49 :} START_STRING_ID_DIRECTIVE

50 "%lexthrow" / {DirectiveLookahead} {:

51 return symbol(LEXTHROW_DIRECTIVE);

52 :} START_STRING_ID_DIRECTIVE

53

54 //invalid directives

55 "%" {: error( "Invalid directive" ); :}

56

57 //end of section

58 {SectionSeparator} {:

59 return symbol(SECTION_SEPARATOR);

60 :} END_HEADER_SECTION

61

62 %:

63

64 //for macro declarations

65 //NB: beginning of line so that it doesn’t interfere with pat terns

66 {Identifier} {: return symbol(IDENTIFIER, yytext().trim ()); :}

START_MACRO_DEFN

67

68 %:

69 <<ANY>> {: error( "Unexpected character: " + yytext()); :}

70 <<EOF>> {: :} END_HEADER_SECTION

lexer/component/comp options.mlc

1 %component comp_rules

2

3 %extern "private Symbol symbol(short type)"

4
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5 %%

6

7 %%inherit comp_macros

8 %%inherit comment_start

9

10 //whitespace

11 {LineTerminator} {: / * ignore * / :}

12 {OtherWhiteSpace} {: / * ignore * / :}

13

14 {OpenAngleBracket} {:

15 return symbol(LANGLE);

16 :} START_STATE_LIST

17

18 {OpenCurlyBracket} / {MacroLookahead} {:

19 return symbol(OPEN_MACRO);

20 :} START_MACRO_INVOC

21

22 {OpenCurlyBracket} / {RepetitionLookahead} {:

23 return symbol(OPEN_REPETITION_SPEC);

24 :} START_REP_SPEC

25

26 {OpenAction} {: appendToStartDelim( "" ); / * tweak start pos * / :}

START_ACTION

27

28 //for ending state rule-groups

29 {CloseCurlyBracket} {: return symbol(CLOSE_RULE_GROUP) ; :}

30

31 {GroupSeparator} {: return symbol(GROUP_SEPARATOR); :}

32 {SectionSeparator} inherit / {DirectiveLookahead} {:

33 return symbol(INHERIT_SECTION_SEPARATOR);

34 :} START_STRING_ID_DIRECTIVE

35

36 //lookahead ensures that "%delete" isn’t a prefix (e.g. "%d eleted") and

that we’re not in a regex (since no <)

37 "%delete" / {DirectiveLookahead} {:

38 return symbol(DELETE_DIRECTIVE);

39 :} START_DELETE_DIRECTIVE
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40

41 %:

42 %:

43

44 <<EOF>> {: :} END_RULE_SECTION

45

46 %%inherit comp_symbols

lexer/component/comp rules.mlc

1 %component comp_symbols

2 %helper

3

4 %extern "private Symbol symbol(short type)"

5 %extern "private Symbol symbol(short type, Object value)"

6 %extern "private void error(String msg) throws Scanner.Exception "

7

8 %%

9

10 %%inherit comp_macros

11

12 \( {: return symbol(LPAREN); :}

13 \) {: return symbol(RPAREN); :}

14 \[ {: return symbol(LSQUARE); :} START_CHAR_CLASS

15 \] {: return symbol(RSQUARE); :}

16

17 \ˆ {: return symbol(BEGINNING_OF_LINE); :}

18 \$ {: return symbol(END_OF_LINE); :}

19

20 \! {: return symbol(NOT); :}

21 \˜ {: return symbol(UPTO); :}

22

23 \ * {: return symbol(STAR); :}

24 \+ {: return symbol(PLUS); :}

25 \? {: return symbol(OPT); :}

26

27 \- {: return symbol(DASH); :}

28
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29 \/ {: return symbol(SLASH); :}

30 \| {: return symbol(ALT); :}

31

32 \. {: return symbol(DOT); :}

33

34 "=" {: return symbol(ASSIGN); :}

35

36 "<<ANY>>" {: return symbol(ANY_PATTERN); :}

37 "<<EOF>>" {: return symbol(EOF_PATTERN); :}

38

39 {EscapeSequence} {: return symbol(ESCAPE_SEQUENCE, yyte xt()); :}

40 \\{Any} {: return symbol(NON_META, yytext().substring(1 )); :}

41 \\ {: error( "Incomplete escape sequence" ); :}

42

43 {Quote} {: appendToStartDelim( "" ); / * tweak start pos * / :} START_STRING

44

45 //safe fallback for patterns

46 {NonMeta} {: return symbol(NON_META, yytext()); :}

47

48 %:

