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modified by Merilees in 1968 is used to investigate the so-

called " amplitude vacillation" or baroclinic vaclllation
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The results of few numerical integrations of the
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1. INTRODUCTION

In the search to a better understanding of the
atmosphere, scientists constructed different laboratory
models. Fultz, Hide and thelr collaborators worked with a
rotating annulus of fluid to which a differential heating
was applied; the outer wall of the annulus was kept at a
high constant temperature while the inner one was kept at a
relatively lower constant temperature. In their experiments
they 1ldentified four different reglmes of flow as deplicted
schematically in Fig 1. The ordinate is the "forced" thermal

Rossby number Ry

”_n_z (b-a)*

where g 1s the acceleration of gravity, D is the depth of
the fluid, £ is the coefficlent of thermal expansion, T, and
Ty are the outer and inner wall temperatures, b and a are
amd S is the rotetiom vate
the radii of the outer and inner cylindrical wallsY The

abcissa 1s the Taylor number Ta:

Ta = L/_rf(b-a)5
v2 D

where y 18 the kinematic viscoslty. The steady wave regime
is distinguished by the fact thzt only one wvave number at a

time dominates the flow, the higher wave nurcbers occurring
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Figure . 1. Schematic plcture showlng the four reglmes

identiflied by Fultz et al.
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at lower values of Bot*. These waves are quasl-steady and
regular in appearance. The unsteady wave regime is
characterlized by more turbulent, continually changing flow
patterns, simlilar to the large-scale motions of the earth's
atmosphere, in which a spectrum of waves of different sceles
dominates the flow. The axlally symmetrical régimes are also
called Hadley clrculations. In the region between the steady
wave reglme and the unsteady wave regime, Hide, Fultz and
thelr collaborators have observed a phenomenon which Hide
called "vaclillation" in which the waves undergo a periodic
change first tllting from north-west to south-east and later
from north-east to south-west relative to the annulus.

During the winter 62-63, Pfeffer and Chlang observed a
different kind of "vacillation" in which the wave pattern
expands and contracts with no noticeable change in the tilt
of the disturbances. The flrst type of vaclllation was then
called "tilted-trough" vaclllation and the new one,
"amplitude" vaclillation.

The main characteristics of the tilted-trough
vacillation is the large periodical fluctuation in magnitude
and 1in sign of the rate of conversion of kinetic energy

between the eddies and the mean zonal flow. This rate of

conversion, (KE"KZ)’ depends upon the covariance of u'v'
and 0(G/a)/dr . Here u and v are the zonal and meridional
components of velocity, respectively. The bar represents a
zonal average and the prime represents the departure at a

point from this average. This fluctuation was found from



Fultz's data.

In amplitude vacillatlion, the troughs of the wave are
oriented north-south and this implies that u'v'=0 and
(KE—>KZ)=O: consequently the energetics of this phenomenon
1s quite different. There is a striking similarity between
this phenomenon and certain index breakdowns in the earth's
atmosphere, an example of which is given in Filg 2. w1ns§on
and Krueger (1961) did a detailed analysis of the energetics
of the index breakdown pictured in Fig 2. They showed it was
associated with a rapid adliabatic conversion of potential
energy into kinetlic energy of the atmosphere.

In order to describe the energy cycle of amplitude
vacillation, the simple plcture of figure 3 is sufficlient.
In the figure, the subscripts Z and E refer to the zonal
and eddy components respectively; A is the avallable
protential energy, K is the kinetic energy, G is the rate of
generation of avallable potential energy, and F is the rate
of dissipation of kinetic energy; the quantities (Az-aAE),
(Ap>Kp)s, (Kg-—>Kz) and (Kz->Az) are the rates of conversion
from one form of energy to another. Pfeffer and Chiang's
experiments suggest the following cycle. During the first
part, where thé wave present decays, we have Fg) (Agz->Kg)
and the authors suggest that G; > (AZ -+Ag) such that at the
end of this first part the strong radlal temperature
gradient makes conditions favorable for a more rapid release
of avallable potential energy. During the second part, the
grdwth of wave cyclones takes place slowly. During the third



Figure 2. 500 mb charts showing two stages of an

atmospheric index cycle. (after Vinston

and Krueger)




Figure 3. Schematlic plcture of the energy cycle in a
differentially heated, rotating annulus of
fluid.
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part, the growth becomes more accentuated and 1t suggests
that the adiabatic rates of energy convgfsion (Az—+AE) and
(A »Kg) are the dominaqt processes affecting A;, Ap and Kg.
As the eddles grow, the supply of avallable potential energy
dininishes and these conversions musﬁ decrease in intensity
and we are back to the beginning where the friction takes
over. Speculating about the effect of viscosity, Pfeffer and
Chiang came to the conclusion that at low Taylor number and
high viscosities, only one single two-dimensional wave
number can be present and therefore amplitude vacillation
can result only from baroclinlic interactions between the
mean zonal current and the wave. This involves only
conversions of the type (Az—Ag) and (Ap->Kgz).

