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ABSTRACT 

Many geometry problems can be solved by transformation to graph problems. 

Often, both the geometry version and graph version of the problem are NP-hard - and 

therefore not likely to be solved in polynomial time. One approach to solving these 

hard problems is to use fixed parameter tractable (FPT) algorithms. We present a 

framework for developing FPT algorithms for graph problems using dynamic pro­

gramming, monadic second order logic of graphs, tree-width, and bidimensionality. 

We use this framework to obtain FPT results for covering tour problems on grid-

graphs with turn costs. The results for these problems are not practical, but they 

demonstrate how the basic framework can be used to quickly obtain FPT results. 

We provide suggestions on further research to improve our FPT results and to apply 

our framework to obtain new FPT results. 
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A B R E G E 

De nombreux problmes de geometrie peuvent tre resolus par des transforma­

tions en problmes de graphes. Souvent, la version geometrique comme la version 

graphique du problme sont NP-dures - et il est done peu probable qu'elles puissent 

tre resolues en temps polynomial. Une approche pour resoudre ces probl mes difficiles 

est d'utiliser des algorithmes Tractables avec Pararn tre Fixe (TPF). Nous presentons 

un paradigme pour developper des algorithmes TPF pour des probl mes de graphes, 

en utilisant la programmation dynamique, la logique monadique du second ordre sur 

les graphes, la largeur d'arbre, et la bidimensionalite. Nous utilisons ce paradigme 

pour obtenir des resultats TPF pour des probl mes de tournees couvrantes dans des 

graphes en grilles avec cots sur les virages. Les resultats sur ces probl mes sont 

impraticables, mais ils demontrent comment le paradigme de base peut tre utilise 

pour obtenir rapidement des resultats TPF. Nous proposons des voies de recherches 

pour ameliorer nos resultats TPF, et pour appliquer notre paradigme pour obtenir 

de nouveaux resultats TPF. 
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CHAPTER 1 
Introduction 

The purpose of this thesis is to study fixed parameter tractable (FPT) algorithms 

and techniques for solving problems on grid-graphs1 , which can be used to solve or 

approximate geometry problems. We focus on covering tour problems on grid-graphs, 

but our techniques can be used for other problems on grid-graphs as well. 

1.1 Motivation 

A universal approach to solving a problem is to transform it a problem that we 

know how to solve. In doing so, we use existing algorithms for the latter problem 

and "export" them to solve the former. Graph problems are often targets of these 

problem transformations because graphs are suited to model many types of problems 

and graph theory is rich with algorithms and algorithmic techniques for solving these 

problems. We are interested in algorithms and techniques for solving problems on 

embedded graphs, or more specifically, grid-graphs. Such graphs can be used to 

model (sometimes only approximately) many geometry problems. In particular, we 

focus on covering tour problems on grid-graphs. 

As an example illustrating the approach of solving a geometry problem by trans­

formation to a graph problem, consider the SHORTEST PATHS PROBLEM in the plane 

1 See Chapter 2 for definitions of fixed parameter tractability and grid-graphs. 
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with polygonal obstacles [23]. This problem can be solved by computing the visibil­

ity graph for the geometric input, so that a shortest path in the geometric problem 

corresponds to a shortest path in the visibility graph, and then solving the short­

est paths problem on the visibility graph using Dijkstra's algorithm. Of course, 

Dijkstra's algorithm is efficient and produces optimal solutions. Furthermore, the 

visibility graph corresponding to the geometric input can be efficiently computed. 

Thus, the SHORTEST PATHS PROBLEM can be efficiently solved by reducing to a 

graph problem.2 

This approach can be generalized to solve the 3D SHORTEST PATHS PROBLEM. 

However, this problem is NP-Hard [12]. One difficulty in the 3D setting is that a 

shortest path need not travel via vertices of the polytope. This issue can be addressed 

by discretizing the problem using sample points and then solving the shortest paths 

problem on the visibility graph based on the discrete sample points [14]. However, 

the resulting solution is an approximation because the optimal solution to the original 

geometry problem may not be a solution in the visibility graph computed from the 

discrete sample points. 

In the examples above, the underlying graph problem is easy; i.e., shortest paths 

in graphs can be computed by an efficient algorithm. In turn, this algorithm can be 

exported to compute geometric shortest paths. One should reduce to easy problems 

whenever possible. When this is not possible, an alternative is to reduce to NP-

hard graph problems that can be solved using known approximation algorithms or 

2 We assume a real RAM model of computation for this example. 
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FPT algorithms. This way, approximation algorithms or FPT algorithms may be 

obtained for the original problem. Approximation algorithms are fast but need not 

find optimal solutions, while FPT algorithms find optimal solutions but need not 

have strictly polynomial running times. 

In the next section, we will introduce geometric covering tour problems as well 

as the graph problems that model them. Both the geometry and graph versions 

are NP-Hard. Efficient constant-factor approximation algorithms are known for the 

graph problems, which are the ones we are interested in. We choose to use the FPT 

approach to solve this problem, to obtain new results and to offer an alternative with 

the approximation approach. 

1.2 Covering Tour Problems 

Abstractly, a geometric covering tour problem is to find a "good" path (tour) 

for an object (cutter) to cut a given region (pocket). Different applications dictate 

different rules and restrictions on the input. For example, the cutter may be a unit 

circle, a unit square, or some other shape. The pocket may be a discrete point-set, 

a simple polygon, or a multiply connected region. The tour may be restricted to 

sequences of straight line segments, or it may be an arbitrary curve. The cutter may 

or may not be allowed to leave the pocket. The cutter may or may not be allowed 

to cut parts of the pocket multiple times. The cost function may be tour length, 

number of turns, a combination of both, or something entirely different. 

An example of a covering tour problem is the TRAVELING SALESMAN PROBLEM 

(TSP). In this case, the "cutter" is simply a point; the "pocket" is a discrete point 

set; the cutter is allowed to leave the region, but it is not allowed to cut any part of 
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the pocket multiple times. Note that this geometry problem is also a graph problem, 

where the vertices correspond to points from the discrete point set, and pairs of 

vertices are joined by edges with weight equal to the distance3 . 

We are interested in a type of covering tour problem called milling problems, 

which naturally arise in the context of numerically controlled (NC) machining. NC 

machines are used to shape metals by removing pockets from the initial shape to 

produce the desired shape. Given a pocket and a cutter, the objective is to find a 

milling tour. Upon completing a milling tour, the cutter must have removed exactly 

all material from the given pocket - no more and no less. Thus, milling problems 

are covering tour problems where the cutter is not allowed to cut outside the pocket, 

but it is allowed to cut parts of the pocket multiple times. Usually, the cutter shape 

is a unit square or circle. Traditionally, theoretical research has been focused on 

minimizing the tour length. We address the problem of minimizing the number 

of turns because it is a better cost measure for some applications and it can be 

parameterized more naturally. 

A graph problem that reasonably models the geometric milling problem is to 

find a tour that visits all vertices at least once, while edges can be used any number 

of times. We can equip the edges with directions when the problem is to minimize 

the number turns. Unfortunately, this general graph problem is W[2]-hard (when 

parameterized by number of turns) and therefore not likely to be solved using an 

3 Of course, if the edge weights are constrained to be rational numbers, then the 
graphs may be only approximations 
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FPT algorithm4 . We can address this problem by imposing restrictions on the 

input graphs. Specifically, we focus on grid-graphs. Such graphs arise naturally 

from transformation of the geometry problem (See Chapter 2). Looking ahead, 

this restriction allows us to prove parameter-tree-width bounds, and use algorithmic 

techniques to solve problems on bounded tree-width graphs. 

1.3 Statement of originality 

Many of the ideas in this work originated during discussions with Christophe 

Paul, Mike Fellows, Frances Rosamond, and my supervisor Sue Whitesides at the 

2007 INRIA McGill Bellairs Workshop on Geometry. I would like to thank these peo­

ple for their contributions. My original work is in chapters 4 and 5, which contains 

proofs of NP-Hardness, parameter-tree-width bound, fixed parameter tractability 

using Courcelle's machinery, and fixed parameter tractability via dynamic program­

ming on tree decompositions. I contributed substantially to these results and au­

thored the presentation of them in this thesis. 

1.4 Organization of the rest of the thesis 

In Chapter 2, we discuss related works on covering tour problems. These works 

generally provide approximation algorithms by transformation to graph problems. In 

Chapter 3, we present the background material necessary to obtain our FPT results. 

Most of Chapter 3 revolves around the concepts of tree-width and parameterized 

4 W[2]-hardness is the FPT analogue of NP-Hardness and polynomial-time algo­
rithms. That is to say, W[2]-hard are unlikely to be solvable using FPT algorithms. 
The purpose of this thesis is not to explore W[2]-hardness. See [19] for a complete 
introduction to parameterized complexity theory, including W[2]-hardness. 
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complexity. In Chapter 4, we prove that the GRID-GRAPH MILLING PROBLEM is 

NP-Hard and discuss the hardness of its generalizations. In Chapter 5, we show that 

the GRID-GRAPH MILLING PROBLEM is FPT by using Courcelle's machinery; we 

also dynamic programming to obtain a more efficient FPT algorithm. In Chapter 7, 

we summarize our work and discuss possibilities for future research. In the Appendix, 

we provide a sketch of an improvement on the dynamic programming 
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CHAPTER 2 
Related work in covering tour problems 

In this chapter and the next, we review some results pertaining to various geo­

metric covering tour problems and then discuss the theoretical background for our 

approach to solving these problems. Works presented in this chapter provide ex­

amples of various transformations from geometric covering tour problems to graph 

problems. In general, the geometry problems as well as the transformed graph prob­

lems are hard, and the results obtained are approximation algorithms. 

The problem we choose to focus on is based on the ORTHOGONAL MILLING 

PROBLEM as described in [2]. The ORTHOGONAL MILLING PROBLEM is to find a 

minimum turn cost tour for a unit square cutter so that it exactly cuts a pocket 

composed of unit square pixels. The cutter must move in an axis parallel direction 

and the cutter is not allowed to cut outside the pocket. This geometry problem is 

equivalent to the GRID-GRAPH MILLING PROBLEM (See Figure 2-1). The authors 

of [2] also introduced a special case of the ORTHOGONAL MILLING PROBLEM, known 

as the THIN-CHANNEL MILLING PROBLEM, which has applications to snow removal 

and street cleaning (See Figure 2-2). In this case, it is more natural to consider edge 

covering tours. The authors showed that finding minimum-turn orthogonal milling 

tours is NP-Hard and presented constant factor approximation algorithms- a 3.75 

factor for orthogonal milling and a 4/3 factor for thin-channel milling. 
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Figure 2-1: An instance of the ORTHOGONAL MILLING PROBLEM (left) and its 
corresponding grid-graph (right). 

LTLLU ms 
croc 

u 
sn 

Figure 2-2: THIN-CHANNEL MILLING PROBLEMS: the pocket does not contain a 
region of 2 x 2 square pixels (left). This problem can be modeled as an edge covering 
problem on the corresponding graph (right). 

The underlying technique used in these approximation algorithms is to merge 

minimum strip covers and minimum-turn boundary cycle covers (see Figure 2-2) into 

approximate minimum-turn covering tours. The authors showed that optimum strip 

covers and boundary cycle covers of grid-graphs can be found by solving matching 

problems on related graphs. Thus, the approximation algorithms to the orthogonal 

milling and thin channel milling problems were obtained by transformation to graph 

problems. 

