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ABSTRACT

In terms of the O(az) correction to the longitudinal
structure function of deep inelastic scattering due to the
subprocess'y*q > qqq, a complete definition of the gluon den-
sity in a quark is introduced. This density is used to cal-
culate the O(az) corrections dde to 9qq > qq¥Y* to the following
quantities: (a) the inclusive cross section for dilepton
production (Drell-Yan process) and, (b) the transverse momen-
tum distribution of dileptons in proton-proton collisions.

At presently available energies and dilepton masses, the cor-
rection (a) is found to be small, thus leaving unspoiled the
successful Drell-Yan description of dilepton production, but
the correction (b) is found to be significant. Both correc-
tions (a) and (b) become more important as one approaches the
kinematic boundaries. Other definitions of the gluon density

are also discussed and compared.



RESUME

Une définition complete dé la densité de gluon dans un
quark est introduite en se basant sur la correction d'ordre
dg apportée a la fonction de structure longitudinale par le
sous-processus Y q > qqq, en diffusion fortement inélastique.
Cette densité est utilisée pour évaluer dans les collisions
proton-proton, 1'effet du sous-processus qq »> qq¥Y* qui génére
des corrections d’ordre dg aux quantités suivantes: (a) Sec;-
tion efficace pour‘1a production inclusive de dileptons (pro-
cessus de Drell-Yan) et, (b) distribution de 1'impulsion trans-_
verse des dileptons. La correction (a) s'avére petite lors- |
que évaluée aux énergies et pour les masses de dileptons pré-
sentement disponibles} 1le succés de la description de 1la
production de dileptons offerte par Drell-Yan reste donc intact.
La correction (b), pour sa part, s'avere importante. Par
contre, toutes deux augmentent lorsqu'on tend vers la limite
cinématique. Différentes définitions de la densité de gluon

dans un quark sont aussi considérees et comparées.
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CHAPTER I
INTRODUCTION

1-1 StatUS'of'Qdéanm'Chfﬁmé&ynamiés

In the last decade;'there has been a growihg conviction
between physicists that the basis of an approach which will
eventually become a complete theory of the strong interactions
has been found; The beginning of this theory came in 1963,

when research to find the underlying hadronic structure led

: physicists to postulate quarks as the fundamental constituents

‘of the hadronic matter (1); About ten years iater, during

which the concepts of gluon and color were introduced, the
effort to understand strong interactions resulted in the
development of quantum chromodynamics (QCD) as the suitable
quantum field theory for the description of these intéractions.}
Clearly, in advancing QCD as the theory of strong inferactions,
the hope was to repeat the striking success of another field
theory, quantum electrodynamics (QED), that describes the
interactions between electrons and photons.

The main idea of QCD has been to make the SUC(3) color
symmetry a local, rather than just a global symmetry. To
implement this local SUC(B) symmetry, one must introduce
vector gauge fields, Aﬁ (a = ]; 2,;;.;8), called gluons together
with the quark fermion fie]ds; qﬁ (ﬁ = color index = 1, 2, 3

and A = flavour Tndei = 1; 2,..;:N%5. This leads to the



Lagrangian density

LQCD(X) = L1(x) + vL(x) + L .f_(x) + Lg(x) (1.1)

g
where L1(x) is the minimal locally gauge invariant Lagrangian

density implied by SUC(B) symmetry:

L (x) = i Thix) Pyg ag(x) - 7 FA (x) F*™(x)  (1.2)
with

Pog aB(x) = (85 2 - 1§22 0 A2 (x)) Y af(x)  (1.3)

ﬁauv(x) =9, AS(x) - 3, Aﬁ(x) + g Fabe AE(X) AS(X)
| (1.4)

abc are the

g is the coupling constant (92/4ﬂ = as) and f
structure constants of SUC(3). To this Lagrangian density
one adds a quark mass term; VL; a gauge fixing term, Lg.f.’
which is required to insure a proper quantization procedure,
and a Faddeev-Popov ghost term; Lg, to breserve unitarity.
One of the main features of this QCD Lagrangian density
is that, as the second term of L1 shows, there is self-inter-
action between the non-abelian gauge fields, AS(X)' Unlike
QED, where photons can interact only via electron loops, the
QCD Lagrangian density leads to gluons interacting directly

with themselves in the form of three- and four-gluon couplings.

Although this seems to bring additional complications, it



turns out to be of great importance because it is directly
responsible for the most unique property of asymptotic free-
dom.

It is well-known that in QED, as we approach the long
distance regime, vacuum polarization introduces a shielding
effect on the charge; In other words; the effective charge
becohes larger at short distances (or equivalently, for
large momentum transfers): The situation is totally different
in QCD. The existence of self-interactions between the gluons
produces an antishielding effect; and as we approach shorter
and shorter distances the effective strong charge decreases.
This phenomenon is called asymptotic freedom. The renormali-
zation group equations (2) together with the operator product
expansion (3)(0PE) techniques lead :to a running coupling

constant, G behaving as:

(33 - 2N;)1n Q%/2°

d’s(Qz) 5'9 (q (1.5)
where Nfis the number of quark flavours, Q2 is the large
momentum transfer squared in the process, and A is a free
parameter that has to be fixed by experiment (0.2 GeV <A<
0.7 GeV). What makes QCD so attractive is that, it is the
only known renormalizable gauge theory that pbssesses the
property of asymptotic freedom.

So far, QCD has not been found in clear conf]ict with

any existing phenomenology of the strong interactions. On



the other hand, no one has proven within QCD the existence of
a single bound state (hadron). There may be difficulties
even in formulating the theory 1in precise terms, for the
bound state physics. As a result, since the physical parti-
cles, the hadrons, are bound states, many predictions on
physical processes must rely on models or approximations
(such aé the parton model or the impulse approximafion).

Among the computational methods used in QCD, one of the
most successful is the Wilson's OPE(B): For instance, in the
case of deep inelastic lepton-hadron scattering, one has been
able to determine the scaling behaviour of the structure
functions, the basic quantities involved in this process.

This analysis, based on the OPE of currents for free field
theory on the 1ight cone; has led to the result that deep
inelastic scattering in the ijrken Timit is dominated_by
leading 1ight-cone'sTngu1arities: This in return, leads

to the scaling law and we11¥known sum rules. A more extensive
analysis on the basis of the OPE has also successfully described
scaling violations (Qzedependence) of leptoproduction struc-
ture functions.

Unfortunately, the applicability of the OPE is limited
to rathér few processes; For instance, the same kind of light-
cone behaviour has also been studied for processes such as
inclusive dilepton production in hadronic coilisions (h] + h2+
z*z’ + X); here, however, the results are inconclusive, be-

cause in the scaling 1?mit cross sections are not dominated



by 1Tight-cone singularities.

Perhaps the most important consequence of asymptotic
freedom is that it renders possible the perturbative approach
around,aS at short distances. Corrections to the free field
behaviour can be computed perturbatively and the predictions
.of QCD can be tested for processes like dilepton production
(Drel1-Yan process) as well as for deep inelastic scattering
(DIS), provided that we ére dealing with short distance
behaviour. Of course, when large distances (% hadronic radius)
are involved, QCD becomes a strong coupling theory, and this
perturbative approach fails to give a clear description or
requires phenomenological parameters;‘

Pérturbative QCD has already many applications to the
(4-16)

2

lowest O(ds) Such quantities, Tas:~ the dilepton mass

distribution,do/dM

da/szdqu in dilepton production (h] + h

,and the transverse momentum distribution,
5 ¢t 9™ + X) and
quantities 1iké the inclusive cross section Edo/dgp for large
transverse momentum pion or in real photon production (h1 +
hy, > ™+ X or hy + h, > v + X),hive been studied; and the
results can be said to be in quantitative or semiquantitative
agreement with data. In several cases, in which perturbative

QCD is not in clear agreement, it does at least provide a

qualitative description of the experimental data.

12 Purpose of this work

On the other hand, at present energies and momentum



transfers, the QCD running coupling constant is not very small
(o

corrections becomes then of great importance. In cases of

< ° 0.3 is a typical value). The study of higher order
disagreement (or partial agreement) with experiment, calcula-
tion of higher order processes is, in general, of obvious
necessity. But also in cases of complete agreement, theori-
tical consistency demands a proof that higher order effects
are unimportant. Clearly, calculation of QCD corrections is
an essential part of the theorétical effort towards an under-
standing of the physics of hadrons.

Inclusive production of dileptons in hadron collisions
offers a particular eXample of corrections. Here, the lowest
order contribution (the Born term) is determined by the Drell-

Yan mechanism (17,18)

q+ g > Y (1.6)

(g9=quark, q=antiquark and y*=virtual photon - 2+2-) and the

QCD corrections of first order in a, come from the subprocesses:

g+ q~>y*+gq (1.7)
g+ q>y*+g (1.8)
(g=gluon).

One of the problems arising from the perturbation calcu-



lation of the subprocesses (1.7) and (1.8) is the presence of
mass singularities in the subprocess cross sections. These
singularities are known to factorize, and can be absorbed by

a process-independent redefinition of the initial parton (by
parton, we mean quark or gTuon) distribution functions. Then
the remaining contribution to'O(uS) constitutes the correction
term. .

There 1is, however; some ambiguity in the process of rede-
finition. The absorption of the mass singularity proceeds
through the introduction of a density, Gi/j’ of a parton i
in a parton j. This density is a sum of a leading logarithmic

tefm arising from perturbation calculation plus non-leading
terms. Although the leading logarithmic contribution is well-
defined, the non-leading terms are to a great extent arbitrary,
and this affects the magnitude of the correction term.

Perhaps the most attractive definition for the non-leading
terms proceeds through comparison with DIS. Then the correc-
tion to any physical process due to a given QCD subprocess is
determined by comparing to the contribution of the corresponding
subprocess in DIS. 'This procedure has the important advantage
that the resulting correction is reqularization-prescription
and gauge independent; Fdrthermore, this definition implies
that DIS is free of corrections (i.e. all corrections are to be
absorbed in the redefined parton distribution functions) and
much of the information on parton distribution functions is

known to come from direct measurements of DIS structure functions.



To be more specific,in terms of the example of the pro-

cesses (1.6-1.8), the Born term contribution to DIS is:
Y +q->q | _ (1.9)

and the O(as) contributions comé from the subprocesses:
Y+ 9 »q ; q | (1.170)
Y+ q=>9+gq | (1.71)

Then by requiring the DIS structure function F2 to be free of
O(as) corrections, we completely fix the O(ds) corrections
to dilepton production arisihg from the §ubprocesses (1.7)
and (1.8).

There is, now, a growing interest in the O(ai) QCD sub-

processes. In particular, we may~eXpect the subprocess
q+q+y‘*+q+q (]—12)

to generate a large correction to dilepton production in
proton-proton collisions, because of the presence of valence
quarks in the initial state. This subprocess introduces two

new parton densities, G and.b Unfortunately, the

> Pg/q E/g;' |
requirement that F, be free of OCdS) corrections, defines

only the parton density Gq/q‘ The densfty~Gg/q of a gluon in



TR

a quark, then, still remains a problem. This is because, unF
1ike quarks (and antiquarks), gluons do not couple directly
with electromagnetic and weak current probes.

Nevertheless, there is a number of important physical
quantities of which the QCD Born term involves gluons. In DIS,
such a quantity is known to be the longitudinal structure
function FL; then a Born term contribution is provided by the
subprocess (1.10). quthermore, a correction to FL would come
from the O(di) y*q -+ qqq subprocess: One may then obtain a
complete definition of Gg/q by requiring this correction to be
zero. This is one of the origfnaT ideas proposed in this
work.

The so-determined gluon density can be subsequently
employed to calculate the correction to the Drell-Yan mechanism
inp+p -~ 2+2' + X, due to subprocess (1.12). This procedure
also fixes the correction to the transverse momentum distribu-
tion of dileptons due to the same subprocess. Both corrections
will be regqularization-prescription and gauge independent,
provided that all the calculations are carried in the same
regularization_scheme and in the same gauge.

The purpose of this work is to carry this program in all
detail. In Chapter II, we describe the basic formalism that
we shall use and we examine the lower order contributions to
leptoproduction and dilepton production(6’7’8’10’]1’17518).

We then proceed in Chapter III to the determination of the

~gluon densTty; from DIS; Chapter IV is devoted to the cal-
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culation of the 0(u§) correction, due to the subprocess (1.12),
to the inclusive cross section dc/dM2 for dilepton production;
and Chapter V, to the same correction to the transverse momentum
distribution dc/szdqu. Finally, in Appendix A, some of the
matrix elements needed in this work are computed, and in Appen-

dix B, we describe another possible convention for the gluon

d i .
ensity Gg/q
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CHAPTER I 1

BASIC FORMALISM

This chapter is devoted to the main features of pertur-
bative QCD used in the desckiption of 1eptobroduction and
dilepton production. We review some qualitative properties
of the parton model and define the basic quantities that will
be used later on to extend the calculations to a higher
order.

Throughout this work, we adopt the notation of reference
19 and the natural unit system (fi=c=1); then, the momenta

are written

1 3).

p=(E:3)=(p%:p ", p%,p (2.1)

For simplicity, we assume that the partons are mass-
less. ‘The reqularization procedure will consist in taking

the initial partons slightly off mass shell, with p2<0.

2-1 Perturbative QCD

It is a well known fact that perturbative QCD is not
appropriate to describe the confinement of quarks or, in
general, any bound states. _So, at first sight, it might
appear hopeless to try to explain hadron collisions in

terms of perturbation approximation series. However, in QCD,
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the strong coupling constant, ags varies with QZ, the momen-
tum transfer involved, and’for large values of QZ, ac becomes
small (provided that the number of quark flavors is smaller
than 17). This property was called asymptotic freedom(Ch.1). It
amounts to saying 'that quarks and gluons are virtually free, or,
at least, weakiy interacting when large.momentum transfers,
or equivalently small distances, are involved.

This property and the parton nature of quarks has led
to the so-called impulse approximation. The impulse approxi-
mation assumes that if you probe hadrons with a sfficiently
large moméntum transfer, you can "freeze" them on a time
scale much shorter than that characteristic of their strong
interactions. According to that, collisions involving ha-
drons at high energy can be divided in two time scale: A
short-time scale, of the order of the inverse of the Targe
momentum in the process, that characterizes the hard colli-
sions of the constituents, and a long-time scale, of the
order of the hadron radius, that characterizes the binding
and recombination of the constituents. The short-time scale
physics depends on the involved parton subprocesses, but is
calculable via perturbation methods. The long-time scale
physics rules the bound states and is independent of the
subprocess; it is there that perturbative QCD fails to give
a clear description.

In order to describe inclusive reations such as dilepton

production and leptoproduction, this picture requires that



the hadronic cross section be composed of a parton cross
section for the "observed" individual partons as well as a
description of the parton structure of the hadrons. Such

a cross section would take the form (20)

S
dohadron(P],Pz’.._pJ)= ) [ T dx., 6.(x.)
parton types j=r 33
and helicities

% dgparton(p]

2Ppsee-Py)

(2.2)
where Pj (pj) are the observed hadron (parton) momenta, and,
- X, is the fraction of the incoming hadron momentum carried

J
by the corresponding incoming parton,

p:= X. P. (2.3)

with 0 < X5 £ 1, and j=1,2,...d. The product runs over a
number J of initial partons denoted by j. The functions
Gj(xj) contain all the dependence on the incoming hadrons
in the form of distribution functions, whereas, the parton

dgparton

cross section, , depends only on the subprocess

considered. It can be computed as the perturbation series

of Feynman diagrams.

However, a problem arises from these calculations. The

parton cross section has infrared and mass singularities, and

this renders the use of perturbation theory inadequate.

