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A. Abstract 

The relation between the structure of the genome and gene regulation is critical to normal 

and disease development, but the molecular details of how they are interconnected are still 

unknown. Chromatin conformation capture (Hi-C) studies discovered several layers of chromatin 

organization. However, the way those structures impact or are impacted by regulation is unclear. 

We thus wanted to clarify the links between chromatin architecture and transcription regulation. 

In this study, we use two types of domains, one having a structural definition and the other a 

functional definition and compare them to find their differences and similitudes. Topologically 

Associating Domains (TADs) have been selected to represent the genomic architecture. They have 

a more static nature and their boundaries have been suggested to limit the spread of regulatory 

signals. Co-expression Domains (CODs) were chosen to represent the aspects of gene regulation. 

CODs are defined as domains within which genes have correlated expression. By definition, CODs 

are thus very dynamic and more likely to change from cell to cell. 

In this study, we analyze the effect of TAD boundaries on nearby genes. Here we show 

that TADs and CODs have distinct functions and are delimited by different boundaries. We 

confirm that TAD boundaries disrupt co-expression. We also characterize COD boundaries and 

find that they seem to be marked by a switch of strand on which genes are located and they are 

independent of structural proteins. We use expression quantitative trait loci (eQTL) data to confirm 

the observations and find that genes affected by the same eQTL are preferentially located on the 

same strand and are less likely to be separated by barriers such as TAD boundaries. We thus 

propose a model for human cells in which the gene conformation impacts gene co-regulation. We 

suggest that strand position of genes affects their co-expression probability and the introduction of 

barrier elements further disrupts it. That model would serve as a simple principle to which more 

complex mechanisms may rely. 
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B. Résumé 

La relation entre la structure du génome et la régulation des gènes est critique au 

développement normal et à celui des maladies, mais on sait encore bien peu à propos des détails 

qui les relient au niveau moléculaire. Des études de capture de la conformation de la chromatine 

(Hi-C) ont découvert plusieurs couches d’organisation de la chromatine. Toutefois, il n’est pas 

clair de quelle manière ces structures impactent et sont impactées par la régulation. Nous voulions 

donc clarifier les liens entre l’architecture de la chromatine et la régulation de la transcription. 

Dans cette étude, nous utilisons deux types de domaines, l’un défini de manière structurellement 

et l’autre défini de manière fonctionnelle et les comparons pour trouver leurs différences et 

similitudes. Les “Topologically Associating Domains” (Domaines d’Association Topologique, 

TADs) ont été sélectionnés pour représenter l’architecture du génome. Ils ont une nature plus 

statique et il a été suggéré qu’ils limitent la propagation des signaux de régulation. Les “Co-

expression Domains” (Domaines, de Co-expression, CODs) ont été choisis pour représenter les 

aspects de la régulation des gènes. Les CODs sont définis comme étant des domaines au sein 

desquels les gènes ont une expression corrélée. Par définition, les CODs sont donc très dynamiques 

et plus enclins à changer d’une cellule à l’autre. 

Dans cette étude, nous analysons les effets des frontières de TAD sur les gènes adjacents. 

Ici nous montrons que les TADs et les CODs ont des fonctions distinctes et qu’ils sont délimités 

par des frontières différentes. Nous confirmons que les frontières de TAD perturbent la co-

expression. Nous caractérisons aussi les frontières de COD et trouvons qu’elles semblent marquées 

par le changement de brin sur lequel les gènes se situent et qu’elles sont indépendantes des 

protéines structurelles. Nous utilisons les données d’ “expression quantitative trait loci” (eQTL) 

pour confirmer les observations et trouvons que les gènes affectés par le même eQTL se situent 

préférentiellement sur le même brin et sont moins enclins à être séparés par des barrières telles que 

les frontières de TAD. Nous proposons donc un modèle pour les cellules humaines dans lequel la 

conformation des gènes impacte leur co-régulation. Nous suggérons que la position des gènes sur 

les différents brins affecte la probabilité qu’ils soient co-exprimés et que l’introduction d’éléments-

barrière diminue davantage celle-ci. Ce modèle servirait de principe de base sur lequel des 

mécanismes plus complexes pourraient reposer.   
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Chapter 1:  General introduction 

1.1 Elements of the Nucleus Architecture 

The nucleus is only a few microns in diameter, while the total length of DNA is around 2 

meters4. Chromosomes thus need to be greatly compacted and that compaction is achieved through 

several layers of architecture. The first level consists in sections of 146 base pairs of DNA rolled 

around an histone to form the chromatin. During interphase, when chromosomes are the most 

condensed and in their well-known “X” shape, the chromatin forms nucleosomes, then coils and 

supercoils. However, in that conformation, genes might not as easily be accessed by the 

transcription machinery. Active genes must thus have another architecture, highly structured to 

allow for controlled regulation, but flexible enough to be able to switch quickly from repressed 

state to active state and vice-versa. The several layers of organization include compartments, 

topologically associating domains (TADs) and chromatin loops, but also several less-characterized 

sub-TAD domains. 

Compartments are the largest structure. Their size ranges from a few to a dozen Mb long4. 

Compartments are divided in two types: A and B. They are identified by their interaction patterns: 

A compartments interact more often with other A compartments, while B tend to interact with B 

compartments4,5, A compartments have found to be enriched in genes, more specifically active 

genes, and harbor more histone marks of open chromatin4,6–8. In contrast, B compartments show 

an enrichment in closed histone marks. A study suggested they could be further divided 

compartments into sub-compartments, each having specific histone marks signatures5. 

Compartments and sub-compartments themselves contain TADs. Topologically associating 

domains are regions, usually less than 1Mb long9–12, defined by a high concentration of 

interactions: sections within TADs have a high frequency of interactions with other sections within 

the same TAD but not with sections outside of it9,11–13. Interactions are mediated through chromatin 

loops. Their role is simply to bring distal elements located on the same chromosome, often 

enhancers and promoters, in contact so they can interact7,14–17. 

1.1.1 Topologically Associating Domains 

TADs are structures smaller than compartments that have been vastly explored and are well 

characterized. TAD boundaries are dynamic but have found to be in great part conserved between 

single cells10, across species13,18–20 and cell types7,12,13,18,20 and would even be resistant to heat 
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shock21. Some of those boundaries may be shared by compartments, while they are distinct 

structures6,13,19. On the contrary to TADs, the level of conservation of compartments is debatable, 

as their boundaries seem similar across cell lines22, but show variation around key genes to activate 

them or repress them19,23–25. Because of their low level of conservation, relative to TADs, 

compartments have been suggested to be a statistical entity reflecting preferential contacts between 

TADs, rather than being physical entities26. 

Intra-TAD interactions are less well understood than TADs. They have been reported to 

vary from cell to cell10,16,20,27, yet a heat shock has been shown not to affect contacts between 

promoters and enhancers21 and some loop might even be formed before different stimulus are 

applied on cells28,29. Some loops are thought to be very dynamic, forming and breaking depending 

on the cell needs7,30. Others, more static loops, sometimes referred to as “CTCF loops”, as they are 

stabilized by structural proteins CTCF and Cohesin18,28, the two main structural proteins in human 

cells. 

Because of their well-defined, structural description, TADs can serve as a basis to describe 

the 3-dimentional organization of the genome. Their positions have been reported in several cell 

types and there seems to be a consensus about their nature. They can be easily identified, seem to 

reflect physical entities26, and while they can fluctuate through time and conditions, there is 

evidence they are present even before differentiation and on inactive chromosomes9. 

1.1.2 Sub-TAD Domains 

As technologies improved, studies tried to explore the internal structure of TADs and found 

several types of sub-TAD domains. First, TAD-like structures with similar properties have been 

identified. They are often simply called sub-TADs5,16,31 but can also be referred to as insulation 

neighborhoods31. They are defined as chromatin loops formed by a CTCF homodimer and by 

Cohesin containing at least one gene. Their boundaries have insulating properties and their 

perturbation lead to gene expression dysregulation. The CTCF binding sites forming insulated 

neighborhoods also have been showed to be conserved in human germline and primates. Other 

studies moved on from the architectural definition and tried to find domains with genes having 

correlated expression. Thus, came co-expression domains (CODs)32 and cis-regulation domains 

(CRDs)33. Both of them are defined using correlation, but the former correlates gene expression 

and the latter chromatin peaks. 
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1.1.3 Structural proteins 

Many nuclear proteins help to stabilize the various chromatin structures such as TADs, 

insulation neighborhoods, chromatin loops. Indeed, TAD formation is thought to be driven by a 

loop-extrusion model: chromatin is pulled through a loop extruding factor, a ring-shaped protein 

complex, until boundary elements are reached16,34–36 (General figure 1). The main loop extruding 

factor involved in TAD formation is Cohesin, and two CTCF proteins positioned in convergent 

manner usually serve as boundary elements. TADs have thus also been defined as corner-dot 

domains that are formed by that model and delimited by architectural proteins16.The strength of 

TAD boundaries has also been correlated with the number of structural proteins found within those 

boundaries18. 

 

General figure 1: Illustration of the loop extrusion model. DNA is extracted through a 

loop extruding factor to form a loop until boundary elements are reached. Inspired by: Fudenberg, 

G. et al. Formation of Chromosomal Domains by Loop Extrusion. Cell Reports 15, 2038–2049 

(2016). 
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1.1.3.1 CTCF 

CTCF can act as a transcription factor, but is also one of the main structural proteins in 

eukaryotic cells36. It helps forming TADs, insulated neighborhoods and chromatin loops. As such, 

CTCF has been found to be enriched at TAD boundaries9,13,27,37, but CTCF binding sites can also 

be found within TADs9,14,18,38,39. It could thus have multiple roles, depending on its location36. A 

recent study found that some CTCF binding sites are resistant to depletion, and that those resistant 

sites are more often found at TAD boundaries37. Moreover, a study using Chromatin Interaction 

Analysis by Paired-End Tag Sequencing (ChIA-PET) with CTCF antibodies found clusters that 

seem to correspond to TADs40. CTCF is thus definitely involved in TAD formation and 

stabilization, but it cannot explain everything by itself. 

1.1.3.2 RAD21 and SMC3: subunits of Cohesin 

Cohesin is a protein complex containing multiple sub-units that form a ring shape, through 

which DNA slides to form loops. Its core sub-units are SMC1A, SMC3, RAD21 and STAG1 or 

STAG241. It participates in cohesion and segregation of sister chromatids before mitosis and DNA 

repair but is also important for genome organization. Its main roles for gene regulation are to bring 

regions in close proximity, favorizing contacts between elements for co-regulation purposes and 

help CTCF isolating elements from each other. Cohesin is one of the proteins that helps connecting 

promoters and enhancers19,42 and its knockdown causes changes in gene expression42. RAD21 and 

SMC3 can be used used as proxies in ChIP-seq experiments to find the binding sites of Cohesin 

along the chromatin. 