Another covering tour problem is the LAWN-MOWING PROBLEM, which is 

closely related to the milling problem. The difference between the two problems 



Figure 2-3: A strip cover covers square pixels using horizontal or vertical strips (left) 
and a boundary cycle cover covers boundary pixels with a set of cycles. 

is that in the LAWN-MOWING PROBLEM, the cutter is permitted to cut outside the 

pocket1 . In [3], Arkin et al. showed that finding minimum length lawn-mowing tours 

is NP-Hard. The authors presented approximation algorithms for three versions of 

the LAWN-MOWING PROBLEM: 1) square cutter with axis aligned motion, 2) square 

cutter with unrestricted motion, and 3) circular cutter with unrestricted motion. In 

all versions, the pocket P can consist of several components, each component being 

a polygon with holes. 

These approximation algorithms were obtained by transforming the geometric 

instance into a grid-graph or grid-like graph (see Figure 2-4). It was shown that a 

good TSP tour in the grid-graph corresponds to a good lawn-mowing tour in the 

geometry problem. Specifically, a TSP tour within a of the optimal TSP tour pro­

duces a lawn-mowing tour within 3a/3 of optimum. Here, /3 depends on the cutter 

shape and motion. Specifically, f3 = I, (3 m 1.08, and (5 ss 1.15 for the three cases 

1 When milling, we must take care not to gouge material outside the pocket. When 
lawn-mowing, we are happy as long as the entire lawn is mowed. 
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described in the previous paragraph. Two well-known approximation algorithms for 

finding TSP tours are Christophede's —factor approximation algorithm and Arora's 

PTAS2 . These two algorithms can then be used to obtain |/? and 3(1 + e)f3 approx­

imations, respectively, for the lawn-mowing problem. 

Figure 2-4: The shaded region is P, the pocket to be cut. The background is a 
hexagonal lattice, where the diameter of the hexagons is equal to the diameter of 
the circular cutter. The graph problem is to find a minimum length tour covering 
all vertices enclosed within the solid border. 

Yet another covering tour problem is the TRAVELING CAMERAMAN PROBLEM 

(TCP), which is to cover a region (a set of connected components) with unit square 

"snapshots " and find a tour through the centers of those squares. An application 

for this problem is automated inspection. of printed circuit boards. The goal is to 

minimize the length of the tour, or more generally, to minimize a combination of 

the number of snapshots and the length of the tour. The authors of [24] showed 

2 These algorithms are for the Euclidean TSP problem, which includes TSP on 
grid-graphs 
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this problem to be NP-Hard and studied the rectilinear version of this problem. 

The authors provided an approximation algorithm, which is to first find a minimal 

square covering and then solve the TSP instance for the center points of the squares 

in the covering. An optimal square covering along with an optimal TSP tour on the 

centerpoints does not in general produce an optimal TCP solution. Using known 

approximation algorithms for these two sub-problems, the authors showed that the 

rectilinear TCP can be approximated to within (9 — e) in polynomial time. 

In practice, research on pocket milling has focused on automatically generating 

feasible covering tours. See [22] for a survey on generating contour-parallel and 

directional-parallel covering tours. Contour-parallel tours follow the contour of the 

pocket, resembling the altitude map of a mountain. Directional-parallel tours simply 

go back and forth in a prescribed direction. In the context of directional milling, 

one important optimization problem is to minimize the number of tool retractions3 . 

It was shown in [4] that minimizing tool retractions is NP-Hard for general pockets 

with holes. In the same work, the authors provided the first approximation algorithm 

(constant factor 5) and FPT result for minimizing tool retractions. Both algorithms 

are based on finding good machining paths in the machining graph (see Figure 2-5): 

Due to their wide range of applications geometric covering tour problems have 

received much attention in the literature. Most of these problems are hard, but have 

3 Retracting the cutting tool and re-positioning it takes extra time and can nega­
tively affect the quality of the pocket being cut. 
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Figure 2-5: Boundary for a pocket (left) and its machining graph (right). Any pair 
of nodes not joined by solid or dotted edges is implicitly joined by a retraction edge. 
An optimal machining path is a path covering all solid edges exactly once while using 
each dotted edge at most once and minimizing the number of retraction edges used. 

constant factor approximation algorithms. An important part of these approxima­

tion algorithms is to solve related combinatorial problems in graphs. Various versions 

of geometric covering tours can be approximated by the classic TSP problem. Ap­

proximation algorithms for minimizing other cost measures also make use of various 

known graph-theoretic algorithms. 
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CHAPTER 3 
Theoretical Background 

In this chapter, we present the theoretical background for our results. The main 

concepts covered are tree-width, parameter-tree-width bounds, dynamic program­

ming, and monadic second order logic of graphs. In Section 3.1, we introduce the 

basic notation used in the rest of this thesis. In Section 3.2, we introduce parame­

terized complexity and width parameters, which are central ideas in this thesis. In 

Sections 3.3-3.6, we discuss two techniques used to solve problems on bounded tree-

width graphs. In Section 3.7, we show how the previous two techniques are related 

to parameterized complexity theory. In Section 3.8, we present a detailed example 

incorporating the preceding material. Finally, in Sections 3.9-3.10, we discuss two 

FPT methods that are not tree-width based, but can be useful for our problem. 

3.1 Notation and definitions 

We use standard notation and definitions from graph theory. A graph G = 

(V, E) is a pair: V{G) is the set of vertices of G, and E(G) C V(G) x V(G) is the 

set of edges of G. We study simple1 , undirected graphs. The neighborhood of v, 

denoted N(v), is the set of vertices adjacent to v. The subgraph induced by W C V 

is G[W] = (W,{(u,v)eE\u,veW}). 

No parallel edges or loops 
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Two graphs H and G are isomorphic if there is a bijection / : V(H) —• V(G) 

such that (u,v) G E(H) 4=> (f(u),f(v)) G E(G). Contracting an edge («, f) means 

identifying its endpoints. Specifically, the vertices u and v are removed along with 

the edge (u,v) and a new vertex x is added along with edges between x and all 

vertices that were adjacent to u or v (except u and v). We say H is a minor of 

G if if is isomorphic to some graph resulting from a sequence of contractions, edge 

removals, or vertex removals in G. 

A plane graph is a pair G = (V, E) drawn on the plane satisfying the following 

conditions: 

1. vertices are drawn as points; 

2. edges are drawn as curves between vertices; and 

3. the interiors of edges do not intersect vertices or edges. 

Planar graphs are combinatorial graphs that can be drawn on the plane with the 

above conditions satisfied. In the context of plane graphs, "vertices" ("edges") can 

refer to either their drawings on the plane or the vertices (edges) in the underlying 

planar graph. A T,-plane graph denotes a graph drawn on a surface E, and E>g-graphs 

are graphs that can be drawn (without edge crossings) on a surface of genus g. 

3.2 Parameterized complexity 

When faced with an NP-Hard graph problem, one can hope to find algorithms 

to solve instances restricted to certain graph classes, such as trees, series-parallel 

graphs, planar graphs, etc. Many hard graph problems are easy on trees and series-

parallel graphs. In general, the complexity of any computational problem depends 

14 



on its input. This was one motivation behind the development of parameterized 

complexity theory, defined below. 

Definition 3.2.1 A graph parameter is a function P : G —> N. 

An example of a graph parameter is Pyci which assigns to each G the minimum 

cardinality of a vertex cover of G. 

Definition 3.2.2 A parameterized problem is a language L C E* x N, where E* 

is the set of finite strings in the given alphabet E, and k is the parameter. L is 

fixed parameter tractable (FPT) if there is an. algorithm that answers the question 

"(G,k) £ L?" with running time in 0(f(k)n°^). 

Instead of the formal definition, we present parametrized problems by specifying 

the input, the parameter, and the problem to be solved on the input and parameter. 

One way to view FPT problems is that they are tractable "by the slice." That is 

to say, FPT problems are tractable for instances where the parameter is bounded 

by a constant. Thus, we can study the complexity of a problem under different 

restrictions by varying our choice of the parameter. These ideas are illustrated by 

the next example. 

The VERTEX COVER PROBLEM is as follows. Given a graph G and k, compute 

whether G has a vertex cover using at most k vertices. From the perspective of 

classical complexity theory, an algorithm solving this problem is considered efficient 

if its running time is bounded by a polynomial in the length of the input2 . From 

2 We do not address the technical issue of how G and k are encoded, as it is not 
important in this discussion. 
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the perspective of parameterized complexity, an algorithm solving this problem is 

considered efficient if its running time is bounded by a polynomial in the length 

of the input and any function in the given parameter. Thus, each problem can be 

parametrized in many different ways, and the resulting parametrized problems can 

have different complexities. Using the VERTEX COVER PROBLEM as an example, 

we can use k, which is the desired size of the vertex cover, as the parameter. We 

will see that this parametrized problem is FPT\ meaning that it can be efficiently 

solved for graphs having small vertex covers. We could have chosen many other 

parameters for the VERTEX COVER PROBLEM. For example, this problem is also 

tractable when parametrized by the tree-width of the input graph; i.e., it is easy 

to compute minimum vertex covers for graphs having low tree-width. This problem 

is probably not tractable when parametrized by the maximum degree of the graph, 

since vertex cover remains NP-Hard on graphs with maximum degree 3. Thus, we 

can see how different choices of the parameter correspond to the complexities of the 

VERTEX COVER PROBLEM under various restrictions to the input graph. 

3.3 Tree-width 

Now we consider tree-width, which has the desirable property that many NP-

hard problems are easy for bounded tree-width graphs. As its name suggests, tree-

width measures how closely a given graph resembles a tree. Graphs with small 

tree-width are more tree-like. It is often possible to extend algorithms on trees to 

algorithms on graphs with small tree-width. 

Tree-width can be defined in many ways. Consider the following recursive defi­

nition of trees. A vertex is a tree. Adding a new vertex along with one edge joining 
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it to some vertex of an existing tree forms a new tree. This definition is the basis for 

/c-trees, defined below [6]. 

Definition 3.3.1 A k-clique is a k-tree. Let G be a k-tree, and let U be a k-clique 

of G. Then G' = (V(G) U {v}, E{G) U{{u,v)\ue U}) ŝ a k-tree. 

A graph is a partial k-tree if it is a subgraph of some k-tree. Finally, the tree-

width of a graph G is defined to be the smallest k for which G is a partial k-tree. 

There are efficient algorithms that use /c-trees to solve NP-Hard problems such as 

GRAPH ISOMORPHISM and EDGE COLORING [7, 37]. 

We focus on the concept of tree decompositions, which provides the basis for 

the most well-known definition of tree-width. The idea of tree decompositions is an 

important ingredient in Robertson and Seymour's work on graph minor theory [28]. 

Definition 3.3.2 A tree decomposition of a graph G — (V, E) is a pair (T, X), where 

T is a tree and X : V(T) —> 2V^ is a function assigning a subset of V{G) to each 

node of the tree, satisfying the following conditions: 

1. for any vertex x G V, there exists u G T such that x 6 X(v); 

2. for any edge e = (x,y) G E, there exists v ET such that {x,y} G X(v); 

3. for any vertex x £ V, the set of nodes {v | x G X(v)} induces a subtree ofT. 

See Figure 3-1 for an example of a tree decomposition. 

The subsets in the range of X are called bags of the tree decomposition. The 

width of a tree decomposition is \B\ — 1, where B is a maximum size bag in X. The 

tree-width of a graph is the minimum width among all its tree decompositions. Trees 

are graphs with tree-width 1, and series-parallel graphs are graphs with tree-width 

2. 
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Figure 3-1: A graph (left) and a tree decomposition (right). The subsets in X are 
represented by ovals, whose interconnections form a tree. The width of this tree 
decomposition is 3. 

