Reducing Driver Fatigue During
Forage Harvesting

Final Design

BREE 495
December 722015

Brett Bennett, Meaghan Dustin, Yasmeen Hitti, Stephen McGuire

Executive Summary

Within recent years farm sizes have increased while the number of agricultural producers has
decreased placing a greater workload on a fewer number of workers. Technological development
in the agricultural field continually bridges the gap increasing productivity per hour of these
systems. Forage harvesting takes place multiple times per year and most commonly includes hay
or corn forage. Like any crop, harvest is a very important and time sensitive period for agricultural
producers.

Forage harvesting differs from most other harvesting processes as many tasks are performed
simultaneously during operation. Large self-propelled harvesters have implemented various
systems to reduce operator task complexity during harvest. These options do not exist for pull
behind forage harvesters as the gross market is much smaller. Often the harvesting capacity of pull
type forage harvesters do not justify the extra cost of purchasing a self-guided offloading system.

Dion is an agricultural machinery company based out of Boisbriand Quebec. They currently lead
the market in pull type forage harvesting technology. Dion is always looking to push the limits of
what is available on the market and were more than willing to participate in this project. Dion
presented their constraints as well as their hopes for a product when the project was completed.

Together it was determined that the design goal would be to develop a system which will provide
assistance to the forage harvester operators during harvest to reduce task complexity and
cognitive strain. After extensive research and development, it was determined that machine
vision provided the optimal solution to this design problem.

The proposed system implements targets which are mounted on the side of the forage wagon. A
camera mounted upon the chute of the harvester sends images to a processing unit which can
then recognize the targets. Based on placement of the targets within the image, the position of the
forage wagon is determined in reference to the chute and chute position is adjusted accordingly.

This design was made functional through prototyping with MATLAB® and an Arduino
microprocessor. These systems provided easy modification as well as vast previous development
within the machine vision field. It would not be recommended for Dion to continue
implementing MATLAB® as it was only used within this design to prove initial design concepts.

The final design concept was proven through testing on site at Dion’s testing facilities. Future
development of user control interfaces will be required however this was out of the scope of the
proposed project.

Page |2

Table of Contents

EXECULIVE SUIMIMATYooiiiiiii et e ettt e e e et e e e e e e e e e e e e e neeb e e e e eeeeennes 2
LT Q0T LT 1)« PSPPI 4
Forage Harvesters and Task CompPleXityouu e iiiiiieiiee e ee e e e e e e e e e e e e e eeas 4
[N S TS O3 1<) oL PRSPPI 5
00T o) 130§ T 7 773 1 L 6
(00311 111 PRSPPI 6
Analysis and SPecifications ... e 7
Prototyping and OPptimizationoooiiiiiiiiiiiii e e e e e e e e e eanaa 11
T@SEIIIE ...t e ettt et e e e et e e e e e e et e e e n e e 19
Failure Mode Effects Analysis (FIMEA) ... oottt et ea e 19
Uncertainty CalCULAtIONceuuiuuiiieeees e eeeiiee e e e e e e e ettt ee s e e e e e e e e ee et a s e e aaeeeeeestaaaaaeeeeeeeessnnannnns 20
COSE ANALYSIS -1ttt e e ettt ettt ettt ettt e e e e ettt e et e e et e e e e et e e et e e anen e e e e eernne 20
RecoMMENAAtIONS...........coooiiiiiiiii e 21
Design ComMPEtition.............uuiiiiiiiiiiiie e e e e e e e e e et e e e e e e e e e ea it aaaaeaeeane 23
L 001) 116 11 1)+ PR 23
ACKNOWIEAZEIMEIIESoeiiiiii it e e e et e e e e e e e e ettt e e e eeeeeeee et e e e eeaeeeesnsaanaaaeeaaeeennnes 24
1Y £ 110 g (0N 0] 0 0818) 24
(O 1S 0L 1N £ 1w 00110 o PP 24
REFEIEIICES ... 26
APPEIAICES ...t e et e e et e e e e e e e e e e e nern s 27
ApPPendixX Az FIOWCHATTScoeiieiiiiiii e e e e e e 27
Appendix B: MATLAB® COUE ...ccuuuuiiiiieiiiietiiiee s e e ettt e e e e e e e et s e e e e e e e ee e e e e e e e e eeeneaaaas 31
Appendix C: FMEA RaNKINE ..ccvvviniiiiicii ettt e e een s 31

Page |3

Introduction

Forage Harvesters and Task Complexity

A forage harvester is a machine which harvests, conditions, and offloads a forage crop during
operation. These machines range in size and configuration to best suit the customer's needs. For
large operations, self-propelled harvesters are available which can provide up to 1100 horsepower
when needed. Pull behind harvesters are available for smaller scale operations and allow the farmer
to use their tractor to power the machine. Different configurations are also available which allow
operators to harvest both hay as well as corn forage. With the variety of crop, operation size, and
field capacity, forage harvesters must come in all shapes and sizes to provide versatility for the
customer.

A traditional pull type forage harvester is connected to a wagon from the rear in a train like setup.
During harvest the forage harvester picks up the forage, conditions, and offloads into the rear
wagon until the wagon is completely full; harvest must stop, the wagon unhitched, and an empty
wagon hooked up to the harvester before harvest can continue. In recent years Dion-Ag Inc. has
developed a laterally offloading pull type harvester that resembles the offloading methods of full
sized self-propelled harvesters. This method of offloading, as seen in Figure 1, provides continuous
harvest throughout the day and increased productivity.

SN Y
o o WL

igre 1 Ltrally Ooding Pul

A yuay

e W . g >

| Type Forage Haester
While downtime has been decreased, task complexity has increased dramatically by the
implementation of lateral offloading in pull type forage harvesting. The harvester operator must
monitor the functioning harvester, the tractor speed, and the offloading forage placement within
the forage wagon. These tasks add to operator workload and contribute to operator fatigue

Page |4

(Nicholls, Bren et al. 2004). Cognitive computation is the decision process which the brain must
go through when faced with multiple options. The more options that are present result in more
decisions constantly having to be made. This combination of increased options within a smaller
time frame results in increased cognitive strain (Cooper-Martin 1994). Long periods of increased
cognitive strain then result in operator fatigue and ultimately reduce operating efficiency. If one
of the tasks presented to the operator can be simplified or eliminated from the operator’s focus,
daily productivity will be increased.

The Client

Dion-Ag Incorporated is an internationally recognized agricultural machinery company focusing
on the production of forage harvesting equipment. Established in 1920 and based out of
Boisbriand Quebec, Dion holds 20% of the pull-behind forage harvesting market. With increased
research and development this figure has the potential to rise considerably within the coming
years.

In recent years Dion has taken immense strides in the development of their pull behind forage
harvesting technology. This market is neglected by larger agricultural machinery companies due
to its smaller market size and the overshadowing of the larger self-propelled machine market. Dion
has developed the largest capacity pull behind harvester on the market and with such expertise in
their field customers expect the very best.

Multiple competitors, including New Holland, John Deere, and CLAAS, have developed systems
to automate the forage harvester chute placement on their self-propelled harvesters. None of these
companies have yet implemented their design upon their pull type harvesters. By adding an
automated system to the new Dion lateral offloading forage harvester their machine will be leading
the way for pull type harvesting technology.

Dion was contacted and showed interested in developing a machine vision system to reduce the
task complexity endured by their operators during harvest. Due to the complexity of the
development of such a system Dion requested that the primary goal of the project be limited to the
movement of the chute within the constraints of the forage wagon, and recognition of the location
of the limits of the wagon. Through development of a system that achieves this, further
optimization and modification can be taken on by Dion once the theoretical solution has been
proven.

If this design is capable of reducing a single portion of the operator’s responsibility while driving,
then the cognitive strain of operation will be reduced. When operator fatigue is decreased,
productivity increases and operation hours can be increased.

Page |5

Problem Statement

To develop a system which will provide assistance to the forage harvester operators during
harvest to reduce task complexity and cognitive strain.

Constraints

The vast majority of the constraints within this design are to ensure that the final product is
compatible and usable by Dion for future projects. This system must be implemented on a Dion
laterally offloading forage harvester and allow the harvester to work with or without this system
installed. Therefore, there should be limited machine modification. This design should also be
compatible with the current electronics applied on the machine. Currently the wiring system in
place consists of hydraulic actuators that control the x, y, and z motion of the harvesting arm.
Since this design uses machine vision with computer computations there should be minimal
computational analysis to provide a quick response.

To reduce costs non-complex system components should be implemented. Dion has provided a
preliminary budget of $1500.00 (CAD) to develop a basic prototype. Depending on prototype
effectiveness this amount may be increased to allow for further testing. The final goal of this
design project is for Dion to be able to market this machine vision control component as a
$10,000 add-on option to their forage harvest machines, or be able to sell it as a standalone
system. The cost target is to make 20% profit off of this system, therefore it has to cost less than
$8000 to produce.

Page |6

Analysis and Specifications

After extensive research and development it was determined that a machine vision system using
targets mounted on the forage wagon would provide best results given the design constraints.
This overall design is shown in Figure 2. Many variations of this design were tested including
variable camera placement and angle, control signal input method, and target colour. After many
trial runs and design modifications the final hardware arrangement and software script was
developed.

Cap

Figure 2 Forage Harvester, Wagon, & Design System

The camera used for image processing was placed upon the cap of the forage chute. The
trajectory of the forage from the tip of the chute into the forage wagon can be assumed linear as
per the recommendation of the client. A camera mount was implemented to provide an interior
angle between the plane of the camera and the upper plane of the forage chute cap. This angle
ensures that the forage is blown into the centre of the wagon while the camera is directed toward
the targets placed upon the upper edge of the wagon. Depending upon operator preference this
camera mount provides infinite variability between an interior angle of 0 to 90 degrees. This
provides excessive variance to the operator ensuring that needs are met regardless of operator
preference. Forage trajectory and camera field of view can be seen below in Figure 3.

Page |7

Field of View

I

T

= i | 5
5 i)

Ideal Target
Placement

Forage

Figure 3 Camera View

During preliminary testing the 12 volt output from an Adafruit motor shield was connected
directly into the electronically actuated hydraulic solenoids on the rear of the harvester. This
provided on site testing functionality but was impractical to implement during in-field testing. By
mounting the processing unit inside the tractor cab, durability as well as functionality was
increased. Through proper installation it is possible for the proposed system to be tested with
only one operator while harvesting. Integration of a 12 volt toggle switch provides the option to
disconnect from the processing system control and reconnect to the manual operator control of
the chute. The wiring diagram can be viewed in Figure 5 on the following page.

