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ABSTRACT

A new load flow calculation method, called the tensor method,
is introduced in this thesis. The tensor method is a general purpose
method, intended especially for solving the ill-conditioned power
systems load flow problems. The method bases each iteration on a
quadratic model of the nonlinear algebraic load flow functions, the
standard linear model augmented by a simple second order term. The
second order term is selected so that the model interpolates function
values from several previous iterates, the current function value and
the Jacobian, A distinguishing feature of this tensor model with
respect to the previous second order load flow models is that it is
actually only quadratic in a small system (p equations) and linear in a
large system (n-p equations), where n is the dimension of the problem
and p 1is chosen to be equal or less than the square root of n A
solution algorithm is proposed first solving the small quadratic p
equations using an iterative nonlinear equation solver, then solving
the large linear n-p equations using a forward elimination and back
substitution technique. In extensive simulation tests, the tensor
method demonstrated superior convergence characteristics and numerical
stability over the standard load flow methods, both on well- and

ill-conditioned test systems.




RESUME

Cette thése propose une nouvelle technique de calcul pour les
équations d’écoulement de puissance dans les grands réseaux
électriques. Cette méthode itérative, appelée la méthade tensorielle,
est tout a fait générale, mais elle est bien adaptie au systemes
d’équations mal conditionées. Pour le calcul itératif, cette méthode
rajoute un terme quadratique au modéle des fonctions a évaluer, en plus
du terme lineaire habituel. Ce nouveau terme est trouvé & cout minime
par interpolation, a partir de la wvaleur présente et de valeurs
antérieures de la fonction et la valeur présente du Jacobian. Parmi les
méthodes quadratiques proposées pour 1'écoulement de rgpuissance,
celle-ci est la premiére a traiter les termes quadratiques comme des
variables. De par la structure du terme quadratique, il est possible de
resoudre le probléme quadratique a chaque itération en le décomposant
en un petit systeme quadratique (& p équations) et un grand systéme
linéaire (4 n-p équations), ol n est la dimension du probléme et p est
plus petit ou egal a sa racine carrée. Nous avons préparé un algorithme
pouvant resoudre ces deux systemes, le premier & l'aide d'un programme
iteratif et le deuxiéme par elimination gaussienne Nos essais avec cet
algorithme demontrent la stabilite et l'excellente convergence de la
methode tensorielle, en comparaison avec les methodes standards, pour

toute une gamme de problémes, dont quelques uns considéres tres

difficiles.
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Chapter I

Introduction

1.1 What is the Load Flow Problem ?

Load flow, or power flow, is the solution for the normal
balanced three-phase steady state operating conditions of an electric
power system. In general, load flow calculations are performed for
power system planning and operational planning, and in connection with
system operation and control. The data obtained from load flow studies
are used for the studies of normal operating mode, contingency
analysis, outage security assessment, as well as optimal dispatching
and stability.

The difficulties and the importance of the load flow problem
have fascinated mathematicans and engineers throughout the world for a
number of years. Many people have devoted a large portion of their
professional life to the solution of the problem. It has received more
attention than any other power system problem. The amount of effort
devoted to the problem has resulted in an enormous amount of technical
publications. The nature of the problem probably precludes the
development of a perfect procedure. Therefore, it 1is 1likely that
progress will continue to be made on improved solutions for a long
time.

The load flow problem can be defined as the calculation of

the real and reactive powers flowing in each line and the magnitude and




phase angle of the voltage at each bus of a given transmission system
for specified generation and load conditions. The information obtained
from the load flow studies can be used to test the system's capability
to transfer energy from generation to load without overloading lines
and to determine the adequacy of voltage regulation by shunt
capacitors, shunt reactors, tap-changing transformers, and the
var-supplying capability of rotating machines.

In load flow studies the basic assumption is that the given
power system is a balanced three-phase system operating in its steady
state with a constant frequency (50 or 60Hz) Therefore, the system can
be represented by its single-phase positive sequence network with
lumped series and shunt branches. The load flow problem can be solved
either by using the nodal admittance matrix Y or the bus impedance
matrix Z representation of the given network, but it is customary to
use the nodal analysis approach, Mathematically, the problem is to
solve a set of nonlinear algebraic equations for the complex bus
voltages and then determine the line flows

Each bus of a network has four variable quantities associated
with it: the real and reactive power, the line to ground voltage
magnitude, and voltage phase angle. Any two of the four may be
specified, and hence become independent variables, whereas the other

two remain to be determined.

In general, there are three types of buses in a load flow
problem, ea‘ch with its own specified wvariables. (1) slack hus, (2)
generator buses, and (3) load buses. Since transmission losses in a
given system are associated with the bus voltage profile, until a

solution is obtained the total power generation requirement cannot be
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determined. Therefore, the generator at the slack bus is used to supply
the additional real and reactive power owing to the transmission
losses. Thus, at the slack bus, the magnitude and phase angle of the
voltage are known, and the real and reactive power generated are the
quantities to be determined. It is only after a solution has converged,
that is, after all bus voltages are known, that the real and reactive
power generation requirements at the slack bus can be determined. In
other words, the losses are not known in advance, and consequently the
power at the slack bus connot be specified.

In order to define the load flow problem to be solved, it is
necessary to specify the real power and the voltage magnitude at each
generator bus. This is because these quantities are controllable
through the governor and excitation controls, respectively. The
generator bus is also known as a PV bus. The load bus is also known as
a PQ bus. This is due to the fact that the real and reactive powers are
specified at a given load bus. It is possible that some load buses may
have  transformers capable of  tap-changing and phase-shifting
operations These types of 1load Dbuses are known as the
voltage-controlled load buses. At the voltage-controlled load buses,
the known quantities are usually the voltage magnitude in addition to
the real and reactive powers, and the unknown quantities are usually

the voltage phase angle and the turns ratio.

1.2 History of Load Flow Calculation

Before 1929 all load flow calculations were made by hand. In

1929, network calculators (of Westinghouse) or network analyzers (of




General Electric) were employed to perform load flow calculations. The
first paper describing a digital method to solve the load flow problem
was published in 1954 [Dunstan 1954]. However, the first really
successful digital method was developed by [Ward & Hale 1956] Most of
the early iterative methods were based on the Y-matrix approach of the
Gauss-Seidel method. Tt requires minimum computer storage and needs
only a small number of iterations for small networks Unfortunately,
the number of required iterations can increase dramatically for large
systems. In some cases, the method does not provide a solution at all.

Therefore, the slowly converging behavior of the Gauss-Selidel
method and its frequent failure to converge in ill-conditioned
situations caused the development of the Z-matrix methods for
Gauss-Seidel [Brameller & Denmead 1962]. Even though these methods have
considerably better convergence characteristics, they also have the
disadvantage of needing a significantly larger computer storage memory
owing to the fact that the Z-matrix is full, contrary to the Y-matrix
which is sparse.

These difficulties encountered in load flow studies led to
the implementation of the Newton-Raphson method. The method was
originally developed in load flow by [Van Ness 1959] [Van Ness &
Griffin 1961] and later improved by [Tinney & Hart 1967)] [Dommel et.al.
1970]. The method is based on the Newton-Raphson algorithm to solve the
simultaneous quadratic equations of the power network, Contrary to the
Gauss-Seidel algorithm, it needs a longer time per 1iteration, but
usually converges in only a few iterations, and convergence is
significantly independent of the network size Therefore, most of the

load flow problems that could not be solved by the Gauss-Seidel method




are solved with no difficulty by this method. The development of a very
efficient sparsity-programmed ordered elimination technique by [Tinney
& Walker 1967) [Sato & Tinney 1963] to solve the simultaneous equations
has enhanced the efficiency of the Newton-Raphson method, in terms of
speed and storage requiements, and has made it the most widely used
load flow method. The method has been further improved by the addition
of automatic controls and adjustments (e.g , program controlled
in-phase tap changes, phase-angle regulators, shunt compensation and
area interchange control).

In order to further speed up the Newton-Raphson load flow
algorithm and to substantially reduce the storage requirement, the Fast
Decoupled load flow method has been developed by [Stott & Alsac 1974].
The method is based on the fact that in any power transmission network
operating in the steady state, the coupling between P-f (active powers
and bus voltage angles) and Q-V (reactive powers and bus voltage
magnitudes) is relatively weak, contrary to the strong coupling between
P and # and between Q and V. Therefore, the method solves the load flow
problem by "decoupling” the P-4 and Q-V problems, and also takes
advantage of some approximations in forming the constant Jacobian
submatrices B' and B". Because of ity simplicity, speed, and small
storage requirements, it 1is being widely used to replace the
Newton-Raphson method in large system load flow calculations,
multiple-case load flow calculations, on-line applications and
contingency security assessments.

Another interesting development in the load flow problem has
been that of Second Order load flow in which the basic load flow

equations are expressed exactly by a set of quadratic algebraic




equations in rectangular coordinates [Iwamoto & Tamura 1978] [Nagendra
Rao et.al. 1982]. By using this accurate load flow model, it is
intended to achieve better convergence characteristics over the Fast
Decoupled load flow method on problems where the system has lines with
high R/X ratios, and at the sime time retains all the other advantages
of the Fast Decoupled 1load flow method. This attempt has been
successful. Actually, this method is now being implemented in the
electric industry in Japan [Iwamoto 1989]; it has not caught on
elsewhere, however.

The present trends are towards the development of methods to
solve the ill-conditioned system load flow problem {Iwamoto & Tamura
1981] [Tripathy et.al. 1982] and the development of interactive load

flow programs [Lynch 1979].

1.3 Ill-Conditioning

Mathematically, a matrix is said to be ill-conditioned if it

is extremely sensitive to small changes. Let us consider an example:

1. 1.0001

Qualitatively, A is nearly singular . If we change the last entry of A
to a,= 1, it is singular and the two columns become the same. Consider

two very close right-hand sides for A:




Bia

@D) u + v = 2

u + 1.0001 v =2

(2) u + v = 2

u + 1.0001 v = 2,0001

The solution to the first problem is u = 2, v = 0; the solution to the
second is u = v = 1, A change in the fifth digit of b in Ax = b
amplified into a first digit change in the solution. Therefore, we say
that matrix A is ill-conditioned.

In the load flow calculations, we sometimes encounter the
same kind of problem, when dealing with a linearized load flow model.

This model has the following form:

JAx = F (1.1)

where J is the load flow Jacobian matrix,
Ax is the bus voltage state correction vector,

F is the power mismatch function vector.

In some power systems, the load flow Jacobian matrix J in
equation (1l.1) is very ill-conditioned. This causes the instability
and/or divergence of the load flow solutions. We define this kind of
problem as an ill-conditioned load flow problem.

The features which cause the instability and/or divergence in

the power systems load flow calculations are the following:
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1. bad choice of the slack bus,

2, large number of radial lines,

3. heavily loaded network,

4. existance of negative line reactance,
5. lines with high R/X ratios,

6. atypical circuit parameters.

A power system which has one or more of the above
characteristics is likely to be ill-conditioned. So far, there has been
no practical method to solve the ill-conditioned power system load flow

calculations problem.

1.4 The Present Study

1.4.1 Objective

The intended objective of the present study is to apply the
tensor method proposed by [Schnabel & Frank 1984] to solve the

ill-conditioned power system load flow calculation problem.

1.4.2 Outline of the thesis

The chapters of this thesis are organized as follows:

Chapter I — Introduction

This chapter presents a comprehensive understanding of the
nature of the load flow problem being solved First, we describe the
load flow calculation problem, the definition and the mathematical

interpretation. Secondly, a general overview of the history of the load
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flow calculations 1is presented. Then, we introduce the problem of
ill-conditioning, both its mathematical meaning and features causing
ill-conditioning in a power system. There follows the objective of this
research work and an outline of the thesis organization. At the end of

this chapter, we display the original contributions of this study.

Chapter I1 — Review of Load Flow Calculation Methods

This chapter presents a review and analysis of the most
commonly used load flow calculation methods. Four main groups of load
flow calculation methods are discussed. The state of the art on solving
the ill-conditioned systems load flow problem is also discussed.
Attention is paid especially to the basic formulations,

characteristics, and limitations of each different approach.

