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Abstract 

This study aims to perform a multivariate assessment of the impact of various 3D printing 

parameters on the printability of protein-polyphenol complexes and to predict the printability 

of these complexes. It explores the potential of 3D printing technology in producing functional 

and customizable plant-based protein products, focusing on soy protein isolate (SPI), wheat 

gluten (WG), and epigallocatechin gallate (EGCG) complexes. Factors studied include EGCG 

concentration, nozzle speed, nozzle diameter, and height/diameter (H/D) ratio. 

Using a fractional factorial design, the research examined the effects of these parameters across 

144 experimental runs, with variations in EGCG concentration (0%, 0.25%, 0.5%, 1%), nozzle 

diameter (1.5 mm, 4 mm), nozzle H/D ratio (0.85, 1, 1.25), and nozzle speed (50 mm/sec, 58 

mm/sec, 65 mm/sec, 228 mm/sec, 235 mm/sec, 245 mm/sec). Protein-polyphenol inks were 

prepared by mixing SPI, WG, oil, and water in a 5:3:2:33.3 ratio, followed by the addition of 

EGCG at specified concentrations. Two-dimensional line filaments and three-dimensional 

cylindrical structures were printed to assess dimensional stability and print quality. Image 

analysis was conducted using MATLAB to quantify line width, thickness, and cross-sectional 

area from the two-dimensional line filaments, while ImageJ was used to determine the 

dimensional stability of the three-dimensional structures by comparing the change in the inner 

diameter of hollow cylinders to the actual design specifications. A four-way ANOVA was 

applied to statistically analyze the significance of factors and their interactions on printability, 

revealing that EGCG concentration, nozzle diameter, and H/D ratio significantly influenced 

the structural integrity and consistency of the printed products. The results demonstrated that 

optimal settings for print quality were a 1% EGCG concentration, a 4 mm nozzle diameter, and 

a 0.85 H/D ratio. Additionally, machine learning techniques were employed to predict 

printability, demonstrating that a Linear Discriminant Analysis (LDA) model could effectively 

predict the quality of extruded filaments based on the parameters used. 

This research contributes to enhancing the precision and quality of 3D-printed plant-based 

protein products, offering valuable insights for the development of sustainable, nutritious food 

alternatives. The findings support the advancement of 3D food printing technology and 

material formulation, paving the way for innovative and efficient production processes in the 

plant-based food industry. 
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Résumé 

Cette étude vise à réaliser une évaluation multivariée de l'impact de divers paramètres 

d'impression 3D sur l'imprimabilité des complexes protéines-polyphénols et à prédire 

l'imprimabilité de ces complexes. Elle explore le potentiel de la technologie d'impression 3D 

dans la production de produits protéiques végétaux fonctionnels et personnalisables, en se 

concentrant sur les complexes d'isolat de protéines de soja (SPI), de gluten de blé (WG) et de 

gallate d'épigallocatéchine (EGCG). Les facteurs étudiés comprennent la concentration 

d'EGCG, la vitesse de la buse, le diamètre de la buse et le rapport H/D. En utilisant un plan 

factoriel fractionnaire, la recherche a examiné les effets de ces paramètres sur 144 essais 

expérimentaux, avec des variations de concentration d'EGCG (0, 0,25, 0,5, 1), de diamètre de 

buse (1,5 mm, 4 mm), de rapport H/D de buse (0,85, 1, 1,25) et de vitesse de buse (50, 58,  65, 

228, 235, 245 mm/sec). Les encres à base de protéines et de polyphénols ont été préparées en 

mélangeant du SPI, du WG, de l'huile et de l'eau dans un rapport de 5:3:2:33,3, suivi de l'ajout 

d'EGCG à des concentrations spécifiées. Des filaments de lignes bidimensionnels et des 

structures cylindriques tridimensionnelles ont été imprimés pour évaluer la stabilité 

dimensionnelle et la qualité d'impression. L'analyse d'image a été réalisée à l'aide de MATLAB 

pour quantifier la largeur, l'épaisseur et la section transversale des filaments de ligne 

bidimensionnels, tandis qu'ImageJ a été utilisé pour déterminer la stabilité dimensionnelle des 

structures tridimensionnelles en comparant le changement du diamètre intérieur des cylindres 

creux aux spécifications de conception réelles. Une ANOVA à quatre facteurs a été appliquée 

pour analyser statistiquement la signification des facteurs et de leurs interactions sur 

l'imprimabilité, révélant que la concentration d'EGCG, le diamètre de la buse et le rapport H/D 

influençaient de manière significative l'intégrité structurelle et la cohérence des produits 

imprimés. Les résultats ont démontré que les paramètres optimaux pour la qualité d'impression 

étaient une concentration d'EGCG de 1 %, un diamètre de buse de 4 mm et un rapport H/D de 

0,85. De plus, des techniques d'apprentissage automatique ont été utilisées pour prédire 

l'imprimabilité, démontrant qu'un modèle d'analyse discriminante linéaire (LDA) pouvait 

prédire efficacement la qualité des filaments extrudés en fonction des paramètres utilisés. 

Cette recherche contribue à améliorer la précision et la qualité des produits protéiques végétaux 

imprimés en 3D, offrant des informations précieuses pour le développement d'alternatives 

alimentaires durables et nutritives. Ces résultats soutiennent l’avancement de la technologie 

d’impression alimentaire 3D et de la formulation des matériaux, ouvrant la voie à des processus 

de production innovants et efficaces dans l’industrie alimentaire d’origine végétale. 
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I. General Introduction 

1.1 Overview 

The recognition of food security issues and the growing global population drive the quest for 

sustainable and environmentally friendly high-nutrition foods. This includes the exploration of 

alternative protein sources. It leads to growing concerns regarding the negative impacts of 

animal-derived foods on the environment, health, and religious beliefs, resulting in a rising 

inclination towards plant-based diets. Consequently, numerous scholars are investigating the 

feasibility of substituting animal-derived functional components with plant-based alternatives, 

focusing on plant-based proteins that accurately mimic the physicochemical, functional, 

sensory, and nutritional attributes of real animal-based products (Han et al. 2022).  

Proteins constitute vital macronutrients in human nutrition, as reported by Adenekan et al. 

(2018). The nutritional value of a protein source exhibits significant variation, contingent upon 

factors such as bioavailability, digestibility, amino acid profile, purity, presence of 

antinutritional factors, and processing effects (Sa et al. 2020). There is an increasing global 

trend for highly nutritious, affordable, safe and easy-to-obtain plant protein-based diets.  While 

numerous studies indicate that the majority of plant protein sources offer sufficient quantities 

of essential amino acids for human nutritional requirements (López et al., 2018; Sun-

Waterhouse et al., 2014), there is a common perception that plant proteins are incomplete or 

nutritionally inferior compared to animal proteins (Hughes et al., 2011; Millward, 1999). 

Nevertheless, it is crucial to acknowledge that plant proteins play a significant and valuable 

role in human nutrition.  

The fast-evolving plant-based food market ignites the development of technologies that can 

increase the functionality of essential plant-based constituents. 3D printing technology 

provides sustainable functionality to plant-based ingredients. This pioneering technology 

enables the generation of foods with personalized shapes, structures, compositions, and 

nutritional profiles through an additive manufacturing approach (Sun et al., 2018). In particular, 

this technology can be applied to create personalized food for diverse populations, such as 

athletes needing specific nutrients, children with a preference for sweets, elderly individuals 

with chewing or swallowing difficulties, and pregnant women requiring tailored nutritional 

requirements for their well-being (Godoi et al. 2016). Many start-ups like Novameat developed 

a process for producing 3D-printed meat by extruding filaments composed of peas, seaweed, 

and rice, replicating the flavor and texture of traditional meat (Montes et al., 2018). Similarly, 
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Legendary Vish 3D-printed salmon fillets utilize plant-based components such as mushroom 

proteins and algae extracts (Holmyard, 2020). While numerous companies and researchers 

have successfully created plant-based meat substitutes, there remains a gap when compared to 

animal meat in terms of attributes such as color, aroma, taste, flavor, mouthfeel, texture, and 

nutritional properties (Wen et al. 2023). In practice, the primary challenges associated with 3D 

printing innovative foods arise from various factors, including material characteristics, printing 

process parameters (such as nozzle size, printing speed, printing height, infill percentage, etc.), 

and post-processing considerations (Portanguen et al., 2019). Addressing these challenges is 

crucial for the continued advancement of 3D printing in the plant protein domain. Developing 

objective methods for assessing and improving the 3D printing process becomes paramount. 

This involves refining the composition of plant-based materials, optimizing printing 

parameters, and enhancing the overall quality of the printed products.  

Plant-based meat analogues are a high source of protein (Singh et al 2021) and possess 

extensive thermo-mechanical properties, such as varying storage and loss modulus under 

constant force as a function of temperature, making them ideal for 3D printing (Baune et al 

2021). Soy protein, in particular is becoming increasingly popular due to its advantages in 3D 

printing, such as self-supporting ability, water absorption, emulsification, and gelling 

properties (Yu et al 2022). Soybeans primarily create textured vegetable protein, providing 

fibrous chewiness, hardness, and mouthfeel to meat analogues (Chiang et al 2019). However, 

controlling the gelation rate of soy protein isolate (SPI) is challenging. 

Epigallocatechin-3-gallate (EGCG), the main polyphenol found in green tea, offers potential 

solutions. EGCG possesses many health benefits, including fighting inflammation, 

antioxidative, antibacterial, and anticancer activities (Xu et al 2020). Its incorporation into 

plant-based 3D printing formulations could improve the quality and nutritional profile of the 

final product. 

In conclusion, pursuing sustainable and high-nutrition foods drives the development of plant-

based protein alternatives. With advancements in 3D printing technology, there is a growing 

potential to create plant-based foods that meet consumers' nutritional and sensory demands 

while addressing environmental and health concerns. 

1.2 Thesis Structure 

This thesis report is organized into five chapters, each addressing key aspects of plant-based 

proteins and their application in 3D printing technology. Chapter 1 provides an overview of the 
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current landscape of plant-based proteins globally, highlighting their importance in 

contemporary diets. It discusses the existing challenges associated with the 3D printing of plant 

proteins and underscores the necessity of developing objective methods to enhance 3D printing 

techniques. Chapter 2 presents a brief history of 3D printing of plant proteins and provides a 

detailed description of previous research conducted in this area, exploring the advancements 

and milestones achieved in the field, and laying the foundation for the current study. Chapter 3 

offers a comprehensive understanding of how 3D printing parameters affect the printability of 

SPI-WG-EGCG complexes. It investigates the individual and combined effects of adjusting 

nozzle diameter, nozzle H/D ratio, and nozzle speed on the 3D printability of the ink. In Chapter 

4, predictive models are developed to estimate material printability based on polyphenol 

concentration and various printing parameters. These models aim to provide insights into 

optimizing the 3D printing process for better accuracy and efficiency. This research will help 

optimize printing parameters for improved control and precision in 3D food printing. Chapter 

5 provides a general summary of the study, concluding with key findings on optimizing 3D 

printing parameters for plant-based proteins. It also discusses potential future research 

directions and the importance of continued innovation in this field to meet the evolving 

demands of customized, nutritious, and sustainable food production. 

1.3 Scope of the Study 

The present study focuses on optimizing the 3D printing of plant-based protein formulations, 

particularly those incorporating SPI and EGCG. By systematically analyzing the effects of key 

3D printing parameters — nozzle diameter, nozzle H/D ratio, and nozzle speed—on the 

printability and structural integrity of these formulations, the study aims to enhance the quality 

and nutritional value of the printed products. The expected outcomes include the development 

of predictive models that accurately guide the selection of optimal printing settings for 

consistent, high-quality food production. 

The results of this study are expected to benefit food manufacturers, researchers, and 

consumers by enabling the production of customized, nutritious, and sustainable plant-based 

foods. This research offers food manufacturers a framework to improve product consistency 

and reduce production costs by identifying optimal printing parameters. Researchers will gain 

valuable insights into the relationships between material properties and printing parameters, 

contributing to advancements in the field of 3D food printing. Consumers will benefit from 

healthier, environmentally friendly food options that meet specific dietary requirements. 
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II. General Literature Review 

 

2.1 Introduction 

Three-dimensional (3D) printing is a process that lays down the physical objects from a digital 

blueprint layer-by-layer and fuses them together (Lille et al 2018). Three-dimensional printing 

first came to light in the 1980s after which it started offering new opportunities in the fields of 

medicine, education, and aerospace (Derossi et al 2017). Three-dimensional food printing is used 

to give customized shapes, colors, textures, and different nutritional compositions to food 

products. In particular, it can be used to design food for target populations that require 

personalized meals. 

In 3D printing, the ink is a crucial component. Several inks have been formulated to give 

different customized shapes to printed food products which can be made of complex 

formulations such as fruits, vegetables, animal products, and dairy. Amongst a broad spectrum 

of materials, plant protein is gaining attention as a raw material used in 3D printing to produce 

meat analogs, satisfy the personalized needs of consumers, and reduce the environmental 

impact of livestock rearing (Wang et al 2022). Proteins are macromolecules comprising amino 

acids linked by peptide bonds (C-N) and are generally classified into fibrous (keratin, silk) and 

globular proteins (soy, albumin) (Mu et al 2021). The demand for reliable and environmentally 

friendly protein sources is driven by the increase in the world population. The growing 

awareness of the inefficiency in protein conversion during the production of meat from 

livestock sparked the creation of plant-based foods as an alternate source of protein. Food 

consumption accounts for 30% of EU (European Union) greenhouse gas emissions (GHG), and 

plant-based meals typically emit fewer GHGs than animal-based foods. Plant-based meat 

analog production is a way of mimicking meat in terms of nutrition, texture, and sensory 

properties (Wen et al 2023). Plant-based meat is a high source of protein and thus can meet high 

protein requirements (Singh et al. 2021). But, in order to work with plant-based proteins as a 

raw material, it is important to understand the relation between raw material and the printed 

material to be produced. 

The processes of 3D printing are as follows: designing custom shapes using computer-aided 

design (CAD), pre-treating the inks to have suitable rheological parameters, feeding ink 

capsules, slicing designs, extruding ink from the nozzle, and depositing the structure on the 

printed bed (Liu et al. 2019). In accordance with the American Society of Testing and Materials 
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(ASTM), 3D printing depends on seven technologies including selective laser sintering, direct 

energy deposition, material extrusion, ink jetting, sheet lamination, binder jetting, and vat 

polymerization; however, not all the techniques apply to plant-protein inks (Mu et al. 2021). 

Food incorporation in 3D printing is a bit challenging due to the variation in physiochemical 

properties (Mantihal et al. 2020). Therefore, several studies classified the 3D technologies into 

four major categories, (1) selective laser sintering/hot-air sintering, (2) hot-melt extrusion 

(used to create customized 3D chocolate products, cheese, and humus) and room temperature 

extrusion (used for pizza printing), (3) binder jetting (used for sugar printing), and (4) inkjet 

printing (used for decoration or surface fill in cake, pastry, or cookie fabrication) (Sun et al. 

2015). 

The rheological characteristics of protein-based inks, additives, and printing conditions have 

affected printing results in different ways by providing printing stability, structural support, 

and nutrition and have been the main research topic over the years. The objective of this review 

was to gather and examine information on the technical specifications for 3D printing, 3D 

printing parameters, printing materials, and the role of proteins in 3D printing. Additionally, 

the current status and prospectus of different types of plant-protein-based inks were also 

discussed. 

2.2 Trends of Plant-Protein-Based 3D Printing 

Three-dimensional printing is a cutting-edge technology to design and personalize food 

products to cater to consumer needs and to meet market demand. Amongst the wide availability 

of printers, extrusion-based ones are the most commonly used ones for plant-based proteins. 

Plant-based foods are gaining popularity as their positive effects on human health gain wider 

recognition. Researchers have been exploring various plant-derived materials for 3D printing, 

including proteins from sources like soy, peas, and other legumes. Advances in material science 

contribute to the development of printable and functional plant-based materials. The number 

of original studies on plant-based printable materials surged to a rise in the past few years 

(Figure 2.1). This is because the current trend in 3D food printing involves providing a broader 

range of personalized and visually appealing food designs, utilizing digitized nutritional 

information to cater to specific health-focused lifestyle preferences. 
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Figure 2.1. Number of scientific publications on plant-protein-based 3D printing (source: Web 

of Science, accessed in 2023). 

 

Three-dimensional printing goods and services are projected to have a yearly growth 

rate of roughly 26% and a projected value of 40 billion US dollars by 2024 on a global scale. 

2.3 Three-Dimensional Printer Parameters 

Three-dimensional printer is the heart of the modern food industry producing personalized 

meals (Figure 2.2). Printability is one of the most important parameters in extrusion-based 3D 

printing and is characterized to handle dimensional stability, i.e., whether the material is 

capable of supporting its own weight (Godoi et al. 2016). It is the most important factor to 

consider in food printing, as it directly influences the formation of food products. The 

printability of a material (ink) is highly dependent on the properties of the food system and the 

3D printer parameters used. Three-dimensional printing is not only affected by the properties, 

physicochemical and rheological, of the printing materials but also by the processing 

parameters such as the nozzle height, nozzle diameter, infill percentage, printing speed, 

extrusion rate, and temperature (Perez et al. 2019). The temperature of the nozzle can affect 

the flowability of the material; an increase in the temperature can decrease the viscosity (Chen 

et al. 2022). Past studies explored the relationship between printing parameters and the quality 

of 3D-printed food. 
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Figure 2.2. Commercial (Foodini) 3D food printer and major printing parameters. 

Liu et al. 2021 studied the effect of the extrusion rate and printing speed on the 

printability of whey protein isolate (WPI) as shown in Table 2.1. Printing speed and extruding 

rate impact 3D printing simultaneously during the printing process because they alter the 

quantity of printed paste per unit length per unit time. It was reported that the extruding rate 

must be increased with increasing printing speed to feed the paste in time. Also, the printing 

quality decreased with the increasing printing speed. 

The force applied by the commercial 3D printer (Foodini) can be modified to “hold back” the 

ingredient in the capsule as it moves to the first print area once the ingredient detection over 

the test cup is finished. The suggested default value of the ingredient hold is 4.2. It is 

recommended to increase the initial ingredient hold if there is an ingredient dropping from the 

test cup to the first print (Advanced user setting Natural Machines). 
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Table 2.1 Effect of printing speed and extruding rate on the printability of WPI (Liu et al. 

2021). 

 

 

 

Huang et al.2019 studied the effect of the nozzle diameter and reported that a bigger nozzle 

size resulted in a bigger deviation in the diameter of printed objects. Thus, decreasing the 

nozzle diameter would print samples closer to the designed ones. Shi et al. 2023 evaluated the 

influence of structural geometry (nozzle diameter and porosities) of soy protein isolate–

xanthan gum–rice starch (SPI-XG-RS)-based printed samples on a texture profile analysis. It 

was reported that the printed samples with 200 µm filaments have a higher shape fidelity than 

that of samples with 600 µm filaments (Figure 2.3). Moreover, decreasing nozzle diameter not 

only marks precision but also increases printing time and feed pressure. A 3D printing system 
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that is overloaded due to excessive printing pressure may experience machine wear. The 

printing procedure requires more pressure to print edible ink at lower nozzle diameters, which 

could lead to irregular deposition of the printable substance (Wang et al. 2018). 

The nozzle height is the distance between the bottom of the nozzle and the printer bed in the 

printing process. The nozzle height has been identified by numerous prior studies as a 

significant factor influencing the printing accuracy (Severeni et al. 2016). However, Yang et 

al. 2018 have carried out a number of thorough experiments to confirm that the nozzle height 

should be the same as the nozzle diameter in the 3D-printing process. 

 

 

 

Figure 2.3. Comparison of SPI-XG-RS-based samples having different nozzle sizes and 

printing porosity (Shi et al. 2023). 

Printing temperature in 3D food printing is an important aspect influencing the rheological 

characteristics of food, which is likely to have an impact on the material’s 3D printability (Liu 

et al. 2019). Chen et al. 2022 studied the effect of three printing temperatures of 25, 35, and 45 

◦C on the rheological properties of SPI-based pastes. The effect of the printing temperature on 

the microstructure and texture of 3D-printed protein pastes cylinders varied greatly according 

to the gelatin content in the SPI-based paste. It is reported that increasing the temperature 

reduced the viscosities of pastes, thus improving the rheological properties and printability 

(Figure 2.4). 
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Figure 2.4. The 3D printing behavior of SPI-based pastes at 25, 35, and 45 ◦C (12). (S: control; 

SAG-2: 2% gelatin, 0.5% sodium alginate; SAG-6: 6% gelatin, 0.5% sodium alginate). 
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Figure 2.5 shows the effect of different infill percentages (12.5, 25, and 50%) on the 

inner structure and post-stability of the soy protein isolate (SPI)-red cabbage (RC) inks. It was 

reported that the interior structure of the samples was unaffected by the various infill 

percentages (12.5, 25, and 50%). As for the dough composition, increased RC concentration 

reduced the number of cavities and made the structure more compact (Carranza et al. 2023). 

 

Figure 2.5. Cross-sectional SEM images for 25-SPI doughs with different RC contents as a 

function of infill rates (12.5, 25, and 50%). Abbreviations used include: SPI (Soy protein 

isolate); RC (Red cabbage). 

 

2.4 Technological Feasibility of Protein-Based 3D Printed Food 

The 3D printing of plant protein presents an opportunity to expand additive manufacturing 

applications in the food industry. High precision characteristics of 3D printing give a way to 

produce plant-based meat which is subjected to mimic the taste, texture, appearance, and 

nutritional values of traditional meat. Amongst these, the texture still remains the challenging 

one (Ramachandraiah et al. 2021). So, for this, technological feasibility plays a major role. In 

terms of printer-related challenges, the main technological considerations for 3D printing are 

the dispensing mechanism and the 3D positioning method. The designing software (CAD) 

controls the positioning system that creates 3D structures. In the case of the dispensing system, 

the extruder type, which can have a single or a double nozzle, is the most common (Dick et al. 
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2019). Furthermore, different operational settings may be required depending on the type of 

material. Three-dimensional printing of food products is limited due to the lack of suitable 

materials for printing because of the instability of plant-based proteins. These challenges can 

be overcome by taking care of the technical requirements of 3D printing. 

