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Abstract

In this thesis we focus on the "Kantorovich Inequality™:

rAt- A < (A + )2
)2 = d\A,

where ¢ is a real n x 1 vector and 4 is a real n X n symmetric positive definite
matrix. with A} and A,. respectively, its (fixed) largest and smallest, necessarily
positive, eigenvalues. We begin the thesis with five different proofs of the Kan-
torovich Inequality and continue by showing that it is equivalent to five closely
related inequalities due, respectively, to Schweitzer (1914), Pdélya-Szegd (1925).
Krasnosel'skil-Krein (1952), Cassels (1955) and Greub-Rheinboldt (1959). We also
examine several related inequalities which admit the Kantorovich Inequality as a
special case, including the Bloomfield-Watson-Knott Inequality, for which we give
a proof based on that presented by Bloomfield and Watson (1975). We also show
that there appears to be a lacuna in the “brief proof” given by Yang (1990). Some
statistical applications conclude the thesis with special emphasis on the efficiency of
the Ordinary Least Squares Estimator in the Gauss-Markov linear statistical model.



Résumé

Dans ce mémoire nous nous intéressons a “l'inégalité de Kantorovitch™:

ALt A~ <t An)?
@2 = 4N,

ol ¢ est un vecteur réel n x 1 et 4 une matrive n X n symétrique définie positive a
coefficients réels, avec A; et A, désignant respectivement la plus grande et la plus
petite valeur propre de 4, fixées. Nous commengons par donner cinq différentes
preuves de l'inégalité de Kantorovitch pour ensuite établir qu’elle est équivalente &
cinq autres inegalités respectivement dues a Schweitzer (1914), Pélya-Szegd (1925),
Krasnosel'skil-Krein (1952), Cassels (1955) et Greub-Rheinboldt (1959), qui lui
sont étroitement liées. Nous examinous également différentes inégalités relatives
qui admettent celle de Kantorovitch comme cas particulier. Cela inclut l'inégalité
Bloomfield-Watson-Knott dont nous donnons une preuve basée sur celle de Bloom-
field et Watson (1975). Il nous apparait aussi qu'il y a une lacure dans la “courte
preuve” de Yang (1990). Nous concluons ce mémoire par quelques applications
statistiques. Un accent particulier est mis sur l'estimateur des moindres carrés

dans le modeéle linéaire de Gauss-Markov.
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Introduction

Our main focus in this thesis s on the Kantorovich lnequality

(A + 0,7

AT <
= TN,

(.1

where ¢ is a real n x | vector and A is a real n X symmetric positive delinite matrix,
with A, and A,. respectively, its (fixed) largest and smallest, necessarily positive,
cigenvalues. The inequality (0.1) is named after the Nobel Laureate and Academi-
cian Leonid Vital'evich Kantorovich (1912 1986) for the inequadity he established
in 1948 ([72]. pp. 142-144: cf. also [73]. pp. 106 -107).

Another way of expressing (0.1} is in the “normalized reduced ™ form:

L R I ST W L
AL YRS TN 0.2
g ' ?::1,\.- T VS W (0.2)

with %, zF =1
As far as we know, the first inequality of the type (0.2) to be published is the
following inequality established in 1914 by Pal Schweitzer [145):

M) -
1 +l) < (m+ M) . 0.3)
n

1 1
ST+ e+ tr) =+ +
*n"f('xl + T * )(;r:; + Ta dmM

where the real positive numbers z),...,z, satisfy 0 < m <, < M (i =1,...,n).
The “Schweitzer Inequality” (0.3) is a special case of (0.2) with A\, = z,, 22 = 1/n,
Ar=M and A\, =m.

In 1925 George Pélya and Gabor Szegé ([133],{134]) skowed that

(@+ait @)+ +E) _(ab+ ABY
(a1 +agby + + -+ + anbn)? T 4abAB

(0.4)

where

0<a<a; <4 0<bsh<B (i=1,...,n).



The only related work published before 1948 appears to be by Jozsef Kiirschak
who in 1914 posed the following problem in [82]: Prove that

I ) dz fF gz(I)_.dx < lab+ AB)? (0.5)
[/ fz)g(z) dz] T~ dabAB
where f(z) and g(z) are continuous functions in the interval (¢, d) with 0 < a <
f(z) £ Aand 0 < b < g(z) < B. We observe that (0.5) is a continuous version of
Pélya-Szegd Inequality (1925), but witha =b (=m) and 4 = B (= M).

In Chapter 1 we present five different proofs of the Kantorovich Inequality. The
original proof by Kantorovich (1948) is followed by proofs by Anderson (1971) [6],
Styan (1983) [152] and Biihler (1987) [23]. We end with the very recently published
proof by Ptdk (1995) [133}.

In Chapter 2 we consider in detail five “named” inequalities. In addition to:the
Schweitzer Inequality [145] and the Pélya-Szegd Inequality ([133], [134]), we also
consider the Krasnosel'skii-Krein Inequality [80], the Cassels Inequality [28] and
the Greub-Rheinboldt Inequality [60]. We show that these five inequalities are all
equivalent to the Kantorovich Inequality, extending results by Watson in [169].

In Chapter 3 we present several inequalities which are related to the Kantorovich
Inequality and several which admit the Kantorovich Inequality as a special case.
We concentrate on the following papers: Wielandt (1953), Newman (1959), Strang
(1960), Bauer (1961), Marcus and Khan (1961), Cargo and Shisha (1962), Diaz and
Metcalf (1963), Marcus and Cayford (1963), Marshall and Olkin (1964), Fan (1966)
and Shisha and Mond (1967).

In Chapter 4 we present a proof of the Bloomﬁeld-Watson—Knott Inequality

e 2 [ Diduciss
IXPAXT 1X A7 = i O+ Ani)?
where Ay > -+ > A, are the, necessarily positive, eigenvalues of posiﬁve definite
matrix 4, X is the n x k& matrix of rank &k and nAz 2k. We follow the proof
given by Bloomfield and Watson [21] with a modification due to Drury [47]. We
also discuss the “brief proof” of the Bloomfield-Watson-Knott Inequality given in
1990 by Hu Yang [177] and find that there appears to be a lacuna in his proof. We

2



end this chapter by presenting various extensions of the Bloomfield-Watson-Knott
Inequality due to Khatri and Rao (1981) [76] and Wang and Shao (1992) [161]. as
well as some related matsix inequalities published quite recently by Liu (1995) [$8].
Liu and Neudecker (1996) [93]. and Pegari¢, Puntanen and Styan (1996) [131].

In Chapter 5 we present a variety of statistical applications of the Kantorovich
Inequality and the Bloomfield-¥Watson-Knott Inequality. We concentrate on these
four papers: Magness and McGuire (1961), Venables (1976), Cressie (1980) and
Wang and Shao (1992).

We continue with three Appendices featuring translations into English of the
1914 paper in Hungarian by Schweitzer [145] and two interesting papers in Chinese
by Lin [85] and Chen (1987) [32]. We end the thesis with an extensive bibliography
of about 200 publications related to the Kantorovich Inequality. References to
reviews in Jehrbuch tber die Fortschritte der Mathematik, Mathematical Reviews,
and Zentralblatt fir Mathematik und thre Grenzgebiete, are given with codes JI'M,
MR and Zbl, respectively. )

L)

.

e



Chapter 1

The Kantorovich Inequality

1.1 The Kantorovich Inequality (1948)

Our main focus in this thesis is on the so-called “Kantorovich Inequality™:

PAL- A~ (A + M)?
< ) 11
2 = 4 (1)

where t is a real n x 1 vector and A is a real n X n symmetric positive definite
matrix, with A; and A,, respectively, its (fixed) largest and smallest, necessarily
positive, eigenvalues.

Throughout this thesis we will assume that all vectors and matrices are real, and
that a positive definite matrix is symmetric; we will also assume that A\; > A, > 0
and usually that both A, and A, are known. If A, = A,, then the matrix 4 becomes
a multiple of the identity matrix and all our inequalities become equalities; if A
and )\, are not known but we know that 0 < m < A, < A; < M then we can replace
A: and A, in the upper bound in (1.1) by M and m, respectively, since then

(M + )2 < (m + M)?

Dide = 4mM (1-2)
cf. (1.11) below.
The “complementary” or “reversal” inequality:
AL- ¢ At
T )

4



is a version of the well-known “Cauchyv-Schwarz Inequality™:

(x'y)* S 'z -y'y. (14)

where z and y are n x 1 (nonnull) vectors. Some further details on the Cauchy-
Schwarz Inequality are given at the end of this section. [The term “complementary™
in this context appears to be due to Diaz and Metcalf (1964) [40] and “reversal” to
Marshall and Olkin (1964) [105}].]

Another way of expressing the Kantorovich Incquality (1.1} is in the “reduced”
form:

ThoAU TR AT (A + AP
< . 1.5
ST 19
which may be “normalized” by setting =7 = u?/ T, u} so that
(Al + ’\n)
ZAt*': ; A ~! — 4A14\ ] | (1-6)

with %, 22 = 1. We will refer to (1.6) as the “normalized reduced” Kantorovich
Inequality.

To see that the left-hand side of (1.1) equals the left-hand side in (1.5) we note
that since the matrix A is real and symmetric it may be orthogonally diagonalized:
A = PAP, say, where A = diag{\1,..., A} and P is orthogonal; and we then
write Pt = u = {u;}.

When the vector ¢ in the Kantorovich Inequality (1.1) is normalized with t't =1
then (1.1) becomes the “normalized” (unreduced) Kantorovich Inequality:

(Al + f\n)z

! A=l <
fAL- A" < Do, (1.7)
The upper bound in the Kantorovich Inequality (1.1),
(A1+/\.,)2=A1+z\,1')\1"+,\;‘=(%(4\1+z\.,) ? 18)
4 2 2 Vad, ) '

is the square of the ratio of the arithmetic mean to the geometric mean of the largest

and smallest eigenvalues of the matrix A. We may also express (1.8) as

5



A +2a)? 1 1 1\ (k+1)
T z(\/_ \/,\_) 1( ‘ﬁ)- w49

& = cond(A4) = -:\\—1 (1.10)

n

where

is the so-called “condition number® of 4 and so 1 < k¥ < o0. We note that the

upper bound (1.8) = (1.9) is nondecreasing in &, cf. (1.2} above, i.e.,

(ky +1)2 < (K2 +1)*
4K, - 4!\.2

whenever x| < ks, (1.11)

The Kantorovich Inequality® is named after the Nobel Laureate and Academi-
cian Leonid Vital’evich Kantorovich (1912-1986) for the inequality he established
in 1948 ([72], pp. 142-144; <f. also [73], pp. 106-107) in a long survey article
in Russian on functional analysis and applied mathematics. For a biography of
Kantorovich see the paper [200] by Makarov and Sobolev (1990). The Kantorovich
Inequality is well known, cf. e.g., Horn and Johnson ([69], pp. 444-445), Marcus
and Minc ([104], pp. 110 & 117), and is useful in estimating convergence rate in
descent methods in numerical analysis, ¢f. e.g., Borowski and Borwein ([22], page
319). Our interest in the Kantorovich Inequality, however, comes from statistics,
where it may be used to identify a lower bound for the efficiency of the (ordinary)
least squares estimator of a single parameter in the general linear (statistical) model,
of. e.g., Watson (1955) [165], Magness and McGuire (1961) [97], Golub (1963) [59),
Hannan (1970) [64], and Puntanen (1987) [136]. Indeed this thesis was motivated
by papers presented at the Fourth International Workshop on Matrix Methods for
Statistics (Montréal, July 1995) by Shuangzhe Liu and Heinz Neudecker [92] and
by Geoffrey S. Watson [169] (and the associated discussion). See also the recent

1 Note added in proof. I am very grateful to Josip E. Petari¢ for drawing my attention to the
paper [50} by Roberto W. Frucht (1943} in which the “Kantorovich Inequality” (1.5) is established
explicitly, five years before Kautorovich (1948) [72]. In this same paper [50] the continuous version
of (1.5) is also established (by Beppo Levi [83]). For biographies of Roberto W. Frucht see [198)
by Frank Harary and [197] by Carlos Gonzalez de la Fuente and for biographies of Beppo Levi
(1875-1961) see [201] by Norbert Schappacher and René Schoof and [196] by Salvatore Coen.

6



Ph.D. thesis by Shuangzhe Liu [89] and the papers by Alpargu and Styan ([1]. {2].
{3} and [4]).

According to Pecari¢ and Mond ([129]. page 384) the “Kantorovich Inequality”
is originally due to Charles Hermite (1822-1901). but no reference is given®. The
earliest form of (1.1) per se that we have found in the literature is in [60] by Greub
and Rheinboldt (1959); cf. also {131] by Strang (1960).

Equality holds in the Kantorovich Inequality (1.1) when

t= %(m tpa). (1.12)

where p; and p, are orthonormal eigenvectors of A corresponding, respectively,
to Ay and \,. When A, and A, both bave multiplicity 1 then this condition is

also necessary. When A, and A, however, have multiplicities f > 1 and 2 > 1,

respectively, so that say

AM=-=2>A1 2 2 ch > Apepgt == Ay (1.13)
then for equality in (1.1) we need

1
V2

where P, and P, are matrices, respectivel7 n x f and n x A, with columns being

(Pya; = P,a,),

orthonormal eigenvectors of A correspondirg, respectively, to A, and A,. The vectors
a; and a, are arbitrary except that a\e; = aj,a, = 1.

Equality holds in the “normalized reduced” version (1.6) of the Kantorovich
Inequality whenever

Z=22=31 and zn=--=2,,=0; (1.14)

when }; and A, both have multiplicity 1 then this condition is also necessary. When
)\; and A,, however, have multiplicities f > 1 and & > 1, respectively, as in (1.13),
then for equality in (1.6) we need

2 Note added in proof. Frucht (1943) [50] established the reduced form (1.5), while Kantorovich
(1948) [72] proved the normalized reduced form (1.6). '

7



Zpp1 = =2, =0 and zf+---+z§=%=:;':_,,+;+---+:;.

(1.13}
A continuous normalized version of the Kantorovich Ineguality is
d o d 1 (m + M)?
2 = < At )
[ 1@ @ [ e < S (1.16)

where f(z), 1/f(z) and g(z) are integrable functions on [c,d] with 0 < m < f(z) £
M and 2 g*(z)dx = 1, cf. Bitinetu-Giurgiu (1994) [13] [Mitrinovi¢ (1970) ({110),
p- 60) observes that (1.16) is “known” but does not present it explicitly].

The inequality, cf. (1.4) above:

(z'y)* < 2’z - y'y, (1.17)

is a vector version of the well-known Cauchy-Schwarz [or Buniakovski] inequality,
cf. eg., Borowski and Borwein ([22], page 73), Mitrinovi¢ ([110], pp. 30-32).
The inequality (1.17) is named after [Baron] Augustin-Louis Cauchy (1789-1857)
and Hermann Amandus Schwarz (1843-1921) jand Viktor Jakovlevich Buniakovski
(1804-1899)], <E. ([22], pp. 62, T1 & 524).

Equality holds in (1.17) if and only if x and y are linearly dependent, i.e.,

(ry)=2z-vy =z xy.

- Let ¢t be an n x 1 vector, and let 4 be an n x n positive definite matrix so that

there exists an n X n nonsingular matrix F so that

A=FF', (1.18)

Substituting z = F't and y = F~!t in (1.17), gives the following matrix version of
the Cauchy-Schwarz Inequality, cf. (1.3):

tAt- fA'lf
1< @R (1.19)

Equality holds in (1.19) if and only if At x ¢, i.e., ¢ is an eigenvector of A.



