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It is often the case that interest lies in the effect of an exposure on each of several distinct event-types. For example,
we are motivated by an interest in the impact of recent intravenous drug use on deaths due to each of cancer, end-
stage liver disease, and overdose in the Canadian Co-infection Cohort (CCC). We develop a marginal structural
model that permits estimation of cause-specific hazards in situations where more than one cause of death is of
interest. Marginal structural models allow for the causal effect of treatment on outcome to be estimated using
inverse probability weighting under the assumption of no unmeasured confounding; these models are particularly
useful in the presence of time-varying confounding variables which may also mediate the effect of exposures. An
asymptotic variance estimator is derived, and a cumulative incidence function estimator is given. We compare
the performance of the proposed marginal structural model for multiple outcome data to that of conventional
competing risks models in simulated data, and demonstrate the use of the proposed approach in the CCC.
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1. Introduction

Assessment of the effect of treatment or exposure on multiple outcome survival data — time-to-event data where the
terminal event can take one of a number of possible outcome types, also termed competing risks data — is typically
complicated by the fact that the occurrence of one outcome precludes the occurrence of others. For example, in an
HIV setting, patients may die of AIDS-related complications, end-stage liver disease, or other causes. Furthermore, in
a longitudinal exposure setting, time-varying confounders of the exposure effect may also be mediators through which
previous exposures act; for example, assessing the impact of intravenous drug use (IDU) on cause-specific mortality
requires adjustment for confounding by time-varying factors such as CD4 cell count, viral load, and anti-retroviral therapy
(ART) use, yet some or all of these variables may be affected by IDU and thus lie on the causal pathway between the
exposure and the outcomes of interest. Thus there are two key challenges in the estimation of the effect of exposure. The
first is the issue of how to account appropriately for, and understand, the multiple outcomes of interest (different causes of
death), while the second challenge arises because there exist time-dependent confounding variables that are both affected
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by evolving exposure to intravenous drugs and are independent prognostic factors for one or more of the causes of death
being studied.

The possibility of confounding of time-varying exposures was first addressed in the survival literature a quarter century
ago. Robins proposed G-computation as a means of assessing the impact of a time-varying sequence of treatments on
an outcome [1]. Keiding et al. found the parameters of an accelerated failure time model using G-estimation in order
to account for the bias that can arise due to time-varying confounding and intermediate variables [2]. In that paper,
the competing risk (death) to the outcome of interest (relapse) was treated as a censoring event, which was handled
by inverse-probability-of-censoring weighting. More recently, marginal structural models (MSMs) have been used to
estimate the effect of hospital-acquired infections on mortality in a cause-specific model, censoring when a competing
event occurred [3]. The same data were used with a focus on mortality in an intensive care unit (so that all censoring was
administrative); a marginal structural model was developed for intensive care unit death [4]. In this paper, we construct
a multiple outcome MSM (MO-MSM) based on a discrete time survival formulation with competing risks via a cause-
specific hazard formulation (see [5, Chapter 8] for example)

Our approach is similar in some aspects to the method outlined in [4] but the methods bear several key differences. For
example, our method is semi-parametric and designed to provide cause-specific hazard ratios, while the method in [4] is
non-parametric, aimed at describing the cumulative incidence function for a given single outcome type. In our motivating
example, we are specifically interested in understanding the effect of an exposure on several different outcomes, while
Bekaert and colleagues treat censoring as a competing risk as an ingenious means of avoiding instability of traditional
MSM estimators in the presence of extreme weights. Finally, the approach of [4] is essentially restricted to monotone
treatment/exposure patterns, whereas our approach is constructed to allow for more general patterns; in our example, the
exposure of interest — in our example, intravenous drug use amongst co-infected HIV/Hepatitis C (HCV) subjects — is
intermittent.

In this paper, we develop a semi-parametric approach for multiple outcome data to unbiasedly estimate the effect
of a time-varying exposure in the presence of time-varying confounding covariates that act also as intermediates
between exposure and outcomes. We use inverse probability weighting as the basis for an estimation procedure for
marginal structural models [6-8]. In doing so, we produce an approach that can accommodate high-dimensionality in
the confounders and avoid bias due to adjustment for intermediate variables (as a consequence of collider-stratification
or blocking of indirect effects), whilst simultaneously avoiding bias that occurs when confounding variables are omitted
from a regression model, provided all relevant covariates have been recorded.

We begin by describing the context for the problem, motivating our statistical developments with the data from the
Canadian HIV/HCV Co-infection Cohort (CCC). In Section 3, we present models for the cause-specific hazard functions.
We describe the semiparametric inference framework in Section 4, and demonstrate the large-sample properties of the
estimators via simulation in Section 5. Finally, we illustrate the approach using data from the CCC in Section 6.

2. Setting: The effect of injection drug use on mortality in the Canadian HIV/HCV Co-infection
Cohort

Considerable attention has been devoted to the HIV epidemic among injection drug users, yet few studies have examined
the impact of injection (intravenous) drug use among HIV-positive individuals. Anti-retroviral therapy has led to a dramatic
reduction in AIDS related deaths, however mortality in HCV co-infected individuals remains much higher than in people
infected with HIV alone or than in the general population. The excess mortality appears to be driven in part by issues
related to continued injection drug use (IDU) following HCV infection as well as mortality from liver disease and cancers.
Active drug use is associated with lifestyle destabilization that could result in adverse health outcomes which may be
mediated through lack of adherence to treatment or poorer immune functioning [9], or may act directly on the liver. It
is precisely for this reason — that the effect of treatment may act through covariates such as CD4 cell count (a marker of
health and immune function) which may also act as confounding variables (if, say, poorer health increases the likelihood
of using injection drugs and also increases risk of death) — that marginal structural models are required. Conventional
survival models are unable to appropriately account for time-varying confounding variables that lie on the causal pathway
from exposure to an outcome event.

We investigate whether IDU is causally linked three causes of death: (a) death by cancer (other than of the liver),
(b) death due to end-stage liver disease (ESLD), defined as decompensated cirrhosis of the liver or liver cancer, or (c)
overdose. We utilize a competing risks marginal structural model framework. HIV/AIDS deaths were not considered a
potential competing risk, but rather were treated as a censoring event since very few were observed. We allow for the effect
of IDU to be mediated through interruptions in ART as well as current health status, which in a co-infected population can
be well-summarized by CD4 cell count, HIV viral load, and the AST-to-platelet ratio index (a measure of liver damage).
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The data we study were obtained from the Canadian HIV/HCV Co-infection Cohort [10]. The cohort began participant
recruitment in 2003; there are currently 1119 patients enrolled from 16 sites across Canada. Cohort eligibility required
that patients were at least 16 years old with documented HIV infection and evidence of HCV exposure. The study was
approved by the research ethics boards of all participating institutions. All participants included in this analysis had
virologic evidence of HCV infection and had at least one cohort visit between April 2003 and July 2012. Patients were
censored at their last clinic visit prior to July 2012. The outcome variable is validated cause of death (see details below).

3. Notation and assumptions

3.1. Notation

Suppose we are interested in K different causes of death, and observe follow-up to time Y; in ¢ = 1, ..., n individuals. We
wish to quantify the influence of exposure (or treatment), A, on outcome. We assume that time is treated as a discrete
quantity, and consider the case of regularly scheduled follow-up visits, with inter-visit intervals labelled 7 = 1, ..., J, with
visit j occurring at precisely j time units, that is, interval j runs from time equals j — 1 to time equals j. Enrollment to the
study occurs at time equals zero. The discrete time formulation is common in the analysis of time-to-event data in a causal
inference setting (see, for example, [8, 11-13]), and is often necessary in practice, especially when data are recorded
primarily via clinic visits. An individual ¢ is observed for n; < J intervals. Let A;; denote the time-varying indicator
of exposure in interval j. Let L;; denote the vector of prognostic and confounding factors measured at visit j — 1, and
V; C L;; denotes baseline covariates. We follow the convention in the marginal structural modelling literature of using
an overbar to denote the history of a time-dependent variable, so that, for example, A;3 = (A1, Ai2, A;3) is the exposure
history for individual ¢ through to the third interval/fourth visit (visits at times 0, 1, 2, and 3). We further let A; denote the
sequence of exposures (A;1, A2, ..., Ain, )

Suppose event (failure or censoring) times Y7,...,Y, are observed independently on N individuals, and outcome
variables Dy, D1 ...,D,, € {0,1,..., K} are observed, with D; = k > 0 meaning failure due to cause k, and D; =0
meaning censored/alive at the last point of follow-up. We may further consider ‘status’ in each interval, denoted D;;,
indicating whether an individual is alive or has died due to some cause £ in interval j. We use the indicator C;; to indicate
whether individual 7 was censored in interval j. That is, D;; > 0 if individual 7 dies of some cause between time point
j — 1 and time point j. Similarly, C;; = 0 if the individual is observed at visit j, but C;; = 1 if the individual is not
observed at visit j, having dropped out between time point j — 1 and time point j. Throughout, we use capital letters to
represent random variables and lower case letters to represent realizations of the random variables. Where possible to do
so, individual indexing will be suppressed to reduce notational complexity.

We aim to quantify causal effects, which we do using a structural model — i.e., a model for the hazard of failure
due to cause k£ (k =1,..., K) under treatment regime a. This can be accomplished with the help of counterfactuals
(also called potential outcomes). Specifically, let Y;(a) denote the (discrete) death or censoring time of subject 7 had
he received exposure sequence @ rather than his observed treatment history A;. We can similarly let Y*(a) denote the
random variable representing an individual’s counterfactual survival time to death by cause k had he been exposed to the
particular exposure pattern @ rather than his observed exposure history. The subjects actual event or censoring time, Y7,
equals his counterfactual survival/censoring time under the observed exposure history A: Y; = Y;(A;); this is known as
the axiom of consistency and must be assumed to be true.

3.2. Defining the cause-specific hazards

We model hazards which are cause-specific failure probabilities at time j, conditional on survival up to at least j. Following
Kalbfleisch and Prentice [5, Chapter 8, p. 251], in our discrete time setting, we define the cause-specific hazard probability
for cause k at time j by

PY(@) = j,D = K

k(@) = PIY (@) = J, D = KY (@) 2 j] = gl M

This probability, termed by some authors [14] the subhazard, records the conditional probability of death in interval j from
cause k, given that the individual has survived at least until interval j. The total (across all causes) hazard probability, h;(a)
is

K K
hi(@) =P[Y (@) = j|Y (@) > j] = Y P[Y(@) =5, D = kY (@) > j] = Y hy(a)
k=1 k=1
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and the cause-specific failure probability p;; (@) = P[Y (@) = j, D = k] as

J—1
pik(@) = hjr(@ H (1—-m(a)) =hj(@ tho 2)

Consequently, the cause-specific cumulative incidence function (CIF) (or subdistribution function) for cause k is defined

as
J -1
Pjy(a) =PlY(a) < j, D szk = (@) {H hro (a)} : 3)
=1 r=1

Thus, in the discrete time formulation, it is stralghtforward to compute the cause-specific CIF from the cause-specific
hazards; see the discussion of the continuous time case in Section 4.4. The all-cause CIF is then

K
Pi(@) = _ Pu(a). )
k=1
Finally, let

me=P[D =4kl =) P[Y(a)=j,D=k= ijk <1

so that ) +---+ 7 = 1. This, of course, confirms that the cause-k probablhtles {pjk,7 =1,...,00} constitute a
subdistribution. Finally, we let h;(@) = (hjo(a), hj1(@),...,hjx(a@))" denote the vector of cause-specific hazards for
the counterfactual failure at time j, with
K
h 0(6) =1- Zhjk(a)
k=1

and H(@) = [hy(a),...,h;(a)].