 

1.2 Interplay between genomic structure and gene transcription 

1.2.1 Transcription Factories 

Transcription has long been thought to be happening in a stochastic manner. There is 

however mounting evidence that this process is highly controlled, but the mechanisms are still 

poorly understood. In 1993, a study conducted by Jackson and collaborators used imaging 

techniques to visualize the production of mRNA43. They treated cells with Br-UTP to detect 

nascent RNA. When ongoing transcription, a portion of the new RNA molecules incorporated Br-

UTP instead of normal UTP. A combination of two special antibodies, one targeting RNA with 

incorporated Brome, and the second linked to Texas red and binding to the first one, were used to 
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visualize the location of newly created RNA molecules with fluorescence microscopy. Rather than 

seeing points of red, witnessing the location of nascent RNA, spread randomly across the nucleus, 

they found distinct foci. This suggest that mRNA is not created everywhere is the nucleus, but that 

genes that must undergo transcription regroup themselves at specific locations. To confirm that 

the observations are indeed due to a transcription hub, they double-labelled cells, adding Sm 

antigens labelling to the previous protocol. Sm antigens targets small nuclear ribonucleoproteins 

(snRNP), which form spliceosomes. The majority of snRNPs co-localize with the nascent RNA 

foci, confirming that mRNA is produced at defined loci. Thus, came the idea of transcription 

factories, clusters of DNA and transcription machinery whose purpose is to produce mRNA. 

Since their discovery, various studies tried to uncover the secrets of transcription factories. 

Surprisingly, they have been found to be resistant to transcription inhibition44,45. Some suggested 

that transcription factories are not only clusters of DNA, RNAPol2 and spliceosomes, but also that 

they could regroup TFs such that genes having similar needs in would co-cluster into specialized 

factories46–48. Others suggested that genes are not bound to one transcription factory but might 

come and go freely45,49, or even that transcription factories are not “hovering” into the nucleic 

space, but that RNAPol2 might be attached to some kind of structure47,50. A study used Chromatin 

Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET) to find clusters of genes 

interacting through RNAPol2 and discovered that they tend to be enriched for the same Gene 

Ontology categories or share similar pathways, suggesting transcription factories could co-

transcribe genes needed for a typical cell response51,52. However, the exact definition of 

“transcription factory” remains blurry and changes slightly from paper to paper. It is also unclear 

what constitutes a transcription factory: is it only DNA, RNA and RNAPol2 that make up its core, 

or should the whole transcription machinery, including TFs, be considered when identifying them? 

As the interaction of genes in transcription induces a clustering, and changes the DNA architecture, 

the answers to uncovering gene expression regulation seem to be hidden in how the nucleus is 

organized in the 3D space. 

1.2.2 TADs as Regulatory Units 

The most controversy around TADs concerns their functional role. Do they serve directly 

a regulatory purpose or not? TAD boundaries show an enrichment in promoter-associated histone 

marks, gene transcription start sites, (TSS) and more specifically housekeeping genes13–15,17. TAD 
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boundaries have been found to have insulator properties: they seem to limit the effect of enhancer 

to genes within the same TAD13,27,34,37. Indeed, disruption of TAD boundaries leads to changes in 

gene regulation14,16,39. TAD boundaries thus seem essential for transcription regulation. A study 

centered around the HoxD gene and its expression through limb development showed that the gene 

is situated at the boundary of two TADs and interacts preferentially with one or the other depending 

on the cell requirements53. CTCF has been suggested to act as an insulator protein, limiting the 

spread of regulatory elements outside of the designated zone at TAD boundaries9,13,27,37. However, 

knock-down of CTCF does not entirely disrupts TADs15,37 and effects on gene expression take 

time to be seen28. 

Besides the suggested function of their boundaries, TAD have been suggested to act as 

regulation units29. Indeed, some TADs showed coordinated expression changes of the genes they 

contained following progesterone and estrogen induction in MCF7 cells. However, all TADs do 

not follow that pattern. Moreover, the correlation of expression between genes contained in the 

same TAD is usually similar to the correlation of expression between genes inside randomly 

created regions of similar sizes as TADs32. Thus, while they are structurally well defined, the 

function of TADs, from a regulatory point of view, needs further exploration. 

1.2.3 Co-expression Domains 

To find the links between chromatin architecture and expression regulation, we selected a 

structure to best represent the co-regulation patterns. The TADs have been selected to best 

represent the structure, but an expression-oriented structure is needed to serve as a comparison 

point. The exact differences between insulated neighborhoods, CODs and CRDs are not well 

defined, it should thus be risky to consider them all, as they might overlap. We chose to focus on 

CODs. Indeed, we want to identify groups of genes with similar levels of expression, and CODs 

are large domains within which gene have coherent gene expression. They are retrieved by 

comparing pairwise correlation of gene expression and merging all genes with similar expression 

within the same domain32. By definition, CODs are thus variable between cell types and best 

capture the expression changes. 

1.2.4 Distal Regulation and Gene Orientation 

The easiest way to imagine gene regulation is to assume regulatory elements influencing 

transcription are located in close proximity to gene promoters and transcription start sites. 
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However, it is rarely the case, and most enhancers seem to be distal51,54. That observation 

strengthens the idea that structural elements are needed to guide the interaction between elements 

that are far from each other, in linear distance along the genome. Close proximity may have an 

influence, but it would be wrong to assume that distal elements never interact and cannot influence 

each other. Moreover, even at a closer range, structural elements seem to play an important part in 

transcription regulation as the relative orientation of genes seems to influence co-expression. 

Indeed, some gene that are positioned in a divergent conformation (“back-to-back”) in yeast share 

a promoter, resulting to co-expression55. Occurrences of those bidirectional promoters have been 

found in human56,57, suggesting that gene orientation plays a major part in transcription regulation 

and gene co-expression. 

 

1.3 Methods for Exploring the Nucleus 

The relation between the structure of the genome and transcription requires the integration 

of various data types, and several tools to analyze them. For example, information about contacts 

between chromatin regions (TADs), the variations in gene expression and the position of key 

nuclear proteins can be retrieved through using Hi-C, RNA-seq and Chromatin Immuno-

Precipitation followed by sequencing (ChIP-seq), respectively. 

1.3.1 Hi-C: a Chromatin Conformation Capture Method 

Hi-C is a genome wide conformation capture derived from 3C58 (General figure 2). First, 

the cells are crosslinked, such that contacts between DNA regions, with or without the help of a 

nuclear protein, are stabilized4,58,59. DNA is then digested using a restriction enzyme and the 

fragments are ligated4,58. After ligation, the crosslinking is reversed. The goal is to obtain circular 

DNA fragments containing the two regions that were in contact in the nucleus. In the Hi-C 

protocol, biotinylated nucleotides are added to the junction of the fragments, such that DNA 

participating in contacts can be extracted from all fragments. The extracted fragments are then 

directly sequenced. During the following alignment, reads should align to two regions of the 

genome, which means those two regions were in close contact in the initial nucleus. 

However, as the number of chromatin contacts in the genome is hard to determine, and a 

minimum number of observations must be made to distinguish true contacts from noise, there 
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needs to be a compromise made between scaling and depth. All interactions within bins of fixed 

length are summed, and the length of the bins corresponds to the resolution of the Hi-C experiment, 

such that a high number corresponds to a lower resolution4. Therefore, high-resolution experiments 

(10kb-long bins or less) need a very high sequencing depth, but permit to find structures at a fine 

scale, while low-resolution experiments are easier to produce but only retrieve large structures. 

 

General figure 2: General workflow of a Hi-C experiment. DNA and nuclear proteins are 

crosslinked, then DNA gets digested using a restriction enzyme. After digestion, the fragments are 

ligated and biotin is introduced so that fragments resulting from a ligation event can be sub-

selected from all DNA fragments. 

Hi-C experiments are usually visualized trough red-tinted heatmaps (General figure 3). The 

x and y axes of the heatmap correspond to the bins defined by the resolution. At their intersection, 

the intensity of the color corresponds to the strength of the interaction: blank if there is no recorded 

interaction between the regions, red if there is a strong interaction. The number of interactions that 

need to be observed to be qualified as “strong” may vary from one experiment to another and 

according to the resolution. Hi-C heatmaps are symmetrical, as the interactions are not directed 

(the number of interactions from region 1 to region 2 is the same as the number of interactions 

from region 2 to region 1). Therefore, Hi-C heatmaps are often cut along the diagonal and 

represented as triangles, sitting on their hypotenuse. The bins are labeled along the hypothenuse 

and to find the regions corresponding to a red dot, one must trace a line from the dot to the 

hypothenuse, parallel to the first edge of the triangle (first interacting region) and a second line 

parallel to the second edge (second interacting region). Due to their interaction patterns, 

compartments create a checkerboard-like pattern on Hi-C heatmaps6, TADs can be seen as 

triangles and chromatin loops are represented by a single red dot (General figure 4). 



Chapter 1 General introduction 

9 Audrey Baguette 

 

General figure 3: Schema of a Hi-C heatmap. X and Y axis represent bins along the genome and 

the strength of the red color represents the frequency of contacts between regions. 

1.3.2 Capturing Differential Gene Expression using RNA-seq 

Transcription is one of the most important process as it is the first step leading to the 

production of proteins. Gene transcription must be tightly regulated, such that key proteins are 

produced in sufficient amounts when they are needed. In addition to producing necessary proteins, 

the production of non-pertinent proteins must be repressed to avoid using resources present in very 

limited amounts in the cell. To explore how the architecture of the genome interplays with 

transcription, it is necessary to be able to capture precisely changes in gene expression. 

Changes in transcription can be captured using RNA-seq. The two main tools to find and 

quantify gene expression changes are edgeR and DESeq260. These methods use different models 

to normalize read counts per gene and compare them across conditions. In order to be the most 

conservative possible and label differentially expressed genes with a low rate of false positives, 

the consensus of both methods was considered.  
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General figure 4: Structures found by the Hi-C heatmap and their biological correspondence. 

Top panel: The largest structures correspond to compartments (blue and red). They show a higher 

frequency of contacts between compartments of the same type. Middle panel: At a smaller scale, 

we can identify TADs (green and orange). They show a high frequency of intra-TAD interactions, 

but less inter-TAD interactions. Each red dot corresponds to an individual chromatin loop (one of 

them is highlighted in yellow). Bottom panel: The structures identified with Hi-C suggest that DNA 

forms loops that aggregate into TADs, and TADs interact to form compartments. 