When the Taylor number 1s increased, a given wave scale
in the east-west direction can have more than one wave
number in the radial or north-south direction. Under theée
conditions the resulting wave is free to interact
barotropically, as well as baroclinically, with the zonal
current, leading to energy conversions of the form (KE”KZ)
in addition to other possible energy transformations. In the
atmosphere, where many viave scales can be present, an almost
pure amplitude vacillation is then sporadic; in laberatory
experiments, it is more closely cyclic in nature.

Before coming to the present work, let us mentlion that
Fowlis and Pfeffer (1969) were able to get data of amplitude
vaclllation of synoptlic density. They introduced 50 fine

thermocouples in an annulus whose radiil were b = 6.03cm and



a = 3.49cm. With a clever disposition, they were able to
minimize the probe effects to a very small proportion and
they got at the same time a good appreciation of the zonally
average temperatures at 6 different radil. Figure 4 shows
some of thelr results. They investligated a wave number four
pattern. The rapld decrease in the radial temperature
gradient between time tl and t2 in figure 4 appears to
correspond to the third part of the energy cycle described
previously where the wave grows rapldfply.

With the aim of knowing something more about
vaclllation, the following research is done with a
mathematical model. It is a spectral model which allows a
non-linear interaction between a wave and a zonal flow. In
rernmitting the presence of only one two-dimenslonal wave
number, the tilted-trough vacillation does not occur.
Merilees (1968 b) got fairly good results with it in
describing the transitlion between axisymmetric and nonaxi-
symmetric regimes in a rotating annulus. Merilees also
showed that the adiabatic part of the model exibits
vaclllation and the solutions of the system are elliptic
functions of time. (Personnal communication)

In this study we investigate briefly the adiabatic
oscillations. The main part of the research includes a
simulation of heat exchanges at the boundaries together with
diffusion and internal viscosity. Finally, a brief look at

the effect of friction with the boundaries completes the

worke.



Figure 4. Time variations of the zonally averaged

temperatures at six different radii over

a 10 min. interval. The imposed

temperature difference is 10°C.
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10
2. THE MODEL

The following chapter is a partial reproduction of
Merilees® article (1968 b); for more detalled 1nfofmation
the reader is referred to it.

The modei equations, apart from the diabatic terms, are
the same as those formulated by Lorenz (1960 b) as the
simplest energically consistent model which describes
baroclinic flow and conéiders a varlable static stability.
If Y+T, Y-7 denote the stream function for the nondiver-
gent part of the flow in the upper and lower layers,
respectively, ©+ T , © -8 the corresponding temperatures, and
-X and X the velocity potentials for the divergent part of
the flow in these layers, the governing equations for the

model ares

D viy= -Jt, V) - T (z, v'7) + [_D_ v“‘P] , (1)
2T Pl g

V= -J(¢,V2t)—J(t,v’w)+/V1X+[b_ vir] , (2
d

ot ot
20 = - J(¥,0) +?v"x+[b__e ,
T ot d
DT = -© V23X + [ciji] , (%)
Dt dt d
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wvhere J represents a Jacobian with respect to the horizontal

coordinates, f is the (constant) Coriolis parameter and the
gquantities in brackets are diabatic terms. The bar operator
indicates a horizontal average, so that the static stabillity

¢ is function of time alone.

The thermal wind equation for thils modél is given by
2 n -1 2

where € is the coefficient of thermal expansion, g the accele-
ration due to gravity and D the depth of the fluld. It has
been assumed, for the temperature variations anticipated,

that the equation of state of the fluid is given by

X=X, (1 +€O8) | (6)
where o, is a reference value of specific volume.

The frictional effect of the boundaries 1s modelled in
the following way. Ve suppose that friction with the side
boundaries tends to destroy motion relative to the rotating
annulus in both the upper and lower layers of the fluld. In
addition, the motion in the lower layer 1s supposed to be
retarded by frictlon with the underlylng surface. e also
permit an exchange of momentum between the two layers of fluid
which depends on the difference of velocities in the two
layers. Each of the boundary dissipation terms is modeiled in

terms of a constant decay rate. This is justified for the
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bottom boundery as shown by Holton (1965) but is an extremely

crude assumption for the side boundary layers. However, as
can be seen in lMerllees' article, the formulation produced
some reallstlc effects on the transition curves between
Hadley and Rossby reglmes.

