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Abstract

This thesis introduces a method for constructing a rational function that fits the finite set
of data points on the B-H plane representing the non-linear response of a ferromagnetic,
permeable material. A background of the nature of ferromagnetism is provided, focusing on
the mathematical constraints on a function B(H) representing a physically valid magnetic
material response curve. Current approaches to B-H curve representation are categorized,
reviewed, and evaluated for their physical validity and accuracy of approximation. The method
of vector fitting (as seen in the discipline of control systems) is applied to develop the theory of
rational curve fitting for B-H data sets; techniques to establish physical validity, and corrections
for specific errors that may arise from the curve fitting process, are presented. The resulting
rational fitting method is demonstrated to yield valid curves for 192 B-H data sets, with an
average root-mean-squared error of 9.49 mT. It is also applied in the finite element method
solution of the TEAM 13 problem, yielding results in good agreement with those determined
experimentally. Further applications of rational functions to magnetic material modelling,
such as the construction of frequency-dependent material response models and hysteresis
loops, are proposed for future investigation.
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Résumé

Cette thèse présente une méthode pour construire une fonction rationnelle qui correspond à
l’ensemble fini de points de données sur le plan B-H représentant la réponse non-linéaire d’un
matériau perméable ferromagnétique. Une analyse de la nature du ferromagnétisme est fournie,
en se concentrant sur les contraintes mathématiques sur une fonction B(H) représentant une
courbe de réponse physiquement valide des matériaux magnétiques. Les approches actuelles
pour représenter les courbes B-H sont classées, examinées et évaluées en fonction de leur
validité physique et leur précision d’approximation. La méthode de vector fitting (comme on le
voit dans la discipline des systèmes de contrôle) est appliquée au développement de la théorie
d’ajustement de courbe rationelle pour les ensembles de données B-H. Des techniques pour
établir la validité physique, et les corrections d’erreurs spécifiques qui peuvent surgir lors du
processus d’ajustement de courbe, sont présentées. On démontre que la méthode d’ajustement
de courbe rationnelle qui en résulte produit des courbes valides pour 192 ensembles de
données B-H, avec une moyenne erreur quadratique moyenne de 9,49 mT. On applique aussi la
méthode dans la solution par méthode des éléments finis du problème TEAM 13, ce qui donne
des résultats en bon accord avec ceux déterminés expérimentalement. D’autres applications
des fonctions rationnelles dans la modélisation des matériaux magnétiques, telles que la
construction de modèles de réponse dépendante de la fréquence, et la construction de boucles
d’hystérésis, sont proposées pour des recherches futures.
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1 Introduction

Since the advent of modern computing, it has been of interest to model the magnetic flux
density (B) response of magnetically permeable materials subject to an applied magnetic field
(H). Such models are regularly applied in finite element methods, which in turn discretize and
approximate solutions to Maxwell’s equations for the purpose of simulating electromagnetic
devices. In the case of ferromagnetic materials, the aforementioned response is non-linear: the
ratio of magnetic flux density to applied magnetic field – that is, µ = B/H, the permeability –
varies as a function of the magnitude of the applied field, making modelling non-trivial.

This thesis presents a new method of constructing a continuously differentiable function –
notably, a rational function – that maps magnetic field intensity onto magnetic flux density,
approximating an input finite data set of B-H points for a given permeable material. Section
2 provides an overview of the physical nature of ferromagnetic materials, and mathematical
descriptions of this nature. In section 3, a review of current methods, classified into two
categories, is provided. Section 4 presents the method of vector fitting as developed in [1],
and its application to the problem of rational function approximation of B-H data sets, with
appropriate corrections made to enforce the necessary physical properties of a B-H curve
when possible. The next section (5) provides implementation details of the algorithm, notably
concerning numerical round-off and stability issues. Finally, the approach is applied to a
collection of B-H data sets, as well as the TEAM 13 finite element problem in section 6.

2 Background

It is known that the ferromagnetic material’s response consists of a series of jumps in magnetic
flux density due to the Barkhausen effect [2]. As entire magnetic domains respond to the
applied field by sudden changes in their size and orientation, the magnetic flux density in
a ferromagnetic material is, strictly speaking, a piecewise constant function of the applied
magnetic field. However, this physical nature does not provide a convenient basis for incorpo-
rating permeable material models into Maxwell’s equations, as the latter ignore the quantized,
discrete nature of materials and treat permeability and magnetic flux density as continuously
differentiable functions of the magnetic field. To resolve this, it suffices to consider B as a
function of H in the limit as the domains of the ferromagnetic material to be modelled become
infinitesimal in size; equivalently, in the limit as the Barkhausen jumps become infinitesimal
in their magnitude in B and in their spacing in H.

Furthermore, ferromagnetic materials exhibit hysteresis: the property that the material’s
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magnetic flux density response to an applied magnetic field is stateful, and thus B is not simply
a single-valued function of H. A detailed discussion of hysteresis is beyond the scope of this
document, however, it is necessary to identify several common curves and specify what is
meant by ’B-H curve’ when discussing B-H curve representation.

• Initial magnetization curve: The curve starting at the point B = H = 0, consisting of the
points on the B-H plane passed through by those fields as H is monotonically increased
from H = 0

• Main hysteresis loop: The closed loop on the B-H plane resulting from the (repeated)
monotonic decrease in applied magnetic field from a point (Hpeak,Bpeak) to a point
(−Hpeak,−Bpeak) followed by the monotonic increase in applied magnetic field back to
the point (Hpeak,Bpeak). This loop can be described by two single-valued monotonic
functions B−(H) and B+(H), where B−(H) is the branch of the loop resulting from
the monotonic decrease of H, and B+(H), the branch resulting from its monotonic
increase. The branches are related by the equation B−(H) =−B+(−H) ∀ H , and have
the additional property that B−(H)> B+(H) for all −Hpeak < H < Hpeak – that is, the
two functions only meet at the points (Hpeak,Bpeak) and (−Hpeak,−Bpeak). Furthermore,
both branches have a slope dB/dH no less than µ0, the permeability of free space. A
material has many main hysteresis loops: one for each value of Hpeak.

• Anhysteretic curve: The curve resulting from taking the average value of the two
branches of a main hysteresis loop, that is: Banhyst(H) = (B+(H)+B−(H))/2. Unlike
main hysteresis loops, anhysteretic curves are single-valued functions of H; like main
hysteresis loops, a distinct anhysteretic curve exists for each value of Hpeak.

• Commutation curve: The curve consisting of the locus of points (Hpeak,Bpeak) for all
main hysteresis loops. Experimentally, points on the commutation curve are determined
by applying an oscillating magnetic field (usually sinusoidal) with different amplitudes
Hpeak and measuring the corresponding maximum magnetic flux densities (Bpeak).

Main hysteresis loops and anhysteretic curves are inconvenient when attempting to characterize
a material, as a single material can only be defined by a (strictly speaking, infinite) set of such
curves. In seeking a simple non-linear ferromagnetic material model, these are immediately
discarded.

In [3], Zirka et al. list five ”experimentally established magnetization rules” defining
aspects of the hysteretic nature of ferromagnetic materials. Significantly, they establish that
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hysteresis loops that start at the initial magnetization curve return to the same point on the initial
magnetization curve from which they originate. Consequently, this suggests that the initial
magnetization curve and the commutation curve are, in fact, one and the same. Irrespective of
this, given that many common electromagnetic devices (e.g. motors, transformers) operate
with unbiased, alternating magnetic fields, commutation curves are the de facto ’B-H curve,’
and although many of the processes presented in this document may be used to model the
branches of hysteresis loops and anhysteretic curves, it is to be assumed henceforth that the
term ’B-H curve’ will refer to a commutation curve unless otherwise specified.

Ferromagnetic materials exhibit a Rayleigh region in the vicinity of B = H = 0 – that is, a
region which obeys the Rayleigh law:

B(H) = µinitH +αR (µ0H)2 (1)

where µinit is the initial permeability, and αR the Rayleigh constant. Additionally, they
approach the line B(H)∼ µ0 (Msat +H) as H→∞, where Msat is the saturation magnetization.
In [4], Pechstein and Jüttler summarize the properties of a function f (s) mapping applied
magnetic field (H) to magnetic flux density (B) necessary for f (s) to represent a physically
valid B-H curve:

(A1) f is continuously differentiable on R≥0,

(A2) f (0) = 0,

(A3) f ′(s)≥ µ0, ∀ s≥ 0,

(A4) lims→∞ f ′(s) = µ0, where µ0 denotes the permeability in vacuum.

Hülsmann in [5] presents an equivalent set of properties for a function H(B) and a correspond-
ing function ν(B2) = H(B)/B, omitting a counterpart for Pechstein and Jüttler’s (A4):

1. H(0) = 0 (no remanence),

2. H(B)> 0 ∀ B > 0 and ν(B2)> 0 ∀ B > 0 (positivity),

3. d
dBH > 0 (monotonicity).

Note that it may appear that Hülsmann’s first and third properties imply the second (that is,
that a monotonically increasing function passing through the origin is positive for all positive
inputs), however this is only the case for a continuous function (a condition which Hülsmann
does not stipulate).
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For the purposes of this document, the following are necessary conditions for a function
B(H) to be considered physically valid:

(i) Continuous differentiability: B(H), and its first derivative dB(H)
dH , are defined for all

H ≥ 0. Ideally, B(H) should be smooth (i.e. infinitely differentiable), however requiring
this would disqualify most piecewise-defined functions. Continuous differentiability
(as opposed to continuity alone) is highly desirable in finite element solvers using the
Newton-Raphson method, requiring the evaluation of the derivatives of B(H).

(ii) Zero coercivity: B(0) = 0, that is, the function B(H) passes through the origin of the
B-H plane. For non-linear permanent magnets, the coercivity is ignored when discussing
their B-H curves as it is easily reintroduced after construction of the function B(H) by
the evaluation of B(H−Hc), where Hc is the coercivity.

(iii) Monotonicity: dB(H)
dH ≥ µ0 for all H ≥ 0, that is, B(H)−µ0H is a monotonically increas-

ing function.

(iv) Positivity of magnetization: B(H)≥ µ0H for all H ≥ 0, that is, the magnetization of the
material, M = ν0B(H)−H (where ν0 = µ

−1
0 is the reluctivity of free space), is positive

over the entire B-H curve.

(v) Finite, positive saturation magnetization: lim
H→∞

(B(H)−µ0H) = µ0Msat, where Msat is
a finite, positive value – the saturation magnetization of the material. This implies that
lim

H→∞

dB(H)
dH = µ0 (condition (A4) of Pechstein and Jüttler), but the latter is insufficient to

establish finite Msat, as demonstrated by the counter-example B(H) =
√

H +1−1+µ0H,
which has a differential permeability (dB(H)

dH ) of µ0 as H→ ∞, but infinite magnetization.

These five conditions are equally applicable to functions mapping B to H.

