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ABSTRACT

Complex datasets necessitate a thorough understanding of the research question
and substantive area, and in some cases may require analyses that take into account the
many features of the population of interest. Consider the Scottish Early Rheumatoid
Arthritis or SERA study, which followed people in Scotland with rheumatoid arthritis
(RA) over time, starting with a diagnosis of rheumatoid arthritis and then every six
months thereafter. Outcomes of interest are often discrete and perhaps a binomial
variable (such as if the patient has entered remission) or a count (such as the number of
swollen joints). Clinicians are aware that treatments for RA vary in their effectiveness
across the population, suggesting that there may be distinct subgroups within the
overall population. Thus there are several key features that the analysis must take
into account: (i) the discrete nature of the outcome, (ii) the longitudinal nature of
the measurements, and (iii) the possibility of subpopulations across which treatment
and covariate effects differ. In my thesis, I propose the use of a finite mixture of
generalised linear mixed-effect models (FinMix GLMM) as an appropriate analytic
approach. First, I develop the FinMix GLMM model and derive the maximum
likelihood estimates. Next, I develop a penalised likelihood approach for both fixed
and random effects selection in FinMix GLMM. Simulations illustrate the finite sample
performance of the estimates. Lastly, a FinMix GLMM analysis (both with and
without penalisation) to the SERA dataset demonstrates the real world application

of this model.
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ABREGE

Les ensembles de données complexes nécessitent une compréhension approfondie
de la question de recherche et du domaine de fond et, dans certains cas, peuvent
nécessiter des analyses tenant compte des nombreuses caractéristiques de la population
d’intérét. Prenons par exemple la population de personnes atteintes de polyarthrite
rhumatoide (RA) en Ecosse, qui sont suivies au fil du temps en commencant par
un diagnostic de polyarthrite rhumatoide, puis tous les six mois par la suite (étude
Scottish Early Rheumatoid Arthritis ou SERA). Les résultats d’'intérét sont souvent
discrets et peuvent étre une variable binomiale (comme si le patient est entré en
rémission) ou un décompte (comme le nombre d’articulations enflées). Les cliniciens
savent que les traitements de la PR varient dans leur efficacité dans la population,
ce qui suggere qu’il peut y avoir des sous-groupes distincts au sein de la population
globale. L’analyse doit donc prendre en compte plusieurs caractéristiques clés: (i)
le caractere discret du résultat, (ii) la nature longitudinale des mesures, et (iii)
la possibilité de sous-populations a travers lesquelles les effets du traitement et
des covariables different. Dans ma these, je propose 'utilisation d’un mélange fini
de modeles linéaires généralisés a effets mixtes (FinMix GLMM) comme approche
analytique appropriée. Je développe d’abord le modele FinMix GLMM et je dérive
les estimations du maximum de vraisemblance. Ensuite, je développe une approche
de vraisemblance pénalisée pour la sélection d’effets fixes et aléatoires dans FinMix

GLMM. Des simulations sont fournies pour illustrer la performance d’échantillons
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finis des estimations. Enfin, le FinMix GLMM est appliqué (avec et sans pénalisation)

au jeu de données SERA.
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CHAPTER 1
Introduction

1.1 Motivation

Complex datasets necessitate a thorough understanding of the research question,
and substantive area, and in some cases may require analyses that take into account
the many features of the population of interest. The increased use of electronic medical
records has resulted in an increased gathering of data, requiring more complex models
that take into account the nature of the data. Consider, for example, the population
of people in Scotland with Rheumatoid Arthritis (RA) where a sample of these
patients were followed over time, starting with a diagnosis of RA, and then every six
months thereafter. Some of the outcomes of interest were discrete, and possibly a
binomial variable (such as if the patient has entered remission) or a count (such as
the number of swollen joints). Clinicians are aware that not all patients with RA
present the same symptoms, and that treatments for RA vary in their effectiveness
across the population, suggesting that there may be distinct subgroups within the
overall population. Thus there are several key features that the analysis must take
into account: (i) the discrete nature of the outcome, (ii) the longitudinal nature of
the measurements, and (iii) the possibility of subpopulations across which treatment,
and covariate effects differ. In my thesis, I propose the use of a Finite Mixture of
Generalised Linear Mixed-Effect Model (FinMix GLMM) as an appropriate analytic

approach. The combination of a finite number of Generalised Linear Mixed-Effect



Model (GLMM) allows for modelling both heterogeneity and correlation present in the
data. A finite mixture captures the heterogeneity in the population and using a mixed-
effect model handles the correlation induced by longitudinal data. This analysis would
be a natural choice to study data collected in the Scottish Early Rheumatoid Arthritis
Inception Cohort and Biobank (SERA), administered by the Scottish Collaborative
Arthritis Research network. This longitudinal study contains many patients, and
includes data both from questionnaires and blood samples, providing a large number
of covariates to consider. A more in-depth description of the dataset and model
follows.
1.1.1 Motivating Example

RA is an auto-immune disease that affects many people. This chronic disorder
causes inflammation in the joints of patients, typically starting in the hands and
feet. RA affects the lining of the joints, which leads to swelling, and eventually bone
erosion, and even joint deformity. As the disease progresses, it affects other joints,
usually the elbows, ankles, knees, shoulders, and hips. RA should not be confused
with osteoarthritis, which is more common. The wearing away of cartilage causes
osteoarthritis, whereas inflammation of the synovial membrane causes RA.

Unfortunately, there is currently no cure for RA. Treatment aims to reduce
inflammation to manage pain, and slow or prevent joint damage (Guo et al., 2018).
Experts currently favour a treatment program referred to as Treat to Target (T2T).
The goal of T2T is to aggressively treat the patient to achieve either remission or
a minimal level of disease activity. This minimises the symptoms that the patient

encounters. Medication is a favoured form of treatment, and there are many types



of drugs used to treat RA. These medications include, but are not limited too, non-
steroidal anti-inflammatory drugs, steroids (often corticosteroids), disease-modifying
anti-rheumatic drugs, immunosuppressants, and Tumour Necrosis Factor Inhibitors
(TNFi). Because of the reliance on pharmacotherapy, drug toxicity has become an
important adverse outcome of interest in addition to other detrimental side effects. In
advanced stages, patients with RA may require surgery (such as joint replacement).

The SERA cohort contains patients from Scotland that have a diagnosis of RA.
It is rich in many variables, and it has enrolled numerous patients. The goal of the
study is to be able to accurately predict patient outcomes so that physicians can
apply the best course of treatment. In addition to the demographic and questionnaire
data being gathered bank of tissue, and blood samples were also collected to allow
for analysis of Deoxyribonucleic Acid (DNA) or biomarkers in the future. Sixteen
hospitals from around Scotland participated in this study.

During the first six months, the cohort enrolled 489 patients. Overall, recruitment
resulted in a cohort of over 1100 patients in the study. In addition to patients with RA,
recruitment also included several controls, which I did not consider in my analysis. In
order to be included in the cohort, all patients must have had a new clinical diagnosis
of RA or undifferentiated polyarthritis. Patients were excluded from the cohort if
they had already been on Disease-Modifying Antirheumatic Drugs (DMARD) therapy
for a time period greater than six months, had another rheumatological diagnosis,
had Hepatitis B, had Hepatitis C, or were Human Immunodeficiency Viruses (HIV)
positive. Patient data was collected at baseline, and every six months thereafter on

demographic characteristics, employment status, clinical measurements, laboratory



results, and radiographic findings. Possible outcomes of interest include clinical
remission (defined as Disease Activity Score on 28 Joints (DAS28) less than 2.6),
swollen joint count, and drug toxicity. Of particular interest as covariates are variables
including erosion at presentation, Body Mass Index (BMI), age, and alcohol intake.
1.2 Generalised Linear Mixed-Effect Models

When observations are discrete or categorical, using a linear model (where
observations are assumed to follow a Gaussian distribution) is not appropriate and
a Generalised Linear Model (GLM) may be a more appropriate model. A few
assumptions are required when using a GLM: (i) observations are independent, (ii)
the mean of the observations is associated with a linear function of some covariates
through a link function, and (iii) the variance of the observations is a function of
the mean of the observations. Attention typically focuses on the binomial, and
Poisson cases, although the theory allows for outcomes from any distribution from an
exponential family. In practice, there are cases where the first assumption is violated,
and the observations are not statistically independent. If many of the observations
come from the same person, the same geographical area, or related individuals, they
may be correlated. In this case, a GLMM is a natural extension.

GLMDMs represent an important class of models for regression analysis of discrete
longitudinal data. In longitudinal data, it is unrealistic to assume that repeated
observations from an individual are independent as they come from the same person.
Therefore, each of the n individuals in the dataset must be considered individually,
and a scalar or vector random effect is incorporated to include the correlation induced

by the longitudinal nature of the data.



1.3 Finite Mixture Models

One challenge that can arise in the analysis of data is that the sample may
be drawn from a population with significant underlying heterogeneity that can
be more accurately described as a combination of distinct subpopulations. Often
this underlying heterogeneity is unobserved, which makes it difficult to capture
using a single GLMM. Indeed, such a model may not adequately represent the
effect of a covariate on the outcome if that covariate has different effects across the
subpopulations. It is possible that different covariates will have various effects in
different (possibly unobserved) subpopulations. Finite mixtures of GLMMs provide a
natural way to model unobserved heterogeneity in such populations. When taking
this approach, the population is separated into subpopulations, and a distinct GLMM
is used for each subpopulation. In this research, I assumed that each individual comes
from a particular subpopulation. Because the covariates for an individual can vary
between visits, the expected mean for that individual can also differ between visits,
however, the fixed and random effect parameters do not.

In the initial stages of a study, it is common to introduce or consider a large
number of covariates. However, some of these covariates may not be associated with
the response variable and those that are could have different associations depending
on the subpopulation of the FinMix GLMM. That is, the impact of covariates may
differ across the subpopulations. Identifying the important effects in the model, both
in the random and fixed components, requires a reliable means of variable selection.

It is on this topic that I focus on in this research. In the SERA cohort, different



subpopulations may exist that are defined by genotypic or demographic variables
including age, age at onset, and sex.

Because of the heterogeneity in response to treatment for RA, a mixture of
models is appropriate for this application. As the SERA data are longitudinal, a
mixed-effect model must be used. When the outcome is not continuous, a GLMM is
the most reasonable choice for each subpopulation, which leads to a global model
that is a FinMix GLMM.

Previous research considered this problem in the linear case, and it is natural to
then extend to the GLM case. As of yet, this has not been done for any such discrete
outcomes, and many of the results in the linear model are more complicated in the
GLM case. This is often because of the link function, which is the identity function
in linear regression.

I organised the remainder of this thesis as follows. Chapter 2 contains a literature
review, Chapter 3 describes the maximum likelihood case, Chapter 4 extends to the
penalised maximum likelihood case to perform model selection, Chapter 5 considers
the SERA data in detail, and Chapter 6 concludes. Appendices A to J contain

additional and supplementary information.



CHAPTER 2
Literature Review

This literature review contains three sections. The first section considers several
models that relate to a Finite Mixture of Generalised Linear Mixed-Effect Model
(FinMix GLMM), including Generalised Linear Mixed-Effect Model (GLMM)s as
well as finite mixtures. Next, I considered a few similar models, and discussed how
each of these differs from a FinMix GLMM. The second section concentrates on
computational methods such as Expectation-Maximisation (EM), Newton-Raphson,
and rejection sampling which T used for estimation of parameters in a FinMix
GLMM in Chapters 3, and 4. The last section of the literature review focuses on
variable selection techniques such as Least Absolute Shrinkage and Selection Operator
(LASSO), Adaptive Least Absolute Shrinkage and Selection Operator (ALASSO),
and Smoothly Clipped Absolute Deviation (SCAD).

Throughout this chapter, I used the following notation. Assume a set of n
independent observations (y;, Xi, Z;), i = 1,2,...,n where y; = (Yi1, Yios - - - » Yin,) |
and X; is an n; X p matrix of fixed covariates. The variable n; represents the number
of replicates for the subject i. The matrix Z; is comprised of ¢ < p columns of X;,
that is Z; is also a known matrix of covariates. In a FinMix GLMM, the covariates
X; are associated with fixed effects, and the covariates Z; are associated with random
effects. When the jth replicate for subject ¢ is considered, the random variable

Y;; is used along with the corresponding vectors x;;, and z;;. Note that X; always



contains a column of ones as the first column in order to capture the intercept in
the model, so x;; = (xij1, Tijo, Tijs, - - - Tijp) = (1, Tij2, Tijs, - - ., Tijp). Consistent with
the mixed-effect model literature, I assumed that all variables for which there is a
random effect, there is also a fixed effect.
Next, I considered the unknown parameters. I assumed the population contains
K distinct, and homogeneous subpopulations with @ = (71, m,...,7x_1)", the
vector of so-called mixing proportions. Each 7 represents the proportion of the
population contained in each of the subpopulations, 7, > 0Vk, and Zszl m = 1.
Separate regression parameters describe the relationship between the covariates, and
the outcome in each of these subpopulations. The vector of regression coefficients for
the fixed effects in subpopulation k is represented by B, = (Bk1, Br2s Beas - - - Brp) | -
Let  be a ¢ x g lower triangle matrix and assume that the variable b; follows a
q dimensional multivariate standard Gaussian distribution. Then ;b; is a vector
of random effect which follows a ¢ dimensional multivariate Gaussian distribution
with mean zero, and variance-covariance matrix D, = ,I, and  is the Cholesky
decomposition of D;. The vector containing just the lower triangle values of  is
* Let 0, = (8., 77 be the vector of regression coefficients for both fixed, and
random effects for subpopulation k. I grouped all of the relevant parameters into one
vector @ = (7, T2, ..., T(k-1), B, .8y, 5T,.... Bk, »1). To facilitate variable
selection in Chapter 4, I decomposed , into ; = d,C, where dj is a diagonal matrix,
and Cy, is a lower triangle matrix with 1s along the diagonal. Again, d;, and Cj; are
the vectorised version of their respective parameters, and 8, = (B,I, dZT’C,’ZT)T. As 1

have established the notation, the probability density function follows.



In a FinMix GLMM with K subpopulations, the conditional density function of

the random variable Y;|(X;, Z;, ®) at the realisation y; is

K
fyi(yilXi, Z;,©) = Zﬂ-kf)(/]:)(Yi’Xiaziaﬂka k)
k=1
FOilXi, Zi B 1) = / £, ilbi X6, Zi, By, k) X fo,(bi)db;

= /Hf;z)bi<yij|bi7Xijazijwak;a k) X fo,(b;)dby;. (2.1)
j=1

I assumed that Y;;|(b;, x;j,2i;, Bi, &) follows an exponential family, and used
an appropriate link function (g), specifically, the canonical link function. If just
the kth subpopulation is considered, then E[Y;;|b;,x;;, Br, & = 9(xi;8, + zi; bi).
Combining all of the subpopulations, E[Y;;|b;,x;;, 0] = Zszl Tg(Xij B + Zij £bi)-

2.1 Models That Relate to Finite Mixtures of Generalised Linear Mixed-
Effect Models

A FinMix GLMM is an extension of several previously proposed models. A classic
regression model is a linear regression (Montgomery et al., 2012). Using the previous
notation, in a linear regression model, K = 1, n; = 1V4, g is the identity function,
and E[Y;|x;, 8] = x;3. If the assumption that g is the identity function is relaxed,
but K =1, n; = 1Vi, and Y;|z;, B follows an exponential family, a Generalised Linear
Model (GLM) (Nelder and Wedderburn, 1972; McCulloch, 2000) is produced, and
ElY;|x;, 8] = g(x;3). Consider next the possibility that n; > 1, which allows for
longitudinal data, and random effects by relaxing the assumption that all of the
observations are independent. If the identity function is used for g, the outcome follows

a Gaussian distribution, and group (or individual) specific effects are introduced then



ElYi;|bi, x5, 3, | =x;j8+2z;; b;, which is a linear mixed-effects model (Jiang, 2007,
Chapters 1-2). The inclusion of random effects in GLMs leads to a GLMM, and
is equivalent to extending a linear mixed-effects model to link functions other than
the identity function, and thus, outcomes follow an exponential family (Jiang, 2007,
Chapters 3-4). Thus, for a GLMM, E[Y;;|b;,x;;, 8, | = g(xi;8 +zi; b;).

Many regression models have also been explored in the finite mixture litera-
ture, starting with Pearson (1894). McLachlan and Peel (2000), and McLachlan
et al. (2019) provide an overview of finite mixtures of regression models. In a fi-
nite mixture model, a weighted average is used to combine multiple models. In
a finite mixture of linear models, E[Y;|x;;, 0] can be expressed as S o 71 (xi;8},).
In a finite mixture of GLMs with K subpopulations, the conditional density func-
tion of Y,|(X;,Z:,0) is fy.(yilXs, Zi,0) = oK o f9) (y4]X4, Zs, B,,). 1 assumed that
Yi;|(xij, 2ij, By,) follows an exponential family, and used an appropriate link function
(9) such that E[Yi;|,xi;, By ] = g(xi;8;). Combining each of these subpopulations
yields E[Yj;|bi, xi;, 0] = 325 mhg(x48,)-

If several heterogeneous subpopulations are evident within a population where
a linear mixed-effects model would be appropriate for each subpopulation, a Finite
Mixture of Linear Mixed-Effect (FMLME) can be used (Du et al., 2013). In this case,
ElYi;|bi,x;5, 0] = Zszl Tk(Xi;8, + 2i; 1bi). In this thesis, I extend Du’s model to
allow for not only Gaussian data but data drawn from any exponential family, a
significant generalisation.

Another popular approach to the analysis of longitudinal data is to use Gener-

alised Estimating Equations (GEE) (Zeger et al., 1988). This approach differs from
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modelling using a linear mixed-effect model or GLMM as this alternative approach
serves to estimate population average parameters; Jiang (2007, Section 4.2) contains
more details. T did not pursue a GEE approach in this thesis, I specifically focused
this research on patient-specific effects of treatments. However, because the two
approaches are used in similar situations, comparisons between the two approaches
have been discussed in the literature, such as by Evans et al. (2001), Localio et al.
(2006), Gardiner et al. (2009), and Zhang et al. (2012). Additionally, Feng et al.
(1996) explored other approaches to the analysis of longitudinal data.

Both linear mixed-effect, and GLMMs have been used in medical and epidemiolog-
ical applications. Examples include estimation of the effects of changes in haemoglobin
on the recovery from malaria (Sagara et al., 2014), modelling childhood ailments in
Bolivia (Solis-Soto et al., 2013), and modelling of cardiovascular disease in Indigenous
Americans (Chen et al., 2014). Other examples include studying outcomes following
breast reconstruction modelled via a GLMM with patient-specific intercepts (Yuen
et al., 2014), modelling fatty acid intake of adults in the Minneapolis metropolitan
area using random effects for neighbourhoods (Honors et al., 2014), and studying
malaria transmission using random effects at both the individual, and school level
(Okebe et al., 2014).

Finite mixtures have also been used in medical research for several applications
including modelling mixtures in borderline personality disorder using phenotypes
(Hallquist and Pilkonis, 2012), detecting a binary trait locus (Deng et al., 2006), and
predicting health care costs (Rein, 2005). Other examples include detecting tropical

infectious diseases in Kenya (Fujii et al., 2014), modelling pollutant and exposure
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data (Li et al., 2013), and modelling the effects of five adolescent risk factors on the
total number of sexual partners in adulthood (Lanza et al., 2011).

It should be noted that some of these examples describe their model as a mixed-
effect model with a categorical latent variable. In my research, I have assumed that
the latent variable in a mixed-effect model follows a Gaussian distribution, and is
continuous. Tutz and Oelker (2017) provides a review of both types of models.

Before moving on to computational methods, consider a model similar to a
FinMix GLMM.

2.1.1 Other Similar Models

In 2005, Hall, and Wang proposed a model that bears many similarities to a
FinMix GLMM. The major difference between the research undertaken in the coming
chapters, and the work of Hall and Wang (2005) is that the subpopulation membership
is structured differently. In the model discussed in this thesis, I assumed that all of
the repeated measures from a particular subject come from the same subpopulation.
This is suitable for a situation where the repeated measures are from one person, and
each person is a member of exactly 1 of the K subpopulations. In contrast, Hall and
Wang (2005) consider settings where population membership is not constant, but
rather an individual may belong to different populations at different measurement
points. The example provided in Hall and Wang (2005) has cities as the unit of
analysis, and the two subpopulations denote a disease outbreak or no disease outbreak.
In this setting, allowing population membership to fluctuate with time is reasonable
however in many conventional settings where, say, human health is concerned, study

units are unlikely to switch subpopulations over time. For example, in Chapter 5, I
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considered modelling Rheumatoid Arthritis (RA) patient outcomes. While outcomes
are expected to vary with time, the relationship between patient characteristics and
outcomes are likely stable over time, so fixing population membership in time is the
more reasonable model choice.

In addition, Hall, and Wang restricted their model to consider only K = 2. In
contrast, the model presented over the following chapters is more general, with K > 1.
Comparing the likelihood functions of the two models illustrates these differences.

In Hall and Wang (2005), with two subpopulations, the conditional density
function of Y;|(X;, Z;, 0) is

fyz‘(yi‘xivziag) = /fyilbi(yi’bi7xi7zi70) X sz(bl)dbl

= /ny”bz(y1j|buxzy7zzy70) X fb,(bl)dbz
j=1

= /ny”bz(yzj|b17XZj7ZZj70) X sz(bl)db’b
=1

= /H[Wlfyijlbi(%'j|bz’>xz'jaZz‘jaﬁp 1)+
j=1

(1 - Wl)fyij|bi(yij|biaxijaZijuﬁQu 2)] X fbi(bi)dbi

Comparing this likelihood to (2.1), the variable 7 is inside the integral allowing for
a subject to belong to one subpopulation at one specific time point, and a different
subpopulation at a later time point. While this is useful in certain situations, it is
not a finite mixture model. The work in this thesis extends GLMMs by applying a

GLMM to each subpopulation. Because I assume that all of the observations from a

13



given subject are correlated, it is logical that all of those observations would come
from the same subpopulation.

Other papers have shown similar special cases, but have not provided a general
approach to FinMix GLMMs. Wang et al. (2002) shows a mixture of two or three
Poisson regressions, but as with Hall and Wang (2005), the measures from a given
subject can come from any of the subpopulations. Classification is the focus of Grun
and Leisch (2008), they assume the outcome follows a multinomial logit distribution.
In addition, they assumed that fixed effects are the same across all subpopulations,
and only the random effects differ across subpopulations, with special attention
given to the case with a random effect on the intercept. Dunson (2000) take a
Bayesian approach to consider clustered mixed outcomes. While some of the models
discussed in Dunson (2000) are similar to a FinMix GLMM, the majority of the models
are different, and Dunson (2000) used a Bayesian approach rather than frequentist
paradigm.

2.2 Computational Algorithm

Next, consider the computational tools that I used for estimation of the parame-
ters in a FinMix GLMM. I implemented a Maximum Likelihood Estimation (MLE)
approach, but there is no closed-form solution for the estimates in a FinMix GLMM.

The EM algorithm is ubiquitous in statistics. As noted by Dempster et al. (1977),
Rao (1955) explored a special case of the EM algorithm for a multinomial outcome.
While such special cases were published earlier, the general idea of the EM algorithm
was first introduced by Dempster et al. (1977), and explored in McLachlan and

Krishnan (2008). The motivation behind EM was to expand the possible settings
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in which one could compute an MLE using an iterative algorithm. Each iteration
consists of two steps, an expectation step (or E-step) followed by a maximisation step
(or M-step). In EM, one starts with incomplete data, and then estimates unobserved
values, for example, nuisance parameters, or latent values, to form the complete
data. Given the complete data, the MLE may be easier to compute. Because of the
popularity of EM, it continues to be discussed in review articles such as Meng and
van Dyk (1997), and Lange et al. (2014).

The EM algorithm is a popular computational choice in the literature for both
GLMMs, and finite mixtures. Because one can view subpopulation membership as
a missing variable, EM is a natural fit for finite mixture models, and Jansen (1993)
explore EM for finite mixtures of GLMs. Similarly, the random effects in a GLMM
can also be viewed as missing data and much has been written on the use of EM for
mixed-effects models as well. For instance, Anderson and Hinde (1988) use EM for
GLMMs, Laird et al. (1987) looks at using EM for situations with repeated measures,
and Steele (1996) shows modifications to ease computation in the E-step when a
GLMM is being used. Lindstrom and Bates (1988) provided a comparison of EM
to Newton-Raphson in linear mixed-effect models, and Meng and van Dyk (1998)
proposed computationally improvements.

Rather than considering the most general formulation of EM, the focus here is
on EM as applied to FinMix GLMMSs. In this thesis, EM is used to estimate the
probability that a subject belongs to each of K distinct subpopulations leading to
the estimation of 7, and then again to estimate the random effects which informs

the estimation of B, and .
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[ started with an initial value for the parameter vector ®, denoted ®®. To
estimate the mixing proportions, 7, ms, ..., 7Tk, | first estimated the membership
probability of each individual in each of the subpopulations, and denoted them 7;.
This required calculating the likelihood for each individual, and each subpopulation
using (2.1) under ©©. T then calculated 73, for each k € {1,2,...,K}, and i €
{1,2,...,n} according to:

W= =F : ?(: %X“Z“BS)’ (t)l(:)><t>
done1 T Jye (YilXi Zis By, )
m [ (vilbi X, Zi By k) X fi, (by)db
S ff}(ril\)bi(Yi|bi7XivziHBh’ n) X fo,(b;)db
) me L L, islbi X, 265, By, k) X fo,(by)db
> 17Th fH fb(;Zb (¥i1bi Xij, 2ij, By n) X fo,(bi)db

As there is no closed-form solution to these integrals, I calculated an approximation

using Monte Carlo integration (Robert and Casella, 2010, Chapter 3). That is,
I generated L values of b; from a standard Gaussian distribution, and replaced
the integral by a summation over these L values. Because I used Monte Carlo
in the E-step, this algorithm can be more accurately described as a Monte Carlo
Expectation-Maximisation (MCEM) (Wei and Tanner, 1990).

Next, to compute 4, I used another EM loop, or more specifically, another
MCEM loop. Dempster et al. (1977) showed this approach for the computation of
the variance-covariance matrix in a mixed-effects model, and Laird (1982) explored it
further. Again, I generated L estimates of b; for each i € {1,2,...,n}. Note that I
generated b; in this MCEM from b;|y;, X;, Z;, By, &, not from a standard Gaussian

distribution or indeed from any standard distribution. As such, I used rejection
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sampling (McLachlan and Krishnan, 2008, Chapter 6) to generate values for the
E-step in this situation.

Following the work of Gilks and Wild (1992), and Robert and Casella (2010,
Section 2.3), I chose rejection sampling to generate L estimates of b;, as done
in Ibrahim et al. (1999). I generated potential b;s by calculating the MLE for
b;lyi, Xi, Zi, Bk, &, and the Hessian matrix at this point. I then generated points
from a Gaussian distribution with the mean set to the MLE for b;, and the variance
set to the negative of the inverse of the calculated Hessian matrix. These points are
then the proposed values for a rejection sampler, which I repeated multiple times.
These Metropolis iterations improve the sample to make it more representative of the
posterior distribution. Points that are accepted become the L potential b;s used in
the next step. Note that I generated L potential b; values for each n in each of the k
calls to the inner MCEM used to estimate the random effects. Section C.4 shows this
algorithm in detail.

The M-step of the inner MCEM algorithm maximises the log-likelihood of each
of the K subpopulations, represented by the function Qx(0y), with respect to 3,
and  using Newton-Raphson. The log-likelihood for each subpopulation is

Qi(0y) = ZTki x log| fy, (vilX;, Z;, 0r))-
i=1

Newton-Raphson was first discussed as a root-finding method, see (Ypma, 1995;
Hazewinkel, 1988, p. 1231), but when used to find the root of the first derivative of a
function, it finds local optima. The problem of optimisation is longstanding, and there

are many possible solutions. In this thesis, I applied Newton-Raphson to maximise the
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approximate likelihood or penalised likelihood. This likelihood was weighted by the
values of 73; to incorporate the finite mixture structure of the population. Given the
approximate likelihood, along with its first, and second derivatives, Newton-Raphson
successively updates estimates according to 80" = 0\ — [Q7(6\))]71Q.(8\Y). In
this thesis, I implemented Newton-Raphson in the M-step of the inner MCEM loop.
2.3 Variable Selection With Penalisation

The issue of variable selection in regression is a difficult and important problem.
Given a data set with even a modest number of variables, there are a large number of
possible models to explore, and considering all of them is computationally expensive
(Buhlmann and van de Geer, 2011, Chapter 1). Variable selection is not a new subject
in GLMMs or finite mixtures. Within the GLMM literature, variable selection has
been considered in a variety of situations, including with finite support random effects
distributions (Leung and Elashoff, 1996b); Bayesian variable selection (Chen et al.,
2003); bootstrap tests for determining if a variance component is non-zero (Sinha,
2009); selection of both fixed and random effects using LASSO, ALASSO, and SCAD
(Ibrahim et al., 2011); a GLMM specific Akaike Information Criterion (AIC) (Yu et al.,
2013); using an L; penalty (Groll and Tutz, 2014); penalised quasi-likelihood (Pan
and Huang, 2014); and an algorithm called GLMMLasso (Schelldorfer et al., 2014).
The issue of variable selection has been discussed in the literature for finite mixtures
of regression models by Khalili and Chen (2007), FMLMESs by Du et al. (2013), and
the high-dimensional case of finite mixtures of Gaussian models in Devijver (2015).
In this thesis, I focused on three penalties for variable selection, LASSO, ALASSO,
and SCAD.
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Prior to the advent of penalisation variable selection techniques, common algo-
rithms for variable selection included stepwise regression, and all subsets selection.
When all subsets regression was performed, then regression models were compared
based on information criteria as discussed in Nishii (1984). A number of information
criteria have been suggested including AIC (Akaike, 1998), Bayesian Information
Criterion (BIC) (Schwarz, 1978), and generalised information criterion (Pu and Niu,
2006). However, these algorithms may not result in the same model being chosen
(Huo and Ni, 2007), and there may be a lack of stability in model selection (Breiman,
1996). Lavergne et al. (2008) provides a specific formulation for information criteria
in GLMMs. Another possibility is predictive cross-validation as proposed by Braun
et al. (2014).

Certain penalty functions posses a number of desirable properties, including the
oracle property, and consistency. These properties are not guaranteed by stepwise
regression or all subsets selection. Buhlmann and van de Geer (2011, Chapter 6)
considered this idea further. In addition, much of the literature on variable selection
in mixed-effects models has considered variable selection on only the fixed effects,
and not the random effects (Schelldorfer et al., 2014; Groll and Tutz, 2014).

The LASSO, while not the only penalty function that has been used, is the
most commonly used penalty function (Tibshirani, 1996, 2011). LASSO uses an
L1 penalty on the likelihood function, which together is often called the penalised
likelihood. In general, the LASSO penalty function takes the form p, ,(0) = A\.x|6].
In the case of a FinMix GLMM, the penalty, when only the fixed effects are being

examined, is py,, (0x) = Ak Z§=1 | Br;| with 61)%"5—’1(_%) = Anisign(fy;). Similarly, if
°J
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a penalty is applied to both the fixed, and random effects, the penalty becomes

Pk (01) = Xk D251 |Brjl + Ak D251 |kl = Aok D251 |Brj| + Ak D25 dij, and the
partial derivatives are ap%nﬁ—ig) = A\ X sign(fBy;), and wg"d—’fw = M. The second
derivatives of the penalty are equal to zero, both with respect to fi;, and d;. Note
that using LASSO results in a biased estimate (Fan and Li, 2001).

Two major shortcomings of the LASSO penalty are that the penalty is of the
same magnitude regardless of the size of the parameter, and that the derivative of the
penalty function is not continuous. Adaptive LASSO or ALASSO provides a solution
to the first of these problems. This is done by adding weights to the penalty function
as explained in Zou (2006). The choice of the weights must be specified by the analyst
and is commonly chosen to be the inverse of the maximum likelihood estimate as
proposed by Zou (2006). This, however, requires the calculation of the MLE, and
as such could be considered a two-step estimation procedure. The ALASSO penalty

function for a general model is py , (0) = A\xw|6).

If only fixed effects are comsidered, then py,, (0x) = Aux D_7_; w;jlBr;| with

ap%—i@) = Appw; X sign(fy;). Similarly, if a penalty is applied to both the fixed, and
J
random effects, the penalty becomes py,, (8) = Ak D5 W5l Brjl+Ank D7) Wpyjldis| =

. o 3 0
Ank Z§:1 w;| Bl + Ak 2521 Wp4;drj, and the partial derivatives are %}ff’“) =

Ankw; X sign(By;), and ap*a”d—kki@“) = ApWp+;. Again, the second derivatives of the
penalty with respect to both f;, and dj; are equal to zero.
As previously noted, the inverse of the MLE is the most common choice for the

weights in ALASSO, and the weights I used in this research. However, the theory
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in Zou (2006) is general to w = |@]~* where a > 0, and 6 is a root-n-consistent
estimator for the true value of 6.

While ALASSO reduces the bias on large values of parameter estimates, it does
not change the shape of the derivative of the penalty function. As such, the first
derivative of the penalty function for ALASSO is not continuous.

Fan and Li (2001) described the SCAD penalty as a solution to the problems

with previous penalty functions and is

ap Ank (Q>
00

(@A — 10])

:AM{MQS&M+ M—DM;H@>A“%'

If only fixed effects are considered then

O ()
9Pr;

(adnk — | Brjl)
(a — 1)>\nk

= Ak {I(|5kj| < Ank) + (181 >/\nk)}-

In the case where both fixed, and random effects are penalised,

0}9)\ k<0k) (a)\nk _ |5k]|)+
Ak \TRT 1< |
9, Ak L(1Bk;| < Ank) + G Dh I(1Bi] > i) b
and
Opr,. (0) (aMni — dyj)+
o, Ank 4 L(di < Ani) + @D I(dj > Mor)

Note that (t)y =t x I(t > 0), and a > 2.

These penalty functions are widely used in medical research. The LASSO has
been used to perform variable selection in many medical applications, ranging from
oncology (Olk-Batz et al. (2011), Wu et al. (2011)) to neurology (Zhou et al. (2012),

Baradaran et al. (2013)), and has seen considerable use in genetics analyses, where
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dimensionality is often very high (Ghosh and Chinnaiyan (2005), Usai et al. (2009),
Olk-Batz et al. (2011), Wimmer et al. (2013)). The ALASSO penalty function
has been applied to various statistical models in the past. In addition to the high-
dimensional linear regression case (Huang et al., 2008), ALASSO has been applied to
general transformation models with right-censored data (Li and Gu, 2012), varying-
coefficient partially linear measurement error models (Wang et al., 2013), zero-inflated
count data (Zeng et al., 2014), joint models of longitudinal, and survival outcomes
(He et al., 2015), Poisson regression (Ivanoff et al., 2016), and nonlinear mixed-effect
pharmacokinetic models (Haem et al., 2017). While ALASSO has not been as widely
used as LASSO, it has also been used for gene selection, including cancer classification
(Algamal and Lee, 2015). The SCAD penalty has not been as popular as LASSO
but has been used in a variety of settings including geostatistics (Chu et al., 2011),
and denoising images (Chopra and Lian, 2010). In the medical field, SCAD has been
used for variable selection in applications including genetics (Lu et al., 2011), liver
fibrosis (Yan et al., 2011), and Magnetic Resonance Imaging (MRI) (Mehranian et al.,
2013).

In conclusion, many regression models have been developed for analysing data,
starting with classical linear regression, and building upon this framework to GLM,
and mixed-effect models. These extensions allow for accurate modelling of more
complex data, or situations that violate the underlying assumptions associated with
linear regression. In some cases, however, there is underlying heterogeneity in a
population, and using the same model for the entire population is not appropriate. In

these cases, a finite mixture of regression models could be a suitable choice. Next, I
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introduce the computational methods that I used in this thesis, precisely EM, MCEM,
and Newton-Raphson. Finally, I reviewed a variety of penalties that can be used for
variable selection, specifically LASSO, ALASSO, and SCAD.

While many regression models have been explored in the literature, as of yet, a
FinMix GLMM has not been explored. While many simpler models, including GLM,
GLMM, and finite mixtures of regression models have been considered, combining
them to produce a FinMix GLMM has not been done, making this a gap in the
literature that this research fills. In addition, the use of penalised likelihood for
performing variable selection has been studied extensively for certain circumstances
(namely linear regression), but it has not been explored as fully for many other
regression situations. Therefore, the inclusion of variable selection in this thesis is
another important contribution to the field. Having considered the relevant literature,

the next chapter considers the formulation, and computation of the MLE.
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CHAPTER 3
Objective One: Finite Mixtures of Generalised Linear Mixed-Effect
Models and Their Maximum Likelihood Estimates

3.1 Introduction

In this chapter, I developed the Finite Mixture of Generalised Linear Mixed-Effect
Model (FinMix GLMM). This type of model can be used to analyse data that is
both longitudinal in nature, and includes underlying heterogeneity in the population.
Using a mixed-effect model accounts for the correlation between repeated measures
in the longitudinal data, while a finite mixture of models allows for the modelling
of the underlying heterogeneity in the population of interest. I assumed that the
subpopulation membership of each subject (also called a patient or cluster) in the
population is unknown. In addition, all of the observations from a given subject
are assumed to be from the same subpopulation. I assumed that the distribution of
the outcome within a given subpopulation follows a Generalised Linear Mixed-Effect
Model (GLMM) and is therefore from an exponential distribution. In this work, I
excluded from consideration the Gaussian distribution, as this was explored previously
in Du et al. (2013). Combing these two elements, that is GLMMs with finite mixtures,
allows for modelling of more complex datasets, and permits consideration of additional
sources of heterogeneity.

In Section 3.2 I formally define the FinMix GLMM and discuss its identifia-

bility conditions. In Section 3.3, I derive the maximum likelihood estimate, and
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described computational aspects of an estimation procedure based on the Monte Carlo
Expectation-Maximisation (MCEM) algorithm. I then explored the performance
of the Maximum Likelihood Estimation (MLE) via simulation in Section 3.4, and
Section 3.5 concludes.

3.2 The Finite Mixture of Generalised Linear Mixed-Effect Model

I established the notation in the previous chapter but have reiterated here.
Identifiability of the model is also considered.

3.2.1 Model Definition

Consider a set of n independent observations (y;, X;) where subject i has n;
replicates. For subject i, the vector y; contains the outcomes, and the matrices X;,
and Z; contain covariates. In the FinMix GLMM, the covariates X; are associated with
fixed effects, the covariates Z; are associated with random effects, and all variables
for which there is a random effect, there is also a fixed effect.

Consider next the unknown parameters. The mixing proportions for the K sub-
populations are w = (71, o, ..., Tx_1) Where Zszl m, = 1. Similarly, separate regres-
sion parameters 3, and j describe the relationship between the covariates and the out-
come for each subpopulation. Recall that b; follows a ¢ dimensional multivariate stan-
dard Gaussian distribution, and the vectorised version of jis ;. All of the estimated
parameters are grouped into one vector ® = (w, 8/, 7,8y, 5',...,Bk, ). The
vector 0, = (B,;r, *T)T contains the regression parameters for a single subpopula-

tion.

25



Recall that the conditional density function of the random variable Y;|(X;, Z;, ©)
in a FinMix GLMM with K subpopulations, at the realisation y; is

K
FoyilXi, Z:,©) = Dm0 (yilXi, Zi, Byy )

k=1

SO (30X Ze B 1) = / B ilbi X Zis By ) X i (bi) b,
= /Hf;fj)bi(yiﬂbiaxijyZijaﬁka k) X fo,(bi)db;.
j=1

Recall that Y;|(bi, xi;, Zij, Bi, &) follows an exponential family, with an appro-
priate link function (g), I used the canonical link function in this thesis. Considering
just the k™ subpopulation, E[y;;|b;,Xij, B, & = 9(xi;jB) + 2i; 1b;i), and combin-
ing all subpopulations, E[y;;|b;,x;;, ®] = Zszl Tkg(Xij B + zi; 1by). 1 discussed
estimation of the parameters in Section 3.3.

Next, consider two well known exponential family distributions for discrete data.
In the Poisson case, Y;|b;, Xij, Zij, By, 1 ~ Poisson(&;;) where log(&;;) = xi;08;, +
z;; 1b;, and in the binomial case, Yi;|b;,Xij,Zij, By, &, Mij ~ binomial(mj, i;)
where logit(v;;) = x:;8, + 2i; 1b;.

3.2.2 Identifiability

Identifiability is critical for valid statistical inference. In general, a statistical
model is said to be non-identifiable if two distinct sets of parameters lead to the
same probability distribution. In contrast, a parameter 0 for a particular family of
distributions f(z|0),0 € © with a sample space of x € S is identifiable if different

values of 6 correspond to different probability density functions. That is,

0 #n= f(x]0) # f(z|n)Vz € 5.
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First, assume that a FinMix GLMM can be written in the form

K
fyi(yilXi, Z:,©) = Zﬂkf§lf)(Yi|Xi,Z¢75ka k)-
k=1

Given a set of covariate matrices (X1, Xy, ..., X, ), corresponding to the fixed effects,
and (Zy,Z,,...,2Z,), corresponding to the random effects, the FinMix GLMM is

identifiable if for any two vectors ® and ©F
K Kt
> m P ilXi, Zi, By, k) = D wL D (vilXi 23, B L)
k=1 k=1

for all possible values of y;, and each i = 1,2,...,n then K = Kf, and ® = OT.
For a finite mixture model to be identifiable, the models for each subpopulation
must also be identifiable (Teicher, 1963; Atienza et al., 2006). First, I considered
identifiability conditions for GLMMSs, followed by identifiability conditions specific to
finite mixtures.

As is the case in linear regression, det(X " X) # 0. When categorical variables are
present in the model, the model must be parameterised such that one category (often
the most common category) is the baseline, or parameterised using a sum-to-zero
constraint. Three additional factors are important for the identifiability of a FinMix
GLMM,, similar to a Finite Mixture of Linear Mixed-Effect (FMLME), and following
from Hennig (2000): (i) density of the subpopulations, (ii) number of subpopulations
K, (iii) design matrices of covariates.

Using the matrix

| XX X

Z.,Z5, ... Zm
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Hennig’s condition translates to the restriction that K must be smaller than the
number of (hy — 1)-dimensional hyperplanes covered by the rows of Y. Since it is
typical in GLMMs that any covariate that has a random effect also has a fixed effect,
this may be simplified by excluding the Z;s from the matrix T.

Following the work in Labouriau (2014), I provided two conditions for identifia-
bility of a GLMM. A GLMM is identifiable if [ g(x;;8), + zi; xb;) X fo,(b;)db; < 00
and g(x;;8; + zi; kb)) k)" = 9(XijBrs + Zij b)) k) VX, V2 = B, =
Brwr &= ks

There are three types of non-identifiability that are specific to finite mixture
models. Label switching is a common type of non-identifiability in finite mixtures
of models. This is also known as non-identifiability due to invariance in relabelling
the components and occurs when the mixture components can be relabelled without
changing the likelihood (Redner and Walker, 1984). A simple solution to this is to
impose a strict ordering constraint on a single element, usually 7.

Next, consider non-identifiability due to potential overfitting. In this case,
two mixture models, one with K subpopulations, one with K — 1 subpopulations,
are equivalent. FEither one of the K subpopulations is empty, or two of the K
subpopulations have equal regression parameters. Again, this can be solved by
imposing a strict ordering constraint, and that 7, > 0, Vk € {1,2,..., K}, and
checking that each subpopulation has distinct regression coefficients. One potential
problem occurs when 7, = 7+, in which case the user must impose an order.

Consider an example FinMix GLMM with © = (71,8/, ',8,, 5)', and a

set of covariate matrices (X, Xy, ..., X,), corresponding to the fixed effects, and (Z;,

28



Zy,...,Z,), corresponding to the random effects. Note that this model defines a
two subpopulation distribution. Let ©F = («I, 817, *T gIT "7 = (1-m),8,,

T
;T71617 ;T)T' Then7

2
fyi(yilXi, Z;,©) = Zﬂkf)(f)(yz'fxuzmﬁk k)
k=1
= mfPWilXi, Zi, By, 7))+ mfO(yilXi, Zi, By, )
= mfPVilXi, Zi, By, 3) + mfP(yilXi, Zi, By, )
= ﬂf)(,i)(}’i\xi,zuﬁia I*)+7T£f§?)(}’i|xi,zi>5£>r§*)
2
= Zﬂl;f§f)<yi|xiazi76£a L*)
k=1

= fyi(yi|xi7 Ziv G)T)

Thus, this model is unidentifiable. This is an example of non-identifiability due to
label switching, and can be avoided in many cases by imposing the requirement
m > me. This constraint does not solve this problem when m; = 75, so in that case
the additional requirement that f1; > f9;. If 1y = m and [y = (o1, then impose
the requirement (515 > 22, and continuing on in this way if 515 = (22. Note that if
all of the parameters in both subpopulations are equal, the subpopulations are not
distinct and there is only one subpopulation. As such, at least one parameter for
the two subpopulations must be unequal, and the first of these is used to impose the
constraint.

I assumed the model is identifiable if the above restrictions are met.
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3.3 Maximum Likelihood Estimation

To calculate the MLE, I first considered the likelihood equation. I then examined
the numerical computation of the MLE as well as specific details in the Poisson, and
binomial cases.
3.3.1 Likelihood Equation

Let (yi, Xi),7 € {1,2,...,n} be a sample from a FinMix GLMM as described in

(2.1). The likelihood function is given by

n

L,(©) = [l (vilX.Zi ©)]

i=1

and the log-likelihood as

£,(0) = log[L,(©)

= log{H fy yzlx’uzw@)]}

=1

= . log[fyz(}’zp(uzz?@)]

The MLE is defined as © = arg max(L(©)). Due to the complexity of the model, I
approximated the likelihood by replacing the integral in (2.1) with a sum over a large
number, L, of generated values of b; for each of the n patients.

Many useful asymptotic properties of maximum likelihood estimators can be
applied to these estimators. Specifically, consistency (Chen, 2017), and asymptoti-
cally following a Gaussian distribution are consequences of the maximum likelihood
procedure. However, the usual regularity conditions are needed, and can be found in

Appendix D.
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3.3.2 Numerical Computation of the Maximum Likelihood Estimator

The MCEM algorithm is popular in many settings and has been widely used
as detailed in Chapter 2. In this application, I applied the MCEM algorithm twice.
The outer MCEM loop treats the subpopulation membership indicators as missing.
That is, the information about which patient is in which subpopulation is unknown,
and thus estimated. Estimating the probabilities of subgroup membership is in the
outer MCEM. The inner MCEM loop treats the subject-specific random effect b;
as missing, and calculates the regression parameters 3,, and ;. I summarised this
algorithm in Section C.1.

Estimating the Subpopulation Membership; The Outer Monte Carlo
Expectation-Maximisation Algorithm

To estimate the mixing proportions 7y, mo, ..., Tk, I first estimated the member-
ship probability of each individual in each of the subpopulations, which I denoted as
Tri- 1 did this by calculating the likelihood for each individual, and each subpopulation,
and then combining this information to find probabilities 73;. Specifically, I calculated

Tk for each k€ {1,2,..., K}, and i € {1,2,...,n} according to:

A X2 B )
Zh:lﬁ}(zt)fi (Yz|xzazu h)7 Ezt))
) ff;lj\bi (yilbi Xis Zi, By &) % fo,(b;)db
Zf V[ Ly, Y-lbi,xi,zi,BhS ) % fo,(bi)db
ti S TIj Fon, ialDos X5, 233, B 1) X o, (by)db
thl ﬁ-i(zt) ijzl f)(szi (yij|bi7xijazijaﬁha Ah) X fbi(bi)db

Tki =
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Because the b;s are unknown, the integrals in the numerator, and denominator of
Equation (3.1) must be approximated. This forms the E-step of the outer Expectation-
Maximisation (EM) algorithm. In order to approximate this integral, I generated L
potential values of b, for each i € {1,2,...,n}, and k € {1,2,..., K} from a standard
multivariate Gaussian distribution. A superscript on b; denotes that the bgl) was
generated in the estimation process rather than the unobserved b;.

w [T f;jj>|b <yij|bi,xz-j,zijﬁk, 1) X fi,(by)db
Zh 1 A(t)fH U|b yw|bz,xw,zlj,,8h, n) X fo,(b;)db

LS T £, i DY i, 245, By )
a1 i T Fy e, (s B 35235, B )

t) Zl 1 H fy”|b (y”|b Xijvzijuéka Akz)

S ) S T £, (islbl %05, 265, By 1)

Note that 7; is specific to patient ¢, and subgroup k but general to all visits j =

Q

1,2,...,n; for patient 7 because I assumed each patient is a member of one, and
only one subpopulation. In cases where both the numerator, and denominator were
calculated to be zero or numerically very close to zero, I set 7;; = % for all k. That
is, when these calculations show that membership to each of the subpopulations is
equally unlikely (given rounding error), I assigned an equal probability of belonging
to any of the subpopulations, which can be thought of as a uniform prior distribution.
This case occurs most frequently when the estimates in ® are poor or the true value

for b; is extreme.
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I then estimated the mixing proportions by taking the empirical average of the

individual subpopulation membership probabilities:

n
R 1
T — — E Tki-
n <
=1

Maximising the likelihood with respect to B, and  for k € {1,2,..., K} forms the
M-step of the outer MCEM algorithm. This involves calling the inner MCEM for
each k (each subpopulation). I used the values of 73; as weights in the inner MCEM
loops.

Estimating the Random Effects; The Inner Monte Carlo Expectation-
Maximisation Algorithm

Consider the inner EM for a particular k € {1,2,..., K'}. Generate L estimates
of b;s for each i € {1,2,...,n}. Note that when I generated b;, I generated it from
b;|yi, Xi, Zi, By, &, not from a standard Gaussian distribution or indeed from any
standard distribution.

Instead, I generated potential b;s by calculating the MLE for b;|y;, X;, Z;, Bk, &,
and the Hessian matrix at this point. Next, I generated points from a multivariate
Gaussian distribution with the mean set to l;i, the MLE for b;, and the variance-
covariance matrix set to the negative of the inverse of the Hessian matrix. I then used
these points as the proposed values for an accept/reject sampler which I repeated
multiple times. These Metropolis iterations improve the sample to make it more
representative of the posterior distribution. Points that were accepted became the L
potential b;s used in the next step. Note that L potential b; values were proposed for

each n in each of the k calls to the inner MCEM loop. I denote these b,(fi). Note that
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bi|yi, Zi, Xi, By, 1 ;é b;|yi, Zi, Xi, By, 2, so I generated different values of b; for each

of the K subpopulations. A more detailed algorithm can be found in Section C.4.
The M-step of the inner MCEM algorithm maximises the log-likelihood of

each of the K subpopulations, represented by the function Qy(6y), with respect to

0 = (B,, :7)T. The log-likelihood for each subpopulation is

Qu(0k) = Y mhi x log|fy, (vilXi, Zi, 0x)].
=1

Newton-Raphson was used to maximise the approximate likelihood. I weighted
this likelihood by the values of 7;. Given the approximate likelihood, along with

its first, and second derivatives, the next iteration of @, was defined as O,ESH) =

0,(:) - (%)‘[Q%(G,&S))]*le(Oé‘s)) where ¢ = 0 in most cases, but can be changed to
facilitate half step Newton-Raphson.
3.3.3 Examples

In this section, I derived the MLEs, and provided computational details for two
specific FinMix GLMMs: a finite mixture of Poisson, and a finite mixture of binomial
distributions.

Approximate Likelihood - Poisson Case

The approximate likelihood in the Poisson case uses the canonical link function,
and a sum over generated values of b,(i’l) to replace the integral. As previously, the
superscript denotes that b,g‘z’l) was generated as part of the estimation, and is not the

latent b;. To simplify and condense the equations in the remainder of the chapter I
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shortened 7, 77 > iy to >, . The resulting likelihood equation is

QWO) = QB =7 D m [uslon(e) — €]

Li,j

! l - opsD
= Z ZTki [yisz‘j,gk + YijZij kb;;’) — exljﬁk"f‘zu kD, ] )

l7i7j
To maximise this approximate likelihood, I used Newton-Raphson. This requires
calculating both the first, and second derivatives with respect to 6. These derivatives

are shown with respect to 3, and j separately, and are as follows:

8Qk(ﬁk k) 1 (s,1)
) — E iiBr+2zij Kby,

OBy Li,j
1 (s,0)
_ iBu+zi; wb7Y ] .
= I § ThiXij [yij — XuPitas wb ] ;
l7i7j
0Qr(B ) 1 r (s,0)
ko k) _ () xi;Butzi; kbt (s,))
TR = 3 [ bl — P b
k Lij
_ 1 [ XijBrt+2zij kbﬁj’” b(s’l)'
- 7 Tki |Yij — € ZijDy; 5
Lyij i
2 _
a Qk(ﬁk? k) 1 T xi:Bu+zi; b(s,_,l)
— T = 7 Thi | —XijX; e IR KRR
aﬁk a/gk L 1ij -
2 _
0 Qk(ﬁk, k) . l ' —X"Z"b(syl) Xi;BL+2ij kb](:ial) .
a/@Ta * - L Tki 1)) Pk € ’
k™~ k Lyij i
2 _
M — l E Thi x..7.. b oxiiBtzi; kb;(:i’l)] :
w1 = i ij%ij Py )
0 3 JJc L e L
2 _
0 Qk(ﬁk, k) - l N ”b(s,l)( --b(s’l))T x;jBr+zij ’“bx(f;’”
9 *T9 * -7 Tki | —2ijDp; "\ZijDy; e .
k= ok Li,j )

Additional details on these derivations by way of element-wise calculations can be

found in Section B.1.
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Approximate Likelihood - Binomial Case

The computation for the binomial case is much the same. However, the link
function is different, and the number of trials (m;;) must be included in the likelihood
as well.

Qu(0) = Qu(Br, &) = %Zm [yi 1og(priz) + (mij — yi;) 1og(1 — Pri;)]

Li,j

L s X Z (s,1)
= Z Z Thi |:yz_](xzj,8k + Z;j kb](c,;l)) — My 10g<€ iiBr+2i; kb + 1):|

l7i7j
As with the Poisson case, I calculated the first, and second derivatives for their use

in Newton-Raphson, to maximise the likelihood in the M-step of the inner MCEM.

OQk(Br: k) 1 i : (s.)
a—ﬁk z Z Tki _yin,;j — minijGXplt(Xij,Bk + Z;j kbkz >i|

Lirj
1 [ . s,l
= 7 ZTki Yij — m;jexpit(xX;; B, + zi; kbl(cz' ))} Xijs
1,i,j
a 1 i s S . S
% -7 > i [yizigbiy” — mizibis? < expit(x;By + 2 ’“b’(ﬂ'l))]
k Li,j i
1 [ . s,l s,1
= 7 > T |y — majexpit(x;;By + zi; by ))} x 2Dy
li,j )
0? 1 [ ij ij b
Qk:(Tﬁzm k) _ _ZT’“' _Xiniijij exp(Xi; By, + i l(vs l;ﬂ ) :
8,6’k aﬂk L Lig i (exp(Xij,Bk + Z;j kbki’ ) + 1)2

: (s0y ]
(s,]) exp(xi; By, + Zi; £by;") .
—XijZijby; i . D e
(exp(xi;8), + 2i; 1by;") +1)?

QB &) 1
o T Ia™

l7i7j -

8,0
PQu(By k) 1 S —x;;7:b 0, exp(xi;8; + 25 1bj") .
* - ? 1] 7 1] s ’
0 5. 0By, Lim | (exp(xi;8; + 75 kbyy") +1)2]
i sl
PQ(By k) 1 Z 7t | =200 (2,bE) T, exp(xi;B, + 2y 1bS")
* T * _ ? ) 7 1) 7 ) s
0 k0% L L (exp(xiiBy + 2i; xbiy") +1)2
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Table 3-1: Simulation settings for MLE.

Outcome K n Dim(8) Dim( ) Dim(©)
Poisson 2 100,250, 500, 1000 2 1 7
Poisson 2 100, 250, 500, 1000 ) 1 13
Poisson 2 100,250, 500, 1000 5 2 17
Poisson 3 100,250, 500, 1000 2 1 11
Poisson 3 100,250, 500, 1000 5 1 20
Poisson 3 100,250, 500, 1000 5 2 26

Binomial 2 100,250, 500, 1000 2 1 7

Binomial 2 100,250, 500, 1000 5 1 13

Binomial 2 100,250, 500, 1000 5) 2 17

Binomial 3 100,250, 500, 1000 2 1 11

Binomial 3 100,250,500, 1000 5 1 20

Binomial 3 100,250,500, 1000 5 2 26

Recall that expit is the inverse of the logit function, that is expit(z) =

I have included additional details on these derivations in Section B.2.

3.4 Simulation Study

I designed and executed a simulation study to demonstrate the performance
of the MLE of the FinMix GLMM parameters. I ran simulations for both Poisson,
and binomial outcomes, with scenarios which included mixtures of two, and three
subpopulations, and varied the number of fixed, and random effects. I considered
four sample sizes (100, 250, 500, 1000) for all simulations and ran each scenario 100

times. See Table 3—1 for a summary of the scenarios considered. In the Poisson case,

n; € {8,9,10}Vi, and in the binomial case, n; € {3,4,5,6}Vi.

In all cases, a multinomial distribution was used to generate subpopulation
membership. I included an intercept in each model, so the first column of the matrix

Xis of 1s. T generated the covariates independently. In the following, i € {1,2,...,n},
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and j € {1,2,...,n;}. I generated the covariate data as follows:

Tij2 ~ Gaussian(p =1,0 = 0.5)ViVj
for cases where p = 2. When p = 5, I used:

Tij3 ~ Gaussian(p = 0,0 = 0.5)ViVy;
Tija ~ Gaussian(p = —1,0 = 1)ViVy;

zij5 ~ Gaussian(p = 0,0 = 1)ViVj.

For any variable for which there was a random effect, there was also a fixed effect, that
is, all columns of Z are also columns of X. Additionally, if ¢ = 1 then z;;; = x,; ViVy,
and if ¢ = 2 then z;;; = x;;;ViVj, and z;;0 = 2;52ViVj. 1 generated the random
effects b; from a standard multivariate Gaussian distribution. Given the values
of X;, Z;, the group membership, b;, 8;, and § for all k € {1,2,..., K}, I then
generated the outcomes for the simulations. In the Poisson case, &;; was calculated
as log(&;;) = XiTjﬁk + Z;; 1b;, and then Y;; ~ Poisson(§;;). In the binomial case,
logit(p;;) = X;;Bk +2z;; kb;, and Y;; ~ binomial(m;; = 10, ¢;;).

Wherever possible, I used the same parameter settings in different simulation
settings so that the results would be easier to compare, and I provided a summary
of the parameter settings in Table 3-2. Consider first the simulations in which the
outcome follows a Poisson distribution. Beginning with the cases where K = 2, that
is when the population consisted of two heterogeneous subpopulations. In these cases,

I set the mixing proportions to m; = 0.6, and m, = 0.4. When there were two fixed
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effects considered (p = 2), 8] = (—0.75,0.35), and B, = (0.60, —0.50). In cases
where I estimated five fixed effects (p = 5), B = (—0.75,0.35,0.10, —0.40, 0.00), and
B, = (0.60,—0.50, —0.35, —0.15,0.00). For the random effects, when I estimated one
random effect (¢ = 1), 1T = (0.80), and 3" = (0.25). In the case where I estimated
two random effects (¢ = 2), 1T = (0.80,—0.15,0.20), and 3" = (0.25,0.00,0.30).

Turning now to the case where K = 3. In these simulations, I set the mixing
proportions to m; = 0.5, mp = 0.3, and 73 = 0.2. Given two fixed effects (p = 2), I used
B = (—0.75,0.35), B, = (0.60,—0.50), and B; = (0.45,0.75). For the case where
five fixed effects were present in the model (p = 5), 8] = (—0.75,0.35,0.10, —0.40,
0.00), B = (0.60, —0.50, —0.35, —0.15,0.00), and B; = (0.45,0.75, —0.65, 0.20, 0.00).
When one random effect was present in the model (¢ = 1), ;' = (0.80), 3" = (0.25),
and 3" = (0.40). If T estimated two random effects (¢ = 2), the parameter settings
were 1T = (0.80,—0.15,0.20), %7 = (0.25,0.00,0.30), and %' = (0.40,0.25,0.10).

In contrast, when the outcome followed a binomial distribution, I used the
following parameter settings. When K = 2, I set the mixing proportions to m; = 0.6,
and 7y = 0.4. Given two fixed effects (p = 2), 8] = (—0.55,0.85), and B35 = (0.25,
—0.50). Alternatively, when I estimated five fixed effects (p = 5), B8] = (—0.55,
0.85,1.25, —0.70,0.00), and B = (0.25,—0.50, 1.35, —0.20,0.00). For the random
effects, when I estimated one random effect (¢ =1), ;' = (1.60), and 3" = (1.05).
However, when two random effects were in the model (¢ = 2), %' = (1.60,—0.45,
1.00), and 3" = (1.05,0.00, 1.40).

