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Abstract 

Designing systems with the ability to make optimal decisions under uncertainty is one of 

the goals of artificial intelligence. However, in many applications the design of optimal 

planners is complicated due to imprecise inputs and uncertain outputs resulting from sto

chas tic dynamics. Partially Observable Markov Decision Processes (POMDPs) provide a 

rich mathematical framework to model these kinds of problems. However, the high com

putational demand of solution methods for POMDPs is a drawback for applying them in 

practice. 

In this thesis, we present a two-fold approach for improving the tractability ofPOMDP 

planning. First, we focus on designing good heuristics for POMDP approximation algo

rithms. We aim to scale up the efficiency of a c1ass of POMDP approximations called 

point-based planning methods by designing a good planning space. We study the effect 

of three properties of reachable belief state points that may influence the performance of 

point-based approximation methods. Second, we investigate approaches to designing good 

controllers using an alternative representation of systems with partial observability called 

Predictive State Representation (PSR). This part of the thesis advocates the usefulness and 

practicality of PSRs in planning under uncertainty. We also attempt to move some useful 

characteristics of the PSR model, which has a predictive view of the world, to the POMDP 

model, which has a probabilistic view of the hidden states of the world. We propose a 

planning algorithm motivated by the connections between the two models. 



Résumé 

L'un des objectifs de l'intelligence artificielle est la misesur pied d'agents informatiques 

capable de prendre des décisions optimales dans leur environnement. Hors, plus souvent 

qu'autrement, la dynamique de cet environnement est cause d'ambiguitédans les observa

tions de cet agent et d'incertitude dans la porteé de ces gestes. Une stratégie performante 

doit donc obligatoirement prendre en compte ces incertitudes. Les processus décisionnels 

de Markov partiellement observable (PD-MPO) fournissent un cadre mathématique riche 

pour modéliser ce genre de problémes. Cependant, la demande élevée de calcul des méthodes 

présentement disponibles pour résoudre des PD-MPOs requiert une grande quantité de cal

culs et limite l'application de ce modéle en pratique. 

Dans cette thése, nous présentons deux approches pour rendre la la planification de 

PD-MPO plus traitable. D'abord, nous nous concentrerons sur la conception de bonnes 

méthodes heuristiques pour favoriser les algorithmes d'approximation de solution pour PD

MPO. Nous tenterons d'améliorer l'efficacité d'une classe de méthodes d'approximations 

de PD-MPO appelée planification par échantillonnages des états de croyance. Nous étudierons 

trois caractristiques des échantillons du groupe d'états de croyance qui peuvent influencer 

la performance de ces méthodes. Dans la deuxiéme section de cette thése, nous étudierons 

une représentation alternative pour la planification dans un environnement incertain ap

pelée Reprsentation d'États Prédictifs (RÉP). Dans cette partie, nous décrirons l'efficacité 

de cette représentation. Nous tenterons également de transmettre certains avantages du 

modéle de RÉP, qui perçoit l'environnement li travers une série de prédictions, au modéle 

de PD-MPO, qui préfére poursuivre l'état caché de l'environnement. Finalement, nous 

proposerons un algorithmé de planification motivé par les affinités entre ces deux modéles. 
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CHAPTER 1 

Introduction 

Decision making is ubiquitous in our day-to-day experiences. The human mind trans

forms a vast, complex array of incoming sensory stimuli into a sequence of purposeful 

actions. Although the neural mechanism of decision making is still unclear, one of the ear

liest goals of researchers in artificial intelligence has been to create autonomous systems 

that can perform similar decision making tasks. Clearly such systems need to maintain 

an internaI model of the surrounding environment and of the interactions that are possible 

in it. Moreover, such systems must envision the effects of actions, and make predictions 

about the future. Rence, much of the research has focused on frameworks for modeling 

and control of dynamical systems. Dynamical system modeling is of great interest for a 

wide spectrum of disciplines including physics, chemistry, biochemistry, biology, econ

orny, and sociology. A large number of applications involve taking a sequence of actions 

in which the effect of one action influences the expected utility of subsequent actions. The 

growing number of key applications of sequential decision making in dynamical systems 

has brought the development of computational approaches to this problem to the fore

front of the research in several disciplines, including artificial intelligence. An intelligent 

decision making agent can be viewed as a black box which takes a temporal series of 

environmental signaIs and generates a series of actions. These two interconnected series 

constitute the observable experience of the agent. A standard mathematical framework 

used in operations research, control theory, and artificial intelligence to describe and solve 



CHAPTER 1. INTRODUCTION 

___ --_., Sensory 
Signais 

Agent < Environment 

Initiate 
Action 

FIGURE 1.1. Graphical view of sequential decision making in dynamical systems 

sequential decision problems is Markov Decision Processes (MDPs) [Putennan, 1994; 

Howard, 1960]. A decision maker, or agent, takes actions on the basis of a signal from 

the environment called the state of the environment. In an MDP environment, the sensory 

inputs completely identify the state of the environment. Moreover, the new state of the en

vironment after making a decision and taking an action can be predicted (probabilistically) 

only based on the current state and action. In the MDP framework, the assumption is that 

the states are Markovian, which means the response of the environment at each point in 

time depends only on the state at the previous time and the action taken by the agent. For

mally, an MDP is defined by a tuple (S,A, T,R), where Sis the environment's state space, 

A is the agent's action space, T is a probability distribution describing the state transitions, 

called transition function, and R is a function that represents expected immediate rewards 

or utilities for different states and actions, called the reward function. 

Ideally, we would like the state signaIs to inform the agent of everything about the 

environment, such that the agent can precisely predict the effects of its action, in tenns of 

the immediate reward and the next state of the environment. However, agents act in real 

environments and usually do not have correct and complete information about the states 

of the world in which they exist. Therefore it is important for the se agents to be able to 

choose their actions in the presence of uncertain information. The agent box must maintain 

its knowledge of the process, often in tenns of some notion of internaI state, in order to 

15 



CHAPTER 1. INTRODUCTION 

analyze its experience with the system and decide how to act. MDPs do not typically 

model this situation. 

A more general approach for tackling such problems is to define and solve a Partially 

Observable Markov Decision Proeess (POMDP). POMDPs maintain a probabilistic model 

that reflects the imperfect information about the current state of the environment and the ef

fects of actions. The agent tries to construct a Markov state signal from a non-Markov state 

representation of the environment. Formally, a POMDP is an MDP in which the agent is 

unable to observe the current true state of the environment. A POMDP model is described 

by a tuple (S,A, T,R,Z, 0), where S,A, T, andR describe a Markov decision process, Z is a 

set of observations the agent can experience in its world, and 0 is the probability distribu

tion over possible observations, depending on the state and action, called the observation 

funetion (see Chapter 2 for more details). POMDPs were originally introduced in the con

trol theory and operations research literature [Astrom, 1965; Cheng, 1988b; Drake, 1962; 

Lovejoy, 1991b; Monahan, 1982; Sondik, 1971; White, 1991]. They have been widely 

applied in modeling decision making under uncertainty in various domains such as artifi

cial intelligence, medical decision making, mining engineering, robotics, etc. Prominent 

application examp1es include robot navigation [Montemerlo et al., 2002; Koenig and Sim

mons, 1998; Cassandra et al., 1996], spoken dia10g management [Paek and Horvitz, 2000; 

Roy et al., 2000; Zhang et al., 2001; Williams et al., 2005], task and resource allocation 

[Chong et al., 2004; Tambe and the TEAMCORE group University of Southem Califor

nia, 2005], designing automated personal assistants [Varakantham et al., 2005], preference 

elicitation [Boutilier, 2002; Boutilier et al., 2005; Braziunas, 2006], and othert areas [Cas

sandra, 1998b]. 

To solve a POMDP means to find an optimal choice of actions, a1so called a pol

iey, so that the total expected utility over a given period of time is maximized. The great 

generality of the POMDP model implies that there is no single method for solving aIl 

POMDPs effectively. It is weIl known that exactly solving POMDPs is very costly in terms 

of computation. This is due to the fact that hidden state of the Markov model cannot be 

identified exactly based on the interactions with the environment. Therefore, the agent 

16 



1.1 THESIS OBJECTIVES 

cannot form an optimal policy based on the exact hidden state. Instead, it must keep a 

sufficient statistic of its complete history of actions and observations. This is known as 

the curse of history in the POMDP literature. The sufficient statistic in POMDPs is called 

the belief state, and consists of a probability distribution over all the unobservable states. 

If the environment is fini te, the belief state is typically represented as a vector in which 

each element specifies the agent's current belief of being in a particular state of the en

vironment. This immediately implies that the agent needs to consider a distribution of 

dimension equal to the number of underlying hidden states in order to reason about ev

ery possible belief. This problem is known as the curse of dimensionality in the POMDP 

literature. A huge research effort in the field has been devoted to tackle these two prob

lems by using assumptions about the structure of the POMDP [Feng and Hansen, 2001; 

Guestrin et al., 2001; Hansen and Zhou, 2003a], different representations [McCallum, 

1993; Boutilier and Poole, 1996; Roy, 2003; Ng and Jordan, 2000; Hansen and Feng, 2000], 

and efficient approximate solution methods [Braziunas, 2003b; Yu and Bertsekas, 2004; 

Hauskrecht, 2000a; Li and Littman, 2005; Pineau et al., 2003; Parr and Russell, 1995; 

Wang et al., 2006] (also see excellent surveys by Murphy 2000 and Braziunas 2003a for 

more on POMDP approximation methods). 

1.1. Thesis Objectives 

In this thesis we investigate novel approaches that target the two curses of dimension

ality and history in order to solve sequential decision making problems under uncertainty. 

Moving towards this goal, we study first the point based approximation framework, one of 

the best approximate planning methods for POMDPs. A simple yet important observation 

behind this c1ass of POMDP approximation methods is that the continuo us belief space of 

a POMDP is not necessarily what needs to be considered as planning space given a known 

initial state distribution. Instead, one should plan only for the belief states which can be 

experienced by the agent. In one part of this thesis, we investigate using several criteria to 

guide the search for selecting beHef states in Point-Based Value Iteration (PB VI) [Pineau 
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1.2 CONTRIBUTIONS 

et al., 2003]. One contribution of the thesis is to develop and test heuristics that allow 

tailoring the set of required points based on several properties. 

The curse of dimensionality is countered by reformulating the sequential decision 

making problem using an alternative state representation, which can introduce a more 

compact model than POMDPs. This representation, called Predictive State Representa

tion (PSR) [Littman et al., 2001; Singh et al., 2004] can provide dimensionality reduc

tion in prediction and control problems. A number of representations for dynamical sys

tems have been proposed during the past two decades [Jaeger, 2000; McCallum, 1995b; 

Rivest and Schapire, 1994; Dayan, 1993; Platzman, 1997]. However, they either impose 

restrictions to the underlying environment (i.e, they are not as general as POMDPs), or they 

do not seem to provide any advantages over POMDPs. PSRs [Littman et al., 2001] seem 

appealing for two main reasons. First, PSRs are grounded in the sequence of actions and 

observations of the agent, and hence relate the state representation directly to the agent's 

experience. Second, PSRs offer a representation for dynamical systems which is as gen

eral as POMDPs, and can be potentially more compact than POMDPs. The fundamental 

characteristics of the model make it potentially easier for learning and planning. One of the 

goals of this thesis is to investigate how the PSR representation can be augmented and used 

in a planning framework and how it can affect the performance of planning techniques. 

Another goal of the thesis is to characterize features of the PSR representation which can 

facilitate decision making. 

1.2. Contributions 

1.2.1. Belief Selection for Point-Based Value Iteration 

On one hand, the quality of the approximate solution found by point-based methods is 

improved as more belief points are included. On the other hand, the performance of these 

algorithms can be improved by eliminating unnecessary points and concentrating on more 

important belief points, in order to obtain a good approximation of the optimal solution. We 

present new heuristics that address the problem of quantifying how large the set of points 
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considered in these methods should be, in order to get a sufficiently good approximation in 

reasonably little time. 

We propose three heuristics based on different metrics for measuring the similarity 

of beliefs from the reachable belief space. One of these methods is especially robust to 

parameter settings. Chapter 4 discusses these approaches and evaluates them empirically 

on several standard test problems. 

1.2.2. Structure Exploration through State Representation 

In a complex dynamical system, useful abstractions of knowledge can be essential to 

an autonomous agent for efficient decision making. This is the focus of the second part of 

the thesis. 

We study structure that can be detected and exploited based on mathematical proper

ties of predictive representations. We point out a special case in which a strict reduction 

in the number of states is obtained by a subclass of PSRs called linear PSRs [Izadi and 

Precup, 2005a). We define a linear dependence property exhibited by states which makes 

it possible to reduce the number of states. However, this reduction ignores the state values. 

Therefore, if a linearly dependent state has a distinctive value then we lose information by 

this type of abstraction. Considering reward as part of observation in the PSR definition 

of a test introduces a similar effect in terms of the model minimization and respects value 

equivalence as well as equivalence in dynamics. 

To make an analogy in the POMDP framework, we also incorporate reward values 

in the POMDP definition of belief states. Using rewards in the belief updates can help a 

POMDP agent to distinguish between belief states in some domains. We show that this is 

useful in solving POMDPs both exactly and approximately [Izadi and Precup, 2005b). 

1.2.3. Using Predictive State Representation in Control Problems 

Since the representational power of PSRs is equivalent to the belief state represen

tation in POMDPs, one can imagine PSR planning algorithms working in the context of 

controlling dynamical systems. The third part of this thesis focuses on the applicability of 
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PSRs for control purposes, and introduces new algorithms for planning with this represen

tation. This is done by incorporating PSRs into POMDP control algorithms. We developed 

a planning algorithm based on a lookahead search [Izadi and Precup, 2003]. Experimental 

results on standard domains confirm that the empirical performance of exact PSR planning 

is similar to belief-based planning except for highly structured cases in which PSRs provide 

considerable compression in the state space. 

We investigate the possibility of developing point-based planning methods for PSRs. 

We present an algorithm for approximate planning in PSRs, based on an approach similar to 

point-based value iteration (unpublished). The point-based approach tums out to be a good 

match for the PSR state representation. We present empirical results on several standard 

POMDP domains which confirm that PSRs provide an advantage compared to belief states. 

The power of our approach is more pronounced in domains with special structure. 

1.3. Statement of Originality 

Portions of this thesis have previously been published in peer-reviewed conference pro

ceedings [Izadi and Precup, 2003; 2005a; 2005b; Izadi et al., 2006; 2005], and presented 

at workshops [Izadi and Precup, 2006]. The material presented in this thesis contains more 

extensive discussions of the proposed techniques and problems investigated compared to 

the content of the published papers. The thesis also contains a significantly more extensive 

literature review and in-depth discussions of the relationships between the proposed meth

ods and existing approaches. The experimental studies presented in Chapters 4, 5, and 6 

contain additional results and different evaluations not inc1uded in [Izadi and Precup, 2003; 

2005a; 2005b; Izadi et al., 2006; 2005; Izadi and Precup, 2006]. 

1.4. Thesis Outline 

The rest of the thesis is structured as follows. 

Chapter 2 illustrates the basic POMDP framework, discusses methods for solving POMDPs, 

problems with POMDP exact solution methods, and the state of the art in POMDP approx

imate planning techniques. 
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Chapter 3 describes the predictive state representation framework (PSR), and introducing 

rewards into this representation. In this chapter we also look at different definitions of tests 

and their potential effects on planning. 

Chapter 4 considers the general problem of POMDP approximation methods. We propose 

new heuristics for belief selection in the point-based value iteration algorithm. These meth

ods inc1ude a technique inspired by PSRs for seeking good points, a value-based approach 

to point selection, and reachability analysis and its implications on the PBVI algorithm. 

Experimental results using these new methods are also presented. 

Chapter 5 defines special structure that can be captured by linear PSRs and analyzes this 

structure compared to other properties previously defined in the literature for state abstrac

tion in dynamical systems. We also propose reward-based belief updates in POMDPs to 

reduce the uncertainty about the states. Our empirical results show that considering rewards 

in belief updates is advantageous for planning. 

Chapter 6 describes our approach for solving sequential decision problems in partially 

observable systems which are modeled by PSRs. We propose new planning methods for 

PSRs based on a forward search technique and based on point-based approximation meth

ods. We evaluate these methods on several standard domains and ob tain comparable results 

with the corresponding methods to solve POMDPs. We highlight, both in theory and in ex

periments, a special case of dynamical systems in which point-based approximation using 

PSRs is superior to the same approximation using POMDPs. 

Chapter 7 inc1udes a conc1uding summary and possible future extensions of this work. 
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CHAPTER 2 

Partially Observable Markov Decision Processes 

Chapter Outline 

In this chapter, we provide background information on Partially Observable Markov 

Decision Processes (POMDPs), a formalism for modeling sequential decision mak

ing problems in real world systems. We introduce the POMDP model description 

in Section 1. In Section 2 we describe what it means to solve a POMDP prob

lem and discuss the exact POMDP solution methods. In Section 3 we review the 

main approaches for approximate planning in POMDPs and the state-of-the-art al

gorithms utilizing these approaches. A summary and concluding remarks are given 

in Section 4. 

Sequential decision making problems in dynamic environments can be modeled as 

Markov decision processes (MDPs). In an MDP environment, the new state of the environ

ment after making a decision and taking an action can be predicted using only the current 

state. But making decisions in many applications in volves dealing with uncertain informa

tion about the underlying process. In other words, the states of the environment are not 

completely observable. Instead, only some noisy sensations of the states are available to 

the agent. The uncertainty can also be due to partial specification of the transitions between 

states of the system (i.e., action effects). An intelligent decision making agent is required 

to have knowledge or beliefs about its environment and its dynamics, and must sequen

tially make decisions on a course of action which maximizes the agent's expected utility. 



2.1 MODEL DESCRIPTION 

POMDPs can model this kind of decision problem by maintaining a probabilistic model 

that refiects the imperfect information about the current state of the environment and the 

effects of actions. 

POMDP methods try to construct a Markov state signal from a non-Markov state repre

sentation of the environment. To effectively make decisions in a partially observable world, 

it is necessary to use some form of memory of the past actions and observation signaIs to 

help in the disambiguation of the states of the world, and the POMDP framework provides 

such an approach. As a general framework with many application domains, POMDPs have 

drawn increasing attention and a huge research effort has been devoted to this field. 

In this chapter, we briefiy present notation, concepts, algorithms and results that enable 

us to define the problems addressed in this work. For further details on POMDPs and their 

solution methods we refer interested readers to [Kaelbling et al., 1998; Lovejoy, 1991b; 

Littman et al., 1995b; Cassandra, 1998a; McCallum, 1995b; Boutilier and Poole, 19961 

2.1. Model Description 

Formally, a POMDP is defined as a generalization of an MDP and consists of: 

• State space S: The world is modelled by a set of distinct states S which can 

be finite, countably infini te, or continuous in general. Throughout the thesis 

we assume S is finite with ISI = n. The state at time step t is denoted by St. In a 

POMDP, these states are not directly observed by an agent and only a probability 

distribution over these states can be maintained by the agent. 

• Action space A: The states of the world can be infiuenced by the agent by taking 

actions. The set of available actions can be discrete,countably infinite or con

tinuous, but here we only consider a finite set of actions A and denote by at the 

action choice of an agent at time t. The behavior of the agent in selecting actions 

is determined by a policy (which will be discussed later on in this chapter). 

• Observation space Z: The observable feedback from the world to the agent con

sist of a set of observations. We assume a finite set of possible observations 

Z = {Zl, ZZ, ... , ZÛ and we denote by Zt the observation made by the agent at time 

23 



2.1 MODEL DESCRIPTION 

t. In a POMDP, state aliasing can occur in the sense that an agent can make the 

same observations at different states of the world. In the fully observable setting 

(MDP) the set of observations is the same as the set of states, and at each time 

step St = Zt. 

• Transition function T : S x A x S ---+ [0, 1]: The actions of the agent can influence 

the states of the world. The effect of actions is captured by the transition function 

T. Intuitively, T(s,a) defines a distribution over next states when an action ais 

taken in state s. Formally, 

T(s,a,s') = P(St+l = s'lat = a,st = s) (2.1) 

The transition function exhibits the Markov property, i.e., the probability of tran

sition to state St+I depends only on the current state St, and the current action at 

and does not depend on the previous states and actions. 

• Observation function 0 : A x S x Z ---+ [0,1]: The uncertainty about the exact 

state of the world is reflected by observation function. O( a, s', z) is a probability 

distribution over the observation space when the agent takes action a and makes 

a transition to state s' : 

O(a,s',z) =P(Zt+1 =zlat =a,St+l = s') (2.2) 

• Initial belief state bo: A probability distribution over unobservable MDP states, 

where bo(s) = Pr(so = s) 

• Reward function R : S x A ---+ 9t: Conceptually, the world issues rewards after 

each state transition. The expected immediate reward gained by the agent for 

taking each action in each state is defined by the reward function. The real value 

R (s, a) denotes the expected immediate reward gained by taking action a in state 

s. 

• Discount factor y: The importance of the rewards achieved by the agent Can be 

weighted by a discount factor. Typically the more delayed the reward is, the 
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2.2 POMDP BELIEF STATE 

less important its value becomes. The discount factor of a POMDP is a constant 

O<y::; 1. 

Generalizations to the case of infinite states, actions and observations [Williams et al., 

2005; Spaan, 2006; Hoey and Poupart, 2005; Porta et al., 2005] are possible for many 

algorithms, but it generaUy makes the problems more complex and harder to solve. The 

POMDP formulation considered throughout this thesis assumes that aU model components 

are finite and provided in the problem definition. 

2.2. POMDP Belier State 

In a POMDP setting, we still maintain the Markov assumption: future states and obser

vations are conditionally independent from past states and observations given knowledge of 

the current state. However, in contrast to the MDP, the current state is not accessible; only 

the actions and observations are known. Instead, the state is estimated using a generic inter

naI state of a POMDP agent called belief state. [Astrom, 1965] first described belief states, 

and most of the existing POMDP solution methods are based on belief state estimation. 

Belief states are sometimes referred to as information states [Cassandra, 1998al. 

At each time step t, the agent maintains an estimation of the state of the world, bt = 
(P(si) ... P(sisJ))' which is a posterior distribution over the state space at time t: 

P(St = sIZt,at-l,Zt-l, ... ,ao,bo) Vs ES (2.3) 

where bo is the initial distribution over states. Maintaining the entire history of the agent 

can become computationally difficult as the time increases. The belief state is a sufficient 

statistic for the sequence of actions observations in the past. Therefore, the agent does not 

need to remember the entire history if it has access to bt- 1 [Smallwood and Sondik, 1973 l. 

This implies a new form of the Markov assumption: future observations and beliefs are 

conditionally independent from the past, given the CUITent belief. 

The transition function of this MDP is: 

P(bt+1lbt,at) = L,P(bt+1lat,bt,z)P(zlat,bt) = L,P(bt+llat,bt,z) L,bt(s)P(zlat,s) (2.4) 
z z s 
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Note that exactly one beHef point will have probability 1 at time step t + 1 after the observ

ing Zt+l. Figure 2.1 describes this graphical model. 

FIGURE 2.1. An illustration of system dynamics by POMDP model. 

The belief at time t + 1 can be computed using Bayes rule. Each component of bt+1 

corresponding to state Si can be determined as follows: 

b () 
P(Zt+tlSt+1 = si,at,bt)P(St+l = silat,bt) O(at,Si,Zt+ln:'sT(s,at,Si)bt(s) 

t+l Si = = 
P(Zt+1lat, bt) Es' O(at, s', Zt+l) Es T(s, at, s')bt (s) 

(2.5) 

A POMDP is a belief state MDP: that is, an MDP with astate space that consists of beliefs. 

Figure 2.2 depicts the continuous beHef space of a POMDP with three states in the under

lying MDP. Note that although the belief space is continuous, if an initial belief is fixed, 

only a countable number of beliefs can be reached. In a finite amount of time, the number 

of reachable beliefs becomes finite. 

2.3. Solving POMDPs 

The goal of a POMDP agent is to find a long term plan or policy for acting in such 

a way as to maximize the total expected reward received. The best such plan is called an 

optimal policy or an optimal solution for the POMDP. The belief state is known to be a 

sufficient statistic for computing an optimal policy in POMDPs [Astrom, 1965]. Hence a 

policy is a mapping 1t : B ~ A. 
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2.3 SOLVING POMDPS 

FIGURE 2.2. Belief space of a POMDP with three underlying states. 

Given a policy 1t, it is necessary to know how good it can be when executed. The 

evaluation of a policy 1t is based on the rewards that an agent expects to receive following 

1t in the future h steps. We calI h the horizon of interest. One possible way of evaluating a 

policy is to look at E [~==-f rt], where rt is the reward received at time step t. Sometimes this 

is not quite appropriate since the time of receiving a reward is also important to the agent. 

Earlier rewards are more valu able to the agent. Renee, rewards are discounted in this case 

and the agent' s total expected reward in h time steps is measured by E [~==-J i rt + 1] where 

(0 < y:::; 1) is the discount factor defined by the POMDP model. 

The amount of total expected reward that an agent can accumulate over its lifetime as 

given by the horizon h and following a policy 1t is called the value function of 1t. Most of 

the POMDP algorithms are based on estimating a value function. A value function V 1t of 

the policy 1t defines the value for each belief state under policy 1t. 

(2.6) 

The value function assigns to each belief state b the expected value of the total reward 

the agent can get in the future, given that its starting point is b. The optimal policy 1t* in 

particular is the one that maximizes the total expected future reward: 

h-l 

1t*(b) = arg max1t E[E 1rt+llb] (2.7) 
t=O 
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Finding good policies for POMDPs is generally difficult. POMDPs with detennin

istic transition and observation functions (deterministic POMDPs) and finite horizon are 

known to be NP-complete, while stochastic POMDPs are PSPACE-hard for finite horizon. 