49 %:

50

51 <<ANY>> {: error( "Unexpected character: " + yytext()); :}

lexer/component/comp symbols.mlc

1 %component delete_directive

2

3 %extern "private Symbol symbol(short type)"

4

5 %%

6

7 %%inherit comment_start

8

9 {LineTerminator} {: return symbol(DELETE_TERMINATOR); : }

END_DELETE_DIRECTIVE

10 {OtherWhiteSpace} {: / * ignore * / :}

11
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12 {OpenAngleBracket} {: return symbol(LANGLE); :} START_ST ATE_LIST

13

14 {OpenCurlyBracket} / {MacroLookahead} {:

15 return symbol(OPEN_MACRO);

16 :} START_MACRO_INVOC

17

18 {OpenCurlyBracket} / {RepetitionLookahead} {:

19 return symbol(OPEN_REPETITION_SPEC);

20 :} START_REP_SPEC

21

22 %%inherit comp_symbols

23

24 %:

25 %:

26

27 <<EOF>> {: return symbol(DELETE_TERMINATOR); :} END_DELE TE_DIRECTIVE

lexer/component/delete directive.mlc

1 %component macro_defn

2

3 %extern "private Symbol symbol(short type)"

4

5 %%

6

7 %%inherit comp_macros

8 %%inherit comment_start

9

10 //whitespace

11 {LineTerminator} {: :} END_MACRO_DEFN

12 {OtherWhiteSpace} {: / * ignore * / :}

13

14 {OpenCurlyBracket} / {MacroLookahead} {:

15 return symbol(OPEN_MACRO);

16 :} START_MACRO_INVOC

17

18 {OpenCurlyBracket} / {RepetitionLookahead} {:

19 return symbol(OPEN_REPETITION_SPEC);
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20 :} START_REP_SPEC

21

22 %:

23 %:

24

25 <<EOF>> {: :} END_MACRO_DEFN

26

27 %%inherit comp_symbols

lexer/component/macro defn.mlc

1 %component macro_invoc

2

3 %extern "private Symbol symbol(short type)"

4 %extern "private Symbol symbol(short type, Object value)"

5 %extern "private void error(String msg) throws Scanner.Exception "

6

7 %%

8

9 %%inherit comp_macros

10

11 //whitespace

12 {LineTerminator} {: / * ignore * / :}

13 {OtherWhiteSpace} {: / * ignore * / :}

14

15 {CloseCurlyBracket} {: return symbol(CLOSE_MACRO); :} EN D_MACRO_INVOC

16

17 %:

18

19 //for macro names

20 {Identifier} {: return symbol(IDENTIFIER, yytext()); :}

21

22 %:

23

24 <<ANY>> {: error( "Unexpected character in macro invocation: " +

yytext()); :}

25 <<EOF>> {: error( "Unterminated macro invocation" ); :} EOF_ERROR
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lexer/component/macro invoc.mlc

1 %component mtok_decl

2

3 %extern "private Symbol symbol(short type, Object value)"

4 %extern "private void error(String msg) throws Scanner.Exception "

5

6 %%

7

8 %%inherit comp_macros

9 %%inherit comment_start

10

11 //whitespace

12 {LineTerminator} {: :} END_MTOK_DECL

13 {OtherWhiteSpace} {: / * ignore * / :}

14

15 %:

16

17 //for meta-token types

18 {Identifier} {: return symbol(IDENTIFIER, yytext()); :}

19

20 %:

21

22 <<ANY>> {: error( "Unexpected character in meta token specification: " +

yytext()); :}

23 <<EOF>> {: :} END_MTOK_DECL

lexer/component/mtok decl.mlc

1 %component open_rule_group

2

3 %extern "private Symbol symbol(short type)"

4 %extern "private void error(String msg) throws Scanner.Exception "

