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ABSTRACT 

A new load flow calculation method. called the ten50r method. 

is introduced in this thesis. The tensor method i5 a general purp05e 

method, intended especially for solving the ill-conditioned power 

systems load flow problems. The method bases each Iteration on a 

quadratic model of the nonlinear algebraic load flow functions, the 

standard linear model augmented by a simple second order term. Tlll) 

second order term is selected 50 that the model interpolates function 

values from several previous iterates. the current function value and 

the Jacobian. A distinguishing feature of this tensor model wi th 

respect to the previous second order load flow models i5 that it 15 

actually only quadratic in a small system (p equations) and Ilnear ln ,\ 

large system (n-p equations). where n is the dimension of the problem 

and p is chosen to be equal or less than the square coot of 11 A 

solution algorithm i5 proposed first solving the small quadratic p 

equations u5ing an Iterative nonlinear equation 50lver. thon solving 

the large linear n-p equations using a forward elimination and bilCk 

substitution technique. In extensive simulation tests. the tonsor 

method demonstrated superior convergence characteristlcs and numerical 

stability over the standard load flow methods, both on well- and 

ill-conditioned test systems. 
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RESUME 

Cette thèse propose une nouvelle technique de calcul pour 1es 

équations d'écoulement de puissance dans les grands réseaux 

électriques. Cette méthode itérative, appelée la métht':.·de tensorielle, 

est tout à fait générale, mais elle est bien adaptie au systèmes 

d'équations mal conditionées. Pour le calcul itératif, cette méthode 

raj ou te un terme quadratique au modèle des fonctions à éva\luer, en plus 

du terme lineaire habituel. Ce nouveau terme est trouvé à coût minime 

par interpolation, à partir de la valeur présente et de valeurs 

antérieures de la fonction et la valeur présente du Jacobian. Parmi les 

méthodes quadratiques proposées pour l'écoulement de puissance, 

celle-ci est la première à traiter les termes quadratiques comme des 

variables. De par la structure du terme quadratique, il est possible de 

résoudre le problème quadratique à chaque itération en le décomposant 

en un petit systeme quadratique (à p équations) et un grand système 

linéaire (à n-p équations), où n est la dimension du problème et pest 

plus petit ou egal à sa racine carrée. Nous avons préparé un algorithme 

pouvant resoudre ces deux systemes, le premier à l'aide d'un programme 

iteratif et le deuxième par elimination gaussienne Nos essalS avec cet 

algorithme demontrent la stabilite et l'excellente convergence de la 

methode tensorielle, en comparaison avec les methodes standards, pour 

toute une gamme de problèmes, dont quelques uns considéres tres 

difficiles. 
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Chapter l 

Introduction 

1.1 What 1s the Load Flow Problem ? 

Load flow, or power flow, is the solution for the normal 

balanced three-phase steady state operating conditions of an electric 

power system. In general, load flow ca1culations are performed for 

power system planning and operational planning, and in connection with 

system operation and control. The data obtained from load flow studies 

are used for the studies of normal operating mode, contingency 

analysis, outage securi ty assessment, as well as optimal dispatching 

and stabili ty. 

The difficulties and the importance of the load flow prob1em 

have fascinated mathematicans and engineers throughout the world for a 

number of years. Many people have devoted a large portion of their 

professional 1ife to the solution of the problem. lt has received more 

attention than any other power system prob1ern. The amount of effort 

devoted to the problem has resulte0 in an enormous amount of technica1 

publications. The nature of the problem probably precludes the 

development of a perfect procedure. Therefore, it is likely that 

progress will continue ta be made on improved solutions for a long 

time. 

The load flow problem can be defined as the calculation of 

l the real and reactive powers flowing in each line and the magnitude and 

1 
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phase angle of the voltage at each bus of a given transmission system 

for specified generation and load conditions. The information obtainpd 

from the load flow studies can be used to test the system's capability 

to transfer energy from generation to load wi thout overloading l ines 

and to determine 

capacitors, shunt 

the adequacy of voltage regulation by shunt 

reactors, tap-changing transformers, and the 

var-supplying capability of rotating machines. 

In load flow studies the basic assumption is that the given 

power system is a balanced three-phase system operating in Hs stoady 

state with a constant frequency (50 or 60Hz) Therefore, the system can 

be represented by its single-phase positive sequence network with 

lumped series and shunt branches. The load flow problem can be solved 

either by using the nodal admittance matrix Y or the bus impedance 

matrix Z representation of the given network, but it is customary ta 

use the nodal analysis approach. Mathematically, the problem Ls ta 

solve a set of nonlinear algebraic equations for the complex bus 

voltages and then determine the line flows 

Each bus of a network has four variable quantities associated 

with it: the real and reactive power, the line to ground voltage 

magnitude, and voltage phase angle. Any two of the four may hp 

specified, and hence become independent variables 1 wher<:>as the other 

two remain ta be determined. 

In general, there are three types of buses in a load flnw 

problem, each with its own specified variables. (1) slack bus, (2) 

generator buses, and (3) load buses. Since transmission losses in a 

given system are associated with the bus voltage profile, unti l a 

solution is obta.i.ned the total power generation requirement cannot be 
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determined. Therefore, the generator at the slack bus is used ta supply 

the addi tional real and reactive power owing to the transmission 

losses. Thus, at the slack bus, the magnitude and phase angle of the 

voltage are known, and the real and reactive power generated are the 

quantities to be determined. It is only after a solution has converged, 

that is, after aIl bus voltages are known, that the real and reactive 

power generation requirements at the slack bus can be determined. In 

other words, the losses are not known in advance, and consequently the 

power at the slack bus cannat be specified. 

In arder ta define the load flow problem ta be solved, it is 

necessary ta specify the real power and the voltage magnitude at each 

generator bus. This is because these quantities are controllable 

through the governor and excitation controls, respectively. The 

generator bus is also known as a PV bus. The 10ad bus is a1so known as 

a PQ bus. This is due ta the fact that the real and reactive powers are 

specified at a given load bus. It is possible that sorne load buses may 

have transformers capable of tap-changing and phase - shifting 

operations These types of load buses are known as the 

voltage-controlled load buses. At the voltage-controlled load buses, 

the known quantities are usually the voltage magnitude in addition to 

the real and reactive powers, and the unknown quantities are usually 

the voltage phase angle and the turns ratio. 

1.2 History of Load Flow Calculation 

Before 1929 all load flow calculations were made by hand. In 

1929, network calculators (of Westinghouse) or network analyzers (of 

3 
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General Electric) were employed to perform load flow calculations. The 

first paper describing a digital method ta solve the load flow problem 

was published in 1954 [Dunstan 1954]. However, the first rea11y 

successful digital method was developed by [Ward & Hale 1956] Most of 

the early iterative methods were based on the y -matrix approach of the 

Gauss-Seidel method. tt requires minimum computer storage and needs 

only a small number of Iterations for small networks Unfortunately, 

the number of required Iterations can increase dramatically for large 

systems. In sorne cases, the method does not provide a solution at all. 

Therefore, the slowly converging behavior of the Gauss-Seidel 

method and its frequent failure to converge in ill-conditioned 

situations caused the development of the Z-matrix methods for 

Gauss-Seidel [Brameller & Denmead 1962]. Even though these methods have 

considerably better convergence characteristics, they also have the 

disadvantage of needing a significantly larger computer s torage memory 

owing to the fact that the Z -matrix is full, contrary to the Y - matrix 

which is sparse. 

These difficulties encountered in load flow studies led to 

the implementation of the Newton-Raphson method. The method was 

originally developed in load flow by (Van Ness 1959 J [Van Ness & 

Griffin 1961] and later improved by [Tinney & Hart 1967] [Domme1 et.al. 

1970]. The method is based on the Newton-Raphson algorithm to solve the 

sirnultaneous quadratic equations of the power network, Contrary ta the 

Gauss-Seidel algorithm, it needs a longer time per Iteration, hut 

usually converges in only a few Iterations, and convergence is 

significantly independent of the network size Therefore, mast of the 

load flaw problems that could not be solved by the Gauss-Seidel method 
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are solved with no difficulty by this method. The development of a very 

efficient sparsity-programmed ordered elimination technique by [Tinney 

& Walker 1967] [Sato & Tinney 1963] to solve the simultaneous equations 

has enhanced the efficiency of the Newton-Raphson method, in terms of 

speed and storage requiements, and has made it the most widely used 

load flow method. The method has been further improved by the addition 

of automatic controls and adjustments (e.g. program controlled 

in-phase tap changes, phase-angle regulators, shunt compensation and 

are a interchange control). 

In order to further speed up the Newton-Raphson load flow 

algorithm and to substantially reduce the storage requirement, the Fast 

Decoupled load flow method has been developed by [Stott & Alsac 1974]. 

The method is based on the fact that in any power transmission network 

operating in the steady state, the coupling between PoO (active powers 

and bus voltage angles) and Q- V (reactive powers and bus voltage 

magnitudes) is relatively weak, contrary to the strong coupling between 

p and 0 and between Q and V. Therefore, the method solves the load flow 

problem by "decoupling" the P-O and Q-V problems. and also takes 

advantage of sorne approximations in forming the constant Jacobian 

submatrices B' and Bn. Because of it!J simplicity. speed, and small 

storage requirements, 

Newton-Raphson method 

it is being widely used to replace the 

in large system load flow calculations, 

multiple-case load flow calculations, on-line applications and 

contingency security assessments. 

Another interesting development in the load flow problem has 

been that of Second Order load flow in which the bas ic load flow 

equations are expressed exactly by a set of quadratic algebraic 
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equations in rectangular coordinates [Iwamoto & Tamura 1978J [Nagendra 

Rao et.al. 1982]. By using this accurate load flow model. it is 

intended ta achieve better convergence characteristics over the Fast 

Decoup1ed 10ad flow method on prob1ems where the system has lines with 

high RIX ratios, and at the sime time retains all the other advantages 

of the Fast Decoupled load flow method. This attempt has been 

successful. Actually, this method is now being implemented in the 

e1ectric industry in Japan [Iwamoto 1989]; it has not caught on 

e1sewhere, however. 

The present trends are towards the development of methods ta 

solve the ill-conditioned system load flow problem [Iwamoto & Tamura 

1981] [Tripathy et.al. 1982] and the development of interactive load 

f10w programs [L}"nch 1979]. 

1.3 I11-Conditioning 

Mathematically, a matrix is said to be ill-conditioned if it 

is extremely sensitive to smal1 changes. Let us consider an example: 

[

1. 

A -
1. 

l. 1 
1.0001 

Qualitatively, A is nearly singular . If we change the last entry of A 

to a - l, it is singular and the two columns become the same. Cons ider 
22 

two very close right-hand sides for A: 
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(1) u + v 2 

u + 1.0001 v - 2 

(2) u + v 2 

u + 1.0001 v - 2.0001 

The solution to the first problem is u - 2, v - 0; the solution to the 

second is u - v - 1. A change in the fifth digit of b in Ax - b 

amp1ified into a first digit change in the solution. Therefore, we say 

that matrix A is ill-conditioned. 

In the load f10w calculations, we sometimes encounter the 

same kind of problem, when dea1ing with a 1inearized load flow model. 

This model has the fo1lowing form: 

Jflx - F (1.1) 

where J i5 the load flow Jacobian matrix, 

ax is the bus voltage state correction vector, 

F i5 the power mismatch function vector. 

In some power systems, the load flow Jacobian matrix J in 

equation (1.1) is very ill-conditioned. This causes the instability 

and/or divergence of the load flow solutions. We define this kind of 

problem as an ill-conditioned load flow problem. 

The features which cause the instability and/or divergence in 

the power systems load flow calculations are the following: 

1 
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-! 1. bad choice of the slack bus, 

• 2. large number of radial lines, 

3. heavily loaded network. 

4. existance of negative line reactance, 

5. lines with high RIX ratios, 

6. atypical circuit parameters. 

A power system which has one or more of the ab ove 

characteristics is likely to be ill-conditioned. So far, there has been 

no practical method to solve the ill-conditioned power system lond flow 

ca1cu1ations problem. 

1.4 The Present Study 

1.4.1 Objective 

The intended objective of the present study is to apply the 

tensor method proposed by [Schnabel & Frank 1984J to solve the 

i11-conditioned power system load f10w calculation problem. 

1.4.2 Outline of the thesis 

The chapters of this thesis are organized as follows: 

Chapter l -- Introduction 

This chapter presents a comprehensive understanding of the 

nature of the load f10w problem being solved First, 'Ile describe the 

load flow calculation problem, the definition and the mathematical 

1 interpretation. Secondly, a general overview of the history of the load 
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flow calculations is presented. Then, we introduce the problem of 

ill-conditioning, both its mathematical meaning and features causing 

ill-conditioning in a power system. There follows the objective of this 

research work and an outline of the thesis organization. At the end of 

this chapter, we display the original contributions of this study. 

Chapter II -- Review of Load Flow Calculation Methods 

This chapter presents a review and analysis of the most 

commonly used load flow calculation methods. Four main groups of load 

flow calculation methods are discussed. The state of the art on solving 

the ill-conditioned systems load flow problem is al 50 discussed. 

Attention is paid especially to the basic formulations, 

characteristics, and limitations of each different approach. 

Chapter III -- Solution of the Ill-Conditioned Load Flow Problem 

by the Tensor Method 

In the first part of this chapter, the mathematical 

foundations of the tensor method by Schnabel & Frank are presented. 

They include an introduction on solving ill-conditioned nonlinear 

equations, a derivation of the formulation of a simple quadratic model 

(tensor model), and a solution algorithm to solve the tensor model 

efficiently and stably In the second part of this chapter, 

applications of the tensor method to the load flow problem are carried 

out. Again, we present a brief introduction to reinforce the 

presentation of the problem to be solved. Then, the tensor model 

formulation of the load flow problem i5 performed and explained. The 

'~<llculation of second order terms in the tensor model is conceptually 
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new, and unknown in the previous Second Order load flow methods. 

Following the formulation, a solution algorithm 1S proposed dnd 

detailed program implementation steps are also given. 

