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ABSTRACT

Complex datasets necessitate a thorough understanding of the research question

and substantive area, and in some cases may require analyses that take into account the

many features of the population of interest. Consider the Scottish Early Rheumatoid

Arthritis or SERA study, which followed people in Scotland with rheumatoid arthritis

(RA) over time, starting with a diagnosis of rheumatoid arthritis and then every six

months thereafter. Outcomes of interest are often discrete and perhaps a binomial

variable (such as if the patient has entered remission) or a count (such as the number of

swollen joints). Clinicians are aware that treatments for RA vary in their effectiveness

across the population, suggesting that there may be distinct subgroups within the

overall population. Thus there are several key features that the analysis must take

into account: (i) the discrete nature of the outcome, (ii) the longitudinal nature of

the measurements, and (iii) the possibility of subpopulations across which treatment

and covariate effects differ. In my thesis, I propose the use of a finite mixture of

generalised linear mixed-effect models (FinMix GLMM) as an appropriate analytic

approach. First, I develop the FinMix GLMM model and derive the maximum

likelihood estimates. Next, I develop a penalised likelihood approach for both fixed

and random effects selection in FinMix GLMM. Simulations illustrate the finite sample

performance of the estimates. Lastly, a FinMix GLMM analysis (both with and

without penalisation) to the SERA dataset demonstrates the real world application

of this model.
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ABRÉGÉ

Les ensembles de données complexes nécessitent une compréhension approfondie

de la question de recherche et du domaine de fond et, dans certains cas, peuvent

nécessiter des analyses tenant compte des nombreuses caractéristiques de la population

d’intérêt. Prenons par exemple la population de personnes atteintes de polyarthrite

rhumatöıde (RA) en Écosse, qui sont suivies au fil du temps en commençant par

un diagnostic de polyarthrite rhumatöıde, puis tous les six mois par la suite (étude

Scottish Early Rheumatoid Arthritis ou SERA). Les résultats d’intérêt sont souvent

discrets et peuvent être une variable binomiale (comme si le patient est entré en

rémission) ou un décompte (comme le nombre d’articulations enflées). Les cliniciens

savent que les traitements de la PR varient dans leur efficacité dans la population,

ce qui suggère qu’il peut y avoir des sous-groupes distincts au sein de la population

globale. L’analyse doit donc prendre en compte plusieurs caractéristiques clés: (i)

le caractère discret du résultat, (ii) la nature longitudinale des mesures, et (iii)

la possibilité de sous-populations à travers lesquelles les effets du traitement et

des covariables diffèrent. Dans ma thèse, je propose l’utilisation d’un mélange fini

de modèles linéaires généralisés à effets mixtes (FinMix GLMM) comme approche

analytique appropriée. Je développe d’abord le modèle FinMix GLMM et je dérive

les estimations du maximum de vraisemblance. Ensuite, je développe une approche

de vraisemblance pénalisée pour la sélection d’effets fixes et aléatoires dans FinMix

GLMM. Des simulations sont fournies pour illustrer la performance d’échantillons
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finis des estimations. Enfin, le FinMix GLMM est appliqué (avec et sans pénalisation)

au jeu de données SERA.
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CHAPTER 1
Introduction

1.1 Motivation

Complex datasets necessitate a thorough understanding of the research question,

and substantive area, and in some cases may require analyses that take into account

the many features of the population of interest. The increased use of electronic medical

records has resulted in an increased gathering of data, requiring more complex models

that take into account the nature of the data. Consider, for example, the population

of people in Scotland with Rheumatoid Arthritis (RA) where a sample of these

patients were followed over time, starting with a diagnosis of RA, and then every six

months thereafter. Some of the outcomes of interest were discrete, and possibly a

binomial variable (such as if the patient has entered remission) or a count (such as

the number of swollen joints). Clinicians are aware that not all patients with RA

present the same symptoms, and that treatments for RA vary in their effectiveness

across the population, suggesting that there may be distinct subgroups within the

overall population. Thus there are several key features that the analysis must take

into account: (i) the discrete nature of the outcome, (ii) the longitudinal nature of

the measurements, and (iii) the possibility of subpopulations across which treatment,

and covariate effects differ. In my thesis, I propose the use of a Finite Mixture of

Generalised Linear Mixed-Effect Model (FinMix GLMM) as an appropriate analytic

approach. The combination of a finite number of Generalised Linear Mixed-Effect
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Model (GLMM) allows for modelling both heterogeneity and correlation present in the

data. A finite mixture captures the heterogeneity in the population and using a mixed-

effect model handles the correlation induced by longitudinal data. This analysis would

be a natural choice to study data collected in the Scottish Early Rheumatoid Arthritis

Inception Cohort and Biobank (SERA), administered by the Scottish Collaborative

Arthritis Research network. This longitudinal study contains many patients, and

includes data both from questionnaires and blood samples, providing a large number

of covariates to consider. A more in-depth description of the dataset and model

follows.

1.1.1 Motivating Example

RA is an auto-immune disease that affects many people. This chronic disorder

causes inflammation in the joints of patients, typically starting in the hands and

feet. RA affects the lining of the joints, which leads to swelling, and eventually bone

erosion, and even joint deformity. As the disease progresses, it affects other joints,

usually the elbows, ankles, knees, shoulders, and hips. RA should not be confused

with osteoarthritis, which is more common. The wearing away of cartilage causes

osteoarthritis, whereas inflammation of the synovial membrane causes RA.

Unfortunately, there is currently no cure for RA. Treatment aims to reduce

inflammation to manage pain, and slow or prevent joint damage (Guo et al., 2018).

Experts currently favour a treatment program referred to as Treat to Target (T2T).

The goal of T2T is to aggressively treat the patient to achieve either remission or

a minimal level of disease activity. This minimises the symptoms that the patient

encounters. Medication is a favoured form of treatment, and there are many types
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of drugs used to treat RA. These medications include, but are not limited too, non-

steroidal anti-inflammatory drugs, steroids (often corticosteroids), disease-modifying

anti-rheumatic drugs, immunosuppressants, and Tumour Necrosis Factor Inhibitors

(TNFi). Because of the reliance on pharmacotherapy, drug toxicity has become an

important adverse outcome of interest in addition to other detrimental side effects. In

advanced stages, patients with RA may require surgery (such as joint replacement).

The SERA cohort contains patients from Scotland that have a diagnosis of RA.

It is rich in many variables, and it has enrolled numerous patients. The goal of the

study is to be able to accurately predict patient outcomes so that physicians can

apply the best course of treatment. In addition to the demographic and questionnaire

data being gathered bank of tissue, and blood samples were also collected to allow

for analysis of Deoxyribonucleic Acid (DNA) or biomarkers in the future. Sixteen

hospitals from around Scotland participated in this study.

During the first six months, the cohort enrolled 489 patients. Overall, recruitment

resulted in a cohort of over 1100 patients in the study. In addition to patients with RA,

recruitment also included several controls, which I did not consider in my analysis. In

order to be included in the cohort, all patients must have had a new clinical diagnosis

of RA or undifferentiated polyarthritis. Patients were excluded from the cohort if

they had already been on Disease-Modifying Antirheumatic Drugs (DMARD) therapy

for a time period greater than six months, had another rheumatological diagnosis,

had Hepatitis B, had Hepatitis C, or were Human Immunodeficiency Viruses (HIV)

positive. Patient data was collected at baseline, and every six months thereafter on

demographic characteristics, employment status, clinical measurements, laboratory
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results, and radiographic findings. Possible outcomes of interest include clinical

remission (defined as Disease Activity Score on 28 Joints (DAS28) less than 2.6),

swollen joint count, and drug toxicity. Of particular interest as covariates are variables

including erosion at presentation, Body Mass Index (BMI), age, and alcohol intake.

1.2 Generalised Linear Mixed-Effect Models

When observations are discrete or categorical, using a linear model (where

observations are assumed to follow a Gaussian distribution) is not appropriate and

a Generalised Linear Model (GLM) may be a more appropriate model. A few

assumptions are required when using a GLM: (i) observations are independent, (ii)

the mean of the observations is associated with a linear function of some covariates

through a link function, and (iii) the variance of the observations is a function of

the mean of the observations. Attention typically focuses on the binomial, and

Poisson cases, although the theory allows for outcomes from any distribution from an

exponential family. In practice, there are cases where the first assumption is violated,

and the observations are not statistically independent. If many of the observations

come from the same person, the same geographical area, or related individuals, they

may be correlated. In this case, a GLMM is a natural extension.

GLMMs represent an important class of models for regression analysis of discrete

longitudinal data. In longitudinal data, it is unrealistic to assume that repeated

observations from an individual are independent as they come from the same person.

Therefore, each of the n individuals in the dataset must be considered individually,

and a scalar or vector random effect is incorporated to include the correlation induced

by the longitudinal nature of the data.
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1.3 Finite Mixture Models

One challenge that can arise in the analysis of data is that the sample may

be drawn from a population with significant underlying heterogeneity that can

be more accurately described as a combination of distinct subpopulations. Often

this underlying heterogeneity is unobserved, which makes it difficult to capture

using a single GLMM. Indeed, such a model may not adequately represent the

effect of a covariate on the outcome if that covariate has different effects across the

subpopulations. It is possible that different covariates will have various effects in

different (possibly unobserved) subpopulations. Finite mixtures of GLMMs provide a

natural way to model unobserved heterogeneity in such populations. When taking

this approach, the population is separated into subpopulations, and a distinct GLMM

is used for each subpopulation. In this research, I assumed that each individual comes

from a particular subpopulation. Because the covariates for an individual can vary

between visits, the expected mean for that individual can also differ between visits,

however, the fixed and random effect parameters do not.

In the initial stages of a study, it is common to introduce or consider a large

number of covariates. However, some of these covariates may not be associated with

the response variable and those that are could have different associations depending

on the subpopulation of the FinMix GLMM. That is, the impact of covariates may

differ across the subpopulations. Identifying the important effects in the model, both

in the random and fixed components, requires a reliable means of variable selection.

It is on this topic that I focus on in this research. In the SERA cohort, different
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subpopulations may exist that are defined by genotypic or demographic variables

including age, age at onset, and sex.

Because of the heterogeneity in response to treatment for RA, a mixture of

models is appropriate for this application. As the SERA data are longitudinal, a

mixed-effect model must be used. When the outcome is not continuous, a GLMM is

the most reasonable choice for each subpopulation, which leads to a global model

that is a FinMix GLMM.

Previous research considered this problem in the linear case, and it is natural to

then extend to the GLM case. As of yet, this has not been done for any such discrete

outcomes, and many of the results in the linear model are more complicated in the

GLM case. This is often because of the link function, which is the identity function

in linear regression.

I organised the remainder of this thesis as follows. Chapter 2 contains a literature

review, Chapter 3 describes the maximum likelihood case, Chapter 4 extends to the

penalised maximum likelihood case to perform model selection, Chapter 5 considers

the SERA data in detail, and Chapter 6 concludes. Appendices A to J contain

additional and supplementary information.
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CHAPTER 2
Literature Review

This literature review contains three sections. The first section considers several

models that relate to a Finite Mixture of Generalised Linear Mixed-Effect Model

(FinMix GLMM), including Generalised Linear Mixed-Effect Model (GLMM)s as

well as finite mixtures. Next, I considered a few similar models, and discussed how

each of these differs from a FinMix GLMM. The second section concentrates on

computational methods such as Expectation-Maximisation (EM), Newton-Raphson,

and rejection sampling which I used for estimation of parameters in a FinMix

GLMM in Chapters 3, and 4. The last section of the literature review focuses on

variable selection techniques such as Least Absolute Shrinkage and Selection Operator

(LASSO), Adaptive Least Absolute Shrinkage and Selection Operator (ALASSO),

and Smoothly Clipped Absolute Deviation (SCAD).

Throughout this chapter, I used the following notation. Assume a set of n

independent observations (yi,Xi,Zi), i = 1, 2, . . . , n where yi = (yi1, yi2, . . . , yini)
>,

and Xi is an ni × p matrix of fixed covariates. The variable ni represents the number

of replicates for the subject i. The matrix Zi is comprised of q ≤ p columns of Xi,

that is Zi is also a known matrix of covariates. In a FinMix GLMM, the covariates

Xi are associated with fixed effects, and the covariates Zi are associated with random

effects. When the jth replicate for subject i is considered, the random variable

Yij is used along with the corresponding vectors xij, and zij. Note that Xi always
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contains a column of ones as the first column in order to capture the intercept in

the model, so xij = (xij1, xij2, xij3, . . . , xijp) = (1, xij2, xij3, . . . , xijp). Consistent with

the mixed-effect model literature, I assumed that all variables for which there is a

random effect, there is also a fixed effect.

Next, I considered the unknown parameters. I assumed the population contains

K distinct, and homogeneous subpopulations with π = (π1, π2, . . . , πK−1)
>, the

vector of so-called mixing proportions. Each πk represents the proportion of the

population contained in each of the subpopulations, πk > 0∀k, and
∑K

k=1 πk = 1.

Separate regression parameters describe the relationship between the covariates, and

the outcome in each of these subpopulations. The vector of regression coefficients for

the fixed effects in subpopulation k is represented by βk = (βk1, βk2, βk3, . . . , βkp)
>.

Let �k be a q × q lower triangle matrix and assume that the variable bi follows a

q dimensional multivariate standard Gaussian distribution. Then �kbi is a vector

of random effect which follows a q dimensional multivariate Gaussian distribution

with mean zero, and variance-covariance matrix Dk = �k�>k , and �k is the Cholesky

decomposition of Dk. The vector containing just the lower triangle values of �k is

�∗k. Let θk = (β>k ,�
∗>
k )> be the vector of regression coefficients for both fixed, and

random effects for subpopulation k. I grouped all of the relevant parameters into one

vector θ = (π1, π2, . . . , π(K−1),β
>
1 ,�

∗>
1 ,β>2 ,�

∗>
2 , . . . ,β>K ,�

∗>
K ). To facilitate variable

selection in Chapter 4, I decomposed �k into �k = dkCk where dk is a diagonal matrix,

and Ck is a lower triangle matrix with 1s along the diagonal. Again, d∗k, and C∗k are

the vectorised version of their respective parameters, and θk = (β>k , d
∗>,
k C∗>k )>. As I

have established the notation, the probability density function follows.
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In a FinMix GLMM with K subpopulations, the conditional density function of

the random variable Yi|(Xi,Zi,Θ) at the realisation yi is

fyi(yi|Xi,Zi,Θ) =
K∑
k=1

πkf
(k)
yi

(yi|Xi,Zi,βk,�k)

f (k)
yi

(yi|Xi,Zi,βk,�k) =

∫
f

(k)
yi|bi(yi|bi,Xi,Zi,βk,�k)× fbi(bi)dbi

=

∫ ni∏
j=1

f
(k)
yij |bi(yij|bi,xij, zij,βk,�k)× fbi(bi)dbi. (2.1)

I assumed that Yij|(bi,xij, zij,βk,�k) follows an exponential family, and used

an appropriate link function (g), specifically, the canonical link function. If just

the kth subpopulation is considered, then E[Yij|bi,xij,βk,�k] = g(xijβk + zij�kbi).

Combining all of the subpopulations, E[Yij|bi,xij,θ] =
∑K

k=1 πkg(xijβk + zij�kbi).

2.1 Models That Relate to Finite Mixtures of Generalised Linear Mixed-
Effect Models

A FinMix GLMM is an extension of several previously proposed models. A classic

regression model is a linear regression (Montgomery et al., 2012). Using the previous

notation, in a linear regression model, K = 1, ni = 1∀i, g is the identity function,

and E[Yi|xi,β] = xiβ. If the assumption that g is the identity function is relaxed,

but K = 1, ni = 1∀i, and Yi|xi,β follows an exponential family, a Generalised Linear

Model (GLM) (Nelder and Wedderburn, 1972; McCulloch, 2000) is produced, and

E[Yi|xi,β] = g(xiβ). Consider next the possibility that ni > 1, which allows for

longitudinal data, and random effects by relaxing the assumption that all of the

observations are independent. If the identity function is used for g, the outcome follows

a Gaussian distribution, and group (or individual) specific effects are introduced then
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E[Yij|bi,xij,β,�] = xijβ+ zij�bi, which is a linear mixed-effects model (Jiang, 2007,

Chapters 1–2). The inclusion of random effects in GLMs leads to a GLMM, and

is equivalent to extending a linear mixed-effects model to link functions other than

the identity function, and thus, outcomes follow an exponential family (Jiang, 2007,

Chapters 3–4). Thus, for a GLMM, E[Yij|bi,xij,β,�] = g(xijβ + zij�bi).

Many regression models have also been explored in the finite mixture litera-

ture, starting with Pearson (1894). McLachlan and Peel (2000), and McLachlan

et al. (2019) provide an overview of finite mixtures of regression models. In a fi-

nite mixture model, a weighted average is used to combine multiple models. In

a finite mixture of linear models, E[Yij|xij,θ] can be expressed as
∑K

k=1 πk(xijβk).

In a finite mixture of GLMs with K subpopulations, the conditional density func-

tion of Yi|(Xi,Zi,θ) is fyi(yi|Xi,Zi,θ) =
∑K

k=1 πkf
(k)
yi (yi|Xi,Zi,βk). I assumed that

Yij|(xij, zij,βk) follows an exponential family, and used an appropriate link function

(g) such that E[Yij|,xij,βk, ] = g(xijβk). Combining each of these subpopulations

yields E[Yij|bi,xij,θ] =
∑K

k=1 πkg(xijβk).

If several heterogeneous subpopulations are evident within a population where

a linear mixed-effects model would be appropriate for each subpopulation, a Finite

Mixture of Linear Mixed-Effect (FMLME) can be used (Du et al., 2013). In this case,

E[Yij|bi,xij,Θ] =
∑K

k=1 πk(xijβk + zij�kbi). In this thesis, I extend Du’s model to

allow for not only Gaussian data but data drawn from any exponential family, a

significant generalisation.

Another popular approach to the analysis of longitudinal data is to use Gener-

alised Estimating Equations (GEE) (Zeger et al., 1988). This approach differs from
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modelling using a linear mixed-effect model or GLMM as this alternative approach

serves to estimate population average parameters; Jiang (2007, Section 4.2) contains

more details. I did not pursue a GEE approach in this thesis, I specifically focused

this research on patient-specific effects of treatments. However, because the two

approaches are used in similar situations, comparisons between the two approaches

have been discussed in the literature, such as by Evans et al. (2001), Localio et al.

(2006), Gardiner et al. (2009), and Zhang et al. (2012). Additionally, Feng et al.

(1996) explored other approaches to the analysis of longitudinal data.

Both linear mixed-effect, and GLMMs have been used in medical and epidemiolog-

ical applications. Examples include estimation of the effects of changes in haemoglobin

on the recovery from malaria (Sagara et al., 2014), modelling childhood ailments in

Bolivia (Solis-Soto et al., 2013), and modelling of cardiovascular disease in Indigenous

Americans (Chen et al., 2014). Other examples include studying outcomes following

breast reconstruction modelled via a GLMM with patient-specific intercepts (Yuen

et al., 2014), modelling fatty acid intake of adults in the Minneapolis metropolitan

area using random effects for neighbourhoods (Honors et al., 2014), and studying

malaria transmission using random effects at both the individual, and school level

(Okebe et al., 2014).

Finite mixtures have also been used in medical research for several applications

including modelling mixtures in borderline personality disorder using phenotypes

(Hallquist and Pilkonis, 2012), detecting a binary trait locus (Deng et al., 2006), and

predicting health care costs (Rein, 2005). Other examples include detecting tropical

infectious diseases in Kenya (Fujii et al., 2014), modelling pollutant and exposure
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data (Li et al., 2013), and modelling the effects of five adolescent risk factors on the

total number of sexual partners in adulthood (Lanza et al., 2011).

It should be noted that some of these examples describe their model as a mixed-

effect model with a categorical latent variable. In my research, I have assumed that

the latent variable in a mixed-effect model follows a Gaussian distribution, and is

continuous. Tutz and Oelker (2017) provides a review of both types of models.

Before moving on to computational methods, consider a model similar to a

FinMix GLMM.

2.1.1 Other Similar Models

In 2005, Hall, and Wang proposed a model that bears many similarities to a

FinMix GLMM. The major difference between the research undertaken in the coming

chapters, and the work of Hall and Wang (2005) is that the subpopulation membership

is structured differently. In the model discussed in this thesis, I assumed that all of

the repeated measures from a particular subject come from the same subpopulation.

This is suitable for a situation where the repeated measures are from one person, and

each person is a member of exactly 1 of the K subpopulations. In contrast, Hall and

Wang (2005) consider settings where population membership is not constant, but

rather an individual may belong to different populations at different measurement

points. The example provided in Hall and Wang (2005) has cities as the unit of

analysis, and the two subpopulations denote a disease outbreak or no disease outbreak.

In this setting, allowing population membership to fluctuate with time is reasonable

however in many conventional settings where, say, human health is concerned, study

units are unlikely to switch subpopulations over time. For example, in Chapter 5, I
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considered modelling Rheumatoid Arthritis (RA) patient outcomes. While outcomes

are expected to vary with time, the relationship between patient characteristics and

outcomes are likely stable over time, so fixing population membership in time is the

more reasonable model choice.

In addition, Hall, and Wang restricted their model to consider only K = 2. In

contrast, the model presented over the following chapters is more general, with K ≥ 1.

Comparing the likelihood functions of the two models illustrates these differences.

In Hall and Wang (2005), with two subpopulations, the conditional density

function of Yi|(Xi,Zi,θ) is

fyi(yi|Xi,Zi,θ) =

∫
fyi|bi(yi|bi,Xi,Zi,θ)× fbi(bi)dbi

=

∫ ni∏
j=1

fyij |bi(yij|bi,xij, zij,θ)× fbi(bi)dbi

=

∫ ni∏
j=1

fyij |bi(yij|bi,xij, zij,θ)× fbi(bi)dbi

=

∫ ni∏
j=1

[π1fyij |bi(yij|bi,xij, zij,β1,�1) +

(1− π1)fyij |bi(yij|bi,xij, zij,β2,�2)]× fbi(bi)dbi

Comparing this likelihood to (2.1), the variable π1 is inside the integral allowing for

a subject to belong to one subpopulation at one specific time point, and a different

subpopulation at a later time point. While this is useful in certain situations, it is

not a finite mixture model. The work in this thesis extends GLMMs by applying a

GLMM to each subpopulation. Because I assume that all of the observations from a
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given subject are correlated, it is logical that all of those observations would come

from the same subpopulation.

Other papers have shown similar special cases, but have not provided a general

approach to FinMix GLMMs. Wang et al. (2002) shows a mixture of two or three

Poisson regressions, but as with Hall and Wang (2005), the measures from a given

subject can come from any of the subpopulations. Classification is the focus of Grun

and Leisch (2008), they assume the outcome follows a multinomial logit distribution.

In addition, they assumed that fixed effects are the same across all subpopulations,

and only the random effects differ across subpopulations, with special attention

given to the case with a random effect on the intercept. Dunson (2000) take a

Bayesian approach to consider clustered mixed outcomes. While some of the models

discussed in Dunson (2000) are similar to a FinMix GLMM, the majority of the models

are different, and Dunson (2000) used a Bayesian approach rather than frequentist

paradigm.

2.2 Computational Algorithm

Next, consider the computational tools that I used for estimation of the parame-

ters in a FinMix GLMM. I implemented a Maximum Likelihood Estimation (MLE)

approach, but there is no closed-form solution for the estimates in a FinMix GLMM.

The EM algorithm is ubiquitous in statistics. As noted by Dempster et al. (1977),

Rao (1955) explored a special case of the EM algorithm for a multinomial outcome.

While such special cases were published earlier, the general idea of the EM algorithm

was first introduced by Dempster et al. (1977), and explored in McLachlan and

Krishnan (2008). The motivation behind EM was to expand the possible settings
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in which one could compute an MLE using an iterative algorithm. Each iteration

consists of two steps, an expectation step (or E-step) followed by a maximisation step

(or M-step). In EM, one starts with incomplete data, and then estimates unobserved

values, for example, nuisance parameters, or latent values, to form the complete

data. Given the complete data, the MLE may be easier to compute. Because of the

popularity of EM, it continues to be discussed in review articles such as Meng and

van Dyk (1997), and Lange et al. (2014).

The EM algorithm is a popular computational choice in the literature for both

GLMMs, and finite mixtures. Because one can view subpopulation membership as

a missing variable, EM is a natural fit for finite mixture models, and Jansen (1993)

explore EM for finite mixtures of GLMs. Similarly, the random effects in a GLMM

can also be viewed as missing data and much has been written on the use of EM for

mixed-effects models as well. For instance, Anderson and Hinde (1988) use EM for

GLMMs, Laird et al. (1987) looks at using EM for situations with repeated measures,

and Steele (1996) shows modifications to ease computation in the E-step when a

GLMM is being used. Lindstrom and Bates (1988) provided a comparison of EM

to Newton-Raphson in linear mixed-effect models, and Meng and van Dyk (1998)

proposed computationally improvements.

Rather than considering the most general formulation of EM, the focus here is

on EM as applied to FinMix GLMMs. In this thesis, EM is used to estimate the

probability that a subject belongs to each of K distinct subpopulations leading to

the estimation of πk, and then again to estimate the random effects which informs

the estimation of βk, and �k.
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I started with an initial value for the parameter vector Θ, denoted Θ(0). To

estimate the mixing proportions, π1, π2, . . . , πK , I first estimated the membership

probability of each individual in each of the subpopulations, and denoted them τki.

This required calculating the likelihood for each individual, and each subpopulation

using (2.1) under Θ(0). I then calculated τki for each k ∈ {1, 2, . . . , K}, and i ∈

{1, 2, . . . , n} according to:

τ
(t)
ki =

π
(t)
k f

(k)
yi (yi|Xi,Zi,β(t)

k ,�
(t)
k )∑K

h=1 π
(t)
h f

(h)
yi (yi|Xi,Zi,β(t)

h ,�
(t)
h )

=
π

(t)
k

∫
f

(k)
yi|bi(yi|bi,Xi,Zi,βk,�k)× fbi(bi)dbi∑K

h=1 π
(t)
h

∫
f

(h)
yi|bi(Yi|bi,Xi,Zi,βh,�h)× fbi(bi)dbi

=
π

(t)
k

∫ ∏ni
j=1 f

(k)
yi|bi(yij|bi,xij, zij,βk,�k)× fbi(bi)dbi∑K

h=1 π
(t)
h

∫ ∏ni
j=1 f

(h)
yi|bi(yij|bi,xij, zij,βh,�h)× fbi(bi)dbi

.

As there is no closed-form solution to these integrals, I calculated an approximation

using Monte Carlo integration (Robert and Casella, 2010, Chapter 3). That is,

I generated L values of bi from a standard Gaussian distribution, and replaced

the integral by a summation over these L values. Because I used Monte Carlo

in the E-step, this algorithm can be more accurately described as a Monte Carlo

Expectation-Maximisation (MCEM) (Wei and Tanner, 1990).

Next, to compute �k, I used another EM loop, or more specifically, another

MCEM loop. Dempster et al. (1977) showed this approach for the computation of

the variance-covariance matrix in a mixed-effects model, and Laird (1982) explored it

further. Again, I generated L estimates of bi for each i ∈ {1, 2, . . . , n}. Note that I

generated bi in this MCEM from bi|yi,Xi,Zi,βk,�k, not from a standard Gaussian

distribution or indeed from any standard distribution. As such, I used rejection
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sampling (McLachlan and Krishnan, 2008, Chapter 6) to generate values for the

E-step in this situation.

Following the work of Gilks and Wild (1992), and Robert and Casella (2010,

Section 2.3), I chose rejection sampling to generate L estimates of bi, as done

in Ibrahim et al. (1999). I generated potential bis by calculating the MLE for

bi|yi,Xi,Zi,βk,�k, and the Hessian matrix at this point. I then generated points

from a Gaussian distribution with the mean set to the MLE for bi, and the variance

set to the negative of the inverse of the calculated Hessian matrix. These points are

then the proposed values for a rejection sampler, which I repeated multiple times.

These Metropolis iterations improve the sample to make it more representative of the

posterior distribution. Points that are accepted become the L potential bis used in

the next step. Note that I generated L potential bi values for each n in each of the k

calls to the inner MCEM used to estimate the random effects. Section C.4 shows this

algorithm in detail.

The M-step of the inner MCEM algorithm maximises the log-likelihood of each

of the K subpopulations, represented by the function Qk(θk), with respect to βk,

and �k using Newton-Raphson. The log-likelihood for each subpopulation is

Qk(θk) =
n∑
i=1

τki × log[fyi(yi|Xi,Zi,θk)].

Newton-Raphson was first discussed as a root-finding method, see (Ypma, 1995;

Hazewinkel, 1988, p. 1231), but when used to find the root of the first derivative of a

function, it finds local optima. The problem of optimisation is longstanding, and there

are many possible solutions. In this thesis, I applied Newton-Raphson to maximise the
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approximate likelihood or penalised likelihood. This likelihood was weighted by the

values of τki to incorporate the finite mixture structure of the population. Given the

approximate likelihood, along with its first, and second derivatives, Newton-Raphson

successively updates estimates according to θ
(s+1)
k = θ

(s)
k − [Q′′k(θ

(s)
k )]−1Q′k(θ

(s)
k ). In

this thesis, I implemented Newton-Raphson in the M-step of the inner MCEM loop.

2.3 Variable Selection With Penalisation

The issue of variable selection in regression is a difficult and important problem.

Given a data set with even a modest number of variables, there are a large number of

possible models to explore, and considering all of them is computationally expensive

(Buhlmann and van de Geer, 2011, Chapter 1). Variable selection is not a new subject

in GLMMs or finite mixtures. Within the GLMM literature, variable selection has

been considered in a variety of situations, including with finite support random effects

distributions (Leung and Elashoff, 1996b); Bayesian variable selection (Chen et al.,

2003); bootstrap tests for determining if a variance component is non-zero (Sinha,

2009); selection of both fixed and random effects using LASSO, ALASSO, and SCAD

(Ibrahim et al., 2011); a GLMM specific Akaike Information Criterion (AIC) (Yu et al.,

2013); using an L1 penalty (Groll and Tutz, 2014); penalised quasi-likelihood (Pan

and Huang, 2014); and an algorithm called GLMMLasso (Schelldorfer et al., 2014).

The issue of variable selection has been discussed in the literature for finite mixtures

of regression models by Khalili and Chen (2007), FMLMEs by Du et al. (2013), and

the high-dimensional case of finite mixtures of Gaussian models in Devijver (2015).

In this thesis, I focused on three penalties for variable selection, LASSO, ALASSO,

and SCAD.
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Prior to the advent of penalisation variable selection techniques, common algo-

rithms for variable selection included stepwise regression, and all subsets selection.

When all subsets regression was performed, then regression models were compared

based on information criteria as discussed in Nishii (1984). A number of information

criteria have been suggested including AIC (Akaike, 1998), Bayesian Information

Criterion (BIC) (Schwarz, 1978), and generalised information criterion (Pu and Niu,

2006). However, these algorithms may not result in the same model being chosen

(Huo and Ni, 2007), and there may be a lack of stability in model selection (Breiman,

1996). Lavergne et al. (2008) provides a specific formulation for information criteria

in GLMMs. Another possibility is predictive cross-validation as proposed by Braun

et al. (2014).

Certain penalty functions posses a number of desirable properties, including the

oracle property, and consistency. These properties are not guaranteed by stepwise

regression or all subsets selection. Buhlmann and van de Geer (2011, Chapter 6)

considered this idea further. In addition, much of the literature on variable selection

in mixed-effects models has considered variable selection on only the fixed effects,

and not the random effects (Schelldorfer et al., 2014; Groll and Tutz, 2014).

The LASSO, while not the only penalty function that has been used, is the

most commonly used penalty function (Tibshirani, 1996, 2011). LASSO uses an

L1 penalty on the likelihood function, which together is often called the penalised

likelihood. In general, the LASSO penalty function takes the form pλnk(θ) = λnk|θ|.

In the case of a FinMix GLMM, the penalty, when only the fixed effects are being

examined, is pλnk(θk) = λnk
∑p

j=1 |βkj| with
∂pλnk (θk)

∂βkj
= λnksign(βkj). Similarly, if
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a penalty is applied to both the fixed, and random effects, the penalty becomes

pλnk(θk) = λnk
∑p

j=1 |βkj|+ λnk
∑q

j=1 |dkj| = λnk
∑p

j=1 |βkj|+ λnk
∑q

j=1 dkj, and the

partial derivatives are
∂pλnk (θk)

∂βkj
= λnk × sign(βkj), and

∂pλnk (θk)

∂dkj
= λnk. The second

derivatives of the penalty are equal to zero, both with respect to βkj, and dkj. Note

that using LASSO results in a biased estimate (Fan and Li, 2001).

Two major shortcomings of the LASSO penalty are that the penalty is of the

same magnitude regardless of the size of the parameter, and that the derivative of the

penalty function is not continuous. Adaptive LASSO or ALASSO provides a solution

to the first of these problems. This is done by adding weights to the penalty function

as explained in Zou (2006). The choice of the weights must be specified by the analyst

and is commonly chosen to be the inverse of the maximum likelihood estimate as

proposed by Zou (2006). This, however, requires the calculation of the MLE, and

as such could be considered a two-step estimation procedure. The ALASSO penalty

function for a general model is pλnk(θ) = λnkw|θ|.

If only fixed effects are considered, then pλnk(θk) = λnk
∑p

j=1wj|βkj| with

∂pλnk (θk)

∂βkj
= λnkwj × sign(βkj). Similarly, if a penalty is applied to both the fixed, and

random effects, the penalty becomes pλnk(θk) = λnk
∑p

j=1wj|βkj|+λnk
∑q

j=1wp+j|dkj| =

λnk
∑p

j=1 wj|βkj| + λnk
∑q

j=1wp+jdkj, and the partial derivatives are
∂pλnk (θk)

∂βkj
=

λnkwj × sign(βkj), and
∂pλnk (θk)

∂dkj
= λnkwp+j. Again, the second derivatives of the

penalty with respect to both βkj, and dkj are equal to zero.

As previously noted, the inverse of the MLE is the most common choice for the

weights in ALASSO, and the weights I used in this research. However, the theory
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in Zou (2006) is general to w = |θ̂|−α where α > 0, and θ̂ is a root-n-consistent

estimator for the true value of θ.

While ALASSO reduces the bias on large values of parameter estimates, it does

not change the shape of the derivative of the penalty function. As such, the first

derivative of the penalty function for ALASSO is not continuous.

Fan and Li (2001) described the SCAD penalty as a solution to the problems

with previous penalty functions and is

∂pλnk(θ)

∂θ
= λnk

{
I(|θ| ≤ λnk) +

(aλnk − |θ|)+

(a− 1)λnk
I(|θ| > λnk)

}
.

If only fixed effects are considered then

∂pλnk(θk)

∂βkj
= λnk

{
I(|βkj| ≤ λnk) +

(aλnk − |βkj|)+

(a− 1)λnk
I(|βkj| > λnk)

}
.

In the case where both fixed, and random effects are penalised,

∂pλnk(θk)

∂βkj
= λnk

{
I(|βkj| ≤ λnk) +

(aλnk − |βkj|)+

(a− 1)λnk
I(|βkj| > λnk)

}
,

and

∂pλnk(θk)

∂dkj
= λnk

{
I(dkj ≤ λnk) +

(aλnk − dkj)+

(a− 1)λnk
I(dkj > λnk)

}
.

Note that (t)+ = t× I(t > 0), and a > 2.

These penalty functions are widely used in medical research. The LASSO has

been used to perform variable selection in many medical applications, ranging from

oncology (Olk-Batz et al. (2011), Wu et al. (2011)) to neurology (Zhou et al. (2012),

Baradaran et al. (2013)), and has seen considerable use in genetics analyses, where
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dimensionality is often very high (Ghosh and Chinnaiyan (2005), Usai et al. (2009),

Olk-Batz et al. (2011), Wimmer et al. (2013)). The ALASSO penalty function

has been applied to various statistical models in the past. In addition to the high-

dimensional linear regression case (Huang et al., 2008), ALASSO has been applied to

general transformation models with right-censored data (Li and Gu, 2012), varying-

coefficient partially linear measurement error models (Wang et al., 2013), zero-inflated

count data (Zeng et al., 2014), joint models of longitudinal, and survival outcomes

(He et al., 2015), Poisson regression (Ivanoff et al., 2016), and nonlinear mixed-effect

pharmacokinetic models (Haem et al., 2017). While ALASSO has not been as widely

used as LASSO, it has also been used for gene selection, including cancer classification

(Algamal and Lee, 2015). The SCAD penalty has not been as popular as LASSO

but has been used in a variety of settings including geostatistics (Chu et al., 2011),

and denoising images (Chopra and Lian, 2010). In the medical field, SCAD has been

used for variable selection in applications including genetics (Lu et al., 2011), liver

fibrosis (Yan et al., 2011), and Magnetic Resonance Imaging (MRI) (Mehranian et al.,

2013).

In conclusion, many regression models have been developed for analysing data,

starting with classical linear regression, and building upon this framework to GLM,

and mixed-effect models. These extensions allow for accurate modelling of more

complex data, or situations that violate the underlying assumptions associated with

linear regression. In some cases, however, there is underlying heterogeneity in a

population, and using the same model for the entire population is not appropriate. In

these cases, a finite mixture of regression models could be a suitable choice. Next, I
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introduce the computational methods that I used in this thesis, precisely EM, MCEM,

and Newton-Raphson. Finally, I reviewed a variety of penalties that can be used for

variable selection, specifically LASSO, ALASSO, and SCAD.

While many regression models have been explored in the literature, as of yet, a

FinMix GLMM has not been explored. While many simpler models, including GLM,

GLMM, and finite mixtures of regression models have been considered, combining

them to produce a FinMix GLMM has not been done, making this a gap in the

literature that this research fills. In addition, the use of penalised likelihood for

performing variable selection has been studied extensively for certain circumstances

(namely linear regression), but it has not been explored as fully for many other

regression situations. Therefore, the inclusion of variable selection in this thesis is

another important contribution to the field. Having considered the relevant literature,

the next chapter considers the formulation, and computation of the MLE.
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CHAPTER 3
Objective One: Finite Mixtures of Generalised Linear Mixed-Effect

Models and Their Maximum Likelihood Estimates

3.1 Introduction

In this chapter, I developed the Finite Mixture of Generalised Linear Mixed-Effect

Model (FinMix GLMM). This type of model can be used to analyse data that is

both longitudinal in nature, and includes underlying heterogeneity in the population.

Using a mixed-effect model accounts for the correlation between repeated measures

in the longitudinal data, while a finite mixture of models allows for the modelling

of the underlying heterogeneity in the population of interest. I assumed that the

subpopulation membership of each subject (also called a patient or cluster) in the

population is unknown. In addition, all of the observations from a given subject

are assumed to be from the same subpopulation. I assumed that the distribution of

the outcome within a given subpopulation follows a Generalised Linear Mixed-Effect

Model (GLMM) and is therefore from an exponential distribution. In this work, I

excluded from consideration the Gaussian distribution, as this was explored previously

in Du et al. (2013). Combing these two elements, that is GLMMs with finite mixtures,

allows for modelling of more complex datasets, and permits consideration of additional

sources of heterogeneity.

In Section 3.2 I formally define the FinMix GLMM and discuss its identifia-

bility conditions. In Section 3.3, I derive the maximum likelihood estimate, and
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described computational aspects of an estimation procedure based on the Monte Carlo

Expectation-Maximisation (MCEM) algorithm. I then explored the performance

of the Maximum Likelihood Estimation (MLE) via simulation in Section 3.4, and

Section 3.5 concludes.

3.2 The Finite Mixture of Generalised Linear Mixed-Effect Model

I established the notation in the previous chapter but have reiterated here.

Identifiability of the model is also considered.

3.2.1 Model Definition

Consider a set of n independent observations (yi,Xi) where subject i has ni

replicates. For subject i, the vector yi contains the outcomes, and the matrices Xi,

and Zi contain covariates. In the FinMix GLMM, the covariates Xi are associated with

fixed effects, the covariates Zi are associated with random effects, and all variables

for which there is a random effect, there is also a fixed effect.

Consider next the unknown parameters. The mixing proportions for the K sub-

populations are π = (π1, π2, . . . , πK−1) where
∑K

k=1 πk = 1. Similarly, separate regres-

sion parameters βk and �k describe the relationship between the covariates and the out-

come for each subpopulation. Recall that bi follows a q dimensional multivariate stan-

dard Gaussian distribution, and the vectorised version of �k is �∗k. All of the estimated

parameters are grouped into one vector Θ = (π,β>1 ,�
∗>
1 ,β>2 ,�

∗>
2 , . . . ,β>K ,�

∗>
K )>. The

vector θk = (β>k ,�
∗>
k )> contains the regression parameters for a single subpopula-

tion.
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Recall that the conditional density function of the random variable Yi|(Xi,Zi,Θ)

in a FinMix GLMM with K subpopulations, at the realisation yi is

fyi(yi|Xi,Zi,Θ) =
K∑
k=1

πkf
(k)
yi

(yi|Xi,Zi,βk,�k)

f (k)
yi

(yi|Xi,Zi,βk,�k) =

∫
f

(k)
yi|bi(yi|bi,Xi,Zi,βk,�k)× fbi(bi)dbi

=

∫ ni∏
j=1

f
(k)
yij |bi(yij|bi,xij, zij,βk,�k)× fbi(bi)dbi.

Recall that Yij|(bi,xij, zij,βk,�k) follows an exponential family, with an appro-

priate link function (g), I used the canonical link function in this thesis. Considering

just the kth subpopulation, E[yij|bi,xij,βk,�k] = g(xijβk + zij�kbi), and combin-

ing all subpopulations, E[yij|bi,xij,Θ] =
∑K

k=1 πkg(xijβk + zij�kbi). I discussed

estimation of the parameters in Section 3.3.

Next, consider two well known exponential family distributions for discrete data.

In the Poisson case, Yij|bi,xij, zij,βk,�k ∼ Poisson(ξij) where log(ξij) = xijβk +

zij�kbi, and in the binomial case, Yij|bi,xij, zij,βk,�k,mij ∼ binomial(mij, ϕij)

where logit(ϕij) = xijβk + zij�kbi.

3.2.2 Identifiability

Identifiability is critical for valid statistical inference. In general, a statistical

model is said to be non-identifiable if two distinct sets of parameters lead to the

same probability distribution. In contrast, a parameter θ for a particular family of

distributions f(x|θ), θ ∈ Θ with a sample space of x ∈ S is identifiable if different

values of θ correspond to different probability density functions. That is,

θ 6= η ⇒ f(x|θ) 6= f(x|η)∀x ∈ S.
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First, assume that a FinMix GLMM can be written in the form

fyi(yi|Xi,Zi,Θ) =
K∑
k=1

πkf
(k)
yi

(yi|Xi,Zi,βk,�k).

Given a set of covariate matrices (X1,X2, . . . ,Xn), corresponding to the fixed effects,

and (Z1,Z2, . . . ,Zn), corresponding to the random effects, the FinMix GLMM is

identifiable if for any two vectors Θ and Θ†

K∑
k=1

πkf
(k)
yi

(yi|Xi,Zi,βk,�k) =
K†∑
k=1

π†kf
(k)
yi

(yi|Xi,Zi,β†k,�
†
k)

for all possible values of yi, and each i = 1, 2, . . . , n then K = K†, and Θ = Θ†.

For a finite mixture model to be identifiable, the models for each subpopulation

must also be identifiable (Teicher, 1963; Atienza et al., 2006). First, I considered

identifiability conditions for GLMMs, followed by identifiability conditions specific to

finite mixtures.

As is the case in linear regression, det(X>X) 6= 0. When categorical variables are

present in the model, the model must be parameterised such that one category (often

the most common category) is the baseline, or parameterised using a sum-to-zero

constraint. Three additional factors are important for the identifiability of a FinMix

GLMM, similar to a Finite Mixture of Linear Mixed-Effect (FMLME), and following

from Hennig (2000): (i) density of the subpopulations, (ii) number of subpopulations

K, (iii) design matrices of covariates.

Using the matrix

Υ =

 X1,X2, . . .Xm

Z1,Z2, . . .Zm


>

.
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Hennig’s condition translates to the restriction that K must be smaller than the

number of (hΥ − 1)-dimensional hyperplanes covered by the rows of Υ. Since it is

typical in GLMMs that any covariate that has a random effect also has a fixed effect,

this may be simplified by excluding the Zis from the matrix Υ.

Following the work in Labouriau (2014), I provided two conditions for identifia-

bility of a GLMM. A GLMM is identifiable if
∫
g(xijβk + zij�kbi)× fbi(bi)dbi <∞

and g(xijβk + zij�kbi)(�k)−1 = g(xijβk∗ + zij�k∗bi)(�k∗)−1∀xij,∀zij =⇒ βk =

βk∗,�k = �k∗.

There are three types of non-identifiability that are specific to finite mixture

models. Label switching is a common type of non-identifiability in finite mixtures

of models. This is also known as non-identifiability due to invariance in relabelling

the components and occurs when the mixture components can be relabelled without

changing the likelihood (Redner and Walker, 1984). A simple solution to this is to

impose a strict ordering constraint on a single element, usually πk.

Next, consider non-identifiability due to potential overfitting. In this case,

two mixture models, one with K subpopulations, one with K − 1 subpopulations,

are equivalent. Either one of the K subpopulations is empty, or two of the K

subpopulations have equal regression parameters. Again, this can be solved by

imposing a strict ordering constraint, and that πk > 0, ∀k ∈ {1, 2, . . . , K}, and

checking that each subpopulation has distinct regression coefficients. One potential

problem occurs when πk = πk† , in which case the user must impose an order.

Consider an example FinMix GLMM with Θ = (π1,β
>
1 ,�

∗>
1 ,β>2 ,�

∗>
2 )>, and a

set of covariate matrices (X1,X2, . . . ,Xn), corresponding to the fixed effects, and (Z1,
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Z2, . . . ,Zn), corresponding to the random effects. Note that this model defines a

two subpopulation distribution. Let Θ† = (π†1,β
†>
1 ,�†∗>1 ,β†>2 ,�†∗>2 )> = ((1− π1),β>2 ,

�∗>2 ,β>1 ,�
∗>
2 )>. Then,

fyi(yi|Xi,Zi,Θ) =
2∑

k=1

πkf
(k)
yi

(yi|Xi,Zi,βk�k)

= π1f
(1)
yi

(yi|Xi,Zi,β1,�
∗
1) + π2f

(2)
yi

(yi|Xi,Zi,β2,�
∗
2)

= π2f
(2)
yi

(yi|Xi,Zi,β2,�
∗
2) + π1f

(1)
yi

(yi|Xi,Zi,β1,�
∗
1)

= π†1f
(1)
yi

(yi|Xi,Zi,β†1,�
†∗
1 ) + π†2f

(2)
yi

(yi|Xi,Zi,β†2,Γ
†∗
2 )

=
2∑

k=1

π′kf
(k)
yi

(yi|Xi,Zi,β†k,�
†∗
k )

= fyi(yi|Xi,Zi,Θ†).

Thus, this model is unidentifiable. This is an example of non-identifiability due to

label switching, and can be avoided in many cases by imposing the requirement

π1 > π2. This constraint does not solve this problem when π1 = π2, so in that case

the additional requirement that β11 > β21. If π1 = π2 and β11 = β21, then impose

the requirement β12 > β22, and continuing on in this way if β12 = β22. Note that if

all of the parameters in both subpopulations are equal, the subpopulations are not

distinct and there is only one subpopulation. As such, at least one parameter for

the two subpopulations must be unequal, and the first of these is used to impose the

constraint.

I assumed the model is identifiable if the above restrictions are met.
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3.3 Maximum Likelihood Estimation

To calculate the MLE, I first considered the likelihood equation. I then examined

the numerical computation of the MLE as well as specific details in the Poisson, and

binomial cases.

3.3.1 Likelihood Equation

Let (yi,Xi), i ∈ {1, 2, . . . , n} be a sample from a FinMix GLMM as described in

(2.1). The likelihood function is given by

Ln(Θ) =
n∏
i=1

[fyi(yi|Xi,Zi,Θ)]

and the log-likelihood as

`n(Θ) = log[Ln(Θ)]

= log

{
n∏
i=1

[fyi(yi|Xi,Zi,Θ)]

}
=

∑n

i=1
log[fyi(yi|Xi,Zi,Θ)].

The MLE is defined as Θ̂ = arg max(L(Θ)). Due to the complexity of the model, I

approximated the likelihood by replacing the integral in (2.1) with a sum over a large

number, L, of generated values of bi for each of the n patients.

Many useful asymptotic properties of maximum likelihood estimators can be

applied to these estimators. Specifically, consistency (Chen, 2017), and asymptoti-

cally following a Gaussian distribution are consequences of the maximum likelihood

procedure. However, the usual regularity conditions are needed, and can be found in

Appendix D.
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3.3.2 Numerical Computation of the Maximum Likelihood Estimator

The MCEM algorithm is popular in many settings and has been widely used

as detailed in Chapter 2. In this application, I applied the MCEM algorithm twice.

The outer MCEM loop treats the subpopulation membership indicators as missing.

That is, the information about which patient is in which subpopulation is unknown,

and thus estimated. Estimating the probabilities of subgroup membership is in the

outer MCEM. The inner MCEM loop treats the subject-specific random effect bi

as missing, and calculates the regression parameters βk, and �k. I summarised this

algorithm in Section C.1.

Estimating the Subpopulation Membership; The Outer Monte Carlo
Expectation-Maximisation Algorithm

To estimate the mixing proportions π1, π2, . . . , πK , I first estimated the member-

ship probability of each individual in each of the subpopulations, which I denoted as

τki. I did this by calculating the likelihood for each individual, and each subpopulation,

and then combining this information to find probabilities τki. Specifically, I calculated

τki for each k ∈ {1, 2, . . . , K}, and i ∈ {1, 2, . . . , n} according to:

τki =
π̂

(t)
k f

(k)
yi (yi|Xi,Zi, β̂

(t)

k , �̂
(t)
k )∑K

h=1 π̂
(t)
h f

(h)
yi (yi|Xi,Zi, β̂

(t)

h , �̂
(t)
h )

=
π̂

(t)
k

∫
f

(k)
yi|bi(yi|bi,Xi,Zi, β̂k, �̂k)× fbi(bi)dbi∑K

h=1 π̂
(t)
h

∫
f

(h)
yi|bi(Yi|bi,Xi,Zi, β̂h, �̂h)× fbi(bi)dbi

=
π̂

(t)
k

∫ ∏ni
j=1 f

(k)
yi|bi(yij|bi,xij, zij, β̂k, �̂k)× fbi(bi)dbi∑K

h=1 π̂
(t)
h

∫ ∏ni
j=1 f

(h)
yi|bi(yij|bi,xij, zij, β̂h, �̂h)× fbi(bi)dbi

. (3.1)
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Because the bis are unknown, the integrals in the numerator, and denominator of

Equation (3.1) must be approximated. This forms the E-step of the outer Expectation-

Maximisation (EM) algorithm. In order to approximate this integral, I generated L

potential values of bi for each i ∈ {1, 2, . . . , n}, and k ∈ {1, 2, . . . , K} from a standard

multivariate Gaussian distribution. A superscript on bi denotes that the b
(l)
i was

generated in the estimation process rather than the unobserved bi.

τki =
π̂

(t)
k

∫ ∏ni
j=1 f

(k)
yij |bi(yij|bi,xij, zij, β̂k, �̂k)× fbi(bi)dbi∑K

h=1 π̂
(t)
h

∫ ∏ni
j=1f

(h)
yij |bi(yij|bi,xij, zij, β̂h, �̂h)× fbi(bi)dbi

≈
π̂

(t)
k

1
L

∑L
l=1

∏ni
j=1 f

(k)
yij |bi(yij|b

(l)
i ,xij, zij, β̂k, �̂k)∑K

h=1 π̂
(t)
h

1
L

∑L
l=1

∏ni
j=1 f

(h)
yij |bi(yij|b

(l)
i ,xij, zij, β̂h, �̂h)

=
π̂

(t)
k

∑L
l=1

∏ni
j=1 f

(k)
yij |bi(yij|b

(l)
i ,xij, zij, β̂k, �̂k)∑K

h=1 π̂
(t)
h

∑L
l=1

∏ni
j=1 f

(h)
yij |bi(yij|b

(l)
i ,xij, zij, β̂h, �̂h)

.

Note that τki is specific to patient i, and subgroup k but general to all visits j =

1, 2, . . . , ni for patient i because I assumed each patient is a member of one, and

only one subpopulation. In cases where both the numerator, and denominator were

calculated to be zero or numerically very close to zero, I set τki = 1
K

for all k. That

is, when these calculations show that membership to each of the subpopulations is

equally unlikely (given rounding error), I assigned an equal probability of belonging

to any of the subpopulations, which can be thought of as a uniform prior distribution.

This case occurs most frequently when the estimates in Θ are poor or the true value

for bi is extreme.
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I then estimated the mixing proportions by taking the empirical average of the

individual subpopulation membership probabilities:

π̂k =
1

n

n∑
i=1

τki.

Maximising the likelihood with respect to βk, and �k for k ∈ {1, 2, . . . , K} forms the

M-step of the outer MCEM algorithm. This involves calling the inner MCEM for

each k (each subpopulation). I used the values of τki as weights in the inner MCEM

loops.

Estimating the Random Effects; The Inner Monte Carlo Expectation-
Maximisation Algorithm

Consider the inner EM for a particular k ∈ {1, 2, . . . , K}. Generate L estimates

of bis for each i ∈ {1, 2, . . . , n}. Note that when I generated bi, I generated it from

bi|yi,Xi,Zi,βk,�k, not from a standard Gaussian distribution or indeed from any

standard distribution.

Instead, I generated potential bis by calculating the MLE for bi|yi,Xi,Zi,βk,�k,

and the Hessian matrix at this point. Next, I generated points from a multivariate

Gaussian distribution with the mean set to b̂i, the MLE for bi, and the variance-

covariance matrix set to the negative of the inverse of the Hessian matrix. I then used

these points as the proposed values for an accept/reject sampler which I repeated

multiple times. These Metropolis iterations improve the sample to make it more

representative of the posterior distribution. Points that were accepted became the L

potential bis used in the next step. Note that L potential bi values were proposed for

each n in each of the k calls to the inner MCEM loop. I denote these b
(l)
ki . Note that
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bi|yi,Zi,Xi,β1,�1

d

6= bi|yi,Zi,Xi,β2,�2, so I generated different values of bi for each

of the K subpopulations. A more detailed algorithm can be found in Section C.4.

The M-step of the inner MCEM algorithm maximises the log-likelihood of

each of the K subpopulations, represented by the function Qk(θk), with respect to

θk = (β>k ,�
∗>
k )>. The log-likelihood for each subpopulation is

Qk(θk) =
n∑
i=1

τki × log[fyi(yi|Xi,Zi,θk)].

Newton-Raphson was used to maximise the approximate likelihood. I weighted

this likelihood by the values of τki. Given the approximate likelihood, along with

its first, and second derivatives, the next iteration of θk was defined as θ
(s+1)
k =

θ
(s)
k − (1

2
)ι[Q′′k(θ

(s)
k )]−1Q′k(θ

(s)
k ) where ι = 0 in most cases, but can be changed to

facilitate half step Newton-Raphson.

3.3.3 Examples

In this section, I derived the MLEs, and provided computational details for two

specific FinMix GLMMs: a finite mixture of Poisson, and a finite mixture of binomial

distributions.

Approximate Likelihood - Poisson Case

The approximate likelihood in the Poisson case uses the canonical link function,

and a sum over generated values of b
(s,l)
ki to replace the integral. As previously, the

superscript denotes that b
(s,l)
ki was generated as part of the estimation, and is not the

latent bi. To simplify and condense the equations in the remainder of the chapter I
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shortened
∑L

l=1

∑n
i=1

∑ni
j=1 to

∑
l,i,j. The resulting likelihood equation is

Qk(θ) = Qk(βk,�k) =
1

L

∑
l,i,j

τki

[
yij log(ξ

(s,l)
kij )− ξ(s,l)

kij

]
=

1

L

∑
l,i,j

τki

[
yijxijβk + yijzij�kb

(s,l)
ki − e

xijβk+zij�kb
(s,l)
ki

]
.

To maximise this approximate likelihood, I used Newton-Raphson. This requires

calculating both the first, and second derivatives with respect to θk. These derivatives

are shown with respect to βk, and �k separately, and are as follows:

∂Qk(βk,�k)
∂βk

=
1

L

∑
l,i,j

τki

[
yijxij − xije

xijβk+zij�kb
(s,l)
ki

]
=

1

L

∑
l,i,j

τkixij

[
yij − exijβk+zij�kb

(s,l)
ki

]
;

∂Qk(βk,�k)
∂�∗k

=
1

L

∑
l,i,j

τki

[
yijzijb

(s,l)
ki − e

xijβk+zij�kb
(s,l)
ki zijb

(s,l)
ki

]
=

1

L

∑
l,i,j

τki

[
yij − exijβk+zij�kb

(s,l)
ki

]
zijb

(s,l)
ki ;

∂2Qk(βk,�k)

∂β>k ∂βk
=

1

L

∑
l,i,j

τki

[
−xijx

>
ije

xijβk+zij�kb
(s,l)
ki

]
;

∂2Qk(βk,�k)

∂β>k ∂�
∗
k

=
1

L

∑
l,i,j

τki

[
−xijzijb

(s,l)
ki exijβk+zij�kb

(s,l)
ki

]
;

∂2Qk(βk,�k)
∂�∗>k ∂βk

=
1

L

∑
l,i,j

τki

[
−xijzijb

(s,l)
ki exijβk+zij�kb

(s,l)
ki

]
;

∂2Qk(βk,�k)
∂�∗>k ∂�∗k

=
1

L

∑
l,i,j

τki

[
−zijb

(s,l)
ki (zijb

(s,l)
ki )>exijβk+zij�kb

(s,l)
ki

]
.

Additional details on these derivations by way of element-wise calculations can be

found in Section B.1.
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Approximate Likelihood - Binomial Case

The computation for the binomial case is much the same. However, the link

function is different, and the number of trials (mij) must be included in the likelihood

as well.

Qk(θ) = Qk(βk,�k) =
1

L

∑
l,i,j

τki [yij log(ϕkij) + (mij − yij) log(1− ϕkij)]

=
1

L

∑
l,i,j

τki

[
yij(xijβk + zij�kb

(s,l)
ki )−mij log(exijβk+zij�kb

(s,l)
ki + 1)

]
As with the Poisson case, I calculated the first, and second derivatives for their use

in Newton-Raphson, to maximise the likelihood in the M-step of the inner MCEM.

∂Qk(βk,�k)
∂βk

=
1

L

∑
l,i,j

τki

[
yijxij −mijxijexpit(xijβk + zij�kb

(s,l)
ki )

]
=

1

L

∑
l,i,j

τki

[
yij −mijexpit(xijβk + zij�kb

(s,l)
ki )

]
xij;

∂Qk(βk,�k)
∂�∗k

=
1

L

∑
l,i,j

τki

[
yijzijb

(s,l)
ki −mijzijb

(s,l)
ki × expit(xijβk + zij�kb

(s,l)
ki )

]
=

1

L

∑
l,i,j

τki

[
yij −mijexpit(xijβk + zij�kb

(s,l)
ki )

]
× zijb

(s,l)
ki ;

∂2Qk(βk,�k)

∂β>k ∂βk
=

1

L

∑
l,i,j

τki

[
−xijx

>
ijmij

exp(xijβk + zij�kb
(s,l)
ki )

(exp(xijβk + zij�kb
(s,l)
ki ) + 1)2

]
;

∂2Qk(βk,�k)

∂β>k ∂�
∗
k

=
1

L

∑
l,i,j

τki

[
−xijzijb

(s,l)
ki mij

exp(xijβk + zij�kb
(s,l)
ki )

(exp(xijβk + zij�kb
(s,l)
ki ) + 1)2

]
;

∂2Qk(βk,�k)
∂�∗>k ∂βk

=
1

L

∑
l,i,j

τki

[
−xijzijb

(s,l)
ki mij

exp(xijβk + zij�kb
(s,l)
ki )

(exp(xijβk + zij�kb
(s,l)
ki ) + 1)2

]
;

∂2Qk(βk,�k)
∂�∗>k ∂�∗k

=
1

L

∑
l,i,j

τki

[
−zijb

(s,l)
ki (zijb

(s,l)
ki )>mij

exp(xijβk + zij�kb
(s,l)
ki )

(exp(xijβk + zij�kb
(s,l)
ki ) + 1)2

]
.
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Table 3–1: Simulation settings for MLE.
Outcome K n Dim(β) Dim(�) Dim(Θ)
Poisson 2 100, 250, 500, 1000 2 1 7
Poisson 2 100, 250, 500, 1000 5 1 13
Poisson 2 100, 250, 500, 1000 5 2 17
Poisson 3 100, 250, 500, 1000 2 1 11
Poisson 3 100, 250, 500, 1000 5 1 20
Poisson 3 100, 250, 500, 1000 5 2 26

Binomial 2 100, 250, 500, 1000 2 1 7
Binomial 2 100, 250, 500, 1000 5 1 13
Binomial 2 100, 250, 500, 1000 5 2 17
Binomial 3 100, 250, 500, 1000 2 1 11
Binomial 3 100, 250, 500, 1000 5 1 20
Binomial 3 100, 250, 500, 1000 5 2 26

Recall that expit is the inverse of the logit function, that is expit(x) = exp(x)
exp(x)+1

.

I have included additional details on these derivations in Section B.2.

3.4 Simulation Study

I designed and executed a simulation study to demonstrate the performance

of the MLE of the FinMix GLMM parameters. I ran simulations for both Poisson,

and binomial outcomes, with scenarios which included mixtures of two, and three

subpopulations, and varied the number of fixed, and random effects. I considered

four sample sizes (100, 250, 500, 1000) for all simulations and ran each scenario 100

times. See Table 3–1 for a summary of the scenarios considered. In the Poisson case,

ni ∈ {8, 9, 10}∀i, and in the binomial case, ni ∈ {3, 4, 5, 6}∀i.

In all cases, a multinomial distribution was used to generate subpopulation

membership. I included an intercept in each model, so the first column of the matrix

X is of 1s. I generated the covariates independently. In the following, i ∈ {1, 2, . . . , n},
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and j ∈ {1, 2, . . . , ni}. I generated the covariate data as follows:

xij1 = 1∀i∀j;

xij2 ∼ Gaussian(µ = 1, σ = 0.5)∀i∀j

for cases where p = 2. When p = 5, I used:

xij3 ∼ Gaussian(µ = 0, σ = 0.5)∀i∀j;

xij4 ∼ Gaussian(µ = −1, σ = 1)∀i∀j;

xij5 ∼ Gaussian(µ = 0, σ = 1)∀i∀j.

For any variable for which there was a random effect, there was also a fixed effect, that

is, all columns of Z are also columns of X. Additionally, if q = 1 then zij1 = xij1∀i∀j,

and if q = 2 then zij1 = xij1∀i∀j, and zij2 = xij2∀i∀j. I generated the random

effects bi from a standard multivariate Gaussian distribution. Given the values

of Xi, Zi, the group membership, bi, βk, and �k for all k ∈ {1, 2, . . . , K}, I then

generated the outcomes for the simulations. In the Poisson case, ξij was calculated

as log(ξij) = X>ijβk + Zij�kbi, and then Yij ∼ Poisson(ξij). In the binomial case,

logit(ϕij) = x>ijβk + zij�kbi, and Yij ∼ binomial(mij = 10, ϕij).

Wherever possible, I used the same parameter settings in different simulation

settings so that the results would be easier to compare, and I provided a summary

of the parameter settings in Table 3–2. Consider first the simulations in which the

outcome follows a Poisson distribution. Beginning with the cases where K = 2, that

is when the population consisted of two heterogeneous subpopulations. In these cases,

I set the mixing proportions to π1 = 0.6, and π2 = 0.4. When there were two fixed
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effects considered (p = 2), β>1 = (−0.75, 0.35), and β>2 = (0.60,−0.50). In cases

where I estimated five fixed effects (p = 5), β>1 = (−0.75, 0.35, 0.10,−0.40, 0.00), and

β>2 = (0.60,−0.50,−0.35,−0.15, 0.00). For the random effects, when I estimated one

random effect (q = 1), �∗>1 = (0.80), and �∗>2 = (0.25). In the case where I estimated

two random effects (q = 2), �∗>1 = (0.80,−0.15, 0.20), and �∗>2 = (0.25, 0.00, 0.30).

Turning now to the case where K = 3. In these simulations, I set the mixing

proportions to π1 = 0.5, π2 = 0.3, and π3 = 0.2. Given two fixed effects (p = 2), I used

β>1 = (−0.75, 0.35), β>2 = (0.60,−0.50), and β>3 = (0.45, 0.75). For the case where

five fixed effects were present in the model (p = 5), β>1 = (−0.75, 0.35, 0.10,−0.40,

0.00), β>2 = (0.60,−0.50,−0.35,−0.15, 0.00), and β>3 = (0.45, 0.75,−0.65, 0.20, 0.00).

When one random effect was present in the model (q = 1), �∗>1 = (0.80), �∗>2 = (0.25),

and �∗>3 = (0.40). If I estimated two random effects (q = 2), the parameter settings

were �∗>1 = (0.80,−0.15, 0.20), �∗>2 = (0.25, 0.00, 0.30), and �∗>3 = (0.40, 0.25, 0.10).

