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Abstract

Artificial Intelligence (AI) has become profoundly embedded in contemporary life, with its

applications proliferating across a wide array of domains. Central to AI are neural networks,

which have markedly enhanced the capabilities of AI in areas such as computer vision and

natural language processing. As neural networks scale in both size and computational com-

plexity, the intelligent devices tasked with executing these networks face growing demands for

computational and energy resources to ensure efficient and reliable performance. Consequently,

resource-limited embedded devices, such as smartphones, encounter significant challenges

in deploying state-of-the-art AI models. These devices frequently resort to cloud-based

platforms, which necessitate continuous internet connectivity. However, cloud-based solutions

pose several critical issues, including concerns over security, privacy, latency, and notably,

their substantial environmental impact due to high energy consumption. This dissertation

seeks to address these challenges by reducing the computational complexity of neural networks

to facilitate their deployment on embedded devices. Specifically, it targets the primary source

of computational burden and a major contributor to energy consumption in neural networks:

high-precision multipliers (e.g., 16-bit or 8-bit multipliers).

We propose novel implementations of neural networks that either markedly reduce the bit-

width of multipliers (to 4 bits or fewer) or entirely replace them with simpler logic operations

(e.g., XNOR and shift operations). Moreover, reducing the bit-width of neural networks leads

to decreased memory storage demands and reduced memory access, thereby contributing to

a further reduction in overall energy consumption. In our initial implementation of neural

networks, we present a novel approach for training multi-layer networks utilizing Finite State

Machines (FSMs). In this approach, each FSM is interconnected with every FSM in both

the preceding and subsequent layers. We demonstrate that the FSM-based network can

effectively synthesize complex multi-input functions, such as 2D Gabor filters, and perform

non-sequential tasks, such as image classification on stochastic streams, without the need for

multiplications, given that FSMs are implemented solely through look-up tables. Building on
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the FSMs’ capability to handle binary streams, we propose an FSM-based model specifically

designed for handling time series data, applicable to temporal tasks such as character-level

language modeling. In our second implementation, we introduce an advanced stochastic

computing (SC) representation termed the dynamic sign-magnitude (DSM) stream. This

representation is specifically designed to enhance the precision of short-sequence SC-based

multiplication. The DSM framework facilitates the substitution of conventional neural

network multiplications with more efficient bitwise XNOR operations. By employing DSM,

we achieve a substantial reduction in the required sequence length for SC-based neural

networks, while maintaining accuracy levels comparable to existing methodologies. In

our third implementation, we propose a new training framework for base-2 logarithmic

quantization of neural networks. This framework quantizes weights into discrete power-of-two

values by leveraging information about the network’s weight distribution, specifically the

standard deviation. This method allows us to replace computationally intensive high-precision

multipliers with more efficient shift-add operations. Consequently, our quantized networks use

approximately one-eighth the number of parameters compared to conventional high-precision

networks, without compromising classification accuracy. Finally, in our latest implementation,

we introduce a novel training framework that utilizes quantization techniques to facilitate

the conversion between quantized networks and spiking neural networks (SNNs). SNNs are

inherently devoid of multiplications, relying instead on addition and subtraction. This new

framework offers an alternative approach for training SNNs. Specifically, we modify the

SNN algorithm and mathematically demonstrate that after T time steps, the modified SNN

approximates the behavior of a quantized network with T quantization intervals. This allows

for the straightforward replacement of any SNN with its corresponding quantized network for

training purposes. Given that the SNN and the quantized network share identical parameters,

we can seamlessly transfer the parameters from the trained quantized network to the SNN

without additional steps.
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Abrégé

L’intelligence artificielle (IA) est aujourd’hui profondément intégrée dans la vie contemporaine,

avec des applications qui se multiplient dans un large éventail de domaines. Au cœur de l’IA se

trouvent les réseaux de neurones, qui ont considérablement renforcé les capacités des systèmes

intelligents, notamment dans les domaines de la vision par ordinateur et du traitement du

langage naturel. Cependant, à mesure que les réseaux de neurones gagnent en taille et en

complexité computationnelle, les dispositifs intelligents chargés de leur exécution doivent faire

face à des exigences croissantes en matière de ressources de calcul et d’énergie pour garantir

des performances efficaces et fiables. Ainsi, les dispositifs embarqués à ressources limitées,

tels que les smartphones, rencontrent des difficultés majeures pour déployer des modèles d’IA

de pointe. Ces dispositifs ont souvent recours à des plateformes cloud, qui nécessitent une

connectivité internet constante. Toutefois, les solutions basées sur le cloud soulèvent plusieurs

problématiques critiques, notamment en matière de sécurité, de confidentialité, de latence,

ainsi que leur impact environnemental important, dû à une consommation énergétique élevée.

Cette thèse vise à répondre à ces enjeux en réduisant la complexité computationnelle des

réseaux de neurones afin d’en faciliter le déploiement sur des dispositifs embarqués. Plus

précisément, elle s’attaque à la principale source de charge computationnelle — et à un facteur

majeur de consommation d’énergie — dans les réseaux de neurones : les multiplicateurs

de haute précision (par exemple, les multiplicateurs 16 bits ou 8 bits). Nous proposons de

nouvelles implémentations de réseaux de neurones qui réduisent de manière significative la

largeur de bits des multiplicateurs (jusqu’à 4 bits ou moins), ou les remplacent entièrement

par des opérations logiques plus simples (par exemple, les opérations XNOR ou les décalages

binaires). De plus, la réduction de la précision des réseaux de neurones permet de diminuer

les besoins en mémoire de stockage ainsi que le nombre d’accès à la mémoire, contribuant

ainsi à une baisse supplémentaire de la consommation énergétique globale. Dans notre

première implémentation, nous présentons une nouvelle approche d’entrâınement de réseaux

multi-couches utilisant des machines à états finis (Finite State Machines, FSM). Dans cette

architecture, chaque FSM est interconnectée avec toutes les FSM des couches précédentes et
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suivantes. Nous démontrons que ce réseau basé sur des FSM peut synthétiser efficacement

des fonctions complexes à entrées multiples, telles que les filtres de Gabor 2D, et exécuter des

tâches non séquentielles, telles que la classification d’images à partir de flux stochastiques,

sans recourir à des multiplications, les FSM étant implémentées uniquement à l’aide de tables

de correspondance. En s’appuyant sur la capacité des FSM à traiter des flux binaires, nous

proposons également un modèle basé sur les FSM spécifiquement conçu pour traiter des

données temporelles, applicable à des tâches telles que la modélisation de langage au niveau

des caractères. Dans notre seconde implémentation, nous introduisons une représentation

avancée pour le calcul stochastique (Stochastic Computing, SC), que nous appelons flux

dynamique en signe et magnitude (Dynamic Sign-Magnitude, DSM). Cette représentation

a été spécialement conçue pour améliorer la précision des multiplications SC utilisant de

courtes séquences. Le cadre DSM permet de remplacer les multiplications classiques des

réseaux de neurones par des opérations XNOR binaires, beaucoup plus efficaces. Grâce à cette

méthode, nous obtenons une réduction significative de la longueur de séquence nécessaire

dans les réseaux SC, tout en maintenant un niveau de précision comparable à celui des

approches existantes. Dans notre troisième implémentation, nous proposons un nouveau

cadre d’entrâınement pour la quantification logarithmique en base 2 des réseaux de neurones.

Cette méthode quantifie les poids en valeurs discrètes correspondant à des puissances de deux,

en exploitant l’information statistique de la distribution des poids, notamment leur écart type.

Ce cadre permet de remplacer les multiplicateurs haute précision, coûteux en ressources, par

des opérations de décalage et d’addition. Nos réseaux quantifiés utilisent ainsi environ huit

fois moins de paramètres que les modèles haute précision classiques, tout en conservant une

précision de classification équivalente. Enfin, dans notre implémentation la plus récente, nous

introduisons un nouveau cadre d’entrâınement utilisant des techniques de quantification pour

faciliter la conversion entre réseaux quantifiés et réseaux de neurones impulsionnels (Spiking

Neural Networks, SNN). Ces derniers sont naturellement dépourvus de multiplications, se

reposant uniquement sur des additions et soustractions. Le cadre proposé offre une approche

alternative pour l’entrâınement des SNN. Plus précisément, nous modifions l’algorithme SNN

et démontrons mathématiquement qu’après T pas de temps, le SNN modifié approxime le

comportement d’un réseau quantifié avec T intervalles de quantification. Cela permet de

remplacer aisément un SNN par son réseau quantifié équivalent pour l’entrâınement. Étant

donné que le SNN et le réseau quantifié partagent les mêmes paramètres, il est alors possible

de transférer directement les paramètres du réseau quantifié entrâıné vers le SNN, sans étape

supplémentaire.
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1
Introduction

The integration of artificial intelligence (AI) into our personal life has been expanding

significantly, transforming how individuals interact with technology and manage everyday

activities. AI-driven virtual assistants facilitate tasks such as scheduling, information retrieval,

and controlling Internet of Things (IoT) devices, thereby enhancing efficiency and convenience.

Personalized recommendation algorithms employed by streaming platforms, e-commerce

websites, and social media platforms curate content and products based on user preferences,

optimizing user experience and engagement. Furthermore, AI-powered health and fitness

applications monitor biometric data, suggest exercise regimens, and promote healthier lifestyles

through tailored recommendations. Language translation tools equipped with AI capabilities

have also made cross-linguistic communication more accessible and effective. The adoption

of state-of-the-art AI models on edge devices presents significant challenges, despite the

potential benefits of reduced latency, enhanced privacy, and localized processing. One of the

primary obstacles is the resource-constrained nature of edge devices, such as smartphones,

IoT sensors, and embedded systems. These devices often lack the computational power,

memory, and energy resources required to execute large-scale AI models, which are typically

optimized for high-performance servers with abundant resources. This limitation necessitates

model compression techniques, such as pruning [2], quantization [3], knowledge distillation [4],
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neural architecture search (NAS) [5], hand-tuned tiny models [6–9], and multiplier-less

designs [10–12], which can compromise model accuracy and performance. As the demand

for AI-driven applications on edge devices grows, the development of efficient compression

techniques tailored to these platforms is critical to enabling real-time, high-performance AI

applications while ensuring energy efficiency and scalability.

Quantization is a technique employed to reduce the computational and memory require-

ments of deep learning models by representing weights and activations with lower-precision

numerical formats, such as 8-bit integers, instead of the standard 32-bit floating-point rep-

resentation. Neural network pruning is an optimization technique designed to reduce the

computational complexity and memory footprint of deep learning models by removing re-

dundant or less significant parameters, such as weights or neurons. Pruning methods are

typically categorized into structured pruning, which removes entire components like channels

or layers, and unstructured pruning, which eliminates individual weights based on certain

criteria, such as magnitude or gradient sensitivity [13]. Knowledge distillation is a model

compression technique wherein a smaller, simpler model (referred to as the ”student”) is

trained to replicate the behavior of a more complex model (referred to as the ”teacher”). By

transferring the knowledge embedded in the teacher’s outputs—often through soft probability

distributions over class predictions or intermediate feature representations—the student model

can achieve comparable performance while significantly reducing computational complexity

and memory requirements. Knowledge distillation not only improves the efficiency of the

student model but also enhances its generalization ability by leveraging the richer information

encoded in the teacher’s soft labels [14]. NAS is an automated approach for designing neural

network architectures that aims to optimize performance metrics such as accuracy, efficiency,

and scalability [5]. By leveraging search algorithms, NAS explores a predefined search space

of possible architectures to identify optimal designs for specific tasks, eliminating the need

for manual trial-and-error processes traditionally performed by human experts. Given the

limited computational power, memory, and energy resources of edge devices, NAS for these

platforms must prioritize architectural efficiency while maintaining high accuracy and mini-

mizing latency. The search space for such architectures is typically constrained by factors

such as model size, number of parameters, and computational complexity, with a focus on

lightweight models that can operate within the power and memory limitations of edge devices.

Hand-tuned tiny model design refers to the development of neural network architectures

that are manually designed for efficiency, specifically targeting constraints in computational

resources, memory, and power consumption, required for deployment on edge devices and
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mobile platforms. These networks are designed to achieve high performance with reduced

model size and computational complexity, addressing the challenges of resource-constrained

environments. Techniques such as pruning, quantization, and knowledge distillation are

commonly employed to reduce the number of parameters and operations required by the

network, while maintaining or even enhancing accuracy [6–9].

Multiplierless neural network design is a specialized approach that focuses on reducing or

entirely eliminating the use of multiplications within the network’s computation, thereby opti-

mizing the network for efficient hardware implementation, particularly in resource-constrained

environments. Traditional neural networks rely heavily on multiplication operations, which

can be computationally expensive and power-intensive, especially in hardware with limited

processing and energy capabilities. By employing alternative operations, such as bitwise

operations, addition, and shifts, multiplierless designs significantly reduce both the energy

consumption and the hardware complexity required for neural network inference. For instance,

techniques such as binary or ternary quantization [15], where weights and activations are

constrained to binary or ternary values, allow the replacement of multiplications with simple

logical operations.

1.1 Motivation

This dissertation aims to address the challenges of computational complexity in neural

networks by developing efficient multiplierless architectures. Specifically, this research focuses

on three key approaches: stochastic computing, shift-based multiplications, and spiking

neural networks. These methodologies are designed to eliminate the reliance on power-

intensive and computationally demanding binary-radix multiplications (e.g., 32-bit floating-

point operations) during inference, thereby enabling more resource-efficient implementations

suitable for resource-constrained environments.

Stochastic computing (SC) is a computational paradigm that represents data and performs

operations using stochastic bit streams rather than conventional binary encoding [16]. In

this approach, numerical values are encoded as the probability of a bit being ”1” in a

sequence, and arithmetic operations, such as addition, multiplication, and scaling, are

executed using simple logic gates. This methodology offers significant advantages in terms of

hardware simplicity [17], fault tolerance [18], and energy efficiency [19], making it particularly

appealing for applications in low-power and resource-constrained environments, such as edge

computing and neuromorphic systems. However, the precision of stochastic computing is

inherently limited by the length of the bit streams, requiring trade-offs between accuracy and
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computational latency [19].

Shift-based neural network design is an emerging approach aimed at enhancing the

efficiency of neural networks by replacing computationally expensive multiplication operations

with bit-shift operations, which are simpler and less resource-intensive [11, 20]. This design

paradigm leverages the inherent properties of shift operations to perform scalar multiplications,

thereby reducing power consumption and computational overhead. Shift-based architectures

are particularly well-suited for deployment on resource-constrained devices, such as embedded

systems and edge platforms, where energy efficiency and low latency are critical. Despite

these advantages, challenges remain in maintaining model accuracy and generalization

capabilities, as the replacement of multiplications with shifts can introduce precision loss

and limit representational flexibility. For example, the recent state-of-the-art method in

terms of classification accuracy performance, Sign-Sparse-Shift [11], requires the use of four

sets of trainable parameters during the training phase to mitigate precision loss. However,

this approach significantly increases memory requirements, posing challenges when training

large-scale neural networks.

Spiking Neural Networks (SNNs) represent a biologically inspired computational paradigm

that mimics the spike-based information processing of biological neurons. Unlike traditional

artificial neural networks (ANNs), SNNs process and transmit information using discrete

spikes or events, enabling asynchronous and event-driven computation. This approach offers

significant advantages in terms of energy efficiency and temporal information processing,

making SNNs particularly well-suited for applications in neuromorphic hardware [21]. On edge

devices, SNNs are particularly suitable for tasks such as real-time sensory processing, anomaly

detection, and autonomous systems, where low latency and energy efficiency are critical [22,23].

Despite their potential, SNNs face challenges, including the difficulty of training due to their

non-differentiable spiking behavior and the need for specialized training algorithms such

as surrogate gradient methods [24–26]. ANN-to-SNN conversion is a technique designed to

leverage the well-established training methods of traditional ANNs while benefiting from

the energy-efficient, event-driven nature of SNNs [27,28]. In this approach, an ANN is first

trained using standard backpropagation techniques with continuous activations, after which

the trained model is converted into an equivalent SNN by mapping the activations and

weights of the ANN to spiking neurons and synapses. This process typically involves replacing

activation functions, such as ReLU, with spiking neuron models and calibrating parameters

to maintain the accuracy of the original ANN during inference [29, 30]. While ANN-to-SNN

conversion simplifies training, it introduces challenges such as accuracy degradation due
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to temporal dynamics in SNNs and the need for precise normalization of input data and

weights to ensure proper spike-rate representation [31]. Research in this area focuses on

minimizing conversion-induced errors through techniques such as layer-wise optimization [30]

and threshold tuning [32].

1.2 Objective

This dissertation seeks to address the main challenges associated with multiplierless designs:

More specifically:

• Long sequence length required for maintaining classification accuracy in SC-based

neural networks,

• Training challenges such as overparametrization and precision loss in shift-based neural

networks, and

• Accuracy degradation induced by ANN-to-SNN conversion.

Specifically, the following topics are covered:

• Design of a multiplierless Weighted Linear Finite-State Machine-based neural network.

• Design of the Dynamic Sign-Magnitude Stochastic Stream for high-accuracy and low-

latency stochastic computing based neural networks.

• Design of the Standard Deviation-based Quantization Framework for efficient training

of high-accuracy Shift-based neural networks.

• Design of an ANN-to-SNN conversion framework to reduce the conversion error and

latency.

1.3 Contribution and Thesis Outline

The contributions of this thesis can be summarized as follows:

Chapter 2: Weighted Linear Finite-State Machine

A finite-state machine (FSM) is a computation model to process binary strings in sequential

circuits. Hence, a single-input linear FSM is conventionally used to implement complex

single-input functions , such as tanh and exponentiation functions, in SC domain where

continuous values are represented by sequences of random bits. In this Chapter, we introduce
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a method that can train a multi-layer FSM-based network where FSMs are connected to every

FSM in the previous and the next layer. We show that the proposed FSM-based network

can synthesize multi-input complex functions such as 2D Gabor filters and can perform

non-sequential tasks such as image classifications on stochastic streams with no multiplication

since FSMs are implemented by look-up tables only. Inspired by the capability of FSMs in

processing binary streams, we then propose an FSM-based model that can process time series

data when performing temporal tasks such as character-level language modeling. Unlike long

short-term memories (LSTMs) that unroll the network for each input time step and perform

back-propagation on the unrolled network, our FSM-based model requires to backpropagate

gradients only for the current input time step while it is still capable of learning long-term

dependencies. Therefore, our FSM-based model can learn extremely long-term dependencies

as it requires 1/l memory storage during training compared to LSTMs, where l is the number

of time steps. Moreover, our FSM-based model reduces the power consumption of training

on a GPU by 33% compared to an LSTM model of the same size.

The content of this chapter has been presented in Advances in Neural Information

Processing Systems (NeurIPS) conference [33], titled “Training linear finite-state machines”

by Arash Ardakani, Amir Ardakani and Warren J. Gross. Dr. Arash Ardakani and I have

contributed equally to the development of this work.

Chapter 3: Dynamic Sign-Magnitude Stochastic Representation for Stochastic

Computing

In this chapter, we propose a novel implementation of SC-based neural networks that utilizes

two distinct types of stochastic streams. In this design, activations are represented using

bipolar streams, while weights are encoded with sign-magnitude streams. To facilitate the

multiplication of weights and activations from different formats, we introduce a new type of

stochastic stream, referred to as dynamic signed-magnitude (DSM). This approach enables

both the weights and activations to share the same Stochastic Number Generator (SNG),

thereby reducing the number of required SNGs and minimizing the overall hardware footprint.

Experimental results on the MNIST dataset demonstrate that our SC-based neural networks

outperform existing SC-based models in terms of processing latency (i.e., sequence length),

achieving reductions of up to 16×, while maintaining accuracy levels comparable to existing

methodologies.

The content of this chapter has been published in IEEE Design & Test journal [1], titled

“Training binarized neural networks using ternary multipliers”, by Amir Ardakani, Arash

6



Ardakani and Warren Gross.

Disclaimer:The content of this chapter is adapted and extended from our prior work

published in the IEEE Design & Test journal ©IEEE 2021 [1]. The text has been rephrased

and rewritten to better articulate our contributions. Additionally, the work has been expanded

to include a detailed mathematical explanation, accompanied by an example, to illustrate

the proposed dynamic sign-magnitude stochastic representation.

Chapter 4: Shift-Net Neural Network

In this chapter, we present a new quantization framework that utilizes the standard deviation

of network weight and activation distributions. We also introduce an improved training

strategy for base-2 logarithmic quantization, which maps weights to discrete power-of-two

values. Base-2 logarithmic quantization replaces high-precision multipliers with efficient shift-

and-add operations, significantly reducing computational overhead. Our training method

lowers memory usage and shortens training time (in terms of epochs). Experimental results

on CIFAR-10 and ImageNet show that our method outperforms existing techniques, achieving

higher accuracy with 3-bit weights and activations compared to full-precision models.

Part of this chapter has been presented in Edge Intelligence Workshop (EIW) [34], titled

“Standard Deviation-Based Quantization for Deep Neural Networks”, by Amir Ardakani,

Arash Ardakani, Brett Meyer, James J. Clark and Warren J. Gross. The extended version of

this work will be submitted to a journal in near future.

Chapter 5: Towards Lossless ANN-to-SNN Conversion

In this chapter, we demonstrate that the behavior of neurons in SNNs closely resembles the

activation patterns observed in quantized neural networks. Specifically, we establish that the

activation function of an SNN corresponds to the activation function of a neural network

quantized using the floor function. Drawing on this insight, we propose a conversion framework

for SNNs, wherein a quantized neural network serves as the source for the conversion process.

Within this framework, the quantization method introduced in Chapter 4 is employed. We

evaluate the proposed method on the CIFAR-10, and ImageNet datasets, demonstrating

that it surpasses the state-of-the-art ANN-to-SNN conversion techniques and directly trained

SNNs in terms of both accuracy and inference time-steps. The content of this work will be

submitted to a journal in near future.

7



Chapter 6: Conclusions and Future Work

This chapter addresses the conclusions of this thesis, and future research directions are

suggested.

1.4 Contributions of the Authors

This dissertation presents original work in the field of stochastic computing-based, quantized

and spiking neural networks by Amir Ardakani.

In Chapter 2, a method for training a multi-layer weighted finite-state machine (WFSM)-

based network using backpropagation is introduced. Previously, Ardakani et al. proposed

a training approach for WFSMs by minimizing the mean square error of a cost function

to synthesize complex arithmetic computations on stochastic streams [35]. Following Dr.

Arash Ardakani’s suggestion, I developed an algorithm to train WFSMs in a multi-layer

network using gradient descent and backpropagation. To assess the performance of the

proposed method, Dr. Arash Ardakani and I collaboratively developed Python scripts and

conducted benchmarking on both non-sequential and temporal tasks. The results of this

research were presented at the Advances in Neural Information Processing Systems (NeurIPS)

conference [33] in a paper titled “Training Linear Finite-State Machines”, authored by Arash

Ardakani, Amir Ardakani, and Warren J. Gross. Dr. Arash Ardakani and I are co-first

authors and contributed equally to the development of this work. In Chapter 2, I have

included a revised version of the originally presented work with the permission of Dr. Arash

Ardakani.

In Chapter 3, I introduce a novel type of stochastic sequence, termed dynamic signed-

magnitude (DSM), designed to facilitate the multiplication of weights and activations from

different stochastic stream formats. The content of this chapter has been published in the

IEEE Design & Test journal [1], in a paper titled “Training Binarized Neural Networks

Using Ternary Multipliers”, authored by Amir Ardakani, Arash Ardakani, and Warren J.

Gross. Dr. Arash Ardakani and Professor Warren J. Gross provided valuable suggestions

to enhance the experimental framework and contributed to the revision of the original

published work. In Chapter 3, I have included a revised and extended version of this

work. Additionally, the chapter expands on the original publication by providing a detailed

mathematical explanation, accompanied by an illustrative example, to further clarify the

proposed dynamic signed-magnitude stochastic representation.

In Chapter 4, I introduce a base-2 logarithmic quantization scheme that maps weights to

discrete power-of-two values. The initial experimental results were presented at the Edge
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Intelligence Workshop (EIW) [34] in a paper titled “Standard Deviation-Based Quantization

for Deep Neural Networks”, authored by Amir Ardakani, Arash Ardakani, Brett Meyer,

James J. Clark, and Warren J. Gross. Dr. Arash Ardakani, Professor Brett Meyer, Professor

James J. Clark, and Professor Warren J. Gross contributed to the revision of the workshop

paper. This chapter presents the original work developed for this dissertation.