1.2 Five Proofs of the Kantorovich Inequality

In this section we present five different proofs of the Kantorovich Inequality. be-
ginning with the original proof by Kantorovich (1948). Our next three proofs are
due to Anderson (1971) [6]. Styvan (1983) [152] and Biihler (1987) {23]. We end
this section (and chapter) with the very recently published proof by Ptik (1995}
[135]. There are many other proofs (see the extensive bibliography at the end of
this thesis), including the proof by Chen (1987) [32] (translated from the Chinese
as Appendix C in this thesis) and the interesting proof using linear programming

by Raghavachari (1986) [138]; see also Schopf (1960) [144].

1.2.1 Kantorovich (1948)
Kantorovich (1948} (cf. pp. 142-144 in [72] and pp. 106-107 in [73]) established
the “normalized reduced form™ of the Kantorovich Inequality, cf. (1.6},

= S ’\izt'- . E _3,2 < —_ 1.20
d i=1 oA 4A1 Ay (1.20)

where T, z? = 1, using the method of Lagrange multipliers.

We assume, without loss of generality, that the A; are distinct a.ﬁd SOA > D>
An > 0. We equate to zero the derivatives, with respect to z; (i = 1,...,n), of the
function

F=f—a(_iz?—1),

i=1

where o is a Lagrange multipler. Writing f = o - &, where 6 = ¥, \;z2 and

& =30, A7 22, we obtain

¥

_=2(a%z,-+c‘r,\iz;—azi) =0 (i=1,...,n),

and so

z{o+8) —a)\) =0, (i=1,...,n). (1.21)




The second factor in (1.21) is a polynumial of the second degree in A; and so at
most two distinct values of A, can make this factor zero. Hence at most two values

2 and z;, say, of z; are non-zero. In this event

f o= (Azf+N2) ( % + 1

_ P, /\, ( ,,.,_1 /,\_k ,\, (
v e WY
1 (V N TV )

(1.22

IA

) s
= (’\;; ;\\“), (1.24)

cf. (1.2), (1.9) and (1.11), and thus (1.20} follows. ‘On page 143 of {72] and on page

107 of [73] the factor
2
[N
M Ak

in (1.22) is given with a + sign rather than the correct minus sign.] o

1.2.2 Anderson (1971)

QOur favourite proof of the Kantorovich Inequality may be the following simple
probabilistic proof given in 1971 by T. W. Anderson ([6], Lemma 10.2.5, p. 569),
see also Bithler [23] and Watson [168].

We may write the product f in (1.20) as

- 1
f= Z Aiz? E —,Z? =E(T)E (T) . (1.25)

the product of the expected value of a random variable T and the expected value
of its reciprocal 1/T, where T assumes the values A; € [m, M] with probabilities
=2 (i=1,...,n); 0<m<M <co.

10 ~



ForOo<m<T <M.

0<(M~TWT = m) = (M +m-T)T — mAl. (1.26)
which implies
1 m+M-T
e X ——— -)';'
T= mM (1.2
and so
1 m+ M - E(T)
. -} < ;
Bn-e(z) < BB
(m+M)? 1 \ »
dmM  mM [B(T) = 3(m + M)]
(m + M)?
< —2 25
= T (1.28)
and our proof is complete. (m]

1.2.3 Styan (1983)

Styan (1983) [152], cf. also [1], proved the Kantorovich Inequality using the follow-
ing inequality due to Marshall-Olkin (1964) [105]:

MA-ZATIZ < A + A, = 2'A2, (1.29)

where z’z = 1 and A = diag{A,,..., A}, with Ay > --- > A,
The (normalized reduced) “Marshall-Olkin Inequality” (1.29), f. also (3.46) in
Chapter 3, follows directly from

M+A=ZAz =M -ZA72 = Z(diag{h + A= X = XAz

2 (diag{(M — M)A — An)/Ai})z
0

v

Since/\leiZI\u>0.

11




We may then prove the “normalized reduced” Kantorovich Inequality (1.20) as

follows:

M (A ('A12) FAz(MAa - TATY)

A

FAz(A + A - AR

FAz(A + Ag) - (FA2)?

L+ 20 = (A2 = H00 + M)
< 1+ (1.30)

"
-

cf. (1.28) and (3.43) in Chapter 3, and so (1.20) is established. o

1.2.4 Biihler (1987)

The simple probabilistic proof given in 1987 by Wolfgang J. Biihler [23], cf. also [1],

starts, as with the proof by Anderson [6] that we presented in Section 1.2.2, with
n - n 1 o
f=3 XY 14 = EOEQ/T), (1.31)
i=1 i=1 M

the pr6duct of the expected value of a random variable T and the expected value
of its reciprocal 1/T, where T assumes the values \; € [m, M] with probabilities
pi=z{i=1,...,n); 0<m <M< 0.

From the Cauchy-Schwarz or correlation coefficient inequality:

E(T -1/T) - E(T)E(1/T) _

-1< corr(7T,1/T)
Var(T)Var(1/T)
it follows that
E(T)E(1/T) < 1 ++/Var(T)Var(1/T). (1.32)
However
Var(T) = Va (T - M ) = Var(®),
say. Since



O<m<T< M

we have
JI - - M=
_ ) m <U=T-_ Y +m < W —m
2 2 2
and so
. M —m\?
U < ( . ) : (1.33)
Hence

Var(T) = Var(U) = E(U?) - [(E(U)]} < E(U?) < (‘” - "‘)2. (1.34)

Similarly, we have

- 1/1  1\?

Combining (1.34) and (1.33) with (1.32) yields

r=smBa/m <1y () (L - LY = o

which proves the Kantorovich Inequality

n n

- P 1 (‘m + 1111)2
fF=> Az ) =< —u", (1.36)
,.é; § A 4mM

Equality occurs in (1.36) if and only if equality occurs in both (1.34) and (1.35),
and this happens if and only if

E(U) =0 and U2=(M_’")2,

9

ie, T=m=A,and T = M = X, each with probability 1/2. When the eigenvalues
Ay and A, are both simple, i.e., with multiplicity 1, then this translates into our
earlier conditions for equality in the Kantorovich Inequality:

22=22=

(] o

and zp=---=2,1 =0. (1.37)

13



When the eigenvalues A, and A, have multiplicities f > 1 and # > 1. respec-

tively, so that

A =---=/\f>)\!.-,.; Z"‘zf\n-h>’\n—h+l="'=An

then for equality in (1.36) we need. cf. (1.15),

2 -t — —_—
I+ ==z =0 and bt -r'---é-...f—-.

[0 L
|

[

A

L
x
-+
+
st

1.2.5 Ptak (1995)

As we observed in §1.1. cf. (1.6) and (1.8), the normalized reduced Kantorovich

Inequality may be stated as follows:

(1.38)

where 3" 22 =1 and

—p=] "1

a= %(.\; +Ax) and g=\/\ A,
are. respectively, the arithmetic and geometric means of A; and A,. Since (1.38)
is invariant with respect to replacing each J\; with a positive multiple ¢A;, we may

assume that ¢ = 1 or, equivalently, that A, = 1/A,;. It then follows that

S <M+ — (=1....
A+ n _r\1+,\l (z . n},
and so
= 1 n LI
sz,z;-' $12 < 3 (ErdEad)
i=1 =] "'t = =1
1 = A 1 2
= 3 i+—)“‘
-Igl( 4\, it |
< %‘(1\1'!'-1—)2"'-2
- ’\1 =1
1 a
= %(A1+A_I)=%(A1+An)=a=§,
and (1.38) follows at once. O

14



Chapter 2

Five Inequalities Related to
the Kantorovich Inequality:
1914-1959

In this chapter we consider the following five “named” inequalities:
e §2.1 The Schweitzer Inequality (1914)
o $2.2 The Polya-Szego Inequality {1925)
e §2.3 The Cassels Inequality (1951/1955)
e §2.4 The Krasnosel'skil-Krein Inequality (1952)/ Householder (1964)
e 825 The Greub-Rheinboldt Inequality (1959),

which were published in 1914-1959. As we will show in §2.6 these five inequalities

are all equivalent to the Kantorovich Inequality.

2.1 The Schweitzer Inequality (1914)

As far as we know, the first inequality of the type (1.5} to be published was in 1914
by Pal Schweitzer [145]. [Schweitzer’s original paper [145] was published in Hun-

garian; we present an English translation as Appendix A of this thesis.| Schweitzer

15



(1914) considered real positive numbers

Lyyeoeydn} 0<m53&'$-’w (i=1r“'sn)7

and showed that

1 171 1 11 (m + M)*
n(ml.i....-i-xn)';(z—l‘*‘""l'x_n) "'(m'*"{{) E(E-}-M) AmM )
(2.1)

o] =

The “Schweitzer Inequality” (2.1) is a special case of the reduced Kantorovich
Inequality (1.5) with A; = z;, uf = 1, Ay = M and A, = m. And so we may consider
the reduced Kantorovich Inequality as being a “weighted” version of the Schweitzer
Inequality. An interesting proof of the Schweitzer Inequality using majorization is
given by Marshall and Olkin ([105], p. 71).

It was shown in 1961 by Peter Henrici in [68] that surprisingly the Schweitzer
Inequality (2.1) also implies the Kantorovich Inequality (1.5). For details see §2.6.1.

The complementary inequality

1< %(zl+---+zn)-% (zi:++?1n') .
which follows at once from the Cauchy-Schwarz Inequality (1.4), is the well-known
arithmetic-harmonic mean inequality, cf. e.g., Mitrinovié ([110], pp. 206-207).

From the conditions for equality in the Kantorovich Inequality (1.1) we see that
equality can hold in the Schweitzer Inequality (2.1) only if n is even and then if and
only if

gy=--=za=m and zTay =---=z,=M. (2.2)

In 1972 Alexandru Lupag [96] gave the following version of the Schweitzer In-
equality, which is stronger than the original Schweitzer Inequality (2.1) when = is
odd (and identical to (2.1) when n is even):

ek s (e ) (e ). oo

1—1 -
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where [.] denotes the integral part. Equality is attained in (2.3) when the smallest
[n/2] of the numbers z;,....z, are equal to m and the [n/2] largest are equal to
M, and when n is odd the “middle” x; is equal to either m or M.

To prove (2.3) we follow Lupag [96] by using a result in [20] by Biernacki. Pidek
and Ryll-Nardzewski (1950) [cf. Mitrinovié ({110], p. 205, §3.3.26)], who showed
that if the real numbers a;,...,a,.01,...,b, satisfy m; < ¢; < M}, ma £ 6; <
M (i=1,...,n), then

Y~ =30 YO b < (my = My)(me — MaYu(a), (24)
i=1 i=1

i=l

where

nf4 for n cven,
wln) =

(n® - 1)/4n for n odd.
Hweseta; =2; >0, b =1/z;, My =M, my =m, My =1/m, ma=1/M, we
then obtain from (2.4) that

1 n L | (m + 1‘/1)2

- it ST y
n? ;x ;=Zl  — 4mM hin)

where

0 for n even,
h(n) =

(M - m)?/(dmMn?) for n odd.

An easy computation shows that

ot == s ([5] 0+ 257 m) (557 o+ 2l )

a
In the same paper [96] Lupag stated (without proof) that the normalized reduced
Kantorovich Inequality (1.6) could be improved to:

17



n, &l 1 ([n n+ 1 n+1 n
P _72<_.-.._ — | A 4= A4 -—
2 255 S e ([2]‘”‘[ 2 ]m) ([ 2 ]‘u*'[-z]m)’

=

where 22 >0 (=1, ...,n) and 3%, z2 = 1. The inequality (2.5) reduces to the
Kantorovich Inequality when n is even; it is, however, only valid for n odd when
all the 22 > 0 (i = 1,...,n), and we allow the J; to vary (unless there are only two
distinct values of the A; with multiplicities [n/2] and [n/2] +1 respectively).

Also in {145) Schweitzer (1914) established a continuous analogue of (2.1). Let
f(z) and 1/f(x) be integralle functions on [¢,d] with 0 < m < f{z) < M on [c.d]-
Then

1 (m + M)?
d—c s " dmM
A quick proof of (2.6) was given in 1963 by Rennie [140] [for Schweitzer’s original

d
[ 1@)dz (26)

proof see Appendix Al: Integrating the inequality (f —m)(f — M)/f < 0 from ¢ to
d gives
d d 1 o
jc F(@)dz + mM / Fyde S [@= -+ M), (2.7)

Multiplying (2.7) by u = mM [?1/f(z) dz gives

uf “faydr < (d—c)(m+ M)u~
- (3@-m+M)—u) + (Ld = )m+ M)’
< Hd-c)}(m+ M),

which establishes (2.6). o

In 1961 E. Makai in [99] (cf. Mitrinovi¢ ([110], pp. 60-61) showed (details in
§2.6.2 below) that the continuous Schweitzer inequality (2.6) implies the (discrete)
Kantorovich Inequality (1.1).

2.2 The Pdlya-Szego Inequality (1925)

In 1925 George Pélya and Gébor Szegd, in the First Edition of Volume I (cf. [133],
[134]) of their well-known book: Aufgaben und Lehrsatze aus der Analysis~Problems

18



and Theorems in Analysis, showed that

e 0F T B < (ab + AB)* "
(T ab)? —  dabdB :

(£
o
p—

where

0<a<a 4 0<bsbh;<B (i=1....,n).

If we put ¢f = z; and I = 1/x;. with @* = m, A2 = M, = 1/M and B* = 1/m. in
the “Pélya-Szegd Inequality™ (2.8) then it becomes the Schweitzer Inequality (2.1).
As we will observe at the end of §2.6.1, the Schweitzer Inequality (2.1) implies
the Kantorovich Inequality, which in turns implies the Pélya-Szego lucquality (2.8)
since if we put 4} = a;b; and \; = a;/b; in (1.5) then (1.5) becomes (2.8).

Equality holds in the Pdlya-Szegd Incquality (2.8) if and only if

Wy ey
PERT/\e ) M ITE/\TT e

are positive integers and if p of the numbers ay, ..., a, are cqual to a and ¢ of these
numbers are equal to 4, and if the corresponding numbers b; are equal to B and §
respectively.

A coutinuous version of (2.8), given in 1925 by Pélya-Szegd ([134], pp. 71-72,
254), is

[ f(e)de Ji (@) dx _ (ab+ ABY
[ f@)oa)da]® T 4abAB

) (2.9)

where f(z) and g(z) are continuous functions in the interval [c,d] with 0 < a <
fiz) £ Aand0<b<g(z) £B.
The special case of (2.9) with a = b and A = B:

[ (=) do [ Pa) dz _ (o + A7)
[ rae@a] — 4°H

(2.10)

was posed as a “Problem” in 1914 by Jézsef Kiirschak {1864~1933) [82] (in the same

journal and volume as Schweitzer [145] but just over a hundred pages later!). [As far
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as we know there was no published solution per se to Kiirschak’s problem (2.10).]
We have found no other similar inequalities published before 1948; an extensive

bibliography is given at the end of this thesis.

2.3 The Cassels Inequality (1951/1955)

John William Scott Cassels (1922-...) [28] established: the following inequality as
the Appendix in the Ph.D. thesis [163] by Watson (1951), see also [164] and [165]:

n o atw. R b, Ny b33
S ity -
where a; > 0, b; > 0 and w; > 0 (i = 1,...,n). By substituting
m= miin‘—;'j and M= max %:- (2.12)
the “Cassels Inequality” (2.11) becomes
g - Tk Bwi _ (m+ M)? (2.13)

(Eh,abw)? — 4amM
cf. {3.2) in [165).