3 Literature Review

Current techniques for representing B-H data sets with continuously differentiable functions
can be classified into two categories: those using functions in a small, fixed number of
parameters that are smooth over R≥0, and those using functions in a (comparatively) large
number of parameters that are piecewise-defined over a finite interval of R≥0. Examples of
functions from the first category can be summarized as ‘smooth approaches’ and are found
in [6–10], whereas examples of functions from the second category – ‘piecewise approaches’ –
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are found in [4, 5, 11, 12], which include means of interpolating as well as approximating the
material data set.

3.1 Smooth Approaches

An early example of B-H curve representation for use in computational applications is provided
by Trutt et al. in [6], from 1968, although Fischer et al. provide an excellent overview of
simple algebraic and transcendental functions capable of representing B-H curves in [7],
from 1956. The paper [6] sets out to approximate a material data set by various smooth
functions, and prior to doing so establishes the following set of conditions for the method of
approximation:

1. If possible, a single function should represent the whole range from the origin to
saturation.

2. The approximation should be simple mathematically so that it can be applied by a
programmer as a matter of routine and not involve any judgment on the part of the
operator.

3. The errors should be as small as possible.

4. The computer time used should be at a minimum.

It is understood from the context in [6] that conditions 2-4 apply to the method used to
construct a B-H curve representation from a data set, and not to the evaluation of the resulting
approximation. Noteworthy is that, due to its time of writing, Trutt et al. claim that “the
Gaussian method minimizing the square of the error would be applicable. It has been found,
however, that this is very time consuming,” implying that least-squares error minimization does
not satisfy condition 4. It is arguable that the computational advances of the past four decades
have rendered this argument invalid, and that, furthermore, condition 4 can be by-and-large
ignored.

Trutt et al. proceed to present several different smooth representations, categorized into
four categories: power series, hyperbolas, transcendental functions, and Fourier series. Of the
power series representations, the first presented is a function of the form

B = aHn (2)
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where a and n are constants. The second is given by the function

aH = bB+(bB)2n+1 (3)

where n is a positive integer, and a and b are real constants, and it is suggested that n = 1,
making the function a “cubic parabola.” The third, most general power series representation
provided in [6] is a polynomial in four terms:

H = a0 +a1B+anBn +amBm (4)

which the authors say is “very adaptive.” Here, n and m are generally integers, making H a
polynomial in B.

Noteworthy of all of the power series representations of [6] is that they do not provide for
a correct representation of the B-H curve in its extrapolation to the limit as B and H tend to
infinity. Specifically, it is expected that dB/dH approaches µ0 as H tends to infinity; likewise,
that dH/dB approaches ν0 as B tends to infinity. Yet for (2),

lim
H→∞

d
dH

aHn = lim
H→∞

anHn−1 =


0, if n < 1
a, if n = 1
∞, if n > 1,

(5)

and thus (2) can only represent a physically valid B-H curve in the limit as H tends to infinity
if a = µ0 and n = 1, implying that the material has no magnetization. Similarly, for (3),

lim
B→∞

d
dB

1
a

(
bB+(bB)2n+1

)
= lim

B→∞

b
a

(
1+(2n+1)(bB)2n

)
=


b
a , if n < 0

2b
a , if n = 0

∞, if n > 0.

. (6)

Here, the case for which n < 0 seems admissible, specifically, if 2n > −1 (as this prevents
a pole at the origin) and b = ν0a. However, under these conditions, (3) fails to represent a
physically valid material as:

lim
B→∞

M = lim
B→∞

(ν0B−H) = lim
B→∞
−1

a
(bB)2n+1 =−∞ (7)

where M is the magnetization of the material.
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That is, assuming a > 0 and b > 0, the magnetization of the material is infinite and negative
in the limit as B tends to infinity. Moreover, any finite power series truncation can be shown to
suffer a similar flaw, in that magnetization will requisitely either be zero or infinite in the limit
as B or H tends to infinity. These representations do have the flexibility to capture material
properties from the Rayleigh region (i.e. for small H) up to some finite value of H (at which
point the material is deemed saturated).

The second category presented by Trutt et al. is that consisting of hyperbolas, notably
functions of the form

B =
H

a+bH
(8)

commonly known as Froelich’s equation, as well as functions of the form

B = a0 +a1H− a2

H
(9)

for which it is noted in [6] that this representation is invalid in the region of H = 0.
As with the power series representations, Froelich’s equation (8) does not represent a

physically valid B-H curve, as

lim
H→∞

M = lim
H→∞

(
ν0H

a+bH
−H

)
=

ν0

b
− lim

H→∞
H =−∞, (10)

although this could be corrected by adding µ0H to (8):

B =
H

a+bH
+µ0H, (11)

in which case limH→∞ M = ν0b−1 and limH→∞ dB/dH = µ0. Similarly, (9) does allow for a
finite, non-zero magnetization in the limit as H tends to infinity, if a1 = µ0, where a0 is then
the saturation magnetization. These hyperbolic representations therefore have the advantage
over power series representations that they remain representative of reality for arbitrarily large
B and H, but they are incapable of representing B-H curves’ Rayleigh regions - for (9) this
is evident; for (8) and (11), this is due to the fact that the second derivative has no roots for
H ≥ 0:

d2

dH2
H

a+bH
+µ0H =

d2

dH2
H

a+bH
=
−2ab

(a+bH)3 . (12)
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Consequently, the representation has no inflection points in the interval 0 ≤ H < ∞ and in
order to have finite magnetization it must be concave (down) .

The third category consists of transcendental functions, the first two of which are H = aebB

and B = a
(
1− e−bH), both of which are noted to only be useful ”in small intervals of B.” The

function

B = eH/(a+bH) (13)

is presented for use ”over a wide range” in [6], and

bH = sinh
(

B
a

)
(14)

is claimed to be a common choice, however like (8), the first does not provide for finite
magnetization as H → ∞; the second necessarily has a derivative that tends to infinity as B

tends to infinity. Trutt et al. provide a good transcendental representation in the form

B = a tan−1 (bH)+ cH (15)

for which the choice c = µ0 is natural (although not specified in [6]) to make the B-H curve
physically valid for all H.

The last representation type presented in [6] is that of finite Fourier series. Obviously, this
approach can only approximate the B-H curve over a finite interval of values, but has sufficient
degrees of freedom to capture details of the curve (such as its Rayleigh region) accurately.

Trutt et al. conclude that ”a good fit can very seldom be obtained by a single function over
the whole useful range of the magnetization characteristic,” and proceed to provide a method
for segmenting the B-H curve - fundamentally, a piecewise approach.

A well-known representation of H as a function of B is provided by Brauer in [8]:

H =
(

k1ek2B2
+ k3

)
B. (16)

Here, a choice of k1 > 0, k2 < 0, k3 = ν0 yields a physically valid B-H curve for all values
of B≥ 0. Brauer, with the intent of solving non-linear magnetic vector potential problems,
illustrates the simplicity of the calculation of the reluctivity, ν and its derivative using this
approach:

ν = k1ek2B2
+ k3 (17)
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dν

d (B2)
= k1k2ek2B2

. (18)

This representation is applied to three steel data sets in [8] with negligible error, however
none has data points in its Rayleigh region. In fact, from (18), it is concluded that the Brauer
model has a non-positive derivative with no roots, and thus cannot capture a material’s response
in its Rayleigh region.

Hülsmann improves on the Brauer model in [5] with the Extended Brauer Model, using
the Brauer model as one segment of a piecewise, continuously differentiable function approxi-
mating the B-H data set. Although piecewise, this approach consists of a representation in
only three segments: an initial, parabolic segment corresponding to the Rayleigh region; a
second segment using the Brauer model for the region encompassing the knee (the region of
the B-H curve in which the material’s differential permeability decreases rapidly with respect
to H as it approaches saturation); and a third, linear segment for the saturation region. In [5]
the model is presented for H as a function of B, notably:

H(B) =


√

1
4α2ν2

init
+ B

α
− 1

2ανinit
if 0≤ B < Bexp(

k1ek2B2
+ k3

)
B if Bexp ≤ B < Blin

Hlin +ν0 (B−Blin) if Blin ≤ B

(19)

where νinit and α correspond to the linear and quadratic coefficients in Rayleigh’s law in the
form:

B(H) = ν
−1
initH +αH2; (20)

k1, k2, and k3 are the same parameters as those in (16); and
(
Bexp,Hexp

)
and (Blin,Hlin)

delimit the piecewise segments. Clearly, this model does not implicitly satisfy continuity,
much less differentiability at the points B = Bexp and B = Blin. Hülsmann modifies (19) to
enforce continuity implicitly by constraining k3 = νd,exp− k1 and shifting the Brauer segment
by Bexp on the B axis, and by Hexp on the H axis:

H(B) =


√

1
4α2ν2

init
+ B

α
− 1

2ανinit
if 0≤ B < Bexp(

k1ek2(B−Bexp)
2

+νd,exp− k1

)(
B−Bexp

)
+Hexp if Bexp ≤ B < Blin

Hlin +ν0 (B−Blin) if Blin ≤ B

(21)
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where νd,exp denotes the differential reluctivity, dH
dB of the parabolic segment at B = Bexp.

Equation (21) consists of 9 parameters: α , k1, k2, νd,exp, νinit, Bexp, Hexp, Blin, and Hlin;
however, as Hülsmann notes, Hexp is determined by the evaluation of the first segment at
B = Bexp, similarly Hlin by the evaluation of the second segment at B = Blin. Two additional
constraints establish differentiability at the segment boundaries, leaving 5 degrees of freedom.
In [5], νinit and the points

(
Bexp,Hexp

)
and (Blin,Hlin) are chosen as independent variables,

with the remaining parameters defined (k2, implicitly) as functions of these:

α = α
(
νinit,Bexp,Hexp

)
=

Bexp
Hexp
− 1

νinit

Hexp

νd,exp = νd,exp
(
νinit,Bexp,α

)
=

1

2α

√
1

4α2ν2
init

+
Bexp

α

k2 = k2
(
νd,exp,Bexp,Blin,Hexp,Hlin

)
k1 = k1

(
νd,exp,Bexp,Blin,Hexp,Hlin,k2

)
=

Hlin−Hexp
Blin−Bexp

−νd,exp

ek2(Blin−Bexp)
2

−1

(22)

where k2
(
νd,exp,Bexp,Blin,Hexp,Hlin

)
is the function representing the value of k2 satisfying

the equation dH
dB

∣∣
B=Blin

= ν0, or as derived in [5]:

Hlin−Hexp
Blin−Bexp

−νd,exp

ν0−νd,exp
=

ek2(Blin−Bexp)
2

−1(
2k2
(
Blin−Bexp

)2
+1
)

ek2(Blin−Bexp)
2

−1
. (23)

Hülsmann provides algorithms for generating an initial guess for, and solving, the non-
linear least-squares problem, that is:

argmin
x

(
H(x,B1)

2 + · · ·+H(x,Bn)
2)

x =
[
νinit,Bexp,Hexp,Blin,Hlin

] (24)

for n data points, the details of which are found in [5] and are beyond the scope of this review.
This approach produces B-H curve representations which are physically valid and continuously
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differentiable for all B≥ 0. However the magnetization represented by the curve is constant
for all B≥ Blin whereas it is expected that magnetization should only asymptotically approach
a constant as B→ ∞. Hülsmann provides a test material for the model in [5], but the norm
used for measuring the quality of the fit is specific to the Extended Brauer Model. Using
the data provided, the RMS error of H as a function of B is 46.73 A / m, and inverting the
representation and solving for H for computation of an RMS error of B as a function of H

yields 31.52 mT.
Rivas, Martı́n, and Pereira provide a straightforward approach to second-order rational

function B-H curve representation of B-H curves in [9]:

M =
a0 +a1H +a2H2

1+b1H +b2H2 . (25)

Rivas et al. provide expressions for the coefficients in (25) given the initial magnetic
susceptibility (χ), the Rayleigh material constant (λ ), the magnetization of saturation (Ms),
and the Néel constant (α) of a material:

a0 = 0

a1 = χ

a2 =
λMs +χ2

Ms +αχ

b1 =
αλ +χ

Ms−αχ

b2 =
λMs +χ2

Ms (Ms−αχ)
.