Chapter IV -- Numerical Simulations 

This chapter documents and analyzes the numerical resul ts 

obtained from our TLF program. Tests were carried out on four 

ill-conditioned systems and three well-conditioned systems, ranging in 

size from 5 to 43 buses. In the first four sections, the numericlll 

results for four ill-conditioned systems are presented sepertltely In 

each section, the load flow solutions, the convergence characteristics, 

and the condition nurnbers of each test system are presented and 

analyzed. Then, the numerical results obtained for thrce 

well-conditioned systems are presented altoghther. All the simulation 

results are analyzed and special features of the program on the 

hard-to-solve problems are discussed. This chapter closes with a 

discussion on the general performance of the tensor load flow method 

and comparisons with standard load flow methods. 

Chapter V Conclusions and Recommendations 

In this short chapter, first, general conclusions of this 

research work are drawn. Then. recommendations for future resellrch arc 

suggested. 

10 



1.5 Claim of Originality 

To the best of che auchorJs knowledge, the application of the 

tensor method to solve the ill-conditioned load flow problem is an 

original contribution. By applying the tensor method, a new quadratic 

load flow model is formulated using information from the previous past 

iterates. A new solution algorithm to solve the tensor model is also 

developed It salves the ill-conditioned load flow problem by first 

solving a small quadratic system of equations and th en a large linear 

system of equations. In this, it is quite distinct from the previous 

Second Order load flow methods. A program which implements the idea of 

the tensor algorithm is developed. The simulation results show the 

superior numerical stability and convergence characteristics on both 

well- and ill-conditioned power systems. 

11 
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Chapter II 

Review of Load Flow Calculation Methods 

2.1 Introduction 

In this chapter we review the most commonly used load flow 

calculation methods. Through a literature review, we briefly outline 

various load flow formulations, surnmarize their characteristics. and 

point out the limitations of each solution technique. 

Four main groups of load flow calculation methods are 

discussed in section 2.2 to section 2.5 respectively. They are tht> 

Gauss-Seidel method, the Newton-Raphson method, the Fast Decoupled Lond 

Flow method, and the Second Order Load Flow method. Following these 

four main groups of methods. we present sorne new load flow methods 

recently proposed for solving the ill-conditioned power system load 

flow problem. This chapter closes with a summary of the general 

behavior and comparison of these methods 

We presume the reader i5 already familiar with the basic load 

flow equation5 in this chapter. To concentrate on the main properties 

of these solution methods, all the equations shown in this chapter arp 

given without derivation, but the corresponding reference gOUrCe5 ar~ 

given. The reader not familiar with the basic load flaw equatians can 

refer ta section 3.2.2.1. 

12 
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2.2 Gauss-Seidel Method 

2.2.1 Basic equations 

The Gauss-Seidel load flow calcu1ation method is based on the 

iterative solution of the non1inear equation (2.1) for n bus voltages, 

using a relaxation algorithm [Glimn & Stagg 1957]. 

{ 
psp 'Qsp 

} V 
1 i - J i - r y V (2.1) -* Y V 

ij j 

11 i jC:l 

i - l,'" ,no 

where the notation is provided in appendix 2.1. 

Successive displacements are used in the Gauss-Seidel load 

flow method, which improve the accuracy of the bus voltages 

successively starting from an initial guess. The right hand side of the 

equation (2.1) is evaluated using the most recent updates of the 

voltages at the rest of the buses. For PV type buses, 

substituted by its calculated value, and the magnitude of the updated 

voltage 1s corrected according to the specified bus voltage. 

The above set of equations does not inc1ude the slack bus for 

the reason discussed in Chapter I. Before the solution 1s started, the 

busps have to be ordered and the bus admittance matr1x has to be 

dptermined. Next. a set of initial values for the complex bus voltages 

has to be assigned. In practical systems, the voltage magnitudes do not 

« vary widely. The initial value of 1LO can be assigned. Then, one can 
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start obtaining the solution of Eq. (2.1). If the ith bus is a lond bus. 

its loadings P and Q are known and h~nce a new value of complel< 
i i 

voltage can be determined which May be denoted by VOl 
i ' 

where 

superscript (1) indicates the first cycle of calculation, 1. e. first 

Iteration. Obviously, the values of Vell have been improved compared ta 
i 

their initial values V(O). Feeding this improved set of values in 
i 

Eq. (2.1), one can determine another set of more improved values. This 

iterative process continues until the prescribed mismatch tolerance are 

met. 

2.2.2 Characteristics 

The Gauss-Seidel method converges slow1y, mostly because of 

the loose mathematical coupling between the buses. At each Iteration 

cycle, an improvement in each bus voltage can only effect the voltage 

improvements of the buses directly connected ta it. Acceleration 

techniques are invariably used in practice ta speed up the convergence 

Computationally, the salient feature of this method is that 

the number of elements in the summation term in equation (2 1) is 

small. The off-diagonal elements of the admittance matrix, for use in 

the summation, are therefore stored and addressed compactly, often 

taking advantage of Y-matrix symmetry. Both the storage requirementc; 

and the computation per iteration are then smal1, and roughly 

proportional to the number of buses n. Since the number of iteration~ 

for a large wel1-conditioned system is of order n, the total Iterative 

computing time varies approximately with n
2

• As the size of the problem 

to be solved increases, the Gauss-Seidel method becomes less and less 

competitive with newer methods. However, its storage requirements are 

14 



l 
very low. The computation time per iteration is small, and efficient 

coding is very easily written. Therefore, it is often used to 

initialize the starting values of the Newton-Raphson method and Second 

Order Load Flow rnethod. As a final point, an advantage of the GS method 

which is only starting to be recognized is that it is in a form easiIy 

amenable to parallel processing. 

2.2.3 Limitations 

Although the Gauss-Seidel methed can be easily programmed and 

does not require a large number of computer storage, it has severai 

limitations, sorne of which have already been mentioned: 

1. needs many iterations to converge, 

2. total computation times are long, 

3. convergence characteristics are poor compared to newer 

methods, 

4. unable ta solve ill-conditioned systems. 

In solving well-conditioned systems, the method converges and 

the number of iterations required depends upon the size of the system: 

the larger the system, the greater the nurnber of iterations [Stott 

1974]. The choice of the slack bus aiso affects the number of 

iterations. 

15 



2.3 Newton-Raphson Method 

2.3.1 Basic equations 

The general Newton-Raphson method 15 an iterative algorithm 

for solving a set of simultaneous nonlinear equBtions in an equal 

number of unknowns F(x)-O. At a given lteration point, each fune tion 

f (x) 15 approxlmated by its tangent hyperplane. Equation (2 2) is its 
i 

basic form in the load flow application [Tlnney & Hart 1967]. 

B ~B 
~ -~ ~ 

where the notation is provided in appendix 2.2. 

(2.2) 

This is the most widely used of aIl formulations, in which 

the Jacobian matrix equation is written for convenience of presentation 

in the partitioned form. Slack bus mismatches and voltage corrections 

are not included ln (2.2), and likewise ~Q and ~v for each PV bus are 
i i 

absent. The elements of the submatrices H, N, J, Lare given in section 

3.2.2.2. 

Like the GS method, the Iterative process is initiated by 

assuming a set of voltage magnitudes and phase angles Coefficients Il, 

N, J and Lare then evaluated using equations given in Section 3.2 2 2 

These coefficients are arranged in the form of a matrix (Jacobtan) 

which is then augmented by including a coV.lmn consisting of the 
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residuals 

augmented 

APt and ~Qi' The elimination process 

Jacobian matrix. The corrections ~o 
1 

triangularises the 

and ~V are then 
i 

successively evaluated through back substitution. These corrections 

when added to the previous values of the variables generate new values 

of these variables. One iteration is complete. The next iteration 

starts with the calculation of P and Q of buses using improved values 
i 1 

of the state variables. Residuals AP and /::"Q are evaluated and if 
l l 

these are found less than the mismatch tolerance, the process is 

terminated. Otherwise, the procedure of recalculation of the Jacobian 

matrix elements, triangularisation of the augmented matrix and 

reevaluation of the correction vectors ~o and /::,.V is repeated. 

This formulation can be improved by a minor modification, 

which very often reduces the number of iterations by one, and can avoid 

divergence in sorne extreme case [Stott 1974]. Noting that the 

performance of the Newton-Raphson method is closely associated with the 

degree of problem nonlinearity, the best left hand defining functions 

are the most linear ones. lt is therefore preferable to use a prob1em 

defining function /::,.Q/V on the left hand side of equation (2.2) in place 

of ~Q. Dividing AP by V has a very small effect, since the active power 

component of the problem is not strongly coupled with voltage 

magnitudes. 

Bath polar and rectangular version formulations can be 

implemented, with the rectangular version slightly less reliable and 

rapid in convergence th an the polar version [Stott 1974]. 

2.3.2 Enhancements 

A number of schemes are available for attempting ta improve 
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the performance of Newton/s method [Domme1 et.al. 1970]. One of the 

simp1est of thase is ta impose Umits on the permissible si;.:;e of the 

voltage corrections at each iteration, thereby helping to negotLltt> 

humps in the defining functions. A better approach is to backtrack as 

soon as divergence is seen to have started, and then apply small limits 

on future state corrections. 

With its quadratic convergence, Newton' s method is most 

advantageous when it is fed good initial voltage estimates. Some 

programs perform one or two GS iterations before the Newton process. 

This is beneficial provided that the relatively weak GS method does not 

diverge when faced with a difficult problem. A most rapid and reliable 

Newton program can be created by calculating good initial angular 

estimates using the OC load flow and also good voltage magnitude 

estimates by a similar technique [Stott 1971] . 

Iteration time can be saved by using the same trianguldted 

Jacobian matrix for two o~ more iterations. However, in this way, it is 

also necessary to save the lower triangle for repetition of the \orward 

solution [Tinney & Hart 1967]. The algorithm requires about 40% more 

storage and loses sorne reliability of convergence 

2.3.3 Characteristics 

The Newton-Raphson method' s quadratic convergence makes Lt 

very fast, and the process homes in very rapidly onto the solution 

point when it is close lts performance is sensitive to the behavior of 

the load flow function F(x), i.e. the more linear it i8, the more 

rapidly and reliably the Newton method converges 

Although efficiency in programming techniques is important in 
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aIl load flow methods for fast excution and storage economy, it is the 

cornerstone of methods such as Newton' s. It must implement ordered 

elimination and spar~e programming techniques for solving the large 

sparse matrix equations [Tinney & Walker 1967] [Tinney & Hart 1967]. 

If these programming requirements are fully satisfied, then 

the computing time per iteration of Newton's method ris es little more 

than 1 inearly wi th the number of buses in the system, on average. 

Since the number of iterations is almost size invariant, the 

superiority of Newton's method speedwise over the GS method increases 

rapidly as the size of the system to be solved increases. 

With large modern computers, the extra storage compared with 

GS method does not prevent very large systems from being solved in 

core. 

2.3.4 Limitations 

Although the Newton-Raphson method is far superior to the GS 

method regarding its convergence characteristics and total computation 

time required, it has several limitations. 

1. a large quantity of data must be handled simultaneously 

due to the linear transformation, 

2. needs optimally ordered factorization and sparse 

programming technique, 

3 sensitive to the nonlinearity of the load flow functions, 

4. unable ta solve ill-conditioned systems, 1ike the 11 and 

the 43 bus systems. 
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Any production program using the Newton-Raphson method should 

consider the above facts and include such features as compact storage 

and optimal ordering schemes for system buses. A computer program based 

on the Newton-Raphson method is, therefore. in general more complicated 

than that based on the GS method. 

2.4 Fast Decoupled Load Flow Method 

2.4.1 Basic equations 

An inherent characteristic of any practieal eleetric power 

transmission system operating in the steady state is the strong 

interdependence between active powers and bus voltage angles, and 

between reactive powers and voltage magnitudes. Applied numerical 

methods are generally at their most efficient when the y are able to 

take advantage of the physical properties of the system being solved. 

Equation (2.3a) and (2.3b) are derived from equation (2 2) by 

taking advantage of these physical properties [Stott & Alsae 1974]. 

where 

t:,p /V - B' AS 

!::.Q/V - B"!::.V 

B' 
il 

- l: 1/X • 
Je i iJ 

B' - -l/X and B" --B 
1 j iJ 1 J lJ 
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Matrices B' and B Il represent constant approximations ta the 

slopes of the tangent hyperplanes of the functions t.PjV and ô.Q/V 

respectively. Network elements that primarily affect the Q-V problem 

(e.g., shuut susceptances and transformer off-nominal taps) are not 

presented in B'. Similarly, phase shifts are not presented in Bn. 

Consequently, bath B' and B" are always symmetrical, and their constant 

sparse upper triangular factors are calculated and stored once only at 

the beginning of the solution. To solve (2.3a) and (2.3b), forward and 

backward substitutions are performed using these factors. 

The algorithm is to conduct each i teration cycle by first 

solving (2.3a) for ~6, and use the updated 6 in constructing and then 

solving (2.3b) for ~v. Each of these construction/solution cycles are 

performed alternately in the same storage area. 

2.4.2 Enhancements 

Because of its simplicity, speed, and relatively low storage 

requirements, the Fast Decoupled load flow rnethod is now being widely 

used in the electric utilities. Over the years of experience, a number 

of new schemes have been developed. 

