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Abstract 

Allostery is a nearly ubiquitous feature of biological systems in which ligand binding or covalent 

modification at one site alters the activities of distant sites in a macromolecule or macromolecular 

complex. The molecular mechanisms underlying this phenomenon have been studied for decades. 

Nevertheless there are many aspects that remain poorly understood. ITC yields detailed information on 

the thermodynamics of biomacromolecular interactions and their coupling to additional equilibria, 

therefore in principle it is a powerful tool for better understanding how allostery is achieved. A 

particularly powerful approach involves simultaneously fitting multiple ITC data sets together with those 

of complementary techniques, especially nuclear magnetic resonance and circular dichroism 

spectroscopies. In this review, we describe several group-fitting methods for discriminating between 

different binding models and for improving the accuracy of thermodynamic parameters extracted from 

variable-temperature ITC data. The techniques were applied to the antibiotic resistance-causing enzyme 

aminoglycoside-6'-acetyltransferase Ii, uncovering the existence of competition between opposing 

mechanisms and ligand-dependent switching of the underlying mechanism. These novel observations 

underline the potential of combining ITC and spectroscopic techniques to study allostery. 
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1. Introduction 

 

The term allostery was first introduced by Jacques Monod in 1961 to explain the results of end-product 

inhibition of the enzyme L-threonine deaminase.[1, 2] It describes the process through which covalent 

modifications or ligand binding influence regions distal to the site of interaction in a macromolecular 

system.[3-5] Allostery plays an essential role in many cellular processes including cell signaling and 

metabolism and represents a promising target for drug design.[6-10] Therefore understanding allostery at 

the molecular level can shed light on cellular function and can potentially lead to new therapies for human 

diseases. Allostery can be classified into two categories: heterotropic and homotropic. In heterotropic 

allostery, the interaction with one ligand affects additional processes which can include binding ligands 

chemically different from the first, altering catalytic rates, or undergoing large structural rearrangements 

such as pore opening/closing.[11-13] Meanwhile, homotropic allostery involves interactions with two or 

more identical ligands. Often this is referred to ‘cooperative binding’ and can be either positive 

(subsequent binding events are stronger than the previous) or negative (subsequent binding events are 

weaker than the previous). As the events in heterotropic allostery are intrinsically different, characterizing 

the interaction between an allosteric effector and its targets is in principle facile. However, in homotropic 

allostery this becomes more challenging, as the ligand is both the allosteric effector and the target of the 

allosteric interaction. Historically the molecular mechanisms of homotropic allostery in oligomeric 

proteins have been explained in terms of two paradigms. In the concerted model (MWC) of Monod, 

Wyman and Changeux, Figure 1A,[7] all subunits of a homo-oligomeric protein undergo simultaneous 
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conformational changes driven by ligand binding. In the sequential model (KNF) of Koshland, Nemethy, 

and Filmer, Figure 1B,[10] individual subunits undergo independent conformational changes upon 

binding, modulating the strength of inter-subunit interactions. More recently, models have been proposed 

that emphasize thermodynamics and dynamic equilibria, as exemplified by the energy allosteric model 

(EAM), Figure 1C.[14] According to the EAM, the 1-bound state of a protein homodimer exists in 

dynamic equilibrium between symmetric (MWC-like) and asymmetric (KNF-like) forms. The 

thermodynamic balance between the two forms is governed by the energetic cost of subunit 

conformational changes and the strengths of inter-subunit interactions. These models help to explain how 

information is transferred between distant sites in a macromolecular complex, but determining which 

model, if any, applies to a given system is an ongoing challenge. 

 

Isothermal titration calorimetry (ITC) is a powerful approach in which the heat released or absorbed 

throughout a titration experiment is measured. From a single experiment it is possible to determine the 

changes in enthalpy (ΔH), entropy (ΔS) and Gibb’s free energy (ΔG) that accompany binding as well as 

binding stoichiometry.[15, 16] By performing experiments at different temperatures one can additionally 

determine differences in heat capacity (ΔCp) between free and bound states.[17, 18] ITC is commonly 

applied to simple 1:1 binding reactions, but can be used to characterize more complicated systems in 

which ligands bind cooperatively at multiple sites and/or involve coupling to additional equilibria such as 

protonation/deprotonation, heterotropic allosteric effectors, changes in oligomeric state, or conformational 

changes.[19-21] Studying complex binding equilibria and determining mechanisms of allostery by ITC is 

challenging. For example, the same ITC data can sometimes match quite different physical models of 

interaction, and it can be difficult to ascertain which is correct. Characterizing the thermodynamic linkage 

between ligand binding and additional equilibria requires multiple sets of ITC data where maximizing the 

accuracy and self-consistency among the datasets is paramount. As well, ITC data contain little or no 

structural information in and of themselves. Thus their interpretation in terms of macromolecular 

conformational changes remains a challenge.[19],[22] Our laboratory has developed several approaches 

for addressing these issues. In this review we describe global fitting procedures to identify correct binding 

models from ITC data obtained at different concentrations, and to optimize the accuracy of binding 

parameters extracted from ITC datasets obtained at different temperatures. Finally, we describe an 

approach for combining ITC, nuclear magnetic resonance (NMR) and circular dichroism (CD) data to 

reveal molecular details of homotropic allosteric interactions. 
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Figure 1 Schematic representation of homotropic allosteric models for a dimeric protein.  and  

correspond to subunits in binding-incompetent, and binding-competent states, respectively. (A) Monod-

Wyman-Changeux (MWC): The symmetry of the dimer is preserved, so that only  and  states 

are permitted. In the absence of ligand, both states are populated, while ligand binding forces the dimer 

into the  state. If the initial equilibrium favors the  state, binding is positively cooperative, since 

the energetic cost of the  to  transition is paid by binding the first, but not the second ligand. Note 

that in the standard MWC model, both  and  bind ligand, but with different affinities. For the 

sake of simplicity we have shown the limiting case where  is binding-incompetent. (B) Koshland-

Nemethy-Filmer (KNF): Each subunit converts from the  to the  state only upon binding ligand. 