Our cause-specific competing risks formulation is reasonably standard, but not the only approach available. We describe
alternative model formulations using the subdistribution hazard, and give a discussion of terminology, in §S1 of the
Supplementary Material, and explain further our decision to use cause-specific hazard probabilities as the building blocks
of the analysis.

3.3. Counterfactual representation and the causal model.

In Section 4, we consider models for the distribution of hazards for the counterfactual outcomes, Y*(@). These are known
as causal (or structural), models which quantify the causal effect of exposure sequences on death. Marginal structural
models posit a model for h; (@) for each exposure pattern @, although interest may lie in particular patterns such as “never
exposed” and “always exposed” (@ = (0,0, ...,0)) and @ = (1,1, ..., 1), respectively) or a more complex pattern such as
interrupting the exposure every third interval (a = (1,1,0,1,...)).

Marginal structural models may be contrasted with the typical associational models considered in survival analysis,
which model the observed (rather than counterfactual) failure times as a function of exposures in the population.
Associational models are biased for the true marginal effect of exposure on the population survival time whenever there
is a time-dependent confounder, L;, that is predicted by previous exposure. The bias occurs since an associational model
that adjusts for the time-dependent confounder will block any effect of exposure that is mediated through L; (tending
to underestimate the effect of exposure) and may additionally introduce bias by opening a “back door” path through a
latent variable such as underlying health status [15], while an associational model that does not adjust for L; fails to
control for confounding [7, 8, 16]. Note, however, that conventional models are not biased in the absence of time-varying
confounding, and conventional conditional models may be preferred over marginal models if the primary purpose of the
analysis is predictive.

3.4. Assumptions

In our discrete survival setting, a marginal structural model (MSM) is a model for the counterfactual outcomes based on
the counterfactual hazards h;(@). In the presence of only administrative censoring (e.g., calendar date rather than, say, an
individual withdrawing consent from the study or becoming too ill to return for follow-up), the MSM may be fit without
asymptotic bias provided three conditions are met:

1. Atevery interval j, the vector of variables L; contains all confounders for the treatment and outcome relationship.
This is known as the sequential randomization assumption, or no unmeasured confounders [7].
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2. The model for the conditional probability of being treated given exposure and covariate history, P(A4; =
1|1Lj, Aj—1,V), is correctly specified with respect to confounding variables (“instruments”, which predict exposure
but not outcome, may be omitted). This model is used to weight the contribution of each individual until the time
that they experience an event or are lost to follow-up.

3. Each exposure level occurs with positive probability for all covariate/exposure histories. This is called the positivity
or experimental treatment assignment (ETA) assumption. See [17] for a thorough discussion of the assumption, and
a diagnostic tool.

We allow for the potential for follow-up to end for reasons other than administrative. Denoting the model for the probability
of not being censored by P(C; = 0|L;, A;_1, V'), we obtain the following decomposition:

It may also be the case that the probability of censoring depends on the outcome the subject would have had in the absence
of censoring due to covariates which affect both the outcome and the probability of being censored. In this situation, two
additional assumptions are required.

4. At every interval j, the vector of variables L; also contains all common variables required to block selection bias
due to censoring.

5. The model for the probability of being observed at interval j, P(C; = 0|L;, A;_1,V), is correctly specified with
respect to variables that predict both censoring and the response.

It is possible to check whether balance in covariates is achieved between the exposure groups within strata of the propensity
score, however the presence of unmeasured confounders is not testable and relies instead on substance area knowledge.

4. Modelling and estimation

We begin by describing a multinomial likelihood approach in a setting where there are no confounders, as we might
expect in a sequential multiple assignment randomized trial [18]. We then demonstrate how this can be recast in the MSM
framework to handle time-varying confounding and mediation.

4.1. A likelihood approach for the no-confounding situation

Suppose that exposure is randomized at each interval (not conditional on any covariates). We can then construct a
likelihood via the cause-specific hazard probabilities from (1) as which is given by

N N n; K

L) =[[ L =TT [T I rie="

i=1 i=1j=1k=0

[5, §8.2.3]. In the hazard parameterization, as hazards represent conditional probabilities, the likelihood is the product of
conditionally independent contributions; a typical profile for an individual subject with n; = 5, with failure of type 2 is
hiohaohsohaohs2, thus at each interval j, the outcome is Multinomial(1, ko, k1, . . ., hjx) with the outcomes across i, j
being mutually conditionally independent. Therefore, the model can be fitted using multi-category regression, treating the
multiple intervals for a single individual as independent contributions. We may then consider, for example, a specification
for the cause-specific hazard model which allows for a proportional modification to the odds-on-death based on a baseline
hazard hj,j5=1,...,J,k=1,..., K on a scale relative to the hazard of surviving in interval j, h .

We consider, for example, a specification for the cause-specific hazard model which allows for the hazard to be modified
by covariates in a distinct fashion for each of the K causes, with observed data Y (follow-up time), D (status: censoring or
cause of death), A (exposure), and L (covariates). Consider covariates X1, ..., X, that may modify the baseline hazard,
which may include baseline covariates (a subset of L) and possibly time-varying exposure (A4). We do not include other
time-varying covariates in this set of variables, so as not to block any effect of treatment which may be mediated through
these covariates. For individual ¢, let

P
7Iijk:ZBkl$ijl k=1,....K
=1

hijk hijr hjk
lo ) =10 J ) =niik + lo <]>
g(%@) g<1—hij1—"'—hin k%8 o
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where h;j; denotes the hazard individualized to subject ¢ by the covariates in interval j, specific to cause k, and h;
denotes the baseline hazard for that interval/cause. The model therefore corresponds to a modification by covariates of the
odds-on-death defined by baseline hazard h;,,j =1,...,J,k =1,..., K on a scale relative to the hazard of surviving in
interval j, hjo. For example, for a single binary factor A, we might have that when A4; =1

hiji/Rijo )
log [ 22222 ) =
¢ < hik/hjo v
but that when A; = 1, the log odds-on-death for cause k is zero. The model is analogous to the proportional hazards model

in continuous time, and we term it a proportional odds-on-death model. The general relationship yields

wjk exp{nijk }

hijr = =
1+ > wikexp{niji}
k=1
where wj, = hji/hjo for k=1,..., K. See [19] for an in-depth treatment of the correspondence between multinomial

regression and complex survival models.

4.2. A marginal structural model for multiple-outcomes data

Marginal structural models address the aforementioned shortcomings of conventional regression approach. A MSM is
a model for hjk(a), that is, it is a model for the marginal distribution of the counterfactual (rather than the observed)
cause-specific survival function for type of death k. Specifically, the MSM models the dependence of Y (a) on a sequence
of exposures and yields a causally-interpretable estimate of the population distribution of the outcomes that would be
observed if the entire population were to have a particular (static) pattern of exposure imposed upon it, conditional on the
assumptions detailed in Section 3.4.

The causal estimand is a quantity in the marginal model derived from the conditional model described in Section 4.1.
For example, for a single binary exposure factor A, we might wish to assess the marginal effect of exposure in a single

interval, and consider the parameter
hiji(1)/hijo(1
op (L8 hn ) _,
hik/hjo
say. Alternatively, we might wish to consider the aggregate effect of exposure up to interval j, and address the parameter
log (hijk(g(aj))/hijO(g(aj))> — ¥,
hik/hijo

for some function g, say
J
9(@) =Y a
=1
Note that, here, @; corresponds to a potential or counterfactual exposure pattern.
Estimation of marginal model parameters is achieved using inverse probability weighting (IPW) to account for selective
observation of individuals with particular exposure and censoring patterns. Stabilized weights,

we- = H P(At = a’E|Atr17 V; Ct = O)
’ P(A; = a4|Ly, Ay, V,Cp = 0)’

t=1
are used to appropriately reweight the observed sample without the greater variability typically observed when using the
unstabilized weights [7, 8]. Additionally, weights must be constructed to account for the censoring process

j —
P(Cy = ¢t]Ai—1,V,Cy—1 = 0)
i cp=-=c¢_1=0,¢,=0,1
ch — EP(Ct = Ct|Lt7At717Vv70t71 = 0) ' o '
0 otherwise

These weights are then multiplied to create a single weight for each individual at each observation interval: in the non-zero
case, we have

wj = wjwj
_ ﬁ P(A; :flt|/:1t—1, V,Cy =0)P(Cy = Ct|{1t—177v70t—1 =0) )
=5 P(Ae = ai| Ly, Ay1, V,Cy = 0)P(Cy = ¢t| Ly, Ay—1,V, Ci1 = 0)
E WWW.sim.org Copyright (© 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 00 1-17
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Weights are often modelled parametrically, with parameters «, and estimated via logistic or multinomial regression. The
weights are used to modify the multinomial likelihood, creating a weighted likelihood

N n;

PV 8,0) =[] ]] H exp {wi; (a)I[Dy; = k]log hiji(B)}, 6)

i=1j=1k=0

which is then maximized to find estimates of the parameters § used to model the dependence of the hazard on the exposure.
The effect of reweighting has been described as creating a pseudopopulation in which the exposure and the outcome are no
longer confounded [7]; heuristically, the maximization of the weighted likelihood may be viewed as a regression carried
on the individuals in this pseudopopulation.

4.3. Variance estimation

The asymptotic standard errors for the inverse-probability weighted likelihood estimator of the MO-MSM described above
requires a correction to the usual multinomial model standard errors (which we refer to as the uncorrected standard errors)
to account for estimation of parameters in the MSM weights.