A number of complexity bounds for POMDPs are discussed in [Mundhenk et al., 1997; 

Madani et al., 2003; Littman, 19971 

To get an intuition of why POMDPs are very hard to solve, suppose the agent is allowed 

to make h decisions. If there are n actions and m observations available in the model, then 

there are (mn)h possible action-observation sequences. Each such sequence can be consid

ered as a policy, and could be an optimal policy for a particular subset of the belief space 

and consequently, useful in finding an optimal policy over the continuous belief space. This 

phenomenon, which is called the curse of history, is one reason for the difficulty of solving 

POMDPs. Another reason is that in a POMDP with n underlying states we need to find 

and represent the value function (or policy) over a continuous (n - 1) -dimensional space 

of beliefs. This problem is called the curse of dimensionality[Pineau, 2004]. A POMDP 

with a small number of underlying states could have a very complex representation for its 

value function. Conversely a large POMDP can have a simple value function. Therefore, 

the curse of dimensionality and the curse ofhistory can potentially influence independently 

the complexity of solving POMDPs. 

2.3.1. Representing the POMDP Value Function 

Maintaining and updating independent values for infinitely many belief states is infea

sible. However, it has been shown for a finite horizon that the value function over all belief 

states can be represented exactly by a convex piecewise linear function [Smallwood and 

Sondik, 19731 

The optimal value function for a POMDP is defined as: 

V*(b) = maxaEA ER(s,a)b(s) +1 E P(b'lb,a,z)P(zla,b)V*(b') (2.8) 
sES ZEZ 

where ESESR(s,a)b(s) is the immediate reward at belief state b, and b' is the next belief 

state which is detennined by the current belief state b, action a and observation z as a vector 

28 



2.3 SOLVING POMDPS 

of probabilities (equation (2.4». The above equation is known as the Bel/man optimality 

equation for POMDPs. [Sondik, 1971] showed that the value funetion at any finite horizon 

h ean be represented by a set of veetors: rh = {al, a2, .... aü sueh that eaeh veetor repre

sents an ISI-dimensional hyperplane. Each a-veetor defines the value funetion over sorne 

region of the belief spaee. Therefore the above equation for a value function of horizon t 

ean be rewritten as: 

Vh(b) = max IlErh E a(s)b(s) (2.9) 
SES 

Associated with eaeh poliey 1t is a set of policy trees of the form 1tp and eaeh sueh tree has 

an a-veetor ap. A poliey tree 1tp is a fixed policy shown as a tree of actions eonditioned 

on observations. The length of the poliey tree is the horizon of interest. Figure 2.3 shows 

FIGURE 2.3. A sample of two 3-step poliey trees for a problem with two actions 
and two observations 

a poliey tree of length 3. An a-veetor represents the value V1tp of taking actions from each 

state Si based on a particular poliey tree. Therefore, V1tp is a veetor oflength ISI. The value 

of exeeuting a poliey tree 1tp from a belief state b is : 

V1tp (b) = E V1tp(s)b(s) (2.10) 
sES 

Therefore, in terms of the a-veetors we can write: 

Eaeh a-veetor ap defines a hyperplane in belief spaee. Note that in general, eaeh hyper

plane is associated with the action at the root of its poliey tree. The above equation means 
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that the value function is a linear function of the beHef distribution. The optimal value of a 

beHef state b in horizon h is the maximum over aIl hyperplanes associated with policy trees 

1tp of depth h: 

maxp ER(s,a)b(s) +y E (Ep(s'Is,ap)b(s)) E P(zls',ap)V1CpZ (s') 
SES s'ES SES zEZ 

Applying the max operator indicates that Vh (b) is the upper surface of aIl the linear sur

faces generated by aIl possible poHcy trees. Therefore, Vh(b) is a piecewise linear and 

convex function. The optimal value function only contains the hyperplanes correspond

ing to optimal actions. Rence, not aIl hyperplanes are necessary or useful to represent the 

value function. To be useful for a value function representation, a hyperplane a must be 

the maximum for sorne b (Figure 2.4). If r contains only useful hyperplanes then it is 

called a parsimonious set [Littman et al., 1995al. POMDPs with as few as two states can 

have an optimal value function which needs an exponential number of a-vectors in their 

parsimonious set. 

v ~ ... 

FIGURE 2.4. An illustration of a value function as the superposition ofhyperplanes 
(line-segments here in 2D). Vectors 0.1,0.3,0.4,0.5 and 0.7 are useful in constructing 
the value function. 
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The optimal policy can be computed based on the optimal value function: 

1t*(b) = arg maxaEA ER(s,a)b(s) +y E P(b'lb,a,z)P(zla,b)V*(b') (2.11) 
SES zEZ 

A globally optimal policy is known to exist for MDPs when y < 1 [Howard, 1960]. How

ever, even finite horizon POMDPs are undecidable [Madani et al., 2003]. 

2.3.2. Value Iteration Methods 

Many POMDP planning methods work by constructing a finite representation of a 

value function over the continuous belief space and then iteratively updating this represen

tation by expanding the horizon of the corresponding policy until a desired depth is reached 

or the value function converges to a stable value. This technique is called value iteration 

[Bellman, 1957; Bertsekas, 19871 The basic idea behind the value iteration algorithm is 

to construct policies gradually, one horizon at a time, and to reuse the policy found for 

the preceding horizon. The algorithm proceeds by using a value update on an a-vectors. 

Algorithm 1 Exact Value Iteration Algorithm 

INPUT: POMDP model and horizon h 
Initialize ao to a vector of all zeroes 
r= {aD} 
for ail a E A do 

aa,*(s) =R(s,a) 
ra,* = {aa,*(so), ... , aa'*(sn)} 

end for 
for ail t = 1 to t = h do 

for ail a EA do 
for ail z E Z do 

for all a' E r do 
aa,z(s) = yEs'ES T(s, a,s')O(s',a,z)a'(s') 
~,z = ~,z U { aa,z} 

end for 
end for 
17 = ra,* EB ~,Zl EB ~,Z2 EB .... EB r;,ZIZI 

end for 
rt = UaEA['f 
r=rt 

end for 
Return r 
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Dynamic programming is used to update these vectors. Such updates generate new vectors 

to be added to r. 
Different exact POMDP algorithms have different approaches to this problem. A com

mon update implementation solves a set of linear programs. Once a single round of value 

iteration has been performed r is examined to remove useless dominated vectors and create 

a parsimonious set ready for the next round. This process, which is known as pruning, can 

be complex since r contains exponentially many vectors. 

2.3.2.1. Sondikl Monahan's Algorithm 

The simplest exact POMDP method is Sondik / Monahan's enumeration algorithm 

[Sondik, 1971; Monahan, 1982], which implements the exact value iteration algorithm 

(2.3.2) and can find an optimal policy for a specified horizon. This algorithm performs 

dynamic programming to compute increasingly more accurate values for each belief state 

b. The initial value function is: 

Vo(b) = maxaEALb(s)R(s,a) (2.12) 
sES 

The value function at the horizon of t + 1 is constructed from the value function at the 

horizon t recursively: 

Vt+1 (b) = maxaEA L b(s)R(s,a) +'YLP(b'lb,a)Vt(b') (2.13) 
SES b' 

where b' is the next belief state given the current belief b and the action a. 

The representation of the corresponding value function, rH 1, can be generated from 

the set of (X-vectors rt using the operations known as exact value backup. First, we generate 

an intermediate sets of (X-vectors for each action-observation pair and then we take the cross 

sum lover aIl observations to create a single hyperplane for each action. The union of aU 

such vectors represents the set rt+ 1. 

The algorithm enumerates aIl hyperplanes in rt and performs a dynamic programming 

update on each one. This method results in a large number of new vectors and is intractable 

19 denotes the cross-sum operator,p9q = [Pl +ql, ... ,pn +qn] 
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because of the exponentially growing number of conditional plans. In the worst case the 

new value function needs IrHll = O(IAllrtI IZI ) (l-vectors. The Linear Support algorithm 

of [Cheng, 1988a] is also very similar. 

2.3.2.2. Witness Algorithrn 

Similar to the definition of a value function is the one of the action-value function, 

which corresponds to the expected reward for choosing a fixed action a in the first time 

step and acting optimally afterwards. 

Q*(b,a) = ER(s,a)b(s) +y Ep(b'lb,a,z)P(zlb,a)V*(b') (2.14) 
SES zEZ 

Using this definition, equation (2.8) can be rewritten as: 

V*(b) = maxaEAQ*(b,a) (2.15) 

In a similar manner to V, Q is represented by a set of piecewise linear and convex functions 

Ua. The Witness algorithm [Littman, 1994; Cassandra et al., 1994], is similar to Sondik's 

algorithm in that it looks for a point in where the current set of (l-vectors are not dominant. 

However, instead of computing value function Vt for aIl actions and all observations at 

the same time, the witness algorithm considers computing sets of vectors for each action 

individually and then focusing on each observation one at a time. Therefore, it constructs 

Qf of t-step policy trees for each action a and finds the best value function for each action 

then computes Vt by taking the union of the Qf for all actions and eliminating dominated 

vectors. The basic goal of the witness algorithm is to find a parsimonious representation of 

Ua for each action a in a dynamic programming fashion. 

In each iteration of dynamic programming updates for the set ua, the algorithm looks 

for a belief state b which is an evidence or witness to the fact that the current vectors in 

ua are not yet a perfect representation of Qf(b) and have to be expanded. This algorithm 

is considered more efficient than Sondik's value iteration algorithm since it searches for 

witness points in smaller regions of the belief space. 

33 



2.3 SOLVING POMDPS 

The experimental results in [Cassandra, 1998a] indicate the witness algorithm is faster 

than other exact algorithms in practice over a wide range of small problems. However, there 

are also methods to improve the computational complexity of value iteration algorithms, 

which consequently yield a speed-up in the witness algorithm as weIl [Zhang and Zhang, 

2001b;2001al. 

2.3.2.3. Incrementai Pruning 

The IncrementaI Pruning algorithm [Zhang and Liu, 1996; Cassandra et al., 1997] 

achieves both simplicity and computational efficiency compared to the previous algorithms. 

A large number of the (X,-vectors are not useful in the parsimonious representation of the 

value function. This algorithm performs a dynamic programming backup and at each step 

it also prunes the dominated vectors. 

The Bellman equation can be decomposed in the following steps: 

(2.16) 

where Ra (b) = ESES b (s )R (s, a) is the immediate reward of taking action a from betief state 

b and b~ is the next belief state after taking action a from betief b computed by equation 

(2.5). 

Q~(b) = E Q~,z(b); (2.17) 
zEZ 

(2.18) 

Cassandra [1998a] provides a detailed comparison of all exact algorithms. Zhang and 

Zhang [2001c] design a variation of Cheng's algorithm which performs a combination of 

point-based value updates and full value backup. This allows fewer number of expensive 

exact value backups white at the same time converging to the exact optimal solution. 

The downside of the POMDP framework is that exact algorithms scale poorly. Exact 

POMDP solution methods are extremely demanding computationally even for fairly small 

state spaces. Even the best exact algorithms for POMDPs can be very inefficient in both 

space and time. Therefore, a huge research effort has been devoted to developing approxi

mation techniques in this field. 
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2.4. Approximate POMDP Solution Methods 

There are many approximation algorithms in the POMDP literature. These algorithms 

are mostly based on three general approaches for solving the planning problem: 

• computing an approximate value function for exact belief space (see [Hauskrecht, 

2000b] and [Pineau et al., 2006] for reviews); 

• computing the exact value function for compressed belief space (e.g. [Boyen 

and Koller, 1998; Poupart and Boutilier, 2000]); 

• computing an approximate value function using compact belief space (e.g.[Ro

driguez et al., 1999; Roy et al., 2005]). 

Many approximation algorithms have been developed in each category. We mention just a 

few examples here. However, the focus of the thesis is on the first category. 

2.4.1. MDP-Heuristics 

There are a number of approximation techniques based on heuristics on the underlying 

MDP. For instance, the MLS heuristic [Nourbakhsh et al., 1994], assumes that the agent 

is in the most likely state (MLS). This approach completely ignores the agent's confusion 

about which state it is in. The voting heuristic [Koenig and Simmons, 1998] weighs the vote 

for the best action in each state by the probability ofbeing in that state. The popular QMDP 

heuristic [Littman et al., 1995b] assumes that the POMDP becomes fully observable after 

taking one action. This heuristic first solves the underlying MDP and then, given any belief 

state, chooses the action that maximizes the dot product of the belief and Q values of state

action pairs: 

QMDP(b) = arg maxaEALb(s)Q(s,a) (2.19) 
sES 

These heuristics perform poorly if the belief state is close to uniform since their core as-

sumptions are violated. This motivates choosing actions that decrease the entropy of the 

beHef state in the hope that the heuristics above will perform better. The entropy can also be 

used to weigh two policies that trade off information gathering and exploitation [Cassandra 

et al., 19961. An alternative family ofheuristics is based on simplified versions of the full 

dynamic programming update [Hauskrecht, 1997]. 
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2.4.2. Grid-based Methods 

Grid-based solution methods attempt to approximate the value function over the entire 

state space by estimating it on a finite number of belief states, contained on a chosen grid. 

Once a set of grid points has been chosen, an equivalent MDP can be constructed where 

the states are the grid points. This POMDP can be solved in polynomial time [Hauskrecht, 

2000b]. Value functions over a continuo us belief space can be approximated by values 

at a finite set of points along with sorne interpolation rule. Interpolation schemes should 

maintain the convex nature of the value function. 

Grid-based approaches define a grid G containing a finite set of belief states. An 

interpolation-extrapolation function estimates the value at any point in belief space us

ing the values at the grid points. The main problem with grid-based representations is that 

the number of required points increases rapidly with both the size of the state space and 

the resolution of the grid. In general, grid-based methods [Lovejoy, 1991a; Hansen and 

Zhou, 2003a; Brafman, 1997; Hauskrecht, 1997] differ along three main Hnes: (1) how the 

grid points are generated, (2) how the value function on the grid is estimated and, (3) how 

estimated values on grid points are generalized to the whole belief space. 

Lovejoy [1991a] developed a fixed-grid method which selects grid points that are 

equally spaced in the belief simplex and calculates upper and lower bounds on the opti

mal value function. Using these bounds, we can get an approximately optimal policy and 

an error estimate. Using dynamic programming updates, the value function is estimated 

on the grid points. Lovejoy's choice of grid allows for an elegant and efficient interpola

tion method which estimates the value of arbitrary beHef states based on the value of the 

grid points in the smallest sub-simplex containing this state. A very efficient interpolation 

technique based on triangulation assigns to non-grid belief states the convex combination 

of the values of nearby grid belief states. However, as the resolution increases, the number 

of grid points grows exponentially with the size of the state space. 

Hauskrecht [1997] and Brafman [1997] proposed variable-resolution non-regular grids, 

which allow one to increase resolution in areas of poor accuracy by adding new grid points 

that are not necessarily equally spaced. This reduces the number of grid points while 

36 



2.4 APPROXIMA TE POMDP SOLUTION METHODS 

achieving similar accuracy. However, because grid points are unevenly spaced, interpo

lation techniques are much more computationally intensive. The MLS heuristic can be 

thought of as a grid method with points at the corners of the betief space and a simple 1-

nearest-neighbor interpolation (assuming an LI distance measure) [Brafman, 1997]. Zhou 

and Hansen [2003a] proposed a variable-resolution regular grid that a110ws both fast inter

polation and increased resolution only in the necessary areas. In general, for all grid-based 

methods the size of the grid can grow exponentially with the number of states of the under

lying MDP. For this reason, the worst-case performance of grid-based methods is similar 

to exact methods. However, they work significantly better in practice. 

2.4.3. Point-based Methods 

Recently, algorithms have been proposed which take advantage of the fact that, for 

most POMDP problems, a large part of the betief space is not experienced by the agent and 

the actual belief states have a sparse probability distribution. Such approaches, which are 

known as point-based methods, consider only a finite set of belief points and plan for those 

points only. Plan generalization over the entire simplex is done based on the assumption 

that nearby points will have similar optimal values and actions. Point-based algorithms 

relyon the fact that performing many fast approximate updates often results in a more 

useful value function than performing a few exact updates. In this section, we present 

FIGURE 2.5. A forward search tree describing possible reachable belief points in 
two steps from the initial belief ho given n actions and m observations. 

PBVI [Pineau et al., 2003], HSVI [Smith and Simmons, 2004; 2005], and Perseus [Spaan 
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and Vlassis, 2005], three recent variations of the point based approach. These algorithms 

consider a starting belief state from which they try to predict the belief states that will be 

reachable by the agent. The point-based approach updates not only the values of the chosen 

belief states, but also their gradient. The value function is thus improved for aIl the belief 

state space and not only for the chosen belief states. These three methods differ in the 

approach they use for choosing belief states and the method they use to update the value 

function at the chosen belief states. 

The point-based approach is an improvement of the variable grid-based approach. In 

the point-based approach, the belief states are sampled by starting in the initial belief state 

and simulating some (random) interactions of the agent with the POMDP environment. 

Renee, the sampled belief states have some chance of actually being reached by the agent 

during real interactions as weIl. 

Point-based approaches can concentrate the computation on the attainable belief states. 

Thus, attainable beHef states have more chance to be optimized. AlI the other belief states 

are also still assigned a value since point-based approaches keep an (l-vector for each sam

pIed belief state and not just a value. 

One disadvantage of these methods is that they only optimize over a relatively small 

number of belief points, which is sometimes too small to give a good solution. Another 

drawback is that the (l-vectors can become hard to manage in big state spaces because they 

still have as many elements as there are states in the environment. 

2.4.3.1. Point-Based Value Iteration (PVBI) 

Point Based Value Iteration (PB VI) is one of the point-based approaches and concen

trates on planning for only a small set ofbelief states. It iteratively adds more points to the 

set in order to achieve a reasonable approximation of the value function. EmpiricaIly, PBVI 

[Pineau et al., 2003], has been successful in finding high quality solutions very quickly. The 

PVBI algorithm [Pineau et al., 2003] maintains a set B of reachable belief states from the 

starting belief state ho. To do so, PBVI iteratively expands its set B by adding a new belief 

state for each belief state aIready in B, using a one-step stochastic exploration strategy. For 
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each belief state b E B and for each action a E A, PBVI samples astate s from the distri

bution b, a resulting state s' from the distribution T (s, a, s') and an observation z from the 

distribution O( a, s', z). From these samples, it generates a new belief state b' by using the 

beHef update rule. PBVI is an anytime algorithm since it interleaves phases of belief set 

expansion and value iteration. 

The value iteration phase only tries to improve the values at the sampled belief states. 

Consequently, PBVI keeps at most one <X.-vector for each sampled belief state. After each 

value iteration phase, PBVI proposes a solution that improves as the number ofbelief states 

inB grows. 

PBVI has had great success with solving problems that are an order of magnitude 

larger than POMDP problems solvable by exact methods. The full description of the PBVI 

algorithm is presented in Algorithm 2. 

Algorithm 2 Point Based Value Iteration (PB VI) 

Input: Binit, ro,N, T 
B = Binit 
r=ro 
for N expansions do 

for T iterations do 
r= Point-Based Value Backup(B,r) 

end for 
Bnew = Expand (B,r) 
B =BUBnew 

end for 
Return r 

The backup operator creates lA IIZII rt-ll projections, but the expensive pruning op

erator needed in the exact algorithms is not necessary for PBVI. The algorithm in one 

expansion takes polynomial time in the number of states,actions,observations,<X.-vectors, 

and the number ofbeliefpoints at that expansion (O(ISI 2IAllzllrt-tlIBI)). 

The point-based value backup presented in Algorithm 3, is a fundamental operation 

for aIl point-based methods. 
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Algorithm 3 Point-Based Value Backup 

INPUT: Value-function r t - 1 and Beliefpoint set B 
OUTPUT: Value-function rt 
for ail a EA do 

for ail z E Z do 
for ail a' E rt-l do 

aa,Z(s) = YEs'EsT(s,a,s')O(a,s',z)a'(s') 
~,z +- aa,z 

end for 
end for 

end for 

for ail b E B , sES do 
ab +- arg maxaEA[EsESR(s,a)b(s) + EzEZ maxaEP,z[EsESa(s)b(s)]] 

end for 
if ab 1:. rt then 

rt +- ab 
end if 
Return rt 

2.4.3.2. PERSEUS 

Spaan and Vlassis 2005 described a randomized point-based value iteration algorithm 

ca1led PERSEUS. Unlike PBVI, this algorithm guarantees monotonic value function im

provement from one iteration to the next as the algorithm progresses. The value function is 

derived from the optimal value of a fixed and relatively large set of belief points. 

Perseus operates on a set of belief states which are gathered by simulating random 

interactions of the agent with the POMDP environment. At the same time, it uses the 

point-based backup operator for a small number of times instead of applying it repeatedly 

on sets of points of different sizes. The key idea is that in each value iteration step it is 

possible to improve the value of all points in the belief set by only updating the value and 

its gradient on a subset of the points. This allows the algorithm to compute efficiently value 

functions that consist of only a small number of vectors relative to the belief set size. Their 

approach is considerably faster than PBVI and the authors have efficiently solved a large 

robotics application. 
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2.4.3.3. Heuristic Search Value Iteration (HSVI) 

Another algorithm based on the point-based value iteration approach is the HSVI al

gorithm [Smith and Simmons, 2004; 2005]. HSVI maintains both upper and lower bounds 

on the optimal value function. The lower bound is a set of a,-vectors like for PBVI and the 

upper bound is represented as another convex hull defined with a set of belief points B. 

Initially, the lower bound is initialized with only one a,-vector, representing the worst 

possible case if the same action is applied indefinitely. The upper bound is initialized 

with the solution of the underlying MDP. The bounds are updated at specified belief points 

iteratively. For the lower bound, the update at a belief state b consists of adding a new 

a,-vector defining the value function at b, as in the PBVI algorithm. For the upper bound, 

the update at a belief state b consists of adding a new belief point in the set defining the 

convex hull. The belief points are selected using the search tree of the reachable beliefs 

from the initial belief state bo. The search is directed by using the lower and upper bounds. 

The first version of HSVI [Smith and Simmons, 2004] evaluates V (b) by computing 

the exact projection of b onto the convex hull of the points in B, which involves solving a 

linear program. Each upper bound update requires several such projections, which is time 

consuming. In the second version of HSVI [Smith and Simmons, 2005] an approximate 

projection into the convex hull suggested by [Hauskrecht, 2000b] is used instead. To ap

proximately project into the overall convex hull, the algorithm runs this operation for each 

interior point of Band takes the minimum value, requiring overall O(IBIISI) time. Empiri

cally, Smith and Simmons show that the approximate projection speeds up the upper bound 

updates by about two orders of magnitude. 

2.4.4. History-Based Methods 

When the model of the environment is unknown (i.e., the agent does not know the 

transition function, the observation function, and the reward function), it is possible to 

construct POMDP policies based on the history of past actions and observations instead 

of the belief state [Chrisman, 1992; Mitchell, 2003; McCallum, 1995b; Dutech, 2000; 

Shani, 2004]. These algorithms are able to construct good policies based on the agent's 
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past, but they usually need a lot of data. MEDUSA algorithm [Jaulmes et al., 2005] can 

be considered as a decision making algorithm in model-free POMDPs. This algorithm in

crementally learns a POMDP model using oracle queries. MEDUSA is more flexible with 

the prior knowledge and data requirement compare to other history-based methods due to 

selecting when to do queries. 

McCallum's utile suffix tree algorithm [McCallum, 1995b] uses the agent's past ex

periences to construct a simplified tree representation of the state space. This tree groups 

together past experiences that have similar values. Afterwards, based on its current past ac

tions and observations, the agent can go down the tree and find the corresponding abstract 

state (a leaf of the tree), which contains the Q-values defining the agent's policy. McCallum 

was able to successfully apply this technique to a large application of simulated driving in 

aroad task. 

2.4.5. Policy Search Methods 

There are other methods for solving POMDPs which directly search the space of poli

cies rather than using the value iteration method [Ng and Jordan, 2000; Hansen, 1998; 

Sutton et al., 1999a; Aberdeen, 2005; Bernstein et al., 2005]. The most popular method in 

this class is known as policy iteration. Policy iteration is an iterative two-phase algorithm. 

In the first part, policy evaluation, it tries to evaluate a policy being generated over the entire 

belief space. In the second part, policy improvement, it attempts to improve this policy to a 

better approximation of the optimal policy. Most of the policy search techniques use a finite 

state machine to represent a policy. Many algorithms have been developed to search in the 

space of policies [Hansen, 1998; Hansen and Zhou, 2oo3b; Poupart and Boutilier, 2003a; 

Aberdeen and Baxter, 2002; Meuleau et al., 1999; Braziunas and Boutilier, 2004l).We do 

not describe them in detail here, as they go beyond the scope of this thesis. 
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2.5. Summary and Conclusion 

In this chapter we discussed Partially Observable Markov Decision Processes (POMDPs), 

an expressive framework for sequential decision making under uncertainty. POMDP poli

cies handle uncertainty weIl. However, solving POMDPs is very demanding computation

ally. We reviewed the basic concepts for POMDP exact solution techniques, presented 

sorne of these methods, and described the sources of intractability for exactly solving 

POMDPs. Many approximation techniques have been proposed by different researchers 

to overcome the scalability of POMDP solution techniques. 

Point-based approximation methods aim to reduce the curse of history defined in this 

chapter. They are promising with respect to both scalability and solution quality. However, 

there is still room for improvement. One of the issues in designing point-based methods 

is the point selection mechanism they adopt. Ideally, we seek techniques which provide a 

guaranteed good quality solution with small number of points. We will return to this issue in 

Chapter 4. There are a number of other interesting directions to point-based approximation. 

Combining point-based methods with approaches that tackle the curse of dimensionality 

in particular is very important in overcoming the computational complexity of decision 

making under uncertainty. 

43 



CHAPTER 3 

Predictive Representations of Dynamical 

Systems 

Chapter Outline 

In Chapter 2 we discussed POMDPs as a general framework for representing dy

namical systems. Unfortunately, POMDPs are difficult to solve. It is also difficult 

to learn the model from data. Predictive State Representations (PSRs) [Littman et 

al., 2001; Singh et al., 2004] have been proposed recently as an alternative repre

sentation for environments with partial observability. The representation is rooted 

in actions and observations, so it holds the promise of being easier to learn than 

POMDPs. In this chapter, we review PSRs. In Section 1 we introduce the PSR 

model and summarize the development of the PSR framework through a mathemat

ical construct called system dynamics matrix. We also explore the characteristics of 

the model and explain the concepts required for the analysis of this model. Section 2 

discusses different types of predictive models, representing extensions the original 

definition of PSRs. In Section 3 we review models related to PSRs. Section 4 

summarizes the chapter. 

