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Abstract

In this thesis we study abelian number fields and in particular their

zeta functions at the negative integers. The prototypical examples of abelian

number fields are the oft-studied cyclotomic fields, a topic upon which many

texts have been almost exclusively dedicated to (see for example [26] or

nearly any text on global class field theory).

We begin by building up our understanding of the characters of finite

abelian groups and how they are related to Dedekind zeta functions. We

then use tools from number theory such as the Kronecker-Weber theorem

and Bernoulli numbers to find a simple algorithm for determining the values

of these zeta functions at negative integers. We conclude the thesis by

comparing the relative complexity of our method to two alternative methods

that use completely different theoretical tools to attack the more general

problem of non-abelian number fields.
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Abrégé

Dans cette thèse nous étudions les corps de nombres abéliens et en

particulier leurs fonctions zeta aux entiers négatifs. Les exemples-type de

corps de nombres abéliens sont les corps cyclotomiques que l’on étudie

fréquemment, un sujet auquel de nombreux textes ont été entièrement

consacrés (voir par exemple [26] ou presque tous les textes sur la théorie

globale des corps de classes).

Nous commençons par construire notre comprehension des caractères

des groupes abéliens finis et de ce qui les lie aux fonctions zeta de Dedekind.

Ensuite nous utilisons des outils de théorie des nombres comme le théorème

de Kronecker-Weber et les nombres de Bernouilli pour trouver un algorithme

simple pour déterminer les valeurs de ces fonctions zeta aux entiers négatifs.

Nous concluons la thèse en comparant la complexité relative de notre

méthode à deux méthodes alternatives qui utilisent des outils théoriques

complètement différents pour attaquer le problème plus général des corps de

nombres non-abéliens.
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Introduction

The end result of this project is the development of an efficient algorithm

that researchers in the field can use to evaluate Dedekind zeta functions of

abelian number fields at negative integers. This should serve the community

well as there appears to be a distinct lack of numerical data regarding zeta

values at negative integers, despite there being great overall interest in these

numbers. Indeed the only known similar work comes from [12] where Goren

uses PARI to calculate these values. Goren notes that problems do arise with

his method as PARI is limited by the precision of its analytic estimations, and

he produces an example where PARI returns an incorrect value for a certain

zeta function at −23. The work of this thesis expands on the work of Goren in

the context of abelian number fields (although there is some discussion regard-

ing the more general case) and approaches the problem from the point of view

of L-functions, which ends up circumventing the issue of analytic estimation

and precision. This allows researchers interested in calculating these values to

be confident in the results for relatively large negative integers and also to be

able to compute these values quickly. Indeed, using the same zeta function

that PARI was unable to evaluate at −23 through analytic approximation,

the author was able to evaluate at −199 in under 1.3 seconds and the fraction

returned had a denominator satisfying the necessary prime divisor conditions

(see Chapter 5) which suggests the legitimacy of the returned value.

The main motivation for the thesis problem is the fact that the values of

these zeta functions at negative integers have a habit of popping up in many
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different sections of number theory as part of some intrinsic property that

people may wish to know.

One common example, as we shall see in section 6 of this text, is that they

appear in the coefficients of certain normalized Eisenstein series of Hilbert

modular forms. Another place in the theory of modular forms in which these

values occur is calculating volumes of certain orbifolds that arise in the study

of Siegel modular forms. For instance, we have the symplectic group Sp(2g,Z)

acting on the Siegel upper half plane Hg with volume measured by a metric

generalizing the Poincaré metric. If we normalize the volume to give the Euler

characteristic of this space, we have

vol(Sp(2g,Z)\Hg) = ζ(−1)ζ(−3) . . . ζ(1− 2g)

where ζ is the usual Riemann-zeta function, the most basic example of a

Dedekind zeta function (see [25]).

Another example arises in the theory of motives. In [4], ζK(1− n) appears

in the volume of hyperbolic (2n−1)-simplices defined over K. More generally,

the author studies various covolumes arising from products of 2m hyperbolic

planes modulo the action of certain arithmetic groups. In the formula given

for such volumes, we see ζK(−1)ζK(−3) . . . ζK(1 − 2m) appearing, similar to

the result above.

A final motivating example comes from the field of Hilbert modular sur-

faces. If K is a real quadratic field, then [24] shows the volume of ΓK\H2
1

as 2ζK(−1) where ΓK is the Hilbert modular group associated to K. This is

particularly interesting because it is also shown (see pg. 72 of [24]) that the

dimension of certain cusp forms Sk associated with a Hilbert modular group
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can be expressed in terms of this volume,

dim(Sk) =
(k − 1)2

4
vol(Γ\H2

1) +
∑
σ

χ(Mσ, Vσ),

where the χ(Mσ, Vσ) are certain contributions that arise from the cusps. Zeta

values at −1 also show up in Hilbert modular surfaces in regards to the inter-

section numbers of line bundles of modular forms. For instance, in [5] we have

the equation

Mk(C)2 = k2ζK(−1),

which gives the self intersection number of the line bundle of modular forms

Mk on the desingularization of the compactification of the quasi-projective

algebraic variety Γk\H2
1.

Another topic that is closely related to the evaluation of abelian zeta func-

tions is the study of Dirichlet L-series. These objects play a prominent role in

this thesis as do the generalized Bernoulli numbers which are closely related

to the valuation of L-series at negative integers as we shall see in Chapter

1. Both of these objects also appear frequently in various subfields of number

theory. Perhaps the best example is the relation between generalized Bernoulli

numbers and the class number of cyclotomic fields and their subfields. As dis-

cussed in chapter 5 of [26], we have the result of Kummer that for p an odd

prime number, the class number of Q(ωp) is divisible by p if and only if it

divides the relative class number, if and only if it divides the numerator of Bj

for 2 ≤ j ≤ p − 3, where the Bj are regular Bernoulli numbers (ωp being a

primitive pth root of unity). A corollary to this is Kummer’s famous theorem

that there are infinitely many irregular primes. Generalized Bernoulli numbers

also play a prominent role in the theory of p-adic L-functions and in particular

appear in formulas for evaluation of such objects at negative integers.
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Dirichlet L-series also appear in the context of elliptic curves and modular

forms. In general, we have different types of L-series for these objects, such as

the Hasse-Weil L-function associated with elliptic curves which encodes data

regarding the number of points on a curve over finite fields. However these L-

functions can sometimes be related, such as in chapter 4 of [17] which discusses

Shimura’s famous theorem relating forms of half integer weight to those of

even integer weight. In this theorem we have a modular form g arising from a

congruence subgroup depending on a certain Dirichlet character χ. This form

has an associated Dirichlet series arising from its Fourier expansion coefficients

and it turns out that it can be written as the product L(χ, s)L(χ, s− (k− 2)).

In particular, when D is the discriminant of a negative quadratic field Q(
√
−n)

where n is square free, then this is equal to the Hasse-Weil L-function of the

elliptic curve En defined by the equation y2 = x3 − nx.

Having been thoroughly motivated towards the usefulness of being able to

calculate the values of L-functions and zeta functions at negative integers, we

proceed to discuss the scope of the project. Chapters 1 and 2 are dedicated

to reviewing Dirichlet characters and other number theory concepts that are

essential in both understanding and solving the thesis problem. This includes

introducing the associated L-functions and their continuation to the whole

plane, as well as using the theory developed to prove Dirichlet’s wonderful

theorem on primes in an arithmetic sequence.

The third chapter is a proof of the classical Kronecker-Weber theorem using

the contents of the previous chapters. The formulation of the theorem given is

particularly useful from a computational standpoint because it gives an explicit

cyclotomic field that an abelian field can be embedded into.

The fourth chapter details the procedure involved in solving the problem

and lists some results obtained from this method as well as working through an
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example by hand. More explicitly, we use the results of the first three chapters

to construct the character group of the Galois group of an abelian number

field over Q and then use the characters and their corresponding L-functions

to find special values of the zeta functions. We also deduce an upper bound

on the running time for a fixed field and variable negative integer using this

approach and find that the problem can be solved with a number of operations

that is linear with respect to the size of the negative integer. In particular we

have the following result.

Theorem 4.3.2. Let K be a totally real abelian number field of degree m over

Q and conductor f . Assume its group of Dirichlet characters are known, as are

all necessary Bernoulli polynomials. Then the operation cost of determining

ζK(1−k) in a rational form is bounded by 3k ·m·f+C(m, f) for some constant

C(m, f) depending on m and f .

The final two chapters give an overview of how to solve the problem for non-

abelian number fields using completely different methods then those discussed

in the rest of the thesis. Although these approaches are able to solve a more

general problem then the one focused on here, the operational complexity of

solving the abelian case through these methods turns out be much greater then

the method we develop in the earlier chapters. As shown in the text, if n is

the degree of the extension field over Q then we describe a method using the

functional equation relating ζK(k) to ζK(1 − k). We find that the operation

cost of using this method is bounded by a function that is approximately an n-

degree polynomial in k. The second alternative method that we describe relies

on Hilbert modular forms and we find that this method has an operation cost

that is at best bounded by a function that is o(log(k)kn + k3), where 1 − k
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is the value at which we wish to evaluate the zeta function of the field. We

summarize these two results formally below.

Theorem 5.0.3. Let K be a totally real number field over Q of degree m.

Assume that in the ring of integers OK, all prime ideals, their norms, and

their ramification indices over Z are known. Then ζK(1− k) can be computed

and fully reduced to a rational in O(kmM
1

k−1

k ) where Mk is the bound on the

denominator obtained from (5.0.2). Furthermore, the precision to which ir-

rational values need to be computed in the calculations can be bounded by a

function that is O(k log(k) + log(Mk)).

Theorem 6.0.3. Let K be a totally real number field over Q of degree m.

Assume that bases of modular forms for sufficiently large weights have been

precalculated with Fourier expansion about i∞. Then ζK(1− k) can be calcu-

lated and fully reduced to a rational number with o(km log(k)+f(k)) operations,

where f(k) is a function of k that is at best cubic in k.

Clearly the large difference in computational complexity between the method

focused on in this text for abelian number fields and the above two methods

for the more general case lends itself to the conclusion that implementation of

the abelian only method would be worthwhile even if a more general method

already existed. Indeed using this method would allow a researcher interested

in abelian number fields and their zeta functions to produce more results at a

faster rate then otherwise possible.

Appendix A includes a brief discussion of various computational techniques

and algorithms that are already implemented into current computing programs

and are used to solve the thesis problem. The final appendix includes a copy
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of the program written in MAGMA to calculate the values given in Chapter

4.
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CHAPTER 1
Dirichlet Characters and Finite Abelian Extensions

In this chapter, we follow the texts of [26, 19, 14]. Many of the shorter proofs

will be given, although most will be similar to ones found in the aforementioned

texts. The reader will be referred to a text when proofs are omitted for brevity.

1.1 Characters of Finite Abelian Groups

We begin with an arbitrary finite abelian group G. A character on G is

a group homomorphism χ : G → C×. The set of all such characters will be

denoted Ĝ. The first observation that we can make about characters is that χ

maps G to a subset of the roots of unity. This follows from the fact that if

g ∈ G has finite order n, then χ(g)n = χ(gn) = χ(e) = 1 and so χ(g) satisfies

some cyclotomic equation.

We can induce a group structure on Ĝ by defining multiplication in the

natural way, namely

χφ : G→ C×,

χφ(g) := χ(g)φ(g),

whenever χ and φ are two characters of G. It is easy to see that if ψχ(g) = χ(g)

∀ g ∈ G, then ψ must be identically 1 on G and that such a ψ is a well-defined

character on G. Likewise, given any character χ, one checks immediately that

the map χ−1(g) = χ(g) is also a character on G and gives the inverse element

of χ in our group Ĝ. We will often denote χ−1 as χ for obvious reasons.
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We now proceed to prove a few general facts about the character group Ĝ

that will be useful in the proceeding discussion of Dirichlet characters. Hence-

forth, ωn will always denote the primitive nth root of unity e
2πi
n unless noted

otherwise.

Proposition 1.1.1. If G =< g > is a finite cyclic group, then G ∼= Ĝ.

Proof. Assume |G| = n. Note that any χ ∈ Ĝ is completely determined by

its value on g, since χ(gm) = χ(g)m. It is then routine to check that any

map sending g to an nth root of unity induces a character on G and all such

characters can be obtained in this manner. Hence the map ψ : G → Ĝ,

ψ(gm)(g) = (ωn)m is an isomorphism of groups.

Proposition 1.1.2. If G ∼= A × B is the direct product of two finite abelian

groups, then Ĝ ∼= Â× B̂.

Proof. Define the group homomorphisms µ : Ĝ→ Â× B̂ as µ(χ) = (χ|A, χ|B)

and τ : Â × B̂ → Ĝ as τ((χ, ψ))(g) = χ(a)ψ(b) where g = ab is the unique

decomposition of g into a product of a ∈ A and b ∈ B. One easily checks

that µ and τ are inverses of each other.

Corollary 1.1.3. For all finite abelian groups G, G ∼= Ĝ. Furthermore, G ∼= ̂̂
G

canonically.

Proof. Since G is finite and abelian, G can be decomposed into a finite direct

product of finite cyclic groups. Proposition (1.1.2) applied inductively along

with (1.1.1) completes the proof of the first statement. The second statement

follows from the map g → ψg, where ψg(χ) = χ(g) for all χ ∈ Ĝ.
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We now begin to explore the relationship between subgroups and quotients

of G and the corresponding subgroups in Ĝ.

Proposition 1.1.4. Let H ≤ G be a subgroup of finite abelian group G. Then

Ĝ/H ∼= {χ ∈ Ĝ | χ(h) = 1 ∀ h ∈ H} =: H⊥ ≤ Ĝ. Furthermore, we have

H ≤ H ′ ≤ G iff H ′⊥ ≤ H⊥.

Proof. Clearly every element of H⊥ induces a distinct character on G/H by

the first isomorphism theorem. On the other hand, every character of G can be

restricted to a character of H and this restriction is a homomorphism from Ĝ

to Ĥ with kernel |H⊥|. By (1.1.3), |H⊥| ≥ |G|/|H| = |Ĝ/H| and so equality

must hold. It is immediately clear from the definitions that H ≤ H ′ implies

H⊥ ≥ H ′⊥. For the converse, it suffices to show that given any g ∈ G\H,

there exists a character that is trivial on H but non-trivial on g. Supposing

not, then by the earlier calculation, |G/ < g,H > | = | < g,H >⊥ | = |H⊥| =

|G/H| which is clearly false when g /∈ H.

The proof of the previous theorem gives us a nice characterization of Ĥ for

any subgroup H ≤ G and suggests the duality between subgroups of G and Ĝ.

Corollary 1.1.5.

(i) Ĥ ∼= Ĝ/H⊥.

(ii) For every H ≤ G, we have the subgroup H⊥ ≤ Ĝ and this mapping is a

bijective, inclusion reversing one.

Proof. (i) follows from the proof of (1.1.4). (ii) The fact that the map is

inclusion reversing and injective follows from the second part of (1.1.4). Since
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G ∼= Ĝ, the number of subgroups in each group is the same. This proves

bijectivity.

The final result of this section can be considered as an “orthogonality”

condition on the characters of G. This property will be useful in the subsequent

sections.

Proposition 1.1.6. Assume G is a finite abelian group of order n. Let χ, ψ ∈

Ĝ and a, b ∈ G, then

(i)
∑
g∈G

χ(g)ψ(g) = nδ(χ, ψ), where δ(χ, ψ) = 1 if χ = ψ and 0 otherwise.

(ii)
∑
τ∈Ĝ

τ(a)τ(b) = nδ(a, b), where δ(a, b) = 1 if a = b and 0 otherwise.

In particular, the characters of G form an orthonormal basis for L2(G) with

inner product < f, h >= 1
|G|
∑

g∈G f(g)h(g).

Proof. (i) In the case where ψ = χ, the result is obvious, as we are just

summing one n times. Otherwise observe that χψ is a non-trivial element of Ĝ,

so it suffices to show that if χ is any non-trivial character, then
∑
g∈G

χ(g) = 0.

To this end, observe that since χ is non-trivial, ∃ g′ ∈ G st. χ(g) 6= 1 and so

∑
g∈G

χ(g) =
∑
g∈G

χ(g′g) = χ(g′)
∑
g∈G

χ(g).

Therefore (1− χ(g′))
∑
g∈G

χ(g) = 0 and the result follows.

(ii) This result follows immediately from (i) and the second statement in

(1.1.3).
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1.2 Dirichlet Characters

We now focus our study of characters onto a specific class of finite abelian

groups, namely the groups (Z/NZ)×. These groups share the following in-

teresting relationship: If M,N ∈ N are such that M |N then any character χ

of (Z/MZ)× induces a character of (Z/NZ)× by composition χ ◦ π, where π

is reduction modulo M . Alternatively, using the language developed in the

previous section we can say that if ψ is a character of (Z/NZ)×, and ψ ∈

{1 + kM | k ∈ Z st. (1 + kM,N) = 1}⊥, then ψ is induced by its preimage

under the isomorphism in (1.1.4), where we identify (Z/MZ)× with G/H in

that theorem. It is easy to see that these two characterizations agree.

Given χ in the character group of (Z/NZ)×, the previous observation

leads us to define the conductor fχ to be the smallest M ∈ N such that χ

is induced by some character on (Z/MZ)× or equivalently, the smallest M

st. χ(a) = χ(a+ kM) whenever both a and a+ kM ∈ (Z/NZ)×. We call a

character of (Z/NZ)× primitive if its conductor equals N . Note that every

character of (Z/NZ)× is induced by a unique primitive character of conductor

dividing N , which can be shown by noting that if χ is well-defined modulo M

and L, then it is well-defined modulo gcd(M,L). Furthermore, it is clear that

distinct characters of (Z/NZ)× are induced by distinct primitive characters.

Finally, we define the collection of Dirichlet characters to be the set of all

primitive characters and Dirichlet characters mod N denoted DN to be the set

of all primitive characters whose conductors divide N .

There is a natural group structure on the set of Dirichlet characters that

restricts to a group structure on DN . Given ψ, χ of conductor fψ and fχ, define

ψχ as follows: ψ and χ both induce characters of (Z/lcm(fψ, fχ)Z)×. Let γ

be the character on (Z/lcm(fψ, fχ)Z)× defined by γ(a) = ψ(a)χ(a) (Where

12



we have identified the Dirichlet characters with the characters they induce).

Then define ψχ as the primitive character that induces γ.

It is clear that inverses and the identity element exist under this action.

That this action is in fact associative requires some minor work, but follows

from the fact that if N = lcm(fχ, fψ, fφ), then χ(ψφ) and (χψ)φ are both

primitive by definition, and induce equivalent characters on (Z/NZ)×. Dirich-

let characters mod N are clearly closed under this action, as the conductors

all divide N . Furthermore, the identity element has conductor 1, and χ and χ

share the same conductor for any character χ, thus Dirichlet characters mod N

are a subgroup, and it is easy to see that this subgroup is isomorphic to the

character group of (Z/NZ)× under the obvious map of induced characters.

We will henceforth identify DN with the character group of (Z/NZ)× without

further comment.

Before moving on, we give a brief description of how Dirichlet characters

can be decomposed.

Proposition 1.2.1.

(i) Assume (N,M) = 1. Then DNM = DNDM , where we consider DN and

DM as subgroups of the larger group under the inclusion mapping.

(ii) If χ and ψ are two Dirichlet characters of relatively prime conductor,

then fχψ = fχfψ.

(iii) If fχ = n =
∏
pαii , then χ =

∏
χpi, where χpi are Dirichlet characters of

conductor dividing pi
αi.

Proof. (i) Since (N,M) = 1, DN ∩ DM = {1}, the trivial character. Since

|DN ||DM | = |(Z/NZ)×||(Z/MZ)×| = |(Z/MNZ)×| = |DNM |, the result fol-

lows.
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(ii) Clearly the conductor of χψ divides fχfψ so assume it is strictly less,

say N , and fχ - N . Then if M = lcm(N, fψ), χ = χψ · ψ ∈ DM but fχ does

not divide M . Hence we have a contradiction.

(iii) Apply (i) inductively to get Dn =
∏
Dp

αi
i

. The result is then obvious.

Switching now to a more concrete algebraic setting where our study of

Dirichlet characters can be applied, consider identifying the Galois group of

Q(ωN) with (Z/NZ)×. We can then identify the character group with the

Dirichlet characters mod N . Suppose K is a subfield of Q(ωN). Then by Ga-

lois theory there corresponds a unique subgroup H ≤ (Z/NZ)× that charac-

terizes K (namely the largest subgroup that fixes K). By (1.1.4), the character

group of Gal(K/Q) embeds naturally into DN as the subgroup of characters

that act trivially on H. Conversely, given any subgroup Y of DN we get the

fixed field of Y ⊥ := {σ ∈ Gal(Q(ωN)/Q) | χ(σ) = 1 ∀ χ ∈ Y }.

Proposition 1.2.2. Under the above identification, let K,K ′ be two subfields

of Q(ωN) and let Y, Y ′ be the corresponding subgroups of DN . Then

(i) K ⊆ K ′ iff Y ⊆ Y ′.

(ii) The group generated by Y and Y ′ corresponds to the field KK ′.

Proof. (i) K ⊆ K ′ iff H ′ ≤ H iff Y ≤ Y ′ by (1.1.4) and general Galois theory.

(ii) The subgroup Y0 = {χ ∈ DN |χ(h) = 1 ∀ h ∈ H ∩ H ′} is the one

that corresponds to KK ′. On the other hand H ∩H ′ is the largest subgroup

contained in both H and H ′, hence by (1.1.5), Y0 is the smallest subgroup

containing both Y and Y ′ and hence is generated by them.
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We conclude from (1.1.5 (ii)) and general Galois theory, that the map

discussed above is a bijection between subgroups of DN and subfields of Q(ωN).

We also note that the size of the subgroups is equal to the degree of the

corresponding subfield over Q. Moreover, if K ⊆ Q(ωM) ⊂ Q(ωN), then the

image of the character group of Gal(K/Q) in DN is equal to its image in

DM followed by the inclusion of DM into DN . Indeed let H ′ be the subgroup

corresponding to K in Gal(Q(ωN)/Q) = (Z/NZ)× and let H be the subgroup

corresponding to K in Gal(Q(ωM)/Q) = (Z/MZ)× . Then H ′ contains S :=

{1 +mk|k ∈ Z} which is the subgroup corresponding to Q(ωM). Hence any

character identically 1 on H ′ is induced by a character which is identically 1

on the image of H ′ under the quotient map (Z/NZ)×/S which is precisely

H ≤ (Z/MZ)×. Hence every character of H ′ ≤ (Z/NZ)× is induced by a

character of H ≤ (Z/MZ)× and it follows that the image of H ′ in DM is equal

to its image in DN followed by inclusion.

We will see in the Chapter 3 that any finite abelian Galois extension K

of Q is contained in some cyclotomic field Q(ωN). Assuming this fact for now,

it follows that the character group of Gal(K/Q) can be identified with some

subgroup of DN . We use this observation along with what we have just proved

to give the following minimality condition on N .

Proposition 1.2.3. Let K be as above and say XK ≤ DN is the character

group of Gal(K/Q). Define fK = lcm{fχ|χ ∈ XK}. Then fK is the min-

imal integer such that K is contained in the f thK -cyclotomic field and every

cyclotomic field containing K also contains ωfK .

Proof. By (1.2.2), K is contained in a subfield of Q(ωN) iff XK is contained

in the subfield’s corresponding subgroup in DN . By the discussion above, the

corresponding subgroup for the M th-cyclotomic field is DM ≤ DN (Assuming
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M |N otherwise the M th-cyclotomic field is not a subfield of the N th). Since

DM is precisely the group of Dirichlet characters whose conductors divide M ,

it follows that the smallest DM that could possibly contain XK is indeed DfK .

Since K ⊆ Q(ωN), all Dirichlet characters in question have order dividing N

so clearly fK must divide N , proving the proposition.

The number fK in the above proposition is known as the conductor of K.

We can get another nice result on abelian number fields if we introduce the

concept of even and odd Dirichlet characters. Say χ is even if χ(−1) = 1 and

odd if χ(−1) = −1. It is clear that the value of χ does not depend on the

modulus on which it is defined.

Proposition 1.2.4. Let K be an abelian number field, and let XK be the

corresponding group of Dirichlet characters. Then K is totally real iff XK

consists entirely of even characters.

Proof. Assume K ⊆ Q(ωN) so that XK ≤ DN . Every totally real subfield of

Q(ωN) is contained in L = Q(ωN + ω−1
N ). It is easy to see that L is the fixed

field of {1,−1} ≤ (Z/NZ)× and hence the subgroup of DN corresponding to

L is precisely all even characters. By (1.2.2), L contains K iff XK consists

entirely of even characters.

