
NOTE TO USERS

This reproduction is the best copy available.

UMI*

Fixed Parameter Tractable Algorithms for
Optimal Covering Tours with Turns

Nuo Yu

Computer Science

McGill University

Montreal,Quebec

August 2008

A thesis submitted to McGill University in partial fulfilment of the requirements
for the degree of Master of Science

©Nuo'Yu 2008

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-66898-6
Our file Notre reference
ISBN: 978-0-494-66898-6

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lntemet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent §tre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

ABSTRACT

Many geometry problems can be solved by transformation to graph problems.

Often, both the geometry version and graph version of the problem are NP-hard - and

therefore not likely to be solved in polynomial time. One approach to solving these

hard problems is to use fixed parameter tractable (FPT) algorithms. We present a

framework for developing FPT algorithms for graph problems using dynamic pro­

gramming, monadic second order logic of graphs, tree-width, and bidimensionality.

We use this framework to obtain FPT results for covering tour problems on grid-

graphs with turn costs. The results for these problems are not practical, but they

demonstrate how the basic framework can be used to quickly obtain FPT results.

We provide suggestions on further research to improve our FPT results and to apply

our framework to obtain new FPT results.

n

A B R E G E

De nombreux problmes de geometrie peuvent tre resolus par des transforma­

tions en problmes de graphes. Souvent, la version geometrique comme la version

graphique du problme sont NP-dures - et il est done peu probable qu'elles puissent

tre resolues en temps polynomial. Une approche pour resoudre ces probl mes difficiles

est d'utiliser des algorithmes Tractables avec Pararn tre Fixe (TPF). Nous presentons

un paradigme pour developper des algorithmes TPF pour des probl mes de graphes,

en utilisant la programmation dynamique, la logique monadique du second ordre sur

les graphes, la largeur d'arbre, et la bidimensionalite. Nous utilisons ce paradigme

pour obtenir des resultats TPF pour des probl mes de tournees couvrantes dans des

graphes en grilles avec cots sur les virages. Les resultats sur ces probl mes sont

impraticables, mais ils demontrent comment le paradigme de base peut tre utilise

pour obtenir rapidement des resultats TPF. Nous proposons des voies de recherches

pour ameliorer nos resultats TPF, et pour appliquer notre paradigme pour obtenir

de nouveaux resultats TPF.

in

ACKNOWLEDGEMENTS

I would like to thank Sue Whitesides for inviting me to the Bellairs Workshop,

where the seeds of this thesis were sown; for providing valuable guidance and feed­

back throughout this project. I would like to thank Mike Fellows, Fran Rosamond,

and Christophe Paul for their illuminating discussions at the Bellairs Workshop;

moreover, I would like to thank Christophe Paul for our meetings afterwards, where

we developed the ideas presented in this thesis. For financial support, I would like

to thank Sue Whitesides and Quebec AFE.

Lastly, I would like to thank my parents for their love and support.

IV

TABLE OF CONTENTS

ABSTRACT ii

ABREGE iii

ACKNOWLEDGEMENTS iv

LIST OF FIGURES vii

1 Introduction 1

1.1 Motivation •' 1
1.2 Covering Tour Problems 3
1.3 Statement of originality 5
1.4 Organization of the rest of the thesis 5

2 Related work in covering tour problems 7

3 Theoretical Background 13

3.1 Notation and definitions 13
3.2 Parameterized complexity 14
3.3 Tree-width 16
3.4 Dynamic programming oh bounded tree-width graphs '. . 18
3.5 Computing tree decompositions 22
3.6 Branchwidth ' 23
3.7 Monadic second order logic of graphs 24
3.8 Parameter-tree-width bounds 30

3.8.1 Tree-width, grid minors, and bidimensionality 31
3.8.2 Bidimensionality 32

3.9 Example: finding Hamiltonian cycle on planar graphs 35
3.10 Layer-wise separation 39

4 NP-Completeness of Grid Graph Milling 42

v

4.1 Problem definition 42

4.2 Proof of NP-Completeness 43

5 FP.T Algorithms for Grid Graph Milling 48

5.1 Parameter-tree-width Bound 48
5.2 MS2 formulation using semantic augmentation 50
5.3 Dynamic programming FPT algorithm 56

5.3.1 Branch decompositions and sc-branch decompositions . . . 56
5.3.2 Solving subproblems corresponding to each node in T . . . 58

6 Summary 63

6.1 Improvements and future direction 63

REFERENCES 69

VI

Figure
LIST OF FIGURES

page

2-1 An instance of the ORTHOGONAL MILLING PROBLEM (left) and its
corresponding grid-graph (right) 8

2-2 THIN-CHANNEL MILLING PROBLEMS: the pocket does not contain
a region of 2 x 2 square pixels (left). This problem can be modeled
as an edge covering problem on the corresponding graph (right). . . 8

2-3 A strip cover covers square pixels using horizontal or vertical strips
(left) and a boundary cycle cover covers boundary pixels with a set
of cycles 9

2-4 The shaded region is P, the pocket to be cut. The background is a
hexagonal lattice, where the diameter of the hexagons is equal to
the diameter of the circular cutter. The graph problem is to find a
minimum length tour covering all vertices enclosed within the solid
border 10

2-5 Boundary for a pocket (left) and its machining graph (right). Any
pair of nodes not joined by solid or dotted edges is implicitly joined
by a retraction edge. An optimal machining path is a path covering
all solid edges exactly once while using each dotted edge at most
once and minimizing the number of retraction edges used. 12

3-1 A graph (left) and a tree decomposition (right). The subsets in X
are represented by ovals, whose interconnections form a tree. The
width of this tree decomposition is 3 18

3-2 (left) A graph with labeled edges and (right) its branch decomposition.
The width of this branch decomposition is 3 24

4-1 (left) A 2-connected plane graph G (right) Bar visibility representation
of G, with dotted lines representing visibility 44

vn

2 (left) The lawnmower instance corresponding to the bar visibility
representation of G. (right) A lawnmower walk corresponding to
the Hamiltonian path (a, c, 6, d) in G. Note that there are exactly
12 = An- A turns 45

3 (left) If the first two vertices of W lie on B\ then W can be modified
(right) into a new walk which begins at an endpoint of B\ without
using more turns 46

1 A partially augmented graph. The black vertices and dotted edges
belong to the original graph. Two maximal turn-free paths, P, P'
are highlighted. New vertices s(P),s(P') (stars) are added in the
augmented graph. New edges (solid lines) connect s(P) to each
vertex in P 51

2 (right) A sc-branch decomposition (T, y) rooted at r. Ti is the
component of T — e that does not contain r. (left) The noose
corresponding to e is represented by the dotted line. The shaded
region is Ai and the component drawn in A^ is Gi 58

3 (left) edges a, b, c in the branch decomposition (right) nooses corre­
sponding to edges a, 6, c 60

4 In this example, we consider two different possible solutions for
Sov({Pi,p'i,a},{(p1,ei,e'l,p[)}). A possible solution is a px -
p[path, with ei,e[as the first and last edges, coversing all
interior vertices of A£ in addition to the boundary vertices
{pi,p'i,a}. The first possible solution corresponds to two path
segments: the segment p\ — u and the segment u — p[. This
corresponds to the solutions Sox{{pi,u,v},{(pi,ei,e'2,u)}) and
Soy({a,u,p[},{(u,e2,e'1,p'1)}). The second possible solution uses
four total path segments. The reader should verify that this corre­
sponds to the solutions Sox({pi,u, v}, {(pi, ei, e'2., u), (v, e3, e'4,v)})
and Soy{{p'i,u,v,a},{(u,e2,e'3,v),(v,e4,e'l,p'1)}) 61

vm

CHAPTER 1
Introduction

The purpose of this thesis is to study fixed parameter tractable (FPT) algorithms

and techniques for solving problems on grid-graphs1 , which can be used to solve or

approximate geometry problems. We focus on covering tour problems on grid-graphs,

but our techniques can be used for other problems on grid-graphs as well.

1.1 Motivation

A universal approach to solving a problem is to transform it a problem that we

know how to solve. In doing so, we use existing algorithms for the latter problem

and "export" them to solve the former. Graph problems are often targets of these

problem transformations because graphs are suited to model many types of problems

and graph theory is rich with algorithms and algorithmic techniques for solving these

problems. We are interested in algorithms and techniques for solving problems on

embedded graphs, or more specifically, grid-graphs. Such graphs can be used to

model (sometimes only approximately) many geometry problems. In particular, we

focus on covering tour problems on grid-graphs.

As an example illustrating the approach of solving a geometry problem by trans­

formation to a graph problem, consider the SHORTEST PATHS PROBLEM in the plane

1 See Chapter 2 for definitions of fixed parameter tractability and grid-graphs.

1

with polygonal obstacles [23]. This problem can be solved by computing the visibil­

ity graph for the geometric input, so that a shortest path in the geometric problem

corresponds to a shortest path in the visibility graph, and then solving the short­

est paths problem on the visibility graph using Dijkstra's algorithm. Of course,

Dijkstra's algorithm is efficient and produces optimal solutions. Furthermore, the

visibility graph corresponding to the geometric input can be efficiently computed.

Thus, the SHORTEST PATHS PROBLEM can be efficiently solved by reducing to a

graph problem.2

This approach can be generalized to solve the 3D SHORTEST PATHS PROBLEM.

However, this problem is NP-Hard [12]. One difficulty in the 3D setting is that a

shortest path need not travel via vertices of the polytope. This issue can be addressed

by discretizing the problem using sample points and then solving the shortest paths

problem on the visibility graph based on the discrete sample points [14]. However,

the resulting solution is an approximation because the optimal solution to the original

geometry problem may not be a solution in the visibility graph computed from the

discrete sample points.

In the examples above, the underlying graph problem is easy; i.e., shortest paths

in graphs can be computed by an efficient algorithm. In turn, this algorithm can be

exported to compute geometric shortest paths. One should reduce to easy problems

whenever possible. When this is not possible, an alternative is to reduce to NP-

hard graph problems that can be solved using known approximation algorithms or

2 We assume a real RAM model of computation for this example.

2

FPT algorithms. This way, approximation algorithms or FPT algorithms may be

obtained for the original problem. Approximation algorithms are fast but need not

find optimal solutions, while FPT algorithms find optimal solutions but need not

have strictly polynomial running times.

In the next section, we will introduce geometric covering tour problems as well

as the graph problems that model them. Both the geometry and graph versions

are NP-Hard. Efficient constant-factor approximation algorithms are known for the

graph problems, which are the ones we are interested in. We choose to use the FPT

approach to solve this problem, to obtain new results and to offer an alternative with

the approximation approach.

1.2 Covering Tour Problems

Abstractly, a geometric covering tour problem is to find a "good" path (tour)

for an object (cutter) to cut a given region (pocket). Different applications dictate

different rules and restrictions on the input. For example, the cutter may be a unit

circle, a unit square, or some other shape. The pocket may be a discrete point-set,

a simple polygon, or a multiply connected region. The tour may be restricted to

sequences of straight line segments, or it may be an arbitrary curve. The cutter may

or may not be allowed to leave the pocket. The cutter may or may not be allowed

to cut parts of the pocket multiple times. The cost function may be tour length,

number of turns, a combination of both, or something entirely different.

An example of a covering tour problem is the TRAVELING SALESMAN PROBLEM

(TSP). In this case, the "cutter" is simply a point; the "pocket" is a discrete point

set; the cutter is allowed to leave the region, but it is not allowed to cut any part of

3

the pocket multiple times. Note that this geometry problem is also a graph problem,

where the vertices correspond to points from the discrete point set, and pairs of

vertices are joined by edges with weight equal to the distance3 .

We are interested in a type of covering tour problem called milling problems,

which naturally arise in the context of numerically controlled (NC) machining. NC

machines are used to shape metals by removing pockets from the initial shape to

produce the desired shape. Given a pocket and a cutter, the objective is to find a

milling tour. Upon completing a milling tour, the cutter must have removed exactly

all material from the given pocket - no more and no less. Thus, milling problems

are covering tour problems where the cutter is not allowed to cut outside the pocket,

but it is allowed to cut parts of the pocket multiple times. Usually, the cutter shape

is a unit square or circle. Traditionally, theoretical research has been focused on

minimizing the tour length. We address the problem of minimizing the number

of turns because it is a better cost measure for some applications and it can be

parameterized more naturally.