In real world systems, knowledge of the future is based on predicting how the world 

will be in terms of sorne known features. A predictive model is used to predict how a 
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change (e.g., taking an action) will affect other conditions (e.g., prediction of observa

tions) as the system evolves in time. Therefore, the model needs to maintain and update 

its predictions at each point in time. Predictive State Representations (PSRs) have been 

developed to provide a leamable and maintainable representation of the knowledge of the 

system. Predictive models hold the promise of providing a self verifiable representation 

due to the mathematical structure of the model states. This is one of the most distinctive 

characteristics of predictive representations. 

The PSR representation, which was inspired by the earlier work on Observable Opera

tor Models (OOMs) [Jaeger, 1998] and diversity-based representation [Rivest and Schapire, 

1994], uses predictions of events in the future to describe a dynamical system. 

An important issue for automated agents concems leaming the mode!. Leaming mod

els of dynamical systems under uncertainty has been widely studied for different frame

works. In this thesis, we do not consider this problem and throughout this work we assume 

that the world model together with its parameters are given. 

3.1. PSR Model Specification 

PSRs are based on testable experiences. The notion of test, used in the definition of 

PSRs, carries the central idea of relating states of the model to verifiable and observable 

quantities. A test is an ordered sequence of action-observation pairs q = a lZl .. . akZk. The 

length of a test is the number of action-observation pairs it contains. The length can be 

zero, in which case it is called a null test. We denote a null test by ê. 

The prediction for a test q, specified as ab ove , is the probability of the sequence of 

observations Zl, ... ,Zk being generated, given that the sequence of actions al, ... ,ak was 

taken. If this observation sequence is generated, we say that the test succeeds. It must be 

noted that the probability of a test succeeding depends on the history of past experiences. A 

history can be viewed as a test with the only difference being that it starts at the beginning 

of time (t = 0) while a test can start at any arbitrary time in the life of the agent. A history 

can also be of length zero, which specifies the beginning of time or the initial condition in 

a system. Such a history is called a nul! history and denoted by <p. The prediction for a 
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test q given the prior history h = a7z7 ... a?z? is denoted by p(qlh). This is the conditional 

probability of a test q being successful given that the test is performed after history h: 

Therefore: 

P(qlh) = P(hq) 
P(h) 

(3.2) 

The null test is always successful, or has probability of 1, from any history that can possibly 

be experienced in the system. The prediction for a test q can be updated as the agent 

accumulates more experience with the world. This update can be done incrementally after 

each action-observation as: 
P(azqlh) 

P(qlhaz) = P(azlh) (3.3) 

For any set of tests Q, its prediction is specified by a vector of probabilities, one for each 

test member qi E Q: 

(3.4) 

A set of tests Q is a PSR of a dynamical system if its prediction, which is called the pre

diction vector, P(Qlh), forms a sufficient statistic for the system after any history h, i.e., if 

a prediction for any test q at any history h can be computed based on P(Qlh). 

P(qlh) = fq(P(Qlh)) (3.5) 

where fq : [0, 1]IQI ~ [0, 1]. It is important to note that f q, which is called projection func

tion, does not depend on the history h. The update equation can be written as: 

( 1 ) 
fazq(P(Qlh)) 

P q haz = faz(P(Qlh)) (3.6) 

This equation suggests that all the model needs to do is to update the prediction vector 

P(Qlh), at any given history h. The elements of Q are called core tests. The PSR model 

requires keeping the prediction vector updated at each point in time; this represents the 

state of the system at each time. If we have the projection function faz for all one-step tests, 
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and projection function !azqi for aIl one-step extensions to the core tests, we can update the 

state of the PSR model. 

The model parameters are described by the projection function of the set of extension 

tests: {azqj, azl'v'qj E Q, a E A, z E Z}. The size of the model, or the number of extension 

tests, is proportional to the size of the set Q. The number of core tests, 1 QI, is called the 

dimension of the model. The PSR representation of a dynamical system has at most a num

ber of core test equal to the number ofhidden states in the POMDP representation [Littman 

et al., 2001]. In fact, the PSR model is potentially more compact than the corresponding 

POMDP. 

The type of projection function f q defines the type of a predictive state representa

tion. If fq is linear, the PSR model is called linear as well, otherwise it is called non

linear. Rudary and Singh [2004] introduced a case of non-linear PSRs, but this category 

has received little attention to date. We briefly discuss variations of PSRs in the following 

sections. 

3.1.1. Linear-PSR 

A linear-PSR is a PSR in which there exists a projection vector mq for any test q such 

that 

P(qlh) = p(Qlhl mq (3.7) 

In this case, Equation (3.6) for updating the prediction vectors becomes: 

P(Qlh ) = [P(azqllh) ... P(azqklh)] 
az P(azlh) (3.8) 

A linear PSR model consists of: 

• A : finite set of actions; 

• Z: finite set of observations; 

• Q: finite set of selected tests {ql,q2, ... ,qÛ (core tests); 

• m az : weight vectors for projections of one-step tests, defined for each action 

a E A and each observation z E Z; 
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• mazqj : weight vectors for projections of one-step extensions of core tests, defined 

for each action a E A, each observation z E Z and each core test qi E Q. 

The PSR model of a POMDP can be related to the POMDP model itself through the 

definition of outcome functions. Littman et al. [2001] define an outcome function u : Q -* 

[O,l]n mapping tests into n-dimensional probability vectors defined recursively as: 

(3.9) 

u(e) = en 

where Ta is the transition matrix for action a in the POMDP model, oa,z is a diagonal 

matrix of size n = ISI( the number of unobservable states in the POMDP) and each ele

ment 0fï'z denote the probability of observation z after taking action a and arriving in state 

Si upon taking action a , e represents the nuU test, and en is the (n xl) vector of aU 1s. 

Each component Ui(q) indicates the probability of the test q when its sequence of actions 

is applied from state Si. 

Definition: ([Littman et al., 2001]) A set of tests {ql, ... ,qn} are caUed linearly in

dependent if and only if their outcome functions U(ql), ... , u(qn) are linearly independent 

vectors. 

LEMMA 1. (lLittman et al., 2001l) The outcome vectors of the tests in Q can be lin

early combined to produce the outcome vector for any test. 

THEOREM 1. ([Littman et al., 2001 J) For any environment that can be represented by 

afinite POMDP model there exists a linear PSR with number of tests no larger than the 

number of states in the POMDP model. 

PSRs can potentially represent dynamical systems more compactly than POMDPs, but 

they still provide sufficient information to determine the behavior of any system that can be 

modeled in the POMDP framework. Figure 3.1 depicts the matrix containing the outcomes 

of aU tests. This matrix is called the U -matrix in the PSR literature. The tests in this matrix 
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Tests 
P (q 01 sol P (q Il sol -------- P (q JI sol ----

P (q 01 SI> P (q Il SI> ...... _ .. _--- P (q JI SI> ----

P (q 01 Sn> P (q Il Sn> .... _---- P (q JI Sn> -----

FIGURE 3.1. Dynamics of a system represented in the outcome matrix U. 

are sorted by their length and then lexicographically within the same length. A complete 

model of a system should be able to predict the probability of an arbitrary experience. The 

POMDP model can make such predictions using its internaI state definition as follows: 

(3.10) 

where br is the transpose of the belief state vector after history h. This equation can be 

rewritten as: 

(3.11) 

Using the definition of outcome function u, the set Q of core tests can be found by searching 

for the maximum number of linearly independent tests. This algorithm, which is presented 

in Aigorithm 4 [Littman et al., 2001], incrementally finds aIl core tests in an iterative fash

ion, given the POMDP model of the environment. 

3.1.2. System Dynamics Matrix 

The system dynamics matrix (SDM) is a mathematical construct that captures the be

havior of a discrete-time dynamical system completely. Each entry of the matrix is the 

conditional prediction probability of a test given a history. This matrix, which we denote 

by D, is the underlying structure for learning PSRs and discovering the core tests from 

data. The SDM was first introduced by Singh et al. [2004] to explain the predictive state 

49 



3.1 PSR MODEL SPECIFICATION 

Algorithm 4 Generating core tests from a POMDP model 

i +- 0 
Rank(i) +- 0 
Q+-0 
repeat 

i+-i+1 
Ui +- {aIl one-step extensions of Q} UQ 
Rank(i) +- rank of Ui 
Q +- { tests corresponding to linearly independent columns in U;} 

until Rank( i) = Rank(i - 1 ) 
Return Q 

representation purely based on observable data. The outcome matrix U defined in the pre

vious section still relies on the unobservable underlying state space S. Although leaming 

the PSR model from the U-matrix is exact, the entries of this matrix are computed given 

the POMOP model parameters, action transition functions and observation functions. Such 

a model may not be available, or the system may not be a POMOP. 

In order to leam PSRs from observable data without a POMOP model, the rows of 

the SOM should correspond to the possible histories of actions and observations that the 

system can generate: H = {<l>, hl, ... } and its columns must indicate the agent' s possible 

experiences in the future: Q = {qO, ql, ... }. Each entry Dij of the matrix is defined to be 

P(qjlhi). Although the SDM is an infinite dimensional matrix, we can express it succinctly 

using the following theorem: 

THEO REM 2. (lSingh et al., 20041) Any dynamical system that can be modelled as a 

POMDP with n states has a system dynamics matrix of rank at most n. 

The system dynamics matrix forms the basis for PSR leaming algorithms presented in 

[James and Singh, 2004a; McCracken and Bowling, 2006; Wiewiora, 2005; Wolfe et al., 

2005; James and Singh, 2004bl. The first row of this matrix which contains the prediction 

for aU tests at the beginning of time, given only the null history <p, is known as system dy

namics vector. This vector defines a full specification of the dynamical system by capturing 

the prediction of aIl tests at the beginning of time, to. These predictions however are not 

independent of each other, and there are sorne constraints on them forced by the laws of 

50 



3.1 PSR MODEL SPECIFICATION 

probability. The linearly independent columns and rows of D correspond to core tests and 
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Tests 

FIGURE 3.2. System Dynamics Matrix (SDM) 

core histories respectively. It is obvious that these sets are not unique; however there is no 

evaluation or analysis available on choosing among sets of tests or histories except for a 

trivial preference on the length of the tests (Le selecting shorter tests and histories which 

are linearly independent is preferred to those that are longer) for ease of computation. For 

further reading and detailed discussion on the SDM, see [James, 20051 

In automata the ory, a similar structure to SDM, called Hankel matrix, is used to leam 

a special case of automata called multiplicity automata [Shlitzenberger, 19611 We briefly 

review this modellater in this chapter due to its similar characteristics to PSRs and its 

similar use in decision making. 

3.1.3. PSR Mode] Learning 

The input to the problem of learning dynamical systems is a sequence of experiences 

with the system. The dynamical system determines what the leamer is able to observe at 

any given time, conditioned on the action taken at that time. The important question for 

leaming a particular dynamical system is how to go from observations to a model that will 

support predictions. 
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There are two major parts to PSR modelleaming: finding the set of core tests Q (known 

as the discovery problem), and leaming the weight vectors, or projection vectors mao and 

maoq; (known as the parameter leaming problem). 

The first PSR learning algorithm proposed by Singh et al. [2003] tried to solve the 

parameter leaming problem using an approximate gradient descent algorithm. Their algo

rithm works relatively weIl on sorne domains. This approach assumes that the set of core 

tests is provided beforehand. However, knowing the core tests is a big assumption and not 

very reasonable. 

Solving the discovery problem together with leaming parameters has been attempted 

by James and Singh [2004a] for system with a reset action. In this kind of system we 

assume the existence of a reset action, which the agent can use to get back to the initial 

starting condition, reproduce histories and generate multiple samples. The system dynam

ics matrix is estimated by computing the maximum likelihood of each of its entries. The 

core tests are found by searching for the linearly independent columns of the SOM simi

larly to the algorithm for core test discovery (except that the matrix D is used instead of 

U). 

Wolfe et al. [2005] presented a modified algorithm for leaming and discovery for PSRs 

in systems without reset, caIled the suffix-history method. In this approach, the histories 

with identical suffixes are grouped together for counting. AlI PSR discovery methods suf

fer from the fact that generating core tests is very much related to computing the SDM. 

Estimating the prediction probabilities for each entry of the SDM usuaIly requires a large 

number of testlhistory samples. Moreover, computing SDM entries approximately makes 

the computation of the rank of this matrix numerically unstable. Recently, McCracken and 

Bowling [2006] designed an online leaming algorithm for PSRs caIled constrained gra

dient which uses a gradient descent approach to estimate predictions of tests in an online 

fashion. This approach makes more efficient use of data (in the form of the agent expe

rience with the world) to discover core tests and also avoids the rank estimation in the 

original PSRs' discovery algorithm [James and Singh, 2004b1. 
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3.2. Extensions of the Iinear PSR model 

Since the discovery of the predictive state representation framework, there have been a 

number of other predictive representation models based on similar ideas. We review these 

models in this section. 

3.2.1. Non-Iinear PSRs 

In non-linear PSRs, the prediction for a test is not a linear function of the predictions for 

the core tests, but an arbitrary function of it. In this case, there may exist a smaller number 

of core tests such that the prediction for any test q and any history h can be detennined by 

an arbitrary function on them. Equations (3.2) and (3.6) still hold for this type of PSRs. 

Figure 3.3 illustrates thefloat-reset example which was introduced in [Littman et al., 2001] 

FIGURE 3.3. Float-Reset problem 

and frequently used in the PSR literature after that. In this example there are five nominal 

states, two actions (float and reset) and two observations (0 and 1). The dynamics of the 

system is such that a float action moves the agent to one of its two neighbors unifonnly 

randomly and the reset action takes the agent to the rightmost state. The agent observes 1 

only when it takes the reset action from the rightmost state. The non-linear PSR model only 

needs two core tests to represent the system as opposed to the PSR model which requires 

five core tests. 

We mentioned that non-linear PSRs can be potentially more compact than the corre

sponding linear PSRs. However, to date there is very little research on this model. In 

general, we know that nonlinearity is at the heart of many of the interesting dimensional

ity reduction methods. However, along with this attractive feature, the complexity of the 

models increases, and so they are also more difficult to analyze. 
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3.2.2. Event-PSR (EPSR) 

Event-PSR (EPSR) is a special kind of linear PSR in which tests are of the foun of 

a sequence of primitive actions which leads to an observation, rather than a sequence of 

primitive action-observation pairs. This type of PSR is very close to the notion of options 

defined in [Sutton et al., 1999c; Precup et al., 1998; Precup and Sutton, 1998] for MDPs. 

We say that an EPSR test q = ala2 ... anZn is successful when upon taking the sequence of 

actions ala2 ... an at history h, the agent makes the observation Zn at time n. The EPSR 

model includes aIl one-step tests (which are included in previously discussed PSR models 

as weIl). 

Finding the core tests of an EPSR model is possible by using the system dynamic 

matrix. The prediction of tests becomes: u(q) = Tai Taz ... TanOanZn. Therefore, the obser

vations along the way in an ordered sequence of actions do not matter and the size of the 

matrix grows less quickly (O(IAlkIOJ) instead of O(IAIIOI)k for k-step tests). 

Rudary and Singh [2004] showed an example of a deterministic system for which 

EPSR models lead to exponential compression over POMDP models. Rafols et al. [2005] 

developed several interesting examples that exhibit a great amount of regularity and showed 

how EPSR models can capture this type of structure. 

3.2.3. Temporal-Difference Networks (TD-networks) 

TD-networks [Sutton and Tanner, 2004] are a generalization ofPSRs which represent 

networks of interrelated predictions in which each prediction Can be used for computing 

other predictions. TD-networks are a combination of a version of temporal difference pre

diction [Sutton, 1988] with predictive state representation. The networks consist of a set 

of nodes, each representing a single scalar prediction. The nodes are linked together based 

on the temporal difference relationship among the predictions. These links, or so called 

question-network or what-network, represent what the network can predict about the data 

generated from the environment as a sequence of action-observation pairs. The nodes in 

the network can be thought of as predictions of different semantics. For example, anode 

could represent the conditional prediction of an observation given an action (like PSRs 
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predictions), while another could represent the prediction of the expected value of another 

node, or the prediction of an observation k time steps ahead. 

The state of the system is represented by a vector of predictions of all nodes in the 

network. For instance, if the network consists of n nodes yl ... f', then at each point in time 

it should maintain a vector, Yt = (yi, ... , f!) and update this vector according to a function 

called the answer-network. TD-networks combine two developed abstraction technologies: 

predictive state representations for abstracting over states, and the options framework for 

abstracting over time. The idea of TD-networks is still new and the strengths and limi

tations of this model have yet to be fully determined (see [Tanner and Sutton, 2005] for 

recent developments). Sutton and Tanner [2004] suggest that TD networks can be used for 

leaming PSRs. Their preliminary experiments show promising results, but this idea is still 

under investigation. 

3.2.4. Memory-PSRs (m-PSRs) 

The idea behind the m-PSRs is to use both the predictions about the future events and 

a memory of the past to represent states. It can be thought of as a combination of PSRs and 

history-based representations. The foundation of the model is based on a variation of the 

system dynamic matrix defined in [Singh et al., 20041 

The development of this model is done by using a special partitioning of the system 

dynamics matrix (D) into equivalence classes. This partitioning is based on the notion of 

memory as a fixed length history of past action-observation pairs. In this construct, two 

histories are considered equivalent if they have identical action-observation pairs in their 

last k steps, for a predetermined amount of time k. Therefore, the rows of D are partitioned 

into m parts Dl, ... ,Dm such that they describe the partition of the histories into m disjoint 

groups. Bach history of the dynamical system is related to one of the memories Ill· .. f.1m 

by identifying its last k action-observation steps. Bach partition specifies a sub-system 

Si. Therefore, each partition Di has a subset of core tests Qi corresponding to the linear 

dimensions of the sub-matrix Si and its own model parameters. It is important to note that 

the histories in the partitions are disjoint, but the core tests are not necessarily disjoint. 
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The state of an m-PSR model at a history h is defined by a pair (,u(h),p(QJJ(h)lh)). 

The memory Il is related to history h and the prediction for core tests QJJ(h) at this history. 

The number of parameters of a memory-PSR model can be much larger than that of the 

corresponding PSR model. However, in practice only a small number of core tests in each 

partition may be required, which makes the total number of parameters smaller than for 

linear PSR in sorne cases as illustrated by James et al. [2005]. It must be noted that select

ing the appropriate memory length is essential for this construct. The experimental results 

in [James and Singh, 2005; James et al., 2005] show that an accurate m-PSR model can be 

built successfully from samples, whereas PSR modellearning is not very accurate. How

ever, using the m-PSR model is not advantageous when the number of model parameters 

significantly increases. 

3.2.5. Predictive Linear-Gaussian Model 

In many real world domains, one (or more) of the state, action, or observation spaces 

are not discrete. Handling continuous spaces is more difficult than the discrete case for ob

vious reasons. The predictive linear Gaussian (PLG) model has been recently proposed by 

Rudary et al. [2005] to model dynamical systems with continuous observations. The model 

was developed for uncontrolled dynamical systems (i.e., no actions) with sorne restrictive 

assumptions about the distribution of observations: the joint distribution of observations 

is multivariate Gaussian, and the distribution of each future observation can be completely 

determined by the next n observations (for a finite number, n). 

This mode! maintains the parameters Ilt and Et representing the distribution of the ob

servation Zt at time t as its state, and updates these state parameters as a new observation 

Zt+1 is made at history ht. Based on the properties of the predictive model and its con

structive assumptions about the observations (the distribution of the next n observations 

captures all information about the distribution of all future observations), ,ut and Et are suf

ficient statistics for history ht , which makes it possible to resolve the problem of having 

infinite memory without introducing new hidden variables (as in Kalman filters). 
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The Predictive Linear Gaussian model improves the traditionallinear dynamical sys

tem (LDS) models by using a predictive representation of state. This improves the param

eter estimation and uses fewer parameters [Rudary and Singh, 2006; Wingate and Singh, 

2006]. However,it is not always an alternative approach to LDS, because of its restrictive 

assumptions. 

3.3. Existing Related Frameworks 

HistoricaUy, there have been two dominant approaches to modeling dynamical sys

tems: state-based models such as POMDPs and history-based models such as k-order 

Markov models. We have considered the POMDP framework in detail in Chapter 2, and 

in this chapter we discussed the relationship between POMDPs and predictive state repre

sentations. Here we briefly describe other models, including history-based representations 

and other predictive models, sorne of which can be viewed as inspiration and foundation 

for developing PSRs. We discuss their relation to PSRs. 

3.3.1. History-based Models 

History-based representations [Platzman, 1997; McCaUum, 1995b] are not as general 

and as powerful as PSRs and POMDPs since in many systems, there are long sequences 

of experiences which provide useful information about the system. For instance, imagine 

we need a model for localization of an agent walking around a town. Assuming that the 

agent cannot identify generic buildings and shops it walks into and distinguish them from 

the similar places in different regions of the town, it needs to remember useful information, 

such as the signs at a particular exit of the roundabout, which provide the knowledge about 

that particular area. Therefore, the agent needs to remember where in the history of its 

interactions it saw the signs. In other words, it has to memorize aU the steps taken from 

its origin to be able to localize itself at each point in time. Obviously, this could lead to 

maintaining an infinite length history of its experiences in order for the agent to distinguish 

generic places, which is infeasible. If there was a way to only remember useful information 

in the past and forget irrelevant parts, the agent would have no problem identifying its 
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location. Unfortunately, the agent cannot be selective in what to remember, since there is 

no clear way to measure the usefulness of past information as the agent behaves. 

A general history-based method may need to remember an arbitrary amount of ex

perience in order not to forget important information. The PSR approach to this type of 

problems contains a set of experimental tests that suffices to localize the agent. A model 

with too many degrees of freedom becomes unmanageable, while a too constrained one 

becomes unreliable. It is necessary to mention that the agent does not need to perform aU 

possible scenarios in future to gain useful information. Rather than explore possible futures 

of any real diversity, it needs to predict only a fairly narrow set of key experiences. 

In the history-based model, the agent remembers as much of its history as it cano Iden

tifying the real, hidden, states of the world using any finite length window of the history, 

however, is not possible in sorne cases. While disambiguating the state may require the 

agent to have infinite memory of the past, sorne approaches or special case problems have 

been designed to avoid this problem. For instance, using variable length finite history 

windows, McCaUum's instance-based state identification [McCaUum, 1995a] resolves per

ceptual aliasing with variable-Iength short term memory. 

3.3.2. Observable Operator Models 

One of the predictive state models of stochastic systems is the observable operator 

model (OOM) [Jaeger, 2000]. The original OOM model was designed for uncontroUed 

dynamical systems. It was shown to be more powerful, and able to better capture the 

properties of certain stochastic processes than hidden Markov models (HMMs) (an HMM 

models the random walk of an uncontroUed dynamic system, and as such can be seen as a 

POMDP with only one action). An OOM is a triple (Rm, 'ta, wo), where Wo is astate vector 

in Rm and 'ta (a E Z) are linear operators satisfying the foUowing conditions: 

(i) sum of aU components of Wo is 1; 

(ii) 'ta has columns whose entries sum up to 1; 

(iii) for aU tests to ... tk, the sum of aU components of 'tak , ... , 'tao Wo are nonnegative. 
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Jaeger developed sorne other variations of OOMs including interpretable OOMs and input

output OOMs [Jaeger, 1998], for controlled dynamical systems which have many similari

ties with PSRs. James [2005] showed that, in the case of uncontrolled dynamical systems, 

linear PSRs and interpretable OOMs are equivalent, while in the case of controlled systems, 

linear PSRs are more general. 

3.3.3. Finite State Automata and Multiplicity Automata 

A Finite State Automaton model (FSA) [Hopcroft and Ullman, 1979], is a five-tuple 

(S,:E, ô, so) where S is the set of states of the FSA, :E is the set of input symbols, ô is 

the transition function between states and sa is the initial state of the FSA. Finite state 

automata are learned by observing the result of sequences of actions. Let K be a field and 

f be a mapping from :E* to K. A matrix F called a Hankel matrix can be associated to 

the function f such that the rows and columns of this matrix correspond to strings x, y E 1:, 

and the entry Fx(Y) is the value of f(xy) where xy denotes the concatenation of string x and 

y. In general, F is an infinite matrix. Similarly to the system dynamic matrix, if strings 

are restricted to length at most n, the size of F is exponential in n, independently of the 

complexity of the function it represents. 

Multiplicity automata are a generalization of deterministic and stochastic automata. 

As such, they can still take advantage of sorne of the learning methods from auto mata 

theory [Beimel et al., 1996]. Learning is based on a search through the Hankel matrix 

for finding a maximal number of linearly independent rows and columns. Multiplicity 

automata have been used as an alternative representation for POMDPs. The algorithm of 

Even-Dar et al. [2005], for using multiplicity automata in POMDP planning uses the core

beHef construct which we will introduce in the next chapter. Of course, this algorithm is 

advantageous compared to POMDP planning whenever there is a structure which leads to 

a small size model, just as the case with PSR planning. 

3.3.4. Diversity-Based Representation 

Rivest and Schapire [1994] considered the problem of inferring the structure of a de

terministic finite state environment by experimentation. The learner is assumed to have no 
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a priori knowledge of the environment other than knowing how to perform a set of actions 

and knowing what observations are possible. Both the transitions and observations are 

deterministic. The determinism is encoded by specifying that aIl entries of the transition 

matrices Ta(\Ia E A) mustbe either 0 or 1. Similarly, aIl entries of the observation matrices 

oaZ(\Ia E A, z E Z) must be 0 or 1. Their algorithm effectively infers deterministic finite 

automata from input-output behavior in the absence of a means of resetting the machine to 

a start state. 

Predictions in the diversity representation are for tests caIled e-tests, defined the same 

wayas in EPSR [Rudary and Singh, 20041. However, since the systems in question are 

deterministic, predictions for e-tests are always 0 or 1. Rivest and Schapire [1994] defined 

two e-tests ql and q2 to be equivalent if, for every nominal-state, the prediction for ql is 

equal to the prediction for q2. The number of equivalence classes is called the diversity of 

the system and the state vector of the diversity representation contains one prediction for 

each equivalence class. In general, diversity can be larger or smaIler than the number of 

states. For a model withdiversity d, the state athistory h is written as: [P(qllh), ... ,p(qdlh)], 

where qj is the ith equivalence class and p(edh) = p(qlh) for any e-test q in equivalence 

class e j. Rivest and Schapire also showed strict bounds that relate the diversity of the system 

to the number of nominal states in a minimal deterministic automata on that system. 