Although most of our work with Dirichlet characters will come to fruition

after we have introduced L-functions, we conclude this chapter with a few

number theoretic results that use what we have developed to better understand

the relationship between abelian number fields and their corresponding group
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of characters. The following theorem shows that we can recover ramification

indices of primes through this identification.

Theorem 1.2.5. Let X be a subgroup of Dn =
∏
Dp

αi
i

(where n = pα1
1 ...p

αk
k is

the prime decomposition of n), and K the corresponding subfield of Q(ωn). Let

Xpj be the image of X under the homomorphism that projects Dn onto D
p
αj
j

.

Then the ramification index of pj in K equals |Xpj |.

Proof. Let n = p
αj
j m and define L to be the subfield Q(ωm)K contained in

Q(ωn). Since pj is unramified in Q(ωm), the ramification index of p in L is

the same as the index in K. By (1.2.2 (ii)), the group of characters of L is

generated by X and Dm. It is easy to see that this character group is also

generated by Dm and Xpj . Hence L = Q(ωm) · F where F is some subfield of

Q(ω
p
αj
j

) and [F : Q] = |Xpj | since Dm∩Xpj = {1}. Since pj ramifies completely

in Q(ω
p
αj
j

), it also ramifies completely in F and the result follows.

In the next section we will have reason to observe another characterization

of Dirichlet characters which we introduce now. Given χ ∈ Dn, we can induce

a function from Z to C, which sends n to χ(n mod fχ) when (n, fχ) = 1 and

0 otherwise. It is obvious that this function completely determines χ and vice

versa, so we will identify this function as χ. Note that viewing the Dirichlet

characters as functions on Z, if (a, fχ) = 1 = (a, fψ) then χψ(a) = χ(a)ψ(a)

but in general this need not be true. For example, if χ has conductor fχ,

then χχ(fχ) = 1 6= 0 = χ(fχ)χ(fχ). It is pivotal to remember that the

product of two Dirichlet characters is always the primitive character induced

by the product in some character group. We will henceforth identify Dirichlet

characters with the functions they induce when it suits us. The following

corollary and theorem make use of this identification.
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Corollary 1.2.6. Let L be a field associated with some group XL of Dirichlet

characters. Then p ramifies in L iff ∃ χ ∈ XL st. χ(p) = 0.

Proof. By (1.2.5), p ramifies in L iff ∃ χ ∈ X whose conductor divides p iff

χ(p) = 0.

Theorem 1.2.7. Let XK be a group of Dirichlet characters, K the associated

field. Let Y = {χ ∈ XK |χ(p) 6= 0} and Z = {χ ∈ XK |χ(p) = 1}. Then

e = [XK : Y ], f = [Y : Z], and g = [Z : 1] are the ramification index for p

in K, the residue degree, and the number of primes lying over p respectively.

Furthermore, XK/Y and XK/Z are isomorphic to the inertia and decomposi-

tion groups respectively.

Proof. See [26] pg. 25-26.

1.3 Zeta Functions and L-Functions

We now begin the study of Dedekind zeta functions, and in particular, those

attached to abelian field extensions of Q. Our work with Dirichlet characters

will help immensely in the study of these objects and bring to light many useful

facts about them. We begin with an informal definition: Given any sequence

{an}∞n=1 ⊂ C, define the associated Dirichlet series as

∞∑
n=1

an
nz
,

where z = x + iy is a complex variable. The following lemma found in [19]

gives conditions for when this series converges to a holomorphic function in

some half plane.
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Lemma 1.3.1. Suppose the partial sums of
∑
an form an infinite sequence

{SN} that is O(N r) for some real r ≥ 0. Then the Dirichlet series associated

with {an}∞n=1 converges for all z = x+ iy with x > r, and is analytic there.

Proof. See [19] pg. 182-183.

We now introduce one of the two types of Dirichlet series we will be focusing

on. Let K be a number field and define its Dedekind zeta function as the

Dirichlet series

ζK(z) =
∞∑
n=1

jn
nz

=
∑
ICOK

1

||I||z
,

where jn is the number of ideals in OK of norm n. The following theorem

along with (1.3.1) shows that ζK(z) is well-defined and analytic on

{<(z) > 1}.

Theorem 1.3.2. Let K be a number field of degree n over Q and let i(t)

denote the number of ideals in OK of norm ≤ t. Then

i(t) = hκt+O(t1−
1
n ),

where h is the class number of K, and κ =
2s1+s2πs2reg(OK)

w
√
|∆(OK)|

. Here s1, s2

are the number of real and half the number of complex embeddings respectively

of K, w is the number of roots of unity in K, ∆(OK) is the discriminant of

the ring of integers, and reg(OK) is the regulator (see [19] for a definition of

the regulator).

Proof. See chapter 6 of [19].

19



The case when K = Q reduces to the usual zeta function ζ(z) =
∑

1
nz

and

the study of this function will be pivotal in the study of the more general case.

Having proven that all ζK are defined on a half plane, we now show that they

can also be represented by a Euler product over the same domain.

Proposition 1.3.3. For <(z) > 1,

ζK(z) =
∏

P COK

P prime

(1− 1

||P ||z
)−1.

Proof. Since
∑
P

1

||P |||z|
≤
∑
ICOK

1

||I|||z|
= ζK(|z|) <∞, the Euler product con-

verges to a limit on <(z) > 1 and the order does not need to be specified

because convergence is absolute. Let SN be the partial product over all primes

in OK of norm ≤ N . Then

SN =
∏
||P ||≤N

(1 +
1

P z
+

1

P 2z
+ ...) =

∑
I COK

||I|| ≤ N

1

||I||z
+ AN(z)

where AN(z) is some analytic function of absolute value ≤
∑
I COK

||I|| > N

1

||I|||z|
. Note

that we are justified in rearranging the terms of the infinite sums because
∞∑
t=0

1

mtz
converges absolutely when m > 1 and <(z) > 0. Letting N →∞, we

conclude that the norm of AN(z) goes to zero and so SN(z)→ ζK(z).

Restricting ourselves to the case when K is an abelian extension of Q (or

in fact any Galois extension), (1.3.3) gives us a nice characterization of ζK

in terms of the primes p ∈ Z because the splitting of a prime in a Galois

extension is uniform. Indeed, assume p splits into rp distinct primes and the

inertial degree of p over any prime of OK is fp, then by (1.3.3) we have for
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<(z) > 1,

ζK(z) =
∏
p

(1− 1

pfpz
)−rp .

When K is an abelian extension of Q, it is this decomposition of ζK that will

allow us to use L-functions to analytically continue ζK . Before introducing this

concept however, we are going to follow [14] and [19] in proving a few common

facts about ζ that will be used later to prove Dirichlet’s famous theorem on

primes in an arithmetic sequence.

Proposition 1.3.4. The Riemann zeta-function ζ(z) can be extended to a

meromorphic function on {<(z) > 0} that has a simple pole of residue 1 at

z = 1 and is otherwise analytic.

Proof. Consider the two functions

f(z) := 1 +
−1

2z
+

1

3z
+
−1

4z
+

1

5z
+
−1

6z
+ ...

and g(z) := 1 +
1

2z
+
−2

3z
+

1

4z
+

1

5z
+
−2

6z
+ ...

By (1.3.1), f(z) and g(z) are well-defined analytic functions when <(z) > 0.

Because the ζ series converges absolutely for <(z) > 1, reordering terms in a

clever manner yields the identities

(1− 21−z)ζ(z) = f(z)

and (1− 31−z)ζ(z) = g(z).

Hence we have two meromorphic extensions of ζ which must agree since the

half plane is simply connected. Since both f and g are analytic, it follows that

if ζ has a pole at z0, then ∃ n,m ∈ Z such that 1 + 2πin
ln(2)

= z0 = 1 + 2πim
ln(3)

.

Rearranging the identity, it follows that ln( 3n

2m
) = 0, implying 3n = 2m. Clearly

this is possible iff n = m = 0. The next proposition will complete the proof.
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Proposition 1.3.5. Assume s > 1 is real. Then

lim
s→1+

(s− 1)ζ(s) = 1.

Proof. Fix s > 1. Then the function t−s is strictly decreasing on (1,∞) and

hence for all non-zero n ∈ N we have

(n+ 1)−s <

∫ n+1

n

t−sdt < n−s.

Summing this inequality over all positive integers n,

ζ(s)− 1 <

∫ ∞
1

t−sdt < ζ(s).

Evaluating the integral gives (s− 1)−1 and so we can conclude that

(s− 1)(ζ(s)− 1) < 1 < (s− 1)ζ(s). Taking limits proves the result.

Proposition 1.3.6. For <(z) > 1, ln ζ(z) =
∑
p

p−z + R(z), where R(z) is

analytic and bounded on the half space and p runs through all primes.

Proof. Since ζ(z) has a Euler product expansion on the restricted domain, we

know ln ζ(z) = −
∑
p

ln(1− 1

pz
) converges absolutely (Of course we are taking a

branch of ln that is real along the reals). Furthermore, as | 1
pz
| ≤ 1

2
for all p, we

can apply the Taylor expansion of − ln(1− x) =
∑
n≥1

xn

n
which also converges

absolutely. Therefore

ln ζ(z) =
∑
p

∑
n≥1

1

npzn
,

and since the series are absolutely convergent, we can rearrange to get

ln ζ(z) =
∑
p

p−z +
∑
p

∑
n≥2

1

npzn
.
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It remains to show that the second series is uniformly bounded on the half

plane. Indeed,

∑
p

∑
n≥2

∣∣∣∣ 1

npzn

∣∣∣∣ ≤∑
p

|p−2(1− p−1)−1| ≤
∑
p

|p−2|(1− 2−1)−1 < 2ζ(2).

Finally, we come to Dirichlet L-functions. Let χ be a Dirichlet character

viewed as a function from Z to C. Define its associated L-function as

L(z, χ) :=
∞∑
n=1

χ(n)

nz
.

By (1.1.6),

fχ∑
n=1

χ(n) = 0 if χ is non-trivial, so (1.3.1) tells us that L(z, χ) is an

analytic function on <(z) > 0 because the partial sums of the numerators SN

are bounded by a constant (namely max{|S1|, . . . , |Sfχ−1 |}). In the case where

χ = 1, we note that L(z, 1) = ζ(z). This observation motivates the following

proposition, which generalizes (1.3.3).

Proposition 1.3.7. For <(z) > 1, L(z, χ) =
∏
p

(1− χ(p)

pz
)−1.

Proof. Since |χ(n)| is either one or zero, the terms in the sum of L(z, χ) are

bounded by those of L(z, 1) = ζ(z) = ζQ. Using the fact that χ is multi-

plicative, the proof then follows almost verbatim to the proof of (1.3.2) in the

special case where K = Q.

Recall from the previous section that for every abelian number field K

we have an associated subgroup of Dirichlet characters X. We saw that a

number of intrinsic properties of the field K can be recovered from studying

the characters in X. We will now see that ζK is also recoverable from X.
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Theorem 1.3.8. Let K and X be as above. For <(z) > 1,

ζK(z) =
∏
χ∈X

L(z, χ).

Proof. From what we have proven so far, we know that ζK =
∏
p

(1− 1

pfpz
)−rp

and L(z, χ) =
∏
p

(1− χ(p)

pz
)−1. Since convergence is absolute, there is no prob-

lem in rearranging the factors in a finite product of L-functions. Thus we write

suggestively ∏
χ∈X

L(z, χ) =
∏
p

∏
χ∈X

(1− χ(p)

pz
)−1.

Hence it suffices to show that for every prime p ∈ N,

∏
χ∈X

(1− χ(p)

pz
)−1 = (1− 1

pfpz
)−rp .

Fixing p, it is clear that if χ(p) = 0, then χ contributes nothing to the product

above, so recalling notation from theorem (1.2.7), we are interested in the

subgroups Y and Z ⊆ X. By (1.2.7), rp = |Z| is the number of χ ∈ Y such that

χ(p) = 1. Furthermore, fp is the order of Y/Z, which means |Y | = fprp and

since p does not divide the conductor of any character in Y , χ(p)fp = χfp(p) = 1

for all χ ∈ Y . The map µ : Y → {f thp −roots of unity} which sends χ to χ(p) is

therefore well-defined. Moreover, µ is easily seen to be a group homomorphism

because χψ(p) = χ(p)ψ(p) for all χ, ψ ∈ Y . We know that the kernel is X and

it follows from the size of Y that µ must be surjective and every f thp root of

unity must have rp elements in its pre-image. We therefore conclude

∏
χ∈X

(1− χ(p)

pz
)−1 =

∏
χ∈Y

(1− χ(p)

pz
)−1 = (

fp−1∏
n=0

(1−
ωnfp
pz

))−rp = (1− 1

pfpz
)−rp .

24



1.4 Extending L-Functions

In Theorem (1.3.8), we saw that we can reconstruct the zeta function of

an abelian number field K just by understanding a certain group of Dirichlet

characters. In the current section, we are going to use this relationship to

extend the domain of definition of ζK , by first showing that we can extend

every Dirichlet L-function to a meromorphic function on C and then taking

the necessary finite product. We follow the proof found in [14] pg. 261 - 264.

Before we get started, we prove two lemmas that will be used in our foray

into analytic continuation.

Lemma 1.4.1. Let P (x) be a polynomial with complex coefficients and P (0)

equal to 0. Let Q(x) be a polynomial with non-negative real coefficients and a

non-zero constant term. Let k ∈ R be arbitrary. Then the function

f(z) :=

∫ ∞
0

P (e−t)tz+k

Q(e−t)
dt

is well-defined and analytic on Ak := {z ∈ C | <(z) > −(k + 1)}.

Proof. It suffices to show that f is complex differentiable on Ak and to this

end, we consider the integrand function h(z, t). The derivative with respect

to z of h is
P (e−t) ln(t)tz+k

Q(e−t)
. Note that

∣∣∣∣P (e−t)

e−t

∣∣∣∣ is bounded on (0,∞) because

it is continuous and approaches a finite limit as t goes to∞. Likewise, |Q(e−t)|

is bounded from below by Q(0) due to the restrictions on the coefficients and

approaches this limit for large t. We conclude that if z is restricted to some

open subspace Ak,ε = {z ∈ C| − (k + 1) + ε < <(z) < 1/ε} for small ε > 0,

then
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|h′(z, t)| < gε(t) :=

 C · e−t| ln(t)|tε−1 for t ∈ (0, 1]

C · e−t ln(t)t1/ε+k for t ∈ (1,∞).

for some sufficiently large C. If gε(t) ∈ L1((0,∞)), then f would be com-

plex differentiable on Ak,ε with
∂f

∂z
=

∫ ∞
0

P (e−t) ln(t)tz+k

Q(e−t)
dt. Since ε > 0 is

arbitrary, this would suffice to show f is analytic on all of Ak.

We show gε(t) is in L1 by first noting that

lim
t→0+

tε/2 · ln(t) = lim
t→0+

ln(t)
1
tε/2

= lim
t→0+

1
t
−ε/2
t1+ε/2

by L’Hopital’s.

= 0

and so there exists some constant B st. | ln(t)| < Bt−ε/2 for all t ∈ (0, 1].

Furthermore, for t > 1, | ln(t)| < t so we must have∫ ∞
0

gε(t)dt =

∫ 1

0

gε(t)dt+

∫ ∞
1

gε(t)dt

≤ BC

∫ 1

0

tε/2−1 + C

∫ ∞
1

e−tt1/ε+k+1dt.

Since both of the integrals above are easily seen to be finite from basic analytic

methods, we conclude gε ∈ L1((0,∞)) and the proof is complete.

Lemma 1.4.2. Let F (t) =
P (e−t)

Q(e−t)
with P (x) and Q(x) as in (1.4.1). Then

∂nF (t)

∂tn
=
Pn(e−t)

Qn(e−t)
, where Pn(x) and Qn(x) also satisfy the conditions of (1.4.1).

Moreover, F (t) and all of its derivatives are bounded as t → 0 and all such

functions are o(t−m) for any fixed m ∈ N.
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Proof. By induction, the first statement holds if it holds for n = 1. Writing

P (x) = xP0(x), we have

∂F (t)

∂t
= e−t

−(P0(e−t) + P ′0(e−t))Q(e−t) + e−tQ′(e−t)P0(e−t)

Q(e−t)2
.

Replacing e−t with x in the above numerator, and observing that the derivative

of polynomials is again a polynomial, we see that the numerator satisfies the

conditions of (1.4.1). Furthermore Q2 satisfies the conditions of (1.4.1) if Q

does hence the first claim holds. The proof of (1.4.1) shows that any function

of the same form as F is bounded on [0,∞). Since all derivatives of F are also

of this form, in particular they are all bounded as t→ 0. The last part of the

lemma follows from basic facts about the decay rate of the exponential e−t and

the fact that denominator is always bounded from below as t goes to ∞.

We now introduce the Γ-function, which will be used later in the thesis and

will give us a dry run at analytic continuation. Define

Γ(z) =

∫ ∞
0

e−ttz−1dt.

(1.4.1) tells us that Γ is analytic on {<(z) > 0}. However if <(z) > 1,

integration by parts gives us

Γ(z) = −e−ttz−1|∞0 + (z − 1)

∫ ∞
0

e−ttz−2dt = (z − 1)Γ(z − 1).

Therefore Γ satisfies the functional equation Γ(z+ 1) = zΓ(z) and we use this

to analytically continue Γ in the following way. For k ∈ N, define the function

Γk(z) =
1

z(z + 1)...(z + k − 1)

∫ ∞
0

e−ttz+k−1dt =
1

z(z + 1)...(z + k − 1)
Γ(z+k).

We note that for <(z) > 0, Γk(z) = Γ(z) because by repeated use of the func-

tional equation, Γ(k + z) = z(z + 1)...(z + k − 1)Γ(z). Thus for each k, Γk
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gives an analytic continuation of Γ to <(z) > −k and since we can choose k

arbitrarily large, we see that gamma extends to a meromorphic function on C

with poles at the non-positive integers. The Γ-function will henceforth repre-

sent this extended function. It is well known that the Γ-function has no zeros,

and this fact will be used but not proved. For a proof see [2].

We now head forth and use the Γ-function to analytically continue L-

functions. Let χ be a Dirichlet character of conductor fχ. For <(z) > 1 and

n ∈ N we have from a simple change of variables that

χ(n)n−zΓ(z) =

∫ ∞
0

χ(n)e−tn−1(
t

n
)z−1dt =

∫ ∞
0

χ(n)e−nttz−1dt. (1.1)

Summing (1.1) over all positive integers, we get

L(z, χ)Γ(z) =
∞∑
n=1

∫ ∞
0

χ(n)e−nttz−1dt. (1.2)

Fixing z momentarily, we note that

∞∑
n=1

∫ ∞
0

|χ(n)e−nttz−1|dt =

∫ ∞
0

(
∞∑
n=1

(e−t)n)t|z|−1dt =

∫ ∞
0

e−t

1− e−t
t|z|−1.

The integrand clearly decays fast enough at ∞ to be integrable, so the only

question is its behavior near 0. (1− e−t)−1 has a simple pole at 0 of residue 1

as can be seen from its Taylor expansion. It follows that the integrand behaves

like e−tt|z|−2 plus some function that is bounded near 0. Since |z| > 1, t|z|−2

is integrable on (0,M) for any positive M . Hence the summation in (1.2)

can be moved inside the integral because the integrand is in L1, and since the

pointwise convergence is absolute, we may reorder the sum as we please. In
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particular,

L(z, χ)Γ(z) =

∫ ∞
0

fχ∑
n=1

χ(n)
∞∑
k=0

e−t(n+kfχ)tz−1dt

=

∫ ∞
0

fχ∑
n=1

χ(n)e−tn

1− e−tfχ
tz−1dt. (1.3)

A change of variables from t to 2t in (1.3) gives

21−zL(z, χ)Γ(z) = 2

∫ ∞
0

fχ∑
n=1

χ(n)e−2tn

1− e−2tfχ
tz−1dt.

Subtracting this result from (1.3), and defining the normalized function L?(z, χ) =

(1− 21−z)L(z, χ) gives us

L?(z, χ)Γ(z) =

∫ ∞
0

fχ∑
n=1

χ(n)(
e−tn

1− e−tfχ
− 2e−2tn

1− e−2tfχ
)tz−1dt

=

∫ ∞
0

fχ∑
n=1

χ(n)
e−tn − e−tn−2tfχ − 2e−2tn + 2e−2tn−tfχ

(1− e−tfχ)(1− e−2tfχ)
tz−1dt

=

∫ ∞
0

fχ∑
n=1

χ(n)e−tn
(1− e−tfχ)(1 + e−tfχ)− 2e−tn(1− e−tfχ)

(1− e−tfχ)(1− e−2tfχ)
tz−1dt

=

∫ ∞
0

∑fχ
n=1 χ(n)e−tn(1 + e−tfχ − 2e−tn)

(1− e−2tfχ)
tz−1dt (1.4)

Replace e−t in (1.4) with the indeterminant x and note that for every n, 1 +

xfχ−2xn is 0 when x = 1. It follows that the integrand in (1.4) can be written

in the form
P (x)

1 + x+ ...+ x2fχ−1
tz−1 =

P (x)

Q(x)
tz−1, where P and Q satisfy the

hypotheses of (1.4.1).

Let Fχ,0(t) := P (e−t)
Q(e−t)

, and Fχ,n as its nth derivative. (1.4) can then be

written as

L?(z, χ)Γ(z) =

∫ ∞
0

Fχ,0t
z−1dt
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Applying integration by parts with u = Fχ,0(t) and dv = tz−1dt and using

(1.4.2),

L?(z, χ)Γ(z) =
1

z
Fχ,0(t)tz|∞0 −

1

z

∫ ∞
0

Fχ,1(t)tzdt

⇒ zL?(z, χ)Γ(z) = −
∫ ∞

0

Fχ,1(t)tzdt

⇒ L?(z, χ)Γ(z + 1) = −
∫ ∞

0

Fχ,1(t)tzdt (1.5)

Lemma (1.4.1) says that (1.5) defines an analytic function for {<(z) > −1} and

therefore
−1

(1− 2z−1)Γ(z + 1)

∫ ∞
0

Fχ,1(t)tzdt provides an extension of L(z, χ) to

{<(z) > −1}. (1.4.2) lets us repeatedly use the integration by parts method

above to extend L(z, χ) to the entire plane. By (1.3.1), (1.3.4) and the proof

of (1.1.6 (i)), we know where the poles of the L-functions are in the half plane

{<(z) > 0}. Since Γ is non-zero we note that our extended L-functions do not

pick up any new poles in the extended domain. We conclude by summarizing

our results in the following theorem.

Theorem 1.4.3. Let everything be as above, and suppose k ∈ N is an arbitrary

positive integer. Then the formula

L(z, χ) =
(−1)k

(1− 21−z)Γ(z + k)

∫ ∞
0

Fχ,k(t)t
z+k−1dt

extends χ’s associated L-function to the half plane {z ∈ C | <(z) > k}. If χ

is the trivial character, the extended function has a unique simple pole at 1 of

residue 1. Otherwise χ is non-trivial and the extension is analytic everywhere

it is defined.

It should be mentioned that (1.4.3) also allows us to extend the domain

of definition of every zeta function corresponding to an abelian number field

through the relation ζK(z) =
∏
L(z, χ). We are particularly interested in
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the values of ζK at the negative integers and we will momentarily see how to

calculate these values for any L-function by computing Taylor expansions. We

begin by introducing a special class of sequences:

Define the sequence {Bn}∞n=0 by

t

et − 1
=
∞∑
n=0

Bn(
tn

n!
).

This sequence is known as the Bernoulli numbers. We define the generalized

Bernoulli numbers Bn,χ from the expansion

fχ∑
a=1

χ(a)teat

efχt − 1
=
∞∑
n=0

Bn,χ(
tn

n!
).

The terminology is derived from the fact that for the trivial character,

∞∑
n=0

Bn,1(
tn

n!
) =

tet

et − 1
=

t

et − 1
+ t

and hence Bn,1 = Bn for all n 6= 1.

Corollary 1.4.4. Let n be a positive integer and χ some Dirichlet character.

Then L(1− n, χ) = −Bn,χ/n.