13
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To solve this problem of singularities, a computational
method has been introduced. It suggests that all infrared
and mass singularities may appear in factors extracted from
the complete naive parton cross section, dOparton’ that will
be absorbed in the functions Gj. Such a factorization is
possible because of the convolution form of equation (2.2).
The remaining part of the cross settion daparton’ will then
be well behaved, and still be calculable in terms of pertur-
bation theory. The singularities disappear into renormalized
(i.e. physically measurable and finite) quantities, éj.
When factorization of singularities is possible, the hadronic

cross section can be written in a similar form as equation

(2.2)

dohadron(P1,P2,..rPJ)

iy
=

: dxj Gj(xj)

|

partén‘t&pes ' J
and helicities

- t
dO’par on(p] ’pzs-- 'pJ)

(2.4)

To determine the correction terms we are interested in,
we will have to factorize the mass singularity which arises
from perturbation calculations. General proofs of factori-
(20—23).

zation are now available Nevertheless, we will

demonstrate how it is performed in our specific cases, showing

also in detail how it can generate scale violations (Q2 de-
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pendence) in the distribution functions.

Although factorization seems to be only a mathematical
device, it has a precise meaning in the impulse approxima-
tion. The long-time scale only appears in terms of the inver-
se constituent masses. By letting the parton masses go to
zero, the long- and short-time scale physics separate as the
long-time scale goes to infinity. This can be seen clearly
in configuration space. The divergences come from regions
of integration corresponding to the possibility of propaga-
tion of internal particles over macroscopically long time
and distances. Assuming that the interactions which take
place over indefinitely long times are the ones that sum
to give quark and gluon bound states in QCD, we find that
these divergences really belong to the long-time scale.

From that point of view, factorization is precisely associa-
ted with the separation of the short-time hard collisions
from long-time scale interactions in parton cross section.

There exists actually no way of finding theoritically
an exact analytical expreésion for the parton distribution
functions, Gj, in a hadron. We must rely on the numerical
analysis of physical cross sections, assuming we can approxi-
mate them reasonably well with the lower order subprocesses.
However, one can certainly make qualitative remarks based
on the fact that hadrons are bound states of "valence" quarks
(or antiquarks) that are surrounded by a "sea" of quarks,

antiquarks and gluons. The probability to find a valence



quark in a given hadron, is clearly higher than that of find-
ing gluons or sea quarks, so that we expect the valence
distribution functions to domihate that of the gluon and the
sea quarks. Furthermore, because it is most unlikely that

a parton would come out of a hadron with all the hadron
momentum, in high energy collisions, we also expect those
distribution functions to get small when xj goes to one.

These two facts are reflected in the behaviour of the distri-

bution functions in most of the parton distributions existing.

For a fixed Q% (0%=Q3), the physically measurable distribu-
tion functions for a parton i in a hadron h, Gi/h’ have the

general form
6; 1 (x50 (1-x) (2.5)
_i/h X’QO Y -X .

where n 3, n ~ 5 and nsea& 7. The difference in

n
valence gluon

the powers n; leads to "large" differences in the parton
distribution functions that can generate contributions com-
parable in magnitude from subprocesseé of different order

in Og- This would be expected , considering the fact that
for the range of Q2 available at present, o is not very
small. Indeed, we do anti;ipate (4) that a subprocess of
order ag involving only valence quarks, leads to a contri-
bution of comparable magnitude with a subprocess of order o
involving gluons , or, of order ag
In this work, we evaluate the contributions of such O(ag)

involving sea antiquarks.

16
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subprocess, comparing with the O(as) and 0(1) known contri-

butions.

2~2 Leptoproduction

| A large part of this work is devoted to deep-inelastic
lepton-hadron scattering (leptoproduction) represented
schematically in figure [2.1]. This corresponds to the phy-

sical process
2+ h->o+X (2.6)

Here 2 stands for a lepton, h for a hadron and X for any set
of final hadrons.

The basic quantities used to discuss deep inelastic
process are the structure functions WL (or w]), w2 and w3.
Our discussion of leptoproduction be restricted to spin-
averaged processes. Then these functions are defined in
terms of the well-known tensor of electromagnetic or weak

currents (Tzi;

W
uv

4 iq-z
[ dz e <P|[Ju(z)’dv(0)]|p>spin averaged

2
ey vWL(v,Q ) + d

2
v vwz(v,Q )
2x Z2X

1 pvap 2228 W (v,0%) (2.7)
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where v=p-q, Q2=—q2;O and, x=Q2/2v, g being the momentum of
the virtua1‘ph0ton and p, the momentum of the incoming hadron.
In dur case, as we can see from figure [2.1],we have
chosen the mediating boson between the lepton and the hadron
to be a virtual photon. Then, the current Ju stands for the
electromagnetic current. The w3 term represents thevvector-
axial interference, and is therefore absent in electromagnetic

processes. The tensors e .. and duv are defined by the equa-

uv
tions
e v = 94y T 9,9, (2.8)
o2
d = -pp q2+pq +p.q - g (2.9)
uv -~ uv uv VU Y '
\)2 AY)

Instead of wL, we often use another structure function

w], related to wL and wz as follows

v, = viW

L o - 2xw1 (2.10)

In general, the struture functions depend on both v and

2 (24)

Q-.

Q2 are taken sufficiently large so that mass scales can be

According to Bjorken scaling » however, when v and

neglected, the dimensionless functions FL = vW, and F

L 2 =V,
depend only on one variable x=QZ/2v. Although the simple



0

parton model was first introduced (25)

to give an intuitive
picture of scaling, as it is now well-known, it can also
account for scale violations. Careful calculations that have
been done within QCD by means of the operator product expan-
sion, have effectively predicted some small Qz—dependence in
the struture functions FL and F2' Experiments agree quite well
with the predicted Qz—evo1htion, however, we must say that

the range of Q2 available at present is not very Targe.

Let us now emphasize the importance of considering
higher order effects in the DIS process. Many experimental
results used in the determination of parton distribution
functions come from lepton-hadron DIS. It is clear that these
functions are easier to extract and that a better accuracy
is expected when we probe hadrons with point-like particles
such as the electron.

O0f course, experiments give the struture functions of
hadrons that include the contributions of subprocesses to all
orders. However the distribution function calculations rely
on the assumption that the partonic cross section is known up
to a given order only, and that higher orders have 1little
effects. If the higher order terms add important corrections,
the distribution functions should be recomputed. Hence, in |
order to keep the same distribution functions in higher order
calculations, it is crucial for self-consistency that the
corrections to FL and F2 be small. As we shall see later, in

some cases there is a way to minimize the corrections by



adjusting an arbitrary function.

Let us now review the already well-known results for'the

0 1
S and o

The 1owest order contribution to the DIS struture functions

contributions to DIS from subprocesses of order a

comes from the point-like quark-photon cross section shown

in the diagram of figure [2.2]. The subprocess is
Yy* + q->q (2.11)

where yv* represents the virtual photon.

The contribution to the physical struture function Fg
takes the form of a convolution of the quark distribution
function in a hadron with the subprocess cross section (a &-
function in this case) summed over the quark'f1avors. A -
similar contribution to order ds comes from antiquarks,

instead of quarks, to give the well-known result:

A 1 |

h 2 . X
1 F5(x) © dy [G + G— §(1-=
. o\ X é eq'i fx y,! [qi/h(y) qi/h(y)] ( y)

oy 22
L eq

Jeq [6g /n(x) + Gg sy (x)] (2.12)

i

From then on, when h appears as a superscript of F2 or
FL, it denotes the hadronic structyre function; otherwise, we
‘:; deal with the partonic quantities.
Notice that so far we have indicated no Qz—dependence.

This is to emphasize the fact thatup:ts this order; the



parton cross section introduces no scale violations. FE, the
longitudinal struture function, gets no contribution from
this graph.

The first order subprocesses introduce two major contri-

butions. The subprocesses are
Y*+q—>q+g (2-]3)

Y*+ g>q+Qq. (2.14)

A first contribution arise from the diagrams in figure [2.3a-b]

which contain one quark in the initial state. The diagrams

of figure [2.3a] indicate the emission of a gluon and, a
second set of diagrams (figure [2.3b]) introduces a wavefunc-
tion and a vertex function renormalization correction of
order a. In the Feynman gauge, these diagrams give a contri-

bution to Fg(x,qz) of the following form:

- 2 _
- ; eq_i IX % [qu/h(.)') + qu/h(.Y)]

21

o5 oozl L3 s0- 2 3
x 3 50 L=p).* 2 §(1-z)] 1n 9§ + 1+ 3z - HeE

p



]
h 2 2
1 F, (x,9%) =) e [ dy [G (y) + 6=, (y)]
¥ 250 i 95 Tx Ty o 93/h q;/h
S (X mg® o+ f (%)) (2.15)
T ' Tqq'y L q,2'y '
p
where
1 £(2) 1
[ dz a2y = [ dz { f(2)-f(1) ) (2.16)
0 <y 0 T-z

and z=x/y. Here, Pij is the well-known splitting function

that determines the probability that a parton i comés out of

(26)

a parton j with a fraction z of its momentum The

function fq,z is obviously regularization-prescription depen-
dent. The second contribution comes from the diagrams with

a gluon in the initial state (figure [2.3c]). It takes the
form of a gluon distribution function cdonvoduting with:a
cross section.

1 o

) egi . & 6e/n(Y) = (7 [22+(1-2)%)

-
N
M
[{e]
—~
x
-
Q0
N
~
{]

X
[ |
—
=
rof o
!

21n z - 1] - 3(1-22)% )
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m
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| Again, the non-leading logarithmic term, fg,2’ is regu-
larization-prescription dependent. We observe a similarity
between equations (2.17) and (2.15). Both parton cross sections
have a splitting function as the coefficient of their leading
logarithmic term. As a matter of fact, both contributions
take the form of a parton i distribution function convoluting
with the probability that a parton j comes out of a parton 1.
This suggests that at least a part of each contribution should
be understood as a parton j-photon contribution. Thfs idea

has led to the introducti f ton densiti G and G .
a e 0 roduction of parto n ies /9 n a/9

2y _ o 2, _ % 2
Gq/q(z,q ) Gq,q(z,q ) zﬂ-{qu(Z) Tn 32_ +vuqq(2)}
p
(2.18)
G (z 2) = Eﬁ'{P (z) 1n N u. (z)}
q/gt*>9 2r *'qg 1 7 fgg
p
(2.19)

The functions uqq and qu are to a great extent arbitrary.

We use similar symbols for distribution functions:.and parton
densities since these quantities are similar in many respects.
The parton densities, when convoluted with the proper
distribution functions, determine a Qz-evo]ution of the struc-

ture function:, Fg,
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1 F(x,q2) « f] dy [6, ,p(¥) + Gz, (y)] (8(1-2)

:
X 42 x 2
+ 6y q(3507)) + 2 [x g§ Gy n(¥) 69,79(y297)

(2.20)

Now, consider the term proportional to Gq/q; it can be

cast in the form

- 1
2
R = G
8q/q(2-9%) fz de Gg

rqlasa®) 8(1-3) (2.21)

and, this is interpreted as the convo]ufion of the probability
that a quark comes out of a quark (with a fraction o of fts
momentum) with a term proportional to the naive y*gcross
section. A éimi1ar interpretation also holds for Gq/g’ o}
that these two terms really contribute to the subprocess

Y*q - q. This justifies their absorption in redefined distri-

bution functions, which is done by rewriting the expression

(2.20) as

] \ 1
- X 2 X

x eqi,h(a,qz) b1+ [apagl) e(1-3)
(2.22)
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Then, the non-scaling terms in the square brackets are chosen
to be the new quark and antiquark distribution functions,
respectively. Because such absorption may occur at all orders
in a ., expression (2.22) is not expected to provide the exact
Qz—dependence‘of the distribution functions. However, it
clearly shows how Bjorken scaling can be violated within the
parton model.

The remaining O(QS) correction terms in equations (2.15)

and (2.17) are then respectively

h 2y _ 2 : 2 2
JX— F2,q(x’q ) = 'El: eq. f dy [qu/h(y,q )v+ Gai/h(y’q )]
(£)}  (2.23)

1 2, %s
. f Q\Y_ Gg/h(ysq ) “\? {f

X X
2y o 21
iy (y) u, . (3)

g,2 g’y

j—
-
NS = of
‘e
«
—~
X
]
L
nN
~—
I
-t~
(425
N

(2.24)

where the Qz-evolution of the distribution functions is deter-
mined by assuming that equation (2.12) holds now for all Qz.

As we mentioned before, the corrections must be small in
order that the distribution function calculations remain valid.
The arbitrariness of the functions u and qu can serve heré

qq
to guarantee that such a condition is fulfilled. The O(as)

corrections to F2 are then set to zerd with the choice:
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Ugq(z) = fq o(2) (2.25)

2 2
4 3 1+z 2T

el
—
N
~

1t

fq.2(2)  (2.26)

[}

- + - -
2qu(z) In z 3z2(1-2) 1

Obviously uqq and qu determined this way, will show

a regularization-prescription dependence, like fq o and fg 9-

The longitudinal struture function, FL, receives its

first contribution at this order in ags this comes from the

subprocesses y*g » qq and y*q >~ qg. We are interested in

the first that gives the well-known contribution (27-29)

!

Fio(x)

| =

1 o
2 S X X
; eq‘i fX S%_ Gg/h(y) 27 [Zy(]'y)]

X[~

»9

j], dy 6, (y) os £(3 (2.27)
x "y g/h 2w y

The partonic term f(%) introduces no Qz-dependence;
therefore to this order, FL scales. This result will be
reproduced Tater on, in order to describe the computational
method used in the next order calculations.

2
The O(as) contributions should be dominated by the sub-



process qy* > qqq (figure [2.4]) because it involves valence
quark distribution functions. Following the same scheme as

in the description of the O(as) correctijons to F2, the O(az)
quark contribution to the partonic structure function F2 can

be cast in the form

1F, (x 2)=I]d[G—~( 2y ¢o(2) + 6., (y,a%) ¢ ()]
- 2,979 w yoasatd ) Foty? T BgyetY 0 Mty

+ Cz(x) . (2.28)
Here CO is just the naive Y*q cross section
Calx) = e2 &(1-x) (2.29)
0 q '

and C] is related to the O(GS) cross section for the subpro-

cess Y*g > qq; this was set to vanish i.e.
C, =0 (2.30)

As before the term from the integral really pertains to

the lower order subprocess and can be absorbed in Fg as a

Qz-ev01ution. The correction CZ is yet to be determined.

The density G (x,qz) can be written

g/q

6, (x.q2) = os P (x) In g° + u_ (x)}) (2.31)
9/q* "’ 2r " g9 5 9q |
p
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However, the density Ga/q does not have this simple form
because an antiquark can come out of a quark only through the

emission of a gluon. Thus Ga/q takes the form

o 1

2y _ 5,2 X 2 2
Ga/q(xsq ) = (7;) Ix Q% [Pag(a) qu(u) In 9?_ + K(x,a)
p

In 92_ + ugo(x,0)] | (2.32)
; _

Leading logarithmic and non-leading Togarithmic coefficients
can be specified but neither ugq(x) nor uah(x,a) is unique
and as we shall see in the next section they are both requfred
for the determination of O(ai) correction to dilepton produc-
tion. From the equation (2.28), it is clear that by imposing
the requirement of no O(ui) correction to F2, we fix only
the function TR

The correction to the longitudinal structure function,

however, has the form:

1
2y _ 2 X
(2.33)

where B](z) is the Born term due to y*g -+ qq

ag :
B](z) < 5 z(1-2) (2.34)
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Then, ugq‘can‘be determined by requiring FL to be free of
O(az) corrections. Again the integral term introduces scale
violations to FL'

The determination of the function uaq qnd ugq is a main
subject of this work. We propose a different approach to the
one above 1in appendix B. This approach of appendix B does
not guarantee the smallness of the correction to the structure

functions. However, it is found that this choice give rise

to small corrections that can be neglected.

2-3 Dilepton production

The perturbative QCD approach will now be app1ied to the
production of dilepton in hadron-hadron collisions. Each
hadron produces a parton, the two partons interact and they

2=M2>0) plus a

physically produce a virtual photon (with q
number of partons; the virtual photonvtransforms "to a lepton
pair and the partons produce a number of (unobserved) hadrons
(see figure [2.5]).