Let U(3, ) be the estimating function based on the weighted likelihood LWV (H; 3, ) from (6), where 3 are the
(pp) parameters of interest and « represents the (p, nuisance) parameters of the exposure and censoring models used to
derive the weights. Let ¢ = (3, ). The estimating function is based on the (p, + py) X 1 system of equations which for

individual 7 takes the form
Ui(B,a) {Z > " wij(a)I[D; = k) log h@jk(m} :

7=1 k=0

We subsequently drop the dependence on i whenever possible. The derivative in U(/3, &) can be broken into two blocks:
the first p, elements take the form

n; K
- 0

@) =Y wi(@)[D; = k]% log hj1(8) (7

j=1k=0

whereas the last p, elements take the form
n;, K 8

= — ;= k|log h; 8
“(8.a ;;ﬁa Jlog hx(8) (8)

with the obvious extension to the second and cross partial derivatives, U BB 7B and U,

In practice, the estimation is performed in two stages, first estimating « by & using a separate model, and then estimating
B using U(3,@). We may derive the variance of the resulting estimator B by performing a first order Taylor expansion of
U about the probability limit, o*, of @. Consider the first block of U, U®; with /3 fixed, we have the expansion

Uly(8.8) = UP(8,0") +E [U"(B,a")] (@—a") +o0,(1)

= UP(B,a") —E[UP(8,a")] (E[a™(a")]) " a(a”) + op(1)

where (< is the score equation for the nuisance (exposure and censoring models), and £5“ is the matrix of derivatives of
the score function. Then the estimating function has asymptotic variance

E[UL(8,07)®%) = E[UL (8, ") ULL(8,07)T].

It follows that the asymptotic variance of the hazard linear predictor parameters E is

Var[f] = E {(xa [;ﬁ U, (8,0 >D U, (8,0 >}®2 ,

which we term the corrected (sandwich) variance, and can be estimated by replacing o* by &, and the expectations by
expectations with respect to the empirical measure, evaluated at (3, @). In contrast, note that the (asymptotic) uncorrected

variance is obtained from
1 ®2
o[{E[geen]) o)

Further details are given in the Supplementary Material, §S2.
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4.4. Estimating the cumulative incidence function

Some authors note that, in the continuous time case, cause-specific hazards cannot be readily interpreted in terms of the
cumulative incidence function (CIF). For example, Beyersmann et al. [20] write

A Cox, i.e. proportional hazards analysis of all cause-specific hazards to study |[... ] risk factors, is feasible,
but notoriously difficult to interpret in terms of the CIF: The CIF is an involved function of all cause-specific
hazards, and a risk factor may have quite different effects on the different cause-specific hazards. This is
different from the usual survival situation, where hazard-based analyses are directly interpretable in terms of
the distribution function due to the one-to-one relationship between hazard and distribution function.

As we have seen, however, in the discrete case, equations (3) and (4) give explicit forms for the CIF derived from the
collection of cause-specific hazards, and so an estimate of the CIF can be obtained by substituting in the estimates /ﬁjk
for hji. This implies that the influence of any confounder on one of the cause-specific hazards can be directly used
in a straightforward fashion to study the influence on the CIF using plug-in procedures. Pointwise asymptotic variance
estimates can then computed using standard approximation methods (see Supplementary Material, §S2). In the continuous
case, Cheng et al. [21] provide an analytic means of constructing the CIF with confidence bounds; the discrete case is
largely similar.

Alternatively, simulation-based approaches can be used, in particular, Monte Carlo simulation of hypothetical new
cohorts of subjects with given covariate settings under different exposure profiles, using point estimates of parameters
estimated from the observed data. That is, beginning with a baseline covariate profile, data can be generated up to censoring
or death using the parameter estimates to generate death status. For approximate variances, the Monte Carlo approach
would draw samples from the asymptotic Normal approximation to the distribution of B\ , and then compute the estimated
CIF for each sample. Code to perform this Monte Carlo calculation is included in the Supplementary Materials, §S4.

5. Simulation

We investigated the performance of the proposed procedure in several simulations, with different sample sizes, parameter
settings and numbers of failure types. We present the results for two failure causes; more extensive results for three causes
of failure can be found in §S4 of the Supplementary Material.

Suppose there are N individuals followed for up to J = 10 intervals, with K = 2 possible causes of failure. We extend
the data-generating approach of Young and colleagues [13], who developed a method of simulating data from a structural
accelerated failure time model by generation of counterfactual survival times, and modifying these by exposures and
covariates; see Appendix A for theoretical justification of the method. Note that this algorithm is essentially the same as
the algorithm outlined in [22], albeit adjusted our the causal setting. The Young algorithm can be implemented in two
ways that we outline below. Note that these algorithms simulate data in continuous time, which we then discretize to
yield discrete time data. Young’s algorithm (equivalent to simulation by the probability integral transform or cdf inversion
method, as is detailed in the Appendix) can be easily converted to directly generate discrete failure times, but we omit
details here, as the principles are identical to the continuous time version and results are very similar when the event rate
is low.

Let Y denote the failure time, D, the indicator for status in interval j (O=alive or k=death due to cause k, k € {1, ..., K}).
Further, let A; denote a binary treatment during the interval j and L; denote the time-varying confounder measured at the
start of interval j. Y (0) denotes the counterfactual survival time under the regime ‘never exposed.” Data may then be then
generated using either of the following algorithms:

1. The total hazard approach: In a continuous time model and in a cause-specific competing risk setting, the total
hazard at time ¢, A(¢), is given by

K
A) = (t)
k=1
where Ai(t),..., A (t) are the cause-specific hazards. In our setting of piecewise constant hazards, \x(t; 4;) =
exp{ypA;}forj—1<t<j,so0

K

At Ay) =D exp{und;}  j-1<t<j.
k=1

(a) Generate Y'(0) from an Exponential distribution with A = 0.01.
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(b) Define Ly = Ay = Do = 0. Then for each j € {1,...,10}, repeat the following:
o Generate the confounder L; from a binomial distribution with

IOgit[P(Lj = 1‘Zj_172j_1,Dj = 0)} = 60 + ﬁll[Y(O) < C] + ﬁQAj_l + ﬁng_l

where ¢ = 30.
o Generate the treatment A; from a binomial distribution with

IOglt[P(AJ = 1|Zj_17zj’_1, Dj = 0)] = Qg + Oéle -+ OtQLj_l + OégAj_l.
o Generate D;1, and possibly Y, using the rules:

— I Y(0) > [ A(s; Ajy1)ds, then D1y =0,

- Otherwise, if Y(0) < OjH /\(s;zﬂl)ds, the Y lies in interval j + 1 with

1 A
=j+—-—(Y0)— [ As;4;41)d [ <t<j+1
i sy (YO [ aenes)  gse<i
and then generate D;; from the discrete distribution on {1,2, ..., K}, with
PDjq1 =k] = 2 <t 1.

Thus, the counterfactual cause-specific failure-time model is generated from the inhomogeneous process with
piecewise constant cause-specific hazards. Note that the choice is ¢ in step (b) dictates the degree of variability
in the indicator I[Y'(0) < ¢|, which in turn affects the degree to which the counterfactual exposure-free survival
affects the time-varying variable across the sample; with ¢ = 30, E{I[Y (0) < ¢]} = 0.26. R code is provided in §S4
of the Supplementary Material.

2. The mixture approach: The data-generating algorithm can be applied directly using a mixture of distributions,
applying the algorithm for each cause of death £ = 1, ..., K on fractions 71, ..., mx of the sample where Zle T =
1. The latter approach is simply a fixed-probability mixture of distributions, and can be conceptualized as encoding
an assumption that individuals in the population have an unknown and unmeasured susceptibility to dying by one of
the causes of death. In the continuous time setting, the cause-specific subdistribution functions Fy(t) can be written

Fi(t)=P[Y <t,D = k| = P[Y < t|D = k|P[D = k]

so simulating from the cause-specific model reduces to generating D, and then Y conditional on D. A similar
example of a competing risks formulation via a mixture model is given in [14, Example 5.4].

We begin by demonstrating the comparability of the proposed approach and the unweighted multinomial model
of Section 4.1 to a conventional competing risks approach, the Cox proportional hazards function using multiple
outcomes and time-varying covariates; see Sections 3.7.1 and 8.4 of the book by Therneau and Grambsch [23]. Table
1 presents the results from a no-confounding scenario, where exposures were generated as though in a randomized trial
(i.e. where logit[P(A; = 1|L;_1,A;_1,D; = 0)] = logit[P(A4; = 1)] = ap) using the competing risks data-generation
approach outlined above. Three fitted models were compared: (i) the extended Cox model, (ii) an unweighted multinomial
regression, and (iii) the MO-MSM, estimated via [IPW in a multinomial model using stabilized weights. We considered
bias, variance, and mean squared error (MSE) for a sample size of 1000, with 5000 independent random samples. All three
models yield virtually identical estimates and exhibited the same variability, indicating that the multinomial modelling
approach (weighted or unweighted) is a reasonable modelling choice in the absence of time-varying confounding, and
provides good estimates of the hazard ratio from a Cox model when the event rate is low.

Results in Table 2 present scenarios with time-varying confounding. In these simulations, parameters controlling
exposure were « = (log(2/7),0.5,0.5,1og(4)), indicating a strong serial dependence of current treatment on past
treatment (odds ratio of 4), and a more modest dependence on the time-varying confounder (odds ratios of 1.6
for current and past values of the confounder). The parameters controlling the time-varying confounder were set to
B = (log(3/7),2,10g(0.5),log(1.5)), so that the value depended strongly on the latent, exposure-free survival time and
moderately on previous exposure and the value of the confounder in the last interval. Again, three models were fit: (i) an
unweighted multinomial regression which does not adjust for the time-varying confounder, (ii) an unweighted multinomial
regression which adjusts for the time-varying confounder by including it as a linear term in the regression model, and (iii)
the MO-MSM. In these simulations, the mixture approach to data-generation was used; generating the data using the
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Table 1. Simulation results from fitting the extended Cox model (Cox), a multinomial regression model (Multinom),
and the multiple outcome marginal structural model (MO-MSM) for n = 1000 and various treatment effects in a no-
confounding scenario: two causes of death.

Cause of death 1 Cause of death 2
Cox Multinom MO-MSM Cox Multinom MO-MSM

(11, 92)=(-0.1,0.4)

P -0.098 -0.097 -0.098 0415 0.416 0.415
SD(dAJ) 0.301 0.301 0.301  0.268 0.268 0.267
Bias 0.002 0.003 0.002 0.015 0.016 0.015
MSE 0.090 0.091 0.091 0.072 0.072 0.072
(11, 12)=(03.03)
zﬁ 0.305 0.307 0.307 0.298 0.300 0.299
SD(l[}) 0.280 0.281 0.281 0.290 0.290 0.289
Bias 0.005 0.007 0.007 -0.002 0.000 -0.001
MSE 0.079 0.079 0.079  0.084 0.084 0.083
(11, 42)=(0.0)
P 0.005 0.005 0.004 0.004 0.004 0.003
SD(”(/A}) 0.300 0.300 0.299 0.301 0.302 0.302
Bias 0.005 0.005 0.004 0.004 0.004 0.003
MSE 0.090 0.090 0.089  0.091 0.091 0.091

total hazard approach produced the same conclusions (results not shown). We considered a range of parameters (¢1, ¢2),
allowing for no effect of exposure on the outcome, identical effects, and effects of opposite signs.

