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ABSTRACT  

An error-in-variables-model (EVM) framework is presented for the optimal estimation of 

reactivity ratios in copolymerization systems. This framework consists of several sequential steps 

and practical prescriptions that can yield reliable and statistically correct reactivity ratio values. 

These steps include: (a) screening experiments for estimating preliminary reactivity ratios, (b) 

optimal design of experiments, (c) full conversion range experiments and estimation of optimal 

reactivity ratios, and if necessary, (d) design of sequentially optimal experiments, re-estimation 

of reactivity ratios and diagnostic checks. This complete methodology should become common 

practice for determining reactivity ratios with the highest possible level of confidence. The 

performance of this framework is verified experimentally with data from the controlled 

nitroxide-mediated copolymerization of 9-(4-vinylbenzyl)-9H-carbazole (VBK) and methyl 

methacrylate (MMA), a novel and largely unstudied copolymer system.  

 

INTRODUCTION 

There is no doubt about the importance of reactivity ratios in copolymerization (simplest case) 

and other multicomponent polymerizations, for describing chain microstructure and hence 

determining polymer chain composition and sequence length. At the same time, there is also no 

doubt that these important copolymerization parameters have been estimated  incorrectly for 

several decades and are still being handled incorrectly (from a statistical estimation perspective) 

in the scientific literature.1,2 This has resulted in a database of relatively biased and unreliable 

reactivity ratios.  
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The majority of current techniques used by polymer chemists to determine reactivity ratios are 

incorrect and the associated pitfalls of these techniques have been described in detail over the 

last three decades.1-5 Unfortunately, despite these and other pioneering efforts,6 what has been 

missing is not only a (statistically) correct estimation, but also the optimal design of experiments. 

Not only are reactivity ratios not correctly estimated based on collected experimental data, but 

also the experimental trials conducted to collect the required data are poorly designed (i.e., initial 

feed fractions at which to run copolymerizations are not optimally located). The issue is further 

compounded by the fact that the experiments conducted are not replicated, and therefore, they do 

not yield the necessary estimate of the underlying experimental error.  

This brings us to a currently observed paradox in the scientific literature. Combining design of 

experiments techniques with any parameter estimation problem is highly recommended as a 

problem-solving approach but rarely practiced! 

The parameter estimation question has been revisited in great detail in recent publications.7,8 

Taking the estimation question a step further (literally, a step before the estimation stage), 

Kazemi et al.9 looked at different optimal design (of experimental trials) criteria that can lead to 

more reliable reactivity ratio estimates, highly superior to those from other currently 

implemented techniques. 

In the current publication, we describe the full story of how one can go from preliminary 

reactivity ratio estimates to optimal estimates, i.e., we give an overview of the (statistically) 

correct design of experiments followed by the (statistically) correct parameter estimation. The 

steps are iterative, sequential and optimal, and deal with nonlinear mathematical models and 

estimation procedures. The overall procedure is experimentally demonstrated and verified with 

data from a largely unstudied and novel copolymerization system, the nitroxide-mediated 
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controlled radical copolymerization between 9-(4-vinylbenzyl)-9H-carbazole (VBK) and methyl 

methacrylate (MMA).10 

REACTIVITY RATIO DETERMINATION: THE COMPLETE EVM 
FRAMEWORK 

In this section a complete framework for the reactivity ratio estimation problem is presented 

and the individual steps are described. This complete framework is based on the error-in-

variables-model (EVM) method. The EVM method is a parameter estimation technique suitable 

for problems where all the variables are subject to error, i.e., dependent and independent 

variables are not distinguishable (as opposed to classical regression analysis).11 This feature 

makes EVM the perfect method for estimating reactivity ratios in multicomponent 

polymerizations.1,2,7   

Since collecting experimental data that result in precise parameter estimates is a resource-

intensive task, there is always a need for designing experiments in an optimal fashion, thus 

minimizing the overall effort and maximizing the information from the process in question. Such 

a procedure consists of a series of alternating steps between designing experiments and using the 

optimally obtained experimental data for parameter estimation, which continues until the 

parameter estimates achieve satisfactory levels of precision. It is therefore desirable to combine 

the design of experiments technique with the EVM procedure in one multifaceted framework in 

order to improve the quality of the parameter estimation results. This structure is briefly 

explained in the three sections ((1) to (3)) that follow:  

Parameter estimation and design of experiments 

Full conversion range experiments 

Recommended steps 
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(1) Parameter estimation and design of experiments  

The basis of the EVM framework for parameter estimation was proposed originally by Reilly 

and Patino-Leal.11 The algorithm was specifically applied to the problem of estimating reactivity 

ratios for copolymerization systems by Dube et al.1 and Polic et al.2, and further detailed 

explanations about it can be found in Kazemi et al.8, where the latest methodology for using this 

algorithm and several key factors for its numerical implementation are highlighted.   