The Cassels Inequality (2.13) is, however, the same as the Krasnosel'skii-Krein
Inequality (2.22), as observed by Styan [153]. To see this, we substitute a; =
bidi, BPw; = u?, m = min\; = mina;/b; = A, and M = max); = maxa;/h; = A
in (2.13), which then becomes (2.22). _

If we put the weights w; =1 in (2.11) then we obtain the “unweighted” Cassels
Inequality:

2?:1 alg ) Z?:l b"l < (m + M)2
Crob) ~ amM

(2.14)

which is slightly stronger than the Pélya-Szegd Inequality (2.8):

!Watson [170} observed in 1950 that he asked “Henry Daniels who asked Cassels as they were
putting on their gowns before lecturing for a reverse of the Cauchy-Schwarz Inequality; he just
worked it out overnight”. See Watson (1951) [163], (1952) [164], and %1955) [165].
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3
2?:[ a;'. -

91N
(L, ab)? — dabAB (2.15)
since, in general,
(m+ M) _ (ab+ AB)*
< 9
dmM 4abAB (2.16)
where, cf. (1.2),
. a; _ ming; a a;  maxe; A
=min = > == [ = max —= = 217
m = min 5 2 maxh - B amd M = max 5 < b = b (2.17)
Equality holds in (2.16) if and only if equality holds throughout (2.17).
To establish (2.16) we rewrite it as, cf. (1.2),
1+z) _ (Q+y)*
< 2.
dz — 4y (2.18)
where
M AB
r=— and y=—.
m ab

Since z £ y, cf. (2.17), the inequality (2.16} follows, ¢f. (1.2) and (1.11) in Chapter

1, as does the characterization for equality.

2.4 The Krasnosel’skil-Krein Inequality (1952)/
Householder (1964)

In 1952 Mark Aleksandrovich Krasnosel'skii (1920-...) and Selim Griogor’evich
Kreln in [80] showed that

A% -t < (M1 + Ap)?
(TAL)Z = dnA,

(2.19)

where as above A; and A, are the largest and smallest (fixed) eigenvalues of the
positive definite matrix A and ¢ is an n X 1 vector.

The “Krasnosel’skii-Krein Inequality” (2.19), however, is just an alternate ver-
sion of the Kantorovich Inequality (1.1). Since A is positive definite we may define
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a symmetric positive definite square root 42 and substitute t = A~y in (2.19)

to obtain the Kantorovich Inequality

wAu-u'A 1y < (AL + An)?
(Wu)2 T 4\,

(2.20)

Indeed, as pointed out by Householder (1964) in his well-known book ([71], p. 83),

:z'A'H'l.’B N L o < (/\l + /\")2
(I’A”.’L’)z - 4/\1’\1:

(2.21)

where v is an integer. Householder ([71], p. 83) shows that (2.21) remains valid
with 4 complex Hermitian positive definite, z' the conjugate transpose of = and for
any v.

To establish (2.21) we put u = A*2z = (AY2?)"z in (2.20). Clearly v = 0 in
(2.21) yields the Kantorovich Inequality (2.20) while v = 1 yields the Krasnosel’skii-
Krein Inequality (2.19).

Equality holds in (2.19) when

N S O
VA VA
cf. (1.12), where p, and p, are orthonormal eigenvectors of A corresponding, respec-
tively, to A, and A,. Another way of expressing the Krasnosel'skii-Krein Inequality
(2.19) is in the “reduced” form!:
?:l ’\21112 . 2?=1 ulg < (Al + Aﬂ)2
(T ) T 4w,
In the statistical theory of experimental design, Chakrabarti (1963} [195] pro-

(2.22)

posed the following measure of imbalance:

o= trC? Y7
T CRF T (S

where the non-negative definite matrix C is the so-called C-matrix and the 7;’s are
its s positive eigenvalues. Bartlett ([191], p. 99) showed that

(2.23)

¥<1 (2.24)

! Note added in proof. A continuous version of (2.22) is given by Frucht (1943) [50].
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improving upon the inequality ¥+ < 2 given by Chakrabarti [195]. \We note, however,
from (2.22) that

L”: < (‘}'l + ’:“-‘)-

. 2.25
= s, (2.25)

where v, and 7, are respectively the largest and smallest positive eigenvalues of C.

Then (2.25) is an improvement on (2.24) if and only if

s Mt} _ (1

2.26
M. 4K )

where the condition number & = «;/7,. The right-hand side of (2.26) tends to
infinity as & = 00. For “moderate™ &, however, siy Kk =d = s> 20rn =16 =
s 2> b gives better bound than (2.24).

Thibaudeau and Styan (1985) [203] gave other upper-bound improvements to
(2.24).

2.5 The Greub-Rheinboldt Inequality (1959)

In 1959 Werner Greub and Werner Rheinboldt [60} showed that:

v adw, - T8 b, < (ab+ AB)?
(T8, abw;)* ~ 4abAB

(2.27)

where

0<a<a<4 0<b<h<B (i=1,...,n).

We note that the “Greub-Rheinboldt Inequality” (2.27) is a “weighted” version
of the Pdlya-Szegd Inequality (2.8); here we mean weighted in the same sense that
the reduced Kantorovich Inequality (1.5) is a weighted version of the Schweitzer
Inequality (2.1).

The Greub-Rheinboldt Inequality (2.27) is per se a slightly weaker version of
the Cassels Inequality (2.11): '

Timaiwi T Bwi o (eb+ab)? | (m+ M)
(Tmebwi)® T W daiebb; amM

(2.28)
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in that the Greub-Rheinboldt upper bound may be greater than the Cassels upper

bound, i.c.,

(m + M)? < (ab+ AB)?
dmM — 4abAB '

cf. (2.12).

We will, however, now show following an observation by Stvan [153], that a
reparameterization of the Greub-Rheinboldt Inequality (2.27) makes it. in fact.
equivalent to the Cassels Inequality. To see this we substitute a; = A\, a= Ay, 4 =
A1, bi=b= B =1, w; = v in the Greub-Rheinboldt Inequality

b, i T, Bui _ (ab+ AB)?

(En, aibw;)* ~  4abAB (2.29)

which then becomes the Krasnosel'skii-Krein Inequality:

RS w  (utda)
(T A — dAd,
which we have already shown to be equivalent to the Cassels Inequality, cf. §2.3.
An integral analogue of the Greub-Rheinboldt Inequality is

fc'f FP(z)h3(x) dz - j;d a*(z)h%(z) dx < (ab+ AB)?
[ f@)g@)h(z) da]” T dabdB

where f(z), g(z) and h{z) are continuous functions on the interval [¢,d] with 0 <
a< f(z) <A 0<b<g(x) <Band [Th¥(z) < 0. {Mitrinovié ([110], p. 60)
observed that such an integral analogue was “known” but did not give it.]

2.6 Six Named Inequalities are Equivalent
In this thesis we have so far considered the following six named discrete inequalities:

e §1.1 The Kantorovich Inequality (1.1)
e §2.1 The Schweitzer Inequality {2.1)
o §2.2 The Pélya-Szegd Inequality (2.8)
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¢ §2.4 The Krasnosel'skii-Krein Inequality (2,22

e §2.3 The Cassels Inequality (2.11)

¢ §2.5 The Greub-Rheinboldt Inequality (2.27).
and, as we have already observed, it is easy to sce that:

e Kantorovich (1.5) = Schweitzer (2.1)

o Pdlya-Szegd (2.8) = Schweitzer (2.1). and that:

e Greub-Rheinboldt (2.27) = Polya-Szegd (2.8).
Moreover, we have shown that:

e Kantorovich (1.5) <= Krasnosel'skil-Krein (2.22)

<=5 Cassels (2.11) <= Greub-Rheinboldt (2.27).

And since Henrici (1961) {68] showed that:
o Schweitzer (2.1) = Kantorovich (1.5),

it follows that these six named inequalities are all equivalent, cf. Fig 1.
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Fig. 1

Continuous
Schweitzer (1914)
(2.6)

Discrete
Schweitzer (1914)
2.1

Pdlya-Szegd (1925)
(2.8).p. 16

Greub-Rheinboldt (1959)
(2.27)

Makai (1961)

Frucht (1943)
Kantorovich (1948)

(1.1)

L

Housebolder (1964)

Householder (1964)
(2.21)

Krasnoselskii-Krein (1952)
(2.19) [Frucht (1943)]

Wielandt (1953)
(3.1)

Cassels (1951/1955)
(2.13)




We end this chapter by showing that both the discrete and continuous versions

of the Schweitzer Inequality imply the discrete Kantorovich Inequality.

2.6.1 Henrici (1961):
Discrete Schweitzer Implies Kantorovich

To see that the discrete Schweitzer Inequality

1 1 171 1
=(A . < M) - = — 2,
( vF et ) (,\1 o ,\,,) -(m+ M) 2 (m + :1!) (2.30)
implies the normalized reduced Kantorovich Inequality
1, (1\[ -+ '\11)2
Nty =g e 231
Z : Zl AT T dMA, )

we follow the proof by Henrici (1961) [68]. It suffices to show that(2.31) holds for
all rational 27 with 3 22 = 1. Let us choose n to be “very large” so that each \;
occurs “many times”, and write

Ay <000 < Ay

for the d distinct A’s with multiplicities my,...,mq¢ and 3 m; = n. Then the left-
hand side of (2.30),

Srdom) (22 _, 2 . 1
( ijj)( Em; =Lo3 Zf\mz’

the left-hand side of (2.31), with zf =m;/ ¥ m;, and the proof is complete. a

It was observed by Kantorovich (1948) in a footnote (on page 143 of [72] and page
106 of [73]) that his inequality (2.31) “is a special case of” the Pélya-Szegd Inequality
(2.8)%. George E. Forsythe, however, who edited the 1952 English translation [73] of

2 Note added in proof. Edwin F. Beckenbach makes the identical claim in his review [17] of the
paper [50] by Roberto W. Frucht (1943). Neither this observation, however, nor any mention of

the Kantorovich Inequality per se appears to be made by Beckenbach and Bellman in their famous
book [19), first published in 1961 (cf. pp. 44-45); see also Beckenbach (1964) [18].
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[72]. noted (also on page 106 of [73]) that “it is not clear to me that Kantorovich's
inequality really is a special case of that of Pélyva and Szego”. Greub and Rheinboldt
([60}, p. 407) found Forsythe’s remark to be “well justified”. The Pélya-Szegé
Inequality, however. does imply the Kantorovich Inequality, albeit indirectly. since
the discrete Schweitzer Inequality is a special case of the Pdlya-Szegdé Inequality
and, as we have just seen, the discrete Schweitzer Inequality implies the Kantorovich

Inequality.

2.6.2 Makai (1961):
Continuous Schweitzer Implies Kantorovich
Makai (1961) [99] showed that the continuous Schweitzer Inequality

1 1 o1 (m + M)? _
s L, 1@ 55 [ e < T 232)

implies the normalized reduced Kantorovich Inequality (2.31). To see this, we put

a=0, b=3%", = in (2.32) and

A for 0SSz <z
flz) =

A for TEVF<z<Ti, 2 (i=2...,n),

where 0 <m <\ < M, (i=1,...,n) and (2.31) follows. ]
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Chapter 3

Inequalities Related to the
Kantorovich Inequality:
1953—-1967

In this chapter we present several inequalities which are related to the Kantorovich
Inequality and several which admit the Kantorovich Inequality as a special case.
We concentrate on the following eleven papers published from 1953 through 1967:

e §3.1 Wielandt (1953)

e §3.2 Newman (1959)

e §3.3 Strang (1960)

e $3.4 Bauer (1961)

e §3.5 Marcus and Khan (1961)

e §3.6 Cargo and Shisha (1962)

e §3.7 Diaz and Metcalf (1963) | -
e §3.8 Marcus and Cayford (1963) o

e §3.9 Marshalt and Olkin (1964)

é’-‘. :

e



e §3.10 Fan (1966)

e §3.11 Shisha and Mond (1967).

3.1 Wielandt (1953)/ Bauer and Householder (1960)

Bauer and Householder (1960) showed that for any ‘wo non-null vectors z and y
and positive definite matrix A4,

(='y)

2 < cos® <<
z,z_y,y_cosd’ and 0<¢<

|

(3.1)

implies that
(='Ay)?
T'Az -y Ay
where cot?(8/2) = xcot?(¢/2) and the condition number & = A;/A,, with A; >
-+« 2> A, the, necessarily positive, eigenvalues of A.
When ¢ = 7/2 the vectors z and y must be orthogonal, cf. (3.1) and then

< cos* 4,

(=’ Ay)? <fc-1_)\1—z\n
AT -y Ay ~ k+1 N+

(32)

since now & = cot*(8/2).

Bauer and Householder [15] credit (3.2) to Wielandt (21953) [172] “and also
private communication” [we have found it difficult to deduce (3.2) from the results
in [172]]. Eaton (1976) [48] rediscovered (3.2), f. Olkin [126].

Housholder ([71], pp. 83) observes that when

y=(z'z)A" 'z - (FA™ 1)z

then the Wielandt Inequality becomes the Kantorovich Inequality. o=

Barnes and Hoffman [11], see also Wolkowicz [174] refer to the right-hand side
of (3.2) as the “Kantorovich Ratio”.

To prove the Wielandt Inequality we follow Householder ([71], pp. 81-85, §3.4)
and start by introducing the 2 x 2 matrix
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vAu vAv

G = (u . U)‘A(u . 'U) - ( uwAu v'Av ) !

where u = z/V2'z and v = y//v'y, then (u : v)'(u : v} = Iz, the 2 x 2 identity
matrix. Let 7, > 72 denote the eigenvaiues of G and so the trace trG = v, + 72 and

the determinant detG = ;.. Then by the Poincaré Separation Theorem, cf. e.g.,
Scott and Styan [202],

M2ZN 2% 2, (3:3)
hence
inye 4 A, 4K
> = , 3.4
Bt F 2 Tat 2~ (A TP 34
cf. (3.3) and (1.11) in chapter 1. Applying (3.4) yields -
1 (z'Ay)? 1— (v Av)?
Az -yAy v'Au - v Av
4detG
(trG)? — (v'Au — v’ Av)?
_ ny
(1 + %) — (v'du - v'Av)?
dnmre
= m+rR)?
with equality if and only if 2’ Az = y'Ay. Hence
(z'Ay)? ax (A: - 1)2 )
—_— & - = = -
Az yAy = 1T mEIP \r+1 cos’6, (3:5)

and the Wielandt Inequality is established. Equality holds in the Wielandt In-
equality whenever £ = p, + p, and y = py — pp, where p; and p, are, respectively,
normalized eigenvectors corresponding to the eigenvalues A; and A, of the matrix
A (m}
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3.2 Newman (1959)

Let A be a2 symmetric matrix with eigenvalues ) in the closed interval [m, M| with
0<m< M, and let f(A) and g(A) be real functions such that

0< f(A),g(d) <o (D<m<AS M), (3.6)
and
f(A),g(A) areconvex (0 <m <A< M). (3.7)

Then (3.6) implies that the matrices F = f(A) and G = g{4) are well defined and

are positive definite. Let ¢ be any vector normalized so that ¢t = 1 and set
h=t'Ft-t'Gt.
Then Morris Newman (1959) {125] showed that
2h1/% < max (cf(m) + %g(m), cf (M) + %g(M)) (3.8)

for every ¢ > 0. Moreover, if in addition f(M) — f(m) and g(m) — g(M) have the

same sign, then

202 < 1 f(m) + Lg(m) (39)

where

LT

T (?Eﬁ‘))_—g;?fn)))

If we choose f(t) =t and g(t) = t~! then r = 1/vmM and (3.9) reduces to the
“normalized” Kantorovich Inequality, cf. (1.7) in Chapter 1,

(m + M)?