The simulation results clearly demonstrate the bias of conventional model estimators in the presence of time-
varying confounding, and the unbiasedness of the MO-MSM estimators. Of particular note is the considerable bias of
the conventional models under the null setting of no treatment effect (1)1 = 12 = 0). In the absence of time-varying
confounding, the MO-MSM performed as well as Cox regression and the unweighted multinomial model. Thus, it appears
that while MO-MSM estimators sometimes exhibit greater variability than the conventional model estimators, they are the
preferred choice in moderate to large samples as evidenced by the small MSEs, particularly if time-varying confounding
is present. Even in small samples, these estimators may be preferable due to the small bias, despite the larger MSE.

The distribution of weights used to estimate the marginal structural model are more variable in scenarios with no time-
varying confounding than in those with.We additionally considered a range of value for 71, mo = 1 — mq; results are shown
for the case of equal probabilities only as conclusions from the simulations with different mixing probabilities were the
same. Additional simulations can be found in the Supplementary Material, §S5.

6. Example: The impact of IDU on mortality in an HIV/HCYV co-infected cohort

We illustrate the methods using data from the multi-site prospective Canadian HIV/HCV Co-infection Cohort study.
After providing informed consent, cohort participants underwent an initial evaluation followed by study visits which were
scheduled at six month intervals. While exact dates of death are available for cohort participants, it is common practice in
the MSM literature to discretize survival time [11, 12, 24-27]. We adopt the discrete-time approach, but note that it is also
possible to implement MSMs for continuous survival time [28].

At each follow-up visit, participants completed a questionnaire and routine blood tests were conducted. At the time
of analysis, there were 5736 observations on 1119 individuals recorded in the database who were HIV positive and had
evidence of HCV infection. Time since co-infection is defined in the following fashion: for those individuals who were
initially infected with HIV, it is the probable date of HCV infection; for those first infected with HCYV, it is the probable
date of HIV infection. Probable date of HCV infection is given by the earliest of the date at which the participant believes
HCV was contracted, the date of the first positive HCV test, and the date of first injection drug use. Probable date of HIV
infection is given by the earliest of the date at which the participant believes HIV was contracted and the date of the first
positive HIV test. All reported deaths were verified and classified following the Coding of Death in HIV (CoDe) system
(www.cphiv.dk/CoDe). Each time a participant was reported to have died, sites completed a detailed case report form
which included all information related to the death (including death certificate information, autopsy reports if available
and clinical diagnoses and events immediately preceding the death). Linkage to provincial vital statistics reports was
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Table 2. Simulation results from fitting two conventional multinomial models and the marginal structural cause-specific

hazard model for various sample sizes and treatment effects: two causes of death. Multinom 1 is a conventional

multinomial regression model which does not adjust for time-varying confounders; Multinom 2 is a conventional

multinomial regression model which adjusts for time-varying confounders; MO-MSM denotes the proposed cause-specific
marginal structural model.

Cause of death 1 Cause of death 2
Multinom 1 Multinom2 MO-MSM Multinom 1 Multinom 2 MO-MSM
n = 250, (¢1,12)=(-0.1,0.4)

b 0.281 0.166 0.137 1.000 0.847 0.572
SD()) 4.698 4.368 4.4369 2.847 2.666 2.869
Bias 0.381 0.266 -0.037 0.600 0.447 0.172
% bias -381.0 -266.4 36.9 150.0 111.8 429
MSE 22216 19.152 19.687 8.464 7.306 8.262

n = 500, (1, 19)=(-0.1,0.4)

b 0.327 0.182 -0.100 0.842 0.700 0.422
SD®)) 0.459 0.462 0.513 0.403 0.406 0.450
Bias 0.427 0.282 0.000 0.442 0.300 0.022
% bias 427.0 281.8 0.3 110.5 74.9 55
MSE 0.393 0.293 0.263 0.358 0.255 0.203
n = 1000, (¥1, 19)=(-0.1,0.4)
b 0.335 0.189 -0.093 0.839 0.696 0.413
SD®)) 0.303 0.305 0.336 0.280 0.281 0.312
Bias 0.435 0.289 0.007 0.439 0.296 0.013
% bias 4347 289.3 73 109.8 73.9 3.2
MSE 0.281 0.177 0.113 0.271 0.166 0.097
n = 1000, (11, 12)=(0.3,0.3)
b 0.738 0.594 0.308 0.746 0.603 0.316
SD()) 0.280 0.282 0.315 0.280 0.282 0.315
Bias 0.446 0.303 0.016 0.446 0.303 0.016
% bias 146.1 98.1 2.6 148.7 101.0 53
MSE 0.277 0.171 0.099 0.277 0.171 0.099

n = 1000, (¥1,¥2)=(0,0)

b 0.427 0.280 0.001 0.439 0.292 0.010
SD®)) 0.292 0.294 0.321 0.299 0.301 0.333
MSE 0.267 0.164 0.103 0.282 0.176 0.111

performed in British Columbia, Alberta and Quebec and used to supplement data obtained in the case report forms and
determine if any participants who had been lost to follow-up had died. The final determination of cause of death was made
independently by two investigators and in the (two) cases where there were discrepancies, resolved by a third investigator.

6.1. Details of the analysis

Given the relatively small number of events, only a limited number of potential confounders could be safely included
in outcome models. Preliminary modelling suggested that fitting a common baseline hazard across all causes of death
was not appropriate. Three models were fit: an unweighted multinomial model adjusted only for baseline covariates,
an unweighted multinomial model which included time-varying covariates, and a multiple outcome marginal structural
model.

We fit complex treatment models in an effort to achieve the best possible balance of confounders between person-
intervals in which IDU was and was not reported. Previous use of injection drugs is a very strong determinant of current
use. For example, in the CCC, 92% of the person-intervals in which a participant reported no IDU in the previous interval
were followed by another interval of no IDU; where IDU was reported, 67% reported continued IDU in the next interval.
The models for the probability of IDU in a six-month period, and the probability of remaining in the study (i.e. for not
being censored) used to construct the weights in the MO-MSM included the following covariates: age, male sex, IDU in
the previous six month interval, time-varying CD4+ T-cell count (log cells/uL), time-varying HIV RNA (log copies/ml),
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time-varying ART interruption (defined as the cessation of all anti-retrovirals for at least 14 days over the last six months),
time-varying AST-to-platelet ratio index (APRI) score (a surrogate marker of liver fibrosis), time since co-infection, and
cohort visit number. Age, log transformed CD4, log transformed viral load, APRI score, and time since co-infection were
parameterized flexibly, using three-knot splines, and interactions between previous IDU and each of male sex and ART
interruption were also included in the models. Weights were standardized using models that included age and time since
co-infection (each with three-knot splines), visit as well as male sex, IDU in the previous six months, and their interaction.

It is clinically plausible that the impact of IDU on mortality from ESLD and possibly cancer is the result of prolonged
rather than acute exposure. Hence we chose to examine the impact of three different measures of IDU exposure: (i)
cumulative number of intervals of use while in the cohort; (ii) cumulative number of intervals of use in the previous 12
months (i.e. O for no use, 1 for IDU in one six-month period, 2 for use in both of the preceding six month periods); and (iii)
any IDU in the past six months. All outcome models included baseline covariates as well as the exposure variable. The
second of the unweighted multinomial models additionally adjusted for the time-varying variables CD4, viral load, ART
interruptions, and APRI. The multinomial and the multiple outcome marginal structural model assumed a proportional
odds parameterization.

There were 7016 scheduled visits for the 1119 individuals included in the analysis. However, nearly half of all
participants (519, or 46%) missed at least one scheduled visit, so that the total number of visits observed was 5736 (82%).
The missing data (both item- and visit-missingness) were handled via multiple imputation [29] using mice (Multivariate
Imputation by Chained Equations) with default settings (e.g. using predictive mean matching) in R v.2.13.0 [30], with
the following covariates as predictors: visit, ever injected drugs, active Hepatitis B infection, nadir CD4 cell count, IDU
in the last six months, CD4 cell count, age at cohort entry, current and baseline APRI, HIV viral load, time since probable
date of HIV infection, time since co-infection, male gender, whether ART was interrupted in the last six months, and
an indicator for subject to account for the correlation of measures made on the same individuals. Twenty-five imputed
datasets were analyzed.

In this analysis, the time-origin was taken to be the time of co-infection. While many clinicians consider time on study
to be a relevant origin, as it allows examination of the factors affecting mortality after entry into care amongst those who
seek it, cohort entry is not in general a meaningful or useful origin. The time from co-infection to cohort entry is in many
cases long (several years). We treat this pre-cohort time as a single interval. That is, we set time 0 to be occurrence of
co-infection and time 1 to be cohort entry, so that the first interval in our analysis runs from time of co-infection to time
of cohort entry. For the 210 participants who reported never injecting drugs, we deterministically impute a value of O (no
IDU) for the pre-cohort interval. For subjects who report IDU prior to cohort entry, the exposure in the pre-cohort interval
is multiply imputed with probability corresponding to the fraction of intervals in the cohort study in which injection drugs
were used. While this approach is somewhat crude, there are, to date, no methods that have attempted to address the issue
of exposures which have occurred between the true (meaningful) origin and the start of follow-up. A more sophisticated
treatment of this is an interesting and difficult challenge that is outside the scope of this illustrative example.

6.2. Results and Comments

In total, 97 deaths were recorded: 11 of cancer, 25 of ESLD, 21 by overdose and a remaining 40 from other (26) or
unknown (14) causes. Two, five, and ten of the cancer, ESLD, and overdose deaths, respectively, occurred in conjunction
with the use of injection drugs in both the past six months and 6-12 months previously; a further three, five, and six deaths,
respectively, were associated with IDU in one of the two previous six-month intervals.

Modelling results are presented in Table 3. Unsurprisingly, all three modeling approaches revealed a strong and
statistically significant association between IDU (in any of the three exposure parameterizations) and death by overdose;
the point estimates are generally similar across the models considered, but varied according to the definition of the
exposure for death by overdose, where the impact of recent IDU was much more predictive than cumulative use. None
of the models suggest a significant relationship effect of IDU and either cancer or ESLD. Estimation via a Cox model
extended to handle multiple causes of death and time-varying covariates produced findings similar in magnitude to the
unweighted multinomial model with time-dependent covariates (results not shown): for example, the hazard ratio (95%
CI) for death by cancer, ESLD, and OD associated with IDU in the last six months are, respectively, 1.31 (0.43, 3.95),
1.19 (0.53, 2.67), and 5.16 (2.28, 11.66).

Figure 1 demonstrates the use of equation (3) to construct CIFs using the collection of cause-specific hazard estimates
from the MO-MSM to contrast the cumulative risk of death by overdose from the model in which the hazard depends
only on IDU in the last six months. Following the variance calculations presented in §S3 of the Supplementary Material,
confidence intervals for the CIF were derived which fully accounted for the variability of the inverse weighting in the
marginal structural model (see §S2 of the Supplementary Material). A priori, we decided to adjust models for the interval
length, to account for the typically long pre-cohort interval. Including interval length lead to very wide confidence intervals
for the CIF. Omitting this variable produced more narrower intervals, with relatively modest changes to the HR estimates.
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Table 3. Canadian HIV/HCV Co-infection Cohort study: the hazard ratio (95% confidence interval) of mortality from

cohort entry by various causes attributable to IDU. The models fit are: a conventional multinomial regression model which

does not adjust for time-varying confounders (Multinom 1); a conventional multinomial regression model which adjusts
for time-varying confounders (Multinom 2); and the proposed cause-specific marginal structural model (MO-MSM).