Proof. In the formula given in (1.4.3), let n = k and z = 1− n. Then

L(1− n, χ) =
(−1)n

(1− 2n)Γ(1)

∫ ∞
0

Fχ,n(t)dt,

where Fχ,n is the nth derivative of the function

Fχ,0 =

fχ∑
a=1

χ(a)(
e−ta

1− e−tfχ
− 2e−2ta

1− e−2tfχ
)

=
1

t

∞∑
k=0

(−1)kBk,χ
tk

k!
− 1

t

∞∑
k=0

(−1)k2kBk,χ
tk

k!

=
∞∑
k=1

(−1)k(1− 2k)Bk,χ
tk−1

k!
.
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Therefore by the fundamental theorem of calculus and (1.4.2), we conclude

L(1− n, χ) =
(−1)n

1− 2n
Fχ,n−1(0)

=
(−1)n(−1)n−1(1− 2n)Bn,χ

n(1− 2n)

=
−Bn,χ

n
.

Some restrictions on the values of Bn,χ can be made by observing the parity

of the function fχ(t) =

fχ∑
a=1

χ(a)teat

efχt − 1
. Indeed, assume first that χ is not the

trivial character and substitute −t for t in the above expression to get

fχ(−t) = −
fχ∑
a=1

χ(a)te−at

e−fχt − 1

= −
fχ∑
a=1

χ(a)te(fχ−a)t

1− efχt

=

fχ∑
a=1

χ(fχ − a)eat

efχt − 1

= χ(−1)fχ(t).

Hence the parity of fχ agrees with the parity of χ. If χ is the trivial character,

we have

f1(t)− t

2
=

t

et − 1
+
t

2

=
te−t

1− e−t
+
t

2

=
(−t)
e−t − 1

− t

2

= f1(−t) +
t

2
,

so in this case f1−t/2 is even. Since even and oddness is reflected in the power

series expansion by zeros in the appropriate coefficients, we have proved the

following lemma.
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Lemma 1.4.5. Let χ be a Dirichlet character and n ≥ 1 an arbitrary integer.

(i) If χ is non-trivial and even, then B2n−1,χ = 0.

(ii) If χ is non-trivial and odd, then B2n,χ = 0.

(iii) If χ = 1 is the trivial character, then B2n−1,1 = 1/2 if n = 1 and 0

otherwise.

Corollary 1.4.6. Let K be an abelian number field over Q. Then ζK(−n) = 0

for all even n ≥ 2 and if K is not totally real then ζK(−n) = 0 for all positive

n ∈ N.

Proof. Assume K is not totally real and let XK be the set of Dirichlet charac-

ters corresponding to K. By proposition (1.2.4), XK contains an odd charac-

ter ψ and of course XK contains the trivial character. By (1.4.5) and (1.4.4),

either L(1 − n, 1) = 0 or L(1 − n, ψ) = 0 for all n ≥ 2. The first statement

follows from the fact that every character group contains the trivial charac-

ter.

Before ending this section, we prove a result regarding generalized Bernoulli

numbers that will allow them to be computed quickly and uniformly. This

result will be useful in chapter 5 when we develop an efficient algorithm to

find these numbers.

Define the Bernoulli Polynomials Bn(X) as

teXt

et − 1
=
∞∑
n=0

Bn(X)
tn

n!
.
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Observe that since
t

et − 1
=
∞∑
n=0

Bn
tn

n!
and eXt =

∞∑
n=0

Xn t
n

n!
, one can easily ex-

press the Bernoulli polynomials in terms of the Bernoulli numbers,

Bn(X) =
∞∑
i=0

(
n

i

)
BiX

n−i.

Proposition 1.4.7. Let F be any multiple of conductor fχ of the Dirichlet

character χ. Then

Bn,χ = F n−1

F∑
a=1

χ(a)Bn

( a
F

)
.

Proof.

∞∑
n=0

F n−1

F∑
a=1

χ(a)Bn

( a
F

) tn
n!

=
F∑
a=1

χ(a)

F

∞∑
n=0

Bn

( a
F

) (Ft)n

n!
=

F∑
a=1

χ(a)
te(a/F )Ft

eFt − 1
.

Let g = F/f and a = b+ cfχ, so that a running from 1 to F is equivalent to b

running from 1 to fχ and c running from 0 to g−1. Also note that χ(a) = χ(b).

It follows that we can rewrite the last line in our equality above as

fχ∑
b=1

g−1∑
c=0

χ(b)
te(b+cfχ)t

efχgt − 1
=

(
fχ∑
b=1

χ(b)
tebt

efχgt − 1

)(
g−1∑
c=0

ecfχt

)
.

But the final factor above is just a finite geometric series and can be evaluated

directly as
efχgt − 1

efχt − 1
and the result follows by definition of Bn,χ.

1.5 Odds and Ends

We conclude this chapter with a few nice results that can be easily obtained

through the language we have developed in the previous sections.

A set of positive primes A is said to have Dirichlet density if

lim
s→1+

−
∑

p∈A p
−s

ln(s− 1)

exists. If the limit does exist, we say it is the Dirichlet density d(A) of A.
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Observe that if A is finite then d(A) = 0 and if A and B are disjoint sets,

then d(A ∪ B) = d(A) + d(B), assuming both terms on the right hand side

exist. The set of all primes in N has Dirichlet density 1, as (1.3.5) and (1.3.6)

combine to show that

1 = lim
s→1+

− ln(ζQ(s))

ln(s− 1)

= lim
s→1+

−
∑
p−s +R(s)

ln(s− 1)

= lim
s→1+

−
∑
p−s

ln(s− 1)
.

We will use the concept of Dirichlet density to prove Dirichlet’s famous

theorem on primes; we need only the following lemma.

Lemma 1.5.1. Let K be an arbitrary number field of degree m over Q. Then

ζK(z) has a simple pole at z = 1.

Proof. We know that when K = Q the lemma holds and in fact ζ has a residue

of 1 at z = 1. Recall our original definition of ζK(z) =
∑
n

jn
nz

, when <(z) > 1.

Recalling notation from (1.3.2), we may then add and subtract hκζ(z) to get

ζK(z) =
∞∑
n=1

jn − hκ
nz

+ hκζ(z)

By (1.3.2),
∑N

n=1 jn = i(N) = hκN+O(N1− 1
m ) and it follows from (1.3.1) that

the series above converges to an analytic function on <(z) > 1 − 1
m

. Hence

zζK(z) converges to hκ as z goes to 0.

Theorem 1.5.2. Assume a, b ∈ N satisfy (a, b) = 1. Then the set Aa,b of all

primes in N that are congruent with a modulo b has Dirichlet density 1/φ(b).
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Proof. The proof of proposition (1.3.6) generalizes immediately to the follow-

ing result: Let χ be any Dirichlet character. Then for <(z) > 1, lnL(z, χ) =∑
χ(p)p−z +Rχ(z), where Rχ(z) is analytic and bounded as z → 0.

Using this, we note that when <(z) > 1 we have

∑
χ∈Db

χ(a−1) lnL(z, χ) =
∑
p

∑
χ∈X χ(a−1p)

pz
+
∑
χ∈Db

Rχ

=
∑
p≡a(b)

φ(b)

pz
+
∑
χ∈Db

Rχ,

where the last equality comes from (1.1.6). Applying (1.6.1) and the fact that

ζQ(ωb)(z) =
∏
χ∈Db

L(z, χ), we see that if χ is non-trivial, L(1, χ) is not 0. In

particular lnL(1, χ) is finite and so we conclude that

1 = lim
z→1+

− ln(ζ(z))

ln(z − 1)

= lim
z→1+

−
∑
χ∈Db

χ(a−1) lnL(z, χ)

ln(z − 1)

= lim
z→1+

−
∑
p≡a(b)

φ(b)
pz

ln(z − 1)
−
∑
χ∈Db

Rχ

ln(z − 1)

= lim
z→1+

−φ(b)

∑
p≡a(b)

1
pz

ln(z − 1)
.

Therefore d(Aa,b) = 1/φ(b).

We now use Dirichlet’s theorem to show how the splitting of rational primes

in an abelian number field completely determines the field. In fact a much

more general statement holds but this weaker result will be sufficient for the

purposes of this thesis. See the discussion in [19] regarding polar density to

find a proof of the more general statement.
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Theorem 1.5.3. Suppose K and L are two subfields of some cyclotomic field,

and let A and B be the set of primes in Q that split completely in K, L

respectively. If A\B ∪B\A is finite, then K = L.

Proof. Choose N ∈ N large enough so that Q(ωN) ⊇ K and L. Assume HK

and HL are the corresponding subgroups in (Z/NZ)×. Lemma (4.1.0) tells us

that aside from the primes dividing N , p ∈ A iff p ∈ HK and likewise p ∈ B

iff p ∈ HL. By (1.6.2), if HK 6= HL, there are infinitely many primes that are

in one but not the other. Hence A\B ∪B\A is finite iff K = L.
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CHAPTER 2
Tools from Number Theory

We use this chapter to introduce some of the concepts from number theory

that will be needed for proofs in the subsequent chapters. The reader should

by no means consider this an exhaustive detailing of these algebraic objects,

as we develop them only to the extent needed for this thesis.

2.1 Fractional Ideals

We follow [15] in giving a brief introduction to the concept of fractional

ideals in the context of a number field K with ring of integers O. The main

purpose of this section will serve to provide background for introducing the

different of a number field, which will be introduced in the subsequent section

and is needed in our proof of the Kronecker-Weber theorem.

A fractional ideal of K is a nonzero finitely generated O-submodule of K,

where O is some Dedekind ring and K is its field of fractions. If M is a

fractional ideal, then we define M−1 := {x ∈ K | xM⊆ O}. It is easy to see

that if M⊆ N , then N−1 ⊆M−1 and also O−1 = O.

It is clear that if ICO is any nonzero ideal, then I is also a fractional ideal.

Conversely, any fractional ideal entirely contained in O is clearly an ideal,

which we may denote as an integral ideal when necessary to avoid confusion.

Another obvious example would be yO for any y ∈ K. We will see that whenO

is a PID, all fractional ideals of K can be expressed in this manner, and so the

concept of PIDs extends from ideals to fractional ideals.
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Proposition 2.1.1. If M is a fractional ideal then so is M−1.

Proof. M−1 is clearly an O-submodule of K from the definition. Since M is

finitely generated, say by {a1

b1
, a2

b2
..., an

bn
}, it is easy to see that 0 6= b1b2...bn ∈M−1

and so M−1 is nonzero. It remains to show M−1 is finitely generated. Tak-

ing any m ∈ O, we have mM−1 ⊆ O and hence M−1 ⊆ m−1O. Since O is

noetherian, it follows that M−1 is finitely generated.

Define the product of two fractional ideals in the obvious way, namelyMN

is the set of all x ∈ K such that x can be written as a finite sum,
∑
aibi, with

ai ∈ M and bi ∈ N . Given this definition, we see that if {ai} and {bj} are

finite sets generating M and N , then {aibj} generates their product. Since

OM = M = MO, the following proposition is all that remains to show the

set of fractional ideals is an abelian group under the above multiplication.

Proposition 2.1.2. MM−1 = O.

Proof. It is clear from the definitions that MM−1 ⊆ O. We make use of the

following 2 claims to prove the reverse inclusion.

Claim 1: Let S ⊂ O be a multiplicative set and MS = S−1M be the

localization of M with respect to S. Then (M−1)S = (MS)−1 and MSNS =

(MN )S.

Proof: Let x ∈ (M−1)S. Then ∃ s ∈ S st. sx ∈ M−1. Hence sxM ⊆ O

which implies xMS ⊆ OS. Conversely suppose x ∈ (MS)−1 and write M =

k1O + . . . + knO for some ki ∈ K. It follows that xki ∈ OS for all i, say

xki = ai
si

for ai ∈ O and si ∈ S. Hence sx ∈ M−1 where s is the product of

the si, and so x ∈ (O−1)S. The second part of the claim is proved similarly.
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Claim 2: If O is a PID, then every fractional ideal is generated by a single

element.

Proof: Let M be any fractional ideal. Using the fact that M is finitely

generated, we conclude there is a k ∈ O st. kM⊆ O. Hence kM = (x) is an

integral ideal, and it follows M = k
x
O.

Returning to the proof of the proposition, suppose MM−1 is a proper

integral ideal of O. Then it is contained in some prime ideal P . Localizing

at P we see that (MM−1)P ⊆ P · OP while by claims (1) and (2) we have

(MM−1)P = (MP )(MP )−1 = (xOP )(x−1OP ) = OP . This is a contradiction.

The following theorem shows that the unique prime factorization of ideals

in O extends in a natural way to factorization of all fractional ideals.

Theorem 2.1.3. Let M be any fractional ideal in Dedekind ring O. ThenM

can be expressed uniquely as a product

M = Pα1
1 Pα2

2 ...Pαk
k

with each Pi a distinct prime ideal and each αi ∈ Z.

Proof. See [15] pg. 18.

Before moving on to differents in the next section, we introduce the concept

of a dual basis. Let K ⊂ L be two number fields and consider the K-bilinear

quadratic form T = TLK : L× L→ K.

Theorem 2.1.4. The trace map is non-degenerate.
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Proof. We assume that there exists x ∈ L such that T (x, ·) is the zero map and

show x must be zero. Let α ∈ L be a primitive element over K, ie. L = K(α).

We can then write x as a polynomial in α, say

x = b0 + b1α + ...+ bn−1α
n−1,

where bi ∈ K and n = [L : K]. Letting A := (aij) be the n× n matrix defined

by aij = T (αi−1αj−1), we conclude that if x is not zero then A must have

determinant zero, as
n∑
i=1

bi−1T (αi−1αj−1) = T (xαj−1) = 0 for all j and hence

[b0, ..., b1].A = ~0.

On the other hand, let

f(x) = xn + an−1x
n−1 + ...+ a0 = (x− α1)(x− α2)...(x− αn)

be the minimal polynomial for α = α1 over K, where all of the αi lie in some

splitting field. Then we have the Vandermonde matrix

V :=



1 α1 α2
1 . . . αn−1

1

1 α2 α2
2 . . . αn−1

2

...
...

...
...

...

1 αn α2
n . . . αn−1

n


and one can check that V t.V = A. On the other hand, it is well known that

det(V ) =
∏
i<j

(αi − αj) and since L is a separable extension of K, we must have

det(A) = det(V )2 6= 0. Hence x must be zero.

Since L is a finite dimensional vector space of K, it follows from (2.1.4)

and general linear algebra that every K-linear functional in L∗ is of the form

f(x) = T (xy) for some unique y ∈ L and it is clear that any such y defines a
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linear functional as above. In particular, given a basis {α1, ..., αn} of L over K,

we can consider the functionals fi ∈ L∗ such that fi(αj) = δij for i = 1, ..., n.

We define the dual basis with respect to {α1, ..., αn} to be {β1, ..., βn}, where

fi(x) = T (xβi). It is easy to see by the linearity of the trace that the dual

basis is in fact a basis. The final proposition of this section shows that we can

calculate dual bases explicitly when the given basis is monogenous.

Proposition 2.1.5. Suppose α ∈ L st. L = K[α]. Let f be the monic

irreducible polynomial for α over K and write f(x) = (x− α)g(x). Then

g(x) = β0 + β1x+ ...+ βn−1x
n−1 ∈ L[x]

and {
β0

f ′(α)
, ...,

βn−1

f ′(α)

}
is the dual basis to {1, α, ..., αn−1}.

Proof. We follow the proof outlined in the exercises of [19]. Let σ1, ..., σn be

the n distinct embeddings of L in C that fix K and for simplicity, assume

σ1 is the identity. Define gi(x) = σi(g(x)) and αi = σi(α), so that f(x) =

(x− αi)gi(x) in C[x]. It is easy to see that gi(αj) = 0 if i 6= j and is equal to

f ′(αi) if i = j. Let V be the Vandermonde matrix defined with respect to the

αi and N =( σi(βj−1/f
′(α)) ). Then

N.V t =

(
n∑
k=1

σi(βk−1/f
′(α))αk−1

j

)
= (gi(αj)/(f

′(αi))) = In.

Hence N = (V t)−1 and so

In = V t.N =

(
n∑
k=1

αi−1
k σk(βj−1/f

′(α))

)
= (T (αi−1 βj−1

f ′(α)
)).
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2.2 Differents

We start with L|K a separable extension of fields, OK a Dedekind subring

of K and OL its integral closure in L. Let A be an OK-submodule of L. We

define the complimentary set A∗ := {x ∈ L | T (xA) ⊆ OK}. We note that A∗

is an OK-module, as T ((mx)A) = mT (xA). Furthermore, if A ⊆ B are two

such OK-modules, then B∗ ⊆ A∗.

Proposition 2.2.1. Let {α1, ..., αn} be a basis for L over K and consider the

OK-submodule

A := α1OK + ...+ αnOK .

Then A∗ = β1OK + ... + βnOK, where {β1, ..., βn} is the corresponding dual

basis.

Proof. Suppose x ∈ A. Then x = c1α1 + ... + cnαn and by definition of the

dual basis, T (xβi) = ci ∈ OK . Hence A∗ certainly contains β1OK + ...+βnOK .

Conversely, if y ∈ A∗, then let dk = T (αky). It follows that y = d1β1+...+dnβn

and since each dk is in OK , we have the reverse containment.

We observe from the definitions that if M is an OL-submodule of L, then

its complimentary set is as well. This motivates the following proposition.

Proposition 2.2.2. If M is a fractional ideal, so is M∗.

Proof. It remains to show M∗ is nonzero and finitely generated. Pick s ∈ K

such that sM = I COL. I contains a basis for L over K, say {α1, ..., αn} and

hence M contains the OK module A =
α1

s1

OK + ...+
αn
sn
OK . Thus A∗OL ⊇
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A∗ ⊇ M∗, and A∗OL is finitely generated by (2.2.1). Since OL is noetherian,

M∗ is finitely generated, and clearly nonzero since M−1 ⊆M∗.

Following the previous proposition, we place special emphasis on the frac-

tional ideal C = O∗L which contains O−1
L = OL by denoting it Dedekind’s

complimentary module or the inverse different for reasons that will soon be-

come clear. Note of course that C depends explicitly on OK and its integral

closure in L so our notation is somewhat lacking, however clarification will be

provided when confusion may arise. In any case, define the different D = C−1.

Again, the same remarks regarding notation applies to the different, for exam-

ple we may write DL|K or even DOL|OK to specify the fields or Dedekind rings.

Observe that D ⊂ OL so that the different is in fact an integral ideal.

Proposition 2.2.3.

(i) For a tower of fields K ⊆ L ⊆M , one has DM |K = DL|KDM |L (here DL|K

is identified with the ideal of OM generated by DL|K ⊆ OL.

(ii) For any multiplicative subset S of OK, one has DS−1OL|S−1OK = S−1DL|K.

(iii) If P |p are prime ideals of OL,OK respectively, and OP |Op are the

associated completions, then DOL|OKOP = DOP |Op.

Proof. (i) We assume that OK is the Dedekind ring of K that these differents

are defined with respect to and that OL and OM are the integral closures of OK

in their respective fields. It clearly suffices to show CM |K = CL|KCM |L, where

again we identify CL|K with the fractional ideal of M generated by CL|K ⊂ L.
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Therefore suppose x ∈ CL|K and y ∈ CM |L. Then

TMK (xyOM) = TLK(TML (xyOM))

= TLK(xTML (yOM))

⊆ TLK(xOL)

⊆ OK

and so we have ⊇. To get the reverse containment, suppose z ∈ CM |K and y ∈

DL|K . Now we know TLK(TML (z)OL) = TMK (zOL) lies in OK , so TML (z) ∈ CL|K .

Hence TML (yz) = yTML (z) must lie in OL. Therefore DL|KCM |K ⊆ CM |L, which

suffices since DL|K = (CL|K)−1.

(ii) Again it suffices to prove CS−1OL|S−1OK = S−1COL|OK by the first claim

in (2.1.1). Suppose x ∈ CS−1OL|S−1OK . Then T (xOL) ⊂ S−1OK , so by the

usual finitely generated argument, we can find some s ∈ S st. sx ∈ COL|OK

which gives ⊆. On the other hand if y ∈ S−1COL|OK , then T (yS−1OL) =

S−1T (yOL) ⊆ S−1OK .

(iii) See [22] pg. 196.

An immediate corollary to (2.2.3 (iii)) is that the different can be deter-

mined locally, ie. DL|K =
∏
P

OL ∩ DLP |Kp .

We now come to the property of the different that will be most useful to

us in the sequel. Let α ∈ OL and f(x) ∈ OK [x] the minimal polynomial for α.

We define the different of α as

δL|K(α) =

 f ′(α) if L = K[α].

0 if L 6= K[α].

Proposition 2.2.4. If OL = OK [α], then DL|K = (δL|K(α)).
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Proof. Apply (2.1.5) and (2.2.1) to get C = f ′(α)−1(β0OK + ... + βn−1OK),

where the βj satisfy the equation β0 + ... + βn−1x
n−1 = f(x)/(x − α). Now

βn−1 = 1 and βk−1−αβk = ak for all k < n, where f(x) = a0 + ...+an−1x
n−1 +

xn. It is easy to determine the βj recursively, and it turns out

βn−i = αi−1 + an−1α
i−2 + ...+ an−i+1.

Since the ai are all in OK , we have β0OK + ...+βn−1OK = OK [α] = OL. Thus

DL|K = C−1 = (f ′(α)).

It turns out that in general, DL|K is the ideal generated by the differents of

all the elements in OL but this fact will not be needed. The interested reader

is again directed to [22] for more details.

2.3 Ramification Groups

This introduction follows the directed exercises found in [19]. The motiva-

tion for introducing ramification groups is to prove a special case of Hilbert’s

formula (2.3.9), which will be used in the proof of the Kronecker-Weber theo-

rem in the next section when we try to embed an arbitrary abelian field into

a cyclotomic one. In what follows, assume L is a Galois extension of K, with

Galois group G. Let OK , OL be the corresponding number rings, and assume

QCOL is a prime that extends P COK . Let D and T be the corresponding

decomposition and inertia subgroups.

Define the ramification groups for m ≥ 0:

Vm(Q|P ) = {σ ∈ G : σ(α) ≡ α mod Qm+1 ∀α ∈ OL}.
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Note that when no confusion will arise, we will simplify the notation to Vm.

We now develop some preliminary results on ramification groups that will be

useful in future proofs.

Proposition 2.3.1. The ramification groups are normal in D and are all

eventually the trivial subgroup.

Proof. It is clear from the definition that V0 = T and that the ramification

subgroups form a descending chain. Since G is finite, the chain must stabilize.

Thus it suffices to show the intersection of the ramification groups is trivial.

⋂
m≥0

Vm = {σ ∈ G : σ(α) ≡ α mod Qm+1 ∀m,∀α ∈ OL}

⇒ σ ∈
⋂
m≥0

Vm ⇔ σ(α)− α ∈
⋂
m≥0

Qm+1 = {0} ∀ α ∈ OL

⇔ σ = 1.

Now suppose τ ∈ D and σ ∈ Vm. Then ∀ α ∈ OL, στ−1(α)− τ−1(α) ∈ Qm+1

and so τστ−1(α) − α ∈ τ(Qm+1) = Qm+1 which implies τστ−1 ∈ Vm. Hence

Vm CD.

We next prove for m ≥ 1 that if σ ∈ Vm−1, it suffices to check its action on

any element π ∈ Q\Q2 in order to determine if σ is in Vm.

Proposition 2.3.2. Let π ∈ Q\Q2 and m ≥ 1. If σ ∈ Vm−1, then σ ∈ Vm ⇔

σ(π) ≡ π mod Qm+1.
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Proof. One direction is obvious, so assume σ(π) ≡ π mod Qm+1 and we will

fix α ∈ OL. Suppose first that α ∈ πOL, then α = πk for some k and

σ(α)− α = σ(πk)− πk

= σ(π)σ(k)− πk

= (π + β1)(k + β2)− πk where β1 ∈ Qm+1 & β2 ∈ Qm

= β1β2 + β1k + β2π

≡ 0 mod Qm+1.

Now assume α ∈ Q. Then (α) = Q · J and (π) = Q · I where I is relatively

prime with Q. By the Chinese Remainder Theorem, ∃ β ∈ I\Q and hence

αβ ∈ (π).

⇒ βσ(α)− βα = (σ(β) + k)σ(α)− βα for some k ∈ Qm

= kσ(α) + σ(βα)− βα

≡ kσ(α) mod Qm+1 by above

≡ 0 because α ∈ Q & k ∈ Qm

⇒ β(σ(α)− α) ≡ 0 mod Qm+1

⇒ σ(α)− α ≡ 0 since β /∈ Q.