Chapter III — Solution of the Ill-Conditioned Load Flow Problem
by the Tensor Method

In the first part of this chapter, the mathematical
foundations of the tensor method by Schnabel & Frank are presented,
They include an introduction on solving ill-conditioned nonlinear
equations, a derivation of the formulation of a simple quadratic model
(tensor model), and a solution algorithm to solve the tensor model
efficiently and stably In the second part of this chapter,
applications of the tensor method to the load flow problem are carried
out. Again, we present a brief introduction to reinforce the
presentation of the problem to be solved. Then, the tensor model
formulation of the load flow problem is performed and explained. The

calculation of second order terms in the tensor model is conceptually




new, and unknown in the previous Second Order load tlow methods.
Following the formulation, a solution algorithm {s proposed and

detailed program implementation steps are also given.

Chapter IV — Numerical Simulations

This chapter documents and analyzes the numerical results
obtained from our TLF program. Tests were carried out on four
il1l-conditioned systems and three well-conditioned systems, ranging in
size from 5 to 43 buses. In the first four sections, the numerical
results for four ill-conditioned systems are presented seperately In
each section, the load flow solutions, the convergence characteristics,
and the condition numbers of each test system are presented and
analyzed. Then, the numerical results obtained for three
well-conditioned systems are presented altoghther. All the simulation
results are analyzed and special features of the program on the
hard-to-solve problems are discussed. This chapter closes with a
discussion on the general performance of the tensor load flow method

and comparisons with standard load flow methods.

Chapter V — Conclusions and Recommendations
In this short chapter, first, general conclusions of this

research work are drawn. Then, recommendations for future research are

suggested.

10
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1.5 Claim of Originality

To the best of the author’s knowledge, the application of the
tensor method to solve the ill-conditioned load flow problem is an
original contribution. By applying the tensor method, a new quadratic
load flow model is formulated using information from the previous past
iterates. A new solution algorithm to solve the tensor model is also
developed It solves the ill-conditioned load flow problem by first
solving a small quadratic system of equations and then a large linear
system of equations. In this, it is quite distinct from the previous
Second Order load flow methods. A program which implements the idea of
the tensor algorithm is developed. The simulation results show the
superior numerical stability and convergence characteristics on both

well- and ill-conditioned power systems.

11



Chapter II

Review of Load Flow Calculation Methods

2.1 Introduction

In this chapter we review the most commonly used load flow
calculation methods. Through a literature review, we briefly outline
various load flow formulations, summarize their characteristics, and
point out the limitations of each solution technique.

Four main groups of load flow calculation methods are
discussed in section 2.2 to section 2.5 respectively. They are the
Gauss-Seidel method, the Newton-Raphson method, the Fast Decoupled lLoad
Flow method, and the Second Order Load Flow method. Following these
four main groups of methods, we present some new load flow methods
recently proposed for solving the ill-conditioned power system load
flow problem. This chapter closes with a summary of the general
behavior and comparison of these methods

We presume the reader is already familiar with the basic load
flow equations in this chapter. To concentrate on the main properties
of these solution methods, all the equations shown in this chapter are
given without derivation, but the corresponding reference sources are
given. The reader not familiar with the basic load flow equations can

refer to section 3.2.2.1.

12




2.2 Gauss-Seidel Method

2.2.1 Basic equations

The Gauss-Seidel load flow calculation method is based on the
iterative solution of the nonlinear equation (2.1) for n bus voltages,

using a relaxation algorithm [Glimn & Stagg 1957].

vV - L { Lt 7 ¥y, (2.1)
ii v

where the notation is provided in appendix 2.1.

Successive displacements are used in the Gauss-Seidel 1load
flow method, which improve the accuracy of the bus wvoltages
successively starting from an initial guess. The right hand side of the
equation (2.1) is evaluated using the most recent updates of the
voltages at the rest of the buses. For PV type buses, Q:p is
substituted by its calculated value, and the magnitude of the updated
voltage is corrected according to the specified bus voltage.

The above set of equations does not include the slack bus for
the reason discussed in Chapter I. Before the solution is started, the
buses have to be ordered and the bus admittance matrix has to be
determined. Next, a set of initial values for the complex bus voltages
has to be assigned. In practical systems, the voltage magnitudes do not

vary widely. The initial value of 1/0 can be assigned. Then, one can

13




start obtaining the solution of Eq.(2.1). If the ith bus is a load bus,
its loadings Pi and Qi are known and hence a new value of complex
voltage can be determined which may be denoted by V?), where

. (1)
superscript

indicates the first cycle of calculation, i.e. first
iteration. Obviously, the wvalues of Vi” have been improved compared to
their initial walues V?). Feeding this improved set of values in
Eq.(2.1), one can determine another set of more improved values. This

iterative process continues until the prescribed mismatch tolerance are

met.

2.2.2 Characteristics

The Gauss-Seidel method converges slowly, mostly because of
the loose mathematical coupling between the buses. At each iteration
cycle, an improvement in each bus voltage can only effect the voltage
improvements of the buses directly connected to it. Acceleration
techniques are invariably used in practice to speed up the convergence

Computationally, the salient feature of this method is that
the number of elements in the summation term in equation (2 1) is
small. The off-diagonal elements of the admittance matrix, for use in
the summation, are therefore stored and addressed compactly, often
taking advantage of Y-matrix symmetry. Both the storage requirements
and the computation per iteration are then small, and roughly
proportional to the number of buses n. Since the number of iterations
for a large well-conditioned system is of order n, the total iterative
computing time varies approximately with n®. As the size of the problem
to be solved increases, the Gauss-Seidel method becomes less and less

competitive with newer methods. However, its storage requirements are

14




very low. The computation time per iteration is small, and efficient
coding 1is wvery easily written. Therefore, it 1is often wused to
initialize the starting values of the Newton-Raphson method and Second
Order Load Flow method. As a final point, an advantage of the GS method
which is only starting to be recognized is that it is in & form easily

amenable to parallel processing.

2.2.3 Limitations

Although the Gauss-Seidel method can be easily programmed and
does not require a large number of computer storage, it has several

limitations, some of which have already been mentioned:

1. needs many iterations to converge,

2. total computation times are long,

3. convergence characteristics are poor compared to newer
methods,

4. unable to solve ill-conditioned systems.

In solving well-conditioned systems, the method converges and
the number of iterations required depends upon the size of the system:
the larger the system, the greater the number of iterations [Stott

1974]. The choice of the slack bus also affects the number of

iterations.

15




2.3 Newton-Raphson Method

2.3.1 Basic equations

The general Newton-Raphson method is an iterative algorithm
for solving a set of simultaneous nonlinear equations in an equal
number of unknowns F(x)=0. At a given iteration point, each function
fi(x) is approximated by its tangent hyperplane. Equation (2 2) is its

basic form in the load flow application [Tinney & Hart 1967]).

- (2.2)

where the notation is provided in appendix 2.2.

This is the most widely used of all formulations, in which
the Jacobian matrix equation is written for convenience of presentation
in the partitioned form. Slack bus mismatches and voltage corrections
are not included in (2.2), and likewise AQi and AV1 for each PV bus are
absent. The elements of the submatrices H, N, J, L are given in section
3.2.2.2.

Like the GS method, the iterative process is initiated by
assuming a set of voltage magnitudes and phase angles Coefficients H,
N, J and L are then evaluated using equations given in Section 2.2 2 2
These coefficients are arranged in the form of a matriz (Jacobian)

which is then augmented by including a column consisting of the

16




residuals APi and AQi. The elimination process triangularises the
augmented Jacobian matrix. The corrections A&1 and AVi are then
successively evaluated through back substitution. These corrections
when added to the previous values of the variables generate new values
of these variables. One iteration 1s complete. The next iteration
starts with the calculation of Pi and QL of buses using improved values
of the state variables. Residuals AP1 and AQ1 are evaluated and if
these are found less than the mismatch tolerance, the process is
terminated, Otherwise, the procedure of recalculation of the Jacobian
matrix elements, triangularisation of the augmented matrix and
reevaluation of the correction vectors A§ and AV is repeated.

This formulation can be improved by a minor modification,
which very often reduces the number of iterations by one, and can avoid
divergence in some extreme case [Stott 1974). Noting that the
performance of the Newton-Raphson method is closely associated with the
degree of problem nonlinearity, the best left hand defining functions
are the most linear ones. It is therefore preferable to use a problem
defining function AQ/V on the left hand side of equation (2.2) in place
of AQ. Dividing AP by V has a very small effect, since the active power
component of the problem is not strongly coupled with voltage
magnitudes.

Both polar and rectangular version formulations can be
implemented, with the rectangular version slightly less reliable and

rapid in convergence than the polar version [Stott 1974].

2.3.2 Enhancements

A number of schemes are available for attempting to improve

17
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the performance of Newton’s method [Dommel et.al. 1970]). One of the
simplest of these 1is to impose limits on the permissible size of the
voltage corrections at each iteration, thereby helping to negotiate
humps in the defining functions. A better approach 1s to backtrack as
soon as divergence is seen to have started, and then apply small limits
on future state corrections.

With its quadratic convergence, Newton’s method is most
advantageous when it is fed good initial wvoltage estimates. Some
programs perform one or two GS iterations before the Newton process,
This is beneficial provided that the relatively weak GS method does not
diverge when faced with a difficult problem. A most rapid and reliable
Newton program can be created by calculating good initial angular
estimates using the DC load flow and also good voltage magnitude
estimates by a similar technique [Stott 1971}.

Iteration time can be saved by using the same triangulated
Jacobian matrix for two or more iterations. However, in this way, it is
also necessary to save the lower triangle for repetition of the forward
solution [Tinney & Hart 1967]. The algorithm requires about 40% more

storage and loses some reliability of convergence

2.3.3 Characteristics

The Newton-Raphson method’s quadratic convergence makes it
very fast, and the process homes in very rapidly onto the solution
point when it is close 1Its performance is sensitive to the hehavior of
the load flow function F(x), i.e. the more linear it is, the more
rapidly and reliably the Newton method converges

Although efficiency in programming techniques is important in
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. all load flow methods for fast excution and storage economy, it is the
cornerstone of methods such as Newton's. It must implement ordered
elimination and sparse programming techniques for solving the large
sparse matrix equations [Tinney & Walker 1967] [Tinney & Hart 1967].

If these programming requirements are fully satisfied, then
the computing time per iteration of Newton’'s method rises little more
than linearly with the number of buses in the system, on average.
Since the number of iterations is almost size invariant, the
superiority of Newton's method speedwise over the GS method increases
rapidly as the size of the system to be solved increases.

With large modern computers, the extra storage compared with
GS method does not prevent very large systems from being solved in

core,

2.3.4 Limitations

Although the Newton-Raphson method is far superior to the GS
method regarding its convergence characteristics and total computation

time required, it has several limitations.

1. a large quantity of data must be handled simultaneously
due to the linear transformation,

2. needs optimally ordered factorization and sparse
programming technique,

3 sensitive to the nonlinearity of the load flow functions,

4. unable to solve ill-conditioned systems, like the 11 and

the 43 bus systems.
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Any production program using the Newton-Raphson method should
consider the above facts and include such features as compact storage
and optimal ordering schemes for system buses. A computer program based
on the Newton-Raphson method is, therefore, in general more complicated

than that based on the GS method.

2.4 Fast Decoupled Load Flow Method

2.4.1 Basic equations

An inherent characteristic of any practical electric power
transmission system operating in the steady state is the strong
interdependence between active powers and bus voltage angles, and
between reactive powers and voltage magnitudes. Applied numerical
methods are generally at their most efficient when they are able to
take advantage of the physical properties of the system being solved.

Equation (2.3a) and (2.3b) are derived from equation (2 2) by

taking advantage of these physical properties [Stott & Alsac 1974].
AP/V = B'A§ (2.3a)

AQ/V = B"AV (2.3b)

where

Bli -3 1/)(iJ ,
JE€i

' e — ' o — : .
ij l/XiJ and B1J B (i » j).

3
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Matrices B' and B" represent constant approximations to the
slopes of the tangent hyperplanes of the functions AP/V and AaQ/V
respectively. Network elements that primarily affect the Q-V problem
(e.g., shunt susceptances and transformer off-nominal taps) are not
presented in B’'. Similarly, phase shifts are not presented in B",
Consequently, both B' and B" are always symmetrical, and their constant
sparse upper triangular factors are calculated and stored once only at
the beginning of the solution. To solve (2.3a) and (2.3b), forward and
backward substitutions are performed using these factors.

The algorithm is to conduct each iteration cycle by first
solving (2.3a) for A§, and use the updated § in constructing and then
solving (2.3b) for AV. Each of these construction/solution cycles are

performed alternately in the same storage area.