Cooperativity is explained in terms of the strengths subunit-subunit interactions. If the transition from the 

 to  interface is energetically more favorable than from the  to , binding is negatively 

cooperative, and the first ligand is bound more strongly than the second. If the transition from the  to 

 interface is less favorable than from the  to , binding is positively cooperative, and the 

second ligand is bound more strongly than the first. (C) Energy allosteric model (EAM): Each unbound 

subunit can populate either the  or  state, and the equilibrium of each subunit is influenced by the 

state of the adjacent subunit. If the binding competent () state of one subunit stabilizes the  state of 

the adjacent subunit, binding is positively cooperative. Conversely, if the binding competent  state of 

one subunit stabilizes the binding-incompetent  state of the adjacent subunit, binding is negatively 

cooperative. Adapted from Freiburger et al [23] 

 

We have used the enzyme aminoglycoside 6’-N-acetyltransferase-Ii (AAC(6’)-Ii) as a model system to 

develop and test ITC-based methods for characterizing protein allostery. This homodimeric enzyme 

confers antibiotic resistance to most aminoglycosides by transferring an acetyl group from Acetyl 

Coenzyme A (AcCoA) to the 6’ amine of these drugs.[24] The structure of AAC(6’)-Ii has been solved by 

X-ray crystallography bound to CoA and AcCoA[25-27] or inhibitors.[28] Each subunit of the enzyme 

contains a distinct active site and both sites are able to bind ligands simultaneously in the dimer. We also 

used a monomeric version of the enzyme in which tryptophan 164 in the dimer interface is substituted 

with alanine (AAC W164A).[29] Through the group analysis of ITC, NMR, and CD data, we have shown 

that the enzyme binds both AcCoA and an aminoglycoside ligand with homotropic allosteric mechanisms 

that are thermodynamically coupled to partial unfolding of the enzyme. The binding mechanisms of 

AcCoA and aminoglycoside are quite different however, shedding new light on the molecular 

determinants of allostery.[22, 23, 30, 31] 
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2. Identifying Correct Binding Models 

ITC is commonly applied to simple binary complexes which are described by a single equilibrium 

association constant (KA=exp{-ΔG/(RT)}) and binding enthalpy (ΔH).[15, 17, 32, 33] In more 

complicated systems comprising multiple non-equivalent binding sites, at least two fundamentally 

different models can apply, as illustrated in Figure 2A,B for the case of two such sites: A) Multiple 

Independent Sites: This model comprises two different classes of binding site that interact with the 

ligand independently. There are n1 type 1 sites with affinity KA1 and binding enthalpy ΔH1 (), and n2 type 

2 sites with affinity KA2 and binding enthalpy ΔH2 (). B) Cooperative Sites: This model comprises 

pairs of identical sites such that the first ligand to bind either site does so with affinity KA1 and binding 

enthalpy ΔH1. Homotropic allostery or cooperativity then alters the binding properties of the unoccupied 

site and the second ligand is bound with affinity KA2 and binding enthalpy ΔH2. While these models 

appear similar, they represent very different binding mechanisms. The independent model predicts that a 

macromolecule contains multiple structurally distinct and non-interacting binding surfaces, while the 

cooperative binding model predicts that the macromolecule contains two identical binding sites that are 

energetically coupled. Even though these models describe physically different events it is possible for 

them to agree with experimental data equally well, obscuring the molecular mechanism underlying 

binding.[22] 

 

Figure 2 Schematic representation of (A) non-identical, non-interacting sites and (B) identical, interacting 

sites for 2-site binding. In (A), both n1 and n2 have been set to 1 for clarity.  

2.1. Varying the c-value 

We have found that it is possible to discriminate between different binding models by analyzing multiple 

ITC datasets collected with different protein concentrations.  In the case of a single class of non-

interacting binding sites, it is convenient to express the protein analyte concentration [P]T, in terms of the 

parameter c which was introduced by Wiseman et al. as follows: 

𝒄 = [𝑷]𝑻 × 𝒏 × 𝑲𝑨           (1) 

where n is the number of identical non-interacting binding sites present on the macro molecule.[33] ITC 

experiments are typically performed with c-values between 1 and 100 in order to accurately determine 

KA.[33] Experiments with larger c values (>50) produce relatively sharp transitions [33]. Experiments 

performed at low c values produce much shallower transitions which extend to much larger [X]T:[P]T 

ratios.[33] Thus for any given affinity and binding enthalpy, varying the protein concentration defines a 

family of related isotherms, Figure 3A. This trend also follows for more complex systems with multiple 

binding sites, as illustrated in Figure 3B for 2-site cooperative binding.[34] Varying the protein 

concentration defines a family of related curves for any given set of binding parameters KA1, KA2, ΔH1, 

and ΔH2. These families differ markedly depending on whether binding is positively or negatively 

cooperative and on the relative magnitudes of the binding enthalpies for the first and second ligands. 

Similarly, in the case of multiple independent sites, varying the protein concentration defines a family of 
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curves for any given set of KA1, KA2, ΔH1, ΔH2, n1, and n2 values. A challenge in elucidating binding 

mechanisms is that different models can produce very similar ITC isotherms for a single protein 

concentration or c-value. The key to the variable-c approach is that even when several different models 

can reproduce a single ITC isotherm equally well, typically only the correct model can adequately 

account for the family of curves generated by varying the protein concentration. Note that we have 

employed a traditional ITC arrangement throughout, in which concentrated ligands are titrated into dilute 

solutions of protein. In certain situations (i.e. poor ligand solubility) it is recommended to titrate 

concentrated protein into a dilute solution of ligand. In this case very different families of curves would 

be generated. It is likely that these, too, would be suitable global analyses of the kind described below, 

however more research is required to verify this in practice.  

2.2.  Calculating variable-c isotherms 

In the case of both independent and cooperative models, isotherms may be calculated using a heat 

function, Q, defined such that the heat released or absorbed during ith injection is given by the expression 

 
( ) ( 1)

( ) ( ) ( 1)
2

i

c

V Q i Q i
Q i Q i Q i

V

  
     

 
 + Q0,     (2)

which takes into account the sample displaced from the working volume of the cell by the injection.[35] 

Vi is the volume of the ith injection, Vc is the working volume of the sample cell, Q(i) is the value of the 

heat function following the ith injection, and Q0 is an offset parameter that accounts for heats of mixing. 

The total concentrations of ligand, [X]T, and protein, [P]T, present in the working volume of the cell after 

n injections with a total volume of 
1

n

i

i

V V


  may be calculated assuming that each increment of 

volume displaced from the working cell, dV, contains ligand and protein at the concentrations present 

throughout the working cell. Accordingly,    
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       (5) 

   
0

exp
T

c

V
P P

V

 
  

 
,        (6) 

where [X]0 is the concentration of ligand in the syringe and [P]0 is the initial protein concentration. Note 

that equations (5) and (6) apply to all values of V, and differ slightly from those listed in the MicroCal 

handbook, which are approximations valid when V<Vc. Deviations between the two sets of expressions 

for the volumes employed in these experiments are generally less than 0.1%. Heat functions may be 

calculated in terms of [X]T, [P]T, and the binding parameters for both independent and cooperative 

binding models as follows: 
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Independent sites: This model describes binding to a macromolecule containing n1 independent sites 

with microscopic association constants KA1 and n2 independent sites with microscopic association 

constants KA2. The fractions of type 1 and type 2 sites that are occupied by ligand may be calculated 

according to 

 
 

 1

1D

X
f

K X



  and  

 
 2

2D

X
f

K X



,     (7) 

where [X] is the concentration of free ligand and KD1,2=(KA1,2)-1. The total concentration of ligand is given 

by the expression 

        1 1 2 2T T
X X P n f n f   .       (8) 

Substituting Equation (7) into (8) gives the following third-order polynomial in [X] 

       0
32
 XXcXba         (9) 

where 

  1 2D D T
a K K X   

      2 1 1 2 1 2 1 2D D D D D DT T
b K n K n P K K X K K      

     1 2 1 2D D T T
c K K n n P X      

The concentration of free ligand [X] for any combination of [X]T, [P]T, and binding parameters 

corresponds to the positive, real root of equation (9), which may be determined analytically [36, 37] or 

numerically, for example by using the bisection method.[38]The values of f1 and f2 can then be determined 

by substituting [X] into equation (7). Finally the heat function for the independent sites model is given by 

the expression 

   1 1 1 2 2 2cT
Q P V n f H n f H           (10) 

where H1 and H2 are the binding enthalpies (Hbound-Hfree) of each type 1 or type 2 site, respectively. 