Using machine vision to control the forage chute of a Dion pull behind forage harvester required
multiple components. These included physical components as well as a code to control the entire
system.

Camera & Camera Mount

A camera was required to relay images of where the forage chute was aiming back to the automated
code. The camera needed to be able to capture a large enough image that a target could always be
seen, while having high enough resolution to pick out accurate details. The camera also needed to
be sturdy enough that it could last in various outdoor conditions, and withstand the dust that is
created while harvesting.

The current Dion forage harvester has a camera located % of the way up the chute. This camera is
connected to the screen system located inside the tractor. The angle of the camera proved to be too

Page |8

narrow, as there were certain locations where no target would
show even though the chute was located within the forage wagon.
Therefore the design required an additional camera with a higher
resolution to ensure a target was always in the line of sight.

A magnetic camera mount will ensure the camera can easily be
adjusted while maintaining one position while in use. If anything
were to happen to the camera it is also accessible to quickly be
replaced therefore reducing operational downtime. The camera
mount was designed and built based on field testing; it was
designed as a hinge and 3D printed. A magnet was bolted to
camera mount to fasten the mount to the chute. The camera and
camera mount design can be seen in Figure 4.

Figure 4 Camera & Camera Mount

Chute Control

The chute control required a physical component to relay the code. This can be done by using the
solenoid connections at the base of the chute arm. Wiring in the circuit containing the Arduino
motor shield and the external battery allows the code to take control of the chute solenoids.

Machine hookup

The automated system will be connected using a circuit wired directly to the solenoids on the
harvester arm. This is done using wires connecting from the pins of the Arduino board to the
corresponding wires in the Dion electrical system (Figure 5).

12v
L L

JToggle Power

Switch ?

Manual Solencid Actuation

Arduine
sedalportin Adairuit Moter Shield

i+

Electronic Actuation
Solencid

Figure 5 Wiring Diagram

Page |9

Code

MATLAB® was used to create the computer code that controls the system. The MATLAB® code

is then passed to the Arduino Uno using crossover code.

Cap Up Cap Down Track

Left Right

Start Stop

Front
Calibrate Front Target

Middle
Calibrate Middle target

Rear
Calibrate Rear Target

Figure 6 Operator GUI

The MATLAB® code consists of one main graphical user interface (GUI), as seen in Figure 6.
Once the user starts the program by pressing the Start button they are prompted to connect to an
Arduino. This option is given because the Arduino only needs to be connected once; if the user
has decided to stop and then restart the program the Arduino does not need to be reconnected. The
next popup menu gives the user the option to analyze live video from the camera, saved video, or
still images. The final step in setting up the program is to calibrate the targets. This is done by the
operator tracing the outline of a visible target on the screen. All three targets need to be calibrated
so that the program can recognize each one. Once each target has been calibrated the Track button

is selected and the chute is controlled through the program.

Flowcharts were created to outline the program process, these are located in Appendix A. The

actual published code is in Appendix B.

Page |10

Arduino Uno & Motor Shield

The Arduino Uno was used as the motherboard of the control circuit. This system was chosen for
its affordable price and efficiency as a control board. To attain the required 12V to operate the
solenoids within the forage harvester an Adafruit motor shield was used. This allows computer
code to be uploaded to the shield, which can then run the forage harvester based on the uploaded
program.

Targets

Targets were used to help the program determine the location of the chute with respect to the forage
wagon. Multiple types of targets were considered including different shapes, different colours, and
infrared. Wooden targets were initially used to test the system as they were the easiest to build,
and the material was available.

Prototyping and Optimization

In the development of a machine vision guidance system different hardware and software options
and configurations were explored. Following is a description of the development of the
prototype, why the components and methods were used and how the shortcomings of the system
were addressed, re-designed, and optimized before arriving at the current prototype.

To be able to control the harvester, commands generated from the software must be converted
into 12 volt control signals to open and close the solenoid valves. The first solution to this
problem was the use of a data acquisition card or DAQ such as the National Instruments
MYDAQ. A MYDAQ was considered due to familiarity with the card as well as availability.
The MYDAQ is capable of receiving digital commands over a serial connection and outputting
up to 5 volts on 8 different terminals. Since the solenoids require 12 volt power, 12 volt relays
would be required to raise the voltage of the 5 volt terminals. The 5 volt signal would provide the
switching voltage, and the 12 volt side would be wired to the 12 volt power supply at the input
and the solenoid at the output. This set up would have required 4 relays to control 2 bi-
directional hydraulic solenoids. There were multiple concerns with this set up: first the wiring
was relatively complex, it was difficult to troubleshoot problems in the system, and it would
have been more difficult to transport and set up during testing.

Another concern with using a MYDAQ system was the life expectancy of the relays, which are a
potential failure point of the system. The mechanical life expectancy of relays is generally
millions of cycles however the electrical life is 100,000 operations (Tyco). This life expectancy
is adequate for many applications, however the control system for the harvester will be making
corrections constantly for many hours of operation and may reach the life expectancy of the relay
in a relatively short amount of time. To solve the durability issue and to simplify the wiring, the
use of a microcontroller with a 12 volt motor shield was proposed.

Page |11

A microcontroller, such as the Arduino Uno, is capable of receiving commands from a personal
computer over a serial connection and turning on or off various 5 volt pins. The microcontroller
is used in conjunction with a 12 volt motor shield. When actuated the motor shield provides 12
volts at up to 3.2 amps (Toshiba, 2012). The microcontroller uses a metal oxide semi-conductor
field effect transistor (MOSFET) instead of an electromechanical switch. A MOSFET has three
main components: a source, a drain, and a gate. The 5 volt pin of the microcontroller connects to
the gate where the source and drain connect to the positive terminal of the 12 volt power supply
and the load respectively. When there is no electric potential at the gate, the material is unable to
conduct between the source and drain. When the 5 volt pin is turned on, the electric potential at
the gate allows the flow of electrons between the source and the drain, as seen in Figure 7.

SourceT Ox'de T Gate T Drain
I I I |
N Channe/ | N |
P
CIJ Body

Figure 7 Diagram of a MOSFET

Since a MOSFET has no moving parts this allows for extremely fast switching (100 kHz for the
Arduino motor shield) and an extremely long lifespan (Toshiba, 2012). Lifespan information is
not readily available for many MOSFETs, however nearly all failures are due to manufacturers
defects or working outside of the operating temperature range (Tyco). Therefore, this design
should be extremely reliable given that the components will be used within their operating limits.

The camera used for testing was a USB 2.0 surveillance camera. The camera provided adequate
resolution and durability as it is in a shock and weather resistant case. The camera used has a
narrow field of view and poor colour representation. To improve on the operation of the system a
camera with a wider field of view and better colour representation should be used to improve
tracking and image segmentation.

For developing the guidance software, several programming languages were explored.
MATLAB®, Python, C/C++ and LabVIEW all have toolboxes and libraries for machine vision
and control. MATLAB® was chosen for the majority of software development due to its
powerful and complete machine vision toolbox, familiarity with the software, libraries for
communication with Arduino, as well as free access to an otherwise very expensive
programming environment.

Page |12

Testing and Optimization:

Colour thresholding was explored as the first step at extracting features of interest. Colour
information from the camera comes as an M X N X 3 matrix. M and N are the resolution of the
camera in pixels in the horizontal and vertical directions respectively. MATLAB® stores the
three dimensional matrix in RGB format, meaning that the first matrix has values corresponding
to how red each pixel in the image is, and the green and blue pixel value information is contained
in matrix 2 and 3 respectively. The digital pixel information is 8 bit meaning that every pixel can
have a value between 0 and 255. For example in the red matrix, a value of 0 indicates the pixel
contains no red component whereas 255 is pure red. Thresholding is specifying what range of
colours are to be displayed in the image. This can be done simply by finding the locations of
pixels that are within the specified threshold and setting values outside of this range to 0. For a
simplified example Figure 8 shows the thresholding of an image of different colour squares. If
the objects of interest do not contain any red, the red channel may be removed by thresholding,
setting the red channel to zero.

Figure 8 Before Thresholding Of Red Colour Channel And After.

The image that underwent thresholding now contains only objects that do not contain any red
value, as can be seen in Figure 8. In developing a machine vision algorithm it is important to
separate objects of interest from objects of noninterest. Thresholding allows removal of objects
that do not contain pixel values within the specified range. This leaves a number of other objects
that will need to be removed until only those of interest remain. A threshold image is usually
converted to a logical binary matrix, consisting of ones where the pixel falls within the specified
threshold and zero when outside of the specified range. The remaining regions of ones
surrounded by zeroes are called objects.

Originally it was attempted to threshold an image of the forage wagon such as the outside edge
of the wagon. The colour threshold application in MATLAB® was initially used to get an idea of
the right range of pixel data. This application also allowed easy switching between different
colour spaces. RGB, HSV, YCbCr, and L*a*b* colour spaces were explored. HSV yielded much
better segmentation of the image than RGB. HSV also gives much more useful information

about the image. RGB colour space uses three different integers to describe the value of red,
green and blue in each pixel. HSV colour space combines all of the colour information into a

Page |13

single float value between zero and 1, with red at a value of 0 and blue at 2/3. Saturation
provides information about how close the pixel is to a pure colour, or the white component of the
colour. If a colour is fully saturated (no white component) it will appear as the pure colour. Less
and less saturated colours appear more faded until they are un-saturated, having a value of zero,
and are pure white. Value indicates the black component or brightness of the pixel. A value of
one is bright, where a value of zero is black (Mathworks, 2015). Figure 9 provides an illustration
of the Hue Saturation Value (HSV) colour space. For these reasons the HSV colour space
provides more useful information in the same amount of data as RGB uses. This allows for much
better thresholding and therefore better tracking of objects in the image.

Saturation

Figure 9 Illustration Of The Hue, Saturation, Value Colour Space.

A method needed to be developed for calibration of the threshold values for the H, S, and V
channels. Initially the MATLAB® impixel function was used which allowed a user to click
points on the image inside the target area (Toshiba, 2012). From this, the maximum and
minimum values of the selected pixels were found and used to create the logical matrix used for
object identification and tracking. This method however proved to have several serious issues as
it was time consuming to click on enough points to have a good representation of changes in
values within the region; this led to bad thresholding and therefore poor tracking. As a solution
to this, the MATLAB® imfreehand function was used, which allows user input to select a
region of interest and all points within that boundary are used to calculate the high and low
threshold values (Mathworks, 2015). This was a major improvement as it gave a complete
representation of the pixel values of the region of interest and allowed more points to be used
than user selected points.