A graph problem that reasonably models the geometric milling problem is to

find a tour that visits all vertices at least once, while edges can be used any number

of times. We can equip the edges with directions when the problem is to minimize

the number turns. Unfortunately, this general graph problem is W[2]-hard (when

parameterized by number of turns) and therefore not likely to be solved using an

3 Of course, if the edge weights are constrained to be rational numbers, then the
graphs may be only approximations

4

FPT algorithm4 . We can address this problem by imposing restrictions on the

input graphs. Specifically, we focus on grid-graphs. Such graphs arise naturally

from transformation of the geometry problem (See Chapter 2). Looking ahead,

this restriction allows us to prove parameter-tree-width bounds, and use algorithmic

techniques to solve problems on bounded tree-width graphs.

1.3 Statement of originality

Many of the ideas in this work originated during discussions with Christophe

Paul, Mike Fellows, Frances Rosamond, and my supervisor Sue Whitesides at the

2007 INRIA McGill Bellairs Workshop on Geometry. I would like to thank these peo­

ple for their contributions. My original work is in chapters 4 and 5, which contains

proofs of NP-Hardness, parameter-tree-width bound, fixed parameter tractability

using Courcelle's machinery, and fixed parameter tractability via dynamic program­

ming on tree decompositions. I contributed substantially to these results and au­

thored the presentation of them in this thesis.

1.4 Organization of the rest of the thesis

In Chapter 2, we discuss related works on covering tour problems. These works

generally provide approximation algorithms by transformation to graph problems. In

Chapter 3, we present the background material necessary to obtain our FPT results.

Most of Chapter 3 revolves around the concepts of tree-width and parameterized

4 W[2]-hardness is the FPT analogue of NP-Hardness and polynomial-time algo­
rithms. That is to say, W[2]-hard are unlikely to be solvable using FPT algorithms.
The purpose of this thesis is not to explore W[2]-hardness. See [19] for a complete
introduction to parameterized complexity theory, including W[2]-hardness.

5

complexity. In Chapter 4, we prove that the GRID-GRAPH MILLING PROBLEM is

NP-Hard and discuss the hardness of its generalizations. In Chapter 5, we show that

the GRID-GRAPH MILLING PROBLEM is FPT by using Courcelle's machinery; we

also dynamic programming to obtain a more efficient FPT algorithm. In Chapter 7,

we summarize our work and discuss possibilities for future research. In the Appendix,

we provide a sketch of an improvement on the dynamic programming

6

CHAPTER 2
Related work in covering tour problems

In this chapter and the next, we review some results pertaining to various geo­

metric covering tour problems and then discuss the theoretical background for our

approach to solving these problems. Works presented in this chapter provide ex­

amples of various transformations from geometric covering tour problems to graph

problems. In general, the geometry problems as well as the transformed graph prob­

lems are hard, and the results obtained are approximation algorithms.

The problem we choose to focus on is based on the ORTHOGONAL MILLING

PROBLEM as described in [2]. The ORTHOGONAL MILLING PROBLEM is to find a

minimum turn cost tour for a unit square cutter so that it exactly cuts a pocket

composed of unit square pixels. The cutter must move in an axis parallel direction

and the cutter is not allowed to cut outside the pocket. This geometry problem is

equivalent to the GRID-GRAPH MILLING PROBLEM (See Figure 2-1). The authors

of [2] also introduced a special case of the ORTHOGONAL MILLING PROBLEM, known

as the THIN-CHANNEL MILLING PROBLEM, which has applications to snow removal

and street cleaning (See Figure 2-2). In this case, it is more natural to consider edge

covering tours. The authors showed that finding minimum-turn orthogonal milling

tours is NP-Hard and presented constant factor approximation algorithms- a 3.75

factor for orthogonal milling and a 4/3 factor for thin-channel milling.

7

Figure 2-1: An instance of the ORTHOGONAL MILLING PROBLEM (left) and its
corresponding grid-graph (right).

LTLLU ms
croc

u
sn

Figure 2-2: THIN-CHANNEL MILLING PROBLEMS: the pocket does not contain a
region of 2 x 2 square pixels (left). This problem can be modeled as an edge covering
problem on the corresponding graph (right).

The underlying technique used in these approximation algorithms is to merge

minimum strip covers and minimum-turn boundary cycle covers (see Figure 2-2) into

approximate minimum-turn covering tours. The authors showed that optimum strip

covers and boundary cycle covers of grid-graphs can be found by solving matching

problems on related graphs. Thus, the approximation algorithms to the orthogonal

milling and thin channel milling problems were obtained by transformation to graph

problems.

Another covering tour problem is the LAWN-MOWING PROBLEM, which is

closely related to the milling problem. The difference between the two problems

Figure 2-3: A strip cover covers square pixels using horizontal or vertical strips (left)
and a boundary cycle cover covers boundary pixels with a set of cycles.

is that in the LAWN-MOWING PROBLEM, the cutter is permitted to cut outside the

pocket1 . In [3], Arkin et al. showed that finding minimum length lawn-mowing tours

is NP-Hard. The authors presented approximation algorithms for three versions of

the LAWN-MOWING PROBLEM: 1) square cutter with axis aligned motion, 2) square

cutter with unrestricted motion, and 3) circular cutter with unrestricted motion. In

all versions, the pocket P can consist of several components, each component being

a polygon with holes.

These approximation algorithms were obtained by transforming the geometric

instance into a grid-graph or grid-like graph (see Figure 2-4). It was shown that a

good TSP tour in the grid-graph corresponds to a good lawn-mowing tour in the

geometry problem. Specifically, a TSP tour within a of the optimal TSP tour pro­

duces a lawn-mowing tour within 3a/3 of optimum. Here, /3 depends on the cutter

shape and motion. Specifically, f3 = I, (3 m 1.08, and (5 ss 1.15 for the three cases

1 When milling, we must take care not to gouge material outside the pocket. When
lawn-mowing, we are happy as long as the entire lawn is mowed.

9

described in the previous paragraph. Two well-known approximation algorithms for

finding TSP tours are Christophede's —factor approximation algorithm and Arora's

PTAS2 . These two algorithms can then be used to obtain |/? and 3(1 + e)f3 approx­

imations, respectively, for the lawn-mowing problem.

Figure 2-4: The shaded region is P, the pocket to be cut. The background is a
hexagonal lattice, where the diameter of the hexagons is equal to the diameter of
the circular cutter. The graph problem is to find a minimum length tour covering
all vertices enclosed within the solid border.

Yet another covering tour problem is the TRAVELING CAMERAMAN PROBLEM

(TCP), which is to cover a region (a set of connected components) with unit square

"snapshots " and find a tour through the centers of those squares. An application

for this problem is automated inspection. of printed circuit boards. The goal is to

minimize the length of the tour, or more generally, to minimize a combination of

the number of snapshots and the length of the tour. The authors of [24] showed

2 These algorithms are for the Euclidean TSP problem, which includes TSP on
grid-graphs

10

this problem to be NP-Hard and studied the rectilinear version of this problem.

The authors provided an approximation algorithm, which is to first find a minimal

square covering and then solve the TSP instance for the center points of the squares

in the covering. An optimal square covering along with an optimal TSP tour on the

centerpoints does not in general produce an optimal TCP solution. Using known

approximation algorithms for these two sub-problems, the authors showed that the

rectilinear TCP can be approximated to within (9 — e) in polynomial time.

In practice, research on pocket milling has focused on automatically generating

feasible covering tours. See [22] for a survey on generating contour-parallel and

directional-parallel covering tours. Contour-parallel tours follow the contour of the

pocket, resembling the altitude map of a mountain. Directional-parallel tours simply

go back and forth in a prescribed direction. In the context of directional milling,

one important optimization problem is to minimize the number of tool retractions3 .

It was shown in [4] that minimizing tool retractions is NP-Hard for general pockets

with holes. In the same work, the authors provided the first approximation algorithm

(constant factor 5) and FPT result for minimizing tool retractions. Both algorithms

are based on finding good machining paths in the machining graph (see Figure 2-5):

Due to their wide range of applications geometric covering tour problems have

received much attention in the literature. Most of these problems are hard, but have

3 Retracting the cutting tool and re-positioning it takes extra time and can nega­
tively affect the quality of the pocket being cut.

11

Figure 2-5: Boundary for a pocket (left) and its machining graph (right). Any pair
of nodes not joined by solid or dotted edges is implicitly joined by a retraction edge.
An optimal machining path is a path covering all solid edges exactly once while using
each dotted edge at most once and minimizing the number of retraction edges used.

constant factor approximation algorithms. An important part of these approxima­

tion algorithms is to solve related combinatorial problems in graphs. Various versions

of geometric covering tours can be approximated by the classic TSP problem. Ap­

proximation algorithms for minimizing other cost measures also make use of various

known graph-theoretic algorithms.

12

CHAPTER 3
Theoretical Background

In this chapter, we present the theoretical background for our results. The main

concepts covered are tree-width, parameter-tree-width bounds, dynamic program­

ming, and monadic second order logic of graphs. In Section 3.1, we introduce the

basic notation used in the rest of this thesis. In Section 3.2, we introduce parame­

terized complexity and width parameters, which are central ideas in this thesis. In

Sections 3.3-3.6, we discuss two techniques used to solve problems on bounded tree-

width graphs. In Section 3.7, we show how the previous two techniques are related

to parameterized complexity theory. In Section 3.8, we present a detailed example

incorporating the preceding material. Finally, in Sections 3.9-3.10, we discuss two

FPT methods that are not tree-width based, but can be useful for our problem.

3.1 Notation and definitions

We use standard notation and definitions from graph theory. A graph G =

(V, E) is a pair: V{G) is the set of vertices of G, and E(G) C V(G) x V(G) is the

set of edges of G. We study simple1 , undirected graphs. The neighborhood of v,

denoted N(v), is the set of vertices adjacent to v. The subgraph induced by W C V

is G[W] = (W,{(u,v)eE\u,veW}).

No parallel edges or loops

13

Two graphs H and G are isomorphic if there is a bijection / : V(H) —• V(G)

such that (u,v) G E(H) 4=> (f(u),f(v)) G E(G). Contracting an edge («, f) means

identifying its endpoints. Specifically, the vertices u and v are removed along with

the edge (u,v) and a new vertex x is added along with edges between x and all

vertices that were adjacent to u or v (except u and v). We say H is a minor of

G if if is isomorphic to some graph resulting from a sequence of contractions, edge

removals, or vertex removals in G.

A plane graph is a pair G = (V, E) drawn on the plane satisfying the following

conditions:

1. vertices are drawn as points;

2. edges are drawn as curves between vertices; and

3. the interiors of edges do not intersect vertices or edges.

Planar graphs are combinatorial graphs that can be drawn on the plane with the

above conditions satisfied. In the context of plane graphs, "vertices" ("edges") can

refer to either their drawings on the plane or the vertices (edges) in the underlying

planar graph. A T,-plane graph denotes a graph drawn on a surface E, and E>g-graphs

are graphs that can be drawn (without edge crossings) on a surface of genus g.

3.2 Parameterized complexity

When faced with an NP-Hard graph problem, one can hope to find algorithms

to solve instances restricted to certain graph classes, such as trees, series-parallel

graphs, planar graphs, etc. Many hard graph problems are easy on trees and series-

parallel graphs. In general, the complexity of any computational problem depends

14

on its input. This was one motivation behind the development of parameterized

complexity theory, defined below.

Definition 3.2.1 A graph parameter is a function P : G —> N.

An example of a graph parameter is Pyci which assigns to each G the minimum

cardinality of a vertex cover of G.

Definition 3.2.2 A parameterized problem is a language L C E* x N, where E*

is the set of finite strings in the given alphabet E, and k is the parameter. L is

fixed parameter tractable (FPT) if there is an. algorithm that answers the question

"(G,k) £ L?" with running time in 0(f(k)n°^).

Instead of the formal definition, we present parametrized problems by specifying

the input, the parameter, and the problem to be solved on the input and parameter.

One way to view FPT problems is that they are tractable "by the slice." That is

to say, FPT problems are tractable for instances where the parameter is bounded

by a constant. Thus, we can study the complexity of a problem under different

restrictions by varying our choice of the parameter. These ideas are illustrated by

the next example.

The VERTEX COVER PROBLEM is as follows. Given a graph G and k, compute

whether G has a vertex cover using at most k vertices. From the perspective of

classical complexity theory, an algorithm solving this problem is considered efficient

if its running time is bounded by a polynomial in the length of the input2 . From

2 We do not address the technical issue of how G and k are encoded, as it is not
important in this discussion.

15

the perspective of parameterized complexity, an algorithm solving this problem is

considered efficient if its running time is bounded by a polynomial in the length

of the input and any function in the given parameter. Thus, each problem can be

parametrized in many different ways, and the resulting parametrized problems can

have different complexities. Using the VERTEX COVER PROBLEM as an example,

we can use k, which is the desired size of the vertex cover, as the parameter. We

will see that this parametrized problem is FPT\ meaning that it can be efficiently

solved for graphs having small vertex covers. We could have chosen many other

parameters for the VERTEX COVER PROBLEM. For example, this problem is also

tractable when parametrized by the tree-width of the input graph; i.e., it is easy

to compute minimum vertex covers for graphs having low tree-width. This problem

is probably not tractable when parametrized by the maximum degree of the graph,

since vertex cover remains NP-Hard on graphs with maximum degree 3. Thus, we

can see how different choices of the parameter correspond to the complexities of the

VERTEX COVER PROBLEM under various restrictions to the input graph.