3.4 Dynamic programming on bounded tree-width graphs 

Dynamic programming can be used to solve problems that have optimal sub­

structure - meaning that the optimal solution of subproblems can be used to compute 

the optimal solutions of the original problem. 

The simple structure of trees naturally lends itself to dynamic programming. 

When dynamic programming is used on trees, a "subproblem" almost always refers to 

a generalized version of the original problem restricted to a subtree. To demonstrate 

this idea, let us use dynamic programming to solve the MINIMUM VERTEX COVER 

PROBLEM on trees. Let T be a tree rooted at r. For each node v, define Tv to be the 

subtree rooted at v. Each subtree Tv has two subproblems, whose optimal solutions 

are defined as: 

• A(v) = \S\, where S is a minimum vertex cover of Tv such that w e S ; 

• B(v) — \S\, where S is a minimum vertex cover oi'Tv. 
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If v is a leaf, A(v) = 1 and B[y) — 0. Otherwise, let ui,... ,Uk be the children of v. 

The following relations are used to compute A(v), B(v). 

A(v) = 1 + B(ui) + --- + B{uk) 

B(v) = min(A(V),Ef=1J4(^)) 

The optimal solution to the original problem is B(r). This dynamic programming 

formulation can be implemented in linear time. The reason A(v), B(v) can be com­

puted from such a simple relation is because 1) there are no edges between TUi and 

TUj for any i ^ j , and 2) there are no edges between TUi and T — Tv for any i. That 

is to say, every internal node v 6 T is a separator, separating T into components 

T T T - T 
•LUl ) ' • • ) -LUfi ) •L -1 V 

These nice properties can be generalized to graphs of bounded tree-width. Let 

G b e a graph and let (T, X) be a tree decomposition of width k. For a given subtree 

T" C T, define G[T'] to be the subgraph induced by the bags of T"; i.e., G[T'] = 

G[{Jv&v(T') X{v)]. Let v be any internal node in T, and let U\,..., u^ be its children. 

It is easy to show from the definition of tree decomposition that there are no edges 

between any of the following induced subgraphs: G[TU l], . . . , G[TUk], G[T — TV]. That 

is the say, bags corresponding to internal nodes of a tree decomposition are separators 

ofG. 

Most dynamic programming algorithms for solving problems on trees can be 

generalized to solve problems on bounded tree-width graphs. The subproblems are 

now defined on the graphs induced by subtrees of the tree decomposition. On graphs 
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with tree-width at most k, the number and size of subproblems are bounded by some 

function of k. 

As an example, we will generalize the dynamic programming formulation for 

MINIMUM VERTEX COVER on trees to solve the problem on graphs of bounded 

tree-width. Before doing so, we describe nice tree decompositions, on which dynamic 

programming is more straightforward. 

Definition 3.4.1 A nice tree decomposition is a rooted tree decomposition such that 

each node u e T is one of four types: 

• leaf: u is a leaf, and \X(u)\ = 1; 

• join: u has two children t>i,i>2, and X{u) — X(vi) = X(v2); 

• introduce: u has one child v, and there is a vertex such that X(u) = X(v) U x; 

• forget: u has one child v, and there is a vertex such that X(v) — X(u) U x. 

In linear time, a tree decomposition can be converted into a nice tree decompo­

sition with the same width and 0(n) nodes [26]. Dynamic programming algorithms 

on nice tree decompositions tend to have the following structure. 

1. Find a nice rooted tree decomposition (T, X) of G with bounded tree-width. 

2. In a bottom-up order, compute a table of partial solutions for each node of the 

nice tree decomposition. This is done by considering how to find the partial 

solutions for each of the four types of the node. The computation for a given 

node must only use use tables from its children. 

3. Extract the solution from the table corresponding to the root. 

Let us apply this technique to solve the MINIMUM VERTEX COVER PROBLEM 

on graphs with tree-width at most k. Assume a nice rooted tree decomposition (T, X) 
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with width at most k is given. The subproblems for a given node v G T are denned 

as follows: for each 5 C X(v), find the cardinality of a minimum vertex cover W in 

G[TV] such that W n X{v) = S. The solution is denoted AV(S), with the convention 

that AV(S) = oo if no solution exists. 

Let us show how to compute AV(S) for each type of node. Suppose v is a 

• leaf node: Then AV(Q) = 0 and Av(X(v)) = 1; 

• join node: Then AV(S) = AUl(S) + AU2(S) — \S\, where Ui,u2 are the children 

of v; 

• forget node: Let X(u) = X{v) U {x}, where u is the only child of v. Note 

that G[TV] = G[TU]. From this observation, it is easy to see that AV(S) = 

mm(Au(S),Au(Sn{x})); 

• forget node: Let X(v) = X(u) U {x}, where u is the only child of v. Observe 

that any neighbor of x in G[TV] must appear in the bag X(v) because x does 

not appear in any bag of Tv except X(v).3 For any S C X(u), consider the 

following two cases: 

1. If S covers all edges incident to x, then AV(S) — AU(S) and Av(SC\{x}) = 

MS) +1. 

2. Otherwise, Av(S) = oo and AV(S D {x}) = AU(S) + 1. 

The size of the minimum vertex cover is mmscx(r){Ar(S)), where r is the root 

of the tree decomposition. Each bag of the tree decomposition contains at most k +1 

vertices, implying that the number of subsets for any bag is at most 2fc+1. Computing 

3 This follows from the third property in the definition of tree decomposition. 
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AV(S), for any choice of v and S, is constant time in the RAM model. Since there are 

0(n) nodes in the nice tree decomposition, this dynamic programming formulation 

can be implemented in 0(2kn) time. 

3.5 Computing tree decompositions 

Often, a tree decomposition is not given in the input. Instead, only a graph 

is provided. In this case, a necessary preprocessing step is to find a tree decom­

position of low width. This preprocessing step is problem-independent, but it is 

important because most dynamic programming algorithms on a tree decomposition 

are exponential time in the width of the given decomposition. 

Finding the tree-width of graphs is NP-Hard, even when restricted to graphs of 

bounded degree, bipartite graphs, and complements of bipartite graphs [9, 25]. The 

problem is open for planar graphs. The problem is easy for graphs with a polynomial 

number of minimal separators - for example, chordal graphs4 [11]. 

Determining whether a graph has tree-width at most k, and constructing a 

decomposition when this is the case is FPT [10]. Although the running time is linear 

in n, it is exponential in the parameter. The reference [10] does not give an explicit 

running time, as it grows too fast with k to be considered practical (see [32] for 

experimental results). There are also practical efficient algorithms for specific small 

values of k. For example, we mentioned that graphs of tree-width 1 are trees, and 

graphs of tree-width 2 are series-parallel graphs; these classes of graphs are easy to 

4 A graph is chordal if every cycle of length > 3 has an edge between non-
consecutive vertices 
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recognize [35]. The best known polynomial time approximation algorithm is a vector 

programming based algorithm that computes decompositions of width 0(ky/logk) 

for graphs of tree-width k. 

3.6 Branchwidth 

Bounded tree-width graphs are suitable for efficient dynamic programming be­

cause they can be decomposed into components separated by small separators. There 

are other width parameters and corresponding decompositions that can likewise be 

used for dynamic programming. In this section, we present branchwidth and present 

some of its advantages over tree-width. Branchwidth is a notion introduced by 

Robertson and Seymour [29]. 

Definition 3.6.1 A branch decomposition of a graph G — (V, E) is a pair (T, /i) 

where 

1. T is a ternary tree, and 

2. \x : L —> E(G) is a bijection between the leaves ofT and the edges of G. 

Each edge e G T is associated with a midset defined to be mid(e) = V(Gi)(~) V(G<2), 

where G\ and G<i are the subgraphs induced by the edges associated with the leaves 

in the two subtrees of T — e. Thus, each edge of a branch decomposition partitions 

the edge set of G. The width of a branch decomposition is the size of the largest 

midset. The branchwidth of a graph, denoted bw(G), is the minimum width among 

its branch decompositions. The branchwidth and tree-width of a graph are related 

by the following inequality. 

Theorem 3.6.2 For any connected graph with more than 1 edge, bw(Gr) ^ tw(G) + 

1 < L3/2bw(G)J) [30]. 
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Figure 3-2: (left) A graph with labeled edges and (right) its branch decomposition. 
The width of this branch decomposition is 3. 

Computing the branchwidth of a graph is NP-Hard [34]. When parameterized 

by branchwidth, the problem is FPT [8]. As is the case with tree-width, this FPT 

algorithm is not practical. However, unlike tree-width, the branchwidth of planar 

graphs can be computed by a practical and easily implemented algorithm with 0(n3) 

running time [34]. Furthermore, there are "geometric branch decompositions," such 

as sphere-cut branch decomposition, which can be used to design more efficient and 

simpler dynamic programming algorithms for planar graphs [20]. 

3.7 Monadic second order logic of graphs 

One way to show a graph problem is tractable on bounded tree-width graphs 

is to provide an efficient algorithm- for example, using a dynamic programming 

formulation. This is the usual algorithmic perspective. In this section, we present a 

different and theoretically interesting perspective. Instead of designing an algorithm 

to solve a problem, we describe the problem to a genie, who then provides us with 

a linear time algorithm to solve the problem. This genie speaks in the language 
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of monadic second order logic, and we must describe our problems in the genie's 

language in order to obtain linear time algorithms for them. 

Before describing monadic second order logic, we introduce some more back­

ground on logic and descriptive complexity. Descriptive complexity theory provides 

a way to classify the complexity of problems. This type of theory classifies the 

complexity of a problem based on its expressibility in some logic. 

We assume the reader is familiar with first order logic. Second order logic 

extends first order logic by allowing quantification over arbitrary finite- ary functions 

and relations, instead of quantification over just individual elements in the domain. 

The so called existential second order logic formulas, denoted 3SO, are those of the 

form 3X\,..., Xk4>, where X\,..., X^ are variables for finite-ary relations and 0 is a 

formula of first order logic. 

We say a graph G models a formula (p of some predefined logic L, denoted G \= <fr, 

if there is a satisfying assignment of vertices, subsets of vertices, edges, and subsets 

of edges of G to the variables of corresponding types in <f>. A problem P is expressible 

in L if there exists a <f> such that G \= (f> if and only if G is a yes-instance of P. When 

there is no ambiguity, we use L to denote the class of all problems expressible in L. 

Now, we present a key result from descriptive complexity. 

Theorem 3.7.1 NP C 3SO [21J 

This result is, in a sense, a hardness result about the worst-case complexity 

of problems expressible in 3SO. This is because NP-Complete problems, for which 

we do not expect to be efficiently solvable, are expressible in 3SO. We are, looking 

for a different type of result, one that provides efficient algorithms for all problems 
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expressible in some logic L. Since our focus is on problems tractable for bounded 

tree-width graphs, we are interested in finding a logic L such that all problems 

expressible in L can be efficiently solved on bounded tree-width graphs. 

The logic 3SO is too expressive to be the one we seek because there are NP-

Complete. problems that are apparently difficult on trees. Since all NP-Complete 

problems are expressible in 3SO, and trees are trivially bounded tree-width graphs, 

it is unlikely that all problems expressible in 3SO can be efficiently solved even when 

restricted to bounded tree-width graphs. 

The logic we seek is a restriction of second order logic called monadic second or­

der logic. Monadic second order logic allows quantification over only unary relations 

(or equivalently, subsets), instead of quantification over arbitrary finite-ary relations. 