In addition to processing parameters and sources of protein, the rheological property of printing 

ink plays a pivotal role in deciding the successful printing according to the present pattern and 

is related to the accuracy and results of the printing (Figure 2.6). Viscosity plays a major role 

in rheology in the self-supporting and stacking properties of materials while printing (Kim et 

al. 2018). Three-dimensional printing involves the extrusion of material from the nozzle to 

deposit on the surface. The ink is required to present a shear-thinning behavior, i.e., less 

viscosity during extrusion so that it can be easily extruded from the nozzle; however, it is 

expected to regain its viscosity and maintain the structure after deposition (Malda et al. 2013 

and Gao et al. 2018). The viscoelastic properties of the ink, measured by a series of rheological 

tests, have a significant role in determining the printing performance, including the 

extrudability, filament fidelity, and sol-gel transition (Mu et al. 2021). Xu et al. 2023 studied 

the effect of enzyme-assisted apricot polysaccharide (EAP) on soybean protein isolate (SPI) 

gel preparation. It was reported that the dynamic rheological properties, i.e., the viscoelasticity 

of gels, are related to the printing accuracy and is concentration-dependent. It was 

demonstrated that the degree of crosslinking of SPI-apricot polysaccharide increased with 

increasing EAP content, thus exhibiting stronger solid-like behavior. 

 

Figure 2.6. Steps to be considered while 3D food printing: sources of plant protein, functions, 

and influencing factors. 
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2.4.1. Extrudability 

The efficiency with which an ink is extruded from the dispensing nozzle is termed 

extrudability, and viscosity is a key indicator of extrudability. Viscosity depends on the 

concentration of the protein isolate, molecular weight, and inter and intra-molecular 

interactions which are influenced by factors such as temperature, protein concentration, ion 

strength, and pH. Viscosity is inversely proportional to shear rate, shown by the rheological 

flow curve called shear-thinning behavior, which is necessary for 3D printing. For example, 

Yu et al. 2022 reported that the viscosity of the inks decreased with the addition of 

polysaccharides such as guar gum and xanthan gum into the soy protein isolate (SPI) emulsion 

gels, thus exhibiting shear-thinning behavior. Another study used SPI-WG-RP (soy-protein 

isolate-wheat gluten-rice protein) pastes and reported a decrease in apparent viscosity with an 

increasing rice-protein ratio (Qiu et al. 2023). Also, in accordance with the same study, it could 

be seen that the apparent viscosity decreased with the increasing shear rate for all types of ink 

as shown in Figure 2.7 (Qiu et al. 2023). Also, various pre- or post-treatments can improve the 

viscosity of the sample. For instance, a study reported the effect of microwave pre-treatment 

on 3D printing of soy–strawberry ink increased the viscosity, which is more suitable for 3D 

food printing (Fan et al. 2020). 

The structure of the material largely depends on the pH of the solution. Protein denaturation, 

protein-protein, and protein–water interactions are affected by pH and proper pH can prevent 

the collapse of the gel network from charge repulsion. It is observed that a stable printing 

system requires pH away from the isoelectric point of the protein towards the alkaline region 

(pH −7 to 10). The protein molecules aggregate at the isoelectric point (pI) in the presence of 

both charges resulting in the decreased efficiency. This affects the gelation property of the ink. 

However, similar charges increase the efficiency of the inks by repelling each other (Guo et al. 

2022). 
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Figure 2.7. Viscosity of soy protein isolate–wheat gluten pastes with different concentrations 

of RP (rice protein) (Qiu et al. 2023). 

2.4.2. Filament Fidelity 

Filament fidelity is the maintenance of the structure of the extruded material to prevent collapse 

and sagging. It is related to at least two viscoelastic properties, i.e., yield stress and thixotropy 

(Mu et al. 2021). Insufficient yield stress leads to the collapse of the extruded material under 

its own weight, so the bulking agents and the thickeners such as food hydrocolloids are added 

for the stability of the structure. Qiu et al. 2023 used different concentrations of rice protein in 

the SPI-WG ink to check the printing performance and reported that inks having (RP 0.7 and 

RP 1.0) could be successfully printed into layers. The study also reported RP (0.7) ink with the 

best print fidelity (Figure 2.8A–D). Also, Chen et al. 2022 studied the printing properties of 

ink formulations containing textured soy protein (TSP) and drawing soy protein (DSP) with 

different hydrocolloids and reported that TSP with xanthan gum showed the best printing 

characteristics and maintained the structure during the printing of steak-like foods. Also, a high 

protein content increases the yield stress efficiency of the printing matrix (Guo et al. 2022). 

Another study by Lille et al. 2018 found that the good shape stability of an oat and faba protein 

isolate was achieved by high yield stress. 

Lin et al. 2023 reported the effect of the concentration of additives and the printing speed on 

the fidelity of printed peanut protein. The study showed that a small amount of carrageenan 

(0.5%) can print objects with high fidelity at the slowest printing speed (12 mm/s speed). It 

was also reported that the fidelity of the printed product decreases with the increasing printing 
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speed. Similar patterns were seen in the fidelity of the items printed with 0.5% gellan gum at 

various printing rates (Figure 2.9). 

Another property is thixotropy, which is the time-dependent process of rebuilding a molecular 

structure. It tells us whether the viscosity recovered. High thixotropy requires the highest 

energy to break down the internal structure, with high resistance to time-dependent flow and 

high levels of internal viscosity and stability (Mirazimi et al. 2022). Mirazimi et al. 2022 

studied varying shear rates to characterize the effects of soy protein acid hydrolysate (SPAH) 

and agar and reported that formulation with 6 g SPAH and 0.2 g agar (S6A) exhibited the 

highest degree of thixotropy (Figure 2.10). According to Clark et al. 2019, the addition of 

collagen and gelatin recovered 75% of the storage modulus within one second whereas, ink 

with alginate and methylcellulose (MC) showed 56% recovered viscosity after 30 s (Li et al. 

2017). 

  

Figure 2.8. Evaluation of printing fidelity. (A) Height as a function of time. (B) Surface area 

as a function of time. (C) The image of printed cuboid using RP (0.7) and RP (1.0). (D) The 

image of three printed “English Alphabets” (25 mm × 25 mm × 4.2 mm) using RP (0.7) (Qiu 

et al. 2023). Upper-case and Lower-case letters represent significant differences between RP 

(0.7) and RP (1.0) samples, respectively. Abbreviations used include: RP (Rice protein). 
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Figure 2.9. Evaluation of print fidelity of peanut protein-based inks as a function of 

concentration and printing speed (Lin et al. 2023). 

 

 

Figure 2.10. Evaluation of thixotropy of SPAH-agar inks for 3D printing. Note: S3 (3 g soy), 

S6 (6 g soy), S9 (9 g soy), S3A (3 g soy and 0.2 g agar), S6A (6 g soy and 0.2 g agar), and S9A 

(9 g soy and 0.2 g agar) (Mirazimi et al. 2022). 

 

2.4.3. Sol–Gel Transition 

Protein molecule crosslinking is frequently linked to the sol–gel transition in 3D printing, 

which occurs when liquid phases transform into solid phases. This crosslinking is defined by 

the ratio of storage moduli (G′) to loss moduli (G′′), where G′ and G′′ describes the elastic (solid-
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like) and viscous (liquid-like) properties of the ink, respectively. The sol–gel transition takes 

place when G′ > G′′ (Mu et al. 2021). The sol–gel transition is evaluated using a frequency 

sweep to give insights into the self-supporting behavior of protein inks after deposition. 

The storage modulus is used to measure the solid elastic behavior of the sample, which reflects 

the mechanical strength of the sample, whereas the loss modulus reflects the liquid behavior 

of the samples. G′ and G′′ depend on the frequency. A study reported the effect of the frequency 

on the storage and loss moduli of SPI-WG-RP-based ink. It was concluded that both G′ and G′′ 

values gradually increased with increasing oscillatory frequency, which is consistent with an 

increase in the internal friction at higher frequencies. It was also seen that G′ > G′′ indicating 

that the soy protein-based ink exhibited predominantly elastic properties (Figure 2.11) (Qiu et 

al. 2023). 

  

Figure 2.11. G′ and G′′ of SPI-WG pastes with different concentrations of RP (rice protein) (Qiu 

et al. 2023). 

The sol–gel transition is also related to the protein cross-linking which is influenced by 

the addition of enzymes and heating treatment. Transglutaminase is the widely used enzyme 

that causes protein-gel formation (Kolpakova et al. 2021). For example, L-cysteine 

hydrochloride breaks the disulfide bonds of protein, thus exposing sites for the action of 

transglutaminase (TGase). This leads to the formation of polymers and increased viscosity for 

optimizing printing ability (Yu et al. 2022). Also, adding an alginate solution of 80% to 20% 

pea protein solution can increase the mechanical strength and consistency of printing (Oyinloye 

et al. 2020). Furthermore, the gel strength and elasticity of the dough can be improved by the 
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addition of fat as it promotes the uniform distribution of fat and gluten protein to obtain a more 

stable network (Yang et al. 2018). 

The rheological characteristics of inks are highly influenced by the heating time. Yu et al. 2022 

reported the G′ value increases with an increase in preheating time thus exhibiting sol–gel 

transition. It is also influenced by the temperature. The temperature has a huge effect on the 

final printing effect. High-temperature protein denaturation exposes hydrophobic sites for 

covalent bonding (Cortez-Trejo et al. 2021). A study found that the viscosity of SPIs increases 

with increasing the heating time to 20 min, 25 min, and 30 min, thus increasing the sol–gel 

transition rate (Yu et al. 2022) Also, the 3D printability of protein pastes with different 

formulations can be improved by adjusting the printing temperature. The printing temperature 

has a significant impact on the microstructure and texture of printed food. A study revealed that 

with the increasing printing temperature, the hardness and chewiness of the objects made of S 

(soy-based), SAG-2 (soy-gelatin-sodium alginate based with 2 g gelatin), and SAG-6 (6 g 

gelatin) increased significantly (Chen et al. 2022). 

2.5 Plant-Based Proteins for Extrusion-Based 3D Printing 

Extrusion-based 3D printing has been most commonly adapted in the food sector. It involves 

the extrusion of liquid or semi-solid material from the printing nozzle, moving in the x, y, and 

z-direction. One benefit of adopting extrusion-based printing is that it is able to print a wide 

range of materials at the same time to produce a whole meal (Lanaro et al. 2017). Materials in 

3D printing are broadly classified into three categories (Ramachandraiah et al. 2021)—native 

printable materials, nonnative printable materials, and alternative materials, such as insect-

derived 3D structures (Figure 2.12). However, the increasing demand of plant-based proteins 

as a substitute for animal-based proteins has been a topic of research for a while now due to 

increasing awareness of the health benefits associated with plant proteins and of environmental 

concerns, i.e., reducing the environmental footprint, waste, and demand for water and energy 

(Chao et al. 2018). Plant-based proteins are explored commercially to extract isolates because 

of their unique nutritional (metabolism and growth) and health-promoting attributes such as 

functionality, sensory characteristics, and labeling. Zhang et al. 2021 reported soy as the most 

common raw material for many plant-based foods possessing all the essential amino acids 

necessary to meet human nutritional needs; however, more recently, pea was introduced as an 

alternative protein that is gluten-free and due to its low allergenicity (Lam et al. 2018). 

However, compared to soy, peas can be grown in more moderate climates (Lam et al. 2018). 

Pea protein is a good source of fiber, starch, vitamins, minerals, and phytochemicals. However, 
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its gelling capacity is lower than soy protein, thereby requiring the use of various additives 

such as hydrocolloids, carbohydrates, and lipid additives. Additives have a long history of 

application in food, which have the capability of alternating the properties of various natural 

food gels which alone have poor printing performance which is discussed later in the section. 

 

Figure 2.12. Material-based 3D food printing (Ramachandraiah et al. 2021). 

2.5.1 Role of Plant Protein 

There has been considerable research into the use of plant proteins for the formation of 3D 

printable inks, especially meat analogues (Table 2.3). The formation of protein-based feed 

focuses on material formation methods in accordance with the final product printed. For 

instance, the printing of meat analogues requires the careful adjustment of a variety of 

ingredients that can enhance or limit the desired texture and visual appearance, as well as the 

overall properties of food. The production of fish and meat analogues comprises careful 

adjustment of water, flavour, fat, binding agents, proteins, vitamins, minerals, and antioxidants 

with 50–80% water, which also serves as a plasticizer while processing meat substitutes and 

gives the finished product the appropriate juiciness (Nowacka et al. 2023). Technologies used 

in the formation of feed are regarded as the major challenge. Processing techniques are 

classified into two categories: bottom-up and top-down structuring techniques. In the bottom-

up approach, the end product is created by assembling individual fibers, whereas the top-down 
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approach involves the development of fibrous structures by blending biopolymers with an 

external force (Nowacka et al. 2023). 

Plant-based meat substitutes are made from a variety of ingredients, primarily from oilseeds 

like cottonseed and rapeseed, legumes like mung beans, common beans, and lentils, and cereals 

like barley, wheat, corn, oats, and rye. Legumes are a significant source of protein-rich in 

dietary fiber, vitamins, and minerals with high antioxidant properties (Doss et al. 2022). 

They are a vital part of the diet known for their effect on inhibiting diseases. Different 

types of plant-based proteins have been discussed below. 

2.5.1.1 Legume-based 

Soy Protein 

Soy protein isolate (SPI), which contains both essential and non-essential amino acids, is a 

significant source of protein in the human diet (Shan et al. 2015). Being a high-quality 

vegetable protein, it is successfully used in 3D printing because of its self-supporting ability, 

water absorption, emulsification, and gelling properties (Yu et al. 2022). However, these 

inherent characteristics of natural soy protein isolate (SPI) pose challenges in catering to 

diverse food processing requirements. For instance, Yuan et al. identified that the dense tertiary 

and quaternary structures associated with SPI result in poor functional properties of SPI. 

Opting for an appropriate small biomolecule to form noncovalent bonds with soy protein 

isolate (SPI) could present an alternative, effective, and environmentally friendly approach to 

enhancing SPI with improved functional properties (You et al. 2021).  

Also, soybean is primarily used to create textured vegetable protein and gives a fibrous 

chewiness, hardness, and mouthfeel to the meat analog (Chiang et al. 2018). Chen et al. 2021 

reported that textured-soy protein (TSP) with xanthan gum showed the best printing 

characteristics of steak-like foods (Table 2.2). Also, a study showed that the printability of food 

inks can be improved by adding plant-based hydrocolloids, which are generally used to 

improve gelatinization. These additives are widely used in 3D printing to improve the printing 

performance of natural food gels, which is essential for enhancing the fluidity, deposition, and 

lubricity of the printing material (Voon et al. 2019). For instance, the addition of xanthan gum 

in soy protein isolate resulted in better rheological and textural properties. However, a high 

concentration of XG (0.5% w/w) resulted in poor flexibility (Yu et al. 2022). Also, the addition 

of salts (NaCl, KCl, CaCl2, CaSO4) alters the properties of gel, resulting in protein aggregation 
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and gelation. The acquired results revealed that the xanthan gum and NaCl concentration of 

0.5 g/30 g and 1 g/100 mL exhibited maximum gel strength and print shape, respectively. 

 

Table 2.2. Printing results of textured-soy protein (TSP) and drawing-soy protein (DSP) using 

different hydrocolloids (Chen et al. 2021). 

Protein Control Guar 

Gum 

Sodium 

Alginate 

Hydroxyethyl 

Cellulose 

Xanthan 

Gum 

Sodium 

Carboxymethyl 

Cellulose 

Konjac 

Gum 

Textured 

Soybean 

Protein        

Drawing 

Soy 

Protein        

 

 

Pea Protein 

Pea protein is a hypoallergenic protein source (i.e., with low allergenicity) that is safe for 

consumption by people with food allergies (Ding et al. 2021). Researchers are now focusing 

on development using pea protein as being a good source of fiber, starch, vitamins, minerals, 

and phytochemicals; however, its gelling capacity is lower than soy protein, thereby requiring 

the use of various additives such as hydrocolloids and salts. PPI also has a low water holding 

capacity and low solubility. The study carried out by Kim et al. 2021 investigated the effect of 

different concentrations of pea protein isolate on the properties of banana-PPI paste ink. The 

findings of the study revealed that the incorporation of pea protein increased the protein–

banana entanglement, resulting in an increase in the storage moduli (G′) and loss moduli (G′′), 

thus improving its printability. According to the findings, banana pastes with a 15% PPI 

concentration could be successfully printed with a well-matched geometry and could maintain 

their shape after printing (Figure 2.13). However, a 20% PPI-induced protein aggregation in 

the matrix caused the 3D-printed line to break. 
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Figure 2.13. Three-dimensional printed PPI-banana pastes with different PPI concentrations 

(0, 5, 10, 15, 20% (w/w)) (Kim et al. 2021). 

 

Another study determined the optimal alginate and pea protein ratios suitable for 

printing food with acceptable rheological and textural characteristics (Oyinloye et al. 2020). 

The addition of an appropriate concentration of pea protein can enhance the stability of the 

structure. 

Faba and Mung Bean Protein 

Faba bean proteins are known for their good emulsifying and foaming properties, but lesser 

than soy protein isolates (Fiorentini et al. 2020). However, altering the production and 

processing processes can improve the functionality of faba bean protein. 

Mung bean proteins are becoming more and more common as a component of meat substitutes. 

A plant is known for both its nutritional worth and practical qualities. It has a high protein level 

(25–28%) and a low fat content (1–2%). A research group at the National University of 

Singapore produced vegan seafood using microalgae protein and mung bean protein. The team 

recreated the flaky, chewy, and fatty textures that seafood enthusiasts crave. A study reported 

optimum processing conditions to produce texturized mung bean protein using response 

surface methodology. This study showed great potential in mung bean protein as an alternative 

to meat, acting as a healthier and greener option compared to animal proteins Table 2.3 (Brishti 

et al. 2021). 
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Table 2.3. Plant proteins and their applications in 3D food printing. 

 

Category Other Materials 
Experimental 

Conditions 
Results References 

Soy protein 

Textured-soy protein (TSP), 

drawing soy protein (DSP,) 

xanthan gum, Konica gum, 

sodium alginate, guar gum, 

sodium carboxymethyl, 

cellulose 

Refrigeration: 4 °C; 

printing nozzle 

temperature: 25 °C. 

TSP with xanthan gum 

showed the best printing 

characteristics. 

(Chen et 

al. 2021) 

L-cysteine, Transglutaminase 

pH: 7, heating: 90˚C; 

mixing: 1500 rpm (1 

min) and 300 rpm (2 

min). 

SPI heated for 25 min with l-

cysteine had best printability 

and stability. 

(Yu et al. 

2022) 

K-carrageenan, vanilla powder 

Heating: 70 °C; 

microwave: 50, 80, 

and 110 W 

SPI gel made with 3% 

carrageenan had the optimal 

viscosity for 3D printing. 

(Phuhongs

ung et al. 

2020) 

Guar gum, xanthan gum, 

soybean oil, NaCl powder 

Homogenization: 800 

rpm, 5 min; heating: 

70 °C, 60 min. 

SPI gel with xanthan showed 

better rheological properties 

but a high concentration of 

XG (0.5% w/w) resulted in 

poor flexibility. 

(Chen et 

al. 2021) 

Strawberry powder 
Microwave: 30, 50 

and 70 W 

Salt pretreatment improved 

the printability and shape 

stability of ink systems.  

Maximum shape accuracy—

70 W. 

(Fan et al. 

2020) 

Pea protein 
Alginate, calcium chloride, 

sodium phosphate 
Temperature: 45 °C 

Alginate solution (80%) and 

pea protein solution (20%) 

were most suitable for 3D 

printing. 

(Oyinloye 

et al. 2020) 
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Microwave vacuum-dried 

banana powder, ascorbic acid 

Blending: 1 min; 

sifting: 300 μm; 

mixing: 2000 rpm, 25 

°C, 6 min 

Banana pastes with 15% PPI 

concentration retained their 

shape and geometry after 

printing. 

(Kim et al. 

2021) 

Mung bean 

protein 

Mung bean flour, hydrochloric 

acid, sodium hydroxide, 

Coomassie Blue R250, and 

bromophenol blue. 

Mixing with 100 mL 

water; blending: pH-

9, 2000 rpm, 30 °C, 

1h; centrifugation: 

8586 g; freeze-

drying: 48 h. 

Optimized extrusion 

parameters: feed moisture: 

49.33%; screw speed: 80.66 

rpm; and barrel temperature: 

144.57 °C; fibrous structure, 

partial protein unfoldment, 

high retention of amino acids. 

(Brishti et 

al. 2021) 

 

2.5.1.2. Cereal-Based 

It comprises wheat, corn, oat, and rice, which are known for their high starch content. 

Wheat protein, also called gluten, is the most commonly used cereal-based protein, especially 

in the production of meat analogues, due to its viscoelastic properties (Singh et al. 2021). 

Cereals have been used extensively in extrusion-based 3D printing of pizza, cookies, and dough 

due to their good shear stability (Feng et al. 2019). 

Gluten Protein 

Wheat is widely consumed around the world, having starch as a primary component followed 

by proteins and non-protein compounds such as cellulose, hemicelluloses, polyphenols, and 

minerals. Due to their high nutritional and organoleptic quality, wheat based goods, such as 

wheat flour (flour with the bran removed) and wheat whole meal (flour with the bran included), 

are essential dietary components worldwide. Gluten plays a major role in 3D printing a dough 

and its printability can be improved by the addition of salts such as NaCl. NaCl improves the 

gluten protein structure stability in the dough by promoting the hydrophobic interaction and 

polymerization of the gluten proteins (Correa et al. 2011). 

Oat Protein 

Oat protein is known for its good amino acid concentration and has a better nutritional value 

of 15–20% as compared to other cereal proteins due to its high lysine content. Oat protein has 

a stable network even at a high denaturation temperature of 110 ◦C, and when mixed with soy 

protein, it can improve the strength of the gels (Bruckner-Guhmann et al. 2021). For instance, 
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35% oat protein when mixed with 45% fava bean protein isolate printed food of the highest 

stability (Lille et al. 2018). Also, a study reported that oat protein when combined with pea 

protein produces a good sensory effect (de-Angelis et al. 2020). 