If we further assume that the friction efféct of the
boundaries depends only on the area of contact between the
fluid and the boundary and not on wheter the boundary is a
side wall or the bottom, and we include the effect of
internal viscosity, we find that

[D_vi‘v] -k 2 Pk VT v VY, (@
e
g

[2_ vz,(] = K'PY -KO142) Ve -2K' Vi +v Vi, (8
3¢
4

where k' 1s the boundary dissipation rate (time'_l), k" the
layer exchange dissipation rate, ¥ the ratio of the depth of
the fluid annulus to its wildth, and Vv the kinematic viscosity.

The dlabatic heating and cooling effects produced by the
boundary leyers are considered to be Newtonian in form. We
lmagine a specified temperature distribution toward which the
boundary heating effects are continuelly driving the fluid.
The rate of heat exchange with the boundaries 1s measured by
h'. With these assumptions end the inclusion of internal

heat conduction, we find that
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[_a_@] =-h'(e-0% + KV'e |, (9)
vy
[_b__?] =-h'c | o)
ot |y

where © is the fixed, preassigned, vertically averaged
temperature distribution and K the thermometric conductivity.

The preassigned vertical temperature difference is considered

to be zero.

Y

The above equations are next simplified by using their
spectral forms with a very few number of components. The
spectral functlons are chosen such that the average vorticity
vanishes. A circulation which does not satisfy this condition
is necessarily transient in this model as has been shovm in
Lorenz (1962). The derivation of the spectral equations
closely parallels that in Lorenz (1962) and details of the
annular eguivalent are reported in Merilees (1967). Here
follows the resulting nondimensional spectral equations and
the definition of the quantities involved.

The expansions of the vertical mean flow ¥, the vertical
shear flow T, the vertical mean temperature 6, the vertical
temperature difference ¢, and the lower layer divergence v X

(equal and opposite in upper layer) are given by:

‘I’:/bl(‘i’AFAHVK FK+q}LFL)9 (11)



T '-:/bQ(TA FA +'(VK FK + 7T FL) ’
e =A/b2(eoFo+eAFA+ Ok Fix +OLF),

lez/((&)A FA + Wy FK + wLFL),

where f=20, b is the radius of the outer cylinder,

A=hre™lg” 1p-t

(Egs. (31)=(34)). The spectral equations are thens
Ya=-Y¥hQ+29) ¥ + Yhoy ~h P X Ya

\{;K =-‘O<‘3(\VA L’/L +TATL) — Xh(l+27t) Yk
TrhT-hBX G-p7 vy,

\PL = O(ﬁ(\PAqJK +’CA'CK) "Ul’\(‘*‘?—%) q/L
+¥hT - hBXG-p7 Y,

Ta= -XN2wp +¥hty -¥Yh (115427 ~hhX 7y,

TE'K= -Xp (“}/Af[_‘*'(,q Y - r_‘sz + Uh‘\’K
-¥h G+ 8+2%) T ~hBX (-7 Ty

T = XB (Ya T +qu/K)“)*'QwL + ¥h,
~¥h(t+ 642907 - h?a)((hﬁ)"fl_ )

14
(12)

(13)

(14)

(15)

, and the F's are the annular spectral functions

(16)

(17)

(18)

(19)

(20)

(21)



e 15

éo =-h(6,- eo*) ., , (22)
éA =-X(Y O -6 Yk + (@, UJA—P\(GA-GK)-}\ Xem (23)
éK z O((YLGA"GLWA) + q;wk-h GK"I'\X(l°p5leK, (24)

: -1
O 2"0((‘1)K9A“6K‘~|’A)+ (oo L"heL— hX(1-6) ©_, (25)

o :-wAeA“WKGK—wLGL"hQB ’ (26)
OA=Ta 5 Ok=Tk 5 €L=TL , (27)

where the dot denotes differentiation with respect to

nondimensional time t (t=t*f, t* being dimenslional time),
[ " ' -

¥= k/h' ’ &= K/k , h=h'f 1, and the forced temperature

contrast is assumed to be zonally symmetric, i.e.,
¥ 2 ¥ ¥
e—_-A/b (65 Fo+ 64 Fa) . (28)

h represents the (nondimensionsl) rate at which heat is

exchanged with the boundaries, ¥h the rate at which momentum
is exchanged with the lower boundary, ¥h$ the rate at which
momentum is exchanged between the layers, and ZXh} the rate

at which momentum 1s exchanged with side boundaries. The
parameters X and Pr are defined as