To speed up the Fast Decoupled load flow method, a 

rectangular version of the program was developed [Masiello & Wollenberg 

1975] [Babie 1983]. Also, in modern system reliability studies, the use 

of the FDLF method requires the frequent updating of the two 

Jacobian-like matrices. [Behnam-Guilnani 1987] introduced the hybrid 

vers ion of FDLF method. In this new r.1ode1, the first equation in the 

FDLF method is unchanged For the second equation, the decoupled nodal 
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l 
iterative model derived from the GS method is used. The hybrid model 

has the positive attributes of the FDLF method (fast, simple. .md 

reliable) with the added advantage that it resolves the matrix updating 

problem. The study results show that the hybrid method is as much dS 

50% faster than the FDLF method even if B" is not llpdated, howevel' 

Stott & Alsac report the hybrid version/s practical useflllness seems ta 

hinge mainly on whether each GS reactive iteration has a suffie ient ly 

competitive convergence rate [Stott & Alsac 1988]. i.e., in the dbsence 

of regulated buses, the performance of the hybrid method will not be sa 

great [Alvarado 1988] 

To reduce the storage requirements, [Keyhani 1985] proposed a 

new version of FDLF method. The matrix B" is set equal to the matr ix 

B', and in the computation of B' shunt reactances and series 

resistances are neglected. Since shunt reactances are effective in MVAR 

flows, I:lQ is computed with aIL shunt capacitances and line chargings 

considered as reactive power generations at each bus. The algori thm 

requires 50% less memory for matrix inversion than the original FDLF 

method, and has approximately the same convergence characteristic~ 

Practical experience confirms that abnormally high RIX 

ratios, particularly on heavily loaded branches, can slow convergence 

down, sometimes considerably [Wu 1977]. The individual convergence 

rates of the algorithms are determined by how well B' and Bn 

approx1mate the slopes of functions tJ'IV and I:::.Q/V re':ipectively The,,!! 

approximations are excellent around the 8-0, V-l points on the 

functions At h1gh system loading (large 8'5 or poor V's), the 

approximations 1 deterioration is progressive as the RIX ratio ot any 

" .. branch terminating on the bus increases. An effective method to solve 
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this kind of problem is ta place fictitious nodes in the middle of the 

lines having high RIX ratios [Ramarao 1977], which helps ta reduce the 

line RIX ratio sa that the convergence performance is better. 

2.4.3 Characteristics 

The Fast Decoupled load flow method is now the fastest load 

flow calcula tian method. Computation time per iteration is roughly 115 

that of Newton-Raphson method, and 3/2 that of the Gauss-Seidel method. 

For very large systems (5000 buses and above), the total computation 

time is 3 or 4 times smaller than that of the NR method [Sasson et.al. 

1975]. 

The storage requirements of the Fast Decoupled load flow 

method are about 40% less than those of Newton's method. This saving is 

reduced somewhat if the sine and cosine terms are stored. 

The method converges very reliably, usually in 2 ta 5 

iterations for practical accuracy on large systems. Using a standard 

triangulation package, programming is easier th an the Newton' s method 

in which the compact J acobian matrix has to be computed at each 

iteration. 

2.4.4 Limitations 

Here are the limitations associated with the Fast Decoupled 

load f10w method: 

1. difficult to solve systems having lines with high RIX 

ratios, 

2. when a system is heavi1y loaded, convergence requires many 

23 



1 iterations, 

3. unable to solve ill-conditioned systems. 

2.5 Second Or der Load Flow Method 

2.5.1 Basic equations 

Second Order load flow methods (SOLF) were first proposed by 

[Sachdev & Medicherla 1977J, in a polar farm They are based on the 

Taylor series expansion of the load flow functions up ta their third 

terro. Then, [Iwamoto & Tamura 1978] presented an exce llent paper, 

formulating their second order load flow model in rcctangu1ar 

coordinates. This was followed by [Rao 1978] [El-Hawary & Wellon 1982] 

and [Nagendra Rao et. al. 1982]. 

The load flow equations are a set of quadratic a1gebraic 

equations when ex.pressed in rectangular coordinates That is, the 

equations are expressed completely and exactly using the first three 

terms in the Taylor series ex.pansion. 

The basic Second Order load flow equation is as fo11ows: 

(2.4) 

where SP and SQ are the second order term vectors. 

In Iwamoto and Tamura's formulation, they discovered an 

efficient way to formulate the second order Cerm in cheir mode 1. The 
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evaluation of the second order term uses the same load flow functions 

but with the variable Ax (state corrections), where Ax is obtained from 

the previous iteration. At each iteration, the value of power mismatch 

term is a function of ÂX, but the Jacobian matrix J is always kept the 

same. This makes the algorithm very fast, and its speed is comparable 

to the FDLF method. 

Later, in Nagendra Rao's formulation, the model is developed 

by first considering a system with only PQ buses and then extended to 

accommodate PV buses. The computation is simplified to some extent by 

introducing two features: 

1. AU shunt connections (line charging capac i tance, shunt 

reactors, shunt capacitors, shunt branches of equivalant ~ 

representation of off -nominial ratio transformers etc.) 

are taken into account by treating them as loads of 

constant impedance and hence they are not included in the 

Y-matrix. 

2. The initial guesses for the voltages at all buses are 

assumed to be equal to the slack bus voltage. 

The symmetry of the Jacobian matrix is achieved when aIl the 

shunt elements are treated as loads. This is a well-known approach 

especially in Z-matrix based load flow methods. The Jacobian is ta be 

determined only once at the starting point for the first iteration. 

At PV buses in the system, the voltage magnitude will be 

specified instead of the reactive power. In the evaluation of the 

second order terms, the branch admittances of lines connected ta PV 
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buses (in order ta calculate reactive power mismatch t:.Q) only will have 

to be retained in the core during the iteration process. This results 

in a reduction in the mernory requirement of the method as compared with 

Iwamoto' s rnethod, where the full branch admittance list must be stored 

in order to calculate the second order terms. 

2,5.2 Characteristics 

Here are the main characteristics of the two second order 

rnethods described above: 

Iwamoto & ramura's version: 

1, faster than NR method, similar to FDLF method. 

2, Iteration counts for convergence are not affected by the 

system size. 

3. memory requirement s1ightly higher than NR method. 

4, did not converge to solutions for the cases in which NR 

method could not give the solutions. 

5. initial estimates are quite important. 

Nagendra Rao's version: 

1. claimed faster than previous SOLF method. 

2. memory requirement ls comparable to FDLF method 

3. shows better reliabity on high RIX ratio problem. 

4. falrly complicated in its formulation. 
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Although there are a few other Second arder load flow methods 

[Sachdev & Medicherla 1977], [Rao 1978], [EI-Hawary & Wellon 19821, 

they are not competitive compared to the methods proposed above, taking 

into account the mathmetical simplicity and computational efficiency. 

Actually, the method developed by Iwamoto and Tamura is quite good and 

1s now being used by the power industry in Japan [Iwamoto 1989]. 

2.5.3 Limitations 

Because the Second arder load flow methods uses the first 

three terms of the Taylor series expansion, generally they are 

mathematiclly more complicated th an the Newton's method. 

By reviewing aIl these second order load flow methods, 

another important point is found: that aIl algorithms solve equation 

(2.4). The second order terms are estimated from previous iteration 

values and substracted from the power mismatches in the left hand side 

of the equation (2.4). The right hand side of the equation (2.4) 

remains unchanged from the standard Newton-Raphson method. If the 

Jacobian matrix is ill-conditioned, these methods aIl have difficulties 

to converge to a solution. This enlightened fact provided us with a 

good reason for seeking a new second order algorithm to solve the 

ill-conditioned systems. 

2.6 Methods for Ill-Gonditioned Systems 

Over the years, efforts have concentrated on speeding up the 

arithmetic of the load flow calculation algorithms, taking advantage of 
r 

sparsity, decoupling, etc. The problem of solving ill-conditioned 
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systems and determining the existence of load flow solutions have been 

treated very superficially, on the assumption that s ince NR and FDLF 

methods have proved so successful for "real life" problems, no rigorous 

validation is necessary. The assumption relies on the wishful thinking 

premise, that systems such as the Il and 43 bus considered in this 

thesis are in sorne sense artificial and will never occur in practice. 

Even if this premise is true, the art of load flow solving, in order to 

attain the status of science, must address these fundamental questions. 

In 1981, Iwamoto and Tamura first proposed a method to tackle 

the ill-conditioned systems load flow calculation problem [Iwamoto & 

Tamura 1981]. The model is based on their second order model [Iwnmoto & 

Tamura 1978], incoroporating the nonlinear programming technique 

suggested by [Sasson 1969] and the idea of obtaining the optimal 

multiplier [Wallach & Konrad 1979]. Although the authors daimed 

theoretical proof of the nondivergence of their solution, the 

simulation results do show divergence phenomena in sorne cases. 

Following the above approach, Brown's method was applied to 

solve ill-conditioned load flow problems [Tripathy et al. 1982] 

Brown' s method is particularly effective for solving ill-conditioned 

nonlinear algebraic equations. It is a variation of Newton' s method 

incorporating Gaussian elimination in such a way that the most recent 

information is always used at each step of the algorithm, ~ im iLar to 

what is done in the Gauss-Seidel process. This contrast~ sharply with 

Newton' s method in which aIl equations are treated ~imul taneously 

Perhaps due to this reason, the ill-conditioning in the Jacobian matrix 

is avoided in the solution process. 

Simulation results provided in [Tripathy et.al. 1982] look 
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good. The method converges in fewer iterations for both ill- and 

well-conditioned systems. Computing time per iteration is 15% more t' 

the Ne~'iton-Raphson method, 50 that the total computation time is said 

to be comparable to the Newton-Raphson method. The storage requirement 

is slightly more (10%) than that of Newton-Raphson method. 

2.7 Summary 

This chapter has presented the most important solution 

techniques for the power system load flow calculations through a review 

of the li terature. Attention is paid especially to the basic equations 

of different methods, their salient characteristics, and their 

limitations. To introduce the subject of this thesis, the state of the 

art in solving the ill-conditioned load flow problem is aiso presented. 

lt is fel t that among all these methods, because of its 

simplicity, speed, and reduced storage requirement, the Fast Decoupled 

load flow method is superior to any other method for well-behaved 

systems. This has been proved, in fact, by the popularity and the 

wide-ranging implemEmtations of the Fast Decoupled load flow method in 

the electric power utilities in recent years. 

Regarding the ill-conditioned system load flow problem, so 

far no practical method has emerged. Future research and development is 

needed to give the answer to this problem. This thesis proposes a step 

in that direction. 
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Chapter III 

Solution of the Ill-Conditioned Load Flow Problem 

by the Tensor Method 

A new method, namely the tensor method. is introduced in this 

chapter for solving load flow problems. Tensor methods clre general 

purpose methods intended especially for ill-conditioned nonllneilt' 

systems, such as for power systems where the load flow JacobLm matt'ix 

is singular or ill-conditioned at the solution. 

Over the years, tensor theory has expanded greatly. During 

that time, Kron' s approach [Kron 1959]. much hera1ded in electriclil 

engineering some three decades ago, has been overtaken by a vas ter , 

more general theory. Hence, readers shou1d not expect to see Kron' s 

approach in this thesis. 

3.1 Tensor Method for Nonlinear Equations 

3.1.1 Introduction 

We present a new class of methods, tensor methods, for 

solving the non1inear prob1em 

find x E Rn such that F(x )-0, • • 

where it assumed that F(x) is at least once continllously 
,.. 

differentiab1e. The novel feature of these methods 15 that they base 
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each iteration on a quadratic model of F(x) whose second order term has 

a special, restricted form. Tensor methods are especially intended ta 

improve upon the performance of standard methods on problems where the 

Jacobian matrix of F at x .. ' F' (x ) .. is s ingular or 

ill-conditioned. 

Standard methods for solving (3.1) base each iteration on a 

linear model M(x) of F(x) around the current iterate x E Rn, 

where d E Rn, J E Rnxn
. 

c 

M(x + d) - F(x ) + J d 
ccc 

c 

(3.2) 

When the analytic Jacobian 1s available, the linear model 

(3.2) becomes 

M(x + d) - F(x ) + F' (x )d 
c 0 c (3.3) 

The standard method for nonlinear equations, Newton' s method, 1s 

defined when F' (x ) i5 nonsingular, and consists of setting the next 
c 

iterate x ta the root of (3.3), 
T 

x - x 
+ C 

- 1 
F' (x) F(x) 

c c 
(3.4) 

The distinguishing feature of Newton' s method is that if F' (x) is 
c 

continuous in a neighborhood containing the root x and F' (x ) .. .. 1s 

nonsingular. then the sequence of iterates produced by (3.4) converges 

locally and quadratically to x. 
c 

In practice, 

convergence means eventual fast convergence. 
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'. 
Newton' s method is not u5ua11y quick1y loca11y convergent, 

however, if F' (x) i5 singular. • 
In practice, Newton' s method usually 

exhibits local linear convergence with constant equal to one half on 

5ingular problems, much slower covergence then one would like [Decker & 

Kelley 1980]. 

The other well-known disadvantage of Newton' 5 method 15 that 

le may not converge ta any root x. if it i5 5tarted too far from any 

root. The main remedies u5ed in practice are augmenting (3.4) by line 

search or trust region algorithms [Dennis & Schnabel 1983). For load 

flow studies, this was suggested as early as 1975 hy [Gross & Lui.ni 

1975] . 

Tensor methods are based on expanding the linear model (3.3) 

of F(x) around x to the quadratic model .,. 

M (x + d) - F(x ) + F' (x )d + 2
1 

T dd 
t. ccc c 

(3.5) 

where T E Rnxnxn. 
c 

The three-dimensional object T is referred to as 
c 

a tensor, hence we call (3.5) a tensor model, and solution methods 

based upon (3.5) tensor methods. We define the notation T dd used in 
c 

(3.5) before proceeding. 

DEFINITION 3. 1 Let T E R nxnxn. Th T' d f en ~s compose 0 n 

horizontal faces H E R
nxn

, i-l,'" ,n, where H [j, k]-T[ i ,j, k] For v,w E 
l l 

n 

L T[i,j,k)v[J]w[k] 
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Note that M (x +d) 1s simply the n-vector of n quadratic 
t c 

models of the component functions of F(x) , 

where 

i - l ... ·.n 

f-F(x)[i], 
i c 

gt_ row i of F' (x ), 
i c 

H is the Hessian matrix of the ith component function of 
l 

F(x) . 

The obvious choice of T in (3.5) is the matrix Fil (x) of 
c c 

second partial derivatives of F at x ; this makes (3.5) the first three 

terms of the Taylor 

c 

series expansion of F around x . 
c 

Severa! 

disadvantages, however, rnake (3.5) with T - Fil (x ) unacceptable for 
c c 

algorithmic use. They include. 

(1) The n
3 

second partial derivatives of F at x would have 
c 

to be computed at each iteration. 

3 
(2) The model would take more than n /2 locations to store. 