Cooperative sites: This model describes a protein with two identical, energetically-coupled sites. The 

first ligand binds to either site of the free protein, PPX, with an association constant KA1 

 
 
  1A

PX
K

P X
  .         (11) 

The second ligand binds the unoccupied site of a singly-bound protein, PXPX2, with an association 

constant KA2, 

 

 
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2
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PX
K

PX X
 ,         (12) 
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The fractions of proteins in the singly-bound, f1, and doubly-bound, f2, states are given by the expressions 

 
 

   
2

1 2

1 2 2

2

2

D

D D D
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f
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and 

 

 

   

2

2 2

1 2 22D D D

X
f

K K K X X


 
,       (14) 

where KD1,2=(KA1,2)-1. The total ligand concentration in the sample is 

        1 22
T T

X X P f f   .        (15) 

Substituting equations (13) and (14) into equation (15) gives the following cubic expression in [X] 

      0
32
 XXcXba         (16) 

where 

  1 2D D T
a K K X   

     1 2 22D D D T T
b K K K P X    

    22 2D T T
c K P X    

Similarly to the independent sites model, the positive real root of equation (16) gives the concentration of 

free ligand, [X], which substituted into equations (13) and (14), provides the values of f1 and f2. Finally, 

the heat function for this model is   

    1 1 2 1 2cT
Q P V f H f H H           (17) 

where H1=HPX-HP and H2=HPX2-HPX. 

ITC data are fit by adjusting binding parameters to minimize the sum of residual squared differences 

(RSS) between experimental data points and those calculated using equation (2), 

     
2

calc exp
i

RSS Q i Q i   ,       (18) 

where the sum runs over all data points in all ITC titrations performed at multiple protein concentrations. 

Uncertainties in the fitted parameters may be obtained from the covariance matrix, which is given by the 

expression[39] 

   
1

TRSS
V XWX





 ,         (19) 
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where 
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, 

   i calc exp
F Q i Q i   , 

and the derivatives are evaluated numerically at the optimized values of the binding parameters.  W is a 

diagonal matrix of the fitting weights, which in this case are equal to 1, and ν is the number of degrees of 

freedom of the fit. The diagonal elements of V are the variances of the KA and ΔH parameter estimates. 

 

 

 

 

 

Figure 3 A) Theoretical ITC isotherms generated with different c-values for a single-set of equivalent 

sites model. B) Theoretical ITC isotherms generated according to a 2-site cooperative model, with [P]T = 

0.5, 1.5, 4.5, 13.5 µM for the solid, dashed, dotted, and dash-dotted lines respectively. In B) left-most 

panels show positively-cooperative, and right-most panels show negatively-cooperative datasets. Centre 

panels correspond to systems where both ligands bind with equal affinities, but with different enthalpies. 

The top panels, |ΔH2|>|ΔHi|. In the bottom panels, |ΔH2|<|ΔHi|. Values of KA1 (105 M), KA2 (105 M), 
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ΔH1(kcal/mol), ΔH2(kcal/mol) employed are: upper-left) 1,10,-1,-2; upper-centre) 1,1,-1,-2; upper-

right)10,1,-1,-2; lower-left)1,10,-2,-1; lower-centre)1,1,-2,-1; lower-right)10,1,-2,-1. These correspond to 

c-values ranging from 0.05 to 13.5. Adapted from Freiburger et al [22]. 

 

1.1. Application to AAC(6’)-Ii 

We applied the variable-c approach to determine the correct model for the dimeric enzyme AAC(6’)-Ii 

which binds a molecule of AcCoA in each of its two subunits.[26, 27] ITC experiments were performed 

on 6 different samples with protein concentrations ranging 6 to 192 μM. We first fit the independent and 

cooperative models on an individual basis, with different binding parameters extracted for each sample 

(protein concentration). Slightly lower residual-sum-of-squared deviations (RSS) were obtained for the 

independent sites model, compared to the cooperative model, RSS = 4.2105 versus 5.5105, respectively. 

This reflects the fact that the independent sites model contains additional stoichiometric parameters (n1 

and n2) not present in the cooperative model and consequently has fewer degrees of freedom. In contrast, 

when the fits were performed globally  with a single set of binding parameters for all samples, the 

cooperative model clearly outperformed the independent sites model, despite having fewer adjustable 

parameters, with RSS = 9.7106 versus 2.4107 (Figure 4). This is particularly evident in Figure 4A,B, 

where the cooperative but not the independent model accounts for the initial negative slopes of the ITC 

data. The improvement in fit offered by the cooperative model over the independent sites model is 

statistically significant to a high level of confidence, p=210-8. Thus analyses of ITC data obtained with 

any single [P]T value do not effectively discriminate between the two binding models, while a global 

analysis of the variable-c dataset conclusively shows that the cooperative model is the more appropriate 

description of AcCoA binding. 

 

 

Figure 4. ITC binding isotherms (circles) of AAC(6’)-Ii at A) 6, B) 12, C) 24, D) 48, E) 96,F) 192 µM 

titrated with AcCoA at 20°C. Dashed red and solid blue lines correspond to global fits using the 

independent and cooperative models, respectively. Values of c range from 0.4–11and 2–64 for the first 

and second binding events. In general, of c values starting at less than or close to 1and extending over 

about an order of magnitude are appropriate for this method. Adapted from Freiburger et al [22]. 