In the more complex case, where K = 3 I set the mixing proportions to m; = 0.5,

7y = 0.3, and 73 = 0.2. When two fixed effects were present in the model (p = 2),
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B = (-0.55,0.85), By = (0.25,—0.50), and B3 = (—0.75,0.35). If the model had
five fixed effects (p = 5), B = (—0.55,0.85,1.25, —0.70,0.00), B, = (0.25,—0.50,
1.35,—0.20,0.00), and ,3; = (—0.75,0.35,—0.50,0.55,0.00). If the model had one
random effect (¢ = 1), 7' = (1.60), 3" = (1.05), and %' = (1.45). Alternatively,
if I included two random effects (¢ = 2), the parameter settings were ' = (1.60,
—0.45,1.00), 3" = (1.05,0.00,1.40), and 3" = (1.45,0.40, 1.30).

The choice of starting values is important in the estimation of FinMix GLMM
parameters because a poor choice can lead to slow convergence or non-convergence in
both EM, and Newton-Raphson. In the following simulations, I generated an initial
value for each generated dataset. I set the initial values of the mixing proportions to

= %, and the off-diagonal values of to 0. For the other values in 8, namely 3, and

Tk
the diagonal values of | I generated the initial value as the true value plus a random
draw from a uniform distribution i.e. 8 = @ + U where U ~ Uniform(—0.5,0.5).
Since the diagonal elements of must be non-negative, in cases where the true value
of a diagonal element of was less than 0.5, I generated the starting value from
Uniform(0.1,1.1). T included more detail on the sensitivity of the algorithm to the
starting values in Section F.2.

To generate each dataset, first, I generated the dataset with n = 1000. I saved
the data for the first 500 subjects as the n = 500 dataset. Similarly, the first 250
subjects’ data became the n = 250 dataset, and the first 100 subjects’ data is the
n = 100 dataset. I did this to make the datasets for each of the possible sample sizes

more comparable.
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Table 3-2: Parameter settings for MLE. Parameter values for both Poisson, and

binomial outcomes, and each of the

six simulation settings.

Outcome Poisson Binomial
Parameter 1 2 3 4 5 6 7 8 9 10 11 12
m 0.6 0.6 0.6 0.5 0.5 0.5 0.6 0.6 0.6 0.5 0.5 0.5
Ty 0.4 0.4 0.4 0.3 0.3 0.3 0.4 0.4 0.4 0.3 0.3 0.3
3 — — — 0.2 0.2 0.2 — — — 0.2 0.2 0.2
B | -0.75 -0.75 -0.75|-0.75 -0.75 -0.75]-0.55 -0.55 -0.55|-0.55 -0.55 -0.55
B | 035 035 0.35| 035 035 0.35] 085 0.85 0.8 ] 0.85 0.85 0.85
B2 0.10 0.10 0.10 0.10 1.25  1.25 1.25 1.25
B3 -0.40 -0.40 -0.40 -0.40 -0.70 -0.70 -0.70  -0.70
B4 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00
I'yy | 0.80 0.80 0.80| 0.80 0.80 0.80| 1.60 1.60 1.60| 1.60 1.60 1.60
| P - - -0.15 - - -0.15 - - -0.45 - - -0.45
T - - 0.20 - - 0.20 - - 1.00 - - 1.00
B | 0.60 0.60 0.60| 0.60 0.60 0.60| 0.25 0.25 0.25] 0.25 0.25 0.25
Ba1 | -0.50 -0.50 -0.50 | -0.50 -0.50 -0.50 | -0.50 -0.50 -0.50 | -0.50 -0.50 -0.50
B2 - -0.35 -0.35 - -0.35 -0.35 - 135 1.35 - 135 1.35
B3 - -0.15 -0.15 - -0.15 -0.15 - -0.20 -0.20 - -0.20 -0.20
B4 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00
I'p; | 025 025 025 025 025 025 1.05 1.05 1.05| 1.05 1.05 1.05
| PSP - - 0.00 - - 0.00 - - 0.00 - - 0.00
| P - - 0.30 - - 0.30 - - 1.40 - - 1.40
B30 - - —1 045 045 045 - - - 1-0.75 -0.75 -0.75
B31 - - -1 0.75 0.7 0.75 - - -1 035 0.35 0.35
B2 — — — - -0.65 -0.65 - - - — -0.50 -0.50
B33 — — — - 0.20 0.20 - - - - 0.55 0.55
Baa - - - - 0.00 0.00 - - - - 0.00 0.00
I3y - - -1 040 040 040 - - —| 145 145 145
310 — — — - - 0.25 - - - - - 040
I'so — — — - - 0.10 - - - - - 1.30

41




MSE Across Sample Sizes, Poisson Scenario 1

MSE

n=100 =250 n=500 n=1000
Sample Size

Figure 3-1: Mean Squared Error (MSE) across sample sizes, Poisson outcome, with
K=2p=2 and ¢=1.

I summarised the results of these simulations in Tables E-1 to E-12, and reported
the average bias, variance, and MSE for each parameter (multiplied by 100) in these
tables. These simulations show that the MLE performs well in a variety of possible
settings. The motivation for using the MLE is that it is a popular method of

estimation. In addition, MLEs are consistent, efficient, and asymptotically follow a
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MSE Across Sample Sizes, Poisson Scenario 2
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Figure 3-2: MSE across sample sizes, Poisson outcome, with K = 2, p = 5, and
q=1.
Gaussian distribution, and these simulations confirmed these theoretical properties.
However, there were also unexpected findings from the simulation study.

The expected results that this simulation study confirmed were that bias, and
variance of the estimates decreased with sample size, and the fewer parameters being
estimated, the better the estimates. As the sample size increased, both the bias, and

variance decreased, and thus the MSE also decreased. Similarly, the estimators for a
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MSE Across Sample Sizes, Poisson Scenario 3
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Figure 3-3: MSE across sample sizes, Poisson outcome, with K = 2, p = 5, and
q=2.

given subpopulation’s parameters showed less variance, and bias, in general, the larger
the subpopulation. That is, in the two subpopulation situation, the estimates in the
larger subpopulation usually had smaller MSE than those in the smaller subpopulation
regardless of the overall sample size n. While the largest sample size I considered
in these simulations was n = 1000, I expect that this trend would continue in larger

samples. Aside from the sample size comparison, the parameters that correspond to
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MSE Across Sample Sizes, Poisson Scenario 4
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Figure 3—4: MSE across sample sizes, Poisson outcome, with K = 3, p = 2, and
q=1.

fixed effects for covariates that did not have a random effect exhibited the least bias,
and variance, followed by fixed effects for covariates that had a random effect, then

diagonal elements of the matrix , followed by lower-triangle elements of the matrix

One surprising result of the simulations was the estimates in the binomial case.

I expected that the estimates for a binomial outcome would be difficult to calculate,
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MSE Across Sample Sizes, Poisson Scenario 5
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Figure 3-5: MSE across sample sizes, Poisson outcome, with K = 5, p = 5, and
q=1.

and that these estimates would show a large MSE. Many of the estimates in the
binomial simulations showed smaller than expected bias, and variance. Another
surprise from the simulation results was that the performance of the model under
relatively small sample sizes was better than expected. In the n = 100, and K = 3

case, the expected number of subjects in the smallest subpopulation is just 20. It was
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MSE Across Sample Sizes, Poisson Scenario 6
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Figure 3-6: MSE across sample sizes, Poisson outcome, with K = 3, p = 5, and
q=2.
encouraging to see that even in this case, the estimation of parameters performed
reasonably.

These simulation results suggest that this statistical model is applicable in a
variety of situations. Because estimates of both a Poisson, and binomial outcome
showed small MSE, outcomes that follow other exponential families could be ex-

plored. Given that the estimates in simulations where the outcome follows a binomial
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MSE Across Sample Sizes, Binomial Scenario 1
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Figure 3—7: MSE across sample sizes, binomial outcome, with K = 2, p = 2, and
q=1.

distribution performed better than expected, one could apply this model with less
hesitation to data with a binomial outcome. The performance of the model in small
sample sizes is encouraging and makes this model more widely applicable. The fact
that the estimation of the parameters corresponding to small subpopulations was

possible indicates that such a model could be applied even if there are many distinct
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MSE Across Sample Sizes, Binomial Scenario 2
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Figure 3-8: MSE across sample sizes, binomial outcome, with K = 2, p = 5, and
q=1.
subpopulations, or if a subpopulation has a small mixing proportion. This suggests
that a FinMix GLMM is a widely applicable model for statistical analysis.

I included a few other possibilities of interest in Appendix F. I explored further
to the case where different values of n; were used in Section F.3. In the case where
the outcome follows a binomial distribution, the value of m,; need not be the same

throughout. I explored this possibility in Section F.4. The MLE results for simulation
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MSE Across Sample Sizes, Binomial Scenario 3
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Figure 3-9: MSE across sample sizes, binomial outcome, with K = 2, p = 5, and
q=2.
scenarios from Chapter 4 are in Appendix H. These show the performance of the
MLE in a variety of more complex settings.
3.5 Conclusion

In this chapter, I explored the form of the FinMix GLMM, including the likelihood
equations, and details around identifiability. I also included an explanation of the

derivations, and numerical calculations used to maximise the approximate likelihood. 1
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MSE Across Sample Sizes, Binomial Scenario 4
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Figure 3—10: MSE across sample sizes, binomial outcome, with K = 3, p = 2, and

q=1.

then used these derivations in the implementation of an MCEM algorithm to estimate
the MLE for both a Poisson or a binomial FinMix GLMM. Next, I performed
a simulation study to verify, and illustrate that the proposed algorithm provides
reasonable estimates in the MLE case. In the following chapter, Chapter 4, a penalised
likelihood is used to select which variables are non-zero, and which variables are zero.

In preparation for this, all simulations in this chapter with p = 5 contained one value
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MSE Across Sample Sizes, Binomial Scenario 5
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Figure 3—11: MSE across sample sizes, binomial outcome, with K = 3, p = 5, and
q=1.

of B for which the true value was 0 (the last value) in the vector 8,. In addition,
when ¢ = 2 I set one of the off-diagonals in the matrix to 0 as well. In this way, I
considered the estimation of a parameter whose true value is 0, however, the case
where the true value of a random effect is 0, and when the value of K is unknown are

more complex, and I considered these in Section F.1.
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MSE Across Sample Sizes, Binomial Scenario 6
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Figure 3—12: MSE across sample sizes, binomial outcome, with K = 3, p = 5, and
q=2.
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CHAPTER 4
Objective Two: Optimisation of the Penalised Likelihood for Model
Selection in Finite Mixtures of Generalised Linear Mixed-Effect Models

4.1 Introduction

In situations where the covariates in the model have been chosen a priori,
the likelihood can be directly specified, and subsequently maximised, as seen in
Chapter 3. However, there are many cases where a large number of covariates are
under consideration, and a model with a small number of covariates is desired or the
true model is assumed to have a small number of covariates. In this case, rather than
the problem being solely one of estimating the values of the parameters, the problem
also involves the selection of covariates or identifying which of the covariates to include
in the model. The problem of variable selection is complex, and many solutions have
been proposed. One popular approach to this problem is to add a penalty function to
the likelihood equation and then maximise the resulting penalised likelihood. Using
a penalised likelihood to perform variable selection provides a few advantageous
properties, namely consistency, sparsity, and the oracle property, assuming that
certain regularity conditions are satisfied. As such, it is this approach that I used
in this thesis, and I explored three popular penalty functions for use in a Finite
Mixture of Generalised Linear Mixed-Effect Model (FinMix GLMM). In this chapter,
I combined the well known penalty functions of the Least Absolute Shrinkage and

Selection Operator (LASSO) (Tibshirani, 1996), Adaptive Least Absolute Shrinkage
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and Selection Operator (ALASSO) (Zou, 2006), and the Smoothly Clipped Absolute
Deviation (SCAD) (Fan and Li, 2001) penalties with the theory in the previous
chapter to provide simultaneous model selection, and fitting of a FinMix GLMM.

The chapter proceeds with a discussion regarding changes to the parameterisation
of the model in Section 4.2 including how to estimate the new parameters. Next, |
considered penalty functions in Section 4.3 with special attention to LASSO, ALASSO,
and SCAD. Section 4.4 discusses the asymptotic properties. I explored the numerical
computation in Section 4.5 with appropriate changes to the algorithm to incorporate
the penalty function. To verify the properties of the estimator, I undertook a
simulation study, and I described the settings along with the results of this simulation
study in Section 4.6 with detailed tables in Appendices G, and H. The last section,
Section 4.7, provides a summary.

4.2 Reparameterisation of the Model

Reparameterisation of the model is only necessary when random effects are being
penalised. I used the parameterisation shown in Chapter 3 in cases where I penalised
only the fixed effects.

When more than one random effect is present in the model, both the variance of
each of the random effects, and the covariances between them must be estimated. If
random effects are to be penalised, I separated these parameters into two matrices
such that = dC, where C is a lower triangle matrix with ones along the diagonal,
and d is a diagonal matrix consisting of variances of the random effects. To simplify
notation, I dropped the subscript k£ in this section. Recall that in the preceding

chapter, these parameters were all contained in lower triangle matrices, denoted 1,
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and all estimated together. By selecting this parameterisation, if the variance of
a random effect is set to be zero, the covariances of the random effects associated
with that covariate are then automatically set to zero (by properties of diagonal
matrices). This follows from the well known property of covariance that given any
random variable W, and any constant s € R, Cov(W,s) = 0. To calculate the
decomposition of , set d* = diag(I'11, oo, ..., [yy), and Cy, = 'y /Thp. Recall that
is a lower triangle matrix, so for ¢ < h,I';, = 0, thus ¢« < h = Cj, = 0. Additionally,
Cyi = I'y;/Ty; = 1 so the diagonal of C contains ones as desired. The vectorised
versions of d, and C are d*, and C* respectively. All the regression coefficients for
subpopulation & can then be represented by the vector 8, = (8, ,d:",C:T)T.
This reparameterisation of the model approach was also taken in Du et al. (2013),
and Pan and Huang (2014), but this method is not unrivalled. Ibrahim et al. (2011)
used group variable selection on each row of instead and used the Euclidian norm
of the row of in the penalty function rather than considering the absolute value
of a parameter. That is, for the e row of , . = [[e1,Te2,..., e, 0,0,...,0] =

Lee[Cer, Ceay - .., Ce(e-1), 1,0,0,...,0]. Next consider the Euclidean norm of the row,

| ]| = \/rge(cgl +C5 4.+ C2 + 1) But CR+Ch+. . +C%_+1>1>0,
thus || ¢|]] =0 <= T2 =0 <= T. = 0. Therefore, the group variable
selection to select random effects as used by Ibrahim et al. (2011) is equivalent to the
decomposition, and penalisation as shown in Du et al. (2013), and this thesis. Group
variable selection is a considerably more complex generalisation of the penalised
likelihood. As such, the reparameterisation of the model approach was chosen for

this research.
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4.3 Penalisation in the Generalised Linear Mixed-Effect Model Likeli-
hood

In a FinMix GLMM, I applied the penalty to each of the Generalised Linear
Mixed-Effect Model (GLMM )s separately. Building on the idea of maximum likelihood,
the penalised maximum likelihood includes a penalty to decide which variables should
be included in the model, and which should not be. The penalised likelihood function
then takes the form

G (01) = 0,(01) — pa, (6%) (4.1)

when just the fixed effects are penalised and

EEI)\nk (Qk) = En(Qk) — Pk (Qk)

when both fixed, and random effects are penalised, where ¢,,(6) or £,(8,) is the
likelihood function, and py,, (0%) or p,, (€)) the penalty function.

I considered three penalisations below, the LASSO (Tibshirani, 1996), ALASSO
(Zou, 2006), and SCAD (Fan and Li, 2001). While these are not the only possible
penalty functions, these three are popular options.

As noted in Chapter 2, the penalty for the LASSO in a model with only fixed

effects takes the form
p
p)\nk<0k) = Ak Z |5kh|
h=1

with
8p/\nk (ek)

G AnkSign(Ben)-
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Similarly, if I applied a penalty to both the fixed and random effects, following

the work of Chen and Dunson (2003), and Bondell et al. (2010) the penalty becomes

p q p q
P (81) = Mk D 1Bkl + Aak > il = Aok D |Benl + Ank D i
h=1 h=1 h=1 h=1

and the partial derivatives are

ap)\ k(Qk) :
— kR = \,kSign
9B ES1g (6kh)
and
002 (8) _
adkh nk-

The second derivatives of the penalty are equal to zero, both with respect to 8y, and
dip.

The ALASSO penalty is similar to the LASSO penalty with the addition of
weights wy,, more specifically, LASSO is ALASSO with all of the weights set to 1.
However, this requires choosing both \,x, and wy,, which is sometimes considered
to be a drawback of this method as this step can be computationally intensive (by
generalised cross-validation for example). In this thesis, I chose the inverse of the
Maximum Likelihood Estimation (MLE) estimate as the weight for a particular

parameter. If only fixed effects are considered, this penalty is of the form

p
P2 (01) = Auk > wi Bl
h=1

with

R = Appwpsign(Ben).
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Similarly, if a penalty is applied to both the fixed and random effects, the penalty

becomes

p q p q
Pr (84) = Aak > Wil Bl + Ank D wprinldin] = Auk > wnlBenl + Ank > wprndin
h=1 h=1 h=1 h=1

and the partial derivatives are

ap/\ k(Qk) .
— TR 2 = N\, s WpSign
9Ben EWhS1Z (5kh)
and
0P, (0r)
By e

Again, the second derivatives of the penalty are equal to zero, both with respect to
Brn, and dgp,.

One drawback of LASSO, and ALASSO is that all of the estimates are shrunk,
regardless of their absolute value. In some circumstances, it is desirable to shrink
larger estimates less, or not at all, and the SCAD penalty fulfils this requirement.
The penalty for SCAD is not usually represented in a closed form, but rather the

derivative is considered. If only fixed effects are considered then

Opx,.i (Ok)
OB

(@dnk — |Brnl)
(a — 1)>\nk

= Ank{1(|5kh| < k) + +I(’5kh| > )\nk)}

In the case where both fixed and random effects are penalised,

(Cl/\nk - |ﬁkh|)
(CL — 1>>\nk

ap Ank (Qk)
OBk

_ )\nk{[(mkh’ < A) + +I(|5kh| > )\nk)}
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and

px,...(0},) (adnk — |dinl)+
I\ ) 1] < A, I(d| > A
dd,, k9 L([dikn| < Ang) + (@ — 1A (|drn] > Ank)
(@Ank = i)+

= )\nk{[(dkh < Ank) + +I(dkh > )\nk)}

(@ — 1)k
Note that (t); =t x I(t > 0), and a > 2. In this thesis, I used the value of a = 3.7
throughout, consistent with (Fan and Li, 2001). T did not consider other values
for a, and choosing a using generalised cross-validation or other methods can be
computationally intensive. This penalty also has second derivatives that equal zero.

In further derivations, I used the notation 8, for the kth subpopulation, and
equations as well as derivations of @, were omitted. That is, the case where both
fixed and random effects are penalised is presented. In addition, the hth element of
0, is 8,,,, and I denoted the penalty as py , (6y,). Furthermore, in all of the penalty
functions considered, py . (04) = Pa,,. (10]), and thus py , (|18,,]) is sometimes used
in place of py , (6;,) in the literature.

In order to be of an appropriate size, it is pertinent to multiply the penalty
function by n, the number of subjects in the sample (Tibshirani, 1996). Since, in
my setting, I assumed the data comes from a finite mixture of models, the penalty
function must take into account that the number of subjects in each of the distinct
subpopulations, which is unknown. To scale this to an appropriate penalty for the
size of each of the subpopulations, I multiplied the penalty function by n, = n x 7,

the empirical estimate of n x 7, as shown in Khalili and Chen (2007). The penalised
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log-likelihood is thus,

K
gixnk(@) = [(,(0) - nzm X Pani (6))
k=1

for the entire dataset, and

G (0,) = L8, 7) — 1 x T X D, (6)) (4.2)

for each subpopulation. In some cases in the literature, the penalty parameter A, is
changed to A%,. While the code I wrote allows for this extension, I did not explore
this possibility in detail in this thesis.
4.4 Asymptotic Properties

Given certain conditions on the model and penalty, the estimates calculated
using Maximum penalised Likelihood Estimation (MPLE) possess many desirable
asymptotic properties. The properties of interest are existence, consistency, sparsity,
and that the distribution is asymptotically Gaussian. More information on the
conditions, asymptotic properties, and proofs can be found in Appendix D.

4.5 Numerical Computation of the Penalised Maximum Likelihood Esti-
mator

The estimation proceeds similarly to the unpenalised likelihood setting, using
the Monte Carlo Expectation-Maximisation (MCEM) algorithm with the derivatives
of () updated with the relevant penalty. Specifically, the outer MCEM loop does not
change, and only the M-step in the inner MCEM changes. The calculation of 7,
does not change for any £ or i, and the likelihood without a penalty function is used

to calculate these values. The exact form of 74, is in Equation (3.1). Recall that I
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estimated both the subpopulation membership, and the mixing proportions in the
outer MCEM, and therefore calculated them in the same manner regardless of the
presence or form of the penalty function.

However, the calculation of 74, relies on Bk, and Ak, both of which I updated in
the inner MCEM loop of the algorithm which takes into account the penalty function.
Thus, while the penalty function does not explicitly appear in the calculations of the
outer MCEM, I would not expect that the estimates for subpopulation membership
and mixing proportions would be exactly identical regardless of the form of the
penalty parameter.

4.5.1 Inner Monte Carlo Expectation-Maximisation

The inner loop of the MCEM is where I calculated most of the estimates in ©. I
calculated the parameter estimates for 7 in the outer MCEM, but the inner MCEM
loops until the estimates for 3, and j reach convergence. Note that convergence of

% is desired, not the convergence of di, and C,. This is done because , contains
the parameters of interest, and because of the reparameterisation, estimation of dy,
and Cj could be less stable numerically. Recall that the penalty is only on the fixed
and random effects, which are in 3,, di, and Cy, and I estimated these in the inner
MCEM. Therefore, I updated the inner MCEM to include the penalty. However,
the penalty function may not be differentiable everywhere. Specifically, the LASSO,
ALASSO, and SCAD penalties are not differentiable at 0. Therefore, I approximated
the penalty function. There are many choices of approximating functions of varying
functional forms. In this thesis, I chose a quadratic approximation as used by Fan and

Li (2001), because it is a reasonably good approximation within a bounded set, while
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also being smooth, continuously differentiable, and providing ease of computation.
Following the approach taken by Fan and Li (2001), I approximated the log-likelihood
function with a Taylor polynomial, but I approximated the penalty function by a
different quadratic function.

By using a quadratic approximation to the penalty function, the previously
mentioned problems of singularity at the origin, and a lack of continuous second-
order derivatives, or indeed first-order derivatives in some cases can be avoided.
These issues exist among many possible penalty functions and this approach can
be extended beyond the three penalty functions focused on here. I chose this
approximation for three reasons. First, I approximated the likelihood with a quadratic
function, so using a quadratic approximation for the penalty as well keeps the degree
of the penalised likelihood consistent. Second, a quadratic polynomial function
is continuous, continuously differentiable, and continuously integrable. Third, a
quadratic approximation provides a reasonably close estimation of to the penalty
function, given that one is near to the point around which the approximation is
calculated.

Recall the weighted penalised likelihood Equation (4.2) where ¢,,(8,, 7%) is the
likelihood equation for given values of 8, and 7, with p, , (6,) as the penalty function
for the given values of 8,, and \,x. Recall from Section 3.3.3 that I provided the
form of the approximate likelihood Q(8,, ) in the Poisson, and binomial cases, and
since the specific values of by; are unknown, I used an approximation with L values
for bgi). Given the form of the approximated likelihood, I considered the quadratic

approximation to the penalty function next.
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I assumed that the initial value of 8,, denoted as Q,go), is close to the maximum
of the weighted penalised likelihood equation ¢#(8,). I then considered the penalty
function componentwise, that is, for each element of 8, I approximated the penalty

DPane (85) = P, (1044])- Using the chain rule,

O (O1) _ O (Okn) .

OPr (Ogn) % O
3Qkh |Qk:h|
T

However, this is an approximation to the derivative of the penalty function. Taking

the anti-derivative of this approximation yields as an approximation for the penalty

function,
(0) 1 apAnk:(’QE{)(;L)‘) 1 2 (0)\2
Do (1€1n]) = a, (1800 ]) + 2 00 X 0) {(0)" — (@4,)°}-
=kh 161

For case of notation, let Uy, (%)) = , (8'”) x 87, Recall that s is the

number of parameters in each subpopulation, that is » = length(8,) = p + %q(q +1).

(09) = diag 218D 1 Opa, (85D 1 O (83D 1Y
e B o)l 98 18] k. |8

In practice, to avoid dividing by 0 and for numerical stability, I added a small
value (€) to the denominator of all elements of  , (Q,(:)) as shown in Fan and Li

(2001). I chose a small value for € (specifically ¢ = 0.0001) so it would have little
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impact on the bias of the parameter estimates. Thus,
O, (16)) 1 O8] 1
0(5) — di Prp \IZk1 P12
Ank (—k ) - tag o0 (s) ’ 00 (s) 1t
O 16,]] +¢ e |0,5] +€

ap, (162 1

Given the penalised likelihood, and taking a second-order Taylor approximation

of the penalised likelihood, the resulting equation to be maximised is:

gi)\nk (Qk) = Ly (Qk7 Tk) — NTEPX 1 (Qk>

Qr(0) + Q0T (87 — 6y)

Q

1 s+1 s s s+1 s
+50 — o) Qi) e - 6)
]- S T S S
—5n0 (076

To maximise this approximation, I took the derivative, and set to 0, thus
QL6+ QLO) (O = 0) —n (61781 =0
which I then rearranged to
0" = 07— (QUO) —n 5,) QO 0 56178

— 0 — QIO —n 1) QL0 —nU,,, (8)

which I used in the Newton-Raphson algorithm. Following the work of Hunter and Li
(2005), the root of this derivative is the maximiser of the likelihood. As in the MLE
case, (%)L can be added to the equation so that half step Newton-Raphson can be

performed.
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Once I defined the target function to be maximised, I applied this procedure to
each of the three penalty functions (LASSO, ALASSO, and SCAD). Specifically, the

matrix , ., changes when the penalty changes.

k>

In some cases, it is desirable to penalise only the fixed effects, and not the random
effects. In these situations, I calculated the penalty for the fixed effects as above,
but set the penalty for the random effects to 0. Additionally, as shown in Tibshirani
(1996), I did not penalise the intercept (fxo), and as in Du et al. (2013) I did not
penalise Cj;p,. Thus, I set the corresponding elements of the diagonal of | (Q,(:)) to

zero. I summarised the non-zero diagonal elements of  , evaluated at QS) in the

following table.

Table 4-1: Non-zero diagonal element of , ,

Penalty | Value
LASSO | —fue—
|Q§€Sh)|+e
ALASSO | 2nktn
1055, | +e
a)‘n — Q
SCAD Ank {I(lgkh‘ < Ank) + WI(‘QML‘ > Ank)} \foélﬂ

4.6 Simulation Study

The following table describes the outline for the simulation study. Keeping
in line with the MLE simulations, I performed simulations for both Poisson and
binomial outcomes, and for mixtures of 2, and 3 subpopulations. I varied the number
of fixed and random effects (both zero and non-zero), and considered four sample
sizes (100,250,500, 1000) for the simulations in this chapter. I ran each simulation

100 times.
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In all cases, I used a multinomial distribution to generate subpopulation mem-

Table 4-2: Simulation settings for MPLE

Number of Number of Number of Number of
Outcome K n B#0 B=0 d#£0 d=0 Dim(0)
Poisson 2 100, 250, 500, 1000 2 5 2 0 27
Poisson 2 100,250, 500, 1000 2 15 2 0 47
Poisson 2 100,250, 500, 1000 4 15 2 3 69
Poisson 3 100, 250, 500, 1000 2 5 2 0 41
Poisson 3 100, 250, 500, 1000 2 15 2 0 71
Poisson 3 100, 250, 500, 1000 4 15 2 3 104
Binomial 2 100,250, 500, 1000 2 5 2 0 27
Binomial 2 100,250, 500, 1000 2 15 2 0 47
Binomial 2 100,250, 500, 1000 4 15 2 3 69
Binomial 3 100,250, 500, 1000 2 5 2 0 41
Binomial 3 100,250, 500, 1000 2 15 2 0 71
Binomial 3 100,250, 500, 1000 4 15 2 3 104

bership. To include an intercept in the model, the first column of the matrix X is
of 1s. I generated all the covariates independently, except for X5, and X3, where
Corr(Xsy, X3) = 0.5. I introduced this collinearity to be more analogous to real data.

In the following section, ¢ € {1,2,...,n}, and j € {1,2,...,n;},. I generated the
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data as follows:

Tija—p) ~ Multivariate Gaussian(p, 3X)VivVj;

0
0
po= ;
0
[ 1 05 0 0]
05 1 0 0
Y = 0 0 1 0
0 0 0 |

As before, for any variable for which there is a random effect, there is also a fixed
effect, therefore columns of Z are also columns of X. I again generated the random
effects b; from a standard Gaussian distribution. Given the values of X;, Z;, the group
membership, b;, B, and , = d;Cy, [ generated the outcome variables. In the Poisson
case, &; was calculated as log(§;;) = x;;3;, +2i; by, and then Y;; ~ Poisson(§;;). In
the binomial case, logit(y;;) = x;;3; + zi; 1b; and Y;; ~ binomial(m;; = 10, ¢;;). 1
added additional parameters with a true value of zero to the vectors, and by including
several irrelevant covariates I was able to explore variable selection through simulation.

As I presented Chapter 3, where possible, I used the same parameter settings

across simulation settings, and a summary of the parameter settings can be found
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in Tables 4-3 to 4-5. Consider first the Poisson simulations where K = 2. I set
the mixing proportions to m; = 0.6 and m = 0.4. When I considered seven fixed
effects (p = 7), B = (0.65,0.30,0.00,0.00,...,0.00) and 3 = (0.20,—0.45,0.00,
0.00,...,0.00), if I estimated seventeen fixed effects (p = 17), 8] = (0.65,0.30,0.00,
0.00,...,0.00) and B, = (0.20,—0.45,0.00,0.00,...,0.00), and in the case where I
included nineteen fixed effect parameters in the model (p = 19), B8] = (0.65,0.30,
0.15,0.35,0.00,0.00, . ..,0.00) and B, = (0.20, —0.45, —0.10,0.25,0.00, 0.00, . . ., 0.00).
For the random effects, when I estimated two random effects (¢ = 2), 1" = (0.30,
—0.25,0.10) and 3" = 0.35,0.20,0.15). In the case where I estimated five random
effects (¢ = 5), 3T = (0.30,-0.25,0.10,0.00,0.00,...,0.00) and 3" = (0.35,0.20,
0.15,0.00,0.00,...,0.00).

Turning now to the case where K = 3. In these simulations, I set the mix-
ing proportions to m; = 0.5, my = 0.3, and w3 = 0.2. Given seven fixed effects
(p=7), Tused B = (0.65,0.30,0.00,0.00,...,0.00), B, = (0.20,—0.45,0.00,0.00,
...,0.00), and B3 = (1.00,0.15,0.00,0.00,...,0.00). For the case where seventeen
fixed effects were present in the model (p = 17), B, = (0.65,0.30, 0.00,0.00, . ..,0.00),
B, = (0.20,—0.45,0.00,0.00, . ..,0.00), B3 = (1.00,0.15,0.00,0.00,...,0.00). When
I estimated nineteen fixed effects (p = 19), B = (0.65,0.30,0.15,0.35,0.00, 0.00,
...,0.00), 8] = (0.20,—0.45, —0.10, 0.25, 0.00, 0.00, . . . ,0.00), and B3 = (1.00,0.15,
—0.65,—0.15,0.00,0.00,...,0.00). When two random effects were present in the
model (¢ =2), 1T =(0.30,-0.25,0.10), 3" = (0.35,0.20,0.15), and %" = (0.25,

0.00,0.20). In the case where I estimated five random effects (¢ = 5), the parameter
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settings were T = (0.30,—0.25,0.10,0.00,0.00,...,0.00), 3" = (0.35,0.20,0.15,
0.00,0.00,...,0.00), and 3" = (0.25,0.00,0.20,0.00,0.00, ..., 0.00).

In contrast, when the outcome follows a binomial distribution, I used the following
parameter settings. When K = 2, I again set the mixing proportions to 7 = 0.6 and
Ty = 0.4. Given seven fixed effects (p = 7), B = (0.95,0.60,0.00,0.00, . ..,0.00) and
BQT = (—0.85,—0.15,0.00,0.00, ...,0.00). Alternatively, when I estimated seventeen
fixed effects (p = 17), 8] = (0.95,0.60,0.00,0.00,...,0.00) and 3 = (—0.85, —0.15,
0.00,0.00,...,0.00). When the number of fixed effects was increased to nineteen
(p = 19), B = (0.95,0.60, —0.65, —0.25,0.00,0.00,...,0.00) and By = (—0.85,
—0.15,-0.75,0.10, 0.00,0.00, . .., 0.00). For the random effects, when I estimated
two random effects (¢ = 2), T = (0.95,0.85,1.15) and 3" = (0.70,—0.70,0.80).
However, when I included five random effects in the model (¢ = 5), T = (0.95,0.85,
1.15,0.00,0.00, ...,0.00) and 3" = (0.70,—0.70,0.80, 0.00, 0.00, . . ., 0.00).

In the more complex case, where K = 3, I set the mixing proportions to m; = 0.5,
T = 0.3, and m3 = 0.2. For a model with seven fixed effects (p = 7), B, = (0.95,
0.60, 0.00,0.00, . ..,0.00), By = (—0.85,—0.15,0.00,0.00,...,0.00), and 35 = (—0.30,
—0.90,0.00,0.00, . ..,0.00). If the model has seventeen fixed effects (p = 17), B} =
(0.95,0.60, 0.00, 0.00, . ..,0.00), B, = (—0.85, —0.15,0.00,0.00, ...,0.00), and 35 =
(—0.30,—0.90,0.00,0.00,...,0.00). When I estimated nineteen fixed effects (p = 19),
B, = (0.95,0.60, —0.65, —0.25,0.00, 0.00, . .., 0.00), B, = (—0.85, —0.15, —0.75,0.10,
0.00,0.00,...,0.00), and B3 = (—0.30, —0.90, 0.80, —0.25,0.00, 0.00, . .., 0.00). If the
true model had two random effects (¢ = 2), ;' = (0.95,0.85,1.15), 5" = (0.70,
—0.70,0.80), and 3" = (1.75,0.00,0.85). Alternatively, when I included five random
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effects (¢ = 5), the parameter settings were 1T = (0.95,0.85,1.15,0.00,0.00, . .., 0.00),

3T = (0.70,-0.70,0.80, 0.00, 0.00, . ..,0.00), and %" = (1.75,0.00, 0.85,0.00, 0.00,
...,0.00).

The choice of starting values was again important. I produced the initial values

for the algorithm independently for each generated dataset. I set the initial values

of the mixing proportions to 7 = %, and the off-diagonal values of to 0. For the
other values in @, namely 3, and the diagonal values of , I generated the initial value
as the true value plus a random draw from a uniform distribution ie. ) = 8 + U
where U ~ Uniform(—0.5,0.5). If the true value of the diagonal of was 0 or was
under 0.5, I used a uniform distribution between 0.1, and 1.1 instead to guarantee
that I did not generate a negative starting value. 1 generated initial values for
rather than initial values for d;, and C, to be consistent with Chapter 3, and because
I used j in the outer Expectation-Maximisation (EM). From these initial values, I
calculated the MLE for each dataset. I then used the MLE as the starting value for
the MPLE algorithm. The MLE is a popular choice as the starting value, especially
for ALASSO (Pan and Shang, 2018).

To be consistent with the MLE case, to generate each dataset, I first generated
the dataset with n = 1000. I saved the data for the first 500 subjects as the n = 500
dataset. Similarly, the first 250 subjects’ data became the n = 250 dataset, and the
first 100 subjects’ data is the n = 100 dataset. Again, the goal was to make the
datasets for each of the possible sample sizes easily comparable.

There are a variety of ways to choose the tuning parameter, and different values

of the tuning parameter will result in different models. In this thesis, I generated
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Table 4-3: Parameter settings for MPLE. Parameter values for both Poisson and
binomial outcomes, and each of the six simulation settings, subpopulation 1.
Outcome Poisson Binomial

Parameter 1 2 3 4 ) 6 7 8 9 10 11 12
m 0.6 0.6 0.6 0.5 0.5 05| 0.6 0.6 06| 05 0.5 0.5
B | 065 0.65 0.65]| 0.65 065 0.65]0.95 095 0.95|095 0.95 0.95
B | 030 0.30 0.30| 0.30 0.30 0.30|0.60 0.60 0.60 | 0.60 0.60 0.60
B2 | 0.00 0.00 0.15| 0.00 0.00 0.15|0.00 0.00 -0.65|0.00 0.00 -0.65
B3| 0.00 0.00 0.35| 0.00 0.00 0.35]|0.00 0.00 -0.25|0.00 0.00 -0.25
Bis | 0.00 0.00 0.00| 0.00 0.00 0.00]|0.00 0.00 0.00]0.00 0.00 0.00
Bis | 0.00 0.00 0.00| 0.00 0.00 0.00|0.00 0.00 0.00|0.00 0.00 0.00

B | 0.00 0.00 0.00| 0.00 0.00 0.00|0.00 0.00 0.000.00 0.00 0.00

Bz 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Bis - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00
Bro - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00
Biio - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00
B - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00
P12 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00
P13 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00
B4 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00
Bris - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00
Biie - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00

'y | 030 030 030 030 0.30 0.30 095 095 0.95]0.95 095 0.95
2 [-0.25 -0.25 -0.25]-0.25 -0.25 -0.2510.85 0.85 0.85|0.85 0.85 0.85
| 010 0.10 0.10| 010 0.10 0.10|1.15 115 115|115 1.15 1.15

i1 ~0.00 ~0.00 ~0.00 ~0.00
T3 - ~0.00 - - 000 - - 000 - - 000

T - ~0.00 - -~ 000 - - 000 - — 000
114 - ~0.00 - - 000 - - 000 - - 000
T2 - ~0.00 - - 000 - - 000 - - 000
T3 - ~0.00 - -~ 000 - - 000 - - 000

T4 = ~0.00 - - 000 - - 000 - - 000
s - ~0.00 - -~ 000 - -~ 000 - — 000
T1o5 - ~0.00 - - 000 - - 000 - - 000
T35 - ~0.00 - - 000 - - 000 - - 000
T - ~0.00 - -~ 000 - - 000 - - 000

T - ~0.00 - - 000 - - 000 - - 000
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Table 4-4: Parameter settings for MPLE. Parameter values for both Poisson and
binomial outcomes, and each of the six simulation settings, subpopulation 2.
Outcome Poisson Binomial

Parameter 1 2 3 4 5 6 7 8 9 10 11 12
Ty 0.4 0.4 0.4 0.3 0.3 0.3 0.4 0.4 0.4 0.3 0.3 0.3
By | 0.20 020 0.20] 0.20 0.20 0.20|-0.85 -0.85 -0.85|-0.85 -0.85 -0.85
bo1 | -0.45 -0.45 -0.451]-045 -0.45 -0.45]-0.15 -0.15 -0.15]|-0.15 -0.15 -0.15
By | 0.00 0.00 -0.10| 0.00 0.00 -0.10| 0.00 0.00 -0.75| 0.00 0.00 -0.75
Ba3 | 0.00 0.00 025] 0.00 0.00 025| 0.00 0.00 0.10| 0.00 0.00 0.10
Bay | 0.00 0.00 0.00| 0.00 0.00 0.00| 0.00 0.00 0.00| 0.00 0.00 0.00
Bos | 0.00 0.00 0.00| 0.00 0.00 0.00| 0.00 0.00 0.00| 0.00 0.00 0.00
B2 | 0.00 0.00 0.00| 0.00 0.00 0.00| 0.00 0.00 0.00] 0.00 0.00 0.00

Paz 0.00  0.00 0.00 0.00 0.00  0.00 0.00  0.00
Pas 0.00  0.00 0.00 0.00 0.00  0.00 0.00  0.00
B9 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00
Pa10 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00
P11 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00
P12 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00
P13 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00
P14 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00
Pais - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00
Paie - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00

I'yy | 035 035 035 035 035 035| 070 0.70 0.70| 0.70 0.70 0.70
I'y12 | 020 020 0.20] 020 0.20 0.20]-0.70 -0.70 -0.70|-0.70 -0.70 -0.70
'y, | 015 0.15 0.15| 0.15 0.15 0.15| 0.80 0.80 0.80| 0.80 0.80 0.80

13 0.00 0.00 - 0.00 - 0.00
a3 - - 0.00 - - 0.00 - - 0.00 - - 0.00
I3 - - 0.00 - - 0.00 - - 0.00 - - 0.00
214 - - 0.00 - - 0.00 - - 0.00 - - 0.00
I'a24 - - 0.00 - - 0.00 - - 0.00 - - 0.00
[os4 - - 0.00 - - 0.00 - - 0.00 - - 0.00
1Y) - - 0.00 - - 0.00 - - 0.00 - - 0.00
o1s - - 0.00 - - 0.00 - - 0.00 - - 0.00
oo - - 0.00 - - 0.00 - - 0.00 - - 0.00
o35 - - 0.00 - - 0.00 - - 0.00 - - 0.00
Foys - - 0.00 - - 0.00 - - 0.00 - - 0.00
Iy - - 0.00 - - 0.00 - - 0.00 - - 0.00
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Table 4-5: Parameter settings for MPLE. Parameter values for both Poisson and
binomial outcomes, and each of the six simulation settings, subpopulation 3.

Outcome Poisson Binomial
Parameter | 1 2 3 4 5 617 8 9 10 11 12
- — —] 02 02 02]- - -] 02 02 02
B | -~ — —[11.00 1.00 1.00|- - —1]-0.30 -0.30 -0.30
Bs1 |- — —1015 015 0.15|—- — —]-0.90 -0.90 -0.90
B3 | — — —10.00 0.00 -065|—- — —1] 0.00 0.00 0.80
Bss | — — —10.00 0.00 -0.15|—- — —1| 0.00 0.00 -0.25
Bas | — — —10.00 0.00 0.00[—- — —1] 0.00 0.00 0.00
B35 | - — —10.00 000 0.00]- - —| 0.00 0.00 0.00
Bss | — — —10.00 000 0.00]- - —| 0.00 0.00 0.00
B3z | - - — - 0.00 000|- — - — 0.00 0.00
Bag | — — — - 0.00 000|- — - — 0.00 0.00
Bg | — — — - 0.00 000|- — - — 0.00 0.00
B30 | — — - - 0.00 000|- — - ~ 0.00 0.00
Basi1 | — — - - 0.00 000|- — - — 0.00 0.00
Bz | — — - - 0.00 000|- — - — 0.00 0.00
Bsig | — — - - 0.00 000 - - ~ 0.00 0.00
Baa | — — - - 0.00 000]|- — - ~ 0.00 0.00
Ba15 | — — - - 0.00 000|- — - — 0.00 0.00
Baig | — — - - 0.00 000|- — - — 0.00 0.00
Iyy |- — =025 025 025|—- — —| 175 175 1.75
Pg2 | — — —10.00 000 0.00]|- — —1] 0.00 0.00 0.00
Py |- — =020 020 020|—- — —| 0.85 0.85 0.85
Pag | — — — - — 000 |- - - - —~0.00
Taog | — — — - - 0.00|- - - - ~0.00
g3 |- — — — - 0.00|- - - - - 0.00
Doy | — — — - - 000 |- - - - ~0.00
Dooy | — — — - - 0.00|- - - - ~0.00
Dasg | — — — - - 0.00|- - - - —~0.00
Pgy | = — — - — 000 |- - - - —0.00
Pas | — — — - - 000|- - - - —0.00
Taos | — — — - - 0.00|- - - - —~0.00
Pass | — — — - - 0.00|- - - - ~0.00
Daus | — — — - - 000 |- - - - ~0.00
Dys | - — — - - 000 |- - - - - 0.00
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a grid of possible values for the tuning parameter. Next, I estimated the model
parameters for each value of the tuning parameter, and calculated the Bayesian
Information Criterion (BIC) for that model. I then chose the model with the lowest
BIC. More detail on this procedure is included in Section C.5.

The tables of these results can be found in Appendix G, and box plots showing
an overview of the behaviour of the Mean Squared Error (MSE) are shown in Figures
4-1 to 4-2.

MSE Across Sample Sizes and Penalties, Poisson Scenario 1

Penalty
BE LAsso
E3 ALasso

n=100 n=250
Sample Size

MSE

Figure 4-1: MSE across sample sizes, and penalties, Poisson outcome, with K = 2,
p=2,and g = 1.

1)



MSE Across Sample Sizes and Penalties, Binomial Scenario 1

20-

15-
Penalty
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E3 ALAsso
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1S

o
o
- awne
-=see
=20

n=100 n=250
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Figure 4-2: MSE across sample sizes, and penalties, binomial outcome, with K = 2,
p=2and q = 1.

The Tables 4-6 and 4-7 show the proportion of correct selection for variables
when I used two possible penalties, LASSO and ALASSO. I have also included in
these tables the MLE when small values (those with a magnitude less than 0.01) were
changed to 0, these have the row heading Small. T did not include the proportions of

correct selection for the MLE, and oracle as they are 0%, and 100% respectively.
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Table 4-6: Simulation 1 results proportion of parameters correctly classified, averaged
over 50 runs. Outcome follows a Poisson distribution with K =2, p =7, ¢ = 2,
m = 0.6, 1y = 0.4, 61T = (0.65,0.30,0.00, 0.00, 0.00, 0.00, 0.00), 6; = (0.20, —0.45,
0.00,0.00, 0.00,0.00,0.00), 1" = (0.30,—0.25,0.10), and 3" = (0.35,0.20,0.15).

Penalty | Sample Size | Non-zero Fixed Effects Zero Fixed Effects
LASSO | 100 0.080 0.980
LASSO | 250 0.270 0.956
ALASSO | 100 0.150 0.980
ALASSO | 250 0.380 0.964
Small 100 0.995 0.101
Small 250 1.000 0.166
Small 500 1.000 0.259
Small 1000 1.000 0.317

4.7 Conclusion

Using a penalised likelihood procedure for model selection offers many attractive
statistical properties. In this chapter, I have extended the use of penalised likelihood
to the FinMix GLMM setting. Because the penalisation can be applied to both the
fixed and random effects, I changed the parameterisation of the variance components
of the FinMix GLMM relative to the preceding chapter. I considered three penalty
functions: LASSO, ALASSO, and SCAD. The penalty function does not affect the
outer MCEM loop, and therefore, the only changes to the algorithm were in the
inner MCEM loop. In order to use this approach with the MCEM algorithm as
described in Chapter 3, I used a quadratic approximation to the penalty function.
Given the equations for calculating the penalised likelihood, I considered the choice of
the tuning parameter. In this case, I chose a grid of values for the tuning parameter,
and chose the model with the best BIC. This model possesses a number of desirable

asymptotic properties including consistency, sparsity, and the estimates follow a
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Table 4-7: Simulation 7 results proportion of parameters correctly classified, averaged
over 50 runs. Outcome follows a binomial distribution with K =2, p =7, ¢ = 2,
m = 0.6, 1, = 0.4, BlT = (0.95,0.60, 0.00, 0.00, 0.00, 0.00, 0.00), BQT = (—0.85, —0.15,
0.00,0.00, 0.00,0.00,0.00), 1" = (0.95,0.85,1.15), and 3" = (0.70,—0.70,0.80).

Penalty | Sample Size | Non-zero Fixed Effects Zero Fixed Effects
LASSO | 100 0.250 0.918
LASSO | 250 0.440 0.864
ALASSO | 100 0.430 0.976
ALASSO | 250 0.490 0.984
Small 100 0.985 0.101
Small 250 0.975 0.159
Small 500 0.985 0.217
Small 1000 0.990 0.339

Gaussian distribution asymptotically. Finally, the simulation study confirmed that
this algorithm produces reasonable results in a variety of different settings. In addition
to the mean squared error, I calculated the proportion of the simulations for which
each parameter was correctly classified as being equal to zero or non-zero to verify

the accuracy of the method.
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CHAPTER 5
Real Data Analysis

Rheumatoid Arthritis (RA) is an auto-immune disease that affects many people,
and dates back to the 1800s (Storey et al., 1994). This chronic disorder causes
inflammation in the joints of patients, typically starting in the hands and feet. The
lining of the joints is affected by RA, which leads to swelling and eventually, bone
erosion and even joint deformity. As the disease progresses, other joints are affected,
usually the elbows, ankles, knees, shoulders, and hips. More background information
about RA can be found in Scott et al. (2010); Wasserman (2011); Meier et al. (2013);
Smolen and Aletaha (2015); Smolen et al. (2016); Malmstrom et al. (2017). RA
should not be confused with osteoarthritis, which is more common. The cause
of osteoarthritis is the wearing away of cartilage, whereas the cause of RA is the
inflammation of the synovial membrane.

Unfortunately, there is currently no cure for RA. Treatment aims to reduce
inflammation, so that pain is reduced, and joint damage is slowed or prevented. The
current treatment being favoured called Treat to Target (T2T). The goal of T2T is to
aggressively treat the patient to either remission or a minimal level of disease activity.
Medication is a favoured form of treatment, and there are many types of drugs
used to treat RA. These medications include, but are not limited too, Nonsteroidal
Anti-Inflammatory Drug (NSAID), steroids (often corticosteroids), Disease-Modifying

Antirheumatic Drugs (DMARD), immunosuppressants, and Tumour Necrosis Factor
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Inhibitors (TNF1i). Because of the reliance on pharmacotherapy, drug toxicity has
become an important adverse outcome of interest. In advanced stages, patients with
RA may require surgery (such as joint replacement).
5.1 Scottish Early Rheumatoid Arthritis Inception Cohort and Biobank
The Scottish Early Rheumatoid Arthritis Inception Cohort and Biobank (SERA)
contains patients from Scotland that have been diagnosed with RA and is administered
by the Scottish Collaborative Arthritis Research network. It is rich in many variables,
includes data both from questionnaires and blood samples, providing a large number
of covariates to consider. The goal of the study is to be able to accurately predict
patient outcomes so that the best course of treatment can be applied. A bank of tissue,
and blood samples was also collected to allow for analysis of DNA or biomarkers in
the future. Sixteen hospitals from around Scotland participated in this study.
During the first six months, the cohort enrolled 489 patients. The dataset I used
for this analysis contained 1182 patients. While a number of controls were recruited
for this study, but those subjects did not have a diagnosis of RA, therefore I did not
consider them for this analysis. In order to be included in the cohort, all patients
must have at least one swollen joint, as well as a new clinical diagnosis of RA or
undifferentiated polyarthritis. Patients were excluded from the cohort if they had
already been on DMARD therapy for a time period greater than six months, had
another rheumatological diagnosis, had Hepatitis B, had Hepatitis C, or were Human
Immunodeficiency Viruses (HIV) positive. Data was collected at baseline and every
six months thereafter on demographic, employment, clinical measurements, laboratory

measurements, and radiographic results. I considered several possible outcomes of
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interest, include clinical remission (defined as Disease Activity Score on 28 Joints
(DAS28)< 2.6), swollen joint count, tender joint count, drug toxicity, and the number
of steroids taken. Of particular interest as covariates were the presence of anti-Cyclic
Citrullinated Peptide (CPP) antibodies, erosion at presentation, Body Mass Index
(BMI), age, and alcohol intake. Further information about the SERA database can
be found in Dale et al. (2016) and it has been used in published research, including
Stalmach et al. (2014).
5.2 QOutcome and Covariates

From the possible outcomes of interest, there were many options to consider.
One outcome that is often of interest is DAS28, and clinical remission is often defined
as DAS28< 2.6. However, DAS28 is not the only method used to define remission.
Both the American College of Rheumatology, and the European League Against
Rheumatism have suggested response criteria for RA (Ward et al., 2014), and the
various composite measures do not necessarily agree (Smolen and Aletaha, 2015). 1
chose tender joint count out of 28 joints as the outcome for this analysis due to a
variety of factors: It has been recommended in the literature (Felson et al., 1993),
joint counts have been used for many years (Aletaha and Smolen, 2006), and tender
joint count is an easy to understand outcome with potential values in {0,1,2,...,28}.
The canonical link function (logit) was used to model this as a Finite Mixture of
Generalised Linear Mixed-Effect Model (FinMix GLMM).

There are many factors that make a FinMix GLMM appropriate for this analysis.
The outcome is a count with a fixed maximum, so modelling it as a binomial outcome

is appropriate. The patients in the SERA cohort were followed longitudinally, so
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random effects are necessary as the outcomes from a single patient are likely correlated.
In addition, RA is a heterogeneous disorder, especially with respect to treatment
response, and drug-related toxicity (Dale et al., 2016), as well the presence or absence
of antibodies to citrullinated protein antigens, rheumatoid factor, and other factors
(Malmstrom et al., 2017). Genetic research supports the idea that RA is of a
heterogeneous nature (Scott et al., 2010). Because of these factors, I used a FinMix
GLMM.

There are a number of other variables in the dataset in addition to the out-
come of interest. Every patient was assigned a unique patient number, and some
information, namely marital status (Married, Single, Widowed, Living with partner,
Divorced, Separated), race (White, Other, South East Asian, Indian Sub-Continent,
Afro-Caribbean), weight, height, BMI, alcohol intake, gender (Female, Male), age,
smoking status (Non-smoker, Ex-smoker, Current Smoker), and diagnosis (RA, Un-
differentiated arthritis) was collected at baseline. Starting at baseline, and every visit
thereafter, more information was collected, specifically, swollen joint count (out of 28),
tender joint count (out of 28), DAS28 calculated using Erythrocyte Sedimentation
Rate (ESR), DAS28 calculated using C-Reactive Protein (CRP), ESR, patient global
health determined using a Visual Analogue Scale (VAS), CRP, assessor’s global VAS,
VAS pain score, hospital anxiety and depression scale, health assessment questionnaire
score, EQ-5D score, employment status (Retired, Full-time employment, Part-time
employment, Unemployed and not seeking work, Homemaker, Self-employed, Unem-
ployed and seeking work, Student), total cholesterol, High-Density Lipoproteins (HDL)

cholesterol, the ratio of total to HDL cholesterol, haemoglobin, total White Cell Count
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(WCC), neutrophils, lymphocytes, monocytes, eosinophils, platelets, urea, creatinine,
number of steroids taken, rheumatoid factor figure, and Cyclic Citrullinated Peptide
(CPP). Medication information was also available. Patients in the dataset were
on abatacept, azathioprine, gold, hydroxychloroquine, leflunomide, methotrexate,
penicillamine, and sulfasalazine. For each patient, the following information was
recorded for each medication they were on: the start date, stop date, dose, dose unit,
frequency, route, reason stopped (if relevant), and the number of days in each interval
that the patent was on that medication.
5.3 Other Statistical Considerations

Ideally, there would be no missing data, and thus no measures would need to be
taken to account for the missing data. However, missing data is often encountered
in applications. If all the data for a particular visit, and patient was missing (for
example, if a patient missed an appointment, or was lost to follow up) then I removed
that entire visit from the data set. I imputed missing variables using Multivariate
Imputation by Chained Equations (MICE) with one imputation (m = 1), and five
iterations. I did not perform a sensitivity analyses for missing data. In cases where
the employment was missing, I used last observation carried forward rather than
MICE. I made an effort in choosing methods that were statistically justified, and
logical in data cleaning. Specifically, for factor variables, I chose the most common
factor to be the baseline. I identified duplicates, and in cases where duplicates were

identical, I removed one copy.
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5.4 Introductory Tables
I included here two tables. The first table, Table 5—1, shows a summary of the
patient information that does not change over time. The second table, Table 5-2,

shows a summary of patient information separated by visit number.

Table 5-1: Summary information for all patients

Overall
n 1168
Marital status (%)
Married 680 (58.2)
Single 149 (12.8)
Widowed 115 (9.8)
Living with partner 99 (8.5)
Divorced 91 (7.8)
Separated 34 (2.9)
Race (%)
White 1156 (99.0)
Other 6 (0.5)
South east asian 2(0.2)
Indian sub-continent 4 (0.3)
Afro-caribbean 0 (0.0)
Weight In kg (mean (SD)) 78.11 (17.43)
Height In m (mean (SD)) 1.66 (0.10)
BMI (mean (SD)) 28.21 (5.51)
Alcohol intake (mean (SD)) 4.98 (8.93)
Gender = male (%) 412 (35.3)
Age (mean (SD)) 57.90 (14.00)
Smoking status (%)
Non-smoker 431 (36.9)
Ex-smoker 420 (36.0)
Current smoker 317 (27.1)
Diagnosis = undifferentiated arthritis (%) | 168 (15.6)
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I also included two figures to describe the dataset. The first figure, Figure 5-1,
shows the proportion of patients with a given Swollen Joint Count for each visit
number in the SERA dataset. The second figure, Figure 5-2, is analogous to the first
figure but for Tender Joint Count. Note that some patients missed appointments
or were lost to follow up, which explains why there were not the same number of

patients for each visit number.
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Figure 5-1: Number of swollen joints

86



Number of Patients

900

6004

3004

Tender Joints by Visit Number

Visit Number

Figure 5-2: Number of tender joints

87

Number of
Tender Joints

© o N o U~ W N B O

[
o

11+



5.5 Maximum Likelihood Estimation

Using variables identified in the literature, a Maximum Likelihood Estimation
(MLE) model was fit. I included the following variables (with relevant citations): (i)
Visit Number, used as a proxy for disease duration, and time in treatment (Smolen
and Aletaha, 2015), (ii) Smoking status, current smoker or not a current smoker
(Smolen and Aletaha, 2015; Malmstrom et al., 2017), (iii) rheumatoid factor (Smolen
and Aletaha, 2015). I included a fixed effect for each of the covariates, and a random
effect on both the intercept and visit number. More specifically, 73 is the mixing
proportion, By is the fixed intercept, [y is the fixed effect for visit number, ;5 is the
fixed effect for smoking status, and [y3 is the fixed effect for rheumatoid factor. To
determine the value for K, a series of models were fit. First, I used the R Generalised
Linear Mixed-Effect Model (GLMM) algorithm (glmer from the package Ime4), and
then took the result as the starting value for the inner Expectation-Maximisation
(EM) of a FinMix GLMM. This corresponds to a FinMix GLMM with K = 1. Then,
I took the results of that computation as the starting values for 3,, and 1, and the
remaining starting values set to m = %, By =0,and 4 = I,. I then fit a FinMix
GLMM, this time with K = 2, and both the inner, and outer EM loops being used.
Following on in this way, I estimated parameters for a series of models, for each new
K, T used the parameter estimates from the previously fit model starting values for
Brke{l,2,...,K—1},and ke {1,2,...,K — 1} but set m; = £k, B; =0,
and g = I,. I continued to estimate the parameters until I found a minimum value

for the Bayesian Information Criterion (BIC).
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Once I had found the minimum value for the BIC, in this case, K = 10 this serves
as the upper bound on K, and I chose the best model from K € {1,2,...,10}. I have
included the values for BIC in Table 5-3. From these 10 models, I then calculated the
standard errors for the parameters, as well as the corresponding p-value for inclusion
in the model. T have included details of the calculations of standard errors can in
Appendix J. Using these p-values, I chose the largest model for which all of the values
of m, were significant, in this case, K = 5. I have included the parameter values
of this model, including their standard errors (where appropriate) in Table 5-4. In
Table 5-5 I show the t-statistics and corresponding p-values for the parameter values

of the MLE model.