Rice Protein 

Rice, a known low allergenicity raw material and, in particular, promoted as a soy substitute, 

is a very promising raw material for producing meat analogues. In current studies, rice flour is 

utilized in meat products to replace fat and benefit from its ability to bind water. A study 

conducted by Qiu et al. indicated that adding rice protein in soy protein–wheat gluten protein 

pastes can significantly improve their 3D-printing properties by reducing viscosity and shear 

modulus. 

2.5.2. Role of Additives 

In 3D food printing, additives are frequently utilized to improve the printing performance of 

natural food gels, which is essential for enhancing the fluidity, deposition, and lubricity of 

printing materials (Voon et al. 2019). Various additives like hydrocolloids (xanthan gum, guar 

gum) were mentioned in the previous sections. These are the most commonly used ones for the 

3d printing of plant-based proteins. There are two main functions of additives—improving the 

stability of final 3D printed products and improving performance in other areas like health and 

nutrition and sustainability using alternative food sources like meat analogues. For instance, 

compared to traditional sources of food such as meat (beef) or fish, protein-based meat 

analogues that mimic traditional meat not only provide high-quality protein but also improve 

sustainability (reducing the need to rear animals, smaller land requirements, and less 

greenhouse gas emission). In this regard, the Netherlands Organization for Applied Scientific 

Research introduced a food that was designed for elderly people to solve their swallowing and 

chewing problems (Lorenz et al. 2022). Patients with dysphagia have varying texture 

tolerances as described by the International Dysphagia Diet Standardization Initiative (IDDSI). 

So, in that study, hydrocolloids were added for ink optimization and alteration of texture in 

3D-printed dysphagia foods (Lorenz et al. 2022). Recently, another class of additives termed 

polyphenols is gaining interest in 3D printing. Polyphenols such as epigallocatechin function 

as a bioactive additive that enhances the printability and structural integrity of the material. Its 

antioxidative properties may contribute to improved stability, while interactions with plant 

proteins can potentially enhance adhesion and overall printing performance (You et al. 2021). 

Previously, some studies have studied the effect of EGCG on protein emulsions and reported 
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that EGCG when combined with proteins can stabilize emulsions (Zhang et al. 2023). 

Additives currently used in 3D food printing are shown in Table 2.4. 

 

Table 2.4. Recent applications of additives in 3D printing of plant-based proteins and main 

changes in printing characteristics. 

Types Additives Materials Finding  References 

Hydrocolloids 

Alginate 

Pea protein 

powder 

(PP), 

calcium 

chloride 

Increased gel 

strength. 

 

(Oyinloye 

et al. 2020) 

Agar 

Soy protein 

acid 

hydrolysate 

(SPAH)  

Improved 

mechanical strength 

and increased self-

supporting capacity 

of 3D printed 

structures. 
 

(Mirazimi 

et al. 2022) 

Kappa-

carrageenan 

Soy protein 

isolate 

(SPI), 

vanilla 

powder (for 

flavor) 

3D printed 

structures with 

smooth surfaces and 

denser gel network 

structures. 
 

(Phuhongsu

ng et al. 

2020) 

Xanthan 

gum (XG) 

Pea protein 

isolate (PPI) 

A small amount of 

XG improved 

mechanical strength 

and chewing and 

swallowing easiness. 
 

(Liu et al. 

2023) 
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Others 

Transglutam

inase (TGase) 

powder 

Mung bean 

protein 

isolate 

(MBPI), 

methylcellul

ose (MC) 

Smooth printed 

surface, improved 

mechanical strength, 

increased hardness. 

Optimal TG: 4 U/g 

of MBPI. 

 

(Wen et al. 

2022) 

Polyphenols 

Epigallocate

chin gallate 

(EGCG) 

Sea bass 

protein 

(SBP), 

H2O2, 

ascorbic 

acid, 

astaxanthin, 

algal oil 

SBP-EGCG 

complex showed 

excellent thixotropic 

recovery, 

mechanical strength, 

and shape fidelity. 

 

(Zhang et 

al. 2023) 

 

2.6. Post-Printing Treatments 

Post-processing refers to the steps carried out after the actual printing of the food item to 

enhance the final product’s quality, appearance, and taste. Typically, food inks suitable for 

printing are either pre-processed to ensure the desired taste upon printing or pre-processed, 

necessitating post-treatments after deposition to guarantee edibility (Kewuyemi et al. 2022). 

Only a small fraction of 3D-printed products do not require post-processing treatments, 

while most of the 3D-printed food products need post-processing, including baking, steaming, 

and frying, which can induce favorable alterations in the texture—an essential sensory 

characteristic influencing product quality and attractiveness (Demei et al. 2022). Drying is a 

frequently employed post-processing approach in the field of food printing (Demei et al. 2022). 

At present, various drying techniques such as freeze drying, oven drying, vacuum microwave 

drying, and other recently innovated methods are employed to manipulate the characteristics 

of 3D-printed foods (Demei et al. 2022). Various researchers have studied the influence of 

different drying methods on the shape stability of 3D food products. A study reported the effect 

of oven drying and freeze drying on protein–cellulose based ink with different dry matter. 

Experimental findings indicated that the freeze-drying process of printing characterized by a 

low dry matter content (35%) results in a stable structure. One potential explanation for this 

observation is that, with an initial low dry matter content of 35%, the water content is elevated, 

leading to increased structural strength (Lille et al. 2018). Another study investigated the effect 
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of microwave drying (MD), catalytic infrared drying (CID), and hot air drying (HAD) on the 

color of curcumin–whey protein isolate nanoparticle (C-WPI-NP) printed samples. It was 

reported that CID showed a consistent and obvious red color shift, with a 92.35% retention rate 

in the size of the dried product (Shen et al. 2023) as shown in Figure 2.14. 

  

Figure 2.14. Effect of different drying methods on 3D printed C-WPI-NPs Shen et al. 2023). 

 

Also, in order to facilitate the widespread adoption and approval of 3D printed foods 

among consumers, it is essential for 3D printing technology to integrate seamlessly with 

conventional food processing methods such as baking, steaming, frying, and other cooking 

techniques. Nevertheless, a significant challenge in achieving this lies in preserving the 

structural stability of 3D-printed foods throughout the cooking process, which can be improved 

by the use of additives (He et al. 2020). A study evaluated the effect of transglutaminase (TG) 

on the cooking loss and shrinkage of mung bean protein isolate–methylcellulose complexes 

(MBPI-MC). It was concluded that when comparing different cooking methods, the cooking 

loss and shrinkage of TG meat analogues were lower after steaming than after baking, frying, 

and microwaving (Figure 2.15) (Wen et al. 2022). This may have been due to the high water-
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retention ability of the meat analogue during steaming and the formation of soluble protein 

aggregates (Wen et al. 2022). 

 

 

Figure 2.15. Effect of TG on different post-treatment methods of MBPI-MC meat analogues 

(Wen et al. 2022). 

 

2.7 Challenges and Future Perspectives 

Realizing nutrition’s comprehensiveness and customization is the primary goal of 3D-printed 

food. These duties enable us to ensure strict product quality and accurate nutrition control to 

cater to the needs of people like athletes, sick, elderly, children, and pregnant women who 

require high-quality and readily digestible protein. The researchers should pay attention to the 

quality and concentration of the materials used to make 3D printing inks as they directly affect 

the health of humans. 

The current development trend is towards developing foods for vegetarians. For that, it 

is important to note that various sources of plant protein such as pea, soy, and oat can be mixed 

together in an optimal quantity so as to be used as a potential substitute to meat protein. Animal 

protein does not have the same health benefits as plant protein, which in return has a longer 

shelf life and has plenty of nutrients, fiber, and antioxidants. Additionally, plant proteins meet 

the dietary requirements of vegetarians and have the potential to be used as a substitute to 

produce meat analogues. For instance, soy protein due to its self-supporting structure and gel-

forming properties is termed as an essential plant protein to produce meat products. 

Although plant protein materials show promise for 3D-printing applications, the 

following points need to be better understood for their use in this application. 
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• Printing precision and shape stability are the biggest challenges to overcome. The development 

of future 3D-printing inks still depends on the concentration, type, and the environmental and 

operating conditions which need to be controlled in accordance with the rheological properties 

of the food. A superior finished product is made by controlling printing parameters such as pH, 

temperature, speed of nozzle, nozzle diameter, and the material quality and quantity. The 

printability and self-supporting property of the ink is improved by incorporating various 

additives to the ink such as hydrocolloids, carbohydrates, lipid additives, phenolic compounds, 

enzymes, starches, and hydrogels. Lately, there has been a demonstration of cellulose’s 

potential to enhance the characteristics of emulsions based on proteins. Cellulose materials are 

attracting attention due to their status as the main constituent in plants. Cellulose, as a 

sustainable and inexhaustible polymeric raw material, has the capacity to fulfill the growing 

need for eco-friendly products (Dai et al. 2018). Also, it might be effective to combine 3D food 

printing with other cutting-edge technology. For instance, microwave and ultrasonic 

technologies are applied during pre- or post-processing to enhance the printing accuracy and 

shape stability (Fan et al. 2020). 

• Preserving the textural and sensory attributes of the printed food. Sensory attributes such as 

mouthfeel are influenced by product texture and its ability to bind water. The sensory and 

textural characteristics of food are impacted by the presence of fats. However, the prolonged 

excessive intake of saturated fats heightens the susceptibility to numerous chronic conditions, 

including obesity, cardiovascular disease, and metabolic syndrome. In recent times, nutritional 

awareness has grown and there is an increased focus on low-fat products. Emulsions are the 

potential fat replacers, and incorporating cellulose into protein emulsion-based fat replacers 

enhances the nutritional, textural, and sensory attributes. This improvement is attributed to 

cellulose’s ability to effectively retain water, stabilize interfaces/networks, and thickening 

effects in addition to its nutritional value as dietary fiber (Dai et al. 223). 

• Meat products are characterized by a red or pink color that is obviously hard to obtain without 

the application of colorants. Unfortunately, the issue still exists since many consumers who 

choose vegetarian goods also avoid additives, which makes the matter more technologically 

challenging. However, the growing use of 4D printing has encouraged a more thorough 

investigation into product appearance, which includes color and shape. 

• Production efficiency. The size and speed of 3D food printing prevent its usage in industrial-

scale food production. Although the printing speed or nozzle diameter can be increased, doing 

so frequently leads to a loss of printing resolution. Researchers have suggested speeding up 



 

33 
 

printing by using adaptive algorithms, which might change the printing settings to balance the 

printing quality and time (Voon et al. 2019). Using multi nozzle printers to print multiple 3D 

objects at once is another possible strategy. Future studies should look into the incorporation 

of phenolic compounds such as flavonoids, as they are closely related to the sensory and 

nutritional quality of the food. Future research must examine these issues and opportunities for 

plant-protein-based inks. 

• Consumer acceptance: Acceptability and pleasantness of 3D-printed food is one of the major 

challenges. A study conducted by Lupton et al. 2016 reported the concerns of many 

participants that the food created using a printer might be inedible, unsafe, or nutritionally 

deficient. Additionally, the term ‘printer,’ typically linked with non-food industries, appeared 

to negatively influence participants’ willingness to accept such technology. Ross et al. 2022 

conducted a study on Irish people and reported that the attitudes of consumers towards the use 

of 3D food printing technologies might differ depending on the consumer’s country of 

residence. A study revealed that consumer acceptance to 3D-printed food depends on (1) the 

initial information provided, i.e., the first impression consumers receive, and that (2) well-

designed communication has the potential to positively shape consumers’ attitudes toward 3D-

printed food (Brunner et al. 2018). 

 

2.8 Conclusion 

This review article entails the virtually new concept of personalized nutrition called 3D food 

printing. This is a new and innovative field having the potential to customize the design, 

nutrition, and composition of food products. A focus was placed on plant-protein based inks 

given their wider usage in research, as compared to animal proteins. One of the most diverse 

applications of plant proteins is to produce meat analogs. Consumers are becoming vegetarians 

or seeking out goods that are not made from animal products at an increasing rate today. The 

majority of meat substitutes contain soy and wheat derived proteins, such as gluten. Although 

plant-based beef burgers and sausages have been used successfully, most of these recipes use 

minced meat instead of whole-cut meat fillets, which lack their distinctive appearance. This 

might be as a result of the extrusion processing methods used for the current plant-based meat 

substitutes that create a product having a consistent appearance. Although plant proteins are 

frequently acknowledged as a sustainable substitute for animal proteins, care must also be 

taken to minimize their harmful effects on the environment during their extraction. 

Additionally, it was also discovered that hydrocolloids and other additives had significant roles 
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in the production of plant-protein-based printable gels. As we explore new sources of protein 

to fulfill the needs of a growing population, the demand for plant-based protein will 

undoubtedly rise in the coming years. Despite the breakthroughs in 3D food printing 

technology, the issues of providing comprehensive nutrition and personalization, rational 

protein extraction techniques, improving printing precision and accuracy, and paying attention 

to the appearance and texture of the finished product still exist. 
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CONNECTING TEXT 

The review of literature showed the potential for 3D printing of plant-based proteins, 

relationships between various 3D printing parameters and their collective impact on 

printability, and the need for additives.  

The chapter highlights that there has been extensive research conducted on the impact of 

printing parameters on the printability of plant-based proteins. However, there is limited 

information available on the influence of EGCG-based ink on the printing properties of soy 

protein products.  

In the following section (Chapter III), we delve into the comprehensive understanding of the 

impact of 3D printing parameters on the printability of SPI-WG-EGCG complexes. Adjusting 

for nozzle diameter, nozzle height, and printing speed, this chapter aims to understand their 

individual and combined effects on the 3D printability of ink. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

42 
 

III. Assessment of 3D printability of SPI-WG-EGCG complexes 

 

3.1 Abstract 

Protein gels, particularly those derived from plant sources like soy, are gaining attention in the 

food industry due to their nutritional and environmental advantages. Soy protein offers a rich 

array of fiber, starch, vitamins, and minerals, along with phytochemicals such as galactosides, 

saponins, phytates, and phenols associated with various health benefits. However, leveraging 

these benefits in 3D printing with plant protein-based materials presents notable challenges. 

Natural plant proteins often exhibit poor printability and stability, leading to suboptimal print 

quality during the printing process. 

To address these challenges, additives play a crucial role. One potential additive, 

epigallocatechin-3-gallate (EGCG), a polyphenol found in green tea, shows promising results 

in modifying the surface hydrophobicity of soy protein isolate (SPI) and improving its gelation 

properties. While polyphenols have been known to strengthen protein gels in animal-based 

materials, their role in altering plant protein gels remains ambiguous. In this study, we 

investigate the impact of varying EGCG concentration on the printing performance of edible 

inks formulated from soy protein, wheat gluten, water, and oil in a specific ratio of 5:3:33.33:2. 

Through systematic experimentation varying nozzle diameter, nozzle height, printing speed, 

and material composition, we aim to assess printability and accuracy. This research endeavors 

to bridge the gap between the inherent challenges of 3D printing with plant proteins and the 

potential for innovation in additive-based solutions, ultimately advancing the efficiency and 

sustainability of this emerging technology in the food industry. 

 3.2 Introduction 

3D food printing is a promising innovation in the food industry, with evolving applications in 

gastronomy, personalized nutrition, and ingredient creation (Sun et al. 2015). Despite 

enormous potential, its impact has been limited due to critical pre-processing and post-

processing constraints. Key constraints include the complex rheological requirements of food 

inks, which must balance flowability and structural integrity (Liu et al. 2017), and precise 

temperature control during printing to prevent deformation and ensure product stability 

(Keerthana et al. 2020).  



 

43 
 

Important processing factors include the printing mechanism (extrusion-based, selective 

sintering, binder jetting, inkjeting.), ink material properties (rheological, mechanical and 

textural), equipment parameters (nozzle height and diameter, printing speed, infill percentage) 

and post-processing requirements (cooking/baking, drying, frying, freezing, fermentation) (Liu 

et al. 2017). Considerable work has been done on 3D printing of carbohydrate-based products 

(Jagadiswaran et al. 2021; Montoya et al. 2021; Keerthana et al. 2020). However, there has 

been recent and increasing interest in printing protein-based products (Yu et al. 2022; Chen et 

al. 2021; Oyinloye et al. 2020).  

The case for printing protein-based products include the need to transition towards sustainable 

food systems. Soy protein is a candidate for 3D printing due to its exceptional emulsifying, 

gelation and foaming properties (Yu et al. 2022). The yield and quality of soy protein isolate 

(SPI) gels are largely due to their gelation rate and network structure formation capacity (Xu 

et al. 2020). The natural state of soy protein poses challenges for printability due to the 

difficulty in controlling its gelation rate and network structure. Consequently, current research 

efforts focus on improving its rheological properties by incorporating various additives.  

Polyphenols can bind to proteins via hydrophobic interactions, hydrogen bonds, and 

electrostatic interactions, that can modify surface hydrophobicity and structure of the proteins, 

consequently altering their functional properties (Sun et al. 2022). Epigallocathechin Gallate 

(EGCG), a prominent and highly effective polyphenol found in green tea, possesses numerous 

biological properties, including antioxidative, antibacterial, free-radical scavenging, and 

anticancer effects (Lorenzo et al. 2013). EGCG could potentially change the surface 

hydrophobicity of SPI, improve its gelation rate, and help create a more uniform network 

structure. Thus, addition of EGCG could improve material properties and holds promise for 

advancing both the precision and reliability of 3D printing of protein-based products. There 

has been no study on the effectiveness of EGCG in modifying SPI properties with respect to 

modulating its printability.  

Achieving precision and reliability in 3D printing the product requires a multidimensional 

approach that integrates advancements in material science, gel formulation and adjustment of 

printing technology. Printability refers to a material's capacity to be consistently extruded in 

accordance with a predefined shape and to maintain dimensional stability post-printing. 

Evaluating printability involves assessing (a) dimensional stability (b) extrudability, and (c) 

stability (Kadival et al. 2023). However, assessing 3D printability of food products remains a 
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significant challenge. There is need for precise evaluation methods that can quantitatively 

assess resultant geometric accuracy of 3D printed objects. Current evaluation methods 

predominantly rely on subjective visual inspections or rudimentary dimensional measurements 

(Lille et al. 2018). These methods often provide qualitative assessments rather than precise 

quantitative data, making it difficult to evaluate how well printed objects match their intended 

geometries accurately. Advanced techniques, such as using image processing software like 

ImageJ, offer a more sophisticated approach to analyzing the correlation between printed 

outcomes and original designs (Derossi et al. 2020). Improving printability also necessitates 

optimizing the physicochemical, rheological, structural, and mechanical properties of printing 

gels, enabling 3D-printed structures to endure subsequent processing stages (Barrios-

Rodriguez et al. 2024). However, achieving more effective printing requires careful assessment 

and analysis of both the food's characteristics and other external elements interacting with the 

printing gels. Selecting the appropriate formulation for the gel and fine-tuning its printing 

parameters are pivotal for its printing, serving as the primary determinant of 3D printing 

accuracy (Feng et al. 2019). Specifically, adjustment of printing parameters such as nozzle 

diameter, nozzle height, nozzle speed, printing temperature, and extrusion rate significantly 

influence the process's outcome (Hao et al. 2010). Wang et al. (2018) reported that a smaller 

nozzle diameter produces higher-resolution printed objects, whereas a larger nozzle diameter 

results in lower resolution. However, excessively small nozzles can lead to inconsistent printing 

lines. The distance between the nozzle tip and the top of the last deposited layer is known as 

nozzle height or layer height. Various studies theoretically reported the use of equal nozzle 

height and nozzle diameter. Yang et al. (2018) suggested that the layer height should be smaller 

than the nozzle diameter for better adhesion. Combination of precise evaluation methods, such 

as advanced image processing techniques, with optimized gel formulations and meticulous 

adjustment of printing parameters (like nozzle specifications and extrusion rates), is essential 

for enhancing printability and ensuring the structural integrity of printed food products (Hao et 

al. 2010). This study aims to investigate the impact of formulation and process variables such 

as nozzle height-to-diameter ratio, nozzle diameter, and nozzle speed on 3D printability of SPI-

WG-EGCG complexes. The study would enhance and provide crucial pathways for production 

of printed SPI based products. 
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3.3 Materials and Method 

3.3.1 Materials 

Soy protein isolate was procured from Fisher Scientific (Ottawa, Ontario, Canada). Wheat 

gluten   was obtained from Sigma-Adrich (St. Louis, Missouri, USA).  Epigallocatechin-3-

gallate (purity >=98.0% HPLC) was purchased from MilliporeSigma (Oakville, Ontario, 

Canada). The all other reagents were of analytical grade. 

3.3.2 Preparation of SPI-polyphenol complexes 

SPI, WG, oil and water were combined in the ratio of 5:3:2:33.3, respectively. Following this, 

varying concentrations of EGCG were incorporated into the mixture. The EGCG 

concentrations used were 0, 0.25, 0.5, and 1%. The resulting mixtures were labelled as SPI-E1, 

SPI-E2, SPI-E3, and SPI-E4, corresponding to the concentrations of 0, 0.25, 0.5, and 1% 

EGCG. 

3.3.3 3D Printing of Products 

The SPI-WG-EGCG complexes were printed using a commercial 3D printer Foodini (Natural 

Machines, Barcelona, Spain). The printing system operated with a nozzle connected to a piston 

and prints food using a precision control system. Printing took place at room temperature, 

maintained at 23 ± 0.3◦C throughout the process. To study printing characteristics, cylinder 

models were designed using FreeCAD software (open-source, version 0.20.2), with dimensions 

tailored to the printer nozzle diameters. For the 4 mm printer nozzle, the cylinder model was 

designed with diameter of 3 cm and height of 2 cm to ensure sufficient surface area for material 

flow, maintaining stability and reducing clogging risks. For the 1.5 mm nozzle, a 2.5 cm 

diameter and 3 cm height cylinder were chosen to maintain a balance between stability and 

material flow. Subsequently, the cylinders were printed at the different printer parameter 

settings.  

3.3.4 Dimensional Stability of Printed Products 

Design schematic and dimensions of the model cylinders are shown in Figure 3.1. The shape 

and stability of the printed cylinders were assessed. Images of the top and side views of each 

printed cylinder were captured using a Canon EOS Rebel T3i Digital SLR camera (Canon Inc., 

Japan). The camera was mounted on a tripod and positioned at a fixed distance from the printed 
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product for consistent imaging. The captured images were processed in ImageJ software to 

determine shape parameters. The base diameter was measured from the top-view images.  