We use MS2 to denote monadic second order logic of graphs. In this case, the graph 

structure is given by G — (V,E,I), where V and E are the vertex and edge sets, 

and / is the incidence relation between vertices and edges. MS2 has the following 

predicates: 

1. x G X, where x is a vertex(edge) variable and X is a vertex(edge) subset 

variable5 ; 

2. Adj(ii, v), where u,v are vertex variables; 

3. Inc(-u, e), where v is a vertex variable and e is an edge variable; and 

4. equality testing for vertex/edge/vertex subset/edge subset variables. 

5 We use the convention that lower-case variable names are used for single elements 
and upper-case variable names are used for subsets. 
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Problems expressible in MS2 are efficiently solvable for bounded tree-width graphs. 

This result, known as Courcelle's Theorem, is stated below. 

Theorem 3.7.2 Courcelle's Theorem [15]: Any graph property that is expressible in 

MS2 can be recognized in linear time on bounded tree-width graphs. 

There are many NP-hard problems that are expressible in MS2. The above 

theorem tells us that all such problems are solvable in linear time on graphs of 

bounded tree width. Furthermore, the proof of the theorem is constructive in the 

sense that one could, in principle, implement an algorithm that takes in an MS2 

formula and outputs a linear time algorithm solving the corresponding problem. As 

an example, we show that 3-COLORABILITY, an NP-hard problem, is expressible 

in MS2 and thus efficiently solvable on bounded tree-width graphs. The following 

formula expresses 3-COLORABILITY. 

</> = 3Xux2,x3 V u{ue Xi VUEX2\/UEX3) 

V u(-i(u E Xx Au E X2) A ->(u E X2 Au E X3) A->(u E Xx A u G X3)) 

V u, u[-i Adj(u, v) V 

(-.(u EX1AvEX1)A^(uEX2AvE X2) A ^{u E X3 A v E X3))} 

Here, all variables are for vertices or vertex subsets. The subsets Xi,X2,X3 

correspond to the vertex coloring. The first line checks that each vertex is given a 

color. The second line checks each vertex is given at most one color. The third and 

fourth lines check that adjacent vertices are not given same colors. Thus, any graph 

that models 4> is 3-colorable. 
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There are many possible extensions to MS2. An useful extension for solving op­

timization problems is LinEMSOopt (linear evaluation MSO optimization problem). 

First, augment the input graph with m functions (weights) /f,..., / ^ that evaluate 

vertices or edges to rational numbers. Extend these functions to subsets of vertices 

or edges as follows: for any subset A, f^(A) — Eaeyi/jG(a). Using thse functions, 

linear terms can be built using "+" and "—". Linear evaluation relations "=" and 

"<" can be used to compare linear terms with rational constants. A LinEMSOopt 

problem is defined as follows. 

Definition 3.7.3 Let <fi be an MSO formula, and let 4>x be a linear evaluation relation 

and let 4>2 be a linear evaluation term. A problem is a LinEMSOopt problem if it can 

be stated in the following form: 

min{02(A1, ...,Ak)\G\= (f>(Ai, ...,Ak) and <p2(Au ...,Ak) holds}, 

where A\,..., Ak are vertex or edge subset variables. 

As is the case with MS2) problems expressible in LinEMSOopt are also solvable in 

linear time on bounded tree-width graphs. 

Theorem 3.7.4 Any graph property that is expressible in LinEMSOopt can be rec­

ognized in linear time on bounded tree-width graphs. [5] 

An example of a LinEMSOopt problem is MINIMUM W E I G H T VERTEX COVER. 

Let G be a graph, and let / : V(G) —>• Q+ be the weights of vertices. The formula 

<j){A) = Vv[v £ A V 3u(u £ AA Ad'](u,v))] is true if and only if A is a vertex 

cover in G. For this problem, we do not need 4>\. Trivially, ^(A) = f(A), so that a 

vertex cover A minimizing (j)2 (A) is a minimum weight vertex cover. Thus, MINIMUM 
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W E I G H T VERTEX COVER is expressible in LinEMSOopt using the <p, </>i, <p2 we have 

just defined. 

Another useful extension arises by labeling of vertices (edges). That is to say, 

we apply labels, from a predetermined finite set, to vertices (edges) of the input 

graph and test for these labels within the MS2 formulation. For example, we could 

color the vertices of the input graph with two colors - red and green. Then a vertex 

cover using only red vertices can be checked using the following formula: <f>'(A) = 

4>{A) A Mv{v £ A = » Red(v)), where <f> is the formula given in the previous example. 

Lastly, the expressive power of MS2 can be enhanced by a technique called 

semantic augmentation. We say a problem P is expressible in MS2 via semantic 

augmentation if there exists a (j) and AA : G —> G, where G denotes the set of 

all graphs, such that G is a yes-instance of P if and only if M.(G) |= (p. We call 

M{G) the augmented graph because it is often the original G augmented with new 

vertices and edges so that certain properties of G that are not expressible in G are 

expressible in M(G). In the context of FPT design, we require M to be polynomial 

time computable and to preserve tree-width bounds. By the latter we mean that 

there exists a function / such that tw(A4(G)) < /(tw(G)) for all G. Courcelle's 

Theorem imples that problems expressible in MS2 via semantic augmentation can 

be efficiently solved for graphs of bounded tree-width. Our MS2 formulation for the 

GRID-GRAPH MILLING PROBLEM will use semantic augmentation. 

While MS2 and its extensions are extremely powerful in their expressiveness, 

it is usually impractical to implement an algorithm for all but the most simplest 
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formulas6 . This is because a formula with length k and q quantifier alternations7 

k 

translates to an automaton with 2k' states, where q is the height of the exponential 

tower. In fact, the exponential tower blow-up is unavoidable in this approach [27]. 

3.8 Parameter-tree-width bounds 

In the previous sections, we presented two techniques used to solve problems 

on bounded tree-width graphs. These techniques produce algorithms with f(w)n°^ 

running times, where w is the tree-width. While the right parameter for a problem 

is application dependent, many graph problems have natural, canonical parameters. 

In this section, we discuss the relationship between these parameters and tree-width, 

as well as its algorithmic consequences. 

Each graph parameter P has a related parameterized problem "is P(G) ^ k" or 

"is P(G) ^ k"? We say this problem has a parameter-tree-width bound if there exists 

a function / such that if tw(G) > f(k) then the instance is easy to solve. Often, 

"easy to solve" means the solution is trivially "Yes" or "No." 

Parameter-tree-width bounds can be used in conjunction with tree decomposi­

tion based algorithms to produce FPT algorithms. To see this, suppose we are given 

a problem with a parameter-tree-width bound as well as an algorithm A that solves 

the problem in g(w)n°^ time for graphs with tree-width w. Then the following 

algorithm is an FPT algorithm that solves the problem for input (G, k): 

6 The basic idea is to translate M5 2 formulas into tree automatons. See [33]. 

7 The number of quantifier alternations in a formula is the number of times an 
existential (universal) quantifier is followed by an universal (existential) quantifier. 
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1. Determine the tw(G) in FPT time (see Section 3.5); 

2. If tw(G) > f(k), then output the trivial "Yes" or "No" solution; 

3. Otherwise, apply algorithm A to solve the problem. 

The running time of the last step (if neccessary) is at worst g{f{k))n0^\ Thus, this 

is an FPT algorithm parameterized by k. In the next section, we discuss techniques 

for establishing parameter-tree-width bounds. 

3.8.1 Tree-width, grid minors, and bidimensionality 

In order to prove parameter-tree-width bounds, one must use the structural 

properties of graphs with large tree-width. The property that is most often used is 

based on grid minors. 

Definition 3.8.1 The k x k-grid, denoted Q^, is the plane graph with vertex set 

{(hj) I 0 ^ i, j ^ k — 1} and edges between vertices distance 1 apart. 

It is not difficult to see that the k x /c-grid has tree-width k, and thus any graph 

containing the k x fc-grid as a minor has tree-width at least A;.8 The converse is 

true "up to a constant" for planar graphs, and provides a useful tool for proving 

parameter-tree-width bounds. 

Theorem 3.8.2 Let k ^ 1 be an integer. Every planar graph with no (k x k)-grid 

as a minor has branchwidth ^ Ak — 3. and tree-width ^ 6A: — .5. [31] 

8 Tree-width, branchwidth, as well as many other width parameters are minor-
cloesd; i.e., if H is a minor of G, then tw(if) ^ tw(G). 
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To show how Theorem 3.8.2 can be used to prove parameter-tree-width bounds, 

we prove the VERTEX COVER PROBLEM restricted to planar graphs has a parameter-

tree-width bound (using the desired size of the vertex cover as the parameter). Let 

c = \y/k + 2]. Note that Qc contains more than Ak edges. Since any vertex is 

incident to at most 4 edges, it is not possible for k vertices to cover all edges of Qc. 

Let G be a planar graph. By Theorem 3.8.2, if G has tree-width greater than 

\6y/k + 2] — 5, then G contains a minor isomorphic to Qc. Since it is impossible to 

cover Qc using k vertices, it is also impossible to cover G using k vertices. 

Note that this result applies only to planar graphs, and thus our parameter-

tree-width bound only applies to the VERTEX COVER PROBLEM restricted to planar 

graphs. In the next section, we present a generalization of Theorem 3.8.2 to larger 

graph classes. 

3.8.2 Bidimensionality 

Bidimensionality is a concept defined by Demaine et al. [16] to study graph 

parameters of graphs containing large grids. 

Definition 3.8.3 A graph parameter P is g(r)-bidimensional if 

1. P(G) ^ g(r) for an r x r grid, and 

2. for all G in a given family of H-mmor-free graphs, P{G) does not increase 

when taking minors? 

9 H-minor-free graphs are the family of graphs that do not contain a fixed if as a 
minor. 
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Examples of bidimensional parameters include: the number of vertices, the number 

of vertices in a minimum VERTEX COVER, DOMINATING SET, OR FEEDBACK V E R ­

TEX SET [16]. In fact, these parameters are 0(r2)-bidimensional. In a long series 

of papers, Demaine et al. developed the theory of bidimensionality and studied its 

algorithmic consequences. From the perspective of FPT algorithm design, the key 

result is that bidimensional parameters have parameter-tree-width bounds. 

Theorem 3.8.4 / / a parameter P is g(r)-bidimensional, then for every graph G in 

the family associated with the parameter P, tw(G) = 0(g~1(P(G))) [16]. 

Note that Theorem 3.8.2 implies that bidimensional parameters have parameter-

tree-width bound for planar graphs. In order to prove Theorem 3.8.4, Demain et al. 

generalized 3.8.2 to hold for i7-minor-free graphs. 

Theorem 3.8.5 For any fixed graph H, every H-minor-free graph of tree-width w 

has an Q(w) x Q(w) grid as a minor [16]. 

Furthermore, this bound is tight up to a constant factor, which depends on H. 

This implies that the tree-width bound is also tight for bidimensional parameters. 