Table 5-3: BIC over different values of K
K | BIC

46862.15
46097.65
45773.19
45461.07
45075.56
44717.19
44321.42
43945.43
43681.21
43452.87
43471.01

= = O 00 3O Ui Wi -

— O

This analysis shows that time on treatment, smoking status, and rheumatoid
factor are all important covariates that correlate to tender joint count. However, the
relationship between these covariates, is not the same for all patients in the SERA

cohort. This heterogeneity requires both random effects and a finite mixture of models
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Table 5-4: Parameter values for MLE model with 95% confidence intervals

Variable

Subpopulation 1

Subpopulation 2

Subpopulation 3

Subpopulation 4

Subpopulation 5

Mixing Proportion ()
Intercept (Bko)

Visit Number (Sk1)
Smoking Status (Sy2)
Rheumatoid Factor (83)

0.60 (0.53, 0.65)
-1.42 (-1.42, -1.41)
-0.09 (-0.09, -0.09)
0.36 (0.36, 0.37)
-0.00 (0.00, 0.00)

0.17 (0.12, 0.21)
-0.42 (-0.43, -0.41)
0.01 (0.01, 0.01)
-0.69 (-0.70, -0.69)
0.00 (0.00, 0.00)

0.10 (0.04, 0.15)
-0.34 (-0.37, -0.32)
-0.02 (-0.03, -0.02)
-0.06 (-0.08, -0.05)
0.00 (0.00, 0.00)

0.07 (0.01, 0.12)
017 (-0.22, -0.14)
-0.01 (-0.02, 0.00)
0.04 (-0.02, 0.08)
0.00 (0.00, 0.00)

0.05
-0.09 (-0.19, -0.02)
-0.01 (-0.03, 0.01)
0.04 (-0.08, 0.12)
0.00 (0.00, 0.00)

Intercept (T') 1.47 1.36 1.16 1.04 1.02
Intercept/Visit Number (I'yi2) | -0.29 -0.07 -0.09 -0.05 -0.03
Visit Number (') 0.19 0.86 0.71 0.79 0.90

Table 5-5: P-values for MLE model with t-statistics
Variable Subpopulation 1 Subpopulation 2 Subpopulation 3 Subpopulation 4 Subpopulation 5
Mixing Proportion () | 0.00 (16.90) 0.00 (6.93) 0.00 (3.15) 0.03 (2.19)
Intercept (Sro) 0.00 (-423.49) 0.00 (-76.25) 0.00 (-23.35) 0.00 (-7.37) 0.07 (-1.79)
Visit Number (1) 0.00 (-117.47) 0.00 (7.31) 0.00 (-9.07) 0.03 (-2.16) 0.58 (-0.56)
Smoking Status (Sk2) 0.00 (115.27) 0.00 (-130.73) 0.00 (-5.45) 0.17 (1.37) 0.55 (0.59)
Rheumatoid Factor (Bg3) | 0.00 (-887.68) 0.00 (359.99) 0.00 (17.13) 0.00 (-5.03) 0.25 (-1.15)

to represent. Across all subpopulations, the visit number was negatively associated
with tender joint count in all but one subpopulation. This makes sense because the
goal of treatment is to reduce the symptoms of RA including tender joint count.
Smoking status was also associated with tender joint count, but this association was
not the same across all subpopulations. In addition, the rheumatoid factor has a
relatively small impact on tender joint count. From the random effects, it is clear
that there is a significant heterogeneity between patients, even those within the same
subpopulation. The mixing proportion suggests that over half of the population is in
Subpopulation 1, and that all of the other subpopulations are significantly smaller.

In addition to this analysis, I performed another analysis in the same way with
p = 3, excluding rheumatoid factor as a covariate. The fit of the p = 3 model was

not as good as the model previously presented, so I have not included those results

here. I also performed an analogous analysis with ¢ = 1 and the only random effect
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corresponding to the intercept in the model. Again, this did not fit the data as well
and these results have been omitted.
5.6 Maximum Penalised Likelihood Estimation

I confined this analysis to the K = 2 case. The previous analysis suggested
that over half of the total population was in Subpopulation 1, and the other four
subpopulations had estimated parameters that were more similar to each other than
to the parameters for Subpopulation 1. I performed three analyses, one for each of the
penalties. As in Chapter 4, the three penalties used were Least Absolute Shrinkage
and Selection Operator (LASSO), Adaptive Least Absolute Shrinkage and Selection
Operator (ALASSO), and Smoothly Clipped Absolute Deviation (SCAD). The fol-
lowing variables were included for consideration in the model: Visit number (),
Ex-smoker (), Current smoker (fx3), Rheumatoid factor figure (Sy4), Lymphocytes
(Brs), Erythrocyte sedimentation (fig), C reactive protein (f5g7), Ratio of total to
HDL Cholesterol (fis), Haemaglobin (fig), Total WCC (Bk10), Neutrophils (SB11),
Monocytes (fxi12), Eosinophils (S13), Platelets (Sr14), Urea (Bri5), Creatinine (Sg16),
CPP (Br17). As in the MLE case, I included a random effect on both the intercept
and visit number. As is common practice when a penalty is added to the likelihood
equation, I standardised all of the variables to have mean 0 and standard deviation
1 before estimating the parameters. I used the algorithm in Section C.2 to find the
lowest value of BIC for each penalty, then narrowed the range of potential values
of A around that lowest value. Using this smaller range and a finer grid, I again
calculated the parameter values and BIC for each of the proposed values of A and

chose the setting with the lowest value of BIC. Since the original range for values
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of A in the SCAD case was quite large, a much courser grid was used to cover it
than in the LASSO or ALASSO case, and so I used a series of smaller and finer grids
(three additional grids) rather than two as I did in the LASSO case. In this analysis,
the lowest value for BIC in the LASSO case was 42803.23, in the ALASSO case was
43390.26, and in the SCAD case was 43233.47. Results of these three analysis are in
Tables 5—6 to 5—11. I also considered the case where K = 1, and found that these
models did not fit the data as well as the K = 2 models. The values for BIC in
these cases were 45653.07 when I used the LASSO penalty, 45832.51 when I used the
ALASSO penalty, and 45720.09 when I used the SCAD penalty.

In an ideal case, I would expect that the variables that are selected and the
parameter estimates would be similar regardless of the penalty that was used. However,
that was not the result of this analysis. There were some differences in the variables
that were selected depending on the penalty that was used. Overall, the parameters
were similar for all three cases. The results show that one subpopulation contains
a majority of patients, but that there is another distinct subpopulation that differs
significantly from the first. The values for the estimated fixed intercepts were similar
for all three penalties. The following variables were selected in both subpopulations
when I used both LASSO and SCAD: Erythrocyte sedimentation (fig), C reactive
protein (By7), Haemaglobin (Bxg), Neutrophils (5k11), Platelets (k14). The ALASSO
penalty selected fewer covariates.

5.7 Conclusion
This analysis shows that a FinMix GLMM is a valuable regression tool and is

useful for analysis of health related data. The MLE analysis suggested that there

92



Table 5-6: Parameter values for Maximum penalised Likelihood Estimation (MPLE)
model with standard errors, LASSO penalty

Variable

Subpopulation 1

Subpopulation 2

Mixing Proportion (7)
Intercept (Bro)

Visit Number (51)
Ex-smoker (fk2)

Current Smoker (f3)
Rheumatoid Factor (fx4)
Lymphocytes (Bxs)
Erythrocyte Sedimentation (/)
C Reactive Protein (Sy7)
Ratio of Total to HDL Cholesterol (fxs)
Haemaglobin (/x9)

Total WCC (Bj10)
Neutrophils (5k11)

Monocytes (5k12)

Eosinophils (S13)

Platelets (5k14)

Urea (Bg1s)

Creatinine (Sy16)

CPP (Brr)

Intercept (k)
Intercept/Visit Number (I'x12)
Visit Number (I'x2)

0.70 (0.62, 0.75)
-2.06 (-2.06, -2.05)
-0.02 (-0.03, -0.02)

-0.27 (-0.28, -0.27)
0.07 (0.06, 0.07)
-0.09 (-0.10, -0.09)
0.17 (0.17, 0.17)
0.15 (0.15, 0.15)
-0.19 (-0.19, -0.19)
0.01 (0.01, 0.02)
0.51 (0.51, 0.52)
-0.28 (-0.28, -0.28)
-0.04 (-0.04, -0.04)
0.13 (0.12, 0.13)
0.02 (0.02, 0.03)
-0.16 (-0.17, -0.16)
0.07 (0.06, 0.07)
0.96

0.17

0.65

0.30
-0.54 (-0.54, -0.54)

-0.11 (-0.12, -0.11)
0.04 (0.03, 0.04)
-0.07 (-0.08, -0.07)

0.33 (0.33, 0.34)

-0.31 (-0.32, -0.30)
0.03 (0.02, 0.03)
-0.09 (-0.10, -0.09)
0.01 (0.01, 0.02)

0.05 (0.04, 0.05)
1.05
0.17
1.05

is significant heterogeneity in the population of patients with RA, not just between

patients, but also multiple distinct subpopulations within the overall population of

patients with RA.
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Table 5-7: P-values for MPLE model with t-statistics, LASSO penalty

Variable

Subpopulation 1

Subpopulation 2

Mixing Proportion (7)
Intercept (Bxo)

Visit Number (1)

Ex-smoker (x2)

Current Smoker (f3)
Rheumatoid Factor (S4)
Lymphocytes (Sks)

Erythrocyte Sedimentation (/)
C Reactive Protein (fx7)

Ratio of Total to HDL Cholesterol (/ks)
Haemaglobin (ko)

Total WCC (ﬁkl[))

Neutrophils (5g11)

Monocytes (5k12)

Eosinophils (S13)

Platelets (Ok14)

Urea (Br1s5)
Creatinine (Sy16)

CPP (Byr)

0.00 (18.73)
0.00 (-988.48)
0.00 (-15.10)

0.00
0.00
0.00
0.00 (119.37)
0.00 (117.89)
0.00 (-120.13)
0.00 (3.58)

(-162.38)
(
(
(
(
(
(
0.00 (156.18)
(
(
(
(
(
(

33.26)
-48.91)

0.00 (-163.02)
0.00 (-23.37)
0.00 (73.32)
0.00 (11.28)
0.00 (-112.26)
0.00 (58.39)

0.00 (-335.58)

0.00 (-37.11)
0.00 (17.14)
0.00 (-26.60)

0.00 (176.62)
0.00 (-46.21)
0.00 (15.09)

0.00 (-49.44)
0.00 (8.44)

0.00 (38.39)
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Table 5-8: Parameter values for MPLE model with standard errors, ALASSO penalty

Variable Subpopulation 1 Subpopulation 2
Mixing Proportion (7) 0.70 (0.63, 0.75) 0.30

Intercept (Bro) -2.03 (-2.03, -2.02) -0.69 (-0.70, -0.69)
Visit Number (1) - —
Ex-smoker (fx2) - -
Current Smoker (fs3) - -
Rheumatoid Factor (fx4) -0.01 (-0.02, -0.01)
Lymphocytes (Ss) - -
Erythrocyte Sedimentation (fyg) - -
C Reactive Protein (Sy7) - -
Ratio of Total to HDL Cholesterol (fks) | — -
Haemaglobin (k) - -
Total WCC (ﬂklo) - -
Neutrophils (SBx11) 0.48 (0.47,0.48)  -0.18 (-0.19, -0.17)
Monocytes (5x12) — —

Eosinophils (B13) - -

Platelets (5k14) — —

Urea (B1s) - -
Creatinine (Sy16) - -

CPP (f17) - -

Intercept (I'g) 0.97 0.92
Intercept/Visit Number (I'g12) -0.16 0.16
Visit Number (I'y2) 0.67 0.96
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Table 5-9: P-values for MPLE model with t-statistics, ALASSO penalty

Variable

Subpopulation 1

Subpopulation 2

Mixing Proportion (7)
Intercept (Bxo)

Visit Number (1)

Ex-smoker (x2)

Current Smoker (f3)
Rheumatoid Factor (S4)
Lymphocytes (Sks)

Erythrocyte Sedimentation (/)
C Reactive Protein (fx7)

Ratio of Total to HDL Cholesterol (/ks)
Haemaglobin (ko)

Total WCC (ﬁkl[))

Neutrophils (5g11)

Monocytes (5k12)

Eosinophils (S13)

Platelets (Ok14)

Urea (Sk15)

Creatinine (By16)

CPP (Bi7)

0.00 (18.91)
0.00 (-952.11)

0.00 (-8.73)

0.00 (-416.86)
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Table 5-10: Parameter values for MPLE model with standard errors, SCAD penalty

Variable

Subpopulation 1

Subpopulation 2

Mixing Proportion ()
Intercept (Bro)

Visit Number (1)

Ex-smoker (fk2)

Current Smoker (fs3)
Rheumatoid Factor (fx4)
Lymphocytes (Ss)

Erythrocyte Sedimentation (k)
C Reactive Protein (Sy7)

Ratio of Total to HDL Cholesterol (fys)
Haemaglobin (k)

Total WCC (ﬂklo)

Neutrophils (5k11)

Monocytes (5x12)

Eosinophils (S13)

Platelets (5k14)

Urea (B1s)

Creatinine (Sy16)

CPP (f17)

Intercept (k)
Intercept/Visit Number (I'g12)
Visit Number (I'y2)

0.71 (0.64, 0.76)
-2.05 (-2.05, -2.05)

0.01 (0.01, 0.01)
0.01 (0.01, 0.01)

0.01 (0.00, 0.02)
0.01 (0.00, 0.02)
0.01 (0.01, 0.01)

0.29
-1.17 (-1.17, -1.16)
0.02 (0.02, 0.02)
-0.14 (-0.14, -0.14)
-0.13 (-0.14, -0.13)
-0.23 (-0.24, -0.23)
-0.16 (-0.16, -0.16)
-0.18 (-0.19, -0.18)
0.02 (0.02, 0.03)
0.49 (0.48, 0.49)
0.15 (0.15, 0.15)
0.1 (0.10, 0.12)
0.18 (0.17, 0.18)
-0.60 (-0.60, -0.60)
-0.34 (-0.35, -0.34)
0.45 (0.45, 0.45)
-0.03 (-0.03, -0.02)
-0.16 (-0.17, -0.16)
-0.02 (-0.02, -0.02)
0.89

0.09

0.92
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Table 5-11: P-values for MPLE model with t-statistics, SCAD penalty

Variable

Subpopulation 1

Subpopulation 2

Mixing Proportion (7)
Intercept (Bxo)

Visit Number (1)

Ex-smoker (x2)

Current Smoker (f3)
Rheumatoid Factor (S4)
Lymphocytes (Sks)

Erythrocyte Sedimentation (/)
C Reactive Protein (fx7)

Ratio of Total to HDL Cholesterol (/ks)
Haemaglobin (ko)

Total WCC (ﬁkl[))

Neutrophils (5g11)

Monocytes (5k12)

Eosinophils (S13)

Platelets (Ok14)

Urea (Br1s5)
Creatinine (Sy16)

CPP (Byr)

0.00 (19.31)
0.00 (-1087.73)

0.07 (1.82)
0.01 (2.48)
0.00 (6.57)

0.00 (-653.49)
0.00 (9.77)
0.00 (-70.44)
0.00 (-62.71)
0.00 (-102.16)
0.00 (-76.14)
0.00 (-78.31)
0.00 (12.94)
0.00 (300.32)
0.00 (79.00)
0.00 (24.32)
0.00 (42.93)
0.00 (-322.60)
0.00 (-128.983)
0.00 (229.82)
0.00 (
0.00 (
0.00 (

-11.75)
-89.39)
-14.88)
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CHAPTER 6
Conclusion

The world is full of complex questions, and problems that can only be solved
by appropriate statistical analysis. However, one must use the correct statistical
techniques in order to answer these questions suitably. Therefore, the assumptions
associated with a particular statistical model should be considered carefully when
performing statistical analysis. As such, it is important to develop models that take
into account the underlying properties of complex datasets.

While many regression models have been proposed, and studied in the past, a
Finite Mixture of Generalised Linear Mixed-Effect Model (FinMix GLMM) is a novel
addition. Previous literature has focused on linear regression, Generalised Linear
Model (GLM), Generalised Linear Mixed-Effect Model (GLMM), and certain finite
mixtures or regression models. While a few similar models have been considered,
notable a Finite Mixture of Linear Mixed-Effect (FMLME), a FinMix GLMM has
not been previously studied. As such, the FinMix GLMM is a useful extension to the
current literature.

In Chapter 3 I showed the theory, and an algorithm for calculating the Maximum
Likelihood Estimation (MLE) of a FinMix GLMM. I carefully defined, and described
the model, including the likelihood equation that was then used to facilitate calculation
of the MLE. I described in detail the numerical computation of the MLE which

implemented two nested Monte Carlo Expectation-Maximisation (MCEM) loops. In
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order to verify the properties of the MLE, I undertook a simulation study. In the
cases considered, the estimates calculated were well behaved with small variances,
and Mean Squared Error (MSE).

Once the form of a model has been chosen, the choice of variables to include
in that model is another complex issue. I explored the question of model selection
in Chapter 4, and performed the variable selection through penalisation of the
likelihood with Least Absolute Shrinkage and Selection Operator (LASSO), Adaptive
Least Absolute Shrinkage and Selection Operator (ALASSO), and Smoothly Clipped
Absolute Deviation (SCAD) penalties. The motivation for choosing these penalties was
their asymptotic properties. The addition of a penalty to the likelihood equation of a
FinMix GLMM required additional considerations, including reparameterisation, and
approximation, I incorporated these into the algorithm for estimating the Maximum
penalised Likelihood Estimation (MPLE). Again, I performed a simulation study to
verify, and illustrate the performance of the algorithm. Due to time constraints,
some of the planned simulations were not completed.

Finally, I conducted real data analysis. This shows the usefulness of a FinMix
GLMM for analysis of data from medical settings, and that the work of this research
is not purely theoretical.

6.1 Further Work

There are many possible extensions or different cases to consider for this model,
and as such, there are a number of possibilities for future work.

One interesting possibility that is beyond the scope of this thesis is time-to-event

outcomes. Survival analysis for a finite mixture of models is a complex topic, so
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this possibility would require an extensive amount of work. Time-to-event outcomes
are often of interest, and have been explored in the context of GLMMs by Yau and
McGilchrist (1996), and Yau and McGilchrist (1997), and multivariate mixed-effect
models can be used as described in Fieuws et al. (2007), Gueorguieva (2001), and
Sammel et al. (1999). A finite mixture of these types of models would be an interesting
extension. Hunsberger et al. (2009) considered finite mixtures of survival models. An
additional extension is to allow coefficients to change over time as shown in Tutz and
Kauermann (2003), and Zhang (2004).

Zhu and Lee (2003) discussed influential observations for GLMM, and deletion
diagnostics in Ganguli et al. (2016), further work is possible in extending these ideas
to FinMix GLMMs. Jiang and Zhang (2001), and Sinha (2004) considered robust
maximum likelihood which could be investigated for FinMix GLMMs.

In this thesis, I assumed that the random effects follow a Gaussian distribution,
and while this is a popular choice, it is not the only option that has been explored
in the literature. A multivariate Student’s t-distribution is a natural extension as
the Student’s t-distribution has heavier tails than a Gaussian distribution and was
used in Bai et al. (2016). A mixture of Gaussian distributions was used in Verbeke
and Lesaffre (1996) and motivated by the problem of model misspecification in this
context. A much more complex approach using first-order Markov chains can be
found in Farcomeni (2015), and a Dirchlet process was used in Guha (2008). I leave
these possibilities to future work.

This thesis focused on finite mixtures of distributions from an exponential family,

specifically Poisson, and binomial GLMMs, but there are many possibilities for further
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exploration using different distributions. One popular use of finite mixtures of models
is in cases of overdispersion or zero-inflated regression. Cao and Yao (2012) looked at
a mixture of binomial outcomes, and a degenerate random variable. Similarly, Lim
et al. (2014), and Morgan et al. (2014) explored a zero-inflated Poisson regression.
Young (2014) considered finite mixtures of regressions that include change points,
and Bao and Hanson (2016) showed a mean-constrained finite mixture. I have left
these possibilities for further work.

If the values of the covariates are informative to the mixing proportions, a finite
mixture of experts is applicable, as used in Huang and Yao (2012), Khalili (2010),
Wu and Yu (2016), Jacobs et al. (1991). This can also be described as modelling
predictors of latent classes (Kim et al., 2016). The number of subpopulations, K, is
an important consideration in finite mixtures. Kasahara and Shimotsu (2015) tested
the number of subpopulations when using likelihood-based tests when the underlying
distributions each follow a Gaussian distribution. In comparison, Li et al. (2016) also
focuses on the Gaussian case but uses trimmed information criteria for more robust
estimation. These possibilities could inspire further work on FinMix GLMMs.

In addition, the aforementioned theoretical considerations, many computational
ideas may also be relevant. Specifically, coordinate descent is often used when
optimising penalised likelihoods (Wei and Zhu, 2012), the use of antithetic variables as
shown in Rubinstein and Samorodnitsky (1985) may provide improved computational
efficiency, and importance sampling (Kuk, 1999) or sampling from a Student’s t-
distribution (Booth and Hobert, 1999) rather than a standard Gaussian in the

calculation of 7;; could improve the approximation of the integral in Equation (3.1).
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Ergodic averaging, as explored in Fort et al. (2003), could provide less variable
parameter estimates, and is an interesting possibility.

The focus of the thesis was not on the computational aspects of the algorithm, and
as such, there are many improvements, and possibilities for further work to compare
different approaches. A Monte Carlo approach using a Gibbs sampler for GLMMs is
possible (Zeger and Karim, 1991; Gamerman, 1997; Burton, 2003; Chan et al., 2005;
Christensen et al., 2006; Fan et al., 2008) as well as a similar Gibbs sampling approach
(Leung and Elashoff, 1996a). These extensions could be tried with a FinMix GLMM.
Sequential reduction (Ogden, 2015), matching (Benedetti et al., 2014), and profile
likelihood (Jeon and Rabe-Hesketh, 2012) are additional possibilities. Kuk (1999)
showed that importance sampling could improve the approximation of an integrated
marginal likelihood function. A simulation-based estimator for GLMMs was shown
in Li and Wang (2012) where both consistency, and the asymptotic distribution of
the estimator was included. penalised quasi-likelihood, and simulated maximum
likelihood were compared, and contrasted in Ng et al. (2006). I have not applied
these approaches to a FinMix GLMM. In addition, I used the same value for L in all
simulations, and the same tolerance for assessing convergence. As such, possibilities of
increasing L as the iterations increase or changing the assessment of convergence based
on K or the number of parameters being estimated are possibilities for further work.
In addition, an Markov Chain Monte Carlo (MCMC) approach could be applicable
to problems where I used Expectation-Maximisation (EM), Ryden (2008) provided
a comparison between these methods. There are also many different maximisation

algorithms that could be explored. Coordinate descent is especially popular in the
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variable selection literature (Wu and Lange, 2008), and could be applied to FinMix
GLMMs.

Group variable selection is an interesting problem, and has been explored in
the literature with group LASSO in Yuan and Lin (2006), and Meier et al. (2008),
Adaptive group LASSO in Wang and Leng (2008), and group SCAD in Wang et al.
(2007). Extensions to group LASSO include weighted group LASSO (Hirose and
Konishi, 2012), standardized group LASSO (Simon and Tibshirani, 2012), and sparse
group LASSO (Xie and Xu, 2014). I have left expanding these options to FinMix
GLMMs for future work.

Several computational adjustments have been proposed for LASSO in Foster
et al. (2008), Wu and Lange (2008), Guo et al. (2015), Lee et al. (2015), Laurin
et al. (2016), and Rajaratnam et al. (2016), and I could consider these in the FinMix
GLMM case. The LASSO penalty function has also been extended in various ways
including fused LASSO (Tibshirani et al., 2005), relaxed LASSO (Meinshausen, 2007),
Bayesian LASSO (Hans, 2009), random LASSO (Wang et al., 2011), forward-LASSO
adaptive shrinkage (Radchenko and James, 2011), smooth-lasso (Hebiri and van de
Geer, 2011), iteratively reweighted LASSO (Liu et al., 2014), component LASSO
(Hussami and Tibshirani, 2015), moderately clipped LASSO (Kwon et al., 2015),
and multiple imputation random LASSO (Liu et al., 2016). I have left using these
penalties with a FinMix GLMM for future work.

Similarly, several possible extensions relating to ALASSO have been proposed,
and could be applied to a FinMix GLMM. These include Bayesian adaptive LASSO

(Leng et al., 2014), the distribution of the estimates (Potscher and Schneider, 2009),
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the potential for model misspecification (van de Geer et al., 2011), robustness to
model misspecification (Lu et al., 2012), rates of convergence (Chatterjee and Lahiri,
2013), false discovery rate (Sampson et al., 2013), tuning parameter selection (Hui
et al., 2015), and post variable-selection inference (Chatterjee et al., 2015).

Extensions of the SCAD penalty function have been published as well, but I
have not considered these in the FinMix GLMM case. Wang and Li (2009) proposed
a weighted Wilcoxon extension which is more robust to outliers. Kwon et al. (2011)
explored a quadratic approximation extension to SCAD called Q-SCAD. Alternatively,
a quadratic approximation was used by Choi and Park (2012) to improve efficiency.
Other expansions include SCAD for constrained variables (Ng and Yu, 2014), varying-
coefficients models with autoregressive errors (Qiu et al., 2015), and generalised
additive models with non-polynomial dimensionality (Li et al., 2012). I have not
explored these options for a FinMix GLMM.

In addition to the previously discussed penalty functions, a few others have
been proposed including ridge regression (Hoerl and Kennard, 1970), Least-Angle
Regression (LARS) (Efron et al., 2004), elastic net (Zou and Hastie, 2005), MSCAD
(Chen and Khalili, 2008), VISA (Mkhadri and Ouhourane, 2015), and minimum
¢-divergence estimation (Sakate and Kashid, 2014). Hui et al. (2017), shrink the fixed
effect to zero only if the corresponding random effect is or has already been shrunk to
zero, which is a desirable property. Yu and Wang (2019) described another interesting
penalty where both the mixing proportions as well as the regression coefficients are

penalised. A robust variable selection method using minimum-distance techniques
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has been suggested in Tang and Karunamuni (2018). Further exploration of these
penalty functions is a possibility.

Two large issues in statistics that have not been considered in this thesis are
measurement error and missing data. Torabi (2013) explored measurement error in
covariates of a GLMM, while Noh et al. (2012) examined both measurement error, and
missing data. Yao and Song (2015) looked at measurement error in finite mixtures of
models.

Model misspecification is a large topic, and one that could be further developed
with respect to FinMix GLMMSs. The issues, and consequences of model misspecifica-
tion in GLMMs are considered in Abad et al. (2010), McCulloch and Neuhaus (2011),
Heggeseth and Jewell (2013). The work of Heagerty and Kurland (2001), Litiere et al.
(2007), Alonso et al. (2008), Huang (2009), Cox and Wong (2010), and Neuhaus et al.
(2013) all focus on misspecification of the random effects.

While I took a frequentist approach in this thesis, a Bayesian approach to
modelling of GLMM, and LMM has been discussed by Kizilkaya and Tempelman
(2005), Natarajan and Kass (2000), and Li et al. (2014). Alternatively, Wolfinger
and Oconnell (1993) explored a pseudo-likelihood approach. Exploration of FinMix
GLMMs using these methods is a possibility for further work. Eskandari and Ormoz
(2016), and Hunter and Young (2012) explored generalised semi-parameteric models.
Ormoz and Eskandari (2016) look at the problem of variable selection in finite mixtures
of semi-parameteric models. Huang et al. (2013) showed a nonparameteric finite
mixture of regression models. Wang et al. (2014) showed finite mixtures of GLMs in

both the semi-parameteric, and nonparameteric cases.
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A number of excellent suggestions came up during my thesis defence. I assumed
that an individual must remain in the same subpopulation through time, and relaxing
this assumption would be an interesting extension. Using Metropolis-Hasting sampling
assumes a Gaussian distribution, and exploring if the results are sensitive to this
assumption is left to future work. A more in depth consideration of the impact
of correlated covariates on convergence and identifiability is also an idea for future
simulations and consideration. Similarly, further simulations considering the case
where one subpopulation is quite small, such as a rare form of a disease would be
interesting. Another possible idea is to adjust the Bayesian Information Criterion
(BIC) when LASSO is used as in Bhattacharya and McNicholas (2014).

These additional possibilities show that more research is possible in the area of

FinMix GLMMs.
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APPENDIX A
Notation

a - Value used in the SCAD penalty
by; - Possible value of b; assuming subpopulation &
b; = (bi1, big, iz, - - -, big) T ~ Gaussian(0, I,) - Vector (length ¢) of standard Gaussian

random effects for subject ¢

buu bar ... b
b12 bQQ C. bng . ) .
b= - Matrix (size n x q) of all standard Gaussian random
| big b o by
effects ) ) )
1 0 ... 0 1 0 ... 0
Char 1 ... 0 t2Loq
Cr = = k22 - Matrix (size g x q) of de-
Crgt Crgp ... 1 B iRy

composed covariances of random effects

Ci = (Ckar, Ckgl, Chiaa, . .. C’kq(q,l))T - Ve_ctor (length @) version of Cy,

Dy Dior ... Dipg
- Diar Dyaa ... Digo , . o
Dp= = - Variance-covariance matrix (size ¢ X q)
Dipn Digz --. Digg

for random effects
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der 0 ... 0 I'eii 0O ... 0
0 diz ... O 0 Tgop ... O
dp = = - Diagonal matrix (size
0 0 ... dy 0 0 ... Tiy

q%xq) of standard deviations of random effects

di = (dg1, dras - -, dig) " = (Tran, Thags - -, Trgq) | - Vector (length g) version of dy

df - Degrees of freedom

9(x;; B8, + z;;'kb;) - Canonical link function

Hp,, - Hessian matrix (size n x q) at by,

I,(©) =" s(yilXi, Zi, ©)[s(yi]Xi, Z;, ©)] T - Empirical observed information ma-
trix (size (K — 14+ K*p) x (K —1+ K *p))

K - Number of subpopulations

L - Number of potential values generated to approximate the integral in the likelihood
L,(®) - Likelihood function at © from a sample of size n

0,(0) - Log-likelihood function at © from a sample of size n

ﬁi ,(8;) - penalised log-likelihood function at 8, from a sample of size n

M =3%""  n; - Total number of observations

m;; - Number of trials for the i*" subject at the j observation when the outcome
follows a binomial distribution

m; = (Mg, Miz, M3, - - ., Map,) | - Vector (length n;) containing the number of trials
for the i"" subject when the outcome follows a binomial distribution

m = (M1, M1z, M3, -+, My Ml Mz, M3y -+« s Moy, - -+ s Mgl Moy M3, -+« s Mo, ) -

- Vector (length M) containing the number of trials when the outcome follows a
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binomial distribution

N = (n1,n2,n3,...,n,)" - Vector (length n) of number of observations for all sub-
jects

n - Number of subjects

n; - Number of observations for the i** subject

ny - Estimated number of subjects in subpopulation k

p - Number of fixed effects

pa(0;,) - Penalty function at 8, with tuning parameter A

Q1(0x) - Approximate likelihood

q - Number of random effects

s(yi|Xi, Z;, ©) = 22(21 27 Log[m fy, (vilXi, Zi, ©)] - Vector (length K — 1 + K * p)
containing gradients of the complete log-likelihood, the complete-data score statistic
Ux(8,) - Vector (length s) used in penalised maximum likelihood

wyp, - Weight for parameter h, used in ALASSO

x5 - Value of the h'" covariate, for which there is a fixed effect, for the i subject at
the j' observation

x;; - Vector (length p) of covariates for which there is a fixed effect, for the i subject

at the j* observation

Xin Xz ... Xy
X'21 X'22 ce X'Q

X; = ' ' | - Matrix (size n; X p) of covariates for which there
Xinil Xmig ... Xinip

is a fixed effect, for the " subje;t
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Xin Xz ..o X
X Xz .. Xig
X=1 X1 Xina ... X, | - Matrix (size M x p) of covariates for which
Xonn Xorp ... Xoyp
Xnnnl Xnnn2 cee Xnnnp

there is a fixed effect, for all subjects
Y;; - Outcome for the i’ subject at the j* observation (random variable)

y;; - Outcome for the i subject at the j observation (realisation of the random
variable)

Y; = (Yi1,Yio,Yis, ..., Yi,) " - Vector (length n;) of outcomes for the it subject
(random variable)

yi = (Yi1, Yio, Yiss - - - Yin;) | - Vector (length n;) of outcomes for the i subject (reali-
sation of the random variable)

Y = (Y11,Y12, Y13, ., Yiny, Yor, Yoo, Yos, oo Youo, oo, Yo, Yoo, YVos, oo, Yo )T - Vee-
tor (length M) of all outcomes (random variable)

Y = (Y11, 412,135 - -+ Yings Y21, Y22, Y23, - - > Yznas - > Ynls Yn2s Uns - - - Ynmy) | - Vector
(length M) of all outcomes (realisation of the random variable)

zijn - Value of the h'" covariate, for which there is a random effect, for the i*" subject
at the j' observation

z;j - Vector (length ¢) of covariates for which there is a random effect, for the i

subject at the j** observation
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- Matrix (size n; x q) of covariates for which there

- Matrix (size M x q) of covariates for which there

Zin Lz Zilq

y Zinn Lz Zizg
L Zz'nil Zinﬂ Zim-q ]

is a random effect, for the i subject

Zinn 2o Z11q
Zior Zix Z12q
Z= Zinil Zing2 AT
Zo11  Zoio Zo14
Znnnl Znnn2 Znnnq

is a random effect, for all sub ject_s

« - Exponent on tuning parameter in the penalty function

ﬁk = (51917 Br2; 5k3, ...

k" subpopulation

Ien

'ror

Fk;ql

0

oo

Fk’qQ

, Brp) " - Vector (length p) of coefficients for fixed effects, in the

Fk’qq

- Transformation matrix (size ¢ X ¢, lower triangle)

for random effects, in the k" éubpopulation k

]: = (Pkn, Fkgl, szg, Fkgl, Fk327 Fk33, PN quq)T - Vector (length @) version of k

0 - Difference between successive values of A, in the grid of possible values for A

€ - Value added to the denominator in
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Nki; - Sum of fixed, and random effects for the i subject at the j™ observation,
assuming membership in the k£ subpopulation

Mei = (M, Mhiz, Mhizs - - - Mhing) - = XiBx +2Z; by - Vector (length n;) of sums of fixed
and random effects for the i subject, assuming membership in the k** subpopulation
Me = (M1, k12, M3y - - > Mietny s T2ty k225 Mh23s - - - > Mi2ngs - - - » Mhnls Tkn2s Mhen3s - - - 777Imnn)T
- Vector (length M) of all sums of fixed and random effects

©=(x",8], 1,85, 5",.... Bk )" - Vector (length K — 1+ K x ) of 7, B,,
and

©=(n",8].8],....,8%)" - Vector (length K — 1+ K x p) of w and B, used in
the calculation of standard errors

0, = (8., :")" - Vector (length ») of B, and

0, = (B,,d:T,C:N)T - Vector (length ») of B,, df, and C;

¢t - Exponent on % to facilitate half step Newton-Raphson

x=p-+ %q(q + 1) - Length of 85, number of parameters in the k™ subpopulation
A= (A, A, A3, ..., Ak) - Vector (length K) of tuning parameters used in penalised
maximum likelihood

Vki = (Vkits Vkiz, - - > Vkig) | = #bi ~ Gaussian(0,D;) - Row vector (length ¢) of

random effects for the i*" subject

Vil Vg21 .. Vgnl
Vg2 Vk22 --- Vikn2 . .

v = - Matrix (size n X q) of all transformed random effects
l/qu l/kgq Ce anq

&rij - Expected outcome for the i subject at the j* observation, assuming the k'

subpopulation (Poisson)
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€ = (Srity Erin, Erizy - - > Ein,) | - Vector (length n;) of expected outcome for the
i subject, log(&;) = My = XiBy + Zi kb, & = exp(ny,;) = exp(XiBy, + Z;i 4by)
(Poisson)
€ = (&r11,Eroy Er1zy - -, Eknn, )| - Vector (length M) of all expected observations
(Poisson)
7, - Mixing proportion, the proportion of the underlying population in subpopulation
kwith S8 m =1
™ = (m, T2, T3, . .. ,W(K,l))T - Vector (length K — 1) of mixing proportions

A(0)) or  A(6) - Matrix (size s X ) used in the penalised maximum likelihood
Tri - Membership probability for subject ¢ in subpopulation &
Te = (Th1, Th2, Tk3, - - - » Thn) - - Vector (length n) of membership probability for all
subjects in subpopulation k
7 = (T4, Toi, T3i5 - - -, Tii) | - Vector (length K) of membership probability for one
subjects in each of the K subpopulations
¢ri; - Expected outcome for the i subject at the j™ observation, assuming the k™
subpopulation (binomial)
@i = (i1, Prizs Prizs - - - Prin,) | - Vector (length n;) of expected outcome for the
it" subject, logit(pp) = M = XiBr + Zi b, p: = expit(n,;) = exp(XiB), + Z; by)
(binomial)
P (P11, Pr12, Pk13, - - - » Phnn, )| - Vector (length M) of all expected observations (bi-

nomial)

115



APPENDIX B
Details of the Derivatives

This appendix provides details on the maximisation of the approximate likelihood

described in this thesis. Recall that the likelihood of a FinMix GLMM is

L(©)

Q

nyz‘(Yilxiazia@>
i=1

n K
H Z ka)(’lj)(yi|xi7 Z;,0y)

i=1 k=1
n K
Hzﬂk/f}(,]:)bi(yﬂxuziabuOk)f(bz‘)dbi

i=1 k=1

—
W

i=1 k=1 j=1
n K 1 L n;

(k) ©
LI g D 114w, sl 25, b7, 6)
i=1 k=1 =1 j=1

K L
1 k ¢
H EZMZ f;ij)|bi(?/ijyxijazijab§ ),Ok)

k ¢
f;ij)‘bi<yij|xijazija bl(- )> 65)

n K L
k l
[ID o me D TL A by, 2,17, 0).
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Thus, the log-likelihood is
0(O®) =~ log (ﬁ
i=1

= Zlog (
g

=1

TMN

L n;
k l
H Iy (sl 215, b1 9@)

Wk—z
=
”kLZH vy s ?/zj|Xij»Zij7b§g)’0k)>

=1

Mx

1
lel

Mx

i H Tyt %j|Xz'j=Zz‘jabz(‘€)79k)) _log(ﬁ]

=1 lel

U k Z
H f;i].)|bi (Yislxis, 215, bz(' )a 0i) | — Z log(L)

=1 j=1 i=1
=1

?r

Tk

T ok ¢
H fy(ij)|bi (yij|1xij: Zij, bg ), 6y) | —nlog(L)

=1 j=1

Tk

]
M I T

L
)
Tk Z H ywlb y1j|Xij7 Zij, bi ) ek)

=1 ¢=1 j=1

T
o
=

The remainder of this Appendix shows the details of the maximisation of the
MLE for a single subpopulation £ in both the Poisson and binomial case. The first
two sections show these derivatives with respect to 3, and 7} so these correspond
to the MLE described in Chapter 3 and Chapter 4 when only the fixed effects are
penalised. The last two sections show these derivatives with respect to 3, d*, and

. as described in Chapter 4 to facilitate penalisation of random effects.

B.1 Details of Maximisation of the Maximum Likelihood Estimate for a
Single Subpopulation K, Poisson Case

In order to maximise the approximate likelihood using Newton-Raphson, I
calculated the first, and second derivatives of the approximate likelihood. As an
example, the details of the derivatives for each element of @, are shown here. In

the following example, p = 3 and ¢ = 2. Thus, x;;8, + zi; b = 1861 + TijoBr2 +

117



Tij3Bk3 + 2ij1 Lri1bin + 2ij2l k12001 + 23520 k20i2 and

Qr(0r)

L n o n;

% Z Z Z [YijTij1 Bra + YijTijoPro

=1 i=1 j=1
+yz‘j$z‘j35k3 + yz’jzijlrkllbil + yijzijQPmbﬂ + yz‘jzij2rkz22bi2

_ efvz'j15k1+l‘z‘j25k2+$z‘j35k3+zij1Fk11bi1+Zij2Fk12bz‘1+Zij2Fk22bi2 ]

In an effort to simplify the notation slightly, I shortened bgs’l) to b;, did not include

. L i
weights 74, and condensed D7~ D70, 370, to D

First, consider the first derivative.

Q4(65)

0Qk(04)
0Qr(0r) B,
00y 0Q (6x)
2%
1 y . pTij1Br1FTij2Bre+ij3Bk3+2i51 T k110512552 k12bi1 +2i52 T k22bi2
17 Zl,i,j Tij1 [yw e ! ! ! ! !

i Zl,i,j Tij3 [yij _ eﬂﬂijlﬁm+9Eij25k2+rij35k3+zij1Fk1lbil+Zij2rk12bi1+zijsz22biz

% Zl,i,j bilzijl [yij _ el“z‘jlﬁm+5Eij2ﬁk2+5Eij33k3+zijlrk11bﬂ+Z¢j2Fk12bz‘1+Zij2Fk22b¢2]
% Zlﬂ':j bilzijQ [Z/ij _ eitijl,@m+1’ij25k2+$ij3ﬁk3+zz‘jlrk11bi1+Zijzf‘k1zbi1+Zij2Fk22bi2]

% Zl7i7j biQZijZ [yij _ efm‘j1ﬂk1+wij2ﬂk2+5E¢j35k3+2i]‘1rk11b¢1+2¢j2Fk12bi1+Zij2Fk22b¢2]
Tij1
Tij2
Lij3 (yz‘j o ewij15k1+$ij25k2+Iij3ﬂk3+zz’jlrk11bil+Zi,7'2Fk1zbi1+Zij2Fk22bi2)
Zijlbil

l71:7j

Zij2bi1

ZiijzQ
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Zl,i,j Tijo [yij — eTigtPritrij2Bratrijafrst2ijiTr11bin +zijel k12bi1 +2ij2 ka2 12}




I was then able to calculate the second derivative.

2Qx(8x)  9°Qx(6k)

4 0 _ GQQk(ek) _ 0BT 0B oBTo *
k( ’f) - T - 2 5

00,, 00y, 0°Qr(0r) 9°Qi(6k)

5 *1o8 § *Tg *

— l § 7ewij16kl+5Eij26k2+33ij3ﬂk3+zijlrkl1bil+2ij2rk12bi1+zij2rk22bi2 %
L

l,i,j
2
(9Cij1) Tij1Ti52 Lij1Ti53 xiﬂzijlbil xijlziﬂbﬂ fijlzijzbiz
2
Tij1Ti52 (Iz‘j2) Tij2Ti53 xij2zij1bi1 $ij2zij2511 Jﬂijzzz‘jzbiz
2
Tij1%453 Lij2%453 (!Eijs) iCij:sZijlbil wijsziﬂbﬂ -TijSZij2bi2
2 2
Iijlzijlbﬂ Iijzzijlbil xijBZijlbil (Zijlbil) Zijlzij2(bi1) ZijlzijzbﬂbiQ
2 2 2
Tij1Zijabit  Tijazijabin  Tij3zijabin zijizijo(bir) (zij2bi1) (zij2)*bi1bia
2 2
xijlziﬂbiz xij2Zij2bi2 xijSZiijiQ ZijlziijilbiQ (Zij2) bi1bso (ZiijiQ)
- . r 9T
Tij1 Tij1
Tij52 Tij52
1 Tij3 Tij3
Lig | Zij1bi Zij1bi1
zij2bi 2ij2bi
Zijobio Zij2bi2
% 7emij15k1+fl’ij2ﬂk2+Iij3ﬂk3+zijlrkllbil+2ij2rk12bil+zij2rk22bi2

Also, consider the derivative with respect to b; for a particular value of i, and k.
Here, 1T used ¢ = 3.

9Qy(0)

Ob;
Zjél(zijlrkll + zijolk12 + 2ij3Tk13) [yij — emmlﬁkl+$z32ﬂk2+ww3ﬂk3+zu1Fkllbn+Zz]2Fk12bz1+Z”2Fk22bz2]
= Z?;l(zz‘jgrkgg + zij3Tk23) [y,-j — eIijlﬁkl+95ij25k2+93ij3,3k3+zij1Fk11bi1+Zij2Fk12bi1+Zij2Fk22biz]

Z?;l(zijSF%S) [yij _ ezijlBk'l+$i_7’23k’2+Iij33k3+zij1rk11bz‘l+Zij2rk12bi1+zij2rk22bi2]

zij10k11 + zij2lk12 + 23530 k13

3

= ziioT ka2 + 2i3T ka3 (yij _ exijl/Bkl+95ij2/Bk2+95ij3/3k3+zijlrk11bil+Zij2rk12bi1+Zij2rk22b'i2)
1] )

<.
Il
—

2ij3 k33

119



The second derivatives are as follows.
.

. 2ij10k11 + 2zij2l k12 + 20530 k13 2ij10k11 + 2zij2lk12 + 23530 k13
2 i
Qk(Ok) _ )
ob. 0b;

zij2l ko2 + 2530 k23

zijal'koo + 2ij30 ka3
23531 k33 2ij31 k33

><(_eﬁkl+1'i]25k2+1'i135k3+zij1Fk,ubil+Zij2Fk125i1+Zij2Fk225i2)

j=1

B.2 Details of Maximisation of the Maximum Likelihood Estimate for a
Single Subpopulation K, binomial Case

Similar to the previous section, p = 3, and ¢ = 2. Thus, x;;8, + z;; b =
Tij1 Br1 + TijoBra + Tijs Bz + zij1Lkinbin + zijol'k120i1 + zijol ka2biz, and
1 L n o ng
Qr(0r) = 7 Z Z Z[yijxmﬁkl + YiiTijo B2 + YiiTijz s + YijzijiLe11ba

I=1 i=1 j=1
+yijzij2rk12bi1 + yijzijQszzbiQ

—mgjlog(exp[xij1 Br1 + TijoBr2 + Tijsbrs + Zij1l k11ba

+2ij2lk12bin + zijalkaobio] + 1)].

Again, in an effort to simplify the notation slightly, I shortened bgs’l) to b;, did not

include weights 73, and condensed S5 S™* Dt o D

120



I calculated the first derivative.

0Qk (0k)
, 0Qr(0
QL0 — Qr(Or) _ 98,

00y, 0Qk(0k)
=
N
1 Z e%ij1Br1t®ij2Bkp2 2533251 k11bi1 202  k12bi1+2ij2  k22bi2
L 1,3,7 Lij1 |Yij mij e%ij1Pk1FTij2Bk2+7ij3Pk3 251 k11012552 k12001 T 2452  k22bi2 4
1 Z eTij1Pr1tTij2Bro+eij3Br3+2ij1Tk11Pi1+2i52T k1201 +2ij2T k22bi2
L 1,i,5 Lij2 |Yij Mij e%ij1Pr1tij2Pk2+2ij3Bk3 2151 k11041 +2i52 k12001 F2i52 k22bi2 4
1 Z eTij1Pr1tTij2Brateij3Br3tzij1Tr11bi1+2i52  k12bi1 +2ij2T k22biz
- L 1,3,7 Lij3 |Yij — M e%ij1Pe1Feij28k2+2ij3Bk3 251 k11031 +2i52 k12001 +2i52 k22bi2 4
1 b e%ij1Pr1t@ij2Broteij3Br3+2ij1Tk110i1 252 k12001 +2ij2T ko2 bi2
T Zl,i,j i1%i51 | Yij mij e‘”ijlﬁkl+*’”ij2ﬁk2+wij3ﬁk3+zijlFkllbil+zij2rk12bil+zij2rk22bi2+1
1 Z b e%ij1Pr1tTij2Bro+wij3Br3+2ij1Tk110i1+2ij2 k12001 252 k22bi2
T 1,3, i1%i52 | Yij Mmij ezijlﬂkl+z'ij23k2+Iij3ﬁk3+zijlrk11bi1+zij2rk12b'i1+z'ij2rk22bi2+1
1 E b eTij1Pr1tTij2Brateij3Br3+zij1Tr11bi1+2j2  k12bi1 22T k22bi2
L L Zalij 122052 |Yij — Mij eZii1Pr1T®ij2Pk2F2ij8Pr3F2ij1 k1101 T7ij2  k120i1 F7ij2  k22biz 4]
Tij1
Tij52
I
Lig | Zijibil
Zz'j2bi1
Zij2bia

eTii1Pr1+Tij2Bra+Tij3Bk3+2ij1 T k11bin+2i2  k12bin+2ij2 k22bio
X Yij — Mij

eTij1Br1+Tij2Br2+Tij3Bra+2ij1Tk11bi1+2i52 k12bi1 + 2552 T k22biz +1
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I also used the second derivative, so I derived it.

2°Qu(0r)  0°Qu(6k)

2
10, = °Qr(0r) _ | Bprop, B0 &
/ = ZxBVIR
00, 00, 2°Qy(61)  0°Qi(0y)
0 3108, 0 'O g
1 eTij1Br1FTij2Bra+Tij3Br3+2ij1Tr11bin+2ij2l k12bin+2ij2  k22biz
= —E —my;; X
T ij (exiﬂ,@m+wij2/3k2+961:j3/3k3+z1:j1Fkubu+z1;,-21"k12b1:1+zij21"k22b1;2 + 1)2
lyi,j
Tij1 Tij1Li52 Tij1Li53 Tij1%i51041 Ti51%i52041 Lij1%i52042
2
L1552 (xijZ) Tij2Li53 Cfijzzijlbil xijzzijzbﬂ xij2zij2bi2
Tij1L453 Tij2Li53 Tij53 Li53%i51041 Ti53%i52041 Lij3%2i52042
2 2
Tij1zij1bin  Tijezijibin ®ij3zijibi (zij1bi1) zij12i2(bin)?  Zij12ij2binbio
2 2 2
Tij17zijabin  Tijezijebi Tijszijebi zij1zige(bi) (zi52bi1) (2ij2)°bi1bio
2 2
Tij1zijabia  Tijazijabia  Tijazijobia  Ziji1zijabinbiz  (2ij2)7birbio (zij2bi2)
- 1 r 4T
Tij1 Tij1
Tij2 Tij2
1 Tij3 Tij3
L
Lig | Zijibi Zij1bi1
Zij2bi1 Zij2bi1
Zijabio Zijabio
eTij1Br1+Tij2Br2+2ij3Bk3+2ij1Tk11bi1+2i2  k12bi1 42052 k22biz
X — mij

(eﬂci]’lﬁkl+x'ij2ﬂk2+$ij3ﬁk3+zijlFkllbil+Zij2rk12b1il+Z'ij2Fk22bi2 + 1)2

Also, consider the derivative with respect to b; for a particular value of i, and k.
Again I used g = 3.

zij1lk11 + zij2lk12 + 2453013

0Qk(0r)  _ i

zijol'ka2 + 25531 k23

ob, =
2ij3 k33
eTij1Br1+Tij2Br2+Tij3Br3+2ij1Tk11bi1+2ij2 k12bi1+2i52T k22bi2
X — my;
Yij Y emij1Br1tij2BrateijzBratzijiTre11bin+2ij2lk12bi1+2i52 T k22bi2 4 1
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I then calculated the second derivative.

.
) . 2ij10k11 + 2zij2l k12 + 20530 k13 2ij10k11 + 2zij2lk12 + 23530 k13
0?Qr(6y) -
T A E : 2ij20 k22 + 2130 k23 zij2l ko2 + 2530 k23
b] b, =
23531 k33 2ij31 k33

eTij1Br1tTij2Bre+ij3Br3+2zij1T k1105142552 k12051 + 2552 k22bi2
X — Myj

(i1 Pri ¥ 2 PraTai3 ke T TRt T 72 kizbit 2,2 kasbiz 1 1)2
B.3 Details of Maximisation of the Maximum Likelihood Estimate for a
Single Subpopulation K, Poisson Case, 7, Reparameterised
Following the reparameterisation of the matrix j described in Section 4.2, I
again calculated the first, and second derivatives of the approximate likelihood. To
illustrate, I show an example with p = 3, and ¢ = 3 with differentiation performed
for each element. In this example, x;;8; + z;; 1b; = x;;8;, + 2;;di,.Crb; = ;181 +
Tijo e + TijsPrs + Zijtdeibi + zijadr2(Crazbin + biz) + 2ij3dik3(Crizba + Crasbiz + bis)
and

1L n o n;

Qr(0,) = 7 Z Z Z [YijTij1 561 + YijTij2 Pk + YijTijaBus

I=1 i=1 j=1
+  YiZijidiabin + Yij2zijadia(Crizbin + bi2) + Yij2ij3dis(Crisbin + Crasbio + biz)

— et Btz Bra i Pratzijidei birtzijadee (Cr12bi14bi2)+2:53dk3(Cri13bir +Chrosbiz +bi3)]

As before, in an effort to simplify the notation slightly, I shortened bl(-s’l) to by, did

not include weights 7;, condensed >-,~; 71" | 3757 to 3, ., and used et in

place of eﬂﬂz‘ﬂﬁkl +xij2Bk2+Tij3Bk3+2ij1dr1bi1+2ij2dR2 (Cri2bi1 +bi2)+2i53dks (Cr13bi1 +Crasbia+bia) .
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Again, I calculated the first derivative.

0Qr(6;)

0By,
o0y - 220 | e
6 00, od

ac;
% Zl,i,j xijl[yij — eﬂfijlﬁlir...]
% Zl,i,j xijZ[yij — e$ij16k1+...]
T > i Tigalyis — et B+
% Zl,i,j<zij1bi1)[yij — it Brrt]
- 7200 7i72(Crazbin + bio)[ys; — et
T 20 i53(Crasbin + Crasbia + big)[ys; — "1t
LY (zigadiabin) sy — e 1+]
%Zl,i7j(zij3dk3bi1)[yij _ erinBut]

% Zlﬂ}j (Zij3dk3bi2) [yij - exijlﬁk1+...]
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Tij1
Tij2
Xij3
Zijlbil
= 7 2ij2(Cri2bi + bi2)
2ij3(Crisbir + Crasbia + big)
Zz’j2(dk2bi1)
Zij3(dk:3bi1)

ZijB(dkai2)
% {y,, _ eﬂﬂi]’lﬁm+$ij25k2+$ij35k3+zij1dk1bil+Zz'j2dk2(Cklzbﬂ+bi2)+zz’j3dk3(Ck13bi1+Ck23bi2+bi3)}
(¥

The second derivative is more complex in this case.

001(8,)  PQuB))  924(0,)
0B 0B, 9B od~ 9Bl oCk

2
"0,) — FOr) _ | ogue,) oouey) Qi)
= aQ;ﬁQk 0d*ToB, od*Tad*  ad*ToCk
0Qi(0,)  9Qr(0,)  9Qw(8,)
aCiTop, oc;Tad* aCToC;
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Zij2(dkzbi1)
ZijB(dkail)
i Zz’js(dksbn) ]
_ @i Bt @ijaBrateija Bratzijidrabi+zijadys
- 0 00O 0 0 0
0000 0 0 0
0000 0 0 0
0000 0 0 0
0000 0 0 Zijobi
0 00O 0 0 0
0 0 0 0 zyobit 0 0
0 00O 0 Zij3bin 0
0000 0 Zij3bia 0
{yij —e

Tij1
Xij2
Zij3
Zz’jlbil
2ij2(Cri2bin + bi2)

2;j3(Crisbir + Crasbiz + big)
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Tij1

Tij2

Tij3

Zz’jlbil
2ij2(Cri2bin + bi2)
2ii3(Crasbi + Cragbia + bis)

Zij2(dk2bi1>
Zij3(dk3bi1>

Ziijil zij3bi2

zij3<dk3bi2>

(Cri12bi1+bi2)+2ij3dk3(Cr13bi1 +Crazbiz+bi3)

0

0
0 0
0 0
0 0
0

0

0 0
0 0
0 0

l’ijlﬂm+J»’z'j25k2+J»‘z'j35k3+zij1dk1bi1+Zij2dk2(0k12bi1+bi2)+zz'j3dk3(ck13bi1+Ck23bi2+bi3)}




B.4 Details of Maximisation of the Maximum Likelihood Estimate for a
Single Subpopulation K, binomial Case, «v, Reparameterised

Similar to the previous section, I provided a binomial example next with p = 3,
q = 3, and x;;8, + zi; b = X8, + 2;0Cib; = 231811 + TijoBre + Tijsbrs +
2ij1dk1bin + Zijodka(Crizbi + bi2) + 2ij3dks3(Crisbia + Crasbia + biz) to illustrate the
differentiation. Thus,

n o n;

L
1
Qr(0,) = 7 ; Zl Zl[yij$ij15k1 + Vi Tij2Br2 + YiiTijsBrs + Yijzij1dr1bia
=1 i=1 j=
+1ij2ij2dk2(Cri2bia + bi2) + ¥ij2ij3dk3(Crisbi + Chrazbio + bys)

—mgj log(exp[xij1 Br1 + @ij2Bra + TijsPrs + Zij1drbi

+2ijodia(Crizbin + biz) + zij3dis(Crisbin + Crasbio + biz)] + 1)].

As in the previous section, to simplify the notation slightly, I shortened bgs’l) to by, did

not include the weights 73, condensed S, 377 DM 10 37, and used et

rather than emiﬂﬁm +xij2Bk2+ij3Bk3+2ij1dK1bi1+2ij2dR2 (Cri2bi1+bi2)+2i53dk3 (Cr13bi1 +Crasbia+bi3) .
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Counsider the first derivative.

9Qk (8))
B,
QL0,) - 9Qk(8y) _ | oQx(@y)
9 5
k 00, ady
9Qk (8))
oCy
r 1 N ) e%ij1Br1 Tt 7
le,i,j ijilyij —mij eTij1Pr1T ]
1 . . e%ij1Br1t-
T Zl,i,j Tij2lyi; — mi -74x”15k1+ T—l]
e%ij1Pr1t-

1 .
T 2ot Tigalyis — mij Tij1PR1 T +1]
eTijl1Br1t -

1 .

I 2, ziitbalyi — L ey ey 1
181t

= % 21,4, %i32(Crizbin + biz)[yi; — k) —]

mz]‘mulﬁlir 1
1 mlﬁkl+
T 21, %53(Cr13bin + Crasbiz + biz)yij — 3 ]

mij eTij1Pr1t

41
1 zij1Bk1+
T 20,5 Zig2(diabin)lyig — mij g
1 J‘z]lﬁk1+
T 20, #ig3(dabin) lyig — mij =g +1}

. eTij1Prit }

1
T 21,5 Zigs(disbia)lyig — mij g |

Tij1
Tij2
Tij3
zij1bi1
7 2ij2(Cr12bi1 + bi2)
2ij3(Cr13bi1 + Crasgbiz + bi3)
zij2(di2bin)

2;53(dp3bi1)

2ij3(dr3biz)
eTij1Br1tTij2Br2+Tij3BK3+2ij1dk1bi1+2i52dk2(Cri2bi1+bi2)+2ij3dk3(Cri3bi1+Crazbiz+bis)
e
Yij Y ewij1Br1+xij2Bra+wij3Brat+zij1dr1bi1+2ij2dk2 (Cri12bi1+bi2)+2i53dk3 (Cr13bi1 +Cra3bia+bi3) +1

Again, the second derivative is more complex with the reparameterised notation.

9Qr(8y) 9Qk(Oy)  9Qk(8y)

) B, 9By, B, od* aB,. ocy,

Q”(O ) _ o Qk(gk) — an(gk) an(gk) an(Qk)
kAZk 00, 08, ad*Top,  ad=Tad~  ad*Tacy
o 9Qr(O8y)  9Qk(8y)  9Qk(8y)

acyTop, oacyTad=  acyTacy
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Tij1
Tij2
Tij3

zij1bi1

1
7 Z 2i52(Cr12bi1 + bi2)

s
*J {eﬂcijl5k1+ﬁ¢z‘j2f3k2+x1j35k3+2u1dklbu-‘rzijzdkz(ckmbu+biz)+zij3dk3(Ck13bi1+ck2sbiz+b13) + 1}2

o o o o o o o o o

{yij

2;73(Cr13bi1 + Crasbiz + bi3)
zij2(diabi1)

2;53(dg3bi1)

2;53(dg3bi2)

eTij1Br1+Tij2BK2+Tij3Br3+2ij1dk1bi1+2i52dk2(Cri2bi1+bi2)+2i53dk3(Cri3bi1 +Cragbiz+biz)

Tij1

Tij2

Zij3

zij1bi1
2ij2(Cr12bin + biz)
2ij3(Cr13bi1 + Craszbia + bi3)

zij2(dgabi1)
2i53(dr3bi1)

2;53(dg3bi2)

eTij1Br1+Tij2Bra+ij3Br3+2ij1dK1bi1+2i52dk2 (Cri12bi1+bi2)+2ij3dk3(Cri13bi1+Cragbiz+biz)

0 0 O 0 0 0
0 0 O 0 0 0
0 0 O 0 0 0
0 0 O 0 0 0
0 0 O 0 0 zij2bi1
0 0 O 0 0 0
0 0 0 zjsbs O 0
00 0 0  zjsby 0O
00 0 0  zysba O

0 0
0 0
0 0
0 0
0 0
2ij3bi1  2i53bi2
0 0
0 0
0 0 ]

s
J e®ij1Br1twij2Br2+ij3Br3tzij1de1bi1+2ij2dr2 (Chi2bil +bi2)+2i53dka(Cr1abin +Crasbiatbis) 4 1
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APPENDIX C
Detailed Algorithms

The complexity of a FinMix GLMM necessitates a multi-step algorithm to
perform parameter estimation. I described these calculations in Chapter 3 and
Chapter 4 for the MLE and MPLE cases respectively but I reproduced them as formal
algorithms here. Section C.1 details the steps to calculate the MLE of a FinMix
GLMM, and Sections C.2 and C.3 show the process when a penalty is added to the
likelihood. The generation of by;|y:, X, Z;, B, & is an important part of the E-step
in the inner MCEM which I explored in more detail in Section C.4. The choice of
the tuning parameter when using penalised regression is a complex, and important
question. I described the algorithm used to choose A in this thesis in C.5. Due to
the nested loops, I added additional subscripts have to the loop counters (S, Sout),

the tolerance (ti,, tout), and the maximum number of iterations (M;,, Myy).
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C.1 Algorithm for Estimation of Parameters Using Maximum Likelihood
Estimation
Data: Yy, Xa Za Q(O)a K; b 4q, L, n, t, tina toutaMin7 Mout

Result: ©

Set Spur 1= 0;

repeat

Increment s,y := Sour + 1;

Decompose ©ut) into W,(:"“t), and 0§:°“‘)Vk;

Outer E-Step: Calculate 7,;VkVi using by; ~ Gaussian(p = 0,3 := 1,);

Outer M-Step: Calculate 71'5:"“"+1)Vk;

for k€ {1,2,...,K} do

Reset s, := 0;

repeat

Increment s;, := s;, + 1;

Inner E-Step: Generate L values of b,(;”“l);

Inner M-Step, recall that @, and Q) are weighted by 7y;:
0, = 017 — (1)1(Q1(6;)) QO );

until \/(0,(:"'"“) — 05:”‘))2 <™ or Sin > Min:

end

Reconstruct @(Sout"{‘l) from 7T](6301A,t+1)’ and 0](€501Lt+1);

until \/(®(S°“t+1) — @Beu))2 < gout op g > Moy
if sput < M,,: then

Increment s,ut := Sout + 1;

Calculate £ = [ (@)

Calculate BIC:= (—2) x £5°) 4 df x log(n);

Return © = @(¥out) ng””t)7 and BIC;

end

Algorithm 1: Estimate FinMix GLMM parameters in MLE case.