Calibration of dimensions was achieved using a printed object with known accurate 

dimensions, verified with vernier callipers. These measurements served as the standard 

reference for the remaining printed cylinders in ImageJ, ensuring consistent and precise 

assessments. Following calibration, two diameter measurements were made from each image 

of the printed cylinders to account for any non-uniform diameters. The percent variation 

between the designed and printed cylinder dimensions was calculated using Equation 1 

(Maldonado-Rosas et al. 2022): 

%error =  
𝐷𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑 − 𝐷𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

𝐷𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑
 x 100        (1) 

                                          

Figure 3.1 Isometric view of the hollow cylinders with 4 mm nozzle diameter, t=25 mm, 

ADesigned= 3298.67 mm2, e=30 mm, h=20 mm and 1.5 mm nozzle diameter, ADesigned= 3337.94 

mm2, e=25 mm, h=30 mm 

3.3.5 Experimental Design 

A fractional factorial experimental design was applied in the study. The design included 4 key 

experimental factors namely: i) EGCG concentration (0, 0.25, 0.5 and 1%), ii) nozzle diameter 

(1.5 and 4 mm), iii) H/D ratio (0.85, 1, and 1.25), and iv) nozzle speed (50, 58, 65, 228, 235, 

and 245 mm/sec). The nozzle height represented the layer thickness. The nozzle speed 

represented the speed at which the print head moved along the X and Y axes during printing. 

The nozzle diameter marked the width of the extruded material line, which influenced the 

thickness of deposited layers when combined with layer height settings. The experimental 

treatments were duplicated resulting in a total of 72 runs.  

e 
t 

h 
ADesigned 
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3.3.6 Statistical Analysis 

Analysis of variance (ANOVA) was conducted on the experimental data using the SAS 

(Version 9.4, SAS Institute Inc., Cary, NC, USA) software. Statistical significance was 

determined at the 5% level. 

Percent error was used to indicate the accuracy of the printing. Regression analysis was used 

to quantify the effect the experimental factors (independent variables) on print percent error. A 

stepwise regression analysis was applied to elucidate the relationships between various factors 

and their interactions. This approach was selected due to its superior explanatory power and to 

ensure that the model's complexity was balanced with its factor's performance. 

3.4 Results and Discussion 

3.4.1 Visual Appeal and Dimensional Integrity 

There were notable variabilities in printing errors across different nozzle diameters, nozzle H/D 

ratios, and nozzle speeds (Figure 3.2). Analysis of variance showed that nozzle speed did not 

significantly affect (p> 0.05) the dimensional stability of the printed samples. However, other 

factors namely nozzle diameter, nozzle H/D ratio, and EGCG concentration showed significant 

effect (p< 0.05) on variations in diameter obtained from the printed cylinder.  

EGCG concentrations significantly affected diameter changes. Specifically, at the nozzle 

height-to-diameter (H/D) ratio of 0.85, the printing error decreased from 11.71 ± 8.87% to 4.60 

± 3.98% as EGCG concentration increased from 0 (control) to 1%. This suggests that higher 

EGCG concentrations enhance the material’s flow properties and improve layer adhesion. 

Apparently, EGCG modified the surface hydrophobicity of soy protein isolate (SPI), which 

facilitated better gelation and a more uniform network structure, leading to more consistent 

diameter measurements (Xu et al. 2020). In contrast, using a 1.5 mm nozzle diameter and a 

H/D ratio of 1.25, printing errors remained high and reached up to 100% at the nozzle speeds 

of 50, 58, and 65 mm/sec for control samples. The result demonstrates the difficulty of 

controlling gelation rate of the SPI network without EGCG, and it underscores the role of 

EGCG as a cross-linking agent. The instability of control samples, exacerbated by higher 

nozzle speeds that increased turbulence and shear forces, further disrupted the already weak 

gel network, leading to higher printing errors and collapse of the structure (Xu et al. 2020). 

According to Khan et al. (2024) and Liu et al. (2020), such high speeds can introduce flow 
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instability and excessive material shear, undermining the structural integrity and buildability 

of the printed object.  

The 4 mm nozzle diameter exhibited significantly lower printing errors, particularly at the 

higher nozzle speeds of 228 and 245 mm/sec. This suggests that larger nozzle diameters are 

better suited for handling increased extrusion rates with fewer errors, likely due to their ability 

to reduce shear forces and improve material flow (Khan et al. 2024). However, variabilities 

within each category, such as nozzle speeds or height-to-diameter (H/D) ratios, were often 

substantial, indicating inconsistent performance across various printing conditions. Similar to 

the 1.5 mm nozzle diameter, increasing the EGCG concentration also led to decreased printing 

errors, with errors dropping from 8.82 ± 5.46% at control levels to 5.81 ± 4.56% at a 1% EGCG 

concentration. Also, nozzle speeds of 228 mm/sec or less resulted in low feed pressure and low 

flow rate, leading to line breakage for both 1.5 mm and 4 mm nozzle diameters. This result 

agrees with the findings of Feng et al. (2019) who reported that a decrease in the nozzle 

diameter not only increases the printing time but also raises the feed pressure. With nozzle 

diameters of 0.8 mm and 1.5 mm, a discontinuous deposition phenomenon occurs when the 

surimi gel is extruded. Furthermore, low speeds result in insufficient feed pressure and flow 

rate, which can lead to wire breakage. 

Visual inspection showed that the structural integrity and surface smoothness of the 

products varied with the different printing parameters, particularly the nozzle H/D ratio and the 

concentration of EGCG (Table 3.1). Particularly, as the H/D ratio increased to 1.25, the samples 

tended to collapse, indicating that a higher H/D ratio may result in instability of the printed 

structures. This instability could be attributed to the insufficient support provided by the higher 

nozzle height relative to the diameter, causing the printed layers to sag or collapse under their 

own weight. 

In terms of surface texture, samples printed at lower EGCG concentrations appeared rougher. 

This roughness can be attributed to the lower viscosity and weaker intermolecular interactions 

in the solution, which may result in less cohesive layer formation and increased surface 

irregularities. Conversely, as the concentration of EGCG increased, the appearance and 

stability of the printed samples improved. The higher polyphenol content enhanced the gluten 

network in WG by promoting protein cross-linking, which increased the elasticity and 

cohesiveness of the sample. Elasticity was critical for maintaining the stability of printed layers 

leading to smoother surfaces and more structurally stable prints. 
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.       

              

Figure 3.2 Box Plot Analysis of Printing Percentage Error Across Different Parameters i) 

H/D ratio ii) nozzle diameter (mm) iii) nozzle speed (mm/sec) iv) EGCG concentration  

Table 3.1 Effect of printing parameters on printability of SPI-WG-EGCG complexes  

EGCG 

concentration 

Nozzle 

diameter 

H/D 

ratio 

Nozzle 

speed 

Replicate 1 Replicate 2 

 

0 

 

1.5 

 

0.85 

 

58 

  

 

0 

 

 

1.5 

 

1 

 

50 

  



 

50 
 

0.25 1.5 0.85 58 

  

0.25 1.5 1.25 65 

  

0.5 1.5 1 50 

  

0.5 1.5 0.85 58 

  

1 1.5 0.85 58 

  

1 1.5 1.25 58 

  

0 4 0.85 228 

  

0 4 1.25 245 

   

0.25 4 0.85 235 

  

0.25 4 1 228 
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0.5 4 0.85 235 

  

0.5 4 1 245 

  

1 4 1 228 

  

1 4 0.85 235 

  

 

3.4.2 Effects of Printing Parameters 

Figure 3.3 presents a Pareto chart illustrating the impact of the independent variables: nozzle 

speed, nozzle diameter, EGCG concentration, and H/D ratio on printing percentage error of 3D 

printed samples. Among these variables, the H/D ratio exhibited the most substantial effect, 

with an estimated influence of 83.71. This was followed by the effects of EGCG concentration, 

nozzle diameter, and nozzle speed, which were -18.77, -14.80, and 0.11, respectively. Notably, 

the H/D ratio demonstrated a positive correlation with printing error, indicating that an increase 

in the H/D ratio corresponded to a higher printing error. Conversely, both the EGCG 

concentration and nozzle diameter exhibited negative correlations, suggesting that higher 

EGCG concentrations and larger nozzle diameters resulted in a decrease in printing error.  
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Figure 3.3 Pareto chart describing the effects of nozzle speed, nozzle diameter, EGCG 

concentration, and H/D ratio on the printing percentage error of SPI-WG-EGCG printed 

samples. 

Figure 3.4 illustrates a 3-dimensional surface plot for Nozzle Diameter versus Nozzle 

Speed, revealing the relationship between these parameters and their impact on printing 

percentage error. Despite the clear visualization of changes in printing error as both nozzle 

diameter and nozzle speed were varied, statistical analysis revealed that nozzle speed did not 

significantly impact printing percentage error (p > 0.05). The 3D surface plot demonstrates that 

nozzle diameter did not significantly impact printing percentage error with respect to changes 

in nozzle speed. Across the tested range of speeds (58 mm/sec to 235 mm/sec) and both nozzle 

diameters (1.5 mm and 4 mm), the surface remained relatively flat. This flatness suggests that 

changing the nozzle speed within the tested range across changing nozzle diameters does not 

lead to substantial variations in error, aligning with the statistical conclusion of non-

significance.  

To further understand the result, a 80 mm line was printed with the sample solutions. The result 

shows that nozzle speeds led to three distinct scenarios: slow speed resulted in line breakage 

due to insufficient material flow and weak adhesion (Case A), while high speed caused slurry 

accumulation and larger diameter wavy lines (Case C). At an intermediate speed of 58 mm/sec 

(Case B), the printed line achieved optimal consistency, with a smooth and continuous filament 

flow, resulting in uniform dimensions and stable adhesion (Figure 3.5). This speed facilitated 
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balanced extrusion, producing a high-quality line print without the issues observed at lower or 

higher speeds. These findings align with the report of Yang et al. (2018). Despite these 

observable trends, the effect of nozzle speed on overall printing error remained non-significant. 

This can be attributed to the complex interplay of other variables, such as the nozzle height-to-

diameter (H/D) ratio and EGCG concentration, which overshadowed the influence of nozzle 

speed. The impact of these factors likely masked any potential effects of speed variations, 

leading to the observed lack of significance. Consequently, while nozzle speed affects specific 

aspects of print quality, its overall contribution to printing errors was not statistically substantial 

when considered alongside other parameters. 

 

Figure 3.4 3D Surface plots showing the effect of Nozzle Diameter vs. Nozzle Speed on 

printing percentage error across different variables. 

 

 
Case A 
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Figure 3.5 Scenarios obtained during 3D printing with different Nozzle speeds: Case A 

(nozzle speed = 50 mm/sec), Case B (nozzle speed = 58 mm/sec), Case C (nozzle speed = 

65 mm/sec). 

 

The effect of the nozzle H/D ratio is illustrated in Figure 3.6. The surface plot 

demonstrates a steep decline in printing percentage error from a maximum of 100 to 21.76% 

as the H/D ratio decreases from 1.25 to 0.85 across different nozzle diameters. The most notable 

reduction in error occurs when the H/D ratio is lowered to 0.85, where printing errors drop 

significantly, indicating that a smaller height-to-diameter ratio is crucial for ensuring better 

dimensional accuracy and print quality. A lower H/D ratio (e.g., 0.85) corresponds to a nozzle 

height smaller than the diameter, which is consistent with optimal layer deposition. As the plot 

suggests, maintaining a smaller nozzle height relative to its diameter ensures that newly 

deposited layers bond more effectively, enhancing adhesion between layers and reducing the 

likelihood of print defects, such as collapse or uneven structures. This phenomenon is evident 

from the steep slope of the surface plot as the H/D ratio decreases, reflecting a corresponding 

decrease in printing error. 

For nozzle diameters of 1.5 mm and 4 mm, line prints revealed that a H/D ratio of 0.85 and 1 

produced fine prints, whereas higher H/D ratios resulted in wavy lines (Figure 3.7). From the 

3D printed structures, it was found that the best prints were achieved with an H/D ratio of 0.85, 

corresponding to nozzle heights of 1.3 mm for a 1.5 mm diameter nozzle and 3.4 mm for a 4 

mm diameter nozzle. As mentioned by Yang et al. (2018), various theoretical studies suggest 

using equal nozzle height and diameter; however, in practice, the layer height should be smaller 

than the nozzle diameter for better adhesion, which aligns with our results showing that a 

smaller nozzle height provided the best outcomes. 

Case B 

Case C 
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Figure 3.6 3D Surface plots showing the effect of Nozzle Diameter vs. Nozzle H/D ratio on 

printing percentage error across different variables. 

 

 

  

 

 

 

 

Figure 3.7 Scenarios obtained during 3D printing with different Nozzle H/D ratios for nozzle 

diameters 1.5 and 4 mm respectively: Case A and A’ (nozzle H/D ratio = 0.85), Case B and B’ 

(nozzle H/D ratio = 1), Case C and C’ (nozzle H/D ratio = 1.25) 

The influence of EGCG concentration on printing percentage error is illustrated through 

a surface plot shown in Figure 3.8. The result demonstrates a steady decrease in printing 

percentage error as the concentration of Epigallocatechin Gallate (EGCG) increased from 0 to 

1%. This trend highlights EGCG's critical role in improving print performance through key 

biochemical interactions, particularly hydrophobic interactions and hydrogen bonding. EGCG, 

as a polyphenol, interacts with the hydrophobic regions of soy protein isolate (SPI) and wheat 

Case A 

Case B 

Case C 

Case A’ 

Case B’ 

Case C’ 

Reducing Printing 

Error Rate 
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gluten (WG) during the mixing process at room temperature. These interactions occur as the 

proteins alter their surface exposure to water, reducing water interaction and leading to changes 

in surface hydrophobicity and protein conformation, ultimately enhancing the mixture’s 

gelation properties. This strengthened protein network is crucial for maintaining structural 

integrity during 3D printing. Additionally, the hydroxyl groups of EGCG form hydrogen bonds 

with the polar amino and carboxyl groups of SPI and WG, further stabilizing the protein matrix 

and promoting a cohesive network structure. These bonds improve viscoelasticity, giving better 

control over material flow during extrusion. The formation of this stable and cross-linked 

network ensures consistency during extrusion and layer formation, resulting in precise print 

quality and improved shape retention of the printed structures. 

The surface plot reveals a clear downward trend, indicating a significant reduction in printing 

percentage error as EGCG concentration increases across both nozzle diameters (1.5 mm and 

4 mm). This effect is most noticeable at higher EGCG concentrations (0.5 and 1%), where the 

error decreases markedly, suggesting that the material's printability improves with EGCG 

addition. For the 1.5 mm nozzle, the error drops from 40.724 ± 44.049 at 0% EGCG to 5.218 

± 3.146 at 1% EGCG, while for the 4 mm nozzle, it decreases from 9.977 ± 7.758 to 7.563 ± 

5.945. These results show that increasing EGCG concentration significantly enhances the 

stability and precision of printed structures, producing prints closer to the intended design 

specifications. 

The surface plot also suggests that EGCG’s effect on printing error is more pronounced for the 

1.5 mm nozzle than for the 4 mm nozzle. While both nozzles benefit from increased EGCG 

concentrations, the greater reduction in printing errors for the smaller nozzle can be linked to 

improved material properties and bonding. Higher EGCG concentrations enhance the 

rheological properties of the printing material, resulting in more consistent extrusion and 

stronger interlayer adhesion. This leads to more structurally stable prints with fewer defects 

and better dimensional accuracy. Conversely, at lower EGCG concentrations, the material may 

exhibit poorer flow and bonding properties, causing more defects and reduced print precision. 

These results align with previous studies, such as Yang et al. (2018), which highlighted the 

importance of optimizing material properties for achieving high-quality 3D prints. 

Additionally, the study by Xu et al. (2020) on the gel properties of transglutaminase-induced 

soy protein isolate–polyphenol complex demonstrated that the addition of EGCG significantly 
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improved the stability of SPI, supporting our findings that higher EGCG concentrations 

enhance the structural stability and dimensional accuracy of 3D printed structures. 

 

Figure 3.8 3D Surface plots showing the effect of nozzle diameter on printing percentage error 

across different variables. (a) Nozzle Diameter vs. Nozzle Speed, (b) Nozzle Diameter vs. H/D 

Ratio, (c) Nozzle Diameter vs. EGCG Concentration.  

3.5 Conclusion 

3D printing has successfully enabled the fabrication of 3D-designed SPI-WG-EGCG-based 

complexes, demonstrating the feasibility of utilizing polyphenol-based inks for intricate 

geometries and functional structures. The H/D ratio, EGCG concentration, and nozzle diameter 

significantly affected the accuracy and consistency of the printed components. Specifically, the 

H/D ratio emerged as a critical factor, influencing the dimensional stability of the prints, while 

EGCG concentration and nozzle diameter further fine-tuned the quality of the output. 

Surprisingly, nozzle speed did not exhibit a significant effect on printing errors, challenging 

the initial hypothesis that it would be a key determinant in printability. This finding highlights 

the complex interactions between printing parameters and material properties, suggesting that 

other factors may overshadow the influence of speed. 

The optimized parameters derived from this study—58 mm/sec speed, 0.85 H/D ratio, and 1% 

EGCG concentration for the 1.5 mm nozzle diameter, and 235 mm/sec speed, 0.85 H/D ratio, 

Reducing Printing 

Error Rate 
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and 1% EGCG concentration for the 4 mm nozzle diameter—demonstrate a practical approach 

for enhancing print quality. These settings not only improved the dimensional accuracy and 

stability of the prints but also contributed to a more efficient 3D printing process. The ability 

to identify and implement these optimal parameters underscores the importance of detailed 

parameter analysis in achieving high-quality results in polyphenol-based 3D printing. This 

optimization framework provides valuable insights for future applications, paving the way for 

advanced and precise manufacturing of polyphenol-based products. 
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CONNECTING TEXT 

Chapter III investigated the effect of printing parameters (nozzle diameter, nozzle height, and 

nozzle speed) and varying concentrations of epigallocatechin (EGCG) on the printability of 

3D-printed SPI-WG-EGCG structures. In the following section, Chapter IV, we delve into the 

image analysis used to measure the line filament extrusion of SPI-WG-EGCG complexes. 

Subsequently, we developed predictive models to estimate material extrudability based on 

polyphenol concentration and printing parameters. This data-driven approach to predicting 

material extrudability aims to reduce the need for excessive trial-and-error experiments in 

future research. 
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IV. Predicting the Printability of SPI-WG-EGCG line filaments 

 

4.1 Abstract 

Predicting the printability of SPI-WG-EGCG complexes during 3D printing is crucial for 

enhancing precision and customization in the food industry, especially for achieving 

personalized nutrition. Material printability, which comprises the smooth and consistent flow 

of printing materials, directly impacts the quality, structural integrity, and accuracy of printed 

food products. Ensuring optimal extruding ability is essential for creating high-precision food 

items that meet specific dietary requirements and preferences. 

This study investigates the printability of SPI-WG-EGCG line filaments by varying 

concentrations of epigallocatechin (EGCG) and key printing parameters, including nozzle 

diameter, nozzle H/D ratio, and nozzle speed. The research aims to optimize these factors to 

achieve superior print quality and material performance. A comprehensive dataset of 72 unique 

combinations of material concentrations and printing parameters was generated. To quantify 

extrudability, image analysis techniques were employed, focusing on the target digital design 

dimensions (line width, line thickness, and cross-sectional area) of the printed filaments. This 

approach allows for rapid and accurate assessment of printability, facilitating the development 

of predictive models. 

The results highlight the importance of precise control over material properties and printing 

parameters to improve 3D-printed food performance. Adjusting EGCG concentration and fine-

tuning printing settings can optimize printability, enhancing the quality and customization of 

printed food products. This data-driven approach reduces trial-and-error and enables efficient 

production of personalized nutrition solutions in the food industry. 

4.2 Introduction 

3D printing, also known as additive manufacturing, is a process of creating three-dimensional 

objects by layering materials based on digital models. This technology has revolutionized 

various industries, including aerospace, automotive, healthcare and more recently, the food 

industry (Sun et al. 2015). 3D food printing, a subset of this technology, involves the precise 

deposition of food-grade materials to create intricate and customized food products. This 

innovation is significant for the food industry as it opens new areas for personalized nutrition, 
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culinary creativity, and sustainable food production (Lipton et al. 2015). Thus, the development 

of 3D food printing has allowed the opportunity to address the needs of diverse consumers 

including children, athletes, the elderly, and pregnant women who are increasingly interested 

in foods that are customized to their preferences or tailored to their nutritional needs (Derossi 

et al. 2018; Dick et al. 2019). A critical aspect of 3D food printing is the printability of a 

printing medium, which refers to the ability of the material to be successfully printed into a 

specific shape (Liu et al. 2017). Evaluating and ensuring good printability is essential because 

it affects the quality, accuracy and consistency of the final printed product (Godoi et al. 2016). 

A material is deemed suitable for printing when it meets several criteria: it must be capable of 

being extruded smoothly, maintain its intended shape post-extrusion, ensure continuous 

extrusion of filaments, and result in a stable final structure (Duty et al. 2018). In previous 

studies, "printability" has been described as the ratio between the actual height achieved by the 

printed object and its intended height (In et al. 2021). Other printability evaluation metrics 

includes the assessment of extrudability, dimensional accuracy and stability of the 3D printed 

structure (Kadival et al. 2023). Extrudability is the ease of extruding, a critical step toward 

achieving other aspects of 3D printability, such as shape fidelity and retention over time (Ma 

et al. 2021). The current definitions of printability typically focus on factors such as the 

material's ability to flow through the nozzle, its viscosity, and its final appearance, but they 

often overlook the ink's ability to be extruded and maintain its shape. Extrudability is a primary 

criterion of extrusion-based 3D printing and can be directly measured using line extrusion tests. 