1.3.3 Detecting Protein Binding with ChIP-seq 

The regions to which nuclear protein bind can carry a lot of information about nuclear 

processes. The best way to find the protein binding sites along the genome is Chromatin Immuno-

Precipitation followed by sequencing (ChIP-seq). As for Hi-C the first steps consist in crosslinking 

followed by digestion or sonication. The DNA strands linked to nuclear proteins are then 

immunoprecipitated, using an antibody targeting the protein of interest. This permits to retrieve all 

regions interacting with a specific protein. The extracted part is then cleaned to remove the protein 
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and the resulting DNA fragments are sequenced. After sequencing, the reads are mapped to a 

genome of reference, which creates peaks: regions with many mapped reads that represent the 

binding site of the protein of interest. 

ChIP-seq is known to be noisy and thus trying to find differential binding sites between 

conditions can be challenging61. For example, DiffBind is a package that creates pseudo RNA-seq 

data, with read counts associated to regions resulting from the peak calling. It itself can use edgeR 

or DESeq2 to perform the differential binding analysis, but the results vary depending on the 

method use, even with the exact same data61. However, as DiffBind needs to pre-define regions 

derived from the called peaks to create its pseudo-counts to compare various conditions, it is useful 

to obtain a consensus list of called peaks across conditions. In this study, DiffBind has thus been 

used as a tool to create a consensus peak set and not to analyze the differential binding across 

timepoints. 

1.4 Hormonal Induction 

Stimulating cells with a hormone is a good way to obtain quick changes in gene 

transcription, while theoretically not affecting chromatin structure in short-term. In this study, we 

explore the effects on architecture and transcription of cells after hormonal induction. We use data 

coming from A549 cells, a lung cancer cell line, induced with dexamethasone (DEX) as an 

example. Dexamethasone is a synthetic hormone belonging to the glucocorticoids family62. 

Glucocorticoids are cholesterol-derived, which permits them to diffuse directly through the 

cellular membrane. Once in the cell, the glucocorticoid receptor (GR), a transcription factor, 

usually mediates the effects of glucocorticoids62–64. In the nucleus, GR can affect gene 

transcription using various mechanisms and activate or repress genes through direct binding to 

glucocorticoid-response elements or by interfering with other TFs (General figure 5). 
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General figure 5: Illustration of the mechanisms by which glucocorticoids influence 

transcription. Glucocorticoids such as dexamethasone enter the cytoplasm, where they bind 

glucocorticoid receptors (GR) and activate them. The complex can then enter the nucleus and 

activate or repress transcription of genes through direct binding, tethered sites or interaction with 

other transcription factors. Inspired by: Lin, K.-T. & Wang, L.-H. New dimension of 

glucocorticoids in cancer treatment. Steroids 111, 84–88 (2016). 

1.4.1 Effects on Transcription 

After entering the nucleus, GR binds to several thousands of regions, and affects a few 

thousands of genes54,62,63, with a similar proportion of downregulation and upregulation54. GR 

tends to mainly bind distal enhancers54, but not all DEX-responsive loci are direct binding sites63. 

Some GR-mediated differential expression is due to secondary GR binding and require long-range 

interactions with a direct binding site. Those two mechanisms of action, direct or tethered binding, 

could make the difference between rapid response and slower response in differential 

expression54,62. Tethered sites have been seen to cluster around direct binding sites, and their 

interaction could be mediated through chromatin looping33,63. In addition, genes within CTCF-

bound regions have coordinated dynamics63, which reinforces the idea that secondary targets of 

GR are defined by chromatin architecture. Glucocorticoids response varies from cell type to cell 
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type54 and tethered sites, due to their dependence on interactions, have been suggested to be the 

main cause in differential expression seen due to DEX in different cell types63. 

1.4.2 Effects on Architecture 

Chromatin architecture has been shown to be important in mediating transcriptional 

response after DEX induction as tethered sites interact with direct binding sites through long-range 

chromatin contacts. DEX-induced genes were reported to have increased 3D contacts after 

stimulus, More specifically, activated genes interact more with active compartments and repressed 

genes with the inactive ones65. However, DEX does not seem to create de-novo chromatin 

interactions, but only to change the contact frequencies of pre-existing interactions63,65. TAD 

boundaries are not affected by DEX65. Taken together, those observations suggest that while 

individual loops may form more frequently when they involve DEX-responsive genes, DEX 

induction does not affect the overall chromatin architecture in short term, meaning the a priori 

structure may influence changes in expression. Contradictorily, compartments switches have been 

reported in MCF7 cells induced with estrogen (E2)66. E2 and DEX are both steroid-derived 

hormones and are thus expected to affect cells in a similar manner. It might thus be that the absence 

of clear changes in TADs observed in A549 cells is due to technical limitations and methods more 

precise than Hi-C would reveal an effect of DEX induction on TAD boundaries location. 

 

1.5 Objectives and hypotheses 

During the past years, great advances have been made regarding the nuclear architecture, 

gene regulation, and the interplay between the two. New technologies such as Hi-C permitted a 

more precise characterization of the 3D contacts between chromatin regions while the RNA-seq 

tools continue to gain accuracy. There remain, nevertheless, many unanswered questions such as: 

1) What is the functional role of chromatin organization, more specifically of TADs or sub-TAD 

structures such as CODs11,16? 

2) How does the “transcriptional ecosystem” and the proteins it contains influence response to 

stimuli28,67? 

3) Are there different types of boundaries, demarcating different domains with different roles at 

the sub-TAD level16? 
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The purpose of our work is to structurally and functionally characterize architectural 

boundaries, between TADs and inside them, and find how their composition affect their function. 

The hypothesis is that there exist sub-TAD boundaries, different in structure and in function from 

TAD boundaries. TAD boundaries’ role is to limit the spread of regulatory elements and to insulate 

regions. This has been suggested before, but we argue that the insulation at TAD boundary consists 

in their main, indispensable function, and not only a property. The second type of boundaries, 

found inside TADs, mark the delimitation of CODs but are less strict than TAD boundaries to 

account for different needs in gene expression. 

To achieve this goal, we collected and analyzed data coming from A549 cells induced with 

glucocorticoids. Ideally, to reduce variation between the data types, they should all come from the 

same set of experiments. For that reason, we used the data coming from the A549 cell line, a lung 

cancer cell line, induced with dexamethasone (DEX) on ENCODE1,2,54,65. ENCODE harbors a 

large set of data produced on that cell line, and most of them have been produced consecutively 

by the same laboratory (Dr. Tim Reddy, Duke). The data was mainly processed with R, but Hi-C 

required some steps using Juicer68. The most computing-heavy tasks were performed on the 

servers of Compute Canada. 

ENCODE contains Hi-C data performed on A549 cells that follow a time-course made of 

a control (0h) and 4 timepoints after DEX induction (1h, 4h, 8h, 12h), each with 4 biological 

replicates (ENCSR842RTB, ENCSR435JUA). The pre-processed files were used to perform a 

quality control on the data, after which the already-analyzed files containing the position of TADs 

were directly used to find the position of TAD boundaries. 

It also contains a complete time-course of A549 cells following DEX induction (control, 

30m, 1h, 2h, 3h, 4h, 5h, 6h, 7h, 8h, 10h, 12h) (ENCSR897XFT). Each timepoint has 3 or 4 

biological replicates and can thus capture changes in expression at short and long term. The files 

containing the raw read counts were normalized using edgeR69,70 to control the quality of the RNA-

seq data and verify that there are indeed changes in gene expression that follow the time-course 

with a Principal Component Analysis (PCA) and a t-distributed Stochastic Neighbor Embedding 

(t-SNE) analysis. 

Finally, ChIP-seq was available for 11 different nuclear proteins and 5 histone 

modifications: BCL3 (ENCSR022IHB), CEBPB (ENCSR625DZB), CTCF (ENCSR738NGQ), 
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EP300 (ENCSR738NGQ), FOSL2 (ENCSR447VJR) H3K4me1 (ENCSR180FFI), H3K4me2 

(ENCSR868FCL), H3K4me3 (ENCSR342NKR), H3K9me3 (ENCSR476OXC), H3K27ac 

(ENCSR375BQN), HES2 (ENCSR790OOG), JUN (ENCSR588JLN), JUNB (ENCSR483SDK), 

NR3C1 (ENCSR210PYP), RAD21 (ENCSR501UJL) and SMC3 (ENCSR376GQA). They follow 

the same time-course that RNA-seq with 3 or 4 biological replicates. Files with the pre-aligned 

reads and the called peaks were used 

The main objective of our study is thus to structurally and functionally characterize 

boundaries at the sub-TAD level. It was achieved by first characterize TAD boundaries to serve as 

a reference point, then characterizing new boundaries. We found that those were marked by the 

changing of strand on which genes are positioned and seem to be independent of structural 

proteins. The observations were confirmed by eQTL data.
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Abstract 

Gene regulation is influenced by chromatin folding, but the precise mechanisms guiding 

their interconnection remain unclear. Topologically associating domains (TADs) have been 

suggested to act as regulatiory units, yet they also have been proven to be distinct from co-

expression domains (CODs), structures in which genes have correlated expression. What exactly 

are the roles of CODs and how do their boundaries and function differ from TADs? We use a 

combination of available RNA-seq, ChIP-seq and Hi-C data from A549 cells stimulated with the 

glucocorticoid dexamethasone to answer that question. We find that while TAD boundaries act as 

insulators and are significantly enriched between up and down-regulated genes (odds ratio of 1.85), 

they are not the only boundaries limiting co-expression. Indeed, we find that divergent and 

convergent pairs of genes create boundaries at the sub-TAD level. Moreover, when such gene pairs 

are not separated by a TAD boundary, we find that they are depleted for structural proteins, with 

odds ratios between 0.53 and 0.75. This suggests that COD boundaries could be demarcated by a 

switch of strand independently of structural proteins. Aligned with this idea we show, using eQTL 

data from lung cells, that genes affected by the same strong variant tend to be found on the same 

strand and to lack any barrier (TAD boundary or CTCF/Cohesin) between them (33% fall in that 

category, while 16% were expected). This enrichment was even stronger when a subset of pairs 

comprising those most affected by the eQTLs are considered. Based on these results, we propose 

a model in which same-strand genes form small sub-TAD domains that are the building blocks of 

CODs. Further exploration of this model could help better understand and anticipate changes in 

transcription in different cell types and conditions. 