Page |14

Using the maximum and minimum values for each channel proved not to be the best method for
calculating the threshold, as a single outlying value could throw the calibration off. To solve this
problem, a histogram for each channel was generated and a variable for the minimum frequency
of repeated pixel values created. The histogram by default does a small boxcar average of all of
the points and then indicates the number of values inside the boxcar. Using this histogram the
smallest and largest values inside the range were selected as long as the frequency of the pixels
was above the specified value; this removed outliers and provided a much more accurate
threshold. Using a variable for pixel frequency allowed the calibration to be more dynamic. The
calibration was performed in a loop only ending by user prompt when the binary mask is
satisfactory. If the calibration yields a mask with more than one object in it, the frequency
variable is increased to tighten the threshold. This method may also be used to provide better
tracking when the binary image is too noisy for detection.

After attempting to track features of the wagon, targets of a specific shape and colour were
created to allow much easier tracking of the wagon and the ability to work on multiple wagons
without changing the software. Three square 24inch by 24 inch targets were created from
plywood with rudimentary brackets to hang them over the side of the wagon. The three targets
were painted different colours and mounted at the rear, middle, and front of the wagon to allow
the program to distinguish where each target position was.

A graphical user interface was created using GUIDE in MATLAB® to allow easier use of the
program and make rapid changes to parts of the code that did not work well. The calibration
method described above was transferred to a function file and was called in three separate GUI
buttons corresponding to the calibration of the three targets, to set up the thresholds. A track
button was added in which the three sets of threshold values were passed to create the binary
masks. Since the targets were square several properties could be evaluated to ensure that the
target is being tracked and not another object. Even with good thresholding there is noise in the
image that needs to be handled: small white spots on the image that are small areas of pixels
inside the threshold, as well as the object of interest not appearing as square as it should. To
handle these types of noise, morphological operations were used.

Morphological opening was used to eliminate objects in the mask smaller than a specified
number of pixels. After this the image was dilated using a square structuring element and the
area was filled to leave shapes more distinct. To determine which object to track the largest
object was selected and its major and minor axes were evaluated. The ratio of these axes was
calculated to determine how square the object was. If the object was both square enough and
large enough it would be selected as an object to track and its centroid and bounding box would
be calculated, and output to the GUI. Testing was required to determine how much tolerance
needed to be allowed for the major/minor axis ratios as the object appeared less and less square
at greater incidence angles. A ratio of 1.5 yielded correct object tracking without selecting
incorrect objects. A weakness of this selection method is perfectly round objects, although it is
unlikely that a perfectly round object with the same hue, saturation, and value as the target would
be in the image, it is possible. To address this, the perimeter/area ratio of the object should be

Page |15

evaluated to determine if it is square or round. Figure 10 shows the segmentation and proper
identification of the target on the harvester.

Figure 10 Image Thresholding And Proper Selection of Target

The mounting location of the camera presented several challenges during testing. When testing
the vision system, the camera was mounted and calibrated for the targets. The chute of the
harvester was moved using the manual controls on the tractor to see how the system would
respond. Small rotation of the chute or movement of the cap resulted in the system losing track
of the target. This was the result of the thresholds set up during calibration, as they were
perfectly set up for the specific light condition and orientation at the start of testing, as soon as
the orientation changed the object was no longer within the limits. Testing was done with the
camera and target to see how much bigger the threshold range needed to be to allow for the
change in orientation. A ten percent increase in the threshold values allowed for the change of
camera orientation required without too much of an increase in image noise.

Painted targets with a different coloured border were examined. If the background of the main
target area is inside the threshold range it will cause poor or no tracking. With the target with a
border, the background can be the exact hue, saturation and, value as the target but it is still
possible to track it, as the border segments the two objects. This was tested using a camera and
the targets but has not yet been tested on the harvester.

To get the target location information to the solenoids an Arduino with a motor shield was used.
To communicate with the Arduino, serial communication was used. The Arduino add-on for
MATLAB® was used, greatly simplifying programming as the Arduino script is generated and
uploaded from MATLAB®. Before automating the harvester, GUI buttons were added to see if
the harvester could be digitally controlled. Connectors were donated by Dion that were crimped
on to the Arduino cables so the system could be plugged into the solenoid leads. After testing for
proper operation of the solenoids, it was found that the harvester moved very rapidly for a very

Page |16

short on time of the microcontroller. The ‘on’ time of the controller was adjusted to find the
minimum ‘on’ period possible, which is limited by the time required to move the solenoid from
on/off states. This time was found to be 0.1 seconds, moving the harvester in small enough steps
for smooth control to avoid under-shooting or over-shooting once the control was automated.

To allow automated control of the harvester, the camera needed to center the target in the image.
The center of the screen was calculated based on the camera resolution. The centroid of the
target could deviate from this point by 50 pixels before sending control signals to move the
chute. Different ranges of deviation from the center of the screen were tested, however 50 pixels
allowed the chute to remain focused on the target without constantly sending control signals due
to under-shooting or over-shooting the allowable area. Once outside the desired location, the
controller was turned on for 0.1 seconds in the direction towards the center and then the position
is re-evaluated. This worked very well for keeping the harvester focused on the target, even
when the harvester was at large distances from the wagon. However, when driving at higher
speeds, the control and re-evaluation was too slow to keep up with the change in position. To
solve this, once the harvester is a certain amount outside the desired location (it is falling
behind), a transfer function should be used to increase the ‘on’ time of the controller to catch up
with the change in position. Control with a time domain transfer function was not tested but an
example transfer function is provided below.

Transfer function:

Distance away from center of screen
allowable distance from centre of screen

Motor on time = 0.1 seconds .

Once the target is just outside the allowable deviation of 50 pixels, the motor will turn on for 0.1
seconds to get back in the desired area. If the target keeps falling behind, the ‘on’ time will
increase linearly. For example, the resolution of the camera in X is 640 pixels, so the furthest the
object can be away from the center is 320 pixels, this would result in a motor on time of .64
seconds, allowing the harvester to catch back up.

The tracking system worked well during the day, however in the late afternoon with the sun low
in the sky, shadowing from the harvester chute as well as reflection of the targets became an
issue during testing. Several solutions to this issue are possible to optimize the operation of the
harvester under changing light conditions. First, the paint used for the targets had a gloss coating
adding greatly to the bright spots reflected by the targets. Using a matte finish would provide a
quick and easy improvement on performance of the system. Adding a light source to the targets
and/or the chute to provide consistent illumination would also improve image segmentation as
the target would remain visible even if the harvester is blocking sunlight. Software
improvements may also provide a huge improvement during poor lighting conditions.
Algorithms developed to handle reflection and shadow may be used to improve image
segmentation significantly. The algorithm developed by Bradley et. al presents a method for
image segmentation that is incredibly robust to changing illumination conditions (Bradley,

Page |17

2007). In this method, the value of each pixel in the image
surrounding pixels, creating a local moving average. If the

is compared to the average of
pixel of interest is a specified

percentage above the average, the pixel is set to zero, otherwise it is set to white (Bradley, 2007).
This adaptive thresholding method has the potential to greatly improve image segmentation for

the forage harvester targets under varying light conditions.

thresholding methods effectiveness at handling shadow.

¥ Adaptive Thresholding

Derek Bradley
Gerhard Roth

Figure 11 Original Image (Left), Previous Adaptive Threshold Metho

Figure 11 shows the adaptive

Joiirnal of
Graphics Tools

% Sl

Adaptive Thresholding

¥

d (Centre), Method Developed By Bradley Et.
Al (Right) (Bradley, 2007)

Derek Bradley
Gerhard Roth

Here 13 poume fiee prist in biack k. Here is some fine prist in
black sk Here Is socpe fine print in black iak. Here is some fise:
s i black ink. Here is some fine priot in Slack ink. Here s
some e print in black ink.
"

Page |18

Testing

The prototype was tested numerous times at the Dion-Ag Inc. shop in Boisbriand, QC. A
hydraulic forage harvester connected to a tractor was pulled up beside a forage wagon. The
forage harvester solenoid connections on the arm of the harvester were disconnected and
connected into the Arduino circuit. The USB surveillance camera was attached to the chute arm,
and connected to the Arduino and laptop. Once the set up was complete, the power to the forage
chute was turned on, giving power to the machine vision system.

Most testing was done to see how the camera and software would identify the target from its
surroundings. Through this testing the code was changed to optimally track the targets without
tracking background interference.

Failure Mode Effects Analysis (FMEA)

In order to ensure that our proposed solution was a safe and responsible proposition. A failure
modes and effects analysis was done in order to point out any flaws within the design that had
gone unnoticed. The first step within this process was to determine what failure modes are most
probable. When a complete list of possible failure modes has been assembled they are analyzed
on a scale from 1 to 10 in categories of severity, occurrence, and detectability; this criteria can be
found in Appendix C. These values are then multiplied to give the risk priority number (RPN). If
the RPN is greater than 100 then it is determined that the failure mode is of significant
importance and a resolution must be determined. Upon outlining recommended actions and
resolution another analysis is done. If the RPN is now below 100 then the failure mode is seen as
being resolved, if not further design modification is necessary. The analysis undertaken for the
control of a forage harvester chute is shown in on the following page in Table 1.