(26)

Unlike previous smooth approaches, that of [9] captures the response of materials in their
Rayleigh regions and has physically valid behaviour as H→ ∞. Rivas et al. proceed to apply
second-order rational functions to hysteresis loop modelling, with further improvements to this
aspect of the work provided by Pagnola et al. in [10]. However, knowledge of the Rayleigh
and Néel constants of a material is a requirement for the use of this approach, rendering it
unusable when only a B-H data set is available.

3.2 Piecewise Approaches

As computing and data storage capacity increased throughout the 20th century, piecewise
representations of B-H curves, requiring the calculation and storage of more parameter values,
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became feasible and practical for finite element applications. An early example of such an
approach is provided by Forghani et al., which as presented in [11] defines the B-H curve in
terms of a piecewise-cubic function of (B−BR)

2 in 14 parameters (where BR is the remanence
of the material): the B2 axis is partitioned into 6 equal-length segments over the domain of the
input data set; the value and slope of the piecewise-cubic function at each segments’ endpoints
comprise the parameters. The use of equal-length segments permits function evaluation to be
O(1) in the number of segments.

Basis functions with local support – one multiplying each parameter – are defined using
Hermite polynomials; those for the value at the endpoints, as:

fi

(
(B−BR)

2
)
=



0 for (B−BR)
2 < (i−1)∆B2

h00

(
(B−BR)

2−(i−1)∆B2

∆B2

)
for (i−1)∆B2 ≤ (B−BR)

2 < i∆B2

h01

(
(B−BR)

2−i∆B2

∆B2

)
for i∆B2 ≤ (B−BR)

2 < (i+1)∆B2

0 for (i+1)∆B2 ≤ (B−BR)
2

(27)

and those for slope at the endpoints, as:

gi

(
(B−BR)

2
)
=



0 for (B−BR)
2 < (i−1)∆B2

h10

(
(B−BR)

2−(i−1)∆B2

∆B2

)
for (i−1)∆B2 ≤ (B−BR)

2 < i∆B2

h11

(
(B−BR)

2−i∆B2

∆B2

)
for i∆B2 ≤ (B−BR)

2 < (i+1)∆B2

0 for (i+1)∆B2 ≤ (B−BR)
2

(28)

where 0 ≤ i ≤ 6 is an integer enumerating segment endpoints, ∆B2 is the length of each
segment, and h00, h01, h10, and h11 are the Hermite cubics defined over the unit interval:

h00 (x) = 2x3−3x2 +1

h01 (x) =−2x3 +3x2

h10 (x) = x3−2x2 + x

h11 (x) = x3− x2.

(29)

By construction, each function fi has value equal to 1 at precisely one segment endpoint
and zero at all other endpoints, and all functions fi have zero slope at all segment endpoints.
Similarly, each function gi has slope (with respect to (B−BR)

2) equal to 1 at precisely one
segment endpoint and zero at all other endpoints, and all functions gi have zero value at
all segment endpoints. Construction of the approximation proceeds by the standard linear
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least-squares approach, finding the unique solution to

argmin
a0,...,a6,b0,...,b6

∑
j

(
6

∑
i=0

ai fi

((
B j−BR

)2
)
+bigi

((
B j−BR

)2
)
−H j

)2

(30)

for a data set consisting of points
(
B j,H j

)
, by solution of the corresponding linear system. It

is noted in [11] that in practice, this model is applied to the reluctivity of materials, and thus
data sets of points

(
B j,ν j = H j/B j

)
, but the approach is otherwise identical.

The approach presented in [11] does not ensure monotonicity: Forghani et al. state that “in
the authors’ experience, the choice of [piecewise polynomial] functions is very much one of
convenience; any lack of monotonicity is due to the widespread use of least-squares fits, which
tend to mildly oscillatory approximations.” Additionally, the model in [11] has no extension
into the saturation of the material beyond the last point of the input data set.

Heise, in [12] uses a similar approach to Forghani et al. by modelling reluctivity, ν ,
as a cubic piecewise function interpolating the input data set (Bi,νi). As in [11], Hermite
cubics are used as the segments of the function ν (B), however the work of Heise is based
on that of Fritsch and Carlson [13], and thus ensures monotonicity by a similar means to
that in [13]. Additionally, Heise defines the asymptotic behaviour of the function to be
ν̂(z) = ν0− k1z−1 + k2z−2 for zn ≤ z where zn is the last value of B in the data set, and k1 and
k2 are chosen to establish continuous differentiability at the end of the last cubic segment.
Much of this work is focused on incorporation of this material representation into a 2D vector
potential formulation of a non-linear magnetostatic finite element problem.

Heise’s approach results in material curves representative of physical reality from the
Rayleigh region through to saturation, and as it is an interpolative approach, discussion of
errors (with repsect to the input data set) is inapplicable. However, the parameters of this
representation number on the same order as the points in the input data set, and its extrapolation
for the saturation region is solely a function of the value and slope of the last segment of the
piecewise interpolant.

Finally, Pechstein and Jüttler present a hybrid of [11] and [12]: in [4] they demonstrate a
method of interproximation of a B-H data set by B-splines – piecewise polynomial functions
at whose segment endpoints (called knots) C n continuity is enforced. As in [11], the number
of piecewise segments is less than the number of input data points; as in [12], the number
of parameters (i.e. the number of segments) is of the same order as the number of input
data points, and monotonicity is ensured by construction. A quadratic minimization problem
is solved with constraints placed on the relative error of the piecewise monotonic function
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B(H) evaluated at each data point (Hi,Bi); thus the use of the term interproximation (a
portmanteau of interpolation and approximation) to describe the approach. The piecewise
functions resulting from the method of Pechstein and Jüttler share the same properties as other
piecewise approaches: a large number of parameters are required to describe them, and the
saturation region is defined by a single arctangent segment over the interval starting at the last
point and extending to infinity.

4 Theory

The goal is to construct a rational function B(H) for a given input data set {(Hi,Bi) ,1≤ i≤ n},
similar to that presented by Rivas et al. in [9], but with a numerator and denominator of
higher degree (Rivas et al. used a quadratic numerator and denominator). This approach was
first introduced by Widger in [14] and expanded upon in [15]; greater detail with regard to
its theory and implementation, as well as a new non-linear least-squares improvement, are
presented here. As in [14, 15], the objective is to construct rational functions in a relatively
small number of parameters that, like the approaches presented in section 3.1, are smooth over
the domain H ≥ 0, and that approximate the input data set with a high degree of accuracy, like
the approaches presented in section 3.2. Additionally, as in [15], a correction to the algorithm
of [14] that removes non-physical poles and zeros of the rational functions is sought, and a
further non-linear minimization of the error introduced.

The rational function B(H) is constructed so as to satisfy the conditions for a physically
valid B-H curve introduced in section 2:

(i) Continuous differentiability: B(H), and its first derivative dB(H)
dH , are defined ∀ H ≥ 0,

(ii) Zero coercivity: B(0) = 0,

(iii) Monotonicity: dB(H)
dH ≥ µ0 ∀ H ≥ 0,

(iv) Positivity of magnetization: B(H)≥ µ0H ∀ H ≥ 0,

(v) Finite, positive saturation magnetization: lim
H→∞

(B(H)−µ0H) = µ0Msat, where Msat is a
finite, positive value.

In order to satisfy (ii) and (v), a rational function f (H) whose numerator and denominator are
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of the same degree d is considered, such that:

f (H) =
p(H)

q(H)
=

d
∑

k=1
pkHk

1+
d
∑

k=1
qkHk

B(H) = f (H)+µ0H

(31)

where, by the fact that the numerator of f (H) has a zero constant term, B(0) = f (0) = 0.
Assuming qd 6= 0, it follows by construction that:

lim
H→∞

(B(H)−µ0H) = lim
H→∞

f (H)

= lim
H→∞

d
∑

k=0
pkHk

1+
d
∑

k=1
qkHk

=
pd

qd
= µ0Msat (32)

and thus Msat is finite; for it to be positive, it suffices for pdqd ≥ 0, that is, for pd and qd to
have the same sign. However, given that q(0) = 1, and q(H) cannot have positive real roots if
f (H) is to be continuous (condition (i)), it is necessary that qd > 0 (and thus pd > 0).

If, additionally, p(H) and q(H) have no positive real roots, that is, if p(H) 6= 0 ∀ H > 0
and q(H) 6= 0 ∀ H ≥ 0, then f (H) (and thus B(H)) is defined for all H ≥ 0, as is its derivative
(and that of B(H)), (p′(H)q(H)− p(H)q′(H))/q(H)2. Furthermore, this implies that f (H)

has no positive real zeros (and thus nor does B(H)), as it has the same zeros as p(H). Since
f (H) is continuous, and positive in its limit as H → ∞, it follows that f (H) is positive for
all H ≥ 0. Therefore constraining p(H) and q(H) to have no positive real roots establishes
conditions (i) and (iv).

Condition (iii), that dB(H)
dH ≥ µ0 ∀ H ≥ 0, is established only if d f (H)

dH ≥ 0 ∀ H ≥ 0. This
is equivalent to the constraint that p′(H)q(H)− p(H)q′(H), the numerator of d f (H)

dH , has no
positive real zeros (as these two functions have the same zeros), and is positive for at least
one value of H ≥ 0. The derivative of f (H) is necessarily positive for some value of H ≥ 0
if conditions (i), (ii), and (v) are established, given that under these conditions f (H) must
continuously vary from a value f (0) = 0 to a value µ0Msat as H tends to infinity.