131



C.2 Algorithm for Estimation of Parameters Using Maximum Penalised
Likelihood Estimation, Penalise Only Fixed Effects

Data: y, X, Z, (-')(0)7 K,p,q, L,n, t, A\, &, tin, towt,Min, Moyt
Result: ©
Set sput := 0, and A := A%;
repeat
Increment syt := Sout + 1;
Decompose ©ut) to find ﬂ,(j‘”‘"), and 0,(:“’”)Vk;
Outer E-Step: Calculate 73;VkVi using by; ~ Gaussian(p := 0,3 := I,);
Outer M-Step: Calculate 71',(65”“"+1)Vk;
for k€ {1,2,...,K} do
Reset s;, := 0;
Calculate n,(:m) = nw,(:'i“');
repeat
Inner E-Step: Generate L values of b,&?"’l);
Calculate y, (0¢)), and Uy, (OIESi’L)) = ,\k(O,(ji”)) X 0,(;”);
Inner M-Step, recall that @}/, and Q) are weighted by 7y;: 0](65’?"“) =
0 — (D) QO ™) =™ 5, (8 THQ(OF ™)) = nf U, (05);

until \/(0,(:"'"“) — 0&"”)2 < or i > Min;

end

until \/ (@Wouttl) _ @sou))2 < jout o g > Moy
if sput < M+ then

Increment sqyu; := Sout + 1;
Calculate £ .= 0, (©Fou));

)

Calculate BIC:= (—2) x gfgont) 4 df x log(n);

Return © := @ou) glfout) and BIC;

end

Algorithm 2: Estimate FinMix GLMM parameters in MPLE case when only the
fixed effects are penalised.
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C.3 Algorithm for Estimation of Parameters Using Maximum Penalised
Likelihood Estimation, Penalise Both Fixed and Random Effects

Data: y, X, Z, ©0, K, p, q, L, n, t, A, @, tin, tout,Min, Mout
Result: ©
Set sout := 0, and A := A
repeat

Increment Sout := Sout + 1;

Decompose ©($out) to find w,(cs‘””), and OI(CS"“t)Vk;

Outer E-Step: Calculate 13;VEkVi using by; ~ Gaussian(p :=0,% := I,);

Outer M-Step: Calculate wgcsoutJrl)Vk;

for k€ {1,2,...,K} do

Reset s;,, := 0;

Calculate n](:i"> = mr,(:l">;

repeat

Decompose , into diCy, form 8, ;

Inner E-Step: Generate L values of b;:i““l);

Calculate 5, (0¢*i)), and Uy, (8°)) ==, (85°)) x 017",

Inner M-Step, recall that Q}, and Q) are weighted by 7y;: Q;cs’”'+1> =

0" — ()(QLO) = nZ ) 5, (00 ))THQLEO ) —ni U, (857);
until \/(9,(:1‘"+1) — 95:1'”))2 < or sip > Min;

end

until 1/(@Cou 1) — @(out))2 < 1940 or 00y > Mous;
if sout < Moyt then
Increment sout := Sout + 1;
Calculate £t = ¢, (@(sout));
Calculate BIC:= (—2) x £5°48) 4 df x log(n);
Return © := @(sout) ng‘”‘t), and BIC;

end

Algorithm 3: Estimate FinMix GLMM parameters in MPLE case when both
fixed, and random effects are penalised.
C.4 Generate b,(;““l)

[ used this algorithm in the E-step of the inner MCEM. Recall that by;|y:, X, Z;, By,

does not follow a standard distribution. Therefore, I used rejection sampling to
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generate these values. However, there are many possible options when performing

rejection sampling, so I provided here some additional details.
Data: Yi, Xia Z’i> 0k7 b, q, L’Amet

Result: Sample from b(l<)|y,~7 XisZ;i, By, 1k of size L
Calculate b(MLE lyi, Xi, Zi, Bis &, and the Hessian matrix Hy,, at b MLE
Generate L potential bm') from Gaussian(p := b(MLE) ¥ :=(—Hy,,)™ "),

these are the starting values of the sample;

for a®vnter € {1,2,..., A"} do
Generate L potential values

VO ~ Gaussian(p = b %= (—Hyp, ) ™Y);
Calculate fo,[y:x:.z..8, »(V"), the likelihood of each V)

Generate L values of U' ~ Uniform(a :=0,b:=1);

If fr(U") < fopilyixizig, »(V®) then by := VO,
end

Return b,ill);
Algorithm 4: Generate b(s”“

Yis Xi, Zis Brs
C.5 How to Choose A

The choice of A is an important problem in variable selection, and one that is a
source of continued research. There is an infinite number of possible choices for each
Ak, any non-negative number is a possibility. However, all values of \; greater than
a certain value will provide the same estimates, where all the penalised parameters
are set to zero, and the non-penalised parameters are the only non-zero estimates,
that is, the mixing proportions 7, and the intercepts Sy Vk € {1,2,..., K}. In the

case where only the fixed effects are penalised, there will also be non-zero estimates
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for the random effects . Once I found these upper limits on each A, I constructed
a grid of possible values for A, and calculated the MPLE for each of them. This
provides a number of possible values of A, from which I chose the one that provided

the lowest BIC as the optimal value of A.

Data: y, X, Z, © K. p, q, L, n, ¢, @, tin, tow,Min, Mo, 0
Result: Optimal A with corresponding values of @, and BIC
Calculate MPLE, (:);

for k € {1,2,...,K} do

Set A\, :=0;

repeat

Calculate MPLE using the current value of A\, and A\, = OVh # k;
Save A, (:), and BIC;

Update A\, := A\, + 6;

until All penalised estimates for subpopulation k equal zero;

end
Using these ranges for )\, form a grid of possible values for X;
for All possible values for A do
Calculate MPLE using current value of Ay, and A, = OVh # k;
Save A, @, and BIC;
end

Find the lowest value of BIC as well as the corresponding values of A, and (:);

Return A, @, BIC;
Algorithm 5: Finding the best choice for A.
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APPENDIX D
Regularity Conditions, Asymptotic Properties, and Proofs

Asymptotic properties are very important for regression using a FinMix GLMM. How-

ever, regularity conditions must be met before I can show these asymptotic proper-
ties. This Appendix focuses on these regularity conditions, asymptotic properties,
and their proofs. I have separated this Appendix into two sections, one of the MLE of
a FinMix GLMM, and one for MPLE of a FinMix GLMM. In each case, I stated the
regularity conditions, and where relevant, verified thm. Then I stated the asymptotic
properties and proved them.
D.1 Asymptotic Properties of the Maximum Likelihood Estimates

I proved two asymptotic properties of the MLE in this section, consistency and
that the estimates follow a Gaussian distribution asymptotically. Prior to the proofs
of the asymptotic properties, it is logical to start with the regularity conditions. There
are six regularity conditions that are required, and I verify two of them below.
D.1.1 Regularity Conditions and Their Verifications

These regularity conditions for a FinMix GLMM follow from Casella and Berger
(2002, p. 516). While these regularity conditions could be applied to any MLE, I

have provided verifications that are specific to a FinMix GLMM.
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Maximum Likelihood Estimation Regularity Condition 1
Observe (y;, Xi,Z;), i € {1,2,...,n} where X; and Z; are fixed covariates and

Y;|(X;,Z;, ®) are independent identically distributed such that

K
Fo yilXi, Z:,0) = > mof8 (yil Xi, Zi, By w).
k=1

Maximum Likelihood Estimation Regularity Condition 2

The parameter © is identifiable, that is, if
K K’
Zﬂkf§lf)(Yi|xz‘, Z;, By k)= Zﬂ-;cfgjf)(yi‘Xi; Zi, Bl )
k=1 k=1

for all possible values of y;, and each i = 1,2,...,n then K = K’, and © =
©’. Identifiability is explored further in Section 3.2.2.
Maximum Likelihood Estimation Regularity Condition 3
The densities fy,(y:|X;, Z;, ®) have common support, and fy, (y:|X:, Z;, ®) is
differentiable in ©.
Verification of MLE Regularity Condition 3
I broke this condition into two parts, common support and differentiability. Recall
that the support of the density fy,(y;:) is the set of all points {y;|fy,(y:;) > 0}. The
densities of a FinMix GLMM do have common support, though the support is
dependent on the distribution of Y;|(X;,Z;,®). For example, if Y;|(X;,Z;,®) ~
Poisson then y;; € {0,1,...}, and if Y;|(X;,Z;,©®) ~ Gamma then 0 < y;; <
0o. However, two special cases are more complex, and I examined these in more

detail.
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Considering the binomial distribution, if m;; = m,ViVy, that is, the num-
ber of binomial trials is the same for all values of 7, and j, the support of y;; is
vi; € {1,2,...,m}. This satisfies the condition in this special case, but not more
generally. However, I assumed that in all cases m;; is fixed, and known, therefore
yi

L ¢ [0,1], which is the common
J

1,

vij is yi; € {1,2,...,m;;}, and one can consider
support.

Another more complex case is when subpopulations have outcomes that follow
different distributions. Even if the different K’s probability density functions have
different supports, the overall probability density function of the mixture will have
common support for all values of ®. As an example, assume without loss of
generality that K = 2 where f}(,f)(yi|Xi,Zi,,3k, k), and f)(,zz.)(yi|X,~,Zi,,8k, k) have
different supports. Examples of this special case are a zero-inflated Poisson, or when

}(’1)(}’1")(1" Z;, By, k) ~ Gamma and f)(f)(yilxi, Z;,B, k) ~ Gaussian. While

)(,1)(yi|Xz~,ZZ-,[3k, k), and f§f)(yi|Xi,Zi,Bk, ) have different supports,

FriyilXi, Zi, ©) = m f(vil Xi, Zi, Bry 1) + mofS2 (vil X, Zi, Bey 1)

has the same support for all y;. More generally, the support for fy.(y:|X;, Z;, ®) is
the union of the supports for f; 97 fg) e fb(,f(), so this condition is satisfied for larger
values of K.

Next, consider the differentiability of a FinMix GLMM probability density

function with respect to ®. Recall that

K
fyi(yilXi, Zi,©) = Zﬂkfx)(}’JXi,ZuBka k)-
k=1
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The derivative with respect to 7, that is, a mixing proportion are
0 (k)
8—7kayi<yz"xi, Z;,0) =0+ ;7 (yilXi, Zi, By, &) +0 (D.1)

Derivatives of the approximate likelihood’s for the Poisson, and binomial cases
are in Section 3.3.2, and Appendix B but the derivations shown here are general to
any exponential family. Having looked at the partial derivative with respect to my,
it is sufficient to show that f. (’f) (vilXi, Zi, By, k) is differentiable with respect to 3y,
and , for each k € {1,2,..., K}.

In this thesis, I assumed that f}(,f‘)bi (vilbi, Xi, Zi, By, 1) follows a distribution
that is from an exponential family, and used the canonical link function. Rewriting
the probability density function for one subpopulation £ as an exponential family
using the form in McCullagh and Nelder (1989, p. 28) produces

® o v e LY VW)
il Wilbis Xi, Zi, B, i) = exp (a((é) + c(y, ¢)> '

I used the canonical link function, v = n = x;;83, + z;; rb;, which is linear, and

therefore differentiable. Next, I applied the chain rule,

0

K . o (YY) ) yi — V'(¢)
aek yi\bi<yz|me17Zwﬁk7Fk) = exp (a(¢> —i—c(y, ¢) a(¢)+c(y7¢>7 (D2)
and

O (b X, 2T

ae;aok yi|bg \JEI Py Ady His Pl Lk
_ V@) exp< Yi ) — b(1) )
a(¢) a(¢) + c(y, ¢)
yi; — ' () rex Yi 0 — b(¥) )
tlatrrans) (o e D:5)
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where

b
() = L)
and
ey 0°b(Y)
)= 06, 00,

This still requires that b'(¢)) and b”() exist. According to the product rule, the
product of differentiable functions is differentiable, so f;gbi(yiﬂbi’ Tij, Zijs B, k) X
fo,(b;) is differentiable with respect to 3, and . Next, I used Leibniz’s rule for

differentiation under the integral sign.

9
20,

f§l:)(Yi|xz‘, Z;, By, k)= %f;”:ﬁbi (il Xis Zi, By &) fo, (bi)dby
Also, recall that [*° f(z)dz = Aljmméirgo ff f(z)dz. However, this integral could
be a double, triple or higher-order integral, and goes from —oo to co because b; ~
Gaussian(p = 0,3 = I,). So this rule may need to be applied multiple times. Thus
Iy (yi|X;, Z;, ©) is differentiable in ©, and Condition 3 is satisfied.

Maximum Likelihood Estimation Regularity Condition 4

The parameter space ® contains an open set w of which the true parameter value
®, is an interior point.

Maximum Likelihood Estimation Regularity Condition 5

For every y;, the density fy,(y:|Xi, Z;, ©®) is three times differentiable with respect
to ©, and [ fy,(yiXi, Zi, ©®)dy; can be differentiated three times under the integral

sign.
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Verification of Maximum Likelihood Estimation Regularity Condition
5

This is trivial for 7y, mo, ..., mx_1, I have already shown the first derivatives in
Equation (D.1), and all higher-order derivatives with respect to 7 are 0 for all
ke {1,2,...,K}. For B, and , I have shown this up to a choice of b(¢)) for
the first, and second derivatives in Equations (D.2) and (D.3) respectively, and for
a selection of common distributions in Table D-1. Using again the notation from

McCullagh and Nelder (1989, p. 28),

3
;ezfy(z)bi(yiﬂbi»xijaZijnglm k)

L
a(9) + c(yij, &) a(@) + c(yij #) ) (a(@) + c(yij» 9))? a(®) + c(yij: &)

+<W>3exp< yig ¥ — b(¥) ) . b () eXp( Lyt — ()

)

a(®) + c(yij, & a(@) + c(yij, b) (@) + c(yij, &) a(¢) + c(yij, ¢)
:exp< iyt = b(¥) > (W) — VW) () — V() +< iyt — b(¥) >3
a(@) +c(wig: 0)) | a(0) + ey @) (a(@) +c(yig 0)* * \a(d) + c(uij, 9)

Recall that using the chain rule, and ¥(8;,, k) = x:;8; + 2i; rbi, the derivatives

with respect to 3, and  exist, and are as follows:

B
M Zijgbiha h < g;
0 khg
a¢<ﬁk7 k) 0, h>g
9, khg ’ .
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Table D-1: Table of derivatives of b(¢)) for different distributions

Distribution b(v)) V(1) V(1)) v ()
Gaussian %2 0 1 0
Poisson e¥ e? eV o
Binomial log(1 +e¥) 1iw (1fjw)2 e(ﬁ(je_we)?
Gamma —log(—1) i ;—;‘ %
Inverse Gaussian —(—2¢)% (_2¢)‘71 (_2¢)%3 3(_2¢)—75

Maximum Likelihood Estimation Regularity Condition 6
For any ®y € ®, there exists an open set &y C & such that @y € $; and
a function M (y;), both of which may depend on @, such that for all ® € &, and

E@o [M(yl)] <0
83
0e?

log(f(yil Xi, Zi, ©))| < M(yi).
D.1.2 Asymptotic Properties of the Maximum Likelihood Estimators
and Their Proofs

There are two asymptotic properties of the MLE that are of interest here,
consistency and that the asymptotic distribution of the estimators is Gaussian. Recall
that the MLE is transform invariant. However, the following theorem, and proof do
not include that generalisation.
Theorem 1 (Consistency of the MLE). The MLE for ® € ®, denoted © is consistent,
that is JLIEOP@(HG) — 0 >¢) =0.

The following proof follows from Kendall et al. (1994, Section 18.10).

Proof. Since © is the MLE, VO € 9,

L(Y|X,0) > L(Y|X,0)
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and also

log L(Y]X,0) > log L(Y|X, ©).

Assume that @ is the true value of the parameter vector and consider the random

variable
L(Y|X,0)
L(Y|X,0q)’

Using Jensen’s inequality, for all ®* #£ @y,
L(Y|X,0") L(Y|X,©")
E log | ———F——= log | E _——
> { e [ LYX.©) } } - { ® { L(Y[X.©)
Expanding the expectation on the right side of the inequality,
Y]X o)
Y|X -
// / L(Y|X, 0y) L(Y|X, ©¢)dy:dys . . . dyn

because the integral over a probability density function is always 1. Therefore, taking

the log of that expectation, and log(1) = 0,

L(Y]X, ©%)
{k’g [me, o) } } <0
Ee, {log [L(Y|X, ©")]} — Ee, {log [L(Y|X,©)]} < 0

E

—

= Fe, {log [L(Y|X,©)]} < Ee, {log [L(Y|X,O)[}
—

Feo, { %log IL(Y|X, @*)]} < Feo, {%log L(YX, @)]}
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For any value of ©® € @, Llog L(Y|X,0) = 13" log(y;|X;, ©), which is the mean

of n independent identically distributed vy;, and
1
Ee,log f,,(y:| Xi, ©)] = Ee, [E log L(Y'| X, @)} .

By the strong law of large numbers, +log L(Y|X, ©) converges with probability 1
to its expectation. So 1log L(Y|X,0") < 1log L(Y|X,©,) and when ©* # O,
JLH;OP(logL(Y|X, ©*) < log) = 1. However, when ® = 0y, log L(Y|X,0) >
log L(Y'|X,0y). Therefore, P ( lim © = @0> = 1. Therefore, the MLE is consistent.

n—oo

]

Theorem 2 (Asymptotic Distribution of the MLE). The MLE of a FinMix GLMM is
asymptotically Gaussian, that is, \/ﬁ(@ — ©y) converges in distribution to a Gaussian
distribution.

The proof that the maximum likelihood estimator is asymptotically Gaussian

uses a Taylor series around the true value of ®, assumed to be ® as shown in Casella

and Berger (2002, p. 472).

Proof. Let ((OY,X) = > log f,,(y;|X;, ©) be the log-likelihood function, and

denote its derivatives with respect to © as 55 /(©Y, X), and %K(@Hﬁ X). Using

a first-order Taylor expansion of ;5¢(©|Y, X) around the true value of © denoted
607

82
0000

0 0
o (@Y, X) ~ 8_86(60‘}/’)() +(© - 86y)

e U(O,]Y, X).
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Substituting in the MLE <) provides

0 A 0?
0 = Pr) 0(Oy]Y, X) + (@—@0)m£(®0|Y,X)
B €® Y. X
G0y (8], X)
a@Ta@ U(B]Y, X)
. OuY, X
Ji© ey = —YEslOlY.X)
6@Ta® ((6]Y, X)

Denote ((©g) = E [5((0]Y, X)]Q. Using the Central Limit Theorem, and the

Weak Law of Large Numbers,

19
T /0O

in distribution and

U(©]Y, X) = Gaussian(p = 0,2 = 1(0Oy))

1 92

Emg(@om X) = 6

in probability, so \/ﬁ(@ — ©y) converges in distribution to Gaussian(pu = 0,% =

1
1(®0)

) which proves that the MLE is asymptotically Gaussian. [
D.2 Asymptotic Properties of Maximum Penalised Likelihood Estimates

The regularity conditions, properties, and proofs follow in the same way as Du
et al. (2013). Assume that the data follows a FinMix GLMM, and is of the form
(yi; Xi,Zi), Vi e {1,2,...,n}. Let © = (7,72, ..., T(k-1), B11, Bizs - - - Bips L1115 - -+, Tiggs
s Br1, Bras - Brpy Ty Trats - Tgg=1), I‘qu)T. Because this notation is cum-
bersome, © is rewritten as ® = (0,0,,...,05)" € ®. Note that S = (K — 1) +
K(p+3q(g+1)) = (K — 1) + K. Recall that the joint density of (y;,X;,Z;) is
f(yi, X, Zi|©).
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D.2.1 Maximum Penalised Likelihood Estimation Regularity Conditions
The following conditions are necessary for the ensuing theorems. I presented
conditions on the model first, followed by conditions on the penalty function.
Maximum Penalised Likelihood Estimation Regularity Condition 1
The model f(y;, X;, Z;|®) is identifiable. More information on the identifiability
of a FinMix GLMM can be found in Section 3.2.2.
Maximum Penalised Likelihood Estimation Regularity Condition 2
The joint density function is thrice differentiable such that for every possible
O € d, there exist functions Gy;(yi, X, Z;), Goi(yi, X, Z;), and G3;(yi, Xi, Z;), such
that Fe+[G1;(yi, Xi, Z;)] < 00, Fe+|Gai(yi, Xi, Z;)] < 0o, and Ee-[Gs;(yi, Xi, Zi)] <

00, and for all ® in a neighbourhood of @*,

‘ a@L < Glz(yza Xza Zz)a
0? log f(Yz‘Xz', Zi‘®>
90,00, < GQi(yiaxiaZi)a
*log f(yiXi, Z;|©)
: Gsi(yi, Xin Z;).
56,00,00, < Galy )

Maximum Penalised Likelihood Estimation Regularity Condition 3

The Fisher information matrix, denoted as I(®), is both finite as well as positive
definite for all possible ® € .

For ease of notation in this section, I decomposed the parameter ® into two
components. Without loss of generality, assume that © can be decomposed into ® " =
(@TT, ©*") such that ©* contains only zeros. Separate also the vector representing

the true parameters in the same way, that is ©] = (@f, @%T). All elements of @3
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can be split into ,@8, and dg* depending on if they are from 3, or d* respectively.
Similarly, all elements of @é can be split into Bé, and dé*. Then, the following three

values are defined for use in the subsequent asymptotic properties:

ap = maxkh{\/ﬁ par(BY)|, vV

pur(d)| }

Opur (B} Opn(dl
b, = maxy, {\/ﬁ —pakéﬁ()) /n —paké*()) };
o aQPnk(ﬁ(T)) 82pnk(d$*)
" m‘“kh{ﬁw v Sdaa |[

Penalty Condition 1

For all values of n, and k, the penalty function p,;(0) = 0, the penalty function
is symmetric, non-negative, non-decreasing, and twice differentiable on the open set
(0,00). That is, pur(z) = pak(—2), par(z) 2 0, 2 <y = pui(@) < par(y), and py.(2)
exists.

Penalty Condition 2

Asn — o0, a, = o(1+0b,) and ¢, = o(y/n). This means that the non-zero values
of the penalty are asymptotically bounded. That is, for every € > 0, there exists
an integer n, potentially dependent on € such that if n > n. then |a,| < €|l + b,]|.
Similarly, for every € > 0, there exists an integer n., potentially dependent on e such
that if n > n. then |¢,| < ey/n. Formal definitions of asymptotic notation can be
found in Bishop et al. (2007, Section 14.2).

Penalty Condition 3

For any N, = {00 < ¢ <n~2log(n)}, lim inf \/n®= — oo,

n—000E N,
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D.2.2 Asymptotic Properties of Maximum Penalised Likelihood Estima-
tors and Their Proofs

Consistency of the estimator in probability is included in the definition of
existence.
Theorem 3 (Existence and consistency of the MPLE). Assume that @ = (©7,07)
are the true parameters of a FinMix GLMM. Assume that the MPLE regularity
conditions 1, 2, and 3 are satisfied by this model and assume the penalty function
Dk Salisfies penalty conditions 1, 2, and 3. Then, there exists ©,, such that ©,
is a local mazimum of the penalised log-likelihood function, and also ||©,, — @yl| =
Op{n~2(1+b,)}.

Recall that by the definition of O, (Bishop et al., 2007, Section 14.4), ||©,,—Oy|| =
Op{n"2(1 4 b,)} means that for every n > 0, there exists a constant K,, and an

integer n,, both of which could depend on 7, such that for every n > n,,
P{[|©4 — Ol < Ky(n ™2 (14 b))} > 11,

Proof. Let 7, = n~Y2(1+b,). It suffices to show that for any small enough ¢ > 0,

there exists a constant M, such that for sufficiently large n,
P{supllul] < £,(©0)} = 1 ¢

where sup||u|| = M.¢%, (8¢ + r,u). Therefore, there is a large probability that there
exists a local maximum of £*, (@) in {@¢ + r,u : ||u|| < M.}. This is an open set

around the true value of the parameter vector. This local maximiser ©,, satisfies
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16, = ©|| = O, {n"2(1 +b,)}. Let

Au(w) = L\(O0 + ryu) — £,,(80)

= {lu(O¢ + rpu) — £,(O0)} — {Pur(O¢ + 1u) — Pua(Oo) }-

Recall from penalty condition 1 that p,,(0) = 0, so pnm((ag) =0, and p,»(©y) =
pn,\(GE). Thus, pur (O + r,u) is a sum of positive terms. Let u; be the subvector of

u that corresponds to the non-zero effect. Then,

A (u) {0n(©0 + 1nu) — £,(O0) } — {pnk(@Er) + rour) — pn}\(@g))}

< {ln(©g +1rpu) — £,(O0)} — ’pnA(@(T) + Taur) — pm\(®$)| (D.4)

IN

by the triangle inequality. A Taylor’s expansion of ¢,,(0g) around u = 0 results in

(O + ) — £(O0) & 11L(00) it Ju (L @)

2
_ b")%(@o)Tu N (14 by)
2m

NG u' (£(Og))u.

However, by model condition 2, the remainder term must converge to 0 as n — oo.
Next, consider the Hessian matrix ¢/(®g). By properties of the Hessian matrix

L7 (©p) converges in probability to —I(©y).
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Therefore,

(O + rpu) —£,(0y)

= (1 :;ﬁb”)e;(@o)% = @uﬁ’(@p)u{l +0,(1)}
= b0, - Y e ur o). (D5)

since \%E;(@O) = O,(1) by model condition 2. Given model condition 3, it is
assumed that, 1(0y) is positive definite. Thus, 1(©y) has only positive eigenvalues.
Let 7y > 0 be the smallest eigenvalue of I(©g). Since 7,,;, is an eigenvalue, and
I(©y) is positive definite, u'I[(O¢)u > Nmin||ul|?>. Applying this result to (D.5), I

have

(1+b,)?

£a(©0 + ) = £u(©0) < (1+ba)Op(1)[|ul] =

Nmin![ul {1+ 0,(1)} (D.6)
In addition, by using a Taylor’s expansion, and the triangle inequality,
|pn)\(®g) + T”U’I) - pn)\(gg)”
2
/rn
= PO T + 2l s (O)ur{1 + o(1)}
2
Tn
< Talpln () Tur| + §|u}—p¥w\(®g)ul|{1 +o(1)}

2
T
< 1l [P (©0) T x [l + FHldiag (O] x [lus| {1 +o(1)}. (D.7)

Let ¢, be the total number of true non-zero fixed, and random effects in the k"
subpopulation, and let t = max{ty,k =1,..., K}. Let ,3;5, and dg denote respectively

the vectors of ,Bzhs, and d;r)s from all K subpopulations. Consider the first term of
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(D7), [[}A(©3)]|- Separating [[p),,(©})]] into parts,

1650 (O] = [P (1, -, i)+ ([P (85, )]

because of the triangle inequality. Recall that the penalty function is always non-
negative, so this is an equality, not an inequality. Recall that p,)(©) = Eszl T X
("5 Prix(Bin) + D7 —1 Prka(din)), therefore, the derivative of the penalty function

with respect to the mixing proportions is

n( by Parx(Bin) + 20—y Prka(din))
n(D 25—y Pka(Ban) + D241 Pukr(dan))

P (T, ) =

(51 Paea(Brn) + 251 Prir(dicn))

Recall that the penalty on the fixed, and random effects includes the value of the
mixing proportions, so even though there is no penalty on the mixing proportions,

this derivative is not zero. Thus,

2

k=1 Lh=1

K D q
paA (71, )] = nox Z [ank)\(ﬂgkh) + ank)\(dg)kh)
h=1

IN

]

K
=

IN

an\/ﬁ\ itQ = a,/nVKL,
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Furthermore,

1157 (85, d)

Therefore,

IN

IN

IN

HApn)\<ﬂgll7 e 7ﬁ$1p7 L 7ﬁ$K17 PN 7d$117 e ,dglq, e ,dgKl, v ,dqu)H

nHﬂ'lp/nl(ﬁgll% cee 77T1p;1,1(ﬁ$1p)7 I 777Kp/nK(BgK1), Ce 77TKpInK(Bng)7

ﬂ-lp;zl(dg)ll)7 e 77T1p;zl(d$1p)7 e 77TKp;LK(dEr)K1)7 cee 77TKp;LK(d2)Kp)||

an;ﬂ(ﬁgll)’ e ap/nl(ﬁglp)a e 7p;1K(B(];K1)> S 7p;LK<5ng)7

p;nl(dzr]ll)7 e 7p;n1(d2-]1p)7 e 7p;nK<dEr)K1)7 e Jp;nK<d2L)Kp>||

"\

K g
Z Do (Blin)? + Z Zp;zkk(dgkhy

K p
k=1 h=1 k=1 h=1

"\

K
k=

P q
Z (Z p;zkk(ﬁgkhp + Zp;zk)\(d(];kh>2>
1 h=1 h=1

"\

bovnvV K xt.

1P0 (@) < anv/nVKL + byy/nV K.
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Using (D.7), this leads to

‘pnk(()g + T)WQU[)-—-pnA(()gﬂ

IN

P(any/nV Kt + by /nVK) ||| + T—”Hdiag(piix(@%))ll X lur {1+ o(1)}

- 1}6 (ans/AVEL + b/ V)]

N (1+b,)?

[ diag(phy(©))]] x |[ur|*{1 +o(1)}

1
2
= an(1+ b)) VEH|u]] + b (1 + by)VE|ul]
1(
2

1+ b,)?

+ [ diag(ply ()] x |lurl[*{1+ o(1)}. (D.8)

Furthermore,

K p
=m Z pnk)\ :Bkh 27Tk + Z anm dLh 2
k=

1 h=1 k=1 h=1

K P
< m\ Z ( piim(ﬂkh i+ ank)\ dLh 27Tk>
h

k=1 =1 h=1
K c 2 K
< t —”) =V/n t

Combining this result with (D.8) gives

[Par (O + 1) = pua(©F)] < an(1 + b)) VEHJul]

+bn (1 + b)) V Kt |ul|

LA R PO+ o(1)). (D.9)



Combining (D.4), (D.6), and (D.9) results in

) P+ 0y(1))

tan(1+ b)) VE|u|| + bu(1 + b)) VEL||ul]
1(1+b, )

An(u) < (1+bn)O0p(D)][ul] =

LY WV Kt ul[*(1 4 o(1)).
Dividing both sides of the above inequality by (1 + b,)? provides
A, (u) 1
o) o _ = 14 0,1
A < Ol = (14 0y(1)
K|
1 c
+——n\/Kt||u||2(1 + o(1)).
\/_

By penalty condition 2, a,, = o(1 + b,), and ¢, = o(y/n). Applying these conditions

to the second row of the above inequality, produces

A, (u) < 1
(140,)% — 1+0b,

Op(D)]ful|= ;nmml\M!?{HOp(l) "bn\/EHUHﬂLO(l) (D.10)
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Using (D.10),

Ap(u)
Pq sup Ap(u)<0p=Prq sup ——— <0
{IIuIIMe ) } {|uMe (1+b,)? }

1 1 b
>Pp — 0,1 — Zominllul?{1 1 "V Kt||lu|| + 1]<0
> {Hu?ugm [an ()]l 5" [[ul]*{1 4+ op(1)} + T5h, [[u]| + o(1)

_ 1 bn 1 4 9
- P{Husnugw 6 5 O Dl + VRl 4 0(1)] < Gl +op<1>}}

by,
1+b,

= P [0+ L2 VR o)) < L1 0,01

Me

1
=P {Sj\lz) Op(l) < inminMe{l + Op(l)}}

>1—c¢

for sufficiently large M. and n. Therefore, for any given € > 0, there exists a sufficiently

large M, such that

lim P{ sup fi/\(@o + rpu) — Ei)\(@o) < 0} >1—ce€

mee lull=Me
which completes the proof. ]

Theorem 3 states that when b, is O(1), there exists a local maximiser, @n, of
the penalised likelihood function (4.1) which convergence to ¢ at a y/n rate. By
choosing the value of the tuning parameter )\, carefully this can be achieved for the
three penalty functions considered in this thesis. More specifically, if A, = O(n~'/?)
for the LASSO, and ALASSO penalties, and A, — 0 for the SCAD penalty, then
b, = O(1) for all three penalties, and y/n convergence can be achieved.

Theorem 4. Assume that the observed data follow a FinMiz GLMM satisfying the
MPLE reqularity conditions 1, 2, and 3. Assume also that the penalty function p,g

satisfies penalty conditions 1, 2, and 3. Let the number of subpopulations K be known
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a priori. Then for any © such that ||© — ©y|| = O(n~'?), with probability tending
to 1,

e{eheh} <pi,{(e',0)}.
Proof. Partition ® = (©, ©%) for any @ in the neighbourhood ||@—0|| = O(m~1/?).
By the definition of /%, (©)
601,09} —6,{(8",0)}

Focusing on the first two terms, by the mean value theorem, there exists some e such

that ||| < ||©F]] = O(n~"/?), and

e’
R A R e (D.11)
Then,
Hmkﬂ@ﬁeﬂ__&%ﬂ@&OﬂH < Hm%ﬂ@ieﬂ__W%HQMOHH
BICk BlCk - BlCk 00t
T i
_i_H@gn{a(givO)} . agn{a(g?_?(])}H(DlQ)

But by the mean value theorem,

00,{(©1,¢)} _ 90,{(©1,0)} _ {a%n{(etgl)}} % e

00t 0e* 00 et

for some ||(1]| < ||¢]|, and

06,{(©,0)}  96.{(©},0)} _ {02%{(@2,0)}

T_
P} 20f | ool oef }X(@ o)

156



where ¢, = O + ¢ x (O — ©]), for some ¢ € [0,1]. Applying these results to (D.12)

and using MPLE model condition 2 results in

H 00,{(©",e)} 0t {(©],0) }H

K 00!
< [Z Mai(ys Xi, Z) | % lell + | Y Mailys, X, Zi) | x [|©7 - )|
=2 =1
= 0,(n) x (Jlell + 16" - ©f1)
= 0p(n) x{O(n"2) + O(n"2)}
= Opy(n2)
By the regularity conditions
T YA Op(n2),
therefore
agn{(ghg)} o 1
T = Op(n2).
Using this result on (D.11) provides
K p q
6A{(07, 09} — £,{(87,0)} = O,( Z Z | Brn| + Z |l |
k=1 h:t[;k-‘rl h:tdk-‘rl

where t5, and ¢4, are the numbers of true non-zero fixed and random effects in
component k respectively. On the other hand,

K

Pax{(©®1,09} = pn{(©®1,0)} => [ > menpuir(Ben) + Y menpara(din)

k=1 h:tﬁk+1 hztdk+1
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Therefore,

fx

—~

ef,eh} — £, {(e,0)}

K [ » q
= Z Z {1Bkr|Op (V') — mimprrx(Brn) } + Z {ldrn|Op (V1) — Temppi (din) }
k=1 | h=tg, +1 h=ta, +1
K [ 4 q
= > | > Am+ > Buw
k=1 _h:tﬂk-i-l h:tdk-‘rl

By penalty condition 3, both Ay, and By, are less than 0 in probability. Therefore,
Pr[6,{(©1,80)} - &,{(®"0)} < 0] 5 1.

This completes the proof. O

Also called consistency in selection or identifying zeros, sparsity is defined as
P(©, =0) =1 as n — co.
Theorem 5 (Sparsity of the MPLE). Assume that the observed data follow a FinMix
GLMM satisfying the MPLE regularity conditions 1, 2, and 3. Assume also that
the penalty function p,i satisfies penalty conditions 1, 2, and 3. Let the number of
subpopulations K be known a priori. Then for any \/n-consistent mazimum penalised

likelihood estimator ©,, of ©, Pr{®©; = 0} — 1 as m — cc.

Proof. Let (©1,0) be a maximiser of the penalised log-likelihood function ¢, {(©%,0)}
which is regarded as a function of ®'. Tt suffices to show that in the neighbour-

hood ||© — ©g|| = O(m~'/?), the difference %, {(©F, ©%)} — (% {(©1,0)} < 0 with
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probability tending to 1 as m — oo. Recall that

é.{(©eheh}y — £ {(©0)
— [£,{(01,00)} — £,{(01,0}] + [£,{(6',0)} - £,{(61,0)}]
< £,{(®,eh} - {(©0)}

< 0,

with probability tending to 1 by the previous Theorem. This completes the proof.
O

Theorem 6 (Asymptotic Distribution of the MPLE). Assume that the observed data
follow a FinMix GLMM model satisfying the MPLE reqularity conditions 1, 2, and 3.
Assume also that the penalty function puiy satisfies penalty conditions 1, 2, and 3.
Let the number of subpopulations K be known a priori. Then for any /n-consistent

mazimum penalised likelthood estimator O, of ©,

" i ) / T
Vn [{Il(@g) + @} (©, — ©) + Zw KA Gaussian(p = 0,2 = I,(0})),

where I,(®) is the Fisher information knowing that ®% = 0.

Proof. Consider ¢*,{(©",0)} as a function of ©f. Using the same argument as in
Theorem 1, there exists a /n-consistent local maximiser of this function, say @1,

which satisfies

= 0. (D.13)
6,=(6"0)

o8 ,(©,) _ {%(@) B 8pm(®)}
0ef 00t 0ef
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Since Oy is a /n-consistent estimator, using a Taylor’s expansion around the true

value
00,(©) 00, () | | 9*.(8)) S o
e 6= = et T oeraer %™ ((©17 )
and
apn e / 1" -
PO oy = PO + (@) + 0y} (61— O

Substituting these into (D.13) results in

ol,, G)T / 828” GT / S
{ L —W(@g’} : {a@f—(a& 7l Op(m’} en=r

Rearranging the terms and multiplying both sides by \/Lﬁ provides

—/n 2 1 ) T
7\1/_ {aa@ffr(?é% — P (©) + op(n)} (@1 _ @$> _ % {(%gg?o) —p;A(G)g)} |

Then, by the regularity conditions,

1 0%, ()

“moer el L(©}) + o,(1),

and
1 .06,(8))
NG o)

Thus, by Slutsky’s theorem,

i Hh(@g) N piiA(G)I))} (@1 B @2)) N P (©))

—? Gaussian(u = 0,3 = I,(©})).

4 Gaussian(p = 0,% = I,(©})).
m

This ends the proof. ]
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For the ALASSO, and SCAD penalties, sparsity can be achieved while maintaining
root-n consistency, for a suitable choice of tuning parameters. For example, if I let
Ak = O(n’%) for the ALASSO penalty, and A,z — 0, and \/n\,;, — oo for the SCAD
penalty, then root-n consistency, and sparsity can be achieved concurrently. This is,
however, not true for the LASSO penalty. For LASSO, b, = /n\,,. Therefore, root-n
consistency requires that \/nA,x = O(1). On the other hand, the sparsity property
requires penalty assumption 2, which includes the condition that \/nA,x — oo. These
two requirements cannot be simultaneously satisfied.

Theorem 7 (Oracle Property of the MPLE). A FinMix GLMM has the oracle
property if it asymptotically identifies the right subset model and has the optimal

estimation rate.

Proof. Given sparsity and that the distribution is asymptotically Gaussian, the oracle

property follows (Fan and Li, 2012). ]
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APPENDIX E
Additional Tables From Chapter 3 (Bias, Variance, Mean Squared Error)

This appendix contains the tables of simulation results for Chapter 3.

Table E-1: Simulation 1 results multiplied by 100, averaged over 100 runs. Outcome

follows a Poisson distribution with K = 2, p = 2, ¢ = 1, m;y = 0.6, my = 0.4,
B) = (—0.75,0.35), By = (0.60,—0.50), T = (0.80), and ;' = (0.25).

n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

m | -4.3 1.3 1.5 -2.7 0.7 0.7 -24 04 05| -1.4 0.3 0.3

b | -3.6 104 104 | -3.3 29 30| -1.8 14 141 -09 0.8 0.8

£ | 40 3.3 341 29 09 1.0 1.6 0.5 0.5 07 0.2 0.2

', | -29 32 33| -05 0.8 0.8 0.0 0.5 0.4 04 0.2 0.2

Bao | -6.1 5.5 5.8 | 2.7 2.3 23| 3.7 14 1.5 | -1.7 0.7 0.7

Ba1 3.3 3.0 3.1 1.8 1.3 1.3 2.2 07 0.7 1.2 0.3 0.3

I's; | -0.3 2.1 2.1 0.8 1.1 1.1 1.5 0.8 0.8 0.5 04 0.4

Total 29.6 10.2 5.9 2.9
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Table E-2: Simulation 2 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K =2, p=5,¢=1, m = 0.6, my = 04, 8] =

(—0.75,0.35,0.10, —0.40, 0.00), ﬁ; = (0.60, —0.50, —0.35, —0.15, 0.00), TT = (0.80),
and 3" = (0.25).
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | 3.7 1.2 14| -2.1 0.6 06| -26 0.3 04| -2.2 0.2 0.2
B | -5.7 84 86| -45 3.0 3.2 -48 1.3 1.5 ] -3.5 1.1 1.2
Bu| 34 38 39| 24 09 09| 23 04 05| 16 0.5 0.6
B2 | -0.1 2.9 2.9 1.5 1.1 1.1 1.9 0.5 0.5 1.3 0.2 0.2
B3| -1.0 0.9 09| -05 0.2 0.2 -09 0.1 0.1 -0.7 0.1 0.1
B4 2.0 0.8 0.8 0.2 0.3 0.3 0.1 0.1 0.1 00 <01 <0.1
I'n| -32 3.1 3.2 0.5 0.8 0.8 1.6 0.5 0.5 0.8 0.2 0.2
B | -4 5.3 56 | -3.5 1.8 1.9 -2.7 038 09| -2.3 0.4 0.4
Ba1 20 2.7 2.7 1.3 0.8 0.8 1.8 04 0.5 2.4 0.5 0.5
B 24 21 21| 1.3 08 08| 14 03 03| 1.8 02 02
B3| -0.4 0.5 0.5 0.3 0.2 0.2 0.0 0.1 0.1] -0.5 0.1 0.1
Bia| -05 04 04| -04 0.2 02| -0.2 0.1 0.1 00 <01 <01
Ty 0.8 29 2.9 0.1 1.2 1.2 1.3 04 0.4 1.8 0.3 0.3
Total 35.8 12.0 5.8 4.2
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Table E-3: Simulation 3 results multiplied by 100, averaged over 100 runs. Outcome

follows a Poisson distribution with K =2, p =5, ¢ =2, m = 0.6, my = 0.4, 8] =

(—0.75,0.35,0.10, —0.40, 0.00), BQT = (0.60, —0.50, —0.35, —0.15,0.00), 3" = (0.80,
—0.15,0.20), and 3" = (0.25,0.00,0.30).

n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

m | -5.2 14 1.7 -5.3 0.9 1.1 -40 0.5 0.7 -2.8 0.4 0.4

B | -43 138 139/-103 71 81| -75 31 36| 54 18 21

B | 23 6.0 6.0 4.8 2.8 3.0 43 14 1.6 2.8 0.8 0.9

B2 | -0.7 52 5.1 3.1 21 2.2 3.2 09 1.0 2.0 0.4 0.4

bis | -1.1 1.4 14| -1.7 04 04| -1.7 0.2 03| -1.2 0.1 0.1

B4 1.3 038 0.8 0.1 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.1

I'n| -23 89 8.9 1.8 4.7 4.7 1.7 2.1 2.2 1.7 0.8 0.9

'z | -2.7 5.1 52| -23 24 24| -1.1 1.3 1.3 ] -0.3 0.7 0.7

I'o| -70 1.9 23| -54 12 1.5] -3.0 1.0 1.1 ] -2.5 0.5 0.6

B | -15.6 6.3 86| -6.5 2.3 27| -44 1.1 1.3 ] -3.3 0.6 0.7

By | 99 56 65| 56 19 22| 27 09 09| 22 05 05

B2 | 42 30 32| 20 08 08| 14 04 04| 06 0.3 0.3

Bz | -1.8 1.1 1.2 -1.7 0.3 041 -09 0.1 0.2 | -0.6 0.1 0.1

Bua | -14 0.7 0.7 04 02 0.2 -0.2 0.1 0.1 03 <01 <0.1

'y 26 6.5 6.5 1.1 2.1 2.1 1.1 1.3 1.3 0.7 0.7 0.7

'y | -0.1 89 8.8 20 3.6 3.6 20 2.5 2.5 1.4 1.6 1.6

I'y, | -11.8 1.8 32| -55 1.2 1.5 -44 0.7 09| -34 0.5 0.6

Total 83.9 37.2 19.5 10.6
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Table E-4: Simulation 4 results multiplied by 100, averaged over 100 runs. Outcome

follows a Poisson distribution with K = 3, p = 2, ¢ = 1, m;y = 0.5, m = 0.3,

T = 0.2, B8] = (=0.75,0.35), B, = (0.60,—0.50), B = (0.45,0.75), *T = (0.80),
37 =(0.25), and 3T = (0.40).

n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

m | -7.0 1.5 201 -3.0 09 10| -1.6 0.6 06| -3.0 0.5 0.6

o 5.0 1.0 1.2 21 0.5 0.5 09 0.3 0.3 20 0.2 0.2

B | -10.9 187 19.7| -9.3 6.8 75 -64 4.7 5.0 -85 3.6 4.3

B 6.1 6.5 6.8 3.4 3.6 3.71 20 14 14| 3.1 0.6 0.7

Iy | -107 7.7 8.8 | -5.6 3.7 40| -6.2 24 2.7 -6.6 22 2.6

Bao | -9.8 7.0 79 -2.8 23 241 -1.9 1.1 1.1 -3.0 1.1 1.2

Bo1 6.5 3.4 3.8 24 18 1.8 21 08 0.8] 3.0 0.6 0.7

I'y; | -1.9 2.8 28| -28 1.3 1.3 -24 0.6 06| -0.5 0.3 0.3

Bso | -0.3 6.7 6.6 0.2 23 2.3 0.5 1.6 1.6 1.5 0.6 0.6

B | 47 3.0 3.2 -4.0 25 27| -1.2 0.3 03] -26 1.0 1.0

I's; | -39 24 26| -14 1.1 1.1 -1.0 0.8 0.8 -04 0.3 0.3

Total 65.2 28.3 15.3 12.6
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Table E-5: Simulation 5 results multiplied by 100, averaged over 100 runs. Outcome

follows a Poisson distribution with K = 3, p = 5, ¢ = 1, m;y = 0.5, my = 0.3,

w3 = 0.2, BIT = (—0.75,0.35,0.10, —0.40, 0.00), ,8; = (0.60, —0.50, —0.35, —0.15,0.00),
ﬁgT = (0.45,0.75,—0.65, 0.20, 0.00), ”{T = (0.80), ;T = (0.25), and §T = (0.40).

n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

T -4.9 1.5 1.7] -3.1 0.7 0.8 -1.3 0.5 0.5 ] -0.8 0.1 0.1

o 5.0 1.5 1.7 3.6 0.6 0.7 1.8 0.5 0.5 1.2 0.1 0.1

B | -11.8 12.1 134 | -6.7 4.6 50| -2.5 1.8 1.9 -3.0 0.7 0.8

Bui 48 54 56| 4.4 1.5 1.7 21 0.8 08| 20 0.2 0.3

B2 | 20 7.8 7.8 0.7 1.7 1.7 -0.6 1.1 1.0 0.5 0.3 0.3

Bis 0.0 27 2.7 0.1 0.9 0.9 0.3 0.4 04| -0.2 0.1 0.1

Bl <12 09 09| -06 03 03]-05 01 01|-05 <01 <0.1

I'y; 2.1 4.8 4.8 1.3 1.0 1.0 1.4 0.4 0.4 1.2 0.2 0.2

Bao -9.3 7.6 84| -5.5 4.2 441 -2.5 1.8 1.8 | -1.0 0.5 0.5

B 7.6 7.8 8.3 3.7 2.2 2.3 2.8 1.7 1.7 1.4 0.3 0.3

B2 4.0 4.6 4.7 2.8 1.1 1.2 2.4 0.6 0.6 1.3 0.2 0.2

Biz| -0.8 14 14| -14 0.5 05| -0.1 0.3 0.3 -0.3 0.1 0.1

B4 04 0.7 0.7 0.2 0.2 0.2 ] -0.1 0.1 0.1 0.0 0.1 0.1

'y 25 4.3 4.3 3.8 2.7 2.8 1.6 0.8 0.8 0.4 0.2 0.2

Ba0 09 27 2.7 1.2 0.8 0.8 0.8 0.4 0.4 0.6 0.2 0.2

Ba1 0.8 0.8 0.8 -0.2 0.2 0.2 0.2 0.1 0.1 0.2 <01 <0.1

Bs2 -1.6 0.8 0.8 -0.1 0.2 0.2 -0.3 0.1 0.1] -0.3 0.1 0.1

By | <02 02 02| 00 <01 <01| 00 <01 <01| 01 <01 <0.1

Ba4 -0.3 0.2 0.2 0.0 <01 <01 0.0 <01 <0.1 0.1 <01 <0.1

I's; 3.1 0.8 0.9 -0.7 0.3 03] -1.1 0.1 0.2 -1.1 0.1 0.1

Total 71.8 25.0 12.0 3.8
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Table E-6: Simulation 6 results multiplied by 100, averaged over 100 runs. Outcome

follows a Poisson distribution with K =3, p=5, ¢ =2, 71 = 0.5, my = 0.3, m3 = 0.2,

ﬁlT = (—0.75,0.35,0.10, —0.40, 0.00), BQT = (0.60,—0.50,—0.35,—0.15,0.00), and

ﬂST = (0.45,0.75, —0.65, 0.20, 0.00), ’{T = (0.80,—0.15,0.20), ’Q‘T = (0.25,0.00, 0.30),

and ’gT = (0.40,0.25,0.10).

n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

T -4.3 1.7 1.9 -0.7 0.9 0.9 0.1 0.5 0.5 1.1 0.4 0.4

o 5.9 1.7 2.0 28 1.0 1.0 1.7 0.6 0.6 1.0 0.4 0.4

B | -49 134 135| -04 53 53| 09 22 22| 18 1.9 19

B 2.1 6.8 6.7 1.3 2.9 29| -04 1.2 1.2 -1.7 0.8 0.8

Bia| 11 42 42| 02 07 07| -01 03 03|-06 02 02

Bis -0.3 0.7 0.7 0.1 0.3 0.2 0.1 0.1 0.1 0.2 0.1 0.1

B | -1.0 04 04| -0.3 0.1 0.1 0.0 0.1 0.1 00 <01 <01

I'; 43 49 51| -2.0 1.9 19| -2.1 0.8 0.8 -1.2 0.4 0.4

T | 0.7 29 29| -0.7 0.9 0.9 0.1 0.5 0.5 -0.3 0.2 0.2

I'as | -9.3 1.6 24| -43 1.2 1.4 -2.8 0.7 0.8 -0.2 0.3 0.3

B | -11.6 9.0 10.2 | -3.1 34 34| -24 2.6 2.7 0.1 1.4 1.4

8o | 171 7.9 10.7 92 3.6 4.4 7.6 2.1 2.7 6.1 1.9 2.2

B12 42 4.6 48| -0.7 1.7 1.7 -0.1 1.1 1.1 -2.0 0.5 0.6

b1z | -0.3 1.9 19| 07 09 09| 1.1 0.5 05| 24 0.3 0.4

B4 0.0 1.1 1.1 0.3 0.3 0.3 0.3 0.2 0.2 -0.2 0.1 0.1

Ty 1.3 6.1 6.0 -5.5 4.3 4.6 | -0.8 2.8 2.8 | -1.5 2.1 2.1

o1 01 7.6 7.5 54 4.8 5.0 -0.8 3.7 3.7 0.0 2.7 2.6

Ty | -54 4.7 491 -06 1.6 1.6 0.7 1.3 1.2 2.3 0.8 0.8

Bw!| 50 70 72| 53 31 34| 55 1.2 15| 38 09 10

Ba1 0.2 76 7.5 26 2.7 2.7 3.6 1.3 1.4 3.8 0.5 0.6

B2 | -29 2.1 221 -14 05 05| -1.0 0.2 0.2 -0.7 0.1 0.1

b33 | -0.1 0.7 0.7 0.9 0.1 0.1 06 <01 <0.1 06 <01 <0.1

Ba4 0.1 0.3 0.3 0.2 0.1 0.1 02 <01 <0.1 0.1 <01 <0.1

I3 5.8 4.6 4.9 0.5 21 2.1 -0.3 0.6 0.6 0.0 0.3 0.3

319 -9.2 2.9 3.7 -83 0.8 1.5 -7.7 0.6 1.1] -6.7 0.2 0.7

I's3o 85 3.0 3.7 79 18 2.4 8.7 1.3 2.0 8.6 0.4 1.1

Total 117.3 50.1 28.8 18.8
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Table E-7: Simulation 7 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 2, ¢ = 1, m = 0.6, my = 0.4,

B = (—0.55,0.85), By = (0.25,—0.50), " = (1.60), and ' = (1.05).
n n =100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | 0.7 1.0 1.0 0.4 0.3 0.3 0.1 0.2 0.2 0.0 0.1 0.1

Bio | -0.4 89 8.8 1.6 3.1 3.1 2.7 1.6 1.7 20 08 0.8

B 2.7 3.1 3.1 0.3 1.1 1.1 -0.2 0.5 0.5 0.5 0.2 0.2

I'y| -65 54 5.8 -2.1 1.8 1.8 0.5 1.0 1.0 0.7 0.5 0.5

B0 4.3 104 104 1.1 4.3 4.2 -2.1 2.0 21] -3.1 1.0 1.1

By | 24 36 36|-15 1.1 11| 01 07 07| 01 04 04

'y | -3.0 7.1 72| -25 2.6 26| -24 14 14| -2.8 0.5 0.6
Total 39.8 14.4 75 3.8

Table E-8: Simulation 8 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =2, p =5, ¢=1, 7 = 0.6, m1y = 0.4, ,BIT =

(—0.55,0.85,1.25, —0.70,0.00), B, = (0.25, —0.50,1.35, —0.20,0.00), " = (1.60),
and 3" = (1.05).
n n =100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -12 09 09]-07 04 04]-01 01 01] -0.1 0.1 0.1
B | -03 79 78| 0.7 47 46| -18 19 19| -24 1.1 1.1
Bl -14 30 30| 08 12 12| 04 05 05| 0.7 0.2 0.2
Bz | 03 22 22| 05 07 07| -01 04 04| -02 0.2 0.2
Biz| 09 08 08| 04 03 03] 05 01 01| 05 0.1 0.1
Buul| 02 06 06| 08 02 02| 06 01 01| 00 <01 <O0.1
I'm| -54 60 62| -29 22 23| -15 07 08] -1.2 0.4 0.4
B | 1.8 97 96| -12 43 43| 15 21 21| 1.1 1.1 1.1
Bor | 0.7 32 32| -04 12 12| 02 06 06| -0.1 0.4 0.3
Bia| 22 27 27| 08 1.3 13| 04 06 06| -04 0.3 0.3
Bizs| 02 08 08| 02 03 03| 01 01 01]-01 0.1 0.1
Bua| -0.1 07 07|-03 03 03] -02 01 01| 02 0.1 0.1
Iy | -05 69 69| 08 21 21| -04 09 09| 05 0.4 0.4
Total 45.5 19.1 8.4 4.4
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Table E-9: Simulation 9 results multiplied by 100, averaged over 100 runs. Outcome

follows a binomial distribution with K =2, p =5, ¢ =2, m; = 0.6, 1y = 0.4, ﬂlT =

(—0.55,0.85,1.25, —0.70,0.00), ,32T = (0.25,—0.50,1.35,—0.20,0.00), T = (1.60,
—0.45,1.00), and 3" = (1.05,0.00, 1.40).

n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

m | -4.2 1.9 21| -41 09 1.0} -29 0.5 06| -24 0.3 0.4

Bo| -5.6 229 230| 66 68 71| -21 30 30| 00 15 15

B 5.2 141 142 5.1 4.9 5.2 24 24 2.4 09 1.3 1.3

B2 24 5.7 5.7 1 -0.7 1.6 1.6 | -04 0.7 0.7 0.1 0.3 0.3

B3 1.2 23 23| -1.3 0.6 06| -09 0.3 03| -1.3 0.1 0.1

Bua| -0.3 0.9 0.9 1.0 04 0.4 04 0.2 0.2 0.3 0.1 0.1

ryy| -1.7 242 240 -22 64 6.4 1.0 2.3 2.2 1.6 1.1 1.1

NP 5.6 18.1 18.2 2.7 5.6 5.6 | -1.3 2.7 271 -1.7 1.2 1.2

e | -138 97 115 -1.6 34 341 -12 1.3 1.3 -05 0.7 0.7

B20 57 265 266 -1.3 74 73| -41 3.5 36| -39 20 2.1

Bor | -29 350 347| 77 62 67| 66 37 41| 68 20 24

Bi2 1.2 114 11.3] 14 34 34| 01 15 1.5 06 05 0.5

Bis | -5.6 3.2 351 -31 10 1.1 -21 0.5 0.5] -1.0 0.2 0.2

fua | -0.1 1.7 16| -04 0.7 0.7 -0.2 0.3 03] 0.0 0.1 0.1

'y | -86 242 247 1.9 9.1 9.1 29 34 3.4 24 1.8 1.8

Ty | 7.6 41.0 412| 20 173 17.1| 55 79 81| -47 43 44

Iy | -19.3 315 349 | -93 5.8 6.6 | -6.7 2.3 271 -3.3 1.2 1.3

Total 280.5 83.3 37.7 19.6

169



Table E-10: Simulation 10 results multiplied by 100, averaged over 100 runs. Outcome

follows a binomial distribution with K = 3, p = 2, ¢ = 1, m = 0.5, my = 0.3,

T =0.2, B = (-0.55,0.85), B; = (0.25,—0.50), B3 = (—0.75,0.35), ' = (1.60),
37 = (1.05), and 3" = (1.45).

n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

m | -16.1 1.0 3.6 |-17.0 1.0 3.91-16.3 1.0 3.71-17.0 0.9 3.8

m | -1.7 0.7 07| -1.1 0.7 0.7 -1.2 05 0.5 -1.0 0.3 0.3

Bio | 175 294 322 162 215 239| 147 148 168 | 143 9.1 11.1

Bul 94 73 81| 92 44 52| 58 23 26| 61 13 1.7

', [-19.9 187 225 ]-16.6 11.2 139 |-181 10.0 13.2|-14.3 6.4 8.4

By | 169 28.6 31.2| 11.0 11.5 126 9.2 5.1 5.9 95 29 3.8

Bor | -4.1 115 115| -2.2 4.8 48| -1.8 22 23| -1.1 0.6 0.6

I'sy | -3.0 192 191 -14 8.1 80| -0.2 5.1 5.1 | -0.7 1.7 1.7

Bso | -55 209 21.0| -1.0 159 157| -0.3 13.8 13.7| -29 11.5 115

By | 11.0 127 138 | 149 72 94| 149 6.0 82| 150 43 6.5

I'g; | -10.7 125 135| -4.0 100 100 -05 9.2 9.1 3.3 52 5.2

Total 177.1 108.2 80.8 54.6
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Table E-11: Simulation 11 results multiplied by 100, averaged over 100 runs. Outcome

follows a binomial distribution with K = 3, p =5, ¢ = 1, m = 0.5, my = 0.3,

w3 = 0.2, BlT = (—0.55,0.85,1.25,—0.70,0.00), BQT = (0.25,—0.50, 1.35, —0.20, 0.00),
ﬁgT = (—0.75,0.35,—0.50, 0.55,0.00), TT (1.60), ;T = (1.05), and §T = (1.45).

n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

™ 3.2 0.7 08| -1.2 0.3 04| -0.3 0.2 0.2 -0.2 0.1 0.1

o 24 0.8 0.8 0.7 0.3 0.3 0.2 0.1 0.1 0.3 0.1 0.1

Bio 3.7 149 14.9 4.7 4.9 5.0 1.7 2.1 2.1 -0.6 1.3 1.3

B 4.0 4.7 4.8 1.8 14 1.4 09 0.8 0.8 1.0 0.3 0.3

Bia 1.9 33 3.3 -0.3 0.9 09| -0.1 0.5 0.5 -0.5 0.2 0.2

bz | -2.5 1.0 1.1 -19 0.3 03] -1.1 0.1 0.1 -0.5 0.1 0.1

fa| -0.2 09 09| -06 02 02|-06 01 01]|-03 <01 <0.1

Ty -8.6 7.8 85| -42 26 281 -09 1.1 1.1 0.4 0.5 0.5

B | -25 199 197 1.1 78 77| 39 30 31| 48 16 19

Bo1 -09 89 89| -1.2 26 26| -1.5 0.8 09 -1.1 0.4 0.4

Bia 0.5 4.3 4.3 0.3 21 2.1 06 0.8 0.8 0.5 0.4 0.4

bz | -3.6 1.5 16| -1.1 04 04| -04 0.2 0.2 -0.2 0.1 0.1

Bra 2.4 1.7 1.7 0.2 04 0.4 0.3 0.1 0.1 0.0 0.1 0.1

Ty 3.0 99 9.9 0.2 5.0 491 -1.0 1.9 19| -14 0.9 0.9

Bao 0.3 285 282 -22 99 99| -2.2 5.7 57| -1.1 2.8 2.8

Bs1| 04 42 411 -13 20 20| 01 09 09| 03 0.6 0.5

B2 1.2 53 5.2 27 2.5 2.5 1.8 1.2 1.2 0.8 0.5 0.5

B33 04 1.3 1.3 0.7 0.7 0.7 0.7 0.2 0.3 0.4 0.1 0.1

Bss | -0.1 1.4 14 0.7 0.6 0.6 04 0.2 0.2 0.1 0.1 0.1

I's; | -17.2 17.8 206 | -8.1 84 90| -5.8 34 3.8 -2.2 1.6 1.7

Total 142.1 54.1 24.1 12.2
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Table E-12: Simulation 12 results multiplied by 100, averaged over 100 runs. Outcome

follows a binomial distribution with K = 3, p = 5, ¢ = 2, m; = 0.5, m

m = 0.2, B = (-0.55,0.85,1.25,—0.70,0.00), B, =
B4 = (—0.75,0.35,—0.50, 0.55,0.00),

= 0.3,

(0.25,-0.50, 1.35, —0.20, 0.00),

T = (1.60, —0.45, 1.00),

T = (1.05,0.00,

1.40), and ;T = (1.45,0.40, 1.30).

n n =100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -5.0 1.3 1.5 -21 0.8 08| -02 0.5 0.5 0.0 0.3 0.3
Ty 47 1.1 1.3 3.1 07 0.8 0.6 04 0.4 0.3 0.3 0.3
b | -13.1 154 16.9 0.3 6.3 6.2 0.7 29 29| 06 1.7 1.6
b | 12.6 16.6 18.0 4.7 5.5 5.7 3.8 28 30| 33 1.6 1.7
B2 0.0 7.2 7.1 2.7 1.5 1.6 09 07 07| 1.2 04 0.4
B3 1.1 4.0 40| -15 0.8 0.9 0.3 0.3 03] 0.1 0.1 0.1
Bra 07 1.1 1.1| -0.5 0.5 05| -04 0.1 0.1] -0.6 0.1 0.1
'y| -46 21.8 21.8| -19 6.9 69| -3.8 3.1 32| -22 14 1.4
T'iio 6.6 23.1 233 08 87 8.7 1.1 3.8 3.8 -09 1.7 1.7
'y | -15.0 127 148 | -81 3.8 44| -44 1.3 1.5 42 0.7 0.9
B | -3.0 259 257 | -51 88 9.0 20 54 53| 1.7 3.6 3.6
Bo1 29 283 28.1| -1.6 114 11.3|-11.2 7.7 89| -9.4 4.2 5.0
B2 1.3 103 10.2| -3.0 5.9 59| -02 2.3 23] 00 1.1 1.1
B3| -6.8 6.7 7.1 04 1.3 1.3 1.0 0.7 07| 06 04 0.4
Bia| -03 22 2.2 1.1 1.1 1.1 1.0 0.5 05| 0.6 0.2 0.2
I'p; | -16.9 282 30.7| -22 150 149| -6.1 74 7.8 | -4.8 4.0 4.2
Ty | 305 39.0 480 | 20.3 24.0 279 | 159 14.1 16.5| 164 6.1 8.8
Iy | -37.3 283 419|-190 86 12.2]-119 5.6 701 -91 2.7 3.5
Bso 1.8 39.0 38.7 48 11.7 11.8 1.4 5.6 56 | 0.1 3.2 3.2
Ba1 0.9 544 53.9 1.7 136 135 2.7 53 531 19 2.7 2.7
B3 | -83 169 174 | -3.1 4.0 40| -1.8 1.6 1.6 -20 0.7 0.8
By | 05 3.0 30| 09 10 10| 06 04 04| 05 02 02
Baa | -23 28 28| -03 0.8 08| -02 04 04| -04 0.2 0.2
I's; | -19.6 464 498 | -12.1 14.3 15.6 2.0 88 87| 1.8 3.9 3.9
310 9.9 56.6 57.0 1.3 207y 205| -04 115 114]| -2.3 5.5 5.5
I'ss | -26.3 444 509 | -6.1 220 221| -34 80 81| -0.2 3.6 3.6
Total 577.2 209.5 106.5 55.0
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APPENDIX F
Supplement to Chapter 3

binomialThere are a number of special cases and further ideas regarding the
behaviour of the MLE of a FinMix GLMM that are of interest. I explored a few
of these possibilities in this Appendix. In particular, I considered fitting a model
without random effects, exploring the behaviour of BIC for different values of K,
different starting values, smaller values for n;, and different values for m;; (in the
binomial case).
F.1 Fit a Model That Is More Complex Than the Truth

When the true value of a regression coefficient is 0, then the corresponding
covariate does not contribute to the statistical model. As such, it is appropriate to
remove such a variable from the model, making it simpler without sacrificing the
performance of the model. This is the goal of the penalised maximum likelihood
approach found in Chapter 4. However, in many cases, prior to optimising the
penalised maximum likelihood equation, one must first optimise the unpenalised
maximum likelihood equation. Therefore, it is important to confirm the performance
of the algorithm when a model that is more complex than the truth is fit.