2. Characterizing linkage to additional thermodynamic equilibria 
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There are two main classes of binding models, which we will refer to as being phenomenological and 

mechanistic. For any molecule with N binding sites, the phenomenological model is defined by the 

binding polynomial, Z, and average enthalpy <H>, according to[40]   

 𝑍 = 1 + ∑ 𝐾𝐴,𝑖
𝑎𝑝𝑝[𝑋]𝑖𝑁

𝑖=1         (20) 

 𝐾𝐴,𝑖
𝑎𝑝𝑝

=
[𝑃𝑋𝑖]

[𝑃][𝑋]𝑖
          (21) 

 〈𝐻〉 = 𝐻0 + ∑
𝐾𝐴,𝑖
𝑎𝑝𝑝[𝑋]𝑖

𝑍
∆𝐻𝐴,𝑖

𝑎𝑝𝑝𝑁
𝑖=1        (22) 

where the KA,i
app are apparent affinity equilibrium constants and HA,i

app is the difference between the 

apparent enthalpy of molecules bound to i ligands and that of the free state, H0. The N different binding 

constants KA,i
app and enthalpies HA,i

app entirely describe the binding behaviour regardless of whether the 

sites are independent or coupled and whether they are identical or distinct. An advantage of 

phenomenological models is that they require no knowledge of the underlying binding mechanism.[40] In 

contrast, mechanistic models describe the molecular events associated with ligand binding, such as 

coupling to additional processes including protein folding or protonation/deprotonation reactions.[21, 41-

46] These are important as they shed light on how protein function is achieved at the atomic level. ITC 

results are typically interpreted in a two-step process.[40] Data are obtained at a series of different sample 

conditions, such as a range of temperatures or concentrations of a heterotropic allosteric effectors. The 

raw ITC isotherms are first fit using a phenomenological model for the appropriate stoichiometry (N), 

providing values for the apparent changes in enthalpy (ΔHA,i
app) and apparent association constants 

(KA,i
app). A mechanistic model is then selected and the corresponding model-specific thermodynamic 

parameters fitted to the phenomenological enthalpy and affinity values obtained for the range of sample 

conditions, shedding light on allosteric events involved in protein-ligand binding.[21, 23, 30, 41, 42]  

2.1.  Coupled folding/binding 

A common example of a mechanistic binding model is coupling between protein folding and ligand 

binding, as illustrated in the scheme below for a molecule with a single binding site: 

 𝐔 + 𝐗
𝑲𝑭,∆𝑯𝑭,∆𝑪𝒑,𝑭
↔        𝐅 + 𝐗

𝑲𝑨,∆𝑯𝑨,∆𝑪𝒑,𝑨
↔         𝐅𝐗.         (23) 

The folded protein, F, is binding-competent and the unfolded protein, U, is binding-incompetent. The 

parameters ΔHF, ΔHA, and ΔCp,F, ΔCp,A, are changes in enthalpy and heat capacity for the folding and 

binding steps, while KF = [F]/[U] and KA = [FL]/[F][L] are equilibrium constants. In this case, the 

phenomenological binding model at any individual temperature is completely defined by the apparent 

affinity constant KA
app and the apparent binding enthalpy HA

app which are related to the ITC isotherm by 

the single-site heat function: 

 𝑄 =
∆𝐻𝐴

𝑎𝑝𝑝
𝑉𝐶

2
([𝑃]𝑇 + [𝑋]𝑇 +

1

𝐾𝐴
𝑎𝑝𝑝 −√([𝑃]𝑇 + [𝑋]𝑇 +

1

𝐾𝐴
𝑎𝑝𝑝)

2

− 4[𝑃]𝑇[𝑋]𝑇)  (24) 

 

The temperature dependence of HA
app gives the apparent change in heat capacity upon binding:[47] 

 ∆𝐶𝑝
𝑎𝑝𝑝

=
𝜕∆𝐻𝐴

𝑎𝑝𝑝

𝜕𝑇
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If a protein undergoes a thermal denaturation (FU) within the temperature range studied, the ΔHA
app 

versus T plot can be strongly curvilinear.[41] The transition from U to F is exothermic (ΔHF < 0) 

therefore at low temperatures the protein is predominantly folded and the apparent binding affinity and 

enthalpy are simply given by KA and ΔHA, respectively. At higher temperatures an appreciable fraction of 

the free protein exists in the unfolded state. ITC measurements therefore involve transitions from the U to 

FX states and the heat absorbed or released contains contributions from both folding and binding 

reactions. The mechanistic model parameters (ΔHF, ΔHA, ΔCp,F, ΔCp,A, KF and KA) are related to the 

phenomenological binding parameters (KA
app and HA

app obtained over a range of temperatures) as 

follows: 

 𝑲𝑨
𝒂𝒑𝒑(𝐓) =

𝑲𝑭(𝐓)

𝟏+𝑲𝑭(𝐓)
𝑲𝑨(𝐓),         (25) 

 ∆𝑯𝑨
𝒂𝒑𝒑(𝐓) = ∆𝑯𝑨(𝐓) +

𝟏

𝟏+𝑲𝑭(𝐓)
∆𝑯𝑭,        (26) 

where 

 𝑲𝒀(𝐓) = 𝑲𝒀(𝐓𝟎)𝐞𝐱𝐩 {
∆𝑯𝒀(𝐓𝟎)

𝐑
(
𝟏

𝐓𝟎
−
𝟏

𝐓
)} +

∆𝑪𝒑,𝒀

𝐑
(𝐥𝐧 {

𝐓

𝐓𝟎
} +

𝐓𝟎

𝑻
− 𝟏),    (27) 

 ∆𝑯𝒀(𝐓) = ∆𝑯𝒀(𝐓𝟎) + ∆𝑪𝒑,𝒀(𝐓 − 𝐓𝟎),        (28) 

Y = F or A, and T0 is an arbitrary reference temperature. 

In principle, it is possible to extract the mechanistic model parameters from the phenomenological 

thermodynamic values determined by ITC over a range of temperatures. In practice, however, there is a 

high degree of covariation between the fitted parameters, leading to unreliable estimates of their values 

based on ITC data alone. Ladbury and coworkers have shown that combining ITC data with those of 

circular dichroism (CD) data can alleviate this problem as protein folding is typically accompanied by 

changes in molar ellipticity, [].[41] The temperature dependence of the molar ellipticity is given by 

 [𝜽] =
𝑲𝑭(𝐓)

𝟏+𝑲𝑭(𝐓)
([𝜽]𝑭 +𝒎𝑭(𝐓 − 𝐓𝟎)) +

𝟏

𝟏+𝑲𝑭(𝐓)
([𝜽]𝑼 +𝒎𝑼(𝐓 − 𝐓𝟎)),   (29) 

where [θ]F and [θ]U are the molar ellipticities for the folded and unfolded forms of the protein at T=T0 and 

mF and mU are the baseline slopes. We applied the combined ITC/CD approach to the interaction of the 

W164A mutant of AAC(6’)-Ii with AcCoA. This mutant is monomeric and binds AcCoA with 1:1 

stoichiometry. Temperature dependent ITC and CD data are shown in Figure 5. A plot of the apparent 

binding enthalpy, HA
app, versus temperature shows pronounced curvature around 310 K, corresponding 

to an increase in the amount of heat released upon ligand binding. The molar ellipticity measured at a 

wavelength of 222 nm decreases over the same temperature range. Both alpha-helices and beta-sheets 

exhibit large and negative molar ellipticities,[48, 49] while those of unstructured polypeptides are close to 

zero or slightly positive at this wavelength.[48-50] Thus the ITC and CD data are consistent with 

W164A-AAC undergoing an endothermic transition from a binding-competent to a binding-incompetent 

species around 310 K. Importantly, it is not necessary to have atomic-resolution structural data in order to 

draw this conclusion. However, we note that these data do not exclude the possibility of more 

complicated mechanisms, for example ones in which the unfolded form of the protein retains weak ligand 

affinity or the bound state undergoes thermal transitions. However, coupled folding and binding 

(Equation 23) provides the simplest and most likely explanation for our observations. Furthermore, the 

excellent agreement we obtain using this model implies that additional thermodynamic parameters 
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associated with more complicated mechanisms would not be well defined. Consequently the coupled 

folding binding model has been used throughout. 