At first, the vector of measurements ix  is equated to the vector of true (yet unknown) values 

i
ξ , plus a multiplicative error term, ikε , as shown in equation (1),  

)1( iii kx εξ +=                  where  i=1,2,…,n                                                                                (1) 

where i refers to the trial number, k  is a constant, and iε  is a random variable, which, in the 

simplest case, has a uniform distribution in the interval from -1 to 1. The value of the constant k  

for different variables in a problem could be different, as the amount of uncertainty in data 

coming from different sources may be different. A log transformation of the variables in 

equation (1) is also necessary so that the error term becomes additive. Taking logarithms of both 

sides of equation (1), )1ln( εk+  can be replaced by εk , provided that the magnitude of the error 

does not exceed 10% ( k  < 0.1). The error structure is chosen to be multiplicative (relative) due 

to the nature of the actual (physical) measurements in the reactivity ratio estimation problem. 

The measurement errors for all the variables appear in the variance-covariance matrix of the 

measurements, V  (to be used shortly), which is non-singular and known. As simple algebra can 

show, for each variable,12 the corresponding element in V  is 3/2k . 

In addition to equation (1), there is a statement that relates the true (yet unknown) values of the 

parameters, *θ , and variables, 
i

ξ , via the mathematical model, represented by equation (2). 
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0),( * =θξ
i

g           where   i=1,2,…,n                                                                                          (2) 

Using a Bayesian approach, the objective function for minimization in order to find the point 

estimates, θ̂ , is given by equation (3), where ir  is the number of replicates at the ith trial, ix  is 

the average of the ir measurements  ix , and 
i

ξ̂  denotes estimates of the true values of the 

variables 
i

ξ .  
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The procedure for parameter estimation is a nested iterative one. There is a main iterative loop 

that searches for the parameter values (minimizing equation (3)), while an  inner loop finds the 

true values of the variables. This procedure results in both parameter estimates and estimates of 

the true values of the variables. Finally, point estimates should be accompanied by joint 

confidence regions that reflect their level of uncertainty (for more details on these steps, see the 

recent discussion in Kazemi et al.8). 

To design experiments for parameter estimation in the EVM context, we should extend the 

ideas from classical nonlinear regression analysis12,13 to EVM by maximizing the determinant of 

the information matrix (which aims at reducing the elements of the variance-covariance matrix 

of the parameters).14 The information matrix, which is the inverse of the variance-covariance 

matrix of the parameters, is given by matrix G , in equation (4), as the second derivatives of φ  

with respect to the parameters. G is computed by equation (5). This forms the basis for locating 

optimal experiments. 
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iZ  is the vector of partial derivatives of the (model) function, ),( *θξ
i

g , with respect to the 

parameters, and iB  is the vector of partial derivatives of the function, ),( *θξ
i

g , with respect to 

the variables, given respectively by equations (6) and (7). 
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Generally, there are two approaches for model-based design of experiments, namely, initial 

and sequential design.14,15 The initial design refers to the problem where no prior information is 

available and the objective is to design initial trials in order to collect the first data set and 

commence the parameter estimation process. The design criterion for maximization is given by 

equation (8). The constraints for this problem are the function (model) itself as well as lower (L) 

and upper (U) bounds of the experimentally feasible region. 

iiii

n

i
i ZBVBZrMax 1''

1
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∑ξ                                                                                                            (8) 
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In the sequential design of experiments scheme, on the other hand, and after having conducted 

a set of n prior experiments, it is desired to find the optimal location of the next experiment(s) 

which can increase the precision of the results. Such a procedure consists of a series of 

alternating steps between designing experiments, using the experimental data for parameter 
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estimation, and designing further experiments. This continues until the parameter estimates 

achieve a satisfactory level of precision. The objective function is given by equation (9) and the 

constraints are similar to those discussed for equation (8).14 In equation (9), the hat sign (^) 

denotes that the converged parameter estimates from the first set of n experiments are being used 

to compute iB and iZ  (as per equations (6) and (7), respectively). 