3.3 Tree-width

Now we consider tree-width, which has the desirable property that many NP-

hard problems are easy for bounded tree-width graphs. As its name suggests, tree-

width measures how closely a given graph resembles a tree. Graphs with small

tree-width are more tree-like. It is often possible to extend algorithms on trees to

algorithms on graphs with small tree-width.

Tree-width can be defined in many ways. Consider the following recursive defi­

nition of trees. A vertex is a tree. Adding a new vertex along with one edge joining

16

it to some vertex of an existing tree forms a new tree. This definition is the basis for

/c-trees, defined below [6].

Definition 3.3.1 A k-clique is a k-tree. Let G be a k-tree, and let U be a k-clique

of G. Then G' = (V(G) U {v}, E{G) U{{u,v)\ue U}) ŝ a k-tree.

A graph is a partial k-tree if it is a subgraph of some k-tree. Finally, the tree-

width of a graph G is defined to be the smallest k for which G is a partial k-tree.

There are efficient algorithms that use /c-trees to solve NP-Hard problems such as

GRAPH ISOMORPHISM and EDGE COLORING [7, 37].

We focus on the concept of tree decompositions, which provides the basis for

the most well-known definition of tree-width. The idea of tree decompositions is an

important ingredient in Robertson and Seymour's work on graph minor theory [28].

Definition 3.3.2 A tree decomposition of a graph G — (V, E) is a pair (T, X), where

T is a tree and X : V(T) —> 2V^ is a function assigning a subset of V{G) to each

node of the tree, satisfying the following conditions:

1. for any vertex x G V, there exists u G T such that x 6 X(v);

2. for any edge e = (x,y) G E, there exists v ET such that {x,y} G X(v);

3. for any vertex x £ V, the set of nodes {v | x G X(v)} induces a subtree ofT.

See Figure 3-1 for an example of a tree decomposition.

The subsets in the range of X are called bags of the tree decomposition. The

width of a tree decomposition is \B\ — 1, where B is a maximum size bag in X. The

tree-width of a graph is the minimum width among all its tree decompositions. Trees

are graphs with tree-width 1, and series-parallel graphs are graphs with tree-width

2.

17

Figure 3-1: A graph (left) and a tree decomposition (right). The subsets in X are
represented by ovals, whose interconnections form a tree. The width of this tree
decomposition is 3.

3.4 Dynamic programming on bounded tree-width graphs

Dynamic programming can be used to solve problems that have optimal sub­

structure - meaning that the optimal solution of subproblems can be used to compute

the optimal solutions of the original problem.

The simple structure of trees naturally lends itself to dynamic programming.

When dynamic programming is used on trees, a "subproblem" almost always refers to

a generalized version of the original problem restricted to a subtree. To demonstrate

this idea, let us use dynamic programming to solve the MINIMUM VERTEX COVER

PROBLEM on trees. Let T be a tree rooted at r. For each node v, define Tv to be the

subtree rooted at v. Each subtree Tv has two subproblems, whose optimal solutions

are defined as:

• A(v) = \S\, where S is a minimum vertex cover of Tv such that w e S ;

• B(v) — \S\, where S is a minimum vertex cover oi'Tv.

18

If v is a leaf, A(v) = 1 and B[y) — 0. Otherwise, let ui,... ,Uk be the children of v.

The following relations are used to compute A(v), B(v).

A(v) = 1 + B(ui) + --- + B{uk)

B(v) = min(A(V),Ef=1J4(^))

The optimal solution to the original problem is B(r). This dynamic programming

formulation can be implemented in linear time. The reason A(v), B(v) can be com­

puted from such a simple relation is because 1) there are no edges between TUi and

TUj for any i ^ j , and 2) there are no edges between TUi and T — Tv for any i. That

is to say, every internal node v 6 T is a separator, separating T into components

T T T - T
•LUl) ' • •) -LUfi) •L -1 V

These nice properties can be generalized to graphs of bounded tree-width. Let

G b e a graph and let (T, X) be a tree decomposition of width k. For a given subtree

T" C T, define G[T'] to be the subgraph induced by the bags of T"; i.e., G[T'] =

G[{Jv&v(T') X{v)]. Let v be any internal node in T, and let U\,..., u^ be its children.

It is easy to show from the definition of tree decomposition that there are no edges

between any of the following induced subgraphs: G[TU l], . . . , G[TUk], G[T — TV]. That

is the say, bags corresponding to internal nodes of a tree decomposition are separators

ofG.

Most dynamic programming algorithms for solving problems on trees can be

generalized to solve problems on bounded tree-width graphs. The subproblems are

now defined on the graphs induced by subtrees of the tree decomposition. On graphs

19

with tree-width at most k, the number and size of subproblems are bounded by some

function of k.

As an example, we will generalize the dynamic programming formulation for

MINIMUM VERTEX COVER on trees to solve the problem on graphs of bounded

tree-width. Before doing so, we describe nice tree decompositions, on which dynamic

programming is more straightforward.

Definition 3.4.1 A nice tree decomposition is a rooted tree decomposition such that

each node u e T is one of four types:

• leaf: u is a leaf, and \X(u)\ = 1;

• join: u has two children t>i,i>2, and X{u) — X(vi) = X(v2);

• introduce: u has one child v, and there is a vertex such that X(u) = X(v) U x;

• forget: u has one child v, and there is a vertex such that X(v) — X(u) U x.

In linear time, a tree decomposition can be converted into a nice tree decompo­

sition with the same width and 0(n) nodes [26]. Dynamic programming algorithms

on nice tree decompositions tend to have the following structure.

1. Find a nice rooted tree decomposition (T, X) of G with bounded tree-width.

2. In a bottom-up order, compute a table of partial solutions for each node of the

nice tree decomposition. This is done by considering how to find the partial

solutions for each of the four types of the node. The computation for a given

node must only use use tables from its children.

3. Extract the solution from the table corresponding to the root.

Let us apply this technique to solve the MINIMUM VERTEX COVER PROBLEM

on graphs with tree-width at most k. Assume a nice rooted tree decomposition (T, X)

20

with width at most k is given. The subproblems for a given node v G T are denned

as follows: for each 5 C X(v), find the cardinality of a minimum vertex cover W in

G[TV] such that W n X{v) = S. The solution is denoted AV(S), with the convention

that AV(S) = oo if no solution exists.

Let us show how to compute AV(S) for each type of node. Suppose v is a

• leaf node: Then AV(Q) = 0 and Av(X(v)) = 1;

• join node: Then AV(S) = AUl(S) + AU2(S) — \S\, where Ui,u2 are the children

of v;

• forget node: Let X(u) = X{v) U {x}, where u is the only child of v. Note

that G[TV] = G[TU]. From this observation, it is easy to see that AV(S) =

mm(Au(S),Au(Sn{x}));

• forget node: Let X(v) = X(u) U {x}, where u is the only child of v. Observe

that any neighbor of x in G[TV] must appear in the bag X(v) because x does

not appear in any bag of Tv except X(v).3 For any S C X(u), consider the

following two cases:

1. If S covers all edges incident to x, then AV(S) — AU(S) and Av(SC\{x}) =

MS) +1.

2. Otherwise, Av(S) = oo and AV(S D {x}) = AU(S) + 1.

The size of the minimum vertex cover is mmscx(r){Ar(S)), where r is the root

of the tree decomposition. Each bag of the tree decomposition contains at most k +1

vertices, implying that the number of subsets for any bag is at most 2fc+1. Computing

3 This follows from the third property in the definition of tree decomposition.

21

AV(S), for any choice of v and S, is constant time in the RAM model. Since there are

0(n) nodes in the nice tree decomposition, this dynamic programming formulation

can be implemented in 0(2kn) time.

3.5 Computing tree decompositions

Often, a tree decomposition is not given in the input. Instead, only a graph

is provided. In this case, a necessary preprocessing step is to find a tree decom­

position of low width. This preprocessing step is problem-independent, but it is

important because most dynamic programming algorithms on a tree decomposition

are exponential time in the width of the given decomposition.

Finding the tree-width of graphs is NP-Hard, even when restricted to graphs of

bounded degree, bipartite graphs, and complements of bipartite graphs [9, 25]. The

problem is open for planar graphs. The problem is easy for graphs with a polynomial

number of minimal separators - for example, chordal graphs4 [11].

Determining whether a graph has tree-width at most k, and constructing a

decomposition when this is the case is FPT [10]. Although the running time is linear

in n, it is exponential in the parameter. The reference [10] does not give an explicit

running time, as it grows too fast with k to be considered practical (see [32] for

experimental results). There are also practical efficient algorithms for specific small

values of k. For example, we mentioned that graphs of tree-width 1 are trees, and

graphs of tree-width 2 are series-parallel graphs; these classes of graphs are easy to

4 A graph is chordal if every cycle of length > 3 has an edge between non-
consecutive vertices

22

recognize [35]. The best known polynomial time approximation algorithm is a vector

programming based algorithm that computes decompositions of width 0(ky/logk)

for graphs of tree-width k.

3.6 Branchwidth

Bounded tree-width graphs are suitable for efficient dynamic programming be­

cause they can be decomposed into components separated by small separators. There

are other width parameters and corresponding decompositions that can likewise be

used for dynamic programming. In this section, we present branchwidth and present

some of its advantages over tree-width. Branchwidth is a notion introduced by

Robertson and Seymour [29].

Definition 3.6.1 A branch decomposition of a graph G — (V, E) is a pair (T, /i)

where

1. T is a ternary tree, and

2. \x : L —> E(G) is a bijection between the leaves ofT and the edges of G.

Each edge e G T is associated with a midset defined to be mid(e) = V(Gi)(~) V(G<2),

where G\ and G<i are the subgraphs induced by the edges associated with the leaves

in the two subtrees of T — e. Thus, each edge of a branch decomposition partitions

the edge set of G. The width of a branch decomposition is the size of the largest

midset. The branchwidth of a graph, denoted bw(G), is the minimum width among

its branch decompositions. The branchwidth and tree-width of a graph are related

by the following inequality.

Theorem 3.6.2 For any connected graph with more than 1 edge, bw(Gr) ^ tw(G) +

1 < L3/2bw(G)J) [30].

23

Figure 3-2: (left) A graph with labeled edges and (right) its branch decomposition.
The width of this branch decomposition is 3.

Computing the branchwidth of a graph is NP-Hard [34]. When parameterized

by branchwidth, the problem is FPT [8]. As is the case with tree-width, this FPT

algorithm is not practical. However, unlike tree-width, the branchwidth of planar

graphs can be computed by a practical and easily implemented algorithm with 0(n3)

running time [34]. Furthermore, there are "geometric branch decompositions," such

as sphere-cut branch decomposition, which can be used to design more efficient and

simpler dynamic programming algorithms for planar graphs [20].

3.7 Monadic second order logic of graphs

One way to show a graph problem is tractable on bounded tree-width graphs

is to provide an efficient algorithm- for example, using a dynamic programming

formulation. This is the usual algorithmic perspective. In this section, we present a

different and theoretically interesting perspective. Instead of designing an algorithm

to solve a problem, we describe the problem to a genie, who then provides us with

a linear time algorithm to solve the problem. This genie speaks in the language

24

of monadic second order logic, and we must describe our problems in the genie's

language in order to obtain linear time algorithms for them.

Before describing monadic second order logic, we introduce some more back­

ground on logic and descriptive complexity. Descriptive complexity theory provides

a way to classify the complexity of problems. This type of theory classifies the

complexity of a problem based on its expressibility in some logic.

We assume the reader is familiar with first order logic. Second order logic

extends first order logic by allowing quantification over arbitrary finite- ary functions

and relations, instead of quantification over just individual elements in the domain.

The so called existential second order logic formulas, denoted 3SO, are those of the

form 3X\,..., Xk4>, where X\,..., X^ are variables for finite-ary relations and 0 is a

formula of first order logic.

We say a graph G models a formula (p of some predefined logic L, denoted G \= <fr,

if there is a satisfying assignment of vertices, subsets of vertices, edges, and subsets

of edges of G to the variables of corresponding types in <f>. A problem P is expressible

in L if there exists a <f> such that G \= (f> if and only if G is a yes-instance of P. When

there is no ambiguity, we use L to denote the class of all problems expressible in L.