Thus, the five conditions establishing the physical validity of a B-H curve can be restated in

20



terms of conditions on the numerator and denominator of f (H), p(H) and q(H) respectively:

(a) Continuous differentiability: p(H) 6= 0 ∀ H > 0 and q(H) 6= 0 ∀ H ≥ 0,

(b) Monotonicity: p′(H)q(H)− p(H)q′(H) 6= 0 ∀ H ≥ 0,

(c) Positivity of magnetization and finite, positive saturation magnetization: pd > 0 and
qd > 0;

noting that condition (ii), zero coercivity, holds by construction of f (H).
With the form of f (H) and B(H) established, the next step is to find the values

{p1, . . . , pd,q1, . . . ,qd} for f (H) that (in some sense) make B(H) a good approximation of
the input data set {(Hi,Bi) , 1≤ i≤ n} at the points (Hi,Bi).

4.1 Iterative Linear Least-Squares

As B(H) = f (H)+µ0H, it follows that f (H) should be fit to a modified version of the data
set {(Hi,µ0Mi) , 1≤ i≤ n}, where µ0Mi = Bi−µ0Hi. If the standard squared error function
ε is considered,

ε =
1
2

n

∑
i=1


d
∑

k=1
pkHk

i

1+
d
∑

k=1
qkHk

i

−µ0Mi


2

, (33)

it is apparent that the derivatives of ε with respect to pk and qk are non-linear equations in those
variables, and thus a linear least-squares approach is inapplicable. A non-linear least-squares
method (e.g. Newton-Raphson) may be considered, however the excessive number of local
minima of ε makes such an approach futile. To illustrate this, ε may be expressed in rational
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form:

ε =
1
2

n

∑
i=1


(

d
∑

k=1
pkHk

i

)
−µ0Mi

(
1+

d
∑

k=1
qkHk

i

)
1+

d
∑

k=1
qkHk

i


2

=
1
2

n

∑
i=1


(

d
∑

k=1
pkHk

i

)
−µ0Mi

(
1+

d
∑

k=1
qkHk

i

)
1+

d
∑

k=1
qkHk

i


∏

1≤ j≤n
j 6=i

(
1+

d
∑
j=1

qkHk
j

)

∏
1≤ j≤n

j 6=i

(
1+

d
∑
j=1

qkHk
j

)




2

=
1
2

n
∑

i=1

(( d
∑

k=1
pkHk

i

)
−µ0Mi

(
1+

d
∑

k=1
qkHk

i

))
∏

1≤ j≤n
j 6=i

(
1+

d
∑
j=1

qkHk
j

)
2

n
∏
i=1

(
1+

d
∑

k=1
qkHk

i

)2 . (34)

From (34) it can be discerned that the numerator and denominator of ε are multivariate
polynomials in {p1, . . . , pd,q1, . . . ,qd} of degree 2n. Consequently, the derivatives of ε with
respect to the variables pk are rational functions whose numerators are of degree 2n−1, and
whose denominators are of degree 2n; the derivatives with respect to the variables qk are
rational functions whose numerators are of degree 4n− 2, and whose denominators are of
degree 4n. Equating these derivatives with zero and multiplying through by their denominators
yields a system of polynomial equations in 2d unknowns (the pk and qk). By homogenizing
these polynomials (i.e. by introducing an additional variable multiplying the monomial terms
of each polynomial so as to make all monomial terms in a given polynomial of equal degree),
Bézout’s theorem [16] can be applied to yield an upper bound on the number of solutions to the
polynomial system of equations, and thus the number of local minima of ε . This upper bound is
the product of the degrees of the polynomials, equal to (2n−1)d (4n−2)d =

(
8n2−8n+2

)d .
For reasonable values of n and d, it is apparent that the number of local minima may be
extremely large (e.g. for n = 30 and d = 5, this upper bound is ∼ 1.6× 1019), making the
convergence of a non-linear solver (without a good starting point) unlikely, and motivating
alternate approaches to the determination of the parameters {p1, . . . , pd,q1, . . . ,qd}.

Turning to the disciplines of circuit analysis and systems theory, it is known that the
transfer function of a linear time-invariant system is a rational function of the complex
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frequency jω ; equivalently, that the Laplace transform of its impulse response L {h(t)}(s) =
H(s) is a rational function in s. Numerical determination of the coefficients of this rational
function for large systems is often a complicated, ill-conditioned process, whereas evaluation
(via experimentation) of their frequency response for a finite set of frequencies { jωk} is
comparatively simple. Sanathanan and Koerner address the problem of approximating the
rational transfer function of a linear dynamic system from a finite set of experimentally
determined frequency response values in [1], presenting a method that is equally applicable to
the problem of rational function fitting for B-H curve approximation. In [14], Widger adapts
the approach of Sanathanan and Koerner to the minimization of the relative squared error of a
rational function with respect to a B-H data set; here, as in [15], the absolute squared error is
used.

When considering a set of points {(Hi,µ0Mi) , 1≤ i≤ n}, the approach of Sanathanan
and Koerner is to first express the error at each point (Hi,µ0Mi):

εi =
p(Hi)

q(Hi)
−µ0Mi, (35)

and then construct a weighted error, ε ′i , by multiplying εi by q(Hi):

ε
′
i = q(Hi)εi = p(Hi)−µ0Miq(Hi) . (36)

The sum of these weighted errors, squared, produces a weighted squared error function ε ′

which is quadratic in the parameters {p1, . . . , pd,q1, . . . ,qd}:

ε
′ (p1, . . . , pd,q1, . . . ,qd) =

1
2

n

∑
i=1

ε
′
i
2

=
1
2

n

∑
i=1

(p(Hi)−µ0Miq(Hi))
2

=
1
2

n

∑
i=1

((
d

∑
k=1

pkHk
i

)
−µ0Mi

(
1+

d

∑
k=1

qkHk
i

))2

. (37)

Minimization of this error function then proceeds as usual, by equating its derivatives with
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respect to the parameters to zero:

∀ j ∈ [1,d],
dε ′

d p j
=

n

∑
i=1

((
d

∑
k=1

pkHk
i

)
−µ0Mi

(
1+

d

∑
k=1

qkHk
i

))
H j

i = 0

∀ j ∈ [1,d],
dε ′

dq j
=

n

∑
i=1

((
d

∑
k=1

pkHk
i

)
−µ0Mi

(
1+

d

∑
k=1

qkHk
i

))(
−µ0MiH

j
i

)
= 0;

(38)

a 2d×2d system of linear equations which can be expressed in the form:

AT
(

A~x−~b
)
=~0, (39)

where the entries of A,~x, and~b are:

Ai j =

{
H j

i , if 1≤ j ≤ d

−µ0MiH
j−d

i , if d +1≤ j ≤ 2d

~x j =

{
p j, if 1≤ j ≤ d

q j−d, if d +1≤ j ≤ d

~bi = µ0Mi,

(40)

A being an n×2d matrix, and~x and~b being 2d×1 and n×1 column vectors, respectively.
Constructing ε ′ to linearize the minimization problem was originally proposed by Levy
in [17]; Sanathanan and Koerner improved on this approach by noting that the weighted
squared error function ε ′ can be reweighted by dividing each error ε ′i by the denominator of
f (H), q(H), evaluated at the point Hi. This results in an iterative process: initialising q(0) = 1,
parenthesized superscripts denoting iteration count, the system A(m)T

(
A(m)~x(m)−~b(m)

)
=~0
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is solved repeatedly, where:

A(m)
i j =


H j

i
q(m−1)(Hi)

, if 1≤ j ≤ d
−µ0MiH

j−d
i

q(m−1)(Hi)
, if d +1≤ j ≤ 2d

~x(m)
j =

{
p(m)

j , if 1≤ j ≤ d

q(m)
j−d, if d +1≤ j ≤ d

~b(m)
i =

µ0Mi

q(m−1) (Hi)

p(m) (H) =
d

∑
j=1

p(m)
j H j

=
d

∑
j=1

~x(m)
j H j

q(m) (H) = 1+
d

∑
j=1

q(m)
j H j

= 1+
d

∑
j=1

~x(m)
j+dH j.

(41)

According to Sanathanan and Koerner, these “iterations tend to converge rapidly and
the coefficients evaluated become effectively those obtained by minimizing the sum of [ε2

i ]
at all the experimental points.” However, for a fixed point of this iteration, that is, where
q(m−1)

1 = q(m)
1 , . . . ,q(m−1)

d = q(m)
d , it holds that:

ε
′(m)

=
1
2

n

∑
i=1

(
p(m) (Hi)−µ0Miq(m) (Hi)

q(m−1) (Hi)

)2

=
1
2

n

∑
i=1

(
p(m) (Hi)

q(m) (Hi)
−µ0Mi

)2

= ε
(m). (42)

This does not establish the fixed point of the iteration as a local minimum of the (unweighted)
squared error, ε , as the derivatives of ε ′(m) with respect to pk and qk (where q(m−1)(H) is
considered constant with respect to these variables) are not (necessarily) equal to the same
derivatives of ε (where q(H) is a function of the variables pk and qk), and thus the latter are not
(necessarily) equal to zero for the values pk and qk at a fixed point. Nevertheless, Sanathanan
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and Koerner’s claim can be corroborated by comparison of these derivatives, evaluated at a
fixed point of the iteration. The partial derivatives of ε ′(m) with respect to pk and qk are:

∂

∂ pk
ε
′(m)

=
1
2

n

∑
i=1

(
p(m) (Hi)−µ0Miq(m) (Hi)

q(m−1) (Hi)

)
Hk

i

q(m−1) (Hi)

∂

∂qk
ε
′(m)

=
1
2

n

∑
i=1

(
p(m) (Hi)−µ0Miq(m) (Hi)

q(m−1) (Hi)

)
−Hk

i

q(m−1) (Hi)
(µ0Mi)

(43)

whereas the partial derivatives of ε are:

∂

∂ pk
ε =

1
2

n

∑
i=1

(
p(Hi)−µ0Miq(Hi)

q(Hi)

)
Hk

i
q(Hi)

∂

∂qk
ε =

1
2

n

∑
i=1

(
p(Hi)−µ0Miq(Hi)

q(Hi)

)
−Hk

i
q(Hi)

(
p(Hi)

q(Hi)

) (44)

Comparing the derivatives in (43) and (44), it is apparent that the derivatives of ε ′(m) and ε

with respect to the variables pk are equal (and zero) at a fixed point; this is to be expected given
that both error functions are quadratic (and thus their derivatives, linear) in these coefficients.
The same is not, in general, true for the derivatives with respect to the variables qk. However,
if p(Hi)/q(Hi) ≈ µ0Mi for all i – that is, if the rational function p(Hi)/q(Hi) is a good
approximation of the data set at the points (Hi,µ0Mi) – then it follows that the derivatives of ε

with respect to qk are approximately equal to those of ε ′(m) (and thus approximately zero), and
that said approximation has an error proportional to that of the rational function approximation
of the data set as a whole.