THEO REM 3. ([ Rivest and Schapire, 1994 J) For a dynamical system that has a minimal 

deterministic model with n nominal-states, the diversity d of the system is constrained by: 

log2(n) S d S 2n 

The diversity-based representation uses permutation matrices when mapping an old 

state vector to a new one after executing an action, whereas a PSR uses the more general 

SDM matrix to apply the update function. The diversity-based representation is one of the 

inspirations for the development of PSRs and especially EPSRs. However, this representa

tion is limited since it has the strong assumption of determinism. 
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3.4. Summary and Conclusion 

In this chapter, we presented the basic theory and algorithms for using predictive rep

resentations of state. PSRs maintain the key characteristic of using only observable, verifi

able quantities in the state representation. The state of the model must satisfy the Markov 

property: when given the state, all possible future outcomes are conditionally independent 

of the history. Therefore, the prediction of every test is a function of the prediction vector 

alone. The theoretical analysis of the predictive models, their possible extensions, and their 

possible augmentation in other interesting frameworks are still under investigation. 

Another aspect of PSRs is leaming the structure of the model. The leaming algo

rithms developed for PSRs so far seem to be computationally as difficult as POMDP model 

leaming methods in general [James, 20051 This thesis does not address the PSR leaming 

problem. James [2005] has a complete description of the PSR leaming problem and the 

approaches to solve this problem. 

We will come back to PSRs in Chapters 5 and 6. The question of most interest to us in 

this thesis is how to plan with a PSR model. Exact or approximate planning methods for 

POMDPs can be extended to work for PSRs with sorne modifications, as we describe in 

Chapter 6. Predictive representations were designed with the hope to represent dynamical 

systems in a more compact way than POMDPs. This is the motivation for our work on 

PSRs model minimization [Izadi and Precup, 2005a] presented in Chapter 5, which looks 

at the characteristics of domains under which such reduction is possible. 
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CHAPTER 4 

Belief Selection Strategies in Point-Based 

Approximation Methods for POMDPs 

Chapter Outline 

In this chapter we focus on the powerful class of point-based algorithms. We ad

dress the issue of dynamically generating a good ordering of beliefs in an efficient 

way, and explore the point-based value iteration algorithm in combination with a 

number of belief point selection heuristics. Section 1 proposes a new method for 

finding the optimal value for the basis of the reachable belief space. Section 2 

presents a selection strategy based on reachability analysis from a given initial be

lief state. Section 3 points out the problem of exploration versus exploitation which 

impacts the efficiency of PBVI. It also discusses the impact of the structure of the 

betief space on point selection schemes. Section 4 describes an approach that takes 

into account the CUITent estimate of the value function for prioritizing beliefs in the 

betief set expansion phase. Section 5 contains empirical results illustrating how 

the performance of point-based value iteration varies depending on these selection 

criteria. Concluding remarks are presented in Section 6. 

Recent research on POMDP approximation has been devoted to the algorithms that 

take advantage of the fact that for most POMDP problems, a large part of the betief space 

is never experienced by the agent. There has been sorne work recently on more efficient 
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techniques for approximately solving POMDPs, as discussed in Chapter 2. In particu

lar, point-based planning algorithms for solving partially observable Markov decision pro

cesses have demonstrated that a good approximation of the value function can be derived 

by interpolating the values of a selected set of points. 

Point-based value iteration methods have been very successful in solving problems 

which are orders of magnitude larger than classical POMDP problems. The PBVI al

gorithm [Pineau et al., 2003] performs value updates on a small set B = {bo,bI, ... ,bm} 

of reachable points. The error of the approximation is bounded and it can be decreased 

by expanding the set of beliefs. Rowever, value improvement depends to a large ex

tent on which belief points are added to this set. Rence, the choice of belief points is a 

crucial problem in point-based value iteration, especially when dealing with large prob

lems. This has been discussed by several researchers. [Spaan and Vlassis, 2005] explored 

the use of a large set of randomly generated reachable points. [Pineau et al., 2003] sug

gested several heuristics for sampling reachable belief states. [Smith and Simmons, 2005; 

2004] designed an algorithm which maintains an upper and lower bound on the value func

tion to guide the search for more beneficial beliefs. 

Generalization over the entire belief space is done based on the assumption that nearby 

points are more likely to have close values. This assumption is based on the fact that the 

optimal value function is a piecewise linear and convex function over the continuo us belief 

space. The quality of approximations depends strongly on the chosen beliefs. If it was 

possible to plan for all the reachable belief points in the desired planning horizon h, then 

the solution would be exactly optimal. Unfortunately, although the set of reachable belief 

states from a given initial state is finite in a finite horizon, this set is exponential in the hori

zon length ((IAIIZI)h) and computing an optimal solution over this set is computationally 

impossible for reasonable values of h. When the agent cannot afford to consider all the 

reachable belief states that it might encounter in future, it must make a choice as to how 

to sample these points. Ideally, we need to sample enough points to build a good approxi

mation but the set should be small enough to allow a quick computation. The performance 

of point-based algorithms can be improved by eliminating unnecessary reachable points or 
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concentrating on more important points in the belief space. In this chapter we illustrate the 

importance of point selection for this class of methods and propose new heuristics that try 

to solve this problem in a more efficient way within the PBYI framework. 

First, we propose and investigate a new method for point selection in belief space called 

core beliefvalue iteration (CBVI). This approach generates a set of linearly independent 

belief vectors which are encountered by the agent while interacting with the environment, 

then PBYI is used to find the value of these beliefs and to generalize the value function 

over the entire belief simplex. We discuss how this approach can improve the worst case 

error bound of PBYI. Then we make sorne corrections to the reachability metric proposed 

by Smith and Simmons [2005], and apply this metric in PBYI as a distance measure to 

select points in the reachable belief space. We call this heuristic reachability-based. The 

previously existed approaches for point selection in point-based methods sample the points 

uniformly with respect to their level of reachability form a given initial belief. The reach

ability metric is designed to give more priority to points that are reachable in the near 

future. The intuition is to give more weight to points that are reachable in near future when 

selecting points for backup. 

ln Section 4 we investigate the effect of using the estimated value of points instead of 

the distance between them as a selection criterion. In Section 5 we propose and investigate 

a new strategy, that we call threshold-based for point selection in belief space. In this 

approach we try to balance between choosing points in breadth and in depth in forward 

search, from a given initial belief. The fundamental idea behind this technique is to give 

priority to beliefs reachable in the near future while still taking into account the distance 

between a candidate point and the current point set B. This is motivated by the observation 

that the complexity of the optimal value function can be inferred, to sorne extent, from the 

difference between the number ofbelief states being backed up, IBil, and the number of (X

vectors representing the current approximate value function, 1 ri 1. Whenever this difference 

is large, a lot of points share the same optimal policy. Therefore, we can sample points more 

sparsely, imposing a larger threshold on their distance to the current set of beliefs. A small 

(or zero) difference between IBil and Inl indicates that for a more accurate approximation 
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we need to sample more densely form the space of reachable beliefs, because different 

beliefs have different optimal actions. 

We provide empirical results in Section 6 for comparing our approaches with previ

ously suggested techniques, on a set of standard POMDPs. These results suggest that the 

threshold-based method is the winning approach. 

4.1. Remarks on the Point-Based Value Iteration Algorithm 

The exact value iteration methods are mainly based on dynamic programming and 

they exhibit monotonicity and contraction mapping [Bertsekas, 1987]. Monotonicityen

sures that the error of the value estimates for aIl points in belief space is decreased from one 

iteration to the next. The contraction mapping property guarantees that the value iteration 

method converges to a unique optimal value function. However, in the PBVI algorithm, 

from one iteration to the next, there is no guarantee that the value function over the entire 

beHef space is improved, although this property still holds for the current se1ected set ofbe

liefs B. AIso, there is no theoretical guarantee of convergence to the optimal value function 

for aIl points of the belief space unless we include them all in B. 

b b' 
3 

FIGURE 4.1. The value of a point not included in B can be decreased from one 
expansion to the next. The black Hne segments show the CUITent value function 
based on B = {bt,bz} by adding the point b3 in the set B the value function can 
be represented by the gray Hne segments. In the intervals shown by the arrows the 
next value estimates will be decreased 
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In practice, the estimated value of a reachable point b fi. B can be decreased during 

the iterative progress of the PBVI algorithm. Figure 4.1 illustrates the situations where the 

value of a point b is decreased. This figure depicts the situation in the belief set expansion 

phase of PBVI, where adding the point b3 to B causes the dotted lines to be the only (l

vectors that PBVI maintains in representing the value function. However, this leads to a 

decrease in the value estimate, compared to the previous estimate, for points b in the areas 

shown by the arrows. For this reason, adding extra points to back up does not necessarily 

lead to better value estimates over the entire space of reachable beliefs. This is useful in 

explaining the behavior of the derived policy at execution time, as we will see in Section 6. 

Ideally, we would want to reduce the worst-case error of the value function estimate 

by including the points making this error in B. This implies that in a forward search for 

reachable belief points from B we should be looking for a parame ter that best describes the 

amount of error in the value estimates for a particular set of candidate points Be. Formally, 

this error at a candidate point b' is defined by the difference between the current estimate 

of the value function VB at b' and the perspective value estimate while we include b' in B 

(VBU{b' }): 

Vb' E Be: error(b') = IVB(b') - VBU{bl}(b')1 

The best candidate points to include in B, in order to avoid the worst case error, are the 

ones which introduce large errors. Of course, to make a precise estimation of this error 

we should add aIl candidate points in the forward search to the set B to quantify VBU{bl}. 

This requires a huge amount of computation since we need to perform the expensive point

based value backup (O(IAIIZlh)) for IBel = IAIIZIIBI times. While it might not be efficient 

to find the exact difference in the value estimates beforehand, the geometrical distance be

tween candidate points and the current B is readily available. Therefore, sorne approaches 

consider the geometrical distance between Be and B as a good (although not the best) pa

rameter to indicate the potential impact on the value function estima tes. The fact that the 

approximate value function is piecewise linear and convex justifies this. Figure 4.2 shows 

the first expansion of the point set B = {bol with three reachable points from bo as candi

date points. The grey line in this figure is the current representation of the value function 
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and the black hyperplanes represent the optimal value function. It can be seen from this 

figure that b~ introduces the worst error (err(b~), as defined in the ab ove equation, while 

bi is geometrically farthest from bo. The geometrical distance of bi, bi, and b; from bo 

is a refIection of the prospective error that these points introduce but this is not a perfect 

estimate. In this example dl and d3 refIect weIl the err(bi) and err(b~)) but the choice 

between bi and b~ would be made incorrectly based on dl and d2. 

b' b' 1 3 

o 
b' 2 

FIGURE 4.2. Candidate points reachable from a given point bD. 

The structure of the underlying problem seems to play the most crucial role in the 

efficiency of point-based approximation. If ISI is very large but the nature of the domain is 

such that reachable beliefs are sparsely located in small c10uds along sorne dimensions (low 

belief entropy), then we expect to get a good approximation using a small setB (see Figure 

4.3). The opposite scenario can happen when ISI is not too large but the beliefs are scattered 

all over the belief simplex. Then it is not easy to cover aIl by considering a reasonable size B 

unless the value function is fiat. It is very hard to characterize theoretically the relationship 

between the number of belief points and the approximation error. The smoothness of the 

expected value function and the slope of its representing hyper-planes could help to find 
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a set of points which provide a good approximation. This type of quantitative analysis is 

still an open problem in the POMDP literature. 

4.2. Core-Belief Value Iteration 

For any belief set B and horizon h, PBVI estimates the finite horizon point-based value 

function vb. The error between vb and the finite horizon value function over the entire 

belief space, Vh, denoted by Eh = IIV; - Vhlloo, was shown to be bounded [Pineau et al., 

2003]: 

(4.1) 

where the parameter OB depends on the sampled belief set B and the set of an reachable 

beliefs ~ (as described in Section 2.3.3). The parameter OB is defined as: 

OB = max IIEt:. min bEBIlb - b'lh (4.2) 

We propose to start directly with the distance OB described above and choose the points in 

such a way that the distance never reaches its maximum, even if we do no expansion of the 

pointsetB. 

4.2.1. Generating Core Beliefs 

In the context of predictive state representations in the previous chapter, we defined 

the system dynamic matrix, which has a maximal set of linearly independent tests and 

histories. Each entry of finite dimension corresponds to the probability of a particular test 

from a particular history. If the POMDP model is given the entries in this matrix, Mij, can 

be computed as: 

IThe study of dornain condition in the context of convex piecewise linear stochastic programs in [Shapiro 
et al., 2000] is very inspiring. Similar theoretical analysis can shed sorne light on a way to find an efficient 
representative set of points in point-based framework. 
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where qj, U(qj) are defined as in Section 3.1.2. Linearly independent histories conse

quently generate linearly independent reachable belief states. The set of linearly indepen

dent tests and histories can also be constructed if the SDM is acquired from data. Al

gorithm 5 presents an approach to determine the linearly independent histories and tests. 

Starting from alI one-step tests and histories, the algorithm proceeds by computing ele

ments of the SDM and extracting a maximum set of linearly independent rows and columns 

(histories and tests). Then it repeatedly computes one-step extensions to alI the elements in 

these sets until it finds a maximal set. This algorithm generates a set of linearly indepen

dent histories QH, whose elements can be used to produce a set of reachable and linearly 

independent belief states. We calI them core-beliefs and denote the set by CB. Belief points 

in CB span the space of reachable beliefs (i.e. can be linearly combined to produce any 

reachable belief state). 

Algorithm 5 Core Belief Discovery 

i-O 
Rank(i) - 0 
QH - {} ; QT - {} 
repeat 

i-i+1 
'}{i - alI one-step extensions of QH 
'fi - alI one-step extensions of QT 
construct SDMi from '}{ i U QH, 'fi U QT 
Rank(i) - rank of SDMi 
QH - histories for linear independent rows in SDMi 
QT - tests for linearly independent columns in SDMi 

until Rank(i) = Rank(i - 1) 
Return QH 

Note that finding the rank of a matrix (each matrix expansion of Algorithm 5) runs 

in O(n3) where n is the number of rows. But there are O(IAIIZIIQHil) rows in SDMi, 

where IAlis the size of the action set, IZI is the size of the observation set, and QHi is the 

total number of core tests of length less than or equal ta i. The length of these tests is 

bounded by the size of the state space ISI. For a POMDPs with large number of actions and 

observations, extending tests by alI one-step combinations of actions and observations, can 

make the matrix huge. In practice, memory will be an implementation issue for these cases. 
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To avoid this problem, we used sorne heuristics for extending tests and histories instead of 

extending by aIl actions and observations to solve this problem. A detailed discussion is 

given in the experimental results in Section 7. 

The CBVI algorithm starts with a small initial set of belief points, CB, where ICBI :::; 
ISI. It applies the first series ofbackup operations, then the set is grown as in PBVI until a 

satisfactory solution is obtained. 

4.2.2. Error Bound 

The theoretical performance analysis of CBVI focuses on the PBVI error (4.1). The 

norm-l metric (total deviation distance) and the property that belief points are probability 

vectors (1lblh = 1) ensure that OB:::; 2. 

THEOREM 4. Including of the core belief set CB in the point set B ensures that the 

distance OB < 2. 

PROOF. Bach belief state b' E A is a linear combination of points in CB, therefore: 

b'(i) = E cjbj(i) (4.3) 
bjECB 

Therefore: 

lib' -bill = E E ICjbj(i)-bj(i)1 < Ilb'lh +llblh =2 (4.4) 
i bjECB 

o 

It is worth noting that the loose error bound described in equation (4.1) does not really 

reflects the strength and the precision of the point-based approximation in general. Since 

even in a hypothetically worst case the difference between the values of two belief points 

would be (Rmar~.~min), although the distance of the two points may be 2. This is true for the 

case of core-beliefs as weIl. The fact that OB never reaches the maximum value if CB is 

included in the set B, does not properly reflect the real effect of these points in the precision 

of the point-based approximation in practice. Another thing to notice is that inc1uding core

beliefs in B does not mean that the error will converge to zero. Therefore, we still need to 

add points to B in order to improve the solution quality. The hope is that if CB c B we 
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can reach a better set of points faster. However, this will depend on the structure of the 

domain. A simple example to demonstrate this is presented in Figure 4.3. In the left side 

of this figure, core beliefs can be good representatives of the reachable belief simplex if the 

value function is smooth and has close values for points in each cluster. Another interesting 

point in this case is that if the beliefs in one of the clouds are rarely reached then they can 

be overlooked by a uniform sampling of reachable points. However, this is less likely to 

happen in CBVI. 

FIGURE 4.3. The distribution of reaehable belief states make the effeet of CBVI 
more pronouneed at the left and less at the right. 

The right side of this figure illustrates the situation in which reachable beliefs are dis

tributed uniformly and densely aIl over the belief space. In this case a set of core beliefs 

does not necessarily provide a better solution than almost any random sample of reaehable 

beliefs of the same size. However, this is a very unlikely situation as most of the POMDP 

application domains exhibit a great deal of structure in their state space and their dynamics, 

which makes the reachable belief space considerably smaIler and more structured than a 

uniform distribution of beliefs. 

4.3. Choosing Belief Points Using Reachability Analysis 

In order to reason about the space of reachable beliefs, one can consider the initial 

belief veetor, bo, and then aIl possible one-step sequences of actions and observations fol

lowing it. By considering aIl one-step action-observation sequences that can occur from 

these beliefs, we can ob tain all beliefs reachable from bo in two steps, and so on. This 

will produce a tree rooted at the initial belief state bo. The space of reachable beliefs con

sists of aIl the nodes of this tree (which is infinite in general, but cut to a finite depth in 

finite-horizon tasks). 
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The discounted reachability p is a mapping from the space of reachable beliefs ~ to 

the real numbers, defined as: p(b) = f where L is the length of the shortest sequence 

of transitions from the initial belief state bo to b and y is the discount factor given in the 

POMDP model. This definition implies that for an beliefs b~az' 

(4.5) 

because either b~az has been obtained in one step from b (in this case we have equality in 

the above equation), or it has been obtained somewhere earlier (along a shorter path) from 

bo. Based on the definition of discounted reachability, Smith and Simmons [2005] define 

a generalized sample spacing me as ure Op (0:::; p < 1). Their argument is that they want 

to give more weight to beliefs that are reachable in the near future, because their values 

influence the value function estimates more. To do this, they divide the LI norm of the 

beHefs by (p (b ))P. However, this division actually has an opposite effect, emphasizing 

more beHefs that are in the distant future. To correct this problem, we redefine the sample 

spacing measure in [Smith and Simmons, 2005] as: 

op(b) = max min lib - b'lh [p(b)JP 
bEl:. b'E~ 

(4.6) 

where p is a parameter in [0,1). Note that the error defined by OB in [Pineau et al., 2003]( 

Equation (4.2» is a special case of op(b) with p = 0, where a uniform weight is assigned 

to each reachable belief. We now show that the results in [Smith and Simmons, 2005] hold 

with this new definition of op(b). First we need to show that the update operator applied 

to points selected by the above metric is a contraction mapping. To do this, consider the 

following weighted norm: 

IIV - iill p = maxlV(b) - ii(b)lp(b)P 
b 

(4.7) 

In other words, this is like a max norm but the elements are weighted by weights ç. 

THEO REM 5. The exact Bellman update in equation (2.8) is a contraction mapping 

under the norm defined in equation (4.7) with contraction factor yI-p. 
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PRO OF. For the proof, it is easier to consider action-value functions. We will use the 

same notation as Smith and Simmons [2005], in order to facilitate the comparison with 

their results. Let Qr (b) be the value of executing action a in belief state b, given that the 

value function estimate for states is V: 

Qr (b) = R(b,a) +yL,Pr(b'lb,a)V(b') 
b' 

For any action a E A, and for any value function estimators V and V we have: 

max IQ~ (b) - Q~ (b)l[p(b)]P 
b 

- maxYL,P(b'lb,a)jV(b') - V(b')I[p(b)]P 
b b

' 

- maxYL,P(b'lb,a)jV(b') - V(b')1 [YP(b)]P 
b b' Y 

< maxYL,P(b'lb,a)jV(b') - V(b')1 [y-lp(b')Y (using (4.5)) 
b b' 

< m;xyl-P~P(b'lb,a)~~xjV(b") - V (b") 1 [p(b")]P 

- yl-PEp(b'lb,a) !IV - Vllpp 
b' 

- yl-Pllv - Vllpp 

As a side note, we need to mention that equation (10) in [Smith and Simmons, 2005]: 

v V'" ~, jV(b') - V(b')1 
IIQa - Qa Ilpp ::; m:xY'yPr(b Ib,a) yp(b')P 

will be violated by their definition of op (b) as: op (b) = max bEl:. min b' E~ "[~(:;1~1 . Aiso the 

contraction factor as stated there is not consequently correct. Let HV be a "greedification" 

operator on the value function, defined as: 

HV(b) = maxaQ~(b),Vb 
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4.3 CHOOSING BELIEF POINTS USING REACHABILITY ANALYSIS 

Then, for any belief state b in the reachable belief space L1 we have: 

IHV(b) -HV(b)1 :S maxlQ~ (b) - Q~ (b)1 
a 

Multiplying both sides by [p(b )]P we obtain: 

IHV (b) - HV (b ) 1 [p (b )]P :S max 1 Q~ (b ) - Q~ (b ) 1 [p (b ) JP 
a 

Maximizing over b, we obtain: 

- V VII 1 P -1 IIHV - HVllpp :S max IIQa - Qa pp:S Y - IIV - V Ipp 
a 

This completes the proof. o 

The next theorem bounds the error of a policy based on an approximate value function 

V. 

THEO REM 6. The expeeted error introdueed by a look ahead poliey ft indueed by an 

approximate value funetion V, starting at the initial belief bo is bounded by: 

2yl-p 

e~p :S l-yl-p IIV* - Vllpp 

PROOF. Let b E L1 be an arbitrary belief state and 1t* be the optimal policy. Let Vft be 

the value function of policy ft. Note that Q~b) (b) = Vft(b). Since ft is a lookahead policy 

induced by V then Q~(b)(b) = max aQ~(b) = HV(b). The optimal value function is the 

fixed point of the Bellman equation, therefore V* = HV*. We have: 

1V1t* (b) - Vft(b) 1 - 1V*(b) - QX~b)(b)1 

- 1V*(b) - Q~~b)(b) +Q~(b)(b) - Q~(b)(b)1 

< 1V*(b) -HV(b)1 + IQ~(b)(b) - QX~b)(b)1 (by grouping terms) 

< IHV*(b) -HV(b)1 +YLPr(b'lb, ft(b))!V(b') - Vft(b') 1 

b' 
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Multiplying both sides by [p (b ) lP we get: 

IY*(b) - y1t(b) 1 [p(b)]P < IHY*(b) -HV(b)l[p(b)]P 

+ y~pr(b'lb, ft(b))IV(b') - y1t(b') 1 [p(~)y] P 

< IHY*(b) -HV(b)l[p(b)]P 

+ yl-p EPr(b'lb, ft(b)) lV(b') - y1t(b') 1 [p(b')JP 
b' 

< IHY*(b) -HV(b)1 [p(b)]p+yl-P IIV - y1t Il pP 

By taking a max with respect to b from both sides and the definition of the norm in Equation 

(4.7) we obtain: 

Ily1t* - y1tllpp < IIHY* -HVllpp +y-PIIV - y1tllpp 

< y-P (IIY* - Vllpp + IIV - y1tllpp) (using theorem 4) 

- y-P (IIV* - Vllpp + IIV - Y* + y* - y1t Il pP ) 

< yl-p (IIV* - Vllpp + IIV - Y* Ilpp + IIV* - y1t Il pP ) 

< yl-p (21IY* - Vllpp + IIV* - y1tllpp) 

Solving the above equation we obtain: IIV* - y1tllpp ~ l~~;~P IIV* - V'Ilpp. For the initial 

state p (bo) = 1, hence the regret of ft starting at bo will be bounded as follows: 

2 I-p 

Y*(bo) - y1t(bo) ~ 1 !yl-P IIV* - Vllpp 

o 

THEOREM 7. Let HB be the update operator applied using only beliefs from set B. 

Then the error induced by a single application of HB instead of the true operator H is 
CR -R·)5 CB) bounded as: IIHY -HBYlipp S; max1_:;t\ p 

where Rmax and Rmin are the maximum and minimum rewards that can be achieved, in 

the POMDP model. 
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PROOF. We follow a similar argument to the one in [Pineau et al., 20031 Let b' be 

the reachable belief that is currently not inc1uded in the set Band has the worst error in pP 

norm. Let b EBbe the belief in the current belief set B whose a-vector, a, is currently the 

best vector for b'. Suppose the true optimal a-vector at b' would be a', but instead we use 

the estimate a that cornes from b. Therefore, we have: 

IIHV - HBVllpp < (a'b' - ab')p(b') = (a'b' - a'b + a'b - ab')p(b') 

< [a'(b' - b) +a(b - b')] [p(b)]P (because a is the optimal vector at b) 

< l(a'-a)(b'-b)I[p(b')]P 

< II(a'-a)lIool(b'-b)ldp(b')]P (Holderinequality) 

< lia' - 0.1100 max b' min b lib' - blh [p(b')]P 

_ lia' - 0.11 0 (B) < Rmax - Rmin 0 (B) oop - 1_y1-p P 

We used result for the contraction factor in the denominator. 

o 

THEDREM 8. The accumulated error Il''tB - "t* Il pP at any update step t, is at most 
(Rmax-Rmin)Ôp(B) 

(1-y1 P)2 

PRODF. The argument is analogous to Theorem 1 of [Pineau et al., 2003]: 

Il''tB - "t* Il pP - IIHB"t~l - H"t~tllpp (fixed point) 

< IIHB"t~l - H"t~lllpp + IIH"t~l - H"t~llipp 

< e~+IIHVt~l-H"t~lllpP (definition of the error) 

< e~ + (y1-p Il''t~1 - Vt~lllpp (contraction) 

- e~~ +yl-Pe;~-l(definition of the error) 

(Rmax - Rmin)Op(B) 1 1t 1 < +y -Pe t- (conc1uded from the above theorem) (1- y1-p) pP 

(Rmax - Rmin)Op(B) (' ) 
< (1 _ yl-p)2 senes sum 
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Algorithm 6 Average-nonn Belief Expansion (Initial belief set B) 

for aIl b E B do 
for aIl a E A do 

Sample the current state s from b 
Sample the next state s' from T(s,a,') 
Sample the next observation z from O( a, s', . ) 
Compute the next belief b~az reachable from b 

end for 
b* = argmaxb' o(b~az) 

baz 

B=BU{b*} 
end for 
ReturnB 

o 

Aigorithm 6 presents an approach for expanding the belief set using the reachability 

heuristic. Note that instead of looking at all reachable beliefs, we just sample one possible 

successor for each belief in the current set. Of course, this algorithm could be changed 

to take more samples, or to look farther into the future. However, farther lookahead is 

less likely to matter, because of the weighting used in the heuristic. The drawback of this 

approach is that after a few cycles, the strategy will sample points from a rather restricted 

set and that could lead to smaller and smaller improvements. It must be noted that, for 

instance, for domains with detenninistic observations and transitions, this approach gives 

very similar results to the stochastic simulation with explorative actions (SSEA) heuristic 

[Pineau et al., 2003], because of the narrow distribution of reachable beliefs. Considering 

that PBVI converges to a good approximation in just a few expansions, and that the factor 

ris usually between 0.75 to 0.99, the effect of op(B) is not much different in Aigorithm 6 

compared to the effect of g(B) in SSEA-PBVI. 