Finally we let α be arbitrary. Let LT be the inertia field corresponding to Q

and we note that since Q ramifies completely over LT , the inclusion map

OLT ↪→ OL induces an isomorphism of residue fields. In particular, ∃ β ∈

OLT st. β ≡ α mod Q. Since σ fixes LT we have

σ(α) = σ(α− β) + β

≡ α− β + β mod Qm+1 since α− β ∈ Q

≡ α.
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Corollary 2.3.3. Fix π ∈ Q\Q2. Then ∀ σ ∈ T, σ ∈ Vm ⇔ σ(π) ≡ π

mod Qm+1.

Proof. One direction is obvious and for the other, simply apply the above

proposition inductively.

The next two propositions explore the relationship between consecutive

ramification groups and in particular how they are influenced by the residue

field OL/Q.

Proposition 2.3.4. T/V1 can be embedded into (OL/Q)×.

Proof. Fix π ∈ Q\Q2 and let σ ∈ T be arbitrary. Then πOL = Q · I with Q

and I relatively prime, so by the CRT, ∃ x ∈ OL, such that x ≡ 0 mod I and

x ≡ σ(π) mod Q2.

⇒ x ∈ Q ∩ I = (π)

⇒ x = πα for some α ∈ OL

⇒ σ(π) ≡ πα mod Q2.

Hence ∀ σ ∈ T, ∃ α ∈ OL st. σ(π) ≡ πα mod Q2 and clearly α is uniquely

determined mod Q. Now fix σ and let ασ denote such an element as above.

Note that α /∈ Q since π /∈ Q2 and by (2.3.2), α ≡ 1 iff σ ∈ V1. Furthermore,

αστπ ≡ στ(π)

≡ σ(ατπ)

≡ σ(ατ ) · ασπ mod Q2.

Since (ατ − σ(ατ ))ασπ ∈ Q2, this implies αστπ ≡ ασατπ.
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Finally let ϕ : T → (OL/Q)×, ϕ(σ) = ασ. Then ϕ is well-defined as ασ is

unique mod Q and the above shows ϕ is a group homomorphism with kernel V1.

Hence ϕ induces the desired embedding.

Corollary 2.3.5. T/V1 is cyclic of order dividing qf(Q|q) − 1, where q ∈ Z is

the prime lying under Q.

Proposition 2.3.6. For m ≥ 2, Vm−1/Vm ↪→ OL/Q as an additive group.

Proof. We proceed similarly to the previous proposition. Fix π ∈ Q\Q2 so

that (π) = Q · I with Q and I relatively prime ideals. Let σ ∈ Vm−1 be

arbitrary. Then σ(π) = π + β for some β ∈ Qm. By the CRT, ∃ x st. x ≡ β

mod Qm+1 and x ≡ 0 mod Im.

⇒ x ∈ QmIm

⇒ x ∈ (πm)

⇒ σ(π) ≡ π + β ≡ π + πmα mod Qm+1, where πmα = x.

It follows that for any σ ∈ Vm−1, ∃ α st. σ(π) ≡ π + απm mod Qm+1 and α

is easily seen to be unique mod Q. Let ασ denote such an element for each

σ ∈ Vm−1,

π + αστπ
m ≡ στ(π) mod Qm+1

≡ σ(π + α− τπm)

≡ π + ασπm + σ(ατπ
m).
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Considering the last term above,

σ(ατπ
m)− ατπm ≡ σ(ατ )(π + δ)m − ατπm mod Qm+1 for some δ ∈ Qm.

≡ σ(ατ )(π
m − ατπm) ∵ m ≥ 2.

≡ (σ(ατ )− ατ )πm

≡ 0 ∵ σ ∈ Vm−1 ⊂ T.

Hence αστ ≡ ασ + ατ mod Qm+1 and therefore the map ψ : Vm−1 → OL/Q,

ψ(σ) = ασ is well defined and induces an injective group homomorphism from

Vm−1/Vm into the additive group OL/Q.

Corollary 2.3.7. V1(Q|P ) is the Sylow q-subgroup of T (Q|P ), where q ∈ Z is

the prime lying under Q (and P ).

Proof. By (2.3.4), T/V1 embeds into (OL/Q)× which has order relatively prime

to q. Thus T/V1 contains the Sylow q-subgroup of T . On the other hand, by

(2.3.6) and (2.3.1) Vm/Vm+1 ↪→
f(Q|q)⊕

1

Z/qZ and for sufficiently large n, Vn = 1.

∴ |V1| =
n∏
i=1

|Vi/Vi+1| is a product of powers of q.

Before moving on to proving a special case of Hilbert’s formula, we give a

strengthened version of (2.3.4) which will be used in the next section. In what

follows, assume φ = φ(Q|P ) is any map in the decomposition group D such

that φ(α) ≡ α||P || mod Q ∀ α ∈ OL.

Proposition 2.3.8. Assume T/V1 is abelian. Then the embedding of (2.3.4)

actually maps T/V1 into (OK/P )×.
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Proof. Fix π in Q\Q2 and σ ∈ Vm−1,m ≥ 1. From the proof of (2.3.4) and

(2.3.6), ∃ α st. σ(π) ≡ απ mod Qm+1. We claim that in fact σ(x) ≡ αx

mod Qm+1 for any x ∈ Q (So that α does not depend on π). Indeed, suppose

first that x ∈ (π), say x = πk. Then

σ(x) = σ(π)σ(k)

≡ απσ(k) mod Qm+1

= απ(k + β) for some β ∈ Qm

≡ απk

≡ αx mod Qm+1.

Next assume x ∈ Q and choose a δ st. δ ∈ I\Q where Q · I = (π). Then

δx ∈ (π) and σ(δx) ≡ αδx mod Qm+1 by above, so

δσ(x)− σ(δx) = σ(x)(δ − σ(δ))

≡ 0 mod Qm+1 because x ∈ Q and σ ∈ Vm−1.

⇒ δσ(x) ≡ δαx mod Qm+1

⇒ σ(x) ≡ αx since δ /∈ Q.

In particular, suppose σ ∈ T = V0. Then φ−1(π) lies in Q since π does. Hence

φσφ−1(π) ≡ φ(αφ−1(π)) ≡ α||P ||π mod Q2.

By assumption, T/V1 is abelian, so φσφ−1 = σ ∈ T/V1 and hence σ = φσφ−1.

Thus we deduce that α = α||P || in (OL/Q)×. Hence the induced embedding ϕ

actually sends T/V1 into (OK/P )×.

We now prove a special case of Hilbert’s formula. Our additional assump-

tion will be that the prime QCOL is completely ramified over P COK . The
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general case follows easily from this special case combined with the tower for-

mula for differents (2.2.3), but we shall not have need for it. In what follows,

let OQ and OP denote the valuation rings in the complete fields LQ and KP

respectively.

Theorem 2.3.9. Assume P is completely ramified in L and let Qk be the exact

power of Q dividing the different DL/K. Then

k =
∑
m≥0

(|Vm| − 1).

Proof. By the remark following (2.2.3), as α, β run over the primes in OK and

OL respectively, we have

DL/K =
∏
α

∏
β|α

(DLβ/Lα ∩ OL).

In particular, Qk = DLQ/LP ∩OL. Let π ∈ Q\Q2 be arbitrary, then K(π) = L

and π generates the unique maximal ideal of OQ. Applying proposition 6.8

in chapter 2 of [22], OQ is generated as an OP module by {wjπi}, where

0 ≤ i ≤ e(Q|P ) − 1 and the wj are representatives of a basis for OL/Q over

OK/P . Since e(Q|P ) = [L : K], OL/Q = OK/P and so {1, π, ..., πe−1} forms

such a basis. In particular, OQ = OP [π] so OQ is monogenous. By (2.2.4), this

implies DLQ/KP = (f ′(π)) where f is the minimum polynomial for π over KP .

Since [LQ : KP ] = e(Q|P )f(Q|P ) = [L : K], f is also the minimum polynomial

for π over K. Therefore Qk is the exact power of Q dividing (f ′(π)) COL.

Now suppose σ ∈ Vm−1\Vm, so (π − σ(π))OL is exactly divisible by Qm.

Since f ′(π) =
∏
σ∈G

(π − σ(π)) and P ramifies completely in L, G = D = T and

so

k =
∑
m≥1

m|Vm−1 − Vm| =
∑
m≥0

|Vm − 1|,
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where the last equality comes from a simple counting argument (if σ ∈ Vm−1\Vm,

then σ will contribute to exactly m terms on the right hand side of the equal-

ity).
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CHAPTER 3
The Kronecker-Weber Theorem

Given a suitable function f(x) whose roots generate an abelian extension K

of Q, our next order of business is to systematically find a suitable NK such

that K embeds into Q(ωNK ). Such an N exists in general, as guaranteed by

the Kronecker-Weber theorem and we now prove there exists a suitable N that

depends only on the degree of the extension [K : Q] and the primes of Z that

ramify in K. The proof will follow the directed exercises found in chapter 4 of

[19].

Theorem 3.0.1. Let K be an abelian extension of Q st. [K : Q] = n =
k∏
i=1

qrii

and let A := {p1, p2, ..., pt} be the set of all primes of Z that ramify in K. If

2 ∈ A then define m to be 2
∏
pi, otherwise let m =

∏
pi. Then K ⊆ Q(ωmn).

Proof. Observe first that since G = Gal(K/Q) is abelian, we have

G ∼= Sq1 × Sq2 × ...× Sqk

where each Sqi is the Sylow qi-subgroup of G. Hence K = Lq1Lq2 ...Lqk ,

where Lqi is the fixed field of
∏
j 6=i

Sqj and [Lqi : Q] = |Sqi | = qrii . Clearly

then it is enough to show each Lqi ⊆ Q(ωt) for some t|nm because if a and b

are positive integers, we have the identity Q(ωa)Q(ωb) = Q(ωlcm(a,b)). Let t be

the product of the primes that ramify in Lqi with qrii (and an additional factor

of 2 if 2 ramifies in Lqi). We note that the primes ramifying in Lqi form a sub-

set of the primes ramifying in L, and certainly qrii divides m. Hence t divides
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nm and we have reduced the problem to the case where K is an extension of

Q of prime power degree.

Henceforth we assume [K : Q] = qr for some prime q. The next step is to

reduce to the case where q is the only prime that ramifies in K.

Suppose p 6= q ramifies in K. Let P be a prime of K lying over p and let

e = e(P |p) be the ramification index. Recall from (2.3.7) that the ramification

group V1(P |p) is the Sylow p-subgroup of the inertia group T (P |p). Since

T ≤ G and |G| = qr, we must have V1 = {1}. By (2.3.8), T/V1 embeds into

(Z/pZ)× and hence e = |T | divides p − 1. Since Gal(Q(ωp)/Q) ∼= (Z/pZ)×

which is cyclic of order p − 1, we deduce ∃! subfield L ⊆ Q(ωp) of degree e

over Q. Clearly p ramifies completely in L since it does in Q(ωp). Observe

that the only primes ramifying in LK are the ones ramifying in K, since the

only prime that ramifies in Q(ωp) and hence L, is p.

Let U COLK be a prime lying over P and let K ′ ⊆ LK be the fixed field of

T (U |p). Then p is unramified in K ′ since it is the inertia field of U over p, as are

all primes that are unramified in K. The canonical mapping of Gal(LK/Q)

into Gal(K/Q) × Gal(L/Q) via restriction embeds T (U |p) into T (P |p) ×

Gal(L/Q), which is a subgroup of order e2 and in particular is a power of q.

Hence we note once again that V1(U |p) = {1} by its Sylow subgroup char-

acterization and therefore by (2.3.7), T (U |p) ∼= T (U |p)/V1(U |p) ↪→ (Z/pZ)×.

In particular, this shows T (U |p) is cyclic. Combining this fact with the em-

bedding of T (U |p) into T (P |p) × Gal(L/Q), which is a group of exponent e,

we deduce |T (U |p)| ≤ e. On the other hand the ramification degree of p in

OLK is at least the ramification degree of p in OK which is precisely e, thus

|T (U |p)| = e.
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Since |T (U |p)| = e, we can conclude that U must be unramified over L.

Furthermore, [LK : K ′] = |T (U |p)| = e = [L : Q]. As observed earlier, q

is totally ramified in L and unramified in K ′, hence L ∩ K ′ = Q and thus

[LK ′ : K ′] = [L : Q] = e. It follows that LK ′ = LK. Finally note that

[K ′ : Q] =
[LK ′ : Q]

[LK ′ : K ′]

=
[LK : L][L : Q]

[LK ′ : K ′]

= [K : L ∩K]

= qt, for some t ≤ r.

Thus we have found a field K ′ such that the only possible primes that ram-

ify in K ′ are the primes that ramify inK, with the exception of q. Furthermore,

[K ′ : Q] divides [K : Q] and since LK ′ = LK for some field L ⊆ Q(ωq), if K ′

lies in the sth-cyclotomic field, then K must lie in the sqth-cyclotomic field.

Applying this argument repeatedly for every prime in K not equal to p, we

reduce to the case where K is a finite extension of Q of prime power order pr

and p is the only prime that ramifies in K. Thus it suffices to show that K

lies in Q(ωpr+1) when p 6= 2 and Q(ω2r+2) otherwise.

Case 1: p = 2, [K : Q] = 2r.

Subcase 1: r = 1.

Since K is a quadratic extension, K = Q(
√
m) for some squarefree inte-

ger m. It is well known (see for example [19] pg. 33) that the discriminant of

a quadratic number field satisfies the following formula:

∆Q(
√
m) =

 m if m ≡ 1 mod 4

4m if m ≡ 2, 3 mod 4.
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As 2 is the only prime that ramifies in K, the discriminant ∆ must be a power

of 2 (Up to a sign). It follows by inspection that the only possibilities for a

squarefree m are m = 2,−1, or −2. In any case, Q(ω8) ⊃ Q(
√

2),Q(
√
−1)

and Q(
√
−2) hence Q(ω8) ⊃ K. This completes the proof of the first subcase.

Subcase 2: r > 1.

Since [K : K ∩ R] is either 1 or 2, then necessarily [K ∩ R : Q] ≥ 2.

Using the fact that Gal(K ∩ R/Q) is abelian and divisible by 2, it must have

a subgroup of index 2. Thus K ∩ R contains a quadratic subfield, and by the

previous subcase, that subfield must be Q(
√

2).

Let L = Q(ω2r+2) ∩ R, so [L : Q] = 2r and 2 is the only prime that

ramifies in L as it is the only prime that ramifies in Q(ω2r+2). By the above

comments, L also contains Q(
√

2) and this is the unique quadratic subfield

contained in L. The Galois group of L is cyclic as it is isomorphic to the

cyclic group (Z/2r+2Z)×/{±1}. Let σ be a generator and extend σ to τ ∈

Gal(LK/Q). Let F be the fixed field of τ . Clearly [F : Q] is a power of 2, and

we conclude either 1 or 2, for if [F : Q] > 2, F ⊃ Q(
√

2), contradicting the

fact that F ∩L = Q since τ restricted to L is σ. Hence from the discussion in

subcase 1, F = Q, Q(
√
−1) or Q(

√
−2).

Next we note that the canonical embedding of Gal(LK/Q) into Gal(L/Q)×Gal(K/Q)

sends τ to (σ, τ |K). We conclude that τ has order 2r. Indeed, τ has order at

least that of (σ, 1), which generates a subgroup of order 2r, but on the other

hand the group Gal(L/Q)×Gal(K/Q) has exponent 2r. Finally, note that
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|Gal(LK/Q)| = | < τ > ||Gal(LK/Q)/ < τ > |

= 2r[F : Q]

=

 2r if F = Q

2r+1 if F = Q(
√
−1) or Q(

√
−2).

In any case, it follows that LK = LF ⊆ L(
√
−1,
√
−2) = Q(ω2r+2) and in

particular, Q(ω2r+2) ⊃ K. This concludes the proof in the case that p = 2.

Case 2: p 6= 2, [K : Q] = pr.

Before we can draw the desired conclusion in general, we are going to make

use of the material found in section (2.2) regarding the different of a number

field. Assume first that r = 1 and let P CK be a prime lying over p. Then p

ramifies in K and since K is Galois over Q, the subgroup T (P |p) ≤ Gal(K/Q)

is non-trivial. But G = Gal(K/Q) has prime order p and hence T (P |p) is the

whole group. In particular p ramifies completely in K. Now fix some element

α ∈ P\P 2. Because P∩Q = P 2∩Q = (p), this implies α /∈ Q and since [K : Q]

has prime order, we must have Q(α) = K. Hence the minimum polynomial

f(x) = xp + ap−1x
p−1 + ...+ a0 (3.1)

for α over Q lies in Z[x] and has degree p.

Since p is totally ramified in K, by Hilbert’s formula (2.3.9) we know the

exact power k of P dividing the different DK/Q is equal to

k =
∑
m≥0

|Vm| − 1.
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Note that since G is cyclic of order p, every Vm has order either p or 1. Hence

p− 1|k.

On the other hand, the exact power P dividing DK/Q is equal to the exact

power dividing the ideal (f ′(α)) CK (See the proof of (2.3.9)). Substituting α

into (3.1) and reducing mod P , followed by mod P 2, up to mod P p = (p) we

see respectively that a0, a1, ..., ap−1 ∈ P ∩Q = (p). Thus every term in

f ′(α) = pαp−1 + (p− 1)ap−1α
p−2 + ...+ a1

generates an ideal divisible by P . Moreover, the power ki of P dividing

(iap−iα
i) must be congruent with i mod p for 1 ≤ i ≤ p (here ap = 1) since

P p = (p). In particular each ki is distinct and hence k = min{k1, ..., kp}. Keep-

ing this in mind, we note that kp = p+p−1 < 3(p−1) and ki ≥ p > p−1 ∀ i.

Thus the divisibility condition p − 1|k immediately implies k = 2(p − 1).

Since primes of K divide DK/Q iff they ramify over Q, we conclude that

DK/Q = P 2(p−1)

We now temporarily leave our current case, and consider the case when

r = 2, again with the assumption that P is a prime of K lying over p. We

note once again that since p must ramify, e(P |p) = p2 or p. Clearly the first

case holds, since in the latter, the corresponding inertia field would give a

non-trivial field extension of Q with no ramified primes. Indeed the same

reasoning holds for any r ≥ 1, so we always have p ramifying completely. By

the Sylow p-subgroup characterization of V1(P |p), we conclude V1 = T (P |p) =

Gal(K/Q). Let k′ > 1 be the smallest integer such that Vk′ 6= Gal(K/Q). By

(2.3.6), we know Vk−1/Vk embeds into the additive group OK/P ∼= Z/pZ for

k ≥ 2 and hence |Vk′| = p. Let H ≤ Gal(K/Q) be an arbitrary subgroup such

that |H| = p and let KH be the corresponding fixed field. Applying our results

60



from the case when r = 1 to Hk with the tower formula for differents (2.2.3),

we get

DK/Q = DK/KH · DKH/Q

= DK/KH ·Q2(p−1)OK

= DK/KH · P 2p(p−1).

where Q = P ∩KH . This shows that DK/KH is independent of the choice of H.

On the other hand, if k is the maximum power of P dividing DK/KH , then

k =
∑
m≥0

|Vm ∩H| − 1

again by the Hilbert Formula for completely ramified primes. This implies if

H 6= Vk′ , then k = k′(p− 1) while H = Vk′ implies k ≥ (k′ + 1)(p− 1). These

observations can only be reconciled by the conclusion that Vk′ is the unique

subgroup of order p and hence Gal(K/Q) ∼= Z/p2Z.

Returning back to the case where r = 1, we use what we have just shown.

Assume now that there are two distinct number fields K 6= K ′ such that

[K : Q] = [K ′ : Q] = p and p is the only prime that ramifies in either extension

(thus it ramifies in both). Then KK ′ is a number field that must satisfy the

conclusions just drawn for the case when r = 2, that is to say Gal(KK ′/Q)

is cyclic which is clearly absurd. Hence K is unique and so it remains to find

a field that satisfies the conditions on K. Inspection reveals that the unique

subgroup H ≤ Gal(Q(ωp2)/Q) of order p − 1 fixes an abelian number field of

degree p over Q and p is the only prime that ramifies in it. Hence K must

be this fixed field, which we will denote K∗ for future reference and clearly

K = K∗ ⊂ Q(ωp2), proving the assertion for the case that r = 1.
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It remains to show the theorem is true for r > 1 and p an odd prime; we

proceed similarly to the case when p = 2. Let L be the unique subfield of

Q(ωpr+1) with degree pr over Q (Note that we have uniqueness as the Galois

group is isomorphic to (Z/pr+1Z)×, which is well known to be cyclic of order

pr(p − 1) for any odd prime). Then Z/prZ ∼= Gal(L/Q) =< σ >, so extend

σ to τ ∈ Gal(LK/Q) and let F be the fixed field of τ . Then F is abelian

over Q, [F : Q] = pt for some t, and p is the only prime that ramifies in F ,

which it does completely. As in the case with p = 2, we conclude F ∩ L = Q

and in fact, if F 6= Q then F contains K∗ by uniqueness, as does K and

more importantly L. Hence F = Q, so by the Fundamental Theorem for

Galois Theory, < τ > equals Gal(LK/Q). Since Gal(LK/Q) embeds into

Gal(L/Q)×Gal(K/Q), the latter group being a group of exponent pr, we have

pr = |σ| ≤ |τ | ≤ pr. We conclude that Gal(L/Q) = Gal(LK/Q) and therefore

K = L. Hence K ⊂ Q(ωpr+1).

We can immediately strengthen this theorem slightly with the following

lemma.

Lemma 3.0.2. Let K be a field contained in the N th-cyclotomic field. Suppose

m ∈ Z is a prime that does not ramify in K. Writing N = mkN ′ for some

k ∈ N and (m,N ′) = 1, then K ⊆ Q(ωN ′).

Proof. The proof revolves around the inertia subgroup Tm of Gal(Q(ωN)/Q).

The fixed field of Tm is the largest subfield of Q(ωN) in which m does not

ramify, and the degree of that field over Q must be less then or equal to

ϕ(N)
ϕ(mk)

= ϕ(N ′) sincem ramifies completely in the (mk)th cyclotomic field, which

is contained in Q(ωN). Since Q(ωN ′) satisfies both the degree and ramification
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conditions, it follows that it is the fixed field of Tm. By hypothesis, m does

not ramify in K, so K ⊆ Q(ωN ′) as claimed.

Corollary 3.0.3. Let K be an abelian extension of Q and let A := {p1, p2, ..., pt}

be the set of all primes of Z that ramify in K. Assume [K : Q] = n =

(
t∏
i=1

prii ) · n′ = µ · n′, where (n′, pi) = 1 ∀ pi ∈ A. If 2 ∈ A then define m to be

2
∏
pi, otherwise let m =

∏
pi. Then K ⊆ Q(ωmµ).

Proof. Apply theorem (3.0.1), followed by lemma (3.0.2) to all primes divid-

ing n that do not ramify in K.
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CHAPTER 4
Zeta Functions at Negative Integers for Abelian Number Fields

4.1 Determining Characters

We have seen from (3.0.1) that given an abelian extension K of Q, we can

find a suitable N ∈ N, depending only on the degree [K : Q] and the primes

that ramify, such that Q(ωN) ⊇ K. Finding this N is a critical first step in our

quest to determine the character group of K and ultimately its Dedekind zeta

function, as we have a firm understanding of the character group of (Z/NZ)×

and its quotient groups (see section 1). Note that in this section we will

always mean “Dirichlet character” or “Dirichlet character group” when we say

“character” or “character group”, unless otherwise noted.

Recall from (1.3.8) that if K ⊆ Q(ωN), then for <(z) > 1 we have the

formula

ζK(s) =
∏
χ∈Ĝ

L(s, χ).

The goal of this section will thus be to develop a systematic way in which we

can produce all the elements in Ĝ, under the assumption that the Galois group

G of K is known to be a quotient group of the Galois group of Q(ωN).

The first question one comes upon when considering this problem is how

to find the precise quotient group that Gal(K/Q) represents. That is to say,

what subgroup H ≤ Gal(Q(ωN)/Q) fixes K and how can we find it? For

ease of notation, in what follows we identify H and Gal(Q(ωN)/Q) with their

respective images under the canonical isomorphism into (Z/NZ)×. It is well
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known that the decomposition of unramified primes in Q(ωN) is determined

entirely by congruency classes mod N . The following lemma shows this also

holds for any subfield of Q(ωN) as well.

Lemma 4.1.1. Assume K ⊆ Q(ωN) is an abelian extension of Q. Let H ≤

(Z/NZ)× be the corresponding subgroup fixing K and p ∈ Q any prime that

does not divide N . Then the inertia index fp of p in K is equal to the order

of p in (Z/NZ)×/H and (p) splits into |(Z/NZ)×/H|
fp

distinct primes.