Now, we present a key result from descriptive complexity.

Theorem 3.7.1 NP C 3SO [21J

This result is, in a sense, a hardness result about the worst-case complexity

of problems expressible in 3SO. This is because NP-Complete problems, for which

we do not expect to be efficiently solvable, are expressible in 3SO. We are, looking

for a different type of result, one that provides efficient algorithms for all problems

25

expressible in some logic L. Since our focus is on problems tractable for bounded

tree-width graphs, we are interested in finding a logic L such that all problems

expressible in L can be efficiently solved on bounded tree-width graphs.

The logic 3SO is too expressive to be the one we seek because there are NP-

Complete. problems that are apparently difficult on trees. Since all NP-Complete

problems are expressible in 3SO, and trees are trivially bounded tree-width graphs,

it is unlikely that all problems expressible in 3SO can be efficiently solved even when

restricted to bounded tree-width graphs.

The logic we seek is a restriction of second order logic called monadic second or­

der logic. Monadic second order logic allows quantification over only unary relations

(or equivalently, subsets), instead of quantification over arbitrary finite-ary relations.

We use MS2 to denote monadic second order logic of graphs. In this case, the graph

structure is given by G — (V,E,I), where V and E are the vertex and edge sets,

and / is the incidence relation between vertices and edges. MS2 has the following

predicates:

1. x G X, where x is a vertex(edge) variable and X is a vertex(edge) subset

variable5 ;

2. Adj(ii, v), where u,v are vertex variables;

3. Inc(-u, e), where v is a vertex variable and e is an edge variable; and

4. equality testing for vertex/edge/vertex subset/edge subset variables.

5 We use the convention that lower-case variable names are used for single elements
and upper-case variable names are used for subsets.

26

Problems expressible in MS2 are efficiently solvable for bounded tree-width graphs.

This result, known as Courcelle's Theorem, is stated below.

Theorem 3.7.2 Courcelle's Theorem [15]: Any graph property that is expressible in

MS2 can be recognized in linear time on bounded tree-width graphs.

There are many NP-hard problems that are expressible in MS2. The above

theorem tells us that all such problems are solvable in linear time on graphs of

bounded tree width. Furthermore, the proof of the theorem is constructive in the

sense that one could, in principle, implement an algorithm that takes in an MS2

formula and outputs a linear time algorithm solving the corresponding problem. As

an example, we show that 3-COLORABILITY, an NP-hard problem, is expressible

in MS2 and thus efficiently solvable on bounded tree-width graphs. The following

formula expresses 3-COLORABILITY.

</> = 3Xux2,x3 V u{ue Xi VUEX2\/UEX3)

V u(-i(u E Xx Au E X2) A ->(u E X2 Au E X3) A->(u E Xx A u G X3))

V u, u[-i Adj(u, v) V

(-.(u EX1AvEX1)A^(uEX2AvE X2) A ^{u E X3 A v E X3))}

Here, all variables are for vertices or vertex subsets. The subsets Xi,X2,X3

correspond to the vertex coloring. The first line checks that each vertex is given a

color. The second line checks each vertex is given at most one color. The third and

fourth lines check that adjacent vertices are not given same colors. Thus, any graph

that models 4> is 3-colorable.

27

There are many possible extensions to MS2. An useful extension for solving op­

timization problems is LinEMSOopt (linear evaluation MSO optimization problem).

First, augment the input graph with m functions (weights) /f,..., / ^ that evaluate

vertices or edges to rational numbers. Extend these functions to subsets of vertices

or edges as follows: for any subset A, f^(A) — Eaeyi/jG(a). Using thse functions,

linear terms can be built using "+" and "—". Linear evaluation relations "=" and

"<" can be used to compare linear terms with rational constants. A LinEMSOopt

problem is defined as follows.

Definition 3.7.3 Let <fi be an MSO formula, and let 4>x be a linear evaluation relation

and let 4>2 be a linear evaluation term. A problem is a LinEMSOopt problem if it can

be stated in the following form:

min{02(A1, ...,Ak)\G\= (f>(Ai, ...,Ak) and <p2(Au ...,Ak) holds},

where A\,..., Ak are vertex or edge subset variables.

As is the case with MS2) problems expressible in LinEMSOopt are also solvable in

linear time on bounded tree-width graphs.

Theorem 3.7.4 Any graph property that is expressible in LinEMSOopt can be rec­

ognized in linear time on bounded tree-width graphs. [5]

An example of a LinEMSOopt problem is MINIMUM W E I G H T VERTEX COVER.

Let G be a graph, and let / : V(G) —>• Q+ be the weights of vertices. The formula

<j){A) = Vv[v £ A V 3u(u £ AA Ad'](u,v))] is true if and only if A is a vertex

cover in G. For this problem, we do not need 4>\. Trivially, ^(A) = f(A), so that a

vertex cover A minimizing (j)2 (A) is a minimum weight vertex cover. Thus, MINIMUM

28

W E I G H T VERTEX COVER is expressible in LinEMSOopt using the <p, </>i, <p2 we have

just defined.

Another useful extension arises by labeling of vertices (edges). That is to say,

we apply labels, from a predetermined finite set, to vertices (edges) of the input

graph and test for these labels within the MS2 formulation. For example, we could

color the vertices of the input graph with two colors - red and green. Then a vertex

cover using only red vertices can be checked using the following formula: <f>'(A) =

4>{A) A Mv{v £ A = » Red(v)), where <f> is the formula given in the previous example.

Lastly, the expressive power of MS2 can be enhanced by a technique called

semantic augmentation. We say a problem P is expressible in MS2 via semantic

augmentation if there exists a (j) and AA : G —> G, where G denotes the set of

all graphs, such that G is a yes-instance of P if and only if M.(G) |= (p. We call

M{G) the augmented graph because it is often the original G augmented with new

vertices and edges so that certain properties of G that are not expressible in G are

expressible in M(G). In the context of FPT design, we require M to be polynomial

time computable and to preserve tree-width bounds. By the latter we mean that

there exists a function / such that tw(A4(G)) < /(tw(G)) for all G. Courcelle's

Theorem imples that problems expressible in MS2 via semantic augmentation can

be efficiently solved for graphs of bounded tree-width. Our MS2 formulation for the

GRID-GRAPH MILLING PROBLEM will use semantic augmentation.

While MS2 and its extensions are extremely powerful in their expressiveness,

it is usually impractical to implement an algorithm for all but the most simplest

29

formulas6 . This is because a formula with length k and q quantifier alternations7

k

translates to an automaton with 2k' states, where q is the height of the exponential

tower. In fact, the exponential tower blow-up is unavoidable in this approach [27].

3.8 Parameter-tree-width bounds

In the previous sections, we presented two techniques used to solve problems

on bounded tree-width graphs. These techniques produce algorithms with f(w)n°^

running times, where w is the tree-width. While the right parameter for a problem

is application dependent, many graph problems have natural, canonical parameters.

In this section, we discuss the relationship between these parameters and tree-width,

as well as its algorithmic consequences.

Each graph parameter P has a related parameterized problem "is P(G) ^ k" or

"is P(G) ^ k"? We say this problem has a parameter-tree-width bound if there exists

a function / such that if tw(G) > f(k) then the instance is easy to solve. Often,

"easy to solve" means the solution is trivially "Yes" or "No."

Parameter-tree-width bounds can be used in conjunction with tree decomposi­

tion based algorithms to produce FPT algorithms. To see this, suppose we are given

a problem with a parameter-tree-width bound as well as an algorithm A that solves

the problem in g(w)n°^ time for graphs with tree-width w. Then the following

algorithm is an FPT algorithm that solves the problem for input (G, k):

6 The basic idea is to translate M5 2 formulas into tree automatons. See [33].

7 The number of quantifier alternations in a formula is the number of times an
existential (universal) quantifier is followed by an universal (existential) quantifier.

30

1. Determine the tw(G) in FPT time (see Section 3.5);

2. If tw(G) > f(k), then output the trivial "Yes" or "No" solution;

3. Otherwise, apply algorithm A to solve the problem.

The running time of the last step (if neccessary) is at worst g{f{k))n0^\ Thus, this

is an FPT algorithm parameterized by k. In the next section, we discuss techniques

for establishing parameter-tree-width bounds.

3.8.1 Tree-width, grid minors, and bidimensionality

In order to prove parameter-tree-width bounds, one must use the structural

properties of graphs with large tree-width. The property that is most often used is

based on grid minors.

Definition 3.8.1 The k x k-grid, denoted Q^, is the plane graph with vertex set

{(hj) I 0 ^ i, j ^ k — 1} and edges between vertices distance 1 apart.

It is not difficult to see that the k x /c-grid has tree-width k, and thus any graph

containing the k x fc-grid as a minor has tree-width at least A;.8 The converse is

true "up to a constant" for planar graphs, and provides a useful tool for proving

parameter-tree-width bounds.

Theorem 3.8.2 Let k ^ 1 be an integer. Every planar graph with no (k x k)-grid

as a minor has branchwidth ^ Ak — 3. and tree-width ^ 6A: — .5. [31]

8 Tree-width, branchwidth, as well as many other width parameters are minor-
cloesd; i.e., if H is a minor of G, then tw(if) ^ tw(G).

31

To show how Theorem 3.8.2 can be used to prove parameter-tree-width bounds,

we prove the VERTEX COVER PROBLEM restricted to planar graphs has a parameter-

tree-width bound (using the desired size of the vertex cover as the parameter). Let

c = \y/k + 2]. Note that Qc contains more than Ak edges. Since any vertex is

incident to at most 4 edges, it is not possible for k vertices to cover all edges of Qc.

Let G be a planar graph. By Theorem 3.8.2, if G has tree-width greater than

\6y/k + 2] — 5, then G contains a minor isomorphic to Qc. Since it is impossible to

cover Qc using k vertices, it is also impossible to cover G using k vertices.

Note that this result applies only to planar graphs, and thus our parameter-

tree-width bound only applies to the VERTEX COVER PROBLEM restricted to planar

graphs. In the next section, we present a generalization of Theorem 3.8.2 to larger

graph classes.

3.8.2 Bidimensionality

Bidimensionality is a concept defined by Demaine et al. [16] to study graph

parameters of graphs containing large grids.

Definition 3.8.3 A graph parameter P is g(r)-bidimensional if

1. P(G) ^ g(r) for an r x r grid, and

2. for all G in a given family of H-mmor-free graphs, P{G) does not increase

when taking minors?

9 H-minor-free graphs are the family of graphs that do not contain a fixed if as a
minor.

32

Examples of bidimensional parameters include: the number of vertices, the number

of vertices in a minimum VERTEX COVER, DOMINATING SET, OR FEEDBACK V E R ­

TEX SET [16]. In fact, these parameters are 0(r2)-bidimensional. In a long series

of papers, Demaine et al. developed the theory of bidimensionality and studied its

algorithmic consequences. From the perspective of FPT algorithm design, the key

result is that bidimensional parameters have parameter-tree-width bounds.

Theorem 3.8.4 / / a parameter P is g(r)-bidimensional, then for every graph G in

the family associated with the parameter P, tw(G) = 0(g~1(P(G))) [16].

Note that Theorem 3.8.2 implies that bidimensional parameters have parameter-

tree-width bound for planar graphs. In order to prove Theorem 3.8.4, Demain et al.

generalized 3.8.2 to hold for i7-minor-free graphs.

Theorem 3.8.5 For any fixed graph H, every H-minor-free graph of tree-width w

has an Q(w) x Q(w) grid as a minor [16].

Furthermore, this bound is tight up to a constant factor, which depends on H.

This implies that the tree-width bound is also tight for bidimensional parameters.

Although we omit the details here, it is worth mentioning that to prove Theorem

3.8.5, Demaine et al. extended known combinatorial results on planar graphs to

results on bounded genus graphs, then "almost-embeddable graphs," and finally,

clique sums of "almost-embeddable graphs." Thus, statements analogous to Theorem

3.8.5 are also true of these graph classes. It is also known that general graphs with

tree-width greater than 202r5 contain r x r-grid minors [31]. While this result can

be used to prove parameter-tree-width bounds, the resulting bound does not lead to

efficient FPT algorithms.