1
1

111
1

1
ˆ

ˆ)ˆˆ(ˆˆ)ˆˆ(ˆ
1

+
−

++′+
−

=

′+






 ′∑
+

nnnnnnnn

n

i
i ZBVBZZBVBZrMax

n
ξ

                                                                     (9) 

           subject to




≤≤
=

+

+

UL
g

n

n

1

1
0),(

ξ
θξ

  

For designing experiments for the purpose of estimating reactivity ratios, perhaps the most 

cited work is by Tidwell and Mortimer.6 The very useful (and often ignored) Tidwell-Mortimer 

criterion is, however, based on the assumptions of classical nonlinear regression. The criterion 

results in two optimal initial feed compositions, 11f  and 12f , with respect to the mole fraction of 

monomer 1, shown in equation (10). These two optimal compositions are solely functions of 

(initially available) reactivity ratios. 

1
11 2

2
r

f
+

≅  , 
2

2
12 2 r

rf
+

≅                                                                                                             (10)  

But, as mentioned above, the nature of the reactivity ratio estimation problem is different from 

traditional nonlinear regression analysis, in that there are errors in all the variables. Because of 

this difference, the assumptions behind the Tidwell-Mortimer criterion do not hold for this 

problem and thus using equation (10) to choose optimal experiments is not appropriate within the 

EVM context. Implementation of the EVM design criterion, both with initial and sequential 

design schemes (as shown in equations (8) and (9), respectively), has recently been described in 

Kazemi et al.9, with extensive details about the method, the equations, and the overall algorithm. 
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(2) Full conversion range experiments 

For the purpose of reactivity ratio estimation in copolymerization systems, there have been 

numerous publications in the literature over the past 50 years, during which two main approaches 

have established themselves. The first and main practice is to use low conversion experimental 

data with the instantaneous copolymer composition model (the so-called Mayo-Lewis model). 

The second approach, as already mentioned previously, is to use the Tidwell-Mortimer 

equations6 to identify feed mole fractions for the design of experiments for reactivity ratio 

estimation. Both of these methodologies have drawbacks, with the former having much more 

severe defects than the latter. In our EVM framework, these two techniques have been modified 

in order to avoid their underlying problems. Similar to the explanations regarding the design of 

experiments problem (discussed in the previous section), other modifications, mainly related to 

the low conversion experimental analysis, are explained below. 

Reactivity ratio estimation based on the Mayo-Lewis model has certain limitations because of 

the assumptions involved with this model. The model, relating the instantaneous copolymer 

composition, 1F , to the unreacted monomer mole fraction, 1f , is shown in equation (11), with 1r  

and 2r  being the reactivity ratios for monomer 1 and 2. 

2
1211

2
11

11
2

11
1 )1()1(2

)1(
frfffr

fffrF
−+−+

−+
=                                                                                          (11) 

Based on the assumptions and instantaneous nature of this model, only low conversion 

(conversion < 5%) experiments can be used for estimating reactivity ratios. If low conversion 

data are collected, one can “assume” that there has been no composition drift in the system, i.e., 

initial feed compositions, 10f , have remained the same and so 10f  values can be used instead of

1f . Also, the measured copolymer composition values are in actual fact cumulative copolymer 
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compositions, 1F , which are assumed to be equal to the instantaneous copolymer composition 

values, 1F . These assumptions may not hold for many cases and thus using low conversion data 

introduces experimental error immediately. Therefore, all these become sources of bias in the 

reactivity ratio estimates.  