In contrast, when the outcome followed a binomial distribution, I used the

following parameter settings. When K = 2, I set the mixing proportions to π1 = 0.6,

and π2 = 0.4. Given two fixed effects (p = 2), β>1 = (−0.55, 0.85), and β>2 = (0.25,

−0.50). Alternatively, when I estimated five fixed effects (p = 5), β>1 = (−0.55,

0.85, 1.25,−0.70, 0.00), and β>2 = (0.25,−0.50, 1.35,−0.20, 0.00). For the random

effects, when I estimated one random effect (q = 1), �∗>1 = (1.60), and �∗>2 = (1.05).

However, when two random effects were in the model (q = 2), �∗>1 = (1.60,−0.45,

1.00), and �∗>2 = (1.05, 0.00, 1.40).

In the more complex case, where K = 3 I set the mixing proportions to π1 = 0.5,

π2 = 0.3, and π3 = 0.2. When two fixed effects were present in the model (p = 2),
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β>1 = (−0.55, 0.85), β>2 = (0.25,−0.50), and β>3 = (−0.75, 0.35). If the model had

five fixed effects (p = 5), β>1 = (−0.55, 0.85, 1.25,−0.70, 0.00), β>2 = (0.25,−0.50,

1.35,−0.20, 0.00), and β>3 = (−0.75, 0.35,−0.50, 0.55, 0.00). If the model had one

random effect (q = 1), �∗>1 = (1.60), �∗>2 = (1.05), and �∗>3 = (1.45). Alternatively,

if I included two random effects (q = 2), the parameter settings were �∗>1 = (1.60,

−0.45, 1.00), �∗>2 = (1.05, 0.00, 1.40), and �∗>3 = (1.45, 0.40, 1.30).

The choice of starting values is important in the estimation of FinMix GLMM

parameters because a poor choice can lead to slow convergence or non-convergence in

both EM, and Newton-Raphson. In the following simulations, I generated an initial

value for each generated dataset. I set the initial values of the mixing proportions to

πk = 1
K

, and the off-diagonal values of � to 0. For the other values in θ, namely β, and

the diagonal values of �, I generated the initial value as the true value plus a random

draw from a uniform distribution i.e. θ(0) = θ + U where U ∼ Uniform(−0.5, 0.5).

Since the diagonal elements of � must be non-negative, in cases where the true value

of a diagonal element of � was less than 0.5, I generated the starting value from

Uniform(0.1, 1.1). I included more detail on the sensitivity of the algorithm to the

starting values in Section F.2.

To generate each dataset, first, I generated the dataset with n = 1000. I saved

the data for the first 500 subjects as the n = 500 dataset. Similarly, the first 250

subjects’ data became the n = 250 dataset, and the first 100 subjects’ data is the

n = 100 dataset. I did this to make the datasets for each of the possible sample sizes

more comparable.
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Table 3–2: Parameter settings for MLE. Parameter values for both Poisson, and
binomial outcomes, and each of the six simulation settings.

Outcome Poisson Binomial
Parameter 1 2 3 4 5 6 7 8 9 10 11 12

π1 0.6 0.6 0.6 0.5 0.5 0.5 0.6 0.6 0.6 0.5 0.5 0.5
π2 0.4 0.4 0.4 0.3 0.3 0.3 0.4 0.4 0.4 0.3 0.3 0.3
π3 – – – 0.2 0.2 0.2 – – – 0.2 0.2 0.2
β10 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55
β11 0.35 0.35 0.35 0.35 0.35 0.35 0.85 0.85 0.85 0.85 0.85 0.85
β12 – 0.10 0.10 – 0.10 0.10 – 1.25 1.25 – 1.25 1.25
β13 – -0.40 -0.40 – -0.40 -0.40 – -0.70 -0.70 – -0.70 -0.70
β14 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
Γ11 0.80 0.80 0.80 0.80 0.80 0.80 1.60 1.60 1.60 1.60 1.60 1.60

Γ112 – – -0.15 – – -0.15 – – -0.45 – – -0.45
Γ12 – – 0.20 – – 0.20 – – 1.00 – – 1.00
β20 0.60 0.60 0.60 0.60 0.60 0.60 0.25 0.25 0.25 0.25 0.25 0.25
β21 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50
β12 – -0.35 -0.35 – -0.35 -0.35 – 1.35 1.35 – 1.35 1.35
β13 – -0.15 -0.15 – -0.15 -0.15 – -0.20 -0.20 – -0.20 -0.20
β14 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
Γ21 0.25 0.25 0.25 0.25 0.25 0.25 1.05 1.05 1.05 1.05 1.05 1.05

Γ212 – – 0.00 – – 0.00 – – 0.00 – – 0.00
Γ22 – – 0.30 – – 0.30 – – 1.40 – – 1.40
β30 – – – 0.45 0.45 0.45 – – – -0.75 -0.75 -0.75
β31 – – – 0.75 0.75 0.75 – – – 0.35 0.35 0.35
β32 – – – – -0.65 -0.65 – – – – -0.50 -0.50
β33 – – – – 0.20 0.20 – – – – 0.55 0.55
β34 – – – – 0.00 0.00 – – – – 0.00 0.00
Γ31 – – – 0.40 0.40 0.40 – – – 1.45 1.45 1.45

Γ312 – – – – – 0.25 – – – – – 0.40
Γ32 – – – – – 0.10 – – – – – 1.30
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Figure 3–1: Mean Squared Error (MSE) across sample sizes, Poisson outcome, with
K = 2, p = 2, and q = 1.

I summarised the results of these simulations in Tables E–1 to E–12, and reported

the average bias, variance, and MSE for each parameter (multiplied by 100) in these

tables. These simulations show that the MLE performs well in a variety of possible

settings. The motivation for using the MLE is that it is a popular method of

estimation. In addition, MLEs are consistent, efficient, and asymptotically follow a

42



0.0

0.5

1.0

1.5

2.0

n=100 n=250 n=500 n=1000
Sample Size

M
SE

MSE Across Sample Sizes, Poisson Scenario 2

Figure 3–2: MSE across sample sizes, Poisson outcome, with K = 2, p = 5, and
q = 1.

Gaussian distribution, and these simulations confirmed these theoretical properties.

However, there were also unexpected findings from the simulation study.

The expected results that this simulation study confirmed were that bias, and

variance of the estimates decreased with sample size, and the fewer parameters being

estimated, the better the estimates. As the sample size increased, both the bias, and

variance decreased, and thus the MSE also decreased. Similarly, the estimators for a
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Figure 3–3: MSE across sample sizes, Poisson outcome, with K = 2, p = 5, and
q = 2.

given subpopulation’s parameters showed less variance, and bias, in general, the larger

the subpopulation. That is, in the two subpopulation situation, the estimates in the

larger subpopulation usually had smaller MSE than those in the smaller subpopulation

regardless of the overall sample size n. While the largest sample size I considered

in these simulations was n = 1000, I expect that this trend would continue in larger

samples. Aside from the sample size comparison, the parameters that correspond to
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Figure 3–4: MSE across sample sizes, Poisson outcome, with K = 3, p = 2, and
q = 1.

fixed effects for covariates that did not have a random effect exhibited the least bias,

and variance, followed by fixed effects for covariates that had a random effect, then

diagonal elements of the matrix �, followed by lower-triangle elements of the matrix

�.

One surprising result of the simulations was the estimates in the binomial case.

I expected that the estimates for a binomial outcome would be difficult to calculate,
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Figure 3–5: MSE across sample sizes, Poisson outcome, with K = 5, p = 5, and
q = 1.

and that these estimates would show a large MSE. Many of the estimates in the

binomial simulations showed smaller than expected bias, and variance. Another

surprise from the simulation results was that the performance of the model under

relatively small sample sizes was better than expected. In the n = 100, and K = 3

case, the expected number of subjects in the smallest subpopulation is just 20. It was
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Figure 3–6: MSE across sample sizes, Poisson outcome, with K = 3, p = 5, and
q = 2.

encouraging to see that even in this case, the estimation of parameters performed

reasonably.

These simulation results suggest that this statistical model is applicable in a

variety of situations. Because estimates of both a Poisson, and binomial outcome

showed small MSE, outcomes that follow other exponential families could be ex-

plored. Given that the estimates in simulations where the outcome follows a binomial
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Figure 3–7: MSE across sample sizes, binomial outcome, with K = 2, p = 2, and
q = 1.

distribution performed better than expected, one could apply this model with less

hesitation to data with a binomial outcome. The performance of the model in small

sample sizes is encouraging and makes this model more widely applicable. The fact

that the estimation of the parameters corresponding to small subpopulations was

possible indicates that such a model could be applied even if there are many distinct
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Figure 3–8: MSE across sample sizes, binomial outcome, with K = 2, p = 5, and
q = 1.

subpopulations, or if a subpopulation has a small mixing proportion. This suggests

that a FinMix GLMM is a widely applicable model for statistical analysis.

I included a few other possibilities of interest in Appendix F. I explored further

to the case where different values of ni were used in Section F.3. In the case where

the outcome follows a binomial distribution, the value of mij need not be the same

throughout. I explored this possibility in Section F.4. The MLE results for simulation

49



0

10

20

30

40

n=100 n=250 n=500 n=1000
Sample Size

M
SE

MSE Across Sample Sizes, Binomial Scenario 3

Figure 3–9: MSE across sample sizes, binomial outcome, with K = 2, p = 5, and
q = 2.

scenarios from Chapter 4 are in Appendix H. These show the performance of the

MLE in a variety of more complex settings.

3.5 Conclusion

In this chapter, I explored the form of the FinMix GLMM, including the likelihood

equations, and details around identifiability. I also included an explanation of the

derivations, and numerical calculations used to maximise the approximate likelihood. I
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Figure 3–10: MSE across sample sizes, binomial outcome, with K = 3, p = 2, and
q = 1.

then used these derivations in the implementation of an MCEM algorithm to estimate

the MLE for both a Poisson or a binomial FinMix GLMM. Next, I performed

a simulation study to verify, and illustrate that the proposed algorithm provides

reasonable estimates in the MLE case. In the following chapter, Chapter 4, a penalised

likelihood is used to select which variables are non-zero, and which variables are zero.

In preparation for this, all simulations in this chapter with p = 5 contained one value
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Figure 3–11: MSE across sample sizes, binomial outcome, with K = 3, p = 5, and
q = 1.

of β for which the true value was 0 (the last value) in the vector βk. In addition,

when q = 2 I set one of the off-diagonals in the matrix � to 0 as well. In this way, I

considered the estimation of a parameter whose true value is 0, however, the case

where the true value of a random effect is 0, and when the value of K is unknown are

more complex, and I considered these in Section F.1.
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Figure 3–12: MSE across sample sizes, binomial outcome, with K = 3, p = 5, and
q = 2.
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CHAPTER 4
Objective Two: Optimisation of the Penalised Likelihood for Model

Selection in Finite Mixtures of Generalised Linear Mixed-Effect Models

4.1 Introduction

In situations where the covariates in the model have been chosen a priori,

the likelihood can be directly specified, and subsequently maximised, as seen in

Chapter 3. However, there are many cases where a large number of covariates are

under consideration, and a model with a small number of covariates is desired or the

true model is assumed to have a small number of covariates. In this case, rather than

the problem being solely one of estimating the values of the parameters, the problem

also involves the selection of covariates or identifying which of the covariates to include

in the model. The problem of variable selection is complex, and many solutions have

been proposed. One popular approach to this problem is to add a penalty function to

the likelihood equation and then maximise the resulting penalised likelihood. Using

a penalised likelihood to perform variable selection provides a few advantageous

properties, namely consistency, sparsity, and the oracle property, assuming that

certain regularity conditions are satisfied. As such, it is this approach that I used

in this thesis, and I explored three popular penalty functions for use in a Finite

Mixture of Generalised Linear Mixed-Effect Model (FinMix GLMM). In this chapter,

I combined the well known penalty functions of the Least Absolute Shrinkage and

Selection Operator (LASSO) (Tibshirani, 1996), Adaptive Least Absolute Shrinkage
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and Selection Operator (ALASSO) (Zou, 2006), and the Smoothly Clipped Absolute

Deviation (SCAD) (Fan and Li, 2001) penalties with the theory in the previous

chapter to provide simultaneous model selection, and fitting of a FinMix GLMM.

The chapter proceeds with a discussion regarding changes to the parameterisation

of the model in Section 4.2 including how to estimate the new parameters. Next, I

considered penalty functions in Section 4.3 with special attention to LASSO, ALASSO,

and SCAD. Section 4.4 discusses the asymptotic properties. I explored the numerical

computation in Section 4.5 with appropriate changes to the algorithm to incorporate

the penalty function. To verify the properties of the estimator, I undertook a

simulation study, and I described the settings along with the results of this simulation

study in Section 4.6 with detailed tables in Appendices G, and H. The last section,

Section 4.7, provides a summary.

4.2 Reparameterisation of the Model

Reparameterisation of the model is only necessary when random effects are being

penalised. I used the parameterisation shown in Chapter 3 in cases where I penalised

only the fixed effects.

When more than one random effect is present in the model, both the variance of

each of the random effects, and the covariances between them must be estimated. If

random effects are to be penalised, I separated these parameters into two matrices

such that � = dC, where C is a lower triangle matrix with ones along the diagonal,

and d is a diagonal matrix consisting of variances of the random effects. To simplify

notation, I dropped the subscript k in this section. Recall that in the preceding

chapter, these parameters were all contained in lower triangle matrices, denoted �k,
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and all estimated together. By selecting this parameterisation, if the variance of

a random effect is set to be zero, the covariances of the random effects associated

with that covariate are then automatically set to zero (by properties of diagonal

matrices). This follows from the well known property of covariance that given any

random variable W , and any constant s ∈ R, Cov(W, s) = 0. To calculate the

decomposition of �, set d∗ = diag(Γ11,Γ22, . . . ,Γqq), and Cih = Γih/Γhh. Recall that

� is a lower triangle matrix, so for i < h,Γih = 0, thus i < h⇒ Cih = 0. Additionally,

Cii = Γii/Γii = 1 so the diagonal of C contains ones as desired. The vectorised

versions of d, and C are d∗, and C∗ respectively. All the regression coefficients for

subpopulation k can then be represented by the vector θk = (β>k , d
∗>
k ,C∗>k )>.

This reparameterisation of the model approach was also taken in Du et al. (2013),

and Pan and Huang (2014), but this method is not unrivalled. Ibrahim et al. (2011)

used group variable selection on each row of � instead and used the Euclidian norm

of the row of � in the penalty function rather than considering the absolute value

of a parameter. That is, for the eth row of �, �e = [Γe1,Γe2, . . . ,Γee, 0, 0, . . . , 0] =

Γee[Ce1, Ce2, . . . , Ce(e−1), 1, 0, 0, . . . , 0]. Next consider the Euclidean norm of the row,

||�e|| =
√

Γ2
ee(C

2
e1 + C2

e2 + . . .+ C2
e(e−1) + 1). But C2

e1 +C2
e2 +. . .+C2

e(e−1) +1 ≥ 1 > 0,

thus ||�e|| = 0 ⇐⇒ Γ2
ee = 0 ⇐⇒ Γee = 0. Therefore, the group variable

selection to select random effects as used by Ibrahim et al. (2011) is equivalent to the

decomposition, and penalisation as shown in Du et al. (2013), and this thesis. Group

variable selection is a considerably more complex generalisation of the penalised

likelihood. As such, the reparameterisation of the model approach was chosen for

this research.
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4.3 Penalisation in the Generalised Linear Mixed-Effect Model Likeli-
hood

In a FinMix GLMM, I applied the penalty to each of the Generalised Linear

Mixed-Effect Model (GLMM)s separately. Building on the idea of maximum likelihood,

the penalised maximum likelihood includes a penalty to decide which variables should

be included in the model, and which should not be. The penalised likelihood function

then takes the form

`]nλnk(θk) = `n(θk)− pλnk(θk) (4.1)

when just the fixed effects are penalised and

`]nλnk(θk) = `n(θk)− pλnk(θk)

when both fixed, and random effects are penalised, where `n(θk) or `n(θk) is the

likelihood function, and pλnk(θk) or pλnk(θk) the penalty function.

I considered three penalisations below, the LASSO (Tibshirani, 1996), ALASSO

(Zou, 2006), and SCAD (Fan and Li, 2001). While these are not the only possible

penalty functions, these three are popular options.

As noted in Chapter 2, the penalty for the LASSO in a model with only fixed

effects takes the form

pλnk(θk) = λnk

p∑
h=1

|βkh|

with

∂pλnk(θk)

∂βkh
= λnksign(βkh).
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Similarly, if I applied a penalty to both the fixed and random effects, following

the work of Chen and Dunson (2003), and Bondell et al. (2010) the penalty becomes

pλnk(θk) = λnk

p∑
h=1

|βkh|+ λnk

q∑
h=1

|dkh| = λnk

p∑
h=1

|βkh|+ λnk

q∑
h=1

dkh

and the partial derivatives are

∂pλnk(θk)

∂βkh
= λnksign(βkh)

and

∂pλnk(θk)

∂dkh
= λnk.

The second derivatives of the penalty are equal to zero, both with respect to βkh, and

dkh.

The ALASSO penalty is similar to the LASSO penalty with the addition of

weights wh, more specifically, LASSO is ALASSO with all of the weights set to 1.

However, this requires choosing both λnk, and wh, which is sometimes considered

to be a drawback of this method as this step can be computationally intensive (by

generalised cross-validation for example). In this thesis, I chose the inverse of the

Maximum Likelihood Estimation (MLE) estimate as the weight for a particular

parameter. If only fixed effects are considered, this penalty is of the form

pλnk(θk) = λnk

p∑
h=1

wh|βkh|

with

∂pλnk(θk)

∂βkh
= λnkwhsign(βkh).
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Similarly, if a penalty is applied to both the fixed and random effects, the penalty

becomes

pλnk(θk) = λnk

p∑
h=1

wh|βkh|+ λnk

q∑
h=1

wp+h|dkh| = λnk

p∑
h=1

wh|βkh|+ λnk

q∑
h=1

wp+hdkh

and the partial derivatives are

∂pλnk(θk)

∂βkh
= λnkwhsign(βkh)

and

∂pλnk(θk)

∂dkh
= λnkwp+h.

Again, the second derivatives of the penalty are equal to zero, both with respect to

βkh, and dkh.

One drawback of LASSO, and ALASSO is that all of the estimates are shrunk,

regardless of their absolute value. In some circumstances, it is desirable to shrink

larger estimates less, or not at all, and the SCAD penalty fulfils this requirement.

The penalty for SCAD is not usually represented in a closed form, but rather the

derivative is considered. If only fixed effects are considered then

∂pλnk(θk)

∂βkh
= λnk

{
I(|βkh| ≤ λnk) +

(aλnk − |βkh|)+

(a− 1)λnk
I(|βkh| > λnk)

}
.

In the case where both fixed and random effects are penalised,

∂pλnk(θk)

∂βkh
= λnk

{
I(|βkh| ≤ λnk) +

(aλnk − |βkh|)+

(a− 1)λnk
I(|βkh| > λnk)

}
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and

∂pλnk(θk)

∂dkh
= λnk

{
I(|dkh| ≤ λnk) +

(aλnk − |dkh|)+

(a− 1)λnk
I(|dkh| > λnk)

}
= λnk

{
I(dkh ≤ λnk) +

(aλnk − dkh)+

(a− 1)λnk
I(dkh > λnk)

}
.

Note that (t)+ = t× I(t > 0), and a > 2. In this thesis, I used the value of a = 3.7

throughout, consistent with (Fan and Li, 2001). I did not consider other values

for a, and choosing a using generalised cross-validation or other methods can be

computationally intensive. This penalty also has second derivatives that equal zero.

In further derivations, I used the notation θk for the kth subpopulation, and

equations as well as derivations of θk were omitted. That is, the case where both

fixed and random effects are penalised is presented. In addition, the hth element of

θk is θkh, and I denoted the penalty as pλnk(θkh). Furthermore, in all of the penalty

functions considered, pλnk(θkh) = pλnk(|θkh|), and thus pλnk(|θkh|) is sometimes used

in place of pλnk(θkh) in the literature.

In order to be of an appropriate size, it is pertinent to multiply the penalty

function by n, the number of subjects in the sample (Tibshirani, 1996). Since, in

my setting, I assumed the data comes from a finite mixture of models, the penalty

function must take into account that the number of subjects in each of the distinct

subpopulations, which is unknown. To scale this to an appropriate penalty for the

size of each of the subpopulations, I multiplied the penalty function by nk = n× π̂k,

the empirical estimate of n× πk, as shown in Khalili and Chen (2007). The penalised
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log-likelihood is thus,

`]nλnk(Θ) = `n(Θ)− n
K∑
k=1

πk × pλnk(θk)

for the entire dataset, and

`]nλnk(θk) = `n(θk, τk)− n× πk × pλnk(θk) (4.2)

for each subpopulation. In some cases in the literature, the penalty parameter λnk is

changed to λαnk. While the code I wrote allows for this extension, I did not explore

this possibility in detail in this thesis.

4.4 Asymptotic Properties

Given certain conditions on the model and penalty, the estimates calculated

using Maximum penalised Likelihood Estimation (MPLE) possess many desirable

asymptotic properties. The properties of interest are existence, consistency, sparsity,

and that the distribution is asymptotically Gaussian. More information on the

conditions, asymptotic properties, and proofs can be found in Appendix D.

4.5 Numerical Computation of the Penalised Maximum Likelihood Esti-
mator

The estimation proceeds similarly to the unpenalised likelihood setting, using

the Monte Carlo Expectation-Maximisation (MCEM) algorithm with the derivatives

of Q updated with the relevant penalty. Specifically, the outer MCEM loop does not

change, and only the M-step in the inner MCEM changes. The calculation of τki

does not change for any k or i, and the likelihood without a penalty function is used

to calculate these values. The exact form of τki is in Equation (3.1). Recall that I
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estimated both the subpopulation membership, and the mixing proportions in the

outer MCEM, and therefore calculated them in the same manner regardless of the

presence or form of the penalty function.

However, the calculation of τki relies on β̂k, and �̂k, both of which I updated in

the inner MCEM loop of the algorithm which takes into account the penalty function.

Thus, while the penalty function does not explicitly appear in the calculations of the

outer MCEM, I would not expect that the estimates for subpopulation membership

and mixing proportions would be exactly identical regardless of the form of the

penalty parameter.

4.5.1 Inner Monte Carlo Expectation-Maximisation

The inner loop of the MCEM is where I calculated most of the estimates in Θ. I

calculated the parameter estimates for π in the outer MCEM, but the inner MCEM

loops until the estimates for βk and �k reach convergence. Note that convergence of

�k is desired, not the convergence of dk, and Ck. This is done because �k contains

the parameters of interest, and because of the reparameterisation, estimation of dk,

and Ck could be less stable numerically. Recall that the penalty is only on the fixed

and random effects, which are in βk, dk, and Ck, and I estimated these in the inner

MCEM. Therefore, I updated the inner MCEM to include the penalty. However,

the penalty function may not be differentiable everywhere. Specifically, the LASSO,

ALASSO, and SCAD penalties are not differentiable at 0. Therefore, I approximated

the penalty function. There are many choices of approximating functions of varying

functional forms. In this thesis, I chose a quadratic approximation as used by Fan and

Li (2001), because it is a reasonably good approximation within a bounded set, while
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also being smooth, continuously differentiable, and providing ease of computation.

Following the approach taken by Fan and Li (2001), I approximated the log-likelihood

function with a Taylor polynomial, but I approximated the penalty function by a

different quadratic function.

By using a quadratic approximation to the penalty function, the previously

mentioned problems of singularity at the origin, and a lack of continuous second-

order derivatives, or indeed first-order derivatives in some cases can be avoided.

These issues exist among many possible penalty functions and this approach can

be extended beyond the three penalty functions focused on here. I chose this

approximation for three reasons. First, I approximated the likelihood with a quadratic

function, so using a quadratic approximation for the penalty as well keeps the degree

of the penalised likelihood consistent. Second, a quadratic polynomial function

is continuous, continuously differentiable, and continuously integrable. Third, a

quadratic approximation provides a reasonably close estimation of to the penalty

function, given that one is near to the point around which the approximation is

calculated.

Recall the weighted penalised likelihood Equation (4.2) where `n(θk, τk) is the

likelihood equation for given values of θk, and τk with pλnk(θk) as the penalty function

for the given values of θk, and λnk. Recall from Section 3.3.3 that I provided the

form of the approximate likelihood Q(θk, τk) in the Poisson, and binomial cases, and

since the specific values of bki are unknown, I used an approximation with L values

for b
(l)
ki . Given the form of the approximated likelihood, I considered the quadratic

approximation to the penalty function next.
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I assumed that the initial value of θk, denoted as θ
(0)
k , is close to the maximum

of the weighted penalised likelihood equation `](θk). I then considered the penalty

function componentwise, that is, for each element of θk I approximated the penalty

pλnk(θkh) = pλnk(|θkh|). Using the chain rule,

∂pλnk(θkh)

∂θkh
=

∂pλnk(θkh)

∂θkh
sign(θkh)

=
∂pλnk(θkh)

∂θkh
× θkh
|θkh|

≈

[
∂pλnk(θ

(0)
kh )

∂θkh
× 1

|θ(0)
kh |

]
× θkh.

However, this is an approximation to the derivative of the penalty function. Taking

the anti-derivative of this approximation yields as an approximation for the penalty

function,

pλnk(|θkh|) ≈ pλnk(|θ
(0)
kh |) +

1

2

[
∂pλnk(|θ

(0)
kh |)

∂θkh
× 1

|θ(0)
kh |

]
{(θkh)2 − (θ

(0)
kh )2}.

For ease of notation, let Uλnk(θ
(s)
k ) = �λnk(θ

(s)
k ) × θ(s)

k . Recall that κ is the

number of parameters in each subpopulation, that is κ = length(θk) = p+ 1
2
q(q + 1).

�λnk(θ
(s)
k ) = diag

(
∂pλnk(|θ

(s)
k1 |)

∂θk1

1

|θ(s)
k1 |

,
∂pλnk(|θ

(s)
k2 |)

∂θk2

1

|θ(s)
k2 |

, . . . ,
∂pλnk(|θ

(s)
kκ |)

∂θkκ

1

|θ(s)
kκ |

)
.

In practice, to avoid dividing by 0 and for numerical stability, I added a small

value (ε) to the denominator of all elements of �λnk(θ
(s)
k ) as shown in Fan and Li

(2001). I chose a small value for ε (specifically ε = 0.0001) so it would have little
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impact on the bias of the parameter estimates. Thus,

�λnk(θ
(s)
k ) = diag

(
∂pλnk(|θ

(s)
k1 |)

∂θk1

1

|θ(s)
k1 |+ ε

,
∂pλnk(|θ

(s)
k2 |)

∂θk2

1

|θ(s)
k2 |+ ε

, . . . ,

∂pλnk(|θ
(s)
kκ |)

∂θkκ

1

|θ(s)
kκ |+ ε

)

Given the penalised likelihood, and taking a second-order Taylor approximation

of the penalised likelihood, the resulting equation to be maximised is:

`]nλnk(θk) = `n(θk, τk)− nπkpλnk(θk)

≈ Qk(θ
(s)
k ) +Q′k(θ

(s)
k )>(θ

(s+1)
k − θ(s)

k )

+
1

2
(θ

(s+1)
k − θ(s)

k )>Q′′k(θ
(s)
k )(θ

(s+1)
k − θ(s)

k )

−1

2
nθ

(s+1)>

k �λnk(θ
(s)
k )θ

(s+1)
k

To maximise this approximation, I took the derivative, and set to 0, thus

Q′k(θ
(s)
k ) +Q′′k(θ

(s)
k )(θ

(s+1)
k − θ(s)

k )− n�λnk(θ
(s)
k )θ

(s+1)
k = 0

which I then rearranged to

θ
(s+1)
k = θ

(s)
k − (Q′′k(θ

(s)
k )− n�λnk)−1(Q′k(θ

(s)
k )− n�λnk(θ

(s)
k )θ

(s)
k )

= θ
(s)
k − (Q′′k(θ

(s)
k )− n�λnk)−1(Q′k(θ

(s)
k )− nUλnk(θ

(s)
k )

which I used in the Newton-Raphson algorithm. Following the work of Hunter and Li

(2005), the root of this derivative is the maximiser of the likelihood. As in the MLE

case, (1
2
)ι can be added to the equation so that half step Newton-Raphson can be

performed.
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Once I defined the target function to be maximised, I applied this procedure to

each of the three penalty functions (LASSO, ALASSO, and SCAD). Specifically, the

matrix �λnk , changes when the penalty changes.

In some cases, it is desirable to penalise only the fixed effects, and not the random

effects. In these situations, I calculated the penalty for the fixed effects as above,

but set the penalty for the random effects to 0. Additionally, as shown in Tibshirani

(1996), I did not penalise the intercept (βk0), and as in Du et al. (2013) I did not

penalise Ckih. Thus, I set the corresponding elements of the diagonal of �λnk(θ
(s)
k ) to

zero. I summarised the non-zero diagonal elements of �λnk evaluated at θ
(s)
k in the

following table.

Table 4–1: Non-zero diagonal element of �λnk
Penalty Value

LASSO λnk

|θ(s)
kh |+ε

ALASSO λnkwh

|θ(s)
kh |+ε

SCAD λnk

{
I(|θkh| ≤ λnk) +

(aλnk−|θkh|)+

(a−1)λnk
I(|θkh| > λnk)

}
1

|θ(s)
kh |+ε

4.6 Simulation Study

The following table describes the outline for the simulation study. Keeping

in line with the MLE simulations, I performed simulations for both Poisson and

binomial outcomes, and for mixtures of 2, and 3 subpopulations. I varied the number

of fixed and random effects (both zero and non-zero), and considered four sample

sizes (100, 250, 500, 1000) for the simulations in this chapter. I ran each simulation

100 times.
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In all cases, I used a multinomial distribution to generate subpopulation mem-

Table 4–2: Simulation settings for MPLE
Number of Number of Number of Number of

Outcome K n β 6= 0 β = 0 d 6= 0 d = 0 Dim(Θ)
Poisson 2 100, 250, 500, 1000 2 5 2 0 27
Poisson 2 100, 250, 500, 1000 2 15 2 0 47
Poisson 2 100, 250, 500, 1000 4 15 2 3 69
Poisson 3 100, 250, 500, 1000 2 5 2 0 41
Poisson 3 100, 250, 500, 1000 2 15 2 0 71
Poisson 3 100, 250, 500, 1000 4 15 2 3 104

Binomial 2 100, 250, 500, 1000 2 5 2 0 27
Binomial 2 100, 250, 500, 1000 2 15 2 0 47
Binomial 2 100, 250, 500, 1000 4 15 2 3 69
Binomial 3 100, 250, 500, 1000 2 5 2 0 41
Binomial 3 100, 250, 500, 1000 2 15 2 0 71
Binomial 3 100, 250, 500, 1000 4 15 2 3 104

bership. To include an intercept in the model, the first column of the matrix X is

of 1s. I generated all the covariates independently, except for X2, and X3, where

Corr(X2, X3) = 0.5. I introduced this collinearity to be more analogous to real data.

In the following section, i ∈ {1, 2, . . . , n}, and j ∈ {1, 2, . . . , ni},. I generated the
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data as follows:

xij1 = 1∀i∀j;

xij(2−p) ∼ Multivariate Gaussian(µ,Σ)∀i∀j;

µ =



0

0

...

0


;

Σ =



1 0.5 0 . . . 0

0.5 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1


.

As before, for any variable for which there is a random effect, there is also a fixed

effect, therefore columns of Z are also columns of X. I again generated the random

effects bi from a standard Gaussian distribution. Given the values of Xi, Zi, the group

membership, bi, βk, and �k = dkCk, I generated the outcome variables. In the Poisson

case, ξij was calculated as log(ξij) = xijβk + zij�kbi, and then Yij ∼ Poisson(ξij). In

the binomial case, logit(ϕij) = xijβk + zij�kbi and Yij ∼ binomial(mij = 10, ϕij). I

added additional parameters with a true value of zero to the vectors, and by including

several irrelevant covariates I was able to explore variable selection through simulation.

As I presented Chapter 3, where possible, I used the same parameter settings

across simulation settings, and a summary of the parameter settings can be found
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in Tables 4–3 to 4–5. Consider first the Poisson simulations where K = 2. I set

the mixing proportions to π1 = 0.6 and π2 = 0.4. When I considered seven fixed

effects (p = 7), β>1 = (0.65, 0.30, 0.00, 0.00, . . . , 0.00) and β>2 = (0.20,−0.45, 0.00,

0.00, . . . , 0.00), if I estimated seventeen fixed effects (p = 17), β>1 = (0.65, 0.30, 0.00,

0.00, . . . , 0.00) and β>2 = (0.20,−0.45, 0.00, 0.00, . . . , 0.00), and in the case where I

included nineteen fixed effect parameters in the model (p = 19), β>1 = (0.65, 0.30,

0.15, 0.35, 0.00, 0.00, . . . , 0.00) and β>2 = (0.20,−0.45,−0.10, 0.25, 0.00, 0.00, . . . , 0.00).

For the random effects, when I estimated two random effects (q = 2), �∗>1 = (0.30,

−0.25, 0.10) and �∗>2 = 0.35, 0.20, 0.15). In the case where I estimated five random

effects (q = 5), �∗>1 = (0.30,−0.25, 0.10, 0.00, 0.00, . . . , 0.00) and �∗>2 = (0.35, 0.20,

0.15, 0.00, 0.00, . . . , 0.00).

Turning now to the case where K = 3. In these simulations, I set the mix-

ing proportions to π1 = 0.5, π2 = 0.3, and π3 = 0.2. Given seven fixed effects

(p = 7), I used β>1 = (0.65, 0.30, 0.00, 0.00, . . . , 0.00), β>2 = (0.20,−0.45, 0.00, 0.00,

. . . , 0.00), and β>3 = (1.00, 0.15, 0.00, 0.00, . . . , 0.00). For the case where seventeen

fixed effects were present in the model (p = 17), β>1 = (0.65, 0.30, 0.00, 0.00, . . . , 0.00),

β>2 = (0.20,−0.45, 0.00, 0.00, . . . , 0.00), β>3 = (1.00, 0.15, 0.00, 0.00, . . . , 0.00). When

I estimated nineteen fixed effects (p = 19), β>1 = (0.65, 0.30, 0.15, 0.35, 0.00, 0.00,

. . . , 0.00), β>2 = (0.20,−0.45,−0.10, 0.25, 0.00, 0.00, . . . , 0.00), and β>3 = (1.00, 0.15,

−0.65,−0.15, 0.00, 0.00, . . . , 0.00). When two random effects were present in the

model (q = 2), �∗>1 = (0.30,−0.25, 0.10), �∗>2 = (0.35, 0.20, 0.15), and �∗>3 = (0.25,

0.00, 0.20). In the case where I estimated five random effects (q = 5), the parameter
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settings were �∗>1 = (0.30,−0.25, 0.10, 0.00, 0.00, . . . , 0.00), �∗>2 = (0.35, 0.20, 0.15,

0.00, 0.00, . . . , 0.00), and �∗>3 = (0.25, 0.00, 0.20, 0.00, 0.00, . . . , 0.00).

In contrast, when the outcome follows a binomial distribution, I used the following

parameter settings. When K = 2, I again set the mixing proportions to π1 = 0.6 and

π2 = 0.4. Given seven fixed effects (p = 7), β>1 = (0.95, 0.60, 0.00, 0.00, . . . , 0.00) and

β>2 = (−0.85,−0.15, 0.00, 0.00, . . . , 0.00). Alternatively, when I estimated seventeen

fixed effects (p = 17), β>1 = (0.95, 0.60, 0.00, 0.00, . . . , 0.00) and β>2 = (−0.85,−0.15,

0.00, 0.00, . . . , 0.00). When the number of fixed effects was increased to nineteen

(p = 19), β>1 = (0.95, 0.60,−0.65,−0.25, 0.00, 0.00, . . . , 0.00) and β>2 = (−0.85,

−0.15,−0.75, 0.10, 0.00, 0.00, . . . , 0.00). For the random effects, when I estimated

two random effects (q = 2), �∗>1 = (0.95, 0.85, 1.15) and �∗>2 = (0.70,−0.70, 0.80).

However, when I included five random effects in the model (q = 5), �∗>1 = (0.95, 0.85,

1.15, 0.00, 0.00, . . . , 0.00) and �∗>2 = (0.70,−0.70, 0.80, 0.00, 0.00, . . . , 0.00).

In the more complex case, where K = 3, I set the mixing proportions to π1 = 0.5,

π2 = 0.3, and π3 = 0.2. For a model with seven fixed effects (p = 7), β>1 = (0.95,

0.60, 0.00, 0.00, . . . , 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00, . . . , 0.00), and β>3 = (−0.30,

−0.90, 0.00, 0.00, . . . , 0.00). If the model has seventeen fixed effects (p = 17), β>1 =

(0.95, 0.60, 0.00, 0.00, . . . , 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00, . . . , 0.00), and β>3 =

(−0.30,−0.90, 0.00, 0.00, . . . , 0.00). When I estimated nineteen fixed effects (p = 19),

β>1 = (0.95, 0.60,−0.65,−0.25, 0.00, 0.00, . . . , 0.00), β>2 = (−0.85,−0.15,−0.75, 0.10,

0.00, 0.00, . . . , 0.00), and β>3 = (−0.30,−0.90, 0.80,−0.25, 0.00, 0.00, . . . , 0.00). If the

true model had two random effects (q = 2), �∗>1 = (0.95, 0.85, 1.15), �∗>2 = (0.70,

−0.70, 0.80), and �∗>3 = (1.75, 0.00, 0.85). Alternatively, when I included five random
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effects (q = 5), the parameter settings were �∗>1 = (0.95, 0.85, 1.15, 0.00, 0.00, . . . , 0.00),

�∗>2 = (0.70,−0.70, 0.80, 0.00, 0.00, . . . , 0.00), and �∗>3 = (1.75, 0.00, 0.85, 0.00, 0.00,

. . . , 0.00).

The choice of starting values was again important. I produced the initial values

for the algorithm independently for each generated dataset. I set the initial values

of the mixing proportions to πk = 1
K

, and the off-diagonal values of � to 0. For the

other values in θ, namely β, and the diagonal values of �, I generated the initial value

as the true value plus a random draw from a uniform distribution ie. θ(0) = θ + U

where U ∼ Uniform(−0.5, 0.5). If the true value of the diagonal of � was 0 or was

under 0.5, I used a uniform distribution between 0.1, and 1.1 instead to guarantee

that I did not generate a negative starting value. I generated initial values for �k

rather than initial values for dk, and Ck to be consistent with Chapter 3, and because

I used �k in the outer Expectation-Maximisation (EM). From these initial values, I

calculated the MLE for each dataset. I then used the MLE as the starting value for

the MPLE algorithm. The MLE is a popular choice as the starting value, especially

for ALASSO (Pan and Shang, 2018).

To be consistent with the MLE case, to generate each dataset, I first generated

the dataset with n = 1000. I saved the data for the first 500 subjects as the n = 500

dataset. Similarly, the first 250 subjects’ data became the n = 250 dataset, and the

first 100 subjects’ data is the n = 100 dataset. Again, the goal was to make the

datasets for each of the possible sample sizes easily comparable.

There are a variety of ways to choose the tuning parameter, and different values

of the tuning parameter will result in different models. In this thesis, I generated
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Table 4–3: Parameter settings for MPLE. Parameter values for both Poisson and
binomial outcomes, and each of the six simulation settings, subpopulation 1.

Outcome Poisson Binomial
Parameter 1 2 3 4 5 6 7 8 9 10 11 12

π1 0.6 0.6 0.6 0.5 0.5 0.5 0.6 0.6 0.6 0.5 0.5 0.5
β10 0.65 0.65 0.65 0.65 0.65 0.65 0.95 0.95 0.95 0.95 0.95 0.95
β11 0.30 0.30 0.30 0.30 0.30 0.30 0.60 0.60 0.60 0.60 0.60 0.60
β12 0.00 0.00 0.15 0.00 0.00 0.15 0.00 0.00 -0.65 0.00 0.00 -0.65
β13 0.00 0.00 0.35 0.00 0.00 0.35 0.00 0.00 -0.25 0.00 0.00 -0.25
β14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β17 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
β18 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
β19 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
β110 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
β111 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
β112 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
β113 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
β114 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
β115 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
β116 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
Γ11 0.30 0.30 0.30 0.30 0.30 0.30 0.95 0.95 0.95 0.95 0.95 0.95

Γ112 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 0.85 0.85 0.85 0.85 0.85 0.85
Γ12 0.10 0.10 0.10 0.10 0.10 0.10 1.15 1.15 1.15 1.15 1.15 1.15

Γ113 – – 0.00 – – 0.00 – – 0.00 – – 0.00
Γ123 – – 0.00 – – 0.00 – – 0.00 – – 0.00
Γ13 – – 0.00 – – 0.00 – – 0.00 – – 0.00

Γ114 – – 0.00 – – 0.00 – – 0.00 – – 0.00
Γ124 – – 0.00 – – 0.00 – – 0.00 – – 0.00
Γ134 – – 0.00 – – 0.00 – – 0.00 – – 0.00
Γ14 – – 0.00 – – 0.00 – – 0.00 – – 0.00

Γ115 – – 0.00 – – 0.00 – – 0.00 – – 0.00
Γ125 – – 0.00 – – 0.00 – – 0.00 – – 0.00
Γ135 – – 0.00 – – 0.00 – – 0.00 – – 0.00
Γ145 – – 0.00 – – 0.00 – – 0.00 – – 0.00
Γ15 – – 0.00 – – 0.00 – – 0.00 – – 0.00
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Table 4–4: Parameter settings for MPLE. Parameter values for both Poisson and
binomial outcomes, and each of the six simulation settings, subpopulation 2.

Outcome Poisson Binomial
Parameter 1 2 3 4 5 6 7 8 9 10 11 12

π2 0.4 0.4 0.4 0.3 0.3 0.3 0.4 0.4 0.4 0.3 0.3 0.3
β20 0.20 0.20 0.20 0.20 0.20 0.20 -0.85 -0.85 -0.85 -0.85 -0.85 -0.85
β21 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15
β22 0.00 0.00 -0.10 0.00 0.00 -0.10 0.00 0.00 -0.75 0.00 0.00 -0.75
β23 0.00 0.00 0.25 0.00 0.00 0.25 0.00 0.00 0.10 0.00 0.00 0.10
β24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β27 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
β28 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
β29 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
β210 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
β211 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
β212 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
β213 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
β214 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
β215 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
β216 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00
Γ21 0.35 0.35 0.35 0.35 0.35 0.35 0.70 0.70 0.70 0.70 0.70 0.70

Γ212 0.20 0.20 0.20 0.20 0.20 0.20 -0.70 -0.70 -0.70 -0.70 -0.70 -0.70
Γ22 0.15 0.15 0.15 0.15 0.15 0.15 0.80 0.80 0.80 0.80 0.80 0.80

Γ213 – – 0.00 – – 0.00 – – 0.00 – – 0.00
Γ223 – – 0.00 – – 0.00 – – 0.00 – – 0.00
Γ23 – – 0.00 – – 0.00 – – 0.00 – – 0.00

Γ214 – – 0.00 – – 0.00 – – 0.00 – – 0.00
Γ224 – – 0.00 – – 0.00 – – 0.00 – – 0.00
Γ234 – – 0.00 – – 0.00 – – 0.00 – – 0.00
Γ24 – – 0.00 – – 0.00 – – 0.00 – – 0.00

Γ215 – – 0.00 – – 0.00 – – 0.00 – – 0.00
Γ225 – – 0.00 – – 0.00 – – 0.00 – – 0.00
Γ235 – – 0.00 – – 0.00 – – 0.00 – – 0.00
Γ245 – – 0.00 – – 0.00 – – 0.00 – – 0.00
Γ25 – – 0.00 – – 0.00 – – 0.00 – – 0.00
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Table 4–5: Parameter settings for MPLE. Parameter values for both Poisson and
binomial outcomes, and each of the six simulation settings, subpopulation 3.

Outcome Poisson Binomial
Parameter 1 2 3 4 5 6 7 8 9 10 11 12

π3 – – – 0.2 0.2 0.2 – – – 0.2 0.2 0.2
β30 – – – 1.00 1.00 1.00 – – – -0.30 -0.30 -0.30
β31 – – – 0.15 0.15 0.15 – – – -0.90 -0.90 -0.90
β32 – – – 0.00 0.00 -0.65 – – – 0.00 0.00 0.80
β33 – – – 0.00 0.00 -0.15 – – – 0.00 0.00 -0.25
β34 – – – 0.00 0.00 0.00 – – – 0.00 0.00 0.00
β35 – – – 0.00 0.00 0.00 – – – 0.00 0.00 0.00
β36 – – – 0.00 0.00 0.00 – – – 0.00 0.00 0.00
β37 – – – – 0.00 0.00 – – – – 0.00 0.00
β38 – – – – 0.00 0.00 – – – – 0.00 0.00
β39 – – – – 0.00 0.00 – – – – 0.00 0.00
β310 – – – – 0.00 0.00 – – – – 0.00 0.00
β311 – – – – 0.00 0.00 – – – – 0.00 0.00
β312 – – – – 0.00 0.00 – – – – 0.00 0.00
β313 – – – – 0.00 0.00 – – – – 0.00 0.00
β314 – – – – 0.00 0.00 – – – – 0.00 0.00
β315 – – – – 0.00 0.00 – – – – 0.00 0.00
β316 – – – – 0.00 0.00 – – – – 0.00 0.00
Γ31 – – – 0.25 0.25 0.25 – – – 1.75 1.75 1.75

Γ312 – – – 0.00 0.00 0.00 – – – 0.00 0.00 0.00
Γ32 – – – 0.20 0.20 0.20 – – – 0.85 0.85 0.85

Γ313 – – – – – 0.00 – – – – – 0.00
Γ323 – – – – – 0.00 – – – – – 0.00
Γ33 – – – – – 0.00 – – – – – 0.00

Γ314 – – – – – 0.00 – – – – – 0.00
Γ324 – – – – – 0.00 – – – – – 0.00
Γ334 – – – – – 0.00 – – – – – 0.00
Γ34 – – – – – 0.00 – – – – – 0.00

Γ315 – – – – – 0.00 – – – – – 0.00
Γ325 – – – – – 0.00 – – – – – 0.00
Γ335 – – – – – 0.00 – – – – – 0.00
Γ345 – – – – – 0.00 – – – – – 0.00
Γ35 – – – – – 0.00 – – – – – 0.00
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a grid of possible values for the tuning parameter. Next, I estimated the model

parameters for each value of the tuning parameter, and calculated the Bayesian

Information Criterion (BIC) for that model. I then chose the model with the lowest

BIC. More detail on this procedure is included in Section C.5.

The tables of these results can be found in Appendix G, and box plots showing

an overview of the behaviour of the Mean Squared Error (MSE) are shown in Figures

4–1 to 4–2.
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Figure 4–1: MSE across sample sizes, and penalties, Poisson outcome, with K = 2,
p = 2, and q = 1.
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Figure 4–2: MSE across sample sizes, and penalties, binomial outcome, with K = 2,
p = 2, and q = 1.

The Tables 4–6 and 4–7 show the proportion of correct selection for variables

when I used two possible penalties, LASSO and ALASSO. I have also included in

these tables the MLE when small values (those with a magnitude less than 0.01) were

changed to 0, these have the row heading Small. I did not include the proportions of

correct selection for the MLE, and oracle as they are 0%, and 100% respectively.
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Table 4–6: Simulation 1 results proportion of parameters correctly classified, averaged
over 50 runs. Outcome follows a Poisson distribution with K = 2, p = 7, q = 2,
π1 = 0.6, π2 = 0.4, β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45,
0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25, 0.10), and �∗>2 = (0.35, 0.20, 0.15).

Penalty Sample Size Non-zero Fixed Effects Zero Fixed Effects
LASSO 100 0.080 0.980
LASSO 250 0.270 0.956
ALASSO 100 0.150 0.980
ALASSO 250 0.380 0.964
Small 100 0.995 0.101
Small 250 1.000 0.166
Small 500 1.000 0.259
Small 1000 1.000 0.317

4.7 Conclusion

Using a penalised likelihood procedure for model selection offers many attractive

statistical properties. In this chapter, I have extended the use of penalised likelihood

to the FinMix GLMM setting. Because the penalisation can be applied to both the

fixed and random effects, I changed the parameterisation of the variance components

of the FinMix GLMM relative to the preceding chapter. I considered three penalty

functions: LASSO, ALASSO, and SCAD. The penalty function does not affect the

outer MCEM loop, and therefore, the only changes to the algorithm were in the

inner MCEM loop. In order to use this approach with the MCEM algorithm as

described in Chapter 3, I used a quadratic approximation to the penalty function.

Given the equations for calculating the penalised likelihood, I considered the choice of

the tuning parameter. In this case, I chose a grid of values for the tuning parameter,

and chose the model with the best BIC. This model possesses a number of desirable

asymptotic properties including consistency, sparsity, and the estimates follow a
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Table 4–7: Simulation 7 results proportion of parameters correctly classified, averaged
over 50 runs. Outcome follows a binomial distribution with K = 2, p = 7, q = 2,
π1 = 0.6, π2 = 0.4, β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15,
0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85, 1.15), and �∗>2 = (0.70,−0.70, 0.80).

Penalty Sample Size Non-zero Fixed Effects Zero Fixed Effects
LASSO 100 0.250 0.918
LASSO 250 0.440 0.864
ALASSO 100 0.430 0.976
ALASSO 250 0.490 0.984
Small 100 0.985 0.101
Small 250 0.975 0.159
Small 500 0.985 0.217
Small 1000 0.990 0.339

Gaussian distribution asymptotically. Finally, the simulation study confirmed that

this algorithm produces reasonable results in a variety of different settings. In addition

to the mean squared error, I calculated the proportion of the simulations for which

each parameter was correctly classified as being equal to zero or non-zero to verify

the accuracy of the method.

78



CHAPTER 5
Real Data Analysis

Rheumatoid Arthritis (RA) is an auto-immune disease that affects many people,

and dates back to the 1800s (Storey et al., 1994). This chronic disorder causes

inflammation in the joints of patients, typically starting in the hands and feet. The

lining of the joints is affected by RA, which leads to swelling and eventually, bone

erosion and even joint deformity. As the disease progresses, other joints are affected,

usually the elbows, ankles, knees, shoulders, and hips. More background information

about RA can be found in Scott et al. (2010); Wasserman (2011); Meier et al. (2013);

Smolen and Aletaha (2015); Smolen et al. (2016); Malmstrom et al. (2017). RA

should not be confused with osteoarthritis, which is more common. The cause

of osteoarthritis is the wearing away of cartilage, whereas the cause of RA is the

inflammation of the synovial membrane.

Unfortunately, there is currently no cure for RA. Treatment aims to reduce

inflammation, so that pain is reduced, and joint damage is slowed or prevented. The

current treatment being favoured called Treat to Target (T2T). The goal of T2T is to

aggressively treat the patient to either remission or a minimal level of disease activity.

Medication is a favoured form of treatment, and there are many types of drugs

used to treat RA. These medications include, but are not limited too, Nonsteroidal

Anti-Inflammatory Drug (NSAID), steroids (often corticosteroids), Disease-Modifying

Antirheumatic Drugs (DMARD), immunosuppressants, and Tumour Necrosis Factor
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Inhibitors (TNFi). Because of the reliance on pharmacotherapy, drug toxicity has

become an important adverse outcome of interest. In advanced stages, patients with

RA may require surgery (such as joint replacement).

5.1 Scottish Early Rheumatoid Arthritis Inception Cohort and Biobank

The Scottish Early Rheumatoid Arthritis Inception Cohort and Biobank (SERA)

contains patients from Scotland that have been diagnosed with RA and is administered

by the Scottish Collaborative Arthritis Research network. It is rich in many variables,

includes data both from questionnaires and blood samples, providing a large number

of covariates to consider. The goal of the study is to be able to accurately predict

patient outcomes so that the best course of treatment can be applied. A bank of tissue,

and blood samples was also collected to allow for analysis of DNA or biomarkers in

the future. Sixteen hospitals from around Scotland participated in this study.

During the first six months, the cohort enrolled 489 patients. The dataset I used

for this analysis contained 1182 patients. While a number of controls were recruited

for this study, but those subjects did not have a diagnosis of RA, therefore I did not

consider them for this analysis. In order to be included in the cohort, all patients

must have at least one swollen joint, as well as a new clinical diagnosis of RA or

undifferentiated polyarthritis. Patients were excluded from the cohort if they had

already been on DMARD therapy for a time period greater than six months, had

another rheumatological diagnosis, had Hepatitis B, had Hepatitis C, or were Human

Immunodeficiency Viruses (HIV) positive. Data was collected at baseline and every

six months thereafter on demographic, employment, clinical measurements, laboratory

measurements, and radiographic results. I considered several possible outcomes of
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interest, include clinical remission (defined as Disease Activity Score on 28 Joints

(DAS28)< 2.6), swollen joint count, tender joint count, drug toxicity, and the number

of steroids taken. Of particular interest as covariates were the presence of anti-Cyclic

Citrullinated Peptide (CPP) antibodies, erosion at presentation, Body Mass Index

(BMI), age, and alcohol intake. Further information about the SERA database can

be found in Dale et al. (2016) and it has been used in published research, including

Stalmach et al. (2014).

5.2 Outcome and Covariates

From the possible outcomes of interest, there were many options to consider.

One outcome that is often of interest is DAS28, and clinical remission is often defined

as DAS28< 2.6. However, DAS28 is not the only method used to define remission.

Both the American College of Rheumatology, and the European League Against

Rheumatism have suggested response criteria for RA (Ward et al., 2014), and the

various composite measures do not necessarily agree (Smolen and Aletaha, 2015). I

chose tender joint count out of 28 joints as the outcome for this analysis due to a

variety of factors: It has been recommended in the literature (Felson et al., 1993),

joint counts have been used for many years (Aletaha and Smolen, 2006), and tender

joint count is an easy to understand outcome with potential values in {0, 1, 2, . . . , 28}.

The canonical link function (logit) was used to model this as a Finite Mixture of

Generalised Linear Mixed-Effect Model (FinMix GLMM).

There are many factors that make a FinMix GLMM appropriate for this analysis.

The outcome is a count with a fixed maximum, so modelling it as a binomial outcome

is appropriate. The patients in the SERA cohort were followed longitudinally, so
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random effects are necessary as the outcomes from a single patient are likely correlated.

In addition, RA is a heterogeneous disorder, especially with respect to treatment

response, and drug-related toxicity (Dale et al., 2016), as well the presence or absence

of antibodies to citrullinated protein antigens, rheumatoid factor, and other factors

(Malmstrom et al., 2017). Genetic research supports the idea that RA is of a

heterogeneous nature (Scott et al., 2010). Because of these factors, I used a FinMix

GLMM.

There are a number of other variables in the dataset in addition to the out-

come of interest. Every patient was assigned a unique patient number, and some

information, namely marital status (Married, Single, Widowed, Living with partner,

Divorced, Separated), race (White, Other, South East Asian, Indian Sub-Continent,

Afro-Caribbean), weight, height, BMI, alcohol intake, gender (Female, Male), age,

smoking status (Non-smoker, Ex-smoker, Current Smoker), and diagnosis (RA, Un-

differentiated arthritis) was collected at baseline. Starting at baseline, and every visit

thereafter, more information was collected, specifically, swollen joint count (out of 28),

tender joint count (out of 28), DAS28 calculated using Erythrocyte Sedimentation

Rate (ESR), DAS28 calculated using C-Reactive Protein (CRP), ESR, patient global

health determined using a Visual Analogue Scale (VAS), CRP, assessor’s global VAS,

VAS pain score, hospital anxiety and depression scale, health assessment questionnaire

score, EQ-5D score, employment status (Retired, Full-time employment, Part-time

employment, Unemployed and not seeking work, Homemaker, Self-employed, Unem-

ployed and seeking work, Student), total cholesterol, High-Density Lipoproteins (HDL)

cholesterol, the ratio of total to HDL cholesterol, haemoglobin, total White Cell Count
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(WCC), neutrophils, lymphocytes, monocytes, eosinophils, platelets, urea, creatinine,

number of steroids taken, rheumatoid factor figure, and Cyclic Citrullinated Peptide

(CPP). Medication information was also available. Patients in the dataset were

on abatacept, azathioprine, gold, hydroxychloroquine, leflunomide, methotrexate,

penicillamine, and sulfasalazine. For each patient, the following information was

recorded for each medication they were on: the start date, stop date, dose, dose unit,

frequency, route, reason stopped (if relevant), and the number of days in each interval

that the patent was on that medication.

5.3 Other Statistical Considerations

Ideally, there would be no missing data, and thus no measures would need to be

taken to account for the missing data. However, missing data is often encountered

in applications. If all the data for a particular visit, and patient was missing (for

example, if a patient missed an appointment, or was lost to follow up) then I removed

that entire visit from the data set. I imputed missing variables using Multivariate

Imputation by Chained Equations (MICE) with one imputation (m = 1), and five

iterations. I did not perform a sensitivity analyses for missing data. In cases where

the employment was missing, I used last observation carried forward rather than

MICE. I made an effort in choosing methods that were statistically justified, and

logical in data cleaning. Specifically, for factor variables, I chose the most common

factor to be the baseline. I identified duplicates, and in cases where duplicates were

identical, I removed one copy.
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5.4 Introductory Tables

I included here two tables. The first table, Table 5–1, shows a summary of the

patient information that does not change over time. The second table, Table 5–2,

shows a summary of patient information separated by visit number.

Table 5–1: Summary information for all patients
Overall

n 1168
Marital status (%)
Married 680 (58.2)
Single 149 (12.8)
Widowed 115 (9.8)
Living with partner 99 (8.5)
Divorced 91 (7.8)
Separated 34 (2.9)
Race (%)
White 1156 (99.0)
Other 6 (0.5)
South east asian 2 (0.2)
Indian sub-continent 4 (0.3)
Afro-caribbean 0 (0.0)
Weight In kg (mean (SD)) 78.11 (17.43)
Height In m (mean (SD)) 1.66 (0.10)
BMI (mean (SD)) 28.21 (5.51)
Alcohol intake (mean (SD)) 4.98 (8.93)
Gender = male (%) 412 (35.3)
Age (mean (SD)) 57.90 (14.00)
Smoking status (%)
Non-smoker 431 (36.9)
Ex-smoker 420 (36.0)
Current smoker 317 (27.1)
Diagnosis = undifferentiated arthritis (%) 168 (15.6)
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Table 5–2: Information divided over six visits
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I also included two figures to describe the dataset. The first figure, Figure 5–1,

shows the proportion of patients with a given Swollen Joint Count for each visit

number in the SERA dataset. The second figure, Figure 5–2, is analogous to the first

figure but for Tender Joint Count. Note that some patients missed appointments

or were lost to follow up, which explains why there were not the same number of

patients for each visit number.
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Figure 5–1: Number of swollen joints

86



0

300

600

900

0 2 4 6
Visit Number

N
um

be
r 

of
 P

at
ie

nt
s

Number of
Tender Joints

0

1

2

3

4

5

6

7

8

9

10

11+

Tender Joints by Visit Number

Figure 5–2: Number of tender joints
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5.5 Maximum Likelihood Estimation

Using variables identified in the literature, a Maximum Likelihood Estimation

(MLE) model was fit. I included the following variables (with relevant citations): (i)

Visit Number, used as a proxy for disease duration, and time in treatment (Smolen

and Aletaha, 2015), (ii) Smoking status, current smoker or not a current smoker

(Smolen and Aletaha, 2015; Malmstrom et al., 2017), (iii) rheumatoid factor (Smolen

and Aletaha, 2015). I included a fixed effect for each of the covariates, and a random

effect on both the intercept and visit number. More specifically, πk is the mixing

proportion, βk0 is the fixed intercept, βk1 is the fixed effect for visit number, βk2 is the

fixed effect for smoking status, and βk3 is the fixed effect for rheumatoid factor. To

determine the value for K, a series of models were fit. First, I used the R Generalised

Linear Mixed-Effect Model (GLMM) algorithm (glmer from the package lme4), and

then took the result as the starting value for the inner Expectation-Maximisation

(EM) of a FinMix GLMM. This corresponds to a FinMix GLMM with K = 1. Then,

I took the results of that computation as the starting values for β1, and �1, and the

remaining starting values set to π1 = 1
2
, β2 = 0, and �2 = Iq. I then fit a FinMix

GLMM, this time with K = 2, and both the inner, and outer EM loops being used.

Following on in this way, I estimated parameters for a series of models, for each new

K, I used the parameter estimates from the previously fit model starting values for

βk, k ∈ {1, 2, . . . , K − 1}, and �k, k ∈ {1, 2, . . . , K − 1} but set πk = 1
K
∀k, βK = 0,

and �K = Iq. I continued to estimate the parameters until I found a minimum value

for the Bayesian Information Criterion (BIC).
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Once I had found the minimum value for the BIC, in this case, K = 10 this serves

as the upper bound on K, and I chose the best model from K ∈ {1, 2, . . . , 10}. I have

included the values for BIC in Table 5–3. From these 10 models, I then calculated the

standard errors for the parameters, as well as the corresponding p-value for inclusion

in the model. I have included details of the calculations of standard errors can in

Appendix J. Using these p-values, I chose the largest model for which all of the values

of πk were significant, in this case, K = 5. I have included the parameter values

of this model, including their standard errors (where appropriate) in Table 5–4. In

Table 5–5 I show the t-statistics and corresponding p-values for the parameter values

of the MLE model.

Table 5–3: BIC over different values of K
K BIC
1 46862.15
2 46097.65
3 45773.19
4 45461.07
5 45075.56
6 44717.19
7 44321.42
8 43945.43
9 43681.21
10 43452.87
11 43471.01

This analysis shows that time on treatment, smoking status, and rheumatoid

factor are all important covariates that correlate to tender joint count. However, the

relationship between these covariates, is not the same for all patients in the SERA

cohort. This heterogeneity requires both random effects and a finite mixture of models
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Table 5–4: Parameter values for MLE model with 95% confidence intervals
Variable Subpopulation 1 Subpopulation 2 Subpopulation 3 Subpopulation 4 Subpopulation 5
Mixing Proportion (πk) 0.60 (0.53, 0.65) 0.17 (0.12, 0.21) 0.10 (0.04, 0.15) 0.07 (0.01, 0.12) 0.05
Intercept (βk0) -1.42 (-1.42, -1.41) -0.42 (-0.43, -0.41) -0.34 (-0.37, -0.32) -0.17 (-0.22, -0.14) -0.09 (-0.19, -0.02)
Visit Number (βk1) -0.09 (-0.09, -0.09) 0.01 (0.01, 0.01) -0.02 (-0.03, -0.02) -0.01 (-0.02, 0.00) -0.01 (-0.03, 0.01)
Smoking Status (βk2) 0.36 (0.36, 0.37) -0.69 (-0.70, -0.69) -0.06 (-0.08, -0.05) 0.04 (-0.02, 0.08) 0.04 (-0.08, 0.12)
Rheumatoid Factor (βk3) -0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)
Intercept (Γk1) 1.47 1.36 1.16 1.04 1.02
Intercept/Visit Number (Γk12) -0.29 -0.07 -0.09 -0.05 -0.03
Visit Number (Γk2) 0.19 0.86 0.71 0.79 0.90

Table 5–5: P-values for MLE model with t-statistics
Variable Subpopulation 1 Subpopulation 2 Subpopulation 3 Subpopulation 4 Subpopulation 5
Mixing Proportion (πk) 0.00 (16.90) 0.00 (6.93) 0.00 (3.15) 0.03 (2.19)
Intercept (βk0) 0.00 (-423.49) 0.00 (-76.25) 0.00 (-23.35) 0.00 (-7.37) 0.07 (-1.79)
Visit Number (βk1) 0.00 (-117.47) 0.00 (7.31) 0.00 (-9.07) 0.03 (-2.16) 0.58 (-0.56)
Smoking Status (βk2) 0.00 (115.27) 0.00 (-130.73) 0.00 (-5.45) 0.17 (1.37) 0.55 (0.59)
Rheumatoid Factor (βk3) 0.00 (-887.68) 0.00 (359.99) 0.00 (17.13) 0.00 (-5.03) 0.25 (-1.15)

to represent. Across all subpopulations, the visit number was negatively associated

with tender joint count in all but one subpopulation. This makes sense because the

goal of treatment is to reduce the symptoms of RA including tender joint count.

Smoking status was also associated with tender joint count, but this association was

not the same across all subpopulations. In addition, the rheumatoid factor has a

relatively small impact on tender joint count. From the random effects, it is clear

that there is a significant heterogeneity between patients, even those within the same

subpopulation. The mixing proportion suggests that over half of the population is in

Subpopulation 1, and that all of the other subpopulations are significantly smaller.

In addition to this analysis, I performed another analysis in the same way with

p = 3, excluding rheumatoid factor as a covariate. The fit of the p = 3 model was

not as good as the model previously presented, so I have not included those results

here. I also performed an analogous analysis with q = 1 and the only random effect
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corresponding to the intercept in the model. Again, this did not fit the data as well

and these results have been omitted.