. |
Pr = Prandtl number = VK , (29)
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X=K}\2h- ) | (30)

where v, K are the nondimensional kinematlic viscosity and
2
thermal conductivity, respectively (scaled by the factor b / )e

The spectral functlons are given by:

Fg = 1, (31)
Fp = Np(Jo* (AR)Y,(Ar)-Yy* (AR)I(AT)) (32)
Fy = N fm(/z) Ccos my , (33)
Fi, = N /‘m(/t) SIN my (34)

where N, N, are normalizing factors;

fmln) = Yon (pR) J'm(ruc)- J’“(VR) Ym(pn)

R = ab"i; A is the first root of

TOOR) Yo (3 =Y (AR To(X) =0

?

’;. 1s the first root of
Yon (R T () =T (pRYYim(p) = 0

Jn is the Bessel function of the first kind of order n, and
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Yn is Neumann's Bessel function of the second kind of order

~4

n as defined by Abramowitz and Stegun (1965).

The spectral parameters g ? are defined in terms of

the spectral functlons as

@: ‘—->3r:2 ” (35)
o = mNz(l~R2)—‘}f2

d—FA dr (36)
R d

R

These parameters depend on n, as well as on the relative
horizontal dimensions of the annulus, specifically on R.
Their values and the values of } are given in Tables 1, 2 and
3. As a result of the relationship betiween Jo' and Jl’ end
between YO' and Y;, note that r.is given the value of )\ when
n = 1. Due to the cholce of orthogonal functions, wave
number one does not develop in this model.

Note that 6,4 and ez'are proportional to the interior
thermal Rossby number Rot and the "forced" thermal Ressby
numbex Rot* respectively; ¢o 1is proportional to the
rotational static stabllity Sz' We have the following
definitions:

Rot = 2€EDALT
n? (b-2)*



o
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SZ = Z¢& 02 AT
h2(b-2)% AZ

where OyT 1s the horizontal temperature difference in the
interior of the fluid and %; 1s the mean lapse rate. In

terms of spectral amplitudes of the model we have

1

-2
Roe = /6 (1-R)"AF, ©p = B,Oa

Roc = /6 (1 ~RI°AFs 65 = B, 0p*
S; =640-RY* @ =B, @G ,

where AF, is the change in the spectral function across the
annulus. The parameters B;, B, and AF, are given in Tab;e b
as function of R.

For the relationship between coefficients representing
the boundary layer effects and the'physlcal properties of
the fluid, some assumptions must be made. The assumptions
used here are the same as the ones in Merilees' article; h?
is set proportional to 0? and the same constant of

proportionality is used. It is assumed that

h-2z 4n?(b-a)"
¥ p*?

where v* 15 the dimensional kinematic viscosity. This leads



to the following useful relations:

2 2
XPIL::X)\(l—R) .
In the experiment deécribed e have made the further

assumptlon that the static stabllity is constant with

respect to time.

19



Table 1. The parameter g as function of wave number (n)

and annular size (R).

Rn 1 2 3 4 5 6 7 8 9 10
0.0 0 ,kk3 .639 .745 .809 .851 .881 .902 .918 .930
0.1 0 .k3 .68 .730 .798 .842 .84 .896 .913 .926
0.2 0 .32 .56L .689 .76T .818 .854 .880 .899 .91k
0.3 0 .260 .45 .69 .73 .776 .820 .852 .876 .89k
ok o .183 .312° .52 .630 .708 .764 .806 .837 .861
0.5 0 .20 .265 .hO2 516 .606 .676 .730 .772 .805
0.6 0 .07 .169 .276 .378 .69 .SWT .612 .666 .70
0.7 0 .037T .092 .159 .233 .306 .377 .bk3 .502 .554
0.8 o0 .015 .039 .070 .107 .1k9 .19k .20 .286 .331
0.9 0 .003 .009 .0M7 .026 .038 .051 .056 .082 .100

-

02



Table 2. The

and

parameter o as function of wave number (n)

annular size (R).