Using higher conversion data, or in fact, data from the whole experimental conversion 

trajectory, is another approach that is more recent than the Mayo-Lewis equation. In this method, 

the differential equation for the unreacted monomer fraction 1f  with respect to conversion ( nX ) 

is being integrated over the course of conversion, as shown in equation (12). The unreacted 

monomer mixture composition, 1f , is then used in equation (13) to evaluate the cumulative 

copolymer composition, 1F . Also, since the measured conversion is usually on a mass (weight) 

basis, a weight conversion ( wX ), as in equation (14), should be used to relate nX  to wX .  

nn X
Ff

dX
df

−
−

=
1

111                                                                                                                                  (12) 

n

n

X
XffF )1(110

1
−−

=                                                                                                                       (13)                     
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210101

)1(
)1(
MwFFMw
MwffMwXX wn −+

−+
=                                                                                                        (14) 

The performance of this approach, which is referred to as direct numerical integration (DNI), 

without resorting to any analytical integration, was recently evaluated and discussed in detail in 

Kazemi et al.7, with comparisons to the Mayo-Lewis model or the Meyer-Lowry analytically 

integrated model. It was shown that using the DNI approach and using medium and high 

conversion data for estimating reactivity ratios can significantly improve the quality of the 

results by (simply) including more information in the analysis as well as avoiding (practical) 

limitations of collecting low conversion data (with their inherent sources of errors). Therefore, 
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our EVM framework based on the DNI approach can handle experimental data at any conversion 

level. 

Given the discussion on sections (1) and (2), section (3), which follows, summarizes the 

prescriptions for obtaining reactivity ratios both efficiently and consistently. 

(3) Recommended steps 

The flowchart of figure 1 gives an overview and summary of the recommended steps of the 

complete methodology. Following the steps on this flowchart will increase the reliability of the 

reactivity ratio estimates for any copolymerization system (an example from a novel 

experimental system is shown in the results and discussion section). Also, these steps can be 

implemented during investigations of any larger multicomponent polymerization. The 

recommended approach is summarized in the following steps: 

1. Start with the given copolymerization system. 

2. Check the related literature for reasonable preliminary guesses (e.g., reactivity ratio estimates 

that have been estimated in similar experimental settings).  

2.1. If initial guesses for reactivity ratios are available, go to step 5. 

3. If no information is available, perform preliminary experiments and collect data. 

3.1. Experiments can be performed up to medium conversion levels (say, up to 20-40%). 

3.2. Cover low, medium and high feed compositions and note any limitations in the feasible 

experimental region (constraints). 

3.3. Collect data on feed composition, copolymer composition, and conversion. 

3.4. Perform independent replicates (this important step is rarely done). 

4. Use EVM to estimate reactivity ratios (Estimation). 

4.1. Work with the DNI approach, since it is more general. 
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4.2. If measurement error levels are known, specify k  (as per equation (1)) and populate the 

variance-covariance matrix of the measurements. If not enough replicates are available 

to calculate k , typical values which are based on the usual amount of error in common 

polymerization measurements can be used (i.e., k  as 1% for gravimetric analysis and 

5% for NMR analysis). 

4.3. Run the EVM parameter estimation algorithm as presented in Kazemi et al.8   

4.4. Construct joint confidence regions for reactivity ratios.8  

5. Locate optimal feed compositions (Design). 

5.1. With copolymerizations, there are two parameters to be estimated ( 1r  and 2r ) and thus at 

least two optimal feed compositions to be calculated.16 

5.2. Note infeasible and feasible experimental regions. The feasible range for the optimal 

experiments can be chosen from a relatively small mole fraction (below 0.1) up to 1. 

Using the EVM design criterion, the first feed composition is always at the lowest limit 

of the feasible region, while the second one is a feed composition within the range 0 to 1, 

depending on the reactivity ratio values. This rule of thumb also applies for the 

sequential design scheme. 

5.3. Use the EVM design criterion as shown in equation (8) for the initial design scheme and 

equation (9) for the sequential design scheme. Refer to Kazemi et al.9 for more 

information. 

5.4. It is preferable to use a global optimization technique.9,16 

6. Make sure that the optimal points are experimentally feasible (i.e., they do not violate any 

process constraints). If not feasible, return to step 5 and adjust accordingly. For 
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copolymerizations, the lower bound of the feasible region is always chosen as one of the 

optimal points. So, set/adjust this value at the lowest possible practical feed composition. 

7. Perform the optimal experiments (Experimentation). 

7.1. Initial feed compositions ( 10f ) are at the optimal points. 

7.2. Run experiments up to “moderate/high” conversion. That is, for each designed initial 

feed composition, experimental data on copolymer composition can be collected at 

conversion levels of 5%, 10%, 20%, 30% and 40%, even up to approximately 60% (i.e., 

the EVM approach does not have any low conversion restrictions, as common practice 

stipulated before).  