33

Prior to the introduction of bidimensionality theory, many parameter-tree-width

bounds were obtained using Theorem 3.8.2. In retrospect, many of these previously

established parameter-tree-width bounds can be obtained from the theory of bidi­

mensionality. Furthermore, bidimensionality can be used to extend the tree-width

bounds to larger graph classes. For example, we used Theorem 3.8.2 to prove VER­

TEX COVER on planar graphs has bounded tree-width. We can use the same ar­

gument to show that the size of a minimum vertex cover is a bidimensional graph

parameter. It follows immediately from Theorem 3.8.4 that VERTEX COVER on H-

minor-free graphs has bounded tree-width. This result, in conjunction with the tree

decomposition-based dynamic programming for VERTEX COVER, implies VERTEX

COVER on H-minor-free graphs is FPT. More generally, Demaine et al. stated the

following:

Theorem 3.8.6 Suppose a g(r)-bidimensionalparameter P can be computed in f(w)n°^

time, if a tree decomposition of G with width at most w is given. Then there is an

FPT algorithm deciding P(G) ^ k on any graph in P's corresponding graph class

with running time [f(0(g-\k)))-\-29~1{k)]n°w [16].

This result can be used to obtain FPT algorithms for many bidimensional pa­

rameters, such as VERTEX COVER, DOMINATING SET, FEEDBACK VERTEX SET,

etc. for all #-minor-free graphs. As an aside, we mention that bidimensionality can

also be used as a framework to design polynomial time approximation schemes and

to prove many previously established separator theorems.

34

3.9 Example: finding Hamiltonian cycle on planar graphs

So far, we have seen techniques for solving problems on bounded tree-width

graphs and for proving parameter-tree-width bounds. We have seen how these tech­

niques can be used together to obtain FPT results for parameterized problems. In

this section, we study how these techniques can be applied to the HAMILTONIAN

CYCLE PROBLEM and the related /C-CYCLE parameterized problem10 on embedded

graphs. As we have seen in Chapter 2, the HAMILTONIAN CYCLE PROBLEM is a

type of covering tour problem.

The HAMILTONIAN CYCLE PROBLEM is, of course, NP-Complete on planar

graphs. Hamiltonicity is a property expressible in MS2. To see this, note that a

graph contains a Hamiltonian cycle if every cut has at least two edges crossing it.

This property is expressed by the following MS2 formula </>:

(p = yX1,X2 [Vx((xeXlAx(£X2)\/(x(£XlAx£X2))^

3ui G Xuvi G Xuu2 G X2,v2 £ X2(Adj(wi,u2) A Ad](vuv2))]

The variables Xi,X2 correspond to vertex subset variables. The first line checks

that Xi,X2 form a bipartition of the vertex set (this is the same as a cut). The

second line checks that there are two edges between Xi and X2 when they form a

bipartition. Thus, by Courcelle's Theorem, we know that the HAMILTONIAN CYCLE

PROBLEM can be solved in linear time on graphs of bounded tree-width. However,

as previously stated, the hidden constant is too large to be considered practical.

Given (G, k), the problem is to find whether G has a cycle of length k.

35

In [20], Dorn et al. used dynamic programming on sphere-cut branch decompo­

sitions to solve the Hamiltonian cycle problem (on planar graphs) in 0(2°^^A;n + n3)

time, where k is the branchwidth. To obtain this result, the authors introduced the

idea of sphere-cut (sc) branch decompositions, which relate combinatorial separators

(vertices in a graph) to geometric separators (simple, closed curves on a surface).

Sphere-cut branch decomposition is defined below.

A E-graph refers to a graph G = (V, E) embedded without edge crossings on

the unit sphere E. Define a noose to be a simple closed curve O in E that intersects

G at vertices only and intersects every face at most once. A sphere-cut branch

decomposition is a branch decomposition such that for every edge e 6 E(T), there is

a noose Oe with mid(e) = OeC\ V(G) and Gj £ Aj U Oe, 1 ^ j ^ 2. In other words,

the noose Oe partitions the embedded graph in the same way that its corresponding

edge in the branch decomposition partitions the purely combinatorial graph. Recall

that an optimal branch decomposition can be computed in 0(|V|3) time for planar

graphs. This is also true of sc-branch decompositions.

Theorem 3.9.1 Let G = (V, E) be any graph embedded on the unit sphere, with

bw(G) = / and no vertices of degree 1. Then there exists an sc-branch decomposition

of G with width at most I and such a branch decomposition can be constructed in

0(\V\3) time. [20]

Dorn et al. used sc-branch decomposition to improve on the traditional dynamic

programming formulation for the HAMILTONIAN CYCLE PROBLEM. The intuition

behind the dynamic programming formulation is to view an optimal tour as a set of

36

path segments (denned by the endpoints) in subgraphs. The running time is domi­

nated by the number of possible combinations of path segments. Clearly, these path

segments cannot pair-wise cross each other. By applying the geometric interpretation

of sc-branch decompositions, the authors reduced the number of such combinations

to the number of non-crossing matchings11 (of the vertices on a noose) to achieve the

0(2°^kn + n3) running time. Note that traditional branch decompositions do not

contain any embedding information. Therefore, the concept of non-crossing match­

ings is not defined for the midsets. The best running time without using sc-branch

decomposition is 0(2°(fclogfc)n°(1)).

A related parameterized problem is the /c-cycle problem on planar graphs, which

asks whether a given graph contains a cycle of length at least k. It is easy to

see that the fc-cycle problem on planar graphs has a parameter-tree-width bound.

A planar graph with branchwidth at least A\Jk + 1 — 3 must contain a yk x \[k

grid minor, which trivially contains a cycle of length at least k. Thus, the /c-cycle

problem on planar graphs is FPT by using a slightly modified version of the dynamic

programming algorithm for planar Hamiltonian cycle.

11 Given a set of points lying on the boundary of the unit circle, a non-crossing
matching is a pairing the given points such that the straight line segments drawn
between them are not pairwise crossing.

37

To summarize, in [20], planarity was exploited three times: 1) to use sc-branch

decompositions, 2) to reduce the number of path combinations in the dynamic pro­

gram, and 3) to show that the A;-CYCLE PROBLEM has a parameter-tree-width

bound.

Extension to §9-graphs

The techniques seen in the previous section can be extended to solve the HAMIL-

TONIAN CYCLE PROBLEM on graphs embedded on a surface of genus g. One tech­

nique often used to solve a problem on a bounded genus graph is to reduce the genus

until the problem is on a planar graph. In [18], Dorn et al. showed how their ap­

proach on planar graphs can be used to solve the HAMILTONIAN CYCLE PROBLEM

and the /C-CYCLE PROBLEM on bounded genus graphs.

Recall that a noose is a simple closed curve which intersects G only at its vertices.

A noose is noncontractible if it is cannot contract to a point. "Cutting" along a

noncontractible noose on a surface of genus g results in a surface of genus g — 1.

Let G be a graph embedded on a torus. Let N be a noncontractible noose and

let U — {ui, U2, •.., life} be the set of vertices intersecting N. We say N is tight if U

is a connected subset. Define the left (right) neighbors of «; to be the set of neighbors

of Ui that appear on the left (right) side of N as we travel clockwise along N. Now

consider the graph G' defined as follows.

• V{G') = (V(G) -U)UUt\J Ur, where Ut and Ur are "copies" of U

• E{G') = E(G) U {(u,v) | u G Ui and v is a left neighbor of u} U {(u,v) \ u £

Ur and v is a right neighbor of u}

38

It is clear that G is planar. Furthermore, a Hamiltonian cycle in G induces a set of

disjoint paths V = {Pi, P2, • • •, Pi}, where each path is between some vertex in Ui and

its copy in Ur. Such a set of disjoint paths can be found in 0(2°(bw(G '»|1/(G')|o(1))

time using a modified version of the algorithm in [20].

To obtain the running time in terms of the size of the graph, it is necessary to

bound 1) the number of vertices lying on the noose and 2) the branchwidth of G',

as these bound the number of path segment combinations. Bounds for these values

are established by the following lemmas.

Lemma 3.9.2 Let G be a torus-embedded graph and let G' be the planar graph after

cutting along a tight noncontractible noose. Then bw(G') ^ ^j4.h\V{G)\ + 2 [11].

Lemma 3.9.3 Any graph G embedded on a torus has a tight noncontractible noose

with length at most y/4.5\V(G)\ + 2, and such a noose can be found in polynomial

time [17].

Using the above lemmas, the authors showed that the HAMILTONIAN CYCLE

PROBLEM on graphs embedded on a torus can be solved in 0(2°^^\n\°^) time.

This technique can be extended to solve the HAMILTONIAN CYCLE PROBLEM on

graphs embedded on surfaces of genus g with running time 0(no<y9)20^9y^>). Finally,

this technique was used in conjunction with bidimensionality theory to obtain an

Q(-292iog/c+9N/pno(i)-) aigOTithm for the /C-CYCLE PROBLEM on graphs embedded on

surfaces of genus g in the same paper.

3.10 Layer-wise separation

Although tree decompositions and branch decompositions are useful tools for

devising FPT algorithms, there other decompositions that use planarity or other

39

geometric properties of graphs and may be used to give more efficient or simpler

FPT algorithms. The reason efficient dynamic programming on bounded tree-width

graphs is possible is because such graphs can be decomposed into components sepa­

rated by small vertex separators. To obtain an FPT result for a given parameterized

problem, it is necessary to also prove that it is parameter-tree-width bounded. In this

section, we discuss another decomposition structure such that 1) efficient dynamic

programming is possible for many problems, and 2) these problems have "parameter-

width" bounds.

We refer to decompositions making use of outerplanarity. In [1], Alber et al.

described the concept of layer-wise separation of planar graphs, which is defined as

follows. Given an embedded planar graph G, let L\ be the set of vertices on the

outer face of G, and let Lj be the set of vertices on the outer face of G after removing

Lj for j < i.

Definition 3.10.1 A parameterized problem C for planar graphs is said to have

the layer-wise separation property (LSP) of width w and size-factor d if for every

(G, k) e C and every embedding of G, there exists a sequence (Si, S2, • • •, Sr)

2. Si is an Lj_i — Li+W separator, and

3. T,rj=1\Sj\ <dk.

Examples of problems exhibiting the LSP are PLANAR VERTEX COVER (width

2, size-factor 2) and PLANAR DOMINATING SET (width 3, size factor 51) [1]. To see

that PLANAR VERTEX COVER has the LSP, consider a planar graph which has a

vertex cover V of size k. Choose Si = (Lt U Li+i) D V for the sequence of separator

40

sets; the size-factor follows from the observation that any v E V appears in exactly

2 separator sets.

Alber et al. showed that problems exhibiting the LSP with width w and size

dk have tree-width bounded by f(k) = 2\/3dk + (3w — 1) and that this tree decom­

position can be computed in 0(fc3//2n) time. Thus, the LSP can be used as a tool

for proving parameter-tree-width bounds, which sometimes leads to better bounds

than obtained by previous methods. Furthermore, dynamic programming formula­

tions using layer-wise separation often achieve better running times than dynamic

programming formulations using tree decompositions.

41

CHAPTER 4
NP-Completeness of Grid Graph Milling

In this chapter, we formally define the GRID-GRAPH MILLING PROBLEM and

prove that it is NP-Complete. The input to our problem is more general than the

grid-graphs we have seen so far in that edges are not restricted to be of length 1.

Also, we focus on the "walk" version of the problem, in which it is not necessary for

the object to start and end at the same point. It is a simple exercise to extend our

results to the "tour" version of this problem. Of course, as our FPT results apply to

the more general version, they also apply to the restricted version.

4.1 Problem definition

Let G = (V, E) be a plane graph such that the vertices are placed on grid points

and the edges are horizontal or vertical straight lines. The embedding is specified

by T, which assigns integer coordinates to each vertex. The problem is to find a

fc-milling walk in G, which is a path that covers all vertices using at most k turns or

U-turns. Turns and U-turns are defined as follows:

The Grid-graph Milling Problem

Input: G = {V, E) and T : V -> N x N;

Parameter: k, the number of turns;

Question: Does G contain a /c-milling walk?

42

Definition 4.1.1 Let W = [v0, e\, v\,... e*, fj, ei+i,... e/, vi\ be a walk. A turn in W

is a vertex Vi such that e$ is a horizontal edge and ei+\ is a vertical edge or vice-versa.

A U-turn in W is a vertex Vi such that Uj_i = vi+i.