Although we omit the details here, it is worth mentioning that to prove Theorem 

3.8.5, Demaine et al. extended known combinatorial results on planar graphs to 

results on bounded genus graphs, then "almost-embeddable graphs," and finally, 

clique sums of "almost-embeddable graphs." Thus, statements analogous to Theorem 

3.8.5 are also true of these graph classes. It is also known that general graphs with 

tree-width greater than 202r5 contain r x r-grid minors [31]. While this result can 

be used to prove parameter-tree-width bounds, the resulting bound does not lead to 

efficient FPT algorithms. 
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Prior to the introduction of bidimensionality theory, many parameter-tree-width 

bounds were obtained using Theorem 3.8.2. In retrospect, many of these previously 

established parameter-tree-width bounds can be obtained from the theory of bidi­

mensionality. Furthermore, bidimensionality can be used to extend the tree-width 

bounds to larger graph classes. For example, we used Theorem 3.8.2 to prove VER­

TEX COVER on planar graphs has bounded tree-width. We can use the same ar­

gument to show that the size of a minimum vertex cover is a bidimensional graph 

parameter. It follows immediately from Theorem 3.8.4 that VERTEX COVER on H-

minor-free graphs has bounded tree-width. This result, in conjunction with the tree 

decomposition-based dynamic programming for VERTEX COVER, implies VERTEX 

COVER on H-minor-free graphs is FPT. More generally, Demaine et al. stated the 

following: 

Theorem 3.8.6 Suppose a g(r)-bidimensionalparameter P can be computed in f(w)n°^ 

time, if a tree decomposition of G with width at most w is given. Then there is an 

FPT algorithm deciding P(G) ^ k on any graph in P's corresponding graph class 

with running time [f(0(g-\k)))-\-29~1{k)]n°w [16]. 

This result can be used to obtain FPT algorithms for many bidimensional pa­

rameters, such as VERTEX COVER, DOMINATING SET, FEEDBACK VERTEX SET, 

etc. for all #-minor-free graphs. As an aside, we mention that bidimensionality can 

also be used as a framework to design polynomial time approximation schemes and 

to prove many previously established separator theorems. 
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3.9 Example: finding Hamiltonian cycle on planar graphs 

So far, we have seen techniques for solving problems on bounded tree-width 

graphs and for proving parameter-tree-width bounds. We have seen how these tech­

niques can be used together to obtain FPT results for parameterized problems. In 

this section, we study how these techniques can be applied to the HAMILTONIAN 

CYCLE PROBLEM and the related /C-CYCLE parameterized problem10 on embedded 

graphs. As we have seen in Chapter 2, the HAMILTONIAN CYCLE PROBLEM is a 

type of covering tour problem. 

The HAMILTONIAN CYCLE PROBLEM is, of course, NP-Complete on planar 

graphs. Hamiltonicity is a property expressible in MS2. To see this, note that a 

graph contains a Hamiltonian cycle if every cut has at least two edges crossing it. 

This property is expressed by the following MS2 formula </>: 

(p = yX1,X2 [ Vx((xeXlAx(£X2)\/(x(£XlAx£X2))^ 

3ui G Xuvi G Xuu2 G X2,v2 £ X2(Adj(wi,u2) A Ad](vuv2))] 

The variables Xi,X2 correspond to vertex subset variables. The first line checks 

that Xi,X2 form a bipartition of the vertex set (this is the same as a cut). The 

second line checks that there are two edges between Xi and X2 when they form a 

bipartition. Thus, by Courcelle's Theorem, we know that the HAMILTONIAN CYCLE 

PROBLEM can be solved in linear time on graphs of bounded tree-width. However, 

as previously stated, the hidden constant is too large to be considered practical. 

Given (G, k), the problem is to find whether G has a cycle of length k. 
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In [20], Dorn et al. used dynamic programming on sphere-cut branch decompo­

sitions to solve the Hamiltonian cycle problem (on planar graphs) in 0(2°^^A;n + n3) 

time, where k is the branchwidth. To obtain this result, the authors introduced the 

idea of sphere-cut (sc) branch decompositions, which relate combinatorial separators 

(vertices in a graph) to geometric separators (simple, closed curves on a surface). 

Sphere-cut branch decomposition is defined below. 

A E-graph refers to a graph G = (V, E) embedded without edge crossings on 

the unit sphere E. Define a noose to be a simple closed curve O in E that intersects 

G at vertices only and intersects every face at most once. A sphere-cut branch 

decomposition is a branch decomposition such that for every edge e 6 E(T), there is 

a noose Oe with mid(e) = OeC\ V(G) and Gj £ Aj U Oe, 1 ^ j ^ 2. In other words, 

the noose Oe partitions the embedded graph in the same way that its corresponding 

edge in the branch decomposition partitions the purely combinatorial graph. Recall 

that an optimal branch decomposition can be computed in 0(|V|3) time for planar 

graphs. This is also true of sc-branch decompositions. 

Theorem 3.9.1 Let G = (V, E) be any graph embedded on the unit sphere, with 

bw(G) = / and no vertices of degree 1. Then there exists an sc-branch decomposition 

of G with width at most I and such a branch decomposition can be constructed in 

0(\V\3) time. [20] 

Dorn et al. used sc-branch decomposition to improve on the traditional dynamic 

programming formulation for the HAMILTONIAN CYCLE PROBLEM. The intuition 

behind the dynamic programming formulation is to view an optimal tour as a set of 
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path segments (denned by the endpoints) in subgraphs. The running time is domi­

nated by the number of possible combinations of path segments. Clearly, these path 

segments cannot pair-wise cross each other. By applying the geometric interpretation 

of sc-branch decompositions, the authors reduced the number of such combinations 

to the number of non-crossing matchings11 (of the vertices on a noose) to achieve the 

0(2°^kn + n3) running time. Note that traditional branch decompositions do not 

contain any embedding information. Therefore, the concept of non-crossing match­

ings is not defined for the midsets. The best running time without using sc-branch 

decomposition is 0(2°(fclogfc)n°(1)). 

A related parameterized problem is the /c-cycle problem on planar graphs, which 

asks whether a given graph contains a cycle of length at least k. It is easy to 

see that the fc-cycle problem on planar graphs has a parameter-tree-width bound. 

A planar graph with branchwidth at least A\Jk + 1 — 3 must contain a yk x \[k 

grid minor, which trivially contains a cycle of length at least k. Thus, the /c-cycle 

problem on planar graphs is FPT by using a slightly modified version of the dynamic 

programming algorithm for planar Hamiltonian cycle. 

11 Given a set of points lying on the boundary of the unit circle, a non-crossing 
matching is a pairing the given points such that the straight line segments drawn 
between them are not pairwise crossing. 
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To summarize, in [20], planarity was exploited three times: 1) to use sc-branch 

decompositions, 2) to reduce the number of path combinations in the dynamic pro­

gram, and 3) to show that the A;-CYCLE PROBLEM has a parameter-tree-width 

bound. 

Extension to §9-graphs 

The techniques seen in the previous section can be extended to solve the HAMIL-

TONIAN CYCLE PROBLEM on graphs embedded on a surface of genus g. One tech­

nique often used to solve a problem on a bounded genus graph is to reduce the genus 

until the problem is on a planar graph. In [18], Dorn et al. showed how their ap­

proach on planar graphs can be used to solve the HAMILTONIAN CYCLE PROBLEM 

and the /C-CYCLE PROBLEM on bounded genus graphs. 

Recall that a noose is a simple closed curve which intersects G only at its vertices. 

A noose is noncontractible if it is cannot contract to a point. "Cutting" along a 

noncontractible noose on a surface of genus g results in a surface of genus g — 1. 

Let G be a graph embedded on a torus. Let N be a noncontractible noose and 

let U — {ui, U2, •.., life} be the set of vertices intersecting N. We say N is tight if U 

is a connected subset. Define the left (right) neighbors of «; to be the set of neighbors 

of Ui that appear on the left (right) side of N as we travel clockwise along N. Now 

consider the graph G' defined as follows. 

• V{G') = (V(G) -U)UUt\J Ur, where Ut and Ur are "copies" of U 

• E{G') = E(G) U {(u,v) | u G Ui and v is a left neighbor of u} U {(u,v) \ u £ 

Ur and v is a right neighbor of u} 
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It is clear that G is planar. Furthermore, a Hamiltonian cycle in G induces a set of 

disjoint paths V = {Pi, P2, • • •, Pi}, where each path is between some vertex in Ui and 

its copy in Ur. Such a set of disjoint paths can be found in 0(2°(bw(G '»|1/(G')|o(1)) 

time using a modified version of the algorithm in [20]. 

To obtain the running time in terms of the size of the graph, it is necessary to 

bound 1) the number of vertices lying on the noose and 2) the branchwidth of G', 

as these bound the number of path segment combinations. Bounds for these values 

are established by the following lemmas. 

Lemma 3.9.2 Let G be a torus-embedded graph and let G' be the planar graph after 

cutting along a tight noncontractible noose. Then bw(G') ^ ^j4.h\V{G)\ + 2 [11]. 

Lemma 3.9.3 Any graph G embedded on a torus has a tight noncontractible noose 

with length at most y/4.5\V(G)\ + 2, and such a noose can be found in polynomial 

time [17]. 

Using the above lemmas, the authors showed that the HAMILTONIAN CYCLE 

PROBLEM on graphs embedded on a torus can be solved in 0(2°^^\n\°^) time. 

This technique can be extended to solve the HAMILTONIAN CYCLE PROBLEM on 

graphs embedded on surfaces of genus g with running time 0(no<y9 )20^9y^>). Finally, 

this technique was used in conjunction with bidimensionality theory to obtain an 

Q(-292iog/c+9N/pno(i)-) aigOTithm for the /C-CYCLE PROBLEM on graphs embedded on 

surfaces of genus g in the same paper. 

3.10 Layer-wise separation 

Although tree decompositions and branch decompositions are useful tools for 

devising FPT algorithms, there other decompositions that use planarity or other 
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geometric properties of graphs and may be used to give more efficient or simpler 

FPT algorithms. The reason efficient dynamic programming on bounded tree-width 

graphs is possible is because such graphs can be decomposed into components sepa­

rated by small vertex separators. To obtain an FPT result for a given parameterized 

problem, it is necessary to also prove that it is parameter-tree-width bounded. In this 

section, we discuss another decomposition structure such that 1) efficient dynamic 

programming is possible for many problems, and 2) these problems have "parameter-

width" bounds. 

We refer to decompositions making use of outerplanarity. In [1], Alber et al. 

described the concept of layer-wise separation of planar graphs, which is defined as 

follows. Given an embedded planar graph G, let L\ be the set of vertices on the 

outer face of G, and let Lj be the set of vertices on the outer face of G after removing 

Lj for j < i. 

Definition 3.10.1 A parameterized problem C for planar graphs is said to have 

the layer-wise separation property (LSP) of width w and size-factor d if for every 

(G, k) e C and every embedding of G, there exists a sequence (Si, S2, • • •, Sr) 

2. Si is an Lj_i — Li+W separator, and 

3. T,rj=1\Sj\ <dk. 

Examples of problems exhibiting the LSP are PLANAR VERTEX COVER (width 

2, size-factor 2) and PLANAR DOMINATING SET (width 3, size factor 51) [1]. To see 

that PLANAR VERTEX COVER has the LSP, consider a planar graph which has a 

vertex cover V of size k. Choose Si = (Lt U Li+i) D V for the sequence of separator 
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sets; the size-factor follows from the observation that any v E V appears in exactly 

2 separator sets. 

Alber et al. showed that problems exhibiting the LSP with width w and size 

dk have tree-width bounded by f(k) = 2\/3dk + (3w — 1) and that this tree decom­

position can be computed in 0(fc3//2n) time. Thus, the LSP can be used as a tool 

for proving parameter-tree-width bounds, which sometimes leads to better bounds 

than obtained by previous methods. Furthermore, dynamic programming formula­

tions using layer-wise separation often achieve better running times than dynamic 

programming formulations using tree decompositions. 
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CHAPTER 4 
NP-Completeness of Grid Graph Milling 

In this chapter, we formally define the GRID-GRAPH MILLING PROBLEM and 

prove that it is NP-Complete. The input to our problem is more general than the 

grid-graphs we have seen so far in that edges are not restricted to be of length 1. 

