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Abstract

There has been an ongoing effort to achieve very high quality speech coding at
medium transmission bit rates. Consequently, the TIA has chosen the Vector Sum
Linear Predictive (VSELP) implementation of an 8 kb/s coder to be the standard
for North-American cellular digital telephony. lHowever, it was only recently that,
in view of the increased rescarch focus on developing toll-quality speech coding at
such bit rates, the CCITT has tmposed a set of specifications for standavdizing low-
delay coders operating at 8 kb/s. The Low-Delay Code Exeited Linear Predictive
(LD-CELP) suggested by Chen is presently the only potential candidate for CCII'T
standardization. achieving a one-way coding delay of 10 ms. However, just like the
VSELP coding algorithm. the 8 kb/s LD-CELP version does not quite yield toll-
guality reconstructed speech. The purpose of the work in this thesis is to establish
the minimum crquirements for a coding structure capable of generating toll-quality
coded speech at 8 kb/s. The purpose of this thesis is to show that, by slightly
relaxing the coding delay constraint, pereeptual enhancement techniques yield toll-
quality coding after redesigning and fine-tuning the optimization and guantization
procedures of a CELP coder.

Issues in forward adaptive lincar prediction analysis sueh as windowing and pre-
diction order are studied. Once a suitable analysis method is chosen, the attention is
directed toward the quantization of the LPC parameters. With transparent quanti-
zation of those parameters heing a must lor toll-quality coding, an LSI® split. vector
quantization scheme endowed with an improved pereeptual distortion measure over-
comes the challenge. Joint optimization of the CILP synthesis parameters is then
shown to yield improved results when compared to the usual sequential approach.
Due to the limited bit resourees for auantizing the synthesis parameters, a performant,
gains (pitch and codebool:) vector quantizer is developed. Nevertheless, perceptual
cnhancement techniques of the coded speecl quality remain the major contributors
to toll-quality coding. T'he speech periodicity is improved by both incrcasing the
resolution the the long term predictor delays and by combining the spectral noise
weighting with an adaptive harmonie weighting scheme. Coded speech quaiity com-
parable to that of a 7-bit log PCM is however only attained with the introduction of o
delayed-decision coding technique. extending the CELP parameter selection process

beyond the subframe boundary with no extra cost in coding delay.



Sommaire

Beaucoup defforts ont ¢1é dernietement accumnlés afin d’obtenir un systeme de
codage de la parole de tiés haute qualité opérant a taux moyens de transmission.
La TIA a ainsi scleetionné la version VSELP d'un systeme de codage d’un taux de
8 kb/s comme standard pour la téléphonie cellulaire digitale en Amérique du Nord.
Mais ce n'est que récemment, a canse de angmentation de lintérét que porte la
1echerche i Paccomplissement. d’une qualité téléphonique de parole codée a de tels
tanx, que le CCIT'T a introdnit un ensemble de spécifications pour la standardisation
de systemes de codage de petits retards & des taux de 8 kb/s. Présentement, le seul
candidat potentiel qui se conlorme aux 1ecommendations du CCI'TT est le LD-CELP
suggéreé par Chen. avee un retard de codage unidirectionnel de 10 ms. Néanmoins,
la version din LD-CELEP opérant & 8 kbh/s. tout comme le systeme VSELP, n’atteint
pas encore la qualité (éléphonique. Liobjectil de ce mémoire est de montrer qu’en
assouplissant. les contraintes imposées sur la durée du délai de codage, des techniques
de rehaussement. perceptuel de la gualité peuvent engendrer un codage de qualité
L¢léphonique an terme d'une nonvelle conception et d'une fine mise au point des
procédures doptimisation ot de quantification d’un systeme de codage CELP.

Plusicurs sujets concernant Fanalyse prédictive lincéaire adaptée de maniere di-
recte, tel le choix de fenétres et diordre de prédiction, sont soulevés. A 'issue d’un
choix judicicux de la méthode d analyse. Pattention est reditigée vers la quantifica-
tion des parametres LPC. Une quantification transparente de ces parametres étant
de rigueur ponr obtenir une qualité téléphonique. un quantificateur vectoriel partagé
des paramoetres LSE se vévele Mre a la hanteur du défi. Une optimisation conjointe
des paramaotres de synthese du systeme CELP est ensuite présentée, exhibant une
meilleure performance que Fapproche séquenticelle habituelle. Une structure de quan-
tification vectorielle des gains (du fondamental ot du dictionnaire) est construite, afin
de détourner les timites inmpaosces par Finsuflisancee du nombre de bits disponible. Les
technigues de rehaussement pereeptuel de la gualité restent néanmoins les raisons
majeures de Fobtention de parole codde de qualité téléphonique. La périodicité de la
parole est accentude par Faugimentation de la résolution du délai du filtre de prédiction
a long terme, et par Padjonetion d'une procédure de pondération harmonique adap-
tative de Perrenre de quantification. Une qualité de parole comparable & celle d’un
svsteme 7-bit log POM n'est finalement obtenue qu’avee introduction d’une tech-

nique de codage & décision 1etardée an dela des limites d'une sous-fenétre de parole.
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Chapter 1
Introduction

Digital coding of specch signals is being increasingly used for transmission ol speech
over long distances. The most straightforward way of carrying out, such a coding sys-
tem is to sample the spcech signal at a fixed rate and assign to cach sample value a
binary number. From the well-known sampling theorem [1], one can recover the ana-
log signal exactly from the above created digital signal il the original analog speech
signal is bandlimited to at most half the sampling frequency [2]. 'The advantages of
such a digital representation of speech signals is the ease of ils manipulation, of its
regenerative amplification and the lack of signiflicant degradation during transmission.
Some undesired distortion, due to the transmission channel, can however affect the
perceived quality of the specch signal at the receiver end. Reducing the distortion
requires often increasing the bit rate which results in higher transmission bandwidth.
The choice of bit rate docs not only depend on bandwidth constraints, but also on
transmission cost. Chcap copper wircs and optic fibers allowing larger bandwidth
in terrestrial communication networks (such as the telephone network) have handled
well rudimentary amplitude compression techniques. However, with the introduction
of mobile telephony and satellite communications, bandwidth restrictions have ac-
quired a greater importance. This, of course, has led to the development of more
sophisticated techniques for bit rate reduction. The tradeoff bhetween bit rate and
coded speech quality is still the main issue in the speech coding rescarch arca, while
other problems such as computational complexity and real-time implementation are

next in line.
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Speech is commonly sampled at either 8 kHz or 16 kllz. Prior to obtaining the
first sampled version, the original speech waveform is lowpass filtered to guarantee
a bandwidth of 0-3400 Hz. The 8 kHz sampled specch is then known as narrow-
band spcech. For the sccond sampled version, the speech working bandwidth before
sampling is limited to 0-7000 Hz, in which case the spcech is known as wideband
speech. Narrowband speech preserves the structure of the first three, possibly four
formants (resonances), and thus the essential characteristics of the specch signal.
Wideband speech can accomodate up to seven formants which guarantecs a clearer
audible speech quality.

Measuring the speech quality has always been a difficult problem. While some
rcly on objective measures such as the Signal-to-Noise Ratio (SNR) and the segmental
SNR (scgSNR), other definitely prefer subjective measures of which the most common
is the Mcan Opinion Scorc (MOS). The MOS quality measure is a subjective rating
between 1 and 5, from unacceptable to excellent going up the scale. High-quality and
ncar-fransparenl atiributes are given to speech scoring above 4.0. Nelwork quality
often replaces the term near-transparent quality in Low-Delay coding applications.
Other terms are often used to qualify speech. Toll-quality or telephone quality for
example denote narrowband speech with no perceptible noise, similar to what is
heard over telephone networks. Communications qualily is an attribute to speech with
perccivable distortion but highly intelligible, scoring aiound 3.5 on the MOS scale.
Synthetic quality is uscd for unnatural sounding speech but still highly intelligible.

Rescarch in speech coding focuses on either minimizing the perceived distortion
of the reconstructed speech signal (at the decoder end) at a given bit rate, or to
minimize the bit rate at a given distortion. Two classes of coding systems can usually
be discernable: waveform coders and source coders. Waveform coding is a sample-by-
sample based procedure, where the coded signal tries to match the incoming signal as
accurately as possible. Source coders exploit the human speech production mechanism
and the human auditory system. Such coders derive a spcech model characterized
by key paramecters which are transmitted to the receiver so that the speech can be
reconstructed using the same model. Evaluation of the coded specech quality is more
perceptually justificd, as sample-by-sample reconstruction is virtually impossible in

this class of coders. However, large bit rate reductions are possible in source coding
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while maintaining a given perceptual quality. In effect,, if the speech production model
is considered, some parameters that characterize the model might have a limited
dynamic range or vary slowly with time. Fewer quantization levels, less frequent,
updates and interpolation between successive time intervals, all allow bit rate savings
if those parameters are sent to the recciver instead of the quantized specch signal
itself. On the other hand, given a certain bit rate, the perceptual quality of the
coded speech can be dramatically improved if the propertics of the human auditory
system are exploited. The most common pereeptual improvement technique is the
inclusion of spectral masking in the distortion criterion [3]. The masking phenomenon
is a well-known property of the auditory system. Since the ecar is less sensitive to
distortions located in the high energy regions of the speech spectrum, most of the
quantization noise can be moved to less critical regions of the coded speech spectrum
if the distortion criterion is appropriatcly modified.

A coding system relying on a production model based on the physiology of the
human speech organs has been proven to offer high quality reconstructed speech
with substantial bit rate economies. It is uscful however, before setting the scope
and requirements of the desired optimal coding system that makes the object of this
thesis, to give a general overview on the performance of the existing coders and the
scheme the standardization process is following. Rough estimates of bounds bit, rates
can attain in speech coding can be derived. Defining the upper bound for the bit rate
required in specch transmission is equivalent to determining the maximum rate at
which information can be transmitted in a signal having the same bandwidth as that
of toll-quality speech at low noise levels [4]. The validity of such an equivalence stems
from the fact that the transmission of speech implies the transmission of information,
with the added assumption that each symbol is independent of the other symbols
being transmitted (the structure of the signal is ignored). The bandwidth of specch
over the telephone network, denoted by W, is of 4 kllz, and the slight distortion
is assumed to be due to white additive Gaussian noise. With an SNR of 30 dI3
corresponding to subjectively excellent speech quality, the ratio of the average power
of the speech signal, P, to the power of the additive noise, (/) is PP/G=1000. The
classic paper on Information Theory by Shannon [5] provides the mean to compute

the maximum information rate C which can be decoded from the signal containing
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the additive noise:

C = Wlog(1+ —g,) (1.1)

Hence a coding system capable of yielding reconstricted speech at such high quality
is likely to operate at bit rates around this informal bound of about 40 kb/s of
information rate. Remembering that the structure of the speech signal was not taken
into consideration, it is in fact possible to do significantly better by exploiting the
correlation among adjacent samples in the sampled speech signal.

On the other hand, in deriving the informal lower bound on bit rates, the signal
structure must be overestimated. However, since the information rate computation
becomes much more complicated with the received symbols being interdependent, an
alternative estimation method is proposed in Kleijn’s work [4]. If English speech is
considered, the speech signal can be described in terms of a sequence of high level
linguistic symbols, known as phonemes, independent from each other. Spoken at a
rate of about 10 phonemes a second, a set of 42 phonemes constitute the entire lan-
guage. The information content per phoneme is approximately of 5 bits, in reference
to a table of the relative probability of the occurence of the phonemes, which yields
an information rate of 50 b/s. However, in such a lower bound estimation, only the
phonemic information is considered, which results in a loss of the speaker identity
(intonation, rate of speaking, ctc...).

As depicted in Fig. 1.1, the current performance of speech coders is given as the
operating bit rate versus the subjective MOS scale. The conventional Pulse Code
Modulation (PCM) with p-law or A-law companding schemes are currently common-
place in the telephone network, operating at a bit rate of 64 kb/s, approaching indeed
the estimated upper limit of 40 kb/s. Few assumptions on the spcech signal struc-
ture are made in these non-uniform quantization schemes, known as log-PCM since
the quantizer levels are logarithmically distributed. Exploiting the redundancies in
the speech signal, waveform coders allow significant bit savings at the cost of an in-
troduced coding dclay, while preserving very high spcech quality. Differential Pulse
Code Modulation (DPCM) and Adaptive DPCM (ADPCM) schemes belong to the
set of diflerential coders, a subclass of waveform coding. In these schemes, a pre-
dictor filter estimates the upcoming speech sample to be reconstructed. The actual

difference between the original speech sample and the estimated speech sample is
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Figure 1.1: Current performance of speech coders

quantized, and the coding scheme might incorporate quantizer level and gain adap-
tation techniques. As a result, coding rates down to 32 kb/s are capable of yiclding
the equivalent toll-quality of 64 kb/s log-PCM coders. As the bit rate in Fig. 1.1
is decreased, the efficiency of perceptually-weighted waveform coders hecomes more
apparent when compared to the simple class of waveform coders. By appropriately
modifying the error criterion, the distortion is displaced to high energy content regions
in the frequency spectrum and thus rendered less audible. Exploiting this property
of the human auditory system improves the subjective quality of waveform coders in
all bandwidth constrained applications. The other class of coders formed by vocoders
allows substantial bit rate savings by dispensing the speech residual waveform (the
speech signal that is left over after all redundancies removal) from transmission, but,

pay the price in quality; the naturalness of toll-quality in vocoders has not been
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Figure 1.2: Digital telephony standards [6] (CCITT:Consultative Committee for Tele-
phone and 'Telegraph, GSM: Group Special Mobile, CTIA: Cellular Technology In-
dustry Association, NSA: National Sccurity Agency)

reached yet, and only hybrid models combining waveform coding and vocoding have
attained communication-quality. Vocoders in effect rely on speech-specific models,
exploiting the usual redundancies and transmit almost all the side information used
by waveform coders (pitch, voicing, formants, etc...) but lack ths essence of speech
contained in the residual. Early vocoders were based on transformations between
time and frequency domains like Adaptive Transform Coding (ATC) and harmonic
coding. The recent years, however, have witnessed an increased dedication toward
Linear Predictive Coding vocoders, which will be the object of the next chapter.

The goal of achieving toll-quality coding schemes has been attained so far by
coders opcerating at bit rates starting from 16 kb/s and up. As can be seen from the
summary of the current state of digital telephony standards in Fig. 1.2, the CCITT
has standardized the 64 kb/s log-PCM and the 32 kb/s ADPCM (G.721) coders
encountered previously. Recently, the Low-Delay 16 kb/s high-quality coder based
on lincar prediction techniques has also been standardized.

As expected, the next CCITT aim is the achievement of near-transparent quality
coding at 8 kb/s. Table 1.1 summarizes the CCITT specifications for the 8 kb/s
coder standardization. The low-delay requirement is somewhat more loosc than the
2 ms objective of the 16 kb/s CCITT standard, but is still very demanding when

compared to existing high-quality 8 kb/s coders, recording coding delays between 16



ms and 20 ms. Some of the requirements in Table 1.1 can vary depending on the
coding application. Channel error rates can be much more severe in Mobile Radio
or indoor wircless applications. The only present candidate for the 8 kb/s CCIUI"I

standardization is a Low-Dclay Code-Excited Linear Predictive (LD-CELP) coder [7].

The work in this thesis is dedicated toward the achievement of toll-quality speech
coding at 8 kb/s. The ncar-toll quality barricr has alrcady been crossed by two ver-
sions of linear prediction bascd analysis-by-synthesis coders: the Vector-Sum Fxcited
Linear Predictive (VSELP) coder {29] and the Low-Delay Code lixcited Lincar Pre-
dictive (LD-CELP) coder. Both coders registered scores around 3.95 on the MOS
scale [7,29]. Toll quality was previously defined to describe reconstructed speech
scoring above 4.0 in mcan opinion, perceptually comparable to 7-bit log PCM coding
quality. Before fullfilling all the requirements of Table 1.1, it scems fundamental to
reach toll-quality at an opcrating rate of 8 kb/s with no restrictions on the coding
delay, the computational complexity or any other issue relevant to real-time hardware
implementation. However, some of the above mentioned issues will be discussed.

The next chapter strongly arguments the fact that the CELP coding algorithm
is the most qualified candidate for undertaking such a challenge. Starting from the
foundations set by a conventional CELP coder, all of the components will then be
redesigned and optimized cither individually or jointly depending on their subjective
and objective performances, before being integrated in the coder. Quantization pro-
cedures for the prediction parameters, the excitations, the gains and the pitch lags
will all be addressed. Pcrceptual weighting techniques and subtletics enabling the
coder to bridge the gap between communication-qualily and toll-quality speech will
also be described. It will be clear that finer quantization of the coder parameters is
not sufficient to obtain the results sought after. Techniques enhancing the perceptual
quality of the reconstructed speech by cither masking or removing the objectionable

distortions scem to be the path to follow.



Pt R

OBJECTIVES

REQUIREMENTS
Not worse than
that of G.721
Not worse than that
of G.721 under
similar conditions

PARAMETERS
Speech quality in

error {ree condition

Equivalent to 16 kb/s CCITT

Speech performance with
coder under evaluations

bit errors:
BER < 10-3

random errors

One way coder/decoder

delay in ms,
frame sizes <16 ms < 5 ms
< 10 ms

total CODEC dclay <32 ms
Capability to transmit
voice-band data Not nceded

Quality dependency Not worse than

on speakers that of G.721
Capability to transmit No annoying effects have to
music be generated

Gross bit rate, kb/s 8
3 asynchronous

2 asynchronous with

Tandeming capability
a total distortion

for the speech < 4 asynchronous G.721

Synchronous tandeming

<4 G.721
Tandeming with other <4G.721 property
CCITT coding standards
Capability to opcrate at Necded Graceful degradation at 6.4 kb/s
different bit rates and improved performance
(9.6 kb/s to 6.4 kb/s) at 9.6 kb/s
Complexity To be defined As low as possible

Table 1.1: CCITT standardization requirements for 8 kb/s high-quality coders.



1.1 Organization of the Thesis

With the ultimate aim of implementing a toll-quality speech coder operating at § kiy/s,
the present thesis is structured as follows. The varicus components that constitute a
CELP coder are separately considered and cither redesigned or finc-tuned, then they
are assembled in such a way to operate efficiently in the whole coder environment.
Chapter 2 reviews the theoretical background of linear prediction and introduces
the basic concepts of analysis-by-synthesis based lincar predictive coders, the general
class to which the CELP coding algorithm belongs. The quantization of the LPC
parameters is addressed in Chapter 3, where an cfficient LPC paramcters vector
quantizer operating in the Line Spectral Frequencies domain is detailed and evaluated.
Pitch prediction techniques are investigated in Chapter 4. Extensive comparisons
between various pitch and codebook parameters optimization schemes are performed.
The chapter also includes discussions on increased resolution pitch predictors, either
by increasing the number of predictor taps or by allowing subsample resolution of the
predictor delay. The investigations lead to the elaboration of an eflicient fractional
pitch prediction scheme that will consistently improve the periodicity and thus the
quality of the reconstructed speech.

Realizing that even an optimized performance of a basic 8 kb/s CELP coding
scheme is not sufficient to bridge the gap between communication-quality and toll-
quality coding, Chapter 5 presents all the methods employed to perceptually enhance
the quality of coded spcech. With the final judge being the car, many of the human
auditory system properties will be exploited to claborate improvement techniques
such as adaptive postfiltering and harmonic noise weighting. In addition, after jus-
tifying the suboptimality of the CELP paramecters transmitted on a subframe basis,
an approach that delays transmission of those parameters until they have been opti-
mized over several subframes is introduced. This delayed-decision coding technigue
will have a tremendous impact on the perceptual coding quality as well as on the
objective quality measurement criteria. Finally, the performance of the implemented
coding scheme is evaluated in Chapter 6, followed by the presentation of future toll-

quality speech coding trends and concluding remarks.



Chapter 2

Linear Prediction based

Analysis-by-Synthesis Coding

2.1 Introduction

The end purpose of this Chapter is a formal introduction of the Code-Excited Linear
Prediction (CELP) coding algorithm. Retracing the historical evolution of speech
coding, methods that exploit the characteristics of the human speech production
systern arc presented and cvaluated. Modeling the vocal tract in a more cursory
way, lincar prediction based coding schemes have gained popularity over the more
accurate physiological models for their well-established parameter computation pro-
cedures, their bit-rate reduction capabilities while maintaining at the same time high
coded speech quality. Linear prediction techniques are discussed in detail with some
experimental and theoretical results presented. The general class of lincar predic-
tion based analysis-by-synthesis coders to which the CELP algorithm belongs is then
outlined, going from the basic analysis-by-synthesis structure to finally develop an
cflicient CELP coding scheme. Very good speech quality results from the original
CELP algorithm when operating at intermediate rates, but the extremely high com-
putational complexity is a major drawback. Moreover, accounting for some of the
propertics of the human auditory system, modifications of the CELP algorithm con-
tribute to increasing the perceptual speech quality in a coding environment at the

cxpense of an even heavier computational load. To make the implementation of the
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modified CELP algorithm possible in practical coding applications, fast procedures
adapted to the dynamic character of the algorithm were developed. Some of these

methods are briefly mentioned at the end of the Chapter.

2.2 Physiology of Speech Production

Exploiting the natural redundancies that exist in speech signals is of prime concern
when bit rate reduction in coding is sought. It is hence very instructive to briefly
investigate the nature of those redundancies before attempting any kind ol speech
modeling. Speech redundancies are a direct consequence of the human vocal tract,
structure and the auditory perception propertics. The most common way of charac-
terizing specch production is by a mechanism consisting of three separable entities:
an excitation signal generator, an acoustic tube of non-uniform cross scctions and ra-
diation walls. Excitation of the acoustic tube results into space radiation and sound
waves creation. Thus, the speech signal can be represented in the z-domain by S(2),
a product of the excitation signal X(z), the transler function of the acoustic tube

H(z), and the radiation transfer function P(z):
S(z) = X(2) 1 (2)P(z). (2.1)

In the human speech production apparatus, the excitation signal is generaled by
forcing air from the lungs through the vocal cords into the vocal tract. Il voiced speech
is intended (such as /a/, [i/, [0/), the vocal cords will vibrale rapidly inward and
outward, shutting and opening sequentially the passage of air between the trachea
and the vocal tract. The change of vocal cords vibration rate (lundamental frequency
F0, or pitch) is relatively slow: few tens of milliseconds of a vowel incorporate 5 or
6 pitch periods. Furthermore, this generated excitation signal of strongly periodic
nature has smooth glottal waveform (pitch cycle) transitions most of the time. The
vocal tract, located between the lips and the nostrils on one end, and the vocal cords
on the other, acts as the acoustic tube. Different shapings of the vocal tract (with
the aid of the tongue, the lips, the jaw and the velum) result, in different sounds, The
shaping of the vocal tract characterizes the speech spectrum which varies relatively
in time when compared to the vibration rate of the vocal cords. Morcover, most

of the specch energy is located at low frequency (below 1 kllz with a fallofl of -6

H



dB/octave in frequency for vowels). Some sounds are the result of noisy excitation
signals, in which case the vocal cords do not vibrate, but airflow is rushed instead
through vocal tract constrictions (lips, teeth etc...). The produced sounds are then
classified as unwoiced speech.

The intent, of the brief description of the human speech production apparatus [8] is
a motivation for predictive coding. By appropriately modeling the glottal excitation
and the vocal tract system function fI(z) with few parameters to be transmitted,
substantial bit savings can be achieved. Furthermore, by exploiting the limitations
and properties of the human auditory system such as masking phenomena, increasing
sensitivity to lower frequency and insignificance of spectral zeros, the perceived speech
quality can dramatically be improved. The object of the following subsections is to
introduce efficient models of the vocal tract transfer function and the glottal excitation
to be used in the scope of lincar prediction, the key element of analysis-by-synthesis
coding techniques. It is worth mentioning, however, that physiologically-based models
for the excitation generation and vocal tract shape suffer from limitations in speech
coding applications. The main reasons for the lack of eflectiveness of such models is
the difficulty of extracting the model parameters from the speech signal and the poor

exploitation of the auditory perception properties [4].

2.3 The Purpose of Prediction in Speech Coding

Achicving toll-quality speech coding at rates from 32 kb/s downward was only pos-
sible with the introduction of linear prediction. Prior to this, only log-PCM coding
techniques reached such quality, with coding rates attaining 64 kb/s. By incorpo-
rating a lincar predictor in the coding scheme, speech signal redundancies could be
exploited, at the expense of an introduced coding delay. Differential Pulse Code Mod-
ulation (DPCM) methods have managed to bring down toll-quality speech coding at
rates below 32 kb/s by gencrating a predicted speech sample value from prior speech
samples for cach speech sample to be quantized. The difference between the original
sample and the predicted sample is then quantized. If the prediction filter parameters
are only considered to be stationary for small speech segments and are adapted for

successive segments, coding rates can be further reduced. In addition, by adapting



the quantizer levels to the prediction error signal (the dilference between the original
and the predicted speech samples) dynamic range, Adaptive Ditlerential Pulse Code
Modulation schemes resultl, upon which the 32 kb/s CCI'I"' standard is based,
Before discussing the implementation of the predictor which in fact roughly models
the vocal tract, a preliminary on closed-loop and open-loop prediction techniques and
their role in predictive coding is necessary. Let P(.) be a predictor of ovder N that
attempts to predict an original speech sample s(n) from N past, samples. In the case
of open-loop prediction, the N past samples are original speech samples, and the
open-loop residual x(n) is defined as the difference between the original sample s(n)

and the predicted sample §(n):
x(n) = s(n) — §(n) (2.2)

with
S§(n) = P(s(n—1),s(n = 2),..,s(n = N)). (2.3)

If in a coding system prediction is based on past. reconstructed speech samples

§(n — 1),...,5(n — N), the closed-loop residual &(n) is oblained by:
&(n) =s(n) — P(3(n —1),5(n — 2),...,3n - N)). (2.4)

By optimizing the closed-loop predictor, the energy of the closed-loop residual @(n)
is minimized allowing smaller quantization bin width, which in turn minimizes the
quantization errors. Fig. 2.1 depicts the closed-loop configuration of prediclive cod-
ing.

The speech signal can be reconstructed from the transmitted quantized version
of the residual, Z(n), provided that the receiver employs the same predictor found
in the encoder. For this purpose, cither the predictor is kept with fixed parameters,
those parameters can be transmitled as side information with the quantized residual,
or they can be computed from past reconstiucted speech. The current reconstructed

speech sample 3(n) is obtained, as seen in the receiver of Figure 2.1, by:
3(n) = z(n) + P(5(n — 1),3(n — 2),...,5(n — N)). (2.5)

Two points arc of interest in the case of closed-loop prediction. By comparing s,

(2.4) and (2.5), the quantization crror s(n) — 5(n) is found to be identical to &(n) —
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Figure 2.1: ADPCM coder with error free transmission

Z(n). Knowing that the quantization error is directly proportional to the signal
cnergy, it is then much morc advantageous to quantize &(n) since its energy is less
than that of s(n). Decfining the Prediction Gain as the ratio of the energy of the
speech signal to that of the residual signal with both energics averaged over a defined

scgment,
N

Y s(n)’

PG=12t (2.6)

’
Y i#(n)?
n=1

the filtering operation that yiclds the reconstructed speech according to (.) scales the
residual energy by a factor approximately equal to PG [4]. If open-loop prediction
is used in the encoder as shown in Fig. 2.2, the quantization error on the open-loop
residual will be magnified by this factor. Hence, the larger the prediction gain is, the
more justified the quantization of the closed-loop residual is, rather than quantizing
cither the original speech or the open-loop residual.