 

1. Introduction 
The nucleus of each cell is highly compacted, full of molecules and an overcrowded 

environment. To fit the 2 meters-long human genome in such a small space, DNA requires several 

layers of organized structures. Genome-wide chromosome conformation capture (Hi-C) is a 

technique that elucidates chromatin contacts in the 3-dimensional nuclear space1–3. At the lowest 

level of resolution, compartments can be identified from Hi-C data. Compartments are divided in 

two types, A and B, defined by their interaction frequencies; compartments tend to interact more 

often with compartments of the same type1,4. Compartment A has been shown to contain more 
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genes and to be enriched for active genes and open chromatin marks, while compartment B is 

enriched for closed chromatin marks1,5–7. Compartments are not to be mixed with topologically 

associating domains (TADs), another structure found with high-resolution Hi-C. TADs are defined 

by their high concentration of contacts within their domain, relative to their low level of interaction 

across different TADs8–11. Intra-TAD contacts vary from cell to cell3,12–14, but most TAD 

boundaries are conserved across single cells3, cell types7,9,11,15 and species9,15,16. In addition to 

TADs, that range from a few kilo bases to around 1 million bases long8–11, smaller TAD-like 

structures, called sub-TADs have been discovered within TADs4,12–14. Finally, at the highest 

resolution, chromatin loops can be observed. They represent contacts between DNA regions, 

including promoters and enhancers7,13,17–19, usually stabilized by CTCF or other structural 

proteins15,16,20. 

Among all those structures, parts of the chromatin must remain flexible to allow for 

transcription. Several studies have confirmed that TADs construct an environment favoring gene 

co-regulation. Genes within the same TAD tend to be co-expressed10,16,17,21. Indeed, some TADs 

act as regulatory units after hormonal induction22 and hormone responsive genes are found within 

the same interaction networks23 or in-between TAD boundaries24. Moreover, paralogs are usually 

co-regulated and found within the same TADs25. However, there is also evidence that some genes 

resist the intra-TAD co-regulation26. Co-regulation might thus be driven by sub-TAD structures 

such as cis-regulatory domains27, insulation neighborhoods28 or co-expression domains (CODs)26. 

Those seemingly contradictory observations show the shortcomings of our understanding of 

transcription with respect to chromatin architecture8,13. CODs are especially interesting to us as 

they are purely defined from a transcriptional point of view. Indeed, they are defined as regions of 

consecutive genes with correlated expression. Their definition does not include any structural 

aspect, besides the linear aspect of consecutive genes. It would thus be interesting to compare 

CODs to the well-known TADs and to better understand their similitudes and differences, in 

structure and in function. 

Here we propose a detailed characterization of regulation boundaries at the TAD and sub-

TAD level using a combination of available RNA-seq, ChIP-seq and Hi-C data from A549 cells 

induced with dexamethasone. We hypothesize that TADs and CODs have different types of 

boundaries. We looked at the properties of genes around these boundaries and found that the strand 
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position of genes had a significant and differential impact. We further tested these observations 

using eQTL in lung cells. Our results lead us to propose a model for human cells where genes on 

the same stand have a high probability of co-expression. COD boundaries, marked by the change 

of strand, reduce the co-expression probability independently of structural proteins. 

 

2. Results 

2.1 Gene expression and chromosome architecture changes associated with glucocorticoid 

stimulation 

To understand how chromatin structure and gene expression are related, we used RNA-

seq, ChIP-seq and Hi-C datasets coming from A549 cells induced with 100nM dexamethasone 

(DEX) were retrieved from ENCODE29,30 (Methods). The literature shows that stimulating cells 

with a hormone should mainly affect expression levels while keeping the global nuclear 

architecture rather stable23. A t-SNE analysis of the expression data confirmed that the RNA-seq 

replicates have genes with differential expression after DEX induction and that the observed 

changes between timepoints follow the time-course (Figure 1A). This observation was further 

confirmed by a principal component analysis (Supplementary figure 1). Differentially expressed 

genes that were reported by both edgeR31,32 and DESeq233 were identified at each timepoint, 

relative to the “0h” timepoint (Methods). A consensus set was then retrieved in order to find genes 

that had an upregulated or downregulated behavior across the time-course. Doing this, 1716 genes 

were labeled as “Up”, 1810 as “Down” and 10751 as “Stable” (Supplementary table 1). 
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Figure 1: Gene expression changes in the RNA-seq samples and Hi-C reproducibility scores. 

(A) t-SNE of the normalized RNA-seq data. (B) Heatmap of the replication scores given by 

QuASAR-Rep. Comparaisons inside the same timepoint are under the red lines and comparisons 

across timepoints are over it.  (C) Distributions of the scores between replicates of the same 

timepoint (blue) or different timepoints (red). The vertical lines represent the means of the 

distributions. The p-value comes from a t-test. 

The quality of Hi-C heatmaps obtained from the same dataset23 was assessed using 

QuASAR-QC34. QuASAR uses transformed matrices, based on read count matrices and 

enrichment matrices, corrected for distance, to produce quality scores for all chromosomes and 

replicates. The goal of the matrix transformation is to find regions showing deviation from the 

surrounding regions, as a high deviation is probably due to random ligation and is thus certainly 

noise. The quality scores for all chromosomes was found to vary between 0.015 and 0.02 

(Supplementary figure 1B), which is characteristic of somewhat noisy data at this resolution of 

10kb, but not uncommon34,35. That resolution was selected as it was the middle resolution the three 

resolutions used to call TADs (5kb, 10kb and 25kb)23. The reproducibility between pairs of 

replicates, from the same timepoints and across timepoints, was then compared using three 

methods: QuASAR-Rep34, GenomeDISCO36 and HiC-Spector37. The reproducibility scores were 

used to quantify the similarity of the Hi-C maps through the time-course. Indeed, Hi-C maps and 

the TADs derived from them were available for five timepoints and we wanted to see if the maps 
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are similar enough to only use a single timepoint as reference to locate TAD boundaries. The 

reproducibility scores varied from method to method, but all methods confirm that there is no more 

variability between replicates from different timepoints than between replicates from the same 

timepoint (Figure 1B, Supplementary figure 1C and E). This can be visually assessed with the 

heatmaps of the scores and is confirmed by a two-sample t-test comparing the distributions of the 

pairwise scores (Figure 1C, Supplementary figure 1D and F). None of the p-values for QuASAR-

Rep (p-value = 0.37), GenomeDISCO (p-value = 0.36) and HiC-Spector (p-value = 0.22), 

respectively, was found to be significant. We cannot draw conclusions as to whether the TADs are 

completely stable after DEX induction using only those scores. However, as the scores report no 

major change in chromatin architecture, they justify the use of a single timepoint as reference for 

TAD boundaries to facilitate the analyses below. 

2.2 Closer genes tend to be co-expressed but TAD boundaries act as barriers 

TAD boundaries are known to have insulator properties, limiting the effects of enhancers 

to nearby genes on the other side of the boundary9,12,14,38. If true, the prevalence of TAD boundaries 

between genes having opposite behaviors following DEX induction should be higher. We retrieved 

the list of TADs, called with Juicer’s Arrowhead39, at the earliest time-point (0h)23,29,30. We then 

transformed the TADs list in a list of 11454 TAD boundaries (Methods, Supplementary figure 2). 

To test the insulation effect of TAD boundaries in regard to other structural elements, the location 

of several nuclear proteins was compared to the location of TAD boundaries. Indeed, the barrier 

properties of some TAD boundaries are attributed to CTCF and Cohesin. By comparing the 

binding sites of CTCF, RAD21 and SMC3 (two subunits of Cohesin) to the location of TAD 

boundaries, we want to verify that TAD boundaries have a unique property that is not attributable 

to a specific structural protein only. The other nuclear proteins were used as controls. For example, 

H3K4me1 marks open chromatin and should be found around activated genes. On the other hand, 

NR3C1 should be found near differentially expressed genes. The available raw reads and pre-

called peaks of the ChIP-seq data corresponding to the dataset24 were further processed through 

DiffBind40,41 in order to find the binding sites of the 16 proteins along the time-course (Methods). 

This resulted in, for example, 52729 CTCF peaks, 14699 NR3C1 peaks, 72433 RAD21 peaks and 

71220 SMC3 peaks (Supplementary figure 2). 
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The previously defined gene lists (“Up”, “Down” and “Stable”) were paired with each 

other, which resulted in 147248 pairs of genes separated by less than 1 Mb, from transcription start 

site (TSS) to TSS (Methods). Since the further two genes are from each other, the higher the 

chances are that they contain a TAD boundary or a protein binding site between them, we explored 

the effect of linear distance on the relative comportment of gene pairs (based on the previously 

defined categories of “Up”, “Down” and “Stable”). This showed that genes with the same behavior 

tend to be closer than genes behaving differently after DEX induction (Figure 2A). Indeed, pairs 

separated by less than 100kb make up 13.72% of all pairs, but as much as 19.08% of pairs showed 

concurrent upregulation compared to only 6.8% of pairs where one gene is activated and the other 

is repressed. The threshold of 100 kb was chosen as it is a distance long enough to account for 

long-range interaction, but we assume that over that distance, genes are too far away from each 

other to effectively be co-expressed because they share transcription machinery24. This is seen at 

a finer scale too, as even when only the pairs separated by less than 100 kb are considered, the 

distributions of distances changes depending on the relative behaviors of the genes within the pair 

(Figure 2B). The mode of the distribution density for activated pairs is at 14651 bp, while it is at 

73207 bp for pairs were genes go in opposite directions. Finally, the enrichment of finding a TAD 

boundary between two genes was computed for each type of pair, using the pairs where both genes 

are “Stable” as reference. 

To account for the identified distance bias, the reference pairs were sub-sampled 1000 

times, such that the distribution of distances of the sub-sampling matches the distribution of 

distances of the pairs of interest and the query and reference contain the same number of pairs 

(Supplementary figure 3). Relative to stable gene pairs, TAD boundaries were found to be 

significantly enriched between pairs of genes having a different behavior, especially pairs where 

one gene is activated and the other is repressed (odds ratio of 1.85, empirical p-value < 0.001) 

(Figure 2C, Supplementary figure 4). There is also a small depletion of TAD boundaries between 

upregulated genes (odds ratio of 0.89). The enrichment between genes with opposite behaviors is 

weaker for CTCF (odds ratio of 1.51, p-value < 0.05). In addition, pairs of upregulated genes and 

pairs of downregulated genes do not show any enrichment for TAD boundaries but only small, 

significant enrichments for CTCF (odds ratios of 1.21 in both cases), confirming CTCF alone is 

not enough to create the insulation property of TAD boundaries. SMC3 and RAD21 are enriched 

around activated genes (odds ratio of 1.69 and 1.54, respectively, empirical p-value < 0.001), 
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which is coherent with their function; those are two subunits of Cohesin, a ring-shaped protein 

complex that helps bringing promoters and enhancers in close proximity15,16,20. NR3C1 is directly 

activated by DEX and is thus expected to be located around differentially expressed genes, 

especially activated genes, and this is confirmed by its enrichment pattern across the gene pairs. 