4.3.1. Breadth First Belief Selection 

A more radical approach for emphasizing belief states that are reachable in the near 

future is to include them all into the set B. Theoretically, this should provide the best ap

proximation in terms of the weighted nonn that we are considering. But in many problems 

this is not feasible, because the size of the fringe of the belief tree grows exponentially in 
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the horizon length. But, in order to get an estimate of how weIl we could do in this case, 

we consider adding one belief point for every possible action from every belief in the cur

rent set. The observations are still sampled. The main idea is that we typically expect the 

number of actions to be smaIl, but the number of possible observations to be quite large. 

Obviously, this could be extended to sample k observations for each action. This idea is 

expressed in Algorithm 7. In this case, the size of B for the next set of point-based backups 

will be increased by at most IBIIAI in each expansion. Because this approach adds signif

icantly more beliefs at each step, we would expect it to ob tain a good approximation in a 

smaller number of expansions. But we want to ensure that the number of beHefs is also 

small enough. 

Algorithm 7 Breadth First Belief Expansion 

for aIl b E B do 
for aIl a EA do 

Sample s from b 
Sample s' from T(s,a,.) 
Sample z from O(a,s',.) 
Compute the next belief bnew = b~,a,z reachable from b 
If bnew is not already in B 
B = BU{bnew } 

end for 
end for 
ReturnB 

4.4. Choosing Points Using Current Value Function Estimate 

The methods presented so far have not directly taken advantage of the anytime feature 

of the PBYI algorithm to select points for the next cycle. The two heuristics considered in 

the previous sections try to find a small set of essential points that can be used to represent 

the value function; however, these are only heuristics, do not always work well as we 

discussed earlier in this chapter. 

We suggest and investigate a value-based method which samples new points using the 

most recent value function. It attempts to include in the set of selected beliefs points that 
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are critical for getting better value estima tes. As we discussed in the Section 4.1, the gen

eralization of the current point-based value function to beliefs not included in B can have 

the danger of overestimation of the value of sorne points and underestimation of sorne oth

ers. We build upon the fact that reachable states with highest and lowest expected values 

can be desirable points for a better precision of the value function. Unfortunately we do 

not have the real value function to detennine these points correctly. We use the current 

value function to identify those potential points and include them in B to find a better ap

proximation. Aigorithm 8 presents this selection method. As shown in this algorithm, we 

add at most 21BI points to the current belief set and the size of the set B therefore will be

come at most tripled after each expansion. The Point-based Error Minimization Aigorithm 

Algorithm 8 Value-based Belief Expansion 

for ail b E B do 
for ail a E A do 

Sample s from b 
Sample s' from T(s,a,.) 
Sample z from O(a,s',.) 
Compute the next belief b~az reachable from b 

end for 
bmax b . 

new = arg max ha aa 
bmin = arg min b a new ha a 

B =BU {b~~,b~~} (ifthey are not already inB) 
end for 
ReturnB 

(PEMA), introduced recently by Pineau and Gordon [2005], uses a greedy error reduction 

heuristic aimed to quantify the error w.r.t the current value function. This approach seems 

to perfonn similarly to PERSEUS [Spaan and Vlassis, 2005]. Although, there is still no 

fonnal proof on the monotonie improvement of the value function in PEMA. 

4.5. Threshold-Based Belief Selection 

We have observed that the beliefs reachable in one time step are not necessarily the best 

candidates to improve the value function estimate, and that including aU of these beliefs in 

the point set B results in many unnecessary value updates or backups. TheoreticaUy, a 
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b' 1 b 

• • • • • 

b' 2 

FIGURE 4.4. Geometrie interpretation of error introdueed while seleeting points 
based on the maximum distance in forward simulation. 

subset of these points which has a larger distance (e.g. in norm-l sense) to the current 

set B has more potential for improvement on the current approximation due to the basic 

intuition that nearby points have nearby values. However, considering only the most distant 

points to B is not always the best criterion to reduce the approximation error either (as 

we discussed in 4.1). It seems that a good sampling strategy should consider both the 

reachability distance and the geometric distance between points. An example of this type 

was examined through the core belief heuristic. Core beliefs are the scattered along the 

intrinsic dimensions of the reachable belief space and at the same time they are reachable 

in different time steps (through different levels of a forward search). 

In this section we try to find another type of middle ground between beliefs reachable 

in breadth and depth. We consider adding aIl candidate beliefpoints, be, for every possible 

action a E A from every belief b E B, such that their norm-l distance from the current B is 

at least e. 

(4.8) 

Algorithm 9 presents this idea. In this case the size of B for the next set of point-based 

backups will be increased more than in the case of the previously used methods, which 

at most double the size of B. But if this approach adds more significant beliefs at each 
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step, we would expect it to ob tain a good approximation in a smaller number of expan

sions. Therefore, the threshold e can be related to two parameters: 1) the stochasticity of 

Algoritbm 9 Threshold-Based Belief Expansion (Initial belief set B, threshold e) 

for all b E B do 
for all a EA do 

Sample current state s from b 
Sample next state s' from T (s, a, .) 
Sample next observations z from O( a, s', .) 
Compute the next belief b~az reachable from b 
If d(b~az,B) > e tben B = BU{b~z} 

end for 
end for 
ReturnB 

the domain (i.e. degree of stochasticity in action transitions and observation emissions) 

which indicates how dense or sparse the space of reachable beliefs is expected to be; 2) 

the expected complexity of the value function that is captured in part by the size of the 

current optimal policy. While (1) can be determined having the model of the world, it is 

not obvious how to measure (2) before computing the optimal value function. The possible 

values of e are in the interval [0,2]. Note that the PBVI-SSEA heuristic [Pineau et al., 

2003] is a conservative version of the threshold-based expansion, which can overlook criti

cal points in each expansion by considering only the most distant point from the current B, 

e = max b1d(b',B). The e = 2 threshold does not let the set B to expand at aIl. Although the 

error bound on PBVI (equation (4.2» is quite loose, it still holds with only a single point 

B = {bo}. As we decrease e, naturally, the PBVI error should be decreased and lead to a 

tighter bound. Therefore, the breadth first heuristic (selecting aIl points one-step away from 

b), which can be considered as a special case of the above algorithm with e = 0, takes the 

approximation error of PBVI down to zero. However, as we decrease e, the size of B can 

grow dramatically (depending on the problem domain) and make it hard to perform point

based value update on these points. There is still no theoretical characterization of domains 

to suggest the best values of e or that quantifies the PBVI error reduction by introducing a 

tighter bound. Although the point selection method in Algorithm 9 still does not make the 
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decrease in error monotonie from one expansion to the next, it attempts to keep EB as low 

as e at aU times. 

4.6. Discussion of Related Work 

While point-based techniques are still constrained by the curse of dimensionality, other 

approaches have been proposed that try to use a set of belief points to ob tain a low dimen

sional representation first, and then solve the reduced form by other existing methods. The 

exponential family Principal Components Analysis (EPCA) algorithm of Roy and Gor

don [2003] is an example of this type of approach. It finds a representation of the beliefs 

in a exponentially lower dimension by taking advantage of a particular kind ofbelief space 

structure. This algorithm uses the low-dimensional features to convert the POMDP into 

a tractable MOP and then uses value iteration methods to find the solution. Whenever 

the belief space is very sparse and most plausible belief points are embedded in c1usters 

of low-dimension, EPCA provides a fast and good approximation. Although this approach 

can potentially solve large problems, it provides no guarantees on the quality of solutions in 

the general case. Our CBVI approach described in this chapter also benefits from the low

dimensional embedding of reachable belief states similar to EPCA, although the reduced 

dimensionality used by CBVI is linear and way too small compare to EPCA. 

The Value Oirected Compression with Bounded Policy Iteration (VDCBPI) algorithm 

by Poupart and Boutilier [2004b] is another approximation technique for POMOPs which 

tries to overcome the curse of dimensionality and the curse of history at the same time. 

This algorithm combines the value-directed compression technique [Poupart and Boutilier, 

2000] for targeting the curse of dimensionality with the bounded policy iteration (BPI) 

[Poupart and Boutilier, 2004a] for overcoming the curse of history. The BPI algorithm in

crementally constructs a finite state controller using policy iteration and applies a backup 

operator caUed bounded backup. Similar to point-based methods, this approach keeps 

the size of the controller limited. However, unlike the point-based backup operator, the 

bounded backup guarantees value improvement for all belief states as it proceeds. How

ever, the algorithm may get trapped in local optima. It is necessary to mention that the size 
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of the controllers and therefore the time to get an approximate solutions in BPI (according 

to the results reported in [Poupart and Boutilier, 2004al) is significantly larger than PBVI. 

This confirms that BPI converges slower than PBVI (if not trapped in a local optimum). 

The VDC part of the VDCBPI algorithm is a dimensionality reduction technique which fo

cuses on beHef compression to provide a lower dimensional set of reachable belief points. 

Like EPCA, this technique tries to capture regularities in the environment. However, the 

compression that the lossless VDC provides is linear, not exponentiallike in EPCA. he ma

jor advantage of this approach over the EPCA is that it only distinguishes between beliefs 

that have different value and therefore provides a good approximation in general. A distinc

tive feature of the lossless VDC method however, is that it uses the smallest subspace that 

contains the immediate reward vector and is closed under a set of linear functions defined 

by the state transition and observation model. This is similar to the process of generating 

core beliefs. The main computational burden in both processes is computing the rank of 

huge matrixes. The core belief idea of CBVI can realize much of the same compression as 

lossless VDC. However, CBVI finds the smallest subspace of beliefs that is closed under a 

set of linear functions on the state transitions and observation model. In Chapter 5 we get 

back to the VDC algorithm and its relationship to linear PSRs. Using linear programming 

techniques in VDC and combining with BPI, the authors was able to solve a POMDP with 

millions of states; however, the number of observations in this domain was very small. 

4.7. Empirical Results 

This section presents the results of experiments conducted on several POMDP bench

marks used previously in the literature. We compare the performance of the belief selection 

methods discussed in this chapter, and test the effectiveness of each of these approaches 

when used in conjunction with PBVI algorithm. 

4.7.1. Experimental Setup 

The study has been carried out on a set of small domains (in which the size of the 

state space ISI is less than 20) and a set of large domains. As mentioned earlier, generating 
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TABLE 4.1. Domains used in the experiments 

Domain ISI lAI IZI R 
4x4-grid 16 4 2 [0, 1] 
4x3-grid 11 4 6 [0, 1] 
cheese 11 4 7 [0, 1] 

network 7 2 4 [-40,80] 
maze33 36 5 17 [-1, 1] 
coffee 32 2 3 [-4, 1.5] 

hallway 60 5 21 [0, 1] 
hallway2 90 5 17 [0, 1] 

rocks ample [ 4,4] 257 9 2 [-100, 10] 
tag 870 5 30 [-10, 10] 

core-beliefs to be used in CBVI involves sorne complexity issues for large problem do

mains. Therefore, we have tested the core-belief discovery presented in Algorithm 5 only 

in small domains. These domains also serve to illustrate a few interesting points in com

paring the performance ofPBVI with the optimal solutions found by exact algorithms. The 

small domains used are: 4x4 grid, 4x3 grid, cheese-maze, and network. Larger domains 

consists of: maze33, hallway, hallway2, robot-coffee, RockSample[4,4], and tag. The full 

description of the robot-coffee problem can be find in [Poupart and Boutilier, 2003b]. The 

RockSample problem was defined in [Smith and Simmons, 2004]. The tag problem was 

defined in [Pineau et al., 2003] and the rest of the domains can be found in Tony Cassan

dra's repository [Cassandra, 1995]. Table 4.1 summarizes the number of states, actions, 

observations and the range of rewards in each domain. The evaluation is based on running 

a set of 250 trajectories, each of length 300 steps starting from a fixed, given initial belief 

state and following the approximately optimal policy generated by each method. The re

tum of a run is the average retum of the trajectories in the run, where the retum of each 

trajectory is the discounted sum of rewards. AlI the results presented in the tables and in 

the graphs as Return are averages over 10 such independent runs. We compare all results 

with results we obtained from running the standard PBVI algorithm in which Stochastic 

Simulation with Explorative Action (SSEA) has been used for belief set expansion. SSEA 

seems to provide better solutions compare to other heuristics for point selection in PBVI 

[Pineau et al., 2003]. 
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TABLE 4.2. Empirical results for PBVI and CBVI in the small domains with com
plete set of core beliefs. 

Domain PBVI CBVI PBVI-expand CBVI -expand Witness 
4x4 grid 3.64 ± 0.09 3.72 ± 0.01 - - 3.73 
4x3 grid 1.81 ± 0.1 1.89 ± 0.05 - - 1.9 
cheese 3.43 ± 0.07 3.45 ± 0.03 - - 3.48 

network 37.44 ± 16.1 19.52 ± ILl 240.26 ± 5.5 243.92 ± 2.21 244 

4.7.2. Empirical evaluation of CBVI Method 

ln the first set of experiments we wanted to see the effect of having core beliefs in the 

point set B. Therefore, we initialized the set B with core beliefs for CBVI and with the same 

number of beliefs, generated by the SSEA heuristic, for PBVI. We first tested both PBVI 

and CBVI with a number of beliefs equal to the total number of core tests. The results are 

presented in Table 4.2. For these problems, even with only a few points, we were able to 

match the solution with the one found by the witness exact solution method. For example 

for the 4x4 domain, with only one-step core tests in the set B we reached the optimal 

solution almost always. The total number of core-beliefs for the network domain is still too 

small to provide a good approximation to the optimal value function. We conjecture that 

the reason for this result is that the value function is very complex and consists of many 

(X-vectors. Therefore, we kept expanding the belief point sets in both approaches until 

they converge within a reasonable bound to the optimal solution found with the witness 

algorithm (the last column in the table). It is necessary to mention that the two approaches 

do not converge with the same speed in this case. CBVI reaches the value presented after 

two expansions of B using 25 points in its point set, whereas PBVI needs 4 expansions of its 

B which used 80 points to get a near optimal solution. Columns PBVI-expand and CBVI

exp and of the table present this case for PBVI and CBVI respectively. The other problems 

converge to the optimal solution with a set B of size equal to the total number of core tests, 

which was the size of state space in the related POMDP problem. However, as we add more 

and more points to B the approximation becomes more precise and within a tighter bound 

around the optimal solution. We note that an initial point set which inc1udes core-beliefs 

has a smaller standard deviation in the performance. It is not c1ear if this is due to the 
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quality of the belief set, or just to using deterministic instead of stochastic initialization. In 

total, reasonable improvements in solution quality for aIl the domains have been observed. 

In the larger domains (hallway, haIlway2 and maze33), computing the complete set 

of core beliefs is not feasible since there are many reachable beliefs to consider (see our 

discussion in the section 4.2.1). Therefore, in order to get as many core beliefs as possible 

in a short time, each iteration of the core-belief discovery algorithm was interleaved with 

point-based value backups for generating a policy. We used an e-greedy approach, choosing 

an action based on the current PBVI estimate of optimal policy. Then for the selected 

action, we only considered the most likely observation to exp and the tests and histories for 

the next iteration of core-belief discovery. The e-greedy heuristic was chosen because it 

actually foc uses the computation on good actions that are likely to be used in the optimal 

policy and which perhaps create more valu able belief points. Table 4.3 shows the result 

of this experiment on the larger domains. Each expansion indicates an increment to the 

length of the core-tests corresponding to these core-beliefs. Another way to look at these 

expansions is that they add beliefs reachable in one more time step to the set B. 

As can be seen from these results the CBVI algorithm yields a significant improvement 

over the PBVI-SSEA heuristic in the hallway and haIlway2 problems with respect to the 

quality of the solution found. The two approaches move at a different pace towards the 

optimal solution. For the case of Maze33 domain we can see considerable improvement 

versus PBVI in later iterations. However, core-beliefs of smaIllength (i.e. points reachable 

in the near future) do not seem to be important in providing good value function estimates. 

We conjecture that inc1uding the complete set of core-beliefs may be more beneficial in this 

case. 

We do emphasize that CBVI has an expensive initial phase for computing the core be

liefs. However, the e-greedy heuristic for generating core beliefs reduces the computational 

burden significantly, as only one action and one observation are considered in each expan

sion step from each belief. Once this set is computed, the cost of running PBVI with this 

initial set is not larger than that of running PBVI. It is necessary to note that the running 

times of these algorithms depends on the size of the point set B and the size of their value 
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TABLE 4.3. Empirical results for PBVI and CBVI gradual performance in larger domains. 

CoreTestsDiscovery Method Maze33 Hallway Hallway2 
Expansion-! 

PBVI 
beliefs 9 18 22 
reward 0 0.21 ±0.08 0.15±0.09 
CBVI 
beliefs 9 18 22 
reward 0 0.50 ±0.02 0.33±0.03 

Expansion-2 
PBVI 
beliefs 11 22 27 
reward 0 0.25±0.1 0.18±0.07 
CBVI 
beliefs 11 22 27 
reward 0 0.49 ±0.03 0.34±0.03 

Expansion-3 
PBVI 
beliefs 15 27 36 
reward 0 0.27 ±0.1 0.23 ±0.09 
CBVI 
beliefs 15 27 36 
reward 0.23 ±0.2 0.52 ±0.01 0.35 ±0.02 

Expansion-4 
PBVI 
beliefs 24 31 41 
reward 0.03 ±0.2 0.27±0.09 0.27±0.07 
CBVI 
beliefs 24 31 41 
reward 1.73 ±0.4 0.52 ±0.01 0.37 ±0.02 

function representation (i.e. the number of the (l-vectors they use to represent the value 

function). The number of the (l-vectors itself is bounded by the size of B, as these methods 

maintain at most one (X-vector per a belief point b E B. 

Overall, these results are very encouraging. However, the current method for generat

ing core-beliefs is not very efficient. There are also other factors which affect the structure 

of the reachable beliefs and consequently have impact on sampling from this space. 
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4.7.3. Empirical Evaluations ofReachability-Based, Value-Based, and Threshold-Based 

Methods 

This section includes experiments with the three heuristics described in sections 4.3, 

4.4, and 4.5. In this set of experiments, instead of initializing B with pre-computed beliefs, 

we initialize B with only the initial belief state ho for all methods. We then expanded B 

iteratively using each of the heuristics described in Aigorithms 6-9. The results of ex

periments with these heuristic are presented in Figures 4.5-4.10 for all the larger domains 

(hallway, hallway2, maze33, coffee, RockSample[4,4], and tag). The results reported here 

are based on several iterative expansions of B. In our experiments we also tried considering 

all beliefs which are only one-step away from the current set B. The number of backed 

up belief points is considerably larger in this case, so in principle this can lead to the most 

accurate approximation. However, the time to perform backups increased exponentially 

with the increase in lB 1. In practice, we were not able to perform more than 2-3 expansions 

of B for the problem domains we studied and the solution quality did not improve much. 

It is necessary to mention that in all the domains used, except the RockSample[4,4] 

and coffee, there is a high level of stochasticity 1. In the RockSample[ 4,4] domain, actions 

are deterministic, and there is significantly less noise in the observations. The coffee do

main has almost deterministic action transitions and slightly stochastic observations. The 

complexity of the optimal value function can be measured by the number of (X.-vectors to 

represent it. PBVI keeps at most one (X.-vector for each belief state in the set B since sorne 

of the belief points might share the same (X.-vector. The solution time of the algorithms 

can be measured in part by the size of B and the number of (X.-vectors representing the 

approximate value function. 

Recall that in the design of the Aigorithm 6 in Section 4.3, we defined a control pa

rameter p. Conceptually, this parameter together with the discount factor y determines how 

much the reachability of a point matters in our selection strategy. We have experimented 

1 A highly stochastic transition gives !iUle information about the next state in transition from any state. In the 
extreme case of stochasticity a transition from any state gives a uniform distribution over aIl other states 
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different values of p E [0, 1), but we did not observe significant changes in the results 

(y = 0.95 in almost all problem domains). Here we report the results with p = 0.99. 

The threshold parameter e is a control parameter in the threshold-based heuristic AI

gorithm 9. We report experiments with e = 0.5, 0.7, and 0.9. In our implementation of the 

algorithm, we sample one observation for each action selected in the forward search from 

a point b E B. In a highly stochastic domain of large size, such as the tag problem, with a 

small threshold e we generate too many samples, which can slow down the progression of 

the algorithm. Handling over lOOO belief points is very slow. Therefore, we have to trade 

off the accuracy of the approximation and the time, by moderating the distance control 

threshold e. 

In the experiments, the set n in most of the domains contains as mueh as IBI a, whieh 

eonfirms that the optimal poliey has a huge size and perhaps we need to sample points 

densely in order to fit well this funetion. However, sinee the value funetion is pieeewise 

linear and convex, the more facets it needs in its representation the smoother it becomes. 

However, with just a small subset of these facets we ean reaeh a good approximation of 

sueh funetions. Our results with CBVI in the previous section confirms the same fact. In the 

RockSample domain, only a small proportion of belief points in B offer distinct a-veetors. 

This is mainly due to the deterministic dynamics, which makes it possible to generalize the 

approximate optimal policy well enough over the whole space based on a small number of 

points. However, this does not necessarily suggest that with any small set of points we can 

reach a good solution. As we mentioned earlier, this suggests that the value function might 

have a sharp (or non smooth) shape which makes it difficult to find a proper subset of faeets 

to represent it with good precision. A small size belief set chosen randomly might result 

in very poor performance. As we change the threshold e to higher values the difference 

between IBI and Ir! is deereased confirming that we are considering more useful beliefs. 

We conjecture that a different way of faeilitating exploration in the reachable belief spaee, 

perhaps by using our CUITent estimate of the value function as a guideline eombined with 

the distance feature, would help to attract more critical points into B. 
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The performance of all methods is presented in terms of the solution quality versus 

time since ideally we are interested in the approaches that make a good solution in a shorter 

time. In each figure we present the solution quality versus the size of the belief set B. As we 

mentioned before the size of B can be used as an indication of the time to get the ultimate 

solution, as well as an indication of the size of the ultimate value function. This is also used 

to compare the behavior of different methods in expanding their point sets with respect to 

the dynamics of problem domains. Recall that the PBVI algorithm is an anytime method 

to get an approximate solution. Obviously, the more expansions it does to the set B, the 

better solution it gives. However, sometimes it is important to know the solution quality in 

a particular cut off (after a particular number of expansions). Therefore, here we present 

graphs demonstrating the solution quality versus number of expansions in each domain as 

a subpart of each figure. In aIl graphs the error bars indicate the standard deviations. 

Figure 4.5 shows the performance of different methods on the hallway domain. The 

threshold-based method is the winner, with a significant difference in providing much better 

solutions in different expansions, such that with only two expansions of B with this method 

we can get to the convergence point. The difference between variety of values of the thresh

old e seems to be smaIl. The performance of CBVI with only one-step core beliefs on this 

domain shows the importance of beliefs reachability and explains the reachability-based 

superiority to SSEA here. The value-based method also performs better than the SSEA. In 

our experiments we observed that the number of (l-vectors and the number of belief states 

stay the same as we progress. This means that the optimal value function should consist 

of many facets which can only make its shape smooth. We speculate that the value-based 

approach can benefit from this smooth shape of the perspective optimal value function. The 

structure of the domain and the shape of the optimal value function makes the difference 

in the values of the candidate points more a sensible criterion than the difference in their 

geometrical distance. As we mentioned earlier in this chapter the maximum geometrical 

distance is not necessarily a good indication of the potential difference in the optimal value 

function. 
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FIGURE 4.7. Policy performance for different beliefpoint selection methods in the 
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FIGURE 4.8. Policy performance for different belief point selection methods in the 
ha11way2 domain. 
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FIGURE 4.9. Policy performance for different belief point selection methods in the 
Coffee domain. 
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FIGURE 4.10. Policy performance for different belief point selection methods in 
the Tag domain. 
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The experimental results on the Maze domain is presented in Figure 4.6. In this figure 

we observe that the difference between reachability, value-based and the SSEA heuristics 

is not noticeable with respect to the expansions of B. However, sorne difference in the 

size of their belief set makes the reachability approach converges faster than SSEA, and 

the SSEA faster than the value-based. These differences are more pronounced sorne while 

after the beginning since except for the threshold-based method, aIl others perform very 

poody at the beginning. The threshold-based approach performs considerably better than 

other approaches with aIl values of e. 

For the case of RockS ample domain, Figure 4.7 confirms again that the threshold-based 

method is superior in providing higher quality solutions. We are presenting 8 expansions 

of the set B in this figure. Only the threshold-based method can converge to the prospective 

optimal reward value. Higher number of expansions make other approaches converge to 

the same reward value. The value based method does not increase the size of its beHef set 

and therefore stays in a 10caIly optimal value function the algorithm progresses. There is 

always a considerable difference between the number of beliefs in B and the number of 

(X.-vectors representing the approximate value function using aIl the approaches. This can 

indicate that the optimal value function does not have too many facets and a smooth shape. 