Finally, it is important to note that the predictor parameters have to be optimized
for open-loop prediction since the prediction gain decreases with decreasing quanti-
zation accuracy. The closed-loop prediction structure is only used in the encoder for

the quantization of the residual.
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Figure 2.2: Open-loop prediction in predictive coding

2.4 Linear Prediction

The purpose of prediction in speech coding was defined in the previous scction to
exploit the redundancies that exist in specch signals. Scen from a different. viewpoint,
a predictor can be considercd as a generic model for the vocal tract. Lincar Predictive
Coding has become over the past decade the most popular coding scheme at medinm
and low bit rates, and has been used in almost exciusively all predictive coders. The
next subsection will briefly justify the validity of a lincar model for the predictor,
and the 1°maining parts will introduce formal means to estimate the parameters of

prediction filters and discuss relevant issues in linear prediction,

2.4.1 Validity of Linear Prediction

Linear prediction of a specch sample from previous samples is optimal in the least-
squares sense if the samples of the speech signal are assumed to be random variables
with Gaussian distribution [9]). Experiments have shown that, taken over short time
segments, speech signal samples can be assumed to have a. Gaussian distribution [10].

On a physiological basis on the other hand, a lossless vocal tract can be described
by an all-pole filter (any lossless tube model is equivalent to an all-pole filter). Lat-
tice filters are also used to model the vocal tract hecause of the similarity of both
structures, the efficient recursive procedures that exist for parameters computation,
the simple stability propertics of the filters and the smoothness of the filker character-

istics change as a function of the coeflicients. However, limitations of the lattice filter



model have been addressed by [4]; the confusion stems from the fact that the lattice
filter configuration of all-pole filters corresponds to the transfer function of airflow
through a concatenation of tubes of various cross-sectional areas, which is not always
an adequate model of the vocal tract. Nevertheless, significant prediction gains were
recached with lincar prediction that assumes an all-pole model for the speech signal.
A bricef word on nonlincar prediction is worth mentioning. Serious research in this
ficld has only started recently [11] and higher prediction gains than those of linear
prediction were recorded. The optimality of linear speech prediction can therefore be

questionned, but the practical significance of the new results has not been formalized

yet.

2.4.2 Linear Prediction and Speech Spectra

The most general predictor form in linear prediction is the Auto-Regressive Moving
Average (ARMA) model where a speech sample $(n) is predicted from N past pre-
dicted speech samples §(n — 1), ..., 8(n — N) with the addition of an excitation signal
u(n) according to:
P q
dn)=Y ad(n~k) + GY_bu(n-1) (2.7)
k=1 1=0

with G being a gain factor and {ax} and {b:} being sets of filter coefficients. Very
often, the Auto-Regressive (AR) model corresponding to an all-pole predictor is pre-
ferred to the pole/zero ARMA model in which case the prediction operation is written

as:

§(n) = g:lakﬁ(n - k). (2.8)

The major drawback in this model is the absence of representation of the spectral
zeros due to the glottal source and the vocal tract response in the nasal portion. In
addition, unvoiced sounds are poorly predicted. One common remedy is the addition
of 2 or 3 extra poles that can approximate the zeros contribution closely in the
predictor frequency response.

Considering the AR model of the predictor, the open-loop residual can be written

z(n) = s(n) - é ais(n — k). (2.9)
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Seen in a reverse manner, a specch production model can be claborated, where an
excitation signal X (z) (the z-transform of the sequence x(n)) is passed through a
shaping filter H(z) to produce reconstructed speech S(z). By letting F(z) be the
system response of the linear prediction process, the shaping filter /(z), also known
as the synthesis filter is expressed as:

1 1 |
1-F(z) 1-%F_ laLz" A(z)

H(z) = (2.10)

The residual X(z) is obtained by passing a speec signal S(z) through the inverse
filter A(2).
In reference to Eq. (2.9), the energy of the residual when the speech signal is

considered to be deterministic can be expressed according to Parseval’s theorem as:

n+L-1 el # e
> z(k)? o /;” IS—(—l dw ! /+ E—(—-)—lew (2.11)

ken ﬁF(—"‘)lT 271' - II,("J'")l

The objective of linear prediction is well-known to be the minimization of the resid-
ual energy. As can be seen from the above equation, this amounts to minimizing
the integral of the ratio of the speech signal power spectrum to that of the all-pole
synthesis filter. In other words, the power spectrum of the synthesis filter should he
an approximation to the power spectrum of the original signal. Thus, the methods
that will be investigated next for the computation of the predictor cocllicients {ay}
can be viewed as methods for fitting the power spectrum of the associated all-pole
synthesis filter to the power spectrum of the speech signal, with Eq. (2.11) being the
distortion measure.

When the speech signal is assumed to be a stochastic process, the linear prediction
procedure still provides an estimate of the spectral envelope with the Itakura-Saito

measure being used now as a distortion criterion [12]:

Ol I N ETC0 Tl I (i
d = o [ [ [ 4 B 1) 2.12
27[ - ( [Ill(e_]w)lz III(cJ'”)IZ ( ( )
Both Eqs. (2.11) and (2.12) lead to predictor coefficients describing the spectral
envelope of the speech signal. The errors in the spectral estimate, as can be seen

from those equations, are weighted most heavily in frequency regions where the specech

power spectrum |S(e?*)|? is large.
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2.4.3 Estimation of the Linear Prediction Coeflicients

A speech signal is not stationary and its statistics are not explicitely known. The
predictor must therefore be adapted to the changing signal characteristics in LPC
coding applications. It is of common practice to consider the speech signal as station-
ary over short time intervals (of about 20 ms). The predictor cocefficients can thus be
estimated from a sequence of speech samples obtained from an interval over which
the signal is considered to be stationary. Windowing the sampled signal is therefore
the first step in lincar prediction parameters estimation. Choosing the appropriate
window is a whole issue in itself that will be brought up in a subsequent section.
Now depending on the linear predictor form to be employed, the parameters to be
cstimated differ. If a transversal structure is selected (direct-form digital filter), the
least-squares method is used to estimate the prediction coeflicients {a;}: the Au-
tocorrelation procedure is employed if windowing is performed on the speech signal
whereas the Covariance method results when windowing is applied on the residual
(error) signal. Open-loop prediction is normally considered in the optimization proce-
dure of the predictor coefficients. Recent work, however, have shown that estimation
of the prediction parameters based on closed-loop predictors can lead to significant
improvement. of the predictor performance at the expense of increased computational
complexity [13]. On the other hand, if the linear prediction filter is implemented in
a lattice form, both open-loop residual and closed-loop residual energies have to be
minimized in order to estimate, in this case, a set of reflection coeflicients {k;}. All

threc computation procedures are detailed next.

The Autocorrelation Method

A speech signal is sampled over a time segment where it is considered to be a station-
ary random signal with for the time being known statistics. Fig. 2.3 describes how to
obtain the open-loop residual from the windowed speech samples (w,(n) is the data
window).

The open-loop prediction residual is:
P
e(n) = su(n) — Y sw(n—k). (2.13)
k=1
Minimizing the cnergy of the residual amounts to minimizing the expectation value
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Figure 2.3: Residual e(n) for the Autocorrelation method.

of the square of the prediction residual, E [c(n)2], which can be written as:

E [c(n)2] = F sw(n)z] — 2zp:akE[s,,,(n)sw(n L)
p_p k=t (2.14)
+ Z ZakalE [sw(n - k)sm(" - l)]

k=1 =1

By taking the partial derivatives of Eq. (2.14) with respect to every ag and schling
the result equal to zero, the Autocorrelation linear systein of p cquations, Ra =r, is

obtained. The expanded form of the system with autocorrelation matrix R is:

[ RO) RO) ... Rp-0)[a] [rm)]
R(.l) R(.O) .. R(p:- 2) (1-2 _ Il(.2) , (2.15)
i R(p—-1) R(p-2) RO0) | | ap | | () |

where each entry R;; in the autocorrelation matrix is given by R;; = (|7 — j|) and

the autocorrelations are defined as:
R(i—j) = E[su(i)su(s)]. (2.16)

The system of Eqs. (2.15) is in fact the Yule-Walker cquations with the antocor-
relation matrix R being symmetric and Toceplitz. A fast method for solving the
Yule-Walker equations is the Levinson-Durbin recursion [9,12].

Even if a speech signal is considered to be stationary over a short Limie interval

such as s,(n), its statistics are not explicitely known. In using the Autocorrelation
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method to compute the sct of linear prediction coefficients {ax}, one must estimate
the autocorrelations (i — j) from the windowed speech sample sequence, and then
insert those estimates into the Yule-Walker Eqgs. (2.15). Thus, if the used window
wy(n) is of length [, the estimated autocorrelations from the sample sequence are

usually chosen to be:
L-1-k

Rk = Y su(n)su(n+k) (2.17)

n=0
and the resulting lincar system is Ra =  where the estimated autocorrelation matrix

R preserves its syminetric and Toeplitz properties.

The Covariance Method

Minimization in the Covariance method is performed on the windowed error as shown
in Fig. 2.4. The window w.(n) has L non-zero samples. Applying the least-squares

mcthod, the mcan energy of the error,
+00

E = Y eun) (2.18)

n=-—00
is minimized by taking the derivative of Eq. (2.18) with respect to all the ax’s, and
setting the results equal to zero. Once again, a linear system of equations $a = ¥

results. The expanded covariance system has the form:

[ o(1,1) ¢1,2) ... o(L,p) |[a ] [ ®(0,1)]
(2,1) 9(2,2) ... ¥2,p) ||az| | 9(0,2) (2.19)
| ¢(p,1) ¥(p,2) ®(pp) | [ @ ] | 20,p)
with the covariance given by:
L—-1
D(i,j) =Y a(n—z(n— jw.(n)® i=0,...,p j=1,...,p. (2.20)
n=0

The Covariance matrix preserves its symmetric property but is not necessarily
Tocplitz, which makes the Covariance method computationally less efficient. Cholesky
decomposition is usually used to solve for a in the linear system of Eqs. (2.19). Note
that in this method, windowing was applied to the error signal which in fact imposes
on the speech segment to be of length L + p, running from z(—p) to (L — 1). The

choice of the error window w.(n) will also be discussed in a subsequent section.

20



T RIeoR o bF

s(n)

k

Tkt arz”
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Figure 2.5: Lattice configuration of the inverse filter.

The Lattice Method

The inverse filter A(z) of order p is represented in lattice form in Fig. 2.5. The set
of parameters to be estimated in this method are the reflection coeflicients {£;}. The
estimation procedure takes advantage of both the forward residual (resulting error
after predicting the present sample from the delayed one) fi(n), and the backward
residual (resulting error after predicting the delayed sample from the present, one)
bi(n). The output of the filter is the usual open-loop residual x(n) corresponding
to the forward prediction error f,(n) at the last stage of the lattice structure. The

forward and backward residual samples arc recursively obtained by:

Jiri(n) = fi(n) — kipb(n —1) (2.21)
bivi(n) = bi(n—1) = kiys fi(n)
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with the initial and final conditions being;:

Jo(n) = bo(r) = s(n) (2.22)
Lpo(n) = fpaa(n) — kpby—i(n—1) = z(n).
From the inherent recursive structure in Fig. 2.5, it is obvious that recursive tech-
niques will be used 1o compute the reflection coefficients. The two most popular
techniques are the Itakura and the Burg methods [14,15]. The first method follows
directly from the Levinson-Durbin recursion when windowing is applied to the speech
signal. It exploits in the computation of the reflection coefficients the partial correla-
tion between the forward and the backward error signals normalized by their energies.
The Burg technique is based upon minimizing the weighted sum of the forward and
backward residuals within an analysis window we(n).
If once again, the speech signal is assumed to be stationary with known statistics,

the corrclation and energies can be written as:
Fin)=  E|[fi(n)Y]
B(n)= E [b(n)] (2.23)
Ci(n, k) = E[fi(n)bi(k)].
The Itakura method defines the reflection coefficients as:
Ci-1(n,n —1)

;= . 2.24
[Fies(r)Biza(n — 1)]'/2 229
The Burg technique minimizes the following recursive windowed error energy:
Ein)= Y we(n — k)ei(k)? (2.25)
k=-o00

where ¢;(k)? is the barycentre of the forward and backward residual sample energies:
ai(k)’ = (L= )fi(k)* + vbi(k)? 0<y<1. (2-26)

By minimizing F;(n) with 1espect to the k;'s, the resulting update expressions are:

K = C.-’gn) / Di(n)
Cisi(n) = we(n — k) f,(K)b,(k —

+ ( ) kg;:m ( )f(k)b (k 1) (2-27)
Dipr(n) = 35 weln = k) [1fica®)® + (1= 7)bica(b = 1)7].
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The choice of v and the error window w,(n) have repercussions on the all-pole synthe-
sis filter corresponding to the set of reflection coeflicients {4;}, which will be justified
shortly. More computationally efficient procedures, such as the Covariance-Lattice
method [15] as well as techniques to guarantee better numerical stability introduced
by Cumani [16], have also been developed but will not be detailed in this thesis since

complexity of the intended coding scheme is not the major target.

2.4.4 Synthesis Filter Stability

In a coding scheme, the predictor cocflicients are used in both all-zero filtering oper-
ations (inverse filtering) to obtain residual signals and in all-pole filtering operations
(synthesis filter) to reconstruct speech signals. Stability of the synthesis filter is of
premium importance if performance degradation of the coder is to be avoided in noisy
channel conditions. Indeed, any channel error can result in diverging outputs at the
receiver if the all-pole filter is unstable. Stability of the synthesis filter is guaranteed
by having all the zeros of the inverse filter A(2) reside inside the unit circle in the
z-domain. The usual method for stability checking is Lo convert the direct-form filter
prediction coefficients {ax} to the reflection coefficients {£;} of the equivalent lattice-
form filter. Stability is ensured if all the reflection cocflicients are less than unity in
magnitude. The Burg solving technique in the lattice-form filter will yield a stable
synthesis filter provided that the lattice stability constant 4 is chosen to be 0.5, and
the error window we(n) is causal [17]. A magnitude larger than one for the ks is in
fact a physically impossible situation as those k;’s represent the reflection cocllicients
for fluid flow at the junction of two tube sections when the vocal tract is modeled by
concatenating sections of acoustic tubes of different arcas.

On the other hand, the Autocorrelation method will always result in a stable syn-
thesis filter associated with the predictor cocfficients {a;}. This property is motivated
by the bias introduced in the autocorrelations of Eq. (2.17), as the decreasing window
size with increasing lag guarantees a positive-definite autocorrclation matrix R [18).
The Covariance method, unfortunately, docs not guarantee stability despite the fact

that in many cases it results in higher prediction gains.
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2.4.5 Backward and Forward Adaptation of LPC
Coefficients

In a coding structure, the LPC cocfficients should be made available to the decoder
every time they are determined for a given segment of speech, in order to enable
the reconstruction of one speech sample or a group of samples. Those parameters
are usually transmitted as side information to the receiver, along with the quantized
residual, Adaptation of the predictor coefficients is then said to take place in a forward
manner. As mentioned previously, estimation of the cocfficients is performed on a
frame-by-frame basis in order to comply to stationarity assumptions and to facilitate
transmission. The inherent advantage is that the parameters are optimized for the
frame in which reconstruction will take place, but a delay can in some applications re-
sult in audible echoes during transmission. Backward adaptation uses a block of past
reconstructed speech samples up to the present one in order to estimate the predic-
tion parameters. The coding delay is therefore suppressed since no buffering of future
samples is needed. The other advantage is that the predictor coefficients do not have
to be transmitted to the receiver, since the latter has the past reconstructed speech
samples available, from which those LPC cocflicients can be computed. It seems at
first glance that backward adaptation permits substantial bit rate reductions as no
bits have to be allocated to quantize the parameters to be transmitted. One must not,
however, overlook the fact that the parameters that are being optimized for a block
of reconstructed speech samples will only be used for reconstructing speech in the fol-
lowing block (present and future samples). Due to the non-stationary characteristics
of speech signals, the analysis frame, i.c the frame over which the LPC parameters are
estimated, has to be made short looking back at past samples, and thus the update
rate of the predictor must be greater than the one adopted in forward adaptation.
This will evidently impose constraints on bit rate reduction. In addition, the analysis
frame should be highly overlapped for a better tracking of spectral changes in the
speech signal. The other major drawback in backward adaptation is the fact that the
LPC parameter estimation is based on the reconstructed past speech samples which
incorporate quantization crrors. Prediction gain values are slightly lower than those
obtained in forward adaptation. However, with a frequent update of the predictor

and a good quantization scheme of the residual, backward adaptation exhibits excel-
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lent performance in applications where low coding delay is a necessity. The zero-delay
ADPCM 32 kb/s CCITT standard and the low-delay 16 kb/s standard are both based
on backward adaptation. Chen [7] has demonstrated that a high-quality low-delay 8
kb/s coder cannot rely solely on backward adaptation since the backward predictor
order and the update rate imposed by the bit rate do not permit a full exploitation
of the long term redundancies (periodicity). In the work carried out in this thesis
to achieve toll-quality coding at rates around 8 kb/s, the delay constraints will be
overlooked and forward adaptation schemes will be adopted, thus guarantecing the

highest open-loop prediction gains possible.

2.4.6 Windowing and Predictor Order Considerations

The LPC parameter optimization and predictor adaptation, alllogether known as
LPC analysis, relied on windowing of the speech signal in order to preserve quasi-
stationarity, but also on methods to solve a linear system of order p, which is actually
the order of the lincar predictor (¢f Section 2.4.3). The choice of a suitable window
and prediction order is in fact very crucial in the analysis stage of a coding process, al-
fecting many issues such as redundancy removal, numerical stability, minimum-phase
property of the inverse filter, computational complexity and real-time implementa-
tion. Some of these issues will now be considered.

Two types of redundancies are usually treated in speech signals.  Near-sample
redundancies are due to the formant structure of the specch, allowing the prediction
af a sample from its immediate predecessors. Far-sample redundancics are accounted
for the pitch structure that manifests itself mostly in voiced segments of the speech
signal. The past samples that are located around one or two pitch lags (periods) from
the present sample contribute to the prediction of this latter. The range of pitch and
formant redundancies actually overlap, especially in the case of female speech. In
natural speech, the pitch lics between 64 Hz and 400 Hz, with a fundamental frequency
(F0) range of 80 Hz to 160 1z ( a period of 100 samples to 50 simples in 8 kHz sanpled
speech) for male spcakers and an average pitch range of 132 [z to 223 Hz (60 to 35
samples period) for female speakers. The chosen window in the analysis stage must,
a priori, be of large size in order to take the long-term redundancies into acconnt.,

With a maximum and average pitch lags (distance between pitch peaks) of 120 and
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60 samples, the window lime duration must not be less than 16 ms (128 samples
times the sampling period of 0.125 ms) and the order p of the predictor should be
high enough to include the past samples around the lowest pitch lag. Such sclections
however incur drawbacks if one aimed at capturing within the window the total pitch
range or at increasing the predictor order until the male speech pitch lags are within
reach. Referring back to equation (2.17), it is clear that the LPC analysis stage relies
on an accurate estimate of the autocorrelations (or the covariances). The selected
data window must therefore include enough samples to yicld a valid estimation of the
long-term corrclations, and thus be of a length corresponding to two or three times the
maximum pitch lag. Nevertheless, such a window would attain 400 samples in length,
violating the formant structure stationarity assumption, valid for spcech segments of
around 100 samples. In fact, the non-stationarity of near-sample redundancics is more
harmful to the prediction gain than the accurate tracking of long-term redundancies.
On the other hand, the predictor order sclection is restricted by the computational
expenses of the LPC analysis, Orders up to 50 have been well handled in coding
schemes [19]. Predictors of that order exploit quite well the female speaker pitch
range, but the male speaker pitch range is only partly captured. It would be then
logical to increase the prediction order up to 60 or 70 for a better coverage of the male
speech pitch lags. Experiments in [20] have however concluded that only very slight
increases result in the prediction gain (lower than 0.5 dB) when the predictor order is
varicd between 20 an 70. Numerical problems (ill-conditioning of the autocorrelation
or the covariance matrix) that arise from high prediction orders are, along with the
drawbacks of large window sizes, a major cause of this behaviour. Fig. 2.6 gives
an idea on the prediction gain improvement for male and female speech when the
predictor order is considered to be 10 and 50 respectively. As can be scen from this
figure, the long-term redundancies are better exploited in female speech rather than
in male speech with an order 50 predictor, as the average pitch lag of 30 samples for
female speakers [alls well within the coverage range of the predictor.

Many attemps of betler pitch tracking configurations were studied in the past
years. One such configuration is the use of a direct-form transversal prediction filter
with arbitrary spacing of the taps. 20 taps could be for example allocated for formant

tracking (ncar-sample redundancies) and 30 taps for pitch tracking. The first 20 taps

26



|
frames nmnbar
(a) Male
23
20
1s
‘|

10

[¢] 20 40 [ 4] Ho (M
frame nurnber

(b) Female

Figure 2.6: Analysis stage of male and femalespeech using LPPC of order 10 (solid line)
and of order 50 (dashed line). The Autocorrelation method with a 20 ms Hannning

window is used. SegSNR values for frames of 160 samples are shown.

27



Ve

IR L -

PR

-

R

E
T
5
i
£
e
T
&
&
k2
4
£

a3,
& T

/
/

would assume a fixed positié)xl while the remaining 30 are repositionned in such a
way to cover the whole lag range (20 to 150 samples). They could be either equally
spaced, located around average pitch lags or even around current pitch lags in which
case long-term redundancies tracking becomes adaptive, The major disadvantage in
such prediction schemes is that the autocorrelation matrix looses its Toeplitz property
which renders the LPC parameter computation less eflicient. Also, the numerical
problems encontered in these methods were worse than those of the regularly spaced
taps predictor configuration [20].

The most popular way of alleviating the windowing problems while still conserving
prediction gains comparable to those of high-order predictors is to use two separate
predictors in a sequential configuration. Two analysis windows of different, lengths
and different adaptation methods can be adopted in this case. One predictor would be
empioycd for pitch tracking while the other for modeling the formant structure. Joint
optimization of the pitch and formant predictor parameters [21] will usually yield a
higher prediction gain at the cost of higher computational complexity. A formant
predictor of order 10 following a pitch predictor of an order up to 3 configuration
results in a performance almost equivalent to that of a single high-order (order 50)
predictor [20]. Increases in prediction gain (up to 2 dB increase) due to the pitch
predictor stage manifest themselves in voiced regions of the speech signal. Unvoiced
segments of speech do not contain any periodic structure and therefore the pitch
predictor contribution is uscless. As a last remark for this paragraph, the pitch
structure in speech signals varies much more rapidly than the formant structure, the
update rate for the pitch predictor is hence at least three to four times greater than
that of the formant predictor. Extensive description of pitch prediction techniques
including pitch predictor optimization will be presented in Chapter 4.

The effect of the selected window size in LPC analysis was introduced earlier.
Along with the size, the shape of the data or error windows plays an important role
in the predictor optimization. Rectangular and Hamming windows are commonly
used in forward adaptation, whereas exponential windows seem to be more efficient
in backward adaptation. While the definition of the length L (in samples) is clear for

finitc windows (Hamming, Raised Cosine, ...), a common way to define the effective
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length L. for semi-infinite causal windows w(n) (exponential windows) is:
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As it was mentioned previously, the length (or effective length) of the window are
chosen so that enough samples are gathered to make the correlation estimates valid,
without violating the stationarity assumptions of the speech signal. The best com-
promise between accuracy of long-term correlation estimations and short-term corre-
lations minimum smoothing results from the selection of windows of length around
20 - 22 ms (160 — 180 samples). Such lengths also satisfy the condition for an aceu-
rate correlation estimate, stipulating that the window length should be much larger
than the predictor order. Increasing the window length will degrade the predictor
performance rather than yielding more accurate correlation estimates, as the speech
stationarity assumption breaks down for segments longer than 22 ms.

Barnwell [22] has extensively used 1, 2 and 3-pole exponential windows in his
derivation of recursive windowing methods for generating autocorrelation lags. Barn-
well autocorrelation methods proved to be very useful thercafter in real-time im-
plementations which took advantage of the recursive feature. Fig. 2.7 displays the
time series of rectangular, HHamming and Barnwell autocorrelation windows. Better
prediction gains and subjective ratings are obtained when Barnwell autocorrelation
windows are used instead of Hamming windows in backward adaptive LPC analysis
[20]. The main reason for the better performance of exponential windows is the heav-
ier emphasis applicd to immediate past samples, in opposition to a broader range of
“sample capture” for the Hamming window. Up to 1 dB prediction gain improve-
ments can be reached with exponential windowing in backward prediction, especially
when the prediction order is relatively high. In fact, the “long tail” of the exponential
window adds accuracy to the correlation estimates, more precisely in the large lags
correlations where the finite size Hamming window has limitations. Nevertheless, the
use of Hamming error windows in the Covariance method for forward prediction is
more efficient than exponential windowing [23).

Many of the predictor order and windowing issues have been left out in the pre-

vious discussion. For example, the number of bits available for quantizing the LPC
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Figure 2.7: 2-pole exponential window (effective length of 158 samples)(solid line),

rectangular window (dashed line) and Hamming window (crossed line).

parameters imposes constraints on the predictor order. The causality of the selected
windows affects the stability of the all-pole synthesis filter. Numerical problems and
computational complexity issues have been left out, but many other will be addressed
in their appropriate chapters. With LLPC analysis grounds being formally defined, it
is now possible to introduce a class of coders that has gained the leading edge in
speech coding rescarch for its outstanding bit rate reduction capabilities and high

reconstructed speech quality: linear prediction based analysis-by synthesis coding.

2.5 Analysis-by-Synthesis Coding based on

Linear Prediction

As it was ecmphasized in Section 2.3, the greatest advantage of linear predictive coders

is the quantization of the speech residual rather than the signal itself, allowing a finer
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quantization due to the lower cnergy content of the residual. Now supposing that
in the hope of reducing the bit rate, one decides to apply the principles of lincar
predictive coding to encode a speech signal on a frame-by-frame basis, naturally at
the expense of a certain coding delay. The closed-loop residual &(n) would then have
to be quantized on a blockwise basis. Recalling that the reconstructed speech is

obtained by all-pole filtering the quantized residual,
p
§(n) =z(n) + Y a3(n-*k), (2.29)
k=1

the above operation can be recursively used to obtain a trial block of reconstructed
speech samples. More clearly, instead of directly quantizing the closed-loop residual,
trial excitation vectors (blocks) are successively selected from a book of all possible
excitation vectors and passed through the synthesis filter to yicld a trial reconstructed
speech frame. The selection of the best matching reconstrucied speech vector to the
original speech vector should rely on minimizing a certain error criterion, The quanti-
zation error in the residual is not a powerful distortion measure when a coding scheme
is operating on a blockwise basis, since #(n) depends on the previous reconstructed
speech samples 3(n). Instead, a selection criterion based on the guantization ervor
in the speech signal s(n) — 5(n), taken on a frame-by-frame basis, scems to be more
appropriate. Once the excitation vector that yiclds the reconstructed speech vector
matching the original signal best is determined, its codebook index is transmitted to
the receiver. The decoder contains the exact replica of the excitation codehook and
thus speech can be reconstructed upon receiving the indices. This qualitatively de-
scribes the basic principles of analysis-by-synthesis coding based on linear prediction.