Outcome Multinom 1 Multinom 2 MO-MSM
Cumulative use

Cancer 1.02 (0.76, 1.38) 0.97 (0.70, 1.35)  0.87 (0.67, 1.13)
ESLD 1.01 (0.85, 1.21) 1.01 (0.84,1.22)  0.95(0.81, 1.12)
oD 1.38 (1.08, 1.75) 1.40 (1.09, 1.80) 1.18 (0.97, 1.44)
Cumulative use in the past 12 months

Cancer 1.28 (0.63, 2.62) 1.06 (0.48,2.35)  0.88 (0.30, 2.56)
ESLD 1.17 (0.73, 1.87) 1.14 (0.70, 1.84)  0.89 (0.51, 1.55)
OD 2.41 (1.46, 3.99) 2.52 (1.50, 4.25) 1.94 (1.04, 3.62)
Use the last six months

Cancer 1.77 (0.57, 5.50) 1.31 (0.38, 4.49) 1.08 (0.18, 6.42)
ESLD 1.20 (0.54, 2.66) 1.14 (0.50,2.59)  0.87 (0.32, 2.35)
oD 477 (2.12,10.75) 5.04 (2.20, 11.57) 4.03 (1.59, 10.22)

For example, the impact of IDU in the last six months in the MO-MSM that includes interval length is 4.03 (1.59, 10.22),
compared to the MO-MSM in which this variable is omitted is 4.27 (1.73, 10.54). Using the latter model, we found, for
example, that for a 45-year old man who acquired HCV 20 years ago, the cumulative probability (95% CI) of dying of
OD within two years of joining the cohort was 0.0116 (0.0015, 0.0856) among those who never used intravenous drugs,
as compared to 0.0485 (0.0065, 0.2852) for someone who used intravenous drugs at least once in each six month period
after joining the cohort.

While we have attempted to account for time (and exposure) prior to cohort entry, we have not accounted for truncation
of those HIV-HCV co-infected Canadians who may have died prior to cohort entry. While ESLD may take many years to
develop, the same is not true of death by overdose or even cancer. In fact, there is some evidence to suggest that chronic
‘stable’ users of injection drugs are at a lower risk of overdose mortality than individuals who stop and re-start injection
drug use. It is therefore likely that our results underestimate the impact of IDU on death by overdose. The impact on cancer
is more difficult to surmise.

Always exposed
= Never exposed

0.04 0.06
| |

CIF: Death by OD

0.02
|

0.00
|
|
1

Time (years)

Figure 1. Cumulative Incidence Functions: Death by overdose amongst 45 year old males who always, or never, use intravenous drugs based on the model for IDU exposure in the
previous six months.
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7. Discussion

The causal inferential approach of using marginal structural models allows unbiased estimation of the hazard ratios of the
cause-specific hazards in a competing risks setting. We have adapted the marginal modelling approach, which (conditional
on several key assumptions being satisfied), attempts to answer the question that would be addressed in the (possibly
infeasible or unethical) randomized trial that studies specific patterns of a time-varying exposure on each of several causes
of death. The MO-MSM approach outlined above permits unbiased estimation of each of the cause-specific hazard ratios.
We have shown how the predicted all-cause mortality cumulative incidence function can be estimated using estimated
cause-specific hazards and an assumption of an constant hazard exposure-free failure time distribution.

In addition to presenting the first analysis of the effect of recent drug use on mortality in the Canadian Co-infection
Cohort, we have detailed a general framework for the implementation of a methodology that is valid for both randomized
and observational data. This approach provides a natural and necessary analytic tool to handle time-varying confounding
and mediation in a multiple outcome setting. Additionally, we provided a general approach for simulating continuous-time
failure data with multiple-outcomes from a marginal structural model.

A Simulation of survival times

A.1 Simulation via the Probability Integral Transform

Notation: For the simulation of a survival time for a single cause of failure according to a piecewise constant (time-
varying) hazard h(t), consider survivor function S(t). Suppose m is defined by m = [¢], so that m <t <m + 1. We

have .
exp{f/0 h(s)ds} m =0

m—1 i1
exp{ |:Z:‘/7_JJr h(s)ds+/r:h(s)ds}} m>1

7=0

S(t) = P[T > 1] = exP{_/O

h(s) ds} =

For interval j corresponding to [j, j + 1), suppose h(t) = Aexp{t;x;} say,

J+1 t
/ h(s) ds = Xexp{¢;x;} & / h(s)ds = Nexp{v;x; }(t — 7).

Thus, form <t<m+1

S(t) = exp {—/\ lz_: exp{y;z;} + exp{¥mom }(t — m)] } 9)

§=0
where the summation is zero if m = 0. As S(0) = 1, we have form =1,2,.. .,
S(m) = exp{-Aexp{¥m—12m-1}}S(m —1)
andform <t<m+1
S(t) = exp {—=Aexp{tmazm }({t — m)} S(m)

Algorithm: Simulate 7" using the Probability Integral Transform: if U ~ Uniform(0,1), and Fx(.) is a cdf, then
X = F}(U) is distributed with cdf Fx. As 1 — U ~ Uni form(0, 1), this means that we can also simulate X by solving
Sx(X) =U, where Sx(z) =1 — Fx(z).

1. Generate u ~ Uniform(0,1);sets =1, m =0, S(0) = 1.
2. While u < s do

(@) set S(m+ 1) := exp{—-Aexp{tmam}}s;sets:=S(m+1);setY,,41 =0
b) ifu<ssetm:=m+1

3. setY,,+1 =1
4. sett=m — GXP{ﬂ/JmJ?m} log(u/S(m))/)\

This process generates a survival time from the inhomogeneous process with piecewise constant hazards A exp{¢;,z, },
m=20,1,2,....
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A.2 Young’s Algorithm
Young’s algorithm to simulate the potential survival outcome proceeds as follows:

1. Generate Ty ~ Exp(\)
2. Form=0,1,2,...

(a) Generate A,, according to the treatment assignment mechanism.

®) K To > [ exp{yA;} dj, set Vg1 = 0,

else if Ty < 0m+1 exp{yA;} dj, setY,,11 = 1and

m
T=m+ <T0 - / exp{vA;} dj) exp{—yY A} (10)
0
In this formulation, T corresponds to the untreated potential survival time, arising from a constant hazard, homogeneous
process. Under treatment pattern (Aq, As, ..., A, .. .), the potential survival time arises from the inhomogeneous process

with piecewise constant hazards A exp{vA,,}, m =1,2,....If ¢ =0, or A,, = 0 for all m, the potential outcomes have
the same distribution.

To see the equivalence with the Probability Integral Transform algorithm, suppose that v,,, = ¢ for all m, and note that
m m—1
| entwadi= Y ewivar).
0 =0

Then, from (10), form <t <m +1

P[T > ]

p [m—i— (TO - /0 " exp(iA;) dj) exp{—th A} > t}
= B [1> [ et} i+ o wan) ¢ m)

= exp {—)\ {/Om exp{A;} dj + exp{tp A }(t — m)} }

= exp {—)\ lz_: exp{vA;} + exp{v A, }(t — m)] }

Jj=0

This is identical to (9). Therefore to generate counterfactual failure times reduces to probability integral transform
(cdf inversion) simulation. Note that the effect of time-varying (non confounding) covariates can be introduced via the
parameter \.

The above (Probability Integral Transform/Young) algorithm can be used K times to create a mixture of types of death,
as discussed on page 91 of Crowder (2001), or can be adapted so as to allow for K death types, as shown in the R code in
the Supplementary Material, §S4.
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S1 Competing risks and multiple outcome survival analysis

Terminology and interpretation: There is, it seems, much confusion and debate in the literature con-
cerning terminology (see, for example, [1-4] for an extended discussion, and [5] for a review of terminological
variations). Our view coincides most closely with that of, for example, [5], where a multi-state counting
process view is adopted. The multi-state view, as detailed in, for example [6], proposes a continuous time
state process, { X (t)}, taking values on {0, 1,..., K}, with X(0) = 0, and transitions from state 0 into state
k occurring at time-inhomogenous rate ay(t), for k = 1,..., K. This model for the state-of-nature of a given
individual is, essentially, a continuous time version of our discrete model; ay(t) is the time-varying, cause-
specific hazard at time ¢, whose value may be influenced by treatment and other covariates observed up to
time ¢. Our model essentially assumes that ay(t) is piecewise constant in ¢ across discrete time intervals.

Modelling via the subdistribution hazard: The terminology and definitions used in Section 3.2 follows
precisely those detailed in [7, Chapter 8] albeit translated to the discrete case. However the term cause-
specific hazard has also be used in relation to the hazard defined directly from the cause-k failure probabilities
from equation (2) in the main text, with all other failure types regarded as possible causes of censoring. Such
a hazard might be considered if cause k was the principal focus of the analysis. Dropping counterfactual
notation for simplicity, recall that the cause-specific hazard probability for cause k at time j is given by

. . PY=45D=k Dik
hoe =PIV = j,D = K|Y > j] = [HY>ﬂ o (A1)
B 2.2 Pis
s=1i=j

In contrast with this, consider

(A.2)

that is, the hazard defined directly in terms of the subdistribution probabilities for cause k, p;i. The

denominator can also be written
1-P[Y <j]-P[Y >34 D # k.



As P[Y = j, D = k] is a well-defined probability, we may write

PV =j,D=k P =jD=kPD=k PY=jD=k P (A3)
Py >jD=k P >jID=KPD=k PY>jD=k g '

say, for the counterfactual ‘hazard’ probabilities for interval j considering only failures from cause k corre-
sponding to the hazard in (A.2); see [8, p. 10 & Section 3.1]. The probability in equation (A.3) is referred
to by some authors [9] as the subdistribution hazard; Crowder [8] terms it the marginal hazard. The proba-
bilities in (A.3) can be estimated for cause k using standard approaches after weighting cases having other
observed causes of death appropriately and retaining them in the risk set. The cause-specific CIF for one
cause k can be then reconstructed using product-limit type estimation, and the dependence of the CIF on
covariates can also be studied using regression modelling [9, 10]. For comprehensive details of the formulation
and inference, see the textbook by Beyersmann and colleagues [11, Chapter 5].