In Chapter 5, I propose a new conversion framework for SNNs. This chapter presents the

original work developed for this dissertation. Professor Warren J. Gross provided valuable

suggestions for the revision of this chapter.

1.5 Publication

Here is a list of published work during my Ph.D. program at McGill University.

1. A. Ardakani, A. Ardakani, and W. Gross, “Training linear finite-state machines,”
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Symposium on Circuits and Systems (ISCAS). IEEE, 2020, pp. 1–5.

3. A. Ardakani, A. Ardakani, and W. J. Gross, ”training binarized neural networks using

ternary multipliers,” IEEE Design & Test, vol. 38, no. 6, pp. 44–52, 2021

4. A. Ardakani, A. Ardakani, and W. J. Gross, ”Fault-tolerance of binarized and

stochastic computing-based neural networks,” in 2021 IEEE Workshop on Signal

Processing Systems (SiPS). IEEE, 2021, pp. 52–57.

5. A. Ardakani, A. Ardakani, B. Meyer, J. J. Clark, and W. J. Gross, “Standard

deviation-based quantization for deep neural networks,” in Edge Intelligence Workshop,

2022.

6. A. Ardakani, Z. Ji, A. Ardakani, and W. Gross, “The Synthesis of XNOR Recur-

rent Neural Networks with Stochastic Logic,” in Thirty-third Conference on Neural

Information Processing Systems, 2019.
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Third Workshop on Simple and Efficient Natural Language Processing (SustaiNLP),

2022, pp.1–9.
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2
Training Linear Finite-State Machines

2.1 Introduction

This chapter introduces a method for training finite-state machines (FSMs). An FSM is a

mathematical model of computation characterized by a finite set of states and transitions

between these states. The primary function of an FSM is to sequentially transition between

states in a systematic manner, executing predefined actions upon each state transition.

Given that FSMs are inherently designed to process sequential data, we utilize stochastic

computing (SC), which converts continuous values into bit streams, to enable FSMs to

perform non-sequential tasks. The resulting system is referred to as an FSM-based network.

The FSM-based network consists exclusively of weighted linear finite-state machines

(WLFSMs) and is constructed by stacking multiple layers, wherein each WLFSM is fully

connected to every WLFSM in both the preceding and subsequent layers. In this architecture,

each state of a WLFSM is associated with a weight, and outputs are generated by sampling

the weight corresponding to the current state. Importantly, the FSM-based network is

designed to operate entirely within the SC domain, performing inference computations on

bit streams without the need for multiplication operations. To facilitate the training of

FSM-based networks, we derive a function based on the steady-state conditions of linear
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FSMs that computes the state occurrence probabilities for each FSM. We mathematically

demonstrate the invertibility of this function, enabling the derivation of the derivative of the

FSM’s computational function with respect to its input. This property allows for the training

of deep FSM-based networks. The proposed FSM-based network is then applied to two

distinct tasks: the synthesis of multi-input complex functions and image classification. Unlike

conventional methods, which rely on a single WLFSM to approximate single-input complex

functions [36–38], we demonstrate that the FSM-based network is capable of approximating

multi-input complex functions, such as 2D Gabor filters, using only linear FSMs. Furthermore,

we evaluate the FSM-based network on the MNIST dataset [39] for classification tasks. The

results show that the FSM-based network significantly outperforms SC-based counterparts of

equivalent size in terms of accuracy, achieving superior performance while requiring only half

the number of operations.

We further introduce an FSM-based model designed to perform temporal tasks. This model

draws inspiration from sequential digital circuits, where FSMs serve as memory elements (e.g.,

registers) to store the model’s state [40]. In addition to weighted linear finite-state machines

(WLFSMs), the FSM-based model incorporates fully connected networks that function as a

transition mechanism and an output decoder, analogous to combinational logic in sequential

circuits. The transition function governs the transition between states, while the output

function facilitates decision-making based on the model type—either using the present state

alone, as in a Moore machine, or both the present state and current input, as in a Mealy

machine. In this architecture, the next state is determined by the combination of the present

state and the current input. Consequently, gradients are backpropagated for the current

time step only. This approach stands in contrast to widely used recurrent neural network

(RNN) variants, such as long short-term memory (LSTM) networks and gated recurrent units

(GRUs) [41], which unroll the network across all time steps and backpropagate gradients

through the entire unrolled sequence. As a result, the FSM-based model requires only 1/l

memory elements to store intermediate values, where l represents the number of time steps.

This reduction leads to a 33% decrease in GPU power consumption during training compared

to an LSTM model of equivalent size. Moreover, we demonstrate that the FSM-based model

can effectively capture extremely long-range dependencies, such as those found in sequences

with lengths up to 2500. This capability is validated through the character-level language

modeling (CLLM) task, where the FSM-based model shows robust performance in handling

extensive temporal dependencies.
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2.2 Disclaimer

The content of this chapter is adapted from our prior work presented at the Advances

in Neural Information Processing Systems (NeurIPS) conference [33]. The text has been

restructured and refined to more clearly articulate our contributions. Previously, Ardakani

et al. proposed a training approach for WFSMs by minimizing the mean square error of

a cost function to synthesize complex arithmetic computations on stochastic streams [35].

Following Dr. Arash Ardakani’s suggestion, I developed the algorithms to train WFSMs in a

multi-layer network using gradient descent and backpropagation. To assess the performance

of the proposed method, Dr. Arash Ardakani and I collaboratively developed Python scripts

and conducted benchmarking on both non-sequential and temporal tasks. The results of this

research were presented at the Advances in Neural Information Processing Systems (NeurIPS)

conference [33] in a paper titled “Training Linear Finite-State Machines”, authored by Arash

Ardakani, Amir Ardakani, and Warren J. Gross. Dr. Arash Ardakani and I are co-first

authors and contributed equally to the development of this work. In this chapter, I have

included a revised version of the originally presented work with the permission of Dr. Arash

Ardakani.

2.3 Preliminaries

Here, we present a brief overview of the mathematical operations within the SC domain. For a

comprehensive background on SC and its foundational principles, please refer to Appendix A.

In the numerical system of SC, continuous values are represented as the frequency of ones in

random bit streams [42]. This representation enables arithmetic operations to be performed

using simple bit-wise operations directly on the bit streams. Due to the nature of SC, a

single bit-flip in a stochastic stream results in only a marginal change in the continuous

value represented by the stream, allowing SC-based implementations to tolerate small errors

effectively. Consequently, SC-based systems offer ultra low-cost, fault-tolerant hardware

solutions for a wide range of applications [43].

For a continuous value x ∈ [0, 1], its corresponding stochastic streamX = {xl, xl−1, . . . , x2, x1}

of length l in SC’s unipolar format is generated such that:

E[xt] = x, (2.1)

where E[xt] denotes the expected value of the random binary variable xt ∈ {0, 1}. In SC’s

bipolar format, a continuous value x ∈ [−1, 1] is encoded as a sequence of random binary
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variables xt ∈ {0, 1} such that:

E[xt] = (x+ 1)/2. (2.2)

Throughout this chapter, bold uppercase letters (e.g., X) will denote stochastic streams, while

subscripted lowercase letters (e.g., xt) will represent individual elements within a stochastic

sequence.

Arithmetic operations in SC are implemented through bit-wise logical operations. For

two independent stochastic streams A and B, multiplication is performed using the bit-wise

AND operation in the unipolar format and the bit-wise XNOR operation in the bipolar

format [43]. Additions in SC are performed using scaled adders, which adjust the result of

the addition to fit within the permissible ranges of [0, 1] in the unipolar format and [−1, 1]

in the bipolar format. The scaled adder employs a multiplexer to compute the sum of two

stochastic streams, A and B. The multiplexer’s output, C, is given by:

ct = at · st + bt · (1− st), (2.3)

where ” · ” denotes the bit-wise AND operation, and S is a unipolar stochastic stream

representing a continuous value. When S represents the value 0.5 (i.e., E(st) = 0.5) the

expected value of ct is equal to the average of the expected values of at and bt, expressed as:

E(ct) =
E[at] + E[bt]

2
. (2.4)

In SC, complex functions are traditionally implemented using linear FSMs [44]. A linear

FSM consists of a finite set of states arranged in a sequential, linear structure. The general

structure of a linear FSM with a set of N states (i.e., {ψ0, ψ1, . . . , ψN−1}) is illustrated

in Figure 2.1(a). Conceptually, a linear FSM can be interpreted as a saturating counter

that increments or decrements its state value without exceeding its maximum or minimum

boundaries, respectively. State transitions within linear FSMs occur based on the current entry

of the input stream. Specifically, if the current input entry (xt ∈ {0, 1} for t ∈ {0, 1, . . . , l})

from the input stream X ∈ {0, 1}l is 0, the state value decreases by one. Conversely, if the

current input entry is 1, the state value increases by one.

2.4 Related Work

As an initial attempt to implement complex functions within the SC domain, Brown and Card

introduced two FSM-based functions in [44]: the hyperbolic tangent (tanh) and exponentiation
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(exp)functions. They demonstrated that if an N -state linear FSM outputs 1 for state values

greater than or equal to N/2 and 0 otherwise, the expected value of the FSM’s output

approximates tanh(Nx/2) for an input stochastic stream X representing the continuous value

x. Similarly, the function exp(−2Gx) can be approximated if the FSM outputs 1 for state

values less than N −G and 0 otherwise.

Li et al. later introduced weighted linear FSMs (WLFSMs), where each state is associated

with a weight [38]. In WLFSMs, a binary output is generated by sampling from the weight

corresponding to the current state, as illustrated in Figure 2.1(b). To implement a single-input

function using a WLFSM, Li et al. formulated the task as a quadratic programming problem

and employed numerical methods to determine the weights. Specifically, the quadratic

programming problem was solved for all guiding stream values between 0 and 1 with a step

size of 0.001, resulting in 1000 solutions. The solution with the minimum mean squared

error (MSE) was selected. Li et al. further extended this work in [37] by introducing greater

design flexibility to implement more complex functions. They proposed a two-dimensional

FSM topology with N ×M states, where N and M denote the number of states in each row

and column, respectively. This topology enabled the implementation of more sophisticated

functions.

Another approach to implementing complex functions involves approximating them with

simpler functions that can be realized using linear FSMs. For example, Onizawa et al. in [45]

approximated a sine function by combining several tanh functions. This approximation

allows the sine function to be realized through multiple linear FSMs, each implementing

a tanh function. Similarly, a Gabor filter function can be implemented by multiplying the

approximated sine function with a Gaussian function, where the Gaussian function itself

is realized using a linear FSM that approximates the exponentiation function in SC. More

recently, Ardakani et al. proposed a regression-based approach to determine the weights

of FSMs [36]. This method outperforms numerical synthesis techniques in terms of mean

squared error (MSE), providing a more accurate and efficient solution for implementing

complex functions.

2.5 FSM-Based Networks

In this section, we propose a method that enables the backpropagation of gradients in FSM-

based networks. The FSM-based network is structured into layers of WLFSMs, where each

WLFSM is fully connected to all WLFSMs in the preceding and succeeding layers, except for

the first layer. In the first layer, each input is exclusively connected to a single WLFSM, as
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Figure 2.1: (a) A WLFSM with N states where xt denotes the t
th entry of the input stream

X ∈ {0, 1}l for t ∈ {1, 2, . . . , l}. (b) An architecture implementing the WLFSM with N
states. (c) A general form of an FSM-based network.

depicted in Figure 2.1(c). For each WLFSM unit, the inputs are first aggregated and scaled

to fit within the permissible range of the SC domain using a scaled adder. The output of

the scaled adder is then passed to the WLFSM for further processing. In this configuration,

the primary computations in FSM-based networks consist of additions and weight indexing

operations. The weight indexing operations in WLFSMs are implemented using look-up tables

(LUTs), which provide a significant advantage for hardware implementations on LUT-based

platforms such as field-programmable gate arrays (FPGAs).
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2.5.1 Backpropagation Method

To enable the backpropagation of gradients through FSM-based networks, we first define the

forward computations of a WLFSM with N states as follows:

yt = Bernoulli

(

wst + 1

2

)

, (2.5)

where st ∈ {0, 1, . . . , N − 1} represents the state value, and yt ∈ {0, 1} denotes the output

value corresponding to the input xt ∈ {0, 1} at time t, for t ∈ {1, 2, . . . , l}. Bernoulli denotes

the Bernoulli distribution applied to each element of wst . The FSM is also associated with

a set of weights, denoted as {w0, w1, . . . , wN−1}. By performing the computations for each

individual input entry of the input stochastic stream X ∈ {0, 1}l, a stochastic output stream

Y ∈ {0, 1}l is generated, which represents the continuous value y ∈ R in bipolar format, such

that y = 2 × E(yt) − 1. However, training FSM-based networks on stochastic streams is

l-times slower than conventional full-precision training methods. Consequently, we propose

training FSM-based networks using the continuous values derived from the stochastic streams,

while retaining stochastic bit streams for inference computations.

Given the occurrence probability (i.e., selection frequency) of the state ψi as pψi
for

i ∈ {0, 1, . . . , N − 1}, the continuous value of the WLFSM’s output (denoted y ∈ [−1, 1]) can

be expressed as:

y =
N−1
∑

i=0

pψi
× wψi

, (2.6)

where the sum is taken over all states, and the probability pψi
corresponds to the occurrence

probability of state ψi. This equation holds as the length of the stochastic streams tends to

infinity (l →∞). In the steady state, the probability of the state transition from ψi−1 to ψi

must equal the probability of the transition from ψi to ψi−1. This relationship is given by:

pψi
× (1− px) = pψi−1

× px, (2.7)

where px is (x+ 1)/2, with x representing the continuous input value. In this context, the

weight associated with ψi is selected with probability px during the forward state transition

(i.e., from ψi−1 to ψi), while the weight associated with ψi−1 is selected with probability 1−px

during the backward state transition (i.e., from ψi to ψi−1). Consequently, the derivative of

the forward transition probability with respect to x is 1, while the derivative of the backward
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transition probability with respect to x is −1 in the steady state. Thus, we have the relation:

∂pψi

∂x
= −

∂pψi−1

∂x
. (2.8)

Furthermore, the total occurrence probability of all states must sum to unity, i.e.,

N−1
∑

i=0

pψi
= 1. (2.9)

Using the relationships in Equation (2.7) and Equation (2.9), the general form of the

occurrence probability is derived as:

pψi
=

(

px
1− px

)i

∑N−1
j=0

(

px
1− px

)j . (2.10)

Given Equation (2.6) and Equation (2.10), the weights of the WLFSM can be learned

for the purpose of implementing a single-input complex function using linear regression. To

extend the use of WLFSMs in a multi-layer network, it is necessary to compute the derivative

of pψi
with respect to the input x. To achieve this, we first derive the inverse function for pψi

,

which will then be used to determine the derivative of pψi
with respect to the continuous

value of the input stream x. To compute the inverse function for pψi
, we trained a single

WLFSM to implement a linear function, where the outputs are equivalent to its inputs. We

observed that the weights of the WLFSM with N states alternate between −1 and 1, as

expressed in:

x =
N−1
∑

i=0

(−1)i+1pψi
, (2.11)

where i ∈ {0, 1, . . . , N − 1}. To validate Equation (2.11), we utilize the geometric series sum

formula [46], given by:
N−1
∑

i=0

ri =
1− rN

1− r
, (2.12)

and the alternating series sum formula:

N−1
∑

i=0

(−1)i+1ri =
(−1)NrN − 1

1 + r
, (2.13)
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where r represents the common ratio. Using Equation (2.12) and Equation (2.13), we can

rewrite the right-hand side of Equation (2.11) as:

N−1
∑

i=0

(−1)i+1pψi
=

N−1
∑

i=0

(−1)i+1

(

px
1− px

)i

∑N−1
j=0

(

px
1− px

)j

=
1

∑N−1
j=0

(

px
1− px

)j

N−1
∑

i=0

(−1)i+1

(

px
1− px

)i

=

1−
px

1− px

1−

(

px
1− px

)N
×

(−1)N
(

px
1− px

)N

− 1

1 +
px

1− px

=

1− (−1)N
(

px
1− px

)N

1−

(

px
1− px

)N
× (2px − 1)

for evenN
= (2px − 1) = x. (2.14)

Thus, we have mathematically proven the validity of Equation (2.11), which was hypothe-

sized based on the synthesis of a linear function using a WLFSM. Next, by differentiating

Equation (2.9) and Equation (2.11) with respect to x, we obtain the following system of

differential equations:

∂pψi

∂x
= −

∂pψi−1

∂x
,

N−1
∑

i=0

∂pψi

∂x
= 0,

N−1
∑

i=0

(−1)i+1∂pψi

∂x
= 1, (2.15)

where i ∈ {0, 1, . . . , N − 1}. Solving this system of equations yields the derivative of pψi
with

respect to x:
∂pψi

∂x
=

(−1)i+1

N
, (2.16)

which can then be used to backpropagate gradients in FSM-based networks.
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Algorithm 1: Pseudo code of the forward computations of training in FSM-based
networks. L is the number of layers including the output layer. The training loss
is denoted as C. N denotes the number of states in FSMs. The Clamp function
replaces the values greater than 1 and less than −1 with 1 and −1, respectively.

Data: An input minibatch of x0 ∈ [−1,+1]db×dx0 , a target minibatch of
y ∈ [−1,+1]db×dxL , the occurrence probability of the state ψi as
pkψi
∈ [0, 1]db×dxk , the occurrence probability of all the state as

pkψ ∈ [0, 1]db×Ndxk and weights Wk ∈ [−1,+1]dxk×dxk+1 for k ∈ {0, . . . , L− 1}
and i ∈ {0, . . . , N − 1}.

1 for k = 0 : L− 1 do
2 for i = 0 : N − 1 do

3 pkψi
=

(

1 + xk

1− xk

)i

∑N−1
j=0

(

1 + xk

1− xk

)j

4 end
5 pkψ = [pkψ0

,pkψ1
, . . . ,pkψN−1

]

6 xk+1 =

(

pkψClamp(Wk,−1, 1)
)

dxk
7 end
8 Compute loss C given xL and y

2.5.2 Training Details

This section describes the training and inference procedures for FSM-based networks. During

the training phase, the computations are performed in single-precision floating-point format,

whereas the inference phase is executed using stochastic bit streams. The details of the forward

computations during training are provided in Algorithm 1. In these forward computations,

the occurrence probability of each state is calculated using Equation (2.10). While it is

also possible to compute the occurrence probability by performing forward computations

directly on stochastic bit streams, this approach is computationally expensive and significantly

increases the training time. To ensure that the weights remain within the bipolar range of

SC during inference, we constrain the weights to lie between −1 and 1 during the forward

propagation in training.

The backward computations involved in training are outlined in Algorithm 2. In these com-

putations, the gradients for the FSM-based layers are backpropagated using Equation (2.16).

The choice of loss function C is dependent on the specific task being targeted by the FSM-
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based network. It is important to note that the number of states N in the FSM-based

networks must be an even natural number, as described in Equation (2.14).

In contrast to the training phase, the inference computations are carried out on stochastic

bit streams. The details of the inference procedure are provided in Algorithm 3. Since the

output vector okt of the FSMs is one-hot encoded, its multiplication with a binary weight

sample Wk essentially involves indexing operations. Specifically, the main operations during

inference consist of indexing and addition, making FSM-based networks multiplication-free.

Furthermore, no separate nonlinear activation function is necessary when using FSM-based

networks. FSMs themselves can be considered as nonlinear activation functions, capable of

approximating the required non-linearity during the training process. It is noteworthy that

FSMs are commonly employed to approximate nonlinear functions, such as the hyperbolic

tangent (tanh) and exponential functions (exp), in the SC domain (see Section 2.3). These

characteristics make FSM-based networks particularly well-suited for applications where

ultra-low-cost implementations of inference computations are required.

2.5.3 Applications of FSM-Based Networks

2D Gabor Filter

As an initial application of FSM-based networks, we demonstrate their ability to synthesize

2D Gabor filters. During the training phase, the forward computations are carried out using

Equation (2.10), while the backward computations are performed using Equation (2.16). In

contrast, the inference phase leverages stochastic bit streams for computation.

The imaginary part of a 2D Gabor filter is defined as:

gσ,γ,θ,ω(x, y) = exp

(

−
x2 + γ2y2

2σ2

)

sin(2ωx), (2.17)

where x = x cos θ+ y sin θ and y = −x sin θ+ y cos θ. The parameters σ, γ, θ and ω represent

the standard deviation of the Gaussian envelope, the spatial aspect ratio, the orientation

of the normal to the parallel stripes of the Gabor filter, and the spatial angular frequency

of the sinusoidal component, respectively. Figure 2.2 presents the simulation results of

FSM-based networks implementing a set of 2D Gabor filters used in the HMAX model [47].

To generate these results, we trained a three-layer FSM-based network of size 4 (with the

network configuration 2− 4− 4− 1), where each WLFSM contained four states (i.e., N = 4).

The network thus comprised 10 WLFSMs, each with 4 states, and a total of 112 weights.

The Mean Squared Error (MSE) was used as the loss function, and Adam was utilized as the
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Algorithm 2: Pseudo code of the backward computations of training in FSM-based
networks. L is the number of layers including output layer. The training loss is
denoted as C. N and η denote the number of states in FSMs and the learning rate,
respectively. The gradient of parameters w.r.t. C is denoted by “ ˆ ” over their
corresponding symbols.

Data: Gradients of activations as x̂k ∈ R
db×dxk , the occurrence probability of the

state ψi as p̂
k
ψi
∈ R

db×dxk , the occurrence probability of all the state as

p̂kψ ∈ R
db×Ndxk and weights as Ŵ

k
∈ R

d
xk
×d

xk+1 for k ∈ {0, . . . , L− 1} and
i ∈ {0, . . . , N − 1}.

1 Compute x̂L =
∂C

∂xL
given xL and y

2 Ŵ
L−1

= xL−1
T
x̂L

3 for k = L− 1 : 1 do

4 p̂kψ =
1

dxk
x̂k+1WkT

5 x̂k =
∑N−1

i=0

(−1)i+1

N
p̂kψi

6 Ŵ
k−1

= xk−1
T
x̂k

7 end
8 for k = 0 : L− 1 do

9 Wk ← Update(Wk,Ŵ
k
, η)

10 end

optimizer with a learning rate of 0.1. A total of 220 input points were used, evenly distributed

across the input space, and a batch size of 210 was employed during training. After training,

the inference computations were carried out on the same input points used during training to

generate the results shown in Figure 2.2.

Table 2.1 summarizes the training and inference settings employed in the simulations.

The three-layer FSM-based network used for implementing the 2D Gabor filters in Figure 2.2

achieved an MSE of approximately 1 × 10−4 when performing the computations with a

stream length of l = 215. To examine the effect of stream length and the number of states,

we further analyzed the network with specific Gabor filter parameters, namely σ2 = 0.125,

γ = 1, ω = π/2 and θ = 0◦ as shown in Figure 2.2. The results demonstrated that the MSE

decreases as both the stream length and the number of states increase.
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Algorithm 3: Pseudo code of the inference computations of FSM-based networks.
L is the number of layers including the output layer whereas l denotes the length of
stochastic streams. N denotes the number of states in FSMs. The Clamp function
replaces the values greater than N − 1 and less than 0 with N − 1 and 0, respectively.
The One Hot Encoder function converts each entry of the vector st to a one-hot
encoded vector of size N and concatenates the one-hot encoded vectors to form the
sparse vector of ok ∈ {0, 1}db×Ndxk such that

∑(j+1)×N
i=j×N oki = 1, where oki denotes the

ith entry of the second dimension of the vector ok for j ∈ {0, 1, . . . , dxk − 1}.

Data: An input minibatch of x0 ∈ [−1,+1]db×dx0 , an output minibatch of
y ∈ [−1,+1]db×dxL , the state vector of skt ∈ {0, . . . , N − 1}db×dxk , FSMs’
output of okt ∈ {0, 1}

db×Ndxk , activations of xk+1
t ∈ {0, 1}db×dxk and weights of

Wk ∈ [−1,+1]dxk×dxk+1 for k ∈ {0, . . . , L− 1} and i ∈ {0, . . . , N − 1}.