Let s be the square of the c.m. energy of the two Tﬁcoming
hadrons. We introduce the usual scaling variable for dilepton
production |

1 =92 =n | (2.35)

s s :
Then the contribution to the inclusive cross section of a

particular subprocess with initial partons i and J is, according



to this picture:

d“;jh dx, d |
172 = [ &1 9% 2 2y do, .
- £, (x4,97) 6., (x,,97) ""ij
dqz X7 X, 1/h] 1 J/h2 ~2 y
q
+ (1«>2) (2.36)

where T12=T/X]X2.
The Born term for dilepton production is determined by

the Drell-Yan mechanism (17) shown in figure [2.6]

q+q > y* - (2.37)

The cross section for this subprocess is

do — 4wa2m 2
qq = e 5(]-1‘) (2.38)
dq2 3qu2 4

where eq is the fractional charge of the quark, and the 1/N

factor comes from color-averaging (for SUé(N)Uw1y1N=3in QCD)
For hadron-hadron collisions, this leads to the well-

known Drell-Yan formula

2
h]h2 . 4waem dx] dx2

2
= {)Yef @ (x4) G= ,, (x,)
dg? INsg? X1 X2 § 94 9y/hy717 Tay/hpT2

30



31

2 (1e22) 3 6(1-1y,) (2.39)

where the sum is as before over the quark flavors.
The QCD corrections of first order in the coupling cons-

tant ag arise from the subprocesses:

g + q(q) » v* + q(q) (2.40)
g+t q->y*tg (2.41)

shown in figure [2.7]. To both tﬁese subprocesses, one should
also include vertex and quark self-energy corrections up to
O(QS) (figure [2.7c]). These terms tqgether with qé + Y*g
provide the large correction (~ wz) to do/dq2 of Drell-Yan.
Perturbation calculation is known to introduce mass
singularities. As we discussed at the beginning of this
chapter, they are regularized by setting the momentum of the
initial partons slightly off mass shell (i.e. p2,p5<0).

The structure of the correction term is as follows:

il W A 6( )T e2 (T (x1)
o 1-1 g [G X
Xy Xo S 12 e qi/h] 1

> ' 2,2 DY
x Gai/héxz) + (1+>2)] x {qu(T]z) ]n'(% % 4+ fq (T]Z)}

p1p2
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+ [(Gq_l/h(X]) + G'C‘l'i/h_sx-l)) Gg/héxz)] X [qu(le)

1

x 1n g; + ng(T]Z)] £ (1e>2) ) ) (2.42)
~Py

T i P =P— and P are the s splitti
he functions T qg ? ame splitting
functions used in DIS. The presence of the splitting func-
tions in front of the logarithmic term indicates that we can

interpret this result in terms of the parton densities, Gq/q

and Gq/g. Then, equation (2.42) can be written as follows:

2 dx1 dx2 : : 2
2q I = =, ( [Bayn{x) Gqynfrg) v (eo2)] x [2n{Gq frqp,-0%)

+ b el p0ma0 ) ra (£ (Ty,) - Uqq(T12))] * [Gq,h§x1)

| 2 DY,
+ GE/h§x1)] Gg/héXZ) [2m Gq/g(r12,-q ) + as(fg (T1,)

- ugglTyp1 ) x 6(1-1y,)  (2.43)

where we have omitted obvious factors and the sum over the
quark flavors. In this form, we see how the mass singularities
can be absorbed in the process independent distribution func-

tions using the same arguments as for DIS. Then, the remaining
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: | : : 3,4
correction terms to the partonic cross sections are (3.4)

1) 2
dO(— dro e :
99 (7)) = —&™ T4 DYy D oou (1)) e(1-1)
2 2 S q qq
dqg 3sq N
4o e2 5 © 3' 2
= Sm -4 3 f%'{ Ty - 6 - 4t + 2(1+17)
3sq N +
n 1-1 ar
X ('—‘T:?—‘—)_*_ + (—3‘—+ 1)6(1-'{)} e(]—'l')
(2.44)
1) 2 2
dG( dwa e _ .
——&%—(T) = gm A4 o { ng(T) - qu(T) } 8(1-1)
dq 3sq N
2 2
dma e o .
em S 3 5 9 2
= == {P_ (1) In (1-7) + 5 - 5T + =17}
35q2 N 2T qg 4 2 4
(2.45)

and o is now the running coupling constant. The functions
ng, ng, qu and uqq are all regu]arization-prescription
dependent. However, because we are consistently using throughout
this work the same method of regularization, such a dependence
cancels out in the partohic cross sections doé%)/dq2 and

1) 2
do( dq”~.

q9 /dq
Corrections of order o arising form the subprocess qg -

qy* are of rather minor importance. Even for the physical

process pp ~ 2+2'+X they are of the order of 10%, while they
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are expected to be negligible in proton-antiproton collisions.
However the subprocess qg - y*g yields surprisingly 1afge
contribution even in the proton-nucleon case, and should not
be neglected.

We will now focus our attention on the order a2 quark-

s
quark subprocess (figure [2.8])

q+q->q+q+ y* (2.46)

This subprocess is particularly relevant in the study of
proton-nucleon collisions where quarks are the valence partons.
Because of the relative magnitude of the quark, antiquark and
gluon distribution functions, the quark-quark term can prové
to be significant.

The cross section for qq - qqy* can be written in the

general form

2 v
do Lo, 1
qq . em. dx - a2 T .2
dg?  3sq’ { fT *([Gq/qu’ ) kly) * Gg/qu’ T
x K](%)] + [q]++q2]] + Kz(T) } - (2.47)

where KO(T) is proportional to the qq -~ y* Drell-Yan cross

section

2
e .
KO(T) = oy §(1-1) (2.48)



K1(T) comes from the O(as) quark-gluon correction (equation

(2.45))

2
e. o
=9 .S } 3.5, 4 9.2
K](T) 2N T {qu(T) Tn (1-1) + 7 5T + T }
(2.49)
The parton densities Ga/q and Gg/q are defined by equa-

tions (2.31) and (2.32) respectively. Once again, the
integral can be absorbed "~ in. redefined valence quark distri-
bution functions qu/h(x,qz).

As mentioned above, ugq and uaq are to a great extent
arbitrary (in particular they are regqularization-prescription
dependent) and still, they play an important role in the |
determination of the quark-quark term KZ(T). Let us denote
the non-logarithmic term of doqq/dq2 obtained from perturba-
tion calculation, for a given gauge and regularization pres-
cription, by

1

[ dx L{x,7) (2.50)
T X

From figure [2.8] , we can see that the calculation of the

cross section will generate terms proportional to eg R eé
1 2
and e_ e where e and e are the respective charges of
97 92 97 92

the quarks q, and q,- Then, Ko will be given by

R ag o . 1
ko(T) = fT Q%_{ (§;) [L(x,T) - KO(Y) fx Q% Uazqu,a)]
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- (ﬁ)[ugqu) K](’;r(‘)] + (q1<—+q2) }

(2.51)

where for simplicity we have assumed that a4 and q, are non-
identical quarks. The result, Ko is gauge and regulariza-
tion-prescription independent provided that uah and ugq

have been calculated in the same gauge and using the same

regularization scheme as for L(x,T).
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CHAPTER 1 T1
LEPTOPRODUCTION

This chapter is devoted to the determination of the
constant terms (independent of QZ) of the gluon and antiquark
densities in a quark, ugq and uaq, respectively. This 1is
done through the evaluation of the O(ag) correction to the
leptoproduction structure functions;

The first section contains the eVa]uation of the O(as)
Born term of the ]ongitudiha] structure function. This will
set the basis for the next order "quark" correction to FL;
this is calculated in the second section. The 0(a§) correction
will then be incorporated into a redefined distribution func-
tion, setting the "net" O(ai) correction to zero. This pro-

cedure completely fixes u A proof of the factorization

gq
of mass singularities is then provided in section 3-3. Finally
we will briefly state the results of the perturbation calcula-
tion for the determination of uaq; this is done by requiring
no O(QE) correction to Fg. The details of this calculation
have already been published (see references 15,30 and 31).
Throughout this chapter and even further on,many quanti-
ties are approximated for large x (x > 1), x being the scaling
variable in leptoproduction. This is because, in order to

get the hadronic quantities, the partonic cross sections have

to be convoluted with the valence quark distribution functions,
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and these distributions are known to be steep functions of x
near 1. Therefore, one may drop higher powers of (1 - x) in
the partonic cross sections without losing too much accuracy.
This approximation will greatly simplify the discussion of
the O(ag) correctionqu dilepton production in the next

chapters.

3-1 O(as) contribution to FL

The first non-zero contribution to the longitudinal
structure function FL comes from the O(as) diagrams of figure
[2.3]. Each diagram gives a contribution to the electromagne-

e:; tic tensor wuv. IT we assign four-momentum pu to the initial
massless parton (gluon or quark), the Tongitadinal structurei function
is projected out when pppv is contracted with wuv. This pro-
cedure amounts to choosing the polarization vector of the
virtual photon parallel to the four-momentum of the incoming
parton |

We are interested by FL,g’ the O(as).contribution from
the subprocess gy* - qg, called from then on the "gluon" con-

tribution. FL g is given by

R0 = ] eh s x f af 6, 1(0r0%0 8, L(p-k)%] [y |?

(3.1)

where the momenta are defined in figure [2.3]. The §-functions
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indicate that the final quarks must be on mass shell and of

positive energy.
2. o2y
5,(P7) = s(P7) o(Py) (3.2)
|Mg| is proportional to the pHpV-projected spin averaged

matrix element of the subprocess y*g - qq. x is the usual

scaling variable

N (3.3)

Let us now introduce a more convenient set of variables

(Sudakov parameters (32)) instead of the four»components
of k.

k = apy = 8P, - & o (3.4)
and,

d* = L do dg dg dr? | (3.5)

with p$=p§=0 and u=(p]+pz)? a and B are then scalars (Oid,sél)

and ¢ is a four-momentum orthogonal to both P and Pos i.e.
1-p] = l-pz = 0. To carry the numerical calculations we use

the frame of reference where

SERCHUE I -4

P, = "5 (150, -1) (3.6)
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and,

2 = (0 ; ET , 0) | (3.7)

As we shall discuss later, we are interested in the value

of FL g at large x. Then the kinematical relations are much
simplified by using the relafion(27)
P, = q * Xxpy (3.8)

The requirement p§=0 is in direct accord with the definition
of x in equation (3.3)., when applied to p, in (3.8).

The calculation of the graphes of figure [2.3c] when
expressed in terms of Sudakov parameters; gives (see Appen-
dix A)

2

| M =1 - q (3.9)

gl

The fact that the final partons are taken on mass shell

implies
(p - K)% = 2(1 - o) pep, *+ 2°
- 2
= (1 -a)pu - 27 =0 (3.10)

and for the other final quark line,



(q + k)% = [(a-x)p + (1-p)p, - 21°
= (a-x)(1-B)u - 2%
; u(a-x-(1-x)g) = 0 (3.11)

where in the last relation we have substituted g% using rela-
tion (3.10). The condition that the energy of the final par-
tons be positive leads to

(p - k)0 = (1-a)p0 + Bpg + 90

= /% (1-a+g) =/% (1-x+xg) > 0 (3.12)
and,

(a+ k)% = (a-x)p® + (1-8)p) - 2°

=78 (a-x+1-p) =" (1-gx) > 0 (3.13)
Therefore, B must obey the inequality

1

However, we already have 0 < x < 1. Then, relation (3.14)
is automatiéa]]y satisfied because we had 0 é B < 1.

Integrating over 1% and ¢, the O(as) gluon contribution

41
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takes the form

1

1 FL,g(X) = 2 g e 25 X fo dg [ da sLo-x-(1-x)g]l (1-q)

2
X qi

(3.15)

Notice that the ¢-integration is trivially carried, the matrix
element as well as the argument of the §-function being both
¢-independent. Finally, integrating over o and then g, we
obtain

1 FL,g(X) = Z e %5 x(1-x) = f(x) (3.16)

2
X i

i

We can reproduce now the re1étion (2.27) for the physi-
cal process h+% » X+g, by convoluting this result with the
gluon distribution function in the hadron h. The contribu-

tion from the subprocess gy* - qq is then

h _ dx
FAL®) = Sheg ) 1) (.17

3-2 Contribution of gy* > qqq to FL

In the previous chapter, we have emphasized the importance
of considering the contribution to the next order in ag- We

anticipate in particular a large contribution from the subpro-



cess qy*'+»qqa (called subsequently the quark contribution),
because of the presence of a valence quark in the initial
state. Let us now proceed with the evaluation of this sub-
process (figure [2.4]). 1In the notation of figure [2.4], the
contribution FL q of this subprdcess to the longitudinal

b

structure function is

2\ _ 2 % x 4 4 2
}(‘FL,Q(X’q ) - eq “4 v Id k'l d kz 5+[(p"k]) ]
2 2 2
where v=p-q and |Mq| is proportional to the matrix element.

Again it is more convenient to work with the Sudakov para-
meters. We then define these parameters with respect to

the momenta of the final quarks:
p - kg = (1 - a])p] + §1p2 + o2y | (3.19)
2 = (og - ap)py + 8Py * 2y (3.20)

with the requirements that z]-p]=22-p2=0 and p$=p§=0. Again

Pis Py and L (i=1,2) are taken as follows:

o py =73 (1508, =0 (150, (3.21)
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, 0) (3.22)

and 0 < o;.8; < 1. In the-O(aS) calculation we chose Py=P-
A similar choice will not be made here, because we expect to
get divergences that must be reqularized by setting the iﬁi—
tial parton slightly off shell (i.e. small p2<0). However

Py can still be expressed in terms of p as follows:

2
Pp =P~ (%“)pz (3.23)

Again, for large X (near 1), we may keep the re]ation(27)
P, = Q + Xp, or, a =P, - Xp (3.24)

for small p2.

Let us now examine how the kinematical conditions imposed

on the final quarks momenta come out in terms of these new

variables. The first §-function in equation (3.18) implies

(p - k)2 = [(1-a))p; + 80, + 2517
= (1-0;)8u - 25, = 0 (3.25)

where we have used the relations (3.21—22). A similar rela-

tion follows from the second §-function,
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)2 = (Ct'l"OLZ)BZu - 2,T2 = O (3.26)

2
Finally, the last s-function in equation (3.18) introduces the
variable x in the integrand through the definition of q of

equation (3.24). We have:

2
(q + kz)z - g2 + 2q-k, + k5 = 0 | (3.27)
with,
2 |
ZC(°k2 = 2(p2'Xp-|)(Otzp-l‘(B]"'Bz'u)pz‘ﬁ,-l‘lz)
= [G2+X(B1+82)]U » (3-28)
and,
k2 - [ -(B,+ -RZ) -8.-2 ]2
2 ArP =By FBo-y 1P 2%

2 2
'(12(81+82)u - RT-I - ,Q,Tz - Z,Q,T'],Q,Tz cos &

(3.29)

I}

In the last expressions (3.28-29), we have neglected O(pz)
terms. o is the angle between ZT] and zTZ' Then we can write
equation (3.27) as
(0,-x)(1-B1-8,)u - 82 = 22, - 24-.9-. cos & = 0
2 1 "2 T] T2 T1°T2
(3.30)

Now, using the relation
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~E. 1 =
d ki =7 dai dBi d¢i lei i=1,2 (3.31)

the contribution FL q can be written

3

2
2
2, _ 2 % y 2
J)ZFqu(X,q ) - eq 8—'“-_3—\—)_ f dOL'l dB] dOLz de d<I> |Mq|
x 8[{ap-x)(1-8-8,) - 2%1 - 2%2 - 28787, €05 o ]

(3.32)

where the first two &-functions have been omitted, being
understood that 2%1'and 2%2 obey relations (3.25) and
(3.26) respectively.