Proof. Since p does not divide N , p does not divide the discriminant of Q(ωN)

and so is unramified there and hence also in K. Thus it suffices to prove

the statement about fp, as fp · rp = |(Z/NZ)×/H|. Let ϕ be the Frobenius

automorphism of p for Q(ωN) so that its restriction to K is the Frobenius

automorphism for that field. Then fp equals the order of ϕ|K in Gal(K/Q) ∼=

(Z/NZ)×/H and ϕ|K is sent to p under this isomorphism. The result follows.

We can now use the lemma to determine the subgroup H. We consider the

following procedure:

0. [Input] Irreducible, monic f(x) ∈ Q[x] such that f generates an abelian

extension.

1. [Initialize] Set D ← discriminant of f . N ← deg(f).

H ← {1} ⊂ (Z/NZ)×. m← 2.

2. For p|D, p prime, set N ← N · p if p 6= 2. N ← N · 4 if p = 2.

3. If (m,N) = 1 and m 6∈ H, factor f mod q, where q is any prime

congruent to m mod N and q - D. If f splits mod q, H ←< H,m >.

4. [Finished?] If |H| = φ(N)/ deg(f) then return N,H. Otherwise,

m← m+ 1 and goto step 3.
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We use the theory developed to check that if f generates K, then the above

algorithm returns the subgroup of Gal(Q(ωN)/Q) that fixes K, where K is a

subfield of Q(ωN). The latter fact follows immediately from (3.0.1) and the fact

that primes ramify in K only if they divide the discriminant of any generating

polynomial. To check that the subgroup is correct, note that (1.6.3) tells us

that the Galois extension K is entirely characterized by the primes that split

completely in it. On the other hand, (4.1.1) tells us that almost all primes

in Q decompose in K entirely based on two factors, namely their congruency

group mod N and the subgroup H. In particular, p splits completely in K iff

p ∈ H ≤ (Z/NZ)×. Hence to determine H, it suffices to find one prime in

every congruency class of (Z/NZ)× and find its factorization into prime ideals

of K. Of course since we are given a function f whose zeros generate K, this

is no problem for any prime q of Z that does not divide the discriminant of f ,

as the factorization of (q) into ideals of K corresponds to the factorization of

f modulo q. Thus the procedure outlined above is sound.

Before moving on, we remark that there are a number of ways to improve

the efficiency of the above procedure in practice. In particular, finding a prime

congruent to some unit of Z/NZ, while possible by Dirichlet’s theorem, can

be computationally quite expensive for large N . There are a few ways to

minimize the number of times this needs to be done, such as evaluating f

at small integers and factoring. Any primes appearing in this factorization

must necessarily generate a subgroup of H, as long as they do not also divide

the discriminant of f . One can also consider the order of the element m in

(Z/NZ)×. Depending on the order of H, this may rule out m being a possible

element of H. Furthermore, the quotient group is isomorphic to the Galois

group of K, hence one can use the exponent e of Gal(K/Q) to deduce that me
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must lie in H for all m. Another approach is to note that if < m >=< n >,

then m ∈ H iff n ∈ H.

Now that we have a method to determine the precise subgroup H of

Gal(Q(ωN)/Q) that fixes K, the next step in our journey will be to find the

character group, Ĝ. Conveniently for us G = (Z/NZ)×/H so by (1.1.4), its

corresponding group of characters is

{χ ∈ ̂(Z/NZ)× : χ|H ≡ 1}.

Since we now know what the group H looks like in (Z/NZ)×, Ĝ can be deter-

mined by simply computing all the characters of (Z/NZ)× and then checking

which ones are identically 1 on H. In fact we can get away with only comput-

ing the characters whose orders divide [K : Q]. This is because the character

group of G is isomorphic to G and hence only has [K : Q] elements in it. This is

theoretically very convenient if N is easily factored because if N = 2r0pr11 ...p
rn
n

is a prime decomposition, then

̂(Z/NZ)× ∼= ̂(Z/2r0Z)× ×
n∏
i=1

̂(Z/prii Z)× ∼= (Z/2r0Z)× ×
n∏
i=1

(Z/prii Z)×

where by (1.1.1), the identification between (Z/prii Z)× =< ai > and its charac-

ter group is given by ai
t → χati , where χati is the unique primitive character that

satisfies χati(ai) = ωt
p
ri−1
i (p−1)

when considered as a map on (Z/prii Z)×. Calcu-

lating Ĝ when H is known thus reduces to finding generators of (Z/prii Z)×,

a topic that is discussed in Appendix A. We can then use these generators

to find explicit representations for all appropriate elements of ̂(Z/NZ)×, and

then check which elements act trivially on H.

The above argument has thus verified the soundness of the following algo-

rithm, which returns Ĝ:
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0. [Input] Irreducible, monic f(x) ∈ Q[x] such that f generates an abelian

extension.

1. [Initialize] N ←
∏
prii , an integer such that Q(ωN) contains the splitting

field of f . H ≤ (Z/NZ)× corresponding to splitting field of f . Ĝ← {1}. For

primes pi|N , construct Dirichlet character group Ai of (Z/prii Z)×. A←
∏
Ai.

2. For ψ ∈ A, if ψ(m) = 1 ∀ m ∈ H then Ĝ←< Ĝ, ψ >.

3. [Output] Return Ĝ.

Before moving on to an example of this theory in action, we should first

note that a few additional pieces of information have fallen out along the

way. Indeed, one notes that since we have given an explicit way to calculate

all the Dirichlet characters mod N of Gal(K/Q), by (1.2.3) we can calculate

the conductor and also the discriminant of K via the Conductor-Discriminant

formula (See [26] pg. 28)

∆(K) = (−1)s2
∏
χ∈Ĝ

fχ,

where s2 is half the number of complex embeddings of K.

Example:

We will now calculate an example to illustrate the above theory in practice.

Consider the monic, irreducible polynomial f(x) = x4 − 10x2 + 1 ∈ Z[x].

The corresponding resolvent polynomial is h(x) = x3+10x2−4x−40 which has

zeros at ±2 and 10. It follows from general Galois theory that the splitting

field K of f has Galois group isomorphic to V4 and in particular is abelian

over Q. Thus the theory of the previous two sections applies and we use it
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to determine a formula for ζK(s) on the right half plane <(s) > 1. Our first

step is to find all the primes that ramify in K or equivalently, all primes that

divide ∆(K). Since ∆(K)|∆(f), it suffices to find and factor ∆(f),

∆(f) = ∆(h) = (10− 2)2(10 + 2)2(2 + 2)2 = 21432.

By (3.0.1), it follows that K ⊆ Q(ω48). Let G be the Galois group for K

over Q and identify Gal(Q(ωN)/Q) with (Z/48Z)×. Let H be the subgroup of

(Z/48Z)× that fixes K. Since H has order ϕ(48)
[K:Q]

= 4, there are precisely three

non-trivial equivalence classes in (Z/48Z)× that cause f to split completely

after reducing modulo any prime in that class. Recall that since we are dealing

with Galois extensions, it suffices to find only one linear factor modulo any

given prime to know that f splits completely (this is a fact that we used in the

remarks following the algorithm to find H). Ideally one would have a computer

program to do this by calculating GCD(f, xp−1 − 1) mod p, but since we are

doing this by hand, we will simply calculate the first few values of f and factor

them. Any prime factors arising that are not 2 or 3 must necessarily lie in H.

f(0) = 1, f(1) = −23, f(2) = −23,

f(3) = −23, f(4) = 97, f(5) = 2347.

Since 47·23 ≡ 25 mod 48, the above 6 calculations show thatH = {1, 23, 25, 47}.

Now that we have H, we can begin calculating characters. We first note

that

Z×48
∼= Z×16 × Z×3 =< −1, 5 > × < −1 >
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and this isomorphism shows that the character group is generated by 3 ele-

ments {χ−1, χ5, τ}, where

χ−1(±5
m
,−1

n
) = ±1

χ5(±5
m
,−1

n
) = im

τ(±5
m
, (−1)

n
) = (−1)n.

Under the above identification, H is sent to {(1, 1), (7, 2), (9, 1), (15, 2)} or

writing in terms of generators, H = {(1, 1), (−1 · 52
,−1), (5

2
, 1), (−1,−1)}.

One easily checks that the subset of characters that act trivially on H is

therefore {1, χ−1τ, χ
2
5, χ−1χ

2
5τ} which we identify as Ĝ (more specifically, we

identify these characters with their associated primitive Dirichlet characters).

If we view χ5 as a character of (Z/16Z)×, then one checks directly that

χ2
5(1) = 1 = χ2

5(9)

χ2
5(5) = −1 = χ2

5(13)

χ2
5(5) 6= χ2

5(1)

Since χ2
5 is even, this shows it is well defined modulo 8 but not modulo 4 and

hence is a primitive character mod 8. Hence we identify χ2
5 as the character

on (Z/8Z)× that sends −1 to 1 and 5 to -1. It is easy to see χ−1 and τ neces-

sarily have conductors 4 and 3 respectively and since they are non-trivial, this

defines them uniquely as Dirichlet characters mod 4 and mod 3 respectively.

Thus χ−1τ is a primitive character mod 12 and likewise χ−1χ
2
5τ is a primitive

character mod 24. Hence the smallest cyclotomic field containing K is the

24th and the discriminant ∆(K) = (−1)r2304 = (−1)r2832. Note that every

character in H is even and therefore K is totally real, so r = 0 by (1.2.4).
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Putting everything together we now have an expression for ζK(s) when

<(s) > 1,

ζK(s) =
∏
χ∈Ĝ

L(s, χ).

For completeness sake, we compute the first few terms of the Dirichlet series

corresponding to each element of Ĝ below.

L(s, 1) = 1 + 1
2s

+ 1
3s

+ 1
4s

+ 1
5s

+ 1
6s

+ 1
7s

+ 1
8s

+ 1
9s

+ ...

L(s, χ−1τ) = 1 + −1
5s

+ −1
7s

+ 1
11s

+ 1
13s

+ −1
17s

+ −1
19s

+ 1
23s

+ ...

L(s, χ2
5) = 1 + −1

3s
+ −1

5s
+ 1

7s
+ 1

9s
+ −1

11s
+ −1

13s
+ 1

15s
+ ...

L(s, χ−1χ
2
5τ) = 1 + 1

5s
+ −1

7s
+ −1

11s
+ −1

13s
+ −1

17s
+ 1

19s
+ 1

23s
+ ...

This concludes the example and the section. The astute reader may have

noticed that f = (x−
√

2−
√

3)(x−
√

2+
√

3)(x+
√

2+
√

3)(x+
√

2−
√

3) and

so K = Q(
√

2 +
√

3). With this knowledge in hand, the reader is invited to

check any or all of the results found previously for this particular field by some

other method. We shall return to this example in the sequel to determine ζK

at odd negative integers.

4.2 Evaluating Abelian Zeta Functions

In 4.1, we saw how to find the Dirichlet character group of an arbitrary

abelian number field K extending Q. It is now a matter of simply putting

together our earlier theory on characters in order to finally evaluate the corre-

sponding zeta function at negative integers. Indeed, suppose now that K is a

totally real abelian extension of Q and we want to determine ζK(1−n) for n a

positive, even integer (the only interesting case by (1.4.6)). Then we can apply
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the theory above to get X, the corresponding group of Dirichlet characters.

By (1.4.4), L(1− n, χ) = −Bn,χ/n and since ζK(1− n) =
∏
χ∈X

L(1− n, χ), all

that remains is to find the corresponding generalized Bernoulli numbers. Since

we have X, we also have f , the conductor of K, which is a multiple of the

conductor of any character χ in X. Hence we can apply (1.4.7) with F = f

and find Bn,χ by evaluating the necessary Bernoulli polynomials. We continue

with our example of K = Q(
√

2 +
√

3) from the last section to illustrate how

this can be done in practice by calculating ζK(1− n) for n ∈ {2, 4, 6, 8}.

Recall that X = {1, χ−1τ, χ
2
5, χ−1χ

2
5τ} was our group of Dirichlet charac-

ters, with primitive modulus 1, 12, 8 and 24 respectively. The values of the

characters are listed at the end of 4.1 and we use these values to determine the

necessary functions below. For reference, the necessary Bernoulli polynomials

are

B2(X) = X2 −X + 1
6

B4(X) = X4 − 2X3 +X2 − 1
30

B6(X) = X6 − 3X5 + 5
2
X4 − 1

2
X2 + 1

42

B8(X) = X8 − 4X7 + 14
3
X6 − 7

3
X4 + 2

3
X2 − 1

30

For the character 1:

B2,1 = 1/6 B4,1 = −1/30

B6,1 = 1/42 B8,1 = −1/30.

For the character χ−1τ :

B2,χ−1τ = 4 B4,χ−1τ = −184

B6,χ−1τ = 20172 B8,χ−1τ = −4120688.

For the character χ2
5:

B2,χ2
5

= 2 B4,χ2
5

= −44

B6,χ2
5

= 2166 B8,χ2
5

= −196888.
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For the character χ−1χ
2
5τ :

B2,χ−1χ2
5τ

= 12 B4,χ−1χ2
5τ

= −2088

B6,χ−1χ2
5τ

= 912996 B8,χ−1χ2
5τ

= −745928016.

Putting these results together, we conclude

ζK(−1) = (−1
2

)4(1
6
)(4)(2)(12) = 1

ζK(−3) = (−1
4

)4(−1
30

)(−184)(−44)(−2088) = 22011
10

ζK(−5) = (−1
6

)4( 1
42

)(20172)(2166)(912996) = 2198584943
3

ζK(−7) = (−1
8

)4(−1
30

)(−4120688)(−196888)(−745928016) = 98499651123679091
20

This concludes the example. Below is a list of zeta function values computed

by the author using this method. All credit for the primitive polynomials used

goes to [16]. The method used to calculate these values is quite effective in

general and can be used to calculate ζK(1 − n) for many different abelian K

and n, particularly when K has a small conductor. In the calculations that

follow, we have kept n ≤ 8 as the zeta function values can grow quite rapidly,

however calculating for larger n is not a problem in general. As we shall see

in Chapter 5, the primes that can appear in the denominator of ζK(1− n) are

very restricted by their ramification numbers in OK . In particular, if p is an

odd prime that does not ramify in K, then pt can divide the denominator only

if n is congruent with 0 modulo (p− 1)pt−1. This provides an easy first check

to see if the values listed in the following tables are reasonable. For a more

precise result on potential denominators appearing, see (5.0.2).

We give an overview of the operational cost of calculating ζK after the

tables.
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Table 4–1: Zeta Values for Real Quadratic Fields

Field L Conductor
ζL(1− k) for k value

2 4 6 8

Q(
√

2) 8 1
12

11
120

361
252

24611
240

Q(
√

3) 12 1
6

23
60

1681
126

257543
120

Q(
√

5) 5 1
30

1
60

67
630

361
120

Q(
√

6) 24 1
2

87
20

3623
6

15540167
40

Q(
√

7) 28 2
3

113
15

88922
63

37040933
30

Q(
√

10) 40 7
6

1577
60

1264807
126

2150342537
120

Q(
√

11) 44 7
6

2153
60

2130727
126

4393611593
120

Q(
√

13) 13 1
6

29
60

33463
1638

467669
120

Q(
√

14) 56 5
3

2503
30

4013645
63

13406231743
60

Q(
√

15) 60 2 537
5

1957882
21

3749253437
10

Q(
√

17) 17 1
3

41
30

5791
63

29950897
1020

Q(
√

19) 76 19
6

14933
60

43171459
126

264948072293
120

Q(
√

21) 21 1
3

77
30

17971
63

8529317
60

Q(
√

22) 88 23
6

24889
60

96678263
126

795567059929
120

Q(
√

23) 92 10
3

7093
15

8794030
9

277506449593
30

Q(
√

26) 104 25
6

43679
60

241665385
126

2784046499279
120

Q(
√

29) 29 1
2

157
20

23537
14

63987797
40

Q(
√

30) 120 17
3

36451
30

265810697
63

4072124178091
60

Q(
√

31) 124 20
3

20714
15

318795140
63

1302061439737
15

Q(
√

33) 33 1 141
10

74231
21

84995021
20

Q(
√

34) 136 23
3

57241
30

529854263
63

10412874712441
60

Q(
√

35) 140 19
3

61733
30

619698979
63

12937658154773
60

Q(
√

37) 37 5
6

1129
60

115865
18

1193648689
120

Q(
√

38) 152 41
6

32867
12

1948118201
126

9589172296595
24

Q(
√

39) 156 26
3

9145
3

160764638
9

2913380886349
6

Q(
√

41) 41 4
3

448
15

733924
63

324649814
15

Q(
√

42) 168 9 7875
2

187933043
7

3386014695603
4

Q(
√

43) 172 21
2

86603
20

1285165781
42

40401626292363
40

Q(
√

46) 184 37
3

164999
30

2793813037
63

100499210339519
60

Q(
√

47) 188 28
3

86446
15

3135548908
63

29513322141443
15

Q(
√

51) 204 13 15591
2

1640393453
21

14524385798023
4

Q(
√

53) 53 7
6

775
12

5838037
126

3534518239
24

Q(
√

55) 220 46
3

153847
15

7464304726
63

191941033133827
30

Q(
√

57) 57 7
3

2867
30

4499857
63

15371694947
60

Q(
√

58) 232 33
2

246839
20

6664029233
42

381149526802599
40

Q(
√

59) 236 85
6

768827
60

21905188502
126

1299470610025307
120

Q(
√

101) 101 19
6

37103
60

28937887
18

2226607059623
120

Q(
√

102) 408 103
3

2637641
30

222678863623
63

39437718445100201
60
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Table 4–2: Zeta Values for Maximal Real Subfields of Cyclotomic Fields

Q(ωN) ∩ R ζL(1− k) for k value
for N value 2 4 6 8
4 −1

12
1

120
−1
252

1
240

7 −1
21

79
210

−7393
63

142490119
420

9 −1
9

199
90

−50353
27

2648750959
180

11 −20
33

1695622
165

−50936925341420
693

35430104007633523
60091 / 165

13 152
39

1267169036
195

1240276106567774
8712 / 819

59025521778751543
656793084 2838 /
195

15 4
15

2522
15

4407640828
315

340269200275141
15

16 5
6

87439
60

48311765405
126

244310433568546039
120

17 18688
51

881620409802368
51

1352475062683584
0457019286738688
/ 1071

17795542442597046
27562092728733716
31966079828288 /
51

19 −93504
19

5767476605519708
256 / 95

-5119156157611607
18506438938074297
7088 / 133

18413397545604044
16317587662574944
69060267417629241
1209648 / 95

20 2
3

3793
3

20876972870
63

10185217266205657
6

21 16
3

196804168
15

410899105316076688
9

20446810763679221
5223646112964 / 15

23 −104701969
69

889970097451703378
560647296 / 345

-3618692805791287
924081254713751795
948413147240878336
/ 1449

292175794781557807
828066937175926062
043886219249144892
357648090668228016
1662528 / 345

24 1 22011
10

2198584943
3

98499651123679091
20

25 5825408
75

213348756242356715
34784 / 75

289950642256096734
915370498015699083
114421376 / 1575

149263554830026152
669338969074236752
652176352542322348
17113854960992 /
75

27 −373312
27

711577042192567267
52 / 135

-9139896402993467
968375731369340208
9536 / 81

261578028875827566
082911644238632037
363978267384039608
982256 / 135

28 416
21

28255169072
105

331378288772961075
488 / 63

926499559520108082
759262963410616 /
105

29 703717310464
29

129104936823786628
709164020258049812
0704 / 145

139572973346296274
022424877684636598
262465579899802559
97770173424010395
648 / 203

249732457459989310
984049745691439521
171188300865993136
503087293044790076
678608338393458111
961685244235595215
6672 / 145
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Table 4–3: Zeta Values for Totally Real Fields with Galois Group Z/3Z

Defining
ζL(1− k) for k value

Poly. of L ∆(L) fL 2 4 6 8
x3 − x2 − 2x+ 1 49 7 −1

21
79
210

−7393
63

142490119
420

x3 − 3x2 + 1 81 9 −1
9

199
90

−50353
27

2648750959
180

x3 − x2 − 4x− 1 169 13 −1
3

11227
390

−6701911
63

285307394787
780

x3 − x2 − 6x+ 7 361 19 -1 4087
10

−2758494229
399

21696966762367
20

x3 − x2 − 10x+ 8 961 31 −28
3

228614
15

−99594088828
63

25449589228520
107 / 15

x3 − x2 − 12x− 11 1369 37 −7 433513
10

−221736281617
21

47656335484644
2353 / 20

x3 − x2 − 14x− 8 1849 43 −76
3

2259086
15

−3642576372076
63

34457376574661
36863 / 15

x3 − x2 − 20x+ 9 3721 61 −133
3

44689099
30

-163363743993
283 / 63

25844144369029
57878499 / 60

x3 − 21x− 35 3969 63 −133
3

54922771
30

-232363717924
243 / 63

41917356766362
98283451 / 60

x3 − 21x− 28 3969 63 −268
3

33153134
15

-243557105345
068 / 63

10603027430450
27729167 / 15

x3 − x2 − 22x− 5 4489 67 −193
3

86578159
30

-458598853953
703 / 63

10556987395909
112777959 / 60

x3 − x2 − 24x+ 27 5329 73 −79 52419793
10

-56088011483407
/ 3

12739034108512
472635513 20

x3 − x2 − 26x− 41 6241 79 −199
3

263038561
30

-279663868280
9089 / 63

12491724617245
5242369881 / 60

x3 − x2 − 30x− 27 8281 91 −151 245053849
10

-443471130819
8401 / 21

34746761977954
8497499169 / 20

x3 − x2 − 30x+ 64 8281 91 −244 143202074
5

-463012615730
5204 / 21

87852692367837
183805597 / 5

x3 − x2 − 32x+ 79 9409 97 −367
3

1106690017
30

-382058060539
1311 /9

27151388632213
94547219817 / 60

x3 − x2 − 34x+ 61 10609 103 −637
3

1748682187
30

-519680594883
20827 / 63

66830236704102
99899397907 / 60

x3 − x2 − 36x+ 4 11881 109 −412 506359526
5

-337151605764
22012 / 21

13168356762005
16884427643 / 5

x3 − 39x− 26 13689 117 −1732
3

2525603738
15

-315353992461
87196 / 9

11431665301467
456456028309 /
15

x3 − 39x− 91 12689 117 −775
3

4167470617
30

-210566899697
242225 / 63

45192917950857
895244795137 /
60

x3 − x2 − 42x− 80 16129 127 −724 1483081754
5

-181158205363
739284 / 21

13037468271122
531491373677 / 5

x3 − x2 − 44x+ 64 17689 133 −844 2049626174
5

-301015461002
723884 / 21

26056263648538
002464811367 / 5

x3 − x2 − 44x− 69 17689 133 −463 3490141513
10

-288255304152
127513 / 21

10305476148963
5750747736673 /
20

x3 − x2 − 46x− 103 19321 139 −1075
3

13731622573
30

-139926868073
2591525 / 63

59901546632470
2816956443573 /
60

76



Table 4–4: Zeta Values for Totally Real Fields with Galois Group Z/4Z

Defining
ζL(1− k) for k value

Poly. of L ∆(L) fL 2 4 6 8
x4 − x3 − 4x2 + 4x+ 1 1125 15 4

15
2522
15

4407640828
315

340269200275141
15

x4 − 5x2 + 5 2000 20 2
3

3793
3

20876972870
63

10185217266205
657 / 6

x4 − 4x2 + 2 2048 16 5
6

87439
60

48311765405
126

24431043356854
6039 / 120

x4 − x3 − 6x2 + x+ 1 4913 17 8
3

1501748
51

2927442275768
63

73243738598296
001578 / 51

x4 − x3 − 9x2 + 9x+ 11 6125 35 52
15

949826
15

49198405871884
315

11258341497525
2128393 / 15

x4 − 10x2 + 20 8000 40 82
15

2428121
15

2137806681069
34 / 315

16687460276546
64809441 / 30

x4 − x3 − 14x2 + 14x+ 31 15125 55 40
3

4494500
3

1419781907968
600 / 63

19811806913720
486943010 / 3

x4 − 12x2 + 18 18432 48 73
3

95783699
30

4279294971376
273 / 63

17527951011130
38776232779 / 60

x4 − x3 − 11x2 − 9x+ 3 19773 39 24 19584396
5

8977618187208
344 / 91

24645236534309
6067651798 / 5
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Table 4–5: Zeta Values for Totally Real Fields with Galois Group V4