2.4,2 Enhancements

Because of its simplicity, speed, and relatively low storage
requirements, the Fast Decoupled load flow method is now being widely
used in the electric utilities. Over the years of experience, a number
of new schemes have been developed.

To speed up the Fast Decoupled 1load flow method, a
rectangular version of the program was developed [Masiello & Wollenberg
1975] [Babie 1983]. Also, in modern system reliability studies, the use
of the FDLF method requires the frequent updating of the two
Jacobian-like matrices. [Behnam-Guilnani 1987] introduced the hybrid
version of FDLF method. In this new model, the first equation in the

FDLF method is unchanged For the second equation, the decoupled nodal
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iterative model derived from the GS method is used. The hybrid model
has the positive attributes of the FDLF method (fast, simple, and
reliable) with the added advantage that it resolves the matrix updating
problem. The study results show that the hybrid method is as much as
50% faster than the FDLF method even if B" is not updated, however
Stott & Alsac report the hybrid version’'s practical usefulness seems to
hinge mainly on whether each GS reactive iteration has a sufficiently
competitive convergence rate [Stott & Alsac 1988]. i.e., in the absence
of regulated buses, the performance of the hybrid method will not be so
great [Alvarado 1988]

To reduce the storage requirements, [Keyhani 1985] proposed a
new version of FDLF method. The matrix B" is set equal to the matrix
B', and 1in the computation of B' shunt reactances and series
resistances are neglected. Since shunt reactances are effective in MVAR
flows, AQ is computed with all shunt capacitances and line chargings
considered as reactive power pgenerations at each bus. The algorithm
requires 50% less memory for matrix inversion than the original FDLF
method, and has approximately the same convergence characteristics

Practical experience confirms that abnormally high R/X
ratios, particularly on heavily loaded branches, can slow convergence
down, sometimes considerably [Wu 1977]. The individual convergence
rates of the algorithms are determined by how well B8' and 8"
approximate the slopes of functions AP/V and AQ/V respectively These
approximations are excellent around the §&§=0, V=1 points on the
functions At high system 1loading (large 6's or poor V's), the
approximations’ deterioration is progressive as the R/X ratio of any

branch terminating on the bus increases. An effective method to solve
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this kind of problem is to place fictitious nodes in the middle of the
lines having high R/X ratios [Ramarao 1977], which helps to reduce the

line R/X ratio so that the convergence performance is better.

2.4.3 Characteristics

The Fast Decoupled load flow method is now the fastest load
flow calculation method. Computation time per iteration is roughly 1/5
that of Newton-Raphson method, and 3/2 that of the Gauss-Seidel method.
For very large systems (5000 buses and above), the total computation
time is 3 or 4 times smaller than that of the NR method [Sasson et.al.
1975].

The storage requirements of the Fast Decoupled load flow
method are about 40% less than those of Newton's method. This saving is
reduced somewhat if the sine and cosine terms are stored.

The method converges very reliably, usually in 2 to 5
iterations for practical accuracy on large systems. Using a standard
triangulation package, programming is easier than the Newton’s method

in which the compact Jacobian matrix has to be computed at each

iteration.

2.4,4 Limitations

Here are the limitations associated with the Fast Decoupled

load flow method:

1. difficult to solve systems having lines with high R/X

ratios,

2. when a system is heavily loaded, convergence requires many
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iterations,

3. unable to solve ill-conditioned systems.

2.5 Second Order l.oad Flow Method

2.5.1 Basic equations

Second Order load flow methods (SOLF) were first proposed by
[Sachdev & Medicherla 1977], in a polar form They are based on the
Taylor series expansion of the load flow functions up to their third
term. Then, [Iwamoto & Tamura 1978] presented an excellent paper,
formulating their second order load flow model in rectangular
coordinates. This was followed by [Rao 1978] [El-Hawary & Wellon 1982)

and [Nagendra Rao et.al, 1982].

The load flow equations are a set of quadratic algebraic
equations when expressed in rectangular coordinates That 1is, the
equations are expressed completely and exactly using the first cthree
terms in the Taylor series expansion.

The basic Second Order load flow equation is as follows:

AP—-SP
AQ-SQ

J Ax (2.4)

where SP and SQ are the second order term vectors,

In Iwamoto and Tamura's formulation, they discovered an

efficient way to formulate the second order term in their model. The
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evaluation of the second order term uses the same load flow functions
but with the variable Ax (state corrections), where Ax is obtained from
the previous iteration. At each iteration, the value of power mismatch
term is a function of Ax, but the Jacobian matrix J is always kept the
same. This makes the algorithm very fast, and its speed is comparable
to the FDLF method.

Later, in Nagendra Rao's formulation, the model is developed
by first considering a system with only PQ buses and then extended to
accommodate PV buses. The computation is simplified to some extent by

introducing two features:

1. All shunt connections (line charging capacitance, shunt
reactors, shunt capacitors, shunt branches of equivalant =«
representation of off-nominial ratio transformers etc.)
are taken into account by treating them as loads of
constant impedance and hence they are not included in the
Y-matrix.

2. The initial guesses for the voltages at all buses are

assumed to be equal to the slack bus voltage.

The symmetry of the Jacobian matrix is achieved when all the
shunt elements are treated as loads. This is a well-known approach
especially in Z-matrix based load flow methods. The Jacobian is to be
determined only once at the.starting point for the first iteration.

At PV buses in the system, the voltage magnitude will be
specified instead of the reactive power. In the evaluation of the

second order terms, the branch admittances of lines connected to PV
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buses (in order to calculate reactive power mismatch AQ) only will have
to be retained in the core during the iteration process. This results
in a reduction in the memory requirement of the method as compared with
Iwvamoto’s method, where the full branch admittance list must be stored

in order to calculate the second order terms.

2.5,2 Characteristics

Here are the main characteristics of the two second order

methods described above:

Iwamoto & Tamura's version:

1, faster than NR method, similar to FDLF method.

2. iteration counts for convergence are not affected by the
system size,

3. memory requirement slightly higher than NR method.

4, did not converge to solutions for the cases in which NR
method could not give the solutions.

5. initial estimates are quite important,

Nagendra Rao'’'s version:

1. claimed faster than previous SOLF method.
2. memory requirement is comparable to FDLF method
3. shows better reliabity on high R/X ratio problem,

4, fairly complicated in its formulation.
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Although there are a few other Second Order load flow methods
[Sachdev & Medicherla 1977], [Rao 1978], [El-Hawary & Wellon 1982],
they are not competitive compared to the methods proposed above, taking
into account the mathmetical simplicity and computational efficiency.
Actually, the method developed by Iwamoto and Tamura is quite good and

is now being used by the power industry in Japan [Iwamoto 1989].

2.5.3 Limitations

Because the Second Order load flow methods uses the first
three terms of the Taylor series expansion, generally they are
mathematiclly more complicated than the Newton'’s method.

By reviewing all these second order 1load flow methods,
another important point is found: that all algorithms solve equation
(2.4). The second order terms are estimated from previous iteration
values and substracted from the power mismatches in the left hand side
of the equation (2.4). The right hand side of the equation (2.4)
remains unchanged from the standard Newton-Raphson method. If the
Jacobian matrix is ill-conditioned, these methods all have difficulties
to converge to a solution. This enlightened fact provided us with a
good reason for seeking a new second order algorithm to solve the

ill-conditioned systems.

2.6 Methods for Ill-Conditioned Systems

Over the years, efforts have concentrated on speeding up the
arithmetic of the load flow calculation algorithms, taking advantage of

sparsity, decoupling, etc. The problem of solving ill-conditioned
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systems and determining the existence of load flow solutions have been
treated very superficially, on the assumption that since NR and FDLF
methods have proved so successful for "real life" problems, no rigorous
validation is necessary. The assumption relies on the wishful thinking
premise, that systems such as the 11 and 43 bus considered in this
thesis are in some sense artificial and will never occur in practice.
Even if this premise is true, the art of load flow solving, in order to
attain the status of science, must address these fundamental questions.

In 1981, Iwamoto and Tamura first proposed a method to tackle
the ill-conditioned systems load flow calculation problem [Iwamoto &
Tamura 1981]. The model is based on their second order model [Iwamoto &
Tamura 1978], incoroporating the nonlinear programming technique
suggested by [Sasson 1969] and the idea of obtaining the optimal
multiplier [Wallach & Konrad 1979]. Although the authors claimed
theoretical proof of the nondivergence of their solution, the
simulation results do show divergence phenomena in some cases.

Following the above approach, Brown's method was applied to
solve 1ill-conditioned 1load flow problems [Tripathy et al. 1982]
Brown’s method is particularly effective for solving ill-conditioned
nonlinear algebraic equations. It 1is a variation of Newton’s method
incorporating Gaussian elimination in such a way that the most recent
information is always used at each step of the algorithm, similar to
what is done in the Gauss-Seidel process. This contrasts sharply with
Newton’s method in which all equations are treated simultaneously
Perhaps due to this reason, the ill-conditioning in the Jacobian matrixz
is avoided in the solution process.

Simulation results provided in [Tripathy et.al. 1982] look
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good. The method converges in fewer iterations for both ill- and
well-conditioned systems. Computing time per iteration is 15% more t’

the Newton-Raphson method, so that the total computation time is said
to be comparable to the Newton-Raphson method. The storage requirement

is slightly more (10%) than that of Newton-Raphson method.

2.7 Summary

This chapter has presented the most important solution
techniques for the power system load flow calculations through a review
of the literature. Attention is paid especially to the basic equations
of different methods, their salient characteristics, and their
limitations. To introduce the subject of this thesis, the state of the
art in solving the ill-conditioned load flow problem is also presented.

It is felt that among all these metheds, because of its
simplicity, speed, and reduced storage requirement, the Fast Decoupled
load flow method is superior to any other method for well-behaved
systems. This has been proved, in fact, by the popularity and the
wide-ranging implementations of the Fast Decoupled load flow method in
the electric power utilities in recent years.

Regarding the ill-conditioned system load flow problem, so
far no practical method has emerged. Future research and development is
needed to give the answer to this problem. This thesis proposes a step

in that direction.
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Chapter III

Solution of the Ill~Conditioned Load Flow Problem

by the Tensor Method

A new method, namely the tensor method, is introduced in this
chapter for solving load flow problems. Tensor methods are general
purpose methods intended especially for ill-conditioned nonlinear
systems, such as for power systems where the load flow Jacoblan matrix
is singular or ill-conditioned at the solution.

Over the years, tensor theory has expanded greatly. During
that time, Kron's approach [Kron 1959], much heralded in electrical
engineering some three decades ago, has been overtaken by a vaster,
more general theory. Hence, readers should not expect to see Kron's

approach in this thesis.

3.1 Tensor Method for Nonlinear Equations

3.1.1 Introduction

We present a new class of methods, tensor methods, for

solving the nonlinear problem

given F:R"~ Rn, find x € R" such that F‘(x”)-O, (3 1)

where it assumed that F(x) is at least once continuously

differentiable. The novel feature of these methods is that they base
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each iteration on a quadratic model of F(x) whose second order term has
a special, restricted form. Tensor methods are especially intended to
improve upon the performance of standard methods on problems where the
Jacobian matrix of F at X, F'(x*) € an, is singular or
ill-conditioned.

Standard methods for solving (3.1l) base each iteration on a

linear model M(x) of F(x) around the current iterate xce Rn,

M(x + d) = F(x) + J d (3.2)
where d € R", J € RM*P.

When the analytic Jacobian is available, the linear model

(3.2) becomes
M(xc+ d) = F(xc) + F'(xc)d (3.3)

The standard method for nonlinear equations, Newton's method, is
defined when F’(x ) is nonsingular, and consists of setting the next
c

iterate x, to the root of (3.3),
x, =x = F'(x ) 'F(x ) (3.4)
+ [ c c

The distinguishing feature of Newton's method is that if F'(xc) is
continuous in a neighborhood containing the root x, and F'(x,) is
nonsingular, then the sequence of iterates produced by (3.4) converges
locally and quadratically to X . In practice, 1local quadratic

convergence means eventual fast convergence.
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Newton’'s method is mnot usually quickly locally convergent,
however, if F'(x ) is singular. In practice, Newton’'s method usually
exhibits local linear convergence with constant equal to one half on
singular problems, much slower covergence then one would like [Decker &
Kelley 1980].

The other well-known disadvantage of Newton’s method is that
it may not converge to any root x, if it is started too far from any
root. The main remedies used in practice are augmenting (3.4) by line
search or trust region algorithms [Dennis & Schnabel 1983]. For load
flow studies, this was suggested as early as 1975 by ([Gross & Luini
1975].