5

6 %%

7

8 %%inherit comp_macros
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9 %%inherit comment_start

10

11 //whitespace

12 {LineTerminator} {: / * ignore * / :}

13 {OtherWhiteSpace} {: / * ignore * / :}

14

15 {OpenCurlyBracket} {: return symbol(OPEN_RULE_GROUP); : }

END_OPEN_RULE_GROUP

16

17 %:

18 %:

19

20 <<ANY>> {: error( "Expecting ’{’, found: " + yytext()); :}

21 <<EOF>> {: error( "No group associated with state list" ); :} EOF_ERROR

lexer/component/open rule group.mlc

1 %component repetition_spec

2

3 %extern "private Symbol symbol(short type)"

4 %extern "private Symbol symbol(short type, Object value)"

5 %extern "private void error(String msg) throws Scanner.Exception "

6

7 %%

8

9 %%inherit comp_macros

10

11 //whitespace

12 {LineTerminator} {: / * ignore * / :}

13 {OtherWhiteSpace} {: / * ignore * / :}

14

15 //for separating repetition quantities

16 , {: return symbol(COMMA); :}

17

18 {CloseCurlyBracket} {: return symbol(CLOSE_REPETITION_ SPEC); :}

END_REP_SPEC

19

20 %:
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21

22 //for repetition quantities

23 {Number} {: return symbol(NUMBER, yytext()); :}

24

25 %:

26

27 <<ANY>> {: error( "Unexpected character in repetition specification: " +

yytext()); :}

28 <<EOF>> {: error( "Unterminated repetition specification" ); :} EOF_ERROR

lexer/component/repetition spec.mlc

1 %component state_list

2

3 %extern "private Symbol symbol(short type)"

4 %extern "private Symbol symbol(short type, Object value)"

5 %extern "private void error(String msg) throws Scanner.Exception "

6

7 %%

8

9 %%inherit comp_macros

10 %%inherit comment_start

11

12 {CloseAngleBracket} {: return symbol(RANGLE); :} END_STA TE_LIST

13

14 //whitespace

15 {LineTerminator} {: / * ignore * / :}

16 {OtherWhiteSpace} {: / * ignore * / :}

17

18 //for separating state names

19 , {: return symbol(COMMA); :}

20

21 %:

22

23

24 //for state names

25 {Identifier} {: return symbol(IDENTIFIER, yytext()); :}

26
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27 %:

28

29 //catchall - error

30 <<ANY>> {: error( "Unexpected character in state list: " + yytext()); :}

31 <<EOF>> {: error( "Unterminated state list" ); :} EOF_ERROR

lexer/component/state list.mlc

C.2 Layout

1 package metalexer;

2 %%

3 //based on http://jflex.de/manual.html

4

5 import static metalexer.LayoutParser.Terminals. * ;

6 %%

7

8 %layout layout

9

10 %option visibility "%public"

11 %option finality "%final"

12 %option class_name "%class LayoutScanner"

13

14 %component base

15 %component bracket_comment

16 %component decl_region

17 %component init_region

18 %component layout_inherited_header

19 %component layout_local_header

20 %component layout_options

21 %component layout_rules

22 %component mpat_directive

23 %component pair_directive

24 %component string_id_directive

25 %component string

26
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27 %start base

28

29 %%

30

31 %%inherit beaver

32 %%inherit helper

33

34 %%embed

35 %name local_header

36 %host base

37 %guest layout_local_header

38 %start <BOF>

39 %end END_LOCAL_HEADER

40

41 %%embed

42 %name inherited_header

43 %host base

44 %guest layout_inherited_header

45 %start %layout_local_header%

46 %end END_INHERITED_HEADER

47

48 %%embed

49 %name options_section

50 %host base

51 %guest layout_options

52 %start %layout_inherited_header%

53 %end END_OPTION_SECTION

54

55 %%embed

56 %name rules_section

57 %host base

58 %guest layout_rules

59 %start %layout_options%

60 %end END_RULES_SECTION

61

62 %%embed

63 %name bracket_comments
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64 %host layout_options, layout_rules, string_id_directive,