1 s0 =
N

2
2 y = 0
3 for t = 1 : l do

4 x0
t = Bernoulli

(

x0 + 1

2

)

5 for k = 0 : L− 1 do
6 skt = Clamp

(

skt−1 + 2× xkt − 1, 0, N − 1
)

7 okt = One Hot Encoder(skt )

8 xk+1
t = Bernoulli











oktBernoulli

(

Wk + 1

2

)

dxk











9 end

10 y = y+
2× xLt − 1

l
11 end

Image Classification on MNIST Dataset

As a second application of FSM-based networks, we conduct an image classification task

using the MNIST dataset of handwritten digits. The MNIST dataset consists of 60,000

grayscale images of size 28× 28 pixels for training and 10,000 images for testing. For our

experiments, we utilize the last 10,000 images from the training set as a validation set. To

obtain the simulation results presented in Table 2.2 and Figure 2.3, we trained two three-layer

FSM-based networks with configurations of 250 and 70 states (i.e., the network configurations

of 784 − 250 − 250 − 10 and 784 − 70 − 70 − 10). These networks were trained using the
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Figure 2.2: (a-f) The simulation results of 2D Gabor filters with different configurations for
σ2 = 0.125 and γ = 1. (g-h) The effect of the stream length and the number of states on the

performance of the 2D Gabor filters with the parameters of σ2 = 0.125, γ = 1, ω =
π

2
and

θ = 0◦.

Adam optimizer, a batch size of 100, and a learning rate of 0.1. We also applied a dropout

rate of 0.15 to the hidden layers (i.e., dropping 15% of the nodes in the hidden layers) during

training. Given that the primary objective of this task is to predict a label for a given image,

we employed the cross-entropy (CE) loss function, which combines the cross-entropy loss

with a softmax output.

The test error rates, presented in Table 2.2 and Figure 2.3, reflect the performance of

our FSM-based networks. The detailed settings for training and inference in our FSM-based

networks for the MNIST image classification task are provided in Table 2.3. Table 2.2 summa-
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Table 2.1: The training and the inference settings used in our simulations of 2D Gabor filters.

Simulation
FSM-Based Network Training Parameters Inference Parameters

Configuration # States (N) Loss (C) Optimizer LR (η) BS # Epochs Stream Length (l)

Figure 2.2(a-f) 2− 4− 4− 1 4 MSE Adam 0.1 210 1000 215

Figure 2.2(g) 2− 4− 4− 1 2,4,8,10 MSE Adam 0.1 210 1000 ∞
Figure 2.2(h) 2− 4− 4− 1 4 MSE Adam 0.1 210 1000 21, 22, . . . , 215

rizes the misclassification rates of the two FSM-based networks with different configurations

when performing inference computations on stochastic streams of length 128 (i.e., l = 128).

As shown in Table 2.2, our FSM-based networks significantly outperform existing SC-based

counterparts in terms of misclassification rates and the required stream length. Additionally,

our FSM-based networks require half the number of operations compared to conventional

SC-based implementations of the same size. The choice of using two states and a stream

length of 128 for our FSM-based networks was informed by Figure 2.3, which illustrates

the misclassification rate for various numbers of states and stream lengths. As expected

in the context of stochastic computing, the misclassification error decreases as the stream

length increases. For stream lengths greater than 64, the error rate stabilizes, making 128

the optimal stream length, or ”sweet spot.” The results also indicate that the two-state

FSM-based networks perform better than those with a larger number of states. This suggests

that using fewer states helps to regularize the network parameters more effectively for this

specific task.
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Figure 2.3: Misclassification rate of FSM-based networks on the MNIST test set using (a)
different number of states and (b) different stream lengths.
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Table 2.2: Performance of our FSM-based network compared to SC-based implementations
on the test set of the MNIST dataset.

Model Configuration (N , l) (# Op., # Weights) Error Rate (%)

FSM-based Network 784-250-250-10 (2, 128) (0.52M, 0.52M) 1.28
FSM-based Network 784-70-70-10 (2, 128) (0.12M, 0.12M) 1.66

TCAD’18 [48] 784-128-128-10 (NA, ∞) (0.24M, 0.12M) 3
TCOMP’18 [17] 784-200-100-10 (NA, 256) (0.36M, 0.18M) 2.05
TVLSI’17 [49] 784-300-600-10 (NA, 256) (0.84M, 0.42M) 2.01

2.6 An FSM-Based Model for Temporal Tasks

An FSM consists of three fundamental components: a transition function, an output decoder,

and a memory unit [40]. The memory unit is responsible for storing the state of the machine,

while the output decoder generates a sequence of outputs based on the current state, as is

characteristic of Moore machines. The transition function dictates the subsequent state of

the machine, taking both the present state and the current input into account. In digital

systems, the memory unit is typically implemented with registers, whereas the transition

function and output decoder are realized through combinational logic. Drawing inspiration

from the state machine architecture used in sequential circuits, we propose an FSM-based

model capable of processing temporal sequences of data. In our model, we implement

both the transition function and the output decoder through a single fully-connected layer.

Additionally, we utilize an FSM-based layer to serve as the memory unit. This design enables

us to conceptualize the fully-connected layers and the WLFSMs as analogous to combinational

logic and registers, respectively.

Table 2.3: The training and the inference settings used in our simulations to perform the
image classification task on the MNIST dataset.

Simulation
FSM-Based Network Training Parameters Inference Parameters

Configuration # States (N) Loss (C) Optimizer LR BS # Epochs Dropout Stream Length (l)

Table 2.2 784-250-250-10 2 CE Adam 0.05 100 500 0.15 128
Table 2.2 784-70-70-10 2 CE Adam 0.05 100 500 0.15 128

Figure 2.3(a) 784-250-250-10 2, 4, 6, 8, 10 CE Adam 0.05 100 500 0.15 ∞
Figure 2.3(a) 784-70-70-10 2, 4, 6, 8, 10 CE Adam 0.05 100 500 0.15 ∞
Figure 2.3(b) 784-250-250-10 2 CE Adam 0.05 100 500 0.15 21, 22, . . . , 210

Figure 2.3(b) 784-70-70-10 2 CE Adam 0.05 100 500 0.15 21, 22, . . . , 210
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2.6.1 Feed-Forward Computations

In our FSM-based model, we utilize a Moore machine, where the decision-making process

depends solely on the current state. An N -state FSM-based model performs its feed-forward

process as described by the following equations:

1. Transition Function:

z = xtWx + bx, (2.18)

where z ∈ R
dh represents the output of the transition function at time t, xt is the

input containing temporal features at time t, Wx ∈ R
dx×dh is the weight matrix, and

bx ∈ R
dh is the bias.

2. State Transition:

st = Clamp

(

st−1 + 2× Bernoulli

(

z+ 1

2

)

− 1, 0, N − 1

)

, (2.19)

where st ∈ {0, 1, . . . , N − 1}dh represents the state values of each WLFSM in the

FSM-based layer at time step t, The Clamp function ensures that the state values stay

within the range [0, N − 1]. Bernoulli denotes the Bernoulli distribution applied to each

element of z, producing a probabilistic state transition.

3. One-Hot Encoding:

o = One Hot Encoder(st), (2.20)

where the One Hot Encoder function converts each entry of the vector st to a one-hot

encoded vector of size N and concatenates the one-hot encoded vectors to form the

sparse vector of o ∈ R
Ndh such that

∑(j+1)×N
i=j×N oi = 1, where oi denotes the i

th entry of

the vector o for j ∈ {0, 1, . . . , dh − 1}.

4. FSM Layer Output:

q = Sigmoid(αoWo + bo), (2.21)

where q ∈ R
dh represents the output of the FSM-based layer. bo ∈ R

dh is the bias. The

parameter α is a fixed coefficient that prevents the weight matrix Wo ∈ R
Ndh×dh from

becoming too small. For our simulations, we set α = d−1h .

5. Output Decoder:

y = qWy + by, (2.22)
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where y ∈ R
dy represents the final output of the model. The weight matrixWy ∈ R

dh×dy

and the bias by ∈ R
dy are learned during the training phase.

This FSM-based model integrates the classical state machine architecture with modern

deep learning elements to process temporal data effectively. The memory unit, transition

function, and output decoder work together to perform sequence processing, where the state

transitions depend on both the input and previous states, and the output is determined solely

by the current state.

2.6.2 Backpropagation

The primary challenge in training the FSM-based model lies in computing the derivative of

the vector o with respect to z. In contrast, the gradients of other computations, such as the

matrix-vector multiplications in Equation (2.18), Equation (2.21), and Equation (2.22), can

be efficiently derived using the chain rule. The purpose of employing one-hot encoded vectors,

as defined in Equation (2.20), is to ensure that only the weights corresponding to the current

state of the WLFSMs are activated. Each selected weight corresponds to either a forward

transition (i.e., the transition from ψi−1 to ψi) when the Bernoulli function outputs 1, or a

backward transition (i.e., the transition from ψi to ψi−1) when the Bernoulli function outputs

0. Here, ψi denotes the i
th state of a WLFSM with N states, where i ∈ {0, 1, . . . , N − 1}.

The probability of selecting weights associated with state ψi during a forward transition is

denoted as pz, and for a backward transition, it is 1 − pz. This probability is determined

by the input z ∈ [−1, 1] of the WLFSM, where pz is defined as pz =
1+z
2
. Based on these

probabilities, the gradient of the state vector st with respect z is expressed as:

∂st
∂z

=











1 when Bernoulli

(

z+ 1

2

)

== 1

−1 otherwise

. (2.23)

During the backpropagation process through the One Hot Encoder function, only the gradients

corresponding to the current state of the WLFSMs are propagated. This is mathematically

represented as:

ŝtj =

(j+1)×N
∑

i=j×N

(oi × ôi), (2.24)

where ŝtj is the j
th entry of the gradient vector ŝt ∈ R

dh at the input of the One Hot Encoder

function for j ∈ {0, 1, . . . , dh − 1} and ôi the i
th entry of the gradient vector ô ∈ R

Ndh at the
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output of the One Hot Encoder function for j ∈ {0, 1, . . . , Ndh − 1}.

2.6.3 Training Details

Here, we present the training method for our FSM-based models. Prior to training for a

specified number of time steps l, the state values of the FSMs are initialized to ⌊N/2⌋. The

transition function and the output decoder execute fully connected computations as described

in Equation (2.18) and Equation (2.22), respectively. Within the memory unit (i.e., the

FSM-based layer), the state values are either incremented or decremented by stochastically

sampling inputs to this layer, as defined in Equation (2.19). During the training procedure

of FSM-based models, the Bernoulli function with a fixed seed must be employed in both

forward propagation (see Equation (2.19)) and backward propagation (see Equation (2.23)).

The use of a fixed seed ensures that the transition directions in forward propagation remain

consistent during backward propagation, which is critical for correct gradient computation.

The detailed training method is provided in Algorithm 4.

As discussed in Section 2.6, gradients are backpropagated, and parameters are updated

at the end of each time step in FSM-based models (see Algorithm 4). It is important to note

that the state values can also be updated deterministically. Specifically, the Sign function

can replace the Bernoulli function in a deterministic approach. Both the stochastic and

deterministic approaches yield the same accuracy performance; however, the deterministic

approach, which uses the Sign function, results in faster training due to its lower computational

cost compared to the Bernoulli function.

2.6.4 Simulation Results

As discussed earlier, the states of our FSM-based model are updated based solely on the

present input. Specifically, the transition function increments or decrements the state of each

Weighted Linear Finite State Machine (WLFSM) according to the input features at time

t. Consequently, the FSM-based model can be interpreted as a time-homogeneous process,

where the probability of state transitions remains independent of t.

For temporal tasks requiring decisions at each time step (e.g., the CLLM task), backprop-

agation in the FSM-based model is performed at the end of each time step. This approach

significantly reduces the storage required for intermediate values during training by a factor

of l×, enabling the FSM-based model to process extremely long data sequences efficiently.

This is in stark contrast to LSTM networks, where the network must be unrolled across all

time steps, and backpropagation is applied to the entire unrolled network. Consequently,
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Algorithm 4: Pseudo code of the training algorithm for FSM-based models. l is the number of time

steps. The training loss is denoted as C. N and η denote the number of states in FSMs and the learning rate,

respectively. The gradient of parameters w.r.t. C is denoted by “ ˆ ” over their corresponding symbols. The Clamp

function replaces the values greater than N − 1/1 and less than 0/−1 with N − 1/1 and 0/−1, respectively. σ̂

denotes the derivative of the Sigmoid function. The One Hot Encoder function converts each entry of the vector st

to a one-hot encoded vector of size N and concatenates the one-hot encoded vectors to form the sparse vector of

o ∈ {0, 1}db×Ndh such that
∑(j+1)×N

i=j×N
oi = 1, where oi denotes the ith entry of the second dimension of the vector

o for j ∈ {0, 1, . . . , dh − 1}. The parameter α is set to d−1
h

. “×” denotes element-wise multiplications. Note that dx

is equal to dy in the CLLM task.

Data: An input minibatch of X ∈ Ndb×dx×l, an input minibatch of xt ∈ Ndb×dx at the time step t, a target
minibatch of Y ∈ Ndb×dx×l, a target minibatch of yt ∈ Ndb×dx at the time step t, the transition function’s
output z ∈ [−1, 1]db×dh , the transition function’s weights Wx ∈ Rdx×dh , the transition function’s biases
bx ∈ Rdh , the state vector of st ∈ {0, . . . , N − 1}db×dh , the FSMs’ output of o ∈ {0, 1}db×Ndh , the
FSM-based layer’s output of q ∈ Rdb×dh , the FSM-based layer’s weights Wo ∈ RNdh×dh , the FSM-based
layer’s biases bo ∈ Rdh , the output decoder’s output y ∈ Rdb×dy , the output decoder’s weights Wy ∈ Rdh×dy ,
the output decoder’s biases by ∈ Rdy , the gradient of the transition function’s output ẑ ∈ Rdb×dh , the gradient

of the transition function’s weights Ŵx ∈ Rdx×dh , the gradient of the transition function’s biases b̂x ∈ Rdh ,
the gradient of the state vector ŝt ∈ {0, . . . , N − 1}db×dh , the gradient of the FSMs’ output ô ∈ {0, 1}db×Ndh ,
the gradient of the FSM-based layer’s output q̂ ∈ Rdb×dh , the gradient of the FSM-based layer’s weights
Ŵo ∈ RNdh×dh , the gradient of the FSM-based layer’s biases b̂o ∈ Rdh , the gradient of the output decoder’s
output ŷ ∈ Rdb×dy , the gradient of the output decoder’s weights Ŵy ∈ Rdh×dy and the gradient of the output

decoder’s biases b̂y ∈ Rdy for t ∈ {1, . . . , l}.

1 s0 = ⌊
N

2
⌋

2 for t = 1 : l do
3 xt = X[:, :, t]

4 y = Y[:, :, t]
5 z = Clamp (xtWx + bx,−1, 1)

6 st = Clamp

(

st−1 + 2× Bernoulli

(

z+ 1

2

)

− 1, 0, N − 1

)

7 o = One Hot Encoder(st)
8 q = Sigmoid(αoWo + bo)
9 y = qWy + by

10 h = Softmax(y)
11 C = Cross Entropy(h,yt)

12 ŷ =
∂C

∂y
= yt − h

13 q̂ = ŷWT
y

14 Ŵy = qT ŷ

15 ô = α(σ̂(αoWo + bo)× q̂)WT
o

16 Ŵo = αoT (σ̂(αoWo + bo)× q̂)

17 ŝtj =
∑(j+1)×N

i=j×N
(oi × ôi)

18 ẑ = ŝt ×

(

2× Bernoulli

(

z+ 1

2

)

− 1

)

19 Ŵx = xT
t ẑ

20 Wy ← Update(Wy ,Ŵy , η)
21 by ← Update(by , ŷ, η)

22 Wo ← Update(Wo,Ŵo, η)
23 bo ← Update(bo, σ̂(αoWo + bo)× q̂, η)

24 Wx ← Update(Wx,Ŵx, η)
25 bx ← Update(bx, ẑ, η)

26 end
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the sequence length that can be processed by LSTMs during training is typically limited

to a few hundred time steps, as the storage required to retain intermediate values for the

unrolled network can easily exceed the memory capacity of modern GPUs. For instance,

Figure 2.4 illustrates the memory usage and test accuracy of the LSTM and FSM-based

models on the GeForce GTX 1080 Ti for varying time steps, with both models configured to

have the same number of weights and a batch size of 100 for the CLLM task on the Penn

Treebank dataset [50]. The results indicate that the memory usage of the FSM-based model

is independent of the number of time steps, making it highly suitable for on-chip learning in

mobile devices with limited storage. By contrast, although the LSTM model demonstrates a

slight improvement in performance, it becomes infeasible to train beyond 2000 time steps

due to excessive memory requirements.

In addition to its lower memory footprint, the FSM-based model is less computationally

intensive. Specifically, the backward process in the FSM-based model requires computations

only for the current time step, whereas the LSTM model must compute gradients for all

unrolled time steps. This reduction in both memory and computational requirements directly

translates to lower power consumption. For instance, our measurements using the NVIDIA

System Management Interface show that training FSM-based models of size 1000 with a

batch size of 100 draws approximately 160W across time steps ranging from 100 to 2500.

In contrast, training LSTM models of the same size consumes between 205W and 245W.

Finally, increasing the number of time steps significantly impacts the convergence rate of

LSTM models, as shown in Figure 2.4. In contrast, the convergence rate of the FSM-based

model remains unaffected, further highlighting the efficiency and scalability of the proposed

approach.

To demonstrate the effectiveness of our FSM-based model in processing temporal data, we

evaluated its performance on the CLLM task using the Penn Treebank [50], War & Peace [51],

and Linux Kernel [51] corpora. The performance is measured in terms of bits per character

(BPC). The simulation results for our FSM-based model are summarized in Table 2.4

According to the experimental results, our FSM-based model with 4-state FSMs achieves

Table 2.4: Performance of our FSM-based model on the CLLM task.

Model
Penn Treebank War & Peace Linux Kernel

# Weights # Op. BPC # Weights # Op. BPC # Weights # Op. BPC

4-State FSM-based Model 4.1M 1.1M 1.52 1.1M 0.3M 1.89 1.1M 0.3M 1.93
LSTM (Our implementation) 4.1M 8.1M 1.45 1.1M 2.1M 1.83 1.1M 2.1M 1.85
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Figure 2.4: The memory usage and the test accuracy performance of an LSTM model with
1000 hidden states versus a 4-state FSM-based mode of size 1000 (i.e., dh = 1000) for different
numbers of time steps and training epochs when performing the CLLM task on the Penn
Treebank corpus.

accuracy comparable to that of the LSTM model in terms of BPC when both models have

the same number of parameters. To ensure a fair comparison, we set the number of hidden

nodes for all models to dh = 1000 for the Penn Treebank corpus and dh = 1000 for the War &

Peace and Linux Kernel corpora, as reflected in Table 2.4. Notably, our FSM-based network

requires only 1
7
the number of operations compared to an LSTM model of the same size. This

efficiency stems from the computational simplicity of the WLFSM layer, where operations

are limited to indexing and accumulation, unlike the more complex operations required in

LSTMs. These findings highlight the computational advantages of our FSM-based model

while maintaining competitive performance for temporal tasks.

2.6.5 Training Settings

In this section, we present the training settings and model architectures employed to obtain

the results reported in Table 2.4 and Figure 2.4. The Character-Level Language Modeling

(CLLM) task was conducted using our FSM-based model on three corpora: Penn Treebank

(PT), War & Peace (WP), and Linux Kernel (LK).
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Table 2.5: The training settings used in our simulations to perform the CLLM task on the
Penn Treebank, War & Peace and Linux Kernel datasets.

Simulation/Dataset
Network Configuration Training Parameters

Model # States (N) Size (dh) Loss (C) Optimizer LR (η) BS # Epochs Dropout Time Step (l)
Figure 2.4 (left subfigure)/PT FSM-based 4 1000 Cross-Entropy Adam 0.05 100 500 0.15 100− 2500
Figure 2.4 (left subfigure)/PT LSTM NA 1000 Cross-Entropy Adam 0.001 100 500 0 100− 2000

Figure 2.4 (middle subfigure)/PT FSM-based 4 1000 Cross-Entropy Adam 0.05 100 500 0.15 100− 2500
Figure 2.4 (middle subfigure)/PT LSTM NA 1000 Cross-Entropy Adam 0.001 100 500 0 100− 2000
Figure 2.4 (right subfigure)/PT FSM-based 4 1000 Cross-Entropy Adam 0.05 100 29 0.15 100
Figure 2.4 (right subfigure)/PT FSM-based 4 1000 Cross-Entropy Adam 0.05 100 25 0.15 2000
Figure 2.4 (right subfigure)/PT LSTM NA 1000 Cross-Entropy Adam 0.001 100 21 0 100
Figure 2.4 (right subfigure)/PT LSTM NA 1000 Cross-Entropy Adam 0.001 100 50 0 2000

Table 2.4/PT FSM-based 4 1000 Cross-Entropy Adam 0.05 100 500 0.15 2500
Table 2.4/PT LSTM NA 1000 Cross-Entropy Adam 0.001 100 500 0 100
Table 2.4/WP FSM-based 4 500 Cross-Entropy Adam 0.05 100 500 0.15 2000
Table 2.4/WP LSTM NA 500 Cross-Entropy Adam 0.001 100 500 0 100
Table 2.4/LK FSM-based 4 500 Cross-Entropy Adam 0.05 100 500 0.15 2000
Table 2.4/LK LSTM NA 500 Cross-Entropy Adam 0.001 100 500 0 100

Penn Treebank: The Penn Treebank corpus was divided into training, validation, and test

sets comprising 5017k, 393k, and 442k characters, respectively, with a character vocabulary

size of 50. For this task, we used an FSM-based model with 1000 hidden units (i.e., dh = 1000).

The cross-entropy loss was minimized using the ADAM optimization algorithm with a learning

rate of 0.05. Training was performed in mini-batches of size 100.

Linux Kernel and War & Peace: The Linux Kernel and Leo Tolstoy’s War & Peace

corpora consist of 6,206,996 and 3,258,246 characters, respectively, with character vocabularies

of size 101 and 87. The Linux Kernel corpus was split into 4566k, 621k, and 621k characters

for the training, validation, and test sets, respectively, while the War & Peace corpus was

divided into 2932k, 163k, and 163k characters. For both corpora, we used an FSM-based

model with 500 hidden units (i.e., dh = 500). The cross-entropy loss was minimized using the

ADAM optimizer with a learning rate of 0.05, and training was performed using mini-batches

of size 100.

The training procedure followed the method described in Algorithm 4. Table 2.5 summa-

rizes the training settings used for the results presented in Table 2.4 and Figure 2.4. Notably,

a dropout rate of 0.15 was applied to the final layer of our FSM-based networks during

training, meaning 15% of the output decoder’s nodes were dropped. Additionally, we used

the number of time steps (i.e., sequence length l) that yielded the best bits-per-character

(BPC) performance for both the LSTM and FSM-based models as reported in Table 2.4.

2.7 Conclusion

In this chapter, we introduced a novel method for training WLFSMs, which are computational

models capable of processing sequential data. To enable WLFSMs to perform non-sequential
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tasks, we employed SC to convert continuous values into stochastic bit streams. Networks

composed solely of WLFSMs that perform computations on these stochastic bit streams are

referred to as FSM-based networks.

As a first application of FSM-based networks, we implemented 2D Gabor filters using

only 10 WLFSMs, each with 4 states. In [52], a SC-based implementation of 2D Gabor filters

was introduced, where the sinusoidal component in Equation (2.17) was approximated using

multiple tanh functions. This method involved using a 256-state FSM for the exponential part

and 9 56-state FSMs for the sinusoidal part, with a stream length of 218, to achieve a similar

MSE to that obtained in our simulations. However, this approach is limited to functions that

can be approximated by tanh or exponential functions. In contrast, our FSM-based network

provides a more general solution that can implement any arbitrary target function.

For the second application, we applied FSM-based networks to a classification task on the

MNIST dataset and demonstrated that our FSM-based networks significantly outperform

conventional SC-based implementations in terms of both misclassification error and the

number of operations.