Tensor methods are based on expanding the linear model (3.3)

of F(x) around x to the quadratic model

M (x+d) =F(x) +F(x)d+~Tdd (3.5)
t c c [ 2 [}

nxnxn

where Tce R The three-dimensional object T 1is referred to as
c

a tensor, hence we call (3.5) a tensor model, and solution methods
based upon (3.5) tensor methods. We define the notation T dd used in
c

(3.5) before proceeding.

DEFINITION 3.1 Let T € R"™*™". Then T is composed of n

horizontal faces er Rmm, i=1,..+,n, where Hl[_j,k]-T[i,j,k] For v,w €

R®, Tww e R" with

Tvw[1i] -v"le-)n: fj T(L, . k]vijlw[k]
Jm1l k=1
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Note that Mt(x +d) is simply the n-vector of n quadratic
c
models of the component functions of F(x),
M (x+d)[i] —f +g°d+=d"H d
( b(xc [l] 1 gi 2 i
i=1,---,n
where
£ = F(x)[i],
g:- row i of F'(xc),
H1 is the Hessian matrix of the ith component function of

F(x).

The obvious choice of Tc in (3.5) is the matrix F"(xc) of
second partial derivatives of F at X 3 this makes (3.5) the first three
terms of the Taylor series expansion of F around x_. Several
disadvantages, however, make (3.5) with Tc- F"(xc) unacceptable for

algorithmic use. They include.

(1) The n’ second partial derivatives of F at xc would have
to be computed at each iteration.

(2) The model would take more than n3/2 locations to store.

(3) To find a root of the model, at each iteration one would
have to solve a system of n quadratic equations in n
unknowns, which is often as difficult as solving the

original problem F(x)=0.

To use a model of form (3.5) and avoid these disadvantages,

the tensor method proposed by [Schnabel and Frank 1984] uses a very

33



restricted form of Tc. In particular, the tensor model requires no
additional derivative or function information; the additional costs of
forming and solving the tensor model are small compared to the ()(na)
arithmetic cost per iteration of standard methods; and the additional
storage required for the tensor model is small compared to the n®
storage required for the Jacobian.

The remainder of section 3.1 summarizes the work of Schnabel
and Frank in applying the tensor method to solve nonlinear equations,
This will be followed, in the next section, by our formulation of the

tensor method applied to the load flow problem.

3.1.2 Forming the tensor model

We now show how to select the tensor term Te& R
[+

in the
model (3.5). The choice of Tc will cause the second order term Tcdd in
(3.5) to have a simple, useful form.

It has already been stated that Tc will not contain actual
second derivative information. Another way to form the second order
term in (3.5) is through interpolation. In the tensor method, some set
of p not necessarily consecutive past iterates x_l,--~, X will be

selected, and the model (3.5) will be required to interpolate the

function wvalues F'(x_k) at these points. That is, the model should

satisfy

’ 3 -
F(x_k) - F(xc) + F (xc)sk + > Tcsks , k 1, P (3.6a)

k
where

S = X -Xx, k=1,.-,p (3.6b)
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First we describe how the past points X ot ,x_p are selected. Then we
show how to choose Tc to satisfy (3.6).

For (3.6) to always be consistent, the set of directions {sk)
from X to the selected past points X must be linearly independent.
In that sense, each direction S, should make a angle of at least ¥4
degrees with the linear subspace spanned by the other directions;
values of 6 between 20°and 45° have proven appropriate in practice. At
each iteration, therefore, we choose the past points {x*) that we
included in (3.6) by the following procedure. We consider the past
iterates in order, starting with the most recent. We always select the
most recent iterate, and then test each preceding past iterate.

We also set a practical upper bound p on the number of past

function values interpolated by the model at each iteration.

ps/n (3.7)

The bound 1is crucial to the efficiency in storage and arithmetic
operations of the tensor method.
Now we discuss how we choose T to satisfy (3.6). It is
[+

convenient to rewrite (3.6) as

Tss -z, k=1,.-.,p, (3.8a)
where

n

z = 2 (F(x_k) - F(xc) - F'(xc)sk) z €R (3.8b)

: . 1.5 . : s 3
This is a set of np < n linear equations in the n° unknowns

Tc[i,j,k], 1 =1i,j,k sn. Since (3.8) is underdetermined, we follow the
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standard and successful practice in secant methods for nonlinear

equations and optimization, and choose Tc that satisfies

minimize || T || (3.9)
nxnxn ¢ ''f
TER
c
subject to Tss= 2z, k=1,---,p,

where || T‘:H£ , the Frobenius norm of T , is defined by

NTfl2=- 3 ¥ L (T lij.kD?

iml g=1 k=1

The solution to (3.9) is given by Theorem 3.1 of [Schnabel & Frank 1984].

First we define a rank one tensor.

DEFINITION 3.2 Let u, v, w € R'. The tensor T € R""" for

which T{i,j,k] = u(i] v[j] w(k], 1 = i,j,k < n is called a rank one

tensor and denoted T = uvw.

THEOREM 3.1 Let p S n , let s € R, k=1, -+, p with (s )

linearly independent, and let z € R®, k=1, .-+, p. Define M € RP®

by M[i,j] = (s:sj)z, l<i,j=sp, Ze R™® by column k of Z = z . k =

1, ---, p. Then M is positive definite, and the solution to (3 9) is
n
T = kgl ass, (3.10)

where a, is the kth column of A € R"", A is defined by 4 = 2 Mt
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Substituting (3.10) into the tensor model (3.5) gives,

M (x+d) = F(x) + F'(x)d+ > él a (d's)? (3.11)
The simple form of the second order term in (3.11) is the key to being
able to efficiently form, store, and solve the tensor model. Since p =
/H, the additional storage required by (3.11) is 4p n-vectors, for
ta), ts ), {x_ 1, and (F(x_)). In the next section, we will see that

k

the extra cost to solve the tensor modal also is quite small.

3.1.3 Solving the tensor model

In this section we show an efficient algorithm for finding a

root of the tensor model derived in 3.1.2, that is,
find d € R" such that

P
M (x+d) = F(x) +F'(x)d+ kgl a(d's ) =0 (3.12)
The solution of (3.12) can be reduced to the solution of a system of p
quadratic equations in p unknowns, plus the solution of a system of n—p
linear equations in n-p unknowns.

The basic idea of the algorithm is that (3.12) is linear on
an (n—-p)-dimensional subspace. (3.12) really only should be quadratic
in p variables and linear in the other n—p This is accomplished in
steps 1 and 2 of the wupcoming Algorithm 3.1 by making a linear

transformation of the wvariable space; for this an orthogonal
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transformation is used. Then a second linear transformation of the
equations, steps 3 and 4 of Algorithm 3.1, is used to eliminate the n-p
transformed linear variables from p of the nonlinear equations. The
result is a system of p quadratic equations in p unknowns (3.15b), that
is solved in step 5 of Algorithm 3.1, and a system of n-p equations
(3.15a) that are linear in the remaining n—p unknowns that can be
solved once the system of quadratics is solved.

Two notations are introduced: Given v € Rm, {v)z denotes the
vector w € R for which w[i] = V[l]z, i= 1, +++, m. Define S € R

by column k of S = s, - This allows us to denote the second order term

of our tensor model by % A {Sf'd)z.

ALGORITHM 3.1 Let psn, FeR', JeR™, 4 Se€RrR"™, s

¥ '

having full column rank.

First transformation:; Steps 1-2 transform the system of n

equations in n unknowns

F+Jd+%A (s%d1% - 0 (3.13)

A A

to the system of n equations in the n unknowns d1e R""? and dze R?,

A A " ~

F+Jd +Jd +>4(8%d)?=0 (3.14)
11 2 2 2 2 2

A

This eliminates the nonlinear terms in dl.
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Step 1. Find an orthogonal Q@ € R™ such that Qf'S =S,

where

and Sz has the lower triangular shape shown.

Step 2. Calculate J = JQ,

A
Rm(n » and J2 € R"*P denote the

A

first n-p and last p columns of J, respectively.

-~ Let .J'l €

— Define d = Qtd,

- Let d1 € R"® and cl2 € R® denote the first n-p

and last p components of d, respectively.

Second transformation: Steps 3-4 transform the system of

equations (3,14) to

3
[}
o
o
©

n-p

b1
G
(-
a > ol
+
N
1
0>
>

o]
m
o
wl
Y}
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a "large" system of n—p equations in n unknowns

d)" =0 (3.15a)

=0 (3.15b)

This 1s accomplished by premultiplying (3.14) by the appropriate

orthogonal matrix,

Step 3. Find an orthogonal Q € R™ and a permutation

matrix P € R®P*"P) oich that
n-p
A A jl{ To) n-p
Q Jl P =
0| p

31 is upper triangular with a nonzero diagonal.

Define d = Pl‘ d,d e RP,
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Step 4. Calculate

o

i
]

'
o

Q>
>
]
i
]

Similarly calculate 4 = 6A,

- Let Zle R™™P® and Zze RP® denote the first
n-p and the last p rows of 4, respectively;

- Calculate F = 55’,

- Let f‘le R"? and f‘ze R® denote the first n—p

and last p components of F, respectively.

Step 5. Solve (3.15b) in the least squares sense

minimize || F + Jd + = A (S
d e RP 2 2
2
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Step 6. Backsolve (3.15a) for Hl

A

Step 7. Calculate d = p’&l, d = Qd.

The first wvirtue of Algorithm 3,1 is its efficiency. The
dominant cost in Algorithm 3.1 is the QR factorization of 31 which
requires about 2nd/3 - nzp + O(nz) multiplications. The next largest
cost is the 2nzp + O(nz) multiplications for the matrix multiplication
JQ in step 2. All other portions of steps 1-7 require at most O(nz)
multiplications.

The other virtue of Algorithm 3.1 is its numerical stability,
even when the Jacobian J is singular or ill-conditioned. The whole
point of the tensor algorithm when J 1is singular is that the
possibly singular submatrix 33 is used in the system of quadratic
equations (3.15b), which also contain a portion ot the second order
infomation in the tensor model. This system 1is not necessarily

ill-conditioned even if 73 is; for example, one quadratic equation in

one unknown with no linear term is usually not ill-conditioned.
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3.2 Application of the Tensor Method to Load Flow Calculations

3.2 1 Introduction

Standard load flow algorithms using digital computers have
been developed and have worked well for well-conditioned power systems
(most systems) . These include the Gauss-Seidel method, the
Newton-Raphson method and its principle off-shoot, the Fast Decoupled
load flow method.

A problem as yet to be adequately solved, and which has been
tackled recently by many researchers [Iwamoto & Tamura 1981], [Tripathy
et.al 1982], is how to solve the ill-conditioned power system Lload
flow problem and determine the existance of solutions. Features which
cause instability and divergence in the load flow calculations were
listed in Chapter I. Mathematically, the nonlinear equations which
described the system are such that small changes in the parameters will
cause large changes in the solutions. So far, few methods have
successfully solved the ill-conditioned load flow problem, while many
proposals do not seem to provide much improvement. In order to
incorporate more load flow information into the computation, the tensor

method is applied to solve the ill-conditioned load flow problem.

3 J 2 Formulation of the load flow tensor model

3.2.2.1. The load flow function F(x)

As stated in chapter I, the load flow study determines the
complex voltages at the svstem buses for a particular loading condition

of the system. To do this with the help of a digital computer, a set of
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equations expressing the active and reactive powers at the buses in
i terms of complex voltages is needed. For a network having n nodes
excluding ground, the following compact form of n equations can be

written for current:

I = Y Y VvV, i=1,--,n, (3.18)
t JEL Ho
where
fi = complex current entering in the bus i,
VJ = complex voltage to ground of the bus j,

= complex admittance between buses 1 and j,
when i = j, Y1J is the self admittance,

when i = j, Yij is the transfer admittance.
J € 1 signifies that bus j is connected to bus :,

including the case j = i.
In a power system, however the complex power is the most

important quantity. From circuit theory the complex power injection

into a bus can be expressed as
P +jQ = VI (3.19)

L
Superscript in the above equation indicates conjugation. Substituting

equation (3.18) into equation (3.19),

P +Q =V Y Y 7V L= 1,0, (3.20)
€




b <

Using polar notation for V, ?i - 02[61, and rectangular notation for Y,

Yis- GiJHBu' equation (3.20) becomes:

- 3.21
P =V ), Vj ( Gidcos'Sij + 31351n613 ) ( a)
3EL
- i - 3. b
Q =V, ) v, (G, sins B, cosé ) (3.21b)
i€1
where
i=1,---,n
and 613 - 61— GJ

This is a standard formulation of bus power injections versus the

complex bus voltages.