It turns out that at least the leading terms of the
matrix element |Mq|2 are o-independent. For such terms, the

integration over angle is trivially carried with the result

(see Appendix A)

. ~ 2 82,2
|Mq = =-2u {1 qu(u]) - CFLZ:g4lP } x |Mg(a—)|
2 2 2,2 1
a k (k7) :
1 1 } 1

(3.33)
for oy hear 1. We will see later why this 1imit is of parti-

cular interest in our calculations. P is the splitting

gq
function for a gluon in a quark

Pty (3.34)
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with Co=(N2-1)/2N for SU_(N) (N=3).The factor 1/k] comes direct-
ly from the gluon propagator (figure [2.4]).
| We expect that the most important contribution of the

graphs will appear when By = 0, because we have

2 .

and thus, ki~ 0(p?) as 8> 0. In the limit of small g, we
have also 211 > 0 as one can see from equation (3.25). This
1imit corresponds to the almost collinear emission of a gluon
from a quafk (k] ~ a]p1). Then, for such a limit, the argu-

ment of the remaining &-function can be reduced to
ay - X - (a] - x)B2 = 0 (3.36)

Carrying the integration over ¢ yields

Q

2 g u | 2
q 4—W§X -\;'f da-l dB-I daz de qu'

2
l FL,q(x,q ) = e

x §lay, - x - (a] - x)B,] (3.37) -

Before going further in the process of integrating expres-
sion (3.37), we must examine the conditions imposed on the
energies of the final partons because they may affect the

regions of integration. These conditions are:



(0 - k)% 20 —>  T-a 48, 2 0
0 = -
(ky - k)" 20 = ap-0,+8, > 0
2
(q + k2)0 ; 0 => OLZ-X+1—B]-82+E— (3.38)

The first condition on 81 is overcome byr.a stronger condition
By > 0. The last inequalities together with equation (3.36)

give the restrictions on the range of'B?,

X-0y ]

1—a]+x < B2 X 1—a]+x (3.39)
when By 0 and p2 is small. However, as we shall see below,
ag > X. The last relation is therefore automatically satis-

fied (0 < By < 1). Finally, the last condition we shall

impose is related to the off-shell subprocess v*g > qg consi-

dered as part of the subprocess of figure [2.4]. 1In order to

compare with the contribution of v*g > qq (calculated in sec-

tion 3-1), we require the following subenergy to be positive:

2
[(OL-I-X)P1 + (1_B]+-I;L)p2 - 2]]2

(q + k])2
2

(a]-x)(1-s1+9u——)u - 52

T

2
-(1-a1)s]u + (a]—x)(1+%—)u >0 (3.40)
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Thus, neglecting terms of O(pz), we get a maximum value for

By> 1.4,
Gq-X
1-x
But we must also have B, > 0, so that
x Loy 21 (3.42)

We see that the Tlimit x = 1, implies ay > 1 as well. This
is the reason we approximated |Mq|2 for large o, (d] = 1) in
equation (3.33).

Integrating equation (3.37) over a, and By We obtain:

1 g . P (o)
2 2 % u - 1 2u 1
1F (x,9%) = e 25 x = [ doy [ ' dp, (-5 (45—
= Lsg SR R T 1 a% k%
: 2
C-(2-0,)p
- BTy < m (L2 ) |2 (3.43)

with k% given by equation (3.35). We now carry the integra-

tion with respect to B]. Neglecting the pz-terms with respect

to BT we will use the results

g

b

Jo

m
1

o

B

—
14
—
c
™
=

1 (3.44)

x‘
— N
[
'
I
el
=
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g

[ ]

0 T (3.45)

’(k1) ua]p

Furthermore we have

M (Lr1+X 2 _ 1pqx_ .

1M9(2(1+Q1))I (1 a]) (3.46)
and,

2
vV = p*q = —g—+ —sz = —g—- (3.47)

In terms of the function f(x) defined in section 3-1, we find

the expression:

o, 1 o 2
1F, (x.q%) = 52 [ 9% [P (a;) 1n (®17X)9
x L9 2T “x @, 991 T TN
‘ 1 u]x(1-x)p
(2-0.) X
- CF"T;;L“ 1 x f(a]) (3.48)

1

= £ (x0%) |
Let us now recall relation (2.33), which gives the expected
form of the O(dg) quark correction for the longitudinal struc-

ture function in terms of the parton densities

1
2y _ s 2 x
% FL’q(X:q ) 217 fx Q% [qu(Y) In 9?_A+ ugq(y)] x f(y)
p

+ Bz(x). (3.49)
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The integral term represents a correction to the O(as) subpro-
cess that is absorbed info the gluon distribution function;
the proof of the related factorization property is given in
the next section. This correction provides a part of the QZ-
evolution of the giuon distribution in the hadron. Then, the

requirement that FE be free of O(az) quark corrections implies

’Bz = 0. Furthermore, equation (3.48) must be equivalent to
equation_(3.49). Thus the non-]ogarithmic term in the gluon

density in a quark must obey

1
- X - C. 27¥y (X
fx 51% [Pyq¥) 10 3207—% Ce 57T ()

1
= [ dy ug(v) £(3) (3.50)
S §

In this way, we find for ay = 1,

~ 1 2-0
ugq(a]) = -qu(a])[21n oy * 2 - 5 1] - ¢C 1

(3.51)

This function will be used in the next two chapters where we
evaluate the O(ai) qq *> qqy* correction for dilepton produc-

tion in proton-proton collisions,.
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3-3 Factorization of the mass singularity

In the previous section, we set the O(ug) quark correc-
tion to the 1ongitudina] structure function equal to zero
(B2 z 0). 1In so doing, we assumed that the mass singularity
in (3.48) could be absorbed in a redefined gluon distribution
function in a hadron. Although general derivations of fac-
torization justifying this assertion already exist‘(20'23),
we consider it worthwile to provide a proof in our special
case. Moreover , such a proofshows: in detail how one can
obtain a Qz-dependent longitudinal structure function FE(x,qz).
The contribution of the subprocess qy* - qqq to the

physical process h + & > X + &, is

‘ 1
h 2 dx v X 2
1F _(x,9%) = [ 1) G (x) f_ (Z ,9°)
x L9 x Xy i a;/h710 Tagtxg
1 : 1
= f dx] X Gq_/h(x-l) I da'l
X Xy 1 i , x/x] e,
‘ 2 X
G (ey,9%) f( ) (3.52)
g/q.i 1 U..IX]
Now, the relation
) I1 do G, (a,q%) G (%) = Gas (x,q2) :
i < o 9/9; q;¢h g/h'*>9 (3.53)

clearly represents an O(as) contribution to the gluon distri-



bution function in the hadron h via the emission of a gluon
from a quark inside the hadron.
Let us now introduce the Mellin transform Q(n) of a

function w(x)

. 1 g |
win) = [ dx x" w(x) (3.54)
0

We recall the convolution theorem for the Mellin transforms,

namely if
1 X A
w(x) = [ dy u(y) v(y) . SR
X Yy
then, _ (3.55)
w(n) = u(n) v(n)

The Mellin transform of the function % FE_q(x,qz) can then

be written

~

o -
qu/h(n,q ) G

(n,9%) F(n) = &5, (n,0%) F(n)

§ g/a;
(3.56)
This result is equivalent to
1 FM (x,q%) = f] dxy s (x‘ 2y £1(2) ' (3.57)
_)_(_ L,q >4 X___ g/h ]’q X'I .

X1

Comparison with equation (3.17) shows that the mass singula-

rity can be absorbed by redefining the gluon distribution
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function
6 (x) + 6.5 (x,a%) = G\ (x-q%) (3.58)
g/h'* g/htXe@ 1 = Bgypt¥s

This completes the demonstration of factorization.

34 Det ination of u—
eterminati qq

In o}der to apply our results to the problem of dilepton
production, we need to specify the form of the density of an
i ~insi s G=—, .
antiquark inside a quark 3/q
treated with various approaches in references 15, 30 and 371.

The problem has already been

Here we proceed as follows: The general form of the 0(a§)
quark contribution (figure [2.4]) to the partonic structure
function, F2, has been given in equation (2.28); in this,
Cz(x) fepresents a part containing no powers of 1n q2/p2.

A perturbation calculation of the graphs of figure [2.4]
gives in the 1limit of large x, which is of interest in our

“case (see also Appendix B):

2 | |
C,y(x) = (:—;)2 eg'{CF(%I—{— +2) - ugg(xsal)} (1-x)
(3.59)

Here, a in the argument of uaq

We shall now require no 0(a§) correction to the hadronic

structure function Fg from the subprocess qy* - qqq. This is

also goes to 1 as x » 1.



possible if
C2(x) =0
which implies (x - 1)

u~(xa)=r:(11t2-
qq "’ F*24

+ 2).

(3.60)

(3.61)
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CHAPTER v

INCLUSIVE DILEPTON PRODUCTION

We consider the inclusive production of dilepton in ha-
dron collisions, h] + h2 > 2+2' + X. The Born term (of order

ag) is given by the Drell-Yan subprocess (17,18)

qq > y*.
We have already mentioned that higher order subprocesses, via
the absorption of the mass singularities, generate scale viola-
tions in the distribution functions. The remaining finite
terms contribute to the hadronic cross section when convoluted
with the distributions; but they are supressed by powers of
the running coupling constant oo compared to the leading Drell-
Yan subprocess. However it has been argued(4) that in proton-
proton collisions, a number of subprocesses may be equally
important for dilepton production. The relative magnitude of
the valence quark, gluon and sea antiquark distribution func-
tions at large x suggests that in the region of high T=§2/s,
large contributions may come from what we refer to as the
"quark-gluon" subprocess, i.e. qg - gqy* (to O(ds)) and from
aq > qav* (to 0(aZ)) which will be called the "quark-quark"
contribution.

However, one should be careful with this kind of rough

2

estimates. In the range of g avaTTable,’thé running coupling

constant is not very small. A priori, important contributions
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may come from other subprocesses as well. This is found to

be the case for qq - y*g subprocess(6’7’8’]o’1])

which yields
an unexpectedly large contribution.
The O(as) correction to Drell-Yan has already been studied

thourough]y(63738,]] ,33)

, and we briefly recalled some results
in section 3-3. 1In this chapter, we will examine the 0(a§)
quark-quark correction. First, by using for parton densities
the convention proposed in Chapter III, we calculate the
magnitude of this contribution to p + p -~ 2tem 4 X; then we

compare with the results of other conventions.

4-1 Quark-quark corrections

The O(ag) contributions of the subprocess qq > qqy* are
indicated on figure [4.7a-b]. As we can see from these unitary
diagrams these contributions can be divided in two parts: |
First, the "squared" terms which are.proportional:to the square
of the charge of one of the incoming partons; these correspond
to the diagrams of figure [4.7a]. Only these diagrams (and
those with q]++q2) give rise to mass singularities. Second,
the "interference”" terms, which have the charge structure
eq]eq2 and correspond to the diagrams of figure [4.Ib]. These
two particles irreducible diagrams are individually finite in

a physical gauge (]5).

Furthermqre, the sum of all the contri-
butions of figure [4.71b] is gauge invariant and therefore
finite in any gauge. This finiteness becomes even more clear

if we consider the way the mass singularities are expected to
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‘::

be absorbed. Recalling equation (2.47)

2

do drta 1 .
9a - _em ¢ dX ey eq2)ie (5) + G, (x,2q7)
dq2 3Sq2 . X ~a/ay 0'x g/q7" 7"
X K'I(%)] + [q]+—+q2] + Kz(T) (4~1)

2

with Kg and 3 proportional to eq » we see that there is no

2

- way that mass singularities proportional to e can be

9;°9,
absorbed. Furthermore, since the arbitrariness in the deter-
mination of the constant terms in Ko arises from the factori-
zation of the singular terms, it follows that the interference
contribution t0>K2 is unique as well as finite. This is not
the case for the squared terms that have double logarithmic
mass singularities. The non-leading logarithmic term coeffi-
cient and the finite term are then not unique, namely, they
depend on the regularization prescription. However, when
logarithmic terms (leading and non-leading) resulting from
perturbation, are compared to expression (4.1), the parton
densities being defined with respect to DIS, in the same gauge
and regularization prescription, they are found to be jdentical.
The term Ko is given by the subtraction of the finite term of
the integral in equation (4.1) from the original finite term

found in perturbation calculation. Then, Ko is regularization-

‘E; prescription as well as gauge independent, the depehdence being
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tance1]éd in the subtraction process.

In the case of identical quarks, additional singular
contributions of the type of figure [4.1c] must also be
taken into account. These extra terms are studied in a very

recent work (34)

and their contribution is found to be very
small. In this work we restrict ourselves to non-identical
quarks.

Consider now the finite O(ai) quark-quark correction term

Koo It can be written as:

(%sy2 2 2
<, (1)=(2%) [(eg, + eq,) Calr) + 2eg ey Cy(r)]

(4.2)

corresponding to the two different gauge-invariant contribu-
tions discussed before. The perturbation calculations leading
to CA(T) and CB(T) are made in the Coulomb gauge which is
more appropriate for the analysis of the singular contributions.
Of course, this is a physical gauge so that none of the dia-
grams contributing to CB(T) will give rise to mass singulari-
ties. This gauge is defined in Appendix A, which also includes
some details on the matrix elements considered in this section.
Consider now the squared terms of figure [4.7a]. We can

see that these contributions will have in common the trace

Trip, #(kpon') (By-Ky) £(k;a")] (4.3)



This trace corresponds. to the emission of a gluon off shell
from the quark line 99 of momentum Py- This suggests that

the quark-quark {qg) matrix element may be written in terms

of the quark—g]udn (qg) matrix element. Detailed calculations

(see Appendix A) lead to

27 : 2 2
[de 12 = A 0-e)” g (2-ag)p] gy 2
qq 2 - qg
1 - 1
, o8 s {Tmy)er (ay-1) (4.4)
7.2 ]
(kz) 0‘]
and,
do 410 2 : o 1 da
39 —g0 (el +el) L% [ Ladpy o,
dq 3sq 9 92 aNC 277 0 %
%) 2 2w >
X 9(0‘]"0‘2) 9(&2-’[— &’_1_(51'0‘113]/5)) IO d¢ |qul
(4.5)

M is related to the matrix element for qg » qy* and

qgl
is defined in Appendix A (see also reference 15). The kine-
matics involved in this problem are fully described in Chap-
ter V, where we are calculating the differential cross section
do/d4q = dc/MdeydzqT in order to get the gq correction to

the qt distribution of dileptons. .

Upon integration, one finds that daqq/dq2 can be cast in
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the form
2 2
(e2 + e~ )
9q _ *Teen 91 92 %52 PO o2
2 ? 2 [ o Oﬂ]a’[:q
dq 3sq 2N T 1
(4.6)

F(a,r;qg) contains the following terms:

F(q;TBQZ) = Az(a,T/a) 1n2 922 + A](a,T/a) n 9; + Ao(a,T/u)
-Tp -1p

(4.7)

where

Az(a,Z) = (o) Pq (z)

P
qq g

it

nylesz) = Pyola) 2P (2) (1n Tz gy s bw 2 - 322

1-a ) - 2-9
+ 8 Cp 5 z(1-2) 2 CF ( s ) qu(z)

Ab(a,z) = qu(a)’{qu(z) [1n2(1—z) - 2In(z)In(1-2)

+2f B I 1-8 1+ (122)(1432) Wn(1-z) + 3 2% 1n 2
B

- 50-2)) ¥ 2[1-(1-2)] [P () P (2) - acp 132

2(1-2)] - 2¢p 252 [P (2) (-2¢Tn(122) + 12 (1432)]

(4.8)
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As we mentioned before, we do not include the interference
terms for identical quarks. These give only non-leading con;
tributions for 7 > 1 and may be discarded. Then, the expressions
for A2 and A1 are exact. This is not the case for Ay which,
however, contains all the terms contributing for 1 » 1.