NR3C1 is also very significantly enriched between pairs of downregulated genes, confirming GR 

acts as a repressor and not only as an activator. As EP300 binds to enhancers, it is found around 

expressed genes. Indeed, we see an enrichment of EP300 between genes that were highly expressed 

at the start of the time-course (downregulated genes) or at the end (upregulated genes). 

 

Figure 2: Genes with the same behavior tend to be closer from each other and pairs of genes 

going in opposite directions are more often separated by TAD boundaries than pairs of stable 

genes. (A) Proportion of pairs in which genes are separated by less than 100kb among all pairs 

in which genes are separated by less than 1Mb. The red line represents the proportion when all 

pairs are considered. (B) Distribution of distance (in bp) between the genes of the pairs, for pairs 

separated by less than 100kb. (C) Heatmap of odds ratios for the presence of a physical barrier 

between the genes of the pairs. The “Stable_Stable” pairs are used as reference. *P-value < 0.05; 

***P-value < 0.001. The p-values are empirical, computed with 1000 resampling events 
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2.3 Gene conformation marks small sub-TAD boundaries 

Another structural element that can be explored in regard to co-expression is gene 

“strandedness”. Indeed, genes can be found on the same strand, but also on opposite strands and 

facing each other (convergent) or “back-to-back” (divergent). How are same-strand, convergent 

and divergent gene pairs represented around boundaries? Does conformation have an impact on 

boundary strength? To answer these questions, four new categories of gene pairs were created, 

depending on whether they were (1) around a TAD boundary, (2) inside the same TAD but had 

different behaviors (potentially associated with a COD boundary), (3) inside the same TAD but 

with the same behavior (thus probably within the same COD), or (4) outside TADs (Methods). To 

characterize the relation of genes at the boundaries, only the pairs of genes that were the closest to 

the boundaries were considered. Analyzing the distribution of pairs in different conformations 

according to those categories showed that at TAD boundaries, gene pairs are usually separated by 

both Cohesin (SMC3 and RAD21) and CTCF, regardless of the relative position of genes (Figure 

3A). However, while inside TADs, divergent and convergent pairs of genes are usually less often 

separated by CTCF and Cohesin than same-strand pairs. Indeed, among pairs of genes found 

within the same TAD that show a different behavior (“Down-Stable”, “Down-Up” and “Stable-

Up”), 64.6% of same-strand pairs have CTCF and Cohesin between them, while it is only true for 

50.5% of the convergent and 42.2% of divergent pairs. If we consider pairs of genes found in the 

same TAD that also have the same behavior (“Down-Down”, “Stable-Stable” and “Up-Up”), we 

find that 50.8% of the same-strand pairs have both structural proteins, against as few as 42.1% for 

convergent pairs and 31.1% for divergent pairs. Using the “same strand” pairs as reference, while 

accounting for any possible distance bias (Methods), divergent and convergent genes were found 

to be significantly depleted of CTCF and Cohesin everywhere (p-value < 0.001) but at TAD 

boundaries as compared to same strand pairs with a same distribution of distances between the 

genes (Figure 3B). The odds ratios for finding CTCF and Cohesin between divergent genes are of 

0.52 when genes are in the same TAD but have a different behavior, of 0.64 when genes are in the 

same TAD and show the same behavior and of 0.58 when genes are outside TADs (p-values < 

0.001). For convergent genes, the odds ratios are of 0.61, 0.75 and 0.56 (p-values < 0.001), in the 

same order. Assuming pairs of genes with a different behavior mark COD boundaries, the 

depletion of CTCF and Cohesin between divergent and convergent pairs suggests that those pairs 

could mark sub-TAD domains without the need of Cohesin or CTCF. 
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Figure 3: Repartition of the pairs of 

consecutive genes and of structural 

proteins across boundaries. (A) 

Proportion of convergent, divergent 

and same-strand pairs of consecutive 

genes having structural proteins 

between them in each location 

category. (B) Heatmap of the odds 

ratios, as compared to the “same 

strand” pairs in the same category. *P-

value < 0.025 or p-value > 0.975; 

***P-value < 0.001 or p-value = 1. 

The p-values are empirical, computed 

with 1000 resampling events. 
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2.4 eQTL gene targets are preferentially on the same strand 

To look for supportive evidence that the change of strand influences co-expression 

probability, expression quantitative traits loci (eQTL) found in lung cells and their target genes 

were retrieved from GTEx Portal42. The A549 cell line being a lung cancer cell line, we chose to 

use data coming from lung cells as it is the closest cell type available on GTEx. We hypothesized 

that genes affected by the same variant would be more likely to be found on the same strand and 

less likely to be separated by a barrier than random pairs of genes, in accordance with our model. 

We thus compared 9088 pairs of genes affected by the same eQTL to 24035 control pairs using 

the same resampling technique to limit the distance bias as before (Methods). We found that pairs 

of genes affected by the same eQTL show a preference for being on the same strand, without 

barrier (Figure 4A). Indeed, 19% of pairs fall under that category, while the expected proportion 

is of around 14% for pairs of genes not affected by the same eQTL (odds ratio of 1.44, p-value < 

0.001). The difference is even more marked when pairs of genes affected by the strongest variants 

are considered (Methods). The proportion of pairs affected by the same genes that are found on 

the same strand without barrier between them goes as high as 33%, resulting in an odds ratio of 

2.68(p-value < 0.001, Figure 4B). Moreover, the pairs show an aversion for being on opposite 

strands and separated by a barrier than control pairs. 58% of all pairs of interest fall under that 

category, while the expected value is around 66% (odds ratio of 0.73, p-value < 0.001). Once 

again, considering the most affected genes makes the contrast even stronger, as the proportions 

drops to 39% and the odds ratio to 0.4 (p-value < 0.0001). Specific examples of those observations 

include the eQTLs chr1_109678559_T_A_b38 and chr3_195614883_T_A_b38 (Figure 4C-D). 

When we consider all genes having their TSS within 100kb of those variants, they seem to affect 

preferentially genes located on the positive strand and their action seems blocked by barriers, 

especially by TAD boundaries. These analyses support the observation that the change of strand 

can serve as a boundary limiting co-expression. 
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Figure 4: Analyzing gene conformation with eQTLs. Pairs of genes where both genes are 

affected by the same eQTL are enriched for being on the same strand without barrier (CTCF and 

Cohesin or a TAD boundary) and depleted for being on different strands and separated by a 

barrier, as compared to control pairs. This is true when considering (A) all pairs of genes 

separated by 100kb affected by the same eQTL or (B) a subset with only the pairs with the strongest 

association (regression slope > 0.7 or < -0.7) to their eQTL. *P-value < 0.025 or p-value > 0.975; 

***P-value < 0.001 or p-value = 1. The p-values are empirical, computed with 1000 resampling 

events. (C-D) Specific examples of variants (green dots) and the genes they affect depending on 

their orientation and the position of barriers. 
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2.5 A new, probabilistic model for gene co-expression 

The previous observations suggested a model for human cells where consecutive same-

strand genes make up small sub-TAD domains within which genes are likely to be co-expressed 

(Figure 5A). The boundaries of those domains are marked by the change of strand, as genes on 

different strands are less likely to be co-expressed. The cell can introduce CTCF and Cohesin that 

tend to create insulation boundaries such as TAD boundaries that disrupt the possibility of co-

expression (Figure 5B). Those small sub-TAD domains are the building blocks of co-regulation 

domains. CODs are, by definition, statistical entities and not physical entities, as they are found 

by aggregating all genes that have correlated expression. We propose that sub-TAD boundaries 

which are protein-independent mark the preferential split point of CODs. In a specific condition, 

genes on either side of the boundary can have similar expression level and make up a single COD. 

After a stimulus, the expression levels of the two regions might not be the same anymore and they 

would split into different CODs according to the position of the boundary (Figure 5C). The 

proposed model is not mutually exclusive with previous ones, such as transcription factories, and 

could help to understand how genes that do not seemingly receive the same signal could have 

similar expression levels. 
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Figure 5: Model of co-expression likeliness. (A) Same-strand genes are very likely to be co-

expressed, as the RNA pol II just needs to continue its path along the strand. Divergent and 

convergent genes are less likely to be co-expressed, as the RNA pol II would needs to detach and 

reattach itself to go from one gene to the other. (B) When genes are separated by a barrier (CTCF 

and Cohesin or TAD boundary), there is complete disruption of co-expression. (C) Illustration of 

how domains - physical entities - can make up a single co-regulation domain - a statistical entity 

- or split up in two, depending on the condition. 

 

3. Discussion 
The relation between TADs and transcription is a subject that many studies tried to 

understand10,22,26,27. The boundaries of co-expression domains were not fully characterized and 

TADs were lacking a functional definition13. Using publicly available data of A549 cells induced 

with dexamethasone23,24,29,30, we found that the strand position of genes influences the probability 

of their co-expression and that TAD boundaries disrupt co-expression. 

In this study, we compared the insulation property of TAD and COD boundaries. Genes 

having an opposite behavior after DEX induction are enriched to have a TAD boundary between 

them, with a significant odds ratio of 1.85 as compared to pairs of stable genes. The odds ratio is 

less significant and of 1.51 for having CTCF between them. We also show that the relative position 
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of genes seems to create structural protein-independent boundaries inside TADs. At TAD 

boundaries, same-strand, convergent and divergent gene pairs are usually separated by CTCF and 

Cohesin. However, when pairs are inside the same TAD, more than half of the same-strand pairs 

still contain CTCF and Cohesin, but the convergent and divergent pairs are not separated by those 

proteins as often. Finally, we further supported the observations using eQTL data and found that 

genes affected by the same eQTL are enriched for being found on the same strand, without barrier, 

than genes not affected by the same variant (odds ratio of 1.44, p-value < 0.001). Moreover, genes 

affected by the same eQTL are depleted for being on different strands and separated by a barrier 

(odds ratios 0.73, p-value < 0.001). When the genes most affected by eQTLs are considered, the 

tendencies are even more marked. Taken together, all those results suggest that convergent and 

divergent pairs mark the boundaries between co-expression domains, at the sub-TAD level, 

without the need of CTCF and Cohesin. This led us to propose a model for co-expression 

probabilities based on the relative conformation of genes and the presence of barriers. Same-strand 

genes are likely to be co-expressed by chance, divergent and convergent genes less so, and barriers 

such as CTCF and Cohesin or TAD boundaries greatly reduce the chances of co-expression. 