An extruded line can be analysed either by manual inspection or image processing (Huang et 

al. 2020; Ma et al. 2021). Previous studies reported by Liu et al. (2019) investigated the 

extrudability of carrageenan-xanthan-starch gels across various temperatures, primarily 

through manual inspection of extruded lines. Building upon this research, Ma et al. (2021) 

advanced the methodology by employing image processing techniques. They used 

classification models to evaluate extrudability based on criteria such as line width, mode width, 

width consistency, and line height. This approach allowed for more precise quantification and 

assessment of the printing quality, distinguishing between acceptable and unacceptable 

extrusion limits. Also, previous studies have often indirectly measured extrudability by 

focusing on the rheological characterization of food ink (Liu et al. 2017; Godoi et al. 2016). 

The rheological characteristics of food materials used in 3D printing play a crucial role in 

achieving optimal extrudability, ensuring effective bonding between different printed layers, 

and maintaining structural integrity without deformation under compression (Liu et al. 2017). 

Numerous studies have explored the impact of variations in formulations and printing 
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conditions on the extrusion behavior and stability of printed food structures. Besides 

rheological parameters, studies have identified that the key printing parameters including 

nozzle diameter, nozzle height, and nozzle speed are crucial in determining the extrudability 

and printability of alginate/gelatin hydrogels as they directly impact the extrusion process (He 

et al. 2016). Recent studies have investigated how parameters such as nozzle diameter, layer 

height, printing speed, extrusion rate, and extrusion temperature affect the quality and 

performance of printed structures. A smaller nozzle diameter produces printed objects with 

higher resolution, whereas a larger nozzle diameter results in lower resolution. However, using 

an excessively small nozzle can lead to inconsistencies in the printed lines (Wang et al. 2018). 

The extrusion rate denotes the volume of material extruded per unit of time, while print speed 

refers to the speed at which the nozzle moves. Extruded material may not have sufficient time 

to settle on the bed during high speed printing whereas there may be discontinuous filament 

deposition at low printing speeds (Feng et al. 2019). 

 

Creating new ingredients for 3D food printing require automated, quick, and quantitative 

assessments of the new material extrudability. Several techniques have been developed to 

evaluate the extrudability of food printing materials. For instance, microscopic and optical 

pictures are widely used to measure the size of extruded lines. Image analysis programs like 

ImageJ were used to quantify line dimensions from optical pictures manually (Nijdam et al. 

2021 and Lanaro et al. 2017). Fahmy et al. (2020) introduced a camera-based system that 

automates the assessment of cereal-based printing materials. Their advanced method employed 

algorithms to analyse parameters such as line width distribution, end-line extrusion, and 

consistency, offering a more sophisticated approach to extrudability evaluation. Paxton et al. 

(2017) presented a method involving visual inspection of continuous filament formation and 

structure using manual syringe pressure during dispensing. While effective as an initial 

qualitative screening tool, this approach does not account for other important printing 

characteristics. 

In recent years, the integration of data-driven modeling approach has revolutionized predictive 

modeling in various fields, including 3D printing. Machine learning enables the extraction of 

complex patterns and relationships from large datasets, enhancing the accuracy and robustness 

of predictive models (Solle et al. 2017). For instance, in non-food 3D printing, researchers have 

successfully applied machine learning algorithms to predict material properties, printing 

parameters, and printing outcomes (Goh et al. 2021). Elbadawi et al. (2020) demonstrated the 
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application of machine learning algorithms to predict the printability of pharmaceutical tablet 

materials. Their study integrated rheological properties with printing parameters to model the 

intricate relationships governing tablet production. By collecting variables that represent tablet 

rheology in pharmaceutical manufacturing, they employed a hybrid modeling approach known 

as "gray-box modeling." This method combines mechanistic insights from white box models 

with the data-driven capabilities of black box models, thereby enhancing predictability of 

complex relationships between printing parameters and material properties (Roupas, 2008 and 

Raja et al. 2023). These approaches not only improve prediction accuracy but also facilitate 

real-time optimization of printing processes based on continuous feedback from data analysis. 

In that context, machine learning will play a pivotal role in developing predictive models for 

SPI-WG-EGCG extrudability, allowing for valuable insights into how different compositional 

and operational factors influence printing performance. 

This study aims to fill this gap by developing predictive models to estimate key extrudability 

parameters such as key line width, thickness and cross-sectional area of printed filaments of 

SPI-WG-EGCG complexes using advanced image analysis techniques.  

 

4.3 Materials and Method 

4.3.1 Materials 

Epigallocatechin-3-gallate (purity ≥ 98.0% HPLC) was purchased from MilliporeSigma 

(Oakville, Ontario, Canada). The soy protein isolate (SPI) was procured from Fisher Scientific 

(Ottawa, Ontario, Canada). Wheat gluten was obtained from Sigma-Adrich (St. Louis, 

Missouri, USA).  All other reagents are of analytical grade. 

4.3.2 Preparation of SPI-polyphenol complexes 

SPI (Soy Protein Isolate), wheat gluten, oil, and water were combined in a specific ratio of 

5:3:2:33.3, respectively. Following this, varying concentrations of EGCG (Epigallocatechin 

Gallate) were incorporated into the mixture at the levels of 0, 0.25, 0.5, and 1%. The resulting 

solutions were labelled as SPI-E1, SPI-E2, SPI-E3, and SPI-E4, sequentially denoting the 

ascending order of catechin concentration. 

4.3.3 Evaluating Printability of SPI-WPI-EGCG Line filaments 

4.3.3.1 3D printing experiment 
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The 3D printability of SPI-WPI-EGCG line prints was evaluated through a structured 

experimental workflow as shown in Figure 4.1. Extrusion-based 3D printing was carried out 

using a commercial 3D printer Foodini (Natural Machines, Barcelona, Spain) which features 

two primary components: creations and fillings. The samples were carefully loaded into a 

printing syringe, and the syringe was closed off with a pressure cap. Printing took place at room 

temperature, maintained at 23 ± 0.3℃ throughout the process. To facilitate printing, line 

filaments were designed using FreeCAD software with line length (L) of 80 mm. Other design 

parameters, including line width (XX) and thickness (YY), were determined, and the cross-

sectional area (ZZ) was calculated accordingly. 

These models were then exported as .stl files and imported into the Foodini software. The 

printing system performed a point extrusion at different printer parameters, including nozzle 

diameter, nozzle height, and nozzle speed. It was ensured that the location of the extrusion 

nozzle was fixed such that each printed line initiated at the same location on the printing 

platform. The nozzle diameters used in the study were 1.5 and 4 mm. Nozzle heights were 

adjusted at achieve nozzle height-to-diameter (H/D) ratios of 0.85, 1, and 1.25. Six nozzle 

speeds namely 50, 58, 65, 228, 235 and 245 mm/s were studied. A full factorial design was 

applied in the study resulting in a total of 144 experimental units. The experiments were 

conducted in duplicate.  
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Fig 4.1. Implementation Steps for predicting extrusion-based printability of SPI-WG-EGCG 

line filaments. 

4.3.3.2 Image Database 

A Canon EOS Rebel T3i Digital SLR camera (Canon Inc., Japan) was positioned at a fixed 

distance with a tripod for top-view and front-view shots of printed samples. A black silicon 

sheet was placed as the background for maximum contrast to the image and the pictures were 
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taken within 15 s after extrusion (Figure 4.2). This setup ensured consistent image capture 

conditions, critical for subsequent image processing and analysis. Each image corresponded to 

one of the 144 unique combinations of printing parameters, creating a comprehensive database 

of extruded sample images. 

4.3.3.3 Image Processing 

Image preprocessing steps were taken to remove noise and detect edges to make the images 

ready for further image analysis.  

The raw images of line extrusion were denoised using a median filter, which effectively 

preserves edges while filtering out noise. These smoothed RGB images were then converted to 

grayscale using MATLAB (Version R2024a Update 6 (24.1.0.2689473), The Mathworks, Inc., 

Natik, Massachusetts, United States). Building upon the methodology of Fahmy et al. (2020), 

the RGB format was further transformed to HSV to leverage the saturation channel for 

suppressing extraneous images (such as the cross on the silicon mat of the printer platform). 

MATLAB was subsequently utilized to identify connected components in a binary image, 

enabling the analysis of target design dimensions such as line width, line thickness, and cross-

sectional area across the length of the line prints. The shape fidelity parameters—line width, 

line thickness, and cross-sectional area depend on four evaluation metrics encompassing mode, 

consistency, arithmetic mean deviation and root mean square deviation. This comprehensive 

approach ensures a detailed assessment of print quality. 

4.3.3.4 Image analysis 

Image analysis involved extraction of meaningful information, such as identifying printing 

patterns, measuring dimensions, and detecting objects. For each unique combination of printing 

parameters, metrics related to shape fidelity parameters such as mode, consistency, arithmetic 

mean deviation, and root mean square deviation were extracted from the images of the extruded 

samples. These metrics were then used to assess how closely the extruded samples matched the 

target design dimensions (namely length, width, thickness, and cross-sectional area). The line 

length was fixed at 80 mm, representing its maximum extent along the longitudinal axis. Line 

thickness denotes the vertical dimension of the line when viewed frontally, measured as the 

perpendicular distance between its highest and lowest points in the front view image. This 

measurement offers critical insights into the thickness (height) of the printed line, essential for 

evaluating its dimensional accuracy and uniformity. Line width refers to the line's horizontal 
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dimension when viewed from above, determined as the distance between its widest points 

along the horizontal axis. This parameter provides valuable information about the line's lateral 

spread across its longitudinal axis. The cross-sectional area of the extruded lines was 

determined by conceptualizing it as a flattened tube, resembling a rectangle with two 

semicircular edges (Equation 1) (Ma et al. 2021). 

A = (w-t) x t + π (t/2)2            (1) 

Where A is the cross-sectional area (mm2), W is the width-consistency (mm), t is the line 

thickness (mm), Figure 4.2 illustrates the parameters of printed line. 

 

    

Fig 4.2 Representation of thickness and width of printed line. A. Schematic representation of 

thickness (t) of line filament from front-view B. Schematic representation of width consistency 

(w) of line filament from top-view. 

4.3.3.5 Shape fidelity dataset 

The printed sample shape fidelity  metrics included dimension mode,  consistency, arithmetic 

mean deviation, and root mean square deviation. These were compiled into a structured dataset. 

Each parameter was meticulously recorded to reflect the characteristics of the extruded samples 

across the various printing conditions. 

Mode captures the most frequent occurrence in the distribution of the dimensions 

(width, cross-sectional area, and height) of the extruded sample (Ma et al. 2021). Consistency 

B 

Thickness 

Width 

A 
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measures how uniformly the extruded sample dimensions adhere to the mode. It is calculated 

as the ratio of the number of samples n�̈� within 10% of the mode −0.1𝑀 < �̈� < 1.1𝑀 to the total 

number of sample points 𝑛𝑆 (Ma et al. 2021) (Equation 2). This parameter assesses the 

distribution's uniformity in terms of width, height, or cross-sectional area.  

𝐶 =
𝑛�̈�

𝑛𝑆
            (2) 

Where M is the mode value for the given dimension (such as width, height, or cross-sectional 

area), �̈� is the number of sample points (in mm) that fall within 10% of the mode, S is the 

measurement of the sample dimension (in mm), such as width, cross-sectional area, or height, 

used for comparison against the mode and n is the total number of sample points. 

Arithmetic mean (Ra) deviation measures the roughness of the surface of the extruded 

sample. It calculates the average deviation of each dimension profile point |𝑍(𝑥)| from the 

target dimension profile (H) along the longitudinal axis (L) (Equation 3). This measure 

provides insight into how consistently the extruded dimensions align with the intended profile. 

𝑅𝑎 =
1

𝐿
∫ |𝑍(𝑥)|

𝐿

0
𝑑𝑥          (3) 

Where L is 80 mm, |𝑍(𝑥)| =  𝑍(𝑥) − 𝐻 represents the absolute deviation of each point from 

the target dimension profile H. 

Root mean square (RMS) deviation quantifies the roughness of the surface but does so 

by computing the root mean square average deviation (Rq) (James et al. 2013) (Equation 4). It 

provides a measure of the surface roughness by evaluating the deviation of the dimension 

profile Z(x) from the target profile H along the longitudinal axis L. 

𝑅𝑞 = [
1

𝐿
∫ 𝑍(𝑥)2𝐿

0
𝑑𝑥]

1
2⁄
         (4) 

These parameters were aggregated into a comprehensive dataset that encompasses all unique 

combinations of printing parameters used in the experiments. This dataset was essential for the 

next stages of the analysis, including data labeling, model training, and performance 

evaluation. 

4.3.3.6 Extrusion Modeling for line-filaments 

Predictive extrusion modeling involves the application of mathematical and computational 

techniques to simulate and predict the extrusion process of materials (Elbadawi et al. 2020). 

This approach aims to understand and predict how different factors such as material properties, 
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processing conditions, and equipment parameters influence the extrudability of substances. The 

printability of line filaments was investigated by systematically varying polyphenol 

concentration and printer parameters for 72 unique combinations. The approach involved 

generating graphical representations illustrating the variability of line thickness, width, and 

cross-sectional area along the filament length, providing essential visual insights into material 

behaviour under varying conditions. 

Statistical analyses were conducted on the dataset to assess the consistency and variability of 

extrusion outcomes. Specifically, the mode, consistency, arithmetic mean deviation, and root 

mean square deviation for thickness, width, and cross-sectional area were calculated across all 

144 possible combinations (including duplicates). These statistical measures served as 

indicators of filament dimensional uniformity and predictability, crucial for maintaining high-

quality standards in extruded products. The statistical analysis (4-way) revealed the significant 

values affecting mode, consistency, arithmetic mean, and root mean square. 

4.3.3.6.1 Data Labeling 

The dataset was categorized into two distinct classes: "Acceptable" and "Unacceptable." This 

classification was based on expert judgment and predefined criteria, which considered specific 

ranges of the measured parameters (Table 4.1). For each data entry, the label was determined 

by comparing the extracted dimensions of the extruded samples against the acceptable limits 

established for each parameter. Notably, the criteria for width mode and thickness mode were 

based on the Slic3r software manual (Hodgson et al. 2021), while most of the other parameters 

were defined arbitrarily. If the measurements fell within these predefined acceptable ranges, 

the sample was labeled as "Acceptable." Conversely, if the measurements deviated from these 

limits, the sample was labeled as "Not Acceptable." This systematic approach ensured that each 

sample was categorized based on its compliance with quality standards, facilitating effective 

analysis and modeling in subsequent phases of the study. 
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Table 4.1 Sample Line shape fidelity parameter classification, evaluation metrics, acceptable, 

unacceptable error thresholds, number of positive (acceptable) and negative (unacceptable) 

samples 

Shape 

Fidelity 

Parameters 

Acceptable Error 

Threshold 

Unacceptable Error 

Threshold 

Number 

of Positive 

Samples 

Number of  

Negative 

Samples 

Test 

sample 

size 

Area 

Consistency < 50% ≥ 50% 16 56 72 

Mode < 25% ≥ 25% 55 17 72 

Arithmetic 

Deviation 

< 0.25 * Nozzle 

Diameter 

≥ 0.25 * Nozzle 

Diameter 

28 
44 72 

RMS < 0.25 * Nozzle 

Diameter 

≥ 0.25 * Nozzle 

Diameter 

18 
54 72 

Thickness 

Consistency < 25% ≥ 25% 16 56 72 

Mode < 15% ≥ 15% 37 35 72 

Arithmetic 

Deviation 

< 0.15 * Nozzle 

Diameter 

≥ 0.15 * Nozzle 

Diameter 

25 
47 72 

RMS < 0.20 * Nozzle 

Diameter 

≥ 0.15 * Nozzle 

Diameter 

28 
44 72 

Width 

Consistency < 40% ≥ 40% 24 48 72 

Mode < 10% ≥ 10% 32 40 72 

Arithmetic 

Deviation 

< 0.20 * Nozzle 

Diameter 

≥ 0.20 * Nozzle 

Diameter 

16 
56 72 

RMS < 0.25 * Nozzle 

Diameter 

≥ 0.25 * Nozzle 

Diameter 

18 
54 72 

 

4.3.3.6.2 Training and Testing 

The dataset was divided into two parts namely 90% for training and 10% for testing to facilitate 

the development and evaluation of predictive models. K-fold cross-validation was employed 

by dividing the data set into ten equal parts or folds as outlined by Ma et al. (2021). In each 

iteration, one fold was reserved as the test set while the remaining nine folds were used as the 

training set. This rotation ensured that each data point was included in both the training and 

testing phases at different times, providing a comprehensive assessment of the model's 

performance. Linear Discriminant Analysis (LDA) was used to develop predictive models for 

the various printing parameters.  
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The performance of the model was assessed through the calculation of total accuracy, True 

positive rate (TPR), true negative rate (TNR), precision accept rate (PAR), and precision reject 

rate (PRR) which indicated the model’s effectiveness in correctly identifying labels for the test 

samples. By determining the average accuracy, insights into the model’s generalizability and 

effectiveness were gained. This assessment is crucial for understanding the model's reliability 

and its potential applicability to real-world scenarios.  

4.3.4 Software packages 

Image analysis was achieved using MATLAB and ANOVA and predictive modelling was done 

using MATLAB and SAS programming packages. 

4.4 Results and Discussion 

4.4.1 Shape Fidelity of Printed Samples 

ANOVA results indicate that nozzle speed significantly (p < 0.05) influenced the mode, 

consistency, arithmetic mean, and root mean square deviation of width, thickness, and area of 

printed samples. EGCG concentration also had significant impact, particularly on thickness 

metrics. Nozzle diameter and H/D ratio affected thickness and area, with notable interactions 

between factors, especially between nozzle speed and other parameters. The highest R-square 

values were observed for models involving width and thickness metrics, indicating strong 

explanatory power of the factors studied.  

Fig. 4.3 illustrates the impact of EGCG and nozzle speed on the thickness and width modes for 

the acceptable and unacceptable ranges. As EGCG concentration increases, the thickness mode 

values converge towards the target dimensions. This improvement is indicative of better 

material flow and adherence to design specifications, which enhances the overall quality and 

precision of the printed samples. Regarding nozzle speed, speeds of 58 mm/s and 235 mm/s 

resulted in more samples with width modes near the target dimensions, indicating better 

precision and dimensional accuracy. In contrast, lower speeds of 50 mm/s and 228 mm/s and 

higher speeds of 65 mm/sec and 245 mm/sec produced fewer acceptable samples, suggesting 

that moderate nozzle speeds are more favorable for achieving consistent extrusion and higher-

quality prints. 
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Figure 4.3 Scatter plot for (A) ECCG Concentration vs Thickness Mode and (B) Nozzle vs 

Width Mode 

4.4.2 Model Performance 

Given the printing parameters, the average performance over 10-fold cross-validation of the 

linear discriminant analysis (LDA), in predicting the shape fidelity of extruded line filaments 

are displayed in Tables 4.2. Analysis of the results showed that the LDA successfully predicted 

the shape fidelity parameters with overall accuracy ranging from 67 to 100%.  

4.4.2.1 Area 

The model's total accuracy for area consistency was close to 95% with TPR and TNR of 94 

and 93%, respectively. Both PAR and the PRR were 93%.  

For area mode, the total accuracy was close to 85% with TPR, TNR, PAR and PRR of 92, 89, 

45 and 90%, respectively. 

The model performance for area arithmetic deviation was 89% with the related prediction 

metrics of 83, 98, 97 and 85% for TPR, TNR, PAR and PRR, respectively. 

4.4.2.2 Thickness 

The model achieved a high total accuracy of 94.6% in predicting the consistency of thickness 

for extruded line filaments. The model performed strongly with a TPR of 95% and a TNR of 

93.6%. Both PAR and PRR were similarly high at 93 and 96.7%, respectively.  
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In predicting the mode of thickness, the model showed a moderate total accuracy of 80.7%, 

with a TPR of 80.3% and a TNR of 88.8%. The precision values for PAR and PRR were 87.5 

and 73.3%, respectively.  

For the arithmetic mean deviation of thickness, the model recorded a total accuracy of 85.4%. 

It achieved a TPR of 100%, though the TNR was slightly lower at 75.9%. Both precision 

metrics were strong, with PAR at 78% and PRR at 100%.  

For the root mean square deviation of thickness, the model demonstrated a robust total accuracy 

of 88.8%, with a TPR of 94.2% and a TNR of 85.2%. The precision values were similarly 

strong, with PAR at 86% and PRR at 95.5%. 

4.4.2.3 Width 

The model showed the lowest total accuracy in predicting the mode width and consistency of 

the extruded line compared to their performance in predicting area and thickness. Specifically, 

the model demonstrated moderate performance with a total accuracy of 90.1%, achieving a 

TPR of 67.2% and a TNR of 77.7%. PAR and PRR were 72.5 and 64.2%, respectively.  

For the prediction of mode width, the model recorded a lower total accuracy of 69.2%, though 

it maintained balanced TPR and TNR values of 89.2% and 88.8%, respectively. Precision for 

PAR and PRR were 89% and 93.5%.  

For the arithmetic mean deviation of width, the model achieved an impressive total accuracy 

of 97.1%, with a remarkable TPR of 96.7% and a TNR of 100%. Precision values for PAR and 

PRR were also at 100% and 90%, respectively. The LDA model's performance for the 

arithmetic mean deviation was the highest among all fidelity parameters, including area and 

thickness.  

A total accuracy of 100% was achieved for predicting the root mean square deviation of width. 

It exhibited a TPR of 96.1% and a TNR of 100%, with precision values for PAR at 93.6% and 

a PRR of 100%. These metrics suggest that the model effectively identified variations in the 

root mean square deviation. 
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Table 4.2 Average 10-fold cross-validation results for linear discriminant analysis technique 

(LDA) in predicting filament printability.  