5.6 Maximum Penalised Likelihood Estimation

I confined this analysis to the K = 2 case. The previous analysis suggested

that over half of the total population was in Subpopulation 1, and the other four

subpopulations had estimated parameters that were more similar to each other than

to the parameters for Subpopulation 1. I performed three analyses, one for each of the

penalties. As in Chapter 4, the three penalties used were Least Absolute Shrinkage

and Selection Operator (LASSO), Adaptive Least Absolute Shrinkage and Selection

Operator (ALASSO), and Smoothly Clipped Absolute Deviation (SCAD). The fol-

lowing variables were included for consideration in the model: Visit number (βk1),

Ex-smoker (βk2), Current smoker (βk3), Rheumatoid factor figure (βk4), Lymphocytes

(βk5), Erythrocyte sedimentation (βk6), C reactive protein (βk7), Ratio of total to

HDL Cholesterol (βk8), Haemaglobin (βk9), Total WCC (βk10), Neutrophils (βk11),

Monocytes (βk12), Eosinophils (βk13), Platelets (βk14), Urea (βk15), Creatinine (βk16),

CPP (βk17). As in the MLE case, I included a random effect on both the intercept

and visit number. As is common practice when a penalty is added to the likelihood

equation, I standardised all of the variables to have mean 0 and standard deviation

1 before estimating the parameters. I used the algorithm in Section C.2 to find the

lowest value of BIC for each penalty, then narrowed the range of potential values

of λ around that lowest value. Using this smaller range and a finer grid, I again

calculated the parameter values and BIC for each of the proposed values of λ and

chose the setting with the lowest value of BIC. Since the original range for values
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of λ in the SCAD case was quite large, a much courser grid was used to cover it

than in the LASSO or ALASSO case, and so I used a series of smaller and finer grids

(three additional grids) rather than two as I did in the LASSO case. In this analysis,

the lowest value for BIC in the LASSO case was 42803.23, in the ALASSO case was

43390.26, and in the SCAD case was 43233.47. Results of these three analysis are in

Tables 5–6 to 5–11. I also considered the case where K = 1, and found that these

models did not fit the data as well as the K = 2 models. The values for BIC in

these cases were 45653.07 when I used the LASSO penalty, 45832.51 when I used the

ALASSO penalty, and 45720.09 when I used the SCAD penalty.

In an ideal case, I would expect that the variables that are selected and the

parameter estimates would be similar regardless of the penalty that was used. However,

that was not the result of this analysis. There were some differences in the variables

that were selected depending on the penalty that was used. Overall, the parameters

were similar for all three cases. The results show that one subpopulation contains

a majority of patients, but that there is another distinct subpopulation that differs

significantly from the first. The values for the estimated fixed intercepts were similar

for all three penalties. The following variables were selected in both subpopulations

when I used both LASSO and SCAD: Erythrocyte sedimentation (βk6), C reactive

protein (βk7), Haemaglobin (βk9), Neutrophils (βk11), Platelets (βk14). The ALASSO

penalty selected fewer covariates.

5.7 Conclusion

This analysis shows that a FinMix GLMM is a valuable regression tool and is

useful for analysis of health related data. The MLE analysis suggested that there

92



Table 5–6: Parameter values for Maximum penalised Likelihood Estimation (MPLE)
model with standard errors, LASSO penalty
Variable Subpopulation 1 Subpopulation 2
Mixing Proportion (πk) 0.70 (0.62, 0.75) 0.30
Intercept (βk0) -2.06 (-2.06, -2.05) -0.54 (-0.54, -0.54)
Visit Number (βk1) -0.02 (-0.03, -0.02) –
Ex-smoker (βk2) – –
Current Smoker (βk3) – –
Rheumatoid Factor (βk4) -0.27 (-0.28, -0.27) –
Lymphocytes (βk5) 0.07 (0.06, 0.07) -0.11 (-0.12, -0.11)
Erythrocyte Sedimentation (βk6) -0.09 (-0.10, -0.09) 0.04 (0.03, 0.04)
C Reactive Protein (βk7) 0.17 (0.17, 0.17) -0.07 (-0.08, -0.07)
Ratio of Total to HDL Cholesterol (βk8) 0.15 (0.15, 0.15) –
Haemaglobin (βk9) -0.19 (-0.19, -0.19) 0.33 (0.33, 0.34)
Total WCC (βk10) 0.01 (0.01, 0.02) –
Neutrophils (βk11) 0.51 (0.51, 0.52) -0.31 (-0.32, -0.30)
Monocytes (βk12) -0.28 (-0.28, -0.28) 0.03 (0.02, 0.03)
Eosinophils (βk13) -0.04 (-0.04, -0.04) -0.09 (-0.10, -0.09)
Platelets (βk14) 0.13 (0.12, 0.13) 0.01 (0.01, 0.02)
Urea (βk15) 0.02 (0.02, 0.03) –
Creatinine (βk16) -0.16 (-0.17, -0.16) –
CPP (βk17) 0.07 (0.06, 0.07) 0.05 (0.04, 0.05)
Intercept (Γk1) 0.96 1.05
Intercept/Visit Number (Γk12) 0.17 0.17
Visit Number (Γk2) 0.65 1.05

is significant heterogeneity in the population of patients with RA, not just between

patients, but also multiple distinct subpopulations within the overall population of

patients with RA.
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Table 5–7: P-values for MPLE model with t-statistics, LASSO penalty
Variable Subpopulation 1 Subpopulation 2
Mixing Proportion (πk) 0.00 (18.73)
Intercept (βk0) 0.00 (-988.48) 0.00 (-335.58)
Visit Number (βk1) 0.00 (-15.10) –
Ex-smoker (βk2) – –
Current Smoker (βk3) – –
Rheumatoid Factor (βk4) 0.00 (-162.38) –
Lymphocytes (βk5) 0.00 (33.26) 0.00 (-37.11)
Erythrocyte Sedimentation (βk6) 0.00 (-48.91) 0.00 (17.14)
C Reactive Protein (βk7) 0.00 (119.37) 0.00 (-26.60)
Ratio of Total to HDL Cholesterol (βk8) 0.00 (117.89) –
Haemaglobin (βk9) 0.00 (-120.13) 0.00 (176.62)
Total WCC (βk10) 0.00 (3.58) –
Neutrophils (βk11) 0.00 (156.18) 0.00 (-46.21)
Monocytes (βk12) 0.00 (-163.02) 0.00 (15.09)
Eosinophils (βk13) 0.00 (-23.37) 0.00 (-49.44)
Platelets (βk14) 0.00 (73.32) 0.00 (8.44)
Urea (βk15) 0.00 (11.28) –
Creatinine (βk16) 0.00 (-112.26) –
CPP (βk17) 0.00 (58.39) 0.00 (38.39)
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Table 5–8: Parameter values for MPLE model with standard errors, ALASSO penalty
Variable Subpopulation 1 Subpopulation 2
Mixing Proportion (πk) 0.70 (0.63, 0.75) 0.30
Intercept (βk0) -2.03 (-2.03, -2.02) -0.69 (-0.70, -0.69)
Visit Number (βk1) – –
Ex-smoker (βk2) – –
Current Smoker (βk3) – –
Rheumatoid Factor (βk4) -0.01 (-0.02, -0.01) –
Lymphocytes (βk5) – –
Erythrocyte Sedimentation (βk6) – –
C Reactive Protein (βk7) – –
Ratio of Total to HDL Cholesterol (βk8) – –
Haemaglobin (βk9) – –
Total WCC (βk10) – –
Neutrophils (βk11) 0.48 (0.47, 0.48) -0.18 (-0.19, -0.17)
Monocytes (βk12) – –
Eosinophils (βk13) – –
Platelets (βk14) – –
Urea (βk15) – –
Creatinine (βk16) – –
CPP (βk17) – –
Intercept (Γk1) 0.97 0.92
Intercept/Visit Number (Γk12) -0.16 0.16
Visit Number (Γk2) 0.67 0.96
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Table 5–9: P-values for MPLE model with t-statistics, ALASSO penalty
Variable Subpopulation 1 Subpopulation 2
Mixing Proportion (πk) 0.00 (18.91)
Intercept (βk0) 0.00 (-952.11) 0.00 (-416.86)
Visit Number (βk1) – –
Ex-smoker (βk2) – –
Current Smoker (βk3) – –
Rheumatoid Factor (βk4) 0.00 (-8.73) –
Lymphocytes (βk5) – –
Erythrocyte Sedimentation (βk6) – –
C Reactive Protein (βk7) – –
Ratio of Total to HDL Cholesterol (βk8) – –
Haemaglobin (βk9) – –
Total WCC (βk10) – –
Neutrophils (βk11) 0.00 (134.89) 0.00 (-28.49)
Monocytes (βk12) – –
Eosinophils (βk13) – –
Platelets (βk14) – –
Urea (βk15) – –
Creatinine (βk16) – –
CPP (βk17) – –
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Table 5–10: Parameter values for MPLE model with standard errors, SCAD penalty
Variable Subpopulation 1 Subpopulation 2
Mixing Proportion (πk) 0.71 (0.64, 0.76) 0.29
Intercept (βk0) -2.05 (-2.05, -2.05) -1.17 (-1.17, -1.16)
Visit Number (βk1) – 0.02 (0.02, 0.02)
Ex-smoker (βk2) – -0.14 (-0.14, -0.14)
Current Smoker (βk3) – -0.13 (-0.14, -0.13)
Rheumatoid Factor (βk4) – -0.23 (-0.24, -0.23)
Lymphocytes (βk5) – -0.16 (-0.16, -0.16)
Erythrocyte Sedimentation (βk6) 0.01 (0.01, 0.01) -0.18 (-0.19, -0.18)
C Reactive Protein (βk7) 0.01 (0.01, 0.01) 0.02 (0.02, 0.03)
Ratio of Total to HDL Cholesterol (βk8) – 0.49 (0.48, 0.49)
Haemaglobin (βk9) – 0.15 (0.15, 0.15)
Total WCC (βk10) 0.01 (0.00, 0.02) 0.11 (0.10, 0.12)
Neutrophils (βk11) 0.01 (0.00, 0.02) 0.18 (0.17, 0.18)
Monocytes (βk12) 0.01 (0.01, 0.01) -0.60 (-0.60, -0.60)
Eosinophils (βk13) – -0.34 (-0.35, -0.34)
Platelets (βk14) – 0.45 (0.45, 0.45)
Urea (βk15) – -0.03 (-0.03, -0.02)
Creatinine (βk16) – -0.16 (-0.17, -0.16)
CPP (βk17) – -0.02 (-0.02, -0.02)
Intercept (Γk1) 0.89 0.89
Intercept/Visit Number (Γk12) -0.09 0.09
Visit Number (Γk2) 0.72 0.92
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Table 5–11: P-values for MPLE model with t-statistics, SCAD penalty
Variable Subpopulation 1 Subpopulation 2
Mixing Proportion (πk) 0.00 (19.31)
Intercept (βk0) 0.00 (-1087.73) 0.00 (-653.49)
Visit Number (βk1) – 0.00 (9.77)
Ex-smoker (βk2) – 0.00 (-70.44)
Current Smoker (βk3) – 0.00 (-62.71)
Rheumatoid Factor (βk4) – 0.00 (-102.16)
Lymphocytes (βk5) – 0.00 (-76.14)
Erythrocyte Sedimentation (βk6) 0.00 (6.20) 0.00 (-78.31)
C Reactive Protein (βk7) 0.00 (6.59) 0.00 (12.94)
Ratio of Total to HDL Cholesterol (βk8) – 0.00 (300.32)
Haemaglobin (βk9) – 0.00 (79.00)
Total WCC (βk10) 0.07 (1.82) 0.00 (24.32)
Neutrophils (βk11) 0.01 (2.48) 0.00 (42.93)
Monocytes (βk12) 0.00 (6.57) 0.00 (-322.60)
Eosinophils (βk13) – 0.00 (-128.98)
Platelets (βk14) – 0.00 (229.82)
Urea (βk15) – 0.00 (-11.75)
Creatinine (βk16) – 0.00 (-89.39)
CPP (βk17) – 0.00 (-14.88)
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CHAPTER 6
Conclusion

The world is full of complex questions, and problems that can only be solved

by appropriate statistical analysis. However, one must use the correct statistical

techniques in order to answer these questions suitably. Therefore, the assumptions

associated with a particular statistical model should be considered carefully when

performing statistical analysis. As such, it is important to develop models that take

into account the underlying properties of complex datasets.

While many regression models have been proposed, and studied in the past, a

Finite Mixture of Generalised Linear Mixed-Effect Model (FinMix GLMM) is a novel

addition. Previous literature has focused on linear regression, Generalised Linear

Model (GLM), Generalised Linear Mixed-Effect Model (GLMM), and certain finite

mixtures or regression models. While a few similar models have been considered,

notable a Finite Mixture of Linear Mixed-Effect (FMLME), a FinMix GLMM has

not been previously studied. As such, the FinMix GLMM is a useful extension to the

current literature.

In Chapter 3 I showed the theory, and an algorithm for calculating the Maximum

Likelihood Estimation (MLE) of a FinMix GLMM. I carefully defined, and described

the model, including the likelihood equation that was then used to facilitate calculation

of the MLE. I described in detail the numerical computation of the MLE which

implemented two nested Monte Carlo Expectation-Maximisation (MCEM) loops. In
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order to verify the properties of the MLE, I undertook a simulation study. In the

cases considered, the estimates calculated were well behaved with small variances,

and Mean Squared Error (MSE).

Once the form of a model has been chosen, the choice of variables to include

in that model is another complex issue. I explored the question of model selection

in Chapter 4, and performed the variable selection through penalisation of the

likelihood with Least Absolute Shrinkage and Selection Operator (LASSO), Adaptive

Least Absolute Shrinkage and Selection Operator (ALASSO), and Smoothly Clipped

Absolute Deviation (SCAD) penalties. The motivation for choosing these penalties was

their asymptotic properties. The addition of a penalty to the likelihood equation of a

FinMix GLMM required additional considerations, including reparameterisation, and

approximation, I incorporated these into the algorithm for estimating the Maximum

penalised Likelihood Estimation (MPLE). Again, I performed a simulation study to

verify, and illustrate the performance of the algorithm. Due to time constraints,

some of the planned simulations were not completed.

Finally, I conducted real data analysis. This shows the usefulness of a FinMix

GLMM for analysis of data from medical settings, and that the work of this research

is not purely theoretical.

6.1 Further Work

There are many possible extensions or different cases to consider for this model,

and as such, there are a number of possibilities for future work.

One interesting possibility that is beyond the scope of this thesis is time-to-event

outcomes. Survival analysis for a finite mixture of models is a complex topic, so
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this possibility would require an extensive amount of work. Time-to-event outcomes

are often of interest, and have been explored in the context of GLMMs by Yau and

McGilchrist (1996), and Yau and McGilchrist (1997), and multivariate mixed-effect

models can be used as described in Fieuws et al. (2007), Gueorguieva (2001), and

Sammel et al. (1999). A finite mixture of these types of models would be an interesting

extension. Hunsberger et al. (2009) considered finite mixtures of survival models. An

additional extension is to allow coefficients to change over time as shown in Tutz and

Kauermann (2003), and Zhang (2004).

Zhu and Lee (2003) discussed influential observations for GLMM, and deletion

diagnostics in Ganguli et al. (2016), further work is possible in extending these ideas

to FinMix GLMMs. Jiang and Zhang (2001), and Sinha (2004) considered robust

maximum likelihood which could be investigated for FinMix GLMMs.

In this thesis, I assumed that the random effects follow a Gaussian distribution,

and while this is a popular choice, it is not the only option that has been explored

in the literature. A multivariate Student’s t-distribution is a natural extension as

the Student’s t-distribution has heavier tails than a Gaussian distribution and was

used in Bai et al. (2016). A mixture of Gaussian distributions was used in Verbeke

and Lesaffre (1996) and motivated by the problem of model misspecification in this

context. A much more complex approach using first-order Markov chains can be

found in Farcomeni (2015), and a Dirchlet process was used in Guha (2008). I leave

these possibilities to future work.

This thesis focused on finite mixtures of distributions from an exponential family,

specifically Poisson, and binomial GLMMs, but there are many possibilities for further
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exploration using different distributions. One popular use of finite mixtures of models

is in cases of overdispersion or zero-inflated regression. Cao and Yao (2012) looked at

a mixture of binomial outcomes, and a degenerate random variable. Similarly, Lim

et al. (2014), and Morgan et al. (2014) explored a zero-inflated Poisson regression.

Young (2014) considered finite mixtures of regressions that include change points,

and Bao and Hanson (2016) showed a mean-constrained finite mixture. I have left

these possibilities for further work.

If the values of the covariates are informative to the mixing proportions, a finite

mixture of experts is applicable, as used in Huang and Yao (2012), Khalili (2010),

Wu and Yu (2016), Jacobs et al. (1991). This can also be described as modelling

predictors of latent classes (Kim et al., 2016). The number of subpopulations, K, is

an important consideration in finite mixtures. Kasahara and Shimotsu (2015) tested

the number of subpopulations when using likelihood-based tests when the underlying

distributions each follow a Gaussian distribution. In comparison, Li et al. (2016) also

focuses on the Gaussian case but uses trimmed information criteria for more robust

estimation. These possibilities could inspire further work on FinMix GLMMs.

In addition, the aforementioned theoretical considerations, many computational

ideas may also be relevant. Specifically, coordinate descent is often used when

optimising penalised likelihoods (Wei and Zhu, 2012), the use of antithetic variables as

shown in Rubinstein and Samorodnitsky (1985) may provide improved computational

efficiency, and importance sampling (Kuk, 1999) or sampling from a Student’s t-

distribution (Booth and Hobert, 1999) rather than a standard Gaussian in the

calculation of τik could improve the approximation of the integral in Equation (3.1).
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Ergodic averaging, as explored in Fort et al. (2003), could provide less variable

parameter estimates, and is an interesting possibility.

The focus of the thesis was not on the computational aspects of the algorithm, and

as such, there are many improvements, and possibilities for further work to compare

different approaches. A Monte Carlo approach using a Gibbs sampler for GLMMs is

possible (Zeger and Karim, 1991; Gamerman, 1997; Burton, 2003; Chan et al., 2005;

Christensen et al., 2006; Fan et al., 2008) as well as a similar Gibbs sampling approach

(Leung and Elashoff, 1996a). These extensions could be tried with a FinMix GLMM.

Sequential reduction (Ogden, 2015), matching (Benedetti et al., 2014), and profile

likelihood (Jeon and Rabe-Hesketh, 2012) are additional possibilities. Kuk (1999)

showed that importance sampling could improve the approximation of an integrated

marginal likelihood function. A simulation-based estimator for GLMMs was shown

in Li and Wang (2012) where both consistency, and the asymptotic distribution of

the estimator was included. penalised quasi-likelihood, and simulated maximum

likelihood were compared, and contrasted in Ng et al. (2006). I have not applied

these approaches to a FinMix GLMM. In addition, I used the same value for L in all

simulations, and the same tolerance for assessing convergence. As such, possibilities of

increasing L as the iterations increase or changing the assessment of convergence based

on K or the number of parameters being estimated are possibilities for further work.

In addition, an Markov Chain Monte Carlo (MCMC) approach could be applicable

to problems where I used Expectation-Maximisation (EM), Ryden (2008) provided

a comparison between these methods. There are also many different maximisation

algorithms that could be explored. Coordinate descent is especially popular in the

103



variable selection literature (Wu and Lange, 2008), and could be applied to FinMix

GLMMs.

Group variable selection is an interesting problem, and has been explored in

the literature with group LASSO in Yuan and Lin (2006), and Meier et al. (2008),

Adaptive group LASSO in Wang and Leng (2008), and group SCAD in Wang et al.

(2007). Extensions to group LASSO include weighted group LASSO (Hirose and

Konishi, 2012), standardized group LASSO (Simon and Tibshirani, 2012), and sparse

group LASSO (Xie and Xu, 2014). I have left expanding these options to FinMix

GLMMs for future work.

Several computational adjustments have been proposed for LASSO in Foster

et al. (2008), Wu and Lange (2008), Guo et al. (2015), Lee et al. (2015), Laurin

et al. (2016), and Rajaratnam et al. (2016), and I could consider these in the FinMix

GLMM case. The LASSO penalty function has also been extended in various ways

including fused LASSO (Tibshirani et al., 2005), relaxed LASSO (Meinshausen, 2007),

Bayesian LASSO (Hans, 2009), random LASSO (Wang et al., 2011), forward-LASSO

adaptive shrinkage (Radchenko and James, 2011), smooth-lasso (Hebiri and van de

Geer, 2011), iteratively reweighted LASSO (Liu et al., 2014), component LASSO

(Hussami and Tibshirani, 2015), moderately clipped LASSO (Kwon et al., 2015),

and multiple imputation random LASSO (Liu et al., 2016). I have left using these

penalties with a FinMix GLMM for future work.

Similarly, several possible extensions relating to ALASSO have been proposed,

and could be applied to a FinMix GLMM. These include Bayesian adaptive LASSO

(Leng et al., 2014), the distribution of the estimates (Potscher and Schneider, 2009),
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the potential for model misspecification (van de Geer et al., 2011), robustness to

model misspecification (Lu et al., 2012), rates of convergence (Chatterjee and Lahiri,

2013), false discovery rate (Sampson et al., 2013), tuning parameter selection (Hui

et al., 2015), and post variable-selection inference (Chatterjee et al., 2015).

Extensions of the SCAD penalty function have been published as well, but I

have not considered these in the FinMix GLMM case. Wang and Li (2009) proposed

a weighted Wilcoxon extension which is more robust to outliers. Kwon et al. (2011)

explored a quadratic approximation extension to SCAD called Q-SCAD. Alternatively,

a quadratic approximation was used by Choi and Park (2012) to improve efficiency.

Other expansions include SCAD for constrained variables (Ng and Yu, 2014), varying-

coefficients models with autoregressive errors (Qiu et al., 2015), and generalised

additive models with non-polynomial dimensionality (Li et al., 2012). I have not

explored these options for a FinMix GLMM.

In addition to the previously discussed penalty functions, a few others have

been proposed including ridge regression (Hoerl and Kennard, 1970), Least-Angle

Regression (LARS) (Efron et al., 2004), elastic net (Zou and Hastie, 2005), MSCAD

(Chen and Khalili, 2008), VISA (Mkhadri and Ouhourane, 2015), and minimum

φ-divergence estimation (Sakate and Kashid, 2014). Hui et al. (2017), shrink the fixed

effect to zero only if the corresponding random effect is or has already been shrunk to

zero, which is a desirable property. Yu and Wang (2019) described another interesting

penalty where both the mixing proportions as well as the regression coefficients are

penalised. A robust variable selection method using minimum-distance techniques
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has been suggested in Tang and Karunamuni (2018). Further exploration of these

penalty functions is a possibility.

Two large issues in statistics that have not been considered in this thesis are

measurement error and missing data. Torabi (2013) explored measurement error in

covariates of a GLMM, while Noh et al. (2012) examined both measurement error, and

missing data. Yao and Song (2015) looked at measurement error in finite mixtures of

models.

Model misspecification is a large topic, and one that could be further developed

with respect to FinMix GLMMs. The issues, and consequences of model misspecifica-

tion in GLMMs are considered in Abad et al. (2010), McCulloch and Neuhaus (2011),

Heggeseth and Jewell (2013). The work of Heagerty and Kurland (2001), Litiere et al.

(2007), Alonso et al. (2008), Huang (2009), Cox and Wong (2010), and Neuhaus et al.

(2013) all focus on misspecification of the random effects.

While I took a frequentist approach in this thesis, a Bayesian approach to

modelling of GLMM, and LMM has been discussed by Kizilkaya and Tempelman

(2005), Natarajan and Kass (2000), and Li et al. (2014). Alternatively, Wolfinger

and Oconnell (1993) explored a pseudo-likelihood approach. Exploration of FinMix

GLMMs using these methods is a possibility for further work. Eskandari and Ormoz

(2016), and Hunter and Young (2012) explored generalised semi-parameteric models.

Ormoz and Eskandari (2016) look at the problem of variable selection in finite mixtures

of semi-parameteric models. Huang et al. (2013) showed a nonparameteric finite

mixture of regression models. Wang et al. (2014) showed finite mixtures of GLMs in

both the semi-parameteric, and nonparameteric cases.
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A number of excellent suggestions came up during my thesis defence. I assumed

that an individual must remain in the same subpopulation through time, and relaxing

this assumption would be an interesting extension. Using Metropolis-Hasting sampling

assumes a Gaussian distribution, and exploring if the results are sensitive to this

assumption is left to future work. A more in depth consideration of the impact

of correlated covariates on convergence and identifiability is also an idea for future

simulations and consideration. Similarly, further simulations considering the case

where one subpopulation is quite small, such as a rare form of a disease would be

interesting. Another possible idea is to adjust the Bayesian Information Criterion

(BIC) when LASSO is used as in Bhattacharya and McNicholas (2014).

These additional possibilities show that more research is possible in the area of

FinMix GLMMs.
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APPENDIX A
Notation

a - Value used in the SCAD penalty

bki - Possible value of bi assuming subpopulation k

bi = (bi1, bi2, bi3, . . . , biq)
> ∼ Gaussian(0, Iq) - Vector (length q) of standard Gaussian

random effects for subject i

b =



b11 b21 . . . bn1

b12 b22 . . . bn2

...
...

. . .
...

b1q b2q . . . bnq


- Matrix (size n × q) of all standard Gaussian random

effects

Ck =



1 0 . . . 0

Ck21 1 . . . 0

...
...

. . .
...

Ckq1 Ckq2 . . . 1


=



1 0 . . . 0

Γk21

Γk22
1 . . . 0

...
...

. . .
...

Γkq1
Γkqq

Γkq2
Γkqq

. . . 1


- Matrix (size q × q) of de-

composed covariances of random effects

C∗k = (Ck21, Ck31, Ck32, . . . Ckq(q−1))
> - Vector (length q(q+1)

2
) version of Ck

Dk = �k�>k =



Dk11 Dk21 . . . Dkq1

Dk21 Dk22 . . . Dkq2

...
...

. . .
...

Dkq1 Dkq2 . . . Dkqq


- Variance-covariance matrix (size q × q)

for random effects
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dk =



dk1 0 . . . 0

0 dk2 . . . 0

...
...

. . .
...

0 0 . . . dkq


=



Γk11 0 . . . 0

0 Γk22 . . . 0

...
...

. . .
...

0 0 . . . Γkqq


- Diagonal matrix (size

q × q) of standard deviations of random effects

d∗k = (dk1, dk2, . . . , dkq)
> = (Γk11,Γk22, . . . ,Γkqq)

> - Vector (length q) version of dk

df - Degrees of freedom

g(xijβk + zijΓkbi) - Canonical link function

Hbki - Hessian matrix (size n× q) at bki

I`(Θ) =
∑n

i=1 s(yi|Xi,Zi,Θ)[s(yi|Xi,Zi,Θ)]> - Empirical observed information ma-

trix (size (K − 1 +K ∗ p)× (K − 1 +K ∗ p))

K - Number of subpopulations

L - Number of potential values generated to approximate the integral in the likelihood

Ln(Θ) - Likelihood function at Θ from a sample of size n

`n(Θ) - Log-likelihood function at Θ from a sample of size n

`]nλ(θk) - penalised log-likelihood function at θk from a sample of size n

M =
∑n

i=1 ni - Total number of observations

mij - Number of trials for the ith subject at the jth observation when the outcome

follows a binomial distribution

mi = (mi1,mi2,mi3, . . . ,mini)
> - Vector (length ni) containing the number of trials

for the ith subject when the outcome follows a binomial distribution

m = (m11,m12,m13, . . . ,m1n1 ,m21,m22,m23, . . . ,m2n2 , . . . ,mn1,mn2,mn3, . . . ,mnnn)>

- Vector (length M) containing the number of trials when the outcome follows a
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binomial distribution

N = (n1, n2, n3, . . . , nn)> - Vector (length n) of number of observations for all sub-

jects

n - Number of subjects

ni - Number of observations for the ith subject

nk - Estimated number of subjects in subpopulation k

p - Number of fixed effects

pλ(θk) - Penalty function at θk with tuning parameter λ

Qk(θk) - Approximate likelihood

q - Number of random effects

s(yi|Xi,Zi,Θ) =
∑K

k=1
∂
∂Θ
τki log[πkfyi(yi|Xi,Zi,Θ)] - Vector (length K − 1 +K ∗ p)

containing gradients of the complete log-likelihood, the complete-data score statistic

Uλ(θk) - Vector (length κ) used in penalised maximum likelihood

wh - Weight for parameter h, used in ALASSO

xijh - Value of the hth covariate, for which there is a fixed effect, for the ith subject at

the jth observation

xij - Vector (length p) of covariates for which there is a fixed effect, for the ith subject

at the jth observation

Xi =



Xi11 Xi12 . . . Xi1p

Xi21 Xi22 . . . Xi2p

...
...

. . .
...

Xini1 Xini2 . . . Xinip


- Matrix (size ni× p) of covariates for which there

is a fixed effect, for the ith subject
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X =



X111 X112 . . . X11p

X121 X122 . . . X12p

...
...

. . .
...

X1n11 X1n12 . . . X1n1p

X211 X212 . . . X21p

...
...

. . .
...

Xnnn1 Xnnn2 . . . Xnnnp



- Matrix (size M × p) of covariates for which

there is a fixed effect, for all subjects

Yij - Outcome for the ith subject at the jth observation (random variable)

yij - Outcome for the ith subject at the jth observation (realisation of the random

variable)

Yi = (Yi1, Yi2, Yi3, . . . , Yini)
> - Vector (length ni) of outcomes for the ith subject

(random variable)

yi = (yi1, yi2, yi3, . . . , yini)
> - Vector (length ni) of outcomes for the ith subject (reali-

sation of the random variable)

Y = (Y11, Y12, Y13, . . . , Y1n1 , Y21, Y22, Y23, . . . , Y2n2 , . . . , Yn1, Yn2, Yn3, . . . , Ynnn)> - Vec-

tor (length M) of all outcomes (random variable)

y = (y11, y12, y13, . . . , y1n1 , y21, y22, y23, . . . , y2n2 , . . . , yn1, yn2, yn3, . . . , ynnn)> - Vector

(length M) of all outcomes (realisation of the random variable)

zijh - Value of the hth covariate, for which there is a random effect, for the ith subject

at the jth observation

zij - Vector (length q) of covariates for which there is a random effect, for the ith

subject at the jth observation
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Zi =



Zi11 Zi12 . . . Zi1q

Zi21 Zi22 . . . Zi2q
...

...
. . .

...

Zini1 Zini2 . . . Ziniq


- Matrix (size ni × q) of covariates for which there

is a random effect, for the ith subject

Z =



Z111 Z112 . . . Z11q

Z121 Z122 . . . Z12q

...
...

. . .
...

Z1n11 Z1n12 . . . Z1n1q

Z211 Z212 . . . Z21q

...
...

. . .
...

Znnn1 Znnn2 . . . Znnnq



- Matrix (size M×q) of covariates for which there

is a random effect, for all subjects

α - Exponent on tuning parameter in the penalty function

βk = (βk1, βk2, βk3, . . . , βkp)
> - Vector (length p) of coefficients for fixed effects, in the

kth subpopulation

�k =



Γk11 0 . . . 0

Γk21 Γk22 . . . 0

...
...

. . .
...

Γkq1 Γkq2 . . . Γkqq


- Transformation matrix (size q × q, lower triangle)

for random effects, in the kth subpopulation �k

�∗k = (Γk11,Γk21,Γk22,Γk31,Γk32,Γk33, . . .Γkqq)
> - Vector (length q(q+1)

2
) version of �k

δ - Difference between successive values of λk in the grid of possible values for λk

ε - Value added to the denominator in �λ
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ηkij - Sum of fixed, and random effects for the ith subject at the jth observation,

assuming membership in the kth subpopulation

ηki = (ηki1, ηki2, ηki3, . . . , ηkini)
> = Xiβk +Zi�kbi - Vector (length ni) of sums of fixed

and random effects for the ith subject, assuming membership in the kth subpopulation

ηk = (ηk11, ηk12, ηk13, . . . , ηk1n1 , ηk21, ηk22, ηk23, . . . , ηk2n2 , . . . , ηkn1, ηkn2, ηkn3, . . . , ηknnn)>

- Vector (length M) of all sums of fixed and random effects

Θ = (π>,β>1 ,�
∗>
1 ,β>2 ,�

∗>
2 , . . . ,β>K ,�

∗>
K )> - Vector (length K − 1 +K ×κ) of π, βk,

and �∗k

Θ̃ = (π>,β>1 ,β
>
2 , . . . ,β

>
K)> - Vector (length K − 1 + K × p) of π and βk, used in

the calculation of standard errors

θk = (β>k ,�
∗>
k )> - Vector (length κ) of βk and �∗k

θk = (β>k , d
∗>
k ,C∗>k )> - Vector (length κ) of βk, d

∗
k, and C∗k

ι - Exponent on 1
2

to facilitate half step Newton-Raphson

κ = p+ 1
2
q(q + 1) - Length of θk, number of parameters in the kth subpopulation

λ = (λ1, λ2, λ3, . . . , λK) - Vector (length K) of tuning parameters used in penalised

maximum likelihood

νki = (νki1, νki2, . . . , νkiq)
> = �kbi ∼ Gaussian(0,Dk) - Row vector (length q) of

random effects for the ith subject

νk =



νk11 νk21 . . . νkn1

νk12 νk22 . . . νkn2

...
...

. . .
...

νk1q νk2q . . . νknq


- Matrix (size n× q) of all transformed random effects

ξkij - Expected outcome for the ith subject at the jth observation, assuming the kth

subpopulation (Poisson)
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ξki = (ξki1, ξki2, ξki3, . . . , ξkini)
> - Vector (length ni) of expected outcome for the

ith subject, log(ξki) = ηki = Xiβk + Zi�kbi, ξki = exp(ηki) = exp(Xiβk + Zi�kbi)

(Poisson)

ξk = (ξk11, ξk12, ξk13, . . . , ξknnn)> - Vector (length M) of all expected observations

(Poisson)

πk - Mixing proportion, the proportion of the underlying population in subpopulation

k with
∑K

k=1 πk = 1

π = (π1, π2, π3, . . . , π(K−1))
> - Vector (length K − 1) of mixing proportions

�λ(θk) or �λ(θk) - Matrix (size κ × κ) used in the penalised maximum likelihood

τki - Membership probability for subject i in subpopulation k

τk = (τk1, τk2, τk3, . . . , τkn)> - Vector (length n) of membership probability for all

subjects in subpopulation k

τi = (τ1i, τ2i, τ3i, . . . , τKi)
> - Vector (length K) of membership probability for one

subjects in each of the K subpopulations

ϕkij - Expected outcome for the ith subject at the jth observation, assuming the kth

subpopulation (binomial)

ϕki = (ϕki1, ϕki2, ϕki3, . . . , ϕkini)
> - Vector (length ni) of expected outcome for the

ith subject, logit(ϕbi) = ηki = Xiβk + Zi�kb, ϕki = expit(ηki) = exp(Xiβk + Zi�kbi)

(binomial)

ϕ=(ϕk11, ϕk12, ϕk13, . . . , ϕknnn)> - Vector (length M) of all expected observations (bi-

nomial)
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APPENDIX B
Details of the Derivatives

This appendix provides details on the maximisation of the approximate likelihood

described in this thesis. Recall that the likelihood of a FinMix GLMM is

L(Θ) =
n∏
i=1

fyi(yi|Xi,Zi,Θ)

=
n∏
i=1

K∑
k=1

πkf
(k)
yi

(yi|Xi,Zi,θk)

=
n∏
i=1

K∑
k=1

πk

∫
f

(k)
yi|bi(yi|Xi,Zi,bi,θk)f(bi)dbi

=
n∏
i=1

K∑
k=1

πk

∫ [ ni∏
j=1

f
(k)
yij |bi(yij|xij, zij,bi,θk)

]
f(bi)dbi

≈
n∏
i=1

K∑
k=1

πk
1

L

L∑
`=1

ni∏
j=1

f
(k)
yij |bi(yij|xij, zij,b

(`)
i ,θk)

=
n∏
i=1

1

L

K∑
k=1

πk

L∑
`=1

ni∏
j=1

f
(k)
yij |bi(yij|xij, zij,b

(`)
i ,θk)

=
1

Ln

n∏
i=1

K∑
k=1

πk

L∑
`=1

ni∏
j=1

f
(k)
yij |bi(yij|xij, zij,b

(`)
i ,θk)

∝
n∏
i=1

K∑
k=1

πk

L∑
`=1

ni∏
j=1

f
(k)
yij |bi(yij|xij, zij,b

(`)
i ,θk).
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Thus, the log-likelihood is

`(Θ) ≈ log

(
n∏
i=1

K∑
k=1

πk
1

L

L∑
`=1

ni∏
j=1

f
(k)
yij |bi(yij|xij, zij,b

(`)
i ,θk)

)

=
n∑
i=1

log

(
K∑
k=1

πk
1

L

L∑
`=1

ni∏
j=1

f
(k)
yij |bi(yij|xij, zij,b

(`)
i ,θk)

)

=
n∑
i=1

[
log

(
K∑
k=1

πk

L∑
`=1

ni∏
j=1

f
(k)
yij |bi(yij|xij, zij,b

(`)
i ,θk)

)
− log(L)

]

=
n∑
i=1

log

(
K∑
k=1

πk

L∑
`=1

ni∏
j=1

f
(k)
yij |bi(yij|xij, zij,b

(`)
i ,θk)

)
−

n∑
i=1

log(L)

=
n∑
i=1

log

(
K∑
k=1

πk

L∑
`=1

ni∏
j=1

f
(k)
yij |bi(yij|xij, zij,b

(`)
i ,θk)

)
− n log(L)

∝
n∑
i=1

log

(
K∑
k=1

πk

L∑
`=1

ni∏
j=1

f
(k)
yij |bi(yij|xij, zij,b

(`)
i ,θk)

)
.

The remainder of this Appendix shows the details of the maximisation of the

MLE for a single subpopulation k in both the Poisson and binomial case. The first

two sections show these derivatives with respect to βk and �∗k so these correspond

to the MLE described in Chapter 3 and Chapter 4 when only the fixed effects are

penalised. The last two sections show these derivatives with respect to βk, d
∗, and

C∗k as described in Chapter 4 to facilitate penalisation of random effects.

B.1 Details of Maximisation of the Maximum Likelihood Estimate for a
Single Subpopulation K, Poisson Case

In order to maximise the approximate likelihood using Newton-Raphson, I

calculated the first, and second derivatives of the approximate likelihood. As an

example, the details of the derivatives for each element of θk are shown here. In

the following example, p = 3 and q = 2. Thus, xijβk + zij�kbi = xij1βk1 + xij2βk2 +
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xij3βk3 + zij1Γk11bi1 + zij2Γk12bi1 + zij2Γk22bi2 and

Qk(θk) =
1

L

L∑
l=1

n∑
i=1

ni∑
j=1

[yijxij1βk1 + yijxij2βk2

+yijxij3βk3 + yijzij1Γk11bi1 + yijzij2Γk12bi1 + yijzij2Γk22bi2

− exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2 .
]

In an effort to simplify the notation slightly, I shortened b
(s,l)
i to bi, did not include

weights τki, and condensed
∑L

l=1

∑n
i=1

∑ni
j=1 to

∑
l,i,j.

First, consider the first derivative.

Q′k(θk) =
∂Qk(θk)

∂θk
=

 ∂Qk(θk)
∂βk

∂Qk(θk)
∂�∗k



=



1
L

∑
l,i,j xij1

[
yij − exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

]
1
L

∑
l,i,j xij2

[
yij − exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

]
1
L

∑
l,i,j xij3

[
yij − exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

]
1
L

∑
l,i,j bi1zij1

[
yij − exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

]
1
L

∑
l,i,j bi1zij2

[
yij − exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

]
1
L

∑
l,i,j bi2zij2

[
yij − exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

]



=
1

L

∑
l,i,j



xij1

xij2

xij3

zij1bi1

zij2bi1

zij2bi2


(yij − exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2)
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I was then able to calculate the second derivative.

Q′′k(θk) =
∂2Qk(θk)

∂θ>k ∂θk
=

 ∂2Qk(θk)

∂β>∂β

∂2Qk(θk)

∂β>∂�∗

∂2Qk(θk)
∂�∗>∂β

∂2Qk(θk)
∂�∗>∂�∗


=

1

L

∑
l,i,j

−exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2 ×



(xij1)2 xij1xij2 xij1xij3 xij1zij1bi1 xij1zij2bi1 xij1zij2bi2

xij1xij2 (xij2)2 xij2xij3 xij2zij1bi1 xij2zij2bi1 xij2zij2bi2

xij1xij3 xij2xij3 (xij3)2 xij3zij1bi1 xij3zij2bi1 xij3zij2bi2

xij1zij1bi1 xij2zij1bi1 xij3zij1bi1 (zij1bi1)2 zij1zij2(bi1)2 zij1zij2bi1bi2

xij1zij2bi1 xij2zij2bi1 xij3zij2bi1 zij1zij2(bi1)2 (zij2bi1)2 (zij2)2bi1bi2

xij1zij2bi2 xij2zij2bi2 xij3zij2bi2 zij1zij2bi1bi2 (zij2)2bi1bi2 (zij2bi2)2



=
1

L

∑
l,i,j



xij1

xij2

xij3

zij1bi1

zij2bi1

zij2bi2





xij1

xij2

xij3

zij1bi1

zij2bi1

zij2bi2



>

× −exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

Also, consider the derivative with respect to bi for a particular value of i, and k.

Here, I used q = 3.

∂Qk(θk)

∂bi

=


∑ni
j=1(zij1Γk11 + zij2Γk12 + zij3Γk13)

[
yij − exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

]
∑ni
j=1(zij2Γk22 + zij3Γk23)

[
yij − exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

]
∑ni
j=1(zij3Γk33)

[
yij − exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

]


=

ni∑
j=1


zij1Γk11 + zij2Γk12 + zij3Γk13

zij2Γk22 + zij3Γk23

zij3Γk33

 (yij − exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2 )
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The second derivatives are as follows.

∂2Qk(θk)

∂b>i ∂bi
=

ni∑
j=1


zij1Γk11 + zij2Γk12 + zij3Γk13

zij2Γk22 + zij3Γk23

zij3Γk33



zij1Γk11 + zij2Γk12 + zij3Γk13

zij2Γk22 + zij3Γk23

zij3Γk33


>

×(−eβk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2 )

B.2 Details of Maximisation of the Maximum Likelihood Estimate for a
Single Subpopulation K, binomial Case

Similar to the previous section, p = 3, and q = 2. Thus, xijβk + zij�kbi =

xij1βk1 + xij2βk2 + xij3βk3 + zij1Γk11bi1 + zij2Γk12bi1 + zij2Γk22bi2, and

Qk(θk) =
1

L

L∑
l=1

n∑
i=1

ni∑
j=1

[yijxij1βk1 + yijxij2βk2 + yijxij3βk3 + yijzij1Γk11bi1

+yijzij2Γk12bi1 + yijzij2Γk22bi2

−mij log(exp[xij1βk1 + xij2βk2 + xij3βk3 + zij1Γk11bi1

+zij2Γk12bi1 + zij2Γk22bi2] + 1)].

Again, in an effort to simplify the notation slightly, I shortened b
(s,l)
i to bi, did not

include weights τki, and condensed
∑L

l=1

∑n
i=1

∑ni
j=1 to

∑
l,i,j.
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I calculated the first derivative.

Q′k(θk) =
∂Qk(θk)

∂θk
=

 ∂Qk(θk)
∂βk

∂Qk(θk)
∂�∗k



=



1
L

∑
l,i,j xij1

[
yij −mij

exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2+1

]
1
L

∑
l,i,j xij2

[
yij −mij

exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2+1

]
1
L

∑
l,i,j xij3

[
yij −mij

exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2+1

]
1
L

∑
l,i,j bi1zij1

[
yij −mij

exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2+1

]
1
L

∑
l,i,j bi1zij2

[
yij −mij

exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2+1

]
1
L

∑
l,i,j bi2zij2

[
yij −mij

exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2+1

]



=
1

L

∑
l,i,j



xij1

xij2

xij3

zij1bi1

zij2bi1

zij2bi2


×

(
yij −mij

exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2 + 1

)
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I also used the second derivative, so I derived it.

Q′′k(θk) =
∂2Qk(θk)

∂θ>k ∂θk
=

 ∂2Qk(θk)

∂β>k ∂βk

∂2Qk(θk)

∂β>k ∂�∗k
∂2Qk(θk)

∂�∗>k ∂βk

∂2Qk(θk)

∂�∗>k ∂�∗k


=

1

L

∑
l,i,j

−mij
exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

(exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2 + 1)2
×



(xij1)2 xij1xij2 xij1xij3 xij1zij1bi1 xij1zij2bi1 xij1zij2bi2

xij1xij2 (xij2)2 xij2xij3 xij2zij1bi1 xij2zij2bi1 xij2zij2bi2

xij1xij3 xij2xij3 (xij3)2 xij3zij1bi1 xij3zij2bi1 xij3zij2bi2

xij1zij1bi1 xij2zij1bi1 xij3zij1bi1 (zij1bi1)2 zij1zij2(bi1)2 zij1zij2bi1bi2

xij1zij2bi1 xij2zij2bi1 xij3zij2bi1 zij1zij2(bi1)2 (zij2bi1)2 (zij2)2bi1bi2

xij1zij2bi2 xij2zij2bi2 xij3zij2bi2 zij1zij2bi1bi2 (zij2)2bi1bi2 (zij2bi2)2



=
1

L

∑
l,i,j



xij1

xij2

xij3

zij1bi1

zij2bi1

zij2bi2





xij1

xij2

xij3

zij1bi1

zij2bi1

zij2bi2



>

×−mij
exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

(exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2 + 1)2

Also, consider the derivative with respect to bi for a particular value of i, and k.

Again I used q = 3.

∂Qk(θk)

∂bi
=

ni∑
j=1


zij1Γk11 + zij2Γk12 + zij3Γk13

zij2Γk22 + zij3Γk23

zij3Γk33


×
(
yij −mij

exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2 + 1

)
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I then calculated the second derivative.

∂2Qk(θk)

∂b>i ∂bi
=

ni∑
j=1


zij1Γk11 + zij2Γk12 + zij3Γk13

zij2Γk22 + zij3Γk23

zij3Γk33



zij1Γk11 + zij2Γk12 + zij3Γk13

zij2Γk22 + zij3Γk23

zij3Γk33


>

×−mij
exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2

(exij1βk1+xij2βk2+xij3βk3+zij1Γk11bi1+zij2Γk12bi1+zij2Γk22bi2 + 1)2

B.3 Details of Maximisation of the Maximum Likelihood Estimate for a
Single Subpopulation K, Poisson Case, γk Reparameterised

Following the reparameterisation of the matrix �k described in Section 4.2, I

again calculated the first, and second derivatives of the approximate likelihood. To

illustrate, I show an example with p = 3, and q = 3 with differentiation performed

for each element. In this example, xijβk + zij�kbi = xijβk + zijdkCkbi = xij1βk1 +

xij2βk2 + xij3βk3 + zij1dk1bi1 + zij2dk2(Ck12bi1 + bi2) + zij3dk3(Ck13bi1 + Ck23bi2 + bi3)

and

Qk(θk) =
1

L

L∑
l=1

n∑
i=1

ni∑
j=1

[yijxij1βk1 + yijxij2βk2 + yijxij3βk3

+ yijzij1dk1bi1 + yijzij2dk2(Ck12bi1 + bi2) + yijzij3dk3(Ck13bi1 + Ck23bi2 + bi3)

− exij1βk1+xij2βk2+xij3βk3+zij1dk1bi1+zij2dk2(Ck12bi1+bi2)+zij3dk3(Ck13bi1+Ck23bi2+bi3)
]
.

As before, in an effort to simplify the notation slightly, I shortened b
(s,l)
i to bi, did

not include weights τki, condensed
∑L

l=1

∑n
i=1

∑ni
j=1 to

∑
l,i,j, and used exij1βk1+... in

place of exij1βk1+xij2βk2+xij3βk3+zij1dk1bi1+zij2dk2(Ck12bi1+bi2)+zij3dk3(Ck13bi1+Ck23bi2+bi3).
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Again, I calculated the first derivative.

Q′k(θk) =
∂Qk(θk)

∂θk
=


∂Qk(θk)

∂βk

∂Qk(θk)

∂d∗

∂Qk(θk)

∂C∗k



=



1
L

∑
l,i,j xij1[yij − exij1βk1+...]

1
L

∑
l,i,j xij2[yij − exij1βk1+...]

1
L

∑
l,i,j xij3[yij − exij1βk1+...]

1
L

∑
l,i,j(zij1bi1)[yij − exij1βk1+...]

1
L

∑
l,i,j zij2(Ck12bi1 + bi2)[yij − exij1βk1+...]

1
L

∑
l,i,j zij3(Ck13bi1 + Ck23bi2 + bi3)[yij − exij1βk1+...]

1
L

∑
l,i,j(zij2dk2bi1)[yij − exij1βk1+...]

1
L

∑
l,i,j(zij3dk3bi1)[yij − exij1βk1+...]

1
L

∑
l,i,j(zij3dk3bi2)[yij − exij1βk1+...]



124



=
1

L

∑
l,i,j



xij1

xij2

xij3

zij1bi1

zij2(Ck12bi1 + bi2)

zij3(Ck13bi1 + Ck23bi2 + bi3)

zij2(dk2bi1)

zij3(dk3bi1)

zij3(dk3bi2)


× {yij − exij1βk1+xij2βk2+xij3βk3+zij1dk1bi1+zij2dk2(Ck12bi1+bi2)+zij3dk3(Ck13bi1+Ck23bi2+bi3)}

The second derivative is more complex in this case.

Q′′k(θk) =
∂2Qk(θk)

∂θ>k ∂θk
=


∂Qk(θk)

∂β>k ∂βk

∂Qk(θk)

∂β>k ∂d
∗

∂Qk(θk)

∂β>k ∂C
∗
k

∂Qk(θk)

∂d∗>∂βk

∂Qk(θk)

∂d∗>∂d∗
∂Qk(θk)

∂d∗>∂C∗k

∂Qk(θk)

∂C∗>k ∂βk

∂Qk(θk)

∂C∗>k ∂d∗
∂Qk(θk)

∂C∗>k ∂C∗k
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=
1

L

∑
l,i,j



xij1

xij2

xij3

zij1bi1

zij2(Ck12bi1 + bi2)

zij3(Ck13bi1 + Ck23bi2 + bi3)

zij2(dk2bi1)

zij3(dk3bi1)

zij3(dk3bi2)





xij1

xij2

xij3

zij1bi1

zij2(Ck12bi1 + bi2)

zij3(Ck13bi1 + Ck23bi2 + bi3)

zij2(dk2bi1)

zij3(dk3bi1)

zij3(dk3bi2)



>

× −exij1βk1+xij2βk2+xij3βk3+zij1dk1bi1+zij2dk2(Ck12bi1+bi2)+zij3dk3(Ck13bi1+Ck23bi2+bi3)

+



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 zij2bi1 0 0

0 0 0 0 0 0 0 zij3bi1 zij3bi2

0 0 0 0 zij2bi1 0 0 0 0

0 0 0 0 0 zij3bi1 0 0 0

0 0 0 0 0 zij3bi2 0 0 0


× {yij − exij1βk1+xij2βk2+xij3βk3+zij1dk1bi1+zij2dk2(Ck12bi1+bi2)+zij3dk3(Ck13bi1+Ck23bi2+bi3)}
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B.4 Details of Maximisation of the Maximum Likelihood Estimate for a
Single Subpopulation K, binomial Case, γk Reparameterised

Similar to the previous section, I provided a binomial example next with p = 3,

q = 3, and xijβk + zij�kbi = xijβk + zijdkCkbi = xij1βk1 + xij2βk2 + xij3βk3 +

zij1dk1bi1 + zij2dk2(Ck12bi1 + bi2) + zij3dk3(Ck13bi1 + Ck23bi2 + bi3) to illustrate the

differentiation. Thus,

Qk(θk) =
1

L

L∑
l=1

n∑
i=1

ni∑
j=1

[yijxij1βk1 + yijxij2βk2 + yijxij3βk3 + yijzij1dk1bi1

+yijzij2dk2(Ck12bi1 + bi2) + yijzij3dk3(Ck13bi1 + Ck23bi2 + bi3)

−mij log(exp[xij1βk1 + xij2βk2 + xij3βk3 + zij1dk1bi1

+zij2dk2(Ck12bi1 + bi2) + zij3dk3(Ck13bi1 + Ck23bi2 + bi3)] + 1)].

As in the previous section, to simplify the notation slightly, I shortened b
(s,l)
i to bi, did

not include the weights τki, condensed
∑L

l=1

∑n
i=1

∑ni
j=1 to

∑
l,i,j , and used exij1βk1+...

rather than exij1βk1+xij2βk2+xij3βk3+zij1dk1bi1+zij2dk2(Ck12bi1+bi2)+zij3dk3(Ck13bi1+Ck23bi2+bi3).
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Consider the first derivative.

Q′k(θk) =
∂Qk(θk)

∂θk
=


∂Qk(θk)

∂βk
∂Qk(θk)

∂d∗
k

∂Qk(θk)

∂C∗
k



=



1
L

∑
l,i,j xij1[yij −mij e

xij1βk1+...

e
xij1βk1+...

+1
]

1
L

∑
l,i,j xij2[yij −mij e

xij1βk1+...

e
xij1βk1+...

+1
]

1
L

∑
l,i,j xij3[yij −mij e

xij1βk1+...

e
xij1βk1+...

+1
]

1
L

∑
l,i,j zij1bi1[yij −mij e

xij1βk1+...

e
xij1βk1+...

+1
]

1
L

∑
l,i,j zij2(Ck12bi1 + bi2)[yij −mij e

xij1βk1+...

e
xij1βk1+...

+1
]

1
L

∑
l,i,j zij3(Ck13bi1 + Ck23bi2 + bi3)[yij −mij e

xij1βk1+...

e
xij1βk1+...

+1
]

1
L

∑
l,i,j zij2(dk2bi1)[yij −mij e

xij1βk1+...

e
xij1βk1+...

+1
]

1
L

∑
l,i,j zij3(dk3bi1)[yij −mij e

xij1βk1+...

e
xij1βk1+...

+1
]

1
L

∑
l,i,j zij3(dk3bi2)[yij −mij e

xij1βk1+...

e
xij1βk1+...

+1
]



=
1

L

∑
l,i,j



xij1

xij2

xij3

zij1bi1

zij2(Ck12bi1 + bi2)

zij3(Ck13bi1 + Ck23bi2 + bi3)

zij2(dk2bi1)

zij3(dk3bi1)

zij3(dk3bi2)


×
{
yij −mij

exij1βk1+xij2βk2+xij3βk3+zij1dk1bi1+zij2dk2(Ck12bi1+bi2)+zij3dk3(Ck13bi1+Ck23bi2+bi3)

exij1βk1+xij2βk2+xij3βk3+zij1dk1bi1+zij2dk2(Ck12bi1+bi2)+zij3dk3(Ck13bi1+Ck23bi2+bi3) + 1

}

Again, the second derivative is more complex with the reparameterised notation.

Q′′k(θk) =
∂2Qk(θk)

∂θ>k ∂θk
=


∂Qk(θk)

∂β>
k
∂βk

∂Qk(θk)

∂β>
k
∂d∗

∂Qk(θk)

∂β>
k
∂C∗
k

∂Qk(θk)

∂d∗>∂βk

∂Qk(θk)

∂d∗>∂d∗
∂Qk(θk)

∂d∗>∂C∗
k

∂Qk(θk)

∂C∗>
k
∂βk

∂Qk(θk)

∂C∗>
k
∂d∗

∂Qk(θk)

∂C∗>
k
∂C∗
k
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=
1

L

∑
l,i,j



xij1

xij2

xij3

zij1bi1

zij2(Ck12bi1 + bi2)

zij3(Ck13bi1 + Ck23bi2 + bi3)

zij2(dk2bi1)

zij3(dk3bi1)

zij3(dk3bi2)





xij1

xij2

xij3

zij1bi1

zij2(Ck12bi1 + bi2)

zij3(Ck13bi1 + Ck23bi2 + bi3)

zij2(dk2bi1)

zij3(dk3bi1)

zij3(dk3bi2)



>

× −mij
exij1βk1+xij2βk2+xij3βk3+zij1dk1bi1+zij2dk2(Ck12bi1+bi2)+zij3dk3(Ck13bi1+Ck23bi2+bi3)

{exij1βk1+xij2βk2+xij3βk3+zij1dk1bi1+zij2dk2(Ck12bi1+bi2)+zij3dk3(Ck13bi1+Ck23bi2+bi3) + 1}2

+



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 zij2bi1 0 0

0 0 0 0 0 0 0 zij3bi1 zij3bi2

0 0 0 0 zij2bi1 0 0 0 0

0 0 0 0 0 zij3bi1 0 0 0

0 0 0 0 0 zij3bi2 0 0 0


×

{
yij −mij

exij1βk1+xij2βk2+xij3βk3+zij1dk1bi1+zij2dk2(Ck12bi1+bi2)+zij3dk3(Ck13bi1+Ck23bi2+bi3)

exij1βk1+xij2βk2+xij3βk3+zij1dk1bi1+zij2dk2(Ck12bi1+bi2)+zij3dk3(Ck13bi1+Ck23bi2+bi3) + 1

}
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APPENDIX C
Detailed Algorithms

The complexity of a FinMix GLMM necessitates a multi-step algorithm to

perform parameter estimation. I described these calculations in Chapter 3 and

Chapter 4 for the MLE and MPLE cases respectively but I reproduced them as formal

algorithms here. Section C.1 details the steps to calculate the MLE of a FinMix

GLMM, and Sections C.2 and C.3 show the process when a penalty is added to the

likelihood. The generation of bki|yi,Xi,Zi,βk,�k is an important part of the E-step

in the inner MCEM which I explored in more detail in Section C.4. The choice of

the tuning parameter when using penalised regression is a complex, and important

question. I described the algorithm used to choose λ in this thesis in C.5. Due to

the nested loops, I added additional subscripts have to the loop counters (sin, sout),

the tolerance (tin, tout), and the maximum number of iterations (Min, Mout).
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C.1 Algorithm for Estimation of Parameters Using Maximum Likelihood
Estimation

Data: y, X, Z, Θ(0), K, p, q, L, n, ι, tin, tout,Min, Mout

Result: Θ̂

Set sout := 0;

repeat

Increment sout := sout + 1;

Decompose Θ(sout) into π
(sout)
k , and θ

(sout)
k ∀k;

Outer E-Step: Calculate τki∀k∀i using bki ∼ Gaussian(µ := 0,Σ := Iq);

Outer M-Step: Calculate π
(sout+1)
k ∀k;

for k ∈ {1, 2, . . . ,K} do

Reset sin := 0;

repeat

Increment sin := sin + 1;

Inner E-Step: Generate L values of b
(sin,l)
ki ;

Inner M-Step, recall that Q′′k , and Q′k are weighted by τki:

θ
(sin+1)
k := θ

(sin)
k − ( 1

2 )ι(Q′′k(θ
(sin)
k ))−1Q′k(θ

(sin)
k );

until

√
(θ

(sin+1)
k − θ(sin)

k )2 < tin or sin > Min;

end

Reconstruct Θ(sout+1) from π
(sout+1)
k , and θ

(sout+1)
k ;

until

√
(Θ(sout+1) −Θ(sout))2 < tout or sout > Mout;

if sout ≤Mout then

Increment sout := sout + 1;

Calculate `
(sout)
n := `n(Θ(sout));

Calculate BIC:= (−2)× `(sout)n + df × log(n);

Return Θ̂ := Θ(sout), `
(sout)
n , and BIC;

end

Algorithm 1: Estimate FinMix GLMM parameters in MLE case.
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C.2 Algorithm for Estimation of Parameters Using Maximum Penalised
Likelihood Estimation, Penalise Only Fixed Effects

Data: y, X, Z, Θ(0), K, p, q, L, n, ι, λ, α, tin, tout,Min, Mout

Result: Θ̂

Set sout := 0, and λ := λα;

repeat

Increment sout := sout + 1;

Decompose Θ(sout) to find π
(sout)
k , and θ

(sout)
k ∀k;

Outer E-Step: Calculate τki∀k∀i using bki ∼ Gaussian(µ := 0,Σ := Iq);

Outer M-Step: Calculate π
(sout+1)
k ∀k;

for k ∈ {1, 2, . . . ,K} do

Reset sin := 0;

Calculate n
(sin)
k = nπ

(sin)
k ;

repeat

Inner E-Step: Generate L values of b
(sin,l)
ki ;

Calculate �λk(θ(sin)), and Uλk(θ
(sin)
k ) := �λk(θ

(sin)
k )× θ(sin)

k ;

Inner M-Step, recall that Q′′k , and Q′k are weighted by τki: θ
(sin+1)
k :=

θ
(sin)
k − ( 1

2 )ι(Q′′k(θ
(sin)
k )−n(sin)

k �λk(θ(sin)))−1(Q′k(θ
(sin)
k )−n(sin)

k Uλk(θ
(sin)
k );

until

√
(θ

(sin+1)
k − θ(sin)

k )2 < tin or sin > Min;

end

until

√
(Θ(sout+1) −Θ(sout))2 < tout or sout > Mout;

if sout ≤Mout then

Increment sout := sout + 1;

Calculate `
(sout)
n := `n(Θ(sout));

Calculate BIC:= (−2)× `(sout)n + df × log(n);

Return Θ̂ := Θ(sout), `
(sout)
n , and BIC;

end

Algorithm 2: Estimate FinMix GLMM parameters in MPLE case when only the

fixed effects are penalised.
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C.3 Algorithm for Estimation of Parameters Using Maximum Penalised
Likelihood Estimation, Penalise Both Fixed and Random Effects

Data: y, X, Z, Θ(0), K, p, q, L, n, ι, λ, α, tin, tout,Min, Mout

Result: Θ̂

Set sout := 0, and λ := λα;

repeat

Increment sout := sout + 1;

Decompose Θ(sout) to find π
(sout)
k , and θ

(sout)
k ∀k;

Outer E-Step: Calculate τki∀k∀i using bki ∼ Gaussian(µ := 0,Σ := Iq);

Outer M-Step: Calculate π
(sout+1)
k ∀k;

for k ∈ {1, 2, . . . ,K} do

Reset sin := 0;

Calculate n
(sin)
k = nπ

(sin)
k ;

repeat

Decompose �k into dkCk, form θk;

Inner E-Step: Generate L values of b
(sin,l)
ki ;

Calculate �λk (θ(sin)), and Uλk (θ
(sin)
k ) := �λk (θ

(sin)
k )× θ(sin)

k ;

Inner M-Step, recall that Q′′k , and Q′k are weighted by τki: θ
(sin+1)
k :=

θ
(sin)
k − ( 1

2
)ι(Q′′k(θ

(sin)
k )− n(sin)

k �λk (θ(sin)))−1(Q′k(θ
(sin)
k )− n(sin)

k Uλk (θ
(sin)
k );

until

√
(θ

(sin+1)
k − θ(sin)

k )2 < tin or sin > Min;

end

until

√
(Θ(sout+1) −Θ(sout))2 < tout or sout > Mout;

if sout ≤Mout then

Increment sout := sout + 1;

Calculate `
(sout)
n := `n(Θ(sout));

Calculate BIC:= (−2)× `(sout)n + df × log(n);

Return Θ̂ := Θ(sout), `
(sout)
n , and BIC;

end

Algorithm 3: Estimate FinMix GLMM parameters in MPLE case when both

fixed, and random effects are penalised.

C.4 Generate b
(sin,l)
ki

I used this algorithm in the E-step of the inner MCEM. Recall that bki|yi,Xi,Zi,βk,�k

does not follow a standard distribution. Therefore, I used rejection sampling to
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generate these values. However, there are many possible options when performing

rejection sampling, so I provided here some additional details.

Data: yi, Xi, Zi, θk, p, q, L,Amet

Result: Sample from b
(l)
ki |yi,Xi,Zi,βk,�k of size L

Calculate b
(MLE)
ki |yi,Xi,Zi,βk,�k, and the Hessian matrix Hbki at b

(MLE)
ki ;

Generate L potential b
(l)
ki from Gaussian(µ := b

(MLE)
ki ,Σ := (−Hbki)

−1),

these are the starting values of the sample;

for acounter ∈ {1, 2, . . . , Amet} do

Generate L potential values

V (l) ∼ Gaussian(µ := b
(MLE)
ki ,Σ := (−Hbki)

−1);

Calculate fbki|yi,Xi,Zi,βk�k(V
(l)), the likelihood of each V (l);

Generate L values of U l ∼ Uniform(a := 0, b := 1);

If fU(U l) < fbki|yi,Xi,Zi,βk�k(V
(l)) then b

(l)
ki := V (l);

end

Return b
(l)
ki ;

Algorithm 4: Generate b
(sin,l)
ki |yi,Xi,Zi,βk,�k.

C.5 How to Choose λ

The choice of λ is an important problem in variable selection, and one that is a

source of continued research. There is an infinite number of possible choices for each

λk, any non-negative number is a possibility. However, all values of λk greater than

a certain value will provide the same estimates, where all the penalised parameters

are set to zero, and the non-penalised parameters are the only non-zero estimates,

that is, the mixing proportions π, and the intercepts βk1∀k ∈ {1, 2, . . . , K}. In the

case where only the fixed effects are penalised, there will also be non-zero estimates
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for the random effects �. Once I found these upper limits on each λk, I constructed

a grid of possible values for λ, and calculated the MPLE for each of them. This

provides a number of possible values of λ, from which I chose the one that provided

the lowest BIC as the optimal value of λ.