Also, we focus on the "walk" version of the problem, in which it is not necessary for 

the object to start and end at the same point. It is a simple exercise to extend our 

results to the "tour" version of this problem. Of course, as our FPT results apply to 

the more general version, they also apply to the restricted version. 

4.1 Problem definition 

Let G = (V, E) be a plane graph such that the vertices are placed on grid points 

and the edges are horizontal or vertical straight lines. The embedding is specified 

by T, which assigns integer coordinates to each vertex. The problem is to find a 

fc-milling walk in G, which is a path that covers all vertices using at most k turns or 

U-turns. Turns and U-turns are defined as follows: 

The Grid-graph Milling Problem 

Input: G = {V, E) and T : V -> N x N; 

Parameter: k, the number of turns; 

Question: Does G contain a /c-milling walk? 
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Definition 4.1.1 Let W = [v0, e\, v\,... e*, fj, ei+i,... e/, vi\ be a walk. A turn in W 

is a vertex Vi such that e$ is a horizontal edge and ei+\ is a vertical edge or vice-versa. 

A U-turn in W is a vertex Vi such that Uj_i = vi+i. 

4.2 Proof of NP-Completeness 

Theorem 4.2.1 The GRID-GRAPH MILLING PROBLEM is NP-Complete 

Proof: We reduce from the HAMILTONIAN PATH PROBLEM in maximal planar 

graphs [13]. Let G = (V, E) be a maximal planar graph. Since G is 2-connected, 

there is an polynomial-time computable embedding of horizontal bars on the plane 

such that each bar represents a vertex in V, and two bars can "see" each other if their 

Corresponding vertices are adjacent [36]. Formally, a bar is a subset of the plane given 

by {(x,y) • V = Ho and x e [x0,xi]}; we refer to this set as B(x0iXi,yo). Two bars 

B(x0, Xi,y0) and B(x'0, x[,y'0) can see each other if there is an x* G (xo, x{) D (x'0, x[) 

such that the line segment between (x*,y0) and (x*,y{) does not intersect any other 

bars. Given the bar embedding, we construct the GRID-GRAPH MILLING instance 

G' in two steps. In the first step, we start with a set of bars (horizontal line segments 

on the plane) representing vertices, and we add vertical line segments connecting 

bars representing to adjacent vertices. In the second step, we start with a set of 

horizontal and vertical line segments and we define the vertices and edges for the 

grid-graph. Details follow. 

1. For each (u, v) G E: let B(x0, X\, t/o)> -̂ (̂ O) x'\-, y'o) be the bars corresponding to 

u,v. Let x* be as previously defined. Draw a (vertical) line segment between 

(x*,y0) and (x*,yi). When adding vertical line segments, ensure that we do 

not use the same x* for different vertical line segments. 
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Figure 4-1: (left) A 2-connected plane graph G (right) Bar visibility representation 
of G, with dotted lines representing visibility 

2. Define the vertices of the grid-graph to be the endpoints of both the horizontal 

and vertical line segments in the drawing. The edges and the embedding of the 

grid-graph are implicitly given by the drawing. 

Lemma 4.2.2 G — (V,E) contains a Hamiltonian path iff G' = (V',E') can be 

milled using k — An — 4 turns, where n=\V\. 

We first prove the forward direction. Let vi,... ,vn be a Hamiltonian path in G. 

Let Bi,..., Bn be the corresponding bars in the bar visibility representation. Note 

that the B\,..., Bn contains all the vertices in the grid-graph. Furthermore, for each 

Bi there is a vertex in ttj £ Bi that is connected to a vertex in vi+i G Bi+i. Let 

ej,e- be the endpoints (vertices) of bar B^. The A;-milling walk is ei, e'1; «i,f2, e2, 

e2, «2> W3, e3, e ,̂ u^,..., un, e„, e'n\ here, all vertices on Bi are implicitly included be­

tween ei and e-. Note that if we "enter" a bar at a non-endpoint, then exactly four 

turns are needed to visit every vertex and "exit" this bar. The first and last bars 

in the sequence requires only two turns, since we start and end on endpoints. Thus, 

the number of turns in the lawnmower walk is 4n — 4. 
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Figure 4-2: (left) The lawnmower instance corresponding to the bar visibility rep­
resentation of G. (right) A lawnmower walk corresponding to the Hamiltonian path 
(a, c, b, d) in G. Note that there are exactly 12 = 4n — 4 turns. 

Now we prove the converse. Suppose W is a fc-milling walk using at most An —A 

turns. We shall consider two cases. 

Case 1: W starts and finishes at endpoints of bars. Note that there are 2n 

endpoints in the grid-graph and it costs 1 turn to visit each endpoint except the first 

and last vertices in the walk; this means at least 2n — 2 turns are needed just to 

visit every endpoint. Let B = B\, B2,.. •, Bj be the sequence of bars Corresponding 

to the sequence of vertices in W. Clearly, every bar is in the sequence at least once. 

We will show that every bar is in the sequence at most once; this would imply that 

there is a Hamiltonian path in G. 

Suppose to the contrary that j = n + c for some integer c > 0. Note that for any 

i such that j > i > 1, it costs at least two turns to enter and leave Bi if Bj_i 7̂  Bi+i; 

this is because the 5j_i — Bi 'line of sight' edge lies on a different x coordinate from 

the Bi — Bi+i 'line of sight' edge. Otherwise, it costs at least one turn to enter and 

leave Bi if Bi+i = Bj_i; this case can occur at most c times, because otherwise the 

sequence could not contain all n bars. Leaving the first bar and entering the last bar 

also accounts for 1 turn each. Thus, the total number of turns used to enter and leave 
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Figure 4-3: (left) If the first two vertices of W lie on B\ then W can be modified 
(right) into a new walk which begins at an endpoint of B\ without using more turns. 

bars is at least 2 + c + 2(n — 2) = 2n + c — 2. Note that the turns required for visiting 

endpoints are distinct from the turns required" for entering and exiting bars because 

by construction bars cannot enter or leave at endpoints. Thus, the total number of 

turns in W is at least 4n — 4 + c. Since c > 0, this contradicts the assumption that 

W uses at most 4n — 4 turns. 

Case 2: W starts and finishes at internal vertices of bars. Again, let B = 

Bi, £?2, • • •, Bj be the sequence of bars corresponding to the sequence of vertices in 

W. Note that if the first two vertices in W are both in J5i, then W can be modified so 

that it begins at an endpoint without using additional turns (see Figure 4-3), which 

brings us back to Case 1. Otherwise, B\ must be in the sequence B at least twice, 

because in the first visit, the walk W immediately exited bar B\ without visiting 

its endpoints. The same observation also applies to Bf so we know that B\ and 

Bj both appear at least twice in B. Again, we count the number of turns needed 

to enter and exit bars in B. Let j = n + 2 + c for c ^ 0. We noted that every bar 

must appear at least once in B2,..., Bj-i- This implies at least 2n + c — 2 turns 

are needed to enter and exit bars. We also need at least 2n turns to visit all the 

endpoints, since the walk "W does not begin or finish at endpoints. This means W 
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uses at least 4n —c + c turns, contracting the assumption that W uses at most An —A 

turns. 

• 
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CHAPTER 5 
FPT Algorithms for Grid Graph Milling 

Chapter 3 established our basic framework for developing FPT algorithms based 

on the concept of tree-width. To show that a parameterized problem is FPT, we need 

to show that it has a parameter-tree-width bound and then provide an algorithm (or 

an MS2 formula) to solve the problem. In Section 5.1, we show that the GRID-

GRAPH MILLING PROBLEM has a parameter-tree-width bound when parametrized 

by the number of turns. In Sections 5.2 and 5.3, we provide an MS2 formulation 

and a dynamic programming formulation, respectively, to solve our problem. 

5.1 Parameter-tree-width Bound 

Recall that a problem has a parameter-tree-width bound if there exists a function 

/1 such that if the input graph G has tree-width greater than f(k), then the problem 

is easy to solve. We will show that if tw(G) > Qk + 13, then G cannot be milled by 

a walk using at most k turns. 

Theorem 5.1.1 Let G = (V,E) be a grid-graph. If tw(G) > 6k + 13 or bw(G) > 

4k + 9, then G does not contain a k-milling walk. 

Proof: We will prove the tree-width bound; the same proof can be used for the 

branchwidth bound. 

We say two vertices are rook-independent if they lie on different rows and 

columns. Note that if there exists a subset V C V(G) such that elements of U 

are pair-wise rook-independent, then any walk that visits every vertex of V(G) must 
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use at least \U\ — 1 turns. We will prove that if tw(G) > 6k + 13, then it contains at 

a set of k + 2 pair-wise rook-independent vertices. 

Let k' — k + 3. Assume tw(G) > Qk' — 5. By Theorem 3.8.2, G contains Qy as 

a minor1 . Notice that Qy contains a sequence C\, C2, • • •, C[fc72j °f vertex-disjoint 

nested cycles2 . We will show that there are 2 vertices per cycle such that these 

2\_k'/2\ vertices, are pair-wise rook-independent. 

First, it is trivial to see that there exists a pair of vertices v\, v[ on C\ such that 

v 1 lies above and to the right of v[. We claim there are vertices v^, v'2 on C2 such that 

i>2 lies above and to the right of v\, and v'2 lies below and to the left of v[. To see 

this, note that any closed curve on the plane that encloses the origin must traverse 

all four quadrants. In particular, if we let vx be the origin, then the cycle Ci (which 

encloses V\) must contain a vertex in the first quadrant. Similarly, if we let v[ be 

the origin, then C2 must contain a vertex v'2 in the third quadrant. This argument 

may be repeated inductively to produce a set of 2 |_&'/2J pair-wise rook-independent 

vertices. • 

Remarks. We mentioned in the introduction that finding minimum-turn milling 

tours is not likely to be FPT for general graphs, but it is FPT when restricted to 

grid-graphs. Now, we can see why. We need the extra structure of grid-graphs in 

three'different parts of our paramter-tree-width bound proof: 1) to apply Theorem 

1 Recall that Qy is k! x k! grid-graph 

2 By a sequence of nested cycles, we mean Cj "encloses" the previous cycles 
C i , . . . , Ci-\ in the sequence. 
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3.8.2 (for Grid-graph Minors), 2) to.define the notion of rook-independence, and 3) 

to ensure that going between pair-wise rook-independent vertices costs at least one 

turn. 

5.2 MS2 formulation using semantic augmentation 

The purpose this section is to present an MS2 formula 4> such that a graph 

models 4> if and only if it can be milled using k turns. Note that the graph structure 

used in MS2 is a purely combinatorial structure; i.e., the embedding information 

of a grid-graph is not used by the MS2 formulation. Of course, the embedding is 

important to the actual problem because it is used to evaluate the cost function 

- the number of turns used. Thus, we need a combinatorial way to encode turns. 

Recall from Section 3.7 that two extensions to MS2 are labeling of vertices (edges) 

and semantic augmentation. These extensions can be used to "store" the maximal 

turn-free paths of the grid-graph G. A maximal turn-free path is defined to be a 

path of maximal length in G whose edges are all vertical (or all horizontal) in the 

embedding of G. 

For each maximal turn-free path P, we create a new vertex s(P) and add edges 

between s(P) to each vertex in P. Formally, we define the augmented graph -M(G) 

as follows. 