The temperature dependent HA
app, KA

app, and [] values can be analyzed to yield mechanistic coupled 

folding/binding thermodynamic parameters (blue curves in Figure 5). However the experimental errors 

for the apparent thermodynamic parameters are large, leading to significant scatter. This obscures their 

temperature dependences and leads to large uncertainties when extracting the mechanistic parameters.  

 

 

Figure 5. Coupled folding/binding analysis of (A) ΔHA
app, and (B) KA

app, values obtained from fits of 

individual ITC isotherms, together with (C) circular dichroism spectroscopic data (222 nm). In A and B, 

blue symbols indicate the values obtained for individual replicate experiments (two per temperature), 

while the red symbols are the pair-wise averages. Red error-bars correspond to combination in quadrature 

of the blue error bars. In (C), the upper and lower dashed lines correspond to the unfolded and folded 

ellipticity baselines, respectively. CD melts were completely reversible up to 323 K. At temperatures 

above this we observed a gradual decay of CD signal likely due to slow aggregation. Therefore we used 

data from 273.25 to 320K in our analysis. Adapted from Freiburger et al [30]. 

2.2. Global fitting of variable-temperature ITC data 
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The ability to discriminate among different mechanistic models relies on the availability of accurate 

phenomenological binding parameters. A number of different situations can produce elevated errors in 

ΔHA
app and KA

app, such as when affinities are low,[51]  enthalpy changes are small, or when 

macromolecules contain multiple non-equivalent binding sites.[52] If errors in the phenomenological 

thermodynamic parameters are large, developing robust, quantitative descriptions of the molecular 

binding process becomes challenging if not impossible, as seen in Figure 5.  The accuracy of extracted 

parameters can be improved by fitting multiple ITC isotherms simultaneously.[10, 23, 30, 32, 53, 54] 

Thus global fitting methods are potentially very useful in situations with a high experimental uncertainty. 

However, in order to perform global fitting on variable temperature datasets, all ITC isotherms must be 

related mathematically. The standard phenomenological binding models provide no description to relate 

data sets performed at different temperatures. Instead, a mechanistic model can be fitted directly to a 

variable temperature dataset.[32, 53, 54] However, this requires a priori knowledge of the binding 

mechanism which may not be readily available. 

While phenomenological models do not provide a description how the system changes when the 

temperature is varied, fundamentally ΔHA
app and KA

app are related through the van ‘t Hoff relation: 

 
𝝏𝐥𝐧{𝑲𝑨

𝒂𝒑𝒑
}

𝝏𝐓
=
∆𝑯𝑨

𝒂𝒑𝒑

𝑹𝐓𝟐
,          (30) 

where T is the measurement temperature. All models must follow this relation to be physically 

reasonable, regardless of the underlying molecular mechanism. We have used this relation to constrain the 

global fit and relate all isotherms at different temperatures mathematically.[30, 34] In the van ‘t Hoff 

global fitting approach, HA
app is optimized for each temperature, but only a single binding constant, K0

app, 

is fitted. All subsequent binding constants are determined by trapezoidal integration of the van ‘t Hoff 

equation which is given be the expression 

 𝐥𝐧𝑲𝒋
𝒂𝒑𝒑

= 𝐥𝐧𝑲𝟎
𝒂𝒑𝒑

+ ∑
(𝐓𝒊−𝐓𝒊−𝟏)

𝟐𝐑
(
∆𝑯𝒊−𝟏

𝒂𝒑𝒑

(𝐓𝒊−𝟏)
𝟐 +

∆𝑯𝒊
𝒂𝒑𝒑

(𝐓𝒊)
𝟐 )

𝒋
𝒊=𝟏 ,       (31) 

where K0
app is the apparent binding constant at the reference temperature (T0), and the ith set of ITC 

experiments are performed at a temperature Ti and fitted with a binding enthalpy ΔHi
app, Figure 6.[23, 30] 

In practice, for an ITC dataset of NR replicate experiments collected at each of NT different temperatures, 

a van 't Hoff global fit has NT adjustable ΔHA values (one for each temperature), and a single adjustable 

equilibrium constant (K0
app). Global fitting then comprises the following steps: 

1. Starting with the initial values of the parameter set listed above, calculate the remaining (NT-1) 

equilibrium constants using K0
app and the set of NT ΔHA

app values, according to Equation (31). 

2. For each of the NRNT isotherms, calculate the heat function, Q, using the KA
app and ΔHA

app value 

for the corresponding temperature according to Equation (24). 

3. Calculate each isotherm according to Equation (2). 

4. Repeat steps 1-4, varying the adjustable parameters in order to minimize the RSS given by 

Equation (18), using a standard least-squares minimization algorithm. 
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The van ‘t Hoff global fit reduces the total number of adjustable parameters and increases the number of 

degrees of freedom, compared to fits performed independently at each temperature. This leads to more 

accurate and unbiased determinations of ΔHA
app and KA

app values.[30, 34] An application of this approach 

to the raw W164A-AAC binding data of Figure 5 is shown in Figure 7. The scatter of the 

phenomenological ΔHA
app and KA

app
 values is clearly reduced, resulting in better determination of the 

coupled folding/binding parameters. 

 

 

Figure 6 Schematic representation of trapezoidal integration of HA
app/RT2. The points represent the fitted 

values of ΔHA
app, divided by the corresponding values of RT2. The difference in binding affinity between 

temperatures Ti and Tii corresponds to the shaded area, i.e. KA
app(ii) = KA

app(i) + shaded area. Thus the 

ΔHA
app/RT2 profile together with the single value of KA

app(i) specifies the affinity constants at all other 

temperatures. Adapted from Freiburger et al [30]. 
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Figure 7. Coupled folding/binding analysis of (A) ΔHA
app and (B) KA

app values obtained from a global van 

't Hoff fit of ITC isotherms obtained at 8 temperatures in duplicate, together with (C) circular dichroism 

spectroscopic data (222 nm). In (C), the upper and lower dashed lines correspond to the unfolded and 

folded ellipticity baselines, respectively. Curvature of the blue fitted line at low temperatures is due to 

cold denaturation. Adapted from Freiburger et al [30]. 