Data: y, X, Z, Θ(0), K, p, q, L, n, ι, α, tin, tout,Min, Mout, δ

Result: Optimal λ with corresponding values of Θ̂, and BIC

Calculate MPLE, Θ̂;

for k ∈ {1, 2, . . . , K} do

Set λk := 0;

repeat

Calculate MPLE using the current value of λk, and λh = 0∀h 6= k;

Save λ, Θ̂, and BIC;

Update λk := λk + δ;

until All penalised estimates for subpopulation k equal zero;

end

Using these ranges for λk, form a grid of possible values for λ;

for All possible values for λ do

Calculate MPLE using current value of λk, and λh = 0∀h 6= k;

Save λ, Θ̂, and BIC;

end

Find the lowest value of BIC as well as the corresponding values of λ, and Θ̂;

Return λ, Θ̂, BIC;

Algorithm 5: Finding the best choice for λ.

135



APPENDIX D
Regularity Conditions, Asymptotic Properties, and Proofs

Asymptotic properties are very important for regression using a FinMix GLMM. How-

ever, regularity conditions must be met before I can show these asymptotic proper-

ties. This Appendix focuses on these regularity conditions, asymptotic properties,

and their proofs. I have separated this Appendix into two sections, one of the MLE of

a FinMix GLMM, and one for MPLE of a FinMix GLMM. In each case, I stated the

regularity conditions, and where relevant, verified thm. Then I stated the asymptotic

properties and proved them.

D.1 Asymptotic Properties of the Maximum Likelihood Estimates

I proved two asymptotic properties of the MLE in this section, consistency and

that the estimates follow a Gaussian distribution asymptotically. Prior to the proofs

of the asymptotic properties, it is logical to start with the regularity conditions. There

are six regularity conditions that are required, and I verify two of them below.

D.1.1 Regularity Conditions and Their Verifications

These regularity conditions for a FinMix GLMM follow from Casella and Berger

(2002, p. 516). While these regularity conditions could be applied to any MLE, I

have provided verifications that are specific to a FinMix GLMM.
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Maximum Likelihood Estimation Regularity Condition 1

Observe (yi,Xi,Zi), i ∈ {1, 2, . . . , n} where Xi and Zi are fixed covariates and

Yi|(Xi,Zi,Θ) are independent identically distributed such that

fyi(yi|Xi,Zi,Θ) =
K∑
k=1

πkf
(k)
yi

(yi|Xi,Zi,βk,�k).

Maximum Likelihood Estimation Regularity Condition 2

The parameter Θ is identifiable, that is, if

K∑
k=1

πkf
(k)
yi

(yi|Xi,Zi,βk,�k) =
K′∑
k=1

π′kf
(k)
yi

(yi|Xi, Zi,β
′
k,�

′
k)

for all possible values of yi, and each i = 1, 2, . . . , n then K = K ′, and Θ =

Θ′. Identifiability is explored further in Section 3.2.2.

Maximum Likelihood Estimation Regularity Condition 3

The densities fyi(yi|Xi,Zi,Θ) have common support, and fyi(yi|Xi,Zi,Θ) is

differentiable in Θ.

Verification of MLE Regularity Condition 3

I broke this condition into two parts, common support and differentiability. Recall

that the support of the density fyi(yi) is the set of all points {yi|fyi(yi) > 0}. The

densities of a FinMix GLMM do have common support, though the support is

dependent on the distribution of Yi|(Xi,Zi,Θ). For example, if Yi|(Xi,Zi,Θ) ∼

Poisson then yij ∈ {0, 1, . . .}, and if Yi|(Xi,Zi,Θ) ∼ Gamma then 0 < yij <

∞. However, two special cases are more complex, and I examined these in more

detail.
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Considering the binomial distribution, if mij = m,∀i∀j, that is, the num-

ber of binomial trials is the same for all values of i, and j, the support of yij is

yij ∈ {1, 2, . . . ,m}. This satisfies the condition in this special case, but not more

generally. However, I assumed that in all cases mij is fixed, and known, therefore

yij is yij ∈ {1, 2, . . . ,mij}, and one can consider
yij
mij
∈ [0, 1], which is the common

support.

Another more complex case is when subpopulations have outcomes that follow

different distributions. Even if the different K’s probability density functions have

different supports, the overall probability density function of the mixture will have

common support for all values of Θ. As an example, assume without loss of

generality that K = 2 where f
(1)
yi (yi|Xi,Zi,βk,�k), and f

(2)
yi (yi|Xi,Zi,βk,�k) have

different supports. Examples of this special case are a zero-inflated Poisson, or when

f
(1)
yi (yi|Xi,Zi,βk,�k) ∼ Gamma and f

(2)
yi (yi|Xi,Zi,βk,�k) ∼ Gaussian. While

f
(1)
yi (yi|Xi,Zi,βk,�k), and f

(2)
yi (yi|Xi,Zi,βk,�k) have different supports,

fyi(yi|Xi,Zi,Θ) = π1f
(1)
yi

(yi|Xi,Zi,βk,�k) + π2f
(2)
yi

(yi|Xi,Zi,βk,�k)

has the same support for all yi. More generally, the support for fyi(yi|Xi,Zi,Θ) is

the union of the supports for f
(1)
yi , f

(2)
yi . . . , f

(K)
yi , so this condition is satisfied for larger

values of K.

Next, consider the differentiability of a FinMix GLMM probability density

function with respect to Θ. Recall that

fyi(yi|Xi,Zi,Θ) =
K∑
k=1

πkf
(k)
yi

(yi|Xi,Zi,βk,�k).
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The derivative with respect to πk, that is, a mixing proportion are

∂

∂πk
fyi(yi|Xi,Zi,Θ) = 0 + f (k)

yi
(yi|Xi,Zi,βk,�k) + 0 (D.1)

Derivatives of the approximate likelihood’s for the Poisson, and binomial cases

are in Section 3.3.2, and Appendix B but the derivations shown here are general to

any exponential family. Having looked at the partial derivative with respect to πk,

it is sufficient to show that f
(k)
yi (yi|Xi,Zi,βk,�k) is differentiable with respect to βk,

and �k, for each k ∈ {1, 2, . . . , K}.

In this thesis, I assumed that f
(k)
yi|bi(yi|bi,Xi,Zi,βk,�k) follows a distribution

that is from an exponential family, and used the canonical link function. Rewriting

the probability density function for one subpopulation k as an exponential family

using the form in McCullagh and Nelder (1989, p. 28) produces

f
(k)
yi|bi(yi|bi, Xi, Zi, βk,Γk) = exp

(
yijψ − b(ψ)

a(φ) + c(y, φ)

)
.

I used the canonical link function, ψ = η = xijβk + zij�kbi, which is linear, and

therefore differentiable. Next, I applied the chain rule,

∂

∂θk
f

(k)
yi|bi(yi|bi, Xi, Zi, βk,Γk) = exp

(
yijψ − b(ψ)

a(φ) + c(y, φ)

)
yij − b′(ψ)

a(φ) + c(y, φ)
, (D.2)

and

∂2

∂θ>k ∂θk
f

(k)
yi|bi(yi|bi, Xi, Zi, βk,Γk)

=
−b′′(ψ)

a(φ)
exp

(
yijψ − b(ψ)

a(φ) + c(y, φ)

)
+

[
yij − b′(ψ)

a(φ) + c(y, φ)

]2

exp

(
yijψ − b(ψ)

a(φ) + c(y, φ)

)
(D.3)
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where

b′(ψ) =
∂b(ψ)

∂θk

and

b′′(ψ) =
∂2b(ψ)

∂θ>k ∂θk
.

This still requires that b′(ψ) and b′′(ψ) exist. According to the product rule, the

product of differentiable functions is differentiable, so f
(k)
yij |bi(yij|bi, xij, zij,βk,�k)×

fbi(bi) is differentiable with respect to βk, and �k. Next, I used Leibniz’s rule for

differentiation under the integral sign.

∂

∂θk
f (k)

yi
(yi|Xi,Zi,βk,�k) =

∫
∂

∂θk
f

(k)
yi|bi(yi|bi,Xi,Zi,βk,�k)fbi(bi)dbi

Also, recall that
∫∞
−∞ f(x)dx = lim

A→−∞
lim
R→∞

∫ R
A
f(x)dx. However, this integral could

be a double, triple or higher-order integral, and goes from −∞ to ∞ because bi ∼

Gaussian(µ = 0,Σ = Iq). So this rule may need to be applied multiple times. Thus

fyi(yi|Xi,Zi,Θ) is differentiable in Θ, and Condition 3 is satisfied.

Maximum Likelihood Estimation Regularity Condition 4

The parameter space Φ contains an open set ω of which the true parameter value

Θ0 is an interior point.

Maximum Likelihood Estimation Regularity Condition 5

For every yi, the density fyi(yi|Xi,Zi,Θ) is three times differentiable with respect

to Θ, and
∫
fyi(yi|Xi,Zi,Θ)dyi can be differentiated three times under the integral

sign.
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Verification of Maximum Likelihood Estimation Regularity Condition
5

This is trivial for π1, π2, ..., πK−1, I have already shown the first derivatives in

Equation (D.1), and all higher-order derivatives with respect to πk are 0 for all

k ∈ {1, 2, . . . , K}. For βk, and �k, I have shown this up to a choice of b(ψ) for

the first, and second derivatives in Equations (D.2) and (D.3) respectively, and for

a selection of common distributions in Table D–1. Using again the notation from

McCullagh and Nelder (1989, p. 28),

∂3

∂θ3
k

f
(k)
yij |bi(yij |bi, xij , zij ,βk,�k)

=
−b′′′(ψ)

a(φ) + c(yij , φ)
exp

(
yijψ − b(ψ)

a(φ) + c(yij , φ)

)
+
b′′(ψ)(yij − b′(ψ))

(a(φ) + c(yij , φ))2
exp

(
yijψ − b(ψ)

a(φ) + c(yij , φ)

)
+

(
yijψ − b(ψ)

a(φ) + c(yij , φ)

)3

exp

(
yijψ − b(ψ)

a(φ) + c(yij , φ)

)
− b′′(ψ)

a(φ) + c(yij , φ)
exp

(
yijψ − b(ψ)

a(φ) + c(yij , φ)

)
= exp

(
yijψ − b(ψ)

a(φ) + c(yij , φ)

)[
−b′′′(ψ)− b′′(ψ)

a(φ) + c(yij , φ)
− b′′(ψ)(yij − b′(ψ))

(a(φ) + c(yij , φ))2
+

(
yijψ − b(ψ)

a(φ) + c(yij , φ)

)3
]

Recall that using the chain rule, and ψ(βk,�k) = xijβk + zij�kbi, the derivatives

with respect to βk, and �k exist, and are as follows:

∂ψ(βk,�k)
∂βkh

= xijh;

∂ψ(βk,�k)
∂�khg

= zijgbih, h ≤ g;

∂ψ(βk,�k)
∂�khg

= 0, h > g.
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Table D–1: Table of derivatives of b(ψ) for different distributions
Distribution b(ψ) b′(ψ) b′′(ψ) b′′′(ψ)

Gaussian ψ2

2
ψ 1 0

Poisson eψ eψ eψ eψ

Binomial log(1 + eψ) eψ

1+eψ
eψ

(1+eψ)2

eψ(1−eψ)
(1+eψ)2

Gamma − log(−ψ) 1
ψ

−1
ψ2

2
ψ3

Inverse Gaussian −(−2ψ)
1
2 (−2ψ)

−1
2 (−2ψ)

−3
2 3(−2ψ)

−5
2

Maximum Likelihood Estimation Regularity Condition 6

For any Θ0 ∈ Φ, there exists an open set Φ0 ⊆ Φ such that Θ0 ∈ Φ0 and

a function M(yi), both of which may depend on Θ0 such that for all Θ ∈ Φ0 and

EΘ0 [M(yi)] <∞ ∣∣∣∣ ∂3

∂Θ3 log(f(yi|Xi, Zi,Θ))

∣∣∣∣ ≤M(yi).

D.1.2 Asymptotic Properties of the Maximum Likelihood Estimators
and Their Proofs

There are two asymptotic properties of the MLE that are of interest here,

consistency and that the asymptotic distribution of the estimators is Gaussian. Recall

that the MLE is transform invariant. However, the following theorem, and proof do

not include that generalisation.

Theorem 1 (Consistency of the MLE). The MLE for Θ ∈ Φ, denoted Θ̂ is consistent,

that is lim
n→∞

PΘ(||Θ̂−Θ|| > ε) = 0.

The following proof follows from Kendall et al. (1994, Section 18.10).

Proof. Since Θ̂ is the MLE, ∀Θ ∈ Φ,

L(Y |X, Θ̂) ≥ L(Y |X,Θ)

142



and also

logL(Y |X, Θ̂) ≥ logL(Y |X,Θ).

Assume that Θ0 is the true value of the parameter vector and consider the random

variable

L(Y |X,Θ)

L(Y |X,Θ0)
,

Using Jensen’s inequality, for all Θ∗ 6= Θ0,

EΘ0

{
log

[
L(Y |X,Θ∗)
L(Y |X,Θ)

]}
< log

[
EΘ0

{
L(Y |X,Θ∗)
L(Y |X,Θ)

}]
Expanding the expectation on the right side of the inequality,∫ ∫

. . .

∫
L(Y |X,Θ∗)
L(Y |X,Θ0)

L(Y |X,Θ0)dy1dy2 . . . dyn

=

∫ ∫
. . .

∫
L(Y |X,Θ∗)dy1dy2 . . . dyn = 1,

because the integral over a probability density function is always 1. Therefore, taking

the log of that expectation, and log(1) = 0,

EΘ0

{
log

[
L(Y |X,Θ∗)
L(Y |X,Θ)

]}
< 0

=⇒ EΘ0 {log [L(Y |X,Θ∗)]} − EΘ0 {log [L(Y |X,Θ)]} < 0

=⇒ EΘ0 {log [L(Y |X,Θ∗)]} < EΘ0 {log [L(Y |X,Θ)]}

=⇒ EΘ0

{
1

n
log [L(Y |X,Θ∗)]

}
< EΘ0

{
1

n
log [L(Y |X,Θ)]

}
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For any value of Θ ∈ Φ, 1
n

logL(Y |X,Θ) = 1
n

∑n
i=1 log(yi|Xi,Θ), which is the mean

of n independent identically distributed yi, and

EΘ0 [log fyi(yi|Xi,Θ)] = EΘ0

[
1

n
logL(Y |X,Θ)

]
.

By the strong law of large numbers, 1
n

logL(Y |X,Θ) converges with probability 1

to its expectation. So 1
n

logL(Y |X,Θ∗) < 1
n

logL(Y |X,Θ0) and when Θ∗ 6= Θ0,

lim
n→∞

P (logL(Y |X,Θ∗) < log) = 1. However, when Θ = Θ0, logL(Y |X, Θ̂) ≥

logL(Y |X,Θ0). Therefore, P
(

lim
n→∞

Θ̂ = Θ0

)
= 1. Therefore, the MLE is consistent.

Theorem 2 (Asymptotic Distribution of the MLE). The MLE of a FinMix GLMM is

asymptotically Gaussian, that is,
√
n(Θ̂−Θ0) converges in distribution to a Gaussian

distribution.

The proof that the maximum likelihood estimator is asymptotically Gaussian

uses a Taylor series around the true value of Θ, assumed to be Θ0 as shown in Casella

and Berger (2002, p. 472).

Proof. Let `(Θ|Y,X) =
∑n

i=1 log fyi(yi|Xi,Θ) be the log-likelihood function, and

denote its derivatives with respect to Θ as ∂
∂Θ
`(Θ|Y,X), and ∂2

∂Θ>∂Θ
`(Θ|Y,X). Using

a first-order Taylor expansion of ∂
∂Θ
`(Θ|Y,X) around the true value of Θ denoted

Θ0,

∂

∂Θ
`(Θ|Y,X) ≈ ∂

∂Θ
`(Θ0|Y,X) + (Θ−Θ0)

∂2

∂Θ>∂Θ
`(Θ0|Y,X).
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Substituting in the MLE Θ̂ provides

0 =
∂

∂Θ
`(Θ0|Y,X) + (Θ̂−Θ0)

∂2

∂Θ>∂Θ
`(Θ0|Y,X)

(Θ̂−Θ0) =
− ∂
∂Θ
`(Θ0|Y,X)

∂2

∂Θ>∂Θ
`(Θ0|Y,X)

√
n(Θ̂−Θ0) =

−
√
n ∂
∂Θ
`(Θ0|Y,X)

∂2

∂Θ>∂Θ
`(Θ0|Y,X)

Denote `(Θ0) = E
[
∂
∂Θ
`(Θ0|Y,X)

]2
. Using the Central Limit Theorem, and the

Weak Law of Large Numbers,

− 1√
n

∂

∂Θ
`(Θ0|Y,X)→ Gaussian(µ = 0,Σ = I(Θ0))

in distribution and

1

n

∂2

∂Θ>∂Θ
`(Θ0|Y,X)→ Θ0

in probability, so
√
n(Θ̂ −Θ0) converges in distribution to Gaussian(µ = 0,Σ =

1
I(Θ0)

), which proves that the MLE is asymptotically Gaussian.

D.2 Asymptotic Properties of Maximum Penalised Likelihood Estimates

The regularity conditions, properties, and proofs follow in the same way as Du

et al. (2013). Assume that the data follows a FinMix GLMM, and is of the form

(yi,Xi,Zi), ∀i ∈ {1, 2, . . . , n}. Let Θ = (π1, π2, . . . , π(K−1), β11, β12, . . . , β1p,Γ111, . . . ,Γ1qq,

. . . , βK1, βK2, . . . , βKp,ΓK11,ΓK21, . . . ,ΓKq(q−1),ΓKqq)
>. Because this notation is cum-

bersome, Θ is rewritten as Θ = (Θ1,Θ2, . . . ,ΘS)> ∈ Φ. Note that S = (K − 1) +

K(p + 1
2
q(q + 1)) = (K − 1) + Kκ. Recall that the joint density of (yi,Xi,Zi) is

f(yi,Xi,Zi|Θ).
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D.2.1 Maximum Penalised Likelihood Estimation Regularity Conditions

The following conditions are necessary for the ensuing theorems. I presented

conditions on the model first, followed by conditions on the penalty function.

Maximum Penalised Likelihood Estimation Regularity Condition 1

The model f(yi,Xi,Zi|Θ) is identifiable. More information on the identifiability

of a FinMix GLMM can be found in Section 3.2.2.

Maximum Penalised Likelihood Estimation Regularity Condition 2

The joint density function is thrice differentiable such that for every possible

Θ∗ ∈ Φ, there exist functions G1i(yi,Xi,Zi), G2i(yi,Xi,Zi), and G3i(yi,Xi,Zi), such

that EΘ∗ [G1i(yi,Xi,Zi)] < ∞, EΘ∗ [G2i(yi,Xi,Zi)] < ∞, and EΘ∗ [G3i(yi,Xi,Zi)] <

∞, and for all Θ in a neighbourhood of Θ∗,∣∣∣∣∂ log f(yiXi,Zi|Θ)

∂Θι

∣∣∣∣ < G1i(yi,Xi,Zi),∣∣∣∣∂2 log f(yiXi,Zi|Θ)

∂Θι∂Θκ

∣∣∣∣ < G2i(yi,Xi,Zi),∣∣∣∣∂3 log f(yiXi,Zi|Θ)

∂Θι∂Θκ∂Θν

∣∣∣∣ < G3i(yi,Xi,Zi).

Maximum Penalised Likelihood Estimation Regularity Condition 3

The Fisher information matrix, denoted as I(Θ), is both finite as well as positive

definite for all possible Θ ∈ Φ.

For ease of notation in this section, I decomposed the parameter Θ into two

components. Without loss of generality, assume that Θ can be decomposed into Θ> =

(Θ†>,Θ‡>) such that Θ‡ contains only zeros. Separate also the vector representing

the true parameters in the same way, that is Θ>0 = (Θ†>0 ,Θ‡>0 ). All elements of Θ†0
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can be split into β†0, and d†∗0 depending on if they are from β, or d∗ respectively.

Similarly, all elements of Θ‡0 can be split into β‡0, and d‡∗0 . Then, the following three

values are defined for use in the subsequent asymptotic properties:

an = maxkh

{√
n
∣∣∣pnk(β†0)

∣∣∣ ,√n ∣∣∣pnk(d†∗0 )
∣∣∣} ;

bn = maxkh

{
√
n

∣∣∣∣∣∂pnk(β†0)

∂β

∣∣∣∣∣ ,√n
∣∣∣∣∣∂pnk(d†∗0 )

∂d∗

∣∣∣∣∣
}

;

cn = maxkh

{
√
n

∣∣∣∣∣∂2pnk(β
†
0)

∂β>∂β

∣∣∣∣∣ ,√n
∣∣∣∣∣∂2pnk(d

†∗
0 )

∂d∗>∂d∗

∣∣∣∣∣
}
.

Penalty Condition 1

For all values of n, and k, the penalty function pnk(0) = 0, the penalty function

is symmetric, non-negative, non-decreasing, and twice differentiable on the open set

(0,∞). That is, pnk(x) = pnk(−x), pnk(x) ≥ 0, x ≤ y ⇒ pnk(x) ≤ pnk(y), and p′′nk(x)

exists.

Penalty Condition 2

As n→∞, an = o(1 + bn) and cn = o(
√
n). This means that the non-zero values

of the penalty are asymptotically bounded. That is, for every ε > 0, there exists

an integer nε, potentially dependent on ε such that if n > nε then |an| < ε|1 + bn|.

Similarly, for every ε > 0, there exists an integer nε, potentially dependent on ε such

that if n > nε then |cn| < ε
√
n. Formal definitions of asymptotic notation can be

found in Bishop et al. (2007, Section 14.2).

Penalty Condition 3

For any Nn = {%|0 < % ≤ n−
1
2 log(n)}, lim

n→∞
inf
%∈Nn

√
ndpnk(%)

d%
=∞.
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D.2.2 Asymptotic Properties of Maximum Penalised Likelihood Estima-
tors and Their Proofs

Consistency of the estimator in probability is included in the definition of

existence.

Theorem 3 (Existence and consistency of the MPLE). Assume that Θ> = (Θ>, 0>)

are the true parameters of a FinMix GLMM. Assume that the MPLE regularity

conditions 1, 2, and 3 are satisfied by this model and assume the penalty function

pnk satisfies penalty conditions 1, 2, and 3. Then, there exists Θ̂n such that Θ̂n

is a local maximum of the penalised log-likelihood function, and also ||Θ̂n −Θ0|| =

Op{n−
1
2 (1 + bn)}.

Recall that by the definition ofOp (Bishop et al., 2007, Section 14.4), ||Θ̂n−Θ0|| =

Op{n−
1
2 (1 + bn)} means that for every η > 0, there exists a constant Kη, and an

integer nη, both of which could depend on η, such that for every n > nη,

P{||Θ̂n −Θ0|| ≤ Kη(n
− 1

2 (1 + bn))} ≥ 1− η.

Proof. Let rn = n−1/2(1 + bn). It suffices to show that for any small enough ε > 0,

there exists a constant Mε such that for sufficiently large n,

P{sup||u|| < `]nλ(Θ0)} ≥ 1− ε

where sup||u|| = Mε`
]
nλ(Θ0 + rnu). Therefore, there is a large probability that there

exists a local maximum of `]nλ(Θ0) in {Θ0 + rnu : ||u|| ≤ Mε}. This is an open set

around the true value of the parameter vector. This local maximiser Θ̂n satisfies
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||Θ̂n −Θ0|| = Op{n−1/2(1 + bn)}. Let

∆n(u) = `]nλ(Θ0 + rnu)− `]nλ(Θ0)

= {`n(Θ0 + rnu)− `n(Θ0)} − {pnλ(Θ0 + rnu)− pnλ(Θ0)}.

Recall from penalty condition 1 that pnkλ(0) = 0, so pnkλ(Θ
‡
0) = 0, and pnλ(Θ0) =

pnλ(Θ†0). Thus, pnλ(Θ0 + rnu) is a sum of positive terms. Let uI be the subvector of

u that corresponds to the non-zero effect. Then,

∆n(u) ≤ {`n(Θ0 + rnu)− `n(Θ0)} − {pnλ(Θ†0 + rnuI)− pnλ(Θ†0)}

≤ {`n(Θ0 + rnu)− `n(Θ0)} − |pnλ(Θ†0 + rnuI)− pnλ(Θ†0)| (D.4)

by the triangle inequality. A Taylor’s expansion of `n(Θ0) around u = 0 results in

`n(Θ0 + rnu)− `n(Θ0) ≈ rn`
′
n(Θ0)>u+

1

2
u>(`′′n(Θ0))ur2

n

=
(1 + bn)√

n
`′n(Θ0)>u+

(1 + bn)2

2m
u>(`′′n(Θ0))u.

However, by model condition 2, the remainder term must converge to 0 as n→∞.

Next, consider the Hessian matrix `′′n(Θ0). By properties of the Hessian matrix

1
m
`′′n(Θ0) converges in probability to −I(Θ0).
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Therefore,

`n(Θ0 + rnu)− `n(Θ0)

=
(1 + bn)√

n
`′n(Θ0)>u− (1 + bn)2

2
u>I(Θp)u{1 + op(1)}

= (1 + bn)Op(1)||u|| − (1 + bn)2

2
u>I(Θp)u{1 + op(1)}, (D.5)

since 1√
n
`′n(Θ0) = Op(1) by model condition 2. Given model condition 3, it is

assumed that, I(Θ0) is positive definite. Thus, I(Θ0) has only positive eigenvalues.

Let ηmin > 0 be the smallest eigenvalue of I(Θ0). Since ηmin is an eigenvalue, and

I(Θ0) is positive definite, u>I(Θ0)u ≥ ηmin||u||2. Applying this result to (D.5), I

have

`n(Θ0 + rnu)− `n(Θ0) ≤ (1 + bn)Op(1)||u|| − (1 + bn)2

2
ηmin||u||2{1 + op(1)} (D.6)

In addition, by using a Taylor’s expansion, and the triangle inequality,

|pnλ(Θ†0 + rnuI)− pnλ(Θ†0)|

= p′nλ(Θ
†
0)>rnuI +

r2
n

2
u>I p

′′
nλ(Θ

†
0)uI{1 + o(1)}

≤ rn|p′nλ(Θ
†
0)>uI |+

r2
n

2
|u>I p′′nλ(Θ

†
0)uI |{1 + o(1)}

≤ rn||p′nλ(Θ
†
0)>|| × ||uI ||+

r2
n

2
||diag(p′′nλ(Θ

†
0))|| × ||uI ||2{1 + o(1)}. (D.7)

Let tk be the total number of true non-zero fixed, and random effects in the kth

subpopulation, and let t = max{tk, k = 1, . . . , K}. Let β†0, and d†0 denote respectively

the vectors of β†khs, and d†0s from all K subpopulations. Consider the first term of
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(D.7), ||p′nλ(Θ
†
0)||. Separating ||p′nλ(Θ

†
0)|| into parts,

||p′nλ(Θ
†
0)|| = ||p′nλ(π1, . . . , πK)||+ ||p′nλ(β

†
0, d
†
0)||

because of the triangle inequality. Recall that the penalty function is always non-

negative, so this is an equality, not an inequality. Recall that pnλ(Θ) =
∑K

k=1 πk ×

n(
∑p

h=1 pnkλ(βkh) +
∑q

h=1 pnkλ(dkh)), therefore, the derivative of the penalty function

with respect to the mixing proportions is

p′nλ(π1, . . . , πK) =



n(
∑p

h=1 pnkλ(β1h) +
∑q

h=1 pnkλ(d1h))

n(
∑p

h=1 pnkλ(β2h) +
∑q

h=1 pnkλ(d2h))

...

n(
∑p

h=1 pnkλ(βKh) +
∑q

h=1 pnkλ(dKh))


.

Recall that the penalty on the fixed, and random effects includes the value of the

mixing proportions, so even though there is no penalty on the mixing proportions,

this derivative is not zero. Thus,

||p′nλ(π1, . . . , πK)|| = n×

√√√√ K∑
k=1

[
p∑

h=1

pnkλ(β
†
0kh) +

q∑
h=1

pnkλ(d
†
0kh)

]2

≤ n

√√√√ K∑
k=1

[
tk ×

an√
n

]2

= an
√
n

√√√√ K∑
k=1

t2k

≤ an
√
n

√√√√ K∑
k=1

t2 = an
√
n
√
Kt.
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Furthermore,

||p′nλ(β
†
0, d
†
0)|| = ||∆pnλ(β†011, . . . , β

†
01p, . . . , β

†
0K1, . . . , d

†
011, . . . , d

†
01q, . . . , d

†
0K1, . . . , d

†
0Kq)||

= n||π1p
′
n1(β†011), . . . , π1p

′
n1(β†01p), . . . , πKp

′
nK(β†0K1), . . . , πKp

′
nK(β†0Kp),

π1p
′
n1(d†011), . . . , π1p

′
n1(d†01p), . . . , πKp

′
nK(d†0K1), . . . , πKp

′
nK(d†0Kp)||

≤ n||p′n1(β†011), . . . , p′n1(β†01p), . . . , p
′
nK(β†0K1), . . . , p′nK(β†0Kp),

p′m1(d†011), . . . , p′m1(d†01p), . . . , p
′
mK(d†0K1), . . . , p′mK(d†0Kp)||

= m

√√√√ K∑
k=1

p∑
h=1

p′nkλ(β
†
0kh)

2 +
K∑
k=1

q∑
h=1

p′nkλ(d
†
0kh)

2

= m

√√√√ K∑
k=1

(
p∑

h=1

p′nkλ(β
†
0kh)

2 +

q∑
h=1

p′nkλ(d
†
0kh)

2

)

≤ m

√√√√ K∑
k=1

tk ×
(
bn√
n

)2

=
√
nbn

√√√√ K∑
k=1

tk

≤ bn
√
n
√
K × t.

Therefore,

||p′nλ(Θ0)|| ≤ an
√
n
√
Kt+ bn

√
n
√
Kt.
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Using (D.7), this leads to

|pnλ(Θ†0 + r)muI)− pnλ(Θ†0)|

≤ rn(an
√
n
√
Kt+ bn

√
n
√
Kt)||u||+ r2

n

2
||diag(p′′nλ(Θ

†
0))|| × ||uI ||2{1 + o(1)}

=
1 + bn√

n
(an
√
n
√
Kt+ bn

√
n
√
Kt)||u||

+
1

2

(1 + bn)2

m
||diag(p′′nλ(Θ

†
0))|| × ||uI ||2{1 + o(1)}

= an(1 + bn)
√
Kt||u||+ bn(1 + bn)

√
Kt||u||

+
1

2

(1 + bn)2

m
||diag(p′′nλ(Θ

†
0))|| × ||uI ||2{1 + o(1)}. (D.8)

Furthermore,

||diag(p′′nλ(Θ
†
0))||

= m

√√√√ K∑
k=1

p∑
h=1

p′′nkλ(β
†
kh)

2π2
k +

K∑
k=1

q∑
h=1

p′′nkλ(d
†
kh)

2π2
k

≤ m

√√√√ K∑
k=1

(
p∑

h=1

p′′nkλ(β
†
kh)

2π2
k +

q∑
h=1

p′′nkλ(d
†
kh)

2π2
k

)

≤ m

√√√√ K∑
k=1

tk

(
cn√
n

)2

=
√
ncn

√√√√ K∑
k=1

tk

≤ cn
√
n
√
Kt.

Combining this result with (D.8) gives

|pnλ(Θ†0 + rnuI)− pnλ(Θ†0)| ≤ an(1 + bn)
√
Kt||u||

+bn(1 + bn)
√
Kt||u||

+
1

2

(1 + bn)2

√
n

cn
√
Kt||u||2(1 + o(1)). (D.9)
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Combining (D.4), (D.6), and (D.9) results in

∆n(u) ≤ (1 + bn)Op(1)||u|| − (1 + bn)2

2
ηmin||u||2{1 + op(1)}

+an(1 + bn)
√
Kt||u||+ bn(1 + bn)

√
Kt||u||

+
1

2

(1 + bn)2

√
n

cn
√
Kt||u||2(1 + o(1)).

Dividing both sides of the above inequality by (1 + bn)2 provides

∆n(u)

(1 + bn)2
≤ 1

1 + bn
Op(1)||u|| − 1

2
ηmin||u||2{1 + op(1)}

+
an

1 + bn

√
Kt||u||+ bn

1 + bn

√
Kt||u||

+
1

2

cn√
n

√
Kt||u||2(1 + o(1)).

By penalty condition 2, an = o(1 + bn), and cn = o(
√
n). Applying these conditions

to the second row of the above inequality, produces

∆n(u)

(1 + bn)2
≤ 1

1 + bn
Op(1)||u||− 1

2
ηmin||u||2{1+op(1)}+ bn

1 + bn

√
Kt||u||+o(1) (D.10)
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Using (D.10),

P

{
sup
||u||=Mε

∆n(u) < 0

}
= Pr

{
sup
||u||=Mε

∆n(u)

(1 + bn)2
< 0

}

≥ P

{
sup
||u||=Mε

[
1

1 + bn
Op(1)||u|| − 1

2
ηmin||u||2{1 + op(1)}+

bn
1 + bn

√
Kt||u||+ o(1)

]
< 0

}

= P

{
sup
||u||=Mε

[
1

1 + bn
Op(1)||u||+ bn

1 + bn

√
Kt||u||+ o(1)

]
<

1

2
ηmin||u||2{1 + op(1)}

}

= P

{
sup
Mε

[
1

1 + bn
Op(1) +

bn
1 + bn

√
Kt+ o(1)

]
<

1

2
ηminMε{1 + op(1)}

}
= P

{
sup
Mε

Op(1) <
1

2
ηminMε{1 + op(1)}

}
≥ 1− ε

for sufficiently large Mε and n. Therefore, for any given ε > 0, there exists a sufficiently

large Mε such that

lim
m→∞

P

{
sup
||u||=Mε

`]nλ(Θ0 + rnu)− `]nλ(Θ0) < 0

}
≥ 1− ε

which completes the proof.

Theorem 3 states that when bn is O(1), there exists a local maximiser, Θ̂n, of

the penalised likelihood function (4.1) which convergence to Θ0 at a
√
n rate. By

choosing the value of the tuning parameter λnk carefully this can be achieved for the

three penalty functions considered in this thesis. More specifically, if λnk = O(n−1/2)

for the LASSO, and ALASSO penalties, and λnk → 0 for the SCAD penalty, then

bn = O(1) for all three penalties, and
√
n convergence can be achieved.

Theorem 4. Assume that the observed data follow a FinMix GLMM satisfying the

MPLE regularity conditions 1, 2, and 3. Assume also that the penalty function pnkλ

satisfies penalty conditions 1, 2, and 3. Let the number of subpopulations K be known
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a priori. Then for any Θ such that ||Θ−Θ0|| = O(n−1/2), with probability tending

to 1,

`]nλ{(Θ
†,Θ‡)} < p`]nλ{(Θ

†, 0)}.

Proof. Partition Θ = (Θ†,Θ‡) for any Θ in the neighbourhood ||Θ−Θ0|| = O(m−1/2).

By the definition of `]nλ(Θ)

`]nλ{(Θ
†,Θ‡)} − `]nλ{(Θ

†, 0)}

= [`n{(Θ†,Θ‡)} − `n{(Θ†, 0)}]− [pnλ{(Θ†,Θ‡)} − pnλ{(Θ†, 0)}].

Focusing on the first two terms, by the mean value theorem, there exists some ε such

that ||ε|| < ||Θ‡|| = O(n−1/2), and

`n{(Θ†,Θ‡)} − `n{(Θ†, 0)} =

[
∂`n{(Θ†, ε)}

∂Θ‡

]>
Θ‡. (D.11)

Then,

||∂`n{(Θ
†, ε)}

∂Θ‡
− ∂`n{(Θ†0, 0)}

∂Θ‡
|| ≤ ||∂`n{(Θ

†, ε)}
∂Θ‡

− ∂`n{(Θ1, 0)}
∂Θ‡

||

+||∂`n{(Θ
†, 0)}

∂Θ‡
− ∂`n{(Θ†0, 0)}

∂Θ‡
||.(D.12)

But by the mean value theorem,

∂`n{(Θ†, ε)}
∂Θ‡

− ∂`n{(Θ1, 0)}
∂Θ‡

=

[
∂2`n{(Θ†, ζ1)}
∂Θ‡>∂Θ‡

]
× ε

for some ||ζ1|| ≤ ||ε||, and

∂`n{(Θ†, 0)}
∂Θ‡

− ∂`n{(Θ†0, 0)}
∂Θ‡

=

[
∂2`n{(ζ2, 0)}
∂Θ†>∂Θ‡

]
× (Θ† −Θ0)
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where ζ2 = Θ†0 + t× (Θ† −Θ†0), for some t ∈ [0, 1]. Applying these results to (D.12)

and using MPLE model condition 2 results in∥∥∥∥ ∂`n{(Θ†, ε)}
∂Θ‡

− ∂`n{(Θ†0, 0)}
∂Θ‡

∥∥∥∥
≤

[
n∑
i=2

M2i(yi, Xi, Zi)

]
× ||ε||+

[
n∑
i=1

M2i(yi, Xi, Zi)

]
× ||Θ† −Θ†0||

= Op(n)×
(
||ε||+ ||Θ† −Θ†0||

)
= Op(n)× {O(n−

1
2 ) +O(n−

1
2 )}

= Op(n
1
2 ).

By the regularity conditions

∂`n{(Θ†0, 0)}
∂Θ‡

= Op(n
1
2 ),

therefore

∂`n{(Θ1, ε)}
∂Θ‡

= Op(n
1
2 ).

Using this result on (D.11) provides

`n{(Θ†,Θ‡)} − `n{(Θ†, 0)} = Op(
√
n)

K∑
k=1

 p∑
h=tβk+1

|βkh|+
q∑

h=tdk+1

|dkh|

 ,

where tβk and tdk are the numbers of true non-zero fixed and random effects in

component k respectively. On the other hand,

pnλ{(Θ†,Θ‡)} − pnλ{(Θ†, 0)} =
K∑
k=1

 p∑
h=tβk+1

πknpnkλ(βkh) +

q∑
h=tdk+1

πknpnkλ(dkh)

 .
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Therefore,

`]nλ {(Θ†,Θ‡)} − `]nλ{(Θ
†, 0)}

=

K∑
k=1

 p∑
h=tβk+1

{|βkh|Op(
√
n)− πkmpnkλ(βkh)}+

q∑
h=tdk+1

{|dkh|Op(
√
n)− πkmpnkλ(dkh)}


=

K∑
k=1

 p∑
h=tβk+1

Akh +

q∑
h=tdk+1

Bkh

 .
By penalty condition 3, both Akh, and Bkh are less than 0 in probability. Therefore,

Pr
[
`]nλ{(Θ

†,Θ‡)} − `]nλ{(Θ
†, 0)} < 0

]
p→ 1.

This completes the proof.

Also called consistency in selection or identifying zeros, sparsity is defined as

P (Θ̂n = 0)→ 1 as n→∞.

Theorem 5 (Sparsity of the MPLE). Assume that the observed data follow a FinMix

GLMM satisfying the MPLE regularity conditions 1, 2, and 3. Assume also that

the penalty function pnkλ satisfies penalty conditions 1, 2, and 3. Let the number of

subpopulations K be known a priori. Then for any
√
n-consistent maximum penalised

likelihood estimator Θ̂n of Θ, Pr{Θ̂2 = 0} → 1 as m→∞.

Proof. Let (Θ̂1, 0) be a maximiser of the penalised log-likelihood function `]nλ{(Θ
†, 0)}

which is regarded as a function of Θ†. It suffices to show that in the neighbour-

hood ||Θ−Θ0|| = O(m−1/2), the difference `]nλ{(Θ
†,Θ‡)} − `]nλ{(Θ̂1, 0)} < 0 with
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probability tending to 1 as m→∞. Recall that

`]nλ{(Θ
†,Θ‡)} − `]nλ{(Θ̂

†, 0)}

= [`]nλ{(Θ
†,Θ‡)} − `]nλ{(Θ

†, 0)}] + [`]nλ{(Θ
†, 0)} − `]nλ{(Θ̂1, 0)}]

≤ `]nλ{(Θ
†,Θ‡)} − `]nλ{(Θ

†, 0)}

< 0,

with probability tending to 1 by the previous Theorem. This completes the proof.

Theorem 6 (Asymptotic Distribution of the MPLE). Assume that the observed data

follow a FinMix GLMM model satisfying the MPLE regularity conditions 1, 2, and 3.

Assume also that the penalty function pnkλ satisfies penalty conditions 1, 2, and 3.

Let the number of subpopulations K be known a priori. Then for any
√
n-consistent

maximum penalised likelihood estimator Θ̂n of Θ,

√
n

[{
I1(Θ†0) +

p′′nλ(Θ
†
0)

n

}
(Θ̂1 −Θ†0) +

p′nλ(Θ
†
0)

n

]
d→ Gaussian(µ = 0,Σ = I1(Θ†0)),

where I1(Θ†0) is the Fisher information knowing that Θ‡ = 0.

Proof. Consider `]nλ{(Θ
†, 0)} as a function of Θ†. Using the same argument as in

Theorem 1, there exists a
√
n-consistent local maximiser of this function, say Θ̂1,

which satisfies

∂`]nλ(Θ̂n)

∂Θ†
=

{
∂`n(Θ)

∂Θ†
− ∂pnλ(Θ)

∂Θ†

}
Θ̂n=(Θ̂

†
,0)

= 0. (D.13)
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Since Θ̂1 is a
√
n-consistent estimator, using a Taylor’s expansion around the true

value

∂`n(Θ)

∂Θ†
|
Θ̂n=(Θ̂

†
,0)

=
∂`n(Θ†0)

∂Θ†
+

{
∂2`n(Θ†0)

∂Θ†>∂Θ†
+ op(m)

}
(Θ̂1 −Θ†0)

and

∂pnλ(Θ)

∂Θ†
|
Θ̂n=(Θ̂

†
,0)

= p′nλ(Θ
†
0) +

{
p′′nλ(Θ

†
0) + op(m)

}
(Θ̂1 −Θ†0).

Substituting these into (D.13) results in{
∂`n(Θ†0)

∂Θ†
− p′nλ(Θ

†
0)

}
+

{
∂2`n(Θ†0)

∂Θ†>∂Θ†
− p′′nλ(Θ

†
0) + op(m)

}
(Θ̂1 −Θ†0) = 0.

Rearranging the terms and multiplying both sides by 1√
n

provides

−
√
n

n

{
∂2`n(Θ†0)

∂Θ†>∂Θ†
− p′′n(Θ†0) + op(n)

}(
Θ̂1 −Θ†0

)
=

1√
n

{
∂`n(Θ†0)

∂Θ†
− p′nλ(Θ

†
0)

}
.

Then, by the regularity conditions,

− 1

m

∂2`n(Θ†0)

∂Θ†>∂Θ†
= I1(Θ†0) + op(1),

and

1√
n

∂`n(Θ†0)

∂Θ†
→d Gaussian(µ = 0,Σ = I1(Θ†0)).

Thus, by Slutsky’s theorem,

√
n

[{
I1(Θ†0) +

p′′nλ(Θ
†
0)

m

}(
Θ̂1 −Θ†0

)
+
p′nλ(Θ

†
0)

m

]
d→ Gaussian(µ = 0,Σ = I1(Θ†0)).

This ends the proof.
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For the ALASSO, and SCAD penalties, sparsity can be achieved while maintaining

root-n consistency, for a suitable choice of tuning parameters. For example, if I let

λmk = O(n−
1
2 ) for the ALASSO penalty, and λnk → 0, and

√
nλnk →∞ for the SCAD

penalty, then root-n consistency, and sparsity can be achieved concurrently. This is,

however, not true for the LASSO penalty. For LASSO, bn =
√
nλnk. Therefore, root-n

consistency requires that
√
nλnk = O(1). On the other hand, the sparsity property

requires penalty assumption 2, which includes the condition that
√
nλnk →∞. These

two requirements cannot be simultaneously satisfied.

Theorem 7 (Oracle Property of the MPLE). A FinMix GLMM has the oracle

property if it asymptotically identifies the right subset model and has the optimal

estimation rate.

Proof. Given sparsity and that the distribution is asymptotically Gaussian, the oracle

property follows (Fan and Li, 2012).

161



APPENDIX E
Additional Tables From Chapter 3 (Bias, Variance, Mean Squared Error)

This appendix contains the tables of simulation results for Chapter 3.

Table E–1: Simulation 1 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 2, q = 1, π1 = 0.6, π2 = 0.4,
β>1 = (−0.75, 0.35), β>2 = (0.60,−0.50), �∗>1 = (0.80), and �∗>2 = (0.25).

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -4.3 1.3 1.5 -2.7 0.7 0.7 -2.4 0.4 0.5 -1.4 0.3 0.3
β10 -3.6 10.4 10.4 -3.3 2.9 3.0 -1.8 1.4 1.4 -0.9 0.8 0.8
β11 4.0 3.3 3.4 2.9 0.9 1.0 1.6 0.5 0.5 0.7 0.2 0.2
Γ11 -2.9 3.2 3.3 -0.5 0.8 0.8 0.0 0.5 0.4 0.4 0.2 0.2
β20 -6.1 5.5 5.8 -2.7 2.3 2.3 -3.7 1.4 1.5 -1.7 0.7 0.7
β21 3.3 3.0 3.1 1.8 1.3 1.3 2.2 0.7 0.7 1.2 0.3 0.3
Γ21 -0.3 2.1 2.1 0.8 1.1 1.1 1.5 0.8 0.8 0.5 0.4 0.4

Total 29.6 10.2 5.9 2.9
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Table E–2: Simulation 2 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 5, q = 1, π1 = 0.6, π2 = 0.4, β>1 =
(−0.75, 0.35, 0.10,−0.40, 0.00), β>2 = (0.60,−0.50,−0.35,−0.15, 0.00), �∗>1 = (0.80),
and �∗>2 = (0.25).

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -3.7 1.2 1.4 -2.1 0.6 0.6 -2.6 0.3 0.4 -2.2 0.2 0.2
β10 -5.7 8.4 8.6 -4.5 3.0 3.2 -4.8 1.3 1.5 -3.5 1.1 1.2
β11 3.4 3.8 3.9 2.4 0.9 0.9 2.3 0.4 0.5 1.6 0.5 0.6
β12 -0.1 2.9 2.9 1.5 1.1 1.1 1.9 0.5 0.5 1.3 0.2 0.2
β13 -1.0 0.9 0.9 -0.5 0.2 0.2 -0.9 0.1 0.1 -0.7 0.1 0.1
β14 2.0 0.8 0.8 0.2 0.3 0.3 0.1 0.1 0.1 0.0 < 0.1 < 0.1
Γ11 -3.2 3.1 3.2 0.5 0.8 0.8 1.6 0.5 0.5 0.8 0.2 0.2
β20 -5.4 5.3 5.6 -3.5 1.8 1.9 -2.7 0.8 0.9 -2.3 0.4 0.4
β21 2.0 2.7 2.7 1.3 0.8 0.8 1.8 0.4 0.5 2.4 0.5 0.5
β12 2.4 2.1 2.1 1.3 0.8 0.8 1.4 0.3 0.3 1.8 0.2 0.2
β13 -0.4 0.5 0.5 0.3 0.2 0.2 0.0 0.1 0.1 -0.5 0.1 0.1
β14 -0.5 0.4 0.4 -0.4 0.2 0.2 -0.2 0.1 0.1 0.0 < 0.1 < 0.1
Γ21 0.8 2.9 2.9 0.1 1.2 1.2 1.3 0.4 0.4 1.8 0.3 0.3

Total 35.8 12.0 5.8 4.2
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Table E–3: Simulation 3 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 5, q = 2, π1 = 0.6, π2 = 0.4, β>1 =
(−0.75, 0.35, 0.10,−0.40, 0.00), β>2 = (0.60,−0.50,−0.35,−0.15, 0.00), �∗>1 = (0.80,
−0.15, 0.20), and �∗>2 = (0.25, 0.00, 0.30).

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -5.2 1.4 1.7 -5.3 0.9 1.1 -4.0 0.5 0.7 -2.8 0.4 0.4
β10 -4.3 13.8 13.9 -10.3 7.1 8.1 -7.5 3.1 3.6 -5.4 1.8 2.1
β11 -2.3 6.0 6.0 4.8 2.8 3.0 4.3 1.4 1.6 2.8 0.8 0.9
β12 -0.7 5.2 5.1 3.1 2.1 2.2 3.2 0.9 1.0 2.0 0.4 0.4
β13 -1.1 1.4 1.4 -1.7 0.4 0.4 -1.7 0.2 0.3 -1.2 0.1 0.1
β14 1.3 0.8 0.8 0.1 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.1
Γ11 -2.3 8.9 8.9 1.8 4.7 4.7 1.7 2.1 2.2 1.7 0.8 0.9

Γ112 -2.7 5.1 5.2 -2.3 2.4 2.4 -1.1 1.3 1.3 -0.3 0.7 0.7
Γ12 -7.0 1.9 2.3 -5.4 1.2 1.5 -3.0 1.0 1.1 -2.5 0.5 0.6
β20 -15.6 6.3 8.6 -6.5 2.3 2.7 -4.4 1.1 1.3 -3.3 0.6 0.7
β21 9.9 5.6 6.5 5.6 1.9 2.2 2.7 0.9 0.9 2.2 0.5 0.5
β12 4.2 3.0 3.2 2.0 0.8 0.8 1.4 0.4 0.4 0.6 0.3 0.3
β13 -1.8 1.1 1.2 -1.7 0.3 0.4 -0.9 0.1 0.2 -0.6 0.1 0.1
β14 -1.4 0.7 0.7 0.4 0.2 0.2 -0.2 0.1 0.1 0.3 < 0.1 < 0.1
Γ21 2.6 6.5 6.5 1.1 2.1 2.1 1.1 1.3 1.3 0.7 0.7 0.7

Γ212 -0.1 8.9 8.8 2.0 3.6 3.6 2.0 2.5 2.5 1.4 1.6 1.6
Γ22 -11.8 1.8 3.2 -5.5 1.2 1.5 -4.4 0.7 0.9 -3.4 0.5 0.6

Total 83.9 37.2 19.5 10.6

164



Table E–4: Simulation 4 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 2, q = 1, π1 = 0.5, π2 = 0.3,
π3 = 0.2, β>1 = (−0.75, 0.35), β>2 = (0.60,−0.50), β>3 = (0.45, 0.75), �∗>1 = (0.80),
�∗>2 = (0.25), and �∗>3 = (0.40).

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -7.0 1.5 2.0 -3.0 0.9 1.0 -1.6 0.6 0.6 -3.0 0.5 0.6
π2 5.0 1.0 1.2 2.1 0.5 0.5 0.9 0.3 0.3 2.0 0.2 0.2
β10 -10.9 18.7 19.7 -9.3 6.8 7.5 -6.4 4.7 5.0 -8.5 3.6 4.3
β11 6.1 6.5 6.8 3.4 3.6 3.7 2.0 1.4 1.4 3.1 0.6 0.7
Γ11 -10.7 7.7 8.8 -5.6 3.7 4.0 -6.2 2.4 2.7 -6.6 2.2 2.6
β20 -9.8 7.0 7.9 -2.8 2.3 2.4 -1.9 1.1 1.1 -3.0 1.1 1.2
β21 6.5 3.4 3.8 2.4 1.8 1.8 2.1 0.8 0.8 3.0 0.6 0.7
Γ21 -1.9 2.8 2.8 -2.8 1.3 1.3 -2.4 0.6 0.6 -0.5 0.3 0.3
β30 -0.3 6.7 6.6 0.2 2.3 2.3 0.5 1.6 1.6 1.5 0.6 0.6
β31 -4.7 3.0 3.2 -4.0 2.5 2.7 -1.2 0.3 0.3 -2.6 1.0 1.0
Γ31 -3.9 2.4 2.6 -1.4 1.1 1.1 -1.0 0.8 0.8 -0.4 0.3 0.3

Total 65.2 28.3 15.3 12.6
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Table E–5: Simulation 5 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 5, q = 1, π1 = 0.5, π2 = 0.3,
π3 = 0.2, β>1 = (−0.75, 0.35, 0.10,−0.40, 0.00), β>2 = (0.60,−0.50,−0.35,−0.15, 0.00),
β>3 = (0.45, 0.75,−0.65, 0.20, 0.00), �∗>1 = (0.80), �∗>2 = (0.25), and �∗>3 = (0.40).

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -4.9 1.5 1.7 -3.1 0.7 0.8 -1.3 0.5 0.5 -0.8 0.1 0.1
π2 5.0 1.5 1.7 3.6 0.6 0.7 1.8 0.5 0.5 1.2 0.1 0.1
β10 -11.8 12.1 13.4 -6.7 4.6 5.0 -2.5 1.8 1.9 -3.0 0.7 0.8
β11 4.8 5.4 5.6 4.4 1.5 1.7 2.1 0.8 0.8 2.0 0.2 0.3
β12 -2.0 7.8 7.8 0.7 1.7 1.7 -0.6 1.1 1.0 0.5 0.3 0.3
β13 0.0 2.7 2.7 0.1 0.9 0.9 0.3 0.4 0.4 -0.2 0.1 0.1
β14 -1.2 0.9 0.9 -0.6 0.3 0.3 -0.5 0.1 0.1 -0.5 < 0.1 < 0.1
Γ11 -2.1 4.8 4.8 1.3 1.0 1.0 1.4 0.4 0.4 1.2 0.2 0.2
β20 -9.3 7.6 8.4 -5.5 4.2 4.4 -2.5 1.8 1.8 -1.0 0.5 0.5
β21 7.6 7.8 8.3 3.7 2.2 2.3 2.8 1.7 1.7 1.4 0.3 0.3
β12 4.0 4.6 4.7 2.8 1.1 1.2 2.4 0.6 0.6 1.3 0.2 0.2
β13 -0.8 1.4 1.4 -1.4 0.5 0.5 -0.1 0.3 0.3 -0.3 0.1 0.1
β14 0.4 0.7 0.7 0.2 0.2 0.2 -0.1 0.1 0.1 0.0 0.1 0.1
Γ21 2.5 4.3 4.3 3.8 2.7 2.8 1.6 0.8 0.8 0.4 0.2 0.2
β30 0.9 2.7 2.7 1.2 0.8 0.8 0.8 0.4 0.4 0.6 0.2 0.2
β31 0.8 0.8 0.8 -0.2 0.2 0.2 0.2 0.1 0.1 0.2 < 0.1 < 0.1
β32 -1.6 0.8 0.8 -0.1 0.2 0.2 -0.3 0.1 0.1 -0.3 0.1 0.1
β33 -0.2 0.2 0.2 0.0 < 0.1 < 0.1 0.0 < 0.1 < 0.1 0.1 < 0.1 < 0.1
β34 -0.3 0.2 0.2 0.0 < 0.1 < 0.1 0.0 < 0.1 < 0.1 0.1 < 0.1 < 0.1
Γ31 -3.1 0.8 0.9 -0.7 0.3 0.3 -1.1 0.1 0.2 -1.1 0.1 0.1

Total 71.8 25.0 12.0 3.8
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Table E–6: Simulation 6 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 5, q = 2, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (−0.75, 0.35, 0.10,−0.40, 0.00), β>2 = (0.60,−0.50,−0.35,−0.15, 0.00), and
β>3 = (0.45, 0.75,−0.65, 0.20, 0.00), �∗>1 = (0.80,−0.15, 0.20), �∗>2 = (0.25, 0.00, 0.30),
and �∗>3 = (0.40, 0.25, 0.10).

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -4.3 1.7 1.9 -0.7 0.9 0.9 0.1 0.5 0.5 1.1 0.4 0.4
π2 5.9 1.7 2.0 2.8 1.0 1.0 1.7 0.6 0.6 1.0 0.4 0.4
β10 -4.9 13.4 13.5 -0.4 5.3 5.3 0.9 2.2 2.2 1.8 1.9 1.9
β11 2.1 6.8 6.7 1.3 2.9 2.9 -0.4 1.2 1.2 -1.7 0.8 0.8
β12 1.1 4.2 4.2 0.2 0.7 0.7 -0.1 0.3 0.3 -0.6 0.2 0.2
β13 -0.3 0.7 0.7 0.1 0.3 0.2 0.1 0.1 0.1 0.2 0.1 0.1
β14 -1.0 0.4 0.4 -0.3 0.1 0.1 0.0 0.1 0.1 0.0 < 0.1 < 0.1
Γ11 -4.3 4.9 5.1 -2.0 1.9 1.9 -2.1 0.8 0.8 -1.2 0.4 0.4

Γ112 -0.7 2.9 2.9 -0.7 0.9 0.9 0.1 0.5 0.5 -0.3 0.2 0.2
Γ12 -9.3 1.6 2.4 -4.3 1.2 1.4 -2.8 0.7 0.8 -0.2 0.3 0.3
β20 -11.6 9.0 10.2 -3.1 3.4 3.4 -2.4 2.6 2.7 0.1 1.4 1.4
β21 17.1 7.9 10.7 9.2 3.6 4.4 7.6 2.1 2.7 6.1 1.9 2.2
β12 4.2 4.6 4.8 -0.7 1.7 1.7 -0.1 1.1 1.1 -2.0 0.5 0.6
β13 -0.3 1.9 1.9 0.7 0.9 0.9 1.1 0.5 0.5 2.4 0.3 0.4
β14 0.0 1.1 1.1 0.3 0.3 0.3 0.3 0.2 0.2 -0.2 0.1 0.1
Γ21 1.3 6.1 6.0 -5.5 4.3 4.6 -0.8 2.8 2.8 -1.5 2.1 2.1

Γ212 0.1 7.6 7.5 5.4 4.8 5.0 -0.8 3.7 3.7 0.0 2.7 2.6
Γ22 -5.4 4.7 4.9 -0.6 1.6 1.6 0.7 1.3 1.2 2.3 0.8 0.8
β30 5.0 7.0 7.2 5.3 3.1 3.4 5.5 1.2 1.5 3.8 0.9 1.0
β31 -0.2 7.6 7.5 2.6 2.7 2.7 3.6 1.3 1.4 3.8 0.5 0.6
β32 -2.9 2.1 2.2 -1.4 0.5 0.5 -1.0 0.2 0.2 -0.7 0.1 0.1
β33 -0.1 0.7 0.7 0.9 0.1 0.1 0.6 < 0.1 < 0.1 0.6 < 0.1 < 0.1
β34 0.1 0.3 0.3 0.2 0.1 0.1 0.2 < 0.1 < 0.1 0.1 < 0.1 < 0.1
Γ31 -5.8 4.6 4.9 0.5 2.1 2.1 -0.3 0.6 0.6 0.0 0.3 0.3

Γ312 -9.2 2.9 3.7 -8.3 0.8 1.5 -7.7 0.6 1.1 -6.7 0.2 0.7
Γ32 8.5 3.0 3.7 7.9 1.8 2.4 8.7 1.3 2.0 8.6 0.4 1.1

Total 117.3 50.1 28.8 18.8

167



Table E–7: Simulation 7 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 2, q = 1, π1 = 0.6, π2 = 0.4,
β>1 = (−0.55, 0.85), β>2 = (0.25,−0.50), �∗>1 = (1.60), and �∗>2 = (1.05).

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -0.7 1.0 1.0 0.4 0.3 0.3 0.1 0.2 0.2 0.0 0.1 0.1
β10 -0.4 8.9 8.8 1.6 3.1 3.1 2.7 1.6 1.7 2.0 0.8 0.8
β11 2.7 3.1 3.1 0.3 1.1 1.1 -0.2 0.5 0.5 0.5 0.2 0.2
Γ11 -6.5 5.4 5.8 -2.1 1.8 1.8 0.5 1.0 1.0 0.7 0.5 0.5
β20 4.3 10.4 10.4 1.1 4.3 4.2 -2.1 2.0 2.1 -3.1 1.0 1.1
β21 -2.4 3.6 3.6 -1.5 1.1 1.1 0.1 0.7 0.7 0.1 0.4 0.4
Γ21 -3.0 7.1 7.2 -2.5 2.6 2.6 -2.4 1.4 1.4 -2.8 0.5 0.6

Total 39.8 14.4 7.5 3.8

Table E–8: Simulation 8 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 5, q = 1, π1 = 0.6, π2 = 0.4, β>1 =
(−0.55, 0.85, 1.25,−0.70, 0.00), β>2 = (0.25,−0.50, 1.35,−0.20, 0.00), �∗>1 = (1.60),
and �∗>2 = (1.05).

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -1.2 0.9 0.9 -0.7 0.4 0.4 -0.1 0.1 0.1 -0.1 0.1 0.1
β10 -0.3 7.9 7.8 0.7 4.7 4.6 -1.8 1.9 1.9 -2.4 1.1 1.1
β11 -1.4 3.0 3.0 0.8 1.2 1.2 0.4 0.5 0.5 0.7 0.2 0.2
β12 0.3 2.2 2.2 0.5 0.7 0.7 -0.1 0.4 0.4 -0.2 0.2 0.2
β13 0.9 0.8 0.8 0.4 0.3 0.3 0.5 0.1 0.1 0.5 0.1 0.1
β14 0.2 0.6 0.6 0.8 0.2 0.2 0.6 0.1 0.1 0.0 < 0.1 < 0.1
Γ11 -5.4 6.0 6.2 -2.9 2.2 2.3 -1.5 0.7 0.8 -1.2 0.4 0.4
β20 1.8 9.7 9.6 -1.2 4.3 4.3 1.5 2.1 2.1 1.1 1.1 1.1
β21 -0.7 3.2 3.2 -0.4 1.2 1.2 0.2 0.6 0.6 -0.1 0.4 0.3
β12 2.2 2.7 2.7 0.8 1.3 1.3 0.4 0.6 0.6 -0.4 0.3 0.3
β13 0.2 0.8 0.8 0.2 0.3 0.3 0.1 0.1 0.1 -0.1 0.1 0.1
β14 -0.1 0.7 0.7 -0.3 0.3 0.3 -0.2 0.1 0.1 0.2 0.1 0.1
Γ21 -0.5 6.9 6.9 0.8 2.1 2.1 -0.4 0.9 0.9 0.5 0.4 0.4

Total 45.5 19.1 8.4 4.4

168



Table E–9: Simulation 9 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 5, q = 2, π1 = 0.6, π2 = 0.4, β>1 =
(−0.55, 0.85, 1.25,−0.70, 0.00), β>2 = (0.25,−0.50, 1.35,−0.20, 0.00), �∗>1 = (1.60,
−0.45, 1.00), and �∗>2 = (1.05, 0.00, 1.40).

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -4.2 1.9 2.1 -4.1 0.9 1.0 -2.9 0.5 0.6 -2.4 0.3 0.4
β10 -5.6 22.9 23.0 -6.6 6.8 7.1 -2.1 3.0 3.0 0.0 1.5 1.5
β11 5.2 14.1 14.2 5.1 4.9 5.2 2.4 2.4 2.4 0.9 1.3 1.3
β12 2.4 5.7 5.7 -0.7 1.6 1.6 -0.4 0.7 0.7 0.1 0.3 0.3
β13 1.2 2.3 2.3 -1.3 0.6 0.6 -0.9 0.3 0.3 -1.3 0.1 0.1
β14 -0.3 0.9 0.9 1.0 0.4 0.4 0.4 0.2 0.2 0.3 0.1 0.1
Γ11 -1.7 24.2 24.0 -2.2 6.4 6.4 1.0 2.3 2.2 1.6 1.1 1.1

Γ112 5.6 18.1 18.2 2.7 5.6 5.6 -1.3 2.7 2.7 -1.7 1.2 1.2
Γ12 -13.8 9.7 11.5 -1.6 3.4 3.4 -1.2 1.3 1.3 -0.5 0.7 0.7
β20 5.7 26.5 26.6 -1.3 7.4 7.3 -4.1 3.5 3.6 -3.9 2.0 2.1
β21 -2.9 35.0 34.7 7.7 6.2 6.7 6.6 3.7 4.1 6.8 2.0 2.4
β12 1.2 11.4 11.3 1.4 3.4 3.4 0.1 1.5 1.5 0.6 0.5 0.5
β13 -5.6 3.2 3.5 -3.1 1.0 1.1 -2.1 0.5 0.5 -1.0 0.2 0.2
β14 -0.1 1.7 1.6 -0.4 0.7 0.7 -0.2 0.3 0.3 0.0 0.1 0.1
Γ21 -8.6 24.2 24.7 1.9 9.1 9.1 2.9 3.4 3.4 2.4 1.8 1.8

Γ212 7.6 41.0 41.2 -2.0 17.3 17.1 -5.5 7.9 8.1 -4.7 4.3 4.4
Γ22 -19.3 31.5 34.9 -9.3 5.8 6.6 -6.7 2.3 2.7 -3.3 1.2 1.3

Total 280.5 83.3 37.7 19.6
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Table E–10: Simulation 10 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 2, q = 1, π1 = 0.5, π2 = 0.3,
π3 = 0.2, β>1 = (−0.55, 0.85), β>2 = (0.25,−0.50), β>3 = (−0.75, 0.35), �∗>1 = (1.60),
�∗>2 = (1.05), and �∗>3 = (1.45).