(3) Ta find a root of the model, at each i teration one would 

have ta solve a system of n quadratic equatians in n 

unknowns, which is aften as difficult as solving the 

original problem F(x)-O. 

To use a model of form (3.5) and avoid these disadvantages, 

the tensor method proposed by [Schnabel and Frank 1984] uses a very 
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restricted form of T. In particular, the tensor model requires no 
c 

additional derivative or function information; the additional costs of 

J 
forming and solving the tensor model are small compared to the 0(11 ) 

arithmetic cost per iteration of standard methods; and the additional 

storage required for the 
2 

tensor model is small compared to the n 

storage required for the Jacobian. 

The remainder of section 3.1 summarizes the work of Schnabel 

and Frank in applying the tensor method to solve nonlinear equations. 

This will be followed, in the next section, by our formulation of the 

tensor method applied to the load flow problem. 

3.1.2 Forming the tensor model 

\ole now show how to select the tensor term TE R
Oxnxn 

in the 
c 

model (3.5). The choice of T will cause the second order term T dd in 
e c 

(3.5) to have a simple, useful form. 

lt has already been stated that Twill not conta in actual 
c 

second derivative information. Another way to form the second arder 

term in (3.5) is through interpolation. In the tensor method, sorne set 

of p not necessarily consecutive past iterates x . . . x will he 
-l' , -p 

selected, and the model (3.5) will be required to interpolate the 

function values F(x ) at these points. That is, the model shouLd 
-k 

satisfy 

where 

F(x ) - F(x ) + F' (x ) s + 1 T s s , 
-k c c k: 2 c k k 

k-l,"',p 

S 
k 

X -x, 
-k c 

k-l,"',p 

34 

(3.6a) 

(3. 6b) 



• 

1 

i 

, 
! 

First we describe how the past points x ,'" ,x are selected. Then we 
-1 -p 

show how to choose T to satisfy (3.6). 
c 

from x 
c 

For (3.6) to always be consistent, the set of directions (5 ) 
k 

to the selected past points x must be linearly independent. 
-k 

In that sense, each direction 5 should make a angle of at least 9 
k 

degrees with the linear subspace spanned by the other directions; 

o 0 
values of 9 between 20 and 45 have proven appropriate in practice. At 

each iteration, therefore, we choose the past points (x ) 
-k 

that we 

included in (3.6) by the following procedure. We consider the past 

iterates in order, starting with the most recent. We always select the 

most recent iterate, and then test each preceding past iterate. 

We also set a practical upper bound p on the number of past 

function values interpolated by the model at each iteration. 

P :s Jn (3.7) 

The bound ls crucial to the efficiency in storage and arithmetic 

operations of the tensor method. 

Now we discuss how we choose T 
c 

to satisfy (3.6). lt is 

convenient to rewrite (3.6) as 

where 

This is a 

T 5 S ... Z 
c k k k' k - l,'" ,p, 

z - 2 (F(x ) - F(x) - F' (x )5 ) 
k -k c c k 

set of np :s 1.5 
n linear equations 

(3.8a) 

(3.8b) 

in the n
3 

unknowns 

T [i,j,kl, l:s i,j,k :S n. Since (3.8) i5 underdetermined, we follow the c 
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l 
standard and successful practice in secant methods for nonlinear 

equations and optimization, and choose T that satisfies 
c 

minimize Il Tc Ii
f nxnxn 

TER 
c 

sub j ec t to T s S - zk' k - 1," . ,p, 
c k k 

where Il T Il ,the Frobenius norm of T , is defined by 
c f c 

n n n 

L L L (T [1,j,k])2 
c 

(3.9) 

The solution ta (3.9) is given by Theorem 3.1 of [Schnabel & Frank 19841. 

First we define a rank one tensor. 

DEFINITION 3.2 Let u, v, W E Rn. The tensor T E R
nxnxn 

for 

which T[i,j,k] - uri] vU] w[k], 1 :S i,j,k :S n is called a rank one 

tensor and denoted T - uvw. 

THEOREM 3.1 Let p ~ n , let Sk E Rn, k - 1, ''', p with {skI 

linearly independent, and let Z E Rn, k - l, "', p. Define M E RPxP 
k 

by M[i,j] "" (sts )2, 1 :S i,j :S p, Z E R
nxp 

by co1umn k of Z - z , k .. 
i J k 

1, "', p. Then M is positive definite, and the solution to (3 9) i5 

n 

T - L ass 
c k k le 

(3.10) 
k-l 

where ait is the kth co1umn of A E R
nxp

• A is defined by A - Z M-
1

• 
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1 

4: 12&=; 

Substituting (3.10) into the tensor model (3.5) gives, 

l 
M (x + d) - F(x ) + F' (x )d + 
tee c 2 

(3.11) 

The 'Simple form of the second order term in (3.11) is the key to being 

able to efficiently form, store, and solve the tensor model. Since p s 

;n, the additional storage required by (3. Il) is 4p n-vectors, for 

{a }, {s }, {x }, and (F(x )}. In the next section, we will see that 
k k -k -k 

the extra cost to solve the tensor modal also is quite small. 

3.1.3 Solving the tensor model 

In this section we show an efficient algorithm for finding a 

root of the tensor model derived in 3.1.2, that is, 

find d E Rn such that 

M (x + d) - F(x ) + F' (x ) d -+ l 
tee c 2 

p 

L (3.12) t 2 
a (d s) .. 0 

k k 

The solution of (3.12) can be reduced to the solution of a system of p 

quadratic equations in p unknowns, plus the solution of a system of n-p 

l inear equations in n-p unknowns. 

The basic idea of the algorithm ls that (3.12) is linear on 

an (n-p)-dimensional subspace. (3.12) really only should be quadratic 

in p variables and linear in the other n-p This is accomplished in 

s teps land 2 of the upcoming Algorithm 3. l by making a linear 

transformation of the variable space; for this an orthogonal 
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1 
transformation is used. Then a second linear transformation of tha 

equations, steps 3 and 4 of Algorithm 3.1, is used to eliminate the n-p 

transformed linear variables from p of the nonlinear equations. The 

result is a system of p quadratic equations in p unknowns (3.1Sb), thut 

is solved in step 5 of Algorithm 3.1. and a system of n-p equations 

(3.l5a) that are linear in the remaining n-p unknowns that can be 

solved once the system of quadratics is solved. 

m 2 Two notations are introduced: Given vER 1 Iv} denotes the 

vector W E If' for which w[i] - V[1]2, i - 1, ... 1 m. Define S E R"xP 

by column k of S - s . This allows us to denote the second order tenn 
k 

of our tensor model by ~ A {std )2 2 • 

3 1 Rn Rmcn Rnxp 
ALGORITHM. Le t p :S n, FE, JE, A. SE, S 

having full column rank. 

First transformation: Steps 1-2 transform the system of n 

equations in n unknowns 

This eliminates the nonlinear terms in d 
l 
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----------------------------------

1 

nxn t. 
Step 1. Find an orthogonal Q E R such that Q S - S, 

where 

p 

1\ 

S e Rnxp 

" 
and S2 has the lower triangular shape shawn. 

S tep 2. Ca!culate J - JQ, 
1\ ... 

Let J e Rnx(n-
p

) and J e R nxp denote the 
1 2 

" first n-p and last p co1umns of J, respectively. 
1\ 

- Define d _ Qt.d , 
1\ " 

Let d e R
n

-
p 

and d E RP denote the first n-p 
1 2 

1\ 

and 1ast p components of d, respectively. 

Second transformation: Steps 3-4 transform the system of 

equations (3.14) to 

n-p p 

Bm-] [Ed 1 2 l 
1\ 

0] d 
3 2 
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p 

{~ t cl )2 _ 0 
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1 

l 

a "large" system of n-p equations in n unknowns 

(3.15a) 

and a "small" system of p equations in p unknowns 

1\ 1\ 1\ 

F + J d + l. A (S t. d }2 - 0 
2 32 222 2 

(3.1Sb) 

This is accomplished by premultiplying (3.14) by the appropriate 

orthogonal matrix. 

1\ 

Step 3. Find an orthogonal Q E Rnm and a permutation 

• (n-plx(n-pl 
matr1x P e R such that 

" " 
Q J P 

1 

n-p 

J 15 upper triangular with a nonzero diagonal. 
1 

Define d - P t. d • d E Rn-p. 
1 1 1 
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1 

1 

Step 4. Calcu1ate 

1\ 1\ 

Q J -
2 

1\ 

Similarly calcula te A - QAt 

- Let A E RCn-p)XP and A E RPXP denote the first 
1 2 

n-p and the last p rows of A, respectively; 

- Calcula te F - QF , 

- Let FE Rn
-

p and FE RP denote the first n-p 
1 2 

and last p components of F, respectively. 

Step 5. Solve (3.15b) in the least squares sense 

" 1\" 

minimize Il F + J d + 1 A {S t d } 2 Il 
P 2 32 222 2 2 dER 

2 

······(3.16) 
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, 
Step 6. Backsolve (3.15a) for ë1 

l 

Jë1 --F 
111 

1\ 

J d 
2 2 

1\ " 

lÀ{st d1 2 
2 l 2 2 

.... ··(3.17) 

1\ 

Step 7. Calculate d - Pd 
1 l' 

d - Qd. 

The first virtue of Algorithm 3.1 is its efficiency. The 

dominant cast in Algorithm 3.1 is the QR factorization of J which 
l 

requires 
J 2 2 

about 2n /3 - n p + O(n) multiplications. The next largest 

cost is the 2n2p + O(n
2

) multiplications for the matrix multipl ication 

JQ in step 2. AlI other portions of steps 1· 7 require at most O(n
2

) 

multiplications. 

The other virtue of Algorithm 3.1 is its numerical stability, 

even \olhen the Jacobian J is singular or ill·conditioned. The whole 

point of the tensor algorithm when J is singular ls that the 

possibly singular submatrix ] 
3 

i5 u5ed in the system of quadratic 

equations (3 .15b). which also conta in a portion ot the second arder 

infomation in the tensor model. This system is not necessarily 

ill-conditioned even if] is; for example, one quadratic equation in 
3 

one unknown with no linear term is usually not ill-conditioned. 
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3.2 Application of the Tensor Method to Load Flow Calculations 

3.2 1 Introduction 

Standard load flow algorithms using digital computers have 

been developed and have worked weIl for well-conditioned power systems 

(most systems). These include the Gauss-Seidel method, the 

Newton-Raphson method and its principle off-shoot, the Fast Decoupled 

load flow method. 

A problem as yet to be adequately solved, and which has been 

tackled recently by many researchers [Iwamoto & Tamura 1981J, [Tripathy 

et.al 1982], is how ta solve the ill-conditioned power system load 

flow problem and determine the existance of solutions. Features which 

cause instability and divergence in the load flow calculations were 

listed in Chapter 1. Mathematica11y, the nonlinear equations which 

described the system are such that small changes in the param~ters will 

cause large changes in the solutions. So far, few methods have 

sl.lccessfully solved the ill-conditioned load flow prob1em, while many 

proposaIs do not seem to provide much improvement. In order to 

incorporate more load flow information into the computation, the tensor 

method is applied to solve the ill-conditioned load flow problem. 

2 ry Formulation of the load flow tensor model 

3.2.2.1. The load tlow function F(x) 

As stated in chapter l, the load flow study determines the 

complpx volt~gps at the svstem buses for a particular loading condition 

of the system. To do this with the help of a digital computer, a set of 
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T 

equations expressing the active and reactive powers at the buses in 

terms of complex voltages is needed. For a network having 11 nodes 

excluding ground, the following compact form of n equations can bE.' 

written for current: 

where 

l 
i 

V -j 

y 
ij 

j E i 

l 
i 

complex 

complex 

complex 

when i 

when i 

y V, 
ij j 

i - l,'" ,n, 

current entering in the bus i, 

voltage to ground of the bus J, 

admittance between buses ! and J, 

J, Y is the self admittance, 
1j 

" j, y 
ij 

is the transfer admittance. 

signifies that bus J is connected to bus l, 

including the case J i. 

(3.18) 

In a power system, however the complex. power is the most 

important quantity. From circuit theory the complex power inj ection 

inta a bus can be expressed as 

p + 'Q 
i J i 

- " V l 
1 

(3.19) 

Superscript in the above equation indicates conjugation. Substituting 

equation (3.18) into equation (3,19), 

- Ir _ • 

y V l - 1,· .. ,n. f3, 20) 
lJ J 
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- -------------------------------------

Using polar notation for V, V - V Ls , and rectangular notation for Y, 
i i 1 

y - G + JB , equation (3.20) becomes: 
ij ij iJ 

p - V r V (G cosS + B sin6 ) 
i i j ij ij ij ij 

je.l. 

(3.21a) 

Qi - V r V ( G sinS - B cos6 (3.21b) 
.1. 

jEi 
j iJ ij ij ij 

where 

i - l,··· ,n. 

and S - 6 - S 
ij i J 

This is a standard formulation of bus power injections versus the 

complex bus voltages. 

In the load flow calculations, a number of quantities are 

specified. Typically' 

P is specified for a11 buses except one "slack" bus, (n-l). i 

Qi is specified for a11 the load buses, (n-pv-l). 

V is specified for a11 generation buses, which are often i 

known as PV buses, and for a slack bus, (pv). 

6 is specified only for one reference bus. 

The dimension of equation (3.21) now becomes (2n-2-pv) and 

there are (2n-2-pv) unknowns. 

Load flow algorithms check the difference or mismatch between 

specified bus power values and calculated bus power values. Therefore, 

1 
the following mismatch equations are used: 
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1 

!J.P - pSP v ï V (G cosS + B sinS ) 
i i i 

jEi 
J ij i j ij i j 

(3.22a) 

AQ - QSP _ v ï V (G sinS - B cosS ) 
i i 1 

jEi 
j ij i j ij 1 J 

(3.22b) 

i - 1, ... ,n-l. 

This is a set of (2n-2-pv) nonlinear equations. There are (n-1) 

equations for bus real power mismatch M and (n-1-pv) equutions for 
i 

bus reactive power mismatch !J.Q . 
1. 