mpat_directive, pair_directive

65 %host bracket_comment //NB: host and guest => nestable

66 %guest bracket_comment

67 %start START_BRACKET_COMMENT

68 %end END_BRACKET_COMMENT

69

70 %%embed

71 %name init_region

72 %host layout_options

73 %guest init_region

74 %start START_INIT_REGION

75 %end END_INIT_REGION

76

77 %%embed

78 %name decl_region

79 %host layout_options

80 %guest decl_region

81 %start START_DECL_REGION

82 %end END_DECL_REGION

83

84 %%embed

85 %name string_id_directive

86 %host layout_options, layout_rules

87 %guest string_id_directive

88 %start START_STRING_ID_DIRECTIVE

89 %end END_STRING_ID_DIRECTIVE

90

91 %%embed

92 %name pair_directive

93 %host layout_rules

94 %guest pair_directive

95 %start START_PAIR_DIRECTIVE

96 %end END_PAIR_DIRECTIVE

97

98 %%embed

99 %name mpat_directive
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100 %host layout_rules

101 %guest mpat_directive

102 %start START_MPAT_DIRECTIVE

103 %end END_MPAT_DIRECTIVE

104

105 %%embed

106 %name string

107 %host string_id_directive

108 %guest string

109 %start START_STRING

110 %end END_STRING

111

112 %%embed

113 %name eof_error

114 %host bracket_comment, decl_region, init_region,

layout_inherited_header, layout_local_header, string

115 %guest base

116 %start EOF_ERROR

117 %end <ANY> //NB: will never happen

lexer/layout/layout.mll

1 %component layout_inherited_header

2

3 %extern "private Symbol symbol(short type, Object value, int start Line,

int startCol, int endLine, int endCol)"

4 %extern "private void error(String msg) throws Scanner.Exception "

5

6 %append{ / * (int startLine, int startCol, int endLine, int endCol,

String text) * /

7 if(text.startsWith( "\r\n" )) {

8 text = text.substring(2);

9 } else if(text.startsWith( "\n" ) || text.startsWith( "\r" )) {

10 text = text.substring(1);

11 }

12 return symbol(INHERITED_HEADER, text, startLine + 1, star tCol + 1,

endLine + 1, endCol + 1);

13 %append}

184



C.2. Layout

14

15 %%

16

17 %%inherit layout_macros

18

19 //end of section

20 {SectionSeparator} {: :} END_INHERITED_HEADER

21

22 %:

23 %:

24

25 <<ANY>> {: append(yytext()); :}

26 <<EOF>> {: error( "Unterminated inherited header section." ); :} EOF_ERROR

lexer/layout/layout inherited header.mlc

1 %component layout_local_header

2

3 %extern "private Symbol symbol(short type, Object value, int start Line,

int startCol, int endLine, int endCol)"

4 %extern "private void error(String msg) throws Scanner.Exception "

5

6 %append{ / * (int startLine, int startCol, int endLine, int endCol,

String text) * /

7 return symbol(LOCAL_HEADER, text, startLine + 1, startCol + 1,

endLine + 1, endCol + 1);

8 %append}

9

10 %%

11

12 %%inherit layout_macros

13

14 //end of section

15 {SectionSeparator} {: :} END_LOCAL_HEADER

16

17 %:

18 %:

19
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20 <<ANY>> {: append(yytext()); :}

21 <<EOF>> {: error( "Unterminated local header section." ); :} EOF_ERROR

lexer/layout/layout local header.mlc

1 %component layout_macros

2 %helper

3

4 %%

5

6 %%inherit shared_macros

lexer/layout/layout macros.mlc

1 %component layout_options

2

3 %extern "private Symbol symbol(short type)"

4 %extern "private void error(String msg) throws Scanner.Exception "

5

6 %%

7

8 %%inherit layout_macros

9 %%inherit comment_start

10

11 //whitespace

12 {LineTerminator} {: / * ignore * / :}

13 {OtherWhiteSpace} {: / * ignore * / :}

14

15 {OpenDeclRegion} {: appendToStartDelim( "" ); / * tweak start pos * / :}

START_DECL_REGION

16 {OpenInitRegion} {: appendToStartDelim( "" ); / * tweak start pos * / :}

START_INIT_REGION

17

18 //no-arg directives

19 "%helper" / {DirectiveLookahead} {:

20 return symbol(HELPER_DIRECTIVE);

21 :} START_STRING_ID_DIRECTIVE

22
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23 //identifier directives

24 "%layout" / {DirectiveLookahead} {:

25 return symbol(LAYOUT_DIRECTIVE);

26 :} START_STRING_ID_DIRECTIVE

27 "%start" / {DirectiveLookahead} {:

28 return symbol(START_DIRECTIVE);

29 :} START_STRING_ID_DIRECTIVE

30 "%component" / {DirectiveLookahead} {:

31 return symbol(COMPONENT_DIRECTIVE);

32 :} START_STRING_ID_DIRECTIVE

33

34 //string directives

35 "%declare" / {DirectiveLookahead} {:

36 return symbol(DECLARE_DIRECTIVE);

37 :} START_STRING_ID_DIRECTIVE

38 "%initthrow" / {DirectiveLookahead} {:

39 return symbol(INITTHROW_DIRECTIVE);

40 :} START_STRING_ID_DIRECTIVE

41 "%lexthrow" / {DirectiveLookahead} {:

42 return symbol(LEXTHROW_DIRECTIVE);

43 :} START_STRING_ID_DIRECTIVE

44

45 //mixed directives

46 "%option" / {DirectiveLookahead} {:

47 return symbol(OPTION_DIRECTIVE);

48 :} START_STRING_ID_DIRECTIVE

49

50 //invalid directives

51 "%" {: error( "Invalid directive" ); :}

52

53 //end of section

54 {SectionSeparator} {: :} END_OPTION_SECTION

55

56 %:

57 %:

58

59 <<ANY>> {: error( "Unexpected character in option section: " +
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yytext()); :}

60 <<EOF>> {: :} END_OPTION_SECTION

lexer/layout/layout options.mlc

1 %component layout_rules

2

3 %extern "private Symbol symbol(short type)"

4 %extern "private void error(String msg) throws Scanner.Exception "

5

6 %%

7

8 %%inherit layout_macros

9 %%inherit comment_start

10

11 //whitespace

12 {LineTerminator} {: / * ignore * / :}

13 {OtherWhiteSpace} {: / * ignore * / :}

14

15 "%%embed" / {DirectiveLookahead} {:

16 return symbol(START_EMBED_GROUP);

17 :}

18

19 "%name" / {DirectiveLookahead} {:

20 return symbol(EMBEDDING_NAME);

21 :} START_STRING_ID_DIRECTIVE

22 "%host" / {DirectiveLookahead} {:

23 return symbol(EMBEDDING_HOST);

24 :} START_STRING_ID_DIRECTIVE

25 "%guest" / {DirectiveLookahead} {:

26 return symbol(EMBEDDING_GUEST);

27 :} START_STRING_ID_DIRECTIVE

28 "%pair" / {DirectiveLookahead} {:

29 return symbol(EMBEDDING_PAIR);

30 :} START_PAIR_DIRECTIVE

31

32 "%start" / {DirectiveLookahead} {:

33 return symbol(EMBEDDING_START);
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34 :} START_MPAT_DIRECTIVE

35 "%end" / {DirectiveLookahead} {:

36 return symbol(EMBEDDING_END);

37 :} START_MPAT_DIRECTIVE

38

39 "%%inherit" / {DirectiveLookahead} {:

40 return symbol(START_INHERIT_GROUP);

41 :} START_STRING_ID_DIRECTIVE

42 "%unembed" / {DirectiveLookahead} {:

43 return symbol(INHERIT_UNEMBED);

44 :} START_STRING_ID_DIRECTIVE

45 "%replace" / {DirectiveLookahead} {:

46 return symbol(INHERIT_REPLACE);

47 :} START_STRING_ID_DIRECTIVE

48 "%unoption" / {DirectiveLookahead} {:

49 return symbol(INHERIT_UNOPTION);

50 :} START_STRING_ID_DIRECTIVE

51

52 %:

53 %:

54

55 <<ANY>> {: error( "Unexpected character in rule section: " + yytext());