Defining
ζL(1− k) for k value

Poly. of L ∆(L) fL 2 4 6 8
x4 − 6x2 + 4 1600 40 7

15
17347

30
30591886909

315
19104870944296
627 / 60

x4 − 4x2 + 1 2304 24 1 22011
10

2198584943
3

98499651123679
091 / 20

x4 − 2x3 − 7x2 + 8x+ 1 3600 60 8
5

49404
5

882041504056
105

69715885206206
0102 / 5

x4 − 9x2 + 4 4225 65 32
15

260536
15

82993232144192
4095

69485025875424
35588 / 15

x4 − 5x2 + 1 7056 84 16
3

1600984
15

21490136139376
63

32546621594258
3464892 / 15

x4 − 11x2 + 9 7225 85 24
5

567932
5

40694841858728
105

22019245136208
58970862 / 85

x4 − 2x3 − 9x2 + 10x− 1 10816 104 25
3

13933601
30

224565569919235
63

32043823294539
226431761 / 60

x4 − 13x2 + 16 11025 105 48
5

2500344
5

138658645437552
35

30825584395650
60149532 / 5

x4 − 8x2 + 9 12544 56 40
3

12444916
15

515365535956360
63

24442627868625
910571618 / 15

x4 − 2x3 − 13x2 + 14x+ 19 14400 120 68
5

6342474
5

258092617601908
15

22844617807790
149112117 / 5

x4 − 7x2 + 4 17424 132 28 13964358
5

1063508156680
388 / 21

96175598435029
555420979 / 5

x4 − 2x3 − 11x2 + 12x+ 2 18496 136 92
3

51631382
15

4430749437475
652 / 63

76755540987789
83710699547 /
255

x4 − 2x3 − 15x2 + 16x+ 29 19600 140 304
15

55806632
15

2953621171930
1968 / 315

69199790931405
5866713796 / 15
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Table 4–6: Zeta Values for Totally Real Fields with Galois Group Z/5Z or
Z/6Z

Defining
ζL(1− k) for k value

Poly. of L ∆(L) fL 2 4 6 8
x5 − x4 − 4x3 + 3x2 +
3x− 1

114 11 −20
3

1695622
165

−50936925341420
693

35430104007633
52360091 / 165

x5−10x3−5x2+10x−1 58 25 −284
3

75880707482
75

-323390421080
746279844 / 63

80051769877718
65469117042898
4741 / 75

x5−x4−12x3 +21x2 +
x− 5

314 31 −1100
3

309701488762
15

-113882933598
0948622297100 /
1953

10163787098630
16583409976241
4772821 / 15

x5− x4− 16x3− 5x2 +
21x+ 9

414 41 −8260
3

1638136374
4922 / 15

-173470767772
05604627361620 /
63

18315962070440
54002921082832
793469532221 /
615

x6 − x5 − 7x4 + 2x3 +
7x2 − 2x− 1

5374 35 296
105

323983108
105

1480010171093
980136 / 315

64429551550124
89926691699051
4 / 105

x6 − x5 − 5x4 + 4x3 +
6x2 − 3x− 1

135 13 152
39

1267169036
195

1240276106567
7748712 / 819

59025521778751
54365679308428
38 / 195

x6 − x5 − 6x4 + 6x3 +
8x2 − 8x+ 1

3375 21 16
3

196804168
15

4108991053160
76688 / 9

2044681076367
9221522364611
2964 / 15

x6− 9x4− 4x3 + 9x2 +
3x− 1

3853 45 584
45

4684354132
45

1597596534176
91918344 / 135

51932881033449
69766273179394
3706 / 45

x6 − 7x4 + 14x2 − 7 2675 28 416
21

28255169072
105

3313782887729
61075488 / 63

9264995595201
0808275926296
3410616 / 105

x6 − 10x4 + 24x2 − 8 2974 56 172
7

15035749102
35

2302301465742
03691276 / 21

84074373571736
22417959576628
88871 / 35

x6 − 6x4 + 9x2 − 3 2639 36 248
9

4260546220
9

3390359299869
26764664 / 27

25970047479897
91263682736547
64070 / 9

x6 − 12x4 + 36x2 − 8 2938 72 988
9

651668657926
45

7455530109650
5483439164 / 27

20330218772719
59860596946113
264468883 / 45

x6−x5−12x4 +13x3 +
19x2 − 10x− 5

53134 65 1952
15

3509833061
008 / 195

1216031865704
999876258144 /
315

13908910897658
53223193979292
2475996744 / 195

x6−2x5−12x4+18x3+
23x2 − 16x+ 1

263374 84 3176
21

3183713247
668 / 105

5556257655245
83835088488 / 63

23112029124940
82359665358012
8489656554 / 105

x6− x5− 14x4 + 9x3 +
35x2 − 16x− 1

74133 91 4448
21

7375467141
872 / 105

2705817875336
9225906888672 /
819

13995403996071
05177965891499
44274360056 /
105

x6−12x4−5x3+36x2+
30x+ 1

3973 63 3088
9

7590315348
616 / 45

3470339635049
726273455504 /
27

38176738036607
58949338084940
79837810468 / 45

x6 − 14x4 + 56x2 − 56 2975 56 9680
21

4092601761
8312 / 105

3071280716806
0491025006160 /
63

54956633713560
67650913360396
360931329156 /
105
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Table 4–7: Number of Fields for which ζL(1− k) is an Integer

Quadratic Fields Q(
√
m)

] of Fields k-value
Counted 2 4 6 8

m squarefree in [2, 199] 121 19 3 1 1
m squarefree in [200, 399] 121 26 4 4 2
m squarefree in [400, 599] 123 26 2 3 1
m squarefree in [600, 799] 123 34 7 2 3
m squarefree in [800, 999] 119 32 2 0 2
m squarefree in [1000, 1199] 122 27 5 0 1
m squarefree in [1200, 1399] 124 27 1 3 1
m squarefree in [1400, 1599] 123 30 3 1 2
m squarefree in [1600, 1799] 119 26 3 0 2
m squarefree in [1800, 1999] 119 29 4 1 1
Totals 1214 276 34 15 16
Q(ωm + ω−1

m )

m 6≡ 2 mod 4

m in [4, 99] 72 16 5 5 5
m in [100, 199] 75 24 14 12 14
m in [200, 299] 75 31 22 17 22
m in [300, 399] 75 37 23 20 23
m in [400, 499] 75 40 33 30 33
Totals 372 148 97 84 97
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4.3 Evaluating Running Times

We now consider the operation costs of calculating such results in general.

More precisely, fix some abelian number field K of degree m over Q. Assume

XK is the group of Dirichlet characters corresponding to K and K has conduc-

tor f . Given some even integer k ≥ 2, we wish to put a bound on the number

of arithmetic operations needed to calculate ζK(1 − k). We assume that all

Bernoulli polynomials have been precalculated.

Observing that ζK(1− k) = (−1/k)m
∏
Bk,χ where the product runs over

χ ∈ XK , we consider the cost of computing Bk,χ. Indeed by (1.4.7), we have

Bk,χ = fk−1

f∑
a=1

χ(a)Bk

(
a

f

)
and we note that each Bk(X) is a k degree polynomial. It takes 1 division

and k − 1 multiplications to determine the values
{
a
f
, ( a
f
)2, . . . , ( a

f
)k
}

. Since

we are assuming the coefficients of the Bernoulli polynomials have already

been determined, it only costs at most k more instance of multiplication and k

instances of addition to fully evaluate Bk(
a
f
). We then multiply our answer

with χ(a) and repeat this process at most f − 1 times since χ(f) = 0 (note

that in general many additional iterations can be skipped as χ(a) will attain 0

when (a, fχ) 6= 1). After calculating each term in the sum, we must add the

terms and multiply by fk−1, which is a cost of f − 1 additions and k − 1

multiplications. We conclude that the total arithmetic cost to compute Bk,χ

is no more then (f − 1)(3k + 2) + k − 1 operations, which is bounded by 3kf

operations when k is large. Since we need to do this for m different characters,

followed by multiplication by (−1/k)m, the total cost of calculating ζK(1−k) in

this manner is bounded by 3mkf arithmetic operations for sufficiently large k.
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This is a very nice result and shows that ζK(1 − k) can be computed

in linear time with respect to k once XK is known. It should be noted that

we have ignored the time it takes to process algebraic relationships between

the factors which arise from the values attained by the characters in XK . It

is a theorem of Siegel and Klingen that ζK(1 − k) is always rational, and so

ideally we would want any program that calculates these values to produce

a ratio of two integers as an output. So far we have only discussed how to

create an output that would include products and sums of Dirichlet characters

evaluated at various integers. There is however a very convenient way to pass

to the former state from the latter which we now consider.

We first note that because our final solution is necessarily a rational num-

ber, it follows that [L : Q]ζK(1−k) = TrLQ(ζK(1−k)), where L is some number

field containing all the algebraic integers appearing in ζK(1 − k). Hence, in-

stead of trying to simplify through various algebraic relations, we can just

consider the trace of the various terms appearing in ζK(1 − k). However, the

only non-rational algebraic numbers appearing in the output of our algorithm

are the evaluation of certain Dirichlet characters, which of course are all roots

of unity that divide the exponent of the group Gal(K/Q). Hence the question

reduces to finding the Tr
Q(ωN )
Q (ω), where ω is some arbitrary root of unity lying

inside of Q(ωN) (clearly ω is necessarily a power of ωN , but this shall not be

important).

Certainly it is enough to assume ω = ωN , because of the trace identity

Tr
Q(ωN )
Q (ω) = [Q(ωN) : Q(ω)] · Tr

Q(ω)
Q (ω).

Now recall that the trace of ωN is in fact the negative of the coefficient

on the term xφ(N)−1 appearing in the N th cyclotomic polynomial. In general,

determining the coefficients of cyclotomic polynomials is a very deep question
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however the following lemma shows that the coefficient we are interested in is

entirely determined by the prime factorization of N .

Lemma 4.3.1. Let ΨN(x) denote the N th cyclotomic polynomial. If N is

not squarefree, then the coefficient corresponding to xφ(N)−1 in ΨN(x) is 0.

Otherwise let N factor into t distinct primes. Then the coefficient on xφ(N)−1

is (−1)t+1.

Proof. Assume N = pα1
1 . . . pαtt is the prime factorization of N and let N ′ =

p1 . . . pt. It is a well known fact (see for example the exercises in [8]) that

ΨN(x) = ΨN ′(x
N
N′ ) and this fact alone proves the first statement. Hence

assumeN = N ′. Recall the general definition of theN th cyclotomic polynomial

as

ΨN(x) =
xN − 1∏
d|N

d 6= N

Ψd(x)
.

It follows easily that the sum of all the zeros of ΨN will be the negative of the

sum of all the zeros of all the Ψd for d|N, d 6= N . The proof now follows from

induction on t. If t = 0, then N = 1 and ΨN(x) = x − 1, so the coefficient is

(−1)1 as claimed. Suppose the claim holds for all t < t′. Then if N is square

free with t′ distinct primes dividing it, we have from the previous remarks that

the sum of all zeros of ΨN equals the negative of the following sum,

1−


∑
q1|N

q1 prime

1

+


∑
q1, q2|N

q1 < q2 prime

1

− . . .+ (−1)t
′−1


∑

q1, . . . , qt′−1|N

q1 < . . . < qt′−1 prime

1

 .

But this expression is easily seen to be
∑t′−1

i=0 (−1)i
(
t′

i

)
. Using the binomial

expansion of 0 = (1 + (−1))t
′

completes the proof.
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We conclude from this analysis that reducing our algebraic expression of

ζK(1 − k) to a rational number can be done with very little additional oper-

ational cost. Indeed there will be only m Dirichlet characters (whose image

is contained in the mth roots of unity), and so the number of different roots

of unity in the unsimplified expression of ζK(1 − k) is bounded by m and in

particular is independent of k. The above argument shows that we can replace

these roots by certain integers and then divide the resulting expression by the

least common multiple of their primitive moduli to get an equivalent expres-

sion for ζK(1− k). This concludes the section and we summarize our findings

in the theorem below.

Theorem 4.3.2. Let K be a totally real abelian number field of degree m over

Q and conductor f . Assume its group of Dirichlet characters are known, as are

all necessary Bernoulli polynomials. Then the operation cost of determining

ζK(1−k) in a rational form is bounded by 3k ·m·f+C(m, f) for some constant

C(m, f) depending on m and f .

4.4 A Final Result

Before moving on, we use the program constructed earlier in the chapter

to provide numerical evidence for a certain conjecture.

Given a totally real number field L and a prime p > 2, we consider the

following statement:

C(L, p) : ζL(2− p) is not p− integral.

This condition is considered in [13], where it is noted that by the ABC conjec-

ture (see [23]), if L is a real quadratic field of class number 1, then C(L, p) is
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expected to fail precisely 1/p of the times. The following tables extend those

given in [13] in providing numerical evidence for this result. Explicitly, there

are 1029 primes between 1 and 10,000, 832 from 10,000 to 20,000, 776 from

20,000 to 30,000 and 785 from 30,000 to 40,000 such that Q adjoined with the

square root of such a prime has class number one. The table below lists the

number of such primes l for which C(Q(
√
l), p) fails to hold, for p prime from 3

to 13, and calculates the ratio between this value and the expected number for

each interval. Note that from 1-10,000, [13] lists C(Q(
√
l), 7) failing 165 times,

however our program found it to fail only 161 times over the same interval.

All other values that are listed both here and in [13] agree.

Table 4–8: Condition C(L, p) Verification

p C(Q(
√
l), p) fails in [1,10000] Predicted Ratio

3 312 343 0.91
5 196 205.8 0.95
7 161 147 1.10
11 92 93.5 0.98
13 66 79.2 0.83

p C(Q(
√
l), p) fails in [10000,20000] Predicted Ratio

3 251 277.3 0.91
5 170 166.4 1.02
7 116 118.9 0.98
11 67 75.6 0.89
13 65 64 1.02

p C(Q(
√
l), p) fails in [20000,30000] Predicted Ratio

3 236 258.7 0.91
5 165 155.2 1.06
7 106 110.9 0.96
11 68 70.5 0.96
13 62 59.7 1.04

p C(Q(
√
l), p) fails in [30000,40000] Predicted Ratio

3 251 261.7 0.96
5 146 157 1.00
7 112 112.1 0.96
11 56 71.4 0.78
13 68 60.4 1.13
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CHAPTER 5
A Functional Equation Approach

We conclude this thesis with a brief survey of two alternative methods of

calculating the value of zeta functions at negative integers. These methods

are more general then the one described in detail within this thesis, as they

apply to totally real number fields that need not be abelian Galois extensions

of Q. The theorems and results used in this section will not be proven as their

proofs go beyond the scope of this text, however references will be provided.

In what follows, assume we have the following notation. K is an arbitrary

number field, with [K : Q] = N , discriminant ∆(K), s1 real embeddings into C

and 2s2 complex embeddings. We begin with the following key result regarding

the zeta function of K.

Theorem 5.0.1. ζK(s) can be extended to a meromorphic function on C that

satisfies the following functional equation:

AsΓ
(s

2

)s1
Γ(s)s2ζK(s) = A1−sΓ

(
1− s

2

)s1
Γ(1− s)s2ζK(1− s), (5.1)

where

A = 2−s2π−N/2
√
|∆(K)|.

Proof. See [18].
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A few preliminary observations can be made regarding (5.1) above. We first

note that if <(s) > 1, then using the fact that ζK(s) is finite, we have that the

left hand side of (5.1) is finite. On the other hand, recall from section (1.4)

that Γ has poles at the negative integers. It follows that either ζK is 0 at all

negative integers, or s2 = 0, in which case ζK is still necessary 0 at all negative

even integers. This is a generalization of result (1.4.6).

Because we are focused on negative integer values of ζK , we should re-

arrange (1) to solve for ζK(1 − s) in the case where s2 = 0 (ie. K is totally

real) and s ≥ 2 is an even integer. In that case, we can use the fact that

Γ(1/2) =
√
π, Γ(n) = (n− 1)!, and the functional equation for Γ to get

ζK(1− s) = A2s−1Γ
(s

2

)N
Γ

(
1− s

2

)−N
ζK(s)

= A2s−1

(
(s/2− 1)!

2
1−s ·

2
3−s · . . . ·

2
−1

Γ(1/2)

)N

ζK(s)

= (−1)Ns/2A2s−1

(
((s/2− 1)!) · 1 · 3 · . . . · (s− 1)√

π2s/2

)N
ζK(s)

= (−1)Ns/2A2s−1

(
(s/2− 1)!s!√
π2s(s/2)!

)N
ζK(s)

= (−1)Ns/2
(2(s− 1)!)N√
|∆(K)|

(
|∆(K)|
πN2N

)s
ζK(s). (5.2)

For notational purposes, we will denote
|∆(K)|
πN2N

as CK in the above equation.

Using the fact that ζK(s) =
∑
ICOK

1

||I||s
, (5.2) gives us a very convenient way

of calculating ζK(1− s) assuming we can evaluate the necessary infinite sum.

Unfortunately, even if one can determine all the ideals and their norms, it may

not be obvious how to determine the infinite sum in general. Thus it appears

that while one could approximate ζK(1 − s) arbitrarily well in this manner,

it is unclear how to get an exact result. However, results from the study of

modular forms will come to our aid in this matter which we now discuss.
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As noted in 4.3, a famous theorem of Siegel and Klingen states that ζK(−n)

is always rational. While this alone is not sufficient for our purposes, Andreatta

and Goren showed that one can determine the possible integers appearing in

the denominator of ζK(1− s) by considering the ramification of certain primes

in OK . We consider their result in more detail as soon as we introduce the

necessary notation.

Let K be a totally real number field with [K : Q] = N as above. Let p

be some arbitrary prime of Q. Then for every prime P C OK lying over p,

one can consider the complete field LP lying over Qp. Let BP be the maximal

abelian subextension of Qp contained in LP . Define e′(P |p) = mP · pβP with

(mP , p) = 1 to be the ramification index of p in the ring of integers of BP .

Define etp := min{mP | P lies over p} and ewp := min{pβP | P lies over p}. It

turns out that for p 6= 2, etp is the index of some subgroup of (Z/pZ)× and

in particular divides p − 1. Finally, let l(n) be the exponent of the group

(Z/2nZ)×.

Theorem 5.0.2. Let s > 1 be an even integer. Suppose that 2−NζK(1− s) is

not p-integral and let n = −valp(2
−NζK(1− s)). Then

i. if p 6= 2,

s ≡ 0 mod
p− 1

etp
·
⌈
pn−1

ewp

⌉
;

ii. if p = 2,

s ≡ 0 mod

⌈
2l(n)

ew2

⌉
.

Proof. See pg. 92 of [1].
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Note that one can use the fact e′(P |p) divides the ramification index e(P |p)

to put bounds on the size of etp and ewp without actually considering the p-adic

extensions of Qp.

This theorem allows us to use (5.2) to compute the exact values of ζK(1−s)

instead of just arbitrarily good approximations. Indeed, since we can put a

bound on the size of the denominator, say Ms, it follows that ζK(1 − s) ·Ms

must be an integer. Our equation becomes

Ms · ζK(1− s) = Ms · (−1)Ns/2
(2(s− 1)!)N√
|∆(K)|

(CK)sζK(s). (5.3)

Since the left hand side is an integer, it follows that we only need to approxi-

mate the right hand side to the nearest integer in order to know the true value.

In what follows we will put an upper bound on how well ζK(s) needs to be

approximated.

We first consider the maximum size of ζK(s) for s an even integer at least

2. Writing the function as an infinite product, we have

ζK(s) =
∏

P COK

P prime

(1− ||P ||−s)−1

=
∏
p ∈ N

p prime

∏
P COK

P prime

P |(p)

(1− ||P ||−s)−1

≤
∏
p ∈ N

p prime

∏
P COK

P prime

P |(p)

(1− p−s)−1

≤
∏
p ∈ Z

p prime

(1− p−s)−N

= ζQ(s)N

≤ (
π2

6
)N .
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We introduce the following truncated product as our estimate of ζK(s),

ZK(s, T ) :=
∏

p prime in N

p ≤ T

∏
P COK

P prime & P |(p)

(1− ||P ||−s)−1.

It is clear that for fixed s, as T →∞, ZK(s, T )→ ζK(s) and this convergence is

monotone increasing. We would like to find a bound on the difference between

them as a function of s and T , say E0(s, T ). Working towards this goal, we

calculate

ζK(s)− ZK(s, T ) = ZK(s, T )((
∏

p prime in N

p > T

∏
P COK

P prime & P |(p)

(1− ||P ||−s)−1)− 1)

< ζK(s)((
∏

p prime in N

p > T

(1− p−s)−N)− 1)

< (
π2

6
)N((1 +

∑
n>T

1

ns
)N − 1)

where the last line has used our bound on ζK and bounded the infinite product

by an infinite sum. It is very easy to bound this infinite sum, as it is well known

to be less then the integral

∫ ∞
T

dx

xs
which is readily seen to be

1

(s− 1)T s−1
.

Thus we have

ζ(s)− ZK(s, T ) <

(
π2

6

)N ((
1 +

1

(s− 1)T s−1

)N
− 1

)
.

The other source of error in an analytic estimation of the right hand side

of (5.3) will come from rounding π and
√
|∆(K)|. Let F (s, n,m) denote the

the value of
(2(s− 1)!)N√
|∆(K)|

(CK)s when π and
√
|∆(K)| are rounded to n and

m decimal points of accuracy respectively (recall CK =
|∆(K)|
πN2N

) and define

E1(s, n,m) as the difference
(2(s− 1)!)N√
|∆(K)|

(CK)s − F (s, n,m). Again we would

like to find a bound for |E1(s, n,m)|. Let ε1 denote the difference between π
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and its rounded decimal expansion and likewise define ε2 as the corresponding

difference for
√
|∆(K)|. Then |ε1| < 10−n and |ε2| < 10−m and so we have

|E1(s, n,m)|

=
(2(s− 1)!)N |∆(K)|s

2Ns

∣∣∣∣∣ 1√
∆(K)πNs

− 1

(
√

∆(K)− ε2)(π − ε1)Ns

∣∣∣∣∣
=

(2(s− 1)!)N |∆(K)|s

2Ns
√
|∆(K)|πNs

∣∣∣∣∣1− 1

(1− ε2/
√
|∆(K)|)(1− ε1/π)Ns

∣∣∣∣∣.
Let us assume that n ≥ 2 log10(Ns + 1) and that m is at least 1. Then it is

easy to show by expanding that (1− ε1/π)Ns lies between (1− (Ns+ 1)|ε1|/π)

and (1 + (Ns+ 1)ε1/π). Under this assumption, we have

∣∣∣∣∣∣1− 1

(1− ε2√
|∆(K)|

)(1− ε1
π

)Ns

∣∣∣∣∣∣
<

π
√
|∆(K)|

(
√
|∆(K)| − |ε2|)(π − (Ns+ 1)|ε1|)

−
π
√
|∆(K)|

(
√
|∆(K)|+ |ε2|)(π + (Ns+ 1)|ε1|)

= 2π
√
|∆(K)|

π|ε2|+ (Ns+ 1)|ε1|
√
|∆(K)|

(π2 − (Ns+ 1)2|ε1|2)(|∆(K)| − |ε2|2)

≤ 2π
√
|∆(K)|

π|ε2|+
√
|ε1||∆(K)|

(π2 − |ε1|)(|∆(K)| − |ε2|2)

≤ 2

π
√
|∆(K)|

π|ε2|+
√
|ε1||∆(K)|

(1− 1/98)(1− 1/100)

<
25

12
(|ε2|/

√
|∆(K)|+

√
|ε1|/π).

We now return to equation (5.3) and rewrite it as

Ms · ζK(1− s) = Ms · (−1)Ns/2(F (s, n,m) + E1(s, n,m))(ZK(s, T ) + E0(s, T ))

= (−1)Ns/2Ms(F (s, n,m)ZK(s, T ) + E1(s, n,m)ZK(s, T ) (5.4)

+E0(s, T )(F (s, n,m) + E1(s, n,m))).
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Note that the first term in (5.4) is what one would calculate in practice, while

the remaining two are error terms. Because we know that the actual value

must be an integer, it suffices to find T, n and m that ensure the error terms

are sufficiently small, say less then
1

10Ms

. Looking at the first error term, recall

that ZK < ζK ≤ 2N , while the calculations above show that if n ≥ 2 log10(Ns)

and m ≥ 1,

|E1(s, n,m)| < (2(s− 1)!)N√
|∆(K)|

(CK)s
25

12
(|ε2|/

√
|∆(K)|+

√
|ε1|/π).