Finally, as a major contribution of this work, we introduced an FSM-based model capable

of performing temporal tasks. We showed that, unlike LSTMs, the required storage for

training our FSM-based models is independent of the number of time steps. This property

allows our FSM-based models to learn extremely long data dependencies while achieving

substantial resource savings: reducing the storage required for intermediate training values

by a factor of l×, lowering the power consumption during training by 33%, and decreasing

the number of operations during inference by a factor of 7×.

34



3
Dynamic Sign-Magnitude Stochastic

Representation for Stochastic

Computing

In this work, we introduce Dynamic Sign-Magnitude (DSM), a novel representation of stochas-

tic streams that combines multiple stochastic representations to improve computational

accuracy in the stochastic computing (SC) domain. DSM leverages previously proposed

stochastic representations and incorporates them into our SC-based neural network (NN)

framework. To facilitate this, we propose a new binary multiplication method capable of per-

forming ternary (i.e., −1, 0, 1) operations for the combined SC representations. Additionally,

we present a training methodology designed specifically for SC-based NNs, utilizing only bi-

nary/ternary operations and adders. In particular, we estimate the polarity of gradients using

ternary values during back-propagation. Our experimental results demonstrate that training

SC-based NNs using the proposed method significantly reduces computational latency while

achieving comparable accuracy to state-of-the-art approaches. To the best of our knowledge,

this is the first work that replaces all full-precision computations required for both forward and

backward propagation with simple binary/ternary operations, without introducing additional

35



circuit complexity—unlike the SC-based NN in [17]. The main contributions of this work are

summarized as follows:

• Dynamic Sign-Magnitude Stochastic Representation: We propose a novel

stochastic stream representation to enhance computational accuracy in the SC domain.

By integrating multiple stochastic streams, we introduce a binary multiplication method

that replaces ternary operations with binary operations during forward propagation.

This new representation enables more accurate computations using shorter sequence

lengths compared to existing SC-based NNs.

• Efficient Back-Propagation Training: We propose a new training algorithm for

SC-based NNs that employs ternary operations exclusively for back-propagation. The

design eliminates the need for full-precision multipliers, replacing them with simple

binary/ternary operations to enable efficient and effective training of SC-based NNs.

3.1 Disclaimer

The content of this chapter is adapted and expanded from our prior work published in the IEEE

Design & Test journal ©IEEE 2021 [1], in a paper titled “Training Binarized Neural Networks

Using Ternary Multipliers”, authored by Amir Ardakani, Arash Ardakani, and Warren J.

Gross. I developed the algorithms and conducted the experiments. Dr. Arash Ardakani

and Professor Warren J. Gross provided valuable suggestions to enhance the experimental

framework and contributed to the revision of the original published work. In this chapter, I

have included a revised and extended version of this work. The text has been restructured

and refined to more clearly articulate our contributions. Additionally, the chapter expands on

the original publication by providing a detailed mathematical explanation, accompanied by

an illustrative example, to further clarify the proposed dynamic signed-magnitude stochastic

representation (see Section 3.4.2).

3.2 Related Work

Numerous studies have explored the binarization of deep neural networks (DNNs) using

stochastic computing (SC), demonstrating comparable performance to conventional binary-

radix approaches [17,36,48,49,53]. SC-based neural networks (SC-based NNs) are particularly

advantageous for low-cost implementations, offering significant reductions in power consump-

tion and resource utilization compared to traditional binary-radix designs of DNNs [49].
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Additionally, SC-based implementations exhibit higher resilience to soft errors, such as bit

flips, making them ideal for robust computing systems.

Given these advantages, SC-based NNs are well-suited for application-specific integrated

circuit (ASIC) and field-programmable gate array (FPGA) implementations, particularly

in scenarios where power efficiency and resource optimization are critical. Consequently,

SC has been utilized to implement a wide range of DNN architectures, including spiking

neural networks, fully connected neural networks (FCNNs), restricted Boltzmann machines

(RBMs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs) [36,48].

However, these SC-based implementations have predominantly been used for the inference

stage, where network parameters are obtained from pre-trained models. The challenge of

enabling efficient on-chip learning for SC-based NNs remains an open research problem.

Ardakani et. al., proposed integral representation of stochastic streams and designed a

new FSM-based Stanh function that takes integral stochastic streams and outputs binary

stochastic streams in return [49]. They manged to produce comparable results on MNIST

dataset using short sequence lengths (e.g., 16) and lower area and energy consumption of

SC-based system compared to its binary-radix counterpart at the cost of larger latency (i.e.,

5/3× slower). Li et. al., proposed an efficient area/power SC-based architecture which

exploits approximate parallel counter-based and multiplexer-based neurons [54]. Their design

achieves 55× and 151× improvement in terms of area and power, respectively, compared with

a conventional binary-radix implementation. Liu et al. [17] were among the first to propose

a method for training FCNNs using stochastic computing. Their approach performs both

training and inference computations on stochastic streams, marking a significant step toward

realizing fully SC-based neural networks. Despite the promising results, their method requires

long sequence length (sequence length of size 256 with 16× parallelization) to achieve accuracy

comparable to state-of-the-art models, which can limit its practicality. In addition, they

proposed a reconfigurable stochastic computational activation unit to implement different

types of activation functions such as tanh and ReLU functions. They managed to achieve a

2× improvement in terms of area compared to a fixed-point implementation at the cost of a

very small drop of accuracy (i.e., a 0.15-0.33% accuracy drop). Liu et al. [48] subsequently

proposed a method that partially performs back-propagation computations using binary

operations by stochastically sampling from full-precision gradients to update weights. While

this method simplifies certain computations by using binary operations, local gradients are

still computed in real value, leaving room for further optimization.

The accuracy of the stochastic stream significantly falls short in representing near-zero
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values with bipolar representation of SC. This becomes an important issue when NNs are

implemented with SC as a large number of the weights in NNs are near-zero values. Zhakatayev

et. al., proposed sign-magnitude stochastic stream to address this issue [55]. They were able

to use sequence lengths as short as 32 and to produce state-of-the-art results in SC domain.

3.3 Preliminaries

3.3.1 Stochastic Computing and Circuits

Stochastic Computing (SC) operates on stochastic streams, which are sequences of random

bits that represent continuous values. Let xt ∈ {0, 1} for t ∈ {0, 1, . . . , N} denote a random

binary variable in the stochastic stream X, where N is the sequence length. In the unipolar

representation, a real number x ∈ [0, 1] is encoded such that E[xt] equals to x. For a

sufficiently long bit sequence, the mean value of the sequence is expected to converge to

the theoretical expectation [16], i.e., 1
N

∑N
t=1 xt = E[xt] = x. Stochastic streams can also

represent negative numbers using the bipolar format. Here, a real number x ∈ [−1, 1] is

encoded such that the E[xt] equals to
x+1
2
. Any real number outside the [−1, 1] range can also

be represented by scaling it to fit within the appropriate unipolar or bipolar range. Stochastic

streams are typically generated in hardware using linear-feedback shift registers (LFSRs) and

comparators. For software simulations, they can be created by sampling from the Bernoulli

distribution [36]. In SC, arithmetic operations are implemented using basic logic gates. For

example, multiplications are performed with AND gates in unipolar format and XNOR gates

in bipolar format. Stochastic additions, on the other hand, can be performed with either

OR gates or scaled adders. An OR gate is suitable for addition when the input values are

small [49], while a scaled adder can be implemented as a two-input multiplexer (MUX). The

MUX’s selector is controlled by a stochastic stream with a probability of 0.5, resulting in an

output with a probability equal to the average probability of the input. To perform addition

with M inputs, a tree of two-input MUXs is used, requiring longer stochastic streams to

compensate for the precision loss caused by M× downscaling [49].

A recent innovation in SC is the Integral stochastic stream, proposed as an alternative to

the conventional unipolar and bipolar formats to simplify addition and enhance performance

in SC-based DNN implementations [49]. An integral stochastic stream represents a sequence

of integers and can be generated by summing multiple unipolar or bipolar stochastic streams.

When generating integral streams, zeros in bipolar streams are treated as -1. The average value

of an integral sequence corresponds to its real value. For instance, 1.25 can be represented
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AM:01010000 (0.25)
BM:10110010 (0. 5)

BS: 0
AS: 1 CS: 1

CM:00010000 (0.125)

Figure 3.1: Multiplication between two SM streams (a = −0.25 and b = 0.5) with sequence
length of 8. AS/BS and AM/BM denote the sign and magnitude of the stochastic streams
A/B, respectively. ©IEEE 2021 [1].

as {1,1,1,0,1,0,1,1} (0.5) + {1,1,1,0,1,1,1,1} (0.75) in bipolar and {2,2,2,-2,2,0,2,2} (1.25)

in integral formats. This work employs the integral format for representing the inputs of

non-linear activation functions.

The Sign-Magnitude (SM) format is another stochastic representation introduced to

enhance computational accuracy in neural networks [55]. To represent a real number x ∈

[−1,+1] using SM, the absolute value of x is encoded in unipolar format while preserving

its sign for subsequent computations. The bit-width of SM streams is thus one bit longer

than unipolar and bipolar formats. Multiplying two SM-formatted values requires two gate

operations: AND and XOR gates compute the magnitude and sign of the product, respectively,

as illustrated in Figure 3.1. In Section 3.4, we detail how our proposed SC-based neural

network leverages the SM format while performing multiplications using only a single gate.

For a comprehensive background on SC and its foundational principles, please refer to

Appendix A.

3.3.2 Back-propagation: Gradient Descent

Gradient descent (GD) is one of the most widely used algorithms for training deep neural

networks. For DNNs with a differentiable loss function L, , the local gradient of the jth

neuron in ℓth layer is given by:

g
(ℓ)
j =







∂L

∂f(v
(ℓ)
j )

output layer

f ′(v
(ℓ)
j )

∑

m g
(ℓ+1)
j w

(ℓ)
m,j middle layers

, (3.1)

where g
(ℓ)
j is the local gradient of the jth neuron in ℓth layer, f is the non-linear activation

function, and w
(ℓ)
m,j is the weight connecting the mth neuron in the ℓ + 1th layer to the jth

neuron in the ℓth layer. The variable v
(ℓ)
j represents the weighted sum at the jth neuron in
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the ℓth layer and is computed as:

v
(ℓ)
j =

∑

k

w
(ℓ−1)
j,k f(v

(ℓ−1)
j ). (3.2)

Note that in the first layer,f(v
(ℓ−1)
j ) is substituted by the input feature values X for the first

layer. The gradients with respect to the weights are calculated as:

∇w
(ℓ)
j,k = g

(ℓ)
j f(v

(ℓ−1)
j ). (3.3)

The weights are then updated using the current weights wt, the learning rate α and the

gradients obtained from Eq. (3.3) as follows:

wt+1 = wt − α∇w. (3.4)

It is worth noting that the matrix multiplications in Equation (3.1), Equation (3.2), and

Equation (3.3) can be replaced with convolution operations when performing back-propagation

in convolutional neural networks.

3.4 Stochastic Neural Networks

This section outlines the algorithms and functions necessary to facilitate the forward and

backward propagation of the proposed SC-based NN using binary and ternary operations.

First, we describe the SC-based implementation of the non-linear activation function commonly

utilized in DNNs. Next, we provide a detailed explanation of the binarization process applied

to both the nodes and the parameters of the network. Finally, we present the algorithm

developed to execute the forward and backward propagation steps efficiently.

3.4.1 Integral Stochastic tanh Activation Function

The implementation of complex functions in stochastic computing (SC) presents significant

challenges. Typically, such functions are realized using (FSMs) [49]. FSMs are designed as

up-down saturating counters, where the output is determined by comparing the counter’s

value with a predefined threshold. In SC-based neural network implementations, the input to

the non-linear activation function is generally generated by scaled adders. However, scaled

adders reduce the precision of stochastic streams when handling a large number of inputs (as

discussed in Subsection 3.3.1). To address this limitation, we adopt the integral SC adder

and its corresponding FSM-based function, referred to as IStanh, in this work.
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The IStanh function is implemented using FSMs, following a design similar to the

conventional Stanh architecture [49]. However, unlike the conventional Stanh, the IStanh

function can take multiple steps to transition between states, depending on its integral

stochastic input. The output of IStanh is binary (0 or 1), producing a bipolar stochastic

stream based on its current state. IStanh function is covered in-depth in Appendix A

3.4.2 Dynamic Sign-Magnitude Stochastic stream

In neural networks, weights are typically initialized with values near zero [48]. Moreover,

even after the training phase, weights can retain near-zero values. As demonstrated in [48],

the bipolar format struggles to accurately represent these near-zero values, leading to a

decrease in accuracy in stochastic computations. To address this limitation, we adopt the

Sign-Magnitude representation of stochastic streams, as suggested in [55]. However, in our

approach, the SM format is exclusively used to represent the values of weights, while the

values of nodes (i.e., activations) are represented in bipolar format. It is worth emphasizing

that the activations are generated by the IStanh function, which inherently produces a

bipolar stochastic stream. This hybrid representation allows for improved accuracy while

leveraging the strengths of both formats in stochastic computations.

To enable multiplication between bipolar and SM stochastic streams, we propose employing

a single XNOR gate, as illustrated in Figure 3.2.

Let bt ∈ {0, 1} be a random binary variable within the bipolar stream B, which is encoded

to represent the real value b ∈ [−1, 1], such that:

E[bt] =
b+ 1

2
,

2E[bt]− 1 = E[2bt − 1] = b. (3.5)

By substituting 2bt − 1 with its equivalent (−1)1−bt , the following expression is obtained:

E[(−1)1−bt ] = b. (3.6)

Similarly, let mt ∈ {0, 1} be a random binary variable within the SM stream M, which is

encoded to represent the real value m ∈ [−1, 1], such that:

E[mt] = |m|,

(−1)s · E[mt] = E[(−1)s ·mt] = m, (3.7)
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Figure 3.2: Multiplication between SM and bipolar streams with sequence length of 4. The
sign value of the SM stream is used in every multiplications between the elements in the
magnitude of the SM stream and the elements of the bipolar stream. The result of this
multiplication is considered as DSM stream that has a sign value for each element of the
sequence. ©IEEE 2021 [1].

where |m| is the absolute value of m, and s denotes the sign bit of the SM stochastic stream,

such that s = 0 for m ≥ 0 and s = 1 otherwise.

Let c be the product of the continuous values b and m (c = b ×m). In the stochastic

domain, this multiplication is performed through element-wise multiplication between the

bipolar stream B and the SM stream M, such that:

ct = f(bt,mt, s), (3.8)

where ct is an element of the stochastic stream C and function f(·) executes logical binary

operations, ensuring:

E[ct] = c

= b×m.
(3.9)

By combining Equation (3.6), Equation (3.7), and Equation (3.9), the following is obtained:

E[ct] = E[(−1)1−bt ] · E[(−1)s ·mt], (3.10)

Assuming that bt and mt are independent, Equation (3.10) can be rewritten as:

E[ct] = E[(−1)1−bt · (−1)s ·mt],

= E[(−1)1−bt+s ·mt],

= E[(−1)st ·mt],

(3.11)

where st ∈ {0, 1} and is logically equivalent to bt ⊙ s (bt XNOR s), as shown in Table 3.1.
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According to Equation (3.11), ct is a ternary variable, i.e., ct ∈ {−1, 0,+1}, and can be

encoded using two binary bits ct(0) and ct(1) such that:

ct = (−1)ct(1) · ct(0), (3.12)

where ct(0) = mt and ct(1) = st. Therefore, each element of the stochastic stream C can be

represented with a sign bit ct(1) = bt⊙ s and a magnitude bit ct(0) = mt. In other words, the

multiplication of SM and bipolar streams produces an SM stream in which each magnitude

bit is associated with a corresponding individual sign bit. We designate this new type of

stochastic stream as the Dynamic Sign-Magnitude (DSM) stream. In DSM streams, positive

and negative elements are represented with st = 0 and st = 1, respectively. Consequently,

ternary values {01}, {11}, and {00, 10} are interpreted as representing +1’, -1’, and ‘0’,

respectively.

To illustrate the multiplication process between a bipolar and an SM stochastic stream,

consider B = {1, 1, 1, 0, 1, 1, 1, 0} and M = (s = 1){0, 0, 0, 0, 1, 1, 1, 1} representing a bipolar

stream with an expected value of E[bt] =
1
8
(1 + 1 + 1− 1 + 1 + 1 + 1− 1) = 0.5 and an SM

stream with the expected value of E[(−1)s ·mt] =
−1
8
(0 + 0 + 0 + 0 + 1 + 1 + 1 + 1) = −0.5.

The resulting DSM stream C = {10, 10, 10, 00, 11, 11, 11, 01} has an expected value of

E[ct] =
1
8
(0 + 0 + 0 + 0 − 1 − 1 − 1 + 1) = −2

8
= −0.25, which aligns with the expected

multiplication result.

The advantages of utilizing the SM representation for weights during forward propagation

are outlined as follows. First, SM representation enables more precise multiplications compared

to bipolar stochastic streams. Additionally, combining SM and bipolar representations allows

for efficient multiplication operations using only a single XNOR gate per stream. The

resulting multiplications, represented in the DSM format, can be seamlessly integrated to

produce integral streams, which serve as inputs to the IStanh non-linear activation function.

In Section 3.5, we will demonstrate the impact of using the SM representation for weights on

the accuracy performance of our SC-based neural network, compared to the conventional

Table 3.1: Truth table for calculating the dynamic sign bit of DSM stochastic streams.

bt (positive/negative) s (positive/negative) st (positive/negative)
0 (-) 0 (+) 1 (-)
0 (-) 1 (-) 0 (+)
1 (+) 0 (+) 0 (+)
1 (+) 1 (-) 1 (-)
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bipolar representation.

3.4.3 Forward/Backward Propagation

The forward propagation of the proposed SC-based neural network is carried out in two main

steps, as described in Algorithm 5:

Step-1: A stochastic sampling operation is performed on all inputs (in bipolar format) and

weights (in SM format). The sampled inputs and weights are denoted as xb and wb, respectively.

This step is represented in Algorithm 5 using the functions StochasticSample B() and

StochasticSample SM().

Step-2: In the first layer of the SC-based NN, the samples xb and wb are multiplied, and

their sum of products is computed. This sum forms an element in an integral stochastic

stream, which is subsequently passed through the IStanh activation function. The bipolar

output of IStanh, denoted as hb, is then multiplied with wb in the second layer, and their

sum of products is passed to the next activation function. This process is repeated layer by

layer until the final layer is reached. It is important to note that the output layer does not

include a non-linear activation function; therefore, only the sum of products, denoted as y, is

computed.

The forward propagation process is repeated L times, where L represents the length of

the stochastic sequence. The summations of hb and y across these iterations are denoted

as H and Yo, respectively. For backpropagation, real-valued node activations are required.

These real values are obtained by calculating the average of the activation function outputs,

dividing H by L. Similarly, the output Yo is divided by L to compute the real-valued output,

which is used in the loss function. If we set the length L of stochastic streams to a power of

two number, these divisions can be implemented efficiently using bit-shift operations. Finally,

the classification result, Yp, is determined using the argmax function.

It is worth emphasizing that the input data xb and weights wb are represented in bipolar

and SM formats, respectively. The outputs of hidden layers (hb) are represented in bipolar

format, while the final outputs (y) are represented in integral format, as the output layer

lacks a non-linear activation function. An illustration of the forward propagation process for

the SC-based NN is provided in Figure 3.3.

We minimize the loss for each output node individually using the Hinge Loss function,

which is defined as:

HingeLoss = max(0, 1− yo · yt), (3.13)

where yt ∈ {−1,+1} represents the ground truth label of the input data and yo ∈ [−1, 1]
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Algorithm 5: Pseudo code of the proposed algorithm for forward propagation, where L

is the length of stochastic sequence, K is the number of layers including output layer, and

StochasticSample SM and StochasticSample B are the functions that output stochastic

samples in SM and bipolar formats, respectively. ©IEEE 2021 [1].

Data: Input data X ∈ [−1,+1] and weights W ∈ [−1,+1]
Result: Output yo, activation derivatives with respect to its input h′, activation

values H and predicted class yp.
1 for j = 1 : L do
2 for i = 1 : K do
3 wbi ← StochasticSample SM(Wi)
4 if i == 1 then
5 xb ← StochasticSample B(X)
6 hbi ← IStanh(

∑

xbi w
b
i )

7 else if i == K then
8 y ←

∑

hbK−1 w
b
K

9 else
10 hbi ← IStanh(

∑

hbi−1 w
b
i )

11 end

12 end
13 H ← H + hb

14 Yo ← Yo + y

15 end
16 H ← H/L
17 if |H| < 1 then
18 h′ ← 1
19 else
20 h′ ← 0
21 end
22 yo ← Yo/L and yp ← argmax(Yo)
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Algorithm 6: Pseudo code of the proposed algorithm for back-propagation and updating

weights. * denotes matrix multiplication. ©IEEE 2021 [1].

Data: Input data X ∈ [−1,+1], current weights W t ∈ [−1,+1], neurons values H,
learning rate α , loss derivative loss′ and activation derivatives ∂h

Result: Updated Weights W t+1

1 wb ← sign(W t) and H ← sign(H)
2 for i = K : 1 do
3 if i == 1 then
4 ∇w1 ← sign(X ∗ grad1)
5 else if i == K then
6 gradL−1 ← sign(

∑

loss′ ∗ wbL)h
′
L−1

7 ∇wL ← sign(HL−1 ∗ loss
′)

8 else
9 gradi−1 ← sign(

∑

gradi ∗ w
b
i )h
′
i−1

10 ∇wi ← sign(Hi−1 ∗ gradi)

11 end

12 end
13 W t+1 ← W t − α∇w

denotes the predicted output obtained from Algorithm 5. The Hinge Loss penalizes predictions

that do not meet the margin of correctness, 1, by encouraging the model to produce a

prediction yo that has the same sign as the target yt and is at least 1 unit away from the

decision boundary. When yo · yt ≥ 1, the loss becomes zero, indicating a correct prediction

with sufficient confidence.

The partial derivative of the Hinge Loss with respect to the output yo can be simply

calculated as:
∂Loss

∂yo
= loss′ =

{

−yt if yoyt < 1

0 otherwise
. (3.14)

It is important to note that the minimization of the Hinge Loss function does not involve

any real-valued (i.e., full-precision) multiplications, as the derivative of the loss, loss′, takes

discrete values in {−1, 0, 1}.

In SC-based neural networks, two primary challenges arise when performing backpropaga-

tion:

• Loss of Gradient Precision: The precision of gradients decreases significantly during

backpropagation, which is considered critical for the successful training of models using

gradient descent algorithms [48].
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• Inaccurate Derivative Computation: It is inherently challenging to accurately

compute the derivative of stochastic activation functions.

To address these challenges, we propose the following solutions:

• Gradient Polarity Estimation: Instead of calculating precise gradient values during

backward propagation, we estimate the polarity of the gradients. Using this estimated

polarity, we update the weights with a small learning rate. This approach simplifies the

backpropagation process while maintaining the directionality of gradient updates.

• Straight-Through Estimator: To pass the gradients through neurons, we use

“straight-through estimator” method, as suggested by Hubara et al. [56], which performs

h′ = 1|H|<1, where h
′ represents the derivative of the activation function with respect

to its input. The estimator effectively blocks gradient flow through saturated nodes,

which are nodes whose absolute value equals or exceeds 1. Notably, in our SC-based

NN, the absolute value of nodes is always constrained to be less than or equal to 1,

as the activation functions output bipolar values. This ensures compatibility with the

straight-through estimator method.

The implementation details of this procedure are outlined in Algorithm 5.

To estimate the polarity of gradients, we binarize both the weights and nodes determinis-

tically, using the sign function, with the exception of the nodes in the first layer. The weights

in the first layer are updated using the real values of the input nodes, X. Following the

loss function equation in Equation (3.14) and applying the ”straight-through estimator,” we

express the gradients as follows:

g
(ℓ)
j =







−yt(yoyt<1)
output layer

1
|f(v

(ℓ)
j )|<1

sign(
∑

m g
(ℓ+1)
j sign(w

(ℓ)
m,j)) middle layers

, (3.15)

and

∇w
(ℓ)
j,k = g

(ℓ)
j sign(f(v

(ℓ−1)
j )), (3.16)

where all multiplications are performed using ternary operations. Unlike the forward propa-

gation, during backpropagation, both the weights and nodes are deterministically binarized

using the sign function and represented using a sequence length of one.