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -16.1 1.0 3.6 -17.0 1.0 3.9 -16.3 1.0 3.7 -17.0 0.9 3.8
π2 -1.7 0.7 0.7 -1.1 0.7 0.7 -1.2 0.5 0.5 -1.0 0.3 0.3
β10 17.5 29.4 32.2 16.2 21.5 23.9 14.7 14.8 16.8 14.3 9.1 11.1
β11 9.4 7.3 8.1 9.2 4.4 5.2 5.8 2.3 2.6 6.1 1.3 1.7
Γ11 -19.9 18.7 22.5 -16.6 11.2 13.9 -18.1 10.0 13.2 -14.3 6.4 8.4
β20 16.9 28.6 31.2 11.0 11.5 12.6 9.2 5.1 5.9 9.5 2.9 3.8
β21 -4.1 11.5 11.5 -2.2 4.8 4.8 -1.8 2.2 2.3 -1.1 0.6 0.6
Γ21 -3.0 19.2 19.1 -1.4 8.1 8.0 -0.2 5.1 5.1 -0.7 1.7 1.7
β30 -5.5 20.9 21.0 -1.0 15.9 15.7 -0.3 13.8 13.7 -2.9 11.5 11.5
β31 11.0 12.7 13.8 14.9 7.2 9.4 14.9 6.0 8.2 15.0 4.3 6.5
Γ31 -10.7 12.5 13.5 -4.0 10.0 10.0 -0.5 9.2 9.1 3.3 5.2 5.2

Total 177.1 108.2 80.8 54.6
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Table E–11: Simulation 11 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 5, q = 1, π1 = 0.5, π2 = 0.3,
π3 = 0.2, β>1 = (−0.55, 0.85, 1.25,−0.70, 0.00), β>2 = (0.25,−0.50, 1.35,−0.20, 0.00),
β>3 = (−0.75, 0.35,−0.50, 0.55, 0.00), �∗>1 = (1.60), �∗>2 = (1.05), and �∗>3 = (1.45).

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -3.2 0.7 0.8 -1.2 0.3 0.4 -0.3 0.2 0.2 -0.2 0.1 0.1
π2 2.4 0.8 0.8 0.7 0.3 0.3 0.2 0.1 0.1 0.3 0.1 0.1
β10 3.7 14.9 14.9 4.7 4.9 5.0 1.7 2.1 2.1 -0.6 1.3 1.3
β11 4.0 4.7 4.8 1.8 1.4 1.4 0.9 0.8 0.8 1.0 0.3 0.3
β12 1.9 3.3 3.3 -0.3 0.9 0.9 -0.1 0.5 0.5 -0.5 0.2 0.2
β13 -2.5 1.0 1.1 -1.9 0.3 0.3 -1.1 0.1 0.1 -0.5 0.1 0.1
β14 -0.2 0.9 0.9 -0.6 0.2 0.2 -0.6 0.1 0.1 -0.3 < 0.1 < 0.1
Γ11 -8.6 7.8 8.5 -4.2 2.6 2.8 -0.9 1.1 1.1 0.4 0.5 0.5
β20 -2.5 19.9 19.7 1.1 7.8 7.7 3.9 3.0 3.1 4.8 1.6 1.9
β21 -0.9 8.9 8.9 -1.2 2.6 2.6 -1.5 0.8 0.9 -1.1 0.4 0.4
β12 0.5 4.3 4.3 0.3 2.1 2.1 0.6 0.8 0.8 0.5 0.4 0.4
β13 -3.6 1.5 1.6 -1.1 0.4 0.4 -0.4 0.2 0.2 -0.2 0.1 0.1
β14 2.4 1.7 1.7 0.2 0.4 0.4 0.3 0.1 0.1 0.0 0.1 0.1
Γ21 -3.0 9.9 9.9 0.2 5.0 4.9 -1.0 1.9 1.9 -1.4 0.9 0.9
β30 0.3 28.5 28.2 -2.2 9.9 9.9 -2.2 5.7 5.7 -1.1 2.8 2.8
β31 -0.4 4.2 4.1 -1.3 2.0 2.0 0.1 0.9 0.9 0.3 0.6 0.5
β32 1.2 5.3 5.2 2.7 2.5 2.5 1.8 1.2 1.2 0.8 0.5 0.5
β33 0.4 1.3 1.3 0.7 0.7 0.7 0.7 0.2 0.3 0.4 0.1 0.1
β34 -0.1 1.4 1.4 0.7 0.6 0.6 0.4 0.2 0.2 0.1 0.1 0.1
Γ31 -17.2 17.8 20.6 -8.1 8.4 9.0 -5.8 3.4 3.8 -2.2 1.6 1.7

Total 142.1 54.1 24.1 12.2
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Table E–12: Simulation 12 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 5, q = 2, π1 = 0.5, π2 = 0.3,
π3 = 0.2, β>1 = (−0.55, 0.85, 1.25,−0.70, 0.00), β>2 = (0.25,−0.50, 1.35,−0.20, 0.00),
β>3 = (−0.75, 0.35,−0.50, 0.55, 0.00), �∗>1 = (1.60,−0.45, 1.00), �∗>2 = (1.05, 0.00,
1.40), and �∗>3 = (1.45, 0.40, 1.30).

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -5.0 1.3 1.5 -2.1 0.8 0.8 -0.2 0.5 0.5 0.0 0.3 0.3
π2 4.7 1.1 1.3 3.1 0.7 0.8 0.6 0.4 0.4 0.3 0.3 0.3
β10 -13.1 15.4 16.9 0.3 6.3 6.2 0.7 2.9 2.9 0.6 1.7 1.6
β11 12.6 16.6 18.0 4.7 5.5 5.7 3.8 2.8 3.0 3.3 1.6 1.7
β12 0.0 7.2 7.1 2.7 1.5 1.6 0.9 0.7 0.7 1.2 0.4 0.4
β13 1.1 4.0 4.0 -1.5 0.8 0.9 0.3 0.3 0.3 0.1 0.1 0.1
β14 0.7 1.1 1.1 -0.5 0.5 0.5 -0.4 0.1 0.1 -0.6 0.1 0.1
Γ11 -4.6 21.8 21.8 -1.9 6.9 6.9 -3.8 3.1 3.2 -2.2 1.4 1.4

Γ112 6.6 23.1 23.3 0.8 8.7 8.7 1.1 3.8 3.8 -0.9 1.7 1.7
Γ12 -15.0 12.7 14.8 -8.1 3.8 4.4 -4.4 1.3 1.5 -4.2 0.7 0.9
β20 -3.0 25.9 25.7 -5.1 8.8 9.0 2.0 5.4 5.3 1.7 3.6 3.6
β21 2.9 28.3 28.1 -1.6 11.4 11.3 -11.2 7.7 8.9 -9.4 4.2 5.0
β12 1.3 10.3 10.2 -3.0 5.9 5.9 -0.2 2.3 2.3 0.0 1.1 1.1
β13 -6.8 6.7 7.1 0.4 1.3 1.3 1.0 0.7 0.7 0.6 0.4 0.4
β14 -0.3 2.2 2.2 1.1 1.1 1.1 1.0 0.5 0.5 0.6 0.2 0.2
Γ21 -16.9 28.2 30.7 -2.2 15.0 14.9 -6.1 7.4 7.8 -4.8 4.0 4.2

Γ212 30.5 39.0 48.0 20.3 24.0 27.9 15.9 14.1 16.5 16.4 6.1 8.8
Γ22 -37.3 28.3 41.9 -19.0 8.6 12.2 -11.9 5.6 7.0 -9.1 2.7 3.5
β30 1.8 39.0 38.7 4.8 11.7 11.8 1.4 5.6 5.6 0.1 3.2 3.2
β31 0.9 54.4 53.9 1.7 13.6 13.5 2.7 5.3 5.3 1.9 2.7 2.7
β32 -8.3 16.9 17.4 -3.1 4.0 4.0 -1.8 1.6 1.6 -2.0 0.7 0.8
β33 0.5 3.0 3.0 0.9 1.0 1.0 0.6 0.4 0.4 0.5 0.2 0.2
β34 -2.3 2.8 2.8 -0.3 0.8 0.8 -0.2 0.4 0.4 -0.4 0.2 0.2
Γ31 -19.6 46.4 49.8 -12.1 14.3 15.6 2.0 8.8 8.7 1.8 3.9 3.9

Γ312 9.9 56.6 57.0 1.3 20.7 20.5 -0.4 11.5 11.4 -2.3 5.5 5.5
Γ32 -26.3 44.4 50.9 -6.1 22.0 22.1 -3.4 8.0 8.1 -0.2 3.6 3.6

Total 577.2 209.5 106.5 55.0
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APPENDIX F
Supplement to Chapter 3

binomialThere are a number of special cases and further ideas regarding the

behaviour of the MLE of a FinMix GLMM that are of interest. I explored a few

of these possibilities in this Appendix. In particular, I considered fitting a model

without random effects, exploring the behaviour of BIC for different values of K,

different starting values, smaller values for ni, and different values for mij (in the

binomial case).

F.1 Fit a Model That Is More Complex Than the Truth

When the true value of a regression coefficient is 0, then the corresponding

covariate does not contribute to the statistical model. As such, it is appropriate to

remove such a variable from the model, making it simpler without sacrificing the

performance of the model. This is the goal of the penalised maximum likelihood

approach found in Chapter 4. However, in many cases, prior to optimising the

penalised maximum likelihood equation, one must first optimise the unpenalised

maximum likelihood equation. Therefore, it is important to confirm the performance

of the algorithm when a model that is more complex than the truth is fit.

I explored the case where a particular fixed effect has a coefficient 0 but is still

included in the model in Chapter 3. All models that contain 5 fixed effects contain at

least one variable in each βk that I set to 0. These results can be found in Tables

E–2, E–3, E–5, E–6, E–8, E–9, E–11, and E–12. Similarly, all models that contain
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2 random effects contain at least one covariance with a true value of 0. The results

from these simulations are in Tables E–3, E–6, E–9, and E–12. Therefore, of interest

here are the case where I estimated a random effect in the model unnecessarily (both

when the coefficient for the corresponding fixed effect is zero and non-zero) and the

case where I estimated more (or fewer) subpopulations than was in the model.

F.1.1 No Random Effect

In these simulations, I used a model with K = 2, p = 5, and q = 2. Tables E–3,

and E–9 show similar cases. However, in this simulation, I set the coefficients for

the fixed effects to β>1 = (−0.75, 0.35, 0.10,−0.40, 0.00), and β>2 = (0.60, 0.00,−0.35,

−0.15, 0.00), and the random effects to �∗>1 = (0.00, 0.00, 0.20), and �∗>2 = (0.25,

0.00, 0.00).

These simulations show that the estimates for Gamma are reasonable even when

the true value of Gamma is 0.

Turning to the binomial case, the parameters that have changed are β>1 = (−0.55,

0.85, 1.25,−0.70, 0.00), β>2 = (0.25, 0.00, 1.35,−0.20, 0.00), �∗>1 = (0.00, 0.00, 1.00),

and �∗>2 = (1.05, 0.00, 0.00).

Similar to the case where the outcome is from a Poisson distribution, these

simulations show that the estimates for Gamma are reasonable even when the true

value of Gamma is 0.

F.1.2 Unknown Number of Subpopulations

Choosing the number of subpopulations can be done in various ways. One

popular method is to fit models with a range of values for K and compare these

models using information criteria such as AIC or BIC. As such, some simulations

174



Table F–1: Simulation 1 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 5, q = 2, π1 = 0.6, π2 = 0.4, β>1 =
(−0.75, 0.35, 0.10,−0.40, 0.00), β>2 = (0.60, 0.00,−0.35,−0.15, 0.00), �∗>1 = (0.00,
0.00, 0.20), and �∗>2 = (0.25, 0.00, 0.00).

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -2.2 1.2 1.2 -2.5 1.0 1.1 -2.6 1.0 1.1 -2.6 0.9 1.0
β10 3.4 5.9 6.0 4.1 3.6 3.8 3.3 2.6 2.7 3.7 2.1 2.2
β11 2.9 3.3 3.4 4.5 1.6 1.8 4.8 1.0 1.3 4.1 0.8 1.0
β12 -6.5 4.0 4.4 -5.6 2.1 2.4 -4.6 1.9 2.1 -4.7 1.4 1.6
β13 6.9 1.5 2.0 5.2 1.1 1.4 4.8 0.7 0.9 4.0 0.6 0.7
β14 -2.7 1.6 1.6 -3.0 0.8 0.9 -2.5 0.5 0.5 -1.9 0.3 0.4
Γ11 64.6 9.4 51.1 65.8 5.9 49.1 64.1 5.2 46.2 61.1 4.6 41.9

Γ112 -19.2 3.6 7.2 -19.4 1.8 5.5 -18.6 1.4 4.9 -16.4 1.1 3.8
Γ12 4.0 1.5 1.6 3.3 0.9 1.0 2.3 0.7 0.7 1.4 0.5 0.6
β20 -20.8 5.3 9.6 -19.8 5.2 9.1 -20.3 5.0 9.1 -19.5 4.6 8.4
β21 44.7 2.3 22.3 46.3 1.4 22.9 47.8 1.1 23.9 48.0 0.8 23.9
β12 0.3 2.7 2.7 -0.1 1.2 1.2 0.1 0.9 0.9 -0.1 0.5 0.5
β13 -0.3 0.8 0.8 -0.4 0.4 0.4 -0.3 0.3 0.3 -0.2 0.3 0.2
β14 1.6 0.8 0.8 1.2 0.5 0.5 1.1 0.3 0.3 0.9 0.2 0.2
Γ21 21.7 5.0 9.6 22.3 4.2 9.2 21.6 3.8 8.4 20.1 2.8 6.8

Γ212 -12.3 1.9 3.4 -11.7 1.0 2.4 -10.6 0.8 2.0 -9.7 0.5 1.4
Γ22 22.7 1.4 6.6 20.4 0.8 5.0 19.1 0.6 4.2 18.0 0.4 3.7

Total 134.3 117.4 109.3 98.1

were performed where the number of subpopulations in the model that was fit differed

from the true number of subpopulations.

Again, these results can be compared to those in Tables E–3, and E–9. First, a

model with K = 1 was fit, then one with K = 3. BIC was used to compare the three

possibilities, and I showed the rank of the BIC for each K ∈ {1, 2, 3} rather than

tables of bias, variance, and MSE as shown for other simulation results. I used the

same data values for outcomes, and covariates in these simulations, and in Chapter

4.
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Figure F–1: MSE across sample sizes, Poisson outcome, one random effect set to zero.

These simulations show that the when n is larger, it is easier to identify the

correct value of K. However, in these simulations K = 2, which is a relatively simple

case.

F.2 Using the Same Starting Values for All Simulations

All previous simulations used randomised starting values and therefore I used

a different starting value for each of the 100 simulations. I included this added

randomisation in the previous results but is not inherent to the model. The following
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Table F–2: Simulation 2 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 5, q = 2, π1 = 0.6, π2 = 0.4, β>1 =
(−0.55, 0.85, 1.25,−0.70, 0.00), and β>2 = (0.25, 0.00, 1.35,−0.20, 0.00), �∗>1 = (0.00,
0.00, 1.00), and �∗>2 = (1.05, 0.00, 0.00).

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -5.4 0.9 1.1 -5.3 0.7 1.0 -4.7 0.6 0.8 -4.1 0.4 0.6
β10 5.4 2.8 3.0 3.6 1.2 1.3 3.4 0.8 0.9 2.4 0.3 0.3
β11 -5.8 4.1 4.4 -4.7 2.9 3.1 -2.1 2.1 2.2 -1.2 1.6 1.6
β12 -1.7 2.4 2.4 -0.4 1.0 1.0 0.1 0.5 0.5 0.4 0.3 0.3
β13 5.1 1.4 1.6 3.1 1.0 1.1 0.4 0.6 0.6 -1.4 0.3 0.3
β14 -0.1 0.7 0.7 0.3 0.4 0.4 -0.1 0.3 0.3 0.4 0.1 0.1
Γ11 43.4 10.2 28.9 30.1 6.2 15.3 19.4 5.6 9.3 8.7 2.0 2.7

Γ112 21.7 8.8 13.5 32.3 7.5 17.8 40.1 6.8 22.8 49.2 4.2 28.3
Γ12 -26.5 2.5 9.5 -23.4 1.8 7.2 -21.4 1.8 6.3 -20.5 1.5 5.7
β20 -17.3 5.7 8.6 -16.4 4.4 7.0 -15.3 2.9 5.2 -11.2 2.0 3.3
β21 18.9 4.1 7.6 16.3 2.7 5.3 12.6 1.5 3.1 10.1 1.0 2.0
β12 -1.3 2.4 2.4 -1.9 1.3 1.3 -1.7 0.6 0.7 -0.7 0.3 0.3
β13 -9.3 1.8 2.6 -7.5 1.3 1.8 -4.6 0.8 1.0 -3.0 0.3 0.4
β14 -0.4 1.0 1.0 -0.5 0.6 0.6 0.3 0.3 0.3 -0.2 0.1 0.1
Γ21 -5.8 4.8 5.1 -4.1 2.6 2.7 -1.2 1.2 1.2 0.1 0.6 0.5

Γ212 -17.7 2.5 5.6 -18.6 1.3 4.7 -19.8 0.7 4.6 -18.1 0.6 3.8
Γ22 65.4 2.2 44.9 63.1 1.7 41.5 57.9 1.3 34.8 52.7 1.0 28.8

Total 143.0 113.1 94.6 79.2

results use the same starting value for each simulation, to eliminate that as a source

of variance. These results can be compared to Table E–3, and E–9. I used the same

data values for outcomes, and covariates in these simulations as in Chapter 3.

These simulations showed that the starting value should be chosen carefully. In

practice, one solution is to estimate the parameters of a model multiple times using

multiple different starting values. However, this can be a computationally intensive

process, but one that can be parallelised.
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Figure F–2: MSE across sample sizes, Poisson outcome, one random effect set to zero.

F.3 Different Number of Visits per Patient

The number n represents the number of independent observations. However, for

each subject n, there are ni visits or observations. While these are not independent

observations, changing the number of observations for each subject will change the

overall total number of observation. Therefore, in these simulations, ni ∈ {10, 11, 12}.

These results can be compared to Table E–3, and E–9.
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Table F–3: Simulation 3, and 4 results multiplied by 100, averaged over 100 runs.
Outcome follows a Poisson distribution with K = 2, p = 5, q = 2, π1 = 0.6,
π2 = 0.4, β>1 = (−0.75, 0.35, 0.10,−0.40, 0.00), β>2 = (0.60,−0.50,−0.35,−0.15,
0.00), �∗>1 = (0.80,−0.15, 0.20), and �∗>2 = (0.25, 0.00, 0.30), rank of BIC across
different K. The true value of K used to generate the dataset was 2, but I considered
different candidate values of K ∈ {1, 2, 3} in the estimation of the parameters.

n n = 100 n = 250 n = 500 n = 1000
K 1 2 3 1 2 3 1 2 3 1 2 3

Lowest 68 32 0 9 91 0 0 100 0 0 100 0
Middle 32 68 0 83 9 8 37 0 63 0 0 100

Highest 0 0 100 8 0 92 63 0 37 100 0 0

Table F–4: Simulation 5, and 6 results multiplied by 100, averaged over 100 runs.
Outcome follows a binomial distribution with K = 2, p = 5, q = 2, π1 = 0.6,
π2 = 0.4, β>1 = (−0.55, 0.85, 1.25,−0.70, 0.00), and β>2 = (0.25, 0.00, 1.35,−0.20,
0.00), �∗>1 = (0.00, 0.00, 1.00), and �∗>2 = (1.05, 0.00, 0.00), rank of BIC across
different K. The true value of K used to generate the dataset was 2, but I considered
different candidate values of K ∈ {1, 2, 3} in the estimation of the parameters.

n n = 100 n = 250 n = 500 n = 1000
K 1 2 3 1 2 3 1 2 3 1 2 3

Lowest 11 89 0 0 100 0 0 100 0 0 100 0
Middle 76 11 13 15 0 85 0 0 100 0 0 100

Highest 13 0 87 85 0 15 100 0 0 100 0 0

As expected, when more data was available, the parameter estimates exhibited

smaller bias and MSE.

F.4 Variable mij in the binomial Case

In Chapter 3, all of the binomial simulations used mij = 10∀i ∈ {1, 2, . . . , n}∀j ∈

{1, 2, . . . , ni}. While this is reasonable in a number of situations, in order to explore

the model further, I also considered the case where mij varies. I assumed that the

values for mij are known in the model, as is typical in binomial regression.
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Figure F–3: BIC across different K, Poisson outcome, n = 100.

One possible motivation for exploring this case came from the SERA cohort, and

the problem of modelling the number of tender or swollen joints in a patient with RA.

While most patients have the same number of joints, a patient who has undergone

certain joint replacement surgeries or amputations could have fewer joints. Therefore,

in addition to the statistical exploration of the model, this special case is of interest.
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Figure F–4: BIC across different K, Poisson outcome, n = 250.

Again, I used K = 2, p = 5, and q = 2 and Table E–9 contains results for

a similar case. I generated mij from a discrete uniform distribution with support

mij ∈ {5, 6, . . . , 15}.

It is reasonable to see an increase in variance induced by the additional inconsis-

tency of mij . However, these simulations show that this algorithm provides reasonable

estimates even in this situation.
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Figure F–5: BIC across different K, Poisson outcome, n = 500.
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Figure F–6: BIC across different K, Poisson outcome, n = 1000.
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Figure F–7: BIC across different K, binomial outcome, n = 100.
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Figure F–8: BIC across different K, binomial outcome, n = 250.
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Figure F–9: BIC across different K, binomial outcome, n = 500.
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Figure F–10: BIC across different K, binomial outcome, n = 1000.
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Table F–5: Simulation 7 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 5, q = 2, π1 = 0.6, π2 = 0.4, β>1 =
(−0.75, 0.35, 0.10,−0.40, 0.00), β>2 = (0.60,−0.50,−0.35,−0.15, 0.00), �∗>1 = (0.80,
−0.15, 0.20), and �∗>2 = (0.25, 0.00, 0.30). Starting value of (0.50, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 1.00,−0.50, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 1.00).

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -6.9 < 0.1 0.5 -6.4 < 0.1 0.4 -6.4 < 0.1 0.4 -6.2 < 0.1 0.4
β10 44.5 2.3 22.0 38.5 1.3 16.1 38.5 0.6 15.4 30.7 1.4 10.8
β11 -29.5 1.2 9.9 -26.2 0.7 7.6 -26.0 0.4 7.2 -21.0 0.8 5.2
β12 -21.8 0.9 5.6 -18.9 0.4 4.0 -18.2 0.3 3.6 -13.7 0.7 2.6
β13 11.1 0.2 1.5 10.1 0.1 1.1 9.9 0.1 1.1 7.5 0.2 0.8
β14 0.1 0.2 0.2 0.3 0.1 0.1 0.0 < 0.1 0.0 0.2 < 0.1 0.0
Γ11 11.9 2.6 4.0 14.6 1.2 3.4 15.5 0.5 2.9 16.1 0.3 2.9

Γ112 -19.7 1.6 5.5 -21.7 0.7 5.4 -23.1 0.4 5.7 -22.2 0.2 5.2
Γ12 15.6 0.6 3.0 12.3 0.2 1.7 13.1 0.1 1.8 11.8 0.1 1.4
β20 -46.1 1.5 22.7 -44.8 0.8 20.9 -45.8 0.5 21.5 -41.6 1.0 18.3
β21 34.3 1.0 12.7 31.0 0.6 10.2 31.3 0.3 10.1 26.8 0.7 7.9
β12 17.8 0.9 4.1 15.7 0.3 2.8 15.6 0.2 2.7 12.0 0.4 1.9
β13 -10.9 0.2 1.4 -9.5 0.1 1.0 -9.0 0.1 0.9 -7.0 0.1 0.6
β14 -0.4 0.2 0.2 0.2 0.1 0.1 -0.1 < 0.1 0.0 0.1 < 0.1 0.0
Γ21 48.8 1.6 25.4 42.7 0.7 18.9 43.5 0.4 19.4 36.9 1.0 14.7

Γ212 -23.3 1.5 6.9 -19.3 0.6 4.4 -21.2 0.4 4.9 -17.2 0.5 3.5
Γ22 6.2 0.6 1.0 4.2 0.3 0.4 4.6 0.1 0.3 3.3 0.1 0.2

Total 126.6 98.5 97.8 76.4

188



0.5

1.0

1.5

2.0

n=100 n=250 n=500 n=1000
Sample Size

M
SE

MSE Across Sample Sizes, Poisson Supplement 7

Figure F–11: MSE across sample sizes, Poisson outcome, with a constant starting
value.
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Table F–6: Simulation 8 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 5, q = 2, π1 = 0.6, π2 = 0.4, β>1 =
(−0.55, 0.85, 1.25,−0.70, 0.00), β>2 = (0.25,−0.50, 1.35,−0.20, 0.00), �∗>1 = (1.60,
−0.45, 1.00), and �∗>2 = (1.05, 0.00, 1.40). Starting value of (0.50, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 1.00,−0.50, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 1.00).

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -7.2 < 0.1 0.5 -7.6 < 0.1 0.6 -7.4 < 0.1 0.6 -7.5 < 0.1 0.6
β10 5.7 3.4 3.7 2.3 1.0 1.0 3.3 0.5 0.6 4.5 0.3 0.5
β11 -44.5 3.2 23.0 -43.4 0.8 19.7 -43.7 0.4 19.4 -44.3 0.2 19.9
β12 4.0 1.5 1.6 2.9 0.5 0.6 2.5 0.2 0.3 2.9 0.1 0.2
β13 17.7 0.4 3.5 17.5 0.1 3.2 17.8 0.1 3.2 17.7 < 0.1 3.2
β14 -0.4 0.3 0.3 0.3 0.1 0.1 0.1 < 0.1 0.0 0.2 < 0.1 0.0
Γ11 -5.3 5.7 5.9 -2.4 1.7 1.7 -2.4 0.8 0.8 -2.4 0.4 0.4

Γ112 2.1 4.5 4.5 0.3 1.2 1.2 -0.6 0.5 0.5 -0.5 0.3 0.3
Γ12 12.6 0.7 2.3 14.3 0.3 2.3 14.1 0.1 2.1 14.7 0.1 2.2
β20 -6.0 2.7 3.0 -9.9 1.0 1.9 -9.2 0.5 1.3 -8.6 0.3 1.0
β21 71.6 2.8 54.1 72.5 1.0 53.4 72.7 0.4 53.2 72.7 0.2 53.0
β12 -5.4 1.5 1.8 -6.1 0.6 1.0 -6.1 0.3 0.7 -5.8 0.1 0.5
β13 -27.0 0.4 7.6 -26.6 0.2 7.2 -26.6 0.1 7.2 -26.6 < 0.1 7.1
β14 -0.4 0.2 0.2 0.1 0.1 0.1 0.0 0.1 0.1 0.1 < 0.1 0.0
Γ21 39.0 4.5 19.7 40.9 1.5 18.3 41.2 0.8 17.8 40.6 0.4 16.9

Γ212 -34.9 4.0 16.1 -35.3 1.3 13.7 -36.1 0.6 13.7 -35.3 0.3 12.8
Γ22 -27.2 0.8 8.2 -25.5 0.4 6.9 -25.7 0.2 6.8 -24.4 0.1 6.1

Total 156.1 133.0 128.2 124.7
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Figure F–12: MSE across sample sizes, binomial outcome, with constant starting
value.
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Table F–7: Simulation 9 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 5, q = 2, π1 = 0.6, π2 = 0.4, β>1 =
(−0.75, 0.35, 0.10,−0.40, 0.00), β>2 = (0.60,−0.50,−0.35,−0.15, 0.00), �∗>1 = (0.80,
−0.15, 0.20), and �∗>2 = (0.25, 0.00, 0.30), ni ∈ {10, 11, 12}.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -5.1 1.4 1.6 -4.6 1.3 1.5 -4.6 1.1 1.3 -4.3 1.1 1.3
β10 11.7 8.8 10.1 9.9 5.1 6.1 8.3 4.3 4.9 4.9 3.2 3.4
β11 -6.2 2.7 3.1 -5.4 1.5 1.8 -4.5 1.4 1.6 -2.6 1.1 1.1
β12 -4.6 2.1 2.3 -2.3 1.4 1.4 -1.1 1.1 1.1 -0.8 0.8 0.8
β13 3.5 0.7 0.8 2.8 0.6 0.6 2.2 0.4 0.5 0.9 0.4 0.4
β14 -0.2 0.6 0.6 0.0 0.4 0.4 -0.3 0.3 0.3 -0.1 0.2 0.2
Γ11 7.1 4.9 5.4 7.3 1.8 2.4 8.9 0.9 1.7 9.4 0.9 1.7

Γ112 -12.8 2.2 3.8 -12.9 0.7 2.4 -13.1 0.4 2.1 -12.4 0.4 1.9
Γ12 11.6 1.2 2.6 10.8 0.6 1.8 10.2 0.4 1.4 8.8 0.3 1.0
β20 -19.0 3.6 7.2 -18.2 2.9 6.1 -17.4 2.6 5.6 -15.4 2.1 4.5
β21 11.6 2.1 3.5 10.0 1.4 2.4 9.4 1.4 2.3 8.1 1.1 1.7
β12 3.2 1.3 1.3 2.8 0.8 0.9 2.3 0.6 0.6 1.8 0.4 0.5
β13 -2.6 0.7 0.8 -1.9 0.4 0.5 -2.2 0.4 0.4 -1.6 0.3 0.3
β14 -0.9 0.6 0.6 -0.2 0.3 0.3 -0.1 0.2 0.2 0.0 0.1 0.1
Γ21 19.7 4.2 8.1 17.2 2.9 5.8 15.1 2.8 5.0 11.9 2.2 3.6

Γ212 -6.9 2.4 2.9 -5.0 1.6 1.8 -4.2 1.3 1.4 -3.1 1.0 1.1
Γ22 -2.9 1.4 1.4 -2.9 0.8 0.9 -2.6 0.6 0.6 -2.5 0.4 0.5

Total 56.1 37.1 31.1 24.1
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Figure F–13: MSE across sample sizes, Poisson outcome, with ni ∈ {10, 11, 12}.
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Table F–8: Simulation 10 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 5, q = 2, π1 = 0.6, π2 = 0.4, β>1 =
(−0.55, 0.85, 1.25,−0.70, 0.00), β>2 = (0.25,−0.50, 1.35,−0.20, 0.00), �∗>1 = (1.60,
−0.45, 1.00), and �∗>2 = (1.05, 0.00, 1.40), ni ∈ {10, 11, 12}.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -3.6 1.8 1.9 -2.7 1.3 1.3 -1.7 0.8 0.8 -0.8 0.6 0.6
β10 -2.4 10.0 9.9 -2.1 7.6 7.6 -0.7 6.6 6.5 -0.5 4.9 4.9
β11 -3.3 5.7 5.8 -1.7 4.0 4.0 -1.9 3.0 3.0 -2.6 2.2 2.2
β12 0.1 1.0 1.0 -0.1 0.4 0.4 -0.1 0.2 0.2 -0.1 0.1 0.1
β13 1.7 0.9 0.9 0.4 0.5 0.5 0.0 0.4 0.4 0.4 0.3 0.3
β14 -1.3 0.4 0.4 -0.7 0.1 0.1 -0.6 0.1 0.1 -0.2 < 0.1 < 0.1
Γ11 3.6 4.6 4.7 3.5 2.6 2.7 3.6 1.7 1.8 2.3 1.1 1.2

Γ112 17.1 2.1 5.0 13.2 1.6 3.3 8.9 1.3 2.0 6.4 0.7 1.1
Γ12 24.7 2.8 8.9 18.5 1.9 5.3 14.4 1.3 3.3 10.2 0.7 1.7
β20 -6.8 7.1 7.5 -5.6 5.5 5.7 -4.1 5.0 5.1 -1.2 3.8 3.7
β21 16.2 6.8 9.3 13.7 5.7 7.5 11.6 4.9 6.2 8.8 4.3 5.0
β12 -1.9 1.2 1.2 -0.3 0.5 0.5 -0.1 0.3 0.3 -0.2 0.2 0.2
β13 -6.5 1.7 2.1 -4.2 1.1 1.2 -2.6 0.7 0.8 -2.0 0.6 0.6
β14 1.7 0.4 0.4 1.0 0.1 0.2 0.7 0.1 0.1 0.2 < 0.1 < 0.1
Γ21 14.8 6.4 8.5 10.5 4.6 5.7 7.6 2.5 3.1 4.3 1.5 1.7

Γ212 2.3 5.7 5.6 3.9 4.9 5.0 4.3 3.5 3.6 5.1 3.2 3.4
Γ22 -15.9 3.3 5.8 -15.9 2.6 5.1 -14.9 1.8 4.0 -13.4 1.0 2.8

Total 79.0 56.1 41.3 29.4
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Figure F–14: MSE across sample sizes, binomial outcome, with ni ∈ {10, 11, 12}.
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Table F–9: Simulation 11 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 5, q = 2, π1 = 0.6, π2 = 0.4, β>1 =
(−0.55, 0.85, 1.25,−0.70, 0.00), β>2 = (0.25,−0.50, 1.35,−0.20, 0.00), �∗>1 = (1.60,
−0.45, 1.00), and �∗>2 = (1.05, 0.00, 1.40), and mij ∈ {5, 6, . . . , 15}.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -6.7 0.5 1.0 -6.9 0.5 1.0 -6.9 0.5 1.0 -6.8 0.5 0.9
β10 1.6 11.0 10.9 -0.5 7.2 7.1 -1.8 5.0 5.0 -2.9 4.0 4.0
β11 1.1 5.6 5.5 1.9 3.1 3.1 3.5 2.5 2.6 6.1 2.2 2.5
β12 -0.7 2.9 2.9 -1.2 1.5 1.5 -0.6 1.1 1.1 -0.3 0.6 0.6
β13 2.9 2.2 2.2 3.1 1.6 1.7 2.6 1.1 1.2 0.9 1.0 1.0
β14 1.0 1.4 1.4 1.4 0.7 0.7 1.3 0.5 0.5 0.7 0.3 0.3
Γ11 -4.2 9.1 9.2 -0.5 3.8 3.8 -2.1 2.5 2.5 -0.2 1.7 1.7

Γ112 18.0 6.2 9.4 12.3 2.4 3.9 10.8 1.6 2.8 7.3 1.4 1.9
Γ12 19.5 3.7 7.4 17.2 2.9 5.8 14.1 1.7 3.7 11.0 1.4 2.6
β20 -11.7 8.6 9.9 -9.3 5.9 6.7 -10.1 4.8 5.8 -6.4 4.1 4.4
β21 23.9 7.3 12.9 22.0 4.5 9.3 21.8 4.2 8.9 17.2 4.0 6.9
β12 0.4 3.6 3.5 -1.6 2.0 2.0 -0.6 1.1 1.1 -0.7 0.6 0.6
β13 -11.6 2.3 3.6 -11.1 1.6 2.8 -10.6 1.2 2.3 -8.8 1.1 1.8
β14 -0.7 1.2 1.2 -1.3 0.9 0.9 -1.3 0.6 0.6 -0.5 0.3 0.3
Γ21 17.7 8.5 11.5 21.6 3.5 8.1 19.2 2.5 6.1 14.6 2.1 4.2

Γ212 -6.8 8.9 9.2 -13.0 4.3 6.0 -12.9 4.0 5.7 -10.5 3.8 4.8
Γ22 -23.9 3.1 8.8 -25.0 2.1 8.4 -25.3 1.7 8.1 -23.3 1.4 6.8

Total 110.7 72.7 58.8 45.5
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Figure F–15: MSE across sample sizes, binomial outcome, with mij ∈ {5, 6, . . . , 15}.
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APPENDIX G
Additional Tables From Chapter 4 (Bias, Variance, Mean Squared Error
With Least Absolute Shrinkage and Selection Operator, Adaptive Least
Absolute Shrinkage and Selection Operator, Smoothly Clipped Absolute

Deviation)

This appendix contains the tables of simulation results for Chapter 4, in particular

the results of simulations ran using the LASSO, ALASSO, and SCAD penalties.
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Table G–1: Simulation 1 results multiplied by 100, averaged over 50 runs. Outcome
follows a Poisson distribution with K = 2, p = 7, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00, 0.00, 0.00,
0.00), �∗>1 = (0.30,−0.25, 0.10), and �∗>2 = (0.35, 0.20, 0.15). LASSO penalty.

n n = 100 n = 250
Measure Bias Var MSE Bias Var MSE

π1 7.2 1.3 1.8 2.0 0.8 0.8
β10 -19.5 5.5 9.2 -22.0 5.0 9.8
β11 -28.0 0.4 8.2 -26.1 1.3 8.1
β12 0.1 0.0 0.0 0.0 0.0 0.0
β13 0.0 0.0 0.0 -0.1 0.0 0.0
β14 -0.1 0.0 0.0 -0.1 0.0 0.0
β15 0.0 0.0 0.0 -0.2 0.0 0.0
β16 0.0 0.0 0.0 0.1 0.0 0.0
Γ11 -19.2 3.2 6.9 -13.4 2.5 4.3

Γ112 27.9 11.8 19.3 32.9 11.9 22.5
Γ12 -1.5 3.9 3.8 1.3 2.2 2.1
β20 29.5 21.2 29.4 38.3 12.3 26.7
β21 43.5 1.4 20.2 43.3 2.3 21.0
β22 -0.3 0.0 0.0 0.0 0.0 0.0
β23 0.2 0.0 0.0 0.1 0.0 0.0
β24 -0.4 0.1 0.1 -0.3 0.0 0.0
β25 -0.1 0.0 0.0 -0.2 0.0 0.0
β26 0.2 0.1 0.1 0.2 0.0 0.0
Γ21 -7.4 5.6 6.1 -8.4 2.7 3.4

Γ212 -20.4 12.9 16.8 -21.2 7.3 11.7
Γ22 -10.3 2.6 3.6 -7.4 2.5 3.0

Total 125.7 113.6
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Figure G–1: MSE across sample sizes, Poisson outcome, LASSO penalty, with K = 2,
p = 7, q = 2.
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Table G–2: Simulation 1 results multiplied by 100, averaged over 50 runs. Outcome
follows a Poisson distribution with K = 2, p = 7, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00, 0.00, 0.00,
0.00), �∗>1 = (0.30,−0.25, 0.10), and �∗>2 = (0.35, 0.20, 0.15). ALASSO penalty.

n n = 100 n = 250
Measure Bias Var MSE Bias Var MSE

π1 5.4 1.1 1.4 0.7 0.5 0.5
β10 -17.8 5.8 8.8 -17.3 5.0 7.9
β11 -26.6 0.7 7.7 -25.0 2.1 8.2
β12 0.0 0.0 0.0 -0.1 0.0 0.0
β13 0.0 0.0 0.0 -0.1 0.0 0.0
β14 -0.1 0.0 0.0 -0.2 0.0 0.0
β15 0.0 0.0 0.0 -0.1 0.0 0.0
β16 0.0 0.0 0.0 0.1 0.0 0.0
Γ11 -16.2 2.8 5.4 -9.2 2.1 2.9

Γ112 27.2 11.8 18.9 28.6 9.6 17.6
Γ12 -1.0 3.5 3.4 3.8 2.0 2.1
β20 28.4 17.8 25.5 31.7 9.5 19.3
β21 43.6 2.3 21.3 45.2 4.4 24.7
β22 -0.3 0.0 0.0 -0.1 0.0 0.0
β23 -0.1 0.1 0.1 0.2 0.0 0.0
β24 -1.1 0.3 0.3 0.0 0.0 0.0
β25 -0.1 0.0 0.0 -0.2 0.0 0.0
β26 0.4 0.1 0.1 0.3 0.0 0.0
Γ21 -7.1 4.6 5.1 -6.5 2.1 2.5

Γ212 -21.3 9.9 14.2 -19.6 8.2 11.9
Γ22 -7.7 2.2 2.8 -8.8 2.4 3.1

Total 115.1 100.8
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Figure G–2: MSE across sample sizes, Poisson outcome, ALASSO penalty, with
K = 2, p = 7, q = 2.
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Table G–3: Simulation 7 results multiplied by 100, averaged over 50 runs. Outcome
follows a binomial distribution with K = 2, p = 7, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00, 0.00, 0.00,
0.00), �∗>1 = (0.95, 0.85, 1.15), and �∗>2 = (0.70,−0.70, 0.80). LASSO penalty.

n n = 100 n = 250
Measure Bias Var MSE Bias Var MSE

π1 -0.8 0.4 0.4 -1.8 0.3 0.4
β10 -113.8 51.9 180.5 -122.3 46.2 194.9
β11 -56.6 3.0 35.0 -54.4 2.7 32.2
β12 0.1 0.0 0.0 0.2 0.0 0.0
β13 -0.5 0.0 0.0 -0.1 0.0 0.0
β14 0.0 0.0 0.0 0.1 0.0 0.0
β15 0.3 0.0 0.0 0.0 0.0 0.0
β16 -0.5 0.1 0.1 0.0 0.0 0.0
Γ11 -18.6 1.8 5.2 -18.2 0.8 4.1

Γ112 -78.7 60.6 121.3 -98.1 30.9 126.5
Γ12 -13.9 2.8 4.7 -13.6 2.4 4.2
β20 165.0 80.9 351.6 178.7 70.0 387.9
β21 40.3 16.4 32.3 67.7 12.4 58.0
β22 0.9 0.4 0.4 0.6 0.2 0.2
β23 0.5 0.1 0.1 0.4 0.1 0.1
β24 0.4 0.2 0.2 -0.2 0.1 0.1
β25 0.9 0.1 0.1 0.2 0.1 0.1
β26 0.3 0.1 0.1 0.4 0.1 0.1
Γ21 -2.7 4.3 4.3 1.5 2.8 2.7

Γ212 143.0 66.7 269.9 140.1 39.9 235.5
Γ22 29.1 12.4 20.6 36.8 3.1 16.6

Total 1026.8 1063.8
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Figure G–3: MSE across sample sizes, binomial outcome, LASSO penalty, with K = 2,
p = 7, q = 2.
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Table G–4: Simulation 7 results multiplied by 100, averaged over 50 runs. Outcome
follows a binomial distribution with K = 2, p = 7, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00, 0.00, 0.00,
0.00), �∗>1 = (0.95, 0.85, 1.15), and �∗>2 = (0.70,−0.70, 0.80). ALASSO penalty.

n n = 100 n = 250
Measure Bias Var MSE Bias Var MSE

π1 -0.2 0.4 0.4 -1.7 0.4 0.4
β10 -110.0 56.7 176.7 -125.1 43.6 199.2
β11 -49.2 9.2 33.3 -51.1 5.5 31.5
β12 0.1 0.0 0.0 0.3 0.1 0.1
β13 -0.2 0.0 0.0 0.0 0.0 0.0
β14 0.3 0.0 0.0 0.1 0.0 0.0
β15 0.3 0.0 0.0 0.0 0.0 0.0
β16 -0.5 0.1 0.1 0.0 0.0 0.0
Γ11 -16.1 2.4 4.9 -16.5 1.0 3.7

Γ112 -94.0 43.7 131.2 -106.1 26.0 138.1
Γ12 -16.0 3.0 5.5 -14.2 2.2 4.2
β20 170.0 82.3 369.6 181.7 66.3 395.2
β21 74.1 28.5 82.9 84.8 12.6 84.2
β22 1.2 0.4 0.4 0.0 0.0 0.0
β23 0.0 0.0 0.0 -0.1 0.0 0.0
β24 -0.6 0.1 0.1 -0.3 0.0 0.0
β25 0.3 0.1 0.1 -0.1 0.0 0.0
β26 0.4 0.1 0.1 0.4 0.1 0.1
Γ21 -0.7 4.6 4.5 6.8 2.4 2.9

Γ212 137.1 63.8 250.6 139.7 40.5 234.9
Γ22 24.7 10.4 16.4 32.7 3.9 14.5

Total 1076.6 1108.9
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Figure G–4: MSE across sample sizes, binomial outcome, ALASSO penalty, with
K = 2, p = 7, q = 2.
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APPENDIX H
Additional Tables From Chapter 4 (Bias, Variance, Mean Squared Error

With Maximum Likelihood Estimate, Small Values Changed to Zero,
Oracle)

This appendix contains additional tables of simulation results from Chapter 4.

These tables show the bias, variance, and MSE for the MLE (computed by setting

λ = 0), the MLE with small values (those with a magnitude less than 0.01) changed

to zero, and the oracle model.
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Table H–1: Simulation 1 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 7, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00, 0.00, 0.00,
0.00), �∗>1 = (0.30,−0.25, 0.10), and �∗>2 = (0.35, 0.20, 0.15). No penalty.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -3.1 1.3 1.4 -1.7 0.7 0.7 -2.3 0.3 0.3 -2.5 0.2 0.2
β10 -2.9 1.5 1.6 -3.3 0.5 0.6 -3.3 0.2 0.4 -2.4 0.1 0.2
β11 -0.8 1.2 1.2 1.2 0.7 0.7 1.2 0.3 0.3 1.4 0.1 0.1
β12 0.1 0.5 0.5 -0.5 0.3 0.3 -0.1 0.1 0.1 -0.1 < 0.1 < 0.1
β13 0.4 0.6 0.6 0.2 0.2 0.2 -0.2 0.1 0.1 -0.1 < 0.1 < 0.1
β14 0.3 0.4 0.4 -0.2 0.2 0.2 -0.1 0.1 0.1 0.2 < 0.1 < 0.1
β15 0.6 0.4 0.4 0.3 0.2 0.2 0.3 0.1 0.1 0.0 < 0.1 < 0.1
β16 1.2 0.5 0.5 0.4 0.1 0.1 0.0 0.1 0.1 0.0 < 0.1 < 0.1
Γ11 -5.0 1.4 1.7 -2.2 0.4 0.5 -0.3 0.2 0.2 -0.1 0.1 0.1

Γ112 5.5 1.9 2.2 2.4 0.5 0.5 -0.2 0.2 0.2 -0.2 0.1 0.1
Γ12 -4.6 0.7 0.9 -5.0 0.5 0.7 -4.0 0.3 0.5 -3.3 0.3 0.4
β20 0.2 5.2 5.2 3.3 1.7 1.8 5.0 0.7 0.9 4.6 0.3 0.5
β21 6.8 3.1 3.5 2.9 1.6 1.6 2.5 0.7 0.7 2.5 0.3 0.3
β22 -1.3 1.3 1.4 0.3 0.6 0.6 0.2 0.2 0.2 0.4 0.1 0.1
β23 -2.1 1.1 1.1 -1.8 0.4 0.4 -0.2 0.1 0.1 -0.2 0.1 0.1
β24 -3.3 1.9 1.9 -0.5 0.6 0.6 -0.1 0.2 0.2 -0.2 0.1 0.1
β25 -2.5 1.3 1.3 -1.9 0.5 0.5 -0.7 0.2 0.2 -0.3 0.1 0.1
β26 -0.4 1.3 1.3 -0.3 0.3 0.3 0.7 0.2 0.2 0.4 0.1 0.1
Γ21 0.3 2.6 2.6 3.3 1.5 1.6 4.0 0.6 0.8 4.0 0.4 0.5

Γ212 -0.4 1.7 1.7 0.9 0.9 0.9 2.2 0.4 0.5 3.1 0.3 0.3
Γ22 -6.6 2.0 2.5 -5.7 1.3 1.6 -3.7 0.6 0.7 -1.5 0.3 0.3

Total 34.0 14.5 6.6 3.8
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Figure H–1: MSE across sample sizes, Poisson outcome, no penalty, with K = 2,
p = 7, q = 2.
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Table H–2: Simulation 1 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 7, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00, 0.00, 0.00,
0.00), �∗>1 = (0.30,−0.25, 0.10), and �∗>2 = (0.35, 0.20, 0.15). Small values changed to
zero.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -3.1 1.3 1.4 -1.7 0.7 0.7 -2.3 0.3 0.3 -2.5 0.2 0.2
β10 -2.9 1.5 1.6 -3.3 0.5 0.6 -3.3 0.2 0.4 -2.4 0.1 0.2
β11 -0.8 1.2 1.2 1.2 0.7 0.7 1.2 0.3 0.3 1.4 0.1 0.1
β12 0.1 0.5 0.5 -0.5 0.3 0.3 0.0 0.1 0.1 -0.2 < 0.1 < 0.1
β13 0.4 0.6 0.6 0.2 0.2 0.2 -0.2 0.1 0.1 -0.1 < 0.1 < 0.1
β14 0.3 0.4 0.4 -0.2 0.2 0.2 -0.1 0.1 0.1 0.2 < 0.1 < 0.1
β15 0.7 0.4 0.4 0.3 0.2 0.2 0.2 0.1 0.1 0.0 < 0.1 < 0.1
β16 1.2 0.5 0.5 0.4 0.1 0.1 0.0 0.1 0.1 -0.1 < 0.1 < 0.1
Γ11 -5.0 1.4 1.7 -2.2 0.4 0.5 -0.3 0.2 0.2 -0.1 0.1 0.1

Γ112 5.5 1.9 2.2 2.4 0.5 0.5 -0.2 0.2 0.2 -0.2 0.1 0.1
Γ12 -4.6 0.7 0.9 -5.0 0.5 0.7 -4.0 0.3 0.5 -3.3 0.3 0.4
β20 0.2 5.2 5.2 3.3 1.7 1.8 5.0 0.7 0.9 4.6 0.3 0.5
β21 6.8 3.1 3.5 2.9 1.6 1.6 2.5 0.7 0.7 2.5 0.3 0.3
β22 -1.3 1.3 1.4 0.2 0.6 0.6 0.2 0.2 0.2 0.4 0.1 0.1
β23 -2.1 1.1 1.1 -1.8 0.4 0.4 -0.2 0.1 0.1 -0.3 0.1 0.1
β24 -3.3 1.9 1.9 -0.5 0.6 0.6 -0.1 0.2 0.2 -0.3 0.1 0.1
β25 -2.5 1.3 1.3 -1.9 0.5 0.5 -0.7 0.2 0.2 -0.3 0.1 0.1
β26 -0.4 1.3 1.3 -0.3 0.3 0.3 0.7 0.2 0.2 0.5 0.1 0.1
Γ21 0.3 2.6 2.6 3.3 1.5 1.6 4.0 0.6 0.8 4.0 0.4 0.5

Γ212 -0.4 1.7 1.7 0.9 0.9 0.9 2.2 0.4 0.5 3.1 0.3 0.3
Γ22 -6.6 2.0 2.5 -5.7 1.3 1.6 -3.7 0.6 0.7 -1.5 0.3 0.3

Total 34.0 14.5 6.6 3.8
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Figure H–2: MSE across sample sizes, Poisson outcome, small values changed to zero,
with K = 2, p = 7, q = 2.
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Table H–3: Simulation 1 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 2, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.65, 0.30), β>2 = (0.20,−0.45), �∗>1 = (0.30,−0.25, 0.10), and �∗>2 = (0.35,
0.20, 0.15). Oracle model.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -2.0 1.0 1.0 -0.6 0.6 0.6 -1.7 0.2 0.3 -1.9 0.2 0.2
β10 -2.0 1.0 1.0 -2.5 0.5 0.5 -2.7 0.3 0.3 -2.1 0.1 0.2
β11 0.4 1.1 1.1 0.6 0.5 0.5 0.9 0.2 0.2 1.2 0.1 0.1
Γ11 -2.8 1.1 1.1 -1.8 0.4 0.4 -0.4 0.2 0.2 0.1 0.1 0.1

Γ112 5.2 1.2 1.4 2.2 0.5 0.5 -0.1 0.2 0.2 -0.2 0.1 0.1
Γ12 -3.2 0.8 0.9 -3.6 0.5 0.7 -3.6 0.3 0.4 -2.7 0.3 0.3
β20 1.7 4.0 4.0 2.7 1.4 1.5 4.2 0.7 0.8 3.9 0.3 0.5
β21 2.9 2.8 2.9 1.9 1.3 1.3 2.2 0.6 0.7 2.0 0.2 0.3
Γ21 1.5 2.5 2.5 3.4 1.4 1.5 3.6 0.6 0.8 3.3 0.4 0.5

Γ212 -2.6 1.6 1.7 0.4 1.0 1.0 1.4 0.5 0.5 2.7 0.3 0.4
Γ22 -4.9 1.9 2.2 -4.6 1.1 1.3 -2.9 0.8 0.8 -1.6 0.3 0.3

Total 19.7 9.8 5.2 2.9
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Figure H–3: MSE across sample sizes, Poisson outcome, oracle model, with K = 2,
p = 7, q = 2.
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Table H–4: Simulation 2 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 17, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25, 0.10), and �∗>2 = (0.35, 0.20, 0.15). No
penalty, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -6.1 1.7 2.0 -4.6 0.8 1.0 -2.9 0.4 0.5 -3.4 0.2 0.3
β10 -3.3 2.1 2.2 -3.7 0.8 1.0 -2.1 0.2 0.3 -1.7 0.1 0.2
β11 -5.1 2.9 3.1 -0.3 1.2 1.2 1.0 0.4 0.4 1.1 0.2 0.2
β12 0.1 0.5 0.5 0.0 0.2 0.2 0.1 0.1 0.1 0.2 < 0.1 < 0.1
β13 -0.2 0.6 0.6 -0.3 0.2 0.2 -0.1 0.1 0.1 -0.2 < 0.1 < 0.1
β14 -0.1 0.7 0.6 0.1 0.2 0.2 -0.4 0.1 0.1 -0.3 < 0.1 < 0.1
β15 0.2 0.7 0.7 0.6 0.2 0.2 0.1 0.1 0.1 -0.1 < 0.1 < 0.1
β16 -1.5 0.5 0.5 -1.0 0.2 0.2 -0.3 0.1 0.1 -0.2 < 0.1 < 0.1
β17 0.8 0.6 0.6 0.0 0.2 0.2 -0.1 0.1 0.1 -0.2 < 0.1 < 0.1
β18 -0.1 0.5 0.5 -0.3 0.2 0.2 -0.2 0.1 0.1 0.0 < 0.1 < 0.1
β19 -0.4 0.5 0.5 -0.3 0.2 0.2 0.4 0.1 0.1 0.2 < 0.1 < 0.1
β110 0.6 0.7 0.7 -0.7 0.2 0.2 -0.3 0.1 0.1 0.0 < 0.1 < 0.1
β111 0.2 0.5 0.5 -0.2 0.2 0.2 0.0 0.1 0.1 0.2 < 0.1 < 0.1
β112 0.3 0.4 0.4 -0.2 0.2 0.2 0.1 0.1 0.1 0.0 < 0.1 < 0.1
β113 -0.3 0.8 0.8 0.4 0.2 0.2 0.0 0.1 0.1 0.0 < 0.1 < 0.1
β114 -0.3 0.6 0.6 0.0 0.1 0.1 -0.5 0.1 0.1 -0.4 < 0.1 < 0.1
β115 -0.2 0.5 0.5 0.2 0.2 0.2 0.0 0.1 0.1 0.0 < 0.1 < 0.1
β116 -0.2 0.6 0.6 -0.6 0.2 0.2 0.0 0.1 0.1 -0.1 < 0.1 < 0.1
Γ11 -10.3 1.6 2.7 -6.3 1.0 1.4 -2.9 0.7 0.8 -1.0 0.1 0.1

Γ112 9.0 1.9 2.7 5.0 1.4 1.6 1.5 0.6 0.6 -0.4 0.1 0.1
Γ12 -5.7 0.7 1.0 -4.8 0.7 0.9 -4.7 0.3 0.5 -4.9 0.2 0.4
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Table H–5: Simulation 2 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 17, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25, 0.10), and �∗>2 = (0.35, 0.20, 0.15). No
penalty, part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 -2.2 4.0 4.0 5.4 1.8 2.0 3.7 0.9 1.1 4.9 0.4 0.6
β21 14.1 4.7 6.6 6.1 2.1 2.5 2.7 0.8 0.8 3.7 0.3 0.5
β22 0.6 1.6 1.6 0.1 0.5 0.5 0.3 0.3 0.3 0.4 0.1 0.1
β23 0.2 1.2 1.2 -0.5 0.3 0.3 -1.1 0.2 0.2 -0.2 0.1 0.1
β24 0.6 1.3 1.3 0.0 0.3 0.3 -0.1 0.2 0.2 0.0 0.1 0.1
β25 0.4 1.0 1.0 -0.8 0.3 0.3 -0.2 0.2 0.2 -0.1 0.1 0.1
β26 2.9 1.2 1.2 1.2 0.4 0.4 0.3 0.2 0.2 0.0 0.1 0.1
β27 -0.3 1.7 1.7 0.0 0.3 0.3 0.2 0.2 0.2 0.0 0.1 0.1
β28 -0.4 1.3 1.3 -0.3 0.4 0.4 -0.3 0.2 0.1 -0.4 0.1 0.1
β29 1.2 1.0 1.0 1.3 0.4 0.5 0.1 0.2 0.2 0.3 0.1 0.1
β210 -0.5 1.4 1.4 0.0 0.4 0.4 -0.2 0.2 0.2 -0.2 0.1 0.1
β211 0.1 1.4 1.4 -0.1 0.4 0.4 0.0 0.2 0.2 -0.2 0.1 0.1
β212 0.2 0.8 0.8 0.0 0.3 0.3 0.0 0.1 0.1 0.0 0.1 0.1
β213 1.8 1.3 1.3 0.7 0.5 0.5 0.3 0.2 0.2 0.0 0.1 0.1
β214 0.3 1.0 1.0 0.8 0.3 0.3 0.6 0.2 0.2 0.1 0.1 0.1
β215 1.1 1.3 1.3 0.0 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.1
β216 0.3 1.6 1.6 -0.1 0.4 0.4 -0.2 0.2 0.2 0.1 0.1 0.1
Γ21 -4.7 3.2 3.4 1.4 1.6 1.6 2.1 0.9 0.9 2.3 0.4 0.5

Γ212 -0.6 2.5 2.5 1.5 1.1 1.1 0.3 0.8 0.8 1.1 0.3 0.3
Γ22 -5.9 2.1 2.4 -6.7 1.0 1.4 -6.2 0.5 0.9 -1.6 0.3 0.3

Total 60.3 24.1 11.3 5.3
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Figure H–4: MSE across sample sizes, Poisson outcome, no penalty, with K = 2,
p = 17, q = 2.