I explored the case where a particular fixed effect has a coefficient 0 but is still
included in the model in Chapter 3. All models that contain 5 fixed effects contain at
least one variable in each 3, that I set to 0. These results can be found in Tables

E-2, E-3, E-5, E-6, E-8, E-9, E-11, and E-12. Similarly, all models that contain
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2 random effects contain at least one covariance with a true value of 0. The results
from these simulations are in Tables E-3, E-6, E-9, and E-12. Therefore, of interest
here are the case where I estimated a random effect in the model unnecessarily (both
when the coefficient for the corresponding fixed effect is zero and non-zero) and the
case where I estimated more (or fewer) subpopulations than was in the model.
F.1.1 No Random Effect

In these simulations, I used a model with K =2, p =5, and ¢ = 2. Tables E-3,
and E-9 show similar cases. However, in this simulation, I set the coefficients for
the fixed effects to B, = (—0.75,0.35,0.10, —0.40, 0.00), and 35 = (0.60, 0.00, —0.35,
—0.15,0.00), and the random effects to ;" = (0.00,0.00,0.20), and 3" = (0.25,
0.00, 0.00).

These simulations show that the estimates for Gamma are reasonable even when
the true value of Gamma is 0.

Turning to the binomial case, the parameters that have changed are ,BlT = (—0.55,
0.85,1.25,—0.70,0.00), B, = (0.25,0.00,1.35, —0.20,0.00), " = (0.00,0.00,1.00),
and 3" = (1.05,0.00,0.00).

Similar to the case where the outcome is from a Poisson distribution, these
simulations show that the estimates for Gamma are reasonable even when the true
value of Gamma is 0.

F.1.2 Unknown Number of Subpopulations

Choosing the number of subpopulations can be done in various ways. One

popular method is to fit models with a range of values for K and compare these

models using information criteria such as AIC or BIC. As such, some simulations
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Table F-1: Simulation 1 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K =2, p =5, ¢ = 2, m; = 0.6, my = 0.4, ,BIT =
(—0.75,0.35,0.10, —0.40, 0.00), B; = (0.60,0.00,—0.35, —0.15,0.00), *" = (0.00,

0.00,0.20), and

5T = (0.25,0.00, 0.00).

n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
| -2.2 1.2 1.2 -25 1.0 1.1 -26 1.0 1.1 -26 0.9 1.0
Bio 34 59 6.0 4.1 3.6 3.8 3.3 26 2.7 3.7 21 2.2
B 29 3.3 3.4 45 1.6 1.8 48 1.0 1.3 4.1 0.8 1.0
B2 | -6.5 4.0 44| -56 2.1 24| -46 1.9 21| 47 14 1.6
b1z | 69 1.5 20| 52 1.1 14| 48 0.7 09| 40 06 0.7
Ba | 27 16 16| -3.0 0.8 09| -25 0.5 0.5 -1.9 0.3 0.4
I'y| 646 94 51.1| 658 59 49.1| 64.1 52 46.2| 61.1 4.6 41.9
I'i2 | -19.2 3.6 72 1-19.4 1.8 5.5 | -18.6 14 491]-164 1.1 3.8
I 40 1.5 1.6 3.3 09 1.0 2.3 0.7 0.7 1.4 0.5 0.6
Bo | -20.8 5.3 9.6 | -19.8 5.2 9.11]-20.3 5.0 9.11]-19.5 4.6 8.4
Bo1 | 447 23 223 | 463 14 229 | 478 1.1 239 | 480 0.8 239
Bi2 0.3 27 27| -0.1 1.2 1.2 0.1 09 09| -0.1 0.5 0.5
Bz | -0.3 0.8 0.8 -04 04 04| -03 0.3 03] -0.2 0.3 0.2
Bra 1.6 0.8 0.8 1.2 0.5 0.5 1.1 0.3 0.3 0.9 0.2 0.2
I'yy | 217 5.0 9.6 | 223 4.2 92| 21.6 3.8 84| 20.1 2.8 6.8
I'yp | -123 1.9 3.4 |-11.7 1.0 2.4 1-10.6 0.8 20| -9.7 0.5 14
Iyo | 227 1.4 6.6 | 204 0.8 50| 19.1 0.6 42| 180 0.4 3.7
Total 134.3 117.4 109.3 98.1

were performed where the number of subpopulations in the model that was fit differed

from the true number of subpopulations.

Again, these results can be compared to those in Tables E-3, and E-9. First, a

model with K = 1 was fit, then one with K = 3. BIC was used to compare the three

possibilities, and I showed the rank of the BIC for each K € {1,2,3} rather than

tables of bias, variance, and MSE as shown for other simulation results. I used the

same data values for outcomes, and covariates in these simulations, and in Chapter

4.
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MSE Across Sample Sizes, Poisson Supplement 1
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n=100 =250 n=500 n=1000
Sample Size

Figure F—-1: MSE across sample sizes, Poisson outcome, one random effect set to zero.

These simulations show that the when n is larger, it is easier to identify the
correct value of K. However, in these simulations K = 2, which is a relatively simple
case.

F.2 Using the Same Starting Values for All Simulations

All previous simulations used randomised starting values and therefore I used

a different starting value for each of the 100 simulations. I included this added

randomisation in the previous results but is not inherent to the model. The following
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Table F-2: Simulation 2 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =2, p =5, ¢ =2, 7 = 0.6, 1y = 0.4, ,BlT =

(—0.55,0.85,1.25,—0.70,0.00), and B; = (0.25,0.00, 1.35, —0.20, 0.00), ’{T = (0.00,
0.00, 1.00), and ;T = (1.05,0.00,0.00).
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -5.4 0.9 1.1 -53 0.7 1.0 47 06 08| -41 04 0.6
Bol 54 28 30| 36 12 13| 34 08 09| 24 03 03
Bi1| -5.8 4.1 4.4 47 29 3.1 21 21 22| -1.2 1.6 1.6
bz | -17 24 24| -04 1.0 1.0/ 01 05 05| 04 03 0.3
B3 5.1 1.4 1.6 3.1 1.0 1.1 04 0.6 06| -1.4 03 0.3
Bia| -0.1 0.7 0.7 0.3 0.4 04| -0.1 0.3 0.3 0.4 0.1 0.1
'y | 434 102 289 30.1 6.2 153 194 5.6 9.3 87 2.0 2.7
g | 217 88 135 323 7.5 178 | 40.1 6.8 228 | 492 4.2 283
'z | -26.5 2.5 951-234 1.8 72 1-214 18 6.3 |-20.5 1.5 5.7
Boo | -17.3 5.7 8.6 |-16.4 4.4 7.01]-15.3 29 52 |-11.2 2.0 3.3
Ba1 | 189 4.1 76| 16.3 2.7 53| 12.6 1.5 3.1 10.1 1.0 2.0
B2 | -1.3 24 24| -1.9 1.3 1.3 -1.7 0.6 0.7 -07 0.3 0.3
fiz| -9.3 1.8 26| -75 1.3 18| 46 08 10| -30 03 04
Bia| -04 1.0 1.0 -05 06 0.6 0.3 0.3 03| -02 0.1 0.1
I -5.8 4.8 5.1 -41 26 271 -1.2 1.2 1.2 0.1 0.6 0.5
Ty | -17.7 25 56 | -18.6 1.3 4.7 | -19.8 0.7 4.6 | -181 0.6 3.8
Iy | 654 22 449 63.1 1.7 415| 579 13 348 | 527 1.0 288
Total 143.0 113.1 94.6 79.2

results use the same starting value for each simulation, to eliminate that as a source

of variance. These results can be compared to Table E-3, and E-9. T used the same

data values for outcomes, and covariates in these simulations as in Chapter 3.

These simulations showed that the starting value should be chosen carefully. In

practice, one solution is to estimate the parameters of a model multiple times using

multiple different starting values. However, this can be a computationally intensive

process, but one that can be parallelised.
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MSE Across Sample Sizes, Binomial Supplement 2
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Figure F-2: MSE across sample sizes, Poisson outcome, one random effect set to zero.

F.3 Different Number of Visits per Patient

The number n represents the number of independent observations. However, for
each subject n, there are n; visits or observations. While these are not independent
observations, changing the number of observations for each subject will change the
overall total number of observation. Therefore, in these simulations, n; € {10,11,12}.

These results can be compared to Table E-3, and E-9.

178



Table F-3: Simulation 3, and 4 results multiplied by 100, averaged over 100 runs.
Outcome follows a Poisson distribution with K = 2, p = 5, ¢ = 2, m; = 0.6,
™ = 04, B, = (—0.75,0.35,0.10, —0.40,0.00), B; = (0.60,—0.50, —0.35, —0.15,
0.00), T = (0.80,—0.15,0.20), and 3" = (0.25,0.00,0.30), rank of BIC across
different K. The true value of K used to generate the dataset was 2, but I considered
different candidate values of K € {1,2,3} in the estimation of the parameters.

n n = 100 n = 250 n = 500 n = 1000

K| 1 2 3101 2 3|1 2 3 1 2 3
Lowest | 68 32 0 9 99 0| 0 100 O 0 100 0
Middle | 32 68 08 9 81|37 0 63 0 0 100
Highest | O 0 100| 8 0 92|63 0 37100 0 0

Table F—4: Simulation 5, and 6 results multiplied by 100, averaged over 100 runs.
Outcome follows a binomial distribution with K = 2, p = 5, ¢ = 2, m; = 0.6,
T = 0.4, B8] = (—0.55,0.85,1.25,—0.70,0.00), and B, = (0.25,0.00,1.35, —0.20,
0.00), " = (0.00,0.00,1.00), and 3" = (1.05,0.00,0.00), rank of BIC across
different K. The true value of K used to generate the dataset was 2, but I considered
different candidate values of K € {1,2,3} in the estimation of the parameters.
n n = 100 n = 250 n = 500 n = 1000
K{1 2 3|1 2 3 1 2 3 1 2 3
Lowest [ 11 8 0| 0 100 O 0 100 0 0 100 0
Middle | 76 11 13| 15 0 85 0 0 100 0 0 100
Highest | 13 0 87 | 85 0 15 100 0 0 | 100 0 0

As expected, when more data was available, the parameter estimates exhibited
smaller bias and MSE.
F.4 Variable m;; in the binomial Case

In Chapter 3, all of the binomial simulations used m;; = 10Vi € {1,2,...,n}Vj €
{1,2,...,n;}. While this is reasonable in a number of situations, in order to explore
the model further, I also considered the case where m;; varies. I assumed that the

values for m;; are known in the model, as is typical in binomial regression.
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BIC Across Number of Subpopulations, Poisson, n=100
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Figure F-3: BIC across different K, Poisson outcome, n = 100.

One possible motivation for exploring this case came from the SERA cohort, and
the problem of modelling the number of tender or swollen joints in a patient with RA.
While most patients have the same number of joints, a patient who has undergone
certain joint replacement surgeries or amputations could have fewer joints. Therefore,

in addition to the statistical exploration of the model, this special case is of interest.
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BIC Across Number of Subpopulations, Poisson, n=250
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Figure F—4: BIC across different K, Poisson outcome, n = 250.

Again, [ used K = 2, p = 5, and ¢ = 2 and Table E-9 contains results for
a similar case. I generated m;; from a discrete uniform distribution with support
m;; € {5,6,...,15}.

It is reasonable to see an increase in variance induced by the additional inconsis-
tency of m;;. However, these simulations show that this algorithm provides reasonable

estimates even in this situation.
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BIC

BIC Across Number of Subpopulations, Poisson, n=500

Figure F-5: BIC across different K, Poisson outcome, n = 500.
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BIC Across Number of Subpopulations, Poisson, n=1000

BIC

Figure F-6: BIC across different K, Poisson outcome, n = 1000.
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100

BIC Across Number of Subpopulations, Binomial, n
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Figure F-7: BIC across different K, binomial outcome, n = 100.
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BIC Across Number of Subpopulations, Binomial, n=250
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Figure F-8: BIC across different K, binomial outcome, n = 250.
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BIC Across Number of Subpopulations, Binomial, n=500
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Figure F-9: BIC across different K, binomial outcome, n = 500.
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BIC Across Number of Subpopulations, Binomial, n=1000
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Figure F-10: BIC across different K, binomial outcome, n = 1000.
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Table F-5: Simulation 7 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K =2, p =5, ¢ = 2, m; = 0.6, my = 0.4, ,BI =
(—0.75,0.35,0.10, —0.40, 0.00), B, = (0.60, —0.50, —0.35, —0.15,0.00), T = (0.80,
—0.15,0.20), and 3" = (0.25,0.00,0.30). Starting value of (0.50, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 1.00, —0.50, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 1.00).
n n =100 n =250 n =500 n = 1000

Measure | Bias ~ Var MSE | Bias  Var MSE | Bias Var MSE | Bias  Var MSE
m | -6.9 <0.1 05] -64 <0.1 04| -64 <0.1 04| -6.2 <0.1 0.4

Bro | 44.5 23 220 385 1.3 16.1| 38.5 0.6 154 | 30.7 1.4 108

Bu | -29.5 1.2 9.9 | -26.2 0.7 7.6 | -26.0 0.4 7.2 |-21.0 0.8 5.2

Bz | -21.8 0.9 5.6 | -18.9 0.4 4.0 | -18.2 0.3 3.6 | -13.7 0.7 2.6

Bis | 11.1 0.2 1.5 | 10.1 0.1 1.1 9.9 0.1 1.1 7.5 0.2 0.8

Bul 01 02 02| 03 01 01| 00 <01 00| 02 <01 00

'y | 119 2.6 4.0 | 14.6 1.2 3.4 | 15.5 0.5 29| 16.1 0.3 2.9

I | -19.7 1.6 5.5 | -21.7 0.7 5.4 | -23.1 0.4 5.7 | -22.2 0.2 5.2

I'ip | 156 0.6 3.0 12.3 0.2 1.7 | 13.1 0.1 1.8 11.8 0.1 14

Boo | -46.1 1.5  22.7|-44.8 0.8 209 |-458 0.5 21.5]-41.6 1.0 18.3

Bor | 343 10 127|310 06 102 313 03 101] 268 07 7.9

Bra | 17.8 0.9 4.1 | 157 0.3 28| 15.6 0.2 2.7 1 12.0 0.4 1.9

Bz | -10.9 0.2 14| -95 0.1 1.0 -9.0 0.1 09| -7.0 0.1 0.6

Bua | -0.4 0.2 0.2 0.2 0.1 0.1} -0.1 <O0.1 0.0 0.1 <0.1 0.0

Iy | 488 1.6 254 | 42.7 0.7 189 | 435 0.4 194 36.9 1.0 147

[op | -23.3 1.5 6.9 | -19.3 0.6 4.4 |-21.2 0.4 4.9 | -17.2 0.5 3.5

P 6.2 0.6 1.0 4.2 0.3 0.4 4.6 0.1 0.3 3.3 0.1 0.2
Total 126.6 98.5 97.8 76.4
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MSE Across Sample Sizes, Poisson Supplement 7
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Figure F-11: MSE across sample sizes, Poisson outcome, with a constant starting
value.
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Table F—6: Simulation 8 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =2, p =5, ¢ =2, m; = 0.6, my = 0.4, ,BlT =
(—0.55,0.85,1.25,—0.70,0.00), ﬁ; = (0.25,—0.50,1.35, —0.20, 0.00), TT = (1.60,
—0.45,1.00), and 3" = (1.05,0.00, 1.40). Starting value of (0.50,0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 1.00, —0.50, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 1.00).
n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

m | -7.2 <0.1 05| -76 <0.1 06| -74 <0.1 06| -75 <0.1 0.6

Bo| 5.7 34 37| 23 1.0 1.0| 3.3 0.5 06| 45 0.3 0.5

Bi1 | -44.5 3.2 23.0 | -43.4 0.8 19.7 | -43.7 0.4 194 | -44.3 0.2 19.9

Bia 4.0 1.5 1.6 2.9 0.5 0.6 2.5 0.2 0.3 2.9 0.1 0.2

Bz | 17.7 0.4 3.5 | 17.5 0.1 3.2 | 17.8 0.1 3.2 17.7 <0.1 3.2

B4 -0.4 0.3 0.3 0.3 0.1 0.1 0.1 <0.1 0.0 0.2 <0.1 0.0

' -5.3 5.7 59| -24 1.7 1.7 -24 0.8 0.8 -2.4 0.4 0.4

12 2.1 4.5 4.5 0.3 1.2 1.2 -0.6 0.5 0.5 -0.5 0.3 0.3

T'ia | 12.6 0.7 23| 14.3 0.3 23| 14.1 0.1 2.1 14.7 0.1 2.2

Bag | -6.0 2.7 3.0 -9.9 1.0 1.9 -9.2 0.5 1.3 | -8.6 0.3 1.0

Bar1 | T1.6 2.8 54.1 | 725 1.0 53.4 | T2.7 0.4 53.2 | T2.7 0.2 53.0

B2 | -5.4 1.5 18] -6.1 0.6 1.0| -6.1 0.3 0.7 -5.8 0.1 0.5

Bis | -27.0 0.4 7.6 | -26.6 0.2 7.2 | -26.6 0.1 7.2 1-266 <0.1 7.1

B4 -0.4 0.2 0.2 0.1 0.1 0.1 0.0 0.1 0.1 0.1 <0.1 0.0

IT'y | 39.0 4.5 19.7 | 40.9 1.5 18.3 | 41.2 0.8 17.8 | 40.6 04 169

oo | -34.9 4.0 16.1 | -35.3 1.3 13.7 | -36.1 0.6 13.7 | -35.3 0.3 12.8

Ty | -27.2 0.8 8.2 | -25.5 0.4 6.9 | -25.7 0.2 6.8 | -24.4 0.1 6.1

Total 156.1 133.0 128.2 124.7
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MSE Across Sample Sizes, Binomial Supplement 8
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Figure F-12: MSE across sample sizes, binomial outcome, with constant starting
value.
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Table F-7: Simulation 9 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K =2, p =5, ¢ = 2, m; = 0.6, my = 0.4, ,BIT =
(—0.75,0.35,0.10, —0.40, 0.00), ,BQT = (0.60, —0.50, —0.35, —0.15,0.00), 3" = (0.80,
—0.15,0.20), and 3" = (0.25,0.00,0.30), n; € {10, 11, 12}.
n n =100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

m | -5.1 14 1.6 | -46 1.3 1.5 46 1.1 1.3 -43 1.1 1.3

B | 11.7 88 10.1 99 5.1 6.1 8.3 4.3 4.9 49 3.2 3.4

fu| -62 2.7 3.1 -b4 1.5 1.8 45 14 1.6 -26 1.1 1.1

Bz | 46 2.1 23| -23 14 14| -1.1 1.1 1.1] -0.8 0.8 0.8

B3 3.5 0.7 0.8 28 0.6 0.6 22 04 0.5 09 04 0.4

Bfia | -0.2 0.6 0.6 0.0 04 04| -03 0.3 0.3 -0.1 0.2 0.2

' 7.1 4.9 5.4 7.3 1.8 2.4 8.9 0.9 1.7 94 0.9 1.7

19 | -12.8 2.2 3.8 -129 0.7 241-13.1 04 2.1]-124 04 1.9

' | 116 1.2 26| 108 0.6 1.8 10.2 04 1.4 8.8 0.3 1.0

B2 | -19.0 3.6 7.21-182 2.9 6.1 |-174 2.6 5.6 | -154 2.1 4.5

Bo1 | 11.6 2.1 3.5 100 14 2.4 94 14 2.3 8.1 1.1 1.7

P2 32 13 1.3 28 0.8 0.9 23 0.6 0.6 1.8 04 0.5

Bis | -2.6 0.7 08| -1.9 04 05| -22 04 04| -1.6 0.3 0.3

Bia| -0.9 0.6 06| -02 0.3 03| -0.1 0.2 0.2 0.0 0.1 0.1

oy | 19.7 4.2 81| 172 29 5.8 | 151 2.8 5.0 119 22 3.6

Iy | 69 24 29| -50 1.6 1.8 42 1.3 14| -31 1.0 1.1

Iy | -29 14 14| -29 0.8 09| -26 0.6 06| -25 04 0.5

Total 56.1 37.1 31.1 24.1
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Figure F-13: MSE across sample sizes, Poisson outcome, with n; € {10, 11, 12}.
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Table F-8: Simulation 10 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =2, p =5, ¢ =2, m; = 0.6, my = 0.4, ,BlT =
(—0.55,0.85,1.25,—0.70,0.00), ﬁQT = (0.25,-0.50,1.35, —0.20,0.00), " = (1.60,
—0.45,1.00), and 3" = (1.05,0.00,1.40), n; € {10,11,12}.
n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

m | -3.6 1.8 1.9 27 13 1.3 -1.7 0.8 0.8 ] -0.8 0.6 0.6

B | -2.4 10.0 99| -21 7.6 76| -0.7 6.6 6.5 -0.5 4.9 4.9

B | -3.3 57 58 | -1.7 4.0 401 -1.9 3.0 3.0 -2.6 2.2 2.2

B2 0.1 1.0 1.0 -0.1 04 04| -0.1 0.2 02| -0.1 0.1 0.1

Bz 1.7 0.9 0.9 04 0.5 0.5 0.0 04 0.4 0.4 0.3 0.3

Bia | -1.3 04 04| -0.7 0.1 01| -06 0.1 0.1 -0.2 <01 <0.1

'y 3.6 4.6 4.7 3.5 2.6 2.7 3.6 1.7 1.8 2.3 1.1 1.2

I'ii2 | 171 21 50| 13.2 1.6 3.3 89 1.3 2.0 6.4 0.7 1.1

I's | 247 28 89| 185 1.9 53| 144 1.3 3.3 10.2 0.7 1.7

Boo| -68 71 75| -56 55 57| -41 50 51| -1.2 3.8 3.7

Bo1| 162 6.8 93| 13.7 5.7 7.5 11.6 4.9 6.2 8.8 4.3 5.0

B2 | -1.9 1.2 1.2 -03 0.5 05| -0.1 0.3 03] -0.2 0.2 0.2

Bis | -65 1.7 21 -42 1.1 1.2 | -26 0.7 0.8 -2.0 0.6 0.6

Bra 1.7 04 0.4 1.0 0.1 0.2 0.7 0.1 0.1 02 <01 <01

I'yp | 148 6.4 85| 105 4.6 5.7 7.6 2.5 3.1 4.3 1.5 1.7

oo 2.3 5.7 5.6 39 49 5.0 4.3 35 3.6 5.1 3.2 3.4

'y | -159 3.3 5.8 1-15.9 2.6 5.11-149 1.8 4.0 -13.4 1.0 2.8

Total 79.0 56.1 41.3 29.4
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: MSE across sample sizes, binomial outcome, with n; € {10, 11, 12}.
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Table F-9: Simulation 11 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =2, p =5, ¢ =2, m; = 0.6, my = 0.4, ﬁlT =
(—0.55,0.85,1.25,—0.70,0.00), ,32T = (0.25,-0.50,1.35, —-0.20,0.00), 1" = (1.60,
—0.45,1.00), and 3" = (1.05,0.00, 1.40), and m;; € {5,6,...,15}.
n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

m | -6.7 0.5 1.0 -69 0.5 1.0 -6.9 0.5 1.0 -6.8 0.5 0.9

B1o 1.6 11.0 10.9| -05 7.2 71| -1.8 5.0 50| -2.9 4.0 4.0

B 1.1 5.6 5.5 1.9 3.1 3.1 3.5 2.5 2.6 6.1 22 2.5

b2 | 0.7 29 29| -1.2 1.5 1.5 -06 1.1 1.1} -0.3 0.6 0.6

B3 29 22 2.2 3.1 1.6 1.7 26 1.1 1.2 09 1.0 1.0

Bia 1.0 14 14 1.4 0.7 0.7 1.3 0.5 0.5 0.7 0.3 0.3

I'n| 42 91 921 -0.5 38 3.8 -2.1 2.5 25| -0.2 1.7 1.7

I'io | 180 6.2 94| 123 24 39| 10.8 1.6 2.8 73 14 1.9

I'os| 195 3.7 74| 172 2.9 5.8 | 14.1 1.7 3.7 11.0 14 2.6

B | -11.7 8.6 99| -93 5.9 6.7 | -10.1 4.8 58 | -6.4 4.1 4.4

Bor | 239 7.3 129 | 220 4.5 9.3 | 21.8 4.2 89| 17.2 4.0 6.9

B2 04 3.6 3.5 -1.6 2.0 20 -0.6 1.1 1.1} -0.7 0.6 0.6

b3 | -11.6 2.3 3.6 | -11.1 1.6 28 1-10.6 1.2 23] -88 1.1 1.8

Ba | 07 1.2 1.2 -1.3 0.9 09| -1.3 0.6 06| -0.5 0.3 0.3

I'py | 177 85 115 21.6 3.5 811 19.2 2.5 6.1 | 14.6 2.1 4.2

I'yn| -6.8 8.9 9.2 | -13.0 4.3 6.0 | -129 4.0 5.7 |-10.5 3.8 4.8

Iy | -239 3.1 8.8 |-25.0 2.1 84 |-253 1.7 8.1 |-23.3 14 6.8

Total 110.7 72.7 58.8 45.5
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Figure F-15: MSE across sample sizes, binomial outcome, with m;; € {5,6,...,15}.
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APPENDIX G
Additional Tables From Chapter 4 (Bias, Variance, Mean Squared Error
With Least Absolute Shrinkage and Selection Operator, Adaptive Least
Absolute Shrinkage and Selection Operator, Smoothly Clipped Absolute
Deviation)

This appendix contains the tables of simulation results for Chapter 4, in particular

the results of simulations ran using the LASSO, ALASSO, and SCAD penalties.
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Table G-1: Simulation 1 results multiplied by 100, averaged over 50 runs. Outcome

follows a Poisson distribution with K = 2, p =7, ¢ = 2, m;y = 0.6, m = 0.4,

B, = (0.65,0.30,0.00,0.00,0.00,0.00,0.00), B, = (0.20, —0.45,0.00, 0.00, 0.00, 0.00,
0.00), 1" =(0.30,-0.25,0.10), and 3" = (0.35,0.20,0.15). LASSO penalty.

n n = 100 n = 250

Measure | Bias Var MSE | Bias Var MSE

m| 72 13 18] 20 08 08

Bio | -195 55 92 -220 50 938

B |-28.0 04 82|-261 13 81

Pz | 01 00 00| 00 00 0.0

fis| 00 00 00| -01 00 0.0

Bu| <01 00 00| -01 00 0.0

Bis| 00 00 00| -02 00 0.0

fig| 00 00 00| 01 00 0.0

Iy | -192 32 69|-134 25 4.3

Ty | 279 11.8 193 | 329 11.9 225

I'p| -15 39 38| 13 22 21

B | 295 212 294 | 383 123 26.7

Bo1 | 435 14 20.2| 433 23 210

Bp| -03 00 00| 00 00 0.0

By | 02 00 00| 01 00 0.0

Bos | <04 01 01| -03 00 0.0

Bes | -0.1 00 00| -02 0.0 0.0

B | 02 01 01| 02 00 0.0

Iy | -74 56 61| -84 27 34

Ty | -204 129 168 | -21.2 7.3 11.7

Iy | -103 26 36| -74 25 3.0

Total 125.7 113.6
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Figure G—1: MSE across sample sizes, Poisson outcome, LASSO penalty, with K = 2,
p=7q=2
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Table G-2: Simulation 1 results multiplied by 100, averaged over 50 runs. Outcome
follows a Poisson distribution with K = 2, p =7, ¢ = 2, m;y = 0.6, m = 0.4,
B, = (0.65,0.30,0.00,0.00,0.00,0.00,0.00), By

0.00),

* T __

1

(0.30,—0.25,0.10), and

* 1

— (0.20, —0.45, 0.00, 0.00, 0.00, 0.0,
= (0.35,0.20,0.15). ALASSO penalty.

n n = 100 n = 250

Measure | Bias Var MSE | Bias Var MSE
m| 54 11 14| 07 05 05
Bo | -17.8 58 88 [-173 50 79
B | -266 0.7  7.7|-250 2.1 8.2
fiz| 00 00 00| -01 0.0 0.0
fis| 0.0 00 00| -01 00 0.0
Bia| 0.1 00 00| -02 00 0.0
Bis| 00 00 00| -01 00 0.0
Big| 00 00 00| 01 0.0 0.0
'y |-162 28 54| 92 21 29
Ty | 272 11.8 189 | 286 9.6 17.6
I'p| -1.0 35 34| 38 20 21
By | 284 178 255| 31.7 9.5 19.3
Bo1 | 43.6 23 213 | 452 44 247
Boe | -03 00 0.0 -0.1 0.0 0.0
Bos | -0.1 01 01| 02 00 0.0
for | -1.1 03 03| 00 00 00
Bes | -0.1 00 00| -0.2 00 0.0
B | 04 01 01| 03 00 00
Iy | -71 46 51| -65 21 25
Top | -21.3 99 142 ]-196 82 11.9
Ty | -77 22 28| -88 24 31
Total 115.1 100.8
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Figure G-2: MSE across sample sizes, Poisson outcome, ALASSO penalty, with
K=2p=7q=2.
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Table G-3: Simulation 7 results multiplied by 100, averaged over 50 runs. OQutcome

follows a binomial distribution with K = 2, p =7, ¢ = 2, m = 0.6, my = 0.4,

B, = (0.95,0.60,0.00,0.00,0.00,0.00,0.00), By = (—0.85,—0.15,0.00,0.00, 0.00, 0.00,
0.00), " =(0.95,0.85,1.15), and ;' = (0.70,—0.70,0.80). LASSO penalty.
n n = 100 n = 250

Measure Bias Var MSE Bias Var MSE

m | -0.8 04 04| -1.8 0.3 0.4

Bio | -113.8 51.9 180.5 | -122.3 46.2  194.9

Pii| -56.6 3.0  35.0| -h44 2.7 322

Bia 0.1 0.0 0.0 02 0.0 0.0

Bz | -05 0.0 00| -0.1 0.0 0.0

B4 0.0 0.0 0.0 0.1 0.0 0.0

Bis 0.3 0.0 0.0 0.0 0.0 0.0

Bis | -05 0.1 0.1 0.0 0.0 0.0

'y | -186 1.8 52| -182 0.8 4.1

T | -787 60.6 121.3| -98.1 309 126.5

I | -139 28 471 -136 24 4.2

Bao | 165.0 80.9 351.6 | 178.7 70.0 387.9

Bor | 403 164 323 | 67.7 124 580

B2z 09 04 0.4 0.6 0.2 0.2

B3 0.5 0.1 0.1 04 0.1 0.1

B4 04 0.2 02| -02 0.1 0.1

Bas 09 0.1 0.1 0.2 0.1 0.1

Bas 0.3 0.1 0.1 04 0.1 0.1

oy | -27 4.3 4.3 1.5 28 2.7

Ty | 143.0 66.7 2699 | 140.1 39.9 2355

Iy | 291 124  206| 368 3.1 166

Total 1026.8 1063.8
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Figure G-3: MSE across sample sizes, binomial outcome, LASSO penalty, with K = 2,
p=7q=2
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Table G—4: Simulation 7 results multiplied by 100, averaged over 50 runs. OQutcome

follows a binomial distribution with K = 2, p =7, ¢ = 2, m = 0.6, my = 0.4,

B, = (0.95,0.60,0.00,0.00,0.00,0.00,0.00), By = (—0.85,—0.15,0.00,0.00, 0.00, 0.00,
0.00), *" =(0.95,0.85,1.15), and ;' = (0.70,—0.70,0.80). ALASSO penalty.

n n = 100 n = 250

Measure Bias Var MSE Bias Var MSE

m | -02 04 04| -1.7 04 0.4

Bio | -110.0 56.7 176.7 | -125.1 43.6  199.2

i | -492 92  333| -51.1 55 315

Bia 0.1 0.0 0.0 0.3 0.1 0.1

Bz | -02 0.0 0.0 0.0 0.0 0.0

B4 0.3 0.0 0.0 0.1 0.0 0.0

Bis 0.3 0.0 0.0 0.0 0.0 0.0

B | -05 0.1 0.1 0.0 0.0 0.0

'y | -161 24 49| -165 1.0 3.7

T | -94.0 43.7 131.2|-106.1 26.0 138.1

I | -160 3.0 55| -14.2 22 4.2

Bag | 170.0 82.3 369.6 | 181.7 66.3 395.2

Bor | 741 285 829 | 848 126  84.2

B2 1.2 04 0.4 0.0 0.0 0.0

B3 0.0 0.0 00| -0.1 0.0 0.0

Ba | -06 0.1 0.1 -0.3 0.0 0.0

Bas 0.3 0.1 01 -0.1 0.0 0.0

Bas 04 0.1 0.1 04 0.1 0.1

Iy | -0.7 4.6 4.5 6.8 24 2.9

Toio | 137.1 63.8 2506 | 139.7 40.5  234.9

Ty | 247 104 164 | 327 39 145

Total 1076.6 1108.9
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MSE Across Sample Sizes, Binomial Scenario 1
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Figure G—4: MSE across sample sizes, binomial outcome, ALASSO penalty, with
K=2p=7q=2.
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APPENDIX H
Additional Tables From Chapter 4 (Bias, Variance, Mean Squared Error
With Maximum Likelihood Estimate, Small Values Changed to Zero,
Oracle)

This appendix contains additional tables of simulation results from Chapter 4.
These tables show the bias, variance, and MSE for the MLE (computed by setting
A =0), the MLE with small values (those with a magnitude less than 0.01) changed

to zero, and the oracle model.
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Table H-1: Simulation 1 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 7, ¢ = 2, m; = 0.6, m = 0.4,
,BlT = (0.65,0.30,0.00, 0.00, 0.00, 0.00, 0.00), ﬂ; = (0.20, —0.45,0.00, 0.00, 0.00, 0.00,
0.00), 17T =(0.30,—-0.25,0.10), and 3" = (0.35,0.20,0.15). No penalty.
n n =100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -3.1 1.3 14| -1.7 0.7 0.7 -2.3 0.3 0.3 | -2.5 0.2 0.2

Bo| 29 15 16| -33 05 06| -3.3 02 04| -24 0.1 0.2

B | -0.8 1.2 1.2 1.2 0.7 0.7 1.2 0.3 0.3 1.4 0.1 0.1

f2| 01 05 05|-05 03 03]-01 01 01]|-01 <01 <0.1

B3 04 0.6 0.6 0.2 0.2 0.2 ] -0.2 0.1 0.1] -0.1 <01 <0.1

Bra 0.3 04 04 -0.2 0.2 0.2 ] -0.1 0.1 0.1 02 <01 <01

Bis 0.6 04 0.4 0.3 0.2 0.2 0.3 0.1 0.1 00 <01 <01

Bie 1.2 05 0.5 04 0.1 0.1 0.0 0.1 0.1 00 <01 <01

I'y| -5.0 14 1.7 -22 04 0.5] -0.3 02 0.2 ] -0.1 0.1 0.1

| D 5.0 1.9 2.2 24 0.5 0.5] -0.2 02 0.2 ] -0.2 0.1 0.1

'p| 46 07 09| -50 05 07| -40 0.3 05| -3.3 0.3 0.4

By | 02 52 52| 33 1.7 18] 50 07 09| 46 0.3 0.5

Boi | 68 31 35| 29 16 16| 25 07 07| 25 0.3 0.3

Bao | -1.3 1.3 1.4 0.3 0.6 0.6 0.2 0.2 0.2 0.4 0.1 0.1

Bag | -2.1 1.1 1.1 -1.8 04 04| -0.2 0.1 0.1 ] -0.2 0.1 0.1

Boa| -33 19 19| -05 06 06| -01 02 0.2 -02 0.1 0.1

Bas | 2.5 1.3 1.3 -1.9 0.5 0.5] -0.7 0.2 0.2 ] -0.3 0.1 0.1

Bas | -0.4 1.3 1.3] -03 0.3 03] 07 0.2 02| 04 0.1 0.1

Ty 0.3 26 2.6 3.3 1.5 1.6 4.0 0.6 0.8 4.0 0.4 0.5

Iyo | -04 1.7 .71 09 09 0.9 22 04 0.5 3.1 0.3 0.3

Iy | -6.6 2.0 25| -57 1.3 1.6 -3.7 06 0.7 -1.5 0.3 0.3
Total 34.0 14.5 6.6 3.8
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MSE Across Sample Sizes, Poisson Scenario 1
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Figure H-1: MSE across sample sizes, Poisson outcome, no penalty, with K = 2,
p="7,q=2.

209



Table H-2: Simulation 1 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 7, ¢ = 2, m; = 0.6, m = 0.4,
B, = (0.65,0.30,0.00,0.00,0.00,0.00,0.00), 85 = (0.20, —0.45,0.00, 0.00, 0.00, 0.00,
0.00), 1" =(0.30,-0.25,0.10), and 3" = (0.35,0.20,0.15). Small values changed to
Zero.

n n =100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -31 13 14]-17 07 07| -23 03 03] -25 0.2 0.2
Bo| 29 15 16| -33 05 06 -3.3 02 04| -24 0.1 0.2
B1 | 0.8 12 12| 12 07 07| 12 03 03| 14 0.1 0.1
Bz 01 05 05| -05 03 03] 00 01 01| -02 <01 <0.1
G| 04 06 06| 02 02 02]-02 01 01|-01 <01 <0.1
Bia| 03 04 04 -02 02 02]-01 01 01| 02 <01 <0.1
Bi5| 07 04 04| 03 02 02| 02 01 01| 00 <01 <0.1
fig| 1.2 05 05| 04 01 01| 00 01 01| -01 <01 <0.1
'y | -50 14 1.7]-22 04 05 -03 02 02 -01 0.1 0.1
Iz | 55 19 22| 24 05 05 -02 02 0.2 -02 0.1 0.1
'y | 46 07 09| -50 05 07| -40 03 05/ -3.3 0.3 0.4
By | 02 52 52| 33 1.7 18] 50 07 09| 46 0.3 0.5
By | 6.8 31 35| 29 16 16| 25 07 07| 25 0.3 0.3
By | -13 13 14| 02 06 06| 02 02 02| 04 0.1 0.1
Bos | 21 11 11| -1.8 04 041 -02 01 01| -03 0.1 0.1
Boa| -33 19 19| -05 06 06| -0.1 02 02| -03 0.1 0.1
Bos | 25 13 13| -19 05 05| -0.7 02 02| -03 0.1 0.1
By | 04 13 13| -03 03 03] 07 02 02| 05 0.1 0.1
I'sy | 03 26 26| 33 15 16| 40 06 08| 4.0 0.4 0.5
s | 04 1.7 1.7/ 09 09 09| 22 04 05| 31 0.3 0.3
Iy | 66 20 25| -57 13 16| -3.7 06 07| -15 0.3 0.3
Total 34.0 14.5 6.6 3.8
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MSE Across Sample Sizes, Poisson Scenario 1
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Figure H-2: MSE across sample sizes, Poisson outcome, small values changed to zero,
with K =2 p=7,q¢q=2.
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Table H-3: Simulation 1 results multiplied by 100, averaged over 100 runs. Outcome

follows a Poisson distribution with K = 2, p = 2, ¢ = 2, m; = 0.6, m = 0.4,

B] = (0.65,0.30), B, = (0.20,—0.45), T = (0.30,—0.25,0.10), and 3" = (0.35,
0.20,0.15). Oracle model.

n n =100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

m | -2.0 1.0 1.0} -06 0.6 0.6 | -1.7 0.2 03] -1.9 0.2 0.2

Bio | 20 1.0 1.0| -25 0.5 0.5 | -2.7 0.3 03] -2.1 0.1 0.2

Bu 04 1.1 1.1 0.6 0.5 0.5 09 0.2 0.2 1.2 0.1 0.1

ry| -28 1.1 1.1 -1.8 04 04| -04 0.2 0.2 0.1 0.1 0.1

112 5.2 1.2 14| 22 0.5 0.5] -0.1 0.2 0.2] -0.2 0.1 0.1

' | -3.2 0.8 09] -36 0.5 0.7 -36 0.3 041 -27 03 0.3

B0 1.7 4.0 40| 2.7 14 1.5 42 07 08 39 0.3 0.5

Ba1 29 28 2.9 1.9 1.3 1.3 2.2 0.6 071 2.0 0.2 0.3

'y 1.5 2.5 25| 34 14 1.5 36 0.6 08| 33 04 0.5

I'yo| -26 1.6 1.7 0.4 1.0 1.0 1.4 0.5 0.5 2.7 0.3 0.4

Iy | -49 1.9 22| -46 1.1 1.3 -29 0.8 08] -1.6 0.3 0.3

Total 19.7 9.8 5.2 2.9
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MSE Across Sample Sizes, Poisson Scenario 1
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Figure H-3: MSE across sample sizes, Poisson outcome, oracle model, with K = 2,
p="7,q=2.

213



Table H-4: Simulation 2 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 17, ¢ = 2, m; = 0.6, 1 = 0.4,
B, = (0.65,0.30,0.00, 0.00, 0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

0.00,0.00), B4
0.00, 0.00,0.00, 0.00, 0.00),
penalty, part 1.

= (0.20,—0.45,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

“T = (0.30,—0.25,0.10), and 3T =

(0.35,0.20,0.15). No

n n =100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m| 61 1.7 20| -46 08 10| -29 04 05| -34 02 0.3
Bo| -33 21 22| -37 08 10| -21 02 03] -1.7 0.1 0.2
fi| -51 29 31]-03 12 12| 1.0 04 04| 1.1 0.2 0.2
Bzl 01 05 05| 00 02 02| 01 01 01| 02 <01 <01
B3| -02 06 06| -03 02 02]-01 01 01]-02 <01 <0.1
fuu| -01 07 06| 01 02 02]-04 01 01]-03 <01 <01
fis| 02 07 07| 06 02 02| 01 01 01]-01 <01 <0.1
B | -1.5 05 05| -1.0 02 02]-03 01 01]-02 <01 <0.1
fiz| 08 06 06| 00 02 02]-01 01 01]-02 <01 <0.1
fis| -01 05 05| -03 02 02]-02 01 01| 00 <01 <0.1
Bfo| -04 05 05| -03 02 02| 04 01 01| 02 <01 <01
fio| 06 07 07]-07 02 02]-03 01 01| 00 <01 <O0.1
fir| 02 05 05]-02 02 02| 00 01 01| 02 <01 <O0.1
P2 | 03 04 04]-02 02 02| 01 01 01| 00 <01 <0.1
Bz | -03 08 08| 04 02 02| 00 01 01| 00 <01 <O0.1
Bua| -03 06 06| 00 01 01|-05 01 01]|-04 <01 <0.1
fus| -02 05 05| 02 02 02| 00 01 01| 00 <01 <O0.1
B | -02 06 06| -06 02 02| 00 01 01]|-01 <01 <0.1
'y |-103 16 27| -63 10 14| -29 07 08| -1.0 0.1 0.1
Iz | 90 19 27| 50 14 16| 15 06 06| -04 0.1 0.1
I'p| -57 07 10| -48 07 09| -47 03 05| -49 0.2 0.4
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Table H-5: Simulation 2 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 17, ¢ = 2, m; = 0.6, 1y = 0.4,
B, = (0.65,0.30,0.00, 0.00, 0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

0.00,0.00), B,
0.00, 0.00, 0.00, 0.00, 0.00),
penalty, part 2.

= (0.20, —0.45,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

T = (0.30,—0.25,0.10), and

5T = (0.35,0.20,0.15). No

n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
Boo | -22 40 40| 54 18 20| 37 09 1.1] 49 04 06
Bo1 | 141 47 66| 61 21 25| 27 08 08| 37 03 05
By | 06 16 16| 01 05 05| 03 03 03] 04 01 0.1
Baz | 0.2 1.2 12]-05 03 03|-11 02 02]-02 01 0.1
By | 06 1.3 13| 00 03 03] -01 02 02| 00 01 0.1
Bos | 04 10 10| -08 03 03] -02 02 02]-01 01 0.1
Bas | 29 1.2 12| 1.2 04 04| 03 02 02| 00 01 0.1
Bor | -03 1.7 17| 00 03 03] 02 02 02| 00 01 0.1
Bog | -04 1.3 13| -03 04 04]-03 02 01]-04 01 0.1
Bag | 1.2 10 10| 1.3 04 05| 01 02 02| 03 01 0.1
Boig| 05 14 14| 00 04 04| -02 02 02| -02 01 0.1
Born | 01 14 14| -01 04 04| 00 02 02]|-02 01 0.1
Barz | 02 08 08| 00 03 03] 00 0.1 0.1 0.0 0.1 0.1
Bos| 1.8 13 13| 07 05 05| 03 02 02| 00 01 0.1
Bors| 03 10 10| 08 03 03| 06 02 02| 01 01 0.1
Bo1s| 1.1 13 13| 00 03 03| 02 01 01| 01 01 0.1
Boig| 03 16 16| -01 04 04| -02 02 02| 01 01 0.1
Iy | 47 32 34| 14 16 16| 21 09 09| 23 04 05
Iop| -06 25 25| 15 1.1 1.1 03 08 08| 1.1 03 03
Iy | -59 21 24| -67 10 14| -62 05 09| -16 03 03
Total 60.3 24.1 11.3 5.3
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MSE Across Sample Sizes, Poisson Scenario 2
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Figure H-4: MSE across sample sizes, Poisson outcome, no penalty, with K = 2,
p=17,q=2.
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Table H-6: Simulation 2 results multiplied by 100, averaged over 100 runs. Outcome

follows a Poisson distribution with K = 2, p = 17, ¢ = 2, m; = 0.6, 1 = 0.4,

,BlT = (0.65,0.30,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

0.00, 0.00), 6; = (0.20, —0.45,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

0.00,0.00, 0.00, 0.00,0.00), 3T = (0.30,—0.25,0.10), and 3" = (0.35,0.20,0.15).
Small values changed to zero, part 1.

n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias  Var MSE

m | -6.1 1.7 20| 46 038 1.0} -29 04 05| -34 0.2 0.3

Bio| -33 2.1 221 -3.7 08 1.0 -2.1 0.2 0.3 ] -1.7 0.1 0.2

B | -51 29 3.1] -03 1.2 1.2 1.0 04 0.4 1.1 0.2 0.2

Bz 0.1 0.5 0.5 00 0.2 02 01 0.1 0.1 0.2 <01 <0.1

Bis | -0.2 0.6 06| -0.3 0.2 0.2 -0.1 0.1 0.1 -0.2 <01 <0.1

Bia | -0.2 0.7 06| 01 0.2 0.2 -03 0.1 0.1} -03 <01 <0.1

Bis 0.2 0.7 0.7 06 0.2 02 02 0.1 0.1} -0.1 <01 <01

B | -1.5 05 05| -1.0 0.2 0.2 -0.3 0.1 0.1 -0.2 <01 <0.1

Bz 0.8 0.6 0.6 0.0 0.2 0.2 -0.1 0.1 0.1 -0.2 <01 <0.1

fis| -0.1 0.5 0.5] -04 0.2 0.2] -02 0.1 0.1} -0.1 <01 <0.1

Bro | -04 0.5 0.5] -03 0.2 02 04 0.1 0.1 0.2 <01 <0.1

B0 0.6 0.7 0.7] -0.6 0.2 0.2 -0.3 0.1 0.1 00 <01 <01

P11 0.2 0.5 0.5] -02 0.2 0.2 00 0.1 0.1 02 <01 <0.1

Bri2 04 04 041 -02 0.2 02 01 0.1 0.1 00 <01 <01

Bz | -0.3 0.8 0.8 0.3 0.2 0.2 0.1 0.1 0.1 0.1 <01 <0.1

Bua| -03 06 06| 00 01 01|-05 01 01]|-04 <01 <0.1

Bus | -0.2 0.5 0.5 02 0.2 0.2 00 0.1 0.1 00 <01 <01

Bue | -0.2 0.6 06| -06 0.2 02 00 0.1 0.1} -0.1 <01 <0.1

', |-103 1.6 271 -6.3 1.0 14| -29 0.7 0.8 | -1.0 0.1 0.1

| NED) 9.0 1.9 271 50 14 1.6 1.5 0.6 0.6 | -04 0.1 0.1

I'p | -5.7 0.7 1.0 -48 0.7 09| 47 0.3 0.5 ] -49 0.2 0.4
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Table H-7: Simulation 2 results multiplied by 100, averaged over 100 runs. Outcome

follows a Poisson distribution with K = 2, p = 17, ¢ = 2, m; = 0.6, 1y = 0.4,

BlT = (0.65,0.30,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

0.00,0.00), B; = (0.20,—0.45,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

0.00,0.00, 0.00,0.00,0.00), 3T = (0.30,—0.25,0.10), and 3" = (0.35,0.20,0.15).
Small values changed to zero,part 2.

n n =100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

Bao | -2.2 4.0 4.0 54 1.8 2.0 3.7 0.9 1.1 49 04 0.6

Bor | 14.2 4.7 6.6 6.1 2.1 2.5 2.7 0.8 0.8 3.7 0.3 0.5

Paa | 0.6 1.6 1.6 00 0.5 0.5 0.3 0.3 03] 04 0.1 0.1

Ba3 0.1 1.2 1.2 1 -05 0.3 03| -1.1 0.2 021 -0.2 0.1 0.1

Baa 0.6 1.3 1.3 0.0 0.3 0.3 0.0 0.2 0.2 0.0 0.1 0.1

Bos | 03 10 10| -08 03 03] -03 02 02]-01 01 0.1

Bas 29 12 1.2 1.2 04 0.4 0.3 0.2 0.2 0.0 0.1 0.1

Bor | 0.3 1.7 17| 00 03 03] 02 02 02| 01 01 0.1

Pos | -0.4 1.3 1.3 -0.3 04 04| -0.3 0.1 0.1] -0.3 0.1 0.1

Bag 1.2 1.0 1.0 14 04 0.5 0.1 0.2 0.2 0.2 0.1 0.1

Boro | -0.5 1.4 14 0.0 04 04| -0.2 0.2 0.2 -0.2 0.1 0.1

Bai1 0.1 14 14| -0.1 04 04| 0.0 0.2 0.2] -0.2 0.1 0.1

Barz | 02 08 08| 00 03 03]-01 01 01| 00 01 0.1

Bo13 1.8 1.3 1.3 0.6 0.5 0.5 0.3 0.2 0.2 0.0 0.1 0.1

P14 0.3 1.0 1.0 0.8 0.3 0.3 0.6 0.2 0.2 0.1 0.1 0.1

Ba1s 1.1 1.3 1.3 0.0 0.3 0.3 0.3 0.1 0.1 0.2 0.1 0.1

Ba16 03 1.6 1.6 -0.1 04 03| -0.1 0.2 0.2 0.1 0.1 0.1

I'yy | 47 3.2 3.4 14 1.6 1.6 2.1 0.9 0.9 23 04 0.5

I'sin | -0.6 2.5 2.5 1.5 1.1 1.1 0.3 0.8 0.8 1.1 0.3 0.3

I'o | -59 2.1 24| -6.7 1.0 141 -6.2 0.5 091 -16 0.3 0.3

Total 60.3 24.1 11.3 5.2
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MSE Across Sample Sizes, Poisson Scenario 2
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Figure H-5: MSE across sample sizes, Poisson outcome, small values changed to zero,
with K =2, p=17, q = 2.
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Table H-8: Simulation 2 results multiplied by 100, averaged over 100 runs. Outcome

follows a Poisson distribution with K = 2, p = 2, ¢ = 2, m; = 0.6, m = 0.4,

B] = (0.65,0.30), B, = (0.20,—0.45), T = (0.30,—0.25,0.10), and 3" = (0.35,
0.20,0.15). Oracle model.

n n =100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

m | -3.8 0.9 1.1} -25 0.6 0.6 | -24 0.3 04] -22 0.2 0.2

Bio | -0.5 1.3 1.2 -0.8 0.5 0.5] -0.9 0.2 0.2] -1.1 0.1 0.1

fu| 07 11 11| 1.0 05 05| 1.1 03 03] 08 01 0.1

'y | -57 1.3 1.6 | -28 0.3 04| -1.7 04 04| -0.7 0.1 0.1

112 5.6 1.2 1.5 1.6 0.3 03| 0.7 04 04] -04 0.1 0.1

', | -5.1 0.5 08 -45 04 0.6 | -44 0.3 05] -4.1 0.2 0.4

Bag| 09 27 26| 25 12 12| 32 06 07| 35 03 05

Ba1 4.2 2.7 2.8 1.5 1.3 1.3 2.1 05 06| 25 0.2 0.3

I'sy | -09 3.0 30| -03 1.5 1.5 1.8 0.6 0.6 1.3 0.3 0.4

g0 | 48 1.5 1.7 -1.4 09 09| -0.7 0.5 0.5 0.1 0.3 0.3

Iy | 5.3 2.0 23| 44 1.0 1.2 -39 0.5 0.7] -1.1 0.2 0.2

Total 19.7 9.1 5.2 2.7
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MSE Across Sample Sizes, Poisson Scenario 2
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Figure H-6: MSE across sample sizes, Poisson outcome, oracle model, with K = 2,
p=17,q=2.
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Table H-9: Simulation 3 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 19, ¢ = 5, m = 0.6, 1 = 0.4,
B, = (0.65,0.30,0.15,0.35,0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00,0.00,0.00, 0.00), B, = (0.20, —0.45, —0.10,0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,0.00), 3" = (0.30,—0.25,0.10, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,0.00,0.00), and 3" = (0.35,0.20,0.15,0.00,