PAL- VAt <
At-tAT S S

(3.10)

with ¢ normalized so that 't = 1.
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A related inequality due to Ky Fan, included at the end of this paper [125] by
Newman (1959) (and also later in the 1966 paper by Fan [49]), viclds the following

extension of the Kantorovich Ineguality:

k k 2
+ M)?
4. S a1y, < EMP .
§ 24 b S (3.11)

where the #; are n x 1 vectors normalized so that 3, t/t; = 1.

When k& = 1 the inequality (3.11) becomes (3.10). To see that (3.10) also implics
(3.11), let the vector ¢ be the kn x 1 vector (t},...,t")" and replace the n X n matrix
A in (3.10) with the kn x kn Kronecker product I ® 4, whose eigenvalues are just.

the n eigenvalues of the original n X n matrix 4 each repeated & times.

3.3 Strang (1960)
In 1960 W. Gilbert Strang [151] used the Cauchy-Schwarz Inequality to cstablish
the following extended version of Kantorovich Inequality:

Fy.-u'F-1¢ < (o1 + on)?
t't - u'u = dooy

(3.12)

where ¢ and u are n X 1 vectors and F is an n X n nonsingular matrix with o; and
On, respectively, its largest and smallest necessarily positive singular values.

When ¢t = u and F = A is positive definite with singular values being its
eigenvalues Ay > -+ 2 A, then (3.12) becomes

VAL-t'A™'t (A + An)?
TE = 4hAn

(3.13)

which is the Kantorovich Inequality.

To prove (3.12): Let A = (F'F)'/2 be the positive definite square root of F'F
and so P = F(F'F)~¥2 = FA™! is an orthogonal matrix, i.e., P'P = I. Then by
the generalized Cauchy-Schwarz Inequality: .

YAu < VUAL - v Au, (3.14)
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cf. e.g., Pecari¢, Puntanen and Styan [131], where ¢ and u are n x 1 vectors and A

is positive definite. Hence
tFu=t'APu=t'Az < VUIAt - 2'Az,

where z = P'u and so z'z = u'u. Moreover,

P lu=tA"1Pu=t'A""s < VIPA~1t . A1z,

and so

VFu-t'Flu < VPAL- A1 2/ Az - 21 A2z,

Using the Kantorovich Inequality (1.1) we then obtain

o )? o1 + 0,
Fu-t'Flu < Gt 0n) ., - O1 0N, 't u'u,
40,0, 4010y

since the eigenvalues of A coincide with the singular values of F, and our proof of

(3.12) is complete. o

3.4 Bauer (1961)

In 1961 F. L. Bauer {14] showed that the Euclidean least-upper-bound norm

lub || (T'AT)"'T* A*T(T' AT)-* || < £ 2L (3.15)

(x+ 1)2
T4k
where the n X n matrix A is positive definite with condition number & = cond(A),
and the nx & matrix T has orthonormal columns so that 7T = I. When k = 1 then
T becomes a vector ¢, say, and (3.15) reduces to the normalized Krasnosel’skii-Krein
Inequality, cf. (2.19) in Chapter 2, which we have already shown to be equivalent

to the normalized Kantorovich Inequality (3.10).
Bauer [14] also established some related results involving partitioned matrices.
Let the positive definite matrix 4 be partitioned as follows
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A Al
A= 71 TR
A Am
with 4;, of order &k x k. Then

- 1 1
lub ” ."1“1."11-_) " < 5 (\/E— ﬁ) ) (316)

where, as in (3.15), £ = cond(4) is the condition number of the matrix A.

We also find, similarly that: If A is a nonsingular matrix then

b [ 454 5 3 (VR- ). 3.17)
If Aj» is a nonsingular matrix then

b | 4zt < 3 (VR- ). @)
If Az is a nonsingular matrix then

lub | A5'4e | < 3 (\/—“ %) (3.19)

Two results, somewhat more general than (3.15) and (3.16), were also established
by Bauer [14]:

lub || (T'AT)™'T'AU || < 5 (\/' - '{;Tz) (3.20)
and
lub || T'AT)"'T"A | < % (ﬁ + %) , (3.21)

where the n x (n — k) matrix U satisfies TT' + UU’ = I,,. Choosing T to contain
the leading k columns of I, and U the other n — k columns in (3.20) yields (3.16),
while “squaring” both sides of (3.21) yields (3.15).

3.5 Marcus and Khan (1961)

In 1961 Marvin Marcus and N. A. Khan [103] observed that
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()‘l + '\n)z

. -1re
A[t] A [115 4/\11\’: J

(3.22)

where A[] is the ith diagonal entry of the positive definite matrix A, while A; >
-++ 2 A, are the necessarily positive eigenvalues of A. If we put the vector ¢ in the
normalized Kantorovich Inequality (3.10) equal to €;, the vector with all elements
zero except for the ith which is 1, then (3.10) becomes (3.22).

Marcus and Khan [103] extended (3.22) by showing that the product of the

determinants
k 3 k N
AL, o d)] - |A™ - - i) € % [(-T*’":l—'\’-—) . (M) ] ’
[I5=1 At =14
(3.23)

where Afiy,...,1;] denotes the & x k principal submatrix of the positive definite
matrix 4 comprised of the rows with indices 7;,...,%, with 1 £ §; < -+ <% <
n(k=1,...,n). When & = 1 then (3.23) becomes (3.22).

The ineguality (3.23), however, is weaker than the Bloomfield-Watson-Knott
Inequality:

[XAX] - XA " Ot din)?
XX = hidnier

i=l

(3.24)

which we study in some detail in Chapter 4 of this thesis. If we put the n x &
matrix X in (3.24) equal to the matrix whose k& columns comprise the i,th, ..., ixth
columns of I, then the left-hand side of (3.24) becomes the left-hand side of (3.23).
When k& = 1 the right-hand sides of (3.23) and (3.24) are the same; when k > 2,

however, we have, in general, that

. L 142
mm(kr.[ n—k) (N + Ancisn)? < 1 ( j DY )z . ( ¥ 1 dnej +1) 2 (3.25)
=i Wdpmint = 4| \ITi1 Mrmjor o1 A '

We illustrate (3.25) for £ = 2 (and n > 4), which may then be written as

(1 +1)2 (r2+1)% 1 1 ]
. < = | /R + ——
v ;-4 |V el
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where

Ki=AM/A 21 and ko= NpfAo > L. (3.26)

Then we see that (3.25) reduces to

(K1 + 1)%(ma +1)* < 4(xy82 + 1) (3.27)

taking square roots reduces (3.27) to

(k= 1)(k2—=1) 20, (3.28)

which, in view of (3.26), is certainly true.
Furthermore, Marcus and Khan [103] generalized Fan's inequality (3.11), of.
Newman [125] and Fan [49], to:

™m k -L ™ @
',.‘ . ( — 3.9
il;'[l .;g'l b m 113:‘.:%. Z A, (3.29)

where the 4; (i = 1,...,m) are pairwisc commutative nxn positive definite matrices
with eigenvalues /\(i) ., AW respectively, for i = 1,...,m, and Z:*-' tit; =1

If we choose m =2, k=1, 4; = VA4 and 43 = (1/VAA,) A1 in (3.29)
then it becomes the normalized Kantorovich Inequality (3.10).

3.6 Cargo and Shisha (1962)

In 1962 G. T. Cargo and Ov>d Shisha [26], see also Rennie (1963) [25], Goldman
(1964) [57), Marshall and Olkin (1964) [105] (see also §3.9 below), Mond (1966)
[113], and Cargo (1972) [25], studied power means, whick may be expressed in the

form:

= (rare)" (3.30)

where ¢ is an nx 1 vector and A is an n X n positive definite matrix with eigenvalues
X; such that m < X; € M, with m < M. Let x = M/m. Then Cargo and Shisha
[26] showed that for r < s (with neither r nor s necessarily positive)

37



£ <k, (3.31)
Hr

where

_ r(x® = &7) 174 $(NT - &%) tr ‘
€= ((s—r)(n'— 1)) /((r-s)(n«_l)) if rs#£0.  (3:32)

Moreover, when rs = 0 then

wltef=y (U
(swrerem) i =0
k=

wrf(xT=1) “1fr .
(W) ifs=0.

Cargo and Shisha [26] also obtained a condition, albeit somewhat complicated,
for cquality in (3.31).
If we choose r = —1 and s = 1 in (3.31) then it reduces to the Kantorovich

Incquality.

3.7 Diaz and Metcalf (1963)

In 1963 J. B. Diaz and F. T. Metcalf [39) showed that

Yat+mMI B2 < (m+M)S abi, (3.33)

i=1 i=1 =1

where the numnbers e; and b; # 0 satisfy

mS%SM (i=1,...,n). (3.34)

Equality holds in (3.33) if and only if in each of the n inequalities (3.34), at
least one of the equality signs holds, i.e., either a; = mb; or a; = Mb; (where the
equation may vary with ).

The inequality (3.33) follows easily by summing the inequality:

(3-) (4§ 2o =
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overi=1,....n

Together with

: W AT
[(Z a‘;’) - (nuu}:b;-’) } >0, (3.36)
i=1 =1

the inequality (3.33) vields the unweighted Cassels Inequality (2.14) in Chapter 2

noa T B (o ALY
(Thyab)y — dmdM

(3.37)

0

3.8 Marcus and Cayford (1963)

In 1963 Marvin Marcus and Afton Cayford [102] established the following general-

ization of the Kantorovich Inequality:

t'At - ' APt < APt = 1)
(@) = dwr(w? - 1) (k- 1)’

(3.38)

where 0 < p £ 1, and the positive definite matrix A has condition number & > 1

and smallest eigenvalue A, > 0.
When p =1 we see that (3.38) reduces to the Kantorovich Inequality:
tAt-tA~Y <at 1)?
()2 — 4x '
cf. (1.1) and (2.9) in Chapter 1.
Marcus and Cayford [102] also showed that (3.38) holds for p > 1 provided
K > &,, where &, is the unique root greater than 1 of k”*! — 2x? 4+ 1 = 0. When

P> 1 and k < K, then

tAL - ¥ APt
L <P,
EE S
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3.9 Marshall and Olkin (1964)

In 1964 Albert W, Marshall and Ingram Olkin [105] gave several “Reversals of the
Lyapunov, Hélder, and Minkowski inequalities and other extensions of the Kan-
torovich Incquality”. Let ty,...,t, and z3,...,z2 be nonnegative real numbers

with ¥ 27 = 1, and define p), = T, z3t; then

Pt STyt (0SugvSw) (3.39)

is the well-known “Lyapunov Inequality”. Since the z? are nonnegative they may
be considered as probabilities and we may write Pr{(T =¢;) =zf (i=1,...,n) and
SO
n -
pr =Y 2tk = E(T")
i=1
is the hth moment of the random variable T.

In general there is no positive constant k, say, so that

syt 2 kTt (w<v<w)

but such a constant & does exist if we restrict the random variable T to be bounded

and positive:
Prim £T<M)=1 (0<m< M) (3.40)
Then for r < s and Pr{Z > 0) =1 we have:
[E(ZT*)]" [[BZTH]V" < KE2))$, (3.41)

where

() /)

and k= M/m, ¢f. (3.32). Equality holds in (3.41) if and only if Pr(T =mor T =
M)=1and
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Mrm® = M
A’ = AT g 7. (3.42)

E(zT) = (M —=m"}h-r)

If weput 7 = =1.s =1 and Z = 1 (with probability 1) in (3.42) then we obtain:

.3 Lo (k17 (m+ M)
A“‘ W -. = = . o .
2 ' ; A 0-E (T) 4x dmM (3.43)

cf. (1.9) and (1.25) in Chapter 1.
Marshall and Olkin [103] also obtained several inequalitics involving vectors and
matrices. Let ¢ be an n X 1 vector and let A be an n % n positive definite matrix

with, necessarily positive, eigenvalues A\, > --- > A,.. Then
(Atll.'—u v—u A!J—IIA:P—H)t' 48t < (A‘W—u A::’—u)t’-qvt - (/\'{-u —_ l\;’|—u)t'.‘lwt,
(3.-141)

and

(AR v (AW < (t'Avt)Y, (3.15)
where

po (= W\ /(R = e - )"
T\ (ke =1){w—v) (k= = 1)(w —v)

with now & = A;/\,, the condition number cond(4).

Let u = =1, v = 0 and w = 1. Then (3.45) becomes the Kantorovich Inequality:

PAL-tAT (At + An)?
0 - Do

while (3.44) becomes the (unnormalized unreduced) Marshall-Olkin Inequality:

AMAa - VA7 < (N + M) -t AL, (3.46)

cf. (1.29) in Chapter 1.
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3.10 Fan (1966)

In 1966 Ky Fan [49] showed that:

AP, (M? — mP)P(p— 1)~}

lll

[Z'___l tj_-{tt-] = (M = m){mdr = Mmp)p-1pp’

(3.47)

where p is any integer not equal to 0 or 1 (and not necessarily positive), the ¢; are
normalized so that X, ti; = 1, and A is an n x n positive definite matrix with its
eigenvalues contained in the closed interval {m, M], 0 < m < M.

If we put p = —1 in (3.47) then we obtain

M)?
o a1y, < m M) {(m+
Z At Zt 1 - -lmf\l

which was established by Fan in 1959 [125], cf. (3.11).

3.11 Shisha and Mond (1967)

So far in this thesis we have concentrated on inequalities concerning the product of
two quadratic forms such as ¢ At-# A~!t, wheretisannx 1 vectorand Aisannxn
pusitive definite matrix with fixed, necessarily positive, eigenvalues A, > -+ 2 A,.
In 1967 Oved Shisha and Bertram Mond [148] (and independently and much later
Styan (1983) [152] and Khatri (1984) [75]) obtained related inequalities which apply
to differences of quadratic forms rather than to products. For example, Shisha and
Mond [148] showed that, assuming ¢ normalized with 't =1,

rae— L (Va-va) (3.48)
and
A2 —¥at < H. (3.49)
Al
Equality holds in (3.48) when
AR via )
t= (m) m (m) oo (B30)
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and in (3.49) when

L L
4\1 + 3/\,. * 31\1 -+ ,\" : 9 =
t = l - ] -~ . [; . 3.51
-'{(,\,-:-,\,.) ‘”‘I(,\l-z-,\,.) p‘} (3:51)

cf. Styan [152], where p; and p, are orthonormal eigenvectors of -l corresponding.
respectively, to A\; and A,. When the eigenvalues \; and A, are both simple (i.e..
each has multiplicity 1) then each of these conditions is also necessary.