To update the weights, the learning rate in Eq. (3.4) is treated as a power-of-two number,

facilitating its implementation via shift operations. The learning rate determines the required
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Figure 3.4: Backward propagation. ©IEEE 2021 [1].

precision for storing real values of the weights in memory. For instance, when the learning

rate is 1
2N

, only N + 1 bits are necessary for the weights (1 sign bit and N fractional bits).

The backward propagation procedure is detailed in Algorithm 6 and illustrated in Figure 3.4.

3.5 Experimental Results

For evaluation purposes, we use MNIST image classification benchmark. MNIST dataset

contains 60K and 10K of training and test samples, respectively. In all experimental results,

our SC-based NNs are trained with all the training samples and we report the accuracy

obtained from the test set. In all the experiments in this paper, we use 16-bit fixed-point

multipliers to perform multiplications of full-precision models. Moreover, the real values of

weights and inputs are represented using 16-bit and 8-bit fixed-point formats in our SC-based

NNs, respectively. Finally, the sequence lengths provided in the results tables indicate the
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Table 3.2: Accuracy of our SC-based NN with 784-128-128-10 Fully-Connected Network
Configuration on MNIST dataset. ©IEEE 2021 [1].

Model sequence length weight binarization Accuracy (%)

Full-Precision N/A N/A 98.30
SC-based NN 1 SM 51.04
SC-based NN 2 SM 95.54
SC-based NN 4 SM 96.66
SC-based NN 8 SM 97.23
SC-based NN 16 SM 97.52
SC-based NN 32 SM 97.58
SC-based NN 64 SM 97.61
SC-based NN 128 SM 97.66
SC-based NN 256 SM 97.65
SC-based NN 512 SM 97.66
SC-based NN 16 Bipolar 96.40

sequence length of stochastic streams during inference (or forward propagation) and the

sequence length of the binarized parameters for the backward propagation during the training

of the networks is always one.

3.5.1 Shallow FCNNs

Table 3.2 summarizes the classification accuracy of our FCNN with two hidden layers of size

128 (i.e., the network configuration of 784-128-128-10) trained using the conventional GD

algorithm and our proposed training method. It is worth noting that the conventional GD

algorithm performs both the inference and training computations in full-precision whereas

our proposed training method only uses binary/ternary operations for both the inference and

training processes. We use different stochastic sequence lengths ranging from 1 to 512 when

using our training method. The batch size is set to 100 and the networks are trained for

500 epochs. The simulation results show that the classification accuracy of our SC-based

NN improves as the sequence length increases and the stochastic computations become more

accurate. However, the accuracy plateaus for the sequence lengths of 256 and 512 as our

SC-based NN reaches its full learning capacity. Furthermore, Table 3.2 shows the accuracy of

a SC-based NN trained with a sequence length of 16 with the bipolar representation of the

weights. As discussed in 3.4.2, the near-zero value of weights causes accuracy degradation in

stochastic computations where streams are represented in bipolar format. Our results show

accuracy degradation of 1.12% between bipolar and SM representations of the weights.
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Table 3.3: Accuracy of our SC-based NN with 784-1024-1024-1024-10 Fully-Connected
Network Configuration on MNIST dataset. ©IEEE 2021 [1].

Model Sequence Length Employed technique Accuracy (%)

Full-Precision N/A - 98.4

Full Precision N/A Dropout 98.65

SC-based NN 16 - 98.03

SC-based NN 16 Dropout 98.23

SC-based NN 16
Stochastic binarization
during back-propagation

98.12

SC-based NN 256 - 98.11

3.5.2 Deep FCNNs

To ensure that our training method works properly on deeper networks, we train a FCNN with

three hidden layers of size 1024 (i.e., the network configuration of 784-1024-1024-1024-10) on

MNIST dataset. We also employ the dropout technique for our implementations and show that

it improves upon our training method (see Table 3.3). This is due to the fact that the dropout

technique improves regularization of NNs by preventing them from overfitting the training set.

In Algorithm 6, we described how to back-propagate using our gradient estimation method

and deterministic binarization of weights and nodes. When using deterministic binarization

to estimate the gradients, small (e.g., 0.0001) and large (e.g., 0.9) values of weights and

nodes will have the same impact. To better estimate the gradients, we employ stochastic

binarization during back-propagation. More precisely, we stochastically take one sample from

weights and nodes when calculating the gradients during the back-propagation using SM

representation. In other words, the real value of the weights and nodes are converted to

ternary values represented with SM streams that only have a sequence length of one. This

will also resolve the issue with the first layer as we stochastically sample from the value of

input nodes. Note that the sequence length for back-propagation is always one, meaning that

only one sample is taken during back-propagation. Table 3.3 reports the test accuracy of

our proposed SC-based NNs when using stochastic binarization during back-propagation. It

is evident that performing back-propagation using stochastic binarization to compute and

back-propagate the gradients produces higher accuracy compared to the one that performs

back-propagation with deterministic binarizated parameters. Furthermore, we employed the

dropout technique in our SC-based NN which improves the accuracy performance by 0.2%.
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3.5.3 Comparison with Existing Works

Table 3.4 provides the accuracy performance of our proposed SC-based NNs and other

existing binarized neural networks on MNIST dataset. It should be noted that none of the

networks in Table 3.4 are entirely binarized except the FCNN proposed by Liu et al. [17]

and ours. Other works either proposed binarization solely for the inference process or have

trained their binarized networks with full-precision local gradients. In addition to FCNNs,

we show that our approach is also compatible with convolutional networks by training a

simple CNN on MNIST dataset using Algorithm 5 and Algorithm 6. The under-test CNN

consists of two convolutional layers with the filter size of 3 × 3 followed by a fully-connect

layer with 128 neurons. The number of filters of the first two convolution layers are 32 and

64 (i.e., the network configuration of 784-32(3)-64(3)-10), respectively. Table 3.4 provides

the accuracy results of the existing works from their proposed SC-based NNs with shortest

reported sequence length. The experimental results show that our SC-based NNs outperform

all the SC-based models in terms of processing latency (i.e., sequence length) by up to 128×

while maintaining comparable accuracy. Moreover, our proposed training method replaces

all binary-radix multipliers with ternary operations, enabling low-cost on-chip learning. For

instance, a single full-precision multiplier (i.e., 16-bit multiplier) requires 3116 µm2 in TSMC

65-nm CMOS technology while a ternary multiplier requires 269× less silicon area.

3.6 Discussion

In [17], extended stochastic logic is employed to implement both forward propagation and

backward propagation in a multilayer perceptron. By leveraging a binary search mechanism,

a reconfigurable stochastic computational activation unit, and an LFSR sharing scheme, the

design achieves reduced area and energy consumption compared to binarized neural networks

and traditional floating-point and fixed-point implementations. However, the use of extended

stochastic logic in [17] necessitates an additional stochastic divider and extra computation time

to convert stochastic sequences back into binary representations. In contrast, our proposed

design eliminates the need for such conversions, as the calculated gradients are inherently

ternary. Moreover, the method in [17] requires relatively long sequence lengths to achieve

high accuracy, leading to significant latency (256 clock cycles with 16× parallelization). In

contrast, the method proposed in this chapter achieves comparable accuracy to that reported

in [17], using a sequence length of only 16 during forward propagation and a sequence length

of 1 during backward propagation, while maintaining a similar network size and structure.
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Table 3.4: Accuracy Comparison of our Proposed and Existing Binarized Neural Networks
on MNIST dataset. ©IEEE 2021 [1].

Model Type
Hidden Layer
Configuration

Sequence
Length

Accuracy (%)

This Work Fully Connected 128-128 16 97.52

This Work Fully Connected 1024-1024-1024 16 98.28

TCADICS’18 [48] Fully Connected 128-128 N/Aa ≈97

TVLSI’17 [49] Fully Connected 300-600 1024 97.99

DAC’16 [57] Fully Connected 100-200 1024 97.59

TCOMP’18 [17] Fully Connected 200-100 256 97.95

This Work Convolutional 32(3)-64(3)-128 16 98.38

DAC’18 [55] Convolutional LeNet-caffeb 32 ≈98.8

ASP-DAC’17 [54] Convolutional LeNet-5b 64 95.6

ICRC’16 [58] Convolutional LeNet-5 128 86.12

SIGOPS’17 [53] Convolutional LeNet-5 256 98.26

a SC is only used when updating the weights
b Note that our CNN model, LeNet-5 and LeNet-caffe have around 76000. 81000 and
656000 trainable parameters, respectively.

In [59], gradient compression is employed to reduce communication overhead during

distributed training. Gradients are stochastically compressed to three discrete levels, {-

1, 0, +1}, significantly lowering communication costs. Similarly, [48] adopts a ternary

gradient compression strategy to minimize computational overhead when updating weights.

However, in both methods, backpropagation computations are still performed in real-valued

(binary-radix) formats. Unlike these approaches, our method executes all backpropagation

computations entirely using ternary operations, providing a novel and efficient solution for

gradient computation and weight updates.

3.7 Conclusion

SC-based NNs were initially proposed as a low-cost alternative for hardware implemen-

tations of neural networks. While SC-based implementations offer a significantly smaller

hardware footprint compared to their binary-radix counterparts, they typically require long

stochastic sequence lengths (often exceeding 256) to mitigate the accuracy loss inherent to

SC. Consequently, SC-based NNs face challenges related to high computational latency and

increased energy consumption, making them less efficient than binary-radix implementations.
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In this work, we propose a novel approach capable of performing both inference and training

processes using significantly shorter stochastic sequence lengths (e.g., a sequence length of

16), thereby addressing these limitations.

Moreover, we explored the possibility of training neural network with ternary gradients

where gradients are computed using ternary operations. We proposed a training algorithm

to train neural networks using SC on MNIST dataset. Our experimental results promise

the possibility of training neural networks, more specifically, binarized neural networks (e.g.,

SC-based neural networks), with binary/ternary operation. We also proposed a new stochastic

representation (i.e., DSM) used in our SC-based neural networks which enabled us to perform

both the inference and training processes on a small sequence length (i.e., sequence length

of 16). As future work, we plan to apply our training method on more challenging datasets

such as CIFAR10 and ImageNet.
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4
Shift-based Neural Network

Deep neural networks (DNNs) have demonstrated remarkable performance across a wide range

of applications, including image classification and natural language processing. However,

deploying state-of-the-art (SOTA) DNNs requires high computational resources and specialized

hardware, such as GPUs, due to the extensive use of costly high-precision multiplications [15].

Additionally, modern DNNs are often over-parameterized, leading to substantial memory

usage and increased data movement between computation and memory units, which further

exacerbates energy and latency constraints [60]. These challenges make it particularly difficult

to implement DNNs on resource-limited hardware platforms, such as mobile devices and

embedded systems. To address these challenges, significant research has been conducted to

reduce the computational and memory costs of DNN deployment while maintaining model

accuracy. Approaches include efficient architecture designs [6–9], network pruning [61,62],

stochastic computing [16, 63], and spiking neural networks [64, 65], among others.

Another prominent direction focuses on the quantization of DNNs, where continuous

real-valued weights and activations are mapped to discrete integer values [66]. Quantization

significantly reduces computational complexity and memory requirements, making DNNs more

suitable for low-power and resource-constrained environments. While uniform quantization

methods —where discrete levels are evenly spaced— have been widely studied [67–69], recent
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research has explored non-uniform quantization techniques, which allow discrete levels to

vary in step size for improved efficiency and performance [11,70–72].

We focus on advancing the quantization of DNNs by exploring both uniform and non-

uniform quantization strategies. The primary objective of this study, as detailed in this

chapter, is to develop a non-uniform quantization framework that quantizes DNN weights into

discrete power-of-two values (i.e., ±2n). This approach aims to achieve accuracy equivalent

to full-precision models while utilizing the minimum possible number of bits. By leveraging

this framework, computationally expensive full-precision multiplications can be replaced with

efficient shift-add operations, thereby addressing the significant computational challenges

associated with deploying neural networks on resource-constrained platforms.

4.1 Related Work

Quantization methods can generally be classified into three main categories. The first

category focuses on minimizing quantization error, where real-valued weights and activations

are mapped to discrete levels that accurately represent the original data [70, 73–76]. Recent

methods in this category primarily aim to achieve a precise representation of data by

minimizing the discrepancy between the quantizer’s input and output values. This process

can be performed either offline, using structural information derived from a pre-trained full-

precision network, or online, where quantization is optimized dynamically during training. For

instance, in the Half-wave Gaussian Quantization (HWGQ) scheme [74], the quantization error

is minimized using Lloyd’s algorithm [77]. This method leverages the statistical distribution of

activations obtained from the full-precision network to fit the quantizer to the data. However,

a key limitation of HWGQ lies in its offline optimization, where the activation distributions

of the full-precision network may differ from those of the quantized network, potentially

compromising performance. To address this issue, the learned linear symmetric quantizer

(LLSQ) method employs an online approach, optimizing quantization error during the training

phase to better adapt to dynamic network parameters [76]. Similarly, LQ-Net introduces

a non-uniform quantization scheme that reformulates the quantization error minimization

problem as a linear regression task with a closed-form solution [70]. In the TSQ method,

quantization error is minimized by solving a non-linear least square regression problem [75].

In the TW-networks, weights are quantized into ternary values {+1, 0,−1} by minimizing

the Euclidian distance between the full precision and the ternary-valued weights [73]. While

these methods provide rigorous quantization error minimization strategies, they have been

empirically outperformed by approaches in the second category, suggesting that minimizing
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quantization error alone may not be the most effective way to achieve high-performance

quantized networks. This observation highlights the need for alternative strategies that

prioritize the overall accuracy performance of the network.

In the second category, quantization is formulated as an optimization problem that

is jointly optimized with the loss function during the training phase. In this approach,

quantizers are redesigned with learnable parameters, enabling the identification of optimal

quantization intervals. Unlike the first category, where the primary objective is to minimize

quantization error for accurate data representation, the second category focuses on optimizing

the quantization process to achieve the best possible accuracy performance. Notable methods

in this category include PACT [67], QIL [69], and LSQ [68], which demonstrate the efficacy

of integrating quantization optimization into the overall training process.

Finally, the third category focuses primarily on the training strategies for quantized

networks, aiming to enhance their performance accuracy [72,78]. This includes techniques

and methodologies designed to improve the effectiveness of quantized networks during the

training process. For example, progressive training frameworks, combined with knowledge

distillation, have been shown to significantly enhance the performance of the DoReFa-Net

quantization method across various tasks [66,78]. These approaches highlight the importance

of tailored training techniques in addressing the accuracy challenges associated with quantized

networks.

4.1.1 Motivation

In this work, we aim to bridge the gap between existing quantization methods by lever-

aging the statistical characterization of the weight and activation distributions during the

quantization process. Specifically, we propose a novel quantization scheme that utilizes

the standard deviation of weight and activation distributions during the training phase

to identify the optimal quantizer, which maximizes accuracy performance using task loss

and back-propagation. The contribution of standard deviation in enhancing the proposed

quantization method is detailed in Section 4.3. Furthermore, in Section 4.4, we introduce

two training techniques designed to further improve the performance of quantized networks.

Unlike prior methods that predominantly focus on either uniform or non-uniform quanti-

zation, our proposed framework is versatile and supports both approaches. For non-uniform

quantization, we employ power-of-two discrete levels and demonstrate that this method

surpasses state-of-the-art results [11] while achieving a 10× faster convergence rate.

Quantizers with discrete intervals that include a zero level inherently benefit from pruning,
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as values mapped to this level during quantization are set to zero and can be pruned. This

property enhances the desirability of quantization methods compared to other cost-reduction

techniques. However, only a limited number of studies have explored the interplay between

pruning and quantization or their mutual impact [61,69]. In this work, we not only investigate

the pruning property of quantization in greater depth but also demonstrate that our proposed

method enables flexible adjustment of the pruning ratio during the quantization process.

For instance, when performing an image classification task on the ImageNet dataset, we

demonstrate that up to 40% of the weights in a 3-bit ResNet-18 model can be pruned while

incurring less than a 1% accuracy loss compared to its full-precision counterpart.

4.2 Standard Deviation-based Quantization

To establish a connection between existing quantization methods, we address the following

question: ”How much of the information is important in a quantized network?” To answer this,

a closer examination of the statistical characterization of weights and activations is necessary.

Prior research has demonstrated that the outputs of convolutional and fully connected layers

often exhibit a bell-shaped distribution, particularly when followed by batch-normalization

layers [79]. Similarly, weights regularized using the L2 regularization method tend to follow a

bell-shaped distribution as well. The width of this bell-shaped distribution is determined by

its standard deviation, σ. For instance, in a Gaussian distribution, approximately 99.73% of

the data points lie within three standard deviations from the mean µ. However, not all these

values contribute equally to the overall accuracy and performance of a neural network. To

address this issue, we propose a standard deviation-based clipping function with a learnable

parameter α, capable of identifying the values that are most significant to the network. The

foundation of our method builds upon the PACT framework [67]. We extend PACT by

integrating the standard deviation of weights and activations into the clipping function as

follows:

y(x) =

{

x |x| < ασ

sign(x) · ασ |x| ≥ ασ
, (4.1)

where α is a learnable parameter of the quantizer, and σ is the standard deviation of the

weight or activation distribution. For activations, we further integrate the clipping function
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with the ReLU activation function to eliminate negative values, resulting in:

y(x) =











0 x ≤ 0

x 0 < x < ασ

ασ x ≥ ασ

. (4.2)

The proposed function effectively discards outlier values that are further than ασ from the

mean of the weight or activation distribution. Notably, for weights, we assume the mean to

be zero throughout, as experimental observations indicated that weight distributions had

a near-zero mean, and omitting it did not impact performance. For activations, the mean

is inherently non-zero; therefore, to ensure the standard deviation is calculated correctly,

we preprocess activations by removing all negative values, mirroring the remaining positive

values horizontally, and recalculating the distribution. This ensures that the mean of the

activation distribution becomes zero prior to applying the clipping function. By utilizing

this clipping strategy, we improve the quantization process by dynamically controlling the

contribution of values based on their statistical significance.

To address the variability in the standard deviation (σ) of activations across different

data batches, we adopt an approach inspired by batch-normalization. Unlike the standard

deviation of weights, which remains relatively constant, the standard deviation of activations

can vary significantly with each new batch of data. To stabilize this variation during training,

we compute a running average of σ using the moving average with a momentum factor of

0.001, as follows:

σ̂new = (1−momentum)× σ̂ +momentum× σt, (4.3)

where σ̂ represents the running average, and σt is the standard deviation of the current batch.

The momentum value of 0.001 was determined empirically through experiments, ensuring

stability and optimal results. Once the clipping function output is obtained, the values are

quantized into LP + LN + 1 discrete integer levels using b bits. This is expressed as:

yd = clip(

⌊

y ·
LP
ασ

⌉

,−LN , LP ), (4.4)

where ⌊·⌉ denotes rounding to the nearest integer, and yd ∈ N. The values of LP and LN

are determined by the bit-width b and the data type (signed or unsigned). For unsigned

data (e.g., activations), LN = 0 and LP = 2b − 1, while for signed data (e.g., weights),

LP = LN = 2b−1 − 1. Notably, our method symmetrically quantizes signed values; for
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Figure 4.1: An example of a 3-bit quantizer for signed values.

example, a 2-bit signed quantization results in three discrete levels (i.e., ternary values). The

final step in the quantization process involves scaling the quantized values, yd, to obtain the

quantized output, yq, as follows:

yq = yd ·
ασ

LP
, (4.5)

where yq ∈ R. This scaling operation can be seamlessly integrated into the batch-normalization

layer, eliminating any additional computational overhead.

Our proposed quantization method inherently supports pruning by setting values within

a predefined pruning area to zero during the quantization process. Specifically, any value

satisfying the condition

if |y| <
ασ

2LP
, then yd = 0, (4.6)

is pruned, as these values fall below the quantization threshold. Consequently, the pruning

ratio is directly influenced by the clipping threshold ασ, with higher thresholds leading to

higher pruning ratios. An illustrative example of a 3-bit quantizer for signed values is shown

in Figure 4.1, demonstrating the relationship between quantization and pruning.
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4.2.1 Optimizing α with Backpropagation

Following the principles introduced in the PACT method and utilizing the Straight-Through

Estimator (STE) [80], we derive the gradient for the quantizer parameter α as follows:

gα =

{

σ · gy x ≥ ασ

0 otherwise
, (4.7)

where gy represents the incoming gradient from the subsequent layers. This gradient expression

ensures that the quantization operation, which involves hard thresholds, can be differentiated

during the backpropagation step by treating it as a straight-through operation. Similarly, the

gradient with respect to the activation input, gx, is computed using the following expression:

gx =

{

gy 0 < x < ασ

0 otherwise
. (4.8)

Here, gx represents the gradient for the input to the quantizer, where the gradient is only

propagated through the quantizer for values of x that lie within the quantization range

(0 < x < ασ).

To further stabilize the training process and prevent the quantizer parameter α from

exploding or vanishing, we introduce a gradient scale s and a weight decay term λα to the

gradient of α. This results in the modified gradient expression:

gα =

{

sσ · gy + λα x ≥ ασ

0 otherwise
. (4.9)

In this revised formulation, the gradient scale s helps control the magnitude of the gradient,

while the weight decay term λα encourages regularization of the quantizer parameter α,

thereby controlling the pruning ratio. This addition ensures that α does not grow excessively

large, and helps guide the quantizer’s behavior during the optimization process.

4.2.2 Non-Uniform Power-of-two Quantization

To quantize weights to discrete values that are powers of two, we can leverage the clipping

function described in Equation (4.1), which helps map the weights to the set 0,±2k, where

k ∈ Z
+
0 . This non-uniform quantization approach allows us to replace the computationally

expensive multiplications with simple shift and addition/subtraction operations, which

significantly reduces the computational cost. To achieve this power-of-two quantization, we
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modify Equation (4.4) to generate discrete integer values yint ∈ N as follows:

yint =

⌊

log2(|y| ·
Lp2
ασ

)

⌉

, (4.10)

where Lp2 = 22
b−1−2 represents the range of the power-of-two quantized values. The integer

value yint is then transformed into power-of-two discrete values, including zero, using the

following formula:

yp2 =

{

clip(sign(y) · 2yint ,−Lp2, Lp2) yint ≥ 0

0 otherwise
. (4.11)

For example, when using 3-bit quantization (b = 3), the weights can be quantized into

seven discrete values, i.e., y3−bitp2 ∈ 0,±1,±2,±4. This approach ensures that the quantized

weights are restricted to powers of two, facilitating efficient hardware implementations. The

quantization process is then completed by applying the quantizer scale to yp2, as described in

Equation (4.5). Finally, the quantizer parameter α is optimized using the same gradient-based

approach outlined in Equation (4.9), which allows for fine-tuning of the quantization process

during training.

4.3 Contributing Factors

The main intuition behind our heuristic approach for parameterizing quantizers using the

statistical structure of the weights and activations is to incorporate the standard deviation

of the data distribution during the quantization process. This approach contrasts with

previous parameterization methods by utilizing not only the input samples but also the

statistical characteristics (specifically, the standard deviation) of weights and activations from

each layer in the network. The standard deviation, in particular, indicates the density of a

distribution. For example, in a distribution with a small standard deviation (i.e., a highly

dense distribution), where most of the data resides within the pruning area, it is critical to

prevent outliers from influencing the clipping threshold significantly. In such cases, the small

value of σ ensures that the gradients from the outliers do not substantially shift the clipping

threshold, as described in Equation (4.9). In addition to this explanation, we identify three

additional contributing factors that enhance the effectiveness of our method: (1) inclusivity,

(2) adaptive gradient scale factor, and (3) faster convergence.

Inclusivity: Unlike PACT, where the gradients of the quantizer parameter only rely on
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the outliers, the gradients in our method are sensitive to the entire dataset. Specifically,

we introduce the standard deviation of the weights and activations distribution as a new

feature that is incorporated into the task loss function. This feature helps scale the quantizer

parameter, allowing the method to take into account the full distribution of data, not just

the extreme values.