:}

56 <<EOF>> {: :} END_RULES_SECTION

lexer/layout/layout rules.mlc

1 %component mpat_directive

2

3 %extern "private Symbol symbol(short type)"

4 %extern "private Symbol symbol(short type, Object value)"

5 %extern "private void error(String msg) throws Scanner.Exception "

6

7 %%

8

9 %%inherit layout_macros

10 %%inherit comment_start

11
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12 //whitespace

13 {LineTerminator} {: :} END_MPAT_DIRECTIVE

14 {OtherWhiteSpace} {: / * ignore * / :}

15

16 "<ANY>" {: return symbol(MP_ANY); :}

17 "<BOF>" {: return symbol(MP_BOF); :}

18 "(" {: return symbol(MP_LPAREN); :}

19 ")" {: return symbol(MP_RPAREN); :}

20 "[" {: return symbol(MP_LSQUARE); :}

21 "]" {: return symbol(MP_RSQUARE); :}

22 "ˆ" {: return symbol(MP_CARET); :}

23 " * " {: return symbol(MP_STAR); :}

24 "+" {: return symbol(MP_PLUS); :}

25 "?" {: return symbol(MP_OPT); :}

26 "|" {: return symbol(MP_OR); :}

27

28 %:

29

30 "%" {Identifier} "%" {: return symbol(MP_REGION, yytext().substring(1,

yylength() - 1)); :}

31 "%" {QualifiedIdentifier} "%" {: return symbol(MP_REGION,

yytext().substring(1, yylength() - 1)); :}

32 {Identifier} {: return symbol(MP_SYM, yytext()); :}

33

34 %:

35

36 //catchall - error

37 <<ANY>> {: error( "Unexpected character in meta-pattern: " + yytext());

:}

38 <<EOF>> {: :} END_MPAT_DIRECTIVE

lexer/layout/mpat directive.mlc

1 %component pair_directive

2

3 %extern "private Symbol symbol(short type)"

4 %extern "private Symbol symbol(short type, Object value)"

5 %extern "private void error(String msg) throws Scanner.Exception "
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6

7 %%

8

9 %%inherit layout_macros

10 %%inherit comment_start

11

12 //whitespace

13 {LineTerminator} {: :} END_PAIR_DIRECTIVE

14 {OtherWhiteSpace} {: / * ignore * / :}

15

16 , {: return symbol(COMMA); :}

17

18 %:

19

20 "%" {Identifier} "%" {: return symbol(MP_REGION, yytext().substring(1,

yylength() - 1)); :}

21 "%" {QualifiedIdentifier} "%" {: return symbol(MP_REGION,

yytext().substring(1, yylength() - 1)); :}

22 {Identifier} {: return symbol(MP_SYM, yytext()); :}

23

24 %:

25

26 //catchall - error

27 <<ANY>> {: error( "Unexpected character in pair element: " + yytext());

:}

28 <<EOF>> {: :} END_PAIR_DIRECTIVE

lexer/layout/pair directive.mlc

C.3 Shared

1 %%

2 %%

3

4 %layout helper

5 %helper

191



Language Specification

6

7 %declare "private Symbol symbol(short type)"

8 %declare "private Symbol symbol(short type, Object value)"

9 %declare "private Symbol symbol(short type, Object value, int

startLine, int startCol, int endLine, int endCol)"

10 %{

11 //// Returning symbols

/////////////////////////////////////////////////// ////

12

13 //Create a symbol using the current line and column number, a s

computed by JFlex

14 //No attached value

15 //Symbol is assumed to start and end on the same line

16 //e.g. symbol(SEMICOLON)

17 private Symbol symbol(short type) {

18 return symbol(type, null);

19 }

20

21 //Create a symbol using the current line and column number, a s

computed by JFlex

22 //Attached value gives content information

23 //Symbol is assumed to start and end on the same line

24 //e.g. symbol(IDENTIFIER, "x")

25 private Symbol symbol(short type, Object value) {

26 //NB: JFlex is zero-indexed, but we want one-indexed

27 int startLine = yyline + 1;

28 int startCol = yycolumn + 1;

29 int endLine = startLine;

30 int endCol = startCol + yylength() - 1;

31 return symbol(type, value, startLine, startCol, endLine, endCol);