This also confirms our reasoning for the performance of the value-based method. 

Performance comparison of aIl methods is presented in Figure 4.8. This domain shares 

a similar structure with the haIlway domain. There is a smaIl difference in the threshold

based method with different e values in terms of the performance in each expansion. How

ever, the threshold e = 0.5 seems to grow the size of B significantly, such that this technique 

can not produce any solutions eadier in time. There is a very smaIl difference both in terms 

of the solution quality and the time required to reach these solutions between the SSEA 

and the value-based method. Reachability-based method outperforms other approaches for 

sorne while at the beginning. We realized that for the case of CBVI method in the previ

ous section, we could reach a good approximation with core-beliefs reachable at the lower 

level in the forward search tree (l-step or 2-step length core-beliefs). This confirms that a 
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selection method such as the reachability-based provides a good set of points as we need to 

sample from points in earlier future to make improvements. 

The performance of aU algorithms are almost the same and strange in the case of the 

coffee domain in Figure 4.9. The value based method performs poorly in Coffee domain as 

weU. The reachability selection criterion present small improvement for this case. As can 

be seen in the Figure 4.9(b) the size of the belief set does not change much as we change 

the threshold e. Although, the growth of B in other methods did not make much difference 

in the discounted reward either. 

Figure 4.10 illustrate the experimental results on the tag domain. We have performed 6 

PBVI belief set expansions for this domain. In this domain we can see that threshold-based 

heuristic, e = 0.5 becomes too slow after a while since in each expansions the number of 

belief points added to B grows too fast and considering the huge size of the state space this 

is very time consuming. On the other hand other methods do not seem to be efficient in 

improving the policy quality. The reachability-based in general outperforms other methods 

in the case of the tag domain. This could mean that beliefs reachable in earlier future are 

more important. 

4.7.4. Discussion 

According to the results presented in this chapter, in almost aU domains we observe that 

aU the methods converge to a common approximate solution at a different paces. The only 

exception is for the value-based heuristic. The value-based approach in some problems 

does not allow a good expansion of B and can be trapped in a local optima. RockSample 

domain is an instance of this form. This can be the effect of deterministic transitions in this 

domain which makes the choices for the belief point selection of this heuristic very limited. 

In general, the difference between most of the heuristics is difficult to narrow. Theoret

ical characterization of domains will be required to be able to decide which approach to 

choose. However, to this date there is no such results available in the literature. Although 

we can make speculations and reach some informaI conclusions like the ones stated in the 

previous section. For instance, if the problem is very discounting (i.e. has a very small 
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discount factor) then perhaps reachability considerations is important when choosing be

tween candidate belle points. Since the expansions of the set B potentially adds beliefs 

which are more far in future, small difference between the reachibility-based and the SSEA 

heuristics could mean that the uniform sampling of points in the reachable belief space and 

the average-norm sampling in this space do not matter much due to the structure of these 

domains. 

In total, the effect of the threshold-based approach seems to be quite promising. This 

method obtain a higher quality solution with comparably smaller number of points. AI

though it should be noted that the choice of the right threshold is quite important to achieve 

the beneficial results. In our experiments, we tried several values of this threshold between 

the maximum and minimum norm-l distance between candidate points [0,2] randomly. 

Good choice of this threshold needs characterization of the underlying domains with re

spect to different parameters such as sparsity of the reachable belief space, the structure 

of the transition, observation and reward functions or the possible realization of the shape 

of the value function. Our results confirm that the exploration-exploitation trade-off in the 

space of reachable points impacts significantly the quality of the solutions obtained. 

4.8. Summary and Conclusion 

The class ofpoint-based algorithms (PBVI and its variations) presented in this chapter 

introduces an efficient approach for scaling POMDP solution methods. In this chapter, 

we introduced and evaluated several point selection criteria for PBVI. First, we presented 

CBVI method for selecting a set of representative belief points which relies on the reachable 

basis for the belief simplex. CBVI theoretically provides a tighter worst case error bound 

than PBVI. We also demonstrated how this method can lead the approximate value function 

of PBVI to cover the belief space more quickly in domains with special structure. This 

algorithm consistently finds controllers which are competitive with other state of the art 

POMDP controllers. 

The reachability criterion was examined in three levels: (1) high importance: very bi

ased approach of selecting aIl points in breath (2) medium importance: selecting points in 
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breath but proportional to their norm - 1 distance from B, and (3) no importance: consid

ering only the norm - 1 distance from B giving a uniform importance to the reachability 

distance. Our experiments showed that (1) is not usually a practical approach. It is difficult 

to distinguish a winner between 2 and 3, and it can only depend on the knowledge about 

the environment. We carried out similar study on different problems from the view point 

of geometric distance. This distance e was varied from the most conservatives approach, 

CBVI, for e = 2 , to the most relaxed approach, breath, for e = 0 + e. However, in all 

cases performance was significantly better at the intermediate value of 0.5 ::::; e ::::; 0.9. Thus 

we have a range of results which suggests that distance threshold metric is generally more 

efficient than the reachability distance metric. While it remains unclear exactly how to 

find the best value of e. We also tested the idea of using the value estimates as a guide to 

select points in a forward search. The exploration-exploitation trade-off seems to play an 

important role, and should be taken into consideration. 

Dimensionality reduction techniques combined with point-based approximation meth

ods are of potential interest in this context. We mentioned the approaches in the literature 

attempting to do so, however this is still a widely open research area. In Chapter 6 we will 

discuss the applicability of the point-based methods by predictive state representation and 

will target the both curse of dimensionality and history for the case of highly structured 

domains. 
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CHAPTER 5 

State Space Structure and its Implication in 

Decision Making 

Chapter Outline 

Exploiting the special structure of problem domains is an important step in the de

sign of a good controUer. In this chapter we study this problem using the mathe

matical properties of predictive state representations. We analyze the connections 

between several POMOP compression techniques and predictive state representa

tions. We study the utility of augmenting the state information with reward from 

the point of view of planning and state monitoring. 

The intractability of planning in partiaIly observable systems is due in part to the size 

of the domain. The number of variables needed to represent the state space, action space, 

and observation space has a great impact on the efficiency of planning. Although for many 

practical applications the number of variables describing these spaces is very large, these 

variables are not always distinct or not ail distinctions are necessary. A typical means of 

overcoming such situations is to aggregate similar variables and make a smaUer and more 

efficient mode!. The hope is that optimal values and optimal policies for the original model 

are similar to those obtained from the reduced mode!. On the other hand, we are interested 

in reducing the uncertainty by having a problem formulation as detailed as possible. These 

two goals in volve a trade-off between the size of the model and the accuracy of the solution 
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that can be obtained. There exists a large body of literature on the trade-offs between 

primitive and abstract representations in leaming and reasoning in general. In this chapter 

we discuss the issues relevant to decision making in partially observable domains. 

Recall that many POMDP solution methods are based on computing and monitoring 

belief states based on a model of the environment, and the history of actions and observa

tions seen by the agent. The action choice of the agent is then based on the belief state. If 

in the definition of the problem there exist states in which any behavior of the agent would 

result in the same outcome, or there are observations that are equally probable in aIl states 

under any actions, we would be interested to aggregate these variables to derive smaller 

equivalent models of the problem. In this chapter we argue that this aggregation should 

take rewards into account as weIl. Rewards can carry useful information, in addition to 

the observations, that can also help disambiguate the hidden state. The reward information 

should be considered in the POMDP state representation as an extra observation. The fact 

that rewards are only used in the computation of the optimal policy, but not in updating the 

belief state, is due to the fact that POMDPs have roots in MDPs. In an MDP, the agent is 

provided with Markovian state information directly, and uses the rewards in order to obtain 

an optimal policy. The same scenario bas been carried out to POMDP planning methods as 

weIl, except now the Markovian belief state has to be recovered from the history, and the 

history includes the rewards received as weIl. In this chapter we study the effect of rewards 

on the belief state update. 

The rest of this chapter is organized as follows. Section l presents notation, basic 

definitions, and reviews previous work on MDP compression. Section 2 focusses on the 

types of structure that can be exploited by predictive state representations in Section 3. 

We develop the connection between PSRs and other previous models for state aggregation. 

Section 4 discusses the issue of using reward as part of the information available for belief 

state updates, and provides an empirical analysis of this approach. Section 5 summarizes 

the chapter 
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5.1. Model Minimization in Markov Decision Processes 

Model reduction in MDPs relies on state space compression (aggregating states); or 

composing actions (temporal compression). Spatial and temporal abstractions have been 

considered in MDP minimization framework by many researchers [Givan et al., 2003; 

Giunchiglia and Walsh, 1992; Ravindran and Barto, 2002; Sutton et al., 1999b]. State 

aggregation in MDPs is usually done by replacing one MDP by another smaller one which 

either ignores state distinctions that do not affect performance, or groups together states 

that behave similarly. State aggregation is considered for MDPs with respect to different 

criteria, for instance the transition functions, reward (or value) functions or both. The deci

sion problem based on the abstract states, Xl, X2, ... , Xk, is not Markovian in generaI. It can 

be viewed actually as a special case of POMDP, defined by a special set of observations 

0= {Xl,X2, ""Xk}, with the observation probability P(xila,s) = 1 if s belongs to the ab

stract state Xi and 0 otherwise. Exact abstraction means that no information loss exists due 

to the abstraction process. 

We focus only on types of abstraction in which the Markov property is preserved. 

Bisimulation [Givan et al., 2003] is a very strict criterion for state aggregation. They 

generalize the definition of bisimulation from the process algebra literature [Lars on and 

Skou, 1994] by incorporating reward equivalence as well. While this type of abstraction 

preserve the dynamics of the model in the abstracted version, there are other types of ab

stractions which are more relaxed and only preserve properties useful for decision making. 

For instance, [Dearden and Boutilier, 1997] create an aggregation which only considers 

preserving the optimal state-action value function in the abstract modeI. 

A recent survey by [Li et al., 2006] introduces a comprehensive taxonomy of abstrac

tion methods on MDPs based on preserving five essential properties in MDP solution meth

ods. 
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Definition: ([Li et al., 2006]) Given an MDP M =< S,A, T,R, y>, let 

the abstraction version of M be M' =< S' ,A, T', R', Y >, and let the 

abstraction function be $ : S ~ S'. For any states SI, S2 ES, we define: 

(i) A model-irrelevant abstraction $model is such that for any ac

tion a and any abstract state s': $model(Sl) = $model(S2) implies 

R(Sl, a) = R(S2, a) and LS3E$;;;;de/(s') T(Sl, a, S3) = LS3E$;;;!de/(s') T (S2, a, S3) 

where $;;;~del (s') refer to the state S such that $model (s) = s'. 

(ii) A Q$ -irrelevant abstraction $Q" is such that for any policy 1t and 

any action a, $Q"(Sl) = $Q"(S2) implies Q1t(sl,a) = Q1t(s2,a). 

(iii) A Q* -irrelevant abstraction $Q* is such that for any action a: 

$Q*(sI) = $Q*(S2) implies Q*(sl,a) = Q*(s2,a). 

(iv) An a* -irrelevant abstraction $a* is such that every abstract class 

has an action a* that is optimal for aIl the states in that class, and 

$a*(Sl) = $a*(S2) implies that Q*(sl,a*) = max a Q*(sl,a) = 

max a Q*(s2,a) = Q*(s2,a*). 

(v) A 1t* -irrelevant abstraction $1t* is such that every abstract class 

has an action a* that is optimal for aIl the states in that class, that 

is $1t*(Sl) = $1t*(S2) implies that Q*(sl,a*) = max a Q*(sl,a) 

and Q*(s2,a*) = max a Q*(s2,a). 

The state aggregation of $model is in terms of identical one-step transitions and rewards. 

The MDP model minimization of [Givan et al., 2003] is of this type. $Q" performs abstrac

tion based on equal action-value functions for aIl policies. $Q* groups together states that 

have the same optimal state-action value function; the representation introduced in [Dear

den and Boutilier, 1997] can be considered of this form; the fourth category. $a* include 

aggregation of states with identical optimal action and its value. McCaIlum's utile distinc

tion method [McCaIlum, 1995b] faIls into this class of abstraction. Finally, $1t* aggregates 

states with the same optimal action [Jong and Stone, 2005]. An interesting and important 

1 S and S' present the state spaces, T and T' the transition functions, and R and R' the reward functions of 
the original (ground) model and of the reduced model, respectively. The actions space is assumed to be 
unchanged in both models 
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observation drawn from this characterization is a partial order :::; between abstractions de

fined in Theorem 2 of [Li et al., 2006]. Abstractions are fined from left to right for any 

MDP, <P1t* :::; <Pa* :::; <PQ* :::; <pQn :::; <Pmodel. Therefore, the preserving properties of one abstrac

tion automatically apply to its finer abstractions. For instance, <Pmodel inherits the preserving 

of action-value function for ail policies from <pQn. This is specially helpful when designing 

learning and planning algorithms. We refer to this categorization later on in Section 5.3. 

Many approaches in the MDP literature are based on divide-and-conquer techniques in 

which the original MDP is divided into several smaller MDPs (abstract classes) [Wang and 

Mahadeavan, 1999; Singh, 1992b; Kaelbling, 1993; Dayan and Hinton, 1993]. Hierarchical 

methods are promising in solving large MDPs given that a hierarchy of subtasks or subgoals 

can be defined in the original MDP. The decomposition is usually performed by defining 

abstract actions (sometimes referred to as temporally extended actions, closed-Ioop poli

cies, options or macro-actions) and the type of abstraction can be mainly thought of as 

<PQ* in the level of temporally extended actions. However, automated subgoal discovery in 

MDPs, can be a difficult task itself [McGovern et al., 2001; Bakker and Schmidhuber, 2003; 

Mannor et al., 2004; Simsek et al., 2005]. The Max-Q algorithm [Dietterich, 2000b] is an 

example of MDP hierarchical abstraction which decomposes an MDP into several reduced 

MDPs with abstract states, abstract actions, and a new set of reward functions. The state 

abstraction of this method is coarser than <PQ*' PolCA [Pineau and Thrun, 2002] is a simi

lar approach to Max-Q for hierarchical POMDPs, which also assumes a decomposition of 

subtasks is given beforehand. It must be noted that some of the MDP abstraction methods 

cannot be extended to POMDPs since they do not account for stochastic action effects. 

Another group of minimization methods, known as ê-reduction techniques, slightly 

compromise optimality by aggregating states which have a small difference in transition 

probabilities and rewards under a given policy. 
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5.2. State Space Compression by Linear PSR 

The properties of MDP abstraction methods discussed in the previous section relate to 

different types of structure which may be exhibited by the environment. Exploiting spe

cial structure requires algorithms and methods for discovering it. Not an abstractions can 

be created efficiently. In fact, many of these approaches require significant computational 

effort and include solving a hard problem of finding similar states just to extract useful in

formation to use for abstraction. Discovering the abstract model efficiently is still an open 

problem for some types of MDP abstractions. Furthermore, the same kinds of structure 

do not directly extend to POMDPs, although the belief-MDP is Markovian. Some of these 

approaches can be extended to POMDPs to derive a reduced POMDP model by exhaus

tively searching for different kinds of structure. Here we show PSRs are able to find some 

kinds of structure in dynamical systems and discover the reduced model for any given input 

POMDPs. In fact the PSR-discovery algorithm in Chapter 3 gives the reduced model by 

PSRs as its output automatically. We derive a sufficient although not necessary condition 

that ensures compression by linear PSRs based on an interesting mathematical property of 

predictive state representations. 

5.2.1. Linearly Dependent States 

We introduce the notion oflinear dependency in the underlying state space of an MDP 

with an example. Figure 5.1 illustrates a dynamical system with 5 underlying states 2 

actions and 4 observations on the top part. The two graphs on the top present the two 

actions. One of the actions is deterministic (left) and the other one is stochastic (right) 

with 0.5 probability of reaching SI and 0.5 probability of reaching S2 from states S2, S3, S4, 

and S5. Vnder any action, states S3, S4, and S5 have identical transitions as S2. Therefore 

the underlying state space can be compactly represented by the equivalent model on the 

bottom with only 2 states. This is a graphical view of the system representation by a linear 

PSR of dimension 2, i.e. with only 2 core tests (e.g. alZl, and a2z2). This property, and 

consequently the related abstraction, cannot be discovered by usual methods for abstraction 

in the POMDP model. 
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FIGURE 5.1. A POMDP problem with three linearly dependent states and four 
observation and two actions and its minimized model at the bottom 

Definition: We say that a state Si is linearly dependent on a subset S' C S if Si rJ. S' and 

its transition probability function under any action is a linear combination of the transition 

probabilities of states in S': 

Ta(s) = L CkTa(Sk) , Va E J'l, (5.1) 
Sk ES' 

where 0::::; Ck Vk, and L.kCk = 1. 

THEOREM 9. If the underlying MDP of a given POMDP has a linearly dependent 

state, then a linear PSR will provide a model with fewer core tests than the number of 

states in the original POMDP. 

PROOF. When deriving PSRs from the outcome matrix U as explained in 3.1.1, com

pression happens if and only if at least one of the roWS of U is a linear combination of aU 

others: 

therefore: 

::Ii such that Ui = E CkUk 
kl=i 

(5.2) 

P(tjISi) = LCkP(tjlsk) Vtj (5.3) 
k=f.i 

Suppose there exists a state Si ES which is linearly dependent on a set of states S', so: 

Va E A: Ta(Si) = L CkTa(Sk) 
Sk ES' 
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To prove that the ith row of U is a linear combination of the other rows for aU possible tests, 

we proceed by induction. Consider first one-step tests. Let oa be a matrix of size ISI x 101, 
giving the probabilities of different observations emitted from each state, after action a is 

taken. Then, by taking transposes and multiplying the above equation, we get: 

(Ta (s) f oa = E ck(Tt)T Oa 
k 

Notice that this corresponds to the part of the ith row in the U matrix which contains the 

observations for aU one-step tests for action a. Now suppose that we have established for 

aU tests t of length 1 that the outcome of t in state i can be written as a linear combination 

of the outcomes of states k: 

Ui(t) = E CkUk(t) 
kES' 

Consider a test aot of length 1 + 1. We have: 

Ui(aot) = TtOaou(t) = (E ckTt)oaou(t) = E ck(TtOaou(t)) = E ckuk(aot) 
kES' kES' kES' 

Hence, the ith row of the U matrix is a linear combination of the rows corresponding to the 

states in S'. with the same mixing coefficients as those from the transition matrix. Therefore 

the rank of U is strictly less than ISI. Since the dimension of the linear PSR is given by 

the rank of U, in this case the linear PSR representation will be smaller than the size of the 

state space. D 

It must be noted that this theorem relates only linearly dependent state transitions to 

PSR compression without considering the observations. Notice the difference between the 

MDP abstraction methods in the previous section and PSR state abstraction. The type of 

state abstraction that the linear dependence property of PSRs provide maintains the dy

namics of the system but not necessarily the values. In fact, compression in linear PSRs 

can happen due to other kinds of structure in the domains in particular related to a combi

nation of the behavior of the transition and observation functions. For example, consider 

the problem of navigating in the environment shown in Figure 5.2. The 4-state MDP with 

deterministic transitions under taking two actions: tum clockwise or anticlockwise has no 
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linearly dependent state. However, the corresponding POMOP model, on the middle, with 

two deterministic observations can be minimized to a POMOP model on the right recov

ered by only two PSR core-tests. Considering the reward as a part of observation, the total 

FIGURE 5.2. An MDP problem with 4 states and two actions for moving clockwise 
and anticlockwise represented in the middle by a POMDP with two observations. 
The reduced model in the right corresponds to the PSR representation of this system 
with two core tests 

compression provided by PSRs will preserve the dynamics together with the value just as 

in state abstraction in MOPs. It is still not clear how to characterize the effect of obser

vations which might lead to state abstraction by PSRs. A good example in the literature 

which illustrates this fact is the POMOP coffee domain first used in [Boutilier and Poole, 

1996]. This problem has 32 states, 2 actions and 3 observations. This problem has only 

4linearly dependent states (i.e., the transition functions alone reduce the problem signifi

cantly). Further, the problem can be compactly represented by a linear PSR with only two 

tests ifwe do not consider rewards. But this is not a safe abstraction since it looses sorne of 

the reward information. It is necessary to mention that care must be taken when performing 

POMOP abstractions based on observations, in order not to lose valu able information re

garding rewards. This is basically due to encoding only observations but not rewards in the 

belief state formulation. We discuss this problem in more detail in Section 5.4. In Chapter 

6 we explain that PSRs should consider rewards as part of observation for control purposes. 

This provides a safe abstraction which preserves information about values. In this case the 

coffee domain is represented by Il core tests. 

The linear dependence property is not an equivalence relation. Therefore, it does not 

generally partition the state space as in MOP state aggregation. 
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5.2.2. Special Case: Matching Transitions 

The type of state aggregation that a linear PSR model can perform with respect to the 

underlying states s and s'in a POMDP, is that performing any action a in state s looks the 

same (i.e. results in the same observations) as performing that exact action from state s'. 
This does not mean that the destination states are exactly identical positions, only that these 

states cannot be distinguished by any possible tests. It is interesting to know the type of 

structure which can be captured by PSRs in the special case of linear dependency that the 

transitions from sorne states are completely matched under taking any action. We use sorne 

examples to describe this type of structure. Consider a 4-dimensional grid world in Figure 

5.3 which has identical states with respect to the observations (labels). The related PSR 

can capture this structure with the defined actions: turn clockwise; turn counterclockwise. 

In general, many states can be aliased in terms of the immediate observations (i.e. can 

not be distinguished by one-step tests). However, as we consider experiencing longer tests, 

more states may become distinguishable by producing distinct sequences of observations. 

Although the special case of linear dependency looks more limiting, it is more likely in 

practice. Therefore, to capture it in the state representation can be advantageous specially 

in larger domains. For instance, a navigation problem in the environment shown in Figure 

5.4 has only two observations black and white and two actions turn left; turn right. This en

vironment has 576 underlying states (states are position-orientation pairs). Therefore, if we 

had a chance to take only one-step experiences with the environment we would recognize 

only two states, but if we consider infinite-Iength experiences there are 288 recognizable 

states shown in the lower grid in this figure. The two arrows shown in the upper grid be

long to one class of states that produce equal observation sequences given any sequence 

of actions. These states are equivalent. The linear dependence property in the special case 

defines this equivalence relation. If the environment exhibit this type of behavior then the 

state space can be partitioned to equivalence classes. Of course the compression with this 

type of structure exploration in best cases is at most linear with linear PSRs. However, 

EPSRs which focus only on the last distinguishing observation, can be more efficient in 

defining less number of equivalent classes and therefore more compression. [Rafols et al., 
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FIGURE 5.3. A POMDP problem with two observations: black and white; two 
actions:turn left and turn right; and 576 states (state=(grid position,orientation)) at 
the top. Arrows present a pair of undistinguishable states under all possible tests. 
The abstract MDP model is shown at the lower figure. 

2005] show this type of partition for the case of EPSRs. It is interesting to note that the way 

the actions are fonnulated is important in fonning the symmetric structure recognized by 

PSRs. For example in Figure 5.3 and 5.4 if we encode the actions for navigating in these 

grids as: North, East, South, West, then the resulting PSR model fails to discover the sym

metric structure in the underlying state space of these environments. This is the difference 

in the definition of symmetric structure in PSRs compare to state-based representations like 

MDPs. It is realized that we need to encode a symmetric structure in the action space as 

weIl in order to discover the symmetry in the underlying state space. For instance, the ac

tion tum right is reversible by the action tum lejt, whereas action North can not be reversed 

by the actions East or West. Nonetheless, none of these symmetries can directly be noticed 

by the POMDP model before finding the minimized underlying MDP. 
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5.3. Related Work 

In this section we describe other techniques for POMDP state abstraction that provide 

linear dimensionality reduction. Although these methods are aIl based on linear algebraic 

operations on state transitions and/or reward functions they focus on preservation of differ

ent properties. 

5.3.1. Value-Directed Compression 

The value-directed compression (VDC) algorithm [Poupart and Boutilier, 2003b], com

putes a low dimensional representation of a POMDP directly from the model parameters: 

R, T, 0, by finding a Krylov subspace for the reward function under propagating beliefs. 

The Krylov subspace for a vector and a matrix is the smallest subspace that contains the 

vector and is c10sed under multiplication by the matrix. The smallest subspace that contains 

the immediate reward vector and is c10sed under a set oflinear functions defined by the dy

namics of the POMDP model generates the compressed belief space. The value-directed 

compression method has differences as well as similarities to predictive state representa

tions. Both PSRs and VDC provide linear compression and they are both considered as 

lossless compression methods. Their approach for recursively growing a set of sufficient 

variables for prediction is identical. However, they focus on preserving slightly different 

properties in their compression as we explain below. 

VDC exploits three types of structures namely conditional independence, context

specifie independence, and additive separability in POMDPs viewed as a Bayesian Net

works. In general, conditional independence allows discovering regularities in the condi

tional probability tables for variables in a Bayesian Network. Context-specific indepen

dence defines irrelevance of some variables in a specific context and additive separability 

specifies subsets of variables such that the marginaIs of each subset are sufficient to predict 

the marginaIs of the same subsets at the next time step. In fact VDC considers the decom

position of the value function into independent reward components. In VDC the belief state 

b is compressed to b and then after a transition the next belief state b' might not be correctly 

recovered since features of this state irrelevant to computing the value might be lost during 
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the compression. In PSRs, the space of beliefs spanned by core beliefs corresponding to 

the predictive state space can be viewed as a linear lossless compression of the original 

beHef space. PSR abstraction ensures the accurate prediction of aIl future observations, 

whereas VDC abstraction ensures the accurate prediction of future rewards. Therefore, a 

next beHef state in the original POMDP can be correctly recovered by the PSR. If reward is 

considered as part of observation, then PSRs foc us on the accurate prediction of observa

tions and rewards. Not including rewards as observations can lead to loosing information 

about values in the PSR representation. Note that in most POMDP problems, observations 

and rewards carry the same information about the underlying hidden states. However, this 

is not a requirement in the POMDP framework. Observations and rewards can provide 

different information about the states, independently. 