The all-pole filter of Eq. (2.29) with the corresponding z-transform <= is very

'

~—

often approximated by an all-zero filter of finite impulse response hg, hy, ..., hy, 1o
simplify the computations in the trial of all excitation sequences. A vector notation
can be adopted, as indicated in Fig. 2.8, to describe the operation of the analysis-by-

synthesis coder on a blockwise basis. Let H be the matrix corresponding to the FIR,
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(ZSR) obtained to yield a trial reconstructed speech vector 3. Based on the minimiza-
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to cnable speech reconstruction.
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filter {ho,...,hL} given by:

[ he 0 0 |
hy he ...
H = : : : (2.30)
ho 0
| hp—y hi-o hy ho ]

With § being a vector representing a frame of L reconstructed speech samples and %

a vector denoting a frame of L quantized residual samples,

§=[3(n),8(n+1),...,5n+L-1)]"

" 2.31
% = [F(n),#(n+1),...,#n+ L-1)] (241)
the filtering operation of (2.29) is approximated by
s=Hx + 2 (2.32)

where Z is the zero-input response of the all-pole synthesis filter used to reconstruct,
the speech at the current frame.
The error criterion € is conventionally chosen to be the least-squares criterion

expressed as:
c=(s—38)"(s-8). (2.33)

It can be rewritten with the help of Eq. (2.32) as:
e=(x+q—%—-g) H'H(x+q-% — §) (2.31)

where x denotes a frame of unquantized open-loop residual samples, § = H~1%, and
q its unquantized counterpart. The codebook excitation entry % that yiclds the mini-
mum error ¢ is selected for synthesis. The above error criterion is the basis of the class
of analysis-by-synthesis coders based on lincar prediction. Some attempts of directly
quantizing the residual vector instead of the codebook sclection procedure have been
made, but they proved not to be as efficient as analysis-by-synthesis technignes.
The design of the excitation codebook is closely related to the characteristics of
the speech residual. Excitation sequences in the early coders were generated stochas-

tically, assuming a Gaussian distribution (white noisc) for the residual samples [10].
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Since then, much more structured sequences have been created, stemming from the
increased knowledge about speech signals. The most advanced coders today exploit
the pitch structure remaining in the residual signal, and some make use of codebooks
trained on a large speech database.

A sample of the quantized residual, Z(n), can be viewed as consisting of two
contributions: a periodic component at a lag d, &(n — d) scaled by a gain 3, and a

non-periodic component &(n):
Z(n) = Ba(n—d) + &(n). (2.35)

Each contribution has been redesigned and optimized over the years, every time
improving the perceptual quality of the encoded speech. The periodic and non-

periodic components are now introduced separately.

2.5.1 Pitch Contribution to the Excitation

The periodic contribution to the excitation signal is the outcome of a pitch prediction
(long-term prediction) filter. The simplest model for the predictor is a single tap
transversal filter, of tap delay d and a filter gain 8. The tap delay d and the cocfficient
B are usually adapted on a blockwise basis for the optimal predictor for a frame of
original spcech samples. The tap delay range corresponds more or less to the pitch lag
range in natural specch (20 to 140 samples for 8 kHz sampled speech). Optimization
of the pitch prediction filter parameters will be extensively discussed in Chapter 4,
but it is informal tc mention for the time being that pitch prediction is efficient the
most when it is performed in a closed-loop fashion. The periodic contribution to the
excitation signal is thus a scaled version of a frame of past reconstructed residual
samples. Closed-loop prediction is in many cases modeled as an adaptive codebook
containing overlapping excitation sequences [24]. The best adaptive codebook vector
is the one closest in the least squares sense (or any other variation to this criterion)
to a target residual. Significant bit savings can be achieved if one has an approximate
estimation of the target location in the multi-dimensional space the codebook defines
(i.c. an cstimation of the coming lag value).

Multiple tap pitch prediction filters provide higher prediction gains and better

overall subjective quality than one-tap filters in full coders. Three-tap pitch prediction
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filters are of common usage in coders that can afford to allocate extra bits for the filter
coefficients. The harmonic structure and the spectral envelope of the reconstructed
speech signal are better controlled with multiple tap pitch predictors. Fractional delay
pitch predictors record almost the same performance as three-tap pitch prediction
filters [25]. The tap delay in such filters is allowed to assume non-integer sample values
of speech. Very efficient interpolation procedures for non-integer sample resolution
are described in Chapter 4, along with stability issucs and predictor optimization
methods.

In the specch reconstruction stage cither in the encoder or the decoder, the ex-
citation vector is passed through a pitch prediction synthesis filter (all-pole) to add
a periodic structure to the signal, then the outcome is fed to the lincar prediction
synthesis filter that takes care of the formant structure. Reversing the filtering order
has also been tried, but due to the discontinuous changes of the tap delays of the
pitch prediction filter, discontinuous wavcforms resulied. Minor clicks were heard in
the reconstructed speech and lower overall prediction gains were obtained [21]. 1t is
therefore more effective to place the short-term prediction synthesis filter after the
long-term synthesis filter when reconstructing the speech signal, with the order being

naturally reversed in the analysis stage.

2.5.2 Non-periodic Excitation Contribution Generation

Once the pitch structure of the speech frame to be reconstructed has been determined,
the periodicity is removed from the open-loop residual with the help of a long-term
prediction error filter. The remaining target signal has characteristics very close
to white Gaussian noise, and can be used for the determination of the non-periodic
excitation component &(n). Some of the methods to be described have originally been
implemented with no prior pitch prediction, but all current coders include long-term
prediction techniques.

Mullipulse Linear Prediction coding (MPLP) was the pionncer in the class of
analysis-by-synthesis coders. This technique searches in cach target frame for the
best location and amplitude of a pulse in a single pulse excitation vector, subtracts
this vector from the target frame to form a new target vector, then recursively repeats

all the previous steps until the number of allowed pulses in the excitation vector é(n) is
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reached. Fast algorithms to determine the multipulse excitation vector and to jointly
reoptimize the amplitude of all pulses determined so far in the iterative procedure
[26] have made this technique attractive in many practical applications.

A derivative of the MPLP technique is the Regular-Pulse excited Linear Prediction
(RPLP) method. The excitation vector in this case consists of a train of regularly
spaced pulses. The offset of the pulse train is determined first by matching as closely
as possible the target vector, then the individual amplitudes of the pulses are opti-
mized and encoded [27].

Nevertheless, the codebook lookup procedure remains the most widely used tech-
nique to encode the non-periodic excitation component in analysis-by-synthesis coders.
All new speech coding standards (16 kb/s and below) make use of the algorithm
developed by Atal [28], known as Code Ezxcited Linear Prediclion (CELP) coding.
Described in simple words, this method searches in a fixed codebook of cxcitation
sequences for the best vector that minimizes a least squares based error criterion
between original and reconstructed speech frames. With the elaboration of fast com-
putation methods for the CELP algorithm, this latter very quickly became the most
cfficient and cconomical coding technique, yielding good quality speech at around
4.8 kb/s and near-toll quality speech at 8 kb/s, upon which secure and mobile com-
munications systems rely [29,30]. A good bet for achieving toii quality at 8 kb/s is
to minimize all the objcctionable perceptual distortions incurred by the CELP algo-
rithm, starting with the application of the masking properties of the human auditory
system. In view of the critical importance that the coding scheme developed in this
thesis places on the CELP coding technique, the basic algorithm will be detailed in

the last scction of this chapter.

2.6 Auditory Perception in Coding

The ultimate judge of the coding quality is after all the human ear. An increased
knowledge of the speech signal processing that takes place in the auditory system will
certainly help devising techniques to reduce noticeable distortions in reconstructed
specch. The trend in high quality coders has been to move away from objective

distortion criteria such as the least squares or mean squared error to adaptive criteria
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putting more emphasis on the human auditory perception characteristics.

The first level of speech signal processing by the car is done at the basilar mem-
brane level. The processing is cquivalent to passing the signal through a bank of
filters of increasing bandwidth with frequency. Each bandpass filter selects a por-
tion of the signal spectrum and the strengths of the signal are translated into firing
patterns. The firing rates of the auditory ncrve are highly non-lincar and vary for
different frequency bands [8]. Due to the overlapping bandpass filters preprocessing
in the auditory periphery, the masking phenomenon occurs frequently. 'I'wo Lypes of
masking are encountered; spectral masking is said to happen when a louder signal
renders another signal close to it in frequency inaudible. Also, in some frequency
bands, the sensitivity of the car to the signal strength decreases with increasing sig-
nal energy [8]. On the other hand, a signal can be masked in the time-domain if it
immediately follows the end of a louder signal.

The first conclusion that can be made from the spectral masking phenomenon is
that the human auditory system has access to only a part of the information contained
in the speech signal. This has been thoroughly exploited in speech coding. Subband
coders [8] for instance exploited the reduced resolution of the car in certain frequency
bands by allocating different bit rates to a set of linear prediction based coders spread
along a set of distinct frequency bands on the speech spectrum range. ‘I'he highest
bit rates were assigned to the lower frequency bands where the ear is most sensitive.
Other methods taking advantage of spectral masking will be introduced in what
follows. Time-domain masking, on the other hand, was never exploited in coding

techniques.

2.6.1 Spectral Perceptual Weighting

The CELP coding algorithm operates on the full signal energy band. Rather than
splitting the signal spectrum into distinct encrgy bands, a form of spectral weighting
can be incorporated in the error criterion derived in Eq. (2.34) emphasizing thus cer-
tain frequency regions more than others. The perceptual distorion duce to quantization
errors is less perceivable in high energy regions of the speech spectrum. Thus, larger
quantization errors can be allowed to occur in formant regions of the spectrum. When

perceptually weighted versions of the original and reconstructed speech frames are com-
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pared instead of a direct error evaluation, a great deal of the noisy disturbances and
reverberations in the reconstructed signal are suppressed. The noise-weighting filter
is commonly a pole/zero filter based on the parameters (LPC coefficients) computed
in the lincar prediction analysis [3]. With T;—,'%(—z) being the synthesis filter associated
with the lincar prediction filter F(z), the adaptive noise-weighting filter W(z) is given

by:
1-F(z)  A(2)

1= F(z/v)  A(z/7)
where v (noise weighting or bandwidth expansion factor) assumes values between zero

and uniiy. Changing the value of 4 moves the poles of W (z) radially in the z-domain

(2.36)

W(z) =

(decreasing 4 moves the poles inward). Perceptual noise weighting has proven to be
so effective that it has been efliciently accomodated with the CELP algorithm, as will

be shown in the next section.

2.6.2 Postfiltering

The perceptual noise present in the reconstructed speech signal can usually be atten-
uated or removed by postfiltering. All-pole and pole/zero postfilters have been used
to enhance the formant structure of the transmitted speech. Adaptive postfilters
[29,31] based on the LPC parameters have proven to be very effective in enhancing
the perceptual quality of the coder although they resulted in lower objective measure
values. Detailed description and performance of adaptive postfilters will be reported
in Chapter 5. One must be careful, however, in tandeming situations where severe
distortions might occur with postfiltering because of the modifications brought to the
formant structure. Optimization techniques for the postfilter in multiple encodings

schemes are detailed in [31].

2.6.3 Harmonic Noise Weighting

Spectral noise weighting methods introduced in Section 2.6.1 exploit the noise mask-
ing capacity of the speech signal due to the formant structure. This helps emphasizing
some of the perceptually significant features of the signal. Enhancing the periodicity
of the voiced regions in the reconstructed speech has also been the concern of many

who looked into using a more perceptually accurate waveform matching criteria. This
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is equivalent to accentuating the harmonic structure of the speech spectrum, thus re-
moving the noise between harmonics. To this end, attempts of pitch postfiltering [32]
and pitch prefiltering [29] were carried out on the reconstructed speech, after the se-
lection of the optimal excitation vector. These techniques do not however take place
in the analysis-by-synthesis iterations and do not contribute thercfore to perceptu-
ally improving the matching criterion. Another approach known as the constrained
excitation [33] treats the CELP excitation as a sum of an ideal excitation and an un-
desired noisy component. Improvements of the subjective quality resulted by lowering
the scaling gain of the codebook excitation vector to a suboptimal value, achieving
noise suppression. Such results clearly prove that even the incorporation of spectral
weighting in the CELP error criterion is still insufficient. Pitch adaptive comb filter-
ing of the excitation components [29] also helped remove the noise by attennating the
energy of the excitation spectrum between harmonics.

A very efficient way of attenuating the inter-harmonic noise was recently intro-
duced by Gerson and Jasiuk [34]. On the same baseline of the spectral noise weighting
methodology, they developed the Harmonic Noise Weighting (HNW) technique that
exploits the noise masking potential of the harmonic structure of the speech signal,
To fully take advantage of the noise masking phenomenon from both short-term and
long-term correlations, a harmonic noise weighting filter C'(2) is cascaded to the spec-

tral noise weighting filter W(z). The HNW filter is an all-zero filter of the form:

M
C(z)=1—¢, Brz(—P+0) (2.37)
M

where D is the pitch period and S the pitch prediction filter coeflicients, optimized
in a closed-loop fashion for a frame of speech samples. €, is a parameter that specilies
the amount of harmonic noise weighting to be applied. The error criterion reveals to
be more perceptually accurate when spectrally and harmonically weighted versions of
the reconstructed and the original speech are matched. An even better performance is
achieved when subsample resolution is allowed in the HNW filter tap delays, especially
when it is used in conjunction with a fractional delay pitch predictor. As expected, in-
corporating the harmonic noise weighting technique in the analysis-by-synthesis loop
increases the CELP algorithm complexity, but suggestions to reduce this complex-

ity, listed in [34], demonstrate that the implementation of the HNW technique can
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combine affordability and cfficiency of performance. A full description of the HNW
design methodology and the corresponding perceptual coding improvements (despite

lower objective measure scores) are postponed till Chapter 5.

2.7 The CELP Algorithm

The CELP algorithm was seen previously to belong to the same class of coders to
which MPLP and RPLP coding schemes belong. These coders treat sampled speech
on a frame-by-frame basis, transmitting to the decoder the index of the best codebook
excitation signal suceptible of generating upon synthesis a reconstructed specch frame
that matches best the original speech frame. The degree of matching is measured by
a perceptually weighted error criterion and an analysis-by-synthesis iterative search
determines the optimal index of the excitation that minimizes this error criterion.
The speech synthesis is achieved by all-pole filtering the sclected excitation vector,
where the filter coeflicients are determined in the LPC analysis stage (¢f Section 2.4).
In addition, all current coders based on the CELP algorithm with a coding delay
exceeding 5 ms include long-term prediction filtering in their synthesis stage. Such
filters can be viewed cither as to be adding a scaled periodic structure to the selected
codchook excitation, or as adaptive codebooks (for the 1-tap pitch prediction syn-
thesis filter case) with a structure similar to that of the fixed excitation codebook.
The filter cocfficient is interpreted as a gain value that scales the adaptive codebook
entries, which are in fact past “pitch” synthesized excitation vectors. The second
representation of pitch synthesis will be adopted in the CELP configuration of this
section. Codebook adaptation and transversal filter structure of the pitch synthe-
sis operation will be discussed in Chapter 4. Fig. 2.9 shows a basic CELP coder
with spectral and harmonic noise weighting of the original and reconstructed speech
applied, as well as pitch prediction capabilities incorporated. Fig. 2.10 is a more
efficient structure of the CELP coder with filtering reallocations and simplifications
carried out.

As can be scen from Fig. 2.9 and Fig. 2.10, two codebook indices (i and the pitch
predictor tap delay d) and two quantized gain values have to be transmitted along

with the LPC cocflicients in order to reconstruct the specch signal §(n). Optimiza-
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Figure 2.9: Basic CELP cncoder including spectral and harmonic noise weighting.

The pitch synthesis filter is modeled as an adaptive codebook with entries sealed by

B.

tion of the codebook indices and gains can be performed jointly at the expense of a
higher computational complexity [21]. However, in view of the resemblance between
the adaptive and the excitation codebook structures, sequential optimization can be
carried out, trading off optimality with complexity reduction, if the minor degra-
dation that results in coding quality is acceptable. Supposing thal the quantized
excitation X(n) consists only of a periodic component (excitation codehook entry set.
to zero), the optimal delay d and coefficient B can be sclected in an analysis-hy-
synthesis procedure. A new target vector x(n) — fopX(n —d) is computed and the
excitation codebook elements (index 7 and gain () can now be optimized using the
same procedure for this new target. To keep the description of the CELE algorithm
general, the excitation vector X(n) will be considered to have a shape-gain structure
35], ®(n) = u®yD(n). The codebook entry y@(n) can cither be part of a stochas-

tically generated set of veclors, a deterministic set of scquences or a trained set of
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Figure 2.10: Improved CELP encoder. The spectral weighting is incorporated in the
synthesis to form a weighted synthesis filter T:F:—sz-)-’ and the spectrally weighted
quantization crror is furthermore weighted by the HNW filter to yield the error to be

minimized.

trial excitations. The gain p{) belongs to the set of the gain quantization levels. It is
very important to notice that the time index n used in the previous vector notations

to indicate the beginning of a frame will be implicit in the coming derivations.

2.7.1 CELP Algorithm Description

Fig. 2.10 clearly indicates that both the residual vector x and the trial excitation
py@ are passed through the all-pole weighted synthesis filter. The coefficients
of this filter (assuming a transversal structure) are the LPC coefficients computed
in the analysis stage, {at}, multiplicd by powers of the noise weighting factor +:
yay, y2az,...,v*a;. With the length of the current speech frame to be coded being

N, the weighted synthesis filter NTI/'Y)' can be approximated by an FIR filter of impulse
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response ho,ly,...,hxy—1. The all-pole filtering of a single residual frame x can be
performed by a convolution of the impulse response {h} of the approximation filter
with the samples of x. Written in a matrix form, the convolution becomes Hx, with

the matrix H being an N by N lower triangular with Tocplitz property:

- -

ho 0 0
hy ho ...
H=| : ; (2.38)
hyo 0
i hy-y hn-o hy hy ]

It is critical to note that the filtering operation Hx yields the zero-state response
(ZSR) of the weighted synthesis filter 37317-1_) The weighted speech can actually be
obtained by adding the zero-input response (ZIR) of the weighted synthesis filter

(upper branch of Fig. 2.10), 2, to the outcome of the convolution:
sw = Hx +2z. (2.39)

The computational cost resulting from the addition of the ZIR of the weighted
synthesis filter for each codebook excitation entry in the analysis-by-synthesis loop
can be avoided by defining a new target vector to match, t. It consists of the open-
loop residual vector with the compensation for the quantization errors that oceured

in previous frames added:
t = x—Ha. (2.40)

The quantization of this new target vector follows the selection process of the shape-

gain vector p)y® that minimizes the least squares dynamic error criterion:
W = (t — py D) HTH(t — 4y ) (241)

One can minimize ¢® with respect to the gain u) to obtain the following optimal

scalar value, et
(i)
u0 o 8 H Hy™ (2.42)
yOTHTHy®

then use this value in the error criterion of Eq. (2.41). However it is more of a

common practice to directly use the quantization level values for n) and sclect the

one that yields the minimum error.
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The introduction of perceptual weighting to the synthesis filter reduces the effec-
tive length of the finite impulse response approximation. The impulse response of the
all-pole filter {k;} can thus be truncated after R samples, for a value of R less than

N. The modified H matrix becomes:

( ho 0o ... 0
I ho !
: h, 0
ho
H = (2.43)
hpoy hpea ... hy
0 hpy
: hp1r hp-;
| 0 0 hpr |

The weighting matrix HYH remains symmetric but becomes also a Toeplitz band
matrix. The symmetry inferred to the error criterion is a major asset for the elc -
ration of fast algorithms in the scope of reducing computational complexity. If the H
matrix of Eq. (2.38) is used in the error criterion, the CELP algorithm is said to be
based on the covariance approach. On the other hand, the autocorrelation approach
[26] results from using the modified error criterion with the band matrix H of Eq.
(2.43); the symmetric matrix HTH contains the autocorrelation of the truncated im-
pulse response. The work in [4] shows that both approaches lead to sensibly the same
subjective and objective performances. However, the additional Toeplitz property of
the matrix HTH that results from truncating the impulse response of the weighted
synthesis filter after R samples leads to efficient computation techniques for the error
criterion. Finally, the dynamic nature of the weighting matrix HTH eliminates the
possibility of using cstablished fast scarch techniques from frame to frame, such as

tree searches.

2.7.2 Computational Complexity

The assessment of the computational complexity for the CELP algorithm is obtained
by counting the number of operations required to evaluate the error criterion of Eq.

(2.41) for a speech frame of length N. Expanding the error criterion, a constant
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term t THTHt results along with a cross-correlation term tTHTHy @ and an cnergy
term y(i)THTHy(i). The constant term doces not interfere in the scarch for the best
excitation vector, and thus does not need to be evaluated.

The constant vector HTHt can be computed first in the evaluation of the cross-
correlation term. Not including the overhcad, N operations will be then required to
compute the inner product (HTHt)rl‘y(‘). The constant vector is obtained by first
computing the convolution Ht (N(N + 1)/2 operations) then the “time-reversed”
convolution HT(Ht) (N(N + 1)/2 operations) assuming that the lower triangular
matrix H of the covariance approach is used. Similarly, N(V + 1)/2 operations
are required for the computation of the convolution Hy® for cach codebook vector,
followed by N operations for the inner product to yicld the energy term y@HTHy®),
A total of N(N + 5)/2 operations is therefore required for cach iteration (codebook
vector) in the analysis-by-synthesis loop, with the added overhead of the constant,
vector HTHt computation. In a scenario where an adaptive codebook of 256 entries
and a fixed codcbook of 1024 entries are employed, a frame length of 40 samples
yields about 230 million operations per second for a sampling rate of 8§ kilz. The
performance of today’s general purpose digital signal processing devices reaches 50
million operations per second! The urge for computational expenses reduction is very
serious in order to make real-time implementation of the CELP algorithm possible.

The design of fast techniques that reduce the computational effort of the CELP
algorithm has been a major concern of rescarchers. Detailed description of these
techniques will not be given out, but some of them will be briefly mentioned. The
most common fast algorithms consist in redesigning the excitation codebook. Center
clipping of the stochastic codebook reduces significantly the effort in computing the
convolution Hy®; a zero sample in y® allows the skipping of an cntire column of
H. The 90% zero populated codebook with the remaining samples generated from
independent identically distributed (iid) Gaussian processes yields the same speech
quality obtained with a stochastic codebook [36]. Ternary codebooks, where all the
non-zero samples were either set to 1 or -1 [30] provided improved speech guality
when compared to iid Gaussian codcbooks. Center clipping of the adaptive codebook
resulted, however, in serious speech quality degradation and is therefore avoided.

Pre-selection techniques leading to multi-stage search procedures have also bheen
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applicd in order to reduce the set of candidate excitation vectors [36]. The non-
weighted error criterion can for example be used to sclect a predetermined number
of candidates from which minimization of the weighted error criterion will determine
the optimal excitation vector. Pre-selection techniques are actually more effective on
the adaptive codebook rather than on the fixed codebook, in view of the periodic
structure of the speech frame and the codebook entries. Generalization of the two-
stage vector quantization technique (adaptive and stochastic codebooks) leads to
successive stochastic codebook quantization stages [37]. Multiple stage searches can
noticcably reduce the complexity of the CELP algorithm, but less efficient encoding
of the speech signal is suceptible.

A wide varicty of other methods have been suggested since the introduction of the
original CELP algorithm. Among those, transform methods such as Singular Value
Decomposition (SVD) and Discrete Fourier Transform (DFT) techniques introduced
in [38] arc commonly employed. Coders that can afford a large amount of storage
include lookup tables to store all the possible values of the weighting matrix HTH
and the vectors HTHy®. Significant computational savings in the evaluation of the
energy term HTHt and the cross-correlation terms tTHTHy® result. Algebraic
codes [39] along with cnergy storage tables have also lead to fast algorithms for the
computation of the cross-corrclation terms. Lastly, recursive methods that rely on
codebooks with overlapping entries have been investigated. The interest in such
methods stems from the inherent structure of the adaptive codebook, where the shift
between adjacent candidates is of one pitch cycle (for a pitch lag larger than the frame
size). These procedures can be easily applied to the adaptive codebook entrics and

even exiended to the case where the pitch lag is smaller than the frame length.

2.8 Conclusion

Although lincar predictive schemes provide only a cursory model of the vocal tract,
their performance in speech coding applications has been more consistent than phys-
iologically more accurate models. Various techniques of estimating the predictor
parameters were discussed extensively, leading to the conclusion that each method

was appropriate for a certain coding cnvironment. Low-delay coders would employ
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for example backward prediction, in which case a single high-order (p=50) predictor
could be used, and for which a sound procedure to optimize the LPC parameters
would be the Barnwell autocorrelation method. If the delay requirement is more
loose, a cascade of a 3-tap long term predictor followed by an order-10 short term
predictor exhibits a satisfactory performance in both objective measurcments (predie-
tion gain) and subjective evaluation. The Covariance parameter estimation method
yiclded higher prediction gains than the Autocorrelation method, but turned out to
be less numerically well-behaved and did not guarantee stable synthesis filters.

Linear prediction based analysis-by-synthesis coding exploits many of the advan-
tages of linear predictive coding while allowing speech coders to operate on a frame-
by-frame basis. At the expense of an increased coding delay, high-quality coded
speech is maintained with further bit rate reductions. Among all coders belonging Lo
this categoty, the CELP algorithm distinguishes itscll for its conceptual simplicity ,
its high performance and its aflordable implementation with the existing technology.

An increased knowledge of the human auditory perception contributes to enhanc-
ing the perceptual quality of CELP type speech coders, proving thus the suboptimal-
ity of the original least squares error criterion. Appropriate modification of the error
criterion, namely by spectral and harmonic noise weighting of the original and recon-
structed speech frames, suppresses much of the objectionable distortions that existed
in earlier CELP versions. Postfiltering helps also enhancing the spectral structure of
the reconstructed speech.

Finally, a good performance of the CELP algorithm inevitably requires open-loop
or closed-loop pitch prediction. The latier form seems to be more eflicient, considering
that the closed-loop pitch predictor can be interpreted as an adaptive codebook of
overlapping entries. Many of the fast algorithms can thus be applicd to the adaptive
codebook in order to regencrate the pitch structure in the 1econstructed speech.