Although such an approach is well-established and quite popular, in this paper we do not pursue it for several
reasons. Most importantly, we wish to consider all causes of death simultaneously, not one in isolation; it is
clearly not possible to compute the all-cause CIF using the individual marginal hazards, yet at the same time,
as the collection of individual hazards are not estimated independently via the subdistribution approach,
the variance of any estimator of the all-cause CIF is difficult to compute. Secondly, the usual objections
to the Kalbfleisch-Prentice formulation of the cause-specific hazard concerning the inability to reproduce
the cause-specific CIF due to the presence of intractable integrals do not apply to the discrete time case.
Thirdly, in the discrete time setting, interpretation of the coeflicients that appear in covariate-based hazard
modification (see section 4) is also straightforward. Finally, the (effective) conditioning on the event D = k
in (A.3) and the interpretation of the hazard is — to us — conceptually problematic, as this event is in general
not observed at time k.

S2 Variance estimation for the MSM

For individual ¢ at interval j, we have

8 K
Uij(B,a) = ER {Z wij(a)I[D;; = k] log hijk(ﬁ)} (A.1)
k=0
so that if U = (UP,U®), then
K 0
Uj(8,0) = 3 wij(@)[Dij = k] 75 10g hise (9) (A.2)
k=0
and X«
L@@M:%%@mz§l%amjmﬁmwm%my (A.3)

Here, we place all 3 for all failure types in a single vector of length py; 3 = (B1,...,8x) ", and
exp{x;;r3}

K
14 ) exp{x;; 3}
I=1

hijr =

ii



where for each k, x5, is the (1 x Kpy) vector X1 = [0,0, ..., Tijk1, - - - Tijkpys - - - 50, 0].

First, we have for k > 0, in the multinomial model, for k =1,..., K
Ohii(B) _ O { exp{x;x} }
op 9B |1+ exp{x;j18} + - - - + exp{x;;x B}

K
- hzgk(ﬂ)x;l;k - hi]k Z]O Z eXp{ngmﬁ}X”m - z]k ( Z hljk z]m)
m=1
and exp{XijmB} = hijm(B3)/hijo(B). Hence

0 1 0Ohiyk(B)
%log hz]k(ﬂ) = hz]k(ﬂ) ékﬁ = ( Xijk — Z hz]m zgm)

Thus, if the parameters are not shared across different failure types, the contribution for those data for
which D;; =k, k=1,..., K is

XiTjk (1 = hijr(B))
for elements B of S8, and

—Xilehijl(ﬁ)
for the elements f3;, [ # k. When k = 0, the contribution for the whole 8 vector is
0 1 Ohijo(B
7 log thO(ﬁ) = j Z hzgm zjm - Z hl]m l]m

op hijo(B)

This vector is essentially the sum of K contributions, one from each failure type, weighted by failure prob-
ability and then concatenated.

Secondly, dropping the dependence on i, we have that o = (o, e, a3, a4)T and

wi(a) = ﬁ P(A; = at|f_1t 1,V,Cy =0,00)P(Cy = Ct|z‘_1t_1,V, Ci_1 =0, a2)
J ol P(A; = at|Lt,At 1,V,Cy = 0,a3)P(Cy = Ct|Lt,At—1,V, Ci_1 =0, )

)
)
2 (explazuan}) (1 + exp{zaas}) (exp{eizaas}) (1 + exp{zyas})
H (

(exp{arzstas}) (1 + exp{zitan}) (exp{cizaraa}) (1 + exp{zaraa})

where these terms are defined using a logistic model, with

exp{za1}

P(Ar =1]4;1,V,C; = 0,a1) = 1+ exp{zya1 }

exp{zaoraa }

P(Cy =1]A;1,V,Ci1 = 0,a0) = m

exp{zsias3}

P(A =1Ly A1, V.G =0,05) = = C0 0

eXp{Z4tCk4}

P(Cr =1L Ay, V.G = 0.00) = =20 s
t
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Then
owj(@) / [ 1 ] ow;(e) ’ [ 1 T]
Oay a ; 1+ exp{zta1} Zit dag N ; 1 + exp{zaiaa} Zat

dwja) _ 7 [ 1 } dwj0) _ 7 [ 1 ]

Oaz 1+ exp{zsia3} “st 1+ exp{Z4t044}

t:l t:l

(A.4)
Thus

K
US(B,a%) = Y wyla)] u—’f(w Zhwm Xijm | pox 1

K K
Ufja(ﬁ, a*) = Zw”(a*)ﬂ[Dw = ]{) ( Uk Z hZ]’m z]m) d;l;(a*) Pv X Pa
k=0
where, generically,
_ ir ) T_ -
—_— 7
tgl |1+ exp{zi;a1} 1t_
J T 1 T'
—_— 7
t; |1+ exp{zaan} ]
dj(a) = ' Da X 1

J 1
o P,

=1 |1+ exp{z3ia3} 3t_

J 1
-3 . ——

L &1+ exp{zgaq} M)

leaving UP® a p, x p, matrix.

The estimating function for « separates into four orthogonal components which are treated in an identical
fashion. For o, we have the logistic estimating equation

; (. exp{zi;jou } T
EJO&I (051) - <a] 1+ eXp{Zqu}) Zy; (A5)

with derivative

o eXp{leal} T
o =— iz A.
¢ (1) (1+eXp{Z1ja1})2Z1JZ1] (A.6)

Similar results follow for ao, a3 and ay4. The estimating equation is therefore computed via the estimating
function which for each (i, 7) takes the form.

Uy(B0) = U%(8,0) B [U7(5,0)] (B [ia(@)]) " fao)
where E [Uﬂa(ﬁ, a)] is replaced by

N n;

P [U(6.8)] = 5 S0 UL (8.8) = 07°(9)

lel

v



where N =nq + - -ny,, E [Za(a)} is replaced by

say, yielding the estimating equation

N n;
SN {88 - T (AW @) ya(@) | = 0.

i=1 j=1

The estimating function based on dej (8, a*) has asymptotic variance

[ adj(ﬁv ) ]_ [ adj(ﬁv ) adj(ﬁv ) ]

yielding the variance for 3 as

Var[B]E[{(E Ul >]) U?, (8,0 >}®2}E

In this expression, we have

{(&[v256.0)]) " Uiy(pia >}®2].

US(5a") = LURy(Bra) = UP(B.0") ~ E[UP0(6.00)] (E[fufa)]) " lala). (A)

For the first term in (A.7),

K K
Ugﬁ(ﬁ, Oé*) = — Zwl](a*)H[DU = k?] {Z h”m(ﬂ) ijm (ijm - Z hzym ijm’) } Py X Pb-

m=1
= —w” {Z hl]m "m (ijm — Z hijm/ (,B)X”m/> } .
m/=1

In the derivative of the second term, the derivative with respect to 3, is

K
e ONijm *
UB b /87 sz] Zj_k]{z 8]B(/6)X;5m}d;5(a ) Py X Pa-

m=1

Here, recall that

ahi m(ﬁ) 1
8]757« = hi]m Tijmr — Z hlﬂm ‘Tl]'m'?” = hijmr(ﬂ) Ix1
so that X«
0 ety == ey =] 3 L bl e
m=1



whose expected value may be estimated consistently by
1 n n; K K
R . - N
N DX wi(@)I[Di; = k] {Z i (B) zgm} d;;(a) = H,
i=1 j=1 k=0 m=1
say. Note that the inner summation over m does not depend on k, so we have in fact that
T
B 335w { 3 s e f @
i=1 j=1

Thus, the second term in (A.7) may be estimated consistently by binding columnwise the components
[ﬁl\y(a)—léa(a), . ,ﬁpb\p(a)—léa(a)] .
Thus the expected value of U fdﬁj(ﬁ ,a) in (A.7) is consistently estimated by
N n;
0225, Z 3 {Uﬂﬁ Ba [Hlxy(a)—lzm(a), L Hpbxp@)—leija(a)] } .
=1 j=1
Hence, Var[f] is consistently estimated by

ZZ{[Uféi a)| " {vi.a) - UG <>—1éim<a)}}®2.

i=1 j=1

S3 Variance estimation for the CIF

Suppressing the dependence on treatment history @, we have for the (counterfactual) cause-specific failure
probabilities pj, = P[Y = j, D = k| the expression

j—1 j—1
ik = e [ J(1 = o) = i | | uo
=1 =1
where
K
hjo=1-Y hjx=1-h
k=1

Recall that in our model

exp{x;r3}
1+ exp{x;18} + - - + exp{x;x B}

hji. = k=1,...,K

with
1

1+ eXp{leﬂ} + -+ GXP{X]‘Kﬂ}

hjo =

vi



for parameter vector 8 = (31, ...,534)", and each Xjk = (Tjk1, ..., Tjka) a dx 1 row vector containing relevant
treatment and covariate values at interval j. Thus

J
Ojx = log pjr = X1 — Z log(1 + exp{x;1 8} + - - - + exp{xix f})
=1

and hence
K
7 m=1
= Tjpr — = Tjpr — Ll Pim.-
3, =" 2 el F e~ 2 2
Thus the asymptotic variance of the vector 6y = (61,...,0 %) can be computed routinely; in the usual

asymptotic approximation B ~ AN (B, i), thus by the Delta Method, 6, has asymptotic variance

~

Vi(B) = (M (B))T £ M (5)
where M (0) is the d x J matrix with (7, j)th element

00,
By

Taking an exponential transformation of each element of 6y yields px = (pix,...,psr)", and the cumulative

function A
j
Pj = Zplk
1=1

can be obtained using the linear transform form Py = Lpj, where L is the J x J matrix with zeros in the upper
triangle, and ones elsewhere. The resulting asymptotic variance for Py is thus L}Ek(ek)Vl(Gk)Ek(Gk)L J
where Ej(6) is the diagonal matrix with exp{6;,} = pjx in the (7, j)th position, j =1,...,J.