Adaptive gradient scale factor: The impact of gradient scaling has been explored in

previous methods like LSQ, which demonstrated that large gradient scales (e.g., 1) can result

in weak accuracy. In our method, the standard deviation can be interpreted as an adaptive

scaling factor for the quantizer parameter α. Initially set to 1 in most of our experiments,

the gradient scale is adjusted to optimize accuracy. The standard deviation as an adaptive

scaling factor enables us to strike a balance between accuracy and pruning ratio by treating

the gradient scale as a hyperparameter. A smaller gradient scale forces α to converge to

smaller values, leading to less pruning, while a larger gradient scale facilitates pruning more

aggressively, though potentially at the cost of accuracy. This trade-off is explored further in

Section 4.5.5.

Faster convergence: In previous quantization methods, the clipping threshold depends

solely on the quantizer parameter α. If the data distribution changes rapidly, it may take

longer for the clipping threshold to catch up with the new data distribution. In our proposed

quantizer, however, the clipping threshold is influenced by both α and the standard deviation

of the weights/activations distribution. This allows the clipping threshold to adapt more

quickly to changes in the distribution, even without updating α. As shown in Figure 4.2, this

property leads to faster convergence, enabling the quantization process to better track the

evolving distribution of data.

The inclusion of the standard deviation in our quantization method provides a clearer

understanding of how the data is being quantized. In the original PACT quantization

method, the clipping threshold (quantizer parameter α) does not offer insight into the

weights/activations distribution. In PACT, we only know that values exceeding the clipping

threshold (outliers) are clipped and quantized to the highest level. In contrast, our method

gives us an estimate of both outliers and pruned values by using the standard deviation of

the weights/activations distribution. Though this estimation is not perfect, it provides a

more nuanced understanding of the quantization process. For instance, if the weights follow

a Gaussian distribution and α is set to 2, we can estimate that approximately 95.45% of the

weights are within the clipping threshold, while the remaining 4.55% are outliers.
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Figure 4.2: Clipping thresholds of two set of data with standard deviation of 0.5 and 0.25.
The quantizer parameter α is fixed (α = 2) for both data distributions.

4.4 Quantization Techniques

In this section, we propose two quantization techniques that can be employed to further

improve the performance of our quantization method.

4.4.1 Improved Progressive Training

Arguably, any neural network quantized to extremely low bit-widths suffers from accu-

racy loss due to poor data representation. However, the inaccurate representation of the

weights/activations is not the only factor negatively impacting neural networks. In fact, a

major issue that causes significant performance degradation is the gradient vanishing problem,

which arises from intense pruning during the quantization process [11]. Intense pruning

reduces the learning capacity of neural networks, as a significant portion of the weights are

removed (set to zero), which limits the network’s ability to learn effectively.

Previous studies have attempted to address this issue by proposing different progressive

training methods [72, 78]. For example, one recent method quantizes higher values of weights

first while keeping the lower values in full precision [72]. This approach allows the gradient

to backpropagate through the weights that would have been pruned due to quantization. In
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another approach, it has been shown that progressive training—such as training 2-bit width

networks using the trained parameters from 3-bit width networks—improves the training

capacity and accuracy of quantized networks. However, simply transferring the learned

parameters results in changes to the learned quantization intervals, as shown in Equation (4.4).

This transformation from higher bit-width networks to lower bit-width networks often leads

to further pruning due to larger pruning areas, as illustrated in Figure 4.3. By altering

the quantization intervals, the learning capacity of the quantized network is reduced even

more—not only because of poor data representation due to low bit-width quantization, but

also because of additional pruning.

To address this issue, we propose a method to re-scale the quantizer parameter α so

that the lower bit-width network starts with the same quantization intervals as the higher

bit-width network. This is achieved by applying the following equation:

αb = αb+n ×
Lb
Lb+n

, (4.12)

where αb and Lb represent the quantizer parameter and discretization level of the quantized

networks with b bits, respectively, and b + n refers to the higher bit-width network. This

re-scaling approach ensures that the quantization intervals of the lower bit-width network

match those of the higher bit-width network at the start of training.

Our proposed progressive training method offers two key advantages: it improves the

training capacity of the quantized network and prevents the quantizer from pruning parameters

further. As a result, our method helps mitigate the gradient vanishing problem. More

importantly, it limits the search space for the quantizer parameter α, guiding the network to

find optimal intervals close to those found in networks with higher bit-widths. This can be

achieved by using smaller gradient scale values (s) in Equation (4.9), which enables weight

decay to prevent the quantizer parameter α from becoming too large.

4.4.2 Two-Phase Training

It has been shown that a significant portion of the weights resides near the quantization

interval boundaries (transition boundaries) [69]. Our experimental results confirm this

observation across different networks, as shown in Figure 4.4. Based on these findings, we

hypothesized that jointly optimizing the network parameters along with the quantizer’s

parameter could negatively impact the performance of the network. This is because a small

change in the quantization intervals can lead to dramatic changes in the quantized weights,
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Figure 4.4: Distribution of a convolution layer from ResNet-18 model trained with our
quantization method using 3 bits. The spikes in the distributions are the transition boundaries
of the 3-bit quantizer.

values, and then fine-tuning them in a second phase. This approach mitigates the noise

introduced by fluctuating quantization intervals and results in better overall performance.

4.5 Experiments

To validate our proposed quantization method, we conduct several experiments on the CIFAR-

10 [81] and ImageNet [82] datasets, using various neural network architectures. We evaluate

the effectiveness of our approach by comparing the performance of quantized networks under

different configurations, and we perform several ablation studies to assess the impact of

hyper-parameters and the proposed quantization techniques.

In all experiments, we use the same weight decay value for the quantizer’s weight decay

as used for the network’s original weight decay. This ensures that the regularization effect

of weight decay is consistent across both the network and the quantization parameter. For

both the CIFAR-10 and ImageNet datasets, we adopt the same data augmentation strategy

as proposed in [83], which includes techniques such as random cropping, flipping, and

normalization to improve generalization and reduce overfitting.

These experiments and ablation studies help us thoroughly evaluate the performance
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Table 4.1: Quantization accuracy performance on CIFAR-10 dataset with ResNet-20 model
(FP accuracy: 91.74%). Methods included in this table are LQ-Net, DSQ and PACT.

Quantization method Accuracy @ precision (A and W)

Activations Weights 5 4 3 2

DSQ [84] DSQ – – – 90.11
LQ-Net [70] LQ-Net – – 91.6 90.2

PACT [67] DoReFa 91.7 91.3 91.1 89.7

Ours DoReFa 92.03 92.00 91.65 90.32

Ours Ours 92.27 92.28 92.23 90.77

of our quantization method, comparing it against existing techniques, and exploring how

different settings affect the accuracy, pruning, and computational efficiency of the quantized

networks.

4.5.1 ResNet-20 on CIFAR-10

To evaluate the effectiveness of our proposed quantization method, we apply it to the ResNet-

20 model [83] on the CIFAR-10 dataset. We perform two sets of experiments to compare our

approach with the PACT quantization method.

Experiment 1: Progressive Quantization with Re-Scaling and Two-Phase Training

In this experiment, we progressively quantize the ResNet-20 model by applying both re-scaling

of the clipping threshold and the proposed two-phase training technique. Both weights and

activations are quantized using our method. The gradient scale value s is adjusted for

each bit-width, and is set to {1, 1, 0.1, 0.01} for the {5, 4, 3, 2}-bit quantized ResNet-20,

respectively. These gradient scale values were determined through a hyper-parameter search

(see Section 4.5.6).

Experiment 2: Comparison with PACT

In the second experiment, we apply the weight quantization method (i.e., DoReFa [66] used

in PACT and quantize ResNet-20 from scratch. Similar to PACT, we do not quantize the

first and last layers of the ResNet-20 model. For activation quantization, we use a constant

gradient scale of 1, independent of the bit-width.

Table 4.1 presents the quantization accuracy performance of the ResNet-20 model on the

CIFAR-10 dataset, with the full precision (FP) model achieving an accuracy of 91.74%. The

table compares several state-of-the-art quantization methods, including LQ-Net [70], DSQ [84],
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and PACT [67], alongside the proposed method. From the results shown in Table 4.1, we

observe that our quantization method outperforms PACT, even when only the activations

are quantized using our approach. Moreover, the application of our two-phase training

technique in conjunction with the progressive quantization method leads to further accuracy

improvements, demonstrating the technique’s effectiveness in reducing gradient noise. Finally,

we achieve the best performance when both weights and activations are quantized using our

method across all bit-widths, highlighting the superior performance of our approach.

4.5.2 SmallVGG on CIFAR-10

We evaluate the proposed method on the CIFAR-10 dataset by quantizing the SmallVGG

network [85] under three distinct experimental setups:

Setup-1: Quantizing Weights and Activations to 2 Bits

In this configuration, both weights and activations of the SmallVGG network are quantized

to 2 bits, with all layers being quantized except the first convolutional layer and the fully

connected layer. The network’s parameters are initialized using full-precision values. The

model is trained for 300 epochs with a gradient scale of 0.001. The results presented in

Table 4.2, demonstrate that our method not only outperforms SOTA approaches but also

achieves higher accuracy compared to the full-precision model.

Setup-2: 2-bit Activations with Binarized Weights

In this setup, activations are quantized to 2 bits, as in Setup-1, while weights are binarized

(quantized to 1 bit) using the sign function as described in [86]. Remarkably, even with

binarized weights and 2-bit activations during inference, our method surpasses the performance

of SOTA methods and the full-precision model, showcasing its robustness in extremely low-

precision scenarios.

Setup-3: Quantizing All Layers

In this experiment, we extend the quantization to all layers of the SmallVGG network.

However, the weights of the first convolutional layer are quantized, while its inputs remain

in full precision. The model is trained under the same conditions as Setup-1. Again, our

method outperforms both SOTA methods and the full-precision model.

Across all setups (both partial and full-layer quantization), the proposed method outper-

forms SOTA techniques (LQ-Net, HWGQ, LLSQ, RQST) in accuracy, demonstrating the

robustness of the proposed quantization approach. For 2-bit activations and 2-bit weights

(2/2 precision), our method achieves a maximum accuracy of 94.36%, which is higher than the

accuracy of all other methods, including LQ-Net (93.50%) and LLSQ (93.31%). Quantizing all
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Table 4.2: Comparison of quantization methods on CIFAR-10 using the SmallVGG network
(full-precision accuracy: 93.66%). The table reports accuracy achieved at 2-bit activations
(A) and 1-bit or 2-bit weights (W) under different quantization setups. ”All layers” indicates
whether all layers, including the first convolutional and fully connected layers, were quantized.
Methods compared include LQ-Net, HWGQ, LLSQ, and RQST.

Method All layers
Accuracy @ Precision (A/W)

2/1 2/2

LQ-Net [70] No 93.40 93.50
HWGQ [74] No 92.51 NA
LLSQ [76] No NA 93.31
Ours No 93.88 94.36

RQST [85] Yes NA 90.92
LLSQ [76] Yes NA 93.12
Ours Yes NA 93.90

layers, including the first convolution and fully connected layers, is generally more challenging,

as evidenced by lower accuracy values across methods (e.g., RQST achieves 90.92%). However,

our method retains high accuracy (93.90%) even when all layers are quantized, significantly

outperforming RQST and slightly surpassing LLSQ (93.12%) in this challenging scenario.

However, our method retains high accuracy (93.90%) even when all layers are quantized,

significantly outperforming RQST and slightly surpassing LLSQ (93.12%) in this challenging

scenario. When weights are binarized (1 bit) and activations are quantized to 2 bits (2/1

precision), our method achieves an accuracy of 93.88%, outperforming LQ-Net (93.40%) and

HWGQ (92.51%). This indicates that the proposed approach maintains high representational

power even under extreme compression conditions. The performance of our method surpasses

even the full-precision baseline (93.66%) in some configurations, particularly at 2/2 precision

(accuracy: 94.36%). This suggests that the quantization process introduces a regularization

effect, helping the network generalize better. The results from these experiments highlight

two critical observations:

• Regularization Effect of Quantization: Quantization can serve as an effective regulariza-

tion mechanism, provided that the capacity of the network is not significantly reduced

due to quantization.

• Over-Parameterization in SmallVGG: The results suggest that the SmallVGG network

is over-parameterized for datasets like CIFAR-10, which allows for significant reduction
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Table 4.3: Comparison with the existing methods using AlexNet on ImageNet (FP accuracy:
61.8%). Methods included in this table are QIL, LQ-Net, TSQ, , SYQ, PACT, LLSQ,
BalancedQ, PQTSG and WEQ.

Method
Top-1 accuracy @ precision (A and W)

4 3 2

Ours 62.5 62.2 59.2
QIL [69] 62 61.3 58.1
LQ-Net [70] – – 57.4
TSQ [75] – – 58
SYQ [88] – – 55.8
PACT [67] 57.2 55.6 55.0
LLSQ [76] 56.57 55.36 –
BalancedQ [89] – – 55.7
PQTSG [78] 58.1 – 52.5
WEQ [90] 55.9 54.9 50.6

in precision without degrading performance.

4.5.3 AlexNet on ImageNet

To evaluate the performance of our quantization method on large-scale datasets, we conducted

experiments on the ImageNet dataset using a modified AlexNet architecture [87]. The modified

version incorporates a batch normalization layer after each convolutional and fully-connected

layer, except for the last layer.

For training 3-bit and 2-bit quantized networks, we employed the progressive training

method with re-scaling of the clipping thresholds. Optimization was carried out using a cosine

annealing learning rate scheduler, starting from an initial learning rate of 0.001, for a total

of 70 epochs. Following standard practices in quantization, all layers were quantized except

for the first convolutional layer and the final fully-connected layer. As shown in Table 4.3,

our proposed quantization method outperforms previous state-of-the-art methods for low-bit

quantization of AlexNet on ImageNet.

When training the 2-bit AlexNet with a gradient scale of s = 1, we observed a significant

challenge: the training loss began to increase after several epochs, causing the network to

converge to a poor local minimum. This issue arises due to extreme pruning, even when

re-scaling the clipping threshold is applied. Such aggressive pruning results in a substantial

reduction in the learning capacity of the network. To mitigate this problem, we reduced
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Table 4.4: Top-1 accuracy of 2-bit AlexNet under different training setup.

Setup Gradient scale Top-1 Acc. (%)

No re-scaling 1 54.4

Re-scaled
from 4-bit

0.01 58.76

Re-scaled
from 3-bit

0.01 59.01

Re-scaled
from 3-bit +
two-phase training

0.01 59.24

the gradient scale to s = 0.01, which forced the 2-bit AlexNet to leverage the quantization

intervals discovered from the 3-bit network. This adjustment reduced weight pruning and

allowed the network to retain more learning capacity. Additionally, we trained the 2-bit

AlexNet using the quantization intervals obtained from the 4-bit network while maintaining

s = 0.01. Finally, we applied our proposed double-training method to further refine the 2-bit

network, resulting in an additional accuracy improvement of 0.2%. As shown in Table 4.4,

the 2-bit AlexNet trained with intervals from the 3-bit network achieved the best accuracy,

while the model trained with intervals from the 4-bit network also surpassed the accuracy

of the QIL method. These results highlight the effectiveness of progressive training with

appropriate interval re-scaling and our double-training strategy in addressing the challenges

of extreme low-bit quantization.

4.5.4 Shift-Net Results

We evaluate the effectiveness of our proposed non-uniform quantization method, described in

Section 4.2.2, on the ImageNet dataset [82] using ResNet-18 and ResNet-50 models [83]. In

this setup, the weights of both models are quantized into power-of-two intervals to enable

efficient deployment with shift-add arithmetic. These models were specifically chosen to

ensure a fair comparison of accuracy performance with state-of-the-art (SOTA) shift-add

quantization methods. To optimize the networks, we employ the previously described two-

phase training technique. Both ResNet-18 and ResNet-50 are initialized with pre-trained

parameters from the PyTorch model zoo [91]. The networks are trained for 70 epochs using a

cosine learning rate scheduler.
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Table 4.5: Comparison between existing shift-add networks on ImageNet dataset. Methods
included in this table are DeepShift, INQ and Sign-Sparse-Shift (S3).

Model Method Width
Top-1/Top-5
Acc. (%)

ResNet-18

FP 32 69.76/89.08
DeepShift [20] 5 69.56/89.17
INQ [72] 3 68.08/88.36
S3 [11] 3 69.82/89.23
Ours 3 70.23/89.33
INQ 4 68.89/89.01
S3 4 70.47/89.93
Ours 4 70.70/89.62

ResNet-50

FP 32 76.13/92.86
INQ 5 74.81/92.45
DeepShift 5 76.33/93.05
S3 3 75.75/92.80
Ours 3 76.37/93.08

The results, as summarized in Table 4.5, demonstrate that our non-uniform quantization

method achieves superior performance compared to SOTA shift-add methods for both models.

On ResNet-18, our method achieves the highest accuracy for both 3-bit and 4-bit quantizations:

For 3-bit weights, our method achieves 70.23% Top-1 / 89.33% Top-5 accuracy, surpassing

S3 (69.82% / 89.23%) and INQ (68.08% / 88.36%). For 4-bit weights, our method achieves

70.70% Top-1 / 89.62% Top-5 accuracy, outperforming S3 (70.47% / 89.93%) and INQ

(68.89% / 89.01%). On ResNet-50, at 3-bit precision, our method achieves 76.37% Top-1 /

93.08% Top-5 accuracy, outperforming S3 (75.75% / 92.80%). Moreover, with only 3 bits, our

method outperforms DeepShift, which uses 5 bits, on both ResNet-18 and ResNet-50 models.

4.5.5 Pruning Ratio and Accuracy Trade-off

Quantization inherently results in pruning, which can significantly reduce the memory footprint

of a network. However, excessive pruning negatively impacts the model’s learning capacity.

In our proposed quantization method, the pruning ratio can be indirectly controlled by

adjusting the gradient scale factor (s in Equation (4.9)). To evaluate this property, we trained

the same 3-bit quantized ResNet-18 model from the previous experiment (Section 4.5.4) on

the ImageNet dataset, using various gradient scale factors. Each model was trained for 20

epochs. The results, presented in Table 4.6, reveal that slight improvements in accuracy can
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Figure 4.5: The clipping thresholds and the pruning rates of the quantized ResNet-18 weights

be achieved at the expense of a significant reduction in pruning ratio. Specifically, a 1.12%

increase in Top-1 accuracy was achieved by sacrificing 18.64% of the pruning ratio. This

trade-off provides flexibility to users, who can prioritize higher pruning ratios or improved

accuracy depending on their application needs.

It is important to note that this trade-off is feasible only when multiple gradient scale

values result in good convergence and acceptable accuracy performance. To better understand

this phenomenon, we present the clipping thresholds and pruning rates of individual layers

for networks trained with gradient scale values of 1 and 0.001 in Figure 4.5. As anticipated,

networks trained with smaller gradient scale values exhibit smaller clipping thresholds, leading

to reduced pruning rates. Conversely, larger clipping thresholds result in greater pruning

ratios, as demonstrated in the results.

Table 4.6: Top-1 accuracy and pruning ratio for various gradient scale factors.

Gradient scale 1 0.1 0.01 0.001

Top-1 Acc. (%) 68.92 69.59 69.70 70.04
Pruning ratio (%) 40.21 29.74 24.97 21.57
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4.5.6 Progressive Training and Re-scaling

We evaluate the effectiveness of our proposed progressive training method, specifically the

re-scaling of the clipping threshold for the weights quantizer, by training the ResNet-20 model

on the CIFAR-10 dataset. In this experiment, we quantize the ResNet-20 model to 2 and 3

bits. The 2-bit model is initialized and re-scaled from the 3-bit and 4-bit models, while the

3-bit model is initialized and re-scaled using the 4-bit model.

As shown in Table 4.7, the 2-bit model achieves higher accuracy when the clipping

threshold is re-scaled from the 3-bit model. Interestingly, both the 2-bit and 3-bit models

produce comparable accuracy, even when the quantizer parameter (α) is not updated (i.e.,

the gradient scale is set to 0). This implies that it is possible to use the same quantization

intervals derived from higher-bit networks in lower-bit networks and still obtain satisfactory

performance. This observation highlights the importance and effectiveness of our proposed

re-scaling technique. Additionally, examining the results from columns where the gradient

scale is set to 0.1 and 0.01, we find that updating α with a smaller gradient scale does not

always lead to better performance. This suggests that there are diminishing returns in terms

of accuracy improvements when α is adjusted too aggressively with small gradient scales.

Table 4.7: Accuracy performance of ResNet-20 on CIFAR-10, quantized using 2 and 3 bits
with different clipping threshold initialization and gradient scale values.

Bit-width
Clipping
Threshold

Initialization

Gradient scale

1 0.1 0.01 0

2 From 3 88.06 90.34 90.69 90.12
2 From 4 87.55 90.29 90.11 89.57
3 From 4 92.14 92.23 92.07 92.10

4.6 Discussion

Here we discuss the differences between our shift-based neural network and the shift-based

neural networks listed in Table 4.5: DeepShift [20], INQ [72] and Sign-Sparse-Shift (S3) [11].

INQ method [72] achieves quantization through a stepwise process that includes three

interdependent operations: weight partitioning, group-wise quantization, and re-training.

Weight partitioning divides the weights in each layer of a pre-trained full-precision model into

two disjoint groups, each with complementary roles in the quantization process. The first
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group is quantized using a rounding method, while the second group compensates for the

accuracy loss introduced by quantization through re-training. These operations are iteratively

applied to the second group of weights until all weights are quantized to powers of two or

zero. While the INQ method achieves promising results, it is limited to pre-trained models

and cannot be applied during training. To enable power-of-two quantization during training,

the DeepShift method [20] reparametrizes weights into two elements: a 2-bit sign-operator

parameter and a bit-shift parameter. The sign-operator, a ternary value, determines the

shift process (no shift, shift-add, or shift-subtract), while the bit-shift parameter specifies

the number of bit-wise shifts. DeepShift can be applied to both pre-trained models and

models trained from scratch, with both parameters updated through backpropagation. The

Sign-Sparse-Shift (S3) method [11] extends DeepShift by learning each individual bit in the

sign-operator and bit-shift parameters, thereby improving accuracy. However, the S3 method

significantly increases memory requirements, as each bit of the quantized weights becomes a

learnable parameter, posing scalability challenges for large neural networks.

In contrast to these methods, our shift-based neural network directly quantizes weights

without reparametrization. The proposed method introduces only a minimal number of

additional parameters (e.g., parameter α) during training, resulting in a negligible impact on

the overall network size and memory usage.

Compared to the S3 method, our approach offers several distinct advantages. First, it en-

ables initialization with full-precision pre-trained model parameters, accelerating convergence

significantly. While the S3 method requires 200 epochs to achieve competitive results, our

method achieves superior accuracy within just 20 epochs, offering a 10x faster convergence

rate. Furthermore, in an N -bit shift-based neural network, the S3 method necessitates N

times the number of parameters during training, leading to increased memory usage and

higher hardware resource requirements. In contrast, our method introduces only minor

overhead, limited to the parameters α and the standard deviation of the weights, thereby

minimizing the memory footprint while maintaining substantial performance gains.

4.7 Conclusion

In this chapter, we introduced a novel quantization method that leverages the distribution of

weights and activations during the quantization process. By utilizing the standard deviation

of these parameters, our method outperforms existing quantization techniques across several

image classification tasks. To further enhance the performance, we proposed two training

strategies. The first, a two-phase training technique, mitigates gradient noise and the
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fluctuations of the quantizer’s transition boundaries that result from jointly optimizing the

network and quantizer parameters. The second strategy, a re-scaling technique, addresses the

gradient vanishing problem and improves the training of quantized networks. Our approach

provides flexibility, allowing users to balance accuracy and network size by adjusting the

pruning ratio.

To achieve the primary objective of this study, we introduce a training framework for

non-uniform quantization, specifically base-2 logarithmic quantization, in which weights

are quantized into power-of-two intervals. This approach replaces complex multipliers with

efficient shift-add operations, significantly reducing computational cost. Our method improves

the training of quantized networks by decreasing both training time (number of epochs) and

memory utilization (number of parameters). Notably, our approach achieves competitive

performance after 20 epochs using only 3 bits on the ImageNet dataset, demonstrating its

effectiveness in real-world applications.
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5
Towards Lossless ANN-to-SNN

Conversion

5.1 Introduction

Spiking neural networks (SNNs) are a biologically inspired class of artificial neural networks

that process information through discrete spiking events, rather than continuous activations

as in traditional artificial neural networks (ANNs) [92]. These networks emulate the dynamics

of biological neurons, where a neuron emits a spike when its membrane potential exceeds a

threshold. This behavior is often modeled using frameworks such as the leaky integrate-and-

fire (LIF) model [93] or the Hodgkin-Huxley equations [94].