Page |19

FMEA

Action Results

Item
o
w g 3
2 2 2 =
. Potential Failure Mode Potential Effect(s) of Failure | 3 Potential Cause(s)/Mechanism(s) of Failure 5 | Current Design Controls] 3 | Recommended Action(s) Responsibility and Target Completion Date . 0w o o =
Function z 3 =3 = Actions Taken @ 8 4 3
i H
Input st de loses track of Hunting for last target, Alert
Camera Loses connection nput stops, code loses track of | USB disconnect or wire loom breakage g |nunting for last target, Aler 1 12 0
traget for user
12V power Controlled by tractor Check available voltage, if If resolved
to Adafruit Low voltage Intermittent solenoid activation | 8 System overload 3 . ster‘; 6 144 too low need to look at Owner reboot control 8 1 6 48
board V: tractor powersystem system
Target The chute should retrace it's|
Si h%in Stops finding target The chute would stop moving 8 Software glitch, tractor speed 5 movements back to last 2 80 0
ghting target sighting
Chute Lose control Uncontrollable movement of | o Arduino malfunction 2 | Operator system overide 2 36 0
Control chute
Machine e) Valve breakage due to shortened actuation Use design minimum
. Control to solenoid fails One axis of movement stops 7 6 actuation sequence 2 84 0
Solenoid sequence
frequency
Camera The camera would no longer view Loss of magnet, loss of contact with chute arm, Bolted and held with 70Ib
Breakage 8 N . 2 1 16 0
Mount the correct area physical disturbance force magnet
Sighting system would stor The chute should retrace it's) Target
Target Loss of target e Pl Support breaks 4 | movements back tolast 5 140| Replace/reinforce target Owner replaced/reinfor| 7 2 5 70
J target sighting ced
" . Target
. . Recalibrate targets with a .
Locatt d track Chut Id be directed Code looks f t librated t
Target Code ocal efan racks area ute wou _e |rec edinwrong 8 | Bad lighting, similar target colour and surroundings | 5 oce .uo © for most sqaure 6 240 smaller range colour Owner recalibrated to 8 2 6 96
that is not a target direction obejct of correct colour more accurate
frequency range

Uncertainty Calculation

To determine the uncertainty of the camera testing was done. The camera was pointed at a blank
area and the centroid of the image was continuously captured and recorded for 60 seconds. The
equation used is as follows:

1 < .
sl T IR

Where: ¢ = standard deviation; n = number of values; x; = sample value; p = mean

Using Microsoft excel to calculate the uncertainty of all 465 points taken, the results are as
follows:

Table 1 Uncertainty Calculation Results

Horizontal Vertical
Uncertainty Uncertainty

0.055441717 0.04459032
Combined uncertainty
0.042560549

It was determined that the camera is accurate enough for this application.
Cost Analysis

The current design is a prototype and a proof of concept. The objective of the completed design is
to demonstrate a convenient possibility to incorporate machine vision while operating a pull-type
forage harvester. The prices listed are prototyping costs, and will not represent the final product
which the client, Dion, will later pursue. The goal is to estimate the cost feasibility of integrating
such technology on pull-type forage harvesters made by Dion-Ag Inc.

To examine whether or not this design system could possibly be produced for $8000, the cost of
the prototype will be examined. The client originally provided a budget of $1500 (CAD) for the
development of this prototype, and the total cost of the prototype ended up costing approximately
$200.00 (CAD) as seen in Table 2. This did not include several components which were considered
a free cost for the construction of this design. In the estimate, no software license was included
due to the fact that as students the license fees of the used software are mostly offered by the
academic institution, McGill University. The cost of MATLAB® and SOLIDWORKS® were not
included in the table below. Conclusively, the cost of the prototype is very small when
acknowledging the numerous resources McGill had to offer.

Page |20

Table 2 Prototype Cost Estimate

Component Cost per unit Quantity Cost

Adruino Uno $24.95 1 $24.95
Adafruit Shield for Arduino $19.95 1 $19.95
Camera (2.0 USB surveillance) $56.43 1 $56.43

Camera Mount - 3D printer

plastic $30.66 1 $30.66

Camera Mount - Magnet $7.00 3 $21.00
Target $12.17 3 $36.50

Paint $6.67 3 $20.00
Total $152.99

Therefore, the cost of the prototype is well within the $8000 (CAD) budget limit of production as

well as the $1500(CAD) prototype budget provided by Dion.

Recommendations

The final product will be produced by the client, Dion. Since this is a prototype there are
components that can be improved for a final production system. Recommendations that would be

beneficial to the full scale development of the current design are described below.

Microcontroller

The microcontroller used in the prototype was an Arduino Uno with a motor shield. If the product
was to go through production, the recommended component would be an Arduino or a custom
made circuit board. This custom circuit board suggestion depends on the economies of scale, this

depends on the quantity of forage harvesters produce yearly.

Page |21

Table 3 Microcontroller Estimate

Component Cost per unit Quantity Cost
Single USB port $1.26 1 $1.26
MOSFET 60V 27A $0.95 6 $5.70
5V step-down voltage regulator $5.99 1 $5.99
OSH park PCB
base $10.00 1 $10.00
Total $22.95

Taking all figures into account, the $2 price difference between a custom board and an Arduino
is not that immense for 14 harvesters. Equally, the cost of the PCB is an estimate and could be
higher or lower in cost. Thus, this option should not be discarded immediately and further looked
into by Dion.

Product cost

This section will provide a rough estimate for the optional product the client is seeking. The goal
of the estimate is to verify if the budget limit will be respected. The cost of production will be
similar to the prototype since several similar components have been recommended. Certain
components such as the programming fees, the microcontroller and microprocessor will have to
be reviewed. Dion will have to take into consideration some modifications with regards to the
prototype.

For the microcontroller component, an estimate was done for the cost of one Printed Circuit Board.
The cost is similar to the Arduino Uno therefore, not that advantageous. However, the cost may
vary according to the economies of scale. According to Dion, 60 forage harvesters are sold per
year and 10 out of them are they newest version with the hydraulics. The company thinks that the
production of the hydraulic chute model will augment by 40% in the upcoming year.

Microprocessor

A personal laptop is used as the prototype microprocessor. For the implementation of this system
into a product each pull-type forage harvester will have to be equipped with a microprocessor.
Rather than bringing a laptop into the cab of a tractor, an Intel Atom is recommended. This
provides faster processing space and an easy manipulative interface.

Programming
To create an optimal control program a computer programmer would be required. This extra cost
would be worth the increased efficiency and reliability that the optimized program would

Page |22

produce. Should the programmer choose to use python, the developed program could be made
open source providing the client the ability to personally troubleshoot.

Targets

The current prototype targets are painted squares of plywood. The final material of the target can
be decided by the client. The recommended material would be more durable to extended outdoor
use than plywood. In this design the material of the target is not as critical as the colour and shape.
Also, in case of bad lighting, the targets could be infrared or lit with LED lights so the targets
provide their own light source. This would enable harvesting at all times of day.

Design Competition

This final design project will be entered in the AGCO National Student Design Competition. This
competition is hosted by the American Society of Agricultural and Biological Engineers
(ASABE). The registration for this competition is until April 27" 2016. In order to partake in this
competition, one member of the design team must be registered as a student member of ASABE
and have completed the design within their undergraduate studies (ASABE, 2016). The
submitted projects for the AGCO National Student Design Competition require an engineering
design that will entail a plan for a machine or system that will be useful to agriculture and related
areas. A written report, drawings with clear details of the design, and proof of testing performed
on the system with data acquisition needs to be included in the submission. The finalized
submission will be completed by the beginning of 2016. The detailed design competition website
can be found at http://www.asabe.org/awards-landmarks/student-awards,-competitions-
scholarships/agco.aspx.

Conclusion

After more than a year of research and design, this machine vision system has been subject to the
entire design cycle cumulating in a final design that reduces task complexity and cognitive strain
upon forage harvester operators. Throughout the development, optimization, and testing of the
design, small changes have been made to create a design the client can use as a foundation to the
final development of a reliable product. In regards to the goal to develop a system to prove that
machine vision can be used in a cost efficient manner to reduce the difficulty of forage
offloading, this project has been successful. Final recommendations have been provided for the
client to optimize the design base for production.

Page |23

Acknowledgements

We would like to thank the following for their all support in our project:
* Dion team
* Philippe Nieuwenhof & Frederic Renee-Laforest
* Dr. Adamchuck
* Dr. Clark
* Bharath Sudarsan
* Trevor Stanhope

Mentor Information

Dr. Adamchuk,

Associate Professor in Bioresource Engineering at McGill University,
viacheslav.adamchuk@mcgill.ca,

514-398-7657,

MS1-094 Macdonald-Stewart Building,

21111 Lakeshore Road

Ste. Anne de Bellevue, Quebec

H9X 3V9

Dr. Adamchuk provided guidance on the best system to use for the final design. Through his
personal assistance along with the assistance of many members of his lab this project was able to
be completed. Dr. Adamchuk provided much of the hardware used including the camera with
USB wires for testing purposes and access to a 3D printer.

Client Information

Philippe Nieuwenhof,

Research and Development Engineer at Dion-Ag Inc.
phil@dion-ag.com

450-437-3449 ext. 237

429, Cote Sud

Boisbriand, Québec,

J7E 4H5.

Frederic Rene-Laforest

Engineer in Training at Dion-Ag Inc.,
fred@dion-ag.com

450-437-3449 ext. 236

429, Cote Sud

Boisbriand, Québec,

J7E 4HS.

Page |24

mailto:viacheslav.adamchuk@mcgill.ca

Philippe and Fred were always very welcoming and open to the many ideas that were presented
to them. Throughout the process the Dion team was more than willing to help with any questions
and provide everything that was needed. Without access to their equipment and their knowledge
this project would not have been realized.

Page |25

References

Adafruit. Adafruit Motor/Stepper/Servo Shield for Arduino. Available at:
https://www.adafruit.com/products/1438. Accessed 14 November 2015.

ARDUINO. ARDUINO UNO REV3. Available at: http://store-usa.arduino.cc/products/a000066.
Accessed 15 November 2015.

Bradley, D., & Roth, Gerhard. 2007. Adaptive Thresholding Using the Integral Image

Clemente, S., and K. Teasdale. 1987. Understanding and Using Power MOSFET Reliability
Data. International Rectifier.

Cooper-Martin, E. 1994. Measures of cognitive effort. Marketing Letters 5(1): 43-56.

Digi-Key. Electronic Components. Available at: http://www.digikey.ca/product-
search/en?vendor=0&keywords=screw+connectors. Accessed 16 November 2015.

Electronics, S. P-Channel MOSFET. Available at: https://www.sparkfun.com/products/10349.
Accessed 15 November 2015.

Intel. Intel Atom Processor. Available
at: http://www.intel.com/content/www/us/en/processors/atom/atom-processor.html.
Accessed 16 November 2015.

Mathworks. 2015. Image Processing Toolbox User’s Guide. Natick, Massachusetts. The
Mathworks, inc.

Nicholls, A., L. Bren, et al. (2004). Harvester productivity and operator fatigue: working
extended hours. International journal of forest engineering 15(2): 57-65.