• V(M(G)) = V(G) U S with S = {s(P) I P is a maximal turn-free path of G} 

• E{M{G)) = E(G)UE{S) with E(S) = {(s(P),v) | s(P) e S and v G P} 

We will label the new vertices using £(•). That is to say, the predicate S(v) evalulates 

to true if and only if v is a new vertex. 
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Figure 5-1: A partially augmented graph. The black vertices and dotted edges 
belong to the original graph. Two maximal turn-free paths, P, P' are highlighted. 
New vertices s(P), s(P') (stars) are added in the augmented graph. New edges (solid 
lines) connect s(P) to each vertex in P. 

Note that a vertex can belong to at most 2 maximal turn-free paths, so that 

there are at most 2|V(G)| such paths. It is clearly easy to compute M.{G) for any 

grid-graph G. The following lemma shows that the tree-width does not increase too 

much after augmenting G. 

Lemma 5.2.1 For any grid-graph G and its augmented graph M.(G), their tree-

widths are related by the following inequality: tw(M(G)) ^ 3 • tw(G) + 2. 

Proof: We will prove the lemma by showing how a tree decomposition of G can be 

modified into a tree-width decomposition of M. (G) without increasing its width too 

much. 
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Let us consider an tree decomposition (T, X) of G of width w. We can modify 

(T, X) into a tree decomposition (T, X1) of M.(G) by inserting each vertex s(P) E S, 

which corresponds to a maximal path P, into all bags containing any vertex of P. 

To verify that (T,X') is a valid tree decomposition of M(G), we must verify 

that 1) all vertices and edges belong to some bag in X and that 2) the set of bags 

contain a given vertex v G V(M(G)) induces a subtree of T. 

The first condition is trivially satisfied, as all new vertices S and edges E(S) 

are added to some bag. We only need to verify the second condition; that is, we 

need to verify that the bags containing an arbitrary s(P) vertex forms a subtree in 

the tree decomposition. Let s(P) be an arbitrary vertex in S. A basic property 

of tree decompositions is that the set of bags containing any vertex of a connected 

component in G induces a subtree in T.3 Thus the set of bags containing any vertex 

in any maximal path P induces a subtree in T. Since s(P) is added to every bag in 

that subtree, it follows that the bags containing s(P) indeed forms a subtree. 

It remains to bound the width of the tree decomposition (T, X'). Consider any 

bag B G X. Since each vertex belongs to at most two maximal turn-free paths, at 

most 2\B\ vertices of S may be added to B. Thus, if the tree-width of G is w, then 

the tree-width of M.(G) is at most 3w + 2. • 

Remarks. So far, we have shown that if a grid-graph G has a ^-milling walk, 

then it has tree-width in O(k). Furthermore, for any such grid-graph, we can compute 

in polynomial time the augmented graph M.(G) whose tree-width is at most a factor 

3 This can be easily proven by induction on the size of the component U. 
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3 times the original grid-graph. In the remaining part of this section, we present a 

formula <fi such that a grid-graph has a /c-milling walk if and only if its augmented 

graph models </>. Then we can apply Courcelle's Theorem and conclude that the 

GRID-GRAPH MILLING PROBLEM is FPT with turn-cost as the parameter. 

Lemma 5.2.2 Let G = (V, E) be a grid-graph. Having a k-milling walk in G is a 

property expressible in monadic second order logic on M.{G). 

Proof: Suppose there is a /c-milling walk in G. We may identify this walk by a 

sequence of turn-free path segments PQ, ..., P^ such that 1) every vertex is in at 

least one path segment, and 2) the "endpoint" of path Pi is the "start-point" of path 

Pi+\. These conditions may be expressed in MS2 on the augmented graph M(G) as 

described below. 

Before we present 4>, we need to develop some predicates or "sub-routines" that 

will be used in 0. We will be using only vertex or vertex subset variables. The 

former are denoted using lower-case letters; the latter are denoted using upper-case 

letters. First, we need a predicate TFPath(P, s) that is true if and only if P induces 

a turn-free path segment in the grid-graph. To do this, we need to check that 1) 

the subgraph induced by P is connected and 2) every vertex in P is connected to 

s, which corresponds to some maximal turn-free path segment. Thus, TFPath(P, s) 

can be constructed as follows. 

TFPath(P, s) = Connected(P) A S(s) A Vu(u e P ^ Adj(it, s)) 

Here, we assumed we are given a predicate Connected (P) that is true if and only if the 

subgraph induced by P is connected. Note that this is equivalent to the condition 
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that for every bipartition (XX,X2) of P, there is an edge between some vertex in 

Xi and some vertex in X2. We define Connected(P) and Bipartition^!, X2, P) as 

follows. 

Connected(F) = VXL, X2[Bipartition(Xi, X2) P) => 3ui, u2(Adj(ui, u2) A ux G Xx A u2 G X2)} 

Bipartition{Xu X2, P) = Vu(u G P =» (u G Xi A u £ X2) V (u G X2 A u £ Xx)) 

Lastly, we need a predicate Endpoint (u, P) that checks whether u is an "endpoint" 

of P. Here, we assume that P induces a turn-free path, so we only need to check 

whether u has degree one in the path induced by P. 

Endpoint(ii, P) = u G P A -da;, y(x ^yAx£PAy£P/\ Adj(x, u) A Adj(y, u)) 

Equipped with these predicates TFPath(P, s) and Endpoint (u, P), we can finally 

present the MS2 formula 4> as follows. 

<j> = 3P0,...Pk,v0,...,vk+1,s0,...sk (5.1) 
k 

/ \ (TFPath(P l ,5 l)) (5-2) 
i=0 

k 

A (Endpoint(fj, Pi) A Endpoint(vi+\, Pi) (5.3) 
i=0 

/\Vu(\Ju£PA (5.4) 

As previously stated, a &-milling walk can be identified by a sequence PQ, ..., Pk of 

turn-free path segments. The second line verifies that PQ, ... ,Pk are indeed turn-

free path segments. The third line verifies that the turn-free path segments share 
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appropriate endpoints (note that this formulation can be modified to express the 

existence of fc-milling tour by setting the first and last endpoint to be the same 

vertex). The last line checks that every vertex is in some turn-free path segment. • 
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5.3 Dynamic programming FPT algorithm 

In this section, we present a dynamic programming formulation for the GRID-

GRAPH MILLING PROBLEM. The basic idea is based on viewing the optimal milling 

tour as a sequence of path segments induced by geometric decompositions of the 

grid-graph and using dynamic programming to find these path segments. 

In principle, our dynamic programming formulation is the same as the canonical 

formulations used for the HAMILTONIAN CIRCUIT PROBLEM. The main difference 

is that path segments in the GRID-GRAPH MILLING PROBLEM do not have to be 

disjoint. Thus, we cannot bound the number of combinations using non-crossing 

matchings, as was done for the HAMILTONIAN CIRCUIT PROBLEM. Another differ­

ence is that the GRID-GRAPH MILLING PROBLEM is a parametrized problem with a 

parameter-tree-width bound, whereas the HAMILTONIAN CIRCUIT PROBLEM is not 

a parametrized problem. Thus, we are able to provide an FPT algorithm for the 

former problem, but not the latter. 

Instead of tree decomposition, we will use sphere-cut branch decomposition as 

the basis of our dynamic program. As mentioned in Chapter 3, sc-branch decomposi­

tion offers several advantages over tree-decomposition. Namely, an optimal sc-branch 

decomposition can be computed in polynomial time, and the components in the sc-

branch decomposition can be viewed as geometric components in the embedded 

graphs. 

5.3.1 Branch decompositions and sc-branch decompositions 

We start with a brief review of sc-branch decomposition and the associated 

notation. A E-graph refers to a graph G = (V, E) embedded without edge crossings 
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on the unit sphere E. Define a noose to be a simple closed curve O in E that intersects 

G at vertices only and intersects every face at most once. A sphere-cut (sc) branch 

decomposition is a branch decomposition such that for every edge e E E(T), there 

is a noose Oe such that mid(e) = Oe n V(G) and Gj E Aj U Oe, 1 ^ j ^ 2. 

Lemma 5.1.1 showed that graphs having A;-milling walks must have branchwidth 

upper-bounded by 4k+ 9. By Theorem 3.9.1, we can efficiently compute a sphere-cut 

branch decomposition with width at most 4k + 9 for an arbitrary /c-millable graph. 

Recall from Chapter 3 that the dynamic programming formulation examples 

used rooted tree decompositions. By rooting the trees, we can define a bottom-

up sequence of sub-problems to be solved by dynamic programming. Our dynamic 

program uses rooted sc-branch decompositions. 

Here, we define rooted sc-branch decomposition and explain the associated nota­

tion. First, root T (of the sc-branch decomposition) at an arbitrary internal node r. 

See Figure 5-2. Consider any edge e E E(T) of the rooted sc-branch decomposition. 

Removing e separates T into two sub-trees T\,T<i. By convention, define T\ to be 

the subtree not containing the root r. We use G\ and G? to refer to the subgraphs 

induced by T\ and T2, respectively. Furthermore, let Oe be the noose corresponding 

to e. This noose partitions the sphere into two open discs Ai, A2. The closed inte­

rior region of 0, denoted A^ = Ai U O, is the closed region on which G\ is drawn. 

Vertices drawn on O are called boundary vertices, while vertices drawn in Ai are 

called interior vertices of O. 
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Figure 5-2: (right) A sc-branch decomposition (T,fi) rooted at r. T\ is the com­
ponent of T — e that does not contain r. (left) The noose corresponding to e is 
represented by the dotted line. The shaded region is Ai and the component drawn 
in A^ is Gx. 

5.3.2 Solving subproblems corresponding to each node in T 

Consider an optimum milling walk W = {v\, ei, V2, ei, • • • > es-i, ^s} f° r a grid-

graph G = (V,E). Let O be any noose. We say W enters A£ using edge ej if 

f j_ i G A2, Vj G O, and vj+i G A^. We say W leaves O using edge ej_i if ^-_i G A^, 

u,- G 0 , and u,+i G A2. 

Let e i , . . . , e/ and e' l5..., ej be the sequences of edges the optimum walk W 

uses to enter and leave A^, respectively. Within A£, the optimum walk induces 

a path between between e* and e\ for i = I,..., I. The union of all such paths 

covers the interior vertices of Ai. However, this union does not necessarily cover 

all boundary vertices. Specifically, the endpoints of each path are boundary vertices 

(i.e., the endpoints are trivially covered), but the interiors of these paths may also 

cover other boundary vertices. The dynamic program looks for the optimum walk 

by enumerating possible combinations of paths for each noose. 
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We now define the subproblems corresponding to each nodes of the rooted sc-

branch decomposition. For any v £ V(T) — r, let Ov be the noose corresponding to 

the edge between v and its parent. Consider an arbitrary subset C C Ov PI V(G) of 

boundary vertices and let D = ((u,v) \ (u,v) € E(G\) and u or v is inside Ov) be 

the set of edges with at least one endpoint on Ov. Let Q — {{yi,ei,e'i,v'j)'} be an 

arbitrary multiset4 of C x D x C x D. We wish to compute SV(C, Q), which is a set 

V = {Pi,..., P\Q\} of paths satisfying the following conditions: 

1. For 1 ^ i ^ \Q\, Pi is a path with endpoints Vi and v[. The first (last) edge of 

Pi is ei (e-). 

2. For 1 ^ i ^ \Q\, Pi is contained in Gi. 

3. The union of all paths in V must cover all boundary vertices given by C along 

with the all interior vertices of Ov. The union of all paths may also cover 

boundary vertices not in C. 