It is therefore only logical that, in view of its high speech quality and the existing
fast computational algorithms, the CELP has become the most adopted technigue
for speech coding applications at rates ranging from 4 kb/s to 9.6 kb/s. 'Toll quality

could very well be within reach in a CELP coding scheme operating at 8 kh/s.
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Chapter 3

Quantization of LPC Parameters

3.1 Introduction

The LPC parameters computed at the analysis stage in a coding scheme represent
the spectral envelope information for intervals where the speech signal is assumed to
be stationary. These parameters are very often transmitted as side information along
with the quantized residual. For medium and low bit rate coding applications, re-
strictions arc imposed to the number of bits that can be allocated for LPC parameters
quantization. Transparent quantization becomes then a harder task to achieve, even
for modcrate orders of lincar prediction. Vector quantizers are known to be more
efficient than scalar quantizers in view of their bit rate reduction capabilities. In
addition the quantization distortion in vector quantization is smaller, as the existing
correlation between the LPC parameters is exploited.

Using the CELP minimum energy criterion, the optimal set of quantized LPC
coeflicients can be obtained by secarching exhaustively all the quantization levels.
This procedure is however very expensive even if one considered scalar quantization
of 8 or 16 levels per cocflicient or a vector quantizer of 20 bits, mainly due to the
synthesis filtering operation. Other distortion criteria for the quantization of the
predictor cocflicients can be derived, with most of them taking advantage of the
human auditory perception properties. Such measures help decreasing substantially
the computational complexity by bypassing the filtering operation while still yielding

perceptually excellent reconstructed speech.
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A mapping of predictor coeflicients into another set of parameters to be quantized
is very common in high-quality coding schemes. The intent of such transformations
is to obtain a better-behaved sct of parameters in the sense that the synthesis filter
characteristics will vary smoothly as a function of those parameters. T'he set of
prediction coefficients {a;} lack this behaviour, since a small change in a predictor
coefficient (duc to a channel error for example) can result in an unstable synthesis
filter. The reflection coeflicients {k;} are more often used as quantization basis, as
they display a better behaviour. They are usually either quantized directly, their ave-
sine used, or transformed to log area ratios (LAR), log H—}%], to render quantization
uniform.

Among all the existing LPC parameter representation domains, the line spectral
frequencies (LSF’s) are related to the speech spectrum characteristics in the most
simple and straightforward way. They represent the phase angle of an ordered set of
poles on the unit circle that describes the spectral shape of the inverse filter. With
the benefit of many of their structural properties, especially their localized spectral
sensitivily to quantization errors, many scalar quantization schemes and stability
checking procedures for the LSF’s have been developed. It was found, however, that
simple Euclidean distances between unquantized and quantized LS values is not a
sufficient quantization distortion criterion. Scusitivity analysis of distortion measures
yields an appropriate weighting of the LSF’s in a modified crror criterion.

Although vector quantization performs more efficiently than scalar quantization,
computational complexity was initially a problem. A predictor cocflicients vector
quantizer requires at least 20 bits to exhibit acceptable distortion. The potential of
vector quantization was later exploited, improving the performance of coding schemes
at high distortion levels. Product codebooks is one way to overcome computational
and storage inconveniences. This technique however is based on independent, sets
of parameters which arc alltogether a onc-to-one transform of predictor parameters.
Splitting the spectrum into a high-frequency spectrum and a low-frequency spectrum
by cascading two linear prediction filters is a direct approach to multi-codehook de-
sign [40]. Nevertheless, splitting the specch spectral information iuto a part related
to the lower frequency regions and one corresponding to the higher frequency re-

gions is simplest in LSF quantization since it only requires splitting the LSI’s into
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two groups with no need to evaluate any pole locations. Split vector quantization
of LSF’s has actually led to high-quality quantization of the LPC parameters at a
rate of 24 bits/frame [41]. Further bit rate reduction is possible by increasing the
number of splittings and exploiting intra-frame correlations, al the cost of a minor
degradation in quality. At such rates, an efficient spectral distortion measure for
vector quantization must be used. The one proposed is in direct relation with the
LSF speech spectrum related properties. Moreover, it takes advantage of the human
auditory system characteristics, which renders it more perceptually valid.

Large variations in filter coefficients from frame to frame can result in audible
distortions. Thus, instcad of updating and quantizing the LPC parameters on a
frame-by-frame basis, the cocfficients are interpolated before or after quantization for
individual subframes of size varying between 2.5 ms and 7.5 ms. Interpolation of the
predictor cocflicients is generally avoided because of the unstable synthesis filters that
might result. Transmitting interpolated values of the LAR, the arc-sine of the reflec-
tion cocfficients or the LSF’s then transforming them back to predictor coeflicients
allows on the other hand smoother variations of the synthesis filter characteristics
(spectral shape and stability) and thus improved overall perceptual quality. The per-
formance of the interpolation in the various transformation domains is essentially the
same, with a preference going toward LSF interpolation for speech frames of 25 ms

or longer [4].

3.2 Line Spectral Frequencies

The most popular set of transform parameters are the Line Spectral Frequencies (LSF)
introduced by Itakura in 1975 [43]. The advantages of the LSI’s will become very
clear in view of their properties, providing easy stability checking procedures, spectral
manipulations and convenient reconversion to predictor coeflicients. Techniques for

Line Spectral Frequencies computation are detailed first, then the LSF properties are

illustrated.
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3.2.1 LSF Computation Techniques

Conversion of the predictor coefficients {ax} to the LSF domain {{;} relies on the

inverse prediction filter A(z) of order p, defined here again for convenience:

p
A(z)=1=Y az7*. (3.1)
k=1
The inverse filter is used to construct two polynomials P(z) and Q(z) in 2:

P(z)= A(2) + z~HDA(zY,

QR(z)= A(z) — z~PHDA(:"Y), (3.2)

If the synthesis filter is stable (A(2) is minimum phase), all the roots of P(z) and Q(z)
will lie on the unit circle, alternating between the two polynomials with increasing
frequency. The LSF’s correspond to the angular frequencics w; of those poles, and
can thus be converted to Hertz by a simple multiplication by [,/2x, where [, is
the sampling frequency. As can be scen from the definition of P(z) and Q(z), two
extraneous roots will lie on the unit circleat w =0 (z = 1) and w =7 (2 = —=1).
With the other roots occurring in complex conjugate pairs, p distinct, LSIVs can be
therefore found between 0 and =.

The first approach for LSF computation is an iterative scheme developed by Kang

and Fransen [44]. From the phase spectrum of the allpass filler R(z) defined as:

z—(p+1) -1
R(z) = —-:—(f;i‘—l (3.3)

the LSF’s are found to be the frequencies where the phase response value is a mul-
tiple of 7. The same authors proposed an alternate approach using the constructed
polynomials G(z) and L(z):

for even values of p,

G(z) =$(:)_,, I(z) = l?_(z)_ , (3.4)
for odd values of p,
Gla) = Pz), L) =2, (3.5

G(z) and L(z) can be rewritten in terms of their coefficients as polynomials of order
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G(z) = Z [g.-z" + gm-.'z'('"“)],
o (36)
Lz)= Y[z + famiz™),

with ¢go and fy being equal to unity, m = n = p/2 for p even and m = (p + 1)/2,
n = (p—1)/2 for p odd. Removing the linear phase of G(z) and L(z), the polynomials

of Eq. (3.6) can be expressed as:

Gle) = e ImG(w),

L(e?) = e v [(w), (3.7)
where m
G'(w) = 2)_ gicos((m — i)w),
.'="o (38)
L'(w) = 2;[,' cos((n — 2)w).

The local ininima of the power spectra of the polynomials G'(w) and L'(w) correspond
to the LSF’s.

The other approach for finding the LSI’s has been formulated by Soong and Juang
(45]. It consists of transforming the coefficients of G(z) and L(z) by a Discrete Cosine
Transform. The LSF’s arc then found by searching in the range w = 0 to w = = for
a sign change in the two polynomials.

The last method, upon which the LSF computation in this thesis is based, was
proposed by Kabal and Ramachandran [46). The polynomials G'(w) and L'(w) are
expanded in terms of the Chebyshev polynomials T;,(z). The Chebyshev polynomials
are dcfined as:

Tw(z) = cos(mw), z = cos(w). (3.9)

The Chebyshev expansion of G'(w) and L'(w) yields

G’(.’B) = 2§ giTm—i(m)v

i20 (3.10)
L(z)= 2) fiTu-i(z).
i=0
By tracking the sign changes of the above expansions along the interval x = —1 to

x = 1, the roots are found iteratively. A simple inversion , w = Arccos(z), of the

roots results in the LSF sct.
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3.2.2 LSF Properties

Many of the LSF propertics are directly exploited in the quantizer design procedure,
stability checking routine and the spectral distortion mcasure. In addition, some
LSF characteristics render them more robust to channel crrors. All the propertics
are listed in this section, illustrated when possible, with the reference to their proofs
added.

Starting with the polynomials P(z) and Q(z) given in Eq. (3.2), the following two

properties are proved in [15]:
1. All zeros of P(z) and (=) lic on the unit circle.
2. The zeros of P(z) and @(z) are interlaced.

The first property guarantees the uniquencss of the LSIs while the second ensures
that the LSF'’s are in ascending order. It was scen that the efficient numerical com-
putations of the LSF’s briefly reviewed in the previous section imake nse of the above
two properties. In addition, Soong and Juang [45] have shown that if the quantized
and transmitted LSI’s satisfy those propertics, namely to be unique and in ascending
order, then the inverse prediction filter A(z) is guaranteed to have minimum phase
(stable corresponding synthesis filter).

Fig. 3.1 displays the LPC spectrum of two 20 ms frames of speech with the corre-
sponding LSF’s, depicted here in Hertz. Two additional propertics can be visnalized

in these two LPC spectra:
3. A cluster of two or three LSI’s signals a formant frequency.

4. The bandwidth of a formant depends on the closeness of the corresponding
LSF’s.

It is well known that most of the speech energy is contained in the first three formants.
Spectral distortion measures can make use of the fact that the set of LSF is ordered in
frequency, along with these two propertics, to assign perceptual weights to the LSI,
The lower LSI’s will be naturally emphasized more than the higher order ones,

An additional important property of the LSI’s is the localized spectral sengitiv-

ity. Small quantization errors due to a distorted channel can affect the guantized
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LPC parameters. For predictor coeflicients, a small variation in one coeflicient can
dramatically distort the spectral shape and cven lead to unstable synthesis filters.
Fig. 3.2 displays the LPC spectra of two 20 ms speech frames, where a distorted
spectrum is overlayed on the original spectrum. In the first frame, the sixth LSI®
was slightly modified while in the sccond, the cighth LSF was increased by a small
amount. It can be seen that the spectral distortion occurs only in the neighborhood
of the modified LSF. The spectrum is modified around 1300 Hz in the first frame and
around 2600 Hz in the sccond speech irame. Moreover, slteration of an LS corre-
sponding to a spectral valley results in less spectral distortion than a formant LS,
This localized spectral sensitivity of the LSI's is exploited in the design of product.
codebooks for vector quantization of the LSIMs. Essentially, it allows one to split ithe
LSF paramcter set into subsets of independent paramcters with almost no impact.
on the characteristics of the synthesis filter, and to assign different weights to each
line spectral frequency according to its location. Later scctions will demonstrate the

utility of this last property.

3.3 Distortion Measures

3.3.1 Motivation

The techniques used to estimate the LPC parameters in the previous chapter were scen
to be equivalent to attempts to fit the power spectrum of the associated synthesis filter
to that of the speech signal (¢f Section 2.4.2). In a similar manner, vector quantization
of LPC parameters can be viewed as sclectling from a quantization codebook the
LPC vector that yields the best matching spectral envelope to the given spectrnm

of a short frame of spcech. The matching criterion can be dircctly derived from

the analysis-by-synthesis error criterion model, based in on minimizing the energy of

the speech error incurred after quantizing the LPC parameters. However, even with
moderate size codehooks or good scalar quantizers (rate around 30 bits/frame), the
computational load is very large. Therefore quantitative distortion measures that
directly attempt to match the trial LPC vectors to a set of original LPC parameters
are needed. The Euclidean distance between original and trial LPC vectors have

been widely used in early vector quantizers. The limitations of such a measure quickly
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revealed themselves in unsatisfactory reconstructed speech quality. Taking perceptual
considerations into account, the Euclidean mcasure can nevertheless be appropriately
modified to achieve high-quality quantization, namely by appropriately weighting the
individual components of the LPC parameter vector.

Since the sought distortion measures quantitatively compare the synthesis filter
(LPC) spectrum and the speech frame energy spectrum, they are termed speetral dis-
tortion measures. Depending on the sclected domain for quantization, an appropriate
distortion mecasure is used as a sclection criterion for the value or the vector index
to be transmitted. The Itakura-Saito spectral measure, the log-arca ratio measure
and the Euclidean LSF distance will be bricfly introduced. However, with the LSIVs
being the parameters that are quantized and transmitted in the coding scheme of this
thesis, more cflort is devoted to the design of perceptually weighted Euclidean LSE
distances, exploiting the frequency discrimination characteristics of the human car as
well as the LSF properties.

There arc other contexts in which those distortion measures can apply. T'he per-
formance of speech coders can for example be evaluated when quick objective results
are needed. Criteria based on the speech spectral envelope lead to a greater insight,
than the regular SNR objective criterion. The use of the detailed measures in such
contexts is not atuempted in this work, but results found in previous literature are

reported.

3.3.2 Spectral Envelope Distortion Measures

The basis for defining and comparing the spectral envelope distortion measures is the
comparison of the original speech LPC spectrum obtained from the synthesis filter
1/A(z) and the encrgy spectrum of the synthesis filter associated with the quantized
LPC parameters, 1/A’(z). Both attempt to accurately model the energy spectram of
the speech signal taken on a frame-by-frame basis.

The Itakura-Saito measure IS is directly related to the logarithin of the original
and quantized LPC spectra [42]. It is defined as:

IS = 51-1;/_1; [cv("‘) - V(w) - l] dw (3.11)
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where

(3.12)

=
V(w) In|— | .
[IA(C"”)I } [IA'(e’“’)l
Denoting by a the energy of the residual signal obtained upon passing the speech
signal through the inverse filter A(z), and by a' the energy of the residual resulting

from the inverse filter A'(2), the integrals in Eq. (3.11) are evaluated to yield:

i ev(‘”)dw —_ o

e o a (3.13)
= 7 V(w)dw = 0.

The resulting Itakura-Saito measure in decibels is therefore:
al
IS4 = 10log [-; - 1] . (3.14)

Weighting can be introduced to the Itakura-Saito measure to take advantage of the
perceptual discrimination properties of the human ear. Weighting schemes w(e* )are

proposed in [17] and incorporated in the Itakura-Saito as follows:
1 g7 .
_ jwy [V(w) _ _
ISw o /_”w(e ) [e V(w) 1] dw. (3.15)

The log-area ratio measure, naturally based on the set of reflection cocfficients,

is defined Lo be:

k; k!
Dpan = Z log(l+k) - |g(1+k,)] , (3.16)

n=1

with {&,} being the set of p reflection coeflicients and {4} their quantized counterpart.

The Euclidean distance measure can be employed in any quantization domain.
It corresponds to minimizing the mean squared error between the LPC parameters
and their quantized values. This simple distance measure, however, does not yield
perceptually good LPC spectrum approximations. The complex weighting schemes
introduced to LSF Euclidean distances contribute greatly to increasing the accuracy
of the perceptual spectral envelope matching to original speech energy spectrum, as
will be scen in the next paragraph.

To appropriately define a weighted Euclidean distance measure to be used in the
vector quantization of the LSI'’s as a distortion criterion

DWisr = 3 lwills — ), (3.17)

i=1
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where {l;} is the set of original LSF’s and {{!} their unquantized counterpart, the
set of assigned weights {w;} should reflect the essential spectral propertics of the
LSF’s. Looking back at Fig. 3.1, the LSI”s are seen first to be spread out along
the frequency range from 0 to 4 kHz. Morcover, cach LSI® value can vary in a
limited frequency range. It is well-known on the other hand that the sensitivity of
the human ear to speech sounds decreases with increasing frequency. High-frequency
LSF’s can therefore be given lower weights than those of the first ones. ‘I'he other
important observation is the clustering of the LSF’s around the peaks in the spectral
envelope. Those peaks characterize the speech formant frequencics which are much
more perceptually significant than the spectral valleys. Relatively close LSI's can
therefore be interpreted as modeling a formant frequency, and thus should be more
emphasized than spaced LSF’s which only control the spectral tilt.

The two previous observations are the basis of the weighting scheme upon which
the LSF quantizer relies in this work. The weighting factor w; is separated into an car
sensitivily modeling part, wrs;, and a spectral envelope formant characteristic part,
wf

wi = wes; wf; (3.18)

Curves that model weights for the human ear sensitivity to sonud frequency have
been studied in the past. Most of these studies were based on the Just Noticeable
Differences (JND’s) of a single tone. Defined formally, the JND is a subjective measure
that detemines an acoustic distance threshold (loudness, frequency) above which two
successive tones can be distinguished. These thresholds are basced on a percentage
of listeners distinction between successive tones as a function of acoustic parameters.
The area of human perception for a sound is found to lic between 100 1z to 8 kHz in
frequency, for an intensity ranging between 30 dB and 80 dB [8]. While sensibly the
same sound intensity is needed for speech to be heard when its spectral content, varies
between 200 Hz and 1 kHz, a sound at 4 khz needs almost 20 dB more intensity to
be heard.

The detectability of a sound consisting of many spectral components is not a
simple function of the detectability of its components. A weighting scheme guided by
the ear frequency discrimination of tones can nevertheless provide a valid model. A

piecewise linear model of the human hearing sensitivity to discriminating frequency

59



R ot
3}33

e
3

TR AN, e .

0.6

wes

0.4}

0.2

% 500 1000 1500 2000 2500 3000 _ 3500 4000
Frequency (Hz)

Figure 3.3: Ear scnsitivity to discriminating JND based frequency differences. The
solid linc modcls the weighting scheme for the ear while the dashed line is the model

piecewise approximation scheme.

differences based on the JND of a single tone was elaborated in [48]. Fig. 3.3 depicts
this approximation with, superimposed, a three-component ear sensitivity weighting
scheme applicd to the intended LSF Euclidean distance measure. Fixed ear sensitivity
weighting schemes have been proposed where a non-adaptive coefficient scales each
squared difference for each LSF [41]. The lincar approximation to the sensitivity curve
is however a more theoretically accurate approach. The piecewise approximation
model is in fact less accurate for the low frequencies and more exact for frequencies
above 2 kllz. In this manner most of the emphasis is put on the first two formant

frequencics. The form of the weighting scheme is the following:

1 — 0.5/100001; for I; < 1000
ws; =4 0.95 — 3/10000(/; — 1000) for 1000 < I; < 2500 (3.19)
0.5 — 2.667/10000(; — 2500)  for I; > 2500

The relation between the formants and the LSF’s is exploited in the second weight-
ing component. In the distance measure, more weight should be given to the LSF’s

corresponding to higher amplitude formants than to those in non-formant regions.
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Also, the LSF’s corresponding to the spectral valleys are attributed the least weight.
A direct formulation of this idea is to assign to the LSF’s weights proportional to the
value of the LPC power spectrum JA(w)]* at the LSF frequency [41]. The formant
weight would therefore be computed as;

of i = M@/ )], (3.20)

where [; is the i** original LSF, f, is the speech sampling frequency, and o is an
exponent usually chosen between 0 and 0.5 to control the relative weighting assigned
to the LSF’s. A simpler approach having sensibly the same impact on the weighting
scheme is to use the closeness of neighbouring LSF's as a criterion for the characteri-
zation of the formant regions in the spectrum. Since the closer the LSIs are together
the more likely they are to fall in a formant region, the distance between cach LSI
and its closest neighbour, d;, can be found and normalized by the maximum distance

found d,,; to yield the quadratic weighting scheme proposed in [19)]:

Wi =05 + 0.5[1 - dd" ] . (3.21)

maxr

3.3.3 Discussion

The performance of the different distortion measures for the different LPC parameter
sets is evaluated in two contexts. The purpose of such measures is mainly an objec-
tive mean to assess the perceptual distortion in selecting a codchook entry of LPPC
parameters to match an original vector in vector quantization (VQ). The codebook
consists in fact of a set of spectral envelopes from which one will perceptually match
best the spectral envelope to be coded. The role of the distortion measures is thus
to model the quantization error that would be perccived by the human anditory sys-
tem. The other context of evaluation for the distortion measures is a complete coder
environment. Studies in [49] have shown, however, that aside from the SNR and
segSNR criteria the other measures perform poorly in discriminating coded speech
sentences badness. One drawback of using such measures to evaluate speech coders
is their averaging nature that disqualifies them from pinpointing isolated large errors
in reconstructed speech that introduce considerable perceptual distortion.

The spectral envelope distortion measures are much more effective when employed

for codebook vector selection. These measures are used in the domain in which they
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are defined, although the LPC coeflicients can be transformed from one representation
to another. While keeping a given number of fixed spectral envelopes in a codebook,
the different distortion measures were employed for LPC vector quantization in [49)
for encoding a speech database. A diflerence of 2.5 dB in SNR was found between the
best and the worst quantizing schemes. The most promising distortion measure was
shown to he the weighted Euclidean LSF distance. On the basis of these conclusions,
the next section will detail scalar LSF quantization schemes first, and then formally

introduce the LSF vector quantizer implemented in this work.

3.4 Quantization of LPC Parameters

3.4.1 Transparent Quantization of Parameters

The aim of every LPC quantizer is to achieve transparent quantization of the param-
eters. By transparent quantization, it is meant that no additional audible distortion
is added to the coded speech: the reconstructed speech using the unquantized LPC
parameters and the version obtained by using the quantized parameters should be
indistinguishible to the ecar. Subjective evaluation, while being the most effective for
evaluating the performance of quantizers, is not very convenient during the design
stage. Objective criteria complying to the requirements of transparent quantization
are needed. Spectral distortion measures have been conventionally used to evalu-
ate the performance of quantization. It is defined as the root mean square difference
between the original LPC log-power spectrum and the quantized LPC log-power spec-
trum. An average of 1 dB spectral distortion has been traditionally considered to be
the threshold for transparent quantization. However, isolated outliers (speech frames
recording spectral distortion greater than 1 dB) having large spectral distortion dis-
rupted the perceptual quality of the coded speech, despite spectral distortion averages
below 1 dB. An additional requirement along with the average spectral distortion will
therefore be the minimization of the number of outliers. The formal characterization
of transparent quantization, as suggested in [41], is to (a) guarantee an average spec-
tral distortion of about 1 dB, (b) have absolutely no outlier frames having spectral
distortion larger than 4 dB, (c) keep less than 2 % the number of frames having

spectral distortion in the range 2-4 dB.
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A 10-th order LPC analysis on 20 ms speech frames will be the common ground
for all the quantizers that are evaluated in the remainder of this section. This yields a
transmission rate of 50 frames/s of LPC parameters. A number of studies have used
the LSF’s as a representation for scalar quantization of LPC parameters [30,45). It
was found that 32 to 40 bits per frame were needed to achieve transparent quantiza-
tion. This is prohibitively expensive at medium and low bit rates. The alternative
for bit rate reduction is vector quantization (VQ) of the LPC parameters. A 10
bits/frame VQ scheme comparable in performance to a 24 bits/frame scalar quan-
tizer was proposed in [50]. The average spectral distortion of this scheme was however
of about 3.3 dB, clearly insufficient for high quality speech coding. Allocating more
vits to vector quantization implies larger codebooks. A larger set of training data is
also required which increases the complexity of the training process, not to mention
the expensive storage and computational requirements in encoding the parameters.
Transparent quantization has to be then reached using suboptimal VQ schemes.

Tree-search and product VQ are examples of suboptimal vector quantizers. Hybrid
vector-scalar quantizers, with either cascaded or coupled vector and scalar quantizers,
try to overcome the complexity of simple VQ schemes in [49] and [51]. At rates around
30-32 bits/frame, the average spectral distortion was reduced below | dB. Product-
VQ, on the other hand, was efficiently cxploited in [40] with the introduction of
a cascaded VQ LPC quantizer. The LPC spectrum is decomposed in this scheme
into a low-frequency and a high-frequency spectra. This is achieved by decomposing
the LPC polynomial into one polynomial defined by the 6 lower frequency roots,
and another one characterized by the remaining 4 higher frequency roots. The two
resulting lower order LPC vectors were jointly quantized using a log likelihood ratio
distance measure. A 26 bits/frame version of this cascaded VQ scheme yiclded a 1.1
dB average spectral distortion.

The implemented scheme in this thesis is a variation of the Split VQ proposed
in [41], also based on the product-VQ concept. The LPC parameters, in a suitable
representation, are split into two or more lower order vectors and independently
vector quantized. Splitting the LPC vector into 10 parts evidently results in scalar
quantization of the parameters. For this scheme, a suitable parametric representation

for the LPC coeflicients has to be selected, as well as a proper distance measure. The
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objective is the achievement of transparent quantization at a rate of 24 bits/frame.

3.4.2 Vector Quantization of LSF’s

Rather than considering the parameters as separate quantities to be quantized (scalar),
vector quantizers consider the entire set of LPC parameters for one frame as a single
entity which enables a direct minimization of the spectral distortion. Smaller quanti-
zation distortions result in vector quantization when compared to scalar quantization
at a given bit rate. Scen from another viewpoint, the existing correlation between
the LPC parameters for one frame of speech is exploited in VQ, allowing thus bit
rate reduction in LPC parameters quantization. Conceptually, vector quantization
consists in finding from a codebook of pre-determined trial LPC coefficients vectors
the vector that “matches” best the set of LPC coeflicients computed for a frame of
speech. Once this codevector is found, its index is transmitted to the decoder which
contains the replica of the quantization codebook.

The composition and the size of the codebook are issues that largely affect the
performance of V(). The perceptual distortion measure used as a selection criterion
can also greatly influence the accuracy of quantization. These vector quantizers design
parameters are now briefly exposed before detailing the Split VQ quantization scheme

and evaluating its performance.

Codebook Design

As more bits are allocated to the quantization of LPC parameters, larger codebooks
can be designed, increasing thus the probability of finding better perceptual matches
to a given original LPC vector. Large codebooks however entail, as mentioned previ-
ously, expensive computational and storage requirements in both their training and
their use for encoding. A practical suboptimal VQ technique will be seen shortly.

A large databasc is usually required for the training of the codebook, at least
several times larger than the intended codebook size. The codebook training in
this work is based on the conventional Linde Buzo and Gray (LBG) algori,thm [52).
Denoting the LPC vectors by v represented in a 10-dimensional space for our case,

the flow of the algorithm is given below:

1. The centroid ¢ of the training data is computed
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2. The centroids (one centroid initially) are split in two by slightly perturbing their

components

3. The training data is clustered around the closest new centroid, using the Lu-

clidean distance measure (v — ¢)"(v — ¢)
4, The new centroid of the clustered data is determined

5. If the new centroids do not register a distortion below a given threshold, the

data around the new centroids is re-clustered

6. Go back to step (2) until the desired codebook size is reached

Centroid splitting in the LBG algorithm can sometimes lead to LI’C vectors that
yield unstable synthesis filters. Examples of such unstable vectors can be reflection
coefficients of magnitude greater than one, or not properly ordered LSF components.
From a given centroid

¢ = [a,cz-..,¢10], (3.22)

the newly generated centroids are obtained by perturbing the components of ¢ with

the value &, set around 0.005, according to:

c = [(l+€)C|,(1 —E)Cg,...,(l ‘—‘E)CI()]a
¢ = [(1 —E)Cl,(1+5)02,...,(1 +€)C|0].