Consequently, the iteration in (41), should it converge, may not converge to a local
minimum of ε – particularly if the squared error at the fixed point is large. In fact, an
iterate obtained prior to the fixed point may be of a lower squared error than the fixed
point itself. Since the iteration is not assured to converge, the first iterate M for which
ε(M) ≤ ε(m), ∀ m < M+∆M is deemed to be the result of this iterative least-squares fitting
method, where ∆M is a positive integer representing the number of additional iterations to
take beyond an iterate m for which ε(m) < ε(m+1) to establish that no squared error lower than
ε(m) is achievable; through experimentation, a value of ∆M = 20 is found to be sufficient.
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4.2 Basis Functions

In [1, 14], the choice to express p(H) and q(H) as a linear combination of powers of H is
arbitrary. Although in exact arithmetic, the choice of basis has no effect on the result of the
solution to linear systems such as those in (40) and (41), in finite precision arithmetic it may
have a notable impact on the numerical stability of the solution process. Many polynomial
bases, such as the Legendre polynomials, the Chebyshev polynomials, and the Bernstein
polynomials, are intended for use over a fixed interval; often, this interval is [−1,1] or [0,1].
For basis polynomials defined over the interval [a,b], a modified data set is constructed, of the
form: {(

Ĥi =
(b−a)Hi

Hn
+a,µ0Mi

)
, 1≤ i≤ n

}
(45)

Similarly, scaled, shifted versions of p(H), q(H), and consequently f (H) are defined as:

p̂
(
Ĥ
)
= p

(
Hn

Ĥ−a
b−a

)
q̂
(
Ĥ
)
= q

(
Hn

Ĥ−a
b−a

)
f̂
(
Ĥ
)
= f

(
Hn

Ĥ−a
b−a

)
=

p̂
(
Ĥ
)

q̂
(
Ĥ
)

(46)

Expressing p̂(Ĥ) and q̂(Ĥ) in terms of linearly independent polynomial basis functions
βk(Ĥ) yields:

p̂
(
Ĥ
)
=

d

∑
k=0

p̂kβk
(
Ĥ
)

q̂
(
Ĥ
)
=

d

∑
k=0

q̂kβk
(
Ĥ
) (47)

With regard to the fitting process, the constraint p̂(a) = 0 must be established for B(H)

to satisfy the zero coercivity condition, and one of the coefficients of q̂(Ĥ) must be fixed to
prevent the system from being under-determined. In the case of an arbitrary basis, p̂(a) = 0
implies:

p̂(a) =
d

∑
k=0

p̂kβk (a) = 0 (48)
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and the constraint is established by:

p̂0 =−
1

α0 (a)

d

∑
k=1

p̂kβk (a) , (49)

where, without loss of generality, β0(Ĥ) is chosen so that β0(a) 6= 0 (this choice is always
possible due to the fact that a set of linearly independent polynomials cannot all share a
common root). Similarly, choosing β0

(
Ĥ
)

so that β0(a) 6= 0 allows the choice of q̂0 = 1
(if β0(a)> 0, or q̂0 =−1 if β0(a)< 0) to make the linear systems solved during the fitting
process non-singular while ensuring that q̂

(
Ĥ
)

is positive and does not have a root at Ĥ = a.
Then, the iteration in (41), for an arbitrary basis βk(Ĥ) (where β0 (a) 6= 0, and Ĥ ∈ [a,b]), is:

A(m)
i j =


β j(Ĥi)−

β j(a)
β0(a)

q̂(m−1)(Ĥi)
, if 1≤ j ≤ d

−µ0Miβ j−d(Ĥi)
q̂(m−1)(Ĥi)

, if d +1≤ j ≤ 2d

~x j =

{
p̂ j, if 1≤ j ≤ d

q̂ j−d, if d +1≤ j ≤ d

~bi =
µ0Mi

q̂(m−1)
(
Ĥi
)

p̂(m)
(
Ĥ
)
=

d

∑
j=1

p̂(m)
j

(
β j
(
Ĥ
)
−

β j(a)
β0(a)

)

=
d

∑
j=1

~x(m)
j

(
β j
(
Ĥ
)
−

β j(a)
β0(a)

)

q̂(m)
(
Ĥ
)
= β0

(
Ĥ
)
+

d

∑
j=1

q̂(m)
j β j

(
Ĥ
)

= β0
(
Ĥ
)
+

d

∑
j=1

~x(m)
j+dβ j

(
Ĥ
)

;

(50)

from which p(H), q(H), and thus f (H) are easily recovered by inverting the scaling and
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shifting in (46):

p(H) = p̂
(
(b−a)H

Hn
+a
)

q(H) = q̂
(
(b−a)H

Hn
+a
)

f (H) = f̂
(
(b−a)H

Hn
+a
)
=

p(H)

q(H)
.

(51)

4.3 Non-Linear Least-Squares

Once the iterative least-squares algorithm yields a fit f̂
(
Ĥ
)
= p̂(Ĥ)/q̂(Ĥ), it may be improved

by applying a Newton-Raphson iteration minimizing the (unweighted) squared error, as
experimentation demonstrates that the iterative least-squares algorithm often yields a good
starting point for such a process. For this purpose the Bernstein basis,

βk
(
Ĥ
)
=

(
d
k

)(
1− Ĥ

)d−k Ĥk, (52)

(where Ĥ = H/Hn) is convenient, not only because of numerical stability considerations, but
also because of the fact that β0(0) = 1 and βk(0) = 0, ∀ k > 0, meaning that the zero coercivity
condition is established by letting p̂0 = 0. The squared error function,

ε =
1
2

n

∑
i=1

(
p̂
(
Ĥi
)

q̂
(
Ĥi
) −µ0Mi

)2

=
1
2

n

∑
i=1


d
∑

k=1
p̂kβk

(
Ĥ
)

β0
(
Ĥ
)
+

d
∑

k=1
q̂kβk

(
Ĥ
) −µ0Mi


2

(53)

is minimized by equating its first derivatives to zero:

dε

d p̂s
=

n

∑
i=1

(
p̂
(
Ĥ
)

q̂
(
Ĥ
) −µ0Mi

)
βs
(
Ĥ
)

q̂
(
Ĥ
) = 0, ∀ s ∈ [1,d]

dε

dq̂s
=−

n

∑
i=1

(
p̂
(
Ĥ
)

q̂
(
Ĥ
) −µ0Mi

)
βs
(
Ĥ
)

q̂
(
Ĥ
)2 = 0, ∀ s ∈ [1,d],

(54)
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resulting in a system of non-linear equations which can be solved with the Newton-Raphson
iteration~x(m+1) =~x(m)−J(m)−1

~g
(
~x(m)

)
, where:

J(m) =

(
A(m) B(m)

B(m)T C(m)

)

A(m)
st =

d2ε

d p̂sd p̂t
=

n

∑
i=1

βs
(
Ĥi
)

βt
(
Ĥi
)

q̂(m)
(
Ĥi
)2

B(m)
st =

d2ε

d p̂sdq̂t
=

d2ε

d p̂tdq̂s
=−

n

∑
i=1

βs
(
Ĥi
)

βt
(
Ĥi
)

q̂(m)
(
Ĥi
)2

(
2 p̂(m)

(
Ĥi
)

q̂(m)
(
Ĥi
) −µ0Mi

)

C(m)
st =

d2ε

dq̂sdq̂t
=

n

∑
i=1

βs
(
Ĥi
)

βt
(
Ĥi
)

p̂(m)
(
Ĥi
)

q̂(m)
(
Ĥi
)3

(
3 p̂(m)

(
Ĥi
)

q̂(m)
(
Ĥi
) −2µ0Mi

)

~x(m)
s =

{
p̂(m)

s , if 1≤ s≤ d

q̂(m)
s−d, if d +1≤ s≤ 2d

~g
(
~x(m)

)
=

[
dε

d p̂1
, . . . ,

dε

d p̂d
,

dε

dq̂1
, . . . ,

dε

dq̂d

]T
∣∣∣∣∣

p̂1=~x
(m)
1 ,...,p̂d=~x

(m)
d ,q̂1=~x

(m)
d+1,...,q̂d=~x

(m)
2d

p̂(m)
(
Ĥ
)
=

d

∑
j=1

p̂(m)
j β j

(
Ĥ
)
=

d

∑
j=1

~x(m)
j β j

(
Ĥ
)

q̂(m)
(
Ĥ
)
= β0

(
Ĥ
)
+

d

∑
j=1

q̂(m)
j β j

(
Ĥ
)
= β0

(
Ĥ
)
+

d

∑
j=1

~x(m)
j+dβ j

(
Ĥ
)
.

(55)

Convergence of this process is determined by the usual means for a Newton-Raphson iteration
(i.e. when

∣∣∣~x(m+1)−~x(m)
∣∣∣
2
/
∣∣∣~x(m+1)

∣∣∣
2

falls below a given threshold). Should this iteration
fail to converge to a local minimum for which ε is smaller than that achieved by the iterative
least-squares process, the result of the iterative least-squares process is used.

4.4 Curve Validation and Correction

Neither the iterative least-squares fit nor the non-linear least-squares fit produces a rational
function f (H) that is necessarily continuously differentiable or monotonically increasing.
Although there is some assurance that the function well-approximates the input data set at
the points (Hi,µ0Mi), poles and zeros may occur on the intervals between consecutive data
points, as well as on the interval for which H > Hn. To establish continuous differentiability
of f (H), p(H) and q(H) are factored: if these polynomials are found to have no positive,
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real roots, it holds that f (H) is continuously differentiable. Similarly, should the factorization
of p′ (H)q(H)− p(H)q′ (H) – the numerator of the derivative of f (H) – yield no positive
real roots, monotonicity is established for f (H) for H ≥ 0; additionally, if pd > 0 and qd > 0,
then f (H) is monotonically increasing. A rational function for which none of p(H), q(H),
and p′ (H)q(H)− p(H)q′ (H) has positive real roots, and for which pd > 0 and qd > 0, is
considered to pass validation; all other rational functions are considered to fail validation.

Experimentation demonstrates that rational functions resulting from the fitting process
often fail validation due to pole-zero pairs: pairs consisting of a positive real root of p(H) and
a positive real root of q(H) both occurring in the same interval between two points of the the
input data set. That is, if

p(H = Z) = 0, Hi ≤ Z ≤ Hi+1

q(H = P) = 0, Hi ≤ P≤ Hi+1,
(56)

then P and Z constitute a pole-zero pair of f (H) in the interval Hi ≤ H ≤ Hi+1. It is shown
that removal of this pole-zero pair by division of p(H) by its factor (H−Z) and division
of q(H) by its factor (H−P) has only a small impact on the relative squared error of the
function f (H) with respect to data set {(Hi,µ0Mi) , 1≤ i≤ n}; the relative squared error at
the point (Hi,µ0Mi) is defined as:

ρ
2
i =

(
f (Hi)−µ0Mi

µ0Mi

)2

=

(
f (Hi)

µ0Mi
−1
)2

. (57)

The change in relative squared error as a consequence of the pole-zero pair removal is then:(
f (Hi)

µ0Mi
(1+δi)−1

)2

−
(

f (Hi)

µ0Mi
−1
)2

= 2δi
f (Hi)

µ0Mi

(
f (Hi)

µ0Mi

(
1+

δi

2

)
−1
)
,

where δi =
Z−P
Hi−Z

. (58)

and, assuming that f (Hi)≈ µ0Mi, the change in relative squared error is proportional to δ 2
i .

