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Analysis and Design of Parallel 3-D Mesh Refinement
Dynamic Load Balancing Algorithms for Finite

Element Electromagnetics With Tetrahedra
Dennis D. Giannacopoulos and Da Qi Ren

Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 2A7, Canada

We develop a simulation-based approach for the computational analysis and design of dynamic load balancing algorithms in parallel
three-dimensional unstructured mesh refinement with tetrahedra. A Petri Nets model is implemented based on a random polling algo-
rithm and the target multiprocessor architecture, which simulates the behavior of the parallel mesh refinement. Subsequently, estimates
for performance measures are derived from discrete event simulations. The benefits of this new approach for developing high-perfor-
mance parallel mesh refinement algorithms are demonstrated with results for an example geometric mesh refinement model.

Index Terms—Adaptive systems, electromagnetic analysis, finite element method (FEM), parallel processing, software methodology.

I. INTRODUCTION

THE finite element method (FEM) is a powerful numerical
technique for the approximate solution of continuum

electromagnetic problems. However, efficient and accurate so-
lutions for some three-dimensional (3-D) modern applications
require extremely large numbers of elements. In such cases,
parallel processing is beneficial for each stage of the FEM
including mesh refinement [1]–[3]. Due to the computational
complexity of 3-D, parallel, unstructured mesh generation and
refinement, the performance of the method is highly dependent
on several factors, e.g., the underlying algorithm, the inter-pro-
cessor communication pattern, the synchronization of tasks,
etc. The goal of modeling and simulating parallel mesh refine-
ment is to examine the specific parallel system architecture and
software techniques in advance, in order optimize its design
and thus achieve the best possible performance for a given cost.

Today, techniques used for parallel mesh refinement per-
formance analysis are, typically, based on benchmarking
programs on known environments. Unfortunately, these types
of deterministic evaluations are inefficient for performance
studies in the early design stages of a parallel system. For
example, various analysis and design methodologies reported
in the literature have been used to address separately specific
load balancing algorithms or mesh refinement models. In other
words, these approaches focus, typically, on only one particular
aspect of a whole parallel mesh refinement system [3]–[5].
Thus, such separately focused analyses cannot predict the
performance of the whole parallel mesh refinement system ac-
curately. One promising route for overcoming these limitations
is based on extending a preliminary approach developed pre-
viously by the authors for using Petri Nets to simulate parallel
mesh refinement [6]. In order to obtain more accurate simu-
lation results for the performance analysis of a whole parallel
mesh refinement system, the distributed data structure, geo-
metric mesh refinement model, dynamic load balancing (DLB)
algorithm, parallel system architecture, and the inter-processor
communication details must all be incorporated in the Petri Nets
model in a realistic fashion. This type of holistic simulation is
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an innovative approach that we believe will lead to improved
analysis and design methods for parallel 3-D mesh refinement
DLB algorithms for finite element electromagnetics.

In this paper, we develop a new approach for the modeling,
analysis and design of DLB algorithms in parallel finite ele-
ment mesh refinement that utilizes Petri Nets. Petri Nets-based
models allow for a relatively detailed description of a system
due to their formal syntax and functional semantics, and can re-
veal key characteristics of system performance stochastically.
While Petri Nets have been used for discrete event-based simu-
lation of various applications, to our knowledge, they have not
been considered previously for parallel 3-D mesh refinement
DLB for finite element electromagnetics with tetrahedra [6]–[8].
In addition, we use the proposed approach for the design of a
random polling (RP)-DLB algorithm for a specific 3-D parallel
mesh refinement model suitable for FEM electromagnetics with
tetrahedra [6], [8], [9].

II. GEOMETRIC MESH REFINEMENT MODEL

For 3-D electromagnetic analysis and design with the FEM,
tetrahedra are often employed to achieve the geometric dis-
cretization of the problem domain, because they possess several
desirable computational modeling properties. However, one
difficulty is the potential geometric complexity involved in
mesh refinement, which is often necessary to improve the solu-
tion accuracy to within required tolerances. There are several
tetrahedral mesh refinement strategies. To solidify concepts,
consider the subdivision of a tetrahedron as shown in Fig. 1(a).
This method consists of cutting every edge into two and every
face into four triangles, resulting in four tetrahedra, each a
half-scale duplicate of the original, and an octahedron [9].
The octahedron is kept in an element list, and it is temporarily
split into four tetrahedra just for matrix assembly purposes if
necessary, as in Fig. 1(c). These four tetrahedra are not similar
to the original one and they cannot be used for further subdi-
vision because this may result in the progressive deterioration
of mesh quality. In order to maintain the original mesh quality,
the octahedra kept from the element list are subdivided in the
next iteration by bisecting each edge, i.e., cut into six smaller
size octahedra and eight tetrahedra as shown in Fig. 1(b).
These eight tetrahedra are similar to the original tetrahedron,
though reduced by a factor of four in each dimension. The
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Fig. 1. Mesh refinement model. (a) Tetrahedron subdivision. (b) Primary
octahedron subdivision. (c) Secondary octahedron subdivision.