Rn 1

2

3

4

P

6

1

8

9

10

0.0 9.631
0.1 9.350
0.2 9.084
0.3 9.13
0.4 9,552
0.5 10.4h)
0.6 12,037
0.7 1L.946
0.8 21.039
0.9 39.73h

16.020
16.476
17.145
17.8L5
18.9%0
20.819
24,052
29.885
L2.076

20.763
21.701
23.685
25.766
27.993
31.072
36.023
44,811
63.111

79.h468 119.202

24,508
25.815
28.898
32.670
36.540
41,123
4T.925
59.717

158.931

27.621
29.217
33.18%
38.562
44,1438
50.895
59.730
Th.595

30.249
32.119
36.832
43.605
51.605
60.306
71.407

32.555
3L4.650
40.012
47.990
58.043
69.282
82.924

3k4.596
36.898
42,834

51,871

63.812
77.764
9h.2h2

89.438 104,235 118.977
8L.1h2 105.166 126.18L 147,192 165.188 189.)7h 210.1hh
198.669 238.398 278.135 317.863

36.455
38.922
49.373
55.356
69.006
85.726

38.103
40.765
47,682
56.522
73.717
93.130

105.324 116.131
133.654 148,252

357.594 397.323

1e



Table 3. First roots of Ju(pR)Y,(p) = ¥ (WR)J, (k) = 0.

-~ 10

Rn 1 2 3 4 5 6 7 8 9
0.0 3.832 5.136 6.300 7.588 8.77T1 9.936 11.086 12.225 213.354 21h.L76
0.1  3.941 S5.1k2 6.380 T7.588 B.77T1 9.936 11.086 12.225 13.35h% 14,476
0.2 "L.236 S5.222 6.395 7.590 8.772 9.93G 11,086 12.225 13.354 1L.L76
0.3  4.706 S5.h70 6.hoN 7.623 8,781 9.939 11.087 12.225 13.35h4 14, UT6
0.b 5.391 5.966 6.800 T7.790 8.863 9.976 11,103 12.232 13.357 1h.L76
"0.5 6.393 6.81k  T.458 8.267 9.190 10.189 11.236 212,311 13.L03 1h.502
0.6 T7.930 8.227 8.699 9.317 10.053 10.880 11.T77 12.727 13.T1T 1L.735
0.7 10.522 10.720 11.0k2 21.476 12.012 12.635 13.332 14,092 14,906 215.763
0.8 15.738 15.855 16.050 16.318 16.656 17.061 17.527 18.049 18.623 19.245
0.9 31,429 31,462 31.570 31.693 31.850 32.0k1 32,265 32,522 32,810 33.130

2e



Table 4. Parameters necessary to

define Rot’ Hot* and Sg.

R B B © AP

1 2 A
0.2 18.5 100 3.139
0.3 98.8 130.6 3.025
o.h 131.1 177.8 2.950
0.5 185.6 256 2.900
0.6 286.5 k00 2.865
0.7 506.3 ma 2.848
0.8  113h.k 1600 2.836

0.9 4528.0 6400 2.830
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3. ADIABATIC OSCILLATIONS

hen we consider the adlabatlic part of the model with a
constant static stability, the set of equations (16)-(25)

reduces to:

. -1

eA '-'-O((\"K GL"@K‘I’L)(| +>\2¢S) 9 (37)
Ve =-xB(YaY¥ +op0) (38)

Y=o f (Y4 + Bp0K)

b

(39)

ék = X (l-ﬁS)( l+S)-l‘l’|_9A —0((i+/35)(l+$)-l Ya O »(40)

O =-X (1-S)1 +S)"LVK Op (1451 +s) YAy , (41)

- ¥Yp = constant; @; = constant; S = a’c',rxz.
The idea behind the study of such a reduced system is that
vaclllation occurring here could be similar to the
oscilllation of a pendulum swinging in a slightly viscous
fluld. The fundamental frequency might be affected just a
little by viscous forces, although to achpfive a steady
oscillation, there would have to be an energy source to
compensate for the frictional loss of energy.

Equations (37)-(41) are a set of ordinary differential
equations. The calculatlion procedure used to integrate them
nunerically is the variation of the Runge-~Xutte fourth-order

process due to Gill. A description of this procedure is
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given in Ralston & Wilf (1960).

Vihile integrations were performed, the energy of the
system was calculated to detect the leaks due to the
numerical scheme. All experiments were done in double
precision with a time step of vne nondimensional time unit
(n.t.u.; & n.t.u. = period of one annulus revolution). Some
integrations were carried up to 2,000 n.t.u. and the energy
losses over this whole interval of time were smaller than
1 part in 1,000. Before looking at results, let us recall
that the perlods of vaclllatlion, Tvac’ obtalned by Fowlls &
Pfeffer (loc. cit.) were varying between 320 and 396 n.t.u.
and they were increasing with increasing Rot* as shown in
Table 5.

From the results of the first three experiments showm in

Table 6, a relation between R,y maximum and Tya

e is easi}y

found to be

' -1
Tvac < ROt max

which verifies Herilees' solution. Ty . 18 function of the
geometry of the annulus as can be seen from exp. nos 3 and U4;
it is also function of the rotational static stabllity SZ’
exp. nos 1 and 5. Finally exp. nos 6 and 7 indicate that
Tvac also deﬂenﬂs on the intensity of the vertical mean
zonal flow .