The coefficient of the ]eéding logarithmic term Az(a,z)
corresponds exactly to the leading term in the antiquark density
in a quark G—/q(x,-qz), as we expect from equation (4.1).

q
Furthermore, the non-leading 0(1n q2/-p2) term coefficient

-2 Az(a,T/a) In T + A](a,T/a)' - (4.9)

is just the same as the term

K(t,0) + 2 P (@) [P (T) In(1-7) + F - 37 + 3<°)

"of equation (4.1), where K{(t,a) is defined in Appendix B. The

equality of these two terms guarahtees that all the mass

singularities are absorbed in parton dfstribution functions.
The constant (non-logarithmic) term is simply

2

AMa,t) = Az(a,T/a) In“t - A](a,T/a) 1n2

T 4+ Ao(a,T/a)
(4.11)

Now, according to equation (4.2), this term contains the
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contributions arising from the constant terms of the parton
densities as well as the O(ag) qq correction term proportional
to (eg1 + eg ) in KZ(T) (i.e. CA(T)). To obtain the correct
expression fgr CA’ we eliminate these contributions from the

perturbation calculation result as it is shown in equation

(2.51). Then, in terms of (2.48) and (2.49), we get

CA(f) =1 f] do {A,(a,1/a) 1nc - A (o,t/0) 1n?7 + Aglast/a)
8N o , .
T
. , |
3 . bt 91
_[2qu(T/a) Tn{1-1/0a) + 5 - E‘,+ 557] ugq(a) - UEQ(T’G)}

(4.12)

This is where the convention adopted for ugq and uaq plays an

important role. In Chapter III, we specified uah by subtracting

the corresponding 0(“2) correction to the DIS structure function

Fg(x,qz) due to the subprocess qy* - qqq. The same procedure

‘has been used to determine ugq but this time , with respect

to the longitudinal structure function Ft(x,qz). These con-=
ventions lead to a complete detérmihation of the 0(a§) correction
term Cp. In the Timit of large (t = 1), which determines
here the dominant contribution as we shall see later in this

section, we obtain

c 2
Cplr) = '8{1_ (1-1) [;— 1m2(1-1) - In(1-1) + 4 - %134—1



+0((1-0)% n(1-1)) | (4.13)

Consider now the interference terms of the type of
figure [4.15}. As we discussed above they give a contribution

proportional to e eq that is finite and, therefore, the

9192
problem of regularization-prescription dependence do not arise.
This has already been calculated (]5’30). The expression

for CB is long and tedious; 'we shall only state the result for the

region of interest, i.e. near v =1,
3 , :
CB(T) = (1-1) (4.14)

CB turns out to be suppressed by two powers of (1-1) relative
.to CA. Since it is the region t = 1 that controls the correction
under consideration, the interference term contribution
(v CB(T)) is not important.

The complete functions CA and CB as calculated in refe—‘
rence 15, are shown on figure [4.2].

The contribution of the subprocess qgq » qqy*.to the

physical process h1 +h, > z+z' + X, is

do2d 2
"P2 | MM%n 2022 6 k) 6 (%02
dq2 3sq i,] X1 X qi/h] ! qj/hZ 2

x KZ(T/X1X2) (4.15)



65

To obtain an idea of the order of magnitude of this
correction, we have carried a calculation for proton-proton
collisions, where the contribution is expected to be dominated
by valence quarks (p + p - - X).

We use the distribution functions qu/p (~ (1—x)3) of
reference 35, which are based on a well-known counting

ru1es(36’37)

and on the parametrizations for qz—dependence
suggested in reference 38. As a result, this solution uses
as inputs

x Ggyp(xs a5) v (1-x)7 (4.16)

PN ES q8) ~ (1-x)° - (4.17)
with qg = 1.8 Gevz. Clearly, we can see that all the djstri-
bution functions converge more or less rapidly to zero as
x > 1. Therefore we expect that the correction to the physi-
cal process will get mosE of its contributions from small
values of X1 and Xy But for such values, the argument of
the correction K, (i.e. T/x]xz) is large and near the kinématic
limit T/x]x2 < 1. Carrying the integrations in equation (4.15)
the dominant contribution, by far, comes from this region
and this justifies the use of the approximate form of CA(T).
given in equation (4.13) and of CB(T) discussed before. Such

(15)

an approximation has been shown to be good raising an

error I 40% down to values of T~ 0.2, when compared to the



66

full expression for Ko -
The results of our numerical calculations are presented
in the form of the ratio

do39/dq?
R{t,s) = (—SEEK—E—) (4.18)

2
(dopp/dq )by

Here (dopp/dqz]DY denotes the Drell-Yan cross section corres-
ponding to equation (2.39) calculated with the non-scaling
q and q distribution functions of reference 35. The ratio
R(t,s) is plotted in figure [4.3] (solid lines) at energies
/s = 6.5 GeV and Vs = 27 GeV (Brookhaven and Fermilab energies
respectively). |

The conclusion that we can'draw from this figure is that,
at presently available dilepton masses (t < 0.3), the correction
arising from the O(az) qq - qqy* subprocess is very small and
can be neglected.This . is. certainly true at Fermilab energies
(/s = 27 GeV). This conclusion is consistent with the fact
that the Drell-Yan mechanism explains all the basic features
of the experimental data. It is also true at Brookhaven
energies (Vs = 6.5 GeV) although the contribution is more
significant. This may somewhat affect tésts of scé]ing within
the Drell-Yan model. Also the pfesence of a large 0(a§) qq
correction should be taken into account when extracting anti-
quark distribution functions near X = 1.

The general behaviour of R(t,s) is easily understood



qualitatively. For fixed 1, the decrease of R(t,s) with in-
creasing s, is mainly due to the decrease of g the running
coupling constant. For fixed s, R({(t,s) undergoes a rapid
increase with t. The reason for such an increase lies on the

form of the distribution functions
? n;
x 65 (x,-95) v (1-x) (4.19)

The valence distribution functions involve a power n n 3-4,

v
while the sea distribution function used in Drell-Yan is
significantly smaller with ng 2 7.

In fact, we should stress that R(t,s), in particular

for large 1, is sensitive to the assumption made about the

exact form of the sea distribution function as well as the
gluon distribution function, whfch through mixing effects is
known to influence the evolution of the q distribution.
Therefore, the results for R(t,s) should really be taken as an
indication of the order of magnitude and of the qualitative
features of the O(ag) qq -+ qqy* contribution., On the other
hand, the correction itself, dcgg/dqz, since it involves quark
valence distributions, does not show much sensitivity to

. 2 2
changes in Gq/p(x, qo) and Gg/p(x,qo).

4-2 Comparison with other conventions

As discussed before, the correction term CA(T) as well

as the ratio R(t,s) are sensitive the convention regarding
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the choice of the non-logarithmic terms ugq and uaq. We recall
here briefly some of the conVentions that have already been
proposed.

The question of magnitude of the quark-quark correction
to dilepton production was first studied in reference 15. In
this work, the densities G /

g/q
in a way different from that of section 2-2. The convention

(x,qz) and G— (x,qz) were defined
q/q
adopted in reference 15 amounts to choosing:

| = - - C. 2- )
ugq(x) _ qu(x) Tn x E xx (4.20)

which leads to the following 1imiting form of CA(T) (for T = 1)

c
Cyl1) = —g (1-1) [% 2(1-1) - 2 In(1-1) + 3]

(4.21)

where the function uaq has been fixed by requiring no 0(@5)
correcfion from the Y*q * qqq subprocess as in section 3-4.
The results in terms of the ratio R(t,s) defined in equation
(4.18) are presented in figure [4.3] (dash-dotted 1lines).
The corection is somewhat bigger, but with the same qualita-
tive features and of the same order of magnitude: as before.

A different convention is proposed in reference 16. It is related

with the definition of a quark density in a quark.

o
2y _ S 2
Gq/q(x,q ) = ria {qu(x) Tn 92 + uqq} (4.22)
p
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where

2
1+ 3 .
qu(X) = CF [(T:-—)—)): N + ‘2— Q(X"-') :l | (4.23)

The function u is specified by requiring (6,7,16)

qq
correction generated by the subprocess y*q - gq to leptopro-

no 0(a)

duction; and this implies:

2 2

_ 1+x 3 1 2m -
uqq(x) = Cp [ —2(71;7; Tnx + 1+ 3x -3 T%7,” 3 (1-x)]
(4.24)

as we can see from equation (2.15). The authors then invoke
the conservation-of-momentum sum rule by the gluon field, i.e.

1
foaxx ] eqi,h(x,qz) + G p(0%) 1= 1 (4.25)

3
This imposes the following condition on the second moments

(n = 2) of ugq(x) and uqq(x):

ugq(n=2) = uqq(n=2) (4.26)
where
~ 1 n-1
win) = [ dx x w(x) (4.27)
0
To obtain a complete definition for the gluon, reference 16
proposes that this relation be extended to all moments n. This

implies:
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ugq(x) =—uqq(x) (4.28)
One also needs to specify uah(x,a), and for this, one
may require no 0(a§) correction to leptoproduction, as in
section 3-4 (Cz(x) = 0). Then, for not too small 1, this
convention leads to a correction term CA(T) that has form:
C 2
F 3 2 5 2
Calt) = g [3 102(1-1) - E— n(1-1) - 35 7
5 . 2 1, 4@ -
+ (1-7) [-5 1n°(1-1) + (5 + =5=) In(1-1)]]
(4.29)

The resulting R{t,s) appears in figure [4.3] for Vs=27 GeV
(dash-dot~-dotted 1ine 3 notice that the result is multiplied
by 10'2). Clearly, the convention (4.28) introduces a too
large correction to dilepton production. This comes from the
fact that CA(T) + @ when approaching 7 = 1, whereas the previous
convention gave CA(T) - 0(1-1t). Such divergent behaviour near
T =1 is due to the singular terms ~ 1/(1—x)+ and ~ §(1-x) in
' ugq(X). ‘Since the correction to the physical cross section
dogg/dq2 is dominated by the region of integration where T]231,
the correction is found to be very large.

Such a large correction renders useless the successful
phenomenology of dilepton production based on Drell-Yan mecha-
nism. We may conclude that the extension of (4.26) to all

moments is a condition too strong and unnecessary.
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e consider now the convention of reference 31 which is
described in Appendix B. This is based on the relation used

in the procedure of absorbing the mass singularities

o 2, _ x 2 2 |
Gg/n(xs07) = fo g% 65/g(52a") 6g/p(@:a%) (4.30)

and corresponds to extending this relation to h=quark:

1
2y = . qx 2 2
Gqrq(x-07) = [ do Gg)(5:a7) 6g/q(asa7) (4.31)

Last condition specifies both ugq(x) and uaq(x,a) and leads

to a quark-quark correction term near T = 1 with:

: 1 .2 |
CA(T) * BN (1-1) [7 In“(1-1) + In(1-1) + 2] (4.32)

The corresponding ratio R(t,s) is also presented in
figure [4.3] (dashed lines). We see that now the result is
very similar to that of R(T,s) calculated with the conventions
of Chapter III (solid lines) differing by less than a factor.of 2.
The reason is that near o = 1, the convention of Chapter III
implies ugq(a)%—ZCF; whereas the convention of reference 31
(a) v -4C.. Notice thét this is also the case for

gq F
the conventions of reference 15 (dash-dotted lines) i.e. R(t,s)

gives u

has a similar shape but differs from the solid lines by a

factor of " 2; 1in reference 15, for large d, u_(a) v -C

aq F*
We must mention that with the conventions of references
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15 andv31, the O(az) qq corrections to leptoproduction do not
vanish. However, in both cases, they are found to be very
small.

The last convention that we shall examine is that of
reference 30. In order to subtract the mass singularities,
they use essentially a slight extension of the method of
reference 26 for the calculation of leading logarithms of
transition functions; They apply this method to the subpro-
cess q + B> g + X, where both B and X (anything) are chosen
to be scalar. The initial quark emits a gluon and this is
followed by a process of the type g + B » X. This fixes the
non-logarithmic term ugq of the gluon density in a quark;
The function uaq is again determined with respect to lepto-
production as in section 3-4. Near t = 1, they find

Cr 1.2 (4

Calt) = gy (1-1) [ In"(1-1) -31n(1-1)] (4.33)
Notice that the coefficient of the leading logarithmic term
is the same as that:ofo the conventfons of section 3-2,
Appendix B and reference 15. Because the qq correction is
dominated by contributions near t = 1, we expect that this
convention will lead to results for R(7,s) similar to those
generated by the aforementioned conventions. Furthermore,
the coefficient to the next leading logarithmic term in
equation (4.33) is larger; this should slightly raide R{t,s)

above those already calculated except the one from the



convention suggested by reference 16 which have the 1imit
CA(T) > o as T > 1.

The results of reference 30 are presented in a different
fashion. Furthermore, they use different distribution func-
tions which have the effect of reducing the Drell-Yan contri-
bution near { = 1. Taking this into consideration, however,
we find that their conventfon leads to the same order of
magnitude for the quark-quark correction to the Drell-Yan
process. The same general features of R(t,s) are also
observed. |

Finally, Tet us just mention that reference 30 finds for

the contribution of the interference term near v = 1:
R ARY
Cplt) = -5 (1-7) (4.34)
This is in some disagreement with our result (we find CB(T) =

(1-1)3). As we already discussed this interference term do

not give any mass singularity and is convention independént.

Anyway, CB(T) of reference 30 is still suppressed by one power

of (1-1) (neglecting logarithms) with respect to CA(T) and
therefore does not significantly affect the contribution to

the physical cross section.

73
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CHAPTER v
TRANSVERSE MOMENTUM DISTRIBUTION OF DILEPTONS

As a second application, we consider the transverse
momentum (qT) distribution of dileptons in proton-proton
collisions, p + p » g+g- + X. Experiment shows that dileptons
are sometimes produced with high transverse momenta (qT n M= di-
lepton mass). In the Drell-Yan picture the qp distribution
can be accounted for only by the intrinsic transverse motion
of the quark and antiquark (due to giuon Bremsstrahlung) in
the hadron. This intrinsic motion together with higher order
effects due to soft (multiple) gluon Bremsstrahlung (5,39,40)
are known to be very important in determining the low ar
distribution of dileptons. However, because the intrinsic
transverse momentum of the partons is beleived to be rather
small (~ 300 MeV) compared to the high <qp observed (a 1 GeV)
the D}e11-Yan mechanism alone is inadequate to describe the
qr behaviour of dileptons in this region. One must then
proceed with the calculation of higher order subprocesses.

Neglecting the intrinsic transverse motion effects, the

QCD subprocesses
q+ g > qt y* , (5.1)

q+ Qo> g+ y* | | (5.2)
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“are known to provide the Born terms to the d1 distribution
of the dileptons and they have been shown to account partly
for the experimental a7 distribution (41'45).

However, even at the highest available 97 these predictions
fall somewhat below the data. It is therefore essential to.
examine the next order contributions. This is important in
particular for the O(ag) contribution from the qq -+ qqy*
subprocess for proton-proton collisions This contribution
may well be comparable to those from the subprocesses (5.1)
and (5.2) because it involves valence instead of g]uon.and sea
distribution functions.

In the first section, we briefly recall the calculation
of the contribution from the subprocess (5.1). This wi11 set
the basis of our calculations for the O(QE) quark-quark sub-
pfocess to be performed in section 5-2. 1In section 5-3, the
mass singularities arising from the perturbation calculation
are absorbed through the redefinition of the gluon distribu-
tion function. With the use of the complete definition of the
gluon density in a quark, this procedure will set unambiguously
the correction terms due to the qq -~ qqy* subprocess. Finally
the last section examinesthe contribution to the physical
process p+p- 2+2'+X brought by these correction terms. Diffe-
rent conventions for the parton densities are then compared
and discussed.

The quantity we are interested in is the differential

cross section
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dg

d4q

dg
Mdequdy

(5.3)

This definition is related to the four-momentum of the virtual
photon, q, with components

2)1/2

g = ((M% + of zyl/e

cosh y ; HT s (M2 tqg sinh y)

(5.4)
where M is the dilepton mass, ET is the transverse momentum
and y is the rapidity in the c.m. fkame of the colliding

partons.