216



Table H–6: Simulation 2 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 17, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25, 0.10), and �∗>2 = (0.35, 0.20, 0.15).
Small values changed to zero, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -6.1 1.7 2.0 -4.6 0.8 1.0 -2.9 0.4 0.5 -3.4 0.2 0.3
β10 -3.3 2.1 2.2 -3.7 0.8 1.0 -2.1 0.2 0.3 -1.7 0.1 0.2
β11 -5.1 2.9 3.1 -0.3 1.2 1.2 1.0 0.4 0.4 1.1 0.2 0.2
β12 0.1 0.5 0.5 0.0 0.2 0.2 0.1 0.1 0.1 0.2 < 0.1 < 0.1
β13 -0.2 0.6 0.6 -0.3 0.2 0.2 -0.1 0.1 0.1 -0.2 < 0.1 < 0.1
β14 -0.2 0.7 0.6 0.1 0.2 0.2 -0.3 0.1 0.1 -0.3 < 0.1 < 0.1
β15 0.2 0.7 0.7 0.6 0.2 0.2 0.2 0.1 0.1 -0.1 < 0.1 < 0.1
β16 -1.5 0.5 0.5 -1.0 0.2 0.2 -0.3 0.1 0.1 -0.2 < 0.1 < 0.1
β17 0.8 0.6 0.6 0.0 0.2 0.2 -0.1 0.1 0.1 -0.2 < 0.1 < 0.1
β18 -0.1 0.5 0.5 -0.4 0.2 0.2 -0.2 0.1 0.1 -0.1 < 0.1 < 0.1
β19 -0.4 0.5 0.5 -0.3 0.2 0.2 0.4 0.1 0.1 0.2 < 0.1 < 0.1
β110 0.6 0.7 0.7 -0.6 0.2 0.2 -0.3 0.1 0.1 0.0 < 0.1 < 0.1
β111 0.2 0.5 0.5 -0.2 0.2 0.2 0.0 0.1 0.1 0.2 < 0.1 < 0.1
β112 0.4 0.4 0.4 -0.2 0.2 0.2 0.1 0.1 0.1 0.0 < 0.1 < 0.1
β113 -0.3 0.8 0.8 0.3 0.2 0.2 0.1 0.1 0.1 0.1 < 0.1 < 0.1
β114 -0.3 0.6 0.6 0.0 0.1 0.1 -0.5 0.1 0.1 -0.4 < 0.1 < 0.1
β115 -0.2 0.5 0.5 0.2 0.2 0.2 0.0 0.1 0.1 0.0 < 0.1 < 0.1
β116 -0.2 0.6 0.6 -0.6 0.2 0.2 0.0 0.1 0.1 -0.1 < 0.1 < 0.1
Γ11 -10.3 1.6 2.7 -6.3 1.0 1.4 -2.9 0.7 0.8 -1.0 0.1 0.1

Γ112 9.0 1.9 2.7 5.0 1.4 1.6 1.5 0.6 0.6 -0.4 0.1 0.1
Γ12 -5.7 0.7 1.0 -4.8 0.7 0.9 -4.7 0.3 0.5 -4.9 0.2 0.4
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Table H–7: Simulation 2 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 17, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25, 0.10), and �∗>2 = (0.35, 0.20, 0.15).
Small values changed to zero,part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 -2.2 4.0 4.0 5.4 1.8 2.0 3.7 0.9 1.1 4.9 0.4 0.6
β21 14.2 4.7 6.6 6.1 2.1 2.5 2.7 0.8 0.8 3.7 0.3 0.5
β22 0.6 1.6 1.6 0.0 0.5 0.5 0.3 0.3 0.3 0.4 0.1 0.1
β23 0.1 1.2 1.2 -0.5 0.3 0.3 -1.1 0.2 0.2 -0.2 0.1 0.1
β24 0.6 1.3 1.3 0.0 0.3 0.3 0.0 0.2 0.2 0.0 0.1 0.1
β25 0.3 1.0 1.0 -0.8 0.3 0.3 -0.3 0.2 0.2 -0.1 0.1 0.1
β26 2.9 1.2 1.2 1.2 0.4 0.4 0.3 0.2 0.2 0.0 0.1 0.1
β27 -0.3 1.7 1.7 0.0 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1
β28 -0.4 1.3 1.3 -0.3 0.4 0.4 -0.3 0.1 0.1 -0.3 0.1 0.1
β29 1.2 1.0 1.0 1.4 0.4 0.5 0.1 0.2 0.2 0.2 0.1 0.1
β210 -0.5 1.4 1.4 0.0 0.4 0.4 -0.2 0.2 0.2 -0.2 0.1 0.1
β211 0.1 1.4 1.4 -0.1 0.4 0.4 0.0 0.2 0.2 -0.2 0.1 0.1
β212 0.2 0.8 0.8 0.0 0.3 0.3 -0.1 0.1 0.1 0.0 0.1 0.1
β213 1.8 1.3 1.3 0.6 0.5 0.5 0.3 0.2 0.2 0.0 0.1 0.1
β214 0.3 1.0 1.0 0.8 0.3 0.3 0.6 0.2 0.2 0.1 0.1 0.1
β215 1.1 1.3 1.3 0.0 0.3 0.3 0.3 0.1 0.1 0.2 0.1 0.1
β216 0.3 1.6 1.6 -0.1 0.4 0.3 -0.1 0.2 0.2 0.1 0.1 0.1
Γ21 -4.7 3.2 3.4 1.4 1.6 1.6 2.1 0.9 0.9 2.3 0.4 0.5

Γ212 -0.6 2.5 2.5 1.5 1.1 1.1 0.3 0.8 0.8 1.1 0.3 0.3
Γ22 -5.9 2.1 2.4 -6.7 1.0 1.4 -6.2 0.5 0.9 -1.6 0.3 0.3

Total 60.3 24.1 11.3 5.2
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Figure H–5: MSE across sample sizes, Poisson outcome, small values changed to zero,
with K = 2, p = 17, q = 2.
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Table H–8: Simulation 2 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 2, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.65, 0.30), β>2 = (0.20,−0.45), �∗>1 = (0.30,−0.25, 0.10), and �∗>2 = (0.35,
0.20, 0.15). Oracle model.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -3.8 0.9 1.1 -2.5 0.6 0.6 -2.4 0.3 0.4 -2.2 0.2 0.2
β10 -0.5 1.3 1.2 -0.8 0.5 0.5 -0.9 0.2 0.2 -1.1 0.1 0.1
β11 0.7 1.1 1.1 1.0 0.5 0.5 1.1 0.3 0.3 0.8 0.1 0.1
Γ11 -5.7 1.3 1.6 -2.8 0.3 0.4 -1.7 0.4 0.4 -0.7 0.1 0.1

Γ112 5.6 1.2 1.5 1.6 0.3 0.3 0.7 0.4 0.4 -0.4 0.1 0.1
Γ12 -5.1 0.5 0.8 -4.5 0.4 0.6 -4.4 0.3 0.5 -4.1 0.2 0.4
β20 0.9 2.7 2.6 2.5 1.2 1.2 3.2 0.6 0.7 3.5 0.3 0.5
β21 4.2 2.7 2.8 1.5 1.3 1.3 2.1 0.5 0.6 2.5 0.2 0.3
Γ21 -0.9 3.0 3.0 -0.3 1.5 1.5 1.8 0.6 0.6 1.3 0.3 0.4

Γ212 -4.8 1.5 1.7 -1.4 0.9 0.9 -0.7 0.5 0.5 0.1 0.3 0.3
Γ22 -5.3 2.0 2.3 -4.4 1.0 1.2 -3.9 0.5 0.7 -1.1 0.2 0.2

Total 19.7 9.1 5.2 2.7
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Figure H–6: MSE across sample sizes, Poisson outcome, oracle model, with K = 2,
p = 17, q = 2.
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Table H–9: Simulation 3 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 19, q = 5, π1 = 0.6, π2 = 0.4,
β>1 = (0.65, 0.30, 0.15, 0.35, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45,−0.10, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25, 0.10, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and �∗>2 = (0.35, 0.20, 0.15, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00). No penalty, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -3.2 1.0 1.1 -1.5 0.5 0.5 -1.2 0.2 0.2 -1.5 0.1 0.2
β10 -6.0 1.7 2.1 -1.7 0.4 0.4 -1.3 0.2 0.2 -1.0 0.1 0.1
β11 -2.5 1.5 1.6 0.5 0.5 0.5 1.3 0.2 0.2 1.2 0.1 0.1
β12 -1.4 1.0 1.1 0.0 0.2 0.2 -0.3 0.1 0.1 0.0 < 0.1 < 0.1
β13 0.7 0.6 0.6 0.6 0.2 0.2 -0.1 0.1 0.1 -0.8 < 0.1 < 0.1
β14 -0.7 0.6 0.6 -0.1 0.1 0.1 -0.3 0.1 0.1 -0.2 < 0.1 < 0.1
β15 -0.7 0.5 0.5 0.1 0.1 0.1 0.1 < 0.1 < 0.1 0.0 < 0.1 < 0.1
β16 -0.3 0.4 0.4 -0.1 0.1 0.1 0.2 < 0.1 < 0.1 0.0 < 0.1 < 0.1
β17 0.4 0.5 0.5 0.1 0.1 0.1 0.0 < 0.1 < 0.1 0.0 < 0.1 < 0.1
β18 -0.6 0.4 0.4 -0.7 0.1 0.1 -0.1 0.1 0.1 -0.1 < 0.1 < 0.1
β19 0.4 0.5 0.5 0.2 0.1 0.1 0.2 0.1 0.1 0.2 < 0.1 < 0.1
β110 -0.4 0.5 0.5 0.0 0.1 0.1 -0.2 < 0.1 < 0.1 -0.2 < 0.1 < 0.1
β111 -0.6 0.4 0.4 0.4 0.1 0.1 0.2 0.1 0.1 -0.1 < 0.1 < 0.1
β112 -0.4 0.5 0.5 0.0 0.1 0.1 0.0 < 0.1 < 0.1 -0.1 < 0.1 < 0.1
β113 0.1 0.4 0.4 0.4 0.1 0.1 0.0 < 0.1 < 0.1 0.1 < 0.1 < 0.1
β114 -0.3 0.5 0.5 -0.4 0.1 0.1 -0.2 < 0.1 < 0.1 -0.2 < 0.1 < 0.1
β115 -0.8 0.5 0.5 -0.5 0.1 0.1 -0.1 < 0.1 < 0.1 -0.1 < 0.1 < 0.1
β116 0.7 0.4 0.4 0.4 0.1 0.1 0.0 0.1 0.1 0.3 < 0.1 < 0.1
β117 -0.7 0.6 0.6 0.0 0.1 0.1 -0.2 0.1 0.1 -0.2 < 0.1 < 0.1
β118 0.4 0.5 0.5 0.1 0.1 0.1 0.2 0.1 0.1 0.3 < 0.1 < 0.1
Γ11 -10.3 2.2 3.2 -4.8 1.0 1.3 -2.9 0.5 0.6 -1.4 0.1 0.1

Γ112 12.8 2.7 4.3 4.4 1.0 1.1 2.2 0.4 0.5 1.1 0.2 0.2
Γ12 -1.7 1.1 1.1 -2.6 0.6 0.7 -2.9 0.3 0.4 -2.8 0.2 0.3

Γ113 -0.7 0.6 0.6 -0.6 0.2 0.2 -0.1 0.1 0.1 -0.4 0.1 0.1
Γ123 1.3 0.6 0.6 -0.3 0.4 0.4 0.1 0.3 0.3 -0.3 0.2 0.2
Γ13 0.9 0.1 0.1 1.4 < 0.1 0.1 2.5 0.1 0.1 2.6 < 0.1 0.1

Γ114 -1.3 0.4 0.5 -0.4 0.2 0.2 -0.1 0.1 0.1 -0.1 < 0.1 < 0.1
Γ124 -0.1 0.3 0.3 -0.8 0.2 0.2 -1.0 0.1 0.2 -0.7 0.1 0.1
Γ134 0.1 < 0.1 < 0.1 -0.3 0.1 0.1 -0.2 0.1 0.1 0.5 < 0.1 < 0.1
Γ14 0.0 < 0.1 < 0.1 0.6 < 0.1 < 0.1 0.9 < 0.1 < 0.1 1.2 < 0.1 < 0.1

Γ115 -0.9 0.5 0.5 -0.1 0.2 0.2 0.1 0.1 0.1 0.1 < 0.1 < 0.1
Γ125 1.1 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.1 0.1
Γ135 0.0 < 0.1 < 0.1 -0.3 0.1 0.1 -0.5 0.1 0.1 0.0 < 0.1 < 0.1
Γ145 0.1 < 0.1 < 0.1 0.2 < 0.1 < 0.1 0.2 < 0.1 < 0.1 0.0 < 0.1 < 0.1
Γ15 0.1 < 0.1 < 0.1 0.2 < 0.1 < 0.1 0.4 < 0.1 < 0.1 0.7 < 0.1 < 0.1
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Table H–10: Simulation 3 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 19, q = 5, π1 = 0.6, π2 = 0.4,
β>1 = (0.65, 0.30, 0.15, 0.35, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45,−0.10, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25, 0.10, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and �∗>2 = (0.35, 0.20, 0.15, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00). No penalty, part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 -3.3 4.7 4.8 -2.9 1.5 1.5 1.3 0.6 0.6 0.6 0.3 0.3
β21 6.2 5.4 5.7 1.4 1.3 1.3 -0.5 0.4 0.4 0.2 0.2 0.2
β22 4.8 2.0 2.2 1.7 0.5 0.6 1.9 0.2 0.2 1.6 0.1 0.1
β23 5.0 1.4 1.7 1.9 0.4 0.4 0.3 0.2 0.2 0.1 0.1 0.1
β24 0.2 0.9 0.9 -0.4 0.3 0.3 -0.2 0.1 0.1 0.0 < 0.1 < 0.1
β25 1.6 1.5 1.5 0.4 0.5 0.5 0.1 0.1 0.1 0.2 0.1 0.1
β26 -1.0 1.2 1.2 0.5 0.3 0.3 0.1 0.1 0.1 0.2 0.1 0.1
β27 1.2 1.3 1.3 -0.7 0.3 0.3 0.2 0.2 0.2 0.3 0.1 0.1
β28 0.0 1.1 1.1 1.0 0.4 0.4 0.3 0.2 0.2 -0.1 0.1 0.1
β29 0.0 1.8 1.8 0.8 0.4 0.4 0.3 0.2 0.2 0.0 0.1 0.1
β210 0.1 1.4 1.4 0.3 0.4 0.4 0.2 0.2 0.2 0.1 0.1 0.1
β211 -0.3 1.3 1.3 -2.1 0.3 0.3 -0.7 0.1 0.1 0.4 0.1 0.1
β212 0.0 1.4 1.4 0.5 0.3 0.3 0.2 0.2 0.2 0.0 0.1 0.1
β213 1.2 1.3 1.3 -0.2 0.4 0.4 0.3 0.1 0.1 0.3 0.1 0.1
β214 0.9 1.1 1.1 0.0 0.3 0.3 -0.2 0.1 0.1 0.0 0.1 0.1
β215 -1.3 1.2 1.2 0.0 0.4 0.4 0.6 0.2 0.2 0.1 0.1 0.1
β216 -0.3 1.0 1.0 -0.8 0.3 0.3 -0.3 0.1 0.1 -0.3 0.1 0.1
β217 1.4 1.2 1.2 1.3 0.4 0.4 0.3 0.2 0.2 0.2 0.1 0.1
β218 -0.3 1.6 1.6 0.1 0.4 0.4 -0.4 0.2 0.2 -0.1 0.1 0.1
Γ21 -2.7 2.7 2.7 1.1 1.5 1.5 3.0 0.7 0.8 3.2 0.3 0.4

Γ212 -2.0 2.0 2.0 0.0 1.1 1.1 0.1 0.5 0.5 0.6 0.3 0.3
Γ22 -5.9 2.2 2.6 -4.5 1.4 1.6 -4.6 0.7 0.9 -2.6 0.4 0.4

Γ213 4.4 1.2 1.4 4.1 0.9 1.0 3.4 0.4 0.5 3.0 0.2 0.3
Γ223 1.4 0.7 0.7 -0.6 0.8 0.8 -0.8 0.5 0.5 -0.9 0.3 0.3
Γ23 0.8 0.1 0.1 2.4 0.1 0.2 3.6 0.2 0.4 3.8 0.2 0.3

Γ214 0.4 0.8 0.8 0.4 0.4 0.4 0.4 0.3 0.3 1.1 0.2 0.2
Γ224 2.3 0.4 0.4 1.3 0.5 0.5 1.6 0.3 0.3 1.3 0.2 0.2
Γ234 0.3 < 0.1 < 0.1 1.3 0.1 0.1 1.3 0.2 0.2 1.0 0.2 0.2
Γ24 0.2 < 0.1 < 0.1 0.7 0.1 0.1 1.4 0.1 0.1 1.7 0.1 0.1

Γ215 0.2 0.6 0.6 -0.1 0.3 0.3 0.4 0.2 0.2 -0.1 0.1 0.1
Γ225 0.9 0.4 0.4 0.7 0.4 0.4 -0.1 0.3 0.3 0.0 0.2 0.2
Γ235 0.3 0.1 0.1 0.1 0.2 0.1 -0.7 0.2 0.2 0.7 0.1 0.1
Γ245 -0.1 < 0.1 < 0.1 0.3 < 0.1 < 0.1 0.0 < 0.1 < 0.1 0.3 < 0.1 < 0.1
Γ25 0.0 < 0.1 < 0.1 0.2 < 0.1 < 0.1 0.5 < 0.1 < 0.1 0.7 < 0.1 < 0.1

Total 70.5 25.6 13.1 7.4
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Figure H–7: MSE across sample sizes, Poisson outcome, no penalty, with K = 2,
p = 19, q = 5.
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Table H–11: Simulation 3 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 19, q = 5, π1 = 0.6, π2 = 0.4,
β>1 = (0.65, 0.30, 0.15, 0.35, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45,−0.10, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25, 0.10, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and �∗>2 = (0.35, 0.20, 0.15, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00). Small values changed to
zero, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -3.2 1.0 1.1 -1.5 0.5 0.5 -1.2 0.2 0.2 -1.5 0.1 0.2
β10 -6.0 1.7 2.1 -1.7 0.4 0.4 -1.3 0.2 0.2 -1.0 0.1 0.1
β11 -2.5 1.5 1.6 0.5 0.6 0.6 1.3 0.2 0.2 1.2 0.1 0.1
β12 -1.4 1.0 1.1 0.0 0.2 0.2 -0.3 0.1 0.1 0.0 < 0.1 < 0.1
β13 0.7 0.6 0.6 0.6 0.2 0.2 -0.1 0.1 0.1 -0.8 < 0.1 < 0.1
β14 -0.7 0.6 0.6 -0.1 0.1 0.1 -0.3 0.1 0.1 -0.2 < 0.1 < 0.1
β15 -0.7 0.5 0.5 0.1 0.1 0.1 0.2 < 0.1 < 0.1 0.1 < 0.1 < 0.1
β16 -0.3 0.4 0.4 -0.1 0.1 0.1 0.2 < 0.1 < 0.1 0.0 < 0.1 < 0.1
β17 0.4 0.5 0.5 0.1 0.1 0.1 0.0 < 0.1 < 0.1 0.0 < 0.1 < 0.1
β18 -0.6 0.4 0.4 -0.7 0.1 0.1 -0.1 0.1 0.1 -0.1 < 0.1 < 0.1
β19 0.4 0.5 0.5 0.2 0.1 0.1 0.2 0.1 0.1 0.3 < 0.1 < 0.1
β110 -0.5 0.5 0.5 0.0 0.1 0.1 -0.2 < 0.1 < 0.1 -0.2 < 0.1 < 0.1
β111 -0.6 0.4 0.4 0.4 0.1 0.1 0.2 0.1 0.1 -0.1 < 0.1 < 0.1
β112 -0.4 0.5 0.5 0.0 0.1 0.1 0.0 < 0.1 < 0.1 -0.1 < 0.1 < 0.1
β113 0.1 0.4 0.4 0.4 0.1 0.1 0.0 < 0.1 < 0.1 0.1 < 0.1 < 0.1
β114 -0.4 0.5 0.5 -0.4 0.1 0.1 -0.2 < 0.1 < 0.1 -0.2 < 0.1 < 0.1
β115 -0.9 0.5 0.5 -0.6 0.1 0.1 -0.1 < 0.1 < 0.1 -0.1 < 0.1 < 0.1
β116 0.7 0.4 0.4 0.4 0.1 0.1 0.0 0.1 0.1 0.3 < 0.1 < 0.1
β117 -0.7 0.6 0.6 0.1 0.1 0.1 -0.2 0.1 0.1 -0.2 < 0.1 < 0.1
β118 0.4 0.5 0.5 0.2 0.1 0.1 0.1 0.1 0.1 0.3 < 0.1 < 0.1
Γ11 -10.3 2.2 3.2 -4.8 1.0 1.3 -2.9 0.5 0.6 -1.4 0.1 0.1

Γ112 12.8 2.7 4.3 4.4 1.0 1.1 2.2 0.4 0.5 1.1 0.2 0.2
Γ12 -1.7 1.1 1.1 -2.6 0.6 0.7 -2.9 0.3 0.4 -2.8 0.2 0.3

Γ113 -0.7 0.6 0.6 -0.6 0.2 0.2 -0.1 0.1 0.1 -0.4 0.1 0.1
Γ123 1.3 0.6 0.6 -0.3 0.4 0.4 0.1 0.3 0.3 -0.3 0.2 0.2
Γ13 0.9 0.1 0.1 1.4 < 0.1 0.1 2.5 0.1 0.1 2.6 < 0.1 0.1

Γ114 -1.3 0.4 0.5 -0.4 0.2 0.2 -0.1 0.1 0.1 -0.1 < 0.1 < 0.1
Γ124 -0.1 0.3 0.3 -0.8 0.2 0.2 -1.0 0.1 0.2 -0.7 0.1 0.1
Γ134 0.1 < 0.1 < 0.1 -0.3 0.1 0.1 -0.2 0.1 0.1 0.5 < 0.1 < 0.1
Γ14 0.0 < 0.1 < 0.1 0.6 < 0.1 < 0.1 0.9 < 0.1 < 0.1 1.2 < 0.1 < 0.1

Γ115 -0.9 0.5 0.5 -0.1 0.2 0.2 0.1 0.1 0.1 0.1 < 0.1 < 0.1
Γ125 1.1 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.1 0.1
Γ135 0.0 < 0.1 < 0.1 -0.3 0.1 0.1 -0.5 0.1 0.1 0.0 < 0.1 < 0.1
Γ145 0.1 < 0.1 < 0.1 0.2 < 0.1 < 0.1 0.2 < 0.1 < 0.1 0.0 < 0.1 < 0.1
Γ15 0.1 < 0.1 < 0.1 0.2 < 0.1 < 0.1 0.4 < 0.1 < 0.1 0.7 < 0.1 < 0.1
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Table H–12: Simulation 3 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 19, q = 5, π1 = 0.6, π2 = 0.4,
β>1 = (0.65, 0.30, 0.15, 0.35, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45,−0.10, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25, 0.10, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and �∗>2 = (0.35, 0.20, 0.15, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00). Small values changed to
zero, part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 -3.3 4.7 4.8 -2.9 1.5 1.5 1.3 0.6 0.6 0.6 0.3 0.3
β21 6.2 5.4 5.7 1.4 1.3 1.3 -0.5 0.4 0.4 0.2 0.2 0.2
β22 4.8 2.0 2.2 1.7 0.5 0.6 1.9 0.2 0.2 1.6 0.1 0.1
β23 5.0 1.4 1.7 1.9 0.4 0.4 0.3 0.2 0.2 0.1 0.1 0.1
β24 0.2 0.9 0.9 -0.4 0.3 0.3 -0.2 0.1 0.1 0.1 < 0.1 < 0.1
β25 1.6 1.5 1.5 0.4 0.5 0.5 0.1 0.1 0.1 0.2 0.1 0.1
β26 -0.9 1.2 1.2 0.5 0.3 0.3 0.1 0.1 0.1 0.2 0.1 0.1
β27 1.2 1.3 1.3 -0.6 0.3 0.3 0.2 0.2 0.2 0.3 0.1 0.1
β28 0.0 1.1 1.1 0.9 0.4 0.4 0.3 0.2 0.2 -0.1 0.1 0.1
β29 0.0 1.8 1.8 0.8 0.4 0.4 0.3 0.2 0.2 0.0 0.1 0.1
β210 0.1 1.4 1.4 0.3 0.4 0.4 0.2 0.2 0.2 0.1 0.1 0.1
β211 -0.3 1.3 1.3 -2.1 0.3 0.3 -0.7 0.1 0.1 0.4 0.1 0.1
β212 0.0 1.4 1.4 0.5 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1
β213 1.3 1.3 1.3 -0.3 0.4 0.4 0.3 0.1 0.1 0.3 0.1 0.1
β214 0.9 1.1 1.1 0.1 0.3 0.3 -0.2 0.1 0.1 0.0 0.1 0.1
β215 -1.3 1.2 1.2 0.1 0.4 0.4 0.6 0.2 0.2 0.1 0.1 0.1
β216 -0.4 1.0 1.0 -0.8 0.3 0.3 -0.3 0.1 0.1 -0.3 0.1 0.1
β217 1.4 1.2 1.2 1.3 0.4 0.4 0.2 0.2 0.2 0.2 0.1 0.1
β218 -0.3 1.6 1.6 0.1 0.4 0.4 -0.4 0.2 0.2 -0.1 0.1 0.1
Γ21 -2.7 2.7 2.7 1.1 1.5 1.5 3.0 0.7 0.8 3.2 0.3 0.4

Γ212 -2.0 2.0 2.0 0.0 1.1 1.1 0.1 0.5 0.5 0.6 0.3 0.3
Γ22 -5.9 2.2 2.6 -4.5 1.4 1.6 -4.6 0.7 0.9 -2.6 0.4 0.4

Γ213 4.4 1.2 1.4 4.1 0.9 1.0 3.4 0.4 0.5 3.0 0.2 0.3
Γ223 1.4 0.7 0.7 -0.6 0.8 0.8 -0.8 0.5 0.5 -0.9 0.3 0.3
Γ23 0.8 0.1 0.1 2.4 0.1 0.2 3.6 0.2 0.4 3.8 0.2 0.3

Γ214 0.4 0.8 0.8 0.4 0.4 0.4 0.4 0.3 0.3 1.1 0.2 0.2
Γ224 2.3 0.4 0.4 1.3 0.5 0.5 1.6 0.3 0.3 1.3 0.2 0.2
Γ234 0.3 < 0.1 < 0.1 1.3 0.1 0.1 1.3 0.2 0.2 1.0 0.2 0.2
Γ24 0.2 < 0.1 < 0.1 0.7 0.1 0.1 1.4 0.1 0.1 1.7 0.1 0.1

Γ215 0.2 0.6 0.6 -0.1 0.3 0.3 0.4 0.2 0.2 -0.1 0.1 0.1
Γ225 0.9 0.4 0.4 0.7 0.4 0.4 -0.1 0.3 0.3 0.0 0.2 0.2
Γ235 0.3 0.1 0.1 0.1 0.2 0.1 -0.7 0.2 0.2 0.7 0.1 0.1
Γ245 -0.1 < 0.1 < 0.1 0.3 < 0.1 < 0.1 0.0 < 0.1 < 0.1 0.3 < 0.1 < 0.1
Γ25 0.0 < 0.1 < 0.1 0.2 < 0.1 < 0.1 0.5 < 0.1 < 0.1 0.7 < 0.1 < 0.1

Total 70.5 25.6 13.1 7.4

226



0

1

2

3

n=100 n=250 n=500 n=1000
Sample Size

M
SE

MSE Across Sample Sizes, Poisson Scenario 3

Figure H–8: MSE across sample sizes, Poisson outcome, small values changed to zero,
with K = 2, p = 19, q = 5.
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Table H–13: Simulation 3 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 4, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.65, 0.30, 0.15, 0.35), β>2 = (0.20,−0.45,−0.10, 0.25), �∗>1 = (0.30,−0.25,
0.10), and �∗>2 = (0.35, 0.20, 0.15). Oracle model.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -1.8 0.8 0.8 -1.4 0.4 0.4 -1.7 0.2 0.2 -1.6 0.1 0.1
β10 -0.5 0.8 0.8 -0.3 0.2 0.2 -0.2 0.1 0.1 -0.2 0.1 0.1
β11 -0.1 0.9 0.9 0.5 0.3 0.3 0.4 0.2 0.2 0.1 0.1 0.1
β12 1.1 0.3 0.4 1.2 0.1 0.1 1.1 0.1 0.1 0.9 < 0.1 < 0.1
β13 1.3 0.3 0.3 1.0 0.1 0.2 0.2 0.1 0.1 -0.4 < 0.1 < 0.1
Γ11 -4.4 1.1 1.2 -1.5 0.5 0.5 -0.9 0.2 0.2 -0.2 0.1 0.1

Γ112 3.7 1.1 1.3 1.2 0.5 0.5 0.3 0.2 0.2 -0.1 0.1 0.1
Γ12 -4.0 0.7 0.9 -2.9 0.5 0.6 -2.5 0.3 0.4 -2.1 0.2 0.3
β20 -0.2 2.4 2.4 0.2 0.9 0.9 3.1 0.5 0.5 1.4 0.2 0.2
β21 1.6 2.6 2.6 0.6 1.0 1.0 1.3 0.5 0.6 1.8 0.2 0.2
β22 0.0 1.4 1.3 0.3 0.5 0.5 1.0 0.2 0.2 0.6 0.1 0.1
β23 0.6 1.1 1.1 0.5 0.3 0.3 -0.3 0.1 0.1 -0.6 0.1 0.1
Γ21 1.3 2.7 2.7 2.4 1.2 1.2 2.9 0.7 0.7 2.4 0.3 0.3

Γ212 1.6 1.5 1.5 2.5 1.1 1.1 3.6 0.6 0.7 3.7 0.3 0.4
Γ22 -8.3 1.5 2.2 -5.5 0.8 1.1 -2.9 0.5 0.6 -0.9 0.3 0.3

Total 20.4 9.0 5.0 2.4
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Figure H–9: MSE across sample sizes, Poisson outcome, oracle model, with K = 2,
p = 19, q = 5.
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Table H–14: Simulation 4 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 7, q = 2, π1 = 0.5, π2 = 0.3,
π3 = 0.2, β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00,
0.00, 0.00, 0.00), β>3 = (1.00, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25,
0.10), �∗>2 = (0.35, 0.20, 0.15), and �∗>3 = (0.25, 0.00, 0.20). No penalty, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -11.5 1.6 2.9 -13.6 1.2 3.1 -13.2 1.0 2.8 -13.4 0.8 2.6
π2 3.0 1.6 1.7 7.3 1.1 1.6 7.5 0.7 1.3 9.3 0.5 1.4
β10 -5.0 5.1 5.3 -1.8 1.7 1.7 0.3 1.3 1.3 1.2 0.5 0.5
β11 2.2 5.3 5.3 0.5 1.5 1.5 1.9 0.7 0.8 2.8 0.5 0.5
β12 -3.7 3.1 3.2 0.0 0.6 0.6 0.0 0.5 0.5 -1.4 0.3 0.3
β13 1.8 2.4 2.4 -0.5 0.9 0.9 0.2 0.4 0.4 0.0 0.2 0.2
β14 0.9 1.3 1.3 1.9 0.6 0.7 1.4 0.3 0.3 0.8 0.2 0.2
β15 -0.5 1.2 1.2 0.1 0.9 0.9 0.0 0.3 0.3 -0.1 0.2 0.2
β16 0.1 1.7 1.6 -0.3 0.8 0.8 0.3 0.4 0.4 -0.2 0.2 0.2
Γ11 -5.9 2.9 3.2 0.3 2.4 2.4 3.0 1.7 1.7 3.3 0.4 0.5

Γ112 11.0 2.5 3.7 6.4 2.2 2.6 4.3 1.1 1.3 -0.1 0.4 0.4
Γ12 -8.7 0.2 0.9 -5.2 0.7 1.0 -2.7 0.6 0.7 -3.2 0.3 0.4
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Table H–15: Simulation 4 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 7, q = 2, π1 = 0.5, π2 = 0.3,
π3 = 0.2, β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00,
0.00, 0.00, 0.00), β>3 = (1.00, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25,
0.10), �∗>2 = (0.35, 0.20, 0.15), and �∗>3 = (0.25, 0.00, 0.20). No penalty, part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 3.1 7.4 7.4 11.6 2.5 3.8 16.7 0.7 3.5 18.8 0.4 3.9
β21 12.2 6.8 8.2 14.8 3.0 5.1 13.8 1.5 3.4 15.0 0.7 3.0
β22 0.9 2.5 2.5 1.2 0.9 0.9 0.8 0.4 0.4 1.2 0.2 0.2
β23 2.2 3.8 3.8 0.5 1.0 1.0 -0.5 0.3 0.3 0.2 0.1 0.1
β24 -2.2 2.6 2.6 -0.5 0.9 0.9 -0.7 0.4 0.4 -0.3 0.2 0.2
β25 -0.1 1.9 1.9 -0.2 0.8 0.8 -0.4 0.3 0.3 -0.1 0.1 0.1
β26 0.2 1.9 1.9 -0.9 0.6 0.6 0.1 0.2 0.2 0.1 0.1 0.1
Γ21 1.7 4.3 4.3 3.9 1.9 2.0 8.8 1.1 1.9 9.5 0.4 1.3

Γ212 2.2 3.5 3.5 8.2 1.3 2.0 9.4 0.7 1.5 10.4 0.2 1.3
Γ22 -8.7 2.0 2.8 -4.5 1.4 1.5 -4.1 0.8 1.0 -0.6 0.5 0.5
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Table H–16: Simulation 4 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 7, q = 2, π1 = 0.5, π2 = 0.3,
π3 = 0.2, β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00,
0.00, 0.00, 0.00), β>3 = (1.00, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25,
0.10), �∗>2 = (0.35, 0.20, 0.15), and �∗>3 = (0.25, 0.00, 0.20). No penalty, part 3.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β30 -15.4 3.7 6.0 -14.0 2.5 4.4 -19.6 2.6 6.4 -20.6 1.9 6.2
β31 -6.2 3.8 4.1 -5.7 2.9 3.2 -2.7 3.5 3.5 0.7 1.9 1.9
β32 0.0 3.8 3.8 -1.7 1.8 1.8 -0.5 0.9 0.8 0.2 0.5 0.5
β33 -2.7 1.9 1.9 -0.6 1.1 1.1 -0.3 0.6 0.6 -0.4 0.4 0.4
β34 2.5 1.7 1.7 -0.1 0.7 0.7 0.8 0.5 0.5 0.1 0.4 0.4
β35 0.6 2.1 2.1 0.9 0.7 0.7 0.5 0.6 0.6 0.4 0.4 0.4
β36 -0.5 1.9 1.9 -0.7 0.9 0.9 -1.0 0.7 0.7 -0.3 0.4 0.4
Γ31 -10.7 2.0 3.1 -4.6 1.7 1.9 -0.1 1.5 1.5 3.4 0.8 0.9

Γ312 1.0 2.3 2.3 -2.6 2.1 2.2 -6.6 2.0 2.5 -6.7 2.0 2.4
Γ32 -15.6 1.0 3.4 -14.4 0.8 2.9 -10.8 1.0 2.2 -8.3 0.8 1.5

Total 102.0 56.1 44.1 33.1
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Figure H–10: MSE across sample sizes, Poisson outcome, no penalty, with K = 3,
p = 7, q = 2.
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Table H–17: Simulation 4 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 7, q = 2, π1 = 0.5, π2 = 0.3,
π3 = 0.2, β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00,
0.00, 0.00, 0.00), β>3 = (1.00, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25,
0.10), �∗>2 = (0.35, 0.20, 0.15), and �∗>3 = (0.25, 0.00, 0.20). Small values changed to
zero, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -11.5 1.6 2.9 -13.6 1.2 3.1 -13.2 1.0 2.8 -13.4 0.8 2.6
π2 3.0 1.6 1.7 7.3 1.1 1.6 7.5 0.7 1.3 9.3 0.5 1.4
β10 -5.0 5.1 5.3 -1.8 1.7 1.7 0.3 1.3 1.3 1.2 0.5 0.5
β11 2.2 5.3 5.3 0.5 1.5 1.5 1.9 0.7 0.8 2.8 0.5 0.5
β12 -3.7 3.1 3.2 0.0 0.6 0.6 0.0 0.5 0.5 -1.4 0.3 0.3
β13 1.8 2.4 2.4 -0.5 0.9 0.9 0.1 0.4 0.4 0.1 0.2 0.2
β14 0.9 1.3 1.3 1.9 0.6 0.7 1.3 0.3 0.3 0.8 0.2 0.2
β15 -0.5 1.2 1.2 0.1 0.9 0.9 0.0 0.3 0.3 -0.1 0.2 0.2
β16 0.1 1.7 1.6 -0.4 0.8 0.8 0.3 0.4 0.4 -0.2 0.2 0.2
Γ11 -5.9 2.9 3.2 0.3 2.4 2.4 3.0 1.7 1.7 3.3 0.4 0.5

Γ112 11.0 2.5 3.7 6.4 2.2 2.6 4.3 1.1 1.3 -0.1 0.4 0.4
Γ12 -8.7 0.2 0.9 -5.2 0.7 1.0 -2.7 0.6 0.7 -3.2 0.3 0.4
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Table H–18: Simulation 4 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 7, q = 2, π1 = 0.5, π2 = 0.3,
π3 = 0.2, β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00,
0.00, 0.00, 0.00), β>3 = (1.00, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25,
0.10), �∗>2 = (0.35, 0.20, 0.15), and �∗>3 = (0.25, 0.00, 0.20). Small values changed to
zero, part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 3.1 7.4 7.4 11.6 2.5 3.8 16.7 0.7 3.5 18.8 0.4 3.9
β21 12.2 6.8 8.2 14.8 3.0 5.1 13.8 1.5 3.4 15.0 0.7 3.0
β22 0.9 2.5 2.5 1.1 0.9 0.9 0.8 0.4 0.4 1.2 0.2 0.2
β23 2.2 3.8 3.8 0.5 1.0 1.0 -0.5 0.3 0.3 0.2 0.1 0.1
β24 -2.2 2.6 2.6 -0.5 0.9 0.9 -0.7 0.4 0.4 -0.3 0.2 0.2
β25 -0.1 1.9 1.9 -0.2 0.8 0.8 -0.4 0.3 0.3 -0.1 0.1 0.1
β26 0.2 1.9 1.9 -0.8 0.6 0.6 0.1 0.2 0.2 0.1 0.1 0.1
Γ21 1.7 4.3 4.3 3.9 1.9 2.0 8.8 1.1 1.9 9.5 0.4 1.3

Γ212 2.2 3.5 3.5 8.2 1.3 2.0 9.4 0.7 1.5 10.4 0.2 1.3
Γ22 -8.7 2.0 2.8 -4.5 1.4 1.5 -4.1 0.8 1.0 -0.6 0.5 0.5
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Table H–19: Simulation 4 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 7, q = 2, π1 = 0.5, π2 = 0.3,
π3 = 0.2, β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00,
0.00, 0.00, 0.00), β>3 = (1.00, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25,
0.10), �∗>2 = (0.35, 0.20, 0.15), and �∗>3 = (0.25, 0.00, 0.20). Small values changed to
zero, part 3.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β30 -15.4 3.7 6.0 -14.0 2.5 4.4 -19.6 2.6 6.4 -20.6 1.9 6.2
β31 -6.2 3.8 4.1 -5.7 2.9 3.2 -2.7 3.5 3.5 0.7 1.9 1.9
β32 0.0 3.8 3.8 -1.7 1.8 1.8 -0.5 0.9 0.8 0.2 0.5 0.5
β33 -2.7 1.9 1.9 -0.6 1.1 1.1 -0.3 0.6 0.6 -0.4 0.4 0.4
β34 2.5 1.7 1.7 -0.2 0.7 0.7 0.8 0.5 0.5 0.1 0.4 0.4
β35 0.6 2.1 2.1 0.9 0.7 0.7 0.5 0.6 0.6 0.4 0.4 0.4
β36 -0.5 1.9 1.9 -0.7 0.9 0.9 -1.1 0.7 0.7 -0.2 0.4 0.4
Γ31 -10.7 2.0 3.1 -4.6 1.7 1.9 -0.1 1.5 1.5 3.4 0.8 0.9

Γ312 1.0 2.3 2.3 -2.6 2.1 2.2 -6.6 2.0 2.5 -6.7 2.0 2.4
Γ32 -15.6 1.0 3.4 -14.4 0.8 2.9 -10.8 1.0 2.2 -8.3 0.8 1.5

Total 102.0 56.1 44.0 33.1
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Figure H–11: MSE across sample sizes, Poisson outcome, small values changed to
zero, with K = 3, p = 7, q = 2.
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Table H–20: Simulation 4 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 2, q = 2, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.65, 0.30), β>2 = (0.20,−0.45), β>3 = (1.00, 0.15), �∗>1 = (0.30,−0.25, 0.10),
�∗>2 = (0.35, 0.20, 0.15), and �∗>3 = (0.25, 0.00, 0.20). Oracle model.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -12.5 1.4 2.9 -11.6 1.0 2.4 -11.6 0.7 2.1 -10.9 0.7 1.8
π2 5.2 1.1 1.4 6.6 0.6 1.0 7.9 0.5 1.1 8.7 0.4 1.2
β10 -1.5 3.6 3.6 1.0 1.0 1.0 1.2 0.8 0.8 1.8 0.3 0.3
β11 1.5 2.3 2.3 2.1 0.8 0.9 2.2 0.6 0.6 2.6 0.4 0.5
Γ11 1.4 3.7 3.6 1.7 1.1 1.2 2.6 1.1 1.2 3.6 0.4 0.5

Γ112 6.5 3.3 3.7 4.6 1.2 1.4 3.0 0.7 0.8 1.4 0.3 0.3
Γ12 -4.4 1.0 1.2 -3.7 0.5 0.7 -1.1 0.7 0.7 -1.1 0.4 0.4
β20 8.8 3.3 4.1 13.8 1.3 3.1 15.2 0.9 3.2 17.2 0.6 3.5
β21 13.0 3.5 5.2 13.2 1.7 3.4 14.4 1.2 3.2 15.3 0.6 2.9
Γ21 4.7 3.0 3.2 6.1 1.5 1.9 7.9 0.8 1.4 8.3 0.4 1.1

Γ212 7.6 2.5 3.0 7.7 1.2 1.8 9.4 0.6 1.5 10.4 0.2 1.3
Γ22 -6.4 1.8 2.2 -2.6 1.4 1.4 -1.8 0.9 1.0 0.0 0.6 0.6
β30 -8.5 3.3 4.0 -12.7 2.9 4.5 -14.8 2.5 4.7 -16.5 2.0 4.7
β31 -3.5 3.3 3.4 -4.3 2.0 2.2 -2.2 1.9 1.9 -0.7 1.3 1.3
Γ31 -4.4 2.7 2.8 -1.5 1.6 1.6 2.4 1.0 1.0 4.4 0.6 0.8

Γ312 -4.3 1.9 2.1 -3.4 2.1 2.2 -6.3 1.8 2.2 -7.0 1.5 2.0
Γ32 -14.9 0.7 2.9 -9.9 1.4 2.4 -6.8 1.2 1.6 -4.8 0.9 1.1

Total 51.6 33.0 28.8 24.3
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Figure H–12: MSE across sample sizes, Poisson outcome, oracle model, with K = 3,
p = 7, q = 2.
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Table H–21: Simulation 5 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 17, q = 2, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (1.00, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25, 0.10), �∗>2 = (0.35, 0.20,
0.15), and �∗>3 = (0.25, 0.00, 0.20). No penalty, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -13.7 1.6 3.5 -13.8 1.3 3.2 -12.6 1.1 2.7 -11.2 0.9 2.1
π2 0.8 1.4 1.4 4.7 1.1 1.3 6.0 0.6 0.9 7.8 0.4 1.0
β10 -19.5 4.9 8.6 -7.4 3.1 3.6 -3.2 1.8 1.9 0.7 0.7 0.7
β11 3.3 4.7 4.8 3.4 2.2 2.3 2.9 0.9 1.0 3.1 0.5 0.6
β12 0.1 2.2 2.2 -1.1 0.7 0.7 -0.4 0.4 0.4 -0.4 0.2 0.2
β13 0.1 2.1 2.0 -1.0 0.5 0.5 0.2 0.3 0.3 -0.5 0.1 0.1
β14 0.1 2.6 2.5 0.8 0.7 0.7 -0.6 0.5 0.5 -0.1 0.2 0.2
β15 -3.0 1.4 1.5 1.1 0.6 0.6 0.0 0.4 0.4 0.1 0.2 0.2
β16 -0.1 1.9 1.9 1.3 0.6 0.6 -0.5 0.4 0.4 -0.8 0.1 0.1
β17 -1.4 1.7 1.7 0.8 0.9 0.9 0.2 0.3 0.3 0.0 0.1 0.1
β18 -2.1 2.1 2.1 -0.2 0.6 0.6 0.0 0.3 0.3 0.2 0.2 0.2
β19 -0.6 1.6 1.5 1.1 0.6 0.6 0.8 0.6 0.6 0.7 0.2 0.2
β110 -0.4 1.7 1.7 1.1 0.9 0.9 0.2 0.4 0.3 -0.1 0.2 0.2
β111 -0.5 1.5 1.5 -0.8 0.7 0.7 0.6 0.3 0.3 -0.7 0.2 0.2
β112 -0.8 1.8 1.8 0.3 0.7 0.7 -0.2 0.4 0.4 0.1 0.2 0.2
β113 -2.2 2.6 2.6 1.5 0.6 0.6 -0.6 0.4 0.4 0.4 0.2 0.2
β114 -1.2 2.1 2.1 -0.3 0.6 0.6 -0.9 0.4 0.4 0.1 0.2 0.2
β115 3.6 1.7 1.8 0.5 0.8 0.8 -0.4 0.3 0.3 0.0 0.2 0.2
β116 -1.2 1.5 1.5 2.0 0.6 0.7 1.4 0.3 0.3 0.3 0.2 0.2
Γ11 -13.4 3.0 4.8 -8.2 1.6 2.3 -2.4 1.1 1.2 0.3 0.4 0.4

Γ112 16.1 2.4 5.0 10.4 1.6 2.6 6.3 0.8 1.2 4.2 0.4 0.5
Γ12 -8.3 0.4 1.0 -6.9 0.5 0.9 -4.9 0.4 0.6 -3.3 0.3 0.5
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Table H–22: Simulation 5 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 17, q = 2, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (1.00, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25, 0.10), �∗>2 = (0.35, 0.20,
0.15), and �∗>3 = (0.25, 0.00, 0.20). No penalty, part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 -5.7 18.1 18.2 3.5 3.6 3.7 8.9 1.6 2.4 12.1 0.9 2.3
β21 11.1 10.4 11.5 12.7 4.1 5.7 11.6 1.6 3.0 11.3 0.6 1.9
β22 1.1 5.8 5.7 -0.4 0.9 0.9 -0.3 0.5 0.4 0.2 0.1 0.1
β23 -3.4 2.3 2.4 0.4 1.0 1.0 -0.3 0.3 0.3 0.5 0.1 0.1
β24 2.2 3.9 3.9 -0.3 0.7 0.7 0.0 0.2 0.2 0.0 0.2 0.2
β25 0.4 3.1 3.1 -1.8 0.6 0.6 -0.2 0.3 0.3 -0.7 0.1 0.1
β26 -0.2 2.8 2.8 0.1 0.7 0.7 1.3 0.3 0.3 0.5 0.1 0.1
β27 3.5 5.0 5.1 0.2 1.1 1.1 0.5 0.4 0.4 0.6 0.1 0.1
β28 0.0 3.7 3.7 0.5 0.7 0.6 1.4 0.2 0.3 1.1 0.1 0.1
β29 -2.9 3.6 3.6 0.5 0.8 0.8 0.0 0.3 0.3 0.0 0.1 0.1
β210 -1.0 2.5 2.5 -0.6 0.7 0.7 -0.7 0.3 0.3 -0.4 0.1 0.1
β211 -1.1 3.1 3.1 -0.7 0.8 0.8 -1.0 0.3 0.3 0.2 0.1 0.1
β212 3.0 3.6 3.7 0.9 0.6 0.6 0.5 0.3 0.3 -0.4 0.1 0.1
β213 2.1 2.6 2.6 0.6 0.9 0.9 0.5 0.3 0.3 0.3 0.1 0.1
β214 -1.9 3.1 3.1 -1.2 0.7 0.7 -0.9 0.2 0.2 -0.3 0.1 0.1
β215 -1.9 4.4 4.4 -1.6 0.6 0.7 0.4 0.3 0.3 -0.7 0.1 0.1
β216 2.4 5.2 5.2 -1.1 0.7 0.7 0.4 0.3 0.3 -0.1 0.1 0.1
Γ21 -10.4 3.7 4.7 -0.2 2.7 2.7 3.7 1.0 1.1 6.3 0.6 1.0

Γ212 -7.5 2.5 3.0 3.8 1.5 1.6 5.0 0.9 1.1 7.6 0.4 1.0
Γ22 -12.3 0.8 2.3 -7.1 1.7 2.2 -4.1 1.2 1.3 -1.8 0.6 0.6
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Table H–23: Simulation 5 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 17, q = 2, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (1.00, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25, 0.10), �∗>2 = (0.35, 0.20,
0.15), and �∗>3 = (0.25, 0.00, 0.20). No penalty, part 3.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β30 -18.9 3.9 7.5 -12.7 3.3 4.8 -14.2 2.2 4.3 -14.1 2.7 4.6
β31 -4.3 3.2 3.3 -4.6 2.9 3.0 -2.3 2.2 2.2 1.0 1.5 1.5
β32 0.5 1.6 1.6 0.2 0.9 0.9 0.6 0.5 0.5 0.3 0.5 0.5
β33 -0.7 1.2 1.2 -0.1 0.7 0.7 -0.6 0.4 0.4 0.0 0.3 0.3
β34 -0.8 1.3 1.3 0.3 0.6 0.6 0.4 0.4 0.4 -0.1 0.3 0.3
β35 0.6 1.5 1.5 0.1 0.6 0.6 -0.3 0.5 0.5 -0.6 0.3 0.3
β36 -0.1 1.9 1.9 0.3 0.5 0.5 0.1 0.4 0.4 0.2 0.3 0.3
β37 -0.2 1.3 1.3 0.2 0.8 0.8 0.5 0.4 0.4 -0.2 0.3 0.3
β38 1.6 1.3 1.3 0.3 0.7 0.7 -0.9 0.4 0.4 -0.5 0.3 0.3
β39 2.7 1.7 1.8 -0.9 0.6 0.6 0.4 0.4 0.4 0.2 0.3 0.3
β310 -0.6 1.4 1.4 -0.2 0.8 0.8 -0.1 0.5 0.5 -0.7 0.3 0.3
β311 2.3 1.2 1.2 -0.3 0.6 0.6 -0.1 0.3 0.3 0.4 0.3 0.3
β312 1.6 2.1 2.1 1.1 0.6 0.6 -0.3 0.4 0.4 0.4 0.3 0.3
β313 0.8 1.2 1.2 -1.1 0.8 0.8 -0.1 0.3 0.3 0.2 0.4 0.4
β314 -2.4 1.0 1.1 0.2 0.6 0.6 0.7 0.5 0.5 0.9 0.4 0.4
β315 -0.2 1.9 1.9 -0.6 0.6 0.6 -0.5 0.4 0.4 -0.1 0.3 0.3
β316 1.5 1.3 1.3 -0.3 0.7 0.7 -1.2 0.4 0.4 0.1 0.3 0.3
Γ31 -15.8 1.7 4.2 -10.4 1.6 2.7 -5.4 1.3 1.5 -1.9 0.9 1.0

Γ312 -2.9 1.1 1.2 -3.3 1.8 1.9 -8.2 1.6 2.2 -11.9 1.1 2.5
Γ32 -18.0 0.5 3.7 -16.5 0.5 3.2 -14.2 0.6 2.7 -11.1 0.6 1.8

Total 193.8 79.4 47.5 33.1
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Figure H–13: MSE across sample sizes, Poisson outcome, no penalty, with K = 3,
p = 17, q = 2.
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Table H–24: Simulation 5 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 17, q = 2, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (1.00, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25, 0.10), �∗>2 = (0.35, 0.20,
0.15), and �∗>3 = (0.25, 0.00, 0.20). Small values changed to zero, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -13.7 1.6 3.5 -13.8 1.3 3.2 -12.6 1.1 2.7 -11.2 0.9 2.1
π2 0.8 1.4 1.4 4.7 1.1 1.3 6.0 0.6 0.9 7.8 0.4 1.0
β10 -19.5 4.9 8.6 -7.4 3.1 3.6 -3.2 1.8 1.9 0.7 0.7 0.7
β11 3.3 4.7 4.8 3.4 2.2 2.3 2.9 0.9 1.0 3.1 0.5 0.6
β12 0.1 2.2 2.2 -1.1 0.7 0.7 -0.4 0.4 0.4 -0.4 0.2 0.2
β13 0.1 2.1 2.0 -1.0 0.5 0.5 0.2 0.3 0.3 -0.5 0.1 0.1
β14 0.1 2.6 2.5 0.8 0.7 0.7 -0.6 0.5 0.5 -0.1 0.2 0.2
β15 -3.0 1.4 1.5 1.1 0.6 0.6 0.0 0.4 0.4 0.1 0.2 0.2
β16 -0.1 1.9 1.9 1.3 0.6 0.6 -0.5 0.4 0.4 -0.8 0.1 0.1
β17 -1.4 1.7 1.7 0.8 0.9 0.9 0.2 0.3 0.3 0.0 0.1 0.1
β18 -2.1 2.1 2.1 -0.2 0.6 0.6 0.0 0.3 0.3 0.3 0.2 0.2
β19 -0.6 1.6 1.5 1.1 0.6 0.6 0.8 0.6 0.6 0.7 0.2 0.2
β110 -0.5 1.7 1.7 1.0 0.9 0.9 0.2 0.4 0.3 -0.2 0.2 0.1
β111 -0.5 1.5 1.5 -0.8 0.7 0.7 0.6 0.3 0.3 -0.7 0.2 0.2
β112 -0.8 1.8 1.8 0.4 0.7 0.7 -0.2 0.4 0.4 0.1 0.2 0.2
β113 -2.1 2.6 2.6 1.5 0.6 0.6 -0.6 0.4 0.4 0.4 0.2 0.2
β114 -1.2 2.1 2.1 -0.3 0.6 0.6 -0.9 0.4 0.4 0.1 0.2 0.2
β115 3.6 1.7 1.8 0.5 0.8 0.8 -0.4 0.3 0.3 0.1 0.2 0.2
β116 -1.2 1.5 1.5 2.0 0.6 0.7 1.4 0.3 0.3 0.3 0.2 0.2
Γ11 -13.4 3.0 4.8 -8.2 1.6 2.3 -2.4 1.1 1.2 0.3 0.4 0.4

Γ112 16.1 2.4 5.0 10.4 1.6 2.6 6.3 0.8 1.2 4.2 0.4 0.5
Γ12 -8.3 0.4 1.0 -6.9 0.5 0.9 -4.9 0.4 0.6 -3.3 0.3 0.5
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Table H–25: Simulation 5 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 17, q = 2, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (1.00, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25, 0.10), �∗>2 = (0.35, 0.20,
0.15), and �∗>3 = (0.25, 0.00, 0.20). Small values changed to zero, part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 -5.7 18.1 18.2 3.5 3.6 3.7 8.9 1.6 2.4 12.1 0.9 2.3
β21 11.1 10.4 11.5 12.7 4.1 5.7 11.6 1.6 3.0 11.3 0.6 1.9
β22 1.1 5.8 5.7 -0.5 0.9 0.9 -0.3 0.5 0.4 0.3 0.1 0.1
β23 -3.4 2.3 2.4 0.4 1.0 1.0 -0.3 0.3 0.3 0.5 0.1 0.1
β24 2.2 3.9 3.9 -0.3 0.7 0.7 0.0 0.2 0.2 0.1 0.2 0.2
β25 0.4 3.1 3.1 -1.8 0.6 0.6 -0.2 0.3 0.3 -0.7 0.1 0.1
β26 -0.2 2.8 2.8 0.1 0.7 0.7 1.3 0.3 0.3 0.5 0.1 0.1
β27 3.5 5.0 5.1 0.2 1.1 1.1 0.5 0.4 0.4 0.6 0.1 0.1
β28 0.0 3.7 3.7 0.5 0.7 0.6 1.4 0.2 0.3 1.1 0.1 0.1
β29 -3.0 3.6 3.6 0.6 0.8 0.8 0.0 0.3 0.3 0.1 0.1 0.1
β210 -1.0 2.5 2.5 -0.6 0.7 0.7 -0.7 0.3 0.3 -0.4 0.1 0.1
β211 -1.1 3.1 3.1 -0.7 0.8 0.8 -1.0 0.3 0.3 0.2 0.1 0.1
β212 3.1 3.6 3.7 0.9 0.6 0.6 0.5 0.3 0.3 -0.4 0.1 0.1
β213 2.1 2.6 2.6 0.6 0.9 0.9 0.5 0.3 0.3 0.3 0.1 0.1
β214 -1.9 3.1 3.1 -1.2 0.7 0.7 -0.8 0.2 0.2 -0.4 0.1 0.1
β215 -1.9 4.4 4.4 -1.6 0.6 0.7 0.4 0.3 0.3 -0.7 0.1 0.1
β216 2.4 5.2 5.2 -1.1 0.7 0.7 0.4 0.3 0.3 -0.1 0.1 0.1
Γ21 -10.4 3.7 4.7 -0.2 2.7 2.7 3.7 1.0 1.1 6.3 0.6 1.0

Γ212 -7.5 2.5 3.0 3.8 1.5 1.6 5.0 0.9 1.1 7.6 0.4 1.0
Γ22 -12.3 0.8 2.3 -7.1 1.7 2.2 -4.1 1.2 1.3 -1.8 0.6 0.6
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Table H–26: Simulation 5 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 17, q = 2, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.65, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00), β>2 = (0.20,−0.45, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (1.00, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,−0.25, 0.10), �∗>2 = (0.35, 0.20,
0.15), and �∗>3 = (0.25, 0.00, 0.20). Small values changed to zero, part 3.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β30 -18.9 3.9 7.5 -12.7 3.3 4.8 -14.2 2.2 4.3 -14.1 2.7 4.6
β31 -4.3 3.2 3.3 -4.6 2.8 3.0 -2.3 2.2 2.2 1.0 1.5 1.5
β32 0.5 1.6 1.6 0.2 0.9 0.9 0.5 0.5 0.5 0.3 0.5 0.5
β33 -0.7 1.2 1.2 0.0 0.7 0.7 -0.6 0.4 0.4 0.0 0.3 0.3
β34 -0.8 1.3 1.3 0.3 0.6 0.6 0.4 0.4 0.4 -0.1 0.3 0.3
β35 0.6 1.5 1.5 0.2 0.6 0.6 -0.3 0.5 0.5 -0.6 0.3 0.3
β36 -0.1 1.9 1.9 0.3 0.5 0.5 0.1 0.4 0.4 0.2 0.3 0.3
β37 -0.2 1.3 1.3 0.2 0.8 0.8 0.5 0.4 0.4 -0.2 0.3 0.3
β38 1.6 1.3 1.3 0.3 0.7 0.7 -0.9 0.4 0.4 -0.4 0.3 0.3
β39 2.7 1.7 1.8 -0.9 0.6 0.6 0.4 0.4 0.4 0.3 0.3 0.3
β310 -0.7 1.4 1.4 -0.2 0.8 0.8 -0.1 0.5 0.5 -0.7 0.3 0.3
β311 2.3 1.2 1.2 -0.3 0.6 0.6 -0.1 0.3 0.3 0.5 0.3 0.3
β312 1.6 2.1 2.1 1.1 0.6 0.6 -0.3 0.4 0.4 0.4 0.3 0.3
β313 0.8 1.2 1.2 -1.1 0.8 0.8 -0.1 0.3 0.3 0.2 0.4 0.4
β314 -2.5 1.0 1.1 0.1 0.6 0.6 0.7 0.5 0.5 0.9 0.4 0.4
β315 -0.2 1.9 1.9 -0.6 0.6 0.6 -0.5 0.4 0.4 -0.1 0.3 0.3
β316 1.5 1.3 1.3 -0.3 0.7 0.7 -1.2 0.4 0.4 0.1 0.3 0.3
Γ31 -15.8 1.7 4.2 -10.4 1.6 2.7 -5.4 1.3 1.5 -1.9 0.9 1.0

Γ312 -2.9 1.1 1.2 -3.3 1.8 1.9 -8.2 1.6 2.2 -11.9 1.1 2.5
Γ32 -18.0 0.5 3.7 -16.5 0.5 3.2 -14.2 0.6 2.7 -11.1 0.6 1.8

Total 193.8 79.4 47.5 33.1
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Figure H–14: MSE across sample sizes, Poisson outcome, small values changed to
zero, with K = 3, p = 17, q = 2.
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Table H–27: Simulation 5 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 2, q = 2, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.65, 0.30), β>2 = (0.20,−0.45), β>3 = (1.00, 0.15), �∗>1 = (0.30,−0.25, 0.10),
�∗>2 = (0.35, 0.20, 0.15), and �∗>3 = (0.25, 0.00, 0.20). Oracle model.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -9.9 1.0 2.0 -10.0 0.7 1.6 -9.0 0.5 1.3 -10.0 0.5 1.5
π2 0.7 0.8 0.8 2.7 0.4 0.5 3.2 0.3 0.4 4.6 0.2 0.4
β10 -11.1 2.4 3.6 -3.8 1.1 1.2 -5.0 1.0 1.2 -3.7 0.5 0.7
β11 10.1 2.0 3.0 6.0 1.1 1.4 5.6 0.9 1.2 6.3 0.6 0.9
Γ11 -9.0 2.5 3.3 -6.4 1.3 1.7 -5.3 0.9 1.2 -2.6 0.6 0.6

Γ112 11.4 2.0 3.3 9.4 1.4 2.2 8.2 0.9 1.5 5.9 0.4 0.8
Γ12 -5.5 0.5 0.8 -3.4 0.6 0.7 -1.9 0.6 0.7 -1.5 0.4 0.4
β20 0.2 7.5 7.5 1.6 1.9 1.9 5.2 1.0 1.3 6.3 0.6 1.0
β21 1.7 4.6 4.6 6.1 2.1 2.4 6.8 1.0 1.5 6.7 0.5 1.0
Γ21 -2.2 3.9 3.9 -0.6 2.2 2.2 1.4 0.9 0.9 3.3 0.7 0.8

Γ212 -1.0 2.6 2.5 2.6 1.3 1.4 2.3 0.9 1.0 4.6 0.6 0.8
Γ22 -7.4 1.8 2.3 -4.1 1.3 1.5 -2.8 1.2 1.3 -0.8 0.4 0.4
β30 -2.1 3.5 3.5 -1.9 2.3 2.3 -1.4 2.1 2.1 -1.7 1.7 1.7
β31 -6.5 1.5 1.9 -7.0 1.3 1.8 -6.0 1.0 1.3 -4.1 1.0 1.1
Γ31 -11.0 1.5 2.7 -6.6 1.0 1.4 -4.6 0.7 0.9 -3.0 0.5 0.6

Γ312 0.1 1.6 1.6 -3.3 1.5 1.6 -4.6 1.0 1.2 -6.4 0.9 1.3
Γ32 -14.3 0.6 2.6 -11.8 0.6 2.0 -7.6 0.8 1.3 -5.8 0.7 1.0

Total 50.1 27.8 20.4 15.1
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Figure H–15: MSE across sample sizes, Poisson outcome, oracle model, with K = 3,
p = 17, q = 2.
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Table H–28: Simulation 6 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 19, q = 5, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.65, 0.30, 0.15, 0.35, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45,−0.10, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (1.00, 0.15,−0.65,−0.15, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,
−0.25, 0.10, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>2 =
(0.35, 0.20, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and
�∗>3 = (0.25, 0.00, 0.20, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). No penalty, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -10.2 1.2 2.2 -7.6 0.8 1.4 -5.8 0.5 0.8 -4.3 0.2 0.4
π2 3.8 0.8 1.0 4.0 0.9 1.0 5.4 0.3 0.6 4.3 0.2 0.4
β10 -11.7 20.0 21.1 -5.2 1.2 1.4 -0.9 0.4 0.4 -1.0 0.1 0.1
β11 -0.2 11.0 10.9 1.6 1.0 1.0 1.3 0.5 0.5 2.2 0.2 0.2
β12 -2.8 2.6 2.7 -2.1 0.8 0.9 0.0 0.3 0.3 -0.6 0.2 0.2
β13 -7.2 1.3 1.8 -3.5 0.5 0.6 -1.4 0.1 0.2 -1.2 0.1 0.1
β14 1.6 2.1 2.1 -0.7 0.3 0.3 0.1 0.1 0.1 0.0 < 0.1 < 0.1
β15 1.1 4.9 4.8 0.2 0.3 0.3 0.3 0.1 0.1 0.5 < 0.1 < 0.1
β16 0.3 1.4 1.4 -0.3 0.3 0.3 0.1 0.1 0.1 -0.1 < 0.1 < 0.1
β17 -0.1 1.8 1.8 0.4 0.3 0.3 0.4 0.1 0.1 0.3 < 0.1 < 0.1
β18 1.0 1.3 1.3 0.8 0.4 0.4 0.1 0.1 0.1 0.1 < 0.1 < 0.1
β19 1.5 1.0 1.0 0.4 0.3 0.3 -0.3 0.1 0.1 -0.1 < 0.1 < 0.1
β110 -0.9 0.7 0.7 -0.9 0.3 0.3 0.1 0.1 0.1 -0.2 < 0.1 < 0.1
β111 0.0 1.3 1.3 0.7 0.2 0.2 0.0 0.1 0.1 -0.1 < 0.1 < 0.1
β112 -0.3 1.5 1.5 -0.1 0.3 0.3 -0.2 0.1 0.1 0.2 < 0.1 < 0.1
β113 1.8 5.6 5.6 0.2 0.4 0.4 0.4 0.1 0.1 0.4 < 0.1 < 0.1
β114 0.4 1.1 1.0 -0.9 0.4 0.4 -0.6 0.1 0.1 -0.3 < 0.1 < 0.1
β115 0.3 3.1 3.1 1.0 0.3 0.3 0.2 0.1 0.1 0.2 < 0.1 < 0.1
β116 -0.3 3.5 3.5 0.6 0.3 0.3 0.3 0.1 0.1 0.1 < 0.1 < 0.1
β117 1.9 2.4 2.5 -0.4 0.3 0.3 0.1 0.1 0.1 0.3 < 0.1 < 0.1
β118 -0.3 1.0 1.0 0.2 0.3 0.3 -0.3 0.1 0.1 -0.2 < 0.1 < 0.1
Γ11 -13.1 2.3 4.0 -5.7 1.4 1.7 -2.2 0.3 0.4 -0.5 0.2 0.2

Γ112 15.8 2.2 4.7 6.8 1.3 1.8 2.7 0.3 0.4 0.4 0.2 0.2
Γ12 -3.8 1.0 1.1 -4.0 0.6 0.7 -4.8 0.3 0.5 -4.4 0.2 0.4

Γ113 -7.2 1.5 2.0 -5.4 1.1 1.4 -2.5 0.4 0.5 -1.4 0.4 0.4
Γ123 2.8 0.8 0.9 -0.4 0.3 0.3 -1.3 0.3 0.3 -1.4 0.2 0.3
Γ13 2.0 0.3 0.3 1.0 0.1 0.1 1.1 < 0.1 0.1 1.7 0.1 0.1

Γ114 -4.1 1.0 1.2 -4.3 0.6 0.8 -1.2 0.2 0.2 -1.3 0.1 0.2
Γ124 0.8 0.5 0.5 -1.2 0.3 0.3 -1.4 0.2 0.2 -1.8 0.1 0.2
Γ134 1.6 0.4 0.5 0.7 0.1 0.1 0.4 0.1 0.1 0.8 0.1 0.1
Γ14 0.2 0.0 0.0 0.2 < 0.1 < 0.1 0.6 < 0.1 < 0.1 0.8 < 0.1 < 0.1

Γ115 -0.8 0.5 0.5 -0.2 0.2 0.2 0.2 0.1 0.1 -0.1 0.1 0.1
Γ125 0.4 0.2 0.2 0.5 0.3 0.3 0.2 0.2 0.2 0.3 0.1 0.1
Γ135 0.6 0.1 0.1 0.3 < 0.1 < 0.1 0.7 0.1 0.1 0.1 < 0.1 < 0.1
Γ145 -0.1 0.0 0.0 0.0 < 0.1 < 0.1 0.0 < 0.1 < 0.1 0.0 < 0.1 < 0.1
Γ15 0.0 0.0 0.0 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1 0.2 < 0.1 < 0.1
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Table H–29: Simulation 6 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 19, q = 5, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.65, 0.30, 0.15, 0.35, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45,−0.10, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (1.00, 0.15,−0.65,−0.15, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,
−0.25, 0.10, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>2 =
(0.35, 0.20, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and
�∗>3 = (0.25, 0.00, 0.20, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). No penalty, part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 0.3 13.1 13.0 3.0 2.6 2.6 4.3 1.4 1.5 5.0 0.5 0.8
β21 14.5 6.8 8.8 9.5 3.1 4.0 8.3 1.4 2.0 6.4 0.6 1.0
β22 -0.8 6.2 6.2 1.8 1.7 1.7 -0.6 0.8 0.8 1.6 0.4 0.4
β23 -5.4 2.6 2.9 -1.5 0.9 0.9 -1.5 0.5 0.5 0.2 0.2 0.2
β24 2.7 2.5 2.6 1.4 0.4 0.4 0.2 0.2 0.2 -0.1 0.1 0.1
β25 -2.3 2.0 2.0 -0.4 0.7 0.7 -0.3 0.3 0.3 0.0 0.1 0.1
β26 -1.7 3.2 3.2 0.3 0.6 0.6 0.2 0.2 0.2 0.3 0.1 0.1
β27 0.7 2.0 2.0 -0.5 0.6 0.6 -0.5 0.2 0.2 -0.3 0.1 0.1
β28 0.0 4.8 4.8 -2.0 0.7 0.7 -0.9 0.2 0.2 -0.6 0.1 0.1
β29 0.3 1.8 1.8 -0.6 0.9 0.9 0.2 0.3 0.3 0.1 0.1 0.1
β210 -1.1 3.0 3.0 1.0 0.6 0.6 0.2 0.2 0.2 0.4 0.1 0.1
β211 0.6 1.8 1.8 0.7 0.8 0.8 -0.1 0.3 0.3 0.1 0.1 0.1
β212 -1.8 2.4 2.4 0.7 1.0 1.0 -0.1 0.3 0.3 -0.3 0.1 0.1
β213 -2.2 4.3 4.3 -0.2 1.2 1.1 -0.7 0.3 0.3 -0.6 0.1 0.2
β214 -1.3 1.9 1.9 0.2 0.6 0.6 0.3 0.2 0.2 0.2 0.1 0.1
β215 2.0 2.6 2.6 -0.1 0.8 0.8 0.5 0.2 0.2 0.0 0.1 0.1
β216 2.2 1.3 1.3 1.0 0.9 0.9 0.0 0.2 0.2 0.1 0.1 0.1
β217 3.2 2.6 2.6 0.1 0.6 0.5 -0.1 0.3 0.3 0.4 0.1 0.1
β218 -0.5 2.4 2.3 -1.2 1.3 1.3 -0.5 0.3 0.3 -0.4 0.1 0.1
Γ21 -4.1 4.9 5.0 2.1 2.2 2.3 2.3 1.3 1.3 2.1 0.5 0.6

Γ212 -1.2 3.3 3.3 3.4 1.6 1.7 3.3 1.2 1.3 2.0 0.6 0.6
Γ22 -4.0 2.8 2.9 -4.6 1.4 1.6 -1.7 0.8 0.8 -0.6 0.6 0.6

Γ213 0.3 3.0 2.9 2.6 2.0 2.0 0.2 1.8 1.7 4.4 0.7 0.9
Γ223 3.2 1.5 1.5 2.7 1.2 1.2 0.2 0.9 0.9 -0.4 0.7 0.7
Γ23 2.0 0.3 0.3 4.0 0.6 0.7 4.7 0.4 0.6 6.0 0.4 0.7

Γ214 -3.7 2.6 2.7 -1.7 1.0 1.0 -1.8 0.7 0.8 0.9 0.4 0.4
Γ224 3.8 1.2 1.3 3.5 0.6 0.7 3.1 0.5 0.6 1.7 0.3 0.4
Γ234 1.3 0.1 0.1 1.6 0.2 0.3 2.4 0.3 0.3 2.1 0.2 0.2
Γ24 0.1 0.0 0.0 0.3 < 0.1 < 0.1 0.4 < 0.1 < 0.1 1.0 < 0.1 0.1