Shape Fidelity 

Parameters 

True 

Positive 

Rate (TPR) 

 

True 

Negative 

Rate (TNR) 

 

Precision 

Accept Rate 

(PAR) 

 

Precision 

Reject Rate 

(PRA) 

 

 

Total 

Accuracy 

Area 

Consistency 0.936 0.933 0.933 0.933 0.945 

Mode 0.921 0.889 0.45 0.900 0.846 

Arithmetic 

Deviation 
0.975 0.843 0.830 0.975 0.883 

RMD 0.690 0.660 0.640 0.790 0.7702 

      

Thickness 

Consistency 0.950 0.936 0.930 0.967 0.946 

Mode 0.803 0.888 0.875 0.733 0.807 

Arithmetic 

Deviation 
1 0.759 0.7800 1 0.854 

RMD 0.942 0.852 0.8600 0.9550 0.888 

      

Width 

Consistency 0.672 0.777 0.725 0.6417 0.901 

Mode 0.892 0.888 0.89 0.9350 0.692 

Arithmetic 

Deviation 
0.967 1 1 0.9000 0.971 

RMD 0.961 1 0.936 0.8833 1 

 

In this study, the effectiveness of predicting the consistency of extruded filaments in 

3D food printing by using the LDA classifier was assessed. The findings revealed that the LDA 

model consistently performed well. The success of the model is particularly significant given 

the nature of 3D food printing, where the shape fidelity of the final product is crucial. The 

consistency in the spatial dimensions of the extruded filament directly impacts the final 

product’s appearance and texture. The model’s high accuracy in predicting this consistency 

indicates its potential to better ensure that the printed food matches the target digital design, 

which is a critical factor for consumer satisfaction. Additionally, the findings highlight the 

practical implications of using LDA in 3D food printing. For instance, the model’s predictive 

capabilities can be leveraged to automate the adjustment of printing parameters, ensuring 
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consistent quality across different production batches. This automation is particularly important 

as 3D food printing scales up to meet growing global demands for customized, nutrient-rich 

food. Also, the model’s ability to handle different concentrations of food materials with high 

accuracy supports the integration of various ingredients into the printing process. This is crucial 

for producing complex meals that replicate traditional recipes while offering the customization 

needed for specific dietary requirements, such as those for patients with special nutritional 

needs.  

4.5 Conclusion 

This chapter proposes the application of machine learning to predict the shape fidelity of 

extruded filaments before 3D printing food materials. The predictive model, leveraging Linear 

Discriminant Analysis (LDA), demonstrates that artificial intelligence (AI) can enhance cost-

effectiveness in 3D printing by ensuring consistent quality and reducing trial-and-error 

processes. By focusing on four key parameters—EGCG concentration, nozzle speed, nozzle 

diameter, and H/D ratio—the LDA model can identify optimal settings by predicting whether 

a particular combination is acceptable for producing high-quality filaments, the fundamental 

building blocks of 3D structures. Although the study was limited by a small sample size and a 

constrained dataset, these challenges were mitigated by utilizing robust image analysis and 

machine learning techniques. The LDA model, with its superior accuracy, offers a valuable tool 

for predicting the acceptability of future parameter combinations, laying the groundwork for 

more precise and efficient 3D food printing. 

4.6 Data Availability  

The data supporting the findings of this study can be found in the appendices of the manuscript. 

This includes: 

• MATLAB code for Linear Discriminant Analysis (LDA) used to predict printability. 

• Data labeling tables detailing the categorization and parameters used in the analysis. 
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V. General summary, Conclusion, Limitations, Challenges and Future Research 

 

5.1 Summary and Conclusions 

This study comprehensively assessed the impact of various 3D printing parameters on the 

printability of SPI-WG-EGCG complexes and developed predictive models to enhance the 

precision and customization of 3D-printed food products. The research focused on addressing 

the challenges inherent in using plant-based protein gels, particularly soy protein isolate (SPI), 

for 3D printing, where printability and dimensional accuracy are often compromised. Through 

systematic experimentation and the application of machine learning models, this study has 

advanced the understanding of how specific printing parameters influence the quality of 3D-

printed food products and provided a framework for optimizing these parameters to achieve 

high-quality results. 

Key findings of this research demonstrated that the height-to-diameter (H/D) ratio, EGCG 

concentration, and nozzle diameter significantly impact the accuracy and consistency of printed 

structures. Notably, the H/D ratio emerged as a critical factor influencing dimensional stability, 

with higher concentrations of EGCG further enhancing the quality of the printed products. The 

study also revealed that nozzle speed, contrary to initial expectations, did not significantly 

affect printing errors, suggesting that other factors, such as material composition and nozzle 

dimensions, play a more crucial role in determining print quality. 

Machine learning played a pivotal role in this study, particularly through the application of the 

Linear Discriminant Analysis (LDA) classifier model in predicting the consistency of the 

extruded filaments. The LDA model's success highlights its potential for ensuring that printed 

food products closely match the target digital designs, a critical factor for consumer 

satisfaction. The model's predictive capabilities can be leveraged to automate the adjustment 

of printing parameters, ensuring consistent quality across different production batches, which 

is essential as 3D food printing scales up to meet global demands. 

The practical implications of this study are significant, especially in the context of producing 

personalized nutrition solutions in the food industry. The optimized printing parameters 

identified in this research—such as specific combinations of nozzle speed, H/D ratio, and 

EGCG concentration—provide a valuable reference for improving the dimensional accuracy 

and stability of 3D-printed food products. Moreover, the integration of machine learning into 
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the optimization process reduces trial and error, making the production process more efficient 

and scalable. 

The following key conclusions were drawn from this research: 

• The H/D ratio, EGCG concentration, and nozzle diameter are critical factors 

significantly influencing the dimensional accuracy and stability of 3D-printed SPI-WG-

EGCG-based products. 

• The optimal printing parameters derived from this study—58 mm/sec speed, 0.85 H/D 

ratio, and 1% EGCG concentration for the 1.5 mm nozzle diameter, and 235 mm/sec 

speed, 0.85 H/D ratio, and 1% EGCG concentration for the 4 mm nozzle diameter—

enhanced print quality and efficiency. 

• Nozzle speed did not exhibit a significant effect on printing errors, indicating the 

complexity of interactions between material properties and printing parameters. 

• The LDA classifier provided high accuracy in predicting the consistency of extruded 

filaments demonstrating its potential for ensuring shape fidelity in 3D food printing. 

• The successful application of machine learning in this study underscores its importance 

in optimizing 3D printing processes and ensuring consistent quality in food production. 

5.2 Limitations and Challenges 

• The experiments were limited to a controlled laboratory environment, presenting 

challenges for scaling the process to industrial production. Variability in equipment, 

environmental conditions, and raw materials could affect reproducibility at a larger 

scale. Process standardization and automation require further investigation. 

• The study focused on soy protein isolate (SPI) and wheat gluten (WG), limiting the 

generalizability of the findings. Different plant-based proteins may behave differently 

in terms of extrudability and printability. 

• This study did not include sensory evaluations such as taste, texture, or visual appeal, 

which are essential for consumer acceptance. 

• The study assumed uniformity in the quality of SPI, WG, and EGCG. However, natural 

variations in these ingredients could affect printability and product performance. Future 

research should account for these variables. 
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• The environmental impact of using SPI and WG on a large scale, particularly in terms 

of energy use and waste management, was not evaluated. Sustainability concerns are 

critical for the long-term feasibility of 3D food printing. 

5.3 Recommendations for Future Studies 

1. Future research should explore the influence of other potential additives and their 

interactions with SPI to further enhance printability and stability in 3D-printed food 

products. 

2. Future studies should incorporate sensory evaluation, such as flavor, mouthfeel, and 

visual aesthetics, to gain insights into consumer preferences. Sensory analysis would 

provide a more consumer-oriented perspective, enabling a deeper understanding of how 

3D-printed food products are perceived, particularly regarding their appeal and 

acceptance in real-world markets. 

3. Investigations into the long-term stability and consumer acceptability of 3D-printed 

foods with optimized parameters could provide valuable insights for commercial 

applications. 

4. Future studies could expand the work on predicting printability by incorporating the 

rheological properties of the materials, which play a crucial role in determining the flow 

behavior. Additionally, exploring various printer parameters, such as infill percentage 

and others specific to different 3D printers, could provide a more comprehensive 

understanding of how these factors influence the quality and precision of 3D-printed 

structures. 

5. The development of more sophisticated machine learning models that can handle non-

linear relationships and complex interactions within 3D printing datasets may lead to 

even better predictions and optimizations. 

6. Expanding the scope of this research to include a broader range of plant-based proteins 

such as pea, lentil, or chickpea would help enhance the versatility of 3D food printing 

technologies. These proteins offer unique functional properties, and their incorporation 

could cater to specific dietary requirements or intolerances, such as gluten-free diets. 
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7. Further studies should focus on scaling up the 3D printing process for industrial 

applications, addressing the challenges associated with large-scale production while 

maintaining high precision and quality. 
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Appendix-A 

Table A.1: Area Mode Results with Parameter Combinations 

Concentration Nozzle_Speed Nozzle_Diameter H_D_Ratio Area_Mode Label 

0 228 16 0.85 16.7720597 ACCEPT 

0 228 16 1 13.4643469 ACCEPT 

0 228 16 1.25 15.4151479 ACCEPT 

0 235 16 0.85 15.9776624 ACCEPT 

0 235 16 1 16.8144656 ACCEPT 

0 235 16 1.25 16.6191796 ACCEPT 

0 245 16 0.85 12.9902893 ACCEPT 

0 245 16 1 25.6881248 REJECT 

0 245 16 1.25 23.1365931 REJECT 

0 50 2.25 0.85 2.29837304 ACCEPT 

0 50 2.25 1 1.84888218 ACCEPT 

0 50 2.25 1.25 4.06772647 REJECT 

0 58 2.25 0.85 2.17441567 ACCEPT 

0 58 2.25 1 2.8415597 REJECT 

0 58 2.25 1.25 1.99494317 ACCEPT 

0 65 2.25 0.85 5.65251277 REJECT 

0 65 2.25 1 2.6390237 ACCEPT 

0 65 2.25 1.25 2.96099434 REJECT 

0.25 228 16 0.85 12.5497362 ACCEPT 

0.25 228 16 1 11.7464158 REJECT 

0.25 228 16 1.25 15.3586304 ACCEPT 

0.25 235 16 0.85 17.6505094 ACCEPT 

0.25 235 16 1 18.6462311 ACCEPT 

0.25 235 16 1.25 17.7357003 ACCEPT 

0.25 245 16 0.85 22.0626689 REJECT 

0.25 245 16 1 18.6076559 ACCEPT 

0.25 245 16 1.25 17.0801763 ACCEPT 

0.25 50 2.25 0.85 2.29106955 ACCEPT 

0.25 50 2.25 1 2.02343497 ACCEPT 

0.25 50 2.25 1.25 2.12948439 ACCEPT 

0.25 58 2.25 0.85 1.94649559 ACCEPT 

0.25 58 2.25 1 1.99963149 ACCEPT 

0.25 58 2.25 1.25 4.84383968 REJECT 

0.25 65 2.25 0.85 1.8368911 ACCEPT 

0.25 65 2.25 1 2.46326403 ACCEPT 

0.25 65 2.25 1.25 3.83777585 REJECT 

0.5 228 16 0.85 17.4822136 ACCEPT 

0.5 228 16 1 15.0650743 ACCEPT 

0.5 228 16 1.25 14.8560324 ACCEPT 

0.5 235 16 0.85 12.4142965 ACCEPT 

0.5 235 16 1 17.5325494 ACCEPT 
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0.5 235 16 1.25 12.5060282 ACCEPT 

0.5 245 16 0.85 10.8027146 REJECT 

0.5 245 16 1 16.5930369 ACCEPT 

0.5 245 16 1.25 12.92412 ACCEPT 

0.5 50 2.25 0.85 2.68708098 ACCEPT 

0.5 50 2.25 1 2.27887818 ACCEPT 

0.5 50 2.25 1.25 2.21251731 ACCEPT 

0.5 58 2.25 0.85 4.66238438 REJECT 

0.5 58 2.25 1 2.61834597 ACCEPT 

0.5 58 2.25 1.25 2.03423743 ACCEPT 

0.5 65 2.25 0.85 6.69574558 REJECT 

0.5 65 2.25 1 2.05862172 ACCEPT 

0.5 65 2.25 1.25 2.16579712 ACCEPT 

1 228 16 0.85 12.5497362 ACCEPT 

1 228 16 1 11.7464158 REJECT 

1 228 16 1.25 15.3586304 ACCEPT 

1 235 16 0.85 17.6505094 ACCEPT 

1 235 16 1 18.6462311 ACCEPT 

1 235 16 1.25 17.7357003 ACCEPT 

1 245 16 0.85 22.0626689 REJECT 

1 245 16 1 18.6076559 ACCEPT 

1 245 16 1.25 17.0801763 ACCEPT 

1 50 2.25 0.85 2.29106955 ACCEPT 

1 50 2.25 1 2.02343497 ACCEPT 

1 50 2.25 1.25 2.12948439 ACCEPT 

1 58 2.25 0.85 1.94649559 ACCEPT 

1 58 2.25 1 1.99963149 ACCEPT 

1 58 2.25 1.25 4.84383968 REJECT 

1 65 2.25 0.85 1.8368911 ACCEPT 

1 65 2.25 1 2.46326403 ACCEPT 

1 65 2.25 1.25 3.83777585 REJECT 

 

Table A.2: Area Consistency Results with Parameter Combinations 

Conc. Nozzle_Speed Nozzle_Diameter H_D_Ratio Area_Consistency Label 

0 228 16 0.85 0.668 ACCEPT 

0 228 16 1 0.459 REJECT 

0 228 16 1.25 0.579 ACCEPT 

0 235 16 0.85 0.533 ACCEPT 

0 235 16 1 0.633 ACCEPT 

0 235 16 1.25 0.585 ACCEPT 

0 245 16 0.85 0.247 REJECT 

0 245 16 1 0.543 ACCEPT 

0 245 16 1.25 0.533 ACCEPT 

0 50 2.25 0.85 0.364 REJECT 
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0 50 2.25 1 0.327 REJECT 

0 50 2.25 1.25 0.175 REJECT 

0 58 2.25 0.85 0.278 REJECT 

0 58 2.25 1 0.244 REJECT 

0 58 2.25 1.25 0.048 REJECT 

0 65 2.25 0.85 0.162 REJECT 

0 65 2.25 1 0.132 REJECT 

0 65 2.25 1.25 0.098 REJECT 

0.25 228 16 0.85 0.329 REJECT 

0.25 228 16 1 0.218 REJECT 

0.25 228 16 1.25 0.349 REJECT 

0.25 235 16 0.85 0.452 REJECT 

0.25 235 16 1 0.391 REJECT 

0.25 235 16 1.25 0.313 REJECT 

0.25 245 16 0.85 0.36 REJECT 

0.25 245 16 1 0.51 ACCEPT 

0.25 245 16 1.25 0.433 REJECT 

0.25 50 2.25 0.85 0.46 REJECT 

0.25 50 2.25 1 0.366 REJECT 

0.25 50 2.25 1.25 0.314 REJECT 

0.25 58 2.25 0.85 0.518 ACCEPT 

0.25 58 2.25 1 0.523 ACCEPT 

0.25 58 2.25 1.25 0.304 REJECT 

0.25 65 2.25 0.85 0.025 REJECT 

0.25 65 2.25 1 0.396 REJECT 

0.25 65 2.25 1.25 0.141 REJECT 

0.5 228 16 0.85 0.549 ACCEPT 

0.5 228 16 1 0.557 ACCEPT 

0.5 228 16 1.25 0.476 REJECT 

0.5 235 16 0.85 0.287 REJECT 

0.5 235 16 1 0.337 REJECT 

0.5 235 16 1.25 0.348 REJECT 

0.5 245 16 0.85 0.178 REJECT 

0.5 245 16 1 0.291 REJECT 

0.5 245 16 1.25 0.527 ACCEPT 

0.5 50 2.25 0.85 0.455 REJECT 

0.5 50 2.25 1 0.202 REJECT 

0.5 50 2.25 1.25 0.476 REJECT 

0.5 58 2.25 0.85 0.285 REJECT 

0.5 58 2.25 1 0.28 REJECT 

0.5 58 2.25 1.25 0.426 REJECT 

0.5 65 2.25 0.85 0.222 REJECT 

0.5 65 2.25 1 0.208 REJECT 

0.5 65 2.25 1.25 0.179 REJECT 

1 228 16 0.85 0.329 REJECT 

1 228 16 1 0.218 REJECT 



 

88 
 

1 228 16 1.25 0.349 REJECT 

1 235 16 0.85 0.452 REJECT 

1 235 16 1 0.391 REJECT 

1 235 16 1.25 0.313 REJECT 

1 245 16 0.85 0.36 REJECT 

1 245 16 1 0.51 ACCEPT 

1 245 16 1.25 0.433 REJECT 

1 50 2.25 0.85 0.46 REJECT 

1 50 2.25 1 0.366 REJECT 

1 50 2.25 1.25 0.314 REJECT 

1 58 2.25 0.85 0.518 ACCEPT 

1 58 2.25 1 0.523 ACCEPT 

1 58 2.25 1.25 0.304 REJECT 

1 65 2.25 0.85 0.025 REJECT 

1 65 2.25 1 0.396 REJECT 

1 65 2.25 1.25 0.141 REJECT 

 

Table A.3 Area Arithmetic Mean Results with Parameter Combinations 

Conc. Nozzle_Speed Nozzle_Diameter H_D_Ratio 

Area_Arithmentic_

Mean_Deviation Label 

0 228 16 0.85 0.216504588 ACCEPT 

0 228 16 1 0.498575211 ACCEPT 

0 228 16 1.25 0.341186755 ACCEPT 

0 235 16 0.85 0.2061028 ACCEPT 

0 235 16 1 0.247851458 ACCEPT 

0 235 16 1.25 0.266683577 ACCEPT 

0 245 16 0.85 0.428623561 ACCEPT 

0 245 16 1 0.16936668 ACCEPT 

0 245 16 1.25 0.168877443 ACCEPT 

0 50 2.25 0.85 13.93420802 REJECT 

0 50 2.25 1 13.39035524 REJECT 

0 50 2.25 1.25 13.61778941 REJECT 

0 58 2.25 0.85 13.31281586 REJECT 

0 58 2.25 1 13.65295385 REJECT 

0 58 2.25 1.25 12.72982755 REJECT 

0 65 2.25 0.85 13.75018721 REJECT 

0 65 2.25 1 13.62808854 REJECT 

0 65 2.25 1.25 13.79303281 REJECT 

0.25 228 16 0.85 3.858806042 ACCEPT 

0.25 228 16 1 4.697664696 REJECT 

0.25 228 16 1.25 4.373419698 REJECT 

0.25 235 16 0.85 4.292486938 REJECT 

0.25 235 16 1 4.593168564 REJECT 

0.25 235 16 1.25 3.279707334 ACCEPT 

0.25 245 16 0.85 2.349895753 ACCEPT 
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0.25 245 16 1 2.23818042 ACCEPT 

0.25 245 16 1.25 3.702655243 ACCEPT 

0.25 50 2.25 0.85 21.70711836 REJECT 

0.25 50 2.25 1 15.30193298 REJECT 

0.25 50 2.25 1.25 19.51987684 REJECT 

0.25 58 2.25 0.85 19.40075311 REJECT 

0.25 58 2.25 1 13.39066702 REJECT 

0.25 58 2.25 1.25 15.43858855 REJECT 

0.25 65 2.25 0.85 5.280419174 REJECT 

0.25 65 2.25 1 21.18391023 REJECT 

0.25 65 2.25 1.25 17.34394867 REJECT 

0.5 228 16 0.85 0.608918287 ACCEPT 

0.5 228 16 1 0.572881461 ACCEPT 

0.5 228 16 1.25 0.096656256 ACCEPT 

0.5 235 16 0.85 1.337685371 ACCEPT 

0.5 235 16 1 1.084935417 ACCEPT 

0.5 235 16 1.25 0.554662262 ACCEPT 

0.5 245 16 0.85 1.285873632 ACCEPT 

0.5 245 16 1 1.541981657 ACCEPT 

0.5 245 16 1.25 0.715864017 ACCEPT 

0.5 50 2.25 0.85 13.17951705 REJECT 

0.5 50 2.25 1 12.41782851 REJECT 

0.5 50 2.25 1.25 13.37313397 REJECT 

0.5 58 2.25 0.85 12.94798546 REJECT 

0.5 58 2.25 1 13.58803176 REJECT 

0.5 58 2.25 1.25 13.19590811 REJECT 

0.5 65 2.25 0.85 13.44322727 REJECT 

0.5 65 2.25 1 13.30178744 REJECT 

0.5 65 2.25 1.25 13.53267062 REJECT 

1 228 16 0.85 3.858806042 ACCEPT 

1 228 16 1 4.697664696 REJECT 

1 228 16 1.25 4.373419698 REJECT 

1 235 16 0.85 4.292486938 REJECT 

1 235 16 1 4.593168564 REJECT 

1 235 16 1.25 3.279707334 ACCEPT 

1 245 16 0.85 2.349895753 ACCEPT 

1 245 16 1 2.23818042 ACCEPT 

1 245 16 1.25 3.702655243 ACCEPT 

1 50 2.25 0.85 21.70711836 REJECT 

1 50 2.25 1 15.30193298 REJECT 

1 50 2.25 1.25 19.51987684 REJECT 

1 58 2.25 0.85 19.40075311 REJECT 

1 58 2.25 1 13.39066702 REJECT 

1 58 2.25 1.25 15.43858855 REJECT 

1 65 2.25 0.85 5.280419174 REJECT 

1 65 2.25 1 21.18391023 REJECT 
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1 65 2.25 1.25 17.34394867 REJECT 

 