To prove (3.48) we begin by diagonalizing A = PAP' and writing : = Pt so

that (3.48) may be written as

SAz - al_—l: < (\/,\_. - ,/E) (3.52)

We now prove (3.52), following [152], using the (normalized reduced) Marshall-Olkin
Inequality:

MAd A2 < AN+ 0 - PA,

cf. (3.46), so that

1 MAn B+ A
FAr - —— <Az~ =M+Ad—-—,
A FA-1z & A A+ A - 2Az 1+ u
where
u= M+ — 2'Az = 2 (diag{\ — M+ An})z > 0.
Hence
1 1+ M,
z'.'\z—:,A_lz < A1+An——T _
- 2
= A+ M =20 A - #=Vad) V;;"\")
< A+ A =2y,
2
= (\/’\_l_ ﬁl‘) 1
and the proof is complete. ' )

Another related inequality, announced by Styan and Zlobec (1982) [154), is:
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(3.53)

£A% - (FAL)? < ('\‘ ;'\“)2,
again with t't = 1; equality holds in (3.53) if and only if equality holds in the
Kantorovich Inequality. We note that (3.53) is the “difference” analogue of the
“product” Krasnosel’skii-Krein Inequality, ¢f. (2.19) in Chapter 2:
tA% _ (at M)
(ALY =  4d\N,
normalized with 't = 1; equality holds in (3.54) if and only if equality holds in
(3.53).
We prove (3.53), following Styan (1983) [152], by diagonalizing as before so that

(3.53) becomes

(3.54)

ZA%z - (FA2)? < (’\‘ > ’\")- : (3.55)

The special case of (3.55) with z = e¢//n, where ¢ is the n x 1 vector with each
element equal to 1, provides the following inequality for the variance of the A;

Is 2. (E .)"' M=)
~2AN-(XN) (=5
established by Brauer and Mewborn (1959) [194].
We now prove (3.55), following Styan [152], as follows:

2
'A%z — (z'Az M A") Lut 2)? _ (A1 + A)ZAz

2'A%z — (2'Az)?

2 4
< M+ M)+ 2A% — (A + \)2Az (3.56)
= (A= A)2 + A + A%z — (A + An)2 Az
= (= W) = 2 (diag{(M — X)) (A — Aa)})2
< =) (3.57)
and the proof is complete. ' O

Equality holds in (3.53) if and only if equality holds in both (3.56) and (3.57),
and when A; and A, are both simple then this happens if and only if |

Ard=} ad n=-=za=0,

cf. (1.37) in Chapter 1.



Chapter 4

The Bloomfield-Watson-Knott
Inequality and Other Extensions
of the Kantorovich Inequality

Let us consider the so-called Gauss-Markov linear statistical model

y=XB+e, E()=0, Cov(c) =L, (4.1)

where ¥ is an 7 x 1 vector of observations, B is a kx 1 vector of unknown parameters,
X is an n x k& known design matrix of rank &£ < n, ¢ is an n x 1 vector of random
errors and the covariance matrix ¥ is n x n and positive definite.

The Best Linear Unbiased Estimator (BLUE) of 8 is the generalized least squares

estimator
B=(X'=1X)1 X'y, " (4.2)

which has covariance matrix

Cov(B) = (X' X)), (4.3)
while the Ordinary Least Squares Estimator (OLSE)
B=(X'X)"X"y (4.4)
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7

has covariance matrix

Cov(#) = (X'X)"' X'EX(X'X)!, (4.5)

and so the matrix
(X' X)) XEX(X'X)™ - (X’E“X)‘l (4.6)

is non-negative definite.

It is well known that 3 = 3 with probability one if and only if tkeir covariance

matrices are equal, i.e.,
(X' X)IX'EX(X'X)™ = (XTI X)L (4.7)

For an extensive discussion of characterizations for the equality (4.7) see Puntanen
and Styan [137] and Baksalary, Puntanen and Styan {10}.

In general, however, equality does not hold in (4.7) and thus the matrix (4.6)
is not zero. To measure how far away the matrix (4.6) is from the null matrix or
equivalently to see how bad the OLSE is with respect to the BLUE, Geoffrey S.
Watson in 1951 ([163], §3.3; see also [163], p. 330) introduced the “efficiency” ot
the OLSE 8 with respect to the BLUE 8 as the ratio of their generalized variances

defined as the determinants of the corresponding covariance matrices:

o = 1Cov(B)] _ |(X=-1X) Y (XX

i) = |Cov(B)| T XX)IXTEX(XX)Y = X EX]- X=X (4.8)
where |.| denotes determinant.
The inequality
] 2 k . )
IX'X| S 77 _Whidnint o)

|X'EX]- [ X'E-1X] = 12 i+ Anminr)?
where A\; > -+- > A, are t.he, necessarily positive, eigenvalues of X, was originally
conjectured in 1955 by James Durbin (cf. [165), p. 331) but first established for
k > 1 only twenty years later in 1975 by Bloomfield and Watson [*1] and Knott [79],
and in 1981 by Khatri and Rao [76]; see also Yang [176]. When k = 1, however, the
“Bloomfield-Watson-Knott Inequality” (4.9) reduces to the Kantorovich Inequality.
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In 1981 Bartmann and Bloomfield [12] (see also Puntanen {136]) observed that

e(3) = 116 = [10 - 7). (410
where p is the rank of X, while 6; and p; are, respectively, the ith largest canonical
correlations between 3 and & and between the ordinary least squares fitted values
and residuals. The formula (4.9), therefore, remains valid for the efficiency of ordi-
nary least squares when the design matrix X does not necessarily have full column
rank.

In Section 4.1 below we present a proof of the Bloomfield-Watson-Knott In-
equality (4.9) based closely on the proof given by Bloomficld and Watson [21] but
with a modification due to Drury {47] and which avoids the Lagrange multipliers,
while in Section 4.2 we indicate why we feel that the “brief proof* given in 1990 by
Hu Yang [177] is incomplete. In Section 4.3 we present various extensions of the

Bloomfield-Watson-Knott Inequality due to Khatri and Rao (1981) [76] and Wang

and Shao (1992) [161], see also the paper by Lin (1986) [85] translated into English
as Appendix B of this thesis.

4.1 Proof of the Bloomfield-Watson-Knott
Inequality

Theorem 4.1 Let £ be an n X n positive definite metriz with eigenvalues Ay >

«++ 2> An > 0 and let X be an n x k matriz of rank k withn > k. Then

_ XX XX T Ot i )?

- 4.11
f=—mxe = I 7535 (1)
When n > 2k then equality is attained in (4.11) when
X='\71'§(p1:hpﬂ:p2ipn—l1"‘3Pk'—'=Pn_k+1), (4.12)

where py,...,Pn are normalized eigenvectors corresponding to Ay 2 -++ 2 Ay; when

the eigenvalues are distinct then this condition is also necessary.
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To prove the Bloomfield-Watson-Knott Inequality (4.11) we will use the follow-

ing two lemmas:

Lemma 4.1 Let P be an n x n skew-symmetric mairiz. Thenexp(zP) iseannxn

orthogonal matriz.
PRrROOF: When P is skew-symmetric, P = —P’ and so

exp(zP) - exp(zP') = exp(zP) - exp(—2P) = exp(zP) - [exp(zP)] ' = I,
cf. e.g., Horn and Johnson ([199], Theorem 6.2.38, p. 435), and thus exp(zP) is
orthogonal. m|
Lemma 4.2 IftrPA = 0 for every skew-symmetric matriz P then A is symmetric.

Proor: We may choose P = 4’ — 4 and so

trPA=tr(d' - A)d =Jr(A-AN(A-4") >0 (4.13)
and then trPA = 0 for all skew-symmetric matrix P implies 4 = 4’ o

PROOF OF THEOREM 4.1: We assume, without loss of generality, that n > 2k
and that ¥ = diag(),...,An) with Ay > -«- > A, > 0. We also assume that
X'X = I, and so we may replace X in (4.11) by X(z) = exp(zP)X, where P is
skew-symmetric and thus exp(zP) is orthogonal (Lemma 4.1). Then

X()EX(z) = X'exp(zP)Zexp(zP}X
= X'(I - zP)S(I +zP)X + HOT
= X'(Z+:zZ, P})X + HOT
= (X'TX){ + 2(X'EX)' X[, P)X + HOT),

where HOT denotes terms of order z* and higher and the “commutator matrix”
[E,P) =XP — PZ. Since for small z the determinant

| + 2T + HOT| = | exp(2T + HOT)| = exp [tr(zT + HOT)] = 1 + zueT + HOT,
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we see that

IX(2)SX(2)| = |X'TX|- {1 + 2te[(X'EX) XS, PJX] + HOT}  (4.14)

and similarly

XTI X () = XX - {1 + ztr[(X'=7' X)X [, P)X] + HOT}
so that
IX(zYEX(2)|-|X (z)"E"X (2)] = |X'EX| - {X'E"'X| - {1+ zh + HOT}.
For X to identify a critical point, it follows that
h=tr{(X'EX)TIX'[S, PIX + (XS X)X =L P]X} =0 (4.15)
for every skew-symmetric matrix P. Hence, from Lemma 4.2,

A = X(X'TX)'X'E - TX(X'EX)"IX + X(X'ETIX)-IXs!
~EIX (XTI X)X (4.16)

is symmetric; but A is also skew-symmetric, and so A = 0. Post-multiplying (4.16)
by X yields

X -ZXXEX)T+ X -ZIX(XTI X)) =0
or
TX(X'EX) + E2IX(XTTIX) = 2X, (4.17)
Pre-multiplying (4.17) by X'E we obtain
(X'S2XHX'TX)™ + (X' X)) = 2X'EX. (4.18)

Since 2X’'SX and (X'Z~1X)"! are symmetric so is (X'E2X)(X'ZX)"!, and hence
X'22X and (X'£X)~! commute and so are simultaneously diagonalizable; we may,
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therefore, suppose that both X'Y2X = D, and (X'EX)™! = D, are diagonal.
Hence from (4.18)

(X'S-'X)"' = 2D;' - D\ D,

is diagonal. Setting X'TX = diag{a,,...,a:} and X'E7'X = diag{h,..., b} in
(4.17), it becomes

,\.-:z:.-_,-a;‘ +z\i—l$,‘jb;l = 2.2:,'1- (i =1,...,n, j= 1,...,1;7)
or
zii(Ma;' +67' =20) =0 (i=1,...,n, j=1,...,k). (4.19)

Since the factor A2a;' + b7! — 2); in (4.19) is a polynomial of degree two in X; it
follows that for each j = 1,...,k at most two z;; can be non-zero (cf. Kantorovich’s
proof in §1.2.1). The matrix X that maximizes

f o XEX| | XE]
B | XX

(4.20)

in (4.11) must, therefore, have the structure

where Xy, (h=1,....m)isn, x ky with ¥n, =nand Tk, =kand 1 < k, <

n, < 2. Hence each X, must be of one of the following three types:

1. 1 x 1 orthogonal matrix (scalar) with value £ 1

!\9

. . cos By,
2 x 1 normalized vector, X, = , say
sin 8,,

3. 2 x 2 orthogonal matrix.
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The contribution fj. say. to f from cach X, of types 1 and 3 is. therefore, just 1. We
concentrate, therefore. only on the X, of type 2; let Ay, > A, be the corresponding

elements in X. Then the X, of type 2 yiclds the contribution

fu = (A, cos? 8y, + My, sin® Ou)(Ay, cos® By + Ayl sin® 6,)

ﬁ'— + = ALY ) cos® B, sin® 6,

= cos', +sin' 4, + (
Ana Ay

< cos'O) + (1 —cos®6,)° + (l\l ':") cos® By, (1 — cos® ;)
-\
1 A Au (I\l +I\")2
< =12 — 4.2
= 4( bW +,\1) o, (1.21)

since

( + %+ :\\1) 4 [coa 6, + (1 — cos® 6)* + (il + ?\I)cos- 81,(1 — cos® 0))

>0,

= (1 — 2cos*§,)? (M 4)

Al /\n

with equality if and only if cos?8), = § (recall that A; > A,). Equality holds
throughout {4.21), therefore, if and only if

A=A My=2X, and cos?f, =3 (4.22)
In view of this, let us define a permutation matrix II such that (with n even)

TED' = diag{M, Ay Azs Aty - or Mes Mt }5

with n > 2k and A} > -+ > Ay; then the matrix X which maximizes f in (4.9)
must satisfy



(1 0)
1
1
. 1
Y = -ﬁ 1 s
1
\ 0 1)
and the proof is complete. )

4.2 Hu Yang’s “Brief Proof”

In 1990 Hu Yang [176] presented a “brief proof” of the Bloomfield-Watson-Knott
Incquality using the arithmetic-gcometric mean inequality for matrices and the
Poincaré Separation Theorem for cigenvalues. Unfortunately there appears to be a
lacuna in his proof.

The arithmetic-geometric mean inequality for matrices, cf. e.g., Ando ([189},{190]),

Bhatia and Davis [192] and Bhatia and Kittaneh [193], may be written as
_41/2(_4—1/2BA-1/2)1/2A1/2 <L %(A + B), (4'23)

where A and B are n x n positive definite matrices and the Léwner partial ordering
F £, G means that the matrix G — F is symmetric non-negative definite. It follows

at once from (4.23) that

|4B|* <

Y(a+B)|, (4.24)

where |.| denotes determinant. When A and B commute, their geometric mean
becomes
.4.#B = _41/2(_4—1/2BA—1/2)1/2_41./2 = (AB)1,2.

The Poincaré Separation Theorem, which we used to prove the Wielandt In-
equality, ¢f. {3.3) in Chapter 3, is
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chyepsi(d) S (P AP) < chi(d) (i=1.....k). {-.25)
where ch;(4) denotes the ith largest eigenvalue, A is an n X n symmetric matrix
and P is an n x & matrix with P'P = [;.
Let ¥ be an n X n positive definite matrix with eigenvalues Ay > - > A, > 0
and let A" be an n x & matrix of rank & with n > &. Then

|.\':.\|]\ |\}'\* x| sf[ (A + Mcen)*

is the Bloomfield-Watson-Knott Incquality, cf. (4.9). As in §1.1 we will assume,

f=

1.26
ANiN—ig (1:26)
without loss of generality, that n > 2k, X'X = I and that £ = diag{A,,..., \u}s
with Ay 2> -+ 2 A, > 0.

Yang [176] uses the n X n matrix

( D) 0 o
KQA)=1 0 (M+does) n2pe-y 0 \ (4.27)
\ 0 0 JD(N)J
where (k — 1) x (k — 1) diagonal matrix
(A + )78 0 0
0 1\2 + J\n— -1 U
D)) = ( ) _ (4.28)
0 0 ('\k-l + A1:—!:-}-2)-1

and the “flip matrix” (or “negative diagonal matrix”)

(00 .0 1)

J= (4.29)




so that the diagonal matrix JD()\)J is D(A) with the diagonal elements arranged

in precisely the opposite order. Yang {176] also uses the n X n diagonal matrix

Ei(A)
E(A) =SK(A) = Ea(N) , (4.30)
E3())
where the diagonal matrices
Ay
A2""\"
Ao
Ey()) = Aatdner (4.31)
Ak=1
AkmrtAn k2
and
An—htﬂ
A= 1 F Ay ke
Au—gin
Ey()\) = Acatdn-ias (4-32)

A
AltAn

are both (k — 1) x (k — 1), while the (n — 2k + 2) % (n — 2k + 2) diagonal matrix

A

—t
Akt An e
Aot
E)(\) = MetAamil : (4.33)
An—hil
AktAn—k+1

We observe that the numerators of the diagonal elements in Ey(A), E2(A) and
E4(A) and, therefore, the numerators of the diagonal elements in E(A), are the
eigenvalues of ¥ in monotonically decreasing order. The denominators of the di-
agonal elements in E, () and Ey(A) are in precisely opposite orders to each other,

while in E»(A) the denominators of the diagonal elements are all the same. Then
Ei(3) + Ey(AY) = Bs() + B(A7) = L,
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sincefori=1..... k-1l andi=n-%k+2

T,

:\; /\i_l /\i '\u—i+l
+ = = = = 1.
Ait Ao ATTFENLL N+ Acin M Adcin
Moreover,
Ea(A) + Eo(A™") <0 Loy
since fori=Ak+1,....0 =k +1,
AL N _ M A Aeducint
-'\k + An-—k+1 /\;l + ’\;lk...] l\k + ’\n—k-{-l l\k -+ f\n—k-i-l
< Ak An—itl
- )\L‘ + ‘\u—k+l ’\k + ‘\n—k+1
Hence

E(’\) + E(’\—l) SL In-

Using (4.24) and (4.34) we then obtain that

= 1.