The proposed model has only been observed in A549 cells and is thus limited to that cell 

line for now. It would be interesting to test it further using other conditions, in other cell lines or 

even different organisms, to see if it can be applied to all eukaryotic cells. In addition, eQTL data 

comes from normal lung cells of over 850 individuals, while A549 cells come from a lung cancer 

cell line. Cancer cells usually contain structural variants which could impact the genomic 

architecture. The position of TAD boundaries, CTCF, RAD21 and SMC3 used during validation 

with eQTL comes from A549 cells. Those elements have been reported to be greatly conserved, 

but there still could remain differences that could influence our validation step. Ideally, for future 

validation of the model, Hi-C, ChIP-seq and eQTL data should come from the same cells. Using 

different cell types would also help COD boundaries detection. We used consecutive genes with a 

different behavior as proxy to COD boundaries. However, two genes could be found to be 

upregulated after DEX induction, but it does not mean they have completely correlated expression. 

They might thus be found to be into different CODs while our method would not identify it as 

boundary. We may thus potentially be missing COD boundaries. CODs also change depending on 

the cell needs and therefore, to have a complete mapping of CODs and their relative splitting or 

merging from one condition to another would be useful. Still, the fact that we can support our 
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model with significant values knowing our definition of COD boundary is more stringent 

reinforces our confidence in the model. 

An important control for the analyses presented in this study was to check for properties 

that could be different between the tested pairs of genes and the control sets that would introduce 

a bias. Looking at the distribution of distances between pairs of genes depending on their relative 

behavior showed that there is a strong distance bias. This was accounted for but still consists the 

main limitation of the study, as it is reduced but cannot be completely removed. A second technical 

limitation is that the effect of TAD boundaries on co-expression has been assessed using TAD 

boundaries derived from the TADs called before DEX induction (time 0). We used the 

reproducibility scores of the Hi-C maps to justify that selection. However, all possible changes in 

structure are then contained within a single number. Since the regions covered by TAD boundaries 

add up to a small portion of the genome, it is possible that small changes in TAD boundaries 

location would be lost in the general score given for the whole genome. It might thus be better to 

account for those small changes in future explorations of the model.  Lastly, we assumed all genes 

have their own promoter. However, there are a few reported case of divergent genes sharing a 

promoter, that thus have coordinated expression43–45. Those remain exceptional cases, but it would 

be interesting to treat genes sharing a promoter separately from all others when further exploring 

the model, as they constitute another mechanism for controlling co-regulation. 

Despite the limitations of our method, the model for human cells we propose is supported 

by different types of analyses, using different data types, which leads us to believe in its robustness. 

Exploring it further with improved bias correction and supplementary data is more likely to 

improve the results than disprove them. Our model is also compatible with other suggested models. 

One rising paradigm change in how active transcription is seen suggests that RNA polymerase II 

is not the moving part during transcription, but rather that it is fixed in the nuclear space46,47. 

Multiple RNA polymerase II would cluster into transcription factories46,48–50 and DNA would 

cluster to factories, or detached from them, depending on the cellular needs51. Our model has been 

explained such that RNA polymerase II is the mobile part, for ease of understanding, but it is not 

mutually exclusive with the idea of fixed polymerase. If the transcription machinery is indeed 

fixed, the model stays the same and can be explained as such: when two genes are located on the 

same strand, they are very likely to be co-expressed as the DNA could not detach itself from the 
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transcription factory. When genes are divergent or convergent, they are slightly less likely to be 

co-expressed as the DNA would have to detach then re-attach itself to the factory, but slightly 

shifted to attain the TSS on the other strand. CTCF and TAD boundaries greatly decrease the 

probability of co-expression as they serve as barrier, preventing the DNA to slide freely. The model 

we propose is thus compatible with the other models of transcription factories and might even help 

understanding how transcription is regulated in those hubs of active transcription. As such, it 

would serve as a basis for more complex gene regulation mechanisms and could well be the key 

to understand unresolved biological questions: What is the regulatory function of the genomic 

architecture8? What is the functional definition of TADs and sub-TAD domains13? How would 

cells lacking structural proteins behave following a stimulus demanding a change in the expression 

program52? We suppose that the regulatory function of the chromatin organization differs at 

depending on the level considered; gene “strandedness” affects the probability of co-regulation 

while TAD function is to disrupt the spread of expression signals through its boundaries. The 

functional definition is TADs would thus be centered on the insulation properties of the 

boundaries, while the sub-TAD domains definition would rather relate to gene position. Cells that 

do not have the necessary structural proteins would have expression patterns reflecting the relative 

position of the genes, with close, same-strand genes behaving similarly. The model thus serves as 

a stable ground on which complex hypotheses can be constructed and tested in the near future. 

 

4. Conclusion 
In this paper, we describe the existence of intra-TAD boundaries, delimited by the changing 

of strand on which genes are placed, that change the probability of co-expression. The regions 

bordered by those new boundaries act as the building block of co-expression domains (COD). 

Indeed, CODs are statistical entities, created by clustering all consecutive genes having a 

correlated expression. However, correlation is different from causality and genes could have 

correlated expression by chance. If two nearby genes need to be expressed in similar amounts in 

condition A, they would be part of the same COD. If the cell enters condition B, the two genes 

might not be transcribed in similar amounts anymore and they would be split up into different 

CODs. There are thus regions bordered by physical boundaries (the change of strand), independent 

of structural proteins, within which genes have a probability of co-regulation, and that can be 
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“assembled” to form CODs. To completely disrupt the possibility of having co-expression of 

nearby genes, TAD boundaries or the co-localization of CTCF and Cohesin are introduced. Such 

model was validated using eQTL data, but further work would be needed to exactly determine if 

the model can be extended to other human cells or other organisms. 

 

5. Methods 

5.1 Data origins and pre-processing 

The data sets used in this paper come from previous studies on A549 cells and are available 

in public databases. The cells were all treated with 100nM of dexamethasone (DEX) or only a 

vehicle (for controls). RNA-seq (ENCSR897XFT), ChIP-seq (ENCSR571KWZ, 

ENCSR375BQN, ENCSR588JLN, ENCSR210PYP, ENCSR022IHB, ENCSR625DZB, 

ENCSR738NGQ, ENCSR447VJR, ENCSR180FFI, ENCSR868FCL, 

ENCSR342NKR,  ENCSR476OXC, ENCSR790OOG, ENCSR483SDK, ENCSR501UJL, 

ENCSR376GQA) and Hi-C samples (ENCSR842RTB, ENCSR435JUA) were produced by the 

same laboratory (Dr. Tim Reddy, Duke) and the pre-processed files, annotated with the GRCh38 

reference assembly, were retrieved from ENCODE23,24,29,30 (Supplementary tables 2-5). 

For polyA+ RNA-seq, the trimmed, aligned and quantified files containing the raw read 

counts for each gene were downloaded, for an hourly time-course (Control, 30m, 1h, 2h, 3h, 4h, 

5h, 6h, 7h, 8h, 10 and 12h), each timepoint having three or four replicates. Genes are labeled with 

their ENSEMBL name and read counts for the multiple isoforms were summed. The most 

upstream base of all isoforms was selected as the start of the gene and the most downstream as the 

end. Quality control was made by normalizing the read counts with edgeR31,32 and removing batch 

effects with svaseq53 following the method used by McDowell et al. 24. A principal components 

analysis (PCA) analysis and a t-distributed stochastic neighbor embedding (t-SNE) analysis were 

performed on normalized read counts. The replicates clustered correctly by timepoint. 

For ChIP-seq data sets, trimmed and aligned bam files and bed files resulting from peak 

calling were downloaded for all available replicates, conditions and targets. The ChIP-seq datasets 

follow the same hourly time-course as the RNA-seq data set. A consensus peakset was produced 

using DiffBind40,41. DiffBind uses the peaks called at each timepoint and the sequenced reads to 
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create RNA-seq-like read counts, with the number of reads found in each replicate, at each 

timepoint, for all called peaks. We were not interested in performing a differential binding analysis, 

so the read counts were not considered. We only used the consensus peakset produced by DiffBind 

to identify binding sites across the time-course. 

Concerning Hi-C data, in addition to the hic files available for all replicates, the already 

identified topologically associated domains contained in bedpe files were also downloaded. The 

Hi-C time-course contains only 5 points: 0h, 1h, 4h, 8h and 12h. The changes in chromatin were 

quantified using 3DChromatin_ReplicateQC35, which itself implements four different quality 

control methods for Hi-C data. First, the pre-processed hic files were downloaded from encode 

and dumped using the dump observed method of Juicer39 using bins of 10kb. 

3DChromatin_ReplicateQC first computes quality scores using QuASAR-QC34, then it uses 

QuASAR-Rep34, GenomeDISCO36 and HiC-Spector37 to produce reproducibility scores. 

TAD boundaries were created by directly taking the list of found TADs at the time 0 

available on ENCODE and creating regions 500 bp upstream and 500 downstream of all beginning 

and ends of TADs. Overlapping boundary regions were merged, such that the 5935 TADs resulted 

in 11454 TAD boundaries. 

5.2 Categorizing and pairing genes 

First, differentially expressed genes were identified individually for each timepoints using 

edgeR and DESeq233. A gene is identified as upregulated if it is differentially expressed according 

to both methods (FDR < 0.05 for edgeR and padj < 0.05 for DESeq2) and that have a higher 

expression level at the considered timepoint than the reference. Downregulated genes are those 

which are differentially expressed and have a higher expression level in the controls. A consensus 

was created across the time-course such that “Up” genes are genes that are found to be upregulated 

for at least two timepoints but are never downregulated. The same principle is applied to identify 

“Down” genes. Genes that did not fall in either of those categories were said to be “Stable”. 

Genes were then paired, and their distance was calculated, from TSS to TSS. Only pairs of 

genes separated by less than 1Mb, from TSS to TSS were kept. This resulted in six categories of 

pairs, depending on their comportment: “Up-Up”, “Down-Down”, “Stable-Up”, “Down-Stable” 

and “Down-Up”. With the 14493 genes having detectable transcription, 147248 pairs separated by 

less than 1Mb could be formed. In addition, pairs were labeled according to the relative position 
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of the genes: “Same strand” if both genes are located on the same DNA strand, “Divergent” if the 

genes are on different strands and back-to-back and “Convergent” if they are on different strands 

and facing each other. 