Hence for the first error term to be less then 1/10Ms, it suffices to have

(|ε2|/
√
|∆(K)|+

√
|ε1|/π) ≤

6
√
|∆(K)|

4N · 125 · ((s− 1)!)N(CK)sMs

Letting α = min(n/2,m), we certainly have 2 · 10−α < (|ε2|/
√
|∆(K)| +√

|ε1|/π) and so

α > − log10

(
6
√
|∆(K)|

4N · 125 · ((s− 1)!)N(CK)sMs

)
/ log10(2).

Letting βs be the right hand side of the above inequality, we get explicit val-

ues for n and m that will guarantee the first error term is sufficiently small,

namely n ≥ max(2 log10(Ns), 2βs) and m ≥ max(1, βs). We remark that by

considering Stirling’s approximation of the factorial function,

√
2πs

(s
e

)s
e

1
12s+1 < s! <

√
2πs

(s
e

)s
e

1
12s for s ≥ 1,

it is clear that βs will be O((s − 1) log(s − 1) + log(Ms)) as s gets large and

in particular the precision to which π and
√
|∆(K)| need to be known will be

at least slightly worse then a linear function of s.

Turning our attention to the second error term, recall that

E0(s, T ) <

(
π2

6

)N ((
1 +

1

(s− 1)T s−1

)N
− 1

)
.
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Hence it suffice to find T such that(
π2

6

)N ((
1 +

1

(s− 1)T s−1

)N
− 1

)
(2(s− 1)!)N√
|∆(K)|

(CK)s <
1

10Ms

.

In order to avoid messy formulas, we assume (s − 1)T s−1 ≥ N2 −N (a fairly

mild assumption in the long run) and use this assumption to justify replacing

(1 + 1
(s−1)T s−1 )N with 1 + N+1

(s−1)T s−1 . This simplifies the inequality to

N + 1

(s− 1)T s−1
<

6N
√
|∆(K)|

10 · 2Nπ2NMs((s− 1)!)N(CK)s

⇒

(
10 · (N + 1) · 2Nπ2NMs((s− 1)!)N(CK)s

(s− 1)6N
√
|∆(K)|

) 1
s−1

< T.

Once again using Stirling’s approximation of the factorial function, one notes

that as s→∞, the left hand side of the above inequality is O(M
1
s−1
s (s− 1)N)

so in particular, evaluating ζK in this way uses a T value that grows with s at

least as fast as an N degree polynomial. Hence we have the following theorem.

Theorem 5.0.3. Let K be a totally real number field over Q of degree m.

Assume that in the ring of integers OK, all prime ideals, their norms, and

their ramification indices over Z are known. Then ζK(1− k) can be computed

and fully reduced to a rational in O(kmM
1

k−1

k ) where Mk is the bound on the

denominator obtained from (5.0.2). Furthermore, the precision to which ir-

rational values need to be computed in the calculations can be bounded by a

function that is O(k log(k) + log(Mk)).

We conclude this section with an example that illustrates the above in

practice. According to the table of zeta values for quadratic extensions given

in chapter 4, ζQ(
√

7)(1−4) = 113
15

. Let us check this using the method above. Set

K = Q(
√

7) and N = 2. The only primes that ramify in K are 2 and 7. Since

93



K is an abelian extension of Q, we have ew2 = 2, et7 = 2, and all else equal to

1. Using (5.0.2) we consider the possible primes p and their powers that could

divide the denominator of 2−2ζK(1− 4). If p 6= 2, 7, then 4 ≡ 0 mod (p− 1).

Clearly the only possibilities are 3 and 5, both of which can appear to only a

single power since 6 and 20 are both greater then 4. p could not be 7 because

4 6≡ 0 mod (6/2). For p = 2 we must have 2l(n)/2 ≤ 4, where n is the power

of 2 appearing, and so n ≤ 5. It follows that M4 = 23 · 3 · 5 = 120 is such that

ζK(1 − 4) ·M4 is an integer. Subbing in the values N = 2, |∆(K)| = 28 and

s = 4 into the necessary inequalities above, we see that T > 28.2 and β4
∼= 16.1

so m ≥ 15.1 and n ≥ 32.2. Set m = n = 33 for simplicity and T = 29, which

gives a value of ZK(4, 29) = 1.093978 . . . . Plugging the necessary values into

MAGMA, we get

M4 · (−1)2 · F (4, 31, 31) · ZK(4, 26) = 903.9962 . . .

which obviously rounds to 904. Hence ζK(3) = 904
120

= 113
15

exactly as predicted.
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CHAPTER 6
A Modular Function Approach

In this section we give a brief description of how one can determine zeta

function values at negative integers via the theory of Hilbert modular forms.

This section will follow and refer to the material given in [11] and [17]. In

what follows, assume L is a totally real number field (as we have seen earlier

this is the only interesting case), [L : Q] = n, {τ1, . . . , τn} are the distinct

embeddings of L into C and let H denote the complex upper half-plane. For an

arbitrary matrix µ = ( a bc d ) ∈ GL2(L)+, let τj(µ) =
(
τj(a) τj(b)

τj(c) τj(d)

)
. Furthermore,

if z = (z1, . . . , zn) ∈ H we have a natural action µz = (τ1(µ)z1, . . . , τn(µ)zn)

where each τi(µ) acts on zi as a fractional linear transformation in the usual

way.

For an arbitrary fractional ideal A of L, define the algebraic group

GL(OL ⊕A)+ =
{

( a bc d ) : a, d ∈ OL, b ∈ A, c ∈ A−1, ad− bc ∈ (O×)+
}
,

where (O×L )+ denotes the group of all totally positive units of OL.

Given a matrix δ =
(
δ1 δ2
δ3 δ4

)
∈ GL2(R)+, for z ∈ H we define

j(δ, z) = (δ3z + δ4)(det δ)−1/2.
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For a vector k = (k1, . . . , kn) ∈ Zn and a matrix µ ∈ GL2(L)+, let

jk(µ, z) =
n∏
i=1

j(τi(µ), zi)
ki

with z = (z1, . . . , zn) ∈ Hn.

It is clear that our definition of j agrees with the concept of factor of

automorphy associated with usual modular forms. We use jk to extend this

concept to holomorphic functions on Hn in what follows. Let f : Hn → C and

put

(f |kµ)(z) = jk(µ, z)−1f(µz).

For Γ ⊆ GL(OL⊕A)+ of finite index, we say that f as above is a Hilbert mod-

ular form of weight k and level Γ if it is holomorphic, f |kµ = f ∀µ ∈ Γ, and f

satisfies a certain holomorphy condition at infinity. This holomorphy condition

generalizes the concept of q-expansions at the cusps for usual modular forms

and amounts to having an expansion

f(z) =
∑
ν∈M∗

aνe
2πiTr(ν·z),

where M = {a : ( 1 a
0 1 ) ∈ Γ}, M∗ is its complimentary OL-module and Tr(ν · z)

equals τ1(ν)z1 + . . .+ τn(ν)zn (see [11] for details).

The primary examples of Hilbert modular forms that we are interested in

are the Eisenstein series, which we introduce now. Fix a fractional ideal B

of L. Let A be some class of fractional ideals in the class group of L and

let A be an arbitrary representative. For k ∈ Z, k even and ≥ 2, let k equal

(k, k, . . . , k) and define the Eisenstein series of weight k and class A as

Gk,A := ||A||k
∑′

(α,β)∈AB⊕AN(αz + β)−k,
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where αz + β = (τ1(α)z1 + τ1(β), . . . , τn(α)z1 + τn(β)), N(z) = z1 · · · zn and

the sum is restricted in the following sense: we define (α, β) ∼ (α′, β′) if there

exists ε ∈ O×L st. α = εα′ and β = εβ′. This is clearly an equivalence relation

on the non-zero pairs and the restricted sum takes one element from each

equivalence class. Note that this is well defined because the algebraic norm of

a unit is always 1 and one easily sees that the value of this function does not

change when A is replaced by ηA for any η ∈ L. Finally, this sum necessarily

converges under the given conditions on k assuming n > 1 and also for n = 1 if

k ≥ 4 (in which case we are reduced to the usual Eisenstein series of modular

forms on SL2(Z)).

One can check from the definitions that multiplication on the right by

any µ ∈ GL(OL ⊕ B−1)+ is an automorphism for AB ⊕ A that preserves the

equivalence relation defined above. This can be used to obtain the following

result.

Proposition 6.0.1. The Eisenstein series defined as above is a Hilbert mod-

ular form of weight k and level GL(OL ⊕ B)+.

Proof. See pg. 69 of [11].

As before, let A be an ideal class in the class group of L and let B be any

integral ideal. We define the two functions

ζA(k) =
∑
A ∈ A

A ⊂ OL

||A||−k; σk−1,A(B) =
∑
A ∈ A

B ⊆ A ⊆ OL

||A||k−1.

One notes immediately that summing the ζA as A runs through all the ideal

classes gives the usual ζL and likewise summing all the σk−1,A gives a function

that generalizes the usual σk−1 function on N to ideals of OL. We shall call
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this function σ′k−1, and explicitly it is defined as σ′k−1(I) =
∑

I⊆A⊆OL

||A||k−1. It

turns out that the ζA and σk−1,A functions appear quite prominently in the

Fourier expansion of the Gk,A, while ζQ and σk−1 appear in the q-expansion

of the usual Eisenstein series modular forms, hence one may suspect that

there may be a parallel between the coefficients of these two different types of

modular forms. Indeed this is the case, and it is this relationship that one can

exploit to determine special values of ζL. More explicitly, after multiplying

the series
∑

(m,n)6=(0,0)

1

(mz + n)k
by an appropriate normalization constant, we

get a modular form Ek(z) of weight k (assuming k ≥ 4) with q-expansion

ζQ(1− k)/2 +
∑
m∈N

σk−1(m)qm (see [17]). On the other hand, if we define

EL,∗
k =

1

c

∑
A∈Cl(L)

Gk,A,

where c = (2πi)kn

(k−1)!n
∆

1/2−k
L is a normalizing constant, we see immediately that

EL,∗
k is a Hilbert modular form of weight k and level GL(OL ⊕ B)+. More

importantly, the Fourier expansion about the cusp (i∞, . . . , i∞) is

EL,∗
k =

ζL(1− k)

2n
+

∑
ν ∈ BD−1

L

ν � 0

σ′k−1((ν)B−1DL)e2πiTr(νz),

where DL is the different of OL and ν � 0 means that ν must be totally

positive.

The similarities are apparent, especially if one takes B = OL, which we

will now consider. Let Φ : H → Hn be the diagonal map, z → (z, z, . . . , z).

Then by (6.0.1) and the fact that GL(OL⊕OL)+ ⊇ SL2(Z), we have that the

function EL,∗
k ◦Φ : H→ C is a modular form of weight kn and the q-expansion

at i∞ can be expressed as

EL,∗
k ◦ Φ =

ζL(1− k)

2n
+
∞∑
m=1

ak(m)qm,
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where

ak(m) =
∑

ν ∈ (D−1
L

)+

Tr(ν) = m

σ′k−1((ν)DL) =
∑

ν ∈ (D−1
L

)+

Tr(ν) = m

∑
(ν)DL⊆I⊆OL

||I||k−1.

This is a truly elegant result and the reader is again directed to [11] for full

details. The usefulness of the above expression comes from the fact that it is

very easy to construct a basis for the vector space of modular forms of weight

nk. In fact the set {Ei
4E

j
6} where i, j ∈ N st. 4i+ 6j = nk forms such a basis

(See [17] pg. 118) and each of these basis elements has a q-expansion that is

easily computable for a large number of terms (because we have a formula for

the expansions of E4 and E6). Using this method to calculate ζL(1− k) is still

limited however to ones ability to calculate the ak(m). To be able to calculate

EL,∗
k ◦ Φ in terms of the basis, one needs to be able to calculate explicitly the

ak(m) for at least j + 1 distinct values of n, where j is the dimension of the

space of weight kn modular forms. Hence using this modular approach is very

fruitful when a lot of additional information is already known about L, for

example its different and its lattice structure. One especially nice case is when

L is a quadratic extension, then the ring of integers of L is monogenous and

(2.2.4) shows that DL = (
√

∆L). Using this and the well-understood structure

of the ring of integers of quadratic fields and their ideals, one can calculate

ζL(1− k) for certain k using explicit formulas such as Siegel’s formula:

ζL(−1) =
1

60

∑
a ∈ Z

a ≡ ∆L mod 2

|a| <
√

∆L

σ1

(
∆L − a2

4

)
.

The methodology for determining the above formula is mapped out in [11] and

the interested reader is directed to [6] for more formulae like the one above.
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We conclude this section with another discussion of how expensive it is to

calculate zeta function values in this way. As usual, we fix a number field L

with [L : K] = n ≥ 2 and we let k ∈ N vary over positive even integers at

least 2. We assume that the structure of the field L and its ring of integers

is a precalculation, so we do not concern ourselves with finding the different,

determining the ideal structure of OL, or finding totally positive elements of a

certain trace as these things are independent of k. The final result will not be

as precise for this section as in previous analysis because as we shall see, the

amount of computation needed actually depends on the structure of certain

modular groups.

As noted above, the complex vector space V of modular forms of weight nk

has a basis {Ei
4E

j
6} where i and j are positive integers such that 4i+ 6j = nk

and we assume the Ei’s are normalized such that

E4 =
1

120
+
∞∑
t=1

σ3(t)qt and E6 =
−1

252
+
∞∑
t=1

σ5(t)qt.

It is not hard to prove that the dimension of this vector space can be

expressed as

Dim(V ) =


⌊
nk
12

⌋
+ 1 if nk 6≡ 2 mod 12⌊

nk
12

⌋
else.

In particular we note that the dimension m is ∼ nk/12.

We shall see shortly that each of these basis elements will need to have

at least the first m + 1 terms in their q-expansions calculated explicitly. This

requires calculating powers of E4 and E6 up to approximately nk/4 and nk/6

respectively. We give a brief analysis of how many operations that requires.

Assume that E4’s and E6’s q-expansions are already known to a sufficiently

high degree (it is fair to assume this would be a precalculation). Finding the
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product modulo qm+1 of two expansions of the form a0 + a1q + . . . + amq
m

and simplifying requires (m + 1)(m + 2)/2 instances of multiplication and

(m + 1)(m + 2)/2 − (m + 1) instances of addition for a total of (m + 1)2

operations. Thus it takes approximately 5nk/12 · (m + 1)2 ≈ 5m(m + 1)2

operations to find all the necessary powers of E4 and E6. We then have to

multiply powers of E4 with powers of E6, which we do between m− 2 and m

times and each time we require (m + 1)2 more operations. In any case, the

total cost of finding the first m + 1 terms in the q-expansion of every basis

element will be O(m3).

Returning to the problem at hand, for simplicity of notation we denote the

function EL,∗
k ◦ Φ = f and {Ei

4E
j
6} = {gi}mi=1, so that we are looking to find

constants di ∈ C st. f =
∑m

i=1 digi. Let vi be m-tuples with jth coordinate

equal to the coefficient on qj−1 in the q expansion of gi. We claim that the

vi’s form a basis for Cm. Indeed if not, then there exists non-trivial linear

relations between the first m coefficients in the gi’s and thus there exists a

non-zero weight nk cusp form whose zero at infinity is of order at least m.

Letting ∆ be the usual discriminant form of weight 12, it follows that we can

divide our cusp form by ∆m−1 to get a new non-trivial cusp form whose weight

lies in {0, 4, 6, 8, 10, 14}. But no such cusp forms exist (See [17] pg. 117) and

hence we have a contradiction.

Let now v′i be the (m − 1)-tuples st. v′j is equal to vj with the first term

removed. It follows from above that there exists at least one subset of the v′i

that form a Cm−1 basis, and such a subset can be found by applying a Gaussian

elimination algorithm to the m by (m − 1) matrix whose rows are the v′i. As

remarked in Appendix A when discussing resultants of polynomials, Gaussian

elimination of a t by t matrix has an operation cost that is O(t3), and we

conclude that the cost of finding the desired basis is O(m3). Let us suppose
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that v′1, . . . , v
′
m−1 are all linearly independent. Then we can find c1, . . . , cm−1

such that

gm −
m−1∑
i=1

cigi = A0 + 0 · q + 0 · q2 + . . .+ 0 · qm−1 + Amq
m + . . . .

What we are looking for in the above expression is the first non-zero term after

A0. If Aj is such a term, it follows that if we define wi to be the m-tuple v′i

with the qj coefficient of gi appended to the end of the vector, then the wi’s

will form a basis for Cm. Note that such an Aj necessarily exists because the

expression above is a weight nk modular form and the constant functions are

not. Unfortunately it is possible that Am will in fact be zero, and if this were

the case then we would would have to go back and find the coefficient of the

next term in the q-expansion of each basis element and find Am+1 above and

hope it is not zero. Obviously if it were zero then we would have to continue

doing this, which is why it was mentioned earlier that we need to calculate

coefficients at least up to the qm term for each basis element.

Let us ignore this issue and assume for simplicity that Am is not zero.

Then we can solve for the di above by applying Gauss-Jordan elimination to

the augmented matrix (A|B), where the columns of A are the wi and the

B = (ak(1), ak(2), . . . ak(m− 1), ak(m)) (of course if Am is zero, we replace the

last coordinate of B with ak(j), where Aj is as above).

We now consider the issue of evaluating the ak(i) for 1 ≤ i ≤ m, which

as discussed above is the best case scenario. This question breaks down into

two problems, namely how many totally positive elements of trace less then m

could lie in D−1
L and how many arithmetic operations does it take to evaluate

σk−1(νD) for some ν satisfying these conditions? We consider each problem in

turn.
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For some d ∈ N, d · D−1
L is an integral ideal. Applying Minkowski’s

lattice theory, we can consider I = d · D−1
L as a complete lattice in Rn

whose fundamental mesh has volume
√
|∆L|[OL : I] (See [22] pg. 31). We

wish to estimate the number of elements in I that lie in the first quad-

rant and whose trace lies between d and md. This is equivalent to finding

the number of lattice points that lie inside the simplex whose edges consist

of {(dm, 0, 0, . . . , 0), (0, dm, 0, . . . , 0), . . . , (0, 0, 0, . . . , dm)} but outside the one

whose edges are {(d, 0, . . . , 0), . . . (0, 0, . . . , d)}. The number of points in each

simplex will be approximately the ratio of their volumes to the volume of the

fundamental mesh. It is well known that the simplices above have volume

(dm)n/n! and dn/n! respectively. Hence the number of lattice points that lie

in the first simplex but not the second will be approximately

dn
mn − 1

n!
√
|∆L|[OL : I]

.

Using Stirling’s approximation to the factorial function (See previous section)

and the fact that m ≈ nk/12, the above expression is O(kn). We conclude

that when determining ak(i) for i from 1 to m, we will have to consider the

value of σ′k−1 at a number of ideals that grows with k in polynomial time. Note

that if we wished to put an explicit bound on the number of such elements

instead of just an estimate, we could proceed by first finding the maximum

length of a vector contained in the lattice spanned by I, say c. We would then

replace the lengths dn and d in the two simplices by dn+ c and max(d− c, 0)

respectively. Calculating the volume ratios would then put a maximum value

on the number of lattice points in the first simplex and a minimum on the

second. It is clear however that we would still end up with a function that

grows like an n-degree polynomial in k.
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Turning now to issue of evaluating σ′k−1, we note that this function satisfies

the same sort of multiplicative property on ideals that the usual σk−1 satisfies

on integers, namely σ′k−1(P e) = (||P ||(k−1)(e+1) − 1)/(||P ||k−1 − 1) when P is

some prime ideal, and σ′k−1(IJ) = σ′k−1(I)σ′k−1(J) when I and J are relatively

prime ideals. Since we are assuming that factoring ideals of OL is free, it

follows that the number of arithmetic operations needed to evaluate σ′k−1(J)

is bounded by a constant times the number prime ideals dividing J , hence we

consider just how many this could be. We first note that using the AM-GM

inequality, we can put a bound on the norm of any fractional ideal generated

by a totally positive element whose trace is less then m. Indeed for such a ν

we have

k/12 + 1/n ≥ (m/n) ≥ Tr(ν)

n
=

∑n
i=1 τi(ν)

n
≥ n
√
N(ν).

In particular the norm of νDL is bounded by say (k/3)n times the norm of DL.

We conclude that the number of prime ideals that could possibly divide νDL

is o(log(k)).

It follows from our that the operation cost of evaluating all the necessary

arithmetic functions to determine ak(i) for 1 ≤ i ≤ m will be o(kn log(k)). We

conclude the section with a summary of the results.

Theorem 6.0.2. Let K be a totally real number field over Q of degree m.

Assume that bases of modular forms for sufficiently large weights have been

precalculated with Fourier expansion about i∞. Then ζK(1− k) can be calcu-

lated and fully reduced to a rational number with o(km log(k)+f(k)) operations,

where f(k) is a function of k that is at best cubic in k.
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Conclusion

The motivation of this thesis was to construct an algorithm that could

compute Dedekind zeta function values at negative integers for abelian number

fields. We have now managed to construct such an algorithm that runs in linear

time for a fixed field and have used it to calculate values for many different

fields.

Further analysis into this topic could be fruitful as there are a number of

different avenues to pursue. As discussed in chapters 5 and 6, there is the

issue of calculating these zeta values for non-abelian fields, and it would be

interesting to try and come up with an algorithm that is more effective then

the ones described in this thesis, which essentially run in polynomial time of

degree equal to the degree of the extension field over Q.

Another potential topic would be a study into when these values are in-

tegers. Some numerical results on the subject were given in chapter 4, but it

would be interesting to try and find a theoretical reason for when and why

these integer values occur. A good place to start on the subject might be to

consider some of the results discussed in chapter 5, where we note that in [11]

it is shown that one can put a bound on the possible denominators occurring

by considering the ramification of certain primes. Other similar results can

be found in the text, including a result that shows that if k and k′ are two

even integers satisfying certain congruence relations for a given prime, then

there is a relationship between the values of that prime appearing in the de-

nominator of ζL(1 − k) and ζL(1 − k). Hence one might suspect that under

certain conditions, finding ζL(1 − k) to be integral for one k could lead to
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the same result for another. One interesting pattern that was observed by

the author through the course of writing this thesis was that ζQ(ω2n )(−1) was

verified to be integral for 5 ≤ n ≤ 11 and one might suspect for even higher

n that this continues to hold. This result can be considered somewhat less

surprising by the aforementioned theory in [11] from which it follows that for

any n, the denominator of ζQ(ω2n )(−1) has to divide 12. Furthermore all the

Bernoulli numbers in the product of some zeta function for some field K will

also be appearing in the product of the zeta function for any field containing

K which might suggest why we see in Table 4-7 that the number of zeta values

occurring as integers increases as the primitive root of unity increases. The

aforementioned bounded denominator result however is unique to the powers

of 2 and k value of 2, and so not surprisingly this result of integrality is not

so common for other towers of values, for example ζQ(ω2n )(−3) was verified to

not be integral for n ≤ 11 and ζQ(ω3n )(−1) was also verified to not be integral

for n ≤ 6.

One final topic that could build on the results in this thesis is a discussion

of the growth rate of these values, either as a function of 1−k or the degree of

the field or as a function of the conductor. A brief look at some of the results

given in chapter 4 certainly leads to the conclusion that these values can get

quite large extremely rapidly. For example, in verifying integrality as discussed

above, the value ζQ(ω2048)(−1) came out to be an integer with 1649 digits!

This phenomena can most likely be explained by looking at the functional

equation in chapter 5, where one notes that the equation for ζK(1− s) has the

factor |∆(K)| 2s−1
2 appearing in it, so certainly fields with large discriminants

are going to have larger zeta values then those with small discriminants, all

other variables being equal. However it would still be interesting to see if one

could use say the conductor of K, along with the way that primes split in the
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corresponding cyclotomic field to get a very precise bound using the infinite

product expansion of the zeta function.
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APPENDIX A
Computational Algorithms

In this section we proceed to give a brief synopsis of the general methods

and algorithms utilized by programs such as MAGMA needed to run the pro-

gram we have developed. Most of these routines are already built into common

computing programs and so a brief overview is all that is given.

Generators of (Z/pαZ)× when p is a prime

It is well known that 5 and -1 serve to generate (Z/2αZ)× for any α ≥ 1 so

we restrict to the case when p is odd and hence (Z/pαZ)× is a cyclic group. The

following lemma from [7] shows that finding generators of (Z/pαZ)× reduces

to the case when α = 1.

Lemma 1. Let p be an odd prime, and let g be a primitive root modulo p. If

g is not a primitive root modulo every power of p, then g + p is.