The type of transformation matrix for VDC: F = {R, T R, T 2 R, .... } can be thought of 

as a change of basis for the value function, whereas the transformation matrix F = UT for 

the PSR model can be viewed as change of basis for the belief space. This implies that 

VDC does not lose information with respect to the value function and PSRs do not lose 

information with respect to the dynamics. If rewards are included as observations, PSRs do 

not lose value function information either, but may consequently provide less compression. 

5.3.2. Trace Equivalence and Linearly Dependent States 

The bisimulation relation has very strong assumptions which often do not allow for 

a lot of compression. This is a motivation to define more relaxed extensions of this rela

tion. Trace equivalence between two process is defined in verification literature [Jou and 

Smolka, 1990]. Two processes are trace equivalent if and only if they yield the same prob

ability distribution on observation sequences. Trace equivalence is less distinguishing than 

bisimilarity: two bisimilar states are guaranteed to be trace equivalent, but not vice versa. 

In the context of POMDPs, two underlying states SI and S2 are trace equivalent if and only 

if under any sequence of actions they generate the same probability distribution on observa

tions. This exactly complies with the required condition to have state aggregation imposed 

by PSRs. Therefore, trace equivalence can capture the same type of structure as linear PSR. 
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While exact equivalence is stilllimiting, Deshamais et al. [2006] have recently designed 

an approximate equivalence utilizing a metric based on the Kullback-Leibler divergence 

between the probability distribution on observation traces generated from two states upon 

taking the same sequences of actions. Treating rewards as part of observations, this met

ric preserves approximate values. Fems et al. [2005] also suggested several metrics for 

measuring approximate bisimulation in MDPs which respect the transition as well as re

ward equivalence. It would be interesting to develop similar metrics for approximate PSRs 

which do not distinguish between tests that are close in terms of their probability after any 

history. 

5.4. Belief State and the Effect of Reward Function 

It is possible that for sorne problems, rewards are informative in state estimation. How

ever, even when this is true, rewards in POMDPs are still used only in the policy computa

tion, and not encoded in the belief state. Intuitively, it seems that rewards can carry useful 

information, which can help the agent guess the hidden state more precisely. This could 

well be the case when there is a distinction between the collection of rewards possible for 

taking an action in different states and the collection of observations made through this 

transition. 

Indeed, in predictive state representations rewards can be used as part of the observa

tion vector to update the PSR state of the agent. We present a method for updating the 

belief state which takes rewards into account. 

5.4.1. Reward-Based Beliefs and RPOMDP 

Intuitively, if the hidden state were known with better precision, the action choices of 

the agent could be better as well. The convexity of the value function makes the expected 

reward lower towards the center of the belief space. Therefore, the higher the entropy, the 

closer to the middle of the belief simplex the state is and the lower the expected reward. 

By modeling the reward in the state representation we allow the planner to access more 
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information and explore more thoroughly areas closer to the edges of the belief space. Sev

eral approaches have been designed in the POMDP literature which suggest belief entropy 

reduction as a me ans for more efficient planning. For instance, heuristics proposed in [Cas

sandra et al., 1996], and [Roy, 2003], address the need to model information gathering 

actions and refine the beHef state. 

As describedin the previous chapters, rewards in POMDPs are given as a function 

R(s, a, s'), which depends on the current state, the next state and the action taken. Rence, we 

can treat rewards as random variables, with a conditional probability distribution P (ris, a, s'), 

where P(rls,a,s') = 1 if and only if r = R(s,a,s'), and 0 otherwise. Note that if we had 

additional information about the distribution of immediate rewards, instead of just knowing 

the expected values, this could be naturally incorporated in this framework. 

Ifthere is only a discrete, finite set ofreward values possible in the MDP, {rI, r2, ... rÜ, 

where each ri represents the immediate reward for taking some action a from some hidden 

state s, this probability distribution can be easily specified using a table. We note that in 

most POMDP examples, the number of possible immediate rewards satisfies this assump

tion, and is often very small. Rowever, if this assumption is not satisfied, e.g. if rewards 

are continuous, a conditional probability distribution over rewards can still be specified in 

some parametric form, based on the given model of the POMDP. 

We note that rewards and observations are conditionally independent given the current 

state s, the next state s'and the action a. From now on we will treat rewards in the same way 

as observations in predictions about the future. The definition of a history will be extended 

to include the rewards: h = alZlrl .... anznrn. 

We define belief state updates based on rewards and observations, as follows: 

b'(S') = P( 'I b) = P(b,a,s',r,z) 
s r,z,a, P(b ) ,a,r,z 

ESEs b(s)T(s, a,s')O(a, s',z)P(rls, a, s') 
Es'ES l:sES b(s)T(s,a, s')O(a, s', z)P(rls, a, s') 

Value functions are computed in this case analogously to the case of regular beliefs. We 

calI this model Reward-based POMDP (RPOMDP). As we mentioned previously, rewards 
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have been used by Poupart and Boutilier [2003b] in designing a compression method for 

POMDPs. The RPOMDP model is close to the value-directed POMDP compression al

gorithm by Poupart and Boutilier. This reward-based definition of belief together with the 

concept of core betiefs can be considered as a compression method for POMDPs which 

preserve the value and the dynamics of the original POMDP model as discussed in the 

previous section. Considering the core beliefs without reward information can damage the 

value function in the sense that the compressed model has a completely different value 

function than the original POMDP. 

In the following ~ection we present experiments with exact and approximate planning 

methods on several standard POMDP domains, using this belief update method, and show 

that it can provide advantages, bOth in terms of speed and in terms of the quality of the 

solution obtained. 

5.4.2. Empirical Evaluation of RPOMDPs 

In this section we focus on studying the effect of the RPOMDP model on two issues. 

We selected 5 domains from the POMDP literature. Table 5.1 lists these problems with 

their descriptions. The last column in the table shows the number of discrete reward values 

defined in the domains. We chose three domains in which adding rewards is more infor

mative than using just observations. These domains are: Network, line4-2goals and coffee. 

The other two domains are either ones in which rewards provide the same information as 

observation (4x4grid) or rewards have more information than observations only for special 

actions (shuttIe). First, we measure belief state entropy, to show that including rewards 

in the belief updates can reduce the uncertainty of belief states. Second, we analyze the 

quality of the solutions obtained using the RPOMDP formulation. 

Impact of RPOMDP Model on Belief State Entropy 

The entropy of the belief state is defined as: 

ISI 
H(b) = - I, b(i)log2(b(i)) (5.4) 

i=l 
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TABLE 5.1. Domains used in the experiments 

Domain Isl 1>11 101 12<.1 
line4-2goals 4 2 1 2 

network 7 4 2 6 
4x4 grid 16 4 2 2 
shuttle 8 3 5 3 
coffee 32 2 3 12 

Note that this measure is correlated with the distance between the belief state and the edges 

of the beHef simplex. We performed a set of experiments to test the effect of the RPOMDP 

model in reducing the uncertainty about the states on selected domains. The entropy of the 

agent's beHefs has been measured for both the POMDP and the RPOMDP model during 

100 time steps running the same random policy. Figures 5.4 to 5.8 show the result of this 

experiment. The presented graphs are averages taken over 5 independent runs. For the 

network, line4-2goals and coffee domains, the uncertainty of RPOMDP beliefs decreases 

considerably and it stays always lower than the entropy of POMDP beliefs. Shuttle and 

4x4 grid do not show a noticeable difference for POMDP and RPOMDP running a random 

policy to explore in reachable belief space. This is expected since rewards carry little or no 

information in addition to observations for sorne of the actions. 
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FIGURE 5.4. Line4-2goals profile. Comparison of the uncertainty in the agent's 
state of the world, using standard POMDP belief update vs. RPOMDP belief up
date. 
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the world, using standard POMDP belief update vs. RPOMDP belief update. 

3.5r1--r--"T--,----.---.---r---,--..-,:::::::::;;;:s::~ 

1 
POMOP 1 

, 
2.5 , , , 

f : 
.. 2 1 
]! , 

Ji , , 
~\ 

1.5 \ 
1 
1 
1 

~ 

1 
1 

- - RPOMOP 

---------------------------------
0.50~-:'10:---:':20---:'::30--4J,-0--:50':---:'60:---:':70--80~---:9J,-0--'100 

timestep 

FIGURE 5.6. Coffee profile. Comparison of the uncertainty in the agent's state of 
the world, using standard POMDP belief update vs. RPOMDP belief update. 

Impact of RPOMDP Model on Planning Methods 

In this part of the experiments we used exact and approximate POMDP solution techniques 

to evaluate the performance of the RPOMDP model in terms of time to reach an optimal 

solution, the reached optimal value functions, and the complexity of the optimal value 

function with respect to the number of a-vectors, and to represent it. 

118 



5.4 BELIEF STATE AND THE EFFECT OF REWARD FUNCTION 

0.7 

0.6 

0.5 

f 0.4 

li 
~ 

:s 0.3 1 , 
" 
, 

" 
, 

0.2 

" 

, 
" 

, 
\ 

" VI 1 i " , 0.1 

~ 
f ' " 

l' 1 
, , , 

0 
0 10 20 

1 
~ 

" , " , 
" 

, , 1 
, 

, , , , 
~ 

30 40 50 

timestep 

60 

1 
POMOP 1 

- - RPOMDP 

~ , , , , , , , 

~" "~I 1 l ,', " 
1 1 1'1 l " 

, ,l''~ 

1 , , , , , 

70 80 90 100 

FIGURE 5.7. Shuttle profile. Comparison of the uncertainty in the agent's state of 
the world, using standard POMDP belief update vs. RPOMDP belief update. 

1.5 

1 POMDP 1 
- - RPOMDP 

1 

~ j A " " " \ 
Il 

" 
, , 

~ /1 
" " : ' , /, , 

f 
\ , , \/1 ~ " " , " , , " ~ ", , , , " ,', 1 , , l ,l'I 1 , ' / " 

, . l ,,\ '1/" 
li 

" ' i , , " ," N'I/II' ~ 
, 

'1 'l' ' " 1 rJ" , " " ' :8 , \", " ~I " V ,,\ ,), 
1 " 

, , ,,' ", l ",' 

" 
~ ~ Il, 

, , l, 
~ :" , , , 1/ 0.5 

1 ~ " 
, , 1/ 

" 
" 

, , , 1 i 1 1 
\ , III, , 

" 
~: \ 

" U 
l, 1 
1 

0 
0 10 20 30 40 50 60 70 80 90 100 

timestep 

FIGURE 5.8. Network profile. Comparison of the uncertainty in the agent's state 
of the world, using standard POMDPbeliefupdate vs. RPOMDPbeliefupdate. 

To find the optimal solution we used the witness algorithm described in Chapter 2 as 

an exact solution method for POMDPs, We ran the witness algorithm on aIl of the domains, 

but this algorithm is still incapable of finding an optimal solution in a reasonable time (5 

hours of running time) for some problems such as shuttle and coffee. Table 5.2 contains 

the results of this part of experiments for comparison between the POMDP and RPOMDP 
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model using witness both for finite horizon h = 10 and for infinite horizon (large horizon 

length which makes the discounting reward f * r less than a pre-defined ê = 0.0001). This 

table reports the time taken to get the optimal solutions for both models; the size of the 

optimal value function as the number of Œ-vectors presenting it, and the value of an initial 

uniform beHef state. Table 5.2 shows no difference in the case of line4-2goals problem for 

the value function representation and value received, however the time to get the optimal 

solution is greater in the POMDP than in the RPOMDP. This is expected since the state 

uncertainty for this problem disappears after a few time steps of even a random policy as 

shown in Figure 5.4. for the network problem, the observation space (containing rewards) 

becomes much larger in RPOMDP which explains the time difference in Table 5.2. The 

value functions for the two models are also different since the belief spaces are different. 

For the coffee domain, the witness algorithm did not proceed more than 14 epochs of value 

iteration, in the time aIlowed, while it can solve the RPOMDP very quickly as can be seen 

from this table. It should be noted that the true beHefs in this case occur in a very low 

dimensional manifold due to exhibiting lots of structure in the dynamics of this problem 

and it seems that RPOMDP can take advantage of this problem structure in the RPOMDP 

model of 4x4grid the space of observations (containing rewards) is larger than that of the 

POMDP model. However, observations and rewards carry the same information about the 

underlying states, so the beHef spaces of the two models are the same which means that the 

value functions stay the same. However, there is a Httle bit of overhead in computations for 

the RPOMDP version. The witness algorithm did not terminate for the shuttle problem in 

bothPOMDP and RPOMDP in the given five hours time. However, from the results for the 

finite horizon we can observe that RPOMDP converges faster to the optimal solution. Of 

course the optimal value function of the two models must be different because of having 

different belief spaces. 

We also used PBVI to evaluate the performance of RPOMDP in approximation meth-

ods. 

The results of this evaluation are shown in Table 5.3. In aIl cases, we performed 10 

beHef set expansions of PBVI to ob tain a value function. The time reported in this table is 
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TABLE 5.2. Performance comparison of exact solutions for POMDP original 
model and RPOMDP model 

Domain infinite horizon infinite horizon finite horizon finite horizon 
POMDP RPOMDP POMDP RPOMDP 

line4-2goals 
time 0.01 0.01 0.00 0.00 

(X.-vectors 2 2 2 2 
reward 0.466 0.466 0.465 0.465 

network 
time 4539.15 5783.02 2.89 3.24 

(X.-vectors 487 549 197 216 
reward 293.185 340.15 121.27 173.94 
coffee 
time - 6.35 103 0.23 

(X.-vectors NIA 5 263 5 
reward NIA 0.00 0.00 0.00 

4x4 grid 
time 5578.5 6459.3 231 316 

(X.-vectors 243 243 245 248 
reward 1.209 1.209 1.073 1.073 
shuttle 

time - - 1270 81.4 
(X.-vectors NIA NIA 2011 1152 

reward NIA NIA 11.974 Il.237 

the time taken by the standard PBVI algorithm (SSEA) to reach an approximate solution. 

We also report the number of (X.-vectors for each model. The table presents the discounted 

total reward of trajectories of 250 time steps obtaining by running the approximate policy 

from the PBVI algorithm. These results are averages over 250 trials in each run and over 5 

independent runs. The size of the belief set, B, is also shown in this table. The solution time 

for PBVI is directly related to the size of B and the number of (X.-vectors. Slight differences 

in time can be ignored since the experiments have been performed on different machines. 

The solution time increases for the RPOMDP model in the network problem for the same 

reason as in the case of exact solution. In the other problems the size of the belief set and 

the number of (X.-vectors are smaller or almost equal for both POMDP and RPOMDP. The 

solution quality in the coffee domains is different for the two models due to the decrease of 

the uncertainty about the states. The shuttle and the 4x4grid problems reached almost the 
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TABLE 5.3. Performance comparison of approximate solutions for POMDP orig
inal mode1 and RPOMDP mode1 

Domain POMDP RPOMDP 
Iine4-2goals 

time 0.00 0.00 
(X.-vectors 2 2 

beliefs 232 157 
discounted reward 1.24 0.48 

network 
time 2 62 

(X.-vectors 23 208 
beliefs 714 500 

discounted reward 240.63 352.9 
coffee 
time 4 6 

(X.-vectors 24 6 
beliefs 323 169 

discounted reward -1.92 -0.97 
shuttle 

time 0.8 0.01 
(X.-vectors 17 18 

beliefs 122 125 
discounted reward 32.95 32.96 

4x4 grid 
time 2.4 8.2 

(X.-vectors 24 24 
beliefs 460 468 

discounted reward 3.73 3.75 

same solution quality in both models as expected. The experimental results in Table 5.3 

confirm that in the cases where rewards gives more information about the states than just 

the observations, significant improvements are achieved with respect to time. For the cases 

in which rewards do not matter in reducing the belief state entropy, there is no need to get 

them involved in belief updates. The RPOMDP in these cases might not change the belief 

space but it can increase the computation time. 
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5.5. Summary and Conclusion 

POMDP solution methods deal with vectors of the size of the state space. State ag

gregation is a key idea for decreasing the complexity of these methods. In this chapter we 

defined a notion of linear state dependency between the underlying MDP states. We proved 

that linear state dependency is a sufficient condition for the linear PSR to have smaller di

mensionality. However, if the underlying MDP is minimized in this sense and also for aIl 

actions a and observations 0 the matrix Taoao is non-singular, then it can be shown that the 

linear PSR space will be of the same dimension as the corresponding POMDP space (i.e. 

IQI = ISI)· It should be noted that the reverse is not necessarily true. 

Our preliminary study illustrates this type of structure in the state space via transition 

functions which cannot be exploited by POMDPs but are detected by PSRs. By taking 

advantage of this kind of structure, linear PSRs reduce the effective size of the state space 

and can compactly represent certain dynamical systems. This simple fact opens up new 

possibilities for other compression analysis. We have not studied the effect of the reduced 

model on the value function. 

While the compressed model is still a perfect model that can answer any questions 

about the system and make any predictions about the future of the system, linear compres

sion is still considered inefficient in practice. This is a motivation to further investigate 

predictive models that can answer only task-specific questions, but perhaps scale better. 

Recent studies on EPSRs [Rudary and Singh, 2004] and PSRs with options [Wolfe and 

Singh, 2006] are early steps in this direction. 

We also studied a reformulation of the POMDP model, focusing on the assumption 

that rewards can carry information about the states of the world independently of the ob

servations. Following this assumption we represent and update belief states taking into 

account the reward signal as part of the feedback that the agent receives from the envi

ronment in order to reduce the uncertainty about the state of the world. We presented the 

results of an empirical study confirming that the RPOMDP model is very useful in reduc

ing the entropy of beliefs for sorne domains. This can produce a significant performance 

improvement in solving POMDPs for those domains. Belief state entropy can be used in 
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order to guide more intelligent exploration strategies and reason about which parts of the 

continuous belief space are worth exploring. Often the evolution of beliefs following a tra

jectory is embedded in a low dimensional space. In the case of RPOMDPs, applying linear 

dimensionality reduction techniques involves no information loss. It would be interesting 

to study further nonlinear compression techniques using RPOMDPs. 
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CHAPTER 6 

Planning with Predictive State Representations 

Chapter Outline 

In this chapter we address the problem of planning with predictive state representa

tions. We present two methods for planning with linear PSRs. The first method is 

an exact planning algorithm based on ide as similar to c1assicallook-ahead search. 

The second algorithm is an approximate planning method, which provides an ex

tension of point-based value iteration (PBVI) to PSRs. This approach turns out to 

be a natural match for PSRs. We provide empirical results which show that these 

methods are either comparable or better than POMDP planning algorithms. 

Decision making and control of dynamical systems involve taking optimal actions 

based on the current state of the system. The state must be a sufficient statistic for the 

history of the system that allows accurately predicting its future. Recall that the state of a 

system in PSRs is described bythe predictions for a set of core tests givenhistories, P(Qlh). 

The control problem for PSRs can be defined as follows: given the current prediction for 

core tests, decide what action should be taken in order to maximize the total return in future 

time steps. The original PSR design as discussed in Chapter 3, did not inc1ude a notion of 

reward. Therefore, reward must be defined explicitly in this representation in order to use 

it in decision making problems. 

This chapter focusses on the PSR control problem. The main contribution of this chap

ter is presenting the first PSR control algorithm, published in [Izadi and Precup, 2003], as 



6.1 MODELLING REWARDS IN PSRS 

weIl as designing a point-based approximate planning with PSRs. We describe the pro

posed algorithms in Sections 6.1, 6.2, and 6.3. Empirical evaluations of these methods are 

presented in Section 6.4. We discuss potential advantages of using this representation in 

control problems and relate our methods to existing approaches for exact and approximate 

planning under uncertainty. Conclusions and directions for future work are presented in 

Section 6.5. 

6.1. Modelling Rewards in PSRs 

The standard PSR framework does not consider rewards at aIl. However, these can be 

incorporated naturally by considering rewards as an extra component of the observations. 

FormaIly, given a finite set ofreal-valued rewards R = {rl,r2, ... rm}, we can define the 

reward received upon taking an action a given a PSR state as p: 

R(p,a) = ErP(rlp,a) (6.1) 
r 

where p is given by a prediction vector for the core tests in Q given the current history h: 

P =P(Qlh). 

Recall that the PSR model parameters consist of the core tests Q, vectors maz for pre

dictions of one-step tests, and matrices M az for predictions of one-step extensions to the 

core tests. Define a binary (ISI x ISI) matrix Rar for each action-reward pair ar, such that 

each entry Rar(i, j) of this matrix is P(rlsi,a,s j), the probability ofreceiving reward r upon 

taking action a from state Si and landing in state Sj. This probability is equal to 1 when 

there exists a reward r for transition from state Si under action a to state S j in the given 

POMDP, and is zero otherwise. Rewards are defined in the POMDP model as depending 

on state-action pairs, but this dependency is interpretable in terms of action-observation 

pairs (tests) as follows. The scalar value r is observed with a probability of transition to 

state S j, given the action and the departing state Si, regardless of the observation received. 

However, the observation is generated based on the destination state S j and the action a. 
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Therefore: 

I: P(SjISi,a)P(r,zlsi,a,Sj) 
SjES 

- I: P(rISi,a,Sj)P(sjlsi,a)P(zlsj,a) 
SjES 

This is a refonnulation of the outcome functions defined in 3.1.1 to compute core-tests 

which contain rewards as: q = al (rlzI) ... an(rnZn). Consequently, the projection vectors 

and projection matrices of the fonn maz and Maz will become of the fonn mazr and Mazr 

respectively. 

Now we can consider a scalar reward for every prediction vector p, upon taking an 

action a, and rewrite the Equation (6.1) as: 

(6.2) 
r z r z 

For ease of notation let: 

lla = pT (I: I: rmazr ) (6.3) 
r z 

Therefore: 

R(p, a) = pT lla (6.4) 

This is similar to the definition of reward of taking action a at a belief state b in a POMDP. 

6.2. Planning Formulation in Predictive State Space 

A policy component of a PSR agent must map predictive states to an action given a 

sequence of action-observation-reward that took place prior to the current time (history). 

An agent can predict the effects of executing action a for the prediction vector Pt at time 

t as follows. First, we define a new notation for the observable feedback of the form zr, 

to inc1ude both rewards and observations, and we simply call it observation o. Then, each 

observation 0 can occur after taking action a with a probability P(ola,ht) which is the 

prediction for the test ao (azr) at history ht. The agent receives a reward value r from 
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the environment, and the successor prediction vector (P(Qlht+ü is computed based on the 

resulting extended history hazr. In Chapter 3 we discussed that any dynamical system 

represented by POMDPs can be represented by a PSR model with number of core tests no 

larger than the number of states in the POMDP model. Considering this fact, planning in 

the space of reachable prediction vectors should intuitively be less complex than planning 

in the space of reachable POMDP belief states. To verify this we have a closer look at the 

planning space in a PSR model. 

1 

1 

FIGURE 6.1. PSR space of prediction vectors for a problem with 3 core tests 

As the dynamical system evolves in time, the prediction vector changes in a space of 

dimension IQI (Figure 6.l). But not every point in this space is a valid prediction vector 

(i.e. not every point corresponds to the prediction of core tests for a given a history). 

By the definition of a prediction vector as a vector of probabilities, the predictive state 

space (convex hull of prediction vectors) is somewhat different from the belief space of a 

POMDPs (as shown in Figure 2.2). This is due to the fact that a belief state is a probability 

vector whose elements sum up to 1. Therefore, for a belief vector of size n, we can write 

b(sn) = 1 - Li=l...n-l b(Si). This linear combination projects the beliefs into an (n - 1)

dimensional space. The same projection is not applicable to prediction vectors. 

If the linear PSR has the same dimensionality as the corresponding POMDP, then 

there is a one-to-one mapping between the space of the PSR's prediction vectors and the 

POMDP's space of reachable beliefs. Let UQ be made of the outcome matrix of the PSR 
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core tests. The mapping from beHef states to prediction vectors, after history h, is defined 

as: f(bh) = brUQ = pis not reversible in general since UQ has only IQllinearly indepen

dent columns. However, in the special case that the PSR model has the same dimension as 

the POMDP model (i.e. ISI = IQI), the matrix U Q is invertible, therefore the beHef state bh 

can be uniquely retrieved by the prediction vector as: 

(6.5) 

The number of distinct prediction vectors that can be experienced by the agent is at most 

the number of reachable belief states of the corresponding POMDP, given a fixed initial 

belief, although the space of prediction vectors looks different than the belief space. It 

must be noted that we considered above only the space of attainable points in both models, 

Le. points for which there exists a history from a common initial state. 

6.2.1. PSR Value Function 

We can consider a policy tree at a given prediction vector, similarly to the case of policy 

trees for POMDP belief states (Figure 2.3). Such a tree defines an initial action taken under 

that policy and a one-step shorter policy tree for each observation. A POMDP policy tree 

for a deterministic 1t can reach only 1 Z Il decision states in the next 1 time steps because it 

makes its decisions based solely on the observations made at each time step. Therefore, 

with the same anal ogy, a PSR policy tree contains at most 1 0 Il paths of length 1. Of course, 

the possibility of each branch in the tree depends on the prediction probability of the test it 

represents, given the prediction vector node it starts from. More precisely, given that initial 

action a of the policy 1t is taken at the initial prediction vector Po = P(Qlho), policy tree 1t0 , 

that is shorter by one step and rooted at observation 0 has probability p(ola, Po) = pÔmao. 

The agent must select the best policy tree rooted at each decision point at each time step. 
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The value of a fixed policy tree 1t with a given initial action a, with respect to its initial 

decision node, pis: 

V1t(p) _ R(p,a)+'YLpTmaoV1t°(p/) 
OEO 

- pT (lla + 'Y L mao V1t° (Pl)) 
OEO 

where lla is defined in Equation (6.3) and p' is the prediction vector obtained from p after 

a test ao. Policy trees can be used to search directly in the space of policies, similarly to 

policy iteration methods for POMDPs. 