From equation (3.22) the load flow calculation problem can be 

restated as this: For the certain specified loadings f P
sp Q~P _ 

o , ,1. 
1 l 

l,"',n-l , find the complex bus voltages V, L6, i - 1,"'111-1, 50 
1 i 

that aIl the bus power mismatches !J.P , ~Q, l - l,'" ,n-1, are within 
1 1. 

the required tolerance The reader should note that the subscript i for 

AQ and V may not be consecutive here. 
i 1. 

3.2.2.2. The load flow Jacobian J(x) 

The load flow Jacobian is the derivative matrix of the reni 

and reactive power mismatches with respect to the voltage ~tntes' 

aM aM --- ---
a6 t av t 

0.23) 

~ a!J.Q 

a6 t av t 
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while the elements in each submatrices are shown as follows: 
'1 .. 

aM' 
H 

i 
- - v V (G sinS - B cosS ) j '" i .--

ij 
as 

i j ij iJ iJ ij 

J 

aM' 
H 

i 
V L V (G sinS -B cosS ij) .---

11 
as 

i 
jEi 

j iJ iJ ij 

i 
J"'i 

aM' 
N

ij 

i 
- - V (G cosS + B sinS ) j '" i ---

av 
i ij ij ij ij 

J 

aM' 
N 

i L V (G coss + B sinS ij) - 2V G ---
11 j ij ij ij i li av jEi 

i 
j"'i 

aflQ 
J 

i 
- V V (G cosS + B sinS ) j '" i a--

ij 
as 

i j ij ij ij ij 

J 

aflQ 
J 

i 
V L V (G cosS + B sinS ) .--

11 
a5 i 

JEi 
j ij iJ iJ ij 

i 
J"'i 

aflQ 
L 1 

- - V (G sinS - B cosS ) j '" i .--
ij 

av i ij ij ij ij 

j 

8!lQ 
L l L V (G sin5 - P cosS ) + 2V B a--
il j ij iJ iJ lJ i il av JEl 

J'-i 

3.2.2.3. The second order term 

The second order term of the tensor model was formulated in 

general in the section 3 1.2 In the following, the second order term 

in the load flow model is introduced. First, we explain how the past 
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load flow iterates lx } are selected; then how to construct the Z 
-k 

matrix and the 11 matrix; and finally how to calcula te the A matrix .md 

the complete second order term. 

In the load flow study, the state x is chosen as tlw 

components of the complex bus voltages, that is the bus voltage angle b 

and the bus voltage magni.tude V. Hence, each difference vector s h"ls 
k 

the following form: 

S 
k 

where the notation is understood. 

s 
c 

V 
c 

(]. 24) 

We always choose the most recent iterate x , then se lect each 
c 

preceding past iterate x if the step from it to x makes a nngl<.> ot 
-k c 

o 
at least 45 . Normally a flat start value (6

0
- 0, V

o
- 1) i5 used as an 

initial guess in the load flow program. so that we set the start i ng 

past iterates to have S "" 0 and V '" 1. 
-k -k 

Now we describe how to formulate the Z and 11 matrice':> 

Corresponding to equation (3.8b) we formulate each vector component 2 
~ 

in the Z matrix by substituting the load flow Eunctions (3.22) and th~ 

load flow Jacobian (3.23) in, we have. 
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1 

- 2 

M' c 

flQ 
c 

where this notation is also understood. 

H 

J 

N 
c c 

(3.25) 

L 
c c 

Next we formulate the /1 matrix. Each element m(i,j) 1s equal 

to the square of the inner product between the ith direction vector s 
i 

and the jth direction vector s 
J 

H(i,j) -

where 

M. 
~ 

i - 1.··· ,p; j - l.· .. ,p; 

AV 
J 

2 

p s J 2n - 2 -pv . 

Therefore, M is a square matrix and has the dimension of pxp. 

(3.26) 

The last step in the formulation of second order term is 

-1 calcu1ating the A matrix. As described in Theorem 3.1, A ~ Z/1 , A E 

R
(:!n-z-pv)Xp . 

Finally • the complete second order term can be formulated 

as .!. A IStd}Z, where S E R,zn-Z-pvlxp d" d f 
2 an lt 1S compose 0 p past 

direction vectors 
Sk' k - 1,' . ,p. 

3.2.2.4 Complete tensor model equations 

By combining the second order term to the Newton load flow 
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model, we now have the complete tensor model equations for load flow 

study. 

.--

H N /),,0 

+ 1--

âQ J L /)"V 

'---

1 
+ 2 A 

,...------, t 

s 

2 

- 0 (3.27) 

tJ.V 

This is a set of 2n-2-pv nonlinear equatins for a n bus powE'r 

system load flow problem. Since we only use p past iterates to estimate 

the second arder terms, actually, equation (3.27) should he quadratic 

in p variables and linear in the other (2n-2-pv)-p variables 

The simple form of this quadratic term makes it easy to 

efficiently store and solve load flow equations in the second arder 

formulation. Compared to those previous second arder method!', [Sdchdev 

1977] [Iwamoto 1978] [El-Hawary 1982] [Nagendra Rao 1~H21, the 

simplicity of the proposed method can eas Uy be reai ized A more 

important feature of this formulation i5 that with the small change':. 

added to the existing Newton method, the ill-conditioned probLem which 

sometimes occurs in the load flow J acobian matrix can now be eas il Y 

solved Numerical simulations carried out sa far bath 011 

well-conditioned systems and ill-conditioned systems gi'le very good 

convergence performance. 
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3.2.3 Solution of the load flow tensor model 

1 
3.2.3.1. Solution algorithm 

A solution a1gorithm is now proposed to solve the load flow 

tensor model. The tensor method is the principal component of the 

solution strategy. Another important component, used as an alternative, 

is a modified Newton method [Dennis & Schnabel 1983]. As reported 

below, the latter is used when the tensor step fails to compute an 

acceptable state correction. 

Algorithm 3.2 An iteration of the tensor model 

Given x , F(x); 
c c 

Step 1: Select the past points to use in the tensor model 

from the (p + Iteration number) past points. 

Step 2: Calculate the second order term of the tensor model, 

sa that the tensor model interpolates F(x) at all the 

points selected in step 1. 

Step 3: Find the root of the load f10w tensor mode1. 

Step 4: Select x - x + ,\ d , where d ei ther is the step 
+ ccc c 

calculated in step 3 or the modified Newton step, 

using a 1ine search to choose ,\ . 
c 

Step 5' Calculate the 2-norm power mismatch of F(x) and 

decide whether to stop; if not Set x .... x , F(x) ... 
c + C 

F(x ), go to step l. 
+ 

The reason of using the 2-norm of the bus power mlsmatches in 

l Step 5 i5 that we always have a solution and the program never 
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diverges. The value of this quantity becomes eventu11y ~ero if there is 

a solution from the initial estimate, and stays at a positive value if 

no solution exists. Here the positive value is the least squ.:lres 

solution of the problem. From this we can know how close we are from 

the actua1 solution. This idea was first introduced by [Sasson 196qj 

The strategy used in Step 4 is as follows: if in Step 3 we 

find a root of the tensor model, then we will use this step to update 

the current state variable x - (Cl.6 ,t!.V ); and if there is no sueh root 
ccc 

for the tensor model we will apply the modified Newton step 

In the simulation tests performed sa far, for 

well-conditioned power systems like the 5, 6, la bus systems, we alwoys 

find roots of the tensor models. Even for sorne claimed i11-conditioned 

power systems 1ike the 13 and 20 bus systems. [Tripathy etc. 1982] and 

[Behnam-Guilani 1987] respectively, we have found roots of the tensor 

madels at every iteration. Only for the very badly ill-conditioned 

power systems like the II and 43 bus systems, [Iwamoto &. Tamura L9811 

and [Tripathy etc. 19821, the algorithm has chas en the modified Newton 

step, for 1 or 2 iterations. 

The modified Newton method imp1ements the Levenberg-Marquardt 

step [Dennis & Schnabe1 1983]. It is shawn be1ow: 

d (JtJ + al) -1 Jt F(x ) n .28) 
n ccc c 

where 

a - Jn*machineps Il fJ Il 
ccl 

1 
The complete strategy for choosing between the tensor or th~ 
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modified Newton search direction is given in algorithm 3.3 below: 

ALGORITHM 3.3 Step selection 

Let J - load flow Jacobian F' (x ), 
c c 

d - root of the tensor model, 
T 

d - modified Newton s tep. 
N 

IF (no root of the tensor model was found) THEN 

x '-x+>'d, 
+ c c N 

ELSE 

x '-x+>'d, 
+ ceT 

ENDIF 

>. E (0,1) selected by line search 
c 

À E (0,1) selected by line search 
c 

3.2.3.2. Program implementation 

The main flow chart of our computer implemetaion is shown in 

figure 3.1. Sorne of the more detailed extra steps are given in what 

follows: 

Step 1. Initialize all the variables before iteration 

(a) Calcu1ate computer machineps for later use in the 

modified Newton step. 

(b) Read system source data. (number of buses, lines, 

specified generations, loads, etc.). 

(c) Formulate admittance matrix Y. 

(d) Set iteration counter and solution accuracy, set 

starting estimates of state x (S ,V ) equal to 8(0)=0 
c 0 0 1 

and V( 0) -l, a1so generate starting p past iterates 
l 

lx ), and generate S matrix, 
-p 
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Formulate tensor model J 0 

Solve tensor model ---J 8 

Step selection (~ 

No 
(~) 

Yes 

Line flows 

(~ 

Figure 3.1 Main Flow Chart 

1 
54 



r 

1 

Step 2. Formulate tensor model 

(a) Select new p past iterates from the set of past 

iterates (x ), formulate new S matrix. This step is 
-le 

bypassed in the first iteration. The Angle 0 for 

choosing more orthogonal past iterates is set here to 

(b) Calculate F(x ), J(x ), F(x ). 
c c -p 

(c) Formulate the Z, M, and A matrices. 

Step 3. Solve the tensor model 

(a) Estimate the condition number of the load flow 

Jacobian J matrix. Standard Linpack subroutine DGECO 

was used fo~ this implementation. If ill-conditioning 

is detected, compute the modified Newton step for 

later use. 

(b) Two QR decompositions are performed here, on the S 

matrix to get a lower triangular matrix S , and then 
2 

A 

on the J matrix to split d from the p nonlinear 
1 1 

equations. Both are implemented by using Linpack 

subroutines DQRDC, DQRSL [Dongarra et. al. 1979]. 

(c) Calculate the condition number of J 
3 

"-

and set an 

initial estimate d'D} for the p nonlinear equations. 
2 

For well-conditioned J , we use the standard Newton 
3 

step as the initial estimate. If the conditioning of 

the system is very bad (very large condition 

number), in order to avoid unreasonably large state 

corrections we choose the modified Newton step to 
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, 
start the iteration. Same as in the step 3 (a) 

Linpack subroutine DGECO is used here. 

(d) A nonlinear equation solver NSOIA in the Harwell 

Subroutine Library [Hopper 1977] was used to solve 

the p nonlinear equations in p unknowns. The cllll 

function used here 15 the small system corresponding 

to equation (3.15b). 

(e) For the remaining n-p linear equations, we applied 

Linkpack linear equation solver DGEFA and DGESL. The 

corresponding equation solved here is the large 

system equation (3.l5a). 

Step 4. Step selection 

(a) Determinate the step ta use. This is accomplished by 

checking the error return messages given by the 

nonlinear equation solver. If there ls a solution, 

which means the tensor model has a root, then we will 

choose the tensor step, otherwise if the error return 

message indicating that there is no solution close to 

the given initial estimate, then we will select the 

modified Newton step. 

(b) Check if the full step is applicable If not, a 

simple backtrack line search strategy is used. 

Step 5. Convergence test 

(a) Calculate the 2-norm value of the bus power 

1 mismatches Il F(x) Il . 
+ 2 
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(b) Check if solution accuracy has been reached, if not 

go back to step 2; if yes, forward to step 6. 

Step 6. Line flows and output results 

(a) Calculate system line flows based on the solution 

state x (0 ,V) . 
.$ S S 

(b) Output the solution results: bus data, line data, and 

system data. 

3.3 Summary 

A new method of solving nonlinear equations is introducerl in 

the beginning of this chapter, namely the tensor method, which is 

especially suitable of solving ill-conditioned nonlinear systems 

Application of the tensor method to solve the power system load flow 

problem is carried out in the latter part of this chapter Both the 

formulation and solution of the load flow tensor model are explained 

thoronghly. and details of our computer implementation are given in the 

final section. Although the proposed tensor rtethod seems mathematically 

more complicated th an the widely used star dard Newton method and the 

Fast Decoupled load flow method, its superior numerical stabillty on 

the tll-conditioned problems and fast convergence rate make it very 

Llttractlve With sklllful sparse programming techniques applied, it is 

ve l'y like ly to perform the load flow calculations in real- time for 

electric power networks. 

f 
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Chapter IV 

Numerical Simulations 

4.1 Introduction 

A load flow program has been written implementing the ideas 

of chapter III for finding the ill-conditioned power system 10ud flow 

solutions. Extensive numerical simulations have been carried out on the 

11, 13, 20 and 43 bus il1-conditioned systems, as well as 5, 6, and 10 

bus well-condi tioned systems This chapter documents and analyzc'i all 

the simulation resul ts . 

The above chosen systems found in the literature impose 3 

particular problem - difficulty in converging to .1 solution [n our 

simulations, a measure of this ill-conditioning is computed and lt was 

found that the condition numbers of the ill-conditioned !'y!,tpms dr8 

much higher than for the well-conditioned sys tem~ 

ill-conditioning, we solved all the above &ystems by the ten&or method 

Comparisons with the Fast Decoupled load flow method ha'Je alc,o bl'Prl 

made. In general, the tensor method show& very good conve rgPl1cP 

characteristics on both ill-conditioned and well-condltl0nf'd prohl/'!n', 

The results are presented for each ill-conditioned '>ï',tf'lIl 

separately and for the three well-conditioned systE!mc, altog(~tlwr 

Contents of the various tables and graphs in each sec t ion 'di 11 lH' 

discussed in detail The format for presenting the results in thic, 

chapter is as follows. 
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In the simulation of ill-conditioned systems. First, the load 

flow solutions reached for each system is presented. Then, the 

convergence characteristics are shown, and the ill-conditioning of the 

system is analyzed. Finally, for the Il and 43 bus systems, some 

special features of the program are discussed. 