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,0.00). No penalty, part 1.
n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -3.2 1.0 1.1 -1.5 0.5 05| -1.2 0.2 021 -1.5 0.1 0.2
Bio -6.0 1.7 2.1 -1.7 0.4 04| -1.3 0.2 0.2 -1.0 0.1 0.1
B | -2.5 1.5 1.6 05 05 05| 1.3 02 02| 1.2 0.1 0.1
Bz | -1.4 1.0 1.1 0.0 0.2 0.2 -0.3 0.1 01| 0.0 <01 <01
Bis 0.7 0.6 0.6 | 0.6 0.2 0.2 | -0.1 0.1 0.1] -0.8 <01 <0.1
Bra | -0.7 0.6 0.6 | -0.1 0.1 0.1] -0.3 0.1 01] -0.2 <01 <0.1
Bis | -0.7 0.5 05| 0.1 0.1 0.1 01 <01 <01| 00 <01 <0.1
Bis | -0.3 0.4 041 -0.1 0.1 01| 02 <01 <01| 00 <01 <01
Bir | 04 0.5 05| 0.1 0.1 01] 00 <01 <01] 00 <01 <0.1
Bis -0.6 0.4 04| -0.7 0.1 0.1] -0.1 0.1 01] -0.1 <01 <0.1
Bro 0.4 0.5 05| 02 0.1 0.1 0.2 0.1 01| 02 <01 <01
Bio | -0.4 0.5 05| 0.0 0.1 0.1 -02 <01 <01} -02 <01 <0.1
Binn | -0.6 0.4 04| 04 0.1 0.1 0.2 0.1 0.1] -0.1 <01 <o0.1
Bz | -04 0.5 05| 0.0 0.1 0.1 00 <01 <01} -01 <01 <0.1
Bus | 0.1 0.4 04| 04 0.1 01| 00 <01 <01] 01 <01 <0.1
B11a -0.3 0.5 05| -04 0.1 01] -0.2 <01 <01] -0.2 <01 <0.1
Bus -0.8 0.5 0.5 -0.5 0.1 01} -0.1 <01 <01] -0.1 <01 <0.1
Biis 0.7 0.4 04| 04 0.1 0.1 0.0 0.1 01| 03 <01 <01
Bur | -0.7 0.6 0.6 0.0 0.1 0.1] -0.2 0.1 0.1] -0.2 <01 <0.1
Bris 0.4 0.5 05| 0.1 0.1 0.1 0.2 0.1 01| 03 <01 <0.1
'y | -10.3 2.2 32| 4.8 1.0 1.3 | -2.9 0.5 06| -1.4 0.1 0.1
I | 128 2.7 4.3 4.4 1.0 1.1 2.2 0.4 0.5 1.1 0.2 0.2
T -1.7 1.1 1.1 | -2.6 0.6 0.7 -2.9 0.3 04 -2.8 0.2 0.3
'z | -0.7 0.6 0.6 | -0.6 0.2 0.2 -0.1 0.1 0.1] -0.4 0.1 0.1
o3 1.3 0.6 0.6 | -0.3 0.4 04| 0.1 0.3 0.3 ] -0.3 0.2 0.2
I3 0.9 0.1 01| 14 <0.1 0.1 2.5 0.1 01| 26 <0.1 0.1
I | -1.3 0.4 05| -0.4 0.2 0.2 -0.1 0.1 0.1] -0.1 <01 <0.1
I's | -0.1 0.3 0.3 ] -0.8 0.2 0.2 -1.0 0.1 0.2 -0.7 0.1 0.1
Iiss 01 <01 <01] -0.3 0.1 0.1] -0.2 0.1 0.1 05 <01 <0.1
Ty 00 <01 <0.1 06 <01 <0.1 09 <01 <0.1 1.2 <01 <0.1
I'iis | -0.9 0.5 0.5 -0.1 0.2 0.2 0.1 0.1 01| 01 <01 <01
I'ia5 1.1 0.2 02| 0.2 0.2 0.2 0.1 0.1 0.1] 0.0 0.1 0.1
I35 00 <01 <0.1] -0.3 0.1 0.1] -0.5 0.1 01| 0.0 <01 <01
Iiys 01 <01 <01 02 <01 <01 02 <01 <01 00 <01 <01
I'is5 0.1 <01 <01 02 <01 <01 04 <01 <0.1 07 <01 <01
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Table H-10: Simulation 3 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 19, ¢ = 5, m = 0.6, 1 = 0.4,
BIT = (0.65,0.30,0.15,0.35,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00), BQT = (0.20,—0.45,—0.10, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), ’{T = (0.30,—0.25,0.10, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and ;T = (0.35,0.20,0.15, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00). No penalty, part 2.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
Bao | -3.3 4.7 48| -2.9 1.5 15] 1.3 0.6 06| 06 0.3 0.3
B 6.2 5.4 5.7 1.4 1.3 1.3 | -0.5 0.4 0.4 0.2 0.2 0.2
Baa 4.8 2.0 2.2 1.7 0.5 0.6 1.9 0.2 0.2 1.6 0.1 0.1
Bas 5.0 1.4 1.7 1.9 0.4 0.4 0.3 0.2 0.2 0.1 0.1 0.1
Baa 0.2 0.9 09| -04 0.3 0.3 -0.2 0.1 0.1 0.0 <01 <0.1
Bas 1.6 1.5 1.5 0.4 0.5 0.5 0.1 0.1 0.1 0.2 0.1 0.1
Ba | -1.0 1.2 1.2 0.5 0.3 0.3 0.1 0.1 0.1 0.2 0.1 0.1
B | 12 13 13| -07 03 03] 02 02 02| 03 01 0.1
Bas 0.0 1.1 1.1 1.0 0.4 0.4 0.3 0.2 0.2 -0.1 0.1 0.1
Bag 0.0 1.8 1.8 0.8 0.4 0.4 0.3 0.2 0.2 0.0 0.1 0.1
Ba10 0.1 1.4 1.4 0.3 0.4 0.4 0.2 0.2 0.2 0.1 0.1 0.1
Bo11 | -0.3 1.3 1.3 -2.1 0.3 0.3 1] -0.7 0.1 0.1 0.4 0.1 0.1
Ba12 0.0 1.4 1.4 0.5 0.3 0.3 0.2 0.2 0.2 0.0 0.1 0.1
Ba13 1.2 1.3 1.3 -0.2 0.4 0.4 0.3 0.1 0.1 0.3 0.1 0.1
Ba14 0.9 1.1 1.1 0.0 0.3 0.3 1] -0.2 0.1 0.1 0.0 0.1 0.1
Bo15 | -1.3 1.2 1.2 0.0 0.4 0.4 0.6 0.2 0.2 0.1 0.1 0.1
P16 | -0.3 1.0 1.0 | -0.8 0.3 0.3 1] -0.3 0.1 0.1 -0.3 0.1 0.1
Bo17 1.4 1.2 1.2 1.3 0.4 0.4 0.3 0.2 0.2 0.2 0.1 0.1
P15 | -0.3 1.6 1.6 0.1 0.4 041 -0.4 0.2 0.2 -0.1 0.1 0.1
Iy | 2.7 2.7 2.7 1.1 1.5 1.5 3.0 0.7 0.8 3.2 0.3 0.4
I's19 | -2.0 2.0 2.0 0.0 1.1 1.1 0.1 0.5 0.5 0.6 0.3 0.3
I'ys | -5.9 2.2 26 | -4.5 1.4 1.6 | -4.6 0.7 0.9 -2.6 0.4 0.4
Tois 4.4 1.2 1.4 4.1 0.9 1.0 3.4 0.4 0.5 3.0 0.2 0.3
593 1.4 0.7 0.7 | -0.6 0.8 0.8 ] -0.8 0.5 0.5] -0.9 0.3 0.3
Tog 0.8 0.1 0.1 2.4 0.1 0.2 3.6 0.2 0.4 3.8 0.2 0.3
T'514 0.4 0.8 0.8 0.4 0.4 0.4 0.4 0.3 0.3 1.1 0.2 0.2
594 2.3 0.4 0.4 1.3 0.5 0.5 1.6 0.3 0.3 1.3 0.2 0.2
o34 03 <01 <0.1 1.3 0.1 0.1 1.3 0.2 0.2 1.0 0.2 0.2
Ty 0.2 <01 <0.1 0.7 0.1 0.1 1.4 0.1 0.1 1.7 0.1 0.1
Tars 0.2 0.6 0.6 | -0.1 0.3 0.3 0.4 0.2 0.2 -0.1 0.1 0.1
Tya5 0.9 0.4 0.4 0.7 0.4 041 -0.1 0.3 0.3 0.0 0.2 0.2
Tass 0.3 0.1 0.1 0.1 0.2 0.1] -0.7 0.2 0.2 0.7 0.1 0.1
I'ays | 01 <01 <0.1 03 <01 <01 00 <01 <01 03 <01 <0.1
Iy 00 <01 <0.1 0.2 <01 <0.1 05 <01 <0.1 0.7 <01 <0.1
Total 70.5 25.6 13.1 7.4
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Figure H-7: MSE across sample sizes, Poisson outcome, no penalty, with K = 2,
p=19, qg=>5.
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Table H-11: Simulation 3 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 19, ¢ = 5, m = 0.6, 1y, = 0.4,
B, = (0.65,0.30,0.15,0.35,0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00,0.00,0.00, 0.00), B, = (0.20, —0.45, —0.10,0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,0.00), 3" = (0.30,—0.25,0.10, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,0.00), and 3" = (0.35,0.20,0.15, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,0.00). Small values changed to

zero, part 1.
n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
™ -3.2 1.0 1.1] -1.5 0.5 051 -1.2 0.2 0.2 -1.5 0.1 0.2
Bio -6.0 1.7 21| -1.7 0.4 04| -1.3 0.2 0.2 -1.0 0.1 0.1
B | -2.5 1.5 1.6 0.5 0.6 06| 1.3 0.2 02| 1.2 0.1 0.1
Bz | -1.4 1.0 1.1 ] 0.0 0.2 0.2 -0.3 0.1 01| 00 <01 <0.1
Bz 0.7 0.6 0.6 | 0.6 0.2 0.2 -0.1 0.1 01| -08 <01 <0.1
Pra | -0.7 0.6 0.6 | -0.1 0.1 0.1 -0.3 0.1 01| -02 <01 <0.1
G5 | -0.7 0.5 05| 0.1 0.1 01| 02 <01 <01] 01 <01 <01
Be | -0.3 0.4 04| -0.1 0.1 01| 02 <01 <01] 00 <01 <o0.1
Bz 0.4 0.5 05| 0.1 0.1 01| 00 <01 <01] 00 <01 <01
Bis -0.6 0.4 041 -0.7 0.1 0.1] -0.1 0.1 01] -0.1 <01 <01
P19 0.4 0.5 0.5 0.2 0.1 0.1 0.2 0.1 0.1 03 <01 <0.1
B0 | -0.5 0.5 05| 0.0 0.1 01| -02 <01 <01 -02 <01 <0.1
Bt -0.6 0.4 0.4 0.4 0.1 0.1 0.2 0.1 01] -0.1 <01 <01
Pz | -04 0.5 05| 0.0 0.1 01| 00 <01 <01} -01 <01 <01
Bris 0.1 0.4 04| 04 0.1 01| 00 <01 <01] 01 <01 <0.1
Bi14 -0.4 0.5 05| -04 0.1 01] -0.2 <01 <01] -0.2 <01 <01
Bus | -0.9 0.5 0.5| -0.6 0.1 01]-01 <01 <01]-01 <01 <01
B 0.7 0.4 04| 04 0.1 0.1 0.0 0.1 01| 03 <01 <0.1
Pur | -0.7 0.6 0.6 0.1 0.1 0.1] -0.2 0.1 01] -0.2 <01 <0.1
Biis 0.4 0.5 05| 0.2 0.1 0.1 0.1 0.1 01| 03 <01 <0.1
'y, | -10.3 2.2 3.2 -4.8 1.0 1.3 ] -2.9 0.5 06| -14 0.1 0.1
I'p | 128 2.7 4.3 4.4 1.0 1.1 2.2 0.4 0.5 1.1 0.2 0.2
I | -1.7 1.1 1.1] -2.6 0.6 0.7 -2.9 0.3 04| -2.8 0.2 0.3
I3 -0.7 0.6 0.6 | -0.6 0.2 0.2 -0.1 0.1 011 -04 0.1 0.1
a3 1.3 0.6 0.6 | -0.3 0.4 04| 0.1 0.3 0.3 | -0.3 0.2 0.2
I'is 0.9 0.1 0.1 14 <0.1 01| 25 0.1 01| 26 <0.1 0.1
g -1.3 0.4 05| -04 0.2 0.2 -0.1 0.1 01] -0.1 <01 <01
Moy -0.1 0.3 0.3 ] -0.8 0.2 0.2 -1.0 0.1 02| -0.7 0.1 0.1
Iiss 0.1 <01 <0.1] -0.3 0.1 0.1 -0.2 0.1 01| 05 <01 <0.1
I 00 <01 <01] 06 <01 <01| 09 <01 <01 1.2 <01 <0.1
s | -0.9 0.5 0.5| -0.1 0.2 02| 0.1 0.1 01 01 <01 <0.1
o5 1.1 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.1 0.1
I35 00 <01 <0.1] -0.3 0.1 0.1 -0.5 0.1 01| 00 <01 <0.1
s 0.1 <01 <01] 02 <01 <01] 02 <01 <01]| 00 <01 <01
I'is 01 <01 <01] 02 <01 <01] 04 <01 <01]| 07 <01 <01
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Table H-12: Simulation 3 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 2, p = 19, ¢ = 5, m = 0.6, 1 = 0.4,
B, = (0.65,0.30,0.15,0.35,0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00,0.00, 0.00, 0.00), B, = (0.20, —0.45, —0.10, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,0.00), 3" = (0.30,—0.25,0.10, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,0.00), and 3" = (0.35,0.20,0.15,0.00,

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00). Small values changed to

zero, part 2.

n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
B2 | -3.3 4.7 48] -2.9 1.5 15| 1.3 0.6 0.6 0.6 0.3 0.3
Bo1 | 6.2 5.4 57| 1.4 1.3 1.3 ] -0.5 0.4 04| 0.2 0.2 0.2
Bog | 4.8 2.0 221 1.7 0.5 06| 1.9 0.2 02] 1.6 0.1 0.1
B2z | 5.0 1.4 171 1.9 0.4 04| 03 0.2 0.2 0.1 0.1 0.1
Bos | 0.2 0.9 09| -04 0.3 03] -0.2 0.1 01| 01 <01 <0.1
B2 | 1.6 1.5 15| 04 0.5 05| 0.1 0.1 01| 02 0.1 0.1
Ba | -0.9 1.2 1.2 05 0.3 03] 0.1 0.1 01| 02 0.1 0.1
Bor | 1.2 1.3 1.3 | -0.6 0.3 03] 0.2 0.2 0.2 0.3 0.1 0.1
Bas | 0.0 1.1 1.1 09 0.4 04| 0.3 0.2 0.2 | -0.1 0.1 0.1
Ba9 | 0.0 1.8 1.8] 08 0.4 04| 0.3 0.2 0.2 0.0 0.1 0.1
Ba10 | 0.1 1.4 141 03 0.4 04| 0.2 0.2 0.2 0.1 0.1 0.1
Bor1 | -0.3 1.3 1.3 -2.1 0.3 0.3 ] -0.7 0.1 01] 04 0.1 0.1
Bora | 0.0 1.4 14| 05 0.3 03] 02 0.2 02 0.1 0.1 0.1
Bo1s | 1.3 1.3 1.3 -0.3 0.4 04| 03 0.1 01| 0.3 0.1 0.1
Ba1a | 0.9 1.1 1.1 0.1 0.3 03] -0.2 0.1 0.1] 00 0.1 0.1
Bors | -1.3 1.2 1.2 01 0.4 04| 06 0.2 02| 0.1 0.1 0.1
Bo1s | -0.4 1.0 1.0 -0.8 0.3 03] -0.3 0.1 0.1 -0.3 0.1 0.1
Bz | 1.4 1.2 121 1.3 0.4 04| 02 0.2 02| 0.2 0.1 0.1
Boa1s | -0.3 1.6 16| 0.1 0.4 0.4 -04 0.2 0.2 | -0.1 0.1 0.1
Ty | -2.7 2.7 271 1.1 1.5 15| 3.0 0.7 08| 3.2 0.3 0.4
To1p | -2.0 2.0 2.0] 0.0 1.1 1.1] 01 0.5 05| 0.6 0.3 0.3
Ty | -5.9 2.2 2.6 | -4.5 1.4 1.6 | -4.6 0.7 09| -2.6 0.4 0.4
Tors | 4.4 1.2 14| 4.1 0.9 1.0| 34 0.4 05| 3.0 0.2 0.3
Toos | 1.4 0.7 0.7] -0.6 0.8 0.8 -0.8 0.5 0.5] -0.9 0.3 0.3
Iy | 0.8 0.1 01| 24 0.1 02| 3.6 0.2 04| 38 0.2 0.3
Toa | 04 0.8 08| 04 0.4 04| 04 0.3 03] 1.1 0.2 0.2
Toos | 2.3 0.4 04| 1.3 0.5 05| 1.6 0.3 03] 1.3 0.2 0.2
Igss | 03 <01 <01 1.3 0.1 01| 1.3 0.2 02| 1.0 0.2 0.2
ey | 02 <01 <01] 07 0.1 01| 14 0.1 01| 17 0.1 0.1
o5 | 0.2 0.6 0.6 | -0.1 0.3 03] 04 0.2 0.2 -0.1 0.1 0.1
Toos | 0.9 0.4 041 0.7 0.4 04 ] -0.1 0.3 03] 0.0 0.2 0.2
Toss | 0.3 0.1 01] 0.1 0.2 0.1] -0.7 0.2 0.2 0.7 0.1 0.1
Taus | -01 <01 <01| 03 <01 <01]| 00 <01 <01| 03 <01 <0.1
I's | 00 <01 <01] 02 <01 <01| 05 <01 <01| 07 <01 <0.1
Total 70.5 25.6 13.1 74
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Figure H-8: MSE across sample sizes, Poisson outcome, small values changed to zero,
with K =2, p=19, ¢ = 5.
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Table H-13: Simulation 3 results multiplied by 100, averaged over 100 runs. Outcome

follows a Poisson distribution with K’ = 2, p = 4, ¢ = 2, m; = 0.6, m = 0.4,

,BlT = (0.65,0.30,0.15,0.35), BQT = (0.20,—0.45,—-0.10,0.25), ' = (0.30,—0.25,
0.10), and 3" = (0.35,0.20,0.15). Oracle model.

n n =100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

m | -1.8 0.8 081 -14 04 04| -1.7 0.2 02| -16 0.1 0.1

Bio | -0.5 0.8 081 -0.3 0.2 02| -0.2 0.1 0.1 -0.2 0.1 0.1

Bin| -01 09 09| 05 03 03] 04 02 02| 01 01 0.1

B2 1.1 0.3 0.4 1.2 0.1 0.1 1.1 0.1 0.1 09 <01 <0.1

B3 1.3 0.3 0.3 1.0 0.1 0.2 0.2 0.1 01| -04 <01 <0.1

I'n| 44 1.1 1.2 -1.5 0.5 05| -0.9 0.2 0.2 -0.2 0.1 0.1

I 3.7 1.1 1.3 1.2 0.5 0.5 0.3 0.2 0.2 | -0.1 0.1 0.1

I'os | 40 0.7 09 -29 0.5 06| -25 0.3 04| -2.1 0.2 0.3

Bao | -0.2 2.4 2.4 0.2 09 0.9 3.1 0.5 0.5 1.4 0.2 0.2

Ba1 1.6 26 2.6 06 1.0 1.0 1.3 0.5 0.6 1.8 0.2 0.2

By | 00 14 13| 03 05 05| 1.0 02 02| 06 0.1 0.1

Bas 0.6 1.1 1.1 0.5 0.3 03| -0.3 0.1 0.1 -0.6 0.1 0.1

I'sq 1.3 2.7 2.7 24 1.2 1.2 29 0.7 0.7 2.4 0.3 0.3

| ISP 1.6 1.5 1.5 25 1.1 1.1 3.6 0.6 0.7 3.7 0.3 0.4

Ty | -83 1.5 2.2 ] -5.5 0.8 1.1 -29 0.5 0.6 | -0.9 0.3 0.3

Total 20.4 9.0 5.0 2.4
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Figure H-9: MSE across sample sizes, Poisson outcome, oracle model, with K = 2,
p=19, ¢ =5.
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Table H-14: Simulation 4 results multiplied by 100, averaged over 100 runs. Outcome

follows a Poisson distribution with K = 3, p =7, ¢ = 2, m;y = 0.5, my = 0.3,

w3 = 0.2, ,BlT = (0.65,0.30,0.00, 0.00, 0.00, 0.00, 0.00), ﬂQT = (0.20, —0.45,0.00, 0.00,

0.00,0.00,0.00), ﬁg = (1.00,0.15,0.00, 0.00,0.00, 0.00,0.00), ;" = (0.30,—0.25,
0.10), 3" =(0.35,0.20,0.15), and 3" = (0.25,0.00,0.20). No penalty, part 1.
n n =100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

m | -11.5 1.6 29 1-136 1.2 3.11(-13.2 1.0 28 -134 0.8 2.6

o 3.0 16 1.7 7.3 1.1 1.6 7.5 0.7 1.3 9.3 0.5 1.4

Bio| -5.0 5.1 53| -1.8 1.7 1.7 0.3 1.3 1.3 1.2 0.5 0.5

B 22 53 5.3 0.5 1.5 1.5 1.9 0.7 0.8 2.8 0.5 0.5

Bz | -3.7 3.1 3.2 0.0 0.6 0.6 0.0 0.5 05| -14 0.3 0.3

B3 1.8 24 241 -05 0.9 0.9 0.2 04 0.4 0.0 0.2 0.2

B4 09 1.3 1.3 1.9 0.6 0.7 1.4 0.3 0.3 0.8 0.2 0.2

Bis | -0.5 1.2 1.2 0.1 0.9 0.9 0.0 0.3 03| -0.1 0.2 0.2

Bis| 01 17 16| -03 08 08| 03 04 04| -02 02 02

r'y| -59 29 3.2 0.3 24 2.4 3.0 1.7 1.7 3.3 04 0.5

' | 11.0 2.5 3.7 6.4 2.2 2.6 43 1.1 1.3 -0.1 04 0.4

', | -87 0.2 09| -52 0.7 1.0 -2.7 0.6 0.7 -3.2 0.3 0.4

230



Table H-15: Simulation 4 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p =7, ¢ = 2, m;y = 0.5, my = 0.3,
m3 = 0.2, ,BI = (0.65,0.30,0.00, 0.00, 0.00, 0.00, 0.00), BZT = (0.20,—0.45,0.00, 0.00,
0.00, 0.00,0.00), ﬁg = (1.00,0.15,0.00, 0.00,0.00, 0.00,0.00), ;" = (0.30,—0.25,
0.10), 3" =(0.35,0.20,0.15), and 3" = (0.25,0.00,0.20). No penalty, part 2.
n n =100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
Bao 3.1 74 74| 11.6 2.5 3.8 16.7 0.7 3.5 188 04 3.9
Bar | 122 6.8 821 14.8 3.0 5.1 | 13.8 1.5 3.4 15.0 0.7 3.0
B2z 0.9 25 2.5 1.2 09 09| 08 04 0.4 1.2 0.2 0.2
Ba3 22 38 3.8 0.5 1.0 1.0| -0.5 0.3 03] 0.2 0.1 0.1
Bos | -22 26 26| -05 09 09| -07 04 04| -03 02 02
Bos | 01 19 19| -02 08 08| -04 03 03]-01 01 01
Bas 02 19 1.9 -09 0.6 06| 0.1 0.2 0.2 0.1 0.1 0.1
Iy 1.7 4.3 4.3 39 19 2.0 8.8 1.1 1.9 9.5 04 1.3
o1 2.2 35 35| 82 1.3 20| 94 0.7 1.5 104 0.2 1.3
Iy | -87 2.0 28 | -45 14 1.5| 41 0.8 1.0| -0.6 0.5 0.5
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Table H-16: Simulation 4 results multiplied by 100, averaged over 100 runs. Outcome

follows a Poisson distribution with K = 3, p =7, ¢ = 2, m;y = 0.5, my = 0.3,

w3 = 0.2, ,BlT = (0.65,0.30,0.00, 0.00, 0.00, 0.00, 0.00), BZT = (0.20,—0.45,0.00, 0.00,

0.00, 0.00,0.00), ﬁg = (1.00,0.15,0.00, 0.00,0.00, 0.00,0.00), ;" = (0.30,—0.25,
0.10), 3" =(0.35,0.20,0.15), and 3" = (0.25,0.00,0.20). No penalty, part 3.
n n =100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

Bso | -16.4 3.7 6.0 | -14.0 2.5 44 1-196 2.6 6.4 |-206 1.9 6.2

Bs1| -6.2 3.8 4.1 1 -5.7 2.9 3.2 -27 35 3.5 07 19 1.9

Bs2 0.0 3.8 3.8 -1.7 1.8 1.8 -0.5 0.9 0.8 0.2 0.5 0.5

Bsg | -2.7 1.9 1.9 -06 1.1 1.1} -0.3 0.6 06| -04 04 0.4

Bsa | 25 L7 1.7/ -01 07 07| 08 05 05| 01 04 04

B | 06 21 21| 09 07 07| 05 06 06| 04 04 04

Bz | -0.5 1.9 1.9 -0.7 0.9 09| -1.0 0.7 07 -03 04 0.4

I's; | -10.7 2.0 3.1 -46 1.7 1.9 -0.1 1.5 1.5 3.4 0.8 0.9

I's10 1.0 2.3 23| -26 2.1 221 -66 2.0 25| -6.7 20 2.4

I'sp | -15.6 1.0 3.4 (-144 0.8 29 1-10.8 1.0 221 -83 0.8 1.5

Total 102.0 96.1 44.1 33.1
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MSE Across Sample Sizes, Poisson Scenario 4
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Figure H-10: MSE across sample sizes, Poisson outcome, no penalty, with K = 3,
p=7q=2
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Table H-17: Simulation 4 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p =7, ¢ = 2, m;y = 0.5, my = 0.3,
T = 0.2, 8] = (0.65,0.30,0.00,0.00,0.00,0.00,0.00), 35 = (0.20, —0.45,0.00, 0.00,
0.00,0.00,0.00), 33 = (1.00,0.15,0.00,0.00,0.00,0.00,0.00), *" = (0.30,—0.25,
0.10), 3" =(0.35,0.20,0.15), and 3" = (0.25,0.00,0.20). Small values changed to
zero, part 1.
n n =100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -11.5 1.6 291-136 1.2 3.1]-13.2 1.0 2.8 1-134 0.8 2.6
e 3.0 1.6 1.7 7.3 1.1 1.6 7.5 0.7 1.3 9.3 0.5 1.4
B | -5.0 5.1 53| -1.8 1.7 1.7 0.3 1.3 1.3 1.2 0.5 0.5
B 22 53 5.3 0.5 1.5 1.5 1.9 0.7 0.8 2.8 0.5 0.5
Bz | -3.7 3.1 3.2 0.0 0.6 0.6 0.0 0.5 05 -14 0.3 0.3
B3 1.8 24 241 -05 0.9 0.9 0.1 04 0.4 0.1 0.2 0.2
Bra 09 13 1.3 1.9 0.6 0.7 1.3 0.3 0.3 0.8 0.2 0.2
Bis | -0.5 1.2 1.2 0.1 0.9 0.9 0.0 0.3 03| -0.1 0.2 0.2
Bie 0.1 1.7 1.6 -04 0.8 0.8 0.3 04 04| -02 0.2 0.2
r'y| -59 29 3.2 0.3 24 2.4 3.0 1.7 1.7 3.3 04 0.5
' | 11.0 2.5 3.7 6.4 2.2 2.6 43 1.1 1.3 -0.1 04 0.4
' | -87 0.2 09| -52 0.7 1.0 -2.7 0.6 0.7 -3.2 0.3 0.4
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Table H-18: Simulation 4 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p =7, ¢ = 2, m;y = 0.5, my = 0.3,
w3 = 0.2, ,BlT = (0.65,0.30,0.00, 0.00, 0.00, 0.00, 0.00), B; = (0.20,—0.45,0.00, 0.00,
0.00, 0.00,0.00), ﬁg = (1.00,0.15,0.00, 0.00,0.00, 0.00,0.00), ;" = (0.30,—0.25,
0.10), 3" =(0.35,0.20,0.15), and 3" = (0.25,0.00,0.20). Small values changed to
zero, part 2.
n n =100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
Bag| 3.1 74 741|116 25 38167 07 35| 188 04 3.9
Bor | 122 6.8 821 14.8 3.0 5.1 | 13.8 1.5 3.4 | 15.0 0.7 3.0
B2z 0.9 25 2.5 1.1 09 0.9 0.8 04 0.4 1.2 0.2 0.2
Baz | 22 38 38| 05 10 10| -05 03 03] 02 01 0.1
Pos | -2.2 2.6 26| -0.5 0.9 09| -0.7 04 041 -0.3 0.2 0.2
Bas | -0.1 19 19| -02 08 08| -04 03 03] -01 01 0.1
B | 02 19 19| -08 06 06| 01 02 02| 01 01 0.1
'y 1.7 4.3 4.3 39 1.9 2.0 8.8 1.1 1.9 95 04 1.3
| YD) 2.2 35 3.5 8.2 1.3 2.0 94 0.7 1.5 104 0.2 1.3
'y, | -87 2.0 28 | -45 14 1.5 | -41 0.8 1.0} -0.6 0.5 0.5
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Table H-19: Simulation 4 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K = 3, p =7, ¢ = 2, m;y = 0.5, my = 0.3,
w3 = 0.2, ,BlT = (0.65,0.30,0.00, 0.00, 0.00, 0.00, 0.00), BQT = (0.20,—0.45,0.00, 0.00,
0.00, 0.00,0.00), ﬁg = (1.00,0.15,0.00, 0.00,0.00, 0.00,0.00), ;" = (0.30,—0.25,
0.10), 3" =(0.35,0.20,0.15), and 3" = (0.25,0.00,0.20). Small values changed to
zero, part 3.
n n =100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
B30 | -15.4 3.7 6.0 | -14.0 2.5 44 1-196 2.6 6.4 |-206 1.9 6.2
Bs1| -6.2 3.8 41| -5.7 29 3.2 27 35 3.5 0.7 1.9 1.9
Bs2 0.0 38 3.8 -1.7 1.8 1.8 -0.5 09 0.8 0.2 0.5 0.5
Bsg | -2.7 1.9 1.9 -06 1.1 1.1 -0.3 0.6 06| -04 04 0.4
Baa| 25 17 17| -02 07 07| 08 05 05| 01 04 04
Bss| 06 21 21| 09 07 07| 05 06 06| 04 04 04
Bss | -0.5 1.9 1.9 -0.7 0.9 09| -1.1 0.7 07| -02 04 0.4
I's; | -10.7 2.0 31 46 1.7 1.9 -0.1 1.5 1.5 3.4 0.8 0.9
[312 1.0 2.3 23| -26 2.1 22| -6.6 20 25| -6.7 20 2.4
I's | -15.6 1.0 3.4 (-144 038 29 1-10.8 1.0 221 -83 0.8 1.5
Total 102.0 56.1 44.0 33.1

236



MSE Across Sample Sizes, Poisson Scenario 4
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Figure H-11: MSE across sample sizes, Poisson outcome, small values changed to
zero, with K =3, p=17, ¢ = 2.
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Table H-20: Simulation 4 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K =3, p=2, ¢ =2, m; = 0.5, my = 0.3, w3 = 0.2,
B; = (0.65,0.30), B, = (0.20, —0.45), B; = (1.00,0.15),

3T =(0.35,0.20,0.15), and 3" = (0.25,0.00,0.20). Oracle model.

* T __
1 =

(0.30,—0.25,0.10),

n n =100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -12.5 1.4 291-116 1.0 24 1-11.6 0.7 2.11-109 0.7 1.8
Ty 52 1.1 1.4 6.6 0.6 1.0 79 05 1.1 87 04 1.2
Bio| -1.5 3.6 3.6 1.0 1.0 1.0 1.2 08 0.8 1.8 0.3 0.3
B 1.5 2.3 2.3 2.1 0.8 0.9 2.2 0.6 0.6 2.6 0.4 0.5
' 14 3.7 3.6 1.7 1.1 1.2 26 1.1 1.2 3.6 04 0.5
| D 6.5 3.3 3.7 46 1.2 14 3.0 0.7 0.8 14 0.3 0.3
I's| -44 1.0 1.2 -3.7 0.5 07| -1.1 0.7 0.7 -1.1 04 04
Bao 8.8 3.3 41| 13.8 1.3 3.1 152 09 3.2 172 0.6 3.5
Bo1 | 13.0 3.5 521 13.2 1.7 34| 144 1.2 3.2 153 0.6 2.9
sy 4.7 3.0 3.2 6.1 1.5 1.9 79 0.8 14 83 04 1.1
a1 7.6 2.5 3.0 77T 1.2 1.8 94 0.6 1.5 104 0.2 1.3
I'ss | -64 1.8 221 -26 14 14| -1.8 0.9 1.0 0.0 0.6 0.6
Bso -85 3.3 4.0 | -12.7 29 45| -14.8 2.5 4.7 1-16.5 2.0 4.7
Ba1 -3.5 3.3 3.4 4.3 2.0 2.2 2.2 19 1.9 -0.7 1.3 1.3
I's; 4.4 2.7 2.8 -1.5 1.6 1.6 24 1.0 1.0 44 0.6 0.8
310 43 19 21| -34 21 22| -6.3 1.8 22| -70 1.5 2.0
I'sy | -14.9 0.7 291 -99 14 24| -6.8 1.2 16| -4.8 0.9 1.1
Total 51.6 33.0 28.8 24.3
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MSE Across Sample Sizes, Poisson Scenario 4
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Figure H-12: MSE across sample sizes, Poisson outcome, oracle model, with K = 3,
p=7q=2
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Table H-21: Simulation 5 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K =3, p =17, ¢ =2, m; = 0.5, my = 0.3, 13 = 0.2,
ﬁlT = (0.65,0.30, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00), ﬁ; = (0.20,—0.45,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), ,83T = (1.00,0.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00,0.00, 0.00, 0.00,0.00,0.00), " = (0.30,—-0.25,0.10), 3" = (0.35,0.20,
0.15), and 3" = (0.25,0.00,0.20). No penalty, part 1.
n n =100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -13.7 1.6 3.5 -13.8 1.3 3.2 -126 1.1 27 -11.2 0.9 2.1
Ty 08 14 1.4 4.7 1.1 1.3 6.0 0.6 0.9 78 04 1.0
B | -19.5 4.9 86| -74 3.1 36| -3.2 18 1.9 0.7 0.7 0.7
B 3.3 4.7 4.8 3.4 2.2 2.3 29 09 1.0 3.1 0.5 0.6
B2 0.1 22 221 -1.1 0.7 07| -04 04 04| -04 0.2 0.2
B3 0.1 21 20| -1.0 0.5 0.5 0.2 0.3 03| -05 0.1 0.1
Bra 0.1 26 2.5 0.8 0.7 0.7 -0.6 0.5 0.5 -0.1 0.2 0.2
Bi5 | -3.0 14 1.5 1.1 0.6 0.6 0.0 04 0.4 0.1 0.2 0.2
Bis| 01 1.9 19| 13 06 06| -05 04 04| -08 01 0.1
Bz | -14 1.7 1.7 0.8 0.9 0.9 0.2 0.3 0.3 0.0 0.1 0.1
Bis | -2.1 21 21| -0.2 0.6 0.6 0.0 0.3 0.3 0.2 02 0.2
B | -0.6 1.6 1.5 1.1 0.6 0.6 0.8 0.6 0.6 0.7 0.2 0.2
B | -04 1.7 1.7 1.1 09 0.9 02 04 03| -0.1 0.2 0.2
Bin | -0.5 1.5 1.5 -0.8 0.7 0.7 0.6 0.3 03| -0.7 0.2 0.2
Pz | -08 1.8 18| 03 07 07| -02 04 04| 01 02 02
bz | 2.2 2.6 2.6 1.5 0.6 06| -06 04 0.4 04 0.2 0.2
Bua | -1.2 21 21| -03 0.6 06| -09 04 0.4 0.1 0.2 0.2
Biis 3.6 1.7 1.8 0.5 0.8 0.8 -04 0.3 0.3 0.0 0.2 0.2
Bue | -1.2 1.5 1.5 20 0.6 0.7 14 0.3 0.3 0.3 0.2 0.2
I, |-134 3.0 48| -82 1.6 23| 24 1.1 1.2 0.3 04 0.4
' | 161 24 5.0 104 1.6 2.6 6.3 0.8 1.2 42 04 0.5
I'e | -83 04 1.0 -6.9 0.5 09| 49 04 06| -3.3 0.3 0.5
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Table H-22: Simulation 5 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K =3, p =17, ¢ =2, m; = 0.5, my = 0.3, 13 = 0.2,
BlT = (0.65,0.30,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00,0.00), B; = (0.20,—0.45,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), ,83T = (1.00, 0.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,0.00,0.00), *T = (0.30,—0.25,0.10), 3" = (0.35,0.20,
0.15), and %" = (0.25,0.00,0.20). No penalty, part 2.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
By | -H.7 181 18.2 3.5 3.6 3.7 89 1.6 241121 0.9 2.3
Bo | 11.1 104 115 | 12.7 4.1 57| 11.6 1.6 3.0] 11.3 0.6 1.9
Bog | 1.1 58 57| -04 09 09|-03 05 04| 02 01 0.1
Bos| -34 23 24| 04 1.0 10|-03 03 03| 05 01 0.1
Baa 22 39 39| -03 0.7 0.7 0.0 0.2 0.2 0.0 0.2 0.2
Bs| 04 31 31|-18 06 06|-02 03 03][-07 01 0.1
B | -0.2 28 281 01 0.7 0.7 1.3 0.3 0.3 0.5 0.1 0.1
Bar 3.5 5.0 5.1 0.2 1.1 1.1 0.5 04 04 06 0.1 0.1
B | 00 37 37| 05 07 06| 1.4 02 03| 1.1 01 0.1
Bag | -29 3.6 36| 05 0.8 0.8 0.0 0.3 0.3 0.0 0.1 0.1
Boo | -1.0 2.5 251 -06 0.7 0.7] -0.7 0.3 03] -04 0.1 0.1
Bory | -1.1 31 31| -07 08 08|-1.0 03 03] 02 01 0.1
Bora| 30 36 37| 09 06 06| 05 03 03] -04 01 01
G213 21 26 26| 06 09 0.9 0.5 0.3 0.3 0.3 0.1 0.1
Boa | -1.9 3.1 3.1 -1.2 0.7 071 -0.9 0.2 0.2] -0.3 0.1 0.1
Bos | -1.9 4.4 441 -1.6 0.6 0.7 04 0.3 03] -0.7 0.1 0.1
Ba16 24 52 521 -1.1 0.7 0.7 04 0.3 03| -0.1 0.1 0.1
'y | -104 3.7 4.7 -02 27 2.7 3.7 1.0 1.1 6.3 0.6 1.0
I'op | -75 2.5 3.0 3.8 1.5 1.6 5.0 0.9 1.1 7.6 04 1.0
I'y, [ -12.3 0.8 23| -7.1 1.7 22 -41 1.2 1.3] -1.8 0.6 0.6
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Table H-23: Simulation 5 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K =3, p =17, ¢ =2, m; = 0.5, my = 0.3, 13 = 0.2,
BIT = (0.65,0.30,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00,0.00), ﬁ; = (0.20,—0.45,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), ,BST = (1.00, 0.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,0.00,0.00), *T = (0.30,—0.25,0.10), 3" = (0.35,0.20,
0.15), and %" = (0.25,0.00,0.20). No penalty, part 3.
n n =100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
B30 | -189 3.9 7.5 -12.7 3.3 48 | -14.2 22 4.3 |-14.1 2.7 4.6
B | 4.3 3.2 3.3 -46 29 3.0 -23 2.2 2.2 1.0 1.5 1.5
Bs2 0.5 1.6 1.6 0.2 09 0.9 0.6 0.5 0.5 0.3 0.5 0.5
Bz | -0.7 1.2 1.2 -0.1 0.7 0.7 -06 04 0.4 0.0 0.3 0.3
Bas | -0.8 1.3 1.3 0.3 0.6 0.6 04 04 04| -0.1 0.3 0.3
Bss 0.6 1.5 1.5 0.1 0.6 06| -03 0.5 05| -06 0.3 0.3
B | -0.1 1.9 1.9 0.3 0.5 0.5 0.1 04 0.4 0.2 0.3 0.3
Bs7 | -0.2 1.3 1.3 02 08 08| 05 04 04| -02 03 0.3
Bsg 1.6 1.3 1.3 0.3 0.7 071 -09 04 04| -05 0.3 0.3
B39 2.7 1.7 1.8 -0.9 0.6 0.6 04 04 0.4 0.2 0.3 0.3
B30 | -0.6 1.4 14| -0.2 0.8 08| -0.1 0.5 05| -0.7 0.3 0.3
Bs11 23 12 1.2 -0.3 0.6 06| -0.1 0.3 0.3 04 0.3 0.3
Bs12 | 1.6 2.1 21| 1.1 06 06| -03 04 04| 04 03 03
Baz| 08 1.2 12| -11 08 08| -01 03 03| 02 04 04
P34 | -2.4 1.0 1.1 02 06 06| 07 05 05| 09 04 04
Ba1s | -0.2 1.9 1.9 -0.6 0.6 06| -05 04 04| -0.1 0.3 0.3
B316 1.5 1.3 1.3 -0.3 0.7 0.7 -1.2 04 0.4 0.1 0.3 0.3
I's; | -15.8 1.7 42 1-104 1.6 27| -54 1.3 1.5 -1.9 09 1.0
I's0| -29 1.1 1.2 -33 1.8 1.9 -82 1.6 2.2 |-11.9 1.1 2.5
I'so | -18.0 0.5 3.71-16.5 0.5 3.2 |-14.2 0.6 2.7 |-11.1 0.6 1.8
Total 193.8 79.4 47.5 33.1
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MSE Across Sample Sizes, Poisson Scenario 5
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Figure H-13: MSE across sample sizes, Poisson outcome, no penalty, with K = 3,
p=17,q=2.
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Table H-24: Simulation 5 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K =3, p =17, ¢ =2, m; = 0.5, my = 0.3, 13 = 0.2,
ﬁlT = (0.65,0.30, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00), ﬁ; = (0.20,—0.45,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), ,83T = (1.00,0.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00,0.00, 0.00, 0.00,0.00,0.00), " = (0.30,—-0.25,0.10), 3" = (0.35,0.20,
0.15), and 3" = (0.25,0.00,0.20). Small values changed to zero, part 1.
n n =100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -13.7 1.6 3.5 -13.8 1.3 3.2 -126 1.1 27 -11.2 0.9 2.1
Ty 08 14 1.4 4.7 1.1 1.3 6.0 0.6 0.9 78 04 1.0
B | -19.5 4.9 86| -74 3.1 36| -3.2 18 1.9 0.7 0.7 0.7
B 3.3 4.7 4.8 3.4 2.2 2.3 29 09 1.0 3.1 0.5 0.6
B2 0.1 22 221 -1.1 0.7 07| -04 04 04| -04 0.2 0.2
B3 0.1 21 20| -1.0 0.5 0.5 0.2 0.3 03| -05 0.1 0.1
Bra 0.1 26 2.5 0.8 0.7 0.7 -0.6 0.5 0.5 -0.1 0.2 0.2
Bi5 | -3.0 14 1.5 1.1 0.6 0.6 0.0 04 0.4 0.1 0.2 0.2
Bi| 01 19 19| 13 06 06| -05 04 04| -08 01 0.1
Bz | -14 1.7 1.7 0.8 0.9 0.9 0.2 0.3 0.3 0.0 0.1 0.1
fis | 21 2.1 211 -02 06 0.6 0.0 0.3 0.3 0.3 0.2 0.2
B | -0.6 1.6 1.5 1.1 0.6 0.6 0.8 0.6 0.6 0.7 0.2 0.2
B | -0.5 1.7 1.7 1.0 09 0.9 02 04 03| -0.2 0.2 0.1
Bin | -0.5 1.5 1.5 -0.8 0.7 0.7 0.6 0.3 03| -0.7 0.2 0.2
B2 | -0.8 1.8 1.8 04 0.7 07 -0.2 04 0.4 0.1 0.2 0.2
bz | 2.1 2.6 2.6 1.5 0.6 06| -06 04 0.4 04 0.2 0.2
Bua | -1.2 21 21| -03 0.6 06| -09 04 0.4 0.1 0.2 0.2
Bus| 36 1.7 1.8 05 08 08| -04 03 03] 01 02 02
Bue | -1.2 1.5 1.5 20 0.6 0.7 1.4 0.3 0.3 0.3 0.2 0.2
I, |-134 3.0 48| -82 1.6 23| 24 1.1 1.2 0.3 04 0.4
' | 161 24 5.0 104 1.6 2.6 6.3 0.8 1.2 42 04 0.5
I'e | -83 04 1.0 -6.9 0.5 09| 49 04 06| -3.3 0.3 0.5
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Table H-25: Simulation 5 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K =3, p =17, ¢ =2, m; = 0.5, my = 0.3, 13 = 0.2,
BlT = (0.65,0.30,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00,0.00), B; = (0.20,—0.45,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), ,BST = (1.00, 0.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,0.00,0.00), *T = (0.30,—0.25,0.10), 3" = (0.35,0.20,
0.15), and %" = (0.25,0.00,0.20). Small values changed to zero, part 2.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
By | -H.7 181 18.2 3.5 3.6 3.7 89 1.6 241121 0.9 2.3
Bo | 11.1 104 115 | 12.7 4.1 5.7 11.6 1.6 3.0] 11.3 0.6 1.9
B2z 1.1 5.8 571 -0.5 0.9 09| -0.3 0.5 04| 03 0.1 0.1
Bos| -34 23 24| 04 1.0 10|-03 03 03| 05 01 0.1
Bos | 22 39 39|-03 07 07| 00 02 02| 01 02 02
Bes| 04 31 31]-1.8 06 06| -02 03 03]-07 01 0.1
Bas | -0.2 2.8 281 01 0.7 0.7 1.3 0.3 0.3 0.5 0.1 0.1
Bar 3.5 5.0 5.1 0.2 1.1 1.1 0.5 04 04 06 0.1 0.1
Bs| 00 37 37| 05 07 06| 14 02 03| 1.1 01 0.1
Bag | -3.0 3.6 36| 06 0.8 0.8 0.0 0.3 0.3 0.1 0.1 0.1
Boo | -1.0 2.5 251 -06 0.7 0.7] -0.7 0.3 03] -04 0.1 0.1
Bory | -1.1 31 31| -07 08 08|-1.0 03 03] 02 01 0.1
Bora| 31 36 37| 09 06 06| 05 03 03] -04 01 01
G213 21 26 26| 06 09 0.9 0.5 0.3 0.3 0.3 0.1 0.1
Boa | -1.9 3.1 3.1 -1.2 0.7 0.7] -0.8 0.2 02] -04 0.1 0.1
Bos | -1.9 4.4 44| -1.6 0.6 0.7 04 0.3 03] -0.7 0.1 0.1
Ba16 24 52 521 -1.1 0.7 0.7 04 0.3 03| -0.1 0.1 0.1
'y | -104 3.7 4.7 -0.2 2.7 2.7 3.7 1.0 1.1 6.3 0.6 1.0
I'op | -75 2.5 3.0 3.8 1.5 1.6 5.0 0.9 1.1 7.6 04 1.0
I'y, [ -12.3 0.8 23| -7.1 1.7 22 -41 1.2 1.3 -1.8 0.6 0.6
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Table H-26: Simulation 5 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K =3, p =17, ¢ =2, m; = 0.5, my = 0.3, 13 = 0.2,
BIT = (0.65,0.30,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00,0.00), B; = (0.20,—0.45,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), ,63T = (1.00, 0.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,0.00,0.00), *T = (0.30,—0.25,0.10), 3" = (0.35,0.20,
0.15), and %" = (0.25,0.00,0.20). Small values changed to zero, part 3.
n n =100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
B30 | -189 3.9 7.5 -12.7 3.3 48 | -14.2 22 4.3 |-14.1 2.7 4.6
Bs1 -4.3 3.2 3.3 -46 28 3.0 -23 2.2 2.2 1.0 1.5 1.5
Bs2 0.5 1.6 1.6 0.2 09 0.9 0.5 0.5 0.5 0.3 0.5 0.5
Bz | -0.7 1.2 1.2 0.0 0.7 0.7 -06 04 0.4 0.0 0.3 0.3
Bas | -0.8 1.3 1.3 0.3 0.6 0.6 04 04 04| -0.1 0.3 0.3
Bss 0.6 1.5 1.5 0.2 0.6 06| -03 0.5 05| -06 0.3 0.3
B | -0.1 1.9 1.9 0.3 0.5 0.5 0.1 04 0.4 0.2 0.3 0.3
Bs7 | -0.2 1.3 1.3 02 08 08| 05 04 04| -02 03 0.3
Bss 1.6 1.3 1.3 0.3 0.7 07 -09 04 04| -04 0.3 0.3
B39 2.7 1.7 1.8 -0.9 0.6 0.6 04 04 0.4 0.3 0.3 0.3
B30 | -0.7 1.4 14| -0.2 0.8 08| -0.1 0.5 05| -0.7 0.3 0.3
Bs11 23 12 1.2 -0.3 0.6 06| -0.1 0.3 0.3 0.5 0.3 0.3
Bs12 | 1.6 2.1 21| 1.1 06 06| -03 04 04| 04 03 03
Baz| 08 1.2 12| -11 08 08| -01 03 03| 02 04 04
P14 | -25 1.0 1.1] 01 06 06| 07 05 05| 09 04 04
Bs15 | -0.2 1.9 1.9 -0.6 0.6 06| -05 04 04| -0.1 0.3 0.3
B316 1.5 1.3 1.3 -0.3 0.7 0.7 -1.2 04 0.4 0.1 0.3 0.3
I's; | -15.8 1.7 42 1-104 1.6 27| -54 1.3 1.5 -1.9 09 1.0
I's0| -29 1.1 1.2 -33 1.8 1.9 -82 1.6 2.2 |-11.9 1.1 2.5
I'so | -18.0 0.5 3.71-16.5 0.5 3.2 |-14.2 0.6 2.7 |-11.1 0.6 1.8
Total 193.8 79.4 47.5 33.1
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MSE Across Sample Sizes, Poisson Scenario 5
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Figure H-14: MSE across sample sizes, Poisson outcome, small values changed to
zero, with K =3, p =17, ¢ = 2.
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Table H-27: Simulation 5 results multiplied by 100, averaged over 100 runs. Outcome

follows a Poisson distribution with K =3, p=2, ¢ =2, 71y = 0.5, my = 0.3, w3 = 0.2,

B = (0.65,0.30), B, = (0.20,—0.45), B3 = (1.00,0.15), T = (0.30,—0.25,0.10),
37 =(0.35,0.20,0.15), and 3" = (0.25,0.00,0.20). Oracle model.

n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

m | -9.9 1.0 2.0 | -10.0 0.7 1.6 | -9.0 0.5 1.3 ]-10.0 0.5 1.5

o 0.7 0.8 0.8 2.7 04 05 32 0.3 0.4 46 0.2 0.4

Bro | -11.1 2.4 36| -3.8 1.1 1.2 -5.0 1.0 1.2 -3.7 0.5 0.7

B | 101 2.0 3.0 6.0 1.1 141 56 0.9 1.2 6.3 0.6 0.9

I'n| -90 25 33| -64 1.3 171 -53 09 1.2 -26 0.6 0.6

T'yg | 114 2.0 3.3 94 14 221 82 09 1.5 5.9 04 0.8

I'o| -55 0.5 0.8 -3.4 0.6 0.7 -1.9 0.6 0.7 -1.5 04 0.4

B0 02 75 7.5 16 1.9 19| 52 1.0 1.3 6.3 0.6 1.0

B 1.7 4.6 4.6 6.1 2.1 241 68 1.0 1.5 6.7 0.5 1.0

Ty | 22 39 39| -0.6 22 2.2 14 09 0.9 3.3 0.7 0.8

Too | -1.0 2.6 2.5 26 1.3 14| 23 09 1.0 46 0.6 0.8

Ty | -74 1.8 23| 41 1.3 1.5 -28 1.2 1.3] -08 04 0.4

Bso | -2.1 3.5 3.5 -1.9 23 23] -14 21 2.1 -1.7 1.7 1.7

P31 | -6.5 1.5 19| -70 1.3 1.8 -6.0 1.0 1.3 41 1.0 1.1

Is; | -11.0 1.5 27| -6.6 1.0 141 -46 0.7 09 -3.0 0.5 0.6

310 0.1 1.6 16| -33 15 16| -46 1.0 1.2 -64 0.9 1.3

I3y | -14.3 0.6 2.6 | -11.8 0.6 20| -76 038 1.3 -5.8 0.7 1.0

Total 50.1 27.8 20.4 15.1
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MSE Across Sample Sizes, Poisson Scenario 5
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Figure H-15: MSE across sample sizes, Poisson outcome, oracle model, with K = 3,
p=17,q=2.
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Table H-28: Simulation 6 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K =3, p =19, ¢ =5, m = 0.5, my = 0.3, 13 = 0.2,
ﬂlT = (0.65,0.30,0.15, 0.35,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00), ,BQT = (0.20, —0.45,—-0.10, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), 53T = (1.00,0.15,—0.65, —0.15, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), " = (0.30,
—0.25,0.10, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,0.00), 3" =
(0.35,0.20, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and

T = (0.25,0.00,0.20,0.00,0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). No penalty, part 1.
n n =100 n = 250 n =500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -10.2 1.2 22| -7.6 0.8 14| -5.8 0.5 0.8 | -4.3 0.2 0.4
) 3.8 08 1.0 | 4.0 0.9 1.0 54 0.3 0.6 | 4.3 0.2 0.4
Bo | -11.7 20.0 21.1 | -5.2 1.2 141 -09 0.4 041 -1.0 0.1 0.1
Bii| -0.2 11.0 109| 1.6 1.0 1.0 1.3 0.5 05| 22 0.2 0.2
B2 | -2.8 2.6 2.7 -2.1 0.8 09| 0.0 0.3 0.3 | -0.6 0.2 0.2
bis | <72 1.3 1.8 | -3.5 0.5 0.6 | -1.4 0.1 02| -1.2 0.1 0.1
Bra 1.6 2.1 2.1 -0.7 0.3 03] 0.1 0.1 0.1 00 <01 <0.1
b5 1.1 49 48| 0.2 0.3 0.3 0.3 0.1 01| 05 <01 <0.1
G| 03 14 14| -03 0.3 03] 0.1 0.1 01] -01 <01 <0.1
Bz | -0.1 1.8 1.8 04 0.3 03| 04 0.1 01| 03 <01 <0.1
Bis 1.0 1.3 1.3 08 0.4 04| 0.1 0.1 01| 01 <01 <0.1
Bro 1.5 1.0 1.0 04 0.3 0.3 | -0.3 0.1 0.1] -0.1 <01 <0.1

B0 | -0.9 0.7 0.7 -0.9 0.3 0.3 0.1 0.1 0.1 -02 <01 <0.1
B 0.0 1.3 1.3 0.7 0.2 0.2 0.0 0.1 0.1] -0.1 <01 <0.1
B2 | -0.3 1.5 1.5 -0.1 0.3 0.3 ] -0.2 0.1 01| 02 <01 <0.1
Bz 1.8 56 56| 0.2 0.4 04| 04 0.1 01| 04 <01 <0.1
Bria 04 1.1 1.0 -0.9 0.4 0.4 | -0.6 0.1 0.1] -03 <01 <0.1
Biis 0.3 3.1 3.1 1.0 0.3 03] 0.2 0.1 0.1 02 <01 <0.1
Bue | -0.3 35 35| 0.6 0.3 0.3 0.3 0.1 01| 01 <01 <0.1
Brir 1.9 24 2.5 | -0.4 0.3 0.3 0.1 0.1 01| 03 <01 <0.1
Bug | -0.3 1.0 1.0 0.2 0.3 0.3 | -0.3 0.1 01| -02 <01 <0.1
I'y; | -13.1 2.3 4.0 | -5.7 1.4 1.7 -2.2 0.3 041 -0.5 0.2 0.2
Tip | 15.8 2.2 4.7 6.8 1.3 1.8 2.7 0.3 04| 04 0.2 0.2
I'e| -38 1.0 1.1 | -4.0 0.6 0.7 -4.8 0.3 05| 44 0.2 0.4
T | -72 1.5 2.0| -5.4 1.1 141 -25 0.4 05| -1.4 0.4 0.4
T3 2.8 0.8 0.9 -0.4 0.3 0.3 -1.3 0.3 03] -1.4 0.2 0.3
I3 2.0 03 0.3| 1.0 0.1 0.1 1.1 <0.1 0.1 1.7 0.1 0.1
Tya| 41 1.0 1.2 | -4.3 0.6 0.8 -1.2 0.2 0.2 -1.3 0.1 0.2
T4 0.8 0.5 0.5| -1.2 0.3 0.3 | -1.4 0.2 02| -1.8 0.1 0.2
T34 1.6 04 0.5 0.7 0.1 0.1 04 0.1 0.1 0.8 0.1 0.1
'y 0.2 0.0 00| 02 <01 <01] 06 <01 <01| 08 <01 <0.1
I'is | -0.8 0.5 0.5| -0.2 0.2 0.2 0.2 0.1 0.1 -0.1 0.1 0.1
T'1o5 04 0.2 0.2 0.5 0.3 0.3 0.2 0.2 02| 0.3 0.1 0.1
T35 0.6 0.1 0.1 03 <01 <01 07 0.1 01| 01 <01 <0.1
I'ys | -0.1 0.0 00| 00 <01 <01] 00 <01 <01| 00 <01 <01
I'is 0.0 0.0 00| 01 <01 <01] 01 <01 <01| 02 <01 <0.1
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Table H-29: Simulation 6 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K =3, p=19, g =5, m; = 0.5, my = 0.3, 713 = 0.2,
B, = (0.65,0.30,0.15,0.35,0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00,0.00, 0.00, 0.00), B, = (0.20, —0.45, —0.10, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00,0.00, 0.00, 0.00,0.00, 0.00, 0.00, 0.00, 0.00), 33 = (1.00,0.15, —0.65, —0.15, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), *" = (0.30,
—0.25,0.10, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,0.00), 3" =
(0.35,0.20, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and

;T = (0.25,0.00,0.20,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). No penalty, part 2.
n n =100 n = 250 n =500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
By | 0.3 131 13.0| 3.0 2.6 26| 4.3 1.4 1.5 5.0 0.5 0.8
Boy | 145 68 88| 95 31 40| 83 14 20| 64 06 10
Ba | 0.8 6.2 6.2 1.8 1.7 1.7] -0.6 0.8 08| 1.6 0.4 0.4
Bog | -b.4 2.6 2.9 | -1.5 0.9 0.9 -1.5 0.5 05| 0.2 0.2 0.2
Boa 27 25 2.6 14 0.4 0.4 0.2 0.2 0.2 | -0.1 0.1 0.1
Bas | -2.3 2.0 2.0 -0.4 0.7 0.7 ] -0.3 0.3 03| 0.0 0.1 0.1
Bos | -1.7 3.2 321 0.3 0.6 0.6 0.2 0.2 02| 0.3 0.1 0.1
Bar | 0.7 2.0 2.0 | -0.5 0.6 0.6 | -0.5 0.2 0.2 -0.3 0.1 0.1
Bog | 0.0 4.8 4.8 | -2.0 0.7 0.7 ] -0.9 0.2 02| -0.6 0.1 0.1
B9 0.3 1.8 1.8 | -0.6 0.9 0.9 0.2 0.3 0.3 0.1 0.1 0.1

Boo | -1.1 3.0 3.0 1.0 0.6 0.6 0.2 0.2 02| 04 0.1 0.1
Born | 0.6 1.8 1.8 0.7 0.8 0.8 | -0.1 0.3 03| 0.1 0.1 0.1
Boiz | -1.8 24 24| 07 10 10| -01 03 03] -03 01 0.1
Bo1z | -2.2 4.3 43| -0.2 1.2 1.1 ] -0.7 0.3 0.3 | -0.6 0.1 0.2
Bora | -1.3 1.9 1.9 0.2 0.6 0.6 0.3 0.2 0.2 0.2 0.1 0.1
Bas | 20 2.6 2.6 | -0.1 0.8 0.8 0.5 0.2 02| 0.0 0.1 0.1
Bots | 22 1.3 13| 1.0 0.9 09| 0.0 0.2 02| 0.1 0.1 0.1
Bor | 32 26 2.6 0.1 0.6 0.5 ] -0.1 0.3 03| 04 0.1 0.1
Borg | -0.5 24 23| -1.2 1.3 1.3 ] -0.5 0.3 03] -0.4 0.1 0.1
Ty | 41 4.9 5.0 2.1 2.2 2.3 2.3 1.3 1.3 2.1 0.5 0.6
Topp| -1.2 33 33| 34 16 17| 33 1.2 13| 20 06 06
Ty | 40 28 2.9 | -4.6 1.4 1.6 | -1.7 0.8 0.8 | -0.6 0.6 0.6
To3| 03 30 29| 26 20 20| 02 1.8 17| 44 07 09
Tass | 32 15 15| 27 12 12| 02 09 09| -04 07 07
To3 20 0.3 0.3 4.0 0.6 0.7 4.7 0.4 0.6 6.0 0.4 0.7
Ioyg | -3.7 26 2.7 -1.7 1.0 1.0 -1.8 0.7 08| 0.9 0.4 0.4
Iooq | 3.8 1.2 1.3 3.5 0.6 0.7] 3.1 0.5 06| 1.7 0.3 04
T3y 1.3 0.1 0.1 1.6 0.2 0.3 2.4 0.3 0.3 2.1 0.2 0.2
Tey | 01 0.0 00| 03 <01 <01| 04 <01 <01| 1.0 <0.1 0.1
Io5 | -0.7 1.0 1.0 0.4 0.7 0.6 | -0.4 0.3 0.3 ] -0.1 0.2 0.2
Iys | 0.0 0.6 0.6 0.5 0.5 0.5] 0.6 0.3 03| 0.7 0.3 0.3
Ioss | -0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2
Iays | 0.0 0.0 00 01 <01 <01| 01 <01 <01|-01 <01 <0.1
Tss | 00 0.0 00 01 <01 <01| 00 <01 <01| 02 <01 <0.1
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Table H-30: Simulation 6 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K =3, p =19, ¢ =5, m; = 0.5, my = 0.3, 13 = 0.2,
B, = (0.65,0.30,0.15,0.35,0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00,0.00,0.00, 0.00), B, = (0.20, —0.45, —0.10, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), B; = (1.00,0.15, —0.65, —0.15, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), " = (0.30,
—0.25,0.10, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), 3" =
(0.35,0.20,0.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and