7.3. Perform replicated experiments; collecting independent replicates for each run increases 

the accuracy of the results significantly and it is therefore highly recommended. 

8. Using EVM, re-estimate reactivity ratios, as per step 4.  

9. If results are satisfactory, proceed with step 10. If not, use the new point estimates and the 

information matrix from step 7 to carry out the next sequentially designed experiment(s). 

9.1. Find the next optimal trial, using equation (9) and go to step 7.  

• Repeat steps 7 to 9 until the outcome is satisfactory. 

10. Check/plot the 21 / rr  joint confidence region. 

11. Finish. 
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Figure 1. EVM framework flowchart for reactivity ratio estimation 

   3. Perform preliminary experiments and collect data
Cover low, medium, and high feed compositions
Run up to medium conversion levels
Collect independent replicates

   4. Estimate preliminary reactivity ratios
Select DNI approach
Run EVM
Plot joint confidence regions

    5. Locate initial optimal feed compositions
Determine two feed compositions
Determine experimental feasible region
Use EVM design criterion
Select a global optimization algorithm

6. Are the results 
experimentally feasible?

2-1. Initial guesses

Yes

1. Start

10. Joint confidence region

11. Finish

2. Any initial 
reactivity ratios?

No

8. Re-estimate reactivity ratios, as per step 4

9. Are the reactivity 
ratios acceptable?

9-1. Design the next 
sequential experiment

Yes

    7. Perform optimal experiments and collect data
Select optimal feed composition(s)
Run experiments up to medium-high conversion level
Collect data for at least 5 conversion levels within the range
Perform independent replicates

No

Yes

No

Process DecisionData Start/Finish

Legend:
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EXPERIMENTAL  

Materials  

N,N-Dimethylformamide (DMF, 99.8%) and methyl methacrylate (MMA, 99%) were obtained 

from Aldrich, while methanol (99.8%), and tetrahydrofuran (THF, >99.9%) were obtained from 

Fisher Scientific. Prior to polymerizations, the MMA was purified by passage through a mixed 

column of calcium hydride (Aldrich) and basic alumina (Aldrich) (the mixture was 1:20 by 

weight, respectively) and stored in a sealed flask in a refrigerator under a head of nitrogen. 

Synthesis of VBK was performed in accordance with previous literature.10 2-({tert-butyl[1-

(diethoxyphosphoryl)-2,2-dimethylpropyl]amino}oxy)-2-methylpropionic acid (BlocBuilder, 

99%) was obtained from Arkema, while {tert-butyl[1-(diethoxyphosphoryl)-2,2-

dimethylpropyl]amino} nitroxide (SG1, >85%) was kindly donated by Noah Macy of Arkema. 

No additional purifications were performed, unless otherwise stated. 

 

Synthesis of MMA/VBK copolymers 

The MMA/VBK copolymerizations were carried out under similar conditions to those reported 

by Lessard et al.10 In a typical copolymerization, a stir bar along with a mixture of BlocBuilder, 

SG1, DMF, VBK and MMA were added to a sealed three-neck round-bottom flask fitted with a 

temperature well, condensing column, and mounted on a heating mantle with stir plate. The ratio 

of BlocBuilder to monomer was determined to give a target molecular weight at complete 

conversion of 20-25 kg.mol-1 while using an initial molar ratio of [SG1]0/[BlocBuilder] ≈ 0.1. In 

all cases, DMF added to the mixture gave a ≈20wt% solution. The mixture was bubbled with 

ultra-pure nitrogen and stirred for 30 min at room temperature prior to heating to 80 °C. A series 

of samples were then drawn by syringe. Half of each sample was directly introduced into a 5mm 
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NMR tube for determination of conversion and copolymer composition, while the second half 

was allowed to evaporate until constant mass and further analyzed by 1H NMR spectroscopy as 

a second determination of copolymer composition. The polymerization was allowed to proceed 

for 8-24 hours depending on the experiment and the final polymer was precipitated in methanol.  