5-1 Quark-gluon contribution

As we just discussed,subprocess (5.1) contributes to the
Born term of the 97 distribution of dileptons. Furthermore
this subprocess is included (with the gluon off mass shell)
in the O(dz) qq subprocess that we are interested in. We
will see in the next section that the leading contribution
of this subprocess is closely relatedto that: of qg > qvy*.

We now briefly consider the subprocess qg -~ gqy*. The
differential cross section dq/d4q in the notation of figure

[2.7a] is given by

2 _
do 4o o
L L(py-k)°] 617/ (p,tk-q) M
d4q 95q2 q 16ﬂ2 + 1 2 qg|

(5.5)
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where |ng[.is proportional to the matrix element. Both ini-
tial partons can be taken slightly off shell. However, this

is not really necessary because no mass singularity arises from
the infegra]. The first g-function indicate that the final
quark must be taken on mass shell with positive energy and the
second 8§ -function simply states the energy-momentum conserva-
tion for the subprocess.

Perturbation calculation gives for |qu

k'(p]+p2) (P-I"k)qu zp'l-.k

2 S
M % =810 35+
99 k2 kzs S
2p$ k-p,
+ —*zgfyf— ] (5.6)

where s=(p] + pz)z (see Appendix A for details of calculations).
The O(p?) term is unimportant in calculating the Gq distribu-
tion of dilepton and it will be neglected.

Introducing the dimensionless invariants T, &, and n for

the quark-gluon subprocess, we write:

2 2
=93 = M
s s
2p. *q 2.2 |
= 1 — M +9:F ]/2 '.y - N
£ F— = (¥ € (5.7)
nz P2t meenyiye Ly
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Furthermore we work in the c.m. of the colliding gluon and

quark, and we may write:

(5.8)

Then using the first 86-function, we find that the require-

ment that the final quark be on mass shell leads to

(p-l = k)2 = (P] + p2 'Q)z
= (py * pz)z - 2(py * py)eq ¢ q?
= s (T +T-n-E)=20 (5.9)

Its energy is required to be positive, i.e.
0 0 0 0
(py - k)" = (py *+p, - q)
S - (e 20

or, E+ > 2 | (5.10)

where we have used equations (5.8) and the fact that the energy

component of q may be written:



g = (& +n) "5 (5.11)

The integration in equation (5.5) can be performed with the

help of 8(4)(p2+k—q). Then, writing |M |2 in terms of the

qg
variables 7, & and n, we obtain for the differential cross

section of the O(us) quark-gluon subprocess

2
do 4o o
_49_9'(531-:&9“;0‘5) = gm ez SZ 5(]+T"E-ﬂ) F(T,E,n)
d*q 9sq 9 2q |
(5.12)
where
F(r,g,m) = 1EHon) oy g (5.13)

Consider then the physical process h] + h2 > z+z’ + X
where h]and h2 are hadrons. The contribution of the subpro-

cess qg » gy* to the hadronic differential cross section is:

q9
TR a6 () & (%) ag(z . & 1
—_— ) = X X X X S,L.T N s 0L
% [ dxq dx, a/hi*1’ Bgsny*e’ T 12°%,°x°%s
+ (1<+22) (5.14)
where
g = X1X5S Typ = T/x1x2 (5.15)

The change in the argument of the cross section is simply due

to the change of variables Py > X9P4 and Po > XoPss where Pq
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and P, are now the momenta of the hadrons involved. The rela-

tion (5.10) is then written

> v
o+
x|z
v
(X

(5.16)

It determines the region of integration of the variables X1

and x,, together with the condition 0 < x,,x, < 1.

5-2 O(ag) quark-quark contribution

We are interested in the contribution to the ar distribu-
tion coming from the subprocess qq -~ qgqy*. We shall consider
only the "squared” terms of figure [4.7a] that have the charge
structure eg. The contribution of the "interference" terms,
as well as of identical quarks, will not be included. They
are expected to be small compared to the squared terms, as the
results of Chapter IV indicate

In the notation of figure [2.8], the differential cross

section dc/d4q is given by:

dcqq 4wa§m 2 2 ) ag f 4 (( )2
= (e + e — d’k, & p,-k )
d*q  9sq? 91 92 32t P

x 8, ((ky-kp)?) Mg 17 (5.17)

where |qu| is proportional to the matrix elements of the
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squared terms. The &§-functions indicate that the final quarks
must be taken on mass shell with a positive energy.

Again, the regularization procedure consists of taking
the initial partons slightly off mass shell, i.e., pf and P;
are small and negative. A

Let us now introduce the appropriate set of Sudakov varia-

bles to facilitate the integrations. We write,
Py - ky = (M-a)py + p, + & (5.18)

with the element of four-momentum

4 2

ki = > da dB dag do (5.19)

d'ky = 3

The momenta pi and pé have the usual property
pi-z = pé-z = 0 (5.20)

Then, o and B are scalars running from zero to one, ET is the
transverse component of 2 and, ¢ defines the direction of IT
in the transverse plane. s is the c.m. energy squared

2 2)2

s = (p7 * py (5.21)

We can write pi and pé in terms of P and P, as follows:
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p p2 p?
Py = Py - s1 p, or Py = Pp * gl py + 0(;7 ps)
2 2 4
] - - p - L] p ) p_ 1
Ps = Py 2 py or Py = Py + "2 py + 0(5 pq)
S S S
(5.22)

2 2

where P1> Po n p2

, so that in the c.m. of the colliding partons

p=(0; % ,0) - (5.23)

Notice that here

pi? = »0((5-2-),2) £ 0 py° = 0(,(2—2)2) $ 0 (5.24)
However, these values can certainly be neglected for small p2
and, from then on, we will simplify the calculations using
pi2=péz=0-

We shall work with the same dimensionless invariants as
in section 5-1 (i.e. t, £ and 1) except that P is now assigned
to the initial quark instead of the gluon. The virtual photon
momentum, q, still have the form of equation (5.4), with HT
and y representing the transverse momentum and the rapidity

in the c.m. of the colliding quarks.

Consider now the first §-function. It implies:
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(py - k)% = (1-a)es - 25 = 0 (5.25)
and )
(py - k) = '5 (1-a*p-(1-0)"1 - 8P2)
s S
= 73 (1-a+g) 2 0 (5.26)
for small p2 and p2.. Notice that equation (5.25) implies
1 2
2_
lT—O and
k_I ~ ap] (5.27)

when B8=0, i.e. the gluon is emitted collinearly: with the initial

quark. The second 8-function impose conditions on (k]—kz);

here,

2 2
((a+P2)py + (1-8+P1)py - 2 - q)
S S

oy
L}
=
~nN
|

(5.28)

1]

apy + (1-B)p; - & - g

2
if we neglect the 0(%—) terms. Then, the on-mass-shell condi-

tion gives for small p2

2 2, 2 , :
) all=g)s - a1 + @7 - 2apjeq = 2(1-8)psq + 22-q

—~
~
-
)
-~
no
St
n

R

s - afs - (1-B)ns - 22TqT cos ¢ =0
(5.29)



where we have used equation (5.25). The angle ¢=0 is chosen
to coincide with the direction of ET in the transverse plane. °
It is necessary, so that the energy of the final quark

be positive, that
(ky = kplg = apyg + (1-B)pyg - &4 - qg
. /g (1+a-B-£-n) > 0 (5.30)

We can now carry easily the integration over R% using

relation (5.25). Then,

[ at |12

<
Hi

1 8. (oK) ?) 8, ((ky-kp)%) I

1]

T/ do d8 do 8(a-prr-at-(1-8)n- 2 ((1-0)8)"/%q_ cos ¢)

2

M| (5.31)

qq9
- The 1imits of integration of ¢ and B are specified by relations
(5.26) and (5.30) as well as 0 < a,B < 1. Relation (5.26) is
~automatically satisfied because of the more restraining condi-
tion that both o and g runs from zero to one. Relation (5.30)

however, imposes an upper limit on g,

By = 1+ a - & - | (5.32)



In DIS, when we considered the O(ag) quark contribution,
we refered to diagrams that arve symmetric with respect to

the exchange of the external lines with momenta Py and g to

that of figure [2.8]. 1In that case we saw that, because of the

gluon propagator, the most important contribution came from the

region near B=0, i.e. where the gluon is emitted collinearly
with the quark. For reason that will become apparent later,
this js also the case for the O(ag) quark-quark contribution
to the qq distribution of dileptons. Thus the argument of the
§-function in J can be rewritten as follows:

2

1 Bm 2
J = ry [ do f dB S(a*t-0g-n) | do |M_ | (5.33)
0 0 qq

"In this way, we have eliminated the angular dependence in the

argument of the G—functioh. The last integral has been cal-
culated in reference (15). We reproduce the calculations in

Appendix A. The result is

2w

2 ., 4w 1 _ (2-a) 2 2
IO d¢ quq, R ( k% qu(@) CF (k$)2 P ) [ng,
+ 287 Cr (k;)z (1-a) v (a-7) (5.34)
2 o

where Ingl is proportional to the quark-gluon matrix element
defined in section 5-1. This proportionality of the matrix

elements is easily understood; a part of the qq contribution

85
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is attributed to an off-shell gqg contribution, where the gluon
has been emitted from the initial quark.

The last term of equation (5.34) contains only a part of
the non-dominant terms in the region of B=0; comparable
contributions are left out. It has very little effect on the
a7 distribution of p+p > 2+2-+X, and has been included merely
as an indication qf the non-dominant effects.

In terms of the Sudakov variables k% and kg are:

2 _ , : 2
k] = (p] - ('I—Ol.)p] - sz - %)
= ap? - gs | (5.35)
kg = (q - pz)2
- (1 - n)s (5.36)

. -, .
where we have neglected O(Rf) and O(E—) terms respectively.
We found in section 5-1, that |ng|2_can be written 1in

terms of the invariants T, & and n as follows;

g (kopypp) 12 = 8 ( LS 0 - e < gf(e,e,n)
(5.37)

However, now, we must substitute k - k2 and Py k]=ap]! With

this replacement, by going from the c.m. of the initial quarks
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with Py and Py to the c¢.m. of the quark with Py and the gluon

with k], we find easily

T > 1/ , £ > £ R - n > n/a (5.38)

so that in equation (5.34)

Mgl = 8 e (5.39)

The only B-dependence of the matrix element [qul originates
2 2)2 '
1 1

statement made above that the major contribution comes from

from the k and (k denominators. This justifies the
integrating near B=0.

We can now carry the integration over B. The integral J

is then,
p2
d 25 ]
3= ¢ J % slart-ag-n) { ( Py (o) Tn P oo % 0(cD) )
. -ap]
« 8 F(E,e,5) + 28¢ g (1-0) v {a-1) } (5.40)
a’>?’a F ) :

m (T_n)2a3

where we have used the approximations (3.44) and (3.45).
The integration over o is straightforward. However, the
mass singularity arising near p? = 0 must be factorized in

order to determine the correction terms to the Q7 distribution
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of dileptons due to the subprocess qq - qqy*. We proceed

with the factorization in the next section.

5-3 Correction terms and factorization of the mass singularity

The splitting function qu in front of the logarithmic
term in equation (5.40), indicates that the singularity can

be removed with the help of the gluon density in a quark,

Gg/q(x,qz) = ;%'{qu(x) In g; + ugq(x)} (5.41)
-p]

where the constant (non-logarithmic) piece, ”gq’ has been
specified in Chapter III. Thié function carries the same
dependence as before (i.e. gauge and regularization-prescrip-
tion dependence). But as we discussed in the previous chapters
the dependences cancel out when compared to the dilepton
production cross sections if we have been consistent in the
gauge and regularization procedure used.

Let us now rewrite the differentia1 cross section due to

gq - qgy* in terms of this gluon in a quark density. We obtain;

do 3 doli) | |
-_49&= Z _4JH' (S,T,E,Tl;ozs) (5.42)
dtq i1 d%q
where

(i) , «
do ‘ Ao o, - .. R N
—+ (s,7,E,n30 ) = ‘_‘gm_eg 25 %~f §%~8(1+§ggzﬂ)
d'q 9sq 27 o o

« kK1) (a37,2,m) (5.43)



and
AV - . ol T . n
[N (OL,L,?J]) Cg/q(()q ) F(OL’E’O’,)
o g .
K(Z)(u;T,E,ﬂ) = §%'{qu(u) n ?% - ugq(u) - CF
(3) Cg (1-0) 2 (a0-1)
K (OL;T,EaT]) = —TT 8CF m

(T—n)2a2

The term with i=1 contains the mass sinqularity and
absorbed in a redefined gluon distribution function.
i=2,3 provide the correction due to the quark-quark

that we consider.
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will be
The terms

subprocess

Consider now the physical process of two colliding hadrons

h1 + h2 > 2707 4 X; each term gives a contribution
gol 1) doéia
172 f 172
= [ dx, dx, G (x4) G (x,)
d4q 1 2 q]/h] 1 q2/h2 2 d4q
+ o (1492)

(5.45)

Then the factorization of the singularity is performed as follows:

Consider the expression (5.45) with i=1. The integr

can be written
dx1

X1

1
%@

/

da
S G —
oy 00 195 gl g

(a:qz) (S(‘I")gz +

al over X4

_r
0lX-lXZ

.
- &)
2 “Xy
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x F(=t—b ). (5.46)

We notice that the function F appears as a function of}(2 and

of the product aXyq. Let us write
Florsrsomagl) = Hlaxg.x,) (5.47)

qx1x2’x2 ax]

Furthermore, we set

11

£(x,) (5.48)

Then we obtain the expression for S

. da
S—(]v"g/xz)f O‘G

2y 9% .

x G(ax]—f(xz)) H(ax],xz)

HEF(x,5)0%,) da | ) f(x,)
T T-E7xy) Tlx,) ) e Gg/@|1(°°"q ) Gq]/h1( a
(5.49)

The last integral represents an O(as) contribution to the glﬁon
distribution function in a hadron h1 (via the emission of a

quark). This suggests that we write,
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(o)
2) Xy =65 (x.-q

2,
Bq/n G a/h )

f Ei_O_L G (O‘s'q

s 8g/q (5.50)

Using this last statement, we find that S can take the forms:

H(f(x,5)5%,) (o o,
T T-87x,) T(x,) Gg/h1(f(x2),—q )

dx (a )
1 1 .2
(T-£/x,) I Xy Gg/§1(x1"q ) 8{xq-T(x5)) H(x{sx,)

(o) » |
[ dxqy 6,3 (xq,-q2) 6(1- & -0+ Ty g t_ 5 1,
1 g/h] 1 L Xo Xq X% X 1%y 7 X5 Xy

(5.51)

The physical contribution to the differential cross sec-
tion can be written in terms of the quark-gluon differential

cross section defined by equation (5.12). We finally obtain:

+ (1+>2) ‘(5.52)

It is now clear that the contribution has the form of the
quark-gluon contribut}on)of equation (5.14). The mass singu-
o
larity contained in Gg/ﬁ can therefore be absorbed by rede-
1

fining the gluon distribution function as follows:



(a 2 2
Gg/h(x) + Gg/ﬁzxa"q ) = Gg/h(xa"q ) (553)

Notice that this result is identical to the one obtained in

section 3-3.

5-4 Correction to the 97 distribution of dileptons

We consider the At distribution of the dileptons for the
process p + p - 2¥9” + X. The results will-be presented for

the case of zero-rapidity (y=0) where we have

2 2
M" + q].—).I/2

E=mn-=w-=( S (5;54)

The O(aé) dominant Born term is given by equation (5.14).

As discussed in section 5-1 the region of integration for the

variables X4 and Xo is delimited by the relations

w(%] + %2) > 2 and, 0 < x];xz_é 1 (5.55)

Furthermore, the S-function implies
(LA R (5.56)

According to relations (5.55) and (5.56), we must take the

Tower 1imit on X

Xy 2 4o (5.57)

92
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From the kinematical point of view, this condition is obvious.
One can not produce a dilepton with a mass M larger than the
energy available from the collision of the two partons.