Following the sections for ill-conditioned systems, the 

results for the three well-conditioned systems are given and discussed. 

This chapter closes with a discussion on the general 

performance of the proposed tensor method and comparisons with standard 

load flow methods 

4.2 Simulation on an 11 Bus System 

The 11 bus system is taken from the paper by [Tripathy et.al 

1982 J. The Une and bus data are only available in the form of Y 

<ldmittance matrix elements and net bus powers. These data and the 

schematic diagram for the Il bus system can be found in Appendix 4.1. 

The number of variables in this system ls as follows; 

Number of buses: Il 

Number of transmission lines: 11 

Number of generations: l 

Number of loads' 5 

Number of state variables: 20 

1 
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4.2.1 Load flow solutions 

• The program solved this system for the given datd in seven 

iterations. ta reach a prescribed tolerance of 0.001 MW(HVAR) for the 

2 -norm value of bus power mismatches. The final solutions for the 11 

bus system are given in Table 4.1. 

Table 4.1. Solutions of 11 Bus System 

--

Voltage Angle Real Mlsmdtch Reactive Ml Sl11d tch 
Bus V(p.u.) ô (deg. ) IMI (MW) lôQ 1 (MVAR) 

-----

1 1.071 -24 605 0 234e-3 0 22!J~-4 

2 1 057 -2 408 0 688e-5 0 114e -t~ 
3 1 046 -4 102 0 182e-5 0 722e-5 
4 1. 031 -2.836 0 35ge-4 0 4841'-4 
5 1 035 -4 851 0 488e-5 0 859E'-~ 

6 1 051 -2.920 0 57le - 5 0 207 t' -1. 

7 o 810 -12.504 0.274e-4 0 96Hp-t. 
8 0.910 -15 390 0 196e-3 0 392e _1. 
9 1 195 -16 319 0 163e-3 0 UI)e - 3 

10 o 816 -21 872 0 235e-3 0 16 3 f.' - t~ 

11 1.024 0.0 - --
~ ~~~-~~~ 

This is a reasonab1e and accurate solution for the -,y·,t {'In 

From the data and schematic diagram. we know thi~ t~ a radt,d ·~y.,t('1n 

with only one generation at one end (bus 11) of the network The orhl'r 

end (bus 1) has a large load. thus requiring the ent i rp ',y': t f>JT1 t 1) 

transfer power from the generation bus. This results ln the Idr~est bu~ 

voltage phase angle 
o • 

(-24 6 ) belng at load bus l Th i::. conf i~u ra t 10!l 

also causes low bus voltage magnltudes at connectlon b'1!'>e'5 7, H, ,mri 

10, which read 081.0 91, and 0 816 respectively 

J 
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Figure 4.1. Power mismatch vs. iteration for 11 bus system 

4.2.2 Convergence characteristics 

Previously, load flow calculations for the 11 bus system were 

considered dlvergent by any method [Iwamoto & Tamura 1981] except for 

Brown' s method [Tripathy et.al. 1982] Applying the proposed tensor 

method. the program has never diverged. In fact, it reduces the 2-norm 

bus power mismatch dt every iteration In this slmulation the program 

converges verv qUlcklv with only 7 Iterations to reach a tolerance of 

o 001 MW(MVAR) Figure 4 l shows the convergence characteristics of the 

11 bus test svstem 
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Figure 4.2. Condition number vs. iteration for 11 bus system 

4.2.3 Il1-conditioning 

Physically, this 11 bus system has two rea50ns to he 

considered an ill-conditioned power system First, it has a long radial 

network; secondly, there Is only one generation bu& dnd it lies dt onu 

end of the network To supply the large load at bus l, power ~an only 

be transferred from the other end of the network, which mak<!<, for 

difficult operation of the system 

In the simulation, this ill-conditioning phenomenon wa~ 

detected using the condition number of the load flow Jacobian rnatrix 

Our simulations show that this system has a 'lery high candi tion numher 

at the solution For a generai well-conditioned system of d1mension 20, 

1 the condition number lS typically around the hundreds ror this 

~2 
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particular system, however the condition number at the solution is 

around 30,000 Also we noticed in the third iteration an extremely high 

condition nurnber (62,889) The tensor model did not have a root in this 

i teration, 50 to avoid large changes in the state variables, the 

program selected a modified Newton step for this iteration 

Figure 4 2 shows the 11 bus system condition number versus 

the iteration number. 

4.2.4 Behavior of the modified Newton step 

In the simulations carried out on the 11 bus system, we found 

two solutions for the given data in different runs Both of them seem 

reasonable, but one is definitely a better operating condition than the 

other, being closer to the flat voltage profile. 

We notlced that this behavior of the algorithm is related to 

the size of the modified Newton step. Actually it depends on the step 

size "0" value in equation (3.28) This defines how much change is made 

to the diagonal elements in the ill-conditioned load flow Jacobian 

matrix 

In the first case we use the modified Newton step (3.28) 

without changing the 0 value. The program takes 17 iterations to reach 

a tolerance of 0 01 MW (MVAR) on the 2-norm bus power mismatch This is 

our first solutlon of the problem In this solution process we observed 

large correctlons are made ln the system bus voltages from one 

Lteration to the next In the first two iterations the voltage 

magnitude at bus 10 had dropped down to a value of 0.155 p u and then 

slowlv climbed back At the solution, the lowest bus voltage is 0 731 

1 p u .lt bus 10 
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To avoid unreasonablly large corrections in the system bus 

voltage calculations, we modified the cr value in the equation (3 28) 

to the following value, 

cr - Iif JII ccl 

This results in the second solution, the better solution, which 15 

given in Table 4.1. With this new cr value, the program homed in on the 

load flow solutions more rapidly. 

4.2.5 Single precision problem 

In solving the 43 bus system, we extended the m~mory 

requirement beyond the 640k byte DOS memory limi t when us i ng .1 doub ll' 

precision version of the program. In the case of the Ld bll5 system, d 

single precision program was used and converged very s10wly In ordpr 

to gain more information Ot~ the performance of the ~ lngle pree l '. iOIl 

version program, a version of the 11 bus system was a150 run ln ',ingl!' 

precision. 

In our single precision test on the 11 bus <;ystelll, atter 

three iterations, the largest element of the inltlal gUP5~ ~ent ta thl' 

nonlinear equation solver (Newton step in the small '>y~t(~m) o(;'(·r)lI1(··) 

less than 10.
2 

For the second order term ~ Tlddl
2

, theretore, we n(>l'd 

a machine accuracy of (10"2..<10"2)2 - 10"8 · ... hlCh i8 out of the "'1!l1~1(' 

precision accuracy Hence the tensor model can not be corrpctly 

presented, and consequently the program could not flnd the root at thp 

tensor model Then the program chose the modified Newton step ln",tead, 
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which resulted in very slow convergence. When the double prec'.sion 

program was excuted, this kind of problem did not happen. 

4.3 Simulation on a 13 Bus System 

The 13 bus system is taken from [Zollenkopf 1968) The system 

is c1aimed difficu1t to solve because it contains two series capacitors 

and also because of the position of the slack generator. The data and 

the schematic diagram for this system can be found in Appendix 4.2 

The number of variables in this system is as follows: 

Number of buses: 13 

Number of transmission 1ines: 13 

Number of generations: 6 

Number of loads: 4 

Number of transformer taps: 3 

Number of state variables' 19 

4.3 1 Load flow solutions 

The program solved thl.s system for the given data in six 

iterdtions to redch d prescribed tolerance of 0 001 MW(~1VAR) for the 

2 -norm value of bus power ml.smatches. The final solutions for the 13 

bus system are given in Table 4.2. 
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J Table 4.2. Solutions of 13 Bus S:rs tem 

Voltage Angle Load Generation -
Bus 

V(p.u ) 5(deg ) Pl(p u) QI (p u ) Pg (p. u. ) Q (p.u ) 
g 

l 1.054 1 571 0.0 o 0 0.0 o 0 
2 1.143 2.530 o 0 o 0 0.0 o 0 
3 1.135 2.548 0.0 o 0 o 0 0.0 
4 l. 063 8.891 o 0 o 0 o 0 o 0 
5 1.044 5.122 o 0 0.0 0.0 0.0 
6 1.067 7.988 -0.050 -0 032 0.0 0 () 

7 1.017 12.003 -0.050 -0 030 o 0 0 0 
8 0.943 14.246 0.0 o 0 o 500 -1 006 
9 1.100 8.232 0.0 o 0 o a -0 OBl> 

10 1.100 8 020 o 0 o 0 0 0 -0 7 Rt, 
11 1.000 2.623 0.0 o 0 o 0 -0 33') 
12 l. 037 9.681 -0.050 -0.030 o 500 -0 421 
13 1.000 0.0 -1. 650 -0 560 o 824 0.146 

-

Power Base - 1000 MVA 

4.3.2 Convergence characteristics 

The 13 bus system is claimed divergent by the Gauss· Sf' ide 1 

method (Zollenkopf 1968], [Keyhani et al 1989] Our own Fast Decoup)ed 

load flow program solves this system in six iteratlons to reach d 

to1erance of 0.001 MW (MVAR) for the maximum real or reactivf> power 

mismatch App1ying the proposed tensor method, the program c()n'Jpr~e<; 

very fast, requiring only six iterations to reach d tolerdnce of 0 001 

MW (MVAR) for the 2-norm value of bus power mismatches, which lS ,j more! 

accurate tolerance Figure 4 3 shows the convergence characteri c> t if' '. of 

the 13 bus test system 
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Power mismatch (MW) 1r 
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iteration 
Figure 4.3. Power mismatch vs. iteration for 13 bus system 

4.3.3 I1l-conditioning 

This 13 bus system seems difficu1t to solve because it 

contains two series capacitor branches. Actua1ly from our simulation 

resu1ts we found that the condition number of the system is always low. 

In fact, this system is fairly well-conditioned. This explains the 

success of our Fast Decoupled test, despite c1aims of difficulty from 

previolls authors 

Fibure 4.4 shows the 13 bus system condition nurnber versus 

the iteration nurnber. From the figure we see that the condition number 

of this system at the solution is on1y 71. In the first iteration, it 

is 281 which is quite normal for a 19 dimensiona1 system. 
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Figure 4.4. Condition number vs. iteration for 13 bus system 

4.4 Simulation on a 20 Bus System 

The 20 bus system is taken from [Behnam-Guilani 1987) [t is 

difficult ta solve because of the predominantly radial topology, 

atypical circuit parameters and clustered generations and loads The 

data and the schematic diagram for this system can be fa und in Appendix 

4.3. 

The number of variables in this system is as follows' 

Nurnber of buses: 20 

l Number of transmission lines: 22 
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Number of generations: 4 

Number of loads: 8 

Number of state variables: 35 

4,4,1 Load flow solutions 

The program solved this system for the given data in seven 

iterations to reach a prescribed tolerance of 0, 001 MW (MVAR) for the 

2-norm value of bus power mismatches, The final solutions for the 20 

bus system are given in Table 4,3, 

Table 4,3, Solutions of 20 Bus S:lstem 

Voltage Angle Load Generation 
Bus 

V(p u ) o (deg, ) Pl(p,u,) Ql(P.u.) ~g(p. u ) QgCP,u, ) 

l 0,975 -4.328 -1. 500 -0.300 0.0 0.0 
2 0.801 -14.932 -0.100 o a 0.0 0.0 
3 0.998 0.153 0.0 0.0 0,0 0,0 
4 0.901 -15,446 -3,800 -0.600 0.0 0.0 
5 1.001 3 923 o 0 0.0 0.0 a a 
6 0.968 -8,293 0,0 0,0 0.0 0.0 
7 1 020 -3.341 -0 200 0.0 0,0 o 0 
8 0,789 -15 305 -0 100 -0.200 0.0 0,0 
9 a 999 9 333 0.0 0.0 0,0 0,0 

10 o 991 7,024 -0,500 -0,100 0,0 0,0 
11 1,002 1. 779 0,0 0,0 0,0 0.0 
12 1 020 -2 784 o a 0.0 0,0 0,0 
13 1 002 a 909 0,0 0,0 0,0 0.0 
1h 1 000 10 608 0.0 -0.100 0.0 0.0 
15 1 001 -0,393 0.0 0.0 0,0 0.0 
16 o 804 -14,726 -0,100 0,0 0.0 0,0 
17 1.000 -13 111 o a o 0 1,000 1.778 
18 1.000 0.566 0.0 0.0 1.000 -0.169 
19 1 000 10.720 o a 0.0 1.000 -0.050 
20 1.000 o 0 o 0 0.0 3.925 o 337 

Power Base - 100 MVA 
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Figure 4.5. Power mismatch vs. iteration for 20 bus system 

4.4.2 Convergence characteristics 

Not many comparisons have been made previously on the 

convergence rate of the 20 bus system [Behnam-Gui1ani 1987]. Our Fast 

Decoupled load f10w program solves the system in 22 iterations to raach 

a tolerance of 0.001 MW (MVAR) for the maximum bus power mismatch. 

Applying the propClsed tensor method, the program converges in only 

seven iterations to a tolerance of 0.001 MW(MVAR) for the 2-norrn value 

of bus power mismatches. Figure 4.5 shows the convergence 

characteristics of the 20 bus test system 
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Figure 4.6. Condition number vs. iteration for 20 bus system 

4.4 3 I11-condittoning 

The 20 hus system is claimed hard ta solve in [Behnam-Guilani 

1987] This diffjcu1ty was evidenced in our Fast Decoupled load flow 

prograrn, which requtred 22 iterations ta reach an accurate solution By 

contrast, the i11-conditioning has little or no effect on the tensor 

method, .1S witn 'ssed in tht convergence shown ~n figure 4.5 The 

condition nwnber of the system was slightly high (around 600) for this 

35 dirnensiona1 system. 