After several splittings the LSF centroid could loose the well-orderness principle if

(3.23)

the i-th coefficient ¢; = [; increases continually while ¢4y = ;4 keeps decreasing.
Such unstable vectors should be removed from the codebook in order to guarantee
stable reconstruction filters at the recciver. Some LPC paramcter representations
are not suited for vector quantization. The centroid of prediction coeflicients can
directly lead to unstable synthesis filters upon splitting. Furthermore, the Euclidean
distance used for clustering the data around the centroids in the LBG algorithin does
not display the same behaviour with the diflerent parametric representations of the
LPC parameters. Because of the limited frequency range of variance of each LSE and
the direct relationship between the speech spectral energics and the LSI's spacing,
such parameters lend themselves better to Euclidean distances than prediction or

reflection coefficients. The choice of the LPC parametrization domain will affect the

performance of the vector quantizer.



Selection Criterion

Evaluating the distortion between the energy spectral envelope of a speech frame and
the trial codebook LPC spectral envelopes in the selection process is largely depen-
dent on the domain of representation of the LPC parameters. While simple Euclidean
distance measures exhibit a satisfactory performance with LSF’s, they fail to empha-
size the perceptual nature of the quantization error. The Itakura-Saito log-measure
has a greater perceptual impact on the best LPC vector sclection criterion with the
inclusion of weights as functions of frequency. The inadequacy of the Euclidean dis-
tance as a distortion criterion in some LPC representations highlights the importance
of using distortion measures relevant to the LPC parametrization domain.
Nevertheless, studies in [41] and [49] have selected the Line Spectral Frequencies
to yield the best vector quantization performance under any distortion criterion.
The reason for this distinction derives from the close relationship between the LPC
spectral envelope and those parameters. The localized spectral sensitivity property
displayed in Fig. 3.2 cssentially allows one to weight the LSF’s individually. A
comparative study between a vector quantization scheme using the Euclidean LSF
distance mcasure and one based on the weighted Euclidean LSF distance measure
is completed in the next section, in the scope of the product-code vector quantizer

implemented in this work.

Split Vector Quantization

Product-codebook techniques have contributed to the reduction of the computational
complexity of vector quantizers. In such schemes, independent vector quantization of
L.PC sub-vectors using smaller size codebooks is carried out. Recent developements
have followed this stream by splitting the LPC power spectrum into a lower frequency
spectrum, more emphasized than a higher frequency spectrum [40]. Two lower order
prediction coefficient vectors could then be vector quantized in any suitable para-
metric representation. Splitting the LPC spectrum is straightforward if the LPC
parameters representation is based on the Line Spectral Frequencies. Each cluster of
LSF’s characterize a spectral frequency region (c¢f Section 3.2.2). With at most three
LSF’s corresponding to a spectral formant region, The first four LSF’s could (the

most important perceptually) constitute an LPC sub-vector of parameters modeling
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the lower frequency part of the spectrum, including most of the time two formants.
The remaining six LSF’s would then be grouped together as another subvector taking
care of the remaining LPC spectral characteristics. This product-codebook scheme,
known as Split Vector Quantization (Split VQ), requires the design of two indepen-
dent codebooks, in a four and six dimensional spaces successively.

Taking into consideration the fact that most of the speech energy is contained in
the first spectral formants, the same number of bits will be allocated to the quan-
tization of the first four components LSF vector and to that of the six components
LSF vector. At a rate of 24 bits/frame, cach codebook will have 1096 entries. The
codebooks are designed through the use of the conventional LBG algorithm. The
training database consists in about 10 minutes of english and {rench sentences spoken
by different male and female spcakers. The speech data is lowpass filtered at 3.4 kllz
and sampled at 8 kllz. A 10-th order LPC analysis yiclds two sets of LSF sub-vectors,
updated for every speech frame of 20 ms.

Instability of the all-pole speech reconstruction filters is avoided by ensuring that
the first four LSF’s in every entry of the first codebook are in increasing order, and
similarly for the six remaining LSF’s for the second codebook. However, the splitting
procedure might lead to potential cross-overs of the fourth and the fifth LSI's be-
longing to the optimally selected codebook subvectors. Fig. 3.4 is a plot of the 4-th
LSF values from the first codebook codesubvectors versus the 5-th LSF values from
the second codebook codesubvectors. As can be seen most of the 5-th LSI values
are above the l; = I; line. However, there are very few occasions where the first,
selected subvector has its fourth LSI' component greater than the first, component of
the second selected subvector (5-th LSF). Many LSF cross-over correction methods
have been proposed in previous works [48,49]. The simplest. correction technigue to
avoid synthesis filter instability will be adopted in this implementation. It consists of
swapping the values of the 4-th and the 5-th LSF’s in order to rcinstate the increas-
ing orderness property of the LSF’s. Subscequent checkings and swappings might, be
needed to ensure stability of the quantized LSF vector (3-rd LSE with the new 4-th
LSF value for example).

The performance of the Split VQ scheme is evaluated from a set of english sen-

tences spoken by male and female individuals not included in the training set, and
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Figure 3.4: 4-th LSF values from the first codebook vs 5-th LSF values from the

sccond codebook.

referred to as the test data. Both the Euclidean and weighted distance measures will

be investigated.

Performance Evaluation

Objective and subjective evaluation of the performance of Split VQ is carried out in
this section. Two versions of reconstructed speech will be compared, one based on the
original LSF vector and the other on the selected entry from both codebooks, keeping
this way similar the comparison conditions. Fig. 3.5 displays the original LPC power
spectrum with, superimposed, the quantized LPC spectrum for two frames of male
and female speech from the test data. The distortion criterion is sclected here to be
the Buclidean LSF distance measure, where all the LSF’s are assigned equal weights.
The LSF vectors for the same female and male speech frames are now quantized with
the split VQ scheme using the weighted Euclidean LSF distance measure introduced
in Section 3.3.2. Fig. 3.6 shows a reduced spectral distortion in the quantized LPC
spectral envelopes. The emphasis that weighting puts on the LSF’s corresponding to

formant frequencies translates into a finer quantization around formants in both male
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Figure 3.5: LPC power spectra for the set of unquantized LSIPs (solid line) and
quantized LSF’s (dashed line). The illustrated split VQ spectral distortion is for two
20 ms female (a) and male (b) speech frames, with the Euclidean LSE distance used

as a distortion measure.
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Figure 3.6: LPC power spectra for the set of unquantized LSF’s (solid line) and
quantized LSF’s (dashed line). The illustrated split VQ spectral distortion is for the
20 ms female (a) and male (b) speech frames of the previous figure, with the distortion

measure being now the weighted LSF distance measure.
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Distortion AvSD | % of Outliers | AvmaxSD
measure (dB) {2-4 dB}| > 4 dB (dB)
Euclidean 1.26 3.3 0.13 J.61
Weighted Euclidean || 1.09 2.6 0.07 3.42

Table 3.1: Performance of split VQ operating at 24 bits/frame. Spectral distortion
values are given for the Euclidean and weighted Euclidean LSF distance measures

used as distortion criteria.

and female speech spectra, at the expense of a coarser spectral matching in valleys.
As can be seen, both Euclidean and weighted Euclidean measures record the same
perfomance in spectral valleys, but the supcriority of the weighted sclection criterion
reveals itself at the lower frequencies and around spectral peaks.

Table 3.1 reports the objective results necessary to characterize transparent LPC
parameters quantization at an operating rate of 24 bits/frame. The average spectral
distortion (avSD), the maximum average obtained spectral distortion (avmaxSD),
the percentage of outlier frames recording spectral distortion between 2 and 4 dB
and greater than 4 dB are all given for the split VQ scheme using successively the
Euclidean and the weighted Euclidean LSF distance measures. With the help of the
weighting in the LSF distance measure, transparent LPC parameter quantization is
achieved, with an average spectral distortion around 1 dB. It is reported in [41] that
the effect of weighting is to reduce the bit rate by 2 bits per frame, i.c a 26 bits/frame
Euclidean distance measure based split VQ would yicld the same performance of the
split VQ used in this work. Also, from the performance of other LSE quantizers
reported in literature, the recorded spectral distortion of 1.1 dB is attained by 32
bits/frame scalar quantizers, 30 bits/frame hybrid vector-scalar quantizers and 26
bits/frame cascaded VQ schemes.

The subjective performance of split VQ has also been tested. A set of four male
and female sentences were coded using hoth the unquantized and the vector quan-
tized LSF parameters. After listening to the coded pairs presented to the listener in
random order, it was concluded that no difference could be distinguisheed, Transpar-

ent quantization quality is therefore achieved with a 24 bits/frame split. LSI® vector
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quantizer.

3.5 Interpolation of LPC Parameters

In a speech coder, the LPC parameters are quantized and transmitted on a frame-by-
frame basis, with an update rate usually around 20 ms. However, if those parameters
are kept fixed for the frame duration, large changes in the filter coefficients at the
frame boundaries can lead to audible distortions (clicks or pops). Unvoiced/voiced
transition regions are examples of such discontinuitics. In order to achieve a smoother
transition of the filler characteristics at the frame boundaries, overlapped analysis
frames and LPC parameters interpolation are widely employed.

A speech frame is usually divided into 4 or 5 subframes of duration ranging be-
tween 2.5 and 7.5 ms. Instead of performing the LPC analysis solely on the present
frame, one or two subframes belonging to the past already encoded frame could be
incorporated in the analysis data. In this manner the transition regions for the LPC
parameclers arc rendered smoother. Look ahead techniques are also sometimes ap-
plied, taking into consideration a future subframe of data in the computation of the
LPC paramcters for the present frame [29]. Special care should however be taken in
order not to induly increase the coding delay.

Interpolation of the LPC parameters provides a major contribution to the smooth-
ness of the synthesis filter characteristics. Fixed interpolation schemes have been tra-
ditionally used where a weighted combination of the past frame LPC parameters and
those of the present frame is individually assigned to every subframe in the present
frame. A dynamic linecar interpolation scheme has however recently been introduced
in [53], where the LPC analysis is performed twice for one frame, and the extra LPC
parameter set is used as middle values to determine the slope of the interpolation line.
Ixtra bits must in this case be allocated for the transmission of the interpolation slope
information to the decoder, along with the past and recent LPC parameter vectors,
The interpolation is thus performed on a subframe basis, with new interpolated values
generated every 2.5 to 7.5 ms.

Not many results have been published on the LPC paramcter representation to

be selected for satisfactory interpolation results. Experience has however concluded
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Figure 3.7: Frame-to-frame cvolution of the fifth (a) predictor cocflicient, (b) reflec-

tion coeflicient, (c) log area ratio coefficient and (d) LSF for 40 analysis speech frames.

that direct interpolation on the predictor cocflicients can lead to unstable filters and
is usually avoided. The LPC parameters are generally transformed to other domains
more suitable for fixed interpolation schemes. Fig. 3.7 displays the dynamic hehaviour
of four LPC parameter representations for 800 ms of speech. The subplots retrace
sequentially the frame-to-frame variation of the fifth (a) predictor coefficient, (b)
reflection coeflicient, (c) Log area ratio coeflicient and (d) LSI. It can be seen that
the LSF representation yiclds the smoothest frame-to-frame variation and thus is
very often the basis for LPC parameter interpolation. The log arca ratios are also
sometimes interpolated, ax: well as the autocorrelation coeflicients, In facl experiments
in [54] suggested that therc was no significant perceptual quality difference in a CELP
coder environment operating at 8 kb/s when interpolation was performed in the above
various domains. The LPC parameter update interval of the coder was of 16 ms. For

longer update intervals (25 ms and above), the LSF’s tend to show a more smoother
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evolution, precisely the reason for which they are employed for interpolation in the
Federal standard (Fed-1016) 4.8 kb/s CELP coder {30] over 30 ms speech intervals.
The implemented interpolation scheme is also based on the LSF representation of the
LPC paramelers.

The coding delay for the 8 kb/s CELP coder implemented in this thesis is 20
ms, corresponding to one speech analysis frame. However, in order to maintain the
continuity of the LPC parameters, the analysis frame and the actual speech frame
being coded do not match. Fig. 3.8 Shows how both the analysis frame and the
speech frame being processed overlap. At a sampling rate of‘S kHz, 20 ms correspond
to 160 samples. The frame to be coded is further divided into 5 subframes of 32
samples each (4 ms). The LPC parameters for the first subframe are entirely based
on the analysis performed on the past frame, while the remaining four subframes carry
interpolated LPC parameters. The analysis frame encloses the four last subframes
of the frame being coded and one extra subframe from the next-in-line frame to be
processed. The LSF’s of the j* encoded subframe are a weighted combination of the
past analysis frame LSI’s and the present analysis frame computed LSF’s. With w;
being the sct of interpolation weights, the it* LSF for the j** subframe,  is obtained
by:

i = w4+ (1-w)®, (3.24)
where & represents the time index of the current analysis frame. Fig. 3.8 provides
the subframe weights distribution. Since the decoder has available to it the trans-
mitted LSI’s for the past analysis frame, the first subframe can be reconstructed
upon receiving the excitation codebooks index, even before the newly computed LPC
parameters (present analysis frame) are sent. In this manner, the coding delay is not
increased beyond 20 ms, For the remaining subframes, the present LSF’s are required
at the decoder end in order the compute the subframe interpolated LSF values. Both
subjective and objective measures record an improved performance with the described

interpolation scheme in a full coder environment.
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3.6 Conclusion

A suitable parametrization of the LPC cocflicients was introduced in this chapter for
both quantization and interpolation purposes. The line spectral frequencics (LSF’s)
exhibit many propertics rclated to the LPC spectral envelope and to stability issues
that make them attractive for quantization. Although other LPC paramecter repre-
sentations display a good behaviour in various quantization schemes, the LSE's are
especially suited for vector quantization, in which the selection criterion amounts to
minimizing a perceptually weighted LSF distance measure. This distortion measure
takes advantage of both the frequency location of the LSI”s determining the speech
spectral peaks and valleys, and the human car resoiution along the frequency scale.
Vector quantization of LPC parameters allows greater bit rates reduction than scalar
quantization since it exploits the inter-correlation that exists among the LPC vector
components, but the computational cost quickly grows with the codebook required
size in order to achieve high-quality coding. A suboptimal vector quantization scheme
yielding transparent coding of LPC paramecters was presented and performance re-
sults were reported. Deriving from product-codebook vector quantization technigues,
Split vector quantization decomposes the LPC energy spectrum into alower frequency
spectrum and a higher frequency spectrum. The original LSI' vector to be quantized

is split into a four-LST subvector and a six-LSF subvector quantized independently
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using the weighted LSF distance measure as a distortion criterion. Two codebooks
arc initially trained according to the conventional LBG scheme, each ending up with
4096 codevector entries. The operating rate of the split VQ scheme is therefore of 24
bits/frame. ''he average spectral distortion of the split VQ was around 1 dB, com-
plying thus with the transparent quality coding requirements. Moreover, it turned
out to be consistently belter performing objectively and subjectively than a split
vector quantizer using the simple Euclidean distance as a distortion criteron. At an
update rate of 50 frames/second, the computational complexity of the implemented
split VQ reaches 4 million operations per second. Further complexity reduction can
be attained by splitting the LSF vector into more than two parts and reallocating the
bits among the resulting codebooks. This however cannot be completed without any
performance degradation.

Updating the LPC parameters on a frame basis can sometimes lead to discon-
tinuities in the predictor coefficient values. To avoid such circumstances, the LPC
parameters are interpolated on a subframe basis, i.e. for intervals shorter than the
LPC update frame. Once again, a comparative study between different LPC param-
cter representations revealed that the LSF are very suitable for interpolation in view
of their quasi-smooth frame-to-frame variztion. The proposed interpolation scheme
yields subframe LSF values obtained as a weighted combination of the past analysis
frame and the present analysis frame LSIF’s. The weights are predetermined and kept
fixed in the coding scheme. Moreover, to guarantee better specch spectral character-
istics transitions, the analysis frame includes, in addition to a main portion of the
present speech frame to be coded, a subframe of speech samples to be coded in the
next frame. The fixed interpolation scheme combined with the look-ahead capabili-
ties of the LPC analysis stage yields a better subjective and objective performance
(higher SNR) of the overall coder.
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Chapter 4

Pitch Prediction in CELP Coding

4.1 Introduction

Pitch prediction in linear predictive coding schemes is a powerful method to represent,
the periodicity in speech signals. Long term predictors arc usually described by pa-
rameters representing the delay and by filter cocfficients. In a CELP coding scheme,
the pitch prediction parameters are more efficiently optimized in a closed-loop manner
during the analysis-by-synthesis procedure. Along with the long term predictor pa-
rameters, the CELP codebook index and gain have to be also sclected. Qptimization
schemes that jointly select the pitch predictor and the codebook parameters which
minimize a weighted error criterion perform consistently better than a sequential op-
timization choosing first the prediction parameters and then the codehook index and
gain. An overview of the synthesis parameters optimization schemes is presented in
this chapter. From there, a combined optimization procedure joining both the re-
duced computational complexity of the sequential approach and the cfficiency of the
joint approach is proposed.

Multiple pitch predictor coefficients allow long term predictor delay interpolation
in certain high energy regions of the speech spectrum for periodicities that are not an
integer multiple of the sampling frequency. The coefficients of multiple-tap long terin
predictors are shown to be frequency dependent, emphasizing the lower frequency
spectral regions and compensating for the prediction inaccuracies in the higher fre-

quencies. They exhibit an improved performance over single-tap predictors, but their
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transmission bit rate requirement is very expensive. Pitch prediction gain increases
with increasing sampling rate. Fractional delay single-tap pitch predictors take ad-
vantage of this result to record performances higher than 3-tap pitch predictors. In
such predictors, the delay is specified as an integer number of samples plus a fraction
of a sample at the current sampling frequency. An efficient implementation technique
for the interpolation hetween samples is presented here, followed by a fractional de-
lay long term predictor design, with resolution up to 1/6 of a sample, operational in

an 8 kh/s CELP coding scheme. Subjective and objective performance results are

reported.

4.2 Pitch Prediction in CELP Coders

The incorporation of Long Term Predictors (LTP) in linear prediction based analysis-
by-synthesis coders has greatly contributed to increasing the quality of the coded
speech signal. The LTP, also known as the pitch predictor, was already introduced
in Chapter 2 as a technique to generate periodicity in the reconstruction of voiced
speech. A large part of the success of the CELP coding algorithm at rates between 4
kb/s and 10 kb/s can in fact be attributed to the linear pitch prediction capabilities
included in the coder. Taking advantage of the analysis-by-synthesis configuration of
the class of lincar predictive coders considered, the parameters of the pitch predictor
are usually updated in a closed-loop fashion. This closed-loop optimization proce-
dure was originally introduced to enhance the performance of a multipulse linear
predictive coding scheme [23]. The opcration of a pitch predictor in a CELP coding
environment follows the same model: a sclected codebook excitation vector drives a
pitch reconstruction filter (periodic structure is added) to yield a periodic excitation.
This resulting excitation is fed in turn to the all-pole synthesis filter producing the
reconstructed speech waveform by adding the formant structure of the speech frame
being coded. A clear distinction must be made between the first excitation vector,
termed LTP excitation, and the one used for synthesis, called LP (linear prediction)
excitation.

The pitch reconstruction filter is commonly represented by an Auto-Regressive

(AR) all-pole model with either one or multiple filter coefficients. The parameters of
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a LTP are therefore the filter delay d, closely related to the pitch lag of the current
speech frame, and its coefficients, {8;}. If the all-pole pitch reconstruction filter
is implemented as a transversal structure, one can then distinguish single-tap and
multiple-tap LTPs. The latter form enhances the periodicity of the coded speech at
the expense of a greater number of bits that have to be allocated for the quantization
of the multiple coefficients. A very efficient variation of the single-tap piteh predictor
is the fractional delay LTP, where the filter delay resolution is increased to less than
a sample. The performance of such fractional delay filters is comparable to three-tap
predictors for update intervals less than 10 ms, with the added advantage that no
extra bits are nceded to transmit more than one cocflicient. The increased resolution
of the delay must however be encoded and transmitted, requiring a smaller additional
bit number.

In the framework of analysis-by-synthesis coders, such as CELP, the LTP excita-
tion is determined on a blockwise basis. These blocks, called subframes, are usually
much shorter than the LPC analysis update frame, since the piteh information varies
more rapidly than the formant structure (¢f Scction 2.2). The analysis-by-synthesis
loop in the CELP algorithm, detailed extensively in Scction 2.7.1, proceeds in gener-
ating the LTP excitation by appropriately scaling an optimally selected signal vector
from a codebook of fixed entrics. This LT excitation is then “piteh” synthesized
to yield an LP excitation with periodic structure. The synthesis parameters that
need to be optimized and transmitted are thus the fixed excitation codehook index
i, the codebook scaling factor or gain G, the LTP delay d, and the LTP cocfficients
{B;}. Joint optimization of all parameters gives the best coding performance, but,
the extensive fixed excitation codebook search while optimizing the L'TP parameters
is very expensive computationwise. An important complexity reduction is possible
whenever the minimum LTP dclay d is sct to be greater than the subframe length.
In this case, the LTP contribution to the current LP excitation depends only on the
past LP excitation and therefore is independent of the current LTP excitation (scaled
codebook selected entry). A sequential optimization procedure is then applied, where
the periodic contribution to the LP excitation is determined first assuming a zero
LTP excitation. Once the LTP optimal dclay and coeflicient values are obtained, the

current LP excitation is further improved with the optimal LTP excitation selected
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Figure 4.1: Transversal filter structure (a) and adaptive codebook (b) representations

of the onc-tap long term predictor.

from the codebook and scaled by G. In the case of a one-tap pitch predictor, the LTP
contribution to the LP excitation can be viewed as a past delayed version of the LP
excitation scaled by the filter cocflicient 8. The past LP excitations can be stored
in an adaptive codebook where each entry differs by a shift of one sample. The long
term predictor contribution is therefore obtained by selecting the optimal entry in the
adaptive codebook and scaling that entry by the LTP coefficient. Fig. 4.1 displays
both the transversal filter structure and the adaptive codebook representations of the
onc-tap pitch predictor. The optimization of the synthesis parameters becomes a two
stage codcbook entry sclection, where the first codebook is adaptive and the second

is fixed.
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The LTP delay d gives in essence an estimate of the pitch lag of the recently coded
speech subframe. Open-loop correlation techniques for pitch detection can be applied
on the current subframe in order to obtain an estimatcof the LTP delay. The analysis-
by-synthesis procedure consisting of selecting out of all permissible delays the one that
maximizes a certain periodicity measure is however much more cfficient in a CELP
coding scheme. Constraining the LTP minimumdelay to be greater than the subframe
length suflers from limitations especially in the case of female speech (average pitch
period of 35 speech samples). The delay will in effect assume pitch doubled and
tripled values on many occasions. Remedies to this problem consist in allowing the
LTP delay to take values smaller than the subframe size and to recycle the current,
LP excitation through the pitch filter, or to include periodic extensions of a pitch
cycle in the adaptive codebook. The adaptive codebook method, employed in [30], is
however not equivalent to LTP filtering since the filter memory update is performed
on recycled LTP excitations while the codebook update only uses concatenated LP
excitation sequences. The degradations in perceptual quality are nevertheless minor
and the laticer technique will be employed.

At low coding rates, the LTP performance degrades as it becomes harder to recre-
ate a smooth evolution of the pitch cycle waveform. The perceived periodicity in
voiced segments of the reconstructed speech hence decreases. The simple AR model
for the LTP might therefore be unable to reproduce with fidelity the pitch cycles of
the original speech at bit rates dropping below 5 kb/s. Recent work has indeed ad-
dressed the limitations of the LTP by enhancing the periodicity of the coded speech
either by increasing the correlation between adjacent pitch cycles [33] or by applying
a harmonic noise weighting scheme to the CELP error criterion [34]. Some of these
techniques are discussed in the next chapter.

The LTP paramecters are transmitted at every subframe, requiring on average 12
bits per subframe, which corresponds to rates around 4 kb/s in the common CELP
implementations. Bit savings can be obtained by encoding only the offset. from the
previous delay every other subframe [30] or by using differential encoding technigues
[7). A recent LTP delay interpolation technique described by piccewise lincar delay
contour trajectories, introduced by Kleijn [4], enabled the transmission of the LT'P

parameters once every few subframes and the interpolation parameters in between,
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An outline for the optimization of the synthesis parameters in a CELP analysis-
by-synthesis loop is detailed in the next section, followed by implementational consid-

erations for the case of one-tap LTP delay values smaller than the subframe length.

4.2.1 Analysis-by-Synthesis Model

An cquivalent model to the two-codecbook approach for the basic CELP decoder
described in Chapter 2 is given in Fig. 4.2. The selected codebook excitation vector,
€', is scaled by an optimal gain G to form the LTP excitation vector. A periodic
structure is added to this vector after passing it through the pitch all-pole synthesis

filter;
1 1

= , 4.1
1= P(2) L fj gt (4.1)

=M
where d and {B,} arc respectively the optimal LTP delay and the set of (2M + 1)

LTP cocflicients. The outcome of the pitch synthesis filter, v, forms the LP excitation

vector, which is then passed through the all-pole synthesis filter -1+(“_) associated with
the LPC lincar predictor. Once the formant structure is added to the LP excitation,
the reconstructed speech vector, §, is obtained.

In analysis-by-synthesis coders, a replica of the decoder is incorporated in the
encoder in order to allow a direct comparison between the original and the recon-
structed speech signals. In the CELP coding algorithm, it was however scen that

instead of directly comparing the original and reconstructed specch signals, a per-
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Figure 4.3: Analysis-by-synthesis loop in the CELP algorithm,

ceptually weighted version of these signals is used. The analysis-hy-synthesis loop

minimizes thus a spectrally weighted error criterion for optimizing the synthesis pa-

rameters. The spectral weighting filter W(z), repeated here for convenience, is
I — F(z)

L= F(z/7)’

with ¥ being the bandwidth expansion factor (usually around 0.8), rclocates the

W(z) =

coding distortions around the formant regions where they are masked by the higher
speech signal energy. Fig. 4.3 depicts the analysis-by-synthesis structure of the
basic CELP coder after appropriately combining the spectral weighting (ilter with the
formant reconstruction (synthesis) filter. The resulting spectrally weighted synthesis
filter, T—m’ is closely related to the speech reconstruction filter, I is thus of time-
varying nature, with its cocflicients {v*a;} being updated as discussed in Chapter 3.
The other parameters to be oplimized, namely the synthesis parameters (codebook
index 7 and gain G, LTP delay d and coefficients {,}), arc determined in a closed-loop
fashion (analysis-by-synthesis loop) and updated every subframe.