 

Copolymer characterization 

Copolymer composition was determined by 1H NMR spectroscopy using the characteristic 

resonances for the MMA (δ = 3.75 ppm) and the VBK (δ = 5.64 ppm) units.  Copolymer 

conversion ( WX ) was determined by the following equation: 0,0, .. VBKVBKMMAMMAW nXnXX +=    

where MMAX  and  VBKX  are the individual comonomer conversions and 0,MMAn  and 0,VBKn  are the 

initial molar weight% of MMA and VBK, respectively. As previously reported,17 MMAX  for 

MMA and VBKX  for VBK were determined by comparing the integrated peaks corresponding to 

the vinyl protons (δ = 6.09 and 5.55 ppm for MMA and δ = 5.71, 5.17, and 6.64 ppm for VBK) 

of the respective monomers, to the methoxy group (δ = 3.75 ppm, corresponding to MMA) and 

the methylene group (δ = 5.64 ppm, corresponding to VBK) corresponding to the respective 

bound monomer units in the copolymer. 

 

RESULTS AND DISCUSSION: EXPERIMENTAL VERIFICATION OF 

COMPLETE SCHEME 

The following subsections illustrate the complete procedure with the EVM framework, for 

estimating the reactivity ratios of the 9-(4-vinylbenzyl)-9H-carbazole (VBK) and methyl 

methacrylate (MMA) copolymerization system. This is a novel and largely unstudied controlled 

radical copolymerization (due to the electron-donating properties of VBK), and hence fertile 
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ground to illustrate the procedure with it. VBK has been identified as a controlling comonomer 

for a variety of methacrylates, such as oligo(ethylene glycol) methyl 

ether methacrylate (OEGMA)17, 2-N-morpholinoethyl methacrylate (MEMA)18, and methacrylic 

acid (MAA)19. The VBK reactivity ratios with the corresponding methacrylates have been 

identified as a contributing factor to this control.20 A preliminary investigation concerning the 

reactivity ratios of VBK/MMA was described in Lessard et al.10 In summary, experimental data 

from Lessard et al.10 were analyzed first to obtain preliminary reactivity ratios, which were 

subsequently used for the optimal design of experiments. In the second step, experiments were 

performed based on these optimal feed compositions. In the third step, reactivity ratios were re-

estimated based on the designed data. Finally, these updated reactivity ratios were used once 

more in order to design the next optimal experiment but now in a sequential fashion. After 

performing sequential experiments, the reactivity ratios were re-estimated. The results showed a 

clear improvement in the quality and precision of the reactivity ratios obtained.  

 

Preliminary experimentation (steps 1-4, figure 1) 

Preliminary attempts at determining the reactivity ratios for this system involved low 

conversion experiments and a nonlinear fitting procedure for estimating reactivity ratios.10 The 

low conversion data are shown in table 1, where the WX , 0f ,  and F columns show the mass 

conversion, initial feed composition, and cumulative copolymer composition, respectively. The 

reference reactivity ratios from Lessard et al.10 with their confidence intervals are shown in table 

2. 

 

Table 1. Low conversion data for VBK/MMA copolymerization (Lessard et al.10) 
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%)(wtXW  VBKf )( 0  VBKF  
17 0.01 0.03 
13 0.03 0.06 
16 0.05 0.14 
10 0.10 0.37 
10 0.10 0.29 
8 0.30 0.71 
8 0.30 0.55 
4 0.40 0.79 
4 0.40 0.59 
7 0.50 0.74 
7 0.50 0.62 
4 0.80 0.91 
4 0.80 0.89 

 

To obtain reactivity ratios for the subsequent design of experiments, low conversion data 

points, as in table 1, were analyzed with the DNI approach7,8 and new reactivity ratios were 

obtained, as shown in the second row of table 2. The Mayo-Lewis model, which is used most 

commonly for estimating reactivity ratios in the literature, was not employed in the current work, 

as the conversion levels of the data points (shown in table 1) were much higher than 5%; hence, 

this is a perfect application of the DNI approach, as recently described in Kazemi et al.7,8 Figure 

2 shows joint confidence regions (JCR) for the reactivity ratios in table 2. The reference 

reactivity ratios are not contained in the new JCR (dashed line). The new JCR, reflecting the 

level of uncertainty in the estimates, is quite large (especially with respect to the uncertainty in 

the rVBK (r1) value).  