32 }

33

34 //Create a symbol using explicit position information (inp ut is

one-indexed)

35 private Symbol symbol(short type, Object value, int startL ine, int

startCol, int endLine, int endCol) {

36 int startPos = Symbol.makePosition(startLine, startCol) ;
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37 int endPos = Symbol.makePosition(endLine, endCol);

38 return new Symbol(type, startPos, endPos, value);

39 }

40 %}

41

42 %declare "private void error(String msg) throws Scanner.Exception "

43 %declare "private void error(String msg, int columnOffset) throws

Scanner.Exception"

44 %{

45 //// Errors

/////////////////////////////////////////////////// ///////////////

46

47 //throw an exceptions with position information from JFlex

48 private void error(String msg) throws Scanner.Exception {

49 //correct to one-indexed

50 throw new Scanner.Exception(yyline + 1, yycolumn + 1, msg);

51 }

52

53 //throw an exceptions with position information from JFlex

54 //columnOffset is added to the column

55 private void error(String msg, int columnOffset) throws

Scanner.Exception {

56 //correct to one-indexed

57 throw new Scanner.Exception(yyline + 1, yycolumn + 1 + colum nOffset,

msg);

58 }

59 %}

lexer/shared/helper.mll

1 %%

2 import beaver.Symbol;

3 import beaver.Scanner;

4 %%

5

6 %layout beaver

7 %helper

8
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9 //required for beaver compatibility

10 %option parent_class "%extends Scanner"

11 %option encoding "%unicode"

12 %option function_name "%function nextToken"

13 %option token_type "%type Symbol"

14 %lexthrow "Scanner.Exception"

15

16 %option line "%line"

17 %option column "%column"

lexer/shared/beaver.mll

1 %component base

2

3 %extern "private Symbol symbol(short type)"

4 %extern "private void error(String msg) throws Scanner.Exception "

5

6 %%

7

8 %:

9 %:

10

11 <<ANY>> {: error( "Unexpected character: " + yytext()); :}

12 <<EOF>> {: return symbol(EOF); :}

lexer/shared/base.mlc

1 %component bracket_comment

2

3 %extern "private void error(String msg) throws Scanner.Exception "

4

5 %%

6

7 %%inherit shared_macros

8

9 {OpenBracketComment} {: :} START_BRACKET_COMMENT

10 {CloseBracketComment} {: :} END_BRACKET_COMMENT

11
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12 %:

13 %:

14

15 <<ANY>> {: / * ignore * / :}

16 <<EOF>> {: error( "Unterminated bracket comment" ); :} EOF_ERROR

lexer/shared/bracket comment.mlc

1 %component comment_start

2 %helper

3

4 %%

5

6 %%inherit shared_macros

7

8 {OpenBracketComment} {: :} START_BRACKET_COMMENT

9

10 %:

11

12 {Comment} {: / * ignore * / :}

lexer/shared/comment start.mlc

1 %component decl_region

2

3 %extern "private Symbol symbol(short type, Object value, int start Line,

int startCol, int endLine, int endCol)"

4 %extern "private void error(String msg) throws Scanner.Exception "

5

6 %appendWithStartDelim{ / * (int startLine, int startCol, int endLine, int

endCol, String text) * /

7 return symbol(DECL_REGION, text, startLine + 1, startCol + 1,

endLine + 1, endCol + 1);

8 %appendWithStartDelim}

9

10 %%

11

12 %%inherit shared_macros

195



Language Specification

13

14 %{CloseDeclRegion} {: append(yytext().substring(1)); :}

15 {CloseDeclRegion} {: :} END_DECL_REGION

16

17 %:

18 %:

19

20 <<ANY>> {: append(yytext()); :}

21 <<EOF>> {: error( "Unterminated declaration region" ); :} EOF_ERROR

lexer/shared/decl region.mlc

1 %component init_region

2

3 %extern "private Symbol symbol(short type, Object value, int start Line,

int startCol, int endLine, int endCol)"

4 %extern "private void error(String msg) throws Scanner.Exception "