Proof. Let l be any prime dividing (p− 1). Then gp
α−1 p−1

l ≡ g
p−1
l 6≡ 1 mod p,

since g is a primitive root modulo p. Clearly then gp
α−1 p−1

l 6≡ 1 mod pα. We

conclude g is a primitive root of (Z/pαZ)× iff gp
α−2(p−1) 6≡ 1 mod pα.

Claim: xp ≡ 1 mod pα implies x ≡ 1 mod pβ for all 1 ≤ β ≤ α− 1.

Proof: Clearly it is enough to show the claim when β = α − 1. When

α = 2, the result clearly follows from Fermat’s little theorem. Assume we

have proven the claim for all 2 ≤ α < N and xp ≡ 1 mod pN . Then xp ≡ 1
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mod pN−1 and so by inductive assumption, x is of the form 1 + kpN−2. Then

1 ≡ xp ≡ 1 + pkpN−2 mod pN since N ≥ 3. Hence k is divisible by p and we

are done.

Returning to the proof of the lemma, we can apply the claim repeatedly to

the statement gp
α−2(p−1) ≡ 1 mod pα to get gp−1 ≡ 1 mod p2. If this holds,

then (g+p)p−1 ≡ gp−1 +(p−1)gp−2p ≡ 1−gp−2p 6≡ 1 mod p2 and we conclude

from the claim that (g+p) is then a generator of (Z/pαZ)× for every α ≥ 1.

The following algorithm from pg. 25 of [7] takes an odd prime p and finds

a primitive root of (Z/pZ)×.

0. [Input] p an odd prime

1. [Initialize a] set a← 1 and let p− 1 = pv1
1 ...p

vk
k be the complete

factorization of p− 1.

2. [Initialize check] Set a← a+ 1 and i← 1.

3. [Check pi] Compute e← a
(p−1)
pi . If e = 1 go to step 2. Otherwise, set

i← i+ 1.

4. [finished?] If i > k output a and terminate the algorithm, otherwise goto

step 3.

It is easy to see that this algorithm works because a is not a primitive root

if and only if the order of a is a proper divisor of |(Z/pZ)×| = p − 1. Hence

the algorithm checks the congruency class of a raised to every maximal proper

divisor of p − 1. Using the usual exponentiation by squaring method for cal-

culating powers in Z/pZ, the running time of each check is on the order of

O(log(p− 1)) and must be done at most k times for each a. A simple bound
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on the number of prime divisors of p− 1 shows that k is o(log(p)). Assuming

the GRH we have a result due to Shoup (see [3] pg. 221) which says that as p

runs over the primes, if h(p) denotes the least positive primitive root mod p

then h(p) = O(log(p)6). Clearly the overall running time of the algorithm de-

pends on the efficiency of factoring p−1 as well as the aforementioned bounds

and when p is quite large, the former will dominate the calculation speed. On

the other hand, if we ignore the factoring cost of p− 1, we conclude that the

running time will be on the order of o(log(p)8) operations.

By lemma (1), if g is the output of this algorithm we need only check

if gp−1 is congruent with 1 mod p2 to find a generator for (Z/pαZ)×. Hence

this algorithm provides an effective method for determining primitive roots of

(Z/pαZ)× when factoring p− 1 is not an issue.

Determining primes that split completely in Galois number fields

If a number field K is Galois over the rationals, then the primes of Q split

uniformly in it, ie. (p) = Qe
1Q

e
2...Q

e
r and every Qi has the same inertial degree

over p. Given then a function f(x) ∈ Q[x] whose roots generate K, if p does

not divide the discriminant of f , then p splits completely in K iff f has a

root modulo p. The following algorithm from [20] pg. 82 gives a method to

determine whether f has a root modulo p.

0. [Input] f(x) and h(x) = xp − x ∈ Z/pZ[x].

1. Set r(x)← f(x) mod h(x), f(x)← h(x), h(x)← r(x). If h(x) = 0 go to

2. Otherwise go to 1.

2. Return g(x)
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The returned value is not a constant polynomial if and only if f has a zero

modulo p and hence p splits completely in K. The algorithm works because

it calculates the GCD of the polynomials f and xp − x =
∏

a∈Z/pZ

(x− a) in

Z/pZ[x]. Letting m = max{p, deg(f)}, then the algorithm runs in O(m2)

Z/pZ-operations.

Determining the discriminant of a polynomial

We follow the introduction of the resultant in [8] to motivate the solution of

this problem. Suppose f(x) = anx
n+...+a1x+a0 and g(x) = bmx

m+...+b1x+b0

are two polynomials over some field F [x] with roots x1, ..., xn and y1, ..., ym

respectively in the algebraic closure of F . Consider the determinant of the

following (n+m)× (n+m) matrix A:

R(f, g) := det(A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an−1 · · · a1 a0

an an−1 · · · a1 a0

an an−1 · · · a1 a0

. . . . . .

an an−1 · · · · · · a1 a0

bm bm−1 · · · · · · b1 b0

bm bm−1 · · · · · · b1 b0

bm bm−1 · · · · · · b1 b0

. . . . . .

bm bm−1 · · · · · · b1 b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Suppose R(f, g) = 0. Then there exists some (m+ n)× 1 row vector v, with

v := [λm−1, λm−2, · · · , λ0, µn−1, µn−2, · · · , µ0]

such that v.A = ~0. Defining the polynomials r(x) = λm−1x
m−1 + ... + λ0 and

s(x) = µn−1x
n−1 + ... + µ0, we see by comparing coefficients that v.A = ~0 is
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equivalent to the identity r(x)f(x) + s(x)g(x) = 0. On the other hand, since

deg(r) < deg(g) and deg(s) < deg(f), this identity can only hold if f and g

share a common zero in the algebraic closure of F . Conversely, if f and g share

a common non-trivial factor, say h(x), then r(x) = g(x)
h(x)

and s(x) = f(x)
h(x)

have

degrees strictly less then g and f respectively, and solve the identity above.

We conclude that R(f, g) = 0 iff f and g have a common root.

Writing out explicitlyR(f, g) =
∑

σ∈Sn+m

(−1)|σ|a1,σ(1) · a2,σ(2) · ... · an+m,σ(n+m),

it is clear that all of the non-zero terms in this sum will be comprised of m

factors taken from the coefficients of f and n factors taken from the coefficients

of g. Note that the coefficients of f are either an or an times an elementary

symmetric function in the xi and a similar statement holds for the coefficients

of g. It follows that R(f, g) is amn b
n
m times a function symmetric in both the xi

and yj. Furthermore, R(f, g) is homogenous of degree m in the xi and degree

n in the yj.

We know that if xi = yj then R(f, g) = 0, so (xi− yj) must divide R(f, g)

for all i, j. Therefore

R(f, g) = amn b
n
m

n∏
i=1

m∏
j=1

(xi − yj)×K,

where K is some symmetric function in the xi and yj. By our discussion above

regarding the homogeneity of the terms of R(f, g), we know that the xi do not

appear in powers larger then m and likewise the yj do not appear in powers

larger then n. Hence K must be independent of the x and y and therefore a

constant. Considering the case where all the xi are zero and an = 1, it is easy

to see that R(f, g) = bn0 = (bm(−1)m(y1...ym))n and so K must equal 1. We

conclude by noting that the above formula for R(f, g) can be written as

R(f, g) = amn

n∏
i=1

g(xi) = (−1)nmbnm

m∏
j=1

f(yj). (A.1)
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Returning now to our original problem of finding the discriminant of a

polynomial f ∈ Q[x], we use the formula in (A.1). One can represent ∆(f)

using norms and derivatives as follows:

∆(f) = (−1)
n(n−1)

2 an−2
n NK

Q (f ′(α)) = (−1)
n(n−1)

2 an−2
n

n∏
i=1

f ′(αi)

where {α = α1, ..., αn} run through all of the zeros of f in its splitting

field K. Setting g = f ′ and looking at the first equality in (A.1), we see

that ∆(f) = (−1)
n(n−1)

2
1
an
R(f, f ′). We conclude that calculating the discrimi-

nant of f reduces to calculating the determinant of a 2n− 1× 2n− 1 matrix.

One relatively efficient method of doing this is to reduce the matrix to an

upper triangular one via Gaussian elimination, and then multiply along the

diagonal. By [9], computing a Gaussian elimination for a k × k matrix takes

approximately 2k3/3 arithmetic operations, hence computing the discriminant

of a polynomial f can be done in cubic time with respect to the degree of f .

Factoring and the Irreducibility of Polynomials over Z

Given a polynomial f ∈ Z[x], the reader is most likely familiar with numer-

ous situational techniques for checking the irreducibility of f such as Eisen-

stein’s criteria, the rational root test and reducing modulo various primes.

While these can be very quick checks to test for irreducibility, they are often

not sufficient to determine irreducibility for a general polynomial and hence

algorithms relying on more general techniques have been developed for use in

computational algebra programs such as MAGMA or Maple. Of course, most

programs also have a built in Factorization algorithm, and certainly being able

to factor f over Z suffices to be able to determine its irreducibility. However
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if one is only interested in irreducibility, it seems wasteful to factor if one can

avoid it so it is still useful to explore fast algorithms that can determine irre-

ducibility without factoring. In what follows we describe two algorithms, one

which returns a probabilistic answer on irreducibility and one that can confirm

irreducibility but not rule it out. See [27] and [21] respectively for complete

details.

*Note that in what follows, we will always assume f is squarefree, since we

can check the resultant R(f, f ′) to determine otherwise.

We begin with a discussion of Landau’s famous theorem on prime ideals of

a number field, which is formalized on pg. 228 of [3] as follows:

Theorem 2. Let K be an algebraic number field of degree n. Let πK(x) denote

the number of prime ideals whose norm is ≤ x. Let λ(x) = (log x)3/5(log log x)−1/5.

There is a c > 0 (depending on K) such that

πK(x) = li(x) + O(xe−cλ(x)) ∼ x

log x
.

One notes that this reduces to the usual statement of the prime number theo-

rem when K is Q. It follows quite easily that if πK,i for 1 ≤ i ≤ n with notation

as above, denotes the number of prime ideals of K with inertial degree i, then

πK,1(x) ∼ x
log x

. We conclude from this that

lim
x→∞

πK,1(x)

π(x)
= 1

where π = πQ.
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One might wonder how this is relevant to the irreducibility of a polynomial

f over Z. Suppose f splits into r irreducible factors over the integers. Then

Q[x]/(f(x)) ∼= Q[x]/(f1(x))× · · · ×Q[x]/(fr(x))

∼= K1 × · · · ×Kr

where each Kj is the corresponding number field. Consider an arbitrary prime

p ∈ Z that does not divide the discriminant of f and hence also none of the

discriminants of its factors. It follows that each of the fj ∈ Z/pZ[x] will de-

compose into irreducible factors that represent the splitting of the prime ideal

(p) in the number field Kj. In particular, any linear factor in the decompo-

sition of an fj and hence in the decomposition of f corresponds to a prime

ideal in Kj with prime norm. Fixing some large N ∈ N consider the following

algorithm:

0. [Input] f ∈ Z[x].

1. [Initialize] L← 0.

2. for primes in [1..N] do

3. f ← f mod p, G← GCD(xp − x, f), L← L + deg(G).

4. [Output] L/πQ(N)

*Refer to earlier in the chapter for an efficient algorithm on calculating the

required GCD. Also note that we are assuming f is squarefree.

In the above algorithm, L counts all linear factors appearing in the reduc-

tion of f modulo p, for any prime p ≤ N . By the above discussion, this is

equivalent to counting all prime ideals of all Kj with prime norm less then N ,

save a finite error term cj arising from the reduction of primes dividing the

116



discriminant ∆(fj). We conclude that if we let N go to infinity, the value of

L/N would asymptotically approach r, as

lim
N→∞

r∑
j=1

πKj ,1(N) + cj

πQ(N)
=

r∑
j=1

1.

Thus this algorithm allows one to guess with reasonable certainty whether or

not f will be irreducible, depending on the choice of N . Of course no definite

conclusion can be made for any fixed N , however this algorithm is extremely

cheap to run and is therefore useful to consider for the following reason.

As we shall see shortly, there exist algorithms that can confirm irreducibil-

ity but are not guaranteed to do so in any finite amount of time. These algo-

rithms run much faster then factoring algorithms but still not as fast as the

one above as they rely on primality testing, possibly combined with searching

for “small” divisors. Hence if we were to run our given algorithm and the

output appeared to suggest f is almost certainly irreducible, then it is likely

that we would save time if we used the deterministic algorithm before using

a factorization algorithm. On the other hand, if we thought that f was most

likely not irreducible, then it would probably be worthwhile to go straight to

the factoring.

We now move on to describing a second irreducibility test, following the

paper [21]. The test was originally implemented in the Maple algebra system

and has likely gone through some improvements, however it is the author’s

understanding that most algebra systems currently use tests of a similar flavor

to determine irreducibility over the integers. One final note is that primality

testing is involved, so depending on the size of prime in question and the

primality test used, we may again be left with only a probabilistic answer of

irreducibility.
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As usual, let f(x) = anx
n + an−1x

n−1 + · · · + a0 ∈ Z[x] be an arbitrary

squarefree polynomial with an and a0 6= 0. The motivation behind our test is

the following simple observation: if f were reducible, say f(x) = f1(x)f2(x),

then f(n) = f1(n)f2(n) ∀ n ∈ Z and hence f(n) should not be prime too often.

More explicitly, this could only happen when all but one of f ’s factors are ±1.

Cauchy’s bound on the roots of a polynomial comes in handy for considering

when this could happen.

Lemma 3. Let f be as above. Suppose z ∈ C is a root of f . Then |z| <

1 + a∞/|ad| where a∞ = max{a0, · · · , an−1, an}.

Lemma 4. Let f be as above and assume an > 0, k > 0, k ∈ Z. Define

b = 1 + da∞/ame. If f1 is any factor of f with degree(f1) = δ, then both

|f1(b+ k)| and |f1(−b− k)| > kδ.

The second lemma follows immediately from the first after considering the

factorization of f over C. The next theorem follows just as easily from the

second lemma and the discussion above.

Theorem 5. Let f, b and k be as above. If either |f(b+ k)| or |f(−b− k)| is

prime, then f is irreducible.

It is intuitively clear how one might go about using theorem (5) to check

irreducibility. Simply calculate b and start checking the primality of f(n)

for n > b. However, it is easy to see that this will not work in all cases.

For example, the irreducible polynomial x2 + x + 2 is never prime, in fact it

is divisible by 2 at all values. In general we define the fixed divisor d of a
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polynomial over Z to be the largest integer that divides f(n) ∀ n ∈ Z. Clearly

2 is the fixed divisor of x2 + x + 2. The following lemma says that the fixed

divisor is readily determinable.

Lemma 6. Let f ∈ Z[x] have degree n. Then the fixed divisor d of f is

GCD(f(0), f(1), · · · , f(n)). More generally, d is the GCD of any n + 1 con-

secutive values of f and is fixed under translation (ie. if g(x) = f(x + t) for

some integer t, then the fixed divisor of g equals the fixed divisor of f).

Obviously it would be nice if once the fixed divisor is known, we could

simply divide f(b + k) by it and use the possible primality of the quotient to

determine irreducibility. The next theorem says that we can do this assuming

k is large enough.

Theorem 7. Let f, b and k be as usual. Suppose v|f(b + k) and 0 < v ≤ k.

Then f is irreducible if either v−1f(b+ k) or v−1f(−b− k) are prime.

Note that theorem (7) not only says we may divide out by d as long as k ≥ d,

but in fact we may divide out by any divisor of f(b + k) that is sufficiently

small. This brings us to the basic procedure for some fixed N1 and N2:

0. [Input] f ∈ Z squarefree, non-zero constant, positive leading coefficient.

1. [Initialize] n := degree(f), b := d1 + a∞/ane,

d := GCD(f(0), · · · , f(n)).

2. for k in [d..d+N1] do

3. u := |f(b+ k)/d|

4. if u > 10N2 return “LIMIT REACHED”.
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5. g := smallfactors(u, k/d)

6. for x in g do

7. if u/x is prime then return true.

8. v := |f(−b− k)/d|

9. if v > 10N2 return “LIMIT REACHED”.

10. g := smallfactors(u, k/d )

11. for x in g do

12. if u/x is prime then return true

13. return “LIMIT REACHED”.

Here we can consider the function smallfactors(a,b) as returning the set of all

positive divisors of a whose size is less then b.

It is conjectured by Bourniakowsky that there are always infinitely many

n ∈ Z for which d−1|f(n)| is prime if f is irreducible. Assuming this is true,

it follows that the above algorithm would confirm the irreducibility of a poly-

nomial in a finite amount of time if the arbitrary bound N1 and N2 were

removed. An even stronger conjecture known as “Hypothesis H+” which has

been posed by Adleman and Odlyzko claims that the “gaps” between values

at which d−1f(x) is prime are not too large. Confirmation of Hypothesis H+

would lead to an irreducibility algorithm whose running time is polynomial in

the time taken to run integer primality tests, which is itself polynomial time

in the size of the integer.

In general, many improvements can be made to increase the effectiveness

of the above procedure, such as decreasing the value of b by translating the

polynomial or replacing it with its reciprocal. Theorem (7) can be very easily

strengthened to show that the maximum value of v that may be divided out of

|f(b+k)| depends on the smallest degree of any factor of f . In particular, since
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we can always find linear factors, we may assume that every factor dividing

f has degree at least 2, and hence v may be chosen to be any factor dividing

|f(b+ k)| of size less then k2 instead of merely k.

This concludes the overview of Monagan’s paper.
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APPENDIX B
Programs

The following is the MAGMA code for the programs used to obtain the

results in this thesis.

> KronWeb:= function(f);

> if not IsIrreducible(f) then // First section just checking that function is suitable
> print f, “is not irreducible.”;
> CycloDeg:= 0;
> elif not IsAbelian(GaloisGroup(f)) then // This can be improved. See [10] for a
> print f, “does not produce a Galois extension.”; // method to determine abelianicity
> CycloDeg:=0; // of Galois group directly that runs in polynomial time
> else

> ExtDegree:= Degree(f); // Initializing variables
> DegreeDivs:= Factorization(ExtDegree);
> DiscFactor:= Factorization(Integers()!Discriminant(f));

> PrimeSet:={};
> for prime in DiscFactor do
> PrimeSet:= PrimeSet join prime[1];
> end for;

> m1:= 1;
> for prime in PrimeSet do
> m1:= m1 * prime;
> end for;
> if 2 in PrimeSet then
> m1:= 2 * m1;
> end if;

> n1:=ExtDegree; // Removing extraneous factors thanks to (3.1.2)
> for x in DegreeDivs do
> if x[1] notin PrimeSet then
> while n1 mod x[1] eq 0 do
> n1:= n1 div x[1];
> end while;
> end if;
> end for;
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> CycloDeg:= n1 * m1;
> end if;

> return CycloDeg; // Returns abelian extension that Q[x]/(f) can embed into

> end function;

> CharGroup:= function(N, f);

> PrimeFactors:= Factorization(N); // Initializing variables
> ResidueGroup:= Integers(N);
> GalGroup, g:= UnitGroup(ResidueGroup);
> ResidueSubgroup:= sub<GalGroup | 0>;

> ImageGalGroup:=[ ]; // Constructing map between (Z/NZ)×

> for t in GalGroup do // and generic abelian group
> ImageGalGroup:= Append(ImageGalGroup, <t,g(t)>);
> end for;

> y:=0; // Finding subgroup of (Z/NZ)× that fixes field
> while #ResidueSubgroup ne (#GalGroup div Degree(f)) do
> y:= y +1;
> if ImageGalGroup[y][1] notin ResidueSubgroup then // This could be improved
> k:= Integers()!ImageGalGroup[y][2]; // For example, the order of y must
> while not IsPrime(k) do // satisfy certain conditions to be in the subgroup
> k:= k + N;
> end while;
> ResiduePoly:= PolynomialRing(FiniteField(k));
> RelPrime:= GCD(ResiduePoly.1ˆ(k-1)-1,ResiduePoly!f);
> if RelPrime ne 1 then
> ResidueSubgroup:= sub< GalGroup | ResidueSubgroup, ImageGalGroup[y][1]>;
> end if;
> end if;
> end while;

> ImageResidueSubgroup:=[ ];
> for x in ResidueSubgroup do
> ImageResidueSubgroup:= Append(ImageResidueSubgroup, <x,g(x)>);
> end for;

> Gens:=Generators(ResidueSubgroup);
> DircGroup:= DirichletGroup(N, CyclotomicField(Degree(f)));

// This next step should NOT be necessary. When MAGMA constructs a group of Dirichlet
// characters, it is supposed to construct an isomorphic abelian group in which do to
// algebraic manipulation. However, I have found that with V2.11-13 currently on the
// McGill computers this construction can be faulty and so the following constructs the
// abelian group and the map between the two explicitly.

> T:=[ ];
> for i in Generators(DircGroup) do
> T:= Append(T, Order(i));
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> end for;
> IsoDirc:= AbelianGroup(T);
> G:={ <IsoDirc!0, DircGroup!1>};
> for i in [1..#Generators(IsoDirc)] do
> for j in [1..Order(IsoDirc.i)-1] do
> G:= G join {<j*IsoDirc.i, DircGroup.iˆj>};
> end for;
> end for;
> while #G ne Order(DircGroup) do
> H:= G;
> for elt1 in H do
> for elt2 in H do
> G:= G join{ <elt1[1] + elt2[1], elt1[2]*elt2[2]>};
> end for;
> end for;
> end while;
> psi:= map<IsoDirc -> DircGroup | G>;

> CharacterGroup:=[* *]; // Finding the subgroup of characters that act trivially on
> IsoCharacterGroup:=sub<IsoDirc| IsoDirc!0>; // associated subgroup of (Z/NZ)×

> for X in IsoDirc do
> if #IsoCharacterGroup ne Degree(f) then
> if (Degree(f) mod Order(X) eq 0) and X notin IsoCharacterGroup then
> s:= 0;
> for i in Gens do
> if Evaluate(psi(X),g(i)) ne 1 then
> s:=s+1;
> end if;
> end for;
> if s eq 0 then
> IsoCharacterGroup:= sub<IsoDirc| IsoCharacterGroup, X>;
> end if;
> end if;
> end if;
> end for;

> Conductor:= 1; // Replacing characters with their associated primitive characters
> for X in IsoCharacterGroup do // and finding the conductor of the field
> CharacterGroup:= Append(CharacterGroup, AssociatedPrimitiveCharacter(psi(X)));
> Conductor:=LCM(Conductor, Modulus(AssociatedPrimitiveCharacter(psi(X))));
> end for;

> Disc:= 1;
> Complexfield:= 0;
> for X in CharacterGroup do
> Disc := Disc * Modulus(X);
> if X(-1) eq -1 then
> Complexfield:= 1;
> end if;
> end for;

> if Complexfield eq 1 then
> Disc:= Disc * (-1)ˆ(Degree(f) div 2);
> end if;
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> if Complexfield eq 0 then
> print “The field is totally real”;
> else
> print “The field is not totally real”;
> end if;

> print “The discriminant is”, Disc;
> print “The field can be embedded in the”, Conductor,“th cyclotomic field.”;
> return CharacterGroup, Conductor;

> end function;

> DedekindZeta:= procedure(CharacterGroup,Conductor, k);

> ZetaValue:=1;
> BernoulliPoly:= BernoulliPolynomial(k);

> for X in CharacterGroup do
> GenBernoulliNumber:= Conductorˆ(k-1) * (&+[Evaluate(X,a)*Evaluate(BernoulliPoly,
a/Conductor): a in [1..Conductor]]);
> ZetaValue:= ZetaValue * (-1) * GenBernoulliNumber / k ;
> end for;

> print “The Zeta function at ”, 1-k,“ has a value of ”, ZetaValue;

> end procedure;

125



REFERENCES

[1] F. Andreatta and E.Z. Goren. Hilbert modular forms: mod p and p-adic

aspects. Memoirs of the American Mathematical Society, 819, 2005.

[2] G.E. Andrews, R. Askey, and R. Roy. Special Functions, volume 71 of

Encyclopedia of Mathematics and its Applications, 1999.

[3] E. Bach and J. Shallit. Algorithmic number theory. MIT Press Cambridge,

MA, USA, 1996.

[4] F. Brown. Dedekind Zeta motives for totally real fields. Arxiv preprint

arXiv:0804.1654, 2008.

[5] J.H. Bruinier. Arithmetic Hirzebruch-Zagier divisors and modular forms.

In Mathematisches Institut, Seminars, pages 201–209. Universitätsverlag
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