Note that the maximum value of the internal Rossby

number depends on the initial conditions; this is a very



Table 5. Periods of vacillation in Fowlis and
Pfeffer's experiments. (Pr=6.28,
a=3.49cm, b=5.03cm, T=30°C, T,=20°C)

.Q Rot* T

vac
sec~! n.t.u.
2.20 .805 396.
2.30 737 328.
2.35 «705 320.

Table 6. Periods of vacillation for wave number 4 in the

adlabatic model.

EXP. NO. R Sy YA/6n  Rot max  Tvac
n.t.u.

1 0.5 1.0 2.0 « 500 176.

2 0.5 1.0 2.0 .705 125.

3 0.5 1.0 2.0 .805 108.

4 0.6 1.0 2.0 .805 61.

5 0.5 0.1 2.0 . 500 158.

6 0.5 0.5 0.5 . 500 150.

7 0.5 0.5 0.1 . 500 172.
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unpleasant result because it implies a considerable degree

of arbitrariness in the results. If the periods of
vacillation obtained with the model are compared roughly
with the ones obtained in laboratory experiments, (roughly,
because the amount of energy at initial time in the model
influences Rgt pax and because Fowlis & Pfeffer used a
slightly different value of R) we see that there is a factor
at least 2 of discrepancy between theory and experiments.
From this, one may conclude that the diabatic processes play

a role which cannot be neglected.
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k. SYSTEM WITH HEAT AND INTERNAL VISCOSITY

One logical step forward in the spudy of vacillation 1is
‘to add a simple form of heating and a dissipation mechanism.
The Newtonlan form of heating and the heat conduction process
used are described by equations (9) and (10).

The dissipation process considered in this section is
internal viscosity; it 1s represented by termS\)Vqﬂ’andnzv“1’
in equations (7) and (8) respectively. When we add the above

processes to the adlabatic system we get the following set

of equations:

éA = (PO~ Ok) - cg(Ba-cq) ,  (42)

Yk ~aBal - -Gt (43)

Y = OpOk + W~y (tb)

éK = €59 ~ O -9, (45)

O =-C5 Op%K + € O - €10 (k6)
where o)= ot/C1+N@), cy= 4B , ca=xBY , oy= v,

og= X(1-BS)/1+8) , cg= X (14BSIWp /(14 S)

°7’rﬁ(5 _L+|_,Pa) cg= ﬁ&?ﬁﬁ GaX+D) |
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cg= 9A¥/(9;X)3G;+X+O ; (o = constant, S= f;]-l?' .

This formulation is somewhat inconsistent since we
apply dissipation only to the eddy motions and not to the
zonal flow, but we are basically looking for an energy cycle
which has these properties. Therefore we set‘ﬂk to a
positive constant.

Equations (42) to (46) were integrated numerically with
seven different setsof parametric values. In all cases the
evolution of ©p consisted of few oscillations followed by a
levelling off towards a constant value. The steady state -
solutions consisted of a wave moving around with a constant
amplitude and speed or a Hadley regime.

In oxder to get some characteristics of the steady

state solutions wie can do the following. First let us define
Y and 6.

\PE WK*'C’\PL

929K+69L ? ¢ =V-v o,

The steady state is characterised by

é=0 d ¥1=0 d |lel=0 .,
A ? pd I

We also have

2
Ld ¥l =0 ,
2 dt



. . .30
i.e. \{/K Y t Y, ¥ = 0. . ~(47)

This can be expanded with the help of equations (43) and (44)

to read
2
c2 OA (Y &L~ YL OK) + cyl¥Yl = 0, (48)
Now combining equation (42) with (48) we get
2 -
Yl = cacg ©a(cqg-©p)/ Cicy . . (#9)

We can deduce simllarily an equation for the square of the

amplitude of the temperature wave.

101 = c5c5 Op(cq-6n) /e . (50)

In the domain of varlation of parameters we are interested in,
constants cy to 09 are all positive. If a Hadley regime 1is

2
present then Yl and lel2 are both zero and we obtain
- A /(BX N
eA-Cq-'-eA (nX)\GS+X+|) .
as &
In order to get the value of 6, m function of parameters

for a Hossby regime we proceed as follows. First note that

in a steady state, equation (42) becomes

68(9A~cq) = ¢y (\VK GL- “ﬂ_e‘() ] (51)
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If we take the time derivative on both sides we obtain

W OL+ YOV O - g = O .