The weighted synthesis filters in the upper and lower branches ol Fig. 4.3 we
updated at the beginning of every subframe, and their response is kept. fixed for the
subframe duration. The upper filter inemory is updated by passing the last sublrame
of residual samples while the lower filter memory is updated by fillering the optimally

selected LP excitation vypt.
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Due to the all-pole nature of the weighted synthesis filter, o recursive formulation
is used:

})
Sw(n) = v{n) + Zuk‘)*a,,,(n——k), (L.3)
A=l

where p is the linecar prediction order and 0 < n < L—1. However, a direet convolution
with the weighted synthesis filter impulse response {#'(n)} is more suitable for a elear
derivation of the synthesis parametets optimization scheme, The filtenng operation
takes then thic form:

0

sw(n) = Z p(kYh (- k). (10

= — o
The convolution operation has the same outcome as the tecursive tormulation only in
the case where the Zero-State Response (ZSR) of the weighted synthesis filter (zero
initial memory) is sought. The different initial conditions at the subframe boundaries
with the filters being time-varying lead to different filteting responses tor the two
formulations. Nevertheless, as it will be seen in the coming devivations, the effect
of initial conditions can be grouped intoe one term that does not intetfere i the
minimization loop, naiely the Zeto-Input Response (ZIR), obtained by letting the
weighted synthesis filter ring for one subframe duration.  After subtiacting the Z1R
from the reference waveform, zero initial conditions for the weighted synthesis filter

can be set, and cither the convolution or the recursive computation can he used,

4.2.2 Synthesis Parameters Optimization

Coding of the parameters in the CELP algorithin is done on a subfyame hasis. As can
be seen from Fig. 1.3, the weighted etror samples, ¢(n), are obtained as the diffmence
between the original weighted speech and the reconstructed weighted speech s, () -
3u(n), for one subframe of length L (0 < n < L — 1). The optinial parameters are
obtained by minimizing the mean squared weighted erroy:

L-1

e = Y (n) (1.5)

n=0

The optimal LTP delay and the codebook index are selected by perlorming an ex-
haustive scarch over all allowable pairs (d, ), with the corresponding computed gain

G and LTP cocflicients minimizing the error of Fq. (4.5).
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The spectral deemphasis of the synthesis filter coefficients {ax} by the bandwidth
expansion factor < leads to a quicker attenuation of the weighted synthesis filter
impulse response {#'(n)}. For a value of 4 around 0.8 and a sampling frequency of 8
kHz, the quast totality of the impulse response energy is in the first 20 samples. The
impulse response of the filter l—_—h—.—'(—‘%—)— can thus be approximated by a finite impulse
response (FIR) filter, 1'(0), M (1), ..., k(12 — 1), with R being sraller than L, the
subframe fength. The weighted reconstructed speech can therefore be obtained by
passing the LP excitation through this FIR approximation,

|13

su(n) = Y wp(b)W(n—k). (4.6)

h=n-R+1

Sonie of the terms in the above filtering operation depend on past LP excitation
samples. Such terms can be grouped separately to yield:

-1 n

swn) = vk —k) + 3 u(k)k'(n - k), (4.7)

k=n-R4+1 k=0
where the first summation corresponds to t1ic natial boundary conditions while the
second gives the ZSR of the weighted synthesis filter. Since the initial boundary
conditions depend only on past LP excitation samples, they are identical to the ZIR
of the weighted synthesis filter; and they do not interferc in the synthesis parameters
selection for the current subframe. They can thus be subtracted from the coriginal
weighted speech samples to yield a new reference waveforin,

-1

du(n) = sw(n)'- S° v(k)K(n - k), (4.8)

k=n—R+1

and the weighted error samples can be written as

n

o(n) = 3u(n) = D_ v(k)h'(n-k). (4.9)
k=0
The LP excitation samples v(n) can be written as the recursive filtering output
of the pitch synthesis filter m, when fed by codebook excitation vector samples
e*(n) scaled by G7:

MM
v(n) = Ge'(n) + Z Biv(n —d - j). (4.10)
==M
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Substituting for v(n) in Eq. (1.9). the expression for the weighted crror samples

becomes
M

e(n) = &(n) — Ge'n) = Y Bt (n), (1.11)

=M
where é'(n) is the ZSR of the weighted synthesis filter for the input ¢*(n), and 24(1)

is the filtered version of v(n — d), respectively obtained by:

¢t(n) = 2”: (R (0 — k)
S0 (1.12)
Hm) = Y vk —di(n - k).
A=0

In order to solve for the optimal values of (i and the LTP coellicients {3, }, either
the autocorrelation or the covariance methods can be applied to the mean squaned
error criterion ¢ of Eq. (4.5) [35]. A system of (2M + 2) equations 1esults, wiitten in
matrix form as ®c = ¢. The autocorrelation matrix @ is formed by the conrelations

of all the vectors obtained in liq. (4.12):

L-1
® = ) taytm)', (1.13)
n=(
with t) defined to be
é'(n) ]

=M (n)
twy = | oM (@) |. (4.14)

f,rHrI\’(n)

The vector of parameters to be optimized is defined to be

«
P-m

c = | oMy |, (4.15)

Bm
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and the cross-correlation vector ¢ is found to be

3 L-1

Y du(n)é(n)

¢ = Lz:—'.é,u(n)ﬁd—M“(n) : (4.16)

FFrom the expressions in Eq. (4.12), it is clear that if the minimum LTP delay d is
constrained to he greater than the subframe length L, the filtered LTP contribution
p4(n) depends onl, on past LP excitation samples, i.e. v(n) for n < 0. At the
beginning of the current subframe, this information is alrcady available from the past
subframe, and thus antocorrelation matrix @ as well as the cross-correlation vector ¢
are ready known quantities. Finding the optimal set of LTP coefficients and codebook
gain amounts therefore to solving the above linear system of equations.

The following section proposes a joint and a sequential optimization schemes for
the determination of the optimal synthesis parameters in the case of a one-tap long
term predictor. It will be shown that combining these two schemes yields the best

comproniise between computation complexity and quality.

4.2.3 Optimization for a One-Tap Predictor
LTP Minimmum Delay Greater than Subframe Length

It was previously seen that the alternative representation for a one-tap LTP was an
adaptive codebook of delayed LP excitation vectors, scaled by the LTP coeflicient 8.
The current LP excitation sample can therefore be written as the sum of the fixed

codebook excitation and the adaptive codebook excitation:

v(n) = Gc'(n) + Bv(n—d). (4.17)
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The optimization equations, ®c¢ = ¢, take in this case the form:

L-1 L-1 1.-1

Yoem? o Y emiio) (" st ]

n=0 n= ! = 3
L1 L-1 ‘ ;| = it : (4.18)
Yo tmen) Y o) * Y syt (n)

n=( n=0 n=l

With the minimum lag d being larger than the subframe length L, the above
system matrix and the right hand side cross-correlation vector can be computed at
the start of the current subframe. The first strategy consists in jointly optimizing the
parameters to obtain the LP excitation of Eq. (1.17). This consists in solving the
linear system of Eqs. (4.18) for the optimal gains (7, 3) for every pair of codebook
index and LTP declay (¢,d) chosen cach from a predetermined dictionary. It was
reported in [55] that CELP coders using this joint optimization scheme registered SN R
increases up ¢t 3 dB when compared to coding schemes where the gains and indices
are optimized at the analysis stage (open-loop on the original speech)  However, even
with moderate size codebooks, such as H12 eutries for the fixed excitation codebook
and 128 allowable LTP delay values, the computational complexity s quite lugl. T'he
sequential optimization scheme proposed next helps reducing the complexaty at the
expense of a minor decrecase in the objective performance meastiie values

The two components of the: LP excitation of Eq. (4.17) are sequentially optimized
in this alternative strategy. The periodic component Fv(n — d) is considered first. by
discarding the fixed codebook contribution (setting (7 to zero). The corresponding,
optimal LTP cocflicient j3,, is found from liq. (4.18) to be:

L-1
Z Gu(n)id(n)
Bt = =5 : (1.19)

Z i(n)?

n=0

With this optimal valuc of the LTP coefficient, the error criterion to be minimized

becomes: -
- (3" 3., (n)irt(n))?
e = Y du(n)? - 25— : (1.20)
n=0 Z i-/tl(n)l
=0
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The optimal TP delay is fouud by maximizing the sccond term on the right hand
side of L. (4 20) with respect to d. This is accomplished by an evaluation of the term
for all permissible Jags (vectors in the adaptive codebook) and the sclection of the
delay that yields the largest value, Once the LTP parameers are determined, their
values are reported m Eqs. (4.18), and the optimal co:debook gain G is computed
for cach fixed codebook entry el The pair (2, G) that yields the minimum mean
squared weighted error ¢ is chosen to represent the codebook contribution to the LP
excitation.

In compating hoth strategies for the synthesis parameters optimization. it was
found that the degradations in segSNR could reach 2 dBB when the sequential scheme
is employed. The reconstiucted speech quality was however very similar for both ver-
sions, with the exeeption of isolated distortions that could be heard at unvoiced/voiced
transitions for the latter version. This is most likely due to the decoupling of the LT P
cocfficient f and the codebook gain (7, resulting in large values of 3 trying to track
the sudden periodic structure. Sudden bursts of LTP coefficient values can be avoided
il scalar quantized values of /3 are considered in the evaluation of the minimum mean
squared error. The quantization of the synthesis parameters will however be ad-
dressed in the next chapter, where highly performing quantizers well suited for bit
rate reductions are used.

The synthesis patameters optimization experiments are conducted on 4 ms speech
subframes, corresponding to 32 samples per subframe at a speech sampling rate of 8
kHz. At many occasions the pitch lag for female speakers falls well below 30 samples
(the pitch frequency exceeds sometimes 300 Hz). With the minimum L'TP delay
constrained 1o be greater than 32 samples, the only manner to capture such pitch
lags is at doubled or tripled pitch cycle values. However, as the number of pitch
doubling increases, the speech harmonic structure is degraded and wavered sounds
become audible. Additional measures should be taken to allow the LTP delay to fall

below the subframe length, as will be seen in the next section.

Pitch Recycling

‘or LTP delays d smaller than the subframe length L, the autocorrelation matrix

® of Eq. (1.13) and the cross-correlation vector of Eq. (4.16) will depend on the
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LP excitation samples 1/(n) for > 0, which in turn can only be obtained with the
knowledge of the synthesis parameters that ate being optimized  The set of equations
to be solved becomes nonlinear and not conveniently mplementable in practice. With
a jointly optimized solution being impractical, the sequential approach remains the
only alternative for the piteh predictor to “tecyele”™ the current LI exditation output

Indeed, considering once again the codebook gain (7 to be zero, with the LTP delay

d not falling below half the subframe length L/2, the resulting LI exdtation is now:

(n) vy (n) prin—=d)  0< nd (121)

vin) = . 1.2
van) = plrn=-2d)y d<n<l

The weighted error samples ¢,(11) have now to be split into two terms; one or the o

newly computed LP excitation samples, and the other for the icmaining part of the

subframe including the recyeled outputs. Thus, for 0 < n < d:

n

cwr(n) = 3u(n) = Y m(k)(n — k), (1.22)

A=0

and for d < n < L, one more term should be considered:

d-—-1 n
€a(n) = Sul(n) = D (k) (n —k) — Y (k) (0 — k). (1.23)
k=0 k=d

The total mean squared error is the sumn of the squates of the above contribntions,

given by:

d—1 L-1
= 3 ) + ) cum)’. (1.21)
n=0 n=d

Expanding Eq. (4.24) and replacing with the expressions of the LI excitation in Fq.
(4.21), the crror to be minimized becomes:

ll—l

L-1
e = ¥ Su(n) —26% su(n)il(n)
n=0 n=[ 1 -1

A3 ) =23 au(m)idt(n) )

Il:f]:() n=d (425)

+ 2[332 D;‘(n)f/g’l(n)

n=r
II_I

+ Y (73 m)

n=d
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The optimal LTP parameters are found by selecting among the real roots of the cubic
equation & /o = 0, at a given LTP delay d, the root value 3 that yields the minimum
mean squated error. 'This procedure is repeated for all permissible delay values less
than the subfiame length, and the pair (d./3) that results in the minimum value for
€ is considered to be optimal. The excitation codebook parameters are then found
employing the standard analysis-by-synthesis search procedure. It is worth noting,
however, that the computational burden involved in solving for the roots of the cubic
can be avoided if the LTP coeflicient is scatar gnantized. Indeed the quantization
values of /3 can be successively tried in Eq. (4.25) along with the delays, with the pair
that minimizes the enor energy selected for transmission. Other schemes based on
periodic continuation of the LP excitation instead of vecycling have been evaluated
[55), but the amplitude of the successive pitch pulses in the subframe could not be
adapted (such as the scaling by 82 in y(n)). As a result, LTP cocfficient, values

greater than unity had a degrading impact on the reconstructed speech signal.

Sequential-Lag/J oint-Gains Optimization Scheme

Previous work [55] has reported that constraining the pitch predictor to operate at a
delay corresponding, to multiples of the speech subframe fundamental period, instead
of allowing that delay to fall below the subframe length, resulted in spurious energy
peaks in the econstructed speech spectrum. Perceptually these peaks corresponded
to sudden noise bursts in voiced resions. The LTP delay range counsidered in the
coding scheme of this thesis starts at 20 samples (400 Hz pitch frequency) and ends
at 117 samples (51.42 Hz pitch frequency), covering the whole pitch range of 8 kHz
sampled speech. A 7-bit adaptive codebook is therefore necessary to represent the one-
tap pitch predictor if only integer LTP delay values are considered. As the subframe
duration in the coding algorithm is of 4 ms (L = 32 samples), it is clear that some of
the transmitted LTP delay values will likely be smaller than the subframe size.

In the adopted sy nthesis parameters optimization scheme, the sequential approach
is considered first. The pitch recycling technique described earlier can in this manner
be applied for the lag scarch between 20 and 31 samples. Setting thus the codebook
gain (G to zero, an optimal pair (d,pe, Bop) is found by an exhaustive scarch along the

LTP delay range. However, the value of 3, is discarded while the selected LTP delay
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Optimization || Average PG | SNR | segSN R
technique (dB) (dB) (d13)
Sequential .81 1L66 | 12.02

SL/JG 712 672 | 1016

Table 4.1: Performance of synthesis parameters optimization schemes. The objee-
tive measures are given for female coded speech ina CELP coder with unquantized
parameters. The prediction gain (PG) is averaged over the total numbet of update

intervals.

dope is transmitted. Now in order to perform the optimization of the TP cocflicient
B and the codcbook parameters (7, (V) jointly, the periodic contribution to the LP
excitation is redefined for d,;,, < L to be:
v(n—dy) 0<n <d,y _
”neur(”) = (42())
v(n—2d,.) doyy < n < L.
With the LP excitation periodic component. being now formed by the periodic ex
tension of a pitch cycle, the system of Eqs  (4.18) is r1endered lincar, and one can
solve for B and (i for every trial codebook excitation vector el 'Flie combmation that
minimizes the mean squared error € is transmitted along with o,

The performance of the sequential-lag/joint-gains (SL/JG) oplimization scheme
can truly be assessed when compared to the sequential optimization scheme intro
duced earlier. Both LTP predictors are implemented in a hasic CELE coding envi
ronment, with the only quantized parameters being the codebook excitation idex
and the LTP delay. Table 4.1 gives a general idea on the reconstiicted speech quality
when the LTP coeflicient is cither detetmined before the codebook gain v jomtly
computed with this latter. Althongh the average prediction gam s slightly lower
for the SL/JG scheme, the reconstructed speech quality is mueh better perceptually,
confirming the 2 dBB SNR and segSNR difference between the sequential and the se
quential/joint approaches. The lower prediction gain can in fact be attnbuted to
portions of the speech signal where the LTP delay drops below the subframe length.

The LTP coefficient in such cases is optimized for the periodie extension of one pitehs
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Figure 4.4: Segmental prediction gains (4 ms speech segments) for 400 ms of female

speech when the LTP coefficient is computed in the sequential method (solid line),
and in the SL/JG technique (dashed line).

cycle, and lacks thus the fullness of the pitch recycling procedure. The improved
performance of the SL/JG is illustrated in Fig. 4.4, where the segmental prediction
gain, taken over 4 ms subframes, is given for 0.4 s of speech. It is clear from the
voiced regions (subframes with high prediction gain) in Fig. 4.4 that the SL/JG
optimization scheme outperforms the sequential approach. The segmental prediction
gain difference can casily reach 6 to 7 dB. These regions correspond however to LTP
delays greater than the subframe length.

Finally, to complete the performance evaluation of the implemented scheme, it is
worth investigating its impact on speech segments where the pitch period drops below
the set subframe length of 4 ms. Fig. 4.5 exhibits the cnergy spectra for an orig-
inal segment of female speech, its reconstructed version with sequential parameters
optimization and with the SL/JG technique. The LTP delay in this speech segment
hovers around 29 samples (pitch frequency around 275 Hz), for ten subframes of 32
samples cach. The excessive number of sharp spectral dips around the 250 Ilz har-
monic and its mulliples is apparent for the SL/JG method speech spectrum of Fig.
4.5 (¢). The sequential optimization technique displays a smoother energy spectral

envelope at the lower frequencies. It does also in the limit better represent the orig-
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Figure 4.5: Energy spectrum of 40 ms of (a) original female specech, (b) reconstrueted
speech with scquential parameters optimization, (¢) reconstructed speech with opti-
mization based on the SL/JG scheme. The pitch period follows a smooth evolution

from 28 samples to 31 samples in this segment.
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inal speedh spectimn On the other hand, dearly better results are obtained for the
SLIIG tedimque i the case of LTP delays greater 32 samples, as those displayed
in Fig. 4.6 "The pitch frequency for the now consideted segment is atound 222 Hz
(a period of 36 samples). The excessive energy at the second harmonic of the pitch
frequency (aronund 450 Hz) is apparent between the peaks of the spectium corre-
sponding to the sequential approach (Fig. 4.6 (b)). The low fiecquency region is much
better recovered in the case of the sequential/joint technique, as the dips below 0 dB
are faithfully represented at the harmonics of the pitch frequency. This tianslates
perceptually into the removal of noise biursts or elicks in the reconstructed speech. Tt
is worth also noting the better spectral representation at the high fiequency end for
the adopted scheme,

The LTP delay is selected in the dosed-loop optimization procedute by matching
the past reconstructed speech subframe to the current original speech subframe.
This delay can therelore yield inaccurate pitch periods and the L'TP coeflicient will
be underestimated By reduemg the quantization error of the LTP delay, finer LT
cocfficient estimates can be obtained. In nariowband speech coding, the delay reso-
lution is limited to the sampling rate of 8 kllz. Increasing the resolution of the delay
while keeping a sufficiently accurate quantization of the LTP coefficient results in a
significant enhancement. of pitch prediction. Fractional LT P delays obtained cither
by multiple-tap predictors or by interpolation of the speech signal are the object of

the next section.

4.3 Increased Delay Resolution Pitch Predictors

4.3.1 Three-Tap Predictors

The higher performance of thiee-tap long term predictors when compaied to single tap
pitch predictors can be accounted for the LTP coefficients dependenice on frequency

and the variability in fiequency of the harmonics. The LP excitation obtained from

a three-tap pitch svnthesis filter can be written as:

1
v(n) = Ge'(n) + ) Bv(n —d— k). (4.27)

k=1
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With the center delay being d, the poles of the pitch synthesis filter are obtained by
solving the polynomial 24— f_,z27' -~ 8y~ A1z . A study of the threetap LTP for very
small coefficient variations gives a good general idea on the frequency dependence of
the LTP param~*ers. For this purpose, the LTP end coeflicients are split into odd and

even normalized contiibutions b, and b, and the polynomial to be solved is expressed

as:
zd - ﬂ-—lz—‘ - ﬂ() - ﬂlz = zd - ((bc -+ bo)lﬁﬂll/dz-l + ﬂO + (be - bo)lﬂOl—l/dz)- (4-28)

If the even and odd contributions of the taps are set to zero, the single-tap LTP
results, with the poles 7z located at 2, = |ﬂ0|l/d e’?™%/4_ The resonant frequencies
(harmonics) arve clearly evenly distributed around a circle.

The even contribution of the coefficients is now analyzed by setting the odd con-
tribution b, to zero. For a very small variation of 5, the new pole location becomes
2}, given by:

2= |fo + 2b. cos(2rk/d)|'? 27k, (4.29)
as |z — 25| < 1. The b, component of the LTP coefficients contributes to a radial
movement of the poles, where for positive b, the poles will move outward at low
frequencies and inward at high frequencies in the z-piane. The envelope of the pole
locations has thus low-pass characteristics {consequently high-pass characteristics for
negative b ). Instability may result when the pole location is near the unit circle (5o
near §). The work in [4] has demonstrated the tendency of b, towards positive values,
thus emphasizing the low-pass nature of the three-tap pitch predictors. As long term
prediction becomes more and more inaccurate at high frequencies (Figs. 4.5 and 4.6),
the low-pass characteristics provide a compensation by allowing high gains at low
frequencies and preventing error increases at higher frequencies.

The small odd contribution of the cocfficients (b = 0) for very small pole dis-
placements, |74 — 23| < 1, is responsible for the tangential movements of the poles in

the z-plane. The new pole location is now:
b, .
S o= 16 1 - ‘2}-/;-0 sin(2xk/d)| ™4, (4.30)

For nonzero values of b,, the even distribution of the resonant frequencies is lost as

well as the lincarity of the LT'P phase. The small variations of the LTP cocfficients
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odd contribution do not thus simply represent a fractional adjustment of the LTP
center delay d. The phase of the filter transfer function is adiusted only for the domi-
nating regions of the spectrum, corresponding in the time domain to delay refinement
for particular frequency bands. A large number of LTP cocflicients are 1equired to
achieve subsample resolution of the delay, but the scarce bit resources reader this ap-
proach harmful to the coding quality. An alternative approach to multiple-tap pitch
predictors is proposed next, resulting in only a slight bit. rate increase from single-tap

prediction.

4.3.2 Fractional Delay Pitch Predictors

The prediction gain of long term predictors is usually dependent on the rate of update
of the parameters, the prediction order and the amount of periodicity in incoming sig-
nals. In addition, it was shown in [25] that increasing the speech sampling frequency,
f,, increases the average prediction gain. As it was previously mentioned, higher
order (multiple-tap) predictors yield higher prediction gains, as the TP coeflicients
enable for certain frequency bands inter-sample interpolation. However, 2 to 3 bits are
needed on average for cach LTP coefficient to be quantized [3], making multiple-tap
predictors a very expensive choice as update rates get close to 200 updates/second.
The employed scheme is a variation of the single-tap predictor where the LT'P delay
d is allowed to have arbitrary temporal resolution. With much lower bit allocation
requirements, this scheme is cquivalent in performance to three-tap predictors. The
achievement of such higher time resolutions is formally described next, followed by a

performance evaluation of the proposed fractional delay pitch predictor.

Subsample Resolution of Prediction Lags

In the one-tap long term predictor of Section 4.2.3, the LT'P delay was represented
by an integer number of samples, d, obtained at the sampling frequency [, (8 klz).
The increased temporal resolution of the delay is now achieved by expressing this
latter as an integer number of samples d plus a fraction of a sample [/ D, where Land
D are integers and | = 0,1,...,D — 1. The optimal fractional delay can therefore
be obtained by shifting forward the past LP excitation by the noninteger delay (/D

before performing the closed-loop search. A very cfficient method vsed to perform
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Figure 4.7: A basic structure for achicving a fractional delay of {/D samples.

shifting of discrete signals by fractional delays is polyphase filtering. The polyphase

filters structure [56] is described in Appendix A, with some of the properties listed.
Assuming that the signal y(n) is an advanced (or delayed) version of the input

signal x(n) by a fraction of a sample I/ D, this correspoads in the Fourier domain to

a linear phase shift:

Y(ev) = e™PX (). (4.31)
The ideal system to achieve this operation is seen from Eq. (4.31) to be an all-pass
filter with a lincar phase ®(w) = lw/D. It is shown in Appendix A that an FIR
polyphase filter approximates the characteristics of the desired system, and thus FIR
polyphase filters will be the basis of the fractional delay practical implementations.
It is important to realize that a fractional delay !/D at the sampling frequency f,
corresponds to an integer delay ! at the higher sampling rate Df,. Fig. 4.7 displays
ihe various stages of the phase shift procedure. The sampling frequency is at first
increased by a factor of D by inserting (D — 1) zeros between successive samples of

x(n), yielding in the frequency domain the relationship:
Ue") = X(e*P). (4.32)

The resulting output is then passed through an ideal low-pass filter hyp(m) with cutoff
frequency [,/2 (at the sampling rate Df,) in order to remove the mirror images of

u(m). The interpolated version, v(m), of the input signal z(n) results:
V(e'®) = Hyp(e)X(eD). (4.33)
The interpolated signal is next advanced by { samples at the higher sampling rate:

W(e™) = Hpp(e’)X(e*P)e"!, (4.34)

99



and then downsampled again to the original sampling frequency. With the assump-
tion of an ideal low-pass filter, the images of u(m) are sufficiently attenuated to be

neglected (no aliasing components), and the output is finally obtained as;
. 1 .
Y(e) = FHp(e Py PN (). (-1.35)

The low-pass filter Hp(e’") can be approximated by a FIR filter 2(0), A(1),..., H(N-
1) with exactly linear phase. The delay at the higher sampling frequency will then
be (N — 1)/2. In order to keep an integer filtering delay at the low sampling rate, N

is chosen such that the delay is a mutiple of D:

N-1
—— = D, (4.36)

and I becomes thus the delay at the sampling rate f,. Furthermore, if the magnitude

response of h(m) is equal to D in the passband, the output can be written as:
Y(e™) = "emiPx (). (1.37)

The structure in Fig. 4.7 with the FIR filter A(m) becomes hence an approximation
to an all-pass network with a fixed integer delay of I samples and a variable fractional
delay of {/D samples.

Polyphase filters pi(k) are used to realize the sampling rate increase and the in-
terpolation (¢f Appendix A). They are obtained from the coeflicients of the FIR

interpolation filter as:
p(k) = h(kD-1) 0<I<D-1. (4.38)

With the filter h(m) being causal (k(m) = 0 for m < 0), the first cocfficient p(0)
for nonzero ! will be zero. Morcover, cach onc of the D polyphase filters will have ¢

coefficients (0 < k£ < ¢ — 1), with ¢ given by:
¢ = 21 +1. (1.39)

It is worth noting that if one wanted to implement phase delays instead of advances,

the expression for the polyphase filter coefficients would be:
p(k) = (kD+1) 0<I<D-1. (4.40)
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The signal y(n) corresponding to a shifted version of z(n) by I/ D can now be obtained

by the convolution with the [ — th polyphase filter, given by:

yn) = ¥ m(kya(n - k). (4.41)
k=0

The FIR approximation to the ideal low-pass filter should be accurate enough
to sufficiently attenuate the aliasing components in the downsampling process. The
cutofl frequency of the stopband should thus be f,/2, and the stopband ripples suffi-
ciently small. The sin()/a interpolation function weighted with a Hamming window
is used in this work as a Nyquist filter, with a cutoff frequency of 4 kHz. The 0-th
polyphase filter corresponding to the shifting by the integer delay I operation will
have in this case coeflicients po(0) = 1 and po(k) = 0 for k > 0, greatly simplifying
the convolution of Fq. (4.41). It is worth mentioning that other interpolator de-
sign methods, such as by minimizing the mean-squared interpolation error [57), yield
cqually performant interpolation filters. In fact, it is even pointed out by [25] that
such filters have the same performance of the sin(z)/z prototype interpolator at lower
fixed sample fitering delays I, which reduces the effective number of impulse response
samples required for an accurate approximation of the ideal interpolator.