Staples. MakerBot 1.75 mm PLA Filament. Available at: http://www.staples.ca/en/MakerBot-
175-mm-PLA-Filament-Small-Spool-05-1b-True-Blue/product 1490362 2-
CA_1 20001?kpid=1490362&cid=PS:SBD:GS:n:n:SBD:58:21800&gclid=Cj0KEQiAg7
ayBRD8qqSGt-
fjouYBEiQAucjOWfKABV4IHd3Pp41ZgCJQ1{8CGOO0elwGaVTbLmiZUaHYaAkG88P
8HAQ. Accessed 13 November 2015.

Toshiba. 2012. Toshiba Bi-CD Integrated Circuit. Toshiba Corporation.

Tyco Electronics Corporation. Relay Contact Life. Winston-Salem, N.C.

Page |26

Appendices

Appendix A: Flowcharts

Page |27

LIVE VIDEO

DATAVIA US| |ROM CAMERA

Page |28

Page |29

Yes

Yes

Yes

Page |30

Appendix B: MATLAB® Code dion_2
Contents

dion_2.m: This program allows automated tracking of a Dion-ag. Stinger forage harvester. The program can interactively threshold user
selected target area, have user input digital control of the harvester on 2 axes and allows various file types to be loaded for further
development. This version works with an arduino uno and adafruit motor-shield with 12 volt output. Any 640 X 480 USB camera may be
used. Arduino for Matlab and webcam suport packages required as well as matlab version with image processing toolbox installed

--- Executes on button press in Start_button.

--- Executes on button press in Front_target.

--- Executes on button press in Calibrate_middle.
--- Executes on button press in Calibrate_rear.
--- Executes on button press in Stop_Button.

--- Executes on button press in Track.

--- Executes on button press in capup.

--- Executes on button press in capdown.

--- Executes on button press in turnleft.

--- Executes on button press in turnright.

dion_2.m: This program allows automated tracking of a Dion-ag. Stinger forage
harvester. The program can interactively threshold user selected target area, have
user input digital control of the harvester on 2 axes and allows various file types to
be loaded for further development. This version works with an arduino uno and
adafruit motor-shield with 12 volt output. Any 640 X 480 USB camera may be used.
Arduino for Matlab and webcam suport packages required as well as matlab version
with image processing toolbox installed

%
%
%

last modified December 6 - 2015
for BREE 495, written, tested and developed by: Brett Bennett, Meaghan
Dustin, Stephen McGuire and Yasmeen Hitti

function varargout = dion_2(varargin)

%
%

NN

NI

3% 3% R R % X

%

%

%

DION_2 MATLAB code for dion_2.fig
DION_2, by itself, creates a new DION_2 or raises the existing
singleton*.

H = DION_2 returns the handle to a new DION_2 or the handle to
the existing singleton*.

DION_2('CALLBACK',hObject,eventData,handles,...) calls the local
function named CALLBACK in DION_2.M with the given input arguments.

DION_2('Property','Value',...) creates a new DION_2 or raises the
existing singleton*. Starting from the left, property value pairs are
applied to the GUI before dion_2_OpeningFcn gets called. An
unrecognized property name or invalid value makes property application

stop. All inputs are passed to dion_2_OpeningFcn via varargin.

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES
Edit the above text to modify the response to help dion_2
Last Modified by GUIDE v2.5 15-Oct-2015 12:09:47

Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

file:///C:/Users/Acer/Downloads/dion_2%20(1).html

116

12/7/2015 dion_2

gui_State = struct('gui_Name', mfilename,
'gui_Singleton', gui_Singleton,
'gui_OpeningFcn', @dion_2_OpeningFcn,
'gui_OutputFcn', @dion_2_OutputFcn,
'gui_LayoutFcn', T[],
'gui_Callback"', [1;

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end

% End initialization code - DO NOT EDIT

% --- Executes just before dion_2 is made visible.

function dion_2_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
handles.axesl.Visible = 'off"';

3 3¢

NS

% varargin command line arguments to dion_2 (see VARARGIN)

% Choose default command line output for dion_2
handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes dion_2 wait for user response (see UIRESUME)

% uiwait(handles.figurel);

% --- Outputs from this function are returned to the command line.
function varargout = dion_2_OutputFcn(hObject, eventdata, handles)

>

varargout cell array for returning output args (see VARARGOUT);
hObject handle to figure

eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

NI

NN

% Get default command line output from handles structure
varargout{1} = handles.output;

--- Executes on button press in Start_button.

alows user to set up data source and begin displaying images on the GUI

function Start_button_Callback(hObject, eventdata, handles)

>

hObject handle to Start_button (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

>

NI

% Create variables to be shared

file:///C:/Users/Acer/Downloads/dion_2%20(1).html 2/16

12/7/2015 dion_2

global RGB

global Cam

global Vid_choice
global pic

global shield
global dcm3
global dcm4

set(handles.Start_button, 'UserData’,'"') % condition to check if another
%button has been pressed

% prompt to connect to arduino
arduino_start = menu('Connect to Arduino?', 'Yes','No');
% if user wants to connect to arduino, execute
if arduino_start ==
% arduino set up function with port id and hardware arguments
Arduino = arduino('/dev/cu.usbmodem1411', 'Uno', 'Libraries', 'Adafruit\MotorShieldv2")
% specify hardware
shield = addon(Arduino, 'Adafruit\MotorShieldv2")
% specify that motors 3 and 4 will be used and there associated variables
dcm3 = dcmotor(shield, 3)
dcm4 = dcmotor(shield, 4)
end

% menu to select live video, still images or saved video to be analyzed
Vid_choice = menu('Select Video options','Live Video From Camera',...
'Saved Video', 'Still Images');

% executes for live video
if Vid_choice ==
Cam = webcam('USB2.0 Camera'); % start camera

% loop executes as long as another button hasnt been pressed

% and displays video from camera on screen
while strcmp(get(handles.Start_button, 'UserData'), 'Pressed') == ©
% attempt to get frame from camera
try

RGB = snapshot(Cam); % get image from running camera
imshow(RGB) % show the aquired image

catch
disp('error') % display error if webcam is not ready
end

% if another GUI button is pressed, stop the loop

if strcmp(get(handles.Start_button, 'UserData'), 'Pressed') ==
break

end % end condition

end % end loop
% executes for saved video choice

elseif Vid_choice ==
path = uigetfile(); % allow user to select desired file
reader = VideoReader(path); % create object to read video
k = 1; % initialize counter

for count = 1:40 % number of frames to read
pic(k).cdata = readFrame(reader); % structure variable, saves all frames
k = k+1; % increase counter
disp(k)

end % end condition

disp('done') % display on screen when done loading

elseif Vid_choice ==3 % choice to load saved images

file:///C:/Users/Acer/Downloads/dion_2%20(1).html 3/16

12/7/2015 dion_2

path = uigetfile(); % user selects file
RGB = imread(path); % read selected image
imshow(RGB) % show image

end % end condition

--- Executes on button press in Front_target.

interactive thresholding set up for front target

function Front_target_Callback(hObject, eventdata, handles)

>

hObject handle to Front_target (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

NS

N

% clear the axes
cla

% load required global variables
global RGB

global pic

global Cam

global Vid_choice
global channellMin
global channellMax
global channel2Min
global channel2Max
global channel3Min
global channel3Max

count_front = 10; % initialize minimum frequency for repeated pixels, to
% be used later in thresholding.

set(handles.Start_button, 'UserData’, 'Pressed') % update handles to indicate
% button has been pressed

if Vid_choice == 2 % executes for saved video
frame = input('input desired frame'); % user input for desired frame in
% saved video structure
RGB = pic(frame).cdata; % set picture as frame of interest
imshow(RGB) % show image
pause(1l) % give user a chance to see image

I = rgb2hsv(RGB); % convert to HSV color space

elseif Vid_choice ==1 % executes for live video
RGB = snapshot(Cam); % get still image from camera
imshow(RGB) % display image
pause(1l) % allow user cahnce to see image
I = rgb2hsv(RGB); % convert to HSV color space
imshow(I) % show HSV image
pause(1l) % allow user to see HSV image

elseif Vid_choice ==3 % executes for saved still images
I = rgb2hsv(RGB); % convert to HSV colorspace
imshow(I); % show HSV image
pause(1l); % allow user to see image

end % end conditions

k = 1; % counter allows execution until break command
while k>0 % while true
% call dionalibrate function to set up thresholds

file:///C:/Users/Acer/Downloads/dion_2%20(1).html 4/16

12/7/2015 dion_2

[channellMin, channellMax, channel2Min, channel2Max, channel3Min, channel3Max]=...
DionCalibrate(RGB, count_front);

% Create mask based on chosen histogram thresholds, logical operations to,
% create binary mask

BW_Front = (I(:,:,1) >= channeliMin) & (I(:,:,1) <= channellMax) & ...
(I(:,:,2) >= channel2Min) & (I(:,:,2) <= channel2Max) & ...
(I(:,:,3) >= channel3Min) & (I(:,:,3) <= channel3Max);

% Initialize output masked image based on input image.

maskedRGBImage = RGB;

% Set background pixels where BW is false to zero. colour mask, used in

% debugging

maskedRGBImage(repmat(~BW_Front,[1 1 3])) = ©;

% create square 10 pixel structuring element for morphological operations

se = strel('square',10);

% show the binary image

imshow(BW_Front)

% allow user time to see image

pause(1)

% dilate image with structuring element

BW_Front = imdilate(BW_Front,se);

% show image again

imshow(BW_Front)

% wait for 1 second

pause(1)

% remove objects smaller than 1000 pixels

BW_Front = bwareaopen(BW_Front, 1000);

% show resulting binary image

imshow(BW_Front)

% wait for 1 second

pause(1)

% fill interior object holes smaller than 100 pixels

BW_Front = bwmorph(BW_Front,'Fill',100);

% extract all properties of all objects

props = regionprops(BW_Front, 'all');

% variable corresponding to object area

area = [props.Areal;

% find the index of the object that is the largest

[large,Index] = max(area);

% variable for the major axis of the largest object

majoraxis = props(Index).MajorAxisLength;

% variable for the minor axis of the largest object

minoraxis = props(Index).MinorAxisLength;

% compute the ratio of the major to minor axis to determine how square the

% object is

axis_ratio = majoraxis ./ minoraxis

% allowable squarness range condition

if axis_ratio >= 1 & axis_ratio < 1.5
% get the bounding box of the object

Bound = [props(Index).BoundingBox];

% determine how many objects are in the binary image

num_comps = bwconncomp(BW_Front);

num_comps = num_comps.NumObjects

% condition for muliple mask objects

if num_comps >= 2;