2.3. Coupled folding and binding in systems with multiple sites 

Molecules with more than one binding site can also experience coupling between binding and folding 

equilibria. In the case of two site binding, the joint ITC/CD mechanistic binding model comprises sixteen 

adjustable parameters. Binding of the first and second molecules of ligand to the folded protein are each 

associated with affinity constants (KA1, KA2), changes in enthalpy (HA1, HA2), and heat capacity (CpA1, 

CpA2), respectively. Partial unfolding of subunits in the protein bound to 0 and 1 molecules of ligand are 

associated with equilibrium constants (KU0, KU1), changes in enthalpy (HU0, HU1), and heat capacity 

(CpU0, CpU1). Four additional parameters describe the slopes and y-intercepts of the folded and unfolded 

baselines of the CD data. The temperature dependences of the mechanistic equilibrium constants and 

enthalpies are given by 

 𝑲{𝑻} = 𝑲′𝒆𝒙𝒑{
∆𝑯′

𝑹
(
𝟏

𝑻′
−
𝟏

𝑻
) +

∆𝑪𝒑

𝑹
(𝒍𝒏 {

𝑻

𝑻′
} +

𝑻′

𝑻
− 𝟏)}     (32) 

and 

 𝜟𝑯 =  𝜟𝑯 +  𝜟𝑪𝒑(𝑻 – 𝑻′)        (33) 
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where K and ΔH are the equilibrium constant and enthalpy change at an arbitrary reference temperature 

T and Cp is the change in heat capacity. 

The phenomenological binding model in this case comprises 4 parameters (KA1
app, HA1

app, KA2
app, and 

HA2
app) at each temperature studied, for binding of the first and second molecules of ligand. The 

phenomenological parameters are related to the mechanistic model as follows[23]: 

 𝑲𝑨𝟏
𝒂𝒑𝒑

=
[𝑷𝑿]

[𝑷][𝑿]
=

[𝑿𝑷]

[𝑷][𝑿]
= 𝑲𝑨𝟏

(𝟏+𝑲𝑼𝟏)

(𝟏+𝑲𝑼𝟎)
𝟐  ,       (34) 

 𝑲𝑨𝟐
𝒂𝒑𝒑

=
[𝑃𝑋2]

[𝑃𝑋][𝑋]
=

[𝑃𝑋2]

[𝑋𝑃][𝑋]
= 𝑲𝑨𝟐

𝟏

(𝟏+𝑲𝑼𝟏)
 ,      (35) 

 ∆𝑯𝑨𝟏
𝒂𝒑𝒑

= ∆𝑯𝑨𝟏 + ∆𝑯𝑼𝟏
𝑲𝑼𝟏

𝟏+𝑲𝑼𝟏
− ∆𝑯𝑼𝟎

𝟐𝑲𝑼𝟎

𝟏+𝑲𝑼𝟎
      (36) 

and 

 ∆𝑯𝑨𝟐
𝒂𝒑𝒑

= ∆𝑯𝑨𝟐 − ∆𝑯𝑼𝟏
𝑲𝑼𝟏

𝟏+𝑲𝑼𝟏
 ,       (37) 

at each temperature. Combining Eq (29), (34), (35), (36) and (37) the mechanistic model parameters are 

extracted by minimizing the target function against ITC and CD data simultaneously 

 𝑹𝑺𝑺 = ∑(
𝒍𝒏{𝑲𝑨𝟏,𝟐

𝒂𝒑𝒑
}
𝒆𝒙𝒑
−𝒍𝒏{𝑲𝑨𝟏,𝟐

𝒂𝒑𝒑
}
𝒄𝒂𝒍𝒄

𝒍𝒏{𝑲𝑨𝟏,𝟐
𝒂𝒑𝒑

}
𝒆𝒙𝒑

)

𝟐

+ ∑(
{∆𝑯𝑨𝟏,𝟐

𝒂𝒑𝒑
}
𝒆𝒙𝒑
−{∆𝑯𝑨𝟏,𝟐

𝒂𝒑𝒑
}
𝒄𝒂𝒍𝒄

{∆𝑯𝑨𝟏,𝟐
𝒂𝒑𝒑

}
𝒆𝒙𝒑

)

𝟐

+ ∑(
[𝚯]𝒆𝒙𝒑−[𝚯]𝒄𝒂𝒍𝒄

[𝚯]𝒆𝒙𝒑
)
𝟐

 (38) 

Values of KA, H, and θ can differ by several orders of magnitude. Thus fractional differences are used in 

the the sum of fitting residuals (Equation 38) to ensure each parameter is weighted equally. Molecules 

with more than one binding site are challenging to characterize by ITC as extracted parameters can suffer 

from covariation. This presents a hurdle to elucidating robust mechanistic information. For example, 

wild-type AAC(6')-Ii cooperatively binds two molecules of substrate (AcCoA or aminoglycoside) per 

dimer. Phenomenological binding parameters for AcCoA determined over a range of temperatures are 

plotted in Figure 8. While the HA1,2
app versus T profiles are clearly curvilinear, suggestive of a coupled 

folding/binding equilibrium, the large amount of scatter in the data points obstructs precise analyses in 

terms of a mechanistic model. This issue can be overcome using the global van 't Hoff fitting method. 

KA1
app is related to HA1

app and KA2
app is related to HA2

app according to Equation (31). We applied the van 

't Hoff fitting method to ITC data for AAC(6')-Ii binding to AcCoA and to the aminoglycoside 

paromomycin collected over a range of temperatures. In this case, KA1,2
app are calculated using Equation 

(31) as before. The values of KA1,2
app and ΔHA1,2

app are used to calculate isotherms according to Equations 

(17) and (2) and the phenomenological parameters are varied to minimize the target function, Equation 

(18). CD measurements were subsequently performed on apo-AAC(6’)-Ii to obtain the molar-ellipticity as 

a function of temperature, Figure 9E. The globally-fit phenomenological binding parameters can 

subsequently be analyzed according to the coupled folding/binding mechanistic model combining ITC 

and CD data, Equations (29) and (32) to (37) as illustrated in Figure 9. A comparison of Figure 8 and 

Figure 9C,D highlights the improvement in the accuracy of extracted thermodynamic parameters afforded 

by global fitting. 
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Figure 8. Values of ΔHA
app and KA

app determined for binding of the first (light blue) and second (dark red) 

molecules of AcCoA to AAC(6’)-Ii, from independent (non-global) fits of individual ITC isotherms. 
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Figure 9. Global van 't Hoff analysis of paromomycin and AcCoA binding to AAC(6')-Ii. ITC-derived 

(A,C) apparent association constants and (B,D) apparent enthalpies for binding to (A,B) paromomycin 

and (C,D) AcCoA. Blue and red symbols and curves correspond to the first and second binding events, 

respectively. (E) CD-derived molar ellipticity of apo-AAC(6')-Ii determined as a function of temperature. 

Curves in all panels represent the best fit to a global model of allostery as described in the text. Solid and 

dashed lines in (E) correspond to folded and unfolded CD baselines, respectively. Adapted from 

Freiburger et al [55]. 