Relation (5.56) can be rewritten as:
(5.58)

But, because Oixzil, this re]atidn gives a lower 1imit for

x] that is:

Xq 2 = X (5;59)

The 1imit (5.57) is not really needed because the integration
over the variable X, can be performed with the §-function.
The differential cross section for the physical process of

colliding protons due to the qg - qy* subprocess is therefore:

ag 2
di ) X I] dx] . (x]) o (x1m-T) .4waem eZA o
d*a 1 x a;/p 9/P Xy=0 T ggq? Ty pnl
x F(le,%E,%T) + (1+>2) (5.60)

The correction terms due to the subprocess qq > qgy* are
given by equations (5.43-45). The relations that determine

the region of integration are the following (for y=0):



>0 (5.61)

1 + T B ) (5.62)
and 0 < xq,x,,0 < 1. The first relation imposes a lower limit
on o which is overcome by the more restaining condition of the
§-function. This condition (equation (5.62)) leads to:

X1 % —o (5.63)
2

But, both Xq and o are smaller than one; it follows that,

A (L)Xz - T
12X, 75 " Xin (5.64)
and that
WX, - T _
W - T
~ -5 <1 or, Xo 27— = Xop (5.65)

The correction terms for proton-proton collisions are then

for i=2,3:
(1) 2
dg 4y, e | 1
Pp_ . em ¢ el S d dx, G X4 )
3 72 L 1eq 7] Xo f x X
a%q 9s2q2 ik 95 2m Xy xq 1 "q;/p"1
x G ,o(x,) K(’i)'(;“o;f]'z?‘”/"2"*’/"1) Tes2y
qk/P n2t } + (A*ﬁ—) )
qo(] - w/xZ) . Jerk®

(5.66)
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where

WK, = T
2

% - xy(x, —w) (5.67)

We have mentioned before that the parton distribution
function decreases fast as x » 1, so that most of the contri-
bution to the integral comes from-klaﬁd X, 2S small as possib1e;
But, the lower 1imit of integration for X, was found by
setting a = 1. Therefore, the dominant contribution will come
from o ~ 1. This justifies the approximate formulae (valid
for a ~ 1) for the partonic cross section; in particular for

the term involving the function u

gq’
K(2)

As the expression for in equations (5.44) shows,

the correction depends on the function ugq which is to some
extent a matter of convention. In Chapter IV, where we also
considered dilepton production, the correction to O(ag)
due to the qq> qqy* subprocess, was somewhat sensitive to
another convention-dependent function uah. This function
need not be specified here because the subprocess gq » qy*
provides the O(as) dominant Born term.

We first consider the correction that results from the
convention proposed in section 3-2. The calculations of the
differential cross section are performed with the non-scaling
parton distribution functions of reference 35, in which
qg = 1.8 GeVZ. The results are presented in the fbrm of the

ratio:
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2) , .4 (3), .4
dol2)a%e + 4 d

qg, .4
d d
Opp/ q

(5.68)

for the energy /s = 27.4 GeV, rapidity y = 0 and dilepton
masses M = 5.5, 7.5 and 9.5 GeV (figure [5.1], solid Tines).

We first notice that the corrections are positive, and this
is a step in the right direction, since, as we mentioned, the
predictions of O(as) fall somewhat below the experimental data.
These corrections are already of the order of 50% near 9 =
5 GeV and increase with increasing dilepton mass M and trans-
verse momentum 97

The general behaviour of the ratio R _ is easily under-
stood . The production of dileptons with Targe 97 and/or
large M, is possible only for large X4 and Xye Therefore,
only a small region near X4 and x2=1 controls .the behaviour
of Ry_ for large values of q, and M. However, in the numerator
of R,_, a valence distribution function appears, whereas the
denominator involves a gluon distribution, and those are
)3

known to behave for x - 1 as ~ (1Fx and ~ (1—x)5 respecti-

vely. From this point of view, R is expected to increase.

+-
As mentioned before, the two corrections doéﬁ)/d4q and
doég)/d4q do not constitute the total correction due to the
subprocess qq > qqy*. We have left out non-dominant contri-
butions to the matrix element because they were believed to

be unimportant with respect to the correction doég)/d4q in
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the region of g = 0. However, we did perform the calculations

a .
dcég)/d‘q, as an indication

for one of the non-dominant terms,
of the order of magnitude of these contributions. For qT:S GeV
the contribution was found to be less than 1%,decreasing
rapidly with increasing p- At Tow 97 (qT < 1 GeV), the contri-
butions are comparable; however, in this region the overall
contribution due to the O(ag) quark-quark Subprocess is quite
small compared to that of the O(as) quark-gluon subprocess.
Furthermore, at Tow 97, one must also consider the intrinsic
transverse momentum effects. - Hence, this approximation is
totally justified in the region of qr we are interested in.

Let us consider a second convention for ugq; This con-
vention is described in Appendix B (see also reference 31).
We recall that this function generated only negligible
corrections to the leptoproduction structure function Fz(x,qz).
Moreover, we found in section 4-2, that its effect on the
Drell-Yan formula was comparable to that of the convention
of section 3-2. The results for the 97 distribution of
dileptons appears on fiqure [5.1] (dashed lines) for the same
energy, masses and rapidity as~beﬁn@(49).c1ear1y Ry . is of
similar shape and magnitude. This is not surprising since
the correction is dominated by the region near o= 1 and
that, as a > 1, ugq(q) > «4CF whereas in the first convention
we had ugq(u) > —ZCF. |
This dy distribution of dileptons due to qq ~ qqy* sub-

process has also been studied in a very recent paper(39).



The authors consider various conventions, both for on-mass-
shell and off-mass-shell cases, including the convention

of reference 31. The conclusions are the same as ours, i.e.
that the O(ag) qq subprocess gives large corrections at high
transverse momentum a7 and should not be neglected. Further-
more the~ authors also finds by considering many choices of
ugq that the results did not present larges differences

throughout almost all the kinematic region; clearly, this as

well is in support of our conclusions.
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CHAPTER VI
SUMMARY AND CONCLUSIOMS

In this work, we have studied two important corrections
arising from higher order terms in QCD perturbation theory:

The first is the O(dg) correction to the Drell-Yan cross
section for dilepton production in proton-proton collisions,
due to the subprocess q + q - q + g + y. The possible im-
portance of this correction has been emphasized long ago (4).
OQur conclusion is that this correction is small at presently
available dilepton masses (f < 0,3); thus it leaves practical-
1y unspoiled the successes of the Drell-Yan mechanism. However,
the relative magnitude of this correction increases with 7,
and becomes quite significant as one approaches the kinematic
boundary T = 1.

The second is the O(ag) correction to the transverse
momentum distribution of dileptons, due again to the subpro-
cess g+ q>q+qg+ v, We find that for proton-proton col-
lisions this is rather Targe with respect to the contribution
of the O(as) subprocess q + ¢ ~ g + ¥*; and that it increases
with increasing transverse momentum and dilepton mass, i.e.
again as one approaches the kinematic boundary. This result
explains, at Jeast partially, the gap that appears to exist
between experiment and theoretical predictions based on O(as)

subprocesses only.
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The study of these corrections required a complete defi-

2). Such a

nition of the gluon density in a quark, G (x,q

9/q
definition was also one of the main objectives of this thesis.

The basic idea was to realize that the density G (x,qz) is

9/4q
also involved in the O(ag) contribution to the DIS longitudi-
nal structure function FL(x,qZ), due to the subprocess y* + q =
q+q+ q. The requirement that FL(x,qz) be free of O(ag)
corrections led to a complete specification of Gg/q(x,qz).
There are of course, other processes which also require

a complete definition of G (x,qz). Clearly, any process

9/q

involving the subprocess q + d - q+ g+ y*¥ is affected, since
this gluon density fixes the g + q » g + q + v* parton cross
section. One eXamp1e of such a process is 1arge«pT direct
photon production up to O(ug), which involves a bremsstrahlung
correction (due to g + g > g + q + y); for p+ p-> y+X,
this correction was also found to be important (47’48). An-
other example is large—pT hadron production calculated up to
0(a).

As an overall conclusion, the corrections studied in this
thesis do not constitute, at present, any crucial test of per-
turbative QCD. On the other hand, they do not contradict any

of its successes; and they offer a better understanding of the

role of higher order terms of the QCD perturbation‘expansion.
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APPENDIX A

We outline here the calculation of the matrix elements
for certain subprocesses involved in this work. The results
are most easily obtained and interpreted in the Coulomb

gaugé
Ag = 0, vA? = 0. (A.1)

The corresponding gluon propagator is:

U Ty S e Tl T
Hv k2 + e BV (n.k)z _ k2

(A.2)

where k is the gluon four-momentum and  is a timelike unit

vector. This propagator can also be written in the form:

y 2
p2P(y) = e [ % e, (ks2) e, (k,a) + —E—“E*——*]
uv 2 4 e A=l (n-k)2-k2
(A.3)

where ) is the helicity of the gluon. The transverse pola-

rization vectors ¢ = (0;¢) obeys

E(k,l)'ﬁ(k,)\') = _6)\)\!

e(k,A)*k = 0 (A.4)



The second term in equation (A.3) is of the form of an instan-
taneous Coulomb interaction and cancels a similar contribution

hidden in the first term.

A-1T Leptoproduction

The O(as) gy* » qq contribution to the longitudinal
structure function FL involves the unitarity graphs of figure
[A.1]. As we shall see, the contribution toAFL generated
by these graphs is finite and therefore the gluon can be taken

on mass shell. Then for p% = 0, the projection of the contri-
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bution onto FL coming from the "squared" graphs (figure [A.la-b])

vanishes. The only non-zero contribution comes from the

"interference" graphs (figure [A.1c-d]), and is:

4(P]’P2)

L 2(kepy) (k*p,) - kK2(pyep,) } (A.5)
kz(p]+p2)z 1 2 1772

Using the Sudakov parameters defined in section 3-1, this ex-
pression can be rewritten as:
2

M, !

g u = (1 -0a)u | (A.6)

This result is obviously finite, and it does agree with that
of reference 46. |
The 0(a§) qY* > qqq subprocess gets its contributions

from the unitarity graphs of the type of those on ‘figure [A.2].
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Consider first, the part of the contribution coming from
the term n E Sugv in the gluon propagator. Then the contri-

bution to FL involves the quantity

1Y, TyOu) To0000) (K5)7% (k5) 72 (A.7)
where
T 0GAY) = Tr [ £(kys2) (B-Kp) £(ky,20)]

T,000) = Tr [B, B Ky £(kys2) (Ry-Ky) £(kq52") K, B

(A.8)

Using the relations (A.4), we find in terms of the

Sudakov parameters defined in section 3-2

by 2 2 2 2.
T](K,A ) - _2 ["k] []+(1“a]) ] + 0"[(.2“0‘])]3 ] 6A)\l
1

(A.9)

We are interested in the leading part of the 0(&?) con-
tribution of the gY* > gqq subprocess, which comes from
81=0 (so that k%zo). This corresponds to the configuration
where the gluon of momentum k] is almost collinear with the
qua;k of momentum p. After summing over X', using (A.9),
the remaining sum is most easily calculated and interpreted
in the configuration in which also the quark of momentum,k2

is collinear with the gluon k]. Again, using the relations
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[A.47, we find,

] To(0) = 2Lk (A.10)
X 1

We now indicate the effects of the remaining part of the
propagator. In the same configuration, the trace TT(A,A)

receives a contribution

‘k] 1-ay
)2 2 TY‘[¢ ) (¢"K]) f\] =~ 8 2 k
1

%1

(A.11)

— N

However, we are interested in FL(x) as Xx > 1 and this impliés
@, > 15 this Tast contribution is therefore neg]ig1b1e
Finally, the sum Z T (A A) is modified by terms of O(E—) which
are unimportant and/or by terms of O(k Ju) which give finite

(15)

but non-leading contributions near a; = 1. Combining

these results, we obtain

: 2
g2 P O 2 ey
g - 2 K2 7.2 P T o
o] o k] (kl) 1

(A.12)

and equation (A.6) leads to equation (3.33).

A-2 Dilepton production

104

The calculation of the matrix elements and of the partonic

cross sections for the qg -~ qy* and qq > qqy* subprocesses
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have been done in reference 15. We merely state, here, some
of the details of the calculations.
Refering to the kinematics of section 5-2, the singular

contribution to the squared matrix element is calculated using

O~

Q[ro
—
~

~N

Q

N

N
~

KZ ¢(k]3A) (k]'Kz) ¢(k],X) Kz = -

A=]

x [ad + (a;-0,)%] p! | (A.13)

and relation (A.9). Both expressions are valid within the
first order in the small momentum transfers. Some terms that
would vanish after integratjon over the angle ¢ between IT]
and sz, have been dropped.

The total O(as) qg contribution is given by:

[M |2 - [_i N 8k'(p'|+p2)(p'|"k'|)'p2 ) 2p'|'k
ag G kZs s
2p§ k-p2

where the kinematical variables are assigned as in figure [2.7a].
In terms of the invariants t, & and n defined in section 5-1,

the denominator takes the form

_p2
k2 = s(t - n + Eg) (A.15)

A mass singularity would arise if we were to integrate over all
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possible kz, or equivalently over all transverse momentum, 9rs
of the virtual photon. However, if we are interested in the

ar distribution of the dileptons, k2 is fixed for a given qp

and, as far as 9r > 0, |ng|2 is finite and the parton can be
taken on mass shell. Then, neglecting all terms of 0(%—), we

obtain the expression

M

qg|2=8[1—’%li]—5—“l+1-g] (A.16)

-1

However, the determination of the cross section dd/dq2

involves an integration over all possible 97 and partons have
to be taken off mass shell. Then, the cross section for the
ggq > qY* subprocess is

do A 2 2

o e~ a 1-1 2
99 . __em g s ) d(_"; [M'g|2 (A.17)
dq 3sq 2N 16 —Tp]/s 9
where 0
M 12 = (M (tapeakes) |2 = [24(1-1)2] (—do - 5.)
1 qg - qg 3p‘|3 3 (k2)2 k2
k2
+ 2T - s (A.18)

We have neglected terms leading to contributions of 0(p¥/s)
in the cross section dadg/dqz.
The main objective, here, is to find the matrix element

for the O(az) qq > qqY* subprocess. This is done more easily
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by establishing a relation between |qu|2 and the qg - gqy*

matrix element. This relation is suggested by the presence

of the off-shell gg subprocess in the gqg =+ qq¥v* subprocess.
Looking at the unitarity graphs of figure [4.1a], we SRR

notice that the trace T](X,K') is common to all graphs. The

contribution to |Mqé|2 will then be proportional to the pro-

‘duct of T](A,l') with an off-shell qg > gy* matrix element.

An additional contribution will come from the instantaneous

Coulomb term in the.g1uon propagator. Strictly speaking,

we should also include the contribution that comes from graphs

of the type of figure [4.1b]; however, those were found to

be non-dominant in the 1imit we are interested in (a] - 1).

We finally obtain an expression for |Mq 2 in terms of the

ql
variables defined in section 5-2:

1+(]-a])2 a](2—u])

2z _
2 2 Y
o k] (k])

2
|

~

1 2T
= d M
T IO ¢ IMgq

(1-u1) T2 (a]-T)

2 2°s
x M. (E—,kq,Kk,sa.5)]° +
qg'a; 2 K12 %22°% 272 7
1 (k2) o
(A.19)

and the total cross section for qq ~ qgqy* is given by:

Q4 Gt Cps .o 1 da ,

qq . em 1 2 F ( 5)2 [ L

~ — dB, do, 6(a,-a,)
dg?  3sq? 2N 2/ 0o & 1 2 T2




2 2 2
(8y-ayp]/9)) x f e I

(A.20)
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APPENDIX B

It is clear from the foregoing analysis that, in general,
there is some ambiguity in the definition of a parton density
inside another parton, and in particular, of the gluon density
inside a quark. Since, at present, our predictions concerning
corrections to physical quantities depend on these definitions,
it is important to consider approaches leading to different
definitions, and compare the results.