Figure 4 6 shows the 20 bus system condition munber versus 

the iteration number. 
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4.5 Simulation on a 43 Bus System 

The 43 bus system is also taken from [Tripathy et al. FlH21. 

The Une and bus data is only available in the form of Y admitL11ll'1' 

matrix elements and net bus powers These data and thE' SCht.'lUdt iL' 

diagram for the 43 bus system can be found in Appendix 4.4 

The number of variables in this system is ~s follows' 

Nwnber of buses 43 

Nwnber of transmission lines 42 

Nwnber of generations 5 

Nwnber of loads' 15 

Nwnber of state variables: 84 

4.5.1 Load flow solutions 

The program solved thts system for the given data in <.iPVI'I1 

iteration.s to reach a tolerance of 0 07 MW(MVAR) for the 2-norm v,dl\!, 

of bus power mismatches The corresponding maximum reul and rpacttvp 

power mismatches are 0 0077 !1W and 0 0286 MVAR The fin,d !:'olution', for 

the 43 bus system are given in Table 4 4 

The large dimension of thts simulation rC·!:,lllted ln d rnl'Tllory 

management problem The double precision version of the program ùxc(,l'd~ 

the 640k bytes memory space limit se t by DOS There fore l ,1 '; 1 ngl!' 

precision verston program was actually tested Ac; dlscusc;ed earllf'r 1 

the single precision contributes to the slow convergence, whlch 

improved only marginally after the third iteration 
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Table 4.4. Solutions of 43 Bus Srstem 

Voltage Angle Real Mismatch Reactive Mismatch 
Bus 

V(p u ) 8 (deg ) IMI (MW) II::.Q 1 (MVAR) 

1 1 032 -11 698 0 203e-3 0 325e-3 
2 1 045 -11.J37 0 171e- 2 0 508e-2 
3 1 031 -15 163 0 727e-3 0 281e-3 
4 a 999 -13 690 0 613e - 3 0 852e-3 
5 1 042 -11 256 0 541e-4 0 136e-2 
6 1.044 -11 506 0.555e-3 0.731e-3 
7 1 049 -15 199 o 667e-3 0.990e-3 
8 1 022 -13 358 o 165e-2 o 382e-3 
9 ] 020 -13 381 o 833e-4 0.751e-3 

10 1 023 -13 510 o 101e-2 o 667e-5 
11 1 023 -13 494 0 393e-3 0.863e-3 
12 1 051 -15 430 0 27ge-3 o 122e-2 
13 1 001 -13 654 0 530e-3 0.854e-3 
14 1 018 -14 532 0.656e-3 0.826e-3 
15 1 041 -11 389 o 538e-3 o 261e-3 
16 0 987 -17 519 o 641e-3 0.551e-3 
17 1 023 -13 499 o 876e-3 o 328e-3 
18 1 021 -15 883 0 651e-3 0.184e-3 
19 1 043 -16 264 0 192e - 2 a 388e-2 
20 1 053 -14 300 0 653e-3 0 114e-2 
21 1 012 -13 231 0 492e-4 o 187e-2 
22 1 040 -16.319 0 6 72e - 3 0 161e-2 
23 1 020 -13 278 0 668e-3 o 558e-3 
2!~ 1 038 -16 999 0 316e-3 0.238e-3 
25 1 OOq -13 418 0 404e-3 0 122e-2 
26 1 022 -21 094 0 196e-2 o 325e-2 
27 1 035 -15 360 0 502e-3 o 886e-4 
28 1 039 -11.553 0 106e-2 0.10ge-2 
29 1 017 -13 171 0 947e-3 0 193e-3 
30 0 910 -12 533 0 391e-2 0.213e-1 
31 1 039 0 0002 0 172e-3 0 567e-3 
32 0 q8<J -6 505 0 768e-2 o 176e-1 
33 1 006 -17 557 0 ~ 73e- 2 o 215e-l 
3~ 0 859 -22 928 0 197e-2 0.25ge-l 
35 1 008 -17 116 0 275e-2 o 215e-l 
36 1 027 -24 078 0 237e-2 0.203e-l 
37 1 004 -4 890 0 194e-3 o 758e-3 
38 0 q27 -22 906 0 221e-2 o 258e-l 
39 1 034 -11 673 0 328e-3 0 704e-3 
~O 0 904 -12 759 0.295e-2 o 236e-l 
41 l 013 -14 589 o 640e-3 0.701e-3 
, ) 
~~ 0 871 -20 329 0.308e-2 0.286e-l 
43 1 136 0 0 - -
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Figure 4.7. Power mismatch vs. iteration for 43 bus system 

4.5.2 Convergence characteristics 

Figure 4 7 shows the convergence characteri5tics of thl' Id 

bus testing system, using the single precision version of the pro~r,lm. 

The reason for such slow convergence after three iteration5 i5 that tht· 

-;. 
direction vector d in the tensor model drops to 1e5s th<.ln 10' I\g[jlrl, 

in the second order term of the tensor model we need at lpa:,t <i mdchinp 

-8 
accuracy of 10 to correctly incorporate this lnformation, buL thl', 

cannot be satisfied by the single precislon pt'ogram That ,11<'0 <:xpLI: rl', 

why after three iterations the program could not Und the ront ,,' .1t~ 

tensor model Instead, wlth a modified Newton step we get a '/ery slow 

convergence rate Based on our similar simulations carrif>d OHt on the 

11 bus system, it is felt that convergence 'Nould be fat:.ter if double 
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Figure 4.8. Condition number vs. iteration for 43 bus system 

precision could be used. 

4 5.3 Ill-condltioning 

The 43 bus system is claimed difficult to solve by many 

researchers [Stott & Alsac 1974] [Iwarnoto & Tarnura 1981] (Tripathy 

et.al 1982] Th1S svstem i5 difficult to solve because of high RIX 

ratios, sorne negdtive 1ine reactances, and because of its radial 

topology 

In the simulation this ill-conditioning phenomenon was 

observed. Figure 4.8 shows the 43 bus system conditlon number versus 

the iter.ltion nwnber This system has a very high cc. ldicion number 

(dround 25,000) at the solution, as for the 11 bus system. Even though 
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the condition number at the second iteration is extremelv high 

(51,125), our program still found a root for the tensor model 

4.5.4 Behavior of the modified Newton step 

In the simulation of this 43 bus system. dS for the 11 bus 

system, the size of the modifl.ed Newton step has been an import.mt 

factor in improving the convergence 

At the beginning we applied equatlon (3 28) without chdnging 

the ct value, but the convergence was very slow. The corrE'C t ion on tht' 

state variables is about 0 1% per iteration Then we tried vdrlnll~ 

values for a. The fastest convergence was obtained with. 

For the time being, we only set this a value dt the beglnllillg 

of the first iteration. The optimal ct values for Pdch individu.i1 

iteration would be very useful to gain an overall fast converg~nc~. bur 

the computational effort required is unknown . 

• 
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4.6 Simulations on Well-Conditioned Systems 

In order ta test the versatility of the tensor method, 

simulations were also carried out on the well-conditioned systems A 5 

bus system from [Xi'an Jiao-tong University 1978], a 6 bus system from 

[Dhar 1982] and a 10 bus system from (Huneault 1988] are chosen 

Comparisons between the Tensor method and the Fast Decoupled load flow 

method have been made 

4 6.1 Convergence characterlstlcs 

These well-conditioned systems are solved without difficulty 

by the standard methods, but the convergence rates of these methods 

are qui te different App1ying the tensor method to the load flow 

calculations, fast convergence rates were obtained for the 5, 6, and 10 

bus systems On solving the 6 and 10 hus systems, the tensor program 

only needed 4 iteratlons ta reach a tolerance of 0 001 MW(lfVAR) ln the 

2-norm value of bus power mismatches For the 5 bus system, which is 

qulte heavily loaded, the program takes 5 i terations to reach the same 

accuracy In comparison, our Fast Decoupled load flow program required 

10, 5 and 5 iterations for the 5, 6 and 10 bus systems respectively 

Figure 4 9 shows the convergence characteristics of these 

well-conditloned svstems by use of the tensor method. 
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Figure 4.9. Power mismatch vs. iteration 

4.6.2 Condition number 

Conditioning of the 5, 6, and 10 bus systems were also 

tested. with condition numbers presented in Figure 4 10 These valup!. 

are all quite small. The 5 bus system has a higher conditlon numtH'r 

than the 6 and 10 bus systems, possibly because it is more hl-'flVi ly 

loaded. 
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Figure 4.10. Condition number vs. iteration 

4.7. Discussion 

This section regroups the general results and comments made 

in the previous descriptive sections 4.2 to 4.6 It discusses the 

general behavior of our tensor algorithm as observed in the results. 

and proposes cl comparison of the more important aspects between the 

tansor method dnd standard load f10w methods. 

In our tests the convergence observed for a11 the systems 

except the 43 bus (see the reason in Section 4 5) seems quadratic On 

most of the prob lems. the program on1y needs 3 or 4 i terations ta get a 

dcceptable solution and 6 or 7 iterations to reach an accurate 

solution 
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The other advantage of the proposed tensor method l:; Il ~ 

numerical stability In our tests, the progr.1m based on Algorlthm 3 2 

solves a11 the test problems In studying the results, Wi?' fouml tlut {t 

reduces the bus power mismatches at every iteration 

In practical planning, engineers often talk of 

systems" Loadflow solutions may become diffil'ul t for such systt~l1Is wl1l'1I 

the voltage operates on the verge of instabi l i ty Typ ica l ly, \IIlwt l' 

sys tem voltages drop to about 80% or be low, loadflow so lut ions () t tl'II 

fail to converge In our simulation on the 11 bus system, rllf' lPI\!,O!" 

method shows great numerical stablllty in solving !'uch killd nt "wl·,II, 

systems". In this case, the voltages at certain buses dropppd (-0 ,lbolll 

81%, still the tensor method succeeded in findlng a solution 

In our simulations the step chosen by the cllgori thm ill lIIosl 

cases is the tensor step, especially when approdching d 10dd t low 

solution. This tensor step is observed to approach to cl solutton LI':.!!'!" 

and is more stable than the standard Newton step In sorne l'd'i(H" Wlll'Il 

the ill-conditioning of the system is extremely bari, like tor tilt! 11 

and 43 bus systems, the modified Newton step is requued. We t'ind thar­

the size of the modified Newton step is very important To obta i n t hl' 

fastest convergence charactel. istics, the Cl value in thE' madi [ipd NI'WrOll 

step needs to be determined At the current stage, we do Ilot havf> .HI 

algorithm to select the optimum Cl value dutomattl'all,/ 

accomplished this by runnlng many different tridls 

InstPild, ',JI' 

The preselected past iterates also showed ',fJm(! ~Lter.1 on r-11I' 

difficult problems !Je noticed 10 the '31mulations that th~ larp,er rhf' 

angles between these past iterates, the hetter the ',t:alJtllty qf tllf' 

algorithm. Normally, it i5 not dlfficult ta find c,uch pi1~t lu~riltet. 
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The tensor algorithm converges for the well-conditioned 

systems in fewer iterations than for the standard methods. This is not 

to say that the tensor method is faster than the standard load flow 

méthods, because the latter may reqiure lec;s time per i teration The 

two groups of programs (FDLF and TLF) are difficul t to compare for 

times, because one was using compact storage taking advantage of sparse 

matrices, and the other was not. Nevertheless, the fewer iterations 

required by the tensor method are impressive. 

" Table 4.5. Convergence ComEarison with FDLF Method 

Type of Number of Iteraions to solution 
system buses 

FDLF method Tensor method 

IlI- 11 divergent 7 

candi tloned 
13 6 6 
20 22 6 

systems 
43 22 

1f1f 

7 

Well- S 10 5 
condi tioned 6 S 4 

systems 10 5 4 

.. Solution accuracy set to be maximum power mismatch 
less than 0 001 MW and/or MVAR. ... In tins case dpplied tensor method only reaches an 
dccuracv of n 02 MVAR See corresponding case study 
for the r8,lson. 

Comparisons between the tensor method and Fast Decoupled load 

flow rnethod have been made regarding the convergence rate on aIl the 

test systems in Table 4. S. Comparisons between the tensor method and 
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standard load flow methods on all aspects concerning the cost of 

1 computer implementations have also been made in Table 4 6 

Table 4 5 shows the superior numerical stdbil ity and 

convergence characteristics of the tensor method over the F.lst 

Decoupled load flow method, both on the ill-conditloned ,md 

well-conditioned test systems. 

Table 4.6, Cost Com]2arison with Standard Method 

Aspect Newton FDLF Tensor 
of cost method method method 

Major cost iE> on the 

Speed Standard Fast 
QR transformation, tolhich 
takes twice the time of 
a LU decomposition in NR 
method 

-

Only add 4p n-vectors to 
storage of NR method If 

Storage Standard SmaH 
sparse technique is used, 
only slightly hi ghe r 
than Newton method 

Table 4.6 indicales the differences between the tem.or method 

and standard load flow methods on the costs of computer implementatlon 

On the side of solution speed, using a QR decomposition, an iteration 

of the tensor method takes tWlce as much time aE> the st:mdard Np'IILon 

method, where a LU decomposition is often used. An alternative method 

using LU decomposition to solve the tensor model lE> also ,l'/ailahle 

[Schnabel & Frank 1984] Regarding the storage requirement ot the 

l 
82 



tensor method, we only added 4p n-vectors to the storage requirements 

of the standard Newton method. If sparse techniques and skillful 

programming are applied, the core requirments are only slightly higher 

than for the Newtoll method. 

In summary the proposed tensor method has shown very good 

numerical stability and convergence characteristics on both 

ill-conditioned anrl well-conditioned test systems. Despite the fact 

that it requires a slightly higher storage requirement and that it 

takes a little more time per iteration th an the standard load flow 

methods, its superior performance on ill-conditioned problems rnakes it 

very attractive. 

1 
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Chapter V 

l 
Conclusions and Recommendations 

This thesis studies the problem of ill- conditioned powt:!r 

systems load f10w calculations. A new method, namely the tensor method, 

1s appl1ed ta solve the ill-conditioned system load flow problem. Bath 

the formulation and simulation are introduced and dlHllyzed 

thoroughly. The results obtained from the simulations reveal both the 

strengths and weaknesses of the proposed tensor method. 