four temporary tetrahedra are then discarded. In finite element
applications, the subdivisions of Fig. 1(a) and (b) are repeated
until all of the new tetrahedra satisfy specified mesh criteria.
Any remaining octahedra are each cut into four additional
tetrahedra as shown in Fig. 1(c). This mesh refinement model
is considered because of its potential to allow refinement to
proceed simply without changing the mesh quality as well as
it makes matrix assembly straightforward in FEM computation
[3]. It may be noted that the tetrahedral and octahedral refine-
ment rules of Fig. 1(a) and (b) generate tetrahedra of the same
quality as the original [9]; however, this is not necessarily the
case when the subdivison rule of Fig. 1(c) is applied to termi-
nate the mesh refinement process for FEM applications, and
other mesh optimization techniques can be applied to improve
the quality of the resulting elements [1], [3], [9], [10].

III. RP-DLB PARALLEL MESH REFINEMENT MODEL

In this section, the RP-DLB modeling strategy is briefly ex-
plained, and key algorithmic details are given. A master–slave
parallel computing scheme is considered for this work.

A. RP-DLB Algorithm

1) Overview of Parallel Mesh Refinement With
RP-DLB: Fig. 2 shows a conceptual outline of the key
elements for our parallel mesh refinement with RP-DLB
algorithm. To begin, the input data are read, parsed, and
checked by the master processing element (PE). The master PE
partitions the initial geometric mesh model into subdomains
based on the anticipated work load of each slave PE, then
broadcasts the subdomain assignments to corresponding
slave PEs, as shown in Fig. 2. The slave PEs executing the
tetrahedral–octahedral subdivision algorithm (Fig. 1) each
work in parallel on their respective domains during this phase,
and a RP-DLB mechanism is applied [4]. While the work is not
finished, all slave PEs will work in parallel asynchronously;
however, if a PEs local tasks are done, it will repeat sending
a request to other randomly determined PEs until is not
rejected. The “polled” PE will split its remaining tasks and
reinitialize them asynchronously as some are sent to the PE
that initiated .

A discrete events model for the operation of a slave PE per-
forming the RP-DLB mesh refinement is shown in Fig. 3; it
is constituted of five states and eight transitions. The slave PE
starts with tasks assigned by the master PE, and subsequently
its state changes over the transitions which represent the occur-
rence of the possible events. This model will be analyzed using
the Petri Nets formalism in next subsection.

2) Performance Measurement Parameters: Let and
represent the quantity of tetrahedra and octahedra pro-

duced, respectively, in iteration by PE . In Fig. 1(a) and (b)

Fig. 2. Conceptual outline of parallel mesh refinement with RP-DLB.

Fig. 3. Discrete events chart for a slave PE.

subdivisions, for iteration each tetrahedron of iteration
can be subdivided into 4 smaller tetrahedra and 1 octahedron,
and each octahedron of iteration can be subdivided into 8
tedrahedra and 6 smaller octahedra. Thus, we have

(1)

(2)

In any iteration of the mesh refinement, if the matrix assembly
is required, all the octahedra in the element list will be subivided
into four tetrahedra each as in Fig. 1(c), and in this case

(3)

(4)

Let and be the time required for a tetrahedron or
octahedron subdivision, as shown in Fig. 1(a) and (b), respec-
tively. For iteration , the computation time and commu-
nication time for are given by (5) and (6), respec-
tively. Here represents the message startup time and

is the transmission time to send the data for one element.
These parameters can be adjusted to simulate their effect on the
parallel computing environment performance. For PEs in a
master–slave model, there will be slave PEs in charge of

subdomains. The time for the slave PEs to complete the
mesh refinement for iteration satisfies (7), (since the PEs start
the refinement iteration at the same time in our model) [11].
The proof is shown in Fig. 4

(5)

(6)

(7)
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Fig. 4. Timing diagram for proof of (7).

Fig. 5. Framework for mesh refinement Petri Nets model.

A standard performance measure is the parallel efficiency

(8)

where is the size of the mesh refinement process measured
in units of sequential execution time and is the
parallel execution time for a system consisting of identical PEs
[4]. In this work, we examine the performance of our approach
both with respect to parallel speedup and efficiency.