We can expand the above equation with (43) to (46); after

regrouping we come to

¢ ©Op lell- c5 Op | 4’!2 +(c(,—c3)(‘VK9K+ Y eL)
~ (eq+e) (O - ¥, By) =0.(52)

2 2
A substitution for I¥I", le! and (Y,6,-%, 6, can be done
with equations (49), (50) and (51) respectively. Now we want

to replace (*{»’k ekw,_eL) by an expression containing only GA

and some of the constants cq to 09;
(E)= YOk +YLOL
to do so we define an origin such that:

Ok = | &1 Cos (wt-py)

o
—
0

le] SIN(wte-¥)

£
x

Y| COS(WT-%)

YL =¥l SIN(wT-9%)
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where w/wn 1s the angular velocity of the Rossby wave with

respect to the rotating system of coordinates. It 1s easy to

see that
. . 2
GLGK—GLGK = T le‘ ) . (53)
and also
. ° 2
LPLKVK -&FL ‘+'K '—"‘U\)iq’\ . (54)

In a Rossby regime both lel2 and l‘le are different from -
zero and consequently we are allowed to divide (53) by lelz
and (54) by I%ﬂz to eliminate w. The resulting equation can
be expanded, again with the help of (43) to (46). In

grouping terms we are left with

(E) = (co-c3) (Of 19 , (55)
(c5s QA IYE +c2 B4 1017

With equations (49) and (50) it reduces to

(E) = ¢8 (€%-¢3) (<9~ On) . (56)
cjCey+cn)

In putting this expression back in (52) we finally come

- to a cublic equation in @, -
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: 2
Cy <1 [QL1+C3)1+(C7<3-C3)] (cg-6p)
cLCs (¢y+Cq) ~Cq @A1 + e,o% =0, (57)

This equation 1s of the form
2
*?-ax>~bx+ba=0 -

(x-a) (*-b) = O ,

a
cg isVYsolution, the other two are

%

Oap=2iVQ = 2 { cycq [ (eyrcy)+ (C"‘c3)z]} ‘
C2Cs (cy+cq)?

o .
When 09 is¥Ysolution, we are in presence of a Hadley regime;

it is easy to see that such a regime is always a solution to
the system (42) to (46).

When we pay attentlon to the €, = +Vq solution, we note
that it is not function of cg vhich 1s proportional to ep:‘.
From equations (49) and (50) we can conclude that there will
be values of ©,F, or cgs for which the waves will be
nonexistant. Ve are in a situation, depicted in Figure 5,
where for low values of ©,F a Hadley regime is present; this
regime 1s characterlized by a linear relationshlp between 0,”
and 6, this relation 1s easlly found by setting the
amplitude of wave components equal to zero and ©a =0 in (L42).

As ©6pF is increased, it reaches a critical value above wnich
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FPigure 5. Propertles of the solution of the system.
(1 = VR(Prx 6 + X + 1))
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a Rossby regime occurs. The equation for the transition

between the Rossby and the Hadley regime 1is

Cq-’-*\/a\ .

The solution 64 = -~Vq implies a situation where the
zonal westerlies are decreasing wlth height; this 1s not a
realistic simulation of mid-latitude tropospheric flow; it
is also not the situation in the annulus. Therefore it is
disregarded.

We complete our description of the steady state solution
by searching expressions for «w and for the angle between
the ¥ and © waves; the latter is useful in computations of
mexridional heat flow.

In the derivation of equation (55) we get as a
by-product the following two equations

2
“w |8l = c5 64 (E) - cGiGii

2 2
—w Yl ==y Op(E) - c3 Y

elimination of (E) leads to
2 2 2
w (CS |‘H’-4'Czl6|): C3C5|\H tccglioel .

2
In substituting for Wl and lel2 we get after rearrangemcnts
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W= €» 7 +CcHCoL .
C4 + Cq

If vwe define x; and X, such as

tan x, = OL/6k and tan X, =Y /¥x ,
then the physlical angle @ between the ¥ and the 6 wave is
$ = (Xq-X)/m .

tan (Xq -x) = (Gan xo -Tan X))/ (| + tan X, tan x)

The denominator is the expression (E); the numerator can be
substituted for by the use of (51); after simplifications

ve come to

It 1s easy to show that the argument of the arctangent is

greater than zero; consequently § varies from 0 to TAm and

there 1s a net flow of heat advected from eguator to pole.
All the above characteristics were checked numerically.