SNNs are increasingly recognized for their potential in energy-efficient computation,

particularly when deployed on neuromorphic hardware such as Intel’s Loihi [95], IBM’s

TrueNorth [96], and SpiNNaker [97]. This energy efficiency arises from the sparse nature of

spike-based communication and the event-driven computational paradigm, making SNNs

well-suited for resource-constrained and real-time applications [21]. The development of

neuromorphic hardware has catalyzed the adoption of SNNs in energy-constrained environ-

ments. SNNs have demonstrated efficacy in a range of tasks, including event-based vision [98],
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robotics [23], and sensor data processing [99], particularly in scenarios requiring real-time

computation. SNNs are uniquely suited for tasks involving temporal or spatio-temporal data

due to their intrinsic ability to encode and process information in both spatial and temporal

domains. Applications include speech recognition [100], dynamic gesture detection [22], and

motion tracking [101].

Initial SNN training methodologies predominantly relied on unsupervised learning ap-

proaches, including Hebbian learning [102] and spike-timing-dependent plasticity (STDP) [103].

However, recent developments in supervised learning have facilitated the application of

gradient-based optimization techniques. Surrogate gradient methods, which approximate

the non-differentiable spike function with a continuous surrogate, have been particularly

impactful, enabling backpropagation through time (BPTT) and enhancing the scalability of

SNN training [24–26]. The discrete and non-differentiable nature of spike events complicates

direct optimization using standard backpropagation. While surrogate gradient methods

offer a practical solution, they introduce approximation errors and require careful parameter

tuning [104]. Moreover, surrogate gradient methods encounter significant computational

demands and reduced efficiency during the training process, especially when applied to

complex network architectures [30,105]. Addressing this trade-off requires alternative training

methodologies.

A significant body of work focuses on converting pre-trained ANNs into SNNs. This

approach utilizes the firing rate of spiking neurons to approximate the continuous activa-

tions of ANNs. ANN-to-SNN conversion methods have emerged as a popular approach for

leveraging the task-specific performance of ANNs while utilizing the sparse, event-driven

computational nature of SNNs. These methods typically adapt activation-based ANNs

to spike-based frameworks by normalizing weights [28], rescaling thresholds [30, 106], and

mitigating conversion losses [31,32]. While significant progress has been made, key challenges

remain, particularly in addressing the trade-off between inference latency and accuracy.

The initial research on ANN-to-SNN conversion was introduced by Cao et al. [27], and

later expanded by Diehl et al. [28], who improved the conversion results through data-based

and model-based normalization. To handle more complex datasets and deeper network

architectures, Rueckauer et al. [29, 107] and Sengupta et al. [106] proposed advanced scaling

methods, including weight normalization and threshold rescaling, by analyzing the relationship

between the activations of ANNs and the spike rates of SNNs. However, a key limitation of

these early methods is the requirement for hundreds to thousands of simulation time steps to

achieve high accuracy. This dependency arises from conversion biases, which are particularly
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pronounced in deeper networks [30–32,108].

To address the limitations of traditional ANN-to-SNN conversions, several methods have

been proposed to mitigate conversion loss and reduce simulation length. Rueckauer et

al. [107] introduced the reset-by-subtraction mechanism, which preserves residual information

by reducing the membrane potential by the threshold voltage after a spike, instead of resetting

it to a fixed resting potential. This approach addresses potential information loss during

resets [109]. Rueckauer et al. [29] proposed the use of percentile-based thresholds to avoid

outliers in activation distributions, while Sengupta et al. [106] recommended scaling thresholds

to normalize activations more effectively. Adjusting thresholds based on input-output spike

frequencies, further improved the accuracy of converted SNNs [109]. Techniques such as

channel-level threshold balancing [110], time steps-aware threshold optimization [30], and bias-

shifting strategies [31,32] have been applied to address discrepancies in activation frequencies

across neurons in the same layer, improving information transmission in shorter simulations.

Despite these advances, ANN-to-SNN conversion methods face persistent challenges:

• Trade-Off Between Accuracy and Latency: While improvements in scaling and

threshold adjustment techniques have reduced simulation lengths, achieving near-

original ANN accuracy with ultra-low latency (e.g., fewer than 4 time steps) remains

difficult. This trade-off is a fundamental constraint due to the discrete nature of spiking

computations.

• Discretization Limitations: The uniform discretization of numerical inputs across

neurons in the same layer fails to account for variations in activation frequencies. As a

result, some neurons struggle to transmit information effectively in short simulation

sequences, necessitating longer simulation lengths for high accuracy (Deng et al., 2020).

In this study, we propose a novel framework for lossless ANN-to-SNN conversion, focusing

on overcoming the discretization limitations inherent in existing methods through the adoption

of an improved quantization technique. Specifically, we conduct a comprehensive analysis

of the conversion bias in the proposed framework and demonstrate that the it is zero for

any arbitrary number of discrete quantization intervals in the source ANN and any arbitrary

number of time steps in the converted SNN, provided that the number of time steps is at

least equal to or greater than the number of quantization intervals. The effectiveness of our

approach is validated by achieving ANN-equivalent accuracy with a reduction of up to 2× in

time steps compared to state-of-the-art methods.
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5.2 Preliminaries

In this section, we introduce the basic framework for ANN-to-SNN conversion.

5.2.1 Neuron Model for ANN

In the ℓth layer of an ANN, the post-activation neurons, denoted as apostℓ , are described by

the following relationship:

apostℓ = h(apreℓ ), apreℓ = Wℓ a
post
ℓ−1 , (5.1)

where apreℓ represents the pre-activation state of the neurons in the ℓth layer, Wℓ is the weight

matrix, and h(·) is the ReLU activation function.

5.2.2 Neuron Model for SNN

For the SNN, we employ the Integrate-and-Fire (IF) neuron model [27]. The pre-spike (similar

to the pre-activation in ANN) membrane potential mpre
ℓ (t) of neurons in the ℓth layer at time

step t is updated as:

mpre
ℓ (t) = τmpost

ℓ (t− 1) +Wℓ sℓ−1(t), (5.2)

where τ is the leaky factor, sℓ−1(t) is the spike output vector from neurons in layer ℓ− 1 at

time t, and mpost
ℓ (t− 1) is the post-spike (similar to the post-activation in ANN) potential at

the preceding time step (t − 1). In the entirety of this study, we assume τ is always 1. A

neuron generates a spike when its membrane potential exceeds the firing threshold vth, after

which the membrane potential is reset according to a hard-reset mechanism:

sℓ(t) =







1 if mpre
ℓ (t) >= vth

0 otherwise
, (5.3)

mpost
ℓ (t) = mpre

ℓ (t) · (1− sℓ(t)). (5.4)

This hard-reset approach can lead to information loss [29, 109]. To mitigate this, we adopt a

soft-reset mechanism, where the membrane potential is reduced by the threshold vth upon

80



firing [107]. Under this model, the equations become:

sℓ(t) =







vth if mpre
ℓ (t) >= vth

0 otherwise
, (5.5)

mpost
ℓ (t) = mpre

ℓ (t)− sℓ(t)vth. (5.6)

To elucidate the distinctions between hard-reset and soft-reset mechanisms, consider two

neurons, m1 employing a hard-reset mechanism and m2 employing a soft-reset mechanism.

Both neurons receive three consecutive weighted input spikes of 1.25 at time steps T1, T2

and T3, with a firing threshold vth = 0.5. Since the weighted spikes exceed vth neuron m1

fires a spike at each time step T1, T2 and T3, resetting its potential to zero after each spike.

In contrast, neuron m2 fires spikes for seven consecutive time steps (T1 to T7); with each

spike, its potential decreases by 0.5. The pre- and post-spike potentials of neurons m1 and

m2 are depicted in Figure 5.1.

5.2.3 ANN-to-SNN conversion

The objective of ANN-to-SNN conversion is to align the spiking neuron firing rates in the

SNN with the continuous activation values in the ANN after T time steps:

apostℓ ≃
1

T

T
∑

t=0

sℓ(t) (5.7)

Let mℓ denote the average pre-spike potential over T time steps:

mℓ =
1

T

T
∑

t=0

mpre
ℓ (t) (5.8)

Based on the firing condition Equation (5.5), and the average pre-spike potential Equa-

tion (5.8), the firing rate (i.e., average post-spike output) can be expressed as:

1

T

T
∑

t=0

sℓ(t) =
vth
T

⌊

mℓ.T

vth

⌋

, (5.9)

where ⌊·⌋ denotes the floor function. According to Equation (5.9), when the number of

time steps T →∞ and firing threshold vth = max(apostℓ ), the firing rates of spiking neurons
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quantization steps L and clipping threshold λ in the ANN with the time steps T and firing

threshold vth in the SNN, the equivalence between the two models is achieved:

λ

L
clip(

⌊

apreℓ .L

λ

⌋

, 0, L) =
vth
T

⌊

mℓ.T

vth

⌋

. (5.11)

5.3 Conversion Error

As established in Equation (5.11), the conversion error, defined as apostℓ −
1
T

∑T
t=0 sℓ(t), becomes

zero under the assumptions L = T , λ = vth. However, in practical applications of SNNs,

the number of time steps T is often variable. Consequently, achieving a zero conversion

error necessitates training distinct ANNs, each tailored to a specific set of quantization steps.

Even if this limitation is acknowledged, quantization bias introduced by the flooring function

persist, adversely impacting the performance of converted SNNs, particularly when operating

with an extremely low number of time steps T . In the following subsections, we provide an

analysis of the conversion error when L ̸= T as well as the quantization bias.

5.3.1 Analysis of Quantization Bias introduced by the Flooring

Function

We begin by analyzing the quantization bias introduced by the flooring function. To estimate

this bias, we calculate the average quantization error by computing the expected value of the

difference between the original input x and its quantized counterpart. The quantization bias

is mathematically expressed as:

BiasQ = E(x−
λ

L
clip(

⌊

x · L

λ

⌋

, 0, L))

= E(x)−
λ

L
E(clip(

⌊

x · L

λ

⌋

, 0, L)),

(5.12)

where λ is the clipping threshold, L is the number of quantization steps, and clip(·,0,L)

limits the range of the quantized value. To isolate and focus solely on the bias introduced by

the flooring function, we assume that x is also bounded by λ. This assumption simplifies

the analysis by ensuring that the input values lie within the range defined by the clipping

threshold, thereby allowing us to concentrate on the impact of quantization. Thus, we redefine

the quantization bias to explicitly account for the assumption that x is bounded by λ. The

revised quantization bias is expressed as:
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BiasQ = E(x)−
λ

L
E(

⌊

x · L

λ

⌋

), (5.13)

where x ∈ [0, λ], ensuring the analysis focuses exclusively on the flooring function’s con-

tribution to the bias. Furthermore, we assume that x is uniformly distributed within the

interval [0, λ]. This assumption allows for a straightforward computation of the quantization

bias (average quantization error) by leveraging the uniform distribution properties. Since

x ∼ U [0, λ], the expected value of x denoted as E(x) can be computed directly. For a uniform

distribution over x ∈ [0, λ], the expected value is the midpoint of the range:

E(x) =
0 + λ

2
=
λ

2
. (5.14)

To compute the expected value of
⌊

xL
λ

⌋

, where x ∼ U [0, λ], we proceed as follows:

Let y = xL
λ
. Since x ∼ U(0, λ), the variable y is uniformly distributed over (0, L). The

task reduces to determining the expected value of ⌊y⌋, where y ∼ U(0, L). The flooring

function maps y to the greatest integer k ∈ {0, 1, ..., L− 1} such that k <= y. For each k,

the probability that ⌊y⌋ = k is determined by the length of the interval over which y satisfies

this condition:

⌊y⌋ = k if y ∈ [k, k + 1)

Given that y is uniformly distributed over[0, L], the probability P (⌊y⌋ = k) is proportional

to the length of the interval [k, k + 1), normalized by the total range L:

P (⌊y⌋ = k) =
Length of the interval where ⌊y⌋ = k

L
. (5.15)

For k ∈ {1, ..., L− 1}, the interval length is 1.0, resulting in:

P (⌊y⌋ = k) =
1

L
, k ∈ {1, ..., L− 1}. (5.16)

The expected value of ⌊y⌋ is then given by:

E(⌊y⌋) =
L−1
∑

k=0

k.P (⌊y⌋ = k). (5.17)
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By substituting the probabilities corresponding to each value of k:

E(⌊y⌋) =
L−1
∑

k=1

k.
1

L

=
1

L

L−1
∑

k=1

k,

(5.18)

where summation
∑L−1

k=1 k is a standard arithmetic series and evaluates to (L−1)L
2

. Thus:

E(⌊y⌋) = E(

⌊

x · L

λ

⌋

) =
1

L
·
(L− 1)L

2

=
L− 1

2

(5.19)

By combining the results from Equation (5.13), Equation (5.14) and Equation (5.19), the

quantization bias is derived as follows:

BiasQ =
λ

2
−
λ

L
·
L− 1

2

=
λ

2
(1−

L− 1

L
)

=
λ

2L

(5.20)

According to Equation (5.20), the quantization process using the flooring function systemati-

cally underestimates the input, thereby introducing a downward bias. This occurs because

the quantized value is always less than or equal to the original value. To mitigate the

quantization bias introduced by the flooring function, it is necessary to employ either very

large quantization steps L, an extremely small clipping threshold λ, or a combination of both.

However, this approach renders the flooring function a suboptimal choice for the ANN-to-SNN

conversion framework.

5.3.2 Analysis of Conversion Bias Due to Mismatched L and T

To analyze the the conversion error that arises when L ≠ T , we calculate the conversion

bias (the average conversion error) introduced by both the quantization with the flooring

function and the firing condition of the spiking neurons. Using Equation (5.11), we define
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the conversion bias as:

BiasC = E(
λ

L
clip(

⌊

apreℓ · L

λ

⌋

, 0, L))− E(
vth
T

⌊

mℓ · T

vth

⌋

). (5.21)

By incorporating Equation (5.19) into Equation (5.21), the conversion error can be expressed

as:

BiasC =
λ

L
·
L− 1

2
−
vth
T
·
T − 1

2
. (5.22)

Given λ = vth, Equation (5.22) simplifies to:

BiasC =
λ

2
(
L− 1

L
−
T − 1

T
). (5.23)

The formulation in Equation (5.23), demonstrates that any mismatch between the quantization

steps L and the time steps T introduces a conversion bias, particularly when T >> L. This

bias can accumulate and propagate through the network, adversely affecting the performance

of the converted SNN, as supported by our experimental results (see Figure 5.2). However,

Equation (5.23) also indicates that for sufficiently large values of L and T , the conversion

bias approaches zero. This observation suggests that it is feasible to use different values

for L and T without significantly impacting performance, a claim further validated by our

experimental results (see Figure 5.4).

5.4 Lossless ANN-to-SNN Conversion

In the preceding section, we examined the conversion and quantization biases arising from

the use of the flooring function in the source ANN. In this section, we address the limitations

of the flooring function by proposing the use of a rounding function as an alternative. As

with the flooring function, we analyze the quantization bias associated with the rounding

function and demonstrate that it introduces no biases provided that the input is uniformly

distributed. To enable the conversion of the source ANN utilizing the rounding function,

we introduce a bias term for the converted SNN. We further analyze the conversion bias in

our proposed ANN-to-SNN conversion method and establish that it is independent of the

quantization steps L and time steps T . Notably, we show that the conversion bias is zero

under this approach. Lastly, we integrate our standard deviation-based quantization method,

introduced in Chapter 4, to determine the optimal clipping threshold λ, while minimizing

the number of required quantization steps L.
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5.4.1 Analysis of Quantization Bias Introduced by the Rounding

Function

For analyzing the quantization bias we follow the same steps introduced in Section 5.3.1. The

quantization bias is expressed as:

BiasQ = E(x)−
λ

L
E(

⌊

x · L

λ

⌉

), (5.24)

where ⌊·⌉ is the rounding function.

To compute the expected value of
⌊

xL
λ

⌉

, where x ∼ U [0, θ], we proceed as follows:

Let y = xL
λ
. Since x ∼ U [0, λ], the variable y is uniformly distributed over [0, L]. The task

reduces to determining the expected value ⌊y⌉, where y ∼ U [0, L]. The rounding function

maps y to the nearest integer k ∈ {0, 1, ..., L}. For each k, the probability that ⌊y⌉ = k is

determined by the length of the interval over which y satisfies these conditions:

• y rounds to k if y ∈ [k − 0.5, k + 0.5), except at the boundaries,

• y ∈ [0, 0.5) for k = 0,

• y ∈ [L− 0.5, L] for k = L,

Given that y is uniformly distributed over [0, L], the probabilities P (⌊y⌉ = k) are proportional

to the interval lengths, normalized by the total range L:

P (round(y) = k) =
Length of the interval where ⌊y⌉ = k

L
. (5.25)

Therefore, the probabilities of ⌊y⌉ = k for different k values are:

• for k = 0, interval length is 0.5, thus P (⌊y⌉ = 0) = 0.5
L
,

• for k = L, interval length is 0.5, thus P (⌊y⌉ = L) = 0.5
L
,

• for k ∈ {1, ..., L− 1}, interval length is 1.0, thus P (⌊y⌉ = k) = 1
L

The expected value of ⌊y⌉ is then given by:

E(⌊y⌉) =
L
∑

k=0

k · P (⌊y⌉ = k). (5.26)
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By substituting the probabilities corresponding to each value of k:

E(⌊y⌉) = 0 ·
0.5

L
+ (

L−1
∑

k=1

k ·
1

L
) + L ·

0.5

L

= 0.5 +
1

L

L−1
∑

k=1

k,

(5.27)

where summation
∑L−1

k=1 k evaluates to (L−1)L
2

. Thus:

E(⌊y⌉) = 0.5 +
1

L
·
(L− 1)L

2

= 0.5 +
L− 1

2

=
L

2
.

(5.28)

By combining the results from Equation (5.24), Equation (5.19) and Equation (5.14), the

quantization bias is derived as follows:

BiasQ =
λ

2
−
λ

L
·
L

2
= 0. (5.29)

As indicated by Equation (5.29), the rounding function, in contrast to the flooring function,

eliminates the need for selecting excessively large quantization steps (L) or extremely small

clipping thresholds (λ) to minimize quantization bias, as the bias is inherently zero. It is

important to note that, in practical scenarios where input data is not uniformly distributed,

quantization bias can still persist even when using the rounding function. However, unlike

the flooring function, the rounding function does not introduce a systematically downward

bias, thereby offering a distinct advantage in terms of quantization performance.

5.4.2 ANN-to-SNN Conversion with Round Quantization Mecha-

nism

To enable ANN-to-SNN conversion using the round quantization mechanism, it is necessary

to revise the average post-spike output of converted SNN in Equation (5.9) and the the post-

activation output of the source ANN Equation (5.10) by substituting the flooring function

with the rounding function. The post-activation output in Equation (5.10) with the rounding
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function is redefined as:

apostℓ =
λ

L
clip(

⌊

apreℓ .L

λ

⌉

, 0, L), (5.30)

However, directly replacing the flooring function with the rounding function for the average

post-spike output in Equation (5.9) is not feasible due to the constraints imposed by the firing

condition in Equation (5.5), which necessitates the use of the flooring function. Nevertheless,

since the rounding function can be expressed as ⌊x⌉ =
⌊

x+ 1
2

⌋

, it is possible to replace the

flooring function with the rounding function in Equation (5.9) by applying a leftward shift of
1
2
. This shift can be incorporated into the spiking neuron as a bias term, referred to as the

initial membrane potential at time zero (mpre
ℓ (t = 0)):

1

T

T
∑

t=0

sℓ(t) =
vth
T

⌊

mℓ.T

vth
+

1

2

⌋

=
vth
T

⌊

mℓ · T + 1
2
vth

vth

⌋

=
vth
T

⌊

mℓ · T +mpre
ℓ (t = 0)

vth

⌋

=
vth
T

⌊

mℓ · T

vth

⌉

(5.31)

5.4.3 Analysis of Conversion Bias with the Rounding Function

Here, we provide a formal analysis of the conversion bias of the proposed round quantization

mechanism. The conversion bias is mathematically formulated as:

BiasC = E(
λ

L
clip(

⌊

apreℓ .L

λ

⌉

, 0, L))− E(
vth
T

⌊

mℓ.T

vth

⌉

). (5.32)

By incorporating Equation (5.28) into Equation (5.32), the conversion bias can be expressed

as:

BiasC =
λ

L
·
L

2
−
vth
T
·
T

2

=
λ

2
−
vth
2
.

(5.33)
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Given λ = vth, Equation (5.33) simplifies to:

BiasC =
λ

2
−
λ

2
= 0. (5.34)

As demonstrated in Equation (5.34), the conversion bias in the proposed ANN-to-SNN

conversion method is entirely independent of the quantization steps L and the time steps T .

5.4.4 Optimal Clipping and Firing Threshold

For SNNs to be practical, they must achieve accuracy performance equivalent to ANNs within

a limited number of time steps. Achieving this requires the source ANN to be quantized

using extremely small quantization steps (L), while preserving its accuracy.

A significant challenge arises because most modern deep ANNs employ batch normalization

prior to the activation function, causing a substantial portion of the pre-activation values

to cluster near zero. Consequently, quantizing these pre-activations with a small number of

quantization steps results in a large proportion of values being mapped to the first quantization

interval, which corresponds to zero. To address this problem, it is essential to carefully select

the clipping threshold λ to minimize the information loss introduced by the quantization

process. However, determining an optimal clipping threshold is not straightforward [30]. In

Chapter 4, we introduced the standard deviation (std)-based quantization method, which

effectively quantizes ANNs by learning the optimal clipping threshold for a specified number

of quantization steps. Since the firing threshold (vth) of the converted SNN is directly derived

from the clipping threshold, our std-based quantization method can be leveraged to train

source ANNs with minimal quantization steps while simultaneously determining the optimal

clipping threshold for each layer. Specifically, the clipping threshold in Equation (5.30) is

replaced with the product of the standard deviation of the pre-activations (σ(apreℓ )) and a

trainable parameter (α), as expressed in the following equation:

apostℓ =
σ(apreℓ ) · αℓ

L
clip(

⌊

apreℓ .L

σ(apreℓ ) · αℓ

⌉

, 0, L). (5.35)

The optimal value of the parameter α is determined during the training of the source ANN

using gradient descent and backpropagation. Detailed explanations of the backpropagation

process are provided in Chapter 4.

5.4.5 Conversion Framework

Here, we detail our proposed ANN-to-SNN conversion process.
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Architecture Modification: An SNN can only be converted from the ANNs, whose

behavior can be accurately replicated by the converted SNN. For example, SNNs are unable

to simulate the max-pooling function, as it necessitates prior knowledge of which neuron will

fire with the highest intensity in advance. Therefore, such functions must be replaced with

alternatives whose behavior is time-independent in SNNs. In our implementation, we address

this limitation by replacing max-pooling layers with average-pooling layers.

Source ANN Quantization: In our proposed conversion framework, the source ANNs

are quantized using the rounding function. To identify the optimal clipping threshold λ,

which serves as the firing threshold vth in the converted SNNs, we utilize our standard

deviation-based quantization method, as detailed in Chapter 4. The number of quantization

steps is determined to ensure that the accuracy of the quantized ANNs matches that of the

original continuous ANNs. To streamline the quantization process, the pre-trained models

are directly quantized.

Weight Rescaling, Batch Normalization and Initial Bias: In Equation (5.5), when

the firing condition is satisfied, the spiking neuron generates an output equal to vth. However,

in practical applications of SNNs, the spiking neurons must produce only binary outputs (i.e.,

”0” or ”1”). To achieve this, the trained weight parameters from the quantized ANNs are

rescaled by the value of vth before being transferred to the converted SNNs. This rescaling

enables the spiking neurons to generate binary spikes. Furthermore, to eliminate the final

remaining multiplication operation in SNNs, which occurs in batch normalization (BN),

we deconstruct the BN function and integrate its parameters into the weights and biases

of the corresponding layer. Finally, the initial membrane potential is adjusted by adding

mpreℓ(t = 0) = 1
2
vth to the biases:

WSNN ← WANN · vth ·
γBN
σBN

, bSNN ←
1

2
vth + βBN + (bANN − µBN)

γBN
σBN

. (5.36)

Algorithm 7 provides a summary of the proposed ANN-to-SNN conversion framework.