% increase histogram minimum frequency requirement
count_front = count_front + 100

elseif num_comps ==
% no obects detected, decrease histogram frequency requirement
count_front = 20;

% single object in mask

elseif num_comps ==
% dilate again with previous structure element
BW_Front = imdilate(BW_Front,se);

file:///C:/Users/Acer/Downloads/dion_2%20(1).html 5/16

12/7/2015 dion_2

% end number of object conditions
end
% show image
imshow(BW_Front)
% wait for 1 second
pause(1)
end % end squareness condition
try % execute if possible (there is at least one square object)
rectangle('position', Bound, 'EdgeColor','r','LineWidth',2) % draw rectangle
catch % do nothing if error is encountered
end % end try/catch
Calib_choice = menu('Done Calibrating Front?', 'Yes', 'No'); % ask user if
% they are satisfied with thresholding results
if Calib_choice == 1 % execute if yes
set(handles.Start_button, 'UserData','') % allow start button to begin
% showing video again
break % break from while loop
end % end prompt condition
end % end of while loop

--- Executes on button press in Calibrate_middle.

interactive thresholding set up for middle target

function Calibrate_middle_Callback(hObject, eventdata, handles)

I

hObject handle to Calibrate_middle (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

2

NS

N

% clear axes

cla

% load required variables
global RGB

global Cam

global Vid_choice
global midchannellMin
global midchannellMax
global midchannel2Min
global midchannel2Max
global midchannel3Min
global midchannel3Max
global pic

% initialize minimum frequency for repeated pixels, to
% be used later in thresholding.
count_mid = 10;
% update handles to indicate button has been pressed
set(handles.Start_button, 'UserData', 'Pressed')
% executes for saved video
if Vid_choice == 2
% user selects frame of video to use
RGB = pic((input('select frame'))).cdata;
% convert to HSV colorspace
I = rgb2hsv(RGB);
% display image
imshow(RGB)
% allow user to see image for 1 second
pause(1);

% executes for live video
elseif Vid_choice ==1

file:///C:/Users/Acer/Downloads/dion_2%20(1).html 6/16

12/7/2015 dion_2

% get still image from camera
RGB = snapshot(Cam);

% display image

imshow(RGB)

% wait for 1 second

pause(1)

% convert to HSV color space
I = rgb2hsv(RGB);

% executes for still images
elseif Vid_choice ==
% convert to HSV color space
I = rgb2hsv(RGB);
end % end conditions

k = 1; % counter for while loop, execute forever until commanded to break
while k>0
% call dion calibrate function to set up middle target thresholds
[midchanneliMin,midchannellMax,midchannel2Min,midchannel2Max,midchannel3Min,midchannel3Max]=...
DionCalibrate(RGB, count_mid);

% Create binary mask based on chosen histogram thresholds, logical
% operations

BW_mid = (I(:,:,1) >= midchannellMin) & (I(:,:,1) <= midchannellMax) & ...
(I(:,:,2) >= midchannel2Min) & (I(:,:,2) <= midchannel2Max) & ...
(I(:,:,3) >= midchannel3Min) & (I(:,:,3) <= midchannel3Max);

% Initialize output masked image based on input image.
maskedRGBImage = RGB;
% Set background pixels where BW is false to zero. Creates coloured mask,
% with colours outside mask black, used for debugging and optimization only
maskedRGBImage(repmat(~BW_mid,[1 1 3])) = ©;
% create square structuring element 10 pixels by 10 pixels
se = strel('square',10);
% show binary image
imshow(BW_mid)
% wait for 1 second
pause(1)
% dilate image using structuring element
BW_mid = imdilate(BW_mid,se);
% remove objects smaller than 1000 pixels in area
BW_mid = bwareaopen(BW_mid,1000);
% display image again
imshow(BW_mid)
% wait for 1 second
pause(1)
% fill interior areas of objects with holes 100 pixels or smaller
BW_mid = bwmorph(BW_mid, 'Fill',100);
% get all properties of all objects
props = regionprops(BW_mid, 'all');
% variable for area of objects
area = [props.Areal;
% get index of largest object
[large,Index] = max(area);
majoraxis = props(Index).MajorAxisLength;
% variable for the minor axis of the largest object
minoraxis = props(Index).MinorAxisLength;
% compute the ratio of the major to minor axis to determine how square the
% object is
axis_ratio = majoraxis ./ minoraxis
% allowable squarness range condition
if axis_ratio >= 1 & axis_ratio < 1.5
% get the bounding box of the object
Bound = [props(Index).BoundingBox];

file:///C:/Users/Acer/Downloads/dion_2%20(1).html 7116

12/7/2015

dion_2

% determine how many objects are in the binary image
num_comps = bwconncomp(BW_mid);
num_comps = num_comps.NumObjects
% condition for muliple mask objects
if num_comps >= 2;
% increase histogram minimum frequency requirement
count_mid = count_mid + 100
elseif num_comps ==
% no obects detected, decrease histogram frequency requirement
count_mid = 20;
% single object in mask
elseif num_comps ==1
% dilate again with previous structure element
BW_mid = imdilate(BW_mid,se);
% end number of object conditions

end

% show image
imshow(BW_mid)
% wait for 1 second
pause(1)
end % end squareness condition
try % execute if possible (there is at least one square object)

rectangle('position', Bound, 'EdgeColor','r','LineWidth',2) % draw rectangle

catch % do nothing if error is encountered
end % end try/catch

Calib_choice = menu('Done Calibrating Middle?', 'Yes', 'No'); % ask user if

% they are satisfied with thresholding results
if Calib_choice == 1 % execute if yes

set(handles.Start_button, 'UserData','') % allow start button to begin

% showing video again

break % break from while loop
end % end prompt condition
end % end of while loop
% clear axes

cla

--- Executes on button press in Calibrate_rear.

interactive thresholding set up for rear target

function Calibrate_rear_Callback(hObject, eventdata, handles)

3 3¢

NS

3%

cla

% load
global
global
global
global
global
global
global
global
global
global

hObject handle to Calibrate_rear (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

5 clear axes

required variables
RGB

Cam

Vid_choice
rearchannellMin
rearchannellMax
rearchannel2Min
rearchannel2Max
rearchannel3Min
rearchannel3Max
pic

% minimum required number of repeated pixels for threshold
count_rear = 10;
% update handles to indicate a button has been pressed

file:///C:/Users/Acer/Downloads/dion_2%20(1).html

8/16

12/7/2015 dion_2

set(handles.Start_button, 'UserData’, 'Pressed")
% execute for saved video
if Vid_choice == 2
% user input frame of interest
RGB = pic((input('select frame'))).cdata;
% display image
imshow(RGB)
% wait for 1 second
pause(1)
% convert to HSV color space
I = rgb2hsv(RGB);
% execute for live video
elseif Vid_choice ==
% get still image from camera
RGB = snapshot(Cam);
% display still image
imshow(RGB)
% wait for 1 second
pause(1)
% convert to HSV color space
I = rgb2hsv(RGB);
% execute for still images
elseif Vid_choice ==3
% convert to HSV color space
I = rgb2hsv(RGB);
end
% counter for while loop, loop executes forever until comanded to break
k = 1;
while k>0
% call dioncalibrate function to set up threhold values
[rearchannellMin, rearchannellMax, rearchannel2Min, rearchannel2Max, rearchannel3Min, rearchannel3Max]=...
DionCalibrate(RGB, count_rear);

% Create binary mask based on chosen histogram thresholds, logical operations

BW_Rear = (I(:,:,1) >= rearchanneliMin) & (I(:,:,1) <= rearchannelilMax) & ...
(I(:,:,2) >= rearchannel2Min) & (I(:,:,2) <= rearchannel2Max) & ...
(I(:,:,3) >= rearchannel3Min) & (I(:,:,3) <= rearchannel3Max);

% Initialize output masked image based on input image.
maskedRGBImage = RGB; % colorized mask for debugging only
% Set background pixels where BW is false to zero.
maskedRGBImage(repmat(~BW_Rear,[1 1 3])) = ©;

% create structuring element, 10 by 10 pixels square
se = strel('square',10);

% show binary image

imshow(BW_Rear)

% wait for 1 second

pause(1)

% dilate objects with structuring element

BW_Rear = imdilate(BW_Rear,se);

% display new binary image

imshow(BW_Rear)

% wait for 1 second

pause(1)

% fill holes in objects up to 100 pixels

BW_Rear = bwmorph(BW_Rear, 'Fill',100);

% remove objects smaller than 1000 pixels

BW_Rear = bwareaopen(BW_Rear,1000);

% get properties of all objects

props = regionprops(BW_Rear,'all');

% area of objects

area = [props.Area]l;

% indexed location of largest object

[large,Index] = max(area);

majoraxis = props(Index).MajorAxisLength;

file:///C:/Users/Acer/Downloads/dion_2%20(1).html 9/16

12/7/2015 dion_2

% variable for the minor axis of the largest object
minoraxis = props(Index).MinorAxisLength;
% compute the ratio of the major to minor axis to determine how square the
% object is
axis_ratio = majoraxis ./ minoraxis
% allowable squarness range condition
if axis_ratio >= 1 & axis_ratio < 1.5
% get the bounding box of the object
Bound = [props(Index).BoundingBox];
% determine how many objects are in the binary image
num_comps = bwconncomp(BW_Rear);
num_comps = num_comps.NumObjects
% condition for muliple mask objects
if num_comps >= 2;
% increase histogram minimum frequency requirement
count_rear = count_rear + 100
elseif num_comps ==
% no obects detected, decrease histogram frequency requirement
count_rear = 20;
% single object in mask
elseif num_comps ==
% dilate again with previous structure element
BW_Rear = imdilate(BW_Rear,se);
% end number of object conditions
end
% show image
imshow(BW_Rear)
% wait for 1 second
pause(1)
end % end squareness condition
try % execute if possible (there is at least one square object)
rectangle('position', Bound, 'EdgeColor','r','LineWidth',2) % draw rectangle
catch % do nothing if error is encountered
end % end try/catch
Calib_choice = menu('Done Calibrating Rear?', 'Yes', 'No'); % ask user if
% they are satisfied with thresholding results
if Calib_choice == 1 % execute if yes
set(handles.Start_button, 'UserData','') % allow start button to begin
% showing video again
break % break from while loop
end % end prompt condition
end % end of while loop
% clear axes
cla