Given that δ 2
i is larger at the points (Hi,µ0Mi) and (Hi+1,µ0Mi+1) (the endpoints of the interval

containing Z and P) than at any other points in the data set, the pole-zero pair removal has the
least relative impact on the function f (H) when |Z−P| � Z−Hi and |Z−P| � Hi+1−Z,
that is, when Z and P are close together and centred on the interval [Hi,Hi+1]. To further
mitigate the impact of pole-zero pair removal, the iterative and non-linear least-squares fitting
processes may be restarted with the reduced f (H) (or its corresponding f̂

(
Ĥ
)
) used as a
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starting point.
In some cases, a zero of f (H) may occur in the interval 0=H1≤H ≤H2, without a nearby

pole, causing validation to fail. This is indicative of the fact that the fitting process yielded a
rational function f (H) whose initial slope is negative, and can be resolved by restarting the
fitting process with an additional constraint: that the slope at H = H1 = 0 (for an arbitrary
shift, that the slope at Ĥ = Ĥ1 = a) is zero. Since p(H1) = p(0) = 0 (i.e. p̂

(
Ĥ1
)
= p̂(a) = 0),

this is a linear constraint; notably, p̂′
(
Ĥ1
)
= 0:

d f̂
(
Ĥ
)

dĤ

∣∣∣∣∣
Ĥ=Ĥ1

=

(
d

dĤ

p̂
(
Ĥ
)

q̂
(
Ĥ
))∣∣∣∣∣

Ĥ=Ĥ1

=
p̂′
(
Ĥ1
)

q̂
(
Ĥ1
)
− p̂

(
Ĥ1
)

q̂′
(
Ĥ1
)

q̂
(
Ĥ1
)2

=
p̂′
(
Ĥ1
)

q̂
(
Ĥ1
) = 0

=⇒ p̂′
(
Ĥ1
)
= 0. (59)

Notably, for the monomial basis (for which βk
(
Ĥ
)
= Ĥk = Hk) and the Bernstein basis, this

constraint is established by letting p̂1 = 0.
All other validation failures are incorrigible; there is empirical evidence to support the

fact that they result from a choice of d (that is, the degree of the numerator and denominator
of f (H)) that is smaller than what is necessary to accurately represent the input data set by
a continuously differentiable, monotonically increasing function. In these cases, as well as
in the cases for which the error of the rational approximation (with respect to the data set) is
intolerably large, the fitting process is restarted for a rational function whose numerator and
denominator are of degree d +1.

5 Implementation Details

5.1 Linear Systems Solving

The iterative least-squares method requires repeated solution of a linear system of the form:

AT
(

A~x−~b
)
= 0 (60)
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which may be expressed as:

ATA~x = AT~b. (61)

Construction of ATA is computationally expensive, and prone to numerical round-off errors.
Consequently, solving (60) is best performed using the QR decomposition of A [18]:

A = QR

ATA = RTQTQR = RTR
(62)

where Q is an orthogonal matrix (for which QTQ = I) and R is an right-triangular matrix. If
A is an m-by-n matrix (where m > n), then the bottom n−m rows of R are zero, and:

A = QR = Q̂R̂ (63)

where Q̂ is an m-by-n matrix consisting of the first n columns of Q, and R̂ is an n-by-n square,
right-triangular matrix consisting of the first n rows of R. Clearly, since Q is orthogonal, R
and R̂ have the same rank as ATA; if ATA is invertible, so is R̂. Thus, assuming a unique
solution exists to (60), it follows that:

~x =
(
ATA

)−1 AT~b

=
(

R̂TR̂
)−1

R̂TQ̂T~b

= R̂−1R̂−TR̂TQ̂T~b

= R̂−1Q̂T~b

= R̂−1~b′ (64)

where ~b′ = Q̂T~b is an n-element column vector. Instead of constructing Q̂ explicitly, it is noted
that:

Q̂TA~x = R̂~x = Q̂T~b = ~b′ (65)

and that orthogonal matrices are closed under multiplication – that is, that the product of two
orthogonal matrices is itself an orthogonal matrix. Consequently, Q̂ can be decomposed into
a product of orthogonal matrices, multiplied by the m-by-n matrix Î consisting of the first n
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columns of the identity matrix:

Q̂ =

(
K

∏
k=1

Qk

)
Î. (66)

Then R̂ can be constructed from A by premultiplying A by a series of orthogonal matrices, as
can QT~b:

R̂ = Q̂TA =

(
ÎT

1

∏
k=K

QT
k

)
A

Q̂T~b =

(
ÎT

1

∏
k=K

QT
k

)
~b.

(67)

Specifically, the matrices Qk can be chosen to represent Givens rotations - a row operation
multiplying the rows i and j of the matrix they premultiply, taking the form:

Q̂k,st =



1, if s = t 6= i and s = t 6= j

cos(θ) , if s = t = i or s = t = j

−sin(θ) , if s = i and t = j

sin(θ) , if s = j and t = i

0, otherwise.

(68)

Then, considering the partial right-triangularization of A after premultiplication by k′ matrices
Qk,

Rk′ =

(
1

∏
k=k′

QT
k

)
A, (69)

it is evident that i, j, and θ in (68) can be chosen for Qk′+1 so as to introduce a new zero in
the matrix Rk′+1 that does not exist in the matrix Rk′ , without introducing any new non-zeros.
The first m−1 Givens rotations are chosen so that the first column of Rm−1 has zeros in all
but its first entry; the next m− 2 Givens rotations are chosen so that the second column of
R2m−3 has zeros in all but its first two entries, and so on. Each Givens rotation can be applied
to A and~b in-place and concurrently; a total of K = mn−

(
n2 +n

)
/2 rotations are required to

reduce the system A~x≈~b to its right-triangular form R̂~x = ~b′.
In terms of computational complexity, the QR decomposition algorithm described (when

Q̂ is not constructed) requires 2mn2−
(
2n3 +6n2−2n

)
/3 floating-point multiplications and
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3
(
mn−

(
n2 +n

)
/2
)

trigonometric function evaluations to convert the matrix A to its right-
triangular form R̂, and an additional mn−

(
n2 +n

)
/2 multiplications to perform the operation

Q̂T~b. Determining the solution~x is then a simple matter of performing back substitution on
the matrix R̂ and right-hand side vector ~b′, requiring n2−n multiplications and n divisions.

This same algorithm is applicable to square systems for which m = n, and thus is also
applied for the solution of the linear systems resulting from the Newton-Rapshon iteration in
section 4.3.

5.2 Polynomial Evaluation and Deflation

Experimentation demonstrates that the monomial basis (βk (x) = xk) does not cause significant
numerical round-off errors when applied to the iterative least-squares fitting method for
rational functions of degree 9 or less, but this is not the case for the Newton-Raphson method
– thus the use of the Bernstein basis. Each of these bases is evaluated by numerically stable
means: the monomial basis using Horner’s scheme [19], and the Bernstein basis using De
Casteljau’s algorithm [20]. Additionally, Horner’s scheme has a second application: deflation
of a polynomial, that is, synthetic division of a polynomial (expressed in the monomial basis)
p(x) by one of its linear factors (x− z), where z is a root of the polynomial.

5.2.1 Horner’s Scheme

Given a polynomial expressed in the monomial basis,

p(x) =
d

∑
k=0

akxk (70)

it can be rewritten as:

p(x) = a0 + x(a1 + x(a2 + · · ·+ x(ad−1 + x(ad)) . . .) .) (71)

From this expression, Horner’s scheme for evaluating the polynomial at a specific value
of x = x0 follows directly: beginning with bd = ad , the values bd−1, . . . ,b0 are computed
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iteratively as:

bd = ad

bd−1 = ad−1 +bdx0

...

bk−1 = ak−1 +bkx0

...

b0 = a0 +b1x0

(72)

where, for the purpose of evaluation of p(x), the values bk need not be stored after the
computation of bk−1. Put differently, p(x0) can be expressed in terms of ak and bk:

p(x0) = a0 + x(a1 + x0 (a2 + · · ·+ x0 (ad−1 + x0 (bd)) . . .))

p(x0) = a0 + x(a1 + x0 (a2 + · · ·+ x0 (ad−2 + x0 (bd−1)) . . .))

...

p(x0) = a0 + x0 (a1 + · · ·+ x0 (ad−k+1 + x0 (bd−k)) . . .)

...

p(x0) = a0 + x0 (b1)

p(x0) = b0.

(73)

As stated in [19], evaluation of polynomials by Horner’s scheme provides better numerical
stability than the naı̈ve approach, and is of the same computational complexity. Additionally,
Horner’s scheme can also be used to construct the polynomial p(x)/(x− z), where z is a root
of the polynomial p(x). Dividing the degree-d polynomial p(x) by (x−z) yields an expression
for p(x) in terms of the (d−1)-degree quotient, q(x), and a constant (zero) remainder r:

p(x) = r+q(x)(x− z) . (74)
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Using the bk in (72), it is shown that q(x) can be expressed in terms of b1, . . . ,bd , when p(x)

is evaluated using Horner’s scheme at the point x0 = z:

p(x) = a0 +a1x+ · · ·+ad−1xd−1 +adxd

= (b0−b1z)+(b1−b2z)x+ · · ·+(bd−1−bdz)xd−1 +bdxd

= b0 +
(

b1x+ · · ·+bd−1xd−1 +bdxd
)
−
(

b1 +b2x+ · · ·+bdxd−1
)

z

= b0 +
(

b1 + · · ·+bd−1xd−2 +bdxd−1
)

x−
(

b1 +b2x+ · · ·+bdxd−1
)

z

= b0 +
(

b1 + · · ·+bd−1xd−2 +bdxd−1
)
(x− z)

= r+q(x)(x− z) (75)

where ak = bk−bk+1z, and p(z) = b0 = r = 0. Since the division of p(x) by (x− z) is unique,
it follows that q(x) = ∑

d
k=1 bkxk−1, and thus evaluation of p(x) at one of its roots z using

Horner’s scheme yields the coefficients of q(x) – the deflation of p(x) by its root, z. This
application of Horner’s scheme is used for the deflation of the numerator and denominator of
rational functions in the process of pole-zero pair removal.

5.2.2 De Casteljau’s Algorithm

Evaluation of Bernstein polynomials by De Casteljau’s algorithm is derived directly from
the recursive definition of the Bernstein basis polynomials. The base case for this recursive
definition is:

β0,0(x) = 1 (76)

where βd,k denotes the kth polynomial in the Bernstein basis of degree d. Then, the Bernstein
polynomials of degree d are defined in terms of those of degree d−1:

βd,k(x) =


(1− x)βd−1,0(x), if k = 0
(1− x)βd−1,k(x)+ xβd−1,k−1(x), if 0 < k < d

xβd−1,d−1(x), if k = d.