 

3. Allostery mediated by protein conformational changes. 

ITC is extremely sensitive to the energetics of conformational transitions and macromolecular 

interactions. However it can be difficult to relate these measurements to specific changes in molecular 

structure and flexibility without additional information. For example it is not possible to discriminate 

between the allosteric models represented in Figure 1 based on calorimetric data alone. In this regard, it is 

very powerful to combine ITC data with those of NMR spectroscopy. NMR is exquisitely sensitive to 

macromolecular conformation and dynamics at the level of individual atoms, but thermodynamic 

information is obtained indirectly. Combining NMR and calorimetric measurements thus allows one to 

develop models of allostery and other molecular functions that are thermodynamically rigorous with 

atomic resolution. One caveat for the use of NMR is that it is technically a more demanding technique 

than either ITC or CD spectroscopy. Proteins must be isotopically enriched, and stably monodisperse at 

concentrations of roughly 200 M or greater. Furthermore, NMR becomes more challenging with 

increasing molecular weight, necessitating specific labelling schemes[56, 57] and relaxation-optimised 

experiments [58, 59]. 
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Protein NMR spectra can be collected with ligand present at a range of concentrations under conditions 

matching those of ITC titrations. Consider a hypothetical protein binding site that contains an NMR-

active nucleus that precesses at a resonance frequency ωF in the absence of ligand. Ligand binding alters 

the local electronic environment of the nucleus, resulting in a shift of the resonance frequency to ωB. The 

resulting NMR signal from the ensemble of nuclei in the sample depends on the fraction of binding sites 

that are occupied by ligand, fB, the difference in chemical shift between the free and bound states, Δω = 

ωB - ωF, and the rate at which the ligand associates and dissociates, kex = kon + koff. Note that in this 

example, kon is a pseudo-first order rate constant that depends on the second order association rate 

constant and the concentration of free ligand, kon = kon  [X]. When kex << Δω, the system is in the slow 

exchange regime and spectra contain separate peaks at ωF and ωB. If ligand is gradually added, the 

intensity (IF) of the “free” peak at ωF decreases while the intensity (IB) of the “bound” peak at ωB 

increases, according to IB  fB[P]T and IF  (1-fB)[P]T (Figure 10A). In contrast, when kex >> Δω, the 

system is in the fast exchange regime and the spectrum contains a single peak at the population-weighted 

average precession frequency. If ligand is titrated into the sample, the position of the peak gradually shifts 

from ωF to ωB, according to ωobs = ωF + fBΔω (Figure 10C). Thus analyses of peak intensities or positions 

can yield quantitative information on the populations of different conformational states at atomic 

resolution. Furthermore, fluctuations in ω on the millisecond to microsecond time scale, for example due 

to exchange between ligand-free and ligand-bound states or internal motions, leads to enhanced transverse 

relaxation and increases in the line widths of NMR signals (Figure 10B). 

 

Figure 10. Effect of ligand binding on an NMR signal. Superposition of simulated 1D NMR spectra for a 

nucleus with a resonant frequency ωF in the free state and ωB in the bound state of a protein that is 1%, 

25%, 50%, 75%, and 99% ligand-bound. The spectrum of the free state is transformed into that of the 

bound state in a manner which depends upon the rate of exchange between the two states. (A) slow 

exchange regime where kex << Δω, (B) intermediate exchange regime where kex ≈ Δω (C) fast exchange 

regime where kex >> Δω, where kex = koff + kon[X] and Δω = |ωB–ωF| = 100π rad s-1, in the simulations. 

In the case of AAC(6')-Ii, two dimensional 1H/15N NMR correlation spectra of the free (apo) and the 

AcCoA- or paromomycin-saturated (holo) forms are very different. The apo-spectrum exhibits poor 

chemical shift dispersion and a high degree of overlap, with approximately 20% of the expected signals 
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missing (Figure 11A). This is likely due to pervasive dynamic exchange broadening and/or hydrogen 

exchange with water, characteristic of extensive conformational mobility. In contrast to the free form, the 

spectra of the AcCoA-saturated (Figure 11B) or paromomycin-saturated enzyme are typical of a folded 

globular protein, suggesting that large structural and dynamic changes accompany ligand binding. 

Adapted from Mittermaier and Meneses [60]. 

 

Figure 11. ) 1H/15N NMR correlation spectra of AAC(6)-Ii free (A) and saturated with AcCoA (B) 

We have found that the combination of NMR titration data with those of calorimetry can distinguish 

among different allosteric paradigms. In what follows, apo and holo are used to describe peaks appearing 

in NMR spectra of the ligand-free and ligand-saturated protein, and 0-bound, 1-bound, and 2-bound to 

describe the various ligated states of the enzyme. Exchange occurs slowly on the NMR chemical shift 

timescale therefore both apo and holo peaks are simultaneously visible in spectra collected midway 

through titrations and peak intensities are proportional to the concentrations of subunits in the apo and 

holo conformational forms. The expected fractions of enzyme in the 0-bound (f0), 1-bound (f1), and 2-

bound (f2) forms are calculated based on the binding parameters determined by ITC for AcCoA (Figure 

12A) or paromomycin (Figure 12D). The value of f1 is predicted to increase to between 20% and 30% at 

partial ligand saturation, before decreasing at higher concentrations. However none of the signals in the 

spectra follow this pattern of intensities. This implies that all signals from the 1-bound form are either 

coincident with those of the 0-bound or 2-bound states (i.e. contribute to the apo or holo peaks or are 

located in overlapped regions) or are dynamically broadened beyond detection. In order to combine the 

NMR and ITC data, the intensity profile of each well-resolved apo and holo peak (Itot
apo, Itot

holo) is fitted 

using the ITC-derived f0, f1, and f2 values, adjusting only the relative contribution of the 1-bound state to 

the apo or holo peak as follows: the initial intensity of each apo peak is normalized to 2, and the final 

intensity of each holo peak is normalized to 2, corresponding to the two subunits of the homodimeric 

enzyme. Peak intensities throughout the titrations are calculated as: 

𝑰𝒕𝒐𝒕
𝒂𝒑𝒐

= 𝟐 × 𝒇𝟎 + 𝒇𝟏𝑰𝟏
𝒂𝒑𝒐

        (39) 

𝑰𝒕𝒐𝒕
𝒉𝒐𝒍𝒐 = 𝒇𝟏𝑰𝟏

𝒉𝒐𝒍𝒐 + 𝟐 × 𝒇𝟐        (40)  

The values of 𝐼1
𝑎𝑝𝑜

 and 𝐼1
ℎ𝑜𝑙𝑜 quantify the contributions of the 1-bound state to the apo and holo signals, 

respectively. By optimizing these parameters, excellent agreement with NMR peak intensities can be 

obtained throughout the titrations (Figure 12B, E). With AAC(6’)-Ii the extracted values for 𝐼1
ℎ𝑜𝑙𝑜 cluster 

about a value of 1 (Figure 12C). This strongly suggests that a single subunit of the 1-bound enzyme 

resembles those of the holo form, reminiscent the KNF allosteric model (Figure 1B). Interestingly, the 

values obtained for the 𝐼1
𝑎𝑝𝑜

 are fairly heterogeneous, ranging from 0 to 1. This could result from 
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increased dynamic broadening, hydrogen exchange with solvent or movement of peaks to overlapped 

regions of the spectrum. With paromomycin, the values obtained for 𝐼1
ℎ𝑜𝑙𝑜 cluster around 2 and the values 

obtained for the 𝐼1
𝑎𝑝𝑜

 are clustered around 0 (Figure 12F). This strongly suggests that upon binding a 

single molecule of paromomycin, both subunits adopt a conformation which is similar to that of the holo 

enzyme, reminiscent of the MWC allosteric paradigm (Figure 1A).  