4.2 Proof of NP-Completeness

Theorem 4.2.1 The GRID-GRAPH MILLING PROBLEM is NP-Complete

Proof: We reduce from the HAMILTONIAN PATH PROBLEM in maximal planar

graphs [13]. Let G = (V, E) be a maximal planar graph. Since G is 2-connected,

there is an polynomial-time computable embedding of horizontal bars on the plane

such that each bar represents a vertex in V, and two bars can "see" each other if their

Corresponding vertices are adjacent [36]. Formally, a bar is a subset of the plane given

by {(x,y) • V = Ho and x e [x0,xi]}; we refer to this set as B(x0iXi,yo). Two bars

B(x0, Xi,y0) and B(x'0, x[,y'0) can see each other if there is an x* G (xo, x{) D (x'0, x[)

such that the line segment between (x*,y0) and (x*,y{) does not intersect any other

bars. Given the bar embedding, we construct the GRID-GRAPH MILLING instance

G' in two steps. In the first step, we start with a set of bars (horizontal line segments

on the plane) representing vertices, and we add vertical line segments connecting

bars representing to adjacent vertices. In the second step, we start with a set of

horizontal and vertical line segments and we define the vertices and edges for the

grid-graph. Details follow.

1. For each (u, v) G E: let B(x0, X\, t/o)> -̂ (̂ O) x'\-, y'o) be the bars corresponding to

u,v. Let x* be as previously defined. Draw a (vertical) line segment between

(x*,y0) and (x*,yi). When adding vertical line segments, ensure that we do

not use the same x* for different vertical line segments.

43

Ba

Bh Br

Bd

Figure 4-1: (left) A 2-connected plane graph G (right) Bar visibility representation
of G, with dotted lines representing visibility

2. Define the vertices of the grid-graph to be the endpoints of both the horizontal

and vertical line segments in the drawing. The edges and the embedding of the

grid-graph are implicitly given by the drawing.

Lemma 4.2.2 G — (V,E) contains a Hamiltonian path iff G' = (V',E') can be

milled using k — An — 4 turns, where n=\V\.

We first prove the forward direction. Let vi,... ,vn be a Hamiltonian path in G.

Let Bi,..., Bn be the corresponding bars in the bar visibility representation. Note

that the B\,..., Bn contains all the vertices in the grid-graph. Furthermore, for each

Bi there is a vertex in ttj £ Bi that is connected to a vertex in vi+i G Bi+i. Let

ej,e- be the endpoints (vertices) of bar B^. The A;-milling walk is ei, e'1; «i,f2, e2,

e2, «2> W3, e3, e ,̂ u^,..., un, e„, e'n\ here, all vertices on Bi are implicitly included be­

tween ei and e-. Note that if we "enter" a bar at a non-endpoint, then exactly four

turns are needed to visit every vertex and "exit" this bar. The first and last bars

in the sequence requires only two turns, since we start and end on endpoints. Thus,

the number of turns in the lawnmower walk is 4n — 4.

44

Figure 4-2: (left) The lawnmower instance corresponding to the bar visibility rep­
resentation of G. (right) A lawnmower walk corresponding to the Hamiltonian path
(a, c, b, d) in G. Note that there are exactly 12 = 4n — 4 turns.

Now we prove the converse. Suppose W is a fc-milling walk using at most An —A

turns. We shall consider two cases.

Case 1: W starts and finishes at endpoints of bars. Note that there are 2n

endpoints in the grid-graph and it costs 1 turn to visit each endpoint except the first

and last vertices in the walk; this means at least 2n — 2 turns are needed just to

visit every endpoint. Let B = B\, B2,.. •, Bj be the sequence of bars Corresponding

to the sequence of vertices in W. Clearly, every bar is in the sequence at least once.

We will show that every bar is in the sequence at most once; this would imply that

there is a Hamiltonian path in G.

Suppose to the contrary that j = n + c for some integer c > 0. Note that for any

i such that j > i > 1, it costs at least two turns to enter and leave Bi if Bj_i 7̂ Bi+i;

this is because the 5j_i — Bi 'line of sight' edge lies on a different x coordinate from

the Bi — Bi+i 'line of sight' edge. Otherwise, it costs at least one turn to enter and

leave Bi if Bi+i = Bj_i; this case can occur at most c times, because otherwise the

sequence could not contain all n bars. Leaving the first bar and entering the last bar

also accounts for 1 turn each. Thus, the total number of turns used to enter and leave

45

~Z~ ,7~>
-X

Figure 4-3: (left) If the first two vertices of W lie on B\ then W can be modified
(right) into a new walk which begins at an endpoint of B\ without using more turns.

bars is at least 2 + c + 2(n — 2) = 2n + c — 2. Note that the turns required for visiting

endpoints are distinct from the turns required" for entering and exiting bars because

by construction bars cannot enter or leave at endpoints. Thus, the total number of

turns in W is at least 4n — 4 + c. Since c > 0, this contradicts the assumption that

W uses at most 4n — 4 turns.

Case 2: W starts and finishes at internal vertices of bars. Again, let B =

Bi, £?2, • • •, Bj be the sequence of bars corresponding to the sequence of vertices in

W. Note that if the first two vertices in W are both in J5i, then W can be modified so

that it begins at an endpoint without using additional turns (see Figure 4-3), which

brings us back to Case 1. Otherwise, B\ must be in the sequence B at least twice,

because in the first visit, the walk W immediately exited bar B\ without visiting

its endpoints. The same observation also applies to Bf so we know that B\ and

Bj both appear at least twice in B. Again, we count the number of turns needed

to enter and exit bars in B. Let j = n + 2 + c for c ^ 0. We noted that every bar

must appear at least once in B2,..., Bj-i- This implies at least 2n + c — 2 turns

are needed to enter and exit bars. We also need at least 2n turns to visit all the

endpoints, since the walk "W does not begin or finish at endpoints. This means W

46

uses at least 4n —c + c turns, contracting the assumption that W uses at most An —A

turns.

•

47

CHAPTER 5
FPT Algorithms for Grid Graph Milling

Chapter 3 established our basic framework for developing FPT algorithms based

on the concept of tree-width. To show that a parameterized problem is FPT, we need

to show that it has a parameter-tree-width bound and then provide an algorithm (or

an MS2 formula) to solve the problem. In Section 5.1, we show that the GRID-

GRAPH MILLING PROBLEM has a parameter-tree-width bound when parametrized

by the number of turns. In Sections 5.2 and 5.3, we provide an MS2 formulation

and a dynamic programming formulation, respectively, to solve our problem.

5.1 Parameter-tree-width Bound

Recall that a problem has a parameter-tree-width bound if there exists a function

/1 such that if the input graph G has tree-width greater than f(k), then the problem

is easy to solve. We will show that if tw(G) > Qk + 13, then G cannot be milled by

a walk using at most k turns.

Theorem 5.1.1 Let G = (V,E) be a grid-graph. If tw(G) > 6k + 13 or bw(G) >

4k + 9, then G does not contain a k-milling walk.

Proof: We will prove the tree-width bound; the same proof can be used for the

branchwidth bound.

We say two vertices are rook-independent if they lie on different rows and

columns. Note that if there exists a subset V C V(G) such that elements of U

are pair-wise rook-independent, then any walk that visits every vertex of V(G) must

48

use at least \U\ — 1 turns. We will prove that if tw(G) > 6k + 13, then it contains at

a set of k + 2 pair-wise rook-independent vertices.

Let k' — k + 3. Assume tw(G) > Qk' — 5. By Theorem 3.8.2, G contains Qy as

a minor1 . Notice that Qy contains a sequence C\, C2, • • •, C[fc72j °f vertex-disjoint

nested cycles2 . We will show that there are 2 vertices per cycle such that these

2_k'/2\ vertices, are pair-wise rook-independent.

First, it is trivial to see that there exists a pair of vertices v\, v[on C\ such that

v 1 lies above and to the right of v[. We claim there are vertices v^, v'2 on C2 such that

i>2 lies above and to the right of v\, and v'2 lies below and to the left of v[. To see

this, note that any closed curve on the plane that encloses the origin must traverse

all four quadrants. In particular, if we let vx be the origin, then the cycle Ci (which

encloses V\) must contain a vertex in the first quadrant. Similarly, if we let v[be

the origin, then C2 must contain a vertex v'2 in the third quadrant. This argument

may be repeated inductively to produce a set of 2 |_&'/2J pair-wise rook-independent

vertices. •

Remarks. We mentioned in the introduction that finding minimum-turn milling

tours is not likely to be FPT for general graphs, but it is FPT when restricted to

grid-graphs. Now, we can see why. We need the extra structure of grid-graphs in

three'different parts of our paramter-tree-width bound proof: 1) to apply Theorem

1 Recall that Qy is k! x k! grid-graph

2 By a sequence of nested cycles, we mean Cj "encloses" the previous cycles
C i , . . . , Ci-\ in the sequence.

49

3.8.2 (for Grid-graph Minors), 2) to.define the notion of rook-independence, and 3)

to ensure that going between pair-wise rook-independent vertices costs at least one

turn.

5.2 MS2 formulation using semantic augmentation

The purpose this section is to present an MS2 formula 4> such that a graph

models 4> if and only if it can be milled using k turns. Note that the graph structure

used in MS2 is a purely combinatorial structure; i.e., the embedding information

of a grid-graph is not used by the MS2 formulation. Of course, the embedding is

important to the actual problem because it is used to evaluate the cost function

- the number of turns used. Thus, we need a combinatorial way to encode turns.

Recall from Section 3.7 that two extensions to MS2 are labeling of vertices (edges)

and semantic augmentation. These extensions can be used to "store" the maximal

turn-free paths of the grid-graph G. A maximal turn-free path is defined to be a

path of maximal length in G whose edges are all vertical (or all horizontal) in the

embedding of G.

For each maximal turn-free path P, we create a new vertex s(P) and add edges

between s(P) to each vertex in P. Formally, we define the augmented graph -M(G)

as follows.

• V(M(G)) = V(G) U S with S = {s(P) I P is a maximal turn-free path of G}

• E{M{G)) = E(G)UE{S) with E(S) = {(s(P),v) | s(P) e S and v G P}

We will label the new vertices using £(•). That is to say, the predicate S(v) evalulates

to true if and only if v is a new vertex.

50

^T-J-H
^ k^

T-4
s (P)

<>

1 1 1

1 1

1

p

_ _ _ _ _

s(P""/j

— ^

\

1

P '

1

4

Figure 5-1: A partially augmented graph. The black vertices and dotted edges
belong to the original graph. Two maximal turn-free paths, P, P' are highlighted.
New vertices s(P), s(P') (stars) are added in the augmented graph. New edges (solid
lines) connect s(P) to each vertex in P.

Note that a vertex can belong to at most 2 maximal turn-free paths, so that

there are at most 2|V(G)| such paths. It is clearly easy to compute M.{G) for any

grid-graph G. The following lemma shows that the tree-width does not increase too

much after augmenting G.

Lemma 5.2.1 For any grid-graph G and its augmented graph M.(G), their tree-

widths are related by the following inequality: tw(M(G)) ^ 3 • tw(G) + 2.

Proof: We will prove the lemma by showing how a tree decomposition of G can be

modified into a tree-width decomposition of M. (G) without increasing its width too

much.

51

Let us consider an tree decomposition (T, X) of G of width w. We can modify

(T, X) into a tree decomposition (T, X1) of M.(G) by inserting each vertex s(P) E S,

which corresponds to a maximal path P, into all bags containing any vertex of P.

To verify that (T,X') is a valid tree decomposition of M(G), we must verify

that 1) all vertices and edges belong to some bag in X and that 2) the set of bags

contain a given vertex v G V(M(G)) induces a subtree of T.

The first condition is trivially satisfied, as all new vertices S and edges E(S)

are added to some bag. We only need to verify the second condition; that is, we

need to verify that the bags containing an arbitrary s(P) vertex forms a subtree in

the tree decomposition. Let s(P) be an arbitrary vertex in S. A basic property

of tree decompositions is that the set of bags containing any vertex of a connected

component in G induces a subtree in T.3 Thus the set of bags containing any vertex

in any maximal path P induces a subtree in T. Since s(P) is added to every bag in

that subtree, it follows that the bags containing s(P) indeed forms a subtree.

It remains to bound the width of the tree decomposition (T, X'). Consider any

bag B G X. Since each vertex belongs to at most two maximal turn-free paths, at

most 2\B\ vertices of S may be added to B. Thus, if the tree-width of G is w, then

the tree-width of M.(G) is at most 3w + 2. •

Remarks. So far, we have shown that if a grid-graph G has a ^-milling walk,

then it has tree-width in O(k). Furthermore, for any such grid-graph, we can compute

in polynomial time the augmented graph M.(G) whose tree-width is at most a factor

3 This can be easily proven by induction on the size of the component U.

52

3 times the original grid-graph. In the remaining part of this section, we present a

formula <fi such that a grid-graph has a /c-milling walk if and only if its augmented

graph models </>. Then we can apply Courcelle's Theorem and conclude that the

GRID-GRAPH MILLING PROBLEM is FPT with turn-cost as the parameter.