An alternative strategy is to derive the asymptotic variance for the vector n; = (9ix,...,nsk) ', where

exp{0;i} > < Djk )
J— lO - - J — 10 .
ik & (1 —exp{b;i} & 1 —pjk

@_ 1 1
00 1—exp{} 1-—p

The asymptotic variance of 7y is therefore

so that, for each j, k,

-~

Va(0) = Dy (0)Vi(0x) D1(0)
where Dk(g) is the J x J diagonal matrix with (j,j)th element 1/(1 — pji). This asymptotic Normal
approximation can be used to construct a simultaneous 95% confidence interval for 7, and hence p, and Py
by transformation.
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S4 R code

S4.1 Variance calculation

## This function extracts information from the fitted "multinom" object. It is based
## on the function "estfun.glm" written by Thomas Lumley, also used below.
estfun.multinom <- function(mn.obj)
{
# Create X matrix from multinom object
mf <- model.frame(mn.obj)
xmat <- model.matrix(terms(mn.obj), mf)
np <- dim(xmat) [2]
# Calculate variance weight and residual, then return
residX <- NULL
for(i in 2:dim(residuals(mn.obj, "working")) [2])
residX <- cbind(residX, as.vector(residuals(mn.obj, "working")[,i] * mn.obj$weights) * xmat)
output <- residX
output
b

## In the calculations below, all objects have been named so as to
## correspond as closely as possible to the derivations in S2 above.
# iptw.fit is the weighted multinomial object:

U <- estfun.multinom(iptw.fit)

treat.fit.small and treat.fit.big are, respectively, objects resulting
from the logistic regression used to fit the numerator

and denominator models for the weighting; similarly for censoring.
.dot.alphal <- estfun.glm(treat.fit.small)

.dot.alpha2 <- estfun.glm(censor.fit.small)

.dot.alpha3 <- estfun.glm(treat.fit.big)

.dot.alpha4 <- estfun.glm(censor.fit.big)

.dot <- cbind(1l.dot.alphal,l.dot.alpha2,l.dot.alpha3,l.dot.alpha4)

HoH - R

.starl <- dim(1l.dot.alphal) [2]
.star2 <- dim(1.dot.alpha2) [2]
.star3 <- dim(1l.dot.alpha3) [2]
.star4 <- dim(1.dot.alpha4) [2]
.star <- p.starl+p.star2+p.star3+p.staréd

e lio o Biso i o]

(=]

.dotdot <- matrix(O,nrow=p.star,ncol=p.star)

.dotdot[1:p.starl,1l:p.starl] <- summary(treat.fit.small)$cov.scaled

1.dotdot[(p.starl+l):(p.starl+p.star2), (p.stari+l): (p.starl+p.star2)] <-
summary (censor.fit.small)$cov.scaled

1l.dotdot [(p.starl+p.star2+1): (p.starl+p.star2+p.star3), (p.starl+p.star2+1):

(o]
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(p.starl+p.star2+p.star3)] <- summary(treat.fit.big)$cov.scaled
1l.dotdot [(p.starl+p.star2+p.star3+1) :p.star, (p.starl+p.star2+p.star3+1) :p.star]
<- summary(censor.fit.big)$cov.scaled

adjustment <- 1l.dotdot %% t(1l.dot)

bold.d1l <- NULL
temp <- (A-predict(treat.fit.small,type="response")) x*
model .matrix(terms(treat.fit.small) ,model.frame(treat.fit.small))
for(i in 1:dim(temp) [2])
bold.dl <- cbind(bold.dl,unlist(temp[,i],ID, cumsum))

bold.d2 <- NULL
temp <- (Censored-predict(censor.fit.small,type="response")) x*

model .matrix(terms(censor.fit.small) ,model.frame(censor.fit.small))
for(i in 1:dim(temp) [2])

bold.d2 <- cbind(bold.d2,unlist(temp[,i],ID, cumsum))

bold.d3 <- NULL
temp <- -(A-predict(treat.fit.big,type="response")) *

model .matrix(terms(treat.fit.big) ,model.frame(treat.fit.big))
for(i in 1:dim(temp) [2])

bold.d3 <- cbind(bold.d3,unlist(temp[,i],ID, cumsum))

bold.d4 <- NULL
temp <- -(Censored-predict(censor.fit.big,type="response")) *

model .matrix(terms(censor.fit.big) ,model.frame(censor.fit.big))
for(i in 1:dim(temp) [2])

bold.d4 <- cbind(bold.d4,unlist(temp[,i],ID, cumsum))

bold.d <- cbind(bold.dl,bold.d2,bold.d3,bold.d4)
U.ba <- t(U) %*% bold.d

U.adj <- t(U) - U.ba %*% adjustment

cheese <- U.adj %*% t(U.adj)

x.mn <- model.matrix(terms(iptw.fit), model.frame(iptw.fit))
templ <- temp2 <- NULL
for(i in 2:dim(fitted(iptw.fit, "respomse"))[2]) {
templ <- cbind(templ, as.vector(fitted(iptw.fit, "response")[,i]) * x.mn)
temp2 <- cbind(temp2, as.vector(fitted(iptw.fit, "response")[,i] * iptw.fit$weights) * x.mn)
}
bigX <- cbind(x.mn,x.mn,x.mn)
pb <- dim(x.mn) [2]

dbeta.U <- matrix(0,ncol=dim(U) [2] ,nrow=dim(U) [2])

X



for(i in 1:dim(U) [1]) {

dbeta.U <- dbeta.U + templ[i,] %*% t(temp2[i,])

dbeta.diag <- -bigX[i,] %% t(temp2[i,])

dbeta.U[1:pb,1:pb] <- dbeta.U[1l:pb,1:pb] + dbeta.diagl[l:pb,1:pb]

dbeta.U[(pb+1) : (2xpb) , (pb+1) : (2*%pb)] <-
dbeta.U[(pb+1) : (2*pb) , (pb+1) : (2*xpb)] + dbeta.diag[(pb+1): (2*pb), (pb+1) : (2*pb)]

dbeta.U[(2*pb+1) : (3*pb) , (2%pb+1) : (3*pb)] <- dbeta.U[(2*pb+1): (3*pb), (2*pb+1) : (3xpb)] +
dbeta.diag[(2xpb+1) : (3*pb), (2*pb+1) : (3*pb)]

U.bab <- matrix(0,ncol=dim(U) [2] ,nrow=dim(U) [2])
for(i in 1:dim(U) [1]) {
U.bab <- U.bab + (templ[i,] %*% t(bold.d[i,])) %*% (adjustment[,i] %*% t(temp2[i,]))
U.bab.diag <- (-bigX[i,] %x% t(bold.d[i,])) %*) (adjustment([,i] %*) t(temp2[i,]))
U.bab[1l:pb,1:pb] <- U.bab[l:pb,1:pb] + U.bab.diagl[l:pb,1:pb]
U.bab[(pb+1) : (2*pb), (pb+1) : (2%pb)] <- U.bab[(pb+1): (2*pb) , (pb+1) : (2*pb)] +
U.bab.diag[(pb+1) : (2*pb) , (pb+1) : (2*pb)]
U.bab [(2%pb+1) : (3%pb) , (2%pb+1) : (3%pb)] <- U.bab[(2*pb+1): (3*pb) , (2%pb+1) : (3*pb)] +
U.bab.diag[(2*pb+1) : (3*pb) , (2*pb+1) : (3*pb)]

deriv.U.adj <- dbeta.U - U.bab
bread <- solve(deriv.U.adj)
MSMvar <- bread %*J), cheese %% bread

S4.2 Simulating data

##
### Data generation
##

n<-1000 # Number of subjects
N<-10 #number of intervals per subject
K<-3 # Number of causes of death

## This is the matrix of parameters of interest, possibly different
## at each interval
psi.mat<-matrix(0,nrow=K,ncol=N+1)

##Here are the effect sizes for the K=3 causes
psi.mat[1,]<--1log(2)

psi.mat[2,]<--1log(1.5)

psi.mat[3,]<--log(1)

##Here the (untreated) all-cause rate is set to lambda=0.01, with



##lambda/K per cause; muK=lambda is used in the algorithm.
lambda<-0.01

gamma . vec<-rep(log(lambda/K))

muK<-sum (exp (gamma.vec))

A<-L<-ID<-Y<-Z<-Tv<-Int<-Alast<-LLast<-LFirst<-numeric()
TO.vec<-T.vec<-Y.vec<-Z.vec<-rep(0,n)

##Here are the coefficients determining the
##mediation and treatment assignment mechanisms.
bevec<-c(log(3/7),2,10g(0.5),log(1.5))
alvec<-c(log(2/7),0.5,0.5,1log(4))

##cval is used as in Young’s algorithm to introduce the confounding
cval<-30

##Begin the data-generation loop
for(i in 1:n){

##tGenerate the counterfactual (untreated) survival time
TO<-rexp(1,lambda)
Ival<-as.numeric(TO < cval)

##Begin the interval-by-interval simulation

m<-0

mu.tot<-0
A.vec<-L.vec<-ALast.vec<-LLast.vec<-LFirst.vec<-rep(0,N+1)

##Implement Young’s algorithm with multiple causes
##Generate the survival time, then the cause

while (muK*TO > mu.tot & m <= N){
if(m == 0){
##First interval
eta<-bevec[1]+bevec[2] *Ival+bevec[3] *0O+bevec [4]*0
pval<-1/(1+exp(-eta))
L.vec[m+1]<-rbinom(1,1,pval)

eta<-alvec[1]+alvec[2]*L.vec[m+1]+alvec[3]*0+alvec[4]*0
pval<-1/(1+exp(-eta))
A .vec[m+1]<-rbinom(1,1,pval)
ALast.vec[m+1]<-0;LLast.vec[m+1]<-0
LFirst.vec<-rep(L.vec[m+1],N+1)

Yelseq
##Subsequent intervals

xi



eta<-bevec[1]+bevec[2] *Ival+bevec [3]*A.vec[m]+
bevec[4]*L.vec [m]

pval<-1/(1+exp(-eta))

L.vec[m+1]<-rbinom(1,1,pval)

eta<-alvec[1]+alvec[2]*L.vec[m+1]+alvec[3]*L.vec[m]+
alvec[4]*A.vec[m]

pval<-1/(1+exp(-eta))

A.vec[m+1]<-rbinom(1,1,pval)

AlLast.vec[m+1]<-A.vec[m] ;LLast.vec[m+1]<-L.vec[m]

}

muval<-sum(exp(gamma.vec+A.vec[m+1]*psi.mat[,m+1]))

##Tval is computed for each interval, but is overwritten
##until the final interval

Tval<-m+ (muK*TO-mu.tot) /muval
mu.tot<-mu.tot+muval
m<-m+1

##After exiting the loop, the survival time has been generated as Tval
##Now need to generate the failure type.

if(m > N){
##In the case of censoring at tenth interval, no failure.
Tval<-m-1
Z.vec[i]<-0

Yelsed{
##In the case of failure, use the ratio hazards to define the
##relevant multinomial distribution on the K causes.
Z.vec[i]<-sample(c(1:K),1,prob=exp(gamma.vec+A.vec[m]*psi.mat[,m]))

##Store the outcomes

TO.vec[1]<-TO
T.vec[i]l<-Tval
Y.vec[i]<-m-1

ID<-c(ID,rep(i,m))
Int<-c(Int,c(1:m))
A<-c(A,A.vec[1:m])
L<-c(L,L.vec[1:m])
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Alast<-c(ALast,ALast.vec[1:m])
LLast<-c(LLast,LLast.vec[1:m])
LFirst<-c(LFirst,LFirst.vec[1:m])
Z<-c(Z,rep(0,m-1) ,Z.vec[i])
tv<-c(1:m) ;tv[m]<-Tval
Tv<-c(Tv,tv)

DeathsK.df<-data.frame(ID,Int,Tv,A,ALast,L,LLast,LFirst,Z)
##Trim off the intervals beyond the Nth (loop goes one too far)

DeathsK.df<-DeathsK.df [DeathsK.df$Int<=N,]
write.csv(DeathsK.df,file="DeathsK.csv",row.names=FALSE)

S4.3 Fitting a predicted cumulative incidence function

##

### Compute the predicted CIF (1 minus all-cause survival)
### prediction plot by Monte Carlo

##

##First, compute the MSM-based estimates.