5.1 Conclusions 

1. The thesis has been very successful on achieving lts 

goal application of the tensor method for the 

ill-conditioned system load flow caiculationg. 

2. The simulation results showecl superior numerical stablity 

and convergence characteristics of the tensor method over 

the standard load flow methods on both ill-conditioned and 

well-conditloned test problems. 

3 In particuIar, for solving ill-conditioned laad flow 

problem, the tensor method has shown itself to he faster 

and more robust chan the usuai alternative, the modifi~d 

Newton method. 

4. Regarding the program complexity and computational effort, 

currently the proposed tensor method is recommended 
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especially for the ill-conditioned svstem load fLow 

solutions, where the standard load flow me thods USUH 11 v 

fail. 

5.2 Recommendations for Future Research 

Here is a list of modifications which could improvE' tl1P 

performance of the tensor algorithm: 

1. To improve the performance of the modified Newton step on 

the difficult problems, we have mentioned the import.ll1cf> 

of the step size of the modified Newton step An aLgorilhm 

for searching the optimiwn "Q" vaLue in the modified 

Newton step would be useful. 

2 The method proposed in this thesis can be adapted l~dS i Ly 

to remain efficient on large, sparse power sy5temb 111 

parti~ular, the main additional computational cost5 of thf> 

tensor method are QR transformations One sugges lüd 

modification would be ta use an efficient 

factorization in the algori thm for 50 l ving the ten50r 

model. Also, one could investigate the use of spar-,e ()H 

factorization [George & Ng 1986]. 

3. Alternative approaches for solving the tensor model fin' 

available using a PLU factorization [Schnabel &. Frnnk 

1984). 

4. As an experiment, one could use the Decoup Led load t 1 (j'II 

Jacobian matrix approximation in the ten[:,or mode l 
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formulations. 

5 The addition of passive controls, i. e. taps, shunts and 

phase shifters control to the load flow formulation 

l 
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Appendix 2.1 

Notation for Gauss-Seidel Load Flow Equation 

For convenience, equation (2.1) is rewritten as follows: 

{ 
psp 'Qsp 

} V 
1 l 

- J l - l y V 
-ft lJ J Y V 

11 l J e l 

l - l, , n. 

Wl th V bus complex voltages, 

11 
diagonal elements of cornplex admittance matrix, y 

pSP specified bus real power injections, 

Q5
P specified bus reactive power injections, 

l 

lJ 
off-diagonal elements of complex admittance rnatrix, r 

Superscnpt signifies the complex conJugate, 

J ~ l signifies that bus J is connected to bus i. 

1 
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l 
Appendix 2.2 

Notation for Newton-Raphson Load Flow Equation 

For convenience, equation (2.2) is rewritten as follows 

B ElB 
~ ~ ~ 

with ~ bus real power mismatch vector, 

6Q bus reactive power mismatch vector, 

65 correction vector of bus voltage phase angle~, 

6V correction vector of bus voltage magnitudes, 

H, Nt J, L submatrice in the load flow Jacohian rnatri'{ rlll' 

corresponding equations are given in Section 3 2 2 2 
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APPENDIX 4.1 

DATA FOR THE 11 BUS ILL-CONDITIONED SYSTEM 

Une Data (in the form of Y matrix elements)' 

Row i Column j G B 
lJ lJ 

1 1 o 283 -2 785 
l 10 -0.374 3 742 
2 2 12 051 -33 089 
2 3 o 0 6 494 
2 4 -12.051 13 197 
2 11 o 0 14- 148 
3 3 2.581 -10 232 
3 5 -2.581 3 789 
4 4 12.642 -74.081 
4. 5 o 0 2 177 
4 6 0.0 56 689 
4 7 -0 592 o 786 
5 5 2 581 -5 889 
6 6 0.0 -55 556 
7 7 3.226 -4.304 
7 8 -2.213 2 959 
8 8 2.893 -5 468 
8 9 -0.138 1 379 
8 10 -0.851 1 163 
9 9 0.104 -1 042 

ID 10 1.346 -6 110 
II 11 0.0 -14 939 
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l 

Bus 

Bus No 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Slack 
bus 11 

bus 6 

, 

bus 9 

----------------------------

Data (in the forro of net bus powers): 

V(p.u.) B (deg. ) pep u.) Q(p.ll.) 

-0.158 -0.057 
0.0 o 0 

-0.128 -0 062 
0.0 o 0 

-0 165 -0 080 
-0 090 -0.068 
o 0 o 0 
o 0 o 0 

-0 026 -0 00 1) 

o 0 0 0 
1.024 0.0 

bus 2 bus 3 

bus 4 bus 5 

, 
bus 7 

bus 8 bus 10 bus 1 

t--------t-------t---------L, 
, 

Fig. A4. 1 . 1 Schematic Diagram of the 11 Bus Test System 
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Line 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Power base 

l 

APPENDIX 4.2 

DATA FOR THE 13 BUS ILL-CONDITIONED SYSTEM 

No From 

1 
1 
2 
2 
2 
3 
4 
4 
5 
5 
6 
7 
8 

- 1000 MVA 

Line No. 

1 
2 
3 

Line Data: 

To R(p.u.) 

12 0.0481 
13 0.0040 

3 0.0074 
10 0.0121 
13 o 0040 
11 0.0040 
10 0.0 
12 0.0090 

6 0.0075 
10 0.0 

7 0.0086 
9 0.0 
9 0.0105 

Transformer data: 

From 

13 
13 
11 

98 

To 

1 
2 
3 

X(p u.) 

0.4590 
o 0850 
o 1430 
0.2330 
0.0947 
o 0947 
0.1500 
0.1080 
0.1465 

-0.1500 
0.1665 

-0.1500 
0.2020 

Tap setting 

+ 5% 
+10% 
+10% 

B(p.u.) 

0.246 
0.0 
o 436 
0.712 
o 0 
0.0 
o 0 
0.016 
0.448 
0.0 
0.508 
0.0 
0.620 



Bus Data: 

.-
Bus No. V(p.u. ) 8 (deg. ) P (MW) 

G 
Q (MVAR) 

G 
P (MW) 

L 
Q (MVAR) 

L 

1 1.000 0.0 0.0 0.0 0.0 0.0 
2 1.000 0.0 0.0 0.0 a 0 0.0 
3 1.000 0.0 0.0 0.0 0.0 a a 
4 1.063 0.0 0.0 0.0 0.0 0.0 
5 1.000 0.0 0.0 0.0 o.n 0.0 
6 1.000 0.0 0.0 0.0 50.00 32.00 
7 1.000 0.0 0.0 0.0 50 00 30.0n 
8 0.943 0.0 500 00 0.0 0.0 
9 1.100 0.0 0.0 0.0 0 0 

10 1.100 0.0 0.0 0.0 0 a 
11 1.000 0.0 0.0 0.0 a 0 
12 1.037 0.0 500.00 50.00 30 no 
13 1.000 o a 1650. 00 560 O() 

Slack 
bus 12 bus 1 bus 13 bus 11 

C9 

~ 
rv l 

~ 
bus 4 

busS bus 2 b~sJ 
bus 6 bus 7 bus 9 bus 8 

~ __________ ~ ____________ ~ __________ ~~r~ 

Fig. A4 . 2 . 1 Schematic Diagram of the 13 Bus Test System 

,. 
i 

99 



APPENDIX 4.3 

DATA FOR THE 20 BUS ILL-CONDITIONED SYSTEM 

Line Data: 

Line No From Ta R(%) X(%) B(p u.) 

1 1 20 0.50 5.00 0.024 
2 2 8 o 50 5.00 0.067 
3 2 16 0.0 5.00 a 0 
4 2 17 60 00 60.00 0.0 
5 3 5 20.00 20.00 0.0 
6 3 20 0.11 l. 52 0.0857 
7 4 17 3.00 4.00 0.05 
8 4 20 5.00 10.00 0.25 
9 5 14 30.00 40.00 0.0 

la 6 15 5.00 10.00 0.0 
11 6 16 60.00 80.00 0.0 
12 6 17 0.60 8.00 0.04 
13 7 12 0.50 5.00 0.05 
14 9 10 0.50 5.00 0.05 
15 9 19 0.10 3.00 0.10 
16 10 11 0.0 30 00 0.0 
17 11 12 2.00 40.00 0.024 
18 11 13 0.0 15.00 o 0 
19 13 18 0.50 6.00 0.03 
20 14 19 0.10 l. 00 0.0 
21 15 18 0.15 l. 50 o 0 
22 15 20 2.00 4.00 o 067 

"' 
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Bus Data: 

Bus No. P (MW) P (MW) Q (MVAR) 
G L L 

1 0 150 30 
2 0 10 0 
3 0 0 0 
4 0 380 60 
5 0 0 0 
6 0 0 0 
7 0 20 0 
8 0 10 20 
9 0 0 0 

10 0 50 10 
11 0 0 0 
12 0 0 0 
13 0 0 0 
14 0 0 10 
15 0 0 0 
16 0 10 0 
17 100 0 a 
18 100 0 a 
19 100 0 a 
20 0 a 

l 
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5 
14 

3 ts 

4 

Slack 19 
bus 20 

17 

1 6 2 7 

9 
16 

12 

15 
13 11 10 

18 

Fig. A4. 3 . 1 Schematic Diagram of the 20 Bus Test System 
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APPENDIX 4.4 

DATA FOR THE 43 BUS ILL-CONDITIONED SYSTEM 

Line Data (in the form of Y matrix elements) 

Row i Co1umn j G B 
ij iJ 

1 1 309 806 -408.029 
1 14 0.0 15 400 
1 39 -309.806 392.255 
2 2 48l. 288 -1545.194 
2 5 -277.195 873 583 
2 6 -34 368 108. 124 
2 15 -169 726 534.322 
2 43 0.0 30 609 
3 3 0.0 - 5.714 
3 4 o 0 6.015 
4 4 6l. 331 -69.160 
4 13 -6l. 331 62.874 
5 5 '>77 195 -916.892 
5 7 o 0 2l.277 
5 8 o 0 20.513 
6 6 34 368 -118 699 
6 12 0.0 10 638 
7 7 0.0 -20.000 
8 8 452.840 -482.861 
8 9 -288 938 295 777 
8 23 -163.902 167.191 
9 9 300.983 - 317 . 044 
9 10 -12.045 12 342 
9 16 0.0 8 796 

10 10 12.045 -20 855 
10 11 0.0 2.857 
10 17 0.0 5.714 
11 11 0.0 -2.857 
12 12 o 0 -la 000 
13 13 92 381 -100 709 
13 18 o 0 6 OlS 
13 25 -31 050 31 640 
14 14 o 0 -15 015 
15 15 340 398 -916 783 
15 19 o 0 8.649 
15 20 o 0 15 791 
15 28 -170 673 357 003 
16 16 0 0 -8.576 
17 17 o 0 - 5 714 
18 18 o 0 - 5 714 
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-{ Line Data (cont.): 

.l 
Row i Co1umn j G B 

lJ lJ 

19 19 164.292 -280.783 
19 22 -164.292 272 805 
20 20 0.0 -15.002 
21 21 104.312 -143.609 
21 24 0.0 9.267 
21 29 -104.312 133.623 
22 22 164.292 -282 281 
22 26 0.0 9.023 
23 23 321.579 -328 810 
23 29 -157 677 161.760 
24 24 o 0 -8.572 
25 25 87 150 -106 814 
25 27 0.0 9 023 
25 29 - 56 .100 65.824 
26 26 0.0 -8.572 
27 27 0.0 -8.572 
28 28 373 .447 -612.837 
28 39 -202.775 256.136 
29 29 318.089 -372.311 
29 30 0.0 3 766 
29 37 0.0 7.895 
30 30 125.789 -524 464 
30 32 a a 30 769 
30 33 0.0 4.131 
30 40 -125.789 485.547 
31 31 0.0 -13.038 
31 37 0.0 13.038 
32 32 o a -30.769 
33 33 0.0 -3.320 
33 38 a a 3.320 
34 34 0.0 -7 365 
34 38 a a 6.852 
35 35 a a -6 180 
35 38 a a 6.180 
36 36 0.0 -2 703 
36 38 0.0 2 703 
37 37 a a -21 348 
38 38 0.0 -22 398 
39 39 512.581 -663 260 
39 Llo 1 0.0 15 015 
40 40 125 789 -508 837 
40 42 0.0 21 622 
41 41 0.0 -15 015 
42 42 a 0 -20 000 
43 43 a 0 -30 609 

T 
';t 
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Bus Data (in the form of net bus Eowers) : 

Ji 
Bus No. V(p.u.) /J (deg ) P(p u Q(p li.) 

._---_.- -

1 0.0 o 0 
2 0.0 0.0 
3 -0 16 -0 12 
4 0.0 0 0 
5 -0 53 -0 L~O 

6 o a 0 0 
7 -1 60 - 1 20 
8 o 0 0 a 
9 0.0 0 0 

10 0.0 0 0 
11 0.0 0 0 
12 -0 80 -0 flO 
13 o 0 0 () 

14 -0.80 -0 hO 
15 Ü 0 0 0 
16 -0 64 -0 L~8 

17 o 0 0 0 
18 -0 24 -0 18 
19 o 0 0 0 
20 -0.88 -0 66 
21 o 0 0 0 
22 o 0 0 () 

23 o 0 0 0 
24 -0 64 -0 48 
25 a 0 0 () 

26 -0.80 -0 60 
27 -0.32 -f) 2/1 

28 o 0 0 () 

29 0 0 0 0 
30 0 0 () 0 
31 1 16 0 52 
32 2 90 2 57 
33 0 285 0 ~o 

34 a 0 0 (] 

35 0 580 0 J60 
36 -0 050 0 (no 
37 0 0 0 (J 

38 -1 440 - 1 OÎ 

39 0 0 0 (J 

40 0 0 0 () 

41 -0 800 -0 ~()O 

42 -2 240 - 1 fi?'!) 
43 1 136 o 0 

--- - ---
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Fig A4 4 1 Schematic Diagram of the 43 Bus Test System 
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