5.3 Odds ratios and distribution matching 

As one of the main objectives is to find whether genes with opposite behaviors are 

separated by a physical barrier, the enrichment for finding a barrier between such pairs had to be 

computed. Enrichments were expressed in odds ratios, where the “Stable-Stable” category was 

used as reference. However, the distribution of distances is not the same between pair types. To 

avoid a bias where pairs separated by a larger distance are found to have a barrier between them 

by chance, the reference pairs were sub-sampled such that the distribution of distances of the 

resampling matches the distribution of distances of the pairs of interest, and the query and reference 

contain the same number of pairs. The distribution matching algorithm consists in dividing the 

distributions of distance from the interest pairs and the control pairs into bins of 5kb, then counting 

the number of interest pairs falling in each bin and sampling as many control pairs in the 

corresponding bin. The resampling was done 1000 times, to allow the calculation of empiric p-

values. Odds ratios are defined as follows: 

𝑂𝑅 =  
𝑥(1 − �̅�)

(1 − 𝑥)�̅�
 

In the above equation, x corresponds to the proportion of pairs of interest containing a 

barrier between the two genes and y represents the proportion of pairs of interest, after resampling, 

with a barrier. The region “between the two genes” is considered as the regions between gene 

bodies, thus overlapping genes cannot contain a barrier between them, even if their TSS are not at 

the same position. For this analysis and the following, only the pairs with genes separated by less 

than 100kb were kept, which resulted in 20197 pairs. 

5.4 Characterizing boundaries 

To characterize the boundaries, only the pairs of consecutives genes were kept, which 

totalize 8946 pairs of genes. The pairs of genes were subdivided in categories depending on 

whether they were found in the same TAD, around a TAD boundary or outside TADs. Pairs within 

the same TAD were further subdivided between pairs where both genes have the same behavior 
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(“Up-Up”, “Down-Down” and “Stable-Stable”) or opposite behavior (“Down-Up”, “Down-

Stable” and “Stable-Up”). The relative abundance of same-strand, convergent and divergent pairs 

was compared for those four categories: (1) pairs at TAD boundary, (2) pairs outside TADs, (3) 

pairs inside the same TAD with the same behavior and (4) pairs inside the same TAD with opposite 

behaviors. That last category serves as a proxy to COD boundaries. The pairs were then analyzed 

separately depending on the “strandedness” to find the repartition of structural proteins such as 

CTCF and Cohesin. As Cohesin does not have direct ChIP-seq data, the co-localization of RAD21 

and SMC3, two of its subunits for which there are available ChIP-seq replicates, was used instead. 

The odds ratio heatmap has been by comparing convergent and divergent pairs to “same-

strand” pairs after consecutive resampling to match distance distributions as before. Unlike in the 

first heatmap, the empirical p-values were computed considering both tails, rather than just the 

upper tail, to be able to have p-values associated with depletion too and not only with enrichment. 

5.5 Predicting eQTL targets 

The significant eQTL and their gene targets found in healthy lung cells were retrieved from 

GTEx42. The data used for the analyses described in this manuscript were obtained from Single-

Tissue cis-eQTL Data on the GTEx Portal, dbGaP accession number phs000424.v8.p2 on 

03/02/2020. As we wanted to analyze the relation between genes affected by the same eQTL, all 

eQTLs with a single target were discarded. This resulted in a total of 477420 selected eQTLs and 

9434 gene targets. All genes having their TSS within 100 kb of each other were paired, but pairs 

involving the same genes were only considered once. Indeed, two genes can be both affected by 

multiple eQTLs and we wanted to consider each pair of genes uniquely, even if multiple variants 

are involved. We thus obtained 9088 interest pairs, where both genes are affected by the same 

eQTL, and 24035 control pairs, where genes are affected by different eQTLs or one gene is 

affected by an eQTL and the other is not. The prevalence of finding those genes on the same strand 

or not, or to be separated by a barrier or not was assessed following the distribution matching 

technique and the odds ratio formula described previously. Two genes were said to be separated 

by a barrier if there was either a TAD boundary or if there was evidence of CTCF, RAD21 and 

SMC3 between them. The pairs of genes affected by the same eQTL were compared to pairs in 

which one gene is affected by an eQTL and the other is not significatively impacted by it and is 

within 100kb of the first TSS. To account for the variations in which eQTL affect genes, we tested 
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all pairs in addition to the following subsets: (1) only pairs of consecutive genes, (2) all pairs 

affected by strong eQTLs (regression slope of the gene-eQTL association > 0.7 or < -0.7) and (3) 

consecutive pairs affected by strong eQTLs. The pairs were then further categorized into (1) pairs 

on the same strand without barrier (both CTCF and Cohesin or a TAD boundary) between them, 

(2) pairs on opposite strands without barrier between them, (3) pairs on the same strand with a 

barrier between them and (4) pairs on opposite strands with a barrier between them. P-values 

associated with both depletion and enrichment were computed empirically as before. 
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Supplementary figure 1: Gene expression changes in the RNA-seq samples and Hi-C 

reproducibility scores. (A) PCA of the normalized RNA-seq data. The top-left, top-right and 

bottom right panels show the repartition of replicates in the space produced by the first three 

principal components (PC1 and PC2, PC1 and PC2, then PC2 and PC3, respectively). The 

bottom-left panel shows the proportion and cumulative proportion of the variance explained by 
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the first five PCs. (B) Heatmap of the quality control scores given by QuASAR-QC. (C) Heatmap 

of the replication scores given by GenomeDISCO. Comparaisons inside the same timepoint are 

under the red lines and comparisons across timepoints are over it. (D) Distributions of the scores 

given by GenomeDISCO between replicates of the same timepoint (blue) or different timepoints 

(red). (E) Heatmap of the replication scores given by HiC-Spector. (F) Distributions of the scores 

given byHiC-Spector. 

 

 
Up Stable Down 

30m 0 13768 0 

1h 144 13512 84 

2h 667 12623 468 

3h 913 12267 653 

4h 1026 12034 746 

5h 1186 11604 957 

6h 1308 11338 1139 

7h 1193 11548 1076 

8h 887 12272 687 

10h 1468 10878 1508 

12h 1528 10670 1677 

Consensus 1716 10751 1810 

Supplementary table 1: Number of genes labeled as “Up”, “Stable” and “Down” at each 

timepoint and consensus. 
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Supplementary figure 2: Count of the nuclear proteins and TAD boundaries. Number of peaks 

(for nuclear proteins) and of TAD boundaries found in the data. 
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Supplementary figure 3: The resampling step limits distance bias. (A) Distribution of distances 

of the “Down-Up” pairs and reference (“Stable-Stable”) pairs before sub-sampling. (B) 

Distribution of distances of the “Down-Up” pairs and reference (“Stable-Stable”) pairs after the 

sub-sampling. 
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Supplementary figure 4: Complete heatmap of odds ratios for the presence of a physical barrier 

between the genes of the pairs, for all available TFs. The “Stable_Stable” pairs are used as 

reference. *P-value < 0.05; ***P-value < 0.001. The p-values are empirical, computed with 1000 

resampling events 
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Chapter 3:  General Discussion 

3.1 Analysis of the Boundaries in the Genome 

3.1.1 Strand Position Affects Co-Expression Probability 

In Chapter 2, we have shown that TAD boundaries serve as barriers to co-expression, as 

they are more prevalent between genes that have opposite behavior after DEX induction. We also 

found a second type of boundary determined by a structural element. The switch of strand on which 

genes are located mark intra-TAD boundaries, independently of CTCF and Cohesin. Co-

expression of genes across those boundaries is reduced. The regions bordered by the boundaries 

seem to serve as building blocks for CODs. eQTL data seem to corroborate the previous findings, 

as genes affected by the same eQTL tend to be located on the same strand and to be less separated 

by a barrier such as a TAD boundary. 

We thus proposed a model where genes on the same strand tend to by highly co-expressed 

by chance. The change of strand reduces that probability and the introduction of barriers disrupts 

co-expression even more. TADs seem to work as a frame in which CODs, more variable, change 

in function of the conditions. 

3.1.2 Limitations of the method 

3.1.2.1 Distance Distribution Correction 

The results produced during this project can be divided into three main parts: 1) the effect 

of nuclear proteins and TAD boundaries on co-expression, 2) the effect of gene orientation on co-

expression probability and 3) validation of previous observations using eQTL data. One important 

element all these results share is the distance-bias correction. Indeed, we have seen that distance 

between genes greatly influences co-expression. For example, genes that are activated tend to be 

found closer from each other than genes having opposite behaviors. The distance difference 

between various types of pairs is especially important for the first analysis, as two genes have a 

higher probability of having a nuclear protein between them, by chance, as the distance between 

them increases. There was thus the need of correcting that distance bias before doing any analysis. 

The distance bias has been accounted for by resampling a control set of paired genes to match the 

distribution of distances of the interest set of paired genes. Yet, the distribution matching is not 

perfect and allows for a maximum of 5kb difference. In other words, the distribution matching 
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permits to obtain a control set that is closer to the test set, regarding the distances between the 

pairs, but there is not a perfect match and the distance bias is reduced but not completely removed. 

However, a perfect distribution matching, meaning there would be a pair in the control set having 

the exact same distance between the genes for each pair of the tested set, would certainly lead to 

an important loss of data, as the probability of finding matching pairs with the exact same distance 

is low. The distribution-matching technique used in the project is thus a needed compromise 

between lowering the distance bias while not losing to much data. That compromise is to keep in 

mind while commenting the results of the following analyzes. 

3.1.2.2 Conservative Gene Labeling 

The first analysis used six categories of paired genes, labeled according to how genes 

behave after DEX induction. Two different R packages for identifying differentially expressed 

genes (DEG), edgeR and DESeq2, were used. DESeq2 usually identified more genes than edgeR 

did, and almost all edgeR-identified DEG were also found by DESeq2 (General figure 6). Only 

genes that were DEG according to both methods were kept as true DEG. Their “direction” was 

then attributed for each time-point before a consensus was made. The identification of “Up”, 

“Down” and “Stable” genes is thus rather stringent, as they have to be found by two methods and 

there is no fine categorization of behavior; genes that are rapidly upregulated and those that are 

upregulated after a few hours only all under the same “Up” label. This means that the “Down-Up”, 

“Down-Down” and “Up-Up” categories contain genes that can be trusted to be differentially 

expressed, but that two “Up” genes do not necessarily have the exact same expression pattern 

across the time-course. In addition, some genes falling into the “Stable-Stable” category might 

actually have expression changes that were too small to be detected with certitude by both methods. 

While it could be seen as a limitation, the strict criteria the genes must respect to be labeled as 

“Up” or “Down” actually strengthens the results. Indeed, the analyses show significant enrichment 

despite the possibility of not taking all DEG into account. It would however be interesting to create 

more categories of pairs, with more fine behavior descriptions, to see if different upregulation 

patterns also tend to be more often separated by a barrier than upregulated genes with the same 

pattern. 