rm(list=1s())
y.dat<-read.csv("DeathsK.csv")
summary (y.dat)

expit<-function(logit){exp(logit)/(1+exp(logit))?}

## Construct stabilized weights

denominator<-rep(NA, nrow(y.dat))
logit<-predict(glm(A~ALast+L+LLast, family=binomial, data=y.dat))
denominator [y.dat$A==1]<-expit (logit [y.dat$A==1])

denominator [y.dat$A==0]<-1-expit (logit[y.dat$A==0])
numerator<-rep(NA, nrow(y.dat))

logit<-predict(glm(A~ALast, family=binomial, data=y.dat))
numerator [y.dat$A==1]<-expit (logit[y.dat$A==1])

numerator [y.dat$A==0]<-1-expit (logit [y.dat$A==0])
stab.wt<-unlist(tapply(numerator/denominator,y.dat$ID, cumprod))
summary (stab.wt)

## Pooled multinomial regression MSM (weighted)
library(nnet)
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modmsm<-multinom(Z~A, data=y.dat, weights=stab.wt, Hess = FALSE)
summary (modmsm)

## Forward simulation to predict all-cause CIF
## using n=10000 Monte Carlo samples

## Avoid censoring by setting N very large
n<-10000

N<-1500

K<-3

##Extract the fitted coefficients
psi.mat<-matrix(0,nrow=K,ncol=N)
psi.mat[1,]<-coef (modmsm) [1,2]
psi.mat[2,]<-coef (modmsm) [2,2]
psi.mat[3,]<-coef (modmsm) [3,2]

##Here the fitted all-cause rate is computed
gamma . vec<-rep(coef (modmsm) [,1]) ;mukK<-lambda<-sum(exp (gamma.vec))

TO.vec<-T.vec<-Y.vec<-Z.vec<-rep(0,n)
A<-ID<-Y<-Z<-Tv<-Int<-numeric()

##Again use Young’s algorithm, but with treatment A set to 1 for
##all intervals; could use A=0 also.

for(i in 1:n){

TO<-rexp(1,lambda)

m<-0

mu.tot<-0

A .vec<-rep(0,N+1)

while (muK*TO > mu.tot & m <= N){
A.vec[m+1]<-1
muval<-sum(exp(gamma.vec+A.vec[m+1]*psi.mat[,m+1]))
Tval<-m+(muK*TO-mu.tot) /muval
mu.tot<-mu.tot+muval
m<-m+1

}

if(m > N){
Tval<-m-1
Z.vec[i]l<-0

Yelsed{
Z.vec[i]l<-sample(c(1:K),1,prob=exp(gamma.vec+A.vec[m]*psi.mat[,m]))

TO.vec[1]<-TO
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T.vec[i]<-Tval
Y.vec[i]<-m-1

ID<-c(ID,rep(i,m))
Int<-c(Int,c(1:m))
A<-c(A,A.vec[1:m])
Z<-c(Z,rep(0,m-1),Z.vec[i])
tv<-c(1:m) ;tv[m]<-Tval
Tv<-c(Tv,tv)

plot (ecdf (T.vec) ,x1im=c(0,100),do.p=F)
lines(ecdf (TO.vec),col="gray")
legend (5, .3,col=c("black","gray"),
legend=c("Always exposed","Never exposed"),lwd=1)

# under exponential model, can also calculate CIF analytically
mu.ratel<-exp(gamma.vec+psi.mat[,1])
mu.rate0<-exp(log(lambda))

xv<-seq(0,100,0.01)
y1<-1-exp(-sum(mu.ratel)*xv)
y0<-1-exp(-sum(mu.rate0) *xv)
lines(xv,yl,col="green")
lines(xv,y0,col="blue")
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S5 Additional simulation results

S5.1 Finite-sample performance of the asymptotic variance estimator

We present a brief simulation using the data-generating models presented in Table 2 of the main manuscript
to demonstrate the performance of the asymptotic variance estimator derived in §S2 above. In Table 1, we
show the average effect estimate, its empirical standard deviation, and the square root of the mean variance

—

estimator (denoted SE(¢1)). The empirical and asymptotic estimator of the variability agree closely, and
coverage of 95% confidence intervals is very close to the nominal level.

Table 1: Simulation results from fitting the multiple outcome marginal structural model for various sample

sizes and treatment effects in two causes of death over 1000 simulated data sets: assessing the performance

of the variance estimator, SE(¢);).

Cause of death 1 Cause of death 2
n ¢1 SD(in) Sm) Cover vy SD(in) Sm) Cover
(¥1,92)=(-0.1,0.4)
500  -0.078 0.525 0.488 94.5  0.440 0.473 0.437 93.7
1000 -0.104 0.343 0.340 96.0 0.408 0.308 0.304 94.6
2500 -0.106 0.208 0.213 95.4  0.407 0.184 0.191 96.2
(1,12)=(0.3,0.3)
500 0.323 0.467 0.445 94.6  0.309 0.457 0.445 95.4
1000  0.319 0.317 0.311 94.9  0.288 0.326 0.312 94.2
2500 0.315 0.194 0.195 94.7 0.311 0.193 0.195 95.3
(11, %2)=(0,0)
500 0.020 0.491 0477 949 0.023 0.487 0.474  95.1
1000  0.011 0.326 0.330  95.5 -0.008 0.335 0.330  95.4

2500 -0.005 0.204 0.208 95.5 0.002 0.202 0.207 95.5

S5.2 Three causes of failure

We performed simulations with three competing causes of death, considering a range of parameters (11, 12, ¥3)
with a sample size of n = 1000. The data were generated using the modified Young algorithm in a manner
similar to that for two causes of death, as outlined §5 of the main text. Results are presented in Table 2.

The simulations again demonstrate the bias of conventional model estimators, and indicate that the con-
ventional model that does not adjust for the time-varying confounder (Model 1) exhibits the highest MSE
at n = 1000. As in the simulations for two causes of death, the conventional model that adjusts for the
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time-varying confounder (Model 2) is typically seriously biased (up to 144%), while the MO-MSM is not.

Again, we note the considerable bias of the conventional models under the null setting of no treatment effect,
and the unbiasedness of the MO-MSM.

In these simulations, the event rate was relatively low. In the scenario of no treatment effect — i.e. when
(11, 12,13)=(0,0,0) — the mean number of events of each type was 31.7, with never more than 53 events
of any type in a sample of size 1000. The highest event rate was observed with causal parameters set at
(11, 12,13)=(1.0,0.5,0), where there were, on average, 57.4 failures from cause of death 1, 41.6 from cause
of death 2, and 31.8 from the third cause of death.

S5.3 Three causes of failure: a more realistic setting

We performed a third simulation study which more closely resembles the Canadian Co-infection Cohort.
The simulation study once again considered three outcomes (types of death) of interest, however the design
differed from that of Section S5.2 in two key ways: (i) the baseline event rate was reduced, by setting Ao
to 0.005, and (ii) there was a delay between diagnosis and cohort entry. It is this second feature that is of
particular interest. We accomplished this by creating a “cohort entry” variable, which was a random draw
from 1 to 5, with 1 indicating no delay between diagnosis and cohort entry and 5 a delay of two years (since
each of the six-month intervals 1 through 4 were not observed). Note that for some individuals, an event may
occur prior to cohort entry. For example, if a patient’s cohort entry time is 4 but an event occurs at time 2,
this individual will never appear in the cohort. Two additional variables were made available for analysis in
these simulations: time since infection and a binary indicator of whether any exposure was received prior to
cohort entry (this variable is set to 0 for all individuals who enter the cohort at the time of diagnosis). Two
“population” sizes were considered: 950 and 2500; the first of these was to generate data that were more
similar to those in our motivating example, and the second was to examine large-sample properties of the
estimators.

Note that because cohort entry time is generated from a uniform distribution, it is entirely unrelated to
covariates, exposure, or the potential outcomes. We would therefore not expect to observe any bias arising
from missing some (or even all) intervals for some individuals in models that are correctly specified.

Taking a population size of 950, the average sample size obtained was 930, and the range was 914-943 (recall
that any individual whose event time fell before the cohort entry time failed to become a member of the
cohort/sample). The mean (range) number of deaths by each of the three causes was 37 (20-58), 25 (10-45),
and 19 (4-35), respectively, leaving, 850 (817-881) censored individuals. For the population of size 2500,
the average sample size was 2448, with a range of 2423-2470. The mean (range) number of deaths by each
of the three causes, respectively, was 97 (63-130), 66 (38-97), and 50 (26-74), respectively, leaving, 2236
(2177-2289) censored individuals.

Results are shown in Table 3 for six different models. We fit three conventional models: the first adjusted
only for exposure; the second adjusted for exposure, time since infection, and prior exposure; and the third
adjusted for all variables in the second model as well as the time-varying confounder. Three multiple-
outcome marginal structural models were also fit, and these varied by the variables included in the response
model: the first included only exposure; the second included exposure and time since infection; the third
included exposure, time since infection, and exposure prior to cohort entry. In the smaller sample size, the
MO-MSM that adjusted only for exposure performed the best in terms of both bias and variability, followed
by the multinomial model that adjusted for only exposure. However as sample size increases, the MO-
MSM that adjusted for both exposure and time since infection perform equally well, while the conventional
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model continued to exhibit reasonably high bias (over 25% even for the parameters associated with the most
frequently occurring outcome). It is not surprising that the models that adjust for exposure prior to cohort
entry exhibits bias: as noted by Robins [12], “standard methods [...] that predict the mortality rate at time
t using a summary of [exposure] history up to time ¢ will produce biased estimates of the causal effect”.
Adjusting prior exposure history without being able to account for variables that confound that exposure
or lie between it and the outcome are indeed likely to result in bias.

We repeated the simulations using a later date of entry: we considered up to 30 intervals, where cohort
entry occurred between visits 15 and 25 to ensure a higher degree of left-censoring (missed visits) and left-
truncation (missed individuals/events). Taking a population size of 950, the average sample size obtained
was 780.5, and the range was 749 to 812 (implying 15-21% of the 950 experienced events prior to the
cohort entry date, and were therefore excluded from the cohort). For the MO-MSM that adjust only for
prior exposure, the most competitive model, the percent bias for the parameter 1 for outcomes 1, 2, and 3,
respectively, was 6.4, 7.5, and 17.2; that is, bias has decreased by further delaying cohort entry. We posit the
following possible explanation: when visits are left-censored but few events are actually missed, we observed
an upwards bias as there were many intervals in which no event occurred which were not observed, making
the exposure appear more harmful than it truly is. By further delaying entry so that event times were not
only left-censored, but its distribution was left-truncated, a counter-balancing bias has been introduced: by
losing events, a downward bias is introduced. It is clear from these results that the impact of left-censoring
and left-truncation of event times in the presence of time-varying exposures prior to cohort entry is complex.
Our proposed solution is ad hoc and not unbiased, but in the absence of any methods to address this problem,
it presents a reasonable solution both in terms of performance and feasibility.
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