(77)

Using this definition, a polynomial of degree d expressed as a linear combination of the
Bernstein polynomials of degree d may be expressed in terms of the Bernstein polynomials of
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degree d−1:

p(x) =
d

∑
k=0

akβd,k(x)

=a0βd,0(x)+a1βd,1(x)+ · · ·+ad−1βd,d−1(x)+adβd,d(x)

=a0(1− x)βd−1,0(x)+a1
(
(1− x)βd−1,1(x)+ xβd−1,0(x)

)
+ . . .

+ad−1
(
(1− x)βd−1,d−1(x)+ xβd−1,d−2(x)

)
+adxβd−1,d−1

=((1− x)a0 + xa1)βd−1,0(x)+((1− x)a1 + xa2)βd−1,1(x)+ . . .

+((1− x)ad−2 + xad−1)βd−1,d−2(x)+((1− x)ad−1 + xad)βd−1,d−1(x)

=
d−1

∑
k=0

((1− x)ak + xak+1)βd−1,k(x). (78)

This results in De Casteljau’s algorithm, as introduced in [20], where the coefficients of a
degree d−1 polynomial, expressed as a linear combination of the Bernstein basis polynomials
of degree d−1, can be computed (for a given value of x) from the coefficients of a degree d

polynomial (expressed as a linear combination of the Bernstein basis polynomials of degree d).
Concretely, where p(x) = ∑

d
k=0 a(0)k βd,k(x), evaluation of p(x) at x = x0 consists of iteratively

computing the coefficients a(i)k :

a(1)0 = (1− x0)a
(0)
0 + x0a(0)1 , . . . , a(1)d−1 = (1− x0)a

(0)
d−1 + x0a(0)d

...

a(i)0 = (1− x0)a
(i−1)
0 + x0a(i−1)

1 , . . . , a(i)d−i = (1− x0)a
(i−1)
d−i + x0a(i−1)

d−i+1
...

a(d−1)
0 = (1− x0)a

(d−2)
0 + x0a(d−2)

1 , a(d−1)
1 = (1− x0)a

(d−2)
1 + x0a(d−2)

2

a(d)0 = (1− x0)a
(d−1)
0 + x0a(d−1)

1

= p(x0).

(79)

De Casteljau’s algorithm, although providing numerical stability, comes at an increased
computational cost when compared with Horner’s scheme - it requires d2 +d multiplications
and O(d) space to evaluate the polynomial p(x) at a point x = x0 when expressed as a linear
combination of Bernstein basis polynomials. However, given that the polynomials involved in
the rational fitting process are of a small degree (i.e. d ≤ 9), this cost is not prohibitive.
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5.3 Polynomial Factorization

For the purpose of validation, it is essential that the factorization of a polynomial p(x)

is performed accurately; to this end, Aberth’s method [21] is employed. This method is an
iterative approach whose convergence depends on a reasonable initial choice of approximations
to the roots of p(x); the quality of this approximation, as well as the convergence of Aberth’s
method, are improved by constructing a polynomial p◦(x) whose roots are equal in complex
argument, but scaled in magnitude relative to those of p(x) so as to be assured to exist within
an annulus on the complex plane.

For a polynomial p(x) = ∑
d
k=0 akxk expressed in the monomial basis, Fujiwara provides

an upper bound R on the magnitude of its roots in [22]:

R = 2max

(∣∣∣∣ad−1

ad

∣∣∣∣ , ∣∣∣∣ad−2

ad

∣∣∣∣ 1
2

, . . . ,

∣∣∣∣a1

ad

∣∣∣∣ 1
d−1

,

∣∣∣∣ a0

2ad

∣∣∣∣ 1
d
)
. (80)

This same bound can be used to establish a lower bound on the magnitude of the roots of p(x),
by considering the reciprocal polynomial p∗(x) of p(x):

p∗(x) = xd p
(
x−1)

= xd
d

∑
k=0

akx−k

=
d

∑
k=0

akxd−k

=
d

∑
k=0

ad−kxd, (81)

that is, the polynomial constructed by reversing the order of the coefficients of p(x). It is
evident that if z 6= 0 is a root of p(x), then z−1 is a root of p∗(x), since p∗

(
z−1)= zd p(z) = 0.

Therefore, a minimum bound r can be placed on the magnitude of the roots of p(x) based
on the work of Fujiwara, assuming p(0) 6= 0 – if p(0) = 0, then a0 = 0, and this root can be
treated a priori by dividing p(x) by x:

1
r
= 2max

(∣∣∣∣a1

a0

∣∣∣∣ , ∣∣∣∣a2

a0

∣∣∣∣ 1
2

, . . . ,

∣∣∣∣ad−1

a0

∣∣∣∣ 1
d−1

,

∣∣∣∣ ad

2a0

∣∣∣∣ 1
d
)

r =
1
2

min

(∣∣∣∣a0

a1

∣∣∣∣ , ∣∣∣∣a0

a2

∣∣∣∣ 1
2

, . . . ,

∣∣∣∣ a0

ad−1

∣∣∣∣ 1
d−1

,

∣∣∣∣2a0

ad

∣∣∣∣ 1
d
) (82)
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With the magnitude of the roots of p(x) bound above and below by R and r, respectively,
the polynomial p◦(x) is constructed so that its roots exist on the annulus on the complex plane
whose area is divided equally in two by the circle of unit magnitude; empirically, this is found
to yield good results when employing Aberth’s method:

p◦(x) =
d

∑
k=0

a◦kxk

a◦k =
(

R2 + r2

2

) k
2

ak

(83)

where, if z◦ is a root of p◦(x), then z = z◦
√

(R2 + r2)/2 is a root of p(x); a root z◦ of p◦(x)

lies on the annulus r◦ =
√

2r2/(R2 + r2)≤ |z◦| ≤
√

2R2/(R2 + r2) = R◦.
The derivation of Aberth’s method is beyond the scope of this document, and is detailed in

[21]. The method consists of choosing initial approximations to the roots of p◦(x), z(0)1 , . . . ,z(0)d ,
and then iteratively constructing better approximations to said roots:

∀ k ∈ [1,d], z(n+1)
k = z(n)k −

p◦
(

z(n)k

)
p◦′
(

z(n)k

)
1−

p◦
(

z(n)k

)
p◦′
(

z(n)k

) ∑
j 6=k

1
z(n)k −z(n)j

. (84)

Iteration ends when
(

∑
d
k=1

∣∣∣z(n+1)
k − z(n)k

∣∣∣)/d, the average change in the position of the
roots on the complex plane, drops below a specified threshold. As suggested by Aberth in [21],
the initial approximations to the roots should be chosen so as to not lie on a line on the complex
plane. Given the earlier bounds established on the roots of p◦(x), initial approximations are
chosen to have a relatively even distribution in the annulus:

z(0)k =

(
r◦+(R◦− r◦)

k−1
d−1

)
e(

2k−1
2d π j) (85)

– points lying on a rotated, scaled segment of the Archimedean spiral in the complex plane.

5.4 Partial Fractions Decomposition

Both in the monomial basis, and in the Bernstein basis, the linear coefficients resulting
from the rational fitting process to a B-H data set are found, empirically, to be of vastly
varying magnitude. Additionally, evaluations of the integral and derivative (as are required
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for loss calculations and Newton iterations, respectively, in finite element applications) are
computationally expensive when the rational function is expressed in these forms. To rectify
these issues, it is convenient to perform the partial fractions decomposition of the proper
rational function µ(H)− µ0 = f (H)/H = p(H)/(Hq(H)) = r(H)/q(H) expressed in the
monomial basis, where r(H) = p(H)/H is easily computed given that p(0) = 0.

The first step in performing the partial fractions decomposition of r(H)/q(H) is to factor
the polynomial q(H) – as it is a polynomial with real coefficients, it is expected to have
(including multiplicity) L linear factors of the form (H−ak), and Q quadratic factors of the
form (H− bk)

2 + c2
k = (H− (bk + jck))(H− (bk− jck)), where L+ 2Q = d, the degree of

q(H). Based on empirical evidence, the multiplicity of the roots of q(H) can be assumed to
always be 1; no cases (aside from contrived data sets) for which this assumption is invalid
have been found. Then r(H)/q(H) is expressed in its partial fractions form:

r(H)

q(H)
=

L

∑
k=1

dk

H−ak
+

Q

∑
k=1

ekH +gk

(H−bk)
2 + c2

k

=

L
∑

k=1
dk

q(H)
H−ak

+
Q
∑

k=1
(ekH +gk)

q(H)

(H−bk)
2+c2

k

q(H)

r(H) =
L

∑
k=1

dk
q(H)

H−ak
+

Q

∑
k=1

(ekH +gk)
q(H)

(H−bk)
2 + c2

k

.

(86)

Determination of the values dk, ek, and gk then consists of solving a d-by-d system of equations.
First, the coefficients of the deflations of q(H) by the factors (H−ak) and (H−bk)

2 + c2
k are

computed in the monomial basis using Horner’s scheme:

∀ k ∈ [1,L], λk(H) =
q(H)

H−ak
=

d−1

∑
i=0

λk,iH i

∀ k ∈ [1,Q], κk(H) =
q(H)

(H−bk)
2 + c2

k

=
d−2

∑
i=0

κk,iH i.

(87)
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Then, the coefficients of r(H) are expressed in terms of these coefficients:

r(H) =
d−1

∑
i=0

riH i

=
L

∑
k=1

dkλk(H)+
Q

∑
k=1

(ekH +gk)κk(H)

=
L

∑
k=1

dk

d−1

∑
i=0

λk,iH i +
Q

∑
k=1

d−2

∑
i=0

ekκk,iH i+1 +gkκk,iH i

=
d−1

∑
i=0

(
L

∑
k=1

(
dkλk,i

)
+

Q

∑
k=1

(
ekκk,i−1 +gkκk,i

))
H i (88)

where, for brevity of notation, κk,−1 = κk,d−1 = 0. This results in the d-by-d linear system



λ1,0 · · · λL,0 0 · · · 0 κ1,0 · · · κQ,0

λ1,1 · · · λL,1 κ1,0 · · · κQ,0 κ1,1 · · · κQ,1
... . . . ...

... . . . ...
... . . . ...