In the load flow calculations, a number of quantities are

specified. Typically:"

P is specified for all buses except one "slack" bus, (n-1),
Q 1is specified for all the load buses, (n-pv-1).

V is specified for all generation buses, which are often
known as PV buses, and for a slack bus, (pv).

6 1is specified only for one reference bus,

The dimension of equation (3.21) now becomes (2n-2-pv) and
there are (2n-2-pv) unknowns.

Load flow algorithms check the difference or mismatch between
specified bus power values and calculated bus power values. Therefore,

the following mismatch equations are used:
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4P =~ P7 -V, ) V (G, cosé =+ B sin§ ) (3.22a)

JEi
3p — s -
aQ, = Q 4 321 VJ(GU31n811 Bijcos6id) (3.22b)
f=1,.v+,n-1,

This is a set of (2n-2-pv) nonlinear equations. There are (n-1)
equations for bus real power mismatch APL and (n-1-pv) equations for
bus reactive power mismatch AQL.

From equation (3.22) the load flow calculation problem can be
restated as this: For the certain specified loadings of P:p, Q:p, 1 o=
l,.--,n-1, find the complex bus voltages Vi, 161, i = 1,---,n-1, so
that all the bus power mismatches API, AQI, 1 = 1,.--,n-1, are within

the required tolerance The reader should note that the subscript i for

AQi and Vx may not be consecutive here.

3.2.2.2. The load flow Jacobian J(x)

The load flow Jacobian is the derivative matrix of the real

and reactive power mismatches with respect to the voltage states-

dAP EYIN 3aP

ax*® a6° av*
- (3.23)

3AQ 340 3AQ

ax" as" av*®
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while the elements in each submatrices are shown as follows:

13

i

13

ii

J
13

ii

L
i

i1

aaP
——* = - VV (G sin§ — B cosé ) J= 1
i3 i i3 i3 i3
as
J
aAPi
-V Yy V(G sin§ — B cos§ )
881 i = i3 i3 i i3
i
aAPi = -V (G coss + B sin§ ) * i
i7 43 i3 i3 i3 J
av
J
aAPi
-— 3y V (6,,cos§ + B sin§ ) - 2V.G
aVi j€1 3 J N 1
%1
a8Q,
= VV (G cos§ +B sin§ ) J=*1
1343 ij ij i3
aé
J
BAQi
==V, L VI, cos§ + B sins )
asl JEd 3 J 3 J J
%
aAQL
-— Vi(G“smsuu Bucos6u) J =1
av
J
aAQ1
-— Yy V (G sin§ - P cosé ) + 2V3B
av = J J J 3 13 i iz
* RE B¢

3.2.2.3. The second

order term

The second

order term of the tensor model was formulated in

general in the section 3 1.2 1In the following, the second order term

in the load flow model is introduced. First, we explain how the past
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load flow iterates {Xlk} are selected; then how to construct the J
matrix and the M matrix; and finally how to calculate the A matrix and
the complete second order term.

In the load flow study, the state x is chosen as the
components of the complex bus voltages, that is the bus voltage angle &
and the bus voltage magnitude V. Hence, each difference vector s, has

the following form:

Ab ) 6

s, = - - (3.24)
Av |4 v

where the notation is understood.

We always choose the most recent iterate xc, then select each
preceding past iterate X_, if the step from it to X makes a angle ot
at least 450. Normally a flat start value (60- 0, Vo- 1) is used as an
initial guess in the load flow program, so that we set the starting
past iterates to have 6_k= 0 and V_kz 1.

Now we describe how to formulate the Z and M matrices
Corresponding to equation (3.8b) we formulate each vector component z,
in the Z matrix by substituting the load flow functions (3.22) and the

load flow Jacobian (3.23) in, we have,
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z | =2 - - ' (3.25)
8Q_, AQ J av

t~

where this notation is also understood.

Next we formulate the M matrix. Each element m(i,j) is equal
to the square of the inner product between the ith direction vector s,

and the jth direction vector s
3

¢ 32
ad; | AV g
M(i,j) = 1 S (3.26)
AV
J
where
i=1l,--o,p; Jj=1,--+,py p=J 2n-2-pv .

Therefore, M is a square matrix and has the dimension of PXp.

The last step in the formulation of second order term is

calculating the A matrix. As described in Theorem 3.1, 4 = ZM*, 4 €

(2n-2-pv) .
RisOTETRVIXR Finally, the complete second order term can be formulated

as

3 |

A (S'd)%, where S € RPFPV® L4 it is composed of p past

direction vectors sk, k=1, . ,p.

3.2.2.4 Complete tensor model equations

By combining the second order term to the Newton load flow
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model, we now have the complete tensor model equations for load flow

study.

4 . 32
AP H N AS Ab
+ + % A 1 S + = 0 (3.27)
AQ J L AV AV
\ L J

This is a set of 2n-2-pv nonlinear equatins for a n bus power
system load flow problem. Since we only use p past iterates to estimate
the second order terms, actually, equation (3.27) should be quadratic
in p variables and linear in the other (2n-2-pv)-p variables

The simple form of this quadratic term makes it easy to
efficiently store and solve load flow equations in the second order
formulation. Compared to those previous second order methods [Sachdev
1977] [Iwamoto 1978) [El-Hawary 1982] ([Nagendra Rao 1982}, the
simplicity of the proposed method can easily be realized A more
important feature of this formulation is that with the small changes
added to the existing Newton method, the ill-conditioned prohlem which
sometimes occurs in the load flow Jacobian matrix can now he easily
solved Numerical simulations carried out so far both on
well-conditioned systems and ill-conditioned systems give very good

convergence performance.
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3.2.3 Solution of the load flow tensor model

3.2,3.1. Solution algorithm

A solution algorithm is now proposed to solve the load flow
tensor model. The tensor method 1is the principal component of the
solution strategy. Another important component, used as an alternative,
is a modified Newton method ([Dennis & Schnabel 1983]. As reported
below, the latter is used when the tensor step fails to compute an

acceptable state correction.

Algorithm 3.2 An iteration of the tensor model

Given X_, F(xc);

Step 1: Select the past points to use in the tensor model
from the (p + iteration number) past points.

Step 2: Calculate the second order term of the tensor model,
so that the tensor model interpolates F(x) at all the
points selected in step 1.

Step 3: Find the root of the load flow tensor model.

Step 4: Select X - xc + Acdc, where dc either is the step
calculated in step 3 or the modified Newton step,
using a line search to choose Xg

Step 5 Calculate the 2-norm power mismatch of F(x) and
decide whether to stop; if not Set X X, F(xc) «

F(x+), go to step 1.

The reason of using the 2-norm of the bus power mismatches in

Step 5 1is that we always have a solution and the program never
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diverges. The value of this quantity becomes eventully zero if there is
a solution from the initial estimate, and stays at a positive value if
no solution exists. Here the positive wvalue is the least squares
solution of the problem. From this we can know how close we are from
the actual solution. This idea was first introduced by [Sasson 1969)

The strategy used in Step 4 is as follows: if in Step 3 we
find a root of the tensor model, then we will use this step to update
the current state variable x = (ASC,AVC); and if there is no such root
for the tensor model we will apply the modified Newton step

In the simulation tests performed so far, for
well-conditioned power systems like the 5, 6, 10 bus systems, we always
find roots of the tensor models. Even for some claimed ill-conditioned
power systems like the 13 and 20 bus systems, [Tripathy etc. 1982 and
[Behnam-Guilani 1987] respectively, we have found roots of the tensor
models at every iteration. Only for the very badly ill-conditioned
power systems like the 11 and 43 bus systems, [Iwamoto & Tamura 1981}
and [Tripathy etc. 1982], the algorithm has chosen the modified Newton
step, for 1 or 2 iterations.

The modified Newton method implements the Levenberg-Marquardt

step [Dennis & Schnabel 1983]. It is shown below:

d = - (J7+al) ' J* F(x) (3.28)
n c C c [+

where

a = /n*machineps || J:Jcll1

The complete strategy for choosing between the tensor or the
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modified Newton search direction is given in algorithm 3.3 below:

ALGORITHM 3.3 Step selection

Let Jc = load flow Jacobian F'(xc),

dT = root of the tensor model,

dN = modified Newton step,
IF (no root of the tensor model was found) THEN

X, « xc+ Acdu, Ac € (0,1) selected by line search
ELSE

X, - X+ Ach, Ac € (0,1) selected by line search

ENDIF

3,2.3.2. Program implementation

The main flow chart of our computer implemetaion is shown in
figure 3.1. Some of the more detailed extra steps are given in what

follows:

Step 1. Initialize all the variables before iteration

(a) Calculate computer machineps for later use in the
modified Newton step.

(b) Read system source data. (number of buses, lines,
specified generations, loads, etc.).

(¢) Formulate admittance matrix Y.

(d) Set iteration counter and solution accuracy, set
starting estimates of state xc(SO,VO) equal to 6i°)=0
and Vio)-l, also generate starting p past iterates

lxm), and generate $ matrix.
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Figure 3.1 Main Flow Chart
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Step 2.

Formulate tensor model

(a)

(b)
(c)

Step 3.

Select new p past iterates from the set of past
iterates (x*), formulate new S matrix. This step is
bypassed in the first iteration. The Angle 4 for
choosing more orthogonal past iterates is set here to
be 45°.

Calculate F(xc), J(xc), F(x_p).

Formulate the Z, M, and A matrices.

Solve the tensor model

(a)

(b)

(e¢)

Estimate the condition number of the load flow
Jacobian J matrix. Standard Linpack subroutine DGECO
was used for this implementation. If ill-conditioning
is detected, compute the modified Newton step for
later use.

Two QR decompositions are performed here, on the S
matrix to get a lower triangular matrix Sz, and then
on the J1 matrix to split 21 from the p nonlinear
equations. Both are implemented by using Linpack
subroutines DQRDC, DQRSL [Dongarra et.al. 1979].
Calculate the condition number of J3 and set an

A
P . (0)
initial estimate d2

for the p nonlinear equations,
For well-conditioned J3, we use the standard Newton
step as the initial eséimate. If the conditioning of
the system is very bad (very large condition

number), in order to avoid unreasonably large state

corrections we choose the modified Newton step to
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(d)

(e)

Step 4,

start the iteration. Same as in the step 3 (a)
Linpack subroutine DGECO is used here.

A nonlinear equation solver NSOlA in the Harwell
Subroutine Library [Hopper 1977] was used to solve
the p nonlinear equations in p unknowns. The call
function used here is the small system corresponding
to equation (3.15b),

For the remaining n-p linear equations, we applied
Linkpack linear equation solver DGEFA and DGESL. The
corresponding equation solved here is the large

system equation (3.15a).

Step selection

(a)

(d)

Step 5.

Determinate the step to use. This is accomplished by
checking the error return messages given by the
nonlinear equation solver. If there is a solution,
which means the tensor model has a root, then we will
choose the tensor step, otherwise if the error return
message indicating that there is no solution close to
the given initial estimate, then we will select the
modified Newton step.

Check if the full step is applicable If not, a

simple backtrack line search strategy is used.

Convergence test

(a)

Calculate the 2-norm value of the bus power

mismatches || F(x) Hz .
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(b) Check if solution accuracy has been reached, if not

go back to step 2; if yes, forward to step 6.