(4.34)

IX'EQN)X]- IXEA)X < X [ (B + EQ )] X[ < |44 = 315 (4.35)

Yang {[176], equation (7) on p. 4589) presents the stronger inequality with deter-

minants replaced by matrices with the Léwner partial ordering:

X'BNX - X'EOW X <o (X [4 (B + EQY)] X) <0 b4 (436)

The first inequality in (4.36) is valid in general, however, only when X’E{A\)X and

X'E(A-1)X commute, cf. (4.24) above.

We introduce the n x & matrices

P=X2X(X'EX)"'? and Q=T VAX(X'T-'X)"/?

so that PP = Q'Q = I;. Then using the Poincaré Separation Theorem we find

that

IPKO)P| = [] cbs (PKOP) 2 [T chamsns (K(N)

=1 =l
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and

JQROQ = Hch (@K )>1‘[Lh,, eri (KQATH).

=1

However

IXTSIRE(ANEY2X| |X'E(\)X]

IPRQA)PI = XEX] = TIXEX]

and

IX'STAE(YETX] X BTN

trory—1 —_
IQK(A)Q| = [XE-1X TOXEX]

Hence

IX'EQ)X] |X'EQ-YHX]
IP'K (MNP @K (f\")QI

-t
HChn-k-a-a (K(N) - HChn-A+z (I\ /\_l))] .

IX'EX]- X=X =

<
i=]
(4.37
_ If we put, cf. Yang ([176], p. 4589, equation (8}),
k k 1
il_;_[lChn—k-a-i (K(N) = 'I;J; Y (4.38)
and
k k 1
E cha—isi (K(A)) = I=11 T (4.39)

in the last expression in (4.37), then it becomes

-1

1 k 1 k(i + Apmi)?
g =1,
[ H Ai + l\n—;+l II v\‘ + ’\n-:+l] H 4'\i’\n-i+1

=1 =t i=1

which then vields the BloomBeld-Watson-Knott Inequality

- A + A -1 1)
X'tX]|X'S ‘X < 77 Qid dncina)”
I |+ | < II Do

Unforiunately, however, it appears that this deduction is not valid since the

equalities in {4.38) and (4.39) do not, in general, hold. To see this let us consider

56



(4.38). Its left-hand side is the product of the & smallest cigenvatues of the diagonal
matrix K'(A). Inspection of (4.27) shows that the matrix A'(\) has at most & distinet
diagonal clements, which are indeed the & smallest! But the k smallest diagonal
elements of A'(A) are, in general, not distinct. For example, if k = 3and n = 6

then

KQ\) = 4R . (4.40)

\ = /
Suppose that in (4.40) we have
1 < 1 < 1
AM+d%  Aat+ds Azt Ay
Then the left-hand side of (4.38) is

1 1
(,\. + ,\5) e+
which is strictly less than its right-hand side:
1 1 1
A+r datds Aty
In general; therefore, we find that

k & -
4 ] s (K (X)) - T e (K(A“))] > [T it dneisn)®

i=1 i=1 i=1 4 )‘n-c+l
and so does not allow us to deduce the Bloomfield-Watsou-Knott Inequality (4.9)
from (4.37).

4.3 Inequalities Related to the
Bloomfield-Watson-Knott Inequality

In 1981 C. G. Khatri and C. R. Rao {76} (see also [77]) generalized the Bloomfield-
Watson-Knott Inequality in several directions.
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Let T and Z be n x k matricessuch that T'T = Z'Z = I and let Abeannxn

non-singular matrix with (fixed) singular values 61 > --- > ¢, > 0. Then
min(k.n-k) . 2
IT'AZ}-12’47'TI < ] (0 % Onmisn)]” (4.41)

§=1 40:’ On—isl

When k = 1 then (4.41) reduces to the inequality obtained by Strang (1960) [151),
of. (3.12) in §3.3.

k
tr(T"AZ - Z’A7'T) < Z("‘+”""+‘) if2%k<n
i=1 40:0,_iv)
& (0i + 0n-it1)?
< T 4% —-n if2%k>n .42)
< 2 rP—— + n if2%k>n (4.42)

Let B and C be symmetric n x n non-singular matrices such that BC = CB is
positive definite, let T be an n x k& matrix of rank £ and let A, > --- > A, be the
eigenvalues of BC~!. Then

\T'B2T| - [T'C2T} _ ™™EnR) (A + Apis1)?
< AT Tacivl) (4.
IT:BCT|2 - H 4 )‘i '\n—£+1 ,4 43)

i=1

and

t'.rT"BzT(T'BC"I’)'‘1"’(}2'1‘(‘.'l"'BCT)‘1

(l\ -+ ’\n—:+1) .
if 2k<n
; 4X; '\n—:+l -
n=k (3. .
< M"'—""ll-+(2k—n) if 2k > n.

— 4 An—it1

=1

(4.44)

In 1992 Song-Gui Wang and Jun Shao [161], using additional information about
the matrix T, obtained a sharper bound, which we will call the “Constrained Kan-
torovich Inequality”, cf. (4.45) and (4.47) below.

Let T be an n x p matrix of rank r, let A and B be n x n positive definite
matrices with Ay > -+ > A, > O the eigenvalues of BY24~1BY2, and let py, ..., p,
be corresponding orthonormal eigenvectors. Suppose that the column space (or

range) C(Bljo) - c(pl'n' '-1pl'§) for some 1 é LS u s n, k< n. Then
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(N, + ,\,k)
/\u i

T'B -1‘1 BT <4, ——T'BT(T"AT)"T'BT. (4.45)

If k =r then

T'BA™'BT = T'BT(T'AT) T'BT

Let T and 7! partitioned as

Ty T T ™
T={ " " | = : (4.46)

T Ty T ™
where T3y is A X h and T is (n — &) x (n — h) matrices. Suppose C(Z,) C
C(piy,....pi) forsome 1 € ¢ € -+ €4 < n, where Z = (I),0) isannx h

matrix. Then

. (’\it + Aik)z

Tll _,<_
4hq, A,

T (4.47)

4.4 OQOther Matrix Extensions of the
Kantorovich Inequality

In 1995 Shuangzhe Liu {88] established several extensions of the Kantorovich In-
equality using the Lowner partial ordering.
Let A; be n X n symmetric non-negative definite matrices and let V; be n x ;.

matrices (i =1,...,k). Then

+ : +
(z:v A V\ <t f,v,-'A;"w g MY (i V.-'A.-vz) -, (4.48)

i=1 i=1 amM  \iH
cf. (3.11) in chapter3, where the non-zero, necessarily positive eigenvalues of the 4,
lie in the closed interval {m, M] (0 < m < M) and T, VI A;A}V; is idempotent. -
The mequahty (4.48) with & = 1 was obtained earlier by Baksalary and Puntanen
[9].
In 1996 Liu and Neudecker [93] obtained related inequalities involving Hadamard
(elementwise) and Kronecker products. Let 4, and A; be n x n positive definite
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matrices with A; and A,, respectively, the largest aud smallest eigenvalues of the
Kronecker product A, ® A,, of which the Hadamard product 4, ® A, is a principal
submatrix. Then Liu and Neudecker [93] chowed that:

A0 43 - (4104 <o Ho =)D,

. M+ A
2 A2y1/2 1 n
(A7 ® 43) <L CNST

A1 O A,
while Lui ([39], p. 65) established

Al 4 < M

4,0 4,
< YW (4,0 4,)

We also find, similarly, that

2
Mmot-r o) & (Va-va) b

(Ao -4,04 < HI,, |
of. ([89)], p. 65}.

Let A be an n X n positive definite matrix and let T be an n x & matrix such
that T'T = I.. Then Marshall and Olkin [107] established the foilowing matrix

version of the Kantorovich Inequality:

. M+ An) -
t 4=1 < ( 1 1
T'A™'T &, Do (T'AT)™. (4.49)
Pegarié¢, Puntanen and Styan [131] obtained several other similar matrix inequal-
ities, e.g.,
t 42 (’\1 + ’\r)2 ! 2
TAT < oo (T'AT)*,
) (T' ATy -T'AT < MT’HAT
' 4+ A) ’
T'A*T — (T'ATY <i Hou = A)*T'HLT, (4.50)

raAT- 4T s (Va —\/,\_,)21"HAT. s

Here A is an n X n nonnegative definite matrix of rank r with r positive eigenvalues

Ay 2 -+ 2 A7 >0, H, is the orthogonal projector AA* and T is an » X k matrix
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such that H,T is a partial isometry, i.e., T'"H,T is idempotent. Mond and Petaric

[114], Liv and Neudecker [93] and Baksalary and Puntanen [9] presented related

results.

Furthermore Baksalary and Puntanen [9], ef. Pecari¢, Puntanen and Styan

[131], generalized (4.49): Let 4, H4 and T be defined as above except that H,T
is a partial isometry. Then
MAMT' AT <p (2 + A )T'HAT - T'AT. (4.51)

When H4T is a partial isometry, then (4.51) implies that

(’\l + ’\r)2

AT <, o
14\r

(T'AT)*.
If T is a vector t, say, and * H,t = 1 then (4.51) may b¢ written as
MMEATE S A+ A =t AL

Then

-

ML AL -t AT

IA

(M + AP AL - (H'At)?
YO+ 2 - [Pt = u + 0]

< '}i(’\l - ’\1')27 - :

we have the following extensicn of the Kantorovich Inequality:

('\-l + '\v')2

VAL- ATt <
At-t'A*t < Do

where the matrix A is positive semidefinite with rank r and ¢ Ht = 1, and Hyuis
the orthogonal projector AA™. This leads directly to

u’Au-u’A‘lu<(A1+A,)2
(wu) T AN ]

where the 7 x 7 diagonal matrix A contains the 7 necessarily positive eigenval-

'(4.52)

ues of A, while the r x 1 véctor u = S, with A = SAS', A* = SA-1S' and
'§'S = I,. Comparing (4.52) with (1.5), we see that (4.52) fc'lows directly from the
Kantorovich Inequality as observed by Neudecker [123].
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Recently Shuangzhe Liu [90] proposed the following problem: Let B and C be
two positive definite matrices with eigenvalues contained in the interval [, M),

where 0 < 7 < M. Let 0 € A < 1. Prove that
ABE+ (1=~ XN)C? = [AB + (1 - NC)* <L MM —m)*L (4.53)
We note that this is the special case of (4.30) with
T = (VA : V1= ALY
and
B 0 ;
A= . (4.54)
0 C
Other proofs of (4.53) are given by Louis Kates, Serge Kruk and Henry Wolkowicz
[74] and by Ingram Olkin [127].

We also note that (4.53) may be extended to positive semi-definite matrices. Let
Hy and He denote the orthogonal projector BBt and CC*, respectively. When

H=MHg+(1 — MHe
is idempotent, cf. (4.50), it follows that
AB? + (1= X)C? —[AB + (1 - NCP < L(M - m)?H,

and then Hg = He = H and the column spaces of A and B are identical.

62



Chapter 5

Some Statistical Applications

In this chapter we present a variety of statistical applications of the Kantorovich
Inequality and the Bloomfield-Watson-Knott Inequality. We concentrate on these

four papers:
e Magness and McGuire (1961)
e Venables (1976)
¢ Cressie (1980)

e Wang and Shao (1992).

5.1 Magness and McGuire (1961):
Efficiency of Weighted Least Squares

Let us consider the model (4.1). In 1961 T. A. Magness aud J. B. McGuire [97],
apparently unaware of the work by Watson in 1951/1955 ({163], {163] and [165]) cf.
(4.9), measured the efficiency, with respect to the BLUE, of the so-called Weighted
Least Squares Estimator (WLSE)

B8 = (X'W2X) 1 X'W?y,
where the n x n diagonal matrix of “weights”
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W = {diag(Z)}"!"2 (5.1)

The covariance matrix of’ the WLSE 8" is
Cov(8*) = (X'W2X) ' X'W2EW3X (X'W3X)~!.

Let us pre-multiply the model {4.1) by W and set z = Wy, n = We; then we
have z = WXB + 5. The new error n has covariance matrix WEW = R, say,
the correlation matrix of «. There exists a k x k positive definite matrix B, say,
such that B'X'W2XB = I: we now set WXB = F and B~!# = « to obtain the

“canonical” equation

:=Fa+n,

where F'F = BX'W*XB = I. Let o* and & be the WLSE and BLUE of a; the

covariance matrices are

Cov(a’) = F'RF and Cov(a)= (F'R™'F)~.
Then from the Kantorovich Inequality

('\l + '\n)z

*} <
Cov(a™) < Do

Cov(&), (5.2)

where A; and A, are, respectively, the largest and smallest eigenvaiues of R.

Let us consider the following example of a regression problem.

Example 5.1
Let
1r00) 172 1/2
S
Re| T VOO /2 -1/2 |
001r~r 1/2 172
001 -1/2 1/2

where the largest and smallest eigenvalues of R are 1 +r and 1 — r. It is easy to
show F'F = I, Cov(a*) = F'RF =TI and :
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CO\"(&) — (F'R-lF)-l _ { 1- rg)"'l 0 ) =(1- 1_'.‘)-11.
0 (1 -7t

Equality in (5.2) is attained since (\; +A)* /4N A, = (1= r3) 71 [When r > 0 then
1+7 = A is the largest and 1 — r = A, is the smallest cigenvalue; when r < 0 then

1 —7= A, is the largest and 1 + r = A\, is the smallest cigenvalue.]

5.2 Venables (1976): Testing Sphericity

In 1976 W. Venables [156] used the Bloomfield-Watson-Knott Inequality to derive a
class of union-intersection tests for sphericity using the likelihood ratio (LR) statis-
tic. Let S be a p x p sample covariance matrix with distribution nS ~ W,(n,I),

where W denotes the Wishart distribution. We want to test the hypothesis

Hy:T=0%l,, o° unknown, within

H:T unspecified.

Let us define

Hy(Q) : Q is an invariant subspace (i.e., £t € Q forall t € Q),

H,(Q) : Q is not necessarily invariant,

where the arbitrary g-dimensional subspace Q C 'R”, Euclidean p-space. Then

Ho=QHo(Q) and Hy =|JH(Q),
Qe

where the union and the intersection (UI) are over all g-dimensional subspaces @
of RP.

Suppose that the columns of the px g matrix X; and the columns of the px (p—¢)
matrix X, form orthonormal bases for Q and Q*, respectively. Testing Ho(Q)
within H;(Q) is the same as testing whether the two sets of variates X]Z and X5Z
are uncorrelated, where the p x 1 vector Z is normally distributed N(0, 5).