An approach for the determination of ugq (along with uaq)
different from that of sections 3-2 and 3-4 is suggested by the
form of the O(as) correction to the antiquark distribution
function in a hadron,

(a ) 2 1 «
/h (qu ) = f dO‘ G— /g( »q ) Gg/h(o‘) _ (Bv-])

X q
This is the basic relation used in the absorption of mass
singularities by a redefinition of the parton distribution.
The approach consists in extending this relation to the case
of a quark instead of a hadron, namely,

beq(xa?) = [ du 67g(5:0%) Bg/qlana®)  (8.2)

X q/9 a

with all parton densities defined as in Chapter II. On the
basis of those definitions, the condition (B.2) is automati-

cally satisfied with respect to 0(1n2 qz/-pz) terms. For
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terms of 0(1n q2/—p2) and of 0(1) the equation (B.2) implies:

1 1

da X X - d
] Sa Dugg(Q) Pgqle) + PgQ) ugqla) T = [ Z2 Klxe)

Q

(B.3)

(a) (B.4)

= X
and uqq(x,a) qu(a) Ugq

where qu and qu are the well-known splitting functions.

The function K(x,a) is determined as follows: The cross

section for qg - qqv* can be written in the general form:

2
do 4mo 1
qq9 - em f dx ” . )
dq?  3sa? 1w Logyq (xem07) kg() * g q (x,-0%)
X K](%) +. (q.|<—+q2)] + KZ(T) (B.5)

Now <g and Kk, are known (see section 2-3). Furthermore,the

leading Togarithmic term of G is known exactly. There-

Q/Q1
fore, the only unknown in the coefficient of the non-leading
lTogarithmic term of the cross section doqq/dq2 is K{xsa).

Comparing expression (B.5) with perturbation calculationsof

the parton cross section (section 4-1), we obtain:

K(x,a) = Py (a) [2P  (3) (_1n(;z—2) < 1) + 6 X(1-X]

Y

+8CF]OL;OL

Qix

(-5 -2, P () 22 (5.6)
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Now, the non-leading logarithmic term in dgqq/dq2 is regula-
rization-prescription dependent, and a fortiori, so will it
be for ugq and uaq. However, in the process.of subtracting
the mass singularities to determine the correction terms, the
regularization-prescription dependence falls.

K(x,o0) also appears in leptoproduction for the O(QE)
qQy* > qqQq sdbprocess. It has been calculated in the Tlimit of
large x (x > 1) and has been found to be consistent with the
expression (B.6), taking into consideration that the calcula-
tion of K(x,a) was performed with the same regularization
procedure; this last result constitutes a check of equation
(B.6).

In order to find the solution of equation (B.3), for the
function u__, we invoke the convolution theorem for Mellin

qq
transform as stated in section 3-3. Then, taking the Mellin

th

transform (or the n moment) of the expression (B.3), we get:

qu(n) 5gq(n) + 5qg(n) Ggq(n) = k(n) (B.7)
where :
- 1 n-1 1
k(n) = [/ dx x [ do K(x,a) (B.8)
0 : X o

The function ugq(a) is then obtained by taking the inverse

Mellin transform of:

~ o N ~ -
Ugq(m) = ;;;?;; [k(n) - ugq(n) Pyo(n)] (B.9)
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Straightforward, but lengthy, calculations lead to a

uniquely specified function:

4
qu(a) = 2C¢ [-%az - at %a - Eilégl_ In o - Z%’{cos(eo1n o)
3 — sin(6,1n a) } ] (8.10)
- fga s1n(60 n o )

where 80= v7/2. The other function to be determined,-uaq, then

comes directly from substituting u in expression (B.4).

gq
As discussed in Chapter III, if we want the relation
between distribution and structure functions to remain valid,
it is necessary that this convention for.ugq and uah, generates
1ittle or no O(ai) correction to leptoproduction.
The function uah will affect the leptoproduction struc-
ture function F2 as follows: Direct perturbation calculations

of the graphs of figure [2.4] lead to the expression:

' 1
2\ _ _ 2 X
1 Fp,q0xa0) = f Ay 6g0(v,a7) Goly) + G0
(B.11)
where G— is given in section 2-2.

q/q
The non-logarithmic piece, CZ’ is of the form:

0Ls 2

1 :
Clx) = e (1) [ 2(x) = [ du ug,(x,0) ] (8.12)

X

where the function ¢(x) is the non-logarithmic piece of the

aforementioned perturbation calculations,and for large x (x=1):
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2
F e +2) (1-x) (B.13)

As explained in Chapter III, this 1imiting form obtained for
x > 1, is sufficient for our purpose. Then we get for C2,
for not too small x:

.7Tr2 ~ '
Cz(x) = eq CF (f—— - 2) (1-x). (B.14)

The correction to the hadronic structure function,.Fg q’

is then:

1 .
2 2 X
4 eq_ f Q_V qu/h(x’q ) Cz(y)

1R (x.9%) =
" Pn R (B.15)

X

To evaluate the magnitude of this correction, we use the

parton dfstributions parametrized by Owens and Reya(35). The
correction is found to be very small. For example, near x=0.6
and for q2 = - 10 Gevz, it represents a 2% change in the

structure function. The degree of accuracy to which the
structure function is actually known is of the order of 2%.
We may then conclude that the subprocess qy* - qqq leaves
leptoproduction practically unaffected with this convention,
which is required in order that the relations between distri-

bution and structure functions remain unaltered.
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FIGURES

FIGURE [2.1]

h(p) } X

Figure [2.1]. Lepton-hadron deep inelastic scattering: £ stands
for a‘charged lepton, yv* for a virtual photon of momentum q,

h for a hadron of momentum p, and X for any set of final hadrons.

FIGURE [2.2]

> qlq]

qlq]

Figure [2.2]. O(ag) subprocess contributing to leptoproduction

( qTq] denotes a quark[antiquark] ):
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€:

FIGURE [2.3]

c | ®

Y*(CI)

f—<—

Vv -k

> Vs
- 1/ /7
glpy) -~ ,

(c)
Figure [2.3]. Diagrams contributing to Teptoproduction to
order a- Figure [2;3a] shows the emission of a gluon in the
subprocess. In figure [2:35]; we find the diagrams considered
when we determined the correction to O(as) due to renormali-
e zati‘on.. Finally a contribution comes from diagrams with a

~gluon in the initial state; figure [2:30].
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FIGURE [2.4]

v*(q)

{ D« —

Y -k2

| |
I |
A A
I k] |

p = —> Ll 7

Figure [2.4]. Quark O(ai) diagrams contributing to leptopro-

duction.

FIGURE [2.5]

Figure [2.5]. Parton picture of dilepton production. i and j
represent partons coming out of hadron h1 and h2’ and doij is

the parton cross section of the subprocess.



FIGURE [2.6]

o

Figure [2.6]. Drell-Yan mechanism: O(dg) contribution to
dilepton production.
FIGURE [2.7]

A

N

7 alq1(p,)
(a)

q(pq) ,
—— AN Y*(q)

——— e >
a(p,)

(b)
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q(p,)

(c)

Figure [2.7]. O(as)diagrams that contribute to dilepton pro-
duction: Figure [2;7a;b and c] show respectively, the diagrams
with a gluon in the initial state; the diagrams with a gluon

in the final state and'fina11y; the diagrams from which arise

renormalization corrections, all contributing to order -

FIGURE [2.8]

v*(q)
qz(ﬁpz) (:‘{‘ .

- >
-k

Y

2
]

.
>

— — D . =

|
}
Ak
|
|

Y

Y

q;(py)

Figure [2.8]. O(ai) quark-quark diagrams contributing to

dilepton production.
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FIGURE [4.1]

(b)
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— —
— -

(c)

Figure'[4.1].v Unitarity diagrams contributing to dilepton
productionvdue to the qq » qqy* subprocess. The total contri-
bution can be divided in two categories: The "squared" dia-
grams (fiqure [4.7a] and those with q]++q2) and the "inter-
ference" dfégrams (figure [4:15] and those with q]++q2). In
the case of identical initial quarks, diagrams of the type of

figure [4.1c] must also be considered;
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FIGURE [4.2]

0.1 4

0.05 _

- —0.05_

Figure [4.2]. The functions CA(T) and CB(T). The calculation

includes all powers of (1-t) as shown in reference 15.
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FIGURE [4.3]

/
R(t,s)
1
" Vs = 6.5 GeV .
—1
10 |
T
—~1
10 |
—2
101
.2 .4 | .6 .8
I 1 . ] i

. .. oY= da89 240l Y I (A S Anly .
Figure [4.3]. The ratio R(T,s)_(dqpp/dq )/(dqpp/dq )DY’ Solid
lines correspond to equation (4.12), ~dash-dotted lines to
equatfonf(4;2]); dash-dot-dotted 1ines to equation (4.29) and
dashed lines to equation (4;32). A
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FIGURE [5.7]

100 f T ! T r T
| |
- , N
Vs = 27.4
y=0
10 — —
R+_, -
1 — —
M=9,5 GeV
/ . 5.5
0.1 | 'l i | |

[
¢ 4 &6 8 qT(GczV)

Figure [5.1]. The ratio R, is plotted for /s = 27.4, y = 0
and M = 5.5, 7.5 and 9.5 GeV. Solid lines correspond to the
convention for u of Chahter ITI, dashed lines to that of

- 499
reference 31 (Appendix B).
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FIGURE [A.1]

v*{(q) l JJ’FX
|
Y -k-l !
l
7 | AN
//Q(P-I) ' N
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Figure [A.1]. O(ds)_gy* + qq unitarity graphs contributing
to FL‘ Figure [A.la,b] correspond to the "squared" terms and

figure [A.1c,d], the "interference" terms.
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FIGURE [A.2]

C

—— e e | — e —

v*{(q)

o e — — o]

- mm— o c— -

L

— - —— | — - — -, —  e—

b e e . ]

71’“’. — — o oottt

(

-—— - D

) 9y* > qqq unitarity graphs contributing

2
s

0(a

Figure [A.2].

to



126
REFERENCES

1-M. Gell-Mann, Y. Ne'emann, The eightfold way,(W.A. Benjamin
Inc., Publisher, New York, 1964)
2-M. Gell-Mann, F. Low, Phys. Rev., 95, 1300 (1954)
E. Stueckelberg, A. Peterman, Helv. Phys. Acta., 25, 499 (1953)

3-K.G. Wilson, Phys. Rev., 179, 1499 (1969)
4-H. Georgi, Phys. Rev., D17, 3010 (1978)
5-V. Dokshister, D. D'yankonov, S. Troyan, Materials of the 13th
Winter School of the Leningrad Institute of NUclear Physics
(1978), SLAC Translation No 183 (unpublished); Phys. Lett.
798, 269 (1978)
6-G. Altarelli, R.K.vE11Ts, G. Martinelli, Nucl. Phys.,B143,
521 (1978)
7-G. A]tare]1i; R.K. E1lis, G. Martinelli, Nucl. Phys., B146,
544 (1978) |
8-J. Kubar-André, F.E. Paige, Phys. Rev., D19, 221 (1979)
9-J. Abad, B. Humpert, Phys. Lett., 78B, 627 (1978)
10-J. Abad, B. Humpert, Phys. Lett., 80B, 433 (1979)
17-A.P. Contogouris, J. Kripfganz, Phys. Rev., D19, 2207 (1979)
12-A.J. Buras, Rev. Mod. Phys., 52, 199 (1980)
13-W. Bardeen, A.J. Buras, D. Duke, T. Muta, Phys. Rev., D18,
3998 (1978) o

E. Floratos, D. Ross, C. Sachrajda, Nucl. Phys., B129, 66
(1977); B152, 493 (1978)

J. Kodaira, T. Uematsu, Nucl. Phys., B141, 497 (1978)



127

14-K. Harada, T. Kaneko, N. Sakai, Nucl. Phys., B155, 169 (1979)
15-A.P. Contogouris, J. Kripfganz, Phys. Rev., D20, 2295 (1979)
16-G. A1tafe11i, R.K. E117s, G; Martinelli, Nucl. Phys., §l§l,‘

| 461 (1979)

17-S.D. Drell, T.M. Yan, Phys. Rev. Lett., 25, 316 (1970}

18-S.D. Drell, T.M. Yan, Am. Phys. (N.Y.), 66, 578 (1971)

19-J.D. Bjorken, S;D; Drell, Relativistic Quantum Mechanics
(McGraw-Hi11, New York, 1965)

20-R.K. E11is, H. Georgi, M; Machacek, H;D. Politzer, G.G. Ross,
Phys. Lett., 788 (1978); Nucl. Phys., B152, 285 (1979)

21-A.H. Mueller, Phys. Rev., D9, 963 (1974); Phys. Rev., D18,
3705 (1978)

22-D. Amati, R. Petronzio; G: Veneziano, Nucl. Phys., B140,(1978)
B146, 29 (1978)

23-1. Antoniadis. L. Beau]ieu; C. Kounas, A proof of factoriza-
tion of the mass singularities in the Bjorken limit, (preprint)
LPTENS 79/28

24-3.D. Bjorken, Phys. Rev., 179, 1547 (1969)

25-R.P. Feynman, Phys: Rev; Lett;; gg, 1415 (1969)

26-G. Altarelli, G. Parisi, Nucl. Phys., B126,.298 (1977)

27-C. Llewellyn-Smith, Acta Phys. Austriaca Suppl., 19, 331 (1978);
Phys. Lett., 79B, 83 (1978)

28-G. Altarelli, G. Martinelli, Phys. Lett., 76B, 1, 89 (1978)
29-5. Treiman, F. Wilczek, A. Zee, Phys. Rey., D10, 2881 (1974)
30-A.N. Schellekens, W.L. Van Neerven, Phys. Rev., D21, 2619 (1980)
31—A;P. Contogouris, L; Mar]eau; Phys. Rev., ggg, 1162 (1980)



128

32-V.V. Sudakov, Zh. Eksp. Teor. Fiz., 30, 87 (1956) (Sov.

Phys. JETP, 2, 65 (1956))

33-3. Abad, B. Humpert, Phys. Lett., 80B, 286 (1979)

34-A.N. Schellekens, W.L. Van Neerven, Phys. Rev., D22, 1623 (1980)
35-J.F. Owens,E. Reya, Phys. Rev., D17, 3003 (1978)

36-6.R. Farrar, Nucl. Phys., B77, 429 (1974)

37-3.F. Gunion, Phys. Rev., D10, 242 (1974)

38-A.J. Buras, K.J.F; Gaemers, Nuc1: Phys;;'glgg, 249 (1978)

39-G. Parisi, R. Petronzio, Nucl. Phys., B154, 427 (1979)

40-C. Lo, J. Sullivan, Phys. Lett., 86B, 327 (1979)

41-K. Kajantie, R. Raitio, Nucl. Phys., B139, 72 (1978)

42-H. -Fritzsh, D. Minkowski, Phys. Lett., 69B, 316 (1977)

43-F. Halzen, D. Scott, Phys. Lett., 40, 1117 (1978); Phys.

Rev., D18, 3378 (1978)

44-G. Altarelli, G. Parisi, R. Petronzio, Phys. Lett., 76B,

351 and 356 (1978) |

45-C. Michael, T. Weiler, Phenomenology of Quantum Chfomodynamics,
Proceedings of the XIII Rencontre de Moriond (1978) edited by

Tr8n Thanh V&n, Editions Frontiéres; Gif-sur-Yvette (1978) pp.179
46-1. Hinchliffe, C. Llewellyn-Smith, Nucl. Phys., B128, 93 (1977)
47-A.P. Contogouris, S. Papadopoulos, C. Papavassiliou, Nucl. Phys.,
(in press)

48-A.P. Contogouris, J. Kripfganz, L. Marleau, S. Papadopoulos,
McGill preprint, Presented at the XV Rencontre de Moriond, Les
Arcs-Savoie, 8-15 March 1980

49-A;P; Contogouris, R. Gaskell, L; Marleau, Phys. Rev., D22,
1109 (1980)