Table A.4 Area Root Mean Square Results with Parameter Combinations 

Conc. Nozzle_Speed Nozzle_Diameter H_D_Ratio 

Area_Root_Mean_Sq

uare_Deviation Label 

0 228 16 0.85 1.162804538 ACCEPT 

0 228 16 1 1.534795958 ACCEPT 

0 228 16 1.25 1.440218671 ACCEPT 

0 235 16 0.85 1.605601442 ACCEPT 

0 235 16 1 1.466563813 ACCEPT 

0 235 16 1.25 1.603017912 ACCEPT 

0 245 16 0.85 1.581670213 ACCEPT 

0 245 16 1 1.191189459 ACCEPT 

0 245 16 1.25 1.62936395 ACCEPT 

0 50 2.25 0.85 14.03033212 REJECT 

0 50 2.25 1 13.57774909 REJECT 

0 50 2.25 1.25 13.7782437 REJECT 

0 58 2.25 0.85 13.48872096 REJECT 

0 58 2.25 1 13.74553376 REJECT 

0 58 2.25 1.25 13.23292029 REJECT 

0 65 2.25 0.85 13.80057884 REJECT 

0 65 2.25 1 13.72520814 REJECT 

0 65 2.25 1.25 13.90807198 REJECT 

0.25 228 16 0.85 4.024239689 REJECT 

0.25 228 16 1 4.949880237 REJECT 

0.25 228 16 1.25 4.656285401 REJECT 

0.25 235 16 0.85 4.903856961 REJECT 

0.25 235 16 1 4.817519329 REJECT 

0.25 235 16 1.25 4.352341431 REJECT 

0.25 245 16 0.85 4.381402704 REJECT 

0.25 245 16 1 4.683745371 REJECT 

0.25 245 16 1.25 4.818654549 REJECT 

0.25 50 2.25 0.85 35.81318722 REJECT 

0.25 50 2.25 1 22.28212046 REJECT 

0.25 50 2.25 1.25 33.40623884 REJECT 

0.25 58 2.25 0.85 30.40446866 REJECT 

0.25 58 2.25 1 19.92844991 REJECT 

0.25 58 2.25 1.25 23.40394283 REJECT 

0.25 65 2.25 0.85 5.477712547 REJECT 

0.25 65 2.25 1 32.18495959 REJECT 

0.25 65 2.25 1.25 22.79338868 REJECT 

0.5 228 16 0.85 1.584876991 ACCEPT 

0.5 228 16 1 1.790581292 ACCEPT 

0.5 228 16 1.25 2.136016011 ACCEPT 

0.5 235 16 0.85 2.173231461 ACCEPT 



 

91 
 

0.5 235 16 1 2.346931988 ACCEPT 

0.5 235 16 1.25 2.148394156 ACCEPT 

0.5 245 16 0.85 2.962000945 ACCEPT 

0.5 245 16 1 2.335095286 ACCEPT 

0.5 245 16 1.25 1.937861357 ACCEPT 

0.5 50 2.25 0.85 13.35281235 REJECT 

0.5 50 2.25 1 12.6051293 REJECT 

0.5 50 2.25 1.25 13.5323201 REJECT 

0.5 58 2.25 0.85 13.11479833 REJECT 

0.5 58 2.25 1 13.77958119 REJECT 

0.5 58 2.25 1.25 13.32807719 REJECT 

0.5 65 2.25 0.85 13.56432832 REJECT 

0.5 65 2.25 1 13.52310022 REJECT 

0.5 65 2.25 1.25 13.70540007 REJECT 

1 228 16 0.85 4.024239689 REJECT 

1 228 16 1 4.949880237 REJECT 

1 228 16 1.25 4.656285401 REJECT 

1 235 16 0.85 4.903856961 REJECT 

1 235 16 1 4.817519329 REJECT 

1 235 16 1.25 4.352341431 REJECT 

1 245 16 0.85 4.381402704 REJECT 

1 245 16 1 4.683745371 REJECT 

1 245 16 1.25 4.818654549 REJECT 

1 50 2.25 0.85 35.81318722 REJECT 

1 50 2.25 1 22.28212046 REJECT 

1 50 2.25 1.25 33.40623884 REJECT 

1 58 2.25 0.85 30.40446866 REJECT 

1 58 2.25 1 19.92844991 REJECT 

1 58 2.25 1.25 23.40394283 REJECT 

1 65 2.25 0.85 5.477712547 REJECT 

1 65 2.25 1 32.18495959 REJECT 

1 65 2.25 1.25 22.79338868 REJECT 

 

Table A.5 Width Mode Results with Parameter Combinations 

Concentration Nozzle_Speed Nozzle_Diameter H_D_Ratio Width_Mode Label 

0 228 4 0.85 3.61584602 ACCEPT 

0 228 4 1 3.34368769 REJECT 

0 228 4 1.25 3.71009314 ACCEPT 

0 235 4 0.85 3.52998102 REJECT 

0 235 4 1 3.76423926 ACCEPT 

0 235 4 1.25 3.79415914 ACCEPT 

0 245 4 0.85 3.14239049 REJECT 

0 245 4 1 4.84111491 REJECT 

0 245 4 1.25 4.8306075 REJECT 
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0 50 1.5 0.85 1.19365522 REJECT 

0 50 1.5 1 1.05977039 REJECT 

0 50 1.5 1.25 1.89065407 REJECT 

0 58 1.5 0.85 1.23832322 REJECT 

0 58 1.5 1 1.52110862 ACCEPT 

0 58 1.5 1.25 1.69187593 REJECT 

0 65 1.5 0.85 1.79926539 REJECT 

0 65 1.5 1 1.78494441 REJECT 

0 65 1.5 1.25 1.68620573 REJECT 

0.25 228 4 0.85 2.96993108 REJECT 

0.25 228 4 1 3.15871894 REJECT 

0.25 228 4 1.25 3.64536185 ACCEPT 

0.25 235 4 0.85 4.1697205 ACCEPT 

0.25 235 4 1 4.08968422 ACCEPT 

0.25 235 4 1.25 3.76830057 ACCEPT 

0.25 245 4 0.85 4.16670633 ACCEPT 

0.25 245 4 1 4.08381618 ACCEPT 

0.25 245 4 1.25 3.96696103 ACCEPT 

0.25 50 1.5 0.85 1.30335035 REJECT 

0.25 50 1.5 1 1.25911263 REJECT 

0.25 50 1.5 1.25 1.39764932 ACCEPT 

0.25 58 1.5 0.85 1.1932497 REJECT 

0.25 58 1.5 1 1.23579588 REJECT 

0.25 58 1.5 1.25 1.87968612 REJECT 

0.25 65 1.5 0.85 2.33257624 REJECT 

0.25 65 1.5 1 1.35447579 ACCEPT 

0.25 65 1.5 1.25 1.60718226 ACCEPT 

0.5 228 4 0.85 3.36611468 REJECT 

0.5 228 4 1 3.45785446 REJECT 

0.5 228 4 1.25 3.33403717 REJECT 

0.5 235 4 0.85 2.71978089 REJECT 

0.5 235 4 1 3.48302751 REJECT 

0.5 235 4 1.25 3.16892624 REJECT 

0.5 245 4 0.85 2.69771343 REJECT 

0.5 245 4 1 3.35098787 REJECT 

0.5 245 4 1.25 3.14335927 REJECT 

0.5 50 1.5 0.85 1.58214926 ACCEPT 

0.5 50 1.5 1 1.32895341 REJECT 

0.5 50 1.5 1.25 1.54337084 ACCEPT 

0.5 58 1.5 0.85 1.61150221 ACCEPT 

0.5 58 1.5 1 1.54638099 ACCEPT 

0.5 58 1.5 1.25 1.27621283 REJECT 

0.5 65 1.5 0.85 1.5696605 ACCEPT 

0.5 65 1.5 1 1.39750072 ACCEPT 

0.5 65 1.5 1.25 1.44316299 ACCEPT 

1 228 4 0.85 2.96993108 REJECT 
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1 228 4 1 3.15871894 REJECT 

1 228 4 1.25 3.64536185 ACCEPT 

1 235 4 0.85 4.1697205 ACCEPT 

1 235 4 1 4.08968422 ACCEPT 

1 235 4 1.25 3.76830057 ACCEPT 

1 245 4 0.85 4.16670633 ACCEPT 

1 245 4 1 4.08381618 ACCEPT 

1 245 4 1.25 3.96696103 ACCEPT 

1 50 1.5 0.85 1.30335035 REJECT 

1 50 1.5 1 1.25911263 REJECT 

1 50 1.5 1.25 1.39764932 ACCEPT 

1 58 1.5 0.85 1.1932497 REJECT 

1 58 1.5 1 1.23579588 REJECT 

1 58 1.5 1.25 1.87968612 REJECT 

1 65 1.5 0.85 2.33257624 REJECT 

1 65 1.5 1 1.35447579 ACCEPT 

1 65 1.5 1.25 1.60718226 ACCEPT 

 

Table A.6 Width Consistency Results with Parameter Combinations 

Concentration Nozzle_Speed Nozzle_Diameter H_D_Ratio Width_Consistency Label 

0 228 4 0.85 0.823 ACCEPT 

0 228 4 1 0.618 ACCEPT 

0 228 4 1.25 0.687 ACCEPT 

0 235 4 0.85 0.652 ACCEPT 

0 235 4 1 0.737 ACCEPT 

0 235 4 1.25 0.69 ACCEPT 

0 245 4 0.85 0.531 REJECT 

0 245 4 1 0.661 ACCEPT 

0 245 4 1.25 0.699 ACCEPT 

0 50 1.5 0.85 0.446 REJECT 

0 50 1.5 1 0.418 REJECT 

0 50 1.5 1.25 0.378 REJECT 

0 58 1.5 0.85 0.398 REJECT 

0 58 1.5 1 0.374 REJECT 

0 58 1.5 1.25 0.182 REJECT 

0 65 1.5 0.85 0.239 REJECT 

0 65 1.5 1 0.238 REJECT 

0 65 1.5 1.25 0.246 REJECT 

0.25 228 4 0.85 0.473 REJECT 

0.25 228 4 1 0.4 REJECT 

0.25 228 4 1.25 0.433 REJECT 

0.25 235 4 0.85 0.514 REJECT 

0.25 235 4 1 0.482 REJECT 

0.25 235 4 1.25 0.575 REJECT 
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0.25 245 4 0.85 0.591 REJECT 

0.25 245 4 1 0.669 ACCEPT 

0.25 245 4 1.25 0.623 ACCEPT 

0.25 50 1.5 0.85 0.659 ACCEPT 

0.25 50 1.5 1 0.518 REJECT 

0.25 50 1.5 1.25 0.497 REJECT 

0.25 58 1.5 0.85 0.657 ACCEPT 

0.25 58 1.5 1 0.586 REJECT 

0.25 58 1.5 1.25 0.413 REJECT 

0.25 65 1.5 0.85 0.357 REJECT 

0.25 65 1.5 1 0.605 ACCEPT 

0.25 65 1.5 1.25 0.353 REJECT 

0.5 228 4 0.85 0.745 ACCEPT 

0.5 228 4 1 0.771 ACCEPT 

0.5 228 4 1.25 0.635 ACCEPT 

0.5 235 4 0.85 0.381 REJECT 

0.5 235 4 1 0.422 REJECT 

0.5 235 4 1.25 0.492 REJECT 

0.5 245 4 0.85 0.302 REJECT 

0.5 245 4 1 0.406 REJECT 

0.5 245 4 1.25 0.624 ACCEPT 

0.5 50 1.5 0.85 0.628 ACCEPT 

0.5 50 1.5 1 0.448 REJECT 

0.5 50 1.5 1.25 0.649 ACCEPT 

0.5 58 1.5 0.85 0.468 REJECT 

0.5 58 1.5 1 0.592 REJECT 

0.5 58 1.5 1.25 0.526 REJECT 

0.5 65 1.5 0.85 0.486 REJECT 

0.5 65 1.5 1 0.466 REJECT 

0.5 65 1.5 1.25 0.364 REJECT 

1 228 4 0.85 0.473 REJECT 

1 228 4 1 0.4 REJECT 

1 228 4 1.25 0.433 REJECT 

1 235 4 0.85 0.514 REJECT 

1 235 4 1 0.482 REJECT 

1 235 4 1.25 0.575 REJECT 

1 245 4 0.85 0.591 REJECT 

1 245 4 1 0.669 ACCEPT 

1 245 4 1.25 0.623 ACCEPT 

1 50 1.5 0.8s5 0.659 ACCEPT 

1 50 1.5 1 0.518 REJECT 

1 50 1.5 1.25 0.497 REJECT 

1 58 1.5 0.85 0.657 ACCEPT 

1 58 1.5 1 0.586 REJECT 

1 58 1.5 1.25 0.413 REJECT 

1 65 1.5 0.85 0.357 REJECT 
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1 65 1.5 1 0.605 ACCEPT 

1 65 1.5 1.25 0.353 REJECT 

 

Table A.7 Width Arithmetic Mean Results with Parameter Combinations 

Conc. Nozzle_Speed Nozzle_Diameter H_D_Ratio 

Width_Arithmentic_

Mean_Deviation Label 

0 228 4 0.85 0.242413541 ACCEPT 

0 228 4 1 0.353030525 ACCEPT 

0 228 4 1.25 0.318526495 ACCEPT 

0 235 4 0.85 0.288078336 ACCEPT 

0 235 4 1 0.271724468 ACCEPT 

0 235 4 1.25 0.320459638 ACCEPT 

0 245 4 0.85 0.362350659 ACCEPT 

0 245 4 1 0.256536882 ACCEPT 

0 245 4 1.25 0.281398008 ACCEPT 

0 50 1.5 0.85 2.180282742 REJECT 

0 50 1.5 1 2.149847113 REJECT 

0 50 1.5 1.25 2.163626165 REJECT 

0 58 1.5 0.85 2.151009608 REJECT 

0 58 1.5 1 2.18274042 REJECT 

0 58 1.5 1.25 2.143698078 REJECT 

0 65 1.5 0.85 2.196721661 REJECT 

0 65 1.5 1 2.200132308 REJECT 

0 65 1.5 1.25 2.21118904 REJECT 

0.25 228 4 0.85 1.271076604 REJECT 

0.25 228 4 1 1.351047327 REJECT 

0.25 228 4 1.25 1.384179859 REJECT 

0.25 235 4 0.85 1.279614838 REJECT 

0.25 235 4 1 1.359033646 REJECT 

0.25 235 4 1.25 1.267081067 REJECT 

0.25 245 4 0.85 1.287854992 REJECT 

0.25 245 4 1 1.20028469 REJECT 

0.25 245 4 1.25 1.2484684 REJECT 

0.25 50 1.5 0.85 1.658350342 REJECT 

0.25 50 1.5 1 1.499456281 REJECT 

0.25 50 1.5 1.25 1.900070436 REJECT 

0.25 58 1.5 0.85 1.702977984 REJECT 

0.25 58 1.5 1 1.381651704 REJECT 

0.25 58 1.5 1.25 1.458005136 REJECT 

0.25 65 1.5 0.85 1.242505719 REJECT 

0.25 65 1.5 1 1.826389744 REJECT 

0.25 65 1.5 1.25 1.621443652 REJECT 

0.5 228 4 0.85 0.700645645 ACCEPT 

0.5 228 4 1 0.690584677 ACCEPT 

0.5 228 4 1.25 0.662608134 ACCEPT 
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0.5 235 4 0.85 0.778147429 ACCEPT 

0.5 235 4 1 0.765260378 ACCEPT 

0.5 235 4 1.25 0.728179528 ACCEPT 

0.5 245 4 0.85 0.805934389 REJECT 

0.5 245 4 1 0.813915279 REJECT 

0.5 245 4 1.25 0.745529447 ACCEPT 

0.5 50 1.5 0.85 1.786509362 REJECT 

0.5 50 1.5 1 1.726876223 REJECT 

0.5 50 1.5 1.25 1.770545084 REJECT 

0.5 58 1.5 0.85 1.717131149 REJECT 

0.5 58 1.5 1 1.832249988 REJECT 

0.5 58 1.5 1.25 1.759163782 REJECT 

0.5 65 1.5 0.85 1.727595415 REJECT 

0.5 65 1.5 1 1.782171184 REJECT 

0.5 65 1.5 1.25 1.775396887 REJECT 

1 228 4 0.85 1.271076604 REJECT 

1 228 4 1 1.351047327 REJECT 

1 228 4 1.25 1.384179859 REJECT 

1 235 4 0.85 1.279614838 REJECT 

1 235 4 1 1.359033646 REJECT 

1 235 4 1.25 1.267081067 REJECT 

1 245 4 0.85 1.287854992 REJECT 

1 245 4 1 1.20028469 REJECT 

1 245 4 1.25 1.2484684 REJECT 

1 50 1.5 0.85 1.658350342 REJECT 

1 50 1.5 1 1.499456281 REJECT 

1 50 1.5 1.25 1.900070436 REJECT 

1 58 1.5 0.85 1.702977984 REJECT 

1 58 1.5 1 1.381651704 REJECT 

1 58 1.5 1.25 1.458005136 REJECT 

1 65 1.5 0.85 1.242505719 REJECT 

1 65 1.5 1 1.826389744 REJECT 

1 65 1.5 1.25 1.621443652 REJECT 

 

Table A.8 Width Root Mean Square Results with Parameter Combinations 

Conc. Nozzle_Speed Nozzle_Diameter H_D_Ratio 

Width_Root_Mean

_Square_Deviation Label 

0 228 4 0.85 0.303629971 ACCEPT 

0 228 4 1 0.427540598 ACCEPT 

0 228 4 1.25 0.382581511 ACCEPT 

0 235 4 0.85 0.357616543 ACCEPT 

0 235 4 1 0.340618343 ACCEPT 

0 235 4 1.25 0.39356558 ACCEPT 

0 245 4 0.85 0.423289019 ACCEPT 

0 245 4 1 0.334914669 ACCEPT 
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0 245 4 1.25 0.361134741 ACCEPT 

0 50 1.5 0.85 2.202088349 REJECT 

0 50 1.5 1 2.179588514 REJECT 

0 50 1.5 1.25 2.181549584 REJECT 

0 58 1.5 0.85 2.174050861 REJECT 

0 58 1.5 1 2.197847434 REJECT 

0 58 1.5 1.25 2.16695654 REJECT 

0 65 1.5 0.85 2.215598974 REJECT 

0 65 1.5 1 2.221584245 REJECT 

0 65 1.5 1.25 2.235723098 REJECT 

0.25 228 4 0.85 1.293308518 REJECT 

0.25 228 4 1 1.386987433 REJECT 

0.25 228 4 1.25 1.420156538 REJECT 

0.25 235 4 0.85 1.331184403 REJECT 

0.25 235 4 1 1.405024384 REJECT 

0.25 235 4 1.25 1.335091382 REJECT 

0.25 245 4 0.85 1.362012346 REJECT 

0.25 245 4 1 1.268360888 REJECT 

0.25 245 4 1.25 1.300421394 REJECT 

0.25 50 1.5 0.85 2.029398608 REJECT 

0.25 50 1.5 1 1.780878369 REJECT 

0.25 50 1.5 1.25 2.478749532 REJECT 

0.25 58 1.5 0.85 2.110278261 REJECT 

0.25 58 1.5 1 1.590871132 REJECT 

0.25 58 1.5 1.25 1.676665128 REJECT 

0.25 65 1.5 0.85 1.283134911 REJECT 

0.25 65 1.5 1 2.297046206 REJECT 

0.25 65 1.5 1.25 2.066071614 REJECT 

0.5 228 4 0.85 0.736575389 ACCEPT 

0.5 228 4 1 0.743939705 ACCEPT 

0.5 228 4 1.25 0.720071166 ACCEPT 

0.5 235 4 0.85 0.831007858 ACCEPT 

0.5 235 4 1 0.811363182 ACCEPT 

0.5 235 4 1.25 0.77541455 ACCEPT 

0.5 245 4 0.85 0.880601329 ACCEPT 

0.5 245 4 1 0.861377492 ACCEPT 

0.5 245 4 1.25 0.787831095 ACCEPT 

0.5 50 1.5 0.85 1.808761141 REJECT 

0.5 50 1.5 1 1.754903087 REJECT 

0.5 50 1.5 1.25 1.79325398 REJECT 

0.5 58 1.5 0.85 1.740806648 REJECT 

0.5 58 1.5 1 1.853986671 REJECT 

0.5 58 1.5 1.25 1.786555164 REJECT 

0.5 65 1.5 0.85 1.751071874 REJECT 

0.5 65 1.5 1 1.807806988 REJECT 

0.5 65 1.5 1.25 1.799187715 REJECT 
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1 228 4 0.85 1.293308518 REJECT 

1 228 4 1 1.386987433 REJECT 

1 228 4 1.25 1.420156538 REJECT 

1 235 4 0.85 1.331184403 REJECT 

1 235 4 1 1.405024384 REJECT 

1 235 4 1.25 1.335091382 REJECT 

1 245 4 0.85 1.362012346 REJECT 

1 245 4 1 1.268360888 REJECT 

1 245 4 1.25 1.300421394 REJECT 

1 50 1.5 0.85 2.029398608 REJECT 

1 50 1.5 1 1.780878369 REJECT 

1 50 1.5 1.25 2.478749532 REJECT 

1 58 1.5 0.85 2.110278261 REJECT 

1 58 1.5 1 1.590871132 REJECT 

1 58 1.5 1.25 1.676665128 REJECT 

1 65 1.5 0.85 1.283134911 REJECT 

1 65 1.5 1 2.297046206 REJECT 

1 65 1.5 1.25 2.066071614 REJECT 

 

Table A.9 Thickness Mode Results with Parameter Combinations 

Conc. Nozzle_Speed Nozzle_Diameter H_D_Ratio Thickness_Mode Label 

0 228 4 0.85 4.533685893 ACCEPT 

0 228 4 1 4.031029619 ACCEPT 

0 228 4 1.25 4.263015873 ACCEPT 

0 235 4 0.85 4.749831012 REJECT 

0 235 4 1 4.625991348 REJECT 

0 235 4 1.25 4.635766276 REJECT 

0 245 4 0.85 4.143853635 ACCEPT 

0 245 4 1 5.688182817 REJECT 

0 245 4 1.25 5.083107238 REJECT 

0 50 1.5 0.85 1.770334363 REJECT 

0 50 1.5 1 1.736266862 REJECT 

0 50 1.5 1.25 2.585910829 REJECT 

0 58 1.5 0.85 1.755946937 REJECT 

0 58 1.5 1 1.889715578 REJECT 

0 58 1.5 1.25 1.946946991 REJECT 

0 65 1.5 0.85 2.837941725 REJECT 

0 65 1.5 1 2.12115374 REJECT 

0 65 1.5 1.25 2.873957831 REJECT 

0.25 228 4 0.85 4.250223499 ACCEPT 

0.25 228 4 1 4.047491635 ACCEPT 

0.25 228 4 1.25 4.013891036 ACCEPT 

0.25 235 4 0.85 4.439332975 ACCEPT 

0.25 235 4 1 4.627008508 REJECT 
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0.25 235 4 1.25 4.385476312 ACCEPT 