§T = (0.25,0.00,0.20,0.00, 0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). No penalty, part 3.
n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
B3 | -15.3 5.7 8.0 -85 3.1 3.8 | -2.2 1.3 1.3 0.4 0.5 0.5
Bs1 | -0.1 45 44| -23 1.9 2.0 -0.9 0.8 0.8 -0.9 0.4 0.4
B3 | 19.1 85 120 | 13.5 4.7 6.5| 7.6 3.5 4.0 | 4.5 1.7 1.9
B33 | 18.3 3.2 6.6 | 11.3 2.0 32| 5.1 1.0 1.3 3.0 0.8 0.9
B34 0.7 14 1.4 0.5 0.5 05| 0.2 0.2 0.2 -0.1 0.1 0.1
Bss 1.2 21 21| -0.1 0.7 0.7] -04 0.2 0.2 -0.5 0.1 0.1
Bss | -44 1.9 2.1 | -0.6 0.6 0.6 | -0.3 0.3 0.3 0.1 0.1 0.1
Bs7 | 0.1 1.5 15| 1.0 0.5 05| -0.1 0.2 02| 0.0 0.1 0.1
Bas | -1.9 1.3 1.3 -09 0.7 0.71] -0.9 0.3 03] 0.1 0.1 0.1
Bs9 0.5 1.3 1.3 -0.5 0.4 04| 00 0.2 0.2 | -0.2 0.1 0.1
B30 | -0.1 1.6 1.6 | -0.1 0.5 05| 00 0.2 0.2 -0.2 0.1 0.1
B311 1.2 23 23| -1.5 0.6 06| 0.0 0.2 0.2 0.0 0.1 0.1
(312 2.2 1.8 1.9 0.1 0.5 05| 0.1 0.3 03] 05 0.1 0.1
313 1.5 1.6 1.6 | -0.3 0.7 0.7 05 0.2 02| 0.3 0.1 0.1
Bs14 1.7 1.5 1.5 0.2 0.5 05| 0.2 0.2 0.2 0.3 0.1 0.1
5315 1.9 1.7 1.7 -0.3 0.3 03] -1.2 0.2 0.2 -0.7 0.1 0.1
316 1.3 24 24| -0.6 0.5 05| 0.7 0.2 0.2 | -0.6 0.1 0.1
Bai7 0.4 20 2.0 0.4 0.5 05| 07 0.2 02| 0.1 0.1 0.1
D318 26 25 25| -0.2 0.5 05| 0.7 0.3 0.3 | -0.6 0.1 0.1
I'3; | -10.1 3.0 39| -54 1.5 1.8 | -4.5 0.6 0.8 -34 0.4 0.5

I3 | -1.7 1.9 1.9 0.2 1.8 1.8 | -2.3 0.8 0.9 -0.9 0.4 0.4
'3y | -16.2 0.7 3.3 |-13.2 0.9 2.6 | -8.6 0.8 1.5 | -4.1 0.4 0.6
33| -4.0 25 2.6 | -2.1 2.1 221 09 1.3 1.3 0.3 0.4 0.4
393 24 1.0 1.1 1.3 0.9 091 -0.9 0.5 0.5 -09 0.3 0.3
I35 3.6 0.5 0.7 6.2 0.9 1.3 | 6.5 1.0 14| 6.0 0.6 0.9
T34 | -5.7 1.5 1.8 -2.8 1.1 1.2 ] -0.7 0.5 0.5] -0.5 0.3 0.3
[304 1.6 0.7 0.7 0.4 0.6 06| 05 0.4 04| 0.3 0.2 0.2
[s34 22 04 0.4 3.5 0.5 06| 3.9 0.4 0.5| 3.6 0.4 0.5
I3y 0.1 0.0 0.0 0.1 <01 <01] 03 <01 <01] 09 <01 <0.1
I35 | -1.0 1.0 1.0 -1.0 0.5 05| 0.3 0.3 0.3| 0.0 0.1 0.1
I'305 0.4 0.3 0.3 -0.4 0.2 02| 0.3 0.2 02| 0.1 0.1 0.1
335 | -0.1 0.1 0.1 -0.1 0.1 0.1] 0.3 0.1 0.1] 0.6 0.2 0.2
45 0.0 0.0 0.0 00 <01 <01] 00 <01 <0.1] -0.2 0.1 0.1
T35 0.0 0.0 0.0 00 <01 <01] 00 <01 <01] 04 <01 <0.1
Total 255.8 89.7 44.6 23.3
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Figure H-16: MSE across sample sizes, Poisson outcome, no penalty, with K = 3,
p=19, qg=>5.
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Table H-31: Simulation 6 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K =3, p =19, ¢ =5, m = 0.5, my = 0.3, 13 = 0.2,
ﬂlT = (0.65,0.30,0.15, 0.35,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00), ,BQT = (0.20, —0.45,—-0.10, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), 53T = (1.00,0.15,—0.65, —0.15, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), " = (0.30,
—0.25,0.10, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,0.00), 3" =
(0.35,0.20, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and

T = (0.25,0.00,0.20,0.00,0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). Small values changed to zero, part 1.
n n =100 n =250 n =500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -10.2 1.2 22| -7.6 0.8 14| -5.8 0.5 0.8 | -4.3 0.2 0.4
) 3.8 08 1.0 | 4.0 0.9 1.0 54 0.3 0.6 | 4.3 0.2 0.4
Bo | -11.7 20.0 21.1 | -5.2 1.2 141 -09 0.4 041 -1.0 0.1 0.1
Bii| -0.2 11.0 109| 1.6 1.0 1.0 1.3 0.5 05| 22 0.2 0.2
B2 | -2.8 2.6 2.7 -2.1 0.8 09| 0.0 0.3 0.3 | -0.6 0.2 0.2
bis | <72 1.3 1.8 | -3.5 0.5 0.6 | -1.4 0.1 02| -1.2 0.1 0.1
Bra 1.6 2.1 2.1 -0.8 0.3 03] 0.2 0.1 0.1 -01 <01 <0.1
b5 1.1 49 48| 0.2 0.3 0.3 0.3 0.1 01| 05 <01 <0.1
Bie 0.3 14 1.4 -0.2 0.3 0.3 0.1 0.1 0.1] -0.1 <01 <0.1
Bz | -0.2 1.8 1.8 04 0.3 03| 04 0.1 01| 03 <01 <0.1
Bis 1.0 1.3 1.3 08 0.4 04| 0.0 0.1 01| 01 <01 <0.1
Bro 1.5 1.0 1.0 04 0.3 0.3 | -0.3 0.1 0.1] -0.1 <01 <0.1

B0 | -0.9 0.7 0.7 -0.9 0.3 0.3 0.1 0.1 0.1 -02 <01 <0.1
fir| 00 1.3 13| 07 0.2 02| 0.1 0.1 01]-01 <01 <0.1
B2 | -0.3 1.5 1.5 0.0 0.3 0.3 ] -0.1 0.1 01| 02 <01 <0.1
Bz 1.8 56 56| 0.2 0.4 04| 04 0.1 01| 03 <01 <0.1
Bria 04 1.1 1.0 -0.9 0.4 0.4 | -0.5 0.1 0.1] -02 <01 <0.1
Biis 0.3 3.1 3.1 1.0 0.3 03] 0.2 0.1 0.1 01 <01 <0.1
Bue | -0.3 35 35| 0.6 0.3 0.3 0.3 0.1 01| 01 <01 <0.1
Brir 1.9 24 2.5 | -0.4 0.3 0.3 0.1 0.1 01| 02 <01 <0.1
Bug | -0.3 1.0 1.0 0.2 0.3 0.3 | -0.3 0.1 01| -02 <01 <0.1
I'y; | -13.1 2.3 4.0 | -5.7 1.4 1.7 -2.2 0.3 041 -0.5 0.2 0.2
Tip | 15.8 2.2 4.7 6.8 1.3 1.8 2.7 0.3 04| 04 0.2 0.2
I'e| -38 1.0 1.1 | -4.0 0.6 0.7 -4.8 0.3 05| 44 0.2 0.4
T | -72 1.5 2.0| -5.4 1.1 141 -25 0.4 05| -1.4 0.4 0.4
T3 2.8 0.8 0.9 -0.4 0.3 0.3 -1.3 0.3 03] -1.4 0.2 0.3
I3 2.0 03 0.3| 1.0 0.1 0.1 1.1 <0.1 0.1 1.7 0.1 0.1
Tya| 41 1.0 1.2 | -4.3 0.6 0.8 -1.2 0.2 0.2 -1.3 0.1 0.2
T4 0.8 0.5 0.5| -1.2 0.3 0.3 | -1.4 0.2 02| -1.8 0.1 0.2
T34 1.6 04 0.5 0.7 0.1 0.1 04 0.1 0.1 0.8 0.1 0.1
'y 0.2 0.0 00| 02 <01 <01] 06 <01 <01| 08 <01 <0.1
I'is | -0.8 0.5 0.5| -0.2 0.2 0.2 0.2 0.1 0.1 -0.1 0.1 0.1
T'1o5 04 0.2 0.2 0.5 0.3 0.3 0.2 0.2 02| 0.3 0.1 0.1
T35 0.6 0.1 0.1 03 <01 <01 07 0.1 01| 01 <01 <0.1
I'ys | -0.1 0.0 00| 00 <01 <01] 00 <01 <01| 00 <01 <01
I'is 0.0 0.0 00| 01 <01 <01] 01 <01 <01| 02 <01 <0.1
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Table H-32: Simulation 6 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K =3, p=19, g =5, m; = 0.5, my = 0.3, 713 = 0.2,
B, = (0.65,0.30,0.15,0.35,0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00,0.00, 0.00, 0.00), B, = (0.20, —0.45, —0.10, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00,0.00, 0.00, 0.00,0.00, 0.00, 0.00, 0.00, 0.00), 33 = (1.00,0.15, —0.65, —0.15, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), *" = (0.30,
—0.25,0.10, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,0.00), 3" =
(0.35,0.20, 0.15, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and

T = (0.25,0.00,0.20,0.00,0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). Small values changed to zero, part 2.
n n =100 n =250 n =500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
By | 0.3 131 13.0| 3.0 2.6 26| 4.3 1.4 1.5 5.0 0.5 0.8
Boy | 145 68 88| 95 31 40| 83 14 20| 64 06 10
Ba | 0.8 6.2 6.2 1.8 1.7 1.7] -0.6 0.8 08| 1.6 0.4 0.4
Bog | -b.4 2.6 2.9 | -1.5 0.9 0.9 -1.5 0.5 05| 0.2 0.2 0.2
Boa 27 25 2.6 14 0.4 0.4 0.1 0.2 0.2 | -0.1 0.1 0.1
Bas | -2.3 2.0 2.0 -0.4 0.7 0.7 ] -0.3 0.3 03| 0.0 0.1 0.1
Bog | -1.7 32 32| 0.3 0.6 06| 02 0.2 02| 04 0.1 0.1
Bar | 0.7 2.0 2.0 | -0.5 0.6 0.6 | -0.4 0.2 0.2 -0.3 0.1 0.1
Bog | -0.1 4.8 4.8 | -2.0 0.7 0.7 ] -0.9 0.2 02| -0.6 0.1 0.1
B9 0.3 1.8 1.8 | -0.6 0.9 0.9 0.3 0.3 0.3 0.1 0.1 0.1

Boo | -1.1 3.0 3.0 0.9 0.6 0.6 0.2 0.2 02| 04 0.1 0.1
Born | 0.6 1.8 1.8 0.7 0.8 0.8 | -0.1 0.3 03| 0.1 0.1 0.1
Boiz | -1.8 24 24| 07 10 10| -01 03 03] -03 01 0.1
Bo1z | -2.1 4.3 43| -0.1 1.2 1.1 ] -0.7 0.3 0.3 | -0.6 0.1 0.2
Bora | -1.3 1.9 1.9 0.2 0.6 0.6 0.3 0.2 0.2 0.1 0.1 0.1
Bas | 20 2.6 2.6 | -0.1 0.8 0.8 0.5 0.2 02| 0.0 0.1 0.1
Bors | 2.2 1.3 1.3 1.0 0.9 0.9 0.0 0.2 02| 0.0 0.1 0.1
Bor | 32 26 2.6 0.1 0.6 0.5 ] -0.1 0.3 03| 04 0.1 0.1
Borg | -0.5 24 23| -1.2 1.3 1.3 | -0.6 0.3 03] -0.4 0.1 0.1
Ty | 41 4.9 5.0 2.1 2.2 2.3 2.3 1.3 1.3 2.1 0.5 0.6
Topp| -1.2 33 33| 34 16 17| 33 1.2 13| 20 06 06
Ty | 40 28 2.9 | -4.6 1.4 1.6 | -1.7 0.8 0.8 | -0.6 0.6 0.6
To3| 03 30 29| 26 20 20| 02 1.8 17| 44 07 09
T3 | 32 15 15| 27 1.2 12| 02 09 09|04 07 07
To3 20 0.3 0.3 4.0 0.6 0.7 4.7 0.4 0.6 6.0 0.4 0.7
Ioyg | -3.7 26 2.7 -1.7 1.0 1.0 -1.8 0.7 08| 0.9 0.4 0.4
Iooq | 3.8 1.2 1.3 3.5 0.6 0.7] 3.1 0.5 06| 1.7 0.3 04
T3y 1.3 0.1 0.1 1.6 0.2 0.3 2.4 0.3 0.3 2.1 0.2 0.2
Tey | 01 0.0 00| 03 <01 <01| 04 <01 <01| 1.0 <0.1 0.1
Io5 | -0.7 1.0 1.0 0.4 0.7 0.6 | -0.4 0.3 0.3 ] -0.1 0.2 0.2
Iys | 0.0 0.6 0.6 0.5 0.5 0.5] 0.6 0.3 03| 0.7 0.3 0.3
Ioss | -0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2
Iays | 0.0 0.0 00 01 <01 <01| 01 <01 <01|-01 <01 <0.1
Tss | 00 0.0 00 01 <01 <01| 00 <01 <01| 02 <01 <0.1
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Table H-33: Simulation 6 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K =3, p =19, ¢ =5, m; = 0.5, my = 0.3, 13 = 0.2,
B, = (0.65,0.30,0.15,0.35,0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00,0.00,0.00, 0.00), B, = (0.20, —0.45, —0.10, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), B; = (1.00,0.15, —0.65, —0.15, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), " = (0.30,
—0.25,0.10, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), 3" =
(0.35,0.20,0.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and

T = (0.25,0.00,0.20,0.00,0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). Small values changed to zero, part 3.
n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
B3 | -15.3 5.7 8.0 -85 3.1 3.8 | -2.2 1.3 1.3 0.4 0.5 0.5
Bs1 | -0.1 45 45| -2.3 1.9 2.0 -0.9 0.8 0.8 -0.9 0.4 0.4
B3 | 19.1 85 120 | 13.5 4.7 6.5| 7.6 3.5 4.0 | 4.5 1.7 1.9
B33 | 18.3 3.2 6.6 | 11.3 2.0 32| 5.1 1.0 1.2 | 3.0 0.8 0.9
B34 0.7 14 1.4 0.5 0.5 05| 0.2 0.2 0.2 -0.1 0.1 0.1
Bss 1.2 21 21| -0.1 0.7 0.7] -04 0.2 0.2 -0.5 0.1 0.1
Bss | -44 1.9 2.1 | -0.6 0.6 0.6 | -0.3 0.3 0.3| 0.0 0.1 0.1
Bs7 | 0.1 1.5 15| 0.9 0.5 05| -0.1 0.2 0.2 -0.1 0.1 0.1
Bas | -1.9 1.3 1.3 -09 0.7 0.71] -0.9 0.3 03] 0.1 0.1 0.1
Bs9 0.5 1.3 1.3 -0.5 0.4 04| 00 0.2 0.2 -0.2 0.1 0.1
B30 | -0.1 1.6 1.6 | -0.1 0.5 05| 00 0.2 0.2 -0.2 0.1 0.1
5311 1.2 23 23| -1.5 0.6 06| 0.0 0.2 0.2 0.0 0.1 0.1
(312 2.2 1.8 1.9 0.1 0.5 05| 00 0.3 0.3 04 0.1 0.1
313 1.5 1.6 1.6 | -0.3 0.7 0.7 04 0.2 02| 0.2 0.1 0.1
Bs14 1.7 1.5 1.5 0.2 0.5 05| 0.2 0.2 0.2 0.3 0.1 0.1
5315 20 1.7 1.7 -0.2 0.3 03] -1.2 0.2 0.2 -0.7 0.1 0.1
316 1.3 24 24| -0.6 0.5 05| 0.7 0.2 0.2 | -0.6 0.1 0.1
Bai7 0.4 20 2.0 0.3 0.5 05| 07 0.2 02| 0.1 0.1 0.1
D318 26 25 25| -0.2 0.5 05| 0.7 0.3 0.3 | -0.6 0.1 0.1
I'3; | -10.1 3.0 39| -54 1.5 1.8 | -4.5 0.6 0.8 -34 0.4 0.5

I3 | -1.7 1.9 1.9 0.2 1.8 1.8 | -2.3 0.8 0.9 -0.9 0.4 0.4
'3y | -16.2 0.7 3.3 |-13.2 0.9 2.6 | -8.6 0.8 1.5 | -4.1 0.4 0.6
33| -4.0 25 26| -2.1 2.1 221 09 1.3 1.3 0.3 0.4 0.4
393 24 1.0 1.1 1.3 0.9 091 -0.9 0.5 0.5 -09 0.3 0.3
I35 3.6 0.5 0.7 6.2 0.9 1.3 | 6.5 1.0 14| 6.0 0.6 0.9
T34 | -5.7 1.5 1.8 -2.8 1.1 1.2 ] -0.7 0.5 0.5] -0.5 0.3 0.3
[304 1.6 0.7 0.7 0.4 0.6 06| 05 0.4 04| 0.3 0.2 0.2
[s34 22 04 0.4 3.5 0.5 06| 3.9 0.4 0.5| 3.6 0.4 0.5
I3y 0.1 0.0 0.0 0.1 <01 <01] 03 <01 <01] 09 <01 <0.1
I35 | -1.0 1.0 1.0 -1.0 0.5 05| 0.3 0.3 0.3| 0.0 0.1 0.1
I'305 0.4 0.3 0.3 -0.4 0.2 02| 0.3 0.2 02| 0.1 0.1 0.1
335 | -0.1 0.1 0.1 -0.1 0.1 0.1] 0.3 0.1 0.1] 0.6 0.2 0.2
45 0.0 0.0 0.0 00 <01 <01] 00 <01 <0.1] -0.2 0.1 0.1
T35 0.0 0.0 0.0 00 <01 <01] 00 <01 <01] 04 <01 <0.1
Total 255.8 89.7 44.6 23.3
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Figure H-17: MSE across sample sizes, Poisson outcome, small values changed to
zero, with K =3, p=19, ¢ = 5.
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Table H-34: Simulation 6 results multiplied by 100, averaged over 100 runs. Outcome
follows a Poisson distribution with K =3, p=4, ¢ =2, m; = 0.5, my = 0.3, m3 = 0.2,
B; = (0.65,0.30,0.15,0.35), B, = (0.20, —0.45, —0.10,0.25), B4 = (1.00,0.15, —0.65,
—0.15), 3" = (0.30,—0.25,0.10), 3" = (0.35,0.20,0.15), and %' = (0.25,0.00,
0.20). Oracle model.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias  Var MSE
m | 4.7 1.0 1.3 -35 04 06| -26 0.2 03| -2.8 0.1 0.2
o 27 1.1 1.1 3.1 04 0.4 2.7 0.2 0.3 3.1 0.1 0.2
Bio| -2.1 438 4.8 | -0.8 0.6 06| 0.7 0.2 02| 04 0.1 0.1
B | 40 25 27| 20 06 06| 04 02 02| 03 01 0.1
Brz 1.8 0.9 0.9 1.7 0.2 0.2 1.6 0.1 0.1 1.1 0.1 0.1
Bz | -25 06 07|-14 02 02]-11 01 01| -02 <01 <0.1
'n| -53 1.3 1.6 -25 04 041 -09 0.2 0.2 ] -04 0.1 0.1
Iy | 65 1.7 21| 16 04 04]-02 01 01]-1.1 01 01
', | -6.7 0.3 0.81] -5.8 0.3 0.6 | -4.7 0.3 0.5 ] -5.1 0.2 0.4
Bao | -2.8 8.9 89| 3.1 17 1.8 1.6 0.9 09| 38 0.3 0.4
Bor | -2.7 105 105| 42 16 17| 3.7 10 12| 5.3 0.5 0.7
Baz 44 4.0 41 0.6 09 09| 04 03 03| 0.3 0.2 0.2
Bog | -23 1.7 1.8 -0.3 0.7 0.7 -0.5 0.3 0.3 ] -0.6 0.1 0.1
ey | -04 59 5.9 -04 21 20| -0.2 0.9 09 0.6 0.3 0.3
| YD) 39 34 35 04 1.2 1.2 1.9 0.7 0.7 3.1 0.4 0.5
Iy | 44 2.2 24| -26 1.6 16| -1.8 0.9 0.9 0.5 0.4 0.4
Bso | -0.7 22 22 -1.1 1.0 1.0 02 04 04 1.2 0.2 0.2
By | 18 24 24| 15 06 06| 12 03 03| 1.4 01 0.1
Bsa | -2.0 2.2 22| -26 04 05] -1.5 0.2 0.2 ] -0.1 0.1 0.1
B3| 20 08 08| 00 03 03]-01 01 01] -0.1 0.1 0.1
I3 ] -3.0 1.8 19| -2,5 0.7 081 -1.9 0.3 03] -1.5 0.2 0.2
'35 -06 1.8 1.7 -1.3 1.0 1.0 -1.4 0.5 0.5 -1.1 0.2 0.2
'3y | -11.4 1.2 25 =77 09 1.5 -3.0 04 05| -1.1 0.1 0.2
Total 66.8 19.5 9.5 5.1
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Figure H-18: MSE across sample sizes, Poisson outcome, oracle model, with K = 3,
p=19, qg=>5.
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Table H-35: Simulation 7 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p =7, ¢ = 2, m = 0.6, 1y = 0.4,
ﬂlT = (0.95,0.60, 0.00, 0.00, 0.00, 0.00, 0.00), BQT = (—0.85,—0.15,0.00, 0.00, 0.00, 0.00,
0.00), " =(0.95,0.85,1.15), and 3" = (0.70,—0.70,0.80). No penalty.
n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -11.3 1.0 2.3 -12.0 0.7 21 1-12.1 04 1.8 | -12.2 0.3 1.8

B | 175 72 102] 222 29 78| 241 1.7 75| 250 16 7.8

G| 30.8 148 241 269 86 158| 24.8 4.6 10.7| 2338 3.9 9.6

B2 09 1.1 1.1 -03 04 0.4 0.5 0.2 0.2 0.1 0.1 0.1

B3 02 1.1 1.1 -03 04 04| -0.2 0.1 0.11] -0.2 0.1 0.1

Ba| -03 1.0 1.0 04 04 0.4 0.1 0.1 0.1 00 <01 <01

Bis 1.0 0.7 0.7 1.0 0.3 0.3 0.8 0.1 0.1 0.4 0.1 0.1

Bi6 0.3 08 0.8 0.1 0.3 0.3 0.0 0.1 0.11] -0.2 0.1 0.1

Iy -5.8 6.8 71 -86 24 3.1 -75 1.2 1.8 -74 0.6 1.2

T2 3.2 15.0 149 -0.2 5.2 5.1 -1.3 3.8 3.8 0.6 1.9 1.9

I'p | -114 7.2 84| -3.2 28 29 -14 1.2 1.2 | -1.0 0.5 0.5

B | 219 5.6 103 | 20.1 3.0 70 20.2 1.5 5.6 | 20.1 1.1 5.1

B 0.6 7.0 69| -05 23 23] 3.0 15 1.6 | -3.0 0.8 0.9

Boa | -1.7 1.0 1.0 -09 03 03| -06 02 02| -05 0.1 0.1

Baz | -0.5 0.8 08| -0.7 0.3 03| -0.6 0.1 01| -0.3 0.1 0.1

Baa 0.1 0.7 0.7 -0.3 0.2 02 -0.1 0.1 0.1 00 <01 <01

Bas | -0.8 0.6 06| -0.2 0.3 03] -0.2 0.1 01] -05 <0.1 0.1

By | -0.5 0.7 0.7] -0.5 0.2 0.2] -0.1 0.1 01] -0.2 <01 <0.1

Iy 6.2 3.8 4.1 77 1.5 2.1 85 0.8 1.5 8.4 0.5 1.2

I'yi2 ] 194 6.5 102 | 20.0 34 741 19.5 1.7 551 21.6 1.0 5.7

Ty 1.5 5.7 5.7 7.6 2.2 28| 114 1.2 2.5 13.2 0.6 2.3
Total 112.8 61.3 44.7 38.6

A
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MSE Across Sample Sizes, Binomial Scenario 1
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Figure H-19: MSE across sample sizes, binomial outcome, no penalty, with K = 2,
p="7,q=2.
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Table H-36: Simulation 7 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p =7, ¢ = 2, m = 0.6, my = 0.4,
B, = (0.95,0.60,0.00,0.00,0.00,0.00,0.00), By = (—0.85, —0.15,0.00,0.00, 0.00, 0.00,
0.00), " =(0.95,0.85,1.15), and 3" = (0.70,—0.70,0.80). Small values changed to

Zero.

n n =100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -11.3 1.0 23|-120 07 21|-121 04 1.8]-12.2 0.3 1.8
Bo | 175 7.2 10.2] 222 29 78| 241 1.7 75| 250 1.6 7.8
B | 30.8 148 24.1| 269 86 158 | 248 4.6 10.7| 23.8 3.9 9.6
Bz | 09 1.1 11| -03 04 04| 05 02 02| 01 0.1 0.1
fis| 02 1.1 11| -04 04 04| -01 01 01| -0.3 0.1 0.1
fa| -03 10 10| 05 04 04| 01 01 01| 00 <01 <O0.1
fis| 09 07 07| 1.0 03 03| 08 01 01| 04 0.1 0.1
B! 03 08 08| 02 03 03] 00 01 01| -02 0.1 0.1
'y | -5.8 68 71| -86 24 31| -75 12 18| -74 06 1.2
lip| 32 150 149] -02 52 51| -1.3 38 38| 06 1.9 1.9
I'p|-114 72 84| -32 28 29| -14 12 12| -1.0 0.5 0.5
B | 219 56 103|201 3.0 70| 202 15 56| 20.1 1.1 5.1
Br| 05 70 69| -05 23 22| -30 15 16| -3.0 0.8 0.9
Boa | -1.7 1.0 1.0 -09 03 03| -06 02 02| -05 0.1 0.1
Bog | -05 0.8 08| -07 03 03| -06 01 01| -0.3 0.1 0.1
By | 01 07 06| -03 02 02| 00 01 01| 00 <01 <o0.1
Bos | -07 06 06| -02 03 03] -02 01 01| -05 <01 <O0.1
B | -05 0.7 07| -04 02 02| -01 01 01| -01 <01 <o0.1
I'sy | 62 38 41| 77 15 21| 85 08 15| 84 05 1.2
Iyp | 194 65 102] 200 34 74] 195 1.7 55| 21.6 1.0 5.7
Iy, | 15 57 57| 76 22 28| 114 12 25| 132 0.6 2.3
Total 112.8 61.3 44.7 38.6
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Figure H-20: MSE across sample sizes, binomial outcome, small values changed to
zero, with K =2, p=17, ¢ = 2.
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Table H-37: Simulation 7 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 2, ¢ = 2, m = 0.6, 1y = 0.4,
ﬁlT = (0.95,0.60), ﬁ; = (—0.85,-0.15), T =(0.95,0.85,1.15), and 3" = (0.70,
—0.70,0.80). Oracle model.
n n = 100 ‘ n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -12.2 0.7 22 1-12.0 0.5 1.9]-124 0.3 1.9]-126 0.3 1.9
b | 223 50 10.0| 225 1.6 6.7 25.5 1.6 80| 26.7 1.5 8.6
G| 326 11.1 21.7| 26,6 58 129| 26.0 4.7 114 | 255 4.1 106
I'yp | -11.1 4.5 571 -90 1.8 26| -91 1.2 20| -9.3 0.6 1.5
I'ii2 | -05 148 147 -3.3 5.1 511 -39 3.9 40| -24 2.1 2.1
', | -95 6.3 71 -1.8 2.0 20 -09 1.1 1.1 | -0.8 0.5 0.5
B | 202 4.3 831 194 24 6.2 198 1.4 53] 19.8 1.1 5.0
Bor | -3.1 46 47| -21 17 18| -35 14 15| -3.8 08 09
' 5.1 2.7 2.9 70 1.3 1.8 79 0.7 1.4 79 0.5 1.1
I';i2 1 19.0 5.6 911 19.2 2.6 6.3 202 14 541 22.0 0.9 5.7
Iy 4.7 5.1 5.3 89 20 281 122 1.1 26 | 13.8 0.6 2.5
Total 91.6 50.1 44.6 40.4
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Figure H-21: MSE across sample sizes, binomial outcome, oracle model, with K = 2,
p="7,q=2.
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Table H-38: Simulation 8 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 17, ¢ = 2, m; = 0.6, my = 0.4,
ﬁlT = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00), B; = (—0.85,—0.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00,0.00,0.00,0.00,0.00), 1" =(0.95,0.85,1.15), and 3" = (0.70,—0.70,0.80). No
penalty, part 1.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -6.5 1.3 1.7 -79 0.6 1.3 ] -85 0.6 1.3 ] -8.1 0.5 1.1
B | 12.3 8.3 98 | 14.7 34 551 169 3.3 6.1 | 15.8 2.5 5.0
B | 235 149 202 | 276 6.7 142 270 50 122 27.8 3.9 116
B2 1.9 1.0 1.0 04 04 0.4 0.0 0.2 02 -0.2 0.1 0.1
Bis -0.3 0.8 08| -0.1 0.3 0.3 0.1 0.2 0.2 0.1 0.1 0.1
Bul -08 08 08| 01 03 03| -03 01 01| -01 01 0.1
B1s 08 0.8 0.7 -0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.1 0.1
B | -09 05 05| -01 03 03] -07 01 01] -0.1 <01 0.0
fiz| 09 08 08| 05 03 03] -02 01 01] 01 <01 00
G| -0.1 0.7 0.7 -0.3 0.3 03| -05 0.2 0.2 -0.1 0.1 0.1
Big 04 08 081 -0.1 0.3 03] -0.3 0.1 0.1 -0.2 0.1 0.1
Bfio| 00 08 08| -04 03 03] -03 01 01] -01 0.1 0.1
B -0.1 0.7 0.7 0.2 0.2 021 -0.2 0.1 0.1 00 <01 0.0
T -1.8 5.6 56| -26 3.0 30| 46 20 221 -51 1.3 1.6
12 | -23.3 187 239 -16.6 6.6 931]-19.2 4.2 7.8 1 -19.7 2.8 6.6
I'p | -16.4 7.8 104 |-12.1 1.7 3.1 |-11.1 1.0 221 -9.6 0.5 1.4
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Table H-39: Simulation 8 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 17, ¢ = 2, m; = 0.6, my = 0.4,
B; = (0.95,0.60,0.00, 0.00,0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00,0.00), B, = (—0.85,—0.15,0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00),
penalty, part 2.

T = (0.95,0.85,1.15), and 37

= (0.70, —0.70,0.80). No

n n =100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
By | 175 74 104 | 159 3.1 55| 16.5 1.3 4.0 | 15.8 1.0 3.5
b2 | -11.8 8.1 94 1|-145 35 5.6 |-15.6 1.1 3.6 | -16.2 0.8 3.5
B | -1.1 1.6 16| -09 04 04| -04 0.2 0.2 -0.2 0.1 0.1
Basz 0.3 0.9 0.9 0.3 0.3 0.3 0.2 0.1 0.1 0.0 0.1 0.1
By | -07 09 08| 00 03 03] -02 01 01| -02 01 0.1
Bos | -0.7 0.8 0.8 -0.3 0.2 0.2 -0.2 0.1 0.1 -03 <0.1 0.0
B | -0.2 1.0 09| -03 0.3 0.3 0.0 0.2 0.2 -0.1 0.1 0.1
Bor | -1.4 0.8 0.8 0.1 0.3 0.3 0.1 0.1 0.1 0.0 0.1 0.1
Bos | -0.1 0.9 0.9 0.6 04 0.4 0.8 0.1 0.1 0.2 0.1 0.1
Bag | -0.5 0.9 0.9 0.1 0.3 0.3 04 0.1 0.1 0.2 0.1 0.1
Boao | -0.8 0.9 09| -02 02 0.2 0.0 0.1 0.1] -0.3 0.1 0.1
Bor1n | -0.4 0.7 0.7] -0.1 0.2 0.2 0.0 0.1 0.1 0.0 0.1 0.1
Iy 3.4 4.3 4.4 6.3 1.5 1.8 77 05 1.1 7.9 0.3 0.9
oo 8.8 13.2 139 42 5.1 5.2 0.0 20 20| -04 1.3 1.3
I'yp | -11.3 7.5 8.7 0.2 1.9 1.9 1.6 1.0 1.0 2.4 0.7 0.8
Total 135.2 62.2 46.1 38.6
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MSE Across Sample Sizes, Binomial Scenario 2
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Figure H-22: MSE across sample sizes, binomial outcome, no penalty, with K = 2,
p=17,q=2.
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Table H-40: Simulation 8 results multiplied by 100, averaged over 100 runs. Outcome

follows a binomial distribution with K = 2, p = 17, ¢ = 2, m; = 0.6, my = 0.4,

ﬁlT = (0.95, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

0.00, 0.00), B; = (—0.85,—0.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

0.00, 0.00,0.00,0.00,0.00), T = (0.95,0.85,1.15), and 3’ = (0.70,—0.70,0.80).
Small values changed to zero, part 1.

n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

m | -6.5 1.3 1.7 -79 0.6 1.3 ] -85 0.6 1.3 ] -8.1 0.5 1.1

B | 12.3 8.3 98 | 14.7 34 551 169 3.3 6.1 | 15.8 2.5 5.0

B | 235 149 202 | 276 6.7 142 270 50 122 27.8 3.9 116

B2 1.9 1.0 1.0 05 04 0.4 0.0 0.2 0.2 -0.3 0.1 0.1

Bis -0.3 0.8 08| -0.1 0.3 0.3 0.0 0.2 0.2 0.1 0.1 0.1

Bul -08 08 08| 01 03 03| -03 01 01| 02 01 0.1

B1s 0.8 0.7 0.7 -0.3 0.2 0.2 0.1 0.1 0.1 0.0 0.1 0.1

B | -09 05 05| -01 03 03] -07 01 01] -0.1 <01 0.0

fiz| 09 08 08| 05 03 03] -02 01 01] 01 <01 00

G| -0.1 0.7 0.7 -0.3 0.3 03| -04 0.2 0.2 -0.1 0.1 0.1

Big 04 0.8 081 -0.2 0.3 03] -0.3 0.1 0.1 -0.1 0.1 0.1

fio| 00 08 08| -05 03 03| -03 01 01| 0.0 0.1 0.1

B -0.1 0.7 0.7 0.2 0.2 021 -0.2 0.1 0.1 -0.1 <0.1 0.0

T -1.8 5.6 56| -26 3.0 30| 46 20 22| -b.1 1.3 1.6

12 | -23.3 187 239 -16.6 6.6 931]-19.2 4.2 7.8 1 -19.7 2.8 6.6

I'p | -16.4 7.8 104 |-12.1 1.7 3.1 |-11.1 1.0 221 -9.6 0.5 1.4
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Table H-41: Simulation 8 results multiplied by 100, averaged over 100 runs. Outcome

follows a binomial distribution with K = 2, p = 17, ¢ = 2, m; = 0.6, my = 0.4,

BlT = (0.95,0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

0.00, 0.00), 6; = (—0.85,—-0.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

0.00,0.00, 0.00,0.00,0.00), 3T = (0.95,0.85,1.15), and 3’ = (0.70,—0.70,0.80).
Small values changed to zero, part 2.

n n =100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

By | 175 74 104 | 159 3.1 5.0 | 165 1.3 4.0 158 1.0 3.5

B | -11.8 8.1 94| -14.5 3.5 5.6 |-15.6 1.1 3.6 | -16.2 0.8 3.5

Baa | -1.1 1.6 16| -09 04 04| -04 0.2 0.2 -0.1 0.1 0.1

B3 0.3 0.9 0.9 0.2 0.3 0.3 0.2 0.1 0.1 0.0 <0.1 0.0

Bos | 0.7 09 08| 00 03 03] -02 01 01| -02 01 0.1

Bas | -0.7 0.8 0.8 -03 02 02| -0.2 0.1 0.1 -04 <0.1 0.0

B | -0.2 1.0 09| -02 0.3 0.3 0.0 0.2 0.2 | -0.2 0.1 0.1

Bor | -14 08 08| 02 03 03] 01 01 01| 00 01 01

Bag 0.0 0.9 0.9 0.6 04 0.4 0.8 0.1 0.1 0.2 0.1 0.1

Bag | -0.5 0.9 0.9 0.2 0.3 0.3 0.4 0.1 0.1 0.1 0.1 0.1

Bo10 | -0.7 0.9 09| -02 02 0.2 -0.1 0.1 0.1 -04 0.1 0.1

Bor1 | -0.4 0.7 0.7 -0.2 0.2 0.2 0.0 0.1 0.1 0.0 0.1 0.1

Iy 3.4 4.3 4.4 6.3 1.5 1.8 7.7 0.5 1.1 7.9 0.3 0.9

To1o 8.8 13.2 139 4.2 5.1 5.2 0.0 20 20| -04 1.3 1.3

Iy | -11.3 7.5 8.7 0.2 1.9 1.9 1.6 1.0 1.0 2.4 0.7 0.8

Total 135.2 62.2 46.1 38.5

270



MSE Across Sample Sizes, Binomial Scenario 2
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Figure H-23: MSE across sample sizes, binomial outcome, small values changed to
zero, with K =2, p =17, ¢ = 2.
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Table H-42: Simulation 8 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 2, ¢ = 2, m = 0.6, 1y = 0.4,
ﬁlT = (0.95,0.60), ﬁ; = (—0.85,-0.15), T =(0.95,0.85,1.15), and 3" = (0.70,
—0.70,0.80). Oracle model.
n n =100 ‘ n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -8.6 1.0 1.7 -9.1 0.6 14| -96 0.5 1.4 -94 04 1.3
Bio| 19.2 5.8 94| 186 34 6.8 204 29 701 19.5 24 6.2
G| 271 11.7 19.0| 30.7 59 153| 295 45 13.1| 309 3.6 13.1
' -7.8 4.2 48| -6.1 24 27| 7.6 1.7 23] 81 1.3 1.9
I'y9 | -25.5 126 19.0 | -21.7 5.8 104 |-22.5 3.8 8.9 |-23.7 2.9 8.6
' | 115 4.8 6.1 -108 1.8 291-105 1.0 211 -94 0.5 1.4
Bao | 159 4.4 6.9 | 157 2.3 471 165 1.3 40| 165 1.0 3.7
Boy | -126 54  69|-163 28 54[-160 12 3.7|-167 07 34
'y 3.6 24 2.5 6.2 1.1 1.4 7.1 0.5 1.0 7.6 0.2 0.8
| YD) 8.9 11.2 11.8 43 3.5 3.7 1.9 2.0 2.1 1.7 1.3 1.3
Iy | -65 5.9 6.3 1.7 1.5 1.5 3.0 1.0 1.0 39 06 0.8
Total 94.3 56.3 46.7 42.5
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Figure H-24: MSE across sample sizes, binomial outcome, oracle model, with K = 2,
p=17,q=2.
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Table H-43: Simulation 9 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 19, ¢ = 5, m; = 0.6, my = 0.4,
B, = (0.95,0.60,—0.65, —0.25,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,0.00), By = (—0.85, —0.15, —0.75,0.10,0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), *" = (0.95,0.85,1.15,0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and 3" = (0.70,—0.70, 0.80,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00). No penalty, part 1.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias  Var MSE | Bias  Var MSE | Bias  Var MSE
m | -1.2 0.8 0.8 14 0.4 04| 18 0.2 03] 1.2 0.1 0.2
Bio| -39 54 5.5 | -2.7 2.3 23| -1.5 1.3 1.3 ] -0.9 0.7 0.7
B 5.8 9.1 9.4 | -2.2 3.4 3.5 | -1.3 2.2 221 -0.6 1.2 1.2
Biz| -09 1.0 1.0| -04 0.4 04| -0.6 0.2 0.2 0.2 0.1 0.1
Bz 3.3 0.7 0.8 3.3 0.3 0.4 1.8 0.1 0.1 1.3 0.1 0.1
Bua| -06 04 0.4 0.3 0.2 0.2 | -0.2 0.1 0.1 0.2 <01 <0.1
Bis| -0.3 0.6 0.6 | -0.3 0.2 0.2 0.1 0.1 0.1 0.3 0.1 0.1
Bis 0.9 0.7 0.7 04 0.2 0.2 0.2 0.1 0.1 0.3 <0.1 0.1
Bz 1.6 0.5 0.5 -0.1 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1
fis | -1.1 0.7 0.7 | -0.8 0.2 0.2 -04 0.1 0.1 -0.3 0.1 0.1
Big 0.3 0.7 0.7 | -0.2 0.2 0.2 0.0 0.1 0.1 0.0 0.1 0.1
Bio | -0.5 0.6 0.6 | -0.7 0.2 0.2 -0.7 0.1 0.1} -02 <01 <01
P11 0.2 0.7 0.7 04 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.1
Bri2 1.8 1.0 1.0 0.7 0.2 0.2 0.1 0.1 0.1} -0.1 0.1 0.1
P13 1.1 0.7 0.7 0.8 0.2 0.2 0.8 0.1 0.1 0.5 <01 <0.1
' 1.1 53 5.3 2.5 1.1 1.1 2.1 0.6 0.6 1.0 0.3 0.3
M| -3.7 107 10.7| -0.9 3.9 3.9 -1.0 14 141 -0.3 0.7 0.7
I'p [-13.7 5.3 7.1] -3.0 1.3 14 -1.1 0.7 0.71 0.8 0.4 0.4
I3 0.2 1.5 1.5 1.3 0.6 0.6 0.7 0.3 0.3 0.1 0.2 0.2
o3 3.7 14 1.5 1.6 0.5 0.5 0.8 0.2 0.2 0.3 0.1 0.1
I3 3.1 0.3 04| 59 0.4 0.8 6.7 0.3 0.7 6.2 0.2 0.6
M| 36 1.6 1.7] -48 0.5 0.7 -4.2 0.2 041] -29 0.1 0.2
g | 22 1.1 1.1 -2.7 0.4 04| -1.6 0.2 0.2 -1.1 0.1 0.1
i34 0.2 02 02| -04 0.3 0.3 | -0.2 0.3 0.3 0.4 0.2 0.2
Iy 0.8 0.1 0.1 2.5 0.2 0.2 3.4 0.2 0.3 3.8 0.1 0.3
15 1.6 09 0.9 -0.1 0.4 0.4 0.1 0.2 0.2 -0.3 0.1 0.1
o5 0.3 0.8 0.8 | -0.8 0.3 03| -04 0.2 0.2 -0.2 0.1 0.1
I | -0.3 0.2 0.2 0.0 0.2 0.2 | -0.2 0.2 0.2 -04 0.2 0.2
s 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.4 0.1 0.1
5 0.3 0.0 00| 03 <01 <01 08 <01 <01 1.6 0.1 0.1
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Table H-44: Simulation 9 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 19, ¢ = 5, m; = 0.6, my = 0.4,
ﬁlT = (0.95,0.60, —0.65, —0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), ,BQT = (—0.85,—0.15,—0.75,0.10, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), *{T = (0.95,0.85,1.15,0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and ;T = (0.70,—-0.70,0.80,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00). No penalty, part 2.
n n =100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
Bago 9.7 8.1 8.9 3.4 2.6 2.7 2.6 1.1 1.1 1.7 0.5 0.6
B21 | -10.3  12.0 12.9 0.6 2.9 2.8 0.3 1.5 1.5 0.1 1.0 1.0
Baa -0.5 1.8 1.8 2.8 0.5 0.6 1.6 0.3 0.3 1.6 0.1 0.2
Bo3 | -64 1.5 19| -34 0.6 0.8 1 -2.0 0.2 03] -14 0.1 0.1
Baa 1.2 0.9 0.9 0.6 0.5 0.5 0.6 0.3 0.3 -0.2 0.1 0.1
Bos | -06 1.3 1.3 0.7 0.5 0.5 0.6 0.2 0.2 0.4 0.1 0.1
Bag -1.7 1.1 1.1 -1.3 0.4 04| -1.3 0.2 0.2 -0.5 0.1 0.1
Baz 0.7 1.2 1.2 0.3 0.4 0.4 0.0 0.2 0.2] -0.1 0.1 0.1
Bos 0.4 1.2 1.2 | -0.1 0.4 04 -1.1 0.2 0.2 -04 0.1 0.1
Bag 04 1.0 1.0 0.6 0.5 0.5 0.2 0.2 0.2 0.0 0.1 0.1
Ba10 -0.4 0.9 0.9 0.9 0.3 0.3 0.3 0.2 0.2] -0.1 0.1 0.1
Ba11 -1.3 1.7 1.7 -0.2 0.4 04 -0.1 0.2 0.1 0.4 0.1 0.1
B212 -0.9 1.1 1.1 -04 0.3 0.3 0.0 0.2 0.1 0.0 0.1 0.1
Bo13 -0.7 1.2 1.2 -04 0.4 041 -0.1 0.2 0.2] -0.2 0.1 0.1
Ty 0.5 5.7 5.6 0.1 2.1 2.1 -0.6 0.9 091 -09 0.4 0.4
T'510 0.3 11.8 11.7 | -2.7 3.9 4.0 | -5.7 2.3 26| -3.4 0.8 0.9
Iy | -12.5 11.3 12.7 | -9.6 4.8 57| -8.1 2.3 29| -4.6 0.8 1.0
o3 0.8 29 2.9 2.4 0.9 0.9 2.6 0.4 0.4 1.7 0.2 0.2
T'593 28 1.9 1.9 0.4 0.9 0.9 0.9 0.4 0.4 0.5 0.2 0.2
I3 29 0.3 0.4 5.7 0.5 0.8 6.8 0.4 0.9 6.9 0.3 0.8
514 -6.8 1.6 20| -4.4 0.8 1.0 -2.6 0.4 0.5] -2.1 0.2 0.2
04 -0.5 1.9 1.9 1.1 0.7 0.7 0.1 0.3 03] -0.5 0.2 0.2
T34 -0.1 0.2 0.2 -24 0.4 0.5] -2.0 0.5 0.5 -2.0 0.3 0.3
T 14 0.2 0.2 2.1 0.2 0.2 3.0 0.2 0.3 4.5 0.3 0.5
o5 0.1 1.4 14| -0.8 0.5 0.5] -0.2 0.3 03] -0.5 0.1 0.1
Toos 0.0 1.5 15| -04 0.6 0.6 0.2 0.3 03] -04 0.1 0.1
I'yss | -0.2 0.3 031 -0.3 0.2 0.2 -0.1 0.2 0.2 0.3 0.2 0.2
Tous -0.3 0.1 0.1 0.3 0.1 0.1 0.2 0.1 0.1 0.0 0.1 0.1
Tys 0.1 0.0 0.0 04 <01 <0.1 05 <01 <0.1 1.0 <01 <01
Total 135.7 49.6 26.5 14.2
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Figure H-25: MSE across sample sizes, binomial outcome, no penalty, with K = 2,
p=19, ¢ =5.
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Table H-45: Simulation 9 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 19, ¢ = 5, m; = 0.6, my = 0.4,
BlT = (0.95,0.60, —0.65, —0.25,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00,0.00, 0.00, 0.00, 0.00), BQT = (—0.85,—-0.15,—0.75,0.10, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), *{T = (0.95,0.85,1.15,0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and ;T = (0.70,—-0.70,0.80,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00). Small values changed
to zero, part 1.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
™ -1.2 0.8 0.8 1.4 0.4 0.4 1.8 0.2 0.3 1.2 0.1 0.2
B1o -39 54 5.5 | -2.7 2.3 23| -1.5 1.3 1.3 -0.9 0.7 0.7
B 5.8 9.1 93| -2.2 3.4 3.5 | -1.3 2.2 2.2 -0.6 1.2 1.2
B2 -0.9 1.0 1.0| -04 0.4 04| -0.6 0.2 0.2 0.2 0.1 0.1
Bis 3.3 0.7 0.8 3.3 0.3 0.4 1.8 0.1 0.1 1.3 0.1 0.1
B1a -0.6 0.4 0.4 0.3 0.2 0.2 -0.2 0.1 0.1 0.1 <01 <0.1
Bis -0.2 0.6 0.6 | -0.2 0.2 0.2 0.1 0.1 0.1 03 <01 <0.1
Bi6 0.8 0.7 0.7 0.4 0.2 0.2 0.2 0.1 0.1 03 <01 <0.1
Bz 1.6 0.5 0.5 -0.1 0.3 0.2 0.3 0.1 0.1 0.2 0.1 0.1
Bis -1.1 0.7 0.7 -0.8 0.2 021 -04 0.1 0.1] -0.3 0.1 0.1
B9 04 0.7 0.7 -0.2 0.2 0.2 0.0 0.1 0.1 0.1 0.1 0.1
B110 -0.5 0.6 0.6 | -0.7 0.2 0.2 -0.7 0.1 01] -02 <01 <0.1
Bi11 0.2 0.7 0.7 0.4 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.1
B112 1.8 1.0 1.0 0.7 0.2 0.2 0.0 0.1 0.1] -0.1 0.1 0.1
B113 1.1 0.7 0.7 0.8 0.2 0.2 0.8 0.1 0.1 05 <01 <0.1
' 1.1 5.3 5.3 2.5 1.1 1.1 2.1 0.6 0.6 1.0 0.3 0.3
T2 -3.7 10.7 10.7 | -0.9 3.9 3.9 -1.0 1.4 14| -0.3 0.7 0.7
I'is | -13.7 5.3 711 -3.0 1.3 14| -1.1 0.7 0.7 0.8 0.4 0.4
I3 0.2 1.5 1.5 1.3 0.6 0.6 0.7 0.3 0.3 0.1 0.2 0.2
Mo 3.7 1.4 1.5 1.6 0.5 0.5 0.8 0.2 0.2 0.3 0.1 0.1
'3 3.1 0.3 04 5.9 0.4 0.8 6.7 0.3 0.7 6.2 0.2 0.6
T4 -3.6 1.6 1.7 | -4.8 0.5 0.7 -4.2 0.2 04| -29 0.1 0.2
o4 -2.2 1.1 1.1 | -2.7 0.4 04| -1.6 0.2 0.2 -1.1 0.1 0.1
i34 0.2 0.2 02| -04 0.3 0.3 -0.2 0.3 0.3 0.4 0.2 0.2
'y 0.8 0.1 0.1 2.5 0.2 0.2 3.4 0.2 0.3 3.8 0.1 0.3
5 1.6 09 09| -0.1 0.4 0.4 0.1 0.2 0.2 -0.3 0.1 0.1
o5 03 0.8 0.8 | -0.8 0.3 03| -04 0.2 0.2 -0.2 0.1 0.1
I35 -0.3 0.2 0.2 0.0 0.2 0.2 -0.2 0.2 0.2 -04 0.2 0.2
s 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.4 0.1 0.1
I'is 0.3 0.0 0.0 03 <01 <0.1 0.8 <01 <0.1 1.6 0.1 0.1
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Table H-46: Simulation 9 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 19, ¢ = 5, m; = 0.6, my = 0.4,
,BlT = (0.95,0.60, —0.65, —0.25,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00), ,BQT = (—0.85,—-0.15,—0.75,0.10, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), ’{T = (0.95,0.85,1.15,0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and §T = (0.70,—0.70,0.80,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00). Small values changed
to zero, part 2.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
Bag 9.7 8.1 8.9 3.4 2.6 2.7 2.6 1.1 1.1 1.7 0.5 0.6
B | -10.3  12.0 12.9 0.6 2.9 2.8 0.3 1.5 1.5 0.1 1.0 1.0
B | -05 18 18] 28 05 06| 1.6 03 03| 1.6 01 02
Ba3 -6.3 1.5 19| -34 0.6 0.8 -2.0 0.2 03] -14 0.1 0.1
Baa 1.2 0.9 0.9 0.6 0.5 0.5 0.6 0.3 03] -0.2 0.1 0.1
Bos | 06 13 13| 07 05 05| 06 02 02| 04 01 0.1
Bag -1.7 1.1 1.1 -1.2 0.4 04| -1.3 0.2 0.2 -0.5 0.1 0.1
Bor 0.8 1.2 1.2 0.3 0.4 0.4 0.0 0.2 0.2] -0.1 0.1 0.1
Bos 0.4 1.2 1.2 | -0.1 0.4 04| -1.0 0.2 0.2 -0.3 0.1 0.1
Bag 04 1.0 1.0 0.6 0.5 0.5 0.2 0.2 0.2 0.0 0.1 0.1
Bato -0.4 0.9 0.9 0.9 0.3 0.3 0.3 0.2 0.2] -0.2 0.1 0.1
Born | -1.2 1.7 1.7 ] -0.2 0.4 04| -0.1 0.2 01| 04 0.1 0.1
Boiz| 09 11 1.1]-03 03 03| 00 02 01| 00 01 01
Boz | -0.7 12 11]-05 04 04| 00 02 02|-02 01 01
Iy 0.5 5.7 5.6 0.1 2.1 2.1 -0.6 0.9 091 -09 0.4 0.4
T'519 0.3 11.8 11.7 | -2.7 3.9 4.0 | -5.7 2.3 26| -34 0.8 0.9
Iy | -12.5 11.3 12.7 | -9.6 4.8 57| -8.1 2.3 29| -4.6 0.8 1.0
T3 0.8 29 2.9 2.4 0.9 0.9 2.6 0.4 0.4 1.7 0.2 0.2
o3 2.8 1.9 1.9 0.4 0.9 0.9 0.9 0.4 0.4 0.5 0.2 0.2
I3 29 0.3 0.4 5.7 0.5 0.8 6.8 0.4 0.9 6.9 0.3 0.8
514 -6.8 1.6 20| -4.4 0.8 1.0 -2.6 0.4 0.5] -2.1 0.2 0.2
Tgq | 05 19 19| 1.1 07 07| 01 03 03] -05 02 02
T34 -0.1 0.2 0.2 -24 0.4 0.5] -2.0 0.5 0.5] -2.0 0.3 0.3
Ty 1.4 0.2 0.2 2.1 0.2 0.2 3.0 0.2 0.3 4.5 0.3 0.5
Tois 0.1 1.4 14| -0.8 0.5 0.5] -0.2 0.3 03] -0.5 0.1 0.1
Toos 0.0 1.5 15| -04 0.6 0.6 0.2 0.3 03] -04 0.1 0.1
To35 -0.2 0.3 03] -0.3 0.2 0.2] -0.1 0.2 0.2 0.3 0.2 0.2
Tos | 03 01 01| 03 01 01| 02 01 01| 00 01 0.1
Iss 0.1 0.0 0.0 04 <01 <0.1 05 <01 <01 1.0 <01 <0.1
Total 135.7 49.5 26.5 14.1
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Figure H-26: MSE across sample sizes, binomial outcome, small values changed to
zero, with K =2, p=19, ¢ = 5.
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Table H-47: Simulation 9 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 2, p = 4, ¢ = 2, m; = 0.6, my = 0.4,
B, = (0.95,0.60, —0.65, —0.25), B, = (—0.85, —0.15, —0.75,0.10), *" = (0.95,0.85,
1.15), and 3" = (0.70, —0.70,0.80). Oracle model.
n n =100 | n = 250 n =500 | n=1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -3.1 038 09 -31 04 0.5] -28 02 03] -3.2 0.1 0.2
Bro 1.7 5.0 5.0 6.5 19 23] 69 1.0 1.5 72 0.6 1.1
B 8.6 9.2 9.9 8.7 39 46| 93 25 341102 1.3 2.3
B2 0.8 0.8 0.8 1.6 04 04| 07 0.1 0.2 1.1 0.1 0.1
Pz | -04 0.6 0.5 -0.2 0.2 0.2 -1.0 0.1 0.1} -09 0.1 0.1
Iy, | 41 38 39 43 1.0 1.2 -3.6 0.6 0.7 -43 0.3 0.4
12 | -10.8 11.0  12.0 | -10.6 4.7 5.8 -94 1.9 28| -85 09 1.6
I'p | -11.2 5.5 6.7 -5.9 1.1 1.5 -4.0 0.7 0.8 -29 04 0.5
Boo| 86 49 56| 82 14 20| 88 08 16| 76 04 09
Bor | -7.1 7.7 81| -6.5 29 33| -72 15 20| -7.8 0.8 1.4
B2 0.8 1.3 1.3 24 0.5 0.5 1.6 0.2 0.2 1.9 0.1 0.1
B2z | -1.0 1.3 1.3 -1.2 04 04| -08 0.2 0.2] -1.0 0.1 0.1
Poy | 07 27 2.6 0.3 1.1 1.1] 03 0.6 06| 05 0.3 0.3
Top | -1.3 89 8.8 -1.1 38 3.7 -25 17 1.8 -1.7 0.7 0.8
Iy | -73 99 10.3 0.5 3.8 37| 1.8 15 15| 44 0.6 0.8
Total 7.7 31.3 17.7 10.7
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Figure H-27: MSE across sample sizes, binomial outcome, oracle model, with K = 2,
p=19, qg=>5.
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Table H-48: Simulation 10 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p =7, ¢ = 2, m = 0.5, my = 0.3,
T3 =02, B =

(0.95,0.60, 0.00, 0.00, 0.00, 0.00, 0.00), B, = (—0.85, —0.15,0.00,0.00,

0.00,0.00, 0.00), ﬁ; = (—0.30, —0.90, 0.00, 0.00, 0.00, 0.00, 0.00), ’{T = (0.95, 0.85,
1.15), 3" =(0.70,-0.70,0.80), and ;' = (1.75,0.00,0.85). No penalty, part 1.
n n =100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -21.7 0.9 56 | -242 04 6.2 -24.8 0.3 6.5 | -23.7 0.2 5.8
Ty 5.2 1.7 1.9 7.6 1.2 1.8 103 09 1.9 81 0.7 1.3
B | 375 155 294 | 380 46 19.0| 43.6 3.8 227 41.1 25 194
G| 49.1 32.8 56.6 | 59.4 124 47.7| 64.3 10.2 514 | 60.6 6.2 429
B2 1.8 3.9 3.9 1.9 1.1 1.2 -0.3 0.6 0.6 0.3 0.2 0.2
B3 0.0 3.5 3.5 0.7 0.9 09| -06 0.5 05| -02 0.2 0.2
B4 2.7 29 29| -1.2 08 0.8 -0.1 0.4 0.4 0.8 0.2 0.2
Bis 2.3 24 2.4 1.0 1.0 1.0 1.0 04 0.4 04 0.2 0.2
Bis 1.3 2.3 2.3 04 0.8 081 -1.0 04 04] -04 02 0.2
I'yp | -23.3 156 209|-203 6.8 109|-21.5 4.6 9.2 1-20.7 2.7 6.9
' | -13.5 384 399 |-11.0 33.7 345| -54 197 198 | -71 7.3 7.7
I's [-39.0 219 37.0|-259 114 180 1]-209 48 9.21-159 1.3 3.8
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Table H-49: Simulation 10 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p =7, ¢ = 2, m = 0.5, my = 0.3,
m3 = 0.2, BlT = (0.95,0.60, 0.00, 0.00, 0.00, 0.00, 0.00), B;r = (—0.85,—0.15,0.00, 0.00,
0.00, 0.00,0.00), BgT = (—0.30,—0.90,0.00, 0.00, 0.00,0.00,0.00), " = (0.95,0.85,
1.15), 3T =(0.70,—-0.70,0.80), and 3" = (1.75,0.00,0.85). No penalty, part 2.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
B | 269 150 221|311 80 176 31.0 39 135 30.1 23 113
Ba1 22 283 281 | -20 9.1 9.1 -146 5.7 7.8 1-15.8 4.6 7.0
B2z 0.0 3.0 2.9 0.0 1.0 1.0 -04 0.3 03| -02 0.2 0.2
B3 1.2 238 281 -09 1.0 1.0 -1.8 0.3 03] -09 0.2 0.2
Bog | -24 28 2.8 06 08 0.8 1.2 04 0.4 0.2 0.2 0.2
Bos 2.7 26 2.6 04 1.0 1.0 -06 04 04| -0.1 0.2 0.2
B | -0.5 1.9 1.9] -06 1.0 1.0 04 0.3 0.3 0.7 0.2 0.2
I'ps | 190 133 168249 82 144 | 226 54 10.5| 21.3 4.3 8.8
oo | 329 28,6 39.2| 26.8 154 225| 306 &80 173 | 28.0 6.0 13.8
Iy | -20.2 141 180 | -3.7 64 6.5 8.6 22 29| 11.3 14 2.7
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Table H-50: Simulation 10 results multiplied by 100, averaged over 100 runs. Outcome

follows a binomial distribution with K = 3, p =7, ¢ = 2, m = 0.5, my = 0.3,

w3 = 0.2, BlT = (0.95,0.60, 0.00, 0.00, 0.00, 0.00, 0.00), B; = (—0.85,—0.15,0.00, 0.00,