Γ215 -0.7 1.0 1.0 0.4 0.7 0.6 -0.4 0.3 0.3 -0.1 0.2 0.2
Γ225 0.0 0.6 0.6 0.5 0.5 0.5 0.6 0.3 0.3 0.7 0.3 0.3
Γ235 -0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2
Γ245 0.0 0.0 0.0 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1 -0.1 < 0.1 < 0.1
Γ25 0.0 0.0 0.0 0.1 < 0.1 < 0.1 0.0 < 0.1 < 0.1 0.2 < 0.1 < 0.1
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Table H–30: Simulation 6 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 19, q = 5, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.65, 0.30, 0.15, 0.35, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45,−0.10, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (1.00, 0.15,−0.65,−0.15, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,
−0.25, 0.10, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>2 =
(0.35, 0.20, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and
�∗>3 = (0.25, 0.00, 0.20, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). No penalty, part 3.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β30 -15.3 5.7 8.0 -8.5 3.1 3.8 -2.2 1.3 1.3 0.4 0.5 0.5
β31 -0.1 4.5 4.4 -2.3 1.9 2.0 -0.9 0.8 0.8 -0.9 0.4 0.4
β32 19.1 8.5 12.0 13.5 4.7 6.5 7.6 3.5 4.0 4.5 1.7 1.9
β33 18.3 3.2 6.6 11.3 2.0 3.2 5.1 1.0 1.3 3.0 0.8 0.9
β34 0.7 1.4 1.4 0.5 0.5 0.5 0.2 0.2 0.2 -0.1 0.1 0.1
β35 1.2 2.1 2.1 -0.1 0.7 0.7 -0.4 0.2 0.2 -0.5 0.1 0.1
β36 -4.4 1.9 2.1 -0.6 0.6 0.6 -0.3 0.3 0.3 0.1 0.1 0.1
β37 0.1 1.5 1.5 1.0 0.5 0.5 -0.1 0.2 0.2 0.0 0.1 0.1
β38 -1.9 1.3 1.3 -0.9 0.7 0.7 -0.9 0.3 0.3 0.1 0.1 0.1
β39 0.5 1.3 1.3 -0.5 0.4 0.4 0.0 0.2 0.2 -0.2 0.1 0.1
β310 -0.1 1.6 1.6 -0.1 0.5 0.5 0.0 0.2 0.2 -0.2 0.1 0.1
β311 1.2 2.3 2.3 -1.5 0.6 0.6 0.0 0.2 0.2 0.0 0.1 0.1
β312 2.2 1.8 1.9 0.1 0.5 0.5 0.1 0.3 0.3 0.5 0.1 0.1
β313 1.5 1.6 1.6 -0.3 0.7 0.7 0.5 0.2 0.2 0.3 0.1 0.1
β314 1.7 1.5 1.5 0.2 0.5 0.5 0.2 0.2 0.2 0.3 0.1 0.1
β315 1.9 1.7 1.7 -0.3 0.3 0.3 -1.2 0.2 0.2 -0.7 0.1 0.1
β316 1.3 2.4 2.4 -0.6 0.5 0.5 0.7 0.2 0.2 -0.6 0.1 0.1
β317 0.4 2.0 2.0 0.4 0.5 0.5 0.7 0.2 0.2 0.1 0.1 0.1
β318 2.6 2.5 2.5 -0.2 0.5 0.5 0.7 0.3 0.3 -0.6 0.1 0.1
Γ31 -10.1 3.0 3.9 -5.4 1.5 1.8 -4.5 0.6 0.8 -3.4 0.4 0.5

Γ312 -1.7 1.9 1.9 0.2 1.8 1.8 -2.3 0.8 0.9 -0.9 0.4 0.4
Γ32 -16.2 0.7 3.3 -13.2 0.9 2.6 -8.6 0.8 1.5 -4.1 0.4 0.6

Γ313 -4.0 2.5 2.6 -2.1 2.1 2.2 0.9 1.3 1.3 0.3 0.4 0.4
Γ323 2.4 1.0 1.1 1.3 0.9 0.9 -0.9 0.5 0.5 -0.9 0.3 0.3
Γ33 3.6 0.5 0.7 6.2 0.9 1.3 6.5 1.0 1.4 6.0 0.6 0.9

Γ314 -5.7 1.5 1.8 -2.8 1.1 1.2 -0.7 0.5 0.5 -0.5 0.3 0.3
Γ324 1.6 0.7 0.7 0.4 0.6 0.6 0.5 0.4 0.4 0.3 0.2 0.2
Γ334 2.2 0.4 0.4 3.5 0.5 0.6 3.9 0.4 0.5 3.6 0.4 0.5
Γ34 0.1 0.0 0.0 0.1 < 0.1 < 0.1 0.3 < 0.1 < 0.1 0.9 < 0.1 < 0.1

Γ315 -1.0 1.0 1.0 -1.0 0.5 0.5 0.3 0.3 0.3 0.0 0.1 0.1
Γ325 0.4 0.3 0.3 -0.4 0.2 0.2 0.3 0.2 0.2 0.1 0.1 0.1
Γ335 -0.1 0.1 0.1 -0.1 0.1 0.1 0.3 0.1 0.1 0.6 0.2 0.2
Γ345 0.0 0.0 0.0 0.0 < 0.1 < 0.1 0.0 < 0.1 < 0.1 -0.2 0.1 0.1
Γ35 0.0 0.0 0.0 0.0 < 0.1 < 0.1 0.0 < 0.1 < 0.1 0.4 < 0.1 < 0.1

Total 255.8 89.7 44.6 23.3
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Figure H–16: MSE across sample sizes, Poisson outcome, no penalty, with K = 3,
p = 19, q = 5.
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Table H–31: Simulation 6 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 19, q = 5, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.65, 0.30, 0.15, 0.35, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45,−0.10, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (1.00, 0.15,−0.65,−0.15, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,
−0.25, 0.10, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>2 =
(0.35, 0.20, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and
�∗>3 = (0.25, 0.00, 0.20, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). Small values changed to zero, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -10.2 1.2 2.2 -7.6 0.8 1.4 -5.8 0.5 0.8 -4.3 0.2 0.4
π2 3.8 0.8 1.0 4.0 0.9 1.0 5.4 0.3 0.6 4.3 0.2 0.4
β10 -11.7 20.0 21.1 -5.2 1.2 1.4 -0.9 0.4 0.4 -1.0 0.1 0.1
β11 -0.2 11.0 10.9 1.6 1.0 1.0 1.3 0.5 0.5 2.2 0.2 0.2
β12 -2.8 2.6 2.7 -2.1 0.8 0.9 0.0 0.3 0.3 -0.6 0.2 0.2
β13 -7.2 1.3 1.8 -3.5 0.5 0.6 -1.4 0.1 0.2 -1.2 0.1 0.1
β14 1.6 2.1 2.1 -0.8 0.3 0.3 0.2 0.1 0.1 -0.1 < 0.1 < 0.1
β15 1.1 4.9 4.8 0.2 0.3 0.3 0.3 0.1 0.1 0.5 < 0.1 < 0.1
β16 0.3 1.4 1.4 -0.2 0.3 0.3 0.1 0.1 0.1 -0.1 < 0.1 < 0.1
β17 -0.2 1.8 1.8 0.4 0.3 0.3 0.4 0.1 0.1 0.3 < 0.1 < 0.1
β18 1.0 1.3 1.3 0.8 0.4 0.4 0.0 0.1 0.1 0.1 < 0.1 < 0.1
β19 1.5 1.0 1.0 0.4 0.3 0.3 -0.3 0.1 0.1 -0.1 < 0.1 < 0.1
β110 -0.9 0.7 0.7 -0.9 0.3 0.3 0.1 0.1 0.1 -0.2 < 0.1 < 0.1
β111 0.0 1.3 1.3 0.7 0.2 0.2 0.1 0.1 0.1 -0.1 < 0.1 < 0.1
β112 -0.3 1.5 1.5 0.0 0.3 0.3 -0.1 0.1 0.1 0.2 < 0.1 < 0.1
β113 1.8 5.6 5.6 0.2 0.4 0.4 0.4 0.1 0.1 0.3 < 0.1 < 0.1
β114 0.4 1.1 1.0 -0.9 0.4 0.4 -0.5 0.1 0.1 -0.2 < 0.1 < 0.1
β115 0.3 3.1 3.1 1.0 0.3 0.3 0.2 0.1 0.1 0.1 < 0.1 < 0.1
β116 -0.3 3.5 3.5 0.6 0.3 0.3 0.3 0.1 0.1 0.1 < 0.1 < 0.1
β117 1.9 2.4 2.5 -0.4 0.3 0.3 0.1 0.1 0.1 0.2 < 0.1 < 0.1
β118 -0.3 1.0 1.0 0.2 0.3 0.3 -0.3 0.1 0.1 -0.2 < 0.1 < 0.1
Γ11 -13.1 2.3 4.0 -5.7 1.4 1.7 -2.2 0.3 0.4 -0.5 0.2 0.2

Γ112 15.8 2.2 4.7 6.8 1.3 1.8 2.7 0.3 0.4 0.4 0.2 0.2
Γ12 -3.8 1.0 1.1 -4.0 0.6 0.7 -4.8 0.3 0.5 -4.4 0.2 0.4

Γ113 -7.2 1.5 2.0 -5.4 1.1 1.4 -2.5 0.4 0.5 -1.4 0.4 0.4
Γ123 2.8 0.8 0.9 -0.4 0.3 0.3 -1.3 0.3 0.3 -1.4 0.2 0.3
Γ13 2.0 0.3 0.3 1.0 0.1 0.1 1.1 < 0.1 0.1 1.7 0.1 0.1

Γ114 -4.1 1.0 1.2 -4.3 0.6 0.8 -1.2 0.2 0.2 -1.3 0.1 0.2
Γ124 0.8 0.5 0.5 -1.2 0.3 0.3 -1.4 0.2 0.2 -1.8 0.1 0.2
Γ134 1.6 0.4 0.5 0.7 0.1 0.1 0.4 0.1 0.1 0.8 0.1 0.1
Γ14 0.2 0.0 0.0 0.2 < 0.1 < 0.1 0.6 < 0.1 < 0.1 0.8 < 0.1 < 0.1

Γ115 -0.8 0.5 0.5 -0.2 0.2 0.2 0.2 0.1 0.1 -0.1 0.1 0.1
Γ125 0.4 0.2 0.2 0.5 0.3 0.3 0.2 0.2 0.2 0.3 0.1 0.1
Γ135 0.6 0.1 0.1 0.3 < 0.1 < 0.1 0.7 0.1 0.1 0.1 < 0.1 < 0.1
Γ145 -0.1 0.0 0.0 0.0 < 0.1 < 0.1 0.0 < 0.1 < 0.1 0.0 < 0.1 < 0.1
Γ15 0.0 0.0 0.0 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1 0.2 < 0.1 < 0.1

254



Table H–32: Simulation 6 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 19, q = 5, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.65, 0.30, 0.15, 0.35, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45,−0.10, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (1.00, 0.15,−0.65,−0.15, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,
−0.25, 0.10, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>2 =
(0.35, 0.20, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and
�∗>3 = (0.25, 0.00, 0.20, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). Small values changed to zero, part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 0.3 13.1 13.0 3.0 2.6 2.6 4.3 1.4 1.5 5.0 0.5 0.8
β21 14.5 6.8 8.8 9.5 3.1 4.0 8.3 1.4 2.0 6.4 0.6 1.0
β22 -0.8 6.2 6.2 1.8 1.7 1.7 -0.6 0.8 0.8 1.6 0.4 0.4
β23 -5.4 2.6 2.9 -1.5 0.9 0.9 -1.5 0.5 0.5 0.2 0.2 0.2
β24 2.7 2.5 2.6 1.4 0.4 0.4 0.1 0.2 0.2 -0.1 0.1 0.1
β25 -2.3 2.0 2.0 -0.4 0.7 0.7 -0.3 0.3 0.3 0.0 0.1 0.1
β26 -1.7 3.2 3.2 0.3 0.6 0.6 0.2 0.2 0.2 0.4 0.1 0.1
β27 0.7 2.0 2.0 -0.5 0.6 0.6 -0.4 0.2 0.2 -0.3 0.1 0.1
β28 -0.1 4.8 4.8 -2.0 0.7 0.7 -0.9 0.2 0.2 -0.6 0.1 0.1
β29 0.3 1.8 1.8 -0.6 0.9 0.9 0.3 0.3 0.3 0.1 0.1 0.1
β210 -1.1 3.0 3.0 0.9 0.6 0.6 0.2 0.2 0.2 0.4 0.1 0.1
β211 0.6 1.8 1.8 0.7 0.8 0.8 -0.1 0.3 0.3 0.1 0.1 0.1
β212 -1.8 2.4 2.4 0.7 1.0 1.0 -0.1 0.3 0.3 -0.3 0.1 0.1
β213 -2.1 4.3 4.3 -0.1 1.2 1.1 -0.7 0.3 0.3 -0.6 0.1 0.2
β214 -1.3 1.9 1.9 0.2 0.6 0.6 0.3 0.2 0.2 0.1 0.1 0.1
β215 2.0 2.6 2.6 -0.1 0.8 0.8 0.5 0.2 0.2 0.0 0.1 0.1
β216 2.2 1.3 1.3 1.0 0.9 0.9 0.0 0.2 0.2 0.0 0.1 0.1
β217 3.2 2.6 2.6 0.1 0.6 0.5 -0.1 0.3 0.3 0.4 0.1 0.1
β218 -0.5 2.4 2.3 -1.2 1.3 1.3 -0.6 0.3 0.3 -0.4 0.1 0.1
Γ21 -4.1 4.9 5.0 2.1 2.2 2.3 2.3 1.3 1.3 2.1 0.5 0.6

Γ212 -1.2 3.3 3.3 3.4 1.6 1.7 3.3 1.2 1.3 2.0 0.6 0.6
Γ22 -4.0 2.8 2.9 -4.6 1.4 1.6 -1.7 0.8 0.8 -0.6 0.6 0.6

Γ213 0.3 3.0 2.9 2.6 2.0 2.0 0.2 1.8 1.7 4.4 0.7 0.9
Γ223 3.2 1.5 1.5 2.7 1.2 1.2 0.2 0.9 0.9 -0.4 0.7 0.7
Γ23 2.0 0.3 0.3 4.0 0.6 0.7 4.7 0.4 0.6 6.0 0.4 0.7

Γ214 -3.7 2.6 2.7 -1.7 1.0 1.0 -1.8 0.7 0.8 0.9 0.4 0.4
Γ224 3.8 1.2 1.3 3.5 0.6 0.7 3.1 0.5 0.6 1.7 0.3 0.4
Γ234 1.3 0.1 0.1 1.6 0.2 0.3 2.4 0.3 0.3 2.1 0.2 0.2
Γ24 0.1 0.0 0.0 0.3 < 0.1 < 0.1 0.4 < 0.1 < 0.1 1.0 < 0.1 0.1

Γ215 -0.7 1.0 1.0 0.4 0.7 0.6 -0.4 0.3 0.3 -0.1 0.2 0.2
Γ225 0.0 0.6 0.6 0.5 0.5 0.5 0.6 0.3 0.3 0.7 0.3 0.3
Γ235 -0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2
Γ245 0.0 0.0 0.0 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1 -0.1 < 0.1 < 0.1
Γ25 0.0 0.0 0.0 0.1 < 0.1 < 0.1 0.0 < 0.1 < 0.1 0.2 < 0.1 < 0.1
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Table H–33: Simulation 6 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 19, q = 5, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.65, 0.30, 0.15, 0.35, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00), β>2 = (0.20,−0.45,−0.10, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (1.00, 0.15,−0.65,−0.15, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.30,
−0.25, 0.10, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>2 =
(0.35, 0.20, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and
�∗>3 = (0.25, 0.00, 0.20, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). Small values changed to zero, part 3.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β30 -15.3 5.7 8.0 -8.5 3.1 3.8 -2.2 1.3 1.3 0.4 0.5 0.5
β31 -0.1 4.5 4.5 -2.3 1.9 2.0 -0.9 0.8 0.8 -0.9 0.4 0.4
β32 19.1 8.5 12.0 13.5 4.7 6.5 7.6 3.5 4.0 4.5 1.7 1.9
β33 18.3 3.2 6.6 11.3 2.0 3.2 5.1 1.0 1.2 3.0 0.8 0.9
β34 0.7 1.4 1.4 0.5 0.5 0.5 0.2 0.2 0.2 -0.1 0.1 0.1
β35 1.2 2.1 2.1 -0.1 0.7 0.7 -0.4 0.2 0.2 -0.5 0.1 0.1
β36 -4.4 1.9 2.1 -0.6 0.6 0.6 -0.3 0.3 0.3 0.0 0.1 0.1
β37 0.1 1.5 1.5 0.9 0.5 0.5 -0.1 0.2 0.2 -0.1 0.1 0.1
β38 -1.9 1.3 1.3 -0.9 0.7 0.7 -0.9 0.3 0.3 0.1 0.1 0.1
β39 0.5 1.3 1.3 -0.5 0.4 0.4 0.0 0.2 0.2 -0.2 0.1 0.1
β310 -0.1 1.6 1.6 -0.1 0.5 0.5 0.0 0.2 0.2 -0.2 0.1 0.1
β311 1.2 2.3 2.3 -1.5 0.6 0.6 0.0 0.2 0.2 0.0 0.1 0.1
β312 2.2 1.8 1.9 0.1 0.5 0.5 0.0 0.3 0.3 0.4 0.1 0.1
β313 1.5 1.6 1.6 -0.3 0.7 0.7 0.4 0.2 0.2 0.2 0.1 0.1
β314 1.7 1.5 1.5 0.2 0.5 0.5 0.2 0.2 0.2 0.3 0.1 0.1
β315 2.0 1.7 1.7 -0.2 0.3 0.3 -1.2 0.2 0.2 -0.7 0.1 0.1
β316 1.3 2.4 2.4 -0.6 0.5 0.5 0.7 0.2 0.2 -0.6 0.1 0.1
β317 0.4 2.0 2.0 0.3 0.5 0.5 0.7 0.2 0.2 0.1 0.1 0.1
β318 2.6 2.5 2.5 -0.2 0.5 0.5 0.7 0.3 0.3 -0.6 0.1 0.1
Γ31 -10.1 3.0 3.9 -5.4 1.5 1.8 -4.5 0.6 0.8 -3.4 0.4 0.5

Γ312 -1.7 1.9 1.9 0.2 1.8 1.8 -2.3 0.8 0.9 -0.9 0.4 0.4
Γ32 -16.2 0.7 3.3 -13.2 0.9 2.6 -8.6 0.8 1.5 -4.1 0.4 0.6

Γ313 -4.0 2.5 2.6 -2.1 2.1 2.2 0.9 1.3 1.3 0.3 0.4 0.4
Γ323 2.4 1.0 1.1 1.3 0.9 0.9 -0.9 0.5 0.5 -0.9 0.3 0.3
Γ33 3.6 0.5 0.7 6.2 0.9 1.3 6.5 1.0 1.4 6.0 0.6 0.9

Γ314 -5.7 1.5 1.8 -2.8 1.1 1.2 -0.7 0.5 0.5 -0.5 0.3 0.3
Γ324 1.6 0.7 0.7 0.4 0.6 0.6 0.5 0.4 0.4 0.3 0.2 0.2
Γ334 2.2 0.4 0.4 3.5 0.5 0.6 3.9 0.4 0.5 3.6 0.4 0.5
Γ34 0.1 0.0 0.0 0.1 < 0.1 < 0.1 0.3 < 0.1 < 0.1 0.9 < 0.1 < 0.1

Γ315 -1.0 1.0 1.0 -1.0 0.5 0.5 0.3 0.3 0.3 0.0 0.1 0.1
Γ325 0.4 0.3 0.3 -0.4 0.2 0.2 0.3 0.2 0.2 0.1 0.1 0.1
Γ335 -0.1 0.1 0.1 -0.1 0.1 0.1 0.3 0.1 0.1 0.6 0.2 0.2
Γ345 0.0 0.0 0.0 0.0 < 0.1 < 0.1 0.0 < 0.1 < 0.1 -0.2 0.1 0.1
Γ35 0.0 0.0 0.0 0.0 < 0.1 < 0.1 0.0 < 0.1 < 0.1 0.4 < 0.1 < 0.1

Total 255.8 89.7 44.6 23.3
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Figure H–17: MSE across sample sizes, Poisson outcome, small values changed to
zero, with K = 3, p = 19, q = 5.
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Table H–34: Simulation 6 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p = 4, q = 2, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.65, 0.30, 0.15, 0.35), β>2 = (0.20,−0.45,−0.10, 0.25), β>3 = (1.00, 0.15,−0.65,
−0.15), �∗>1 = (0.30,−0.25, 0.10), �∗>2 = (0.35, 0.20, 0.15), and �∗>3 = (0.25, 0.00,
0.20). Oracle model.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -4.7 1.0 1.3 -3.5 0.4 0.6 -2.6 0.2 0.3 -2.8 0.1 0.2
π2 2.7 1.1 1.1 3.1 0.4 0.4 2.7 0.2 0.3 3.1 0.1 0.2
β10 -2.1 4.8 4.8 -0.8 0.6 0.6 0.7 0.2 0.2 0.4 0.1 0.1
β11 4.0 2.5 2.7 2.0 0.6 0.6 0.4 0.2 0.2 0.3 0.1 0.1
β12 1.8 0.9 0.9 1.7 0.2 0.2 1.6 0.1 0.1 1.1 0.1 0.1
β13 -2.5 0.6 0.7 -1.4 0.2 0.2 -1.1 0.1 0.1 -0.2 < 0.1 < 0.1
Γ11 -5.3 1.3 1.6 -2.5 0.4 0.4 -0.9 0.2 0.2 -0.4 0.1 0.1

Γ112 6.5 1.7 2.1 1.6 0.4 0.4 -0.2 0.1 0.1 -1.1 0.1 0.1
Γ12 -6.7 0.3 0.8 -5.8 0.3 0.6 -4.7 0.3 0.5 -5.1 0.2 0.4
β20 -2.8 8.9 8.9 3.1 1.7 1.8 1.6 0.9 0.9 3.8 0.3 0.4
β21 -2.7 10.5 10.5 4.2 1.6 1.7 3.7 1.0 1.2 5.3 0.5 0.7
β22 4.4 4.0 4.1 0.6 0.9 0.9 0.4 0.3 0.3 0.3 0.2 0.2
β23 -2.3 1.7 1.8 -0.3 0.7 0.7 -0.5 0.3 0.3 -0.6 0.1 0.1
Γ21 -0.4 5.9 5.9 -0.4 2.1 2.0 -0.2 0.9 0.9 0.6 0.3 0.3

Γ212 3.9 3.4 3.5 0.4 1.2 1.2 1.9 0.7 0.7 3.1 0.4 0.5
Γ22 -4.4 2.2 2.4 -2.6 1.6 1.6 -1.8 0.9 0.9 0.5 0.4 0.4
β30 -0.7 2.2 2.2 -1.1 1.0 1.0 0.2 0.4 0.4 1.2 0.2 0.2
β31 1.8 2.4 2.4 1.5 0.6 0.6 1.2 0.3 0.3 1.4 0.1 0.1
β32 -2.0 2.2 2.2 -2.6 0.4 0.5 -1.5 0.2 0.2 -0.1 0.1 0.1
β33 2.0 0.8 0.8 0.0 0.3 0.3 -0.1 0.1 0.1 -0.1 0.1 0.1
Γ31 -3.0 1.8 1.9 -2.5 0.7 0.8 -1.9 0.3 0.3 -1.5 0.2 0.2

Γ312 -0.6 1.8 1.7 -1.3 1.0 1.0 -1.4 0.5 0.5 -1.1 0.2 0.2
Γ32 -11.4 1.2 2.5 -7.7 0.9 1.5 -3.0 0.4 0.5 -1.1 0.1 0.2

Total 66.8 19.5 9.5 5.1
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Figure H–18: MSE across sample sizes, Poisson outcome, oracle model, with K = 3,
p = 19, q = 5.
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Table H–35: Simulation 7 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 7, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00, 0.00, 0.00,
0.00), �∗>1 = (0.95, 0.85, 1.15), and �∗>2 = (0.70,−0.70, 0.80). No penalty.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -11.3 1.0 2.3 -12.0 0.7 2.1 -12.1 0.4 1.8 -12.2 0.3 1.8
β10 17.5 7.2 10.2 22.2 2.9 7.8 24.1 1.7 7.5 25.0 1.6 7.8
β11 30.8 14.8 24.1 26.9 8.6 15.8 24.8 4.6 10.7 23.8 3.9 9.6
β12 0.9 1.1 1.1 -0.3 0.4 0.4 0.5 0.2 0.2 0.1 0.1 0.1
β13 0.2 1.1 1.1 -0.3 0.4 0.4 -0.2 0.1 0.1 -0.2 0.1 0.1
β14 -0.3 1.0 1.0 0.4 0.4 0.4 0.1 0.1 0.1 0.0 < 0.1 < 0.1
β15 1.0 0.7 0.7 1.0 0.3 0.3 0.8 0.1 0.1 0.4 0.1 0.1
β16 0.3 0.8 0.8 0.1 0.3 0.3 0.0 0.1 0.1 -0.2 0.1 0.1
Γ11 -5.8 6.8 7.1 -8.6 2.4 3.1 -7.5 1.2 1.8 -7.4 0.6 1.2

Γ112 3.2 15.0 14.9 -0.2 5.2 5.1 -1.3 3.8 3.8 0.6 1.9 1.9
Γ12 -11.4 7.2 8.4 -3.2 2.8 2.9 -1.4 1.2 1.2 -1.0 0.5 0.5
β20 21.9 5.6 10.3 20.1 3.0 7.0 20.2 1.5 5.6 20.1 1.1 5.1
β21 0.6 7.0 6.9 -0.5 2.3 2.3 -3.0 1.5 1.6 -3.0 0.8 0.9
β22 -1.7 1.0 1.0 -0.9 0.3 0.3 -0.6 0.2 0.2 -0.5 0.1 0.1
β23 -0.5 0.8 0.8 -0.7 0.3 0.3 -0.6 0.1 0.1 -0.3 0.1 0.1
β24 0.1 0.7 0.7 -0.3 0.2 0.2 -0.1 0.1 0.1 0.0 < 0.1 < 0.1
β25 -0.8 0.6 0.6 -0.2 0.3 0.3 -0.2 0.1 0.1 -0.5 < 0.1 < 0.1
β26 -0.5 0.7 0.7 -0.5 0.2 0.2 -0.1 0.1 0.1 -0.2 < 0.1 < 0.1
Γ21 6.2 3.8 4.1 7.7 1.5 2.1 8.5 0.8 1.5 8.4 0.5 1.2

Γ212 19.4 6.5 10.2 20.0 3.4 7.4 19.5 1.7 5.5 21.6 1.0 5.7
Γ22 1.5 5.7 5.7 7.6 2.2 2.8 11.4 1.2 2.5 13.2 0.6 2.3

Total 112.8 61.3 44.7 38.6
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Figure H–19: MSE across sample sizes, binomial outcome, no penalty, with K = 2,
p = 7, q = 2.
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Table H–36: Simulation 7 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 7, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00, 0.00, 0.00,
0.00), �∗>1 = (0.95, 0.85, 1.15), and �∗>2 = (0.70,−0.70, 0.80). Small values changed to
zero.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -11.3 1.0 2.3 -12.0 0.7 2.1 -12.1 0.4 1.8 -12.2 0.3 1.8
β10 17.5 7.2 10.2 22.2 2.9 7.8 24.1 1.7 7.5 25.0 1.6 7.8
β11 30.8 14.8 24.1 26.9 8.6 15.8 24.8 4.6 10.7 23.8 3.9 9.6
β12 0.9 1.1 1.1 -0.3 0.4 0.4 0.5 0.2 0.2 0.1 0.1 0.1
β13 0.2 1.1 1.1 -0.4 0.4 0.4 -0.1 0.1 0.1 -0.3 0.1 0.1
β14 -0.3 1.0 1.0 0.5 0.4 0.4 0.1 0.1 0.1 0.0 < 0.1 < 0.1
β15 0.9 0.7 0.7 1.0 0.3 0.3 0.8 0.1 0.1 0.4 0.1 0.1
β16 0.3 0.8 0.8 0.2 0.3 0.3 0.0 0.1 0.1 -0.2 0.1 0.1
Γ11 -5.8 6.8 7.1 -8.6 2.4 3.1 -7.5 1.2 1.8 -7.4 0.6 1.2

Γ112 3.2 15.0 14.9 -0.2 5.2 5.1 -1.3 3.8 3.8 0.6 1.9 1.9
Γ12 -11.4 7.2 8.4 -3.2 2.8 2.9 -1.4 1.2 1.2 -1.0 0.5 0.5
β20 21.9 5.6 10.3 20.1 3.0 7.0 20.2 1.5 5.6 20.1 1.1 5.1
β21 0.5 7.0 6.9 -0.5 2.3 2.2 -3.0 1.5 1.6 -3.0 0.8 0.9
β22 -1.7 1.0 1.0 -0.9 0.3 0.3 -0.6 0.2 0.2 -0.5 0.1 0.1
β23 -0.5 0.8 0.8 -0.7 0.3 0.3 -0.6 0.1 0.1 -0.3 0.1 0.1
β24 0.1 0.7 0.6 -0.3 0.2 0.2 0.0 0.1 0.1 0.0 < 0.1 < 0.1
β25 -0.7 0.6 0.6 -0.2 0.3 0.3 -0.2 0.1 0.1 -0.5 < 0.1 < 0.1
β26 -0.5 0.7 0.7 -0.4 0.2 0.2 -0.1 0.1 0.1 -0.1 < 0.1 < 0.1
Γ21 6.2 3.8 4.1 7.7 1.5 2.1 8.5 0.8 1.5 8.4 0.5 1.2

Γ212 19.4 6.5 10.2 20.0 3.4 7.4 19.5 1.7 5.5 21.6 1.0 5.7
Γ22 1.5 5.7 5.7 7.6 2.2 2.8 11.4 1.2 2.5 13.2 0.6 2.3

Total 112.8 61.3 44.7 38.6
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Figure H–20: MSE across sample sizes, binomial outcome, small values changed to
zero, with K = 2, p = 7, q = 2.
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Table H–37: Simulation 7 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 2, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.95, 0.60), β>2 = (−0.85,−0.15), �∗>1 = (0.95, 0.85, 1.15), and �∗>2 = (0.70,
−0.70, 0.80). Oracle model.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -12.2 0.7 2.2 -12.0 0.5 1.9 -12.4 0.3 1.9 -12.6 0.3 1.9
β10 22.3 5.0 10.0 22.5 1.6 6.7 25.5 1.6 8.0 26.7 1.5 8.6
β11 32.6 11.1 21.7 26.6 5.8 12.9 26.0 4.7 11.4 25.5 4.1 10.6
Γ11 -11.1 4.5 5.7 -9.0 1.8 2.6 -9.1 1.2 2.0 -9.3 0.6 1.5

Γ112 -0.5 14.8 14.7 -3.3 5.1 5.1 -3.9 3.9 4.0 -2.4 2.1 2.1
Γ12 -9.5 6.3 7.1 -1.8 2.0 2.0 -0.9 1.1 1.1 -0.8 0.5 0.5
β20 20.2 4.3 8.3 19.4 2.4 6.2 19.8 1.4 5.3 19.8 1.1 5.0
β21 -3.1 4.6 4.7 -2.1 1.7 1.8 -3.5 1.4 1.5 -3.8 0.8 0.9
Γ21 5.1 2.7 2.9 7.0 1.3 1.8 7.9 0.7 1.4 7.9 0.5 1.1

Γ212 19.0 5.6 9.1 19.2 2.6 6.3 20.2 1.4 5.4 22.0 0.9 5.7
Γ22 4.7 5.1 5.3 8.9 2.0 2.8 12.2 1.1 2.6 13.8 0.6 2.5

Total 91.6 50.1 44.6 40.4
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Figure H–21: MSE across sample sizes, binomial outcome, oracle model, with K = 2,
p = 7, q = 2.
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Table H–38: Simulation 8 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 17, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85, 1.15), and �∗>2 = (0.70,−0.70, 0.80). No
penalty, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -6.5 1.3 1.7 -7.9 0.6 1.3 -8.5 0.6 1.3 -8.1 0.5 1.1
β10 12.3 8.3 9.8 14.7 3.4 5.5 16.9 3.3 6.1 15.8 2.5 5.0
β11 23.5 14.9 20.2 27.6 6.7 14.2 27.0 5.0 12.2 27.8 3.9 11.6
β12 1.9 1.0 1.0 0.4 0.4 0.4 0.0 0.2 0.2 -0.2 0.1 0.1
β13 -0.3 0.8 0.8 -0.1 0.3 0.3 0.1 0.2 0.2 0.1 0.1 0.1
β14 -0.8 0.8 0.8 0.1 0.3 0.3 -0.3 0.1 0.1 -0.1 0.1 0.1
β15 0.8 0.8 0.7 -0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.1 0.1
β16 -0.9 0.5 0.5 -0.1 0.3 0.3 -0.7 0.1 0.1 -0.1 < 0.1 0.0
β17 0.9 0.8 0.8 0.5 0.3 0.3 -0.2 0.1 0.1 0.1 < 0.1 0.0
β18 -0.1 0.7 0.7 -0.3 0.3 0.3 -0.5 0.2 0.2 -0.1 0.1 0.1
β19 0.4 0.8 0.8 -0.1 0.3 0.3 -0.3 0.1 0.1 -0.2 0.1 0.1
β110 0.0 0.8 0.8 -0.4 0.3 0.3 -0.3 0.1 0.1 -0.1 0.1 0.1
β111 -0.1 0.7 0.7 0.2 0.2 0.2 -0.2 0.1 0.1 0.0 < 0.1 0.0
Γ11 -1.8 5.6 5.6 -2.6 3.0 3.0 -4.6 2.0 2.2 -5.1 1.3 1.6

Γ112 -23.3 18.7 23.9 -16.6 6.6 9.3 -19.2 4.2 7.8 -19.7 2.8 6.6
Γ12 -16.4 7.8 10.4 -12.1 1.7 3.1 -11.1 1.0 2.2 -9.6 0.5 1.4
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Table H–39: Simulation 8 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 17, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85, 1.15), and �∗>2 = (0.70,−0.70, 0.80). No
penalty, part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 17.5 7.4 10.4 15.9 3.1 5.5 16.5 1.3 4.0 15.8 1.0 3.5
β21 -11.8 8.1 9.4 -14.5 3.5 5.6 -15.6 1.1 3.6 -16.2 0.8 3.5
β22 -1.1 1.6 1.6 -0.9 0.4 0.4 -0.4 0.2 0.2 -0.2 0.1 0.1
β23 0.3 0.9 0.9 0.3 0.3 0.3 0.2 0.1 0.1 0.0 0.1 0.1
β24 -0.7 0.9 0.8 0.0 0.3 0.3 -0.2 0.1 0.1 -0.2 0.1 0.1
β25 -0.7 0.8 0.8 -0.3 0.2 0.2 -0.2 0.1 0.1 -0.3 < 0.1 0.0
β26 -0.2 1.0 0.9 -0.3 0.3 0.3 0.0 0.2 0.2 -0.1 0.1 0.1
β27 -1.4 0.8 0.8 0.1 0.3 0.3 0.1 0.1 0.1 0.0 0.1 0.1
β28 -0.1 0.9 0.9 0.6 0.4 0.4 0.8 0.1 0.1 0.2 0.1 0.1
β29 -0.5 0.9 0.9 0.1 0.3 0.3 0.4 0.1 0.1 0.2 0.1 0.1
β210 -0.8 0.9 0.9 -0.2 0.2 0.2 0.0 0.1 0.1 -0.3 0.1 0.1
β211 -0.4 0.7 0.7 -0.1 0.2 0.2 0.0 0.1 0.1 0.0 0.1 0.1
Γ21 3.4 4.3 4.4 6.3 1.5 1.8 7.7 0.5 1.1 7.9 0.3 0.9

Γ212 8.8 13.2 13.9 4.2 5.1 5.2 0.0 2.0 2.0 -0.4 1.3 1.3
Γ22 -11.3 7.5 8.7 0.2 1.9 1.9 1.6 1.0 1.0 2.4 0.7 0.8

Total 135.2 62.2 46.1 38.6

267



0

2

4

6

n=100 n=250 n=500 n=1000
Sample Size

M
SE

MSE Across Sample Sizes, Binomial Scenario 2

Figure H–22: MSE across sample sizes, binomial outcome, no penalty, with K = 2,
p = 17, q = 2.

268



Table H–40: Simulation 8 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 17, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85, 1.15), and �∗>2 = (0.70,−0.70, 0.80).
Small values changed to zero, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -6.5 1.3 1.7 -7.9 0.6 1.3 -8.5 0.6 1.3 -8.1 0.5 1.1
β10 12.3 8.3 9.8 14.7 3.4 5.5 16.9 3.3 6.1 15.8 2.5 5.0
β11 23.5 14.9 20.2 27.6 6.7 14.2 27.0 5.0 12.2 27.8 3.9 11.6
β12 1.9 1.0 1.0 0.5 0.4 0.4 0.0 0.2 0.2 -0.3 0.1 0.1
β13 -0.3 0.8 0.8 -0.1 0.3 0.3 0.0 0.2 0.2 0.1 0.1 0.1
β14 -0.8 0.8 0.8 0.1 0.3 0.3 -0.3 0.1 0.1 -0.2 0.1 0.1
β15 0.8 0.7 0.7 -0.3 0.2 0.2 0.1 0.1 0.1 0.0 0.1 0.1
β16 -0.9 0.5 0.5 -0.1 0.3 0.3 -0.7 0.1 0.1 -0.1 < 0.1 0.0
β17 0.9 0.8 0.8 0.5 0.3 0.3 -0.2 0.1 0.1 0.1 < 0.1 0.0
β18 -0.1 0.7 0.7 -0.3 0.3 0.3 -0.4 0.2 0.2 -0.1 0.1 0.1
β19 0.4 0.8 0.8 -0.2 0.3 0.3 -0.3 0.1 0.1 -0.1 0.1 0.1
β110 0.0 0.8 0.8 -0.5 0.3 0.3 -0.3 0.1 0.1 0.0 0.1 0.1
β111 -0.1 0.7 0.7 0.2 0.2 0.2 -0.2 0.1 0.1 -0.1 < 0.1 0.0
Γ11 -1.8 5.6 5.6 -2.6 3.0 3.0 -4.6 2.0 2.2 -5.1 1.3 1.6

Γ112 -23.3 18.7 23.9 -16.6 6.6 9.3 -19.2 4.2 7.8 -19.7 2.8 6.6
Γ12 -16.4 7.8 10.4 -12.1 1.7 3.1 -11.1 1.0 2.2 -9.6 0.5 1.4
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Table H–41: Simulation 8 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 17, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85, 1.15), and �∗>2 = (0.70,−0.70, 0.80).
Small values changed to zero, part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 17.5 7.4 10.4 15.9 3.1 5.5 16.5 1.3 4.0 15.8 1.0 3.5
β21 -11.8 8.1 9.4 -14.5 3.5 5.6 -15.6 1.1 3.6 -16.2 0.8 3.5
β22 -1.1 1.6 1.6 -0.9 0.4 0.4 -0.4 0.2 0.2 -0.1 0.1 0.1
β23 0.3 0.9 0.9 0.2 0.3 0.3 0.2 0.1 0.1 0.0 < 0.1 0.0
β24 -0.7 0.9 0.8 0.0 0.3 0.3 -0.2 0.1 0.1 -0.2 0.1 0.1
β25 -0.7 0.8 0.8 -0.3 0.2 0.2 -0.2 0.1 0.1 -0.4 < 0.1 0.0
β26 -0.2 1.0 0.9 -0.2 0.3 0.3 0.0 0.2 0.2 -0.2 0.1 0.1
β27 -1.4 0.8 0.8 0.2 0.3 0.3 0.1 0.1 0.1 0.0 0.1 0.1
β28 0.0 0.9 0.9 0.6 0.4 0.4 0.8 0.1 0.1 0.2 0.1 0.1
β29 -0.5 0.9 0.9 0.2 0.3 0.3 0.4 0.1 0.1 0.1 0.1 0.1
β210 -0.7 0.9 0.9 -0.2 0.2 0.2 -0.1 0.1 0.1 -0.4 0.1 0.1
β211 -0.4 0.7 0.7 -0.2 0.2 0.2 0.0 0.1 0.1 0.0 0.1 0.1
Γ21 3.4 4.3 4.4 6.3 1.5 1.8 7.7 0.5 1.1 7.9 0.3 0.9

Γ212 8.8 13.2 13.9 4.2 5.1 5.2 0.0 2.0 2.0 -0.4 1.3 1.3
Γ22 -11.3 7.5 8.7 0.2 1.9 1.9 1.6 1.0 1.0 2.4 0.7 0.8

Total 135.2 62.2 46.1 38.5
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Figure H–23: MSE across sample sizes, binomial outcome, small values changed to
zero, with K = 2, p = 17, q = 2.
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Table H–42: Simulation 8 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 2, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.95, 0.60), β>2 = (−0.85,−0.15), �∗>1 = (0.95, 0.85, 1.15), and �∗>2 = (0.70,
−0.70, 0.80). Oracle model.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -8.6 1.0 1.7 -9.1 0.6 1.4 -9.6 0.5 1.4 -9.4 0.4 1.3
β10 19.2 5.8 9.4 18.6 3.4 6.8 20.4 2.9 7.0 19.5 2.4 6.2
β11 27.1 11.7 19.0 30.7 5.9 15.3 29.5 4.5 13.1 30.9 3.6 13.1
Γ11 -7.8 4.2 4.8 -6.1 2.4 2.7 -7.6 1.7 2.3 -8.1 1.3 1.9

Γ112 -25.5 12.6 19.0 -21.7 5.8 10.4 -22.5 3.8 8.9 -23.7 2.9 8.6
Γ12 -11.5 4.8 6.1 -10.8 1.8 2.9 -10.5 1.0 2.1 -9.4 0.5 1.4
β20 15.9 4.4 6.9 15.7 2.3 4.7 16.5 1.3 4.0 16.5 1.0 3.7
β21 -12.6 5.4 6.9 -16.3 2.8 5.4 -16.0 1.2 3.7 -16.7 0.7 3.4
Γ21 3.6 2.4 2.5 6.2 1.1 1.4 7.1 0.5 1.0 7.6 0.2 0.8

Γ212 8.9 11.2 11.8 4.3 3.5 3.7 1.9 2.0 2.1 1.7 1.3 1.3
Γ22 -6.5 5.9 6.3 1.7 1.5 1.5 3.0 1.0 1.0 3.9 0.6 0.8

Total 94.3 56.3 46.7 42.5
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Figure H–24: MSE across sample sizes, binomial outcome, oracle model, with K = 2,
p = 17, q = 2.
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Table H–43: Simulation 9 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 19, q = 5, π1 = 0.6, π2 = 0.4,
β>1 = (0.95, 0.60,−0.65,−0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15,−0.75, 0.10, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85, 1.15, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and �∗>2 = (0.70,−0.70, 0.80,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00). No penalty, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -1.2 0.8 0.8 1.4 0.4 0.4 1.8 0.2 0.3 1.2 0.1 0.2
β10 -3.9 5.4 5.5 -2.7 2.3 2.3 -1.5 1.3 1.3 -0.9 0.7 0.7
β11 5.8 9.1 9.4 -2.2 3.4 3.5 -1.3 2.2 2.2 -0.6 1.2 1.2
β12 -0.9 1.0 1.0 -0.4 0.4 0.4 -0.6 0.2 0.2 0.2 0.1 0.1
β13 3.3 0.7 0.8 3.3 0.3 0.4 1.8 0.1 0.1 1.3 0.1 0.1
β14 -0.6 0.4 0.4 0.3 0.2 0.2 -0.2 0.1 0.1 0.2 < 0.1 < 0.1
β15 -0.3 0.6 0.6 -0.3 0.2 0.2 0.1 0.1 0.1 0.3 0.1 0.1
β16 0.9 0.7 0.7 0.4 0.2 0.2 0.2 0.1 0.1 0.3 < 0.1 0.1
β17 1.6 0.5 0.5 -0.1 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1
β18 -1.1 0.7 0.7 -0.8 0.2 0.2 -0.4 0.1 0.1 -0.3 0.1 0.1
β19 0.3 0.7 0.7 -0.2 0.2 0.2 0.0 0.1 0.1 0.0 0.1 0.1
β110 -0.5 0.6 0.6 -0.7 0.2 0.2 -0.7 0.1 0.1 -0.2 < 0.1 < 0.1
β111 0.2 0.7 0.7 0.4 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.1
β112 1.8 1.0 1.0 0.7 0.2 0.2 0.1 0.1 0.1 -0.1 0.1 0.1
β113 1.1 0.7 0.7 0.8 0.2 0.2 0.8 0.1 0.1 0.5 < 0.1 < 0.1
Γ11 1.1 5.3 5.3 2.5 1.1 1.1 2.1 0.6 0.6 1.0 0.3 0.3

Γ112 -3.7 10.7 10.7 -0.9 3.9 3.9 -1.0 1.4 1.4 -0.3 0.7 0.7
Γ12 -13.7 5.3 7.1 -3.0 1.3 1.4 -1.1 0.7 0.7 0.8 0.4 0.4

Γ113 0.2 1.5 1.5 1.3 0.6 0.6 0.7 0.3 0.3 0.1 0.2 0.2
Γ123 3.7 1.4 1.5 1.6 0.5 0.5 0.8 0.2 0.2 0.3 0.1 0.1
Γ13 3.1 0.3 0.4 5.9 0.4 0.8 6.7 0.3 0.7 6.2 0.2 0.6

Γ114 -3.6 1.6 1.7 -4.8 0.5 0.7 -4.2 0.2 0.4 -2.9 0.1 0.2
Γ124 -2.2 1.1 1.1 -2.7 0.4 0.4 -1.6 0.2 0.2 -1.1 0.1 0.1
Γ134 0.2 0.2 0.2 -0.4 0.3 0.3 -0.2 0.3 0.3 0.4 0.2 0.2
Γ14 0.8 0.1 0.1 2.5 0.2 0.2 3.4 0.2 0.3 3.8 0.1 0.3

Γ115 1.6 0.9 0.9 -0.1 0.4 0.4 0.1 0.2 0.2 -0.3 0.1 0.1
Γ125 0.3 0.8 0.8 -0.8 0.3 0.3 -0.4 0.2 0.2 -0.2 0.1 0.1
Γ135 -0.3 0.2 0.2 0.0 0.2 0.2 -0.2 0.2 0.2 -0.4 0.2 0.2
Γ145 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.4 0.1 0.1
Γ15 0.3 0.0 0.0 0.3 < 0.1 < 0.1 0.8 < 0.1 < 0.1 1.6 0.1 0.1
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Table H–44: Simulation 9 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 19, q = 5, π1 = 0.6, π2 = 0.4,
β>1 = (0.95, 0.60,−0.65,−0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15,−0.75, 0.10, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85, 1.15, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and �∗>2 = (0.70,−0.70, 0.80,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00). No penalty, part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 9.7 8.1 8.9 3.4 2.6 2.7 2.6 1.1 1.1 1.7 0.5 0.6
β21 -10.3 12.0 12.9 0.6 2.9 2.8 0.3 1.5 1.5 0.1 1.0 1.0
β22 -0.5 1.8 1.8 2.8 0.5 0.6 1.6 0.3 0.3 1.6 0.1 0.2
β23 -6.4 1.5 1.9 -3.4 0.6 0.8 -2.0 0.2 0.3 -1.4 0.1 0.1
β24 1.2 0.9 0.9 0.6 0.5 0.5 0.6 0.3 0.3 -0.2 0.1 0.1
β25 -0.6 1.3 1.3 0.7 0.5 0.5 0.6 0.2 0.2 0.4 0.1 0.1
β26 -1.7 1.1 1.1 -1.3 0.4 0.4 -1.3 0.2 0.2 -0.5 0.1 0.1
β27 0.7 1.2 1.2 0.3 0.4 0.4 0.0 0.2 0.2 -0.1 0.1 0.1
β28 0.4 1.2 1.2 -0.1 0.4 0.4 -1.1 0.2 0.2 -0.4 0.1 0.1
β29 0.4 1.0 1.0 0.6 0.5 0.5 0.2 0.2 0.2 0.0 0.1 0.1
β210 -0.4 0.9 0.9 0.9 0.3 0.3 0.3 0.2 0.2 -0.1 0.1 0.1
β211 -1.3 1.7 1.7 -0.2 0.4 0.4 -0.1 0.2 0.1 0.4 0.1 0.1
β212 -0.9 1.1 1.1 -0.4 0.3 0.3 0.0 0.2 0.1 0.0 0.1 0.1
β213 -0.7 1.2 1.2 -0.4 0.4 0.4 -0.1 0.2 0.2 -0.2 0.1 0.1
Γ21 0.5 5.7 5.6 0.1 2.1 2.1 -0.6 0.9 0.9 -0.9 0.4 0.4

Γ212 0.3 11.8 11.7 -2.7 3.9 4.0 -5.7 2.3 2.6 -3.4 0.8 0.9
Γ22 -12.5 11.3 12.7 -9.6 4.8 5.7 -8.1 2.3 2.9 -4.6 0.8 1.0

Γ213 0.8 2.9 2.9 2.4 0.9 0.9 2.6 0.4 0.4 1.7 0.2 0.2
Γ223 2.8 1.9 1.9 0.4 0.9 0.9 0.9 0.4 0.4 0.5 0.2 0.2
Γ23 2.9 0.3 0.4 5.7 0.5 0.8 6.8 0.4 0.9 6.9 0.3 0.8

Γ214 -6.8 1.6 2.0 -4.4 0.8 1.0 -2.6 0.4 0.5 -2.1 0.2 0.2
Γ224 -0.5 1.9 1.9 1.1 0.7 0.7 0.1 0.3 0.3 -0.5 0.2 0.2
Γ234 -0.1 0.2 0.2 -2.4 0.4 0.5 -2.0 0.5 0.5 -2.0 0.3 0.3
Γ24 1.4 0.2 0.2 2.1 0.2 0.2 3.0 0.2 0.3 4.5 0.3 0.5

Γ215 0.1 1.4 1.4 -0.8 0.5 0.5 -0.2 0.3 0.3 -0.5 0.1 0.1
Γ225 0.0 1.5 1.5 -0.4 0.6 0.6 0.2 0.3 0.3 -0.4 0.1 0.1
Γ235 -0.2 0.3 0.3 -0.3 0.2 0.2 -0.1 0.2 0.2 0.3 0.2 0.2
Γ245 -0.3 0.1 0.1 0.3 0.1 0.1 0.2 0.1 0.1 0.0 0.1 0.1
Γ25 0.1 0.0 0.0 0.4 < 0.1 < 0.1 0.5 < 0.1 < 0.1 1.0 < 0.1 < 0.1

Total 135.7 49.6 26.5 14.2
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Figure H–25: MSE across sample sizes, binomial outcome, no penalty, with K = 2,
p = 19, q = 5.
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Table H–45: Simulation 9 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 19, q = 5, π1 = 0.6, π2 = 0.4,
β>1 = (0.95, 0.60,−0.65,−0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15,−0.75, 0.10, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85, 1.15, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and �∗>2 = (0.70,−0.70, 0.80,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00). Small values changed
to zero, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -1.2 0.8 0.8 1.4 0.4 0.4 1.8 0.2 0.3 1.2 0.1 0.2
β10 -3.9 5.4 5.5 -2.7 2.3 2.3 -1.5 1.3 1.3 -0.9 0.7 0.7
β11 5.8 9.1 9.3 -2.2 3.4 3.5 -1.3 2.2 2.2 -0.6 1.2 1.2
β12 -0.9 1.0 1.0 -0.4 0.4 0.4 -0.6 0.2 0.2 0.2 0.1 0.1
β13 3.3 0.7 0.8 3.3 0.3 0.4 1.8 0.1 0.1 1.3 0.1 0.1
β14 -0.6 0.4 0.4 0.3 0.2 0.2 -0.2 0.1 0.1 0.1 < 0.1 < 0.1
β15 -0.2 0.6 0.6 -0.2 0.2 0.2 0.1 0.1 0.1 0.3 < 0.1 < 0.1
β16 0.8 0.7 0.7 0.4 0.2 0.2 0.2 0.1 0.1 0.3 < 0.1 < 0.1
β17 1.6 0.5 0.5 -0.1 0.3 0.2 0.3 0.1 0.1 0.2 0.1 0.1
β18 -1.1 0.7 0.7 -0.8 0.2 0.2 -0.4 0.1 0.1 -0.3 0.1 0.1
β19 0.4 0.7 0.7 -0.2 0.2 0.2 0.0 0.1 0.1 0.1 0.1 0.1
β110 -0.5 0.6 0.6 -0.7 0.2 0.2 -0.7 0.1 0.1 -0.2 < 0.1 < 0.1
β111 0.2 0.7 0.7 0.4 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.1
β112 1.8 1.0 1.0 0.7 0.2 0.2 0.0 0.1 0.1 -0.1 0.1 0.1
β113 1.1 0.7 0.7 0.8 0.2 0.2 0.8 0.1 0.1 0.5 < 0.1 < 0.1
Γ11 1.1 5.3 5.3 2.5 1.1 1.1 2.1 0.6 0.6 1.0 0.3 0.3

Γ112 -3.7 10.7 10.7 -0.9 3.9 3.9 -1.0 1.4 1.4 -0.3 0.7 0.7
Γ12 -13.7 5.3 7.1 -3.0 1.3 1.4 -1.1 0.7 0.7 0.8 0.4 0.4

Γ113 0.2 1.5 1.5 1.3 0.6 0.6 0.7 0.3 0.3 0.1 0.2 0.2
Γ123 3.7 1.4 1.5 1.6 0.5 0.5 0.8 0.2 0.2 0.3 0.1 0.1
Γ13 3.1 0.3 0.4 5.9 0.4 0.8 6.7 0.3 0.7 6.2 0.2 0.6

Γ114 -3.6 1.6 1.7 -4.8 0.5 0.7 -4.2 0.2 0.4 -2.9 0.1 0.2
Γ124 -2.2 1.1 1.1 -2.7 0.4 0.4 -1.6 0.2 0.2 -1.1 0.1 0.1
Γ134 0.2 0.2 0.2 -0.4 0.3 0.3 -0.2 0.3 0.3 0.4 0.2 0.2
Γ14 0.8 0.1 0.1 2.5 0.2 0.2 3.4 0.2 0.3 3.8 0.1 0.3

Γ115 1.6 0.9 0.9 -0.1 0.4 0.4 0.1 0.2 0.2 -0.3 0.1 0.1
Γ125 0.3 0.8 0.8 -0.8 0.3 0.3 -0.4 0.2 0.2 -0.2 0.1 0.1
Γ135 -0.3 0.2 0.2 0.0 0.2 0.2 -0.2 0.2 0.2 -0.4 0.2 0.2
Γ145 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.4 0.1 0.1
Γ15 0.3 0.0 0.0 0.3 < 0.1 < 0.1 0.8 < 0.1 < 0.1 1.6 0.1 0.1
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Table H–46: Simulation 9 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 19, q = 5, π1 = 0.6, π2 = 0.4,
β>1 = (0.95, 0.60,−0.65,−0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15,−0.75, 0.10, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85, 1.15, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and �∗>2 = (0.70,−0.70, 0.80,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00). Small values changed
to zero, part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 9.7 8.1 8.9 3.4 2.6 2.7 2.6 1.1 1.1 1.7 0.5 0.6
β21 -10.3 12.0 12.9 0.6 2.9 2.8 0.3 1.5 1.5 0.1 1.0 1.0
β22 -0.5 1.8 1.8 2.8 0.5 0.6 1.6 0.3 0.3 1.6 0.1 0.2
β23 -6.3 1.5 1.9 -3.4 0.6 0.8 -2.0 0.2 0.3 -1.4 0.1 0.1
β24 1.2 0.9 0.9 0.6 0.5 0.5 0.6 0.3 0.3 -0.2 0.1 0.1
β25 -0.6 1.3 1.3 0.7 0.5 0.5 0.6 0.2 0.2 0.4 0.1 0.1
β26 -1.7 1.1 1.1 -1.2 0.4 0.4 -1.3 0.2 0.2 -0.5 0.1 0.1
β27 0.8 1.2 1.2 0.3 0.4 0.4 0.0 0.2 0.2 -0.1 0.1 0.1
β28 0.4 1.2 1.2 -0.1 0.4 0.4 -1.0 0.2 0.2 -0.3 0.1 0.1
β29 0.4 1.0 1.0 0.6 0.5 0.5 0.2 0.2 0.2 0.0 0.1 0.1
β210 -0.4 0.9 0.9 0.9 0.3 0.3 0.3 0.2 0.2 -0.2 0.1 0.1
β211 -1.2 1.7 1.7 -0.2 0.4 0.4 -0.1 0.2 0.1 0.4 0.1 0.1
β212 -0.9 1.1 1.1 -0.3 0.3 0.3 0.0 0.2 0.1 0.0 0.1 0.1
β213 -0.7 1.2 1.1 -0.5 0.4 0.4 0.0 0.2 0.2 -0.2 0.1 0.1
Γ21 0.5 5.7 5.6 0.1 2.1 2.1 -0.6 0.9 0.9 -0.9 0.4 0.4

Γ212 0.3 11.8 11.7 -2.7 3.9 4.0 -5.7 2.3 2.6 -3.4 0.8 0.9
Γ22 -12.5 11.3 12.7 -9.6 4.8 5.7 -8.1 2.3 2.9 -4.6 0.8 1.0

Γ213 0.8 2.9 2.9 2.4 0.9 0.9 2.6 0.4 0.4 1.7 0.2 0.2
Γ223 2.8 1.9 1.9 0.4 0.9 0.9 0.9 0.4 0.4 0.5 0.2 0.2
Γ23 2.9 0.3 0.4 5.7 0.5 0.8 6.8 0.4 0.9 6.9 0.3 0.8

Γ214 -6.8 1.6 2.0 -4.4 0.8 1.0 -2.6 0.4 0.5 -2.1 0.2 0.2
Γ224 -0.5 1.9 1.9 1.1 0.7 0.7 0.1 0.3 0.3 -0.5 0.2 0.2
Γ234 -0.1 0.2 0.2 -2.4 0.4 0.5 -2.0 0.5 0.5 -2.0 0.3 0.3
Γ24 1.4 0.2 0.2 2.1 0.2 0.2 3.0 0.2 0.3 4.5 0.3 0.5

Γ215 0.1 1.4 1.4 -0.8 0.5 0.5 -0.2 0.3 0.3 -0.5 0.1 0.1
Γ225 0.0 1.5 1.5 -0.4 0.6 0.6 0.2 0.3 0.3 -0.4 0.1 0.1
Γ235 -0.2 0.3 0.3 -0.3 0.2 0.2 -0.1 0.2 0.2 0.3 0.2 0.2
Γ245 -0.3 0.1 0.1 0.3 0.1 0.1 0.2 0.1 0.1 0.0 0.1 0.1
Γ25 0.1 0.0 0.0 0.4 < 0.1 < 0.1 0.5 < 0.1 < 0.1 1.0 < 0.1 < 0.1

Total 135.7 49.5 26.5 14.1
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Figure H–26: MSE across sample sizes, binomial outcome, small values changed to
zero, with K = 2, p = 19, q = 5.
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Table H–47: Simulation 9 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 4, q = 2, π1 = 0.6, π2 = 0.4,
β>1 = (0.95, 0.60,−0.65,−0.25), β>2 = (−0.85,−0.15,−0.75, 0.10), �∗>1 = (0.95, 0.85,
1.15), and �∗>2 = (0.70,−0.70, 0.80). Oracle model.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -3.1 0.8 0.9 -3.1 0.4 0.5 -2.8 0.2 0.3 -3.2 0.1 0.2
β10 1.7 5.0 5.0 6.5 1.9 2.3 6.9 1.0 1.5 7.2 0.6 1.1
β11 8.6 9.2 9.9 8.7 3.9 4.6 9.3 2.5 3.4 10.2 1.3 2.3
β12 0.8 0.8 0.8 1.6 0.4 0.4 0.7 0.1 0.2 1.1 0.1 0.1
β13 -0.4 0.6 0.5 -0.2 0.2 0.2 -1.0 0.1 0.1 -0.9 0.1 0.1
Γ11 -4.1 3.8 3.9 -4.3 1.0 1.2 -3.6 0.6 0.7 -4.3 0.3 0.4

Γ112 -10.8 11.0 12.0 -10.6 4.7 5.8 -9.4 1.9 2.8 -8.5 0.9 1.6
Γ12 -11.2 5.5 6.7 -5.9 1.1 1.5 -4.0 0.7 0.8 -2.9 0.4 0.5
β20 8.6 4.9 5.6 8.2 1.4 2.0 8.8 0.8 1.6 7.6 0.4 0.9
β21 -7.1 7.7 8.1 -6.5 2.9 3.3 -7.2 1.5 2.0 -7.8 0.8 1.4
β22 0.8 1.3 1.3 2.4 0.5 0.5 1.6 0.2 0.2 1.9 0.1 0.1
β23 -1.0 1.3 1.3 -1.2 0.4 0.4 -0.8 0.2 0.2 -1.0 0.1 0.1
Γ21 -0.7 2.7 2.6 0.3 1.1 1.1 0.3 0.6 0.6 0.5 0.3 0.3

Γ212 -1.3 8.9 8.8 -1.1 3.8 3.7 -2.5 1.7 1.8 -1.7 0.7 0.8
Γ22 -7.3 9.9 10.3 0.5 3.8 3.7 1.8 1.5 1.5 4.4 0.6 0.8

Total 77.7 31.3 17.7 10.7
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Figure H–27: MSE across sample sizes, binomial outcome, oracle model, with K = 2,
p = 19, q = 5.
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Table H–48: Simulation 10 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 7, q = 2, π1 = 0.5, π2 = 0.3,
π3 = 0.2, β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00,
0.00, 0.00, 0.00), β>3 = (−0.30,−0.90, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85,
1.15), �∗>2 = (0.70,−0.70, 0.80), and �∗>3 = (1.75, 0.00, 0.85). No penalty, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -21.7 0.9 5.6 -24.2 0.4 6.2 -24.8 0.3 6.5 -23.7 0.2 5.8
π2 5.2 1.7 1.9 7.6 1.2 1.8 10.3 0.9 1.9 8.1 0.7 1.3
β10 37.5 15.5 29.4 38.0 4.6 19.0 43.6 3.8 22.7 41.1 2.5 19.4
β11 49.1 32.8 56.6 59.4 12.4 47.7 64.3 10.2 51.4 60.6 6.2 42.9
β12 1.8 3.9 3.9 1.9 1.1 1.2 -0.3 0.6 0.6 0.3 0.2 0.2
β13 0.0 3.5 3.5 0.7 0.9 0.9 -0.6 0.5 0.5 -0.2 0.2 0.2
β14 -2.7 2.9 2.9 -1.2 0.8 0.8 -0.1 0.4 0.4 0.8 0.2 0.2
β15 2.3 2.4 2.4 1.0 1.0 1.0 1.0 0.4 0.4 0.4 0.2 0.2
β16 1.3 2.3 2.3 0.4 0.8 0.8 -1.0 0.4 0.4 -0.4 0.2 0.2
Γ11 -23.3 15.6 20.9 -20.3 6.8 10.9 -21.5 4.6 9.2 -20.7 2.7 6.9

Γ112 -13.5 38.4 39.9 -11.0 33.7 34.5 -5.4 19.7 19.8 -7.1 7.3 7.7
Γ12 -39.0 21.9 37.0 -25.9 11.4 18.0 -20.9 4.8 9.2 -15.9 1.3 3.8
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Table H–49: Simulation 10 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 7, q = 2, π1 = 0.5, π2 = 0.3,
π3 = 0.2, β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00,
0.00, 0.00, 0.00), β>3 = (−0.30,−0.90, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85,
1.15), �∗>2 = (0.70,−0.70, 0.80), and �∗>3 = (1.75, 0.00, 0.85). No penalty, part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 26.9 15.0 22.1 31.1 8.0 17.6 31.0 3.9 13.5 30.1 2.3 11.3
β21 2.2 28.3 28.1 -2.0 9.1 9.1 -14.6 5.7 7.8 -15.8 4.6 7.0
β22 0.0 3.0 2.9 0.0 1.0 1.0 -0.4 0.3 0.3 -0.2 0.2 0.2
β23 1.2 2.8 2.8 -0.9 1.0 1.0 -1.8 0.3 0.3 -0.9 0.2 0.2
β24 -2.4 2.8 2.8 0.6 0.8 0.8 1.2 0.4 0.4 0.2 0.2 0.2
β25 2.7 2.6 2.6 0.4 1.0 1.0 -0.6 0.4 0.4 -0.1 0.2 0.2
β26 -0.5 1.9 1.9 -0.6 1.0 1.0 0.4 0.3 0.3 0.7 0.2 0.2
Γ21 19.0 13.3 16.8 24.9 8.2 14.4 22.6 5.4 10.5 21.3 4.3 8.8

Γ212 32.9 28.6 39.2 26.8 15.4 22.5 30.6 8.0 17.3 28.0 6.0 13.8
Γ22 -20.2 14.1 18.0 -3.7 6.4 6.5 8.6 2.2 2.9 11.3 1.4 2.7
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Table H–50: Simulation 10 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 7, q = 2, π1 = 0.5, π2 = 0.3,
π3 = 0.2, β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00,
0.00, 0.00, 0.00), β>3 = (−0.30,−0.90, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85,
1.15), �∗>2 = (0.70,−0.70, 0.80), and �∗>3 = (1.75, 0.00, 0.85). No penalty, part 3.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β30 22.0 21.1 25.7 28.2 8.5 16.3 33.3 6.8 17.8 26.1 3.5 10.3
β31 41.1 33.2 49.8 49.6 21.0 45.4 61.9 10.9 49.0 59.3 7.2 42.3
β32 0.8 3.4 3.4 0.5 1.5 1.5 -0.1 0.6 0.6 -0.6 0.4 0.4
β33 -2.0 3.3 3.3 0.5 1.6 1.6 2.4 0.9 0.9 0.7 0.4 0.4
β34 4.0 4.1 4.3 1.8 1.9 2.0 -0.8 1.2 1.1 -0.2 0.5 0.5
β35 -4.1 2.8 2.9 -1.9 1.0 1.0 -0.3 0.9 0.9 -0.7 0.5 0.5
β36 0.7 2.2 2.2 -0.2 1.4 1.4 -0.7 0.8 0.8 -0.9 0.4 0.5
Γ31 -34.0 24.4 35.7 -28.7 20.9 28.9 -25.6 10.0 16.4 -28.1 4.9 12.8