[James et al., 2004] represented the PSR value function using policy tree machinery 

described above and developed a PSR value iteration method with incremental pruning al

gorithm. James et al. [2004] showed that the finite horizon value function over the space 

of prediction vectors is piecewise linear and convex. However, ensuring the validity of the 

obtained prediction vectors is tricky. Recall that each linear segment of the POMDP value 

function represents the optimal value of at least one belief state, and linear programming is 

used to find such a belief state. The validity of solution to this linear programming prob

lem in POMDPs is done by a simple constraint E7=1 b(Si) = 1. However, there's no c1ear 

and concrete constraint to check the validity of a found prediction vector corresponding 

to a linear segment of a PSR value function because prediction vectors are not probabil

ity distributions. Several constraints have been proposed in [James et al., 2004]: each 

element of the prediction vector must be a probability, 0 ~ Pi ~ 1; the components of 

the prediction vector corresponding to the same action sequence al ... an should sum to 1, 

Eo1 .. on pT mal 0l .. anOn = 1; each component of the prediction vector must correctly predict a 

core test, pT mqj = Pi for sorne qi E Q. However, these constraints do not seem to provide 

a sufficient condition for a valid prediction vector, occasionally causing problems in sorne 

domains [James et al., 20041 
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6.2.2. PSR Control and Look-ahead Search 

The prediction vector summarizes aU the information contained in the history of pre

vious actions and observations. We use this information to evaluate different actions and 

to pick the best one. A simple idea is to look l steps into the future, and then pick the 

expected best action. The description oflook-ahead search controUers [Barto et al., 1995; 

Bonet et al., 1997; Korf, 1990; Koenig and Simmons, 1998] can be slightly expanded to 

work for PSRs. As a first approach to the PSR control problem, we develop a look-ahead 

search to predict the expected utility of an action at a given prediction vector. At each 

time step, a look-ahead control policy chooses among feasible actions by envisioning their 

effects in the future and selecting the action which leads to the most promising predictive 

state. FoUowing the same notation as in POMDPs, the value of taking action a at prediction 

FIGURE 6.2. A lookahead tree with 3 actions and 2 observations for planning hori
zon of length 3 

vector p can be defined as: 

Q(p,a) = R(p,a) +Y L pT maoV(p') 
oEO 

(6.6) 

where V(p') is the optimal value at the next prediction vector p'. Notice the difference 

between the above function Q and the set Q of core-tests. We assume that we are given 

the initial state of the system as the initial prediction vector p. The look-ahead controUer 
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builds a look-ahead tree at each decision step. It estimates the values of each action using 

the above equation recursively and assigns the values of the leaves of the tree to mini

mum reward. This is a simplification, which works here because we assume that due to 

discounting, those values would have little impact anyway. The values at different levels 

are computed recursively. The depth of the tree, 1, shows the horizon length, and the total 

size of the tree will be (lA Il 0 1) 1. Therefore, in problems with large number of actions and 

observations the branching factor lA Il 01 is high and makes this search very expensive. 

At time t, we define the best action as: 

a; = arg max aQ(pt,a) (6.7) 

Therefore, the policy of the agent can be determined by: 

n*(h,t) = a; (6.8) 

This value may be cached and reused if the prediction vector Pt is revisited. The detailed 

algorithm is presented in algorithm 10. Techniques for limiting the search, e.g., pruning 

strategies [Dearden and Boutilier, 1994] or sparse sampling [Kearns et al., 1999] can also 

be adopted for computational savings. Deeper look-ahead typically selects actions that lead 

to better outcomes. Of course deep forecasts are computationally expensive. Therefore, to 

keep the computation tractable, the look-ahead depth 1 cannot be very large. This is lim

iting, especially in problems for which the branching factor is very large. However, this 

is useful if a small horizon suffices still produces a good plan. The worst case running 

time of this algorithm is O(IQI 2(IAII 0 1)1) where Q,A, and 0 present the set of core-test, 

actions, and observation-reward reward pairs respectively . Therefore the complexity of the 

algorithm is dominated by the horizon length and has less dependence on the size of the 

state space ( the number of core-tests which gives the size of prediction vectors). This is 

similar to optimal planning algorithms for POMDPs. If there is sorne amount of compres

sion in the PSR representation compared to the corresponding POMDP model (IQI < ISi) 

then, potentially, there will be sorne savings in performing look-ahead using PSR predic

tion vectors. However, the exponential complexity of this technique in the horizon using 
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Algorithm 10 LookaheadControl(p, 1) 

INPUT Prediction vector p and the horizon length 1 
Initialize V to 0 
ifl > 0 
for ail actions a do 

Q(p,a) = 0 
for ail observations 0 E 0 do 

Compute the next prediction vector p' and V (p') =LookaheadControl(p/, 1 - 1) 
end for 
Compute the immediate reward R(p, a) using Equation (6.4) 
Compute Q(p, a) using Equation (6.7) 

end for 
a* = arg max aQ(P(Qlh),a) 
V* = max aQ(p,a) 
end if 
Return a* and V* 

both representations obscures this difference. In general, the two representations seem to 

be equally difficult to handle using exact methods. Our experimental results with this al

gorithm presented in Section 6.5, show that the PSR model as described in this chapter can 

be used in control problems to find comparable solutions to POMDPs. However, this al

gorithm and other similar approaches are not computationally efficient. In the next section 

we study the problem of approximate planning in PSRs using a more promising approach. 

6.3. Approximate Planning with PSRs 

Recall that approximate POMDP solution methods, such as point-based and grid-based 

techniques, rely on maintaining a value function only for a small subset of the belief space. 

Point- based methods generalize the plan over the entire continuous space of beliefs using 

the assumption that nearby points are likely to have nearby values. These methods dif

fer from each other in the way they select the set B = {bD, bl, ... , bm} of reachable belief 

points. In this section we intend to study the applicability of the point-based framework 

to predictive state representations and we focus, in particular, on the point-based value it

eration method of [Pineau et al., 2003]. Recall that PBVI altemates between two phases: 

the value update for a current belief set B and the expansion of the belief set to get a better 
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approximation. Extending the algorithm to work for predictive state representation requires 

addressing these two key parts. For the first part, we modify the value update to work with 

prediction vectors in a straightforward way. However, deciding how to expand the set of 

reachable points similarly to POMDP-PBVI is less c1ear. In particular, the PBVI heuristics 

for belief point selection have aU been developed based on specific criteria which rely on 

the fact that belief points are probability distributions, however, PSR prediction vectors do 

not form a probability space, as their components do not sum to 1. We discuss different 

selection heuristics for PSR prediction vectors and we develop an algorithm for PSRs. 

Our results presented in Section 6.5 show that the PSR version of PBVI outperforms 

the original PBVI on POMDPs, especiaUy when the PSR representation introduces sorne 

degree of compression compared to the corresponding POMDP. 

6.3.1. Why Point-Based Planning for PSRs? 

As noted before, PSR prediction vectors can be more compact than POMDP belief 

states. Hence, PSRs can be viewed as a potential answer to the curse of dimensionality. 

At the same time, point-based methods have been designed to address the curse of history. 

Therefore, applying point-based techniques to PSRs can be viewed as addressing both the 

curse of dimensionality and the curse of history simultaneously. Attempts to achieve sim

ilar effects also exist in the POMDP literature. Poupart and Boutilier (2004) combine the 

value directed compression model [Poupart and Boutilier, 2000] with bounded policy iter

ation [Poupart and Boutilier, 2003a] to achieve a similar effect as we described in a model 

caUed VDCBPI [Poupart and Boutilier, 2004b]. Another related approach to predictive 

representations in approximate planning is the recent work on planning through multiplic

ity automata by Even-Dar et al. (2005). The authors convert the POMDP belief space of 

dimension n to an MDP of dimension k ~ n. 

Another reason why we believe the point-based approach is a good choice for PSR 

planning is related to the problem of finding a value function for the space of prediction 

vectors. Point-based methods aUow a discretization of this space based on reachable points. 

This discussion is based on the points that are reachable; hence, we believe that it may 
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provide a better representation of the value function than other approaches, always allowing 

to converge to valid predictions. 

6.3.2. Metrics in the space of Prediction Vectors 

In Chapter 4 we emphasized on the importance of the point selection strategy in the 

efficiency of point-based value iteration. In particular, we showed that the geometrical 

distance between belief state points can give a good idea of how distant the value of the 

points are from each other. Here we investigate whether the same metrics can be applied to 

prediction vector points. 

We previously defined a belief point to prediction vector mapping. We use this map

ping to relate pairwise distance between prediction vectors to the distance between reach

able belief points. 

THEOREM 10. For any dynamical system, the POMDP to PSR mapping preserves the 

pairwise distance between points in the space of reachable beliefs, within a constant factor. 

PRO OF. Given the same initial configurations, let bo be the initial belief of the POMDP 

representation, and b, b' two reachable beliefs from bo such that their distance in d(b, b') is 

::; E. 

L Ibi - b~1 ::; E 
i 

Since b, and b' are reachable from bo, there exist histories h and h' to get to these points 

respectively. For h = alOl ... anOn : 

(6.9) 
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Using the mapping from belief states to prediction vectors, for the two corresponding pre

diction vectors p and p' we have: 

d(p, p') - Il p - p' IiI 

- Il (bIuQ-b~UQ 111=11 (bI -bI,)UQ IiI (PSR-POMDPmapping) 

< Il bI -bI, liiii u 1100 (Holderinequality) 

< en (elements of U are probabilities) 

o 

The last inequality holds according to the definition of 111100 for a matrixA as: Il A 1100= 
max iEj=llaijl, and the fact that there are at most n = ISI columns in UQ. Therefore, we 

can use the heuristic for belief point expansions based on the distance between beliefs for 

the case of PSRs prediction vectors in the expansion phase of PBVI. 

6.3.3. Extending PBVI to PSRs 

The fact that the value function is piecewise linear and convex for PSR prediction 

vectors allows a good approximation of this function with a finite set of hyperplanes (a

vectors). The computation of the Bellman update equation can be performed on a set of pre

diction vector points D = {P(Qlh1),P(Qlh2), ... ,P(Qlhm)} just as in the case ofPOMDPs. 

Hence the nth approximation Vn can be represented by a set of a-vectors r n = { al, ... ak}, 

such that each ai corresponds to the best policy tree for at least one P(Qlhi) E D. 

The backup operator is only performed on points in D based on the current value 

function Vn represented by r n as: 

Vf+1 (p) = arg max aEAR(p,a) +y(Ep(p/lp,a)Vt(p/) (6.10) 
p' 

where R(p,a) is the immediate reward of taking action a after the history h, given by 

the Equation (6.4), and P(p/lp,a) = P(Qlhao) is the next prediction vector computed by 

Equation 3.8. Algorithm Il details this approach. The set of vectors r~'o is used to find the 

estimates of values at the next prediction vector. 
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Algorithm 11 PSR point-based value backup(rt-Ü 

Input: previous value function estimate by rt-l 
for ail a EA do 

for ail 0 E 0 do 
rt,O _ {yMaoala E rt-d 

end for 
end for 
for ail p E D do 

a P - arg max aEA (lla + [OEO max uErf0 pT a) 
end for 
ifaP ~ rt 
rt -rtUaP 

Return rt 

The number of candidate points to backup can be exponential if we intend to consider 

all reachable prediction vectors. Planning for horizon h can reach O(IEl h) points where E 

is the number of one-step extensions in the PSR model. This is O( (IAIIZI )h) for POMDP

PBVI. Thenumberofextensions can beestimated asE = lAI 101 = IAIIZIIRI, whichexceeds 

IAIIZI. However, in practice not every observation-reward pair is possible for every action, 

and not every observation can generate all the rewards. This will be demonstrated in the 

experiments section. Using the theoretical results in the previous section we can derive an 

approximation bound for PSR-PVBI similar to POMDP-PVBI. 

COROLLARY 1. The error bounds for PBVI hold for the PSR-PBVI algorithm within 

a constant factor. 

PROOF. The proof follows from Theorem 9 and similar approach as in (Pineau et al., 

2003) for POMDPs. Suppose the PSR-PBVI worst error is ÔD at a point p' ~ D. Suppose 

that instead of the correct optimal prediction vector a' at this point, the algorithm estimates 

the value using vector a which is the optimal a-vector for prediction vector p E D: 

ÔD - I(a' -a)(p- p')1 

< max p' min pED Il p - p' 1100 

< en 
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TABLE 6.1. Domain Description 

Domain ISI IQI lAI IZI IRI 
4x4 grid 16 16 4 2 2 
4x3 grid 11 11 4 6 4 
Shuttle 8 7 3 5 3 

Network 7 7 4 2 7 

Domain PSRreward depth optimal reward 
4x4 grid 0.203 10 0.21 
4x3 grid 0.08 7 0.11 
Shuttle 1.98 8 2.02 

Network 19.69 6 20.00 

o 

As we mentioned before, the error bound for PBVI is a loose bound; this bound is 

similarly loose. The running time of the PSR-PBVI algorithm is O(IQIIAIIOI) as opposed 

to the O(ISIIAIIZI) for the POMDP representation. Therefore, if the PSR provides a more 

compact representation, PSR-PBVI should be more efficient than the original POMDP

PBVI. 

6.4. Experimental Results 

Our experiments with PSR controllers consist of two parts. In the first part, experi

ments have been conducted on several test problems to compare the solution found by the 

PSR look-ahead approach with the POMDP optimal solution in each of these problems. In 

all the problems an initial prediction vector is specified. These problems are all small, in 

order to avoid the computational difficulty of generating PSR core tests and building the 

PSR model parameters in large domains. Another restriction is related to memory issues in 

building the lookahead trees for larger problems. Table 6.1 summarizes the descriptions of 

these problems. The performance of the PSR lookahead controller was examined based on 

the average reward per time step. The trajectories oflength 1250 were used for each depth. 

We let the algorithm run for at most 8 hours on each domain and the results are based on 

the best reached depth. The depth of the lookahead tree used to get these solutions is shown 

in this table. The last column of the table shows the average reward per time step running 
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a POMDP optimal policy. As can be seen from this table, the lookahead approach using 

PSRs is very close to the optimal solution for aU problems. In the case of the 4x3 grid we 

observed that a smaU horizon is not enough to reach the optimal solution. 

The domains we used are summarized in Table 6.3. The coffee, 4x4 grid and shuttle 

problems have already been used in Chapter 4. In the second part of the experiments, we 

are interested to evaluate the performance of the PBVI-PSR algorithm. We use an addi

tional domain which illustrates the advantage of the PSR model in point-based planning. 

Figure 6.3 depicts this example. 

The orientation of the agent together with its physical position defines the states. 

Therefore, the POMDP representation of this domain consists of a 20-dimensional belief 

space. The actions are tuming left, right and moving forward. The goal of the agent is 

to pass through the intersection, and it receives a reward of + 1 just for doing that. The 

agent observes whether the square in front of it is blocked or unblocked, with sorne noise. 

The linear PSR representation uses only 5 core tests corresponding to the 5 states shown in 

the right panel of Figure 6.3. In the point set expansion phase of aU algorithms we used 

FIGURE 6.3. Robot-Intersection problem The state of the robot consists of the 
position in a grid together with the orientation in one of the four direction shown in 
the left. This makes the state space of the POMDP, 20 - dimensional. The figure 
in right depicts the state space of the corresponding PSR using only 5 distinctive 
experiences of the agent with the environment from the shown arrows. 

forward simulation with explorative actions (SSEA) and the norm-l metric for measuring 

distance between points in both belief space and prediction vector space. A set of 250 

trajectories starting from a fixed given initial belief and foUowing the policy generated by 

each method is used to evaluate the algorithms. The performance evaluation is conducted 
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FIGURE 6.4. Description ofthe Robot-Intersection problem 

in terms of averaging the discounted sum of the rewards obtained along these set of trajec

tories. The results in the table are averages over 10 such runs. We show the results of our 

TABLE 6.2. Description of the Domains Used in PBVI-PSR experiments 

Problem ISI IQI lAI 101 IRI lEI 
Robot-Intersection 20 5 3 2 2 7 

Coffee 32 12 2 3 12 18 
4x4-Grid 16 16 4 2 2 6 
Shuttle 8 7 3 5 3 14 

experiments with the PSR point-based algorithm compared to the reward-based POMDP 

(RPOMDP), and the original PBVI method. The RPOMDP model uses the same set of ob

servations (observation and reward) as PSRs, but it does not provide any compression in the 

state space dimensions. Therefore, as we discussed in Chapter 5 it might increase the size 

of the observation space without providing more information. In all cases we performed 

6 iterative expansions of the point set. The results in Table 6.4 show that the average dis

counted reward, which indicates the quality of the algorithms, the size of the set of points 

and the number of (l-vectors representing the final estimated value function. The numbers 
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are averages over ten independent runs. The robot-intersection and the coffee domains are 

difficult to solve by POMDP exact methods and we could not get an optimal solution for 

these problems within a reasonable time. 

AlI models provide similar solutions for aIl the problems except for the coffee prob

lem. In this domain, since rewards are very informative, the planning space of PSR and 

RPOMDP is better, which explains the difference in results. It must be noted that the com

putation time is much lower for PSRs than RPOMDP because the PSR planning space is 

more compact. 

Our experimental results in aIl cases show PSR-PBVI as the wining approach. This 

confirms our expectation that predictive state representations provide better time efficiency 

and speed up the progression of PBVI. The difference between the performance of these 

methods increases as the algorithms run for more expansions of their point set. 

TABLE 6.3. Experimental results of PBVI for PSRs 

Domain Beliefs a-vectors Reward Time (s) 
Intersection 

POMDP 115 91 2.04 ± 0.05 6.6 
RPOMDP 85 41 2.18 ± 0.02 3.3 

PSR 85 27 2.18 ± 0.03 1.4 
Coffee 

POMDP 78 18 -3.07 ± 0.84 3.4 
RPOMDP 61 3 -2.26 ± 1.49 4.5 

PSR 60 3 -2.16 ± 0.84 0.5 
4x4-Grid 
POMDP 100 33 3.56 ± 0.06 3.8 

RPOMDP 106 22 3.58 ± 0.1 5.8 
PSR 103 17 3.63 ± 0.1 1.1 

Shuttle 
POMDP 35 13 32.77 ± 0.1 1.1 

RPOMDP 30 14 32.89 ± 0.1 2.6 
PSR 30 12 32.87 ± 0.1 0.6 

6.5. Summary and Conclusion 

ln this chapter we showed how the planning problems can be formulated for predic

tive state representation. We outlined the first exact planning algorithm for PSRs, which 
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we published in previous work. Our findings of PSR planning and the existing work on 

exact methods demonstrate that the intractability of finding an exact solution for POMDPs 

remains the same for the case ofPSRs. However, using approximate planning, in particular 

point-based approach, seems to have a definite advantage in PSRs. 

This combination targets the curse of dimensionality and the curse of history simulta

neously. In this chapter, we also presented the first algorithm for approximate planning in 

PSRs, based on the PBVI approach in POMDPs. Our empirical evaluation of this algorithm 

shows considerable speed up compared to the point-based framework in POMDPs, while 

converging a solution that is at least as good. 

Building the set of points for value iteration in point-based methods is very crucial to 

the quality of computed approximate plan. In the experiments we used stochastic simula

tion by explorative action. However, different schemes can be adopted, e.g. approaches 

similar to those explored in Chapter 4. 
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CHAPTER 7 

Conclusions and Future Work 

In this thesis we identified approaches which are likely to help with the two key issues 

involved in planning under uncertainty: the curse of dimensionality and the curse of his

tory. The first approach is related to the design of more efficient POMDP approximation 

techniques. We proposed methods for focussing on small but essential parts of the belief 

space. The second approach builds on the predictive state representation as an alternative 

representation for planning. PSRs attempt to simplify, organize and make an elegant model 

capturing the useful information about the dynamics of the world. Predictive models are 

appealing because they connect the knowledge representation of the agent to observable 

experience with the environment. We identified cases in which PSRs provide a more com

pact model than POMDPs, by exploiting regularities in the state dynamics. The PSR model 

also encodes reward information in the state representation, which leads to less uncertainty 

and more precise abstractions. We reformulated the optimal control problem using PSRs 

and extended two POMDP planning algorithms for PSRs. 

We now re-visit the main contributions of the thesis and highlight avenues for future 

work. 

7.1. Summary 

Throughout chapter 4 we presented a collection of results for belief point selection in 

the c1ass of point based POMDP approximation methods. We illustrated the importance of 
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the point selection problem, and proposed new heuristics that try to solve this problem in 

a more efficient way within the point-based value iteration (PBVI) algorithm. We studied 

a number of criteria designed to improve the selection of candidate points. We defined the 

concept of core beliefs, a linearly independent set of belief states that spans the whole space 

of reachable beliefs in a POMDP. Considering the core beliefs in point-based methods 

guarantees a tighter worst case error bound than standard PBVI [Izadi et al., 20051. We 

studied two additional heuristics designed to improve the PB VI algorithm. The first of these 

methods is based on the reachability analysis of the POMDP belief space. This approach 

relies on prioritization of beliefs based on the degree of reachability from the given initial 

belief state [Izadi et al., 2006]. We established the theoretical soundness of this approach 

in Chapter 4. The second approach is motivated by the observation that the exploration

exploitation trade off in the space of beliefs has a great influence on the precision of value 

function and the time needed to estimate it [Izadi and Precup, 20061. We suggested a novel 

approach that uses a distance threshold parameter. We presented empirical evaluations 

illustrating how PBVI can be influenced by these approaches. While each heuristic can be 

especially useful for a particular kind of system, our last approach works generally better 

on all types of domains. 

We have pointed out the characteristics of the PSR model which are useful for structure 

exploitation in chapter 5, and showed that the PSR core tests discovery algorithm automat

ically generates a good state aggregation on the underlying states of the corresponding 

POMDP. We addressed the issue of modeling symmetries in the dynamics of the system 

through predictive state representations~ The notion of state dependency as a property of 

the underlying states of a POMDP was developed for the first time. This is the basis of a 

state abstraction method. However, we emphasized that for this abstraction to respect the 

value function and not to aggregate states with potentially different values, rewards should 

be encoded in the representation of the beliefs. Reward involvement in the definition of 

belief states can also be useful for planning purposes. We demonstrated this fact with ex

periments using the new formulation ofbeliefs. We were able to get good results for a class 

of problems in which rewards are informative. 
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7.2 FUTURE EXTENSIONS 

We studied the applicability and usefulness of PSRs in control problems; we de

signed two planning algorithms in Chapter 6, based on existing POMDP solution meth

ods. We provided both the theoretical background for using PSRs in planning and empir

ical evidence that PSRs are particularly well-suited for approximate planning using point 

based algorithms. The algorithms described here preserve the worst-case error bounds for 

POMDPs, but can have a substantial impact on empirical performance. The empirical study 

in Chapter 6 demonstrates that the PSR representation with the PBVI algorithm improves 

slightly the solution quality over the best POMDP planning methods but is significantly 

faster. The impact on quality is more pronounced for problems in which the PSR represen

tation provides more compression. 

7.2. Future Extensions 

Real world applications have large or continuous state spaces. However, these environ

ments usually exhibit a lot of structure in their dynamics and in their states. We analyzed 

the ability of linear PSRs to discover a particular type of structure in a system. How

ever, linear PSRs with the current notion of tests is limited, as we showed in Chapter 5. 

Therefore, it would be desirable to explore the type of structure that other variations of 

PSR can exploit. For instance, EPSRs have an interesting test definition, similar to closed 

loop policies, options, and hierarchical actions. Hierarchical structures have been the fo

cus of substantial work in the reinforcement literature [Singh, 1992a; Dietterich, 1998; 

Pineau and Thrun, 2001; Barto and Mahadevan, 2003; Bakker and Schmidhuber, 2004; 

Dietterich, 2000a]. Options, as temporally abstract actions, have efficient leaming and 

planning algorithms in reinforcement leaming with temporal abstraction [Stolle and Pre

cup, 2002; Sutton et al., 1999c; Precup et al., 1998; Precup and Sutton, 1998]. Augmenting 

the predictive state representation with options looks encouraging; [Wolfe and Singh, 2006] 

can be considered an early step in this direction. Our results in Chapter 5 can be extended 

for analyzing EPSRs as weIl. 

Another extension of this work is to use the motivation behind the suggested heuristics 

in Chapter 4 to design more sophisticated algorithms. Most of the computation time in 
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7.2 FUTURE EXTENSIONS 

point-based algorithms is spent on the point-based value update phase. In our experiments 

we observed that a much smaller subset of points are essential in representing the optimal 

value function. Although it is difficult to c1arify which points and which transitions are 

important without explicitly solving the problem, one important direction would be to in

vestigate the appropriateness of other similarity metrics to reduce the problem. There is 

still a lack of quantitative analysis for the precision of PBVI approximations. Techniques 

developed in the thesis and previously suggested approaches try to reduce the approxima

tion error. However we still seek theoretical results to answer questions such as: how many 

points suffice to have an approximation of the value function within at most e distance 

from the optimal solution? While this retums in part to the complexity of the optimal value 

function, it is still not c1ear how to characterize this complexity based on the dynamics of 

the mode!. Sorne work from mathematical analysis [Shapiro et al., 2000] seems relevant 

and inspiring. 

The structural analysis of predictive representations given in the thesis can motivate 

the development of other variation of tests. For example, we showed in Chapter 5 that 

symmetrical structure with respect to the space of state-action pairs cannot always be de

tected by the linear PSR. It would be interesting to have tests that can capture this property. 

Representations and algorithms that exploit additional structure can be of great practical 

value. 

The predictive representation does not rely on a specific physicallayout of an unob

servable environment, so it has the potential of being useful for fast adaptation to a new 

similar environment. From the perspective of generalizing across tasks, PSRs can be quite 

usefu!' We plan to investigate this further in the future. 

In light of the difficulty of the discovery problem for core tests, it is natural to look 

for approximation algorithms which generate more appropriate core tests for planning pur

poses. This requires a precise definition of a metric which best describes the usefulness 

of different core tests in value function computation. A simple example can be a distance 

metric which characterizes core tests with the mass of possible prediction vectors they rep

resent. This identifies the potential error that missing a particular core tests may cause. 
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7.2 FUTURE EXTENSIONS 

Another possible direction is to consider restrictions on the representationallevel of tests 

(e.g. limiting the size of core tests). These types of analysis have been suggested or carried 

out in the literature for abstraction with other representations [Poupart and Boutilier, 2003b; 

Hundt et al., 2006; Sutton and Tanner, 2004]. Finding the appropriate restrictions for PSRs 

is an open question. 
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