 

 

 

 

Table 2. Reactivity ratio estimates for VBK (M1) /MMA (M2) copolymerization 
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 Copolymerization 
model Data set/Conversion level 1r  2r  

Lessard et al.10 Mayo-Lewis Lessard et al.10 2.7 ± 1.5 0.24 ± 0.14 

Current work DNI Lessard et al.10 4.13 0.29 

Current work DNI EVM initial optimal data 1.64 0.32 

Current work DNI EVM initial and 
sequential optimal data 1.53 0.32 

Current work DNI Tidwell-Mortimer initial 
optimal data 2.66 0.48 

 

Note that for the EVM implementation of the DNI approach and calculation of the JCR, the k  

values (see equation (1)) for feed mole fraction and conversion measurements were 0.005, 

corresponding to a typical error level of 0.5% (coming from gravimetry). The k  value for 

copolymer composition measured via NMR was 0.10 (i.e., errror level of 10%). 

The next step was to calculate initial optimal feed compositions. As mentioned earlier, since 

there are two parameters under study, two optimal feed compositions (mole fractions), 11f  and 

12f , should be located ( 11f  refers to the mole fraction of M1 (VBK) for the first trial and 12f  is 

the mole fraction of VBK for the second trial). The values of these points depend on the prior 

values of reactivity ratios, and in this case, we used the reactivity ratios estimated from the low 

conversion data (second row of table 2). The EVM design criterion9 resulted in two feed 

compositions, with 11f  → 0 and 0 < 12f  < 1. In order to keep the design procedure optimal and 

practical, a (practically) small value of 11f  should be the lower limit of the feasible region that is 

determined for each system based on operating conditions and experimental settings. Therefore, 

in this case, feed compositions of 11f =0.04 and 12f =0.30 were suggested by the optimal design 

criterion for the initial optimal trials.  
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Optimal design of experiments (steps 5-11, figure 1) 

New optimal experiments were performed at the specified feed compositions in 20% DMF (by 

weight). The early stages of copolymerization are dominated by VBK incorporation, since VBKr  

is larger than MMAr . As conversion increases, the amount of VBK in the copolymer decreases. To 

capture this information, experiments should be run up to relatively medium-high conversion 

(otherwise, this information is completely lost at low conversion level trials with copolymer 

chains rich in VBK). The maximum achievable conversion for the new trials was 40% and six 

samples per experiment were collected at different conversion values. Table 3 shows the new 

optimal data set. Independent replicates were also conducted and are included in the table as 

well.  

Using the inital optimal data set, the reactivity ratios were re-estimated and the results are 

shown in table 2 (third row), as well as in figure 2. The JCR of the new reactivity ratios (solid 

line) is considerably smaller. The optimally designed experiments are expected to provide the 

best set of observations for the purpose of parameter estimation and, therefore, the point 

estimates would show a lower amount of uncertainty (smaller JCR). This part of the analysis 

clearly proves our point that implementing the EVM framework increases the certainty of the 

results and in turn our understanding about the true (yet unknown) values of these reactvity 

ratios. 

 

 

Table 3. Optimally designed data (initial design scheme) 
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%)(wtXW  VBKf )( 0  VBKF  %)(wtXW  VBKf )( 0  VBKF  

5.6 0.04 0.08 2.9 0.29 0.55 
17.2 0.04 0.07 14.8 0.29 0.42 
22.5 0.04 0.05 15.4 0.29 0.51 
38 0.04 0.04 16.1 0.29 0.49 

32.6 0.04 0.05 19 0.29 0.50 
36.5 0.04 0.05 28.9 0.29 0.52 
1.1 0.04 0.57 4.3 0.3 0.61 
6.9 0.04 0.13 15.6 0.3 0.36 
7.9 0.04 0.11 18.3 0.3 0.41 
11.3 0.04 0.10 20.3 0.3 0.41 
14.7 0.04 0.09 23.5 0.3 0.42 

26.8 0.3 0.42 
 

 

Figure 2. Preliminary, initial and sequential optimal reactivity ratio estimates (M1=VBK, 

M2=MMA) 
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To complete the analysis, the next step was taken in order to study the effect of including the 

next sequentially optimal experiment as well. The next sequentially optimal trial, given by the 

EVM design criterion,9 was at the feed composition of 1f =0.45. Very similar to the initial set of 

optimal experiments, six samples per experiment at different conversion levels were run. Table 4 

shows these data points. These data points were added to those of initial optimal experiments and 

the combined data set (tables 3 and 4) was re-analyzed by the DNI approach for updating the 

reactivity ratios. 