Step 6. Line flows and output results

(a) Calculate system line flows based on the solution
state x (§ ,V).
S s k-3
(b) Output the solution results: bus data, line data, and

system data,

3.3 Summary

A new method of solving nonlinear equations is introduced in
the beginning of this chapter, namely the tensor method, which is
especially suitable of solving ill-conditioned nonlinear systems
Application of the tensor method to solve the power system load flow
problem is carried out in the latter part of this chapter Both the
formulation and solution of the load flow tensor model are explained
thoronghly, and details of our computer implementation are given in the
final section. Although the proposed tensor riethod seems mathematically
more complicated than the widely used stardard Newton method and the
Fast Decoupled load flow method, its superior numerical stability on
the tll-conditioned problems and fast convergence rate make it very
attractive With skillful sparse programming techniques applied, it is
very likely to perform the load flow calculations in real-time for

electric power networks.
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Chapter IV

Numerical Simulations

4.1 Introduction

A load flow program has been written implementing the ideas
of chapter 111 for finding the ill-conditioned power system load flow
solutions. Extensive numerical simulations have been carried out on the
11, 13, 20 and 43 bus ill-conditioned systems, as well as 5, 6, and 10
bus well-conditioned systems This chapter documents and analyzes all
the simulation results,

The above chosen systems found in the literature impose a
particular problem — difficulty in converging to a solution I[n our
simulations, a measure of this ill-conditioning is computed and L1t was
found that the condition numbers of the ill-conditioned systems are
much  higher than for the well-conditioned systems Deupite
ill-conditioning, we solved all the above systems by the tensor method
Comparisons with the Fast Decoupled load flow method have also bheen
made. In general, the tensor method shows wvery good convergence
characteristics on both ill-conditioned and well-conditioned problems

The results are presented for each ill-conditioned aystem
separately and for the three well-conditioned systems altogether
Contents of the various tables and graphs in each section will be
discussed in detail The format for presenting the results in this

3

chapter is as follows.
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In the simulation of ill-conditioned systems. First, the load
flow solutions reached for each system 1is presented. Then, the
convergence characteristics are shown, and the ill-conditioning of the
system is analyzed. Finally, for the 11 and 43 bus systems, some
special features of the program are discussed.

Following the sections for ill-conditioned systems, the
results for the three well-conditioned systems are given and discussed.

This chapter «closes with a discussion on the general
performance of the proposed tensor method and comparisons with standard

load flow methods

4.2 Simulation on an 11 Bus System

The 11 bus system is taken from the paper by [Tripathy et.al
1982]). The line and bus data are only available in the form of Y
admittance matrix elements and net bus powers. These data and the

schematic diagram for the 11 bus system can be found in Appendix 4.1.

The number of variables in this system is as follows;

Number of buses: 11
Number of transmission lines: 11
Number of generations: 1
Number of loads- 5
Number of state variables: 20
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4.2.1 Load flow solutions

The program solved this system for the given data in seven
iterations, to reach a prescribed tolerance of 0,001 MW(MVAR) for the
2-norm value of bus power mismatches. The final solutions for the 11

bus system are given in Table 4.1.

Table 4.1. Solutions of 1l Bus System
Voltage Angle Real Mismatch | Reactive Mismatch
Bus v(p.u.) § (deg.) | aP| () |a@ | (MVAR)
1 1.071 —24 605 0 234e-3 0 229e-4
2 1 057 -2 408 0 688e-5 0 llbe-4a
3 1 046 -4 102 0 182e-5 0 722e-5
4 1.031 -2.836 0 35%-4 0 4Bhe-4
5 1 035 -4 851 0 488e-5 0 859%e-5
6 1 051 -2.920 0 571le-5 0 207e-4
7 0 810 -12.504 0.2%4e-4 0 968e-4
8 0.910 -15 390 0 196e-3 0 392e-4
9 1 195 -16 319 0 163e-3 0 139%e-3
10 0 816 -21 872 0 235e-3 0 163e-4
11 1.024 0.0 — -

This is a reasonable and accurate solution for the system
From the data and schematic diagram, we know this 1s a radial system
with only one generation at one end (bus 1l1) of the network The other
end (bus 1) has a large load, thus requiring cthe entire system to
transfer power from the generation bus. This results i1n the largest bu,
voltage phase angle (-24 60) being at load bus 1 This configuration
also causes low bus voltage magnitudes at connection buses 7, B, and

10, which read 0 81, 0 91, and 0 816 respectively
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4.2.2 Convergence characteristics

Previously, load flow calculations for the 1] bus system were
considered divergent by any method [Iwamoto & Tamura 1981] except for
Brown's method [Tripathy et.al. 1982] Applying the proposed tensor
method, the program has never diverged. In fact, it reduces the 2-norm
bus power mismatch at every iteration In this simulation the program
converges verv quickly with only 7 iterations to reach a tolerance of

0 001 MW(MVAR) Figure 4 1 shows the convergence characteristics of the

11 bus test system
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Figure 4.2. Condition number vs. iteration for 11 bus system

4.2.3 Ill-conditioning

Physically, this 11 bus system has two reasons to he
considered an ill-conditioned power system First, it has a long radial
network; secondly, there is only one generation bus and it lies at one
end of the network To supply the large load at bus 1, power can only
be transferred from the other end of the network, which makes for
difficult operation of the system

In the simulation, this 1ill-conditioning phenomenon was
detected using the condition number of the load flow Jaceobian matrix
Our simulations show that this system has a very high cendition numher
at the solution For a general well-conditioned system of dimension 20,

the condition number 1s typically around the hundreds For this

h2
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particular system, however the condition number at the solution is
around 30,000 Also we noticed in the third iteration an extremely high
condition number (62,889) The tensor model did not have a root in this
iteration, so to avoid large changes in the state wvariables, the
program selected a modified Newton step for this iteration

Figure 4 2 shows the 11 bus system condition number wersus

the iteration number.

4.2.4 Behavior of the modified Newton step

In the simulations carried out on the 11 bus system, we found
two solutions for the given data in different runs Both of them seem
reasonable, but one is definitely a better operating condition than the
other, being closer to the flat voltage profile.

We noticed that this behavior of the algorithm is related to
the size of the modified Newton step. Actually it depends on the step
size "a" value in equation (3.28) This defines how much change is made
to the diagonal elements in the ill-conditioned load flow Jacobian
matrix

In the first case we use the modified Newton step (3.28)
without changing the a value. The program takes 17 iterations to reach
a tolerance of 0 01 MW (MVAR) on the 2-norm bus power mismatch This is
our first solution of the problem In this solution process we observed
large corrections are made 1n the system bus voltages from one
lteration to the next In the first two iterations the voltage
magnitude at bus 10 had dropped down to a value of 0,155 p u and then
slowlv climbed back At the solution, the lowest bus voltage is 0 731

p u at bus 10
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To avoid unreasonablly large corrections in the svstem bus
voltage calculations, we modified the a value in the equation (3 28)

to the following value,

o = //105wn~mach1neps HJz JJII

This results in the second solution, the better solution, which 1is
given in Table 4.1. With this new a value, the program homed in on the

load flow solutions more rapidly.

4,2.5 Single precision problem

In solving the 43 bus system, we extended the memory
requirement beyond the 640k byte DOS memory limit when using a double
precision version of the program. In the case of the 41} bus system, a
single precision program was used and converged very slowly In order
to gain more information on the performance of the single preciaion
version program, a version of the 1l bus system was also run in single
precision.

In our single precision test on the 11 bus system, after
three iterations, the largest element of the initial guess sent to the
nonlinear equation solver (Newton step in the small system) bhecomes
less than 10°° For the second order term B T(dd}2

2
a machine accuracy of (10-2»(10-2)2 - 10-8 which is out of the single

, therefore, we need
precision accuracy Hence the tensor model can not he correctly

presented, and consequently the program could not find the root of the

tensor model Then the program chose the modified Newton step 1instead,
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which resulted in very slow convergence.

When the double precision

program was excuted, this kind of problem did not happen.

4.3 Simulation on a 13 Bus System

The 13 bus system is taken from [Zollenkopf 1968] The system

is claimed difficult to solve because it contains two series capacitors

and also because of the position of the slack generator. The data and

the schematic diagram for this system can be found in Appendix 4.2

The number of variables in this system is as follows:

Number

Number

Number

Number

Number

Number

of

of

of

of

of

4,3 1 Load flow solutions

The program solved this

buses:

transmission lines;

generations:
loads:
transformer taps:

state variables-

13

13

6

4

3

19

system for the given data in six

iterations to reach a prescribed tolerance of 0 001 MW(MVAR) for the

2-norm value of bus power mismatches. The final solutions for the 13

bus system are given in Table 4.2.
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Table 4.2. Solutions of 13 Bus System
Voltage Angle Load Generation

Bus | yipou) | s(deg ) Pltpu) | Qupud) | P(pu) | Qu(pou)

1 1.054 1 571 0.0 00 0.0 00

2 1.143 2.530 00 00 0.0 00

3 1.135 2.548 0.0 00 00 0.0

4 1.063 8.891 00 00 00 00

5 1.044 5.122 00 0.0 0.0 0.0

6 1.067 7.988 -0.050 -0 032 0.0 00

7 1.017 12.003 —0.050 -0 030 00 00

8 0.943 14,246 0.0 00 0 500 -1 006

92 1.100 8.232 0.0 00 00 -0 086
10 1.100 8 020 00 00 00 -0 784
11 1.000 2.623 0.0 00 00 -0 335
12 1.037 9.681 —0.050 -0.030 0 500 -0 421
13 1.000 0.0 -1.650 -0 560 0 824 0.146

Power Base = 1000 MVA

4,3.2 Convergence characteristics

The 13 bus system is claimed divergent by the Gauss-Seidel
method [Zollenkopf 1968], (Keyhani et al 1989] Our own Fast Decoupled
load flow program solves this system in six iterations to reach a
tolerance of 0.001 MW(MVAR) for the maximum real or reactive power
mismatch Applying the proposed tensor method, the program converpges
very fast, requiring only six iterations to reach a tolerance of 0 00]
MW(MVAR) for the 2-norm value of bus power mismatches, which 1s 4 more

accurate tolerance Figure 4 3 shows the convergence characteristics of

the 13 bus test system
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Figure 4.3. Power mismatch vs. iteration for 13 bus system

4.3.3 Ill-conditioning

This 13 bus system seems difficult to solve because it
contains two series capacitor branches. Actually from our simulation
results we found that the condition number of the system is always low.
In fact, this system is fairly well-conditioned. This explains the
success of our Fast Decoupled test, despite claims of difficulcty from
previous authors

Figure 4.4 shows the 13 bus system condition number versus
the iteration number. From the figure we see that the condition number
of this system at the solution is only 71. In the Ffirst iteration, it

is 281 which is quite normal for a 19 dimensional system.
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Figure 4.4. Condition number vs. iteration for 13 bus system

4.4 Simulation on a 20 Bus System

The 20 bus system is taken from [Behnam-Guilani 1987] It is
difficult to solve because of the predominantly radial topology,
atypical circuit parameters and clustered generations and loads The

data and the schematic diagram for this system can be found in Appendix

4.3.

The number of variables in this system is as follows’

Number of buses: 20

Number of transmission lines: 22
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4,4,1 Load flow solutions

Number of generations:

Number of loads:

Number of state variables:

iterations to reach a prescribed tolerance of 0.001 MW(MVAR) for the

2-norm value of bus power mismatches.

The program solved this system for the given data in seven

bus system are given in Table 4.3.

The final solutions for the 20

35

Table 4.3. Solutions of 20 Bus System
Voltage Angle Load Generation
Bus 1 vip u) | s(deg.) Pp.u) | Qu(pou) | P (pou) | Q (pou)
g g
1 0.975 ~4.,328 -1.500 -0.300 0.0 0.0
2 0.801 -14.,932 ~0.100 00 0.0 0.0
3 0.998 0.153 0.0 0.0 0.0 0.0
4 0.901 ~15,446 -3.800 -0.600 0.0 0.0
5 1.001 3 923 00 0.0 0.0 00
6 0.968 -8.293 0.0 0.0 0.0 0.0
7 1 020 -3.341 -0 200 0.0 0.0 00
8 0.789 -15 305 -0 100 -0.200 0.0 0.0
9 0 999 9 333 0.0 0.0 0.0 0.0
10 0 991 7.024 -0.500 -0.100 0.0 0.0
11 1.002 1.779 0.0 0.0 .0 0.0
12 1 020 ~2 784 00 0.0 0.0 0.0
13 1 002 0 909 0.0 0.0 0.0 0.0
la 1 000 10 608 0.0 -0.100 0.0 0.0
L5 1 001 -0.393 0.0 0.0 0.0 0.0
16 0 804 -14.726 -0.100 0.0 0.0 0.0
17 1.000 ~-13 111 00 00 1.000 1.778
18 1.000 0.566 0.0 0.0 1.000 -0.169
19 1 000 10.720 00 0.0 1.000 -0.050
20 1.000 00 00 0.0 3.925 0 337

Power Base = 100 MVA
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Figure 4.5. Power mismatch vs. iteration for 20 bus system

4.4.2 Convergence characteristics

Not many comparisons have been made previously on the
convergence rate of the 20 bus system [Behnam-Guilani 1987]. Our Fast
Decoupled load flow program solves the system in 22 iterations to reach
a tolerance of 0.001 MW(MVAR) for the maximum bus power mismatch.
Applying the proposed tensor method, the program converges in only
seven iterations to a tolerance of 0,001 MW(MVAR) for the 2-norm value

of bus power mismatches. Figure 4.5 shows the <convergence

characteristics of the 20 bus test system
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Figure 4.6, Condition number vs. iteration for 20 bus system

4.4 3 Tll-conditioning

The 20 bhus system is claimed hard to solve in [Behnam-Guilani
1987] This difficulty was evidenced in our Fast Decoupled load flow
program, which required 22 iterations to reach an accurate solution By
contrast, the ill-conditioning has little or no effect on the tensor
method, as witn>ssed in the convergence shown 1in figure 4.5 The
condition number of the system was slightly high (around 600) for this
35 dimensional system.