The LR test uses the statistic '
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Uy(Q) = |X'SX|/1X1SX,| | X35 X,
where X = (X} : X3) is a p x p orthogonal matrix. Now
[X'SX| = [X;8X:| /X157 X0]
since (X'SX)~! = X’S~'X. Venables [156), therefore, cousiders the statistics
4(Q) = X1 SN XS X
and so the Ul statistic is

uy = ma 1,{Q).

Using the Bloomfield-Watson-Knott Inequality it follows that

(Ll
u;___H(l:"‘ p—:+l)

i=1

dhlyivy

where [ > I > -+ > I, > 0 are the eigenvalues of S.

5.3 Cressie (1980)

5.3.1 Efficiency of an Unbiased Weighted Estimator

In 1980 Noel Cressie [35) measured the efficiency of an Arbitrary Positively Weighted
Unbiased Estimator (APWUE) with respect to the Optimally Weighted Unbiased
Estimator (OWUE).

Let the random variables Y; (i = 1,...,n), be uncorrelated with the same mean
u and with variances of (i = 1,...,n). Then f, is an APWUE and f is the
OWUE of u as defined by

n

o= u¥; and o= (Z Y,-/a?) / (E llof) , (53)

i=1 i=1 =1

respectively, where w; >0 (i=1,...,n), and ¥%, w; = 1. Then

.\ _ Var(in) 4x
where k = M/m and

m = min{w;o?; i=1,...,n}, M =max{wie?; i=1,...,n}
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5.3.2 Asymptotic Efficiency of a
General Weighted Median Estimator

Cressie [35] also studied the efficiency of a General Weighted Median Estimator
(GWME) with respect to the Optimally Weighted Median Estimator (OWME).
Suppose that different scale parameters cause random variables Y7,...,Y}, to be
made up of & samples with a common mean p: Y, ..., Yi,,, which arc each indepen-
dently and identically distributed with variance o7 (i = 1,...,k), and Ele n=mn
Then a GWME f,, is the (midpoint) value of (those) p which minimizes
n,

R
2wy Y- (5.5)
i=1 =t

or equivalently as the solution to

& o
2w sgn(Y; —p) =0. (5.6)
=1 J=1
In {5.5) and (5.6) we may choose any weights w; and we do not here require that
2?—:1 uy = 1.

As observed by Cressie [35], Tukey (1974) [204] proved that when
n/n—=6; as n—oo© (5.7)

and under {other) certain regularity conditions /n(i, — ) is asymptotically normat
with mean 0 and variance 02, say. The OWME [, is defined as the GWME that

minimizes ¢, and the corresponding optimal weights are
'w? = k/a‘-

(with o; known). Then we define the efficiency of the GWME with respect to the
OWME as the ratio of their asymptotic variances:

eﬁ-(ﬁw) - (Z wiai/ai)z > 4”

N zw‘ZG, . 28'/0"2 - (n.’. 1)2’ (5.8)

where x = M/m and



m = min{wey; i=1,...,k}, M=max{wo; i=1...,k}

We note that the lower bounds in (5.4) and (5.8) differ only by the definition of

m and M.

5.4 Wang and Shao (1992): Constrained
Kantcrovich Inequalities and the
Efficiency of Ordinary Least Squares

In 1992 Song-Gui Wang and Jun Shao [161] sharpened the classical Kantorovich
Inequality when the underlying vector satisfies certain constraints. These “Con-
strained Kantorovich Inequalities” vield sharper lower bounds for the efficiency of
ordinary least squares in the general linear statistical model.

Let us consider the so-called Gauss-Markov linear statistical model, cf. §4.1,
y=Xp+¢e, E()=0, Cov(e) ==L,

where y is an nx 1 vector of observations, 8 is a kx1 vector of unknown parameters,
X is an n X k& known design matrix of rank r € k, £ is an n X 1 vector of random
errors and the covariance matrix ¥ is n X n and positive definite.

The Best Linear Unbiased Estimator (BLUE) of the estimable function ¢8 is

the generalized least squares estimator

dB=d(X'SIX)"X's Yy, (5.9)
which has variance

Var(c¢'8) = ¢(X'E71X) ¢, (5.10)
while the Ordinary Least Squares Estimator (OLSE)

B =d(X'X) X'y (5.11)
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has variance

Var(d'3) = ¢(X'X)"X'SN (V'X) e (5.12)

Any generalized inverses {X'X)~ and (X'E71X)~ may be chosen.

Let Ay > --- > A, denote the, necessarily positive. eigenvalues of the covariance
matrix ¥ and let py,. .., p, denote corresponding orthonormal vectors. We constrain
the matrix .\" by supposing that its column space C(X} C C(p;,....,p:,) for some

integers i, satisfving 1 < iy < --- <4 < n, k < n. It then follows that

eff(c'5)

il
—

if r=k&
41\;.)\,-,‘
(.‘\;‘l + .r\,“,‘)"3

Let £ = (€1,...,€x) be a random error vector such that E(e;)=0 and

> if r<k. (5.13)

o° if i=j
Covles, &) = g

op if i# .
The covariance matrix Cov(e) then has the simple eigenvalue A = o2[1 + (n — 1))
with eigenvector 1, and the eigenvalue 7 = 0*(1 ~ p) with multiplicity n — 1. More
generally, let us suppose that the covariance matrix ¥ has the following block-

diagonal form:

T =diag{Z,,,..., Zn, I (5.14)

where each Z,,; is a positive definite matrix of order n; x n;, which satisfies

Z., has the simple eigenvalue A; with eigenvector 1;, (5.15)
¥, has the eigenvalue 7; with multiplicity n; — 1. (5.16)

Furthermore,

1. Let Jl = (]_:",0,“.’0)', J'2 = (0,1:‘2,0,...,0)" _..,Jk = (0,0,...,1:..)'. If
C(X) C C(Jy,+ -, Jk), then for any estimable function ¢’ the efficiency

- A
ef(cB) > uﬂ;{\\") (5.17)
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where A; = max A; and A, = min A, If A; = A, then ¢ is the BLUE for any

estimable ¢ 3.

2. If X'J; = 0 for all i then for any estimable function '3 the efficiency
Iy 471 Tn
o Do
Cfl(¢R) 2

where 7y = maxn; and 7,, = min7;. If 7y = r, then /i3 is the BLUE for anv

estimable function ¢/g.

3. Ifin (5.13), k = 1 and 1, is a column of X then ¢3 is the BLUE for any

estimable function ¢'S.

Suppose now that C(X(X'X)~C) C C(p;,....,pi,) forsome 1 < ¢ £ +-- < 4 <
n, where C = (¢y,...,c) and €8 (i = 1,...,1), are linearly independent estimable
functions. Then for any ¢ € C(C)
N M A
> ek, 5.18)
(’\ix + ’\ik)" ( '

Consider the model

y=1.8+¢ Efg)=0, Cov(e) =L,

where 1, is an n x 1 vector of ones and £ is an unknown parameter. We know that
the OLSE § = Y%, yi/n is also the BLUE if and only if £1, = cl,, for some scalar
¢, cf. e.g., Puntanen and Styan [137]. It is easy to see that here 1, is an eigenvector

of ¥. Let us look at the following example:

IA+2 -2 0 0

5 = -2 D+2 0 0
0 0 3A+1 iA-1
0 0 -1 i+

Then 7 is the BLUE since £314 = A14. Now let us make a small perturbation in &,

so that
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~,

AN+2 A -2 0 0
1 1 . .
::-= EI\—z EJ\-‘--? 0 0
0 0 FA+9)+1 $A+e)-1
0 0 TA+-1 A+ +1

where ¢ > 0. Then 7 is no longer the BLUE since 1, is no longer an cigenvector of
.. The matrix £, has eigenvalues A, A+¢, 2. and 1. with p; = ((1/v2)15.0.0) and
P2 = (0,0,(1/v2)14) are orthonormal eigenvectors corresponding to the eigenvalues
A, A< g, respectively. Since C{py,ps) is the smallest eigen subspace containing 1.
then by (5.13)

4AMA+¢)

eff(¥) > DY

(5.19)

Note that the efficiency eff(7) — 1 as ¢ = 0. We conclude that the small perturba-
tion in this example makes g robust. If we use the lower bound in (4.9) and assume

that \ + ¢ < 2 then we obtain

16A

h kM > —— —

which is smaller than the “constrained” lower bound {5.19).
Example 5.2
Consider the random effects model

y=l,u+Us+e, E() =0, Cov(e) =02l

where y is an n x 1 vector of observations, p is a non-random unknown scalar
parameter, U is an n X k& known matrix of full rank and £ is a & x 1 random vector

with E(¢) =0, Cov(§) = cvé‘".(ﬂ and ¢ is an n x 1 error vector which is independent

of £. Let
A2 |
U=P Q'
, 0
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be a singular value decomposition of U/, where P = (py,....p,) such that P'P =
In, A= (Ay,. . M) with A > --- 2 A > 0, Qis 2 & x k matrix with Q'Q = I.
Then the covariance matrix Cov{y) = oZUU’ + 02I, has k eigenvalues gf) +
02,...,0% A + 02 each with multiplicity one and 67 with multiplicity n — k with
corresponding orthonormal eigenvectors py, ..., Pn-

If UU'1, # cl,, then 1, is equal neither to one of the p; nor to a linear combi-
nation of pgyy,---,pa. Assume that 1, = ¥;.; a;p; for a subset 7 C {1....,n} and
some constants a;. Let Zp = min{i: i € I'}. Then by (5.13)

o 41+ Noo/a?)
eff(7) > ST

Example 5.3
Consider the one-way analysis of variance model

Y =pto+e; G=1,---m i=1,---,k).
If Cov(g;j,er) = 0 for all i # 7' and

o Hi=7
ofpi if j#§
then (5.17) applies here since the conditiozs (5.14)-(5.16) are satisfied.

Cov(ey;, i5) = {

Example 5.4

Consider the analysis of variance model

y.-,-=u+a.-+ﬁ_,-+'e,-,- (E=1,...,q, j=1,...,b), (520)

- where a; are the treatment effects with ¥{_; a; = 0 and the §; are the block effects
with 32, 8; = 0. Between blocks, the erors ¢;; are independent, within the jth
block, Cov-(e,-;, €ix) = o3p; if | # k and Cov(gjn,ejn) = o if I = k, so that the
error covariance matrix satisfies the conditions (5.14)~(5.16): -

We consider an arbitrary contrast ¢, ..., a, of the trea;;..'.lent effects. Let C =
(¢1y+++4Ca—1), where ¢; = (0,1,...,-1,0,...,0)" is an ab x 1 vector with —1 in the
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(¢ + 2)th component of ¢; (i = 1..... a-1). Let v = (g, m..... g, Br,y .o Bp)

denote the vector of parameters. We are interested in estimating ¢y, ¢ € C(C).
Let z; = (0.1....,-1,0.....0)' (i =1,....a—1) be an ab x 1 vector. where ~1
is in the (ib + 1)th component. Then C = X'Z, where Z = (3).....2;) and X is

the design matrix in the model (5.20). Let us write

X(X’X)—C = (slv Tt Sa—l)s:

where

& = (;,—3,0,..-,0)’

Sy = (12,0,—’5,..-,0)'

(13,0,0,...,-15).

Sae1

Then A; = 63[1 + (b~ L)p1),..., Aa = 02[1 + (b — 1)p,] are eigenvalues of the

covariance matrix ¥ in the model (5.20) and

J

(13,0,...,0)
B = (0,1;...,0)

Ja

(0,0,...,14).

are, respectively, their orthogonal eigenvectors.

Since C{(X(X'X)*C) C C(Jy,...,Ja) it follows from (5.18) that for any ¢ € C(C)

Efi(c¢3) > %, (5.21)

where A; = max{A;} and A, = min{\;} (i =1,...,a). The lower bound in (5.21)
is much sharper than the lower bound obtained in (4.9) which is

Eff(¢'8) > -z



where 7, = min{o}(1 - p),...,623(1 — p,)}. In particular if 6? = ¢* and p; = p,
then the efficiency eff(¢8) = 1, i.c., for any contrast of ay, . .., &, the OLSE is the
BLUE.

Example 5.5

Consider the model (4.1) with £ = ¢%],,. Suppose that 8 = (5], 55)'. where §; and
f= are ¢ x 1 and (p — ¢g) x 1 vectors and the full rank matrix X = (X : X,), where
X, and X, are n x g and n % (p~ ¢) matrices, respectively. If we assume that 5, =0

then
B = (XiX) Xy

is the BLUE since the covariance matrix Cov(e) = ¢°I,. The covariance matrix
Cov(8) = 02(X!X;)"'. But 3, is not robust against a violation of the assumption
B2 = G. On the other hand the OLSE §, of f;, with Cov($) = o3(X'X)!?, where
(X'X)1 is the upper left ¢ x g submatrix of (X'X)™!, is robust but not efficient.
Therefore, one may be interested in studying the relative efficiency of Bl when
B =0.IfC(Zy) CC (piyy-..,pi,) for some 1 < 4 £ -+ < i < m, then by (4.47)

- 2 -
Cov(p) < ST Cov(B),

where Z,, = (I,,,0)" and py,...,p, are orthonormal vectors of X'X corresponding
to eigenvalues A > .-+ > A,. In particular, if C(Z,,) C C(p1,...,pa) then

Cov(f) < P2 cou(ly),

Example 5.6

Consider the Generalized Linear Model (GLM)

E(w:) = u(6:), Var(w) =¢4a(6) (i=1,...,n),

where p is a function on the reals and £ is its derivative, g(u(6;)) = =8 is a link

function, z; is a p X 1 vector of known values and 3 is a p x 1 vector of unknown
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parameters. In this GLM, no assumption is made on the joint distribution of
¥ = (%1.-...yn) except that the covariance matrix of y is in block-diagonal form
with small block sizes.

The weighted least squares estimator 8 of 8 in the GLM is defined to be a

solution of
X'AS =0,

where the full rank n X p matrix X = (z\....,z,)", A =diag{h(z{8),...,h(z]5)}
with h(t) = d(g(w))™"/dt and $ = (3 = g~ (z18)s--+,¥n — g™\ (z,8))". Under
some regularity conditions, ﬁ is asvmtotically normal with mean 3 and asymptotic

covariance matrix
= (X’AAAX)"X'ACov(y)AX(X'AAAX)"‘,

where A = diag{/(61),...,/{8,)}. Let B = AAA and A = AA[Cov(y)]'AA. 1If
C(B'2X) c C(pi,---,pi)y 1 iy € -+ Lidg < m, then by (4.45)

v <L ('\i: +’\l'k)2

rt -1 ry—~1
< Gatul eanicon)lAaX) ™,

where p,, ..., p, are orthonormal eigenvectors of Cov(y) corresponding to the eigen-
values Ay 2> -+ 2 A;. In particular

(A1 + 2n)?

<
XS A,

(X’AA[Cov(y)] ' AAX)" .



Appendix A

Pal Schweitzer (1914):
An inequality about the arithmetic mean!