Table 4. Optimally designed data (sequential design scheme) 

%)(wtXW  VBKf )( 0  VBKF  

3.7 0.45 0.42 
5.4 0.45 0.61 
10.2 0.45 0.61 
7.7 0.45 0.60 
6.5 0.45 0.76 
7.8 0.45 0.67 

 

The final set of estimated reactivity ratios is included in table 2 (fourth row) and also in figure 

2 along with the corresponding JCR. Based on the results in figure 2, it can be clearly seen that 

using 1f =0.45, as the next sequential experiment, resulted in the smallest JCR (i.e., the most 

reliable reactivity ratio estimates among all analyzed cases). This was also in complete 

agreement with the previously obtained reactivity ratios. For all these cases, the sizes of JCRs are 

considerably smaller than JCRs obtained from initially designed (or non-designed) experiments, 

thus validating our premise that performing sequentially optimal experiments improves the 

quality of reactivity ratios, thus making it a very useful step in the process of determining 

reliable reactivity ratios. 
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An important aside: comparison between the EVM and Tidwell-Mortimer design criteria 

As the last part of the analysis for this case study, we decided to compare experimentally the 

performance of the relatively new EVM design criterion with the Tidwell-Mortimer design 

criterion. For this purpose, the Tidwell-Mortimer optimal feed compositions were calculated 

using equation (10) and then experiments were performed with those feed compositions at 11f

=0.13 and 12f =0.33 (again, 11f  refers to the mole fraction of VBK for the first trial, whereas 12f  

refers to the mole fraction of VBK for the second trial). The data points from this stage of 

experimentation are shown in table 5. Using these data points, the reactivity ratios were re-

estimated and the results are shown in Table 2 (last row) as well as in figure 3, along with their 

JCR (dashed line). This figure also shows the previously obtained reactivity ratios from the 

initial EVM optimal experiments with their JCR (solid line). As can clearly be seen in this figure, 

the Tidwell-Mortimer design reactivity ratios have a larger JCR than the EVM design reactivity 

ratios, indicating that these point estimates are not as precise as the EVM design reactivity ratios. 

This first-ever comparison perfectly supports our claims about the superiority of the EVM design 

criterion for the purpose of estimating reactivity ratios, which is related to the fact that the EVM 

statistical framework is the most appropriate methodology for the problem of reactivity ratio 

estimation. 
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Table 5. Designed data using Tidwell-Mortimer criterion (initial design scheme) 

%)(wtXW  VBKf )( 0  VBKF  %)(wtXW  VBKf )( 0  VBKF  
5.43 0.13 0.29 2.38 0.33 0.74 
12.04 0.13 0.23 4.22 0.33 0.59 
19.40 0.13 0.19 6.21 0.33 0.57 
20.22 0.13 0.21 29.24 0.33 0.26 
44.83 0.13 0.18 9.08 0.33 0.48 
6.33 0.13 0.31 24.60 0.33 0.33 
8.71 0.13 0.25 3.56 0.33 0.72 
9.25 0.13 0.24 5.68 0.33 0.46 
23.15 0.13 0.17 3.74 0.33 0.57 
15.81 0.13 0.25 3.59 0.33 0.63 
19.53 0.13 0.27 5.64 0.33 0.57 

 33.95 0.33 0.30 
 

 

 

Figure 3. EVM vs. Tidwell-Mortimer reactivity ratio estimates (M1=VBK, M2=MMA) 
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CONCLUSIONS 

We have discussed statistically correct EVM estimation procedures and extended them to 

include optimal design of experiments for reactivity ratio estimation in copolymerization. The 

methodology is applicable to terpolymerizations as well. For a comprehensive approach to yield 

reliable reactivity ratio values, several sequential steps and practical prescriptions have been 

suggested: (a) reactivity ratio estimation from screening experiments (typically but not 

necessarily at low conversion levels), (b) optimal design of experiments, (c) reactivity ratio 

estimation from full conversion range experiments, and (d) sequential design of experiments and 

re-estimation of reactivity ratios and diagnostic checks. This complete methodology, which 

should become the norm, especially in copolymerization or terpolymerization kinetic studies, has 

subsequently been experimentally demonstrated and verified with the new and largely unstudied 

VBK/MMA nitroxide-mediated copolymerization system. The estimated optimal reactivity ratios 

are VBKr =1.53 and MMAr =0.32, whereas the 95% joint confidence region for these values is shown 

in figure 2. 
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