The stabllity of the steady state solutlion with respect to
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small perturbations is an lmportant question to conslder.
Let us consider a solution of the form

C(rmr T+ Q) ’

W:kl/se_ +W

st ,

o=+ 0
GA: ©as + GA’

where the perturbatlions are the primed quantities and where

W =w/n. With the change of varilable

’ l./uft

/
Y=y e
’ C N’t
©=0e¢e
~
and the following definitlions

/ ’ ! / ’ /
Y=ot W = 6 + Oy

we come to a set of equations for the new perturbations of

the form
(®) = (AY(P)

’ ’
where (P) is a column vector whose components are Gp 5 Ya
N

¥: » Gn » and ©¢ . The matrix (A) 1s the following:
~o Lad lad



~ -Cg o -Ci &
o - Cy (pur - C3)
| C, &g (c3-,w-) - Cy
Cs¥s Sin g o Cs5 Opc
lcs% cos ¢ ~Cc5 Ops o

-c % Siv @

CzeAs

(Co ~ )
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C "Vs cos §\

“@ x5

(nr - Co)

e

/

If the real part of thselgenvalues of the above matrix are

all negative then perturbations will decay and the reginme

will be stable. It is difficult to prove analytically that

this is the case. As an alternative one can find numerically

the roots in a finite number of cases. This was done for 50

cases as shown in Figure 6. The position of crosses indicate

the values glven to Rot* and Ta in each experiments. Values

of the other parameters were: R = 0.5, Pr = 7.0,

YA = 0.5x1072, @ = 0.5x107°

¥ = 300,

» Experiments were done with

wave number 4. In all cases, two pairs of complex roots

with negative real parts and one real negative root were

obtalned.

To summarize, the system of equations (42) to (46)

exibited, in numerical experiments, either a Hadley or a

Rossby regime in which the amplitude of the wave was constant.

A mathematical analysis snows that the Hadley reglme 1s

always a solution and that above a critical value of e:' a



39
Figure 6. Experiments with perturbations.

(The solid line is the curve of transition
between Hadley and Rossby regimes. Values of

other parameters are given in the text)

l
10" L
Roe.
o¢
X
4 X X ¥ x X x X Xx
x 1 4 x X X x Y x x X
x X X x X 1 4 X x X x
(o}
lo-- x x X x X 4 x x X w
-1
10 | |

10 |0 10
Ta




ko
Rossby regime, in which the amplitude of the wave is constant,

is also a solution.
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5. EXTENSION OF THE RASEARCH AND DISCUSSION

With the aim of modelling fluctuations between a zonal
flow and a single wave and knowing that wind shear favors
instability, one is led to think that the insertion of
friction with the bottom of the annulus, the walls and
between each layer would stress the system in the right
direction. When physical processes just mentioned are added
to the system of equations (42) to (46), the resulting one
1s identical to (16) to (25) except for g, which is a
constant.

A numerical investigation was done and for the different
sets of parameters shovm in Table 7, Rossby regimes with
no signs of vaclllation were observed. It is realized that
many more sets of parameters could have been used but from
latest laboratory experiments (personnal communication),
baroclinic vacillation appears to be a widespread phenomenon
and one would like to see in a theory some signs of
vaclllation at the listed values.

I think one should look back at the approximations used
in the modelling of physical processes and try to refine
them; the crudest is certainly the heat exchange with
boundarles.'For further research one should use a different
form; one could also look at the effect of letting the
static stability vary with time. Let us note that if a new

formulation of heating has for sole result a change in

constants c; to cg, as long as they remain all positive, the

formalism in chapter 4 will still apply.
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Table 7. Sets of parameters used in the
experiments with friction. (¥ = 3.0,
=1.0,% = 3.3 and Sz = +01 in all

experiments)
EXP. NO.  Rgg* Ta Rot
obtained
1 1.0 10-0x106 «170
2 1.0 20.0 <121
3 1.5 8.0 «189
L 2.0 8.0 «190
5 2.0 40.0 .085
6 4.0 0.7 .638
7 k.o 1.0 «536
8 k.o 5.0 «239
9 4.0 8.0 .190
10 k.o Lko.o .085
11 8.0 8.0 «190
12 8.0 40.0 .085
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This study was an attempt to simulate a continuous
phenomenon, therefore not much attention was paid to
transients. Finally let us mention that as far as atmospheric
flow is concerned, in view of results obtained, nothing can
be said about the index cycle as whether it is a baroclinic
vacillation, a barotropic phenomenon or a specific mixture
of both. e are still far from forecasting the period of 1it.
This study suggests that diabatlc processes pléy a very
important role in baroclinic vacillation and that a delicate
relationship between generation of energy and its dissipation
is probably necessary to keep the system from proceeding to

a steady state.
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