We will prove the following thecorem: If any natural numbers fall between two
positive bounds, then the product of the arithmetic mean of these numbers and the
arithmetic mean of reciproeals of Lhese munbers cannot exceed the product. of the
arithmetic mean of their two hesids and the arithmetic mean of the reciprocals of

their two bounds:

1 171 ] 1 171 1
= - . v [ — .o —_] - . -] — — .
R JURARETS n(t,+ +tn)_2(m+M) 2(m+M), (A1)

where0<m <L <M (i=1,...,n).
To prove (A.1), let us consider for the moment that all the ¢'s, with the exception
of ¢;, are fixed, and find at which point ?; in the interval (m, M) the function

l_+B)

3=f(f-i)=$(ti+44) (t,

attains its maximum value. Differentiating this function, we get

dz 1 A
d‘n-zf(ﬁ"@)*

VIn Hungavian: Egy egyenlOtienség az aritmetikai kozépértékedl, Matematikai és Physikai Lapok
23, 257-261 (1914). English translation by Levente T. Tolnai and Robert Vermes.
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which vanishes only at t; = \/4/B and : has a minimum. thercfore. or maximum

in the interval (m, M) at cither t; = m or ¢, = A according as
1 1 > 1 1
—(M .4(—- ) Z(m+. (— )
-n-( + 4) M+B <n,_,(m+ A) m+B
or

m+ M >

A .
mM <B

For any A and B, i.e., for any ¢;.-+-.t;_y, titts. .-, Ln, if We want = to be its

maximum, then we choose the value of t; as M or m according to

4. m+AM >
T omM

We can apply this argument to every #; to obtain the maximum value of = as
the following

1 a n-—-a
zmu—¥[0M+(n.—a)m] [M-J- - ],

where a and n — a count the number of t's equal to M and m, respectively. We may

then write
1 1/1 1\ 1¢(n \2(m-M)
> < - ¢ - — —_— ] — — - — ———
m“"2(m+M) 2(m+M) n2(2 ) mM
or

which proves the required inequality (A.1). Equality holds in (A.1) if and only if n
is even and @ = n/2, i.e., an equal number of ¢'s are equa:l to m and to M.

This inequality (A.1) can be used to establish ar upper bound for the integral
of reciprocal functions. Consider the numbers t), ... ,%, as the values of the positive
function t = f(z) corresponding to the equally spaced values zy,...,Z,. The left-
hand side of (A.1) then becomes :



1 1 1 1
;[f(zl)'*'f(-ﬂz)'i" f(za)] - = [( ) f($2)+..'+f—(-'cn_)}’

which may be viewed at as an approximation to

1 b 1 b dr
Ta-/a f(ﬂ')d.‘l: b_—_a.[. }_(I—) (A?.)

If we now take limits in (A.2), we obtain

. 1 1 1 1 1
i 2 )+ S (7 + oot m) tmean- 2 (24 2),
(A3)

where m and M represent a lower and upper bound, respectively, for the values of

f(z). Replacing the terms on the left-hand side of (A.3) by integrals we obtain

amar . foie [ gy s me a3 (2 57)

and hence

bde _ (bma® 1o o0 161 1
a f(z) = [P f(z)dz 2(m+M) 2(m+M)'

If we also take into account that

b dg (b—a)?
. 7@ 2 @) (A.4)
which comes from Cauchy-Schwarz inequality:
2
E’wzd_-c.fabwzdzz (_qum,b) (@>0, ¥>0)
by setting ¢ = \/f(z) and ¥ = 1/,/F(x), we obtain
oo bdz  (b-af 1 L,
Piod S L e S Trme tmt 0 s (m ) 49

Since

Ymann L(Lad) o =N
2 o\m M/ ’



i.e., the square of the ratio of the arithmetic mean and the geometric mean of 1 and
M, is near 1 if M does not much differ from m, the integral [° dz/ f(r) is squeezed
between two close bounds. The formula (A.3) is also useful in approximating inte-
grals of reciprocal functions. If we take the arithmetic mean of the lower and the
upper bounds, which has value
(b—a)? [(m + M)?
* 5 + 1 .
R f(2)dz | amM

the d-error we make is smaller in absolute value than half of the difference between

1
2

the bounds, i.c.,

g (b=a)® 1 (mP+ M
'°'<f:f(x)dx'?i'( Bmd ‘1)‘ (A0

This formula can be used to approximate logarithms. By setting f(z) = x, after
simplifying the corresponding value in (A.6), we find by taking logarithms that

| 2 1
g + S 1 (1 T 1))

instead of log z + 1, while the absolute value of the é- error

e 1 )
BI< Zer e

If we calculate the logarithm in this way, the error we make starting at z = 10

* is smaller than

1 1
4-10-11-21 ~ 9240

and starting at z = 20 is smaller than

z 1 1
4-20-21-41  68880°
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Appendix B

Chun-Tu Lin (1986):

An Extension of the Kantorovich Inequality and
Its Application to

Estimating Parameters in Linear Models!

B.1 Introduction

In this paper we obtain upper bounds for the expressions

|XN'B AR N XA d |X'B=1AB~Y] - YA X
IXB-IX[? ‘“ IX'B1X|- [Y'B-1Y|
where A and B arc n X n positive definite matrices, X and Y are arbitrary n x k
matrices of rank k£ < n. In addition, sotne applications are discussed. The results
in this paper are an extension of vesults by Khatri and Rao (1981) [76].
If A is an 0 x o synnnetrie positive definite matrix with cigenvalues Ay > -+ >
Ar > 0, then for any non-zero n x 1 vector z, we have
Az -2’'A7lz (M +A)?
< ’
the Kantorovich Inequality. This inequality has already had a number of general-
izations, cf. c.g., Strang (1960) [151], Greub and Rheinboldt (1959) [60], Bloomfield

'In Chincse: Xitong Kerue yu Shuzue-Journal of Systems Science and Mathematical Sciences
6 (3), 217-220 (1986). English transiation by Ming-Yan Venus Chiu.
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and Watson (1975) [21], and Knott (1975) [79].

Khatri and Rao (1981) generalized the Kantorovich Inequality as follows, cf. our
54.3:

X7AY] - AN MR (4 dia)?
§ it Mucigr)? .
o s U oo b

i=1

where A is an n X n non-singular matrix, not necessarily symmetric, with A, >
~o 2 A >0, and N (i = 1,...,n), the cigenvalues of A'A.

Moreover

- -'Ble . ].\"Ce.\’[ < min(ﬁ_k) (b + Htueis)’ (B.2)
IX'BCX| < RETTRR 2

where B and C are n x n non-singular symmetric matrices so that BC is positive
definite, BC = CB and p; 2 -+ > u, > 0 are the roots of |B - uC| = 0.

In this paper we mainly give these two inequalities:

|X'B-1AB-'X|- |X'4-\X| "R o in)?

» | '-<-. B-3
|x\ 'B-lX |' i=1 ity ( )
and
|X'B-1AB-'Y|. [y’ A~ X| '“““ﬁ“"’ (i + i)’ (B.4)
|IX'B-1X|-Y'B-ty] = &t Aptiflnivt

where 4, B are positive definite matrices and u; > --- > u, > 0 are the roots of
|A— uB|=0.

It is easy to see that the main result of Bloomfield and Watson [21] and Knott
{79], i.e., the Bloomfield-Watson-Knott Inequality (4.9) in our Chapter 4, is the
special case of (B.3) when B = I. Furthermore, if we replace A~! by C?, B~! by
BC, and use BC = C'B, we obtain the inequality (B.2) from (B.3). Therefore (B.3)
is a generalization of (B.2).

In our §B.3 below, we will point out that in estimating parameters in linear
models, the inequality (B.3) is more useful than the inequality (B.2). In our §B.2
we will give a proof of the main inequalities (B.1) and (B.4) our ‘method is much
simpler than that used by Khatri and Rao (1981) [76].
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B.2 Main results

In order to obtain the main results of this paper, we give two lemmas.

Lemma B.1 If X end Y are n x k matrices of rank k, then
XY < |X'X|[Y'Y].

PROOF: Since / — X(X'X)~'X’ is a symmetric idempotent matrix, where I is the
identity matrix of rank n, it follows that Y’[I — X(X'X)~'X']Y is non-negative
definite. That is Y'Y — Y'X(X'X)~1X'Y is non-negative definite. This yields the

required result.

Lemma B.2 If A is an n X n positive definite matriz, for any n x k matriz X of

rank k, then

[X'AX] XX O+ Ancig)?
| XX 2 - dMdpoipr

i=1

where Ay > -++ 2> A, > 0 are the eigenvalues of A.
PROOF: The proof can be found in Bloomfield and Watson [21] and Knott [79]

Theorem B.1 Let A, B be n X n positive definile matrices. For any nxk matriz
X of rank k, the inequality (B.3) holds.

PROOF: Since B is a positive definite matrix, there exist a nonsingular matrix P
with B~! = P'P. Let Z = PX. Then the left hand side of (B.3) can be written as:

|X'P'PAP'PX|-|X'P'PA-'P'PX| _ |2'(PAP")2)|-|Z'(PAP)™'Z)|
|X*P'PX? B |2'Z|? '

Notice that A\;(PAP') = M(AP'P) = M(AB™) (i = 1,...,n), where );(.) repre-
sents the ith largest eigenvalue. Using Lemma B.2, the proof is accomplished.

Corollary B.1 If C? replaces A™! and BC replaces B™2, then the inequality (B.3)
becomes (B.2), where B,C are as defined just below (B.2).
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Theorem B.2 . Let A be an n x n matriz. Then A can be written as

A=PDQ,

where P, Q are n x n orthogonal matrices, D = diag{\i,.... A}, M 22N, >0,

with AY (i = 1,...,n), the eigenvalues of A'A and inequality (B.1) holds.

PRrROOF: From 4 = P'D@, Lemma B.1 and Lemma B.2, we have

IX'AY|- YATIX  |XP'DQY- Y'Q'DTIPX|
XX YY] EAVHIDY
< U(X'P'DPX||IX'P'D'PX|V'Q'DQY|Y'Q'D-'QY )Y
- P PX Y QY|
< man{k.n—-k) ((\‘ + /\n—i-{-l):!

4’\i’\n—i+ |

=1
In particular, if 4 is positive definite. and X; { = 1,...,n), are the eigenvalues

of A, then the inequality (B.1) holds .

Theorem B.3 Assumme A and B are n X n positive definite malrices. For any

X, Y,n x k matrices of rank k, the inequality (B.4) holds.

Proof: The proof is similar to the proof of Theorem B.1. Let B! = P'P, Z =
PX, W = PY. Then the left hand side of (B.4) can be written as

IX'B-'AB™'Y|[-[Y'A"'X| _ |X'P'PAP'PY|.|Y'P'PA-'P'PX|
X'B-IX[-|YV'BY| IX'PPX|- Y P'PY]|
|Z{PAP)W| - |W'(PAP')~ 2|
1Z'Z] - [W'W] '

Since M\(PAP') = Mi(AB~!) and using the special case of Theorem B.2, the in- .
equality (B.4) is obtained.

Corollary B.2 Let B, C be as'mentioned in (B.2), then

| X'B%Y |- [Y'C3X| '“‘“‘ﬁ‘""’ (B3 + i) (BS)
|X’BCX|-|Y'BCY| = Appitn_in1 |

=1

where gy > -+ 2 py > 0 are the roots of |B — uC| = 0.
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By simply replacing A~! by C? and B~! by BC in the inequality (B.4) we obtain

(B.5) immediately. This can be viewed as a generalization of the inequality (B.2).
B.3 Applications

Let us consider the linear model

y=X8+e, E()=0, Cov(e)=a4, (B.6)

where y is an n x 1 observed vector, X is a n x k known matrix of rank &, 8 is
an unknown k x 1 vector, and ¢ is an n x 1 error vector. Then the Gauss-Markov

estimator of 3 is
B=(X'A'X)' X4y,

If the covariance matrix of model (B.6) is mistakenly taken as Cov(¢) = B, then

8 might be mistakenly estimated as
b= (X'B-1X)"'X'B~ly

Then the relative efficiency of b with respect to 8, using the ratio of generalized

variances, is

_ |Cov(B)] _ |X'B-AB7IX|-|X'4A"1X]|
[Cov(8)] | X"B-tX]?

The inequality (B.3), therefore, gives an upper bound for this relative efficiency.

We may compare this result with that in Khatri and Rao (1981): When the
covariance matrix in model {B.6) is A~! = C? and the mistakeﬁ covariance matrix
used is D™t = BC, they give the upper bound for ¢ under the condition BC = CB.
This actually requires the condition

AD = (BC%™' = DA. | S

However, this condition is not satisfied in general. For example, if
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1 p p 1 p 0
A= g1l p|. D= P 1 p
p o1 0 p 1

where 0 < p < 1, then AD # D-A. The upper bound of ¢ which we give does not
require the condition 4D = DA,
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Appendix C

Yong-Lin Chen (1987):
A simpler proof of the Kantorovich Inequality and
of a generalization of it!

In this paper we give a simpler elementary proof of the Kantorovich Inequality:

Sadh Y et < %ﬁ (C.1)
wherea; >0 (i=1.... i Tay=1,0< ) €40 <A, and ¥ denotes T04
Since
%—%20 —‘/—:Y':—-%zo (i=1...,n),
we have

a; > 0. (C.2)

Expanding (C.2) and using 3_m; = 1 yield:

\/,_ ‘/_ > \//\11\ Za,A"' ALy (C.3)

and so

'In Chinese: Shuxne de Shiinn vx Renshi -Mathanetics i Practice and Theory 1987 (4),
78-79 (1987). English translation by Jiabin Zhao. '
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12|
L g

- -1 1 Y K 3=l 1 )
V)‘l/\nz‘alA, + mzaﬂ\l 2 2(\}’\I/\nzalA; ) (\/’\—I'A—"Zaﬂ\l)
1
= 2(Xah-Tart)2. (C4)
Thercfore {C.3) and (C.4) imply that

Ve VA

-
T

Tt um 22(Eaen - Tax)?.

-

(C.5)

Then it is easy to obtain (C.1) by squaring both sides of the inequality (C.3), and
our proof is complete. _

It is obvious that (C.1) becomes an equality if A; = A,. When 0 < A; < A, then
(C.1) is an cquality if and only if among the \; (i = 1,...,n), &k of them take the
value A, the remainder take the value \,. and also a; +- - - +a; = @y - - -+a, = 1/2,
where 1 <k <n—1. [In this paper allg; >0 (i =1,...,n). -G. A]

Furthermore, by the same method we can prove the following inequality wkich

is a gencralization of {C.1) as presented by En-Wei Shi (1985):

o a 2
rpia) - rpbl 1 (AB)? ab\*
1 < =]l— — . C.6
IS pilaib) ™ ~ 4 [ %) t\aB) |- (C6)
where0<a<ag; <4, 0<0<H;<B, p;>0(i=1,...,n); a>0 Infact, we
note that
o2 gef2\ [p2f?  per2
a; a ; _
(b?lg - Bu/g) ((1?,2 - _4°f2) Di > 0 (t =1... Wn)‘
We then have
3 (B2a’? - 02/%8)7%) (4126372 — o123} p; > 0. (C.7)

‘Details of the proof are omitted.

It is also obvious that (C.6) is an equality if and only if either a/B = 4/b and
a;/b; = a/B, i = 1,...,n; or when a/B # A/b there exists an integer k¥ with
1<k <n—1such that k of the a;/bi, i =1,...,, take the value a/B, while the
remaining n — & take the value A/b, and
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(4a)* 3" pib? = (Bb)** 3 piaf.

Remark: From (C.6) we sec that (C.7) is true under the weaker conditions:

pi>0, a;>0. >0 (i=1.....n): a>0, A>0. B>0. a>0, b>0,

with

a _a _ A .
—_—< - — = . T).
BSE 53 (i=1.....n)

the necessary and sufficient conditions for equality in {C.6) are the same as before.
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