0.00, 0.00,0.00), BgT = (—0.30,—-0.90, 0.00, 0.00, 0.00, 0.00, 0.00), ’{T = (0.95,0.85,
1.15), 3T =(0.70,—-0.70,0.80), and 3" = (1.75,0.00,0.85). No penalty, part 3.

n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE

B30 | 22.0 21.1 25.7| 282 85 163 | 333 6.8 17.8| 26.1 3.5 10.3

B3| 41.1 33.2 498 | 49.6 21.0 454 | 619 109 49.0| 59.3 7.2 423

P32 | 08 34 34| 05 1.5 1.5 -0.1 06 06| -06 04 0.4

By | 20 33 33| 05 16 16| 24 09 09| 07 04 04

Bsa 4.0 4.1 4.3 1.8 1.9 20 -0.8 1.2 1.1 -0.2 0.5 0.5

Bas | -41 28 29| -1.9 1.0 1.0 -0.3 0.9 09| -0.7 0.5 0.5

fss | 0.7 2.2 22 -02 14 14| -0.7 0.8 08| -09 04 0.5

I's;1-34.0 24.4 357 |-287 209 28.9|-25.6 10.0 16.4 | -28.1 4.9 12.8

I'si ] 19.0 378 41.1| 254 147 21.0| 20.0 9.1 13.1 | 143 4.1 6.1

I'so -0.2 23.0 228 | 24.0 180 236 30.3 6.9 16.0 | 294 3.0 11.6

Total 534.7 360.3 293.3 218.9
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Figure H-28: MSE across sample sizes, binomial outcome, no penalty, with K = 3,
p="7,q=2.
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Table H-51: Simulation 10 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p =7, ¢ = 2, m = 0.5, my = 0.3,
w3 = 0.2, BlT = (0.95,0.60, 0.00, 0.00, 0.00, 0.00, 0.00), BQT = (—0.85,—0.15,0.00, 0.00,
0.00, 0.00,0.00), B; = (—0.30,—0.90,0.00, 0.00, 0.00,0.00,0.00), " = (0.95,0.85,
1.15), 3" = (0.70,—0.70,0.80), and %" = (1.75,0.00,0.85). Small values changed to
zero, part 1.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -21.7 0.9 5.6 |-242 04 6.2 1-24.8 0.3 6.5 | -23.7 0.2 5.8
o 52 1.7 1.9 76 1.2 1.8 103 0.9 1.9 81 0.7 1.3
Bio | 375 155 294 | 380 4.6 19.0| 43.6 3.8 227 41.1 25 194
B | 491 328 56.6 | 59.4 124 477 | 64.3 102 514 | 606 6.2 429
B2 1.8 3.9 3.9 1.9 1.1 1.2 -0.2 0.6 0.6 0.4 0.2 0.2
Brs 0.0 3.5 3.5 0.7 09 09| -0.6 0.5 05] -0.3 0.2 0.2
Bia | 2.7 29 29| -1.2 08 08| -0.1 04 0.4 0.8 0.2 0.2
Bis 2.3 24 2.4 1.0 1.0 1.0 1.0 04 0.4 04 0.2 0.2
Bie 1.3 23 23| 05 08 08| -1.0 04 04| -05 02 02
I'p [ -23.3 156 209 |-20.3 6.8 109 |-21.5 4.6 9.2 | -20.7 2.7 6.9
I'iio | -13.5 384 399 |-11.0 33.7 345| -54 19.7 198 | -71 7.3 7.7
' | -39.0 21.9 37.0]-259 114 180 |-209 4.8 9.2 |-159 1.3 3.8
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Table H-52: Simulation 10 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K = 3, p =7, ¢ = 2, m = 0.5, my = 0.3,
T = 0.2, 8] = (0.95,0.60,0.00,0.00,0.00,0.00,0.00), 3 = (—0.85, —0.15,0.00,0.00,
1T = (0.95,0.85,

0.00,0.00, 0.00), 81 = (—0.30, —0.90, 0.00, 0.00, 0.00, 0.00, 0.00),

1.15), 3" = (0.70,—0.70,0.80), and %" = (1.75,0.00,0.85). Small values changed to
zero, part 2.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
By | 269 150 22.1|31.1 80 176| 31.0 39 135| 30.1 23 11.3
L1 22 283 281 | -20 9.1 9.11]-14.6 5.7 7.8 | -15.8 4.6 7.0
Baa 0.0 3.0 291 -0.1 1.0 1.0] -04 0.3 03| -0.2 0.2 0.2
Bas 1.2 2.8 28 | -09 1.0 1.0 -1.7 0.3 0.3 -0.9 0.2 0.2
Bas | 24 2.8 2.8 0.6 0.8 0.8 1.2 04 0.4 0.3 0.2 0.2
Bas 27 2.6 2.6 03 1.0 1.0 -06 04 04| -0.1 0.2 0.2
B | -0.6 1.9 1.9 -06 1.0 1.0 04 0.3 0.3 0.6 0.2 0.2
I'y | 19.0 133 1681249 82 144 226 54 105 | 21.3 4.3 8.8
I'yie | 329 286 3921 26.8 154 225 306 80 173 | 28.0 6.0 13.8
'y, | -20.2 14.1 180 | -3.7 64 6.5 86 2.2 29 11.3 14 2.7
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Table H-53: Simulation 10 results multiplied by 100, averaged over 100 runs. Outcome

follows a binomial distribution with K = 3, p =7, ¢ = 2, m =

0.5, m = 0.3,

m = 0.2, 8] = (0.95,0.60,0.00,0.00,0.00,0.00,0.00), B85 = (—0.85, —0.15,0.00, 0.00,

0.00,0.00, 0.00), 81 = (—0.30, —0.90, 0.00, 0.00, 0.00, 0.00, 0.00),

T = (0.95,0.85,

1.15), 3" = (0.70,—0.70,0.80), and %" = (1.75,0.00,0.85). Small values changed to
zero, part 3.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
B30 | 22.0 21.1 25.7| 282 85 16.3 | 33.3 6.8 178 | 26.1 3.5 10.3
B3 | 41.1 33.2 498 | 49.6 21.0 454 | 619 10.9 49.0| 59.3 7.2 423
Bs2 0.8 34 3.4 0.5 1.5 1.5 -0.1 0.6 06| -06 04 0.4
Bes | 20 33 33| 05 16 16| 24 09 09| 07 04 04
Bsa 4.0 4.1 4.3 1.8 1.9 20| -07 1.2 1.1 -0.2 0.5 0.5
Bss | -4.0 28 29| -19 1.0 1.0 -0.3 09 09| -0.7 0.5 0.5
Bs6 0.7 2.2 221 -0.1 1.4 14| -0.7 0.8 08| -09 04 0.4
I's; [ -34.0 244 357 |-28.7 209 28.9]-25.6 10.0 16.4 | -28.1 4.9 12.8
T'sio ] 19.0 378 41.1| 254 147 21.0| 200 9.1 13.1 ] 143 4.1 6.1
I'sp, | -0.2 23.0 228 | 240 180 236/| 303 6.9 16.0| 294 3.0 11.6
Total 534.7 360.3 293.3 218.9
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Figure H-29: MSE across sample sizes, binomial outcome, small values changed to
zero, with K =3, p=17, ¢ = 2.
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Table H-54: Simulation 10 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =3, p=2,¢=2, m = 0.5, my = 0.3, 13 = 0.2,
B; = (0.95,0.60), B, = (—0.85,—0.15), B3 = (—0.30,—0.90), *T = (0.95,0.85,
1.15), 3" =(0.70,-0.70,0.80), and ;' = (1.75,0.00,0.85). Oracle model.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -21.9 0.6 541-226 04 5.5 1-227 0.3 5.5 1-221 0.2 5.1
o 72 1.0 1.5 9.0 0.9 1.7 105 0.7 1.8 | 10.0 04 1.4
Bio| 43.0 109 29.2| 370 33 17.0| 426 2.2 204 | 405 18 181
b1 | 59.2 220 56.8| 594 87 439| 605 7.2 438 | 57.0 59 383
'y | -16.7 228 254 |-21.3 57 102|-21.9 27 7.5 -21.2 2.0 6.5
I'yo | -12.7 319 332 |-15.7 212 234| -99 92 10.1]|-11.9 5.7 7.1
' | -248 224 283 |-186 7.8 11.1|-153 2.5 48 [ -13.2 14 3.2
B | 239 81 13.7| 307 54 148 290 3.1 115 281 24 103
Bor | -9.7 13.1 14.0| -9.0 5.6 6.3 |-148 3.9 6.0 |-144 2.7 4.7
I'sy | 16.0 101 12.5| 208 6.7 11.0] 198 438 86| 19.7 2.7 6.6
Pop | 27.7 195 270 29.7 128 21.5| 288 56 139 30.3 4.3 134
Iy | -92 154 16.1 4.3 4.0 4.1 105 1.8 28| 124 1.2 2.7
B30 | 24.8 140 200| 248 74 135 265 55 125 | 249 54 115
B3 | 43.9 20.7 398 | 466 78 295]| 541 87 378 50.6 54 310
I';; | -33.6 164 276 |-25.1 124 18.6 |-229 10.1 152 |-28.2 5.8 13.6
32 | 11.7 25.0 26.2| 170 133 16.0| 151 81 103 | 153 4.7 7.0
I3 70 172 175 | 249 11.3 174 | 296 6.8 155 31.3 3.7 135
Total 394.3 265.4 228.0 193.9
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Figure H-30: MSE across sample sizes, binomial outcome, oracle model, with K = 3,
p=7q=2
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Table H-55: Simulation 11 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =3, p =17, ¢ =2, m; = 0.5, my = 0.3, m3 =
0.2, ﬁlT = (0.95,0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00,0.00), 5; = (—0.85,—0.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00), [ﬂ = (—0.30,—-0.90, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,0.00), 3" = (0.95,0.85,1.15), 5" = (0.70,
—0.70,0.80), and 3" = (1.75,0.00,0.85). No penalty, part 1.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -154 1.4 3.8 1-14.3 0.8 29 |-13.2 0.5 22 1-13.5 0.3 2.1
m | -1.3 1.4 141 -24 0.9 09| -23 0.6 06| -3.3 0.5 0.6
b | 19.3 16.1 19.6 | 13.0 4.8 6.5 14.3 3.2 5.2 | 16.7 2.7 5.4
B | 345 38.7 50.2] 188 13.6 17.0| 19.2 5.8 94| 24.3 57 11.6
Bi2 1.0 3.3 3.2 04 0.8 081 -0.2 0.3 03] -0.2 0.2 0.2
B13 0.9 27 2.7 1.1 0.8 08| -0.5 04 04| -0.1 0.2 0.2
Bia 1.9 28 28 1 -0.3 0.7 0.7 -0.2 0.3 0.3 0.0 0.1 0.1
Bis | -1.8 24 24| -0.3 0.7 07 -0.8 0.3 03| -0.7 0.2 0.2
Bi| -3.1 26 27| -05 06 06| 00 03 03| 04 01 0.1
Bz 0.5 24 2.4 0.3 0.7 0.7 -0.7 0.3 03| -0.3 0.1 0.1
Bis 0.1 2.3 2.2 1.8 0.7 0.7 0.8 0.3 0.3 04 0.1 0.1
Bro 0.3 1.7 1.6 1.6 0.5 0.6 0.7 0.3 0.3 0.0 0.1 0.1
Bio | -1.7 25 25| -1.4 0.8 08| -0.1 04 04 -0.3 0.1 0.1
Bt 0.2 2.7 27| -1.7 0.6 07 -0.1 0.3 03| -0.1 0.2 0.2
' 5.5 17.8 17.9 04 6.9 6.9 -1.0 25 25| -42 1.3 1.5
T 0.0 50.2 49.7| 158 15.0 17.3| 187 6.0 9.4 8.0 6.7 7.2
I's [ -38.2 23.8 38.1 -8.8 8.2 89| -7.8 25 3.1 -56 1.2 1.5
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Table H-56: Simulation 11 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =3, p =17, ¢ =2, m; = 0.5, my = 0.3, m13 =
0.2, BlT = (0.95,0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00,0.00), BQT = (—0.85,—0.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00), ﬁ; = (—0.30,—-0.90, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), *" = (0.95,0.85,1.15), 5" = (0.70,
—0.70,0.80), and 3" = (1.75,0.00,0.85). No penalty, part 2.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
B | 15.7 164 188 | 157 9.7 121 | 149 4.3 6.4 152 2.3 4.6
b1 | -10.6 239 248 | -13.1 132 148 | -16.3 5.7 8.3 |-17.3 3.6 6.5
B2z 0.1 3.5 3.5 -04 1.7 1.7 -04 0.8 0.7 -0.8 04 0.4
Bog | -0.1 47 46| 10 13 13| -07 04 04| -06 03 0.3
Boa 04 3.6 351 07 14 14| -04 0.6 06| -0.3 0.3 0.3
Bas | -0.6 4.0 4.0 20 1.1 1.1 -0.3 0.5 0.5 -0.8 0.2 0.2
Bas | -0.1 4.8 4.7 -0.2 14 1.3 0.1 04 0.4 1.1 0.3 0.3
Bor | -1.5 2.0 2.0 09 1.5 1.5 0.3 04 04| -04 04 0.4
Bag | -0.7 4.3 4.2 21 1.1 1.1 1.2 05 0.5 0.8 0.3 0.3
Bag | -1.2 3.3 33| -03 1.2 1.2 -05 04 04| -0.1 0.3 0.3
Baio 34 3.1 3.2 1.0 1.6 1.6 1.0 04 0.4 0.3 0.2 0.2
Ba11 1.3 28 2.8 02 1.1 1.1 1.1 0.5 0.5 0.0 0.3 0.3
oy 2.6 184 18.2 91 83 9.0 4.3 3.7 3.9 25 20 2.1
Iop | 193 36.6 40.0| 125 17.7 19.1 3.5 9.2 9.2 2.2 5.2 5.2
Iy | -34.0 202 316 |-276 11.6 19.1 |-184 5.7 91| -91 28 3.6
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Table H-57: Simulation 11 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =3, p =17, ¢ =2, m; = 0.5, my = 0.3, m13 =
0.2, BIT = (0.95,0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00,0.00), BQT = (—0.85,—0.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00), ﬁ; = (—0.30,—-0.90, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), *" = (0.95,0.85,1.15), 5" = (0.70,
—0.70,0.80), and 3" = (1.75,0.00,0.85). No penalty, part 3.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
B30 | 200 27.7 31.5] 17.0 178 206| 181 7.7 109| 154 3.9 6.3
B3 | 44.1 21.3 405| 573 16.0 48.7| 586 7.2 414 | 554 4.4 350
B2 | -0.2 3.3 33| -05 1.3 1.3 06 1.0 1.0 09 04 0.4
Bs3 | -0.2 28 27| -05 14 14 1.8 09 1.0 0.8 04 0.4
B34 1.7 22 2.2 1.2 1.0 1.0 09 0.9 0.9 0.0 04 0.4
Bss 1.0 3.1 3.1 -22 1.2 1.2 -0.8 0.8 0.8 0.6 04 0.4
Bs6 06 24 2.4 1.0 1.3 1.3 0.5 0.6 06| -1.3 04 0.4
B37 40 3.1 3.2 0.0 1.1 1.1 04 0.7 07| -02 04 0.4
fss | 1.3 29 29| -1.0 1.3 1.3 -0.7 06 06| -1.2 03 0.3
B39 0.9 29 29| -02 1.1 1.1 0.7 0.8 0.8 0.2 02 0.2
B310 0.5 4.0 3.9 0.5 1.1 1.1 -0.8 0.6 06| -04 04 0.4
Ba11 | -1.6 3.0 30| -03 1.0 1.0| -1.0 0.7 0.7 -09 04 0.4
I's; 1-39.0 396 544|-299 17.0 258 (-223 7.6 125 |-23.0 3.0 8.2
' | 15.8 351  37.2 9.1 143 15.0 56 6.4 6.6 3.8 2.6 2.7
I's; | -10.6 28.2 29.1 93 146 154 | 233 84 13.7| 246 3.0 9.1
Total 597.4 292.2 170.4 121.5
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Figure H-31: MSE across sample sizes, binomial outcome, no penalty, with K = 3,
p=17,q=2.

295



Table H-58: Simulation 11 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =3, p =17, ¢ =2, m; = 0.5, my = 0.3, m3 =
0.2, ﬁlT = (0.95,0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00,0.00), 5; = (—0.85,—0.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00), ﬁ§ = (—0.30,—-0.90, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,0.00), 3" = (0.95,0.85,1.15), 5" = (0.70,
—0.70,0.80), and 3" = (1.75,0.00,0.85). Small values changed to zero, part 1.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -154 1.4 3.8 1-14.3 0.8 29 |-13.2 0.5 22 1-13.5 0.3 2.1
m | -1.3 1.4 141 -24 0.9 09| -23 0.6 06| -3.3 0.5 0.6
b | 19.3 16.1 19.6 | 13.0 4.8 6.5 14.3 3.2 5.2 | 16.7 2.7 5.4
B | 345 38.7 50.2] 188 13.6 17.0| 19.2 5.8 94| 24.3 57 11.6
fia| 11 33 32| 04 08 08| -02 03 03] -03 02 02
B13 0.9 27 2.7 1.1 0.8 08| -0.5 04 04| -0.1 0.2 0.2
fua| 19 28 28| -03 07 07| -02 03 03| 01 01 0.1
Bis | -1.8 24 24| -0.3 0.7 07 -0.8 0.3 03| -0.8 0.2 0.2
Bi| -3.1 26 27| -05 06 06| 00 03 03| 04 01 0.1
Bz 0.5 24 2.4 0.3 0.7 0.7 -0.7 0.3 03| -0.3 0.1 0.1
fis| 01 23 22| 18 07 07| 08 03 03| 03 01 0.1
Bro 0.3 1.7 1.6 1.6 0.5 0.6 0.7 0.3 0.3 0.0 0.1 0.1
Bio | -1.7 25 25| -1.4 0.8 08| -0.1 04 04 -0.3 0.1 0.1
Bt 0.2 2.7 27| -1.7 0.6 07 -0.1 0.3 03| -0.1 0.2 0.2
' 5.5 17.8 17.9 04 6.9 6.9 -1.0 25 25| -42 1.3 1.5
T 0.0 50.2 49.7| 158 15.0 17.3| 187 6.0 9.4 8.0 6.7 7.2
I's [ -38.2 23.8 38.1 -8.8 8.2 89| -7.8 25 3.1 -56 1.2 1.5
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Table H-59: Simulation 11 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =3, p =17, ¢ =2, m; = 0.5, my = 0.3, m13 =
0.2, BlT = (0.95,0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00,0.00), BQT = (—0.85,—0.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00), ﬁ; = (—0.30,—-0.90, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), *" = (0.95,0.85,1.15), 5" = (0.70,
—0.70,0.80), and 3" = (1.75,0.00,0.85). Small values changed to zero, part 2.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
B | 15.7 164 188 | 157 9.7 121 | 149 4.3 6.4 152 23 4.6
b1 | -10.6 239 248 | -13.1 132 148 | -16.3 5.7 8.3 |-17.3 3.6 6.5
Bap| 01 35 35| -04 17 17| -03 07 07| -08 04 04
Bog | -0.1 47 46| 10 13 13| -07 04 04| -06 03 0.3
Boa 04 3.6 351 07 14 14| -04 0.6 06| -0.3 0.3 0.3
Bas | -0.6 4.0 4.0 20 1.1 1.1 -0.2 0.5 0.5 -0.8 0.2 0.2
Bas | -0.1 4.8 4.7 -03 14 1.3 0.0 04 0.4 1.1 0.3 0.3
Bor | -1.5 2.0 2.0 09 1.5 1.5 0.3 04 04| -04 04 0.4
Bag | -0.7 4.3 4.2 20 1.1 1.1 1.2 05 0.5 0.8 0.3 0.3
Bag | -1.2 3.3 33| -03 1.2 1.2 -05 04 04| -0.1 0.3 0.3
Baio 34 3.1 3.2 1.0 1.6 1.6 1.0 04 0.4 0.3 0.2 0.2
Ba11 1.3 28 2.8 02 1.1 1.1 1.1 0.5 0.5 0.0 0.3 0.3
'y 2.6 184 182 91 83 9.0 4.3 3.7 3.9 25 20 2.1
Iop | 193 36.6 40.0| 125 17.7 19.1 3.5 9.2 9.2 2.2 5.2 5.2
Iy | -34.0 202 316 |-276 11.6 19.1 |-184 5.7 91| -91 28 3.6
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Table H-60: Simulation 11 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =3, p =17, ¢ =2, m; = 0.5, my = 0.3, m13 =
0.2, BlT = (0.95,0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00,0.00), BQT = (—0.85,—0.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00), ﬁ; = (—0.30,—-0.90, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), *" = (0.95,0.85,1.15), 5" = (0.70,
—0.70,0.80), and 3" = (1.75,0.00,0.85). Small values changed to zero, part 3.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
B30 | 200 27.7 31.5] 17.0 178 206| 181 7.7 109| 154 3.9 6.3
B3| 44.1 21.2  405| 573 16.0 48.7| 586 7.2 414| 554 4.4 350
B2 | -0.2 3.3 33| -05 1.3 1.3 06 1.0 1.0 09 04 0.4
Bs3 | -0.2 28 27 -06 14 1.4 1.7 09 1.0 0.9 04 0.4
B34 1.7 22 2.2 1.1 1.0 1.0 0.8 0.9 0.9 0.0 04 0.4
Bss 1.0 3.1 3.1 -22 1.2 1.2 -0.8 0.8 0.8 0.6 04 0.4
Bs6 06 24 2.4 1.0 1.3 1.3 04 0.6 06| -1.3 04 0.4
B37 4.0 3.1 3.2 0.0 1.1 1.1 04 0.7 07| -02 04 0.4
fss | 1.3 29 29| -1.0 1.3 1.3 -0.7 06 06| -1.3 0.3 0.3
B39 0.9 29 29| -02 1.1 1.1 0.7 0.8 0.8 0.2 02 0.2
B310 0.5 4.0 3.9 0.5 1.1 1.1 -0.8 0.6 06| -04 04 0.4
Ba11 | -1.6 3.0 30| -03 1.0 1.0 -09 0.7 0.7 -09 04 0.4
I's; 1-39.0 396 544|-299 17.0 258 (-223 7.6 125 |-23.0 3.0 8.2
' | 15.8 351  37.2 9.1 143 15.0 56 6.4 6.6 3.8 2.6 2.7
I';p | -10.6 28.2  29.1 93 146 154 | 233 84 13.7| 246 3.0 9.1
Total 597.4 292.2 170.4 121.4
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MSE Across Sample Sizes, Binomial Scenario 5
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Figure H-32: MSE across sample sizes, binomial outcome, small values changed to
zero, with K =3, p =17, ¢ = 2.

299



Table H-61: Simulation 11 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =3, p=2,q¢ =2, m = 0.5, my = 0.3, 13 = 0.2,
B = (0.95,0.60), B, = (—0.85,—0.15), B3 = (—0.30,-0.90), *' = (0.95,0.85,
1.15), 3T =(0.70,—-0.70,0.80), and 3" = (1.75,0.00,0.85). Oracle model.
n n =100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -12.7 0.8 24 1-128 0.5 211(-119 0.3 1.71-124 0.3 1.8
o 1.2 0.7 0.7 0.2 0.5 05| -1.3 04 0.4 0.7 04 0.4
B | 142 78 97| 139 36 55| 151 23 46| 184 22 55
G| 26.1 152 21.8| 23.0 81 13.3] 206 5.1 93| 242 39 9.7
'p| -50 7.5 771 49 3.5 3.7 27 20 20| -59 1.5 1.9
Typ0 5.0 26.2 26.2 83 96 102 114 56 6.9 3.3 4.3 4.3
' | -23.3 128 181 | -7.3 4.5 5.0| -53 2.2 25| -34 09 1.0
By | 151 11.0 13.1| 151 5.1 73] 139 26 44| 174 1.7 4.7
Boy | -11.5 124 136 |-180 7.8 109|-17.0 46 75[-201 21 6.1
Iy 7.5 126 13.1 48 39 4.0 43 2.1 2.2 42 09 1.1
a1 6.5 23.1 23.3 5.7 109 11.1 0.0 8.1 8.0 5.1 4.8 5.1
Iy | -25.9 15.0 21.6|-153 6.7 9.0|-11.8 3.2 45| -41 15 1.6
B | 221 259 30.5| 18.2 14.0 171 | 147 5.7 781 13.2 3.2 4.9
B3| 326 200 30.5| 489 81 319| 545 47 344| 520 3.2 30.2
I's; | -26.3 364 43.0|-20.1 24.0 279 ]|-19.7 5.3 9.11]-16.9 3.0 5.8
[312 3.1 395 39.2 9.7 139 14.7 45 4.2 4.4 3.7 24 2.5
['39 6.8 309 31.1| 179 11.1 142| 248 6.5 126 | 26.0 44 11.1
Total 345.7 188.5 122.4 97.8
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Figure H-33: MSE across sample sizes, binomial outcome, oracle model, with K = 3,
p=17,q=2.
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Table H-62: Simulation 12 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =3, p =19, ¢ =5, my = 0.5, 1y = 0.3, 13 = 0.2,
B, = (0.95,0.60, —0.65, —0.25,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,0.00), By = (—0.85, —0.15, —0.75,0.10, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), B3 = (—0.30, —0.90,0.80, —0.25,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), *T =
(0.95,0.85,1.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), 3" =
(0.70,—0.70,0.80, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and

g‘r = (1.75,0.00,0.85,0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). No penalty, part 1.
n n =100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -81 0.9 1.5 -64 0.5 09| -5.7 0.3 0.6 | -5.0 0.2 0.4
Ty 2.5 0.7 0.7 3.3 04 0.5 43 02 0.4 45 0.1 0.3

Lo | 166 14.6 172 | 181 3.6 6.8 175 2.2 52| 144 14 3.5
B | 187 237 270 149 7.3 95| 13.7 3.9 57 102 2.3 3.3
Bz | -3.5 3.6 3.6 -32 09 10| -14 04 04| -1.3 0.1 0.2
B3 0.8 1.5 1.5 0.6 04 0.4 1.3 0.2 0.2 0.7 0.1 0.1
Bia | -0.7 1.3 1.3] -08 0.5 0.5 0.1 0.2 02| -0.1 0.1 0.1
Bis | -0.4 1.6 1.6 0.2 04 0.4 04 0.1 0.1 0.3 0.1 0.1
Bis | -0.3 1.6 1.6 0.0 0.5 04| -0.2 0.1 0.1] -0.3 0.1 0.1
Gz | -0.8 1.7 1.7 0.0 04 04| -0.1 0.2 0.2 0.0 0.1 0.1
Bis | -3.0 1.9 20| -04 0.3 03] -0.5 0.2 02| -04 0.1 0.1
Bro 0.8 1.8 1.8 0.1 0.3 0.3 0.3 0.1 0.1 -0.1 0.1 0.1
Bio| 05 14 14| -05 04 03] -0.2 0.2 0.2 0.0 0.1 0.1
Bt 1.1 1.3 1.3 0.0 0.3 0.3 0.3 0.1 0.1] -0.3 0.1 0.1
Bz 0.2 1.5 1.5 -0.8 0.3 03] -0.1 0.2 0.2 0.1 0.1 0.1
B3 1.0 1.8 1.8 0.6 04 0.4 0.2 0.2 0.1 -0.1 0.1 0.1
I'yy | -10.0 125 134 |-15.0 2.8 51 1-135 1.2 3.0]-123 0.6 2.1
I'ig | -164 266 29.1| -95 7.3 8.2 | -11.7 5.2 6.5 -7.4 22 2.8
I's | -23.0 153 204 | -9.2 29 3.7 -1.9 1.3 1.3 1.3 0.8 0.8
T3 | -14 4.0 4.0 0.4 1.0 1.0 09 0.5 0.5 0.1 0.2 0.2
To3 3.0 29 3.0 -04 1.6 16| -09 04 04| -0.5 0.1 0.1
T3 43 1.0 1.1 45 0.6 0.8 44 04 0.6 3.6 0.2 0.3
I | -73 21 26| -3.8 0.8 09| -24 04 05| -1.2 0.2 0.2
I'ioa 2.3 20 2.0 0.0 0.6 0.6 -0.8 0.3 0.3| -0.7 0.1 0.1
I'isa | -0.5 0.3 0.3 0.3 0.3 03| -1.1 0.3 03| -0.7 0.2 0.2
Ty 0.3 0.0 0.0 1.6 0.2 0.2 2.5 0.2 0.2 3.7 0.2 0.4
Tis 0.0 1.6 16| -0.1 0.5 0.5 0.0 0.3 0.3 0.2 0.1 0.1
Tio5 0.7 21 211 -09 05 0.5 -0.6 0.3 03| -0.1 0.1 0.1
I'iss 0.0 04 0.4 -0.3 0.2 02| -0.5 0.3 0.3 0.5 0.2 0.2
T | -0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1] -0.5 0.1 0.1
Ti5 0.0 0.0 0.0 0.5 0.1 0.1 0.7 0.1 0.1 1.3 0.1 0.1
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Table H-63: Simulation 12 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =3, p =19, ¢ =5, m = 0.5, 1y = 0.3, 13 = 0.2,
B, = (0.95,0.60,—0.65, —0.25,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,0.00), By = (—0.85, —0.15, —0.75,0.10,0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), ,8;; = (—0.30,—0.90,0.80, —0.25,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), 3" =
(0.95,0.85,1.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,0.00), 3" =
(0.70,—0.70, 0.80, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and

;T = (1.75,0.00,0.85,0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). No penalty, part 2.
n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
Bao | 235 91 145] 79 4.2 4.8 | 6.2 2.0 24| 3.3 1.0 1.1
Bor | -124 158 172 ] -6.3 6.2 6.5 | -6.3 3.4 3.8 | -5.2 1.8 2.1
Bao 1.8 4.0 39| -20 14 1.5 ] -0.2 0.3 0.3| 0.3 0.2 0.2
Bos | -12.1 2.5 39| -6.1 038 1.1 ] -5.8 0.3 0.6 | -4.8 0.1 0.4
Bos | -1.3 22 21| -02 0.5 0.5 | -0.7 0.2 0.2 -0.3 0.1 0.1
Bas -1.0 2.1 21| -02 04 04| -0.6 0.2 0.2] -04 0.1 0.1
Bas 2.9 2.2 2.2 1.2 0.5 0.5 0.8 0.2 0.2 0.8 0.1 0.1
By | 05 22 21|08 05 05| 01 02 02]-03 01 0.1
Bas| -03 16 16| -09 05 051 -0.3 0.2 02| 0.2 0.1 0.1
Be | 06 22 22| 1.1 06 06| 06 02 02| 04 01 0.1

Ba10 1.0 22 22| -0.7 0.5 05| 0.2 0.2 02| 0.3 0.1 0.1
Ba11 1.9 21 21| -03 0.5 0.5 -0.2 0.2 0.2 0.0 0.1 0.1
Barz | -0.1 14 1.3 -0.1 0.7 0.7 0.3 0.2 0.2 0.0 0.1 0.1
Bo13 0.2 1.8 1.8 -0.6 0.6 0.6 | -0.8 0.2 0.2 -0.2 0.1 0.1
'y | -5.0 9.1 93| -44 27 2.8 | -3.6 1.3 14| -2.9 0.6 0.7
I35 | 352 21.3 335|126 105 120| 9.2 3.7 45| 9.9 2.1 3.1
'y | -28.0 11.6 193 | -84 6.4 71| -0.6 1.7 1.7 2.4 0.9 1.0
Iy15| 104 7.3 83| 32 1.3 14| 1.8 0.4 04| 1.9 0.2 0.2
o3 2.9 3.3 3.4 1.4 1.6 1.6 1.4 0.5 0.5 1.2 0.3 0.3
T3 4.9 1.2 14 57 0.8 1.1 5.9 0.5 0.8 5.6 0.4 0.7
I'py | -8.0 3.1 3.7 -50 09 1.2 | -5.0 0.6 0.8 -3.5 0.2 0.3
| P! 23 1.9 1.9 -01 0.7 0.7 -0.5 0.5 0.5 -0.7 0.2 0.2
Iazy | -0.9 0.6 06| -1.5 1.0 1.0 | -0.8 0.6 0.6 | -1.8 0.4 0.5
Iy 04 0.1 01| 27 04 05| 3.7 0.4 0.5 5.0 0.3 0.6
a5 1.5 3.1 31| 04 038 0.8| 0.5 0.4 04| 0.2 0.2 0.2
995 1.2 14 14| 0.6 0.6 06| 1.0 0.4 04| 0.6 0.2 0.2
Iaz5 | -1.1 0.2 03| 00 0.3 0.3 -0.2 0.3 0.3 | -0.7 0.2 0.2
[ays 0.2 0.0 0.0 -0.3 0.1 0.1 -0.1 0.1 0.1 -0.1 0.1 0.1
a5 0.1 0.0 00| 02 0.0 00| 04 <01 <01] 07 <01 <01
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Table H-64: Simulation 12 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =3, p =19, ¢ =5, my = 0.5, 1y = 0.3, 13 = 0.2,
B, = (0.95,0.60, —0.65, —0.25,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,0.00), By = (—0.85, —0.15, —0.75,0.10, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), B3 = (—0.30, —0.90,0.80, —0.25,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), *T =
(0.95,0.85,1.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), 3" =
(0.70,—0.70,0.80, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and

g‘r = (1.75,0.00,0.85,0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). No penalty, part 3.
n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
B30 | 10.4 246 25.5 0.2 107 106| 1.6 5.0 50| 34 29 3.0
B3| 13.8 322 338 | 11.7 13.6 149 | 5.7 4.9 52| 3.7 17 1.8
B30 | -41.3 157 32.6 | -180 88 12.0| -8.1 3.9 451 -26 0.9 0.9
B33 3.0 4.7 4.8 1.1 1.2 12| 14 0.6 06 01 0.3 0.2
Bss | -5.2 58 6.1 -24 1.3 14| 0.1 0.5 0.5 02 0.2 0.2
B35 5.1 44 4.6 3.6 1.3 14| 1.6 0.4 05| 06 0.2 0.2
fOs6 | 4.8 6.9 7.1 14 15 15| 1.3 0.5 05| 03 02 0.2
Bsr | -1.7 4.8 4.8 | -02 1.1 1.1] -04 0.4 041 -0.1 0.1 0.1
B3 0.0 6.0 59| -0.1 1.3 1.3 ] -0.2 0.5 0.5 0.0 0.3 0.3
B39 | -2.6 6.8 6.8 -27 1.0 1.0 | -0.7 0.4 041 -05 0.2 0.2
B30 | -1.8 4.6 4.6 06 14 14| 0.0 0.5 0.5 03 0.2 0.2
Bsin | -0.3 4.0 40| -1.0 1.0 1.0] -1.2 0.5 05| -0.1 02 0.2
B312 4.7 49 5.1 0.8 1.3 1.3 05 0.5 0.5 03 0.2 0.2
B33 | -2.8 4.1 411 -14 1.1 1.1] -04 0.4 04| 06 0.2 0.2
I's; [ -16.5 28.1 305 | -42 138 138 | 1.2 4.9 491 41 1.9 2.1

310 74 383 385 | -3.0 127 127| 0.5 5.7 571 -0.3 2.3 2.3
I'ss | -9.5 322 32.7 1.6 131 13.0]| -0.3 4.0 39| -02 1.6 1.6
a3 | -149 20.3 223 | -0.8 4.8 48 | -1.8 2.2 231 -09 09 0.9
33 | -0.7 139 13.7| -48 76 77| -4.1 2.6 2.8 | -3.8 0.9 1.1
I3 83 26 32| 184 4.2 7.6 | 15.8 2.9 541131 1.2 2.9
34| -0.8 9.5 94| -1.8 138 1.8 0.3 1.0 1.0 03 04 0.4
Isos | -09 5.3 53| -0.2 20 2.0 0.2 0.9 09| 1.0 04 0.4
s34 | -16 04 05| -05 0.7 0.7 -0.6 0.6 0.6 -0.7 05 0.5
I'sy 0.3 0.0 0.0 1.6 0.3 0.3 25 0.3 04| 32 0.3 0.4
I35 | -6.7 7.4 78| -39 23 2.4 | -1.9 0.9 1.0] -0.8 04 0.4
Iso5 | -2.6 4.9 491 -02 1.2 1.2 0.9 0.6 0.6 | -0.1 0.3 0.3
Iaz5 | -0.7 0.8 08| -03 038 0.7 -0.7 0.7 0.7/ 07 05 0.5
I'sys | -0.3 0.0 0.0 -0.8 0.2 0.3 | -0.5 0.1 0.1 05 0.1 0.1
I35 0.2 0.0 0.0 1.0 0.2 02 05 <01 <01 1.2 0.1 0.1
Total 612.6 217.2 100.9 51.1
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Figure H-34: MSE across sample sizes, binomial outcome, no penalty, with K = 3,
p=19, ¢ =5.
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Table H-65: Simulation 12 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =3, p =19, ¢ =5, my = 0.5, 1y = 0.3, 13 = 0.2,
B, = (0.95,0.60, —0.65, —0.25,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,0.00), By = (—0.85, —0.15, —0.75,0.10, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), B3 = (—0.30, —0.90,0.80, —0.25,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), *T =
(0.95,0.85,1.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), 3" =
(0.70,—0.70,0.80, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and

T = (1.75,0.00,0.85,0.00,0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). Small values changed to zero, part 1.
n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m| 81 09 15| 64 05 09| -5.7 03 06| -5.0 0.2 0.4
m | 25 07 07| 33 04 05| 43 02 04| 45 0.1 0.3
fo| 166 146 17.2] 181 3.6 6.8 | 175 22 52| 144 14 3.5
B | 187 237 270 149 74 95| 13.7 39 57| 102 2.3 3.3
fa| -35 36 36| -32 09 10| -14 04 04| -1.3 0.1 0.2
fis| 08 15 15| 06 04 04| 13 02 02| 07 0.1 0.1
B | 0.7 1.3 13| -08 05 05| 01 02 02| -0.1 0.1 0.1
fis| -04 16 16| 02 04 04| 04 01 01| 02 <01 <0.1
B | -03 16 16| 00 05 04| -02 01 01| -0.3 0.1 0.1
Gz | -08 1.7 17| 00 04 04| -01 02 02| -0.1 0.1 0.1
fis| 29 19 20| -04 03 03| -05 02 02| -04 0.1 0.1
fo| 08 1.8 18| 00 03 03| 03 01 01| -0.1 0.1 0.1
Bio | -05 14 14| -05 04 03| -02 02 02| 00 0.1 0.1
Bin 1.1 13 13] 00 03 03| 03 01 01] -03 0.1 0.1
Bz | 02 15 15| -08 03 03| -01 02 02| 0.1 0.1 0.1
Bus| 10 1.8 18| 06 04 04| 02 01 01| -01 0.1 0.1
Iy |-10.0 125 134 |-150 28 511(-13.5 1.2 3.0]-12.3 0.6 2.1
Ty | -164 266 291 -95 73 82|[-11.7 52 65| -74 2.2 2.8
' |-230 153 204| -92 29 37| -19 13 13| 1.3 0.8 0.8
3| -14 40 40| 04 10 10| 09 05 05| 0.1 0.2 0.2
I | 3.0 29 30| -04 16 16| -09 04 04| -05 0.1 0.1
I'is| 43 10 11| 45 06 08| 44 04 06| 3.6 0.2 0.3
Tyg| -73 21 26| -38 08 09| -24 04 05| -1.2 0.2 0.2
I'ps | 23 20 20| 00 06 06| -08 03 03] -0.7 0.1 0.1
i34 -05 03 03] 03 03 03] -1.1 03 03] -07 0.2 0.2
r',| 03 00 00| 16 02 02| 25 02 02| 3.7 0.2 0.4
I'ys| 00 16 16| -01 05 05] 00 03 03] 02 0.1 0.1
I'sps | 07 21 21| -09 05 05| -06 03 03] -0.1 0.1 0.1
I3/ 00 04 04] -03 02 02] -05 03 03] 05 0.2 0.2
I'ys | -0 00 00| 01 01 01] 01 01 01] -05 0.1 0.1
I''s| 00 00 00| 05 01 01| 07 01 0.1 1.3 0.1 0.1
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Table H-66: Simulation 12 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =3, p =19, ¢ =5, m = 0.5, 1y = 0.3, 13 = 0.2,
B, = (0.95,0.60,—0.65, —0.25,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,0.00), By = (—0.85, —0.15, —0.75,0.10,0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), ,8;; = (—0.30,—0.90,0.80, —0.25,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), 3" =
(0.95,0.85,1.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,0.00), 3" =
(0.70,—0.70, 0.80, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and

;T = (1.75,0.00,0.85,0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). Small values changed to zero, part 2.
n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
Boo | 235 91 145] 79 42 48| 6.2 2.0 24| 3.3 1.0 1.1
Bo1 | -12.5 158 172 ] -6.3 62 6.5 -6.3 3.4 3.8 | -5.2 1.8 2.1
Bog | 1.8 40 39| -20 14 15| -02 0.3 03] 0.3 0.2 0.2
Bog | -121 25 39| 6.1 08 1.1 -59 0.3 0.6 | -4.8 0.1 0.4
Boa| -1.3 22 21| -03 05 05| -07 0.2 0.2 -0.3 0.1 0.1
Bos | -09 21 21| -01 04 04| -06 0.2 0.2 ] -0.3 0.1 0.1
Bog | 29 22 22| 12 05 05| 08 0.2 02| 08 0.1 0.1
Bor | 05 22 21| -08 05 05| 00 0.2 0.2 -0.3 0.1 0.1
Bos | -03 16 16| -1.0 05 05| -0.3 0.2 02| 02 0.1 0.1
Bag | 06 22 22| 1.1 06 06| 06 0.2 02| 04 0.1 0.1
Borg| 11 22 22| -07 05 05| 0.1 0.2 02| 0.3 0.1 0.1
Born | 1.9 21 21| -03 05 05| -0.2 0.2 02| 0.0 0.1 0.1
Bo1a| 0.1 14 13| -01 07 07| 03 0.2 02| 0.0 0.1 0.1
Bo1s| 02 18 18| -06 06 06/ -0.8 0.2 0.2 -0.2 0.1 0.1
Iy | -5.0 91 93| -44 27 28] -36 1.3 14| -2.9 0.6 0.7
oo | 352 21.3 335126 105 120 9.2 3.7 45| 99 2.1 3.1
Iy | -28.0 116 193] -84 64 7.1 -0.6 1.7 1.7 24 0.9 1.0
I3 | 104 73 83| 32 13 14| 18 0.4 04| 1.9 0.2 0.2
Igos | 29 33 34| 14 16 16| 14 0.5 05| 1.2 0.3 0.3
Iys | 49 12 14| 57 08 11| 59 0.5 08| 5.6 0.4 0.7
Iog | -80 31 37|-50 09 12/ -5.0 0.6 0.8 | -35 0.2 0.3
Ioos | 23 19 19]-01 07 07| -05 0.5 0.5 -0.7 0.2 0.2
Iosa | -09 06 06| -1.5 1.0 1.0/ -0.8 0.6 06| -1.8 0.4 0.5
I'ey| 04 01 01 27 04 05| 3.7 0.4 05| 5.0 0.3 0.6
Iy | 15 31 31| 04 08 08| 05 0.4 04| 02 0.2 0.2
o5 | 12 14 14| 06 06 06| 1.0 0.4 04| 06 0.2 0.2
Ios5 | -1.1 02 03] 00 03 03] -02 0.3 0.3 -0.7 0.2 0.2
o5 | 02 00 00]-03 01 0.1]-01 0.1 0.1 -0.1 0.1 0.1
I'ss| 01 00 00| 02 00 00| 04 <01 <01| 07 <01 <0.1
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Table H-67: Simulation 12 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =3, p =19, ¢ =5, my = 0.5, 1y = 0.3, 13 = 0.2,
B, = (0.95,0.60, —0.65, —0.25,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,0.00), By = (—0.85, —0.15, —0.75,0.10, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), B3 = (—0.30, —0.90,0.80, —0.25,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), *T =
(0.95,0.85,1.15,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), 3" =
(0.70,—0.70,0.80, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00), and

T = (1.75,0.00,0.85,0.00,0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00). Small values changed to zero, part 3.
n n = 100 n = 250 n = 500 n = 1000

Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
B30 | 10.4 246 25.5 0.2 107 106| 1.6 5.0 50| 34 29 3.0
B3| 13.8 322 338 | 11.7 13.7 149 | 5.7 4.9 52| 3.7 17 1.8
B30 | -41.3 157 32.6 | -180 88 12.0| -8.1 3.9 451 -26 0.9 0.9
B33 3.0 4.7 4.8 1.1 1.2 12| 14 0.6 06 01 0.3 0.2
Bss | -5.2 59 6.1 -24 1.3 14| 0.2 0.5 0.5 02 0.2 0.2
B35 5.1 44 4.6 3.6 1.3 14| 1.6 0.4 05| 06 0.2 0.2
fOs6 | 4.8 6.9 7.1 14 15 15| 1.3 0.5 05| 03 02 0.2
Bsr | -1.7 4.8 4.8 | -02 1.1 1.1] -04 0.4 041 -0.1 0.1 0.1
B3 0.1 6.0 59| -0.1 1.3 1.3 ] -0.2 0.5 0.5 0.1 0.3 0.3
B39 | -2.6 6.8 6.8 -27 1.0 1.0 | -0.7 0.4 041 -05 0.2 0.2
B30 | -1.8 4.6 4.6 06 14 14| 0.0 0.5 0.5 03 0.2 0.2
Bsin | -0.3 4.0 40| -1.0 1.0 1.0] -1.2 0.5 0.5 0.0 0.2 0.2
B312 4.7 49 5.1 0.8 1.3 1.3 05 0.5 05| 04 0.2 0.2
B33 | -2.8 4.1 411 -14 1.1 1.1] -04 0.4 04| 05 0.2 0.2
I's; [ -16.5 28.1 305 | -42 138 138 | 1.2 4.9 491 41 1.9 2.1

310 74 383 385 | -3.0 127 127| 0.5 5.7 571 -0.3 2.3 2.3
I'ss | -9.5 322 32.7 1.6 131 13.0]| -0.3 4.0 39| -02 1.6 1.6
a3 | -149 20.3 223 | -0.8 4.8 48 | -1.8 2.2 231 -09 09 0.9
33 | -0.7 139 13.7| -48 76 77| -4.1 2.6 2.8 | -3.8 0.9 1.1
I3 83 26 32| 184 4.2 7.6 | 15.8 2.9 541131 1.2 2.9
34| -0.8 9.5 94| -1.8 138 1.8 0.3 1.0 1.0 03 04 0.4
Isos | -09 5.3 53| -0.2 20 2.0 0.2 0.9 09| 1.0 04 0.4
s34 | -16 04 05| -05 0.7 0.7 -0.6 0.6 0.6 -0.7 05 0.5
I'sy 0.3 0.0 0.0 1.6 0.3 0.3 25 0.3 04| 32 0.3 0.4
I35 | -6.7 7.4 78| -39 23 2.4 | -1.9 0.9 1.0] -0.8 04 0.4
Iso5 | -2.6 4.9 491 -02 1.2 1.2 0.9 0.6 0.6 | -0.1 0.3 0.3
Iaz5 | -0.7 0.8 08| -03 038 0.7 -0.7 0.7 0.7/ 07 05 0.5
I'sys | -0.3 0.0 0.0 -0.8 0.2 0.3 | -0.5 0.1 0.1 05 0.1 0.1
I35 0.2 0.0 0.0 1.0 0.2 02 05 <01 <01 1.2 0.1 0.1
Total 612.6 217.2 100.9 51.1
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MSE Across Sample Sizes, Binomial Scenario 6
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Figure H-35: MSE across sample sizes, binomial outcome, small values changed to
zero, with K =3, p=19, ¢ = 5.
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MSE Across Sample Sizes, Binomial Scenario 6
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Figure H-36: MSE across sample sizes, binomial outcome, oracle model, with K = 3,
p=19, g =>5.
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Table H-68: Simulation 12 results multiplied by 100, averaged over 100 runs. Outcome
follows a binomial distribution with K =3, p=4, ¢ =2, m = 0.5, my = 0.3, 3 = 0.2,
B] = (0.95,0.60,-0.65,—0.25), By = (—0.85,—0.15,—0.75,0.10), B3 = (—0.30,
—0.90,0.80,—0.25), 1T = (0.95,0.85,1.15), 3' = (0.70,—0.70,0.80), and 3" =
(1.75,0.00,0.85). Oracle model.
n n = 100 n = 250 n = 500 n = 1000
Measure | Bias Var MSE | Bias Var MSE | Bias Var MSE | Bias Var MSE
m | -6.1 0.7 1.1 -58 0.3 06| -64 0.2 06| -6.5 0.1 0.5
o 6.2 0.8 1.1 6.2 0.3 0.6 6.7 0.1 0.6 6.8 0.1 0.5
B | 19.6 5.3 9.1 19.7 2.0 591 211 1.1 5.6 | 19.6 09 4.8
G| 185 11.3 146 | 163 3.9 6.5 185 1.8 5.2 181 14 4.6
B2 | -3.1 1.2 1.3 -20 0.5 05| -0.5 0.2 02| -0.3 0.1 0.1
Bis | -3.0 0.8 09| -25 0.3 03| -1.1 0.1 0.2 -09 0.1 0.1
'y | -12.8 5.9 7.5 (-12.3 2.2 3.71-11.8 1.0 24 1-11.8 04 1.8
I'o | -18.8 146 18.0|-16.6 6.1 8.8 | -18.1 2.7 59| -17.1 1.7 4.6
I'o| -79 84 9.0 -20 1.7 1.7 0.7 1.0 1.0 20 05 0.6
Bao | 16.2 5.8 8.4 9.5 2.1 3.0 102 1.0 2.0 83 0.5 1.2
Ba1 | -10.5 8.2 9.2 -85 34 4.11]-10.2 1.5 25 |-10.3 09 2.0
Paz | -5.8 2.1 241 -22 0.5 0.6 0.1 0.2 0.2 04 0.1 0.1
Bog | -3.1 1.8 1.9 -32 05 06| 43 0.2 04| -46 0.1 0.3
Ty | 25 44 4.4 03 1.3 1.3 0.8 0.5 0.5 0.7 0.3 0.3
oo | 11.9 152 16.5 83 5.6 6.2 6.6 2.1 2.5 8.0 0.9 1.5
Iy | -7.8 10.0 10.5 0.0 3.9 3.9 3.4 1.3 1.4 5.0 0.6 0.9
B30 27 193 192 | -25 6.1 6.1 -1.8 4.3 4.3 0.0 21 2.1
Bs1 | -2.3 149 148 0.3 5.5 5.4 0.9 22 2.2 09 09 0.9
P32 | 54 52 55| 44 1.3 15| 1.0 07 07| 05 03 03
Bz | -1.3 49 49| 07 10 10| 08 05 05| 00 02 02
I's; | -90 311 31.6| -5.3 8.8 90| -2.1 3.7 3.7 -1.1 1.7 1.7
319 6.2 225 227 -0.7 6.1 6.0 -1.7 24 24| 40 15 1.6
I'sp | -24.3 15.0 20.8| -6.6 4.6 5.0 -2.8 23 23] -25 1.1 1.2
Total 235.2 82.3 47.2 31.9
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APPENDIX I
Supplement to Chapter 4

I considered a number of additional possibilities for exploration of the MPLE
that I have not included in Chapter 4. I explore some of these in this appendix, while
others I leave to future work.

I.1 Choice of Starting Value

As previously stated, the choice of starting values when computing parameter
estimates for a FinMix GLMM is important. When calculating the MPLE, the
starting value that makes the most sense is the MLE. While it can be viewed as an
additional step to calculate the MLE, this is a step that may already be planned. For
example, the inverse of the MLE is a popular choice for the weights in ALASSO. To
calculate the MLE for the simulations in 4 I generated starting values in the same way
as for the simulations in Chapter 3. I also tried computing the parameter estimates
for the MPLE using these randomly generated starting value rather than the MLE. 1
found that using these starting values resulted in a significantly longer run time to
calculate the MPLE as the starting value was overall further away from the MPLE.
I.2 Hard Threshold

While LASSO, ALASSO, and SCAD are popular penalties, they are not the only
possible penalties. There are many penalties that are more complex, but one simple

penalty is the hard threshold (Antoniadis, 1997; Fan and Li, 2012). One desirable
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property of the hard threshold is that parameters are either shrunk to zero or are not
shrunk at all.

The hard penalty in a model where only fixed effects are penalised takes the

form
Pane (Ok) = X2 — (10k] — M) *1(10k] < Mg
with
0 o
0000 _ (15,1 — A I(1Bia] < Do)
OBkn
and
8 kh '

Similarly, if a penalty is applied to both the fixed and random effects, the penalty

becomes

P
= Z)‘ik — (1Bkn] = X)L (1Brn| < M)
h=1

q
+3 A2 = (ldkn] = )T (| < M)
h=1

and the partial derivatives are

0 0
p’\L(—) = =2(1Bkn| = i) L(|Ben| < M)
OBkn
and
M = —2(’dkh| — )\nk)[(’dkh’ < )\nk)'
Odyn
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The second derivatives of this penalty are equal to zero both with respect to Bxp, and
dip-
Thus, the non-zero diagonal elements of  , (Q,(:)) are

—2 % (1011] — M) L(1041] < Ake)
04 + €

Due to time constraints, I did not perform simulations using this penalty.
1.3 All Values of )\, Set to the Same Value

It would be convenient if the problem of finding an optimal value of A could
be simplified to finding one value, rather than a K dimensional vector of values.
However, Du et al. (2013) found that this simplification did not perform well in the
linear case, so there was not much hope that it would perform well in the GLMM
case. Because of time constraints, I did not execute these simulations.
I.4 Exploration of the Grid of Possible Values of A

The choice of the tuning parameter is a difficult problem, made more difficult in
the case of finite mixtures of regression models because one needs to find the optimal
value of \; for each subpopulation. As such, an exploration of the behaviour of the
BIC over different values of A is of interest. Because of time constraints, I could not

complete this exploration.
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APPENDIX J
Calculation of Standard Errors

J.1 Calculating Standard Errors for a Finite Mixture of Generalised Lin-
ear Mixed-Effect Model

When estimating parameters in a model, it is useful to include a measure
of the variability associated with a parameter estimate. Following from Louis
(1982); McLachlan and Peel (2000); McLachlan and Krishnan (2008); Khalili and
Vidyashankar (2018), I estimated the covariance matrix of the MLE, and then
extracted the standard errors from that matrix. This estimation of this matrix is
based on the second derivative of the complete data log-likelihood. This method is
popular for calculating the standard errors when the EM algorithm is used. While
this approach is not specific to finite mixtures of regression models, it is the standard
approach to calculating standard errors for finite mixture models, and was used in
Du et al. (2013). More specifically, as described in Khalili and Vidyashankar (2018),
the standard errors are the square roots of the diagonal elements of the inverse of the
empirical observed information matrix. The empirical observed information matrix is
used to approximate the observed information matrix. Note that I calculate standard
errors for the mixing parameters and the parameters that correspond to fixed effects
but not on parameters that correspond to random effects. The first step was to
calculate the gradient of the complete log-likelihood, I showed in Appendix D that

these derivatives exist. I represented the gradient of the complete log-likelihood as
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s(yi|Xs, Z;, ©) with

K
0
s(yilXi, Z;,©) = Z 726 log[mi [ (il X, Zs, 61)].

k=1
Next, I calculated the empirical observed information matrix

n

I,(©) = Z s(yilXi, Zi, ©)[s(yilX:, Z:, ©)] .

i=1
I then calculated the inverse of the empirical observed information matrix, I, '(©).
The standard errors are the square roots of the diagonal elements of the inverse of
the empirical observed information matrix.

As I did in Appendix B, I show here the details of this derivative for each element
of ®. As I described in the estimation of @, the values b; are unknown. As such,
I generated L potential values for b; from a ¢-dimensional multivariate standard

0

, , were used to approximate the

Gaussian distribution. These values, denoted b

integral over b;, and calculate f)(,]f)(yi|xi, Z;,0;). Recall that

K
0
— 00
)
= Y = {log[me] + log[£{¥ (yi[Xi, Z:, 6x)]}
- 00

K 9 K P
= T —= log(m) + T —= lo (k) X, Zi, O)].
kz:; k 26 g(m) ; k PY) g[fyz (yil k)
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Focusing on % log(7y), there are three cases to consider, % log(m,) = 0,Vh # k,

%log(ﬂk) = 0,VhVk, and %log(ﬂk) = - Thus,

Ko 9
E Thi—= log(m,) = | T&E=Di
2" 56 8(m)

Considering next the second part of this equation, % B(,lf) (vilXi, Zi, 01). Again,

there are three cases to consider. First, % f§k) (vilXi, Z;i,0) = 0,YhVE, second,

o8, 190 (¥ilXi. Zi. By, &) = 0,'%h # k. The last case to consider is 55 £y (¥i[Xi. Z:. By.

Because a GLMM is being considered,
f§]:)(Yi|Xi, Zi,Br, k) = /f}(,];)bi (vilXi, Zi, bi, By, 1) [ (by)db;
= /ﬁ I, wislxi, 225, b1, By, ) £ (bi)dbs.
j=1
I approximated this integral with

L n;
1 T I
S yilXi, Zi, By, k) & ZZHfg(,ij)|bi(yij|xijazijvbz()7/6ka k)-

=1 5=1
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Therefore,

%f§§)(Yi|xi,Z¢,5ka k) a,gki 1= 1H f”\b (yij|xij7zij7b('l) By, )
§§)(Yi|xiyzia/6ka k) LZl 1H 15:\'0 (yU|XZ]7ZZ]7bZ Brs k)

8,6k > TG4 ;Z\b (yZJ|XZJ?ZU7bz Br x)
> IG5 ;Z\b (3/21|X2J7Z237bz Br x)

Zz 16—%“ fy”\b (yij|xij7zij7bi Brs &)
ST £ Wil 2 b)), B &)

Using the product rule for more than two factors,

Q

l
8,3 H yzg|b yzj|Xij7Zij,b§)7/8k7 k)z

n; ni 0 ¢ ™ (i 2, B, Be, k)
k ! 9By, yi; s \Yid 1 Xijs Zigs D5 Py k
(l | f;ij)|bi(l/z‘jfxijazij;b§)ngk, k)) X E . y] z
Jj=1

j=1 fy”|b (yij|xij7zij7bz(')7/6k7 k)

In the case of a Poisson outcome,

Tij1
@
f <y2|X27Z27bz 7/67 k) Lij
%k w|b Y b = 72 (435 — exp(xi;8;, + 2i; b\))).
IO wilxi 2 b, By 1) 3 e
Yij|bi g | Xigs Bigys Py s MEs :
_J;l‘]p—

When a binomial outcome is considered,

Tij1
k !
%f;ij)|bi (Yij X5, 245, bz( )> Brs &) | T2 | iy (i — mag) exp(Xq By + 24 kbgl))
k I - _ ] :
f;ij)|bi (Yij1xij, 2ij, bz( )> B &) : 1 + exp(x;;8), + zi; k‘bz( ))
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Putting all of this together, I calculated s(y;|X;, Z;, ®), and therefore the standard
errors. Once I calculated the standard errors, following from Khalili and Vidyashankar

(2018), I computed the t-statistics with

tkh _ Bkh
SE(Brn)
or
b=k

and the p-value as 2 x P(t, < —|tgs|) or 2% P(t, < —|tx|).
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