With the arbitrary fractional delay shifting scheme being now set, the expression

for the single-tap long term predictor with LTP delay d + |/ D becomes:
q-1
P(z) = 1 — BY m(k)z"t-1#0, (4.42)
k=0

If the fixed delay [ value is guaranteed to be less than the minimal LTP integer
delay d, the filter will be causal and the polyphase filtered past LP excitation will
only need to be shifted backward by I samples. Shifting of the past LP excitation is
performed for all allowable fractional delays I/ D before the closed-loop optimization
procedure. It is also essential not to forget at reconstruction time to shift by the
optimally selected fractional delay vhile adding the periodic structure to the selected

codebook excitation.

Performance Evaluation of the Proposed Fractional Predictor

A fractional delay pitch predictor with temporal resolution up to 1/6 of a sample was

found to considerably improve the perceptual quality of the reconstructed spcech. As
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D | Lower delay | Upper delay | Number of ent ri«:«_J
20 24 M4 20

6 25 69 578 270 B

1 70 99 /4 120 '

3 100 126 */9 81

1 127 147 21

Table 4.2: LTP delay distribution for a fractional delay predictor with 9-bit lag

quantization.

will be found shortly, prediction gain measures confirin the subjective results. At
an operating coding rate of 8 kb/s, it was concluded after various reallocations that,
not more than 9 bits per 4 ms subframe are needed to be assigned to LTP delay
quantization. The delay distribution was limited to the range of the piteh period
in male and female spcech, namely from 20 samples (2.5 ms) to 147 samples (18.375
ms). Lags corresponding to the most frequent fundamental periods for both male and
female speakers had their resolution increased up to 1/6 of a sample. This increased
resolution range, mainly applied to the shorter delays, helped compensating ier the
more perceivable distortion produced by the CELP algorithm in coded female speech
and not in coded male speech. Other less frequent intervals, such as high pitched and
grave sounds were resolved to 1/4 or 1/3 of a sample, while the very long delays that
rarely occur were left at integer sample resolution. The respective ranges of the 512
LTP delay values are given in Table 4.2. With the chosen values for D in ‘Table 4.2,
the fixed delay I of the FIR lincar phase interpolator must be set to a relatively high
value in order to provide a good approximation to the ideal low-pass filter while still
preserving the causality of the pitch predictor (I < min d). The value [ = 16 proved
to be a good compromise between quality (respectively 97, 129 and 193 cocllicients
for the FIR interpolators by 3, 4 and 6), and real-time implementability of polyphase
filters (33 cocflicients each).

The basis of performance comparison between the integer delay single tap pre-
dictor and the adopted fractional delay LTP scheme is the average prediction gain

measure. The prediction gain values {in d3) were averaged on a colleetion of male
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Declay Average Prediction Gain (dB)
resolution female male

Integer 7.16 5.71
Fractional 8.75 6.64

Table 4.3: Average pitch prediction gains for single-tap long term predictors with

integer and fractional delay temporal resolution (7 = 16).

and female speech sentences, with all speech segments yielding gains below 1.5 dB

excluded as they usually cither represent silence on nonperiodic sounds. The long

term predictors are, once again, evaluated in a basic CELP coder environment, with
an L'TP update rate of 4 ms and LPC parameters computed every 20 ms. The code-
book gain and the LT'P cocflicient are left unquantized. Table 4.3 summarizes the
experimental results. The increase in performance for the fractional delay single-tap
LTP is comparable to prediction gain values recorded with a 3-tap pitch predictor
with integer delays [25, 34]. If 2 bits/coeflicient are needed on average to cncode the
multiple-tap L'TP coeflicients, a saving of about 3 bits is realized as only log,(D) bits
are required to encode the fractional sample delays in excess. Both pitch prediction
schemes were successively implemented as part of a 10-bit codebook CELP coding
algorithm, with the parameters left unquantized. At an LTP parameter update rate
of 4 ms, the reconstructed speech resulted in about 1.5 dB higher SNR values in the

case of fractional L'TP delays.

4.4 Conclusion

The performance of linear predictive coders such as CELP is strongly related to the
prediction gain of the pitch predictor. In these coders, multiple-tap and fractional
delay predictors are more cfficient than single-tap long term predictors, as they allow
a smoother evolution of the pitch-cycle waveform. For the 3-tap predictor, this en-
hancement was the result of the low-pass characteristics of the frequency-dependent
coeflicients envelope along with the capability of moving the poles tangentially. As

‘ a consequence, the LTP delay could be refined for high energy spectral regions, with
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the coeflicients allowing interpolation between samples. However, the high bit rate
requirement of multiple-tap pitch predictors impedes their use in medinm and low bit

rate coding schemes. In addition, stability checking procedures are more complex for
such predictors which often become unstable, affected by quantization crrors on the
LTP coeflicients. For a single-tap LTP, stability is guaranteed be heeping the LT
coefficient below unity. Exploiting the simplicity of single-tap predictors, fractional
delay pitch predictors perform equivalently or better than multiple-tap predictors in
a full coder. They are characterized by one LTP coefficient. and an increased time res-
olution for the delay, yielding LTP delays expressed as an integer number of samples
plus a fraction of a sample. The distortion in CELP coders is usually more audible
for female specch than for male speech. Noninteger delay piteh predictors allow the
enhancement of performance for female speakers by increasing the time resolution for
the shorter delays. Moreover, a small number of bits is needed to quantize the frac

tional LTP delays which results in significant bit rate savings as no extra coeflicients
need to be quantized. This allows the refinement of other components in the coding
scheme (such as increasing the excitation codebook size). The advantage of using
fractional delay pitch predictors in the analysis-by-synthesis loop of the CELP algo-
rithm is therefore the elimination of matching errors due to limited time resolution.
This increases the significance of the pitch prediction scheme in the eror matching
procedure and deemphasizes the predominant role of the excitation codebook, leading

to more flexibility in encoding the excitation vectors.
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Chapter 5

Toll-Quality Speech Coding at
8 kb/s

5.1 Introduction

High specch coding quality at a rate of 8 kb/s has been achieved by two coding schemes
based on the CELP algorithm; the Low-Delay 8 kb/s CELP coder (LD-CELP) 7],
unique candidate for CCITT standardization, and the Vector Sum Excited Linear
Prediction (VSELP) [29] coder sclected by the Telecommunications Industry Associ-
ation (TIA) as the standard for North American digital cellular telephone systems.
Both coding schemes registered a similar performance, perceptually equivalent to
around a 3.95 on a MOS scale. However, the low coding delay in the first scheme
and the bit costly LPC parameters scalar quantization method in the latter scheme
have limited the finer quantization of the long term predictor parameters. It is not to
say, on the other hand, that a reallocation of the quantization bits among the opti-
mized encoding blocks described in the previous chapters would result in toll-quality
reconstructed speech. Going over the 4.0 barrier in mean opinion score at this given
bit rate is not related anymore to bit economics. With the human listener being
the ultimate judge of quality, the best attainable coding performance is reached by
reducing the perceptual objectionable distortion to the lowest level possible. For this
purpose, perceptual speech enhancement techniques such as harmonic noise weighting

and posthiltering will be made an integrant part of the coding scheme. Moreover, if a
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coder can ideally afford to postpone the transmission of the optimized and quantized
parameters until after several specch subframes have been coded, one can then select
the successive parameters by minimizing an accumulated minimum mean squared
error criterion over those subframes. Such an improvement technique is reminis-
cent of trellis coding, and will be called in this work delayed decision coding. The
performance improvements obtained with this method prove indeed the *relative”
suboptimality of synthesis parameters that are selected on a subframe-by-subframe
basis in the basic CELP algorithm. The major problem remains however the added
computational complexity.

Nevertheless, all the speech enhancement techniques added 1o the 8 kb/s coding
scheme require first of all an economical guantization scheme for the synthesis param-
eters and then a careful integration of every component in the overall coding scheme,
Quantization of the long term predictor delay and the LPC parameters has alveady
been discussed. A very cfficient vector quantization method for jointly quantizing the
codebook gain and the pitch predictor coeflicient will be fully detailed. With all the
coder building blocks being now reoptimized, the bit allocation policy will bhe set first
followed by an overview on the structure and operation of the full 8 kh/s CELP coder.
Each performance improvement technique will then be dis- ussed and appropriately
incorporated in the redesigned coding scheme.

The difficulty with the perceptual improvement techuiques used to deemphasize
the coding distortion is the lowering of the objective measures that results from
the even poorer sample-to-sample match between the original and the coded speech
signals. Measures such as SNR and segSNR. loose their quality rating significance
and will only be used in the case of the operation of the coder with unguantized
parameters, or to set lower bounds for acceptable coding degradations. The real
assessement of toll-quality coding will come from informal comparison tests between
the enhanced 8 kb/s CELP coder and a 7-bit log PCM speech coder,

5.2 Coder Structure

Many of the CELP coder building blocks have been detailed in the previous chapters.

Fig. 5.1 is a block diagram of the speech encoder, which, like in all analysis-by-
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Figure 5.1: Block diagram of the enhanced CELP speech coder.

synthesis coders, contains an embedded decoder. The optimization of the synthesis
parameters is based on the minimization of a weighted mean squared error criterion.
As can be scen from Fig. 5.1, the weighting consists of a spectral noise weighting filter,
ﬁ%(/f,y)—), whose task is to relocaie the coding distortions to high energy regions of the
spectrum where they are less audible, and a harmonic noise weighting filter, C(z),
used to enhance the periodic structure of the speech signal. Both weighting filters
are incorporated into the analysis-by-synthesis loop. The value of « is fixed at 0.8
and the spectral noise weighting filter is updated from the LPC analysis stage. The
harmonic noise weighting filter is, on the other hand, updated at the subframe level
by an open-loop (O-1) pitch analysis. The latter weighting scheme will be discussed

in greater detail in a subsequent section.
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The frame length is 20 ms, corresponding to 160 samples at a speech sampling rate
of 8 kHz. The speech frame is further subdivided into five subfiames of 32 samples
each (4 ms). The analysis frame also consists of 160 samples, but, as was previously
detailed, encompasses the four last subframes of the current frame being coded plus
one subframe of the next speech frame to be coded. The speech spectral envelope is
described by 10 LPC coeflicients, vector gunantized in the LSE domain using, the 214
bits/frame split VQ scheme decribed in Chapter 3.

The linear prediction excitation (LP excitation), 1(n), is composed of a penodie
contribution, Br(n — d), which consists essentially of a subltame of past samples of
this excitation amplitude scaled by 8 (.ingle-tap piteh filter (f Chapter 1)), and a
stochastic excitation vector of 32 samples « (1), scaled by the codebook gamn (7. Those
synthesis parameters are updated on a subframe-by-subframe basis according to the
sequential/joint approach desciibed in Section 4.2.2. The method is dlustrated in
Fig. 5.1. By setting the switch to position |, the excitation codebook contribution to
the LP excitation is cancelled, and the TP delay d is determined in these conditions
Once the delay d (adaptive codebook contribution) s found, the switeh s reset to
position 2 and the remaining parameters, namely the excitation codebook mdex o,
the codebook gain (i, and the LTP coefficient /3 are jointly optimized by minnnizing,
the weighted mean squarcd error between the original and the 1econstructed speech
versions.

Once all the parameters for a given subframe are optimized and quantized, the
adaptive codebook and the filters state are updated by computing the optimal LI
excitation and by passing it through the weighted synthesis filter and the harmonic
noise weighting filter in the lower branch.

An efficient way of reducing the computational complexity without affecting the
speech quality is to consider the effect of the Zero Input Response (ZIR) of the
weighted synthesis filter and the cascaded Harmonic Noise Weighiting (HNW) filte
outside the analysis-by-synthesis loop. At the beginning of every speech subliame to
be coded, the ZIR is obtained by letting the cascaded filters ting for the duration ol
32 samples, then subtracted from the weighted original speech subframe to yield o
new reference waveform §,,. The state of these filters is then 1eset to zero and the

Zero State Response (ZSR) will determine what synthesis patameters are hest suited
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Parameter Bits/Subframe | Bits/Frame
LPC cocfficients 24
Frame energy Y
Codebook index 10 50
L'TP delay 9 45
Gains ((7, 3) 7 35
UNUSED 1
TOTAL 160

Table 5.1: Bit allocations for the 8 kb/s CELP coder.

to match the reference waveformn.

Table 5.1 gives the bit allocations for the coder operating at a rate of 8 kb/s. The
adaptive codebook consists of 512 entries for an LTP delay range 20-147 samples.
As was specified in the previous chapter, the LTP delay resolution is increased up to
1/6 of a sample in certain critical ranges and up to 1/3 or 1/4 in others. Adaptive
codebook entries for LTP delays smaller than the subframe length are formed by
periodic a extension. The excitation codebook contains 512 stochastically generated
(itd Gaussian) excitation vectors and their negative counterparts.

The remaining bits are spent. on gain quantization, namely the LTP coefficient 3
and the codebook gain (7. An cfficient vector quantization scheme for the gains has
been developed and used in the VSELP coder [29]. Based on this model, a 7-bit gains
vector quantizer is enmiployed in this work. However, it requires for proper operation

an acceptable estimate of the current speech frame energy, encoded by 5 bits/frame.

5.3 Gains Quantization

Upon joint optimization of the excitation codebook index and the gains, the optimal

LP excitation can be written as:

v = Ge'(n) + Bv(n—d), (5.1)
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where [ is the excitation codebook index selected for transmission. A scalar quantiza
tion of G and # would probably vield good results, but not enough bits are available
for the desired resolution of the quantizers. Morcover, the contelation that exists
between the excitation components is totally neglected when separate quantizets are
used. Vector quantization offers both bit 1ate reduction capabalities and consideration
of the interaction between the LT'P coetlicient and the codebook gain The distortion
criterion will be the perceptually werghted mean squared error hetween the origimal
and reconstructed speech subftames, wiith all parameters being quantized  Denoting,
by B and G the quantized versions of 4 and (/) the ettor saniple, according to Fig -
5.1, is:

(n) = du(n) - d'm)y — Gdlny, (h.2)

with #4(n) and éf(n) being, as defined in Chapter 4, the weighted synthesis filtered
and harmonic noise weighted sequences v(n — d) and (n). 'The mean squared error

is then expressed as:
11

e =Y «n) (5.4)

n-d

In order to make this expression resemble a distortion criterion for vector quantizing

the gains, it can be rewritten as:

€ = Ry + B2Ruu+ G*R,o - 28R,0 — 2GR, + 28GR, , (5.4)
with the precomputed values being:
Il—l
Ras = Z ':’:w(n)';w(n)
T
Ry = Z 17'1(71)17'1(71)
i
R. = Z 5’(7?)("(11)
= (5.5)
R, = Y §,‘,(n)17’l(n)
n=0
L-1
R, = Z Gu(n)é! (n)
=y
R, = f’l(n)c'(n).
n=0



5.3.1 Vector Quantization Scheme

-

A direct vector quantization of the gains values is usually avoided due to the oc-
casional spurious behaviour of the LTP coefficient. Indeed, the optimal value for 3
can occasionally get very large, at unvoiced/voiced segment transitions for example.
A better behaved pair of parameters is employed as a basis for vector quantization:
PO, the normalized approzimale energy contribulion of the optimal adaplive code-
book vector scaled by 3%, and GS, an energy offset for refining the normalized energy
contribution estimates.

The normalization of the energy contributions of the adaptive codebook and the
excitation codehook entries is obtained after dividing by an estimation of the speech
residual energy, RS, for the current subframe. Using the set of p reflection cocfficients
{k.} corresponding to the interpolated subframe predictor coefficients, the speech
residual cnergy can be obtained by [8]:

RS = LROI( - k), (5.6)
=1

where I is the subframe length and R,(0) is the quantized current speech subframe
per sample energy estimate. This subframe energy estimate is in fact obtained from
interpolating the quantized per sample energy estimates of the past and the present
analysis speech frames, Rpq4(0) and R.urrent(0). The interpolation scheme for the
subframe cnergy estimates corresponds to the one employed for the LPC parameters,
given in Section 3.5. The quantization of the per sample energy for the current frame
is based on a 32-level uniform quantizer in the log domain, with a bin width of 2 dB.
Appendix B details the steps of the frame energy quantization process and outlines

the interpolation scheme that yiclds R,(0).
The expressions for PO and GS can now be formally defined. Given that R;(0) and
R.(1) correspond respectively to the energy contributions of the optimally selected

adaptive codebook and excitation codebook vectors, they can be expressed as:

L1
2 v(n — d)? ifd>L
R(0) = { a2} L1 , (5.7)
S vin—d)*+ Y v(n-2d)* otherwise
n=0 n=d
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L-1

R.(1) = 261(71)2. (5.8)

n=0

With GS considered to be the correction factor for the encrgy estimates, the optimal
adaptive codeword normalized cnergy contribution is obtained by:
A2R.(0)

RS GS’

where 0 < PO < 1. The optimal excitation codehook veetor normalized energy

PO =

(5.9)

contribution is obtained in a similar fashion. Ideally, if all the subframe residual
energy is accounted for P0, the excitation codcbook vector energy contribution should
vanish. Thus this latter contribution is lincarly equivalent to I — 10, and can be

expressed as:

G*R.(1)
RS GS’
From Egs. (5.9) and (5.10), one can solve for 3 and (7 once the best (170, (IS) pair

has been selected from the vector quantization codebook according to the criterion

1-P0 = (5.10)

of Eq. (5.4). Precomputing some of the factors in the mean squarcd error eriterion

increases the efficiency of the codebook scarch for the optimal quantized gains. By

= 2R,.[RS/R.(0)

2R,\[RS/ R(1)

2R, RS/\[R.(0) R.(1) (5.11)

e = R..RS/R.(0)
Jf = R..RS[R.(1),
the distortion criterion of (5.4) can be expressed in terms of PO and (/S as:

= R, —-avVGSPO—b,/GS (- €SP0 (1 — 10
€ = Ry—aVGSPO—b,/GS (1-PO)+dGS\[Po(1 - Po) 5.12)

+e GS PO+ [ GS (1 - 1) .

defining:

&) O 8
fi

By successively trying the 128 codebook entries, the (120,(/S) pair that minimizes

the total weighted error is transmitted to the decoder, where the gains are 1ecovered

5 - RS GS T
- I, (0)

_ [RSGS(1=P0)
G = \f O
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as follows:

(5.13)




It is clear from Eq. (5.13) that G and 3 assume only positive values. While the sign
problem for (i is taken care of by the structure of the excitation codebook where
each stochastic cxcitation vector has a negative counterpart, 3 is not allowed to
fall below zcro even if its optimal unquantized value is negative. However, it has
been experimentally determined in [55] that negative LTP coefficients occur only
in unvoiced speech segments, and consequently, the role of the pitch predictor is
insignificant in such cases. Therefore, whenever the cross-correlation, R,,, between
the weighted reference signal and the synthesized adaptive codebook contribution is
negative, the pitch predictor is deactivated by setting the quantized value of g to

zero. In this case, the mean squared error simplifies to:

e = Ru—b\/GS (1= PO)+ f GS (1 — PU), (5.14)

and the quantized value for G can still be determined by selecting the codebook pair
(P0,GS) that minimizes the above error. It is also important to mention that this
expression for the crror is also valid for initial subframes to be coded (i.e. when the

adaptive codebook is entirely populated by zeros).

5.3.2 Discussion

The codebook of 128 PO — GS vectors is designed using the standard LBG training
algorithm described in Chapter 3, and the training is based on a large speech database
equally distributed between male and female speakers. Fig. 5.2 shows the distribution
of the gains codebook vectors, where PO is displayed versus 10log(G'S). By factoring
out the average residual subframe energy, the gains can be quantized equally well at
all signal levels. The dynamic range problem is hence solved by quantizing the speech
average cnergy once per frame. The behaviour of the quantized GS and PO parame-
ters is illustrated in Fig. 5.2. As the adaptive codebook energy contribution increases
yielding 0 values near unity (voiced segments), the corresponding GS values be-
come less significant (around 1). However, as the pitch prediction role diminishes
with decreasing PO values, the corresponding GS values quickly tend towards zero,
further attenuating the gains. Such a behaviour helps in dealing with situations such
as unvoiced/voiced segment transitions where sudden encrgy increases are regulated

by low Gi'S values. The LTP coefficient # can occasionally get very large in similar
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Figure 5.2: Gains codebook vectors represented as PO vs GS in dB.

situations, whereas the PO range is always limited between zero and unity. The GS
and P0 parameters are thus much more suitable for vector quantization than are the
codebook and LTP gains. Finally, as long as the average [rame energy is properly
transmitted to the decoder, the reconstructed speech energy will not exceed the de
sired energy specified by the range of (S in Fig. 5.2, and thus sudden bursts are
avoided. Results on the performance of the implemented gain vector quantization

scheme are reported at the end of this thesis.

5.4 Perceptual Enhancement of Coded Speech

As limitations are imposed on the operating bit rate of the CELP coder, maintaining
good coding quality becomes a much more involved task. The loss of accuracy in
the waveform matching approach should then be compensated by emphasizing the
perceptually significant features of the speech signal. It was already explained how
exploiting the masking property of the human auditory system has led the spectral
noise weighting to improve the matching process in CELP. Other quality enhancement
techniques have been employed with postfiltering [58] and pitch prefiltering [29] being

the most common.
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Accentuating the coded speech periodic structure has also drawn the attention of
many researchers, as some interharmonic distortions were audible in voiced speech
segments. The proposed periodicity enhancement technique in this work derives from
the spectral noise weighting approach, since it exploits in this case the noise masking
potential of the harmonic structure in the speech signal. As it will be shortly seen,
this Harmonic Noise Weighting (HNW) technique incurs no cost in the bit allocations
of the coder since it is included in the analysis-by-synthesis loop of the encoder for the
sole purpose of improving the perceptual weighting of the error matching criterion
[34). Furthermore, in view of the close relationship between the long term predic-
tor delay and cocflicient and the HNW purameters, the complexity of the synthesis
parameters optimization technique can be greatly reduced by performing a limited
LTP parameters search around the selected HNW parameters. The minor objective
quality measurement degradations that follow are not perceptible.

On the decoder side, the reconstructed speech quality is enhanced by adaptive
postfiltering. An eflicic.t postfilter, originally introduced in [31] to improve the per-
formance of the CCITT standard 16 kb/s LD-CELP coder, is implemented in the
coding scheme of this thesis. A full description of the postfilter adaptation process is

also given in this section.

5.4.1 Harmonic Noise Weighting

Reducing the presence of noise between harmonics was in the earlier versions of the
CELP coder accomplished at the decoder side by pitch postfiltering [32]. More re-
cently, an attempt to enhance periodicity at the synthesis parameters optimization
stage was carried in [33]. It consisted in reducing the contribution of the excitation
codebook vectors in voiced segments, as they were considered to be undesired noisy
components. The codebook gain in those circumstances was set to values below the
optimally calculated ones. The improvement of the subjective coding quality with this
technique (constrained excitation approach) addresses the limitations of the common

weighted error criterion used in the CELP algorithm.

115



Weighting Structure

By exploiting the noise masking potential of the speech signal harmonic structure,
the perceptual accuracy of the CELP error criterion can be increased within the
analysis-by-synthesis procedure. This is accomplished by cascading the spectral noise
weighting filter W(z) with a harmonic noisc weighting filter (HNW filter) ('(z) as
illustrated in Fig. 5.1. The combination of both weighting schemes leads (o a signifi-
cant quality enhancement over the usual spectrally weighted error criterion. 'The form
of the harmonic noise weighting filter is similar to that of the long term predictor,
given by:

M
C(z) =1 — g Y c2t=P¥ (5.15)
1=—-M

with €, a parameter set between zero and unity to specify the amount of weighting to
be applied. The HNW filter delay D and multiple taps {¢,} are determined from an
open-loop pitch analysis on the spectrally weighted input speech. However as the
number of taps increases the spectral envelope of the HNW filter looses its flatness
(¢f Section 4.3.1), and may degrade the weighting performance. A 3-tap HNW lilter
was found to be a good compromise between complexity and performance [34]. The
proposed harmonic noise weighting scheme in this work uses a single tap HNW filter,
with the delay D resolution increased up to 1/6 of a sample over the whole pitch

period range considered (20 to 147 samples), obviating the need for multiple taps.

Complexity Reduction

The incorporation of harmonic noise weighting in the closed-loop synthesis parame-
ters optimization affects the computational complexit 7 at two stages: the long term
predictor (LTP) delay determination and the joint sclection of the codebook index
and gains. It was experimentally concluded in [34] that spectral noise weighting
was sufficient during the LTP delay scarch, and subsequently, harmonic noise filter-
ing is only necessary during the joint optimization stage. Furthermore, the INW
filter parameters found at the outcome of the open-loop analysis on the spectrally
weighted input speech, especially the fractional delay 1, can be employed to reduce
the complexity of the adaptive codebook scarch. The method is similar to a hybrid

open-loop/closed-loop search, where the open-loop stage determines a list of candi-
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date lags to be evaluated in the closed-loop search.
From the spectrally weighted input speech s,,, (1) the correlation arrays Co(d) and
normalization arrays Gy(d) are computed first for all integer delays d in the lag range

considered according to:

L-1
Z Ssw(n)Ssw(n — d),

ofd) =
"l (5.16)
Go(d) = 3 su(n —d).

The optimal one-tap predictor delay J is then found by maximizing the normalized
correlation,

Lold) (5.17)

VGo(d)
over the lag range. Once the submultiples of J are checked an optimal integer lag
determined, the resolution of the delays is increased to 1/6 of a sample by polyphase
filtering the arrays of Eq. (5.16) (¢f Appendix A). Fractional delays are then classified
as surviving candidates by selecting around the optimal integer lag those lags that
maximize the interpolated normalized correlation function with their associated pitch
prediction gain exceeding a certain threshold. The threshold can be for example a
percentage (75 % in this work) of the prediction gain obtained for J. At this stage, the
value of the HNW filter delay D is chosen to be the smallest surviving lag (integer or
fractional), and the corresponding filter coefficient is computed. Additional surviving
lags can also be determined from doubling and tripling D at the higher resolution
and the open-loop search stage is concluded by rearranging all the surviving lags in
decreasing prediction gain order. The closed-loop adaptive codebook search procedure
is in turn performed around the best few surviving lags. The amount of computation
is therefore reduced with no loss in quality as the estimated open-loop surviving lags
are highly correlated with the immediate past reconstructed speech pitch cycles for
voiced frames. However, the relationship between open-loop and closed-loop long term
correlations is not as obvious for unvoiced frames. HNW filtering will be turned off
for such frames (with prediction gain values less than a set threshold) as it adversely

affects the coded speech quality, and the adaptive codebook search is conducted on

the whole delay range.
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Discussion

Improved perceptual speech quality results from incorporating harmonic noise weight.-
ing in the analysis-by-synthesis loop. The HNW filter is updated at the subframe level
by an open-loop pitch analysis (every 4 ms) with a fixed harmonic noise weighting
parameter ¢, = 0.3. Two surviving LTP delay values are kept at the outcome of the
open-loop analysis. The adaptive codebook scarch is then performed for all fractional
lags within one sample of the top two selected delays. Increasing the vesolution of the
HNW filter delay was achieved by using 33-tap polyphase filters, Fig. 5.3 displays the
energy spectrum of a 20 ms segment of input spee i with superimposed the spectral
noise weighting scheme frequency response in one case and the combined harmonic
and spectral weighting cascade frequency response in the other. As can be seen,
the spectral weighting envclope is preserved with high cnergy spectram portions less
emphasized than lower energy portions, thus masking coding distortions. However,
the error is assigned more weight at the spectral dips resulting from the harmonie
structure of the spectrum, emphasizing in this case the interharmonic quantization
noise.