5.5 Experiments

The effectiveness of the proposed ANN-SNN conversion methodology is evaluated on the

CIFAR-10 [81] and ImageNet [82] datasets, utilizing the ResNet-20, and ResNet-34 [83]

architectures.

For the CIFAR-10 dataset, data augmentation techniques, including normalization, hori-

zontal flipping, and random cropping, are employed. ResNet-20 model is trained on CIFAR-10
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for 90 epochs. The initial learning rate is set to 0.1 and is reduced by a factor of 0.1 every 30

epochs. Various quantization levels, L ∈ {1, 2, 3, 4, 8, 12, 16}, are utilized to train the source

ANN. A similar data augmentation strategy is applied to the ImageNet dataset. Training on

ImageNet is conducted exclusively with the ResNet-34 architecture and employs quantization

level L = 8. The source ANN model is initialized using pre-trained weights and subsequently

fine-tuned for 20 epochs at each quantization level. The initial learning rate is set to 0.001,

and a cosine decay scheduler is implemented to adjust the learning rate during training.

5.5.1 Flooring Versus Rounding Functions

In Section 5.4, we establish that the conversion bias introduced by the rounding function is

zero provided that λ = vth and mpre
ℓ (t = 0), irrespective of whether L and T are equivalent.

To validate this finding, we train a ResNet-20 model on the CIFAR-10 dataset as the source

ANN, using both flooring and rounding functions with L = 4. The corresponding converted

SNNs are then evaluated over various time steps T . As illustrated in Figure 5.2, when the

source ANN is quantized using the rounding function, the accuracy of the converted SNN

aligns with that of the source ANN at T = 8 and surpasses it for T > 16. It is important

to note that, while the rounding function introduces no conversion bias, the presence of

unexpected spikes still contributes to a residual bias [31]. These unanticipated spikes arise

due to the time-sensitive behavior of spiking neurons. For example, in a situation where the

average pre-spike potential of a neuron is lower than the firing threshold, the corresponding

output in the source ANN would be zero, leading to the expectation that the neuron would

not fire in the SNN. However, there are instances where the neuron’s pre-spike potential may

exceed the threshold at specific time steps, triggering a spike despite the average pre-spike

potential remaining sub-threshold. This phenomenon is evident at L = 4, where the converted

Algorithm 7: ANN-to-SNN Conversion

input :Pre-trained ANN model, Quantization step L
output :Converted SNN model

1 Replace Max-Pooling layers with Avgerage-pooling layers
2 Learn {WANN , bANN , λ βBN , γBN , σBN , µBN} by quantizing ANN with L

quantization steps using std-based quantization method
3 vth ← λ
4 WSNN ← WANN · vth ·

γBN

σBN

5 bSNN ←
1
2
vth + βBN + (bANN − µBN)

γBN

σBN

6 return SNN
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Table 5.3: Comparison with existing method on ResNet-20 and CIFAR-10 dataset

Method ANN T = 2 T = 4 T = 8 T = 16 T = 32 T = 64 T > 64

SN [106] 89.10 87.56
HT [105] 93.15 92.22
RMP [109] 91.47 91.36
TCL [108] 92.26 92.06
TSC [111] 91.47 69.38 91.42
RTS [32] 93.61 92.41 93.30 93.55 93.56
SNNC-AP [30] 95.46 94.78 95.30 95.45
QCFS [31] 91.77 73.20 83.75 89.55 91.62 92.24 92.35 92.41

Ours 91.74 85.66 89.86 91.68 92.57 92.87 92.58 92.72

(e.g., L > 4 and T > 16), no significant decline in accuracy performance is observed. As

discussed in Section 5.3.2, the conversion bias associated with the flooring function is given

by λ
2

∣

∣

T−1
T
− L−1

L

∣

∣. This relationship clearly demonstrates that the conversion bias diminishes

as both T and L increase, resulting in improved accuracy performance for SNNs converted

from ANNs using the flooring function.

A comparison of the quantized ANN accuracies presented in Table 5.1 and Table 5.2 reveals

a clear advantage of quantization using the rounding function over the flooring function,

particularly at extremely low quantization steps (L < 4). As discussed in Section 5.4.4

quantizing pre-activations with a small number of quantization steps results in a significant

proportion of values being mapped to the first quantization interval, which corresponds to

zero. This effect is exacerbated when using the flooring function, as the length of the first

quantization interval is twice that of the rounding function.

5.5.3 Comparison with the Existing Work

We compare our proposed method with existing approaches on the CIFAR-10 dataset using

ResNet-20 and the ImageNet dataset using ResNet-34. The accuracy results for ResNet-20,

presented in Table 5.3, demonstrate that our method outperforms all existing approaches

across different time steps. At time step T = 2, our method achieves an accuracy that is

12.46% higher than the QCFS method. At T = 8, our accuracy is only 0.06% lower than that

of the source ANN, whereas QCFS requires 16 time steps to achieve comparable accuracy.

Furthermore, it is noteworthy that other methods require a minimum of 64 time steps to

align the performance of their SNNs with that of their source ANNs.

As shown by the accuracy results in Table 5.4, our proposed conversion method surpasses
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Table 5.4: Comparison with existing method on ResNet-34 and ImageNet dataset

Method ANN T = 8 T = 16 T = 32 T = 64 T = 128 T = 256 T > 256

SN [106] 70.69 65.47
TCL [108] 70.87 70.66
HT [105] 70.20 61.48 65.10
RMP [109] 70.64 55.65 69.89
TSC [111] 70.64 55.65 69.93
RTS [32] 75.66 0.09 0.12 3.19 47.11 75.08
SNNC-AP [30] 75.66 64.54 71.12 73.45 74.61 75.45
QCFS [31] 74.32 59.35 69.37 72.35 73.15 73.37 73.39

Ours 73.36 54.33 68.93 71.81 72.30 72.34 72.52 72.55

existing methods on the ImageNet dataset while utilizing significantly fewer time steps.

Specifically, our framework achieves a 2× reduction in time steps compared to existing

approaches without compromising accuracy. For example, the QCFS and SNNC-AP methods

require 128 and 256 time steps, respectively, to achieve a 1% accuracy gap between the

source ANN and the converted SNN, whereas our method achieves this with only T = 64

time steps. Furthermore, at ultra-low time steps T = 16, our framework demonstrates

remarkable performance, with accuracy falling only 4.43% below that of the source ANN.

These findings underscore the effectiveness of the proposed framework in overcoming the

limitations of existing methods, such as high latency and computational overhead, while

maintaining competitive performance on large-scale datasets like ImageNet.

5.6 Discussion and Conclusion

In this chapter, we present a novel ANN-to-SNN conversion framework capable of achieving

accuracy equivalent to ANNs while utilizing 50% fewer time steps compared to state-of-the-art

methods on CIFAR-10 and ImageNet datasets. The proposed framework employs a rounding

function during the quantization of source ANNs, which we demonstrate ensures a zero

conversion bias, irrespective of the number of quantization steps or time steps. Additionally,

we conduct a comprehensive analysis of the conversion bias when the flooring function is used

for quantization. Furthermore, we employ the std-based quantization method to determine

the optimal firing threshold, enabling the quantization of source ANNs with the minimum

number of quantization steps. This approach facilitates the use of fewer time steps in the

converted SNNs. Although we mathematically demonstrate that the conversion bias in the
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proposed method is zero, a mismatch between the accuracy of the source ANNs and the

converted SNNs is still observed. It is hypothesized that an additional source of conversion

bias arises from the unexpected firing of neurons in SNNs [31]. These unintended spikes

occur due to the time-dependent nature of spiking neurons. For instance, consider a scenario

where the average pre-spike potential of a neuron is below the firing threshold. In the source

ANN, this would result in a zero output, leading us to expect that the corresponding neuron

will not fire in the SNN. However, it is possible for the pre-spike potential of the neuron to

exceed the firing threshold at certain time steps, causing it to fire despite its average pre-spike

potential remaining below the threshold. Addressing and mitigating this source of conversion

bias, resulting from the unexpected firing of spiking neurons, requires further investigation

and is an avenue for future work.
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6
Conclusions and Future Work

Multiplierless neural networks have been introduced as an alternative to conventional neu-

ral networks to address the high power consumption and computational overhead caused

by multiplication operations. These networks replace multipliers with hardware-efficient

operations, such as bit-wise logical operations (e.g., AND, OR), additions, bit-shifts, and

comparisons. The elimination of multipliers significantly reduces the memory footprint and

energy consumption of these models, making them particularly well-suited for real-time ap-

plications on resource-constrained devices, such as mobile platforms, embedded systems, and

neuromorphic hardware. However, despite these advantages, multiplierless neural networks

often suffer from accuracy degradation. For instance, stochastic computing (SC)-based neural

networks and spiking neural networks (SNNs) require hundreds to thousands of time steps

to achieve comparable accuracy to their binary-radix counterparts. This increased latency

negates the energy efficiency gains from removing multipliers. Similarly, shift-based neural

networks require careful quantization and optimization to preserve the accuracy performance

of full-precision models. This dissertation addresses these limitations by eliminating sources

of accuracy degradation in SC-based, spiking, and shift-based neural networks.

In Chapter 3, we propose the dynamic sign-magnitude (DSM) stochastic stream to improve

the representation of near-zero values, which are often inaccurately represented by bipolar
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stochastic streams. The DSM approach enhances the precision of short-sequence SC-based

multiplication using XNOR operations. By adopting DSM, the sequence length required

for SC-based neural networks is reduced by a factor of 64 while maintaining accuracy levels

comparable to state-of-the-art techniques.

In Chapter 4, we present training framework for base-2 logarithmic quantization of neural

networks, where weights are quantized to powers of two (i.e., ±2n). This framework employs

the standard deviation of weights to determine the optimal clipping threshold, thereby

eliminating quantization outliers using backpropagation. This method ensures a robust

quantization scheme while minimizing accuracy loss.

In Chapter 5, we mathematically analyze the performance degradation in converted SNNs

and identify the conversion error as a result of quantization using the flooring function

during ANN-to-SNN conversion. To address this issue, we propose an improved ANN-to-SNN

conversion framework that employs the rounding function during weight quantization. We

demonstrate that this approach achieves zero conversion error, irrespective of the quantization

levels or time steps. Furthermore, we integrate the logarithmic quantization method from

Chapter 4 to reduce the number of quantization steps in source ANNs. This optimization

allows the converted SNNs to operate with ultra-low time steps. The proposed ANN-to-SNN

framework achieves accuracy equivalent to the source ANNs while reducing the number

of time steps by 50% compared to state-of-the-art methods on CIFAR-10 and ImageNet

datasets. These results pave the way for ultra-low latency and energy-efficient neural network

implementations on edge devices.

In addition to the aforementioned improvements, Chapter 2 introduces a novel multipli-

erless neural network design referred to as the FSM-based network. We demonstrate that

FSM-based networks can synthesize complex multi-input functions, such as 2D Gabor filters,

and perform non-sequential tasks, such as image classification, on stochastic bit streams

without requiring multiplications. The FSM-based network operates using look-up tables

(LUTs) alone. Furthermore, the proposed FSM-based model is capable of addressing temporal

tasks. Unlike long short-term memory (LSTM) networks, the FSM-based model’s required

storage for training is independent of the number of time steps. This unique property enables

FSM-based networks to learn extremely long data dependencies while achieving significant

resource savings, including:

• A reduction in storage required for intermediate training values by a factor of l×,

• A 33% decrease in power consumption during training, and
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• A reduction in inference operations by a factor of 7×.

Through these contributions, this dissertation addresses the challenges of accuracy degra-

dation, latency, and computational efficiency in multiplierless neural networks. The proposed

methods not only enhance the performance of SC-based, shift-based, and spiking neural

networks but also introduce innovative FSM-based designs that enable efficient learning

and inference for temporal and non-temporal tasks. These advancements bring multipli-

erless neural networks closer to practical deployment in real-world, resource-constrained

environments.

6.1 Suggestions for Future work

In this dissertation, we proposed several methods and implementations to enhance the

accuracy and reduce the latency of multiplierless neural networks. However, further research

is needed to refine these designs and enable their deployment in real-world applications,

particularly on edge devices. Below, we outline several potential directions for future work

on multiplierless neural network designs:

Benchmarking and Real-World Applications

• Objective: Evaluate multiplierless neural networks on real-world tasks to demonstrate

their practical utility.

• Examples:

– Deploying multiplierless models for edge AI applications, such as IoT devices,

robotics, and mobile vision systems.

– Benchmarking the proposed FSM-based and SC-based neural networks performance

on large-scale datasets, such as ImageNet to validate scalability.

– Benchmarking the proposed ANN-to-SNN conversion method performance neuro-

morphic datasets, such as DVS-Gesture [98] and DVS-CIFAR10 [112] to validate

scalability.

Integration with Advanced Training Techniques

• Objective: Adapt modern training strategies to improve the performance of multipli-

erless neural networks.

• Examples:
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– Leveraging knowledge distillation to transfer accuracy from full-precision models

to multiplierless versions.

– Applying pruning and sparsification to further reduce computation and energy

consumption.

Theoretical Analysis of Multiplierless Networks

• Objective: Establish theoretical foundations to analyze and improve the convergence,

robustness, and expressiveness of multiplierless networks.

• Examples:

– Investigating the limits of accuracy and capacity of bit-shift and logical operation-

based networks.

– Studying the impact of multiplierless operations on gradient propagation and

optimization during training.

Hybrid Models with Multiplierless Layers

• Objective: Explore architectures that combine multiplierless and full-precision layers

for improved efficiency and accuracy.

• Examples:

– Using full-precision multiplications in critical layers (e.g., input or final layers)

while employing multiplierless operations in hidden layers.

– Adaptive layer-wise precision switching during inference to balance energy and

accuracy trade-offs.

Energy-Efficient Hardware Implementations

• Objective: Develop dedicated hardware accelerators optimized for multiplierless

computations.

• Examples:

– FPGA- or ASIC-based architectures tailored for bit-wise logical operations and

shift-based arithmetic.
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– Designing systolic arrays or neuromorphic hardware that efficiently map multipli-

erless operations in SNNs.

– Hardware-aware neural network design techniques to optimize performance on

low-power platforms.

Eliminating Conversion Error in SNNs

• Objective: Develop a theoretical framework to analyze and mitigate conversion errors

arising from unexpected neuron firing in SNNs.

• Examples:

– Analyzing the effect of firing thresholds on conversion errors caused by unexpected

neuron spikes.

– Designing optimization and calibration techniques for weights and biases to sup-

press unintended spikes.

– Exploring the influence of various input encoding methods on the occurrence of

unexpected firing events.
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[80] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients through
stochastic neurons for conditional computation,” arXiv preprint arXiv:1308.3432, 2013.

[81] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,”
2009.

[82] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition challenge,”
International journal of computer vision, vol. 115, pp. 211–252, 2015.

110



[83] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[84] R. Gong, X. Liu, S. Jiang, T. Li, P. Hu, J. Lin, F. Yu, and J. Yan, “Differentiable soft
quantization: Bridging full-precision and low-bit neural networks,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2019, pp. 4852–4861.

[85] C. Louizos, M. Reisser, T. Blankevoort, E. Gavves, and M. Welling, “Relaxed quan-
tization for discretized neural networks,” in International Conference on Learning
Representations, 2019.

[86] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural
networks,” in Advances in neural information processing systems, 2016, pp. 4107–4115.

[87] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Advances in neural information processing systems,
vol. 25, pp. 1097–1105, 2012.

[88] J. Faraone, N. Fraser, M. Blott, and P. H. Leong, “Syq: Learning symmetric quantization
for efficient deep neural networks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 4300–4309.

[89] S.-C. Zhou, Y.-Z. Wang, H. Wen, Q.-Y. He, and Y.-H. Zou, “Balanced quantization:
An effective and efficient approach to quantized neural networks,” Journal of Computer
Science and Technology, vol. 32, no. 4, pp. 667–682, 2017.

[90] E. Park, J. Ahn, and S. Yoo, “Weighted-entropy-based quantization for deep neural
networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 5456–5464.

[91] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:
An imperative style, high-performance deep learning library,” in Advances in Neu-
ral Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
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A
Stochastic Computing

A.1 Stochastic Computing and Its Computational Ele-

ments

In this appendix uppercase letters are used to denote elements of a stochastic stream, while

lowercase letters represent the real values corresponding to those streams.

In stochastic computation, numbers are encoded as sequences of random bits. The value

conveyed by the sequence is determined by the statistical properties of the bits rather than

the individual bit values. Let X ∈ {0, 1} represent a bit within the random sequence. To

encode a real number x ∈ [0, 1], the sequence is generated such that:

E[X] = x, (A.1)

where E[X] = x represents the expected value of the random variable X. This representation

is referred to as the unipolar format. To encode a signed real number x ∈ [−1, 1], bipolar

format is alternatively used:

E[X] = (x+ 1)/2. (A.2)

Any real number can be expressed in one of these two formats by appropriately scaling it to
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The MUX output, Y is given by:

Y = A · S +B · (1− S) . (A.9)

where S is a stochastic stream acting as the select signal. If S has a probability of 0.5, the

expected value of Y becomes (E[A] + E[B])/2, as illustrated in Figure A.2(a). This design

ensures that the output remains within the legitimate range of the encoding format by scaling

it down by a factor of 2. For L-input addition, a tree of multiple 2-input MUXes is used,

resulting in an overall scaling factor of L. While this approach maintains correctness, the

scaling can lead to precision loss, necessitating the use of longer bit-streams to achieve the

desired accuracy. However, longer bit-streams increase latency.

Alternatively, or gates can be employed as approximate adders, as shown in Figure A.2(b).

The output Y of an or gate with inputs A, B can be expressed as:

Y = A+B − A · B. (A.10)

or gates function effectively as adders only when E[AB] is close to 0. To ensure this condition

is satisfied, the inputs must first be scaled down. However, this scaling also reduces precision,

requiring longer bit-streams to mitigate the loss, which similarly increases latency.

To address the precision loss and latency issues associated with scaled adders and or

gates, the Accumulative Parallel Counter (APC) was introduced in [115]. The APC operates

by taking N parallel bits as inputs and summing them in a counter at each clock cycle.

This approach significantly reduces latency due to the small variance of the resulting sum.

Unlike other methods, the APC converts the stochastic stream into binary format [115].

Consequently, its use is limited to scenarios where additions are either the final operation or

require intermediate results in binary form.

A.1.3 FSM-Based Functions In SC

Non-linear functions are fundamental components in both the inference and training processes

of neural networks. During the training phase, the gradient of the non-linear function is

essential for the backpropagation algorithm. A common practice is to employ an exact

non-linear function with a well-defined and easily computable gradient [116]. Consequently,

the same exact non-linear function, often implemented using a finite state machine (FSM) in

the stochastic domain, is also utilized in the inference engine to perform classification tasks

effectively. Among the most commonly used non-linear functions are the The hyperbolic
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A.1.4 Integer Stochastic Stream

An integer stochastic stream is a sequence of integer values represented using either 2’s

complement or sign-and-magnitude formats [49]. The average value of this stream corresponds

to a real number s ∈ [0,m] for the unipolar format and s ∈ [−m,m] for the bipolar format,

where m ∈ {1, 2, . . . }. Essentially, the real value s is the sum of probabilities from two or more

binary stochastic streams. For example, the value 1.5 can be expressed as 0.625+0.875, with

each probability represented as a conventional binary stochastic streams {1, 1, 1, 1, 1, 0, 0, 0}

and {1, 1, 1, 1, 1, 1, 1, 0}. Consequently, the integer stochastic representation of 1.5 is achieved

by summing these binary stochastic streams, i.e., {2, 2, 2, 2, 2, 1, 1, 0}. More generally, an

integer stochastic stream S that represents a real value s is a sequence composed of elements

Si, i = {1, 2, . . . , N}:

Si =
m
∑

j=1

Xj
i , (A.13)

where Xj
i represents each element of a binary stochastic sequence corresponding to a real

value xj. The expected value of the integer stochastic stream can then be expressed as:

s = E[Si] =
m
∑

j=1

xj. (A.14)

Integer stochastic streams can also be represented in the bipolar format. In this case, the

elements Si of the stream are defined as:

Si = 2×
m
∑

j=1

Xj
i −m, (A.15)

The value represented by the stream is then given by:

s = E[Si] = 2×
m
∑

j=1

E[Xj
i ]−m = 2×

m
∑

j=1

xj −m. (A.16)

A.1.5 FSM-Based Functions In Integral SC

The inputs to the stochastic FSM-based tanh adn exp functions are limited to real values

within the [-1,1] interval. To achieve the desired Stanh or Sexp functions, the inputs must be

scaled down, and the parametern in Equation (A.11) and Equation (A.12) must be adjusted.
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Algorithm 8: Pseudo code of the conventional algorithm for FSM-based functions
[49].

Data: Stochastic stream Xi ∈ {0, 1} where i ∈ {1, 2, ..., N}
Result: Yi

1 Counter ← Initial value;
2 for i← 1 : N do
3 Counter ← Counter + 2Xi - 1;
4 if Counter > n-1 then
5 Counter ← n-1;
6 end
7 if Counter < 0 then
8 Counter ← 0;
9 end

10 if Counter > offset then
11 Yi ← 1;
12 else
13 Yi ← 0;
14 end

15 end

This adjustment typically increases the bit-stream length, resulting in higher latency. The

transition between each state in the FSM is determined by the input value in bipolar format,

which can either be 1 or 0. The state transitions are formulated in Algorithm 8 in conventional

SC. In the algorithm, the bipolar input value is first mapped to either 1 or -1, depending on

whether the input is 1 or 0, respectively. Then, the counter of the FSM is updated by adding

the newly encoded values. These updates are analogous to the values in an integral stochastic

stream with m = 1. Consequently, the conventional stochastic stream can be considered as

representing the hard values of an integral stochastic stream. To extend this to integral SC,

the FSM-based functions can be adapted to handle soft values. This involves modifying the

conventional FSM-based functions to accommodate the continuous range of values in integral

SC.

In integral SC, each element of a stochastic stream is represented using 2’s complement

or sign-magnitude representations within the range {−m, . . . ,m} for the bipolar format. A

state counter is adjusted by the integer input value Si ∈ {−m, . . .m}, where i ∈ {1, 2, ..., N}.

This allows the state counter to be incremented or decremented by up to m in each clock

cycle, unlike conventional FSM-based functions, which are restricted to single-step transitions.

The process for integer FSM-based functions is described in Algorithm 9. This algorithm
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Algorithm 9: Pseudo code of the proposed algorithm for integer stochastic FSM-
based functions [49].

Data: Integer value Si ∈ {−m, ...,m} where i ∈ {1, 2, ..., N}
Result: Yi

1 Counter ← Initial value;
2 for i← 1 : N do
3 Counter ← Counter + Si;
4 if Counter > n×m-1 then
5 Counter ← n×m-1;
6 end
7 if Counter < 0 then
8 Counter ← 0;
9 end

10 if Counter > offset then
11 Yi ← 1;
12 else
13 Yi ← 0;
14 end

15 end

enables the integral SC framework to process values that may involve larger state transitions,

offering increased flexibility compared to traditional stochastic FSMs, where only one-step

transitions are typically allowed. The key advantage of this approach is its ability to handle

a broader range of values and more complex state transitions, enabling more efficient and

scalable implementations of stochastic functions.

The output of the integer FSM-based functions in the integral SC domain follows a similar

encoding format as the conventional FSM-based functions. For example, the output of the

integer Stanh function is in bipolar format, while the output of the integer exponentiation

function is in unipolar format. Additionally, the integer FSM-based functions require m

times more states than their conventional counterparts. As a result, the approximate transfer

functions of the integer Stanh and exp functions, referred to as IStanh and ISexp, respectively,

are as follows:

tanh
(ns

2

)

≈ 2× E[IStanh (m× n, S)]− 1, (A.17)

exp (−2Gs) ≈ E[ISexp (m× n,m×G,S)] : s > 0. (A.18)
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