. 

 

 

Figure 12. Joint NMR/ITC analysis of AAC(6’)-Ii binding to AcCoa (A-C) and paromomycin (D-E). 

Fraction of enzyme in the 0-bound, 1 bound and 2 bound states determined by ITC (A,D). Intensities of a 

representative apo peak (dashed line) and holo peak (solid line) throughout a titration (B, E).  Histograms 

of the relative contributions of the 1 bound state to apo (I1
apo) and holo (I1

holo) peaks of AAC(6’)-Ii (C,F). 

 

3.1. Competing mechanisms and ligand-dependent switching of allostery in AAC(6')-Ii 

The combination of ITC, CD, and NMR data show that allosteric binding of AcCoA by AAC(6)-Ii can be 

explained by a model comprising a hybrid of the KNF and EAM paradigms. The subunits undergo partial 
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thermal unfolding (FU), although the enzyme remains dimeric, even at higher temperatures.[23] 

Therefore the free enzyme exists as a mixture of FF, FU, UF, and UU states. When a subunit binds 

AcCoA it undergoes a large conformational change to adopt the B state, while the unbound subunit 

retains an apo-like configuration that can undergo thermal unfolding. Thus the 1-bound enzyme exists as 

a mixture of xBF, xBU, FBx, and UBx forms. The 2-bound enzyme exists simply as xBBx. The energy of 

AAC(6)-Ii binding to AcCoA can be separated into two distinct contributions. Firstly, the native dimer 

binds with intrinsically positive cooperativity following a classical KNF explanation of allostery in which 

the 1-bound state is asymmetrical.[10] Secondly, the unbound subunits undergo partial unfolding as the 

temperature is raised, such that subunits are more stable in the context of the 0-bound compared to the 1-

bound state. At higher temperatures, this results in partial unfolding of the unbound subunit of the 1-

bound enzyme (xBFxBU), with a concomitant reduction in affinity for the second AcCoA molecule 

(KA2
app) and a shift towards negative cooperativity. This effect represents a modification of the EAM (Fig. 

1C).[61] In the EAM model, ligand-induced folding of one subunit alters the folding equilibrium of the 

adjacent subunit. In AAC(6)-Ii, each subunit can adopt at least three distinct conformational states, and it 

is largely the F to B transition that modulates partial unfolding of the adjacent subunit. Thus the shift 

from positive to negative cooperativity observed for AcCoA binding (Figure 9C) results from competition 

between a positively cooperative KNF mechanism and a negatively-cooperative EAM (Figure 13A) . 

Similarly to AcCoA, the enzyme bound to two molecules of paromomycin adopts the xBBx conformation 

while the free enzyme exists as a mixture of FF, FU, UF, and UU. In this case however, NMR data 

indicate that the native 1-bound state is symmetrical, although the unbound subunit can undergo partial 

unfolding: xBB, xBU, BBx, and UBx. Once again, allostery is governed by two superposed mechanisms. 

Firstly, the native dimer binds with intrinsically positive cooperativity following a classical MWC 

paradigm. Secondly, the unbound subunit is more stable in the context of the paromomycin 1-bound form 

than in the free protein. This leads results in additional positive cooperativity, following a modified EAM 

paradigm (Figure 13B). Thus the enzyme follows strikingly different allosteric mechanisms (KNF vs. 

MWC) depending upon which substrate is bound. We attribute this switching behaviour to the locations 

of the AcCoA and aminoglycoside binding pockets within the active site of the enzyme. The structure of 

the enzyme has been solved in complex with bisubstrate inhibitors comprising CoA covalently tethered to 

aminoglycosides.[28, 62] The aminoglycoside portion of the bisubstrate inhibitor is located very near the 

dimer interface and approaches to within 4 Å of the adjacent subunit. Reorientation could potentially 

bring it into direct contact. In contrast, CoA is bound more than 10 Å away from the interface. The 

proximity of one paromomycin molecule to both subunits of the enzyme likely stabilizes the interface and 

drives simultaneous FB transitions. Conversely, the distance of a single AcCoA molecule from the 

adjacent subunit does not stabilize the interface to as great an extent and only the bound subunit 

experiences an FB transition. 

The MWC and KNF allosteric paradigms represent limiting cases of a thermodynamic continuum in 

which binding of ligands to one subunit alters conformational equilibria in adjacent subunits via 

modulation of interface energies [14]. When the BB interface is sufficiently favourable to completely 

drive the F→B transition in the unbound subunit of the 1-bound state, the MWC model applies. 

Conversely, if the F→B transition is so unfavourable that the unbound subunit remains almost entirely in 

the F conformation in the 1-bound state, then the KNF model applies. In general however, allostery can 

be operative while the unbound subunit populates both F and B states to non-negligible extents [14, 55]. 

The joint ITC/NMR fitting approach described above can distinguish between predominately KNF versus 

MWC behaviour, however small populations of a symmetric 1-bound state in a KNF system, or small 

amounts of asymmetric 1-bound state in an MWC system, could go undetected. The application of 
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additional NMR experiments capable of detecting high-energy states[63, 64] could help to resolve this 

ambiguity. This represents an interesting avenue for future research. 

 

Figure 13. Schematic representation of allosteric equilibria of AAC(6’)-Ii binding to AcCoA (A) and 

paromomycin (B) where x, B, F, and U represent ligand and enzyme subunits the holo, apo, and partially 

unfolded forms, respectively. 

4. Conclusion 

The application of global fitting techniques to ITC data represents a powerful approach for gaining insight 

into the molecular mechanisms of allostery. By simultaneously analysing isotherms obtained with a range 

of protein concentrations, one can determine with confidence whether allosteric interactions are indeed 

present. Global analyses of ITC data obtained over a range of temperatures produce binding parameters 

with improved accuracy compared to those extracted from individual fits. Fits that combine ITC and CD 

data permit coupled folding/binding equilibria to be characterized in detail. Finally, the combination of 

ITC and NMR data provides an avenue for determining how protein conformational changes are linked to 

ligand binding. By applying these global analysis techniques to AAC(6')-Ii, we have uncovered the 

existence of competition between opposing allosteric mechanisms and ligand-dependent switching of the 

allosteric paradigm. Thus ITC in combination with other techniques has the potential to shed new light on 

how energetic communication is accomplished in biological macromolecules. 
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