--- Executes on button press in Stop_Button.

stop tracking, clear axes and close camera

function Stop_Button_Callback(hObject, eventdata, handles)

% hObject handle to Stop_Button (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global Cam

set(handles.Start_button, 'UserData’, 'Pressed"')

set(handles.Track, 'UserData’,"'")

Cam = [];
cla

file:///C:/Users/Acer/Downloads/dion_2%20(1).html 10/16

12/7/2015 dion_2
--- Executes on button press in Track.

when this button is pressed, 3 masks are created for the three targets to be tracked and the centroid of respective targets displayed on the GUI,
for the current version, only the rear target is used to control the motion of the harvester without switching control to other targets, to be
developed in a later version.

function Track_Callback(hObject, eventdata, handles)

% hObject handle to Track (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

cla % clear current axes
% load required variables
global Cam
global pic
global Vid_choice
global RGB
global channellMin
global channellMax
global channel2Min
global channel2Max
global channel3Min
global channel3Max
global midchannellMin
global midchannellMax
global midchannel2Min
global midchannel2Max
global midchannel3Min
global midchannel3Max
global rearchannellMin
global rearchannellMax
global rearchannel2Min
global rearchannel2Max
global rearchannel3Min
global rearchannel3Max
global dcm3
global dcm4
% allows the start button to know that another button has been pressed to
% break the image display loop
set(handles.Start_button, 'UserData', 'Pressed')
% initiate track loop condition
set(handles.Track, 'UserData’', 'Pressed")
% while loop continues until another button is pressed
while strcmp(get(handles.Track, 'UserData'), 'Pressed') == 1
% if live video get a snapshot
if Vid_choice ==
RGB = snapshot(Cam);
% if it is saved video get the desired frame
elseif Vid_choice ==
RGB = pic(input('selectframe')).cdata;

end
% hold current axes
hold on

% convert to hsv colorspace
I = rgb2hsv(RGB);

% create a logical matrix from the threshold values from calibration of the

% front target & the current camera image

BW_Front = (I(:,:,1) >= channellMin) & (I(:,:,1) <= channellMax) & ...
(I(:,:,2) >= channel2Min) & (I(:,:,2) <= channel2Max) & ...

file:///C:/Users/Acer/Downloads/dion_2%20(1).html 1116

12/7/2015 dion_2

(I(:,:,3) >= channel3Min) & (I(:,:,3) <= channel3Max);

% create a logical matrix from the threshold values from calibration of the

% middle target & the current camera image

BW_Middle = (I(:,:,1) >= midchannellMin) & (I(:,:,1) <= midchannellMax) & ...
(I(:,:,3) >= midchannel3Min) & (I(:,:,3) <= midchannel3Max);

% create a logical matrix from the threshold values from calibration of the

% rear target & the current camera image

BW_Rear = (I(:,:,1) >= rearchanneliMin) & (I(:,:,1) <= rearchannellMax) & ...
(I(:,:,2) >= rearchannel2Min) & (I(:,:,2) <= rearchannel2Max) & ...
(I(:,:,3) >= rearchannel3Min) & (I(:,:,3) <= rearchannel3Max);

% Initialize output masked image based on input image. for debugging use

% only

maskedRGBImage = RGB;

% specify the center of the image horizontally based on resolution of the

% camera

center_screen_horiz = 320;

% specify the center of the image vertically based on resolution of the

% camera

center_screen_vert = 240;

% specify furthest left allowable deviation from center of screen

left_limit = center_screen_horiz - 50;

% specify furthest right allowable deviation from center of screen

right_limit = center_screen_horiz + 50;

% specify furthest up allowable deviation from center of screen

upper_limit = center_screen_vert + 40;

% specify furthest down allowable deviation from center of screen

lower_limit = center_screen_vert - 40;

% ensure bounding rectangles created from previous iteration are not

% visible

rect_rear.Visible = 'off’;
rect_mid.Visible = 'off"';
rear_marker.Visible = 'off';

% delete previous object centroid locations
Front_cent = [];
Middle_cent = [];
Rear_cent = [];
% create second hsv image, used if histogram equalization is performed.
I1 =I;
% try statement, if object is not detected, will not throw an error that
% crashes the program
try
% square structuring element for morphlogical operations on image
se = strel('square',10);
% remove objects smaller than 1000 pixels
BW_Front = bwareaopen(BW_Front, 1000);
% dilate objects using structuring element
BW_Front = imdilate(BW_Front,se);
% fill object holes
BW_Front = bwmorph(BW_Front,'Fill',100);
% extract object properties of interest
props_front = regionprops(BW_Front, 'MajorAxisLength', '"MinorAxisLength', 'Centroid', 'Area’, 'BoundingBox", 'ConvexHull");
% area of objects in pixels
area = [props_front.Area];
% locate object with largest area
[large,Index] = max(area);
% calculate major axis of largest object
majoraxis = props_front(Index).MajorAxisLength;
% calculate minor axis of largest object
minoraxis = props_front(Index).MinorAxisLength;
% variable for centroid of largest object
Front_cent = [props_front(Index).Centroid];
% calculate ratio of major axis to minor axis, to tell how square the
% object is
axis_ratio = majoraxis / minoraxis;
% x position of centroid

file:///C:/Users/Acer/Downloads/dion_2%20(1).html 12/16

12/7/2015 dion_2

center_x = Front_cent(1);
% y position of centroid
center_y = Front_cent(2);

% execute if the object is square, ie it is the target
if axis_ratio >= 1 && axis_ratio < 2

% get the bounding box of the image

Bound_front = [props_front(Index).BoundingBox];

% display the location of the centroid on the gui
set(handles.Front, 'String',Front_cent)

else % not square object, display that it is not tracking the target
set(handles.Front, 'String', 'no object")

end

% catch errors

catch ME

error_text = ME.identifier; % error identification

set(handles.error, 'String',error_text) % show in error text box

end

try
% 10 by ten structuring element
se = strel('square',10);
% dilate mask with structuring element
BW_Middle = imdilate(BW_Middle,se);
% remove objects smaller than 1000 pixels
BW_Middle = bwareaopen(BW_Middle, 1000);
% fill holes
BW_Middle = bwmorph(BW_Middle, 'Fill',100);
% get desired object properties
props_middle = regionprops(BW_Middle, ‘MajorAxisLength', 'MinorAxisLength', 'Centroid', 'Area’, 'BoundingBox"');
% area of objects
area = [props_middle.Area];
% indexed location of largest object
[large,Index] = max(area);
% major axis of largest object
majoraxis = props_middle(Index).MajorAxisLength;
% minor axis of largest object
minoraxis = props_middle(Index).MinorAxisLength;
% centroid of largest object
Middle_cent = props_middle(Index).Centroid;
% x component of centroid
center_x = Middle_cent(1);
center_y = Middle_cent(2);
% squareness of object
axis_ratio = majoraxis / minoraxis;
% execute if object is square
if axis_ratio >= 1 && axis_ratio < 1.5
% get bounding box
Bound_mid = [props_middle(Index).BoundingBox];
% draw rectangle around object
rect_mid = rectangle('position', Bound_mid, 'EdgeColor','r", 'LineWidth',20);
% display object centroid
set(handles.Middle, 'String',Middle_cent)
% if not square show no object
else
set(handles.Middle, 'String', 'no object")
end % end square condition

catch % catch errors
set(handles.Middle, 'String', 'no object') % if error show no object text
end

try % if object is not detected, program will continue without crashing
% square structuring element

file:///C:/Users/Acer/Downloads/dion_2%20(1).html 13/16

12/7/2015 dion_2

se = strel('square',10);

% dilate binary mask

BW_Rear = imdilate(BW_Rear,se);

% remove objects smaller than 1000 pixels
BW_Rear = bwareaopen(BW_Rear, 10090);

% fill holes up to 100 pixels in size

BW_Rear = bwmorph(BW_Rear, 'Fill’',100);

% get desired object properties

props_rear = regionprops(BW_Rear, 'MajorAxisLength', 'MinorAxisLength', 'Centroid', 'Area', 'BoundingBox');
% area of object

area = [props_rear.Area]l;

% indexed location of largest object in masl
[large,Index] = max(area);

% major axis of largest object

majoraxis = props_rear(Index).MajorAxisLength;
% minor axis of largest object

minoraxis = props_rear(Index).MinorAxisLength;
% centroid of largest object

Rear_cent = props_rear(Index).Centroid;

% squarness of largest object

axis_ratio = majoraxis / minoraxis;

catch % if no object detected display no object
set(handles.Rear, 'String', 'no object")
end
try % if object is square
if axis_ratio >= 1 && axis_ratio < 2
% get bounding box and draw rectangle around object
Bound_rear = [props_middle(Index).BoundingBox];
rect_rear = rectangle('position', Bound_rear, 'EdgeColor','r','LineWidth',10);
% mark centroid of object
rear_marker = line(center_x, center_y, 'Marker', '*', 'MarkerEdgeColor',
% display centroid on GUI
set(handles.Rear, 'String',Rear_cent)
% if the chute is moved too far left, move the chute to the right
if Rear_cent(1) < left_limit
start(dcm4) % turns motor on
dcm4.Speed = -1 % sets voltage to -12 volts
pause(0.2) % leave on for 0.2 seconds
stop(dcm4) % shut off motor

r');

% if the chute is moved too far left, move the chute to the right
elseif Rear_cent(1l) > right_limit

start(dcm4) % turn motor 4 on

dcm4.Speed = 1 % set voltage to 12 volts

pause(0.2) % leave on for 0.2 seconds

stop(decm4) % shut motor off

end

% chute cap to high, move downward

if Rear_cent(2) > upper_limit

start(decm3) % turn on motor 3
dcm3.Speed = -1 % set voltage to -12 volts
pause(0.1) % leave motor on for .1 seconds
stop(decm3) % shut motor off

% if cap to low, move upward

elseif Rear_cent(2) < lower_limit

start(decm3) % turn motor on
dcm3.Speed = 1 % set voltage to 12 volts
pause(©.1) % leave on for .1 seconds
stop(dcm3) % shut motor off

end

end % end squareness conditions

file:///C:/Users/Acer/Downloads/dion_2%20(1).html 14/16

12/7/2015 dion_2

catch ME
% display encountered error
error_text = ME.identifier;

set(handles.error, 'String',error_text)
end
% check if another button is pressed

if strcmp(get(handles.Track, 'UserData'),"'"') ==

break % stop tracking if another button has been pressed

end

% combine masks to be displayed for debugging

BW = BW_Front + BW_Rear + BW_Middle;

%show image

imshow(RGB)

% turn axis hold off

hold off

end

--- Executes on button press in capup.