Lemma 5.2.2 Let G = (V, E) be a grid-graph. Having a k-milling walk in G is a

property expressible in monadic second order logic on M.{G).

Proof: Suppose there is a /c-milling walk in G. We may identify this walk by a

sequence of turn-free path segments PQ, ..., P^ such that 1) every vertex is in at

least one path segment, and 2) the "endpoint" of path Pi is the "start-point" of path

Pi+\. These conditions may be expressed in MS2 on the augmented graph M(G) as

described below.

Before we present 4>, we need to develop some predicates or "sub-routines" that

will be used in 0. We will be using only vertex or vertex subset variables. The

former are denoted using lower-case letters; the latter are denoted using upper-case

letters. First, we need a predicate TFPath(P, s) that is true if and only if P induces

a turn-free path segment in the grid-graph. To do this, we need to check that 1)

the subgraph induced by P is connected and 2) every vertex in P is connected to

s, which corresponds to some maximal turn-free path segment. Thus, TFPath(P, s)

can be constructed as follows.

TFPath(P, s) = Connected(P) A S(s) A Vu(u e P ^ Adj(it, s))

Here, we assumed we are given a predicate Connected (P) that is true if and only if the

subgraph induced by P is connected. Note that this is equivalent to the condition

53

that for every bipartition (XX,X2) of P, there is an edge between some vertex in

Xi and some vertex in X2. We define Connected(P) and Bipartition^!, X2, P) as

follows.

Connected(F) = VXL, X2[Bipartition(Xi, X2) P) => 3ui, u2(Adj(ui, u2) A ux G Xx A u2 G X2)}

Bipartition{Xu X2, P) = Vu(u G P =» (u G Xi A u £ X2) V (u G X2 A u £ Xx))

Lastly, we need a predicate Endpoint (u, P) that checks whether u is an "endpoint"

of P. Here, we assume that P induces a turn-free path, so we only need to check

whether u has degree one in the path induced by P.

Endpoint(ii, P) = u G P A -da;, y(x ^yAx£PAy£P/\ Adj(x, u) A Adj(y, u))

Equipped with these predicates TFPath(P, s) and Endpoint (u, P), we can finally

present the MS2 formula 4> as follows.

<j> = 3P0,...Pk,v0,...,vk+1,s0,...sk (5.1)
k

/ \ (TFPath(P l ,5 l)) (5-2)
i=0

k

A (Endpoint(fj, Pi) A Endpoint(vi+\, Pi) (5.3)
i=0

/\Vu(\Ju£PA (5.4)

As previously stated, a &-milling walk can be identified by a sequence PQ, ..., Pk of

turn-free path segments. The second line verifies that PQ, ... ,Pk are indeed turn-

free path segments. The third line verifies that the turn-free path segments share

54

appropriate endpoints (note that this formulation can be modified to express the

existence of fc-milling tour by setting the first and last endpoint to be the same

vertex). The last line checks that every vertex is in some turn-free path segment. •

55

5.3 Dynamic programming FPT algorithm

In this section, we present a dynamic programming formulation for the GRID-

GRAPH MILLING PROBLEM. The basic idea is based on viewing the optimal milling

tour as a sequence of path segments induced by geometric decompositions of the

grid-graph and using dynamic programming to find these path segments.

In principle, our dynamic programming formulation is the same as the canonical

formulations used for the HAMILTONIAN CIRCUIT PROBLEM. The main difference

is that path segments in the GRID-GRAPH MILLING PROBLEM do not have to be

disjoint. Thus, we cannot bound the number of combinations using non-crossing

matchings, as was done for the HAMILTONIAN CIRCUIT PROBLEM. Another differ­

ence is that the GRID-GRAPH MILLING PROBLEM is a parametrized problem with a

parameter-tree-width bound, whereas the HAMILTONIAN CIRCUIT PROBLEM is not

a parametrized problem. Thus, we are able to provide an FPT algorithm for the

former problem, but not the latter.

Instead of tree decomposition, we will use sphere-cut branch decomposition as

the basis of our dynamic program. As mentioned in Chapter 3, sc-branch decomposi­

tion offers several advantages over tree-decomposition. Namely, an optimal sc-branch

decomposition can be computed in polynomial time, and the components in the sc-

branch decomposition can be viewed as geometric components in the embedded

graphs.

5.3.1 Branch decompositions and sc-branch decompositions

We start with a brief review of sc-branch decomposition and the associated

notation. A E-graph refers to a graph G = (V, E) embedded without edge crossings

56

on the unit sphere E. Define a noose to be a simple closed curve O in E that intersects

G at vertices only and intersects every face at most once. A sphere-cut (sc) branch

decomposition is a branch decomposition such that for every edge e E E(T), there

is a noose Oe such that mid(e) = Oe n V(G) and Gj E Aj U Oe, 1 ^ j ^ 2.

Lemma 5.1.1 showed that graphs having A;-milling walks must have branchwidth

upper-bounded by 4k+ 9. By Theorem 3.9.1, we can efficiently compute a sphere-cut

branch decomposition with width at most 4k + 9 for an arbitrary /c-millable graph.

Recall from Chapter 3 that the dynamic programming formulation examples

used rooted tree decompositions. By rooting the trees, we can define a bottom-

up sequence of sub-problems to be solved by dynamic programming. Our dynamic

program uses rooted sc-branch decompositions.

Here, we define rooted sc-branch decomposition and explain the associated nota­

tion. First, root T (of the sc-branch decomposition) at an arbitrary internal node r.

See Figure 5-2. Consider any edge e E E(T) of the rooted sc-branch decomposition.

Removing e separates T into two sub-trees T\,T<i. By convention, define T\ to be

the subtree not containing the root r. We use G\ and G? to refer to the subgraphs

induced by T\ and T2, respectively. Furthermore, let Oe be the noose corresponding

to e. This noose partitions the sphere into two open discs Ai, A2. The closed inte­

rior region of 0, denoted A^ = Ai U O, is the closed region on which G\ is drawn.

Vertices drawn on O are called boundary vertices, while vertices drawn in Ai are

called interior vertices of O.

57

Figure 5-2: (right) A sc-branch decomposition (T,fi) rooted at r. T\ is the com­
ponent of T — e that does not contain r. (left) The noose corresponding to e is
represented by the dotted line. The shaded region is Ai and the component drawn
in A^ is Gx.

5.3.2 Solving subproblems corresponding to each node in T

Consider an optimum milling walk W = {v\, ei, V2, ei, • • • > es-i, ^s} f° r a grid-

graph G = (V,E). Let O be any noose. We say W enters A£ using edge ej if

f j_ i G A2, Vj G O, and vj+i G A^. We say W leaves O using edge ej_i if ^-_i G A^,

u,- G 0 , and u,+i G A2.

Let e i , . . . , e/ and e' l5..., ej be the sequences of edges the optimum walk W

uses to enter and leave A^, respectively. Within A£, the optimum walk induces

a path between between e* and e\ for i = I,..., I. The union of all such paths

covers the interior vertices of Ai. However, this union does not necessarily cover

all boundary vertices. Specifically, the endpoints of each path are boundary vertices

(i.e., the endpoints are trivially covered), but the interiors of these paths may also

cover other boundary vertices. The dynamic program looks for the optimum walk

by enumerating possible combinations of paths for each noose.

58

We now define the subproblems corresponding to each nodes of the rooted sc-

branch decomposition. For any v £ V(T) — r, let Ov be the noose corresponding to

the edge between v and its parent. Consider an arbitrary subset C C Ov PI V(G) of

boundary vertices and let D = ((u,v) \ (u,v) € E(G\) and u or v is inside Ov) be

the set of edges with at least one endpoint on Ov. Let Q — {{yi,ei,e'i,v'j)'} be an

arbitrary multiset4 of C x D x C x D. We wish to compute SV(C, Q), which is a set

V = {Pi,..., P\Q\} of paths satisfying the following conditions:

1. For 1 ^ i ^ \Q\, Pi is a path with endpoints Vi and v[. The first (last) edge of

Pi is ei (e-).

2. For 1 ^ i ^ \Q\, Pi is contained in Gi.

3. The union of all paths in V must cover all boundary vertices given by C along

with the all interior vertices of Ov. The union of all paths may also cover

boundary vertices not in C.

4. The total number of turns of all paths in V is minimized.

We say v is solved if SV(C, Q) has been computed for all possible combinations of C

and Q.

The dynamic program proceeds in a bottom up manner, going from the leaves

to the root r of T. Next, we show how a subproblem for an internal node can

be solved using solutions of its two children (recall that internal nodes of a branch

decomposition always have degree 3). the Let v G V(T) — r be any internal node and

let x, y be the two children of v. Suppose x, y are already solved. See Figure 5-3 as a

4 We will impose restrictions on Q in the next section.

59

guide. Note that the subgraph drawn in the closed interior region of Ov is the union of

the subgraphs drawn in the closed interior regions of Ox and Oy. Consider SV(C, Q)

for an arbitrary choice of C and Q. The paths for (pi, e*, e'^pl) £ Q corresponds

to a sequence of path segments in the closed interior regions of Ox and Oy. Inside

Ox, this set of path segments corresponds to some SX(CX,QX) which has already

been computed. The same is true of Oy. Thus, to compute SV(C, Q), we enumerate

combinations of SX(CX, Qx) and Sy(Cy,Qy) that form the desired paths defined in

Q. See Figure 5-4 for an example. To solve v, we perform this procedure for every

choice of C, Q.

The procedure described above allows us to solve the subproblems for every node

except the root r. The root is a special case because it has three children {vi, 1*2,̂ 3},

which we assume are solved. Now, we may compute the milling walk by enumerating

all combinations of SVi(Ci, Qi), 1 ^ i ^ 3, which form a milling walk in G.

Figure 5-3: (left) edges a, b, c in the branch decomposition (right) nooses correspond­
ing to edges a, b, c.

60

Figure 5-4: In this example, we consider two different possible solutions for
Sov({Pi,p'i,o,},{(pi,ei,e[,p'1)}). A possible solution is a px — p[path, with ei,e[
as the first and last edges, coversing all interior vertices of A£x in addition to
the boundary vertices {pi,p[,a}. The first possible solution corresponds to two
path segments: the segment px — u and the segment u — p[. This corresponds to
the solutions Sox({Puu^v}^{iPi^i,e'2,u)}) and S0y({a,u,p'1},{(u,e2,e'1,p

,
1)}). The

second possible solution uses four total path segments. The reader should verify
that this corresponds to the solutions Sox({pi, u, v}, {(pi, ei, e'2, u), (v, e$, e'A) v)}) and
So,,({Pi, u, v, a}, {(u, e2, e'3, v), (v, e4, ei.pi)})

Bounding the number of path combinations

The dynamic programming formulation given in the previous section assumes

no restrictions on the path combinations - i.e., different choices of Q. In order to

obtain an FPT result, we must bound the number of such choices by f(k) for some

function on the parameter. We can modify the combinations so that only multisets

with at most k + 1 elements need to be considered. Observe that if Pi, P2 are two

arbitrary turn-tree path segments inside a convex noose O, then any path between

an endpoint of P\ and an endpoint of P2 must use at least one turn. Therefore, if a

61

milling walk P induces a sequence of paths P i , . . . , Pk+2 inside a convex noose, then

P must use at least k + 1 turns. In the Appendix, we show that it is possible to

construct an sc-branch decomposition with convex nooses for grid-graphs with unit

edge lengths.

For non-convex sc-branch decompositions, we can modify the dynamic program

so that only multisets Q with at most k + 1 elements need to be considered. Now, Q

is re-defined to be arbitrary multisets of D x D x {1, 2, 3}. This is used to distinguish

between three types of path segments:

type-1 : (e,, e-, 1,1) - the path Pi is NOT straight and required to stay inside Oe;

type-2 : (e*, e-, 1, 2) - the path Pi is straight and required to stay inside Oe; and

type-3 : (e ,̂ ej, 1, 3) - the path Pi is straight and required to leave Oe at least once.

Note that a type-3 path segment can be decomposed into a set of type-2 path seg­

ments inside Oe and a set of type-2 path segments in Oe. As defined thus far, the

decomposition of an optimum walk W into path segments relative to Oe is not unique.

To make this decomposition unique, we assume that if Pi, Pi+i are path segments of

type-2 or type-3 (in Oe), then W uses at least one turn outside Oe because otherwise,

Pi, Pj+i can be merged into a longer type-3 path segment. Furthermore, this implies

that the we only need to consider multisets Q with at most k + 2 elements.

We see that although the number of subproblems is bounded by a function of k,

the actual bound is impractical for actual implementation. Nonetheless, this dynamic

program establishes an FPT result for the GRID-GRAPH MILLING PROBLEM and

provides a basis for future research (see summary).