Γ312 19.0 37.8 41.1 25.4 14.7 21.0 20.0 9.1 13.1 14.3 4.1 6.1
Γ32 -0.2 23.0 22.8 24.0 18.0 23.6 30.3 6.9 16.0 29.4 3.0 11.6

Total 534.7 360.3 293.3 218.9
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Figure H–28: MSE across sample sizes, binomial outcome, no penalty, with K = 3,
p = 7, q = 2.
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Table H–51: Simulation 10 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 7, q = 2, π1 = 0.5, π2 = 0.3,
π3 = 0.2, β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00,
0.00, 0.00, 0.00), β>3 = (−0.30,−0.90, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85,
1.15), �∗>2 = (0.70,−0.70, 0.80), and �∗>3 = (1.75, 0.00, 0.85). Small values changed to
zero, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -21.7 0.9 5.6 -24.2 0.4 6.2 -24.8 0.3 6.5 -23.7 0.2 5.8
π2 5.2 1.7 1.9 7.6 1.2 1.8 10.3 0.9 1.9 8.1 0.7 1.3
β10 37.5 15.5 29.4 38.0 4.6 19.0 43.6 3.8 22.7 41.1 2.5 19.4
β11 49.1 32.8 56.6 59.4 12.4 47.7 64.3 10.2 51.4 60.6 6.2 42.9
β12 1.8 3.9 3.9 1.9 1.1 1.2 -0.2 0.6 0.6 0.4 0.2 0.2
β13 0.0 3.5 3.5 0.7 0.9 0.9 -0.6 0.5 0.5 -0.3 0.2 0.2
β14 -2.7 2.9 2.9 -1.2 0.8 0.8 -0.1 0.4 0.4 0.8 0.2 0.2
β15 2.3 2.4 2.4 1.0 1.0 1.0 1.0 0.4 0.4 0.4 0.2 0.2
β16 1.3 2.3 2.3 0.5 0.8 0.8 -1.0 0.4 0.4 -0.5 0.2 0.2
Γ11 -23.3 15.6 20.9 -20.3 6.8 10.9 -21.5 4.6 9.2 -20.7 2.7 6.9

Γ112 -13.5 38.4 39.9 -11.0 33.7 34.5 -5.4 19.7 19.8 -7.1 7.3 7.7
Γ12 -39.0 21.9 37.0 -25.9 11.4 18.0 -20.9 4.8 9.2 -15.9 1.3 3.8

286



Table H–52: Simulation 10 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 7, q = 2, π1 = 0.5, π2 = 0.3,
π3 = 0.2, β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00,
0.00, 0.00, 0.00), β>3 = (−0.30,−0.90, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85,
1.15), �∗>2 = (0.70,−0.70, 0.80), and �∗>3 = (1.75, 0.00, 0.85). Small values changed to
zero, part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 26.9 15.0 22.1 31.1 8.0 17.6 31.0 3.9 13.5 30.1 2.3 11.3
β21 2.2 28.3 28.1 -2.0 9.1 9.1 -14.6 5.7 7.8 -15.8 4.6 7.0
β22 0.0 3.0 2.9 -0.1 1.0 1.0 -0.4 0.3 0.3 -0.2 0.2 0.2
β23 1.2 2.8 2.8 -0.9 1.0 1.0 -1.7 0.3 0.3 -0.9 0.2 0.2
β24 -2.4 2.8 2.8 0.6 0.8 0.8 1.2 0.4 0.4 0.3 0.2 0.2
β25 2.7 2.6 2.6 0.3 1.0 1.0 -0.6 0.4 0.4 -0.1 0.2 0.2
β26 -0.6 1.9 1.9 -0.6 1.0 1.0 0.4 0.3 0.3 0.6 0.2 0.2
Γ21 19.0 13.3 16.8 24.9 8.2 14.4 22.6 5.4 10.5 21.3 4.3 8.8

Γ212 32.9 28.6 39.2 26.8 15.4 22.5 30.6 8.0 17.3 28.0 6.0 13.8
Γ22 -20.2 14.1 18.0 -3.7 6.4 6.5 8.6 2.2 2.9 11.3 1.4 2.7
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Table H–53: Simulation 10 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 7, q = 2, π1 = 0.5, π2 = 0.3,
π3 = 0.2, β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00,
0.00, 0.00, 0.00), β>3 = (−0.30,−0.90, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85,
1.15), �∗>2 = (0.70,−0.70, 0.80), and �∗>3 = (1.75, 0.00, 0.85). Small values changed to
zero, part 3.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β30 22.0 21.1 25.7 28.2 8.5 16.3 33.3 6.8 17.8 26.1 3.5 10.3
β31 41.1 33.2 49.8 49.6 21.0 45.4 61.9 10.9 49.0 59.3 7.2 42.3
β32 0.8 3.4 3.4 0.5 1.5 1.5 -0.1 0.6 0.6 -0.6 0.4 0.4
β33 -2.0 3.3 3.3 0.5 1.6 1.6 2.4 0.9 0.9 0.7 0.4 0.4
β34 4.0 4.1 4.3 1.8 1.9 2.0 -0.7 1.2 1.1 -0.2 0.5 0.5
β35 -4.0 2.8 2.9 -1.9 1.0 1.0 -0.3 0.9 0.9 -0.7 0.5 0.5
β36 0.7 2.2 2.2 -0.1 1.4 1.4 -0.7 0.8 0.8 -0.9 0.4 0.4
Γ31 -34.0 24.4 35.7 -28.7 20.9 28.9 -25.6 10.0 16.4 -28.1 4.9 12.8

Γ312 19.0 37.8 41.1 25.4 14.7 21.0 20.0 9.1 13.1 14.3 4.1 6.1
Γ32 -0.2 23.0 22.8 24.0 18.0 23.6 30.3 6.9 16.0 29.4 3.0 11.6

Total 534.7 360.3 293.3 218.9
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Figure H–29: MSE across sample sizes, binomial outcome, small values changed to
zero, with K = 3, p = 7, q = 2.
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Table H–54: Simulation 10 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 2, q = 2, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.95, 0.60), β>2 = (−0.85,−0.15), β>3 = (−0.30,−0.90), �∗>1 = (0.95, 0.85,
1.15), �∗>2 = (0.70,−0.70, 0.80), and �∗>3 = (1.75, 0.00, 0.85). Oracle model.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -21.9 0.6 5.4 -22.6 0.4 5.5 -22.7 0.3 5.5 -22.1 0.2 5.1
π2 7.2 1.0 1.5 9.0 0.9 1.7 10.5 0.7 1.8 10.0 0.4 1.4
β10 43.0 10.9 29.2 37.0 3.3 17.0 42.6 2.2 20.4 40.5 1.8 18.1
β11 59.2 22.0 56.8 59.4 8.7 43.9 60.5 7.2 43.8 57.0 5.9 38.3
Γ11 -16.7 22.8 25.4 -21.3 5.7 10.2 -21.9 2.7 7.5 -21.2 2.0 6.5

Γ112 -12.7 31.9 33.2 -15.7 21.2 23.4 -9.9 9.2 10.1 -11.9 5.7 7.1
Γ12 -24.8 22.4 28.3 -18.6 7.8 11.1 -15.3 2.5 4.8 -13.2 1.4 3.2
β20 23.9 8.1 13.7 30.7 5.4 14.8 29.0 3.1 11.5 28.1 2.4 10.3
β21 -9.7 13.1 14.0 -9.0 5.6 6.3 -14.8 3.9 6.0 -14.4 2.7 4.7
Γ21 16.0 10.1 12.5 20.8 6.7 11.0 19.8 4.8 8.6 19.7 2.7 6.6

Γ212 27.7 19.5 27.0 29.7 12.8 21.5 28.8 5.6 13.9 30.3 4.3 13.4
Γ22 -9.2 15.4 16.1 4.3 4.0 4.1 10.5 1.8 2.8 12.4 1.2 2.7
β30 24.8 14.0 20.0 24.8 7.4 13.5 26.5 5.5 12.5 24.9 5.4 11.5
β31 43.9 20.7 39.8 46.6 7.8 29.5 54.1 8.7 37.8 50.6 5.4 31.0
Γ31 -33.6 16.4 27.6 -25.1 12.4 18.6 -22.9 10.1 15.2 -28.2 5.8 13.6

Γ312 11.7 25.0 26.2 17.0 13.3 16.0 15.1 8.1 10.3 15.3 4.7 7.0
Γ32 7.0 17.2 17.5 24.9 11.3 17.4 29.6 6.8 15.5 31.3 3.7 13.5

Total 394.3 265.4 228.0 193.9

290



0

5

10

15

20

n=100 n=250 n=500 n=1000
Sample Size

M
SE

MSE Across Sample Sizes, Binomial Scenario 4

Figure H–30: MSE across sample sizes, binomial outcome, oracle model, with K = 3,
p = 7, q = 2.
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Table H–55: Simulation 11 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 17, q = 2, π1 = 0.5, π2 = 0.3, π3 =
0.2, β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (−0.30,−0.90, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85, 1.15), �∗>2 = (0.70,
−0.70, 0.80), and �∗>3 = (1.75, 0.00, 0.85). No penalty, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -15.4 1.4 3.8 -14.3 0.8 2.9 -13.2 0.5 2.2 -13.5 0.3 2.1
π2 -1.3 1.4 1.4 -2.4 0.9 0.9 -2.3 0.6 0.6 -3.3 0.5 0.6
β10 19.3 16.1 19.6 13.0 4.8 6.5 14.3 3.2 5.2 16.7 2.7 5.4
β11 34.5 38.7 50.2 18.8 13.6 17.0 19.2 5.8 9.4 24.3 5.7 11.6
β12 1.0 3.3 3.2 0.4 0.8 0.8 -0.2 0.3 0.3 -0.2 0.2 0.2
β13 0.9 2.7 2.7 1.1 0.8 0.8 -0.5 0.4 0.4 -0.1 0.2 0.2
β14 1.9 2.8 2.8 -0.3 0.7 0.7 -0.2 0.3 0.3 0.0 0.1 0.1
β15 -1.8 2.4 2.4 -0.3 0.7 0.7 -0.8 0.3 0.3 -0.7 0.2 0.2
β16 -3.1 2.6 2.7 -0.5 0.6 0.6 0.0 0.3 0.3 0.4 0.1 0.1
β17 0.5 2.4 2.4 0.3 0.7 0.7 -0.7 0.3 0.3 -0.3 0.1 0.1
β18 0.1 2.3 2.2 1.8 0.7 0.7 0.8 0.3 0.3 0.4 0.1 0.1
β19 0.3 1.7 1.6 1.6 0.5 0.6 0.7 0.3 0.3 0.0 0.1 0.1
β110 -1.7 2.5 2.5 -1.4 0.8 0.8 -0.1 0.4 0.4 -0.3 0.1 0.1
β111 0.2 2.7 2.7 -1.7 0.6 0.7 -0.1 0.3 0.3 -0.1 0.2 0.2
Γ11 -5.5 17.8 17.9 0.4 6.9 6.9 -1.0 2.5 2.5 -4.2 1.3 1.5

Γ112 0.0 50.2 49.7 15.8 15.0 17.3 18.7 6.0 9.4 8.0 6.7 7.2
Γ12 -38.2 23.8 38.1 -8.8 8.2 8.9 -7.8 2.5 3.1 -5.6 1.2 1.5
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Table H–56: Simulation 11 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 17, q = 2, π1 = 0.5, π2 = 0.3, π3 =
0.2, β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (−0.30,−0.90, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85, 1.15), �∗>2 = (0.70,
−0.70, 0.80), and �∗>3 = (1.75, 0.00, 0.85). No penalty, part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 15.7 16.4 18.8 15.7 9.7 12.1 14.9 4.3 6.4 15.2 2.3 4.6
β21 -10.6 23.9 24.8 -13.1 13.2 14.8 -16.3 5.7 8.3 -17.3 3.6 6.5
β22 0.1 3.5 3.5 -0.4 1.7 1.7 -0.4 0.8 0.7 -0.8 0.4 0.4
β23 -0.1 4.7 4.6 1.0 1.3 1.3 -0.7 0.4 0.4 -0.6 0.3 0.3
β24 0.4 3.6 3.5 -0.7 1.4 1.4 -0.4 0.6 0.6 -0.3 0.3 0.3
β25 -0.6 4.0 4.0 2.0 1.1 1.1 -0.3 0.5 0.5 -0.8 0.2 0.2
β26 -0.1 4.8 4.7 -0.2 1.4 1.3 0.1 0.4 0.4 1.1 0.3 0.3
β27 -1.5 2.0 2.0 0.9 1.5 1.5 0.3 0.4 0.4 -0.4 0.4 0.4
β28 -0.7 4.3 4.2 2.1 1.1 1.1 1.2 0.5 0.5 0.8 0.3 0.3
β29 -1.2 3.3 3.3 -0.3 1.2 1.2 -0.5 0.4 0.4 -0.1 0.3 0.3
β210 3.4 3.1 3.2 1.0 1.6 1.6 1.0 0.4 0.4 0.3 0.2 0.2
β211 1.3 2.8 2.8 0.2 1.1 1.1 1.1 0.5 0.5 0.0 0.3 0.3
Γ21 2.6 18.4 18.2 9.1 8.3 9.0 4.3 3.7 3.9 2.5 2.0 2.1

Γ212 19.3 36.6 40.0 12.5 17.7 19.1 3.5 9.2 9.2 2.2 5.2 5.2
Γ22 -34.0 20.2 31.6 -27.6 11.6 19.1 -18.4 5.7 9.1 -9.1 2.8 3.6
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Table H–57: Simulation 11 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 17, q = 2, π1 = 0.5, π2 = 0.3, π3 =
0.2, β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (−0.30,−0.90, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85, 1.15), �∗>2 = (0.70,
−0.70, 0.80), and �∗>3 = (1.75, 0.00, 0.85). No penalty, part 3.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β30 20.0 27.7 31.5 17.0 17.8 20.6 18.1 7.7 10.9 15.4 3.9 6.3
β31 44.1 21.3 40.5 57.3 16.0 48.7 58.6 7.2 41.4 55.4 4.4 35.0
β32 -0.2 3.3 3.3 -0.5 1.3 1.3 0.6 1.0 1.0 0.9 0.4 0.4
β33 -0.2 2.8 2.7 -0.5 1.4 1.4 1.8 0.9 1.0 0.8 0.4 0.4
β34 1.7 2.2 2.2 1.2 1.0 1.0 0.9 0.9 0.9 0.0 0.4 0.4
β35 1.0 3.1 3.1 -2.2 1.2 1.2 -0.8 0.8 0.8 0.6 0.4 0.4
β36 0.6 2.4 2.4 1.0 1.3 1.3 0.5 0.6 0.6 -1.3 0.4 0.4
β37 4.0 3.1 3.2 0.0 1.1 1.1 0.4 0.7 0.7 -0.2 0.4 0.4
β38 1.3 2.9 2.9 -1.0 1.3 1.3 -0.7 0.6 0.6 -1.2 0.3 0.3
β39 0.9 2.9 2.9 -0.2 1.1 1.1 0.7 0.8 0.8 0.2 0.2 0.2
β310 0.5 4.0 3.9 0.5 1.1 1.1 -0.8 0.6 0.6 -0.4 0.4 0.4
β311 -1.6 3.0 3.0 -0.3 1.0 1.0 -1.0 0.7 0.7 -0.9 0.4 0.4
Γ31 -39.0 39.6 54.4 -29.9 17.0 25.8 -22.3 7.6 12.5 -23.0 3.0 8.2

Γ312 15.8 35.1 37.2 9.1 14.3 15.0 5.6 6.4 6.6 3.8 2.6 2.7
Γ32 -10.6 28.2 29.1 9.3 14.6 15.4 23.3 8.4 13.7 24.6 3.0 9.1

Total 597.4 292.2 170.4 121.5
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Figure H–31: MSE across sample sizes, binomial outcome, no penalty, with K = 3,
p = 17, q = 2.
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Table H–58: Simulation 11 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 17, q = 2, π1 = 0.5, π2 = 0.3, π3 =
0.2, β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (−0.30,−0.90, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85, 1.15), �∗>2 = (0.70,
−0.70, 0.80), and �∗>3 = (1.75, 0.00, 0.85). Small values changed to zero, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -15.4 1.4 3.8 -14.3 0.8 2.9 -13.2 0.5 2.2 -13.5 0.3 2.1
π2 -1.3 1.4 1.4 -2.4 0.9 0.9 -2.3 0.6 0.6 -3.3 0.5 0.6
β10 19.3 16.1 19.6 13.0 4.8 6.5 14.3 3.2 5.2 16.7 2.7 5.4
β11 34.5 38.7 50.2 18.8 13.6 17.0 19.2 5.8 9.4 24.3 5.7 11.6
β12 1.1 3.3 3.2 0.4 0.8 0.8 -0.2 0.3 0.3 -0.3 0.2 0.2
β13 0.9 2.7 2.7 1.1 0.8 0.8 -0.5 0.4 0.4 -0.1 0.2 0.2
β14 1.9 2.8 2.8 -0.3 0.7 0.7 -0.2 0.3 0.3 0.1 0.1 0.1
β15 -1.8 2.4 2.4 -0.3 0.7 0.7 -0.8 0.3 0.3 -0.8 0.2 0.2
β16 -3.1 2.6 2.7 -0.5 0.6 0.6 0.0 0.3 0.3 0.4 0.1 0.1
β17 0.5 2.4 2.4 0.3 0.7 0.7 -0.7 0.3 0.3 -0.3 0.1 0.1
β18 0.1 2.3 2.2 1.8 0.7 0.7 0.8 0.3 0.3 0.3 0.1 0.1
β19 0.3 1.7 1.6 1.6 0.5 0.6 0.7 0.3 0.3 0.0 0.1 0.1
β110 -1.7 2.5 2.5 -1.4 0.8 0.8 -0.1 0.4 0.4 -0.3 0.1 0.1
β111 0.2 2.7 2.7 -1.7 0.6 0.7 -0.1 0.3 0.3 -0.1 0.2 0.2
Γ11 -5.5 17.8 17.9 0.4 6.9 6.9 -1.0 2.5 2.5 -4.2 1.3 1.5

Γ112 0.0 50.2 49.7 15.8 15.0 17.3 18.7 6.0 9.4 8.0 6.7 7.2
Γ12 -38.2 23.8 38.1 -8.8 8.2 8.9 -7.8 2.5 3.1 -5.6 1.2 1.5
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Table H–59: Simulation 11 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 17, q = 2, π1 = 0.5, π2 = 0.3, π3 =
0.2, β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (−0.30,−0.90, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85, 1.15), �∗>2 = (0.70,
−0.70, 0.80), and �∗>3 = (1.75, 0.00, 0.85). Small values changed to zero, part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 15.7 16.4 18.8 15.7 9.7 12.1 14.9 4.3 6.4 15.2 2.3 4.6
β21 -10.6 23.9 24.8 -13.1 13.2 14.8 -16.3 5.7 8.3 -17.3 3.6 6.5
β22 0.1 3.5 3.5 -0.4 1.7 1.7 -0.3 0.7 0.7 -0.8 0.4 0.4
β23 -0.1 4.7 4.6 1.0 1.3 1.3 -0.7 0.4 0.4 -0.6 0.3 0.3
β24 0.4 3.6 3.5 -0.7 1.4 1.4 -0.4 0.6 0.6 -0.3 0.3 0.3
β25 -0.6 4.0 4.0 2.0 1.1 1.1 -0.2 0.5 0.5 -0.8 0.2 0.2
β26 -0.1 4.8 4.7 -0.3 1.4 1.3 0.0 0.4 0.4 1.1 0.3 0.3
β27 -1.5 2.0 2.0 0.9 1.5 1.5 0.3 0.4 0.4 -0.4 0.4 0.4
β28 -0.7 4.3 4.2 2.0 1.1 1.1 1.2 0.5 0.5 0.8 0.3 0.3
β29 -1.2 3.3 3.3 -0.3 1.2 1.2 -0.5 0.4 0.4 -0.1 0.3 0.3
β210 3.4 3.1 3.2 1.0 1.6 1.6 1.0 0.4 0.4 0.3 0.2 0.2
β211 1.3 2.8 2.8 0.2 1.1 1.1 1.1 0.5 0.5 0.0 0.3 0.3
Γ21 2.6 18.4 18.2 9.1 8.3 9.0 4.3 3.7 3.9 2.5 2.0 2.1

Γ212 19.3 36.6 40.0 12.5 17.7 19.1 3.5 9.2 9.2 2.2 5.2 5.2
Γ22 -34.0 20.2 31.6 -27.6 11.6 19.1 -18.4 5.7 9.1 -9.1 2.8 3.6
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Table H–60: Simulation 11 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 17, q = 2, π1 = 0.5, π2 = 0.3, π3 =
0.2, β>1 = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00), β>2 = (−0.85,−0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (−0.30,−0.90, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 = (0.95, 0.85, 1.15), �∗>2 = (0.70,
−0.70, 0.80), and �∗>3 = (1.75, 0.00, 0.85). Small values changed to zero, part 3.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β30 20.0 27.7 31.5 17.0 17.8 20.6 18.1 7.7 10.9 15.4 3.9 6.3
β31 44.1 21.2 40.5 57.3 16.0 48.7 58.6 7.2 41.4 55.4 4.4 35.0
β32 -0.2 3.3 3.3 -0.5 1.3 1.3 0.6 1.0 1.0 0.9 0.4 0.4
β33 -0.2 2.8 2.7 -0.6 1.4 1.4 1.7 0.9 1.0 0.9 0.4 0.4
β34 1.7 2.2 2.2 1.1 1.0 1.0 0.8 0.9 0.9 0.0 0.4 0.4
β35 1.0 3.1 3.1 -2.2 1.2 1.2 -0.8 0.8 0.8 0.6 0.4 0.4
β36 0.6 2.4 2.4 1.0 1.3 1.3 0.4 0.6 0.6 -1.3 0.4 0.4
β37 4.0 3.1 3.2 0.0 1.1 1.1 0.4 0.7 0.7 -0.2 0.4 0.4
β38 1.3 2.9 2.9 -1.0 1.3 1.3 -0.7 0.6 0.6 -1.3 0.3 0.3
β39 0.9 2.9 2.9 -0.2 1.1 1.1 0.7 0.8 0.8 0.2 0.2 0.2
β310 0.5 4.0 3.9 0.5 1.1 1.1 -0.8 0.6 0.6 -0.4 0.4 0.4
β311 -1.6 3.0 3.0 -0.3 1.0 1.0 -0.9 0.7 0.7 -0.9 0.4 0.4
Γ31 -39.0 39.6 54.4 -29.9 17.0 25.8 -22.3 7.6 12.5 -23.0 3.0 8.2

Γ312 15.8 35.1 37.2 9.1 14.3 15.0 5.6 6.4 6.6 3.8 2.6 2.7
Γ32 -10.6 28.2 29.1 9.3 14.6 15.4 23.3 8.4 13.7 24.6 3.0 9.1

Total 597.4 292.2 170.4 121.4
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Figure H–32: MSE across sample sizes, binomial outcome, small values changed to
zero, with K = 3, p = 17, q = 2.
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Table H–61: Simulation 11 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 2, q = 2, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.95, 0.60), β>2 = (−0.85,−0.15), β>3 = (−0.30,−0.90), �∗>1 = (0.95, 0.85,
1.15), �∗>2 = (0.70,−0.70, 0.80), and �∗>3 = (1.75, 0.00, 0.85). Oracle model.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -12.7 0.8 2.4 -12.8 0.5 2.1 -11.9 0.3 1.7 -12.4 0.3 1.8
π2 1.2 0.7 0.7 0.2 0.5 0.5 -1.3 0.4 0.4 0.7 0.4 0.4
β10 14.2 7.8 9.7 13.9 3.6 5.5 15.1 2.3 4.6 18.4 2.2 5.5
β11 26.1 15.2 21.8 23.0 8.1 13.3 20.6 5.1 9.3 24.2 3.9 9.7
Γ11 -5.0 7.5 7.7 -4.9 3.5 3.7 -2.7 2.0 2.0 -5.9 1.5 1.9

Γ112 5.5 26.2 26.2 8.3 9.6 10.2 11.4 5.6 6.9 3.3 4.3 4.3
Γ12 -23.3 12.8 18.1 -7.3 4.5 5.0 -5.3 2.2 2.5 -3.4 0.9 1.0
β20 15.1 11.0 13.1 15.1 5.1 7.3 13.9 2.6 4.4 17.4 1.7 4.7
β21 -11.5 12.4 13.6 -18.0 7.8 10.9 -17.0 4.6 7.5 -20.1 2.1 6.1
Γ21 7.5 12.6 13.1 4.8 3.9 4.0 4.3 2.1 2.2 4.2 0.9 1.1

Γ212 6.5 23.1 23.3 5.7 10.9 11.1 0.0 8.1 8.0 5.1 4.8 5.1
Γ22 -25.9 15.0 21.6 -15.3 6.7 9.0 -11.8 3.2 4.5 -4.1 1.5 1.6
β30 22.1 25.9 30.5 18.2 14.0 17.1 14.7 5.7 7.8 13.2 3.2 4.9
β31 32.6 20.0 30.5 48.9 8.1 31.9 54.5 4.7 34.4 52.0 3.2 30.2
Γ31 -26.3 36.4 43.0 -20.1 24.0 27.9 -19.7 5.3 9.1 -16.9 3.0 5.8

Γ312 3.1 39.5 39.2 9.7 13.9 14.7 4.5 4.2 4.4 3.7 2.4 2.5
Γ32 6.8 30.9 31.1 17.9 11.1 14.2 24.8 6.5 12.6 26.0 4.4 11.1

Total 345.7 188.5 122.4 97.8
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Figure H–33: MSE across sample sizes, binomial outcome, oracle model, with K = 3,
p = 17, q = 2.
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Table H–62: Simulation 12 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 19, q = 5, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.95, 0.60,−0.65,−0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15,−0.75, 0.10, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (−0.30,−0.90, 0.80,−0.25,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 =
(0.95, 0.85, 1.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>2 =
(0.70,−0.70, 0.80, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and
�∗>3 = (1.75, 0.00, 0.85, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). No penalty, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -8.1 0.9 1.5 -6.4 0.5 0.9 -5.7 0.3 0.6 -5.0 0.2 0.4
π2 2.5 0.7 0.7 3.3 0.4 0.5 4.3 0.2 0.4 4.5 0.1 0.3
β10 16.6 14.6 17.2 18.1 3.6 6.8 17.5 2.2 5.2 14.4 1.4 3.5
β11 18.7 23.7 27.0 14.9 7.3 9.5 13.7 3.9 5.7 10.2 2.3 3.3
β12 -3.5 3.6 3.6 -3.2 0.9 1.0 -1.4 0.4 0.4 -1.3 0.1 0.2
β13 0.8 1.5 1.5 0.6 0.4 0.4 1.3 0.2 0.2 0.7 0.1 0.1
β14 -0.7 1.3 1.3 -0.8 0.5 0.5 0.1 0.2 0.2 -0.1 0.1 0.1
β15 -0.4 1.6 1.6 0.2 0.4 0.4 0.4 0.1 0.1 0.3 0.1 0.1
β16 -0.3 1.6 1.6 0.0 0.5 0.4 -0.2 0.1 0.1 -0.3 0.1 0.1
β17 -0.8 1.7 1.7 0.0 0.4 0.4 -0.1 0.2 0.2 0.0 0.1 0.1
β18 -3.0 1.9 2.0 -0.4 0.3 0.3 -0.5 0.2 0.2 -0.4 0.1 0.1
β19 0.8 1.8 1.8 0.1 0.3 0.3 0.3 0.1 0.1 -0.1 0.1 0.1
β110 -0.5 1.4 1.4 -0.5 0.4 0.3 -0.2 0.2 0.2 0.0 0.1 0.1
β111 1.1 1.3 1.3 0.0 0.3 0.3 0.3 0.1 0.1 -0.3 0.1 0.1
β112 0.2 1.5 1.5 -0.8 0.3 0.3 -0.1 0.2 0.2 0.1 0.1 0.1
β113 1.0 1.8 1.8 0.6 0.4 0.4 0.2 0.2 0.1 -0.1 0.1 0.1
Γ11 -10.0 12.5 13.4 -15.0 2.8 5.1 -13.5 1.2 3.0 -12.3 0.6 2.1

Γ112 -16.4 26.6 29.1 -9.5 7.3 8.2 -11.7 5.2 6.5 -7.4 2.2 2.8
Γ12 -23.0 15.3 20.4 -9.2 2.9 3.7 -1.9 1.3 1.3 1.3 0.8 0.8

Γ113 -1.4 4.0 4.0 0.4 1.0 1.0 0.9 0.5 0.5 0.1 0.2 0.2
Γ123 3.0 2.9 3.0 -0.4 1.6 1.6 -0.9 0.4 0.4 -0.5 0.1 0.1
Γ13 4.3 1.0 1.1 4.5 0.6 0.8 4.4 0.4 0.6 3.6 0.2 0.3

Γ114 -7.3 2.1 2.6 -3.8 0.8 0.9 -2.4 0.4 0.5 -1.2 0.2 0.2
Γ124 2.3 2.0 2.0 0.0 0.6 0.6 -0.8 0.3 0.3 -0.7 0.1 0.1
Γ134 -0.5 0.3 0.3 0.3 0.3 0.3 -1.1 0.3 0.3 -0.7 0.2 0.2
Γ14 0.3 0.0 0.0 1.6 0.2 0.2 2.5 0.2 0.2 3.7 0.2 0.4

Γ115 0.0 1.6 1.6 -0.1 0.5 0.5 0.0 0.3 0.3 0.2 0.1 0.1
Γ125 0.7 2.1 2.1 -0.9 0.5 0.5 -0.6 0.3 0.3 -0.1 0.1 0.1
Γ135 0.0 0.4 0.4 -0.3 0.2 0.2 -0.5 0.3 0.3 0.5 0.2 0.2
Γ145 -0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 -0.5 0.1 0.1
Γ15 0.0 0.0 0.0 0.5 0.1 0.1 0.7 0.1 0.1 1.3 0.1 0.1
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Table H–63: Simulation 12 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 19, q = 5, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.95, 0.60,−0.65,−0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15,−0.75, 0.10, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (−0.30,−0.90, 0.80,−0.25,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 =
(0.95, 0.85, 1.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>2 =
(0.70,−0.70, 0.80, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and
�∗>3 = (1.75, 0.00, 0.85, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). No penalty, part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 23.5 9.1 14.5 7.9 4.2 4.8 6.2 2.0 2.4 3.3 1.0 1.1
β21 -12.4 15.8 17.2 -6.3 6.2 6.5 -6.3 3.4 3.8 -5.2 1.8 2.1
β22 1.8 4.0 3.9 -2.0 1.4 1.5 -0.2 0.3 0.3 0.3 0.2 0.2
β23 -12.1 2.5 3.9 -6.1 0.8 1.1 -5.8 0.3 0.6 -4.8 0.1 0.4
β24 -1.3 2.2 2.1 -0.2 0.5 0.5 -0.7 0.2 0.2 -0.3 0.1 0.1
β25 -1.0 2.1 2.1 -0.2 0.4 0.4 -0.6 0.2 0.2 -0.4 0.1 0.1
β26 2.9 2.2 2.2 1.2 0.5 0.5 0.8 0.2 0.2 0.8 0.1 0.1
β27 0.5 2.2 2.1 -0.8 0.5 0.5 0.1 0.2 0.2 -0.3 0.1 0.1
β28 -0.3 1.6 1.6 -0.9 0.5 0.5 -0.3 0.2 0.2 0.2 0.1 0.1
β29 0.6 2.2 2.2 1.1 0.6 0.6 0.6 0.2 0.2 0.4 0.1 0.1
β210 1.0 2.2 2.2 -0.7 0.5 0.5 0.2 0.2 0.2 0.3 0.1 0.1
β211 1.9 2.1 2.1 -0.3 0.5 0.5 -0.2 0.2 0.2 0.0 0.1 0.1
β212 -0.1 1.4 1.3 -0.1 0.7 0.7 0.3 0.2 0.2 0.0 0.1 0.1
β213 0.2 1.8 1.8 -0.6 0.6 0.6 -0.8 0.2 0.2 -0.2 0.1 0.1
Γ21 -5.0 9.1 9.3 -4.4 2.7 2.8 -3.6 1.3 1.4 -2.9 0.6 0.7

Γ212 35.2 21.3 33.5 12.6 10.5 12.0 9.2 3.7 4.5 9.9 2.1 3.1
Γ22 -28.0 11.6 19.3 -8.4 6.4 7.1 -0.6 1.7 1.7 2.4 0.9 1.0

Γ213 10.4 7.3 8.3 3.2 1.3 1.4 1.8 0.4 0.4 1.9 0.2 0.2
Γ223 2.9 3.3 3.4 1.4 1.6 1.6 1.4 0.5 0.5 1.2 0.3 0.3
Γ23 4.9 1.2 1.4 5.7 0.8 1.1 5.9 0.5 0.8 5.6 0.4 0.7

Γ214 -8.0 3.1 3.7 -5.0 0.9 1.2 -5.0 0.6 0.8 -3.5 0.2 0.3
Γ224 2.3 1.9 1.9 -0.1 0.7 0.7 -0.5 0.5 0.5 -0.7 0.2 0.2
Γ234 -0.9 0.6 0.6 -1.5 1.0 1.0 -0.8 0.6 0.6 -1.8 0.4 0.5
Γ24 0.4 0.1 0.1 2.7 0.4 0.5 3.7 0.4 0.5 5.0 0.3 0.6

Γ215 1.5 3.1 3.1 0.4 0.8 0.8 0.5 0.4 0.4 0.2 0.2 0.2
Γ225 1.2 1.4 1.4 0.6 0.6 0.6 1.0 0.4 0.4 0.6 0.2 0.2
Γ235 -1.1 0.2 0.3 0.0 0.3 0.3 -0.2 0.3 0.3 -0.7 0.2 0.2
Γ245 0.2 0.0 0.0 -0.3 0.1 0.1 -0.1 0.1 0.1 -0.1 0.1 0.1
Γ25 0.1 0.0 0.0 0.2 0.0 0.0 0.4 < 0.1 < 0.1 0.7 < 0.1 < 0.1
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Table H–64: Simulation 12 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 19, q = 5, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.95, 0.60,−0.65,−0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15,−0.75, 0.10, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (−0.30,−0.90, 0.80,−0.25,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 =
(0.95, 0.85, 1.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>2 =
(0.70,−0.70, 0.80, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and
�∗>3 = (1.75, 0.00, 0.85, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). No penalty, part 3.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β30 10.4 24.6 25.5 0.2 10.7 10.6 1.6 5.0 5.0 3.4 2.9 3.0
β31 13.8 32.2 33.8 11.7 13.6 14.9 5.7 4.9 5.2 3.7 1.7 1.8
β32 -41.3 15.7 32.6 -18.0 8.8 12.0 -8.1 3.9 4.5 -2.6 0.9 0.9
β33 3.0 4.7 4.8 1.1 1.2 1.2 1.4 0.6 0.6 0.1 0.3 0.2
β34 -5.2 5.8 6.1 -2.4 1.3 1.4 0.1 0.5 0.5 0.2 0.2 0.2
β35 5.1 4.4 4.6 3.6 1.3 1.4 1.6 0.4 0.5 0.6 0.2 0.2
β36 4.8 6.9 7.1 1.4 1.5 1.5 1.3 0.5 0.5 0.3 0.2 0.2
β37 -1.7 4.8 4.8 -0.2 1.1 1.1 -0.4 0.4 0.4 -0.1 0.1 0.1
β38 0.0 6.0 5.9 -0.1 1.3 1.3 -0.2 0.5 0.5 0.0 0.3 0.3
β39 -2.6 6.8 6.8 -2.7 1.0 1.0 -0.7 0.4 0.4 -0.5 0.2 0.2
β310 -1.8 4.6 4.6 0.6 1.4 1.4 0.0 0.5 0.5 0.3 0.2 0.2
β311 -0.3 4.0 4.0 -1.0 1.0 1.0 -1.2 0.5 0.5 -0.1 0.2 0.2
β312 4.7 4.9 5.1 0.8 1.3 1.3 0.5 0.5 0.5 0.3 0.2 0.2
β313 -2.8 4.1 4.1 -1.4 1.1 1.1 -0.4 0.4 0.4 0.6 0.2 0.2
Γ31 -16.5 28.1 30.5 -4.2 13.8 13.8 1.2 4.9 4.9 4.1 1.9 2.1

Γ312 7.4 38.3 38.5 -3.0 12.7 12.7 0.5 5.7 5.7 -0.3 2.3 2.3
Γ32 -9.5 32.2 32.7 1.6 13.1 13.0 -0.3 4.0 3.9 -0.2 1.6 1.6

Γ313 -14.9 20.3 22.3 -0.8 4.8 4.8 -1.8 2.2 2.3 -0.9 0.9 0.9
Γ323 -0.7 13.9 13.7 -4.8 7.6 7.7 -4.1 2.6 2.8 -3.8 0.9 1.1
Γ33 8.3 2.6 3.2 18.4 4.2 7.6 15.8 2.9 5.4 13.1 1.2 2.9

Γ314 -0.8 9.5 9.4 -1.8 1.8 1.8 0.3 1.0 1.0 0.3 0.4 0.4
Γ324 -0.9 5.3 5.3 -0.2 2.0 2.0 0.2 0.9 0.9 1.0 0.4 0.4
Γ334 -1.6 0.4 0.5 -0.5 0.7 0.7 -0.6 0.6 0.6 -0.7 0.5 0.5
Γ34 0.3 0.0 0.0 1.6 0.3 0.3 2.5 0.3 0.4 3.2 0.3 0.4

Γ315 -6.7 7.4 7.8 -3.9 2.3 2.4 -1.9 0.9 1.0 -0.8 0.4 0.4
Γ325 -2.6 4.9 4.9 -0.2 1.2 1.2 0.9 0.6 0.6 -0.1 0.3 0.3
Γ335 -0.7 0.8 0.8 -0.3 0.8 0.7 -0.7 0.7 0.7 0.7 0.5 0.5
Γ345 -0.3 0.0 0.0 -0.8 0.2 0.3 -0.5 0.1 0.1 0.5 0.1 0.1
Γ35 0.2 0.0 0.0 1.0 0.2 0.2 0.5 < 0.1 < 0.1 1.2 0.1 0.1

Total 612.6 217.2 100.9 51.1
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Figure H–34: MSE across sample sizes, binomial outcome, no penalty, with K = 3,
p = 19, q = 5.
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Table H–65: Simulation 12 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 19, q = 5, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.95, 0.60,−0.65,−0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15,−0.75, 0.10, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (−0.30,−0.90, 0.80,−0.25,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 =
(0.95, 0.85, 1.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>2 =
(0.70,−0.70, 0.80, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and
�∗>3 = (1.75, 0.00, 0.85, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). Small values changed to zero, part 1.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -8.1 0.9 1.5 -6.4 0.5 0.9 -5.7 0.3 0.6 -5.0 0.2 0.4
π2 2.5 0.7 0.7 3.3 0.4 0.5 4.3 0.2 0.4 4.5 0.1 0.3
β10 16.6 14.6 17.2 18.1 3.6 6.8 17.5 2.2 5.2 14.4 1.4 3.5
β11 18.7 23.7 27.0 14.9 7.4 9.5 13.7 3.9 5.7 10.2 2.3 3.3
β12 -3.5 3.6 3.6 -3.2 0.9 1.0 -1.4 0.4 0.4 -1.3 0.1 0.2
β13 0.8 1.5 1.5 0.6 0.4 0.4 1.3 0.2 0.2 0.7 0.1 0.1
β14 -0.7 1.3 1.3 -0.8 0.5 0.5 0.1 0.2 0.2 -0.1 0.1 0.1
β15 -0.4 1.6 1.6 0.2 0.4 0.4 0.4 0.1 0.1 0.2 < 0.1 < 0.1
β16 -0.3 1.6 1.6 0.0 0.5 0.4 -0.2 0.1 0.1 -0.3 0.1 0.1
β17 -0.8 1.7 1.7 0.0 0.4 0.4 -0.1 0.2 0.2 -0.1 0.1 0.1
β18 -2.9 1.9 2.0 -0.4 0.3 0.3 -0.5 0.2 0.2 -0.4 0.1 0.1
β19 0.8 1.8 1.8 0.0 0.3 0.3 0.3 0.1 0.1 -0.1 0.1 0.1
β110 -0.5 1.4 1.4 -0.5 0.4 0.3 -0.2 0.2 0.2 0.0 0.1 0.1
β111 1.1 1.3 1.3 0.0 0.3 0.3 0.3 0.1 0.1 -0.3 0.1 0.1
β112 0.2 1.5 1.5 -0.8 0.3 0.3 -0.1 0.2 0.2 0.1 0.1 0.1
β113 1.0 1.8 1.8 0.6 0.4 0.4 0.2 0.1 0.1 -0.1 0.1 0.1
Γ11 -10.0 12.5 13.4 -15.0 2.8 5.1 -13.5 1.2 3.0 -12.3 0.6 2.1

Γ112 -16.4 26.6 29.1 -9.5 7.3 8.2 -11.7 5.2 6.5 -7.4 2.2 2.8
Γ12 -23.0 15.3 20.4 -9.2 2.9 3.7 -1.9 1.3 1.3 1.3 0.8 0.8

Γ113 -1.4 4.0 4.0 0.4 1.0 1.0 0.9 0.5 0.5 0.1 0.2 0.2
Γ123 3.0 2.9 3.0 -0.4 1.6 1.6 -0.9 0.4 0.4 -0.5 0.1 0.1
Γ13 4.3 1.0 1.1 4.5 0.6 0.8 4.4 0.4 0.6 3.6 0.2 0.3

Γ114 -7.3 2.1 2.6 -3.8 0.8 0.9 -2.4 0.4 0.5 -1.2 0.2 0.2
Γ124 2.3 2.0 2.0 0.0 0.6 0.6 -0.8 0.3 0.3 -0.7 0.1 0.1
Γ134 -0.5 0.3 0.3 0.3 0.3 0.3 -1.1 0.3 0.3 -0.7 0.2 0.2
Γ14 0.3 0.0 0.0 1.6 0.2 0.2 2.5 0.2 0.2 3.7 0.2 0.4

Γ115 0.0 1.6 1.6 -0.1 0.5 0.5 0.0 0.3 0.3 0.2 0.1 0.1
Γ125 0.7 2.1 2.1 -0.9 0.5 0.5 -0.6 0.3 0.3 -0.1 0.1 0.1
Γ135 0.0 0.4 0.4 -0.3 0.2 0.2 -0.5 0.3 0.3 0.5 0.2 0.2
Γ145 -0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 -0.5 0.1 0.1
Γ15 0.0 0.0 0.0 0.5 0.1 0.1 0.7 0.1 0.1 1.3 0.1 0.1
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Table H–66: Simulation 12 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 19, q = 5, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.95, 0.60,−0.65,−0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15,−0.75, 0.10, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (−0.30,−0.90, 0.80,−0.25,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 =
(0.95, 0.85, 1.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>2 =
(0.70,−0.70, 0.80, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and
�∗>3 = (1.75, 0.00, 0.85, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). Small values changed to zero, part 2.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β20 23.5 9.1 14.5 7.9 4.2 4.8 6.2 2.0 2.4 3.3 1.0 1.1
β21 -12.5 15.8 17.2 -6.3 6.2 6.5 -6.3 3.4 3.8 -5.2 1.8 2.1
β22 1.8 4.0 3.9 -2.0 1.4 1.5 -0.2 0.3 0.3 0.3 0.2 0.2
β23 -12.1 2.5 3.9 -6.1 0.8 1.1 -5.9 0.3 0.6 -4.8 0.1 0.4
β24 -1.3 2.2 2.1 -0.3 0.5 0.5 -0.7 0.2 0.2 -0.3 0.1 0.1
β25 -0.9 2.1 2.1 -0.1 0.4 0.4 -0.6 0.2 0.2 -0.3 0.1 0.1
β26 2.9 2.2 2.2 1.2 0.5 0.5 0.8 0.2 0.2 0.8 0.1 0.1
β27 0.5 2.2 2.1 -0.8 0.5 0.5 0.0 0.2 0.2 -0.3 0.1 0.1
β28 -0.3 1.6 1.6 -1.0 0.5 0.5 -0.3 0.2 0.2 0.2 0.1 0.1
β29 0.6 2.2 2.2 1.1 0.6 0.6 0.6 0.2 0.2 0.4 0.1 0.1
β210 1.1 2.2 2.2 -0.7 0.5 0.5 0.1 0.2 0.2 0.3 0.1 0.1
β211 1.9 2.1 2.1 -0.3 0.5 0.5 -0.2 0.2 0.2 0.0 0.1 0.1
β212 -0.1 1.4 1.3 -0.1 0.7 0.7 0.3 0.2 0.2 0.0 0.1 0.1
β213 0.2 1.8 1.8 -0.6 0.6 0.6 -0.8 0.2 0.2 -0.2 0.1 0.1
Γ21 -5.0 9.1 9.3 -4.4 2.7 2.8 -3.6 1.3 1.4 -2.9 0.6 0.7

Γ212 35.2 21.3 33.5 12.6 10.5 12.0 9.2 3.7 4.5 9.9 2.1 3.1
Γ22 -28.0 11.6 19.3 -8.4 6.4 7.1 -0.6 1.7 1.7 2.4 0.9 1.0

Γ213 10.4 7.3 8.3 3.2 1.3 1.4 1.8 0.4 0.4 1.9 0.2 0.2
Γ223 2.9 3.3 3.4 1.4 1.6 1.6 1.4 0.5 0.5 1.2 0.3 0.3
Γ23 4.9 1.2 1.4 5.7 0.8 1.1 5.9 0.5 0.8 5.6 0.4 0.7

Γ214 -8.0 3.1 3.7 -5.0 0.9 1.2 -5.0 0.6 0.8 -3.5 0.2 0.3
Γ224 2.3 1.9 1.9 -0.1 0.7 0.7 -0.5 0.5 0.5 -0.7 0.2 0.2
Γ234 -0.9 0.6 0.6 -1.5 1.0 1.0 -0.8 0.6 0.6 -1.8 0.4 0.5
Γ24 0.4 0.1 0.1 2.7 0.4 0.5 3.7 0.4 0.5 5.0 0.3 0.6

Γ215 1.5 3.1 3.1 0.4 0.8 0.8 0.5 0.4 0.4 0.2 0.2 0.2
Γ225 1.2 1.4 1.4 0.6 0.6 0.6 1.0 0.4 0.4 0.6 0.2 0.2
Γ235 -1.1 0.2 0.3 0.0 0.3 0.3 -0.2 0.3 0.3 -0.7 0.2 0.2
Γ245 0.2 0.0 0.0 -0.3 0.1 0.1 -0.1 0.1 0.1 -0.1 0.1 0.1
Γ25 0.1 0.0 0.0 0.2 0.0 0.0 0.4 < 0.1 < 0.1 0.7 < 0.1 < 0.1
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Table H–67: Simulation 12 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 19, q = 5, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.95, 0.60,−0.65,−0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), β>2 = (−0.85,−0.15,−0.75, 0.10, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), β>3 = (−0.30,−0.90, 0.80,−0.25,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>1 =
(0.95, 0.85, 1.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), �∗>2 =
(0.70,−0.70, 0.80, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and
�∗>3 = (1.75, 0.00, 0.85, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). Small values changed to zero, part 3.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

β30 10.4 24.6 25.5 0.2 10.7 10.6 1.6 5.0 5.0 3.4 2.9 3.0
β31 13.8 32.2 33.8 11.7 13.7 14.9 5.7 4.9 5.2 3.7 1.7 1.8
β32 -41.3 15.7 32.6 -18.0 8.8 12.0 -8.1 3.9 4.5 -2.6 0.9 0.9
β33 3.0 4.7 4.8 1.1 1.2 1.2 1.4 0.6 0.6 0.1 0.3 0.2
β34 -5.2 5.9 6.1 -2.4 1.3 1.4 0.2 0.5 0.5 0.2 0.2 0.2
β35 5.1 4.4 4.6 3.6 1.3 1.4 1.6 0.4 0.5 0.6 0.2 0.2
β36 4.8 6.9 7.1 1.4 1.5 1.5 1.3 0.5 0.5 0.3 0.2 0.2
β37 -1.7 4.8 4.8 -0.2 1.1 1.1 -0.4 0.4 0.4 -0.1 0.1 0.1
β38 0.1 6.0 5.9 -0.1 1.3 1.3 -0.2 0.5 0.5 0.1 0.3 0.3
β39 -2.6 6.8 6.8 -2.7 1.0 1.0 -0.7 0.4 0.4 -0.5 0.2 0.2
β310 -1.8 4.6 4.6 0.6 1.4 1.4 0.0 0.5 0.5 0.3 0.2 0.2
β311 -0.3 4.0 4.0 -1.0 1.0 1.0 -1.2 0.5 0.5 0.0 0.2 0.2
β312 4.7 4.9 5.1 0.8 1.3 1.3 0.5 0.5 0.5 0.4 0.2 0.2
β313 -2.8 4.1 4.1 -1.4 1.1 1.1 -0.4 0.4 0.4 0.5 0.2 0.2
Γ31 -16.5 28.1 30.5 -4.2 13.8 13.8 1.2 4.9 4.9 4.1 1.9 2.1

Γ312 7.4 38.3 38.5 -3.0 12.7 12.7 0.5 5.7 5.7 -0.3 2.3 2.3
Γ32 -9.5 32.2 32.7 1.6 13.1 13.0 -0.3 4.0 3.9 -0.2 1.6 1.6

Γ313 -14.9 20.3 22.3 -0.8 4.8 4.8 -1.8 2.2 2.3 -0.9 0.9 0.9
Γ323 -0.7 13.9 13.7 -4.8 7.6 7.7 -4.1 2.6 2.8 -3.8 0.9 1.1
Γ33 8.3 2.6 3.2 18.4 4.2 7.6 15.8 2.9 5.4 13.1 1.2 2.9

Γ314 -0.8 9.5 9.4 -1.8 1.8 1.8 0.3 1.0 1.0 0.3 0.4 0.4
Γ324 -0.9 5.3 5.3 -0.2 2.0 2.0 0.2 0.9 0.9 1.0 0.4 0.4
Γ334 -1.6 0.4 0.5 -0.5 0.7 0.7 -0.6 0.6 0.6 -0.7 0.5 0.5
Γ34 0.3 0.0 0.0 1.6 0.3 0.3 2.5 0.3 0.4 3.2 0.3 0.4

Γ315 -6.7 7.4 7.8 -3.9 2.3 2.4 -1.9 0.9 1.0 -0.8 0.4 0.4
Γ325 -2.6 4.9 4.9 -0.2 1.2 1.2 0.9 0.6 0.6 -0.1 0.3 0.3
Γ335 -0.7 0.8 0.8 -0.3 0.8 0.7 -0.7 0.7 0.7 0.7 0.5 0.5
Γ345 -0.3 0.0 0.0 -0.8 0.2 0.3 -0.5 0.1 0.1 0.5 0.1 0.1
Γ35 0.2 0.0 0.0 1.0 0.2 0.2 0.5 < 0.1 < 0.1 1.2 0.1 0.1

Total 612.6 217.2 100.9 51.1
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Figure H–35: MSE across sample sizes, binomial outcome, small values changed to
zero, with K = 3, p = 19, q = 5.

309



0

5

10

15

n=100 n=250 n=500 n=1000
Sample Size

M
SE

MSE Across Sample Sizes, Binomial Scenario 6

Figure H–36: MSE across sample sizes, binomial outcome, oracle model, with K = 3,
p = 19, q = 5.
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Table H–68: Simulation 12 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p = 4, q = 2, π1 = 0.5, π2 = 0.3, π3 = 0.2,
β>1 = (0.95, 0.60,−0.65,−0.25), β>2 = (−0.85,−0.15,−0.75, 0.10), β>3 = (−0.30,
−0.90, 0.80,−0.25), �∗>1 = (0.95, 0.85, 1.15), �∗>2 = (0.70,−0.70, 0.80), and �∗>3 =
(1.75, 0.00, 0.85). Oracle model.

n n = 100 n = 250 n = 500 n = 1000
Measure Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

π1 -6.1 0.7 1.1 -5.8 0.3 0.6 -6.4 0.2 0.6 -6.5 0.1 0.5
π2 6.2 0.8 1.1 6.2 0.3 0.6 6.7 0.1 0.6 6.8 0.1 0.5
β10 19.6 5.3 9.1 19.7 2.0 5.9 21.1 1.1 5.6 19.6 0.9 4.8
β11 18.5 11.3 14.6 16.3 3.9 6.5 18.5 1.8 5.2 18.1 1.4 4.6
β12 -3.1 1.2 1.3 -2.0 0.5 0.5 -0.5 0.2 0.2 -0.3 0.1 0.1
β13 -3.0 0.8 0.9 -2.5 0.3 0.3 -1.1 0.1 0.2 -0.9 0.1 0.1
Γ11 -12.8 5.9 7.5 -12.3 2.2 3.7 -11.8 1.0 2.4 -11.8 0.4 1.8

Γ112 -18.8 14.6 18.0 -16.6 6.1 8.8 -18.1 2.7 5.9 -17.1 1.7 4.6
Γ12 -7.9 8.4 9.0 -2.0 1.7 1.7 0.7 1.0 1.0 2.0 0.5 0.6
β20 16.2 5.8 8.4 9.5 2.1 3.0 10.2 1.0 2.0 8.3 0.5 1.2
β21 -10.5 8.2 9.2 -8.5 3.4 4.1 -10.2 1.5 2.5 -10.3 0.9 2.0
β22 -5.8 2.1 2.4 -2.2 0.5 0.6 0.1 0.2 0.2 0.4 0.1 0.1
β23 -3.1 1.8 1.9 -3.2 0.5 0.6 -4.3 0.2 0.4 -4.6 0.1 0.3
Γ21 -2.5 4.4 4.4 0.3 1.3 1.3 0.8 0.5 0.5 0.7 0.3 0.3

Γ212 11.9 15.2 16.5 8.3 5.6 6.2 6.6 2.1 2.5 8.0 0.9 1.5
Γ22 -7.8 10.0 10.5 0.0 3.9 3.9 3.4 1.3 1.4 5.0 0.6 0.9
β30 2.7 19.3 19.2 -2.5 6.1 6.1 -1.8 4.3 4.3 0.0 2.1 2.1
β31 -2.3 14.9 14.8 0.3 5.5 5.4 0.9 2.2 2.2 0.9 0.9 0.9
β32 5.4 5.2 5.5 4.4 1.3 1.5 1.0 0.7 0.7 0.5 0.3 0.3
β33 -1.3 4.9 4.9 0.7 1.0 1.0 0.8 0.5 0.5 0.0 0.2 0.2
Γ31 -9.0 31.1 31.6 -5.3 8.8 9.0 -2.1 3.7 3.7 -1.1 1.7 1.7

Γ312 6.2 22.5 22.7 -0.7 6.1 6.0 -1.7 2.4 2.4 -4.0 1.5 1.6
Γ32 -24.3 15.0 20.8 -6.6 4.6 5.0 -2.8 2.3 2.3 -2.5 1.1 1.2

Total 235.2 82.3 47.2 31.9
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APPENDIX I
Supplement to Chapter 4

I considered a number of additional possibilities for exploration of the MPLE

that I have not included in Chapter 4. I explore some of these in this appendix, while

others I leave to future work.

I.1 Choice of Starting Value

As previously stated, the choice of starting values when computing parameter

estimates for a FinMix GLMM is important. When calculating the MPLE, the

starting value that makes the most sense is the MLE. While it can be viewed as an

additional step to calculate the MLE, this is a step that may already be planned. For

example, the inverse of the MLE is a popular choice for the weights in ALASSO. To

calculate the MLE for the simulations in 4 I generated starting values in the same way

as for the simulations in Chapter 3. I also tried computing the parameter estimates

for the MPLE using these randomly generated starting value rather than the MLE. I

found that using these starting values resulted in a significantly longer run time to

calculate the MPLE as the starting value was overall further away from the MPLE.

I.2 Hard Threshold

While LASSO, ALASSO, and SCAD are popular penalties, they are not the only

possible penalties. There are many penalties that are more complex, but one simple

penalty is the hard threshold (Antoniadis, 1997; Fan and Li, 2012). One desirable
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property of the hard threshold is that parameters are either shrunk to zero or are not

shrunk at all.

The hard penalty in a model where only fixed effects are penalised takes the

form

pλnk(θk) = λ2
nk − (|θk| − λnk)2I(|θk| ≤ λnk)

with

∂pλnk(θk)

∂βkh
= −2(|βkh| − λnk)I(|βkh| ≤ λnk)

and

∂pλnk(θk)

∂�kh
= 0.

Similarly, if a penalty is applied to both the fixed and random effects, the penalty

becomes

pλnk(θk) = λ2
nk − (|θk| − λnk)2I(|θk| ≤ λnk)

=

p∑
h=1

λ2
nk − (|βkh| − λnk)2I(|βkh| ≤ λnk)

+

q∑
h=1

λ2
nk − (|dkh| − λnk)2I(|dkh| ≤ λnk)

and the partial derivatives are

∂pλnk(θk)

∂βkh
= −2(|βkh| − λnk)I(|βkh| ≤ λnk)

and

∂pλnk(θk)

∂dkh
= −2(|dkh| − λnk)I(|dkh| ≤ λnk).
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The second derivatives of this penalty are equal to zero both with respect to βkh, and

dkh.

Thus, the non-zero diagonal elements of �λnk(θ
(s)
k ) are

−2× (|θkh| − λnk)I(|θkh| ≤ λnk)

|θ(s)
kh |+ ε

Due to time constraints, I did not perform simulations using this penalty.

I.3 All Values of λk Set to the Same Value

It would be convenient if the problem of finding an optimal value of λ could

be simplified to finding one value, rather than a K dimensional vector of values.

However, Du et al. (2013) found that this simplification did not perform well in the

linear case, so there was not much hope that it would perform well in the GLMM

case. Because of time constraints, I did not execute these simulations.

I.4 Exploration of the Grid of Possible Values of λ

The choice of the tuning parameter is a difficult problem, made more difficult in

the case of finite mixtures of regression models because one needs to find the optimal

value of λk for each subpopulation. As such, an exploration of the behaviour of the

BIC over different values of λ is of interest. Because of time constraints, I could not

complete this exploration.
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APPENDIX J
Calculation of Standard Errors

J.1 Calculating Standard Errors for a Finite Mixture of Generalised Lin-
ear Mixed-Effect Model

When estimating parameters in a model, it is useful to include a measure

of the variability associated with a parameter estimate. Following from Louis

(1982); McLachlan and Peel (2000); McLachlan and Krishnan (2008); Khalili and

Vidyashankar (2018), I estimated the covariance matrix of the MLE, and then

extracted the standard errors from that matrix. This estimation of this matrix is

based on the second derivative of the complete data log-likelihood. This method is

popular for calculating the standard errors when the EM algorithm is used. While

this approach is not specific to finite mixtures of regression models, it is the standard

approach to calculating standard errors for finite mixture models, and was used in

Du et al. (2013). More specifically, as described in Khalili and Vidyashankar (2018),

the standard errors are the square roots of the diagonal elements of the inverse of the

empirical observed information matrix. The empirical observed information matrix is

used to approximate the observed information matrix. Note that I calculate standard

errors for the mixing parameters and the parameters that correspond to fixed effects

but not on parameters that correspond to random effects. The first step was to

calculate the gradient of the complete log-likelihood, I showed in Appendix D that

these derivatives exist. I represented the gradient of the complete log-likelihood as
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s(yi|Xi,Zi,Θ) with

s(yi|Xi,Zi,Θ) =
K∑
k=1

∂

∂Θ̃
τki log[πkf

(k)
yi

(yi|Xi,Zi,θk)].

Next, I calculated the empirical observed information matrix

I`(Θ) =
n∑
i=1

s(yi|Xi,Zi,Θ)[s(yi|Xi,Zi,Θ)]>.

I then calculated the inverse of the empirical observed information matrix, I−1
` (Θ).

The standard errors are the square roots of the diagonal elements of the inverse of

the empirical observed information matrix.

As I did in Appendix B, I show here the details of this derivative for each element

of Θ. As I described in the estimation of Θ, the values bi are unknown. As such,

I generated L potential values for bi from a q-dimensional multivariate standard

Gaussian distribution. These values, denoted b
(l)
i , were used to approximate the

integral over bi, and calculate f
(k)
yi (yi|Xi,Zi,θk). Recall that

s(yi|Xi,Zi,Θ) =
K∑
k=1

∂

∂Θ̃
τki log[πkf

(k)
yi

(yi|Xi,Zi,θk)]

=
K∑
k=1

τki
∂

∂Θ̃

{
log[πk] + log[f (k)

yi
(yi|Xi,Zi,θk)]

}
=

K∑
k=1

τki
∂

∂Θ̃
log(πk) +

K∑
k=1

τki
∂

∂Θ̃
log[f (k)

yi
(yi|Xi,Zi,θk)].
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Focusing on ∂
∂Θ̃

log(πk), there are three cases to consider, ∂
∂πh

log(πk) = 0,∀h 6= k,

∂
∂βh

log(πk) = 0,∀h∀k, and ∂
∂πk

log(πk) = 1
πk

. Thus,

K∑
k=1

τki
∂

∂Θ̃
log(πk) =



τ1i
π1

τ2i
π2

...

τ(K−1)i

πK−1

0

...

0



.

Considering next the second part of this equation, ∂
∂Θ̃
f

(k)
yi (yi|Xi,Zi,θk). Again,

there are three cases to consider. First, ∂
∂πh

f
(k)
yi (yi|Xi,Zi,θk) = 0,∀h∀k, second,

∂
∂βh

f
(k)
yi (yi|Xi,Zi,βk,�k) = 0,∀h 6= k. The last case to consider is ∂

∂βk
f

(k)
yi (yi|Xi,Zi,βk,�k).

Because a GLMM is being considered,

f (k)
yi

(yi|Xi,Zi,βk,�k) =

∫
f

(k)
yi|bi(yi|Xi,Zi,bi,βk,�k)f(bi)dbi

=

∫ ni∏
j=1

f
(k)
yij |bi(yij|xij, zij,bi,βk,�k)f(bi)dbi.

I approximated this integral with

f (k)
yi

(yi|Xi,Zi,βk,�k) ≈
1

L

L∑
l=1

ni∏
j=1

f
(k)
yij |bi(yij|xij, zij,b

(l)
i ,βk,�k).
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Therefore,

∂
∂βk

f
(k)
yi (yi|Xi,Zi,βk,�k)

f
(k)
yi (yi|Xi,Zi,βk,�k)

≈
∂
∂βk

1
L

∑L
l=1

∏ni
j=1 f

(k)
yij |bi(yij|xij, zij,b

(l)
i ,βk,�k)

1
L

∑L
l=1

∏ni
j=1 f

(k)
yij |bi(yij|xij, zij,b

(l)
i ,βk,�k)

=

∂
∂βk

∑L
l=1

∏ni
j=1 f

(k)
yij |bi(yij|xij, zij,b

(l)
i ,βk,�k)∑L

l=1

∏ni
j=1 f

(k)
yij |bi(yij|xij, zij,b

(l)
i ,βk,�k)

=

∑L
l=1

∂
∂βk

∏ni
j=1 f

(k)
yij |bi(yij|xij, zij,b

(l)
i ,βk,�k)∑L

l=1

∏ni
j=1 f

(k)
yij |bi(yij|xij, zij,b

(l)
i ,βk,�k)

.

Using the product rule for more than two factors,

∂

∂βk

ni∏
j=1

f
(k)
yij |bi(yij|xij, zij,b

(l)
i ,βk,�k) =

(
ni∏
j=1

f
(k)
yij |bi(yij|xij, zij,b

(l)
i ,βk,�k)

)
×

 ni∑
j=1

∂
∂βk

f
(k)
yij |bi(yij|xij, zij,b

(l)
i ,βk,�k)

f
(k)
yij |bi(yij|xij, zij,b

(l)
i ,βk,�k)

 .

In the case of a Poisson outcome,

∂
∂βk

f
(k)
yij |bi(yij|xij, zij,b

(l)
i ,βk,�k)

f
(k)
yij |bi(yij|xij, zij,b

(l)
i ,βk,�k)

=



xij1

xij2
...

xijp


(yij − exp(xijβk + zij�kb

(l)
i )).

When a binomial outcome is considered,

∂
∂βk

f
(k)
yij |bi(yij|xij, zij,b

(l)
i ,βk,�k)

f
(k)
yij |bi(yij|xij, zij,b

(l)
i ,βk,�k)

=



xij1

xij2
...

xijp


yij + (yij −mij) exp(xijβk + zij�kb

(l)
i )

1 + exp(xijβk + zij�kb
(l)
i )

.
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Putting all of this together, I calculated s(yi|Xi,Zi,Θ), and therefore the standard

errors. Once I calculated the standard errors, following from Khalili and Vidyashankar

(2018), I computed the t-statistics with

tkh =
βkh

SE(βkh)

or

tk =
πk

SE(πk)

and the p-value as 2 ∗ P (tn < −|tkh|) or 2 ∗ P (tn < −|tk|).
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