The net effect of harmonic noise weighting can be depicted in Fig. 5.4. A compar-
ison between an original female speech voiced segment and the corresponding coded
versions reveals that the introduction of harmonic noise weighting contributes to im-
proving the envelope of the time waveform. By accentuating the periodicity of the
reconstructed speech segment, HNW filtering helps also by attennating the impact of
sudden pitch period variations and increased noisy behaviour of the speech waveform.
This can be viewed as reducing the role the stochastic codebook excitation plays in
the speech synthesis process, with most of the speech reconstruction attributed to the

periodic contribution.

5.4.2 Adaptive Postfiltering

Enhancement of the reconstructed speech takes place at the very last stage of the
decoding process by the means of postfiltering. Postfilters are usnally polefzero filters,
with their coefficients either kept fixed or adapted with the LPC parameters. However,
while postfilters contribute to coding quality improvement, in the case of a single

encoding, they can also be the cause of drastic performance degradations in tandeming
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Figure 5.5: CELP decoder with adaptive postfiltering.

T

situations. Nevertheless, the work in [31] has shown that if the postfilter is tuned for
every encoding stage, its effect at the early stages can b~ controlled, resulting in an
overall beneficial performance. It is therefore crucial to adapt the postfilter to the
spectral characteristics of the specch segment being coded, and to guarantee flexibility
through some tunable parameters. The postfiltering scheme adopted in this work is
based on the improved model introduced to the 16 kb/s LD-CELP CCITT standard.
Fig. 5.5 represents the decoding portion of the 8 kb/s CELP coding scheme, with the

postfilter components added.
Long-term postfiltering is carried out by the single tap FIR filter:

Hi(z) = g(1+b Z-d), (5.18)

with d being the optimal fractional LTP delay (up to 1/6-th of a sample resolution).

The scaling factor g; is dependent on b:

1

9= 17y (5.19)

and the long-term postfilter coefficient is defined as a function of the optimal LTP
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coefficient 3:

0 ifg<0.6
b= ¢ N ifO6SB<I (5.20)
A ifg>1

The amount of long term postfiltering is controlled by the tunable parameter \,

The short-term postfilter has the form:

I—Zb,..

Hyz) = —=— [14p:7] (5.21)

l—z:tt,~ i

where )
b = @ 7§
i = a7 (5.22)
p= k.

The short-term postfilter parameters arc adapted every subframe in accordance
to the set of interpolated LPC parameters {a;} with k; being the corresponding first
reflection coefficient. An appropriate choice of the bandwidth expansion factors 4,
and 7, will yield a spectral weighting scheme that enhances the reconstrncted speech
quality, while the tunable parameter y3 controls the first order low-pass filter [14pz™!]
appended to the postfiltering scheme in order to increase the coded speech brightness.

To ensure unity power gain between the input 5(n) and the output 4,(n) of the
postfilters, a gain scale factor is computed and used to scale the postfiltered recon-

structed speech. It is obtained as:

L-1

z 3‘1)(")2

6 = |2, (5.23)

\ > 3(n)*

n=0

However, before being used, this scale factor is passed through a first order low-pass
filter yielding:
6y = 0.9875 6’41y + 0.0125 6, (5.24)

where k refers to the time index of the current subframe. The postfiltered speech

is then multiplied by &,,, resulting in the decoded speech 5, The scaling factor
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computation method allows the gain values to gradually adapt to energy increases
and drops.

With tunable parameter values v, = 0.65, v, = 0.75, v3 = 0.15, and A = 0.65, the
introduction of the postfilter resulted in sharper perceptual speech quality, despite a

loss of about 1.3 dB in SNR.

5.5 Delayed-Decision Coding

The essence of analysis-by-synthesis based coders such as CELP coders is speech cod-
ing on a blockwise basis. T'he parameters that are quantized and transmitted at every
subframe are optimized for the current input speech subframe and in fact take into
account the effects of the previously transmitted parameters as the filter states are
updated at the beginning of the subframe. However, by allowing slightly suboptimal
parameters to be selected for a given subframe, the choice of optimal parameters for
the following subframe with the now suboptimal initial conditions can possibly yield
a smaller average mean squared error when evaluated for both subframes. Departing
from this linc of thought, transmission of the subframe synthesis parameters can be
delayed until the end of the speech frame, where for each one of the five subframes,
the optimally selected parameters are kept along with a number of other surviving
suboptimal parameters. The procedure takes then the form of a trellis coding scheme
performed on the subframe level. Unfortunately this scheme is not practically imple-
mentable without a pruning operation at every stage in order to keep the number of
surviving paths reasonable. Otherwise, even with a small number of starting paths
such as 4, the number of alternatives at the 5-th subframe would be 1024.

Fig. 5.6 illustrates the delayed-decision coding scheme that the CELP coder fol-
lows. For every starting point of a subframe synthesis stage, one suboptimal LTP
delay is kept along with the optimal delay. By suboptimal delay it is meant the one
that yiclds the next to the lowest mean squared error obtained for the optimal delay
value. For cach surviving LTP delay d, the excitation codebook index and the gains
are jointly optimized, and the two synthesis parameter sets that yield the smallest
subframe mean squared error are kept, resulting in further branching in the tree.

Therefore, at the end of this procedure for the first subframe, four paths are con-
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Figure 5.6: Delayed-decision coding tree (four surviving paths are kept at every stage),

sidered to be potential candidates for speech reconstruction. Fhe selection proeess
is repeated in the second subframe for cach one of the four starting points, yielding
in all 16 paths to be considerced at the start of the third subframe.  However, hy
bearing in mind that different filter memories and adaptive codebooks are associated
with different paths, it is easily seen how computational complexity quickly rises,
The maximum number of surviving paths is thercfore limited to four, with the rest
discarded. The cost associated with each path is the total mean squared error acen-
mulated over the previous subframe stages in the tree. At every stage, the four paths
yielding the lowest cost form the starting points for the next stage. At the end of the
fifth subframe, the parameters of the path yiclding the minimal accomulated mean
squared error are transmitted.

Improvements up to 2 dB were recorded in both SNR and segSNR valnes when
subframe parameters transmission was delayed until the fifth subframe. Statistics
revealed that suboptimal parameter values were chosen about 89% of the time for the

first three subframes of the decision tree, allowing, on a longer span of time, bhetter
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Speech | SNR (dB)

J Unquantized | Quantized
Female | 17.1 15.6
Male | 13.8 12.7

Table 5.2: SNR average values for male and female coded speech.

coded specch perceptual quality. Indeed, the few clicks heard in unvoiced/voiced

transition regions were attenuated with the introduction of delayed-decision coding.

8.6 Coding Scheme Performance

The reconstructed speech quality of a 7 bit log PCM coder was employed as the cri-
terion for the subjective evaluation of the performance of the enhanced 8 kb/s CELP
coder. Without the adaptive harmonic weighting and the delayed-decision coding
techniques, the coded speech quality came very close to the reference quality but was
still inferior in some particular transition regions (such as unvoiced / voiced, vowel/stop
consonant). The delayed-decision method greatly contributed to the speech quality
improvement at those transitions while harmonic noise weighting resulted in clearer
voiced speech segments. The net result was a coded speech quality comparable to
that of a 7-bit log PCM coder, and even superior for voiced regions. Objective SNR
measures were also recorded for a collection of both male and female sentences. Al-
though their actual value do not constitute a good quality evaluation criterion, they
were used to evaluate the performance of the different parameter quantizers. Ta-
ble 5.2 summarizes the obtained results for two versions of male and female speech
sentences: one with unquantized CELP synthesis parameters and one with a fully
quantized coder.

The training of the CELP excitation codebook was intentionally avoided in order
to keep the coding scheme as much speech-context free as possible. Minor improve-
ments were however obtained with the inclusion of a set of single-pulse excitation
vectors in the codebook. By monitoring the codebook optimal index selection, it was

found that single-pulse excitation indices were usually chosen at the onset of voiced
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regions, ensuring thus a faster adaptation to the input specch pitch periods.

5.7 Conclusion

With all the features of an enhanced 8 kb/s CELP speech coder now added to the
overall coding scheme, quality assesscment is in order. Objective measures become
insignificant at this point and the only way to carry out the performance evaluation
is through a comparison with another well-established coding scheme. The L7214
CCITT standard is chosen for this purpose.

As the bit allocation resources became more limited, efficient and economical
parameter quantization schemes turned out to be a necessity.  With most of the
available bits already used by the excitation codebook index, the TP delay and the
LPC parameters, only & bits/subframe remained available for the codebook and LT'P
gains quantization. A virtually transparent quantization could thus only he obtained
by vector quantization. However, the erratic behaviour of the gains doces not allow one
to properly exploit the existing inter-correlation between them. An ingenious way to
achieve the vector quantization was to use instead the per sample encrgy contributions
of the excitation and adaptive optimal code vectors for transmission, along with an
estimation of the frame overall energy. The gains could then be retrieved from those
normalized energies. The subjectively evaluated reconstructed speech guality justifies
the sufficiency of a 7-bit codebook energy contribution vector gquantizer along with a
32 level uniformely quantized frame energy.

The coding structure sets the physical lower bound that the coding distortion
can attain. Improving the coding quality after that becomes a matter of remaodeling
slightly the reconstructed speech structure to exploit the limitations of the human
auditory system. Postfiltering is one way of enhancing the perceptual quality of the
coder. Both a long term and a short term postfilters are implemented in this work,
resulting in brighter speech quality.

Harmonic noise weighting, although not directly processing the reconstructed
speech, contributes greatly to enhancing the speech periodicity for voiced segments
by exploiting the masking capabilities of the spectrum harmonics. Spectral noise

weighting was proven to lead to a more perceptually appropriate CELP weighted er-
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ror criterion, but the improvements obtained with the introduction of harmonic noise
weighting in the analysis-by-synthesis loop demonstrate that there is still potential
for more perceptually valid distortion criteria.

Finally, by minimizing the spectral and harmonic noise weighted error criterion
over a longer interval, the selected synthesis parameters, although suboptimal for a
given subframe duration, yield better matched (to reference) reconstructed speech.
The concept of trellis coding is adapted to yield delayed-decision coding scheme where
the accumulated mean squared error is minimized over one frame of speech (5 sub-
frames) before transmitting the parameters of the individual subframes. The com-
plexity related to the frequent filter state u .dates along the search tree is the major
drawback of this enhancement technique, but the substantial perceptual improvement

over the subframe based optimization method renders the implementation worthwhile.
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Chapter 6
Conclusion

The work in this thesis carried out investigations on the possibilitics of achieving
toll-quality speech coding at an operating rate of 8 kb/s. After standardizing the
LD-CELP 16 kb/s coder, The CCITT has issued a sct of requircments and recom-
mendations for their next target, namecly low-delay high-quality coding at 8 kb/s.
The only existing potential candidate for standardization is the 8 kb/s LD-CELP
coder proposed in [7]. However, due to the one-way coding delay constraint of 10
ms, the mean opinion score for this coding scheme did not exceed the 3.95 mark.
Another successful version of high-quality coding at 8 kb/s is the VSELP [29] which
was selected by the TIA (Telecommunications Industry Association) as the standard
for use in North American digital cellular telephone systems. This coder, widely em-
ployed now for its robustness to channel errors and very good coding quality, was
also unsuccessful in crossing the 4.0 mark (toll-quality indicator) on the MOS scale.
By relaxing some of the constraints imposed on the two previous coding schemes,
toll-quality reconstructed speech was indced obtained at a coding rate of 8 kb/s in
this work.

In view of the superiority in bit rate reduction capabilities of analysis-by-synthesis
linear prediction based coders while maintaining high reconstructed speech gnality,
it was only logical that the implemented scheme relied on the Code Fxcited Linear
Prediction (CELP) coding algorithm. For the chosen coding delay of 20 ms, it turned
out that a good practical implementation for a corresponding analysis frame of 160

samples was an 10-th order formant predictor cascaded with a long teim predictor
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equivalent to a 3-tap predictor in performance. The covariance prediction method
yields higher objective results (more than 1 dB in overall SNR) than those of the
autocorrelation method when both procedures were tried out in turn in a full coder.
However, the occasional unstable behaviour of the covariance scheme bends the choice
toward the latter prediction method for which synthesis filter stability was guaranteed.

Perceptually smoother LPC parameters transition from one analysis frame to an-
other were also obtained when a small amount of bandwidth expansion was provided
to the formant filter coefficients before quantization. To this end, a binomial window
of effective bandwidth of 80 Hz was applied to the autocorrelation coefficients before
solving for the short term predictor coefficients.

As fewer bits per frame become available for LPC parameters quantization at
medium rates, scalar quantization could not possibly yield a performance suitable
for a toll-quality speech coder. Transparent quantization of the LPC parameters is a
necessary condition for achieving toll-quality, and only vector quantizers are capable of
yiclding spectral distortions less than 1 dB at such low bit rates. Complexity problems
however quickly arise with vector quantization as the codebook size grows. Chapter
3 proposed a vector quantization scheme that circumvents complexity by adopting
a product-codebook model. The Line Spectral Frequencies (LSF) representation of
LPC parameters was found to be an attractive form of parameterization due to the
close relationship between the LSF properties and speech spectral characteristics.

A perceptually weighted Euclidean LSF distance measure was chosen to be the
quantization distortion criterion. This weighting scheme takes into account the spec-
tral hearing sensitivity and the speech spectrum related LSF properties to emphasize
the more perceptually significant lower frequency regions. A 24 bits/frame split vector
quantizer (split VQ) was constructed by creating one 4096-entry quantization code-
book for the first four LSF’s and another 4096-entry codebook for the remaining six
LSF’s. The codebooks were trained according to the LBG algorithm. Splitting the
LSF parameter vector for quantization corresponds in essence to splitting the speech
spectrum into lower cnergy and higher energy bands. The weighted Euclidean LSF
distance, when used as a spectral distortion measure, resulted in average spectral dis-
tortion values around 1 dB. Two extra bits would have been necessary to achieve the

same transparent quantization performance using the split VQ scheme with a simple
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LSF Euclidean distance measure.

Optimization of the CELP synthesis stage parameters was detailed in Chapter .
The usual closed-loop approach was used for determining the long term predictor pa-
rameters assuming that the excitation codebook does not provide any contribution to
the reconstructed speech. However, once the optimal predictor delay is selected, the
pitch predictor cocfficient(s) was jointly optimized along with the excitation codebook
index and gain. This sequential lag/joint gains optimization procedure inercased sub-
stantially the perceptual quality of the coded speech when compared to the sequential
optimization technique (pitch parameters followed by excitation codebook parame-
ters). The subjective results agreed with the objective mcasures increases associated
with the joint optimization technique, recording up to 2 dB increases in prediction
gain and SNR values.

The quality of the reconstructed speech was further enhanced by allowing subsam-
ple resolution of the long term predictor delay. The fractional delays were resolved
to 1/6 of a sample in critical pitch lag ranges, such as the female average pitch pe-
riod range (not fully exploited by the basic CELP coding algorithin), and to /3 or
1/4 of a sample for other less sensitive regions. A very efficient interpolation proce-
dure consisting of polyphase filtering rendered the operation of increasing the delay
resolutica computationally affordable for practical purposes. Hence, for a single-tap
fractional delay pitch predictor, up to 1 dB SNR improvements were obtained with a
small noticeable increase in perceptual quality, a perforinance comparable to that of
a three-tap pitch predictor.

With few bits remaining for quantizing the excitation codebook and the long
term predictor gains, vector quantization was found to be the only alternative for
high-quality coding needs. It is however well-known that the gains and especially
the pitch coefficient do not lend themselves well to vector quantization due to their
occasional erratic behaviour. The correlation that exists between the periodic and
stochastic components of the lincar prediction excitation was rather exploited by
vector quantizing the per sample energy contributions of the formant synthesized
adaptive codebook entry and the excitation codebook entry. The quantized gains
could then be recovered from these entitics and from a uniformly quantized average

frame energy. A 7-bit gains vector quantizer achicved very satisfactory results by
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allowing only minor degradations in objective quality measures and slight perceptual
distortions.

After optimizing the various stages of the CELP encoding process, the different
techniques and quantization schemes were assembled to form a preliminary version of
the 8 kb/s toll-quality coder. The reconstructed speech quality was however still not
entirely convincing upon comparison with the output of a 7-bit log PCM coder. Since
finer quantization was not anymore physically possible, the coding quality could only
be improved by enhancing the perceptual features of speech signals. Spectral noise
weighting of the CELP mean squared error between the original and the reconstructed
speech has been until now the most popular way of exploiting the spectral masking
properties of the human auditory system. On the same baseline, the implemented
work in this thesis showed that the periodicity of voiced speech segments could be
greatly enhanced by further weighting the mean squared error between the harmonics
of the speech spectrum. The incorporation of the harmonic noise weighting technique
in the analysis-by-synthesis loop increased the accuracy of the CELP error criterion,
as the masking properties of the spectral harmonic regions were better exploited.
Finally, on the decoder side, the reconstructed speech quality was also enhanced
by adaptive short-term and long-term postfiltering. A brighter speech was the net
perceptual result.

The last developement stage in the coding scheme addressed the limitations of
confining the optimization of the CELP parameters to a speech subframe duration.
By allowing suboptimal parameter values to be quantized at a given subframe, the
consequently optimized parameters for the following subframe turned out to yield in
more than 80 % of the cases a lower mean squared error than that resulting from in-
dependent parameters optimization for the two consecutive subframes. Those results
have led to the elaboration of a delayed-decision coding scheme conceptually similar
to trellis coding principles. An accumulated minimum mean squared error cost was
assigned to every path in a delayed-decision coding tree where a maximum number
of allowable paths were kept at every subframe stage. At the last subfram.: stage, the
path with the minimum accumulated mean squared error had its quantized parame-
ters transmitted for the total of five subframes in one frame. Substantial perceptual

improvements in the coding quality resulted from this scheme, quantitatively equiva-
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lent to over 2 dB increases in SNR measures. The major drawback in this scheme is
however the increased computational complexity issue. One could also worry about
the effect of channel errors propagation along the delayed-decision coding tree stages.
Nevertheless, since the work in this thesis was only at the experimental level, com-
plexity reduction was not the major target and the coder performance was evaluated
in error-free channel conditions.

Informal comparison listening tests between the completed CELP coding scheme
and a 7-bit log PCM coder revealed that the quality of the two reconstructed speech
versions was perceptually equivalent. Morcover, clearer CELP coded speech vesulted
in some voiced regions, due to the periodicity enhancement techniques employed.

The CCITT specifications for standardizing the 8 kb/s coder require a one-way
coding delay less than 10 ms. Investigations in this work have been carried out
to lower the adopted 20 ms coding delay. The speech quality suffered slightly from
reducing this delay to 16 ms, and toll-quality was lost. Asit was mentioned previously,
the Low-Delay CELP coder operating at 8 kb/s [7] has characteristics that are the
closest to the CCI'TT specifications, but does not achieve yet toll-quality coding. The
quality enhancement that resulted from the combined harmonic and spectral noise
weighting scheme and especially from the delayed-decision coding technique at wo
extra bit rate penalties is a very encouraging step toward future rescarch in achieving
toll-quality coding at medium bit rates. Starting from the Low-Delay 8 kb/s CELP
coder, perceptual enhancement techniques should be able to increase the coded speech
quality, and eventually reach the performance of a 7-bit log PCM coder with the
application of delayed-decision coding. The latter improvement method can however
quickly increase the computational complexity of low-delay coding applications, as the
parameter update rate becomes much more frequent (shorter subframes) in addition
to the LPC parameters being backward adapted. Such characteristics are reflected in
an increased number of stages in the delayed-decision tree as well as a separate LPPC
analysis for every alternative (path) at a given stage in the tree. Procedures to bring
down the complexity of delayed-decision coding in a backward adaptive LPC analysis
coding environment might be the solution for attaining toll-quality when low coding

delay constraints are imposed.
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Appendix A

An efficient polyphase network for the common 1-to-D digital interpolator is de-
rived in this appendix, followed by a brief overview on some of the properties of the
polyphase filters used in the structure.

A block diagram for a sampling rate increase by D is given in Fig. A.l. The

sampling rate expander inserts L —1 zero valued samples between each pair of samples

of z(n) to yicld the signal w(n):

(A.1)

0, otherwise

w(m) = {""(T)‘), m=0,+D,+2D,...

The spectrum of w(m) will contain the baseband frequencies of interest (—= /D to = / D)
plus images of the baseband centered at harmonics of the original : ampling frequency
127 /D,+4x/D,.... The baseband signal is recovered by passing w(m) through an
ideal digital low-pass filter by p(m). In the frequency domain, the ideal filter response

Hyp(c?") is known to be:

D, lw|<5

0, otherwise '

Hip(e®) = { (A.2)

x(n) w(m) y(m)
| r D hLp(n)
/s Df, Df,

Figure A.1: Block diagram for interpolation by an integer factor D.
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and the interpolation output signal y(m) will be:

D X(&"P), |uf < &

0, otherwise

Y (") = { (A.3)

The output signal y(m) can be expressed as the convolution of the input signal with

the impulse response of the ideal low-pass filter hyp(m), written as

00 k
y(m) = hip(m — k) r(|55])
b=o (AA)
= Z hip(m —rD) x(7).
By introducing the change of variable
ro= [—%J —-n (A.5)
where |a] is the least integer less than or cqual to a, Eq. (A.4) becomes:
o m m
ym) = Y hip(m - lBJD +nl) .z([-l—j - ). (A.6)

n=—oo

Wi

With the modulo notation m @ D heing more compact for m — | 55 1, the ontput y(m)

is finally expressed as:

y(m) = f: hpp(nD +m @& D) «( [ZI'—;J - n). (A7)

n=—00

The coefficients of the low-pass filter impulse response in (A.7) can be denoted by
gm(n), where
gn(n) = hpp(nD +m @ D), (A.8)

for all m and n. The set of coeflicients {g.(n)} can be seen as a periodically time
varying filter with period D. y(D) is thus generated using the same set of coefficients
{90(n)} as for y(0), y(D + 1), like y(1), uses {gi1(n)}, and so on. On the other hand,
the input signal z(n) increases by one sample for every D output samples. In general
the output samples y(rD),y(rD +1),...,y(rD + D — 1) are obtained from the input
samples z(r — n). The signal z(n) is thus updated at the low sampling rate f,, while

the output y(m) is evaluated at the high sampling rate 1 f,.
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| y(nD+D-1),8
pp-1(n)

/s /s Df,

Figure A.2: Commutator model for a 1 — to — D interpolator.

The idcal low-pass filter impulse response hgp(m) can be partitioned into D filter
subsets operating at the low sampling rate. These subsets are D separate linear time-
invariant filters, py(n),p(n),...,pp-1(n), known as polyphase filters. The k — th
polyphase filter is given by:

pi(n) = gi(n), (A.9)
for 0 <k < D —1 and all n. With the help of (A.8), the expression for the polyphase

filters becomes
m(n) = hpp(nD+k) k=06 1,2,...,D-1 (A.10)

for all n. For each new input sample z(n), D samples y(n D+ k) will thus be generated
as the output of the D successive polyphase filters.

With the polyphase filtering structure now introduced, the 1 — to— D interpolator
can be cfficiently represented by the counterclockwise commutator model shown in
Fig. A.2. The filtering in the polyphase interpolation network is performed at the
low sampling rate. For each input sample x(n), the commutator sweeps through the
D polyphase paths to get D output samples of y(m).

Taking a closer look at the definition of the polyphase filters in (A.10), it is seen

that they correspond to decimated versions (by a factor of D) of the low-pass filter
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Figure A.3: Polyphase filters propertics: (a) fractional sample phase shifts and (b)

all-pass frequency response.

hpp(m). This ideal low-pass filter is very often approximated by lincar phase FIR
filter A(n). The corresponding polyphase filters will naturally also be finite. Fig. A.3
(a) examplifies the decimation process for an interpolation factor 1) =3 and a 9-tap
FIR interpolator. The FIR interpolator is shown to be symmetric about 1 = 4, and
thus having a flat delay of 4 samples. The points of symmetry of the envelopes of
Po(n), pr(n), and pa(n) are respectively at 4/3 of a sample, one sample, and 2/3 of a
sample. Diflerent phase shifts are thus associated with the different FIR polyphase
filters, and hence justifying the origin of the terminology. Generally, if the FIR low-
pass filter approximation is of length N, the polyphase filters will be of length N/D.
Choosing N to be a multiple of D will yield polyphase filters of the same length.
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Fig. A.3(b) shows the scaling of the polyphase filters frequency response Pi(e’")
from the range 0 < w < w/ D corresponding to the ideal low-pass filter response to the
range 0 < w < 7, due to the decimation process. It can hence be concluded that FIR
polyphase filters approximate ideal all-pass linear phase filter characteristics, with

cach value of k corresponding to a different phase shift.
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Appendix B

This appendix briefly details the computation and the uniform quantization scheme
of the frame energy. It also illustrates the interpolation procedure used to obtain the
subframe energy estimates necessary for the recovery of the codebook gains
Asshown in Fig. B.1, the computation of the frame energy is based on one analysis
frame rather than on one frame to be encoded in order to preserve continuity in the
subframe energy estimates. Assuming the order of prediction to be p and the analysis

frame length to be Ny, the frame cnergy of the input speech s(n) is given by:

$(0,0) + ¢(p,p)

R(0) = 2Na = 1) (18.1)
where N
®(i, k) = ) s(n —7)s(n — k). (3.2)

The energy normalized by R,.0: = Smar(n)? in expressed in the log domain as:
Ryp = 10log(R(0)/ Ryar ) (13.3)

The implemented 5-bit uniform quantizer has 2 B3 width bius uniformly dis-
tributed along the log-energy range. The transmitted quantization index I is hence

determined according to the following cquations:

0 if R —72
I = W Hap < =1 o (13.4)
1...31 s.t. | = (Ryp +66)/2] is minimal
From this transmitted index, the energy on the decoder side is recovered hy:
R Rm” 10(2I—-66)/IU / # 0
R(0) = . (8.5
o ={ " 70 )
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Subframe energies R,(0)

Weights: 10 3/41/41/21/21/43/4 0 1

:mmﬂI » speech data
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Rpuse(0) Ryresent(0)
000 0000000 O
Past ANALYSIS frame Present ANALYSIS frame

Figure B.1: Interpolation scheme for the subframe energy estimates.

'The subframe energy cstimation R,(0) is based on a direct interpolation of the past
analysis frame quantized cnergy Ryq.(0) and the present analysis frame quantized
energy I2,,coene(0). In other terms, it is obtained as a weighted combination of the

quantized frame encrgies:
R_,(O) = ’U).Rpa,t(()) + (1 - w:)Rpresenl(o), (BG)

with the weighting scheme {w,} illustrated in Fig. B.1.
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