This button when pressed will turn on motor 3 on the arduino, leave it on for the specified time and then turn it off. This motor is wired to the
solenoid for cap up and down movement and supplies 12 volts to the solenoid moving the cap upwards

function capup_Callback(hObject, eventdata, handles)

% hObject handle to capup (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global dcm3 % load required variables
start(dcm3) % start motor 3
dcm3.Speed = 1 % set motor speed to 100 percent in the positive direction
% + 12 volts
pause(0.001) % leave motor on for specified time
stop(decm3) % turn off motor

--- Executes on button press in capdown.

This button when pressed will turn on motor 3 on the arduino,

%leave it on for the specified time and then turn it off. This motor is
% wired to the solenoid for cap up and down movement and supplies -12 volts
%to the solenoid moving the cap downwards

function capdown_Callback(hObject, eventdata, handles)

% hObject handle to capdown (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global dcm3 % load required variables

start(dcm3) % start motor 3

dcm3.Speed -1 % set motor power to 100 percent in the negative direction
% -12 volts

pause(0.001) % pause for specified time

stop(dcm3) % stop motor

file:///C:/Users/Acer/Downloads/dion_2%20(1).html 15/16

12/7/2015 dion_2

--- Executes on button press in turnleft.

This button when pressed will turn on motor 4 on the arduino,

%leave it on for the specified time and then turn it off. This motor is
% wired to the solenoid for left and right turns and supplies -12 volts to
%the solenoid +turning the chute left

function pushbutton10_Callback(hObject, eventdata, handles)

% hObject handle to turnleft (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global dcm4 % load required variables
start(dcm4) % start motor 4
dcm4.Speed = -1 % set motor power to 100 percent in the negative direction
% -12 volts
pause(0.1) % leave motor on for specified time
stop(decm4) % shut motor off

--- Executes on button press in turnright.

This button when pressed will turn on motor 4 on the arduino,

%leave it on for the specified time and then turn it off. This motor is
% wired to the solenoid for left and right turns and supplies +12 volts to
%the solenoid turning the chute right

function pushbuttonl1l_Callback(hObject, eventdata, handles)

% hObject handle to turnright (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global dcm4 % load required variables

start(dcm4) % start motor 4

dcm4.Speed = 1 % motor power is 100 percent in the positive direction (12 volts)
pause(0.1) % pause to allow motor to stay on for specified time
stop(dcm4) % stop motor 4

file:///C:/Users/Acer/Downloads/dion_2%20(1).html 16/16

12/7/2015 DionCalibrate - for use with dion_2.m

DionCalibrate - for use with dion_2.m

This function allows the user to select a freehand region of the screen to select the target area. Once this area has been selected, the
image is cropped to this area and a histogram of the hue, saturation and value channels are created. The minimum frequency is passed
to the function as an argument. The highest and lowest pixel values for each channel that have a frequency greater than the specified
argument are selected and output as the limits for the threshold, for hue, saturation and value channels.

function [channellMin, channellMax, channel2Min,channel2Max,channel3Min,channel3Max] = DionCalibrate(RGB, count)
% display image

imshow(RGB)

% convert to HSV

I = rgb2hsv(RGB);

% make copy of HSV image

I1 = I;

% get graphics handle of freehand region
h_region =imfreehand;

%create mask from region

region_mask = createMask(h_region);

% set pixels outside mask to zero on 3 matrices
I1(repmat(~region_mask,[1,1,3])) = 0;

% wait 1 second

pause(1)

% show HSV image

imshow(I)

% wait 1 second

pause(1)

% break matrix into 3 one dimensional matrices
hue = I1(:,:,1);

saturation = I1(:,:,2);

value = I1(:,:,3);

% Define thresholds for channel 1 based on histogram settings
% hue histogram

[counth, binh] = imhist(hue);

% saturation histogram

[counts, bins] = imhist(saturation);

% value histogram

[countv, binv] = imhist(value);

% locate pixels above specified frequency and do not use pixels equal to
% zero (they are outside mask).

refh = find(counth > count & binh ~= 0);

% use reference to get values above required frequency
hue_thresh = binh(refh);

% find lowest value and make .1 smaller

channellMin = min(hue_thresh) - .1;

% find highest value and make .1 bigger

channellMax = max(hue_thresh)+ .1;

% Define thresholds for channel 2 based on histogram settings

% locate pixels above specified frequency and do not use pixels equal to
% zero (they are outside mask).

refs = find(counts > count & bins ~= 0);

% use reference to get values above required frequency

sat_thresh = bins(refs);

% find lowest value and make .1 smaller

channel2Min = min(sat_thresh) - .1;

% find highest value and make .1 bigger

channel2Max = max(sat_thresh) + .1;

% Define thresholds for channel 3 based on histogram settings
file:///C:/Users/Acer/Downloads/DionCalibrate%20(1).html 12

12/7/2015 DionCalibrate - for use with dion_2.m

% locate pixels above specified frequency and do not use pixels equal to
% zero (they are outside mask).

refv = find(countv > count & binv ~= 0);

% use reference to get values above required frequency
value_thresh = binv(refv);

% find lowest value and make .1 smaller

channel3Min = min(value_thresh) - .1;

% find highest value and make .1 bigger

channel3Max = max(value_thresh) +.1;

% delete the freehand drawn region

delete(h_region)

end

file:///C:/Users/Acer/Downloads/DionCalibrate%20(1).html

Appendix C: FMEA Ranking

FMEA Ranking Sheet

SEVERITY OCCURRENCE DETECTION
CNH Proposal for Low SAE J1739 Criteria: Likelihood of detection by Rankin
Volume Applications e atc200) esign Contro
pp Design Control 9
Description Design Ranking ProbaPlIlty Possible Failure Rates Freque Frequency Rankin
of Failure ncy g
VERY HIGH Severity Ranking when Variation or) Design Control will not and/or cannot
Potential Failure Mode affects Safe Machine 220 per 100 vehicles, OR 200 detect a potential cause/mechanism and
. . , 10 per 115 >1/10 10 . X . 10
Operation and/or Involves Non-Compliance with thousand vehiclesfitems subsequent failure mode; or there is no
Government Regulations - WITHOUT WARNING design control.
VERY HIGH Severity Ranking when Variation or Very remote chance the Design Control
Potential Failure Mode affects Safe Machine 10 per 100 vehicles, OR 100 per N r B 9 .
N . . 9 X . 1/10 1/20 9 will detect a potential cause/mechanism 9
Operation and/or Involves Non-Compliance with thousand vehicles/items and subsequent failure mode
Government Regulations - WITH WARNING a .
. . Remote chance the Design Control will
Vehicle / Item INOPERABLE, 5 per 100 vehicles, OR 50 per R .
LOSS OF PRIMARY FUNCTION 8 thousand vehicles/items 1120 L0 8 detect a potential cause/mechanism and| 8
subsequent failure mode.
Vehicle / ltem OPERABLE, But at aREDUCED 3.3 per 100 vehicles, OR 33 per Very Low chance the Design Control will
LEVEL OF PERFORMANCE. Customer Very 7 Moderate: : i)housand vehiclés/items P 1/30 1/100 7 Very Low detect a potential cause/mechanism and 7
Dissatisfied. o subsequent failure mode.
Vehicle / Item OPERABLE, But COMFORT / Failures . Low chance the Design Control will
CONVENIENCE ITEM(S) INOPERABLE. Moderate 6 2 p;rolzgr:’j'\‘,':L‘?zl’eglieﬁsper 1/50 1/200 6 Low detect a potential cause/mechanism and| 6
Customer IS Dissatisfied. subsequent failure mode.
Vehicle / ltem OPERABLE, But COMFORT / Moderate ch the Design Control will
REDUCED LEVEL of Performance. Customer thousand vehicles/items P ¥
) L subsequent failure mode.
Somewhat Dissatisfied. Low:))
Fit & Finish / Squeak & Rattle Item Varies or Does Relatively 0.5 per 100 vehicles. OR 5 per Mo‘fé:ﬁ)}l’ H,'I?zectl;z?:e g:ﬁ:’gn
not conform. Defect NOTICED BY MOST Very Low 4 Few 9P venicles, UK 5 p 1/200 1/1000 4 Moderately High Wil potent 4
p thousand vehicles/items cause/mechanism and subsequent
CUSTOMERS (>75%) Failures failure mode
Fit & Finish / Squeak & Rattle Item Varies or Does 0.3 per 100 vehicles. OR 3 per High chance the Design Control will
not conform. Defect NOTICED BY 50% Minor 3) tfwusand vehicle's/itemsp 1/300 1/2000 3 High detect a potential cause/mechanism and 3
CUSTOMERS subsequent failure mode.
Fit & Finish / Squeak & Rattle Item Varies or Does 0.2 per 100 vehicles. OR 2 per Very High chance the Design Control will
not conform. Defect NOTICED BY Very Minor 2) tfmusand vehicle,s/itemsp 1/500 1/10,000 2 detect a potential cause/mechanism and 2
DISCRIMINATING CUSTOMERS (<25%) subsequent failure mode.
. Design Control will almost certainly
No Discernable Effect 1 0.1 tazzlggdvsgﬁﬁzéz:njsper 1/1000 | < 1/100,000 1 detect a potential cause/mechanism and 1
subsequent failure mode

Notes: Severity is a RELATIVE RANKING, within the scope of
the individual FMEA

Notes: Occurrence = Likelihood that specific cause mechanism or Variability will occur during design

life. Ranking Number has a relative meaning rather than an absolute value.
Must be applied consistently during the FMEA

	Executive Summary 2
	Introduction 4
	Forage Harvesters and Task Complexity 4
	The Client 5
	Problem Statement 6
	Constraints 6

	Analysis and Specifications 7
	Prototyping and Optimization 11
	Testing 19
	Failure Mode Effects Analysis (FMEA) 19
	Uncertainty Calculation 20
	Cost Analysis 20

	Recommendations 21
	Design Competition 23
	Conclusion 23
	Acknowledgements 24
	Mentor Information 24
	Client Information 24

	References 26
	Appendices 27
	Appendix A: Flowcharts 27
	Appendix B: MATLAB® Code 31
	Appendix C: FMEA Ranking 31