4. The total number of turns of all paths in V is minimized. 

We say v is solved if SV(C, Q) has been computed for all possible combinations of C 

and Q. 

The dynamic program proceeds in a bottom up manner, going from the leaves 

to the root r of T. Next, we show how a subproblem for an internal node can 

be solved using solutions of its two children (recall that internal nodes of a branch 

decomposition always have degree 3). the Let v G V(T) — r be any internal node and 

let x, y be the two children of v. Suppose x, y are already solved. See Figure 5-3 as a 

4 We will impose restrictions on Q in the next section. 
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guide. Note that the subgraph drawn in the closed interior region of Ov is the union of 

the subgraphs drawn in the closed interior regions of Ox and Oy. Consider SV(C, Q) 

for an arbitrary choice of C and Q. The paths for (pi, e*, e'^pl) £ Q corresponds 

to a sequence of path segments in the closed interior regions of Ox and Oy. Inside 

Ox, this set of path segments corresponds to some SX(CX,QX) which has already 

been computed. The same is true of Oy. Thus, to compute SV(C, Q), we enumerate 

combinations of SX(CX, Qx) and Sy(Cy,Qy) that form the desired paths defined in 

Q. See Figure 5-4 for an example. To solve v, we perform this procedure for every 

choice of C, Q. 

The procedure described above allows us to solve the subproblems for every node 

except the root r. The root is a special case because it has three children {vi, 1*2,̂ 3}, 

which we assume are solved. Now, we may compute the milling walk by enumerating 

all combinations of SVi(Ci, Qi), 1 ^ i ^ 3, which form a milling walk in G. 

Figure 5-3: (left) edges a, b, c in the branch decomposition (right) nooses correspond­
ing to edges a, b, c. 
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Figure 5-4: In this example, we consider two different possible solutions for 
Sov({Pi,p'i,o,},{(pi,ei,e[,p'1)}). A possible solution is a px — p[ path, with ei,e[ 
as the first and last edges, coversing all interior vertices of A£x in addition to 
the boundary vertices {pi,p[,a}. The first possible solution corresponds to two 
path segments: the segment px — u and the segment u — p[. This corresponds to 
the solutions Sox({Puu^v}^{iPi^i,e'2,u)}) and S0y({a,u,p'1},{(u,e2,e'1,p

,
1)}). The 

second possible solution uses four total path segments. The reader should verify 
that this corresponds to the solutions Sox({pi, u, v}, {(pi, ei, e'2, u), (v, e$, e'A) v)}) and 
So,,({Pi, u, v, a}, {(u, e2, e'3, v), (v, e4, ei.pi)}) 

Bounding the number of path combinations 

The dynamic programming formulation given in the previous section assumes 

no restrictions on the path combinations - i.e., different choices of Q. In order to 

obtain an FPT result, we must bound the number of such choices by f(k) for some 

function on the parameter. We can modify the combinations so that only multisets 

with at most k + 1 elements need to be considered. Observe that if Pi, P2 are two 

arbitrary turn-tree path segments inside a convex noose O, then any path between 

an endpoint of P\ and an endpoint of P2 must use at least one turn. Therefore, if a 
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milling walk P induces a sequence of paths P i , . . . , Pk+2 inside a convex noose, then 

P must use at least k + 1 turns. In the Appendix, we show that it is possible to 

construct an sc-branch decomposition with convex nooses for grid-graphs with unit 

edge lengths. 

For non-convex sc-branch decompositions, we can modify the dynamic program 

so that only multisets Q with at most k + 1 elements need to be considered. Now, Q 

is re-defined to be arbitrary multisets of D x D x {1, 2, 3}. This is used to distinguish 

between three types of path segments: 

type-1 : (e,, e-, 1,1) - the path Pi is NOT straight and required to stay inside Oe; 

type-2 : (e*, e-, 1, 2) - the path Pi is straight and required to stay inside Oe; and 

type-3 : (e ,̂ ej, 1, 3) - the path Pi is straight and required to leave Oe at least once. 

Note that a type-3 path segment can be decomposed into a set of type-2 path seg­

ments inside Oe and a set of type-2 path segments in Oe. As defined thus far, the 

decomposition of an optimum walk W into path segments relative to Oe is not unique. 

To make this decomposition unique, we assume that if Pi, Pi+i are path segments of 

type-2 or type-3 (in Oe), then W uses at least one turn outside Oe because otherwise, 

Pi, Pj+i can be merged into a longer type-3 path segment. Furthermore, this implies 

that the we only need to consider multisets Q with at most k + 2 elements. 

We see that although the number of subproblems is bounded by a function of k, 

the actual bound is impractical for actual implementation. Nonetheless, this dynamic 

program establishes an FPT result for the GRID-GRAPH MILLING PROBLEM and 

provides a basis for future research (see summary). 
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CHAPTER 6 

Summary 

Our goal was to use FPT techniques and algorithms on graphs to produce FPT 

results for geometry problems. In our literature survey of covering tour problems, 

we focused this approach in the context of covering tour problems. We saw that 

the algorithms being exported are usually approximation algorithms. However, FPT 

algorithms could be used instead of approximation algorithms. Thus, we were inter­

ested in FPT algorithms for these covering tour problems. 

A major portion of this thesis was to present the concepts and techniques that 

we used to obtain our FPT results. These concepts and techniques include tree-

width, tree decompositions, dynamic programming on tree decompositions, monadic 

second order logic of graphs, parameter-tree-width bounds, and bidimensionality. 

We used two classic problems - VERTEX COVER and HAMILTONIAN CYCLE -

as examples to demonstrate how these concepts and techniques are unified into a 

framework for producing FPT results. Finally, we used this framework as a guide to 

devise FPT algorithms for the GRID-GRAPH MILLING PROBLEM and we conclude 

that these FPT algorithms can be used to obtain FPT results for the ORTHOGONAL 

MILLING PROBLEM. 

6.1 Improvements and future direction 

While our results can be used to obtain an FPT result for the ORTHOGONAL 

MILLING PROBLEM - a geometry problem, there are several practical issues that we 
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have not addressed. First, our FPT algorithms are not efficient and are therefore 

of only theoretical interest. Recall that while Courcelle's machinery can be used 

to obtain linear time algorithms, the hidden constant (depending on the tree-width 

bound and complexity of the formula used) is prohibitively large. Thus, we do 

not believe our FPT result can be improved to the point of being practical using 

Courcelle's machinery. 

However, we believe that the dynamic programming formulation can be im­

proved, probably significantly so. Recall that the TSP problem can be solved in 

0(2felog/cn) compared to 0(2kkn) time for the GRID-GRAPH MILLING PROBLEM . 

The main difficulty in our problem is that each vertex can be used more than once 

and thus many more path segment combinations need to be considered. It is sensible 

to believe that the number of such combinations can be reduced by using a different 

formulation or a different decomposition paradigm. Furthermore, dynamic program­

ming can be used in conjunction with other FPT techniques such as kernelization to 

obtain better results. 

We have not fully established the applicability of the GRID-GRAPH MILLING 

PROBLEM in context of computational geometry. The GRID-GRAPH MILLING P R O B ­

LEM can be used to model the ORTHOGONAL MILLING PROBLEM . However, this ge­

ometric milling problem is severely restricted as compared to other geometric milling 

problems more often considered in computational geometry literature. It remains to 

be seen how grid-graphs or their generalizations can be used to model more general 

milling geometric milling problems. 
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Nonetheless, these graph milling problems can be used to approximate some of 

the more general geometric milling problems. However, using an FPT algorithm in 

this capacity has dubious value because the exported algorithm for the geometry 

problem (which is assumed to be hard) neither runs in fully polynomial time (the 

running time is exponential in the parameter) nor produces optimal solutions (be­

cause the grid-graph only approximates the geometry). An optimist point of view 

is that FPT algorithms produce better quality solutions than approximation algo­

rithms; and in turn, FPT algorithms used in this capacity produce better quality 

solutions to the original geometry problem. The trade-off between solution quality 

and running time is ultimately application dependent. Since there are efficient con­

stant factor approximation algorithms for the GRID-GRAPH MILLING PROBLEM and 

the current FPT algorithms developed in this thesis are not practical, we conclude 

that, at the moment, the former approach is better for this problem. It remains open 

whether there is a practical FPT algorithm for this problem. 
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Appendix: Convex sc-branch decomposi t ions 

Here, we sketch how to obtain convex sc-branch decompositions for grid-graphs 

with unit edge lengths (as opposed to integer edge lengths). We believe it is a 

straightforward technicality to extend the ideas in this sketch into a formal proof. 

If a grid-graph G has only unit length edges, then any "row" or "column" of G is 

a separator, and thus can be a midset of a branch decomposition of G. We will see 

that it is simple to construct convex nooses for these midsets, and tha t the resulting 

sc-branch decomposition has O(k) if the grid-graph has a fc-milling walk. We will 

implicitly describe this sc-branch decomposition as a set of cuts (midsets). 

Let G be a grid-graph with unit edge lengths and assume G has a fc-milling 

tour. We call a noose O convex if any turn-free path in G crosses O at most twice. 

The set C; = {v | Tx{v) = i} is defined to be the set of vertices drawn on column i. 

Similarly, Rj = {v \ TY(v) = j} is defined to be the set vertices drawn on row j . As 

mentioned above, Cj is a separator for any XMIN < i < £MAX> where £MIN (^MAX) is 

the smallest (largest) value of x such that there is a vertex v with Tx(v) = i. Since 

we assume the grid-graph is connected and has unit edge lengths, there must be at 

least one vertex in each column between the minimum and maximum. A column C; 

is called long if |CV| > k + 1; otherwise, Cj is called short. The next lemma shows 

that the number of long columns is bounded. 

Lemma 6.1.1 Let G be a grid-graph with unit edge lengths. If G has a k-milling 

walk, then G has at most k + 1 long columns. 
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Proof: We will show that if there are more than k + 1 long columns, then we can 

find k + 2 pair-wise rook-independent vertices in G. This implies G does not have a 

/c-milling walk. 

Suppose C j j , . . . , Cjfc+2 are long columns. Let v^ be any vertex of C^. Since 

|Cj2| > k + 1 and at most most vertex in Ci2 lies on the same row as v^, we conclude 

that there is a vertex v2 6 Ci2 that is rook-independent with v\. This argument can 

be applied inductively to obtain a set of k + 2 pair-wise rook-independent vertices as 

promised. • 

We define a cut along Ci to be a partitioning of the edge set of the grid-graph 

into two parts: 

• Eh = {{u,v) | Tx(u) ^ i,Tx(v) ^ i}, and 

• El2=E(G)-EH. 

It is easy to see that a convex noose can be drawn for any Q cut. We will cut the 

grid-graph G along every short column. A consequence of the previous lemma is that 

if we cut G along every short column, then we obtain a set of components, with each 

component having "width" at most k + l.1 . Furthermore, since we used only short 

columns for cuts and each component is involved in at most two cuts, it follows that 

the midset of each component has size at most 2k + 2 G 0(k). 

Now, let H be a component with width at most k + 1. We can further cut H 

along each row of H. This produces a set of components with width at most k + 1 

and height 1. Since the width of H is bounded by k + 1, we know that the midset 

1 Here, the "width" of a component is defined to be XMAX — #MIN 
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of the resulting components is at most 2k + 2. It is easy to see that this sequence of 

cuts along columns and then rows can be used to obtain an sc-branch decomposition 

with bounded width. 
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