Figure 4 6 shows the 20 bus system condition number versus

the iteration number.
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4.5 Simulation on a 43 Bus System

The 43 bus system is also taken from [Tripathy et al. 1982].
The line and bus data is only available in the form of Y admittance
matrix elements and net bus powers These data and the schematic

diagram for the 43 bus system can be found in Appendix 4.4

The number of variables in this system is as follows-*

Number of buses 43
Number of transmission lines 42
Number of generations 5
Number of loads: 15
Number of state variables: 84

4.5,1 Load flow solutions

The program solved this system for the given data in seven
iterations to reach a tolerance of 0 07 MW(MVAR) for the 2-norm value
of bus power mismatches The corresponding maximum real and reactive
power mismatches are 0 0077 MW and 0 0286 MVAR The final solutions for
the 43 bus system are given in Table 4 4

The large dimension of this simulation resulted 1n a memory
management problem The double precision version of the program exceeds
the 640k bytes memory space limit set by DOS Therefore, a «ingle
precision version program was actually tested As discussed earlier,
the single precision contributes to the slow convergence, which

improved only marginally after the third iteration
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Table 4.4. Solutions of 43 Bus System
Voltage Angle Real Mismatch | Reactive Mismatch
Bus V(p u ) 5 (deg ) |aP | (MW) | aQ| (MVAR)
1 1 032 -11 698 0 203e-3 0 32%e-3
2 1 045 -11.137 0 171e-2 0 508e-2
3 1 031 -15 163 0 727e-3 0 28le-3
4 0 999 -13 690 0 613e-3 0 852e-3
5 1 042 ~-11 256 0 54le-4 0 136e-2
6 1.044 -11 506 0.555e-3 0.731e-3
7 1 049 ~15 199 0 667e-3 0.990e-3
8 1 022 -13 358 0 165e-2 0 382e-3
9 1 020 —-13 381 0 833e-4 0.751e-3
10 1 023 ~13 510 0 10le-2 0 667e-5
11 1 023 13 494 0 393e-3 0.863e-3
12 1 051 -15 430 0 279%-3 0 122e-2
13 1 001 ~13 654 0 530e-3 0.854e-3
14 1 018 ~14 532 0.656e-3 0.826e-3
15 1 041 -11 389 0 538e-3 0 26le-3
16 0 987 -17 519 0 64le-3 0.551e-3
17 1 023 -13 499 0 876e-3 0 328e-3
18 1 021 -15 883 0 65le-3 0.184e-3
19 1 043 -16 264 0 192e-2 0 388e-2
20 1 053 ~14 300 0 653e-3 0 1llde-2
21 1 012 -13 231 0 492e-4 0 187e-2
22 1 040 -16.319 0 672¢-3 0 16le-2
23 1 020 -13 278 0 668e-3 0 558e-3
24 1 038 ~-16 999 0 3l6e-3 0.238e-3
25 1 009 -13 418 0 404e-3 0 122e-2
26 1 022 ~21 094 0 196e-2 0 325e-2
27 1 035 -15 360 0 502e-3 0 886e-4
28 1 039 -11.553 0 106e-2 0.109%e-2
29 1 017 -13 171 0 947e-3 0 193e-3
30 0 910 -12 533 0 39le-2 0.213e-1
31 1 039 0 0002 0 172e-3 0 567e-3
32 0 98¢ ~6 505 0 768e-2 0 176e-1
33 1 006 -17 557 0 273e-2 0 215e-1
R 0 859 -22 928 0 197e-2 0.259%e-1
35 1 008 -17 116 0 275e-2 0 215e-1
36 L 027 ~24 078 0 237e-2 0.203e-1
37 1 004 -4 890 0 194e-3 0 758e-3
38 0 927 =22 906 0 221e-2 0 258e-1
39 1 034 -11 673 0 328e-3 0 704e-3
40 0 904 -~12 759 0.295e-2 0 236e-1
41 1 013 —-14 589 0 640e-3 0.701e-3
42 0 871 =20 329 0.308e-2 0.286e-1
43 1 136 00 — —
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Figure 4.7. Power mismatch vs. iteration for 43 bus system

4.5.2 Convergence characteristics

Figure & 7 shows the convergence characteristics of the 473
bus testing system, using the single precision version of the program.
The reason for such slow convergence after three iterations is that the
direction vector d in the tensor model drops to less than 107 Agaln,
in the second order term of the tensor model we need at lcast a machine
accuracy of 107° to correctly incorporate this information, but this
cannot be satisfied by the single precision program That also explaina

why after three iterations the program could not find the root ¢ *h

T

tensor model Instead, with a modified Newton step we get a very slow
convergence rate Based on our similar simulations carried out on the

11 bus system, it is felt that convergence would be faster if double
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Figure 4.8. Condition number vs. iteration for 43 bus system

precision could be used.

4 5,3 1Ill-conditioning

The 43 bus system is claimed difficult to solve by many
researchers {Stott & Alsac 1974] [Iwamoto & Tamura 1981] [Tripathy
et.al 1982] This svstem is difficult to solve because of high R/X
ratios, some negative line reactances, and because of its radial
topology

In the simulation this ill-conditioning phencmenon was
observed. Figure 4.8 shows the 43 bus system condition number versus
the iteration number This system has a very high cc dition number

(around 25,000) at the solution, as for the 1l bus system. Even though
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the condition number at the second iteration is extremelv high

(51,125), our program still found a root for the tensor model

4.5.4 Behavior of the modified Newton step

In the simulation of this 43 bus system, as for the 1l bus
system, the size of the modified Newton step has been an important
factor in improving the convergence

At the beginning we applied equation (3 28) without changing
the a wvalue, but the convergence was very slow. The correction on the
state variables 1is about 0 1% per iteration Then we tried various

values for a. The fastest convergence was obtained with,

a = /10-8~n~machineps HJZJCHl

For the time being, we only set this a value at the beginning
of the first iteration. The optimal a wvalues for each individual
iteration would be very useful to gain an overall fast convergence, but

the computational effort required is unknown.
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4.6 Simulations on Well-Conditioned Systems

In order to test the wversatility of the tensor method,
simulations were also carried out on the well-conditioned systems A 5
bus system from [Xi'an Jiao-tong University 1978], a 6 bus system from
[Dhar 1982] and a 10 bus system from [Huneault 1988] are chosen
Comparisons between the Tensor method and the Fast Decoupled load flow

method have been made

4 6.1 Convergence characteristics

These well-conditioned systems are solved without difficulty
by the standard methods, but the convergence rates of these methods
are quite different Applying the tensor method to the load flow
calculations, fast convergence rates were obtained for the 5, 6, and 10
bus systems On solving the 6 and 10 hus systems, the tensor program
only needed 4 iterations to reach a tolerance of 0 001 MW(MVAR) 1n the
2-norm value of bus power mismatches For the 5 bus system, which is
quite heavily loaded, the program takes 5 iterations to reach the same
accuracy In comparison, our Fast Decoupled load flow program required
10, 5 and 5 iterations for the 5, 6 and 10 bus systems respectively

Figure 4 9 shows the convergence characteristics of these

well-conditioned svstems by use of the tensor method.
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4.6.2 Condition number

Conditioning of the 5, 6, and 10 bus systems were also
tested. with condition numbers presented in Figure 4 10 These values
are all quite small. The 5 bus system has a higher condition number

than the 6 and 10 bus systems, possibly because it is more heavily

loaded.
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4.7. Discussion

This section regroups the general results and comments made
in the previous descriptive sections 4.2 to 4.6 It discusses the
general behavior of our tensor algorithm as observed in the results,
and proposes a comparison of the more important aspects between the
tensor method and standard load flow methods.

In our tests the convergence observed for all the systems
except the 43 bus (see the reason in Section 4 5) seems quadratic On
most of the problems, the program only needs 3 or 4 iterations to get a
acceptable solution and 6 or 7 iterations to reach an accurate

solution

79




The other advantage of the proposed tensor method is 1ts
numerical stability In our tests, the program based on Algovithm 3 !
solves all the test problems In studying the results, we found that it
reduces the bus power mismatches at every iteration

In practical planning, engineers often talk of "weak
systems" Loadflow solutions may become difficult for such systems when
the wvoltage operates on the verge of instability Typically, whuore
system voltages drop to about 80% or below, loadflow solutions otten
fail to converge In our simulation on the 11 bus system, the tensor
method shows great numerical stability in solving such kind of "weak
systems". In this case, the voltages at certain buses dropped to about
81%, still the tensor method succeeded in finding a solution

In our simulations the step chosen by the algorithm in most
cases 1is the tensor step, especially when approaching a load tlow
solution. This tensor step is observed to approach to a solution taster
and is more stable than the standard Newton step In some cases, when
the ill-conditioning of the system is extremely bad, like tor the 11
and 43 bus systems, the modified Newton step is required. We find that
the size of the modified Newton step is very important To obtain the
fastest convergence characteristics, the a value in the modified Newton
step needs to be determined At the current stage, we do not have an
algorithm to select the optimum o value automatically Instead, we
accomplished this by running many different trials

The preselected past iterates also showed some effect on the
difficult problems We noticed 1n the simulations that the larger the
angles between these past iterates, the hetter the stability of the

algorithm. Normally, it is not difficult to find such past 1terates
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The tensor algorithm converges for the well-conditioned
systems in fewer iterations than for the standard methods. This is not
to say that the tensor method is faster than the standard load flow
methods, because the latter may reqiure less time per iteration The
two groups of programs (FDLF and TLF) are difficult to compare for
times, because one was using compact storage taking advantage of sparse
matrices, and the other was not. Nevertheless, the fewer iterations

required by the tensor method are impressive.

Table 4.5. Convergence Comparison with FDLF Method"

Type of Number of Iterajons to solution
system buses FDLF method Tensor method
I11- 11 divergent 7
conditioned 13 6 6
systems 20 22 6**
ys 43 22 7
Well- 5 10 5
conditioned 6 5 4
systems 10 5 4

*  Solution accuracy set to be maximum power mismatch
less than 0 001 MW and/or MVAR.

** In this case applied tensor method only reaches an
accuracv of 0 02 MVAR See corresponding case study
tor the reason.

Comparisons between the tensor method and Fast Decoupled load
flow method have been made regarding the convergence rate on all the

test systems in Table 4.5. Comparisons between the tensor method and
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standard load flow methods on all aspects concerning the cost of
computer implementations have also been made in Table 4 6

Table 4 5 shows the superior numerical stability and
convergence characteristics of the tensor method over the Fast
Decoupled 1load flow method, both on the {ill-conditioned and

well-conditioned test systems.

Table 4.6. Cost Comparison with Standard Method

Aspect Newton FDLF Tensor
of cost method method method

Major cost 1is on the

QR transformation, which
Speed Standard Fast takes twice the time of
a LU decomposition in NR
method

Only add 4p n-vectors to
storage of NR method I[f

sparse technique is used,
Storage Standard Small only slightly higher
than Newton method

Table 4.6 indicates the differences between the tensor method
and standard load flow methods on the costs of computer implementation
On the side of solution speed, using a QR decomposition, an iteration
of the tensor method takes twice as much time as the standard Newton
method, where a LU decomposition is often used. An alternative method
using LU decomposition to solve the tensor model 1s also available

[Schnabel & Frank 1984] Regarding the storage requirement of the
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tensor method, we only added 4p n-vectors to the storage requirements
of the standard Newton method. If sparse techniques and skillful
programming are applied, the core requirments are only slightly higher
than for the Newtocn method.