5

6 %appendWithStartDelim{ / * (int startLine, int startCol, int endLine, int

endCol, String text) * /

7 return symbol(INIT_REGION, text, startLine + 1, startCol + 1,

endLine + 1, endCol + 1);

8 %appendWithStartDelim}

9

10 %%

11

12 %%inherit shared_macros

13

14 %{CloseInitRegion} {: append(yytext().substring(1)); :}

15 {CloseInitRegion} {: :} END_INIT_REGION

16

17 %:

18 %:

19

20 <<ANY>> {: append(yytext()); :}

21 <<EOF>> {: error( "Unterminated initialization region" ); :} EOF_ERROR

lexer/shared/init region.mlc
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1 %component shared_macros

2 %helper

3

4 LineTerminator = \r|\n|\r\n

5 OtherWhiteSpace = [ \t\f]

6

7 Letter = [a-zA-Z]

8 Digit = [0-9]

9 Identifier = {Letter} (_ | {Letter} | {Digit}) *

10 QualifiedIdentifier = {Identifier} (\. {Identifier})+

11 Number = 0 | [1-9] {Digit} *

12

13 Quote = \ "

14

15 HexDigit = {Digit} | [a-fA-F]

16 EscapeSequence = \\ ( [nrtfb] | x {HexDigit}{2} | u {HexDigit }{1,4} |

[0-3]? [0-7]? [0-7] |

[\|\(\)\{\}\[\]\<\>\\\.\ * \+\?\ˆ\$\/\.\"\˜\!\-])

17

18 Any = . | \n

19

20 Comment = " //"[ˆ\r\n] *

21 OpenBracketComment = "/ * "

22 CloseBracketComment = " * /"

23

24 SectionSeparator = "%%"

25

26 OpenDeclRegion = "%{"

27 CloseDeclRegion = "%}"

28

29 OpenInitRegion = "%init{"

30 CloseInitRegion = "%init}"

31

32 //handles comments

33 DirectiveLookahead = !({Letter} | {Digit} | _) //NB: use not (instead

of a class) because it also catches EOF
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lexer/shared/shared macros.mlc

1 %component string

2

3 %extern "private Symbol symbol(short type, Object value, int start Line,

int startCol, int endLine, int endCol)"

4 %extern "private void error(String msg) throws Scanner.Exception "

5

6 %appendWithStartDelim{ / * (int startLine, int startCol, int endLine, int

endCol, String text) * /

7 return symbol(STRING, text, startLine + 1, startCol + 1, end Line +

1, endCol + 1);

8 %appendWithStartDelim}

9

10 %%

11

12 %%inherit shared_macros

13

14 {Quote} {: :} END_STRING

15 {EscapeSequence} {: append(yytext()); :}

16 \\{Any} {: append(yytext().substring(1)); :}

17 \\ {: error( "Incomplete escape sequence" ); :}

18

19 {LineTerminator} {: error( "Unterminated string literal" ); :}

20

21 %:

22 %:

23

24 <<ANY>> {: append(yytext()); :}

25 <<EOF>> {: error( "Unterminated string literal" ); :} EOF_ERROR

lexer/shared/string.mlc

1 %component string_id_directive

2

3 %extern "private Symbol symbol(short type)"

4 %extern "private Symbol symbol(short type, Object value)"
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5 %extern "private void error(String msg) throws Scanner.Exception "

6

7 %%

8

9 %%inherit shared_macros

10 %%inherit comment_start

11

12 //whitespace

13 {LineTerminator} {: :} END_STRING_ID_DIRECTIVE

14 {OtherWhiteSpace} {: / * ignore * / :}

15

16 //for strings

17 {Quote} {: appendToStartDelim( "" ); / * tweak start pos * / :} START_STRING

18

19 , {: return symbol(COMMA); :}

20

21 %:

22

23 //for state names

24 {Identifier} {: return symbol(IDENTIFIER, yytext()); :}

25 {QualifiedIdentifier} {: return symbol(QUALIFIED_IDENT IFIER, yytext());

:}

26

27 %:

28

29 <<ANY>> {: error( "Unexpected character in string/identifier directive:

" + yytext()); :}

30 <<EOF>> {: :} END_STRING_ID_DIRECTIVE

lexer/shared/string id directive.mlc
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