0.25 245 4 0.85 4.613116908 REJECT 

0.25 245 4 1 4.413796009 ACCEPT 

0.25 245 4 1.25 4.516562798 ACCEPT 

0.25 50 1.5 0.85 1.702616196 ACCEPT 

0.25 50 1.5 1 1.569672936 ACCEPT 

0.25 50 1.5 1.25 1.619907935 ACCEPT 

0.25 58 1.5 0.85 1.629784468 ACCEPT 

0.25 58 1.5 1 1.638502995 ACCEPT 

0.25 58 1.5 1.25 2.607859385 REJECT 

0.25 65 1.5 0.85 3.902040081 REJECT 

0.25 65 1.5 1 1.880706266 REJECT 

0.25 65 1.5 1.25 1.816396662 REJECT 

0.5 228 4 0.85 4.855523534 REJECT 

0.5 228 4 1 4.459296141 ACCEPT 

0.5 228 4 1.25 4.306424936 ACCEPT 

0.5 235 4 0.85 4.291207686 ACCEPT 

0.5 235 4 1 4.822023481 REJECT 

0.5 235 4 1.25 4.555791465 ACCEPT 

0.5 245 4 0.85 4.35578937 ACCEPT 

0.5 245 4 1 4.553939071 ACCEPT 

0.5 245 4 1.25 4.257735657 ACCEPT 

0.5 50 1.5 0.85 1.763767686 REJECT 

0.5 50 1.5 1 2.038217023 REJECT 

0.5 50 1.5 1.25 1.399050782 ACCEPT 

0.5 58 1.5 0.85 2.855519387 REJECT 

0.5 58 1.5 1 1.94960017 REJECT 

0.5 58 1.5 1.25 1.713554608 ACCEPT 

0.5 65 1.5 0.85 3.699889616 REJECT 

0.5 65 1.5 1 1.822849382 REJECT 

0.5 65 1.5 1.25 2.062606373 REJECT 

1 228 4 0.85 4.250223499 ACCEPT 

1 228 4 1 4.047491635 ACCEPT 

1 228 4 1.25 4.013891036 ACCEPT 

1 235 4 0.85 4.439332975 ACCEPT 

1 235 4 1 4.627008508 REJECT 

1 235 4 1.25 4.385476312 ACCEPT 

1 245 4 0.85 4.613116908 REJECT 

1 245 4 1 4.413796009 ACCEPT 

1 245 4 1.25 4.516562798 ACCEPT 

1 50 1.5 0.85 1.702616196 ACCEPT 

1 50 1.5 1 1.569672936 ACCEPT 

1 50 1.5 1.25 1.619907935 ACCEPT 

1 58 1.5 0.85 1.629784468 ACCEPT 

1 58 1.5 1 1.638502995 ACCEPT 

1 58 1.5 1.25 2.607859385 REJECT 
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1 65 1.5 0.85 3.902040081 REJECT 

1 65 1.5 1 1.880706266 REJECT 

1 65 1.5 1.25 1.816396662 REJECT 

 

Table A.10 Thickness Consistency Results with Parameter Combinations 

Concentration Nozzle_Speed Nozzle_Diameter H_D_Ratio 

Thickness_C

onsistency Label 

0 228 4 0.85 0.856 ACCEPT 

0 228 4 1 0.533 REJECT 

0 228 4 1.25 0.803 ACCEPT 

0 235 4 0.85 0.791 ACCEPT 

0 235 4 1 0.891 ACCEPT 

0 235 4 1.25 0.777 ACCEPT 

0 245 4 0.85 0.384 REJECT 

0 245 4 1 0.727 REJECT 

0 245 4 1.25 0.819 ACCEPT 

0 50 1.5 0.85 0.662 REJECT 

0 50 1.5 1 0.757 ACCEPT 

0 50 1.5 1.25 0.414 REJECT 

0 58 1.5 0.85 0.623 REJECT 

0 58 1.5 1 0.422 REJECT 

0 58 1.5 1.25 0.162 REJECT 

0 65 1.5 0.85 0.354 REJECT 

0 65 1.5 1 0.412 REJECT 

0 65 1.5 1.25 0.4 REJECT 

0.25 228 4 0.85 0.587 REJECT 

0.25 228 4 1 0.502 REJECT 

0.25 228 4 1.25 0.508 REJECT 

0.25 235 4 0.85 0.578 REJECT 

0.25 235 4 1 0.584 REJECT 

0.25 235 4 1.25 0.558 REJECT 

0.25 245 4 0.85 0.657 REJECT 

0.25 245 4 1 0.732 REJECT 

0.25 245 4 1.25 0.664 REJECT 

0.25 50 1.5 0.85 0.703 REJECT 

0.25 50 1.5 1 0.496 REJECT 

0.25 50 1.5 1.25 0.538 REJECT 

0.25 58 1.5 0.85 0.85 ACCEPT 

0.25 58 1.5 1 0.783 ACCEPT 

0.25 58 1.5 1.25 0.58 REJECT 

0.25 65 1.5 0.85 0.208 REJECT 

0.25 65 1.5 1 0.587 REJECT 

0.25 65 1.5 1.25 0.253 REJECT 

0.5 228 4 0.85 0.861 ACCEPT 

0.5 228 4 1 0.809 ACCEPT 
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0.5 228 4 1.25 0.764 ACCEPT 

0.5 235 4 0.85 0.415 REJECT 

0.5 235 4 1 0.518 REJECT 

0.5 235 4 1.25 0.669 REJECT 

0.5 245 4 0.85 0.25 REJECT 

0.5 245 4 1 0.414 REJECT 

0.5 245 4 1.25 0.787 ACCEPT 

0.5 50 1.5 0.85 0.646 REJECT 

0.5 50 1.5 1 0.482 REJECT 

0.5 50 1.5 1.25 0.656 REJECT 

0.5 58 1.5 0.85 0.366 REJECT 

0.5 58 1.5 1 0.514 REJECT 

0.5 58 1.5 1.25 0.787 ACCEPT 

0.5 65 1.5 0.85 0.311 REJECT 

0.5 65 1.5 1 0.493 REJECT 

0.5 65 1.5 1.25 0.347 REJECT 

1 228 4 0.85 0.587 REJECT 

1 228 4 1 0.502 REJECT 

1 228 4 1.25 0.508 REJECT 

1 235 4 0.85 0.578 REJECT 

1 235 4 1 0.584 REJECT 

1 235 4 1.25 0.558 REJECT 

1 245 4 0.85 0.657 REJECT 

1 245 4 1 0.732 REJECT 

1 245 4 1.25 0.664 REJECT 

1 50 1.5 0.85 0.703 REJECT 

1 50 1.5 1 0.496 REJECT 

1 50 1.5 1.25 0.538 REJECT 

1 58 1.5 0.85 0.85 ACCEPT 

1 58 1.5 1 0.783 ACCEPT 

1 58 1.5 1.25 0.58 REJECT 

1 65 1.5 0.85 0.208 REJECT 

1 65 1.5 1 0.587 REJECT 

1 65 1.5 1.25 0.253 REJECT 

 

Table A.11 Thickness Arithmetic Mean Results with Parameter Combinations 

Conc. Nozzle_Speed Nozzle_Diameter H_D_Ratio 

Thickness_Arithment

ic_Mean_Deviation Label 

0 228 4 0.85 0.294393667 ACCEPT 

0 228 4 1 0.270901979 ACCEPT 

0 228 4 1.25 0.275329765 ACCEPT 

0 235 4 0.85 0.276689277 ACCEPT 

0 235 4 1 0.257250695 ACCEPT 

0 235 4 1.25 0.232995442 ACCEPT 

0 245 4 0.85 0.283370986 ACCEPT 
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0 245 4 1 0.269104137 ACCEPT 

0 245 4 1.25 0.253277253 ACCEPT 

0 50 1.5 0.85 2.792020454 REJECT 

0 50 1.5 1 2.798061515 REJECT 

0 50 1.5 1.25 2.79525337 REJECT 

0 58 1.5 0.85 2.749838894 REJECT 

0 58 1.5 1 2.796688328 REJECT 

0 58 1.5 1.25 2.59700431 REJECT 

0 65 1.5 0.85 2.825696289 REJECT 

0 65 1.5 1 2.753941758 REJECT 

0 65 1.5 1.25 2.778651487 REJECT 

0.25 228 4 0.85 0.447528761 ACCEPT 

0.25 228 4 1 0.390994196 ACCEPT 

0.25 228 4 1.25 0.395661685 ACCEPT 

0.25 235 4 0.85 0.412064377 ACCEPT 

0.25 235 4 1 0.435236468 ACCEPT 

0.25 235 4 1.25 0.593960711 ACCEPT 

0.25 245 4 0.85 0.583276378 ACCEPT 

0.25 245 4 1 0.765141137 REJECT 

0.25 245 4 1.25 0.563660397 ACCEPT 

0.25 50 1.5 0.85 4.406349226 REJECT 

0.25 50 1.5 1 4.014842178 REJECT 

0.25 50 1.5 1.25 4.190579604 REJECT 

0.25 58 1.5 0.85 4.430765584 REJECT 

0.25 58 1.5 1 4.172028909 REJECT 

0.25 58 1.5 1.25 4.029744117 REJECT 

0.25 65 1.5 0.85 2.974414408 REJECT 

0.25 65 1.5 1 4.375539671 REJECT 

0.25 65 1.5 1.25 3.656777813 REJECT 

0.5 228 4 0.85 0.770948938 REJECT 

0.5 228 4 1 0.710830155 REJECT 

0.5 228 4 1.25 0.767909415 REJECT 

0.5 235 4 0.85 0.637205544 REJECT 

0.5 235 4 1 0.645522205 REJECT 

0.5 235 4 1.25 0.675875948 REJECT 

0.5 245 4 0.85 0.663238497 REJECT 

0.5 245 4 1 0.712421206 REJECT 

0.5 245 4 1.25 0.743670391 REJECT 

0.5 50 1.5 0.85 3.197877309 REJECT 

0.5 50 1.5 1 3.288055768 REJECT 

0.5 50 1.5 1.25 3.256033763 REJECT 

0.5 58 1.5 0.85 3.208801913 REJECT 

0.5 58 1.5 1 3.192190227 REJECT 

0.5 58 1.5 1.25 3.211125687 REJECT 

0.5 65 1.5 0.85 3.185790604 REJECT 

0.5 65 1.5 1 3.233153103 REJECT 
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0.5 65 1.5 1.25 3.226570865 REJECT 

1 228 4 0.85 0.447528761 ACCEPT 

1 228 4 1 0.390994196 ACCEPT 

1 228 4 1.25 0.395661685 ACCEPT 

1 235 4 0.85 0.412064377 ACCEPT 

1 235 4 1 0.435236468 ACCEPT 

1 235 4 1.25 0.593960711 ACCEPT 

1 245 4 0.85 0.583276378 ACCEPT 

1 245 4 1 0.765141137 REJECT 

1 245 4 1.25 0.563660397 ACCEPT 

1 50 1.5 0.85 4.406349226 REJECT 

1 50 1.5 1 4.014842178 REJECT 

1 50 1.5 1.25 4.190579604 REJECT 

1 58 1.5 0.85 4.430765584 REJECT 

1 58 1.5 1 4.172028909 REJECT 

1 58 1.5 1.25 4.029744117 REJECT 

1 65 1.5 0.85 2.974414408 REJECT 

1 65 1.5 1 4.375539671 REJECT 

1 65 1.5 1.25 3.656777813 REJECT 

 

Table A.12 Thickness Root Mean Square Results with Parameter Combinations 

Conc. Nozzle_Speed Nozzle_Diameter H_D_Ratio 

Thickness_Root_Mea

n_Square_Deviation Label 

0 228 4 0.85 0.410284092 ACCEPT 

0 228 4 1 0.325046893 ACCEPT 

0 228 4 1.25 0.384478655 ACCEPT 

0 235 4 0.85 0.404465386 ACCEPT 

0 235 4 1 0.459343163 ACCEPT 

0 235 4 1.25 0.46200976 ACCEPT 

0 245 4 0.85 0.358321988 ACCEPT 

0 245 4 1 0.403491816 ACCEPT 

0 245 4 1.25 0.442217154 ACCEPT 

0 50 1.5 0.85 2.815375576 REJECT 

0 50 1.5 1 2.813359786 REJECT 

0 50 1.5 1.25 2.827093159 REJECT 

0 58 1.5 0.85 2.779691296 REJECT 

0 58 1.5 1 2.811748743 REJECT 

0 58 1.5 1.25 2.678375693 REJECT 

0 65 1.5 0.85 2.832926841 REJECT 

0 65 1.5 1 2.780237627 REJECT 

0 65 1.5 1.25 2.79684009 REJECT 

0.25 228 4 0.85 0.56795297 ACCEPT 

0.25 228 4 1 0.563721804 ACCEPT 

0.25 228 4 1.25 0.538119077 ACCEPT 

0.25 235 4 0.85 0.554417045 ACCEPT 
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0.25 235 4 1 0.571379842 ACCEPT 

0.25 235 4 1.25 0.700114714 ACCEPT 

0.25 245 4 0.85 0.946368226 REJECT 

0.25 245 4 1 1.331932853 REJECT 

0.25 245 4 1.25 0.68414966 ACCEPT 

0.25 50 1.5 0.85 5.534278352 REJECT 

0.25 50 1.5 1 4.699987581 REJECT 

0.25 50 1.5 1.25 5.138834365 REJECT 

0.25 58 1.5 0.85 5.577838226 REJECT 

0.25 58 1.5 1 5.309440832 REJECT 

0.25 58 1.5 1.25 4.863033492 REJECT 

0.25 65 1.5 0.85 3.104923079 REJECT 

0.25 65 1.5 1 5.51336538 REJECT 

0.25 65 1.5 1.25 4.753290762 REJECT 

0.5 228 4 0.85 0.813751656 REJECT 

0.5 228 4 1 0.773851186 ACCEPT 

0.5 228 4 1.25 0.823601495 REJECT 

0.5 235 4 0.85 0.72912343 ACCEPT 

0.5 235 4 1 0.758085526 ACCEPT 

0.5 235 4 1.25 0.748748301 ACCEPT 

0.5 245 4 0.85 0.82255247 REJECT 

0.5 245 4 1 0.821437069 REJECT 

0.5 245 4 1.25 0.795498507 ACCEPT 

0.5 50 1.5 0.85 3.216006579 REJECT 

0.5 50 1.5 1 3.308887619 REJECT 

0.5 50 1.5 1.25 3.269471741 REJECT 

0.5 58 1.5 0.85 3.231107317 REJECT 

0.5 58 1.5 1 3.208232713 REJECT 

0.5 58 1.5 1.25 3.233946438 REJECT 

0.5 65 1.5 0.85 3.198683876 REJECT 

0.5 65 1.5 1 3.250611625 REJECT 

0.5 65 1.5 1.25 3.249697633 REJECT 

1 228 4 0.85 0.56795297 ACCEPT 

1 228 4 1 0.563721804 ACCEPT 

1 228 4 1.25 0.538119077 ACCEPT 

1 235 4 0.85 0.554417045 ACCEPT 

1 235 4 1 0.571379842 ACCEPT 

1 235 4 1.25 0.700114714 ACCEPT 

1 245 4 0.85 0.946368226 REJECT 

1 245 4 1 1.331932853 REJECT 

1 245 4 1.25 0.68414966 ACCEPT 

1 50 1.5 0.85 5.534278352 REJECT 

1 50 1.5 1 4.699987581 REJECT 

1 50 1.5 1.25 5.138834365 REJECT 

1 58 1.5 0.85 5.577838226 REJECT 

1 58 1.5 1 5.309440832 REJECT 
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1 58 1.5 1.25 4.863033492 REJECT 

1 65 1.5 0.85 3.104923079 REJECT 

1 65 1.5 1 5.51336538 REJECT 

1 65 1.5 1.25 4.753290762 REJECT 

 

Code A.1: MATLAB Code for Data Labeling 

% Clear variables from the workspace 

clear 

clear all 

clc 

% Read the data generated from the experiment 

T=readtable("C:\Users\smitt\Downloads\SHIVANI-REVISED\SHIVANI-

REVISED\DISCRIMINANTANALYSIS\DATALABELLING\WIDTH\ResultSheetWidthAV

ERAGE.xlsx") 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Assign variable to the predictors and response 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Concentration=T.Concentration; 

Nozzle_Speed=T.Nozzle_Speed; 

Nozzle_Diameter=T.Nozzle_Diameter; 

H_D_Ratio =T. H_D_Ratio; 

% Width_Mode (or any other shape fidelity metric) 

Width_Mode=T.Width_Mode; 

% Preallocate memory to store the labels 

Label=categorical(zeros(size(T,1),1)); 

% Calling loop to each row of the table 

for k=1:size(T,1) 
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    % Reference response 

    a1=T.Nozzle_Diameter(k); 

    % Measured response 

    a2=T.Width_Mode(k); 

    % Percentage difference between reference and measured response 

    da=(abs(a1-a2)/a1)*100; 

    % Criteria for assigning label to data based on the acceptable and unacceptable limits 

    if (da <=10) 

        Label(k,1)=char('ACCEPT'); 

    else 

        Label(k,1)=char('REJECT'); 

    end 

end 

% Create table using the predictors and response variables as well as the variable for labels 

TL=table(Concentration, Nozzle_Speed, Nozzle_Diameter, H_D_Ratio, Width_Mode,Label); 

% Write the new table to the file 

writetable(TL,'C:\Users\smitt\Downloads\SHIVANIREVISED\SHIVANIREVISED\DISCR

MINANTANALYSIS\DATALABELLING\WIDTH\ResultSheetWidthAVERAGEwithLabels

.xlsx') 

 

Code A.2: MATLAB Code to split data into training and testing for LDA 

% Clear variables from workspace 

clear 

clear all 

clc 
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% Read table that contains labels 

T=readtable("C:\Users\smitt\Downloads\SHIVANIREVISED\SHIVANIREVISED\DISCRIM

INANTANALYSIS\SPLITTRAINTEST\WIDTH\WIDTHMODE\ResultSheetWidthAVERA

GEwithLabels.xlsx"); 

% Assign variable to the labels in the table 

Labels=T.Label; 

% Create indices for the 10-fold cross-validation. 

indices=crossvalind('Kfold',Labels,10); 

%%%%%%%%%%%%%%%%%%%%%%%%% 

% DEFINE PARTITION 

%%%%%%%%%%%%%%%%%%%%%%%%% 

% Preallocate memory to 10-fold partition 

Partition=zeros(size(Labels,1),10); 

% Calling loop to each indices 

for k1 = 1:10 

    % Current test index 

    test=(indices==k1); 

    % Indices in the data belonging to the test set 

    indTe=find(test); 

    % Assign the test set indices to the 10-fold partition 

    Partition(indTe,k1)=1; 

    % Current training index 

    train=~test; 

    % Indices in the data belonging to the training set 

    indTr=find(train); 
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    % Assign the training set indices to the 10-fold partition 

    Partition(indTr,k1)=0; 

end 

% Preallocate memory to store the classification accuracy for each fold 

Acc1=zeros(1,10); 

% Calling loop to each of the 10 fold 

for k2=1:size(Partition,2) 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % SPLIT DATA INTO TRAINING AND TEST SETS 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % Training set indices 

    indTrain=find(Partition(:,k2)==0); 

    % Test set indices 

    indTest=find(Partition(:,k2)==1) 

    % Training set 

    TrainSet=T(indTrain,1:5); 

    % Training set labels 

    TrainSetResponse=T(indTrain,6); 

    % Test set 

    TestSet=T(indTest,1:5); 

    % Test labels 

    TestSetResponse1=T(indTest,6); 

    % True labels converted from table to cell format 

    labels=table2cell(TestSetResponse1) 



 

109 
 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % TRAIN CLASSIFIER 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    Mdl=fitcdiscr(TrainSet,TrainSetResponse); 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % TESTING - EVALUATE CLASSIFIER 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    PredLabels = predict(Mdl,TestSet); 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 % EVALUATION PARAMETERS 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % Compute the confusion matri 

    ConfMatrixT=confusionmat(labels,PredLabels); 

    % Invert to define true positive as 'ACCEPTABLE' and true negative as 'REJECT' 

    ConfMatrixT=ConfMatrixT'; 

    % Compute the evaluation parameters 

 [ACC2,TPR2,TNR2,Prec_Accpt2,Prec_Rejt2]=ConfMatrix2EvalutionParam(ConfMatrixT); 

    % Accuracy 

    ACC1(1,k2)=ACC2; 

    % True positive rate 

    TPR1(1,k2)=TPR2; 

    % True negative rate 

    TNR1(1,k2)=TNR2; 

    % Precision Accept 
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    Prec_Accpt1(1,k2)=Prec_Accpt2; 

    % Precision Reject 

    Prec_Rejt1(1,k2)=Prec_Rejt2; 

end 

% Average acccuracy 

ACC=mean(ACC1) 

% Average true positive rate 

TPR=mean(TPR1) 

% Average true negative rate 

TNR=mean(TNR1) 

% Average precison accept 

Prec_Accpt=mean(Prec_Accpt1) 

% Average precison reject 

Prec_Rejt=mean(Prec_Rejt1) 

 

Code A.3: MATLAB Code for computing five performance evaluation parameters from 

the confusion matrix 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [ACC,TPR,TNR,PrecFem,PrecMale]=ConfMatrix2EvalutionParam(ConfMatrix) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This matlab code computes five performance evaluation parameters from the 

% confusion matrix 

%%%%%%%%%%%%%%%% 

% INPUT 

%%%%%%%%%%%%%%%% 
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% ConfMatrix - Confusion matrix 

%%%%%%%%%%%%%%%% 

% OUTPUT 

%%%%%%%%%%%%%%%% 

% ACC - Accuracy 

% TPR - True positive rate 

% TNR - True negative rate 

% PrecFem - Precision female 

% PrecMale - Precision male 

% Copyright © 2022 by Dr. Michael Osadebey 

% MatrixSpec Solutions Inc. 

% All rights of this code belong to MatrixSpec Solution Inc. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Compute the evaluation parameters 

% ACC 

ACC=(ConfMatrix(1,1)+ConfMatrix(2,2))/sum(ConfMatrix(:)); 

% TPR 

TPR=ConfMatrix(2,2)/sum(ConfMatrix(2,:)); 

% TNR 

TNR=ConfMatrix(1,1)/sum(ConfMatrix(1,:)); 

% Precision Female 

PrecFem=ConfMatrix(2,2)/sum(ConfMatrix(:,2)); 

% Precision Male 

PrecMale=ConfMatrix(1,1)/sum(ConfMatrix(:,1)); 