λ1,d−2 · · · λL,d−2 κ1,d−3 · · · κQ,d−3 κ1,d−2 · · · κQ,d−2

λ1,d−1 · · · λL,d−1 κ1,d−2 · · · κQ,d−2 0 · · · 0





d1
...

dL

e1
...

eQ

g1
...

gQ



=


r0
...

rd−1



(89)

whose solution yields the partial fractions decomposition of r(H)/q(H). Then µ(H) takes the
form:

µ(H) = µ0 +
r(H)

q(H)
=

L

∑
k=1

dk

H−ak
+

Q

∑
k=1

ek

(
H + gk

ek

)
(H−bk)

2 + c2
k

(90)

and it is noted that, conveniently,

lim
H→∞

f (H) = µ0Msat =
L

∑
k=1

dk +
Q

∑
k=1

ek. (91)

The derivative of µ(H) with respect to H is easily computed from its partial fractions
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decomposition,

dµ(H)

dH
=

L

∑
k=1

−dk

(H−ak)
2 +

Q

∑
k=1

 ek

(H−bk)
2 + c2

k

− 2(ekH +gk)(H−bk)(
(H−bk)

2 + c2
k

)
 (92)

and when µ(H) and its derivative are evaluated at the same point (as may occur during
Newton-Raphson iterations in a finite element method), the floating-point operations required
are:

• 3L+6Q−1 additions/subtractions;

• L+5Q multiplications;

• 2L+3Q divisions.

6 Results

6.1 Curve Approximation

To demonstrate the efficacy of the presented rational B-H curve approximation algorithm, it is
applied to the Cobalt Steel - Hiperco 50, Stainless Steel - 416, and Castings - Cast Iron B-H
data sets available from [23]. As is evidenced by the linear-log plot in Figure 1, the algorithm
produces a good fit for all three data sets: the root-mean-squared (RMS) errors for the rational
approximations to the data sets are 1.58 mT, 1.69 mT, and 3.75 mT, respectively. Additionally,
the curves provide extrapolations beyond the last points in the data sets with reasonable
saturation magnetizations: 2.275 T for the cobalt steel, 1.693 T for the stainless steel, and
1.711 T for the cast iron (the last points in these data sets have µ0M values of 2.264 T, 1.589 T,
and 1.47 T, respectively). The rational function approximating the cobalt steel data set is of
degree 5, that approximating the stainless steel data set is of degree 7, and that approximating
the cast iron data set is of degree 4. These rational functions (expressing permeability as a
function of magnetic field strength) are found in the appendix. Construction and validation of
all three functions required 2.28 seconds on a single-core of an Intel Core 2-generation Xeon
processor running at 2.50 GHz.

The algorithm is also applied to 197 B-H data sets from Infolytica Corporation’s finite
element software, MagNet [24], of which 5 fail to yield a pole-free, monotonically increasing
rational function of degree 9 or lower, resulting in 192 successful approximations: a 97%
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Figure 1: Magnetization (multiplied by µ0) versus magnetic field intensity for three sample materials:
Cobalt Steel - Hiperco 50 data set (‘x’ markers), Stainless Steel - 416 data set (‘*’ markers), Castings -
Cast Iron data set (‘+’ markers), and their respective rational approximations (smooth lines). Horizontal
axis is logarithmic; vertical axis is linear.

success rate. All 5 data sets that fail to produce valid rational approximations consist of fewer
than 18 data points; the 11 data sets whose rational approximation has an RMS error greater
than 50 mT consist of fewer than 23 data points. Of the 181 remaining data sets yielding valid
rational approximations, the average size of a data set is 69 data points. Based on this empirical
evidence, it is concluded that the primary cause of failure of the algorithm is insufficiently
large data sets; no other property common to the data sets yielding poor or invalid rational
approximations is identified. The average RMS error of the 192 data sets’ approximating
rational functions is 9.49 mT. Construction and validation of all 192 functions required 195
seconds on a single-core of an Intel Core 2-generation Xeon processor running at 2.50 GHz;
an additional 533 milliseconds were spent constructing functions for the 5 data sets that failed
validation.

Visual inspection indicates that few oscillations (i.e. spurious changes in concavity) are
present in the rational functions resulting from the fitting process: a desirable characteristic that
is often absent in piecewise-polynomial representations. Pole-zero pair correction is necessary
for 18 data sets to be represented by a physically valid rational function. An additional 25 are
represented by rational functions more accurately due to pole-zero pair correction, with an
average decrease in RMS error of 3.93 mT.
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Degree No. of Data Sets
3 30
4 38
5 21
6 44
7 21
8 17
9 21

Table 1: Degrees of 192 rational approximations of data sets from Infolytica Corporation’s MagNet [24]

Table 1 provides a summary of the degree of the rational functions resulting from the
approximation of MagNet’s data sets. A histogram illustrating the distribution of RMS errors
of the 181 rational approximations whose RMS error is less than 50 mT is found in Figure 2.
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Figure 2: Histogram of RMS errors of 181 B-H rational curves; bars are 0.8 mT wide.

6.2 Finite Element Method

To establish that the rational approximations are suitable for finite element applications,
the TEAM 13 problem [25] is solved. The TEAM 13 problem consists of a 1000 AT coil
surrounded by two C-shaped 3.2 mm-thick steel channels, symmetrically offset with respect
to the x-axis (as seen in Figure 3(b)), magnetically coupled by a 3.2 mm-thick steel plate
centered in the coil and between the channels. Full details of the TEAM 13 are be found
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in [25].

Figure 3: Diagrams of the TEAM 13 problem solid geometry from [25]. Dimensions are in mm.

The data set fit for the non-linear material in this problem consists of 42 points, and is
the same as is used in [15]: “the 27 points provided in [25] for 0 ≤ B ≤ 1.8, an additional
13 points, evenly distributed in B, in the range 1.825≤ B≤ 2.175 (in which B is a quadratic
function of H, specified in [25]), and two points at B = 2.25 T and 2.375 T (in the interval
in which B is a linear function of H, again, specified in [25]);” this data set is found in Table
2 in the appendix. The resulting fit has an RMS error of 7.24 mT and consists of a degree-7
rational function. In its partial fractions decomposed form, it is:

µ(H) = µ0 +
0.689308

H +6842.83
+

1.13862(H +178.661)

(H−26.4768)2 +443.2242

+
0.213382(H−249.172)

(H−221.138)2 +90.40632
+

0.124607(H−5885.15)

(H−16985.0)2 +20790.42
. (93)

The function f (H) = (µ(H)−µ0)H (where µ(H) is as defined in (93)) is plotted with
the data points used to construct it in Figure 4. The finite element problem is constructed using
the 1/4 region (as specified in [25], and seen in Figure 3(c)) with odd-periodic and magnetic
field normal boundaries. An air region three times larger than the bounding box of the solid
geometry encloses the steel plates and (copper) coils, all of which is meshed with tetrahedral
elements. The finite element method solver employed uses second-order polynomial basis
functions for the magnetic scalar potential in each tetrahedral element [24].

The TEAM 13 problem statement includes the value of the average flux density (in the
steel) measured at 25 different points using a sensing coil. To compare these with the field
solution resulting from the finite element method used, the average flux densities normal to
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Figure 4: Magnetization (multiplied by µ0) versus magnetic field intensity for TEAM 13 steel (‘x’
markers) and its rational approximation (smooth line). Horizontal axis is logarithmic; vertical axis is
linear.

the sensing coil cross-sections are computed by numeric integration of the B field solution;
these flux densities, along with the measurements provided in [25], are displayed in Figure 5.
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Figure 5: Comparison of finite-element results achieved with rational B-H curve representation (‘o’
markers) and measured results from TEAM 13 (‘x’ markers)
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7 Conclusions

Current approaches to the construction of continuously differentiable B-H curves do not
provide as elegant and accurate an approximation as the rational functions presented here:
smooth approaches (such as those presented by Trutt et al. [6]) do not approximate data sets
for modern materials with sufficient accuracy, whereas piecewise approaches have definitions
in a large number of parameters, and extrapolation regions defined solely based on value and
slope of the penultimate piecewise segment evaluated at the last data point. Rational functions
provide a smooth (i.e. infinitely differentiable), accurate approximation to input B-H data sets
defined over all values of H ≥ 0, and are capable of representing the vast majority of B-H
data sets. Shortcomings of the rational fitting algorithm, notably the possible existence of
pole-zero pairs in intervals spanning consecutive data points, are overcome with corrections to
its resulting rational functions whose impact on the quality of the approximation is limited.
Evaluation of the rational functions require a small number of floating-point operations, on
the same order as polynomials of similar degree. When applied to finite element problems,
rational functions are demonstrated to produce results in agreement with those determined by
experimentation.

The method presented here addresses the issue of approximating a data set in the B-H
plane by a univariate rational function B(H); it may be possible to extend this approach
to data sets where H and one or more other variables, such as frequency or temperature,
to produce multivariate rational functions (e.g. B(H, f ,T )) approximating these data sets.
Such an approximation has particular value in the context of modern design problems, where
frequency- and temperature- dependence of the results are non-negligible. Extension of rational
B-H curve representation to rational B-H- f surface or B-H- f -T hypersurface representation
is non-trivial, as pole-zero correction does not extend to higher dimensions, necessitating
further research. Additionally, hysteresis loops and anhysteretic curves are likely candidates
for rational function approximation. It is plausible, given the shape and properties of these
curves, that rational fitting may also be applied to them, and the resulting functions used in
hysteresis models (such as the Jiles-Atherton [26]). In short, the versatility and expressiveness
of rational functions is only partially explored in this thesis; it is expected that they may
be applicable to the smooth representation of many other data sets pertaining to non-linear
magnetic materials.
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8 Appendix

µ (H) = µ0 +
1.83926

H +421.224
+

0.422798(H +341.845)

(H−197.632)2 +394.6362

+
0.0128382(H−11836.4)

(H−7019.43)2 +6693.822
H / m

Rational permeability of Cobalt Steel - Hiperco 50; data set obtained from [23]

µ (H) = µ0 +
1.35710

H +1684.66
+

0.391934(H−337.895)

(H−246.599)2 +455.7202

+
−0.0627054(H−2736.34)

(H−1703.87)2 +1727.362
+

0.00664084(H−12191.3)

(H−10031.3)2 +3294.422
H / m

Rational permeability of Stainless Steel - 416; data set obtained from [23]

µ (H) = µ0 +
0.424708(H +32849.8)

(H +19171.1)2 +18818.72
+

1.28663(H +35.7335)

(H +140.617)2 +206.2242
H / m

Rational permeability of Castings - Cast Iron; data set obtained from [23]

H (A / m) B (T) H (A / m) B (T) H (A / m) B (T)
0 0 313 0.9 11998 1.85

16 0.0025 342 1 13350 1.875
30 0.005 377 1.1 14752 1.9
54 0.0125 433 1.2 16209 1.925
93 0.025 509 1.3 17729 1.95
143 0.05 648 1.4 19321 1.975
191 0.1 933 1.5 20996 2
210 0.2 1228 1.55 22768 2.025
222 0.3 1934 1.6 24657 2.05
233 0.4 2913 1.65 26690 2.075
247 0.5 4993 1.7 28904 2.1
258 0.6 7189 1.75 31360 2.125
272 0.7 9423 1.8 71620 2.25
289 0.8 10691 1.825 171092 2.375

Table 2: TEAM13 B-H data set for rational approximation.
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