B. Modeling Framework

Our Petri Nets model is a specification of the parallel mesh
refinement system with RP-DLB in terms of a set of states and
events. Performance simulation involves modeling the occur-
rence of events as they evolve in time and recognizing their ef-
fects as represented by transitions of states during the parallel
mesh refinement process [7], [8]. We map the algorithm with the
supporting formula (1)–(7) into the Petri Nets model by modi-
fying the parameters related to the states, events and transition
delays.

The parallel mesh refinement process can be conceived at
three levels, each corresponding to one layer of our Petri Nets
model, as shown in Fig. 5. The first layer comprises the parallel
computing environment module. The parameters involved in
this layer are the communication timing delay and computation
cost. The estimated values of the parameters are derived from
the system implementation (we use the MPI of SUN HPC5.0).
The corresponding part in the Petri Nets model is the timed tran-
sitions. Layer 2 is the parallelization and load balancing algo-
rithm module. The specification of the processor interactions
and the DLB schemes is included in this layer. In the Petri Nets
model, this part is the real-time discrete events model that un-
derlies the dynamic behavior of the DLB algorithm. Layer 3 is
the application layer. The geometrical properties of the tetrahe-
dral and octahedral subdivisions are specified in this module.
On the right, for the same layer of the Petri Nets model, we use
the transition-arc-weight to model the geometrical mesh refine-
ment scheme. The details of the model are provided below.

Fig. 6. Petri Nets Module. (a) RP-DLB task division. (b) Tetrahedron and
octahedron subdivision.

Fig. 7. Petri Nets model of parallel mesh refinement in a 6 PE system. (a)
Overall model structure. (b) Mesh refinement in slave PE.

C. Petri Nets Model

1) RP-DLB Protocol: Fig. 6(a) shows the Petri-Nets model
of the RP-DLB protocol: in a PE, tasks to be executed are stored
in Data_Storage, while the geometric computations are being
processed. When a request arrives, the PE will send half of
the tasks in Data_Storage to sthe sender of . When the PE has
executed all the tasks in Data Storage, it will send its request

to another randomly selected PE and simultaneously start to
build up a new data file for its mesh refinement results.
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Fig. 8. RP-DLB performance results. (a) Speedup versus number of elements
for different numbers of PEs. (b) Parallel efficiency versus number of PEs.

2) Meshing Computation: The Petri Nets model in Fig. 6(b)
shows the procedure of tetrahedral and octahedral subdivision:
this starts with a scan of tetrahedral/octahedral entities; next the
refinement rule is applied to each individual tetrahedron/octahe-
dron. Once an individual element is processed, a signal is gener-
ated by scan trigger [Fig. 6(b)] for loading the next geometrical
entity.

3) Parallel System Model: The overall model we developed
is shown schematically in Fig. 7. It involves six modules rep-
resenting one master and five slave PEs that we have in a sym-
metric multiprocessor. The communication costs are defined by
transitions that connect the PEs in the system, as shown in the
figure. The system parameters , and ,
are defined in the transition delays in each stage of the mesh
refinement model.

IV. RESULTS

The efficiency of a RP-DLB algorithm specifically designed
for the mesh refinement model described in this work is exam-
ined in this section. Performance results for the RP-DLB par-
allel mesh refinement simulation are shown in Fig. 8. It may be
noted from Fig. 8(a), that the parallel speedup for different num-
bers of PEs differs with increasing problem size, as the mesh
refinement progresses. In each case, RP-DLB improves the per-
formance compared to the same number of PEs without DLB.
Furthermore, it can benefit the system by saving PEs: e.g., 5 PEs
with RP is as good, or better, than 6 PEs without RP. Fig. 8(b)

shows the parallel efficiency versus the number of PEs in the
system. The results are based on the mean speedups observed
over the entire range of the number of elements produced during
the refinement procedure. Clearly, the parallel efficiency of the
new RP-DLB mesh refinement model is better than without load
balancing. In addition, note that the parallel efficiency increases
as the number of PEs increases up to the 6 PEs in our model.

V. CONCLUSION

A new approach for the modeling, analysis and design of
DLB algorithms in parallel finite element mesh refinement that
utilizes Petri Nets has been proposed and evaluated. This new
simulation-based approach allows for a relatively detailed de-
scription of a system and can reveal key performance character-
istics. The results for the 3-D parallel mesh refinement model
considered demonstrate the benefits of the new approach for de-
veloping RP-DLB algorithms for the target parallel architecture.
Future work should include: validating the Petri Nets model by
comparing the simulation performance with real codes; further
performance optimization of the new RP-DLB algorithm for
systems of heterogeneous multiprocessors; and through a more
detailed communication cost analysis. Finally, the new mod-
eling approach may be extended to other aspects of the FEM,
such as matrix assembly and solution methods.
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