In summary the proposed tensor method has shown very good
numerical stability and convergence characteristics on Dboth
ill-conditioned and well-conditioned test systems. Despite the fact
that it requires a slightly higher storage requirement and that it
takes a little more time per iteration than the standard load Fflow
methods, its superior performance on ill-conditioned problems makes it

very attractive.
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Chapter V

Conclusions and Recommendations

This thesis studies the problem of ill-conditioned power
systems load flow calculations. A new method, namely the tensor method,
is applied to solve the ill-conditioned system load flow problem. Both
the formulation and simulation are introduced and analyzed
thoroughly. The results obtained from the simulations reveal both the

strengths and weaknesses of the proposed tensor method.

5.1 Conclusions

1, The thesis has been very successful on achieving its
goal — application of the tensor method for the
ill-conditioned system load flow calculations.

2, The simulation results showed superior numerical stablity
and convergence characteristics of the tensor method over
the standard load flow methods on both ill-conditioned and
well-conditioned test problems.

3 In particular, for solving 1ill-conditioned lecad flow
problem, the tensor method has shown itself to be faster
and more robust than the usual altermative, the modified
Newton method.

4. Regarding the program complexity and computational effort,

currently the proposed tensor method 1is recommended
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especially for the ill-conditioned svstem load flow

solutions, where the standard load flow methods usually

fail.

5.2 Recommendations for Future Research

Here is a list of modifications which could improve the

performance of the tensor algorithm:

1. To improve the performance of the modified Newton step on
the difficult problems, we have mentioned the importance
of the step size of the modified Newton step An algorithm
for searching the optimium "a" value in the modified
Newton step would be useful.

2 The method proposed in this thesis can be adapted easily
to remain efficient on large, sparse power systems In
particular, the main additional computational costs of the
tensor method are QR transformations One suggested
modification would be to wuse an efficient sparse
factorization in the algorithm for solving the tensor
model. Also, one could investigate the use of sparnse OR
factorization [George & Ng 1986].

3. Alternative approaches for solving the tensor model are
available wusing a PLU factorization [Schnabel & Frank
19847 .

4, As an experiment, one could use the Decoupled load flow

Jacobian matrix approximation in the tensor model
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formulations.

4 5 The addition of passive controls, i.e. taps, shunts and

phase shifters control to the load flow formulation
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Appendix 2.1

Notation for Gauss-Selidel Load Fleow Equation

For convenience, equation (2.1) is rewritten as follows:

+nSP
— 1 Pjp—JQ -
Vo~ — — ~-yr v
by v B
11 1 J€1
1~ 1, , n
with V  bus complex voltages,

diagonal elements of complex admittance matrix,

P°? specified bus real power injections,

Q5p specified bus reactive power injections,

Y off-diagonal elements of complex admittance matrix,

Superscript signifies the complex conjugate,

J ¢ 1 signifies that bus j is connected to bus i.
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y Appendix 2.2

Notation for Newton-Raphson Load Flow Equation

For convenience, equation (2.2) is rewritten as follows

AP H | N ||as
aQ J 1L [tav
with AP bus real power mismatch vector,

AQ bus reactive power mismatch vector,

As correction vector of bus voltage phase angles,

AV correction vector of bus voltage magnitudes,

H, N, J, L submatrice in the load flow Jacobian matrix the

corresponding equations are given in Section 3 2 2 2
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APPENDIX 4.1

DATA FOR THE 11 BUS TLL-CONDITIONED SYSTEM

Line Data (in the form of Y matrix elements)-

Row i Column j B
1 13
1 1 0 283 -2 785
1 10 -0.374 3 742
2 2 12 051 -33 089
2 3 00 6 494
2 4 -12.051 13 197
2 11 00 14 148
3 3 2.581 -10 1232
3 5 -2.581 3789
4 4 12.642 -74.081
4 5 00 2177
4 6 0.0 56 689
4 7 -0 592 0 786
5 5 2 581 -5 889
6 6 0.0 -55 556
7 7 3.226 -4.304
7 8 -2.213 2 959
8 8 2.893 -5 468
8 9 -0.138 1379
8 10 -0.851 1 163
9 9 0.104 -1 042
10 10 1.346 -6 110
11 11 0.0 -14 939
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Bus Data (in the form of net bus powers):

Bus No Vip.u.) 6 (deg.) P(p u.) Q(p.u.)
1 -0.158 -0,057
2 0.0 00
3 -0.128 -0 062
4 0.0 00
5 -0 165 -0 080
6 -0 090 -0.068
7 00 00
8 00 00
9 -0 026 -0 009
10 00 00
11 1.024 0.0 — —
Slack
bus 11 bus 2 bus 3

o] —
bus 6 bus 4 bus §
~— -
\/ v
bus 7

bus 9 bus 8 bus 10 bus 1

— I

Fig.A4.1.1 Schematic Diagram of the 11 Bus Test System
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APPENDIX 4.2

DATA FOR THE 13 BUS TLL-CONDITIONED SYSTEM

Line Data:

Line No From To R(p.u.) X(p u.) B(p.u.)
1 1 12 0.0481 0.4590 0.246
2 1 13 0.0040 0 0850 0.0
3 2 3 0.0074 0 1430 0 436
4 2 10 0.0121 0.2330 0.712
5 2 13 0 0040 0.0947 00
6 3 11 0.0040 0 0947 0.0
7 4 10 0.0 0.1500 00
8 4 12 0.0090 0,1080 0.016
9 5 6 0.0075 0.1465 0.448

10 5 10 0.0 -0.1500 0.0
11 6 7 0.0086 0.1665 0.508
12 7 9 0.0 -0.1500 0.0
13 8 9 0.0105 0.2020 0.620
Power base = 1000 Mva
Transformer data:
Line No. From To Tap setting

1 13 1 + 5%

2 13 2 +10%

3 11 3 +10%
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Bus Data:

Bus No.  V(p.u.) f(deg.) P (MW) Q. (MVAR) P (MW) Q (MVAR)

1 1.000 0.0 0.0 0.0 0.0 0.0
2 1.000 0.0 0.0 0.0 00 0.0
3 1.000 0.0 0.0 0.0 0.0 00
4 1.063 0.0 0.0 0.0 0.0 0.0
5 1.000 0.0 0.0 0.0 0.0 0.0
6 1.000 0.0 0.0 0.0 5G.00 32.00
7 1.000 0.0 0.0 0.0 50 00 30.00
8 0.943 0.0 500 Q0 - 0.0 0.0
9 1.100 0.0 0.0 — 0.0 00
10 1.100 0.0 0.0 - 0.0 00
11 1.000 0.0 0.0 — 0.0 00
12 1.037 0.0 500.00 - 50.00 30 00
13 1.000 00 - - 1650.00 560 00
Slack
bus 12 bus 1 bus 13 bus 11

S

& ©), —)
] mng CO
bus 4 bus 10 | \L_ﬁ

bus 5 bus 2 bus 3

bus 6 bus 7 bus Q bus 8

v '

Fig.A4.2.1 Schematic Diagram of the 13 Bus Test System
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DATA FOR THE 20 BUS ILL-CONDITIONED SYSTEM

APPENDIX 4.3

Line Data:

Line No From To R(%) X(%) B(p u.)
1 1 20 0.50 5.00 0.024 |
2 2 8 0 50 5.00 0.067
3 2 16 0.0 5.00 00
4 2 17 60 00 60.00 0.0
5 3 5 20.00 20,00 0.0
6 3 20 0.11 1.52 0.0857
7 4 17 3.00 4.00 0.05
8 4 20 5.00 10.00 0.25
9 5 14 30.00 40.00 0.0

10 6 15 5.00 10.00 0.0
11 6 16 60.00 80.00 0.0
12 6 17 0.60 8.00 0.04
13 7 12 0.50 5.00 0.05
14 9 10 0.50 5.00 0.05
15 9 19 0.10 3.00 0.10
16 10 11 0.0 30 00 0.0
17 11 12 2.00 40.00 0.024
18 11 13 0.0 15.00 00
19 13 18 0.50 6.00 0.03
20 14 19 0.10 1.00 0.0
21 15 18 0.15 1.50 00
22 15 20 2.00 4.00 0 067
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Bus Data:

Bus No. PG(MW) PL(MW) QL(MVAR)
1 0 150 30
2 0 10 0
3 0 0 0
4 0 380 60
5 0 0 0
6 0 0 0
7 0 20 0
8 0 10 20
9 0 0 0

10 0 50 10
11 0 0 0
12 0 0 0
13 0 0 0
14 0 0 10
15 0 0 0
16 0 10 0
17 100 0 0
18 100 0 0
19 100 0 0
20 - 0 0
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Fig.A4.3.1 Schematic Diagram of the 20 Bus Test System
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APPENDIX 4.4

DATA FOR THE 43 BUS ILL-CONDITIONED SYSTEM

Line Data (in the form of Y matrix elements)

Row 1 Column j G B
ij 13
1 1 309 806 -408.029
1 14 0.0 15 400
1 39 -309.806 392.255
2 2 481.288 -1545.194
2 5 -277.195 873 583
2 6 -34 368 108.124
2 15 -169 726 534.322
2 43 0.0 30 609
3 3 0.0 -5.714
3 4 00 6.015
4 4 61.331 -69.160
4 13 -61.331 62.874
5 5 277 195 -916.892
) 7 00 21.277
5 8 00 20.513
6 6 34 368 -118 699
6 12 0.0 10 638
7 7 0.0 -20.000
8 8 452,840 -482 .861
8 9 -288 938 295 777
8 23 -163.902 167.191
9 9 300.983 -317.044
g 10 -12.045 12 342
9 16 0.0 8 796
10 10 12.045 -20 855
10 11 0.0 2.857
10 17 0.0 5.714
11 11 0.0 -2.857
12 12 00 -10 000
13 13 92 381 -100 709
13 18 00 6 015
13 25 -31 050 31 640
14 14 00 -15 015
i5 15 340 398 -916 7832
15 19 00 8.649
15 20 00 15 791
15 28 -170 673 357 0072
16 16 00 8.976
17 17 00 -5 714
18 18 00 5 714
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Line Data (cont.):

&
Row i Column j G B
1) 1
19 19 164.292 -280.783
19 22 -164,292 272 805
20 20 0.0 -15.002
21 21 104,312 -143.609
21 24 0.0 9.267
21 29 -104,312 133.623
22 22 164.292 -282 281
22 26 0.0 9.023
23 23 321.579 -328 810
23 29 -157 677 161.760
24 24 00 -8.572
25 25 87 150 -106 814
25 27 0.0 9 023
25 29 -56.100 65.824
26 26 0.0 -8.572
27 27 0.0 -8.572
28 28 373.447 -612.837
28 39 -202.775 256.136
29 29 318.089 -372.311
29 30 0.0 3 766
29 37 0.0 7.895
30 30 125.789 -524 464
30 32 00 30 769
30 38 0.0 4,131
30 40 -125.789 485.547
31 31 0.0 -13.038
31 37 0.0 13.038
32 32 00 -30.769
33 33 0.0 -3,320
33 38 00 3.320
34 34 0.0 -7 365
34 38 00 6.852
35 35 00 -6 180
35 38 00 6.180
36 36 0.0 -2 703
36 38 0.0 2 703
37 37 00 -21 348
38 38 0.0 -22 398
39 39 512.581 -663 260
39 41 0.0 15 015
40 40 125 789 -508 837
40 42 0.0 21 622
41 41 0.0 -15 015
42 42 00 -20 000
43 43 00 -30 609
!
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Bus Data (in the form of net

bus powers):

Bus No. Vip.u.) 8 (deg ) P(p u ) Qp u.)

1 0.0 00

2 0.0 0.0

3 -0 16 -0 12

4 0.0 00

5 -0 53 -0 40

6 00 0

7 -1 60 -1 20

8 00 00

9 0.0 00
10 0.0 00
11 0.0 00
12 -0 80 -0 60
13 00 00
14 -0.80 -0 60
15 GO0 00
16 -0 64 -0 48
17 0 00
i8 -0 24 -0 18
19 00 00
20 -0.88 -0 66
21 00 00
22 00 00
23 00 00
24 -0 64 -0 48
25 0o 00
26 -0.80 -0 A0
27 -0.32 -0 24
28 00 00
29 00 00
30 00 00
31 1 16 0 52
32 2 90 2 57
13 0 285 0 10
34 00 00
35 0 580 0 560
36 -0 050 0 030
37 00 00
38 -1 440 -1 02
39 00 00
40 00 00
41 -0 800 -0 300
42 -2 240 -1 /80
43 1 136 0 — -—
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Fig A4 4 1 Schematic Diagram of the 43 Bus Test System
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