62

CHAPTER 6

Summary

Our goal was to use FPT techniques and algorithms on graphs to produce FPT

results for geometry problems. In our literature survey of covering tour problems,

we focused this approach in the context of covering tour problems. We saw that

the algorithms being exported are usually approximation algorithms. However, FPT

algorithms could be used instead of approximation algorithms. Thus, we were inter­

ested in FPT algorithms for these covering tour problems.

A major portion of this thesis was to present the concepts and techniques that

we used to obtain our FPT results. These concepts and techniques include tree-

width, tree decompositions, dynamic programming on tree decompositions, monadic

second order logic of graphs, parameter-tree-width bounds, and bidimensionality.

We used two classic problems - VERTEX COVER and HAMILTONIAN CYCLE -

as examples to demonstrate how these concepts and techniques are unified into a

framework for producing FPT results. Finally, we used this framework as a guide to

devise FPT algorithms for the GRID-GRAPH MILLING PROBLEM and we conclude

that these FPT algorithms can be used to obtain FPT results for the ORTHOGONAL

MILLING PROBLEM.

6.1 Improvements and future direction

While our results can be used to obtain an FPT result for the ORTHOGONAL

MILLING PROBLEM - a geometry problem, there are several practical issues that we

63

have not addressed. First, our FPT algorithms are not efficient and are therefore

of only theoretical interest. Recall that while Courcelle's machinery can be used

to obtain linear time algorithms, the hidden constant (depending on the tree-width

bound and complexity of the formula used) is prohibitively large. Thus, we do

not believe our FPT result can be improved to the point of being practical using

Courcelle's machinery.

However, we believe that the dynamic programming formulation can be im­

proved, probably significantly so. Recall that the TSP problem can be solved in

0(2felog/cn) compared to 0(2kkn) time for the GRID-GRAPH MILLING PROBLEM .

The main difficulty in our problem is that each vertex can be used more than once

and thus many more path segment combinations need to be considered. It is sensible

to believe that the number of such combinations can be reduced by using a different

formulation or a different decomposition paradigm. Furthermore, dynamic program­

ming can be used in conjunction with other FPT techniques such as kernelization to

obtain better results.

We have not fully established the applicability of the GRID-GRAPH MILLING

PROBLEM in context of computational geometry. The GRID-GRAPH MILLING P R O B ­

LEM can be used to model the ORTHOGONAL MILLING PROBLEM . However, this ge­

ometric milling problem is severely restricted as compared to other geometric milling

problems more often considered in computational geometry literature. It remains to

be seen how grid-graphs or their generalizations can be used to model more general

milling geometric milling problems.

64

Nonetheless, these graph milling problems can be used to approximate some of

the more general geometric milling problems. However, using an FPT algorithm in

this capacity has dubious value because the exported algorithm for the geometry

problem (which is assumed to be hard) neither runs in fully polynomial time (the

running time is exponential in the parameter) nor produces optimal solutions (be­

cause the grid-graph only approximates the geometry). An optimist point of view

is that FPT algorithms produce better quality solutions than approximation algo­

rithms; and in turn, FPT algorithms used in this capacity produce better quality

solutions to the original geometry problem. The trade-off between solution quality

and running time is ultimately application dependent. Since there are efficient con­

stant factor approximation algorithms for the GRID-GRAPH MILLING PROBLEM and

the current FPT algorithms developed in this thesis are not practical, we conclude

that, at the moment, the former approach is better for this problem. It remains open

whether there is a practical FPT algorithm for this problem.

65

Appendix: Convex sc-branch decomposi t ions

Here, we sketch how to obtain convex sc-branch decompositions for grid-graphs

with unit edge lengths (as opposed to integer edge lengths). We believe it is a

straightforward technicality to extend the ideas in this sketch into a formal proof.

If a grid-graph G has only unit length edges, then any "row" or "column" of G is

a separator, and thus can be a midset of a branch decomposition of G. We will see

that it is simple to construct convex nooses for these midsets, and tha t the resulting

sc-branch decomposition has O(k) if the grid-graph has a fc-milling walk. We will

implicitly describe this sc-branch decomposition as a set of cuts (midsets).

Let G be a grid-graph with unit edge lengths and assume G has a fc-milling

tour. We call a noose O convex if any turn-free path in G crosses O at most twice.

The set C; = {v | Tx{v) = i} is defined to be the set of vertices drawn on column i.

Similarly, Rj = {v \ TY(v) = j} is defined to be the set vertices drawn on row j . As

mentioned above, Cj is a separator for any XMIN < i < £MAX> where £MIN (^MAX) is

the smallest (largest) value of x such that there is a vertex v with Tx(v) = i. Since

we assume the grid-graph is connected and has unit edge lengths, there must be at

least one vertex in each column between the minimum and maximum. A column C;

is called long if |CV| > k + 1; otherwise, Cj is called short. The next lemma shows

that the number of long columns is bounded.

Lemma 6.1.1 Let G be a grid-graph with unit edge lengths. If G has a k-milling

walk, then G has at most k + 1 long columns.

66

Proof: We will show that if there are more than k + 1 long columns, then we can

find k + 2 pair-wise rook-independent vertices in G. This implies G does not have a

/c-milling walk.

Suppose C j j , . . . , Cjfc+2 are long columns. Let v^ be any vertex of C^. Since

|Cj2| > k + 1 and at most most vertex in Ci2 lies on the same row as v^, we conclude

that there is a vertex v2 6 Ci2 that is rook-independent with v\. This argument can

be applied inductively to obtain a set of k + 2 pair-wise rook-independent vertices as

promised. •

We define a cut along Ci to be a partitioning of the edge set of the grid-graph

into two parts:

• Eh = {{u,v) | Tx(u) ^ i,Tx(v) ^ i}, and

• El2=E(G)-EH.

It is easy to see that a convex noose can be drawn for any Q cut. We will cut the

grid-graph G along every short column. A consequence of the previous lemma is that

if we cut G along every short column, then we obtain a set of components, with each

component having "width" at most k + l.1 . Furthermore, since we used only short

columns for cuts and each component is involved in at most two cuts, it follows that

the midset of each component has size at most 2k + 2 G 0(k).

Now, let H be a component with width at most k + 1. We can further cut H

along each row of H. This produces a set of components with width at most k + 1

and height 1. Since the width of H is bounded by k + 1, we know that the midset

1 Here, the "width" of a component is defined to be XMAX — #MIN

67

of the resulting components is at most 2k + 2. It is easy to see that this sequence of

cuts along columns and then rows can be used to obtain an sc-branch decomposition

with bounded width.

68

REFERENCES

J. Alber, H. Fernau, and R. Neidermier, Parameterized complexity: Exponen­
tial speed-up for planar graph problems, Proceedings of the 28th International
Colloquium on Automata, Languages and Programming (2001), 261-272.

E. Arkin, M. Bender E. Demaine, S. Fekete, J. Mitchell, and S. Sethia, Optimal
covering tours with turn costs, SIAM J. Comput. 35(3) (2005), 531-566.

E. Arkin, S. Fekete, and J. Mitchell, Approximation algorithms for lawn mowing
and milling, Comput. Geom. Theory Appl. 17 (2000), 25-50.

E. Arkin, M. Held, and C. Smith, Optimization problems related to zigzag pocket
machining, Algorithmica 26 (2000), 198-236.

S. Arnborg, J. Lagergren, and D. Seese, Easy problems for tree-decomposable
graphs., J. Algorithms 12 (1991), 308-34Q.

L. W. Beineke and R. E. Pippert, The number of labeled k-dimensional trees,
Journal of Combinatorial Theory 6 (1969), 200-205.

H. L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees, Journal of Algorithms 11 (1990), 631-643.

H. L. Bodlaender and D. M. Thilikos, Constructive linear time algorithms for
branchwidth, Lecture Notes in Computer Science 1256 (1997), 627-637.

, Treewidth for graphs with small chordality, Discrete Applied Mathe­
matics 79 (1997), 45-61.

Hans L. Bodlaender, A linear time algorithm for finding tree-decompositions of
small treewidth, SIAM J. Comput. 25 (1996), 1305-1317.

V. Bouchitte and I. Todinca, Treewidth and minimum fill-in: grouping the min­
imal separators, SIAM J. Comput. 31 (2001), 212-232.

69

70

J. Canny and J. H. Reif, New lower bound techniques for robot motion planning
problems, Proc. 28th Annu. IEEE Sympos. Found. Comput. Sci. (1987), 49-60.

V. Chvatal, Hamiltonian cycles, The Traveling Salesman Problem (E. Lawler,
J. Lenstra, A. Rinnooy Kan, and D. Shmoys, eds.), John Wiley & Sons, 1985,
pp. 403-429.

K. Clarkson, Approximation algorithms for shortest path motion planning, Proc.
19th Annu. ACM Sympos. Theory Comput. (1987), 56-65.

B. Courcelle, The monadic second-order logic of graphs Hi: tree-decompositions,
minor and complexity issues, RAIRO Inform. Theor. Appl. 26 (1992), 257-286.

E. D. Demaine and M. T. Hajiaghayi, Fast algorithms for hard graph problems:
Bidimensionality, minors, and local treewidth, Lecture Notes in Computer Sci­
ence 3383 (2005), 517-533.

Frederic Dorn, Fedor V. Fomin, and Dimitrios M. Thilikos, Fast subexponential
algorithm for non-local problems on graphs of bounded genus, Manuscript (2006)
http://www.ii.uib.no/publikasjoner/texrap/pdf/2006-320.pdf.

, Fast subexponential algorithm for non-local problems on graphs of
bounded genus, Proceedings of the 10th Scandinavian Workshop on Algorithm
Theory, 2006, pp. 172-183.

R. G. Downey and M. R. Fellows, Parameterized complexity, Springer-Verlag,
1999.

H. L. Bodlaender F. Dorn, E. Penninkx and F. V. Fomin, Efficient exact al­
gorithms on planar graphs: Exploiting sphere cut decompositions, Tech. report,
Department of Information and Comput. Sciences, Utrecht University, 2005.

R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets,
Proc. SIAM-AMS Sympos. Appl. Math. 7 (1974), 43-73.

M. Held, On the computational geometry of pocket machining, Lecture Notes in
Computer Science 500 (1991), 17-53.

J. Hershberger and S. Suri, An optimal algorithm for euchdean shortest paths
in the plane, SIAM J. Comput. 28(6) (1999), 2215-2256.

http://www.ii.uib.no/publikasjoner/texrap/pdf/2006-320.pdf

71

[24] K. Iwano, P. Raghavan, and H. Tamaki, The traveling cameraman problem,
with applications to automatic optical inspection, Proceedings of the 5th Annual
International Symposium on Algorithms and Computation (1994), 29-37.

[25] T. Kloks, Treewidth of circle graphs, Algorithms and Computation (1993), 108-
117.

[26] , Treewidth. computations and approximations, Lecture Notes in Com­
puter Science 842 (1994), 173 - 184.

[27] K. Reinhardt, The complexity of translating logic to finite automata, Lecture
Notes in Computer Science 2500 (2002), 249-256.

[28] N. Robertson and P. D. Seymour, Graph minors, i. excluding a forest, Journal
of Combinatorial Theory Series B 35 (1983), 39-61.

[29] , Graph minors, x. obstructions to tree-decomposition, Journal of Com­
binatorial Theory Series B 52 (1991), 153-190.

[30] , Graph minors, xx. wagner's conjecture, Journal of Combinatorial The­
ory Series B (1992), 325-357.

[31] N. Robertson, P. D. Seymour, and R. Thomas, Quickly excluding a planar graph,
Journal of Combinatorial Theory Series B (1994), 323-348.

[32] H. Rohrig, Tree decomposition: a feasibility study, master's thesis, Max-Planck-
Institut fur Informatik, Saabrucken, Germany (1998).

[33] D. Seese, Interpretability and tree automata: a simple way to solve algorith­
mic problems on graphs closely related to trees., Stud. Comput. Sci. Artificial
Intelligence. 10 (1992), 83-114.

[34] P. D. Seymour and R. Thomas, Call routing and the ratcatcher, Combinatorica
14 (1994), 217-241.

[35] J. Vlades, R. E. Tarjan, and E. L. Lawler, The recognition of series-parallel
graphs, SIAM J. Comput. 11 (1982), 298-313.

[36] S. Wismath,- Characterizing bar line-of-sight graphs, Proceedings of the Sympo­
sium on Computational Geometry (1985), 147-152.

[37] X. Zhou, S. Nakano, and T. Nishizeki, Edge coloring partial k-trees, Journal of
Algorithms 21 (1996), 598-617.