Chapter 3 General Discussion 

49 Audrey Baguette 

 

General figure 6: Venn diagrams of the number of differentially expressed genes. Most genes 

identified by edgeR are also identified by DESeq2, regardless of the timepoint. 

3.1.2.3 Position of TAD Boundaries 

The barrier property of TAD boundaries was assessed using the TAD called at time 0 as 

reference. This was justified by using three methods to compute reproducibility and concluding 

the scores are similar enough. However, all chromatin changes cannot fully be represented by a 

single number. TAD boundaries only cover a small portion of the complete genome. Indeed, the 

boundaries used in this project cover less than 11.5 million of base pairs, while the whole human 

genome contains approximately 3 billion of them. TAD boundaries used in this study cover thus a 

little less than 0.38% of the whole genome and the changes that may happen in those 0.38% is 

likely to be lost in all other possible changes captured by a single reproducibility score. It is thus 

possible that changes happening in a subset of the boundaries are not represented by the returned 

reproducibility score of any of the methods. 
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3.1.2.4 Position of COD Boundaries 

Once the TAD boundaries were confirmed to act as a barrier, we searched for intra-TAD 

boundaries. The pairs of consecutive genes that were inside the same TAD but having different 

behaviors were used as proxy for COD boundaries. CODs are usually identified using correlation 

of gene expression, and genes with uncorrelated expression mark the boundaries32. It is safe to 

assume that genes with different behaviors have uncorrelated expression. Using genes inside the 

same TAD with different behavior is thus a good proxy for finding COD boundaries without 

risking having false positives. However, as the genes are not more finely labeled, there is a risk of 

missing COD boundaries. Two genes having the “Up” label does not mean they are correlated 

expression. One of them could be activated early on during the time-course, and the other later, 

resulting in a lesser correlation of their expression. This might explain why there is only a slight 

difference between the pairs of genes in the same TAD with different behavior, and those in the 

same TAD with the same behavior: that last category is likely to contain COD boundaries that 

were not identified by our strict labeling. 

3.1.2.5 eQTL Provenance 

The last step combines the position of barriers and eQTL data to validate the model. TAD 

boundaries are highly conserved between single cells10 and cell types7,12,13,19. Nonetheless, they 

are not perfectly static, and a few changes may occur18. The TAD boundaries and ChIP-seq data 

comes from A549 cells, while the eQTL data comes from lung cells of patients. The small 

differences in cellular organization between the lung cells and the A549 lung cancer cell line may 

affect the results. 

3.2 Results Put in Context 

The insulation property of TADs we show had been reported before20,27,34,37. However, the 

regulatory properties of TADs were unclear and TADs were missing a functional definition11,16. 

With this study, we answer partially that question by distinguishing TAD boundaries and COD 

boundaries. Different levels of architecture have different functions and different strengths. TADs 

are a stricter, less mobile structures that include CODs, more variable regulatory units that change 

according to the cell needs. We thus suggest that the genome expression regulation is linked to 

genomic architecture, through boundaries that affect the co-expression probability. This would be 

compatible with previous observations. Indeed, some smaller TADs may, in a specific condition, 
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harbour only one COD and thus the whole TAD would act as a regulation unit as seem by Le Dily 

et al29. On the other hand, in other conditions or in larger TADs, multiple CODs may exist, 

explaining why randomly created TADs seem to have as much co-expression as real TADs32. 

The proposed model is also compatible with previous models. Indeed, transcription 

factories have been suggested to be an important element of the transcription process, but their 

composition is still unresolved. They seem to be structured through both RNA polymerase II loops 

and CTCF loops40. The model has been explained as if the DNA ere static and the transcription 

machinery mobile, for ease of comprehension. But it can be understood as being part of 

transcription factories. Assuming the transcription machinery forms the core of factories and are 

static, the proposed model can be explained in the following manner: TADs serve as the structural 

basis of factories, multiple TADs aggregate to a single factory, thus resulting to what was 

interpreted as compartments, and CODs would correspond to a single or a subset of RNA 

polymerases in the factory. In other words, when a gene enters a factory and binds itself to a 

polymerase to start transcription, nearby genes on the same strand are likely to get transcribed as 

well by chance. When there is no promoter sharing, the switch of strands introduces a small 

disruption in co-expression. Transcription of genes on opposite strands would probably require the 

DNA to detach the strand being transcribed and completely change its orientation in order to have 

the opposite site transcribed. It seems less likely than transcription of genes on the same strand, 

that requires the DNA to “forget” to detach itself after the transcription of one gene and thus getting 

the downstream gene transcribed or shifting a little to much while going back to the promoter and 

getting the upstream gene transcribed. Genes that are co-expressed by the same factory would thus 

be interpreted as CODs and consecutive CODs would form TADs. The aggregation of multiple 

TADs to the same factory might lead to the interaction patterns seen in Hi-C maps that were 

interpreted as compartments. 

 

3.3 Perspectives 

3.3.1 Promoter Sharing and Tethered Sites 

For this study, the position of genes, and more specifically their TSS, was considered, but 

no other element was. It was assumed that each gene has its own promoter. Studies showed a few 

cases of promoter sharing between divergent genes in in yeast55 and humans56,57. Promoter sharing 
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leads to co-regulation and in future analyzes, it might be better to consider only one gene by 

promoter, or at least acknowledge genes sharing the same promoter. 

In this study, we argue that the activation or repression of one gene affects nearby genes, 

depending on their relative position and what barriers are present. Previously, it has been shown 

that some transcription factors such as GR have primary targets, directly bound by GR, and 

secondary targets, bound to GR via tethered sites and required co-factors. It would be interesting 

to explore those two mechanisms together, as they could create an entire hierarchy of responses 

for each direct TF binding: one primary target, a few by-products, secondary targets through 

tethering and finally by-products of the secondary targets. Adding information on what regulatory 

elements affect what genes, and which of those regulatory elements are bound, directly or not, 

would certainly greatly improve the model and our general knowledge on transcription. Promoters 

and enhancers of some genes can be found in annotation packages, can be deduced using 3D 

chromatin contacts or retrieved using special methods71. Direct and tethered TF binding sites are 

obtained using a mix of ChIP-seq and Hi-C data65. It is thus a variety of possibilities that exist to 

improve the model, but they require multiple types of data sets and should ideally all come from 

the same cells. 

3.3.2 Expansion of the Data 

In addition to obtaining more data types in one cell type after one stimulus, the model 

would also benefit from the use of different cell types and different stimuli. This would help to 

confirm the validity of the model and would also have the advantage of confirming COD 

boundaries. Indeed, CODs are, by definition, variable and change from condition to condition, and 

from cell to cell. By only using one stress as in this study, we certainly only retrieved a subset of 

all possible COD boundaries positions. The lack of difference in the repartition of the structural 

proteins and the strand conformations between the “same TAD, same behavior” and the “ same 

TAD, different behavior” can be attributed to the lack of fine labelling, as explained before, but it 

could also be due to the variable nature of CODs and thus their boundaries. As the cells needs 

change from one condition to another and the CODs get re-organized to satisfy those needs, it may 

be that some COD boundaries might be seen only after a specific stimulus and not another. We 

argue that gene orientation and strand change pre-determine the location of COD boundaries. It 

would be interesting to confirm that convergent and divergent gene pairs that were not observed 



Chapter 3 General Discussion 

53 Audrey Baguette 

to be COD boundaries when inducing A549 cells with DEX become COD boundaries in different 

cells or in A549 cells induced with a different hormone or a heat shock. 

3.3.3 Exploring the Nucleus Environment 

Hi-C data is very useful to explore the nuclear architecture. However, it remains noisy and 

can thus be imprecise at very high resolutions. Micro-C is a new technique, based on Hi-C, that 

retrieves the same elements (compartments, TADs and chromatin loops) with a better signal-to- 

noise ratio72,73. As such, it would be interesting to produce data using Micro-C rather than Hi-C to 

have a more precise mapping of chromatin interaction. Moreover, Micro-C detect accurately 

interaction between enhancers and promoters and between promoters of different genes72. Micro-

C would thus be useful to better characterize how the proximity of genes affects their co-expression 

in a 3D context. In this study, we only used the linear distance, due to technical limitations, but 

Micro-C might permit to use special distance instead. 

The direct environment of the genes seems important, as it determines how genes are 

regulated, depending on the expression of nearby genes, and which transcription factors are 

present. Now that as basis to link architecture and transcription has been proposed, it would be 

interesting to explore it further, keeping transcription factories in mind. Indeed, if the proposed 

model and the model of transcription factories can be confirmed as different points of view of the 

same mechanism, changes in transcription could be better anticipated. It would also serve as a 

starting point to better explore if some transcription factories are indeed specialized or not46–48. It 

would also permit to explore how genes compete for resources in the closed environment that is 

the nucleus67. 
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Chapter 4:  Conclusions and Future Directions 

The model presented in this study could help better anticipate changes in cell behavior due 

to a stimulus or a change in cell environment. But, before predictions can be made, further work 

is needed to test the model under different conditions and different cell types. First, A549 cells 

induced with DEX were used. A549 cells come from a cell line, more specifically from a cancer 

cell line, and could thus have dissimilarities from patient-extracted cells. It is thus necessary to 

verify the validity of the model in other cell types. Second, the model has been discovered using a 

hormonal stimulus. There is the need to confirm that the model is robust regardless of the hormone 

tested. The model should also be tested using a different kind of stimulus. For example, a heat 

shock has been seen to induce changes in gene expression, but no to change the overall chromatin 

architecture, the contacts between enhancers and promoters, nor the TAD boundaries21. For those 

reasons, a heat shock would be another type of stress to put cells under to account for the robustness 

of the model. Third, bulk RNA-seq was used. As single-cell RNA-seq techniques have become 

more powerful, it would be interesting to see how individual changes in singular cells support the 

model. It could further confirm the statistical nature of CODs. 

Once the model will be more accurately defined, and its strength improved by multiple 

analyses in different cell lines under various conditions, it could be used to predict secondary 

targets simply by knowing the 3D nuclear architecture and the primary targets. The unwanted by-

product effects could be prevented by knowing before-hand which genes will be affected by a 

certain stimulus more precisely than before. 

By augmenting the data types (more complete RNA-seq, ChIP-seq and Hi-C) and the data 

sources (different stimuli, different cell types), we hope to eventually find the key to understanding 

how genomic architecture dictates transcription. Indeed, while there are many evidences of the 

existence and function of transcription factories, not much is known concerning how they are 

regulated, what signals permit the recruiting or release of genes onto them or how they are related 

to TADs. By exploring our model more in depth, we hope to answer those questions. 
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